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ABSTRACT 

 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common 

cancer worldwide and has a dismal 50% survival rate. Treatment for HNSCC is expensive 

and aggressive; surviving patients are left with significant physical impairment and 

emotional burden. Despite limited therapeutic options and poor survival, no novel 

effective therapy has been developed in 50 years. Perineural invasion (PNI) is a 

prognostic factor of poor survival in multiple cancers, including HNSCC, prostate and 

pancreatic cancers. If PNI is detected in HNSCC, the survival rate drops to 20%. Despite 

this alarming statistic, PNI is one of the least studied cancer phenotypes. Long-thought 

to be a passive process, new evidence demonstrates that PNI is an active process where 

tumor cells must degrade multiple layers of perineural sheath to spread. PNI leads to 

sensory disturbances including numbness, formication and cancer-associated pain. The 

nerve-tumor crosstalk necessary to promote PNI is understudied due to the lack of 

appropriate models that allow observation of nerve-tumor interactions.  Due to this deficit 

in investigations no anti-PNI therapies are available. In this study, we present a novel in 

vivo model of PNI to characterize interactions between nerves and tumors. This model 

uses the chicken chorioallantoic membrane in vivo platform with a grafted human HNSCC 

cell line adjacent to an implanted rat dorsal root ganglion. Mechanistic studies indicate 

that the neuropeptide galanin (GAL) mediates nerve-tumor crosstalk via activation of 

galanin receptor 2 (GALR2), a G-protein coupled receptor. Nerves initiate PNI via release 
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of GAL, which induces GALR2 on cancer cells. Through a novel signaling mechanism of 

tumor progression, activated GALR2 induces nuclear factor of activated T-cells, 

cytoplasmic, calcineurin-dependent 2 (NFATc2)-mediated transcription of GAL and 

cyclooxygenase-2 (COX2) in cancer. Prostaglandin E2, a conversion product of COX2, 

promotes invasion of cancer cells and in a feedback loop, GAL promotes tumor 

neuritogenesis. Clinical data show that expression of proteins involved in this cascade 

are correlated with poor survival. Importantly, the GALR2 inhibitor M871 blocks PNI in the 

CAM in vivo model. This study provides evidence of the dynamic interaction between 

nerve and cancer cells that facilitates PNI. 
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CHAPTER I 

Introduction 

 

Part I: The Role of Invasion in Head and Neck Cancer Progression 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

in the world (1). In the United States, HNSCC accounts for more deaths each year than 

cervical cancer, melanoma, or Hodgkin's lymphoma and costs more than 2 billion dollars 

to treat (2, 3). Since patients with HNSCC often present with late stage tumors, the 5-year 

survival rate is only 50%, which is poorer than breast cancer or melanoma (4). Poor 

survival can be attributed to the high frequency of local recurrences, second primary 

tumors and distant metastases (1). Understanding the process by which tumor cells 

destroy the basement membrane, invade and metastasize is essential in controlling 

recurrence of HNSCC. Moreover, understanding these mechanisms of invasion and 

targeting key molecular factors facilitating this process will advance HNSCC treatment 

strategies and improve survival. 

The basement membrane is the first and most robust structural barrier to invasion 

(5). In normal and pre-cancerous mucosa, the basement membrane separates surface 

stratified squamous epithelium from the underlying connective tissue. Destruction of the 

basement membrane and invasion of genetically and phenotypically altered cells into the 
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underlying stroma are required for progression of epithelial dysplasia (pre-cancer) to 

HNSCC (Figure I.1). Epithelial dysplasia exhibits less organization than normal oral 

epithelium (pre-cancer) due to accumulation of genetically altered cells above the 

basement membrane. After destruction of the basement membrane, tumor cells invade 

locally or metastasize to distant sites. Tumor spread contributes to the lethality of the 

disease.  

A process contributing to invasion that has recently become a research-intensive 

area is epithelial-mesenchymal transition (EMT). Appendix A summarizes the molecular 

biology findings of EMT in HNSCC, and Appendix B summarizes our findings of a novel 

biomarker, cadherin-11, that may play a role in EMT in HSNCC. It is possible that blocking 

EMT may be an important future treatment strategy to control tumor spread and improve 

survival for HNSCC patients. 

 

Perineural Invasion: an Understudied Route of Tumor Spread 

Although repeatedly shown to be a critical metric of prognosis in many cancer 

types, perineural invasion (PNI), which is a subset of invasion, is undervalued and 

understudied. PNI is the pathologic invasion of cancer cells into the perineural space of 

nerves and is a mode of tumor metastasis that is independent of vascular or lymph node 

involvement (6). PNI is prominently associated with HNSCC, cutaneous, rectal, biliary 

tract, pancreatic, stomach and colon cancers (7). PNI is associated with sensory changes 

including paresthesia, pain and formication, or the feeling of insects crawling under the 

skin (8). PNI was identified in case reports in the medical literature by the mid-1800’s, 
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including a clear description of cancer of the lip spreading to the brain (9). By the 1950’s 

it was recognized that cancers with PNI were particularly prone to recurrence and 

resistance to chemotherapy (10). PNI has received little research attention, in part due to 

the long-held misconception that PNI is a passive process by which tumor cells within the 

perineural sheath simply spread along the path of least resistance, and for that reason 

PNI has sometimes been referred to as neurotropic carcinomatous spread or perineural 

spread (7). Recent evidence suggests that PNI is much more likely an active process 

involving mutual tropism of the tumor and nerve.  

 

Part II: Diagnostic and Research Challenge Associated with PNI 

There are several reasons why the major mechanisms that initiate and sustain PNI 

remain unknown. Although determined to be an independent prognostic factor in several 

cancers, PNI is underappreciated compared to some more widely accepted prognostic 

factors such as lymph node involvement. Therefore, there is a lack of consistent staining 

for nerves in histopathological examination of specimens, leading to frequently missed 

diagnoses. The lack of consistency of PNI detection and reporting methods has made 

retrospective clinical studies challenging to conduct and interpret. Due to wide variations 

in neurotropism and anatomical features of various cancer types, specific and evidence-

based PNI reporting guidelines should be determined for each cancer type. Importantly, 

a precise definition of PNI and how to report and interpret the extent of neuronal 

involvement has not been developed for most cancers.  
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The histological appearance of nerves makes PNI a difficult diagnosis from 

hematoxylin and eosin staining. In normal peripheral nerve anatomy, nerve fibers or 

axons and associated Schwann cells are surrounded by collagen fibers and fibroblasts 

that form a tube called the endoneurium, and bundles of nerves are termed fascicles, 

which are surrounded by a dense fibrous network called the perineurium (11). Cells of the 

perineurium are concentrically arranged around nerve fascicles and have an elongated 

shape and spindle-shaped nuclei. The perineural space lies between the fascicles and 

the perineurium. When nerves in tissue specimens are cut tangentially, nerve fibers 

appear long and wavy usually with an elliptical or oval shape. If nerves are cut in cross 

section, the nerve axons appear as small spheres with round nuclei. Due to processing 

artifacts the perineurium may appear exaggerated or not intact in both tangential or cross 

sections. Given the very complex microanatomy of peripheral nerves, histopathologic 

detection of PNI is very challenging, particularly with subtle microscopic presentations 

(12). PNI may be missed at tumor margins and in tangential sections of nerves. 

Additionally, PNI is more likely to be reported in larger nerves than in smaller nerves (12). 

PNI in small nerves at the margins of tumors is thought to play a large part in local tumor 

recurrence, while invasion of larger nerves may play a bigger role in distant tumor spread. 

PNI may also be missed because small nerves may be masked by tumor islands and 

inflammation (7). 

In addition to histopathologic, or “incidental” detection of PNI, PNI can be 

determined clinically from pain, paresthesia or motor dysfunction reported by patients 

(13). PNI can result in relentless pain and sensory disturbances including formication; 

clinical symptoms of PNI are correlated with very poor outcome (14). PNI may be detected 
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through imaging modalities such as MRI, and metastases may be mapped intracranially 

(15). On MRI, PNI may appear as neural enhancement or thickening. PNI usually occurs 

toward the CNS (retrograde), but can also occur in the anterograde direction. Because of 

the likelihood of skip lesions, it is important to view the entire course of a nerve with 

imaging (13).   

PNI of head and neck cancers have been reported to spread along peripheral 

nerves as far as 15 cm from a primary tumor (16). Since surgery remains a key 

component of cancer therapy, it is essential to appreciate the complications that arise 

from attempting to track and eliminate PNI. Anatomically, PNI of HNSCC usually occurs 

along the trigeminal and facial nerves, but has also been reported along the sixth cranial 

nerve (17) and greater auricular nerve (18). Innervation of multiple facial structures and 

extensive branching and interconnection of these nerves provides conduits for 

widespread tumor metastases (13). For example, connections exist between the 

trigeminal and facial nerves, such as at the greater superficial petrosal nerve which 

branches from the facial nerve and passes through the pterygopalantine fossa and there 

joins branches of the maxillary branch of the trigeminal. It may be at connections such as 

these that tumor cells traveling along nerves scatter to locations of the head and neck 

that are very difficult to predict or resect. 

Due to the extensive branching and possibilities of interconnections between 

nerves of the head and neck, along with the possibility of distant tumor spread and 

retrograde and anterograde movement of tumor along the nerves, it becomes extremely 

complicated to attempt to anatomically trace the path of PNI of a tumor. Unfortunately this 

tracing is essential to eliminate recurrence using surgical or radiation therapy, which are 
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the current major treatments for HNSCC. This challenge may explain the high incidence 

of locoregional recurrence that has been noted in HNSCC (1); current treatment 

strategies have not effectively improved survival in about 50 years. Locoregional 

recurrence may be in part because clinicians are missing tumors that have undergone 

complicated local and regional spread along nerves (6), which may be underappreciated, 

underreported and undertreated. Since imaging technologies are not sensitive enough to 

adequately track PNI through the extensive nerve system, the best way to address this 

problem may be to generate specific anti-PNI therapies that target tumor cells that have 

spread along nerves. 

 

Part III: Understanding Biomarkers and Mechanisms to Direct Future Anti-PNI 

Therapies 

PNI is understudied in part due to the scarcity of appropriate research models.  

Almost all investigations of PNI are retrospective studies that compare PNI status and 

outcome. Due to inconsistencies in reporting and detecting PNI, it is nearly impossible to 

draw meaningful conclusions from the bulk of these studies, and therefore clinicians are 

calling for more research that will lead to improved management of tumors with PNI.   

Only a few clinical studies evaluated PNI molecularly and mechanistically.  Table 

I.1 lists several studies that have involved investigation of specific biomarkers with 

immunohistochemistry or in-situ-hybridization in different cancers with PNI. In addition to 

immunostaining of tumor specimens, clinical investigators have also used some 

molecular biology methods to investigate potential biomarkers of PNI, including gene 
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expression profiling of whole tumors (19) or laser capture microscopy with direct 

sequencing (20). 

Some researchers have shown that neuronal signaling pathways may drive PNI 

by facilitating nerve-tumor crosstalk. A few molecular targets that have been studied 

include the neuronal cell adhesion molecules L1-CAM (21) and NCAM (22-24), and 

growth factor/receptor pairs NGF/TRK-A and NGF/TRK-B (25-29). Our laboratory has 

identified the neuropeptide/receptor pair galanin (GAL)/galanin receptor 2 (GALR2) as 

having an oncogenic role in HNSCC (30). Although evidence supports that GAL/GALR2 

promotes tumor growth, the role of this neurotrophin/receptor pair has not been 

investigated in invasion or more specifically, PNI. The studies presented in the 

subsequent chapters will investigate the role of GAL/GALR2 in tumor progression. 

 

Basic Science Methodology for PNI Investigation 

The importance of studying PNI is recognized but challenges with in vitro and in 

vivo models have seriously hampered studies of PNI mechanisms. Early attempts at 

understanding the molecular mechanisms emphasized that modeling PNI in the 

laboratory is very challenging. These basic science investigations of PNI reflect the 

confusion seen in clinical studies.  

Of the rudimentary attempts at re-creating PNI in vitro or in vivo, few models are 

able to simultaneously capture the interaction of the tumor and nerve. There is clinical 

and in vitro evidence that PNI involves reciprocal interaction between cancer cells and 

nerves; nerves respond to factors secreted by cancer cells. These factors are also 
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important in physiologic processes during development and response to injury. Table I.2 

summarizes existing laboratory methodologies that model PNI. Most in vitro assays are 

simply modifications of traditional cancer assays and do not demonstrate the complexity 

of neuronal interactions with cancer. Most in vivo models have involved direct injection of 

cancer cells into nerves, thereby bypassing the initial steps in the invasive process. Due 

to these deficiencies, the emphasis of research has been on the role of the tumor in 

initiating and sustaining PNI, while little attention has been given to the active role of 

nerves in this process.  

 

Part IV: Problem Statement 

Deficiencies in clinical detection, reporting and researching PNI have resulted in a 

gap of understanding of this deadly pathologic process. Lack of understanding of PNI has 

hindered the development of targeted therapy. When PNI is detected, clinicians often opt 

for aggressive adjuvant therapies for lesions that may be treated more effectively and 

conservatively with a therapy that targets PNI. Therefore, research aimed at 

understanding PNI will lead to novel therapies and improved treatment protocols to 

address this dangerous phenotype of HNSCC. Ultimately, improved understanding of the 

molecular biology of PNI, including markers of perineural involvement in profiling tumors, 

will assist clinicians and scientists in developing personalized medicine strategies to treat 

patients. 

Current management of neurotropic cancers such as HNSCC is insufficient.  Due 

to complicated invasion patterns, HNSCC with PNI cannot be managed with surgery and 
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radiation alone. Therefore, it is essential to develop anti-PNI therapeutics in order to kill 

cancer cells protected from existing treatments by invasion along the nerves with 

subsequent loco-regional recurrence. The shortfalls of current PNI models critically limit 

research advances in this area. Our hypothesis is that the GAL/GALR2 signaling 

mechanism promotes PNI; however more advanced models are necessary to test the 

relevance of this interaction. Therefore, the aims of this dissertation are: 1) to develop 

novel models of PNI and 2) to use these models to mechanistically investigate the role of 

GAL/GALR2 in PNI.   
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Figure I.1: HNSCC progression. Normal epithelium consists of cells with low mitotic 
activity separated from the connective tissue with an intact basement membrane. In 
epithelial dysplasia and carcinoma-in-situ (full thickness epithelial dysplasia), abnormal 
epithelial cells appear above the basement membrane. In HNSCC, the basement 
membrane is disrupted by tumor cells, which invade the connective tissue. 
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Protein Type Biomarker Cancer Type and Reference(s) 

Antigen LEU7 Adenoid Cystic (31) 

Actin-Binding DSTN Pancreatic (32) 

Neuronal Cell Adhesion L1-CAM 
NCAM 

Prostate (21)  
Bile Duct (22) 
Gallbladder (23) 
Squamous Cell (24) 

Cell Surface Receptor FAS Pancreatic (33) 

Cytokine TGF-β1 Prostate (34) 

 CXCL4/CXCL12 Prostate (35) 

Cytoplasmic BYSL Prostate (36) 

 CTTN Laryngeal (37) 

 MUC1/SIGLEC4 Pancreatic (38) 

Golgi Membrane MT Prostate (39) 

Growth Factor/Receptor NGF/TRK-A/B HNSCC (25) 
Basal and Squamous Cell (26) 
Pancreatic (27-29) 

Kinase RET/GFR1α Bile Duct (40) 

Lens CRYαβ Squamous Cell (41) 

microRNA mir-224 Prostate (39) 

Microtubule associated MAPRE2 Pancreatic (42) 

Motor KIF14 Pancreatic (43) 

Neurotrophic GDNF Bile Duct (40) 
Pancreatic (44) 

Protease MMP2 Prostate (35) 

 MMP9 Pancreatic (44) 
Prostate (35) 

Proteoglycan SDC2 Pancreatic (45) 

 GPC1 Pancreatic (44) 

Receptor CXADR Prostate (39) 

Rho-Associated ARHGDIB Pancreatic (43) 

Scaffolding CAV-1 Prostate (34) 

Transcription Factor c-MYC Pancreatic (33) 

 NF-κB Prostate (46) 

 

Table I.1: Biomarkers of PNI confirmed with immunohistochemistry.  



12 
 

In vitro assays Neural Monolayer Adhesion  (47, 48) 

 Boyden Chamber  (40, 49-52) 

Immunoblot or proteomic analysis 
of cell lines with high or low PNI 

(51, 53) 

Neuroplasticity  (51, 54, 55) 

Dorsal Root Ganglion or 
Myenteric Plexus Co-Culture with 
cancer cells 

(51, 52, 54, 56-61) 

Genetic profiling of nerve-invasive 
clones 

(43) 

Live Cell Imaging (54) 

In vivo assays Mouse xenograft models (51, 53, 62) 

 Sciatic nerve injection (52, 59-61) 

Murine model with human nerve 
plexus graft 

(63) 

Genetic profiling of high/low PNI 
groups 

(63-65) 

In vivo imaging (60) 

 

Table I.2: Laboratory models of PNI. 
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CHAPTER II 

 

Models of HNSCC Progression 

Portions of Chapter II are adapted from previously published manuscripts (66, 67). 

 

Part I: Models of Invasion 

 The tumorigenic phenotypes or hallmarks of cancer include invasion and metastasis, 

proliferation, survival, angiogenesis, and stemness (68). Invasion is required for multiple 

steps in HNSCC progression including initiation, local spread and metastasis. During 

transformation of a precancerous lesion to HNSCC, cells invade from the surface 

epithelium, the tissue of origin of HNSCC, into the underlying connective tissue. Invading 

cells destroy the basement membrane that separates the epithelium from the connective 

tissue. Destruction of the basement membrane and invasion are essential for 

development of HNSCC. Thus, the basement membrane is the first, most robust 

structural barrier to invasion (5). Cancer cell proliferation and survival promote tumor 

growth. Angiogenesis facilitates tumor growth and spread, and stemness promotes tumor 

recurrence. Given the importance of these phenotypes in tumor progression, a robust 

cancer model should recapitulate these phenotypes. 

Many models have been developed in the last few decades to evaluate the oncogenic 

phenotypes of HNSCC. However, most of these models are in vitro systems that work 

with monolayer cultures, making these assays difficult to translate into clinical application. 
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Furthermore, these models do not recapitulate the basement membrane or the 

connective tissue. Due to the importance of invasion in tumor progression, we recently 

developed an in vitro three-dimensional  (3D) model for   human   HNSCC   as  described  

in  Appendix  C  (69, 70), that recapitulates stratification  of  the  surface  epithelium,  

destruction  of  the  basement  membrane  and invasion of tumor islands into the 

connective tissue. This oral cancer equivalent model is excellent for studying several of 

the local effects of invasion. However, the model does not simulate the systemic impact 

of invasion (e.g. metastasis) as may be observed in an in vivo murine model. Several 

murine models are used to study HNSCC. Sub-cutaneous injection models of tumor cells 

into immunocompromised mice are useful to study tumor size (71). The floor-of-the-mouth 

tumor models have the advantage of placing tumor cells into the oral tumor 

microenvironment and can lead to metastases (72). However, both models require 

injection of tumor cells below the basement membrane and do not replicate invasion. The 

mouse oral carcinogenesis model involves inducing tumors in mice through exposure to 

carcinogens in the water supply such as 4-nitroquinoline-1 oxide, which mimics the impact 

of tobacco exposure (73). This model is very useful to study both dysplasia and squamous 

cell carcinoma, but genetic studies are limited since the tumors produced are of mouse, 

not human origin.   

Unfortunately, most murine models of human HNSCC are inadequate because 

tumor cells are injected directly into the connective tissue thereby bypassing the 

basement membrane of the surface epithelium, the first barrier to invasion. Given the 

importance of invasion in tumor progression, we developed an in vivo model of human 

HNSCC progression utilizing the chicken embryo. The embryonic chicken is among the 
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most well-characterized and useful in vivo biological systems (74). The chorioallantoic 

membrane (CAM) assay is an emerging model of tumor progression using the embryonic 

chicken. The CAM is a very vascular structure that surrounds the chick embryo. It allows 

for exchange of dissolved O2 and CO2, similar to the function of the placenta of a 

developing mammal.  The CAM is comprised of an upper chorionic epithelium, intervening 

mesenchyme, and lower allantoic epithelium. The chorionic epithelium is structurally 

similar to human epithelium (66) and is separated from the underlying connective tissue 

by basement membrane comprised of collagen IV, similar to that observed in human oral 

mucosa. 

In the CAM assay, a small opening is made in the shell of a fertilized egg, allowing 

a tumor cell graft to be seeded directly on the chorionic epithelium. Grafted tumor cells 

invade through the basement membrane of the chorionic epithelium and into vascular 

structures in the underlying mesenchyme, thereby metastasizing to distant structures and 

organs including the liver of the developing chicken and the lower CAM (66).  

Figure II.1 provides an overview of the CAM model of HNSCC and identifies where 

HNSCC tumors grow, invade and metastasize within the chick egg. HNSCC cells are 

seeded on the upper CAM and destroy the basement membrane of the surface epithelium 

to invade the connective tissue and blood vessels via which they metastasize to the lower 

CAM and liver. Figure II.2 provides an overview of the procedure, and outlines the 

endpoint assays including tumor growth, invasion, angiogenesis and metastasis.  

  The CAM HNSCC in vivo model was validated by investigating the role of EZH2 

(enhancer of zeste homolog 2) in HNSCC growth, angiogenesis, invasion and metastasis 
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(Appendix D). Using this model, we recently showed that EZH2, a histone 

methyltransferase, promotes progression of HNSCC by inducing multiple cancer 

phenotypes, likely via methylation of multiple tumor suppressor genes (71, 75).  

The first tumor grafts on the CAM were successfully performed in 1913 using rat 

sarcoma tissue, establishing that the CAM is an appropriate recipient site for xenografts 

(76). This discovery led to the development of multiple carcinogenesis assays using the 

CAM, which have become prominent methods to assess tumor angiogenesis, 

progression and metastasis (77, 78). Although the basic technique of grafting tumors onto 

the CAM has changed very little, powerful technological advances allow scientists to use 

the CAM for assays of increasing complexity. These advances have led to renewed 

attention in this established model, particularly in the past decade (Figure II.3). Since 

2010, nearly 100 cancer-related publications using the CAM model have appeared 

annually in peer-reviewed journals listed on PubMed. 

Our laboratory recently reported the use of the CAM model to simultaneously study 

multiple aspects of HNSCC tumor progression, including tumor growth, invasion, 

metastasis and angiogenesis (66). Although the CAM model has been used to study oral 

epithelial dysplasia (precancer), peri-tumor lymphatic vessel density, and to test drugs for 

HNSCC, it had not been characterized as a comprehensive model for HNSCC 

progression until our recent study. The study and related phenotypes are summarized in 

Table II.1. The CAM model of HNSCC has several benefits over murine in vivo models.  

The CAM closely replicates the tissue complexity of oral mucosa, i.e. the basement 

membrane separating the epithelium from the connective tissue, and therefore is an 

excellent model for HNSCC progression. Most murine models of HNSCC require 
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subcutaneous or submucosal injection of cancer cells.  Because the injected cells 

artificially bypass the basement membrane, injection-based murine models cannot 

replicate destruction of the basement membrane with subsequent invasion. This 

important phenotype is an essential step for transformation of a premalignant lesion into 

HNSCC (79). However, in the CAM model of HNSCC, tumor cells must degrade the 

basement membrane of the chorionic epithelium to invade, closely replicating progression 

of precancerous lesions to HNSCC. Given that some recent work emphasizes the impact 

on invasion of structures and channels found in true extracellular matrix, the CAM model 

is attractive to study invasion in vivo (80, 81). 

Many technological advances are giving a fresh perspective on the value of CAM 

tumors. It is now possible to use stop-motion video-microscopy to continuously monitor a 

target’s activity over a period of days (82). Unlike traditional murine models, the CAM 

model is able to exploit the promise of these new techniques. While both murine and CAM 

models provide in vivo results, tumors on the CAM are more readily observed and 

quantified. For similar reasons, the CAM model also offers easier study of angiogenesis.   

Another advantage of the CAM model is the short duration (maximum 1 week) 

required to assess even late events in tumor progression, such as metastasis. This may 

take several weeks to months to assess in murine models (83). This long duration 

increases the cost and time required for investigations. The cost per mouse limits the 

number of mice that can be used for each experiment. The CAM model provides an 

opportunity to perform large in vivo experiments at a fraction of the cost of murine-based 

models of HNSCC. The cost effectiveness and easy accessibility of the CAM system 

enhance the appeal of this in vivo model, particularly when funding resources are limited. 
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 Importantly, the rapid turnaround of results in the CAM model allows in vivo 

studies with transiently transfected HNSCC cells, which cannot be performed in murine 

models. For example, the impact of an siRNA on downregulation of a protein lasts 7-10 

days for rapidly dividing cells (84). This timeframe is insufficient for tumor studies in mice, 

which take weeks to months. In contrast, in the CAM the entire sequence of tumor 

progression including proliferation, invasion and metastasis can be observed in this time 

frame. 

Another advantage of the CAM-HNSCC model is the late development of the 

immune system in the chick embryo (83). Due to the lack of an immune system in the 

early chicken embryo, the CAM system readily accepts many types of xenografts. Few 

cells are needed for xenograft experiments, and metastasis can be quantified very 

accurately through PCR-based methods (85). The CAM model of tumor progression has 

some limitations. Perhaps the most significant limitation is that the mouse is currently 

accepted as the gold standard for in vivo biological studies. Moreover, technical dexterity, 

and specific equipment/ materials are necessary to set up the CAM protocol. This is also 

true of some murine HNSCC models such as the tongue and floor-of-mouth models (72). 

The chick embryo becomes fully immunocompetent by day 18 (83). The 

developing immune system of the embryonic chicken limits the duration of a study with 

human tumor cells and the lack of an immune system prevents the investigation of tumor-

host immune system interactions. However, investigations of human HNSCC in mouse 

also require the use of immunodeficient mice. The larger sample sizes used for CAM 

experiments yield a wealth of data for multiple phenotypes requiring extensive time for 

analysis.   
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Overall, the scientific benefits of the CAM model make it an attractive option to all 

cancer biologists. The practical advantages of the CAM model over rodent models make 

it a cost-effective, accessible option to scientists in developing institutions. For these 

reasons, and because the CAM brings the study of these processes into a uniform setting 

where interactions can be examined, the popularity of the CAM model will continue to 

increase. 

 

Part II: Advancing the CAM Model to Become a Model of PNI 

The significance of the primed neural niche in the tumor microenvironment has been 

alluded to in histopathological observation and 3-dimensional (3D) reconstruction of 

tumors from labeled tissue sections (86). However, the speculated mechanisms of PNI 

have underplayed the role of neurons in tumor-nerve interactions, since previous in vitro 

models could not capture the dynamic involvement of neural tissue (7). Most in vivo 

studies of PNI focus on tumor spread and inhibition of motor function, and depend upon 

direct injection of tumor cells into sciatic nerves (87). Injection models are useful to show 

destructive tumor progression and pain resulting from tumor cells within nerves. In a 

different approach, surgically implanted orthotopic tumor grafts were used to characterize 

the importance of β-adrenergic receptors in promoting PNI and progression of prostate 

cancer, thus suggesting a more prominent role of neuritogenesis in tumor progression 

(88). However, in bypassing the invasive process using surgically implanted tumors, 

these previous models do not truly replicate PNI. 
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 The prevailing view is that cancer cells are the drivers of tumor-neuronal 

interactions, in part because limitations of previous in vivo models made it impossible to 

fully appreciate the role of nerves in these interactions (7). Given the shortcomings of 

previous in vivo PNI models, we developed a new PNI model on the CAM in vivo platform, 

rooted in work from the research team of Nobel Laureates Rita Levi-Montalcini and 

Stanley Cohen, and Victor Hamburger that demonstrates the ability of chicken embryos 

to sustain tissue grafts (89, 90). In this model, a mammalian dorsal root ganglion (DRG) 

is isolated and grafted onto the surface epithelium of the upper CAM. After the DRG 

becomes incorporated into the epithelium of the CAM, HNSCC cells are grafted near the 

DRG and allowed to interact with the nerve before the entire in vivo system is harvested 

and analyzed. Importantly, the system allows full visual observation of either the DRG or 

the tumor in vivo by fluorescent labeling. 

 In the early development of the CAM-PNI model, both mouse and rat DRG were 

tested for optimal incorporation into the CAM. We first performed a time course 

experiment with mouse DRG to determine the optimal number of days necessary for the 

graft procedure. We found that the mouse DRG becomes fully incorporated by day 3 

(Figure II.4A and Figure II.4B).  We also performed optimization using rat DRG (isolation 

technique shown in Figure II.4C) and found that rat DRG had even more reliable 

incorporation into the CAM epithelium than mouse DRG by day 3 (Figure II.4D).  

