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CHAPTER 1

Introduction

Since the last half of the twentieth century, following Otto Hahn’s discovery of fission

in 1939 and the first experimental reactor built in 1942, nuclear science has grown

to include various applications including agriculture, medicine, and engineering, pro-

ducing ground-breaking technologies that greatly enhance quality of life [1]. Nuclear

technologies, however, are subject to controversy and criticism ranging from irrational

fears of radioactivity and cancer rates to legitimate concerns about the safety of nu-

clear systems and reactors, proliferation of nuclear weapons materials and methods,

and handling nuclear reactor waste. The health of the industry relies on efforts to

create safe practices and forward-thinking measures that benefit future generations

for which these issues only become more important.

Fortunately, advancements in nuclear technology over the past fifty years pro-

vide engineers tools to eliminate or address many of these problems. Approximations

found in the earliest analysis tools for nuclear systems were a necessity because of

the limited computational power in the mid-twentieth century. Increasingly sophisti-

cated numerical methods developed over the years take advantage of improvements

in nuclear and material data, computing power and memory, and the understanding

of neutron behavior, producing general-purpose computer codes that are reliable and

accurate [2].

This thesis describes a new numerical method in the field of neutron transport

called the Transition Rate Matrix Method (TRMM). It uses solutions of the α- or

time-eigenvalue problem obtained via a Monte Carlo matrix method for solving time-

dependent neutron transport problems. This introductory chapter discusses the gen-

eral concepts of neutron transport, Monte Carlo methods, and describes engineering

problems for which the TRMM is useful.
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1.1 Neutron Transport

Neutron transport is the motion of neutrons as they stream through material, fre-

quently interacting with nuclei and eventually being absorbed or leaking out through

a boundary. The fundamental equation describing this physical process is the linear

Boltzmann transport equation, used in solving many nuclear engineering problems [3].

Assumptions made during its derivation are true for most applications and are omit-

ted from this discussion. Many nuclear engineering problems fall into one of three

categories: (i) deep penetration problems for designing shielding from a radioactive

source; (ii) source-detector problems for designing devices to detect or measure output

from a radioactive source; and (iii) criticality problems for nuclear reactor design.

In a transport problem, neutrons are born from sources and travel stochastically

through the defined geometry. The life of a neutron consists of several events: (i)

birth from a source or fission; (ii) collision events, in which the neutron interacts

with a nucleus and either scatters to another direction and energy or is absorbed;

(iii) leakage out of the material; and (iv) streaming between collisions. The transport

equation has terms describing all of these physical phenomena. Numerically solving

the transport equation with an appropriate initial condition and boundary conditions

yields expected particle distributions within the geometry.

There are two classes of computational methods for solving the transport equation:

deterministic and Monte Carlo. Deterministic methods discretize the position-energy-

direction-time phase space, building a system of equations that is solved iteratively.

This discretization introduces truncation errors and is unable to treat irregular geome-

tries or model small geometric details within a problem. Memory and time limitations

sometimes require the representation of three-dimensional configurations as simpli-

fied two-dimensional models, introducing more sources of error. The generation of

multigroup cross sections and appropriate homogenized cross sections complicates the

process, and results in additional approximations. Monte Carlo methods treat the

position-energy-direction-time phase space as continuous, providing for the treatment

of complex, three-dimensional geometries and the elimination of truncation errors and

multigroup approximations. Instead of attempting to solve the transport equation,

Monte Carlo simulates the particle transport of a finite number of neutrons moving

about the problem geometry. After generating enough stochastic particle trajectories,

it extracts statistically significant quantities correct only within some uncertainty.

Thus, Monte Carlo stochastic uncertainties replace the deterministic truncation er-

rors [2]. Hybrid methods combine the best of both deterministic and Monte Carlo
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methods to improve performance and accuracy, and decrease calculation times.

For either class of method, solving the transport equation is computationally

costly. A common simplification that reduces this cost is the steady-state assump-

tion. It eliminates the temporal phase space, negating the time-dependent term and

the time dependence of the neutron flux [3]. This assumption is valid for many

problems already introduced: deep penetration problems, criticality calculations, and

many source-detector problems. For some fixed-source problems, the desired solutions

are essentially probabilities independent of time. In reactor design, the steady-state

assumption is only natural: nuclear power reactors operate at steady-state, with a sus-

tained nuclear chain reaction. Under normal operating conditions, changes in reactors

occur over weeks and months, timescales for which solutions to the time-dependent

transport equation are unnecessary.

But, there are many nuclear applications where relatively short time-dependent

phenomena are of particular interest. For these problems, the steady-state assumption

is invalid and the time-dependent form of the transport equation yields the appro-

priate solution. This time-dependent behavior is important for analysis of pulsed-

neutron experiments and nuclear reactor kinetics. Kinetics is the study of nuclear

reactor transients, and is important for analysis of accident scenarios. Obtaining

solutions of the time-dependent transport equation are even more computationally

demanding. The characteristic times at which nuclear systems evolve are on the or-

der of a mean neutron life time, 10−8 to 10−4 seconds depending on the problem

materials. With time steps relative to this scale, even lengthy computations only

calculate a solution representing a fraction of a second. Thus, approximations are

necessary to asses many of these problems [2]. The next chapter discusses some of

these approximate methods in depth. For now, it is worth introducing the Monte

Carlo method.

1.2 The Monte Carlo Method

Modern applications of the Monte Carlo method for particle transport began in the

1940’s, facilitated by the development of the first digital computers [4]. The method

applies to both photons and neutrons, but here the discussion focuses on neutron

transport. It is unique for the use of random sampling to construct the solution to

the transport equation, as opposed to discretizing it to approximate a numerical so-

lution. Though computationally intensive, with ongoing advancements in processors,

memory, and parallel architecture, the Monte Carlo method is one of the more ac-
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curate tools in reactor physics; often Monte Carlo solutions serve as a reference for

validation of new deterministic tools.

The Monte Carlo method uses computer algorithms that generate a sequence

of pseudo-random numbers. These pseudo-random number generators compute a

unique sequence for a given random number seed: to repeat a sequence, the algorithm

uses the same seed. Pseudo-random numbers are sampled uniformly ∈ (0, 1) and

are denoted mathematically as ξ. Though these numbers are only pseudo-random,

algorithms available today generate a sequence that is sufficiently random for most

applications [5]. The Monte Carlo method uses these random numbers in simulating

the sequence of events in the life of a neutron.

Neutron transport is a stochastic process in which a neutron undergoes a series

of random events from birth to destruction or leakage from a problem. Probabil-

ities determine this sequence of events, known as the neutron history. During the

simulation of neutron histories, Monte Carlo tallies extract information, generating

averaged results close to true solutions within some statistical uncertainty.

To implement the TRMM, this thesis uses the Monte Carlo method because of its

ability to describe the behavior of neutrons moving through any problem. Though the

TRMM discretizes the phase space when performing matrix calculations, it otherwise

maintains a continuous space and stochastic approach that is characteristic of a Monte

Carlo random walk. The discretization applies only to tallies. This treatment allows

the TRMM to change the discretization of the phase space to fit the intended purpose.

For the first two parts of the thesis, a simplified, research Monte Carlo code

implements the TRMM for infinite and one-dimensional media for observing trends,

convergence behavior, and accuracy. The final part of this thesis incorporates the

TRMM into a documented Monte Carlo code to study the applicability, viability,

and accuracy of the method using full three-dimensional models and measured data.

1.3 Applications for the Transition Rate Matrix Method

The TRMM applies to problems where the time-dependence of the neutron flux is

of interest. Many of these are source-detector problems, where the desired solution

is the time-dependent detector or flux response to some arbitrary source in the sys-

tem. These source-detector problems are subcritical, meaning that the neutron flux

decreases with passing time. Conversely, the neutron flux increases with time in super-

critical problems. The TRMM also applies to these problems because it calculates α

eigenvalues [6], but this thesis is limited to subcritical and near-critical systems where
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data and benchmark calculations are available. This section focuses on a few of the

potential applications of this research: active nondestructive assay, pulsed-neutron

experiments, accelerator-driven subcritical systems, and fast-burst reactors.

1.3.1 Active Nondestructive Assay

Nuclear materials emit characteristic radiation both spontaneously and when irradi-

ated by neutrons or γ-rays. Passive or active nondestructive assay is the measurement

of this spontaneous or induced radiation to determine the amount or type of material

in a sample without affecting its physical form [7]. Recent research on active nonde-

structive assay (ANDA) focuses on its applicability to nuclear material accounting,

that is, safeguards against the diversion of special nuclear material (SNM), like high

enriched 235U and 233U, and plutonium. In such security applications, a conservative

scenario assumes that SNM is sufficiently shielded to prevent passive detection [8].

In a safeguards application, a source with a selected strength and energy irradiates

an unknown material and configuration. Detectors placed about the configuration

record the response to the source: the analysis of this response reveals the presence

or absence of SNM by detecting induced fissions. Analysis techniques fall into two

categories: detection of delayed or prompt radiation [7]. Induced fissions in SNM

emit prompt neutrons and γ-rays immediately after irradiation. It is important to

differentiate this prompt radiation from the initial source. Delayed neutrons and γ-

rays come from short-lived fission products: these nuclei decay at a much later time

than prompt radiation emission, but are produced in much smaller quantities.

For either technique, ANDA is a time-dependent source-detector problem to which

the TRMM is applicable. The TRMM accounts for delayed fission and distinguishes

between delayed neutron release and prompt neutron effects. It is also able to capture

very short-time phenomena useful in differentiating between prompt radiation from

fission and radiation from the initial source.

1.3.2 Pulsed-Neutron Experiments

Pulsed-neutron [9] and Rossi-α [10] experiments are similar problems that measure

the decay time of neutrons within a system. These experiments provide a way of

measuring the reactivity of subcritical systems, studying the time-dependent behav-

ior of the flux, verifying calculated physics behavior in commercial reactors [11], and

measuring certain kinetics parameters [12]. Pulsed-source experiments have many

other applications: evaluating cross sections [13, 14], studying neutron slowing down
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in moderators [15, 16], measuring control rod worth [17], measuring diffusion pa-

rameters [18, 19], and obtaining the prompt decay mode of reactors or other assem-

blies [20]. Even ANDA problems are pulsed-source systems. This section focuses on

pulsed-source experiments on reactor configurations.

During or after the initial fuel loading of a reactor, pulsed-neutron experiments

(PNE) measure the subcriticality of a partially- or fully-loaded core with a given

control rod configuration. The configurations chosen reflect possible scenarios during

normal operation or those with safety implications [21]. These measurements assess

that the fuel is properly loaded and that computer models have accurately predicted,

among many things, the core reactivity, control rod worths, and shutdown margins.

This allows for proper adjustments to the nuclear design or operational procedures

in case of a severely inaccurate model.

Several power reactors used PNE for these purposes [22, 23]. General Atomics

performed PNE on the Peach Bottom Modular Reactor (PBMR) [24] and the Fort

St. Vrain (FSV) [25] reactor after the initial fuel was loaded into the core. These

are both graphite-moderated, gas-cooled reactor designs: the PBMR was a proof-of-

concept for the larger FSV reactor, which had a mixed operational history after first

delivering commercial power in Colorado in the late 1970’s [26].

In a PNE, a source instantaneously inserts a large number of neutrons into the

reactor and detectors placed in different regions measure the flux time response (Fig-

ure 1.1). Analysis of the detector response curve reveals the level of criticality of the

core [11]. Depending on the size of the reactor, the spatial dependence of the flux

may vary greatly, even though it is reacting to the same pulsed source. For example,

detectors in different regions of FSV experience greatly different responses (Figure

1.1) due to a pulsed source. Both the sheer size of FSV as well as the heterogeneity

of the core contribute to these differences. In smaller systems, such as the PBMR,

the flux varies less spatially [27]. Note also that the responses of each of the detectors

exhibit a similar, exponential time-dependent trend.

Regardless of the application, pulsed-source experiments are time-dependent

source-detector problems to which the TRMM is applicable. For PNE, the TRMM

calculates the space-time dependence of the neutron flux. Several methods that cal-

culate the reactivity from the detector response attempt to account for these spatial

differences [28]. The TRMM calculates the spatial information necessary to predict

these differences. The next chapter has an in-depth discussion on the technical aspects

of PNE.
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Figure 1.1: Measured time-dependent responses of three different detectors for a subcritical
control rod configuration of Fort St. Vrain demonstrate the strong spatial dependence of
the neutron flux for large systems.

1.3.3 Accelerator-Driven Subcritical Systems

Accelerator-driven systems (ADS) are subcritical configurations of multiplying ma-

terial pulsed with large numbers of neutrons generated by an accelerator imparting

protons or ions onto a spallation target. There is renewed interest in ADS due to

nuclear reactor waste disposal concerns: these systems transmute radioactive nuclei

to other isotopes that are stable or have shorter half lives, providing an alternative

to geologic, ice sheet, or outer space disposal. An ADS generates enough high-energy

neutrons for the transmutation of most long-lived actinides and fission products, as

well as enough power to supply the accelerator [29]. Also, supercritical excursions,

like that at the Chernobyl reactor, are impossible in ADS.

The ADS fits into a more complete approach to the treatment of nuclear waste.

Currently, the direct core-to-storage fuel cycle has commercial light water reactors

(LWR) producing waste requiring storage for at least several hundred years. A more

complete fuel cycle reduces this storage time by transmuting actinides in spent fuel

with fast reactors or ADS, with the latter having some neutronic advantages [30].

Current LWR and most other power reactors operate at a critical condition; many

reactor physics tools serve the purpose of analyzing these steady-state systems. These

tools are insufficient for treating ADS: in subcritical configurations, the neutron flux
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will always vary with time except in the presence of a constant external source. Char-

acterizing this space-time dependence of the flux is important to design calculations

and requires solutions to the time-dependent transport equation. Recent ADS exper-

imental programs in Europe demonstrate the interest in ADS and their potential for

use in future nuclear waste cycles: the MUltiplication avec Source Externe (MUSE)

experimental program in France [31] and the YALINA experimental program in the

former Soviet Union [32].

The ADS is a source-driven problem similar to the PNE described in the previous

section to which the TRMM is well-suited. The difference is that the overall spatial

flux response in an ADS is of interest. Still, detector responses from a pulse on an

ADS reveals spatial dependences and are important for monitoring the reactivity of

the configuration [33]. The TRMM obtains these spatial dependences and calculates

the overall space-time response of the neutron flux for an ADS with the appropriate

source. Also, analysis of transients in an ADS is important in assessing reactor

safety: the TRMM provides information desirable in quantifying rapid changes in the

system [34].

1.3.4 Fast-Burst Reactors

Fast-burst reactors generate short bursts of radiation used for testing and experi-

mentation. Many of these systems are made up of several pieces of HEU alloy that

are placed together to cause a rapid increase in the neutron flux, generating very

high-flux neutron pulses. The system returns to a subcritical state due to thermal

and geometric feedback. For specific experiments, some fast-burst reactors are able

to operate in continuous mode: at subcritical steady-state or at delayed critical [35].

Some reactors have holes for sample irradiation. Examples of these assemblies include

CALIBAN [36], Molly-G, SFR-I and SFR-II.

Worldwide, an estimated 61 tons of HEU is under civilian use, most in reactor

applications. This presents a safeguards concern: much of the HEU is in facilities with

inadequate security and only 25 kg of 235U is necessary to produce a nuclear weapon.

For these reasons, national agencies encourage the conversion of HEU reactors to low-

enriched uranium (LEU) [37]. In the United States, regulation of HEU is stringent:

armed personnel are present during experiments and carefully monitor the storage and

handling of the material. Thus, in the US, this conversion has an additional cost-

reduction benefit and is less cumbersome to researchers working with the material,

assuming that LEU is a sufficient substitute for the particular application.

For any system, a HEU-LEU conversion requires many design changes to accom-
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modate the lower enrichment. The immediate effect for fast-burst reactors is an

increase in the size of the system. The amount of fissile 235U must be preserved, so

more LEU is necessary to obtain criticality. In these bare systems, the uranium is al-

ready in a dense metallic form, so one of the few design changes possible is to make the

LEU assembly physically larger. For the larger system, the spatial time-dependence

of the neutron flux within the reactor becomes more important, much like in the

PBMR-FSV comparison. The TRMM calculates this time dependence and the time

it takes for the neutron flux within the reactor to achieve its asymptotic behavior.

Also, fast burst reactors are geometrically simple problems: analytical back-of-the-

envelope calculations provide some solutions to give validity to the TRMM.

1.4 Thesis Objective and Outline

The objective of this thesis is to demonstrate the Transition Rate Matrix Method for

calculating α eigenvalues and eigenfunctions of a nuclear system using Monte Carlo,

while identifying its strengths and weaknesses. Preceding material in this introduction

provides discussions on neutron transport, the Monte Carlo method, and potential

applications for this thesis work. The remainder of the thesis proceeds as follows:

� Chapter 2 discusses topics important to time-dependent neutron transport the-

ory: current methods for time-dependent reactor analysis, such as point kinetics,

quasi-static treatments, modal expansion, and time-dependent Monte Carlo; the

k-, c-, and α-eigenvalue problems, with derivations and discussions of charac-

teristics of the α-eigenvalue spectrum and eigenfunction expansion; and known

methods for measuring and calculating α eigenvalues and eigenfunctions.

� Chapter 3 explains the new transition rate matrix tally approach developed to

calculate α eigenvalues and eigenfunctions with Monte Carlo, starting from the-

ory: introduction to Markov processes; the time-dependent neutron importance

equation; the theoretical basis of the transition rate matrix; similarities to the

fission matrix method; derivations of the transition rate matrix for infinite and

one-dimensional media; estimation of the matrix elements with Monte Carlo

tallies; and a brief discussion on eigenvalue solvers.

� Chapter 4 presents TRMM results from calculating the α-eigenvalue spectrum

for infinite, i.e., 0-D, media with a simplified research Monte Carlo transport

code, covering several topics: details of the Monte Carlo code physics; verifica-

tions for multigroup problems; continuous-energy problems of hydrogenous and

graphite multiplying media with comparisons to time-dependent Monte Carlo
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solutions; discussion on the effect of discretization of the phase space; and con-

vergence observations of the α-eigenvalue spectrum.

� Chapter 5 shows the implementation of the TRMM for one-dimensional media,

including several topics: details of the Monte Carlo code physics; verifications

to the Green’s Function Method of calculating α eigenvalues and eigenfunc-

tions; comparisons to time-dependent Monte Carlo solutions; comments on the

behavior of the α-eigenvalue spectrum; discussions on choice of discretization

of the phase space; and convergence observations.

� Chapter 6 demonstrates the application of the TRMM to a physical problem,

with additional discussions: the implementation of the TRMM into OpenMC;

comparisons to α eigenvalues and eigenfunctions obtained with diffusion the-

ory; verifications to measured data for pulsed reactor systems and fast-burst

reactors; and discussions on runtime and convergence of the α eigenvalues and

eigenfunctions.

� Chapter 7 summarizes the important contributions achieved in this thesis, and

makes closing comments on performance, usability, and future directions for

this method.

References

[1] J. K. Shultis and R. E. Faw, Fundamentals of Nuclear Science and Engineering.
New York: Marcel Dekker, 2002.

[2] E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport.
New York: John Wiley & Sons, 1984.

[3] J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis. New York: John
Wiley & Sons, 1976.

[4] N. Metropolis, “The Beginning of the Monte Carlo Method,” Los Alamos Sci-
ence, vol. Special Issue, pp. 125–130, 1987.

[5] Y. Nagaya and F. B. Brown, “Testing MCNP Random Number Generators,”
Tech. Rep. LA-UR-11-04858, Los Alamos National Laboratory, 2011.

[6] D. Brockway, P. Soran, and P. Whalen, “Monte-Carlo Eigenvalue Calculation.”
Los Alamos National Laboratory, 1985.

[7] T. Gozani, Active Nondestructive Assay of Nuclear Materials. Washington, D.
C.: U. S. Nuclear Regulatory Commission, 1981.

[8] H. Yang, Active Interrogation Methods for Detection of Special Nuclear Material.
PhD thesis, University of Michigan, 2009.
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CHAPTER 2

Time-Dependent Neutron Transport

Methods for solving the steady-state transport equation predict critical configura-

tions, spatial flux distributions, and reaction rates for time-independent problems [1].

The steady-state treatment serves well for these problems, however, this assumption

is invalid for non-critical systems where the neutron production and losses are un-

balanced. For example, in a nuclear reactor where the combined neutron absorption

and leakage rate is greater than the fission source rate, the neutron population de-

creases with passing time. These unbalanced states occur during normal operations:

startup, shutdown, fuel loading, and changing power levels. They also occur during

unexpected transients: rod ejections and coolant pump failures [2]. In general, the

study of these time-dependent problems is known as kinetics. Reactor dynamics is

distinguishable from kinetics because it includes feedback mechanisms omitted from

this discussion.

Because direct solutions to the time-dependent transport equation are pro-

hibitively costly, many kinetics methods factorize the flux solution into a time-

dependent amplitude function and a position-energy-direction-time-dependent shape

function. The amplitude function describes the majority of the time variation of the

flux, while the shape function describes the spatial, energy, and angular dependences

and varies very little in time. Using this separation simplifies computation because

the amplitude function is much easier to obtain than the shape function. With addi-

tional approximations, these methods are applicable for describing a range of reactor

kinetics problems, particularly those where the flux variation in time consists primar-

ily of flux amplitude changes [3]. For some applications, these methods are unable

to appropriately describe the space-time evolution of the flux. In contrast to these

methods is time-dependent Monte Carlo, which is incredibly costly computationally,

but is able to accurately describe the flux-time behavior with a sufficient number of

neutron histories.

13



The α, or time, eigenvalue is an important parameter for describing time-

dependent neutron transport. Knowledge of the entire α-eigenvalue spectrum, that

is, all the α’s that balance the transport equation, provides the time-dependent flux

response to any arbitrary source via eigenfunction expansion [4]. Higher α eigenfunc-

tions describe the spatial differences in the flux response for a configuration subject

to an external source.

The TRMM uses the concepts introduced above to solve time-dependent neutron

transport problems. It calculates α eigenvalues and eigenfunctions using Monte Carlo,

and uses eigenfunction expansion to solve for the time-dependent flux in kinetics

problems. Therefore, it is useful to discuss some of these concepts in depth: the time-

dependent transport equation, current methods for solving kinetics problems, the α-

eigenvalue problem, and current methods for calculating and measuring α eigenvalues.

2.1 Time-Dependent Equations

The time-dependent neutron transport and precursor equations [1] are

1

v

∂ψ

∂t
+ Ω̂ · ∇ψ + Σψ(r, E, Ω̂, t)

=

∫∫
Σs(E

′, Ω̂′ → E, Ω̂)ψ′dE ′dΩ′

+

∫∫
χp
4π

(1− β)ν̄Σfψ
′dE ′dΩ′ +

J∑
j

χj
4π
λjCj +

S

4π
, (2.1)

∂Cj
∂t

+ λjCj(r, t) =

∫∫
βj ν̄Σfψ

′dE ′dΩ′, for j = 1, . . . , J, (2.2)

where ψ is the angular flux, Cj is the precursor concentration, j denotes the precursor

group, and r, E, Ω̂, t describes the position-energy-direction-time phase space. The

v is the neutron speed, Σ is the total macroscopic cross section, Σs is the scattering

cross section from E ′, Ω̂′ to E, Ω̂, χp is the prompt fission emission spectrum, β is

the total delayed neutron fraction, ν̄ is the average neutrons released per fission, Σf

is the fission cross section, χj is the delayed neutron emission spectrum, λj is the

delayed precursor decay constant, S is the isotropic external source, and βj is the

group delayed neutron fraction.

The first term of Eq. (2.1) is the time-dependent variation of the flux, normally

omitted in the steady-state formulation. The next six terms describe neutron inter-

actions with material: leakage from the phase space, collisions, in-scatter, prompt

fission, delayed fission, and external source. For simplicity, this formulation uses
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precursor density equations to describe delayed neutron emission. Accounting for de-

layed neutron emission within Eq. (2.1) requires delta functions and an integral over

all past times, making it less convenient. For each group j, Eq. (2.2) describes the

time-dependent variation of the precursor density with two terms: precursor loss due

to decay, and precursor source from fission.

Delayed neutron emission occurs as a result of typically less than 1% of fissions.

When a heavy nucleus fissions, it splits into two or more fission products (FP) and

neutrons. A small percentage of these fissions release a FP known as a delayed

neutron precursor. Delayed neutron precursors are radioactive, and upon decaying

release a neutron known as a delayed neutron. The release time of a delayed neutron

depends on the half-life of the delayed neutron precursor. The energy of a delayed

neutron is often much less than a prompt fission neutron and depends on the excited

state of the delayed neutron precursor [3]. For 235U, nuclear data sheets categorize

the approximately 40 delayed neutron precursors into J = 6 groups according to

their half-lives [5]. Each group has its own characteristic energy distribution, decay

constant, and emission probability (Table 2.1). Most formulations in this thesis use

the unnormalized βj.

Delayed neutron emission strongly influences the time-dependence of the flux even

though they only account for a small percentage of neutrons born from fission. This

is because their emission time, ranging from a few seconds to several minutes after

the initial fission, is much longer than the prompt neutron lifetime of 10−8 to 10−4

seconds [6]. This wide disparity in characteristic times complicates computation, but

is very important for reactor control. With only prompt neutrons, a slight change in

the problem has a nearly immediate effect on the flux. Delayed neutrons provide a

time bottleneck, causing a lagged response in the flux on the order of a few seconds,

enough time to incorporate desired control mechanisms [7]. For example, the prompt

neutron chain reaction ceases after reactor shutdown, but, there is a time-dependent

neutron source that remains in the reactor: the decay of the neutron precursors

Table 2.1: Six group delayed neutron data for 235U.

j λj [s−1] βj [normalized]

1 0.0125 0.0320
2 0.0318 0.1664
3 0.109 0.1613
4 0.317 0.4596
5 1.35 0.1335
6 8.64 0.0472
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accumulated during reactor operation. Therefore, a reactor shuts down only as fast

as the decay of the longest-lived precursors.

2.2 Solutions to the Neutron Balance Equation

To simplify the notation in Eqs. (2.1) and (2.2), introduce the operator notations

Lψ(r, E, Ω̂, t) = Ω̂ · ∇ψ, (2.3)

Rψ = Σ(r, E)ψ, (2.4)

Sψ =

∫∫
Σs(r;E ′, Ω̂′ → E, Ω̂)ψ(r, E ′, Ω̂′, t)dE ′dΩ′, (2.5)

Mψ = Lψ + Rψ − Sψ, (2.6)

Fpψ =

∫∫
χp(E)

4π
(1− β)ν̄(E ′)Σf (r, E

′)ψ(r, E ′, Ω̂′, t)dE ′dΩ′, (2.7)

Fdjψ =

∫∫
βj ν̄(E ′)Σf (r, E

′)ψ(r, E ′, Ω̂′, t)dE ′dΩ′. (2.8)

where the M operator combines the leakage L, collision R, and scattering S terms,

and the prompt and group j delayed fission operators are Fp and Fdj, respectively.

For many reactor applications, the angular details of the flux are unnecessary, and

the scalar flux

φ(r, E, t) =

∫
4π

ψ(r, E, Ω̂, t)dΩ, (2.9)

is sufficient for calculating reaction rates and determining critical configurations. In-

tegrating Eqs. (2.1) and (2.2) over all angles
∫

4π
(·)dΩ and introducing operator no-

tation yields the time-dependent neutron continuity or diffusion equations [2] with

precursors

1

v

∂φ

∂t
+ Mφ(r, E, t) = Fpφ+

J∑
j

χjλjCj + S, (2.10)

∂Cj
∂t

+ λjCj(r, t) = Fdjφ, for j = 1, . . . , J, (2.11)

Unless otherwise noted, the solutions derived in the remainder of this chapter use

the neutron continuity notation, but the principles are applicable to the full neutron

transport equation.

For some applications, delayed neutrons are unimportant to the solution. In this

case, the delayed fission term replaces the precursor term in Eq. (2.10) and is grouped
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with the prompt fission term, yielding

1

v

∂φ

∂t
+ Mφ(r, E, t) = Fφ+ S(r, E, t), (2.12)

where F is the combined fission operator

Fψ(r, E, Ω̂, t) =

∫∫
χ

4π
ν̄Σfψ

′dE ′dΩ′. (2.13)

For steady-state problems, the time derivative term is zero, and the time variable is

eliminated from Eq. (2.12). This section provides overviews on methods for solving

the time-dependent set of equations in Eqs. (2.10) and (2.11) [8].

2.2.1 Direct Methods

The most direct way for solving Eqs. (2.10) and (2.11) is to discretize the position-

energy-time phase space. First, divide the energy space to form the multigroup

diffusion equations. With the finite difference method, divide the position space into

a set of finite volumes i, j, k. Then, formulate a set of spatially-discretized equations

for the time-dependence of the scalar fluxes φi,j,kg (t) and precursor densities Ci,j,k
l (t),

and advance over time steps to generate time-dependent solutions [9],

∂φi,j,kg (t)

∂t
=
φi,j,kg (tn+1)− φi,j,kg (tn)

tn+1 − tn
. (2.14)

Solving the time-dependent multigroup diffusion equations in this way is possible,

but impractical. For large, three-dimensional problems, the spatial mesh is often

impossibly large. Coarse-mesh or nodal methods simplify computational tasks, but

introduce other approximations to the solution [10]. On top of the spatial and energy

discretizations, a large number of very small time steps is required to capture the

appropriate flux behavior: time steps must be small enough to capture prompt fission

neutron effects, on the order of µs, and the number of time steps must be large enough

to insure that the delayed neutron effects are captured, on the order of seconds to

minutes. For direct methods, including angular dependences for large problems is

difficult.

Due to these high computational costs, direct methods are normally reserved for

reference calculations [9] or finding solutions for transport in simplified problems [11];

many applications prefer space-time factorization methods over these direct solutions.

More elegant analytical methods exist [12, 13], but apply only to simple infinite or
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one-dimensional media.

2.2.2 Space-Time Factorization Methods

Space-time factorization is a blanket term for several methods built upon splitting

the time-dependent neutron flux into an amplitude and shape function [14],

φ(r, E, t) = p(t) · ψ(r, E, t), (2.15)

with the additional requirement that∫
V

∫ ∞
0

w(r, E)ψ(r, E, t)

v(E)
dEdV = constant, (2.16)

where w(r, E) is an arbitrary weight function. This requirement makes the flux

factorization unique and constrains the time-variation of the shape function ψ(r, E, t).

The effect of this constraint is that the major time dependence shifts to the amplitude

function p(t). Most often, the weight function is taken to be the solution of the static

adjoint problem for the initial state φ†0(r, E), because it fulfils the requirements for

this condition, ∫
V

∫ ∞
0

φ†0(r, E)ψ(r, E, t)

v(E)
dEdV = K0. (2.17)

Splitting the neutron flux into two functions leads to the reformulation of

Eqs. (2.10) and (2.11) into equations for the shape and amplitude functions [10].

Inserting the factorization into Eq. (2.10) yields

1

v

∂p(t)ψ(r, E, t)

∂t
+ Mpψ = Fppψ +

∑
j

χjλjCj + S. (2.18)

Performing the chain rule on the first term, rearranging the result, and dividing by

the amplitude function yields the shape equation,

[−M + Fp]ψ +
1

p

∑
j

χj
4π
λjCj +

1

p
S =

1

v

[
dp(t)

dt

ψ

p
+
∂ψ(r, E, t)

∂t

]
. (2.19)

This yields the shape function if the amplitude function is known. Derivation of

the amplitude equations requires a few more steps: (i) add and subtract the total

quasi-static delayed neutron source
∑

j χjFdj from the right hand side of Eq. (2.10)

to form the total fission operator F; (ii) insert the flux factorization into the result

and Eq. (2.11), and for the former, perform the chain rule on the time derivative; (iii)
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multiply the resulting two equations by the solution to the static adjoint problem,

multiply the precursor equation by the precursor group j emission spectrum χj, and

integrate both over all space
∫∫

(·)dEdV ; (iv) divide the continuity equation by the

importance-weighted quasi-stationary source of fission neutrons as produced by the

shape function, F (t); (v) divide the precursor equation by the constant K0; and

(vi) rearrange terms and make definitions for the integral parameters. This yields

equations for the amplitude p(t) and neutron precursor concentrations ck(t) known

as the exact point kinetics (EPK) equations

dp(t)

dt
=
ρ(t)− β̄(t)

Λ(t)
p(t) +

∑
k

λkck(t) + s(t), (2.20)

dck(t)

dt
= −λkck(t) +

β̄k(t)

Λ(t)
p(t), (2.21)

with the definitions

ρ(t) =
1

F (t)

∫
V

∫ ∞
0

φ†0(r, E)(−M + F)ψ(r, E, t)dEdV, (2.22)

ck(t) =
1

F (t)Λ(t)

∫
V

∫ ∞
0

φ†0(r, E)χj(E)Cj(r, t)dEdV, (2.23)

β̄k(t) =
1

F (t)

∫
V

∫ ∞
0

φ†0(r, E)χjFdjψ(r, E, t)dEdV, (2.24)

β̄(t) =
∑
k

βk(t), (2.25)

Λ(t) =
K0

F (t)
, (2.26)

s(t) =
1

F (t)Λ(t)

∫
V

∫ ∞
0

φ†0(r, E)S(r, E, t)dEdV, (2.27)

F (t) =

∫
V

∫ ∞
0

φ†0(r, E)Fψ(r, E, t)dEdV, (2.28)

for the kinetic parameters: reactivity ρ(t), group k effective delayed neutron fractions

β̄k, and prompt neutron lifetime Λ(t). This factorization approach does not introduce

an approximation [3].

Together, the EPK and shape equations form a coupled set of nonlinear equations:

the solution of Eq. (2.19) implies that the amplitude function is known, and the kinetic

parameters in Eqs. (2.20) and (2.21) require the shape function. These equations make

up the basis for space-time factorization methods. The straightforward solution to

these equations is an iterative procedure that calculates the amplitude function for
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small time steps δt and updates the shape function for larger time steps ∆t. The

ratio of the time steps ∆t/δt is large for ideal problems where the shape function has

little time variation. But, for some transients, like those in a loosely coupled reactor,

the ratio is smaller due to persistent flux distortions [15].

The method for updating the shape function distinguishes the different space-

time factorization methods. With a reduction in the complexity of these methods,

the accuracy of the solutions decrease and computation eases. Quasi-static Methods

(QM) have the most sophisticated approach in calculating the shape functions. The

Predictor-Corrector QM (PCQM) uses the EPK equations and Eqs. (2.10) and (2.11),

excluding the shape equation from the iteration. Shape functions obtained from the

original continuity and precursor equations provide better kinetic parameters, and

the PCQM shows improvements over other QM [15]. The Improved QM (IQM) uses

the EPK and shape equations, but approximates the derivative term in Eq. (2.19) by

backward differencing,

∂

∂t
ψ(r, E, t) =

[ψ(r, E, t)− ψ(r, E, t−∆t)]

∆t
, (2.29)

chosen for its simplicity and stability with a large step length [16]. This is the most

common method used in spatial kinetics codes [10]. The original Quasi-static Method

(QM) differs from the IQM in that it excludes the time derivative term in Eq. (2.19)

entirely, citing that the time variation of the shape function is of much less importance

than that of the amplitude function [14]. The Adiabatic Method uses shape functions

that are the solution to the steady-state continuity equation computed at different

times during the transient. This effectively negates the right-hand side of Eq. (2.19)

as well as groups the precursor term into the fission operator [16]. Finally, the most

simplified method assumes complete separability of time from the rest of the phase

space,

φ(r, E, t) = p(t) · ψ(r, E). (2.30)

This assumption leads to the reformulation of the EPK equations into the point

kinetics (PK) equations,

dp(t)

dt
=
ρ(t)− β̄

Λ
p(t) +

∑
k

λkck(t) + s(t), (2.31)

dck(t)

dt
= −λkck(t) +

β̄k
Λ
p(t), (2.32)

where the initial flux shape φ0(r, E) replaces the time-dependent shape function in
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the calculation of the point kinetics parameters [3]. A quick comparison of these

space-time factorization methods (Table 2.2) shows the differences in updating the

shape function.

Table 2.2: A summary of calculation procedures for space-time factorization methods.

Method Amplitude function
calculation

Shape function calculation Refs.

Predictor-Corrected
Quasi-static

EPK Eqs. Neutron continuity and
precursor equations

[15]

Improved
Quasi-static

EPK Eqs. Shape equation with
backward differencing for
∂
∂tψ(r, E, t)

[16, 15, 10]

Quasi-static EPK Eqs. Shape equation excluding
∂
∂tψ(r, E, t)

[14, 16, 10]

Adiabatic EPK Eqs. Steady-state eigenvalue
problem

[16]

Point Kinetics PK Eqs. Initial flux shape φ0(r, E) [3, 10]

2.2.3 Expansion Methods

Expansion methods include both synthesis and modal methods. These methods ex-

pand the time-dependent flux into a linear combination of a time function Ti(t) mul-

tiplied by a shape function φi(r, E),

φ(r, E, t) =
N∑
i=0

Ti(t)φi(r, E), (2.33)

where N is the desired number of summation elements. While the ith element of the

summation in Eq. (2.33) represents a complete space-time separation, the summed

result of these functions is inseparable in space and time.

The difference between synthesis and modal methods is the shape functions

φi(r, E), as both use similar procedures in determining the expansion coefficients

and time function [10]. For synthesis methods, the shape functions are solutions to

steady-state problems for two or more conditions expected during the transient. A

good choice of these functions requires judgement and intuition. Synthesis methods

have good accuracy and flexibility, but they also encounter some numerical difficulties

in calculating the expansion coefficients and lack of meaningful error bounds [17]. For
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modal methods, the shape functions are the eigenfunctions from one of the several

eigenvalue problems of the neutron continuity and precursor equations. Thus, this

method is also known as eigenfunction expansion. For time-dependent problems, the

α eigenfunctions yield the best solutions for the space-time dependent flux. Each

α eigenfunction describes a unique spatial flux dependence while the α eigenvalues

describe the time behavior of that unique eigenfunction. The adjoint eigenfunctions

are also necessary for calculating expansion coefficients. The next section provides

an in-depth discussion on the α eigenvalue problem and eigenfunction expansion.

With the proper shape functions, synthesis methods offer better accuracy than

other factorization methods [18], while needing fewer expansion functions than modal

methods. The disadvantage of synthesis methods is the need to choose good shape

functions to insure the summed result is non-negative. For modal methods, a large

number of modes is necessary for sufficient accuracy on the time scales of µs [9]. For

these reasons, modal methods are seen as prohibitively costly, and together, synthesis

and modal methods have been largely abandoned for the purpose of solving kinetics

problems [10].

2.2.4 Time-Dependent Monte Carlo

The previous sections discuss deterministic methods for solving time-dependent prob-

lems. Time-dependent Monte Carlo (TDMC) is an extension of the Monte Carlo

method described in § 1.2. By directly simulating neutron histories and tracking

the time of events, TDMC generates solutions with some associated statistical error.

With each neutron individually tracked, TDMC is a natural extension of steady-state

Monte Carlo, with three additional concepts to discuss: tracking time, censusing, and

delayed neutron emission.

The Monte Carlo Method

The following is a simple example of the simulation of a single history with the

Monte Carlo method. First, generate initial information about the neutron from an

appropriate source distribution: position, direction of travel, energy, and occasionally

time. Then, determine the distance to collision with the random number ξ1. The

probability p(x)dx of a first collision between x and x+ dx is

p(x)dx = exp(−Σtx)Σtdx, (2.34)

22



where Σt is the total macroscopic cross section of the medium and p(x) is known as

the probability density function (PDF) [19]. For a continuous PDF p(t), the integral

ξ =

∫ x

0

p(t)dt, (2.35)

determines x uniquely as a function of ξ. Integration of the PDF in Eq. (2.34) as

shown in Eq. (2.35) and rearranging terms yields

x = − 1

Σt

ln(1− ξ1). (2.36)

Due to the uniform sampling of ξ ∈ (0, 1), the quantity 1−ξ is also uniformly sampled

∈ (0, 1). The distance to collision simplifies to

x = − 1

Σt

ln ξ1. (2.37)

Next, determine the nuclide with which the neutron collides using the next random

number ξ2. A given material is usually made up of several nuclides, and the to-

tal macroscopic cross sections of each determine the interaction probabilities. The

probability of interaction with nuclide i is

pi =
Σti∑N
j=1 Σtj

=
Σti

Σt

, (2.38)

where N is the total number of nuclides in the material. Comparing the random

number ξ2 to the probabilities, the collision nuclide i is that for which

i−1∑
j=1

pj ≤ ξ2 <
i∑

j=1

pj, (2.39)

is true. Next, determine the collision type with the next random number ξ3. The

cross sections of each collision type determine the probabilities; e.g., the radiative

capture probability is

pγ =
Σγi

Σti

, (2.40)

where Σγi is the capture cross section of nuclide i. Comparison of the random number

ξ3 to the probabilities as in Eq. (2.39) yields the collision type. Next, take the

appropriate action according to the collision type. If the nuclide absorbs the neutron,

the history ends. If the neutron scatters off the nuclide, perform the kinematics and
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emit the neutron at a new energy and direction.

This short example of a single neutron event only uses a few random numbers ξ,

but in some materials, neutrons undergo many collision events before being destroyed.

Also, Monte Carlo methods use random numbers in determining the source charac-

teristics and reemission energy and direction after a neutron collision. Monte Carlo

accounts for the problem geometry while determining the distance to next collision.

A sequence of particle events is known as a random walk.

While simulating neutron histories, Monte Carlo tallies extract desired informa-

tion. Tallies accumulate scores xn for specific events during each neutron history, such

as collisions with a given nuclide, crossing specific boundaries, or distance traveled

in a given volume. After the simulation, dividing the scores by the total number of

neutron histories N yields average probabilities x̄ of given events [6],

x̄ =
1

N

N∑
n=1

xn. (2.41)

Common types of Monte Carlo tallies include volume-averaged flux in a region, fission

heating, and leakage rates. Criticality calculations also use Monte Carlo tallies to

compute the multiplication of neutrons in a problem with fissile material.

With a very large number of particle histories, often millions or more, the averaged

results in Eq. (2.41) are close to the true solution. With accurate cross sections and

a detailed geometry, Monte Carlo solutions avoid truncation errors, but have random

statistical errors that trend to zero in the limit of an infinite number of particle

histories. In practice, Monte Carlo simulations have a finite number of histories N ,

leaving an associated statistical error in extracted results. For very large N , the

statistical error ε in some estimated average quantity is a function of the standard

deviation σ of the quantity and the number of particle histories [20],

ε ≈ σ√
N
. (2.42)

To decrease ε, either reduce σ or increase N . Methods of reducing σ are known

as variance reduction techniques, such as implicit capture and geometry splitting

with Russian roulette. Overall, the statistical error decreases relatively slowly, as

1/
√
N . This slow convergence often limits Monte Carlo methods to solving steady-

state problems, and though time-dependent Monte Carlo was conceptualized for the

first Monte Carlo codes, its application to reactor transients has only been studied in

more recent years [21].
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Many variance reduction techniques increase runtime, trading time for accuracy.

A useful parameter for quantifying this tradeoff is the Figure of Merit (FOM) [6]

FOM =
1

σ2T
, (2.43)

where T is the mean time per history. The FOM determines the gain in accuracy for

a given computation time, with a larger FOM identifying a advantageous technique.

Some techniques actually cause an increase in σ2, but reduce computation time,

resulting in a larger FOM.

Additional Considerations for Tracking Time Dependence

Along with neutron position, direction, and energy, TDMC keeps track of an addi-

tional variable: time. As with the other variables, TDMC treats time as continuous.

Consider a neutron with time t = t0 and energy E. After sampling the distance to

collision, TDMC calculates the neutron speed,

v =

√
2E

mn

, (2.44)

where mn is the mass of a neutron, and calculates the time to collision,

∆t =
x

v
= −

√
mn

2E

1

Σt

ln ξ. (2.45)

where x is the distance to next collision sampled from random number ξ and the total

macroscopic cross section Σt. Finally, TDMC advances the neutron time,

t = t0 + ∆t, (2.46)

and performs the appropriate actions for the collision type. For collisions and prompt

fission, TDMC assumes the time between the start of the collision and neutron ree-

mission is zero because it is so small. For delayed neutron emission, TDMC samples

an emission time from the decay constant of the appropriate precursor group. The

initial time of the neutron t0 depends on the source time characteristics.

Though TDMC treats the time space as continuous, its extracts information at

specific times or within time intervals. One way of extracting fluxes or reaction rates

is to divide the time space into small increments and perform tallies on neutrons

that fall in each of these time increments. This is similar to how a multichannel
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analyzer works for recording detector response: it registers total counts in a given

time interval for each channel. Another way is to extract the distribution of the flux

at an exact point in time with censusing. This involves using specific times tc as

boundaries. When a neutron crosses this boundary, i.e., t > tc, TDMC stores the

neutron position, direction, and energy at t = tc in a bank. After all N neutrons reach

this boundary, the next cycle begins by emitting and tracking the neutrons from the

bank, and the sequence repeats until neutrons reach the last census. With additional

techniques to ensure enough neutrons survive to the next census, this method greatly

increases the number of neutrons reaching each boundary, improving confidence in

statistical solutions.

The treatment of delayed neutron emission poses potential statistical troubles for

TDMC, due to low emission probability of less than 1% and the number of groups

representing delayed neutron precursors. These factors lead to low probabilities for

delayed neutron emission during a Monte Carlo run. A direct treatment of delayed

neutron emission generates an insufficient delayed neutron source, and for many tran-

sients, this causes significant errors in the solution. For example, consider a problem

where the desired solution is the time-dependent flux up to a few seconds. Then,

sampling a delayed neutron after this time contributes nothing to the solution. A

remedy for this is restricting the sampling of emission time to the window of interest,

and applying proper weights to correct for any overestimation in the delayed neutron

source. An extension of this is forcing precursors to decay over every time interval

of interest [21]. These approaches provide better statistics for the delayed neutron

source, which only becomes more difficult to characterize with the newest delayed

neutron data [22].

For transients in simple systems, TDMC demonstrates good accuracy in calcu-

lating the dynamic behavior of the flux [23]. But, the slow decrease of statistical

errors in Monte Carlo limits the applicability of TDMC to simple problems: the

number of neutron histories required for converged solutions of transients in large,

three-dimensional problems is prohibitively large. Some Monte Carlo calculations

provide kinetic parameters useful for characterizing time-dependent problems, such

as the prompt neutron lifetime [6].

2.3 The α Eigenvalue

For most systems with or without fissile material, there exists a constant or set of

constants α that represent the exponential time-dependent behavior of the neutron
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flux [24]. These constants are the eigenvalues of the linear or neutron transport

operator and are known as α eigenvalues [4], and have units inverse time. In some

literature, these are known as λ [2], natural [10], or time [25] eigenvalues. The α

eigenvalues identify the condition of a system and the α eigenfunctions φα describe the

phase space dependence for obtaining time-dependent solutions via modal methods.

Together, an eigenvalue and its eigenfunction are known as an eigenpair.

