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ABSTRACT 

 

 While mechanical behavior of crystalline materials has been well-understood in terms of 

lattice defects, metallic glasses pose significant challenges in defining the defects due to 

disordered structure. Physical/computational simulations have shown that equiaxed clusters, 

termed shear transformation zones (STZs), undergo shear transformations by atomic 

rearrangement in them to accommodate macroscopic strain. Properties of the STZs in amorphous 

Al86.8Ni3.7Y9.5 were characterized using their anelasticity as a probe. A combination of cantilever 

bending and bend-stress relaxation measurements was employed to measure quasi-static 

anelastic strain over ~ 1 sec. – 8 × 10
7
 sec. Direct spectrum analysis (DSA), the reliability of 

which was assessed with simulated data including noise, was performed to obtain the relaxation-

time spectra. The spectra exhibit distinct peaks, which were analyzed in terms of the standard 

anelastic solid model with a linear combination of spring-dashpot, in conjunction with transition-

state theory. The analysis provided the size of STZs: Active STZs consist of 14 – 21 atoms, 

resolved by a single atomic volume. The present model elucidates prior observations, (a) 

activation energy spectra obtained by the temperature-stepping method and (b)  and  

relaxations in loss moduli. 

 The same STZ sizes were observed in both as-quenched and relaxed samples, suggesting 

that the activation energies are not altered by structural relaxation. The volume fraction of 

potential STZs (cn), however, decreases substantially due to relaxation. These are interpreted in 
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terms of the free-volume model, modified to account for STZs as basic units. The resulting 

expression, fitted to cn, indicates that ~ 2 % decrease in free-volume reduces cn substantially, 

leading to a viscosity rise. 

 Published dynamic behavior of amorphous Zr46.8Ti8.2Cu7.5Ni10Be27.5 was analyzed in order 

to evaluate the model used. DSA, performed with loss modulus data, yielded distinct peaks in the 

relaxation-time spectra, consistently for all data sets. The analysis of these spectra, employing 

simultaneous fits to account for Arrhenius behavior of respective time constants and their size-

dependence, yielded STZs sizes of 25 – 33 atomic volumes. Compatibility of the size, attempt 

frequency and transformation strain of an STZ below and above Tg is noted. The characterized 

STZ volumes are part of a wider hierarchy, and the window observed is determined by the 

experimental conditions. 
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Chapter 1 

INTRODUCTION 

 

1.1 PROPERTIES OF METALLIC GLASSES 

 Metals lacking long-range atomic order were first reported 60 years ago.
1–3

 Although they 

can be produced by various techniques, the underlying principle of the methods to achieve the 

disordered structure was rapid removal of energy below the crystallization temperature, 

bypassing crystal nucleation. Since the discovery of this new class of metallic materials, termed 

metallic glasses, progress has been made to explore solidification methods via rapid cooling, 

such as melt-spinning, physical vapor deposition or pulsed laser quenching. Cooling rates of the 

order of 10
5
 to 10

12
 K/sec. can be achieved by these techniques, which limit the typical thickness 

to ≤ ~ 100 m.  

 As an alternative of producing metallic glasses, instead of enhancing the cooling efficiency, 

significant efforts have been made to lower the critical cooling rate for the metallic glass 

formation, thereby improving the glass forming ability. The discovery of alloy compositions for 

the bulk forming elemental combinations represents one of the impressive successes.
4,5

 A wide 

variety of alloy systems have been investigated to find the bulk-glassy-forming metallic alloys, 

and some of the alloys were reported to solidify to an amorphous structure at cooling rates as low 

as 1 K/sec.
6,7

 

Metallic glasses have received much attention from scientists due to their unique 

properties originating from the amorphous structure. Mechanical properties are among those
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distinct from those of the crystalline materials.
5,6,8

 Metallic glasses show high compressive yield 

strength on the order of several GPa at room temperature. They exhibit larger elastic strain up to 

~ 2 – 3 %, with elastic moduli comparable to those of crystalline alloys. Plastic deformation, 

however, is generally limited because of the flow localization in narrow shear bands due to work 

softening leading to fracture.  

 

 

 

Figure 1.1 An optical micrograph of an as-quenched tensile specimen (Pd78Cu6Si16 in at. %) 

loaded along the longitudinal direction at a constant strain rate of 10
-4

/sec.
10

  

 

Typical fracture of brittle metals during uniaxial tests occurs via flaw propagation along 

the direction perpendicular to the loading axis, where stress concentration at the crack tip is 

maximum. Experimental observations of shear banding angles, typically ~ 45 – 55
o
 inclined to 

the loading direction, in metallic glasses, however, suggest the deformation is a shear process, 

and their limited strain to failure is attributed to the shear instability due to work softening.
9
 

Figure 1.1 shows the shear-band morphology of an amorphous Pd78Cu6Si16 sample subjected to 

tensile test.
10

 In addition, structural changes accompany the shear process, such as shear 
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dilatation, as experimentally observed in preferential etching,
11

 enhanced diffusion rate,
12

 

crystallization
13

 and nanometer-scale voids formation
14

 in the shear bands.  

 Even though plastic deformation of metallic glasses is generally limited because of flow 

localization in narrow shear bands, many studies have revealed that the strain to failure can be 

improved substantially by incorporating reinforcements into the glassy matrix, such as ductile 

crystalline particles.
15 , 16

 Recently, the Pd79Ag3.5P6Si9.5Ge2 glass have been reported to 

demonstrate remarkable fracture toughness in excess of that of low-carbon steels by the 

extensive shear-band sliding near crack tips.
17 

 

 In addition to their outstanding strength, flow in the metallic glasses has been of interest to 

many engineers. Their unique rheological properties at high temperature, near the supercooled 

liquid regime, allow for net-shape processing via direct casting or thermoplastic forming.
18,19

 In 

order to employ these processing techniques for metallic glass forming alloys, however, 

challenges still remain, since crystallization in the supercooled liquid can significantly degrade 

their rheological properties. Therefore, experiments on the crystallization kinetics have been 

carried out extensively to study the optimum processing routes by constructing time-

temperature-transformation diagrams for their applications.
20,21

 

 While experiments on the mechanical properties of metallic glasses have led to a wide 

range of industrial structural applications, fundamental studies on their deformation behavior are 

required to take advantage of their remarkable properties. Basic studies on mechanical behavior 

of crystalline materials by physicists and materials scientists have allowed for development of 

engineering materials through controlling defects, such as precipitates, grain boundaries and 

dislocations. Microscopic description at an atomic level that accounts for the deformation of 

metallic glasses, however, is extremely challenging due to the lack of atomic-scale periodicity in 
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the matrix. The inherent disordered structure makes it difficult to characterize the deformation 

evolution on the atomic scale directly using electron microscopy as well, since there is no known 

contrast mechanism for imaging microscopic defects.  

 Attempts have been made to describe deformation of metallic glasses in terms of 

dislocation mechanics.
22

 Subsequent investigations, however, have not supported the notion of 

dislocation-mediated deformation, even though a dislocation line may be created artificially by 

the classical procedure: an amorphous model can be displaced through making a planar cut by 

Burgers vector, followed by rejoining the displaced parts except for an extra half plane, the edge 

of which is a dislocation line. In fact, the Burgers vector, defined by making a close-circuit 

encompassing dislocation core, cannot be even clearly designated in an amorphous structure. 

Moreover, once an artificial dislocation is created in amorphous solids, because of the stress field 

existing around the dislocation core, it should be relaxed by consequent local rearrangements of 

atoms, made possible by the lack of translational symmetry, eliminating the supposed 

dislocation.
23

 In addition, mechanical properties of amorphous materials are not determined by 

interactions between dislocations, as commonly observed in crystalline materials, which are 

strengthened when the dislocation density increases. In contrast, cold working does not strain 

harden metallic glasses. 

 Pioneering work that has triggered a wide range of fundamental studies on mechanical 

behavior of metallic glasses was published by Spaepen in the late 1970s.
24

 Its model is based on 

the original study on the role of free volume in molecular transport by Cohen and Turnbull.
25

 

Spaepen’s model has expanded their study to derive constitutive equations for the deformation of 

metallic glasses, and the model has been successful in explaining a range of experimental 

observations including flow localization. Two years later, microscopic details on the deformation 
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of metallic glasses were added by Argon,
26

 based on a physical analogue, namely two-

dimensional bubble rafts.
27

 Analysis of the microscopic strain in sheared bubble rafts showed 

spatially distributed equiaxed clusters of bubbles that rearrange in response to the applied shear. 

These clusters were termed shear transformation zones (STZs). The STZs model introduced by 

Argon allows for a continuum description of deformation of amorphous solids. Recent 

experiments on 3-D colloidal glass as a physical analogue
28

 and computer simulations
29

 are in 

qualitative agreement with the 2-D bubble raft results. The two studies by Spaepen
24

 and Argon
26

 

are still widely used for explaining mechanical properties of metallic glasses. 

 Deformation of metallic glasses shows diverse modes, and the characteristic behavior can 

be separated in terms of its reversibility and time-dependence. Under an applied stress, 

instantaneous elastic, i.e., reversible deformation is followed by time-dependent deformation. 

The time-dependent strain consists of two distinct components: anelasticity and viscoplasticity. 

While viscoplastic component leads to permanent deformation, anelastic strain is reversible. 

 A microscopic mechanism that results in the anelastic deformation of metallic glassses is 

attributed to the activation process of STZs by Argon as observed in bubble rafts 

experiments.
27,30

 In addition, mapping local shear strain in sheared bubble rafts suggests that the 

STZs are spatially isolated at low strain, confined by their elastic surroundings.
27

 Upon removal 

of the constraint, elastic back-stress reverses the isolated STZs, leading to anelasticity, whereas 

larger accumulation of the strain increases the sheared volume elements near the preexisting 

STZs, resulting loss of back stress and in irreversible viscoplasticity.  

 While low-temperature annealing of crystalline materials barely changes their physical 

properties, metallic glasses undergo structural relaxation during heat treatment. It results in 

densification, leading to dramatic property changes, such as atomic transport, electrical and 
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magnetic properties.
31

 For example, the viscosity increases significantly as a result of the 

structural relaxation.
32

 Although its effects on physical properties of metallic glasses have been 

observed from many experiments, a microscopic mechanism governing structural relaxation is 

the subject of considerable debate.
33,34

 While it is difficult to draw a clear conclusion for the 

mechanism of structural relaxation, it is clear that it involves annealing of defect sites. The 

challenge is to obtain both qualitative and quantitative information on these sites. 

 Cohen and Turnbulls’ study provides a statistical description of the distribution of free 

volume in amorphous structure, and an expression for the probability that an atom can hop to a 

neighboring site for atomic transport.
25

 The result has been incorporated by Spaepen,
24

 and free 

volume fluctuation has been used as an important criterion for deformation sites: when the free 

volume associated with an atom is greater than a critical free volume, v*, which is close to an 

atomic volume, a local transformation may result. Schematic illustration of an atomic jump 

suggested by Spaepen in an amorphous system is shown in Fig. 1.2.
24

 Total probability of 

finding a hole of volume exceeding v* is given by:  
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
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 , (1.1) 

where vf is the average free volume of an atom and  is a geometrical factor between 1/2 and 1.
25

  

 The free volume criterion given in Eqn. (1.1) has been widely used to interpret a range of 

experimental data, especially for the effect of structural relaxation on diffusivity or shear 

viscosity of metallic glasses.
32,35–38

 As an example of the observations, shear viscosity rise by 

orders of magnitude due to structural relaxation
32,37

 has been attributed to the annihilation of free 

volume, e.g.,  by a bimolecular process.
33

 Similarly, Egami
39,40

 has suggested that recombination 

of two distinct deformable sites, in which negative and positive pressures are stored, results in 
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the dramatic change in shear viscosity due to annealing. While no energy change during the 

redistribution of free volume among all the atoms has been assumed by Cohen and Turnbull,
25

 

Egami’s model
41,42

 is based on microscopic stresses acting on individual atoms observed in 

computer simulation studies. 

 

 

 

Figure 1.2 Schematic illustration of an atomic jump for diffusion or flow in an amorphous 

system.
24

 

 

 This dissertation addresses microscopic details for the deformation of metallic glasses with 

quantitative analyses of STZs using experimental results on anelastic relaxation. In order to 

measure the anelastic strain in a wide range of time spans, a combination of two experimental 

techniques, cantilever bending and bend-stress relaxation experiments, are employed. Details on 

the experimental procedures including underlying mechanics are discussed in Chapter 3. Using 

the experimental data, the direct spectrum analysis
43

 has been performed to obtain the relaxation-

time spectra. Surprisingly, the relaxation-time spectra show several distinct peaks for metallic 

glasses, which reveal a quantized hierarchy of STZs with increments of a single atomic volume, 

ranging from 14 to 21 atoms.  
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 In addition to the quantized properties of STZs, the volume fraction of potential STZs is 

obtained. These are atomic clusters capable of undergoing shear transformations. While the 

volume of STZs and their quantized properties obtained from the relaxation-time spectra show 

less than one percent difference between as-quenched and relaxed samples, the volume fraction 

of potential STZs decreases substantially upon structural relaxation, leading to a viscosity rise. 

The annihilation of potential STZs have been interpreted in terms of the free volume model, 

modified to account for STZs as basic units. These analyses allow us to explore the microscopic 

mechanisms of changes in mechanical properties driven by structural relaxation in metallic 

glasses. 
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Chapter 2 

BACKGROUND 

 

 The first section, 2.1, in this chapter comprises a review of anelasticity. The discussion in 

Section 2.1 begins with macroscopic time-dependent phenomena, in response to experimentally 

controlled mechanical variables. The mechanical variables can be quasi-static or dynamic, and 

depending on their types, the anelastic material shows distinct responses. Anelastic responses 

under quasi-static constraint are discussed in Section 2.1.1, and dynamic properties are discussed 

in Section 2.1.2.  

 The next section, 2.2, reviews microscopic mechanisms that allow for understanding of 

mechanical behavior of metallic glasses. Basic microscopic units that undergo strain to 

accommodate deformation are discussed in Section 2.2.1 in terms of shear transformation zones 

(STZs) and transition-state theory. The section is followed by discussion of the free volume 

theory, which was developed to determine the rate of atomic jumps for diffusion in metallic 

glasses,
1
 and discussion of structural relaxation in Section 2.2.2. Finally, prior experimental 

determination of the activation energy spectrum for anelastic relaxation in metallic glasses is 

discussed in Section 2.2.3.
2
 

  

2.1 ANELASTICITY  

 The term “anelasticity” refers to time-dependent, reversible relaxation of materials in 

response to external forces. The forces are not only stress or strain, but can also be electric or 
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magnetic fields. In general, when a constant mechanical variable, e.g. a constant stress, is turned 

on, a material exhibits instantaneous strain followed by time-dependent strain. The instantaneous 

strain is termed elastic, and is usually expressed in terms of Hooke’s law. Upon removal of the 

external stress, recovery of the elastic strain is instantaneous, but part or all of the remaining 

strain components is recovered in a time-dependent manner, a process termed anelasticity.  

 

 

 

Figure 2.1 When a constant stress, , is turned on, instantaneous elastic strain (el) is followed by 

the time-dependent anelastic strain an(t). The anelastic strain increases as a function of time, t, 

from zero to the equilibrium value (eq.an). Upon removal of the external constraint, , the 

anelastic strain, an, which depends on the prior constraining time, recovers as a function of time.  

The inset shows anelastic strain components only. 

 

 A schematic diagram of anelastic strain is given as a function of time in Fig. 2.1 for the 

case in which the entire time-dependent strain component is reversible. For many materials, the 
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anelastic strain at a given time is linear in the external stress in the low stress regime.
3,4

 The 

linearity of anelastic relaxation has been embodied in the Boltzmann superposition principle, and 

it has been observed in many relaxation experiments on metallic glasses as well.
5 – 7

 Prior 

experimental studies on the anelastic properties of metallic glasses are discussed in Section 2.2.3. 

 

2.1.1 QUASI-STATIC BEHAVIOR  

 When a mechanical variable, such as a constant stress, is applied to a material, it relaxes 

from the elastic equilibrium to its new equilibrium state by a continuous process of anelastic 

relaxation. While elastic equilibrium is achieved instantaneously, equilibration of the anelasticity 

is accompanied by time-dependent changes in states of mechanical variables, e.g., strain, that are 

conjugate to the experimentally controlled variables, such as stress. According to Nowick and 

Berry,
8
 relaxation is termed as the self-adjustment of a thermodynamic system with time toward 

a new equilibrium state in response to a change in an external variable.  

 A time-dependent-stress-strain relation is used here to explain the deformation behavior of 

an anelastic solid. The anelastic model employed to derive expressions for this relation consists 

of springs and dashpots, as shown in Fig. 2.2. This model is termed the standard linear solid 

model.
8,9

 It is assumed that there is no time-dependent permanent deformation. Subjected to a 

constant uniaxial stress, , a spring element accommodates instantaneous elastic strain, which is 

expressed in terms of Hooke’s law:  

   E , (2.1) 

where E is the elastic modulus and  is the elastic strain. Unlike for the spring element, 

instantaneous deformation cannot be imposed on the dashpot element, because an infinite stress 
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should be applied to the dashpot to achieve a step change in strain.
4
 Instead, the dashpot exhibits 

linear viscous flow in response to the applied stress, as given by: 

  
dt

d
 3 , (2.2) 

where  is the shear viscosity and dtd /  is the strain rate. The factor of 3 accounts for the 

conversion of unaxial to shear viscosity,
10

 as derived in Appendix A. 1. 

 

 

 

Figure 2.2 Standard linear solid model
8,9

 consisting of a spring (1) in series with a parallel 

combination of a spring (2) and a dashpot (3), termed a Voigt unit. The spring element in (1) 

accounts for instantaneous deformation, while the Voigt unit exhibits anelasticity. 

 

 For introductory purpose, the model depicted in Fig. 2.2 assumes a single process. 

Expressions for the time-dependent strain for a combination of the springs and dashpots are 

useful in analyzing experimental data on anelastic properties of materials. In fact, the standard 

linear solid model illustrated in Fig. 2.2 is of basic importance since it can help explain 

experimental data at a microscopic level. For example, the model has been incorporated into 

dislocation models to explain the mechanisms of internal friction in crystalline thin films.
11

 An 
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application of the model to the interpretation of anelasticity of a metallic glass will be discussed 

in Chapter 4 in detail. 

 When the anelastic solid model is subjected to a constant stress, the stress is first 

predominantly sustained by the dashpot element in a Voigt unit, as illustrated in Fig. 2.1. As time 

elapses, however, the stress is transferred to the spring (2) as the dashpot (3) undergoes 

deformation. Mechanical equilibrium is achieved when the stress is completely transferred to the 

spring element. At this point, the stress reaches a steady state.  

 Expressions for the time-dependent deformation of the model in Fig. 2.2 can be derived 

starting from the relations between properties of each element and those of the model system, 

such as applied stress:  and total strain: . The relations are given by: 
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, (2.3) 

where the subscripts (i) refer to the corresponding elements. Recalling Eqns. (2.1) and Eqn. (2.2), 

a differential equation for the anelastic model is obtained from Eqn. (2.3), eliminating all 

(i)and(i): 
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where E1 is the effective modulus, 1 is the effective shear viscosity and E0 is Young’s modulus 

of the material. A solution to Eqn. (2.4) is obtained for strain relaxation under a constant external 

stress. If  is switched on at t = 0, with instantaneous strain, 0: 
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where 
0

0
E


  , 

1

13

E


   is the relaxation time constant, an(t) is the anelastic component of the 

strain. When the loading time, t, reaches , the anelastic strain increases to (1-e
-1

) of its 

equilibrium value, which corresponds to ~ 63% of the strain. The equilibrium anelastic strain that 

is achieved after t >>  is given by: 
1

,
E

aneq


  . Equation (2.5) shows the linearity of elastic and 

anelastic strain in the applied stress.  

 Upon removal of the constraint at t = 0, an instantaneous elastic recovery by the spring (1) 

is followed by the anelastic strain recovery, as illustrated in Fig. 2.1. The equilibration process of 

anelastic recovery is achieved as the dashpot element that predominantly sustains the elastic 

stress flows until the stresses stored in both the dashpot (3) and spring (2) vanishes. An 

expression for the strain recovery can be also formulated from Eqn. (2.4) at  = 0: 
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tt cansfan exp)()(,
, (2.6) 

where an(tc) is the anelastic strain developed under a constant stress for time tc. If tc is large 

enough so that an(tc) is close to its equilibrium value, the subsequent initial stress-free relaxation 

rate is equal to those at the constant stress. However, if the system is constrained for a duration 

tc<<, the subsequent strain relaxation rate is smaller than that under constraint by a factor of 

tc/.
10 

 

2.1.2 DYNAMIC BEHAVIOR
3,4,8

 

 Quasi-static experiments, introduced in Section 2.1.1, allow for exploring anelastic 

properties in a range of time scales, from sub-seconds up to years. Another experimental 
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technique that is widely used to measure anelasticity involves dynamic experiments: an 

oscillatory mechanical variable is applied and the material response is measured as a function of 

frequency. Although problems associated with accuracy, sensitivity and stability of 

instrumentation are more difficult to resolve in a dynamic than a quasi-static experiment, it is 

useful in measuring anelastic response at a wide range of sub-millisecond time constants, which 

are relevant to, e.g., impact tests. 

 When a periodic stress with constant amplitude is imposed on the anelastic solid, there is a 

phase lag of strain behind the stress. An example of the strain lag in response to the sinusoidal 

stress is schematically plotted in Fig. 2.3. If the applied stress has a single frequency, an 

expression for the period stress is given by: 

  tie  0 , (2.7) 

where 0 is the stress amplitude and  is the angular frequency: f 2 , where f is the cycle 

frequency.  

 Linear anelastic solids show two characteristic steady-state strain responses in dynamic 

experiments. First, the strain amplitude, 0,osc(), is linear in the applied stress amplitude, 0. 

Second, the strain oscillates at the same frequency as that of the periodic stress as shown in Fig. 

2.3. The strain is given by: 

  )(

,0 )(   ti

osc e , (2.8) 

where  is the phase lag angle, also called the loss angle, and is a material property.  

 The strain in Eqn. (2.8) is a sum of two distinct strain components in the complex plane. 

Since 
ie

is equal to (cos  – i sin ), it can be rewritten as:  
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  titi

osc eiei   ))()(()sin(cos)( 2,01,0,0  , (2.9) 

where 0,1() = 0,osc() cos  and 0,2()= 0,osc() sin  are the real and imaginary parts of 

0,osc() on the complex plane. While 0,1() is in phase with the periodic stress, 0,2() is 90
o
 out 

of phase: tan()=0,2()/0,1(). 

 

 

 

Figure 2.3 Schematic plots of strain, , lagging behind the periodic stress, , by a phase lag angle, 

. 0 and 0,osc() are the amplitudes of the oscillating  and , respectively. 

 

 Since  consists of a real and imaginary part, Eqn. (2.9) can be simplified in terms of the in-

phase and out-of-phase strains as a function of angular frequency: 

  )()())()(( 212,01,0   iei ti  , (2.10) 

where 1()  is termed the storage strain and 2() the loss strain. 

 The storage and loss strains are of physical significance since they are associated with the 

specific energies stored and dissipated during cyclic work, respectively.
3,4,8

 While the dissipated 

energy per cycle in a unit volume (W) is equal to the work done (d) by an anelastic solid 

over a complete cycle (the energy lost per cycle), the maximum stored energy (W) in a cycle is 
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equal to the ideal elastic work without the phase lag, . These specific energies and their 

relationships with  1 and  2 are given by: 
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where 


2
T  is the period of the oscillation.  

 The specific damping capacity (SDC), defined as W/W, is a measure of a material’s 

ability to reduce amplitudes of oscillation in a vibrating system. It is given by:  

  )sin(2
)(

)(
2

,0

2,0 



 



oscW

W
. (2.12) 

Since  is a measure of the damping capacity, it is often called the internal friction of a material.
8
 

Note that SDC is independent of stress or strain but is a function of the phase lag angle, . 

 In order to obtain expressions for the storage and loss strain under applied periodic stress 

for the standard anelastic solid model, Eqns. (2.7) and (2.9) are substituted into Eqn. (2.4): 

  
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 When Eqn. (2.13) is reorganized in terms of real and imaginary components that are in 

phase and out of phase with the periodic stress, respectively, as given in Eqn. (2.10), the storage 

and loss strains are obtained, respectively: 
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 Figure 2.4 shows schematic plots of storage, loss strains and their ratio, tan(), as a 

function of angular frequency, ln(). At high frequency of applied periodic stress, the anelastic 

strain is negligible because of the short time allowed for a material to show anelastic response to 

the high frequency stress, resulting in low storage and loss strain. On the other hand, when the 

stress frequency is very low, time for an anelastic solid to respond is long enough to achieve an 

equilibrium anelastic strain. The loss strain, however, is also low at low frequency, because the 

energy loss for both extreme frequency ranges is negligible. Therefore, the storage strain in the 

high frequency regime is equal to the elastic strain, 0 = 0/E0, and it approaches an equilibrium 

value,eq,an = 0/E1, with decreasing angular frequency. The loss strain shows a peak at = 1/, 

called a Debye peak.
6
 The peak of phase angle, tan (), appears at 

0

,0

)tan(,

1






 

aneq

p


  > 1/, 

and its height is 
)(2

1

,00

,

aneq
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




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Figure 2.4 Schematic plots of the storage strain,  1(), loss strain,  2(), and their ratio, tan () 

for the standard anelastic solid. While  2() is symmetric with respect to ln() and shows a peak 

at = 1/,  1() decreases from (0 + eq,an) to 0 as a function of . 
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 For simple Arrhenius behavior with a single activation energy, Ea, the time constant, , at 

temperature T can be directly obtained experimentally from the peak in loss strain measured as a 

function of frequency, since the peak position is given by p = 1/. Similarly, the activation 

energy can be estimated from the peak in loss strain measured at fixed frequency as a function of 

temperature as well. Assuming that (T) is expressible by an Arrhenius relation: 

  TkEaeT
/

0)(


 , (2.16) 

where 0 is the pre-exponential factor, k is the Boltzmann constant and Ea is the activation 

energy, the loss strain at fixed angular frequency shows a peak at absolute temperature, 

])ln[/( 0kET aP  , which is symmetric with respect to the reciprocal absolute temperature, T
-1

.  

 Instead of measuring the strain response to periodic stress, dynamic properties can also be 

measured by monitoring the stress response under oscillating strain. Since strain is controlled 

experimentally, the complex stress, which is a sum of a real and imaginary component, 1 and 2, 

is obtained. The stress components in response to experimentally controlled periodic strain, 

tie  0 , are given by: 

  )()())()(()( 212,01,0

)(

,0   ieie titi

osc   , (2.17) 

where 1() = 0,osc() cos and 2() = 0,osc() sin(), which are the amplitudes of the real 

and imaginary components of 0,osc(). While 1() is in phase with the periodic stress, , 2() 

is 90
o
 out of phase, yielding tan() = 2/1. When 1() and 2() are normalized by the 

amplitude of the oscillating strain, 0, the storage (E′) and loss moduli (E′′) are obtained. In order 

to obtain expressions for the complex moduli, it is convenient to employ a Maxwell unit, which 

consists of a spring (2) in series with a dashpot (3), the elastic modulus and shear modulus of 
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which are E1,M and 1,M, respectively, attached in parallel to a spring element (1). Schematic 

illustration of this model is given in Fig. 2.5 (a). Note that this model is equivalent to the 

standard linear solid model in Fig. 2.2 under periodic stress. E′() and E′′(), derived from the 

model system, are given by: 
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where 
M

M

E ,1

,13
  . In addition to the storage and loss moduli in Eqn. (2.18) and (2.19), their ratio, 

tan(), is plotted as a function of  in Fig. 2.5 (b). 