Therefore, rat DRG were selected for future model optimization. 

 Following optimization of the DRG grafting technique, we further adapted the 

model to study PNI in vivo. The CAM-PNI model was inspired by an in vitro assay of co-

culturing DRG with prostate cells in MatrigelTM (57). When using HNSCC cells in co-
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culture with rat DRG, we found that they exhibited robust invasion toward nerves in vitro 

(Figure II.5A). When a rat DRG was grafted adjacent to HNSCC tumor cells on the CAM, 

both were supported by the in vivo system (Figure II.5B) and within 2 days, HNSCC 

invasion into the nerve was observed  (Figure II.5C and Figure II.5D). 

Our CAM-PNI in vivo model addresses the deficits of previous models by 

demonstrating neuronal outgrowth into the peri-tumoral niche. Importantly, tumors in the 

CAM-PNI system are not surgically implanted, thereby maintaining the invasive process 

necessary for PNI. The system is also useful in studying therapy to disrupt PNI. In the 

future, the model could be used to evaluate response to treatment by measuring the 

responses of the tumor and the nerve, either of which may promote tumor recurrence. 
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Figure II.1:  Overview of the CAM model of tumor progression.  Fluorescently labeled 
cancer cells are seeded on the upper CAM of the chick embryo. The cancer cells invade 
the epithelium and basement membrane of the upper CAM and move through connective 
tissue into the vasculature. Cancer cells can metastasize to the lower CAM or liver and 
lung of the developing chicken. 
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Figure II.2: Experimental procedure and timeline of the CAM assay. Fertilized 
chicken eggs are incubated at day 0. On day 8, the developing vasculature is identified 
and a window is opened on the egg to seed human cancer cells.  On day 11, the egg can 
be re-opened to harvest the upper CAM containing the tumor in order to assess tumor 
growth, invasion and angiogenesis. For metastasis studies, the egg is opened at day 16 
to collect the lower CAM and liver of the developing chicken. qPCR analysis of the 
collected tissues provides an estimation of the number of human cancer cells that have 
invaded to the collected organs. 
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Figure II.3: The CAM emerges as a standard model of carcinogenesis. 
“Chorioallantoic membrane” and “cancer” were entered as search terms on PubMed 
(http://www.ncbi.nlm.nih.gov/pubmed/), and the results were sorted by date of addition to 
PubMed database. The number of articles per decade was quantified, and Student’s t-
test was used to analyze the difference in the number of publications using the CAM 
method between decades. Between the 1970s and 1980s and beyond there is a 
statistically significant increase in the number of articles, and the largest increase 
occurred between the 1990s and 2000s (P < 0.05). Given this trend, it is likely that an 
increasing number of cancer researchers will employ the CAM model. 

  

http://www.ncbi.nlm.nih.gov/pubmed/
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Figure II.4: Optimization of nerve grafting on the CAM. A. Stereo microscope images 
show grafting of a mouse nerve on the CAM (arrows identify nerves). No integration of 
the nerve was observed after the first day, however by the second day there was partial 
integration, and complete integration of the nerve into the CAM by the third day after 
grafting. B. Histological images of the grafted nerve are shown for day 2 (partial 
integration) and day 3 (full integration). C. The procedure for opening a rat spinal column 
to collect DRG is shown. D. Full integration of a rat nerve at 3 days post grafting is shown 
(arrow highlights nerve). 

  



26 
 

 

Figure II.5: Optimization of the CAM-PNI model. A. HNSCC cells exhibit PNI when co-
cultured with a rat DRG in vitro. B. The co-culture approach is adapted to an in vivo 
system by co-grafting a rat DRG and HNSCC tumor cells onto a CAM (arrow highlights 
the nerve on the CAM). C. The upper CAM tissue is collected, and PNI is observed. D. 
Histologic images of PNI from the CAM co-grafting technique (20x and respective 40x 
images are shown). In images, “C” labels cancer and “N” labels nerves. Tumor cells, 
labelled with DIO, fluoresce green. 

  



27 
 

HNSCC Cancer Phenotype Studied Reference(s) 

Angiogenesis (66, 91-97) 

Biomarker Expression (66, 92, 93) 

Drug Testing (92-95, 98-101) 

Dysplasia Study (102) 

Invasion (66, 92, 96, 103-105) 

Lymphatic Vessel Density (106) 

Metastasis (99-101, 103, 107) 

Tumor Growth (66, 92, 93, 96, 108) 

 

Table II.1: The use of the CAM model in HNSCC research. The terms “chorioallantoic” 
and “head and neck cancer” were used to identify articles listed on Pubmed that use the 
CAM model to study HNSCC. The articles from the resulting search are organized 
according to the phenotype investigated using the CAM model system. 
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CHAPTER III 

Galanin Modulates the Neural Niche to Favor Perineural Invasion in Head and 

Neck Cancer 

Chapter III is adapted from a manuscript that is under review for publication (109). 

 

INTRODUCTION 

PNI predicts poor survival in head and neck squamous cell carcinoma (HNSCC), 

pancreatic, stomach and colon cancers (7). PNI is associated with pain and tumor spread, 

independent of lymph or vascular involvement (6). Previously assumed to be a passive 

process by which cancer spreads along the path of least resistance, recent evidence 

suggests PNI is an active process whereby tumor cells must degrade several layers of 

perineural sheath prior to metastasis (110). 

PNI is observed in up to 80% of HNSCC cases and correlates with tumor recurrence 

and spread (110, 111). HNSCC can spread along nerves into the brain or into sensory or 

motor nerves, and is associated with loss of function, pain, numbness and formication, 

i.e. the feeling of insects crawling under the skin (111). HNSCC with PNI is treated 

aggressively but the prognosis remains poor. Unfortunately, there is no targeted 

treatment for PNI since the molecular mechanisms are largely unknown. Therefore, 

dissecting the mechanism of PNI is a critical  area of research since this would  facilitate 
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the development of novel therapeutics targeting PNI. Specific treatment of PNI would 

enhance patient survival and quality-of-life. 

Although it has been suggested that the altered neural microenvironment adjacent 

to tumors contributes to cancer progression, the limitations of existing in vivo models of 

PNI have hindered elucidation of nerve-tumor interactions (7). To overcome this obstacle, 

we developed an in vivo model of PNI to characterize mechanisms of nerve-tumor 

interactions. We show that the neuropeptide galanin (GAL) initiates nerve-tumor crosstalk 

via the activation of the G protein-coupled receptor galanin receptor 2 (GALR2) on cancer 

cells. Our data reveal that activated GALR2 induces nuclear factor of activated T-cells, 

cytoplasmic, calcineurin-dependent 2 (NFATC2)-mediated transcription of 

cyclooxygenase-2 (COX2) and GAL. COX2 enzymatically facilitates prostaglandin E2 

(PGE2) production, promoting tumor progression. In a feedback mechanism, GAL 

released by cancer induces neuritogenesis and facilitates PNI. These studies 

demonstrate that the nerve initiates PNI via GAL, providing a potential treatment target. 

Moreover, the novel approaches presented here provide a starting point to investigate the 

roles of other neurotrophic proteins in PNI. 

 

METHODS 

Cell Culture. HNSCC cell lines UM-SCC-1 (from Thomas Carey, University of Michigan) 

and OSCC3 (from Peter Polverini, University of Michigan) were genotyped to confirm cell 

types at the University of Michigan DNA Sequencing Core prior to all studies. HNSCC 

cells and the neuroblastoma cell line SH-SY5Y (from Stephen K. Fisher, University of 

Michigan) were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco®, 11965-
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092) supplemented with 10% fetal bovine serum (FBS, Gibco®, 16000-044) and 1% 

PenStrep (Gibco®, 15140-122). UM-SCC-1 and OSCC3 cells were transfected with 

pcDNATM3.1 (InvitrogenTM, V790-20) and pcDNATM3.1-GALR2 (Missouri S&T cDNA 

Resource Center, GALR200000). Geneticin (Gibco®, 10131-027, 50 µg/mL) was used to 

select and maintain stable colonies. UM-SCC-1 and OSCC3 cells transfected with 

pcDNATM3.1-GALR2 were infected with control non-targeting small interfering RNA 

(siRNA, Dharmacon, D-001810-10-05) or siRNA targeting NFATC2 (Dharmacon, L-

003606-00) and COX2 (Dharmacon, LQ-004557-00-0002, siRNA sequences available in 

Table III.1). For stable NFATC2 knockdown, UM-SCC-1 and OSCC3 cells 

overexpressing GALR2 (UM-SCC-1-GALR2 and OSCC3-GALR2, respectively) were 

transduced with shRNA lentiviral particles (Thermo Scientific, shRNA sequences 

available in Table III.1). Stable colonies were selected using Puromycin (Santa Cruz 

Biotechnology, sc-108071B, 10 µg/mL for UM-SCC-1 cells and 25 µg/mL for OSCC3 

cells). 

 

Chromatin Immunoprecipitation (ChIP).  The EZ-Magna ChIP A/G kit (EMD Millipore) 

was used to perform ChIP as described (71). The sequences of the Ptgs2 (COX2) and 

Gal (GAL) primers used are provided in Table III.2. The Gal primers were designed by 

walking the promoter region of GAL and contain an AP-1 binding site. The Ptgs2 primers 

were reported previously and contain AP-1 binding sites (112, 113). The UM-SCC-1-

pcDNA and UM-SCC-1-GALR2 cells were grown to 60% confluence and cross-linked 

using 1% formaldehyde for 10 minutes, and then quenched with 0.125M glycine at room 

temperature for 5 minutes. The cells were lysed and also sonicated in order to fragment 
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the chromatin to 500 base pairs, then incubated overnight with antibodies and protein A 

or G magnetic beads. Crosslink reversal was achieved by incubating the chromatin for 2 

hours at 62°C and then the DNA was isolated. qPCR was used to analyse purified DNA 

to determine relative fold enrichment compared to input DNA. The ChIP antibodies used 

were anti-NFATC2 antibody (Santa Cruz Biotechnology, sc-7296) and control rabbit IgG 

(Dako, X0936) was used to normalize NFATC2-specific binding to background 

nonspecific binding.  

 

Data Analysis. GraphPad Prism (GraphPad software) was used for statistics. A 

Student’s t-test was performed with a P-value of <0.05 determined to be statistically 

significant. 

 

DRG Organ Culture. Rat dorsal root ganglia (DRG) and human HNSCC cells were co-

cultured in MatrigelTM Basement Membrane Matrix (BD Biosciences, 356234), similar to 

a described method (57). DRG were dissected from postnatal day 30 Sprague Dawley 

rats within 1 hour of being euthanized and placed in 15 µL of 4.6 mg/mL MatrigelTM. 

HNSCC cells (2 x 104) were seeded in an adjacent droplet of MatrigelTM, and cultures 

were immobilized by warming to 37°C and culturing in DMEM (DMEM, Gibco®, 11965-

092) supplemented with 10% FBS (Gibco®, 16000-044) and 1% PenStrep (Gibco®, 

15140-122). Cultures were maintained at 37°C with 5% CO2 for 2 days to observe cancer 

cell and neurite interactions. GALR2 inhibitor M871 or DMSO control was used at 100 nM 

in culture. GAL antibody and rabbit serum IgG were used at 3 ng/mL. Neurite extension 

and cancer cell movement were imaged after 48 hours and quantified using ImageJ 
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software (W.S. Rasband, NIH, Bethesda, MD; http://imagej.nih.gov/ij/). Cultures were 

made in quadruplicate and repeated in triplicate. 

 

Efforts to Reduce Bias.  Protocols were developed to eliminate investigator bias in 

quantifying samples. Quantification was routinely performed by 2 individuals, 1 of whom 

was blinded to the hypothesized outcome. Whenever possible, objective quantification 

methods, such as microplate readings and computer-based quantification of images were 

selected. 

 

Enzyme-Linked Immunoadsorbent Assay for PGE2.  CM from HNSCC cell lines UM-

SCC-1 and OSCC3 was collected and processed as described (114).  The total number 

of cells was quantified with a Countess® Cell Counter (InvitrogenTM, C10227). PGE2 was 

quantified as a surrogate for COX2 using a competitive ELISA (R&D Systems®, 

KGE004B) in 3 independent experiments per cell line. 

 

HNSCC-Neural Cell Interaction Assay. UM-SCC-1-pcDNA or UM-SCC-1-

GALR2 (1x104) cells were labeled with DiO, a dialkylcarbocyanine derivative, and 

suspended with 1x104 SH-SY5Y neuroblastoma cells that had been labeled with 

CellTracker Red CMPTX (Life Technologies, C34552) on 8-chambered cover-slips in 

blank DMEM in triplicate. After 24 hours, the cells were fixed, mounted and imaged at 60x 

magnification. Colocalization was quantified by counting the number of green HNSCC 

cells in contact with red SH-SY5Y cells and dividing by the total number of HNSCC cells 

per high powered field. Differentiation was quantified by counting the number of SH-SY5Y 
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cells with neurite extensions and dividing by the total number of SH-SY5Y cells present 

per high powered field.  

Human subjects. Paraffin-embedded human HNSCC tissues were used for 

immunohistochemistry analysis. The University of Michigan Institutional Review Board 

approved the protocol prior to any human tissue use.  All human tissues were de-identified 

prior to the study; therefore the University of Michigan Institutional Review Board 

determined that the research qualified for Category 4 Exemption status (Exemption 

Number 1999-0341).   

 

Immunoblot. Cells were lysed with 1% NP40 protein lysis buffer.  The following primary 

antibodies were used: anti-GAL (EMD Millipore, MAB374), anti-GALR2 (Alpha 

Diagnostics, GALR21-A), anti-actin (BD Scientific, 612656), anti-NFATc2 (Cell Signaling 

Technologies®, 5861), anti-COX2 (Cell Signaling Technologies®, 12282) and anti-

HNRNP (Santa Cruz Biotechnology, sc-15386).   Biotinylated anti-mouse and anti-rabbit 

secondary antibodies were used (Jackson ImmunoResearch Laboratories, 115-006-075 

and 711-006-152). The visualization of immunoreactive proteins was performed with the 

SuperSignal West Pico Chemiluminescent system (Pierce, 34080).   

 

Invasion Assay. Cell invasion was quantified 24-48 hours after siRNA transfection using 

Transwell inserts (Corning, 3422) and the modified Boyden chamber assay coated with 

MatrigelTM (BD Biosciences, 354230). Inserts that were not coated with MatrigelTM were 

used as a migration control, and invasion was normalized to migration according to the 
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manufacturer’s instructions by dividing the total number of cells that invaded through 

MatrigelTM by the total number of cells that invaded through the control insert. Five 

nanomolar GAL (Sigma-Aldrich®, G8041) or conditioned medium (CM) collected from rat 

DRG cultured in control medium for 48 hours was used as a chemoattractant in the bottom 

chamber of the assay. CM from rat DRG was incubated with 1:1000 anti-GAL antibody 

(EMD Millipore, AB5905) or rabbit IgG (Dako, X0936) for 1 hour at room temperature.  

Conjugated-GAL and unbound antibody or IgG were removed by centrifugation with an 

Amicon Ultra 50K centrifugal filter (EMD Millipore, UFC805024) for 10 minutes at 4000 

rpm.   

 

Immunohistochemistry and Immunofluorescence. Human and mouse tumors were 

stained with anti-COX2 rabbit monoclonal antibody (Cell Signaling Technology®, 12282), 

anti-S100 rabbit polyclonal antibody (Dako, Z0311, used to identify nerves on paraffin-

embedded tissue), cytokeratin AE1/AE3 mouse monoclonal antibody (Pan cytokeratins, 

EMD Millipore, IHCR2025-6, used to identify tumor cells on paraffin-embedded tissue), 

and anti-GAL rabbit serum antibody (EMD Millipore, AB5909). Mouse IgG (Dako, X0931) 

or rabbit IgG (Dako, X0936) was used at the same concentrations as the primary 

antibodies as negative controls. Biotinylated goat anti-mouse and anti-rabbit secondary 

antibodies were used (Biocare Medical, GM601H and GR608H). Hemotoxylin and eosin 

staining were performed to assess tumor morphology. Immunofluorescence on frozen 

CAM sections was performed using human collagen IV antibody followed by incubation 

with DAPI.  Immunofluorescent labelling of neurites was performed as follows: nerve 

explants were blocked with normal goat serum and incubated with anti-neurofilament (NF-
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M 160kD chain primary antibody (Zymed Laboratories®, 13-0700) in 0.3% triton X-100, 

followed by incubation with fluorescent anti-mouse secondary antibody (Jackson 

ImmunoResearch, 115-006-075). Imaging of representative fields was performed using 

an Olympus BX-51 microscope.   

 

Inclusion and Exclusion Criteria. In most in vivo and in vitro experiments, a normal 

distribution of samples was obtained. However, significant outliers were excluded from 

analyses if the values fell outside of a normal distribution. 

 

In vivo models. The University of Michigan University Committee on Use and Care of 

Animals approved all animal experiments.  

Mouse: Paraffin-embedded tissues from a previous animal experiment were used 

for these studies. As described (30), 1x105 OSCC3 cells stably expressing pcDNA-

GALR2 or control vector were suspended in MatrigelTM and injected on the backs 

of 4-6-week-old athymic mice (n=5, Ncr nu/nu strain, NCI, Frederick), so each 

mouse had an injection of each control and GALR2-overexpressing tumor cells. 

Animals were euthanized after 14 days. Out of the 5 animals injected, 3 palpable 

tumors were obtained from each group, so subsequent analyses were performed 

with n=3 samples for each control and GALR2 overexpressing tumors.  Each tumor 

generated was used for immunohistochemistry, PNI analysis and nerve 

quantification. Because previously collected samples were used, no power 

calculation was performed prior to analysis. 
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CAM Model: Twenty-four fertilized Lohmann White Leghorn eggs were obtained 

from the Michigan State University Department of Animal Sciences Poultry Farm 

for each experiment. After incubations, the eggs were randomly distributed into 

treatment groups of 6-8 eggs each, and tumor cells were seeded as described 

(66). Eggs that became contaminated during the experiment were excluded from 

analysis; additionally, CAMs that yielded tumors outside a normal distribution 

(significant outliers) were excluded due to likely seeding errors. 

 

In Vivo PNI Assay. DRG were dissected from rats within 1 hour of euthanasia and 

labeled using CellTracker Red CMTPX (InvitrogenTM, C34552). DRG were seeded on the 

CAM with fluorescently-labeled HNSCC cells. The CAM was harvested after 48 hour and 

tumor spread and neurite outgrowth were imaged using a Leica Stereo microscope and 

quantified using ImageJ. 

 

Neurite Outgrowth Quantification Assay. The Neurite Outgrowth Assay Plus kit (EMD 

Millipore, NS220) was used according to the manufacturer’s instructions. CM collected 

from human HNSCC cells was incubated with anti-GAL IgG (EMD Millipore, AB5909) or 

control rabbit IgG (Dako, X0936) for 1 hour at room temperature. Conjugated GAL and 

unbound IgG was removed by centrifugation with an Amicon Ultra 50K centrifugal filter 

(EMD Millipore, UFC805024). The CM was then used as a chemoattractant in the bottom 

chamber of the assay. SH-SY5Y human neuroblastoma cells were cultured in DMEM 

(DMEM, Gibco®, 11965-092) overnight and then 1x104 cells were seeded in the top 

chamber of the assay. After 48 hours, neurites were imaged at 10x and stained using the 
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stain in the Neurite Outgrowth Assay Plus kit, and retained proprietary AXIS kit dye was 

solubilized and quantified using a SpectraMax Pro 5 microplate reader (Molecular 

Devices). 

 

OncomineTM Analyses. The OncomineTM database (Compendia BioscienceTM) was 

used to collect clinical data used in meta-analyses. For comparison across 16 HNSCC 

datasets, a list of neuropeptides was generated based on extensive signalling roles within 

and outside the neuronal system (110, 115). Because PNI status is not included in the 

available OncomineTM datasets, survival was used as a surrogate indicator of potential 

PNI status since PNI is correlated with poor survival (6). Each neuropeptide was 

evaluated for expression in cancer versus normal tissue and also for 3-year survival 

versus 3-year death. The studies were dichotomized to 0 and significant studies at the 

5% level were assigned a value of 1.0 while insignificant studies were assigned a value 

of 0. The set was then subjected to a one-sample t-test against a 0.05 expected value.  A 

similar meta-analysis was completed for COX2 expression in cancer versus normal 

across 16 HNSCC datasets. Datasets used and their references are listed in Table III.3. 

 

Proliferation Assay. Human HNSCC cells (1x104) were seeded in triplicate in a 24-well 

plate. The total number of live cells was quantified every 24 hours using trypan blue 

(InvitrogenTM, T10282) and a Countess® Cell Counter (InvitrogenTM, C10227). 

 

Randomization.  An effort was made to randomize samples whenever possible in in vivo 

and in vitro experiments. Chicken embryos were randomized into treatment and control 
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groups. Additionally, rat nerves were randomly selected for explant experiments. Mice 

were not randomized since each mouse received the same 2 injections (one of control 

cells and one with GALR2-overexpressing cells).   

 

Sample Size Calculations. For CAM experiments, at least a 2-fold difference in tumor 

size, invasion and metastasis was predicted. Therefore with α of 0.05, power at 0.8 and 

coefficient of variation at 0.5 (low due to very consistent tumor seeding and incubation of 

all samples), at least 3 CAMs (eggs) per group was determined to be the minimal sample 

size. We used 6 CAMs (eggs) per group in each experiment. For in vitro experiments, it 

was similarly predicted that there would be at least a 2-fold difference in parameters 

studied with low variance, so with the same equation described above, we determined 

that using 3 replicates per in vitro experiment was appropriate. In vitro experiments were 

also repeated in triplicate. 

 

RESULTS 

GALR2 Promotes Tumor Progression 

OncomineTM was used to identify neurotrophic factors involved in tumor 

progression. Meta-analyses were conducted to compare the expression of neurotrophins 

and neuropeptides in HNSCC and normal samples (Table III.4). GAL and brain-derived 

neurotrophic factor were significantly overexpressed in HNSCC. Importantly, GAL 

expression correlated with poor clinical outcome in 38 analyses of clinical samples from 

multiple cancers (Figure III.1A) and with positive lymph node status and recurrence in 

HNSCC (Figure III.1B). 
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The neuropeptide GAL is a ligand for 3 G protein-coupled receptors: GALR1, 

GALR2 and GALR3. GALR2 is pro-proliferative (30) and is overexpressed in HNSCC due 

to a frequent chromosomal translocation (116). Previously, we showed that GALR2 

induces tumor growth in vivo (30). Using sections from these murine tumors, we found 

that PNI occurs in GALR2-overexpressing tumors but is absent in controls (Figure III.2A).  

Additionally, more nerves were present adjacent to GALR2-overexpressing murine 

tumors (Figure III.2B), suggesting that GALR2 induces neuritogenesis. Using DNA copy 

number, we found that high GAL predicted death at 3-years (Figure III.2C). In human 

HNSCC biopsy specimens (demographic data available in Table III.5), GAL was 

expressed in cancer adjacent to nerves (Figure III.2D).  

Invasion is essential for regional spread and metastasis. Since HNSCC tumors 

expressing high levels of GAL are correlated with lymph node metastases and recurrence 

(Figure III.1B), we hypothesized that GAL may promote invasion via GALR2. To 

investigate this possibility in 2 independent HNSCC cell lines, we used the Boyden 

chamber assay with GAL as the chemoattractant. Invasion was greater in cells 

overexpressing GALR2 compared to controls (Figure III.3A and Figure III.4A). Using 2 

cell lines in the chick embryo CAM model of HNSCC, GALR2 promoted aggressive tumor 

growth and invasion in vivo. Tumors overexpressing GALR2 were larger (n=6 for each 

group, Figure III.3B and Figure III.4B) and more invasive (Figure III.3C and Figure 

III.4C; n=6 for each group) than controls, and destroyed the CAM basement membrane 

(Figure III.3D and Figure III.4D). Additionally, UM-SCC-1-GALR2 tumors metastasized 

more frequently to the lower CAM and liver of the embryos than the corresponding control 

tumors (Figure III.3E; n=3 for each group). 
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GALR2 Induces PNI 

Since the murine studies described above showed strong correlation between 

GALR2 and PNI, we investigated the impact of GALR2 on PNI with additional models of 

neural-tumor interactions. UM-SCC-1-GALR2 co-culture with SH-SY5Y human 

neuroblastoma cells led to neuritogenesis and co-mingling of the cells, which were 

significantly increased compared to control (empty vector) cells (Figure III.5A). Since SH-

SY5Y is a neural tumor cell line, we also investigated GALR2-mediated interactions 

between normal neural tissue and HNSCC using rat dorsal root ganglia (DRG) explants 

co-cultured with HNSCC cells.  Both HNSCC-GALR2 cell lines tested were more invasive 

toward DRG and induced more neuritogenesis than control cells (Figure III.5B and 

Figure III.6A). 

The role of the nerve in tumor progression is relatively unknown due to the lack of 

appropriate in vivo models to characterize nerve-tumor interactions. To address this 

deficiency, we developed an in vivo model of PNI that demonstrates tumor 

neuritogenesis. Briefly, a rat DRG was grafted onto the CAM and incorporated into the 

connective tissue. Subsequently, human HNSCC cells were introduced adjacent to the 

DRG. The grafted DRG was nourished by the developing vasculature of the CAM that 

replicates the pro-angiogeneic microenvironment observed in carcinogenesis. Tumor-

nerve interactions were observed and quantified. Tumor cell movement and neurite length 

were higher with HNSCC tumors overexpressing GALR2 than control tumors in both cell 

lines (Figure III.5C and Figure III.6B). 

To verify that GALR2 promotes neuritogenesis, we disrupted GAL-mediated GALR2 

induction. When DRG-UM-SCC-1-GALR2 co-cultures were treated with M871 (a peptide 
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antagonist against GALR2) or anti-GAL antibody, cancer cell invasion and neuritogenesis 

were inhibited in vitro (Figure III.5D). In the CAM-DRG in vivo PNI model system, M871 

disrupted tumor growth and PNI (Figure III.5E). These findings establish the importance 

of GAL-GALR2 in nerve-tumor interactions. 

 

GAL from Nerve Initiates Nerve-Tumor Crosstalk 

GAL is secreted by both nerves and cancer cells (114, 117), suggesting that nerve-

tumor crosstalk may be initiated by the nerve or cancer. To rule out the possibility that the 

autocrine stimulation of GALR2 by HNSCC-derived GAL is solely responsible for driving 

PNI, we explored the role of neural-derived GAL in promoting invasion. In order to 

investigate this, conditioned medium (CM) from cultured rat DRG was incubated with anti-

GAL or control IgG to deplete GAL (Figure III.7A). Subsequently, the CM was used for in 

vitro invasion assays. UM-SCC-1-GALR2 cell invasion was reduced when GAL was 

depleted compared to CM without depletion (Figure III.7A). These findings show that 

neuronally-derived GAL induces the invasion of HNSCC. HNSCC cells did still invade 

when provided CM with GAL removed, possibly because there is some residual GAL not 

removed by the antibody or because other neutrally-derived proteins also affect tumor 

cell migration.  The amount of residual GAL in the CM could be confirmed by ELISA. 

GAL from nerves induces invasion of HNSCC cells (Figure III.7A) but does not 

induce neurite formation in the same time frame. Since HNSCC also secrete GAL, we 

investigated whether in a feedback loop, GAL released by HNSCC cells induced neurite 

formation. SH-SY5Y cells projected more neurites when incubated with CM from OSCC3-

GALR2 cells compared to CM from control cells (Figure III.6C). In an investigation using 
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DRG explants, CM from both HNSCC-GALR2 cell lines tested induced more 

neuritogenesis than control CM (Figure III.6D and Figure III.7B). Additionally, CM from 

UM-SCC-1-GALR2 cells was used as a chemoattractant to induce SH-SY5Y 

neuritogenesis through a porous membrane. When GAL was depleted in the CM from 

HNSCC cells using the strategy shown in Figure III.7A, fewer neurite projections were 

induced by the CM (Figure III.7C). Taken together, these findings support the hypothesis 

that GAL secreted from DRG and cancer induces invasion and neuritogenesis, 

respectively. 

 

GALR2 Mediates Invasion in HNSCC via NFATC2-Induced COX2 Secretion 

GALR2 activation induces ERK and calcium signalling in cancer and neurons (118), 

leading to their increased proliferation and survival (114, 119). In an independent study, 

increased intracellular calcium and ERK activation leads to the induction and nuclear 

translocation of NFATC2, a transcription factor that induces transcription of pro-

inflammatory cytokines (120). Since GALR2 induces ERK-mediated proliferation (30) we 

investigated its role in activation of NFATC2. NFATC2 expression was higher in multiple 

human HNSCC cell lines compared to normal human oral keratinocytes (Figure III.8A, 

upper blot). In 2 independent HNSCC-GALR2 cell lines, GAL led to nuclear translocation 

of NFATC2 (Figure III.8A, lower blot and Figure III.9A). After testing a panel of 4 

individual siRNAs, si8 was selected due to its superior efficiency in downregulating 

NFATC2 (Figure III.9B). In functional assays, NFATC2 downregulation disrupted 

proliferation (Figure III.8B and Figure III.9C) and invasion (Figure III.8C and Figure 

III.9D). The in vitro findings were validated in vivo using shRNA lentiviral particles to 



43 
 

induce the stable downregulation of NFATC2 (Figure III.9E, shNFATC2-2 selected). 

