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ABSTRACT

Numerical Simulation Of Guided Waves In Thin Walled Composite Structures

by

Kalyan Sreenivas Nadella

Chair: Professor Carlos E. S. Cesnik

The success of guided waves (GW) in the area of nondestructive evaluation/testing

(NDE/NDT) has spurred their utilization in structural health monitoring (SHM). GW

present promising possibilities in developing SHM systems as they can travel long dis-

tances over the structure’s surface, and also through its thickness. In addition to damage

detection, GW are capable of providing the overall degradation state of the material in

terms of stiffness change.

Wave propagation has been studied extensively for isotropic materials, but studies for

composite structures are still in the beginning stages. A good understanding of the GW

propagation is required to build robust and reliable SHM systems. It has been shown that

Local Interaction Simulation Approach (LISA), a numerical method based on finite dif-

ference transformations, is capable of efficiently and accurately modeling GW generation,

propagation, and damage interaction in engineering structures.

First, the basic theoretical development for the University of Michigan Local Inter-

action Simulation Approach (UM-LISA) is presented. Then LISA is extended to model

three-dimensional (3D) multi-layered orthotropic structures with nonuniform cell aspect

xvii



ratios. The iterative equations for the simulations are extended for orthotropic materials

in a non-principal axis frame, which will benefit in modeling generic laminated composite

structures. The validation studies are performed against experimental data.

UM-LISA is further developed to model the piezoelectric actuator effects. The iterative

equations are extended for piezoelectric materials by taking into account the electrome-

chanical coupling of the governing equilibrium equations. New constitutive and compati-

bility conditions are considered to account for the coupling in the electrical and mechanical

parameters. The iterative equations calculate mechanical displacements in an explicit time

marching scheme, whereas the electric potentials are calculated using an implicit scheme.

Studies are carried out to demonstrate the improvements in modeling GW generation using

piezo-coupled version of the UM-LISA framework.

These studies demonstrate the advantages of UM-LISA as an advanced multiphysics

numerical framework to model GW generation and propagation in thin-walled composite

structures.
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CHAPTER 1

Introduction

Functionality, endurance and lower cost of operation are some of the most desirable

characteristics of engineered structures. To ensure these qualities, estimation of the me-

chanical system’s overall condition and remaining life is critical. This can be achieved by

employing appropriate damage prognosis systems. Structural health monitoring (SHM) is

one of the main components of damage prognosis. It can monitor and provide information

about the possible presence of damage in the structure. Foremost among active schemes

for SHM are guided waves (GW)-based methods. These are capable of carrying out main-

tenance checks on demand. A good understanding of the GW characteristics in modern

engineering structures is required to build robust and reliable structural health monitoring

systems.

This chapter presents a brief introduction to SHM and GW. The current state of GW

modeling is described and the need for an alternative flexible modeling tool is introduced

along with an outline of the thesis.

1.1 Structural Health Monitoring

Damage prognosis of an engineering system can be defined as the estimation of the

remaining useful life based on history of operation, existing state, future load conditions

and possible damage events [1]. In aerospace structures, this estimation is highly critical in

optimizing scheduled maintenance to reduce downtime.
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More recently, a DOD Roadmap regarding structural health and usage monitoring in-

dicated that it plans, “in the not too distant future, to transition from usage monitoring

to individual component damage tracking, to enhance our health assessment capability

with better prediction of fatigue for each dynamic component and fatigue critical area” [2].

Along with fatigue, wear and damage limit structural life are common reasons for replace-

ment of critical rotorcraft components, such as rotor blades and fuselage parts. Damage and

usage monitoring are essential to the development of timely and cost effective maintenance

of rotorcraft. According to Ref. [3], it is estimated that 8% of any rotary-wing fleet should

be overhauled each year to maintain maximum readiness and safety. Figure 1.1 shows the

distribution of airframe defects encountered during the UH-60 airframe condition evalua-

tion cycle, where the occurrence of cracks and loose fasteners were observed as prevalent

defects. Effective monitoring of these hot-spots, along with those on the rotor, can sub-

stantially reduce inspection and maintenance costs and extend the operational life of an

aircraft. Such monitoring relies on efficient, multifunctional sensors for loads monitoring

and structural integrity estimation, which are key to the development of condition-based

maintenance processes.

structural health monitoring (SHM) systems usually involve the integration of networks

of transducers, data transmission, implementation of algorithms and processing ability

within the structures. SHM systems can be broadly classified into active schemes and

passive schemes depending on the use of external stimuli. Passive schemes usually imple-

ment fiber optic sensors or foil strain gauges. They do not require on-board actuators to

operate but require high sensor densities on the structure, which is a severe drawback. Ac-

tive schemes utilize transducers, which are capable of exciting the structure and inquiring

for damages. Foremost among active schemes for SHM are GW-based methods.
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Figure 1.1: Distribution of defects on a UH-60 airframe during condition evaluation cy-
cle [3].

1.2 Waves and Structural Health Monitoring

1.2.1 Waves

A mechanical wave can be described as a disturbance, vibration or oscillation that prop-

agates through a medium, usually accompanied by energy transfer. The physical medium

deforms to allow the wave propagation but there is no permanent transfer of mass asso-

ciated with wave motion. Common examples of mechanical waves include sound waves,

ocean waves and the vibration of membranes in percussion instruments.

Mechanical waves can be broadly classified based on the vibration direction of the

particles in a medium. If the particles oscillate in the direction of the wave propagation,

they are called longitudinal (P) waves (also known as primary waves or pressure waves).

If the particles oscillate in the direction perpendicular to the wave propagation direction,

they are called shear waves (S) (also known as secondary waves or transverse waves).

More information regarding waves and wave propagation in solid media can be found in

Ref. [4–10]
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Surface waves are another class of waves that exist in nature. These waves are usually

accompanied by circular motion of the surface particles, predominantly at the interfaces of

two media. Most of the waves observed in bodies of water belong to this category. The

surface waves can be further classified as Love waves and Rayleigh waves. Love waves

have only transverse motion associated with the particles, whereas Rayleigh waves have

both longitudinal and transverse components. Although Rayleigh waves have been used

for damage detection in the past [11–17], they propagate on the surface of semi-infinite

media, which makes them suitable in detecting only the surface and subsurface defects.

In engineering structures, the damage can originate inside the structure and evolve to the

surface just before the component fails catastrophically.

1.2.2 Lamb Waves

As presented in Sec. 1.2.1, waves travel in a solid medium in the form of longitudinal

or shear waves. In a three-dimensional (3D) solid material, the shear waves can be further

classified as shear horizontal (SH) or shear vertical (SV) waves [4,5] based on the direction

of polarization. In thin-walled structures, coupling of the shear vertical and longitudinal

waves results in a different class of waves called Lamb waves. They were first presented

in 1917 by the British applied mathematician, Horace Lamb, and the waves were named

after him. Lamb waves were not studied extensively until the 1960’s when Gazis [18] and

Viktorov [10] provided further details regarding the Lamb wave solution. Following this,

Firestone [19,20] found a practical way to utilize Lamb waves for damage detection which

spurred the utilization of Lamb wave-based GW for damage interrogation, in the fields of

nondestructive evaluation/testing (NDE/NDT) and SHM.

1.2.3 Guided Waves for Structural Health Monitoring

GW are mechanical waves which follow a path determined by boundary conditions,

usually in the form of geometrical features. The advantage of using GW is their ability
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to be transmitted over long distances with little attenuation. Examples of guided waves

include Rayleigh waves (surface of semi-infinite media), Stonely waves (interface of two

elastic media) and Lamb waves (thin-walled structures). The success of guided waves in

the area of NDE/NDT has spurred their utilization in SHM [21]. GW present promising

possibilities in developing SHM systems as they can travel over the surface of the substrate,

and also through the thickness of the structure. By controlling the testing parameters such

as excitation frequency, GW can be sensitive to specific defects in terms of both their

location and size. In addition to damage detection, GW are capable of providing the overall

degradation state of the material in terms of stiffness change.

Although using GW for SHM is promising, there are several complications. At any

given frequency, multiple modes co-exist and most of the waves are highly dispersive in

nature. Propagation characteristics, such as wave speeds and amplitude, are dependent

on the elastic properties of the material, which complicates the implementation of GW

for composites. Wave propagation has been studied extensively for isotropic materials [4,

5], but studies for composite structures are limited. A good understanding of the GW

propagation characteristics is required to build robust and reliable SHM systems. This is

essential as there has been a gradual accretion of composite-based structures in modern

manufacturing industries because of their superior physical attributes, such as high specific

strength-to-weight and stiffness-to-weight ratios, as well as long fatigue life over metallic

structures.

1.2.4 Guided-wave Generation

There are multiple options for the generation of GW in structures. A review of the re-

cent developments in this field was presented by Raghavan and Cesnik [21]. Piezoelectric

materials bonded to the surface or embedded in the structure are the most commonly used

excitation methods. Piezoelectric transducers work on the principle of piezoelectricity,

which can be defined as the ability of certain materials to generate electrical charge under
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(a) PZT (b) MFC (c) CLoVER

Figure 1.2: Different transducers used for wave generation.

mechanical stress. The most prominent of the piezoelectric materials used for the transduc-

tion of GW is an inorganic ceramic material called Lead Zirconium Titanate (PZT). PZT

materials have been used in the form of surface-bonded wafers (Fig. 1.2(a)) to generate

GW in structures, but their brittle nature and non-conformability have limited their use on

highly curved surfaces. The macro fiber composite (MFC) (Fig. 1.2(b)) transducers, in-

troduced by Wilkie et al. [22], have surmounted the shortcomings of the PZT wafers by

providing a high-authority, flexible, and resilient transducer for a variety of applications.

An ideal SHM transducer is resistant to damage due to environmental conditions, can

be easily bonded onto curved surfaces, and best exploits the limited input energy to max-

imize reflections from possible damage sites. Although MFCs have most of the required

characteristics of an ideal transducer, including the ability to focus the emitted waves along

a given direction (and, therefore, cover longer ranges or use less energy), they lack the

ability to interrogate and receive signals from all directions. Focused waves and steering

have been achieved with the help of transducer arrays [23–28]. These use construction/de-

struction of signals to generate the focused GW, which is inefficient due to the additional

energy used for shaping and not to actually determine the level of damage. The Composite

Long-range Variable-length Emitting Radar (CLoVER) [29, 30] transducer, illustrated in

Figure 1.2(c), has been designed to leverage the strengths of traditional MFC transducers

while adding 360-deg coverage in an efficient way.
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1.3 Modeling Guided Waves

The utilization of GW for SHM systems requires an in-depth understanding of wave

propagation. There are many factors affecting the wave characteristics in structures such

as boundary conditions, initial conditions (temperature, pre-stress, etc.), transducer size

and location, and the material properties of the substrate. In the past, 3D elasticity-based

theories [4, 5] were used to describe the wave propagation in isotropic and anisotropic

media. Obtaining dispersion relations of Lamb waves in anisotropic media was the focus

of some researchers [31–33]. Theoretical models are restricted to infinite or semi-infinite

media. Several analytical and numerical methods have been proposed to address wave

propagation in practical structures.

1.3.1 Analytical and Semi-analytical Modeling

The use of Kirchhoff plate theory for wave propagation has been limited as shear defor-

mation effects which are important in the wave propagation problems [34, 35] were disre-

garded in this theory. Mindlin plate theory [34] has been a popular choice for researchers in

modeling wave propagation using analytical methods. Lin and Yuan [36] adopted Mindlin

plate theory to model wave propagation by taking both transverse shear and rotary iner-

tia effects into account. Classical laminate theory was used to address the stacking of the

actuator and substrate by assuming linear distribution of strains across the substrate and

PZT [37]. A constant strain field was considered inside the sensor area and the response

was calculated based on an equivalent capacitor. The electromechanical coupling was not

considered in the modeling. Rose and Wang [38] used Mindlin plate theory to derive ex-

pressions for a substrate’s response to point force and point momentum input. Later, Rose

et al. [39] used the same theory, along with components of diffraction tomography, for

imaging some damage types observed in plate-like structures. This method is limited be-

cause only certain damages, which can be represented as flexural inhomogeneities, are able
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to be modeled. Although there are advantages to using Mindlin plate theory, it is limited

to flexural modes and only appropriate to resolve wavelengths greater than approximately

twice the plate thickness [39].

Further down the line, higher order plate theories [40–42] and semi-analytical matrix

methods [43–48] have been used to model wave propagation in composite-laminated infi-

nite plates. Recently, Raghavan and Cesnik [46] developed an elasticity-based formulation

for GW excitation by finite dimensional piezoelectric transducers in composite plates. This

study aimed at investigating the excitation and propagation of GW by finite-dimensional

piezoelectric-based transducers in composite plates through theoretical modeling and ex-

perimental testing. The model was able to capture the multi-modal nature of GW and is also

valid at high frequency-thickness regions. Although analytical/semi-analytical models are

able to predict the GW propagation, they are restricted to simple composite structural fea-

tures and boundary conditions. Since modeling boundary reflections, damage interaction,

and geometric complexities (joints, stiffeners, rivets, varying thicknesses, etc.) become

difficult using analytical models, several numerical computational methods have been pro-

posed to address them.

1.3.2 Numerical Modeling

Lee and Staszewski [49] provided a good review of numerical methods used for mod-

eling GW. In the past, traditional methods utilized finite difference (FD) [50–55] and finite

element (FE) [56–61] methods. FD methods for wave propagation have been traditionally

used in the field of geophysics [55] and in seismic-wave propagation modeling [62–66].

Their utilization in the field of wave propagation in engineering structures has been limited

because of the requirement of smoothing parameters for material interfaces with impedance

differences which greatly increases the computational requirements and associated numer-

ical errors [67]. The FE methods are implemented using an implicit scheme [68] or an

explicit scheme [69]. Although implicit schemes are unconditionally stable, the larger com-
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putational effort required to solve the linear system of equations has limited its utilization

for wave propagation. Explicit schemes, on the other hand, might provide improved per-

formance but require a smaller timestep to satisfy stability conditions, leading to numerical

error accumulation [70] and spurious wave oscillations [70, 71].

Later on, the boundary element method (BEM) [72] was introduced. The method is

based on converting the volume integrals used in traditional FE to surface integrals using

Green’s functions. The most advantageous feature of BEM is its ablility to model infi-

nite and semi-infinite domain problems, as it requires discretization of the surface rather

than the volume. Although the method has shown promise in the field of wave propaga-

tion [73–80], it is not efficient for thin-walled structures and finite media because of the

large surface/volume ratio and the close proximity of surface nodal points on either side,

which can lead to inaccuracies.

Another derivative of the FE method is the spectral element method (SEM). SEM

is further classified as either a subparametric approach [81] or frequency domain formu-

lation [82]. The frequency domain formulation [83, 84] has been used for characterizing

wave propagation in one-dimensional (1D) structures [85–87]. The shape functions in SEM

are formulated by utilizing the exact solution for the governing equations in the frequency

domain. The frequency transformation enables the conversion of transient wave equations

defined by partial differential equation (PDE) into ordinary differential equation (ODE),

which are solved easily. More details for SEM can be found in Refs. [88, 89]. Due to the

exact form of the shape functions, SEM provides more accurate results with less compu-

tational time when compared with standard FE methods. Although SEMs are superior to

FE methods, the advantages are limited for simple structures where the exact shape func-

tions can be calculated. Some lesser known numerical methods for characterizing wave

propagation are listed in Stepinski et al. [90] with appropriate references.
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1.3.3 Local Interaction Simulation Approach

An efficient numerical alternative to accurately model wave propagation is the Local In-

teraction Simulation Approach (LISA). This method is based on iterative equation (IE) for

“unit cells” that are used to represent/discretize the model. The material properties in LISA

are assigned to the cells, whereas the field variables are calculated at nodes constituting the

cells. The actual IEs are derived from the elastodynamic equilibrium equations. Although

LISA is similar to FD methods in its resolution of spatial and temporal derivatives, it differs

in the implementation of the sharp interface model (SIM), which allows for physical and

unambiguous treatment of interface discontinuities without the use of smoothing parame-

ters as in traditional FD methods [67]. The SIM enforces the continuity of displacement

and stress field across the interfacial nodes.

The LISA formulation was introduced by Delsanto and co-workers. The first formula-

tion was presented for 1D LISA [91] and subsequently the two-dimensional (2D) LISA [67]

and three-dimensional (3D) LISA [92] formulations were presented. The equations are

capable of modeling homogenous and non-homogeneous orthotropic media oriented in a

principal reference frame. One of the initial motivations for the development of LISA was

its capability of being deployed as a highly parallelized numerical tool for wave propaga-

tion.

Subsequently, the framework was adopted and implemented by several researchers,

such as Agostini et al. [93, 94], to model orthotropic structures in a principal reference

frame, and by Lee and Staszewski [49,95], to model GW propagation and damage interac-

tion in isotropic structures using the 2D LISA formulation. Ruzzene et al. [96] used the 2D

LISA approach to model wave propagation in isotropic plates for simple damage interaction

studies and compared the results with laser vibrometry data. The 2D LISA was later used

by Dobie et al. [97] to model wave propagation and damage interaction using air-coupled

ultrasonic scanners in aluminum plates and Borkowski et al. [98] to model GW interaction

with damage in aluminum lug joints. Spencer et al. [99] utilized LISA to estimate material
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elastic properties in multi-layered composite plates based on wave propagation. Stepinski

et al. [100] used LISA to review the beampatterns of 2D actuator arrays.

Recently, LISA has also been used for studying wave propagation in non-classical mate-

rials, and newer physical/biological phenomenon. Hirsekorn et al. [101] studied wave char-

acteristics in sonic crystals consisting of local resonators, and Scalerandi et al. [102–105]

used modified LISA formulations to study vibrations in nonlinear elastic bars [102], growth

of thin semiconducting films [105], and self-regulatory mechanisms in cell behavior [103].

The 3D LISA framework was extended by Sundararaman and Adams [106] to model or-

thotropic media with non-uniform spatial discretizations and a visco-elastic damping term.

Although this LISA formulation has a wider application range, it was primarily utilized

to model GW propagation and damage interaction in isotropic plates with uniform spatial

discretization. The GW propagation and damage interaction studies with composites were

limited and restricted to orthotropic layer rather than a laminate.

As previously mentioned, easy and efficient parallelization is one of the key advantages

of LISA formulation. For several decades, Moore’s law [107] of doubling the transistor

density on integrated circuits was driving computational prowess. Recently, however, such

improvements are coming to an end [108, 109]. The new direction of computational ad-

vancement has been graphics processing unit (GPU) computing. Initially driven by the

enormous market for video games, it is increasingly applied in scientific computing. GPU

computing is especially useful in areas where computational requirements are large, suffi-

cient scope for parallelization exists, and throughput is more important than latency [110].

Similar to other scientific communities, there has been an increased interest in utilization of

GPU computing for wave propagation studies [111–116]. More recently, Paćko et al. [111]

and Bielak et al. [117,118] integrated LISA with GPU architecture and observed increased

computational efficiency in simulating GW propagation.
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1.4 Research Objectives and Dissertation Overview

The main objective of this dissertation is to develop a multi-physics-based numerical

formulation to enable the efficient and accurate modeling of GW generation, propagation

and sensing for the development of GW SHM. This was implemented in the University of

Michigan Local Interaction Simulation Approach (UM-LISA) code. The simulation frame-

work aims to model GW in layered orthotropic composite laminates including the elec-

tromechanical coupling effects between piezoelectric transducers and the substrate. The

numerical tool is validated against experimental data.

Chapter 2 introduces the governing equations and constitutive relations used in the de-

velopment of UM-LISA. The finite difference relations used to resolve the spatial deriva-

tives are presented along with SIM, which enforces the continuity of displacements and

stresses along different material interfaces. The iterative equations of UM-LISA frame-

work are presented for generalized orthotropic laminates in non-principal reference axes.

Later, the chapter describes the piezoelectric coupling between the transducers and the sub-

strate using electromechanical constitutive relations and the final 3D iterative equations are

presented for the piezoelectric coupled UM-LISA.

Chapter 3 gives an overview of the implemented multi-physics numerical analysis

framework, UM-LISA. Contributions from different researchers are summarized. The

main functions of the framework are presented in a block diagram. Details for model

initialization, actuation type, excitation, and implementation are discussed. The chapter

provides useful information for code migration for future developers to integrate it with

mesh generation software or incorporate GPU based parallel computing.

Chapter 4 presents basic convergence studies for the UM-LISA framework. Prelimi-

nary studies are performed to determine the effect of spatial and temporal discretizations.

