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CHAPTER 1 

 

Plasma membrane maintenance in muscular dystrophy and the role of dysferlin-

mediated membrane repair in skeletal muscle. 

 

Muscular dystrophy and plasma membrane integrity: 

Muscular dystrophy:  The muscular dystrophies are a diverse group of inherited muscle 

wasting disorders that affect skeletal muscle and/or cardiac muscle resulting from 

mutations in >30 different genes [1]. Common pathological features include cycles of 

degeneration and regeneration, infiltration of immune cells, fibrosis, and fatty infiltrate 

within the muscle; all of which compromise muscle function [1]. Patients with muscular 

dystrophy typically succumb to respiratory failure as a result of impaired diaphram 

function or cardiac failure [2]. Proteins implicated in muscular dystrophy play a wide 

variety of cellular roles, including cell-ECM interactions [3-5], cytoskeletal organization 

or function [6], sarcomeric organization [7], and membrane trafficking [8]. Mutations in 

several components of the Dystrophin-glycoprotein complex (DGC), an adhesion 

complex that mediates the functional linkage between the intracellular actin 

cytoskeleton and the extracellular matrix, result in muscular dystrophies (Fig 1-1, 

reviewed in [2]). Although there is no universal cellular mechanism by which genetic 

mutations result in muscular dystrophy, many muscular dystrophies (particularly those 
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associated with the DGC) show marked instability of the plasma membrane that renders 

cells susceptible to cellular wounding [9]. 

 

Maintenance of the plasma membrane is critical and loss of DGC components leads to 

membrane instability and muscular dystrophy: The DGC, is a multi-protein complex that 

links the intracellular F-actin cytoskeleton through the plasma membrane to laminin 

present in the basal lamina. The intracellular linkage to F-actin is mediated by 

dystrophin, a >400 kDa protein that contains an N-terminal actin binding domain, a 

central rod domain and a C-terminal domain that interacts with β-dystroglycan within the 

plasma membrane [10]. Dystroglycan is a membrane spanning protein composed of two 

subunits (α and β) that form as a result of post-translational cleavage of a full length 

precursor protein [11]. Beta dystroglycan contains the transmembrane domain and 

interacts with dystrophin, whereas alpha-dystroglycan is entirely extracellular, is highly 

glycosylated, and mediates the functional linkage with the extracellular matrix through 

its interaction with laminin [11]. Although the exact mechanism whereby mutations in 

DGC components cause muscular dystrophy is not entirely clear, a growing body of 

evidence suggests that loss of the DGC may reduce membrane stability and render 

cells susceptible to membrane wounding. This assertion is supported by the finding that 

muscles from several mouse models of DGC deficiency take up more membrane 

impermeable proteins (IgG) and extracellular dyes (EBD) compared with normal 

muscle. Furthermore, dye uptake into mutant muscles is markedly increased following 

exercise [12, 13]. Furthermore, uptake of extracellular macromolecules into muscle 

fibers is associated with release of muscle-specific cytoplasmic enzyme creatine kinase 
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into the bloodstream [13]. In-vitro, DGC-deficient muscles display reduced force 

generation capacity following lengthening contraction, which has been associated with 

increased tearing of myofibers following contraction [14] and uptake of membrane 

impermeable dyes following contraction induced damage in-vitro [15]. Overall, these 

data support the assertion that genetic mutations (at least within the DGC) cause 

muscular dystrophy by compromising plasma membrane integrity, and highlight the 

critical role for maintenance of the plasma membrane in muscle cells.  

 

Dysferlinopathy and a novel pathway to muscular dystrophy:  

Dysferlin deficiency results in muscle disease: Dysferlin is expressed in most tissues at 

low levels, with highest expression in adult skeletal and cardiac muscle [16, 17]. 

Western blot analysis using an antibody to the dysferlin protein identified a ~220 kDa 

protein highly enriched in membrane fractions from mature cardiac and skeletal muscle 

[16, 18]. Antibody labeling of skeletal muscle in cross section reveals that dysferlin is 

localized to the lateral sarcolemma in muscle biopsies from normal human skeletal 

muscle and is largely absent in biopsies from patients with Limb-girdle muscular 

dystrophy 2B (LGMD2B), Myoshi Myopathy (MM) and Distal myopathy (DM) 

(collectively called dysferlinopathies) [19]. Although secondary loss of dysferlin 

expression has been noted in LGMD patients with mutations in genes other than 

dysferlin [20], the vast majority of dysferlinopathy cases can be attributed to 

homozygous or compound heterozygous mutations spanning the entire dysferlin gene 

[21], resulting in near complete loss of dysferlin expression. LGMD2B, DM and MM vary 

in their clinical presentation, with LGMD2B affecting predominantly the muscles in the 
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limb-girdle, and MM/DM pathology initiating in the distal limb musculature, or a mixed 

“proximodistal” presentation [22]. In some instances divergent phenotypes can result 

from identical mutations within the dysferlin gene, which may result from modifier genes 

or environmental factors such as activity level [19, 23]. Mild cardiac involvement can 

occasionally be detected in dysferlinopathy patients, but overt cardiomyopathy due to 

dysferlin-deficiency is rare [24]. Dysferlinopathy patients share several common 

pathological features with non-dysferlin muscular dystrophies, including, extremely high 

plasma creatine kinase, marked inflammatory infiltration, and progressive muscle 

weakness [22]. In some cases, the inflammatory response is so robust that patients are 

mis-diagnosed as having polymyositis [25]. The age of onset of dysferlinopathy varies 

considerably in humans ranging from the second to the eighth decade of life, which may 

be due to environmental factors such as injury due to physical activity [26]. There is 

currently no effective therapy for dysferlinopathy, as steroid treatments effective in other 

dystrophies are ineffective in dysferlinopathy [27, 28]. Structure-function studies aimed 

at finding the minimal structural domains required for functional dysferlin in muscle are 

currently underway [29], and these functional domains will be described later in this 

chapter. 

 Several mouse models serve as important tools for studying the pathogenesis of 

dysferlinopathy [30]. The two most commonly studied mouse models are the A/J 

mouse, which is a spontaneous mutation in the dysferlin gene due to a retrotransposon 

insertion between exons 4 and 5, resulting in loss of both mRNA and protein expression 

[31]; and the SJL mouse which harbors a splice site mutation, resulting in ~15% 

dysferlin protein expression in skeletal muscle relative to muscles from wild-type mice 



5 
 

[32]. Loss of dysferlin in the A/J, SJL, and several targeted knockout mice recapitulates 

several hallmarks of muscle disease in humans including elevated plasma creatine 

kinase, inflammatory infiltration, centrally nucleated fibers, and a small but significant 

number of fibers showing uptake of membrane impermeable Evan's blue dye [31]. 

Analysis of the muscle pathology in SJL compared to A/J mice indicates that the 

pathology is more severe within the SJL mouse. In the SJL mouse pathology begins in 

the proximal muscles at 2 months of age, and progresses to both proximal and distal 

presentation after 5 months of age, whereas presentation of pathology in A/J mice is 

delayed until 5 months of age [31]. Although the pathogenesis of dysferlin-deficiency is 

well described within human dysferlinopathy patients [22] and mouse models [31], the 

exact mechanism by which dysferlin-deficiency results in muscle disease is not clear. 

Recent studies have begun to address this question, and the findings suggest that the 

cellular deficit associated with dysferlin-deficiency may be independent of defective 

membrane stability [18, 33]. 

 

Dysferlin deficiency causes muscular dystrophy via a DGC independent pathway: 

Several independent lines of evidence indicate that dysferlin-deficient muscular 

dystrophy occurs independently of any effects on the DGC and membrane stability (Fig 

1-1). First, dysferlin-deficient mice show normal expression and localization of DGC 

components, and dysferlin is not an integral component of the DGC in normal muscle, 

which argues against a role for dysferlin in membrane stability [31]. Although dysferlin-

deficiency does not affect the DGC, dysferlin is markedly mislocalized away from the 

plasma membrane in a subset of muscle fibers from patients and mice with mutations in 
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DGC components or non-dysferlin LGMDs, indicating that DGC-deficiency or cellular 

wounding as a consequence of DGC-deficiency may alter dysferlin localization and/or 

function [20]. Furthermore, combined loss of dysferlin and dystrophin exacerbates the 

phenotype in dysferlin-null mice, indicating that dysferlin function is critical for 

minimizing the adverse effect of DGC-deficiency in muscle [34]. Although dysferlin null 

skeletal muscles contain significantly more Evans blue dye (EBD) positive fibers than 

control muscle at rest, uptake of EBD is not enhanced by mild exercise in dysferlin-

deficient muscle, in contrast to DGC-null muscle [18, 31]. One hallmark of DGC-

deficient muscle is the susceptibility to contraction-induced damage following 

lengthening contractions, which results in reduced maximal force production (termed 

force deficit) [14, 35]. Dysferlin-deficient muscle does not display a force deficit following 

lengthening contraction, suggesting that loss of dysferlin expression does not render 

skeletal muscle susceptible to contraction induced damage, and arguing against a role 

for dysferlin in membrane stability [33]. However, administration of lengthening 

contractions sufficient to injure normal muscle results in delayed force recovery in 

dysferlin-deficient muscle, and recovery of muscle function in dysferlin-null muscle 

requires myogenesis [36], indicating that dysferlin may play a role in the cellular 

response to wounding. Overall, these findings indicate that dysferlin-deficiency 

produces a dystrophic phenotype independent of any effects on the DGC and plasma 

membrane stability and implies a distinct role for dysferlin in muscle cells.  
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What is the role of dysferlin in muscle cells?: 

Ferlins are evolutionarily conserved mediators of membrane fusion: The dysferlin gene 

encodes a type 2 transmembrane protein with high homology to the ferlin family of 

proteins (Fig 1-2A) [37]. Ferlin proteins are evolutionary conserved mediators of 

membrane fusion across a wide variety of species and cell types [38, 39]. For example, 

mutations in Fer-1, the sole C. Elegans ferlin protein result in sterililty due to impaired 

fusion of the membranous organelle with the spermatid plasma membrane [40]. 

Mutations in otoferlin, a ferlin expressed in the inner ear of mammals results in 

hereditary deafness, due to impaired electrical transmission as a result of impaired 

fusion of synaptic vesicles within inner hair cells [41]. Dysferlin contains 7 putative C2 

domains (C2A-C2F) and a single transmembrane domain toward the extreme C-

terminus, resulting in a long cytoplasmic C2-domain containing N-terminal domain, and 

a short extracellular or luminal domain [38] (Fig 1-2B). The lipid binding ability of C2 

domains within dysferlin have been characterized using in-vitro lipid binding assays, 

which revealed that the C2A domain of dysferlin binds lipids in a calcium-dependent 

manner, while the remaining C2 domains bind lipids independently of calcium [42, 43]. 

The C2A domains of dysferlin, myoferlin and otoferlin are capable of inducing 

membrane curvature in liposomes in-vitro [43]. Interestingly, the C2 domains of dysferlin 

show preferential binding with the types of lipids enriched on the inner leaflet of the 

plasma membrane [42]. Although the exact cellular function that is disrupted in 

dysferlin-deficient muscle that is causal for muscle disease is not entirely clear, these 

findings strongly support a role for dysferlin in mediating membrane binding/fusion 

events in skeletal muscle. 
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Potential cellular roles for dysferlin: Consistent with structural and biochemical 

evidence, dysferlin has been implicated in a wide variety of cellular processes related to 

membrane fusion in both muscle and non-muscle cells. In monocytes, dysferlin 

expression is increased during differentiation, and dysferlin deficient monocytes display 

enhanced migration, potentially due to altered integrin trafficking [44]. In endothelial 

cells, loss of dysferlin leads to altered cell adhesion due to increased degradation of a 

critical signaling molecule PECAM [45].  Dysferlin-deficient mice show impaired skeletal 

muscle regeneration following toxin-induced or lengthening contraction-induced 

wounding, which is consistent with in-vitro findings that dysferlin-deficiency impairs cell-

cell fusion of myoblasts [33, 46, 47]. Consistent with a role for dysferlin in membrane 

trafficking, skeletal muscle hypertrophy following insulin-like growth factor (IGF) infusion 

is impaired in dysferlin-null mice potentially due to defective trafficking of the IGFR in 

skeletal muscle cells [48]. Dysferlin may play a role in development and maintenance of 

the transverse tubules, as dysferlin colocalizes with the transverse tubules in developing 

and regenerating muscle in mice [46], differentiating myotubes in-vitro [49], and 

transverse tubule morphology is altered in dysferlin-deficient mice [50]. Perhaps the 

most intensively studied cellular role for dysferlin is in the evolutionarily conserved 

process of membrane repair [18, 49, 51-53]. Given that membrane damage is frequent 

in mechanically active tissues such as muscle [12], the role of dysferlin in membrane 

repair in normal muscle and potential adverse effects of dysferlin-deficiency on 

membrane repair is an area of intense investigation (which will be covered in 
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subsequent sections), but, at present much of what is known about the mechanism of 

membrane repair comes from non-muscle model systems.  

 

Membrane repair in non-muscle model-systems:  

Membrane repair is a critical, evolutionarily conserved process by which cells withstand 

wounding to the plasma membrane:  Membrane repair is a critical process by which 

cells are able to withstand even the most severe wounds to the plasma membrane    

(Fig 1-3A) Capacity to reseal the plasma membrane has been documented across a 

variety of cell types in-vivo including epithelial cells [54], intestinal endothelial cells [55], 

neurons [55-60], cardiomyocytes [61] and skeletal muscle cells [12]. Although the 

causative agent for membrane damage likely depends on the specific cell type in 

question, mechanical wounding [58-60], and exposure to bacterial toxins [62] are likely 

the most common. Several laboratory models of membrane damage have been 

developed to assess membrane repair in-vitro, including detergent permeabilization 

[51], and electroporation [63].  Currently in the field, mechanical wounding using finely 

pulled patch pipettes, and laser-induced wounding typically touted in combination with 

live cell imaging represent the gold standard assays for membrane repair, given that 

individual cells can be studied in real-time following wounding at a specific location on 

the plasma membrane [18, 61, 64]. Using these gold standard injury techniques, several 

independent methods have been employed to quantify membrane resealing in-vitro, and 

these vary from measuring changes in membrane tension [65], and influx of membrane 

impermeable dyes following wounding [18]. Analyzing uptake of FM1-43 (a membrane 

impermeable dye that is fluorescent upon contact with membranes but cannot pass 
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through the plasma membrane) following laser-induced wounds using confocal 

microscopy has emerged as the most commonly used metric of membrane repair [18, 

61, 66, 67] (Fig 1-3B).  

 Most of the mechanistic understanding of how cells repair wounds in the plasma 

membrane comes from studies in non-muscle model systems including sea urchin eggs 

[64, 68-70], neurons [37, 56-60], and fibroblasts [71-73]. Although the mechanism by 

which various cell types reseal the plasma membrane may vary, resealing in most cell 

types requires directed transport of intracellular vesicles toward lesions and calcium-

induced vesicle-vesicle and vesicle-membrane fusion. 

 

Exocytosis, endocytosis, and vesicle-vesicle fusion is critical for membrane resealing: 

Early studies into membrane resealing were prompted by the finding that erythrocytes 

spontaneously reseal following osmotic shock [74]. In erythrocytes, "resealing" occurs 

due to passive interactions between the hydrophobic membrane and aqueous solution 

[74]. In nucleated cells, which have a more elaborate cytoskeletal architecture and 

endure more severe physiological wounds, resealing requires calcium activated vesicle-

vesicle and vesicle-membrane fusion [60, 68, 69, 75, 76]. A role for damage-induced 

exocytosis in membrane resealing was definitively shown in early studies using the sea 

urchin egg, which contain thousands of vesicles docked at the plasma membrane [64]. 

Following wounding, these "docked" vesicles fuse with each other and remaining 

portions of intact plasma membrane to facilitate membrane resealing [64]. Sea urchin 

eggs undergoing larger lesions (~400 um2) reseal due to a dramatic vesicle-vesicle and 

vesicle-plasma membrane fusion response near the lesion [70]. Electron micrographs of 
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sea urchin eggs immediately following large wounds confirmed the presence of a dense 

network of vesicles undergoing vesicle-vesicle fusion, which, at later time points appear 

as a large relatively protein free "plug" spanning the entire lesion [75]. Damage-induced 

exocytosis of docked vesicles in sea urchin eggs is depends on SNARE complexes, as 

cleavage with toxins specific for these interactions impair exocytosis and inhibit 

resealing [64]. Although studies in the urchin egg directly demonstrates a role for 

exocytosis of vesicles in membrane resealing, virtually all cell types lack cortically 

docked vesicles, calling into question whether all cell types utilize an analogous 

mechanism. Subsequent analysis of resealing in fertilized urchin embryos (which lose 

the docked vesicle population as a result of fertilization) have shown that membrane 

wounding activates transport of intracellular vesicles toward the membrane lesion via 

the cytoskeleton and can be separated into kinetically distinct waves of exocytosis [77]. 

Vesicles are delivered along microtubules by kinesin motors until the vesicles reach 

cortical actin, whereby non-muscle myosin-II transports the vesicles toward the plasma 

membrane for their subsequent fusion; disruption of either step reduces damage-

induced exocytosis and impairs resealing [77]. Fibroblasts and other mammalian cell 

types reseal the plasma membrane via an exocytotic mechanism, and the intracellular 

membranes primarily involved appear to be lysosomes [72]. Pharmacological or genetic 

inhibition of lysosomal function impairs membrane resealing in fibroblasts, and knockout 

of synaptotagmin-VII (a dysferlin homolog present on lysosomes) impairs lysosomal 

exocytosis and inhibits membrane resealing in fibroblasts [71]. Several studies have 

also implicated endocytosis in membrane resealing. In NRK cells treated with SLO toxin 

(which forms transmembrane pores) enzyme release due to lysosomal-exocytosis 
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facilitates rapid endocytosis of toxin pores and this coupling may be required for 

membrane resealing at least in this model of toxin-induced wounding [78]. In giant 

crayfish neurons or cockroach neurons, endocytic vesicles directly contribute to 

membrane resealing following axotomy by forming a vesicular plug at the membrane 

lesion [79]. In Aplysia neurons, axotomy induces microtubule based transport of 

vesicles toward the cut end of the axon, indicating that microtubule-based transport of 

vesicles may contribute to membrane repair [80]. Although there is no unifying 

mechanism of membrane resealing, and the cellular components involved appear to 

vary, these studies highlight the critical role for vesicle-vesicle and vesicle-membrane 

interactions during membrane resealing, and provide clues for the potential role for 

dysferlin in membrane resealing in muscle. 

 

The cytoskeleton is a critical regulator of membrane resealing in non-muscle cells: The 

cytoskeleton is a critical regulator of membrane remodeling and membrane transport 

processes across a wide variety of cell types [81]. In sea urchin embryos, delivery of 

vesicles to membrane lesions is mediated by microtubules, and disruption of 

microtubules or kinesin-motors (the major outwardly directed motor along microtubules) 

inhibits membrane resealing [77]. In fibroblasts, while microtubules are not required for 

resealing initial wounds, disruption of microtubules impairs membrane resealing 

following multiple wounds [82]. This can be explained, in part, by the fact that 

microtubules undergo dramatic re-orientation toward membrane wounds, and deliver 

newly synthesized Golgi-derived vesicles to replenish those used during resealing the 

initial wound [82]. The sub-membrane actin cytoskeleton is critical for membrane 
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resealing in sea urchin embryos, as disruption of actin filaments or inhibition of myosin 

motors inhibits damage-induced exocytosis and membrane resealing [77]. A role for 

actin-dependent non-muscle myosin motors in membrane repair has also been 

confirmed in fibroblasts [83] and potentially muscle cells [67]. Furthermore, In drosophila 

embryos and Xenopus Oocytes, membrane lesions are repaired via the formation of an 

actin and myosin-II "contractile ring" which, through direct interactions with cadherin, 

generates a pulling force to "close" lesions in the plasma membrane [84, 85]. 

Subsequent studies have also determined that proteins that regulate actin dynamics, 

such as Rho-kinase, are activated in response to wounding [86]. F-actin accumulates at 

membrane lesions in primary human myotubes [87], but whether an analogous 

mechanism of F-actin contractile ring formation contributes to membrane resealing in 

muscle cells remains to be explored.  

 

Membrane repair in muscle and the role of dysferlin: 

Membrane damage and repair in muscle: Plasma membrane disruption is a common 

occurrence in dystrophic muscle, and normal muscle following injurious contractions or 

prolonged endurance exercise, and often can be marked pathologically by staining 

muscle sections for infused vital dyes, or by staining for intracellular accumulation of 

normally non-permant extracellular soluble proteins [13]. Although dysferlin-deficient 

muscle does not appear to be more susceptible to membrane damage than normal 

muscle, several lines of evidence indicate that membrane resealing may be impaired in 

dysferlin deficient muscle [18]. Dysferlin-null muscle fibers show increased uptake of 

membrane impermeable FM1-43 dye following laser-induced wounding, indicating that 
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dysferlin-null muscle cells do not repair the membrane as efficiently as normal muscle 

(Fig 1-3B and C). Furthermore, dysferlin is enriched at sites of cellular wounding in adult 

skeletal muscle fibers, indicating that recruitment of dysferlin at membrane lesions is 

critical for membrane resealing [18]. Electron micrographs of dysferlin-null muscle show 

dramatic accumulation of vesicles under the plasma membrane near putative 

membrane lesions, which supports the model that vesicle-vesicle or vesicle-PM fusion 

of dysferlin-containing vesicles may be critical for resealing in muscle cells [18]. 

Recently, mutations within several additional proteins have been shown to impair 

membrane resealing in muscle cells, and their potential interaction with dysferlin, as well 

as their contribution to membrane resealing is currently being addressed [52, 53]. MG53 

is a tri-partate motif protein that is highly expressed in muscle, and MG53 knockout 

mice display a dystrophic phenotype characterized by high CK, centrally nucleated 

fibers, muscle weakness and inflammatory infiltrate [51]. MG53 accumulates at 

membrane lesions via non-muscle myosin-II (NMII), and inhibition of NMII with 

blebbistatin decreases MG53 accumulation and impairs membrane resealing [67], 

consistent with a role for the actin cytoskeleton in membrane resealing in muscle. MG53 

accumulation may represent an initial activating event in membrane repair, as MG53 

accumulates at membrane lesions prior to dysferlin, and dysferlin accumulation at 

lesions may be dependent on MG53 expression [52]. Strikingly, MG53 accumulation is 

not calcium-dependent, instead MG53 undergoes oxidation-dependent oligomerization 

at membrane lesions following exposure to the oxidative extracellular environment [51]. 