2.3.1 The Linear Transport Operator

Formulating the α eigenvalue problem begins with the separation of the time-

dependent neutron flux and precursor concentrations into shape functions and time

functions [1]. Describing the time function as an exponential yields

φ(r, E, t) = φ(r, E) exp(αt), (2.47)

Cj(r, t) = Cj(r) exp(αt), for j = 1, . . . , J, (2.48)

whose derivatives with respect to time are the those of the exponential function. In-

serting these factorizations and their derivatives into Eqs. (2.10) and (2.11), excluding

the external source, and dividing out the exponential yields

α

v
φ+ Mφ(r, E) = Fpφ+

J∑
j

χjλjCj, (2.49)

αCj + λjCj(r) = Fdjφ, for j = 1, . . . , J, (2.50)

the full α-eigenvalue problem. These equations are similar to the steady-state equa-

tions except for the additional terms containing the α eigenvalue. The α/v term is

known as the time-absorption term because it augments the collision cross section in

the operator M. Similarly, the α term in Eq. (2.50) augments the decay constant λj.

For some problems, delayed neutron emission is unimportant. Ignoring the delayed

neutron precursors yields
α

v
φ+ Mφ(r, E) = Fpφ, (2.51)

the prompt α-eigenvalue problem. The solutions of Eq. (2.51) are known as prompt

eigenvalues αp and eigenfunctions.

It is sometimes more convenient to view the eigenvalue problems in matrix form.
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Rearranging the terms in Eqs. (2.49) and (2.50) yields[
v 0

0 I

][
−M + Fp χλ

Fd −λ

][
φ

C

]
= α

[
φ(r, E)

C(r)

]
, (2.52)

the matrix form of the full α-eigenvalue problem where the left matrix is the speed

matrix and I is the identity matrix. Additional definitions simplify the inclusion of

J precursor groups in the matrix formulation: C is a length J column vector of the

precursor group concentrations Cj, Fd is a length J column vector of group delayed

fission operators Fdj, χλ is a length J row vector of the emission spectrum multiplied

by the decay constant χjλj, and λ is a size J×J diagonal matrix with decay constants

λj on the diagonal. The combination of the two matrices on the left hand side of this

equation is the linear transport operator

A(r, E) =

[
v 0

0 I

][
−M + Fp χλ

Fd −λ

]
. (2.53)

Likewise, rearranging terms in Eq. (2.51) yields the prompt matrix problem

v [−M + Fp]φ = αpφ(r, E), (2.54)

where the linear transport operator excluding delayed neutron precursors is

Ap(r, E) = v [−M + Fp] . (2.55)

2.3.2 Relation to Other Eigenvalue Problems

Knowing the relationship between the α and other eigenvalues of the neutron trans-

port equation aids in the discussion of the behavior of the α-eigenvalue spectrum

and the identification of system criticality. The k, c, and δ eigenvalues represent

the effective fission multiplication factor, effective collision multiplication factor, and

effective density factor, respectively [26]. Unlike α, these eigenvalues are dimension-

less and represent an imbalance between specific terms of the steady-state neutron

transport equation [27]. The δ eigenvalue is relatively obscure and is left from the

discussion. The TRMM uses the k and c eigenvalues in calculating transition rates

in multiplying and non-multiplying media, respectively. Monte Carlo codes calculate

these eigenvalues with a power iteration method [28].
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The k Eigenvalue

The k eigenvalue represents the ratio between the fission source and losses due to

collision and leakage. It has the additional physical interpretation as the effective

neutron multiplication factor per neutron generation: it is the ratio of neutrons in

the next generation to those in the current generation [29]. Due to this interpretation,

the k eigenvalue is a measure of the criticality of the system.

To obtain the k-eigenvalue problem, scale the fission operator in Eq. (2.12) by

1/k. Eliminating the time dependent term and assuming no external source yields

Mφ(r, E) =
1

k
Fφ, (2.56)

the k-eigenvalue problem [1]. This effectively varies the number of neutrons emit-

ted per fission by the energy-independent factor of 1/k in order to achieve neutron

balance.

For any multiplying system, there exists a unique positive k eigenvalue correspond-

ing to an all-real and non-negative eigenfunction φk(r, E). It is the largest eigenvalue

that satisfies Eq. (2.56), k0 or keff, and it fulfills the physical interpretation of the k

eigenvalue as a measure of criticality. The criticality of a system defines the behavior

of the neutron population in the absence of an external source: in a critical system,

the neutron population remains unchanged with time; in a subcritical system, the

neutron population decreases with time; and in a supercritical system, the neutron

population increases with time [2]. The k0 determines the condition by following the

trend:

k0


> 1 if supercritical,

= 1 if critical,

< 1 if subcritical.

(2.57)

For a non-multiplying system, k0 = 0. Numerical criticality searches determine the

k0 of a given problem.

Solutions to the k-eigenvalue problem are useful for reactor physics applications

because much of the analysis is done for systems designed to be critical, k0 = 1. At

critical, the eigenfunction corresponding to the k0 of the system is the flux shape

within the reactor, and near-critical, this eigenfunction is a good approximation of

this shape. This is somewhat counterintuitive because if k0 < 1 or k0 > 1, the neutron

population changes with time. But, the calculation of k0 balances Eq. (2.56), yielding

an eigenfunction calculated at a system condition that has been made artificially

critical using the 1/k factor. While this hardens or softens the energy spectrum in
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subcritical or supercritical systems [26], it still serves as a suitable approximation of

the steady-state flux.

The other k eigenvalues that satisfy Eq. (2.56) are known as higher k eigenvalues

and together with k0 make up the k-eigenvalue spectrum

k0 > k1 > k2 > · · · ki, (2.58)

where the ki are real and positive. While the physical meaning of k0 and φ0 makes

them useful for reactor design, the higher k eigenpairs have more indirect uses.

The dominance ratio, the ratio k1/k0, provides some measure of numerical conver-

gence [30]. Some other applications of higher k eigenvalues include perturbation the-

ory or calculating flux tilts in loosely-coupled cores [31]. Many of these applications

only need a few of the next higher eigenpairs.

For simple problems, the entire k-eigenvalue spectrum is readily obtainable. But,

for more complex problems, finding many higher k eigenpairs is more difficult and

often carried out using iterative methods [30]. Recent research in approximating k

eigenpairs with matrix methods similar to the TRMM show that realistic problems

have a set of positive, real k eigenvalues as expected [32].

The α- and k-eigenvalue problems are equal for an exactly critical system [27].

In this case, k0 = 1 and α0 = 0, and the eigenfunctions φk and φα corresponding

to these eigenvalues are equal. Still, both problems contain a separate set of higher

eigenvalues. For an infinite medium, the one-group k- and α-eigenvalue problems are

Σtφ = Σsφ+
ν̄Σf

k∞
φ, (2.59)

α∞
v
φ = Σsφ+ ν̄Σfφ− Σtφ. (2.60)

Dividing out the fluxes and combining these two equations yields a relationship be-

tween the two infinite eigenvalues [33]

α∞
vΣt

= (k∞ − 1)

(
1− Σs

Σt

)
. (2.61)

A Monte Carlo k-eigenvalue calculation begins with initial guesses for the eigen-

value k
(0)
0 and a source. With these guesses, Monte Carlo generates particle histories

to solve for φ
(1)
k using the k-eigenvalue problem for iteration n,

Mφ
(n+1)
k =

1

k
(n)
0

Fφ
(n)
k , (2.62)

30



a reformulation of Eq. (2.56) for updating φk. During the random walk, Monte Carlo

estimates k
(1)
0 by tracking the neutrons emerging in the next generation. Rearranging

Eq. (2.56), multiplying by the fission operator F, integrating over all space
∫
V

(·)dV ,

and solving for k yields

k
(n+1)
0 =

∫
V

FM−1Fφ
(n)
k dV∫

V
Fφ

(n)
k dV

, (2.63)

where the superscripts are introduced to estimate the k at the end of the current

generation. Performing the same operations on Eq. (2.62) and combining these two

results yields an equation to update k0

k
(n+1)
0 = k

(n)
0

∫
V

Fφ
(n+1)
k dV∫

V
Fφ

(n)
k dV

, (2.64)

which is the ratio of the old and new fission sources. With the new estimates k
(1)
0 and

φ
(1)
k , Monte Carlo generates a new set of particle histories and the process repeats

until k
(n)
0 and φ

(n)
k satisfy desired convergence criteria [28]. At this point, Monte Carlo

continues to run particle histories to extract meaningful tallies.

Each iteration is known as a batch and the number of particle histories per iter-

ation N is referred to as the batch size. During each batch, Monte Carlo stores the

fission sites and uses them as source points for the next batch: each batch is a fixed-

source calculation where the source is the initial guess or updated fission source. At

a fission site, Monte Carlo stores a number of neutrons depending on the probability

of fission at that location ⌊
Wν̄σf

σtk
(n)
0

+ ξ

⌋
, (2.65)

where W is the particle weight, σf and σt are the fission and total microscopic cross

sections, and ξ is a random number ∈ (0, 1). Note that this quantity is floored to

obtain an integer. Collision, absorption, and track length tally estimators provide
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alternatives to Eq. (2.64) for obtaining values for k
(n+1)
0 during the random walk:

kC0 =
1

N

collisions∑
i

Wi

(∑
j fj ν̄jσfj∑
j fjσtj

)
, (2.66)

kA0 =
1

N

absorptions∑
i

Wiν̄j

(
σfj

σcj + σfj

)
, (2.67)

kTL0 =
1

N

trajectories∑
i

Wiρd
∑
j

fj ν̄jσfj , (2.68)

where j designates the nuclides of the material, f is the atomic fraction of a nuclide,

σc is the capture cross section, ρ is the atomic density of the material, and d is the

trajectory track length from the last event [34].

The c Eigenvalue

The c eigenvalue represents the ratio of the combined fission and inscattering source

to losses due to collisions and leakage. It has the physical interpretation as the

number of secondary neutrons, or the multiplication factor, per collision event. In

some literature it is denoted as λ [27] or γ [29].

Formulation of the c-eigenvalue problem requires the operator M in Eq. (2.12)

be split into the operators L, R, and S. Scaling the combined inscatter and fission

operators by 1/c, eliminating the time dependent term, and assuming no external

source yields

[L + R]φ(r, E) =
1

c
[S + F]φ, (2.69)

the c-eigenvalue problem. This effectively varies the number of neutrons exiting col-

lision events by the factor 1/c. The TRMM uses the collision eigenvalue for non-

multiplying media because the k eigenvalue is zero; in this case, the 1/c factor only

acts upon the inscatter source term.

With respect to the k eigenvalue, the c eigenvalue follows the same trend in

Eq. (2.57), affects the energy spectrum similarly, and exhibits similar eigenvalue spec-

tral properties [27]. But, it varies quite differently for subcritical and supercritical

media: in some problems, the k eigenvalue deviates from unity more than the c

eigenvalue. The magnitude of the effect of the c eigenvalue on the energy spectrum is

suppressed because the eigenvalue is also operating upon the inscatter source, which

has a softer spectrum than the fission operator. In a supercritical system, the spec-

trum of the k solution is softer than the spectrum of the c solution, and the opposite
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is true in a subcritical system. For some problems, the c eigenvalue is a more efficient

quantity for criticality searches [35].

The α- and c-eigenvalue problems are equal for a critical system where α0 = 0

and c0 = 1, and the eigenfunctions φα and φc corresponding to these eigenvalues are

equal. In this case, the k0 = 1 and its eigenfunction φk are also equal to those of the

α- and c-eigenvalue problems.

A Monte Carlo c-eigenvalue calculation is similar to a k-eigenvalue calculation.

With the initial guess c
(0)
0 and a source, Monte Carlo generates particle histories to

solve for φ
(1)
c using the c-eigenvalue problem for iteration n,

[L + R]φ(n+1)
c =

1

c
(n)
0

[S + F]φ(n)
c . (2.70)

During the random walk, Monte Carlo estimates c
(1)
0 by tracking neutrons emerging

from collisions. Following the same steps as to obtain Eq. (2.64) yields an equation

to update c0,

c
(n+1)
0 = c

(n)
0

∫
V

(S + F)φ
(n+1)
c dV∫

V
(S + F)φ

(n)
c dV

, (2.71)

which is the ratio of the old and new collision sources. The process repeats until c
(n)
0

and φ
(n)
c satisfy the desired convergence criteria.

During each batch, Monte Carlo stores collision sites and uses them as source

points for the next batch. In determining the number of neutrons to store at each

site, it is useful to define the secondary-production cross section as

σP = ν̄σf +
∞∑
x=1

xσn,xn, (2.72)

where x is the multiplicity of the reaction and σn,xn is the multiplicity reaction cross

section [35]. Then, the number of secondary neutrons produced at a given collision

site is ⌊
WσP

σtc
(n)
0

+ ξ

⌋
, (2.73)

and the collision estimator for c
(n+1)
0 is

c0 =
1

N

collisions∑
i

Wi

(∑
k fkσP∑
k fkσtk

)
. (2.74)

33



2.3.3 Spectrum

The set of α eigenvalues that satisfy Eq. (2.52) are known as the α-eigenvalue spec-

trum. The eigenvalue with the largest real part, α0, is the fundamental eigenvalue.

It corresponds to the asymptotic solution of the system as t → ∞ and follows the

trend:

α0


> 0 if supercritical,

= 0 if critical,

< 0 if subcritical.

(2.75)

The eigenfunction corresponding to the fundamental eigenvalue, φ0(r, E), contains

the spatial and energy dependence of the asymptotic solution [36]

φasym(r, E, t) ∝ φ0(r, E) exp(α0t). (2.76)

While the fundamental eigenpair is all real, any of the remaining higher α eigen-

pairs may be negative and complex. The α eigenvalues are ordered by their real

parts

α0 > Re(α1) > Re(α2) > · · · > Re(αm), (2.77)

where, if a complex eigenvalue exists in the spectrum, than its complex conjugate

is also a part of the spectrum. This is because the linear transport operator is

all real, so its complex eigenvalues always occur in complex conjugate pairs and the

eigenfunctions corresponding to pair of these eigenvalues are also complex conjugates.

Consider the operator A ∈ R. If λ ∈ C is a complex eigenvalue of A, with a non-zero

eigenfunction v ∈ Cn, by definition this means that

Av = λv. (2.78)

Taking the complex conjugate (̄·) of this equation yields

Āv̄ = Av̄ = λ̄v̄. (2.79)

Thus, if λ and v are a complex eigenpair of the matrix A, then so is λ̄ and v̄. Most

often, the highest eigenvalues have very large and negative real parts. A plot in

the complex plane (Figure 2.1) is the best way of visualizing the entire α-eigenvalue

spectrum.

The existence of a fundamental eigenvalue is not guaranteed for all media, partic-

ularly optically thin slabs [33]. Some very subcritical media have no experimentally
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observable fundamental eigenvalue. Also, the existence of a sole dominant eigenvalue,

one that has a greater real part than any other eigenvalue, has yet to be proven. For

small one-speed slabs, the spectrum only consists of a few discrete eigenvalues, but for

realistic continuous-energy problems, the spectrum is extensive and includes several

features.

Points, Lines, and the Continuum

The initial study of the spectrum of linear transport operator A used the one-speed,

one-dimensional form [37]

A(x, µ) = −µ∂(·)
∂x

+
c

2

∫ 1

−1

(·)dµ′, (2.80)

where

c =
ν̄Σf + Σs

Σt

. (2.81)

Since then, studies focus on building upon assertions gained for these simple prob-

lems, expanding the spectral analysis to multiple-speed media [38] and more general

geometries [4]. The spectrum of A for more general problems consist of points, lines,

and in some cases, a continuum (Figure 2.1).

−λ*

  
  
  

      

Re(λ)

Im(λ)

Figure 2.1: This idealized illustration of the spectrum of the linear transport operator
plotted in the complex plane shows the different features present in the spectrum.
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The spectral analysis of A is an exercise in functional analysis. The spectrum of A

contains three groups: continuous spectrum, residual spectrum, and point spectrum.

It is important to note that this spectrum includes more scalars λ than just the α

eigenvalues: the α eigenvalues are the point and line spectrum of A [39]. Further

discussion on spectral analysis is available in the references: this section focuses on

results of this analysis, as they are important to understanding α eigenvalues.

The decomposition of the spectral plane is best understood for the simple operator

in Eq. (2.80). In this case, there are two parts of the spectrum: point spectra and

the continuum. The point spectrum is a finite, all-real set lying in the positive

half-plane λ > −λ∗ (Figure 2.1), where λ∗ is the minimum value of vΣt(v). The

continuous spectrum contains the negative half-plane Re(λ) ≤ −λ∗ (Figure 2.1),

where there are no discrete eigenvalues [40]. This dividing value, −λ∗, is sometimes

called the Corngold limit and marks the physically minimum possible α eigenvalue.

For a one-speed infinite medium, Eq. (2.61) shows this relationship when k∞ and Σs

are zero [33]. These unique behaviors are in part due to the slab geometry, in which it

is possible for a particle traveling in a direction parallel to one of the faces to stream

for an arbitrarily long time before suffering a collision or leaving the slab [40]. This

complicates extending some of these observations to more complex media.

Further studies show that for finite media where the minimum velocity vmin > 0,

the continuum disappears and the spectrum of A contains only the point spectrum,

the α eigenvalues [38]. Point and line spectra fill the half-space of the continuum

(Figure 2.1). The study asserts that the spectrum of A contains the continuum only

if neutrons are allowed to exist at arbitrarily small speeds, vmin = 0. The lines are

traces resulting from considering multiple neutron speeds: α eigenvalues depend on

the speed, and as the speed varies from v to vmin, some eigenvalues remain stationary

and others trace out curves or loops in the complex plane [4].

There is some experimental support that the vmin > 0 case is a more accurate

representation of physical reality. This is expected, as the transport equation treats

neutrons as classical particles and does not account for the quantum mechanical

effects that a neutron encounters when its wavelength is comparable to a mean free

path. The transport equation is invalid for such low energies, and another equation

is necessary to study the effect on the spectrum [4]. In a Monte Carlo random walk,

an energy cutoff is set such that when neutrons reach very low energies, the history

is terminated. This is in part due to the absence of cross section data at very low

neutron energies. As the TRMM uses Monte Carlo methods, calculated results consist

only of the point and line spectra.
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Delayed and Prompt Eigenvalues and Eigenfunctions

The α eigenvalues fall into two categories: delayed and prompt [41]. Delayed α

eigenvalues are close to the decay constants of the neutron precursor groups λj, j =1,

2, · · · , J . Prompt α eigenvalues are much greater in magnitude than the decay

constants |αi| � λj. This difference is due to the slow precursor decay rate relative

to the rate at which neutrons interact: prompt effects decay much faster than the

decay of delayed neutron precursors.

The largest prompt eigenvalue, i.e., the largest α eigenvalue that satisfies

Eq. (2.54), is known as the prompt fundamental eigenvalue αp0. In many appli-

cations for subcritical problems, this is the eigenvalue of interest because of its use

in calculating the subcriticality of the problem. In the subcritical case, a delayed

eigenvalue serves as the true fundamental eigenvalue because the prompt fundamen-

tal eigenvalue is more negative. For supercritical problems, the prompt fundamental

eigenvalue is always the true fundamental eigenvalue.

Accounting for delayed neutron precursors limits the fundamental eigenvalue in

subcritical systems. Combining Eqs. (2.49) and (2.50) yields

α

v
φ+ Mφ(r, E) = Fpφ+

J∑
j=1

λj
α + λj

χjFdjφ, (2.82)

introducing J discontinuities at α = −λj. When α→ −λj, the last term in Eq. (2.82)

either increases considerably if α > −λj (approaching from −λ+
j ) or decreases consid-

erably if α < −λj (approaching from −λ−j ). This introduces J more α’s that balance

Eq. (2.82): the delayed eigenvalues αd. If the system is very subcritical, αdj ≈ λj, and

the precursor decay constant that is smallest in magnitude is the fundamental eigen-

value: it is useless in determining the reactivity of the system. This is the condition

shortly after a reactor is shut down, where the delayed neutron precursors present in

the fuel continue to decay and emit delayed neutrons according to the form dictated

by the delayed α eigenpairs.

Relative to the prompt eigenfunctions φp, the J delayed eigenfunctions φd are

simpler. Delayed eigenvalues are all-real, as are the eigenfunctions. Spatially, the

delayed eigenfunctions are similar to one another because the precursor concentrations

depend on the fuel location. This is less true for the energy phase space, as each

precursor emits neutrons with a different characteristic energy spectrum. For very

subcritical systems with stationary fuel, the delayed eigenfunctions are very close

to the prompt fundamental eigenfunction, and for some analysis methods they are
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assumed to be the same [41]. If the fuel is mobile, then the spatial variation of the

delayed eigenfunctions changes because precursors migrate with the fuel.

With delayed neutron precursors, there are two additional classifications for the

critical case in Eq. (2.57) for slightly supercritical systems where k ∼= 1+. Define the

static reactivity insertion as [2]

ρ0 =
k − 1

k
. (2.83)

With reactivity insertions in the range 0 < ρ0 < β, the system is in a delayed or

subprompt critical condition. This is because the delayed neutron precursor source

is making the system critical: in their absence, the system would be subcritical.

The fundamental eigenvalue α0 is positive, but on the order of the delayed neutron

precursor decay constants, so the increase of the neutron population occurs relatively

slowly. This provides time for implementing control measures in a delayed critical

reactor as discussed in § 2.1. With reactivity insertions in the range ρ0 > β, the system

is in a prompt or superprompt critical condition [3]. Here, the system is supercritical

due to prompt neutron effects alone. The fundamental eigenvalue α0 is a positive

prompt eigenvalue much larger than a delayed eigenvalue: the neutron population

increases very quickly. Without delayed neutron precursors, reactors would have to

operate near this precarious state: the value of β acts as forgiving reactivity buffer.

2.3.4 Eigenfunction Expansion

The functional time expansion approximation [9] of the neutron flux and precursor

concentration in matrix form is[
φ(r, E, t)

C(r, t)

]
∼=

m∑
i=0

Ti(t)

[
φi(r, E)

Ci(r)

]
, (2.84)

where C is a length J vector of the precursor group concentrations, m is the total

number of eigenvalues, and the time function Ti(t) is left undefined. The spatial func-

tions, [φi(r, E) Ci(r)], depend on the system configuration, while the time function

also depends on source characteristics. Substituting this expansion into Eqs. (2.10)

and (2.11) yields the matrix problem in terms of the new expanded flux and precursor
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concentration

m∑
i=0

dTi(t)

dt

[
v−1 0

0 I

][
φi(r, E)

Ci(r)

]

=
m∑
i=0

Ti(t)

[
−M + Fp χλ

Fd −λ

][
φi(r, E)

Ci(r)

]
+ S(r, E, t). (2.85)

Multiplying the first term on the right side of the equation by the speed matrix and

its inverse yields the forward α-eigenvalue problem defined in Eq. (2.52). Replacing

the matrix problem with the α eigenvalue, multiplying by the adjoint eigenfunction

[φ†n(r, E) C†n(r)], and integrating over space and energy yields

m∑
i=0

γni
dTi(t)

dt
=

m∑
i=0

αiγniTi(t) +
〈
φ†n, S(r, E, t)

〉
r,E

, (2.86)

where

γni =
〈
φ†n, v

−1φi
〉

r,E
+
〈
C†n,Ci

〉
r
, (2.87)

and the integral notation is

〈
f †(r, E), f(r, E)

〉
r,E

=

∫
V

∫ ∞
0

f †(r, E)f(r, E)dEdV. (2.88)

The quantity γni is zero unless n = i: this is known as the bi-orthogonality condition

of the forward and adjoint functions,

γni = γiiδni = γiδni. (2.89)

Applying this condition yields i first-order differential equations describing the be-

havior of the time expansion functions, Ti(t), each satisfying the equation

dTi(t)

dt
= αiTi(t) +

〈
φ†i , S(r, E, t)

〉
r,E

γi
, (2.90)

where the external source S(r, E, t) is arbitrarily chosen after computation of the α

eigenpairs.
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Time Function Solutions

A common assumption is that there is no external source after t = 0, such as a

short pulse, or some given flux distribution at time t = 0−. For both of these cases,

S(r, E, t) = 0 for the times of interest, t > 0, and Eq. (2.90) has the exponential

time-dependent solution

Ti(t) = Ai exp(αit), (2.91)

where the coefficients, Ai, depend on the source characteristics. In the case of a

pulsed system, the source is mathematically described as a delta function in time,

S0(r, E)δ(t). Inserting this into Eq. (2.90) and operating by
∫ ε
−ε(·)dt yields the coef-

ficients

Ai =

〈
φ†i , S0(r, E)

〉
r,E

γi
, (2.92)

for the eigenfunction expansion of a system reacting to a single pulse.

After several pulses, delayed precursors build up in the fuel: there are two ways of

accounting for these concentrations. Superposition of the single pulse solution with a

time delay yields an accurate result as long as the delayed neutron data is sufficiently

accurate. The alternative solution is to describe the delayed precursor concentrations

and include them while calculating the expansion coefficients. Assume that the space-

dependent delayed neutron precursor concentrations at time t = 0− is Sj(r). With

this initial condition, the coefficients become

Ai =

〈
φ†i , S0(r, E)

〉
r,E

+
〈
C†i , Sj(r)

〉
r

γi
. (2.93)

But, knowing the delayed neutron precursor concentrations requires some sort of a

priori approximation, so it is perhaps better to use superposition or both methods

for verification.

A similar approach is used when considering some initial flux distribution, where

S0(r, E) in the previous equation is recast as the appropriate initial condition de-

scribing the flux at t = 0−. Such a problem is useful in describing cases where the

flux response to a sudden change in materials, densities, or geometries is of inter-

est. In this case, the α eigenpairs are those of the “changed” system, and the initial

conditions for the flux and precursor concentrations are solutions to the steady-state

problem considering some time of operation.

The time functions for systems with an external source for times t > 0 are solutions
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to the first-order inhomogeneous equation

dTi(t)

dt
− αiTi(t) =

〈
φ†i , S(r, E, t)

〉
r,E

γi
. (2.94)

Multiplying this equation by the integrating factor exp(−αit) and solving yields

Ti(t) =

[
1

γi

∫ t 〈
φ†i , S(r, E, t′)

〉
r,E

exp(−αit′)dt′ + C

]
exp(αit), (2.95)

which is Eq. (2.91) with an extra integral term. The S(r, E, t′) term in the integral

has some arbitrary time dependence, the least complex of these being a constant

source turned on at t = 0, considering nothing beforehand, Ti(0) = 0. In this case,

the time function is

Ti(t) =

〈
φ†i , S(r, E)

〉
r,E

αiγi
[exp(αit)− 1]. (2.96)

More complex time-dependent sources are left from discussion.

In summary, the eigenfunction expansion of the time-dependent flux and precursor

concentrations are

φ(r, E, t) =
M∑
i=0

Aiφi(r, E) exp(αit), (2.97)

C(r, t) =
M∑
i=0

AiCi(r) exp(αit), (2.98)

for no source t > 0 and

φ(r, E, t) =
M∑
i=0

α−1
i Aiφi(r, E)[exp(αit)− 1], (2.99)

C(r, t) =
M∑
i=0

α−1
i AiCi(r)[exp(αit)− 1], (2.100)

for a fixed constant source, where M ≤ m is the number of desired eigenfunctions in

the expansion. As M becomes large, the eigenfunction expansion accurately captures

shorter and shorter time fluctuations. For many applications, only the time-dependent

flux is of interest, and it is unnecessary to track the precursor concentrations after

their use in determining the expansion coefficients.
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The M must be chosen such that, if the expansion includes a complex eigenvalue,

then it also includes its complex conjugate. Complex eigenvalues only have a physical

meaning when used as a pair. Mathematically, without complex eigenvalues, the

flux contribution of every higher mode only decreases. But in a physical system,

neutrons slow down and induce fission, emitting neutrons at higher energies. Thus,

the flux at a higher energies experiences a decrease as neutrons slow down and an

increase as thermal neutrons fission. This oscillatory motion is described by complex

α eigenvalues. Consider the sum of the two elements i and i′ of Eq. (2.97), where αi

and αi′ are conjugate pairs

φi(r, E, t) + φi′(r, E, t) = Aiφi(r, E) exp(αit) + Ai′φi′(r, E) exp(αi′t). (2.101)

The flux solution takes the form

φi(r, E, t) + φi′(r, E, t)

= [Aiφi(r, E) exp(Im(αi)t) + Ai′φi′(r, E) exp(Im(αi′)t)] exp(Re(αi)t). (2.102)

The combination of the two terms in the brackets describes an oscillation dictated

by the imaginary part of the eigenvalues. An overall exponential decay dictated by

the real part of the eigenvalues damps the oscillation, where Re(αi) = Re(αi′) < 0.

Both the coefficients and eigenfunctions have imaginary parts that cancel out inside

the parenthesis.

Only the coefficients depend on source characteristics: the α-eigenpair calcula-

tions need no information about the initial source. This allows for generating time-

dependent solutions for any arbitrary initial source for the same system. Direct solu-

tion methods define the source before calculating solutions: using a different source

requires running the analysis again with the updated source characteristics, which is

costly computationally, but does allow for accommodating of temperature feedback.

The coefficients determine the contribution of each eigenfunction to the total so-

lution. For example, in the case that the fundamental eigenfunction is all-negative,

the coefficient corresponding to that eigenfunction is also negative. In the case that

the solution behaves symmetrically, the coefficients for asymmetric eigenfunctions are

very small relative to coefficients of symmetrical eigenfunctions. Together, the coeffi-

cients and eigenfunctions are known as the kinetic modes, Aiφi(r, E), of the problem.

With the solutions to the forward and adjoint α-eigenvalue problems, this formula-

tion presents a complete approach to approximate the time-dependent neutron flux

and precursor concentrations. The importance equation and the adjoint α-eigenvalue
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problem are discussed in § 3.1.2.

Completeness

The functional time expansion in Eq. (2.84) is an approximation dependent on the

size of m. It was initially thought that A possesses a complete set of eigenfunctions,

i.e., m → ∞, in which case the expansion is equivalent to the time-dependent solu-

tion [40]. But, it has been shown that one-dimensional media have a finite number

of eigenvalues, in which case the flux expansion is better described as

φ(r, E, t) =
m∑
i=0

Ti(t)φi(r, E) + ζ(r, E, t), (2.103)

where the residual term ζ(r, E, t) is an inseparable part of the flux solution and is

small compared to the other expansion terms. The residual term goes to zero as

t→∞: despite incompleteness, it is possible to obtain an approximate eigenfunction

expansion with a small error term [42]. For example, consider a small slab with only

m = 2 eigenvalues. Without the residual term, the description of the solution with

only two eigenfunctions is unable to describe sharp flux shapes in the case of an

asymmetric plane source for the earliest times.

This assertion of incompleteness hinges on two factors: the slab geometry and

the existence of the continuum without point spectrum. Physical situations unique

to planar geometry are noted in § 2.3.3. The existence of the continuum limits the

α eigenvalues to the half-space to the right of −λ∗ (Figure 2.1). But, in cases with

more physical geometries where the minimum neutron speed is positive, there is no

continuum, and α eigenvalues fill the half-space to the left of −λ∗: this makes the

expansion more complete and decreases the residual term. While the completeness

of the eigenfunctions has not been rigorously proven, this expansion has empirically

shown to be accurate for more realistic problems: it is at least safe to assume that

m is large for physical problems. This reflects the case for computational methods,

as the number of eigenfunctions calculated are ideally large, but always finite. Thus,

there will always be some residual term representing an inseparable part of the flux

solution.

2.4 Measuring α Eigenvalues

Pulsed-neutron and Rossi-α experiments measure the prompt fundamental neutron

decay constant, the eigenvalue αp0, for its use in determining the subcriticality or
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kinetic parameters of a system. It is sometimes possible to measure one or two

higher prompt eigenvalues, but the validity and accuracy of these higher eigenvalues is

questionable: determination of the eigenvalues are based on only a few measurements

due to the short decay time of higher kinetic modes and the interference of the

prompt fundamental mode. Measuring delayed eigenvalues is easier due to their

long decay time, but these are generally of much less interest either because in they

are unimportant or their behavior is already known.

Experimentally, the eigenfunctions always appear in the form of the kinetic modes

Aiφi(r, E). While it is possible to spatially measure the entire prompt fundamental

kinetic mode Ap0φp0(r), it requires an unreasonable number of detectors. Measur-

ing any higher kinetic mode is incredibly difficult. Thus, measurements from a few

detectors determine the spatial variation of the flux isolated to a few locations, and

inferences about the prompt and delayed kinetic modes are made from these.

2.4.1 Pulsed-Neutron Experiments

The procedure of a PNE is to instantaneously insert a large number of neutrons into

a subcritical system and measure the flux time response following this pulse with

detectors. From the time response, the reactivity of the system is inferred using

one of several methods, two of which are the inhour and area-ratio method. Near

critical, both methods are of comparable accuracy, but further from critical, the

inhour method is less sensitive to calculation errors and is more accurate [41].

An ideal detector response (Figure 2.2) is characterized by three distinct time

intervals: (I) a short interval following the pulse in which fast source neutrons slow

down and higher prompt modes decay, (II) an intermediate interval in which the

detector response decays exponentially according to the fundamental decay constant,

and (III) a long interval in which delayed modes dominate the detector response.

Because delayed modes decay slowly, the behavior of interval III is dependent on the

number of previous pulses. With one pulse, interval III will be a result of delayed

fissions propagating from that single pulse. With many pulses, each successive pulse

contributes some delayed neutrons to interval III, albeit in lesser and lesser amounts

as time progresses. The system will reach “constant delayed neutron background”

with enough pulses, characterized by the detector response being nearly identical from

pulse to pulse. Because of the short time scale of a quarter second (Figure 2.2), the

delayed neutron contributions look constant: they are in fact decaying very slowly.

With the fundamental prompt mode decay constant taken from interval II of the
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Figure 2.2: The measured detector response to a neutron pulse plotted on the appropriate
time scale shows the three characteristic time intervals dominated by the different kinetic
modes.

measured detector response, the reactivity is inferred using the inhour equation

ρ = αp0Λ + β̄, (2.104)

given the effective delayed neutron fraction β̄ and a calculated neutron generation

time Λ. The accuracy of this method depends on finding a proper exponential fit for

the measured detector response in interval II and the calculation of a proper neutron

generation time, which varies with system parameters. For large reactors with little

leakage, the effective delayed neutron fraction is nearly the same as the total delayed

neutron fraction.

An alternative way of calculating the reactivity of the system uses integrals of the

detector responses, which is the area under the curves. This method depends on the

system reaching constant delayed neutron background to provide the best statistics

and an assumption in the derivation of the reactivity-area relation. Derivation of this

method starts from point kinetics with Eqs. (2.31) and (2.32). Describe the source

as a delta function at t = 0 with strength S0. Rename the amplitude function to

P (t) and split it into prompt and delayed contributions to the time response. For the

prompt amplitude, ignore the delayed neutron precursors because the prompt modes
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decay very quickly. The point kinetics equations for the prompt contribution simplify

to
dPp(t)

dt
=
ρ− β

Λ
Pp(t) + S0δ(t). (2.105)

Because the prompt contribution is identical for each pulse, the initial condition is

Pp(0) = Pp(T ). Integrating this equation over the time between pulses, 0 < t < T ,

and rearranging the result yields the prompt area

Ap =

∫ T

0

Pp(t)dt =
S0Λ

β − ρ
. (2.106)

Obtain the total neutron area in a similar manner, except include the delayed neutron

precursors in the formulation. Provided that the delayed neutron background is

constant, each pulse is identical and the initial conditions Tt(0) = Tt(T ) and c(0) =

c(T ) hold. Integrate Eqs. (2.31) and (2.32) over the time between pulses and combine

the resulting equations to eliminate the precursors. Rearranging yields the total area

At =

∫ T

0

Pt(t)dt = −S0Λ

ρ
. (2.107)

The ratio of the prompt to delayed neutron area yields the reactivity of the system

in dollars
Ap

At − Ap
= − ρ

β
. (2.108)

Unfortunately, point kinetics is only approximate for a subcritical reactor because

the shape function never follows the exact shape of the fundamental mode. Further-

more, the area-ratio method is spatially dependent because the detector is measuring

the local variation of the neutron flux. A number of adjusted area-ratio methods

have been developed to account for these spatial effects, such as the extrapolated

area-ratio method and those with spatial correction factors [43]. The former method

uses fitted equations to extrapolate the neutron flux back to t = 0 in calculating the

prompt and delayed neutron areas, while the spatial correction factors F (r) adjust for

variations brought about by the local measurement of the neutron flux [44]. Applying

the correction to the area ratios yields

ρ

β
= − Ap

At − Ap
F (r). (2.109)
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For example, the correction factor

F (r) =
φd0(r, E)

φp0(r, E)
, (2.110)

corrects for kinetic distortion: the spatial-dependent difference between the prompt

and delayed kinetic modes. This is an approximation considering higher kinetic modes

as negligible.

2.4.2 Rossi-α Experiments

The Rossi-α formula gives the expected number of neutrons counted in an interval dt

at time t after a neutron count at t = 0:

R(t)dt = Cdt+ A exp(αt)dt, (2.111)

where C is the uncorrelated counting rate and A exp(αt) represents the exponential

time-dependence of the prompt fission chain caused by the original neutron [45]. The

value describing this time-dependence is the prompt neutron decay constant, the

eigenvalue αp0, and A is the correlation amplitude.

The uncorrelated counting rate is given by

C =
εS

νcr − ν̄
, (2.112)

where ε is the efficiency of the detector in counts per fission, S is the source strength

in neutrons per second, and νcr is a measure of criticality defined as the adjusted

value of ν̄ at which the assembly is critical. The correlated amplitude is given by

A =
εX2

2ν̄2τ(1− kp)
, (2.113)

where X2 is a measure of the variation of ν̄ from one fission to another, τ is the mean

neutron lifetime, and kp is the prompt multiplication factor [45]. While the corre-

lated part of the Rossi-α formula is a sum of all kinetic modes, most measurements

are unable to observe the contributions of these modes. Thus, calculations neglect

these higher modes and use the fundamental mode approximation, where the prompt

fundamental decay constant is

α = αp0 =
1− kp
τ

. (2.114)
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Detailed derivations of these equations are found in the references [46].

Necessary equipment for a Rossi-α experiment include an assembly, detector, and

a source. The procedures include a few steps: (i) measure the counting rate R(t)

following the detection of one neutron at time t = 0, (ii) build the curve and subtract

the uncorrelated contribution, and (iii) perform a linear regression of the logarithm

of the correlated contribution to obtain the prompt fundamental eigenvalue and the

correlation amplitude [46]. Rossi-α experiments are suited for fast, small assemblies

where the delayed neutrons are unimportant, like fast-burst reactors. In these reac-

tors, the higher prompt kinetic modes decay very quickly and have little effect on the

measurement. These experiments are useful in calculating kinetics parameters, such

as the prompt neutron generation time or the effective delayed neutron fraction [47].

2.5 Calculating α Eigenvalues

Numerical methods developed for calculating α eigenvalues fall under a broad range of

methodologies due to varying intents and purposes. Some methods calculate only the

prompt fundamental eigenvalue αp0, while others calculate delayed or higher prompt

eigenvalues or the fundamental eigenfunction as well. Others calculate a number of

higher prompt eigenpairs for modal analyses or calculation of correction factors. In

any case, the calculated spectra of α eigenvalues are always finite. It is important to

discuss these existing methods to find where the TRMM fits amongst them.

The list of methods detailed in this section are not all-inclusive, but are repre-

sentative of the research performed on α-eigenvalue calculations over the years. This

section categorizes methods into four groups: fixed-source calculations, diffusion the-

ory methods, transport theory methods, and Monte Carlo methods. Each review is

clearly marked for easy reference, and a summary follows the individual discussions.

2.5.1 Fixed-Source Calculations

While these methods are able to appropriately account for temperature feedback,

variations on time-dependent fixed-source calculations represent the most straight-

forward and least elegant way of obtaining the α eigenvalue of a system. In these

calculations, deterministic or Monte Carlo methods provide the time-dependent flux

shape, or flux at a point, of a system reacting to some initial external source. Ex-

ponential fits on the time-dependent fluxes yield the prompt fundamental eigenvalue

αp0 of the system. This is equivalent to the direct simulation of a PNE within a code;

therefore, these methods have all the pitfalls of a PNE, including difficulty finding
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higher eigenvalues and determination of the kinetic modes.

Most of the literature on these calculations use Monte Carlo codes to determine

the time-dependence of the flux. These include standard production codes able to

handle time dependence [48] and codes specifically written to handle time-dependent

problems [49]. In the former study, the continuous time space is split into channels of

width ∆t and the code tracks the time-dependent flux among those channels. In the

latter study, the code generates the time-dependent flux via a censusing technique.

For both studies, the calculated prompt fundamental eigenvalue compares well to

measured data, but neither yields higher eigenpairs. The following example problem

uses the standard production code MCNP5 [34] to calculate the flux time-dependence

in the FSV reactor to obtain the prompt fundamental eigenvalue and reactivity of

the configuration.

Method 1: With proper tallies and source definitions, MCNP5 accurately sim-

ulates the time-dependent flux in a PNE. A detailed FSV MCNP5 model with ho-

mogenized fuel rods [50] is subject to a pulsed source. Due to the computational

cost of modeling several hundred pulses, MCNP5 simulates the response to a single

pulse, and superposition yields the constant delayed neutron background. The neu-

tron flux tally divides the flux into time bins to simulate the multichannel analyzer

used in the experiment, minus the dead time losses. This flux tally is weighted by the
10B absorption cross section to simulate the boron-lined detector response, without

efficiency losses. MCNP5 tallies this weighted flux in three regions: 16, 30, and 31.

Additional variance reduction techniques increase flux tally statistics: increasing the

number of delayed neutrons released per fission and geometry splitting with Russian

roulette.

A least-squares analysis [51] of the calculated detector response data yields a fit to

the specific form dictated by the series of exponentials in the eigenfunction expansion.

The inhour method yields the reactivity using the prompt fundamental eigenvalue of

the fit. For the area-ratio method, the integrals of the fitted solutions yield the prompt

and delayed areas.

MCNP5 calculates detector responses without and with delayed neutron emission

(Figures 2.3 and 2.4). Without delayed neutrons, the emission probability is set

to zero, yielding only the prompt neutron contribution to the detector response.

By channel 200, the response is very noisy due to the fundamental prompt mode

decreasing several orders of magnitude. With delayed neutrons, counts after channel

200 increase considerably, but still have a low yield: one benefit of having constant

delayed neutron background is an increased number of counts in interval III. Detector
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Figure 2.3: MCNP5-calculated prompt detector responses for a pulsed subcritical configura-
tion of FSV yields very few counts in interval III due to the exponentially decaying prompt
fundamental mode.
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Figure 2.4: MCNP5-calculated detector responses with delayed neutron precursors shows
an increased number of counts in interval III due to the contribution of delayed neutron
emission.
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16 has the largest in amplitude response because it is closest to the source: detectors

30 and 31 are in adjacent regions nearly equidistant from the source.

To provide a fair comparison, the same least-squares analysis and reactivity calcu-

lations performed on the calculated detector responses are repeated on the measured

results. Decay constants and areas are averaged values from the three detectors (Ta-

ble 2.3). This particular configuration is relatively further from critical, so the inhour

method is expected to return more accurate results than the area-ratio method.

The inhour method yields the best keff for both measured and MCNP5 results,

while the extrapolated area-ratio method produces more inaccurate results stemming

from a pair of issues: inadequate spatial correction factors and poor statistics in the

delayed neutron region. Monte Carlo simulations calculating the detector responses

(Figure 2.4) already use long runtimes and several variance reduction techniques, so

a better representation of delayed neutron emission is necessary to yield more counts

in interval III. Still, the fitted fundamental decay constant matches very closely to

the measured constant.

Table 2.3: Comparisons of measured and MCNP5-calculated results for one subcritical
configuration of the FSV PNE.

Data Area-ratio Inhour Calculated
source ρ/β keff α keff keff

Measured −2.490 0.984 −57.522 0.9826 0.981
MCNP5 −3.206 0.980 −56.396 0.9830 0.9825

2.5.2 Diffusion Theory Methods

The following methods use the multigroup diffusion equations. Different procedures

for calculating eigenpairs use iterative, elimination, or matrix methods.

Method 2: One study demonstrates the ability to calculate the delayed funda-

mental eigenvalue αd0 of a subcritical system in the context of a standard criticality

code [52]. This is an iterative method:

� Start with an estimate of the delayed eigenfunction φ
(n)
d0 and delayed eigenvalue

α
(n)
d0 .

� Apply this eigenvalue estimate to Eq. (2.82): add the time-absorption term α/v

to the absorption cross section and add the eigenvalue to the denominator of

the delayed fission emission spectrum.

� Run a criticality, or k-eigenvalue, calculation to update the delayed eigenfunc-

tion φ
(n+1)
d0 .
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� The largest root of the equation

ρ∗ = αΛ∗ + α
∑
j

βj
α + λj

, (2.115)

is the new delayed fundamental eigenvalue α
(n+1)
d0 , where

ρ∗ = 1−
∫∫

Σaφd(r, E
′)dE ′dV +

∫∫
n · J(r, E ′)dE ′dS∫∫

ν̄Σf (r, E ′)φd(r, E ′)dE ′dV
, (2.116)

Λ∗ =

∫∫
1
v
φd(r, E

′)dE ′dV∫∫
ν̄Σf (r, E ′)φd(r, E ′)dE ′dV

, (2.117)

represent quantities similar to the reactivity and neutron generation time as

given in Eqs. (2.22) and (2.26), respectively.

� Apply the new eigenvalue and repeat the criticality calculation until conver-

gence, k = 1.

This is known as a k-α iteration. Numerical results show good agreement to analytical

solutions for multigroup slab problems. This iterative method applies equally to the

multigroup transport equation. Only the delayed eigenvalue is calculated.

Method 3: Another study applies a k-α iteration to calculate the prompt fun-

damental and all delayed eigenpairs. It uses an additional elimination method to

calculate higher eigenpairs [53]. The iterative method starts calculating the funda-

mental eigenvalues, i = 0:

� Make the initial guess for α(n) using a root of the inhour equation

ρi = αΛ0 + α
J∑
j

βj
α + λj

, (2.118)

where J is the total number of delayed neutron precursor groups. The reactivity

ρi and neutron generation time Λ0 are calculated with the ith and fundamental

solutions of the k-eigenvalue problem, respectively. There are J+1 roots to this

equation: J roots near the delayed constants λj and one much larger in magni-

tude. These roots are near the delayed and prompt α eigenvalues, respectively:

the starting guess determines the calculated eigenvalue.

� Apply this eigenvalue to Eq. (2.82): add the time-absorption term to the ab-

sorption cross section and add the eigenvalue to the denominator of the delayed

fission emission spectrum.

� If i = 0, run a standard criticality calculation to update the eigenfunction φ(n+1).
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� If i > 0, run a criticality calculation with the elimination method to update the

eigenfunction φ(n+1).

� Update the eigenvalue α(n+1), increasing or decreasing it depending upon the

value of k.

� Apply the eigenvalue and repeat the criticality calculation until convergence,

k = 1.

� Repeat the process for each root of the inhour equation.

� Recalculate the roots of the inhour equation for i = i+1 and repeat the process

until obtaining the desired number of higher eigenvalues.

The elimination method provides a way to obtain the ith solution using both the

forward and adjoint k-eigenvalue problems

Mφi =
1

ki
Fφi, (2.119)

M†φ†i =
1

k†i
F†φ†i , (2.120)

by expanding the starting guesses in terms of the ith solutions

φ = a0φ0 + a1φ1 + a2φ2 + · · · , (2.121)

φ† = b0φ
†
0 + b1φ

†
1 + b2φ

†
2 + · · · , (2.122)

where the coefficients are

ai =

〈
φ†i ,Fφ

〉
〈
φ†i ,Fφi

〉 , (2.123)

bi =

〈
φ,Fφ†i

〉
〈
φi,Fφ

†
i

〉 . (2.124)

A criticality calculation with the elimination method starts with i = 1, with the

known fundamental solutions φ0 and φ†0:

� Starting with the guess φ, subtract the component along the fundamental solu-

tion φ− a0φ0. Perform the criticality calculation, periodically filtering out the

fundamental solution to obtain φ1.