Next, simulations are conducted to determine the convergence rate, and characterize the

evolution of error for cubic and distorted (cuboid) grids. Simulations are also carried out

for surface mounted actuators to determine the minimum discretization required for the ac-
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tuator. Finally, suggestions regarding the optimal parameters while utilizing UM-LISA for

wave propagation are presented.

Chapter 5 presents the numerical analysis results for several cases. The displacement

field at the interaction between the actuator and substrate is studied for different substrates

that highlight the effect of substrate’s anisotropy in GW generation and also how the new

piezo-coupled formulation differs from the traditional prescribed displacement methods.

The ability of the UM-LISA to model electromechanical coupling between the transducer

and the substrate is taken advantage of while simulating the frequency response of the piezo

sensors. The numerical tool is also used for simulating damage interaction studies.

Finally, the results from this thesis are compiled in Chapter 6, where the key contri-

butions in modeling GW for SHM are presented and suggestions for future research are

noted.
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CHAPTER 2

Theoretical Formulation

This chapter presents the formulation for the UM-LISA framework. Equilibrium equa-

tions, constitutive relations, and the compatibility conditions are derived for layered com-

posite and later extended to piezo-coupled version of UM-LISA. The chapter also presents

the FD transformations and the implementation of SIM in the derivation of the recursive

relations. The final iterative equations are presented and the newly introduced terms in the

iterative equations highlighted.

2.1 Original Formulation

The original formulation methodology for LISA [67,91,92] is presented as a flowchart

in Fig. 2.1. The iterative equations were developed from the elastodynamic equilibrium

equations in the displacement form. FD transformations were used to resolve the spatial

derivatives, and SIM was employed to enforce displacement and stress continuity condi-

tions to derive the recursive relations. It should be noted that the original formulation was

presented for uniform cell size (∆x1 = ∆x2 = ∆x3) and orthotropic media in a principal

reference frame which limits its utilization for thin walled anisotropic composite structures.
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2. Electromechanical constitutive and 

compatibility conditions 

3. Voigt’s notation to simplify the equations

5. Customary FD transformations for second-

order space derivatives at given time

6. Sharp Interface Model (SIM): Continuity 

of displacement and stress at interface of the 

material inhomogeneity  

Elimination of unknown terms

7. Linear combination of equations to obtain 

explicit expressions for displacements

8. Displacment field calculated explicitly and 

induced potentials calculated implicitly

4. Governing equations in terms of mechanical 

displacements and electric potentials 

1. Elastodynamic equilibrium equations and 

charge equations of electrostatics

Similar FD transformation for time derivatives

18 nearest neighbors of a node

Figure 2.1: Overview of LISA’s original formulation as presented in Ref. [92].

2.2 UM-LISA Formulation: Layered Composite Laminates

This section presents the UM-LISA formulation for orthotropic layered composites in

non-principal reference frames with non-uniform cell discretizations (∆x1 6= ∆x2 6= ∆x3).

The iterative equations which form the basis of the LISA method are developed from

the elastodynamic equilibrium equations in the displacement form. Spatial and temporal

derivatives are then resolved with FD transformations to obtain the IEs for a homogeneous

medium. To address the inhomogeneity in practical applications, SIM is employed at the

interface of different materials to derive the necessary recursive relations. Finally, the dis-
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placement components at a particular node can be written as a function of displacements at

previous two time steps of the neighboring nodes. The outline for the derivation is shown

in Fig. 2.2, where the orange colored boxes indicate the augmentations to the basic the-

ory [92, 119] introduced here.

1. Elastodynamic equilibrium equations and 

constitutive law for orthotropic materials

2. Voigt’s notation to simplify the equations

18 nearest neighbors of a node

3. Customary FD transformations for second-

order space derivatives at given time

Similar FD transformation for time derivatives

5. Sharp Interface Model (SIM): Continuity 

of displacement and stress at interface of the 

two laminae 

7. Linear combination of equations to obtain 

explicit expressions for displacement

Discretization into unit 

cells and nodes

3D model: Composite 

Laminate

Prescribed displacements at t=0 and t=1

8. Displacement at time t+1 can be calculated 

based on displacement at time t-1 and t

4. Homogeneous media equations for each 

lamina in the laminate 

X1

X2

X3

X1

X2

X3

Generic lamina having 

variable properties 

compared to different plies

Orthotropic material in non 

-principle axis frame
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Variable discretizations 

along different directions

Figure 2.2: Overview of LISA’s theoretical formulation (orange colored blocks on the right
and left represent the new implementation aspects to the basic formulation).

2.2.1 Equations of Motion

The analysis begins with the elastodynamic equilibrium equations in the displacement

form as:

∂l(Sklmnwm,n) = ρẅk (k, l,m, n = 1, 2, 3) (2.1)

16



where S is the stiffness tensor, ρ the material density, and w the displacement field. The

first subscript in the displacement field indicates its component. Subscripts followed by a

comma denote spatial differentiation, and the dot represents differentiation with respect to

time. Voigt’s notation is applied to Eq. 2.1, which combines two indices into a single index,

i.e.,

V (kl) = kδkl + (1− δkl)(9− k − l) V (kl) = 1, .., 6

V (mn) = mδmn + (1− δmn)(9−m− n) V (mn) = 1, .., 6

(2.2)

resulting in:

SV (kl)V (mn)wm,nl = ρẅk (2.3)

where the indices k,m, n and l assume values 1, 2 and 3. The indices V (kl) and V (mn) are

calculated based on Eq. 2.2 and δ is the Kronecker-delta function. It should be noted that

Einstein notation is used to represent summation of repeated indices. Wave propagation for

non-isotropic media using LISA has been studied for laminates with orthotropic laminae

oriented along the principal axes [93, 106] in which most of the off-diagonal terms in the

associated stiffness matrix are zero, that is,

S◦ =



S◦
11 S◦

12 S◦
13 0 0 0

S◦
12 S◦

22 S◦
23 0 0 0

S◦
13 S◦

23 S◦
33 0 0 0

0 0 0 S◦
44 0 0

0 0 0 0 S◦
55 0

0 0 0 0 0 S◦
66


(2.4)

where S◦ represents the material properties in the principal (material) axis reference frame.

In most of the practical applications, laminae with different orientation are stacked to con-

struct the required composite structure. To address this issue, in-plane rotation of the or-

thotropic medium is considered in the formulation. A rotation matrix (R) used for in-plane

17



(X1X2-plane) rotation is given by:

R =



C2
θ S2

θ 0 0 0 −2 · Cθ · Sθ

S2
θ C2

θ 0 0 0 2 · Cθ · Sθ

0 0 1 0 0 0

0 0 0 Cθ · Sθ Cθ · Sθ 0

0 0 0 −Cθ · Sθ Cθ · Sθ 0

Cθ · Sθ −Cθ · Sθ 0 0 0 C2
θ − S2

θ


(2.5)

where Cθ is cos(θ) and Sθ is sin(θ), and θ is the angle between the ply material coordinate

system and the laminate global coordinate system. The new transformed stiffness matrix S

then becomes:

S = RS◦RT (2.6)

S =



S11 S12 S13 0 0 S16

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

0 0 0 S44 S45 0

0 0 0 S45 S55 0

S16 S26 S36 0 0 S66


(2.7)

where RT is the transpose of the rotation matrix, R. Once the new laminate stiffness

matrix is determined, FD transformations along with SIM are used to transform Eq. 2.3

into iterative equations.

2.2.2 Discretization

Unlike traditional FD methods, there is no need to model complex boundary conditions

or to introduce smoothing parameters while deriving the IEs. Further, the method is devel-
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oped for easy parallelization, as all displacement components can be calculated separately

based on the displacement components at previous time steps of the surrounding nodes.

The 3D structure can be discretized into nodes and unit cells as shown in Fig. 2.3. It should

be noted that a given unit cell has a unique material property, so it cannot span across dif-

ferent layers. To resolve the double spatial derivatives in space using FD transformations,

all eighteen nearest-neighboring points around a given point C (as shown in Fig. 2.4) are

required.

3D-Material Discretization into 

unit cells
Unit cells and 

nodes

Unit cell

Dx3

Dx2Dx1

X2X3

X1X1

X2X3

Figure 2.3: Schematic diagram showing the discretization in a 3D LISA formulation. The
black dots represent the nodes, and the cuboid between eight dots represents a unit cell.

A grid with non-uniform spatial discretization is considered for the derivation. Finite

difference relations are sufficient to transform the double spatial derivatives in space into

recursive relations for homogenous materials. For heterogeneous structures, the SIM [92]

is used to calculate the response at the “crosspoints” (the lattice points at the intersection

of cells). The SIM assumes that the stress and displacement variables are uniform within

a cell, and to maintain equilibrium and continuity, they are matched at the interface be-

tween cells. The extra conditions provided by the SIM incorporate the changes in stiffness,

density, or attenuation properties into the iterative equations.
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(i,j-1,k-1)
X1

X2

X3

C

(i+1,j,k-1)

(i+1,j-1,k)

(i+1,j+1,k)

(i+1,j,k)

(i-1,j,k)

(i-1,j-1,k)

(i-1,j+1,k)

(i-1,j,k+1)
(i+1,j,k+1)

(i,j+1,k+1)

(i,j,k+1)

(i,j,k-1)(i-1,j,k-1)

(i,j-1,k+1)

(i,j+1,k)

(i,j-1,k)
(i,j+1,k-1)

Figure 2.4: A generic point C at location (i,j,k) with eighteen nearest neighbors and the
Cartesian system used in the analysis.

2.2.3 Finite Difference Transformations and Sharp Interface Model

In addition to the point C and its eighteen nearest-neighboring points (Fig. 2.4), eight

points are considered as shown in Fig. 2.5(a) at a distance of δ << ∆xi (i=1,2,3), given by

(i + αδ, j + βδ, k + γδ) for α, β, γ = ±1. Equation 2.3 at the eight additional points for

the displacement component wk is represented as:

3∑
m=1

6∑
η=1

Si+αδ,j+βδ,k+γδ
ηξ wi+αδ,j+βδ,k+γδ

m,ξ =ρẅi+αδ,j+βδ,k+γδ
k

α, β, γ = ±1

k = 1, 2, 3

(2.8)

Although the basic finite difference expressions for the derivation can be found in
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d
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X1

X2

X3
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d

e
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e

e

e

e

(b)

Figure 2.5: For a generic point C at location (i,j,k), (a) blue dots represent the 8 points
chosen to enforce displacement continuity, and (b) additional points shown as black squares
are used to enforce stress continuity conditions.

Sinor [119], most of them are presented here for notational consistency and error recti-

fication. The resulting equations for a particular component of displacement, wk (k = 1,

2, 3), can be combined at these new points. Continuity of displacement, wk, is obtained

by prescribing displacements at two different timesteps (initialization steps) and then en-

forcing same acceleration ẅk at subsequent timesteps [91]. The second-order derivatives

in Eq. 2.8 are resolved as:
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wi+αδ,j+βδ,k+γδ
k,x1x1

=
w
i+α/2,j,k
k,x1

− wi+αδ,j+βδ,k+γδ
k,x1

α∆xα1/2

wi+αδ,j+βδ,k+γδ
k,x2x2

=
w
i,j+β/2,k
k,x2

− wi+αδ,j+βδ,k+γδ
k,x2

β∆xβ2/2

wi+αδ,j+βδ,k+γδ
k,x3x3

=
w
i,j,k+γ/2
k,x3

− wi+αδ,j+βδ,k+γδ
k,x3

γ∆xγ3/2

wi+αδ,j+βδ,k+γδ
k,x1x2

=
wi+α,j+β,kk − wi+α,j,kk − wi,j+β,kk + wi,j,kk

αβ∆xα1 ∆xβ2

wi+αδ,j+βδ,k+γδ
k,x2x3

=
wi,j+β,k+γ
k − wi,j+β,kk − wi,j,k+γ

k + wi,j,kk

βγ∆xβ2 ∆xγ3

wi+αδ,j+βδ,k+γδ
k,x3x1

=
wi+α,j,k+γ
k − wi+α,j,kk − wi,j,k+γ

k + wi,j,kk

αγ∆xα1 ∆xγ3

(2.9)

where the remaining spatial derivatives have similar form. The first-order derivatives in

Eq. 2.9 are resolved as:

w
i+α/2,j,k
k,x1

=
wi+α,j,kk − wi,j,kk

α∆xα1

w
i,j+β/2,k
k,x2

=
wi,j+β,kk − wi,j,kk

β∆xβ2

w
i,j,k+γ/2
k,x3

=
wi,j,k+γ
k − wi,j,kk

γ∆xγ3

(2.10)

where the superscript for wk denotes a particular node in Fig. 2.4. It should be noted

that, the first derivative of wi+αδ,j+βδ,k+γδ
k for α, β, γ = ±1 remains unevaluated and is

eliminated when the stress continuity is enforced. To obtain continuity of stress, additional

points are introduced: (i + αε, j + βδ, k + γδ), (i + αδ, j + βε, k + γδ) and (i + αδ, j +

βδ, k + γε), with ε << δ << xi (i=1,2,3) represented as black squares in Fig. 2.5(b). The

derivatives associated with these points are resolved as:
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wi+αε,j+βδ,k+γδ
k,x1

= wi+αδ,j+βδ,k+γδ
k,x1

wi+αδ,j+βε,k+γδ
k,x2

= wi+αδ,j+βδ,k+γδ
k,x2

wi+αδ,j+βδ,k+γε
k,x3

= wi+αδ,j+βδ,k+γδ
k,x3

wi+αδ,j+βε,k+γδ
k,x1

= wi+αδ,j+βδ,k+γε
k,x1

=
wi+α,j,kk − wi,j,kk

α∆xα1

wi+αε,j+βδ,k+γδ
k,x2

= wi+αδ,j+βδ,k+γε
k,x2

=
wi,j+β,kk − wi,j,kk

β∆xβ2

wi+αε,j+βδ,k+γδ
k,x3

= wi+αδ,j+βε,k+γδ
k,x3

=
wi,j,k+γ
k − wi,j,kk

γ∆xγ3

(2.11)

Similar expressions follow for the other terms. It should be noted that, in the manner

discussed previously, the first derivative terms at the eight points shown in Fig. 2.5(a) re-

main unevaluated and are eliminated based on the stress continuity relations. The stress

components (τpl) can be written as:

τpl = Splmnwm,n (2.12)

Next, the stress continuity is enforced with the help of the following relations:

τ i+ε,j+βδ,k+γδ
p1 = τ i−ε,j+βδ,k+γδ

p1

τ i+αδ,j+ε,k+γδ
p2 = τ i+αδ,j−ε,k+γδ

p2 (p = 1, 2, 3)

τ i+αδ,j+βδ,k+ε
p3 = τ i+αδ,j+βδ,k−εp3

(2.13)

Using Eq. 2.8 at the eight surrounding points (i+αδ, j+βδ, k+γδ) and the select group

of stress continuity relations given in Eq. 2.13, the final IEs for the three-displacement

components are derived for the 3D case as:
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wi,j,k,t+1
1 =− wi,j,k,t−1

1 + 2wi,j,k1

− 2χ

8
wi,j,k1

∑
α,β,γ=±1

[
η2
xS̃11 + η2

yS̃66 + η2
z S̃55

]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃11w
i+α,j,k
1 + 2η2

yS̃66w
i,j+β,k
1 + 2η2

z S̃55w
i,j,k+γ
1

]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 + S̃66

)(
wi+α,j+β,k2 − wi,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 − S̃66

)(
wi,j+β,k2 − wi+α,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 + S̃55

)(
wi+α,j,k+γ

3 − wi,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 − S̃55

)(
wi,j,k+γ

3 − wi+α,j,k3

)]
− 2χ

8

∑
α,β,γ=±1

[
αβηxηyS̃16

(
wi,j,k1 − wi+α,j+β,k1

)]
− 2χ

8
wi,j,k2

∑
α,β,γ=±1

[
η2
xS̃16 + η2

yS̃26

]
− χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃36 + S̃45

)
wi,j,k3

]
+

2χ

8

∑
α,β,γ=±1

[
η2
xS̃16w

i+α,j,k
2 + η2

yS̃26w
i,j+β,k
2

]
+
χ

8

∑
α,β,γ=±1

[
βγηyηzS̃36

(
wi,j+β,k+γ

3 + wi,j,k+γ
3 − wi,j+β,k3

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηzS̃45

(
wi,j+β,k+γ

3 − wi,j,k+γ
3 + wi,j+β,k3

)]
+

2χ

8

∑
α,β,γ=±1

[
η2
z S̃45

(
wi,j,k+γ

2 − wi,j,k2

)]

(2.14)

24



wi,j,k,t+1
2 =− wi,j,k,t−1

2 + 2wi,j,k2

− 2χ

8
wi,j,k2

∑
α,β,γ=±1

[
η2
xS̃66 + η2

yS̃22 + η2
z S̃44

]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃66w
i+α,j,k
2 + 2η2

yS̃22w
i,j+β,k
2 + 2η2

z S̃44w
i,j,k+γ
2

]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 + S̃66

)(
wi+α,j+β,k1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 − S̃66

)(
wi+α,j,k1 − wi,j+β,k1

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 + S̃44

)(
wi,j+β,k+γ

3 − wi,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 − S̃44

)(
wi,j,k+γ

3 − wi,j+β,k3

)]
− 2χ

8

∑
α,β,γ=±1

[
αβηxηyS̃26

(
wi,j,k2 − wi+α,j+β,k2

)]
− 2χ

8
wi,j,k1

∑
α,β,γ=±1

[
η2
xS̃16 + η2

yS̃26

]
+

2χ

8

∑
α,β,γ=±1

[
η2
xS̃16w

i+α,j,k
1 + η2

yS̃26w
i,j+β,k
1

]
− χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃36 + S̃45

)
wi,j,k3

]
+
χ

8

∑
α,β,γ=±1

[
αγηxηzS̃36

(
wi+α,j,k+γ

3 + wi,j,k+γ
3 − wi+α,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηzS̃45

(
wi+α,j,k+γ

3 − wi,j,k+γ
3 + wi+α,j,k3

)]
+

2χ

8

∑
α,β,γ=±1

[
η2
z S̃45

(
wi,j,k+γ

1 − wi,j,k1

)]

(2.15)
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wi,j,k,t+1
3 =− wi,j,k,t−1

3 + 2wi,j,k3

− 2χ

8
wi,j,k3

∑
α,β,γ=±1

[
η2
xS̃55 + η2

yS̃44 + η2
z S̃33

]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃55w
i+α,j,k
3 + 2η2

yS̃44w
i,j+β,k
3 + 2η2

z S̃33w
i,j,k+γ
3

]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 + S̃44

)(
wi,j+β,k+γ

2 − wi,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 − S̃44

)(
wi,j+β,k2 − wi,j,k+γ

2

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 + S̃55

)(
wi+α,j,k+γ

1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 − S̃55

)(
wi+α,j,k1 − wi,j,k+γ

1

)]
− χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃36 + S̃45

)(
wi,j,k1 − wi,j+β,k+γ

1

)]
− χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃36 + S̃45

)(
wi,j,k2 − wi+α,j,k+γ

2

)]
− χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃36 − S̃45

)(
wi,j,k+γ

1 − wi,j+β,k1

)]
− χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃36 − S̃45

)(
wi,j,k+γ

2 − wi+α,j,k2

)]
+

2χ

8

∑
α,β,γ=±1

[
αβηxηyS̃45

(
wi+α,j+β,k3 − wi,j,k3

)]

(2.16)

where ηx = 1/∆xα1 , ηy = 1/∆xβ2 , ηz = 1/∆xγ3 , and ∆xα1 , ∆xβ2 , and ∆xγ3 are the spatial

steps along X1, X2 and X3 axes (Fig. 2.5(a)), respectively. The current time t is assumed

where it is not mentioned. S̃11 = S11(i+ α, j + β, k + γ) represents one of the eight cells

surrounding the point C depending on the choice of (α, β, γ) from (+1,−1), and similar

expressions hold for the other stiffness terms. χ = (∆t2/ρ̄), where ∆t is the time step used

in the simulation and ρ̄ is the average density of all the eight cells surrounding point C as

shown in Fig. 2.4. The part of the Eqs. 2.14-2.16 encapsulated in a color box represents the
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newly introduced terms associated with the stiffness matrix rotation to capture laminated

composites.