 

                                               

 

Figure 2.5 (a) A Maxwell unit is attached in parallel to a spring element. (b) Schematic plots of 

the storage, E′(), loss moduli, E′′() and tan () as a function of angular frequency. 

 

 The behavior of the dynamic moduli on angular frequency is akin to that of the dynamic 

strains plotted in Fig. 2.4. The main difference is that unlike the storage strain, the storage 

(a) (b) 
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modulus, E′(), increases with increasing angular frequency. However, physical interpretation 

can be made in the same manner as given for the standard anelastic solid: At high strain 

frequency, a material behaves like a rigid solid, stress of which is supported by both spring 

elements (1) and (2), resulting in large storage modulus (E0,M+E1,M) whereas the rigidity 

decreases with frequency because of the increasing time for a material to flow until the stress in a 

spring (2) is completely relaxed, leading to the decrease in storage modulus up to E0,M in the low 

frequency limit. Since E′() increases as a function of , and E′′() shows a peak at 1/, plotted 

in Fig.2.5 (b), their ratio, tan () = E′′()/ E′() shows a peak at 
MM

M

EE

E

,1,0

,01


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 < 1/, with a 

height of 
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2.2 MICROSCOPIC PROCESSES RELAVANT TO DEFORMATION OF METALLIC 

GLASSES   

 Permanent strain of a solid is accommodated by microscopic defects. In a metallic glass, 

while shear bands accommodate large plastic strain within narrow region by progressive atomic 

disordering at high stress, leading to inhomogeneous flow,
12–14

 local atomic clusters in which 

atoms rearrange are believed to accommodate macroscopic strain in the low stress 

regime.
12,13,15,16

 These atomic clusters are termed shear transformation zones (STZs). Because of 

the inherent disordered structure of metallic glasses, the characterization of STZs has been an 

extreme challenge, and has been successful only in physical analogues, bubble rafts and 

colloids.
16,17

 However, observations in these analogues have provided important properties of 

STZs. 
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 Experimental observations of physical analogues have shown that the local regions in 

which microscopic strain develops consist of originally equiaxed clusters of atoms.
16,17

 When an 

external stress is applied, the clusters undergo thermally-activated strain, resulting in a shear 

transformation into ellipsoidal shapes.  

 The properties of STZs reported in physical analogues allow for detailed quantitative 

description of the deformation of metallic glasses. Transition-state theory has been adopted to 

yield expressions for flow in terms of thermally activated shear transformations.
12,13

 The flow 

equations consist of physically measurable parameters, which are useful in physical 

interpretation of experimental data. The constitutive equations have been developed by 

employing the Eshelby inclusion theory,
16,18

 based on detailed observations of local STZ strains 

in physical analogues.
16

 

 In this section, deformation mechanisms of metallic glasses are expressed in terms of STZ 

properties. Governing kinetic equations are used to quantitatively express the macroscopic strain 

response. Next, the free volume theory
1,12

 that has been used to describe structural relaxation is 

discussed, since relaxation greatly affects atomic transport. Finally, experimental studies on 

anelasticity of metallic glasses carried out by Argon and Kuo,
2
 in which the spectrum of the 

activation free energies has been determined, are reviewed. 

 

2.2.1 SHEAR TRANSFORMATION ZONES  

 A schematic illustration of an STZ is shown in Fig. 2.6 (a). It is based on Argon’s two-

dimensional bubble rafts experiments,
13,16

 later confirmed by three-dimensional colloidal 

experiments as well.
17

 The figure shows, in an amorphous structure, a local equiaxed cluster of 

volume  undergoing irreversible shear strain, 
T

0 , in response to an external shear stress, s. 
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The dashed circle shows a projection of an equiaxed cluster, and the dark solid ellipse shows a 

projection of the STZ, i.e., the transformed cluster. 

 The activation energy barrier for the microscopic event of an STZ is illustrated in Fig. 2.6 

(b) as a function of the local shear strain coordinate, . In the absence of an external shear stress, 

shear transformation can occur in random directions by thermal fluctuations, the rate of which is 

determined by the height of activation energy barrier, Ea, discussed below, and the 

temperature.
12,13

 The microscopic events, however, do not produce macroscopic strain, since net 

number of transformations across the barrier is the same in both forward and backward directions.  

 

                         

 

Figure 2.6 (a) Schematic illustration of an STZ undergoing transformation shear strain, 
T

0 , in 

response to an external shear stress, s. (b) Schematic energy barrier for the activation process of 

an STZ without (top) and with the application of s (bottom), respectively, as a function of the 

shear strain, . 

 

 On the other hand, under an external stress, the activation energy is biased by irreversible 

work done on the system, T

s 0 , resulting in changes in the original barrier height (Ea) by 

(b) (a) 
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2/)( 0  T

s   for forward and backward directions, respectively: The number of 

transformations in the direction of shear is greater than that in the backward direction, leading to 

evolution of macroscopic strain. Assuming  to be the same for all STZs, it is now possible to 

write a quantitative expression for the macroscopic strain rate,  , according to the transition-

state theory:
12,13

 

  







 







 


TkTk

E
c

B

T

s

B

a
G

C

2
sinhexp2 0

0


 , (2.20) 

where G is the attempt frequency, which is on the order of Debye frequency, c is the volume 

fraction of potential STZs and TC

00
)1(15

)54(2










  is the irreversible shear strain under constraint by 

the surrounding matrix, where  is the Poisson’s ratio. At a low shear stress level, the strain rate 

in Eqn. (2.20) is proportional to s, i.e., the flow is Newtonian. 

 Argon
13, 19

 employed the Eshelby inclusion theory
18

 to obtain an expression for the 

activation energy barrier height for an STZ, Ea. In an Eshelby problem, an inclusion that 

undergoes transformation strain 
T

0 when unconstrained, also called an eigenstrain,
20

 produces 

elastic energy when constrained by elastic surroundings. The net resulting elastic strain energy is 

obtained by superposing elastic work that an inclusion experiences during Eshelby procedures: 

cutting, shearing and welding an inclusion. The activation barrier
13,19

 is given by: 
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where   is the dilatancy factor, which is the ratio of volume to shear strain: TT

00 /   , T

0  the 

volume strain,  the shear modulus and 
STZ  the shear resistance of an STZ.  
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 The expression for the activation barrier in Eqn. (2.20) consists of three parts: The first 

term is a shear strain energy produced by the constrained ellipsoidal inclusion that exhibits 

constrained shear strain, C

0 , in the matrix. The second term arises from the temporary dilatation 

of an STZ that allows for atomic rearrangements, and is the strain energy stored by the dilated 

inclusion inside and outside the inclusion, i.e. surrounding medium. Experimental observations 

in bubble rafts have shown that the dilatational normal strain is about equal to the transformation 

strain, 1~ .
19,21

 The third term is the strain energy necessary to achieve shear displacement of a 

hard sphere atom against the approximately sinusoidal shear resistance up to the maximum value, 

STZ . According to Ref. 19, the contribution of this term to Eqn. (2.20) is small compared to the 

first two parts. 

  

2.2.2 FREE VOLUME AND STRUCTURAL RELAXATION  

 A metallic glass is a thermodynamically non-equilibrium state. In order to lower its free 

energy, it undergoes changes in its state toward a metastable equilibrium state spontaneously,
22 

involving a series of microscopic structural changes, a process called structural relaxation. It is a 

distinct phenomenon in amorphous solids, where atomic long-range translational symmetry is 

lacking. A high cooling rate from the liquid leads to a less-relaxed state of a metallic glass, 

resulting in more significant subsequent structural relaxation.
23

 Structural relaxation involves 

densification, which can lead to local atomic coordination number changes as well.
24

 

 In a wide range of experimental studies,
23–26

 changes in many properties of metallic glasses 

have been observed as a result of structural relaxation. While the elastic modulus and electrical 

resistivity show a few percent changes on annealing, physical properties associated with atomic 

transport are altered drastically, as manifested by diffusion
24,26

 and creep experiments.
22,24,27 

In 
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addition, in contrast with crystallization that involves a first order transition, those properties 

evolve continuously during structural relaxation.
23

  

 Of central importance in understanding property changes by structural relaxation is the free 

volume.
1,28

 It is defined as the difference between the average atomic volume and that of dense 

random packing of hard spheres.
29

 Its concept was originally introduced by Fox and Flory,
28,30

 

and a quantitative expression of its distribution, computed by Cohen and Turnbull,
 
has been 

successful in explaining a molecular transport in metallic liquids.
1
 This expression, given in Eqn. 

(1.1), describes the probability distribution of free volume fluctuations. Cohen and Turnbull used 

it to express diffusion rates in glasses.
1
 This concept was adopted and expanded by Spaepen

12
 to 

express the critical condition for an atomic jump leading to macroscopic deformation. Although 

the fundamental process is assumed to consist of a single atomic jump in the model,
12

 it accounts 

for many mechanical properties in terms of free volume.
14,22,27

 A good example in which we can 

observe the free volume effects on mechanical properties is the cooling-rate dependence of shear 

viscosities: with increasing cooling rates, a metallic glass has lower density, i.e., greater free 

volume, and shows lower shear viscosity.
23

   

 Structural relaxation, leading to densification, results in a viscosity rise by several orders of 

magnitudes, which has been attributed to the annihilation of free volume that may allow for an 

atomic hop.
22,27

 While a free-volume criterion by Cohen and Turnbull
1
 for atomic diffusion in 

metallic glasses has been developed and widely used to explain the viscosity rise of metallic 

glasses,
22,27,31

 it has been argued that the criterion based on a series of single atomic hops suffers 

from a discrepancy between changes in density and in viscosity.
32

 On the other hand, Cohen and 

Turnbull point out that the local free volume necessary for an atomic jump in a metal is the ionic 

radius, which is much smaller than the atomic radius in Ref. 32. It is crucial to elucidate what 
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permits atomic clusters to undergo microscopic strain, i.e., make it a potential STZ, in order to 

account for the structural relaxation. 

 In addition to the role of free volume in structural relaxation, the spectrum of structural 

relaxation processes observed in calorimetric studies is noted.
26,33

 Chen observed changes in the 

specific heat at constant pressure, Cp, upon the structural relaxation with varying annealing 

temperature and time. It is endothermic compared to the as-quenched state. Temperatures, Tm, at 

which peaks of Cp were observed for fixed annealing time, ta, and the peak amplitudes increase 

with increasing annealing time and temperature.  

 

                    

 

Figure 2.7 (a) Annealing time, ta, for which the peak of Cp is observed at Tm as a function of 

reciprocal annealing temperature, 10
3
/Ta. (b) A schematic diagram of the spectrum of relaxation-

time constants that has been proposed by Chen in calorimetric studies of a Pd-based metallic 

glass (Pd48Ni32P20) (1) above, (2) at and (3) below the glass transition temperature, Tg.
26,33

 

(a) (b) 
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 A plot of ta, for which Cp peaks are observed at Tm, as a function of 10
3
/Ta at various Ta 

values is shown in Fig. 2.7 (a). Chen showed an Arrhenius relationship between ta and 1/Ta, with 

different activation energies, ranging from 1 to 2.5 eV. He proposed that structural relaxation in 

metallic glasses involved distributed relaxation processes with distinct Arrhenian dependence on 

Ta. Figure 2.7 (b) shows a schematic diagram of the spectrum of relaxation-time constants 

proposed by Chen.
26,33

 It was suggested by Chen
26,33

 that the atomic groups in which relaxation 

occurs (termed liquid-like sites) are independently distributed over a wide range of time 

constants at low temperature, and the spectrum becomes narrower with increasing temperature, 

leading to an increase in the volume fraction of liquid-like sites. Although physical interpretation 

of the proposed spectrum was not given in detail, the results suggest distributed properties in 

metallic glasses, which are discussed in Section 2.2.3. 

 

2.2.3 EXPERIMENTAL STUDIES OF ACTIVATION ENERGY SPECTRA IN METALLIC 

GLASSES  

 Several authors proposed that mechanical relaxation of metallic glasses has a wide 

spectrum of activation energies.
2,23

 In fact, theoretical attempts have been made to formulate the 

kinetics for a system with distributed activation energies,
34

 but physically meaningful 

conclusions can hardly be drawn from the model. However, one of the straightforward 

experimental results that can provide insights on the spectrum of activation energies has been 

obtained from dynamic experiments, in which the loss modulus is measured as a function of 

frequency.
35 

 

 In dynamic experiments, the activation energy for simple Arrhenius behavior can be 

estimated by performing a series of measurements as a function of angular frequencies, , at 
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different temperatures, T.
8
 For example, assuming a single time constant for simple Arrhenius 

behavior, given in Eqn. (2.16), an expression for the time constant, , at temperature T is given 

by: 

  )/()(ln)(ln 0 TkEa  . (2.22) 

Since  is equal to the reciprocal p, at which the loss modulus peak is observed at constant 

temperature, according to Eqn. (2.19), Eqn. (2.22) allows for estimating the activation energy 

from a plot of  = 1/pagainst 1/T measured in a series of dynamic measurements performed as 

a function of at different T.  

 Based on the method explained above, Ea was estimated with a Zr55Cu30Ni5Al10 metallic 

glass, and experimental results were compared with calculated Debye peaks.
36

 While a peak in 

the loss modulus was observed at p, experimental results showed a much broader spectrum than 

a Debye peak with asymmetry. The full width at half maximum of the Debye peak for a single 

activation process on the logarithmic scale, log10(), is ~ 1.531, which is slightly greater than 

1.5 decades in , but that of the loss modulus measured at ~ 420
o
C

36
 was ~ 3 decades in . 

 It is also important to note experimental studies
37,38

 of the loss modulus, measured as a 

function of T at fixed in different metallic glasses, showing a significant low-temperature tail. 

Figure 2.8 (a) shows the temperature dependence of loss moduli measured at constant frequency 

of 1 Hz in six different metallic glasses.
37

 Loss modulus and temperature were normalized by the 

apparent peak value (E′′p) and the temperature, at which the peak was observed (Tp), respectively. 

The loss modulus for every metallic glass showed a low-temperature tail followed by the 

apparent peak at Tp upon heating. The low-temperature tail in Fig. 2.8 (a) was unexpected 

according to Eqn. (2.19): when the loss modulus, which is symmetric in T
-1

, is plotted vs. T, it 
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shows a mild high-temperature tail, because the decrease in T for the unit increase in (1/T) 

becomes smaller with increasing T. The experimental observations,
37,38

 therefore, suggest that 

the anelastic relaxation in metallic glasses is not mono-energetic, but involves a range of 

activation processes.  

 

  

            

 

Figure 2.8 (a) Loss moduli (E′′) normalized by the apparent peak value (E′′p) measured at 

constant frequency of 1 Hz as a function of temperature, normalized by the peak temperature, Tp, 

in six different metallic glasses: Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vit4), La57.5(Cu50Ni50)25Al17.5 

(LCNA), La68Al10Cu20Co2 (LACC), Pd40Ni10Cu30P20 (PNCP), Pd40Ni40P20 (PNP) and 

La70Ni15Al15.
37

 (b) Calculated loss modulus spectrum (solid line) using Eqn. (2.13) normalized 

by E′′p as a function of T/Tp assuming two distinct anelastic processes. Each process is 

represented by a loss modulus spectrum (dotted lines) with distinct activation energy and 

amplitude.  

 

(a) (b) 
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 For example, assuming that two single-activation processes are involved in dynamic 

relaxation, the loss modulus is plotted using Eqn. (2.19) in Fig. 2.8 (b). It was assumed that a 

process with lower activation energy had a lower amplitude than that of the higher activation 

energy process. Although the plot does not show good agreement with the experimental data in 

Fig. 2.8 (a), it allows for quantitatively explaining the unexpected asymmetry with low-

temperature tail by introducing additional processes in the low activation energy regime, i.e., an 

activation energy spectrum. The activation energy spectrum in a metallic glass has been viewed 

as resulting from a continuous distribution of atomic regions of different coordination (structure) 

or different free volume.
2
 

 At low external stress levels, isolated STZs form that are embedded in an elastic 

surrounding medium. While these isolated STZs experience strains in the direction of external 

shear, producing macroscopic anelastic relaxation strain, they are reversed by elastic back-stress 

stored in the surrounding matrix upon removal of an external stress, leading to anelastic 

recovery.
2
 Based on calorimetric studies, isolated liquid-like sites in metallic glasses distributed 

in solid-like matrix at low temperature proposed by Chen
26,33

 may have a physically analogous 

role to that of isolated STZs in anelasticity as suggested by Argon and Kuo.
2
 Therefore, 

anelasticity is the best regime where behavior of isolated STZs can be studied. More recently, 

Dmowski and his coworkers
39

 have performed anelastic measurements and concluded that ~ 25 % 

of the volume in metallic glasses is occupied by the anelastic sites, employing X-ray diffraction 

measurements. 

 In order to experimentally measure the spectrum of activation energies for shear 

transformations, Argon and Kuo
2
 applied torsional shear stress to metallic glass specimens at 

high temperature for a sufficiently long time, followed by rapid quenching to freeze-in anelastic 
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strain. After removing the external torque, these samples were allowed to relax to recover their 

original shape isothermally, using temperature steps of ~ 50 K.  

 It was assumed that the relaxation at each temperature was dominated by processes with a 

small range of activation energies, so that each step, i, corresponded approximately to the 

apparent activation energy: Ea,i. Processes corresponding to higher activation energies were 

assumed frozen at temperature, Ti. Anelastic relaxation at Ti, followed by stepping up the 

temperature, would allow an anelastic process with higher 
aE  to dominate the macroscopic 

strain at higher temperature. Therefore, a series of measurements of anelastic strain at each 

temperature step was carried out to characterize the anelastic processes distributed on a range of 

Ea,i.
2
 

 The temperature-stepping method is based on the assumption
2
 made by employing a step-

function approximation: for a sample with a spectra of time constants for anelastic relaxation, 

f(), (See Chapter 4), undergoing anelastic relaxation for a duration of t0, the degree of relaxation 

for a process with time constant  changes sharply in a narrow range of time constants around 

t0. For example, when anelastic relaxation of a standard linear solid model in a stress-free 

state, given in Eqn. (2.6), is plotted against ln() for a fixed time, t0, as shown in Fig. 2.9 (a), the 

strain increases from zero to an equilibrium value, eq, near  = t0.
8 

The temperature stepping 

method is based on the assumption that the increase in anelastic strain can be approximated by a 

step function, i.e., 









)(,1

)(,0
]/exp[

0

0

0
t

t
t




 : an expression for anelastic strain with the relaxation-

time spectrum (See Chapter 3) is given by:
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Figure 2.9 (a) Anelastic strain relaxation (solid line) given in Eqn. (2.6) against ln() at a fixed 

time, t0, for a solid with a range of time constants, . A step-function at t0 =  is shown on 

logarithmic scale (dotted line). (b) Anelastic strain, an(t), (solid line) calculated using Eqn. (2.23) 

for f() that includes two distinct processes (dotted line). 

 

 For the case of two distinct processes, represented by i, where i = 1 and 2, the anelastic 

strain, an(t), calculated using Eqn. (2.23), is plotted on logarithmic scale in Fig. 2.9 (b). The 

corresponding f() is shown with dotted line. In the step-function approximation to the anelastic 

strain, significant change in an(t) due to a particular process occurs only around the time, t = i, i 

= 1, 2.  

 By neglecting all but the dominant process, an approximate activation energy spectrum
2
 

may be obtained from experimental data. For an anelastic solid undergoing several distinct 

relaxation processes, an(t) is obtained at temperature Ti for duration of time, t, until its relative 

change is negligible, and can be attributed to a particular relaxation process, represented by Ea,i. 

(b) (a) 
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According to Argon and Kuo,
2
 Ea,i is written in terms of  Ti and t: )2ln( 1

0, tTkE iia

  . 0 is the 

pre-exponential factor in Eqn. (2.16) and 2/it  , during which significant change in an(t) is 

experimentally observed. Once the change in an(t) is negligible at Ti, the temperature is 

increased to a higher value, Ti+1, to measure the change in an(t), presumably undergone due to a 

particular relaxation process with higher activation energy, Ea,i+1. Since i+1 is larger than the 

measurement time at Ti, the contribution of process (i + 1) at Ti is neglected. The anelastic strain 

dominated by a process i, i, is proportional to the area of respective peak in f(), therefore, a 

series of measurements of the changes in an(t) with stepping temperature, Ti, allows for 

experimentally estimating the volume fraction of potential STZs (See Chapter 4), ic , for a 

corresponding Ea,i interval. 

 

               

 

Figure 2.10 (a) Anelastic strain recovery of a crept Cu56Zr44 metallic glass specimen followed by 

quenching and subsequent temperature stepping and (b) histogram of activation energies 

obtained from the strain recovery, showing the activation energy spectrum.
2
 

(b) (a) 
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 Based on the previously-described assumption, anelastic strain recovery at each 

temperature was recorded as a function of time,
2
 providing the spectrum of activation energies. 

Figure 2.10 (a) and (b) shows the anelastic strain recovery recorded with increasing temperature, 

and the histograms of activation energy spectrum, respectively, in a Cu-rich metallic glass 

(Cu56Zr44).
2
 

 The height of the activation energy spectrum shown in Fig. 2.10 (b) was determined from 

the increments of strain recovery observed at each temperature step. The corresponding 

activation energy for the anelastic recovery process was measured by monitoring strain rate 

changes as a result of the temperature steps using an approximate Arrhenius relationship, 

)/1(

ln

T
kEa





 , since the parameter (0) in )2ln( 1

0, tTkE iia

   was not known. Although relative 

variations in spectrum heights for the activation energies have been observed in five different 

metallic glasses, their distributions yielded similar shapes in this study.
2
 Argon and his 

coworkers
2,5,13,21,40

 argued that the activation energy spectrum reflects the distribution of free 

volume, with an inverse mapping relationship: local sites with large free volume have small 

activation energy, and therefore they undergo shear transformations more easily compared to 

those with smaller free volume. 

 The observations of distributed anelastic relaxation processes of Ref. 2 made pioneering 

contributions to the understanding of activation energy spectrum and distributed relaxation-time 

constants.
41

 While the temperature-stepping method
2
 has limitations, the results clearly show that 

anelastic relaxation involves several processes rather than a mono-energetic process. The 

limitations of the temperature stepping method
2
 include resolution limit due to time required to 

stabilize the temperature for each step. In addition, the assumptions used may result in artifacts. 
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For example, a step-like relaxation behavior within a narrow activation energy interval is a 

reasonable estimation method to probe the equilibrium value for a single process. When several 

activation processes are involved, however, the processes that are assumed to make negligible 

contribution to the experimentally measured process do contribute to the overall strain, resulting 

in over- or underestimation of strain, depending on the duration of measurements (See Chapter 

6).  
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Chapter 3 

EXPERIMENTAL AND COMPUTATIONAL METHODS 

 

 The experimental and computational procedures employed to characterize the anelastic 

properties of our samples is the main theme of this chapter. Beginning with a sample preparation 

method of an Al-based glass ribbon (composition in at. %: Al86.8Ni3.7Y9.5) in Section 3.1, 

mechanical tests: bend-stress relaxation and cantilever bending measurements, employed to 

measure the anelastic strain of the sample are discussed in Section 3.2 and 3.3, respectively. In 

addition, the stress and strain states for the respective measurements are analyzed. The tests have 

been carried out with both as-quenched and relaxed samples.  

 Experimental details on annealing heat treatment to structurally relax the as-quenched 

samples are presented in Section 3.4, followed by the procedures for the atomic-scale 

characterization with a transmission electron microscopy to confirm their amorphous structure in 

Section 3.5. Finally, in Section 3.6, the computational method, direct spectrum analysis (DSA),
1
 

employed to obtain the relaxation-time spectra from the experimental data is presented. This 

methodology is validated by applying it to simulated data, including noise. 

 

3.1 SAMPLE PREPARATION 

 An Al86.8Ni3.7Y9.5 glass ribbon was provided by Dr. F. E. Pinkerton at General Motors 

R&D Center. The ribbon, 22 mm thick and 1 mm wide, was obtained by single-wheel melt 
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spinning, using a Cr-coated Cu wheel at a tangential velocity of 40 m/sec. in vacuum. In this 

process, the side facing away from the wheel is smoother and shiny. Electron diffraction analyses 

confirmed the amorphous structure of the sample (See Section 3.5). 

 

3.2 BEND-STRESS RELAXATION 

 In order to measure anelastic strain over minutes to years, we have employed the bend-

stress relaxation experimental technique. The method allows for applying linearly varying strain 

across a thin ribbon sample in the small-stress regime. By using different radii of curvature, the 

applied strain is varied. While mechanical analysis of the stress-strain states in a sample for this 

experiment can be more complicated than that for uniaxial tests, it benefits from far greater long-

time stability than instrumented measurements.  

 The observation of changes in sample curvature was critical in measuring the strain 

evolution, so caution was exercised when selecting samples prior to the experiment. Five as-

quenched and six relaxed 1 cm long samples with uniform thickness, 22 m, and width, 1 mm, 

were cut from a ribbon. They had uniform thickness and initial radius of curvature, without kinks 

or distortion.  

 A schematic illustration in Fig. 3.1 (a) shows the experimental setup for imaging a sample. 

The purpose of this setup is to observe the sample edge-on with a digital camera in a 

reproducible, consistent, way. It was assumed that the bending axis was parallel to y-axis, shown 

in Fig. 3.2 (a). In order to achieve the goal, it was important to align the sample stage and camera. 

A tripod-mounted camera was positioned to observe the sample stage first. Assuming that the 

optical axis of the camera was perpendicular to the camera back surface, both the sample stage 

and camera were leveled, thus aligning the optical axis of the camera to be perpendicular to the 
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stage. The distance between the camera back surface and sample stage was fixed at ~ 25 cm. The 

approximate center of the sample stage was positioned at the center of the camera screen. Images 

of a rectangular piece of glass slide, 1 × 3 × 0.04" (25.4 × 76.2 × 1 mm), vertically positioned at 

different spots on the stage were taken. The intersection of the optical axis with the stage could 

be determined by finding a spot, where the glass slide was seen edge-on. The sample stage was 

illuminated with a back light during imaging to observe the sample clearly by minimizing the 

effects of reflection, shadow and interference of light on the samples. 

 

                    

                   

Figure 3.1 Schematic illustration of the experimental setup to image a sample for bend-stress 

relaxation measurements. The intersection of the optical axis of the camera with the sample stage 

was determined by finding the spot, where the glass slide was seen edge-on. 