Caveolins are critical components of caveolae, which regulate endocytosis across a 

wide variety of cell types [88]. Mutations in a muscle specific caveolin, Caveolin-3, result 
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in a LGMD phenotype in humans [8], and over-expression of P140L mutant caveolin-3 

in mice causes muscle disease, as a result of impaired membrane resealing. 

Furthermore, resealing deficits in this model appear to be due to altered interactions 

between MG53 and dysferlin [52]. Caveolin positive vesicles form following membrane 

wounding, which may contribute to membrane resealing, but whether these vesicles 

contain critical repair proteins has not been explored [89]. Annexins accumulate at 

membrane lesions in both non-muscle (annexin 1, 5), and muscle cells (annexin A6, 

A2a, A1a) [53, 90], and recruitment of annexin A2 and A1 is dependent on dysferlin in 

zebrafish muscle [90]. These studies indicate that the interaction between dysferlin and 

proteins involved in membrane trafficking may underlie the role of dysferlin in 

membrane repair, and this is supported by a growing body of biochemical evidence that 

dysferlin may mediate critical membrane fusion events during membrane repair in 

skeletal muscle. 

 

Dysferlin as a critical regulator of membrane fusion during membrane resealing in adult 

skeletal muscle: The C2A domain of dysferlin is capable of binding lipids in a calcium 

dependent manner, consistent with a role for dysferlin in the calcium activated fusion 

events that are required for membrane resealing [42, 91]. The additional C2 domains 

(C2B-F) bind lipids independently of calicum, which indicates that these domains may 

be constitutively bound to lipids, however the relevance of the lipid binding capacity of 

these domains to membrane resealing is not clear [42]. In addition to lipid binding, the 

C2 domains of dysferlin are thought to play a critical role in regulating protein-protein 

interactions and these interactions may be critical for resealing. For example, the 
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interaction between dysferlin and MG53 is mediated by the C2A domain in-vitro [92]. 

Recently, structure-function analyses have demonstrated that a mini-dysferlin 

containing only the C2A, C2F and transmembrane domain is sufficient to restore 

membrane repair capacity in dysferlin-deficient myotubes, but whether mini-dysferlin is 

sufficient to restore muscle function in dysferlin-deficient mouse models is not known 

[29]. Therefore, recruitment of dysferlin to membrane lesions could facilitate membrane 

repair by enhancing vesicle-vesicle and vesicle-membrane fusion specifically at 

membrane lesions.  

 

The mechanism by which dysferlin-containing compartments contribute to membrane 

resealing is not clear: Although the resealing defect associated with dysferlin-deficiency 

is well described, there is still a fundamental lack of understanding as to how dysferlin-

containing membranes contribute to membrane resealing in adult skeletal muscle. 

Figure 1-4 outlines the currently hypothesized model for dysferlin-mediated membrane 

resealing, which indicates that sarcolemmal wounding leads to localized calcium influx, 

subsequent vesicle-vesicle and vesicle-sarcolemma fusion of dysferlin-containing 

vesicles to form a dysferlin-rich "patch" over the membrane lesion [18] (Fig 1-4). 

However, there is little direct evidence in support of this model. Dysferlin localizes to 

intracellular vesicles in differentiating myotubes [93], and adult dysferlin-null muscle 

shows accumulation of sub-sarcolemmal vesicles of unknown composition [18], but a 

study that examined dysferlin localization using electron microscopy of normal skeletal 

muscle immunolabeled for dysferlin concluded that dysferlin is restricted to the plasma 

membrane [16]. Furthermore, the biochemical composition of dysferlin-containing 
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vesicles has not been defined [18]. Furthermore, a recent study examining the 

contribution of dysferlin to membrane repair in zebrafish muscle concluded that dysferlin 

expression may be restricted to the plasma membrane [90]. There have also been very 

few studies attempting to examine the behavior of dysferlin-containing membranes 

following membrane wounding. Therefore, a more thorough examination of dysferlin-

containing compartments and development of novel reagents to examine the behavior 

of those compartments following wounding is critical to understanding the function of 

dysferlin-containing membranes in membrane resealing. There is some evidence to 

suggest that dysferlin-containing membranes interact with the cytoskeleton in 

differentiated myotubes [94], however, the relevance of these interactions to dysferlin-

mediated membrane resealing is not clear.  

 

Rationale and Approach: 

Membrane repair is critical for muscle function but the exact contribution of dysferlin-

containing membranes to resealing is not clear: Mutations in several proteins involved in 

membrane repair result in muscle disease [18, 51], and enhancing membrane repair 

capacity may be a viable therapeutic approach for muscle diseases [95]. However, a 

more thorough understanding of membrane resealing in normal muscle is critical in 

order to design novel therapeutics aimed at enhancing membrane repair. Dysferlin-

containing membranes are thought to contribute to membrane repair, but the exact 

function of dysferlin-containing membranes in membrane repair in muscle is not clear. 

Furthermore, whether the cytoskeleton is required for the function of dysferlin-containing 

membranes during membrane repair in muscle is not clear. Therefore, the overall goal 
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of the work in this thesis was to examine the dynamic behavior of dysferlin-containing 

membranes and examine the role of the cytoskeleton in dysferlin-mediated membrane 

repair in skeletal muscle. In this thesis, I tested the overall hypothesis that dynamic 

interactions between the cytoskeleton and dysferlin-containing membranes are 

critical for membrane resealing in skeletal muscle. Live-cell imaging based 

approaches were developed to investigate the behavior of dysferlin-containing 

membranes in differentiated myotubes expressing dysferlin-eGFP, or adult skeletal 

muscle fibers isolated from a muscle specific transgenic reporter mouse expressing 

dysferlin-pHGFP. Genetic or pharmacological disruption of the cytoskeleton or motor 

proteins was used to examine the role of the cytoskeleton in dysferlin-mediated 

membrane repair.  

 

Specific Aim 1: Examine the behavior of dysferlin-containing membranes following 

wounding and determine the role of the cytoskeleton in dysferlin-mediated membrane 

repair in differentiating myotubes.  

 

The purpose of the experiments outlined in Aim 1 was to examine the behavior of 

dysferlin-containing vesicles following wounding and the role of the cytoskeleton in 

regulating that behavior in differentiated myotubes. Although dysferlin-containing 

vesicles have been implied as critical mediators of membrane repair in muscle, there is 

actually limited evidence that this is the case. L6 myotubes expressing fluorophore 

labeled dysferlin molecules were subjected to live-cell imaging to examine the behavior 

of dysferlin-containing compartments prior to and following membrane wounding with or 
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without pharmacological or genetic disruption of the cytoskeleton/motor proteins. Our 

data indicates that dysferlin-containing vesicles undergo vesicle-vesicle fusion following 

membrane disruption which generates large dysferlin-containing vesicles that may act 

as a vesicular plug to reseal membrane lesions. Pharmacological disruption of 

microtubules or genetic inhibition of kinesin motors impairs large vesicle formation likely 

through direct inhibition of vesicle function following wounding. This data supports the 

overall model that microtubule-dependent vesicle-vesicle fusion of dysferlin-containing 

vesicles is critical for membrane resealing in differentiated myotubes. 

 

Specific Aim 2: Examine the behavior of dysferlin-containing membranes following 

wounding and determine the role of the cytoskeleton in dysferlin-mediated membrane 

repair in adult skeletal muscle.  

 

The purpose of the experiments outlined in Aim 2 was to examine the contribution of 

dysferlin-containing membranes to membrane repair in adult skeletal muscle. A novel 

muscle-specific transgenic mouse expressing dysferlin-pHluorin GFP was generated 

and used to examine the behavior of dysf-pHGFP prior to and following laser-induced 

wounding using confocal microscopy. The data indicate that dysferlin is restricted to the 

sarcolemma and t-tubules, with minimal dysferlin within vesicles at rest. Following 

wounding, adjacent sarcolemma-derived dysferlin is rapidly pulled into stable dysferlin-

rich structures surrounding the lesion. Interestingly, membrane damage also induces 

the formation of endocytic dysferlin containing vesicles, which may contribute to 

membrane repair by plugging wounds in the plasma membrane. Disruption of the actin 
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cytoskeleton impairs accumulation of sarcolemma derived dysferlin  as well as 

membrane resealing in adult skeletal muscle fibers with no effect on endocytosis. These 

findings support the overall model that actin-dependent recruitment of sarcolemma-

derived dysferlin contributes to membrane resealing by creating an "active-zone" of high 

lipid binding activity to facilitate interaction with dysferlin-containing or non-dysferlin 

repair vesicles specifically at membrane lesions. 
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Figure 1-1. Loss of dysferlin results in muscular dystrophy independently of any effects 

on the DGC or membrane stability. The protein names in red boxes are components or 

interact directly with proteins in the dystrophin-glycoprotein complex (DGC). The DGC 

acts as a structural link between the actin-cortex (via dystrophin), through the plasma 

membrane (via dystroglycan) and the basal lamina (through laminin). Mutations in any 

component of the DGC are thought to destabilize the plasma membrane and result in 

susceptibility to contraction-induced sarcolemma wounding. Dysferlin is enriched in 

membrane fractions from muscle, but is not an integral component of the DGC. Loss of 

dysferlin does not affect DGC components, and does not alter membrane stability, 

which highlights an independent function for dysferlin in skeletal muscle cells. (Figure 

modified from [96]) 
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Figure 1-2. A) Phylogenic analysis of and structure of ferlin proteins. Ferlins have a 

highly conserved structure highlighted by multiple tandem containing C2 domains (with 

the exception of Fer-1, which contains 1), ferlin and dysf-domains, and an extreme C-

terminal transmembrane domain. Ferlin proteins regulate a wide variety of membrane 

fusion events across several species and cell types, indicating that dysferlin may 

regulate membrane fusion in muscle. B) Orientation of dysferlin within the plasma 

membrane and/or intracellular vesicles. The long cytoplasmic N-terminal domain 

contains the C2 domains. The short c-terminal domain localizes to the lumen of 

intracellular vesicles or extracellular surface of the plasma membrane or t-tubules.  
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Figure 1-3. Impaired membrane resealing in dysferlin-deficient muscular dystrophy. A) 

Simple schematic of membrane resealing. Contraction is thought to induce tears in the 

plasma membrane, particularly when genetic mutations in DGC components render the 

sarcolemma unstable. Lesions result in the leakage of intracellular molecules (Creatine 

Kinase, CK), and the uptake of extracellular ions/molecules (calcium and impermeable 

dyes), and subsequently cell death unless the cell repairs the lesion. Resealing is 

thought to require recruitment of intracellular vesicles to lesions in non-muscle cells, but 

the mechanism by which muscle fibers reseal the sarcolemma is largely unknown. B) 

Membrane repair is assayed in-vitro by incubating adult skeletal muscle fibers in 

membrane impermeable fluorescent FM1-43 dye and measuring the uptake of dye 

following laser-induced injury. C) Dysferlin-deficient muscle fibers take up more FM1-43 

dye than wild-type fibers following laser induced injury (quantification in D), indicating 

that membrane repair is defective in dysferlin-deficient muscle (representative data  

shown from Chapter 3 and consistent with [18]). 
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Figure 1-4. Hypothesized model for dysferlin-mediated membrane repair in skeletal 

muscle. A) Dysferlin-containing vesicles are present under the sarcolemma of resting 

skeletal muscle fibers. Physical disruption of the sarcolemma results in a localized influx 

of extracellular calcium, which triggers dysferlin-dependent vesicle-vesicle (B) and 

vesicle-sarcolemma (C) fusion of dysferlin-containing vesicles. Fusion of dysferlin-

containing vesicles with the sarcolemma results in formation of a dysferlin-rich "patch" 

structure at the lesion, which restores the physical barrier between the cytosol and 

extracellular space (D). Therefore, dysferlin-deficiency is hypothesized to impair 

membrane resealing by impairing damage-induced vesicle fusion, but damage-induced 

fusion of dysferlin-containing vesicles and the dysferlin-containing compartments critical 

for membrane repair have not been explored. 
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CHAPTER 2 

 

Membrane damage induced vesicle-vesicle fusion of dysferlin-containing vesicles 

in muscle cells requires microtubules and kinesin. 

 

ABSTRACT 

Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to Limb-girdle 

Muscular Dystrophy 2B and Myoshi Myopathy in humans. Dysferlin has been proposed 

as a critical regulator of vesicle mediated membrane resealing in muscle fibers, and 

localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts 

and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the 

plasma membrane during resealing requires the intracellular cytoskeleton. However, the 

contribution of dysferlin-containing vesicles to resealing in muscle and the role of the 

cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, live-cell 

imaging was used to examine the behavior of dysferlin-containing vesicles following 

cellular wounding in muscle cells and examine the role of microtubules and kinesin in 

dysferlin-containing vesicle behavior following wounding. Our data indicate that 

dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in 

muscle cells. Membrane wounding induces dysferlin-containing vesicle-vesicle fusion 

and the formation of extremely large cytoplasmic vesicles, and this response depends 

on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are 
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critical mediators of membrane resealing, and our data indicate that dysferlin-containing 

vesicles are capable of fusing with lysosomes following wounding which may contribute 

to formation of large wound sealing vesicles in muscle cells. Overall, our data provide 

mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles 

may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle-

vesicle and vesicle-organelle fusion in response to wounding in muscle cells. 

 

INTRODUCTION 

Membrane damage is a frequent occurrence in mechanically active tissues, such as 

skeletal and cardiac muscle, and successful repair of the cell membrane following 

disruption is critical to muscle function [12, 18, 32]. Mutations within a critical 

membrane-repair protein, dysferlin, leads to two mild but progressive forms of muscular 

dystrophy termed Limb-Girdle Muscular Dystrophy 2B (LGMD2B) and Myoshi Myopathy 

(MM)[23, 97]. Dysferlin is a single-pass transmembrane protein containing multiple 

cytoplasmic C2 domains, and is a member of the evolutionarily conserved ferlin family 

of proteins. Ferlin proteins play a critical role in membrane fusion across multiple 

species and cell types [38]. Dysferlin appears to have evolved in higher order 

vertebrates and is relatively muscle specific, with the highest expression in mature 

skeletal and cardiac muscle [17]. Dysferlin is expressed predominantly at or near the 

plasma membrane in normal adult skeletal muscle, and is markedly mislocalized into 

the cytoplasm in skeletal muscle from patients with Duchenne muscular dystrophy, as 

well as Limb-girdle muscular dystrophies caused by genetic mutations in genes other 

than dysferlin [20]. Furthermore, combined deficiency of dystrophin and dysferlin 
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worsens disease progression in mice, highlighting the critical role for dysferlin both in 

normal, and diseased skeletal muscle [34]. While the functions of dysferlin in muscle 

that are important for its causal role in muscular dystrophy and the mechanisms of 

those functions are still unclear, dysferlin has been suggested to play a role in a wide 

variety of processes related to membrane fusion, including t-tubule biogenesis and 

maintenance [46], cell-cell fusion [47], cell adhesion [45], and muscle growth [98]. 

Perhaps the most intensively studied role for dysferlin is in the process of membrane 

resealing. Membrane resealing is a conserved process by which cells are able to 

survive mechanical disruption of the plasma membrane [64, 76, 77, 83]. Dysferlin-null 

skeletal and cardiac muscle show enhanced uptake of membrane impermeable dye 

following laser-induced wounding suggesting dysferlin may play a role in membrane 

resealing [18, 61]. Dysferlin is enriched at sites of cellular damage, and these "patches" 

are devoid of plasma membrane proteins, indicating dysferlin may have been delivered 

from an intracellular membrane source [18, 61]. Electron micrographs of dysferlin-

deficient muscle fibers show robust accumulation of vesicles under the sarcolemma, 

suggesting that in wild-type muscle, dysferlin may play a role in fusion of sub 

sarcolemma vesicles with the plasma membrane and that these vesicles may be critical 

to repairing the membrane following wounding [18]. Although these data are consistent 

with a role for dysferlin-containing vesicles in membrane resealing in skeletal muscle, 

exactly how dysferlin containing vesicles contribute to membrane resealing in muscle 

cells is not clear. 

Current knowledge of membrane resealing is largely derived from studies in the 

sea urchin egg and fibroblast model systems, which demonstrated that fusion of 
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intracellular vesicles with the plasma membrane is critical for resealing [76, 77, 83, 99]. 

Dysferlin localizes to the plasma membrane and intracellular vesicles in developing 

myotubes, and interacts with numerous proteins involved in membrane transport, 

including caveolin-3 [93], annexin-4 [97], annexin-6 [90], enlargeosomal marker AHNAK 

[100], and tubulin [94], but the exact contribution of dysferlin-containing vesicles to 

resealing following wounding remains elusive, as few studies have examined the 

behavior of dysferlin-containing vesicles in live cells following cellular wounding. 

Therefore, the behavior of dysferlin-containing vesicles in live muscle cells prior to and 

following wounding, the role of kinesin and microtubules in dysferlin-vesicle biology was 

examined.  

Live-cell imaging of L6 myotubes expressing fluorescently-tagged dysferlin 

molecules was used to study the real time dynamic behavior dysferlin-containing 

vesicles prior to, and following mechanical membrane disruption. These data 

demonstrate that dysferlin-containing vesicles interact with microtubules via plus-end 

directed kinesin heavy chain motor, KIF5B. In response to membrane damage, 

dysferlin-containing vesicles undergo rapid vesicle-vesicle and vesicle-organelle fusion 

with lysosomes to form extremely large cytoplasmic vesicles, in a manner that is 

dependent on both microtubules and functional KIF5B. These data support the overall 

hypothesis that the interaction of dysferlin-containing vesicles with microtubules is 

critical for dysferlin-vesicle function following cellular wounding, and implicate lysosomal 

membranes as potential partners for dysferlin-containing vesicle fusion events following 

cellular wounding in skeletal muscle. 
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METHODS 

Mouse dysferlin isoform-1 (Gen Bank: NM_021469) was obtained as a kind gift from the 

Jain Foundation. A C-terminal fragment of dysferlin was isolated using a BSTBI-NOT1 

fragment, and sub cloned into a TOPO PCR 2.1 shuttle vector. The remaining N-

terminal portion of dysferlin was excised using a KPNI-BSTBI digestion and inserted 

into the dysferlin C-terminus PCR2.1 vector. An eGFP fragment was generated using 

custom primers which generated a 5’SACII-eGFP-NOTI 3’ fragment in PCR 2.1. The 

GFP fragment was then excised using a SACII-NOTI digest, and inserted into the 

dysferlin containing vector at the C-terminus. The entire dysferlin-GFP construct was 

then excised using a KPNI-NOTI digestion and inserted into a PCDNA 3.1+ vector for 

mammalian expression. Dysferlin-mCherry was generated using PCR amplification of 

mCherry with custom primers to generate a 5’SACII-mCherry-NOTI fragment. This 

fragment was then inserted into the aforementioned Dysferlin-eGFP construct using a 

SACII-NOTI digest. All dysferlin constructs were sequenced by the University of 

Michigan Sequencing Core. Motorless kinesins (containing the C-terminal stalk-tail 

region) are generally used as dominant negative inhibitors of kinesin function [101]. 

Constructs encoding GFP or mCherry labeled full-length rat KIF5 and dominant 

negative KIF5B (amino acids 568-964) were obtained as a kind gift from Dr. Kristen 

Verhey. Previous work has shown that KIF5B and KIF5C interact, and that KIF5B can 

compensate for the loss of KIF5C [102], as such these constructs were used 

interchangeably throughout this manuscript. Thanks to Dr. Kristen Verhey for the 

fluorophore labeled kinesin and LGP120 constructs used in this study. Rat anti-α tubulin 

polyclonal antibody (AB6161) was obtained from ABCAM. Rabbit polyclonal antibody to 
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Protein disulfide isomerase (PDI) was obtained from Sigma. Mouse monoclonal 

antibody to GM130 was obtained from BD transduction labs. Nocodazole (Methyl N-(5-

thenoyl-2-benzimidazolyl)carbamate) was obtained from Sigma Aldrich. Blebbistatin 

(1,2,3,3a-Tetrahydro-3a-hydroxy-6-methyl-1-phenyl-4H-pyrrolo[2,3-b]quinolin-4-one) 

was obtained from Toronto Research Chemicals Inc. Alexa 488-conjugated phalloidin 

was obtained from Life Technologies. Anti Lamp-1 antibody was obtained from ABCAM 

(ab24170). Lipofectamine™ 2000 reagent was used in all transfection experiments. 

 

Cell Culture and Transfection: L6 myocytes were grown on 100mm dishes under 

standard conditions at 37C + 5% CO2 in the presence of DMEM+10% FBS +1% P/S. 

Cells were sub-cultured using PBS wash followed by treatment with 0.25% trypsin-

EDTA and plated on either 100mm dishes for continued sub-culturing or 35mm glass 

bottom dishes (MatTek) for live-cell imaging, or glass coverslips contained in 6-well 

dishes for immunofluorescence. L6 myocytes were transfected or co-transfected with 

cDNA(s) of interest using Lipofectamine 2000, according to the manufacturer’s protocol. 

Following transfection, cells were switched to DMEM+2% Horse Serum and allowed to 

differentiate for 4-8 d until cells formed elongated myotubes. 

 

Immunofluorescence and Image Analysis: Differentiated L6 myotubes were fixed for 

15min in 3% paraformaldehyde, and permeabilized for 1h in block solution containing 

5% Bovine Serum Albumin and 0.5% triton X-100. Following blocking, cells were 

incubated in block solution containing the appropriate titer of antibody at room 

temperature for 1.5h. Following incubation in primary antibody, cells were washed and 
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incubated in block solution containing the appropriate secondary antibody for 1h. DAPI 

was used to stain nuclei in all immunofluorescence experiments. Images were obtained 

on the Deltavision ® system using standard filter sets or a Leica SP8 confocal 

microscope with a 63x objective where indicated. For deltavision imaging, optical 

sections were generated at a thickness of 0.2 um for each channel and the resulting raw 

data was used to create projection images in SoftWoRx 1.3.0. Adobe Photoshop CS2 

and Adobe Illustrator were used to compile images. 