The parameters (cuboid grid sizes and time step) used in the discretization of the

Eqs. 2.14-2.16 are selected based on the Courant-Friedrichs-Lewy (CFL) criterion. The

CFL criterion is a constraint that bounds the time step and cell size by the relation:

CFL = cmax∆t

√
1

∆x2
1

+
1

∆x2
2

+
1

∆x2
3

≤ 1 (2.17)

where cmax is the maximum wave speed. This criterion ensures proper capture of the wave

propagation in time and space for a given time step and grid spacing. The spatial grid sizing

should have at least 8 nodes per minimum wavelength, and according to Ref. [120], it is

also recommended to have an upper limit of 20 nodes per wavelength to avoid excessively

long run times and truncation errors. One important thing to note about cmax is that, it is

the maximum wave velocity that is aimed to be captured. In most of the cases, it is safe to

assume that the propagating wave speeds are lower than the maximum bulk velocity of the

material system, i.e.,

cmax =
√
Smax/ρ (2.18)

where Smax is the component of stiffness along the stiffest direction.

2.2.4 Guided Wave Generation in Prescribed Displacement LISA

As presented in Chapter 1, piezoelectric materials bonded to the surface or embed-

ded in the structure are the most commonly used excitation methods. The PZT wafers

(Fig. 2.6) are usually bonded onto the surface of the substrate to generate GW, as illus-

trated in Fig. 2.7.

In LISA, the input excitation has been traditionally modeled with prescribed displace-

ments (PDs). A predetermined displacement pattern was enforced on the nodes constituting
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Figure 2.6: PZT wafers usually used for GW generation.

X1

X2

X3

X1

X2

X3

X1

Figure 2.7: Schematic of PZT disc bonded on the top surface of a substrate for GW gener-
ation.

the actuator; more specifically, a 2D Gaussian energy distribution was considered for the

input excitation [49, 106, 121]. This distribution translates into an out-of-plane distribution

as shown in Fig. 2.8(b). More recently Nadella and Cesnik [122] implemented an in-plane

PD field to model the transducer excitation as seen in Fig. 2.8(a). The direction of the PD

for in-plane excitation is radial, and the mangnitude is proportional to the distance from

the center of the actuator. The in-plane PD takes into account the “pinching” effect [123]

of the actuator which makes it a better representation of the piezoelectric effects than the

out-of-plane displacement model.
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X1

X2

Amplitude

X3
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(a) Prescribed displacements method-I

Amplitude   

X3

X1

(b) Prescribed displacements method-II

Figure 2.8: Different modeling schemes for piezoelectric actuators.

2.3 UM-LISA: Piezo-coupled Formulation

Traditionally, the representation of a surface-mounted piezoelectric actuator to gener-

ate GW in LISA has been achieved by imposing PD [49, 122, 124]. Although PD-based

LISA formulation captured the essence of the GW propagation, it over-simplifies the GW

generation by not accounting for the electromechanical coupling between the piezoelectric

transducer and the substrate. Additionally, the anisotropic nature of the composite sub-

strate is not accounted for while prescribing the predefined displacement patterns as an

equivalent transducer response. In this section, LISA’s capability is extended to model the

actuator effects by accounting for piezoelectric material characteristics. This is achieved

by including the electromechanical coupling in the governing equilibrium equations, and

enforcing the coupling of the electrical and mechanical parameters by utilizing appropriate

constitutive and compatibility conditions. The final iterative equations calculate mechani-

cal displacements in an explicit time-marching manner, whereas the electric potentials are

calculated using an implicit scheme. The overview of the different steps in the formulation
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Figure 2.9: Overview of piezo-coupled UM-LISA formulation. The blue colored boxes
represent the modifications to include electromechanical coupling.

is presented in the Fig. 2.9.

2.3.1 Governing Equations

Following the path similar to the basic LISA development as shown in Sec. 2.2.1, we

begin with the elastodynamic equilibrium equations and the charge equations for electro-

statics [125]:
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∂l(τkl) = ρẅk (k = 1, 2, 3)

∂l(Dl) = 0

(2.19)

where τkl is the stress tensor, Dl is the electric displacement, and the ¨ represents dou-

ble differentiation with respect to time. The two constitutive relations for mechanical-

piezoelectric coupling are:

τkl = SEklmnεmn − eklmEm

Dk = eklmεlm + κSklEl

(2.20)

where SEklmn is the stiffness tensor at constant electric field, εmn is the strain tensor, Em is

the electric field, κSkl is the permittivity at constant strain, eklm is the tensor of piezoelectric

stress constants, and k, l,m and n are the indices for the tensors and vectors with a range

of values 1, 2 and 3. The linear strain-mechanical displacement relations and the electric

field-electric potential relations are given as:

εkl =
1

2
(wk,l + wl,k)

El = −ψ,l

(2.21)

where ψ is the electric potential. From this point onward, the superscripts for the tensors

are dropped for convenience. Voigt’s notation, represented by ‘V ’, is used to simplify the

notation during the analysis, resulting in:
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SV (kl)V (mn)wm,nl + eV (kl)mψ,ml = ρẅk

ekV (mn)wm,nk − κkmψ,mk = 0

(2.22)

As stated before, Einstein notation is used to represent summation of repeated indices.

For the current analysis, the mechanical material properties are considered for a generic or-

thotropic medium with in-plane rotation as shown in the Sec. 2.2.1 and electro-mechanical

properties for standard piezoelectric material, that is:

[
SV (kl)V (mn)

]
=



S11 S12 S13 0 0 S16

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

0 0 0 S44 S45 0

0 0 0 S45 S55 0

S16 S26 S36 0 0 S66



[
ekV (mn)

]
=


0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0



[κkl] =


κ11 0 0

0 κ22 0

0 0 κ33



(2.23)

32



2.3.2 Discretization, Finite Difference Transformations, and Sharp In-

terface Model

Most of the 3D structures can be discretized into nodes and unit cells as shown in

Fig. 2.3. As mentioned in Sec. 2.2.2, a given unit cell has unique material properties, so

it cannot span across different layers, and to resolve the double spatial derivatives in space

using FD transformations, all eighteen nearest-neighboring points around a given point C

(as shown in Fig. 2.4) are required. Non-uniform spatial discretization is considered for the

current derivation. Unlike homogeneous materials, heterogeneous materials require SIM

to resolve the double spatial derivatives in space into recursive relations. The SIM enforces

the continuity of stress field and displacement field across the interface cells. Similarly,

in this formulation, the SIM is extended to the continuity of electric displacement and

potentials. The extra conditions provided by the SIM incorporate the changes in mechanical

and electrical properties into the iterative equations [126].

To ensure the continuity of mechanical displacements and potentials, in addition to

the point C and its eighteen nearest neighbors (Fig. 2.5(a)), eight points are considered as

shown in Fig. 2.5(a) at a distance of δ << ∆xi (i=1,2,3), given by (i+αδ, j+βδ, k+ γδ)

for α, β, γ = ±1. Equation 2.22 can be represented as:

Si+αδ,j+βδ,k+γδ
V (kl)V (mn) wi+αδ,j+βδ,k+γδ

m,nl + ei+αδ,j+βδ,k+γδ
V (kl)m ψi+αδ,j+βδ,k+γδ

,ml = ρẅi+αδ,j+βδ,k+γδ
k

ei+αδ,j+βδ,k+γδ
kV (mn) wi+αδ,j+βδ,k+γδ

m,nk − κi+αδ,j+βδ,k+γδ
km ψi+αδ,j+βδ,k+γδ

,mk = 0

(2.24)

The finite difference expressions used in the derivation are shown only for ψ, as the

expressions for wk (k = 1, 2, 3) are presented in Sec. 2.2.3. The resulting equations can be

combined at these new points while the right-hand side of the equations are enforced to be
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the same at the eight surrounding points to obtain the continuity of mechanical displace-

ments and potentials. The second-order derivatives in Eq. 2.24 are resolved as:

ψi+αδ,j+βδ,k+γδ
x1x1

=
ψ
i+α/2,j,k
x1 − ψi+αδ,j+βδ,k+γδ

x1

α∆xα1/2

ψi+αδ,j+βδ,k+γδ
x2x2

=
ψ
i,j+β/2,k
x2 − ψi+αδ,j+βδ,k+γδ

x2

β∆xβ2/2

ψi+αδ,j+βδ,k+γδ
x3x3

=
ψ
i,j,k+γ/2
x3 − ψi+αδ,j+βδ,k+γδ

x3

γ∆xγ3/2

ψi+αδ,j+βδ,k+γδ
x1x2

=
ψi+α,j+β,k − ψi+α,j,k − ψi,j+β,k + ψi,j,k

αβ∆xα1 ∆xβ2

ψi+αδ,j+βδ,k+γδ
x2x3

=
ψi,j+β,k+γ − ψi,j+β,k − ψi,j,k+γ + ψi,j,k

βγ∆xβ2 ∆xγ3

ψi+αδ,j+βδ,k+γδ
x3x1

=
ψi+α,j,k+γ − ψi+α,j,k − ψi,j,k+γ + ψi,j,k

αγ∆xα1 ∆xγ3

(2.25)

The first-order derivatives in Eq. 2.25 are resolved as:

ψi+α/2,j,kx1
=
ψi+α,j,k − ψi,j,k

α∆xα1

ψi,j+β/2,kx2
=
ψi,j+β,k − ψi,j,k

β∆xβ2

ψi,j,k+γ/2
x3

=
ψi,j,k+γ − ψi,j,k

γ∆xγ3

(2.26)

It should be noted that the first derivative of ψi+αδ,j+βδ,k+γδ for α, β, γ = ±1 remains

unevaluated and are eliminated when the electric displacement continuity is enforced. To

obtain continuity of stress and electric displacement, additional points are introduced: (i+

αε, j+βδ, k+γδ), (i+αδ, j+βε, k+γδ) and (i+αδ, j+βδ, k+γε) with ε << δ << xi

represented as black squares in Fig. 2.5(b). The derivatives at these additional points are

resolved as:
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ψi+αε,j+βδ,k+γδ
x1

= ψi+αδ,j+βδ,k+γδ
x1

ψi+αδ,j+βε,k+γδ
x2

= ψi+αδ,j+βδ,k+γδ
x2

ψi+αδ,j+βδ,k+γε
x3

= ψi+αδ,j+βδ,k+γδ
x3

ψi+αδ,j+βε,k+γδ
x1

= ψi+αδ,j+βδ,k+γε
x1

=
ψi+α,j,k − ψi,j,k

α∆xα1

ψi+αε,j+βδ,k+γδ
x2

= ψi+αδ,j+βδ,k+γε
x2

=
ψi,j+β,k − ψi,j,k

β∆xβ2

ψi+αε,j+βδ,k+γδ
x3

= ψi+αδ,j+βε,k+γδ
x3

=
ψi,j,k+γ − ψi,j,k

γ∆xγ3

(2.27)

It should be noted that in the manner discussed previously, the first derivative mechani-

cal displacement and electric potential terms at the eight points shown in Fig. 2.5(a) remain

unevaluated and are eliminated based on the stress and electric displacement continuity

relations given as:

τ i+ε,j+βδ,k+γδ
p1 = τ i−ε,j+βδ,k+γδ

p1

τ i+αδ,j+ε,k+γδ
p2 = τ i+αδ,j−ε,k+γδ

p2 (p = 1, 2, 3)

τ i+αδ,j+βδ,k+ε
p3 = τ i+αδ,j+βδ,k−εp3

Di+ε,j+βδ,k+γδ
1 = Di−ε,j+βδ,k+γδ

1

Di+αδ,j+ε,k+γδ
2 = Di+αδ,j−ε,k+γδ

2

Di+αδ,j+βδ,k+ε
3 = Di+αδ,j+βδ,k−ε

3

(2.28)

Using Eq. 2.8 at the eight surrounding points (i + αδ, j + βδ, k + γδ) and the select

group of stress continuity relations given in Eq. 2.28 (details pertaining to the derivation

can be found in the Appendix), the final IEs for the three-displacement components are

derived for the 3D case as:
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wi,j,k,t+1
1 = −wi,j,k,t−1

1 + 2wi,j,k1

− 2χ

8
wi,j,k1

∑
α,β,γ=±1

[
η2
xS̃11 + η2

yS̃66 + η2
z S̃55

]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃11w
i+α,j,k
1 + 2η2

yS̃66w
i,j+β,k
1 + 2η2

z S̃55w
i,j,k+γ
1

]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 + S̃66

)(
wi+α,j+β,k2 − wi,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 − S̃66

)(
wi,j+β,k2 − wi+α,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 + S̃55

)(
wi+α,j,k+γ

3 − wi,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 − S̃55

)(
wi,j,k+γ

3 − wi+α,j,k3

)]
− 2χ

8

∑
α,β,γ=±1

[
αβηxηyS̃16

(
wi,j,k1 − wi+α,j+β,k1

)]
− 2χ

8
wi,j,k2

∑
α,β,γ=±1

[
η2
xS̃16 + η2

yS̃26

]
− χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃36 + S̃45

)
wi,j,k3

]
+

2χ

8

∑
α,β,γ=±1

[
η2
xS̃16w

i+α,j,k
2 + η2

yS̃26w
i,j+β,k
2

]
+
χ

8

∑
α,β,γ=±1

[
βγηyηzS̃36

(
wi,j+β,k+γ

3 + wi,j,k+γ
3 − wi,j+β,k3

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηzS̃45

(
wi,j+β,k+γ

3 − wi,j,k+γ
3 + wi,j+β,k3

)]
+

2χ

8

∑
α,β,γ=±1

[
η2
z S̃45

(
wi,j,k+γ

2 − wi,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz (ẽ15 + ẽ31)

(
ψi+α,j,k+γ − ψi,j,k

)]
− χ

8

∑
α,β,γ=±1

[
αγηxηz (ẽ15 − ẽ31)

(
ψi,j,k+γ − ψi+α,j,k

)]

(2.29)
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wi,j,k,t+1
2 = −wi,j,k,t−1

2 + 2wi,j,k2

− 2χ

8
wi,j,k2

∑
α,β,γ=±1

[
η2
xS̃66 + η2

yS̃22 + η2
z S̃44

]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃66w
i+α,j,k
2 + 2η2

yS̃22w
i,j+β,k
2 + 2η2

z S̃44w
i,j,k+γ
2

]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 + S̃66

)(
wi+α,j+β,k1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃12 − S̃66

)(
wi+α,j,k1 − wi,j+β,k1

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 + S̃44

)(
wi,j+β,k+γ

3 − wi,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 − S̃44

)(
wi,j,k+γ

3 − wi,j+β,k3

)]
− 2χ

8

∑
α,β,γ=±1

[
αβηxηyS̃26

(
wi,j,k2 − wi+α,j+β,k2

)]
− 2χ

8
wi,j,k1

∑
α,β,γ=±1

[
η2
xS̃16 + η2

yS̃26

]
+

2χ

8

∑
α,β,γ=±1

[
η2
xS̃16w

i+α,j,k
1 + η2

yS̃26w
i,j+β,k
1

]
− χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃36 + S̃45

)
wi,j,k3

]
+
χ

8

∑
α,β,γ=±1

[
αγηxηzS̃36

(
wi+α,j,k+γ

3 + wi,j,k+γ
3 − wi+α,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηzS̃45

(
wi+α,j,k+γ

3 − wi,j,k+γ
3 + wi+α,j,k3

)]
+

2χ

8

∑
α,β,γ=±1

[
η2
z S̃45

(
wi,j,k+γ

1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz (ẽ24 + ẽ32)

(
ψi,j+β,k+γ − ψi,j,k

)]
− χ

8

∑
α,β,γ=±1

[
βγηyηz (ẽ24 − ẽ32)

(
ψi,j,k+γ − ψi,j+β,k

)]

(2.30)
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wi,j,k,t+1
3 = −wi,j,k,t−1

3 + 2wi,j,k3

− 2χ

8
wi,j,k3

∑
α,β,γ=±1

[
η2
xS̃55 + η2

yS̃44 + η2
z S̃33

]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃55w
i+α,j,k
3 + 2η2

yS̃44w
i,j+β,k
3 + 2η2

z S̃33w
i,j,k+γ
3

]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 + S̃44

)(
wi,j+β,k+γ

2 − wi,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃23 − S̃44

)(
wi,j+β,k2 − wi,j,k+γ

2

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 + S̃55

)(
wi+α,j,k+γ

1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃13 − S̃55

)(
wi+α,j,k1 − wi,j,k+γ

1

)]
− χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃36 + S̃45

)(
wi,j,k1 − wi,j+β,k+γ

1

)]
− χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃36 + S̃45

)(
wi,j,k2 − wi+α,j,k+γ

2

)]
− χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃36 − S̃45

)(
wi,j,k+γ

1 − wi,j+β,k1

)]
− χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃36 − S̃45

)(
wi,j,k+γ

2 − wi+α,j,k2

)]
+

2χ

8

∑
α,β,γ=±1

[
αβηxηyS̃45

(
wi+α,j+β,k3 − wi,j,k3

)]
− 2χ

8

∑
α,β,γ=±1

[(
η2
xẽ15 + η2

y ẽ24 + η2
z ẽ33

)
ψi,j,k

]
+

2χ

8

∑
α,β,γ=±1

[(
η2
xẽ15ψ

i+α,j,k + η2
y ẽ24ψ

i,j+β,k + η2
z ẽ33ψ

i,j,k+γ
)]

(2.31)
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The calculated mechanical displacement components are then used to calculate the in-

duced potentials using Eq. 2.32:

F (ψ) = g (w1, w2, w3) (2.32)

where F (ψ) and g (w1, w2, w3) are functions defined as:

F (ψ) =− 2
∑

α,β,γ=±1

[(
η2
xκ̃11 + η2

yκ̃22 + η2
z κ̃33

)
ψi,j,k

]
+ 2

∑
α,β,γ=±1

[(
η2
xκ̃11ψ

i+α,j,k + η2
yκ̃22ψ

i,j+β,k + η2
z κ̃33ψ

i,j,k+γ
)]

g (w1, w2, w3) =−
∑

α,β,γ=±1

[
αγηxηz (ẽ15 + ẽ31)wi,j,k1

]
+

∑
α,β,γ=±1

[
αγηxηz (ẽ15 − ẽ31)

(
wi,j,k+γ

1 − wi+α,j,k1

)]
−

∑
α,β,γ=±1

[
βγηyηz (ẽ24 + ẽ32)wi,j,k2

]
+

∑
α,β,γ=±1

[
βγηyηz (ẽ24 − ẽ32)

(
wi,j,k+γ

2 − wi,j+β,k2

)]
− 2

∑
α,β,γ=±1

[(
η2
xẽ15 + η2

y ẽ24 + η2
z ẽ33

)
wi,j,k3

]
+ 2

∑
α,β,γ=±1

[(
η2
xẽ15w

i+α,j,k
3 + η2

y ẽ24w
i,j+β,k
3 + η2

z ẽ33w
i,j,k+γ
3

)]

(2.33)

As before, he current time step t is assumed where it is not mentioned. ẽ15 = e15(i +

α, j + β, k + γ) represents piezoelectric stress material property for one of the eight cells

surrounding point C depending on the choice of (α, β, γ) from (+1, −1) and similar ex-

pressions hold for other mechanical stiffness, piezoelectric stress matrix and permittivity

terms. The parts of the equations encapsulated in the color boxes represent the additional

terms in UM-LISA due to piezoelectric effects. It should be noted that Eqs. 2.29-2.31 are
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solved explicitly whereas Eq. 2.32 should be solved implicitly for induced potentials.

2.3.3 Guided Wave Generation in UM-LISA

Although in-plane PD shown in Fig. 2.8(a) is a better representation of the input exci-

tation than the out-of-plane PD (Fig. 2.8(b)), it does not take into account the mechanical

and piezoelectric coupling between the actuator and the composite structure. This can now

be addressed in UM-LISA formulation since it accounts for the aforementioned complex

coupling effects. A discretized model of a PZT transducer is shown in Figure 2.10. The

actuation is implemented by prescribing a time-varying electric potential on the top sur-

face of the actuator (labeled as “Top Nodes” and shown as red nodes) and zero potential

(ground) at the “Bottom Nodes” (shown as green nodes). The induced potentials at other

nodes would be calculated, if present, in the problem.

X3

X1

+V

0

Top Nodes

Bottom Nodes

Figure 2.10: Modeling in UM-LISA for piezoelectric actuators.
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2.4 Modeling for Guided Wave Sensing in UM-LISA

In the UM-LISA formulation, sensor response can be obtained either by calculating

the in-plane strains based on the displacement field, or by implementing the piezo-coupled

formulation to model the piezo electric sensor directly. The different schemes are illustrated

in Fig. 2.11.

X2

X3

X1

X1

X2

X1

X3

Actuator Sensor

Bottom Nodes

Top Nodes

In-plane strain method

Induced potentials method

Sum of strains calculated in 

individual cells

Figure 2.11: Different mechanisms for modeling sensors in the LISA formulation.