NFATC2 downregulation also decreased HNSCC growth (Figure III.8D) and invasion 

(Figure III.8E) on the CAM. Histology revealed that the basement membrane of the 

surface epithelium was disrupted by multiple invasive tumor islands, whereas siNFATC2 

prevented invasion of the basement membrane (Figure III.8F). Moreover, NFATC2 

knockdown disrupted neural-tumor interactions in vitro and reduced HNSCC invasion into 

DRG (Figure III.8G and Figure III.9F).   

COX2 facilitates the formation of PGE2, a secreted protein important in tumor 

progression. Since NFATC2 induces pro-inflammatory mediators such as COX2 in 

lymphocytes and cancer (121), the promoter regions of Gal (GAL) and Ptgs2 (COX2) 

were interrogated and found to have NFATC2 binding sites. Using chromatin 

immunoprecipitation, we validated that NFATC2 binds the promoter regions of Ptgs2 and 

Gal; binding was higher in UM-SCC-1-GALR2 cells than controls (Figure III.8H).  

Moreover, NFATC2 downregulation reduced COX2 expression (Figure III.9G) and PGE2 

secretion in both HNSCC-GALR2 cell lines (Figure III.8I and Figure III.9H, values 

normalized to rabbit IgG control). Taken together, GALR2 induces PGE2 secretion via 

NFATC2-mediated transcription of COX2. The amount of shRNA-mediated suppression 

of NFATC2 is greater than the total suppression of COX2, likely because we are directly 

targeting NFATc2 using shRNA, however multiple factors, including other NFAT proteins, 

are likely involved in regulating COX2. 

In a meta-analysis of multiple HNSCC datasets, COX2 is upregulated in cancer 

compared to normal (Figure III.10A). COX2 is highly expressed adjacent to nerves in 

most human HNSCC clinical tissue specimens with PNI (Figure III.11A). In mice, 80% of 
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HNSCC-GALR2 tumors expressed COX2 at the invasive front, whereas COX2 was not 

detected in control tumors (Figure III.11B). Immunoblot and ELISA analyses demonstrate 

that HNSCC-GALR2 cells express more COX2 and secrete more PGE2 than controls 

(Figure III.10B and Figure III.11C). HNSCC-GALR2 cells with siRNA-mediated COX2 

knockdown (Figure III.10C, si6 and si8 selected) demonstrated reduced invasion 

compared to controls (Figure III.10D and Figure III.11D).    

 

COX2 Downregulation Disrupts PNI, but not Tumor Neuritogenesis 

COX2 is correlated with PNI in pancreatic cancer (122). Given the importance of 

GALR2-mediated COX2 expression in invasion (Figure III.3), the role of COX2 in 

mediating PNI was investigated. The downregulation of COX2 reduced HNSCC cell 

invasion toward DRG in vitro (Figure III.10E and Figure III.11E). Importantly in vivo, 

siCOX2 inhibited the invasion of HNSCC towards DRG (Figure III.11F, left graph) but did 

not significantly impact neurite growth toward the tumor (Figure III.11F, right graph). 

Together, these studies indicate that COX2 knockdown in HNSCC disrupts HNSCC cell 

invasion towards neurons but does not inhibit tumor neuritogenesis. 

 

 

DISCUSSION 

In this focused PNI study, nerve-derived GAL initiates crosstalk between nerves and 

cancer cells by activating GALR2 in tumors. In turn, activated GALR2 in HNSCC induces 

NFATC2-mediated secretion of pro-inflammatory mediators and neuropeptides from 

tumor cells, leading to invasion towards nerves and neuritogenesis (Figure III.12).  
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GALR2-mediated PGE2 secretion is required for invasion of HNSCC. Moreover, GALR2-

mediated GAL secretion induces neuritogenesis towards the tumor, thereby completing 

a feedback loop. Targeting GALR2 or GAL disrupts neural-tumor crosstalk, and blocks 

PNI and neuritogenesis. Thus, our findings establish that reciprocal communication 

between nerves and cancer cells occurs during PNI.   

The dynamic interaction between nerves and cancer cells is underexplored. It is 

likely that PNI requires specific biological interactions between HNSCC and nerves since 

HNSCC exhibits a tendency towards neural invasion whereas some other head and neck 

cancers (e.g. low grade mucoepidermoid carcinoma) do not invade nerves (6). Cancer 

cells establish connections with nerves (neural-neoplastic synapse), and are induced by 

neural factors (123) that impact metastasis (124). Nerve-tumor interactions are implicated 

by clinical studies, for example studies showing correlation between PNI and expression 

of nerve growth factor and its receptor, TrkA (25), semaphorin 4D (51) and laminin-5 

(125). Understanding nerve-cancer crosstalk will support the development of targeted 

therapy for PNI.  

Human GAL is a 30-amino acid neuropeptide that regulates memory (126) and has 

neurotrophic and neuroprotective roles (127).  Aside from well-characterized roles of GAL 

in nocioception and regeneration (128-130), GAL is also implicated in non-neuronal 

contexts. For example, GAL is highly expressed in keratinocytes where it may play 

immune and proliferative functions (130), and has abundant binding sites around dermal 

arteries, artiorioles and sweat glands where it may be involved in thermoregulation and 

the immune response (131). GAL has an emerging mitogenic role in cancer (126). For 

example, mice overexpressing GAL develop pituitary tumors (132).  GAL induces 3 G 
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protein-coupled receptors, GALR1, GALR2 and GALR3. While GALR2 and GALR3 are 

pro-proliferative and promote survival (133), GALR1 is a tumor suppressor (114). In 

HNSCC, GAL is anti-proliferative via GALR1, and promotes aggressive tumor growth and 

survival via GALR2 as shown by our previous loss of function studies (30, 114). GALR1 

is frequently deleted or silenced in HNSCC (134, 135), effectively increasing the 

oncogenic activity of GALR2 due to removal of the tumor suppressive activity of GALR1.  

GAL and GALR2 have actions in the neuronal system and in cancer, but possible roles 

in regulating crosstalk between nerves and cancer were previously not investigated.   

Peripheral nerves release molecules that mediate pain and regeneration (136, 137).  

GAL is typically expressed at low levels in peripheral nerves but increases following injury 

(138) and inflammation (139). The CAM model replicates the injury/wound healing 

microenvironment by allowing neovascularization, thereby sustaining the grafted DRG 

and supporting neoneuritogenesis. GAL mediates regeneration and survival of inflamed 

nerves (140). In fact, GAL and GALR2 (but not GALR1) are upregulated in lumbar and 

facial motor neurons after injury (141). Consistent with these studies, we show that the 

GALR2-mediated release of GAL from HNSCC induces neuritogenesis. HNSCC is 

commonly associated with a prominent inflammatory response which may induce nerves 

(142). In a clinical context, encroachment on nerves by an invading tumor, or 

transectioning the nerve while removing a tumor or during a surgical biopsy, may 

stimulate GAL release by nerves, thereby initiating or enhancing nerve-tumor interactions. 

Thus, using a transected nerve on the CAM-PNI model simulates an injured or inflamed 

nerve that is primed to release neuropeptides, resulting in PNI and neuritogenesis. 
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The significance of the primed neural niche in the tumor microenvironment has been 

alluded to through histopathological observation and 3D reconstruction of tumors from 

labeled tissue sections (86). However, the mechanisms of PNI are relatively unknown 

because previously developed in vitro models do not capture the impact of the dynamic 

involvement of the nerve in neural-tumor interactions (7). Most in vivo studies of PNI focus 

on tumor spread and inhibition of motor function, and depend upon direct tumor injection 

into sciatic nerves (87). The sciatic nerve injection model is useful to demonstrate 

destructive tumour progression and pain resulting from tumor cells within nerves. 

However, in bypassing the invasive process and the proliferative or inductive roles of the 

nerve, these previous models do not truly replicate PNI. In a different approach, surgically 

implanted orthotopic tumor grafts in mice were used to characterize the importance of β-

adrenergic receptors in promoting PNI and prostate cancer progression (88). 

The CAM-DRG in vivo model used in our study addresses the deficits of previous in 

vivo models by demonstrating neuronal outgrowth into the peri-tumoral niche. The system 

is also useful in studying therapy to disrupt PNI. The model can be used to evaluate 

response to treatment by measuring the response of the tumor and the nerve, which both 

could promote tumor recurrence. PNI was disrupted chemically with the GALR2 

antagonist M871 or with an antibody to GAL. The GAL depletion method (Figure III.7A) 

allowed us to dissect the specific contributions that nerve-derived GAL contributes to 

invasion and HNSCC-derived GAL contributes to neoneuritogenesis, confirming that 

these processes involve reciprocal interaction between nerves and HNSCC and not just 

the autocrine activation of GAL by the nerve or tumor cells. These studies support that 

therapies targeting GAL and GALR2 should be evaluated as the first potential anti-PNI 
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therapies. Further investigations with this model will elucidate the role of various stromal 

tissues in promoting epithelial-mesenchymal transition, an important phenotype in many 

cancers (79, 143, 144). 

An alternative model could have used xenografted tumors in GAL or GALR2 

knockout mice; however developmental deficits in the neural tissue of these mice make 

this option unfavorable. The nerve is atrophic in GAL-knockout mice (145). In GALR2 

knockout mice, there is a 20% reduction in neurons in the DRG (146), so changes 

observed in HNSCC may not represent alterations in GAL secretion or GALR2 signalling 

but rather an impact on the nerve itself. Since the knockdown of neuronal proteins such 

as GAL or GALR2 causes deficits in mice (145, 147), it was necessary to develop a model 

to evaluate the impact of these proteins on PNI using normal DRG.  

 NFATC2 is emerging as a key regulator of multiple cancer-promoting phenotypes 

(120).  GALR2 and NFATC2 have been independently shown to be important in cancer 

(116, 148), but their mechanism of action is poorly understood. In HNSCC, GALR2 

activates ERK (30) and in adrenal pheochromocytoma cells, GALR2 upregulates 

intracellular calcium (149). Both these effectors stimulate calcineurin, which regulates 

NFATC2. However, prior to this study the role of GALR2 signalling in NFATC2-mediated 

PGE2 secretion was not established. 

A diagnosis of PNI has long been informative to clinicians in treatment planning, but 

the molecular fingerprint and mechanism need to be developed. PNI requires invasion of 

tumor cells through layers of collagen and basement membrane, including the 

epineurium, perineurium and endoneurium, to gain access to axons (7). Factors secreted 

by nerves bind to receptors on cancer cells to facilitate cancer invasion into nerves.  
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Precision medicine is a promising treatment planning strategy that relies upon 

molecular profiling to determine the optimal treatment strategy for each patient. It is critical 

to identify and understand mediators of neural-tumor interactions to include them in these 

molecular profiles. Our study identifies GALR2 as a biomarker and potential treatment 

target of PNI, which may have an implication for future development of personalized 

therapy.     
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Figure III.1: GAL predicts clinical outcome in multiple cancer types. A. GAL 
overexpression was correlated with poor clinical outcome in 38 studies across multiple 
cancer types in the OncomineTM database and in recurrent tumors versus primary tumors 
for HNSCC. B. GAL overexpression is significantly correlated with positive lymph node 
status (top graph, from The Cancer Genome Atlas, National Cancer Institute) and 
recurrence (bottom graph, from the Ginos Head-Neck dataset) of HNSCC. 
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Figure III.2: GAL correlates with poor survival and neuronal involvement. A. Murine 
tumors with high GALR2, but not control tumors, exhibit PNI (n=3 for both, bar=100µm). 
B. GALR2-expressing murine tumors had more nerves adjacent to the tumors than 
controls (n=3 for both, arrows identify nerves, bar=50µm). C. The Cancer Genome Atlas 
shows that of several neuronal proteins, only GAL expression significantly correlates with 
poor survival (P=0.003, 30th most significant). D. Human HNSCC adjacent to nerves 
expresses GAL (Cytokeratin labels tumor and S100 labels nerves, bar=50µm). *P < 0.05 
(1-sided t-test); data represented by mean + SD.  
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Figure III.3: GALR2 promotes tumor invasion and metastasis (UM-SCC-1). A. UM-
SCC-1-GALR2 cells are more invasive than controls when stimulated with GAL (arrows 
label invasive cells, bar=100µm). UM-SCC-1-GALR2 CAM tumors were larger (B, 
bar=500µm), more invasive (C, cancer is green and labeled by arrows, bar=200µm), and 
more destructive of the basement membrane than controls (D, collagen IV and dashed 
lines label basement membrane, bar=100µm). Metastases from the upper CAM to the 
lower CAM were observed (E, cancer is labeled red and shown with arrows, bar=200µm). 
Metastases to the lower CAM and liver were also quantified with qPCR for UM-SCC-1-
GALR2 and control tumors. There were no metastases to the lower CAM or liver in the 
pcDNA; in the GALR2 group 4 eggs had metastases to the lower CAM and 1 had a 
metastasis to the lower CAM and liver (n=6 eggs for both groups). For CAM experiments, 
n=6 for both groups. In vitro data are representative of 3 independent experiments run 
with 3 samples. *P < 0.05 (1-sided t-test); data represented by mean + SD.  
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Figure III.4: GALR2 promotes tumor invasion and metastasis (OSCC3). A. OSCC3-
GALR2 cells are more invasive than control cells (OSCC3-pcDNA) when stimulated with 
GAL in the lower chamber of a Boyden chamber assay (bar=100µm).  When seeded on 
a CAM, OSCC3-GALR2 tumors were larger (B, bar=500µm), more invasive (C, cancer 
cells are labeled green, bar=200µm), and more destructive of the basement membrane 
(D, labeled with collagen IV, bar=100µm) than control tumors. For CAM experiments, n=6 
for both groups. In vitro data are representative of 3 independent experiments run with 3 
samples. *P < 0.05 (1-sided t-test); data are represented by the mean + SD. 
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Figure III.5: GALR2 promotes PNI (UM-SCC-1). A. UM-SCC-1 cells (green) 
overexpressing GALR2 co-mingle with SH-SY5Y neuroblastoma cells (red) and induce 
more neuritogenesis than controls (bar=100µm). B. UM-SSC-1-GALR2 cells are more 
invasive (red arrows) toward DRG than control cells and induce neurite outgrowth (blue 
arrow). C. UM-SCC-1-GALR2 CAM tumors (green) are more invasive and induce DRG 
outgrowth (red, bar=5mm) compared to control tumors. D. UM-SCC-1-GALR2 cell 
invasion (red arrow) and neurite outgrowth (blue arrow) are attenuated with either M871 
(GALR2 peptide antagonist, iGR2) or anti-GAL antibody (iGAL). E. M871 (designated 
iGR2) blocks PNI and downregulates tumor size of UM-SCC-1-GALR2 CAM tumors 
(bar=2mm). Length was quantified in images with ImageJ and expressed in mm or relative 
units (RU). For CAM experiments, n=6 for each group. In vitro and DRG explant data are 
representative of 3 independent experiments run with 3 samples. *P < 0.05 (1-sided t-
test); data represented by mean + SD.  
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Figure III.6: GALR2 promotes PNI (OSCC3). A. OSCC3-GALR2 cells are more invasive 
toward nerves than control cells (red arrows) and induce neurite outgrowth (blue arrows). 
B. On the CAM, OSCC3-GALR2 tumors (green) are more invasive and induce outgrowth 
of nerves (red, identified with arrows, bar=5mm). C. SH-SY5Y neuroblastoma cells 
treated with CM from OSCC3-GALR2 cells differentiated and produce more neurite 
outgrowth compared to control cells. D. Nerves treated with CM from OSCC3-GALR2 
cells generated more neurite outgrowth than nerves treated with CM from control cells. 
For CAM experiments, n=6 for each group, and in vitro and nerve explant data are 
representative of 3 independent experiments run with 3 samples. *P < 0.05 (1-sided t-
test); data are represented by the mean + SD. 
 



56 
 

 

 

Figure III.7: GAL from both the DRG and tumor promote PNI. A. The strategy to 
remove GAL from CM is shown. When CM from DRG is depleted of GAL, it is a less 
effective chemoattractant for UM-SCC-1-GALR2 cells, consequently less invasion is 
observed. B. DRG explants treated with CM from UM-SCC-1-GALR2 cells have more 
neuritogenesis (arrows) than DRG treated with control CM (bar=1mm). C. SH-SY5Y 
neuroblastoma cells extend more neurites (arrows) when treated with CM from UM-SCC-
1-GALR2 cells than when GAL was removed using the strategy shown (A). For all studies 
n=3 per group; *P < 0.05 (1-sided t-test); data represented by mean + SD. 
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Figure III.8: GALR2 promotes tumor progression and PNI via NFATC2 (UM-SCC-1). 
(A, upper blot) Multiple HNSCC cell lines express more NFATC2 than normal human oral 
keratinocytes (HOK); (A, lower blot) GAL treatment (5nM) induces nuclear translocation 
of NFATC2 in UM-SCC-1-GALR2 cells. UM-SCC-1-GALR2 cells show reduced 
proliferation (B) and invasion (C) when NFATC2 is downregulated with small interfering 
RNA (siRNA, nontargeting siRNA designated siNT was used for control). UM-SCC-1-
GALR2 CAM tumors with constitutive knockdown of NFATC2 using small hairpin RNA 
(shRNA, control scrambled shRNA is designated “shCtrl” and shRNA targeting NFATC2 
is designated “shNFATC2”) are (D) smaller (bar=5mm), (E) less invasive (arrows show 
invasive islands), and (F) less disruptive of the basement membrane (labeled with 
collagen IV, bar=200µm). (G) UM-SCC-1-GALR2 cells with NFATC2 knockdown exhibit 
less PNI than controls (cancer cells labeled “C” fluoresce green and nerves labeled “N” 
fluoresce red, arrow identifies neurite growth). H. NFATC2 binds more to promoter 
regions of PTGS2 (COX2) and GAL (GAL) in UM-SCC-1-GALR2 cells compared to 
control cells. I. When NFATC2 is downregulated with siRNA in UM-SCC-1-GALR2 cells, 
PGE2 secretion decreases. For CAM experiments, n=6 for both; in vitro and DRG explant 
data are representative of 3 independent experiments run with 3 samples. *P < 0.05 (1-
sided t-test); data represented by mean + SD.  
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Figure III.9: GALR2 promotes tumor progression and PNI via NFATC2 (OSCC3). A. 
GAL treatment induces nuclear translocation of NFATC2 in OSCC3-GALR2 cells. B. Four 
individual siRNAs were tested for efficiency in downregulating NFATC2; si7 and si8 were 
selected for functional studies. OSCC3-GALR2 cells exhibit reduced (C) proliferation and 
(D) invasion when NFATC2 is downregulated with siRNA. E. shRNA were tested to use 
for constitutive downregulation of NFATC2 in UM-SCC-1-GALR2 and OSCC3-GALR2 
cells; sh2 was selected. Jurkat cell lysate is a positive control for NFATC2 expression. F. 
OSCC3-GALR2 cells with NFATC2 knockdown exhibit less PNI in vitro than control cells 
(arrow identifies neurite outgrowth in control group). G. COX2 expression is decreased in 
UM-SCC-1-GALR2 and OSCC3-GALR2 cells with constitutive knockdown of NFATC2. 
H. When NFATC2 is downregulated with siRNA in OSCC3-GALR2 cells, PGE2 secretion 
decreases. For CAM experiments, n=6 for both groups. In vitro and DRG explant data are 
representative of 3 independent experiments run with 3 samples. *P < 0.05 (1-sided t-
test); data are represented by the mean + SD. 
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Figure III.10: COX2 is highly expressed in HNSCC and mediates invasion via 
GALR2. A. A meta-analysis of HNSCC studies on OncomineTM shows that COX2 is highly 
expressed in cancer versus normal samples (P < 0.01).  B. OSCC3-GALR2 cells express 
more COX2 and secrete more PGE2 than control cells (left, immunoblot of whole cell 
lysates; right, ELISA of CM). C. Four individual siRNA were tested in UM-SCC-1-GALR2 
and OSCC3-GALR2 cells; si6 and si8 were selected. Downregulation of COX2 in OSCC3-
GALR2 cells using siRNA decreases invasion on a Boyden chamber assay (D) and also 
decreases invasion of cells toward nerves in co-culture (E). In vitro and nerve explant 
data are representative of 3 independent experiments run with triplicate samples.  *P < 
0.05 (1-sided t-test); data are represented by the mean + SD. 
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Figure III.11: COX2 regulates HNSCC progression but not neural-tumor crosstalk. 
A. Most human tumors with PNI express high COX2 adjacent to nerves (arrows, 
bar=100µm). B. Most murine tumors with high GALR2 express COX2 at the invasive front 
(arrows, bar=100µm), but COX2 is not highly expressed by control tumors. C. UM-SCC-
1-GALR2 cells express more COX2 (immunoblot) and secrete more PGE2 (ELISA) than 
controls. D. siRNA-mediated downregulation of COX2 in UM-SCC-1-GALR2 cells 
decreases invasion (arrows label invasive cells, immunoblot verifies knockdown). E. 
Downregulation of COX2 decreases invasion of UM-SCC-1-GALR2 cells toward DRG in 
co-culture. F. siRNA-mediated COX2 downregulation in UM-SCC-1-GALR2 tumors on a 
CAM blocks cancer cell invasion (left graph), but does not affect the extension of DRG 
toward tumors (right graph, bar=100µm). For CAM experiments, n=6 for both, and in vitro 
and DRG explant data are representative of 3 independent experiments run with 3 
samples. *P < 0.05 (1-sided t-test); data represented by mean + SD.  
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Figure III.12: A model of neural-tumor crosstalk mediated by the neuropeptide GAL. 
Neurons release GAL following injury or inflammation and activate tumor-expressed 
GALR2. GALR2 activation leads to NFATC2-mediated transcription and secretion of 
COX2/PGE2, thereby promoting PNI. Targeting GALR2 or GAL blocks PNI by disrupting 
neural-tumor crosstalk. 
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NFATC2 (NFATC2) si7 – GCUUAGAAACGCCGACAUU 
si8 – AGACGGAGCCCACGGAUGA 
si9 – GCAGAAUCGUCUCUUUACA 
si10 – GAACCUCGCCAAUAAUGUC 
sh1  – 5’ TATCTTCTCATAGCTGGTG 3’  
sh2  – 5’ TTTGCTGTCCATCTGTGGT 3’ 

PTGS2 (COX2) si6 – GGACUUAUGGGUAAUGUUA 
si7 – GAUAAUUGAUGGAGAGAUG 
si8 – GUGAAACUCUGGCUAGACA 
si9 – CGAAAUGCAAUUAUGAGUU 

 

Table III.1: siRNA and shRNA target sequences. 
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PTGS (COX2) F1, 5’-GAATTTACCTTTCCCGCCTCTC-3’ 
R1, 5’-AAGCCCGGTGGGGGCAGGGTTT-3’ 
F2, 5’-GAAGCCAAGTGTCCTTCTGC-3’ 
R2, 5’-GGAGAGGGAGGGATCAGAC-3’ 
F3, 5’-AAGGCATACGTTTTGGACATTTAGC-’3 
R3, 5’-CTTTATATTGGTGACCCGTGGAGCT-3’ 

GAL (GAL) F1, 5'-TTCGGGATTAGGGTCTCTCC-3' 
R1, 5'-GGTCCTCTGGGCCATCATAG-3' 
F2, 5'-CTATGATGGCCCAGAGGACC-3' 
R2, 5'-GGCGCCAGTAGTACCTTGAG-3' 
F3, 5'-CTATGATGGCCCAGAGGACC-3' 
R3, 5'-ATATGCGGCGCACCCGGGAGCC-3' 

 

Table III.2: Chromatin immunoprecipitation (ChIP) primer pair sequences. 
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Table III.3: Accession numbers for microarray databases used for meta-analyses. 

  

Database Reference Accession Number 

(150) GenBank Series GSE2379 

(151) GenBank Series GSE13601 

(152) Data referenced in manuscript 

(153) GenBank Series GSE2280 

(154) GenBank Series GSE25099, GSE25103 

(155) GenBank Series GSE20939 

(156) GenBank Series GSE6791 

(157) ArrayExpress E-TABM-302 

(158) ArrayExpress  A-UMCU-3 

(159) GenBank Series  GSE12452 

(160) GenBank Series  GSE3292 

(161) Data referenced in manuscript 

The Cancer Genome Atlas  
(National Cancer Institute) 

Microarray data available through TCGA Data Portal:  
https://tcga-data.nci.nih.gov/tcga/  

(162) GenBank Series  GSE3524 

(163) GenBank Series   GSE9844 
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Table III.4: Meta-analyses of neuronal proteins. Meta-analyses were completed to 
compare expression of 10 neuropeptides and neurotrophins for normal versus HNSCC 
samples using the OncomineTM database. GAL and BDNF were both significantly 
overexpressed in HNSCC. Tachykinin-3 (TAC3), Neurotrophin-4 (NTF4) and Calcitonin-
related polypeptide (CALCB) did not significantly differ in expression in any studies. 

 

  

Full Name (Gene) N (Significant/Non-
Significant Studies) 

t-test (df) P 

Galanin (GAL) 17 (6/11) 2.536 (16) 0.011 

Brain-derived neurotrophic factor 
(BDNF) 

17 (5/12) 2.143 (16) 0.024 

Neural growth factor (NGF) 17 (3/14) 1.327 (16) 0.1015 

Glial cell line-derived neurotrophic 
factor (GDNF) 

13 (2/11) 0.997 (12) 0.169 

Neurotrophin-3 (NTF3) 17 (2/15) 0.84 (16) 0.2065 

Neuropeptide Y (NPY) 17 (2/15) 0.84 (16) 0.2065 

Peptide YY (PYY) 17 (1/16) 0.15 (16) 0.4415 

Vasoactive Intestinal Peptide (VIP) 17 (1/16) 0.15 (16) 0.4415 
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Table III.5: Clinical data. The clinical data associated with human biopsy specimens with 
PNI is provided. 

  

Sex 

   Male 8 

   Female 4 

Age 

   <50 years 1 

   50 years – 70 years 8 

   >70 years 3 

Location(s) 

   Tongue 7 

      Lateral 5 

      Ventral 2 

      Dorsal 1 

      Inferior 1 

   Floor of the mouth 3 

   Buccal mucosa 2 

   Palate 1 

Diagnoses 

   Well differentiated 10 

   Moderately differentiated 1 

   Poorly differentiated 1 
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CHAPTER IV 

The Impact of the Nerve on Metastasis 

 

INTRODUCTION 

Metastasis remains a major problem in cancer treatment and directly contributes 

to 90% of cancer-related deaths (164). Tumors discovered at an early stage can often be 

treated successfully with surgery or irradiation, but after metastasis, treatments are far 

less successful (165). Tumor cells that metastasize not only re-seed at distant sites, but 

can metastasize from the re-seeded tumors to a recurrent tumor at the original site, or to 

additional tertiary sites (166). Therefore, development of novel anti-metastasis treatments 

should be a priority for cancer biologists as these treatments would likely improve the 

survival of patients.  

Epithelial-mesenchymal transition (EMT) contributes to early metastasis of tumor 

cells. Tumor cells that leave the primary tumor must resist anoikis, or apoptosis resulting 

from the loss of cell-cell contact (166). Following this step, also known as detachment, 

metastasizing cells must enter blood vessels (intravasation), survive in circulation, arrest 

in target organ tissue, leave the circulation (extravasation), and  then  seed  at  target  

tissue  to survive and proliferate (164). After invading, cancer cells transition back to an 
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epithelial morphology (mesenchymal-epithelial transition or MET) to proliferate and 

generate metastasized tumors. 

Metastasizing cells face several survival challenges and must cross multiple tissue 

barriers and evade the host immune response (167). Once metastatic cells reach target 

organs, they must regain a blood supply and adapt to a new microenvironment (166). 

Due to the intense survival challenges faced by metastasizing cells, it is believed that only 

a few cells that enter the circulation will actually seed distant metastases (165).  

Over a century ago it was realized that tumor cells do not randomly distribute to 

distant sites throughout the body, but instead favor certain metastatic sites such as the 

liver or lung. Stephan Paget, an English surgeon, observed that the relative blood supply 

was related to the frequency of metastases to these sites. He published the “seed and 

soil” hypothesis in 1889, proposing that metastasis can only occur when the seed, or 

metastatic cell, is compatible to the soil, or target organ of metastasis (168).   