 

 Along a line marked around a silicate glass mandrel, samples were constrained, tightly 

wrapping them with paraffin paper, to ensure plane strain (and stress). Two as-quenched samples 

were bent with the shiny side up, whereas the other three samples were bent in the opposite 
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direction such that the shiny side is under compression. No effect of bending direction on 

deformation behavior was observed. Different mandrel radii, ranging from 0.35 to 0.49 cm, were 

used to vary the applied strain. After constraining five as-quenched and six relaxed samples at 

fixed radius, R, for tc = ~ 2 × 10
6
 sec., they were allowed to relax upon removal of the constraint 

for up to ~ 8 × 10
7
 sec. in a stress-free state. Two as-quenched samples were constrained for tc = 

~ 4.4 × 10
7
 sec., followed by measuring their time-dependent strain in a stress-free state for up to 

~ 7 × 10
7
 sec. 

 

        

 

Figure 3.2 (a) Bend-stress relaxation measurement: samples constrained at fixed radius, R, were 

allowed to restore their original shape upon removal of the constraint. The radii of curvature, r(t), 

were monitored as a function of time, t. (b) Digital photographs of a sample including on-screen 

visual fitting (dotted line) taken in as-quenched, in a stress-free state at t = 0 after constraining 

the sample for tc = ~ 2 × 10
6
 sec., and that at ~ 8 × 10

7
 sec. The broken line represents the fit, 

slightly displaced to allow for sample visibility.  

 

 The radii of curvature of samples, r(t), were monitored as a function of time, t. These were 

determined using a digital camera, as described above, by on-screen visual fitting of the 

(a) (b) 
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calibrated photographs with a circle. The stages of the bend-stress relaxation experiment are 

depicted in Fig. 3.2 (a), and digital photographs in Fig. 3.2 (b) show changes in r(t) of a sample 

during relaxation. 

 For strain analysis, it is assumed that the cross section of the sample in Fig. 3.2 (a) remains 

plane and is perpendicular to the longitudinal axis of the sample (x-axis in Fig. 3.2 (a)). In 

addition, strains in the sample are assumed to be infinitesimal, which allows for the small-strain 

approximation, resulting in linear strain variation across the sample thickness.
2,3,4,5

 It is noted 

that when a thin metallic sheet is bent to a constant radius of curvature, the plane-strain condition 

prevails, since the top and bottom surfaces prevent one another from contracting or expanding in 

the y direction in Fig. 3.2 (a) due to the small thickness.
4
  Similarly, when a metallic thin plate is 

loaded by uniform forces applied at the boundary, it can be assumed that the out-of-plane stress 

components, zz, xz and yz, are zero on both faces of the plate and within the plate, resulting in 

only plane-stress components in the stress tensor.
2
  

 In the following discussion, the expressions for the stress and strain are given for the near-

surface region, where they attain their maximum values. The plane-strain components in 

Cartesian coordinates, illustrated in Fig. 3.1 (a), are obtained under plane-strain boundary 

conditions:
2,4,5
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where 1/r-1/r(0) is the change in radius of curvature of a bent sample, r, relative to that in the 

initial, stress-free, state, r(0). xx is the total axial bending strain, zz the out-of-plane strain, d the 
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thickness of a sample and  is Poisson’s ratio of a material. In the small strain regime, linear 

elasticity theory yields the plane stress components: 
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where E is Young’s modulus.  

 Equations (3.1) and (3.2) allow for calculating stress-strain states at a given time in terms 

of the radius of curvature. For example, when a sample is under constraint at radius R, the total 

bending strain, T
, which consists of elastic and anelastic components, is 


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11

2 rR

dT

xx  , 

where r0 is the initial radius of curvature of the as-quenched sample. At the end of the 

constraining period, T
 is expressible by a sum of the elastic strain at mechanical equilibrium, 
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2 rr

d
an , where r(t) is the radius of curvature 

at time t after removal of the constraint, i.e., in a stress-free state. Mohr’s construction
6,7 

allows 

for the determination of the maximum shear stress, s, and shear strain, , by calculating the 

radius of Mohr’s circles from the principal stress and strain components. Mohr’s circle is the 

two-dimensional graphical representation of the state of stress and strain on any oblique plane in 

a material.
7
 Mohr’s circles employed to calculate s and  are plotted in Fig. 3.3 (a) and (b), 

respectively, yielding the expressions for s and : 
xx
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1 , respectively. Since the shear modulus satisfies: 
)1(2 





E , s and  satisfy 

the shear stress-strain relation, s = , of the linear theory. 
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Figure 3.3 Mohr’s circles plotted using Eqn. (3.1) and (3.2) to yield expressions for (a) s and (b) 

 in a bent thin-ribbon sample.
6,7

 

 

 When the stress and strain are linear in each other, both vary linearly across the sample’s 

thickness. In addition, all the stress and strain components, including s and  explained above, 

are proportional to the change in curvature under constraint at any point in time. Hence, in a 

stress-free state, relative change in any strain component due to any linear process is the same, 

which allow us to evaluate the relation between the anelastic strain and previously applied strain 

using curvature data. While the bend-stress relaxation method suffers from limitation on strain 

measurement for short times, it is suitable for measuring the anelastic response for long periods 

of time due to its long-time stability, from minutes to years. Short-time measurements are 

discussed in the next section.  

 

3.3 CANTILEVER BENDING 

(a) (b) 
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 Cantilever bending with a nanoindenter was employed to measure the anelastic strain for 

short time scale, from sub-millisecond to 200 sec. The experiments were carried out by Dr. 

Dongchan Jang at the California Institute of Technology. An Aligent G200 nanoindenter with a 

DCM head was used for the experiment. Cantilever samples were mounted in epoxy to clamp 

one end of samples, and the distance between the clamp and indenter tip contact point, L, was 0.1 

cm. The displacement, h(x), where x was the distance from the clamp in longitudinal direction, 

was measured at x = L, h(L) ≡ h0, as a function of time, t, at fixed load, P. A schematic 

illustration of the measurement is given in Fig. 3.4. In order to rule out possible instrumental 

artifacts, which may arise from deformation of the mounting compound, two different mounting 

compounds were used, yielding the same result. Thermal drift was subtracted. The stiffness 

measured from the instantaneous, elastic, displacement agreed with the calculated value,
8
 

discussed below, based on a Young’s modulus value of E0 = 48.2 GPa reported for a similar 

alloy.
9
  

 

 

 

Figure 3.4 A schematic illustration of the cantilever bending measurement: the displacement, 

h(x), at x=L, h(L) ≡ h0, was measured as a function of time, t, at fixed load, P. 
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 In each run, the following cycle was repeated 20 times: a constant load was applied, P = 

0.2, 0.02 and 0.002 mN, consecutively each for 200 sec. Displacement versus time data obtained 

during each full-load stage were used in the analysis, each consisting of 5000 points at time 

intervals of 0.04 sec. Reversibility of anelastic strain was confirmed during the low-load parts of 

each cycle. 95 and 70 measurement cycles were obtained with four as-quenched and three 

relaxed samples, respectively. 

 The expressions for the stress and strain, given below, are all for the near-surface region, 

where they attain their maximum values. For a cantilever sample with width and thickness w and 

d, respectively, an expression for the approximate sample curvature, = d
2
h/dx

2
, is obtained 

from the balance between the internal forces and bending moment, My (x):
3,4,10
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where Iyy is the second area moment of inertia about y axis, and 
)1( 2


E

E p
. The product of Iyy 

and Ep is often called bending rigidity.
4
 An expression for the second area moment of inertia, 

 A
yy dAyI 2 , where A is the cross-sectional area, yields 

12

3dw
I yy   for a given geometry of a 

sample, where w and d are the sample width and thickness, respectively. Eqn. (3.3) can be 

rewritten in terms of the applied load, P:
10
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An expression for h0, the deflection at x = L, when P is applied at L, is obtained by integrating 

Eqn. (3.4), yielding: 
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Young’s modulus, as determined from Eqn. (3.5), for the average measured stiffness value, P/h0 

= 146.55 N/m, agreed with that reported in literature:
8,9
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 Since the relation between h0 and P is known, the stress and strain components in a 

cantilever bending sample are obtained. For example, the total axial bending stress given in Eqn. 

(3.2) is rewritten in terms of the approximate sample curvature, d
2
h/dx

2
: 
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Substituting Eqn. (3.3) for d
2
h/dx

2
, one obtains: 
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The load, P, in Eqn. (3.7) is replaced by Eqn. (3.5) to obtain expressions for axial bending stress 

and strain near the clamp (x = 0) in terms of the sample thickness, length and deflection, yielding: 

  
)1(2

3
22

0









E

L

hd
xx

 and 
2

0

2

3

L

hd
xx


 , (3.8) 

respectively, which are proportional to h0. For the load values used, the elastic strain, el

0 , was 

kept constant at less than 10
-4

 for all measurements, as determined from the instantaneous 

deflection in response to a jump in load using Eqn. (3.8). 

 As for bend-stress relaxation measurements, all the stress and strain components in the 

cantilever bending sample are linear in the axial bending strain component. The linearity allows 
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for analyzing the data obtained in cantilever bending measurements in terms of h0, since its 

relative changes due to any linear process are the same as that for the uniaxial test: below the 

yield point, all the shear stress/strain components are proportional to the principal stress/strain 

components, which are proportional to the deflection and uniaxial strain for cantilever bending 

and uniaxial tests, respectively. Therefore, the time-dependent anelastic strain, normalized by el

0 , 

is equal to the ratio of the corresponding displacements, h0(t)/h0,el, where h0(t) and h0,el are the 

time-dependent displacement and elastic displacement, respectively. These relationships are not 

dependent on knowledge of the sample dimensions, and thus do not suffer from uncertainties in 

them. 

 

3.4 ANNEALING HEAT TREATMENT 

 In order to measure the effect of structural relaxation on the anelastic properties of the 

samples, annealing heat treatment was carried out with six as-quenched samples prior to the 

mechanical tests. Caution was exercised to eliminate the potential artifacts due to heat treatment, 

such as crystallization, oxidation or temperature drop/overshoot. We used a Ti-gettered, flowing 

Ar, furnace to structurally relax samples at 110
o
C for 1 hr., a condition that does not lead to 

crystallization.
11

 Before annealing, the atmosphere in the furnace was purged with gettered Ar 

for one day to minimize oxidation. Samples were placed in the room temperature zone in the 

furnace for 30 min. to stabilize the temperature, followed by placing them in the high 

temperature zone using a magnetic feed-through. The maximum temperature fluctuation was 110 

± 2.5 
o
C within the duration of 3 min. at the early stage of annealing. After the heat treatment for 

1 hr., samples were cooled at room temperature, 295 ± 1 K.  
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3.5 STRUCTURAL CHARACTERIZATION 

 The microstructure of both as-quenched and relaxed samples was observed using a JEOL 

2011 high-resolution transmission electron microscope to verify their amorphous structure. 

Samples, 1 mm × 1 mm, were prepared using a single-side jet thinning electro-polisher at 243 K, 

until a perforation formed. The jet thinning electrolyte consisted of 25 % nitric acid and 75 % 

methanol, and the applied voltage and current density were 15 V and 7 mA/mm
2
, respectively. 

Mechanical polishing and ion milling were not employed to avoid potential damage to samples. 

Figure 3.5 is a representative high resolution image of a relaxed Al86.8Ni3.7Y9.5 with diffuse 

electron diffraction pattern included in the inset, showing the amorphous structure. 

 

 

 

Figure 3.5 High-resolution transmission electron micrograph of a relaxed metallic glass (110
o
C 

for 60 min.) with selected area electron diffraction pattern included in the inset, showing the 

amorphous structure. 

 

3.6 DIRECT SPECTRUM ANALYSIS (DSA)
1
 

 One important challenge in analysis of experiments is to obtain a relaxation-time spectrum 

from time-dependent relaxation in quasi-static data or in dynamic data obtained under cyclic 
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constraints. In particular, the task is difficult due to experimental noise. While experimental 

studies on anelasticity, using strain recovery measurements with temperature stepping,
12

 have 

allowed for obtaining the approximate activation energy spectra in metallic glasses, challenges in 

quantitative spectrum determination from strain/time data remain. Experimental results are 

typically fitted with a linear combination of a few exponents, assuming a certain number of 

relaxation processes,
13

 or, with a single stretched exponent ((t) = exp(-t/))), thereby making an 

implicit assumption about the shape of the spectrum.
14

 Instead, we employed a direct spectrum 

analysis method,
15

 which allowed us to resolve an unprecedented number of distinct processes. 

Details on the results are discussed in Chapter 4. 

 

3.6.1 STATIC CASE 

 For a relaxation-time spectrum, f(), the anelastic strain, (t), is given as a function of time, 

t, by: 

    ln)()()( dtgft 



 , (3.9) 

where g(t) is equal to (1-exp[-t/]) under a constant stress and exp[-t/] in a stress-free state, 

respectively, being the respective time constants for relaxation, discussed in Section 2.2. 

Assuming that the rate-limiting step of the relaxation process is thermally activated, with an 

energy barrier, Ea, and therefore, is expressible by an Arrhenius relation, given in Eqn. (2.16): 

)]/(exp[0 TkEa , where 0 is the pre-exponential factor and k is the Boltzmann constant, Eqn. 

(3.9) can be rewritten as: 

  
aaa EdEtTkbEat  






))ln(()()(

1
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 Where a(Ea) is the activation energy spectrum and b(x) is equal to 1-exp[-exp[x/(kT)]]: 

b(kTln(t0
-1

)-Ea) in Eqn (3.10) under constant stress is equal to (1-exp[-t exp[-Ea/(kT)]/]) = 

g(t) = (1-exp[-t/]). Equation (3.10) allows for employing the convolution theorem by Fourier or 

Laplace transformation to obtain the activation energy spectrum, which has yielded consistent 

results without prior assumptions (See, e.g., Ref. 16).
 
 

 The DSA method involves a least-squares fit to the data. Eqn. (3.9), substituting summation 

for integration, was employed, taking the boundary conditions into account. For example, we 

used the following expressions for quasi-static measurements to approximate Eqn. (3.9): 

  



1

1

0 ])/exp[1(/)(
N

i

iiel ttBAt  , (3.11.a) 

  



2

1

0 ]/exp[/)(
N

i

iiel tAt  , (3.11.b) 

for the cantilever and bend-stress relaxation measurements, respectively. The i are fixed and 

spaced logarithmically: 

  ]ln)1exp[(min   ii
, i = 1,…,N, (3.12) 

where N is the number of variables in Eqn. (3.11), )1/(]/ln[ln minmax  N , min and max are the 

minimum and maximum i values, respectively. The linear term (B t) in Eqn. (3.11.a) describes 

plastic flow or approximates anelastic processes with time constants greater than the 

measurement duration. A in Eqn. (3.11) is typically very small and possibly includes processes 

with time constants longer than the duration of the experiment: anelastic strain stored in a 

material recovers on a longer time scale than that of the experiment (See Chapter 4). The 
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amplitudes of the exponents, i, A and B are fitting parameters, which are allowed to vary. Initial 

guesses for all fitting parameters were set as 10
-2

. Other choices yielded the same results.  

 The higher the number of i values that can be used, the higher the fit quality. However, 

this number cannot exceed the number of data points, since the problem would then be 

overdetermined. The range of i was chosen to extend beyond the experimental time range, with 

its upper limit, max, being twice that of the maximum measurement duration in the data. This 

range was arrived at after tests with simulated data, detailed below. min, however, was 

consistently set as 0.3sec./0.3hr. for cantilever/bend-stress relaxation data, respectively, due to 

the limited resolution of the experimental data below min, i.e., small number of data points. 

Finally, the amplitudes of relaxation-time spectrum corresponding to i, f(i), are given by: 

   ln/)(  iif . (3.13) 

 In order to assess the reliability of the DSA method, we performed tests with simulated 

data for anelastic properties in quasi-static and dynamic measurements. First, a spectrum 

consisting of a superposition of several Dirac delta functions was used, representing a series of 

three Voigt units with arbitrarily chosen discrete time constants, i, and the amplitudes, i (i = 1, 

2 and 3), the corresponding anelastic strain under constant stress following mechanical constraint 

was calculated as, ])80/exp[1(015.0])12/exp[1(01.0])2/exp[1(008.0)( ttttan  , from 0 to 

200 sec. at 0.04 sec. intervals. Normally-distributed random noise with standard deviation, stdev 

= 3 × 10
-4

, was added. The assumed spectrum and resulting simulated anelastic strain as a 

function of time are shown in Fig. 3.6 with a histogram and black dots, respectively. The 



 

54 

 

simulated data set was then fitted using Mathematica
©

 with six fitting parameters, i and i (i = 1, 

2 and 3), using the following expression of an(t) for a series of three Voigt units: 

  



3

1

])/exp[1()(
i

iian tt  . (3.14) 

 

 

 

Figure 3.6 Simulated data (black dots) created using Eqn. (3.9), for a series of three Voigt units 

experiencing anelastic strain under constant stress from 0 to 200 sec. at 0.04 sec. intervals. 

Assumed i and i (i = 1, 2 and 3) used to simulate the data are shown in the black histogram. 

Normally distributed random noise with standard deviation, stdev = 3 × 10
-4

, was added to the 

simulated data. Six fitting parameters (i and i) obtained using Mathematica
©

 are shown (gray 

histogram), and the fit (gray line) is superimposed on the simulated data. i and i values are 

summarized in the inset. 

 

 As shown in Fig. 3.6 with gray histogram and summarized in the table in the figure, the 

fitting parameters were obtained within ± ~ 1.1 % error, yielding a fit (gray line in Fig. 3.6) with 
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good agreement. When a larger number of i, on a range of , contribute to the spectrum in the 

presence of scatter, however, resolving the original spectrum was challenging. Examples of such 

cases are discussed below. 

 For assumed spectra that included broader distribution, conventional fitting programs, such 

as Mathematica
©

 and Origin
©

, allowed for obtaining the relaxation-time spectrum for simulated 

data that did not contain noise, but fitting simulated data that included noise, reflecting 

experimental error, was not successful using these programs. Examples of the test results 

obtained using Mathematica
©

 are plotted in Fig. 3.7. For these tests, a relaxation-time spectrum, 

f(), consisting of two log-normal peaks was assumed. From the assumed spectrum, two 

simulated data sets were created using Eqn. (3.9) from 0 to 200 sec. at 0.04 sec. intervals, 

without and with adding small random noise (stdev = 10
-5

). The noise level was extremely small 

compared to that introduced below in the simulated data for DSA performed with a nonlinear 

solver IPOPT.
17,18

 The simulated data sets were fitted with a linear combination of 30 

exponential functions (N1 = 30) given in Eqn. (3.11.a). min and min were set as 0.3 and 400 sec., 

respectively, as explained above. Unlike the previous case with a spectrum consisting of delta 

functions, the i values were fixed here and for all DSA cases. Finally, the relaxation-time 

spectrum was obtained by DSA using Eqn. (3.13).  

 The spectrum obtained, using Mathematica
©

, with N1 = 30 for simulated data without noise, 

plotted in Fig. 3.7 (a), shows excellent agreement with the originally assumed spectrum. In the 

presence of small noise in the simulated data, however, the DSA-computed spectrum deviated 

significantly from the assumed spectrum, in Fig. 3.7 (b). Although several peaks in the spectrum 

were observed near the original peak positions, finding their positions quantitatively was a 

challenge due to the limited resolution and number of parameters. 
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Figure 3.7 DSA tests using Mathematica
©

. (a) Assumed relaxation-time spectrum with two 

distinct peaks (solid line). Using the spectrum, a simulated data set (black dots) is created using 

Eqn. (3.9). The relaxation time-spectrum is recovered from the simulated data by DSA (open 

circles), using N1 = 30 in Eqn. (3.11) and (3.13). (b) Same as (a), but small random noise (stdev = 

10
-5

) is added. The noise, while too small to be visible in the figure, results in significant 

deviation of the spectrum obtained by DSA from the original spectrum. (c) Same as (b), with 

DSA performed with a larger number of parameters (N1 = 70). (d) Same as (c), but with three 

peaks in the assumed spectrum. 

(b) (a) 

(d) (c) 
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 DSA performed with N1 = 70, also using Mathematica
©

, employing the same simulated 

data as in Fig. 3.7 (c), yielded a slightly higher-quality fit, but the results were still insufficient to 

provide quantitative information on the spectrum. In addition, although many parameters (N1 = 

70) were used, resolving the original spectrum for a larger number of peaks (Fig. 3.7 (d)) was 

even more challenging, yielding a poorer quality fit, compared to Fig. 3.7 (b) or (c).  

 In conclusion, in order to obtain the relaxation-time spectrum by DSA, it was crucial to fit 

the data with many parameters, since spectrum may span a wide range of , thereby allowing for 

higher quality of the fit, and to resolve the noise problems that were observed when using 

Mathematica
©

. This required more-powerful software. 

 DSA was subsequently performed by fitting the experimental data using the Primal-Dual 

Interior Point Filter Line Search Algorithm, which allows for handling problems with large 

numbers of inequality constraints.
17

 This method has proven to provide superior fits, as 

compared with Mathematica
©

, in the presence of noise, as discussed below. The software 

package AMPL
18

 was used with a nonlinear solver IPOPT.
17

 In order to assess its reliability, 

detailed tests using simulated data were also performed. 

  First, we assume a relaxation-time spectrum consisting of three log-normal peaks, as 

shown in Fig. 3.8 (a) and (b). This spectrum was selected to resemble DSA results for one of our 

experiments involving cantilever bending measurements, discussed in Chapter 4. A simulated 

data set was created for quasi-static measurements under a constant stress using Eqn. (3.9). This 

data set contained 5000 data points spaced linearly in time, from 0 to 200 sec. at 0.04 sec. 

intervals. Normally distributed random noise with standard deviation, stdev = 3 × 10
-4

 was added, 

a value close to that of the experimental data (See Fig. 3 in Chapter 4). 
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Figure 3.8 DSA with AMPL. (a) Simulated static data (dots) created based on an assumed 

relaxation-time spectrum (solid line in (a), (b) and (c)) using Eqn. (3.9), consisting of three log-

normal distribution profiles:            
           

   
 
 
             

         

   
 
 
             

         

    
 
 
    The 

data consist of 5000 points spaced linearly in time from 0 to 200 sec. at 0.04 sec. intervals. A fit 

to the simulated data, yielding R
2
 = 0.99775, is superimposed on the plot. (b) The assumed 

spectrum (solid line) and the spectrum recovered by DSA with different max = 100 (cross 

symbols, ×), 200 (open squares) and 400 sec. with initial i = 10
-2

 (open circles) and that with 

initial i = 10
-4

 (dots). (c) Best fit: The median and area, determined by integration between 

minima, of the respective peaks, i, denoted as M,i and Areai, are summarized in the inset. 

(b) 

(a) 

(c) 
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 Next, the simulated data set was fitted by DSA with a linear combination of 100 

exponential functions (N1 = 100) given in Eqn. (3.11.a). Two different initial i values were 

tested: 10
-2

 and 10
-4

. min was set as 0.3 sec. and different max values were tested: 100, 200 and 

400 sec. Finally, the relaxation-time spectrum was obtained using Eqn. (3.13).  

 Relaxation-time spectra obtained by DSA with different max values are shown in Fig. 3.8 

(b). When max was smaller than the highest value in the simulated data, the peak i = 3 was not 

fully observed, yielding overly high i in the high  regime. However, the fit to the spectrum was 

improved significantly for max = 200 sec. and 400 sec., recovering all three peaks. Two different 

initial guesses for all i and A yielded the same DSA results. Although the results were not 

perfect in the presence of noise in the simulated data, the relaxation-time spectrum obtained 

reproduced the original spectrum fairly closely. R
2
 ≡ 1 - (sum of the squares of the residuals/the 

total sum of squares) is given by:  

  













 



n

j

j

n

j

jj yythyR
1

2

1

22 )(/))((1 , (3.15) 

where yj is the j
th

 value of the simulated data that consist of n number of data points, h(tj) is the 

fit value at the j
th

 t, and y  is the mean of the data. The best fit showed good agreement with the 

simulated data, with R
2
 = 0.99775 (Fig. 3.8 (a)). The area of each peak in the spectrum obtained 

by DSA, determined by integration between minima, fell within 3.5 % of the value for the 

assumed spectrum. The median of the each peak i, M,i, the value of which for DSA result was 

determined by fitting with a sum of log-normal distribution functions, was within < 2.3 % of the 

assumed value. The results are summarized in the table in Fig. 3.8 (c). 
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 For the results shown in Fig. 3.8, the assumed M,3 value, 92 sec., was well below max, 

which may allow for resolving M,3 using max = 200 sec. When max is too close to M,3, however, 

DSA is expected to yield the overly high i at high  to make up for not including the entire peak, 

as observed for the fit obtained with max = 100 sec. Therefore, due to the uncertainty of M,i in 

the experimental data, max was set to be twice that of the maximum measurement duration in the 

data. 

 The DSA method employed in our analyses of the experimental data yielded detailed 

relaxation-time spectra, which allowed for probing the distribution of relaxation times. Use of 

the nonlinear solver IPOPT
17,18

 has allowed us to largely overcome the effect of experimental 

noise on relaxation-time spectrum, obtained by DSA. For the quasi-static experimental data, in 

order to rule out potential artifacts due to the fitting method, we performed fits with several vales 

of N1 and N2; we also fitted the bend-stress relaxation data with 4-8 exponents, allowing both i 

and i to vary as well. This yielded results consistent with DSA.  

 

3.6.2 DYNAMIC CASE 

 In dynamic experiments, with cyclic stress and strain, obtaining relaxation-time spectra is 

even more challenging. Even a single time constant leads to a broad loss modulus, E''(), given 

by a Cauchy function. Similar to the expressions for the quasi-static anelastic strain given in Eqn. 

(3.11), storage and loss moduli for the relaxation-time spectrum given in Eqn. (2.18) and (2.19) 

can be rewritten as, as approximations of integrals:
1
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respectively, where the i are fixed, and Ei and E0 are the fitting parameters for the storage and 

loss moduli, respectively. N1 and N2 need to be sufficiently large to approximate integral 

expressions. In order to examine whether relaxation-time spectra can be recovered from dynamic 

data, DSA was performed with simulated loss modulus curves that included noise. The relative 

noise level used in the simulated data was similar to or exceeded that in the dynamic 

experimental data, to be employed in our analysis (See Fig. 5.1 in Chapter 5).  

  DSA performed with simulated loss modulus curves created from an assumed relaxation-

time spectrum, consisting of several distinct peaks, resolved the assumed spectrum with good 

agreement. An example of our tests is shown in Fig. 3.9. The relaxation-time spectrum, f(), was 

assumed to consist of four distinct peaks in  (Fig. 3.9 (a)), which was given by:  
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where I = 4, and Ak, M,k and Ck are given in Table 3.1: 

 

  k = 1 k = 2 k = 3 k = 4 

Ak 0.01 0.011 0.0115 0.012 

M,k 2 12 80 450 

Ck 0.5 0.5 0.5 0.5 

 

Table 3.1 Assumed values of Ak, M,k and Ck for f() in Eqn. (3.17) and Fig. 3.9. 
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Figure 3.9 (a) Assumed relaxation-time spectrum with four distinct peaks on  (solid line), given 

in Eqn. (3.17) and Table 3.1. Using the spectrum, a simulated data set (black dots) is created 

using Eqn. (3.9), replacing g(t) with 
221 




, from min = 10

-3
 to max = 2 sec.