2.4.1 Basic Strain-based Sensor Modeling

For the basic UM-LISA method (without piezo coupling), the response for a piezo-

sensor bonded on the surface of a plate can be derived by considering the relation between

the electric field Ei, electric displacement Dk, and internal stress in the piezoelectric ele-

ment [127]:

Ei = −giklτkl + βτikDk (2.34)

where gikl represents the piezoelectric material matrix components, and βτik are the coeffi-

cients of the impermittivity constant matrix at constant stress for the material. Following
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the procedure presented by Raghavan and Cesnik [46], and making an assumption that the

sensor is infinitely compliant and does not disturb the GW field, the output voltage response

of the sensor can be written as:

Vs =
V0

St

∫
St

εiidS (2.35)

where Vs is the voltage generated by the sensor, St is the surface area of the transducer, and

Vo is a constant depending on piezoelectric and elastic sensor material properties [46]. For

the case of a circular piezo-disc sensor, Eq. 2.35 can be written as:

Vs =
V0

St

∫
St

∫
(εrr + εθθ) rdrdθ (2.36)

where εrr and εθθ are the in-plane strain components expressed in polar coordinates (r and

θ). The strain components are obtained by employing FD transformations on the displace-

ment field calculated from UM-LISA.

Curved Electrodes

Segment 2

Segment 1

Figure 2.12: Sample curved electrodes used in the CLoVER construction.

Consider the extension of the derivation to a CLoVER sector (Fig. 2.12). The voltage

generated by the normal radial normal strain component (εrr) along the fibers in a CLoVER

sector of inner radius Ri, outer radius Ro, and azimuthal sector angle ∆θ is given by:
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Vs =
2V0

(R2
o −R2

i )∆θ

∆θ∫
0

Ro∫
Ri

εrr rdrdθ (2.37)

Here, it is assumed that the electric field is uniform through the cross-section of the

fibers, and the presence of the sensor is not affecting the wave field in the substrate or its

voltage reading. Since UM-LISA calculates the displacement field in the Cartesian system,

the along-the-fiber normal strain is calculated from the in-plane strain components (ε11,

ε22, and ε12) using the FD scheme and then rotating them based on the azimuthal position

of the CLoVER sector. Radial (along-the-fibers) strains at the nodes which represent the

CLoVER sector are calculated and summed to obtain the induced voltage.

2.4.2 Direct Piezo Coupled Field Modeling

One of the main advantages of UM-LISA is its ability to simulate the response of piezo-

electric sensors. In UM-LISA modeling, along with the piezoelectric properties of the ma-

terial, the electromechanical coupling effects between the transducer and the substrate are

also considered. Induced potentials in the sensor are calculated using the Eq. 2.32, where

the induced potentials in a piezoelectric region are a function of the mechanical displace-

ment field. Since electrostatic behavior is considered in the formulation, the induced po-

tentials are calculated using an implicit scheme (in contrast to the explicit, time-marching

scheme to calculate the displacement field).

Equation 2.32 represents the relationship between the induced potentials and mechani-

cal displacement field for a given node in the grid. By combining the equations for all the

the nodes capable of developing potentials (piezo-sensor nodes), one arrives at the follow-

ing relation:

Φo
u×uψ

o
u×1 = Θu×1 (2.38)
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where Φo
u×u is a matrix which is a function of material properties, ψou×1 is a vector of the

unknown potentials, Θu×1 is a vector which is a function of material properties and me-

chanical displacements, and u is the number of nodes with induced potentials. It should

be noted that when solving for the induced potentials, the top and bottom surfaces of the

sensor have constrained potentials because of the presence of electrodes. A vector transfor-

mation is used to include the additional constraints of unique potentials for the boundary

nodes, as given by:

ψon×1 = Λu×vψv×1 (2.39)

where v is the number of unique potentials to be calculated, and Λu×v is the transformation

matrix. By using this transformation, and pre-multiplying Eq. 2.38 with the transpose of

the transformation vector, a reduced set of equations is obtained, which accounts for the

additional constraints in the induced potential field, i.e.,

ΛT
v×u Φo

u×u Λu×vψv×1 = ΛT
v×u Θu×1 (2.40)

It should also be noted that the size of the matrices involved in the implicit scheme to

calculate the induced potentials tend to be large and solving the implicit equation by matrix

inversion is extremely inefficient. A standard mathematical approach (LU decomposition)

is utilized to efficiently calculate the induced potentials by employing the back substitution

method during the advancement of of iterative equations.
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CHAPTER 3

Numerical Framework

This chapter presents an overview of the numerical implementation of the new formu-

lation created for UM-LISA. A history of the LISA framework development is presented.

The architecture of the code is introduced with the help of a block diagram highlighting dif-

ferent modules with UM-LISA. This chapter aims to present the code in a step-wise fashion

to describe the structure of the setup and expedite future developments to the framework.

3.1 Development

As discussed in Chapter 1, the LISA formulation was first introduced by Delsanto

and co-workers. The formulation was first presented for 1D LISA [91] in 1992, and

subsequently the 2D LISA [67] and 3D LISA [92] were introduced in 1994 and 1997,

respectively. The derived equations were capable of modeling homogenous and non-

homogeneous orthotropic media in principal reference frame. One of the initial motiva-

tions for the development of LISA was its capability of being used as a highly parallelized

numerical tool for wave propagation. This was achieved by “teaching” the individual nodes

in the numerical model the rules for displacement based on the displacement profile of the

few nearest neighboring nodes at previous two time steps. This enabled the calculation

of the displacement field over the whole domain with knowledge of the displacements at

the two previous time steps. The original LISA formulation was later extended to include
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spring model-based LISA [128, 129], which addresses the issues of flawed interfaces and

attenuative, nonlinear and hysteretic media.

Subsequently, the framework was adopted and implemented by several researchers,

such as Agostini et al. [93, 94], to model orthotropic structures in principal-reference

frame, and by Lee and Staszewski [49, 95] to model GW propagation and damage interac-

tion in isotropic structures using the 2D LISA formulation.

In 2008, the 3D LISA framework was extended by Sundararaman and Adams [106] to

model orthotropic media with non-uniform spatial discretizations and with a visco-elastic

damping term. Although this LISA formulation has the potential for a wide range of ap-

plication, it was primarily utilized to model GW propagation and damage interaction in

isotropic plates with uniform spatial discretization. The GW propagation and damage inter-

action studies with composites were limited to an orthotropic layer rather than a laminate.

In 2013, Nadella and Cesnik [122] extended the LISA formulation to model 3D lami-

nated orthotropic structures with nonuniform cell aspect ratios and in a non-principal axis

frame, which benefits from modeling generic laminated composite materials. New cou-

pling stiffness terms populate the stiffness matrix because of the material axis rotation and

are accounted for in the derivation of the equations.

Recently, Nadella and Cesnik [126] extended the formulation even further to model

the actuator by implementing the piezoelectric material effects. The iterative equations

were extended to include piezoelectric materials, taking into account the electromechani-

cal coupling of the governing equilibrium equations. New constitutive and compatibility

conditions are considered to account for the coupling of the electrical and mechanical pa-

rameters. The iterative equations calculate mechanical displacements in an explicit time-

marching scheme, whereas the electric potentials are calculated using an implicit scheme.
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3.2 Architecture

Figure 3.1 presents an overview of the implementation of the UM-LISA framework.

The multi-physics numerical framework has been developed with the help of modules and

sub-routines performing various tasks in the implementation of the LISA method.

UM-LISA: Numerical Framework
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Figure 3.1: Block diagram showing Local Interaction Simulation Approach (LISA) frame-
work.

3.2.1 Model Initialization

Three model setup files (MaterialDimensions.txt, DiscretizationParameters.txt, Vari-

ableParam.txt) are used to define the substrate’s dimensions, discretizations, and the fre-

quency of the generated GW. The first file sequentially lists the different layers in the
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composite laminate including dimensions, ∆x3 for each lamina and associated material

properties. The second file determines in-plane discretizations along with time step and

total duration of the simulation. Table. 3.1 shows specific details pertaining to the input

files.

Table 3.1: Input file parameters.

MaterialDimensions.txt

List of layers with dimensions
Material-ID

In-plane rotation
Through-thickness discretization

DiscretizationParameters.txt
Number of air-cells in the X1X2-plane

Total duration of simulation and time step
In-plane discretizations (∆x1 and ∆x2)

VariableParam.txt Frequency of excitation

Next, module MaterialProperties.f90 loads the material properties of the individual

layers of the laminated composite from the database (MaterialDatabase.txt). Based on the

discretizations and the material properties, the subroutine CFLcheck performs the stabil-

ity check using Courant-Friedrichs-Lewy number (CFL) criterion. After the discretization

parameters satisfy the stability criterion, the module NodesMeshGeneration.f90 generates

the nodes for the composite substrate along with the connectivity determining the 18 clos-

est neighbors. Next, the 8 cells surrounding a generic node are also assigned material

properties based on the material-IDs defined in MaterialDimensions.txt. In the numerical

simulation, the boundary surfaces are padded with air-cells to represent a free boundary

conditions. It should be noted that air layer thickness along the through-thickness direction

(X3-axis) is defined in the input file, MaterialDimensions.txt, and the number of in-plane

(X1X2-plane) air-cells are specified in the file DiscretizationParameters.txt.
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3.2.2 Pre-processing

This section of the UM-LISA determines several key modules for the framework which

determine the actuators, sensors and output files.

3.2.2.1 Actuator and Sensor Modeling

There are several ways to generate GW in the UM-LISA framework. The GW genera-

tion method can be selected based on the flags specified in file ActuationFlags.txt. The list

of the available actuation methods along with available shapes are presented in Table. 3.2.

In the current version of the UM-LISA, two actuators can be modeled, one on the top and

the other on the bottom surface of the laminated plate with both in-phase and out-of-phase

excitation to generate waves with a purely symmetric or anti-symmetric fundamental mode

in the laminate.

Table 3.2: Actuation method flags in ActuationFlags.txt.

Actuation shape flag
1→ Circular

2→ Rectangular
3→ CLoVER sector

Actuation type flag

1→ w3 point source
2→ w2 point source
3→ PD method-I
4→ PD method-II
5→ PC method

Actuation mode flag
1→ Single actuator on the top surface of laminate

2→ Dual actuators, in-phase excitation
3→ Dual actuators, out-of-phase excitation

The file ActuatorDimensions.txt specifies the dimensions (Table. 3.3) of the different

actuator shapes specified in ActuationFlags.txt. It should be noted that, although multi-

ple dimensions (radius, thickness, length and breadth) can be specified for the actuator,

the framework selectively chooses the dimensions used based on the actuator flags in file

ActuationFlags.txt.
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Table 3.3: Actuation dimensions in ActuatorDimensions.txt.

Top surface actuator

Outer radius→ Ro (circular actuator)
Inner radius→ Ri (circular actuator)

Length→ Dimension along X1 axis (rectangular actuator)
Breadth→ Dimension along X2 axis (rectangular actuator)

Thickness→ Dimension along X3 axis (PC actuation)

Bottom surface actuator

Outer radius→ Ro (circular actuator)
Inner radius→ Ri (circular actuator)

Length→ Dimension along X1 axis (rectangular actuator)
Breadth→ Dimension along X2 axis (rectangular actuator)

Thickness→ Dimension along X3 axis (PC actuation)

After the actuation method and the dimensions are determined, module ActuationMeth-

ods.f90 returns the set of actuator nodes and the field variables associated with the nodes

(displacement components in the case of PD methods and electric potentials in the case of

PC method) based on the input excitation. It should be noted that in the case of PC method

the module also changes the material properties of the cells constituting the actuator. The

list of mechanical and piezoelectric material properties for the transducers in the frame-

work are listed in files PZT Mechanical properties.txt and PZT Dielectric properties.txt,

respectively. To facilitate the calculation of induced potentials (Eq. 2.32), if present, mod-

ule LU.f90 is used to decompose the matrix F in Eq. 2.33 with the aim of using back-

substitution during the iterative process. It is also important to note that the module Actua-

tionMethods.f90 is called during the iterative process for the generation of GW. During the

pre-processing step, several text and binary files are generated to record the displacement

components and potentials computed in the next step. The list of output files are listed in

Table 3.4.

3.2.2.2 Damage Modeling

The UM-LISA framework has the option of adding linear damage to the model just

before the iterative equations. The damage can be introduced by overwriting the material

50



Table 3.4: Output files generated.

parameters used.txt List of discretization parameters used in the UM-LISA
Piezo Act disp P.bin Induced potentials for the piezoelectric actuator
Piezo Act disp U.bin X1 displacement component for the piezoelectric actuator
Piezo Act disp V.bin X2 displacement component for the piezoelectric actuator
Piezo Act disp W.bin X3 displacement component for the piezoelectric actuator
Piezo Sens 1 disp P.bin Induced potentials for the piezoelectric sensor
Piezo Sens 1 disp U.bin X1 displacement component for the piezoelectric sensor
Piezo Sens 1 disp V.bin X2 displacement component for the piezoelectric sensor
Piezo Sens 1 disp W.bin X3 displacement component for the piezoelectric sensor

Xdisp XYplane.bin
X1 displacement component at every nodal point on the
X1X2-plane, which passes through the actuator nodes

Ydisp XYplane.bin
X2 displacement component at every nodal point on the
X1X2-plane, which passes through the actuator nodes

Zdisp XYplane.bin
X3 displacement component at every nodal point on the
X1X2-plane, which passes through the actuator nodes

Xdisp YZplane.bin
X1 displacement component at every nodal point on the
X2X3-plane, which passes through the actuator nodes

Ydisp YZplane.bin
X2 displacement component at every nodal point on the
X2X3-plane, which passes through the actuator nodes

Zdisp YZplane.bin
X3 displacement component at every nodal point on the
X2X3-plane, which passes through the actuator nodes

Xdisp ZXplane.bin
X1 displacement component at every nodal point on the
X1X3-plane, which passes through the actuator nodes

Ydisp ZXplane.bin
X2 displacement component at every nodal point on the
X1X3-plane, which passes through the actuator nodes

Zdisp ZXplane.bin
X3 displacement component at every nodal point on the
X1X3-plane, which passes through the actuator nodes

properties of the cells to reflect voids through holes and notches in the structure. This is

beneficial in parametric studies where the effects of simulated damage dimensions can be

addressed without creating new models. The framework also allows for the modification

of the geometry, which requires that appropriate alterations be made to the connectivity

matrix along with assigning the new material properties to the inclusions. The simulated

damage (concentrated mass) parameters are loaded from the file Damage.txt. Table 3.5

specifies the details in the file.
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Table 3.5: Simulated damage parameters in Damage.txt.

Damage flag
0→ No damage

1→ Simulated damage: concentrated mass

Concentrated mass

Distance from the actuator
Side length of the cross-section

Height of the mass
Azimuthal location of the mass

3.2.3 Iterative Equations

This section of the framework implements the Eqs. 2.29-2.32 to simulate the GW prop-

agation in the stucture. The initialized field variables at timesteps t = −1 and t = 0 are

provided to the iterative equations to calculate the field variables at timestep t = 1. The

time marching method for calculating the displacement field and the implicit method to

calculate induced potentials is illustrated in Fig. 3.2.

In Fig. 3.2 the variable “t” represents the iterative step of the simulation, wi (i = 1, 2, 3)

represents the mechanical displacement field and ψ is the electric potential. Subscripts

“Act top” and “Act bot” represent the nodes on the top and bottom surfaces of the piezo-

electric actuator, respectively, and “prescribed” represents all the nodes where the potentials

are enforced by external sources. The main inputs and outputs for the iterative equations

section are presented in Table. 3.6.

Table 3.6: Inputs and Outputs of the iterative equations.

Input

Initialized variables (displacements or potentials)
Material properties of cells surrounding each node

Discretization parameters
Input excitation through actuator nodes

LU decomposed matrices for F (Eq. 2.33)

Output
Mechanical displacements

Induced potentials

During the implementation of the iterative equations, OPENMP-based parallelization
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Figure 3.2: Flowchart showing the time-marching scheme utilized in the LISA simulations.

was used to improve the performance of the numerical framework. The parallelization was

used to divide the physical domain between 12 processors to achieve increase performance

of the UM-LISA code.

3.2.4 Post-processing

This part of the solution is implemented in MATLAB as stand-alone scripts, which an-

alyze the displacement field and induced potential data from the time domain simulations.

The data obtained from the time-marching solver can be used to animate the wave propaga-

tion, perform frequency analysis, calculate the behavior of actuator nodes and to estimate

the induced potentials in a pizeo sensor. This is a crucial step in validating the UM-LISA
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framework when comparing experiments or analytical methods and performing numerical

studies.
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CHAPTER 4

Grid Convergence Studies

This chapter presents basic convergence studies for the UM-LISA framework. First, ac-

sGW are simulated in isotropic plates with varying spatial and temporal discretizations to

determine the parameters affecting wave propagation. Then, the rate of convergence is cal-

culated using a normalized root mean square deviation (NRMSD) metric. Next, simulations

with cubic and distorted (cuboidal) grids are conducted to characterize the evolution of er-

ror based on relative root mean square deviation (RRMSD). Simulations are also carried

out for surface mounted actuators to determine the minimum discretization required for the

actuator. Finally, suggestions regarding the optimal parameters while utilizing UM-LISA

for wave propagation are presented.

4.1 Effects of Spatial and Temporal Discretizations

Convergence is a critical criterion when developing a numerical method. In the present

context, convergence studies are conducted for UM-LISA to ensure its applicability for

wave propagation modeling. The simulations are carried out in an isotropic plate model.

Extended accuracy and convergence studies were presented by Sundararaman and Adams [124],

but the studies were predominantly limited to two-dimensional cases (and PD method-II ex-

citation). This section presents a study focussed on three-dimensional LISA to determine

the discretization parameters affecting GW propagation.
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Figure 4.1: Schematic of the simulation model used for point-source convergence study.

Simulations to determine the effect of discretization parameters for UM-LISA were

carried out with point-source excitation. The point-source excitation prescribes a prede-

termined out-of-plane excitation at a specific point in the plate structure. This excitation

method was considered to avoid actuator discretization effects on the GW generation.

Figure 4.1 shows the numerical plate model with dimensions of 25h× 25h× h, where

h is the thickness of the plate. A fixed number of air cells (nair = 4) were used as padding

to represent free edges in the numerical model. The total duration of the simulations was
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fixed to 50 µs. The input excitation was prescribed at the center of the plate as shown in

Fig. 4.1 with a red cross. The excitation was a 3.5-cycle Hann-modulated toneburst of unit

amplitude. A center frequency of 150 kHz was chosen for the rate of convergence studies.

The test cases shown in Table. 4.1 were considered for the isotropic plate case. The

isotropic plate has a Young’s modulus of 70 GPa, Poisson’s ratio of 0.3, and density of

2700 kg/m3.

Table 4.1: Discretization parameters for convergence studies in an isotropic plate.

Case ∆xyz Cells through thickness ∆t (ns) CFL
Case (a1) h

4
4 2.5 0.013

Case (b1) h
8

8 2.5 0.026
Case (c1) h

16
16 2.5 0.051

Case (d1) h
32

32 2.5 0.102
Case (a2) h

4
4 5 0.026

Case (b2) h
8

8 5 0.051
Case (c2) h

16
16 5 0.102

Case (d2) h
32

32 5 0.205
Case (a3) h

4
4 10 0.051

Case (b3) h
8

8 10 0.102
Case (c3) h

16
16 10 0.205

Case (d3) h
32

32 10 0.409
Case (a4) h

4
4 20 0.102

Case (b4) h
8

8 20 0.205
Case (c4) h

16
16 20 0.409

Case (d4) h
32

32 20 0.819

In Table. 4.1, the cases are classified based on the spatial and temporal discretizations,

with letters “a”, “b”, “c”, and “d” representing spatial discretizations of h
4
, h

8
, h

16
and h

32
,

respectively. Numbers “1”, “2”, “3” and “4” represent temporal discretizations (∆t) of 2.5

ns, 5 ns, 10 ns and 20 ns, respectively. Uniform cell discretization is represented by ∆xyz,

i.e, ∆x1 = ∆x2 = ∆x3 = ∆xyz. The test cases provided in Table. 4.1 are not an exhaustive

list, but they provide insight into the convergence of the LISA method for wave propagation

studies.

Figure 4.2 shows the comparison results for varying spatial discretizations with a con-

stant temporal discretization. The normalized out-of-plane displacement component was
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compared at distances of 2.5h, 5h and 7.5h from the point of excitation. The displacements

were normalized with the amplitude at a distance of 1.25h to compensate for the variation

in energy associated with prescribing displacements instead of traction. One can see that

the spatial discretization affects the wave propagation, with the profiles of the propagating

wave monotonically converging with finer spatial discretization. The plots also display a

difference in the wave propagation speeds for different spatial discretizations, highlighted

by the increasing separation of the wave profiles.