This hypothesis follows that in order for the outgrowth of a tumor, the tumor must 

get compatible growth signals from the microenvironment (166). Also, cooperation 

between the normal host tissue and tumor cells is essential in order for cancer to survive 

the perilous survival challenges faced in the process of metastasis (164). There is a 

growing appreciation in the cancer biology community of host-tumor interactions involved 

in temporal and spatial regulation of metastasis. Early investigations of host-tumor 

interactions in the early metastatic niche have identified endothelial cells, platelets and 

leukocytes as some of the host partners regulating metastasis (164). 
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PNI has been correlated with metastasis in many clinical studies of head and neck 

squamous cell carcinoma (HNSCC) (6, 169-171). Although host nerves in the tumor 

microenvironment may play a role in regulating metastasis, the mechanism of this 

interaction is unknown. An in vivo model that can capture the dynamic interaction between 

tumor and nerves with an option of quantifying metastases is necessary to understand 

the role of nerves in metastasis. In this chapter, we propose a CAM-based model to 

evaluate nerve-tumor interactions in the context of metastasis. Knowledge of nerve-tumor 

interactions in the context of metastasis may contribute to development of therapies 

targeting early metastasis.   

 

METHODS 

Cell Culture. HNSCC cell line UM-SCC-1 (from Thomas Carey, University of Michigan) 

was genotyped to verify the cell line at the University of Michigan DNA Sequencing Core 

prior to studies. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 

Gibco®) supplemented with 10% fetal bovine serum (FBS, Gibco®) and 1% PenStrep 

(Gibco®). Cells were transfected with pcDNATM3.1-GALR2 (Missouri S&T cDNA 

Resource Center). 

 

Data Analysis. GraphPad Prism (GraphPad software) was used for statistics. Student’s 

t-test was performed with a P-value of <0.05 determined to be statistically significant. 
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 CAM Model. Fertilized Lohmann White Leghorn eggs were obtained from the Michigan 

State University Department of Animal Sciences Poultry Farm. The eggs were incubated 

and randomly distributed into treatment groups of 6-8 eggs, and tumor cells were seeded 

as described (66). Chick embryos that did not develop or eggs that became contaminated 

during the experiment were excluded from analysis.  

 

CAM Nerve-Tumor Metastasis Assay. DRG were dissected from rats within 1 hour of 

euthanasia and labeled using CellTracker Red CMTPX (InvitrogenTM). DRGs were 

seeded on the CAM with fluorescently-labeled HNSCC cells dyed with a lipophilic tracer, 

DiO (a dialkylcarbocyanine derivative). The CAM was harvested after 3-6 days. A 1 cm2 

portion of the upper CAM was collected from the window used to seed the cells. The shell 

was cut in half horizontally and a 1 cm2 portion of the lower CAM was collected from the 

portion of the CAM directly below the tumor, from an area containing a density of 

vasculature. The middle portion of the liver was also collected for analysis. Tumor area 

was imaged using a Leica Stereo microscope and quantified using ImageJ.  Additionally, 

lower CAM tissue was imaged using a Leica Stereo microscope to observe metastatic 

tumor nodules, and lower CAM and liver tissues were digested and human DNA 

quantified using qPCR to estimate the number of metastatic cells at each site. 
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RESULTS 

Overview of the CAM Nerve-Tumor Metastasis Model 

 Figure IV.1 shows a flowchart of the CAM nerve-tumor metastasis model. Briefly, 

a fertilized chicken egg is opened, and a rat dorsal root ganglion (DRG) is placed on the 

upper CAM. Subsequently, human HNSCC cells are seeded on the CAM, and the system 

is incubated for 2-6 days, depending on interest in early or late metastatic events. After 

incubation, the upper CAM is harvested for imaging and histological analysis. The lower 

CAM and liver of the developing chick are also collected for qualitative and quantitative 

analysis of metastases. The lower CAM can be imaged to view metastatic tumors, and 

both the tissue from the lower CAM and liver are digested and human DNA is quantified.  

 

Nerves Contribute to Increased Tumor Size 

 We performed a time course experiment to investigate the impact of the nerve on 

tumor growth. Using the approach outlined in Figure IV.1, we seeded tumor cells alone 

or co-grafted a nerve and tumor on a CAM, and collected the upper CAM from the eggs 

at days 13, 14 and 15 of development. Stereo microscopy images of the tumors are 

shown in Figure IV.2A. The area of the tumors was quantified for each day of the 

timecourse and compared. Although the tumors with or without nerves did not differ in 

size at the initiation of the timecourse, by day 15 the tumors with nerves were significantly 

larger than tumors without nerves (Figure IV.2B).   
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Nerves Contribute to Increased Tumor Metastases 

After determining that the nerve enhances tumor size, we investigated the impact 

of the nerve on metastasis of the tumors. If a nerve enhances metastasis, it may do so 

by enhancing tumor cell proliferation or survival. Therefore, we evaluated metastasis at 

day 13, a timepoint before there was a difference in tumor size between tumors with and 

without nerve. The lower CAM was imaged using a Stereo microscope, and metastatic 

tumor nodules were observed embedded in lacey vascular structure in tumors seeded 

with nerve. However, tumors seeded without nerve did not have obvious metastases 

(Figure IV.3A). Additionally, the lower CAM tissues were digested and human DNA 

quantified. There were about 2.5 times as many metastatic tumor cells present in lower 

CAM tissue from tumors seeded with nerves compared to tumors without nerves (Figure 

IV.3B). We also attempted to quantify DNA in tissues from livers of the chick embryos but 

we did not see a difference in metastatic cells between the 2 groups. This is likely in part 

because liver metastases would be a later metastatic event in this system, which would 

require additional days of incubation, and also because at such an early timepoint the 

livers of the chicks are underdeveloped and may not support metastases.   

 

DISCUSSION 

Using the CAM nerve-tumor metastasis system, we were able to confirm that the 

interaction of nerves with tumor contributed to the growth and metastatic potential of 

HNSCC tumors. This system allows us to both quantitatively and qualitatively observe 

interactions of nerves with tumors and the resulting metastatic tumors to the lower CAM 
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of the chick eggs. Several advantages, as well some limitations of the model are listed in 

Table IV.1. 

In vivo model systems of metastases generally fall into 2 groups: xenograft 

transplantable models, which like our model, contain tissues from different species, and 

syngeneic models, which include tissues from the same species or carcinogen-induced 

or spontaneous tumors (166). Our system is a xenograft system since it contains tissues 

from human, rat and chicken species. Syngeneic models are useful since they can be 

adapted to an immunocompetent animal, however due to inbreeding, tumors lack the 

genetic complexity usually observed in human tumors. In contrast, xenograft tumors can 

be readily adapted to include human cells, but must use immunodeficient animals which 

limits the ability to observe the role of the immune system in tumor progression (166).   

Using either a xenograft or syngeneic transplantable model approach, the next 

choice when developing a model is to use an experimental metastasis system (where 

tumors are injected directly into the circulatory system, such as in a lateral tail vein 

injection), or a spontaneous metastasis system. Experimental metastasis models are 

rapid, and tight control over the entry point of cells into the circulation has led to some 

valuable observations of the metastatic process (172). However, with experimental 

metastasis models, the initial steps of invasion are bypassed and therefore the location 

of the resulting metastatic tumors may depend mostly on the blood circulation from the 

site of the injection. For example, metastases from a lateral tail vein injection develop in 

the lung, whereas metastases from a portal vein injection develop in the liver. Ultimately 

however, artificial injection of tumor cells does not replicate true metastasis; tumors may 

be inadvertently seeded into the circulation system, or alternatively the mechanical 
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disruption of host tissue may actually suppress metastasis (173). Spontaneous 

metastasis models may be harder to control and more time consuming, however the initial 

steps of invasion are preserved, which can lead to different mechanisms of metastases 

produced through experimental and spontaneous systems, such as differences in 

expression of matrix metalloproteinases, which are essential for invasion (174).   

The CAM tumor-nerve metastasis model described depends on spontaneous 

metastasis, and therefore the early invasive events are preserved. Spontaneous 

metastasis models may involve orthotopic seeding of tumor cells (for example injection 

of HNSCC tumor cells into the oral mucosa, a site at which the primary tumor occurs), or 

heterotopic seeding, or seeding of tumor cells at a site different from the origin of the 

tumor. For example, subcutaneous injection of HNSCC cells onto the backs of mice is 

heterotopic seeding. The seed-soil hypothesis correctly predicts that tumors are more 

suitably supported at the site of origin (i.e. a site containing the correct soil to support a 

particular type of tumor), and therefore more metastases are generally seen from tumors 

seeded at orthotopic sites than heterotrophic sites (166).   

The CAM system does not have oral mucosa, and therefore orthotopic seeding of 

HNSCC tumors is not possible. However, we carefully selected the CAM model for our 

metastasis system because of the distinct similarities between the CAM and oral mucosa, 

including a basement membrane and rich blood supply seen in both types of tissue. We 

have observed that HNSCC cells readily grow and metastasize in the CAM system, 

thereby suggesting that the CAM mimics several important characteristics of oral mucosa. 

Tumor size and angiogenesis are readily quantified within the first 2 days after the tumor 

cells are seeded.  Invasion is observed by 2 days post-seeding, and metastasis is 
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observed within 3-10 days. The process of tumor growth, invasion and metastasis is 

similar to the sequence of clinical progression of HNSCC, and replicates the progression 

from early non-invasive pre-cancerous lesions to invasive lesions that breach the 

basement membrane. An important difference between the CAM and oral mucosa is that 

the CAM does not have a rich supply of nerves. This is a great benefit to our CAM-nerve 

model since the impact of neural tissue on tumor progression can be evaluated by 

addition of DRG. Due to the simplicity of the CAM structure, it may be possible to adapt 

this model to study the importance of other stromal elements in host-tumor interactions 

regulating metastasis. 

While the initial steps of metastasis including intravasation and arrest may only 

take a few minutes, the later steps may take hours or days to complete (164). Due to the 

short timeframe of early metastatic steps, these steps have been historically overlooked 

as potential therapeutic targets, and the focus of therapy has been on controlling the bulk 

of the tumor. EMT cells and stem cells likely evade tumor cytolytic therapies, and 

therefore therapies that target invasion and metastasis are essential to improve patient 

outcomes (164). Anti-metastatic therapies will be useful to prevent metastases for 

patients presenting with tumors that have a high likelihood of metastasis, and to prevent 

re-seeding of tumors at primary sites (recurrence) from metastases at tertiary sites (175).  

In order to develop effective anti-metastatic therapies, we must develop a greater 

understanding of specific host-tumor interactions contributing to metastasis. Our CAM 

nerve-tumor model can be adapted to observe interactions of multiple host tissues within 

tumors. Also, it is possible to use pharmaceuticals in the CAM model system to attempt 

to disrupt mechanisms of metastasis. In the future, we intend to use this model to further 
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investigate the mechanism by which tumor-nerve interactions promote metastasis and 

PNI. Also, we are using the CAM nerve-tumor model to develop a mathematical model of 

tumor progression (176).   
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Figure IV.1: A timeline showing the CAM-PNI cancer progression model. A rat DRG 
and human HNSCC cells are co-grafted onto a fertilized chicken egg, and then incubated. 
After several days, the upper CAM is collected and imaged, and the lower CAM and liver 
of the developing chicken embryo are collected for metastasis studies. 
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Figure IV.2: Time course of HNSCC tumors grown in absence or presence of a 
nerve. HNSCC tumors grown in presence of absence of a nerve (A, arrows highlight frank 
PNI that becomes increasingly apparent through over the 3 timepoints). B. By day 15, 
tumors grown with nerve are significantly larger than tumors grown in absence of a nerve.   
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Figure IV.3: Metastases quantified in presence or absence of nerve. A. Metastatic 
nodules noted in lower CAM tissue (arrow) for tumor grown in presence of a nerve. B. 
When human DNA in lower CAM tissue is quantified with qPCR, tumors grown in the 
presence of a nerve have significantly more metastatic cells in lower CAM tissue than 
tumors grown in the absence of nerves.  
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Advantages Disadvantages 

 Short time duration 

 Can observe metastasis 
qualitatively and quantitatively 

 Can use human cells 

 Can adapt to study interactions with 
other types of tissues 

 Can observe metastases across 
many timepoints, including very 
early timepoints 

 Can use pharmacological agents 

 Inexpensive, can use with large 
sample number 

 Can adapt to in vivo microscopy 
techniques 

 Lack of immune interactions 

 Host tissue differs genetically 
from human tissue 

 Limited by development of 
immune system in developing 
chicken 

 Technically demanding 

 

Table IV.1: Advantages and disadvantages of CAM-nerve metastasis model. 
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CHAPTER V 

Conclusion and Future Directions 

Conclusion 

Invasion is the critical phenotype of tumor progression that distinguishes pre-

cancer from HNSCC. Understanding the molecular mediators of invasion will lead to 

diagnostic and prognostic biomarkers and potential novel treatment targets. EMT and 

tumor-stromal interactions contributing to invasion are areas of increasing interest in 

cancer biology. Nerve-tumor interactions contribute to aggressive tumor progression, 

however the mediators of these interactions are poorly understood due to the lack of 

appropriate research models. In this thesis, we present in vitro and novel in vivo methods 

to investigate invasion and specifically, PNI. Using our CAM-based in vivo approach, we 

demonstrate that nerve-derived GAL initiates crosstalk between nerves and cancer cells 

by activating GALR2 in tumors. Activated GALR2 then induces NFATC2-mediated 

secretion of pro-inflammatory mediators and neuropeptides from tumor cells, leading to 

invasion towards nerves and neuritogenesis. We demonstrate that GALR2-mediated 

PGE2 secretion is required for invasion, and GALR2-mediated GAL secretion induces 

neurite outgrowth towards the tumor, thereby completing a feedback loop. Our findings 

clearly establish that reciprocal communication between nerves and cancer cells occurs   

during PNI (Figure V.1). Our model is the first in vivo approach that allows reciprocal 

interaction of tumor and nerve.  Additionally,  we  adapt  the CAM-PNI model to study the 
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impact of the nerve on growth and metastasis of HNSCC. Our studies show that the 

presence of a nerve in the microenvironment of developing HNSCC promotes aggressive 

tumor growth and metastasis.   

 

Future Directions 

 Our data indicate that GAL and GALR2 may be viable anti-PNI treatment targets.  

We show that blocking GAL by using an antibody, or GALR2 by using the protein 

antagonist M871, block PNI and tumor neuritogenesis. Furthermore, blocking NFATC2 in 

GALR2-overexpressing HNSCC cells also inhibits PNI in vitro and in vivo. In the future, 

we will also investigate the impact of Tacrolimus on HNSCC in vitro and in vivo. 

Tacrolimus is a macrolide immunosuppressant that prevents the dephosphorylation or 

activation of NFATC2. Tacrolimus and similar macrolides that inhibit NFAT activation 

have been used extensively in clinic to treat several diseases including oral lichen planus, 

vitiligo and atopic dermatitis (177). Additional in vivo validation using these potential anti-

PNI therapies is necessary to determine if they may be useful therapeutically in HNSCC.   

In addition, it is important to further explore the mechanism of neuron-tumor 

crosstalk, and especially to understand the soluble mediators of these interactions that 

are expressed by both the nerve and the tumor. It has been shown that soluble factors 

secreted by nerves can induce tumor cell migration (136). We hypothesized that 

neuronally-derived GAL initiates PNI by activating GALR2 on tumor cells. Our data 

support this hypothesis; if GAL is removed from conditioned medium from nerves, 

invasion of HNSCC cells is downregulated. Further investigation of how the concentration 
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gradient of neuropeptides affects the interaction between cancer and nerves, which 

respond to the same neuropeptides, will facilitate our understanding of PNI. The 

development of a nerve-specific GAL inducible conditional knockout mouse, or HNSCC 

cell lines with inducible knockout of GAL will facilitate these studies.  

 Our work highlights the importance of the G protein-coupled receptor (GPCR), 

GALR2, in promoting PNI and tumor-neuron crosstalk. GPCRs have been implicated as 

potential treatment targets of tumor-neuron interactions (137, 178). GPCRs are often 

overexpressed in a variety of cancer cells and the ligands of GPCRs regulate several 

phenotypes, including proliferation, migration and survival, of both cancer and nerves 

(178). Importantly, GPCRs play a role in promoting and maintaining a microenvironment 

that favors tumor growth (179). GPCRs and their ligands may mediate a neural-tumor 

synapse that leads to active cross-talk between the 2 tissue types, facilitating growth and 

survival of nerves and HNSCC, as well as cancer-associated pain. Although mutations of 

GPCRs have not been specifically linked to PNI, it is possible that future investigations of 

tumor-driving GPCR mutations will reveal their importance in promoting tumor-neuronal 

crosstalk and PNI. 

Given the grave clinical significance of PNI, it is essential to highlight the 

importance of nerve-tumor interactions in promoting aggressive tumors to the clinical 

community. Our hope is that our work highlighting PNI will eventually lead to a prognostic 

model that will encourage clinicians to adopt more rigorous and standardized methods to 

identify and treat PNI appropriately. Histopathologic detection of PNI is very challenging 

due to the complex microanatomy of peripheral nerves, particularly with subtle 

microscopic presentations (12). Currently used terminology to describe PNI is confusing; 
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there is a lack of standardization of definitions and quantification schemes to describe 

PNI, which can lead to delayed recognition of PNI and mistreatment. The terms small 

nerve or incidental, and large nerve or clinical PNI are used interchangeably but carry 

different prognostic significances (6). In the absence of staining for neuronal markers, 

pathologic detection of PNI may be missed at tumor margins and in tangential sections 

of nerves. Shortfalls in clinical detection, reporting and researching PNI have resulted in 

a gap of understanding of this deadly pathologic process. Ultimately due to our lack of 

understanding of the disease, anti-PNI therapeutics have not been developed. When PNI 

is detected, clinicians often opt for aggressive adjuvant therapies for lesions that may be 

treated more effectively and conservatively with anti-PNI therapy. Ultimately improved 

understanding of the molecular biology of PNI, including markers of perineural 

involvement in genetic profiling of tumors, will assist clinicians and scientists in the effort 

to develop and adapt personalized medicine strategies to treat patients. 

The general future directions of this work are to develop methodology in detecting, 

reporting and researching PNI. We intend for our work to address specific deficiencies in 

clinical and basic science research that are holding back progress in this important 

research area. This will accelerate development of life-saving treatment protocols that 

effectively manage tumors that exhibit PNI. A diagnosis of PNI has long been informative 

to clinicians in treatment planning, but the molecular fingerprint and mechanism must be 

elucidated. Personalized medicine is a promising treatment planning strategy that relies 

upon molecular profiling to determine the optimal treatment strategy for each patient 

(Appendix E). PNI mechanisms have not been determined previously, and therefore 

there are no prognostic markers of PNI (6). Since PNI is known to be associated with 
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aggressive tumors, it is critical to identify and understand molecular mediators of neural-

tumor interactions to include them in these molecular profiles.  
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Figure V.1: Summary of proposed mechanism of action. 
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APPENDIX A 

Biomarkers of Epithelial-Mesenchymal Transition in Squamous Cell Carcinoma 

Appendix A is adapted from a published manuscript (79). 

 

Introduction 

Understanding the process by which tumor cells destroy the basement membrane 

of the surface epithelium, invade and metastasize is essential to developing novel 

treatment of HNSCC. In recent years, there has been increased interest in the role of 

epithelial-mesenchymal transition (EMT) in facilitating invasion. EMT describes the 

development of motile cells from non-motile parent epithelial cells (Figure A.1). EMT, 

which occurs in embryonic development, wound healing, and cancer (Figure A.2), is 

classified into 3 subtypes (180). Type 1 occurs in gastrulation and in migration of neural 

crest cells; some of the migrated cells undergo mesenchymal to epithelial transition (MET) 

to become epithelial cells in organs produced by the mesoderm and endoderm. This 

embryological EMT occurs in the orofacial region during palatogenesis. Type 2 occurs in 

wound healing and can result in fibrosis when there is persistent inflammation. Cytokines 

generated by tissue injury induce the fibroblast phenotype from epithelial or endothelial 

cells. Type 3 occurs in subsets of invasive cancer cells by using some of the Type 2 EMT 

program for migration and aggregation of epithelial cells in wound healing. After invading, 
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tumor cells can transition back to the epithelial morphology (MET) to proliferate and 

generate tumors at distant sites.  

The purpose of this chapter is to present the growing evidence that EMT has a 

significant role in invasion and metastasis of HNSCC. Many protein types, including cell-

surface proteins, cytoskeletal proteins, extracellular matrix (ECM) components and 

transcription factors contribute to EMT (Figure A.3, Table A.1).   

 

CELL-SURFACE PROTEINS 

Cell-surface proteins contributing to EMT in HNSCC include cadherins and integrins. 

Cadherins 

E-cadherin is the main protein of adherens junctions that anchor oral epithelial cells 

to each other. It is a calcium-dependent cell surface protein that facilitates adhesion 

between epithelial cells. E-cadherin is characterized by long cytoplasmic and extracellular 

domains, which create homophilic interactions between adjacent cells to facilitate 

adhesion. The expression of E-cadherin is decreased during embryonic development, 

tumor fibrosis and cancer progression (180). In oral epithelial cells, from which HNSCC 

develops, surface E-cadherin anchors cells to each other and links to the cytoskeleton 

via -catenin. Loss of or sequestration of E-cadherin in the nucleus impairs cell-cell 

adhesion and releases -catenin, which translocates to the nucleus to induce 

transcription of EMT genes, such as TWIST.  
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Several studies show reduced E-cadherin in HNSCC, with lowest E-cadherin levels 

in poorly differentiated tumors (181). E-cadherin expression is similar between primary 

tumors and metastases, perhaps due to MET in metastatic tumors. The promoter region 

of the E-cadherin gene (CDH1) is hypermethylated in HNSCC, but hypermethylation is 

not correlated with advanced stage (182), mortality or second primary tumor (183).  Meta-

analysis of E-cadherin studies in HNSCC showed that abnormal E-cadherin expression 

is predictive of diminished disease-specific survival (184).  

The use of E-cadherin expression to personalize anti-HNSCC therapy has been 

explored (185, 186). Higher E-cadherin expression is correlated with better sensitivity 

toward the EGFR-tyrosine kinase inhibitors. The E-cadherin to N-cadherin switch, which 

occurs during embryonic development and cancer progression, is used to monitor EMT.  

E-cadherin is expressed in epithelial cells, and N-cadherin is upregulated by TWIST in 

type 3 EMT in gastric cancer (187). In HNSCC, high expression of N-cadherin correlated 

with malignant behaviors such as high grade pattern of invasion and poorly differentiated 

cancer cells (188). Cadherin switching (high expression of N-cadherin and low expression 

of E-cadherin) was observed in 30 of the 80 cases and correlated with invasion and lymph 

node metastasis, as well as EMT features. Thus, cadherin switching may be a critical 

event in the progression of HNSCC through EMT.  

 

Integrins 

EMT facilitates relocation of cells from above the basement membrane into the ECM, 

which involves a change in expression of integrins (180). Integrins are heterodimeric 
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adhesion receptors composed of α and β subunits. There are 18 α and 8 β subunits that 

variably combine into 24 different integrins.  Integrins bind to ligands, including collagens, 

laminins, and fibronectin in the ECM. Ligand-bound integrins induce several signaling 

cascades that control cell polarity, motility, survival, shape, proliferation and 

differentiation.   

Integrins mediate interactions between cells and the surrounding ECM by making 

transmembrane connections between the cytoskeleton and the ECM. The interaction 

between the α5 integrin and fibronectin is necessary for metastasis of a melanoma cell 

line (189). Blocking the α5 subunit in HNSCC, decreases adhesion to collagen IV and 

fibronectin (190). α5β1 integrin has been associated with cisplatin resistance and 

enhanced adhesion to fibronectin, which is abolished when the integrin is blocked by a 

neutralizing antibody (191). β1 integrin increases invasion of HNSCC cells, which 

decreases significantly when the integrin is blocked (192). 

 

CYTOSKELETAL MARKERS 

Cytoskeletal proteins that contribute to EMT in HNSCC include alpha-smooth muscle 

actin (α-SMA), vimentin and β-catenin. 

 

α-SMA 

Cells expressing α-SMA contribute to EMT in embryogenesis and wound healing in 

normal epithelial cells (180). In squamous cell carcinoma (SCC), the tumor tissue is 



92 
 

surrounded by reactive stroma, made up mostly of cancer associated fibroblasts (CAFs), 

also known as myofibroblasts because they acquire characteristics of muscle fibers, 

including expression of α-SMA. Expression of α-SMA is controlled by growth factors and 

specialized ECM proteins. α-SMA is incorporated into stress fibers of fibroblasts thereby 

augmenting their contractile ability, which is critical to tissue remodeling. CAFs are known 

to potentiate the development and progression of epithelial cancers. Fibroblasts can be 

distinguished based on the stage of tumor development by differences in α-SMA 

expression, which is expressed more highly in mature fibroblasts than newly transitioning 

cells. Fibroblasts from HNSCC tumors grow more slowly compared to normal fibroblasts 

from the oral cavity (193).   

HNSCC characterized by extensive genetic copy number alterations, loss of 

heterozygosity and inactivation of p53 and p16INK4A had higher α-SMA expression, 

which correlated with poor prognosis in an independent dataset of HNSCC samples when 

compared with tumors with less genetic instability (193). However, the mechanistic link 

between α-SMA expression and EMT and HNSCC is unknown. 

 

Vimentin 

Vimentin is an intermediate filament that is used as a marker of mesenchymal cells 

to distinguish them from epithelial cells (180). Vimentin is expressed at sites of cellular 

elongation and is associated with a migratory phenotype. Increased vimentin expression 

is frequently used as an EMT marker in cancer.   
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In HNSCC cell lines, Chen et al. isolated an ALDH1-rich subpopulation of cells and 

characterized their invasive potential and EMT phenotype (194). Spheroid-derived cells 

had increased vimentin when compared to monolayer-derived cells from different cell 

lines. Furthermore, vimentin expression decreased when cells were grown as a 

monolayer. Vimentin expression is higher in nodal metastatic cells than in the primary 

HNSCC tumors, and is enhanced by epidermal growth factor and TGF-β (195). Reducing 

vimentin levels by RNA-interference decreased the proliferation, migration and invasion 

of metastatic cells compared to control cells (195). Yoon et al. developed an orthotopic 

model of HNSCC metastasis and selected HNSCC cells through 4 rounds of serial 

metastasis to obtain a highly metastatic subpopulation (196). The metastatic population 

acquired mesenchymal features including increased vimentin and integrin α1 and 

reduced epithelial expression, including reduced E-cadherin and involucrin. In contrast, 

non-metastatic parental cells had low vimentin expression. 

 

β-Catenin 

The Wnt/β-catenin pathway has a critical role in invasion in HNSCC (197). E-cadherin 

is anchored to the cytoskeleton via -catenin, a cytoplasmic plaque protein (198). In loss 

of cell adhesion, as occurs in invasion, E-cadherin is endocytosed and -catenin is 

released. In normal and non-invasive cells, β-catenin is usually localized to cell 

membranes. In cells undergoing EMT, β-catenin is located in the cytoplasm (reflective of 

its dissociation from E-cadherin). This cytosolic (free) -catenin translocates to the 

nucleus to promote transcription of genes that induce EMT. Nuclear β-catenin is a 
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transcriptional co-activator with T cell factor (TCF)/Lymphoid enhancer-binding factor 

(LEF), which controls transcription of SNAIL1 (180).   

Nuclear β-catenin is correlated with a poor prognosis in patients with metastasic 

HNSCC (199). Rap1, a ras-like protein, stabilized β-catenin and increased its nuclear 

localization; more advanced N-stage lesions were associated with high free β-catenin and 

high active Rap1 (197). 

 

ECM PROTEINS 

The ECM proteins that promote EMT in HNSCC include collagen, fibronectin and 

laminin. 

Collagens 

While migration of normal cells is strictly controlled by limited proteolysis of the ECM, 

in cancer, proteolytic remodeling of the ECM facilitates invasion (200). Collagens are the 

major structural components of the ECM. There are 28 types of collagen that have a triple 

helical structure. Collagen I and II are fibrillary collagens, while collagen IV constitutes a 

sheet-like structure that is the major component of basement membranes. There is 

increased expression of collagen I (α1) and collagen III (α1) in type 1 and 3 EMT, while 

collagen IV (α1) is down-regulated in all 3 types of EMT (180). 