� Starting with the guess φ†, subtract the component along the fundamental solu-

tion φ† − b0φ
†
0. Perform the adjoint criticality calculation, periodically filtering

out the adjoint fundamental solution to obtain φ†1.
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� Starting with the guess φ, subtract the components along the previously deter-

mined solutions φ−a0φ0−a1φ1. Perform the criticality calculation, periodically

filtering out the higher solutions to obtain φ2.

� Starting with the guess φ†, subtract the components along the previously deter-

mined solutions φ†−b0φ
†
0−b1φ

†
1. Perform the criticality calculation, periodically

filtering out the higher solutions to obtain φ†2.

� Repeat the last two steps for each higher solution.

This elimination method applies to the standard criticality calculation, to obtain

higher k eigenpairs, and the α-adjusted criticality calculation, to obtain higher α

eigenpairs. Results from this method agree well with analytical slab solutions as

well as two-dimensional few-group problems. For most problems, the higher delayed

eigenpairs are unimportant because the fuel is stationary: they are only useful in a

case where the fuel changes drastically.

Method 4: Another study formulates a matrix problem to compute the delayed

and many prompt eigenpairs of the FSV reactor for PNE analysis. This represents

an application of a method to an actual problem, with comparisons to measured

results. The overall calculation procedure is extensive [54], so this section focuses on

the modal method followed by the RZMODE and RTMODE codes for calculating

the kinetic modes [55]. Of the diffusion methods, this is most similar to the TRMM

due to the matrix formulation.

RZMODE and RTMODE are two-group diffusion codes with r-z and r-θ geometry,

respectively. They use the method of harmonics, expanding the group fluxes, φ1 and

φ2, and precursor concentrations as the sums

φ1(r, t) =
N∑
ν=1

Wν(r)T 1
ν (t), (2.125)

φ2(r, t) =
N∑
ν=1

Wν(r)T 2
ν (t), (2.126)

C(r, t) =
N∑
ν=1

Wν(r)T cν (t), (2.127)

where the homogeneous reactor modes Wν(r) are the solutions to the equation

∇2Wν(r) +B2
νWν(r) = 0, (2.128)
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with the boundary condition

Wν(r) = 0, (2.129)

where Bν is the geometric buckling. These homogeneous modes are combinations of

sine or cosine and Bessel functions and are normalized such that

〈Wµ(r),Wν(r)〉 = δµν . (2.130)

Substituting these expansions into the two-group diffusion and precursor equations,

multiplying by Wµ(r), and integrating analytically or numerically over the size N

spatial domain yields the full 3N × 3N matrix problem. But, RZMODE and RT-

MODE only calculate the thermal and delayed kinetic modes because the fast kinetic

modes decay very quickly: the full problem reduces to two N × N matrix problems

for the prompt thermal and delayed kinetic modes with additional approximations.

The last steps are to find the forward and adjoint eigenpairs of the two matrices, and

calculate expansion coefficients for a given source. Two r-θ geometry calculations are

necessary to account for the axial asymmetry in the FSV reactor.

There are several limitations of this method other than the diffusion approxi-

mation. The spatial representations are two-dimensional, it uses only two groups,

and ignores fast modes. Additionally, it uses inadequate expansion modes: the ho-

mogeneous reactor modes are too simple to capture the thermal flux peaks in the

reflector. Still, the calculated eigenvalues agree within 10% of measurements and the

eigenfunctions are able to capture some of the flux variations [44].

2.5.3 Transport Theory Methods

The following methods use some form of the multigroup neutron transport equations

to treat problems ranging from one-dimensional slabs and spheres to a complex ADS.

Method 5: One study uses an iterative method to find the eigenvalues of one-

speed, one-dimensional slabs and spheres [56] by formulating a relation between the

α- and c-eigenvalue transport problems(
α + Σs + µ

∂

∂x

)
φ(x, µ) =

Σs

2

∫ 1

−1

dµ′φ(x, µ′); x ∈
[
− a

Σs

,
a

Σs

]
, (2.131)(

Σ̃t + µ
∂

∂x

)
φ(x, µ) =

cΣ̃t

2

∫ 1

−1

dµ′φ(x, µ′); x ∈
[
− ã

Σ̃t

,
ã

Σ̃t

]
, (2.132)

where a and ã are the the half-thicknesses or -radii of the α- and c-eigenvalue problems,

respectively, and isotropic scattering is assumed. The neutron speed, omitted from
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the formulation, is set to unity v = 1. These two eigenvalue problems are equal when

c and Σ̃t meet the conditions

c =
Σs

Σ̃t

=
Σs

Σs + α
, (2.133)

or, in terms of the problem geometry,

c =
a

ã
. (2.134)

The method makes an additional assumption that Σ̃t = Σs = 1: the units of the thick-

nesses are mean free paths. The iterative method repeats a c-eigenvalue calculation

for different problem thicknesses ã:

� Choose the dimension of the α-eigenvalue problem a whose eigenvalues are

desired.

� Guess an eigenvalue α close to the desired ith eigenvalue.

� Calculate the initial critical problem dimension ã(0) with Eqs. (2.133) and

(2.134).

� Find c
(n)
i numerically for a problem with this dimension ã(n).

� Update the critical problem dimension ã(n+1) using Eq. (2.134) or another

method.

� Repeat the last two steps until convergence, (ãci)
(N) = a.

� Transform the final value ci to αi using Eq. (2.133).

Repeating the calculation with the next guess yields the higher α eigenvalues, until

the entire physical search space above the continuum is interrogated. While the

highly simplified medium facilitates the usage of this method, this method provides a

benchmark used for verifications of other methods discussed here. It is able to obtain

the majority of the eigenvalues for slabs and spheres of a range of sizes. Eigenvalues

close to unity are difficult to obtain numerically because c→∞ for these cases.

Method 6: Another study uses Green’s functions to model one-speed, multiply-

ing, multi-region slabs and obtain boundary flux values for an eigenvalue search [33].

This is known as the Green’s Function Method (GFM). The one-dimensional α-

eigenvalue equation with fission is[
α

v
+ Σt + µ

∂

∂x

]
φ(x, µ) =

Σs

2

∫ 1

−1

dµ′φ(x, µ′) +
ν̄Σf

2

∫ 1

−1

dµ′φ(x, µ′). (2.135)

Application of the Green’s function yields equations describing the interactions of the
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boundary angular fluxes. The GFM forms a matrix problem from these equations.

It obtains the α eigenvalues from a search routine: it determines a search space and

interrogates all values of α within that space. It only searches for eigenvalues above

the continuum. After determining an α eigenvalue, the GFM calculates the boundary

angular fluxes using an iterative process: this yields the eigenfunctions.

The GFM delivers benchmark-quality calculations for five multiple-part test prob-

lems, from purely-scattering, homogeneous slabs to multiplying, multi-region slabs.

Results for eigenvalues and eigenfunctions for three problems match results obtained

with other methods. Two additional problems provide results for multiplying slabs,

including a loosely-coupled reactor problem.

Method 7: Another study forms a matrix problem from a discretized form of the

one-speed, one-dimensional transport equation [57] using discrete ordinates for angu-

lar space and finite difference for position space. The Sn method divides the angular

variable µ into M directions µ1, µ2, · · · , µM , each with weight wm. Finite difference

divides the spatial variable x into N meshes of uniform width h. Rearranging the

α-eigenvalue problem in Eq. (2.131) and introducing these discretizations yields NM

equations

µm
φi+1/2,m − φi−1/2,m

h
+ Σtφi,m − Σs

M∑
m=1

wmφi,m = αφi,m. (2.136)

where φi,m represents the direction m flux in the center of mesh i and φi±1/2,m repre-

sents the direction m flux on the edges of mesh i. Eliminating the center fluxes with

the diamond difference relation

φi,m =
φi+1/2,m + φi−1/2,m

2
, (2.137)

yields the generalized eigenvalue problem of the form

A~Φ = αB~Φ, (2.138)

where ~Φ contains the mesh-edge directional fluxes. Solving this problem with stan-

dard algorithms yields NM prompt eigenpairs. Due to the discretization of the phase

space in these models, NM often greatly exceeds the number of real eigenvalues ex-

pected from theory. In this case, the method calculates the real eigenvalues along

with an additional spectrum, most of which consists of points within the continuum

that are determined by the nature of the discretization. The study shows this method
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is accurate for homogeneous and multi-region slabs with isotropic scattering. It notes

that the method is less accurate than semi-analytical methods, but is more versatile

for extension to more realistic media. Still, the analysis becomes more complicated

with anisotropic scattering, multiple energy groups, and complex geometries.

Method 8: Another study forms a matrix problem from a discretized form of

the multigroup, one-dimensional Pn equations [58]. It uses a least-squares functional

for the first order equation, a spherical harmonics expansion to treat the angular

space, and a finite element discretization for position space. The result of these

approximations is the discrete α-eigenvalue problem

L~Φ + αV~Φ = (S + F) ~Φ, (2.139)

where M, V, S, and F are numerical approximations to the streaming, time-

absorption, scattering, and fission operators, and ~Φ contains the directional fluxes

at nodes. This is similar to an eigenvalue problem using the Sn method. To solve for

the eigenvalues, the study rearranges the above problem into a standard problem for

the inverse eigenvalue

− (L− S− F)−1 V~Φ = A~Φ = α−1~Φ. (2.140)

After finding the eigenvalues of the left product matrices, they are inverted to yield

the α eigenvalues. In this formulation, there are two steps to applying the operator

A: multiplying by V and applying the operator (L − S − F)−1. The former is just

multiplication by a scalar, but the latter is a fixed source problem. The difficulty

of solving this problem increases with multigroup and upscattering, leading to slow

convergence with a Gauss-Seidel procedure. Also, due to the need to solve a fixed-

source problem, the method is applicable only to subcritical systems. The Implicitly

Restarted Arnoldi Method (IRAM) determines a fixed number of dominant eigenpairs

of A. The result is a set of the desired number of largest α eigenvalues of the

system. The study applies this method to homogeneous slabs for verification and to

a multigroup slab with ADS geometry. Both applications yield accurate results.

Method 9: This scheme is similar to the previous but is notable for its appli-

cation to a three-dimensional simplified model of an ADS [59]. The method uses

the three-dimensional Sn equations with the scatter and fission terms expanded in

spherical harmonics and the discontinuous finite element method for position space.

This results in a discrete α-eigenvalue problem like that in Eq. (2.139), which is sub-

sequently transformed into Eq. (2.140). The IRAM and Sub-space Iteration (SSI)
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methods yield a selected number of dominant eigenvalues and eigenfunctions of the

problem. Eigenvalues for a three-dimensional one-group square compare well to ana-

lytical solutions and the method successfully finds eigenpairs for the Venus ADS. Due

to the similarities to Method 8 and the inversion in Eq. (2.140), it shares most of its

characteristics.

2.5.4 Monte Carlo Methods

The following methods use Monte Carlo codes but differ slightly in finding eigenpairs.

The fixed-source calculation discussed in § 2.5.1 also uses Monte Carlo codes.

Method 10: The method included in older MCNP versions is a k-α iteration on

the prompt α eigenvalue problem given in Eq. (2.51). This iterative method starts

with a standard k-eigenvalue power iteration [24]:

� Make an initial guess α(0), where usually α(0) = 0.

� Obtain k(0) and φ(0) via Monte Carlo power iteration, adjusting the absorption

cross section by α(0)/v.

� Make a second guess with the eigenvalue modifier α(1) = α(0) + EVM .

� Obtain k(n) and φ(n) via Monte Carlo power iteration, adjusting the absorption

cross section by α(n)/v.

� Plot the points (k(n−1),α(n−1)) and (k(n),α(n)) and perform a linear or quadratic

extrapolation to determine α(n+1) such that k(α) = 1.

� Repeat the last two steps until convergence, k(n) = 1.

The results of this iteration is the prompt fundamental eigenpair because the method

ignores delayed neutron precursors. Poor selections of the initial guess and eigenvalue

modifier slow the search procedure, and cause failure in some cases for subcritical

systems. For early iterations, the root finding procedure for updating the eigenvalue

guess causes the search procedure to flounder about. Due to the large computa-

tional demand of the Monte Carlo power iteration, some studies developed additional

procedures to accelerate the convergence of this k-α iteration [25].

Method 11: The last study presents results using a Monte Carlo power iteration

like those described in Eqs. (2.62) and (2.70) for determining the k and c eigenval-

ues [60]. Based on Eq. (2.51), the prompt α-eigenvalue problem for iteration n is

Mφ(n+1)
α =

(
F− α

(n)
0

v

)
φ(n)
α . (2.141)

The method must account for the time-absorption term during the Monte Carlo
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random walk [61]: it does so by adjusting the particle weights. This weight change

dW of a neutron particle over a flight length ds is

dW = −α
v
Wds. (2.142)

Integrating this over the entire path length, 0 to s, yields

W (s) = W0 exp
(
−α
v
s
)
, (2.143)

where W0 is the initial particle weight. Because the weight constantly changes with

distance traveled, the product Ti of the track length si and the weight W (s) is an

integral of this equation
∫ si

0
(·)ds, yielding

Ti = W0
vi
α

[
1− exp

(
−α
vi
si

)]
. (2.144)

A track length estimator obtains α(n+1) during the random walk

α
(n+1)
0 = α

(n)
0

[
1 +

1∑
i ∆Wi

(
N −

∑
i

ν̄pΣfTi

)]
, (2.145)

where the sums are over all trajectories, and

∆Wi = W0

[
1− exp

(
−α
vi
si

)]
. (2.146)

Additionally, at each fission site, the number of neutrons stored changes to⌊
Wν̄pσf
σt

+ ξ

⌋
, (2.147)

where ν̄p is the average number of prompt neutrons released per fission. This is

Eq. (2.65) without the k
(n)
0 . The final result is the prompt fundamental eigenpair.

This method uses a weight cancellation scheme to obtain the next eigenpair and a

elimination method to obtain the third and fourth eigenpairs. The latter method is
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similar to that described in Method 3, except the coefficients are

ai =

〈
φ†i , v

−1φ
〉

〈
φ†i , v

−1φi

〉 , (2.148)

bi =

〈
φ, v−1φ†i

〉
〈
φi, v−1φ†i

〉 . (2.149)

The first three calculated eigenvalues compare well to fixed-source calculations of the

decay constants. For higher modes, the fixed-source calculations define geometries

and sources such that the higher modes are excited for an extended period of time.

For very subcritical systems, α < 0, where the time-absorption term dominates

the fission source, the method subtracts a λα/v term from both sides of the equation.

The additional term on the left side of the equation increases the total cross section,

leading to more absorptions. To perform the power iteration with this adjustment,

replace α with

α′ = (1 + λ)α, (2.150)

in the previous formulations. This shows better numerical stability for subcritical

problems.

Upon close inspection, this method is very much like the k-α iteration. The

number of neutrons stored at each fission site described in Eq. (2.147) is the same

as those stored for a critical k-eigenvalue calculation, where k
(n)
0 = 1. The weight

adjustment described in Eq. (2.143) is just implicit absorption along a flight path,

where α/v is the absorption cross section. These procedures are similar to a k-

eigenvalue Monte Carlo calculation, with a tally to update α for the next cycle.

2.5.5 Summary

These eleven methods provide a general overview of the basic principles and results

yielded from current techniques for calculating α eigenvalues (Table 2.4). These

methods are classifiable in a number of ways. Some methods use iterative procedures

(2, 3, 5, 10, and 11), while some are based on a matrix formulation (4, 6, 7, 8, and 9).

Some treat extremely simplified systems to obtain a better theoretical understanding

of the spectrum of the linear transport operator (5, 6, and 7), while others pursue

schemes that obtain dominant kinetic modes of multi-dimensional reactor models (4

and 9). Some are designed specifically to treat purely-scattering media (5 and 7),
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Table 2.4: Summary of methods for calculating α eigenvalues, eigenfunctions, and kinetic
modes.

Method Type Results

1-FS MC Pulsed-Source Calculation
with Flux Time Response Fit

Prompt Fundamental Eigenvalue,
Limited Kinetic Mode Information

2-Diff. k-α Iteration with Modified
Inhour Eq.

Delayed Fundamental Eigenpair

3-Diff. k-α Iteration with Elimination
Method

Several Higher Delayed and Prompt
Eigenpairs

4-Diff. Homogeneous Reactor Mode
Expansion Matrix Method

J Delayed and 60-100 Prompt
Eigenpairs of FSV

5-Trans. c-Eigenvalue Critical Thickness
Iteration

Real Eigenvalue Spectrum of
One-Speed, Homogeneous Slabs and
Spheres

6-Trans. Green’s Function Method Real Eigenpairs of One-Speed,
Multi-Region Slabs

7-Trans. Discrete Ordinates, Finite
Difference Matrix Method

Real and Complex Eigenpairs of
One-Speed, Multi-Region Slabs

8-Trans. Spherical Harmonic, Finite
Element Matrix Method

Dominant Prompt Eigenpairs of
Multigroup Slabs

9-Trans. Discrete Ordinates, Finite
Element Matrix Method

Dominant Prompt Eigenpairs of an
ADS

10-MC k-α Iteration Prompt Fundamental Eigenpair

11-MC Power Iteration with Weight
Cancellation and Elimination
Method

Few Prompt Eigenpairs

while others treat subcritical (1, 8, and 9) or supercritical (10) media. The TRMM

bridges the gap between some of these divisions: it is a Monte Carlo matrix method

that treats any scattering or multiplying media, from simplified to complex.

Time-dependent fixed-source calculations (method 1) are inefficient for complex

geometries and far subcritical assemblies. The example using MCNP for a subcritical

configuration of the FSV reactor shows results achieved with a very long runtime and

several variance reduction techniques. Even with these measures, it is still difficult

to quantify the delayed neutron background. Furthermore, the best possible results

are only the first few eigenvalues and some spatial kinetic mode information.

Iterative techniques (methods 2, 3, 5, 10, and 11) are easily integrable into exist-
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ing criticality codes: the methods are essentially repeated criticality calculations with

an adjusted total cross section and emission spectrum. While the efficiency of the

criticality code and the method of updating α determine the overall speed of these

methods, the iteration must be repeated to obtain different eigenvalues. It is easy

to see cases where obtaining several eigenvalues comes at a large computational cost.

Additionally, the treatment of the time-absorption term causes numerical difficulties

in some cases. The time-absorption term combines with the total cross section, re-

sulting in an adjusted effective cross section, Σeff = α/v + Σ. If α > 0, this yields a

larger effective cross section. If α < 0 and |α/v| < Σ, this yields a smaller effective

cross section. But, if α < 0 and |α/v| > Σ, then the cross section becomes nega-

tive, Σeff < 0, which is unphysical. The time-absorption term then becomes a source

term, and as α becomes increasingly negative, the term dominates the fission source,

causing problems with transport calculations. While the technique of subtracting

the extra λα/v term from both sides of the equation attempts to addresses this is-

sue, ultimately, some of these methods operate well for supercritical and near-critical

systems, but struggle for far subcritical systems.

The matrix formulations (methods 4, 6, 7, 8, 9) are most similar to the TRMM

due to the treatment of the phase space and the building of the α-eigenvalue matrix

problem. The calculated eigenvalue spectra of these methods are similar, including

the calculation of point spectra within the continuum. Some of these methods require

a solution to a fixed-source problem, which comes at a computational cost and limits

their application to certain problems.
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CHAPTER 3

The Markov Transition Rate Matrix Method

A convenient way of modeling a stochastic process is to build a mathematical rep-

resentation of the behavior the system by classifying a collection of states that the

system possibly occupies and defining how it moves among these states. Transitions

from one state to another define the evolution of the process. Markov processes are

a class of stochastic process that satisfy the Markov property: the probability that

the physical system is in a given state at time ti+1 is deduced from a knowledge of

its state at any earlier time ti, and does not depend on the history of the system

before time ti [1]. Examples of Markov processes extend to several fields of study,

including biology, social sciences, business, and engineering: for the formulation of

the Transition Rate Matrix Method (TRMM), neutron transport is recognized as one

of these examples.

The Transition Rate Matrix (TRM) is the operator of the adjoint α-eigenvalue

equation, obtained from a formulation using the time-dependent neutron importance

equation: the equation adjoint to the neutron transport equation. Solutions to the

adjoint equation have a physical significance as the importance of neutrons within a

the system [2]. The TRM identifies a set of states and defines how transitions occur

between the states: it describes a Markov process. A forward Monte Carlo calcula-

tion tallies estimates of the elements of the TRM, and eigenvalue solvers determine

the eigenpairs of the matrix: these are estimates of the adjoint α eigenpairs of the

underlying system.

This chapter describes the Markov TRMM process of approximating α eigenpairs

of scattering and multiplying media and the use of this information to build the

time-dependent expansion solution to arbitrary sources. Because Monte Carlo treats

the phase space as continuous, the angular variable Ω̂ is reintroduced into the fol-

lowing formulations: this variable is important to the functionality of the method.

This chapter discusses Markov processes, the neutron importance equation, the the-
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oretical formulation of the TRMM, the relationship between the forward and adjoint

α-eigenvalue problems, the similarities between the TRMM and the fission matrix

method, derivations of the TRMM for simplified media, Monte Carlo transition rate

tallies, and eigenvalue solvers.

3.1 Theoretical Formulation

The formulation of the TRMM relies on the interpretation that the operator in the

adjoint α-eigenvalue problem describes a continuous-time Markov process: elements

of this operator are rates defining neutrons transitioning among the position-energy-

direction phase space. After obtaining the adjoint operator, subsequent matrix ma-

nipulations yield the forward operator. Together, solutions to these operators provide

estimates of the adjoint and forward α eigenpairs: this is all the information necessary

to perform eigenfunction expansion.

3.1.1 Markov Processes

A Markov process is the set of random variables {X(t), t ∈ T}, where X(t) are states,

t is the parameter, and T describes the parameter space. Often, the parameter is

time, so X(t) denotes the state assumed at time t. The nature of the parameter

and state spaces define four classifications of Markov processes. If the parameter

space is discrete, i.e., T = {0, 1, 2, · · · }, then it is a discrete-parameter Markov

process. If the parameter space is continuous, i.e., T = {0 ≤ t < ∞}, then it is a

continuous-parameter Markov process. Likewise, if the state space is discrete, i.e.,

X(t) = {X0, X1, X2, · · · }, then it is a Markov chain. If the state space is continuous,

i.e., X(t) = {0 ≤ X(t) <∞}, then it is a Markov process [3].

Neutron transport is a Markov process, where the parameter is time and the states

are within the position-energy-direction phase space. Both the state and parameter

spaces are continuous, so transport is a continuous-time Markov process. But, for the

ease of computation, the state space is made finite, and it becomes a continuous-time

Markov chain.

Continuous-parameter Markov chains are characterized by the transition intensity,

or transition rate, matrix

Q =


−q1 q12 · · ·
q21 −q2 · · ·
...

...
. . .

 . (3.1)
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The diagonal quantities, qi, are the intensity of passage, given that the Markov process

is in state i. The off-diagonal quantities, qij are the intensity of transition to j, given

that the Markov process is in state i [4]. In relation to the transition probability pij,

the intensities are

qij = lim
∆t→0

{
pij(t, t+ ∆t)

∆t

}
, for i 6= j, (3.2)

where ∆t is the period of observation and pij(t, t + ∆t) is the probability that a

transition occurs in the interval [t, t+ ∆t). It is common to normalize the transition

intensities such that

qi =
∑
j 6=i

qij, (3.3)

but this is unnecessary in cases where an absorbing state is left undefined. For a

purely absorbing state, qi = 0. The time that passes while transitioning between

states is negligible, i.e., transitions between states occur instantaneously.

In the application to neutron transport, the entrants of the Q matrix are transi-

tion rates between states, where qi is the removal rate from state i and qi,j is the the

transition rate from state i to state j. By defining discrete states of the physical sys-

tem as specific conditions that neutrons meet in the position-energy-direction phase

space, the Q matrix characterizes the behavior of neutrons in the system. Monte

Carlo is well-suited to obtaining the transition rates in Q because it generates many

individual neutron tracks, tallying average quantities for transition rates out of and

between states. Conveniently, this Q matrix describing neutron transport is the op-

erator of the adjoint α-eigenvalue problem. The entries of the operator resemble the

transition rates characterizing a continuous-time Markov process: with the Q matrix,

the adjoint α-eigenvalue spectrum is known.

3.1.2 The Time-Dependent Neutron Importance Equation

The time-dependent neutron transport and precursor equations in operator form are

1

v

∂ψ

∂t
+ Mψ(r, E, Ω̂, t) = Fpψ +

J∑
j

χj(E)

4π
λjCj, (3.4)

∂Cj
∂t

+ λjCj(r, t) = Fdjψ, for j = 1, . . . , J, (3.5)

where the operators are as defined in Eqs. (2.3) through (2.8). These equations

describes the balance of neutrons within the system, with the additional J delayed
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precursor equations included to simplify the neutron transport equation.

The time-dependent neutron importance, or fundamental adjoint, equations are

−1

v

∂ψ†

∂t
+ M†ψ†(r, E, Ω̂, t) = Fp

†ψ† +
J∑
j

Fd
†
jC
†
j , (3.6)

−
∂C†j
∂t

+ λjC
†
j (r, t) = (χjλj)

†ψ†, for j = 1, . . . , J, (3.7)

where the adjoint operators are

L†ψ† = −Ω̂ · ∇ψ†, (3.8)

R†ψ† = Σ(r, E)ψ†, (3.9)

S†ψ† =

∫∫
Σs(r;E, Ω̂→ E ′, Ω̂′)ψ†(r, E ′, Ω̂′, t)dE ′dΩ′, (3.10)

M†ψ† = L†ψ† + R†ψ† − S†ψ†, (3.11)

Fp
†ψ† =

∫∫
(1− β)ν̄(E)Σf (r, E)

χp(E
′)

4π
ψ†(r, E ′, Ω̂′, t)dE ′dΩ′, (3.12)

Fd
†
jC
†
j = βj ν̄(E)Σf (r, E)C†j (r, t), (3.13)

(χjλj)
†ψ† =

∫∫
χj(E

′)

4π
λjψ

†(r, E ′, Ω̂′, t)dE ′dΩ′, (3.14)

where ψ† is the adjoint angular flux and C†j is the adjoint precursor concentration,

and (χjλj)
† is the adjoint precursor emission operator. These equations describe the

importance of neutrons within the system, with the adjoint delayed neutron precursor

equations serving a similar role as for the forward neutron transport equation. Give

extra attention to the differences in the forward and adjoint operators as described

in these two formulations: (i) in the adjoint equations, the time derivative term

is negative; (ii) in the adjoint equations, the streaming term Ω̂ · ∇ has the opposite

sign; (iii) the delayed fission operator has no integral; (iv) and the adjoint formulation

swaps the energy and direction variables in the integrals.

Requirement of the Adjoint Operators

Mathematically, the adjoint operators satisfy the condition

〈
ψ†,Mψ

〉
=
〈
ψ,M†ψ†

〉
, (3.15)
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where ψ(r, E, Ω̂) = 0 for all incoming neutron directions on the boundary, n̂ · Ω̂ < 0,

and ψ†(r, E, Ω̂) = 0 for all outgoing directions on the boundary, n̂ ·Ω̂ > 0 [2]. The op-

erators in Eqs. (3.8) through (3.13) satisfy this requirement. For the collision operator

R†, both sides of Eq. (3.15) are identical. For the integral operators, changing vari-

ables names reveals equality. For example, inserting the forward and adjoint delayed

fission operators into Eq. (3.15) yields〈
C†j ,Fdjψ

〉
=
〈
ψ,Fd

†
jC
†
j

〉
. (3.16)

Explicitly writing out the operators and integrals yields∫
C†j (r)dV

∫∫
βj ν̄(E ′)Σf (r,E

′)ψ′dE ′dΩ′

=

∫∫∫
ψβj ν̄(E)Σf (r, E)C†j (r)dEdΩdV. (3.17)

With some algebra, it is apparent that the integrated quantities are equal. It is less

apparent that the leakage operator L† fulfils this requirement. Moving both terms

in Eq. (3.15) to the same side, inserting the operators, and writing out the integrals

yields ∫∫∫
ψ†Ω̂ · ∇ψdEdΩdV +

∫∫∫
ψΩ̂ · ∇ψ†dEdΩdV = 0. (3.18)

Because the gradient does not act upon direction,

Ω̂ · ∇ψ = ∇ · Ω̂ψ, (3.19)

and the integrals are rewritten as∫∫∫
∇ · Ω̂ψ†ψdEdΩdV = 0. (3.20)

Using the divergence theorem, an integral over the surface replaces the volume integral∫
∂V

∫∫
n̂ · Ω̂ψ†ψdEdΩdS = 0. (3.21)

This integral is zero due to the boundary conditions of the forward and adjoint fluxes:

the incoming angular and outgoing adjoint angular fluxes are zero, so the multiplica-

tive result ψ†ψ is zero across the surface.
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Physical Interpretation of the Adjoint Flux

The adjoint angular flux is a measure of neutron importance of arbitrary units. To

understand its definition, consider a system with a detector defined by the macro-

scopic cross section σd(r, E, t) of the detecting nuclide. Then, the neutron importance

ψ†(r, E, Ω̂, t) is the future expected response generated in the detector by a neutron

at r, E, Ω̂, t. This includes all secondary neutrons, e.g., from fission or scattering,

produced by this neutron [2]. A neutron exiting the boundary of the system does

not contribute to the future expected detector response: the importance of outgoing

neutrons at a system boundary is zero.

A typical neutron transport problem defines an initial value problem at t = 0,

and uses the transport equation to obtain the angular flux at subsequent times. For

neutron importance, this is reversed: a final value problem defined at t = tf uses

the fundamental adjoint equation to obtain the importance at earlier times. For

example, a change in the detector at a particular time only affects the importance

for all previous times: this is opposite to neutron flux. This behavior is due to the

opposite sign of the time derivatives in the adjoint equations. Mathematically, this

affects the formulation of the adjoint α-eigenvalue problem by changing the time

dependence in the shape and time function separation. In the forward problem, the

time function is a positive exponential. In the adjoint problem, the separations are

ψ†(r, E, Ω̂, t) = ψ†(r, E, Ω̂) exp(−α†t), (3.22)

C†j (r, t) = C†j (r) exp(−α†t), for j = 1, . . . , J, (3.23)

where the adjoint eigenvalues α† follow the trend in Eq. (2.75) because they are the

same as the forward eigenvalues α. Thus, in a supercritical system, the importance de-

creases with time, and in a subcritical system, the importance increases with time [2].

This is in line with the physical definition of neutron importance: in a supercritical

system, an earlier neutron has more importance because it has additional time to

multiply and contribute more to the detector response.

3.1.3 The Transition Rate Matrix

The formulation of the adjoint α-eigenvalue problem follows the same procedures

as the forward formulation described in § 2.3.1. Following these procedures with

Eqs. (3.4) through (3.7) and rearranging terms yields the forward α-eigenvalue prob-
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lem

(−M + Fp)ψ +
J∑
j

χj(E)

4π
λjCj =

α

v
ψ, (3.24)

Fdjψ − λjCj = αCj, for j = 1, . . . , J, (3.25)

and the adjoint α-eigenvalue problem

(−M† + Fp
†)ψ† +

J∑
j

Fd
†
jC
†
j =

α†

v
ψ†, (3.26)

(χjλj)
†ψ† − λjC†j = α†C†j , for j = 1, . . . , J. (3.27)

The right side of Eqs. (3.24) and (3.26) of the forward and adjoint problems has

a v−1 factor important to formulating the transition rate matrix. In the forward

problem, multiplying both sides of Eq. (3.24) by the velocity results in a speed [cm/s]

multiplied by a probability and a decay constant [s−1] in the second term. This

quantity does not correspond to a physical transition rate and it is unclear how this

quantity may be tallied during a Monte Carlo simulation. However, in the adjoint

formulation, multiplying both sides of Eq. (3.26) by the velocity results in a speed

[cm/s] multiplied by a cross section [cm−1] in both the first and second terms. These

quantities are rates [s−1] describing the nature of neutron and precursor behavior

within the system.

Interpretation of the Adjoint Terms

Close examination of each of these rates in the adjoint α-eigenvalue equation shows

their physical meaning. After multiplying the velocity term, the operators of the

adjoint neutron transport equation become

vM† = −vΩ̂ · ∇
1
†

+ vΣ(r, E)

2
†
−
∫∫

vΣs(r;E, Ω̂→ E ′, Ω̂′)dE ′dΩ′

3
†

, (3.28)

vFp
† =

∫∫
(1− β)ν̄(E)vΣf (r, E)

χp(E
′)

4π
dE ′dΩ′

4
†

, (3.29)

vFd
†
j = βj ν̄(E)vΣf (r, E)

5
†

, (3.30)

74



where the speed is energy dependent

v =

√
2E

m
. (3.31)

The adjoint precursor concentration equations have no extra speed term, and therefore

the operators remain the same∫∫
χj(E

′)

4π
λjdE

′dΩ′

6
†

and −λj
7
†
. (3.32)

The physical meanings of these seven mathematical expressions provides insight into

the operator of the adjoint α-eigenvalue problem and shows how it describes a TRM.

Because these are operators, the integrated quantities are somewhat meaningless

without an operand: in this case it is the adjoint angular flux. The shorthand r, E, Ω̂

means “position r, energy E, and direction Ω̂”.

1 † This is the reverse leakage rate for a neutron at r, E, Ω̂

1
†

= −vΩ̂ · ∇. (3.33)

Expanding the directional derivative in Cartesian coordinates yields

1
†

= −v
(

Ωx
∂

∂x
+ Ωy

∂

∂y
+ Ωz

∂

∂z

)
, (3.34)

where Ωi is the i-direction cosine. In the TRM interpretation, this is the tran-

sition rate of a energy E neutron at r to r′ in direction Ω̂. By defining the

i-direction speed as vi, the equation simplifies to

1
†

= −
(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
. (3.35)

2 † This is the collision rate of neutrons at r, E traveling in any direction

2
†

= vΣ(r, E). (3.36)

In the TRM interpretation, this is the transition rate of a neutron at r, E into

another state via a collision. The collision type determines the state to which

the neutron transfers. For example, separating the total cross section, Σ(r, E),
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into its scattering and absorption components yields

2
†

= vΣs(r, E) + vΣa(r, E), (3.37)

and the term becomes the transition rate of a neutron at r, E, Ω̂ to a neutron at

r, E ′, Ω̂′ plus the absorption rate of neutrons at r, E, Ω̂. This example extends

to include fission or inelastic scattering.

3 † This is the total scattering rate of neutrons at r, E, Ω̂ to all resulting energies

and angles

3
†

=

∫∫
vΣs(r;E, Ω̂→ E ′, Ω̂′)dE ′dΩ′. (3.38)

This double integral shows the effect of using the adjoint scattering operator.

The quantity within the integral is the scattering rate of neutrons at r, E, Ω̂ to

r, E ′, Ω̂′: this interpretation is permissible because v is dependent on E and not

E ′ as in the forward operator. It is integrated over all resulting energies and

angles

3
†

=

∫
4π

dΩ′
∫ ∞

0

dE ′vΣs(r;E, Ω̂→ E ′, Ω̂′). (3.39)

In the TRM interpretation, the quantity within the integral is the transition

rate of a neutron at r, E, Ω̂ to r, E ′, Ω̂′, while the integrated quantity is the

transition rate of a neutron out of r, E, Ω̂ via a scattering event.

4 † This is the total prompt neutron emission rate from a fission induced by a neu-

tron at r, E, Ω̂. The integrated quantity includes all prompt emission energies

and angles

4
†

=

∫∫
(1− β)ν̄(E)vΣf (r, E)

χp(E
′)

4π
dE ′dΩ′, (3.40)

where the emission angular distribution is isotropic. The combined first two

terms within the integrand, (1−β) and ν̄(E), is the average number of prompt

neutrons emitted for an induced fission at E. Together, the next two terms,

vΣf (r, E), describe the rate of fission for a neutron at r, E, Ω̂: in the forward

formulation v is dependent on the emission energy E ′. Finally, the χp(E
′) term

determines the energy spectrum of the emitted prompt neutrons. In the TRM

interpretation, these unintegrated terms are the transition rate of a neutron

at r, E, Ω̂ to (1 − β)ν̄(E) neutrons at r, E ′, Ω̂′. Prompt neutrons are emitted

immediately after neutron absorption: the time for induced prompt neutron

emission is negligible. Removing the terms dependent on E from the integrand
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yields

4
†

= (1− β)ν̄(E)vΣf (r, E)

∫
4π

dΩ′
∫ ∞

0

dE ′
χp(E

′)

4π
, (3.41)

where the total integrated quantity is the total transition rate of neutrons at

r, E, Ω̂ to ν̄(E) neutrons at r in all energies and directions.

5 † This is the total precursor emission rate into group j from a fission induced by

a neutron at r, E, Ω̂

5
†

= βj ν̄(E)vΣf (r, E) (3.42)

The first term, βj, is the probability of a group j delayed neutron precursor

emission, and the remaining terms are similar to those described for prompt

neutron emission. In the TRM interpretation, this quantity is the transition

rate of a neutron at r, E, Ω̂ to βj ν̄(E) group j precursors in at r.

6 † This is the total emission rate of delayed neutrons from a precursor decaying at

r

6
†

=

∫∫
χj(E

′)

4π
λjdE

′dΩ′, (3.43)

where the emission angular distribution is isotropic. In the TRM interpretation,

the quantity within the integrand is the transition rate of a group j precursor

at r to a neutron at r, E ′, Ω̂′. The integral is rewritten as

6
†

= λj

∫
4π

dE ′
∫ ∞

0

dΩ′
χj(E

′)

4π
. (3.44)

7 † This is the decay rate of group j precursors at r, which is equal to the decay

constant

7
†

= λj, (3.45)

which is independent of position. In the TRM interpretation, this is the tran-

sition rate of a group j precursor at position r to a neutron of position r in all

energies and directions.

All of these terms describe physical quantities that support the interpretation of

the adjoint operator as a TRM describing neutron transport. Furthermore, these

quantities are obtainable during a Monte Carlo random walk: this is not the case

with the operator of the forward α-eigenvalue problem.
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Matrix Formulation

Replacing φ with ψ(r, E, Ω̂) in Eq. (2.52) gives the matrix form of the forward α-

eigenvalue problem[
v 0

0 I

][
−M + Fp χλ

Fd −λ

][
ψ

C

]
= α

[
ψ(r, E, Ω̂)

C(r)

]
, (3.46)

rewritten here for ease of reference. Similarly, the adjoint problem is[
v 0

0 I

][
−M† + Fp

† Fd
†

(χλ)† −λ

][
ψ†

C†

]
= α†

[
ψ†(r, E, Ω̂)

C†(r)

]
, (3.47)

where C† is a length J column vector of the adjoint precursor group concentrations

C†j , Fd
† is a length J row vector of adjoint group delayed fission operators Fd

†
j, (χλ)†

is a length J column vector of the adjoint precursor emission operators (χjλj)
†, and λ

is the same size J×J diagonal matrix with decay constants λj on the diagonal seen in

the forward formulation. In this formulation, transposing the matrix of operators in

Eq. (3.46) yields the matrix in the adjoint α-eigenvalue problem in Eq. (3.47), and vice

versa, where the eigenvalue sets α and α† are complex conjugates. This is not readily

apparent due to the differences in the forward and adjoint delayed fission operators,

but it is shown in the next section. Note that the speed matrix is not transposed in

Eq. (3.47) due to the α eigenvalue remaining associated with the neutron speeds in

both the forward and adjoint formulations.

The TRMM is able to obtain the product of the speed and adjoint matrices on

the left side of Eq. (3.47) due to its natural interpretation as a matrix of transition

rates describing neutrons and precursors moving about a system. This is the TRM

Q =

[
v(−M + Fp)† vFd

†

(χλ)† −λ

]
. (3.48)

With this matrix, the TRMM solves the simple eigenvalue problem for the adjoint

eigenpairs, α†i and [ψ†i C
†
i ]. But, the adjoint eigenpairs are not particularly useful

without the solutions to the forward problems. Therefore, the TRMM also obtains the

speed matrix to calculate the forward problem and solve for the forward eigenpairs, αi

and [ψi Ci], providing the whole solution to the problem, and a direct way of solving

for the α-eigenvalue spectrum and eigenfunctions.
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3.1.4 The Forward and Adjoint α-Eigenvalue Problems

The relation between the operator matrices in the forward and adjoint α-eigenvalue

problems is [
−M + Fp χλ

Fd −λ

]
=

[
−M† + Fp

† Fd
†

(χλ)† −λ

]T

, (3.49)

because the matrix is all-real. There are four sections of these matrices: each follows

this relation. Starting with the top left in the forward operator matrix and proceed-

ing clockwise, the sections are prompt neutron effects, precursor emission, precursor

decay, and delayed fission. Examining these individually reveals the property in

Eq. (3.49).

Transposing the Operator Matrix

The precursor decay section is the simplest, as it remains unchanged in the forward

and adjoint matrices because it is square diagonal:
−λ1

. . .

−λJ

 . (3.50)

The entries operate on precursor concentrations:

− λjCj(r)⇒ −λjC†j (r). (3.51)

Including moving fuel destroys this diagonal structure, and requires an additional

term in the precursor equation.

The precursor emission section is rectangular and operates on functions with a

different phase space in the forward and adjoint operator matrices:

χj(E)λjCj(r)⇒
∫∫

χj(E
′)

4π
λjψ

†(r, E ′, Ω̂′)dE ′dΩ′. (3.52)

In the forward operator, entries distributed in the position-energy-direction phase

space operate on the precursor concentrations. In the adjoint operator, entries dis-

tributed in the position phase space operate on the adjoint angular flux. This change

represents transposing the phase space. The double integral in the adjoint operator

is necessary to change from operating on precursor concentrations to operating on

adjoint angular flux: integrals in the adjoint formulation yield the same entries as in
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the forward formulation.

Similar to the precursor decay section, the delayed fission section is rectangular:∫∫
βj ν̄(E ′)Σf (r, E

′)ψ(r, E ′, Ω̂′)dE ′dΩ′ ⇒ βj ν̄(E)Σf (r, E)C†j (r). (3.53)

In the forward operator, entries distributed in the position phase space operate on

the angular neutron flux. In the adjoint operator, entries distributed in the position-

energy-direction phase space operate on the adjoint precursor concentration. The

adjoint operator lacks an integral because they operate on the adjoint precursor con-

centrations instead of the angular neutron flux.

The prompt neutron effects section has numerous parts due to the complexities

of the M and Fp operators. This section is a square matrix because the phase spaces

of the angular and adjoint angular fluxes are the same. In the forward operator,

the entries distributed in the position-energy-direction phase space operate on the

angular neutron flux: in the adjoint operator, they operate on the adjoint angular

flux. The leakage term changes in sign:

Ω̂ · ∇ψ(r, E, Ω̂)⇒ −Ω̂ · ∇ψ†(r, E, Ω̂), (3.54)

where the negative implies that the entries distributed in the position-energy-direction

phase space operate on the neutron importance at the final location instead of the

neutron flux at the current location as in the forward operator. This change represents

transposing the entry in the matrix. The collision term is the same in the forward

and adjoint operators:

Σ(r, E)ψ(r, E, Ω̂)⇒ Σ(r, E)ψ†(r, E, Ω̂). (3.55)

In either case, entries distributed in the position-energy-direction phase space operate

on the same space: these entries are on the diagonal and are stationary during the

transpose. The variables of integration in the scattering term change:∫∫
Σs(r;E ′, Ω̂′ → E, Ω̂)ψ′dE ′dΩ′ ⇒

∫∫
Σs(r;E, Ω̂→ E ′, Ω̂′)ψ†′dE ′dΩ′. (3.56)

The integrals in the forward and adjoint operators are over the incoming and out-

going neutron energy and direction, respectively. In the forward operator, entries

distributed in the position-energy-direction phase space operate on the incoming neu-

tron flux. In the adjoint operator, entries distributed in the position-energy-direction
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phase space operate on the outgoing neutron importance. This is similar to the leak-

age term, and is equivalent to transposing the entry. The same reasoning applies to

the change in the prompt fission operator:∫∫
χp(E)

4π
(1− β)ν̄(E ′)Σf (r, E

′)ψ′dE ′dΩ′ ⇒∫∫
(1− β)ν̄(E)Σf (r, E)

χp(E
′)

4π
ψ†′dE ′dΩ′. (3.57)

The Adjoint Spectrum

Properties of the forward α-eigenvalue spectrum are discussed in § 2.3.3. There it is

noted that because the forward operator A is all-real, its complex eigenvalues come

in conjugate pairs. This is also true with the adjoint operator Q. Furthermore, the

forward and adjoint α-eigenvalue spectra are complex conjugates of one another: in

a plot of these eigenvalues in the complex plane, they align and fall on top of one

another. Thus, it is difficult to distinguish between identical and complex conjugate

spectra when the adjoint and forward α eigenvalue spectra contain the same eigenval-

ues. To show this property of the adjoint and forward spectra, consider the adjoint

problem in terms of the tallied TRM

Qu† = αu†, (3.58)

where † is removed from the eigenvalue and the eigenfunctions are denoted by u =

~u = [ψ Cj] for simplification. Operating by the inverse speed matrix on both sides,

multiplying by the conjugate forward eigenfunction ū, and revolving the functions of

the scalar products yields the forward problem in Eq. (3.46) in terms of the TRM,

VQTV−1u = αu, (3.59)

where the eigenvalue is the same as in the adjoint problem and the speed matrix is

V =

[
v 0

0 I

]
. (3.60)

Thus, the eigenvalue spectra for the forward and adjoint α-eigenvalue problem contain

the same sets of eigenvalues, and this same formulation is applicable for a discrete
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problem. This is also shown by comparing the determinants of the matrices

det [Q− λI] = det
[
VQTV−1 − λI

]
. (3.61)

Equality is shown with some algebra and a few matrix properties: (i) apply the

property det[A] = det[AT], (ii) separate out the speed matrices, (iii) note that

VIV−1 = I, (iv) apply the property det[AB] = det[A]det[B], and (v) apply the

property det[A−1] = det[A]−1.

The forward and adjoint eigenfunctions, u and u†, are entirely different. This is

no surprise when considering that the forward and adjoint equations describe very

different physical mechanisms. With some matrix algebra, the forward and adjoint

eigenfunctions are recast as left eigenfunctions

uV−1QV = αu, (3.62)

u†QT = α†u†, (3.63)

of the transposed matrices. While this is potentially useful because it avoids trans-

posing the TRM, the TRMM does not use these formulas during calculations.

The bi-orthogonality condition of the forward and adjoint α eigenfunctions is

important to the derivation of the time expansion functions for the solution to the

time-dependent flux. Working the forward and adjoint α-eigenvalue problems into

similar form an subtracting the two results gives the bi-orthogonality condition of the

forward and adjoint α eigenfunctions

0 = (αi − α†j)(u
†
jV
−1ui). (3.64)

It follows that, in the case when αi 6= α†j,

(u†jV
−1ui) = 0. (3.65)

Conversely, if this quantity is not zero, then αi = α†j.

3.1.5 Corollary to the Fission Matrix

The TRM is the continuous-time analog of the fission matrix F for multiplying media.