Next, comparison results for varying temporal discretizations for a constant spatial dis-

cretization are presented in Fig. 4.3. This comparison aids in visualizing the effect of vary-

ing temporal discretizations on wave propagation characteristics. From Fig. 4.3, it can be

concluded that temporal discretization seems to have no effect on the propagation character-

istics. This phenomenon can be attributed to the fact that the sampling frequency for the test

matrix cases is higher than the required sampling rate according to the Nyquist−Shannon

sampling criterion [130]. This over sampling is a result of the CFL number constraint on

the discretization parameters. For a given spatial discretization, varying the temporal dis-

cretization changes the CFL number, so, from the Fig. 4.3 it can also be concluded that

the value of the CFL number is not critical in determining the accuracy of the numerical

simulation, this was also noted by Iordache et al. [131].
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Figure 4.2: Out-of-plane displacement component for different spatial discretizations are
compared at different distances from the center of excitation in an isotropic substrate. Each
column corresponds to a specific distance from the center of the actuator, and each row
corresponds to a particular timestep used for the numerical simulation.
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Figure 4.3: Out-of-plane displacement component for different temporal discretizations are
compared at different distances from the center of excitation in an isotropic substrate. Each
column corresponds to a specific distance from the center of the actuator, and each row
corresponds to a particular spatial discretization used for the numerical simulation.

60



4.2 Rate of Convergence

The test cases shown in Table 4.2 were considered to determine the rate of convergence

for the 3D LISA method. It should be noted that the time step was kept constant at 10 ns,

which was determined to provide temporal discretization for this case. The same isotropic

plate with point source excitation, as shown in Fig. 4.1, was considered again for this study.

Table 4.2: Discretization parameters for determining rate of convergence in an isotropic
plate.

Case ∆xyz Cells through thickness ∆t (ns) CFL
Case (I) h

2
2 10 0.026

Case (II) h
4

4 10 0.051
Case (III) h

8
8 10 0.102

Case (IV) h
16

16 10 0.204
Case (V) h

32
32 10 0.409

Case (VI) h
64

64 10 0.818

The out-of-plane displacement pattern in the X1X2 plane passing through the input

excitation point was used to calculate the rate of convergence. Figure.4.4 shows the snap-

shots of the normalized displacement field at a time step of 20 µs for different cases of

spatial discretization. The spatial dimensions of the plate are normalized by the thickness

(h) of the plate. It is evident from the figures that although there is a significant difference

between the coarsest grid (Case (I)) and finest grid (Case (VI)), the displacement pattern

converges with discretization refinement.

NRMSD was used as a metric to calculate the error for different cases with Case (VI)

being considered as the reference. Both spatial and temporal variation of the GW field were

considered in calculating the NRMSD as shown in Eq. 4.1.

NRMSD(p) =
1

nt

∑
t

√√√√ ∑
x1x2

(wp(x1, x2, t)− wn(x1, x2, t))
2

nx1nx2w
m
n (t)

× 100 (4.1)
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(a) Case (I) (b) Case (II)

(c) Case (III) (d) Case (IV)

(e) Case (V) (f) Case (VI)

Figure 4.4: Snapshots of the out-of-plane displacement component at 20 µs for different
discretizations. The displacements have been normalized by the amplitude at the point
1.25h from the center of the excitation point along the X1 direction.
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where wp is the displacement field for a given case as listed in Table 4.1, wn is the reference

displacement field (Case (VI)),wmn is the maximum value of the reference displacement

field at a particular time “t”, x1 and x2 are coordinated of a generic point in the X1X2

plane,
∑
x1x2

represents the summation in spatial domain,
∑
t

represents the summation in

temporal domain, nx1 and nx2 are the number of spatial points along the X1 and X2 axes,

respectively, and nt is the number of temporal samples used in calculating NRMSD.
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Figure 4.5: (a) Error associated with spatial discretization. The reference case for calculat-
ing error is ∆xyz = h

64
. (b) Log-log plot of the error, the slope of the connecting line “m”

determines the rate of convergence.

Figure 4.5(a) shows the NRMSD as a function of spatial discretization and Fig. 4.5(b)

shows the log-log plot of the error. From the former, one can see the gradual decrease in

the error with increasing discretization. The log-log plots indicates the convergence rate

for the numerical method to be 1.86.

4.3 Convergence Error

Lamb wave characteristics such as propagating speed, dispersion and existence of higher

order modes depend on the frequency-thickness parameter. Verification of the LISA method-

ology for different frequency-thickness cases is essential in developing a robust numerical
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framework. In this section, studies to determine the effect of spatial discretization on sim-

ulating GW for different frequency-thickness cases are studied.

4.3.1 Point Source Actuation

Point source excitation was considered for the same isotropic plate as used in the pre-

vious section, and a time step of 10 ns was used for the simulations. In the study, various

frequency-thickness cases were considered, and RRMSD was used as a metric to calculate

the error for different cases, i.e.,

RRMSD(p) =
1

nt

∑
t

√√√√ ∑
x1x2

(wp(x1, x2, t)− wp+1(x1, x2, t))
2

nx1nx2w
m
p+1(t)

× 100 (4.2)

where wp+1 is the displacement field for the next level of discretization for given case wp

listed in Table 4.1, and wmp+1 is the maximum value of the displacement field at a particular

time step. The wave packet in each of the frequency-thickness cases was allowed to travel

for 25 µs after the generation of the signal. The error metrics NRMSD and RRMSD differ

on the choice of reference: NRMSD considers a universal reference or a “true solution”

as the reference (the finest discretization in this study), where as the RRMSD captures the

evolution of error between successive discretizations.

Figure 4.6(a) shows the RRMSD as a function of varying cell discretizations for differ-

ent frequency-thickness cases. The cases were chosen in the region of the dispersion curves

dominated by the first symmetric (S0) and anti-symmetric (A0) modes. Cubic cells were

considered for the initial case, i.e. ∆x1 = ∆x2 = ∆x3 = ∆xyz. It can be seen that for each

of the frequency-thickness cases, the error monotonically reduced. From the above figure,

one can see that coarser discretizations (∆xyz = h/2 and ∆xyz = h/4) result in larger

RRMSD associated with higher frequency-thickness cases than frequency-thickness cases.

From the figure it can be also observed that the RRMSD converges for a discretization of

64



(∆xyz = h/8), after which there is a trend reversal in the RRMSD value observed for lower

frequencies as compared to higher frequencies. From the figure it can be concluded that

the rate of RRMSD change is high for higher frequencies than lower frequencies, and also

that for a discretization of ∆xyz = h
8
, all the frequency-thickness cases indicate an error less

than 5% based on the RRMSD metric.

Using cuboid cells are more desirable for simulating GW in thin-walled structures be-

cause of the high aspect ratio of the substrate. Figure 4.6(b) shows the RRMSD for cuboid

cells where the through-thickness discretization (∆x3) was fixed at h
20

, and the in-plane

discretizations (∆x1 and ∆x2) were varied for different frequency-thickness cases. There

is a lower error in the case of cuboid case for coarser in-plane discretization as the through-

thickness discretization is already refined to h
20

, highlighting the importance of through-

thickness discretization. Figure 4.7 illustrates the difference between the cubic and cuboid

cells for different frequency-thickness cases. The ∆x3 is the only parameter varying be-

tween the cubic and cuboid discretizations, and from the plots it can be seen that having

coarser ∆x3 has a significant effect on the RRMSD. Consequently LISA simulations can

be carried out with coarser in-plane discretizations (∆x1 and ∆x2) with a less penalty for

appropriate choice of ∆x3.

4.3.2 Piezo Actuation

Simulations were also performed for the piezo-coupled version of the UM-LISA frame-

work with varying substrate and actuator discretizations. The numerical plate model used

in the study had dimensions of 25h × 25h × h, where h is the thickness of the plate. The

dimensions of the piezo actuator were 4h × 4h × h
8
. The input excitation was a 10 V

potential difference between the surfaces of the piezo actuator in the form of a 3.5-cycle

Hann-modulated toneburst at a center frequency of 75 kHz. The total duration of the sim-

ulations was 72 µs. The actuator was placed in the center of the plate as shown in Fig. 4.8.

Cuboid cells are considered in the discretization of the actuator and substrate. Table. 4.3
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Figure 4.6: Comparison of RRMSD error estimates for (a) cube and (b) cuboidal cells for
different frequency-thickness cases.
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Figure 4.7: Comparison of error estimates between cubic and cuboidal discretization.

lists the numerical cases for the spatial discretizations of the actuator and substrate. Letters

“a”, “b”, “c”, and “d” represent substrate’s through-thickness discretizations and numbers

“1”, “2”, “3” and “4” represent actuator’s through-thickness discretizations of h
8
, h

16
, h

32
and
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Figure 4.8: Schematic of the simulation model used for piezo actuator convergence study.

h
64

, respectively. In the study, the in-plane discretization for ∆x1 and ∆x2 was fixed at h
8
.

Two specimens were considered in the study: an isotropic plate and a uni-directional

laminate. The isotropic plate is made of Aluminum, where carbon fiber IM7/977-3 proper-

ties were used for the uni-directional laminate as listed in Table 5.1. The NRMSD metric

was considered for error evaluation and the finest discretization case (Case 4d) was consid-

ered as the reference.

Figures 4.9 and 4.10 show the NRMSD error for the isotropic and composite plates, re-

spectively. The NRMSD was calculated based on the displacement profile measured along

a square contour on the top surface of the substrate at a distance of h from the edge of the
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Table 4.3: Discretization parameters for piezo actuator convergence studies.

Case ∆x3 (Actuator) ∆x3 (Substrate) CFL (Actuator) CFL (Substrate)
Case (1a) h

8
h
8

0.068 0.102
Case (1b) h

8
h
16

0.068 0.205
Case (1c) h

8
h
32

0.068 0.409
Case (1d) h

8
h
64

0.068 0.819
Case (2a) h

16
h
8

0.137 0.102
Case (2b) h

16
h
16

0.137 0.205
Case (2c) h

16
h
32

0.137 0.409
Case (2d) h

16
h
64

0.137 0.819
Case (3a) h

32
h
8

0.273 0.102
Case (3b) h

32
h
16

0.273 0.205
Case (3c) h

32
h
32

0.273 0.409
Case (3d) h

32
h
64

0.273 0.819
Case (4a) h

64
h
8

0.546 0.102
Case (4b) h

64
h
16

0.546 0.205
Case (4c) h

64
h
32

0.546 0.409
Case (4d) h

64
h
64

0.546 0.819

actuator. In the figures, ∆z(Substrate) represents the substrate discretization, and nActuator

represents the number of cells through the actuator thickness. The NRMSD was calcu-

lated for all the mechanical displacement components (w1, w2, w3). Overall, monotonic

reduction in error was observed for most of the cases (except Fig. 4.9 (c)) with increasing

discretization of actuator and substrate. As expected, in the case of the isotropic plate,

error profiles are identical for in-plane displacements as seen in Fig. 4.9 (a) and Fig. 4.9

(b). From the figures one can also observe that sufficient discretizations of both the sub-

strate and actuator are essential to obtain accurate results. Based on the NRMSD values

for the w3 displacement (Figs. 4.9 (c) and 4.10 (c)), one can see that there is less NRMSD

variation for increasing substrate discretization as compared to increasing the number of

cells through the thickness of the actuator, indicating that the actuator discretization has

more effect than the substrate discretization. Based on the figures, one can conclude that

beyond a discretization of h
16

for the substrate there is not much improvement for a given

discretization of the actuator. Moreover, nActuator = 4 for the actuator discretization should

be sufficient for most applications.
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Figure 4.9: NRMSD metric for the isotropic substrate for different discretizations.

4.3.3 Air Layer Error

Solution of UM-LISA usually involves padding the substrate with air cells to represent

free boundary conditions. Simulations to investigate the impact of those air cells to the GW

solution were carried by changing the number of air cells surrounding a plate structure.

The actuator coupled model shown in Fig. 4.8 was considered for this study. The metric

presented in Eq. 4.2 was used to quantify the error. A uniform cell discretization of h
16
×

h
16
× h

16
was considered for the simulation. Two specimens were considered in the study,

an isotropic plate and a uni-directional laminate. The isotropic plate is made of Aluminum,

and IM7/977-3 properties were used for the uni-directional laminate as listed in Table 5.1.

Figure 4.11 shows the RRMSD for different number of air cells. Although there is a
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Figure 4.10: NRMSD metric for the uni-directional laminate substrate for different dis-
cretizations.

decrease in the error with increasing number of air cells, the value is significantly small

compared to the errors associated with cell discretizations. Therefore, nair = 4 is sufficient

to obtain low error, and further addition of air cells to represent free boundary conditions

would needlessly increase the computational cost with marginal impact on the solution.
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Figure 4.11: Error associated with number of air cells for different plates for (a) a single
time step at peak excitation (23µs) (b) averaged over 72 µs.

4.4 Guidelines for Discretization Parameters

Several factors affect the GW simulation using the LISA methodology. Two critical fea-

tures are numerical stability and grid convergence. Stability condition ensures the bound-

edness of the solution, whereas the grid convergence results in an accurate simulation.

Table 4.4 provides guidelines for the discretization parameters while implementing the

UM-LISA framework for simulating GW. The . The first step is to ensure the stability of

the numerical framework by satisfying the CFL criterion. The next important parameter is

the through-thickness discretization (∆x3); it is advisable to have a discretization of h
8

for

Table 4.4: Guidelines for parameter selection in UM-LISA.

Stability CFL ≤ 1

Grid convergence

∆x1 ≤ h
4

∆x2 ≤ h
4

∆x3 ≤ h
8

∆t ≤ 1
2fmax

Nλ ≥ 8 [132]
Nλ ≈ 16
nair ≥ 4

Actuator convergence nActuator ≥ 4
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∆x3 . Coarser discretizations can be used for the in-plane discretizations (∆x1 and ∆x2),

and it is suggested to have cell sizes less than h
4
. If piezo transducers are used in the

simulation, then it is advisable to have at least 4 cells through the thickness of the actuator.

The number of nodes per wavelength (Nλ), defined as:

Nλ =

√
Smin/ρ

∆xmaxfmax

(4.3)

where Smin is the component of stiffness along the least stiff direction, ∆xmax is the max-

imum discretization used in the model, and fmax is the maximum frequency component of

the excitation signal. Although, Harker [132] noted that having Nλ ≥ 8 was sufficient for

accurate (≤ 1% error) results in finite difference based solutions, based on the simulations

carried out in this dissertation, it is advisable to have Nλ ≈ 16. The time step (∆t) tends

to be defined by the CFL condition, and the largest one that satisfies it will be enough to

provide temporal convergence. Finally, it is also advisable to have at least 4 cells of air

(nair) around the structure when modeling free edges. Because of the comparatively low

mechanical properties used for modeling air cells, their discretization has little effect on the

wave propagation characteristics, and ensuring CFL ≤ 1 is the only constraint in choosing

the discretization parameters for the air cells.
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CHAPTER 5

Numerical and Experimental Studies

This chapter presents the results obtained from several numerical studies. After the

initial characterization studies of UM-LISA in the previous chapter, its capabilities are ex-

ercised to study the wave propagation characteristics in different thin-walled structures.

First, the effects of material anisotropy on the characteristics of wave propagation are com-

pared against laser vibrometry experiments. Next, a simulated damage is modeled using the

framework and the results are compared with piezo sensor experiments. Then, the effects

of substrate’s anisotropic material properties and mechanical impedance mismatch between

the actuator and substrate on the GW generation are studied. Finally, the UM-LISA for-

mulation is exercised to study the sensor response characteristics and the simulations are

compared with experimental results.

5.1 Anisotropic Effects in Composite Laminates

5.1.1 Experimental Test Specimens

Several material systems were used in the numerical studies, and their mechanical ma-

terial properties are presented in Table 5.1. The composite laminates used in this study

were manufactured from pre-impregnated composite tape made from IM7 fibers and Cy-

com 977-3 resin (Cytec Engineered Materials). The thickness of the carbon fiber prepreg

layer is 0.125 mm. The mechanical properties provided by the manufacturer were used as
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a starting point, and mechanical tensile tests and wave velocity tests on the unidirectional

coupons aided in converging on the material properties used in the numerical simulation.

The multilayered composite specimens used in this study were 12-layer uni-directional

[0]12T , 12-layer cross-ply [0/90]3S , and 16-layer quasi-isotropic [0/45/-45/90/90/-45/45/0]S

laminates. The uni-directional laminate provided the highest amount of anisotropy, whereas

the cross-ply and quasi-isotropic laminates provided a typical representation of the config-

urations used in practical applications. The composite laminates used in this study were

manufactured in-house following the fabrication procedure specified in Ref. [133]. The

12-layer laminates had a post-cure thickness of 1.5 mm whereas the 16-layer laminates had

a thickness of 2.0 mm. In this study, PZT 5A was used for transduction. Its mechanical

material properties are presented in Table 5.1 and the piezoelectric properties are shown in

Table 5.2.

Table 5.1: Mechanical properties of different materials used in the simulations.

Mech.
Prop.

Aluminum IM7/977-
3

PZT 5A T300B-3K
Fabric - Epon
862

Last-A-Foam
FR - 6710

E11 (GPa) 70.28 147.00 60.98 50.10 0.09
E22 (GPa) 70.28 9.80 60.98 50.10 0.09
E33 (GPa) 70.28 9.80 53.19 9.80 0.09
ν12 0.33 0.41 0.35 0.21 0.3
ν13 0.33 0.41 0.44 0.40 0.3
ν23 0.33 0.48 0.44 0.08 0.3
G12 (GPa) 26.42 3.70 22.57 19.6 0.02
G13 (GPa) 26.42 3.70 21.05 3.50 0.02
G23 (GPa) 26.42 3.31 21.05 3.50 0.02
ρ (kg/m3) 2684 1558 7750 1760 160

5.1.2 Experimental Setup

The composite laminates used in the experiments were autoclave fabricated and had a

square geometry with 0.5 m in each side. The uni-directional and cross-ply laminates were
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Table 5.2: Transducer piezoelectric properties.

Piezo. Prop. PZT 5A
e15 (C/m2) 12.29
e25 (C/m2) 12.29
e31 (C/m2) -5.35
e32 (C/m2) -5.35
e33 (C/m2) 15.78
κ11 (nF/m) 8.13
κ22 (nF/m) 8.13
κ33 (nF/m) 7.32

1.5 mm thick while the quasi-isotropic laminate was 2 mm thick. For the wave propagation

studies, a piezoceramic disc (PZT-5A) and two different CLoVERs were used. The PZT

disc had a diameter of 12.8 mm (RO = 6.4 mm) and a thickness of 0.23 mm. CLoVER1,

shown in Figure 5.1(a), was comprised of eight 45-deg sectors with an inner and outer

diameter of 20 mm and 50 mm, respectively. The radial length of the actuator was divided

into two segments of lengths 5 mm and 10 mm. CLoVER2, shown in Figure 5.1(b), was

comprised of sixteen 22.5-deg sectors with an inner and outer diameter of 35 mm and

50 mm, respectively. The radial length of the actuator was divided into two segments of

lengths 2.5 mm and 5 mm. For the current experiments, only the larger segments were

used. The CLoVER transducers were bonded with a secondary cure on the top surface

of the laminates. A 3.5-cycle Hann-modulated toneburst at a center frequency of 75 kHz

was used in the experiments for input excitation, as shown in Fig. 5.2(a) and the frequency

content of the input signal was obtained by performing fast fourier transformation (FFT),

as shown in Fig. 5.2(b). More details related to the experiments can be found in Ref. [30].

For the GW propagation studies, out-of-plane displacement profile was chosen as the

comparison parameter. The GW field was measured using a Polytec PSV-400 scanning

laser vibrometer in the configuration shown in Figure 5.3. Retroreflective tape was used on

the top surface of the composite laminates to increase laser visibility.
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(a) CLoVER1 (b) CLoVER2

Figure 5.1: Two CLoVERs used in the experimental studies.
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Figure 5.2: The input excitation chosen for the validation studies.