 

Live-cell Imaging and Quantification of Dysferlin-containing vesicle Transport: Dysferlin-

eGFP expressing L6 myotubes were switched from differentiation media to PBS + Ca2+ 

prior to imaging. Imaging was carried out on an Olympus BX-71 Deltavision® 

microscope, equipped with a climate control chamber to maintain 37ºC and 5% CO2. All 

imaging data was obtained on the Deltavision® live-cell system with an Olympus 60x, 

1.4 numerical aperture objective, equipped with a PhotometricsCoolSnap HQ 

monochromatic camera. SoftWoRx Explorer 1.3 ® imaging software was used in all 

experiments to analyze raw time-lapse data. SoftWoRx 3.5.0 ® software was used to 

deconvolve time-lapse data when indicated, and was carried out using enhanced ratio 

with medium noise filtering unless otherwise noted. Quicktime movies or individual 

image files were generated from raw time-lapse data. Dysferlin-containing vesicle 

movement and nocodazole treatment: For analysis of dysferlin-containing vesicle 

movement, dysferlin-eGFP expressing L6 myotubes were imaged at 250ms exposure 

for 2m prior to nocodazole treatment. To determine the effect of microtubule disruption 

on dysferlin-containing vesicle transport, cells were incubated in 750mM nocodazole for 



32 
 

30m and subjected to a second round of live-cell imaging for 2min. Raw time-lapse 

images were then analyzed for dysferlin-containing vesicle movements >2um in length 

using Softworx ® Particle Tracking software by an observer blind to treatment group. 

Each individual motile vesicle was tracked through time and the total distance traveled 

was determined by manually assigning XY-coordinates to each motile vesicle at time-

point. Each vesicle moving greater than 2um was counted as a movement, and the total 

number of movements was compared for each cell, prior to, and after treatment with 

nocodazole. Significance was determined using a student’s T-test. Velocities of 

individual dysferlin containing vesicles (24 movements from 10 cells) were calculated by 

tracking individual motile vesicles and calculating the change in xy distance over time. 

This data should be taken as a close approximation, as our methodology does not 

account for displacement of vesicles within the z-plane.  

 

Live-cell imaging of co-transfected L6 myotubes: To study multiple fluorescently tagged 

molecules, in single cells, experiments were designed to alternate imaging between 

each channel at 250msec exposure for 2min. The raw data for each channel was 

analyzed independently and in combination for vesicle motility and colabeling of 

dysferlin vesicles with molecules of interest. Movie files and images of individual and 

merged time-lapse data were generated for further analysis. Raw data and quicktime 

files were analyzed for colocalization, as well as the dynamic movement of both labels 

within the cell. 
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Live-cell Membrane Damage Assay: To study the behavior of dysferlin-containing 

vesicles following membrane disruption, L6 myotubes expressing dysferlin-eGFP were 

subjected to live-cell imaging. Each cell was imaged in the GFP channel at 250msec 

exposure for 2min prior to membrane damage. Following initial imaging, each cell was 

re-visited and cells were wounded using a glass pulled micropipette and imaged for 4-

5min following wounding. To damage myotubes, an MX140-R manual micromanipulator 

was mounted to the stage of an Olympus BX-71 Deltavision® microscope and equipped 

with a finely pulled glass pipette. Wounding was confirmed visually by the absence of 

fluorescence in the affected area, as well as hypercontracture of the myotube. Using 

these criteria over 90 percent of the cells that were assayed were characterized as 

wounded. Cells that did not hypercontract were re-wounded or discarded. Due to 

movement artifact following membrane wounding, the z-axis was adjusted when 

necessary to highlight structures of interest. To quantify the vesicle formation response 

of dysferlin-eGFP expressing myotubes to membrane disruption, raw time lapse (.dv) 

files were analyzed using SoftWorx Explorer 1.3 for the formation of large dysferlin-

vesicles following wounding. Any cell that formed dysferlin-containing vesicles with a 

visible lumen that was not present prior to wounding was characterized as a 

“responder,” and any cell that did not form vesicles was excluded from the analysis. For 

each responding cell, the total number of large (>2um) damage-induced dysferlin-

containing vesicles was quantified at a single time point after vesicle formation had 

subsided. For nocodazole experiments, cells were incubated with DMSO or DMSO+ 

750nM nocodazole for ≥ 30min prior to wounding, imaged in the GFP channel at 250 

msec exposure for 2min prior to wounding, and 4-5 min following wounding. For 
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dominant negative kinesin experiments, imaging alternated between GFP and dsRed 

channels at 250 msec exposure for 2min to confirm expression of both constructs. 

Following initial imaging, each cell was wounded and imaged in the GFP channel alone 

at 250msec exposure for 4-5min. To determine the effect of nocodazole or dominant 

negative KIF5 on large vesicle formation, the average number of large vesicles (>2µm) 

was quantified and compared to the respective control (DMSO or wt-KIF5, respectively). 

The data is presented as a bar graph in figure 5B and 6C, and represents data collected 

from multiple independent experiments. Data is presented as mean +/- SE and 

statistical analysis were carried out using a two-tailed t-test with significance set at 

p<0.05. 

 

RESULTS 

Dysferlin-eGFP localizes to distinct cytoplasmic vesicles in differentiated L6 

myotubes.  Fluorescently-tagged dysferlin fusion constructs were generated to study 

the localization and behavior of dysferlin-containing vesicles in cultured skeletal muscle 

cells. Deconvolution imaging of L6 myotubes transiently expressing dysferlin-eGFP 

revealed that dysferlin-containing membranes and vesicles were present in linearly 

arranged clusters throughout the length of the myotube (Fig 2-1 A). The exact 

composition of dysferlin-containing vesicles, and whether these vesicles are derived 

from any known membrane compartments remains to be determined. Antibody labeling 

of endoplasmic reticulum marker, PDI (Fig 2-1B), as well as Golgi marker GM130 ( Fig 

2-1 C), in dysferlin-eGFP expressing myotubes was used to examine the relationship 

between dysferlin-containing vesicles and the secretory pathway in skeletal muscle 



35 
 

cells. Dysferlin-eGFP showed minimal overlap with either GM130, or PDI, indicating that 

dysferlin-containing vesicles are distinct from the secretory pathway. Dysferlin-eGFP 

and LGP120-mCherry localize to distinct vesicular structures when coexpressed in L6 

myotubes, indicating that dysferlin-eGFP does not localize to lysosomes in skeletal 

muscle cells (Fig 2-1D).   

 

Dysferlin-containing vesicles move along microtubules via KIF5B motors in 

differentiated L6 myotubes. Live-cell imaging of fluorophore labeled dysferlin 

expressing L6 myotubes was used to explore the dynamic behavior of dysferlin-

containing vesicles, and the relationship between dysferlin-containing vesicles and 

microtubules as well as kinesin motors in cultured L6 myotubes. The majority of 

dysferlin-containing vesicles, particularly those clustered within the cytoplasm or near 

the membrane, were non-motile over the course of imaging (~2 min) except for 

occasional back-and-forth movements. However, a portion of dysferlin-containing 

vesicles moved in linear paths along the longitudinal axis of the myotube up to tens of 

microns in length at an approximate average rate of 0.63 +/- 0.045 µm/sec (Fig 2-2A). 

Due to the remarkable length and linearity of dysferlin-containing vesicle movements, 

we proposed that microtubules may serve as tracks for dysferlin-containing vesicle 

transport in skeletal muscle. Microtubules were antibody labeled in fixed dysferlin-eGFP 

expressing L6 myotubes in order to explore the relationship between dysferlin-

containing vesicles and microtubules in skeletal muscle. Microtubule structures 

arranged in a dense longitudinally oriented lattice that extended throughout the entire 

myotube, and a portion of dysferlin-containing vesicles were associated with 
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microtubules (Fig 2-2B, see inset). To directly assess whether microtubules are required 

for dysferlin-containing vesicle transport in L6 myotubes, movement of dysferlin-vesicles 

was analyzed for long-range (>2µm) vesicle movements in dysferlin-eGFP expressing 

L6 myotubes prior to, and following treatment with nocodazole. As shown in figure 2-2C, 

treatment with 750nM nocodazole clearly disrupted the microtubule lattice and 

significantly reduced vesicle movements >2µm in differentiated L6 myotubes (Fig 2-2D). 

We examined whether dysferlin-containing vesicles labeled with ubiquitously expressed 

kinesin motor KIF5B by imaging L6 myotubes co-expressing dysferlin-mCherry and 

GFP-KIF5B and analyzed the dynamic movement of each label relative to the other in 

live skeletal muscle myotubes. Motile and non-motile cytoplasmic dysferlin-containing 

vesicles are labeled by GFP-KIF5B in L6 myotubes (Fig 2-2E), but not neuron specific 

isoform KIF5C (Fig 2-7), indicating that dysferlin-containing vesicles contain KIF5B 

motors in L6 myotubes.  

 

Membrane disruption induces formation of extremely large dysferlin-containing 

vesicles in L6 myotubes. There have been few studies attempting to directly examine 

damage-induced fusion of dysferlin-containing vesicles following wounding in living 

skeletal muscle cells. Therefore, to characterize the response of dysferlin-containing 

vesicles to membrane disruption in skeletal muscle cells, we used in-vitro mechanical 

wounding of dysferlin-eGFP expressing L6 myotubes in conjunction with live-cell 

imaging to track the dynamic responses of dysferlin-containing vesicles. Mechanical 

wounding has been used previously to study the behavior of other repair proteins in 

muscle cells [51], but the response of dysferlin-containing vesicles to mechanical 
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wounding has not been fully characterized. Prior to wounding, dysferlin-containing 

vesicles were distributed throughout the cytoplasm of the myotube (Fig 2-3A, left). 

Cellular damage was elicited using a glass pulled micropipette guided to a precise 

location on the myotube, and allowed to puncture the membrane. Damage was 

indicated by: (1) loss of GFP-fluorescence in the affected area, and (2) noticeable tactile 

response, including membrane tearing and subsequent retraction of the myotube. 

Immediately following disruption, dysferlin-containing vesicles combine to form 

extremely large cytoplasmic vesicles adjacent to the lesion, and throughout the 

cytoplasm (Fig 2-3A, white arrows, right panel). The resulting vesicles varied in size 

from 1µm to greater than 10µm. All vesicles forming following wounding had an 

apparent lumen, which was not the case for dysferlin-containing vesicles prior to 

membrane disruption. The time-course of large-vesicle formation was rapid, beginning 

as rapidly as 1 sec post-wound and completely formed around 1 min post wound. 

Representative time-lapse images of large vesicle formation following wounding is 

presented in high magnification in figure 2-3B, where multiple small vesicles are 

incorporated into a large vesicle within a time-frame of 1 sec to form an incrementally 

larger vesicle (white arrows, right panel). In some instances, damage-induced vesicles 

collapsed into the adjacent membrane (Fig 2-3C), while the vast majority persist many 

minutes following wounding (Fig 2-3D).  

 

Disruption of microtubules but not inhibition of actin-myosin interaction 

diminishes formation of large dysferlin-containing vesicles following membrane 

disruption in L6 myotubes. Our data suggests that dysferlin-containing vesicles 
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interact with microtubules and microtubule disruption inhibits vesicle movement. 

Therefore, the requirement of microtubules for fusion of dysferlin-containing vesicles 

following wounding in L6 myotubes was examined. Dysferlin-eGFP expressing L6 

myotubes were pre-treated with either DMSO or DMSO + 750nM nocodazole for ≥ 30m 

and subjected to live-cell imaging prior to, and following membrane disruption. Time-

lapse data was analyzed for fusion of dysferlin-containing vesicles and the resulting 

formation of large-vesicles with a visible lumen. Dysferlin-eGFP expressing L6 

myotubes were not affected by pre-treatment with DMSO (Fig 2-4A, top-left), and 

mechanical wounding induced formation of extremely large vesicles in DMSO treated 

cells (Fig 2-4A, top-right, supplementary movie 6). Treatment with nocodazole did not 

affect dysferlin-containing vesicle localization within the cell prior to wounding (Fig 2-4A, 

middle-left panel), but the formation of large dysferlin-containing vesicles following 

wounding was significantly reduced (Fig 2-4A middle-right panel, quantified in Fig 2-4B, 

supplementary movie 7). To determine whether the inhibitory effect of nocodazole 

treatment on formation of large dysferlin-containing vesicles was specific for microtubule 

disruption or due to indirect disruption of actin-based transport, dysferlin-eGFP 

expressing L6 cells were acutely treated with a potent and specific non-muscle myosin-

II inhibitor, blebbistatin, and assayed for fusion following mechanical wounding. 

Treatment with 25uM blebbistatin did not markedly alter dysferlin-containing vesicle 

localization and did not affect the formation of large dysferlin-containing vesicles 

following membrane wounding (Fig 2-8). 
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Functional KIF5B is required for formation of large dysferlin-containing vesicles 

following membrane disruption. Our data indicates that KIF5B labels dysferlin-

containing vesicles and may be a critical motor protein for movement of dysferlin-

containing vesicles along microtubules in skeletal muscle cells. Therefore, over-

expression of a dominant negative KIF5B construct was used to examine the role of 

KIF5B in the formation of large dysferlin-containing vesicles following mechanical 

wounding in L6 myotubes. The dominant negative KIF5B encodes a “headless” 

truncation mutant of KIF5B, which contains half of the stalk domain and cargo-binding 

domain, but lacks a functional motor domain. Deconvolution imaging of fixed L6 

myotubes expressing dysferlin-eGFP and either wild-type mCherry-labeled KIF5C 

(mCherry-wtKIF5) or mCherry-labeled dominant negative mutant of KIF5B (mCherry-

dnKIF5), revealed that localization of dysferlin-containing vesicles was not markedly 

affected by expression of either construct (Fig 2-5A). Genomic deletion of KIF5B has 

been reported to disrupt organization of the Golgi complex, actin cytoskeleton, 

lysosomes in KIF5B-null myoblasts [102, 103]. Therefore, we examined whether 

expression of dnKIF5 affected the Golgi complex, actin cytoskeleton, and lysosomes in 

differentiated L6 myotubes. Over-expression of dnKIF5 did not disrupt the actin-

cytoskeleton or the Golgi complex in L6 myotubes (Fig 2-9A, B). Lysosomal 

organization was not affected by expression of dnKIF5, as most lamp-1 positive 

structures were dispersed throughout the cytoplasm of wtKIF5 and dnKIF5 expressing 

cells (Fig 2-9C). To examine the role of KIF5B in the formation of large dysferlin-

vesicles, myotubes co-expressing either dysferlin-eGFP and mCherry-wtKIF5 (Fig 2-5B, 

top-left panel) or dysferlin-eGFP and mCherry-dnKIF5 (Fig 2-5B, bottom-left panel) 
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were subjected to mechanical wounding and assayed for the formation of large 

dysferlin-containing vesicles. Expression of mCherry-wtKIF5 did not affect the behavior 

of dysferlin-containing vesicles following wounding as membrane disruption induced the 

formation of large dysferlin vesicles adjacent to the lesion site (Fig 2-5B, top-right). 

Expression of mCherry-dnKIF5 significantly reduced the formation of large dysferlin-

containing vesicles following wounding, indicating that functional KIF5B is required for 

formation of large dysferlin-containing vesicles following wounding in skeletal muscle 

cells (Fig 2-5B, bottom-right panel, quantified in Fig 2-5C).  

 

Dysferlin-containing vesicles undergo heterotypic fusion with lysosomes 

following mechanical wounding in differentiated L6 myotubes. Lysosomes are 

thought to undergo exocytosis in response to membrane wounding, and have been 

implicated in membrane resealing in non-muscle cell systems [72]. Interestingly, 

lysosomal marker LAMP-2 is mislocalized in dysferlin-null myoblasts indicating a 

possible defect in lysosomal transport [98], but whether lysosomal compartments 

interact with dysferlin vesicles in muscle cells is not known. To address this, L6 

myotubes co-expressing dysferlin-eGFP and LGP120-mCherry (LGP120-mCh) were 

subjected to live-cell imaging prior to, and following mechanical wounding and the 

extent of co-labeling was analyzed. Prior to membrane wounding, dysferlin-eGFP and 

LGP120-mCh label independent vesicle populations with minimal overlap (Fig 2-6A, top 

panels). Large co-labeled structures form following mechanical wounding, indicating 

that dysferlin-containing vesicles are capable of fusion with lysosomal compartments in 

L6 myotubes following cellular wounding (Fig 2-6A, bottom panels). High magnification 
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time-lapse images of heterotypic dysferlin/lysosome vesicle formation are shown in 

figure 2-6B.  

 

DISCUSSION 

Dysferlin is a critical component of the membrane repair machinery in both skeletal and 

cardiac muscle [18, 61], and loss of this protein leads to muscular dystrophy [18, 37, 

104]. Dysferlin-containing vesicles are thought to play a critical role in muscle resealing, 

but there have been very few studies attempting to directly examine the behavior of 

dysferlin-containing vesicles in live muscle cells in the context of cellular wounding. 

Studies from non-muscle model systems suggest that microtubule-based transport of 

intracellular vesicles is critical for resealing [77, 82], but the role of microtubules and 

kinesin motors in dysferlin-mediated membrane repair in muscle remains unexplored. 

Therefore, the aim of this study was to examine the behavior of dysferlin-containing 

vesicles under normal conditions and following cellular wounding in muscle cells, and 

test the hypothesis that microtubules and kinesin are required for dysferlin-containing 

vesicle function in muscle cells. Due to the dynamic nature of vesicle transport/fusion 

and membrane resealing, we used a live-cell imaging approach to study dysferlin-

containing vesicles in unperturbed and mechanically wounded myotubes. This approach 

allowed for the resolution of individual vesicle movements and direct visualization of 

vesicle fusion events following cellular wounding in live-muscle cells. Our data show 

that dysferlin-containing vesicles are transported along microtubules via kinesin heavy 

chain isoform KIF5B, and undergo rapid microtubule- and KIF5B-dependent fusion to 

form extremely large vesicles following cellular wounding in skeletal muscle cells. 
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Furthermore, we identify lysosomal compartments as potential interacting partners of 

dysferlin-containing vesicles following cellular wounding in skeletal muscle cells. 

 

Dysferlin-containing vesicles move along microtubules via KIF5B in skeletal 

muscle cells. Antibody labeling of microtubules in fixed dysferlin-eGFP expressing L6 

myotubes revealed that dysferlin-containing vesicles are arranged along longitudinally 

oriented microtubule structures. Live-cell imaging of dysferlin-eGFP expressing L6 

myotubes showed that the majority of dysferlin-containing membranes are arranged in 

non-motile vesicle clusters, with a small fraction of dysferlin-containing vesicles 

undergoing microtubule-dependent long range movement. Kinesin heavy chain has 

been implicated in damage-induced exocytosis of vesicles in other model systems [77, 

83], and a study that screened for dysferlin interacting proteins using mass 

spectrometry identified ubiquitous kinesin motor KIF5B [105]. Consistent with a role for 

KIF5B on dysferlin-containing vesicles, live-cell imaging of L6 myotubes expressing 

dysferlin-mCh and eGFP-KIF5B revealed that dysferlin-containing vesicles are labeled 

by KIF5B, and co-labeled vesicles are capable of long-range movements. Furthermore, 

the measured velocity of motile dysferlin-containing vesicles is in the range of velocities 

reported for mitochondria in neurons [106], and kinesin motors in COS cells [107]. 

Interestingly, most KIF5B labeled dysferlin-containing vesicles did not show long-range 

processive movement and are limited to local movements in resting L6 myotubes.  

These findings are consistent with reports describing processive and non-processive 

movements of kinesin bound cargoes [108, 109]. Possible explanations for the non-

processive behavior of a subpopulation of kinesin containing dysferlin vesicles are that 
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KIF5B may be bound to dysferlin-containing vesicles without sufficiently activating 

kinesin motor activity or without actively engaging microtubules [108] or perhaps the 

clustering of vesicles limits their motility or anchors them to another sub cellular 

structure.   

 

Dysferlin-containing vesicles undergo fusion to form large cytoplasmic vesicles 

following cellular wounding in L6 myotubes. L6 myotubes expressing dysferlin-

eGFP were subjected to mechanical wounding using a finely pulled glass pipette and 

analyzed for fusion of dysferlin-containing vesicles following wounding. Mechanical 

wounding reproducibly led to contracture and ultimately retraction of the myotube away 

from the wound site. This model of injury, in contrast to single point laser injury, is more 

analogous to the process of contraction induced injury that occurs in muscle in vivo [14]. 

In dystrophin-deficient dystrophic muscle, injurious lengthening contractions result in 

complete fiber tearing and the formation of contraction clots at the site of tearing [14]. 

Interestingly, rather than accumulate specifically at membrane lesions in the L6 injury 

model, dysferlin-containing vesicles undergo rapid vesicle-vesicle fusion to form a 

population of extremely large dysferlin-containing vesicles throughout the cytoplasm of 

the myotube. In some cases the vesicles collapse on the membrane, but the majority of 

large vesicles remain in the cytoplasm and are stable for minutes following injury. This 

finding was somewhat surprising as our expectation was that dysferlin-containing 

vesicles would accumulate specifically at membrane lesions and fuse with the plasma 

membrane. The vesicle formation response was reminiscent of the "vesicular plug" 

model of membrane resealing as has been previously documented in the urchin egg 
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and crayfish medial giant axon, whereby endocytic and exocytic vesicles undergo fusion 

adjacent to membrane lesions and plug the lesion with minimal fusion with the plasma 

membrane [57, 75]. Therefore, we propose that formation of large dysferlin vesicles 

may act as a vesicular plug which is, in itself, acting as a cellular “contraction clot” 

capable of plugging large wounds in the plasma membrane of skeletal muscle cells. 

Additionally, it is interesting to speculate that cytoplasmic dysferlin-containing vesicles 

could play a different yet unappreciated role in response to wounding in muscle cells 

such as sequestering cytoplasmic components or damaged organelles that would 

otherwise harm neighboring cells. In fact, this idea is supported by recent evidence that 

the complement system is activated in dysferlin-null muscle, which contributes directly 

to disease progression, and may result from excess leakage of cellular contents 

following wounding [110]. 