For the fission matrix, the geometry is divided into a set of regions. Then, an element

of the fission matrix fi,j is next-generation fission neutrons produced in region i for

each average fission neutron starting in region j. While the TRM has unnormal-
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ized rates describing neutrons moving among a discretized position-energy-direction

phase space, the fission matrix has normalized probabilities describing induced fis-

sions throughout the discretized position phase space [5]. The eigenpairs of the fission

matrix are estimates of the k eigenvalues and eigenfunctions, while the accuracy of

the estimate increases with larger numbers of regions. These eigenpairs have several

applications, including to source expansions and convergence acceleration.

In the context of Markov processes, the state space of the TRM and fission matrix

are both discretized. The TRM has a continuous-time parameter space, while the

fission matrix has a discrete-time parameter space. For the fission matrix, neutrons

are tracked between fission sites, so the discrete-time parameter space are fission

generations T = {t0, t1, t2, · · · }. Thus, the fission matrix describes a discrete-time

Markov chain, as the TRM describes a continuous-time Markov chain.

Additionally, the TRMM and the Monte Carlo method for tallying the fission

matrix also share similar convergence behavior due to the generation of probabilities

and rates via stochastic methods [6]. Both matrices are considerably sparse, while

the TRM is considerably larger due to the additional energy-direction phase space.

Sparse eigenvalue solvers are important for both methods. Due to the simplicity of

the k-eigenvalue spectrum, e.g., it has no complex eigenvalues, some solvers tend to

work better and more efficiently for finding the eigenvalues of the fission matrix. As

supported by theoretical arguments and empirical evidence [5], the eigenvalues of

the fission matrix converge to the real k eigenvalues of the system as the number of

spatial regions increases, in the order of the most dominant to the least dominant.

The TRMM follows similar convergence behavior.

3.2 Derivations of Transition Rate Matrices

The TRM as shown in Eq. (3.48) describes a matrix of arbitrary size. In terms of

Markov processes, this means that the state space is continuous, where in the case of

neutron transport, this is the position-energy-direction phase space. But, to compute

eigenpairs of a matrix, it must be finite, where a full-rank matrix of size n × n

yields n eigenpairs. Thus, the size of the TRM is made finite by defining the states

of the Markov process as a neutron meeting certain conditions in the phase space

ri, Eb, Ω̂k ∈ r, E, Ω̂. In doing this, the continuous state space reduces to a discrete

state space, and a Markov chain approximates the behavior of a Markov process. If

the definition of the states of the Markov process is fine enough, or the TRM is large

enough, this solution is an adequate approximation of the true continuous solution.
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The same is said for the calculated α-eigenvalue spectrum: in limiting the state space,

the TRMM calculates a finite number of α eigenvalues that serve as an approximation

to the full spectrum. The larger the TRM, the better this approximation is to the

full spectrum.

This section shows derivations of the TRM starting from the adjoint equations

without approximations: the weighting function in these formulations is adjoint im-

portance. The following section discusses the estimation of the TRM elements using

forward-weighted quantities during the Monte Carlo random walk.

Up to this point, formulations provided are general forms of the forward and

adjoint α-eigenvalue problems considering space and direction. Applications of the

TRMM to problems with simplified geometries show the methodology behind defining

the state space and the nature of the Markov TRM in Eq. (3.1). Use of simplistic

media also allows for studying the α-eigenvalue spectrum, convergence behavior, and

the effect of state definition, among other things. Infinite media are the simplest of

these problems.

3.2.1 Infinite Medium

Infinite medium problems are position and direction independent: the state space

includes only energy. Define G + J states of the Markov process, where G states

define neutrons in energy space and J states define delayed neutron precursor groups.

Specifically, if a particle is a neutron of energy E meeting the condition Eg+1 < E <

Eg, the Markov process is in state g. This is akin to discretizing the energy space.

Likewise, if a particle is a delayed neutron precursor in group j, then the Markov

process is in state G+ j. This results in a TRM of size (G+J)× (G+J), with G+J

eigenpairs. The number of non-zero entries of this matrix is often much less than

(G+J)2, especially for large G. This is not very memory intensive even if considering

a hyperfine definition of the energy states, such as G = 2000. For cases with 235U,

J = 6 to reflect the number of precursor groups available in the ENDF database [7, 8].

The following is a rigorous derivation of the TRM for the continuous-energy prob-
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lem. The adjoint equation for an infinite medium is

−1

v

∂ψ†

∂t
+ Σψ†(E, t) =

∫
Σs(E → E ′)ψ†(E ′, t)dE ′

+

∫
(1− β)ν̄Σfχp(E

′)ψ†(E ′, t)dE ′ +
J∑
j=1

βj ν̄ΣfC
†
j , (3.66)

−
∂C†j
∂t

+ λjC
†
j (t) =

∫
χj(E

′)λjψ
†(E ′, t)dE ′. (3.67)

Introducing the α-eigenvalue, multiplying by the velocity, and rearranging terms

yields the adjoint α-eigenvalue problem for an infinite medium

−vΣψ†(E) +

∫
vΣs(E → E ′)ψ†(E ′)dE ′ +

∫
(1− β)ν̄vΣfχp(E

′)ψ†(E ′)dE ′

+
J∑
j=1

βj ν̄vΣfC
†
j =αψ†, (3.68)

−λjC†j +

∫
χj(E

′)λjψ
†(E ′)dE ′ =αC†j . (3.69)

Now, discretize the energy space into G energy intervals between EG+1 and E1 where

the gth energy interval is defined as Eg+1 < E < Eg. Integrate the neutron impor-

tance over the gth energy interval, defining the importance in interval g as

ψ†g =

∫ Eg

Eg+1

dEψ†(E), (3.70)

and ~ψ† as the vector containing these importances

~ψ† = ψ†1 . . . ψ
†
G. (3.71)

Integrate Eq. (3.68) over the gth energy interval and multiply and divide by ψ†g. The

collision term becomes ∫ Eg

Eg+1

dEvΣ(E)ψ†(E) =
[
(vΣt)

†
g

]
ψ†g, (3.72)

where

(vΣt)
†
g =

1

ψ†g

∫ Eg

Eg+1

dEvΣ(E)ψ†(E). (3.73)

The integral over all energies in the scattering term must be rewritten in the terms
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of a sum∫ Eg

Eg+1

vdE

∫ ∞
0

dE ′Σs(E → E ′)ψ†(E ′)

=
G∑

g′=1

∫ Eg

Eg+1

vdE

∫ Eg′

Eg′+1

dE ′Σs(E → E ′)ψ†(E ′), (3.74)

and the interval-transfer rate from interval g → g′ is defined as

(vgΣsg→g′)
† =

1

ψ†g′

∫ Eg

Eg+1

vdE

∫ Eg′

Eg′+1

dE ′Σs(E → E ′)ψ†(E ′). (3.75)

The fission term is rewritten similarly as∫ Eg

Eg+1

dE(1−β)ν̄(E)vΣf (E)

∫ ∞
0

dE ′χp(E
′)ψ†(E ′)

=
G∑

g′=1

∫ Eg

Eg+1

dE(1− β)ν̄(E)vΣf (E)

∫ Eg′

Eg′+1

dE ′χp(E
′)ψ†(E ′). (3.76)

The number of prompt neutrons emitted from interval g multiplied by the fission rate

in interval g is defined as

(ν̄pvΣf )
†
g =

∫ Eg

Eg+1

dE(1− β)ν̄(E)vΣf (E), (3.77)

and the fission-emission probability for interval g′ is defined as

χ†pg′ =
1

ψ†g′

∫ Eg′

Eg′+1

dE ′χp(E
′)ψ†(E ′). (3.78)

The jth precursor term becomes∫ Eg

Eg+1

dEβj ν̄(E)vΣf (E)C†j = βj(ν̄dvΣf )
†
gC
†
j , (3.79)

where the adjoint precursor concentration is independent of energy. Define the inverse

speed in interval g as
1

v†g
=

1

ψ†g

∫ Eg

Eg+1

dE
1

v
ψ†(E). (3.80)
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Now, define the integral in Eq. (3.69) as a sum

∫ ∞
0

χj(E
′)λjψ

†(E ′)dE ′ =
G∑
g=1

∫ Eg

Eg+1

dE ′χj(E
′)λjψ

†(E ′), (3.81)

and define the jth delayed precursor emission probability for interval g as

χ†jg =
1

ψ†g

∫ Eg

Eg+1

dE ′χj(E
′)ψ†(E ′). (3.82)

With these definitions, the infinite medium adjoint α-eigenvalue problem is written

in a discretized form as

−(vΣt)
†
gψ
†
g +

G∑
g′=1

(vgΣsg→g′)
†ψ†g′ +

G∑
g′=1

(ν̄pvΣf )
†
gχ
†
pg′ψ

†
g′

+
J∑
j=1

βj(ν̄dvΣf )
†
gC
†
j = αψ†g, (3.83)

−λjC†j +
G∑

g′=1

χ†jg′λjψ
†
g′ = αC†j , (3.84)

To set the equations up in matrix form, rearrange terms and make some definitions.

Define the removal rate to exclude the self scattering rate

(vΣr)
†
g = (vΣt)

†
g − (vgΣsg→g)

†, (3.85)

and insert it into the equations, yielding

[
−(vΣr)

†
g + χ†pg(ν̄pvΣf )

†
g

]
ψ†g +

G∑
g′ 6=g

[
(vgΣsg→g′)

† + χ†pg′(ν̄pvΣf )
†
g

]
ψ†g′

+
J∑
j=1

βj(ν̄dvΣf )
†
gC
†
j = αψ†g, (3.86)

G∑
g′=1

χ†jg′λjψ
†
g′ − λjC

†
j = αC†j . (3.87)

The result is a matrix problem with four partitions describing particles (neutrons

or precursors) moving within and between energy intervals and delayed neutron pre-
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cursor decay groups

Q =

[
Qg→g′ Qg→j

Qj→g Qj→j′

]
, (3.88)

where Qg→g′ describes the transition of neutrons between energy intervals, Qg→j

pertains to neutrons inducing fission resulting in the production of delayed neutron

precursors, Qj→g represents the emission of neutrons from precursors, and Qj→j′

represents the decay (removal) of the precursors. These sections relate directly to the

Q matrix in Eq. (3.48), where Qg→g′ is

v(−M + Fp)† =


−(vΣr)

†
1 + χ†p1(ν̄pvΣf )

†
1 (v1Σs12)† + χ†p2(ν̄pvΣf )

†
1 · · ·

(v2Σs21)† + χ†p1(ν̄pvΣf )
†
2 −(vΣr)

†
2 + χ†p2(ν̄pvΣf )

†
2 · · ·

...
...

. . .

 , (3.89)

where Σsij = Σsi→j. This has two distinct parts: the diagonal and off-diagonal

elements. The diagonal element of row g of the matrix is

−(vΣr)
†
g + χ†pg(ν̄pvΣf )

†
g = −(removal rate from energy interval g)

+ (fission-emission rate from energy interval g → g), (3.90)

which is the negative net removal rate of neutrons from energy interval g. The

fission-emission rate is defined as the fission rate multiplied by the average number

of neutrons released per fission. In the diagonal elements, this rate is also known as

the self fission-emission rate because the fission event occurs and releases a neutron

in the same energy interval. The off-diagonal element of row g and column g′ 6= g of

the matrix is

(vgΣsgg′)
† + χ†pg′(ν̄pvΣf )

†
g = (scatter rate from energy interval g → g′)

+ (fission-emission rate from energy interval g → g′), (3.91)

which is the net transition rate from energy interval g → g′. In the context of the

TRM interpretation described in Eq. (3.1), qgg is the transition rate out of energy

interval g and qgg′ is the transition rate from energy interval g to g′. In an infinite

medium, a neutron leaves an energy interval due to collision, and reenters due to self

fission and self scatter, as shown in Eq. (3.90). A neutron transitions between energy

intervals by scattering or fission, the rates for which are shown in Eq. (3.91). The top
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right section Qg→j is

vFd
† =

[
vFd

†
1 · · · vFd

†
J

]
=


β1(ν̄dvΣf )

†
1 · · · βJ(ν̄dvΣf )

†
1

...
. . .

...

β1(ν̄dvΣf )
†
G · · · βJ(ν̄dvΣf )

†
G

 , (3.92)

where the entries represent precursor-emission rates. The bottom left section Qj→g

is

(χλ)† =


(χ1λ1)†

...

(χJλJ)†

 =


χ†11λ1 · · · χ†1Gλ1

...
. . .

...

χ†J1λJ · · · χ†JGλJ

 , (3.93)

where the entries represent delayed neutron emission rates. The bottom right parti-

tion is simply the diagonal matrix of decay constants −λj in Eq. (3.50). Extending

the TRM interpretation, qg,G+j is the transition rate from energy interval g to pre-

cursor group j. A neutron transitions to a precursor group by delayed fission, the

rates for which are shown in Eq. (3.92). This interpretation applies to the precur-

sor section at the bottom of the TRM, where qG+j,G+j is the transition rate out of

precursor group j, and qG+j,g′ is the transition rate from precursor group j to en-

ergy interval g′. A precursor from group j decays at a rate of λj and transitions to

energy interval g′ according to the delayed neutron emission spectrum, χjg′ . These

rates are shown in Eqs. (3.93) and (3.50). Upon absorption, neutrons transition to

an absorbing state that is undefined within the matrix formulation. Because of this,

the diagonal elements do not follow the requirement in Eq. (3.3).

3.2.2 One-Dimensional Media

For one-dimension, or slab geometry, the TRM formulation extends to include position

and direction as well as energy. Treatment of the energy space is similar to that in

the infinite medium case. Define NGM + NJ states of the Markov process, where

NGM states define neutrons distributed in the position-energy-direction phase space

and NJ states define precursors distributed in the position-group space. A neutron

with direction µ meeting the condition µm−1 < µ < µm is said to be in direction

interval m. Likewise, a neutron or precursor with position x meeting the condition

xn−1 < x < xn is said to be in position interval n. Together with the precursor

groups and energy intervals, state i of the Markov process is defined as a neutron

within intervals m, n, and g or a group j precursor within interval n. The simplest

one-dimensional problems are one-speed, with only one energy interval.
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One-Speed Slabs

The following is a rigorous derivation of the TRM for the one-speed slab problem,

without delayed neutron precursors. Consider the one-dimensional, one-speed adjoint

equation

−1

v

∂

∂t
ψ†−µ ∂

∂x
ψ† + Σt(x)ψ†(x, µ, t)

=

∫
Σs(x, µ→ µ′)ψ†(x, µ′, t)dµ′ +

∫
ν̄Σf (x)χ(µ′)ψ†(x, µ′, t)dµ′, (3.94)

where µ is the direction cosine, x is the one-dimensional position, and delayed neu-

tron precursor emission is not considered. Inserting the α eigenvalue, multiplying

by velocity, and rearranging terms yields the one-dimensional adjoint α-eigenvalue

problem

vµ
∂

∂x
ψ† − vΣt(x)ψ†(x, µ) +

∫
vΣs(x, µ→ µ′)ψ†(x, µ′)dµ′

+

∫
ν̄vΣf (x)χ(µ′)ψ†(x, µ′)dµ′ = αψ†. (3.95)

Now, discretize the direction space into M intervals between µ = −1 and µ = +1,

where the mth interval is defined as µm−1 < µ < µm. Discretize the position space

into N intervals between x = x0 and x = xN , where the nth interval is defined as

xn−1 < x < xn. Integrate the neutron importance over the mth direction interval and

the nth slab, defining this integrated importance as

ψ†nm =

∫ xn

xn−1

dx

∫ µm

µm−1

dµψ†(x, µ), (3.96)

and ~ψ† as the vector containing these importances

~ψ† = ψ†11 . . . ψ
†
1m . . . ψ

†
NM , (3.97)

where the sum over the M direction intervals is the scalar neutron importance

φ†n =
M∑
m=1

ψ†nm. (3.98)

Integrate Eq. (3.95) over the mth direction interval and nth slab, and multiply and

divide by the integrated adjoint importance. The resulting terms are similar to the
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infinite medium problem. The collision term becomes∫ xn

xn−1

dx

∫ µm

µm−1

dµvΣt(x)ψ†(x, µ) = [vΣt(x)]†nm ψ
†
nm. (3.99)

where

[vΣt]
†
nm =

1

ψ†nm

∫ xn

xn−1

dx

∫ µm

µm−1

dµvΣt(x)ψ†(x, µ). (3.100)

The integral over all angles in the scattering term must be rewritten in terms of a

sum ∫ xn

xn−1

dx

∫ µm

µm−1

dµ

∫ +1

−1

dµ′vΣs(x, µ→ µ′)ψ†(x, µ′)

=
M∑

m′=1

∫ xn

xn−1

dx

∫ µm

µm−1

dµ

∫ µm′

µm′−1

dµ′vΣs(x, µ→ µ′)ψ†(x, µ′), (3.101)

and the interval-transfer rate from direction interval m→ m′ of slab n is defined as

[vΣsm→m′ ]
†
n =

1

ψ†nm′

∫ xn

xn−1

dx

∫ µm

µm−1

dµ

∫ µm′

µm′−1

dµ′vΣs(x, µ→ µ′)ψ†(x, µ′). (3.102)

The fission term is rewritten similarly as∫ xn

xn−1

dx

∫ µm

µm−1

dµ

∫ +1

−1

dµ′ν̄vΣf (x)χ(µ′)ψ†(x, µ′)

=
M∑

m′=1

∫ xn

xn−1

dx

∫ µm

µm−1

dµ

∫ µm′

µm′−1

dµ′ν̄vΣf (x)χ(µ′)ψ†(x, µ′). (3.103)

The fission-emission rate from interval m to interval m′ is defined as

[(ν̄vΣf )m(χ)m′ ]
†
n =

1

ψ†nm′

∫ xn

xn−1

dx

∫ µm

µm−1

dµν̄vΣf (x)

∫ µm′

µm′−1

dµ′χ(µ′)ψ†(x, µ′). (3.104)

The above terms describe interactions for the same position interval: these are neu-

trons moving between direction intervals m = 1 . . .M in slab n. The streaming term

describes interactions between adjacent slabs. This new term in the one-dimensional

adjoint problem is difficult to quantify mathematically: it is the integrated streaming

term. Using Green’s Theorem to redefine the integral yields∫ xn

xn−1

dx

∫ µm

µm−1

dµvµ
∂

∂x
ψ†(x, µ) =

∫ µm

µm−1

dµ

∫
∂S

dSv(n · µ)ψ†(x, µ), (3.105)
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where ∂S describes the surface bounding the slab and n denotes the direction normal

of the surface. In the one-dimensional problem, there are two surfaces bounding each

slab at xn−1 and xn, with direction normals n = −1 and n = +1, respectively. The

integral is split into

−
∫ µm

µm−1

dµ

∫
∂S

dSvµψ†(xn−1, µ) +

∫ µm

µm−1

dµ

∫
∂S

dSvµψ†(xn, µ), (3.106)

a surface integral for each of the bounding surfaces. Neutrons move along the direction

µ through slab n (Figure 3.1): if µ > 0, neutrons stream in the +x direction, moving

from slab n− 1 into slab n at xn, and from slab n into slab n + 1 at xn+1; if µ < 0,

neutrons stream in the −x direction, moving from slab n+ 1 into slab n at xn+1, and

from slab n into slab n − 1 at xn. Note that there is an m for which µm = 0: M

is always even. This avoids a direction interval in which neutrons stream parallel to

the faces. Including this direction interval parallel to the faces changes the computed

spectrum, particularly within the continuum. To understand the behavior of the

terms in the adjoint operator, first examine the term in the forward operator

−
∫ xn

xn−1

dx

∫ µm

µm−1

dµvµ
∂

∂x
ψ(x, µ). (3.107)

xn xn+1

  
  
  

x

Ψn-1,m, Ψ✝
n-1,m Ψnm, Ψ✝

nm Ψn+1,m, Ψ✝
n+1,m

µ > 0

µ < 0

Figure 3.1: A diagram of the slab geometry shows neutrons streaming through slab n with
direction µ.
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where the negative sign switches because of the sign of the adjoint streaming term.

This integrated term looks like the net neutron current with an extra v: this quantity

has units of [cm/s2]. Conversely, the net leakage rate [s−1] at which neutrons flow out

of slab n in direction interval m is∫ xn

xn−1

dx

∫ µm

µm−1

dµµ
∂

∂x
ψ(x, µ). (3.108)

Splitting up Eq. (3.107) with Green’s Theorem yields∫ µm

µm−1

dµ

∫
∂S

dSvµψ(xn−1, µ)−
∫ µm

µm−1

dµ

∫
∂S

dSvµψ(xn, µ), (3.109)

An extra term is necessary to obtain rates: multiplying and dividing by the incident

integrated flux ψnm serves this purpose. Choosing the spatial range of integration of

this flux comes from the observation of the physical problem. If µ > 0, operate the

integral at xn by the flux in slab n− 1, and operate the integral at xn+1 by the flux

in slab n. This yields

[vΣL]n−1,m ψn−1,m − [vΣL]n+m ψnm, (3.110)

where

[vΣL]n−1,m =
1

ψn−1,m

∫ µm

µm−1

dµ

∫
∂S

dSvµψ(xn−1, µ), (3.111)

[vΣL]n+m =
1

ψnm

∫ µm

µm−1

dµ

∫
∂S

dSvµψ(xn, µ). (3.112)

If µ < 0, operate the integral at xn+1 by the flux in slab n + 1, and operate the

integral at xn by the flux in slab n. This yields

− [vΣL]n−m ψn,m + [vΣL]n+1,m ψn+1,m, (3.113)

where

[vΣL]n−m =
1

ψnm

∫ µm

µm−1

dµ

∫
∂S

dSvµψ(xn−1, µ), (3.114)

[vΣL]n+1,m =
1

ψn+1,m

∫ µm

µm−1

dµ

∫
∂S

dSvµψ(xn, µ). (3.115)

Now return to the adjoint problem. With a similar approach, handle the cases µ > 0
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and µ < 0 separately. In this case operate by the exiting adjoint angular flux, because

importance behaves backwards in time. This yields

− [vΣL]†n−m ψ
†
nm + [vΣL]†n+1,m ψ

†
n+1,m, for µ > 0, (3.116)

[vΣL]†n−1,m ψ
†
n−1,m − [vΣL]†n+,m ψ

†
n+m, for µ < 0, (3.117)

where

[vΣL]†n−m =
1

ψ†nm

∫ µm

µm−1

dµ

∫
∂S

dSvµψ†(xn−1, µ), (3.118)

[vΣL]†n+1,m =
1

ψ†n+1,m

∫ µm

µm−1

dµ

∫
∂S

dSvµψ†(xn, µ), (3.119)

[vΣL]†n−1,m =
1

ψ†n−1,m

∫ µm

µm−1

dµ

∫
∂S

dSvµψ†(xn−1, µ), (3.120)

[vΣL]†n+m =
1

ψ†nm

∫ µm

µm−1

dµ

∫
∂S

dSvµψ†(xn, µ). (3.121)

With these definitions, the one-speed, one-dimensional adjoint α-eigenvalue problem

is written in discretized form as

− [vΣL]†n∗m ψ
†
nm+ [vΣL]†n′m ψ

†
n′m − [vΣt]

†
nm ψ

†
nm +

M∑
m′=1

[vΣsm→m′ ]
†
n ψ
†
nm′

+
M∑

m′=1

[(ν̄vΣf )m(χ)m′ ]
†
n ψ
†
nm′ = αψ†nm. (3.122)

where n∗ and n′ are different for the two cases defined in Eqs. (3.116) and (3.117)

The result is a matrix with two types of sections describing neutrons moving

within slab n between direction intervals and moving to slab n′ within the same di-

rection interval. Without delayed neutron precursors in the formulation, the matrix

only encompasses prompt neutron effects described by v(−M + Fp)†. Ordering the

discretized phase space such that M consecutive elements describe the direction in-

tervals in the nth slab yields a structured matrix. Define a portion of the TRM Q(n)

as the matrix characterizing neutrons within slab n. The diagonal element of row m
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in Q(n) is

− [vΣL]†n∗m− [vΣt]
†
nm + [vΣsm→m]†n + [(ν̄vΣf )m(χ)m]†n

= −(leakage rate out of slab n)− (collision rate in slab n)

+ (self scatter rate) + (self fission-emission rate), (3.123)

the negative net removal rate of neutrons from direction interval m. The off-diagonal

element of row m and column m′ 6= m is

[vΣsm→m′ ]
†
n + [(ν̄vΣf )m(χ)m′ ]

†
n

=(scatter rate m→ m′) + (fission-emission rate m→ m′), (3.124)

which is the total transition rate from direction interval m to m′. The remainder of

the matrix is rates describing transitions to adjacent slabs. Define the matrix T(n→n′),

sparsely populated on the diagonal by the transition rates

[vΣL]†n′m = (leakage rate into slab n′). (3.125)

Because neutrons moving in the +x direction do not exit to the adjacent slab to the

left, and vice versa, the matrix T is populated with zeros on half of its diagonals.

As in the infinite-medium formulation, these rates fit into the TRM interpretation,

where the ith state is defined as a neutron within position interval n moving in

direction interval m, where i = M(n − 1) + m. Then, qii is the net transition rate

out of state i and qii′ is the transition rate from state i to i′. Neutrons transition

out of state i via the processes shown in Eq. (3.123). Neutrons transition into state

i′ of the same slab n and adjacent slab n′ via the processes shown in Eq. (3.124)

and Eq. (3.125), respectively. The full TRM for the one-dimensional geometry with

vacuum boundaries takes the form

Q =


Q(1) T(1→2)

T(2→1) . . . . . .
. . . Q(N)

 , (3.126)

where N is the total number of slabs. The TRM is considerably sparse because

neutrons only transition to the adjacent slabs, in either the positive or negative di-

rection. In total, the size of the matrix is NM ×NM . However, due to the structure

mentioned, the absolute maximum number of non-zero elements of the N2M2 of the
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TRM is NM2 + M(N − 1). Upon leakage or absorption, neutrons transition to a

absorbing state undefined within the matrix formulation. As for the infinite-medium

formulation, the diagonal elements of the matrix do not satisfy Eq. (3.3).

Continuous-Energy Slabs

Including the energy space in multigroup or continuous-energy one-dimensional prob-

lems is a combination of the one-speed and the infinite-medium continuous-energy

formulations: the complete derivation is not shown here, but some comments about

the structure of the matrix and the difference in the transition rates are worth

mentioning. The maximum number of non-zero elements of the N2(GM + J)2 is

N(GM + J)2 + GM(N − 1), though depending on the energy discretization, this is

likely significantly less.

The rates describing neutrons transferring between the M direction intervals

within slab n expand to include energy. In both fission and scattering events, neu-

trons enter the event at E, Ω̂ and exit at E ′, Ω̂′. Thus, the Q(n) matrix for slab n is

of size GM ×GM where the diagonal elements are net removal rates from interval g,

m and the off-diagonal elements are transition rates from interval g, m to g′, m′. If

delayed fission is included, the Q(n) matrix extends to include J more states describ-

ing delayed neutron precursor behavior. The T(n→n′) matrices have similar structure

as for the one-speed case. For stationary fuel, the portion of the T matrix describing

precursors transitioning to adjacent slabs is zero. This maintains the TRM form in

Eq. (3.126).

3.2.3 Multi-Dimensional Media

For two- and three-dimensional media, the TRM does not change significantly. It

includes more matrices T(n→n′) dependent on the discretized position space. The

number of these matrices is equal to the number of position intervals to which a neu-

tron possibly leaks, or the number of adjacent position intervals. In two dimensions,

a triangle, square, and hexagon have three, four, and six adjacent neighbors, respec-

tively. In three dimensions, a triangular prism, hexahedron, and hexagonal prism

have five, six, and eight adjacent neighbors, respectively. Because the direction phase

space is also discretized, the number of non-zero matrices T(n→n′) is likely fewer than

the number of adjacent neighbors, e.g., neutrons that transfer to an adjacent position

state remain in the same direction interval.

The transition rates change very little from the previous cases, but it is still useful
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to define them in the general sense. First, define the integrated flux

ψ†ngm =
〈
ψ†(r, E, Ω̂)

〉
ngm

=

∫
∂Vn

dr

∫ Eg

Eg+1

dE

∫ Ω̂m

Ω̂m−1

dΩψ†(r, E, Ω̂). (3.127)

Then, the transition rates become

[vΣt]
†
ngm ψ

†
ngm =

〈
vΣt(r, E)ψ†(r, E, Ω̂)

〉
ngm

, (3.128)

[vgΣsgm→g′m′ ]
†
n ψ
†
ng′m′

=

〈
v
〈

Σs(r;E, Ω̂→ E ′, Ω̂′)ψ†(r, E ′, Ω̂′)
〉
g′m′

〉
ngm

, (3.129)

[(ν̄vΣf )gm(χ)g′m′ ]
†
n ψ
†
ng′m′

=

〈
ν̄(E)vΣf (r, E)

〈
χ(E ′)

4π
ψ†(r, E ′, Ω̂′)

〉
g′m′

〉
ngm

, (3.130)

[vΣL]†ngm ψ
†
ngm =

〈∫
∂Sin

dSin(Ω̂ · n)vψ†(r, E, Ω̂)

〉
gm

, (3.131)

[vΣL]†n′gm ψ
†
n′gm =

〈∫
∂Sout

dSout(Ω̂ · n)vψ†(r, E, Ω̂)

〉
gm

, (3.132)

where Sin and Sout specify the surfaces at which neutrons in direction m stream into

and out of position interval n. The TRM for the multi-dimensional case maintains

the general format of the one-dimensional case in Eq. (3.126), with the additional

T(n→n′) matrices

Q =


Q(1) T(1→2) T(1→3) . . .

T(2→1) Q(2) . . .

T(3→1) . . . . . .
...

 . (3.133)

3.3 Transition Rate Calculations

There are no approximations in the formulation of the discretized problem, but quan-

tities are weighted by the adjoint importance, as denoted by the † notation, which

is unavailable in most Monte Carlo codes. An introduced approximation results

from weighting the rates with forward quantities instead of the adjoint importance,

ψ†(r, Ω̂, E). This enables the rates to be calculated during a forward Monte Carlo

calculation and is beneficial because the main interest is in the forward problem, as

its eigenfunctions determine the neutron flux. Also, the elements of the discretized
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forward α-eigenvalue problem are weighted by the forward flux. This also helps main-

tain the relationship in Eq. (3.49) for a discretized phase space. This section shows

the relationship between the forward- and adjoint-weighted rates and the forward-

weighted approximations using the infinite-medium continuous-energy problem as an

example.

3.3.1 Rate Approximations

Consider the forward infinite-medium α-eigenvalue problem, in contrast to the adjoint

problem in Eqs. (3.68) and (3.69),

−vΣψ(E) +

∫
vΣs(E

′ → E)ψ(E ′)dE ′ +

∫
(1− β)ν̄(E ′)vΣf (E

′)χp(E)ψ(E ′)dE ′

+
J∑
j=1

vχj(E)λjCj =αψ, (3.134)

−λjCj +

∫
βj ν̄(E ′)Σf (E

′)ψ(E ′)dE ′ =αCj. (3.135)

Using the same approach in discretizing the energy space in Eqs. (3.70) through (3.82)

for the adjoint problem, the discretized forward problem is written as

−(vΣt)gψg +
G∑

g′=1

(vgΣsg′→g)ψg′ +
G∑

g′=1

(ν̄pΣf )g′(vχp)gψg′

+
J∑
j=1

(vχj)gλjCj = αψg, (3.136)

−λjCj +
G∑

g′=1

βj(ν̄dΣf )g′ψg′ = αCj, (3.137)

where the loss of the † notation on the constants is due to the weighting with the

forward flux. A comparison of these forward constants with those of the adjoint

problem (Table 3.1) shows the incentive to obtain the adjoint constants: they are

more physical quantities, e.g., the emission spectra for the forward problem includes

the neutron speed v, while most of the adjoint quantities are rates. But, if the TRMM

weights the forward constants with the forward flux and the adjoint constants with the

adjoint flux, the resulting discretized operator matrices are not related by Eq. (3.49),

and their respective eigenfunctions are not bi-orthogonal.

Without knowledge of the adjoint importance, the forward neutron concentrations
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Table 3.1: True weighted constants of the discretized forward and adjoint α-eigenvalue
infinite medium problems.

Parameter Forward Adjoint

Collision
〈vΣ(E)ψ(E)〉g
〈ψ(E)〉g

〈
vΣ(E)ψ†(E)

〉
g

〈ψ†(E)〉g

Inscatter

〈
v 〈Σs(E

′ → E)ψ(E′)〉g′
〉
g

〈ψ(E′)〉g′

〈
v
〈
Σs(E → E′)ψ†(E′)

〉
g′

〉
g

〈ψ†(E′)〉g′

Prompt Fission
〈(1− β)ν̄(E′)Σf (E′)ψ(E′)〉g′

〈ψ(E′)〉g′
〈(1− β)ν̄(E)vΣf (E)〉g

Delayed Fission
〈βν̄(E′)Σf (E′)ψ(E′)〉g′

〈ψ(E′)〉g′
〈βν̄(E)vΣf (E)〉g

Prompt Fission
Emission

〈vχp(E)〉g

〈
χp(E

′)ψ†(E′)
〉
g′

〈ψ†(E′)〉g′

Delayed Fission
Emission

〈vχj(E)〉g

〈
χj(E

′)ψ†(E′)
〉
g′

〈ψ†(E′)〉g′

Inverse Speed

〈
1
vψ(E)

〉
g

〈ψ(E)〉g

〈
1
vψ
†(E)

〉
g

〈ψ†(E)〉g

serve as the weighting function for the adjoint constants. This selected weighting

function facilitates the use of Monte Carlo tallies and matches best to the elements of

the adjoint operator. Consider an alternate formulation of the forward α-eigenvalue

problem in Eqs. (3.134) and (3.135) by separating the neutron angular flux into its

speed and neutron concentration n(E) components

−vΣn(E) +

∫
v′Σs(E

′ → E)n(E ′)dE ′ +

∫
(1− β)ν̄(E ′)v′Σf (E

′)χp(E)n(E ′)dE ′

+
J∑
j=1

χj(E)λjCj =αn, (3.138)

−λjCj +

∫
βj ν̄(E ′)v′Σf (E

′)n(E ′)dE ′ =αCj. (3.139)

The general matrix form of this problem is[
−M + Fp χλ

Fd −λ

][
v 0

0 I

][
n

C

]
= α

[
n(r, E, Ω̂)

C(r)

]
, (3.140)
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where the product of the left two matrices is the transpose of the TRM. Utilizing this

relation, the forward-weighted constants within the matrix are used to approximate

the TRM. Following a similar methodology as for the adjoint problem in Eqs. (3.70)

through (3.82) yields

−(vΣt)
n
gng +

G∑
g′=1

(vg′Σsg′→g)
nng′ +

G∑
g′=1

(ν̄pvΣf )
n
g′χpgng′

+
J∑
j=1

χjgλjCj = αng, (3.141)

−λjCj +
G∑

g′=1

βj(ν̄dvΣf )
n
g′ng′ = αCj, (3.142)

where the n notation denotes constants weighted by neutron concentrations. These

constants serve as an approximation to the adjoint-weighted constants for the infinite-

medium problem (Table 3.2) . For the collision rate, the neutron concentration re-

places the importance as the weighting functions. In the adjoint-weighted quantities,

Table 3.2: Approximated forward-weighted constants for the discretized adjoint α-
eigenvalue infinite medium problems.

Parameter True Adjoint Forward-weighted Approximation

(vΣt)
†
g

〈
vΣ(E)ψ†(E)

〉
g

〈ψ†(E)〉g

〈vΣ(E)n(E)〉g
〈n(E)〉g

(vgΣsg→g′)
†

〈
v
〈
Σs(E → E′)ψ†(E′)

〉
g′

〉
g

〈ψ†(E′)〉g′

〈
v 〈Σs(E → E′)n(E)〉g′

〉
g

〈n(E)〉g

(ν̄pvΣf )†g 〈(1− β)ν̄(E)vΣf (E)〉g
〈(1− β)ν̄(E)vΣf (E)n(E)〉g

〈n(E)〉g

(ν̄dvΣf )†g 〈βν̄(E)vΣf (E)〉g
〈βν̄(E)vΣf (E)n(E)〉g

〈n(E)〉g

χ†pg′

〈
χp(E

′)ψ†(E′)
〉
g′

〈ψ†(E′)〉g′
〈
χp(E

′)
〉
g′

χ†jg′

〈
χj(E

′)ψ†(E′)
〉
g′

〈ψ†(E′)〉g′
〈
χj(E

′)
〉
g′

1

v†g

〈
1
vψ
†(E)

〉
g

〈ψ†(E)〉g

〈n(E)〉g
〈vn(E)〉g
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the emission spectra are weighted by the adjoint importance and the fission rates

are not weighted. In the forward-weighted approximation, the opposite is true. The

emission probabilities are

〈χp(E ′)〉g′ =

∫ Eg′

Eg′+1

dE ′χp(E
′), (3.143)

〈χj(E ′)〉g′ =

∫ Eg′

Eg′+1

dE ′χj(E
′), (3.144)

where the χ-spectra are assumed to be normalized. The adjoint-weighted inscattering

rate is weighted by the adjoint importance of outgoing neutrons. In the forward-

weighted approximation, it is weighted by the neutron concentration of the incoming

neutrons. These approximations extend to include the position and direction phase

space.

Tallying the inverse velocity among the phase space is necessary to obtain the

forward matrix. The TRM is built with the forward-weighted rates. To obtain the

linear transport operator, each row i of the TRM is multiplied by the inverse speed in

state i. The matrix is then transposed and each row j of the TRM is multiplied by the

speed in state j. This sequence is shown in Eq. (3.59). For sparsely stored matrices,

the matrix does not necessarily need to be transposed in memory, as a change in

the storage scheme has the same affect. For this case, the appropriate elements are

operated on by the velocity.

3.3.2 Monte Carlo Tallies

Tallies accumulated during the forward random walk yields transition rates and prob-

abilities that are used to build the TRM. Monte Carlo tracks neutrons in the con-

tinuous position-energy-direction phase space, and uses physical definitions to relate

tallies to mathematical quantities [9]. For example, the scalar flux is the total path

length traversed per unit time per unit volume by all particles [10]. Mathematically,

this is

φ(~r)dV = rate at which particles generate path length in dV about ~r, (3.145)

where dV is a differential unit of volume. Integrating this over some arbitrary volume

V and dividing by that volume yields

φ̄V =
1

V

∫
V

φ(~r)dV =
1

V
(total path length by particles in V ), (3.146)
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the volume-averaged flux. During the Monte Carlo random walk, tallies estimate this

quantity by summing track lengths in an arbitrary volume and energy interval,

φ̄V =
1

V

1

N

∑
i

li, (3.147)

where N is the total number of neutron histories and li is the track length of a single

history. A similar approach yields the weighted rates.

Many of the forward-weighted estimates of the adjoint-weighted rates have a com-

mon denominator. In terms of the neutron flux, this is〈
n(r, E, Ω̂)

〉
ngm

=

〈
1

v
ψ(r, E, Ω̂)

〉
ngm

. (3.148)

In a similar way as for the volume-averaged flux, the Monte Carlo estimate is the

sum of track times, i.e., track length divided by v, within a given position, energy,

and direction interval 〈
n(r, E, Ω̂)

〉
ngm

=
1

N

∑
i

ti, (3.149)

where ti is the time of the individual tracks. An alternate interpretation of this

quantity thats fits with the TRMM is that N is the number of events that end an

individual track and
∑

i ti is the total amount of time spent by neutrons within the

n, g, m interval. Events that end a track are collisions or leakage from the volume

element. With these definitions, the denominator is the mean time between events

and the inverse of this denominator is the frequency with which events occur, or the

event rate.

The remaining parts of the tallies are probabilities of specific events ending a

neutron track. For example, the numerator of the collision rate is〈
vΣ(r, E)n(r, E, Ω̂)

〉
ngm

=
〈

Σ(r, E)ψ(r, E, Ω̂)
〉
ngm

, (3.150)

which is the total number of reactions that occur in the n, g, m interval per particle.

Physically, this is the probability that the event that ends a track is a collision, and

the Monte Carlo estimate is〈
vΣ(r, E)n(r, E, Ω̂)

〉
ngm

=
total number of collisions

N
, (3.151)
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where N is the total number of events. This is conveniently written as a probability〈
vΣ(r, E)n(r, E, Ω̂)

〉
ngm

= pcollision, (3.152)

where pcollision is the probability that an event ends in a collision. Combining this

probability with the event rate, the Monte Carlo estimate of the collision rate in the

n, g, m interval becomes〈
vΣ(r, E)n(r, E, Ω̂)

〉
ngm〈

n(r, E, Ω̂)
〉
ngm

=
pcollision

1
N

∑
i ti
. (3.153)

This analysis extends to the other reaction rates (Table 3.3) in the TRM elements.

The Monte Carlo estimate of leakage probabilities are sums of the number of neutrons

crossing a surface 〈∫
∂Sout

dSout(Ω̂ · n)n(r, E, Ω̂)

〉
gm

=
1

N

∑
i

ni, (3.154)

Table 3.3: Monte Carlo transition rate estimates for the general multidimensional problem.

Parameter Monte Carlo Tally Estimatea,b

(vΣt)
†
ngm (pcollision)ngm

(
1
N

∑
i ti
)−1

ngm

(vgΣsgm→g′m′)
†
n

(
pscatter to g′m′

)
ngm

(
1
N

∑
i ti
)−1

ngm

(ν̄pvΣf )†ngm (ν̄ppfission)ngm
(

1
N

∑
i ti
)−1

ngm

(ν̄dvΣf )†ngm (ν̄dpfission)ngm
(

1
N

∑
i ti
)−1

ngm

(vΣL)†ngm
(
pleakage to n′

)
ngm

(
1
N

∑
i ti
)−1

ngm

χ†png′m′ (pemission)ng′m′

χ†jng′m′ (pj,emission)ng′m′

1

v†ngm

(
1
N

∑
i ti
)
ngm

(
1
N

∑
i li
)−1

ngm

a px is the probability of event x.
b (·)x denotes the position, energy, and direction interval of the tally.
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where ni is the number of passages out through the exiting surface for track i. This

quantity becomes the probability of leakage

1

N

∑
i

ni =
total number of leakages

N
= pleakage to n′ . (3.155)

The integrated probabilities for neutron emission from fission are simple number ratios〈
χ(E ′)

4π

〉
ng′m′

=
total number of emissions to g′,m′

Nf

= pemission, (3.156)

where Nf is the total number of fissions. The average number of prompt and delayed

neutrons emitted per fission are tallied when banking fission neutrons. Finally, the

track length tally used in the calculation of the neutron speed is〈
vn(r, E, Ω̂)

〉
ngm

=
1

N

∑
i

li. (3.157)

The assertion is that in the limit of continuous position-energy-direction intervals,

the forward-weighted rates are equivalent to those obtained with continuous-energy

adjoint Monte Carlo.

3.4 Eigenvalue Algorithms

Before generating expanded solutions, the TRMM determines the eigenpairs of the

TRM and the linear transport operator. Several methods for obtaining eigenvalues

are available, each with different results. The power method finds the dominant,

or largest, eigenvalue and its associated eigenfunction. The inverse power method

determines the smallest eigenvalue or the eigenvalue closest to a given value, with

its associated eigenfunction. Deflation methods find sets of eigenvalues by remov-

ing components of already-determined eigenvalues [11]. Some of these methods are

considered relatively ineffective for general use due to them being very slow. The

methods for determining α eigenvalues discussed in § 2.5 use some of these eigenvalue

methods.

Algorithms based on eigenvalue-revealing factorizations of matrices are an im-

provement over these simpler algorithms. In the factorization, eigenvalues and eigen-

functions appear as the entries in some of the factors. For large matrices, these

factorizations become too costly to compute, and they often destroy the structure of

sparse matrices [12]. In these cases, iterative methods are more useful for determining
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some eigenpairs of the matrix.

Though the TRMM uses routines found in standard linear algebra packages, it is

not suitable to use them as generic black boxes, but to have some understanding of

the methodology in order to utilize them fully. The methods discussed in this section

are not all-inclusive, focusing on the methods that the TRMM uses.

3.4.1 Eigenvalue-Revealing Factorizations

The following factorizations of the m × m square matrix A are based on the idea

of introducing zeros to the matrix by applying a sequence of transformations to the

original matrix. The eigenvalue decomposition of A is

A = XΛX−1, (3.158)

where X is nonsingular and Λ is diagonal. Rewriting this as the eigenvalue problem

AX = XΛ, (3.159)

shows that the ith diagonal element of Λ and the ith column of X are an associated

eigenpair of A. If the algebraic multiplicity of an eigenvalue of A exceeds its geometric

multiplicity, i.e., if several eigenvalues λ share the same eigenfunction, then the eigen-

value is said to be defective. Then, A is a defective matrix and this factorization does

not exist because the matrix does not have a complete basis of eigenfunctions [12].

The unitary diagonalization of A is

A = UΛU∗, (3.160)

where U is unitary, i.e., U−1 = U∗, and the notation ∗ denotes the conjugate transpose.

The elements of Λ and U share the same behavior as for the eigenvalue decomposition,

and this factorization only exists if A is normal, i.e., A∗A = AA∗.

The Schur factorization of A is

A = UTU∗, (3.161)

where T is upper-triangular. Because A and T are similar, the eigenvalues of A

appear along the diagonal of T . The eigenfunctions appear in U , the matrix of Schur

vectors. All matrices have a Schur factorization, and for this reason, many methods

targeting eigenvalue-revealing factorizations utilize the Schur form. Also, unitary
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transformation algorithms tend to be numerically stable. Both MATLAB [13] and

LAPACK [14] use some algorithm to compute the Schur form of a matrix.

Now that the factorization is known, it is left to develop algorithms for computing

the Schur form of the matrix A. Often the worst and the best algorithms require

vastly different numbers of computations. Consider the basic QR algorithm, based

on the QR decomposition

A = QR, (3.162)

where Q is an orthogonal matrix and R is upper-triangular. Then, the QR algorithm

for computing the Schur form of A proceeds as follows:

� Set A(0) = A, U (0) = I, and k = 1.

� Compute the QR decomposition A(k−1) = Q(k)R(k).

� Update the matrix for the next iteration A(k) = R(k)Q(k).

� Update the value of the total transformation matrix U (k) = U (k−1)Q(k).

This algorithm is repeated until A(k) is the upper-triangular matrix T , and U (k) is

converged to the matrix of Schur vectors. While this theoretically works, is it far

too computationally costly to be practical, requiring O(m4) or more flops [15]. First

reducing the matrix A to the Hessenberg form

A = QHQ∗, (3.163)

then performing the QR algorithm to reduce the matrix to upper-triangular form

decreases the computational demand to O(m3) flops. Householder reduction to Hes-

senberg form has zeros below the first sub-diagonal
× × × × ×
× × × × ×
× × × ×
× × ×
× ×

 . (3.164)

A further improvement on the QR algorithm using well-chosen shifts has been the

standard method for computing all eigenvalues of a matrix, until more recent divide-

and-conquer algorithms [12]. This method applies best to dense or full matrices

because for sparse matrices, reduction to Hessenberg form fills in elements that were

previously zero, destroying the sparsity of the matrix [15]. If the sparse matrix is

significantly large, the memory demand of this method becomes prohibitive.
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3.4.2 Iterative Methods

Iterative eigenvalue methods address two shortcomings of direct factorization schemes:

(i) for large matrices, the O(m3) flops required to factorize the matrix becomes in-

credibly large, and (ii) the structure of sparse matrices are subject to fill-in during

reduction to Hessenberg form. Instead of computing the full spectrum in O(m3) flops,

iterative methods converge geometrically to a solution, where the residual is always

non-zero. While these methods do not deliver exact answers, consider that even di-

rect methods are inexact when carried out by a computer: they deliver results at no

better than machine precision. Iterative methods often deliver results to machine pre-

cision in fewer operations, dependent on the spectral properties of the matrix. Ideal

iterative methods have speedups from O(m3) to O(m), but for typical problems, this

speedup is more like O(m3) to O(m2): as problems become larger, the speedup is

increased [12]. The Lanczos iteration applies to finding eigenvalues of Hermitian ma-

trices A = A∗, but the linear transport operator does not exhibit this property, so

the TRMM uses the Arnoldi iteration. The linear algebra package ARPACK [16]

uses Arnoldi iterative methods to solve for eigenvalues and eigenfunctions of large

sparse matrices. Several iterative methods are also available for solving fixed-source

problems.