5.1.3 Simulation Parameters

The structures used in the simulation were multilayered composite laminates with in-

plane dimensions of 350×350 mm. The laminates had a through-thickness dimension of

1.5 mm for uni-directional and cross-ply laminates, and 2 mm for the quasi-isotropic lam-
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Figure 5.3: Experimental setup showing different components used in the laser vibrometry
experiments to measure the guided waves propagation field.

inate. After convergence studies, the structure was discretized using cells of dimension

0.5×0.5×0.125 mm with 351×351×13 grid points. Also, a time step of 1×10−8 s was

used to ensure numerical stability according to the CFL criterion (CFL= 0.842, for the

IM7/977-3 material system in Table 5.1 and the chosen discretization parameters). To sim-

ulate free boundary conditions, additional cells (nair = 4) with the material properties of

air (density of 1.3 kg/m3 and stiffness 10,000 times less than aluminum) were added to

complete the computational domain. The out-of-plane displacement component was mon-

itored in the simulation for the top surface of the composite laminate and compared with

experimental results.
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5.1.4 Phase Slowness Diagrams

Phase slowness diagrams provide valuable insight into the GW energy propagation di-

rection, which is represented by the vector normal to the curve at any given azimuthal po-

sition [47]. The phase slowness diagrams for uni-directional, cross-ply, and quasi-isotropic

laminates used in this study are presented in Fig. 5.4. These results were generated using

the Global Matrix approach [4], since the discrete nature of the rectangular grid in the LISA

solution would require a very fine discretization to obtain equivalent results.

The slowness curve in Fig. 5.4(a) is for the uni-directional laminate with fibers ori-

ented along the 0-deg azimuthal direction. Based on the shape of the curve, most of the

energy is directed along the fibers. The slowness curve for the cross-ply laminate displayed

in Fig. 5.4(b) shows that most of the energy is concentrated along the 0-deg and 90-deg

azimuthal directions, and although the direction of the normal to the slowness curve at 45-

deg is along that same direction, it has a higher amount of energy spreading because of the

smaller radius of curvature. The slowness curve in the case of the quasi-isotropic laminate

(Fig. 5.4(c)) is almost circular owing to even azimuthal distribution of the constituent plies.

5.1.5 Piezoceramic Disk Actuator

The first set of experiments were carried out with the circular PZT actuator to visualize

the guided wave propagation in different composite specimens. Certain GW propagat-

ing characteristics, such as energy steering and energy attenuation, can be determined in

different directions. The out-of-plane propagation patterns for the LISA simulations and

experiments for uni-directional, cross-ply, and quasi-isotropic laminates, are compared in

Figs. 5.5, 5.6 and 5.7, respectively. Snapshots of the normalized out-of-plane component

of the displacement at different time steps were recorded on the top surface of the laminate

to compare the propagation pattern of the GW.

In the uni-directional laminate, the fiber direction was parallel to the x-axis. From

Fig. 5.5, it is evident that the majority of the wave energy propagated along the fiber direc-
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(c) Quasi-isotropic [0/-45/45/90/90/-45/45/0]S

Figure 5.4: IM7/977-3 material phase slowness for the antisymmetric mode at 75 kHz.

tion, and the velocity normal to the fiber direction was slower as compared to the velocity

along the fiber direction because of the difference in material properties. These phenomena

are also expected based on the slowness plot shown in Fig. 5.4(a). The wave propagation

simulated with LISA was in good agreement with the experimental data, as the main propa-

gation characteristics were captured with the simulation. It is worth noticing, however, that
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(a) Experiment (b) LISA

(c) Experiment (d) LISA

Figure 5.5: Out-of-plane normalized displacements in a uni-directional laminate [0]12T

at (a)-(b) 58 µs and (c)-(d) 68 µs. Distances from the center of the plate normalized by
actuator radius (RO = 6.4 mm).

the simulation showed a higher wave velocity in the transverse direction than observed in

the experiment. This is attributed to the higher uncertainty in the material properties of the

resin. While the Young’s modulus along the fiber direction was experimentally determined,

the shear modulus used in the analysis was provided by the material manufacturer.

Even better correlation was observed for the cross-ply laminate as shown in Fig. 5.6.

As expected from the slowness curves, we can see that the majority of the energy was along

the 0-deg and 90-deg directions, corresponding to the fiber directions. It was observed both

experimentally as well as numerically that the wave traveled slightly faster along the 0-deg
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(a) Experiment (b) LISA

(c) Experiment (d) LISA

Figure 5.6: Out-of-plane normalized displacements in a cross-ply laminate [0/90]3S at (a)-
(b) 55 µsand (c)-(d) 68 µs. Distances from the center of the plate normalized by actuator
radius (RO = 6.4 mm).

direction (parallel to x-axis) as compared to the 90-deg direction (normal to the x-axis).

This is attributed to the effects of the stacking sequence in the laminate, where the top layer

is oriented at 0 degrees.

For the quasi-isotropic specimen, as expected from the phase slowness diagram, there

was no clear preferred direction for the GW. Although the plots look circular, the wave

traveled slightly slower at an angle of 90 deg, as a result of the stacking sequence. The new

LISA formulation was able to model the quasi-isotropic laminate as a result of the new

terms included in the modified stiffness matrix.
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(a) Experiment (b) LISA

(c) Experiment (d) LISA

Figure 5.7: Out-of-plane normalized displacements in a quasi-isotropic laminate [0/-45/45/
90/90/-45/45/0]s at (a)-(b) 68µs and (c)-(d) 78 µs. Distances from the center of the plate
normalized by actuator radius (RO = 6.4 mm).

5.1.6 CLoVER Actuator

For the second set of experiments, the CLoVER actuator was used to generate the

GW. Snapshots of the out-of-plane component of the displacement at different times were

recorded on the top surface of the laminate to compare the propagation pattern of the GW.

Only one sector of the CLoVER was activated at a given time and is indicated by the

color red on the yellow ring (representing the CLoVER transducer) in the plots. CLoVER1

was used for GW generation in uni-directional laminates, and the comparison between

experiments and LISA simulations is shown in Fig. 5.8. The dimensions of the plate were
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normalized by the outer radius of the CLoVER actuator.

(a) Experiment (b) LISA (c) Experiment (d) LISA

(e) Experiment (f) LISA (g) Experiment (h) LISA

(i) Experiment (j) LISA (k) Experiment (l) LISA

Figure 5.8: Out-of-plane displacement pattern for uni-directional [0]12T laminate when the
input waves are incident along (a)-(d) 0 deg, (e)-(h) 45 deg and (i)-(l) 90 deg directions.
Snapshots of the propagating waveform are shown at (a)-(b) 57µs, (c)-(d) 67µs, (e)-(f)
67µs, (g)-(h) 77µs, (i)-(j) 87µs and (k)-(l) 97µs.

Figures 5.8(a)-(d) illustrate the case when the excited sector is aligned with the fiber

direction. As predicted by the phase slowness diagram shown in Fig. 5.4(a), there was no

steering effect, and the wave was captured by the LISA simulation with good agreement.

Similar experimental and simulation results for the sector aligned at the 45-deg direction

are shown in Figs. 5.8(e)-(h). In this case, the expected steering phenomenon was visible

in both experiments and simulations. Further experiments and simulations were conducted

for the sector aligned perpendicular to the fiber direction shown in Figs. 5.8(i)-(l). Although

the phase slowness diagram is flat perpendicular to the fiber direction, the smaller radius

of curvature results in higher steering effect on the propagating wave towards the fiber

direction, which can be seen both in the experiments and simulations.
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(a) Experiment (b) LISA (c) Experiment (d) LISA

(e) Experiment (f) LISA (g) Experiment (h) LISA

(i) Experiment (j) LISA (k) Experiment (l) LISA

(m) Experiment (n) LISA (o) Experiment (p) LISA

Figure 5.9: Out-of-plane displacement pattern for cross-ply [0/90]3S laminate when the
input waves are incident along (a)-(d) 0 deg, (e)-(h) 22.5 deg, (i)-(l) 45 deg and (m)-(p)
67.5 deg directions. Snapshots of the propagating waveform are shown at 67µs for the two
columns on the left and 77µs for the two columns on the right.
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(a) Experiment (b) LISA (c) Experiment (d) LISA

(e) Experiment (f) LISA (g) Experiment (h) LISA

(i) Experiment (j) LISA (k) Experiment (l) LISA

(m) Experiment (n) LISA (o) Experiment (p) LISA

Figure 5.10: Out-of-plane displacement pattern for quasi-isotropic laminate when the input
waves are incident along (a)-(d) 0 deg, (e)-(h) 180+22.5 deg, (i)-(l) 180+45 deg and (m)-(p)
67.5 deg directions. Snapshots of the propagating waveform are shown at 68µs for the two
columns on the left and 88µs for the two columns on the right.
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The cross-ply laminate was instrumented with CLoVER2. The top lamina in the cross-

ply laminate was oriented along the horizontal direction (parallel to x-axis). In Figs. 5.9(a)-

(d), the sector along the 0-deg azimuthal position was activated, and the resulting GW

pattern showed no steering effect, which is consistent with what was expected from the

phase slowness diagram in Fig. 5.4(b). Figures 5.9(e)-(h) show a similar pattern when

the sector oriented along 22.5 deg to the fiber direction was activated, but in this case

the GW was observed to steer towards the horizontal direction, as seen from the slowness

diagram. Figures 5.9(i)-(l) show a similar pattern when the sector oriented along the 45-deg

direction was activated, but in this case the GW was observed to have minimal steering,

as the normal to the phase slowness diagram is almost aligned with the radial direction.

Figures 5.9(m)-(p), where the sector oriented along the 67.5-deg direction is activated show

a pattern similar to Figs. 5.9(e)-(h). In this case, the GW was observed to steer towards the

vertical direction, as expected from the slowness diagram.

In Figs. 5.10(a)-(d), the sector along the 0-deg direction was active and GW propagation

is compared between LISA and experiments. As expected from the slowness curves, no

energy steering was observed. Figures 5.10(e)-(h) show a similar pattern rotated by 22.5

deg from the horizontal position, corresponding to the active sector. Steering was still

not visible, which agrees with what is expected from the slowness curve (Fig. 5.4(c)).

Figures 5.10(i)-(l) and Figs. 5.10(m)-(p) show similar propagation characteristics, and the

GW propagation was seen to have no steering.

From the results shown above for uni-directional, cross-ply, and quasi-isotropic lami-

nates, it can be deduced that the new LISA formulation is able to accurately capture the

effect of additional terms in the stiffness matrix resulting from a multi-layer stacking se-

quence.
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5.1.7 Preliminary GW Studies in Sandwich Foam Core Panels

Preliminary experimental and numerical studies using LISA were performed to assess

the feasibility of GW approaches for delamination monitoring of the interface between the

sandwich core and the composite facesheets. The particular architecture of interest, shown

in Fig. 5.11(a), consists of surface-bonded transducers on the inner part of a sandwich

structure to emit GW used for interrogation of the interface between the sandwich core and

the outer composite facesheet.

(a)

Facesheet

Facesheet

Foam Core

(b)

Figure 5.11: (a) Schematic of GW-based damage detection architecture for sandwich pan-
els. (b) Components of the sandwich foam core.

The composite sandwich specimen, composed of a closed-cell polyurethane foam LAST-

A-FOAM rFR-6710, sandwiched between facesheets consisting of four plies of T300B-

3K plain weave carbon fiber fabric with the Epon 862 epoxy is shown in Fig. 5.11(b). The

facesheets and core have thickness of 1 mm and 24 mm, respectively. The mechanical prop-

erties were obtained from Refs. [134, 135]. The specimen had a 0.5 × 0.3 m rectangular

geometry.

Guided waves were generated in the composite sandwich specimen with the help of an

MFC actuator, as shown in Fig. 5.12(a), bonded to the top surface of the panel. The actuator

was oriented along the length of the panel and was placed at an optimum location to avoid

boundary reflections. The transducer used in the experiments was 28-mm long and 15-mm
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MFC

ActuatorRetroreflective tape

Composite 

Sandwich Panel

(a)

Cross-section of Composite 

Sandwich Panel

(b)

1 mm

24 mm

1 mm

0.5 mm x 2 cells

0.5 mm x 2 cells

2 mm x 12 cells

Face-sheet

Foam core

Face-sheet

(c)

Figure 5.12: (a) Composite sandwich specimen with MFC actuator and retro-reflective
tape. (b) Cross section of the composite foam core sandwich. (c) Cross-sectional schematic
of the sandwich panel in UM-LISA simulations.

wide, and it was excited with a 3.5-cycle Hann-modulated toneburst, shown in Fig. 5.2(a).

GW were generated with center frequencies varying between 10 kHz and 200 kHz with

an interval of 10 kHz. The GW field was measured using a Polytec PSV-400 scanning

laser vibrometer by recording the out-of-plane velocities in a configuration as shown in

Fig. 5.3. A patch of retroreflective tape, shown in Fig. 5.12(a), was attached to the top and

bottom surfaces to ensure consistent laser signal strength. The out-of-plane velocity was

measured along a segment aligned with the actuator on the top surface and bottom surface

of the composite sandwich panel. The amplitude of out-of-plane displacement, calculated

by integrating the velocity measured from the laser experiments, was compared between
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the top surface and bottom surface.

Numerical simulations were performed on the composite sandwich panel with in-plane

(X1X2-plane) discretizations of 1 × 1 mm. The cross-section of the sandwich panel

(Fig. 5.12(b)) was discretized with facesheets having ∆x3 equal to 0.5 mm and foam core

with ∆x3 equal to 2 mm ( Fig. 5.12(c)). The discretization was chosen to satisfy the CFL

criterion and avoid excessive simulation times. As described in the experiments, the exci-

tation was prescribed on the top surface of the model in the shape of a rectangular MFC.

In-plane displacements along the length of the actuator parallel to X1 were considered for

actuation. The out-of-plane displacement was recorded on the top surface of the sandwich

panel and the Hilbert transform of the signal determined the peak of the arriving signal.

The scaled ratio of the amplitudes of the signals on the bottom and top surfaces was plotted

at different distances from the center of the actuator, as shown in Fig. 5.13. From those, it

is apparent that lower frequencies are suitable for GW testing as more energy propagates

to the bottom facesheet as compared to the higher frequencies. The 3D numerical simula-

tions based on LISA were able to capture the trend in the GW propagation characteristics

accurately. More experiments and numerical simulations are required at lower frequencies

to investigate if the response at 10 kHz is a global peak.
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Figure 5.13: Ratio of the amplitudes of signals on the bottom surface and top surface for
different frequencies at a distance of (a) 40 mm, (b) 50 mm, (c) 60 mm and (d) 70 mm from
the center of the MFC actuator.

5.2 Simulated Damage: Concentrated Mass

The damage interaction study was carried out on the quasi-isotropic laminate [0/ -45/

45/ 90/ 90/ -45/ 45/ 0]S . The GW were generated using a PZT disc actuator (PZT 5A,

Ro=6.4 mm) bonded to the top surface of the laminate. A simulated damage was introduced

to the structure using a concentrated mass in the form of a prismatic steel bar (E =200 GPa,

ν =0.3, ρ =8000 kg/m3). The bar had a square cross-section with a side of 22 mm and

mass of 0.65 kg, and it was placed at a constant distance of 125 mm from the center of

the actuator. This particular damage was selected because of its mobility to different radial
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and azimuthal positions on the structure, and also to avoid any permanent damage to the

plate. The GW were monitored using the CLoVER (CLoVER2) transducer placed around

the PZT actuator, as shown in Fig. 5.14(a). In the damage experiments, the concentrated

mass was placed with the sharp edge facing the PZT actuator, as shown in Fig. 5.14(b),

while in the simulations the flat edge of the bar faces the actuator for modeling simplicity.

This change in damage orientation does not significantly affect the detection of damage, as

discussed by Salas and Cesnik [30].

To visualize the effect of a concentrated mass on the out-of-plane displacement compo-

nent of the propagating GW in the quasi-isotropic plate, LISA simulations were conducted

on the pristine plate and the one with the simulated damage. In Fig. 5.15, snapshots of

the normalized out-of-plane displacement component were recorded for the top-surface of

the quasi-isotropic laminate. The fibers in the top ply of the laminate were oriented in

the horizontal direction. Comparison of the out-of-plane displacement between the pristine

laminate and the one with simulated damage is presented for different times. The simulated

damage is represented as a black square in the plots and the dimensions of the simulated

damage are normalized with the PZT radius. The in-plane dimensions of the composite

laminate were normalized by the radius of the PZT actuator (Ro =6.35 mm). It can be seen

in Figs. 5.15(a)-(h) that the propagation pattern was similar for both pristine and simulated

damage laminates. The difference between the pristine and simulated damage laminate can

be clearly seen in the subsequent time instants represented in Figs. 5.15(i)-(t). As expected,

only a fraction of the incident energy was reflected back along the incident direction, and

almost no displacement was seen in the wake of the simulated damage. The wave front

reflected from the simulated damage confirms that LISA is able to capture the presence of

simulated damage in the composite laminate.

For the damage interaction study experiments, a standard pulse-echo method was em-

ployed. To analyze the reflections from the simulated damage site, the (baseline) signal

of the pristine structure was subtracted from the signal obtained for the structure with the
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(a) (b)

Figure 5.14: (a) Details for the PZT disc and CLoVER configuration used in the damage
interaction studies on quasi-isotropic laminate. (b) Experimental setup for the damage
interaction studies.

damage. In particular, the peak-to-peak amplitude of the difference was used as the damage

indicator. The simulated damage was aligned with the central radial lines for different sec-

tors, one at a time, and the response was recorded by all of the other CLoVER sectors. More

details pertaining to the experimentation can be found in Ref. [30]. The LISA model was

created to match the experimental setup, with the exception that the azimuthally-varying

position of the simulated damage was replaced by rotating the material properties of the

plate in the opposite direction along with the CLoVER sectors. Simulations were then

conducted for the different simulated damage positions.

Figures 5.16−5.18 show the comparison between the experimental data and LISA sim-

ulations for different cases of simulated damage alignment with the transducer. The “Sen-

sor Index” in the plots corresponds to the number assigned for each sector of the CLoVER

as shown in Fig. 5.14(a). The main observation from the comparison results is that the

CLoVER transducer is effective in identifying the azimuthal location of the simulated dam-

age and rejecting transverse signals coming to it (filtering effect) [29]. Consistent higher

amplitudes were observed in the sectors aligned to the damage site. It is interesting to ob-

serve that the sectors diametrically opposite to the aligned sector also detected the reflected
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(a) Pristine 0µs (b) Damaged 0µs (c) Pristine 30µs (d) Damaged 30µs

(e) Pristine 60µs (f) Damaged 60µs (g) Pristine 90µs (h) Damaged 90µs

(i) Pristine 120µs (j) Damaged 120µs (k) Pristine 130µs (l) Damaged 130µs

(m) Pristine 140µs (n) Damaged 140µs (o) Pristine 150µs (p) Damaged 150µs

(q) Pristine 160µs (r) Damaged 160µs (s) Pristine 170µs (t) Damaged 170µs

Figure 5.15: Out-of-plane displacement pattern comparison between pristine and simulated
damage quasi-isotropic laminates. The black square represents the position of the damage.

signal, something not observed in the experiments. This is attributed to the fact that the

LISA simulations did not take into account the damping effects of the CLoVER transducer

and its adhesive layer nor the damping coming from the center actuator PZT disc when the

reflected wave traveled from one sector to the diametrically opposite one. This issue can
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be rectified by keeping track of the reflected wave, as the sector facing the damage would

receive the wave ahead of the sector diametrically opposite to it.
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(c) Sector 3
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Figure 5.16: Comparison between LISA simulations and experiments for the normalized
peak-to-peak reflection amplitude recorded with the CLoVER transducer in quasi-isotropic
[0/45/-45/90/ 90/-45/45/0]S laminate when the damage was aligned with (a) sector 1, (b)
sector 2, (c) sector 3, and (d) sector 4
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(a) Sector 5
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(b) Sector 6
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(c) Sector 7
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(d) Sector 8
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(e) Sector 9
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(f) Sector 10

Figure 5.17: Comparison between LISA simulations and experiments for the normalized
peak-to-peak reflection amplitude recorded with the CLoVER transducer in quasi-isotropic
[0/45/-45/90/90/-45/45/0]S laminate, when the damage was aligned with (a) sector 5, (b)
sector 6, (c) sector 7, and (d) sector 8, e) sector 9, (f) sector 10,

It is also interesting to note that in Figs. 5.16(a), 5.17(b), 5.17(e) and 5.18(d) the
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(a) Sector 11
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(b) Sector 12
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(c) Sector 13
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(d) Sector 14
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(e) Sector 15

Figure 5.18: Comparison between LISA simulations and experiments for the normalized
peak-to-peak reflection amplitude recorded with the CLoVER transducer in quasi-isotropic
[0/45/-45/90/90/-45/45/0]S laminate, when the damage was aligned with (a) sector 11, and
(b) sector 12, (c) sector 13, (d) sector 14, and (e) sector 15
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(a) 20µs (b) 30µs (c) 40µs (d) 50µs

(e) 60µs (f) 70µs (g) 80µs (h) 90µs

(i) 100µs (j) 110µs (k) 120µs (l) 130µs

(m) 140µs (n) 150µs (o) 160µs (p) 170µs

(q) 180µs (r) 190µs (s) 200µs (t) 210µs

Figure 5.19: In-plane displacement component along theX-direction in the quasi-isotropic
plate. It is obtained by subtracting the displacement field of the pristine case from the
damaged one. GW are generated by the PZT disc shown as yellow disc and the CLoVER
is shown as a translucent annulus around it; the damage is indicated by the black square in
the right side of the plate.

diametrically-opposite sector had an amplitude higher than the sector facing the damage.