Collagen type I is the most prevalent form in the interstitial matrix. In HNSCC, 

collagen type I RNA transcripts are more widely expressed in HNSCC than in pre-

cancerous or normal tissue. Collagen I stimulated cytokine secretion in genetically 
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matched primary and metastatic HNSCC cell lines, but cytokine secretion was 

significantly upregulated in metastatic cells when seated on collagen I (α1) gel (192). The 

cytokines released (IL-1α, IL-1β, IL-6, TNF-α and TNF-β) stimulated MMP activity and 

invasion of the HNSCC cells. IL-6 is overexpressed in HNSCC and is a biomarker of poor 

disease-specific survival (201). Moreover, collagen I enhanced MMP-2 and MMP-9 

secretion in both the primary and metastatic cell lines (192). MMP-9 is a biomarker that 

contributes to invasion of HNSCC and is correlated with poor disease-specific survival 

(202). 

Collagen III (α1) is an ECM component that promotes cancer progression in ovarian 

(203) and breast cancers (204).  In HNSCC, collagen III (α1) cDNA was found to be highly 

expressed in a Paclitaxel-resistant cell line (205). Altered collagen IV (α1) was linked to 

invasion and motility of cancer cells. Laminin in tumor cells binds collagen IV (α1) and 

then secretes gelatinases that break down collagen IV (α1) to facilitate migration of tumor 

cells (180). Surprisingly, Chen et al. found that collagen IV RNA is increased in HNSCC 

surgical specimens compared to dysplastic and normal tissues (206). Further 

investigation is necessary to determine the role of collagen IV in invasion of HNSCC. 

 

Fibronectin 

Fibronectin is a glycoprotein scaffold for fibrillar ECM (180). It is composed of a dimer 

of similar subunits of repetitive sequences covalently linked by 2 disulfide bonds at their 

C-termini. In normal cells, fibronectin mediates cellular interactions with the ECM and is 

important in migration, differentiation, growth and adhesion of cells. Although fibronectin 
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is up-regulated in all 3 types of EMT, its use as an EMT biomarker is limited because it is 

produced by many cell types such as epithelial cells, fibroblasts and mononuclear cells, 

(187). Fibronectin can be up-regulated by SNAIL and TWIST in type 3 EMT. 

In HNSCC, there are contradictory reports with respect to expression of fibronectin.  

Dooley et al. showed that fibronectin and its receptor are strongly upregulated with α5β6 

integrin in SCC cell lines and tissues (207). Three fibronectin isoforms (extra domain A, 

extra domain B, and IIICS) are generated via alternative splicing depending on cytokine 

and pH conditions. Fibronectin fragment ED-B is not expressed in normal tissues (except 

those undergoing wound healing) but expression is correlated with HNSCC and tumor 

cell aggressiveness (208). The ED-A and IIICS isoforms are expressed in blood plasma 

of HNSCC patients, suggesting that hydrolytic enzyme-aided invasion leads to 

degradation of EMC components (209). 

 

Laminin 

Similar to collagen, laminin is a major component of the basement membrane.  

Laminins are glycoproteins made up of one α chain, one β chain and one γ chain. There 

are 15 known heterotrimers of laminin. Laminin 1 (α1β1γ1) is the laminin of greatest 

interest in EMT types I and II, where it is downregulated or disrupted. Laminin 5 (α3β3γ2) 

has been linked to EMT in metaplastic carcinoma of the breast and hepatocarcinoma 

(180). 

The role of laminin 5 in HNSCC is clearly significant. Laminin 5 has been shown to 

be a major component of the ECM, and laminin 5 expression correlated with invasion and 
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patient prognosis. Interestingly, the laminin 332 G4 domain, a proteolytic product of 

laminin 5, promotes laminin 5 deposition, and may have a role in wound healing and SCC 

formation (210). In a study comparing HNSCC, pre-cancer and normal tissues, 

overexpression of transcripts of LAMC2 encoding laminin-γ2 chain and COL4A1 collagen 

IV α1, distinguished HNSCC from pre-cancerous and normal tissues that had lower 

LAMC2 (206). In another study, high LAMC2 predicted poor HNSCC-specific survival 

(211).   

 

TRANSCRIPTION FACTORS 

The transcription factors that promote EMT in HNSCC include SNAIL, TWIST and 

LEF-1. 

 

SNAIL Family 

SNAIL proteins regulate various aspects of the EMT phenotype, including 

overexpression of mesenchymal markers fibronectin and vitronectin, and suppression of 

epithelial markers, including E-cadherin, (180). In addition, SNAIL blocks cell cycle 

progression and contributes to cell movement and survival. Other targets of SNAIL 

proteins, include genes regulating cell polarity and apoptosis. SNAIL family proteins are 

evolutionarily conserved in vertebrates where they have a conserved role in embryonic 

mesoderm formation.   
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There are 3 transcription factors in the SNAIL family, of which SNAIL1 and SNAIL2 

are functionally equivalent (180). SNAIL1 is important in mediating invasion and 

inflammation through transcriptional regulation of cytokines, and also in preventing 

terminal differentiation of HNSCC cells (212). EMT phenotypes and invasion in HNSCC 

are reduced with siRNA-mediated knockdown of SNAIL1 (213). SNAIL1 expression in 

primary tumors of HNSCC patients is correlated with metastasis and poor prognosis.  

SNAIL1 expression correlates with histopathologic grade and depth of invasion in HNSCC 

(214) and is correlated with poor differentiation of the tumors, lymphovascular invasion 

and regional metastasis (215). Knockdown of SNAIL1 in HNSCC cell lines attenuated 

cisplatin resistance by facilitating DNA excision repair by stabilizing ERCC1, which is 

necessary for nucleotide excision repair (216). Lysyl Oxidase–Like 2, a marker of poor 

prognosis in SCC, regulates EMT in part by stabilizing SNAIL1 to facilitate tumor 

progression (217).  

Hypoxia contributes to tumor metastasis by initiating EMT through activation of 

SNAIL2 in HNSCC. SNAIL2 is critical for the induction of MT4-MMP in a hypoxic 

environment (218). Overall, there is strong evidence to suggest that SNAIL proteins play 

a role in EMT in HNSCC. 

 

TWIST 

TWIST is a basic helix-loop-helix protein that modulates many target genes through 

E-box responsive elements.  There are 2 TWIST genes (TWIST1 and TWIST2) which are 

well-conserved in vertebrates. TWIST is activated in all 3 types of EMT and is up-
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regulated in cancer metastases (180). While mesoderm formation is controlled by SNAIL 

family proteins, TWIST1 is important in mesoderm differentiation. TWIST proteins can 

either act as transcriptional repressors (e.g. E-cadherin) or activators (e.g. N-cadherin 

and fibronectin). 

In HNSCC, TWIST expression is positively correlated with lymph node metastasis 

and clinical stage (219). Hypoxia-inducible factor-1α (HIF-1α) promotes EMT and 

metastatic phenotypes in HNSCC via upregulation of TWIST expression. Repression of 

TWIST reverses the EMT and metastatic phenotypes. BMI1, a polycomb-group protein 

frequently overexpressed in cancers, is regulated by TWIST in HNSCC (220). BMI1 and 

TWIST expression lead to down-regulation of E-cadherin, which is associated with poor 

prognosis (220). In a study of 109 HNSCC patients, negative SNAIL1 and TWIST 

immunostaining was significantly correlated with improved 5-year disease-specific 

survival (221). 

 

LEF-1 

LEF-1, a cotranscriptional activator with TCF, mediates WNT signaling. Through this 

regulation, LEF-1 plays a role in deciding the fate of cells in normal embryonic 

development (180). In EMT, the β-catenin/LEF-1 complex is localized to the nucleus 

where it controls SNAIL gene expression, along with other markers associated with EMT.  

LEF-1 functions with β-catenin to promote cell survival and proliferation during mammary 

gland development and in breast cancer (222). LEF-1 and β-catenin are upregulated and 

translocate to the nucleus in Akt-transfromed keratinocytes (223).   
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FUTURE DIRECTIONS 

In addition to proteins that have a role in HNSCC progression or a correlation with 

HNSCC, there are several potential biomarkers that should be explored in HNSCC.  

These proteins have been shown to have a role in EMT in other cancers, but to our 

knowledge have not been investigated in HNSCC. 

Forkhead box protein c2 (FOXC2) is a transcription factor that is expressed in type I 

EMT and is important in angiogenesis, musculogenesis and the development of the heart, 

kidney and urinary tract. FOXC2 is expressed in ductal breast cancers and metastatic 

breast cancer (180). Overexpression of EMT transcription factors such as SNAIL and 

TWIST increase FOXC2 expression. Furthermore, the overexpression of FOXC2 can 

induce EMT, which suggests that FOXC2 may play a role in type 3 EMT.  

Expression of zona-occludens 1 (ZO-1) occurs in all 3 types of EMT (180). ZO-1 is a 

tight junction protein that is usually located at cell-cell adhesion membrane complexes in 

normal epithelial cells. During EMT, ZO-1 relocates from the adhesion membrane 

complexes to the cytoplasm and then to the nucleus, depending on the degree of 

differentiation and migration of the cell (224). ZO-1 is involved in the EMT process in 

colorectal and bile duct cancers, but has not yet been linked to EMT in HNSCC (225, 

226).  

Zinc finger E-box binding homeobox 1 (ZEB1) is an E-cadherin transcriptional 

repressor that is downregulated by miR-200 microRNAs in cancer cells that display an 

EMT phenotype (180). ZEB1 has been investigated in prostate cancer, non-small cell 
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lung carcinoma and invasive ductal breast cancer, but has not been investigated in 

HNSCC (227-229). 

Osteoblast cadherin (OB-cadherin) is a definitive marker for activated fibroblasts 

(180). While in cancer and embryonic development, an E-cadherin to N-cadherin switch 

is used to monitor EMT progression, an E-cadherin to OB-cadherin switch may indicate 

EMT progression in type II EMT specifically. In cancer, OB-cadherin has an association 

with prostate and breast cancer where it is hypothesized to be involved in metastasis; its 

expression in HNSCC is unknown (230).    

Cancer stem cells (CSC) are a small population of tumor cells that can both initiate a 

tumor and repopulate a tumor following treatment, contributing to treatment resistance.  

In HNSCC, a sub-population of CD44+ cancer stem cells display a phenotypic switch to 

become either proliferative or migratory (231). The migratory population, designated 

CD44highESAlow, displays reduced E-cadherin and increased vimentin, TWIST, SNAIL1 

and SNAIL2, features of EMT cells. Given the striking similarities between EMT and this 

subpopulation of CSCs, it is likely that future research will elucidate the role of EMT in 

maintaining the CSC population.  

EMT progression involves many signaling pathways that may be targeted in the 

clinical setting (232, 233).  Figure A.4 summarizes some of the pathways and anti-EMT 

therapies. The mechanistic role of the EMT markers associated with HNSCC should be 

clearly defined in order to develop new anti-HNSCC therapies to block HNSCC 

progression. Understanding the role of EMT in HNSCC will allow clinicians to personalize 
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treatment for patients with particularly aggressive tumors, and improve treatment 

outcomes. 
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Figure A.1: EMT to MET. Epithelial-like cells display tight cell-cell contacts and maintain 
polarity, whereas mesenchymal-like cells are more motile and display more contact with 
the extracellular matrix. Proteins associated with the epithelial-like or the mesenchymal-
like states are referred to as biomarkers. As cell progress through EMT and MET, the 
levels of proteins associated with each state are altered, reflecting the phenotypic switch 
between the 2 states. 
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Figure A.2: Three types of EMT. Type 1 EMT occurs in development, for example when 
in gastrulation epithelial cells transition to motile mesenchymal cells. Type 2 EMT occurs 
when secondary epithelial or endothelial cells move to interstitial spaces in wound healing 
or chronic inflammation resulting in fibrosis. Type 3 EMT occurs when epithelial tumor 
cells migrate beyond a primary tumor and metastasize. 
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Figure A.3: Proteins involved in EMT. Several proteins have been identified as 
biomarkers of EMT. These proteins include cell surface proteins, cytoskeletal proteins, 
extracellular matrix proteins and transcription factors. 
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Figure A.4. Targeted therapies against EMT pathways. EMT progression involves 
many signaling pathways that may be targeted in the clinical setting, which include 
monoclonal antibodies (mAB) and small molecule inhibitors (boxed). 
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Biomarker Category Proteins References 

Cell Surface Proteins E-Cadherin (231) 

N-Cadherin (188) 

Integrins (190) (191) (234) 

Cytoskeletal Proteins α-SMA (193) 

Vimentin (196) (195) (194)  

β-catenin (235) (199) (197)  

Extracellular 
Matrix Proteins 

Collagen (I) (206) (234) 

Collagen (III) (204) (203) 

Collagen (IV) (206) 

Fibronectin (207) (208) (209)  

Laminin 5 (210) (206) (211)  

Transcription Factors SNAIL1 (213) (212) (214) (216) (215)  

SNAIL2 (218) 

TWIST (219)  

LEF-1 (223)  

 

Table A.1. Known biomarkers of EMT in HNSCC.   
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APPENDIX B 

CDH11 is a Novel Biomarker of EMT in HNSCC: Discovery and Validation Using 

an In Silico Approach 

Appendix B is adapted from a manuscript that has been submitted for review (236). 

 

INTRODUCTION 

Analyses of existing datasets have long informed investigation of potential 

oncogenes or tumor suppressor genes. Preliminary studies of datasets in the existing 

literature assisted researchers in designing focused and cost-effective studies.  

Translational researchers have been especially empowered by clinical datasets.  

However, previously the availability of datasets to researchers was limited by access to 

journals and the lack of effective search tools.  In recent years, these limitations have 

been lifted as an increasing number of datasets have become available to researchers 

through multiple online databases.   

The availability of datasets has changed the practice of oncology research, 

enabling powerful statistical studies that are both used in preliminary searches for 

molecules to study, and to supplement benchtop studies (237). Modern databases of 

research outcomes have reinforced the value of statistics in biology (238).  The enormous 

increase    in   available  information  has   launched   the   rapidly   developing   field   of 
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bioinformatics, which focuses on the assembly and utilization of biological databases.   

The growth of bioinformatics reflects the increasing importance of statistics in biological 

science, shifting the value of quantitative results over qualitative results.   

Easily navigable and increasingly comprehensive in silico studies using databases 

can suggest whether a gene is involved in a clinical outcome of interest and even hint at 

possible mechanisms. These databases comprise a new genre of in silico investigation 

(237). In silico analyses are becoming an increasingly popular mechanism to identify 

novel molecular targets for study. Moreover, translational researchers use in silico 

analyses linked to clinical data to complement results generated in the laboratory. Meta-

analyses of existing micro-array data demonstrate correlations of markers across many 

cancer types and clinical conditions. 

As in silico analysis becomes a standard of translational research studies, more 

databases are being assembled for bioinformatics analysis. Available databases include 

corporate for-fee databases, university-constructed compilations of research outcomes 

and clinical data, and government-run databases from several countries.  Many examples 

of databases containing data of interest to oncologic researchers are listed and described 

in Table B.1. The Cancer Genome Atlas (TCGA) is an extensive database managed by 

the National Cancer Institute and the National Human Genome Research Institute that 

links DNA copy-number variations with multiple cancer types and clinical parameters 

(239). The database used in the present study is the OncomineTM database, which 

currently brings together information from 699 datasets. Studies collected into 

OncomineTM report over-expression and under-expression of genes across many studies 

that include a range of cancer types and sub-types (239).   
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In this study we demonstrate the value of in silico experiments to nominate and 

investigate markers of epithelial to mesenchymal transition (EMT) in head and neck 

squamous cell carcinoma (HNSCC). EMT is a process by which non-motile epithelial cells 

become motile, and occurs normally in embryonic development and wound healing (180).  

EMT can also promote invasion and metastasis in cancer (240). Understanding the 

mechanism of EMT in HNSCC will advance our understanding of tumor progression (79).  

HNSCC has maintains a dismal 40-50% 5-year survival rate due to lack of effective novel 

treatment strategies (1).  Biomarkers involved in EMT may be attractive treatment targets 

for HNSCC, and potentially leading to novel personalized medicine strategies. Our results 

show that multiple EMT markers are highly expressed in HNSCC and correlated with poor 

clinical outcome, altered sensitivity to chemotherapy and multiple oncogene mutations.  

In addition, we use in silico analyses to reveal strong correlations between CDH11 

(osteoblast-cadherin) and poor clinical outcomes in HNSCC. CDH11 is an emerging EMT 

marker that is thought to have a role in wound healing and breast cancer progression but 

little is known about the role of CDH11 in HNSCC (230). CDH11 has been shown to be 

variably expressed in oral cancer tissues with qPCR (241). Additionally, CDH11 DNA is 

found to be differentially methylated between primary and metastatic oral tumors (242).  

In the studies described here, CDH11 expression is validated in multiple HNSCC cell lines 

and tissues. 

 

METHODS 

In silico studies. The Oncomine database (Oncomine™, Compendia Bioscience, Ann 

Arbor, MI) was used for in silico experiments. Eighteen head and neck cancer datasets 
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were identified using the search parameters “Cancer Type: Head and neck cancer” and 

“Analysis Type: Cancer vs Normal Analysis”. Datasets from studies of adenoid cystic 

carcinoma, thyroid carcinomas or pharyngeal carcinomas were excluded. The following 

studies were retained: Cromer Head- Neck (150), Estilo Head-Neck (151), Ginos Head-

Neck (152), Kuriakose Head-Neck (243), Peng Head-Neck and Peng Head-Neck 2 (154), 

Pyeon Multi-cancer (156), Talbot Lung (161), Toruner Head-Neck (162), TCGA Head-

Neck, Ye Head-Neck (244). Overexpression of EMT markers in HNSCC was 

demonstrated in multiple datasets. Several filters were used to generate heat maps with 

corresponding statistical analyses correlating expression of EMT markers with different 

clinical outcomes, drug responses and oncogene mutations. In addition, a summary of 

CDH11 overexpression in multiple cancer types was generated, and genes coexpressed 

with CDH11 in HNSCC were identified. 

 

Statistical Analysis. GraphPad Prism® was used for statistical analyses. HNSCC 

datasets with mRNA expression data (n=9) were identified in Oncomine. Meta-analyses 

were performed as described (245). Expression of EMT markers was compared between 

normal and HNSCC samples by Student’s t-test in each HNSCC dataset, and a P-value 

<0.05 was determined to be statistically significant. Each statistically significant study was 

given an arbitrary value of “1” and non-significant studies were designated a value of “0”.  

A one-sample t-test was performed for each set of values, with a target value of 0.05, and 

a one-sided P value of <0.05 was considered statistically significant. 
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Immunohistochemistry. Immunostaining was performed on formalin-fixed, paraffin-

embedded HNSCC tissue and cell lines, as described (246). The CDH11 affinity purified 

rabbit polyclonal antibody was from R&D Systems, and rabbit IgG (Dako) was used as a 

negative control at the same concentration as the primary antibody.  

 

RESULTS 

HNSCC Datasets Provide Extensive Data for in silico Studies 

 The Oncomine database contained 699 datasets and 80915 samples at the time 

of this study.  Of the available datasets, 36 were identified as “Head and Neck Cancer” 

datasets. Figure B.1 gives an overview of the content of these datasets.  DNA or mRNA 

expression data is available for the datasets (Figure B.1A). While most datasets contain 

less than 75 samples, 11% contain more than 151 samples (Figure B.1B). The data 

provided comes from a range of sources, including cell panels, tissue panels and TCGA, 

which was compiled by the National Cancer Institute and National Human Genome 

Research Institute (Figure B.1C). The specimens used to generate the datasets include 

surgical specimens and samples collected by laser-capture microdissection, manual 

microdissection and macrodissection (Figure B.1D). Several available filters for head and 

neck cancer dataset analyses are listed in Table B1. Expression levels of biomarkers 

analyzed in the datasets can be linked to many interesting parameters listed including 

sample site, clinical outcomes, molecular subtypes, pathological subtypes, drug 

sensitivities and patient demographics. 
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EMT Biomarkers are Overexpressed in HNSCC 

 A summary of representative histograms detailing expression levels in the 

individual studies used to compile the meta-analyses are shown in Figure B2.  

Overexpression of multiple EMT markers in HNSCC is shown, along with a meta-analysis 

of the expression level in cancer versus normal for the markers across several datasets 

(Figure B3). SNAI2, TGFB1 and CDH11 are significantly overexpressed in HNSCC 

across 9 datasets. 

 

EMT Biomarkers are Correlated with Aggressive HNSCC 

 Dataset filters were used to correlate EMT biomarker expression with different 

HNSCC clinical parameters using the TCGA Head-Neck dataset containing DNA copy-

number data. SNAI2 was significantly overexpressed in tumors with positive nodal status 

(Figure B.4A, P = 0.030). CDH11 and ACTA2 were both correlated with metastasis 

(Figure B.4B, P = 1.82 x 10-5 and P = 0.004, respectively). CDH11 was also significantly 

correlated with death at 5 years (Figure B.4C, P = 0.02). 

 

CDH11 is Expressed in HNSCC Cell Lines and Tissue 

 In silico data suggested that CDH11 is overexpressed in HNSCC, and expression 

levels correlate with more aggressive tumors. In order to validate our in silico findings, we 

investigated the expression of CDH11 in HNSCC cell lines and tissues. Using 

immunohistochemistry, we found that CDH11 is variably expressed across non-malignant 

and malignant oral epithelial cell lines (Figure B5). HOK16B is a transformed human 
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keratinocyte cell line, which shows low expression of CDH11 compared to HNSCC cell 

lines.  We validated the antibody for immunohistochemistry on paraffin-embedded tissues 

using colon cancer tissue and associated tumor stroma, which are known to express 

CDH11 (247).  After finding that CDH11 appropriately stained our positive control tissues, 

we immunostained normal human oral mucosa and pre-neoplastic (epithelial dysplasia) 

tissues. CDH11 was expressed at low levels in normal human oral tissue (Figure B.6A). 

Next, we immunostained a tissue microarray (TMA) containing human HNSCC tissues 

and normal oral tissues. CDH11 had low expression in normal tissue, but was variably 

expressed across HNSCC samples (Figure B.6B). HNSCC samples exhibited both 

higher intensity of staining, and also a higher proportion of cells were stained when 

compared to normal tissues on the TMA (Figure B.6B). These data confirm that CDH11 

is expressed in HNSCC tissues at higher levels than normal tissue.  

 

DISCUSSION 

 Translational researchers are faced with the challenge of making relevant 

correlations between clinical problems and experimental studies. In silico investigations 

using multiple datasets provide researchers a practical approach to enhance benchtop 

investigations with clinically-oriented data or to discover potential new biomarkers.  In the 

present study, we performed meta-analyses of multiple datasets to evaluate expression 

of EMT markers. Expression of some EMT markers was correlated with common 

oncogenic mutations.  We were able to correlate overexpression of EMT biomarkers with 

multiple clinical parameters, emphasizing the role of EMT in HNSCC progression. 
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 We identified EMT markers that were differentially associated with sensitivity to a 

variety of therapeutics.  HNSCC has been challenging to treat due to lack of effective 

novel therapies, and the next era of HNSCC treatment will focus on personalized 

medicine (248). In silico studies of datasets provide insight into which biomarkers could 

be used to select the best therapy for patients on a case-by-case basis. 

 Although in silico studies based on expression of genes are useful, they do not 

identify all proteins important to tumor progression, specifically those regulated post-

translationally. In silico experiments may suggest novel biomarkers, but validation of 

expression in tissues and cell lines is essential. Since microarrays investigate thousands 

of genes, false positives are inevitable at any practical P-value. We identified CDH11 as 

a new EMT biomarker in HNSCC in multiple in silico analyses. We then verified that 

CDH11 is expressed in HNSCC via immunoblot and immunohistochemistry. In contrast, 

expression of proteins that are activated or inactivated by phosphorylation, such as the 

tumor suppressor tristetraprolin (TTP), is not as informative as the phosphorylation status 

of the protein (105). 

A molecular concept map may associate expression of a protein with a phenotype 

of interest, such as cancer recurrence. For example, a molecular concept map revealed 

that the Myc pathway is associated with breast cancer relapse (249). Pathway analysis 

is an additional method of analysis that models molecular pathways. Noting gene 

expression levels along the stages of cancer progression can reveal the mechanism of 

progression and prognosis associated with pathway activation (250, 251). In addition to 

gene expression databases, databases of information from electronic health records have 

been examined in aggregate to identify linkages between health problems. Studies 
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demonstrating the link between non-insulin-dependent diabetes mellitus with retinopathy 

and hypertension or the unexpected link between pyloric stenosis and ventricular septal 

defects demonstrate the utility of bioinformatics even with standard clinical data (252).  

This technique can be applied to clinical records of cancer patients to potentially identify 

links between cancer and other health factors or conditions.   

The wide range of available databases reflects the rising importance of in silico 

analyses. These analyses represent an approach to obtain additional, in-depth and up-

to-date data on a gene and its function without the additional expense of benchtop 

studies. As studies are incorporated into readily accessible databases, the application of 

bioinformatics techniques will become increasingly useful. Furthermore, textual analysis 

techniques are making it practical to analyze large-scale sets of medical records thereby 

putting volumes of clinical records into a searchable format. Useful correlations, trends 

and risk factors can be queried and characterized. Given the value of in silico studies and 

the improving quality and availability of datasets, the use of bioinformatics techniques 

may become a standard expectation of any review of clinically relevant biomarkers and 

may assist in the development of personalized medicine.  
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Figure B.1: Details of Head-Neck cancer datasets. A. A larger number of datasets 
provide mRNA expression (78%) levels than DNA copy-number analyses (22%). B. While 
most of the sample sets have less than 75 samples (61%), 11% contain more than 151 
samples. C. Data are supplied by a range of sources including cell and tissue and data 
from sources including The Cancer Genome Atlas (TCGA), which is compiled by the 
National Cancer Institute and National Human Genome Research Institute. D. Samples 
represent a variety of sources, including cell lines, surgical specimens, and both macro 
and micro dissections.  
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Figure B.2: Expression of EMT biomarkers. Representative histograms for studies of 
the expression levels of the following EMT biomarkers are shown: ACTA2 (Ginos, P = 
2.48 x 10-6; Peng, P = 0.001; Toruner, P = 0.150; and Ye, P = 0.002); CDH11 (Cromer, P 
= 0.004; Estilo, P = 6.91 x 10-5; Ginos, P = 3.86 x 10-17; Toruner, P = 0.002); SNAI2 (Estilo, 
P = 2.40 x 10-10; Ginos, P = 7.92 x 10-11; Peng, P = 5.04 x 10-11; Toruner, P =  0.018); 
GFB1 (Cromer, P = 0.045; Estilo, P = 3.14 x 10-6; Ginos, P = 1.52 x 10-4; Peng, P = 5.09 
x 10-15); VIM (Ginos, P = 0.008; Pyeon, P = 0.035; Toruner, P = 0.131; Ye, P =  0.347).  
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Figure B.3: Overexpression of EMT biomarkers in HNSCC. Overexpression of EMT 
biomarkers was determined among 9 studies: 1) Cromer Head-Neck (150), 2) Estilo 
Head-Neck (151), 3) Ginos Head-Neck (152), 4) Kuriakose Head-Neck (243), 5) Peng 
Head-Neck (154), 6) Pyeon Head-Neck (156), 7) Talbot Lung (161), 8) Toruner Head-
Neck (162), 9) Ye Head-Neck (244). SNAI2, TGFB1 and CDH11 were all significantly 
overexpressed (P = 5.04 x 10-11, P = 0.045, and P = 3.17 x 10-4, respectively). Greater 
red intensity indicates a lower (more significant) P-value for comparative overexpression 
of each marker in cancer tissue versus normal tissue.  
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Figure B.4: SNAI2, CDH11 and ACTA2 are correlated with aggressive HNSCC. DNA 
copy-number of a panel of EMT biomarkers was correlated with HNSCC clinical 
parameters. A. SNAI2 was significantly overexpressed in tumors with positive nodal 
status (P = 0.030). B. CDH11 and ACTA2 were both correlated with metastasis (P = 1.82 
x 10-5 and P = 0.004, respectively). C. CDH11 was also significantly correlated with death 
within 5 years of diagnosis (P = 0.02). 
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Figure B.5: Validation of CDH11 expression across HNSCC cell lines. CDH11 is 
variably expressed across several HNSCC cell lines as observed by 
immunohistochemical detection. HOK16B is a transformed human keratinocyte line that 
exhibits low staining of CDH11. HNSCC cell lines were incubated with an anti-CDH11 
antibody followed by an anti-rabbit secondary antibody. Immunostained cells were 
photographed under the same conditions at 60x magnification. 
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Figure B.6: Validation of CDH11 Expression in HNSCC tumors. A. Normal oral 
mucosa exhibit low staining of CDH11 in the cytoplasm and some staining in the nucleus. 
B. On a tissue microarray, normal tissue exhibits low staining of CDH11, and CDH11 is 
variably expressed across HNSCC tissues. When quantified, HNSCC tissues stained with 
significantly higher intensity, and a higher proportion of each sample stained when 
compared to normal oral tissue.  
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Database Access Information Description 

Cancer Gene 
Expression 
Database 

http://lifesciencedb.jp/cged/ 

Freely searchable. 

A database of gene 
expression from 
studies performed in 
Japanese 
institutions. 