 

Disruption of the functional linkage between dysferlin-containing vesicles and 

microtubules inhibits formation of large dysferlin-containing vesicles following 

wounding in L6 myotubes. Due to the presence of KIF5B on dysferlin-containing 

vesicles and the requirement of microtubules for dysferlin-containing vesicle movement, 

we hypothesized that disruption of microtubules and/or kinesin motors would inhibit 

formation of large dysferlin-containing vesicles following wounding in L6 myotubes. We 

addressed this hypothesis by examining the effect of pharmacological disruption of 

microtubules or dominant negative inhibition of KIF5 motors on the formation of large 

dysferlin-vesicles following wounding in L6 myotubes. Both microtubule disruption and 

expression of dominant negative KIF5B significantly reduced the formation of large 
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dysferlin-containing vesicles following wounding in differentiated L6 myotubes. These 

findings taken together with the fact that KIF5B is present on dysferlin-containing 

vesicles indicates that the functional linkage between KIF5B on dysferlin-containing 

vesicles and the microtubule lattice is critical for formation of large dysferlin vesicles 

following cellular wounding in L6 myotubes. There are several ways in which disrupting 

the link between microtubules and dysferlin-containing vesicles could inhibit large 

vesicle formation in muscle cells. It is possible that dysferlin-containing vesicles are 

transported throughout the cytoplasm via KIF5B prior to wounding and inhibition of 

KIF5B inhibits proper trafficking of dysferlin. However, the finding that dominant 

negative KIF5B does not markedly alter dysferlin localization indicates that transport of 

dysferlin-containing vesicles off of the Golgi apparatus is intact, and cytoplasmic 

targeting of dysferlin-containing vesicles does not require KIF5B. One possible 

explanation for the dominant negative effect of KIF5B on vesicle formation is that KIF5B 

is required for movement of dysferlin-containing vesicles along microtubules following 

wounding, and this movement facilitates coalescence of adjacent dysferlin-containing 

vesicles. In this scenario, inhibition of KIF5B could impair large vesicle formation by 

disrupting proper movement of dysferlin-containing vesicles along microtubules 

following wounding. Unfortunately, analysis of motility following wounding in our assay 

was limited by the fact that wounding caused dramatic contracture of the myotube, 

resulting in movement of most cellular components. Regardless, our data indicate that 

the interaction between functional KIF5B motors on dysferlin-containing vesicles and 

microtubules is critical for formation of large vesicles following wounding. 
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Dysferlin-containing vesicles fuse with lysosomal compartments following 

wounding in L6 myotubes. The exact composition of dysferlin-containing vesicles, and 

membrane compartments involved in membrane repair in muscle have not been fully 

examined. Lysosomes have been implicated in membrane resealing across a variety of 

non-muscle cell types [72], but whether lysosomes are involved in dysferlin-mediated 

membrane resealing in skeletal muscle cells is not known. Lysosomal marker Lamp-2 

accumulates around the nucleus of dysferlin-null myoblasts [48], indicating that loss of 

dysferlin may adversely affect lysosomal function. Furthermore, dysferlin is required for 

Fas-L induced lipid raft clustering in endothelial cells, which is thought to be dependent 

on lysosomal fusion [111]. Therefore, we sought to directly examine whether dysferlin-

containing vesicles interact with lysosomal compartments following wounding in skeletal 

muscle cells. Live cell imaging of L6 cells co-expressing dysferlin-eGFP and LGP120-

mCh shows that dysferlin-eGFP and LGP120-mCh label independent populations of 

vesicles prior to wounding. Following wounding, dysferlin-containing vesicles undergo 

fusion with LGP120-mCh labeled compartments to form large vesicles in L6 myotubes. 

A previous study reported that lysosomal dispersion is impaired in cells isolated from 

KIF5B knockout mice, indicating that KIF5B may be required for motility of lysosomes 

[102]. Our data indicates that lysosomal organization is not dramatically altered by 

dnKIF5B expression in differentiated L6 myotubes. This finding, taken together with the 

fact that KIF5B is present on dysferlin-containing vesicles prior to wounding indicates 

that the dominant negative effect on large-vesicle formation is likely through direct 

impairment of dysferlin-containing vesicle function rather than an indirect effect on 

lysosomal function. These data support the novel assertion dysferlin-containing vesicles 
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may interact to form large-vesicles following wounding which may contribute to 

membrane repair in L6 myotubes. Interestingly, knockout of synaptotagmin-VII, a 

dysferlin homolog necessary for lysosomal fusion, displays an inflammatory muscle 

myopathy [71], but whether loss of lysosomal function impairs resealing in muscle cells 

is not known. Furthermore, additional studies are needed to examine the exact 

contribution of lysosomal compartments to resealing in muscle and whether lysosomal 

behavior following wounding is impaired in dysferlin-deficient muscle cells. 
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Figure 2-1. Dysferlin-eGFP localizes to a population of distinct vesicles in 

differentiated L6 myotubes. A) Dysferlin-containing vesicles are arranged in linear 

arrays throughout the cytoplasm of L6 myotubes. High magnification of (A) shows that 

dysferlin-containing vesicles are isolated (arrowhead, right panel), and also accumulate 

in regularly distributed vesicle clusters (arrow, right panel). Antibody labeling of fixed L6 

myotubes shows that cytoplasmic dysferlin-containing vesicles do not colocalize with 

endogenous ER marker PDI (B), or Golgi marker GM130 (C). D) Dysferlin-eGFP and 

lysosomal marker mCherry-LGP120 localize to distinct vesicle populations in 

differentiated L6 myotubes. Scale bar =10 um. 
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Figure 2-2. Dysferlin-containing vesicles move along microtubules via KIF5B 

motors in differentiated L6 myotubes. A) Live-cell imaging of Dysferlin-eGFP 

expressing L6 myotubes shows that dysferlin-containing vesicles undergo long-range 

movements along the longitudinal axis of L6 myotubes (Supplementary movie 1). B) 

Antibody labeling of α -tubulin in dysferlin-eGFP expressing L6 myotubes reveals that 

dysferlin-containing vesicles colocalize with microtubules in L6 myotubes; DAPI=blue. 

C) Antibody labeling of α-tubulin in differentiated L6 myotubes shows that microtubules 

form a dense, longitudinally oriented lattice in L6 myotubes (C, left-panel) and are 

disrupted following treatment with microtubule depolymerizing agent, nocodazole (C, 

right-panel)D) Microtubule disruption inhibits long-range movement of dysferlin-

containing vesicles in skeletal muscle myotubes. Dysferlin-eGFP expressing myotubes 

were imaged 2min prior to, and following treatment with nocodazole, and vesicle 

movements greater than 2um were quantified for each condition (n=13, p< 0.001). E) 

Dysferlin-containing vesicles label with KIF5B motors in skeletal muscle myotubes. Data 

are representative of 16 co-transfected myotubes (Supplementary movie 2). Scale 

bar=10 um. 
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Figure 2-3. Membrane damage induces fusion of dysferlin-containing vesicles 

leading to the formation of extremely large vesicles in L6 myotubes. A) Membrane 

disruption induces the formation of large dysferlin-containing vesicles in L6 myotubes. 

L6 myotubes expressing dysferlin-eGFP were subjected to live-cell imaging prior to and 

after membrane disruption with a glass micropipette. Prior to damage, dysferlin-

containing vesicles appear regularly distributed throughout the cytoplasm (left-panel). 

Following damage (arrowhead), dysferlin-containing vesicles (shown in left panel) 

undergo rapid vesicle-vesicle fusion to form extremely large vesicles adjacent to 

membrane lesion (white arrows), and throughout the cytoplasm (Supplementary movie 

3). B) Large damage-induced dysferlin-containing vesicles result from fusion of smaller 

dysferlin-containing vesicles in L6 myotubes. Analysis of high magnification, 

consecutive live-cell images shows small vesicles (arrowheads) undergo fusion with a 

large vesicle to form an incrementally larger vesicle (Supplementary movie 4). C) 

Example of large dysferlin-containing vesicle collapsing with the plasma membrane 

following membrane disruption (Supplementary movie 5). D) The majority of damage-

induced dysferlin-containing vesicles persist for many minutes following membrane 

disruption. Scale bar=10 um. 
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Figure 2-4. Disruption of microtubules reduces the formation of large dysferlin-

containing vesicles following membrane wounding in L6 myotubes. A) Effect of 

pharmacological inhibition of microtubules on large vesicle formation following wounding 

in L6 myotubes. Prior to damage, dysferlin-containing vesicles show typical 

arrangement in linear arrays throughout the cytoplasm of differentiated L6 muscle cells 

(left-panels). In DMSO treated control cells dysferlin-containing vesicles fuse to form 

large vesicles following membrane disruption (arrowheads, top-right panel). Disruption 

of microtubules by pre-treatment with nocodazole markedly reduces the formation of 

large dysferlin-containing vesicles following wounding (middle-panels). B) Quantification 

of large dysferlin-containing vesicle formation. The left panel is a representative image 

showing multiple vesicles (arrowheads) greater than 2um in size (white bar). The total 

number of large vesicles per cell was quantified for DMSO and Nocodazole treatment 

(bar graph). Treatment with nocodazole significantly reduced the number of large 

vesicles formed following wounding compared to DMSO control (n=15 cells for DMSO; 

n=9 cells for Nocodazole; p<0.05). See supplementary movie 6 (DMSO), and 7 

(Nocodazole); Scale bar=10 um. 
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Figure 2-5. Expression of dnKIF5 inhibits formation of large dysferlin-containing 

vesicles following membrane wounding in L6 myotubes. A) Expression of dominant 

negative KIF5 does not dramatically alter dysferlin-containing vesicle localization in L6 

myotubes. Representative deconvolved images of fixed L6 myotubes co-expressing 

dysferlin-eGFP (green) and either mCherry labeled wtKIF5 (left, red) or mCherry labeled 

dnKIF5 (right, red); DAPI=blue. B) Dominant negative KIF5 inhibits formation of large 

dysferlin-containing vesicles following membrane disruption in L6 myotubes. L6 

myotubes expressing dysferlin-eGFP and mCherry-wtKIF5 control or mCherry-dnKIF5 

constructs were analyzed prior to (left panels) and following mechanical wounding 

(right-panels) using live cell imaging. Formation of damage-induced large dysferlin 

vesicles is diminished in dnKIF5 expressing (bottom-right) but not wtKIF5 expressing 

myotubes (arrows, top-right). C) Quantification of large dysferlin-containing vesicle 

formation. The left panel is a representative image showing multiple vesicles (arrows) 

greater than 2um in size (red bar). The total number of large vesicles per cell was 

quantified for myotubes expressing dysferlin-eGFP with mCherry-wtKIF5 or mCherry-

dnKIF5 (bar graph). Expression of dnKIF5 significantly reduces the formation of large 

dysferlin-containing vesicles following mechanical disruption in L6 myotubes. wtKIF5 

n=13 cells, dnKIF5 n=10 cells; p<0.05. Supplementary movie 8 (wtKIF5) and 9 

(dnKIF5); Scale bar=10 um. 
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Figure 2-6. Dysferlin-eGFP interacts with lysosomal membranes following 

mechanical wounding in differentiated L6 cells. A) Dysferlin-eGFP and LGP120-

mCh occupy distinct compartments in unwounded L6 myotubes (top panels), and form 

large colabeled cytosolic vesicles following mechanical wounding (bottom panels). B) 

High magnification time-lapse imaging of dysferlin-eGFP (top panels, starting from left) 

and LGP120-mCh (bottom panels, starting from left) from cell shown in panel (A). Small 

interspersed dysferlin-containing vesicles and LGP120 containing membranes undergo 

heterotypic fusion to form a large vesicle adjacent to the membrane lesion (time 

indicated is time post-wounding). See supplementary movie 10. Scale bar=10 um. 
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Figure 2-7. Dysferlin-containing vesicles do not 

label with KIF5C in differentiated L6 myotubes. 

L6 myotubes co-expressing dysferlin-eGFP 

(top panel) and mCherry-Kif5C (middle panel) 

were subjected to live cell imaging to examine 

the relationship between dysferlin-containing 

vesicles and mcherry-KIF5C motors in muscle 

cells. Cytoplasmic dysferlin-containing vesicles 

do not label with KIF5C (insets), indicating that 

dysferlin-containing vesicles do not contain 

KIF5C motors in differentiated L6 myotubes. 

Scale bar = 10 um. 
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Figure 2-8. Pharmacological inhibition of actomyosin interaction does not affect 

formation of large dysferlin-containing vesicles following wounding in differentiated L6 

myotubes. Dysferlin-eGFP expressing L6 myotubes were treated with DMSO (A) or 

DMSO +/- 25uM Blebbistatin (B), subjected to mechanical wounding and analyzed for 

large vesicle formation. Treatment with blebbistatin did not alter the localization of 

dysferlin-containing structures within the cell (B, left) and large dysferlin-containing 

vesicles formed following wounding in blebbistatin treated cells (B, right). Scale bar = 10 

um. 
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Figure 2-9. Effect of dominant negative KIF5 on the organization of the actin-

cytoskeleton, Golgi-complex, and lysosomes in differentiated L6 myotubes. L6 

myotubes expressing either wtKIF5 (left panels) or dnKIF5 (right panels) were fixed and 

labeled for actin (A), Golgi marker GM130 (B) or lysosomal marker lamp-1 (C), and 

examined by confocal microscopy. There were no obvious differences in the 

organization of the actin cytoskeleton (A), or Golgi Apparatus (B). Lamp-1 positive 

structures were dispersed throughout the cytoplasm of wtKIF5 and dnKIF5 expressing 

myotubes (C). For clarity, wtKIF5 and dnKIF5 expression is shown in the insets in panel 

C. Scale bar = 20 um. 
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CHAPTER 3 

 

 

Rapid actin cytoskeleton dependent recruitment of plasma membrane-derived 

dysferlin at wounds is critical for muscle membrane repair. 

 

 

ABSTRACT 

Deficits in membrane repair may contribute to disease progression in dysferlin-deficient 

muscular dystrophy.  Dysferlin, a type-II transmembrane phospholipid binding protein, is 

hypothesized to regulate fusion of repair vesicles with the sarcolemma to facilitate 

membrane repair, but the dysferlin-containing compartments involved in membrane 

repair and the mechanism by which these compartments contribute to resealing is 

unclear.  A dysferlin-pHluorin (dysf-pHGFP) muscle-specific transgenic mouse was 

developed to examine the dynamic behavior and sub-cellular localization of dysferlin 

during membrane repair in adult skeletal muscle fibers.  Live-cell confocal microscopy of 

uninjured adult dysf-pHGFP muscle fibers revealed that dysferlin is highly enriched in 

the sarcolemma and t-tubules.  Laser-wounding induced rapid recruitment of ~30μm of 

local dysferlin-containing sarcolemma, leading to formation of stable dysferlin 

accumulations surrounding lesions, and endocytosis of dysferlin and formation of large 

cytoplasmic vesicles from distal regions of the fiber.  Disruption of the actin-cytoskeleton 

decreased recruitment of sarcolemma-derived dysferlin to lesions in dysf-pHGFP fibers 
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without affecting endocytosis and impaired membrane resealing in wild-type fibers 

similar to dysferlin-deficiency (2-fold increase in FM1-43 uptake).  Our data support a 

new mechanism whereby recruitment of sarcolemma-derived dysferlin creates an 

“active-zone” of high lipid-binding activity at wounds to interact with repair vesicles and 

facilitate membrane resealing in skeletal muscle. 

 

INTRODUCTION 

Dysferlin is ~220kDa type-II transmembrane protein that is highly expressed in adult 

skeletal and cardiac muscle [17].  Loss of dysferlin expression leads to a delayed but 

progressive muscle disease, presenting either in the limb-girdle (LGMD2B) or in distal 

muscles (Myoshi Myopathy) [23].  Although the pathology of dysferlin-deficiency is well 

described, the exact role of dysferlin within muscle cells is largely unknown.  Dysferlin 

has been implicated in various cellular processes such as muscle cell-cell fusion during 

regeneration [33], muscle growth [48], and cell adhesion [44, 45].  Perhaps the most 

intensively studied cellular role for dysferlin is as a critical component for membrane 

resealing in skeletal muscle and cardiac muscle cells [18, 61].  Membrane resealing is a 

critical and evolutionarily conserved mechanism by which cells are able to withstand 

transient disruptions of the plasma membrane [62, 64].  Although the exact mechanism 

by which cells reseal the plasma membrane may vary depending on cell type, most 

cells utilize recruitment of intracellular vesicles capable of fusing with each other, and or 

the plasma membrane to repair the membrane lesion [70].  

Muscle cells are thought to undergo frequent membrane disruption as a result of 

mechanical activity, particularly when mutations in other important cell adhesion 
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proteins causing human muscular dystrophies render the sarcolemma susceptible to 

mechanical injury, and in such cases, resealing may be critical for cell survival [112].  

The proposed role of dysferlin in membrane resealing is based on the finding that 

dysferlin-deficient muscle fibers take up membrane impermeable FM1-43 dye to a 

greater extent than wild-type fibers following laser-induced sarcolemma wounding [18].  

Furthermore, dysferlin accumulates at membrane lesions in resealed skeletal muscle 

fibers, along with other proteins proposed to be involved in resealing including MG53 

and annexin-VI [51, 53], and recruitment of additional repair proteins may be impaired in 

dysferlin-deficient muscle [90].  Dysferlin-containing vesicles are hypothesized to play a 

role in resealing due to the dramatic accumulation of vesicles under the sarcolemma of 

dysferlin-deficient muscle [18], but the composition of dysferlin-containing vesicles and 

the involvement of dysferlin-containing vesicles in resealing has not been definitively 

shown in adult skeletal muscle fibers.  Mechanistic analysis of resealing in non-muscle 

cell types supports a role for the cytoskeleton and exocytosis of intracellular vesicles in 

membrane resealing [62, 64, 76], but whether the cytoskeleton plays a role in dysferlin-

mediated resealing in adult muscle fibers is not known.  Therefore, the goal of our study 

was to examine the behavior of dysferlin-containing membranes during membrane 

repair, and examine the role of the cytoskeleton in dysferlin recruitment and membrane 

resealing in adult skeletal muscle.  

 We generated a novel transgenic mouse (termed dysf-pHGFP TG) expressing a 

dysferlin-pHluorin GFP fusion protein (dysf-pHGFP) specifically in muscle cells, and 

used this model to study the dynamic behavior and of dysferlin-containing membranes 

in response to laser-induced membrane disruption in live adult skeletal muscle cells in-
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vitro.  Our data indicate that dysferlin is enriched in the sarcolemma and transverse 

tubules (t-tubules) in resting adult skeletal muscle fibers, with no detectable dysf-

pHGFP in vesicles in resting fibers.  During membrane repair, sarcolemma-derived 

dysferlin is rapidly pulled into the lesion where it forms a stable dysferlin-rich structure at 

the sarcolemma which may be critical for membrane resealing in adult skeletal muscle 

fibers.  Additionally, wounding induces endocytosis and formation of large dysferlin-

containing vesicles which may contribute to act as vesicular plugs to repair membrane 

lesions.  Pharmacological disruption of the actin-cytoskeleton blocks the recruitment of 

sarcolemma-derived dysferlin at lesions and impairs membrane resealing without 

disrupting dysferlin endocytosis and formation of dysferlin-containing intracellular 

vesicles.  Therefore, our data supports a new model that the dysferlin-containing 

membrane required for membrane resealing is actually derived from the sarcolemma, 

and that rapid, actin-cytoskeleton dependent recruitment of dysferlin-containing 

membrane into stable enrichments at the wound site represents a critical step in the 

membrane resealing process. 

 

METHODS 

Generation of dysf-pHGFP transgenic mice: Murine dysferlin isoform 1 with a C-terminal 

pHGFP [113] tag was cloned into PBSII SK+ vector downstream of the muscle creatine 

kinase promoter [114], and used to generate a transgenic mouse on an inbred C57/Bl6 

background by the University of Michigan Transgenic Core (described in detail below).  

A C-terminal fragment of murine dysferlin isoform-1 was sub-cloned from a pDNOR 

vector, resulting in a BSTBI-NotI fragment within PCR 2.1 shuttle vector.  The remaining 
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N-terminal dysferlin sequence was inserted using a KPNI-BSTBI digest resulting in full 

length dysferlin within PCR2.1. A fragment containing pHGFP [113] flanked by a 5' SacII 

and 3' NotI was generated using PCR and inserted into the Dysferlin-PCR2.1 plasmid 

using a SacII-NotI digest.  The resulting dysf-pHGFP fragment was isolated and 

inserted into PCDNA 3.1 for mammalian expression.  A poly-A sequence was inserted 

on the 3' end of the coding sequence by cloning a pA fragment containing a 5' EAGI site 

and 3' SPEI, KPNI, and NOTI sites.  The pA sequence was inserted into dysf-pHGFP 

PCDNA 3.1 using a NotI digest.  The full length MCK promoter [114] was inserted 5' to 

the dysf-pHGFP-pA PCDNA 3.1 construct with a KPNI-NOTI digest.  The entire cDNA 

was excised and linearized using a NotI-SpeI digest.  Purified DNA was microinjected 

into fertilized eggs obtained by mating C57BL/6J female mice with C57BL/6J male mice. 

Pronuclear microinjection was performed as described[115]. 

 

Western blotting: Skeletal and cardiac muscle KCl-washed microsomes were isolated 

from adult wild-type and dysf-pHGFP TG mice and analyzed by SDS-PAGE and 

Western Blotting as described [116].  Membranes were blotted for anti-dysferlin (NCL-

Hamlet, Novacastra/Leica, Buffalo Grove, IL, USA) or anti-GFP (AB13970, Abcam, 

Cambridge, MA, USA) followed by secondary HRP-conjugated antibodies (Jackson 

Immunoresearch, West Grove, PA, USA) and chemiluminescence detection.  