This unexpected behavior can be explained by studying the in-plane displacement compo-
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nent of the reflected wave, as shown in Fig. 5.19, where the damage is aligned with Sector

1. In Fig. 5.19, the in-plane displacement component along the horizontal axis (X1-axis)

is considered. The material coordinate system of the plate along with the CLoVER sensor

was rotated to align Sector 1 with the damage placed along the X1-axis. The normalized

difference of the signals between the simulated damage case and the pristine one is plotted

in Fig. 5.19. It can be seen that there is a significant amplitude associated with the fun-

damental symmetric mode (So) reflected from the damage site. The reflected fundamental

anti-symmetric mode (Ao) originates from the damage site around 90 µs (Fig. 5.19(h)) and

travels towards the CLoVER transducer. The symmetric wave travels significantly faster

than the anti-symmetric wave and there is interference between the reflected So mode from

the edge of the plate and the Ao arriving at the CLoVER transducer for sensing. This in-

terference of signals contributed to higher amplitudes seen in the diametrically-opposite

sector to the sector facing the damage, which received the reflected signal directly from the

damage site.

5.3 Wave Generation Modeling

5.3.1 Displacement Behavior of Actuator Nodes

This section presents three actuation methods to generate GW in LISA. While two of

the methods are indirect representation of the actuator effects through prescribed displace-

ment, the third one is a direct representation of the electromechanical coupled effects of

the piezo actuator by the piezo-coupled implementation. For PD methods, equivalent re-

sponse of the actuator as a displacement field is enforced as radially increasing in-plane

displacements (method-I) or out-of-plane displacements (method-II) with a gaussian pro-

file. It should be noted that, while the input excitation is prescribed using a particular

component(s) of displacement, the other component(s) of displacement are allowed to de-

velop unhindered. The PC formulation is implemented by enforcing a potential difference
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across the “Top Nodes” and “Bottom Nodes” of the actuator, as shown in Fig. 2.10. The

components of the displacement field at the actuator nodes which constitute the actuator

and substrate interface are monitored to compare the different actuation methods. The

simulations are performed for an isotropic plate and several composite laminated plates.

5.3.1.1 Isotropic Substrate

First, an isotropic plate was considered for comparing different actuation models. An

isotropic substrate is beneficial as it decouples the effect of azimuthal variation of the sub-

strate’s material properties, which might affect the actuator behavior.

Figure 5.20 shows the in-plane displacement pattern for the actuator on an isotropic

substrate. The first column in Fig. 5.20 shows the time steps where the different actuation

methods were compared. The time steps for comparison were chosen to have large am-

plitudes at the actuator nodes. The second, third and fourth column in Fig. 5.20 present

the displacement pattern for different actuation methods. The axes are normalized by the

radius of the actuator (Ro) and the arrows represent the direction and amplitude of the

in-plane components of the displacement field. The contours show the lines with same

amplitude. From the figure, it is clear that for the isotropic case, all the actuation methods

show an axisymmetric displacement pattern, which is expected as there is no azimuthal

preference based on material properties. It is interesting to note the spacing between the

contour lines is different for various types of actuator modeling. For the PD method-I, the

contour lines are uniformly spaced, reflecting the radially increasing displacement. In PD

method-II, the contour lines are not equally spaced, but there is no variation in the con-

tour patterns, which confirms that the non-uniformness of the contour lines is a result of

the gaussian enforcement in method-II and the material coupling between the in-plane dis-

placements and out-of-plane displacement component. Finally, in the PC formulation, we

see that the contours are not uniformly spaced and the contour pattern is changing, which

indicates that the PC formulation is allowing the actuator nodes to develop the GW without
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Figure 5.20: Snapshots of the in-plane displacement pattern for the actuator nodes for
different actuator models for an isotropic substrate. Each row corresponds to a particular
time step during the actuation. The first column represents the particular time step where
the actuator nodes are compared. The second column shows the actuator nodes in the
piezo-coupled actuation case. The third column is for the prescribed displacement method-
I input, and the fourth column is for the prescribed displacement method-II input.

direct interference in the displacement pattern. For the last time result presented, the PD

method-I shows a very good correlation with the PC solution which is only a coincidence.

Figure 5.21 shows the out-of-plane displacement pattern for the actuator on the isotropic

substrate. The first column shows the time steps where the different actuation methods were

compared. Similar to before, the time steps for comparison were chosen to have large am-

plitudes at the actuator nodes. The second, third and fourth column in Fig. 5.21 present the
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(a) Input Excitation (b) PC method (c) PD (method-I) (d) PD (method-II)

(e) Input Excitation (f) PC method (g) PD (method-I) (h) PD (method-II)

(i) Input Excitation (j) PC method (k) PD (method-I) (l) PD (method-II)

Figure 5.21: Snapshots of the out-of-plane displacement pattern for the actuator nodes for
different actuator models for an isotropic substrate. Each row corresponds to a particular
time step during the actuation. The first column represents the particular time step where
the actuator nodes are compared. The second column shows the actuator nodes in the
piezo-coupled actuation case. The third column is for the prescribed displacement method-
I input, and the fourth column is for the prescribed displacement method-II input.

out-of-plane displacement pattern for different actuation methods. The axes are normal-

ized by the radius of the actuator (Ro) and the out-of-plane displacement is normalized by

the maximum observed displacement amplitude. The axisymmetric displacement pattern is

also observed for the out-of-plane displacement component. The important feature is that

both PD methods are only able to achieve either a positive or negative displacement, but

not a combination of displacement patterns as seen in the case of the PC formulation.
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Figure 5.22: Snapshots of the in-plane displacement pattern for the actuator nodes for dif-
ferent actuator models for a uni-directional laminate. Each row corresponds to a particular
time step during the actuation. The first column represents the particular time step where
the actuator nodes are compared. The second column shows the actuator nodes in the
piezo-coupled actuation case. The third column is for the prescribed displacement method-
I input, and the fourth column is for the prescribed displacement method-II input.

5.3.1.2 Uni-directional [0]12T substrate

Next, a uni-directional [0]12T laminate was considered for comparing different actua-

tion models. Figure 5.22 shows the in-plane displacement pattern for the actuator bonded

on the uni-directional laminate. As before, the first column in Fig. 5.22 shows the differ-

ent time steps where the actuation methods are compared. The second, third and fourth

columns in Fig. 5.22 present the displacement pattern for different actuation methods. The
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axes are normalized by the radius of the actuator (Ro), the arrows represent the direction

and amplitude of the in-plane components of the displacement field, and the contours show

the lines with same amplitude. The displacement pattern of the actuator nodes show the

effect of material anisotropy on GW generation. As expected, PD method-I shows the same

behavior of actuator nodes for both the isotropic and uni-directional cases. Although the

displacement pattern for PD method-II shows the effect of material properties, the unifor-

mity of behavior indicates that the material coupling between the enforced out-of-plane

displacement and in-plane displacements is the only factor determining the displacement

pattern, and that does not accurately approximate the more complex piezo actuator effects

as captured by PC method.

Figure 5.23 shows the out-of-plane displacement pattern for the actuator nodes for a

uni-directional laminate substrate. The first column in Fig. 5.23 shows the time steps where

the different actuation methods were compared. The second, third and fourth columns in

Fig. 5.23 present the out-of-plane displacement pattern for the different actuation methods.

The axes are normalized by the radius of the actuator (Ro) and the out-of-plane displace-

ment is normalized by the maximum observed displacement amplitude. Similar to the

in-plane displacement pattern for this uni-directional laminate (Fig. 5.22), one can see that

the PD method-II has a predetermined gaussian profile for the out-of-plane displacement

as given, and the PD method-I only displays the effects of material coupling due to the

in-plane actuation. Both, however, miss the complex pattern displayed in the PC solution.

This is due to the fact that the PC method incorporates both the mechanical coupling be-

tween the actuator and the substrate, and also the electrical response of the actuator under

external applied voltage, which is not present in the PD-based methods.

5.3.2 Validation of GW Generation

Experimental validation studies for the GW generation schemes were carried out on a

cross-ply [0/90]3S laminate of thickness 1.5 mm. For this study, out-of-plane displacements
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(a) Input Excitation (b) PC method (c) PD (method-I) (d) PD (method-II)

(e) Input Excitation (f) PC method (g) PD (method-I) (h) PD (method-II)

(i) Input Excitation (j) PC method (k) PD (method-I) (l) PD (method-II)

Figure 5.23: Snapshots of the out-of-plane displacement pattern for the actuator nodes
for different actuator models for a uni-directional laminate. Each row corresponds to a
particular time step during the actuation. The first column represents the particular time
step where the actuator nodes are compared. The second column shows the actuator nodes
in the piezo-coupled actuation case. The third column is for the prescribed displacement
method-I input, and the fourth column is for the prescribed displacement method-II input.

were chosen as the comparison parameter to evaluate the quality of different methods of

actuator representation in UM-LISA. The GW field was measured using a Polytec PSV-

400 scanning laser vibrometer in the configuration shown in Fig. 5.3. The mechanical

properties of the composite material are shown in Table 5.1. A piezoceramic disc (PZT-

5A) transducer of radius 6.5 mm (Ro) and a thickness of 0.23 mm was used to generate

GW. A 3.5-cycle Hann-modulated toneburst at a center frequency of 75 kHz was used in

the experiments. The displacements were measured along and perpendicular to the fiber

direction of the top lamina. The distances chosen for comparison were 40 mm, 60 mm and

80 mm from the center of the actuator.
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(c) 80 mm

Figure 5.24: Comparison between experimental data and LISA simulations along the 0 deg
azimuthal direction for different actuation methods at varying distances from the center of
the actuator.

Figure 5.24 shows the comparison for out-of-plane component of the displacement field

between the experimental data and LISA simulations along the fiber direction of the top

lamina (azimuthal direction of 0 deg). The signals presented are normalized by the max-

imum amplitude of the respective case at a distance of 40 mm and azimuthal direction of

0 deg from the center of the actuator. To account for the phase shift caused by the elec-

tronic acquisition system, a fixed shift of 10 µs was applied to the experimental data. From

Fig. 5.24 it is clear that UM-LISA with the PC method has a significantly better correlation

with the experimental data than the PD methods. Although PD (method-I) is able to cap-

ture the general shape of the propagating wave, there is a significant drop in correlation as

the phase difference increases with time. On the other hand, PD (method-II) shows a very
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low correlation with the experimental data.
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Figure 5.25: Comparison between experimental data and LISA simulations along the 90
deg azimuthal direction for various actuation methods.

Figure 5.25 shows the out-of-plane component of the displacement field for the experi-

ment and LISA simulations. The displacements are compared along the azimuthal direction

of 90 deg. As before, a fixed shift of 10 µswas applied to the experimental data. To capture

the relative amplitude between the wave field along the 0 deg and 90 deg azimuthal direc-

tions, the signals are normalized by the same values chosen in Fig. 5.24. Similar trends

are observed in the case of wave propagation comparisons along 90-deg azimuthal direc-

tion with good correlation between the experimental data and PC method. PD methods,

on the other hand, show marked differences in the temporal behavior of the propagating

wave. One key feature is that the amplitude in the experiments is lower than the values

predicted by the PC method, which can be attributed to the material damping present in the
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experiment and not currently modeled in UM-LISA.
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Figure 5.26: Comparison between FFT of the experimental data and LISA simulations at
40 mm from the center of the actuator along various azimuthal directions.

Figure 5.26 shows the Fast Fourier Transform of the out-of-plane component of the

displacement for experimental data and LISA simulations. The FFT provides information

about the frequency content of the propagating signal. From the figure, it is clear that PC

method is able to predict the frequency content in the propagating wave field better than

any of the PD methods.

0  25 50 75 100

−1  

−0.5

0   

0.5 

1   

Time (µ s)

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

 

 

Experiment

PC−method

Global Matrix

(a) 0 deg

0  25 50 75 100

−1  

−0.5

0   

0.5 

1   

Time (µ s)

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

 

 

Experiment

PC−method

Global Matrix

(b) 90 deg

Figure 5.27: Comparison between the experimental data, UM-LISA (PC method) simula-
tions and global matrix method for the out-of-plane displacement at 40 mm from the center
of the actuator along 0 deg and 90 deg azimuthal direction.

To characterize the electromechanical coupling between the actuator and substrate, sim-

108



ulations were performed with the global matrix (GM) method [47, 136]. GM is a semi-

analytical method for obtaining wave propagation in infinite layered media that uses surface

shear tractions to represent actuation. Figure 5.27 shows the comparison of out-of-plane

component of displacement between the experimental data, UM-LISA with the PC method

and global matrix approach. One can see that there is a phase shift between the signals

predicted by the GM approach and UM-LISA with the PC method. This shift in signal can

be partly attributed to the inertial effects of the actuator. To isolate this phenomenon, simu-

lations were carried out with UM-LISA (PC method) by significantly reducing the density

of the piezoelectric material and, therefore, eliminating its inertial effects. The reduction

density ratio of 100 (ρreduced =77.50 kg/m3) was considered for the simulations to visualize

the effect of mechanical coupling between the actuator and the substrate.
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Figure 5.28: Effect of density reduction on UM-LISA simulation of GW.

Figure 5.28 shows the results for UM-LISA (PC method) with reduced actuator density.

The results show that reducing the actuator density compensates for some of the phase

shift observed in the case of GM, but not entirely. The additional shift might be a result of

piezoelectric coupling between the actuator and the substrate.
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5.4 Frequency Response for Piezoelectric Sensor

UM-LISA with PC method of actuation was used to revisit the sources of error encoun-

tered in validating the theoretical formulation developed by Raghavan and Cesnik [46]. The

theoretical formulation was developed for finite-dimensional surface-bonded piezoelectric

wafer actuators. Although the theoretical formulation showed good correlation between

the experimental and theoretical results, there was a slight error observed in the prediction

of peak frequency for thicker rectangular actuators.

The experimental set-up (shown in Fig. 5.29) used in the theoretical validation was a

600× 600× 3.1 mm thick isotropic aluminum plate (Table. 5.1). It was instrumented with

a pair of 0.3-mm thick PZT-5A rectangular piezo actuators of dimensions 25 × 5 mm at

the center of the top and bottom surfaces. For the first experiment, the two actuators were

actuated in-phase to generate the fundamental symmetric mode (So). For the second exper-

iment, they were excited out-of-phase to generate the fundamental anti-symmetric mode

(Ao). The input excitation for the actuators was a 3.5-cycle Hann-modulated toneburst over

a range of center frequencies. The generated GW were monitored with a 10 × 10 mm

PZT-5A sensor mounted at a location (35 mm, 35 mm) relative to the plate center as shown

in Fig. 5.29. More details regarding the experiment can be found in Ref. [46].

The initial error in the theoretical formulation was attributed to a shear lag effect present

in the experiment. In the theoretical formulation, the pin-force model proposed by Crawley

and de Luis [123] was used for actuator modeling. The pin-force was developed for surface-

bonded piezoelectric actuators on opposite beam surfaces and actuated quasi-statically. The

approximation was valid for the cases where the shear lag parameter (Γ) approached infin-

ity, that is,

Γ =

√
a2Gb (1 + υa)

Y 11
a hahb

(
1 +

ηY 11
a ha
Yshs

)
→∞ (5.1)
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PZT 5A actuator

25 x 5 mm

PZT 5A sensor

10 x 10 mm
35 mm

35 mm

Isotropic plate

600 x 600  mm

0.3 mm

3.1 mm

Figure 5.29: Schematic of the experiment of Raghavan and Cesnik [46].

where ha, hb and hs are the thicknesses of actuator, bond layer and substrate, respectively.

And, a, Ya and υa are the dimension, Young’s modulus and Poisson ratio of the actuator,

respectively. Ys is the substrate’s Young’s modulus andGb is the shear modulus of the bond

layer. η is a constant depending on the excitation phase of the dual actuators (η = 2 for

symmetric excitation and η = 6 for antisymmetric excitation).

For smaller Γ resulting from the finite stiffness of the actuator relative to the plate and

imperfect bonding between the actuator and substrate, the force transfer between the ac-

tuator and substrate occurs over a finite length close to the edge of the actuator. This was

implemented in the theoretical formulation of Ref. [46] by reducing the physical dimen-

sions of the actuator by 20%. The plots for the comparison between the experimental and

theoretical sensor response are shown in Fig. 5.30. It was observed that the theoretical

results with reduced dimensions agreed better with the experimental results.

The UM-LISA simulations were carried out for the experimental setup shown in Fig. 5.29.

The comparison between the experimental data, theoretical calculations and UM-LISA

simulations are shown in Fig. 5.31. The plots show a good correlation between UM-LISA
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Figure 5.30: Comparison between experimental and theoretical sensor response amplitudes
in the rectangular actuator experiment at different center frequencies for: (a) So mode and
(b) Ao mode [46].

0 20 40 60 80
0

0.25

0.5

0.75

1

1.25

Frequency (kHz)

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

 

 

Experimental

Theoretical: Nom. Dim.

Theoretical: Red. Dim.

PC−LISA: Nom. Dim.

PC−LISA: Red. Dim.

(a) Ao

100 150 200 250 300
0

0.25

0.5

0.75

1

1.25

Frequency (kHz)

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

 

 

Experimental

Theoretical: Nom. Dim.

Theoretical: Red. Dim.

PC−LISA: Nom. Dim.

PC−LISA: Red. Dim.

(b) So

Figure 5.31: Comparison between experimental, theoretical and UM-LISA (PC method)
sensor response amplitudes in the rectangular actuator experiment at different center fre-
quencies for: (a) So mode and (b) Ao mode.

and the experimental data. The experimental results are encapsulated between the UM-LISA

results for nominal dimensions and reduced dimensions. This was expected since perfect

bonding between the actuator and substrate was considered. However, reducing the actuator

dimensions by 20% is an overestimation. It can be said with confidence that reducing the

actuator dimensions by a value less than 20 % will result in better agreement between the
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UM-LISA simulations and experiments. One can see that the UM-LISA sensor response

for the Ao mode at lower frequencies (10 - 30 kHz) tends to have reduced correlation with

reduced dimensions. This discrepancy might be a result of large impedance mismatch be-

tween the actuator and substrate, whose effect might be predominant at lower frequencies.
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CHAPTER 6

Concluding Remarks

This chapter first presents a summary of the main accomplishments in this dissertation.

Key contributions are then presented based upon the results from the numerical analysis.

Finally recommendations for future studies and improvements are suggested.

6.1 Summary

The main objective of this work was to develop a numerical framework to model the

GW generation, propagation, and sensing in thin-walled structures. The literature survey

revealed the need for an efficient and accurate modeling tool for the development of struc-

tural health monitoring architecture. The UM-LISA framework was developed in response

to it.

Iterative equations form the core of the UM-LISA framework. They were derived from

the electro-static/elasto-dynamic equilibrium equations by incorporating the constitutive

relations and the compatibility conditions. Customary FD relations were used to resolve

the spatial and temporal derivatives. Sharp interface model (SIM), a key feature of the for-

mulation, distinguishes LISA from the traditional FD methods. SIM enforces the continuity

of displacement and stress field, which enables the seamless transition of the propagating

waves between the material interfaces.

Previous to this study, other researchers implementing the LISA formulation utilized

predominantly an out-of-plane prescribed displacement as input excitation. In this work,
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a better representation for actuator was proposed as an in-plane displacement input excita-

tion. This also enabled the modeling of CLoVER and other MFC based transducers.

Although prescribed-displacement-actuation-based LISA formulation captured the essence

of the GW propagation, it over-simplified the GW generation by not accounting for the

electromechanical coupling between the piezoelectric transducer and the substrate. This

dissertation addressed the shortcoming by extending the LISA’s capability to model piezo-

electric materials by including the electromechanical coupling in the governing equilib-

rium equations with appropriate constitutive and compatibility conditions. The final iter-

ative equations calculate mechanical displacements in an explicit time-marching manner,

whereas the electric potentials are calculated using an implicit scheme.