-1
, adding 

normally distributed random noise with stdev = 2 × 10
-4

. (b) (1-R
2
) as a function of prescribed -

Log(tolerance) calculated by DSA from the simulated data in (a). (c) Relaxation-time spectra 

obtained by DSA from the simulated data in (a) at four different tolerance values (10
-3

 to 10
-6

). (d) 

Best fit: Relaxation-time spectrum (open circles) obtained at the tolerance value of 10
-4

, where 

(1- R
2
) precipitously drops, is plotted along with the assumed spectrum (solid line). The medians 

of the respective peaks, i, denoted as M,i, are summarized in the inset. 

(b) (a) 

(d) (c) 
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 A simulated loss modulus data set, normalized by the high frequency Young’s modulus 

(E0), was created using Eqn. (3.9) and (3.17), replacing g(t) with 
221 




, from min = 10

-3
 to 

max = 2 sec.
-1

, including normally distributed random noise with stdev = 2 × 10
-4

. DSA of the 

simulated data was performed with N2 = 70 in Eqn. (3.16.b) from min = (max)
-1

/4 and max = 

4(min)
-1

. A choice of a wide range of allowed for resolving possible spectrum peaks that 

contributed to the data, as discussed below. The spectrum obtained by DSA, f(i), is given by: 

   ln/)(  ii Ef . (3.18) 

 The IPOPT solver
17,18

 employed for DSA allowed for fitting data at different prescribed 

tolerance values. While DSA performed with simulated quasi-static data with different tolerance 

values yielded consistent results, that for loss modulus needed to be examined at different 

tolerance values to find the optimum condition, yielding the assumed spectrum with best 

accuracy. The iterative fitting procedure is terminated when the following condition is satisfied: 
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where yj is the j
th

 value of the experimental (simulated) data, which comprise n data points, 

(h(j))k is the fit value at the j
th

  for k
th

 iteration, respectively. DSA was performed for several 

prescribed tolerance values from 10
0
 to 10

-6
. (1-R

2
) as a function of -Log(tolerance) is shown in 

Fig. 3.9 (b), and the corresponding relaxation-time spectra are shown in Fig. 3.9 (c). Spectra 

obtained by DSA with decreasing tolerance values clearly showed better agreement with the 

original spectrum down to a tolerance value of 10
-4

, at which (1-R
2
) precipitously dropped. 

However, further decreases in tolerance led to worse fits. While the decrease in (1-R
2
) with 

decreasing tolerance values was expected, the reason for this behavior is not clear. A number of 
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tests with simulated data, however, consistently revealed that the highest quality of the fit to the 

assumed spectrum was obtained with decreasing tolerance at the first point at which R
2
 closely 

approached 1. This best fit is plotted separately again, along with the assumed spectrum in Fig. 

3.9 (d). For spectra with four peaks, the maximum error of M,i was ~ 6 %, as summarized in the 

inset. 

 Experimental constraints typically limit the range of  for dynamic loss modulus 

measurements. Since it is difficult to experimentally access the dynamic mechanical properties 

of a solid over a wide range of frequency due to the problems associated with the stability of 

instrumentation,
19

 measured properties are often limited within a narrow range of . For example, 

the overall peak in E''() (Fig. 3.9), may not be seen in the experiments, and only part of the loss 

modulus peak may be accessible, depending on temperature. In order to assess the reliability of 

DSA for extremely limited data range, we applied it to purposely-truncated simulated data.  

 The truncated curve in Fig. 3.10 (a) is the simulated loss modulus created using the 

assumed relaxation-time spectrum, using Eqn. (3.17) with I = 8. Ak, M,k and Ck are given in 

Table 3.2: 

 

  k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 

Ak 0.045 0.055 0.09 0.1 0.12 0.2 0.3 0.4 

M,k 0.3 1 3.3 10 40 170 1100 20000 

Ck 0.25 0.25 0.25 0.25 0.25 0.3 0.5 0.7 

 

Table 3.2 Assumed values of Ak, M,k and Ck for f() in Eqn. (3.17) and Fig. 3.10. 
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Figure 3.10 Assumed relaxation-time spectrum with eight distinct peaks on  (solid line), given 

in Eqn. (3.17) with I = 8 and Table 3.2. Using the spectrum, a simulated data set (black dots) is 

created using Eqn. (3.9) and (3.17), replacing g(t) with 
221 




, from min = 10

-3
 to max = 9 

sec.
-1

, adding normally distributed random noise with stdev = 2 × 10
-3

. The truncated data are 

limited to min = 10
-3

 and max = 9 sec.
-1

. (b) (1-R
2
) as a function of -Log(tolerance) calculated 

for DSA results at six different tolerance values. (c) Relaxation-time spectra obtained by DSA 

with min = (max)
-1

/4 and max = 4(min)
-1

 from the truncated simulated data in (a) that include 

noise at four different tolerance values (10
-3

 to 10
-6

). (d) Best fit: Relaxation-time spectrum (open 

circles) obtained at the tolerance value of 10
-4

, where (1-R
2
) precipitously drops, together with 

the assumed spectrum (solid line). The median values of the respective peaks, i, denoted as M,i, 

are summarized in the inset.  

(b) (a) 

(d) (c) 



 

66 

 

 M,k values are chosen with a variable spacing in ln in order to assess the reliability of 

DSA under challenging condition. The spectrum is shown with a solid line in the figure. The 

assumed spectrum contained eight distinct peaks spanning over six decades of time with 

different intensities, therefore, the loss modulus is significant over a wide range of frequencies, 

with noticeable asymmetry. After adding normally distributed random noise with stdev = 2 × 10
-3

, 

we applied DSA to the data, truncated to min = 10
-3

 <  < 9 = max sec.
-1

 and including ~ 900 

data points. Using N2 = 70 in Eqn. (3.16.b) with i ranging from min = (max)
-1

/4 and max = 

4(min)
-1

, DSA was performed at different prescribed tolerance values.   

 (1-R
2
) as a function of tolerance for DSA is plotted in Fig. 3.10 (b), and the corresponding 

relaxation-time spectra are plotted in Fig. 3.10 (c). As observed in Fig. 3.9, the relaxation-time 

spectrum obtained at the tolerance value associated with the drastic decrease in (1-R
2
), showed 

the best fit to the assumed spectrum. More importantly, although the best-fit spectrum obtained 

from DSA in Fig. 3.10 (d) showed slight over/underestimation of the respective peak 

widths/heights, DSA yielded seven distinct peaks, M,i, showing reasonably good agreement with 

the assumed values, as summarized in Fig. 3.10 (d). Because of the intrinsic width of the Debye 

peak corresponding to each  value (Eqn. 3.16.b), peaks with medians outside the measured 

range still contribute to the DSA results. This significant result shows that DSA allowed us to 

analyze the dynamic properties, despite the great overlap of several processes in loss modulus, 

and the limited range of the data. 

 It is noted that the wide range of (min = (max)
-1

/4 and max = 4(min)
-1

) in Fig. 3.10 

allowed for estimating M,i=7, where M,i=7 > (min)
-1

. Relaxation-time spectra, obtained by DSA 

using the same simulated data as in Fig. 3.9 (a) and 3.10 (a) following the same procedures, but 
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with a narrower range (min = (max)
-1

/2 and max = 2(min)
-1

), are shown in Fig. 3.11 (a) and (b), 

respectively. For any peak i, such that (max)
-1

 < M,i < (min)
-1

, the choice of a narrower  range 

did not affect the fitting results for that peak, as shown in Fig. 3.11 (a). However, when truncated 

simulated data were used, so that M,i=7 > (min)
-1

, DSA performed with the narrower range did 

not reproduce the peak (i = 7), as shown in Fig. 3.11 (b), resulting in a larger error in M,i=7.  

 

         

 

Figure 3.11 (a) Relaxation-time spectrum (cross symbols: ×) obtained by DSA from the original 

simulated data in Fig. 3.9 (a) using two ranges (min = (max)
-1

/2 and max = 2(min)
-1

) and (min = 

(max)
-1

/4 and max = 4(min)
-1

). (b) Same as (a), but for the truncated simulated data set in Fig. 

3.10 (a). M,i values are summarized in the inset.  

 

 It should be noted that, in the analysis of simulated data, we know the part of peak, i = 7, of 

the DSA results corresponds to M,i=7 of the assumed relaxation-time spectrum. When the part of 

peak is observed in the experimental data, however, the peak needs to be verified by performing 

DSA with a wider range. Therefore, DSA was performed for loss modulus data sets from Ref. 

(b) (a) 
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20 in order to determine the best fit with two different ranges, (max)
-1

/2 and max = 2(min)
-1

, 

and min = (max)
-1

/2 and max = 4(min)
-1

, to rule out potential artifacts (See Chapter 5). Codes 

written to perform DSA are detailed and explained in Appendix B.  

 

3.7 SUMMARY 

 A combination of cantilever bending and bend-stress relaxation measurements was 

employed to measure the anelastic strain spanning over greater than ~ nine decades of time. The 

strain was proportional to the displacement, h0, and inversely proportional to the radii of 

curvature of a sample, r, for cantilever bending and bend-stress relaxation measurements, 

respectively. Therefore, these were monitored as a function of time, t, from sub-millisecond to 

200 sec. for cantilever bending measurements, and from minutes to ~ 8 × 10
7
 sec. for bend-stress 

relaxation measurements. Both as-quenched and structurally relaxed samples were used. The 

relaxed samples were obtained by annealing as-quenched samples at 110 
o
C for 1 hr., a condition 

that did not lead to crystallization. Their amorphous structure was confirmed by the high-

resolution transmission electron micrographs.  

 Computational methods employed to obtain the relaxation-time spectra by DSA are 

evaluated. The challenge was to probe the distribution of time constants in a quasi-continuous 

fashion, which allowed for a higher-quality fit, in the presence of scatter in the data. It was 

essential to assess the reliability of DSA, and therefore, tests, employing simulated data, were 

performed for both static and dynamic cases. While DSA performed using Mathematica
©

 with 

the simulated data that did not contain noise, yielded the assumed spectrum with good accuracy, 

it was not successful even when the small noise was added to the data. DSA performed with the 

non-linear solver IPOPT,
17,18

 however, allowed for resolving this noise problem, reproducing the 
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assumed spectrum with fairly good accuracy for both static and dynamic data. The noise level 

added to simulated data was similar or greater than that of the experimental data (See Chapter 4 

and 5). Effects of the initial guesses, range of i, and tolerance values on the DSA results were 

examined. While a choice of different initial guesses did not affect the results, a wide range of  

allowed for resolving possible spectrum peaks near the maximum measurements duration. For 

dynamic data, the tolerance value at which (1-R
2
) drastically decrease showed the best fit to the 

assumed spectrum. Based on these results, obtained from the simulated data, the same 

procedures were applied to the experimental data. The results of experimental data for quasi-

static and dynamic cases are discussed in Chapter 4 and 5, respectively. 
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Chapter 4 

QUASI-STATIC PROPERTIES 

 

 Results of a combination of cantilever bending and bend-stress relaxation measurements 

are presented and discussed in this chapter. In Section 4.1, relaxation-time spectra for quasi-static 

anelastic strain relaxation in amorphous Al86.8Ni3.7Y9.5 (at.%), showing several distinct peaks, are 

obtained by DSA. The spectra, in conjunction with a model employing Voigt units in series, have 

allowed us to characterize STZ properties in detail. These results are compared in Section 4.2 

with those obtained over longer period of time ~ 8 × 10
7
 sec. in a stress-free state, until the 

remaining anelastic strain essentially vanished. In addition, extrapolation used to estimate the 

volume fraction of potential STZs for large time constants is discussed. In Section 4.3, the effect 

of structural relaxation on STZ properties, obtained using the same methods, is discussed. In 

Section 4.4, a criterion for an atomic cluster being a potential STZ is developed to account for its 

size and free volume dependence. 

 

4.1 AN ATOMICALLY QUANTIZED HIERARCHY OF STZS 

 This section is a verbatim copy of Ref. 1  (©  2011 American Institute of Physics. 

[doi:10.1063/1.3552300]). 
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Quasi-static measurements of room-temperature anelastic relaxation were used to characterize 

the properties of shear transformation zones (STZs) in amorphous Al86.8Ni3.7Y9.5 in the dilute 

limit. Using a combination of nanoindenter cantilever bending and mandrel bend relaxation 

techniques, anelastic relaxation was measured over times ranging from 1 s to 3×10
7
 s. Direct 

spectrum analysis yields relaxation-time spectra, which display seven distinct peaks. The results 

were analyzed using a linear dashpot-and-spring model, combined with transition-state theory, to 

yield several STZ properties. These reveal a quantized hierarchy of STZs that differ from each 

other by one atomic volume. Potential STZs occupy a large volume fraction of the solid. They 

access their ergodic space, with the ratio of forward-to backward jump rates ranging from 1.03 to 

4.3 for the range of stress values used. ©  2011 American Institute of Physics. 

[doi:10.1063/1.3552300] 
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INTRODUCTION AND BACKGROUND 

 Metallic glasses exhibit high strength and elastic limit, properties that are attractive for a 

variety of structural applications.
2
 However, they also exhibit flow localization, which results in 

macroscopically brittle behavior. While significant progress has been made in understanding 

their mechanical behavior since the pioneering work by Spaepen,
3
 a detailed microscopic 

description of viscoelastic flow of metallic glasses remains a challenging task. Plastic 

deformation of crystalline materials has long been well-understood, and described in terms of 

well-defined lattice defects. However, glasses pose significant challenges in defining flow 

defects, as even the baseline structure is poorly known. Recent reviews of deformation of 

metallic glasses have been given by Schuh et al.
4
 and Trexler and Thadhani.

5
 

Spaepen’s model
3
 has been successful in describing a range of observations on flow and 

flow localization. Argon
6 , 7

 added microscopic details, based on insight gained from two-

dimensional bubble rafts.
8 ,9

 He identified low-stress flow defects as microscopic, equiaxed, 

regions, termed shear transformation zones (STZs). The shear transformations are thermally 

activated and assisted by external stress, and the transformation shear strain ,



0
T , is of the order of 

0.1. Both authors expressed the shear rate in terms of transition-state theory, with a barrier height 

biased by an applied stress. Argon and Shi argued
7
 that isolated STZs can be reversed by back-

stress in the elastic matrix, leading to macroscopic anelasticity. In fact, simulations
10

 and 

experiments
11,12

 show an anelastic contribution to apparent elastic behavior in metallic glasses, 

with the simulations showing a bond-breaking mechanism. Egami et al.
13

 correlated anelastic 

deformation with bond-orientational order. Argon and Kuo
14

 used temperature-stepping 

experiments to determine activation energy spectra for anelastic relaxation for several metallic 

glasses. Increased attention has recently been given to the behavior of shear transformation zones, 
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using three-dimensional colloids
15

 and molecular dynamics (MD) simulations.
16,17

 Despite the 

progress made, the lack of matrix periodicity and the small size of STZs have made their direct 

experimental characterization elusive. 

 In order to investigate the properties of STZs, we have conducted quasi-static anelastic 

relaxation measurements in amorphous Al86.8Ni3.7Y9.5, an alloy previously studied by one of the 

authors.
18,19

 Unlike some Al-rich metallic glasses, this alloy does not crystallize upon room-

temperature plastic deformation. It exhibits significant anelastic deformation at room 

temperature, enabling us to conduct stable, high resolution, measurements for durations of 1s – 

3×10
7 

s. Our simple experiments provide valuable information on STZ properties. Most 

importantly, we obtain evidence of a quantized hierarchy of STZs with single-atom increments. 

 

EXPERIMENTAL PROCEDURE 

An amorphous Al86.8Ni3.7Y9.5 (at.%) ribbon. 22 μm thick and 1 mm wide, was obtained by 

the single-wheel melt-spinning technique using a Cr-coated Cu wheel at a tangential velocity of 

40 m/s in vacuum. Electron diffraction analyses were employed to confirm the amorphous 

structure of the as-spun alloy ribbon.  

All relaxation measurements were performed at 295 ± 1 K. An Agilent G200 

nanoindenter with a DCM head was used for the cantilever measurements (Fig. 4.1 (a)). 

Cantilever samples were mounted in epoxy for nanoindenter experiments, and the distance 

between the clamp and indenter tip contact point was 0.1 cm. Two different mounting 

compounds were used in order to rule out their effect on the measurement. Thermal drift was 

subtracted. In each run, the following cycle, consisting of three stages, was repeated 20 times: 

0.2, 0.02 and 0.002 mN, each for 200 s. The stiffness measured from the instantaneous, elastic, 
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displacement agreed with the calculated value,
20

 based on a Young’s modulus value of E0=48.2 

GPa
21

 for a similar alloy. Displacement versus time data obtained during each full-load stage 

were used in the analysis, each consisting of 5000 points. Reversibility was confirmed during the 

low-load parts of each cycle. Throughout this paper,  refers to the maximum bending (x 

direction in Fig. 4.1 (a)) strain, attained at the surface. For the cantilever, this maximum strain is 

attained at the fixed end of the sample, and is given by 



 
3

2

d  h

L2
,
20

 where d is the sample 

thickness, h its displacement, and L its effective length. The elastic strain, 



el
0 , is constant under 

fixed nanoindenter load, and is determined from the instant deflection in response to a jump in 

load. Its value is less than 10
-4

 for all measurements. The time-dependent strain value, 

normalized by 



el
0 , is equal to the ratio of the corresponding displacements. A total of 95 

measurement cycles were obtained from four different samples. 

 

                 

 

Figure 4.1 Measurement techniques. (a) Cantilever method. The displacement h is monitored as a 

function of time at a fixed load, P. The instantaneous displacement is the elastic component; (b) 

Mandrel method. The sample was constrained for 2×10
6 s at varying radii, after which the radius 

of curvature was monitored as a function of time in a stress-free condition. 
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For the bend stress relaxation (“mandrel”) experiment,
22,23

 Fig. 4.1 (b), five 1 cm long 

samples were used. Samples were first constrained around mandrels of radius ranging from 0.35-

0.49 cm for 2×10
6 

s, then allowed to relax stress-free for 3×10
7 

s. The radius of curvature was 

monitored during relaxation as a function of time using a digital camera, taking care to insure 

that its optical axis was perpendicular to the sample stage, which was illuminated with a 

backlight. The curvature was determined by on-screen visual fitting of the calibrated photo with 

a circle. Under constraint, the total bending strain at the surface is 



T  d /2(1/R1/r0), where R 

is the mandrel radius and r0 is the initial sample radius of curvature. 



 T consists of an elastic and 

anelastic contribution, the values of which at the end of the constraining period are 

)]0(/1/1[2/0 rRdel   and ]/1)0(/1[2/ 0

0 rrdan  , respectively, where r(t) is the radius of 

curvature at time t after removal of the constraint. Note that 



el
0 , which is defined differently for 

the cantilever and mandrel experiment, is the elastic strain at mechanical equilibrium in both 

cases. The maximum bending strain at time t after removal of the constraint is given by 



(t)  d /2  1/r(t) 1/r0  . These expressions assume a neutral plane equidistant from the 

surfaces. Since we find the processes under consideration to be linear functions of the stress, the 

strain varies linearly across the sample thickness, justifying the assumption. For the different 

mandrel radii used, 



el
0  ranged from 0.153 to 0.303 %. The maximum shear stress is given by 



 s 
 x  z

2

 x

2


E0

2(1 2)
x  since the out-of-plane stress, z, is zero. The maximum shear 

strain is given by , where z is the out-of-plane strain. It is important to 

note that because the in-plane perpendicular stress, y, is proportional to x, relative changes in 

x and x due to any linear process are the same as they would be for uniaxial geometry. 


 x z x /(1)
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Direct spectrum analysis
24

 was performed by fitting the relaxation curves, using the 

Primal-Dual Interior Point Filter Line Search Algorithm. The software package AMPL
25

 was 

used with nonlinear solver IPOPT.
26

 In the fits, the relaxation-time values, i, were fixed and 

spaced logarithmically in the ranges 0.3 to 400 s and 1080 to 5.4 × 10
7
 s for the cantilever and 

mandrel experiments, respectively. Each experimental curve was fitted to obtain a relaxation-

time spectrum, f(). To obtain the integral over peak m, 



f ( )d ln
m
 , for overlapping peaks in the 

spectra,  /)(f  was fitted with sums of log-normal functions, yielding excellent agreement. 

STZ properties were calculated for each peak in each spectrum, and then averaged over the 

spectra. The error indicated in the plots is the standard deviation of the mean. 

 

RESULTS AND DISCUSSION 

The maximum anelastic bending strain of mandrel samples, equilibrated under constraint 

for 2×10
6
 s and subsequently allowed to recover, is shown, normalized by 



el
0 , as a function of 

time in Fig. 4.2. As with any static measurement, 



el
0  may include anelastic contributions

11,12
 

with time scales shorter than the experimental resolution. The curves in Fig. 4.2 indicate absence 

of significant permanent strain and are independent of
 



el
0 . The implied linearity in stress leads to 

important conclusions: a) the anelasticity is unlikely to originate from macroscopically 

heterogeneous behavior, but rather has microscopic origin, b) the anelastic sites are not 

exhausted for the strain values used, c) the viscosity in the linear solid model, used below, is 

Newtonian, i.e., their strain rate of the dashpots is proportional to their stress and d) consequently, 

unlike for the case of yield, the strain profile is linear across the sample thickness at any time. In 

Fig. 4.2, for the highest value of applied strain, the maximum anelastic bending strain at the end 
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of the constraining period, t = 0, is about 0.055%. Assuming the shear strain of an STZ (Ref. 6) 

when constrained by the surrounding matrix is =0.09 (see below), and converting bending to 

shear strain, the corresponding total volume fraction occupied by activated STZs is about 0.94%.  

 

 

 

Figure 4.2 Anelastic strain evolution following equilibration at different mandrel radii. The strain is 

normalized by the elastic strain at equilibrium, prior to removal of the constraint.  

 

In order to observe anelastic relaxation with time scales of 1 s – 200 s, the displacement 

of cantilever samples at constant load, P = 0.2 mN, Fig. 4.1 (a), was monitored as a function of 

time. Its division by the instantaneous displacement upon loading yielded the ratio of anelastic to 

elastic bending strain, 



an(t) /el
0 . Sample curves for both measurements are shown in Figs. 4.3 

(a) and (b). 

Because anelastic relaxation in a metallic glass involves several processes, the temporal 

evolution of the strain is typically fitted with a linear combination of exponentially decaying 

terms, exp(-t/), with different time constants, . Alternatively, a single stretched exponent has 



0
c

0 1x10
7

2x10
7

3x10
7

0.0

0.1

0.2

 0.158

 0.204

 0.243

 0.255

 0.303

 

 

 a
n

e
l 
/  

0 e
l

Time [s]

                              Elastic Strain (%)



79 

 

been used, exp(-(t/)

),

27
 implicitly making an assumption about the shape of the relaxation 

spectrum. Instead, we employ a direct spectrum analysis method
24

 by fitting the following 

functions to the anelastic strain as a function of time:  

=A+ )/exp(
1

1

i

N

i

i tBt  


      (4.1.a) 

=A+ )/exp(
2

1

i

N

i

i t  
       

(4.1.b) 

for the cantilever and mandrel measurement, respectively, with N1 and N2 less than the number 

of data points. The i are fitting parameters, and the i are fixed and spaced logarithmically. The 

linear term in Eqn. (4.1.a) a priori describes plastic flow or approximates anelastic processes 

with time constants greater than the measurement duration. A in Eqn. (4.1.b) is very small and 

likely corresponds to processes with time constants longer than the duration of the experiment. 

It should be noted that even in a simulated relaxation curve consisting of a sum of a small 

number of pure exponential terms that differ from each other by a factor of ten, it is difficult to 

discern the different time constants. This is especially true when the amplitude of the exponents 

with the longest time constants is the greatest, since these introduce a curvature in a log() versus 

time plot at short times. Experimental noise, and the fact that the spectrum peaks have an 

intrinsic width, further obscure any distinct processes. Because of the consequent need to rely on 

fits, we undertook several steps to rule out artifacts due to the fitting method. We have: a) 

performed fits with several values of N1, N2; and b) fitted the mandrel data with 4-8 exponents, 

allowing both the i and i to vary. The results of the different methods were consistent with each 

other. Regardless of the number of exponents used, the same dominant time constants were 
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obtained. In addition, simulated data, containing noise, were fitted in order to assess the 

method’s reliability. While the peak widths varied with initial guesses, their areas did not. 

The spectra resulting from the fits, f(), are included in Figs. 4.3 (a) and (b). These are 

normalized such that 



el
0  f ( )d ln

1

 2

  is the equilibrium anelastic bending strain due to processes 

with time constants in any interval (1, 2).  /)(f  exhibits a distinct set of peaks, each 

described well with a log-normal distribution.  

 

          

 

Figure 4.3 Sample relaxation curves and corresponding relaxation-time spectra. (a), Cantilever 

measurement, performed at fixed load, P = 0.2 mN, i.e., fixed stress. (b), Mandrel measurement, 

performed in a stress-free condition after equilibration under constraint. For each case, two 

spectra, f(), are shown, obtained from fits with different numbers of fitting parameters. 

 

 We associate peak in the spectra with one STZ type, m. To analyze the relaxation 

behavior, the standard linear solid model
28,29

 is used, as illustrated in Fig. 4.4 (a) Voigt unit m, 

(a) (b) 
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consisting of a spring and linear dashpot in parallel, represents all anelastic sites of type 

mcorresponding to one peak in the spectrum (Fig. 4.3 (a) and (b)). Since the strain contribution 

of each STZ type is additive, the units are connected in series. The additivity implies that both 

the effective Young’s modulus and shear viscosity, 



Em
' and m' , respectively, are inversely 

proportional to the density of m-type STZs. In the limit of vanishing concentration of m-type 

STZs, 



Em' , m'  , i.e., the corresponding Voigt unit is rigid and makes a negligible 

contribution to the strain. It is important to recognize the limitations of this simple model: Argon 

and Shi
7
 note that once an STZ has other STZs as neighbors, its transformation is likely to 

become irreversible. This is equivalent to destruction of the spring that is parallel to a dashpot. In 

the present work, conducted at low strains and showing full reversibility, such a process is not 

encountered. 

 

 

 

Figure 4.4 Linear solid model: n anelastic processes act in series, where mtype sites are 

associated with Young’s modulus of 



Em'  and viscosity 



m' , both effective quantities that are 

inversely proportional to the volume fraction of these sites. 

 



82 

 

Using appropriate boundary conditions, exponential relaxation of stress and strain is 

obtained. Under fixed or zero stress, the different units evolve independently with time constants,  

 



m 
3m'

Em'  
,                          (4.2) 

where the factor of 3 accounts for the conversion of uniaxial to shear viscosity. m will be taken 

as the median of the respective (log-normal) peak, since it will yield the peak-averaged 

activation energy, Fm, below.  