 

Muscle fiber isolation, imaging, and staining: Single muscle fibers were isolated from 

adult mouse flexor digitorum brevis muscles as described [117].  Briefly, FDB muscles 

were isolated from anaesthetized adult wild-type or dysf-pHGFP TG mice and incubated 
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in MEM + 0.2% collagenase for 4 hr at 37ºC with gentle shaking.  Following incubation, 

muscles were switched to MEM+10% FBS, residual connective tissue was removed 

using forceps, and the muscle was triturated using progressively smaller diameter glass 

pipettes to liberate single muscle fibers.  Isolated muscle fibers were allowed to adhere 

for 20 minutes on glass-bottom cover dishes pre-plated with 10% matrigel in MEM + 

10% FBS.  Live fibers were imaged on a Leica SP8 Confocal microscope at 37ºC using 

63x oil objective at 1.5x zoom at 512x512 resolution using an argon laser at excitation: 

488nm and detection at 498-525nm (GFP) or 580-620nm (FM1-43).  For live-cell 

experiments, cells were imaged in a physiological saline solution (PSS) pH 7.4 

containing (in mM) 15 Hepes, 145 NaCl, 5.6 KCl, 2.2 CaCl, 0.5 MgCl, 5.6 Dextrose.  To 

quench the pHGFP oriented toward the extracellular buffer, citrate buffer was used in 

place of HEPES with pH adjusted to 5.5 using concentrated HCl.  To alkalinize 

intracellular vesicles, NaCl was reduced 95 mM and 50mM NH4Cl was added to 

physiological saline solution [118].   Quantification of fluorescence intensity prior to, and 

following acid wash (or NH4Cl treatment) was carried out by quantifying mean 

fluorescence intensity within the entire visible region of the muscle fiber and using raw 

intensity data to generate percent change values.  For staining experiments, cells were 

fixed for 15min in 3% paraformaldahyde, and permeabilized for 1hr in block solution 

containing 5% BSA and 0.1% triton-x.  Cells were stained with Romeo anti-dysferlin 

(Abcam) at 1:100 dilution for 1.5hr followed by labeling with 1:200 goat-anti rabbit Cy3 

(Jackson Immunoresearch).For staining experiments, cy3 channel was imaged using 

white light laser at 550nm excitation and detection from 560-595, and all images were 

collected at 1024x1024 resolution and 2x zoom.     
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Membrane injury experiments: Membrane injury protocols were performed similar to 

previous studies measuring laser-wounding induced FM1-43 uptake in adult skeletal 

muscle fibers [18].  Cells were imaged for 3 frames prior to wounding, and every 1.5s 

for 2-5 minutes after the onset of membrane damage.  Membrane damage was elicited 

by exposing a 2 x 2 μm ROI at the lateral membrane to a multiphoton laser at a fixed 

intensity, tuned to 890nm for ~2 sec.  Recruitment of dysferlin at membrane lesions was 

analyzed by quantifying dF/Fo (which is (Ft-Fo)/Fo, where Ft equals mean fluorescence 

at time=t, and Fo equals initial fluorescence) within a 10 x 5 μm ROI surrounding the 

lesion at 10s intervals following wounding.  Quantification of “total” cellular pHGFP 

fluorescence was carried out by quantifying dF/Fo within an ROI spanning the entire 

cell.  Quantification of FM1-43 dye uptake was carried out by quantifying mean dF/Fo 

following wounding within a 40x40 μm ROI.  For cytochalasin D experiments cells were 

pre-treated with either 0.1% DMSO or 50μm Cytochalasin D for 1.5 h and cytochalasin 

D was included in the imaging solution.  In experiments where high resolution images of 

wounded fibers are presented, high resolution images (1024x1024 resolution, line 

average 3) were taken following completion of the wounding protocol.  

 

FRAP experiments: To bleach specific populations of dysf-pHGFP within muscle fibers, 

a 30x5μm ROI at the plasma membrane, or 30x10μm ROI within the transverse tubules 

was bleached for 3 frames at 3 separate z-planes (+/-1μm) using an argon laser at 

488nm.  Successful photobleaching was confirmed visually, and lack of photobleach 

induced wounding was confirmed using DIC optics.  Images were taken prior to 
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bleaching, post-bleach, and for 2-5 minutes following a laser-induced wound delivered 

in the geographical center of the pre-bleached region. 

 

Statistics: All values are presented as Mean +/- SE.  Significance was determined 

based on a Student’s t-test, significance was set at p<0.05. 

 

RESULTS 

Generation of dysf-pHGFP TG reporter mice. We generated a cDNA encoding 

murine dysferlin with a C-terminal pHluorin GFP tag (dysf-pHGFP), and generated an 

MCK-driven muscle-specific transgenic mouse (dysf-pHGFP TG) expressing the dysf-

pHGFP transgene in striated muscle (Fig 3-1A).  Based on the topology of dysferlin as a 

type-II transmembrane protein, the dysf-pHGFP reporter molecule places a pH-sensitive 

GFP on the extracellular face of the plasma membrane and transverse tubules or the 

lumen of dysferlin-containing vesicles (Fig 3-1B).  GFP fluorescence from dysf-pHGFP 

is visible around the periphery of skeletal muscle fibers within transverse sections of 

dysf-pHGFP TG skeletal muscle (Fig 3-1C, right) but not wild-type muscle (Fig 3-1C, 

left).  The peripheral localization of dysf-pHGFP near or in the sarcolemma is similar to 

what has been previously reported for endogenous dysferlin using antibody labeling in 

adult skeletal muscle [18].  Western blotting for dysferlin with the NCL-hamlet antibody 

identified a prominent band (~240 kDa) in wild-type skeletal muscle microsomes and an 

upward shifted band corresponding to dysf-pHGFP specifically in transgenic skeletal 

(Fig 3-1D, top) and cardiac muscle microsomes (Fig 3-8, top).  Western blot using an 

anti-GFP antibody revealed a strong band at ~260 kDa corresponding to dysf-pHGFP 
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specifically in transgenic skeletal (Fig 3-1D, bottom) and cardiac microsomes (Fig 3-8, 

bottom).  Interestingly, we identified several lower molecular weight fragments of 

dysferlin expressed at lower levels detected by both anti-GFP and anti-dysferlin 

antibodies in transgenic microsomes, indicating the presence of C-terminal dysferlin 

cleavage products (Fig 3-9A).  However, a similar pattern of low molecular weight 

dysferlin antibody immunoreactive proteins was observed in wild-type skeletal muscle 

microsomes using the hamlet antibody at longer exposures, suggesting that both 

endogenous dysferlin and the dysferlin-pHGFP reporter undergo cleavage (Fig 3-9B, 

right panel).  Western blotting for dysferlin expression in wild-type and transgenic 

skeletal muscle microsomes at various dilutions (1:1 - 1:40) showed that the MCK 

dysferlin-pHGFP transgene results between 2.5 and 5-fold over-expression of dysferlin 

in skeletal muscles of dysf-pHGFP TG mice (Fig 3-1E).  Dysf-pHGFP TG skeletal 

muscle is morphologically normal based on comparative analysis of H & E staining of 

gastrocnemius muscles (Fig 3-1F), quantification of central fiber nucleation (Fig 3-1G), 

and measurments of plasma creatine kinase (not shown) in dysf-pHGFP-TG and age 

matched wild-type mice, indicating that dysf-pHGFP TG mice are free of muscle 

pathology into adulthood. 

 

Dysf-pHGFP is enriched in the plasma membrane and transverse tubules of adult 

skeletal muscle fibers and cardiac myocytes. The exact localization of dysferlin in 

adult muscle fibers and the composition of dysferlin-containing membrane 

compartments remain elusive.  GFP fluorescence in fixed adult skeletal muscle fibers 

isolated from dysf-pHGFP transgenic mice localized to the lateral sarcolemma and in a 



66 
 

striated internal membrane compartment, similar to immunofluorescence labeling of 

endogenous dysferlin in wild-type muscle fibers (Fig 3-2A and B).  In addition, dysf-

pHGFP fluorescence colocalizes extensively with immunofluorescence signal from 

“total” dysferlin with dysferlin antibodies in isolated adult transgenic skeletal muscle 

fibers (Fig 3-2C). Given that pHGFP fluorescence is quenched at low pH and 

fluorescence is high at high pH [119], our dysf-pHGFP reporter allows for the selective 

visualization of GFP signal based on surrounding pH (model shown in Fig 3-1B).  

Confocal imaging of live adult dysf-pHGFP TG skeletal muscle fibers (Fig 3-3A) and 

cardiac myocytes (Fig 3-8, left panels) at pH 7.4 revealed that dysf-pHGFP is visible at 

the lateral sarcolemma and a striated internal membrane compartment.  Changing the 

extracellular solution from physiological saline at pH 7.4 to physiological saline pH 5.5 

led to a significant reduction in fluorescence from live dysf-pHGFP TG skeletal (Fig 3-

3B, quantified in C) and cardiac myocytes (Fig 3-8B), demonstrating that dysferlin is 

highly enriched in the plasma membrane and t-tubules in adult muscle cells.  

Ammonium chloride (NH4Cl) is commonly used to alkalinize all cellular compartments 

and reveal pHluorin molecules within intracellular vesicles with an acidic luminal pH 

[119]. Surprisingly, treatment with 50mM ammonium chloride did not reveal additional 

internal dysf-pHGFP fluorescence in resting dysf-pHGFP TG skeletal muscle fibers (Fig 

3-3D, quantified in E), or cardiac myocytes (Fig 3-8C).  These data indicates that 

dysferlin is not primarily an intracellular vesicular protein but instead is primarily 

localized to the sarcolemma and t-tubules in resting adult muscle fibers.  
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Adjacent sarcolemma-derived dysferlin is recruited to membrane lesions 

following wounding in adult skeletal muscle fibers. There have been very few 

studies examining the dynamic behavior of dysferlin in live adult muscle cells following 

wounding, and the dysferlin-containing membranes involved in membrane repair are not 

well defined.  To address this, adult skeletal muscle fibers isolated from dysf-pHGFP TG 

mice were imaged via confocal microscopy and the behavior of dysf-pHGFP was 

analyzed prior to and following laser-induced plasma membrane wounding.  Prior to 

membrane disruption, dysf-pHGFP localizes to the sarcolemma and t-tubules (Fig 3-4A, 

left).  Analysis of dysf-pHGFP localization during repair shows that the fluorescence 

signal rapidly increases at membrane lesions and results in a stable dysf-pHGFP-rich 

structure at the lesion (Fig 3-4A, B red arrows, quantified in 3-4C) consistent with either 

recruitment of sarcolemmal dysf-pHGFP or exposure of new pHGFP to the extracellular 

surface as a result of dysferlin-vesicle fusion with the plasma membrane.   Interestingly, 

pHGFP signal from the sarcolemma and t-tubule components in regions of the fiber 

considerably distant from the wound itself including the sarcolemma on the side 

opposite the wound, is rapidly quenched following wounding (Fig 3-4B white arrows, 

quantified in Fig 3-4D), indicating that dysferlin may also be rapidly endocytosed into 

acidic compartments following wounding.  

Given the rapid increase of dysf-pHGFP fluorescence at membrane lesions and 

our data indicating that dysferlin is restricted to the sarcolemma in resting fibers (Fig 3-

3), we tested the hypothesis that the dysferlin-containing membrane recruited to 

membrane lesions is derived from the adjacent sarcolemma in adult skeletal muscle 

fibers, rather than fusion of pre-existing dysferlin containing vesicles at the wound site.  
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To address this, the dysf-pHGFP fluorescence within a 30μm wide ROI at the plasma 

membrane was photobleached (pre-bleach shown in 3-4Ea, post-bleach in 3-4Eb) and 

movement of the adjacent GFP-positive dysferlin in the lateral sarcolemma were 

tracked following a 2μm wound delivered in the center of the pre-bleached ROI (Fig 3-

4Ec). Adjacent GFP-positive dysferlin containing sarcolemma is rapidly pulled toward 

the lesion and constricts the size of the pre-bleached regions without any evidence of 

new dysf-pHGFP appearing at the wound prior to lateral accumulation (Fig 3-4E).  

Representative line plots of GFP intensity spanning the sarcolemmal regions prior to 

wounding (Fig 3-4F), and post wound (Fig 3-4G) show that the photobleached region of 

plasma membrane is reduced following wounding due to recruitment of adjacent GFP-

positive sarcolemma. Conversely, dysf-pHGFP still accumulated at membrane lesions 

after laser-wounding in fibers subjected to protocols where the local t-tubule GFP 

fluorescence was photobleached prior to wounding (Fig 3-10).  This latter result 

indicates the t-tubule localized dysferlin does not appear to markedly contribute to the 

accumulation of dysferlin at membrane wounds. 

 

Membrane damage induces formation of endocytic dysferlin-containing vesicles 

in adult skeletal muscle fibers. Based on the finding that dysf-pHGFP fluorescence is 

reduced in regions of the sarcolemma and t-tubules distant from the wound, we 

proposed that dysferlin may also be endocytosed into acidic membrane compartments 

following wounding in adult muscle fibers.  To test this hypothesis, dysf-pHGFP TG 

muscle fibers were imaged at rest and for 1 min following wounding in physiological 

saline (PSS) at pH 7.4, and then switched to excess PSS +/- 50mM NH4Cl to reveal any 
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dysf-pHGFP residing in acidic compartments.  Switching wounded cells from PSS to 

PSS without NH4Cl had no effect on cellular fluorescence (Fig 3-5A) and did not reveal 

vesicle populations in high resolution images post-wounding (Fig 3-5B).  Switching 

wounded cells from PSS to PSS + 50mM NH4Cl led to a significant increase in cellular 

fluorescence back toward baseline (Fig 3-5C), which was associated with the presence 

of large dysferlin-containing vesicles throughout the cytoplasm of wounded fibers in high 

resolution images (Fig 3-5D).  Rapid wound-induced formation of large dysferlin 

containing vesicles is similar to what we have observed and recently reported in 

mechanically wounded dysferlin-GFP expressing myotubes [120].  

 

Pharmacological disruption of the actin-cytoskeleton impairs recruitment of 

sarcolemma-derived dysferlin without affecting formation of dysferlin-containing 

vesicles. The subcortical actin cytoskeleton plays an important role in membrane 

remodeling in many types of motile and mechanically active cells [81, 84]. Given the 

rapid formation and stability of dysferlin-rich structures at nascent membrane lesions in 

adult skeletal muscle fibers, we examined whether the subcortical actin cytoskeleton 

was required for recruitment of plasma membrane derived dysferlin in adult skeletal 

muscle fibers.  Dysf-pHGFP TG skeletal muscle fibers were pre-treated for 1.5 hr with 

either DMSO (Fig 3-6A) or DMSO + 50μM cytochalasin D (Fig 3-6B) assayed for 

recruitment of sarcolemma-derived dysferlin at laser-induced membrane lesions 

following wounding.  Treatment with cytochalasin D significantly reduced dysferlin 

recruitment following laser induced wounding compared to DMSO control (Fig 3-6B, 

quantified in Fig 3-6C), without markedly affecting damage-induced endocytosis of 
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dysferlin (Fig 3-6D).  Fibers wounded in the presence of either DMSO or DMSO + 

Cytochalasin D (shown in Fig 3-6A and B) were subsequently treated with physiological 

solution containing 50mM NH4Cl and analyzed at high resolution for the presence of 

dysferlin-containing vesicles.  Intracellular dysferlin-containing vesicles were visible in 

wounded DMSO treated (Fig 3-6A’) and wounded cytochalasin D treated fibers (Fig 3-

6B’) in the presence of NH4Cl.  These findings demonstrate that the recruitment of 

sarcolemma-derived dysferlin at membrane lesions requires the actin cytoskeleton, 

whereas endocytosis and formation of large dysferlin-containing vesicles following 

wounding occur independently of the actin cytoskeleton. 

 

Disruption of cytoskeletal actin impairs membrane resealing in adult skeletal muscle 

fibers. Consistent with previous studies examining the effect of dysferlin-deficiency on 

membrane resealing in adult skeletal muscle [18], dysferlin-deficient muscle fibers from 

the A/J mouse strain show increased uptake of FM1-43 following laser-induced 

wounding (Fig 3-7A, quantified in 7B). To determine whether cytoskeleton-mediated 

delivery of sarcolemmal dysferlin is required for efficient membrane repair in adult 

skeletal muscle fibers, wild-type muscle fibers were pre-treated for 1.5 hr with either 

DMSO or 50μM cytochalasin D (which was sufficient to impair dysf-pHGFP recruitment 

to membrane lesions in dysf-pHGFP skeletal muscle fibers) and assayed for uptake of 

FM1-43 dye following laser-induced wounding.  Treatment with cytochalasin D resulted 

in a 2-fold increase in FM1-43 uptake following wounding in adult skeletal muscle fibers 

(Fig 3-7C), comparable to that of dysferlin deficiency (Fig 3-7B) suggesting that 
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cytoskeleton-dependent recruitment of sarcolemma derived dysferlin at wounds is 

required for resealing in muscle fibers.  

 

DISCUSSION 

We generated a novel transgenic reporter mouse expressing dysf-pHGFP 

specifically in mature striated muscle cells, in order to examine the dynamic behavior of 

dysferlin following sarcolemma wounding and determine the role of the cytoskeleton in 

regulating dysferlin-mediated membrane repair in adult skeletal muscle in-vitro.  The 

dysf-pHGFP reporter molecule is expressed primarily as a full-length high molecular 

weight protein (~260 kDa) in transgenic skeletal muscle membranes detected by both 

anti-dysferlin and anti-GFP antibodies.  The isolation and identification of dysferlin 

containing membrane compartments has proven challenging with traditional 

biochemical techniques, and definitive evidence whether dysferlin is localized in the 

sarcolemma or in subsarcolemmal vesicles was still lacking [18]. Our dysf-pHGFP 

transgenic mouse is ideally suited to examine dysferlin localization in adult skeletal 

muscle cells given that it facilitates selective visualization of dysferlin localization and 

orientation in adult muscle fibers based on the ability to experimentally manipulate the 

surrounding pH.  The observed quenching dysf-pHGFP fluorescence in dysf-pHGFP TG 

fibers by lowering the extracellular pH indicates the C-terminal pHGFP is exposed to the 

extracellular environment at the sarcolemma and in t-tubules.  Furthermore, exposure of 

dysf-pHGFP TG fibers to NH4Cl, which is commonly used to reveal pHluorin reporter 

proteins sequestered in acidic intracellular vesicles [118, 119], does not increase 

cellular fluorescence.  Together this shows that dysferlin expression is largely restricted 
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to the sarcolemma and t-tubules in resting adult muscle fibers, and argues against the 

presence of an intracellular vesicle  pool containing dysferlin in resting adult skeletal 

muscle cells, which has been reported previously in developing myotubes [52, 93, 117, 

121]. This assertion is further supported by previous reports and data presented here 

showing that endogenous dysferlin localizes at or near the sarcolemma and t-tubules 

using antibody labeling of dysferlin in wild-type skeletal muscle [16, 122-124].  In 

addition to the predominant high molecular weight dysf-pHGFP protein, we also 

identified several minor lower molecular weight proteins in muscle using C-terminally 

directed antibodies to dysferlin or GFP, indicating the presence of C-terminal cleavage 

products.  A similar pattern of low molecular weight fragments of endogenous dysferlin 

were detected in wild-type muscle using a C-terminal dysferlin antibody.  C-terminal 

fragments of dysferlin containing only the terminal C2 and transmembrane domains 

have been previously shown to be present and localize at lesions in wounded human 

myotubes [125].  These findings indicate that although a minor portion of dysf-pHGFP 

detected in transgenic fibers may be present as low molecular weight C-terminal 

fragments, the presence of full-length protein and the C-terminal fragments likely 

represent endogenous dysferlin processing.  The dysf-pHGFP reporter is expressed in 

skeletal muscle at levels that are well below those previously shown to induce toxicity in 

muscle [126], and we did not observe any evidence of skeletal muscle disease in the 

dysf-pHGFP TG mice. These findings confirm that dysf-pHGFP reporter molecule is 

expressed in adult striated muscle from dysf-pHGFP TG mice, behaves similarly to wild 

type dysferlin in its processing and localization, and support a primary functional role for 

dysferlin in the sarcolemma and/or in t-tubule membranes.    
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 Dysferlin has been implicated in membrane repair, in part, due to the finding that 

it is enriched at potential membrane lesions in fixed adult skeletal muscle fibers 

following mechanical wounding [18].  Our data extend on these findings by showing with 

live-cell microscopy that dysferlin recruitment to membrane lesions occurs within 

seconds following wounding, and results in remarkably stable structures surrounding 

the lesion (that last >20 min post wounding, the longest time points measured).  

Although it has been suggested previously that the dysferlin accumulating at membrane 

wounds is derived from intracellular vesicles [18], our data showing that dysferlin is 

enriched in both the plasma membrane and the transverse tubules in resting skeletal 

muscle fibers prompted us to investigate which populations of dysferlin-containing 

membranes contribute to membrane repair in adult skeletal muscle.  Selective 

bleaching of dysf-pHGFP at the plasma membrane or t-tubules demonstrated that the 

majority of dysferlin recruited to membrane lesions is derived from the sarcolemma 

immediately adjacent to the wound, and argues against rapid fusion of pre-existing 

quenched intracellular dysferlin-containing vesicles to reseal the plasma membrane in 

adult skeletal muscle.  Our data also show that pharmacological disruption of the 

subcortical actin cytoskeleton impairs recruitment of sarcolemma-derived dysferlin at 

membrane lesions, consistent with the hypothesis that the actin cytoskeleton facilitates 

rapid recruitment of sarcolemma-derived dysferlin to membrane lesions in adult skeletal 

muscle fibers.  Previous studies in Xenopus oocytes showed that the actin cytoskeleton 

plays an active role in wound-closure by organizing contractile actin-containing “rings” 

around lesions to constrict the wound [127].  This raises the intriguing possibility that 

cortical actin may facilitate membrane repair in adult skeletal muscle by generating the 
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force required to coalesce sarcolemma-derived repair proteins at membrane lesions.  

Although cytochalasin D at similar doses does not markedly impair the organization of 

sarcomeric actin in adult isolated muscle cells [128], we cannot rule out that 

cytochalasin D may also have some effects on sarcomeric actin.  However, the 

recruitment of nearly ~30μm of dysferlin-containing sarcolemma at membrane lesions 

appears to far exceed the capacity for local sarcomere shortening.  Membrane resealing 

was directly examined to determine whether cytoskeleton-dependent recruitment of 

dysferlin to membrane lesions was required for efficient membrane repair in adult 

skeletal muscle fibers.  Increased uptake of membrane impermeant FM1-43 dye 

following laser-induced wounding is commonly used as an indicator of impaired 

membrane resealing in various cell types [18].  Under identical treatment conditions 

used to inhibit dysferlin recruitment to lesions, FM1-43 dye uptake was significantly 

increased in wild-type muscle fibers treated with cytochalasin D compared to DMSO 

control, and the magnitude of the deficit in resealing with cytochalasin D treatment is 

comparable to that observed in dysferlin-deficient muscle fibers using the same assay 

conditions.  This indicates that actin-dependent recruitment of sarcolemma-derived 

dysferlin to membrane lesions is likely critical for functional contribution of dysferlin to 

membrane resealing in adult skeletal muscle.  