Arnoldi Iteration

The goal of the Arnoldi iteration is to transform the matrix A into the reduced

Hessenberg form

A = QnHnQ
∗
n, (3.165)

and to relate the eigenpairs of the resulting square matrices A and Hn as

AQnu = QnHnu = λQnu. (3.166)

The eigenvalues of Hn are known as Arnoldi eigenvalue estimates or Ritz values, with

the corresponding Ritz vectors in Qnu. In this formulation, it is understood that m

is too large to compute the fully reduced Hessenberg form H in Eq. (3.163), and that

only a portion of the eigenvalue spectrum k is desired. So, it computes the n × n

matrix Hn, where the first n columns of Q is the m × n matrix Qn. The Arnoldi

iteration has an inner and outer loop and proceeds as follows:

� Set an arbitrary initial vector b and normalize it q1 = b/||b||.
� Set i = 1.
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� Apply the matrix A to the vector v = Aqi.

� Compute the ith column of the Hn matrix as follows.

– Set j = 1.

– Compute the jth element of the ith column hji = q∗j v

– Subtract this component from the vector v = v − hjiqj.
– Set j = j + 1, and repeat the last two steps until j = i.

� Compute the sub-diagonal element of the ith column hi+1,i = ||v||.
� Renormalize the vector for the next column qi+1 = v/hi+1,i.

� Set i = i+ 1, and repeat starting from step 3.

In this procedure, the matrix A only appears as the application to the vector Aqi. To

compute the eigenvalues of A, at each step i or at occasional steps, perform a direct

factorization of the Hi matrix to Schur form using techniques discussed in § 3.4.1 to

obtain the Ritz values and vectors. Some of these values converge rapidly, and upon

convergence to machine precision, it is assumed that these are the eigenvalues of A.

This technique generally converges to the extreme eigenvalues of A near the edge

of the spectrum, with an increased geometric convergence occurring for relatively

isolated eigenvalues [12].

Specifically, ARPACK uses the Implicit Restarted Arnoldi Method (IRAM) to

compute eigenvalues. If the Arnoldi iteration is left to run where n becomes large,

storage requirements for the vector set Qn increases as well as the computational

demand associated with calculating the Hn matrix. Implicit restarting addresses

these issues, with an additional benefit in that it allows for targeting the k desired

eigenvalues of A. The basic idea is that after an initial predetermined number of

steps n > k + p, where p ≥ k, the Arnoldi process restarts with a new initial vector

computed to enhance the components of the desired eigenvalues and suppress the

components of the next undesired eigenvalues [16]. Then, p additional steps of the

Arnoldi process is able to obtain the n × n Hessenberg reduction. Unfortunately,

there is no way to determine the optimal value for n, but there are two factors to

consider: as n increases, fewer Arnoldi iterations are necessary to obtain the k desired

eigenvalues; with larger n, the computational time to reduce the matrix to Schur form

increases.

The Fixed-Source Problem

As implemented in ARPACK, the IRAM returns either the smallest or largest mag-

nitude eigenvalues in the spectrum, or those eigenvalues closest to an applied shift.

In practice, the smallest magnitude α eigenvalues are of interest because they are the
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longest-lived. Because it is more convenient to find the largest magnitude eigenvalues

with IRAM, a shift of the α-eigenvalue spectrum is sometimes useful in increasing

efficiency of IRAM. This is performed by finding the eigenvalues λ of A−1 instead of

A, where the eigenvalues are related by λ = α−1. While this is a simple theoreti-

cal transformation, difficulties arise in practice due to needing to apply the inverse

to a vector in the Arnoldi iteration A−1qi. This application takes the form of the

fixed-source problem

Av = qi. (3.167)

Several methods and preconditioners are available to efficiently solve such problems.

Because these methods are not implemented for this thesis, they are left from the

discussion.
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CHAPTER 4

Eigenvalues and Eigenfunctions of Infinite Media

This chapter discusses the implementation of the TRMM to infinite, i.e., 0-D, media,

where the TRM characterizes neutrons moving through the energy phase space. A

research Monte Carlo code calculates transition rates and uses linear algebra routines

to calculate the eigenpairs of the forward and adjoint matrices. Multigroup prob-

lems provide analytic α eigenvalues for verification of the TRMM. For more complex

continuous-energy problems, parametric studies show the effect of the discretization

of the energy phase space on the calculated α eigenvalues. This includes a discussion

on convergence observations of the α-eigenvalue spectrum and its effect on expanded

time-dependent solutions. A TDMC solution provides the actual flux time behav-

ior for verification of the TRMM eigenfunction expansion and a discussion on the

quantification of the residual term ζ(E, t) ends the chapter.

4.1 Code (TORTE)

In the first implementation of the TRMM, a collection of MATLAB [1] functions gen-

erates neutron histories in a continuous-energy infinite medium, calculates transition

rates, builds the TRM, determines eigenvalues, calculates the eigenfunction expan-

sion, and generates plots and movies. This takes advantage of the convenient linear

algebra and visualization tools in MATLAB. The multigroup problems in this chapter

use this code version. For continuous-energy problems, computational time becomes

more of an issue: the code is rewritten in FORTRAN90 [2], using the LAPACK [3]

linear algebra package to calculate eigenvalues and gnuplot [4] scripts for visualiza-

tion. The remaining problems in this chapter use this code version. In either case,

this code is named for its purpose: To Obtain Real Time Eigenvalues (TORTE).

TORTE has approximately 20 functions or subroutines, 4 testing scripts, and an-

other 8 post-processing scripts with visualization tools. It tallies removal rates and

probabilities for the TRM during a k-eigenvalue power iteration, obtaining kC using
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the collision estimator in Eq. (2.66). The use of this estimator creates a correlation

between the calculated k and α eigenvalues: events determine the elements of the

TRM, and the only type of event that occurs in an infinite medium is a collision. It

handles multigroup media with user-specified cross sections or continuous-energy me-

dia using ACE-formatted cross sections. For the continuous-energy physics, TORTE

considers elastic scattering isotropic and does not model inelastic scattering for fast

neutrons. For thermal neutrons, it uses the free-gas model and continuous-S(α,β)

scattering tables for graphite. It samples both delayed and prompt fission spectra

from the cross section files using ENDF Law 4 [5]. TORTE handles common reac-

tor materials such as carbon, hydrogen, oxygen, graphite, 235U, and 238U. It treats

capture and fission as analog, and lacks variance reduction techniques.

To ensure that the TORTE physics engine models collisions and samples from en-

ergy distributions properly, the generated results for elastic scattering, free gas scat-

tering, and delayed and prompt fission spectra are benchmarked to expected results

[6]. This agreement provides confidence in the continuous-energy physics treatment

in TORTE (Figure 4.1).

4.1.1 Tallying the Transition Rate Matrix

TORTE tallies the TRM in Eq. (3.48) using G energy intervals and J precursor

groups. It normalizes the probabilities, such that

G∑
g=1

χpg = 1, (4.1)

G∑
g=1

χjg = 1, for j = 1, . . . , J, (4.2)

J∑
j=1

βj = 1. (4.3)

TORTE calculates all matrix elements from tallies made during the Monte Carlo

random walk, e.g., it does not use known quantities for decay constants or group

delayed neutron fractions directly in the matrix elements. Because of this, known

decay constants and delayed fractions are useful as checks on the estimated values.

All elements are combinations of removal rates, probabilities of given events, and
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Figure 4.1: The TORTE free-gas scattering outgoing energy spectrum and prompt fission
emission spectrum χp(E) agree with expected analytic distributions: the piecewise free-gas
scattering kernel and Watt fission spectrum for thermal neutron-induced fission.

additional multipliers, such as

λj = τ−1
rj = (average decay time from precursor group j)−1, (4.4)

(vΣr)g = τ−1
rg = (average removal time from energy interval g)−1, (4.5)

(vΣf )g = (vΣr)g
Σfg

Σrg

= τ−1
rg

(
fissions in energy interval g

removals from energy interval g

)
, (4.6)

(vgΣsgg′) = (vΣr)g
Σsgg′

Σrg

= τ−1
rg

(
scatters from energy interval g → g′

removals from energy interval g

)
. (4.7)

The number and size of the energy intervals is arbitrarily set before the first Monte

Carlo cycle. For the continuous-energy cases, the discretized energy phase space

consists of equal-lethargy intervals.

4.1.2 Eigenvalues and Eigenfunctions

TORTE calculates up to G+ J α eigenvalues and eigenfunctions for the forward and

adjoint matrix equations. The eigenfunctions are vectors of length G+ J , where the

first G entries correspond to the integrated neutron flux in the gth energy interval ψg,

and the last J entries correspond to the jth group delayed precursor concentration

Cj, [
ψ(E) C

]
=
[
ψ1 ψ2 · · · ψG C1 · · · CJ−1 CJ

]
. (4.8)
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In cases where the main interest is in the flux energy spectrum, the eigenfunction

expansions exclude the last J entries of the eigenfunction in Eq. (4.8). With this

simplified infinite medium, the coefficients in Eq. (2.92) are inner products of the

adjoint eigenvectors and desired initial source. Then, the eigenfunction expansion for

the neutron flux becomes

ψ(E, t) =
M∑
i=0

ψ†i (E) ·Q0(E)

γi
ψi(E) exp(αit), (4.9)

where M identifies the desired number of modes from 0 ≤ M ≤ G + J − 1 used to

approximate the flux solution. As M increases, this expansion captures increasingly

shorter time dependence. For the infinite medium case, the sum of a pair of complex

eigenvalues αi and αj = ᾱi from Eq. (2.101) simplifies to

ψi+j(E, t) = 2[D1 cos(| Im(αi)|t)−D2 sin(| Im(αi)|t)] exp(Re(αi)t), (4.10)

where the vectors

D1 = Re(Ai) Re(ψi)− Im(Ai) Im(ψi), (4.11)

D2 = Re(Ai) Im(ψi) + Im(Ai) Re(ψi). (4.12)

This equation describes an under-damped, all-real solution with damped frequency

ωd = | Im(αi)|. An approximation for the number of oscillations that occur before

damping is the ratio |ωd:Re(αi)|.

4.2 Multigroup Verification

Due to the simplified TORTE physics engine, results do not match MCNP5 [5] or

other transport codes. Thus, calculated results are compared to analytic solutions.

Five multiplying, multigroup problems test the ability of TORTE to calculate the

appropriate k eigenvalue, approximate the TRM, and obtain α eigenvalues. The first

two are three-group problems with and without delayed neutron emission. The last

three are variations on a simplified 81-group problem with prompt fission only. These

variations show the effect of the spectrum on the eigenfunction expansion and the

effect of some nuclear parameters on the calculated spectrum.
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4.2.1 Few-Group Media

Problem 1: This three-group medium (Table 4.1) has fissions in energy group g =

3 emitting ν̄ = 2.5 neutrons in energy group g = 1. There is no upscatter and

downscatter is only allowed into the next group.

The analytic k eigenvalue is

k =
ν̄ΣfΣs12Σs23

Σr1Σr2Σr3

≈ 0.83333, (4.13)

where Σrg = Σγg + Σfg + Σsg,g+1. The analytic TRM is −v1Σr1 v1Σs12 0

0 −v2Σr2 v2Σs23

v3χν̄Σf 0 −v3Σr3

 =

 −24 20 0

0 −10 8

5 0 −4

 , (4.14)

and the fundamental α eigenvalue is −0.44534 s−1. With 1 × 106 histories, TORTE

calculates the k eigenvalue 0.83377 ± 0.00059 and the error in the calculated TRM is 0.002 0.013 −
− 0.036 0.077

−0.022 − 0.025

%. (4.15)

This matrix represents the element-by-element percentage difference between the ana-

lytical TRM and that calculated by TORTE. The analytic k eigenvalue is within one

standard deviation of the calculated k eigenvalue and the entries of the calculated

TRM are within 0.1% of those of the analytic TRM. The calculated fundamental

α eigenvalue is within one thousandth of a percent of the analytic fundamental α

eigenvalue.

Table 4.1: Problem 1 nuclear data. Cross sections are in cm−1.

g Σγg Σf Σsg,g+1 χ vg [cm/s]

1 1.0 0 5.0 1.0 4.0
2 1.0 0 4.0 0 2.0
3 2.0 2.0 0 0 1.0

Problem 2: This three-group medium uses two precursor groups (Table 4.2) to

model the emission of ν̄d = 0.5 delayed neutrons per fission. Other nuclear data is

the same as Problem 1. To preserve the k eigenvalue from Eq. (4.13), the average

total neutrons emitted per fission ν̄t matches that of Problem 1. All precursors emit
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Table 4.2: Problem 2 precursor data.

j λj [s−1] βj

1 3.0 0.25
2 1.0 0.75

neutrons into energy group g = 1.

The analytic k eigenvalue is the same as in Problem 1 and the analytic TRM is
−v1Σr1 v1Σs12 0 0 0

0 −v2Σr2 v2Σs23 0 0

v3χpν̄pΣf 0 −v3Σr3 v3β1ν̄dΣf v3β2ν̄dΣf

χ11λ1 0 0 −λ1 0

χ21λ2 0 0 0 −λ2

 =


−24 20 0 0 0

0 −10 8 0 0

4 0 −4 0.25 0.75

3 0 0 −3 0

1 0 0 0 −1

 , (4.16)

where ν̄t = ν̄p + ν̄d, and the analytic fundamental α eigenvalue is −0.29137 s−1. With

1×106 histories, TORTE calculates the k eigenvalue 0.83351 ± 0.00059, and the error

in the calculated TRM is
−0.158 −0.121 − − −
− −0.106 −0.122 − −

0.063 − −0.073 −0.052 0.101

0.465 − − 0.465 −
−0.374 − − − −0.374

%. (4.17)

Again, the calculated k eigenvalue and TRM are converging to analytic solutions. The

entries of the TRM corresponding to delayed neutrons show worse agreement than

the rest of the matrix, even with ν̄d higher than in a realistic problem. This is due

to the sampling of the decay constants λi, and the low probability of delayed fission

relative to prompt fission. The calculated fundamental α eigenvalue is −0.29414 s−1,

and is within 1% of the analytic fundamental α eigenvalue.

These two problems verify the ability of TORTE to accurately calculate the k

eigenvalue, α eigenvalue, and the TRM for multigroup problems.
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4.2.2 81-Group Media

Problem 3: This is the base-case G = 81 group medium (Table 4.3) for examining

features in the α-eigenvalue spectrum. Neutrons only downscatter to the next energy

group. Prompt fissions in energy group g = 81 emit an average ν̄ = 2.5 neutrons per

fission into energy group g = 1. There are no delayed neutron precursors.

The capture cross sections Σγg, neutron speeds vg, and removal cross sections

Σrg, are the same for all groups so that this very unphysical medium yields a simple,

closed-form solution for the k eigenvalue and α-eigenvalue spectrum. The analytic k

eigenvalue is

k =
ν̄Σf (Σsg,g+1)G−1

(Σrg)G
= 1.11663, (4.18)

and is within two standard deviations of the TORTE k eigenvalue, 1.1170 ±
0.0012. Algebraic manipulation of the multigroup equations [7] yields the analytic

α-eigenvalue spectrum

αn
v

= −Σγg + Σsg,g+1[ν̄G
−1

exp(2πinG−1)− 1], for n = 0, . . . , G− 1. (4.19)

The analytic α eigenvalues align along a circle in the complex plane centered on the

real axis at Re(α) = −Σγg − Σsg,g+1 with a radius of r = ν̄G
−1

Σsg,g+1, where the

fundamental α eigenvalue is 0.13765 s−1. As the number of groups increases, the α-

eigenvalue spectrum shrinks because the k eigenvalue changes; however, if the group

cross sections are adjusted such that the k eigenvalue remains constant, the additional

calculated α eigenvalues fill in along the existing circle. The calculated α-eigenvalue

spectrum matches this analytic solution (Figure 4.2), where the eigenvalues with the

smallest real parts show the best agreement.

For this case, there is only one all-real eigenvalue, which TORTE calculates as

0.13839 s−1: this is within 1% of the analytic fundamental α eigenvalue. All higher

eigenfunctions are complex and contribute some oscillatory time dependence to the

expanded flux solution. There are oscillations that persist for long times, shown by the

higher α eigenvalues that have a real part close to that of the fundamental eigenvalue.

Table 4.3: Problem 3 nuclear data. Cross sections are in cm−1.

g Σγg Σf Σsg,g+1 χ vg [cm/s]

1 1.0 0 100.0 1.0 1.0
2-80 1.0 0 100.0 0 1.0
81 1.0 100.0 0 0 1.0
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Figure 4.2: The 81 α eigenvalues of Problem 3 form a circle in the complex plane. The
TORTE-calculated spectrum using 1× 106 histories converges to the equally-spaced eigen-
values of the analytic solution.

These α eigenvalues have a large imaginary part, such that the ratio | Im(α):Re(α)|
is high. This causes a finite number of oscillations before the kinetic mode decays:

this is very unphysical. The eigenvalues with the largest imaginary parts correspond

to the fastest oscillating kinetic modes.

The time-dependent flux solution from the eigenfunction expansion using an initial

pulse source (Figure 4.3) shows the effect of some of the calculated eigenvalues. This

provides for more understanding of the spectrum. At t = 0.10 s, neutrons from the

monoenergetic source scatter out of energy group g = 1 at different times, resulting in

a small flux packet that begins to downscatter. At t = 0.70 s, the flux packet continues

to widen and decrease due to the different rates at which neutrons downscatter and

the small capture cross section. When neutrons reach energy group g = 81, they

induce fission and emit several neutrons in energy group g = 1. At t = 1.60 s, the

flux packet widens to the point where it combines with the neutrons fissioning into

energy group g = 1. At t = 6.00 s, individual flux packets disappear as the flux

approaches and follows the rising fundamental mode.

As t → ∞, the higher modes decay and the expanded flux solution approaches

the fundamental mode. This happens at t ≈ 20 s in this medium, which is long
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Figure 4.3: Snapshots of the Problem 3 eigenfunction-expanded flux solution demonstrate
the difference between the full solution using all 81 modes and the solution using only the
fundamental mode. The initial source is a monoenergetic pulse at t = 0 in energy group
g = 1, with source strength Q0(1) = 5× 104 cm−3· s−1.

relative to the lifetime of the prompt modes. If this medium had delayed precursors,

its delayed modes would persist for longer times. Note that the fundamental mode

increases considerably as the higher modes decay. All coefficients and eigenfunctions

are complex for i = 1, ..., G− 1.

Problem 4: This variant of the 81-group medium changes the speeds to be

group-dependent, where vg = 82− g. The k eigenvalue is the same as the base-case,

but the α-eigenvalue spectrum loses its closed-form analytic solution: the analytic
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TRM provides the α eigenvalues. The analytic fundamental α eigenvalue is 2.2464

s−1. TORTE calculates the k eigenvalue 1.1139 ± 0.0012, within three standard

deviations of the analytic k eigenvalue. The calculated fundamental α eigenvalue is

2.2008 s−1, and is within 2.5% of the analytic fundamental α eigenvalue. TORTE has

more difficulty converging to the analytic solution in this multiple-speed medium than

for the base-case. This is particularly true for the higher complex eigenvalues (Figure

4.4). Also, note that the calculated k eigenvalue and fundamental α eigenvalue are

correlated: both calculated quantities under-predict expected values.

With different group speeds, the α eigenvalue spectrum is no longer arranged along

a circle, but some elliptical shapes remain. There are two more very negative real

eigenvalues and some eigenvalues form lines crossing the real axis. The eigenvalues

closest to the fundamental eigenvalue converge faster than higher eigenvalues. The

extent of the spectrum increases approximately 25× along the imaginary axis and

45× along the real axis. This implies an increase in the rate at which higher modes

decay, and an increase in the rate of oscillations. This is due to neutrons moving

with a greater speed through each energy group and downscattering faster. Higher

modes decay rapidly, and the expanded flux solution using all modes approaches the

fundamental mode in less time than in the base-case.

Problem 5: This variant of the 81-group medium allows downscattering from
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Figure 4.4: The calculated 81-group variant α-eigenvalue spectra with different group speeds
(Problem 4) and downscattering over up to 5 groups (Problem 5) converge to analytic
solutions at different rates. TORTE calculates both spectra using 1× 106 histories.
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energy group g → g′ over several groups with equal probability where g + 1 ≤ g′ ≤
g+ 5. For the the last 5 groups, the downscattering probability is equally distributed

to the remaining groups, where g + 1 ≤ g′ ≤ G. The total downscattering cross

section is the same, but because the multigroup equations change, the k eigenvalue

changes, as does the α-eigenvalue spectrum. The analytic fundamental α eigenvalue is

2.2914 s−1. TORTE calculates the k eigenvalue 1.7676 ± 0.0464 and the fundamental

α eigenvalue 2.2937 s−1.

The calculated α-eigenvalue spectrum shows much better agreement to the ana-

lytic spectrum than in the multiple-speed medium (Figure 4.4). The spectrum has a

cluster of α eigenvalues close to the real axis where Re(α) < −100 s−1. These corre-

spond to higher modes that oscillate slowly but decay quickly. The spectrum is skewed

such that more eigenvalues have larger negative real parts. This is due to neutrons

being able to downscatter quickly by skipping several energy groups, even though the

speeds are the same as in the base-case. As with the multiple-speed medium, more

higher modes decay quickly, but the extent of the spectrum is very similar to that in

the base-case. There are still oscillatory modes that persist for longer times, and the

expanded flux solution using all modes approaches the fundamental mode at a time

similar to the base-case.

Problems 3, 4, and 5 have simplified α-eigenvalue spectra that show the effect

of nuclear parameters on the calculated spectrum and the eigenfunction expansion.

Some features in these multigroup spectra are present in the more complex spectrum

of a continuous-energy medium.

4.3 Continuous-Energy Media

Three unique, continuous-energy problems demonstrate the ability of the TRMM to

describe neutron behavior in a realistic energy phase space. For all problems, TORTE

distributes G − 1 energy intervals equally in lethargy space between EG = 0.001 eV

and E1 = 20 MeV, where the floor of the Gth energy interval is the minimum energy

EG+1 = Emin = 1 × 10−5 eV. The total number of energy intervals G depends on

the problem and run, identified by number and letter, respectively. There are J = 6

precursor groups. Inputs to TORTE are the important nuclear data for each problem:

the number densities Nd, atomic ratios, and atomic percent 235U enrichment (Table

4.4). While the k-eigenvalue depends on the atomic ratios, the α eigenvalues are very

sensitive to number density in these homogeneous problems: selected values reflect

realistic densities. The remaining uranium consists only of 238U. All continuous-energy
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Table 4.4: Nuclear data for the continuous-energy problems.

Problem Nd [barn−1 · cm−1]
Number Ratios 235U [atom %]
H C O U

6A-P 0.072997 1 0 1 1 100.
7A-D 0.072997 6 0 5 1 1.17
8A-H 0.078547 0 80 2 1 4.25

cross sections are at room temperature. Unless otherwise noted, TORTE uses 100

active cycles with 1× 106 particles per cycle. The rest of the analysis in this chapter

uses variations of these three problems.

Problems 6A-P: This medium consists of equal parts of hydrogen, oxygen, and
235U. There is little downscattering due to the small amount of hydrogen, so fast

fission is the dominant driver of this medium and the energy spectrum is hard. Each

of the sixteen different runs, A through P, uses a specified number of energy intervals:

run A uses G = 40, run P uses G = 640, and runs B through O use G in between with

increments of 40. The TORTE-calculated k eigenvalue of this prompt supercritical

problem is 2.08057 ± 12 pcm.

Problems 7A-D: This medium consists of hydrogen, oxygen, and LEU in quan-

tities similar to a typical LWR. With the lower enrichment and additional hydrogen,

downscattering and thermal fission drive the medium, and resonance absorption be-

comes more prevalent: the energy spectrum is softer than for the prompt supercritical

medium. The TORTE-calculated k eigenvalue is 1.00177 ± 12 pcm. Because there

is no leakage, βeff ≈ β = 0.0065, making this a delayed supercritical medium.

Problems 8A-H: This medium consists of carbon, oxygen, and LEU in quan-

tities similar to a typical graphite-moderated, gas-cooled reactor. Like the delayed

supercritical medium, this is a thermal medium. The TORTE-calculated k eigenvalue

of this very subcritical problem is 0.86946 ± 10 pcm.

4.3.1 Eigenvalue Spectrum

For each of the three media, TORTE calculates G prompt and J = 6 delayed α

eigenvalues. To test the ability of the TRMM to reproduce the same results, TORTE

starts two runs for the prompt supercritical medium with identical energy interval

structure and material parameters, but with a different random number seed. Most of

the α eigenvalues in the two resulting spectra (Figure 4.5) agree within 1%, including

the two highest eigenvalues calculated, −5.115 × 108 s−1 and −5.152 × 108 s−1. The

fundamental α eigenvalues agree well within 0.01% at 4.661× 107 s−1. Visually, the
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Figure 4.5: The α eigenvalue spectra of the 80 energy interval Problem 6 calculated using
two random number seeds only differs for some higher complex eigenvalues. Calculated
eigenvalues from both runs are converging to the same spectrum.

worst agreement occurs for a few complex eigenvalues in the interior of the spectrum,

e.g., (−19.27 + 1.988i)× 107 s−1 compared to (−19.17 + 2.259i)× 107 s−1. Both the

real parts and the complex modulus of these two eigenvalues agree within 1%, but

the complex part of the eigenvalues show poor agreement: this represents a difference

in the oscillation frequency of the corresponding kinetic mode.

With G = 600 energy intervals, the α-eigenvalue spectrum of this prompt super-

critical medium (Figure 4.6) has additional features absent from the smaller spectrum.

There is one large, positive eigenvalue and all other eigenvalues have negative real

parts: all higher kinetic modes decay as t → ∞. A large number of eigenvalues

form a cluster at the right end of the spectrum close to the real axis: oscillations of

their corresponding kinetic modes are relatively slow. There are still elliptical and

circular shapes within the spectrum, similar to those seen for the 81-group media

(Figure 4.4). The magnitude of the scale is different than the 81-group media due to

the realistic neutron speeds, but the relative scaling between the real and imaginary

axes have more similarities to the multiple-speed medium. The imaginary extent of

the spectrum spans approximately a tenth of the real extent: higher kinetic modes

corresponding to complex eigenvalues oscillate less than once before decaying. Some

eigenvalues begin to trace out short, irregularly-spaced lines.
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Figure 4.6: The α-eigenvalue spectrum of the 600 energy interval Problem 6 has some
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-8

-6

-4

-2

 0

 2

 4

 6

 8

-50 -40 -30 -20 -10  0

Im
(α

) 
[ 

× 
10

7  s
-1

]

Re(α) [ × 107 s-1]

Figure 4.7: The α-eigenvalue spectrum of the 640 energy interval Problem 8 is completely
negative and has a similar extent as the prompt supercritical problem but with fewer spectral
features and more eigenvalues shifted towards the imaginary axis.
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The α-eigenvalue spectrum of the thermal, graphite-moderated, subcritical

medium (Figure 4.7) has a similar extent and shape as the fast, prompt supercritical

spectrum, even though the material compositions are very different. There are fewer

complex eigenvalues, and those that exist are closer towards the imaginary axis: the

corresponding kinetic modes oscillate more before decaying. While the prompt super-

critical medium has many complex eigenvalues located where Re(α) < −30×107 s−1,

this subcritical medium has very few. All eigenvalues are negative, so the flux decays

as t → ∞, as expected. The prompt fundamental eigenvalue is −940.1 s−1. The α-

eigenvalue spectrum of the delayed supercritical medium is similar to this spectrum

(Figure 4.7). The primary difference is that complex eigenvalues in the spectrum of

the delayed supercritical medium have very small imaginary parts, | Im(α)| < 107

s−1, for eigenvalues toward the front of the spectrum, where Re(α) > −10× 107 s−1.

Also, the imaginary extent of the spectrum reduces close to 30%.

The features seen in these spectra (Figures 4.6 and 4.7) are solely from prompt

α eigenvalues. Due to the extent of the spectra, the six delayed eigenvalues are lost

in the cluster close to the imaginary axis. While the fundamental eigenvalue in the

prompt supercritical medium is a prompt eigenvalue, those of the delayed supercrit-

ical and subcritical media are delayed eigenvalues. For the prompt supercritical and

subcritical media, the delayed eigenvalues (Table 4.5) nearly match the precursor

decay constants (Table 2.1). In the delayed supercritical medium, the fundamental

eigenvalue is positive and on the order of the decay constants, and it shifts the re-

maining delayed eigenvalues. This medium also has a discrete prompt fundamental

eigenvalue of −78.55 s−1.

Table 4.5: A comparison of calculated delayed α eigenvalues. Units are s−1.

Run αd0 αd1 αd2 αd3 αd4 αd5

6P −0.01237 −0.03183 −0.1096 −0.3195 −1.359 −8.645
7D 0.06957 −0.01347 −0.04899 −0.1575 −1.138 −8.044
8H −0.01243 −0.03160 −0.1080 −0.3109 −1.351 −8.619

4.3.2 Energy Intervals

To investigate the effect of discretizing the energy phase space, TORTE calculates

the spectra of the three continuous-energy media with different numbers of energy

intervals G. The entire α-eigenvalue spectrum continues to evolve with increasing G

(Figure 4.8). Most importantly, regardless of G, all runs for the prompt supercritical

medium converge to the same positive fundamental eigenvalue. Some of the higher
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Figure 4.8: The α-eigenvalue spectra of Problem 6 calculated with different numbers of
energy intervals agree for the first few eigenvalues but differ on the shape of the higher
α-eigenvalue spectrum.

α eigenvalues agree, but many do not: the higher eigenvalues of run B fall between

those of run H. There is a similar trend seen in the comparison of runs J and P,

although many more eigenvalues seem to agree, especially at the front ridges of the

spectra. Increasing G does not increase the extent of the real spectrum in the negative

direction, but adds many eigenvalues between existing ones.

Because TORTE uses a finite number of energy intervals and precursor groups, its

calculated eigenvalues serve as an approximation to the true α-eigenvalue spectrum.

This is the reason that many higher eigenvalues of run B fail to match those of run

H. These higher run B eigenvalues attempt to capture the nature of the true higher

α-eigenvalue spectrum, approximating it and falling between the eigenvalues of run

H, which serves as a better approximation of the true spectrum. As G increases,

TORTE begins to match the true α-eigenvalue spectrum, and converges to the true

eigenvalues in order, from i = 0, 1, 2, . . ., m: in the comparison of runs J and P,

eigenvalues approach similar complex values along the front ridges of the spectra.

If TORTE uses very few energy intervals, such as 2 or 3, it yields an incorrect

fundamental eigenvalue because the few calculated eigenvalues attempt to approx-

imate the entire spectrum. This often results in a fundamental eigenvalue that is

too low, because the majority of the spectrum exists in the negative real direction.

As G increases, the fundamental eigenvalue increases to asymptotically approach the
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true fundamental eigenvalue of the medium (Figure 4.9). As long as G is sufficiently

large, TORTE obtains a good approximation of the fundamental eigenvalue: for the

prompt supercritical medium, it is within 1% for the worst case G = 40, and varies

well within 0.5% for the rest of the runs. While the calculated fundamental eigenvalue

has a distinct trend with increasing G, the calculated delayed eigenvalues show little

effect from this increase. This is expected because nothing about the delayed neutron

precursors changes in the different runs.

The behavior of a complex eigenvalue as G increases is more difficult to measure

because it moves in two-dimensional complex space (Figure 4.10). For the first two

runs of the prompt supercritical medium, TORTE calculates a real eigenvalue because

of the small G. As the G continues to increase, this quickly becomes a complex

eigenvalue and begins to converge to a final point in the spectrum, as evidenced by a

decrease in the change of the eigenvalue between runs for large G.

The eigenvalue spectra of the delayed supercritical and subcritical media exhibit

similar behavior as G increases. For all runs of the subcritical medium, the calculated

prompt fundamental eigenvalues vary well within 0.5%, with the best agreement over

the last four with the largest G, runs E through H (Table 4.6). For all runs of the

delayed supercritical medium, the fundamental and prompt fundamental eigenvalues
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Figure 4.9: Two eigenvalues calculated with increasing numbers of energy intervals for
Problem 6 shows the prompt eigenvalues asymptotically approaching a value, while the
delayed eigenvalues remain the same.
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Figure 4.10: The first calculated complex eigenvalue of Problem 6 approaches a value as
the number of energy intervals increases. With 640 energy intervals, the final calculation of
this prompt eigenvalue yields αp1 = α7 = (16.838 + 1.8508i)× 105 s−1.

vary less than 1%, with the prompt fundamental eigenvalue showing better agreement

(Table 4.7). This is due to the very small magnitude of the fundamental eigenvalue:

it is three orders of magnitude smaller than the prompt fundamental eigenvalue. The

next four prompt eigenvalues show less agreement but look to be converging to a

single value.

Measuring the trend of these higher eigenvalues as G increases is difficult due to

the existence of both discrete points and lines in the true α-eigenvalue spectrum: it

Table 4.6: Problem 8 energy intervals and calculated prompt fundamental α eigenvalues.
Units are s−1.

Run G αp0 = α6

A 80 −942.11
B 320 −940.48
C 640 −940.10
D 1000 −939.71
E 1500 −940.60
F 2000 −940.72
G 2500 −940.53
H 3000 −940.67
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Table 4.7: Problem 7 energy intervals, calculated fundamental α eigenvalue, and first five
prompt α eigenvalues. Units are s−1.

Runa G α0 αp0 = α6 α7 α8 α9 α10

A 40 0.068954 −78.734 −177030 −208060 −215110 −219780
B 80 0.069413 −78.606 −175030 −207160 −214540 −217570
C 160 0.069540 −78.572 −174490 −206890 −214370 −217870
D 320 0.069568 −78.554 −174360 −206810 −214330 −216890

a TORTE uses the same random number seed in calculations of these eigenvalues.

is first necessary to determine whether a higher calculated eigenvalue is discrete or

part of a line. It is known that some eigenvalues are discrete: the delayed eigenvalues

and in most cases the prompt fundamental eigenvalue. Other discrete eigenvalues are

identified empirically, e.g., regardless of G, the complex eigenvalues on the edges of

the spectrum of the prompt supercritical medium (Figure 4.8) converge to the same

point, and as TORTE calculates more eigenvalues of the spectrum, none fall between

these existing complex eigenvalues. Other calculated higher eigenvalues shift and

trace out lines as TORTE calculates more eigenvalues in the spectrum, especially in

cases for very large G. This is the case for the subcritical medium, where the next

highest prompt eigenvalues shift with increasing G. With the existence of lines in the

spectrum, it is presumed that G never exceeds the number of eigenvalues in the true

spectrum.

While the fundamental eigenvalue of the delayed supercritical medium is also the

fundamental delayed eigenvalue, it follows a trend similar to a prompt fundamental

eigenvalue as G increases (Figure 4.9). The other five calculated delayed eigenvalues

for this problem show no trend related to G (Table 4.8), despite the fact that they

are different than the decay constants. The trend in these eigenvalues is like that

seen for the delayed eigenvalue (Figure 4.9).

Table 4.8: Problem 7 calculated delayed α eigenvalues. Units are s−1.

Run αd1 = α1 α2 α3 α4 α5

A −0.013468 −0.049047 −0.15763 −1.1387 −8.0454
B −0.013466 −0.049006 −0.15756 −1.1385 −8.0445
C −0.013465 −0.048995 −0.15754 −1.1384 −8.0442
D −0.013465 −0.048993 −0.15753 −1.1384 −8.0442
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4.3.3 Eigenfunctions

Along with the α eigenvalues, TORTE calculates G prompt and J delayed eigen-

functions. The most important of these for the expanded flux solution correspond

to the first few longest-lived eigenvalues: a few prompt and the delayed eigenfunc-

tions. An adjoint eigenfunction represents the importance of a neutron in establishing

the corresponding kinetic mode. For the prompt supercritical medium, the energy

spectrum of the asymptotic solution is hard and it peaks near 2 MeV (Figure 4.11).

Because few neutrons reach very low energies, noise is present in eigenfunctions where

E < 0.1 eV. Compared to the prompt eigenfunction, the energy spectrum of the de-

layed eigenfunction is softer, with an increase in the thermal energy range due to the

emission spectrum of delayed neutrons: the difference between these eigenfunctions

is kinetic distortion. All delayed eigenfunctions have a similar shape. Because fast

fission dominates the medium, the neutrons highest in energy are the most important

to the asymptotic solution. The importance varies at some energies due to resonance

absorption: a neutron at an energy within a resonance is likely to be absorbed, so it

has little importance. Due to the large variation in the prompt fundamental eigen-

function, it is difficult to see the effect that the 235U absorption resonances have on
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Figure 4.11: Selected eigenfunctions of the 640 energy interval Problem 6 show the hard
energy spectrum of the asymptotic solution, kinetic distortion of the delayed eigenfunction,
and the importance of high-energy neutrons in a fast, prompt supercritical, infinite medium.
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the forward eigenfunctions (Figure 4.12).

The prompt fundamental forward and adjoint eigenfunctions of the subcritical,

graphite-moderated medium (Figure 4.13) show the effect of neutron thermalization

on the asymptotic solutions. In a thermal medium, the energy spectrum is much

softer and the most important neutrons are those that induce the thermal fissions that

drive the medium. High-energy neutrons have low importance due to the likelihood of

absorption in the resonance region during thermalization in this subcritical medium.

The eigenfunctions also have flux depressions from the 238U absorption resonances,

and there is little noise at lower energies due to neutrons populating these energies

during the Monte Carlo random walk. All delayed eigenfunctions are nearly identical

to that of the prompt fundamental mode: the effect of kinetic distortion is negligible in

this far subcritical medium. The eigenfunctions of the delayed supercritical medium

have some similar characteristics.

Eigenfunctions of higher α eigenvalues have positive and negative parts, and some

are complex. The next two highest eigenfunctions of the subcritical medium (Figure

4.14) correspond to the eigenvalues α7 = −8504.7 s−1 and α8 = −8807.6 s−1, and

cross the energy-axis multiple times. The highest eigenfunctions vary wildly and are

sharply peaked in only a few energy intervals. Complex eigenfunctions show similar

behavior to the other higher eigenfunctions when plotting the real and imaginary
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Figure 4.12: An alternate visualization of the eigenfunctions of the 640 energy interval
Problem 6 show the effect of the resonances on the forward and adjoint eigenfunctions.
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Figure 4.13: The fundamental forward and adjoint eigenfunctions of the 3000 energy interval
Problem 8 show the soft spectrum of the asymptotic solution and the importance of thermal
neutrons in a thermal, graphite-moderated, subcritical infinite medium.

-80

-60

-40

-20

 0

 20

 40

 60

 80

10-8 10-6 10-4 10-2 100

fl
u
x
 p

er
 l
et

h
ar

gy
 E

φ(
E

) 
[c

m
-2

 s
-1

]

energy [MeV]

first prompt second prompt

Figure 4.14: The next highest all-real, prompt forward eigenfunctions of the 3000 energy
interval Problem 8 have similar shapes with positive and negative parts.
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parts individually in the energy space.

4.3.4 Eigenvalue Convergence

Using the prompt supercritical medium, it was shown that the TRMM calculates the

same eigenvalue spectrum for a given material composition and G, and that these

calculated eigenvalues converge to the true spectrum, in order, as G becomes large.

It is now left to discuss the effect of Monte Carlo tally statistical errors on calculated

results and the effect that the energy phase space discretization has on these results.

For the G = 320 energy interval run of the delayed supercritical medium, TORTE

builds the TRM and calculates the eigenvalues after each of 200 active cycles, which

run 5 × 105 particles per cycle. This medium is unique because the k eigenvalue is

so close to unity: it is more important than in the prompt supercritical or subcritical

media to have the k eigenvalue converged within a few pcm. This has a large effect

on the calculated α eigenvalue, because for a near-critical medium, it is very close to

zero. Thus, the delayed supercritical medium presents a more challenging problem to

the TRMM than the other two media.

The elements qij of the TRM are tallied quantities that have some associated

statistical error. With more histories, the statistical uncertainty of the tallied removal

rates and probabilities, and thus the qij’s, decreases. With more energy intervals,

fewer events occur within each interval for the same number of histories, so the

resulting qij’s have a greater statistical uncertainty.

For the delayed supercritical medium, the fundamental and prompt α eigenvalues

converge in approximately 25× 106 active histories, after which statistical variations

are relatively minimal (Figure 4.15). The L2-norms of the eigenfunctions

|~ψ|2 =
√
ψ2

1 + ψ2
2 + · · ·+ ψ2

G, (4.20)

follow a similar trend. Calculated delayed eigenvalues change little over the active

histories as they mostly depend on the calculation of the decay constant: this is

the sampling of the decay time of the precursors. The fundamental and prompt

eigenvalues depend on prompt neutron effects. The calculated fundamental eigenvalue

varies close to 7% over the last half of the active histories, but because it is so close

to zero, this is a poor measure of convergence. In absolute terms, it varies less than

5 × 10−3 s−1 over the last 100 cycles. The next higher prompt eigenvalues only

vary close to 0.1% over the same range, but the absolute variation is five orders of

magnitude greater than that of the fundamental eigenvalue. The prompt fundamental
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Figure 4.15: Four of the first ten eigenvalues calculated after each active cycle converge as
the number of active histories increases for the 320 energy interval Problem 7. The prompt
eigenvalues shown are seven orders of magnitude larger than the fundamental eigenvalue.

eigenvalue also has a similar trend. Other than the prompt fundamental and delayed

eigenvalues, all higher α eigenvalues are greater than 105 s−1.

Examination of the static reactivity of the medium helps in understanding the

large relative variation in the converging fundamental α eigenvalue. Using Eq. (2.83),

the reactivity is 0.00177 ± 6.8%. This is a measure of the deviation from critical, and

for a delayed supercritical medium, there is a large uncertainty because the k eigen-

value is only on the order of a hundred pcm above critical. In the prompt supercritical

medium, this same uncertainty in the k eigenvalue only leads to a 0.01% uncertainty

in the calculated reactivity. These similarities between the statistical uncertainty of

the reactivity and the variation of the calculated fundamental α eigenvalue are not

surprising: examine the relationship in the inhour equation in Eq. (2.104). Thus,

the fundamental eigenvalue in a prompt supercritical or far subcritical medium has a

smaller relative variation over the last half of the active histories than the eigenvalue

of this near-critical medium.

These assertions are supported with additional calculations using problem 7, where

ten runs begin with different random number seeds (Figure 4.16). In all cases, the

calculation of the eigenvalues varies greatly for the first few cycles, followed by less

erratic behavior as the calculated values of each run draw closer together as the
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Figure 4.16: The convergence behavior of two eigenvalues calculated with ten different
random number seeds shows the range of individual realizations caused by the random
walk. These are two of the first ten eigenvalues of the 320 energy interval Problem 7. The
prompt eigenvalue is seven orders of magnitude larger than the fundamental eigenvalue.

number of active histories increases. As mentioned, the calculated fundamental α

eigenvalues from these runs have a larger relative range, as they are correlated to the

calculation of the reactivity. For the first prompt eigenvalue, the largest and smallest

calculated values vary less than 0.05%. This type of analysis is useful in establishing

the degree of confidence in calculated results.

To demonstrate the effect of G on the convergence rate, TORTE calculates spectra

of the delayed supercritical medium with the same energy phase space discretizations

(Table 4.7) using the same random number seed: physically, the same sequence of

events occur in all runs. The only differences are the tallies and the size of the TRM.

As G decreases, the statistical uncertainty on the qij’s decrease as well, and though

the calculated eigenvalue spectra are different for all runs, the first few eigenvalues

converge to similar quantities. For these similar eigenvalues, the convergence rate is

nearly identical: the convergence trends of the calculated fundamental eigenvalues are

so similar for allG, that on a plot, they line up on one another. This is counterintuitive

because with less statistical uncertainties in the elements of the TRM, it is reasonable

to expect a faster convergence. But, characterization of the TRM is more about the

global behavior of the problem as a whole than any individual part.
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One important measure is how these statistical variations or different spectra

affect the expanded flux solutions. The effect of a statistical variation on a given α

eigenvalue is different for two cases: α > 0 and α < 0. A positive α eigenvalue is

often the fundamental eigenvalue of a supercritical medium. Consider a medium with

the true positive fundamental eigenvalue α0 and a calculated eigenvalue α0− ε, where

ε > 0. Assuming equal coefficients A, the absolute difference f+(t) between using

these two eigenvalues in the eigenfunction expansion is

f+(t) = A exp(α0t)[1− exp(−εt)]. (4.21)

As time increases, f+(t) grows exponentially. For example, the fundamental eigen-

values of the delayed supercritical medium calculated after 100 active cycles and all

200 active cycles are 0.00644 s−1 and 0.00695 s−1, respectively. At t = 10 s, f+(t) for

these eigenvalues is 0.5%. The fundamental eigenvalues from the prompt supercriti-

cal medium calculated with G = 600 and G = 640 energy intervals are 4.6747 × 107

s−1 and 4.6751 × 107 s−1, respectively. At t = 103 ns, f+(t) for these eigenvalues

0.5%. This is because, even though the prompt supercritical medium fundamental

eigenvalues have a better relative agreement than those for the delayed supercritical

medium, the absolute difference is more important to the eigenfunction expansion.

Still, the majority of the short-time behavior in the flux solution occur during which

f+(t) is small.

Most eigenvalues in the spectra have negative real parts. Consider a medium

with the true negative eigenvalue α and a calculated eigenvalue α + ε, where ε > 0.

Assuming equal coefficients A, the absolute difference f−(t) between using these two

eigenvalues in the eigenfunction expansion is

f−(t) = A exp(αt)[exp(εt)− 1]. (4.22)

In contrast to when α is positive, in the limit as t→∞, f−(t) approaches zero. There

is a finite time t > 0 where f−(t) is maximized:

t =
1

ε
ln

(
α

α + ε

)
. (4.23)

Thus, f−(t) for any error in a calculated negative α eigenvalue is bounded.

The differences in the α-eigenvalue spectra due to G and statistical errors has

a lesser effect on the expanded flux solution than the stark difference in individual

eigenvalues suggests. For this delayed supercritical medium, TORTE expanded flux
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solutions using different G agree on the short-time evolution of the energy spectrum

from the slowing down of neutrons from a pulse source (Figure 4.17). At t = 0.015 µs,

neutrons in all runs downscatter at equal rates and align along the same line. Flux

depressions form in the high-energy range as neutrons downscatter past resonances.
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Figure 4.17: Snapshots of the Problem 7 expanded flux solutions using all calculated modes
show the agreement of the short-time evolution of the flux using different numbers of energy
intervals during the TRM calculation. The initial source is a pulse of strength Q0 = 1×1015

cm−3· s−1 at t0 = 0 without initial precursor concentrations. TORTE approximates a E0 =
14.1 MeV source, defining the source in the gth energy interval for which Eg+1 ≤ E0 < Eg.
Due to the interval widths in the energy phase space discretizations, this initial source
is slightly different for all three runs, but the effect this has on the expanded solution is
insignificant.
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Because neutrons are able to downscatter to near-zero energies in a collision with

hydrogen, the flux extends to lower energies at short times. At t = 0.05 µs, neutrons

continue to downscatter as the high-energy flux begins to decrease. A very broad flux

packet forms. The effect of resonances is more resolved with more energy intervals.