Mechanical equilibrium between unit mand the spring in Fig. 4.4 yields the effective 

Young’s modulus associated with the unit: 

 



Em' 
el

0

m0
E0

 
,                          (4.3) 

where E0 is Young’s modulus, and 



m0 el
0  f ( )d

m
 , with integration over peak m, is the 

anelastic bending strain due to m-type sites at mechanical equilibrium. Eqn. (4.3) would remain 

the same if the ratio of shear strains were used, since these are linear in the tangential strain for 

the present geometry. The assumption of mechanical equilibrium between each STZ type and the 

matrix is valid for all but m=8, since 8=1.25×10
7

 s, as compared with a constraint duration of 

2×10
6

 s. A corresponding correction is implemented in the analysis below.  

Once 



Em'  and 



m  are determined from the spectra, Eqn. (4.2) is used to calculate 



m' . 

Below, we will relate it to the additive contribution of m-type STZs to the macroscopic anelastic 

shear strain rate,  

 
 

m

s
m




  ,           (4.4) 
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where s is the net shear stress on the dashpot in Voigt unit m, equal to the applied stress minus 

that of the corresponding spring. Since our samples exhibit linear deformation behavior, 



m'  is 

constant, and s and 
m  vary linearly, across the thickness. Therefore, Eqn. (4.4) is valid for the 

entire sample. Following our convention for , maximum values of s and 
m , attained at the 

surface, are used in the analysis below. 

The volume fraction occupied by potential, (also known as fertile), m-type anelastic sites, 

can be expressed as 

 



cm 
m0

el
0

E0

Em
'

 ,          (4.5) 

as derived in the Appendix. The full physical meaning of cm is discussed below. Equation (4.5) is 

obtained by modeling an anelastic unit m as a large number of potential STZs in series, all of 

which are reversible due to the same elastic constant as the solid.
3,6

 The main step in modeling 

STZs , which have on/off states, with Voigt units that have a continuum of strain states is based 

on the ergodicity of STZs: since equilibrated STZs undergo thermal fluctuations that are only 

biased by the stress (see below and Ref. 15), the ensemble average, the activated fraction, xm, of 

cmat mechanical equilibrium, can be interpreted as the average fraction of time each potential 

STZ is transformed. Thus, an STZ has a continuum of time-averaged strain values. While kinetic 

measurements can involve significant uncertainty in pre-exponential factors, Eqn. (4.5) allows 

for a reliable measurement of cm. It does not depend on 



0
T  and applies to any STZ type that has 

equilibrated. 
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Figure 4.5 Calculated properties of the respective anelastic processes m = 1-8. (a), Time constants. 

(b), Volume fraction of potential STZs; (c), Effective macroscopic Young’s modulus. (d), effective 

macroscopic viscosity. (e), STZ volume in units of atomic volume of Al, VAl=16.6x10
-30 

m
3
. The 

value for m=4 was obtained from Fig. 4.4 (d) and interpolation in Fig. 4.4 (b). (f), Volume fraction 

of potential STZ and transformation strain as a function of F/kT. The error bars are the standard 

deviation of the mean, obtained by averaging over multiple measurements. 
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Using the literature value, E0=48.2 GPa for a similar alloy,
21

 



m  cm, 



Em'  and 



m'  were 

calculated for each m by averaging over values obtained from the individual spectra, Fig. 4.5 (a) 

– (d). For m=4, only  is given, as determined from the linear part of the nanoindenter curve. It 

likely corresponds to an anelastic process with  values that fall between the ranges covered by 

the two measurement methods. We observe cm to range from <1% for the fastest sites to ~27% 

for the slowest: the total volume fraction occupied by potential STZs is a significant fraction of 

unity. In this context, we point out that we view cm as the total volume of potential type-m STZs 

per unit volume, where overlapping volumes are counted multiple times. While our analysis is 

restricted to xm<<1, i.e., a small volume fraction of the potential STZs are activated, cm values 

greater than 1 are meaningful: the contribution of two potential STZs that have a finite spatial 

intersection to the probability of STZ formation is proportional to the sum of their volumes as 

long as their activation is rare. cm >1 merely implies that the anelastic strain is greater than the 

elastic strain [Eqn. (4.5)]. For the present experimental conditions, at any point in time, the 

majority of potential STZs are not activated and are part of the elastic matrix. Thus, a high cm 

value does not affect E0 in Fig. 4.4 if xm << 1. It should be noted that while cm may continue to 

increase with increasing m, STZs with high m will be kinetically frozen below the glass 

transition temperature [Eqn. (4.7)]. 

After an anelastic site type with time constant  is activated at fixed stress for a duration 

t0<<, the stress-free strain relaxation rate is smaller than that under stress by a factor of t0/. 

Therefore, anelastic strains may last significantly longer than the duration of the prior stress that 

caused them, a fact that is often missed. This is the case for m = 8 in the present work. The reader 

is reminded that the present value of c8 is determined by extrapolation to account for the fact that 
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equilibrium is not reached for m=8 during the constraining period. The extrapolation introduces 

added error, which will be reduced in our ongoing work.  

 We proceed to determine the STZ volume values. Previous derivations of the shear strain 

rate were based on one dominant STZ type.
3,6,7 

Since our experiments resolve different STZ 

types,
 
we follow those derivations to express the contribution to the

 
total

 
shear strain rate due to 

STZs of type m:
  

 








 







 







kkT

F
c m

T

sm
G

c

mm
0

0 sinhexp2 ,         (4.6) 

where m  is the STZ volume and 
 
is the transformation strain of an STZ that 

is constrained by the elastic matrix. is Poisson’s ratio, G, the attempt frequency, and kT has its 

usual meaning. he free energy of transformation of an m-type STZ is: 

 
m

TT

m
STZF 







































 00

2

2

1

)1(9

)1(2

)1(30

)57(
,      (4.7) 

where ~1 the dilatancy factor, 0, the shear modulus and 



STZ  the shear 

resistance of the STZ. The division of the mechanical work term in Eqn. (4.6) by two reflects the 

assumption that the mechanical energy is a linear function of strain between the two STZ 

configurations
3
 – there are other models that also satisfy detailed balance. The other factor of two, 

absent in Refs. 6 and 7, originates from the subtraction of forward- and backward flux and the 

definition of the sinh function. The following values were assumed for all STZ sizes: G = 10
13 

s
-

1
,
 
=0.35, 



s / = 0.025 (Ref. 30) and 



0
T  0.2. In Ref. 7, 



0
T  values range from 0.1 to 0.135, with 

a different mechanical work term. Colloid experiments yield ~0.3.
15, 31

 It is noted that the 



0
c 

2(4 5)

15(1)
0
T



2
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empirical definition of the activation volume,  ddkTV /ln*  , equals 
2

0  T

 
only if 

1
2

0 


kT

T

s 
. Caution should be exercised when assigning a physical meaning to V

* 
in other 

regimes. Using Eqn. (4.6), linearized for small s, and Eqns. (4.4) and (4.7), m  is obtained. 

Its value, normalized by the atomic volume of Al, is displayed in Fig. 4.5 (e). A hierarchy of 

m  values is observed, ranging from ~ 14 to ~ 21, in single-atomic increments.  

m  is insensitive to error in 



m'  since it appears in the exponent. It is, obviously, 

dependent on the assumed value of . Despite the uncertainty in the latter, the magnitude of 

the  spacings strongly suggests that the peaks in the relaxation spectrum correspond to a 

quantized hierarchy of STZs with single-atomic increments. Since the local chemistry and 

structure in an amorphous solid are expected to have a wide distribution, the clear separation of 

the processes may be surprising. Based on detailed studies of two dimensional bubble-rafts, 

Argon
6,9

 argued that the spectrum of activation energies reflects the expected free-volume 

distribution: a large volume fraction occupied by sites with small free volume, and therefore a 

high activation barrier, and vice versa. In light of our present experiments, it appears that the 

spectrum of activation energies, calculated from Eqn. (4.7) and displayed in Fig. 4.5 (f), reflects 

the discrete STZ sizes and not the free-volume distribution. Spatial fluctuations in the 

composition, density and elastic constants are averaged over a volume that includes the 

surrounding matrix, and are apparently insufficient to obscure the effect of discrete STZ volumes. 

This argument is consistent with the fact that the third term in Eqn. (4.7), the work required to 

shear the atomic planes in an STZ, is insignificant,
7 

and with MD simulations
16 

that show a well-

defined composition, and narrow distribution of the volume per atom, in activated STZs. We 



0
T
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suggest that the local state of structural relaxation, i.e., the distribution of free volume or stress 

fluctuations, affects the flow behavior as an on/off switch via cm. Our ongoing work is expected 

to lead to further analysis of this issue.  

Our analysis implies that STZs that are larger or smaller than those detected should be 

active for the appropriate temperature and time scale. While extrapolation suggests that smaller 

STZs make up a small volume fraction, it also suggests steeply increasing volume fractions 

occupied by STZs with increasing m. Previous publications have all reported single, average, 

STZ sizes. Because of the steep increase of cm with m (Fig. 4.5 (b)), it is expected that the 

contribution of the largest active STZs will dominate the macroscopic strain. Based on Eqn. (4.6), 

it follows that the observed average STZ size will increase with increasing temperature. In the 

present work, the volumes of the different STZs that contribute to the observed relaxation range 

from 14 to 21 atomic volumes of Al, in single-atom increments, as compared with 53 atomic 

volumes for the slowest, and therefore largest, active STZs determined for Pd80Si20 at elevated 

temperature.
7
 Considering our uncertainty in , these results are not inconsistent with the 

present work. Pan et al.,
32 ,33

 using strain–rate sensitivity measurements by nanoindentation, 

reported STZ sizes as high as >680 atoms. However, such measurements involve strain 

localization and shear band formation. The deforming volume fraction increases with increasing 

strain rate,
34,35

 which leads to an underestimate of the microscopic strain rate sensitivity. In 

addition, the state of relaxation affects pileup
19

 and therefore the indenter contact area.  Therefore, 

we do not consider the high  values in Refs. 32 and 33 to be realistic. MD results show STZs 

consisting of 2 to 10 atoms
16 

and tens to hundreds of atoms, increasing with strain.
17

 Such 

simulations are conducted at higher stress and strain than the present experiment, and caution 

should be exercised when using them for comparison, as they are likely to be affected by 



0
T
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interaction among STZs. It should also be noted that thermally activated shear of STZs well 

below the glass transition temperature is a rare event, which cannot be modeled realistically by 

MD.  

Dmowski et al.
12

 have recently concluded from measured anisotropic atomic pair 

distribution functions that 1/4 of the volume of a Zr-based metallic glass deforms anelastically 

with short time constants, contributing to the apparent elastic behavior on typical experimental 

time scales. If we extrapolate our cm values to smaller m, and therefore shorter , we obtain very 

small volume fractions. This discrepancy is even greater than it appears, because the alloy of Ref. 

12 has a higher glass transition temperature than the present alloy and its STZs should be more 

sluggish at room temperature at a comparable size. We suggest that the anelastic sites reported to 

occupy 1/4 of the volume are of a different nature than the STZs that are active at high 

temperature, even though their effect on the pair distribution function is similar. Activity of these 

sites is possibly described by a bond-exhange
10

 mechanism. Recent dynamic measurements in 

several metallic glasses are consistent with this picture, showing a nonzero loss modulus at 

cryogenic temperatures, which is separate from the broad high-temperature peak.
36

 

Our  values are consistent with the assumption of Newtonian viscosity – for the highest 

stress values used, linearization of the sinh term in Eqn. (4.6) results in an error of 6.5 to 9% for 

5 to 8, and orders of magnitude less for the cantilever experiment. As in Ref. 15, STZ 

activation is thermal, with the stress bias resulting in an initial ratio of forward-to-backward 

jump rates of ~1.03 for the cantilever and 3.4-4.3 for the mandrel experiment. As seen in Fig. 4.5 

(f), 



Fm /kT  ranges from about 33 to 50. 



0.85Fm 1.26 eV/atom, compared with a vacancy 

migration energy in crystalline Al, 



H 0.62 eV .
37

 The present experiment is conceptually 

related to the measurement of the activation-energy distribution by temperature stepping,
14 

but it 
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does not suffer from resolution limitations due to thermal equilibration times. Reference 14 

yields 



0.87 F 2.18 eV/atom for alloys with shear moduli in a range above twice that of the 

present alloy, which represents good agreement. It is important to note that our  values are 

dependent on the assumed value of  – using 0.3 would reduce  by a factor greater than two, 

whereas  would increase it by a factor of approximately four. Our assumption of size-

independent is unlikely to significantly affect our conclusions.  

Anelastic relaxation spectra with distinct peaks have been observed for other metallic 

glass alloys,
38–41

 indicating that our results are far from unique to the present alloy. In addition to 

the quantitative information we obtain, a novel aspect of the present work is the wide range of 

accessible time constants, which has allowed us to observe an unprecedented number of distinct 

processes. Few experiments, and no MD simulation, can access such a wide dynamic range. It 

may be surprising that no distinct anelastic processes were observed in any of the large number 

of dynamic internal-friction studies
42-46

 performed in metallic glasses over the years, since these 

are capable of exploring a wide dynamic range of time constants. Two factors obscure spectrum 

details in dynamic measurements, and are the likely cause: a) The resonance curve in dynamic 

internal friction measurements has a Cauchy frequency dependence, which leads to significant 

overlap among different processes even if they have low intrinsic width and differ from each 

other by a factor of 10. In contrast, and unlike most instrumented methods, the curvature 

measurements we conduct provide high resolution and stability over long time periods. 

Furthermore, b) dynamic measurements require high frequencies and therefore elevated 

temperatures. Since the time constant for a relaxation process is proportional to exp(F/kT), a 

higher temperature will reduce the dynamic range of time constants and thus the resolution. We 



0
T



0
T  0.1



0
T
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conclude that while our experimental approach is time consuming, it has been crucial to our 

discovery of the quantized hierarchy of STZs. Finally, we point out the difference between our 

regime of low strain and that of a highly driven flow state, for which simulations
47

 yield a broad 

and continuous distribution of activation energies. 

In summary, quasi-static measurements of anelastic relaxation in Al86.8Ni3.7Y9.5 have 

yielded a range of STZ properties. A quantized hierarchy of STZs is revealed, with increments of 

a single atomic volume. The volume fraction occupied by potential STZs is obtained directly, 

and shown to be a large fraction of unity. While only a small fraction of the STZs is activated at 

any time for the low strains used, thermal fluctuations cause all potential STZs to probe their 

ergodic space and therefore have the same time-averaged strain. Future work will address 

activation of slower processes, dynamic measurements of possible anelastic processes that 

appear as elastic at our time resolution, the temperature dependence of anelastic relaxation and 

the effect of structural relaxation. 
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APPENDIX: DERIVATION OF THE VOLUME FRACTION OCCUPIED BY 

POTENTIAL STZS 

 The connection between the linear solid model (Fig. 4.4), with a continuum strain states, 

and STZs, which are modeled as having discrete strain states, is developed here. As illustrated in 

Fig. 4.6, Voigt unit m in Fig. 4.4 is modeled as a large number of Voigt units in series, each 

representing the additive contribution of one m-type STZ to the strain. The macroscopic shear 

strain due to m-type STZs is proportional to the fraction, xm, of potential m-type STZs that are 

activated, and is therefore given by 
c

mmm xc 0  . 



0
c  is the transformation strain of an STZ that is 

constrained by the elastic matrix. The macroscopic bending strain corresponding to 
m  is  

 



m0  (1)cm xm00
c ,                        (4.8) 

where is Poisson’s ratio. 

 

Figure 4.6 The linear model used for individual m-type STZs.  Voigt unit m in Fig. 4.4 consists of 

many Voigt units, each representing a single STZ, in series. The effective viscosity and effective 

Young’s modulus of each STZ is inversely proportional to the volume fraction it occupies. V is the 

volume of the solid. 
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

xm0
c  is the ensemble-averaged shear strain of all potential STZs. Since the STZs are 

ergodic (see text and Ref. 15), c

mx 0  is also equal to the time-averaged shear strain of each 

potential STZ. In this interpretation, all STZs participate in the deformation process and have a 

continuum of possible time-averaged strain values that evolve under a macroscopic applied stress. 

When an STZ is not in an activated state, it is part of the elastic matrix. Since the elastic constant 

that governs STZ reversal is the same as that of the matrix, the time-averaged equilibrium strain 

of each STZ in the bending direction, 



(1 )xm00
c , is equal to 



el
0 , where 0

mx  is the value of xm at 

mechanical equilibrium. Applying Eqn. (4.8) at mechanical equilibrium, c

mmm xc 0

00 )1(   , in 

combination with Eqn. (4.3), the condition for mechanical equilibrium, one obtains  

 



cm 
m0

el
0

E0

Em
'

 .    (4.9) 

As discussed in the text, cm can be understood as the total STZ volume per unit volume, with 

STZ intersections counted multiple times. 

 

 

4.2 ADDITIONAL DETAILS AND FURTHER MEASUREMENTS 

 The STZ properties presented in Section 4.1 were characterized by anelastic strain 

relaxation experiments measured in a stress-free state up to a duration (tsf) of ~ 3 × 10
7
 sec. The 

strain normalized by the equilibrium elastic strain )/( 0

elanel   at tsf was ~ 0.015, which 

corresponded to ~7 – 8 % of the initial value at t = 0, 0

0 )/( telanel   = ~ 0.18. The measurements 

were continued for longer time to re-evaluate the previous results, presented in Section 4.1, with 

improved data. The improved data also allowed us to better determine the reversible portion of 
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the time-dependent strain. In this section, the results obtained for tsf = ~ 8 × 10
7
 sec. are 

compared with earlier results for tsf = ~ 3 × 10
7
 sec. 

 The time-dependent strain in as-quenched samples constrained for tc = ~ 2 × 10
6
 sec. was 

recovered within 1% after tsf = ~ 8 × 10
7
 sec. in a stress-free state. These results confirm our 

assumption that the time-dependent strain is indeed anelastic. The experimental data were 

analyzed following the procedure of Section 4.1 to yield STZ volumes (n) and volume fraction 

of potential STZs (cn).  

 When calculating cn=21 in Section 4.1 and here, an extrapolation method was used to 

account for the fact that STZs consisting of 21 atoms do not equilibrate with the elastic strain 

within tc. For example, for a standard linear solid (See Fig. 2.2), during stress-relaxation, i.e., 

under constant applied strain, appl, a solution for anelastic strain, anel(tc), to Eqn. (2.4) is given 

by: 

  

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0 , (4.10) 

where E0, E1 and 1 corresponds to the Young’s modulus, effective modulus ( '

nE ) and effective 

viscosity ( '

n ) of an n-type Voigt unit, respectively, and c, the time constant for anelastic strain 

relaxation under fixed-strain constraint, is given by: 

  
10

13

EE
c





 . (4.11) 

At longer constraining times, the anelastic strain approaches its equilibrium value, eq,an = appl × 

E1/(E0+E1). 
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 n=21 obtained in a stress-free state is greater than the other n<21 by at least an order of 

magnitude, and therefore, it is reasonable to assume that the processes corresponding to n<21 

equilibrate under constraint. According to this assumption, the Voigt units for these processes, 

employed in Section 4.1, can be approximated by the equilibrated spring units in series, as shown 

in Fig. 4.7. 

 

 

 

Figure 4.7 Modified Voigt units in series, employed in Section 4.1, assuming that the processes 

corresponding to n<21 are equilibrated under constraint.  

 

 In the calculation of the evolution of Voigt unit for n = 21 under constraint, this is 

accomplished by replacing E0 in Eqn. (4.10) and (4.11) by: 

  
1

20

14

1'1

0

'

0 )()(














 

n

nEEE , (4.12) 

with E1 and 1 in Eqn. (4.10) replaced by '

21E  and '

21 , respectively. (1-exp[-tc/c,n=21]) is a 

fractional equilibration factor needed to correct '

21E  and '

21  for incomplete equilibration under 

constraint for tc. The incomplete equilibration leads to a reduction of 0

21n  by this factor, since 

tc<c,n=21: 
0

21,

'0

0 ]/exp[1( nnccnel tEE   . Therefore, '

21E  and '

21  values obtained from the 
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relaxation-time spectra are multiplied by (1-exp[-tc/c,n=21]) for the correction. These newly 

determined '

21E  and '

21 , however, result in a change in c,n=21. Therefore, the calculations are 

iterated until c,n=21, '

21E  and '

21  converge, with further change being less 0.01 % in '

21E  and '

21 , 

and consequently cn=21. 

 

         

 

Figure 4.8 (a) n normalized by Al atomic volume, VAl, obtained in anelastic strain measured up 

to tsf = ~ 3 × 10
7
 (light gray box) and ~ 8 × 10

7
 sec. (dark gray box) after tc = ~ 2 × 10

6
 sec. (n = 

18 – 21). The cantilever results (n = 14 – 16) and an interpolation (n = 17) are reproduced from 

Section 4.1. Linear fits of n obtained in each measurement show negligible difference. (b) cn as 

a function of n, obtained in different tsf, showing relatively large difference in their magnitudes, 

especially for high n. 

 

 n normalized by Al atomic volume, VAl, obtained for anelastic strain measured up to tsf = 

~ 8 × 10
7
 sec. are plotted in Fig. 4.8 (a). Previous values obtained for tsf = ~ 3 × 10

7
 sec. in 

Section 4.1 are shown for comparison. The main difference is a slightly larger value (~ 1.6 %) of 

(a) (b) 
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(n=21/VAl) than that in the previous results. The resulting increase in the slope in the linear fit, 

however, is only ~ 3 %, confirming our previous conclusion on the atomically quantized 

hierarchy of STZs, ranging from 14 to 21. 

 cn obtained in the current measurements are plotted as a function of n in Fig. 4.8 (b). While 

n show little difference compared to those obtained in shorter tsf, cn show relatively large 

difference in their magnitudes, especially for high n, i.e., for large n. n=21 currently obtained for 

tsf = ~ 8 × 10
7
 sec. is greater than that obtained for tsf = ~ 3 × 10

7
 sec. by about factor of two. As a 

result, '

21  is also ~ twice that of the previously obtained '

21 , leading to a high c,n=21. Since tc is 

the same (tc = ~ 2 × 10
6
 sec.) for both data, (1-exp[-tc/c,n=21]) is smaller than that for the previous 

results, leading to decrease in '

21E , and consequently, increase in cn=21, shown in Fig. 4.8 (b).  

 In summary, improved bend-stress relaxation data continued for longer time (tsf = ~ 3 × 10
7
 

sec.) have revealed that the time-dependent strain developed for tc = ~ 2 × 10
6
 sec. for different 

0

el  values, ranging from 0.16 – 0.30 %, is anelastic. DSA, performed using these anelastic strains, 

yield relaxation-time spectra, which allow us to obtain cn and n. Current n values are 

consistent with those obtained in Section 4.1. Correction made for cn=21 due to its large n=21 

compared to tc, however, leads to the increase in them. While cn=21 show a large increase 

compared to the previous results presented in Section 4.1, its trend, increasing as a function of n, 

is unchanged. This trend is discussed with a microscopic model in Section 4.4 in detail. Our 

ongoing works performed with increased tc may allow for elucidating cn corresponding to large 

n due to the uncertainty of the extrapolation method.  

 

4.3 STRUCTURAL RELAXATION 
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 Anelastic properties of an as-quenched metallic glass measured in the quasi-static 

relaxation experiments are analyzed in terms of STZs in Section 4.1. An important parameter 

involved in understanding the mechanical properties is the state variable that describes a metallic 

glass system and accounts for changes in properties, e.g., shear viscosity
48

 or diffusivity,
49

 upon 

annealing due to the structural relaxation. While the STZ model
6,7,8

 is useful in quantitatively 

understanding the macroscopic strain resulting from STZs, the model per se does not account for 

these property changes.  

 The free volume model, developed by Cohen and Turnbull,
50

 has been widely used to 

analyze the structural relaxation (See Section 2.2.2). Especially, Spaepen and his coworkers’ 

analyses
48,3,51

 of the shear viscosity rise during structural relaxation, on the basis of an extension 

of the free volume model, have been successful in terms of correlating the free volume decrease 

(density increase) to the viscosity increase. The total probability of the local free volume 

exceeding a critical value, v
*
, given in Eqn. (1.1): 



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expexp

*


, decreases with 

decreasing average free volume, which explains the viscosity increase.
48,3,51

 It should be noted, 

however, that these analyses are based on the assumption that the basic process accommodating 

deformation consists of single atomic jumps.  

 While prior experimental studies
52 , 53

 of dynamic properties of metallic glasses have 

suggested that structural relaxation leads to the annihilation of the sites that may undergo shear 

transformations, a quantitative description of what causes the annihilation and how it affects 

STZs has not been given. In order to rationalize the effect of structural relaxation on mechanical 

properties of metallic glasses in terms of STZs, therefore, it is crucial to address these questions. 

Specifically, the size-dependent activation energy barrier and volume fraction of potential STZs 
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(cn) need to be examined, where n is the number of atoms comprising an n-size STZ. For cn, it is 

critical to define what allows for an atomic cluster to be a potential STZ in order to account for 

the relation between STZs and free volume.
 3,48,50,51

 

 Our analysis of anelastic properties of an as-quenched metallic glass has allowed for 

directly obtaining n and cn from the anelastic relaxation experimental data. In order to compare 

these properties with those in structurally relaxed metallic glasses, the same measurement 

techniques were employed to characterize the anelastic strain of samples annealed for 1 hr. at 

110 
o
C. Their amorphous structure was confirmed using a high resolution transmission electron 

microscopy after the heat treatment (See Chapter 3).  While the results in Section 4.2 show that 

for tc = ~ 2 × 10
6
 sec. there is an uncertainty in cn=21, we include this value in the analysis because 

it was obtained for both as-quenched and relaxed samples under the same conditions.  

 

  

Figure 4.9 Anelastic strain (anel) of as-quenched (solid symbols) and relaxed (open symbols) 

samples for tc = ~ 2 × 10
6
 sec., normalized by the elastic bending strain at mechanical 

equilibrium, 0

el , characterized in bend-stress relaxation measurements up to tsf = ~ 8 × 10
7
 sec. 

0

el  is varied using different mandrel radii. 
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 The anelastic strain of as-quenched and relaxed samples, normalized by the equilibrium 

elastic strain, 0

el , for bend-stress relaxation measurements is plotted as a function of time, t, 

measured up to tsf = ~ 8 × 10
7
 sec. (~ 2.4 yr.) after tc = ~ 2 × 10

6
 sec. in Fig. 4.9. The normalized 

anelastic strain of relaxed samples at tsf is of the order of ~ 2 × 10
-3

, which corresponds to ~ 1 – 

2 % of the value at t = 0, indicating that most of the STZs formed under constraint are fully 

reversed during this period of time. For both sample types, linearity of anelastic strain in 0

el  is 

observed from the overlap of the normalized curves in Fig. 4.9. 