Interestingly, although dysf-pHGFP fluorescent signal is elevated at membrane 

lesions, the signal from dysf-pHGFP in the distant t-tubules and sarcolemma is rapidly 

reduced after wounding, which suggests that membrane damage may also induce 

endocytosis of dysferlin into an acidic vesicular compartment.  Consistent with this 

interpretation, increasing intracellular pH in laser-wounded dysf-pHGFP TG skeletal 
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muscle fibers using NH4Cl increased dysf-pHGFP fluorescence back toward the initial 

value prior to wounding, and revealed a population of heterogeneous large cytoplasmic 

dysferlin-containing vesicles, which were not detectable in non-wounded fibers, or 

wounded fibers in the absence of NH4Cl.  These data support the overall model that 

dysferlin resides in the sarcolemma and t-tubules prior to wounding, but in regions of 

the fiber distant from the wound, is rapidly incorporated into cytoplasmic vesicles 

following membrane disruption.  Formation of wound-induced dysferlin vesicles is 

reminiscent of wound-induced vesicle formation described previously in crayfish giant 

axons following mechanical wounding [57], where endocytic vesicles accumulate and 

coalesce to form a “vesicular plug” to reseal the lesion.  Formation of large dysferlin-

containing vesicles in adult muscle fibers following laser-wounding is also consistent 

with the formation of large cytoplasmic dysferlin-containing vesicles in dysferlin-eGFP 

expressing myotubes following mechanical wounding, which result from homotypic 

fusion of dysferlin-containing vesicles, and heterotypic fusion of dysferlin-containing 

vesicles with lysosomes [120].  It is reasonable to suggest that membrane wounding 

could stimulate endocytosis of dysferlin in adult muscle fibers, as dysferlin interacts 

directly with sarcolemmal proteins that regulate endocytosis such as Caveolin-3 [52], 

and caveolin-mediated endocytosis may be activated in response to wounding in adult 

muscle fibers [89].  This finding may also explain why dysferlin is mislocalized to the 

cytoplasm in a subset of muscle fibers from patients with Duchenne muscular dystrophy 

or non-dysferlin Limb-Girdle muscular dystrophies, whose muscle fibers may be 

susceptible to sarcolemma wounding  [20].  While our data is consistent with 

endocytosis of dysferlin following wounding, we cannot completely rule out the 
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alternative hypothesis that dysferlin-containing vesicles form due to vesicularization of 

the transverse tubules, which has been described in cardiac myocytes following osmotic 

shock [129] and is consistent with the presence of several putative membrane repair 

proteins within the t-tubules [130].  Notably, photobleaching of dysf-pHGFP within the t-

tubules adjacent to the wound did not prevent the observed recruitment of dysf-pHGFP 

fluorescence at wounds; supporting our hypothesis that sarcolemma-derived dysferlin is 

the primary source of dysferlin accumulated at membrane wounds.  Whether dysferlin-

containing vesicles formed by endocytosis following wounding contribute directly to 

membrane repair in skeletal muscle is not clear at present.  Our findings that 

cytochalasin D impairs membrane resealing (as measured by FM1-43 uptake) similar to 

dysferlin deficiency, without markedly affecting dysferlin endocytosis, suggests that the 

cytoskeletal recruitment of dysferlin-containing sarcolemma to wounds is a critical 

primary step in membrane resealing resealing, and endocytosis of dysferlin may play a 

secondary role in the resealing process.   

While the use of the dysf-pHGFP reporter does not directly examine the role of 

dysferlin in resealing sarcolemmal lesions, independent biochemical studies indicate 

that dysferlin is capable of calcium-dependent lipid binding [29, 42, 91]. The findings 

reported here with the dysf-pHGFP reporter support the intriguing possibility that 

wound-induced recruitment of sarcolemma-derived dysferlin concentrates the lipid 

binding function of dysferlin at the wound, and creates an “active zone” of high calcium-

dependent phospholipid binding activity specifically at the wound, in order to facilitate 

binding or fusion of intracellular vesicles (dysferlin-containing or otherwise) with the 

sarcolemma and reseal the sarcolemma following membrane injury in adult muscle 



77 
 

cells.  In summary, using live-cell imaging to directly study dysferlin dynamics in adult 

muscle fibers, this study supports a new model that recruitment of sarcolemma-derived 

dysferlin to membrane lesions is required for membrane repair.  The dysf-pHGFP 

reporter mouse described here will also be a valuable tool to directly visualize 

sarcolemma damage in real time, examine the localization and activation of the muscle 

membrane repair pathway in other physiological models of muscle injury and muscular 

dystrophy, and help understand the important role of membrane repair in these 

disorders.  
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Figure 3-1. Dysferlin-pHGFP 

transgenic reporter mouse.  A) 

Dysf-pHGFP transgene B) The 

dysf-pHGFP reporter places a pH-

sensitive pHluorin within the acidic 

lumen of vesicles or the 

extracellular face of the 

sarcolemma or transverse tubules 

C) Dysferlin-pHGFP localizes to 

the lateral membrane of skeletal 

muscle fibers in dysf-pHGFP TG 

skeletal muscle (right-panel). No 

GFP signal from wt skeletal 

muscle (left-panel).  D) Western 

blot reveals an upward shifted 

band specifically in dysf-pHGFP 

TG muscle using dysferlin 

antibody (top), and anti-GFP 

antibody (bottom).  E)  Dysferlin 

expression is increased between 

2.5 and 5-fold in transgenic 

skeletal muscle.  F) Muscles from 

dysf-pHGFP TG mice are 

comparable to wild-type muscle 

based on hematoxylin & eosin 

histological staining of 

gastrocnemius muscles from 14-

wek old mice.  G) Skeletal muscle 

from Dysf-pHGFP TG mice do not 

show an increase in centrally 

nucleated fibers (2888 fibers from 

4 WT animals and 3058 fibers 

from 3 dysf-pHGFP TG animals).  

Scale bar in A=100 µm, C=200μm. 
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Figure 3-2. Dysf-pHGFP is localized at the lateral sarcolemma and striated internal 

membranes in adult skeletal muscle fibers from dysf-pHGFP TG mice similar to 

endogenous dysferlin in wild-type mice.  A) Antibody labeling of endogenous 

dysferlin shows reveals that dysferlin localizes to the lateral sarcolemma and a striated 

internal membrane compartment in adult skeletal muscle fibers. Dysf-pHGFP 

localization in transgenic muscle fibers (B, middle) is similar to endogenous dysferlin 

(compare with A) and colocalizes with total dysferlin (Romeo antibody detection of dysf-

pHGFP + endogenous dysferlin in transgenic fibers) at the lateral sarcolemma and 

striated internal compartment in adult skeletal muscle fibers (C).  Scale bar =20 µm. 
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Figure 3-3. Dysferlin is highly enriched in the plasma membrane and transverse 

tubules in adult skeletal muscle fibers.  A) Dysf-pHGFP localizes to the lateral 

membrane and internal membrane structures in live FDB fibers isolated from dysf-

pHGFP TG mice.  B) Dysf-pHGFP is visible at the lateral sarcolemma and internal 

membrane structures at extracellular pH 7.4 (left panel) and pHGFP signal is 

significantly reduced following reduction of extracellular pH from pH 7.4 to pH 5.5 

(quantified in C).  D) Dysf-pHGFP is visible at the lateral sarcolemma and internal 

membrane structures (left panel) and fluorescence intensity is not increased by NH4Cl 

treatment (quantified in E).  (n=3 fibers in B and C, n= 6 fibers in D and E).  Scale bar in 

A and B =10μm. 
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Figure 3-4. Sarcolemma-derived dysferlin is recruited to membrane lesions 

following wounding in adult skeletal muscle fibers.  A) Dysferlin is rapidly recruited 

to membrane lesions following laser wounding in adult skeletal muscle fibers.  B) 

Quantification of dysf-pHGFP fluorescence following wounding in adult skeletal muscle 

fibers. Dysf-pHGFP fluorescence is increased at membrane lesions (red arrowheads in 

B, quantification in C) but rapidly reduced from regions of sarcolemma and transverse 

tubules not adjacent to the wound (white arrows in B, quantification in D).  E) Dysferlin 

used in membrane repair is derived from the adjacent sarcolemma in adult skeletal 

muscle fibers.  Dysferlin is uniformly distributed within the sarcolemma and t-tubules of 

a resting fiber (a).  A 30μm ROI containing sarcolemma was bleached (b), wounded in 

the center (c), and dysf-pHGFP from the lateral sarcolemma is pulled toward the wound 

and constricts the pre-bleached ROI (pre in F, and post in G) indicating that the lateral 

sarcolemma serves as a source of dysferlin in during membrane repair. 
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Figure 3-5. Membrane damage induces formation of acidic dysferlin-containing 

vesicles in adult skeletal muscle fibers.  Fluorescence intensity was quantified prior 

to wounding (Pre-lesion), one minute following wounding (post-lesion) and following 

solution change to physiological saline (PSS, A), or physiological saline + 50mM NH4Cl 

(C) to alkalinize all cellular compartments.  Treatment of wounded TG fibers with PSS 

alone had no effect on fluorescence intensity (A) and did not reveal dysferlin-containing 

vesicles in high resolution images (B), while treatment of wounded fibers with 50mM 

NH4Cl led to a significant increase in fluorescence intensity back toward baseline (C) 

and revealed the presence of large intracellular dysferlin-containing vesicles (D). (n= 6 

fibers for A, n= 9 fibers for C). Scale bar in D = 10μm. 
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Figure 3-6. Disruption of actin filaments impairs recruitment of sarcolemma-

derived dysferlin without affecting damage-induced endocytosis of dysferlin.  TG 

skeletal muscle fibers were treated with DMSO +/- 50μM cytochalasin D for 1.5 hr and 

assayed for dysf-pHGFP fluorescence changes at the lesion (A) or endocytosis of 

dysferlin (B) as well as the presence of vesicles revealed by NH4Cl treatment (A’ and 

B’).  Recruitment of dysferlin-containing membrane is significantly reduced in cells 

treated with cytochalasin D (A, quantified in C), with no effect on endocytosis (B, 

quantified in D) (DMSO n= 6 fibers, CytoD n=12 fibers).  Vesicles were detected 

following treatment with 50mM NH4Cl in both DMSO (A’) and Cytochalasin D treated 

fibers following wounding (B’).  Scale bar in A = 10μm. 
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Figure 3-7. Disruption of the actin cytoskeleton increases FM1-43 uptake 

following membrane wounding in adult wild-type skeletal muscle fibers.  A) 

Wounding induced uptake of FM1-43 dye is increased in dysferlin-deficient muscle 

fibers from A/J compared to wild type (Quantified in B, WT n=7 fibers, Dysferlin-null n=9 

fibers).  C) Laser-wounding induced uptake of FM1-43 is increased in wild-type fibers 

pre-treated for 1.5 hr with 50μM cytochalasin D compared to DMSO treated control 

fibers (DMSO n=8, CytoD n=10 fibers).  Scale bar in A = 10μm. 

 

 
 

 

 

 



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. Dysferlin localizes to the plasma membrane and transverse tubules in 

adult cardiac myocytes. A) Dysf-pHGFP is detectable as an upward shifted band in 

western blots of KCl-washed microsomes isolated from wild-type or dysf-pHGFP TG 

adult hearts using an anti-dysferlin antibody (top), or anti-GFP antibody (bottom). B) 

Fluorescence intensity from dysf-pHGFP TG cardiac myocytes is dramatically reduced 

by switching cells from extracellular pH 7.4 (left panels) to extracellular pH 5.5 (right 

panels). C) Fluorescence intensity of dysf-pHGFP TG cardiac myocytes is not affected 

by treatment with 50mM NH4Cl. Scale bar in B=10 µm. 
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Figure 3-9. Dysf-pHGFP expression in skeletal muscle from dysf-pHGFP TG mice. 

A) Western blots using an anti-GFP show the presence of a dysf-pHGFP TG specific 

high molecular weight band corresponding to dysf-pHGFP as well as lower molecular 

weight putative C-terminal cleavage products in transgenic skeletal muscle microsomes. 

B) Western blots using NCL-hamlet antibody detect a prominent high molecular weight 

band in wild-type and transgenic skeletal muscle microsomes corresponding to 

endogenous dysferlin, as well as an upward shifted band specifically in dysf-pHGFP TG 

microsomes.  Minor lower molecular weight bands corresponding to potential cleavage 

products are detectable in transgenic skeletal muscle microsomes (left panel).  A similar 

pattern of low molecular weight endogenous C-terminal dysferlin   isoforms are visible in 

wild-type microsomes at higher exposures (right panel). 
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Figure 3-10. Depletion of t-tubule GFP signal does not affect recruitment of dysf-

pHGFP at membrane lesions in transgenic skeletal muscle fibers. a) Dysf-pHGFP 

localizes to the plasma membrane and transverse tubules in adult resting skeletal 

muscle fibers. b) Dysf-pHGFP TG skeletal muscle fiber following t-tubule bleaching. c) 

Laser-wounding results in rapid and stable accumulation of dysf-pHGFP at membrane 

lesions. Scale bar=20 µm 
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CHAPTER 4 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary of thesis work 

 

Dysferlin-deficiency results in a complex set of muscular dystrophies, collectively 

termed dysferlinopathies [22]. The exact cellular deficits caused by dysferlin deficiency 

that lead to muscle disease are not clear, but dysferlin is required for efficient 

membrane resealing, a critical evolutionarily conserved process by which cells repair 

the plasma membrane following wounding [18, 61]. Bansal et al first demonstrated a 

role for dysferlin in membrane resealing by showing that damage induced uptake of 

membrane impermeable FM1-43 dye is increased in muscle fibers isolated from 

dysferlin-deficient mice compared with normal control muscle fibers. Furthermore, 

electron micrographs of dysferlin-deficient muscle reveal the presence of 

subsarcolemmal vesicles near PM disruptions, indicating that dysferlin-deficiency may 

impair fusion of intracellular repair vesicles with the PM following wounding [18]. Since 

the identification of dysferlin as a critical membrane repair protein in muscle cells, 

interactions between dysferlin and several additional proteins involved in membrane 

repair have been described including MG53 [51, 52], AHNAK [100], Annexin [53, 90] 

and caveolin-3 [52]. However, the mechanism by which dysferlin-containing membranes 
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contribute to membrane resealing in normal adult muscle is not clear. Furthermore, the 

cytoskeleton has been implicated in membrane resealing in non-muscle cells [82, 83], 

but whether dysferlin-containing membranes interact with the cytoskeleton to facilitate 

membrane repair in muscle is completely unknown. Therefore, the goal of this project 

was to examine the contribution of dysferlin-containing membranes and the 

cytoskeleton to membrane repair in skeletal muscle cells. To address this, live-cell 

imaging of fluorophore-labeled dysferlin in either developing (chapter 2) or adult muscle 

cells (chapter 3), in combination with either pharmacological or genetic disruption of the 

cytoskeleton, was used to examine the dynamic behavior of dysferlin-containing 

membranes prior to and following wounding and the requirement of the cytoskeleton  for 

dysferlin-containing membrane function during membrane repair. Chapter 2 revealed 

that dysferlin-containing vesicles are capable of long-range movement along 

microtubules in differentiated L6 myotubes, and that mechanical wounding induces 

vesicle-vesicle fusion of dysferlin-containing vesicles, resulting in the formation of large 

"plug" forming cytoplasmic dysferlin-containing vesicles. Whether dysferlin is strictly 

required for vesicle-vesicle fusion following wounding is not clear, but this data, taken 

together with the proposed role for dysferlin in lipid binding in-vitro [42, 91], implicates 

dysferlin as a potential critical regulator of vesicle-vesicle fusion following wounding in 

muscle cells. Vesicle-vesicle fusion of dysferlin-containing vesicles was dependent on 

the presence of an in-tact microtubule cytoskeleton and functional KIF5B motors, which 

highlights a potential role for the microtubule cytoskeleton in membrane resealing in 

skeletal muscle myotubes. Chapter 3 expanded on the findings in chapter 2 by 

examining the behavior of dysferlin-containing membranes following laser-induced 
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membrane wounding in adult skeletal muscle fibers isolated from a novel dysferlin-

pHGFP muscle-specific transgenic reporter mouse. The pH-sensitivity of this reporter 

was used to examine the localization of dysferlin in adult muscle cells prior to and 

following laser-induced wounding. Interestingly, our data indicate that dysferlin-

expression is restricted to the sarcolemma and t-tubules in adult skeletal muscle fibers, 

with minimal dysferlin in intracellular vesicles in resting muscle fibers. Consistent with a 

role for sarcolemma derived dysferlin in membrane resealing, laser-induced wounding 

resulted in rapid and stable accumulation of adjacent dysferlin-containing sarcolemma 

at membrane lesions. Additionally, dysferlin from distant portions of the fiber is 

endocytosed into a heterogeneous population of intracellular vesicles. Pharmacological 

disruption of the actin-cytoskeleton impaired dysferlin recruitment at membrane lesions 

without affecting endocytosis, and impaired membrane resealing (based on FM1-43 

uptake). These findings support the novel model that actin-dependent recruitment of 

dysferlin-containing sarcolemma at membrane lesions may facilitate membrane repair 

by creating a local "active-zone" of high lipid binding activity to enhance fusion of 

dysferlin-containing or non-dysferlin intracellular vesicles with the plasma membrane 

and facilitate resealing. The work presented in chapters 2 and 3, and summarized below 

expand the knowledge of dysferlin-mediated membrane resealing by directly 

demonstrating a role for dysferlin-containing membranes in membrane resealing and 

highlighting a critical role for the cytoskeleton in regulating dysferlin-mediated 

membrane resealing in skeletal muscle. 

 Chapter 2 showed that dysferlin localizes to non-secretory, non-lysosomal 

cytoplasmic vesicles within the cytoplasm of L6 myotubes. Live-cell imaging of dysferlin-
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eGFP expressing myotubes revealed that the majority of dysferlin-containing vesicles 

undergo solely back and forth movements, with a small percentage undergoing long 

range movements. Long range movement of dysferlin-containing vesicles depends on 

intact microtubules, as pharmacological disruption of microtubules impairs dysferlin-

vesicle movement. Furthermore, dysferlin-containing vesicles labeled with KIF5B, 

indicating that KIF5B may be the microtubule-based motor driving movement of 

dysferlin-containing vesicles in myotubes. In order to examine the contribution of 

dysferlin-containing vesicles to membrane repair, we employed a mechanical wounding 

technique to induce local membrane lesions. Interestingly, mechanical wounding 

commonly led to complete tearing of the muscle fiber, analogous to the formation of 

"hypercontraction-clots" formed in response to isometric tetanic contractions in mdx 

muscles in-vitro [14]. Strikingly, rather than accumulate specifically at membrane 

lesions, dysferlin-containing vesicles underwent rapid vesicle-vesicle fusion to form 

extremely large dysferlin-containing vesicles throughout the cytoplasm of L6 myotubes. 

The large damage-induced vesicles formed following wounding are remarkably stable, 

and although somewhat rare, are capable of collapsing on the wounded sarcolemma. 

Formation of large cytoplasmic vesicles was reminiscent of the "vesicular plug" model of 

membrane resealing, whereby membrane wounding induces the rapid formation of 

cytoplasmic vesicles that plug the membrane lesion [59]. Given that dysferlin-containing 

vesicles interact with microtubules and KIF5B in resting myotubes, we examined 

whether these interactions were critical for large vesicle formation in response to 

wounding. Vesicle-vesicle fusion of dysferlin-containing vesicles was impaired in cells 

pre-treated with microtubule disrupting reagent nocodazole, indicating that a functional 
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association between microtubules and dysferlin-containing vesicles is critical for vesicle-

vesicle fusion following wounding. Expression of dnKIF5B significantly reduced 

formation of large dysferlin-containing vesicles following wounding without disrupting 

cytoskeletal architecture, Golgi formation or lysosomal organization, indicating that 

dnKIF5B impairs large vesicle formation by directly disrupting the function of dysferlin-

containing vesicles following wounding. These data indicate that KIF5B based 

movement along microtubules is critical for large vesicle formation following wounding in 

differentiated L6 myotubes, and support the overall model that damage-induced 

formation of large dysferlin-containing vesicles contributes to membrane resealing by 

forming a vesicular plug to repair membrane lesions. Lysosomes are critical regulators 

of membrane resealing in non-muscle cells, but whether lysosomes contribute to 

membrane resealing muscle, and whether lysosomes interact with dysferlin-containing 

vesicles has not been explored. Dual labeling of lysosomes and dysferlin-containing 

vesicles in L6 myotubes revealed that dysferlin-containing vesicles do not localize to 

lysosomes prior to wounding, but undergo heterotypic fusion with lysosomes following 

wounding to form colabeled vesicles. Although lysosomes play a role in membrane 

resealing in non-muscle cell types [72], very few studies have addressed the specific 

role of lysosomes in membrane resealing in developing or fully differentiated muscle 

cells. Furthermore, whether lysosomes interact with dysferlin-containing membranes in 

adult muscle cells requires further examination. Taken together, these finding suggest 

that lysosomes may contribute to membrane repair in muscle by interacting with 

dysferlin-containing membranes following sarcolemma damage.  