GENT – Gene 
Expression 

Across Normal 
and Tumor 

tissue 

http://medical-
genome.kribb.re.kr/GENT/ 

Freely searchable. 

A database of 
comparative gene 
expression across 
normal and cancer 
tissues. 

KEGG Database 
(Kyoto 

Encyclopedia of 
Genes and 
Genomes) 

http://www.genome.jp/kegg/kegg1.ht
ml 

Freely searchable. 

An integrated 
database of genomic 
and functional data, 
links genes to higher-
level functions. 

Oncomine https://www.oncomine.org/ 

Registration available to users from 
educational, government and non-
profit institutions. 

A compilation of 
cancer microarray 
data, search queries 
can be narrowly 
focused. 

RefSeq – The 
Reference 
Sequence 
Collection 

http://www.ncbi.nlm.nih.gov/RefSeq/ 

Freely searchable, some content that it 
links to requires additional access 
privileges. 

The American NIH 
database of DNA, 
RNA and protein 
sequences, provides 
detailed information 
on many of these 
genes and proteins. 

The Tumor Gene 
Family of 

Databases 

http://www.tumor-
gene.org/Oral/oral.html 

Freely searchable. 

A set of databases of 
tumor suppressors, 
potential oncogenes 
and cancer-inducing 
mutations. 

 

Table B.1. Example databases available for in silico oncologic studies.  

http://lifesciencedb.jp/cged/
http://medical-genome.kribb.re.kr/GENT/
http://medical-genome.kribb.re.kr/GENT/
http://www.genome.jp/kegg/kegg1.html
http://www.genome.jp/kegg/kegg1.html
https://www.oncomine.org/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.tumor-gene.org/Oral/oral.html
http://www.tumor-gene.org/Oral/oral.html
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APPENDIX C 

Characterization of Squamous Cell Carcinoma in an Organotypic Culture via Sub-

surface Nonlinear Optical Molecular Imaging 

Appendix C is adapted from a published manuscript (70). 

 

INTRODUCTION 

 Head and neck cancer is the sixth most common cancer globally, affecting about 

600,000 individuals per year (1). Over 90% of these lesions are HNSCC. New treatments 

are required since current regimens have not improved survival in over 5 decades. Due 

to the complexity of the many structures and tissues involved in HNSCC progression, 

researchers struggle to accurately replicate the disease process in an in vitro setting. 

Development of models that more closely simulate human HNSCC will enhance 

translation of pre-clinical studies into successful novel targeted therapies.   

 Invasion of transformed epithelial cells beyond the basement membrane and into 

the connective tissue is the defining event that differentiates pre-cancerous oral lesions 

from HNSCC. The basement membrane separates epithelial cells from the underlying 

connective tissue and is identified histologically by expression of collagen IV (5). 

Destruction  of  the  basement  membrane  and invasion with subsequent regional spread  
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and distant metastases contribute to the lethality of HNSCC. Since invasion is the key 

event of tumor progression, a sophisticated model that replicates the basement 

membrane and connective tissue stroma is necessary to study invasion in HNSCC and 

many other cancers.   

 To address the limitations of existing in vitro models of invasion, our laboratory 

developed the Oral Cancer Equivalent (OCE) model using human HNSCC cells and 

human connective tissue. Recent advances in tissue engineering have provided 

xenografts or autologous grafts for humans based on stratification of keratinocytes on 

human decellularized cadaveric dermis (253). To facilitate studies on the invasive 

phenotype of HNSCC, we adapted the procedure for creating normal oral tissue grafts to 

generate the OCE. In the adapted protocol, decellularized human dermal tissue is coated 

with collagen IV and seeded with human HNSCC cells, which are allowed to stratify and 

invade. This novel in vitro model simulates invasion of human HNSCC including the 

complexity of connective tissue and the histopathology. Figure C.1A shows a HNSCC 

lesion that presented as a leukoplakia (white patch) on the lateral surface of the tongue.  

Figure C.1B shows a similar “clinical” appearance of the OCE construct. In both Figure 

C.1C and Figure C.1D, arrows indicate invading cells and arrowheads highlight the 

location of the basement membrane on tissue sections of a HNSCC tumor and an OCE 

construct. The pattern of rete ridge formation and islands of invasive cells in HNSCC 

(Figure C.1C) are closely simulated by invasion of HNSCC cells in the connective tissue 

stroma of the OCE (Figure C.1D).   

 In a recent publication describing the role of the RNA binding protein tristetraprolin 

(TTP) in HNSCC progression, our lab used the OCE model to quantify HNSCC invasion 
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(105). The OCE method allowed us to quantitatively compare invasion of cells with short-

hairpin RNA-mediated knockdown of TTP (shTTP) with control cells (treated with 

scrambled shRNA, shSCR) on fixed tissue sections. Our initial data showed that cells 

with TTP-knockdown were more invasive than control cells. The analysis in our previous 

study was limited to quantification of invasive cells in fixed tissue sections at a single 

timepoint.  

 In the present study, we demonstrate the feasibility of using nonlinear optical 

molecular imaging to image sub-surface live cells on the OCE constructs. With this 

method, green fluorescent protein (GFP)-tagged cells are used for the OCE constructs, 

and invasion can be traced at multiple timepoints and at multiple locations on the 

constructs. In addition, decay of the collagen matrix by the cancer cells can be quantified 

through obtaining a second harmonic generation (SHG) signal from the connective tissue 

matrix. We used shTTP-treated cells that we previously showed to be more invasive 

compared to shSCR-treated control cells to validate and optimize the novel imaging 

method presented in this manuscript (105). We also compared our live cell imaging 

results with histological data of fixed tissue sections at multiple time points. Overall, sub-

surface nonlinear optical molecular imaging of the OCE confirmed histological 

quantification of invasion of fixed tissue sections from OCE constructs. The live cell 

imaging method provided additional levels of analysis by providing a 3D view of cells 

interacting with the connective tissue matrix in addition to quantification of collagen decay 

on the OCE constructs. 
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METHODS 

Overview of the OCE Method. The overview of the OCE protocol is shown (Figure 

C.2). Circular fragments of decellularized human dermis were hydrated and coated with 

human collagen IV. Cells expressing green fluorescent protein (GFP) were seeded on the 

tissue and allowed to stratify over several days. Invasion of cancer cells and decay of 

connective tissue matrix were observed and quantified using sub-surface nonlinear 

optical microscopic molecular imaging over 2 days, after which the constructs were fixed 

for histopathological studies.   

 

Cell Culture. The HNSCC cell line UM-SCC-1 (from T. Carey) was used for these studies.  

HNSCC cells were transduced with short hairpin RNA (shRNA) constructs with a vesicular 

stomatitis virus glycoprotein (VSVG) backbone and a GFP tag in lentiviral particles.  A 

scrambled shRNA (designated shVSVG) was used for the control and shTTP was used 

for TTP knockdown (Open Biosystems, Catalog No. RHS4430-99139230, Sequence 

5’TATTAGAATAAATAAAGTC 3’).  UM-SCC-1 cells (35 x 104) were transduced with 1000 

multiplicity of infection of control and TTP knockdown vectors in serum-free medium for 3 

hours prior to adding 10% FBS.  Puromycin (10 ug/ml) was used to establish stable cell 

lines over 4 weeks.  Protein knockdown was confirmed by immunoblot analysis.  

 

Preparation of Human Dermal Tissue. Decellularized dermal tissue (AlloDerm®, 

LifeCell Corporation) was cut into disks that fit into the individual wells of a 48-well plate.  

Dermal tissue was placed in a 100 mm cell culture dish and rehydrated with 15 mL 
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Dulbecco's phosphate-buffered saline (DPBS, Invitrogen), which was changed every 15 

minutes for 90 minutes. Forceps were used to aseptically remove the dermal tissue from 

its commercial packaging. The tissue was gently rinsed with DPBS to determine 

orientation of the tissue (DPBS added to the epidermal side with the basement membrane 

easily drains off of the tissue, whereas DPBS added to the dermal side is retained). The 

dermal tissue was transferred, epidermal side facing up, into a well of the 48-well 

microplate. The tissue was gently pressed into the microwell plate to ensure there were 

no bubbles beneath the tissue. One hundred microliters of DPBS was added to each of 

the wells with tissue. Five microliters of human collagen IV (Fluka, 5 µg/μl suspended in 

acetic acid) was added to the middle of the DPBS covering the dermal tissue. Human 

collagen IV was added to enhance HNSCC cell attachment to the decellularized dermal 

tissue (254, 255). The plate was sealed with Parafilm (BioExpress) and refrigerated 

overnight at 4°C.   

 

Seeding and Cultivating Cancer Cells on Hydrated Dermal Tissue (day 0). UM-SCC-

1 cells transduced with shVSVG or shTTP were grown to 60% confluence. The 48-well 

microplate containing hydrated dermal tissue coated with collagen IV was warmed in a 

cell culture incubator (37°C, 5% CO2) for 30 minutes. Five hundred microliters of complete 

Dulbecco's Modified Eagle Medium (DMEM) culture media containing 10% fetal bovine 

serum (FBS) and 1% PenStrep (10,000 Units/mL Penicillin and 10,000 µg/mL 

Streptomycin) was added to the wells of the 48-well microplate containing the prepared 

dermal tissue. The complete media provided the nutrients for the HNSCC cells.  The 

HNSCC cells were seeded onto dermal tissue at a density of 5 x 105 cells in 100 µl of 
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DMEM.  Cells were incubated in a cell culture incubator at 37°C and 5% CO2 for 4 days, 

and the medium was changed every 2 days.  

 

Transfering the OCE to the Air-Liquid Interface (day 5). Transwell carrier inserts (3.0 

µm pore size, Costar, Corning Inc.) were placed in a 6-well cell culture dish, and 500 µL 

of complete DMEM culture medium with 10% FBS and 1% PenStrep was pipetted below 

the insert.  Using sterile forceps, the OCE constructs were lifted by the edge of the dermal 

tissue and transferred with the epidermal side facing up onto one of the inserts. The 

constructs were incubated at 37°C in a 5% CO2 incubator for 2-3 days, and the medium 

in the lower chamber was changed every day.  

 

Nonlinear Optical Microscopic Molecular Imaging (days 7 and 8) 

Instrumentation and Data Acquisition. Nonlinear optical microscopic molecular 

imaging was performed on a Leica TCS SP5 microscope in epi-illumination mode. The 

images were collected with a 25x water immersion objective lens (0.95 NA, 2.5 mm 

working distance). A tunable Ti:sapphire laser (Mai Tai, Spectra-Physics), providing 

excitation wavelengths ranging from 690 to 1040 nm, was employed to deliver 100 fs 

pulses with a 80 MHz repetition rate. A 900 nm excitation wavelength was employed to 

simultaneously excite GFP fluorescence and collagen SHG. For GFP detection, the 

emitted fluorescence was coupled through a band pass filter from 475 to 575 nm, and 

collected with a non-descanned photomultiplier tube positioned in close proximity to the 

sample to increase collection efficiency. For SHG detection, an internal tunable 
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photomultiplier was tuned with a narrow bandwidth, 440-460 nm, to selectively collect 

collagen SHG emission. En-face images were acquired with raster scanning in the lateral 

plane and cross-sectional images were acquired with line scanning in the transverse 

plane. The scanning speed was 200 lines per second, for a total image acquisition time 

of approximately 40 seconds for the entire field-of-view. To reduce background noise, 

each line was acquired 8 times, and averaged. The microscope, laser, and image capture 

were under computer control. 

 

Specimen Preparation. OCE specimens were placed on a glass-bottom 35 mm Petri 

dish, and wet with a few drops of DPBS to preserve cell viability during the imaging 

procedure. The Petri dish was placed on the microscope, and en-face images were taken 

at incremental z-steps of either 3 µm, 5 µm, or 10 µm at 4 sites of the TTP-knockdown 

assay, and 3 sites of the control assay. Vertical cross-section images were taken at 1 site 

for each of the TTP-knockdown constructs and for the control OCE. All measurements 

were made in less than 1 hour after removing specimens from incubation conditions.  

 

Image Analysis. Two-photon excited fluorescence images of GFP-expressing cells and 

SHG images of collagen from the Alloderm® scaffold were pseudo-colored green and 

blue, respectively, and then merged in 8-bit RGB color format using NIH ImageJ software.  
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Data Analysis. Cell invasion was assessed by using MATLAB software to analyze z-

stack en-face SHG channel images to count the number of pixels with intensity values 

above a certain threshold over the entire field-of-view. The intensity threshold, 𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

is defined to be 𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜇𝑅𝑂𝐼, where 𝜇𝑅𝑂𝐼 is the mean of the intensity of all non-zero 

pixels in the region of interest. A decreased number of SHG pixels exceeding the 

threshold indicated the presence of cancer cells decaying the collagen matrix at the given 

depth below the surface, which was then plotted as a function of depth to assess cell 

decay of the collagen matrix by the cancer cells. The mean of the pixel counts was 

calculated over each en-face image of 3 TTP-knockdown assays and 2 control assays, 

both imaged on day 8 post-seeding, with error bars of one standard deviation of the mean. 

 

Histopathological Studies. OCE constructs were fixed overnight in phosphate buffered 

formalin (Fisher Scientific). Hematoxylin and eosin staining was performed on tissue 

sections prepared from fixed OCE constructs, and invasive areas were identified.   

 

RESULTS 

Enhanced Invasion of HNSCC Cells with TTP Knockdown is Observed with Both Sub-

surface Imaging and Analysis of Fixed Samples 

 Pro-inflammatory mediators, including cytokines and matrix metalloproteinases, 

contribute to progression of HNSCC (197, 202, 256). TTP is an RNA-binding protein that 

induces decay of multiple pro-inflammatory mediators (257). We previously showed that 
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downregulation of TTP leads to increased production of pro-inflammatory mediators and 

increased invasion of cancer cells (201). In data presented, HNSCC cells were stably 

transduced with a short-hairpin RNA (shRNA) construct to downregulate TTP (shTTP) 

and a control construct (shVSVG). These cells were used to investigate the sub-surface 

nonlinear optical molecular imaging method to monitor invasion on the OCE constructs 

and compare the results to parallel histopathological analysis. 

 HNSCC cells stratified to 2-4 layers, similarly to normal keratinocytes, and 

developed rete ridges (Figure C.1D). Invasive islands beyond the basement membrane 

were observed on hematoxylin and eosin-stained tissue sections. The increased invasion 

of cells with downregulated TTP was visualized by hematoxylin and eosin staining of 

paraffin embedded tissues (Figure C.3) and cross-sectional nonlinear optical microscopic 

molecular imaging of live cells.  Control cells formed a generally uniform layer that sits on 

the OCE scaffold (Figure C.3A), whereas TTP-knockdown cells invaded below the OCE 

scaffold, forming nests of GFP-expressing cells beneath the surface of the OCE (Figure  

C.3B, arrowheads).   

 Two-photon excited fluorescence images of GFP-expressing cells and SHG 

images of collagen from the OCE scaffold were pseudo-colored green and blue, 

respectively, and then merged in 8-bit RGB color format using NIH Image J software. 

GFP channel images taken near the surface of the assay show a high number of cells in 

cell lines with or without downregulation of TTP. At 24 μm control cells are no longer 

visible while TTP-knockdown cells are still visualized, suggesting increased deeper 

invasion of the TTP-knockdown cells below the surface of the OCE scaffold. A montage 



133 
 

of en-face images of the TTP-knockdown OCE from depth 0 μm to 24 μm revealed islands 

of GFP-expressing cells invading below the specimen surface, visualized as circular rings 

apparent deep under the surface of the OCE up to 24 µm (Figure C.4).    

 

Enhanced Invasion and Basement Membrane Destruction by HNSCC Cells with TTP 

Knockdown is Quantified with Sub-surface Imaging 

 Nonlinear optical microscopic en-face images of control and TTP-knockdown 

assays, imaged on day 7 post-seeding, are shown (Figure C.5A). The white arrow 

highlights a cell of interest that appears at depth 24 μm in the TTP-knockdown OCE, but 

is not present in the same region of the OCE at depth 9 µm. By contrast, in the control 

OCE many GFP-expressing cells are present in the superficial layers, but GFP 

fluorescence rapidly decreases with increasing depth below the specimen surface, and 

no cancer cells are observed in the deep layers. 

Figure C.5B shows the number of SHG pixel counts over the entire field-of-view 

of the en-face images, as a function of depth below the surface. The pixel counts are 

averaged at each depth for 3 TTP-knockdown data cubes and 2 control data cubes, 

acquired on day 8 post-seeding, and error bars are equal to one standard deviation of the 

mean. More SHG is present in the top 20 µm of the TTP-knockdown OCE assays than 

the control assays. From 20-40µm below the surface, SHG levels in the TTP-knockdown 

assays drop below that of the control assays, and SHG rapidly decreases in the TTP-

knockdown assays deeper than 40 µm below the surface. This indicates the increased 

decay of the collagen matrix by TTP-knockdown cancer cells compared to control cells. 

Furthermore, the higher level of SHG in the superficial layers of TTP-knockdown assays 
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suggests increased cell invasion, compared to controls assays where a thick layer of 

cancer cells stack on the surface of the OCE. 

 

 

DISCUSSION 

Comparison of the OCE with Other Methods 

 Both two-dimensional (2D) and 3D approaches have been utilized to investigate 

cancer progression in vivo. An example of a 2D migration model is the scratch assay, 

where cancer cells growing in a tissue culture dish migrate into an area devoid of cells 

(201). Cancer cells in 2D culture lack cell-matrix interactions that influence the phenotype 

and protein expression of these cells, and therefore 3D approaches are preferred to study 

invasion (258). 

 Some 3D culture approaches use a collagen matrix composed of proteins derived 

from an extracellular matrix to create a structure to simulate invasion. In addition, an in 

vitro cell-layering approach to development of 3D tissues has been described (259).  

Synthetic matrix-based invasion assays are useful in vitro for preliminary studies to 

evaluate changes in the invasive phenotype after manipulating proteins of interest in cells, 

but have significant limitations including the absence of a basement membrane structure 

and lack of the structural complexity of the connective tissue. In addition to the inadequacy 

of many in vitro approaches, most mouse models of human HNSCC are also inadequate 

to investigate invasion because tumor cells are injected directly into the connective tissue, 

thereby bypassing the basement membrane of the surface epithelium. 
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 Some 3D cancer models emphasize the aggregation of cells and have a variety of 

advantages and disadvantages (260). A number of models depend on spontaneous 

aggregation of cells (261), but can only be adapted to study a limited array of cancer 

types. Microcarrier beads are inexpensive and support 3D structures grown in cell culture 

(262), but the spheroids generated are mostly made up of beads. Engineered scaffolds 

are expensive and difficult to use in culture, but are biodegradable and can be used in 

both in vivo and in vitro settings (263). 

 The OCE model is advantageous because the commercially available human-

derived dermal matrix is used. As demonstrated, live imaging and histopathological 

studies are feasible with the OCE model. A heterogeneous population of cells can be 

introduced in the OCE system. The system can be adapted to a wide variety of cell types, 

and AlloDerm® grafts can be used for both in vivo and in vitro studies. 

 

Potential Applications of the OCE Method 

 The OCE model described in this protocol provides an exciting opportunity to 

evaluate the invasive phenotypes of individual cancer cell lines in a 3D assay and to 

evaluate the impact of altered protein expression on invasion. Virtual histopathology of 

live cells on an OCE construct can be derived through sub-surface nonlinear optical 

microscopy to observe and quantify invasion of cancer cells (264, 265). Subsequently the 

constructs can be fixed for light microscopy, including immunohistochemistry studies. The 

OCE model can be adapted to study the progression of many tumor types by altering the 

cell lines and culture conditions used. 
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 Three dimensional culture systems that preserve cell-matrix interactions are 

indicated for regenerative tissue applications because they preserve stem cell 

phenotypes (266) and facilitate epithelial-mesenchymal transition (EMT) (267), which has 

been shown to mediate invasion of  HNSCC cells (79). Application of this imaging 

technique will be useful to optimize previously described protocols that generate 3D 

constructs to replicate normal tissue, such as normal oral (268) and airway (269) mucosa.  

In addition, adaptation of the imaging methodology described in this protocol may be an 

interesting application to view cellular changes in a recently published protocol describing 

viral infection of human tissue explants (270). 

 

Limitations of the OCE Method 

 The main advantages of the OCE method over other in vitro methodologies include 

the invasion of cancer cells in the connective tissue stroma after disruption of the 

basement membrane, thereby simulating intraoral HNSCC. In addition, the procedure 

allows for stratification of cultured cells and growth of the cells in a 3D setting with complex 

cell-cell and cell-matrix interactions. However, the OCE model has some limitations.  

HNSCC involves multiple epithelial-stromal interactions, including interactions between 

cancer cells and fibroblasts, blood vessels, immune cells and nerves.  Although the OCE 

construct described here does not contain other cell types involved in the disease 

process, the model can be modified to add different cell types. Because the OCE method 

takes several days, it is necessary to transfect cells with a GFP tag rather than use a 

fluorescent dye, which will degrade over the duration of the experiment. The model also 

requires significant optimization. The number of cells, cell culture conditions, 
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concentration of chemoattractant used, and the time of harvesting all must be determined 

during optimization studies. Sub-surface imaging on sequential days helps to determine 

optimal timepoints for harvesting the OCE for histopathological studies. 

 In summary, the OCE method is a novel approach of preparing an in vitro model 

of HNSCC using human cancer cell lines and decellularized human cadaveric dermis.  

Furthermore, the in vivo imaging method described here and the comparison to histology 

from paraffin-embedded tissue sections will be useful to monitor many types of 3D tissue 

constructs. 
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Figure C.1: Histological comparison of HNSCC and OCE model. A. A lesion that 
presented clinically as a leukoplakia was subsequently diagnosed as HNSCC. B. 
Formalin-fixed OCE and OCE tissues in culture are shown.  Histology of human HNSCC 
(C) and of an OCE (D) shows invasion in both specimens. Arrowheads point out the 
basement membrane and arrows show invading cancer cells. 
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Figure C.2: Overview of OCE protocol. HNSCC cells are plated on hydrated 
decellularized human cadaveric tissue coated with collagen IV on day 1. On day 3 the 
OCE is brought to the liquid-air interface and invasion of HNSCC cells occurs through 
day 5, when sub-surface imaging of live cells is performed. The OCE tissues are then 
fixed, paraffin-embedded and processed for histopathological and protein expression 
studies.  
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Figure C.3: Comparison of OCE histology produced via hematoxylin-eosin staining 
and nonlinear optical microscopic molecular imaging. The vertical cross-section 
image of the OCE with control HNSCC cells (A) shows cells forming a layer on top of the 
tissue scaffold with little invasion below the surface, whereas the OCE with HNSCC cells 
with downregulated TTP (B) shows cells invading below the surface, forming nests of 
cells within the connective tissue. The quality of vertical cross-section images is degraded 
as compared to en-face images, due to the inherent poorer resolution of non-linear optical 
microscopy in the axial dimension, and scattering effects when imaging deep below the 
tissue surface. Bars=50 µm. 
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Figure C.4: En-face image montage of UM-SCC-1-shTTP cells in the OCE at 3 µm 
depth increments below the surface of the OCE. GFP-expressing cells form strings of 
cells invading below the surface of the assay, visualized as green rings that are apparent 
in all en-face images from the surface to a depth of 24 µm. Scale bars = 100 µm. 
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Figure C.5: Vertical stack of depth-resolved en-face nonlinear optical microscopic 
molecular images of OCE immunofluorescence assays, and quantification of SHG 
pixel counts as a function of depth. Representative data cube of a 3D stack of en-face 
images taken of control and TTP-knockdown OCE assays 7 days post-seeding are shown 
(A). Green indicates 2-photon excited fluorescence from GFP-expressing UM-SCC-1 
cells. Blue shows second harmonic generation (SHG) from collagen, in decellularized 
human cadaveric dermis scaffold of the OCE. Whereas the control cells (left) are no 
longer visible in the deeper tissues of the dermis, cells with downregulated TTP (right) 
are still visible at 24 μm below the surface, indicating that these cells are invading through 
the tissue scaffold. The white arrow highlights a region of interest where an invading cell 
is present at a depth of 24 µm, but is not present in the same region of the OCE at a depth 
of 9 µm. Bars=50 μm. The number of SHG pixel counts over the entire field-of-view of the 
en-face images, as a function of depth below the surface, was quantified for 3 TTP-
knockdown data cubes and 2 control data cubes of OCE assays imaged 8 days post-
seeding (B). TTP-knockdown assays have higher SHG content in superficial layers than 
control assays, but rapidly lose SHG signal in the deeper layers compared with control 
assays, suggesting decay of the collagen matrix by invading cancer cells. 
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APPENDIX D 

The Chick CAM Assay, a Novel Model of Head and Neck Squamous Cell 

Carcinoma 

Appendix D is adapted from a published manuscript (66). 

 

INTRODUCTION 

 Although the CAM assay has been in use for many years, the benefits of studying 

tumor invasion using this model are more recently recognized. The CAM is a highly 

vascularized membrane that is located directly below the egg shell. This makes the CAM 

easy to access through a small hole in the egg shell. The CAM is also made up primarily 

of collagen IV, which simulates the basement membrane of human oral epithelium. The 

CAM assay has been used to measure invasion of a variety of cell types, including 

fibroblasts (271) and several types of cancer cells, including melanoma cells (272-274).   

 We propose that the chick embryo is an excellent model of invasion and metastasis 

of human HNSCC. The CAM consists of the chorionic epithelium separated from the 

underlying allantoic membrane by connective tissue. The chorionic epithelium is 

separated from the connective tissue by an epithelial-derived basement membrane that 

contains collagen IV (275). The cellular connective tissue contains types I and III collagen 

and blood vessels. In this model, HNSCC cells are seeded on top of the CAM and allowed 

to invade. Thus, the CAM recapitulates intraoral human HNSCC progression including 

disruption    of    the    basement    membrane,   complexity   of   the   connective   tissue, 
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angiogenesis   and   metastasis. Even the histopathologic features simulate invasion 

observed in HNSCC. Destruction of the basement membrane can be easily visualized 

and tumor growth, invasion into the connective tissue, and metastasis can be accurately 

quantified, making this a valuable model for investigating progression of HNSCC.   

 In this study, we describe for the first time the use of the CAM to investigate multiple 

tumorigenic phenotypes simultaneously, including tumor growth, invasion, metastasis 

and angiogenesis in HNSCC. Recently, we showed that EZH2 (enhancer of zeste 

homolog 2), the histone methyltransferase, promotes progression of HNSCC by inducing 

multiple cancer phenotypes, likely via methylation of multiple tumor suppressor genes 

(71, 75). In order to develop the CAM model, we investigated the role of EZH2 in tumor 

growth, angiogenesis, invasion and metastasis in vivo. In addition, we show the role of 

EZH2 in epithelial-mesenchymal transition (EMT) in mouse tumors, CAM tumors and in 

HNSCC cell lines. Overall, we are able to establish the CAM model of HNSCC and 

investigate the role of EZH2 in several hallmarks of tumor progression. 

 

 

METHODS 

CAM in vivo Model of HNSCC Tumor Progression. The University of Michigan Unit for 

Laboratory Animal Medicine was consulted regarding ethical use of the chicken embryo 

CAM for experiments.   

 

Dropping the CAM. Fertilized commercial Lohmann White Leghorn eggs were 

obtained from the Michigan State University Department of Animal Sciences Poultry 
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Farm.  Prior to hatching, the eggs were maintained at 24ºC.  Eggs were subsequently 

“hatched” in a humidified incubator (Digital Sportsman Incubator; G.Q.F. 

Manufacturing) at 38°C with 60% humidity. The initial day of incubation is considered 

day 0.  On day 11, the following structures were labeled on the egg using the ACE 

light source (Trevigen Inc.): large blood vessel, umbilical cord, air sac, small square 

window for the artificial air sac generation and a large window area for seeding cancer 

cells. Using a Dremel 1100-N/25 7.2- Volt Stylus Lithium-Ion Cordless Rota (Robert 

Bosch Tool Company), a 1 cm2 window was drilled on the top of the egg shell, 

maintaining the outer egg shell membrane. A pinpoint hole was prepared on the side 

of the egg at the location of the airsac.  Twenty five microliters of HBSS (Invitrogen, 

Life Technologies) was added on top of the 1 cm2 window at the top of the egg.  Then, 

using a 30½ gauge needle, the outer eggshell membrane was punctured at the 

location of the window so that the buffer separates the outer eggshell membrane from 

the CAM. The small pinpoint hole was vacuumed using a Pasteur pipet bulb, causing 

the air bubble to move to the window and allowing the CAM to drop. Then the egg 

shell was drilled in the large window area and blunt ended forceps were used to peel 

off the eggshell membrane without disturbing the CAM. The large square hole was 

covered with parafilm and the egg was place in the incubator without shaking. 