The run B flux still has depressions due to resonances, but they are less pronounced.

At t = 1.0 µs, despite the fact that this is a supercritical medium, the high-energy

flux continues to decrease because neutrons downscatter out of the high energy range

faster than they induce fissions that emit neutrons at these energies. Lower energy

resonances cause dips in the flux packet as neutrons downscatter. At t = 290.0 µs,

all higher prompt kinetic modes have decayed, and the prompt fundamental mode

and eigenvalue dictates the energy spectrum and time behavior of the solution. Only

the fundamental and delayed kinetic modes have non-negligible contributions to the

expanded flux solution at this time. The prompt fundamental kinetic mode continues

to dominate the flux solution until it begins to decay at approximately 1 ms. At this

time, the delayed kinetic modes and eventually the positive fundamental kinetic mode

dominate the flux solution. In any case, the flux energy spectrum remains the same,

as the shape of the delayed and prompt fundamental eigenfunctions is the same.

For most of the time, the expanded solutions using different G are nearly indis-

cernible. A difference in the solutions is only noticeable after several minutes to an

hour, and is caused by the different calculated fundamental eigenvalues of the runs.

Realistically, if this medium is left unchanged for an hour, temperature and material

density changes render this solution invalid.

4.3.5 Comparison to Time-Dependent Monte Carlo

To measure the accuracy of the eigenfunction expansion, a modified TORTE code

generates the true TDMC solution for a given source. This code is named after its

purpose, To Obtain Real Time Behavior (TORTB).

Code (TORTB)

TORTB is simply a modified version of TORTE designed to run a fixed-source calcu-

lation. Because both codes run on the same set of subroutines, the code physics and

energy phase space discretization is the same. This allows for an fair verification of the

ability of the eigenfunction expansion to correctly approximate the time-dependence

of the flux. TORTB uses censusing to obtain the flux spectrum at specific times.

Each census represents a time boundary, at which the neutron history is stopped
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and released in the next cycle. These censuses are chosen such that they match the

expanded flux solution.

The initial inputs to TORTB are source definitions: the energy and time distri-

bution, and the number of histories emitted from the source. TORTB builds a source

bank sampling from the appropriate distributions. For a monoenergetic pulse source,

it starts all source neutrons at the same energy and at t0 = 0. TORTB then follows

the censusing technique outlined in § 2.2.4. With a more complex time-dependent

source, TORTB begins tracking a neutron when tn−1 < t0 < tn, where tn are ordered

census times. It uses no variance reduction techniques, and does not re-sample from

a source distribution at each census. A run ends when neutrons hit the specified

last census or if all neutron histories terminate. For a supercritical medium, the last

census must be specified. During the run, if a fission occurs, a prompt fission neu-

tron energy is immediately sampled and the neutron track continues instantaneously:

delayed fission is not modeled. After each census, TORTB prints the current distri-

bution of neutron energies. The result is a file with the energy distribution of the

neutron flux at each time census.

Flux Transient Comparison

TORTE expanded flux solutions are able to preserve the detail in the energy spectrum

and match well to TDMC calculations throughout transients (Figure 4.18). At t =

0.03 µs, neutrons from the monoenergetic pulse begin to downscatter and form a

distinct flux packet, as neutrons colliding with carbon do not scatter to near-zero

energies. Some noisy behavior is observed in the eigenfunction expansion for this

initial short time period t < 0.05 µs. The TDMC calculation handles this short

time period well and has a smooth solution. At t = 0.15 µs, the flux packet takes

on a smoother form as neutrons collide with the graphite moderator. The flux at

higher energies decreases rapidly, as neutrons are not at energies at which fission

replenishes the high-energy flux. The TDMC solution has noisy behavior at high

energies due to low-probability, high-energy neutrons born from fast fissions. This

distinct flux packet maintains its form and continues to propagate to lower energies.

At t = 4 µs, the flux packet reduces in size as the fast neutron flux continues to

decrease. The flux packet encounters low energy resonances: flux depressions caused

by 238U capture resonances are resolved in both solutions due to large G. The depth

of the depressions are less pronounced in the TDMC solution. At t = 100 µs, the

flux packet continues to decrease as the spectrum begins to assume the shape of

the prompt fundamental kinetic mode. Noise present in the high energy range of
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the TDMC solution is due to the decreased neutron population leading to the fewer

fissions that are necessary to replenish the high-energy flux. The energy spectrum

approaches the prompt fundamental kinetic mode on the order of a few hundred µs.

After this time, the flux shape remains the same: only the magnitude changes. The

prompt fundamental mode decays after a few ms, after which delayed fission neutrons
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Figure 4.18: Snapshots comparing the expanded flux solution to the TDMC solution for
Problem 8 shows agreement throughout the transient for a graphite-moderated, subcritical
problem reacting to a 14.1 MeV pulse without initial precursor concentrations. TORTE uses
1000 energy intervals, the source strength is Q0 = 1×1015 cm−3· s−1, and the expansion uses
all calculated kinetic modes. The TDMC calculation uses 320 energy intervals and starts
with 40× 106 neutron histories at exactly E = 14.1 MeV. The effect that the difference in
the initial sources has on the time-dependent solutions is negligible.
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and their decay constants dictate the time-dependent change in the flux.

The eigenfunction expansions of the delayed supercritical and subcritical media

(Figures 4.17 and 4.18) show the differences caused by the moderating nuclei. The

flux packet is far more defined in the graphite-moderated subcritical medium (Figure

4.18) because the neutrons have a minimum, non-zero energy to which they down-

scatter. This also contributes to the flux at higher energies decreasing at an earlier

time. The flux at higher energies in the graphite-moderated medium tends to oscil-

late more: it decreases as neutrons slow down from high energies, rises as thermal

neutrons fission and emit high-energy neutrons, and decreases again to approach the

fundamental mode solution. The hydrogenous medium has an increase in the flux

in the high-energy range. In both media, the prompt fundamental mode solution re-

mains stationary as higher modes decay. This far more physical solution is in contrast

to the 81-group expanded flux solution. Even for the prompt supercritical medium,

most of the higher modes decay before the the fundamental mode increases. Most of

the interesting energy-dependent flux effects occur within a few milliseconds for the

thermal media.

The accuracy of the expanded flux solutions show the potential for their use to

approximate the time-dependent behavior of the flux. Higher kinetic modes decay

to the fundamental mode solution only after a few milliseconds: during this initial

time, the fundamental mode solution is a very inaccurate representation of the flux

solution.

4.3.6 Quantification of the Residual

Little is known about the residual term in the eigenfunction expansion described by

Eq. (2.103) other than it decays rapidly. The assertions gained in this section are

from empirical observations of the eigenfunction expansion using the TRMM. While

these provide some insight to the behavior of the α-eigenvalue spectrum, it is not a

rigorous mathematical derivation. All three continuous-energy problems exhibit some

residual behavior for very short time periods.

Without an analytic solution for the time-dependent flux, and because the TDMC

solutions are subject to statistical noise, it is difficult to determine the full residual

ζ(E, t). But, theoretically, the residual is at its maximum at t = 0 and because the

initial source is known, ζ(E, 0) is easily obtained by defining Eq. (2.103) at t = 0,

ψ(E, 0) =
G+J−1∑
i=0

ψ†i (E) ·Q0(E)

γi
ψi(E) + ζ(E, 0). (4.24)
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The initial flux ψ(E, 0) calculated by the eigenfunction expansion is affected by this

residual regardless of the initial source (Figure 4.19): the residual term is not an

artifact of attempting to model a sharp flux shape with the eigenfunction expansion.

With a monoenergetic source, the solution peaks in the appropriate energy interval,

but has an additional spectrum of noisy behavior, where there are negative parts of

the expanded flux solution. Even with a smoother initial source, there is noise in

the higher energy range, where 0.1 MeV < E < 2 MeV. Subtracting the expected

initial flux as calculated from the source definition yields the initial residuals (Figure

4.20), which oscillate with negative and positive parts. The overall shapes of these

two residuals only differ slightly at very low energies below E < 0.01 eV for the same

medium.

From the smoothness of the expanded flux solutions for early times, it is evident

that this large residual term decays quickly. It also decays at different times for the

three media: for the subcritical medium, there is noise in the expanded flux solution

for relatively long times (Figure 4.18) compared to the smooth solution for the delayed

supercritical medium at an earlier time (Figure 4.17). In the prompt supercritical

medium, the expansion shows no effect of the residual term relatively immediately at

t� 10 ns. The residual in the delayed supercritical medium is observed to decay at
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Figure 4.19: Initial t = 0 fluxes from the 3000 energy interval Problem 8 eigenfunction
expansion show the magnitude of the missing residual term. The monoenergetic source is
a 14.1 MeV pulse and the smooth source is distributed equally among all energy intervals.
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Figure 4.20: The absolute value of the residual terms of the 3000 energy interval Problem 8
expanded flux solutions using two different initial sources have nearly identical shapes and
the same magnitude relative to the initial source.

a time an order of magnitude earlier than for the subcritical medium, as the residual

in the prompt supercritical medium is observed to decay at a time several orders of

magnitude earlier. Along with these different observed decay times, the residuals for

each of the media have different shapes (Figure 4.21).

The relative difference in these observed decay rates are on a similar relative scale

to the neutron generation times Λ for similar types of media [8]: for a normal LWR,

Λ ≈ 1× 10−5 s−1; for a normal graphite-moderated or heavy-water reactor, Λ ≈ 10−4

s−1; and for a fast reactor, such as a mixed-oxide fueled (Pu-U) reactor, Λ ≈ 4.9×10−7

s−1. Rearranging the inhour equation in Eq. (2.104) for the neutron generation time

yields

Λ =
ρ− βeff

αp0
, (4.25)

where the static reactivity is defined in Eq. (2.83). Because TORTE calculates the

k-eigenvalue and there is no leakage in an infinite medium, this equation yields the

calculated neutron generation times of these media (Table 4.9). These times match

theoretical expectations and the relative scales of each match the difference in the

observed decay times.

These observations and some additional calculations lead to some conclusions on
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Figure 4.21: The absolute value of the initial residual terms for the three continuous-energy
media have different shapes due to the material definitions.

this observed residual term. In all media, the residual decays well before one neutron

generation time, but the relative observed decay time between the three problems is

similar to the differences in the neutron generation times. The residual is not a result

of the shape of the source, but depends on the material composition of the problem.

But, if the fundamental eigenfunction [v−1ψi(E) Ci] is set to the initial source, the

residual term disappears: the forward and adjoint eigenfunctions are bi-orthogonal

to machine precision. For any G from the subcritical medium runs, all calculate a

residual with the same shape, and even with G = 3000 kinetic modes, the residual is

still present. If this residual is due to an insufficient number of modes calculated, it

Table 4.9: A comparison of calculated neutron generation times of the three continuous-
energy media.

Problem Description Λ [µs] ρ αp0 [s−1] βeff [%]

6 Fast, Very
Supercritical

0.01097 0.51936 4.675 × 107 0.64

7 Thermal, Delayed
Supercritical

60.27 0.001766 −78.55 0.65

8 Thermal, Very
Subcritical

166.5 −0.15011 −940.7 0.65
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would at least change as G gets large. Also, the effect of the use of forward weighting

for the adjoint-weighted elements diminishes as G gets large. Statistical uncertainties

in the calculated TRM do not contribute to the residual. There is no residual in

the 81-group medium expanded flux solution (Figure 4.3), even though Monte Carlo

methods obtain the rates in the TRM. Also, for the G = 3000 run of the subcritical

medium, TORTE recalculates the eigenfunction expansion with and increased number

of neutron histories with no change in the initial shape of the residual.

4.4 Discussion

The research Monte Carlo code TORTE implements the TRMM for infinite media

to demonstrate its ability to accurately calculate α eigenvalues and use the entire

spectrum to obtain expanded flux solutions. For five multigroup problems, TORTE

is able to calculate the k eigenvalue, TRM, and α eigenvalue spectrum. These cal-

culated results match analytic solutions, and demonstrate the applications of eigen-

function expansion. For three continuous-energy problems, TORTE converges to an

α eigenvalue spectrum with an increase in the number of active histories. It calcu-

lates discrete delayed and prompt fundamental eigenvalues in line with theoretical

expectations. TORTE converges to a fundamental α eigenvalue with an increase in

the number of energy intervals G. Some eigenvalues begin to trace out lines in the

complex plane for very large G. Regardless of G, expanded flux solutions agree on

the time-dependent shape of the flux until long after the fundamental modes domi-

nate the spectrum. These flux solutions match TDMC calculations. A discussion of

some characteristics of the initial residual term ζ(E, 0) shows that it appears at very

early times in the expanded flux solutions, suggesting incompleteness of the calculated

eigenfunctions.
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CHAPTER 5

Eigenvalues and Eigenfunctions of Slabs

This chapter discusses the implementation of the TRMM to one-dimensional me-

dia, i.e., slabs, where the TRM characterizes neutrons moving through a simplified

position-direction-energy phase space. With the single position variable x and an-

gular variable µ defined as the x-direction cosine, slab geometry is the simplest way

of implementing spatial variables to the TRMM and benchmarking results. Methods

discussed in this chapter extend directly to two- or three- dimensional media, with a

requirement of more memory. Problems consist of slabs of thicknesses ∆ with vacuum

boundary conditions at the left and right boundaries. A reflecting, white, or periodic

boundary condition eliminates higher shape eigenfunctions and eigenvalues from the

solution. This is not desirable, except in very specific cases where the configuration,

desired initial source, and detectors, i.e., the desired information to be received, all

reflect the effect of the special boundary condition. In any other case, all higher shape

eigenfunctions are necessary to obtain accurate time-dependent solutions.

A research Monte Carlo code calculates the TRM and determines eigenpairs of

the forward and adjoint matrices, handling both multigroup and continuous-energy

problems. The Green’s Function Method (GFM) provides five one-speed problems for

verification of TRMM-calculated eigenvalues and eigenfunctions. It forms a matrix

problem from equations describing the interactions of the boundary angular fluxes, as

outlined in § 2.5.3. Parametric studies using these problems show the effect of the dis-

cretization of the position and direction phase spaces on the calculated α eigenvalues

in the absence of the treatment of the energy phase space. TDMC solutions for the

flux in these one-speed slabs verify the TRMM eigenfunction expansion and show the

effect the continuum spectrum has on the residual term ζ(x, t) from Eq. (2.103). Ap-

plications to continuous-energy slabs demonstrate the ability of the TRMM to obtain

α eigenvalues and deliver time-dependent solutions for more realistic problems. This

includes discussions on the dependence of continuous-energy α eigenvalue spectra on
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selections of the phase space discretizations.

5.1 Codes (TORTE-1D and TORTB-1D)

The infinite-medium FORTRAN90 [1] code version of TORTE is modified to include

the spatial variables and routines necessary for one-dimensional Monte Carlo trans-

port, and is appropriately renamed TORTE-1D. For multiplying media, the code still

performs a k-eigenvalue power iteration to tally removal rates and events for the TRM.

In purely-scattering media, the k-eigenvalue is zero: the code uses the c-eigenvalue

power iteration to obtain a source for the active Monte Carlo cycles. TORTE-1D

calculates the collision estimates of the k and c eigenvalues, but with the additional

leakage in slab geometry, these calculated eigenvalues have a weaker correlation to

the calculated fundamental α eigenvalue. For mixed media, e.g., media with fissile

fuel regions and scattering reflectors, TORTE-1D calculates the k-eigenvalue.

For continuous-energy problems, the energy after collision determines the scatter-

ing direction of neutrons for free gas and elastic scattering [2]. For continuous-S(α,β),

TORTE-1D samples a direction isotropically instead of sampling from the tables. It

assumes isotropic prompt and delayed fission emission and still uses LAPACK [3]

routines for finding eigenpairs of the forward and adjoint matrices. The code only

treats one-dimensional heterogeneous or homogeneous finite slabs of thickness ∆ with

vacuum boundary conditions at x = 0 and x = ∆. For the one-speed verification,

TORTE-1D further simplifies to include only position and direction variables. All

scattering and fission emission of these problems is isotropic. The physics of the

simplified code TORTE is described in § 4.1.

Like TORTE-1D, TORTB-1D is derived from the infinite medium FORTRAN90

code TORTB to provide TDMC solutions for verification. TORTB-1D runs a fixed-

source calculation, obtaining the time-dependent flux distribution with a census tech-

nique. At each census, TORTB-1D prints the scalar neutron flux for each position

and energy interval: it essentially integrates the angular flux over the direction phase

space. To reduce memory demands in handling very supercritical slabs, TORTB-1D

runs separate batches with a smaller number of neutron histories, storing the flux at

censuses and aggregating them at the end of all batches. Other information on the

code TORTB is described in § 4.3.5. The results refer to TORTE-1D and TORTB-1D

by their shortened names.
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5.1.1 Tallying the Transition Rate Matrix

TORTE-1D tallies removal rates and probabilities for the TRM entries in much the

same way for continuous-energy media, but considers the N slabs and M direction

intervals of the problems. It defines states as a neutron moving in direction interval

m, energy interval g, and position interval (slab) n or a precursor in position interval

(slab) n. All tallies are based on removal rates

τ−1
i = (average removal time from state i) , (5.1)

and most entries are combinations of these rates, probabilities, and multipliers, such

as

viΣfi = τ−1
i

(
# of removals due to fission of neutrons in state i

# of removals from state i

)
, (5.2)

viΣsij = τ−1
i

(
# of removals due to scatters from state i into state j

# of removals from state i

)
. (5.3)

TORTE-1D calculates all entries of the TRM from tallied quantities during the

Monte Carlo random walk except for the delayed neutron emission direction. Because

delayed neutron emissions are already rare events, for any particular precursor group,

TORTE-1D only tallies χd(E) during the random walk and distributes the angular

emission probabilities isotropically using the knowledge of number of direction inter-

vals. While it is possible to treat other quantities of the TRM similarly, the rest of the

TRM uses tallied distributions, e.g., for prompt fission, it tallies the angular depen-

dence χp(µ,E) instead of assuming that prompt fission is isotropic. This provides for

checks of the tallied χp(µ,E) that it is isotropic within some statistical uncertainty.

For the slab problems, the discretized position and direction phase spaces con-

sist of equal-sized intervals. TORTE-1D defines the slab boundaries such that they

match the material boundaries of each problem, instead of defining slabs that contain

different materials. These selections are unnecessary limitations, but they simplify

much of the analysis. The number of direction intervals is always even to avoid an

angular interval in the direction parallel to the slab faces. TORTE-1D maintains the

equal-lethargy interval discretization for the energy phase space.

As the TRM grows in size, an issue with empty states arises, i.e., when the size

of the phase space intervals decrease, sometimes a neutron never exists in a given

state during the Monte Carlo random walk. This is not an issue in continuous-

energy infinite media and one-speed slabs, but with continuous-energy slabs and larger
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systems, several states are empty, especially with mixed media where the existence

of high-energy neutrons from fission is improbable at the regions near the edge of the

reactor. The simple solution is to eliminate the state from the TRM entirely: because

a neutron does not enter the state during a Monte Carlo random walk, it is unlikely

a neutron enters the state during a transient. The only time this treatment becomes

an issue is if a desired source for the eigenfunction expansion is in one of these empty

states. In this case, the adjoint eigenfunctions do not operate on the desired source.

Another solution is merging an empty state with an adjacent state, which requires

careful bookkeeping.

5.1.2 Eigenvalues and Eigenfunctions

TORTE-1D calculates up to N(MG+ J) α eigenvalues and shape eigenfunctions for

the forward and adjoint matrix equations depending on the number of fissile slabs Nf .

For purely-scattering slabs, which lack precursor concentrations, TORTE-1D calcu-

lates only NMG α eigenvalues and shape eigenfunctions. The shape eigenfunctions

are vectors of length N(MG+J), where the organization of the states determines the

order of the entries of the shape eigenfunctions. These entries are the angular flux

dependent on M . Summing the entries over the angular intervals yields the scalar

flux for a given energy g and slab n,

φng =
M∑
m=1

ψngm. (5.4)

This sum yields a vector of length NG + NfJ containing the position- and energy-

dependent shape eigenfunctions organized by slab n,[
φ(E) C

]
n

=
[
φ1 φ2 · · · φG C1 · · · CJ−1 CJ

]
n
, (5.5)

for n = 1, 2, . . ., N . If slab n is purely scattering, the last J entries are removed and

the vector in Eq. (5.5) is of length G. The eigenfunction expansion coefficients Ai are

dot products of the adjoint shape eigenfunctions and desired initial source

Ai =
ψ†i (x, µ,E) ·Q0(x, µ,E)

γi
. (5.6)

The ability of the expansion to model sharp monoenergetic or directional sources is

tied to the chosen phase space discretizations used to calculate the adjoint shape

eigenfunctions.
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5.1.3 Visualization of Flux Solutions

With additional phase space variables, solutions depended on the entire position-

energy-direction phase space. Obtaining the scalar flux eliminates the direction phase

space dependence, and for one-speed media, there is only one energy interval. The

TRM still includes the direction information, but it is unnecessary in many applica-

tions. For continuous-energy media, results shown are linear combinations of the flux

to deliver a quantity similar to an ideal detector response,

Rd = 〈Σd(x,E), φ(x,E)〉 , (5.7)

where the selection of the simulated cross sections Σdg reflect the detector material,

such as a fissile isotope or boron (Table 5.1). In most cases, this response depends

mostly on the thermal neutron flux.

Table 5.1: Simulated cross sections for obtaining the ideal detector response.

g 1 2 3 4

Σdg 0.01 0.02 0.06 0.91

5.2 One-Speed Verification

For five one-speed slabs, calculated α-eigenvalue spectra and eigenfunction expansion

solutions from the TRMM are benchmarked to the GFM results and TDMC solu-

tions. The GFM [4] described in § 2.5.3 calculates the real α-eigenvalues and shape

eigenfunctions of scattering or multiplying one-dimensional media. Unless otherwise

noted, TORTE sets the neutron speed to v = 1 cm/s and total cross sections to unity

Σt = 1 cm−1 to match the GFM specifications. Thus, the resulting calculations are

dimensionless and the problem thicknesses are in mean free paths (mfp). With a

single energy interval, the TRMM results depend purely on the choice of position and

direction intervals.

The TORTE-calculated α-eigenvalue spectra have many eigenvalues omitted from

the benchmark: most of these are complex and exceed the Corngold limit in the neg-

ative direction, α < α∗, which identifies the start of the continuum as discussed in

§ 2.3.3. The GFM searches for the discrete real eigenvalues in the spectrum individ-

ually and does not search beyond this limit, which is α∗ = −1 for most problems in

the benchmark. For TORTE-calculated results, the real spectrum consists of the real

eigenvalues that exist before the start of the calculated complex part of the spectrum.
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A discussion on the calculation of complex points within the continuum follows the

benchmark results.

5.2.1 Non-Multiplying Media

Problems 9A-E: These are one-speed, purely-scattering, homogeneous slabs of

thicknesses ranging from ∆ = 1.0 to ∆ = 25.0 mfp. The TORTE-calculated, real

α-eigenvalue spectrum agrees with the GFM-calculated eigenvalues (Table 5.2). For

slabs of all thicknesses, the fundamental eigenvalues show the best agreement. This

agreement tightens with increasing slab thickness, despite the shrinking magnitude

of the eigenvalue and the same number of total eigenvalues calculated in all spectra.

Also, the difficulty of calculating the highest eigenvalues increases with slab thickness.

In the ∆ = 20 and ∆ = 25 mfp slabs, TORTE has difficulty computing the eigenvalues

closest to the Corngold limit before the start of the complex portion of the eigenvalue

spectrum. In problems where the highest eigenvalue is much smaller than the others,

TORTE has more difficulty computing it: in the ∆ = 5 and ∆ = 10 mfp slabs, the

eigenvalues closest to the Corngold limit show the most difference to the GFM eigen-

values. In the ∆ = 20 and ∆ = 25 mfp slabs, TORTE does not even calculate these

eigenvalues before calculating complex eigenvalues. These complex eigenvalues are

shown and discussed in a later section. There is little observed correlation between

the accuracy of eigenvalues corresponding to symmetric eigenfunctions, i.e., the funda-

mental and every other eigenvalue thereafter, and those corresponding to asymmetric

eigenfunctions, likely because the effect of the position and direction discretization

on the calculated eigenvalues is greater. The eigenfunctions of the real eigenvalues

are similar to the cosine shapes expected from basic diffusion theory, which follows

cos(iπx/∆) where i = 1, 2, . . ., defines the number of the eigenfunction.

For this scattering slab, the expanded flux solution accurately approximates the

TDMC solution resulting from a initial pulse in the center of a slab (Figure 5.1). At

t = 1, neutrons are concentrated in the center of the slab as the move in all directions

from the initial source. The expanded solution has a smooth, sharp decrease in the

region ahead of the neutron pulse where there should be zero neutrons. This smooth

shape is unable to approximate such a sudden change in the neutron flux. At t = 10,

neutrons nearly reach the boundaries of the slab, and the expanded flux solution

only differs slightly to the TDMC solution at the front edge of the neutron pulse.

At t = 20, neutrons exit the slab and the smooth shapes of both the expanded flux

TDMC solutions match. At t = 50, the expanded flux solution takes the form of the

fundamental mode, and decreases at the rate of the fundamental α eigenvalue. The
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Table 5.2: Comparison of TORTE- and GFM-calculated α eigenvalues for a homogeneous
scattering slab.

∆ TORTEa,b GFM % relative error

1 −6.09822× 10−1 −6.08072× 10−1 0.288

5 −8.10462× 10−2 −8.10933× 10−2 0.0581
−3.42167× 10−1 −3.41216× 10−1 0.279
−8.46262× 10−1 −8.34837× 10−1 1.37

10 −2.53438× 10−2 −2.53500× 10−2 0.0245
−1.04415× 10−1 −1.02978× 10−1 1.40
−2.40933× 10−1 −2.37942× 10−1 1.26
−4.40323× 10−1 −4.39813× 10−1 0.116
−7.04672× 10−1 −7.24185× 10−1 2.69

20 −7.17976× 10−3 −7.17962× 10−3 0.00581
−2.93535× 10−2 −2.91532× 10−2 1.07
−6.68243× 10−2 −6.62597× 10−2 1.35
−1.20005× 10−1 −1.19050× 10−1 1.38
−1.89650× 10−1 −1.88258× 10−1 1.22
−2.76313× 10−1 −2.74781× 10−1 0.861
−3.80676× 10−1 −3.79559× 10−1 0.257
−5.02925× 10−1 −5.03525× 10−1 0.661
−6.43331× 10−1 −6.52293× 10−1 1.39

- −8.43141× 10−1 -

25 −4.7169× 10−3 −4.71722× 10−3 0.00675
−1.9369× 10−2 −1.92125× 10−2 0.808
−4.4073× 10−2 −4.36235× 10−2 1.02
−7.9002× 10−2 −7.81732× 10−2 1.05
−1.2440× 10−1 −1.23148× 10−1 1.01
−1.8052× 10−1 −1.78906× 10−1 0.894
−2.4763× 10−1 −2.45830× 10−1 0.727
−3.2595× 10−1 −3.24297× 10−1 0.507
−4.1549× 10−1 −4.14606× 10−1 0.213
−5.1588× 10−1 −5.17041× 10−1 0.225
−6.2665× 10−1 −6.34446× 10−1 1.24

- −7.91043× 10−1 -
- −9.55902× 10−1 -

a For ∆ = 1, 5, 10: N = 201, M = 16, 100× 106 active histories
b For ∆ = 20, 25: N = 400, M = 8, 200× 106 active histories
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slight differences between the TDMC and expanded flux solutions at the edges of

the propagating flux shape for early times is due to the difference between the initial

sources defined in the TORTE eigenfunction expansion and TDMC calculation.

In this expansion, the initial source is in the center of the slab and angularly
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Figure 5.1: Snapshots compare the expanded flux solution to the TDMC solution, showing
agreement throughout a transient in a scattering slab of thickness ∆ = 25.0 mfp. The
TDMC solution is the result of tracking 100 batches of 1 × 106 neutron histories over
N = 201 position intervals. Each neutron history starts at t = 0 at the exact the center of
the slab x = 12.5 moving in directions distributed equally in all µ. TORTE uses N = 401
position intervals and M = 8 angular intervals so that the approximate source is in the
center, slab n = 201. The eigenfunction expansion uses all NM modes, not just those
corresponding to the real eigenvalues.
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symmetric, so the asymmetric, i.e., odd-numbered, kinetic modes are unimportant to

the solution. This is preserved during the eigenfunction expansion, as the coefficients

for the odd-numbered modes are several orders of magnitude smaller than coefficients

of even-numbered ones: they contribute negligible amounts to the expanded flux

solution.

Problems 10A-E: These are one-speed, multi-region slabs with two different

material regions with Σt = 10. Material 1 is purely-scattering, while material 2 is

highly-scattering with Σs = 9. The total problem thickness is ∆ = 10 mfp, the speed

is effectively set to v = 10, and the Corngold limit is α∗ = −10. Different divisions of

the slab yields five separate variations, each with a different “grain size” defined as

the thickness of a homogeneous subregion (Figure 5.2). In the limit of largest grain

size, the problem has two grains, one on the left of material 1 and one on the right

of material 2. In the opposite limiting case, the problem is a homogeneous slab with

homogenized cross sections, Σs = 9.5. For intermediate grain sizes, the materials

alternate starting with material 1 until reaching the other end of the slab.

In all variations of this multi-region slab, the TORTE-calculated eigenvalues

match the GFM eigenvalues within 0.2% (Table 5.3). The fundamental eigenvalues

show the best agreement, within 0.06%, while higher eigenvalues have the most differ-

ence. All eigenvalues converge within 0.2% regardless of the grain size and symmetric

or asymmetric eigenfunctions. Like in the homogeneous slab, the shape eigenfunctions

of the real eigenvalues behave as diffusion theory suggests, with additional inflections

at each material interface.

The expanded flux solution for a pulse source incident on this multi-region slab

matches TDMC solutions (Figure 5.3). At t = 0.5, the neutrons reach the halfway

point of the slab. Inflection points that mark the grain boundaries between material

0 10.0

∆1 = grain size ∆2 = ∆1

v
a
c
u
u
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u
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material 1 material 2  . . . 

Figure 5.2: The multi-region slab consists of several subregions of alternating material.
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Table 5.3: TORTE- and GFM-calculated α eigenvalues for the multi-region slab.

Grain Size TORTEa GFM % relative error

5.0 (2 slabs) −0.550522 −0.550812 0.0526
−1.70897 −1.70645 0.148
−2.94639 −2.94231 0.139
−5.15743 −5.16275 0.103

2.5 (4 slabs) −0.702916 −0.703133 0.0309
−1.44948 −1.44826 0.0842
−3.07481 −3.07065 0.135
−5.14246 −5.14979 0.142

1.0 (10 slabs) −0.748572 −0.748792 0.0294
−1.55628 −1.55474 0.0991
−2.96333 −2.96021 0.105
−5.06238 −5.06991 0.149

0.5 (20 slabs) −0.756954 −0.757198 0.0322
−1.56677 −1.56505 0.120
−2.97862 −2.97523 0.114
−5.09076 −5.09813 0.145

0.0 (homogeneous) −0.763313 −0.763507 0.0254
−1.57345 −1.57201 0.0916
−2.98655 −2.98348 0.103
−5.10018 −5.10866 0.166

a N = 400, M = 8, 200× 106 active histories

regions are present throughout the entire transient. The smooth expanded flux solu-

tion is not able to predict the steep drop-off at the front of the pulse at the center

of the slab where zero neutrons exist. A slight bump in the expanded flux solution

is different than the shape of the TDMC solution due to the differences in the ini-

tial source for the two cases. This difference is the direction dependence of neutrons

within each direction interval: the TDMC solutions distributes source neutrons uni-

formly in µ over a given direction interval, but the rates in the TRM are generated

with µ distributions that are likely not uniform across each direction interval. At

t = 1.0, neutrons reach the opposite side of the slab and begin to leak out of the

boundary. Both solutions are smooth. At t = 1.5, the asymmetric flux shape begins

to level as more neutrons propagate to the right half of the slab. At t = 4.0, all higher

modes are nearly decayed as the expanded flux solution decreases significantly while

approaching the fundamental kinetic mode.

Problems 9 and 10 demonstrate the extension of the TRMM to non-multiplying
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slabs. For large problems, finding the highest eigenvalues near the Corngold limit is

the most difficult. The eigenfunction expansion delivers smooth functions which are

unable to model very sharp changes in the TDMC solutions. Nevertheless, calculated

eigenvalue spectra and expanded flux solutions compare well to benchmark results

for both test problems.
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Figure 5.3: Snapshots comparing the expanded flux solution to the TDMC solution agree
throughout a transient in a multi-region slab with ten homogeneous 1-mfp subregions of
alternating materials. The TDMC solution is the result of tracking 100 batches of 1× 106

neutron histories over N = 200 position intervals. Neutron histories start at t = 0 at
the exact left edge of the slab x = 0 distributed equally in µ between 0.75 < µ ≤ 1.0.
TORTE approximates this source in the left-most slab n = 1 and in the direction interval
corresponding to the TDMC source, and uses all NM modes in the eigenfunction expansion.
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5.2.2 Multiplying Media

Problems 11A-O: These are one-speed, homogeneous slabs of thicknesses ranging

from ∆ = 1.0 to ∆ = 50.0 mfp. The cross sections are Σs = 0.9 and νΣf = 0.25,

and all absorptions are prompt fissions. The number of real α eigenvalues in the

spectrum increases with the size of the slab, where for smaller slabs ∆ < 10.0, there

are no more than six real eigenvalues (Table 5.4). Larger slabs have up to thirty

real eigenvalues (Table 5.5), with several positive eigenvalues. This increase is not a

consequence of the phase space discretization: it is directly related to the increase in

slab thickness. With a larger slab, more discrete eigenvalues are necessary to describe

any asymmetry in the neutron flux.

For slab of all thicknesses, TORTE accurately obtains the fundamental and first

few eigenvalues. For smaller slabs, the majority of the calculated eigenvalues fall

within 1% of the GFM-calculated eigenvalues. Like the scattering slab problems,

the eigenvalues closest to the Corngold limit are the most difficult to obtain, and

in some cases, TORTE does not find the most negative eigenvalue in the spectrum.

For example, for thicknesses of ∆ = 6, 8, and 10, the smallest GFM-calculated real

eigenvalue is less than −0.80, with the next smallest eigenvalue being nearly half that.

TORTE does not calculate these eigenvalues close to the Corngold limit before the

start of the complex portion of the eigenvalue spectrum. But, with an increase in the

position and direction intervals, N and M , TORTE will begin to deliver estimates

of this eigenvalue. The TORTE-calculated eigenvalue closest to the limit is α =

−0.63343 for the ∆ = 9 slab, which matches well to the GFM-calculated eigenvalue.

Similar trends continue for the large slabs, for which TORTE uses a larger number

of position and direction intervals. The fundamental and first few eigenvalues remain

in agreement. But, as TORTE begins to calculate more real eigenvalues in the spec-

trum, they begin to differ more from the GFM-calculated spectrum. The size of the

eigenvalue affects the accuracy, as those eigenvalues of very small magnitude, i.e., near

zero, tend to differ more greatly from the GFM-calculated results than eigenvalues

of larger magnitude. This is because the eigenvalues of the TRM are estimates of

the true α-eigenvalue spectrum, causing a larger relative shift for the smaller interior

eigenvalues. Again, TORTE is unable to calculate the highest eigenvalues close to the

Corngold limit before the onset of the complex portion of the spectrum. For all slabs,

there is little correlation between symmetric modes and accuracy of the calculated

eigenvalue.

Problem 12: This is a two-region multiplying slab of thickness ∆ = 2.5 mfp. It

consists of a 1.5-mfp region on the left with Σs = 0.9 and νΣf = 0.6, and a 1.0-mfp
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Table 5.4: Comparison of TORTE- and GFM-calculated α eigenvalues for small homoge-
neous multiplying slabs.

∆ TORTEa,b GFM % relative error

1 −0.46979 −0.46916 0.134

2 −0.13616 −0.13631 0.110

3 −0.013949 −0.013979 0.215
−0.56748 −0.56833 0.150

4 0.043690 0.043705 0.0343
−0.30134 −0.30054 0.266

5 0.075426 0.075469 0.0570
−0.16195 −0.16035 0.998
−0.59322 −0.59898 0.962

6 0.094799 0.094831 0.0336
−0.077252 −0.077292 0.0516
−0.38789 −0.38858 0.178

- −0.88268 -

7 0.10749 0.10751 0.0232
−0.023985 −0.023857 0.537
−0.25671 −0.25690 0.0733
−0.62459 −0.61675 1.27

8 0.11624 0.11626 0.0191
0.012395 0.012616 1.75
−0.16913 −0.16883 0.180
−0.44186 −0.44324 0.310

- −0.83417 -

9 0.12254 0.12256 0.0127
0.038349 0.038649 0.775
−0.10750 −0.10687 0.588
−0.32328 −0.32364 0.111
−0.63343 −0.62740 0.962

10 0.12722 0.12725 0.0225
0.57586 0.057894 0.531
−0.062286 −0.061541 1.21
−0.23795 −0.23748 0.197
−0.47767 −0.48031 0.550

- −0.80528 -

a For ∆ = 1, 2, 3, 4, 5: N = 201, M = 16, 100× 106 active histories
b For ∆ = 6, 7, 8, 9, 10: N = 400, M = 8, 200× 106 active histories
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Table 5.5: Comparison of TORTE- and GFM-calculated α eigenvalues for large homoge-
neous multiplying slabs.

∆ TORTEa GFM

15 0.13911, 0.10585, 0.049567, 0.13913, 0.10626, 0.050626,
−0.030957, −0.13718, −0.27101, −0.029113, −0.13499, −0.26990,
−0.43446, −0.64248 −0.43784, −0.64414, −0.89490

20 0.14364, 0.12414, 0.091285, 0.14365, 0.12451, 0.09233,
0.044738, −0.015984, −0.091470, 0.046662, −0.013142, −0.087970,
−0.18234, −0.28914, −0.41241, −0.17899, −0.28772, −0.41608,
−0.55442 −0.56654, −0.74205, −0.94561

30 0.14705, 0.13793, 0.12262, 0.14707, 0.13825, 0.12349,
0.10103, 0.073081, 0.038670, 0.10270, 0.075746, 0.042455,
0.0022682, −0.049900, −0.10432, 0.0026071, −0.044071, −0.097908,
−0.16562, −0.23381, −0.30876, −0.15930, −0.22872, −0.30673,
−0.39052, −0.47898, −0.57630, −0.39400, −0.49130, −0.59956,
−0.71666 −0.71983, −0.85323

40 0.14829, 0.14300, 0.13410, 0.14832, 0.14326, 0.13482,
0.12153, 0.10533, 0.085480, 0.12295, 0.10763, 0.088785,
0.061859, 0.034532, 0.0034576, 0.066355, 0.040254, 0.010383,
−0.031412, −0.070027, −0.11252, −0.023376, −0.061157, −0.10312,
−0.15871, −0.20869, −0.26224, −0.14943, −0.20032, −0.25599,
−0.31925, −0.37966, −0.44327, −0.31673, −0.38283, −0.45465,
−0.51026, −0.58202, −0.66838 −0.53256, −0.61701, −0.70849,

−0.80753

50 0.14889, 0.14541, 0.13954, 0.14891, 0.14564, 0.14018,
0.13128, 0.12065, 0.10760, 0.13251, 0.12263, 0.11050,
0.092150, 0.074257, 0.053972, 0.096098, 0.079394, 0.060343,
0.031267, 0.0061054, −0.021449, 0.038900, 0.015012, −0.011382,
−0.051437, −0.083819, −0.11851, −0.040349, −0.071968, −0.10632,
−0.15557, −0.19493, −0.23649, −0.14351, −0.18363, −0.22682,
−0.28012, −0.32571, −0.37322, −0.27319, −0.32289, −0.37610,
−0.42228, −0.47317, −0.52578, −0.43298, −0.49374, −0.55860,
−0.58126, −0.64332 −0.62780, −0.70162, −0.78033,

−0.86424, −0.95354
a N = 400, M = 8, 200× 106 active histories

region on the right with Σs = 0.2 and νΣf = 0.3. All absorptions are fissions.

The problem is supercritical with a TORTE-calculated k eigenvalue of 1.286719

± 11 pcm and there is one real α-eigenvalue in the spectrum. TORTE calculates

this fundamental α eigenvalue as 0.14250191, within 0.02% of the GFM-calculated

eigenvalue, 0.14247481. Also, the GFM method provides normalized values of the
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fundamental shape eigenfunction calculated at specific points within the slab. This

solution aligns with the TORTE-calculated fundamental shape eigenfunction (Figure

5.4), which has an inflection point at the material boundary x = 1.5. TORTE calcu-

lates only this one real eigenvalue before the onset of the complex spectrum. Higher

complex eigenfunctions have a similar behavior to the fundamental eigenfunction

when plotting the real and imaginary parts separately in the position phase space.

5.2.3 Mixed Media

Problems 13A-D: These are variations of a five-region slab consisting of fuel, a

moderator, and an absorber. The nuclear parameters for the fuel are either νΣf =

0.3 or = 0.7, and Σs = 0.8, where all absorptions are fissions. The moderator is

highly scattering with Σs = 0.8 and the absorber has a small scattering cross section

of Σs = 0.1. The outer regions on left and right are fuel, the center region is a large

absorber, and the regions in between are moderator (Figure 5.5). The thickness of

the right fuel region ∆5 is either 1.0 or 1.1 mfp, creating symmetric and asymmetric
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Figure 5.4: The TORTE-calculated fundamental shape eigenfunction of the two-region
problem matches that calculated at exact points by the GFM. TORTE uses N = 200
position and M = 8 direction intervals, and runs 200× 106 active histories. Note that the
GFM calculates the scalar flux at x = 0, while TORTE calculates the scalar flux within
the small slab from 0 ≤ x < ∆n, where ∆n is the thickness of the slab. This only causes a
slight difference in the normalization procedure for the shape eigenfunction.
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Figure 5.5: The five-region slab has loosely coupled fuel regions due to the large central
absorber subregion.

configurations. With the variation on the fuel νΣf , there are four variants of this

slab. These are the final problems in the GFM benchmark.

All variations of this slab have only two real α eigenvalues. The two fuel regions

are loosely coupled due to the large absorber in between; very few neutrons born in

one fuel region reach the other. Also, the first two k eigenvalues and α eigenvalues

are very close to one another. These factors slow the convergence rate, particularly in

the configuration where the first two α eigenvalues are very small. TORTE calculates

the fundamental k eigenvalue (it does not calculate higher k eigenvalues), and uses

different numbers of position and direction intervals depending on the configuration.

Compared to the GFM-calculated eigenvalues, the TORTE-calculated k eigen-

values are within one standard deviation and the α eigenvalues match to several

significant digits (Table 5.6). The worst agreement is for the first α eigenvalue of the

asymmetric νΣf = 0.7 configuration, where the first two α eigenvalues differ more

than in the other three configurations. TORTE has difficulty accurately obtaining

this first eigenvalue, as it is an order of magnitude smaller than the fundamental. In

all configurations, TORTE calculates only the two real eigenvalues before calculating

complex spectra at and beyond the Corngold limit. Thus, TORTE obtains many

more eigenvalues and shape eigenfunctions than the GFM.

The shape eigenfunctions corresponding to the two real eigenvalues of the νΣf =

0.3 configurations (Figure 5.6) peak in the outlying fuel regions. The fundamental

shape eigenfunctions are all positive and all real, while the first shape eigenfunctions

have positive and negative parts. For the symmetric configuration, the absorber

region causes an order of magnitude decrease in the center of the fundamental eigen-

function, while the first shape eigenfunction has two-fold rotational symmetry. With

only a small increase in the size of the right fuel region, the fundamental shape
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Table 5.6: Summary of the TORTE and GFM results for the five-region slab.

n νΣf ∆5
kn αn

TORTEa GFM TORTEb,c,d,e GFM

0 0.3 1.0 0.4243228 0.4243163 −0.3196225 −0.3196537
1 - 0.4241317 −0.3229678 −0.3229855
0 1.1 0.4556890 0.4556758 −0.2930021 −0.2932468
1 - 0.4242237 −0.3211711 −0.3213939

0 0.7 1.0 0.9900525 0.9900716 −0.006153130 −0.006156369
1 - 0.9896407 −0.006442946 −0.006440766
0 1.1 1.063237 1.063244 0.03753544 0.03759991
1 - 0.9898554 −0.006969051 −0.006298843
a Uncertainties converged to less than a few pcm.
b For symmetric, νΣf = 0.3: N = 180, M = 8, 2× 109 active histories
c For asymmetric, νΣf = 0.3: N = 182, M = 8, 2× 109 active histories
d For symmetric, νΣf = 0.7: N = 270, M = 8, 10× 109 active histories
e For asymmetric, νΣf = 0.7: N = 273, M = 8, 2× 109 active histories

eigenfunction increases an order of magnitude in the larger region. The first shape

eigenfunction in the asymmetric configuration is only slightly negative in the larger

fuel region. Features seen in the shape eigenfunctions of the νΣf = 0.7 configurations

are similar, but with the additional multiplication in the fuel regions, the behavior is

amplified. No GFM shape eigenfunction data is available for these configurations.

For the νΣf = 0.7 configuration, the TORTE-calculated shape eigenfunctions for

the symmetric and asymmetric configurations match results from the GFM (Figure

5.7). TORTE has the most difficulty converging to the shape eigenfunctions for the

symmetric configuration due to the very small absolute difference between the fun-

damental and first α eigenvalues, on the order of 10−4. Though TORTE converges to

these eigenvalues after running a similar number of particles as the other configura-

tions, it must run many more particles to obtain the appropriate shape eigenfunctions.

While the fundamental and first α eigenvalues of the νΣf = 0.3 symmetric configu-

rations have a smaller relative difference, TORTE has much less difficulty converging

to the appropriate symmetric eigenfunctions. There are two physical reasons for this

slow convergence: the νΣf = 0.7 symmetric configuration is very near critical, so the

flux within the system decays slowly; and the two fuel regions are nearly decoupled.

Thus, an asymmetric perturbation of the flux in this slab persists for long times before

decaying to the symmetric solution: this happens only after the flux decreases several

orders of magnitude. While the νΣf = 0.3 configuration is similarly decoupled, it is

very subcritical, so the flux decays quickly. The shape eigenfunctions of both sym-
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Figure 5.6: The TORTE-calculated first two real shape eigenfunctions of the νΣf = 0.3
five-region slab show the different scales of the fundamental and first shape eigenfunctions
and the large effect of a small increase in the right fuel region thickness.

metric configurations are similar, but the fundamental shape eigenfunction in this

νΣf = 0.7 configuration decreases two orders of magnitude in the central absorber

region instead of only one.

The fundamental shape eigenfunction for the asymmetric νΣf = 0.7 configura-

tion increases three orders of magnitude in the larger right fuel region, a greater

increase than in the νΣf = 0.3 configuration. The first shape eigenfunctions of both

configurations are similar. With an increase in size to the right fuel region, the sub-

critical symmetric slab becomes supercritical. This implies that the larger right fuel

region drives the supercriticality of the slab, which is reflected in the increase of the

fundamental eigenfunction.