93 
 

 Chapter 3 expanded upon the findings in chapter 2 by utilizing a novel transgenic 

mouse (dysf-pHGFP TG) expressing dysferlin-pHGFP specifically in adult striated 

muscle cells. Our dysferlin-pHGFP construct places a pH-sensitive pHluorin molecule 

on the extracellular surface of muscle fibers or lumen of vesicles depending on the 

localization of dysferlin within the muscle cell. Dysferlin-pHGFP is expressed in skeletal 

muscle and heart and localizes to the lateral membrane of skeletal muscle fibers in 

dysf-pHGFP TG mice. Dysf-pHGFP TG mice are free of pathology throughout 

adulthood, indicating that dysf-pHGFP is functioning properly in-vivo. Treatment of dysf-

pHGFP TG FDB muscle fibers with acidic media significantly reduced cellular 

fluorescence, indicating that dysferlin is enriched in the sarcolemma and t-tubules of 

skeletal muscle fibers prior to membrane disruption. Furthermore, treatment with NH4Cl, 

which is commonly used to reveal pHGFP probes within acidic vesicles [118, 119], did 

not increase cellular fluorescence in resting adult muscle fibers. Taken together, these 

data support the novel hypothesis that dysferlin expression is restricted to the 

sarcolemma and t-tubules in adult muscle fibers with minimal dysferlin present in 

vesicles at rest. Membrane disruption induces rapid accumulation of local sarcolemma-

derived dysferlin at membrane lesions, with minimal recruitment of dysferlin from 

intracellular stores, indicating that dysferlin-containing membranes involved in resealing 

may actually derive from the sarcolemma. Although dysf-pHGFP accumulates at 

membrane lesions, pHGFP signal from the surrounding regions of the sarcolemma and 

t-tubules is rapidly quenched, indicating that dysferlin may be endocytosed into acidic 

compartments following wounding. Consistent with this hypothesis, addition of NH4Cl to 

wounded fibers recovered pHGFP signal back toward baseline and revealed a 
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heterogeneous population of dysferlin-containing vesicles throughout the cytoplasm of 

wounded fibers. Interestingly, myoferlin, a dysferlin homolog, is critical for endocytosis 

potentially through interacting with caveolin-1, the muscle specific isoform of which 

(caveolin-3) also interacts with dysferlin, and myoferlin-mediated endocytosis may be 

critical for membrane resealing in endothelial cells [131]. Skeletal muscle from myoferlin 

knockout mice are myopathic and have altered t-tubule morphology, a phenotype that is 

also present in dysferlin-deficient muscle [50]. Therefore, it is interesting to speculate 

that myoferlin may also play a role in membrane resealing in skeletal muscle by 

regulating damage-induced endocytosis of dysferlin. Damage-induced vesicle formation 

in adult skeletal muscle fibers was reminiscent of vesicle-vesicle fusion of dysferlin-

eGFP containing vesicles in developing myotubes described in chapter 2. It is therefore 

likely that these vesicles play a critical role in membrane repair, potentially by interacting 

with sarcolemmal-derived dysferlin at lesions to "plug" membrane lesions. However, our 

current model is limited in that vesicular dysferlin is not visible without harsh chemical 

treatments to alkinalize the cell. Therefore, the question of whether damage-induced 

vesicles contribute directly to membrane repair could be readily addressed using an 

analogous model utilizing a dysferlin reporter tagged with a non-pH sensitive reporters 

such as eGFP or mCherry. The rapid recruitment of dysferlin-containing sarcolemma 

and formation of stable dysferlin-rich structures at membrane lesions was suggestive of 

a role for the cortical actin cytoskeleton. Disruption of the actin-cytoskeleton with 

cytochalasin D impaired accumulation of dysferlin-containing sarcolemma without 

affecting endocytosis and formation of dysferlin-containing vesicles. Identical treatment 

of wild-type fibers with cytochalasin D increased uptake of FM1-43 dye following 
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wounding comparable to dysferlin-deficiency, indicating that actin-dependent 

recruitment of dysferlin-containing sarcolemma is a critical step in membrane resealing 

in skeletal muscle. These findings are consistent with recent data that the cortical actin 

cytoskeleton contributes to wound closure in drosophila larvae [84]. Although our 

pharmacological data strongly suggests that cortical actin-dependent recruitment of 

dysferlin-containing sarcolemma is critical for membrane resealing in skeletal muscle, 

examination of dysferlin-mediated membrane repair in genetic knockouts of specific 

actin isoforms would be useful in order to directly examine the role of the cortical actin 

cytoskeleton. The exact function of dysferlin downstream of actin-dependent recruitment 

to membrane lesions is not known, but in-vitro biochemical evidence indicates that 

dysferlin is involved in calcium-dependent lipid binding [42, 91] and potentially fusion of 

repair vesicles with the sarcolemma [18]. Therefore, these findings support the overall 

model that actin-dependent recruitment of dysferlin-containing sarcolemma at 

membrane lesions could facilitate membrane repair by generating an "active-zone" of 

high lipid-binding activity to enhance fusion of dysferlin-containing or non-dysferlin 

containing repair vesicles with the plasma membrane in adult skeletal muscle 

(summarized in Fig 4-1). 

 The work presented in chapters 2 and 3, and summarized above are consistent 

with a role for dysferlin-containing membranes and the cytoskeleton in membrane 

resealing in skeletal muscle. This work did, however, reveal specific differences in the 

mechanism by which dysferlin-containing membranes contribute to membrane resealing 

in myotubes versus adult terminally differentiated muscle fibers, specifically with respect 

to the localization of dysferlin in resting and wounded cells (intracellular vesicles in 
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myotubes versus sarcolemma and vesicles in adult muscle fibers). Dysferlin has been 

shown to localize to developing t-tubule system in developing C2C12 myotubes based 

on colocalization with t-tubule marker Bin-1 [49]. Given that fully developed transverse 

tubules are thought to develop from vesicular precursors in differentiating myotubes 

[132], it is possible that the dysferlin-containing vesicles in our myotube experiments 

could be t-tubule precursors, which would be consistent with the finding that dysferlin-

pHGFP is present in t-tubules in adult skeletal muscle. The apparent lack of 

sarcolemmal dysferlin and lack of enrichment of sarcolemma-derived dysferlin in our 

myotube model may actually be due to technical limitations associated with 

epifluorescence imaging, given that a smaller signal (relative to vesicular dysferlin) may 

be difficult to detect using epifluorescence. Furthermore, there are likely important 

differences in the method of wounding in our mechanically wounded myotubes 

compared with laser-induced injury in adult myofibers. This is evident based on the 

cellular response to wounding, where myotubes undergo complete hyper-contraction, 

and adult myofibers are largely stable following wounding. This implies that the 

response (accumulation of sarcolemma-derived dysferlin and formation of damage-

induced vesicles) is likely identical, but the "dose" of wounding may be much greater in 

mechanically wounded myotubes compared to laser-wounded adult myofibers. 

Regardless, the findings from myotubes and adult skeletal muscle are consistent in that 

both form large dysferlin-containing cytoplasmic vesicles following wounding. Therefore, 

these findings indicate that formation of damage-induced dysferlin containing vesicles 

and local enrichment of dysferlin-containing sarcolemma likely contribute to membrane 

resealing in skeletal muscle. The interaction between dysferlin-containing membranes 
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and the cytoskeleton is also consistent between developing myotubes and adult skeletal 

muscle. In differentiating myotubes, dysferlin-containing vesicles associated with 

microtubules, and this association was required for formation of damage-induced 

vesicles. While the requirement of microtubules for vesicle formation in adult skeletal 

muscle was not examined, it is plausible given that membrane wounding leads to 

formation of analogous dysferlin-containing vesicles in adult skeletal muscle fibers. 

Furthermore, disruption of cortical actin reduced accumulation of sarcolemma derived 

dysferlin at membrane lesions in adult skeletal muscle without affecting endocytosis and 

formation of dysferlin-containing vesicles. These findings are consistent with the 

observation that treatment with blebbistatin, a non-muscle myosin-II inhibitor, did not 

affect vesicle formation following wounding in differentiating myotubes. In conclusion, 

our data from differentiated myotubes and adult skeletal muscle fibers support the 

assertion that the cytoskeleton is a critical regulator of dysferlin-mediated membrane 

resealing in skeletal muscle.   

 

Implications and future directions 

 

Mutations in dysferlin lead to progressive muscle disease, potentially through an 

impaired ability of dysferlin-containing membranes to repair membrane lesions [18]. 

Recent studies have begun to examine interactions between dysferlin and additional 

proteins involved in membrane repair [52, 90], however, the exact mechanism by which 

dysferlin-containing membranes contribute to membrane repair in normal muscle has 

not been fully explored. We used a novel live-cell imaging approach to examine the 
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behavior of dysferlin-containing membranes and vesicles following wounding in 

developing and adult skeletal muscle. Our data provide mechanistic evidence that 

interactions between the cytoskeleton and dysferlin-containing membranes may be 

critical for membrane repair in muscle cells. A deeper mechanistic understanding of how 

the cytoskeleton contributes to membrane resealing will provide valuable insight into the 

role of the cytoskeleton in the prevention of muscle disease and reveal potential targets 

for therapeutics aimed at enhancing membrane repair in muscle diseases.  

 The finding that enrichment of dysferlin-containing sarcolemma is critical for 

membrane repair in adult skeletal muscle fibers (chapter 3) is completely novel, and 

suggests that enrichment of sarcolemma-derived lipid-binding moieties (ie. C2A domain 

of dysferlin) at membrane lesions may be necessary for membrane resealing and 

implies that a major function of dysferlin may be to facilitate interactions between the 

plasma membrane and repair vesicles in skeletal muscle fibers. These findings have 

important therapeutic implications given that therapeutics aimed at repairing the 

sarcolemma (which could conceivably treat several muscular dystrophies independent 

of genetic origin) would not need to be transported into a specific sub-cellular 

compartment, rather a compound that remained extracellular but bound lipids may be 

sufficient restore sarcolemmal integrity. Furthermore, given that gene therapy for 

dysferlin-deficiency will likely be limited by the relatively large size of dysferlin, our 

findings indicate that a simplified molecule containing the calcium-dependent lipid 

binding C2A domain targeted to the plasma membrane may be sufficient to restore 

resealing capacity in dysferlin-deficient fibers. Interestingly, this is supported by a recent 

study that identified the C2A and transmembrane domain as critical functional domains 
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required for resealing, but whether this molecule ameliorates any of the pathology in 

dysferlin-deficient mice remains to be explored [29].  

 Although the pathogenesis of DGC-related muscular dystrophies is well 

described, the underlying cellular mechanisms by which mutations in DGC components 

lead to muscle disease are largely unknown. The current dogma is that loss of DGC 

components results in an "instability" of the muscle sarcolemma and susceptibility of 

muscle fibers to contraction-induced wounding. The field is limited, however, by a lack 

of reagents to study the development of membrane lesions in muscle fibers in-vitro and 

in-vivo. Our data from chapter 3 demonstrates clearly that dysferlin robustly and 

reproducibly labels membrane lesions in adult skeletal muscle fibers. Therefore, our 

novel dysferlin-pHGFP TG reporter mouse will serve as an important tool for studying 

disruption of the plasma membrane and activation of the repair pathway in various 

models of muscle disease, including the muscular dystrophies. Therefore, the future 

studies proposed below are aimed at both identifying critical molecules that regulate the 

membrane repair pathway, as well as using the dysferlin-pHGFP TG mouse to ask 

more fundamental questions about how mutations in various muscular dystrophy 

causing genes lead to the development of muscular dystrophy. 

 

Contribution of damage-induced dysferlin-containing vesicles to membrane 

repair in adult skeletal muscle cells:  

 In chapter 3, the pH-sensitivity of dysferlin-pHGFP was used to explore the 

localization of dysferlin within adult skeletal muscle fibers at rest and following laser-

induced wounding. Our data indicate that dysferlin expression is restricted to the 
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sarcolemma and t-tubules in resting adult muscle fibers, but following wounding, 

dysferlin is rapidly endocytosed and incorporated into large cytoplasmic vesicles, 

analagous to vesicle-vesicle fusion in myotubes (chapter 2), which may contribute to 

membrane repair by plugging membrane lesions. However, examination of vesicle 

behavior is limited in our transgenic model by the fact that pHGFP is not fluorescent at 

low pH (within the lumen of endocytic vesicles), and thus vesicles are not visible without 

treatment of the fibers ammonium chloride, which may have adverse effects on vesicle 

function. In order to circumvent this limitation, an MCK driven dysferlin-mCherry 

transgenic mouse could be generated, which will express constitutively fluorescent 

mCherry reporter gene to track the dynamic response of newly formed dysferlin-

containing vesicles in live adult skeletal muscle cells following wounding (Fig 4-2A). 

Therefore, subjecting adult skeletal muscle fibers isolated from dysf-mCh TG mice to 

laser wounding and analyzing vesicle formation and accumulation at membrane lesions 

could be used to the hypothesis that damage-induced dysferlin-containing vesicles 

contribute to membrane resealing in adult skeletal muscle (Fig 4-2B). 

 Our data from dysf-pHGFP TG skeletal muscle fibers indicates that sarcolemma-

derived dysferlin accumulates at membrane lesions and forms stable patches, but 

whether damage-induced dysferlin-containing vesicles accumulate with sarcolemma 

derived dysferlin at membrane lesions is not clear (as any endocytic dysferlin cannot be 

detected). Therefore, crossing the constitutively fluorescent dysf-mCh reporter mouse to 

the dysf-pHGFP TG mouse presented in Chapter 3 to generate a dysf-mCh/pHGFP 

double transgenic mouse will generate a muscle specific transgenic that expresses both 

a pH-sensitive GFP reporter as well as a constitutively fluorescent mCh reporter within 
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all muscle cells (Fig 4-2C). This model will allow for the simultaneous analysis of 

sarcolemma-localized dysferlin, (both green and red), and vesicular dysferlin (red but 

not green) at nascent lesions in adult skeletal muscle fibers. The ratio of green:red 

fluorescence (normalized for maximal intensity) at membrane lesions would 

hypothetically serve as an indicator of the relative percentage of vesicular dysferlin 

within nascent patches. Thus, a perfect 1:1 green:red intensity ratio within nascent 

patches would indicate that all dysferlin within the patch is within the sarcolemma, 

whereas values <1:1 would indicate that a portion of dysferlin within the nascent patch 

is derived from dysferlin present within endocytic vesicles (potential outcomes 

presented in Fig 4-2D). An additional dysf-eGFP/dysf-mCh transgenic mouse 

expressing constitutively fluorescent green and red probes could be generated, and 

skeletal muscle fibers isolated from this mouse could be used as a control that is 

constitutively 1:1 green to red. While the data presented in chapters 2 and 3 supports 

our current model (Fig 4-1), the proposed experiments would provide strong evidence 

that damage-induced dysferlin-containing vesicles contribute to membrane repair in 

adult skeletal muscle. 

  

Endocytosis, and myoferlin as a critical regulator of dysferlin-mediated 

membrane repair in adult skeletal muscle:  

 The novel finding that membrane damage induces the formation of dysferlin-

containing vesicles in skeletal muscle raises intriguing questions about the role of 

endocytosis in membrane resealing in adult skeletal muscle. Initial reports on 

membrane resealing in adult skeletal muscle overlooked endocytosis as a potential 
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regulator of membrane repair because of the apparent lack of caveolin-3 (a plasma 

membrane protein with a known role in endocytosis) at membrane lesions in 

mechanically wounded adult skeletal muscle fibers [18]. However, recent data suggests 

that caveolin-mediated endocytosis is activated in close proximity to membrane lesions 

leading to formation of caveolin-containing vesicles near membrane lesions, which 

implies that endocytic vesicles may contribute to membrane repair[89]. Furthermore, 

there are several lines of evidence that endocytosis contributes to membrane resealing 

in non-muscle cell types [56, 57, 89]. In neurons, axotomy induces rapid formation and 

accumulation of endocytic vesicles near the proximal cut end, and these endocytic 

vesicles form a semi-permeable barrier that rapidly excludes extracellular dyes [56]. In 

CHO cells, membrane lesions induced by SLO-toxin (which forms transmembrane 

pores within the plasma membrane) are rapidly endocytosed into caveolin-containing 

vesicles, a process that is required for resealing the plasma membrane [62]. 

Furthermore, enzyme release as a result of lysosomal exocytosis may facilitate 

endocytosis at membrane lesions, a process which contributes to membrane repair in 

NRK cells [78]. Despite growing evidence that endocytosis contributes to membrane 

repair in non-muscle cells, there have been few studies examining the role of 

endocytosis in membrane repair in adult skeletal muscle. 

 Myoferlin, a homolog of dysferlin, is highly expressed in developing cardiac and 

skeletal muscle and is expressed to somewhat lower levels in adult skeletal and cardiac 

muscle. Loss of myoferlin expression in mice results in an early-onset muscle myopathy 

with the most prominent phenotype being impaired cell-cell fusion during myogenesis, a 

phenotype which has also been reported for dysferlin-deficient muscle cells in-vitro and 
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in-vivo. Double knockout of myoferlin and dysferlin enhances the dysferlin-deficient 

phenotype, and deficiency of dysferlin, myoferlin, or both results in alterations in t-tubule 

morphology, suggesting that both myoferlin and dysferlin contribute to t-tubule stability 

or maintenance in skeletal muscle. Perhaps most intriguingly, membrane repair capacity 

is impaired in myoferlin-deficient endothelial cells [131] and over-expression of myoferlin 

may enhance membrane repair in dysferlin-deficient skeletal muscle [133]. Although the 

exact role for myoferlin in membrane resealing is not known, it is reasonable to suspect 

that myoferlin may contribute to membrane resealing by regulating damage-induced 

endocytosis. Surprisingly, there have been no studies addressing whether myoferlin is 

required for membrane resealing in adult skeletal muscle fibers, nor have there been 

any studies addressing the effect of myoferlin-deficiency on dysferlin function in 

membrane repair. Our data suggests that membrane damage induces rapid 

endocytosis of dysferlin into cytoplasmic vesicles, which may be critical for membrane 

resealing. Therefore, it is reasonable that myoferlin may contribute to membrane 

resealing in skeletal muscle by facilitating endocytosis of dysferlin into dysferlin-

containing vesicles for subsequent use in membrane repair (Fig 4-3A). 

 Our data from chapter 3 suggests that skeletal muscle fibers from dysf-pHGFP 

TG mice can be used to track the endocytosis of dysferlin from the plasma membrane 

following wounding, providing a straightforward assay to assess endocytosis of dysferlin 

following wounding. Crossing the dysf-pH TG mouse described in chapter 3 to a 

myoferlin KO mouse to generate a mouse expressing dysf-pHGFP on a myoferlin-null 

background (myofKO pHGFP TG) mouse could be used to directly test the hypothesis 

that myoferlin is required for endocytosis of dysferlin following membrane damage in 
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adult skeletal muscle fibers. To test this hypothesis, muscle fibers could be isolated 

from myofKO TG mice and wild-type TG controls, subjected to our laser wounding 

assay, and analyzed for the pHGFP response to wounding (Fig 4-3C). If myoferlin is 

required for endocytosis of dysferlin following wounding, then the rapid decrease in 

"total" pHGFP fluorescence would be reduced in myofKO pHGFP TG skeletal muscle 

fibers following wounding. Crossing the aforementioned dysferlin-mCh transgenic 

mouse to a myofKO mouse to generate a myofKO mChTG mouse would avoid the 

limitations associated with pHGFP (outlined previously) and allow for direct examination 

of dysferlin vesicle formation, and behavior of damage-induced dysferlin-containing 

vesicles following wounding in myoferlin-null muscle fibers (Fig 4-3D). Finally, FM1-43 

uptake following laser induced wounding in myofKO and wild-type adult muscle fibers 

could be examined to determine whether myoferlin is required for membrane resealing 

in muscle (Fig 4-3B).  

 Dysferlin and myoferlin share high structural homology (Fig 1-1), as well as lipid 

binding/fusion properties in-vitro [42]. Dysferlin has been shown to dimerize in-vitro and 

in live-cells [134], which raises the possibility that myoferlin-dysferlin heterodimerization 

could occur. Such an interaction could efficiently couple endocytosis and plug formation 

at membrane lesions. This hypothesis could be tested biochemically by expressing 

epitope tagged dysferlin and myoferlin constructs and using co-immunoprecipitation 

followed by western blotting. Additionally, the in-vivo relevance of these interactions 

could be directly examined using FRET-based imaging of acutely transfected myotubes 

expressing fluorophore labeled myoferlin and dysferlin constructs, as has been used 

previously to identify dimerization of dysferlin in live cells [134].   
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Regulation of dysferlin-mediated membrane repair by cortical actin in adult 

skeletal muscle:  

In chapter 3, the contribution of sarcolemma-derived dysferlin to membrane 

repair in adult skeletal muscle was examined, which revealed that local dysferlin-

containing sarcolemma is actively pulled into membrane lesions, resulting in the 

formation of a stable dysferlin-rich structure at membrane lesions. Based on the rapid 

and stable nature of nascent dysferlin-containing structures, it was proposed that the 

actin-cytoskeleton could play a critical role in recruitment of dysferlin-containing 

sarcolemma to membrane lesions. Pharmacological disruption of the actin-cytoskeleton 

significantly reduced dysf-pHGFP accumulation at membrane lesions, indicating that the 

actin cytoskeleton is critical for dysferlin-recruitment at membrane lesions and 

potentially resealing in adult skeletal muscle fibers. These findings are consistent with a 

growing body of evidence in single celled drosophila larvae and xenopus oocytes [84, 

86], which indicates that the cortical actin cytoskeleton is a critical regulator of 

membrane repair. In the drosophila model, membrane damage induces the formation of 

a "contractile ring" composed of F-actin and non-muscle myosin II (nmII) which 

contracts to pull both the PM and intracellular vesicles into a repair plug [84]. 

Furthermore, it was recently shown that putative repair protein MG53 is actively 

transported to membrane lesions in an non-muscle myosin II (nmII) dependent manner, 

and pharmacological inhibition of nmII impaired membrane resealing in adult skeletal 

muscle [67]. Although our data supports a role for cortical actin  in dysferlin-mediated 
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membrane resealing in skeletal muscle, our ability to selectively disrupt the cortical actin 

cytoskeleton is limited by the fact that cytochalasin D is not necessarily specific for 

cortical actin. Therefore, examination of genetic mutants for specific cortical actin 

isoforms could be useful in determining the precise molecular components of the 

cytoskeleton required for membrane repair in muscle. 

Three major isoforms of actin are expressed in adult skeletal muscle, and which 

specific isoform is critical for membrane repair remains an open question [135]. The α-

skeletal actin isoform is a major component of the thin filament of the contractile 

sarcomere, and regulates force production through direct interactions with the myosin 

containing thick filament [135]. β- and γ-actin are the major a components of the sub-

sarcolemmal actin cortex and knockout of either gene results in progressive muscle 

myopathy [136, 137]. β-actin deletion results in decreased dystrophin expression and 

susceptibility to eccentric contraction, consistent with the primary deficits associated 

with impaired DGC function [136]. In contrast, γ-actin knockouts display a skeletal 

muscle myopathy independently of any effects on the DGC, and do not display 

susceptibility to eccentric contraction or impaired sarcolemmal integrity at rest, 

consistent with the effects of dysferlin-deficiency on muscle function [137]. Furthermore, 

γ-actin expression is increased in dystrophin-deficient muscle and may protect 

dystrophin-muscle from contraction induced damage [138, 139]. Our data indicates that 

disruption of either γ or β actin may result in impaired accumulation of dysferlin-

containing membrane at membrane lesions, as well as membrane resealing in adult 

skeletal muscle fibers. Although γ-actin deficiency does not recapitulate the exact 

phenotype of dysferlin-null mice (ie. high CK), the development of myopathy in the 
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absence of DGC defects, relative insensitivity to lengthening contraction, and mild 

sarcolemmal permeability at rest suggest that the loss of γ-actin may result in muscle 

disease in part through impaired membrane repair [137]. Therefore, it is likely that γ-

actin may be a critical regulator of dysferlin-mediated membrane resealing in adult 

skeletal muscle fibers.  