 

            

 

Figure 4.10 (a) Representative anelastic strain curves of as-quenched (solid symbols) and relaxed 

(open symbols) samples measured as a function of time in cantilever bending and bend-stress 

relaxation experiments for tc = ~ 2 × 10
6
 sec. and tsf = ~ 8 × 10

7
 sec. (b) Corresponding 

relaxation-time spectra determined from each data set shown in (a), employing DSA.
24

  

 

 The relaxation-time spectra, f(), were determined from the anelastic strain data, employing 

DSA. As an example, sample data sets for as-quenched and relaxed samples obtained in 

(a) (b) 
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cantilever bending and bend-stress relaxation measurements are shown in Fig. 4.10 (a). Each 

data set was fitted with Eqn. (3.11), ensuring that the number of variables did not exceed that of 

experimental data, and f() was obtained using Eqn. (3.13) (See Chapter 3 for details). f() 

obtained from the experimental data in Fig. 4.10 (a) is shown in Fig. 4.10 (b). Distinct peaks in 

f() are not unique to the as-quenched samples, but also observed for the relaxed samples, 

confirming that distinct processes are involved in the anelastic relaxation.  

 

 

 

Figure 4.11 Volume of STZs, n, normalized by Al atomic volume, VAl, as a function of n. tc = ~ 

2 × 10
6
 sec. and tsf = ~ 8 × 10

7
 sec in both as-quenched and relaxed samples. for the bend-stress 

relaxation measurements (n = 18 – 21). The cantilever results (n = 14 – 16) and an interpolation 

(n = 17) are reproduced from Section 4.1. The lowest index, n = 14, was selected to correspond 

to the ordinate value, thus designating the number of atoms. Error propagation yields less than 

0.3 % random error in all n values. Linear fits of the plots yield a slope of 1.040 and 1.030 for 

as-quenched and relaxed samples, respectively. 
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 The distinct peaks in f() enable us to compute n for each anelastic process, by following 

the same procedures as for as-quenched samples in Section 4.1. n in both as-quenched and 

relaxed samples, normalized by VAl, as a function of n is shown in Fig. 4.11. Linear fits of the 

plots yield a slope of 1.0397 and 1.0301 for as-quenched and relaxed samples, respectively, 

indicating agreement within less than 1%. These nearly identical fits shown in Fig. 4.11 suggest 

that the change in n due to the structural relaxation is insignificant, providing strong 

confirmation of our earlier conclusion on the atomically quantized hierarchy of STZs.  

 Argon and Kuo
6,8

 argued that the activation energy spectra that they obtained by the 

temperature stepping method resemble mirror images of the free volume distribution: a local site 

with large free volume has small activation energy for shear transformations, and the activation 

energy increases with decreasing free volume in the site.
6,8

 According to their analysis, a 

decrease in free volume due to structural relaxation results in an increase in activation energy. 

Iso-configurational viscosities in creep experiments measured as a function of reciprocal 

temperature for different prior annealing temperatures, reported in Ref. 48, however, exhibit 

Arrhenius behavior with nearly the same slopes in a wide range of temperatures. Each slope 

represents the activation energy in the transition-state theory,
3,6

 suggesting that the activation 

energy does not change when structural states of a metallic glass are changed by annealing. It is 

noted that according to Eqn. (2.21), the activation energy is proportional to the volume of STZs, 

i.e., . Therefore, our observation on the same STZ volumes in as-quenched and structurally 

relaxed metallic glasses indicates that the activation energy remains unchanged upon structural 

relaxation, representing a size-resolved extension of prior experimental results.
48

 

 Our analyses of STZs in both as-quenched and structurally relaxed samples consistently 

yield the same sizes of n = 14 – 21, and we suggest that these are part of a wider hierarchy. The 
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window of n values that we observe can be readily explained when one considers the values of n 

and cn. For example, n=14 = ~ 2 sec. and cn=14 = ~ 5 × 10
-3

 for as-quenched samples. An 

extrapolation of n and cn based on n and Eqn. (4.13), respectively, yields n=13 = ~ 0.1 sec. and 

cn=13 = ~ 10
-4

. These values suggest that STZs smaller than n = 14 may not be characterized 

under the given experimental conditions: For example, in order to characterize the STZ size of n 

= 13, at least of the order of sub-10
-2

 seconds in time and sub-10
-3

 values of 00 / eln   should be 

accessible experimentally. In a similar fashion, the upper limit, n = 21, can be explained. For n ≥ 

21, n ≥ ~ 10
8
 sec.. Since both tc and tsf are significantly shorter, these large STZ sizes are not 

easily accessible. It is noted that the effect of STZs with n = 22 was observed (See Section 4.4). 

 Improving the experimental resolution, therefore, may allow for expanding the current 

window, exploring a wider range of n. This window may be varied by changing the 

temperature. For example, assuming Arrhenius behavior of (T), given in Eqn. (2.16): 

TkEaeT
/

0)(


 , increasing the temperature substantially decreases the respective n. Thus, 

measurements at elevated temperature may allow for characterizing large STZs that correspond 

to n>21, but small STZs may not be observed due to the substantial decrease in corresponding n. 

On the other hand, lowering the temperature is suitable for characterizing STZs corresponding to 

n<14 but not large STZs. Performing experiments at higher and lower temperatures, therefore, 

will vary the window of the hierarchy to larger and smaller STZs, respectively. 

 cn is calculated from f() in Fig. 4.10 (b). As detailed in Section 4.1, it is determined by the 

mechanical equilibrium between the spring exhibiting instantaneous strain, represented by 

Young’s modulus E0 = 48.2 GPa
21

 and elastic strain at mechanical equilibrium 0

el , and that in an 

n-type Voigt unit with effective modulus '

nE  and the equilibrium anelastic strain 0

n . The 
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mechanical equilibration between these two components allows us to obtain '

0

00 // nelnn EEc    

from f(), where 0

n  is calculated by integrating the respective peak in f() over :  ln)(0 df
n

n  .  

 

   

 

Figure 4.12 The volume fraction of potential STZs, cn, as a function of the number of atoms in 

them, n, obtained in as-quenched (light gray box) and relaxed (dark gray box) samples. tc = ~ 2 × 

10
6
 sec. and tsf = ~ 8 × 10

7
 sec. for bend-stress relaxation measurements.  

 

 cn of both as-quenched and relaxed samples are shown as a function of n in Fig. 4.12. The 

error bars show the standard deviation of the mean, which is calculated from 95 and 70 

cantilever, and 5 and 6 bend-stress relaxation measurements, for as-quenched and relaxed 

samples, respectively. It is observed that cn is smaller for structurally relaxed samples for all n, 

and the fractional difference increases with increasing n.  

 Our current observation indicates that change in mechanical properties due to structural 

relaxation, e.g., viscosity rise upon annealing, results from the decrease in cn, not from a change 

in volume of STZs, , i.e., in activation energy (Eqn. 2.21). While structural relaxation does not 
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change the activation energy for STZs, as remains unchanged, the decrease in free volume 

anneals out potential STZs. A remaining challenge is to rationalize the size dependent 

distribution of cn that accounts for their free volume dependence. 

 

4.4 A MICROSCOPIC MODEL 

4.4.1 A CRITERION FOR A POTENTIAL STZ 

 In order to determine cn, a condition for an atomic cluster to be a potential STZ is 

postulated: if the total free volume shared by individual atoms in an atomic cluster of size n 

exceeds a critical set value, v
*
, which is approximately independent of n, the cluster is capable of 

undergoing shear transformation, i.e., a potential STZ. According to this criterion, the total 

probability per atom of finding such clusters (Nn(v
*
)) is given by: 
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where g(n) is the number of near-equiaxed clusters of n atoms. (n × Nn(v
*
)) is equal to the 

predicted cn, which approaches (n × g(n)) for large n.  

 Equation (4.13) was fitted to cn in Fig. 4.12. It was assumed during the fitting that g(n) = 5 

for all n, with v*
/vf being the only fitting parameter. Resulting fits for as-quenched and relaxed 

samples are plotted in Fig. 4.13. They yield the fitting parameter v*
/vf of 36.6 and 37.4 for as-

quenched and relaxed samples, respectively, indicating a decrease in vf upon structural relaxation 

of ~ 2 %. While the values of v*
/vf reported in Ref. 48 is about half the current value, the results 

cannot be directly compared, since the analysis of Ref. 48 is based on an assumption that a series 

of single atomic jumps accommodate deformation.  
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Figure 4.13 Fits (solid line) obtained using Eqn. (4.13), employing cn data in Fig. 4.12. tc = ~ 2 × 

10
6
 sec. and tsf = ~ 8 × 10

7
 sec. for bend-stress relaxation measurements. 

 

 Although the fits in Fig. 4.13 show deviation from the experimental data for large n, 

especially for cn=21, these fits follow the trends of cn in terms of Poisson statistics, increasing as a 

function of n. cn=21 for as-quenched samples is ~ 0.48 but the predicted value using Eqn. (4.13) is 

~ 0.21, and the discrepancy may originate from the uncertainty of extrapolation made to account 

for shorter constraining time (tc = ~ 2 × 10
6
sec.) compared to 21 (~ 2.7 × 10

7
sec.). It is 

interesting to note that when the same analysis was performed with as-quenched samples that 

were constrained for tc = ~ 4.4 × 10
8 

sec., the obtained cn=21 was 0.13, indicating an error in 

extrapolation for cn=21 for the shorter tc. 

 

4.4.2 EXPERIMENTAL OBSERVATIONS AND SUMMARY 
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 While the atomically quantized hierarchy of STZs, and a model of its free volume 

dependence have not been reported before, experimental studies of dynamic properties of 

metallic glasses
52,54,55

 can be compared with the present results. Especially, it will now be shown 

that loss moduli for different alloys measured as a function of T at fixed , or as a function of  

at fixed T, showing noticeable asymmetry in their spectrum (See Section 2.2.3) are consistent 

with our results. Analyses of the loss moduli in terms of relaxation-time spectra are discussed in 

detail in Chapter 5. 

 Since the activation energy for n-size STZs can be calculated using Eqn. (2.21), and 

therefore, also the respective time constants, n, the loss modulus can be calculated, employing 

these values, using Eqn. (3.16). For example, for an arbitrarily chosen fixed frequency value of 1 

Hz, the loss modulus spectrum as a function of T is shown in Fig. 4.14, based on our cn values 

with interpolated cn=17 for an as-quenched sample. The calculated loss modulus clearly shows a 

low-temperature tail, which has been observed in many other metallic glasses.
45,54,55

 The tail is 

due to the cn spectrum, with significant overlap among individual Cauchy peaks. It is expected 

that height of the loss modulus spectrum will decrease upon relaxation, as seen in tan() in Ref. 

52 and 56. The present author, however, was unable to find corresponding experimental results 

on the loss modulus in the literature, for comparison. In Ref. 57, it was reported for loss moduli, 

normalized by their apparent peak value, that the temperature ranges, in which the loss moduli of 

as-quenched and relaxed samples were observed, were the same. The temperature range is a 

function of activation energy: with increasing the activation energy, the loss modulus peak is 

observed in the higher temperature regime. Therefore, Ref. 57 provides another confirmation of 

our conclusion, along with the prior experimental results in Ref. 48, that the activation energies 

are not changed by structural relaxation. 
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Figure 4.14 Calculated loss modulus (E′′) as a function of temperature (T) at fixed frequency 

value of 1 Hz, normalized by Young’s modulus (E0) using Eqn. (2.19), based on the present 

quasi-static cn data for an as-quenched sample (Section 4.1 and Fig. 4.12) with cn=17 obtained by 

interpolation. The loss modulus peak resulting from each cn is shown with a dotted line. The 

graph is only computed up to 470 K because the model used is not expected to be valid above Tg. 

 

 In summary, our results suggest that while the volume of STZs and their quantized 

hierarchy show less than one percent change upon structural relaxation, 
nc  decreases 

substantially. Fits to the size dependent 
nc  using Eqn. (4.13) yield a ~ 2 % change in average 

free volume, vf, due to the structural relaxation compared to the as-quenched state. In addition, 

Eqn. (4.13) accounts for the increase in 
nc  with n in terms of the Poisson statistics, which is 

consistent with the observed shape of the dynamic loss modulus spectra.
45,52,54,55,57

 Note that the 

activation energy barriers for STZs are proportional to n, as given in Eqn. (2.21). Therefore, 
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although high-n potential STZs may occupy a high volume fraction, they may be kinetically frozen 

at temperatures below Tg due to the large activation barrier. 
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Chapter 5 

DYNAMIC PROPERTIES – ANALYSIS OF LITERATURE DATA 

 

 Relaxation-time spectra obtained by DSA
1

 from the anelastic strain measured by a 

combination of quasi-static techniques have allowed us to analyze the STZ properties in an Al-

based metallic glass in detail (See Chapter 4). In Section 5.1, the master-curve method,
2–4

 which 

has been used to argue that anelastic relaxation has a single activation energy, is analyzed. In 

Section 5.2, published dynamic properties of a metallic glass under cyclic constraint
5
 are 

analyzed using a method similar to that in Chapter 4. A review of the anelastic response in 

dynamic experiments is presented in Section 2.1.2, and a review of prior experimental work on 

metallic glasses is given in Section 2.2.3.   

 

5.1 EVALUATION OF THE MASTER-CURVE METHOD
2–4

 

 One of the dynamic properties of metallic glasses that have been widely investigated is the 

loss modulus. When the loss modulus shows an apparent peak measured at fixed temperature (T) 

as a function of angular frequency (), one can obtain an apparent activation energy barrier by 

measuring the peak shift with temperature. When only part of the loss modulus spectrum without 

the peak as a function of  is observed, due to the limited experimental time scale, however, a 

master curve, in which the loss modulus spectra overlap, is constructed to obtain the activation 

energy.
2
 The master curve is obtained by shifting each experimental curve of loss modulus, E''(,
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 T), as explained below. 

 The master-curve method is based on an assumption of a single process with an activation 

energy Ea. The corresponding time constant, (T), is given in Eqn. (2.16): TkEaeT
/

0)(


 , 

where 0 is the pre-exponential factor and k is the Boltzmann constant. According to this 

assumption, the loss modulus is a Cauchy function, given in Eqn. (2.19): 
22,1

)(1

)(
),(''

T

T
ETE M







 , 

where E1,M is the elastic modulus of the spring element attached in the Maxwell unit in Fig. 2.5. 

E1,M is assumed to be temperature-independent. 

 In order to obtain a master curve, one of the loss modulus curves, measured at one of the 

temperatures, Tref, is chosen first. Then, for any given Ti, an arbitrary x(Ti) value, for which 

E''(x(Ti), Ti) has been measured, is chosen. ref(Ti) is defined such that E''(ref(Ti), Tref) = 

E''(x(Ti), Ti). E''(, Ti) as a function of ln() can be shifted by plotting E''(i, Ti) on a 

logarithmic scale in , where 





)(

)(

ix

iref

i
T

T
 . Based on Eqn. (2.19) for E''(, T), the curve 

overlaps the reference curve, measured at Tref. It should be noted that in the presence of noise, 

the shift should be optimized for all data points. 

 Assuming a single activated process with time constant (T), given by Eqn. (2.16), it 

follows from Eqn. (2.19) that:  

  
)(

)()(
)(

ref

iix
iref

T

TT
T







 . (5.1) 

Substituting Eqn. (2.16) for (Ti) and (Tref), one obtains an expression for the shift:  
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TTk

E
TTTT
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))(/)(ln())(ln())(ln()ln(  . (5.2) 

In this case, when a series of ln(i) values for each E''(, Ti) curve used to obtain the master 

curve is plotted as a function of 1/Ti, the activation energy may be obtained from its slope using 

Eqn. (5.2). Overlap of shifted curves has been used to argue that flow is a single activation 

energy process.
2–4

  

 In order to evaluate the master-curve method, n (T = 295 K) and cn values obtained in our 

quasi-static measurements of as-quenched samples (See Chapter 4) were used to calculate nine 

data sets of loss moduli as a function of  using Eqn. (3.16.b) from 100 
o
C to 140 

o
C at 5 

o
C 

intervals (Fig. 5.1 (a)). The Ea values range from Ea,n=14 = 0.83 eV to Ea,n=21 = 1.26 eV at ~ 

0.06 eV intervals for the different STZ sizes. From these loss moduli, 11 data points for each 

temperature, spaced logarithmically from 10
-3 

sec.
-1

 to 10
2
 sec.

-1
 on at ln() intervals of ~ 

1.15, were used to obtain a master curve
2–4

 at Tref = 120 
o
C. x(Ti) was arbitrarily chosen as 3 × 

10
-3 

sec.
-1

, consistently for all E''(, Ti) to be shifted, and the corresponding ref(Ti) was 

calculated for each Ti. Then, all  in E''(, Ti) data were multiplied by (ref(Ti)/i(Tref)) to obtain 

a master curve at Tref. Finally, the ln(i) values, plotted as a function of 1/Ti, were fitted using 

Eqn. (5.1) to obtain Ea.  

 The gray dots in Fig. 5.1 (b) show the master curve, approximated by shifting each data set 

by ln(i), superimposed on the original Tref = 120 
o
C curve, showing reasonably good 

agreement. The fit of ln(i) as a function of 1000/T is shown in the inset. The plot shows 

Arrhenius behavior, and the fit performed with Eqn. (5.1) yields a Eavalue of ~ 1.25 eV, which 

is close to the input Ea,n=21 = 1.26 eV.  



114 

 

 

      

       

 

Figure 5.1 (a) Loss moduli (solid line), normalized by the high frequency Young’s modulus (E0) 

as a function of  calculated using Eqn. (3.16.b) from 100 
o
C to 140 

o
C at 5 

o
C intervals, using 

n(T = 295 K) and cn values obtained in our quasi-static measurements of as-quenched samples 

(See Chapter 4). For each temperature, 11 data points (gray dots), spaced logarithmically from 

10
-3 

sec.
-1

 to 10
2
 sec.

-1
 on at ln() intervals of ~ 1.15 are used to approximate the master 

curve (b) at Tref = 120 
o
C. ln(i)  as a function of (1000/T) is shown in the inset. (c) Same as (a), 

but with a narrower  range: 12 data points (gray dots), from ~ 5 × 10
-2 

sec.
-1

 to 10
2
 sec.

-1
 at 

ln() intervals of ~ 0.69 for each temperature are used. (d) Same as (b) at Tref = 140 
o
C using 

the data in (c). 

(a) (b) 

(c) (d) 
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 Since the master-curve method is often employed with loss modulus data, where the 

frequency range may not include the peaks,
2
 the same analysis was performed with the same 

original data, but with a narrower range: 12 data points for each temperature, spaced 

logarithmically from ~ 5 × 10
-2 

s
-1

 to 10
2
 s

-1
 on at ln() intervals of ~ 0.69, as shown in Fig. 

5.1 (c).  Tref is set as 140 
o
C, since the data at this temperature included the peak. x(Ti) was 

arbitrarily chosen as 10
-1

 s
-1

, consistently for all E''(, Ti) that were shifted, and the 

corresponding ref(Ti) for each Ti was calculated.  

 The master curve in Fig. 5.1 (d) shows good agreement with the original curve at 140 
o
C, 

and agrees with that in Fig. 5.1 (b). The fit, using Eqn. (5.1), performed with ln(i) as a 

function of 1000/T in the inset, however, yields a slightly smaller Eaof ~ 1.23 eV. This value is 

in between the input Ea,n=20 = 1.20 eV and Ea,n=21 = 1.26 eV.  

 Although the absolute errors in Ea of the two sample tests are not significant, these tests 

show the uncertainty of Eaobtained by the master-curve method. It should be noted that these 

are performed with the calculated loss moduli, which allow us to obtain ln(i) with high 

accuracy: In the analysis of experimental data, it is expected that the error in ln(i) will be 

more significant, resulting in larger errors in Ea. In addition, the pre-exponential factor, 0, 

which allows for assessing the reliability of Ea, cannot be obtained by the master-curve method. 

More importantly, this method does not fully account for the broad, asymmetric, loss modulus, 

which is different from a Debye peak for a single activation process (See Section 2.2.3). Most 

importantly, we observe that the fact that a master-curve is obtained does not prove a single 

activation energy. 
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5.2 STZ HIERARCHY EFFECT FROM LOSS MODULUS DATA 

 

 We have analyzed the experimental loss modulus data in Ref. 5, employing DSA to obtain 

relaxation-time spectra. The data
5
 comprised a series of loss moduli as a function of  at fixed T, 

ranging from 320 to 370 
o
C at intervals of 5 

o
C, for amorphous Zr46.8Ti8.2Cu7.5Ni10Be27.5 (at. %). 

The glass transition temperature of this alloy is Tg = 348 
o
C.

6,7
 Their eleven data sets were 

digitized using an image analyzer, Enguage Digitizer V. 4.1. Each data set contained ~ 500 – 800 

data points. The digitized data sets of loss moduli (E′′()), normalized by the high-frequency 

Young’s modulus (E0), are superimposed on the original plot in Fig. 5.2, showing good 

agreement.  

 We performed DSA for each digitized data set using 
 


2

1
221

)(''
N

i i

i
iEE




  in Eqn. (3.16.b) 

with N2 = 70, and the i are spaced logarithmically: min = (max)
-1

/2 and max = 2 × (min)
-1

. The 

Ei are fitting parameters. For the data sets below Tg, while most of the relaxation-time spectra 

obtained contained nearly the entire lowest- peak, all spectra obtained with max = 2 × (min)
-1

 

showed only part of the highest-peak near the max. A similar observation was made in a 

spectrum obtained by DSA from truncated simulated data (See Section 3.6). Therefore, in order 

to verify these peaks, DSA was repeated with the same condition, but increased max value: 4 × 

(min)
-1

 (See below). The procedure was the same as that used for simulated data, as explained in 

Section 3.6.  were determined by fitting the spectrum for each temperature with a sum of log-

normal distribution functions. 
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Figure 5.2 Digitized loss moduli (cross symbol, +) data sets normalized by the high frequency 

Young’s modulus (E0) from Ref. 5, measured as a function of f = 2/ at fixed T, ranging from 

315 to 370 
o
C at intervals of 5 

o
C, for an amorphous Zr46.8Ti8.2Cu7.5Ni10Be27.5 (at. %), 

superimposed on the original data.  

 

 The relaxation-time spectra obtained by DSA for each data set are plotted in Fig. 5.3 (a) 

and (b) for above and below Tg, respectively. For the loss modulus data below Tg, the highest-

peak observed near max = 2 × (min)
-1

 was further investigated by performing DSA with a 

larger max value of 4 × (min)
-1

, yielding the entire peak in all spectra, with consistent behavior at 

smaller  with that obtained with max = 2 × (min)
-1

. These results are consistent with our DSA 

tests performed with the truncated simulated loss modulus data (See Section 3.6).  

 Fits calculated using Eqn. (3.16.b) are superimposed on the digitized data in Fig. 5.3 (c). 

The fits at the three lowest temperatures, extrapolated to below 10
-3

 sec.
-1

, show relatively 

lower peaks compared to those at higher temperatures. This is likely due to low-frequency 

processes that were not accessible experimentally. All fits show good agreement within the 
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experimentally accessible , yielding R
2
 > 0.9997 for each. Because of the experimental limits 

on accessible frequencies, one expects significant peaks to be missed for high and low . 

 

   

           

 

Figure 5.3 Relaxation-time spectra obtained by DSA, employing the digitized data sets of Fig. 

5.2 above Tg = 348 
o
C

6,7
 (a) and below Tg (b). For data below Tg,DSA was performed with both 

max = 2 × (min)
-1

 (black dots) and max = 4 × (min)
-1

 (gray dots). (c) Fits (gray lines) calculated 

with the relaxation-time spectra plotted in (b) with max = 4 × (min)
-1

 using Eqn. (3.16.b) are 

superimposed on the digitized data. (d) Fit performed assuming two time constants using the data 

set at 360 
o
C in (c). 

(a) (b) 

(c) (d) 
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 The relaxation-time spectra display distinct peaks in each spectrum, and their distribution 

over a wide range of  allows for successfully fitting the wide loss modulus spectrum. Fits 

performed with a single or two time constants did not yield adequate fits: A sample fit performed 

with two time constants using loss modulus data at 360 
o
C in Fig. 5.3 (c) is given in Fig. 5.3 (d). 

It shows disagreement with the data due to the narrow intrinsic width of the Debye peak, 

indicating that several processes are involved in dynamic relaxation.  

 We propose that the peaks in relaxation-time spectra correspond to STZs of distinct sizes, 

as we have observed in the quasi-static measurements. The series of loss-modulus spectra in Fig. 

5.3 (a) and (b) for a range of temperatures allow us to analyze the STZ properties in 

Zr46.8Ti8.2Cu7.5Ni10Be27.5, employing transition-state theory, based on our analyses discussed in 

Chapter 4.  

 Following the analysis of our quasi-static results (Chapter 4), we will now assume the 

peaks in Figs. 5.3 (a) and (b) correspond to STZs of volume n= n × 0, where 0 is the 

average atomic volume and n is the number of atoms comprising an STZ. Combining the 

expressions for the respective time constants, '' /3 nnn E   and the volume fraction of potential 

STZs, '

0 / nn EEc  , with the strain rate due to n-sized STZs given in Eqn. (4.6) in Section 4.1, 








 







 


TkTk

E
c n

T

sna

G

C

nn
2

sinhexp2 0,

0


 , n at low shear stress (Newtonian flow) is reduced to: 

  





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
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 , (5.3) 
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where Ea,n =  × n is the corresponding activation energy, given in Eqn. (7) in Section 4.1, with 

000

2

2

1

)1(9

)1(2

)1(30

)57(



























 TT STZ 












 . ln[n] is rewritten in terms of n = (n0 + m), where n0 

is the number of atoms in the smallest STZ and m is a non-negative integer: 

  
Tk

mn
mnTn

)(
]ln[]ln[]ln[ 0

0

1 
  , (5.4) 

where 
000

1

)1(2

3




TC

G

k


.   

 It has been reported that while the high-frequency Young’s modulus of metallic glasses is 

relatively temperature-insensitive upon heating below Tg, it varies significantly as a function of T 

above Tg.
8,9

 Therefore, approximate linear temperature dependence of the shear modulus:
8–11 

   )](1[ gTgTabove TT
g

 , (5.5) 

where  is the fractional decrease in  per K, is incorporated into  in both 
-1

 and  in Eqn. (5.4) 

to analyze the results obtained above Tg. 

 Equation (5.4) will now be used to determine STZ properties from the spectra in Fig. 5.3. 

The challenge is to determine which sets of peaks at different temperatures corresponds to each 

STZ size, n. When ln[] values, determined from the medians of the respective peaks in the 

spectrum, are plotted against 1/kT, sets of n points, each set corresponding to the same n value, 

are selected tentatively. The slope of each correctly chosen set is equal to Ea,n for a particular n, 

separately below and above Tg. Once the groupings of n are determined, fitting these n plotted 

against 1/kT for a range of m values simultaneously using Eqn. (5.4) yields the variables, n0, 
-1

 

and . These allow us to calculate the STZ properties, as detailed below.  
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Figure 5.4 ln[], determined from the median of the respective peak in the relaxation-time 

spectra, plotted as a function of 1/kT for three tentative groupings of n (a) through (c) below 

(gray circles) and above Tg (black circles). Simultaneous fit performed using Eqn. (5.4) is shown 

with dashed lines for each n = (n0 + m). Above Tg,  = 2 × 10
-3

 /K was used in Eqn. (5.5). (a) 

provides the best fit. Out of nine possible combinations, continuity of the fits at Tg is obtained 

only for the combination displayed in (a). 