For three configurations of the five-region slab, expanded flux solutions accurately

predict the time-dependent evolution of the flux resulting from a rightward-directed

initial source from the left vacuum. The eigenfunction expansions use all calculated

modes, not only the two real modes. The selection of the source guarantees the exci-

tation of asymmetric modes: a symmetric source is a simpler problem for the eigen-

function expansion. The TDMC solutions start initial neutrons distributed equally
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between 0.75 < µ ≤ 1.0 to reflect the choice of M = 8 equal-sized angular intervals

and uses a coarser spatial resolution for increased statistics.

For an initial pulse on the slightly subcritical, symmetric νΣf = 0.7 configuration,

the behavior of the expanded flux solution throughout the transient is very smooth,

though there are the usual issues at the edge of the propagating flux shape where the

actual flux should drop abruptly to zero (Figure 5.8). At t = 4.5, neutrons entering
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Figure 5.8: Snapshots of the expanded flux and TDMC solutions agree for a incident pulse
on the subcritical, symmetric, νΣf = 0.7 five-region slab. The TDMC solution is the result
of tracking 100 batches of 1× 106 neutron histories over N = 180 position intervals. Each
neutron history starts at t = 0 at the left interface x = 0. TORTE approximates this initial
source as a pulse in the left slab n = 1 and in the direction interval corresponding to the
TDMC source.
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from the left penetrate to the center of the problem, where a small bump forms at

the front of the distribution. The difference at this bump between the expanded flux

and TDMC solutions is due to the slightly different definition of the sources, i.e., the

difference between the uniform distribution of the TDMC source neutrons over each

direction interval and the distribution used in calculating the rates of the TRM. Small

inflections at x = 1 and x = 2 show the change in materials from fuel to moderator

to absorber. There is a smooth drop off after x = 4.5 in the expanded flux solution,

where the TDMC solution abruptly ends. At t = 10, the neutrons arrive at the other

end of the slab and begin to fission in the right fuel region. There is a slight difference

between the expanded flux and TDMC solutions at the right end of the slab, but the

solutions match well despite the change in flux of over three orders of magnitude from

the left to the right fuel. Inflection points show the change in materials at the right

end of the slab. At t = 25, the neutrons in the right fuel region continue to fission

and the flux there recovers as more neutrons enter the fuel region. The flux at the left

side of the slab changes very little during this time. At t = 500, the flux in the right

fuel region remains the same, while the flux on the left side of the slab decreases an

order of magnitude. This behavior shows the decay of the first eigenfunction. After

this time, the expanded flux solution continues to decrease as the asymmetry persists

for a long time before approaching the symmetric fundamental mode.

An alternate way to visualize the expanded flux solution is to examine the time-

dependent variation of the flux at a certain point within the system. For the sym-

metric subcritical configuration (Figure 5.8), this is like the simulation of detector

response in a pulsed-neutron experiment. Using this analysis, the expanded flux so-

lution matches the TDMC solution for an ideal detector in the center of the right fuel

region (Figure 5.9). The TDMC solution shows the effect of Monte Carlo statistics,

where the solution disagrees slightly with the expanded flux solution at some times.

The expanded flux solution yields values at any time after the pulse t > 0, while the

TDMC solution is limited to the initial definition of the census times.

Using the same initial source, but replacing the subcritical, symmetric slab with

the asymmetric, supercritical slab and repeating the analysis delivers a similar ex-

panded time-dependent solution. This solutions is identical to that of the subcritical

slab until neutrons reach the right fuel region from the incident pulse at the left vac-

uum (Figure 5.10). The expanded flux and TDMC solutions show similar trends at

t = 4.5 and t = 9 to the symmetric configuration. At t = 30, the flux in the right fuel

region recovers faster than in the symmetric configuration. The additional 0.1 mfp

provides enough fissile material to make this configuration supercritical. At t = 200,
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Figure 5.9: An alternate visualization of the expanded flux solution shows agreement with
the TDMC solution for the ideal detector response at a point in the right fuel region.
Because the TDMC and TORTE solutions use N = 180 and N = 270 position intervals,
respectively, the slabs n = 169, 170 and n = 253, 254, and 255 represent the same position
range. This represents the integrated scalar flux in the range 8.4 < x < 8.5. The irregular
frequency of the TDMC solution is due to the scaling of census times.

the flux in the right fuel region increases three orders of magnitude, as the flux in the

left fuel region actually decreases. This decrease shows the decay of the first kinetic

mode: the first eigenfunction is peaked in the left fuel region. Physically, the flux

decreases on the left because there are too few fissions in the location to counterbal-

ance the leakage of neutrons: this is the case for the symmetric slab. Thus, the flux

in the left fuel region decreases until neutrons emitted from fission in the right fuel

region begin to offset the imbalance in the left fuel region. The flux continues to in-

crease rapidly before assuming the very asymmetric shape of the fundamental mode.

The expanded flux solution accurately matches the TDMC solution throughout the

transient.

The very subcritical, symmetric νΣf = 0.3 configuration has a similar time-

dependent solution as the νΣf = 0.7 configuration, except the solution decays much

faster. But, if the initial source is constant for t ≥ 0 with no initial neutrons within

the problem, the expanded flux and TDMC solutions take on a much different form

than the fundamental eigenfunction suggests (Figure 5.11). At t = 4.5, neutrons

reach the center of the problem, where the flux decreases several orders of magni-
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tude. A slight discrepancy appears between the expanded and TDMC solutions at

the center. At t = 9, very few neutrons reach the right edge of the problem. There is

more statistical noise in the TDMC solution on the right half of the slab due to the

low probability of neutrons traveling through the central absorber. At t = 12, the

flux in the right fuel region begins to increase from fissions in the fuel, but the flux

solution is still very asymmetric. At t = 25, the flux reaches its asymptotic solution:
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Figure 5.10: Snapshots of the expanded flux and TDMC solutions agree for an incident pulse
on the supercritical, asymmetric, νΣf = 0.7 five-region slab. The TDMC solution is the
result of tracking 1,000 batches of 10,000 neutron histories over N = 182 position intervals.
Each neutron history starts at t = 0 at the left interface x = 0. TORTE approximates this
initial source as a pulse in the left slab n = 1 and in the direction interval corresponding to
the TDMC source.
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all higher kinetic modes decayed and the asymmetric shape is due to the constant

source entering from the left vacuum. While there is still noise in the TDMC solution

in the right fuel region, the two solutions agree on this steady-state shape.

Problems 14A&B: These are a variation of the symmetric configurations of the

five-region slab, where the central absorber is replaced with the moderator material.
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Figure 5.11: Snapshots of the expanded flux and TDMC solutions agree for a constant
incident source on the very subcritical, symmetric, νΣf = 0.3 five-region slab. The TDMC
solution is the result of tracking 1,000 batches of 10,000 neutron histories over N = 180
position intervals Neutron histories start at the left interface x = 0, and initial start times
are distributed evenly throughout the time before the last census. TORTE approximates
this initial source as a constant source in the left slab n = 1 and in the direction interval
corresponding to the TDMC source.
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With this material change, TORTE calculates two additional real α eigenvalues (Table

5.7) before the start of the complex spectrum near the Corngold limit. There are no

benchmark results for comparisons of these calculated eigenvalues. In the νΣ = 0.7

configuration, the replacement of the absorber yields a supercritical configuration

with two positive eigenvalues: an asymmetry in the flux affects the time-dependent

solutions for long times. The asymptotic solution still follows the fundamental kinetic

mode because it dominates the first kinetic mode at long times. The additional higher

eigenfunctions cross the x-axis n times, behaving similarly to the higher eigenfunctions

in the five-region slab.

Table 5.7: The TORTE-calculated eigenvalues of the five-region slab with a central moder-
ator replacing the absorber.

n
νΣf = 0.3 νΣf = 0.7

ka
n αb

n ka
n αb

n

0 0.43720 −0.20075 1.02013 0.010844
1 - −0.25134 - 0.0083481
2 - −0.40970 - −0.30124
3 - −0.71076 - −0.57557
a Uncertainties converged to less than a few pcm.
b N = 270, M = 8, 2× 109 active histories

Problems 15A&B: These are another variation of the symmetric configurations

of the five-region slab, where the central absorber is replaced with a void: neutrons

stream freely to the opposite side of the slab. For the νΣf = 0.7 configuration, the

removal of the central absorber makes the configuration supercritical. While TORTE

still calculates a real α eigenvalue larger than other eigenvalues in the spectrum (Table

5.8), the presence of complex eigenvalues with real parts very near that of the largest

eigenvalue makes identifying this as the true fundamental eigenvalue difficult. This

is due to the central void region, where Σt = 0.0: this effectively moves the Corngold

limit to α∗ = 0 for the void, and TORTE calculates complex eigenvalues in the entire

negative half space. In the νΣf = 0.7 configuration, this is not a problem because the

configuration is supercritical: the fundamental eigenvalue is positive and exists above

this Corngold limit. But, in the subcritical νΣf = 0.3 configuration, the fundamental

α eigenvalue is negative and the calculation of complex spectra in the space around

the fundamental eigenvalue makes it difficult to identify, and it moves significantly

depending on the position and direction phase space discretizations. Using more

position and direction intervals improves the accuracy the expanded time-dependent

solution, but the eigenvalues calculated so close to the fundamental will always affect
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Table 5.8: The largest TORTE-calculated α eigenvalues of the five-region slab with a central
void replacing the absorber.

M
νΣf = 0.3 νΣf = 0.7

ka
0 αb

0 ka
0 αb

0

8
0.47544

−0.049392
1.10938

0.035506
30 −0.026828 0.035605
a Uncertainties converged to less than a few pcm.
b N = 270, 2× 109 active histories, same random number seed.

this eigenvalue and its shape eigenfunction.

Like in the expanded flux solution of the unphysical, 81-group infinite medium,

the calculation of complex eigenvalues so close to the fundamental causes long-lived

oscillations. But, the expanded flux solution oscillates towards the end of the transient

instead of at the beginning (Figure 5.12). Reacting to a pulsed source, the expanded

flux and TDMC solutions are in agreement for early times. At t = 4.5, neutrons reach

the center of the void, where the expanded flux solution has some issues obtaining

the shape at the edge of the propagating pulse. At t = 10, neutrons enter the right

fuel region and fission, causing a slight recovery of the flux there. The expanded

flux solution eventually reaches a smooth, symmetric shape, until neutrons from the

right fuel region return to the left fuel region. At t = 45, unphysical oscillations that

are not in the TDMC solution begin to appear in the expanded flux solution. The

amplitude of these oscillations increases as the flux solution continues to decay. At

t = 100, the TDMC solution is nearly decayed and the oscillation in the expanded

flux solution causes significant deviations. Oscillations in the expanded flux solution

persist until t = 1500, at which point the eigenfunction corresponding to the largest

eigenvalue dictates the shape of the solution. The expanded flux solution is nearly

zero at this time.

There are no oscillations in the expanded flux solution for the supercritical slab be-

cause the increasing fundamental kinetic mode dominates contributions of the higher

modes: in the subcritical configuration, oscillations only appear after the solution

decays several orders of magnitude. Oscillations only occur in central void, but ef-

fect the flux value at the void-moderator interface: the solutions within the fuel and

moderator regions match well to the TDMC solution throughout the transient. This

extends to the asymptotic flux solution, which does not oscillate, but has an odd,

concave shape in the central void region. From these observations, it is easy to con-

clude that the middle N = 150 position intervals consisting of void cause problems in

the TRMM calculation: the TRMM does not apply well to media with large voids,
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especially when several position intervals are defined over this void. Still, this residual

term is very small and only affects the expanded solution after it has decayed sev-

eral orders of magnitude in the subcritical case. This behavior is empirical evidence

that the separability of the time-dependence from the rest of the phase space in the

neutron transport equation is invalid for streaming media, as expected.
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Figure 5.12: Snapshots of the expanded flux and TDMC solutions agree until oscillations
appear at later times for a incident pulse on the very subcritical, symmetric, νΣf = 0.3
five-region slab with a central void region. The TDMC solution is the result of tracking
1,000 batches of 10,000 neutron histories over N = 180 position intervals. Each neutron
history starts at t = 0 at the left interface x = 0. TORTE uses M = 30 direction intervals,
approximating the initial source as a pulse in the left slab n = 1, where the source directions
are distributed over the four intervals closest to µ = +1.
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5.2.4 Position and Direction Intervals

To investigate the effect that discretizing the position-direction phase space has on

calculated α-eigenvalue spectra, TORTE runs the homogeneous, purely-scattering,

∆ = 5.0 mfp thick slab with different numbers of position and direction intervals N

and M . Theoretically, the spectrum of this simple slab consists of three real eigen-

values and the continuum beyond the Corngold limit α∗ = −1, where no eigenvalues

exist. TORTE calculates these real eigenvalues, but also calculates an additional

spectrum of NM − 3 eigenvalues. Most of these eigenvalues fall into the continuum,

making up a large, circular spectrum whose approximate overall radius depends on

the number of position intervals TORTE uses (Figure 5.13). The real eigenvalues ex-

ist on the right end of the spectrum and are lost in a plot of all calculated eigenvalues.

With a two-fold increase in N , the approximate radius of the spectrum doubles. The

physical reason for this is that events occur more rapidly in a system with large N

because the individual position intervals are smaller. The rates in the TRM become

smaller, and transfers between states occur more rapidly than with smaller N . This

necessitates eigenvalues with a greater negative magnitude. This trend is witnessed

for position interval numbers ranging from N = 50 to N = 500.
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Figure 5.13: The size of the circular shape of the TORTE-calculated α-eigenvalue spectrum
of the ∆ = 5.0 mfp thick scattering slab increases with the number of position intervals.
TORTE uses M = 16 direction intervals and 200 × 106 active histories, and the bold line
denotes the Corngold limit.
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Within the circular eigenvalue spectrum, eigenvalues align along distinct rings of

different radii starting near the Corngold limit and extending into the continuum.

The number of rings is equal to half the number of direction intervals TORTE uses

(Figure 5.14). With only M = 2 direction intervals, the single calculated ring is

only half the size of the total extent of the spectrum. As M increases, the rings fill

out the extent of the spectrum. Each ring of eigenvalues corresponds to a pair of

direction intervals symmetric across µ = 0. The smallest rings correspond to the

direction intervals closest to µ = 0, the direction parallel to the slab faces. Likewise,

the largest rings correspond to the direction intervals closes to µ = −1 and µ = +1.

The physical reason for this is that neutrons traveling close to the µ = 0 direction

stream for long times before experiencing an event. Thus, the rates associated with

these neutrons are smaller than neutrons traveling in a direction perpendicular to the

slab faces. Using an odd M causes eigenvalues to flood the real axis: these additional

all-real eigenvalues form a line extending from the Corngold limit in the negative

direction. These eigenvalues are observed to interfere more with the calculated real,

discrete α eigenvalues than using even M : this is why the TRMM uses an even M in

all calculations. As M continues to increase, the rings of eigenvalues begin to fill the

extent of the spectrum entirely (Figure 5.15).
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Figure 5.14: There are M/2 rings of eigenvalues in the TORTE-calculated α-eigenvalue
spectra of the ∆ = 5.0 mfp thick scattering slab. TORTE uses N = 50 position intervals
and 200× 106 active histories, and the bold line denotes the Corngold limit.
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Figure 5.15: As the number of direction intervals increases to M = 64, TORTE calculates
additional rings of α eigenvalues that fill in a circle limited by the number of position
intervals. This spectrum contains 32 distinct rings of eigenvalues. TORTE uses N = 50
position intervals and 200 × 106 active histories for the ∆ = 5.0 mfp thick scattering slab,
and the bold line denotes the Corngold limit.

This behavior of the TORTE-calculated α eigenvalue spectrum suggests two

trends: (i) in the limit of continuous direction intervals, the circular extent of the

spectrum is completely populated with eigenvalues; and (ii) in the limit of contin-

uous position intervals, the extent of the spectrum has an infinite radius. In these

limits, the eigenvalues form the continuum, as expected from theory. For finite num-

bers of position and direction intervals, TORTE approximates the full spectrum,

i.e., the discrete eigenvalues plus the continuum, by calculating the real eigenval-

ues above the Corngold limit and additional eigenvalues beyond the Corngold limit,

whose positioning in the complex space is entirely dependent on the discretization of

the position-direction phase space. This is similar to the way TORTE approximates

continuous-energy infinite-media spectra with G energy intervals.

In approximating the full spectrum, TORTE actually calculates more eigenvalues

within the real portion of the spectrum than just the discrete eigenvalues. These

complex eigenvalues are very near the Corngold limit, and with an increase in the

number of position and direction intervals, the eigenvalues begin to disappear back

into the continuum. Similar behavior is seen in some other calculated α-eigenvalue
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spectra using matrix methods [5]. This suggests that TORTE has some difficulty

approximating the continuum and a few discrete eigenvalues correctly, and has some

difficulty limiting excess eigenvalues to the region α∗ = −1. This has two effects

on calculated spectra: (i) when there are more discrete eigenvalues in the spectrum,

TORTE finds better estimates of the fundamental and first few eigenvalues because

they are less affected by the eigenvalues calculated in the continuum; (ii) if the last

discrete eigenvalue is near the Corngold limit, the calculated higher spectrum may

interfere and make it difficult to find this eigenvalue.

While the number of position and directions intervals greatly affects the overall

behavior of the eigenvalue spectrum, it has relatively smaller effects on the discrete,

real eigenvalues (Figure 5.16). For the same M , the fundamental α eigenvalue changes

less than 0.25% as N increases from N = 50 to N = 500, and stops trending near

N = 300. The first eigenvalue changes up to 1.0% over the same increase, and still

shows some trend near N = 500. An increase in M has a much smaller effect on the

calculated discrete eigenvalues than an increase in N (Figure 5.17). For the same N ,

the fundamental α eigenvalues changes less than 0.15% as M increases from M = 4

to M = 64, and stops trending near M = 20. The first eigenvalue changes up to

0.25% over the same increase, but trends very little after M = 40.
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Figure 5.16: The first two TORTE-calculated eigenvalues of the ∆ = 5.0 mfp thick scat-
tering slab approach values as the number of position intervals increases. TORTE uses
M = 16 direction intervals and 200× 106 active histories for all runs.
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Figure 5.17: The first two TORTE-calculated eigenvalues of the ∆ = 5.0 mfp thick scat-
tering slab converge to values as the number of angular intervals increases. TORTE uses
N = 50 direction intervals and 200×106 active histories for all runs, starting with the same
random number seed.

There are only three discrete eigenvalues in this slab, and TORTE has more diffi-

culty finding the two higher eigenvalues because of the calculation of the continuum

spectra. For larger slabs with more eigenvalues, TORTE does not have this issue and

shows tighter agreement with expected eigenvalues. Spectra of heterogeneous one-

speed slabs with multiple materials often have similar shapes, but rings of eigenvalues

tend to correspond to specific materials. For example, the spectrum of the five-region

slab with a central vacuum behaves similarly to the other five-region slabs, except

that some rings of eigenvalues extend from the imaginary axis back toward the contin-

uum. These rings of eigenvalues correspond to the central vacuum in the slab: there

are still rings in this spectrum that start near the original Corngold limit α∗ = −1.

Increasing the number of position intervals while holding the direction intervals

constant is not entirely useful. With an increase in N , the thickness of each intervals

decreases. With very small intervals, neutrons are more likely to exit in any direction,

and are only likely to remain within the interval if they are traveling with very small

µ. Thus, a higher direction resolution is desirable. Overall, the eigenvalues trend

more with an increase in N compared to an increase in M .
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5.2.5 On the Residual

The one-speed slab expanded flux solutions show no evidence of a large inseparable

part as do the expanded solutions for continuous-energy infinite media. But, the

only reason that these expanded flux solutions match TDMC solutions throughout

transients is that the eigenfunction expansions include TORTE-calculated eigenvalues

that fall within the continuum. Without these additional eigenvalues, the eigenfunc-

tion expansions consist of only a few terms, which are unable to describe sudden

variations in the flux that is necessary during early times in a solution to a pulsed

source. In the interpretation that the only eigenvalues are the discrete ones existing

above the Corngold limit, the residual term is large and relatively long-lived. For

example, for the multi-region scattering slab there are only four discrete eigenvalues,

so the eigenfunction expansion is

φ(x, t) =
3∑
i=0

Ti(t)φi(x) + ζ(x, t), (5.8)

where the residual term includes all the higher TORTE-calculated kinetic modes,

ζ(x, t) =
NM∑
i=4

Ti(t)φi(x) + ζ ′(x, t), (5.9)

plus an additional residual term ζ ′(x, t) brought about by the smooth expanded flux

solution being unable to calculate the abrupt end in the neutron flux at the edges of

propagating pulse shapes. If this is the case, the ζ(x, t) term behaves like those in

infinite media: it has large positive and negative parts and decays relatively quickly.

For the pulsed transients, this residual term decays by the time neutrons cross the

slabs and reach the right boundary.

With a reduction in the overall thickness of the slabs, the fundamental eigenvalue

moves closer to the Corngold limit, making it more difficult for the TRMM to resolve

this eigenvalue. Calculations with the GFM observe the fundamental eigenvalue re-

treating into the continuum, in which case there is no expanded flux solution because

the neutrons have a very low probability of interacting with a very thin slab. The

disappearance of this fundamental eigenvalue into the continuum has not been rigor-

ously proven. As the slabs increase in thickness, more discrete eigenvalues enter the

spectrum so that the expanded flux solution is able to describe smooth shapes within

the slab. To accurately model the response to pulsed sources, the expanded flux so-

lution always needs the complex portion of the spectrum. In cases where TORTE is
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unable to calculate a discrete eigenvalue close to the Corngold limit, the nearest com-

plex eigenvalues together approximate the contribution to the expanded flux solution

that the missing eigenvalue otherwise has.

All expanded flux solutions show the average behavior of the evolution of the flux:

it does not show individual realizations resulting from a few particle histories. For

example, in the supercritical five-region slab, it is unlikely that neutrons reach the

right fuel region because they need to cross the large central absorber. So if a few

neutrons start from a source at the left face, it is highly unlikely that they reach the

right fuel region and cause a supercritical excursion. But, regardless of the strength

of the source used in the expanded flux solution, it still calculates the supercritical

result. It is possible to use these expanded solutions to yield probabilities of the

occurrence of this supercritical realization.

In the last five-region slab, the expanded flux solution incorrectly oscillates in the

central void region but behaves appropriately in the fuel and moderator regions: the

eigenfunction expansion does not apply well to large void regions.

5.3 Continuous-Energy Slabs

Two problems with geometry and material specifications reflecting thermal reactors

(Table 5.9) demonstrate the application of the TRMM combining a continuous-energy

phase space with the simplified position-direction phase space of a one-dimensional

medium. While the next logical step from one-speed slabs is few-group slabs, there is

a lack of benchmark data for multigroup slabs. For all problems, TORTE first divides

the energy phase space into G equal-lethargy intervals between EG+1 = 0.001 eV and

E1 = 20 MeV. It then sets the floor of the Gth energy interval to the minimum energy

Table 5.9: Nuclear data for the continuous-energy slabs.

Problem Material Nd [barn−1 · cm−1]
Number Ratios 235U [atom %]

H C O U

16A-D

Fuel 1 0.072997 4.56 - 4.28 1 1.36
Fuel 2 0.072997 4.56 - 4.28 1 1.23
Fuel 3 0.072997 4.56 - 4.28 1 1.10

Reflector 0.074874 2 - 1 0 -

17

Fuel H 0.078547 - 300 1.5 1 2.00
Fuel M 0.078547 - 300 1.5 1 1.73
Fuel L 0.078547 - 300 1.5 1 1.46

Reflector 0.087341 - 1 0 0 -
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Figure 5.18: The hydrogenous, seven-region slab consists of equal-sized homogeneous sub-
regions of fuel and reflector materials. Measurements are in cm.

EG+1 = Emin = 1 × 10−5 eV, and sets the floor of the first (g = 1) energy interval

to E2 = 10 MeV. There are J = 6 precursor groups for each slab containing fissile

material: there are a total of JNf precursor states. The uranium consists only of 238U

and 235U, and all continuous-energy cross sections are at room temperature. The rest

of the analysis in this chapter uses these two problems.

Problems 16A-D: This is a seven-region slab with five central fuel subregions

and two outer reflectors (Figure 5.18). All regions are the same thickness, there are

three different fuel enrichments, and the total size of the problem is ∆ = 280.0 cm.

The different variations of this problem test the effect of the discretization of the

position-energy-direction phase space. TORTE calculates the k eigenvalue of this

subcritical slab to be 0.99312 ± 4 pcm.

Problem 17: This is a fifteen-region slab with twelve fuel subregions, and outer

and inner reflectors (Figure 5.19). All fuel regions are the same thickness, the re-

∆R=80 ∆F=40 ∆R ∆R

v
a
c
u
u
m

v
a
c
u
u
m

r
e
fl
e
c
t
o
r

r
e
fl
e
c
t
o
r

r
e
fl
e
c
t
o
r

L M H M L L L L M H M L

Figure 5.19: The graphite-moderated, fifteen-region slab consists of homogeneous, equal-
sized fuel subregions and larger outer and inner reflectors. Measurements are in cm.
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flectors are twice as thick as the fuel regions, and the total size of the problem is

∆ = 720.0 cm. The TORTE-calculated k eigenvalue of this slightly supercritical slab

is 1.00667 ± 11 pcm.

5.3.1 Eigenvalue Spectrum

There is no benchmark data for these continuous-energy slabs, but from theory, the

calculated neutron generation times are the order of 10−5 and 10−4 seconds for the

hydrogenous and graphite-moderated media, respectively. With an effective delayed

neutron fraction of βeff = 0.0065, Eq. (4.25) yields the calculated neutron generations

times. These quantities align with theoretical expectations (Table 5.10).

The α-eigenvalue spectrum has features similar to those seen for the one-speed

slabs, except now these features are repeated throughout the spectrum (Figure 5.20)

a number of times correlated to the number of energy intervals TORTE uses. On

their own, each section of the spectrum behaves like that of a one-speed slab: there

are a few real eigenvalues at the front followed by large circular rings of eigenvalues

that for one-speed slabs, fell into the continuum. The largest feature in the spectrum

corresponds to the highest energy interval, 10 MeV < E ≤ 20 MeV. This feature is

so large that the other features in the spectrum are not visible on the same scale.

Each successively smaller feature corresponds to the next lowest energy interval. The

delayed, prompt fundamental, and first few prompt eigenvalues exist at the very

front of the spectrum, Re(α) > −1 × 104 s−1, where all α eigenvalues are all-real.

The majority of the eigenvalues fall near the imaginary axis: this is similar to the

behavior of continuous-energy infinite-media spectra. Oscillations from kinetic modes

corresponding to any of the complex eigenvalues decay quickly.

The reason for the scaling of this spectrum is tied to the large energy ranges

over which neutrons interact and the association of the α eigenvalue with neutron

speed. At high neutron speeds, events occur rapidly: α eigenvalues with large negative

real parts are necessary to describe these transitions. For example, the large real

eigenvalues in the feature corresponding to the highest energy interval describe the

rapid decay of the fast flux in this thermal medium: with an initial high-energy source,

Table 5.10: Calculated neutron generation times of the two continuous-energy slabs.

Problem Description Λ [µs] ρ αp0 [s−1]

16A Hydrogenous 52.27 −0.006296 −244.83

17 Graphite-Moderated 135.7 0.006671 1.2628
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the very fast (E > 10 MeV) flux decays rapidly in this medium. At thermal neutron

speeds, events occur more slowly, and the eigenvalues describing these behaviors fall

closer to the imaginary axis.

Due to the discretization of the delayed neutron precursor concentrations over the

position phase space, there are JNf delayed eigenvalues and shape eigenfunctions.
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Figure 5.20: The whole α-eigenvalue spectrum of the graphite-moderated slab has different
features that exist on very different scales. TORTE uses N = 90 position, M = 8 direction,
and G = 5 energy intervals, and runs 160 active cycles with 1 × 106 particles per cycle.
From top left to bottom right, these features correspond to the five energy intervals: the
highest energy interval g = 1, g = 2, g = 3, and g = 4. The short line at the front of the
spectrum in the bottom-right plot corresponds to the g = 5 energy interval.
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The delayed eigenvalues form groups of Nf eigenvalues very near a single precursor

group decay constant, but with different shape eigenfunctions that peak in one of

the Nf fissile regions. Summed together, these Nf shape eigenfunctions make up a

delayed shape eigenfunction φdj. Because precursor decay occurs on such a different

timescale than the prompt neutron effects, it is unnecessary to define the precur-

sor concentrations within the phase space discretization; however, any benefits from

having the precursors distributed throughout the position phase space is lost. This

includes accounting for mobile fuel or generating constant delayed neutron precursor

concentrations distributed in the position phase space.

5.3.2 Discretization of the Phase Space

To study the effect that changes to the phase space discretization has on the calculated

α-eigenvalue spectrum, TORTE runs the subcritical hydrogenous slab several times,

in each case, doubling the number of one of the phase space intervals (Table 5.11). In

all runs, the calculated prompt fundamental α eigenvalue deviates less than 1.5% from

run A. The eigenvalue trends more negative as TORTE calculates a lower k eigenvalue

in the runs with N = 140 position intervals. A finer energy phase space discretization

causes the greatest change in the fundamental eigenvalue, while doubling the direction

intervals has little effect. The next few prompt α eigenvalues have similar trends as

the fundamental, and the delayed eigenvalues show no trend, other than there being

more of them as Nf increases.

The whole α-eigenvalue spectrum of the hydrogenous slab has five features existing

on different scales: there are four features with circular rings of eigenvalues, and a fifth

feature near the imaginary axis with just one set of real eigenvalues. As a whole, this

Table 5.11: Phase space discretization and calculated fundamental α eigenvalues of the
hydrogenous continuous-energy slabs.

Runa,b kc
0

Intervals
αp0 [s−1] % Deviation

N G M

A 0.99370 70 5 8 −244.7 -
B - 70 5 16 −244.8 +0.04
C - 70 10 8 −240.5 −1.71
D 0.99362 140 5 8 −247.6 +1.19
E - 140 10 8 −243.3 −0.55

a TORTE runs 1,000 active cycles with 1× 106 particles per cycle
b Runs A/B/C and D/E use the same random number seeds.
c Uncertainties converged to 10 pcm.
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undergoes specific changes for each increase in the phase space discretization (Figure

5.21). Doubling the position intervals to N = 140 approximately doubles the radius

of the eigenvalue rings in the first four features of the spectrum: the fifth feature

just extends further toward the negative region. Doubling the direction intervals to

M = 16 doubles the number of eigenvalue rings in each of the four features, and

does not change the set of real eigenvalues near the imaginary axis. Both of these
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Figure 5.21: Snapshots comparing the spectra of the hydrogenous slab using different phase
space discretizations show the effects of a change in the position, energy, or direction inter-
vals on the TORTE-calculated α eigenvalue spectrum. The base-case run A uses N = 70
position, M = 8 direction, and G = 5 energy intervals, and title of each individual snapshot
denotes the change to the discretization.
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observations are like those seen for the one-speed slabs. Doubling the energy intervals

to G = 10 increases the number of features in the spectrum, and shifts them due to

the different energy intervals. For example, the highest energy interval stays the same

in all runs: it corresponds to neutrons in the energy range E > 10 MeV. Doubling the

energy intervals has little effect on this portion of the spectrum: many eigenvalues

remain stationary. But, the energy ranges of the other nine intervals is different, so

the neutron speed changes, and with it, the location of the onset of the eigenvalue

rings shifts. An increase in the energy intervals has little effect on the set of real

eigenvalues towards the imaginary axis.

5.3.3 Shape Eigenfunctions

Each shape eigenfunction φn corresponding to a calculated α eigenvalue is distributed

in the position-energy phase space. For the subcritical hydrogenous slab, the funda-

mental shape eigenfunction is all-real, all-positive, and peaks in the thermal energy
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Figure 5.22: The fundamental forward and adjoint shape eigenfunctions of the hydrogenous
slab all peak in the center of the fuel. TORTE obtains these eigenfunctions for run A,
where the thermal and fast fluxes correspond to energy intervals g = 5 and g = 1, respec-
tively. These are normalized for each energy interval: the fast forward and adjoint shape
eigenfunctions are actually three orders of magnitude smaller than the fundamental.
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interval g = 5. Distributed in the position phase space, the shape function corre-

sponding to each energy interval is symmetric and behaves differently depending on

the energy of the neutrons (Figure 5.22). The thermal flux has peaks in the reflec-

tors adjacent to the fuel regions, and has a central peak at the middle of the fuel

regions. The fast flux peaks towards the center of the fuel regions as well, but has

no flux peaks in the reflector regions. The most important thermal neutrons to the

asymptotic solution are located at the center of the core: these neutrons are unlikely

to escape the fuel regions without fissioning, and thus will contribute significantly

to expected detector response. The importance of fast neutrons varies less over the

slab. Note that the unnormalized fast flux is three orders of magnitude smaller than

the thermal flux: in the asymptotic solution, relatively few neutrons exist in the very

high energy range.

In the continuous-energy infinite media, the delayed and prompt fundamental

eigenfunctions for thermal media were distributed similarly in the energy phase space.

For the subcritical hydrogenous slab, the effect of kinetic distortion is apparent in

the shape eigenfunctions distributed in the position phase space (Figure 5.23). The
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Figure 5.23: A comparison of the prompt fundamental and delayed fundamental shape
eigenfunctions shows the small effect of kinetic distortion in the hydrogenous slab. These
are the shape eigenfunctions of run A, where the thermal and fast fluxes correspond to the
energy intervals g = 5 and g = 1, respectively. The delayed shape eigenfunction is the sum
of the eigenfunctions corresponding to a group of Nf similar eigenvalues.
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prompt fundamental and delayed shape eigenfunctions agree in the reflector regions,

but the delayed shape eigenfunctions are slightly more peaked in the fuel regions,

where this increase is more pronounced in the thermal than in the fast shape eigen-

function. Physically, the delayed kinetic modes dominate the expanded flux solution

after the prompt fundamental kinetic mode decays: the mechanism that drives the de-

layed modes is the decay of neutron precursors. Precursors are only located in regions

containing fuel, so the delayed shape eigenfunctions are greater in those regions. This

increase is greater in the thermal flux due to the softer spectrum of delayed neutron

emission.

The behavior of higher shape eigenfunctions progresses as expected from theory.

For the thermal energy interval of the graphite-moderated slab, successively higher,

all-real eigenfunctions have negative and positive parts (Figure 5.24) and cross the

x-axis and increasing number of times. The fundamental thermal shape eigenfunction

peaks in the central reflector, and has peaks in the outer reflectors adjacent to the

fuel.
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Figure 5.24: The first four thermal shape eigenfunctions φn of the graphite-moderated slab
cross the x-axis n times. These eigenfunctions correspond to the last energy interval, g = 2.
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5.3.4 Flux Transients

Application of the eigenfunction expansion to these continuous-energy slabs delivers

solutions distributed in the position-energy phase space. Analysis of these expanded

flux solutions shows the effects of individual calculated α eigenvalues in the spectrum.
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Figure 5.25: Snapshots of the expanded flux solution show the propagation of the initial
high-energy pulse and the increase in the thermal flux as these high-energy neutrons slow
down in the hydrogenous slab. TORTE uses the run A phase space discretization, and
defines the initial source as a pulse at t = 0 with strength Q0 = 1 × 1015 cm−3· s−1 and
no initial precursor concentrations. The source is in the highest energy interval g = 1 in
the n = 15 slab distributed equally in all M directions. This source design approximates
a E = 14.1 MeV pulse in the left-most fuel region at x = 58.0 cm. The fast and thermal
fluxes correspond to energy intervals g = 5 and g = 1, respectively.
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The expanded flux solution for the hydrogenous slab reacting to a high-energy pulse in

the left-most fuel region begins sharply peaked in the highest energy interval (Figure

5.25). At t = 30 ns, high-energy neutrons from the initial pulse reach the right end of

the slab. The thermal flux is peaked in the position interval of the initial source, but

is several orders of magnitude smaller than the fast flux because neutrons are still

slowing down to thermal energies. At t = 280 ns, the fast flux decreases rapidly as

high-energy neutrons exit the slab and slow down to thermal energies. The thermal

flux overtakes the fast flux in magnitude. At t = 160 µs, the thermal flux takes

on a smooth asymmetric shape as significant numbers of thermal neutrons reach the

right end of the slab. The fast flux mimics the asymmetric shape of the thermal flux,

without the flux peaks in the reflectors. At t = 5 ms, the expanded flux solution

approaches the symmetric prompt fundamental kinetic mode. The solution shows

the difference in magnitude between the fast and thermal fluxes. After this time,

the expanded flux solutions decrease at a rate dictated by the prompt fundamental

eigenvalue, until the prompt kinetic mode decays away and delayed modes dominate

the flux solution at approximately t = 60 ms.

The difference in the behavior of the fast and thermal fluxes between t = 30 and

t = 280 ns shows the reason for the different sets of features in the α-eigenvalue spec-

trum. Over this time, the shape and magnitude of the fast flux changes significantly,

while the thermal flux shape remains the same and only increases. This represents

the decay of the highest kinetic modes corresponding the the α eigenvalues at the

very extent of the spectrum. By t = 280 ns, the kinetic modes of these eigenvalues

contribute insignificantly to the expanded flux solution, and the shape eigenfunctions

of lower eigenvalues dictate the shape of the fast flux.

An alternate visualization of the expanded flux solution is the response of an

ideal detector, like a fission chamber, placed in the right fuel region (Figure 5.26).

This detector responds mostly to thermal neutrons (Table 5.12). Plotted on a linear

time scale, the detector response shows the three characteristic time intervals sought

during a pulsed-neutron experiment. This also shows the short time frame, approxi-

mately t = 15 ms, from which measurements possibly yield a fit for the fundamental

eigenvalue. Spatially, the detector responses from different position intervals do not

vary as much as they do in a three-dimensional model, because only one-dimensional

kinetic modes are present. Plotted on a logarithmic time scale, the detector response

shows the reaction to the high-energy pulse due to the small probability of detecting

high-energy neutrons.
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Figure 5.26: Responses of an ideal detector in the right-most fuel region shows a typical
detector response obtained during a pulsed-neutron experiment (left) and one scaled to show
the short-time effect of the high-energy pulse (right). These are combinations of the flux
in slab n = 60 and a detector cross section. Also shown is the detector response obtained
with the expansion with only the prompt fundamental mode. The selection of this slab
approximates a 4 cm thick detector centered at x = 238.0 cm.

5.4 Discussion

The research Monte Carlo code TORTE-1D implements the TRMM for one-

dimensional media to demonstrate its ability to accurately calculate α eigenvalues

and use the entire spectrum to obtain expanded flux solutions. For the five one-speed

scattering, multiplying, and mixed material slabs in the GFM benchmark, TORTE-

1D is able to reliably calculate the k eigenvalue and α-eigenvalue spectrum. These cal-

culated eigenvalues match GFM results for the real discrete portion of the eigenvalue

spectrum, with TORTE-1D calculating excess eigenvalues within the continuum. As

the number of position and direction intervals increases, TORTE-1D yields better

estimates of the discrete eigenvalues, although the trend in the improvement is small

over the observed number of intervals. Increasing the number of position intervals

has a much larger effect than direction intervals: the calculated eigenvalues trend

Table 5.12: Simulated cross sections for obtaining the ideal detector response of the hy-
drogenous slab.

g 1 2 3 4 5

Σdg 0.0005 0.0040 0.0069 0.0961 0.8925
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very little after M = 8 direction intervals. The selection of N and M determines

the extent and size of the α eigenvalues calculated within the continuum. Calculated

shape eigenfunctions match those provided by the GFM. For these one-speed slabs,

the expanded flux solutions match TDMC solutions because of the excess eigenvalues

calculated within the continuum. This effectively reduces the computed residual.

For continuous-energy, hydrogenous and graphite-moderated slabs, TORTE-1D

calculates a fundamental α eigenvalue in line with theoretical expectations. The α

eigenvalue spectrum behaves like those in the one-speed slabs, but with multiple fea-

tures for the different energy intervals. In the phase space discretization, the number

of direction intervals is again observed to have the least effect on the calculated fun-

damental eigenvalue, while the number of energy intervals has the largest. Still, the

trend in this fundamental eigenvalue is small over the runs observed. Calculated shape

eigenfunctions are as expected, while the calculated delayed eigenfunctions show the

effect of spatial kinetic distortion in the fuel regions. The application of the eigen-

function expansion to describe the reaction of the hydrogenous slab to a pulse source

shows the ability of the TRMM to calculate the time-dependence of the neutron flux

in the slab. The behavior of the flux in different energy intervals shows the reason

behind the multiple features in the α-eigenvalue spectrum. The combination of an

ideal detector cross section and the neutron flux gives the ideal response at a given

position in the slab: this is useful for the analysis of pulsed-neutron experiments.

The expanded flux solutions show the difference between the actual solution and

that predicted by only the fundamental mode. Before the higher modes decay, the

fundamental mode is an incorrect solution for the time dependent flux. The eigen-

function expansion has difficulties predicting behavior from sources that demand finer

angular intervals than are used for tallying the TRM, such as a mono-directional

source. Also, desired sources in empty states is a similar issue. As a result of the

direction phase space discretization, purely-absorbing media present some problems

for the eigenfunction expansion for the shortest times. Also, sharp changes in the

neutron flux, such as the front edge of a source pulse, are modeled by a very steep

decrease in neutron flux in expanded flux solutions. The TRMM does not apply well

to slabs with very large void regions.
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CHAPTER 6

Three-Dimensional Eigenvalues and Eigenfunctions

This chapter discusses the implementation of the TRMM to three-dimensional media,

where the TRM characterizes neutrons moving through a realistic position-direction-

energy phase space. Because considerable work is necessary when including multiple

dimensions in a Monte Carlo code, the TRMM is integrated into the open-source

Monte Carlo code OpenMC [1]. Benefits of this code are availability, small size,

simplicity, and ease of use, though integration into a large production code, e.g.,

MCNP5/6 [2], is similar. This requires some minor edits to OpenMC because it does

not handle time-dependent problems. Problems consist of realistic geometries with

vacuum boundary conditions: in this implementation, the TRMM does not handle

reflective or periodic boundary conditions.

Three problems demonstrate the capabilities of the TRMM as applied to three-

dimensional media. The first problem is a homogeneous, multiplying cube to study

some effects of discretizing the large position phase space, show the reliability of

the TRMM in calculating α eigenvalues, demonstrate convergence of eigenvalues and

eigenfunctions, and calculate the expanded flux solutions. Next is the application to

the small fast-burst reactor CALIBAN, demonstrating the ability to calculate higher

shape eigenfunctions and the behavior of the fundamental eigenvalue as the reactivity

increases from a slightly critical state to a prompt supercritical state. Finally, the

TRMM application to the FSV reactor demonstrates the calculation of some of the

dominant kinetic modes of the reactor as well as the fundamental prompt α eigenvalue.

In the first two problems, ratios of calculated α eigenvalues are compared against

predictions from diffusion theory. In the latter two problems, some measured data

provides a gauge of the accuracy of the TRMM in determining the α eigenvalues.
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6.1 Code (OpenTRMM)

The physics engine in OpenMC replaces the simplified physics treatments in TORTE

and TORTE-1D, and only the functions necessary to build the TRM carry over: tran-

sition rate tallies, matrix building routines, eigenvalue solvers, and post-processing

routines. Additionally, edits to portions of the OpenMC code are necessary to make

TRM tallies during the neutron random walk, and to sample a decay time from a

delayed neutron precursor group. This new code consists of a patch file and three

modules with approximately 20 subroutines. The patch file is minimally intrusive,

adding approximately 50 new lines to the OpenMC code, with most of the work being

completed outside in the module subroutines. The TRM tallies add some computa-

tional time because they perform operations after each sampled collision or leakage

event. Also, the current state of the neutron must be constantly identified. While

OpenMC does not handle time-dependent problems, the TRMM is able to extract

time-dependent information during the random walk. The combined code is called

OpenTRMM.

For infinite and one-dimensional media, LAPACK directly determines all eigenval-

ues of the forward and adjoint matrices by reducing the matrix to Schur form. This

is possible because the size of the state space is reasonable. With a three-dimensional

phase space, the TRM is increasingly large and difficult to work with due to mem-

ory limitations. Furthermore, LAPACK neither handles sparse matrix structures nor

performs sparse matrix routines. Thus, OpenTRMM uses LAPACK direct solvers

only for problems with a smaller defined phase space discretization.

Due to these concerns, OpenTRMM adopts a sparse matrix structure and im-

plements an iterative eigenvalue solver, the Implicitly-Restarted Arnoldi Method

(IRAM), through the linear algebra package ARPACK [3]. This method reliably de-

termines a few α eigenvalues in the spectrum without destroying the sparse structure

of the TRM as does a direct method. OpenTRMM stores the TRM in a Compressed

Row Storage (CRS) format, storing a row pointer, column indices, and values of only

those elements that are non-zero. An additional benefit is that transposing the TRM

is as simple as changing the storage format to Compressed Column Storage (CCS):

no values are moved within memory. These storage formats are 100% compressed.

Because of the way IRAM determines eigenvalues, it has difficulties distinguish-

ing eigenvalues in clusters [4]. As shown in the previous two chapters, the α eigen-

value spectrum has many features, including sets of clustered eigenvalues: this is

especially true for the JNf delayed eigenvalues brought about by discretizing the
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precursor concentrations over the position phase space. Thus, for the implementa-

tion of IRAM, OpenTRMM deletes these delayed states, and subsequent calculations

yield only prompt α eigenvalues and their shape eigenfunctions. OpenTRMM handles

empty states in the TRM the same way.

6.2 The Hydrogenous Cube

Problem 18: This is a large, hydrogenous cube with a H = 200 cm side length. It

consists of a homogeneous mixture of water and natural LEU, with some boron poison

(Table 6.1). In the position phase space discretization, each position interval runs the

whole axial length of the problem: all results of this three-dimensional problem reduce

to two dimensions. This is a subcritical configuration.

Table 6.1: Nuclear data for the hydrogenous cube.

Nd [barn−1 · cm−1]
Number Ratios

B [ppm] 235U [%]
H2O UO2

0.073212 3 1 1300a 2.619
a Natural boron concentration in water.

6.2.1 Eigenvalue Spectrum

Three separate runs demonstrate the relative indifference in the calculation of the

prompt fundamental α eigenvalue to the position phase space discretization (Table

6.2). In run B, the position interval mesh increases from 15×15 to 25×25. Runs B and

C use the same phase space discretization, but run C uses more particle histories. The

higher eigenvalues change significantly as the position space discretization increases,

suggesting that the 15×15 spatial mesh is insufficient for calculations of higher modes

of this problem. Computationally, the phase space discretizations in Runs B and C

generate a TRM of size 18,750×18,750. This represents nearly the maximum-sized

matrix whose eigenvalues are reasonably obtained via direct methods: solving for all

18,750 eigenvalues for these runs takes a little less than a day with LAPACK running

on a single core of an Intel Core i7 CPU, and requires 25 GB of memory.

The majority of the entire α-eigenvalue spectrum is all-real, where eigenvalues

group on different scales due to the energy phase space discretization, as seen in

the one-dimensional continuous-energy spectra. Replacing the distinct rings of eigen-

values are patches of clustered complex eigenvalues with small imaginary parts: the

ratio between the imaginary and real parts of the eigenvalues is always less than unity.
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Table 6.2: Position phase space discretization and calculated prompt fundamental α eigen-
values of the hydrogenous cube runs.