 

Seeding HNSCC Cells. HNSCC cells (1x106) were resuspended in 5 µl of Hank’s 

Balanced Salt Solution (HBSS). The pipette was used to make a bead of cell and 

medium that is dropped onto the CAM surface, without allowing the pipette tip to touch 
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the CAM. The square window on the egg was sealed with Tegaderm HP Transparent 

Film Dressing. The eggs were incubated without shaking for approximately 3 days.  

 

Harvesting the CAM. Using a needle and syringe, a small amount of 4% 

paraformaldehyde was injected onto the surface of the CAM. Dissecting scissors were 

used to cut open the large window to visualize the CAM and the tumor. Using scissors 

and a pair of forceps, each CAM was lifted and cut around the tumor. The tumors and 

surrounding CAM were transferred to a 6-well dish containing 4% paraformaldehyde 

and incubated at 4°C for 4 hours. The CAMs were transferred to cold 30% sucrose 

and stored overnight at 4°C. The next day, the CAMs were embedded in Optimal 

Cutting Temperature Compound (Tissue-Tek) and frozen at -80°C until sectioning and 

staining. 8-10 µm tissue sections were fixed in 4% paraformaldehyde for 5 minutes 

followed by staining with hematoxylin and eosin. 

 

Endpoint Assays. For tumor growth and angiogenesis studies, suspensions of 5x105 

HNSCC cells with stable knockdown of EZH2 or controls were suspended in 5 µl 

HBSS and plated on the upper CAM. The window on the egg shell was resealed with 

adhesive tape and eggs were returned to the incubator for 48 hours before harvesting 

the tumor (n=5 chick embryos per experimental group). Surface area of the tumors 

was quantified using ImageJ software and statistically compared between control 

tumors and tumors with stable EZH2 knockdown. Angiogenesis was also quantified 

using red color density within 200 µm of tumors in images using ImageJ software 
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(http://rsbweb.nih.gov/ij/) with the Colour Threshold plugin provided through the 

University of Birmingham School of Dentistry website.  

(http://www.dentistry.bham.ac.uk/landinig/software/software.html).  

 For invasion assays, cells were dyed with the lipophilic tracer, DiO (a 

dialkylcarbocyanine derivative) prior to experiments. Tumor sections were imaged at 20x 

and invasive islands were quantified for each image. Statistical analysis to compare the 

number of invasive islands was performed.  

 For collagen IV staining, the frozen tissue sections were fixed in methanol, washed in 

PBS and blocked with 0.1% BSA, 10% NGS in PBS for 30-60 minutes. The collagen IV 

antibody was diluted 1:1 in 0.1% BSA, 5% NGS and incubated on the tissue sections for 

2 hours. The coverslips were mounted with Prolong Gold Antifade reagent with DAPI 

(Invitrogen, Life Technologies). 

 For metastasis experiments, HNSCC cells were plated as described for invasion 

studies at day 8. The lower CAM, liver and lungs were collected at day 16.  Human DNA 

was quantified from DNA extracted from the harvested tissues using alu-PCR to compare 

metastasis from control and EZH2 knockdown tumors. To generate the standard curve, 

genomic DNA from human HNSCC cells (each human cell contains 6.6 pg of DNA) was 

mixed with 1 µg of chicken genomic DNA in logarithmically increasing concentrations as 

0.1, 1.0, 10, 100, 1000, and 10000 cells. PCR was performed in triplicate for each of the 

standards as well as the experimental samples. The absolute number of metastatic 

human cells in the experimental sample was calculated from the standard curve using 

linear regression.  
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Cell Culture. The HNSCC cell line, UM-SCC-29 (from T. Carey), used in this study was 

validated by genotyping at the University of Michigan DNA Sequencing Core, and cultured 

as described (202, 246). Cells were maintained in DMEM (Gibco, Life Technologies) 

supplemented with 10% FBS and 1% PenStrep. EZH2 in HNSCC cells was stably 

downregulated as described (71); scrambled shRNA (shSCR) was used for control cells 

and shEZH2 for EZH2 knockdown cells (Open Biosystems). Cells were selected with 

puromycin (Sigma-Aldrich).  

 

Immunoblot Analysis. Immunoblot analysis was performed as previously described 

(197). 1% NP40 lysis buffer was used to lyse HNSCC cells. EZH2 (BD Biosciences, San 

Jose, CA) and GAPDH (Millipore) primary antibodies were used. The secondary antibody 

used was horseradish peroxidase-conjugated anti-mouse (Jackson Immuno-Research 

Laboratories). SuperSignal West Pico Chemiluminescent system (Thermo Scientific) was 

use to visualize immunoreactive proteins and ImageJ software was used to quantify 

signal intensity (http://rsbweb.nih.gov/ij/). 

 

Immunohistochemistry.  Immunohistochemistry of tissue sections was performed as 

described (246). The primary antibodies used were vimentin (Proteintech) and E-cadherin 

(BD Biosciences) and biotinylated goat anti-rabbit and biotinylated goat anti-mouse 

secondary antibodies were used (Biocare Medical). Imaging of cells was performed at the 

Microscopy and Image Analysis Core at the University of Michigan on an Olympus BX-

51 microscope. Representative fields were imaged at 20x. 

 

http://rsbweb.nih.gov/ij/
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Murine Model of HNSCC Using Subcutaneous Injection.  Athymic nude mice were 

used as described (276). UM-SCC-29 cells (1 x 106) were stably transduced with shSCR 

or shEZH2 and injected subcutaneously to assess tumor growth (272). Histopathologic 

analysis of these tumors is shown in the present study. 

 

Immunofluorescence Detection of Vimentin and E-cadherin. Cells were labeled with 

vimentin (Proteintech) and E-cadherin (BD Scientific) primary antibodies diluted in 0.3% 

triton X-100 overnight at 4ºC, washed, and incubated for 2 hours at room temperature in 

an appropriate conjugated secondary antibody, washed and incubated in DAPI (1:3000) 

for 3 minutes. Imaging of cells was performed at the Microscopy and Image Analysis Core 

at the University of Michigan on an Olympus BX-51 microscope. Representative fields 

were imaged at 100x. 

 

Data Analysis. Statistical analysis was performed using Student's t-test using GraphPad 

Prism (GraphPad Software). A P-value of <0.05 was accepted as statistically significant. 

 

RESULTS 

EZH2 Enhances HNSCC Tumor Size on the CAM 

 Using the CAM in vivo model, we investigated the impact of EZH2 on tumor growth in 

HNSCC. EZH2 is a master regulatory gene in HNSCC that inhibits expression of tumor 

suppressor genes (71). UM-SCC-29 cells with stable knockdown of EZH2 (UM-SCC-29-

shEZH2) and corresponding control cells with empty vector (UM-SCC-29-shSCR) were 

seeded on the CAM (n = 5 for each group). After 48 hours, the upper CAM was harvested 
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from each chick embryo and the surface area of the tumors was quantified (Figure D.1A).  

shRNA-mediated EZH2 knockdown was confirmed by immunoblot (Figure D.1B).  UM-

SCC-29-shEZH2 cells produced tumors that were significantly smaller than tumors 

generated by control cells (P = 0.0460, Figures D.1A, dashed lines and Figure D.1C). 

Although the difference in size between control and EZH2-deficient tumors is significant, 

the variability in tumor size led to a higher p-value than anticipated. A larger sample size 

may have provided a lower p-value to better reflect the difference in tumor size between 

the groups. Additionally, because since some tumors appear to be more bulky than 

others, 3D analysis of tumor size may provide a more consistent estimation of tumor size. 

 

EZH2 Promotes Angiogenesis of HNSCC Tumors on the CAM 

 To investigate the impact of EZH2 on tumor-associated angiogenesis, the area of 

blood vessels within 200 µm of the tumors were quantified. shEZH2 tumors had 

decreased blood vessel area adjacent to tumors compared to controls, indicating 

decreased angiogenesis of the tumors (P = 0.0348, Figures D.1A, arrows and Figure 

D.1D).  

 

EZH2 Enhances Basement Membrane Disruption and Invasion of HNSCC Tumors on 

the CAM 

 Tumors produced by UM-SCC-29-shSCR and –shEZH2 were harvested and 

sectioned. Collagen IV staining was performed on the section to visualize disruption of 

the basement membrane on the upper CAM. Tumors produced with UM-SCC-29-shSCR 

control cells showed more disruption of the basement membrane than tumors with stable 
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knockdown of EZH2 (Figure D.2A). This correlated with an increased number of invasive 

tumor islands in UM-SCC-29-shSCR tumors than in tumors from cells with 

downregulation of EZH2 (Figure D.2B, P = 0.0053).  

 

EZH2 Promotes a Mesenchymal Phenotype of HNSCC In Vitro and of Murine and CAM 

Tumors 

 Previously, we established that downregulation of EZH2 inhibited tumor growth in 

mice (71). Control tumors, expressing high EZH2, exhibited an aggressive phenotype 

including cells, with large nuclei, little cytoplasm, and spindled morphology (arrows), 

invading skeletal muscle (arrowheads) (Figure D.3A, upper panel). In contrast, tumors 

with EZH2 knockdown (Figure D.3A, lower panel) exhibited well differentiated epithelial 

cells (keratin formation; arrowheads) with increased cytoplasm (arrows), a less 

aggressive, more epithelioid phenotype. To verify the impact of EZH2 on epithelial-

mesenchymal transition, UM-SCC-29-shEZH2 and -shSCR cells were plated at 60% 

confluence and fixed. Immunofluorescence labeling of vimentin and E-cadherin were 

performed, and 5 representative fields were imaged at 100x (Figure D.3B). Intensity of 

fluorescence was quantified and normalized to the average intensity of shSCR cells.  

Control cells have a more mesenchymal phenotype with increased vimentin (P < 0.001) 

and decreased E-cadherin (p=0.0342) compared to cells with EZH2 knockdown (Figure 

D.3B). These findings are consistent with EZH2 inducing an EMT phenotype. In addition, 

immunohistochemistry was performed for vimentin and E-cadherin expression on CAM 

tumor sections from shSCR and shEZH2 treated cells (Figure D.3C). Tumors with EZH2 



152 
 

knockdown had decreased vimentin expression (arrows) and higher E-cadherin staining 

(arrows) than control tumors. 

  

EZH2 Promotes Metastasis of HNSCC Tumor Cells on the CAM 

 The invasive phenotype of tumor cells facilitates extension into the surrounding 

structures and spread to distant sites (metastasis) via the blood vessels. In the CAM 

model, metastasis requires invasion of cells through the basement membrane of the 

surface epithelium and into the blood vessels. Since EZH2 promotes invasion, we also 

investigated its effect on metastasis using the CAM model. UM-SCC-29-shSCR and 

shEZH2 cells were incubated on the CAM of day 7 chick embryos. The eggs were 

incubated until day 15, when the lower CAM and liver of the developing chick were 

harvested. The metastasized human cells in the chicken background were quantified as 

described by qPCR for amplification of human Alu sequences (85, 277), which eliminates 

cross-reactivity with chicken DNA. When using control UM-SCC-29 cells, metastases 

were detected in all lower CAM specimens and 4/5 of the livers of the developing chicks. 

However, when using cells with reduced EZH2 expression, no metastases were detected 

in either the lower CAM or liver in any samples (Figures D.3D and Figure D.3E, P = 

0.0151). 

 

DISCUSSION 

 Over the past decade, the histone methyltransferase EZH2 has emerged as a key 

player in tumor progression in many cancer types, including HNSCC (71) breast (278, 

279), bronchial (280), lung (281) and prostate (282). Overexpression of EZH2 is often 
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linked to poor prognosis and advanced disease (283). EZH2 expression is also correlated 

to increased angiogenesis in tumors (284), in part due to paracrine signaling between 

tumor cells and associated vasculature (285). EZH2 has also been shown to have a role 

in cancer stem cell maintenance (286).   

 Our laboratory recently showed that EZH2 contributes to HNSCC progression by 

hypermethylating the promoter region of the tumor suppressor Rap1GAP (71, 75). We 

found that EZH2 is upregulated in HNSCC cell lines compared to normal keratinocytes, 

and that EZH2 promotes tumor growth in vitro and in vivo in the mouse model. In our 

previous study we also evaluated the role of EZH2 in invasion using in vitro assays, and 

found that EZH2 expression is highly correlated with HNSCC cell invasion (71). However, 

we were unable to evaluate the impact of EZH2 on early invasive phenotypes i.e. 

destruction of the basement membrane of surface epithelium since in the mouse model, 

tumor cells are injected directly into the connective tissue. Invasion beyond the basement 

membrane is required for transformation of a pre-cancerous lesion (epithelial dysplasia) 

to HNSCC (287). 

 In our current study, we chose the CAM in vivo model of tumor progression to 

validate our previous in vitro findings about the role of EZH2 in tumor invasion. In this 

study, which is to our knowledge the first study to describe the use of the CAM model to 

investigate tumor progression of HNSCC, we show that downregulation of EZH2 in 

HNSCC cells inhibits destruction of the basement membrane and decreases invasion in 

vivo. In addition, we show that EZH2 mediates angiogenesis, growth and metastasis of 

HNSCC. 



154 
 

 There are many benefits of using the CAM to study tumor progression (288). The 

CAM assay is completed in a short time period and is relatively inexpensive compared to 

most in vivo models. The lack of a mature immune system at the time the assay is 

performed allows for use of different cell types, and cells from different species. Because 

the chicken embryo has been used scientifically for centuries, the system is well 

described in the literature. Limitations of the assay include the extensive optimization and 

the large number of eggs that are required to obtain consistent results. As in other in vivo 

systems, tumors produced on the CAM exhibit some variability. Therefore, it is 

appropriate to use a sample size of at least 5 eggs per group to characterize differences. 

 In addition to establishing the CAM model of HNSCC tumor progression, we also 

evaluated the role of EZH2 expression on the histopathological presentation of HNSCC 

tumors and on the expression of the EMT markers vimentin and E-cadherin. EMT is a 

process by which non-motile cells lose contact with neighboring cells and become more 

motile (180). EMT has been shown to promote HNSCC invasion, metastasis and tumor 

stemness (287). While control cells produced aggressive, mesenchymal-like tumors in 

vivo, tumors produced from HNSCC cells with reduced EZH2 expression had a more 

epithelial-like appearance, consistent with a less aggressive tumor. In addition, 

knockdown of EZH2 leads to decreased vimentin and increased E-cadherin expression 

in HNSCC cells and CAM tumors. These findings indicate that EZH2 plays a role in 

mediating EMT in the HNSCC cell line UM-SCC-29. We have previously shown that 

EZH2-mediated invasion is not dependent on E-cadherin alteration in the E-cadherin 

deficient cell line, OSCC3. Therefore, other factors that are still under investigation have 

a role in EZH2-mediated EMT, independent of E-cadherin (75). 
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 Our study investigating the role of EZH2 in tumor progression is the first to describe 

the use of the CAM model to study progression of HNSCC. The CAM model can be used 

to investigate tumor size, angiogenesis, invasion and metastasis of HNSCC. In addition, 

we show that knockdown of EZH2 expression in HNSCC cells leads to less aggressive 

tumors with a more epithelial-like phenotype. Together, these studies highlight the 

emerging role of EZH2 in HNSCC progression. Future studies will elucidate the 

mechanistic role of EZH2 in EMT. In addition, the role of EZH2 inhibitors should be 

explored as a therapeutic option for HNSCC treatment.  
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Figure D.1: EZH2 promotes tumor growth and angiogenesis. Fluorescently-labeled 
UM-SCC-29-SCR and –shEZH2 cells were seeded on the CAM. The upper CAM and 
tumors were collected 2 days later to analyze tumor growth and angiogenesis.  White 
arrowheads show blood vessel growth approximating tumor (A, brightfield images).  
Dashed lines outline tumor generated from HNSCC cells on CAM (A, GFP images).  
Yellow arrowheads identify tumor islands migrating from primary tumor (A, GFP images).  
shRNA-mediated EZH2 knockdown was confirmed by immunoblot (B). The average 
tumor growth and blood vessel density was calculated for both shSCR and shEZH2 
tumors (n=5 for each group). Tumor size (C) and angiogenesis (D) were significantly 
decreased for shEZH2 tumors compared to control tumors. 
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Figure D.2:  EZH2 promotes destruction of the basement membrane and invasion. 
Arrows (A) identify the basement membrane structure and tumor cells are labeled green.  
shSCR tumor cells are highly proliferative and invasive, and destroy the basement 
membrane structure, but shEZH2 cells do not disrupt the basement membrane. Fewer 
invasive tumor islands (B) are observed on the histology of shEZH2 tumors than control 
tumors. 
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Figure D.3: EZH2 promotes EMT and metastasis of HNSCC. A. Histopathologic 
appearance of HNSCC tumors induced by UM-SCC-29-shSCR and -shEZH2 cells in 
mice. Control tumors (upper panel) exhibit an aggressive and mesenchymal phenotype 
with large nuclei, little cytoplasm and spindled morphology (arrows) and invasion into 
skeletal muscle (arrowheads). Knockdown of EZH2 (lower panel) leads to more 
epitheloid, well-differentiated tumors containing cells with increased cytoplasm (arrows) 
and keratin formation (arrowheads). To verify the impact of EZH2 on epithelial-
mesenchymal transition, immunofluorescent labeling of vimentin and E-cadherin were 
performed and representative fields were imaged at 100x (B).  Relative fluorescence was 
measured for 5 representative fields and quantified. Control cells have a more 
mesenchymal phenotype with increased vimentin (p<0.001) and decreased E-cadherin 
(P=0.0342) compared to cells with EZH2 knockdown.  HNSCC cells were seeded on the 
CAM and the lower CAM and liver were collected at day 15.  Immunohistochemistry of 
EMT markers on CAM sections shows decreased vimentin (arrows, C) and more intense 
E-cadherin expression of tumor cells (arrows, C) for shEZH2 tumors compared to shSCR 
tumors.  Metastases were observed to both the lower CAM and liver for controls but no 
metastases were observed for any shEZH2 tumors (D and E). 
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APPENDIX E 

Personalized Medicine Strategies for Cancer Treatment: Lessons Learned from 

Tumor Antigens 

Appendix E is adapted from a published manuscript (248), which is a commentary of a 

published research article (289). 

  

HNSCC is among the 10 most common cancers in the world. Nearly half of the 

600,000 individuals affected globally will die of the disease within 5 years of diagnosis 

(1). If HNSCC is detected early, the prognosis is favorable. Due to late detection, most 

patients are at risk for recurrence and metastasis, which contribute to morbidity (1). To 

improve patient survival, robust screening tests are necessary to discover HNSCC at an 

early stage. Moreover, a biomarker-based approach may assist in management of 

HNSCC to improved treatment outcomes (290). 

 Tumor antigens are proteins specifically expressed by tumor cells and recognized 

by the immune system of the host (291). The immune response can be characterized to 

identify a cancer-specific signature (292). Novel cancer-specific autoantibody signatures 

can be used as a screening tool for early detection, allowing for effective treatment. 

Moreover, because cancers are heterogenic diseases, disparities in  treatment response, 
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for example resistance or sensitivity to chemotherapy, are likely linked to a specific tumor 

antigen repertoire. With the information about the tumor provided by its antigen signature, 

the most appropriate targeted treatment can be selected. Our laboratory recently explored 

the immune response to identify a novel antibody signature specific to HNSCC (289). 

Overall, the major findings of this study were 3-fold. First, we used phage display and a 

liquid ELISA assay to develop an antibody signature for HNSCC. Next, using an in silico 

approach, we nominated tumor antigens for functional validation. Finally, we validated 

L23 as an oncogene through multiple in vivo and in vitro approaches. 

 Using phage display to enrich the antibody response to tumor antigens, we 

identified previously undescribed tumor antigens in HNSCC. In the phage display 

technique, bacteriophage vectors are used to display tumor antigens. Using these phages 

as bait, antibodies specific for HNSCC were enriched via biopanning. An immunomic 

array was constructed from the enriched phages and used to screen additional control 

and HNSCC sera. The clones most specific for HNSCC were validated by the Luminex 

200™ system. Ultimately, we identified a HNSCC-specific signature including in-frame 

proteins, one of which was L23. Finally, using in vitro and in vivo approaches, we validated 

L23 as an oncogene. An important aspect of the recent study was the use phage libraries 

from tumors at different sites to detect a HNSCC-specific signature.  

 The potential of personalized medicine strategies will be harnessed when efficient 

and reliable methods of tumor detection and treatment selection are developed. Routine 

screening of patient serum for a cancer signature would facilitate early detection. Figure 

E.1 shows an overview of a screening and personalized treatment strategy based on the 

antibody signature in serum. In the proposed strategy, a “master immunomic array” would 
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include tumor antigens specific for different cancers. This would detect a cancer-specific 

antibody signature using serum collected during a routine physical exam. Thus, tumor-

specific antibodies present in sera will assist in early detection similarly to prostate-

specific antigen (PSA), which has assisted in early diagnosis of prostate cancer (293). 

 The cancer-antibody signature may also inform treatment selection and predict 

treatment progression. For example, an autoantibody signature for prostate cancer is 

apparently a more specific screening tool than PSA, and may assist in guiding treatment 

strategies (294, 295). 

 Finally, antibody signatures will help identify novel proteins involved in tumor 

progression, i.e. which early stage lesions although treated appropriately, will progress 

aggressively. Identification of these tumors would inform selection of aggressive 

treatment strategies at an early stage. In our recent study, we validated the role of L23 

as an oncogene in HNSCC. The roles that other HNSCC-specific proteins have in tumor 

progression are unknown. As we strive to achieve personalized medicine based 

strategies for cancer therapy, it is exciting to consider that some tumor antigens may be 

novel therapeutic targets. Perhaps through improved screening tools and novel 

therapeutic approaches based on HNSCC tumor antigens, we will see an improvement 

in survival from this devastating disease. 

 

Oncomine™ (Compendia Bioscience, Ann Arbor, MI) was used for analysis and 

visualization.  
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Figure E.1: An immunomics approach for early detection and personalized 
treatment strategies for cancer. A routine blood draw collected from individuals in an 
asymptomatic population is screened using a cancer immunomic array.  Individuals with 
different types of cancer are identified at an early stage with a positive serum test. In 
addition, within each cancer-specific signature, chemosensitive and chemoresistant 
signatures are identified by the array. These signatures inform healthcare providers of the 
specific treatment needs of each patient, allowing for a personalized treatment strategy 
to be developed. 

  



163 
 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 



164 
 

 

 

REFERENCES 

1. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and 
neck cancer. Nat Rev Cancer. 2011;11(1):9-22. 

2. Menzin J, Lines LM, Manning LN. The economics of squamous cell carcinoma of 
the head and neck. Curr Opin Otolaryngol Head Neck Surg. 2007;15(2):68-73. 

3. Lee JM, Turini M, Botteman MF, Stephens JM, Pashos CL. Economic burden of 
head and neck cancer. A literature review. Eur J Health Econ. 2004;5(1):70-80. 

4. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of 
eliminating socioeconomic and racial disparities on premature cancer deaths. CA 
Cancer J Clin. 2011;61(4):212-36. 

5. Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how? 
Trends in cell biology. 2008;18(11):560-74. 

6. Binmadi NO, Basile JR. Perineural invasion in oral squamous cell carcinoma: a 
discussion of significance and review of the literature. Oral oncology. 
2011;47(11):1005-10. 

7. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a 
review of the literature. Cancer. 2009;115(15):3379-91. 

8. Mendenhall WM, Amdur RJ, Hinerman RW, Werning JW, Malyapa RS, Villaret DB, 
et al. Skin cancer of the head and neck with perineural invasion. Am J Clin Oncol. 
2007;30(1):93-6. 

9. Neumann E. Secondare cancroid infiltration des nervus mentalis bei einem. Archiv 
fur pathologische Anatomie und Physiologie und fur klinische Medicin. 1862;24(1-
2):201-2. 

10. Mohs FE, Lathrop TG. Modes of spread of cancer of skin. AMA Arch Derm 
Syphilol. 1952;66(4):427-39. 

11. Dunn M, Morgan MB, Beer TW. Perineural invasion: identification, significance, 
and a standardized definition. Dermatol Surg. 2009;35(2):214-21. 

12. Matorin PA, Wagner RF, Jr. Mohs micrographic surgery: technical difficulties 
posed by perineural invasion. International journal of dermatology. 1992;31(2):83-
6. 

13. Moonis G, Cunnane MB, Emerick K, Curtin H. Patterns of perineural tumor spread 
in head and neck cancer. Magn Reson Imaging Clin N Am. 2012;20(3):435-46. 

14. Lane JE, Williams MR, Kent DE. Perineural involvement of squamous cell 
carcinoma presenting with formication. Cutis. 2010;85(3):121-3. 

15. Lee EK, Lee EJ, Kim MS, Park HJ, Park NH, Park S, 2nd, et al. Intracranial 
metastases: spectrum of MR imaging findings. Acta Radiol. 2012;53(10):1173-85. 

16. Ballantyne AJ, McCarten AB, Ibanez ML. The Extension of Cancer of the Head 
and Neck through Peripheral Nerves. Am J Surg. 1963;106:651-67. 



165 
 

17. Lian K, Bharatha A, Aviv RI, Symons SP. Interpretation errors in CT angiography 
of the head and neck and the benefit of double reading. AJNR Am J Neuroradiol. 
2011;32(11):2132-5. 

18. Ginsberg LE, Eicher SA. Great auricular nerve: anatomy and imaging in a case of 
perineural tumor spread. AJNR Am J Neuroradiol. 2000;21(3):568-71. 

19. Murakawa K, Tada M, Takada M, Tamoto E, Shindoh G, Teramoto K, et al. 
Prediction of lymph node metastasis and perineural invasion of biliary tract cancer 
by selected features from cDNA array data. J Surg Res. 2004;122(2):184-94. 

20. Chen TC, Jan YY, Yeh TS. K-ras mutation is strongly associated with perineural 
invasion and represents an independent prognostic factor of intrahepatic 
cholangiocarcinoma after hepatectomy. Ann Surg Oncol. 2012;19 Suppl 3:S675-
81. 

21. Ben QW, Wang JC, Liu J, Zhu Y, Yuan F, Yao WY, et al. Positive expression of 
L1-CAM is associated with perineural invasion and poor outcome in pancreatic 
ductal adenocarcinoma. Ann Surg Oncol. 2010;17(8):2213-21. 

22. Seki H, Tanaka J, Sato Y, Kato Y, Umezawa A, Koyama K. Neural cell adhesion 
molecule (NCAM) and perineural invasion in bile duct cancer. J Surg Oncol. 
1993;53(2):78-83. 

23. Seki H, Koyama K, Tanaka J, Sato Y, Umezawa A. Neural cell adhesion molecule 
and perineural invasion in gallbladder cancer. J Surg Oncol. 1995;58(2):97-100. 

24. Solares CA, Brown I, Boyle GM, Parsons PG, Panizza B. Neural cell adhesion 
molecule expression: no correlation with perineural invasion in cutaneous 
squamous cell carcinoma of the head and neck. Head Neck. 2009;31(6):802-6. 

25. Kolokythas A, Cox DP, Dekker N, Schmidt BL. Nerve growth factor and tyrosine 
kinase A receptor in oral squamous cell carcinoma: is there an association with 
perineural invasion? Journal of oral and maxillofacial surgery : official journal of the 
American Association of Oral and Maxillofacial Surgeons. 2010;68(6):1290-5. 

26. Chen-Tsai CP, Colome-Grimmer M, Wagner RF, Jr. Correlations among neural 
cell adhesion molecule, nerve growth factor, and its receptors, TrkA, TrkB, TrkC, 
and p75, in perineural invasion by basal cell and cutaneous squamous cell 
carcinomas. Dermatol Surg. 2004;30(7):1009-16. 

27. Ma J, Jiang Y, Jiang Y, Sun Y, Zhao X. Expression of nerve growth factor and 
tyrosine kinase receptor A and correlation with perineural invasion in pancreatic 
cancer. J Gastroenterol Hepatol. 2008;23(12):1852-9. 

28. Sakamoto Y, Kitajima Y, Edakuni G, Sasatomi E, Mori M, Kitahara K, et al. 
Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation 
and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep. 
2001;8(3):477-84. 

29. Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M, et al. Nerve 
growth factor expression correlates with perineural invasion and pain in human 
pancreatic cancer. J Clin Oncol. 1999;17(8):2419-28. 

30. Banerjee R, Henson BS, Russo N, Tsodikov A, D'Silva NJ. Rap1 mediates galanin 
receptor 2-induced proliferation and survival in squamous cell carcinoma. Cell 
Signal. 2011;23(7):1110-8. 



166 
 

31. Chen W, Dong S, Zhou J, Sun M. Investigation of myoepithelial cell differentiation 
into Schwann-like cells in salivary adenoid cystic carcinoma associated with 
perineural invasion. Mol Med Rep. 2012;6(4):755-9. 