(a) 

(b) (c) 
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 Plots of ln[] as a function of 1/kT, separately fitted below and above Tg with three possible 

groupings of n for each temperature regime, are shown in Fig. 5.4 (a) to (c). For these, the 

simultaneous fit results, calculated using Eqn. (5.4), or Eqn. (5.4) and (5.5), respectively, are 

plotted with dashed lines. Above Tg,  = 2 × 10
-3

 /K was used in Eqn. (5.5), see discussion below. 

Of the nine possible combinations of groupings, only that of Fig. 5.3 (a) shows continuity at Tg. 

The simultaneous fit in Fig. 5.4 (a) below Tg yields R
2 

= 0.991797, as compared with R
2 

= 

0.987152 and 0.987543 for (b) and (c), respectively. The plot in (a) shows Arrhenius behavior of 

, and more importantly, the processes observed have a range of apparent activation energies. In 

addition, while three to four relaxation-time constants out of total 45 time constants slightly 

deviate from the fit below Tg, the results, showing good agreement with Eqn. (5.4) for over 40 

time constants, support our notion of a hierarchy of STZs in single atomic increments, as 

designated with n = (n0 + m) on the plot.  

 While Arrhenius behavior was assumed in Chapter 4, it is directly exhibited by the data 

here. Also, our previous analysis in Chapter 4 to yield the STZ volumes was performed with 

assumed variables, T

0 ,G. In contrast, the fits to the present dynamic data allow us to determine 

two of the three quantities, T

0 ,G and 0, by assuming one of them as detailed below. We use 

the 
-1

 and  values obtained from the simultaneous fit in Fig. 5.4 (a), the literature value,  = 

37.4 GPa and an estimated  = 0.35 for the metallic glass used.
12,13

  

We first discuss the fitting results below Tg. Assuming 0 = 1.67 × 10
-29 

m
3
, as estimated 

by Vegard’s law
14

 from the alloy composition, 
-1

 and  obtained from the simultaneous fit yield 

G = 2.7 × 10
14

/s and T

0  = 0.15. Alternatively, if we assume T

0  = 0.2,
15

 we obtain 0 = 9.45 × 

10
-30 

m
3 
and G = 2.6 × 10

14
/s. Both sets are similar to the values we had previously assumed (See 
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Chapter 4), and physically reasonable.
15

 The simultaneous fit yields the number of atoms in 

STZs in atomic increments, ranging from n = 25 (m = 0) to 33 (m = 8) for both T

0  used. The fact 

that the window of n values obtained lies higher than for our quasi-static results (Chapter 4) is 

expected since the dynamic data were acquired at higher temperatures. While T

0  calculated from 

the simultaneous fit results in Fig. 5.4 (b) and (c) is similar to the value obtained for Fig. 5.4 (a), 

0.15, G differs by several orders of magnitude: G = ~ 3.1 × 10
44

/sec. and ~ 3.5 × 10
9
/sec. for (b) 

and (c), respectively, both of which are unphysical. We thus conclude that the grouping in Fig. 

5.4 (a) yields the best fit and the most physical results below Tg. 

 The fitting results above Tg are now discussed. Although the quality of the simultaneous fit 

is not as good as below Tg, the continuity of data at Tg for individual n values is noted. In 

particular, such continuity was obtained only with the choice of n groupings below and above Tg 

shown in Fig. 5.4 (a), out of nine possible combined plots. The fitting parameters, n0, 
-1

 and  

above Tg, are dependent on the linear temperature coefficient of shear modulus, , but the slope 

in Fig. 5.4 is weakly affected by the choice of different  values. We performed calculations 

with different  for the ln[n] grouping above Tg in Fig. 5.4 (a). Assuming  = 2 × 10
-3

 /K, the 

simultaneous fit yield n ranging from 26 (m = 1) to 33 (m = 8) atoms, the same as that obtained 

below Tg, with mutual agreement of T

0 , G and 0 with fitting results below Tg as well: 

Assuming 0 = 1.67 × 10
-29 

m
3
, 

-1
 and  obtained from the simultaneous fit yield T

0  = ~ 

0.15,G = ~ 1.25 × 10
14

/sec.; assuming T

0  = 0.2, they yield  0 = 9.4 × 10
-30 

m
3
 andG = ~ 1.22 

× 10
14

/sec. Simultaneous fits performed with three different  values, 5 × 10
-3

,
 
3 × 10

-3
 and 5 × 

10
-4 

/K , yield G values of ~ 1.3 × 10
7
 /sec., ~ 5.4 × 10

10
 /sec. and ~ 1.6 × 10

25
 /sec., respectively, 

all of which are unphysical. The assumed value may need to be experimentally verified at high 
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temperature, however, since a range of values was reported in literature.
8–11

 For the groupings of 

n in Fig. 5.4 (b) and (c), the simultaneous fit yields the G value of ~ 2.1 × 10
24

 /sec. and ~ 3.1 × 

10
38

 /sec., respectively, which are unphysical either, and more importantly, there is no continuity 

at Tg. 

 In summary, relaxation-time spectra are obtained by DSA from the loss modulus data for 

Zr46.8Ti8.2Cu7.5Ni10Be27.5 in Ref. 5. Each spectrum contains several distinct peaks, as observed in 

our quasi-static data, and these peaks allow for resolving distinct processes contributing a wide 

loss modulus spectrum. To our knowledge, this is the first time in which relaxation-time spectra 

were obtained from dynamic data. Combining our analysis of an atomically quantized hierarchy 

of STZs in Chapter 4 with transition-state theory, the peak positions at different temperatures are 

analyzed by performing simultaneous fits. These simultaneous fits performed with different 

groupings of n allow us to obtain the STZ properties: T

0 ,G and n. The T

0  and n values obtained 

from the best fit in Fig. 5.4 (a), which also yields a physical G value, are ~ 0.15 and n = 25 to 33, 

respectively. The compatibility of the n values below and above Tg is noted. These results 

strongly confirm with our interpretation of the quasi-static measurement data. 
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Chapter 6  

DISCUSSION  

 

6.1 ACTIVATION ENERGY SPECTRA – EVALUATION OF THE TEMPERATURE-

STEPPING APPROACH 

 The relaxation-time spectra obtained by DSA from our experimental quasi-static relaxation 

data have shown distinct time constants, n. Although smaller number of distinct peaks have been 

observed in the spectra for other metallic glasses, due to the limited experimental time scale,
1–3

 

their results indicate that our results are not unique to the present alloy but universal in the 

anelastic deformation of metallic glasses.  

 In addition, we have observed discrete time constants for anelastic relaxation in spectra 

obtained from dynamic loss modulus data.
4
 The loss modulus as a function of at constant 

temperature, E′′(), exhibits a broad, asymmetric peak in ln() (See Section 2.1.2 and Chapter 

5),
5,6

 presumably due to a distribution of time constants. Using DSA, we have been able to obtain 

the relaxation-time spectra, even though their features are obscured in E′′() by overlap of 

Debye peaks corresponding to distinct processes. For each temperature, the spectra obtained 

display distinct peaks in a range of time constants, as in the quasi-static experimental data. 

 We have shown that the distinct peaks in the relaxation-time spectra represent isolated 

STZs with distinct volumes, undergoing irreversible shear during anelastic relaxation. An STZ 

type labeled with m in Section 4.1 consists of (n = n0 + m) atoms, where n0 is the number of 

atoms in the smallest STZ type obtained (See Chapter 5). The activation energy barrier for a
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shear transformation is proportional to the STZ volume, as shown in Eqn. (2.21), i.e., larger 

STZs have higher activation energy, Ea(n), where n is the volume of an n-size STZ. 

Therefore, for each STZ size, n, n has distinct temperature dependence, as given in Eqn. (5.3) 

and (5.4): 






 




Tk

ETk na

n
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 Our results may also be relevant to atomic diffusion in metallic glasses.
7,8

 It has been 

suggested
8
 that diffusion in metallic glasses is accommodated cooperatively in atomic clusters 

rather than a series of single atomic hops
9
 mediated by vacancy-like defects, i.e., self-diffusion. 

This process may be explained by successive shear transformations, suggesting that diffusion 

may take place via STZs, in which atoms experience cooperative atomic rearrangements. This 

has also been observed in molecular dynamics simulations.
10

 In fact, it has been observed in 

simulation studies by Delogu
11

 that the atoms, which are involved in the cooperative diffusion 

without external stress, also preferentially undergo microscopic strain under shear. In addition, 

Yu
12

 and coworkers have proposed that the relaxation process corresponding to the low-

temperature tail in loss modulus (termed a slow secondary () relaxation process in Ref. 12, 

which may refer to smaller n in our analysis) and cooperative diffusion are closely related: while 

diffusion of a large alloy element in a multi-component metallic glass, such as Pd in a 

Pd43Ni10Cu27P20 glass, is correlated with  relaxations,
13

 which correspond to the apparent peak 

with high intensity at high temperature, that of a small element, such as P, is related to the  

relaxation, based on the experimental data showing similar activation energies. Cooperative 

diffusion has been observed not only in as-quenched but also structurally relaxed metallic 

glasses.
14,15
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 While nc , i.e., the n (or corresponding activation energy, 
mnaE , )-dependent distribution of 

the volume fraction of potential STZs, has not been resolved by other studies, we note the 

experimental study of the  activation energy spectrum in metallic glasses carried out by Argon 

and Kuo.
16

 Although their temperature stepping method had limited resolution, as discussed in 

Section 2.2.3, it is instructive to re-evaluate their activation energy spectra,
16

 and compare them 

with our nc . 

 

  

                 

 

Figure 6.1 (a) A linear model for a simulated solid with five distinct processes. (b) Histogram of 

assumed ic for individual processes of the linear series of the standard anelastic solids on the left 

plotted as a function of 
iaE , . 

 

 In order to evaluate the temperature-stepping approach of Ref. 16 (See Section 2.2.3), we 

have performed numerical simulations. With the benefit of our present results,
17

 we now attribute 

the distribution of activation energies to the quantized hierarchy of STZs. A solid was modeled 

with a series of five Voigt units, Fig. 6.1 (a), it is assumed that the corresponding processes have 

(b) (a) 
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activation energies ranging from 0.85 to 1.05 eV at 0.05 eV intervals, resulting in five distinct 

relaxation-time constants at each temperature Ti, 
iTi , , where i = 1,…,5, using Eqn. (5.1). The 

smallest STZ size is assumed arbitrarily to be 20 atomic volumes, n0 = 20. 

 The spectrum height is taken to increase as a function of i such that ic  is qualitatively 

similar to our results, plotted in Ref. 17. Figure 6.1 (b) shows the assumed ic  as a function of

iaE , . Following Argon and Kuo,
16

 the simulated solid, which is first equilibrated under stress at 

high temperature, is assumed to not recover upon quenching to 0 
o
C or during the time it takes to 

step up the temperature. The simulated solid is allowed to relax at increasing temperature steps 

of 20 
o
C. 

 According to the temperature stepping method
16

 employing the step-function 

approximation, the overall anelastic strain measured at Ti is attributed to the relaxation process, 

iaE , . Since five distinct anelastic processes, i = 1,…,5, were assumed for current simulation, 

anelastic strain recovery was calculated as a function of time at increasing temperatures, Ti=1,…,5 

= 20, 40, 60, 80 and 100 
o
C, for each to obtain ic : Ti is the temperature step at which the overall 

anelastic strain of the simulated solid for anelastic process, i, is calculated as a function of time.  

 In addition, at each temperature step, Ti, the total relaxation time, ti, up to which the 

anelastic strain is calculated, is set consistently to 
iTi,3  (dotted line in Fig. 6.2 (a)). While each 

iTi,3  allows for 95 % relaxation of the corresponding processes for each, it does not exceed 1i  

at Ti (See Fig. 6.2 (a)), which allows us to attribute the anelastic strain recovery calculated up to 

iTi,3  at Ti to the anelastic process, i. Figure 6.2 (b) was used to determine the approximated ic

(Fig. 6.2 (c)). 
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Figure 6.2 (a) 
iTi ,  of the simulated solid, calculated at respective Ti=1,…,5 = 20, 40, 60, 80 and 

100 
o
C. 

iTi,3 , at which the overall anelastic strain was determined are shown with dotted lines. 

(b) Anelastic strain recovery as a function of time for temperature steps of 20 
o
C for a linear 

series of the standard anelastic solids in 6.2 (a). (c) Histogram of approximate ic  (dashed box) 

obtained by simulating isothermal measurements of anelastic strain recovery at 
iTi,3  for 

temperature steps, Ti from T1 (20 
o
C) to T5 (100 

o
C), are superimposed on the original, assumed, 

ic  (blank box). 

(c) (b) 

(a) 
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 We observe in Fig. 6.2 (c) that processes with iaE , , previously neglected at T < Ti+1 due to 

their slow relaxation processes, substantially contribute to the strain relaxation at lower 

temperatures, and therefore, make a reduced subsequent contribution at higher T. This results in 

an overestimation of the spectrum in the low activation energy regime and an underestimation 

for high activation energies. It is emphasized that although Argon and Kuo’s stepping method
16

 

suffers from this experimentally inevitable limitation, it provides a major contribution to 

understanding of the spectrum of activation energies, as emphasized in Section 2.2.3. 
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Chapter 7  

SUMMARY AND SUGGESTIONS FOR FUTURE WORK  

 

7.1 SUMMARY 

 We have probed STZ properties using anelasticity measurements. Relaxation-time spectra, 

obtained from the experimental data by DSA,
1
 exhibit distinct peaks. Our computational studies, 

performed for testing DSA with simulated data that include noise, have confirmed that the 

method is able to resolve the input relaxation-time spectra with accuracy. Our analysis of the 

relaxation-time spectra in terms of the standard anelastic solid model with a linear combination 

of spring-dashpot, in combination with Ref. 2, allows for calculating the STZ volumes (n) and 

the volume fraction of potential STZs (cn). Active STZs are resolved by a single atomic volume 

and are shown to consist of n = 14 – 21 atoms in Al86.8Ni3.7Y9.5. An atomically quantized 

hierarchy, with the same STZ sizes, is observed in structurally relaxed samples. DSA, performed 

with dynamic data in amorphous Zr46.8Ti8.2Cu7.5Ni10Be27.5 in Ref. 3, also yields relaxation-time 

spectra exhibiting distinct peaks, and these peaks are analyzed to verify the STZ properties, 

obtained in our quasi-static measurements. The analyses, employing simultaneous fits to account 

for Arrhenius behavior of respective time constants and their n-dependence, yield n = 25 – 33, 

with mutual agreement of n, T

0  and G below and above Tg. The window of n values corresponds 

to STZs that can be characterized under the given experimental conditions (See Chapter 4), and 

are part of a wider hierarchy.  
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 While structural relaxation leading to an increase in effective viscosity ( '

n ) does not 

change n, the cn values decrease substantially due to the relaxation. The annihilation of 

potential STZs and the resulting effect on their distribution is interpreted in terms of the free 

volume model.
4,5

 The Cohen and Turnbull free volume model (Ref. 4 and 5), based on an atomic 

flow unit, is modified to account for STZs as the basic units. The resulting expression is fitted to 

cn, indicating that ~ 2 % change in average free volume, vf, due to the structural relaxation 

reduces cn substantially, resulting in a '

n  rise.
6
 In addition, the n dependence of cn and n, with 

the corresponding activation energies, account for (a) the low-temperature tail in loss moduli
7,8

 

and (b) Argon and Kuo’s
2
 activation-energy spectra obtained using the temperature-stepping 

method. For the temperature-stepping method, a simple simulation shows that the contribution of 

cn with higher activation energy processes is underestimated due to the overestimation of those 

of lower activation energies. 

 In the present work, the STZ properties, analyzed by applying DSA to experimental 

anelasticity data at low stress and strain levels, have been studied. Based on our current findings, 

experimental/theoretical research can be expanded to improve the microscopic understanding of 

a broader range of mechanical properties of metallic glasses. For this purpose, future work that 

may contribute to a more comprehensive understanding of the mechanical properties is proposed: 

 

7.2 SUGGESTIONS FOR FUTURE WORK 

 1. Composition effects on STZs. Our analyses have not taken into account composition 

effects on STZs. These analyses can be improved by considering the effects on STZs due to the 

different types of alloying elements. For example, while many metallic glasses show a low-

temperature tail in loss moduli measured at fixed frequency as a function of temperature, as 



134 

 

expected according to our interpretation of cn, amorphous La68Al10Cu20Co2 shows a prominent 

peak at low temperature.
7
 The results may indicate that cn for small STZs in this alloy is higher 

than in the other alloys. Although this observation is limited to La68Al10Cu20Co2, the result 

suggests that the anelastic relaxation processes are not only dependent on STZ sizes but also on 

the alloying elements.  

 It has been reported in Ref. 8 that activation energies for  and  relaxations in loss moduli 

are similar to those for diffusion of large and small alloying elements, respectively: Pd in 

Pd43Cu27Ni10P20,
9
 and P in Pd40Cu30Ni10P20 or Be in Zr46.75Ti8.25Cu7.5Ni10Be27.5. Although clear 

conclusions have not been drawn from the observations, these observations suggest that diffusion 

and anelastic relaxation are closely related to each other, since  and  relaxations termed in Ref. 

8 correspond to large and small STZs, respectively, in our analyses. Based on the prior 

experimental results, therefore, detailed studies of STZs, taking the sizes of alloying elements 

and their interactions into account, to rationalize the composition effects on STZs may be of 

great impact. These proposed studies may allow for improving the current, basic, understanding 

of STZs. Analyzing the STZ properties in different glass-forming alloys that are useful in terms 

of their engineering properties, e.g., glass forming ability, strength and strain-to-failure, may 

provide an opportunity for designing alloy compositions for applications as well. 

 2. Temperature dependence of anelastic behavior and activation energies. We have 

analyzed quasi-static anelastic relaxation data based on assumptions of Arrhenius behavior of 

relaxation processes derived from the constitutive equation,
10,11

 Eqn. (2.20), using Argon’s
11,12

 

expression for the activation energies, Eqn. (2.21). While Arrhenius behavior is observed directly 

in our analyses of loss moduli of Ref. 3, it is instructive to evaluate these assumptions 

experimentally in a range of temperatures.  
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 In principle, anelastic strain evolution measured by quasi-static methods at different 

temperatures, followed by DSA of these data, may allow for directly evaluating the assumptions, 

by analyzing the temperature dependence of respective time constants in relaxation-time spectra 

(See Chapter 5). In practice, however, in-situ measurements of the strains at elevated 

temperatures can be challenging due to the difficulty of strain measurements inside a furnace. 

Ex-situ measurements may be an alternative, but they suffer from potential artifacts: temperature 

drop/overshoot and limitation on strain measurements at short times during the measurements.  

 Dynamic experiments, therefore, may be more appropriate than quasi-static measurements 

for the given objectives. Performing the measurements at different applied stress levels may also 

allow for detailed studies of anelastic properties in the linear and non-linear regime
13

, at low and 

high applied stress, respectively. It is noted that structural relaxation does not lead to changes in 

activation energies but in cn (See Chapter 4). In order to characterize the STZ sizes, dynamic data 

measured as a function of frequency at fixed temperature can be used to obtain the relaxation-

time spectra by DSA, followed by analyzing them using the methods discussed in Chapter 5. In 

addition to the STZ sizes, important STZ properties, T

0 , 0 and G can also be obtained using 

the methods. These studies will allow for verifying not only our observations on the STZ 

properties in quasi-static data using a different experimental technique, but also the temperature 

dependence.
14,15,16

 

  3. Pre-compression effects on subsequent plastic deformation behavior. Based on the 

experimental observations in physical analogues,
17,18

 it has been suggested that shear bands, 

which accommodate intense local plastic strain in the high stress and strain regime (See Chapter 

1),
19

 likely originate from sequential cascades of STZs due to their elastic interactions.
20

 It may 
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suggest that formation of shear bands is initiated by STZs that are activated prior to yielding, 

followed by rapid propagation with increasing applied strain.
19

  

 It has been reported that samples, subjected to pre-compression at ~ 90 % of their yield 

strengths, y, for ~ 12 hr., subsequently show significant increase in the compressive strain-to-

failure in uniaxial tests at the expense of yield strength loss of ~ 20 %.
21

 Based on molecular 

dynamic simulations,
21

 this ductility increase has been attributed to an increase in the number of 

loosely packed atomic clusters due to the dilatation during pre-compression at ~ 90 % of y. The 

term, “loosely packed clusters” may refer to the potential STZs in our interpretation, but a 

correlation between dilatation, i.e., increase in the free volume, vf, and such clusters has not been 

clarified.  

 It has been suggested that pre-compression at ~ 90 % of y
21

 may result in enhanced 

formation of multiple shear bands during subsequent plastic deformation.
22,23

 It is not clear at 

this point whether such a change in plastic behavior is the signature of multiple nuclei formed 

simultaneously prior to their propagation, or of the sequential formation from the primary band 

fronts due to stress concentration. In order to elucidate the formation processes of shear bands, 

pre-compression at ~ 90 % of y, followed by deforming the samples plastically and subsequent 

characterization of the resulting shear bands is proposed. For the characterization, an optical or a 

scanning electron microscopy, depending on the required resolution, can be used. The observed 

shear-band morphology can be compared with that in (a) as-quenched and (b) structurally 

relaxed samples that are plastically deformed without pre-compression as a baseline. 

 In Ref. 21, it is claimed that the anelastic strain developed during ~ 12 hr. of pre-

compression at ~ 90 % of y completely recovered during 4 hr. in a stress-free condition. For 

anelastic processes with time constants longer than the duration of the experiment, the time for 
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anelastic strain recovery is much longer than that spent to develop it under constraint (See 

Section 2.1.1 and Chapter 4). The authors’ claim,
21

 therefore, need to be experimentally 

evaluated.  

 Measurements of the strain recovery of pre-compressed samples in a stress-free state for a 

long-period of time to evaluate the claim about the anelasticity are proposed. The measurements 

may also allow for elucidating whether the strain-to-failure of pre-compressed samples is higher 

due to potentially remaining anelastic sites. It can be also useful to measure stress-strain curves 

for pre-compressed samples that have undergone stress-free anelastic strain recovery for 

different durations. These measurements will allow for identifying microscopic processes that 

result in the increased strain-to-failure of pre-compressed samples. 

 If the measurements show that plastic deformation is altered by residual anelastic strain of 

the pre-compressed samples, detailed analysis of the anelastic strain recovery of pre-compressed 

samples are proposed to characterize the STZ properties in them. The uni-axial anelastic strain 

data can be analyzed by DSA to obtain the relaxation-time spectra. From the spectra, while STZ 

properties may be directly obtained, using the methods discussed in Chapter 4, their interactions 

due to the stress field around individual STZs
18,20

 may require additional computational studies, 

employing Eshelby inclusion theory.
24

 The analysis of n, cn and the stress fields acting on 

individual STZs may allow for modeling of the formation process for shear bands. 

Theoretical/experimental studies of the formation of shear bands may be expanded by comparing 

the results with those in atomic-scale simulations. 

 The proposed work would be of great impact not only on the basic understanding of the 

distinct plastic deformation of metallic glasses, but also on their engineering applications. For 

example, while many experimental studies have made progress in increasing the strain-to-failure 
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of metallic glasses,
21,25,26,27

 theoretical understanding of such increase has been limited to the 

phenomenological interpretations, e.g., multiple shear bands. The proposed work, based on our 

current study that allows for probing the STZ properties in detail, however, will improve the 

understanding of microscopic mechanisms that lead to the distinct plastic deformation.
21

 In 

addition, the fundamental study may allow for engineering metallic glasses to take advantage of 

their remarkable properties as well. 
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Appendix A 

 

 The first two sections in this appendix comprise a derivation of of Eqn. (2.2) and (2.21), 

including their physical meanings. The effective stress and strain rate in Eqn. (2.2) are discussed 

in Section A.1, and the activation energy in Eqn. (2.21)
1–3

 is discussed in Section A.2. The 

Einstein summation convention
4
 is used in both sections.  

 

A.1 EFFECTIVE STRESS AND STRAIN RATE
 

 It has been proposed by Huber
5
 that a solid flows when the second stress invariant, J2, 

exceeds a critical value. According to von Mises,
6
 J2 is given by:

5–8
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where 1, 2 and 3 are the principal stresses, p the mean stress, 
33

321  
 kkp , and Sij the 

deviatoric stress, 
kkijijijS 

3

1
 , where ij is the Kronecker delta.  

 Hencky
9
 added a physical interpretation to von Mises’ criterion: J2 is proportional to the 

elastic distortion energy: when it reaches a critical value, k
2
, flow begins. The distortion energy is 

the strain energy per unit volume involved in a shape change, as opposed to a change in volume.
7
 

The criterion, J2 = k
2
, yields an expression for the effective stress,  , (often also called the 

equivalent stress or von Mises stress): 
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ijijSS

2

3
 , (A.2) 

such that yield occurs when 
y  , where y is the tensile yield strength. Equation (A.2) allows 

for calculating the effective stress for multiaxial stress states. For example, in the case of a 

uniaxial test, the only stress component in the stress tensor is 11 , yielding the effective stress, 

11  . 

 For a pure shear condition, such as in a torsion experiment, the effective shear stress for 

flow can be obtained. A schematic illustration of the stress state is given in Fig. A.1. 

 

 

 

Figure A.1 Stress states for the pure shear condition. Tensile and compressive stresses () are 

applied along the x and y axes, respectively. 

  

 When biaxial stress,   2211
, is applied, shown in Fig. A.1, the maximum shear stress 

acting on the plane that is 45
o
 inclined with respect to the principal axes is equal to the principal 

stress,   . Sij for this condition is given by:  
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and therefore, the effective stress in a pure shear state in terms of the shear stress, using Eqn. 

(A.2), is given by: 

   3)2(
2

3 2  . (A.4) 

Since for a uniaxial test 
11  , as discussed above, the von Mises equivalent shear stress,  , 

which is the pure shear stress in Eqn. (A.4) is given by: 

  
3


  . (A.5) 

 The effective strain rate for uniaxial and pure shear condition can also be derived. In order 

to find the relationship between these two states, the power (the rate of work) dissipated during 

flow, dW/dt, is used, assuming that 
1111/  dtdW  for a uniaxial test.