The architecture of the code was illustrated via detailed flow charts and block diagrams,

highlighting different modules included in the UM-LISA code. The code was presented in

a step-wise fashion to describe the structure of the setup and expedite future developments

to the framework.

There are a vast number of parameters affecting the accuracy and stability of the numer-

ical simulations. This dissertation addressed the ones that influence the GW generation and

propagation characteristics. Studies were performed to determine the rate of convergence

of the numerical method. As the GW are dispersive in nature, and the wave characteris-

tics are dependent on frequency-thickness, several cases were considered in determining

the convergence of the methodology. Suggestions regarding the optimal parameters while

implementing UM-LISA for wave propagation were presented.

Numerical analyses were conducted on several thin-walled specimens: isotropic plates,

composite laminates and a sandwich panel. GW propagation studies were carried out using

uni-directional [0]12T , cross-ply [0/90]3S and quasi-isotropic [0/45/-45/90/90/-45/45/0]S

laminates. The laminates were manufactured in-house using a prepreg/autoclave proce-

dure. The out-of-plane displacement was used as the reference parameter for the experi-

mental comparison studies. Laser vibrometry experiments were used to measure the GW
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propagation field, and the results were compared against the UM-LISA simulations. For the

comparison studies, the GW were generated using piezo ceramic and CLoVER transducers.

Preliminary experimental and numerical studies were conducted on a composite foam core

sandwich panel to investigate the possibility of using GW for SHM-related applications.

Comparison studies between simulations and experiments indicate that UM-LISA sim-

ulations were able to capture the GW propagation in different composite laminates in non-

principal reference axis. Important features such as energy steering and energy spreading

were captured by the simulations. The new iterative equations were also able to success-

fully incorporate the effect of ply-angle rotation on stiffness matrix and will be able to

model structures with complex material properties in varying reference axis. Also, the

study showed UM-LISA’s ability to model the directional characteristics of the CLoVER

transducer. The sandwich panel studies indicated that lower frequencies of excitation are

suitable for GW testing as more energy propagates to the bottom facesheet as compared to

the higher frequencies.

A simulated damage study was performed on the quasi-isotropic laminate. The damage

was introduced to the structure using a concentrated mass in the form of a steel bar. This

particular “damage” was selected because of its mobility to different radial and azimuthal

positions on the structure, and also to avoid any permanent damage to the laminate. A

combination of circular piezo transducers and CLoVER transducers were used in the simu-

lations. Good correlation was observed between the simulated results and the experimental

data, based on consistent higher amplitudes observed in the sectors aligned to the damage

site. The CLoVER transducer was effective in identifying the azimuthal location of the

simulated damage and rejecting transverse signals coming to it (filtering effect).

Studies were also carried out to investigate the difference between different actuation

methods to generate GW in UM-LISA. While two of the methods are indirect represen-

tation of the actuator effects through prescribed displacement, the third one is a direct

representation of the electromechanical coupled effects of the piezo actuator by the piezo-
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coupled implementation. The advantages of using a piezo-coupled formulation was illus-

trated by monitoring actuator nodes. Comparisons with the laser vibrometry experiments

validated the improvements in the GW generation using piezo-coupled actuation. Finally,

frequency response studies were carried out for piezoelectric sensors in an isotropic plate

and compared with experimental data. Better correlation was observed between the experi-

ments and simulation data as the piezo-coupled solution within UM-LISA incorporated the

electromechanical coupling between the transducer and the substrate.

6.2 Key Contributions

The key contributions of this dissertation are summarized as follows.

I Creation of UM-LISA framework as an effective way to model GW propagation, sim-

ulation and damage interaction in thin-walled composite structures. Incorporating the

effects of ply-angle rotation on stiffness matrix in the UM-LISA framework, which en-

ables the modeling of structures with complex material properties in varying reference

axis.

II Development of a unified UM-LISA framework to model piezo-coupled transducers

for GW generation and sensing, by accounting for the electromechanical coupling

between the piezo transducers and the substrate.

III Validation of the new formulation against various metallic and composite laminate

experiments, showing that it is capable of accurately capturing the wave generation

and propagation, as well as the energy steering effects of anisotropic substrates.

IV Systematic development of discretization parameter guidelines to obtain convergent

and accurate guided-wave generation and propagation solutions in composite struc-

tures.

117



V Demonstration that piezoelectric-coupled LISA formulation best captures the induced

piezoelectric actuator effects when generating guided waves, and that the prescribed

displacement approaches may introduce significant error to this process.

6.3 Recommendations for Future Work

Since the development of efficient and accurate numerical tools for GW propagation

is an ongoing process, several areas have been identified for future studies based on the

research conducted in this thesis:

I Damage interaction: A preliminary damage interaction study was performed as pasrt

of this dissertation. The framework can be used to model delaminations and low veloc-

ity impacts, which tend to be critical in composite thin-walled structures. The frame-

work can be utilized to build a database of GW interaction with damage features to

enable damage identification and characterization for SHM systems.

II Advanced parallelization: The current study implements an OPENMP based paral-

lelization, which utilized the number of physical cores in a processor. Based on the

structure of the numerical framework, employing GPU computing will be beneficial

in increasing the performance and reducing the computational time.

III Hybrid formulation: To leverage the advantages of other methods for wave propaga-

tion, like FE methods and semi-analytical methods, development of a hybrid LISA

formulation should be pursued to obtain more flexibility in modeling capability.

IV Coupled 2D and 3D LISA: In certain scenarios a 2D LISA formulation would be more

appropriate for GW simulation, such as narrow waveguides and honey comb cores. A

coupled 2D-3D LISA framework would be extremely useful in modeling sandwich

and complex structures. This could be obtained by developing transitional elements

from a 2D to a 3D structure.
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V Damping: In the current formulation, material damping effects were not included in

the numerical formulation. This would be an important addition to obtain better cor-

relation with experimental data for wave propagation and damage interaction studies.

VI Grid transformation: The current UM-LISA framework utilizes cuboid grids in the

numerical implementation. Although the current formulation is capable of modeling

engineering structures and transducers, extending the UM-LISA to incorporate grid

transformations will be beneficial in modeling curved panels and complex features.

VII Higher-order formulation: Although the current UM-LISA framework is close to a

second-order convergence rate, developing a higher-order formulation will provide

more accurate results in high impedance variation scenarios. The higher-order formu-

lation can also be used to capture non-linear wave propagation features.
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APPENDIX

Details of UM-LISA Derivation

Steps involved between setting up the governing equations (Eq. 2.24), and deriving

the final iterative equations (Eqs. 2.29-2.32) are presented in this section. The stress and

electric displacement continuity relations given in Eq. 2.28 are used along with customary

finite difference transformations listed in Eqs. 2.9-2.11 and Eqs. 2.25-2.27.

Detailed derivation is provided for w1 and the remaining displacement components

(w2, w3) and induced potential (ψ) can be obtained in a similar fashion. To obtain the

iterative equations for w1, first the coupled elastodynamic equations are considered for

the eight points as shown in Fig. 2.5(a). For brevity, the superscript index terms (i, j, k)

indicating a general node in space are dropped, but will be presented in the final equations

for completeness. The coupled elastodynamic equations are multiplied by ∆xα1 ∆xβ2 ∆xγ3

with appropriate choice of (α, β, γ)=±1, given as:

∆x+1
1 ∆x+1

2 ∆x+1
3

(
S+δ,+δ,+δ
V (1l)V (mn)w

+δ,+δ,+δ
m,nl + e+δ,+δ,+δ

V (1l)m ψ+δ,+δ,+δ
,ml = ρ+δ,+δ,+δẅ+δ,+δ,+δ

1

)
(.1)

∆x−1
1 ∆x+1

2 ∆x+1
3

(
S−δ,+δ,+δ
V (1l)V (mn)w

−δ,+δ,+δ
m,nl + e−δ,+δ,+δV (1l)m ψ−δ,+δ,+δ

,ml = ρ−δ,+δ,+δẅ−δ,+δ,+δ
1

)
(.2)

∆x+1
1 ∆x−1

2 ∆x+1
3

(
S+δ,−δ,+δ
V (1l)V (mn)w

+δ,−δ,+δ
m,nl + e+δ,−δ,+δ

V (1l)m ψ+δ,−δ,+δ
,ml = ρ+δ,−δ,+δẅ+δ,−δ,+δ

1

)
(.3)

∆x+1
1 ∆x+1

2 ∆x−1
3

(
S+δ,+δ,−δ
V (1l)V (mn)w

+δ,+δ,−δ
m,nl + e+δ,+δ,−δ

V (1l)m ψ+δ,+δ,−δ
,ml = ρ+δ,+δ,−δẅ+δ,+δ,−δ

1

)
(.4)

120



∆x+1
1 ∆x−1

2 ∆x−1
3

(
S+δ,−δ,−δ
V (1l)V (mn)w

+δ,−δ,−δ
m,nl + e+δ,−δ,−δ

V (1l)m ψ+δ,−δ,−δ
,ml = ρ+δ,−δ,−δẅ+δ,−δ,−δ

1

)
(.5)

∆x−1
1 ∆x+1

2 ∆x−1
3

(
S−δ,+δ,−δ
V (1l)V (mn)w

−δ,+δ,−δ
m,nl + e−δ,+δ,−δV (1l)m ψ−δ,+δ,−δ

,ml = ρ−δ,+δ,−δẅ−δ,+δ,−δ
1

)
(.6)

∆x−1
1 ∆x−1

2 ∆x+1
3

(
S−δ,−δ,+δ
V (1l)V (mn)w

−δ,−δ,+δ
m,nl + e−δ,−δ,+δV (1l)m ψ−δ,−δ,+δ

,ml = ρ−δ,−δ,+δẅ−δ,−δ,+δ
1

)
(.7)

∆x−1
1 ∆x−1

2 ∆x−1
3

(
S−δ,−δ,−δ
V (1l)V (mn)w

−δ,−δ,−δ
m,nl + e−δ,−δ,−δV (1l)m ψ−δ,−δ,−δ

,ml = ρ−δ,−δ,−δẅ−δ,−δ,−δ
1

)
(.8)

To employ sharp interface model (SIM) for the continuity of mechanical displacements

for the entire numerical model, prescribed displacement field is used for the first two time

steps, and for the subsequent time steps the acceleration (ẅ1) is enforced to be the same at

the eight additional points shown in Fig. 2.5(a), represented as:

ẅαδ,βδ,γδ1 = ẅ1 α, β, γ = ±1 (.9)

In addition to the spatial derivatives, the temporal derivatives in Eqs. .1-.8 can be re-

solved as:

ẅt1 =
wt+1

1 − 2wt1 + wt−1
1

2∆t2
(.10)

where ∆t is the time step used in the simulation, and superscript represents the temporal

iterative step in the equations. Next, the SIM for the continuity of stress is implemented

by considering additional points shown as black squares in Fig. 2.5(b). The selective stress

continuity equations are multiplied by appropriate ∆xi∆xj ((i, j) = ±1) terms, given by:

−2∆x+1
2 ∆x+1

3

(
τ+ε,+δ,+δ

11 − τ−ε,+δ,+δ11 = 0
)

(.11)
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−2∆x+1
2 ∆x−1

3

(
τ+ε,+δ,−δ

11 − τ−ε,+δ,−δ11 = 0
)

(.12)

−2∆x−1
2 ∆x+1

3

(
τ+ε,−δ,+δ
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(.13)
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2 ∆x−1

3

(
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)

(.14)
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3
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)
(.16)

−2∆x+1
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3
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τ+δ,+ε,−δ

12 − τ+δ,−ε,−δ
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)
(.17)

−2∆x−1
1 ∆x−1

3
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τ−δ,+ε,−δ12 − τ−δ,−ε,−δ12 = 0
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(.18)

−2∆x+1
1 ∆x+1

2
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13 − τ+δ,+δ,−ε
13 = 0
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(.19)

−2∆x+1
1 ∆x−1

2

(
τ+δ,−δ,+ε

13 − τ+δ,−δ,−ε
13 = 0

)
(.20)

−2∆x−1
1 ∆x+1

2

(
τ−δ,+δ,+ε13 − τ−δ,+δ,−ε13 = 0

)
(.21)

−2∆x−1
1 ∆x−1

2

(
τ−δ,−δ,+ε13 − τ−δ,−δ,−ε13 = 0

)
(.22)

The expressions for stress tensor terms in Eqs. .11-.22 are obtained from Eq. 2.20. The

customary finite difference transformations (Eqs. 2.9-2.11) are used to resolve the spatial

derivatives in Eqs. .1-.8 and Eqs. .11-.22. Next, the modified governing equations in Eqs. .1-

.8 are added to the stress continuity equations Eqs. .11-.22 and re-arranged to obtain the

displacement field w1, given as:
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wi,j,k,t+1
1 = −wi,j,k,t−1

1 + 2wi,j,k1
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Similarly the other mechanical displacement components can be written as:
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α,β,γ=±1

[
αβ∆xγ3

(
S̃12 + S̃66

)(
wi+α,j+β,k1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
αβ∆xγ3

(
S̃12 − S̃66

)(
wi+α,j,k1 − wi,j+β,k1

)]
+
χ

8

∑
α,β,γ=±1

[
βγ∆xα1

(
S̃23 + S̃44

)(
wi,j+β,k+γ

3 − wi,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
βγ∆xα1

(
S̃23 − S̃44

)(
wi,j,k+γ

3 − wi,j+β,k3

)]
− χ

4

∑
α,β,γ=±1

[
αβ∆xγ3 S̃26

(
wi,j,k2 − wi+α,j+β,k2

)]

− χ

4
wi,j,k1

∑
α,β,γ=±1

[
∆xβ2 ∆xγ3

∆xα1
S̃16 +

∆xα1 ∆xγ3

∆xβ2
S̃26

]

+
χ

4

∑
α,β,γ=±1

[
∆xβ2 ∆xγ3

∆xα1
S̃16w

i+α,j,k
1 +

∆xα1 ∆xγ3

∆xβ2
S̃26w

i,j+β,k
1

]

− χ

8

∑
α,β,γ=±1

[
αγ∆xβ2

(
S̃36 + S̃45

)
wi,j,k3

]
+
χ

8

∑
α,β,γ=±1

[
αγ∆xβ2 S̃36

(
wi+α,j,k+γ

3 + wi,j,k+γ
3 − wi+α,j,k3

)]
+
χ

8

∑
α,β,γ=±1

[
αγ∆xβ2 S̃45

(
wi+α,j,k+γ

3 − wi,j,k+γ
3 + wi+α,j,k3

)]

+
χ

4

∑
α,β,γ=±1

[
∆xα1 ∆xβ2

∆xγ3
S̃45

(
wi,j,k+γ

1 − wi,j,k1

)]

+
χ

8

∑
α,β,γ=±1

[
βγ∆xα1 (ẽ24 + ẽ32)

(
ψi,j+β,k+γ − ψi,j,k

)]
− χ

8

∑
α,β,γ=±1

[
βγ∆xα1 (ẽ24 − ẽ32)

(
ψi,j,k+γ − ψi,j+β,k

)]

(.24)
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wi,j,k,t+1
3 = −wi,j,k,t−1

3 + 2wi,j,k3

− χ

4
wi,j,k3

∑
α,β,γ=±1

[
∆xβ2 ∆xγ3

∆xα1
S̃55 +

∆xα1 ∆xγ3

∆xβ2
S̃44 +

∆xα1 ∆xβ2
∆xγ3

S̃33

]

+
χ

4

∑
α,β,γ=±1

∆xα1 ∆xβ2 ∆xγ3

 S̃55w
i+α,j,k
3

(∆xα1 )2 +
S̃44w

i,j+β,k
3(

∆xβ2

)2 +
S̃33w

i,j,k+γ
3

(∆xγ3)
2




+
χ

8

∑
α,β,γ=±1

[
βγ∆xα1

(
S̃23 + S̃44

)(
wi,j+β,k+γ

2 − wi,j,k2

)]
+
χ

8

∑
α,β,γ=±1

[
βγ∆xα1

(
S̃23 − S̃44

)(
wi,j+β,k2 − wi,j,k+γ

2

)]
+
χ

8

∑
α,β,γ=±1

[
αγ∆xβ2

(
S̃13 + S̃55

)(
wi+α,j,k+γ

1 − wi,j,k1

)]
+
χ

8

∑
α,β,γ=±1

[
αγ∆xβ2

(
S̃13 − S̃55

)(
wi+α,j,k1 − wi,j,k+γ

1

)]
− χ

8

∑
α,β,γ=±1

[
βγ∆xα1

(
S̃36 + S̃45

)(
wi,j,k1 − wi,j+β,k+γ

1

)]
− χ

8

∑
α,β,γ=±1

[
αγ∆xβ2

(
S̃36 + S̃45

)(
wi,j,k2 − wi+α,j,k+γ

2

)]
− χ

8

∑
α,β,γ=±1

[
βγ∆xα1

(
S̃36 − S̃45

)(
wi,j,k+γ

1 − wi,j+β,k1

)]
− χ

8

∑
α,β,γ=±1

[
αγ∆xβ2

(
S̃36 − S̃45

)(
wi,j,k+γ

2 − wi+α,j,k2

)]
+
χ

4

∑
α,β,γ=±1

[
αβ∆xγ3 S̃45

(
wi+α,j+β,k3 − wi,j,k3

)]

− χ

4

∑
α,β,γ=±1

[(
∆xβ2 ∆xγ3

∆xα1
ẽ15 +

∆xα1 ∆xγ3

∆xβ2
ẽ24 +

∆xα1 ∆xβ2
∆xγ3

ẽ33

)
ψi,j,k

]

+
χ

4

∑
α,β,γ=±1

∆xα1 ∆xβ2 ∆xγ3

 ẽ15ψ
i+α,j,k

(∆xα1 )2 +
ẽ24ψ

i,j+β,k(
∆xβ2

)2 +
ẽ33ψ

i,j,k+γ

(∆xγ3)
2




(.25)

where current time t is assumed where it is not mentioned, ẽ15 = e15(i + α, j + β, k + γ)

represents piezoelectric stress material property for one of the eight cells surrounding point

C depending on the choice of (α, β, γ) from (+1,−1) and similar expressions hold for other
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mechanical stiffness, piezoelectric stress matrix and permittivity terms. Also, χ = ∆t2

ρ

where, ρ = 1
8

∑
α,β,γ=±1

(
∆xα1 ∆xβ2 ∆xγ3ρ

α,β,γ
)

.

The implicit relation to calculate the induced potentials is obtained by substituting the

elastodynamic equilibrium equations with the charge equations for electrostatics, and stress

continuity with electric displacement continuity, and following the derivation steps listed

above for w1. The implicit equation to calculate induced potentials is represented as:

F (ψ) = g (w1, w2, w3) (.26)

where F (ψ) and g (w1, w2, w3) are functions defined as:

F (ψ) =− 2
∑

α,β,γ=±1

[(
∆xβ2 ∆xγ3

∆xα1
κ̃11 +

∆xα1 ∆xγ3

∆xβ2
κ̃22 +

∆xα1 ∆xβ2
∆xγ3

κ̃33

)
ψi,j,k

]

+ 2
∑

α,β,γ=±1

∆xα1 ∆xβ2 ∆xγ3

 κ̃11ψ
i+α,j,k

(∆xα1 )2 +
κ̃22ψ

i,j+β,k(
∆xβ2

)2 +
κ̃33ψ

i,j,k+γ

(∆xγ3)
2




g (w1, w2, w3) =−
∑

α,β,γ=±1

[
αγηxηz (ẽ15 + ẽ31)wi,j,k1

]
+

∑
α,β,γ=±1

[
αγηxηz (ẽ15 − ẽ31)

(
wi,j,k+γ

1 − wi+α,j,k1

)]
−

∑
α,β,γ=±1

[
βγηyηz (ẽ24 + ẽ32)wi,j,k2

]
+

∑
α,β,γ=±1

[
βγηyηz (ẽ24 − ẽ32)

(
wi,j,k+γ

2 − wi,j+β,k2

)]

− 2
∑

α,β,γ=±1

[(
∆xβ2 ∆xγ3

∆xα1
ẽ15 +

∆xα1 ∆xγ3

∆xβ2
ẽ24 +

∆xα1 ∆xβ2
∆xγ3

ẽ33

)
wi,j,k3

]

+ 2
∑

α,β,γ=±1

∆xα1 ∆xβ2 ∆xγ3

 ẽ15w
i+α,j,k
3

(∆xα1 )2 +
ẽ24w

i,j+β,k
3(

∆xβ2

)2 +
ẽ33w

i,j,k+γ
3

(∆xγ3)
2




(.27)

It should be noted that Eqs. .23-.25 are solved explicitly whereas Eq. .26 should be solved

implicitly for induced potentials.
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