Runa,b,c k0
Intervals

αp0 [s−1] % Deviation
N G M

A 0.99693 ± 9 pcm 225 3 8 −454.3 -
B 0.99708 ± 6 pcm 625 3 8 −448.3 −1.21
C 0.99704 ± 2 pcm 625 3 8 −451.6 −0.62

a Run A uses 190 × 106 active histories.
b Run B uses 480 × 106 active histories.
c Run C uses 5 × 109 active histories.

These clusters are irregular in shape and may contain circular voids containing no

eigenvalues.

To test the reliability of the IRAM in calculating the proper desired α eigenvalues,

ARPACK determines the 25 smallest-magnitude eigenvalues of the same TRM. After

deleting the delayed neutron states to reduce the work of IRAM, this yields the

fundamental and next few prompt eigenvalues, as calculated by direct methods. These

eigenvalues match to machine precision.

While no calculated or measured data for this hydrogenous cube exists, one-speed

diffusion theory yields a back-of-the-envelope calculation of the ratios of the first few

expected α eigenvalues [5]. From diffusion theory, the first few prompt eigenvalues

follow as

αp =
k∞ − (1 + L2B2

p)

l∞
, (6.1)

where L is the diffusion length, k∞ is the infinite-medium multiplication factor, l∞ is

the infinite-medium neutron generation time, and

B2
p =

(
ixπ

H̃

)2

+

(
iyπ

H̃

)2

+

(
izπ

H̃

)2

, (6.2)

where H̃ is some extrapolated cube side length and (ix, iy, iz) is the triplet of integers

identifying the eigenvalue. While the diffusion length and infinite-medium generation

times are unknown, it is possible to approximate the ratios of the first few eigenvalues

without these quantities (Table 6.3), assuming that k∞ = 1.03, the delayed neutron

fraction β = 0.0065, and a zero extrapolation distance H̃ = H. While these ratios

are not exact matches to those calculated by the TRMM, the loose agreement is

an indication that OpenTRMM is calculating α eigenvalues of this system. Note

that the z-direction triplet iz is unity for the calculation of all ratios: this reflects the
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Table 6.3: The first few calculated prompt α eigenvalues of the hydrogenous cube.

n (ix, iy, iz)
OpenTRMM αpn

αp0

a

αpn [s−1] αpn:αp0

1 (1, 2, 1) −2788 6.17 5.12
2 (2, 1, 1) −2788 6.17 5.12
3 (2, 2, 1) −4969 11.00 9.23
4 (1, 3, 1) −6627 14.67 11.98
5 (3, 1, 1) −6630 14.68 11.98
6 (2, 3, 1) −8568 18.97 16.10
7 (3, 2, 1) −8571 18.98 16.10
8 (1, 4, 1) −11440 25.32 21.59
9 (4, 1, 1) −11440 25.32 21.59
10 (3, 3, 1) −11810 26.15 22.97
a Ratios from one-speed diffusion theory.

choice of a single axial position interval, and OpenTRMM calculates dual-multiplicity

eigenvalues instead of those with triple-multiplicity. This is different than assuming

that there is no axial dimension, in which case B2
p contains only two terms and the

ratios of higher eigenvalues is much smaller.

6.2.2 Shape Eigenfunctions

Along with the ratios of the first few prompt eigenvalues, diffusion theory predicts the

general progression of the prompt shape eigenfunctions of this homogeneous medium,

which follow as

φ(x, y, z) = f

(
ixπx

H̃

)
f

(
iyπy

H̃

)
f

(
izπz

H̃

)
, (6.3)

where

f(u) = cos(u) for odd ix, iy, iz, (6.4)

f(u) = sin(u) for even ix, iy, iz. (6.5)

The first few shape eigenfunctions from the TRMM are expected to agree to diffusion

theory (Figure 6.1). The first shape eigenfunction corresponds to the prompt funda-

mental α eigenvalue and the triplet (1, 1, 1), which is an all-positive, smooth cosine

shape in all three dimensions (Figure 6.2). The next three shape eigenfunctions cor-

respond to the same eigenvalue and the triplets (1, 1, 2), (1, 2, 1), and (2, 1, 1): these

have the same shape, with a rotation to form a sine shape in one of the three direc-

tions. But, with the single axial position interval, the triplet corresponding to (1, 1, 2)

does not exist to the TRMM, and the spectrum has only two repeated eigenvalues.
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Mode (1,1,1) Mode (1,2,1) Mode (2,1,1)

Mode (2,2,1) Mode (3,2,1) Mode (3,3,1)

Figure 6.1: Diffusion theory predicts the two-dimensional, prompt fundamental shape eigen-
functions of the hydrogenous cube. Axially, these eigenfunction have an assumed cosine
shape. The x and y dimensions are the same as shown for the fundamental mode.

Thus, the shape eigenfunctions of all higher eigenvalues with multiplicity follow as

φ(x, y, z) = f

(
ixπx

H̃

)
f

(
iyπy

H̃

)
cos

(
πz

H̃

)
, (6.6)

which is different than simply negating the axial dependence of the shape eigenfunc-

tion. The line formed by each higher shape eigenfunction passing through zero is

known as a null contour line.

For the two shape eigenfunctions corresponding to the first pair of multiple prompt

eigenvalues, the observed convergence to the shapes predicted by one-speed diffusion

theory is slow (Figure 6.3). With a tenfold increase in the number of particle histories

in run C, this pair of eigenvalues converges to the same value. But, the eigenfunctions

predicted by diffusion theory have null contour lines along x = 0 and y = 0, not
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Figure 6.2: The two-dimensional, prompt fundamental shape eigenfunction of the hydroge-
nous cube has a smooth, symmetric cosine shape. Axially, this eigenfunction has an assumed
cosine shape. This normalized eigenfunction corresponds to the thermal energy interval,
g = 3, but the eigenfunctions corresponding to the other energy intervals have the same
shape.

the θ = 30◦ and θ = 120◦ null contours delivered by the TRMM-calculated shape

eigenfunctions. In fact, the null contour line for the second shape eigenfunction

calculated with fewer particle histories is more aligned with x = 0.

Physically, these two shape eigenfunctions correspond to kinetic modes that cap-

ture complementary contributions to the expanded flux solution that decay at the

same rate. For example, if an initial source is on the null contour line of the first

shape eigenfunction, than the contribution from the corresponding kinetic mode is

negligible, but the contribution from the second kinetic mode is non-zero. The con-

tribution from both of these kinetic modes is negligible for a central source. The net

contribution of these two kinetic modes is more important to the expanded solution

than the individual contribution or behavior of either shape eigenfunction. This leads

to the conclusion that it is important that the eigenfunctions have perpendicular null

contours: the shape eigenfunctions calculated with more particle histories represent

a better estimate than those calculated with fewer particle histories, whose null con-

tours are not perpendicular. Also consider that the alignment of the null contours

predicted by diffusion theory along x = 0 and y = 0 is a direct result of the rect-

angular geometry: if the problem boundary is a circle, there is no definitive way of

determining where a null contour should cross the geometry, as long as the two shape
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Figure 6.3: As OpenTRMM runs more particle histories for the hydrogenous cube, the first
pair of multiple α eigenvalues converges as their corresponding shape eigenfunctions are still
approaching the symmetric shapes predicted by diffusion theory. The x and y dimensions
are the same as shown for the fundamental mode, the normalized shape eigenfunctions
correspond to the thermal energy interval, g = 3, and the results are from runs B (left) and
C (right).

eigenfunctions are perpendicular.

While these skewed shape eigenfunctions have little effect on expanded flux solu-

tions, it is still incorrect to individually present these shape eigenfunctions as true.

In the limit as the number of particle histories becomes large, N → ∞, the first

two shape eigenfunctions are expected to have more symmetric shapes. But, the

fundamental shape eigenfunctions and many of the first few higher eigenfunctions

calculated from runs B and C are nearly identical. One-speed diffusion theory from

Eq. (6.6) is unable to predict many of these higher shape eigenfunctions (Figure 6.4).

Only a few higher shape eigenfunctions exhibit the slow convergence behavior, pri-

marily a few of the asymmetric shape eigenfunctions. In the application of the fission
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Figure 6.4: Selected shape eigenfunctions of the hydrogenous cube demonstrate the pro-
gression of the first few prompt shape eigenfunctions. All eigenfunctions have positive and
negative parts, with contour lines identified in light green. The x and y dimensions are the
same as shown for the fundamental mode, the normalized shape eigenfunctions correspond
to the thermal energy interval, g = 3, and the results are from run C.

matrix via Monte Carlo methods, a similar slow convergence behavior is observed

for a few higher shape eigenfunctions [6], where rotations of the k eigenfunctions

occurs as the Monte Carlo uses more particle histories. These observations suggest

that Monte Carlo statistics have a larger effect on the calculation of particular shape

eigenfunctions. Also, the definition of the position phase space with a single, large

axial position interval may contribute to this slow convergence behavior.

6.2.3 Eigenfunction Expansion

To demonstrate the application of the eigenfunction expansion, consider detectors

within each position interval that respond mostly to thermal neutrons, but also to fast
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neutrons with a smaller fractional probability (Table 6.4). Then, use the expanded

flux solution to calculate detector responses from an initial isotropic, high-energy

pulse source. This delivers the relative expected two-dimensional response throughout

the system at any given time (Figure 6.5). Then, using the expanded flux solution

to yield the responses of these detectors from an initial isotropic, high-energy pulse

source delivers the relative expected two-dimensional response throughout the system

at any given time (Figure 6.5).

At t = 2 µs, a sharp detector response peak occurs in the position interval at the

location of the initial source. High-energy neutrons collide with water in the surround-

ing position intervals, causing a smooth decrease in the small region surrounding the

initial source. Elsewhere, the relative detector response is nearly zero because at this

time, only high-energy neutrons from the initial source populate the entire problem.

At t = 120 µs, the relative detector response takes on a much smoother shape as neu-

trons slow down to thermal energies in many of the regions surrounding the initial

source. The peak is still located in the region of the initial source. At t = 520 µs, the

relative detector response shape begins to assume a cosine shape as the peak shifts

towards the center of the cube and thermal neutrons populate the entire cube. At

t = 50 ms, the relative detector response shows the contribution only from the delayed

kinetic modes, as all prompt kinetic modes are decayed. This shape is only slightly

different than the prompt kinetic fundamental mode due to kinetic distortion. The

emission of neutrons from delayed neutron precursors is the only source remaining at

this time. The prompt fundamental kinetic mode dominates the detector response

shape from approximately t = 2 to t = 15 ms.

The relative detector response shape is more convenient for visualization because

the actual detector response varies several orders of magnitude over the course of the

transient. An alternate visualization shows the time-dependent detector responses of

two detectors placed in separate position intervals within the cube (Figure 6.6): one

detector close to the initial source and another on the opposite side of the cube. As

expected, these detectors experience very different response shapes: the nearby detec-

tor peaks above the response curve predicted by the fundamental shape eigenfunction,

while the detector on the opposite side of the cube approaches the fundamental ap-

Table 6.4: Simulated cross sections for the hydrogenous cube.

g 1 2 3

Σdg 0.0045 0.1030 0.8925
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proximation from below. On a log-log scale, this difference is more noticeable: the

short-time response of the nearby detector is over four orders of magnitude greater

than that of the detector on the opposite side of the cube reacting to the same pulse

t = 2 µs
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Figure 6.5: Snapshots of the relative detector response shape calculated from the expanded
flux solution for the hydrogenous cube demonstrate the application of the TRMM in simu-
lating time-dependent solutions. There is no TDMC solution for verification. OpenTRMM
uses the run C phase space discretization, and defines the initial source as a pulse at t = 0
with strength Q0 = 1× 1010 cm−3· s−1 and no initial precursor concentrations. The source
is in the highest energy interval g = 1 in the n = 113 position interval distributed equally
in all M directions. This source design approximates a E = 14.1 MeV pulse in the fuel
region at (x, y) = (−64, 0) cm. The eigenfunction expansion uses all NGM +NfJ = 18,750
kinetic modes in the expansion. For the detector response plots, the locations of detector 1
and 2 are circled in red and green, respectively.
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Figure 6.6: Responses of ideal detectors in two locations of the hydrogenous cube show
the strong spatial dependence of the flux. The left plot is like a typical detector response
obtained during a pulsed-neutron experiment and the right plot is scaled to show the short-
time effect of the high-energy pulse. These are combinations of the expanded flux solutions
in position intervals n = 153 and n = 573 and a simulated detector cross section. Also
shown is the ideal detector responses at each location obtained with the expansion using
only the prompt fundamental mode (blue lines). The selection of these position intervals
approximates detector 1 at (x, y) = (−48,−80) cm and detector 2 at (x, y) = (80, 80) cm.

source. The smaller early response peak from high-energy source neutrons identifies

the detector closer to the initial source: the peak occurs at a slightly earlier time in

the nearby detector than the detector on the opposite side of the cube. In both detec-

tor responses, there is only approximately 10 ms from which measurements may yield

an estimate of the prompt fundamental α eigenvalue, and the prompt fundamental

approximation is a very poor representation of the actual detector responses.

6.3 The Fast Burst Reactor CALIBAN

Problem 19: This is an approximate OpenMC model of the small, cylindrical, metal-

lic fast burst reactor CALIBAN [7]. The simplified geometry explicitly models the

control rods, excursion rod, and binding screws (Figure 6.7) with two material com-

positions representing the structural and fuel materials [8] (Table 6.5). This problem

is the polar opposite of the hydrogenous cube: it has a hard energy spectrum, has

little neutron thermalization, is very near critical, and has a large leakage probability.

Available measurements for CALIBAN include the prompt fundamental α eigenvalue

for the critical and two subcritical configurations, and the inferred effective delayed
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Figure 6.7: A radial slice at the center of the approximate OpenMC model of the fast
burst reactor CALIBAN shows the three control and excursion rods (light gray), four metal
binding screws (dark gray), and the central irradiation channel. The control rods are labeled
BC1, BC2, and BC3, and the excursion rod is labeled BE. Vacuum boundaries at the extent
of the cylinder are at radius R = 9.743 cm and height H = 25.066 cm. The dashed line
marks the section line used for showing the axial dependence of the shape eigenfunctions.

neutron fraction βeff [5].

The control and excursion rods are composed of fuel material and are inserted

upward from the bottom of the core to achieve criticality. Experimental procedure

inserts the BE rod up to 12.74 cm, the BC1 rod up to 20.0 cm, the BC2 rod up to

4.46 cm, and the BC3 rod up to 12.86 cm. This configuration is near delayed critical,

at which point additional insertion of the BC3 control rod adds desired reactivity to

the assembly [7].

Table 6.5: Nuclear data for CALIBAN.

Material ρ [g/cm−3]
Number Ratios 235U [atom %]

Fe Ni Co Moa U

Fuel 17.04 0 0 0 3.67 1 93.47
Screws 7.90 15.43 4.07 1.82 1 0 -

a Natural molybdenum.
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6.3.1 Eigenvalue Spectrum

Initial runs with small discretized phase spaces show discrepancies between the

OpenMC-calculated k-effective and the sign of the calculated fundamental α-

eigenvalue from the TRM. While this discrepancy is well within βeff, it is signifi-

cant considering the proximity of the assembly to critical. Some contributing factors

to this discrepancy is the higher energy spectrum and large fluctuations due to the

sampling of delayed neutron precursors: thermal configurations do not show similar

discrepancies.

Approach to Prompt Critical

For different BC3 insertions, OpenTRMM divides the position phase space in a r-

θ-z geometry, instead of the regular Cartesian geometry for the hydrogenous cube.

The smaller size of the phase space allows for the use of a direct eigenvalue solver
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Figure 6.8: The trend of the largest delayed and prompt α eigenvalues with additional
insertions of the BC3 control rod show the transition point at which the TRMM predicts
the CALIBAN model switching from a subcritical to delayed supercritical state. The BC3
rod is already inserted to 12.86 cm before the additional insertion, and the model is still in
a delayed supercritical state at full insertion of the BC3 rod. OpenTRMM uses N = 256
position, G = 3 energy, and M = 8 direction intervals to tally the TRM. The position in-
tervals distribute among the r-θ-z geometry: there are eight radial intervals, four azimuthal
intervals, and eight axial intervals.
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to determine the entire α-eigenvalue spectrum. Tracking the largest prompt and

delayed α eigenvalues (Figure 6.8) show the BC3 insertion that causes the system

to switch from a subcritical to a delayed supercritical state. This transition occurs

at approximately 2.7 cm of additional insertion. The largest prompt α eigenvalue

linearly decreases in magnitude as the control rod is inserted, while the largest delayed

α eigenvalue increases rapidly after the model crosses into the delayed supercritical

state. Even near full insertion of the rod the magnitude of this delayed α eigenvalue

dwarfs that of the largest prompt eigenvalue.

Tracking these two eigenvalues while continuing to add reactivity to the system via

insertion of the BC2 control rod shows the insertion that causes the system to switch

from delayed supercritical to prompt supercritical (Figure 6.9). This transition occurs

at approximately 4 cm of additional insertion. The prompt α eigenvalue continues

to trend linearly through both the delayed and prompt supercritical states, while

the delayed α eigenvalue nearly asymptotically approaches the transition point, after

which it returns to a constant negative value near the decay constant of the longest-

lived delayed neutron precursor group. Very near the transition point, OpenTRMM

delivers a decreased delayed and prompt α eigenvalue.
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Figure 6.9: The trend of the largest delayed and prompt α eigenvalue with additional
insertion of the BC2 control rod show the transition point at which the TRMM predicts
the CALIBAN model switching from a delayed supercritical to prompt supercritical state.
The BC3 rod is inserted to 21.86 cm and the initial position of the BC2 rod is 4.46 cm.
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For all runs with different control rod insertions, a significant change only occurs

for the largest prompt and delayed α eigenvalues. The remaining calculated delayed

eigenvalues show no trend with control rod insertion. The first few prompt eigenval-

ues decrease in magnitude, i.e., become less negative, with the additional reactivity

insertion. Relative to the calculated eigenvalue, this trend is very small: from the

subcritical case with no additional insertion to the most supercritical case, the second,

third, and fourth eigenvalues increase by 2.2%, 1.2%, and 0.8%, respectively. This

decreasing trend applies the the next few eigenvalues, until there is no discernible

relative change in the calculated eigenvalues.

Comparisons to Measured Data

As calculated by OpenTRMM, the effective delayed neutron fraction is 640±8 pcm,

close to the 633±7% (±40) pcm inferred from measurements with the Nelson number

method [9]. However, the prompt fundamental eigenvalue shows more disagreement,

underestimating the measured prompt fundamental eigenvalue by nearly 10% for

the critical configuration of CALIBAN [5]. There are no known calculations of the

fundamental α eigenvalue of CALIBAN.

Discretizing the Phase Space

The number of position intervals N is kept large relative to the number of energy and

direction intervals. This is because the first few shape eigenfunctions have interesting

geometric dependences that are negated with some position interval approximations,

as shown in the hydrogenous cube problem. Thus, a larger number of position inter-

vals is more important than energy or direction intervals, and the position phase space

is discretized further: divisions along a Cartesian 15×15×15 grid make up N = 3015

position intervals within the cylindrical geometry of the CALIBAN model. With the

size of the TRM for this phase space discretization, it is necessary to determine the

eigenvalues iteratively, and only a few prompt α eigenvalues are obtained. Results

yield the same fundamental α eigenvalues as the previous runs within 0.5%, while

higher α eigenvalues show less agreement: the coarser chosen spatial discretization is

having a negative effect on the higher shape eigenfunctions.

To test the effect of the discretization of the hard energy spectrum, OpenTRMM

increases the number of energy intervals to G = 12, yielding a less than 1% decrease in

magnitude of the prompt fundamental α eigenvalue. Runs with an increased number

of direction intervals M = 16 show a 1.4% decrease in magnitude of the prompt
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fundamental eigenvalue. OpenTRMM also runs problems with a large number of

position intervals in the discretized r-θ-z phase space, with similar trends. But, with

more θ intervals, the number of direction intervals becomes more important because

of the shape of the volumes. Also, this discretization has a greater effect on the higher

α eigenvalues, and the regular cubic lattice of position intervals delivers better results.

Comparisons to Diffusion Theory

As with the hydrogenous cube, one-speed diffusion theory gives some predictions on

the progression of the first few prompt α eigenvalues, defined in Eq. (6.1), where

B2
p =

(
j2
iθ,ir

R̃

)2

+

(
izπ

H̃

)2

, (6.7)

where jiθ,ir is root ir of the iθth Bessel function Jiθ , R̃ and H̃ is the extrapolated

radius and height, and (iz, iθ, ir) is the triplet of integers identifying the eigenvalue.

Assuming zero extrapolated boundaries, i.e., H̃ = H and R̃ = R, and k∞ = 2.2

for this critical system, the first few ratios computed align with those calculated by

OpenTRMM (Table 6.6). The worst agreement is for the iz = 3 eigenvalues, where the

(3, 0, 1) eigenvalue is predicted to be smaller in magnitude than the (2, 1, 1) eigenvalue:

this implies that the ratio of H̃ to R̃ used in one-speed diffusion theory is not exact.

Other than these eigenvalues, diffusion theory predicts the order of the prompt α

eigenvalues.

Table 6.6: The first few calculated prompt α eigenvalues of the OpenMC CALIBAN model.

na (iz, iθ, ir)
OpenTRMMb αpn

αp0

c

αpn [× 105 s−1] αpn:αp0

0 (1, 0, 1) −6.453 1.0 1.0
1 (2, 0, 1) −396.7 61.4 52.1
2 (1, 1, 1) −683.7 105.9 102.7
3 (1, 1, 1) −694.8 107.7 102.7
4 (2, 1, 1) −978.9 151.7 153.8
5 (2, 1, 1) −994.0 154.0 153.8
6 (3, 0, 1) −1057.6 163.9 137.3
7 (1, 2, 1) −1315.8 203.9 236.2
8 (3, 1, 1) −1459.4 226.2 238.9

a As ordered by the calculated ratio.
b N = 3015, G = 3, and M = 8.
c Ratios from one-speed diffusion theory.
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6.3.2 Shape Eigenfunctions

As with the hydrogenous cube, one-speed diffusion theory predicts the general pro-

gression of the prompt shape eigenfunctions, assuming that this is a homogeneous

medium, following as

φ(x, y, z) = Jiθ

(
jiθ,ir

r

R̃

)
sin

(
izπ

z

H̃

)
cos (iθθ) . (6.8)

These shape eigenfunctions are easily identifiable by examination of the OpenTRMM-

calculated eigenfunctions in the three dimensional position phase space. A shape

eigenfunction has iz − 1 axial, iθ azimuthal, and ir − 1 null contour lines, outside of

those at the edges of the geometry.

The First Few Prompt Eigenfunctions

For example, the calculated prompt fundamental shape eigenfunction plotted in r-

θ geometry is all-positive and has a J0 Bessel function shape in the radial position

phase space (Figure 6.10), so ir = 1 and iθ = 0 This shape eigenfunction decreases at
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Figure 6.10: An r-θ plot of the calculated fundamental prompt shape eigenfunction of the
OpenMC CALIBAN model shows the Bessel function shape with no azimuthal variation.
This is shown at the center of the model, approximately z = 12.5 cm. This normalized
eigenfunction corresponds to the lowest energy interval, g = 3, but the eigenfunctions
corresponding to the other energy intervals have the same shape. OpenTRMM uses N =
3198 position and M = 8 direction intervals and white circles show the physical location of
features in the CALIBAN geometry.
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(x, y) = (0, 0) due to the central void channel, and is relatively flat across the position

intervals containing the four metal screws. Also, the shape is slightly asymmetric,

decreasing more in the region containing the BC2 rod due to the large void left above

the inserted rod. The shape eigenfunction is at its maximum at the center of the

CALIBAN model. With this limited information, it is unclear if this is the prompt

fundamental shape eigenfunction, or any of the eigenfunctions thereafter correspond-

ing to odd iz, as all those shape eigenfunctions are also maximized at the center of the

model. Examination in r-z geometry shows the calculated prompt fundamental shape

eigenfunction has an all-positive sine shape (Figure 6.11), so iz = 1. This section cuts

through the BC3 and BC1 control rods: the BC1 control rod is fully inserted, but

there is a void above the BC3 control rod, which has the effect of decreasing the

fundamental shape eigenfunction in that region, causing the asymmetric shape.

The next shape eigenfunction corresponds to the triplet (2, 0, 1), so it has the same
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Figure 6.11: Plots in the r-z space of the calculated fundamental and first prompt shape
eigenfunctions shows the axial sine shape of the eigenfunctions corresponding to the iz = 1
an iz = 2 triplets. This section is taken through the BC3 (left) and BC1 (right) control
rods. This normalized eigenfunction corresponds to the lowest energy interval, g = 3,
but the eigenfunctions corresponding to the other energy intervals have the same shape.
OpenTRMM uses N = 3120 position and M = 12 direction intervals, and white lines show
the physical location of voids along this section.
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basic r-θ dependence of the fundamental shape eigenfunction, but has a null contour

at the center of the model near z = 12.5 cm. This shape eigenfunction shows less

effect from the void above the BC3 control rod, and like all higher shape eigenfunc-

tions, this has positive and negative parts. Most of the few calculated eigenfunctions

have axial shapes like these first two shape eigenfunctions. The shape eigenfunction

corresponding to iz = 3 has two contour lines, dividing the shape eigenfunction into

three distinct axial parts. This pattern continues until the number of axial position

states becomes unable to describe smaller axial variations, i.e., when iz approaches

the number of axial position states defined in the TRM. Once this occurs, confidence

in the OpenTRMM-calculated eigenvalues and eigenfunctions is low, though there

are not enough calculated eigenvalues to actually see these shape eigenfunctions.

Radially, the TRMM calculates some shape eigenfunctions not predicted by the

diffusion theory in Eq. (6.8) associated with the iθ triplet, i.e., the azimuthal variation

of the shape eigenfunction. Instead of the cos(iθθ) azimuthal dependence, there are

two perpendicular shape eigenfunctions corresponding to the iθ = 1 triplet (Figure

6.12). These are like the first two eigenfunctions of the hydrogenous cube, and the α

eigenvalues corresponding to these shape eigenfunctions are nearly the same. But, the

next iθ = 2 triplet has two perpendicular null contours spanning the r-θ geometry

an do not show multiplicity. The shape eigenfunction corresponding to the triplet

(3, 0, 1) is nearly indistinguishable from the fundamental when observed in the r-θ

geometry.

Discussion

For some experiments, suppressing these higher shape eigenfunctions is important.

Minimizing contributions from the first shape eigenfunction (2, 0, 1) is possible by

locating a source axially near the center at z = 12.5 cm: this is done in practice [5].

But, the higher shape eigenfunctions are not easily minimized: an external source

from the outer radius of CALIBAN excites the second and third shape eigenfunc-

tions. Minimizing these two shape eigenfunctions by locating a source along the z

axis of CALIBAN only enlarges contributions from the axial shape eigenfunctions.

Fortunately for CALIBAN, the higher shape eigenfunctions decay incredibly quickly:

as calculated by OpenTRMM, the first, second, and third shape eigenfunctions decay

to about 0.01% of their original contribution in 232 ns, 135 ns, and 133 ns, respec-

tively. Thus, simply minimizing the first shape eigenfunction is sufficient for most

measurements.

A contributing factor for the large α eigenvalues is the small size of CALIBAN.
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Figure 6.12: Plots in the r-θ space of selected calculated prompt shape eigenfunctions of the
OpenMC CALIBAN model show the different identifiable characteristics. The first shape
eigenfunction is at the bottom half of the model, at approximately z = 6.25 cm, while all
other normalized eigenfunctions are at the center of the model, approximately z = 12.5 cm,
and correspond to the lowest energy interval, g = 3. OpenTRMM uses N = 3198 position
and M = 8 direction intervals and the white circles show the physical location of features
in the CALIBAN geometry. The dimensions are the same as in the plot of the fundamental
shape eigenfunctions.

With a reduction in the enrichment, a small fast burst reactor most likely must in-

crease in size. Assuming the same metallic density of the molybdenum and uranium

alloy, and reducing the 235U enrichment to 20.0% requires a cylinder that is approxi-

mately 2.2× larger in radius and height. In keeping the same height-to-radius ratios,

the relative ratios of the prompt eigenvalues does not change significantly, but Open-

TRMM calculates a reduction of the first few prompt eigenvalues by a factor of 4.6.

Thus, the lifetimes of the first, second, and third shape eigenfunctions increase to

1.08 µs, 560 ns, and 559 ns. For the reliability of pulses from a fast burst reactor
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on the µs timescale, it is now even more important to minimize the first few prompt

shape eigenfunctions.

6.4 The Fort St. Vrain Reactor

Problem 20: The FSV reactor is a high-temperature, gas-cooled reactor fueled with

a thorium-HEU blend. The core consists of six layers of prismatic hexagonal graphite

blocks, approximately 80 cm in height and 36 cm across (flat-to-flat). Thirteen fuel

blends (Table 6.7) are distributed asymmetrically into 247 columns throughout the

entire active core (Figure 6.13), which is buffered by a replaceable and permanent

reflectors. The top and bottom reflectors are approximately 60 and 100 cm thick,

respectively [10]. There are 37 fuel regions.

6.4.1 OpenMC Model

Along with the asymmetric fuel loading, uncertainties between the design and as-

built fuel loadings, graphite boron concentrations, boron poison rods, and control

rod geometry and composition makes this a very difficult reactor to model [11]. But,

there is a significant amount of measured data, including pulsed neutron experiments,

so it is worth pursuing. Furthermore, calculations of the homogeneous reactor modes

performed on subcritical configurations of FSV [12, 13] provide some comparisons to

shape eigenfunctions of the OpenTRMM calculations.

At the center of each of the fuel regions is a control block with three large holes

Table 6.7: Total weight of uranium and thorium in the FSV fuel compositions.

No. Uranium [kg] Thorium [kg] U:Th × 100

1 105.6 2905 3.6
2 80.5 2596 3.1
3 39.2 636 6.2
4 28.9 544 5.3
5 88.8 1324 6.7
6 65.9 1158 5.7
7 111.6 1446 7.7
8 84.4 1287 6.6
9 36.2 720 5.0
10 25.8 599 4.3
11 32.1 549 5.8
12 23.7 474 5.0
13 50.5 1733 2.9
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Figure 6.13: Thirteen fuel compositions of the FSV initial core are arranged asymmetrically
throughout the 37 fuel regions in an effort to better approximate the equilibrium core.
Odd-numbered fuel compositions fill the top three fuel blocks, and even-numbered fuel
compositions fill the bottom three fuel blocks. The thirteenth fuel blend fills the central
block of the six partial fuel regions at the edge of the core and the first five fuel holes of every
block adjacent to the reflector region. The total outer radius of the reactor is approximately
403 cm.

that run the length of the core: one reserve shutdown hole and two control rod

channels. A control rod pair consisting of a metal spine with borated graphite runs

axially through these channels. These control rods are divided into symmetric groups

(Figure 6.14), and FSV operates with some of these control rods inserted.

The remainder of this section shows the OpenTRMM applied to a fully-rodded

initial core, configuration number 3 and 3A (Table 6.8), where the difference be-

tween these configurations is the detector location. To apply the OpenTRMM, a

homogenized OpenMC model is constructed directly from as-built fuel loadings, and

the position states are distributed among the 499 total individual fuel and reflector

blocks of the FSV reactor. OpenTRMM uses M = 8 direction and G = 4 energy

216



Figure 6.14: The 37 control rod pairs at the center of each fuel regions fall into thirteen
symmetric groups: twelve groups each have three control rod pairs, while the control rod
pair in the first fuel region is in its own separate group.

intervals.

6.4.2 OpenTRMM Results

For the fundamental α eigenvalue, OpenTRMM is able to calculate a fundamental

eigenvalue of −154.8 s−1, underestimating the −164.6±4.9 s−1 taken from measure-

ments. This is approximately a 6% difference from the measured value. The measured

eigenvalue is an averaged value: the pulsed-neutron experiments on configurations 3

and 3A yield six detector response curves. For each response curve, a least squares fit

Table 6.8: FSV pulsed-neutron experimental parameters.

Run
Control Rod Configuration

Axial Locationsa [cm]
Source Detector Detector Detector

No. Description Reg. 1 Reg. 30 Reg. 31 Reg. 16

5 3
All rods in

249 99 99 130
6 3A 249 69 69 99

a As measured from the top core reflector interface to source/detector.
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Table 6.9: FSV pulsed-neutron experiment results.

Run
Control Rod Configuration

Measured Prompt αa [cm]
Detector Detector Detector

No. Description Reg. 30 Reg. 31 Reg. 16

5 3
All rods in

−163.5 −167.7 −161.3
6 3A −165.0 −158.6 −171.7

a From the least squares fit of detector response.

yields an approximation to the α eigenvalue (Table 6.9). The single measured value

reported is an average of these six measurements, which by themselves range from

−158.6 s−1 to −171.7 s−1.

The homogeneous reactor mode expansion yields calculated estimates of the

prompt fundamental thermal mode [13] that match very well to the OpenTRMM-

calculated prompt fundamental shape eigenfunction (Figure 6.15). As this is a ther-

mal shape eigenfunction, peaks occur in the reflector near the core-reflector interface.

These peaks are correlated with the fuel loadings of the adjacent fuel regions: the
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Figure 6.15: The OpenTRMM-calculated fundamental shape eigenfunction of the fully-
rodded FSV reactor matches that calculated by General Atomics to help design the exper-
iments. The colored lines designate contour lines matching the value of that given color.
This normalized shape eigenfunction corresponds to the thermal energy interval, g = 4.
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highest peak at the left edge of the core is adjacent to regions 30 and 31. To ob-

tain the best measured results of the fundamental α eigenvalue, detectors should be

placed as close to these peaks as physically possible. These two regions have seven

blocks each of blend 7/8 fuel: this is the fuel blend with the largest HEU-to-thorium

ratio. Regions containing this fuel blend are at four other locations, causing the four

other larger peaks in the fundamental shape eigenfunction. These peaks are smaller

in magnitude because there are less blend 7/8 fuel blocks at each of those other loca-

tions. The smooth contour lines of the homogeneous reactor mode expansion method

are unable to measure the more discrete representation of the OpenTRMM shape

eigenfunction.

The next few thermal shape eigenfunctions also agree with the calculated homo-

geneous reactor modes. Some of these shape eigenfunctions correspond to multiple

eigenvalues, and all have positive and negative parts (Figure 6.16). The next two

modes have one null contour line through the center of the core, the third and fourth
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Mode 2
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Figure 6.16: Selected OpenTRMM-calculated thermal shape eigenfunctions of the FSV
reactor show the progression of the oscillatory shapes as n increases. These normalized
shape eigenfunctions correspond to the g = 4 energy interval.
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higher eigenfunctions have two null contours, and this pattern repeats for many of

the calculate α eigenvalues. Most of the thermal shape eigenfunctions are flat over

the center of the core, with peaks coming at the core reflector interface: the ninth

shape eigenfunction is the only one of the first few to be so sharply peaked in the

center of the core. With increasing n, more peaks appear within the reflector.

While thermal shape eigenfunctions describe features within the reflectors, the

fast shape eigenfunctions are nearly zero within the reflector, and vary within the

core (Figure 6.17). The shape eigenfunctions progress similar to thermal shape eigen-

functions, except the features are isolated in the core instead of the reflector. The

ninth shape eigenfunction is sharply peaked within the high HEU-to-thorium ratio

regions adjacent to the central fuel region.

Application of the eigenfunction expansion with the available α eigenvalues and

shape eigenfunctions gives the estimated detector response curve in any region within

the position phase space. Examining three regions near the peak in the fundamental

α = −849 s
-1

Mode 7

α = −272 s
-1

Mode 1

α = −973 s
-1

Mode 9

α = −425 s
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Mode 3
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Mode 11

α = −570 s
-1

Mode 5

Figure 6.17: Selected OpenTRMM-calculated fast shape eigenfunctions of the FSV reac-
tor show the progression of the oscillatory shapes as n increases within the core. These
normalized shape eigenfunctions correspond to the g = 1 energy interval.
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shape eigenfunction shows the strong spatial dependence in FSV (Figure 6.18). While

region 16 is adjacent to regions 30 and 31, it experiences a much more magnified

response at a slightly earlier time. The detectors responses in regions 30 and 31 follow

closely. While these calculated responses show the appropriate relative variation

between the three detectors, OpenTRMM is unable to match the exact measured

detector responses due to an insufficient number of position intervals defined in the

TRM. Specifically, this is due to the lack of separate axial position intervals. With a

single axial interval, all axial information about the time-dependence is lost, and the

TRMM underestimates contributions to the expanded solution from higher kinetic

modes. The discrepancy in the TRMM calculation is smaller if the sources and

detectors were axially aligned during the experiments: the source was placed near

the center of the core to minimize the contributions of higher kinetic modes, and the

detectors were placed towards the top reflector to maximize the fundamental prompt

kinetic mode. As defined in the TRMM, the sources and detectors are essentially

aligned, so they closer to one another than in the actual experiment, resulting in the

shorter time behavior in the calculated detector response.
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Figure 6.18: The OpenTRMM-calculated detector responses show the strong spatial de-
pendence between the three adjacent regions selected to analyze the pulsed neutron experi-
ments. The initial source defined in the OpenTRMM is in the position interval at the center
of the core, is a pulse at t = 0, and is in the highest energy interval g = 1. With limited
numbers of shape eigenfunctions, the solution before 0.1 ms is incorrect: the eigenfunction
expansion uses only 499 kinetic modes. The measured data is from the FSV pulsed-neutron
experiments.
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6.5 Discussion

The implementation of the TRMM into the OpenMC Monte Carlo code yields a

method for calculating α-eigenvalues and three-dimensional shape eigenfunctions of

real systems, for which some measured data exists. Difficulties with this application

to larger systems are mainly associated with finding an appropriate discretization

of the large, multi-dimensional phase space. Accuracy of calculated eigenvalues is

dependent on the chosen phase space and it is easy to eliminate certain higher shape

eigenfunctions by using a coarse position phase space discretization.

Application to a homogeneous cube shows the stable calculation of the fundamen-

tal α eigenvalue and how certain higher shape eigenfunctions are negated by making

simplifications in the phase space discretization. The ratios of the first few calcu-

lated prompt α eigenvalues follow the trend of the ratios obtained with one-speed

diffusion theory. The first few shape eigenfunctions are also predicted by one-speed

diffusion theory, though in some cases exhibit some slow convergence behavior for

specific shape eigenfunctions. Some higher shape eigenfunctions are not adequately

predicted by diffusion theory.

Application to the CALIBAN reactor shows the ability of OpenTRMM to obtain

α eigenfunctions for this small fast system. While it is unable to accurately determine

the prompt α eigenvalue, it meets expected ratios of the first few prompt eigenvalues

from one-speed diffusion theory. An increase in the size of a fast burst reactor causes

a reduction in the first few prompt eigenvalues. In this case, the effect of the next

few prompt eigenfunctions is important to quantify during experiments.

Finally, application to the FSV high-temperature gas-cooled reactor shows the

ability to obtain a fundamental α eigenvalue as well as a prompt eigenfunction that

aligns with homogeneous mode calculations made by General Atomics. With a few

number of OpenTRMM-calculated kinetic modes, the eigenfunction expansions are

able to show the relative differences between detector responses within different re-

gions of the reactor core. But, the overall detector responses do not match measured

results because of the insufficient position phase space discretization: with a finer

spatial mesh, these discrepancies decrease. Also, the TRMM underestimates the

magnitude of the contributions from the higher eigenfunctions: this causes the next

few higher kinetic modes to have a much lesser effect on the expanded solution than

they should.
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CHAPTER 7

Summary and Future Work

This thesis describes the theoretical formulation of the Transition Rate Matrix

Method (TRMM) and its use to approximate the α eigenvalues and eigenfunctions of

nuclear systems. It is dependent on the interpretation of operator of the adjoint α-

eigenvalue problem as the Transition Rate Matrix (TRM) describing the continuous-

time Markov process that is neutron transport. The TRMM uses forward Monte

Carlo tallies to obtain rates in a discrete TRM: in the limit of continuous position-

energy-direction intervals, this is equivalent to using adjoint Monte Carlo to obtain

the rates. This thesis includes discussions of applications to infinite media and slabs

via research Monte Carlo codes, and three-dimensional media via the OpenMC [1]

Monte Carlo code.

Currently, methods of obtaining α eigenvalues and shape eigenfunctions are lim-

ited to diffusion- and transport-based matrix methods or k-α iterative methods. In

the former, deterministic formulations of a matrix equation yields discrete approxi-

mations of the α eigenvalues and shape eigenfunctions of the underlying problem: in

most cases, these formulations are designed for a unique problem. In the latter, a

criticality calculation is re-purposed to calculate the fundamental α eigenvalue of the

problem, with additional subtraction methods necessary to obtain higher α eigenval-

ues. The TRMM is more similar to the matrix methods, except that it uses Monte

Carlo methods to characterize the behavior of neutrons within a system: current

matrix methods use only deterministic methods. Current Monte Carlo methods for

calculating α eigenvalues are limited to the k-α iteration and only yield the fun-

damental and potentially a few of the first higher α eigenvalues with an additional

subtraction method. Thus, the TRMM provides a way for calculating higher α eigen-

values and shape eigenfunctions with Monte Carlo methods, and provides a way to

predict the spatial variation of the neutron flux in short-time transients.
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7.1 Calculated α Eigenvalues and Eigenfunctions

In the initial implementation of the TRMM, the continuous-energy, infinite-medium,

research Monte Carlo code TORTE accurately calculates the k eigenvalue and TRM of

hydrogenous and graphite media. Initial multigroup formulations provide analytical

verification for the calculated k and α eigenvalues. For continuous-energy media, the

calculated eigenvalue spectrum approximates the true α-eigenvalue spectrum. With

an increasing number of energy intervals, TORTE calculations approach many of the

discrete eigenvalues of the true α eigenvalue spectrum, where the highest calculated

α eigenvalues are an approximation to the actual higher α-eigenvalue spectrum. The

TRMM calculates the appropriate fundamental α eigenvalue as predicted by the cal-

culated k eigenvalue of the system. The convergence of this fundamental α eigenvalue

relates to the reactivity calculated from the collision estimate of the k eigenvalue: the

relative variation in the calculated fundamental α eigenvalue depends on how close

the system is to critical. This correlation is because each collision event contributes

tallies to the elements of the TRM and to the collision estimate of k. An increase

in the number of energy intervals used to tally the TRM does not have an effect on

the convergence rate of the prompt fundamental, next few prompt, and delayed α

eigenvalues: the behavior neutrons within the entire system is more important to the

calculation of these quantities that the behavior of neutrons within a single energy

interval. But, the number of energy intervals does have an effect on the value of the

calculated eigenvalues. Using an initial high-energy pulse source, the eigenfunction

expansion and TDMC solutions match throughout transients in continuous-energy

media. Noise observed in the eigenfunction expansion solution at early times suggest

incompleteness of the set of calculated eigenfunctions: this behavior does not change

with different numbers of energy intervals or neutron histories, but depends on the

material of the medium and decays very quickly. These time-dependent solutions

show that the fundamental mode is a poor approximation of the time-dependent flux

for short times.

In the implementation of the TRMM to slabs, the continuous-energy, one-

dimensional, research Monte Carlo code TORTE-1D calculates the k eigenvalue and

TRM of hydrogenous and graphite media. Applications to one-speed slabs verify

the TRMM calculation of the α eigenvalues with comparisons to the GFM [2]. For

scattering and multiplying one-speed multi-region slabs, the TRMM accurately cal-

culates the fundamental α eigenvalue, and most of the higher eigenvalues, with the

only difficulties caused by eigenvalues closest to the Corngold limit. For pulse and
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constant sources, the eigenfunction expansion and TDMC solutions match, capturing

the short-time dependence by calculating more eigenvalues than the discrete portion

of the eigenvalue spectrum: it calculates complex eigenvalues within the continuum.

The one-speed slabs also allow for the analysis of the position and direction interval

choice in the absence of energy dependence. With an increase in the number of posi-

tion or direction intervals, the calculated fundamental α eigenvalues approach those

calculated by the GFM. Applications to continuous-energy slabs show the effect of

discretizing a position-energy-direction phase space on the calculated α eigenvalues,

and the effect of the calculated spectrum on the expanded flux solutions.

In the implementation of the TRMM to three-dimensional media, the OpenMC

Monte Carlo code is modified to include the necessary tallies to obtain the TRM el-

ements. While calculations converge to a fundamental α eigenvalue, difficulties with

the large position-energy-direction phase space cause slower convergence of higher

eigenvalues. For a homogeneous cube problem, the calculated α eigenvalues follow

the general trend predicted by one-speed diffusion theory. Some of the asymmetric

higher shape eigenfunctions converge only after a large number of neutron histories.

This has little effect on the expanded flux solutions, which show the short-time de-

pendence of the neutron flux. For the OpenMC model of the CALIBAN fast-burst

reactor, the TRMM under-predicts the fundamental α eigenvalue [3] by about 10%,

but is able to calculate the proper βeff and the progression of the next few prompt α

eigenvalues. Higher shape eigenfunctions also show the trend predicted by one-speed

diffusion theory. For the OpenMC model of the FSV reactor, the TRMM calculates

a reasonable estimate of the fundamental α eigenvalue (within 7%) and several of the

prompt shape eigenfunctions used in the expanded flux solutions. The prompt fun-

damental shape eigenfunction agrees with the homogeneous mode expansion method

used by General Atomics to design the experiment [4]. The expanded flux solution

shows the appropriate relative dependence of three detectors, but the TRMM under-

predicts the contributions of the first few higher kinetic modes.

7.2 Future Work

In the formulations in this thesis, the delayed neutron precursor concentrations are

discretized among the position phase space. This allows for the definition of pre-

cursor concentrations throughout the position phase space. Some variations on the

treatment of these precursor concentrations and their effects on the calculated de-

layed α shape eigenfunctions are worth studying: this includes the reduction of the
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discretized precursor concentration phase space, and the inclusion of mobile fuel in

the formulation. The former variation would simplify IRAM calculations by reduc-

ing the number of clustered delayed α eigenvalues. The latter variation requires an

additional term in the precursor concentration equation and the assumption that the

time-dependence of this term is separable from the remainder of the phase space in

the formulation of the α-eigenvalue problem. This has interesting connections to the

theory of α modes and kinetics.

In calculating the TRM elements, the TRMM uses only sampled quantities. But,

there are certain physical processes that are well known, i.e., neutron emission from

fission is isotropic. If this is assumed, then only the energy emission spectrum is

necessary to tally during the Monte Carlo random walk, and the probabilities may

be distributed later over the appropriate direction intervals. This reduces memory

requirements of the TRM tallies.

Little measured data of higher α eigenvalues exists, so there is not much to com-

pare results to. The next highest α eigenvalues are important because they may help

determine the point at which the position-energy-direction phase space discretization

is sufficient for accurate calculations of eigenvalues. Also, finding some mathematical

quantification of the statistical uncertainty of the higher eigenvalues is also of interest.

This may be useful for the fission matrix method implementation in Monte Carlo, as

both methods use tallied quantities to determine higher shape eigenfunctions.

Finally, there are a number of eigenvalue solvers applied to similar matrix methods

for α eigenvalue calculations that may be of use when determining a larger portion of

the spectrum of larger systems. As the discretized phase spaces become larger, the

eigenvalues become more difficult to solve, but, a good amount is known about the

α-eigenvalue spectrum. Always, the more calculated shape eigenfunctions that may

be extracted form the TRM, the better.
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