8
 The power is the product 

of the effective stress,  , and the effective strain rate,  . Taking the second invariant form for 

the strain rate: 
ijij    , as shown for   in Eqn. (A.2), the power is given by: 

  
ijijijij SS

dt

dW
  

2

3 , (A.6) 

where ij  is the strain rate tensor and  is a multiplier, to be determined. For a constant volume 

of a material during flow in a uniaxial test, 
ij  in Eqn. (A.6) is given by: 
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ij

, (A.7) 

where 
11  is the uniaxial strain rate. For the uniaxial condition, noting that 

11    from the 

assumption for dW/dt, = 2/3 is obtained using Eqn. (A.6) and (A.7), yielding: 
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ijij  

3

2
 . (A.8) 

 Noting that the only strain components in the strain tensor for pure shear state are 
2112    , 

the effective shear strain rate,   is defined by 2/2112     and is obtained using Eqn. (A.8): 

    3 . (A.9) 

 Combining Eqn. (A.5) and (A.9), noticing that the shear viscosity is the resistance of a fluid 

to flow, 






 , an expression for shear viscosity is obtained in terms of the experimentally 

measurable properties, such as the uniaxial stress, , and strain rate, 
dt

d
  : 

  
dt

d
 3 . (2.2) 

 

A.2 STRAIN ENERGY STORED BY AN ESHELBY INCLUSION
10

 

  

 The Eshelby inclusion theory
10

 expresses a relation between the strain of an inclusion in an 

elastic medium and the resulting total elastic strain energy. This energy is calculated in three 

steps. First, a local inclusion of volume, , is cut from the matrix, which is stress free, and 

undergoes transformation strain. Next, surface traction is applied to restore the strained inclusion 

elastically to its original shape and to embed it back into the hole in the matrix. Up to this step, 

the total strain is zero because the transformation strain is canceled out by the strain reversal due 

to surface traction. Finally, the material is rejoined and is allowed to relax by removing the 

surface traction. Since the inclusion is now constrained by the matrix, the transformation strain is 

reduced, as expressed in terms of a forth order tensor, Aijkl:
10,11 
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   T

klijkl

C

ij A   . (A.10) 

T

kl  is the transformation strain tensor in a stress-free state and C

ij  is the constrained strain tensor. 

 For an ellipsoidal inclusion in a homogenous matrix, since the matrix causes the strain of 

the inclusion to be smaller than the unconstrained transformation strain, the difference between 

those strains, )( T

kl

C

kl   , results in elastic strains, .el

kl ,  and stresses, ij that are uniform inside the 

inclusion.
10

 An expression for the stress tensor is obtained by applying Hooke’s law: 

  )(. T

kl

C

klijkl

el

klijklij CC   , (A.11) 

where Cijkl is the material’s elastic stiffness and T

kl

C

kl

el

kl  . . For an isotropic material, such as 

for metallic glasses, the stress tensor given in Eqn. (A.11) can be rewritten as:
 5,7,10,11

 

  )()(2 T

kk

C

kkij

T

ij

C

ijij   , (A.12) 

where  and  are the Lam   first and second parameters,
5,7,11

 respectively.  

 The net resulting strain energy, W, of a material due to an inclusion that has experienced 

transformation strain is obtained by integrating the elastic strain energy per unit volume over the 

total volume of a material, V:
10,11

 

   
T

ijij

el

ij

V

ij dVW 
2

1

2

1 . . (A.13) 

W is equal to the superposed work done during the three steps discussed above, and it includes 

the energy increase by the elastic strain existing inside and outside the inclusion.  

 For a spherical inclusion, such as for an STZ, an analytical solution to the Eshelby problem 

has been obtained:
10,11
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Therefore, the strain energy due to the shear transformation of the inclusion can be obtained by 

incorporating the transformation strain tensor into Eqn. (A.10) through (A.13). 

 For example, when a spherical inclusion experiences engineering shear strain outside the 

matrix, T

0 , the shear strain components of the transformation strain tensor are 2/02112

TTT   . 

From Eqn. (A.10), the constrained shear strains are obtained: TCC

02112
)1(15

54










 ,

10
 where  is 

Poisson’s ratio. Thus, the engineering constrained shear strain is TC

00
)1(15

)54(2










 , as discussed 

in Section 2.2.1. The strain components are incorporated into Eqn. (A.12) and (A.13) to yield the 

corresponding elastic stress and energy, and the resulting strain energy due to the sheared 

inclusion is 



 2

0 )(
)1(30

57 T

shearW 


 , which is the first term in the activation energy.
1–3

 

 The strain energy resulting from expansion or contraction can also be obtained in a similar 

fashion. When a spherical inclusion undergoes uniform volume change (V), VVT /0   is the 

volumetric strain due to the dilatation or thermal expansion, and the normal strain components in 

the transformation strain tensor is )3/( 0

T

ij

T

ij   . Equation (A.10) and (A.14) yield the constrained 

principal strains,
10

 
3)1(3

1 0
332211

T
CCC 









 , and the resulting strain energy is obtained using 

Eqn. (A.12) and (A.13): 



 2

0 )(
)1(9

)1(2 T

dilatationW 


 . Since it has been experimentally observed in 

bubble rafts that the dilatancy factor, TT

00 /   , is about equal to 1,
1–3

 the expression is 
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rewritten as 



 2

0 )(
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dilatationW 


 , which is the second term in the activation energy, in 

Eqn. (2.21): 
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Appendix B 

 

B CODES FOR DIRECT SPECTRUM ANALYSIS
12

 

B.1 INTRODUCTION 

 In this appendix, computation codes written for direct spectrum analysis (DSA)
12

 to obtain 

relaxation time spectra, from quasi-static, bend-stress relaxation (B.B) and cantilever bending 

(B.C), and from dynamic data (B.D), are detailed. The procedure is the same for the three 

measurement methods except where denoted in bold. DSA employs a least-squares fit of 

anelastic relaxation curves using large numbers (30 – 100) of fitting parameters (See Chapter 3).  

 Comments explain the role of technically important commands, which may need to be 

modified, depending on experimental conditions, e.g., experimental time scale or boundary 

conditions. While the codes are written in ‘Calibri’ font, comments are written in ‘Times New 

Roman’ font in the parentheses between asterisk symbols, i.e., (* and *). Prior to reading this 

appendix, it is recommended that Chapter 3 be read first, since details on DSA, including 

equations employed for the analyses, as well as examples tested with simulated data, are 

described in it.  
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B.2 THE CODES 

 

ClearAll 

Amplnewcurvefit[data_,coeflist_,tau_,tauexp_, initcoef_:{1},weights_:{1}]:= 

 

(*Amplnewcurvefit executes the fit for DSA. In the square bracket, [], sets of variables to be 

included prior to performing DSA are written. The name of each set is followed by underscore, 

e.g., name_. The sets of variables are: 

 

data_ is the experimental (or simulated) data set. It consists of two columns: the time (t) and 

normalized anelastic strain )/)(( 0

elan t  for quasi-static data, and of the angular frequency () and 

loss modulus (E′′()) for dynamic data. The present author used an Excel
©

 workbook (97-2003 

version: ‘Datafile.xls’), in which the first and second columns consist of t (or ) and the 

corresponding )/)(( 0

elan t   (or (E′′())), respectively. This workbook will be imported below. 

When using Mathematica
©

 with this data set instead of an Excel
©

 workbook, the data should be 

given between brackets, e.g., {{t1, )/)(( 0

1 elan t  }, {t2, )/)(( 0

2 elan t  }, …,{tn, )/)(( 0

elnan t  }} for 

quasi-static data, where tj and )/)(( 0

eljan t   are the measurement time and corresponding 

anelastic strain, respectively, measured up to tn. 

 

coeflist_ is the list of fitting parameters that will be determined from DSA. These parameters are 

used to determine the relaxation-time spectrum. Using Mathematica
©

, their list is given in 
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brackets: {a0, a2, …, anmax}, where the ai are the individual fitting parameters, as described on 

page 156. The total number of the parameters on the list is (nmax+1). 

 

tau_ is min and tauexp_ is lnin Eqn. (3.12), which have specific values that will be stated 

below.  

 

initcoef_:{1} is the list of initial guesses for each fitting parameter in coeflist_ above. Therefore, 

the number of initial guesses is the same as that of coeflist_. Using Mathematica
©

, the list of 

these initial guesses is given in brackets, {}, separated by commas, as described on page 157. For 

example, when the number of parameters is 3 and the initial guess for each parameter is 0.01, 

initcoef_:{1} is given by: {0.01, 0.01, 0.01}. The default value of initcoef_:{1} is ‘1’ for each 

fitting parameter, as indicated in :{1} following the underscore: if individual values of the initial 

guesses are not specified when DSA is executed, fitting will be performed automatically with the 

initial guesses of ‘1’ for individual variables in coeflist_. 

 

weights_:{1} is the list of weighting factors that allow for weighting individual data points 

during the fit. Therefore, the number of these factors is the same as that of the points in data_. 

Their numerical values are also given in brackets, {}, separated by commas. The default value of 

weights_:{1} is ‘1’ for each data point, as indicated in :{1} following the underscore: if individual 

values of these weighting factors are not specified when DSA is executed, fitting will be 

performed by equally weighting each data point in data_. The present author did not use specific 

weighting factors for DSA, but the default value, ‘1’. 
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Further details on these variables are explained below.*) 

 

Module [{}, 

s=OpenWrite[]; 

WriteString[s,"param tau;param tauexp;param N;param nvar; 

set I := 0..nvar;set J := 1..N;param t{1..N}; 

param rtot{J};param Weights{J}; 

var a{i in I}; 

var tot{j in J} = sum{i in 0..(nvar-1)} a[i]^2*(exp(-t[j]/(tau*(tauexp)^i))); 

var tot2{j in J} = tot[j] +a[nvar];  

 

(*The first six lines do not have to be modified prior to performing DSA with different data sets. 

In these lines, expressions for the number of fitting parameters, nvar + 1, and the j
th

 time (or 

angular frequency) point, tj (or j), where j is an integer between 1 and N (N = the number of 

data points), are written. These values are automatically set when the fit is executed with the 

fitting parameters and data set in the square bracket following Amplnewcurvefit on page 158. 

The last two lines, however, may need to be modified depending on the data set employed for 

DSA. These two lines contain the fitting equation for the anelastic strain for bend-stress 

relaxation data (B.B). For cantilever and dynamic data, use the expressions below in B.C and 

B.D, respectively:  
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B.B Bend-stress 

relaxation 

var tot{j in J} = sum{i in 0..(nvar-1)} a[i]^2*(exp(-t[j]/(tau*(tauexp)^i))); 

var tot2{j in J} = tot[j] +a[nvar]; 

B.C Cantilever 

bending 

var tot{j in J} = sum{i in 0..(nvar-2)} a[i]^2*(1-exp(-t[j]/(tau*(tauexp)^i))); 

var tot2{j in J} = tot[j] + a[nvar-1]^2*t[j] + a[nvar]; 

B.D Dynamic 

(Loss modulus) 

var tot{j in J} = sum{i in 0..(nvar)} 

a[i]^2*((t[j]*(tau*(tauexp)^i))/(1+(t[j]*(tau*(tauexp)^i))^2)); 

var tot2{j in J} = tot[j]; 

 

The fitting equation for the anelastic strain at tj (or j), j = 1,…,n, where n is the number of data 

points, is given in the expression for tot2{j in J}. tot[j] is equal to: 

B.B: 




1

0

2
]/exp[

N

i

iji ta  ,  

B.C: )]/exp[1(
2

0

2







N

i

iji ta  ,  

B.D: 
 

N

i ij

ij

ia
0

22

2

1 


, 

where (N + 1 = nvar + 1) is the total number of fitting parameters, ai = a[i], i = 0,…,N, are the 

fitting parameters, aN = a[nvar] for B.B and B.C is equal to A in Eqn. (3.11), and a[nvar-1]^2*t[j] 

for B.C is the linear term, B t, in Eqn. (3.11.a). (tot[j] + a[nvar]) for B.B, and (tot[j] + a[nvar-

1]^2*t[j] + a[nvar]) for B.C correspond to Eqn. (3.11.a) and Eqn. (3.11 b), respectively. For B.D, 

tot[j] is equal to Eqn. (3.15.b). Note that while the summation in B.D is up to (N), those in B.B 

and B.C are up to (N-1) and (N-2), respectively: A = a[nvar] for B.B and B.C, and B t = a[nvar-

1]^2*t[j] for B.C are listed separately*) 
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minimize Obj: 

sum{j in J} ((tot2[j]-rtot[j])*Weights[j])^2;\n\n   

 

(*Amplnewcurvefit fits the experimental (or simulated) data by varying the unknown parameters, 

ai, B and A in Eqn. (3.11), through a number of iterations, minimizing sum of the squares of the 

residuals that is given by: 

  



n

j

jj thy
1

2))(( , (B.1) 

where yj is the j
th

 value of the experimental (or simulated) data, j = 1,…,n, and h(tj) is the fit 

value at tj. In the preceding commands, rtot[j] and tot2[j] are equal to yj and h(tj) in Eqn. (B.1), 

respectively. Weights[j] allows for weighting individual data points by multiplying them by the 

residuals, set prior to performing DSA. The sum to be minimized is then: 

  



n

j

jjj wthy
1

2)))((( , (B.2) 

where wj = Weights[j] is the weighting factor for the j
th

 residual. As explained above (See the 

description of “weights_:{1}” above), if weights_:{1} is not set, each weighting factor is ‘1’, and 

therefore, DSA is performed by equally weighting each data point in data_.*) 

 

subject to con1 {i in 0..(nvar-2)}:\n 

1 >= a[i] >= -1;\n 

subject  to con2:\n 

1 >= a[nvar] >= -1;\n 
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subject to con3:\n 

1 >= a[nvar-1] >= -1;\n 

 

B.B Bend-stress relaxation subject to con1 {i in 0..(nvar-2)}:\n 

1 >= a[i] >= -1;\n 

subject  to con2:\n 

1 >= a[nvar] >= -1;\n 

subject to con3:\n 

1 >= a[nvar-1] >= -1;\n 

B.C Cantilever bending subject to con1 {i in 0..(nvar-2)}:\n 

1 >= a[i] >= -1;\n 

subject  to con2:\n 

1 >= a[nvar] >= -1;\n 

subject to con3:\n 

1 >= a[nvar-1] >= -1;\n 

B.D Dynamic (Loss modulus) subject to con1 {i in 0..(nvar-2)}:\n 

0.4 >= a[i] >= -0.4 ;\n 

subject  to con2:\n 

0.4 >= a[nvar] >= -0.4 ;\n 

subject to con3:\n 

0.4 >= a[nvar-1] >=-0.4 ;\n 
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(*The preceding commands allow for constraining individual fitting parameters in coeflist_ by 

imposing upper/lower limits on them. In order for the user to be able to apply the constraints to 

the fitting parameters separately, ai, B and A in Eqn (3.11), when necessary, the constraints for 

the parameters are separately written in con1, con2 and con3, respectively. For example, in the 

case of cantilever bending data (B.C), commands written in con1 indicate that all a[i], which 

correspond to ai in B.C: )]/exp[1(
2

0

2







N

i

ii ta  , are constrained within the limits of ± 1. Likewise, 

a[nvar] and a[nvar-1], which correspond to A and B in Eqn. (3.11.a), respectively, are 

constrained within ±1 as well, as shown in con2 and con3. When calculating the relaxation-time 

spectrum, the 2

ia  are normalized by ln that is equal to )1/(]/ln[ minmax N , as given in Eqn. 

(3.13): The current upper/lower limits on a[i] for quasi-static and dynamic data, ± 1 and ± 0.4, 

corresponds to ~ 3 and ~ 0.8 in the spectrum, respectively, which are not expected to be 

exceeded.*) 

 

data;\n\n"]; 

datalen=Length[data]; 

nmax=Length[coeflist]; 

                                        

If[Length[weights]=== 1 , w2=Table[1,{i,1,datalen}];,w2=weights;]; 

If[Length[initcoef]=== 1 ,icoef=Table[1,{i,1,nmax-2}];,icoef=initcoef;]; 

WriteString[s,"#",Length[initcoef]," ",Length[weights],"\n"]; 

WriteString[s,"var a :=\n"]; 
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For[i=0,i<Length[icoef],i++,   WriteString[s,i," ",icoef[[i+1]],"\n"];] 

WriteString[s," ;\n"]; 

WriteString[s,"param tau:= ",tau," ;\n"]; 

WriteString[s,"param N:= ",datalen," ;\n"]; 

WriteString[s,"param nvar:= ",nmax-1," ;\n"]; 

WriteString[s,"param tauexp:= ",tauexp," ;\n"]; 

 

(*The preceding commands do not have to be modified prior to performing DSA with different 

data sets. These commands create the variables (default weighting factors and initial guesses, 

which are ‘1’ for all the variables unless specified, fitting parameters (ai), min in Eqn. (3.12) and 

the total number of fitting parameters) in the temporary directory. These variables in the 

directory are imported by AMPL to perform the fit.*) 

 

WriteString[s,"option ipopt_options 'tol=1e-001       ';\n"]; 

 

(*The nonlinear solver IPOPT employed in DSA allows for fitting data using options that can be 

adjusted for the algorithm (See http://www.coin-or.org/Ipopt/documentation/). In the current 

study, tolerance = tol may need to be varied for B.D (See Chapter 3), which terminates the fit 

when the convergence condition given in Eqn. (3.19) is satisfied:   

       













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j
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1

2 )))(((1/)))((()))(((  , (3.19) 

http://www.coin-or.org/Ipopt/documentation/
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where yj is the j
th

 value of the experimental (simulated) data, (h(j))k is the fit value at j for k
th

 

iteration, respectively. The tolerance value can be varied from ‘0’ to ‘+inf’, by varying the 

number written above: 1e-001. In our study, DSA is performed with the convergence tolerance 

value of 1e-001 for B.B and B.C, and from 1e-000 to 1e-006 for B.D (See Chapter 3), beyond 

which the results do not vary. For B.B and B.C, the result is insensitive to the tolerance value.*) 

 

s1 = OpenWrite[]; 

inp2=Close[s1];  

s2 = OpenWrite[]; 

out1=Close[s2]; 

outw=Table[Join[data[[i]],{w2[[i]]}],{i,1,datalen}]; 

Export[inp2,outw,"Table"]; 

WriteString[s, "read {i in 1..N}(t[i],rtot[i],Weights[i])"," < ",inp2,";\n"]; 

WriteString[s,"option solver ipopt;\n"]; 

WriteString[s,"printf \"AMPL/Minos is solving for %d parameters\",nvar;\nsolve;\n"]; 

WriteString[s,"print {i in 0..nvar}:a[i]  >",out1,";\nquit;\n"]; 

inp1=Close[s]; 

Run["ampl","<",inp1]; 

tempa=Import[out1,"Table"];                     

tr1=Table[coeflist[[i]] ->tempa[[i,1]],{i,1,nmax}]                                          

]; 

 



156 

 

(*The preceding commands do not have to be modified. These are written for AMPL to convert 

the variables set on page 158 in the square bracket following “Amplnewcurvefit” into the AMPL 

format, and to export the fit results into the temporary directory. These fit results are imported on 

page 159.*)  

 

data=Import["Datafile.xls"]; 

 

(*Import the experimental/simulated data set for data summarized in an Excel
©

 workbook.*)   

 

coeflist[nmax_]:=Table[Subscript[a,n],{n,0,nmax}]; 

 

(*A list of fitting parameters for coeflist_ is set as an, n = 0,…,nmax, where (nmax+1) is the total 

number of parameters: For bend-stress relaxation data (B.B), a0 to a(nmax-1) are the i and anmax is 

A in Eqn. (3.11.b). In the case of cantilever bending data (B.C), a0 to a(nmax-2) are the i, a(nmax-1) is 

B and anmax is A in Eqn. (3.11.a). For loss modulus data (B.D), a0 to anmax are the Ei in Eqn. 

(3.15.b).*) 

 

taumin=0.1; 

taumax=4*10^4; 
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(*The minimum and maximum time constants, i.e., min and max in Eqn. (3.12), are set as 0.1 and 

4 × 10
4
 sec., respectively. These values can be varied depending on the experimental time scale 

(See Chapter 3).*) 

 

nvar=30; 

 

(*The number of exponents in the summation in Eqn. (3.11) (or that of Debye peaks in Eqn. 

(3.15.b) for B.D) is set as 30. Note that, for example, when ‘nvar’ is set as 30, (N-1) for B.B, (N-

2) for B.C and (N) for B.D in the summation are equal to 30, 29 and 31, respectively.*) 

 

i01 =Table[N[0.01],{i,1,(nvar+1)}]; 

 

(*The initial guesses of the fitting parameters are set as 0.01 and these numerical values are 

listed in the table, labeled as ‘i01’. These values can be varied by creating the table with a 

different initial guess for each parameter. Since the number of exponents is labeled as ‘nvar’, and 

‘coeflist[nmax_]’ includes the constant, A, in Eqn. (3.11), the total number of initial guesses is 

equal to (nvar+1) for B.B, as indicated above. When performing DSA with cantilever bending 

(B.C) and loss modulus data (B.D), (nvar+1) needs to be replaced by (nvar+2) and (nvar), 

respectively, since there is an extra linear term, B t, in Eqn. (3.11.a), and there is no A term in 

Eqn. (3.15.b).*) 

 

tautable=Table[taumin*E^((n (Log[taumax]-Log[taumin]))/(nvar-1)),{n,0,(nvar-1)}]; 
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(*A table of relaxation time constants, i, is set such that the i are logarithmically spaced from 

min. to max., as given in Eqn. (3.12), depending on the experimental time scale (See Chapter 3).*) 

 

myamplfit=Amplnewcurvefit[data[[1]],coeflist[nvar],taumin,E^((Log[taumax]-

Log[taumin])/(nvar -1)),i01]; 

 

B.B Bend-stress 

relaxation 

coeflistnorm=(coeflist[nvar -1]/.myamplfit)^2/(Log[taumax]-Log[taumin])/(nvar -1); 

coefA=(coeflist[nvar]/.myamplfit)[[Length[coeflist[nvar]]]]; 

coeflistnormFinal=Table[coeflistnorm[[i]],{i,1,Length[coeflistnorm]+1}]/.x_/;x==coefli

stnorm[[Length[coeflistnorm]+1]]->coefA; 

B.C Cantilever 

bending 

coeflistnorm=(coeflist[nvar -2]/.myamplfit)^2/(Log[taumax]-Log[taumin])/( nvar -1); 

coefsqrtB=(coeflist[nvar -1]/.myamplfit)[[Length[coeflist[nvar -1]]]]; 

coefA=(coeflist[nvar]/.myamplfit)[[Length[coeflist[nvar]]]]; 

coeflistnormFinal1=Table[coeflistnorm[[i]],{i,1,Length[coeflistnorm]+1}]/.x_/;x==coef

listnorm[[Length[coeflistnorm]+1]]->(coefsqrtB)^2; 

coeflistnormFinal=Table[coeflistnormFinal1[[i]],{i,1,Length[coeflistnormFinal1]+1}]/.x

_/;x== coeflistnormFinal1[[Length[coeflistnormFinal1]+1]]->coefA; 

B.D Dynamic  

(Loss modulus) 

coeflistnormFinal=(coeflist[nvar -1]/.myamplfit)^2/(Log[taumax]-Log[taumin])/( nvar 

-1); 

 

(*DSA is executed by Amplnewcurvefit[], where the square brackets contains 

experimental/simulated data (data[[1]]), fitting parameters (coeflist[nvar]),  min (taumin), ln, 
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calculated as (E^((Log[taumax]-Log[taumin])/(nvar-1))), and a list of initial guesses for the 

fitting parameters (i01). The results of the current fit are labeled as “myamplfit”.*) 

 

coeflistnorm=(coeflist[nvar -1]/.myamplfit)^2/(Log[taumax]-Log[taumin])/( nvar -1); 

coefA=(coeflist[nvar]/.myamplfit)[[Length[coeflist[nvar]]]]; 

coeflistnormFinal=Table[coeflistnorm[[i]],{i,1,Length[coeflistnorm]+1}]/.x_/;x==coeflistnorm[[Le

ngth[coeflistnorm]+1]]->coefA; 

 

(*Fitting parameters obtained from DSA are listed in ‘coeflistnormFinal’. These values are used 

to calculate the fit and R
2
 below. The lists of values in ‘coeflistnorm’ for B.B and B.C, and that 

in ‘coeflistnormFinal’ for B.D, correspond to the relaxation time spectrum, and are calculated as 

( ln/
2
ia ), as given in Eqn. (3.13), where ai are the parameters obtained from DSA and 

)1/(]/ln[ln minmax  N  given in Eqn. (3.12).*) 

  

displacement=Table[data[[1]][[i,2]],{i,1,Length[data[[1]]]}]; 

meandisplacement=Mean[displacement]; 

difference1=displacement-meandisplacement; 

sumsquare=Sum[difference1[[i]]^2,{i,1,Length[difference1]}]; 

time=Table[data[[1]][[i,1]],{i,1,Length[data[[1]]]}]; 

NIcurve[t_,nmax_]:=Sum[(Subscript[a,n])^2(Exp[-t/(taumin*(E^((Log[taumax]-

Log[taumin])/(nvar -1)))^n)]),{n,0,nmax-1}]+Subscript[a,nmax]; 

NIcurvetable=Table[NIcurve[time[[i]],nvar]/.myamplfit,{i,1,Length[time]}]; 
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difference2=NIcurvetable-displacement; 

residualsumsquare=Sum[difference2[[i]]^2,{i,1,Length[difference2]}]; 

rsquared=1-(residualsumsquare/sumsquare); 

 

B.B Bend-stress 

relaxation 

NIcurve[t_,nmax_]:=Sum[(Subscript[a,n])^2(Exp[-t/(taumin*(E^((Log[taumax]-

Log[taumin])/( nvar -1)))^n)]),{n,0,nmax-1}]+Subscript[a,nmax]; 

B.C Cantilever 

bending 

NIcurve[t_,nmax_]:=Sum[(Subscript[a,n])^2(Exp[-t/(taumin*(E^((Log[taumax]-

Log[taumin])/( nvar -1)))^n)]),{n,0,nmax-2}]+ Subscript[a,nmax-1] 

t+Subscript[a,nmax]; 

B.D Dynamic  

(Loss modulus) 

NIcurve[t_,nmax_] :=Sum[(Subscript[a,n])^2 ((t taumin E^((n*(Log[taumax]-

Log[taumin]))/( nvar -1)))/(1+(t taumin E^((n*(Log[taumax]-

Log[taumin]))/( nvar -1)))^2)),{n,0,nmax}]; 

 

(*R
2
 = rsquared ≡ 1 - (sum of the squares of the residuals/the total sum of squares) is calculated 

using Eqn. (3.15): 

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22 )(/))((1 , where yj is the j
th

 value of the 

experimental (or simulated) data, which comprise n data points, h(tj) is the fit value at tj, and y  is 

the mean of the data. NIcurve[t_,nmax_] written in the preceding expression is for B.B. Replace 

the expression with those for B.C and B.D given above:*) 

 

FitparameterFinal=Table[{tautable[[x]],coeflistnormFinal[[x]],rsquared},{x,1,(nvar +1)}]; 

Export["Outputfile1.xls ",FitparameterFinal] 
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maxpower=7; 

minpower=-2; 

time2=Table[10^i,{i,minpower, maxpower,0.005}]; 

NIcurvetable2=Table[{time2[[i]],NIcurve[time2[[i]],(nvar)]/.myamplfit},{i,1,Length[time2]}]; 

Export["Outputfile2.xls ",NIcurvetable2] 

 

(*Two Excel
©

 workbooks that include the results are generated. The file, ‘Outputfile1.xls’, 

consists of the relaxation time spectrum,  and corresponding amplitude, in the first two columns, 

and R
2
 in the third column. The fit to the data, calculated using the relaxation time spectrum, is 

given in ‘Outputfile2.xls’. The range of the fit can be changed, depending on the experimental 

time scale, by setting different values for “minpower” and “maxpower” in the preceding 

expression.*) 
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