The role of γ-actin in dysferlin-mediated membrane repair could be directly 

assessed by crossing our dysf-pHGFP TG mouse with muscle-specific γ-actin KO mice 

to generate a dysf-pHGFP TG mouse on a γ-actin deficient background  (γ-KOpHGFP 

TG ) and subjecting dysf-pHGFP TG and γ-KOpHGFP TG muscle fibers to laser-

wounding (Fig 4-4C). Based on our findings in chapter 3, it would be predicted that 

accumulation of sarcolemmal dysferlin would be markedly reduced in γ-KOpHGFP TG 

muscle fibers compared to wt-TG control. Examination of total cellular fluorescence 

following wounding in wt-TG and γ-KOpHGFP TG could be used to examine the effect 

of γ-actin deficiency on dysferlin endocytosis and formation of dysferlin-containing 

vesicles following wounding. Although our data indicates that endocytosis of dysferlin 

and formation of damage-induced dysferlin-containing vesicles is not affected by 

pharmacological disruption of the actin cytoskeleton, our data does not rule out whether 

cytoskeletal actin (γ-actin) regulates any downstream functions of dysferlin-containing 

vesicles such as accumulation of dysferlin-containing vesicles at membrane lesions in 

adult skeletal muscle fibers. Crossing γ-KO mice to the dysf-mCh transgenic described 

above would generate a constitutively fluorescent dysferlin reporter on a γ-actin 

deficient background (γ-KOmCh TG). This model could then be used to examine the 

behavior of damage-induced dysferlin-containing vesicles following membrane 
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disruption in live adult skeletal muscle fibers (Fig 4-4D). If γ-actin is required for 

accumulation of dysferlin-containing vesicles, one would expect that the γ-KOmCh TG 

fibers would show reduced vesicle accumulation at membrane lesions compared with 

the mChTG control. FM1-43 uptake following laser induced wounding in wt and γ-KO 

muscle fibers could be used to determine whether γ-actin and γ-actin-dependent 

recruitment of dysferlin-containing sarcolemma at membrane lesions is required for 

membrane resealing in adult skeletal muscle fibers (Fig 4-4B). Although the data 

presented in chapter 3 supports the overall model that the cortical actin cytoskeleton is 

critical for membrane resealing in adult skeletal muscle, the proposed experiments 

would provide strong evidence that the cortical actin cytoskeleton, and specifically γ-

actin, is required for membrane resealing in adult skeletal muscle. 

 

Interaction of lysosomes and dysferlin-containing membranes and role of 

lysosomes in membrane repair in skeletal muscle: 

 Although much of our work was devoted to investigating the behavior of dysferlin-

containing membranes during membrane repair, the previously identified role for 

lysosomes in membrane resealing in non-muscle cell types led us to examine the 

interaction between dysferlin-containing vesicles and lysosomes in skeletal muscle cells 

[72]. This question was examined by simultaneously tracking the localization and 

behavior of dysferlin-containing vesicles (dysferlin-eGFP) and lysosomes (LGP120-

mCh) in differentiated myotubes prior to and following mechanical wounding. Our data 

indicates that dysferlin-containing vesicles are distinct from lysosomes in resting cells, 

but undergo heterotypic fusion following membrane damage. These data indicate that 
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heterotypic fusion of dysferlin-containing vesicles with lysosomes maybe critical for 

membrane repair in skeletal muscle. Given the strong appreciation for lysosomal 

function in membrane resealing in non-muscle cells [72], the role of lysosomes 

membrane resealing and the relationship between lysosomes and dysferlin-containing 

membranes in adult muscle cells warrants further examination.    

 Our findings from chapter 2 support a potential role for lysosomes in membrane 

resealing in developing myotubes, but a role for lysosomes in membrane repair in adult 

muscle fibers remains to be demonstrated. Given that most proteins or organelles 

involved in membrane resealing accumulate at membrane lesions following wounding 

[18, 51, 90], an examination of lysosomal behavior following wounding in live adult 

skeletal muscle cells using commercially available dyes such as lysotracker, antibody 

labeling of endogenous proteins (Lamp-1) or expression of genetic labels (LGP120-

mCh) in adult muscle fibers following laser-induced may be informative. FM1-43 uptake 

in wild-type adult skeletal muscle fibers treated with pharmacological inhibitors of 

lysosome function, such as GPN [140], could be used to explore the effect of 

pharmacological disruption of lysosomal function on membrane resealing in adult 

skeletal muscle fibers. Synaptotagmin-VII is a critical regulator of lysosomal exocytosis 

and function [141], and fibroblasts isolated from syt-VII knockout mice display impaired 

membrane resealing [71]. At the molecular level, dysferlin is highly homologous to syt-

VII, but whether syt-VII is required for membrane resealing in muscle cells is not known. 

Examination of membrane resealing could be carried out in primary myotubes or adult 

skeletal muscle fibers isolated from sytVII-KO mice. If lysosomes are required for 

membrane resealing in adult skeletal muscle, then both pharmacological and genetic 
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inhibition of lysosomal function (syt-VII deficiency) should increase uptake of FM1-43 

following wounding.  

 If syt-VII KO muscle fibers show a defect in membrane resealing, one potential 

explanation could be that loss of syt-VII on lysosomes impairs damage-induced fusion 

of lysosomes with dysferlin-containing vesicles following wounding. This could be tested 

by analyzing the behavior of dysferlin-containing vesicles and lysosomes following 

wounding in myoblasts derived from syt-VII knockout mice acutely transfected with 

dysferlin-eGFP and LGP120 (similar to chapter 2). If syt-VII on lysosomes is required for 

the interaction between dysferlin-containing vesicles and lysosomes, then formation of 

co-labeled vesicles following wounding would be reduced. If dysferlin-containing 

membranes and syt-VII containing lysosomes are required for membrane resealing in 

muscle cells, it would be interesting to examine whether there is functional redundancy 

between these compartments in membrane resealing in skeletal muscle. Our data from 

chapter 2 indicates that lysosomes may contribute to membrane resealing by fusing 

with dysferlin-containing vesicles, however, it is also possible that syt-VII containing 

lysosomes also serve dysferlin-independent role in membrane resealing. To address 

this, adult muscle fibers isolated from dysferlin-null mice could be treated with 

pharmacological inhibitors of lysosomal function, and assayed for FM1-43 uptake 

following wounding. If lysosomes contribute to membrane resealing independently of 

dysferlin, then pharmacological inhibition of lysosome function should impair membrane 

resealing to a greater degree than dysferlin-deficiency alone. Alternatively, if inhibition of 

lysosomal function in dysferlin-deficient muscle fibers does not further impair membrane 

resealing, it could be concluded that the function of lysosomes in membrane resealing is 
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entirely dependent on dysferlin in adult skeletal muscle. Furthermore, crossing dysferlin-

deficient (A/J mice) to syt-VII KO mice to generate DKO mice would be especially 

useful, as the effect of combined loss of dysferlin and syt-VII could be examined in-vivo 

by analyzing H&E stain of skeletal muscle, plasma creatine kinase, central nucleated 

fibers, and Evan's blue dye uptake. If the muscle phenotype in DKO mice is worse than 

dysferlin-deficient mice, comparison of FM1-43 uptake in skeletal muscle fibers isolated 

from dysf-KO, syt-VII KO and DKO mice could be used to assess whether the effect of 

combined deficiency of dysferlin and syt-VII on the disease phenotype is due to further 

impaired resealing capacity when both dysferlin and syt-VII are absent.  

 

Plasma membrane instability and wounding as a common mechanism in the 

development of muscular dystrophy: 

The exact cellular mechanism by which loss of DGC or DGC-associated proteins result 

in muscular dystrophy is unclear and remains a critical question to be addressed in the 

field of muscular dystrophy. It is well known that skeletal muscle fibers from dystrophic 

human patients and mouse models of muscular dystrophy take up endogenous 

membrane impermeable molecules such as immunoglobulin (IgG, IgM) or exogenous 

membrane impermeant molecules such as Evan's blue dye from the blood stream [142, 

143]. Further, dystrophic muscles release the cytosolic muscle enzyme creatine kinase 

(CK) into the blood stream, which is commonly used as an indication of dystrophic 

pathology [2]. These data indicate that reduced sarcolemma stability or increased 

permeability may be a common pathway by which mutations in the DGC or DGC-related 

proteins result in muscular dystrophy. Based on these findings, a model has been 
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proposed suggesting that the loss of DGC components renders the plasma membrane 

"unstable" and thus susceptible to contraction induced injury in the form of 

"microlesions" to the plasma membrane. Consistent with this hypothesis, sarcolemmal 

permeability to Evan's blue dye is elevated particularly following exercise in several 

mouse models of muscular dystrophy [13, 18]. However, there are several remaining 

questions as to the types of sarcolemmal lesions that occur in skeletal muscle as a 

result of contraction-induced injury in dystrophic skeletal muscles. Although all fibers 

from DGC-deficient muscles lack functional DGC, uptake of EBD is not uniform and 

typically occurs in discrete foci containing several muscle fibers, which seems to 

suggest that only a subset of muscle fibers show increased permeability as a result of 

membrane wounding [142, 143]. Furthermore, there is little direct evidence that small 

sarcolemmal lesions occur as a result of contraction in dystrophic skeletal muscle fibers. 

In fact, Brooks and Claflin 2008 showed that lesions generated in dystrophic muscle 

following tetanic isometric contraction consisted of calcium-dependent tearing of muscle 

fibers and formation of a "contraction clot" which suggests that wounds occuring as a 

result of DGC-deficiency may actually be more catastrophic than previously proposed 

[14]. Although this study implies that in dystrophic muscle, contraction leads to rupture 

of the sarcolemma or increased leakiness of the sarcolemma, over-activation of the 

local sarcomeres due to calcium influx, and subsequent failure of the muscle fiber, the 

development of sarcolemmal lesions as a result of contraction-induced injury in 

dystrophic muscle fibers remains to be demonstrated. It is interesting to note that some 

muscular dystrophy models develop a dystrophic phenotype independent of changes in 

skeletal muscle membrane permeability. For example, laminin (the extracellular 
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receptor for dystroglycan within the basal lamina), considered a critical component of 

the DGC, results in a muscular dystrophy phenotype without an increase in skeletal 

muscle EBD uptake [143]. Furthermore, dysferlin-deficient mice display a myopathic 

phenotype with robust CK elevation, even in the absence of considerable EBD uptake 

(compared to the mdx mouse) [18]. More recently, several laboratories have questioned 

whether sarcolemmal wounds contribute to development of muscular dystrophy entirely. 

In this alternative model, stretch-induced calcium channels present on the muscle 

sarcolemma are increased in mdx skeletal muscle and enhanced stretch-induced 

calcium influx activates secondary calcium-dependent degredative pathways that 

contribute to disease progression [144]. This model is supported by findings that 

pharmacological inhibition of these channels with streptomycin, a stretch-induced 

calcium channel blocker, partially protects mdx muscles from eccentric contractions in-

vitro and following eccentric exercise in-vivo and reduces exercise-induced dye uptake 

into mdx skeletal muscle fibers following eccentric exercise in-vivo [144]. Furthermore, 

long-term in-vivo administration of streptomycin into mdx mice reduced dystrophic 

pathology and decreased EBD uptake into mdx tibialis anterior muscles, indicating that 

calcium-influx through stretch activated calcium channels may have deleterious effects 

on mdx skeletal muscle [145]. Therefore, a closer examination of sarcolemma wounding 

in dystrophic skeletal muscle following contraction in-vitro and following exercise or 

contraction in-vivo is critical for understanding the effects of DGC mutations on plasma 

membrane homeostasis and understanding the contribution of sarcolemmal wounding 

to the development of muscular dystrophy.  
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 Our dysf-pHGFP TG mouse is ideally suited to address this question, as we have 

shown (chapter 3) that dysf-pHGFP robustly and reproducibly identifies lesions in the 

plasma membrane in adult skeletal muscle fibers following wounding. Therefore, 

crossing the dysf-pHGFP TG (heretofore referred to as simply WT-TG) mouse to 

various models of muscular dystrophy including the mdx (dystrophin-deficient) and 

dy/dy (laminin-deficient) [146] and alpha-sarcoglycan [147] deficient mice (heretofore 

referred to as simply "dystrophic" or "DGC-deficient") would generate useful (mdx-TG, 

dy-TG, aSG-TG, heretofore referred to as "DGC-deficient TG") reporter mice to 

examine whether sarcolemmal lesions develop as a result of contraction in skeletal 

muscles from several independent DGC-deficient mouse models and facilitate direct 

comparison of membrane defects in each model. Adult skeletal muscle fibers could be 

subjected to contraction in-vitro and simultaneously analyzed for the formation of 

sarcolemmal lesions (similar to those shown in chapter 3) using live-cell microscopy. 

Given that dysf-pHGFP is an indirect measure of sarcolemmal permeability, 

simultaneous analysis of contraction-induced uptake of extracellular dyes or intracellular 

calcium using a calcium reporter dye could be useful. While isometric contraction is 

capable of generating muscle damage in dystrophic muscle [14], dystrophic muscle also 

shows a marked susceptibility to "lengthening", or "eccentric" contractions [116]. 

Therefore, direct analysis of contraction-induced sarcolemmal lesions developed in 

response to isometric and eccentric contractions could be useful to explore whether 

more injurious eccentric contractions are associated with increased incidence of 

sarcolemmal wounds. Based on the model from Brooks and Claflin 2008, it would be 

predicted that small sarcolemmal lesions developed following contraction contribute to 
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elevations in intracellular calcium, "over-activation" and failure of the local cytoskeleton, 

and fiber "hyper-contraction" [14]. Thus, it would be predicted that the formation of 

sarcolemmal lesions would also precede fiber hypercontraction, as well as any 

decrements in force production following eccentric contraction in DGC-deficient skeletal 

muscle fibers. This could be directly tested in this model by examining the formation of 

dysf-pHGFP patches following each contraction, and measuring maximal force 

produced by the muscle fiber following each successive contraction. Furthermore, 

treatment of WT-TG and mdx-TG muscle fibers (which have been suggested to have 

increased levels of strecth-activated channels) with streptomycin and subsequent 

analysis of lesion formation following contraction could be used to analyze the 

contribution of stretch-activated channel-dependent calcium influx to the development of 

membrane lesions. If the prevalence of membrane lesions increases with contraction 

(based on dysf-pHGFP accumulation and calcium indicator fluorescence increases), 

and the development of lesions is not affected by the presence of streptomycin, then it 

can concluded that contraction leads to sarcolemmal disruption in dystrophic models 

likely due to impaired sarcolemmal stability, and not as a secondary consequence of 

increased stretch-induced calcium channel activation.  

 In addition to in-vitro analysis of sarcolemmal wounding, these models would 

also serve as useful tools to explore the development of sarcolemmal lesions in 

dystrophic muscle in-vivo. It has been assumed that prevalence of sarcolemmal rupture 

increases in dystrophic muscle following exercise due to the finding that CK is elevated 

in dystrophic muscle and EBD uptake into skeletal muscle from dystrophic mice 

increases following exercise [13], but direct examination of membrane lesions in 
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skeletal muscle following exercise in-vivo has not been definitively shown. Therefore, 

the presence of sarcolemmal lesions (dysf-pHGFP accumulation) could be examined in 

longitudinal sections of skeletal muscle from WT-TG mice compared with DGC-deficient 

TG mice with or without treadmill exercise. Alternatively, development of sarcolemmal 

lesions could be analyzed in skeletal muscles subjected to in-situ lengthening 

contraction protocols which would allow examination of "injured" versus "non-injured" 

muscles from individual mice within each genotype. If the number of sarcolemmal 

lesions increases in DGC-deficient muscle fibers following exercise or lengthening 

contraction to a greater extent than in normal skeletal muscle, it could be concluded that 

development of sarcolemmal wounds following contraction may be a common 

mechanism by which disruption of the DGC leads to the development of muscular 

dystrophy. It is unclear whether muscle fibers in dystrophic muscle take up EBD as a 

result of small sarcolemmal lesions or whether EBD labels a more catastrophic injury 

such as muscle fibers undergoing a "hyper-contraction clot". Further, whether EBD 

positive fibers are the only fibers that have undergone sarcolemmal lesions, or whether 

formation of small sarcolemmal injuries precedes EBD uptake has not been explored. 

Therefore, analysis of exercise-induced sarcolemmal lesions in WT-TG and DGC-

deficient TG mice injected with EBD could be used to examine the relationship between 

the development of sarcolemmal lesions and the uptake of EBD in-vivo. These findings 

will have important implications given that uptake of EBD does not appear to be uniform 

throughout dystrophic muscles [142], and does not occur in skeletal muscle from all 

models of muscular dystrophy [18, 143]. Thus, an understanding of whether 

sarcolemmal lesions occur in the absence of EBD uptake may shed light on the 



117 
 

relationship between sarcolemmal wounds and EBD uptake and whether EBD uptake 

should be used as the sole indicator to identify membrane instability in novel mouse 

models with a suspected muscular dystrophy phenotype.  

 A deeper understanding of how sarcolemmal lesions develop in-vivo across a 

variety of muscular dystrophies is a critical question, as the development of 

sarcolemmal wounds has been proposed as a unifying mechanism for the development 

of muscular dystrophy, but has not been directly examined. If development of 

sarcolemmal lesions is a critical pathway by which genetic mutations lead to muscular 

dystrophy, then development of therapeutics aimed at protecting the sarcolemma from 

injury or restoring plasma membrane integrity following wounding could be an effective 

therapeutic approach. The studies outlined above would directly examine for the first 

time whether the development of sarcolemmal lesions following contraction-induced 

injury is a common occurrence in dystrophic muscle, and would lead to a deeper 

understanding of plasma membrane defects associated with DGC-deficiency in skeletal 

muscle. 

 

Conclusions 

Membrane resealing is an evolutionarily conserved process by which cells repair even 

the most severe wounds in the plasma membrane. Impaired membrane resealing 

results in muscle disease [18, 52], which makes enhancement of membrane resealing 

an attractive therapeutic target [95]. However, the mechanism by which the sarcolemma 

is resealed in normal muscle is largely unknown. The goal of our study was to examine 

the behavior of dysferlin-containing membranes following wounding in skeletal muscle, 
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and determine the contribution of the cytoskeleton to dysferlin-mediated membrane 

repair in skeletal muscle. Our data support the novel model that recruitment of 

sarcolemma-derived dysferlin and formation of damage-induced vesicles contribute 

contribute to membrane repair in skeletal muscle, and demonstrate for the first time, 

that dynamic interactions between dysferlin-containing membranes and the 

cytoskeleton are critical for membrane repair in adult skeletal muscle. In addition to the 

mechanistic analysis of membrane repair in skeletal muscle, our novel dysf-pHGFP TG 

mouse model will serve as a useful tool to examine membrane wounding and activation 

of membrane repair in diseases of skeletal muscle, including the muscular dystrophies. 

Our data provide important mechanistic evidence that will serve as the basis for 

understanding dysferlin-mediated membrane resealing, and the development of novel 

therapeutics for enhancing membrane repair to treat muscle diseases.  
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Figure 4-1. Proposed model for membrane resealing in skeletal muscle cells.  

A) Dysferlin localizes to the plasma membrane and transverse tubules in resting striated 

muscle cells. B) After wounding, cortical actin (red) pulls adjacent dysferlin containing 

sarcolemma toward membrane lesions (arrows), constricting the size of the wound. 

Simultaneously, dysferlin from distal portions of the fiber is endocytosed into dysferlin-

containing vesicles. C) Dysferlin-containing vesicles undergo vesicle-vesicle fusion on 

microtubules (blue) to form large dysferlin-containing vesicles that "plug" the lesion via 

interactions with the stable dysferlin-rich "active-zone". 
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Figure 4-2. Contribution of dysferlin-containing vesicles to membrane resealing in 

adult skeletal muscle. A) Proposed model to examine the contribution of damage-

induced dysferlin-containing vesicles to membrane repair in adult skeletal muscle. Dysf-

mCherry is constitutively fluorescent, and will reveal all dysferlin populations at nascent 

patches. Dysf-pHGFP is not fluorescent within acidic vesicles. The combination of both 

labels will provide relative estimate of dysferlin at the PM (red and green) and dysferlin 

only in vesicles (red alone). B) Laser wounding of dysf-mCH TG fibers will be used to 

examine vesicle behavior. C) Crosses between Dysf-mCh and Dysf-pHGFP (left) and 

Dysf-mCh and Dysf-eGFP (right). D) Potential outcomes of laser wounding experiments 

outlined in C. If dysferlin-containing vesicles contribute to patch formation, relative 

red:green intensity within the patch will be shifted toward red>green due to pHGFP 

quenching. 
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Figure 4-3. Potential role for myoferlin in damage-induced endocytosis of 

dysferlin and membrane repair in adult skeletal muscle cells. A) Simplified 

schematic of the role for myoferlin in damage-induced endocytosis of dysferlin following 

wounding in adult skeletal muscle fibers. B) FM1-43 dye uptake assay could be used to 

assess membrane resealing in isolated myof-KO skeletal muscle fibers. C) Genetic 

cross of myof-KO and dysf-pHGFP mice to examine endocytosis of dysferlin in 

myoferlin-deficient muscle. D) Genetic cross of myof-KO and dysf-mCh to examine the 

formation of dysferlin-containing vesicles following membrane wounding in myoferlin-

deficient muscle. 
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Figure 4-4. Proposed role for gamma actin in damage-induced recruitment of 

sarcolemmal dysferlin and membrane resealing adult skeletal muscle fibers. A) 

Simplified schematic of the role for gamma actin in damage-induced patch-formation 

following wounding in adult skeletal muscle fibers. B) FM1-43 dye uptake assay could 

be used to assess membrane resealing in isolated gamma actin deficient skeletal 

muscle fibers. C) Genetic cross of gamma actin-KO and dysf-pHGFP mice to examine 

endocytosis of dysferlin in gamma actin-deficient muscle. D) Genetic cross of gamma 

actin-KO and dysf-mCh to examine the formation of dysferlin-containing vesicles 

following membrane wounding in gamma actin-deficient muscle. 
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