32. Klose T, Abiatari I, Samkharadze T, De Oliveira T, Jager C, Kiladze M, et al. The 
actin binding protein destrin is associated with growth and perineural invasion of 
pancreatic cancer. Pancreatology. 2012;12(4):350-7. 

33. He C, Jiang H, Geng S, Sheng H, Shen X, Zhang X, et al. Expression of c-Myc 
and Fas correlates with perineural invasion of pancreatic cancer. Int J Clin Exp 
Pathol. 2012;5(4):339-46. 

34. Ayala GE, Dai H, Tahir SA, Li R, Timme T, Ittmann M, et al. Stromal antiapoptotic 
paracrine loop in perineural invasion of prostatic carcinoma. Cancer research. 
2006;66(10):5159-64. 

35. Zhang S, Qi L, Li M, Zhang D, Xu S, Wang N, et al. Chemokine CXCL12 and its 
receptor CXCR4 expression are associated with perineural invasion of prostate 
cancer. J Exp Clin Cancer Res. 2008;27:62. 

36. Ayala GE, Dai H, Li R, Ittmann M, Thompson TC, Rowley D, et al. Bystin in 
perineural invasion of prostate cancer. Prostate. 2006;66(3):266-72. 

37. Ambrosio EP, Rosa FE, Domingues MA, Villacis RA, Coudry Rde A, Tagliarini JV, 
et al. Cortactin is associated with perineural invasion in the deep invasive front 
area of laryngeal carcinomas. Hum Pathol. 2011;42(9):1221-9. 

38. Swanson BJ, McDermott KM, Singh PK, Eggers JP, Crocker PR, Hollingsworth 
MA. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) 
and their interaction contributes to adhesion in pancreatic cancer perineural 
invasion. Cancer research. 2007;67(21):10222-9. 

39. Prueitt RL, Yi M, Hudson RS, Wallace TA, Howe TM, Yfantis HG, et al. Expression 
of microRNAs and protein-coding genes associated with perineural invasion in 
prostate cancer. Prostate. 2008;68(11):1152-64. 

40. Iwahashi N, Nagasaka T, Tezel G, Iwashita T, Asai N, Murakumo Y, et al. 
Expression of glial cell line-derived neurotrophic factor correlates with perineural 
invasion of bile duct carcinoma. Cancer. 2002;94(1):167-74. 

41. Solares CA, Boyle GM, Brown I, Parsons PG, Panizza B. Reduced alphaB-
crystallin staining in perineural invasion of head and neck cutaneous squamous 
cell carcinoma. Otolaryngol Head Neck Surg. 2010;142(3 Suppl 1):S15-9. 

42. Abiatari I, Gillen S, DeOliveira T, Klose T, Bo K, Giese NA, et al. The microtubule-
associated protein MAPRE2 is involved in perineural invasion of pancreatic cancer 
cells. Int J Oncol. 2009;35(5):1111-6. 

43. Abiatari I, DeOliveira T, Kerkadze V, Schwager C, Esposito I, Giese NA, et al. 
Consensus transcriptome signature of perineural invasion in pancreatic 
carcinoma. Molecular cancer therapeutics. 2009;8(6):1494-504. 

44. Duan L, Hu XQ, Feng DY, Lei SY, Hu GH. GPC-1 may serve as a predictor of 
perineural invasion and a prognosticator of survival in pancreatic cancer. Asian J 
Surg. 2013;36(1):7-12. 

45. De Oliveira T, Abiatari I, Raulefs S, Sauliunaite D, Erkan M, Kong B, et al. 
Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an 
invasive pancreatic cancer cell phenotype. Mol Cancer. 2012;11:19. 



167 
 

46. Ayala GE, Dai H, Ittmann M, Li R, Powell M, Frolov A, et al. Growth and survival 
mechanisms associated with perineural invasion in prostate cancer. Cancer 
research. 2004;64(17):6082-90. 

47. Yang X, Zhang P, Ma Q, Kong L, Li Y, Liu B, et al. EMMPRIN silencing inhibits 
proliferation and perineural invasion of human salivary adenoid cystic carcinoma 
cells in vitro and in vivo. Cancer Biol Ther. 2012;13(2):85-91. 

48. Fukuda M, Kusama K, Sakashita H. Cimetidine inhibits salivary gland tumor cell 
adhesion to neural cells and induces apoptosis by blocking NCAM expression. 
BMC cancer. 2008;8:376. 

49. Chen W, Zhang HL, Jiang YG, Li JH, Liu BL, Sun MY. Inhibition of CD146 gene 
expression via RNA interference reduces in vitro perineural invasion on ACC-M 
cell. J Oral Pathol Med. 2009;38(2):198-205. 

50. Chen W, Zhang H, Wang J, Cao G, Dong Z, Su H, et al. Lentiviral-mediated gene 
silencing of Notch-4 inhibits in vitro proliferation and perineural invasion of ACC-M 
cells. Oncol Rep. 2013;29(5):1797-804. 

51. Binmadi NO, Yang YH, Zhou H, Proia P, Lin YL, De Paula AM, et al. Plexin-B1 
and semaphorin 4D cooperate to promote perineural invasion in a RhoA/ROK-
dependent manner. Am J Pathol. 2012;180(3):1232-42. 

52. Bakst RL, Lee N, He S, Chernichenko N, Chen CH, Linkov G, et al. Radiation 
impairs perineural invasion by modulating the nerve microenvironment. PloS one. 
2012;7(6):e39925. 

53. Hibi T, Mori T, Fukuma M, Yamazaki K, Hashiguchi A, Yamada T, et al. Synuclein-
gamma is closely involved in perineural invasion and distant metastasis in mouse 
models and is a novel prognostic factor in pancreatic cancer. Clinical cancer 
research : an official journal of the American Association for Cancer Research. 
2009;15(8):2864-71. 

54. Liebl F, Demir IE, Rosenberg R, Boldis A, Yildiz E, Kujundzic K, et al. The severity 
of neural invasion is associated with shortened survival in colon cancer. Clinical 
cancer research : an official journal of the American Association for Cancer 
Research. 2013;19(1):50-61. 

55. Demir IE, Ceyhan GO, Rauch U, Altintas B, Klotz M, Muller MW, et al. The 
microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal 
plasticity. Neurogastroenterol Motil. 2010;22(4):480-90, e112-3. 

56. Dai H, Li R, Wheeler T, Ozen M, Ittmann M, Anderson M, et al. Enhanced survival 
in perineural invasion of pancreatic cancer: an in vitro approach. Hum Pathol. 
2007;38(2):299-307. 

57. Ayala GE, Wheeler TM, Shine HD, Schmelz M, Frolov A, Chakraborty S, et al. In 
vitro dorsal root ganglia and human prostate cell line interaction: redefining 
perineural invasion in prostate cancer. Prostate. 2001;49(3):213-23. 

58. Ceyhan GO, Demir IE, Altintas B, Rauch U, Thiel G, Muller MW, et al. Neural 
invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. 
Biochemical and biophysical research communications. 2008;374(3):442-7. 

59. Gil Z, Cavel O, Kelly K, Brader P, Rein A, Gao SP, et al. Paracrine regulation of 
pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 
2010;102(2):107-18. 



168 
 

60. Gil Z, Kelly KJ, Brader P, Shah JP, Fong Y, Wong RJ. Utility of a herpes oncolytic 
virus for the detection of neural invasion by cancer. Neoplasia. 2008;10(4):347-53. 

61. Guo K, Ma Q, Li J, Wang Z, Shan T, Li W, et al. Interaction of the sympathetic 
nerve with pancreatic cancer cells promotes perineural invasion through the 
activation of STAT3 signaling. Molecular cancer therapeutics. 2013;12(3):264-73. 

62. Eibl G, Reber HA. A xenograft nude mouse model for perineural invasion and 
recurrence in pancreatic cancer. Pancreas. 2005;31(3):258-62. 

63. Koide N, Yamada T, Shibata R, Mori T, Fukuma M, Yamazaki K, et al. 
Establishment of perineural invasion models and analysis of gene expression 
revealed an invariant chain (CD74) as a possible molecule involved in perineural 
invasion in pancreatic cancer. Clinical cancer research : an official journal of the 
American Association for Cancer Research. 2006;12(8):2419-26. 

64. Imoto A, Mitsunaga S, Inagaki M, Aoyagi K, Sasaki H, Ikeda M, et al. Neural 
invasion induces cachexia via astrocytic activation of neural route in pancreatic 
cancer. International journal of cancer Journal international du cancer. 
2012;131(12):2795-807. 

65. Mitsunaga S, Fujii S, Ishii G, Kinoshita T, Hasebe T, Aoyagi K, et al. Nerve invasion 
distance is dependent on laminin gamma2 in tumors of pancreatic cancer. 
International journal of cancer Journal international du cancer. 2010;127(4):805-
19. 

66. Liu M, Scanlon CS, Banerjee R, Russo N, Inglehart RC, Willis AL, et al. The 
Histone Methyltransferase EZH2 Mediates Tumor Progression on the Chick 
Chorioallantoic Membrane Assay, a Novel Model of Head and Neck Squamous 
Cell Carcinoma. Transl Oncol. 2013;6(3):273-81. 

67. Scanlon CS, Inglehart, R.C., D'Silva, N. J. Emerging Value: The chick 
chorioallantoic membrane (CAM) model in oral carcinogenesis research. 
Carcinogenesis and Mutagenesis. 2013. 

68. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 
2011;144(5):646-74. 

69. Van Tubergen EA, Banerjee R, Liu M, Vander Broek R, Light E, Shiuhyang K, et 
al. Inactivation or loss of TTP promotes invasion in head and neck cancer via 
transcript stabilization and secretion of MMP9, MMP2 and IL-6. Clin Cancer Res. 
2013. 

70. Scanlon CS, Van Tubergen EA, Chen LC, Elahi SF, Kuo S, Feinberg S, et al. 
Characterization of squamous cell carcinoma in an organotypic culture via 
subsurface non-linear optical molecular imaging. Experimental biology and 
medicine. 2013;238(11):1233-41. 

71. Banerjee R, Mani RS, Russo N, Scanlon CS, Tsodikov A, Jing X, et al. The tumor 
suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression 
in invasive squamous cell carcinoma. Oncogene. 2011;30(42):4339-49. 

72. Henson B, Li F, Coatney DD, Carey TE, Mitra RS, Kirkwood KL, et al. An orthotopic 
floor-of-mouth model for locoregional growth and spread of human squamous cell 
carcinoma. J Oral Pathol Med. 2007;36(6):363-70. 

73. Czerninski R, Amornphimoltham P, Patel V, Molinolo AA, Gutkind JS. Targeting 
mammalian target of rapamycin by rapamycin prevents tumor progression in an 



169 
 

oral-specific chemical carcinogenesis model. Cancer Prev Res (Phila). 
2009;2(1):27-36. 

74. Stern CD. The chick; a great model system becomes even greater. Developmental 
cell. 2005;8(1):9-17. 

75. Banerjee R, Russo N, Liu M, Van Tubergen E, D'Silva NJ. Rap1 and its regulatory 
proteins: the tumor suppressor, oncogene, tumor suppressor gene axis in head 
and neck cancer. Small GTPases. 2012;3(3):192-7. 

76. Murphy JB. Transplantability of Tissues to the Embryo of Foreign Species : Its 
Bearing on Questions of Tissue Specificity and Tumor Immunity. The Journal of 
experimental medicine. 1913;17(4):482-93. 

77. Auerbach R, Arensman R, Kubai L, Folkman J. Tumor-induced angiogenesis: lack 
of inhibition by irradiation. International journal of cancer Journal international du 
cancer. 1975;15(2):241-5. 

78. Ossowski L, Reich E. Experimental model for quantitative study of metastasis. 
Cancer research. 1980;40(7):2300-9. 

79. Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ. Biomarkers of epithelial-
mesenchymal transition in squamous cell carcinoma. Journal of dental research. 
2013;92(2):114-21. 

80. Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin Cell Biol. 
2005;17(5):524-32. 

81. Weigelt B, Bissell MJ. Unraveling the microenvironmental influences on the normal 
mammary gland and breast cancer. Semin Cancer Biol. 2008;18(5):311-21. 

82. Gligorijevic B, Condeelis J. Stretching the timescale of intravital imaging in tumors. 
Cell Adh Migr. 2009;3(4):313-5. 

83. Ribatti D. The Chick Embryo Chorioallantoic Membrane in the Study of 
Angiogenesis and Metastasis. London: Springer; 2010. 

84. Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing 
from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 
2006;34(1):322-33. 

85. Zijlstra A, Mellor R, Panzarella G, Aimes RT, Hooper JD, Marchenko ND, et al. A 
quantitative analysis of rate-limiting steps in the metastatic cascade using human-
specific real-time polymerase chain reaction. Cancer Res. 2002;62(23):7083-92. 

86. Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, et al. Cancer-related 
axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res. 
2008;14(23):7593-603. 

87. Cavel O, Shomron O, Shabtay A, Vital J, Trejo-Leider L, Weizman N, et al. 
Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by 
secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 
2012;72(22):5733-43. 

88. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve 
development contributes to prostate cancer progression. Science. 
2013;341(6142):1236361. 

89. Hamburger V, Levi-Montalcini R. Proliferation, differentiation and degeneration in 
the spinal ganglia of the chick embryo under normal and experimental conditions. 
J Exp Zool. 1949;111(3):457-501. 



170 
 

90. Cohen S, Levi-Montalcini R, Hamburger V. A Nerve Growth-Stimulating Factor 
Isolated from Sarcom as 37 and 180. Proc Natl Acad Sci U S A. 1954;40(10):1014-
8. 

91. Hseu YC, Wu CR, Chang HW, Kumar KJ, Lin MK, Chen CS, et al. Inhibitory effects 
of Physalis angulata on tumor metastasis and angiogenesis. J Ethnopharmacol. 
2011;135(3):762-71. 

92. Kim SA, Kwon SM, Kim JA, Kang KW, Yoon JH, Ahn SG. 5'-Nitro-indirubinoxime, 
an indirubin derivative, suppresses metastatic ability of human head and neck 
cancer cells through the inhibition of Integrin beta1/FAK/Akt signaling. Cancer Lett. 
2011;306(2):197-204. 

93. Nagasawa H, Mikamo N, Nakajima Y, Matsumoto H, Uto Y, Hori H. Antiangiogenic 
hypoxic cytotoxin TX-402 inhibits hypoxia-inducible factor 1 signaling pathway. 
Anticancer Res. 2003;23(6a):4427-34. 

94. Oh SH, Kim WY, Kim JH, Younes MN, El-Naggar AK, Myers JN, et al. Identification 
of insulin-like growth factor binding protein-3 as a farnesyl transferase inhibitor 
SCH66336-induced negative regulator of angiogenesis in head and neck 
squamous cell carcinoma. Clin Cancer Res. 2006;12(2):653-61. 

95. Oh SH, Woo JK, Jin Q, Kang HJ, Jeong JW, Kim KW, et al. Identification of novel 
antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-
1 alpha. Int J Cancer. 2008;122(1):5-14. 

96. Petruzzelli GJ, Snyderman CH, Johnson JT, Myers EN. Angiogenesis induced by 
head and neck squamous cell carcinoma xenografts in the chick embryo 
chorioallantoic membrane model. Ann Otol Rhinol Laryngol. 1993;102(3 Pt 1):215-
21. 

97. Pisanti S, Borselli C, Oliviero O, Laezza C, Gazzerro P, Bifulco M. Antiangiogenic 
activity of the endocannabinoid anandamide: correlation to its tumor-suppressor 
efficacy. J Cell Physiol. 2007;211(2):495-503. 

98. Gronau S, Thess B, Riechelmann H, Fischer Y, Schmitt A, Schmitt M. An 
autologous system for culturing head and neck squamous cell carcinomas for the 
assessment of cellular therapies on the chorioallantois membrane. Eur Arch 
Otorhinolaryngol. 2006;263(4):308-12. 

99. Nyberg P, Moilanen M, Paju A, Sarin A, Stenman UH, Sorsa T, et al. MMP-9 
activation by tumor trypsin-2 enhances in vivo invasion of human tongue 
carcinoma cells. J Dent Res. 2002;81(12):831-5. 

100. Nyberg P, Heikkila P, Sorsa T, Luostarinen J, Heljasvaara R, Stenman UH, et al. 
Endostatin inhibits human tongue carcinoma cell invasion and intravasation and 
blocks the activation of matrix metalloprotease-2, -9, and -13. J Biol Chem. 
2003;278(25):22404-11. 

101. Yang SF, Yang WE, Kuo WH, Chang HR, Chu SC, Hsieh YS. Antimetastatic 
potentials of flavones on oral cancer cell via an inhibition of matrix-degrading 
proteases. Arch Oral Biol. 2008;53(3):287-94. 

102. Hoppenheit C, Huttenberger D, Foth HJ, Spitzer WJ, Reichert TE, Muller-Richter 
UD. Pharmacokinetics of the photosensitizers aminolevulinic acid and 
aminolevulinic acid hexylester in oro-facial tumors embedded in the chorioallantois 
membrane of a hen's egg. Cancer Biother Radiopharm. 2006;21(6):569-78. 



171 
 

103. Chang HL, Pieretti-Vanmarcke R, Nicolaou F, Li X, Wei X, MacLaughlin DT, et al. 
Mullerian inhibiting substance inhibits invasion and migration of epithelial cancer 
cell lines. Gynecol Oncol. 2011;120(1):128-34. 

104. Easty DM, Easty GC, Baici A, Carter RL, Cederholm-Williams SA, Felix H, et al. 
Biological studies of ten human squamous carcinoma cell lines: an overview. Eur 
J Cancer Clin Oncol. 1986;22(6):617-34. 

105. Van Tubergen EA, Banerjee R, Liu M, Vander Broek R, Light E, Kuo S, et al. 
Inactivation or loss of TTP promotes invasion in head and neck cancer via 
transcript stabilization and secretion of MMP9, MMP2, and IL-6. Clin Cancer Res. 
2013;19(5):1169-79. 

106. Huang HZ, Tang HK. [Interaction of vascular endothelial growth factor-C over-
expression with tongue squamous cell carcinoma cell line Tca8113 with peri-
carcinoma lymphatics]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2005;40(2):126-8. 

107. Teruszkin Balassiano I, Alves De Paulo S, Henriques Silva N, Curie Cabral M, da 
Gloria da Costa Carvalho M. Metastatic potential of MDA435 and Hep2 cell lines 
in chorioallantoic membrane (CAM) model. Oncol Rep. 2001;8(2):431-3. 

108. Bragado P, Estrada Y, Sosa MS, Avivar-Valderas A, Cannan D, Genden E, et al. 
Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation 
of tumor initiating properties. PLoS One. 2012;7(1):e29974. 

109. Scanlon CS BR, Inglehart RC, Liu M, Russo N, Hariharan A, Van Tubergen EA, 
Corson SL, Asangani IA, Mistretta CM, Chinnaiyan AM, D'Silva NJ. Galanin 
modulates the neural niche to favor perineural invasion in head and neck cancer. 
(under review). 2014. 

110. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated 
pain in pancreatic cancer. Nat Rev Cancer. 2011;11(10):695-707. 

111. Johnston M, Yu E, Kim J. Perineural invasion and spread in head and neck cancer. 
Expert Rev Anticancer Ther. 2012;12(3):359-71. 

112. Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-
regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes 
colorectal tumor cell survival and enhances HIF-1 transcriptional activity during 
hypoxia. Cancer research. 2006;66(13):6683-91. 

113. Nunez F, Bravo S, Cruzat F, Montecino M, De Ferrari GV. Wnt/beta-catenin 
signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric 
cancer cells. PloS one. 2011;6(4):e18562. 

114. Henson BS, Neubig RR, Jang I, Ogawa T, Zhang Z, Carey TE, et al. Galanin 
receptor 1 has anti-proliferative effects in oral squamous cell carcinoma. J Biol 
Chem. 2005;280(24):22564-71. 

115. Siegel GJ, Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M. Basic 
Neurochemistry: Molecular, Cellular and Medical Aspects. 6 ed: Lippincott 
Williams & Wilkins; 1999. 

116. Sugimoto T, Seki N, Shimizu S, Kikkawa N, Tsukada J, Shimada H, et al. The 
galanin signaling cascade is a candidate pathway regulating oncogenesis in 
human squamous cell carcinoma. Genes Chromosomes Cancer. 2009;48(2):132-
42. 

117. Wynick D, Thompson SW, McMahon SB. The role of galanin as a multi-functional 
neuropeptide in the nervous system. Curr Opin Pharmacol. 2001;1(1):73-7. 



172 
 

118. Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor 
pharmacology, pleiotropic biological actions, and implications in health and 
disease. Pharmacol Ther. 2007;115(2):177-207. 

119. Bollimuntha S, Selvaraj S, Singh BB. Emerging roles of canonical TRP channels 
in neuronal function. Adv Exp Med Biol. 2011;704:573-93. 

120. Muller MR, Rao A. NFAT, immunity and cancer: a transcription factor comes of 
age. Nat Rev Immunol. 2010;10(9):645-56. 

121. Gerlach K, Daniel C, Lehr HA, Nikolaev A, Gerlach T, Atreya R, et al. Transcription 
factor NFATc2 controls the emergence of colon cancer associated with IL-6-
dependent colitis. Cancer Res. 2012;72(17):4340-50. 

122. Merati K, said Siadaty M, Andea A, Sarkar F, Ben-Josef E, Mohammad R, et al. 
Expression of inflammatory modulator COX-2 in pancreatic ductal 
adenocarcinoma and its relationship to pathologic and clinical parameters. Am J 
Clin Oncol. 2001;24(5):447-52. 

123. Li S, Sun Y, Gao D. Role of the nervous system in cancer metastasis. Oncol Lett. 
2013;5(4):1101-11. 

124. Zanker KS. The neuro-neoplastic synapse: does it exist? Prog Exp Tumor Res. 
2007;39:154-61. 

125. Anderson TD, Feldman M, Weber RS, Ziober AF, Ziober BL. Tumor deposition of 
laminin-5 and the relationship with perineural invasion. Laryngoscope. 
2001;111(12):2140-3. 

126. Rauch I, Kofler B. The galanin system in cancer. EXS. 2010;102:223-41. 
127. O'Meara G, Coumis U, Ma SY, Kehr J, Mahoney S, Bacon A, et al. Galanin 

regulates the postnatal survival of a subset of basal forebrain cholinergic neurons. 
Proc Natl Acad Sci U S A. 2000;97(21):11569-74. 

128. Alier KA, Chen Y, Sollenberg UE, Langel U, Smith PA. Selective stimulation of 
GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- 
and pro-nociceptive actions of galanin. Pain. 2008;137(1):138-46. 

129. Burazin TC, Gundlach AL. Inducible galanin and GalR2 receptor system in motor 
neuron injury and regeneration. J Neurochem. 1998;71(2):879-82. 

130. Kofler B, Berger A, Santic R, Moritz K, Almer D, Tuechler C, et al. Expression of 
neuropeptide galanin and galanin receptors in human skin. J Invest Dermatol. 
2004;122(4):1050-3. 

131. Bauer JW, Lang R, Jakab M, Kofler B. Galanin family of peptides in skin function. 
EXS. 2010;102:51-9. 

132. Perumal P, Vrontakis ME. Transgenic mice over-expressing galanin exhibit 
pituitary adenomas and increased secretion of galanin, prolactin and growth 
hormone. J Endocrinol. 2003;179(2):145-54. 

133. Abbosh C, Lawkowski A, Zaben M, Gray W. GalR2/3 mediates proliferative and 
trophic effects of galanin on postnatal hippocampal precursors. J Neurochem. 
2011;117(3):425-36. 

134. Misawa K, Ueda Y, Kanazawa T, Misawa Y, Jang I, Brenner JC, et al. Epigenetic 
inactivation of galanin receptor 1 in head and neck cancer. Clin Cancer Res. 
2008;14(23):7604-13. 



173 
 

135. Takebayashi S, Hickson A, Ogawa T, Jung KY, Mineta H, Ueda Y, et al. Loss of 
chromosome arm 18q with tumor progression in head and neck squamous cancer. 
Genes Chromosomes Cancer. 2004;41(2):145-54. 

136. Voss MJ, Entschladen F. Tumor interactions with soluble factors and the nervous 
system. Cell Commun Signal. 2010;8:21. 

137. Entschladen F, Drell TLt, Lang K, Joseph J, Zaenker KS. Tumour-cell migration, 
invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol. 
2004;5(4):254-8. 

138. Hulse RP, Wynick D, Donaldson LF. Activation of the galanin receptor 2 in the 
periphery reverses nerve injury-induced allodynia. Mol Pain. 2011;7:26. 

139. Lang R, Kofler B. The galanin peptide family in inflammation. Neuropeptides. 
2011;45(1):1-8. 

140. Hobson SA, Bacon A, Elliot-Hunt CR, Holmes FE, Kerr NC, Pope R, et al. Galanin 
acts as a trophic factor to the central and peripheral nervous systems. EXS. 
2010;102:25-38. 

141. Burazin TC, Bathgate RA, Macris M, Layfield S, Gundlach AL, Tregear GW. 
Restricted, but abundant, expression of the novel rat gene-3 (R3) relaxin in the 
dorsal tegmental region of brain. J Neurochem. 2002;82(6):1553-7. 

142. Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of 
perineural invasion, a forgotten pathway of dissemination and metastasis. 
Cytokine Growth Factor Rev. 2010;21(1):77-82. 

143. Chen N, Balasenthil S, Reuther J, Frayna A, Wang Y, Chandler DS, et al. DEAR1 
is a chromosome 1p35 tumor suppressor and master regulator of TGF-beta-driven 
epithelial-mesenchymal transition. Cancer Discov. 2013;3(10):1172-89. 

144. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin 
V, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of 
c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 
2012;2(3):270-87. 

145. Holmes FE, Mahoney S, King VR, Bacon A, Kerr NC, Pachnis V, et al. Targeted 
disruption of the galanin gene reduces the number of sensory neurons and their 
regenerative capacity. Proc Natl Acad Sci U S A. 2000;97(21):11563-8. 

146. Gottsch ML, Zeng H, Hohmann JG, Weinshenker D, Clifton DK, Steiner RA. 
Phenotypic analysis of mice deficient in the type 2 galanin receptor (GALR2). Mol 
Cell Biol. 2005;25(11):4804-11. 

147. Hobson SA, Holmes FE, Kerr NC, Pope RJ, Wynick D. Mice deficient for galanin 
receptor 2 have decreased neurite outgrowth from adult sensory neurons and 
impaired pain-like behaviour. J Neurochem. 2006;99(3):1000-10. 

148. Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat 
Rev Cancer. 2009;9(11):810-20. 

149. Tofighi R, Joseph B, Xia S, Xu ZQ, Hamberger B, Hokfelt T, et al. Galanin 
decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 
receptor (GalR2). Proc Natl Acad Sci U S A. 2008;105(7):2717-22. 

150. Cromer A, Carles A, Millon R, Ganguli G, Chalmel F, Lemaire F, et al. Identification 
of genes associated with tumorigenesis and metastatic potential of 
hypopharyngeal cancer by microarray analysis. Oncogene. 2004;23(14):2484-98. 



174 
 

151. Estilo CL, P Oc, Talbot S, Socci ND, Carlson DL, Ghossein R, et al. Oral tongue 
cancer gene expression profiling: Identification of novel potential prognosticators 
by oligonucleotide microarray analysis. BMC cancer. 2009;9:11. 

152. Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, et al. 
Identification of a gene expression signature associated with recurrent disease in 
squamous cell carcinoma of the head and neck. Cancer research. 2004;64(1):55-
63. 

153. O'Donnell RK, Kupferman M, Wei SJ, Singhal S, Weber R, O'Malley B, et al. Gene 
expression signature predicts lymphatic metastasis in squamous cell carcinoma of 
the oral cavity. Oncogene. 2005;24(7):1244-51. 

154. Peng CH, Liao CT, Peng SC, Chen YJ, Cheng AJ, Juang JL, et al. A novel 
molecular signature identified by systems genetics approach predicts prognosis in 
oral squamous cell carcinoma. PloS one. 2011;6(8):e23452. 

155. Poage GM, Christensen BC, Houseman EA, McClean MD, Wiencke JK, Posner 
MR, et al. Genetic and epigenetic somatic alterations in head and neck squamous 
cell carcinomas are globally coordinated but not locally targeted. PLoS One. 
2010;5(3):e9651. 

156. Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, et al. 
Fundamental differences in cell cycle deregulation in human papillomavirus-
positive and human papillomavirus-negative head/neck and cervical cancers. 
Cancer research. 2007;67(10):4605-19. 

157. Rickman DS, Millon R, De Reynies A, Thomas E, Wasylyk C, Muller D, et al. 
Prediction of future metastasis and molecular characterization of head and neck 
squamous-cell carcinoma based on transcriptome and genome analysis by 
microarrays. Oncogene. 2008;27(51):6607-22. 

158. Roepman P, Wessels LF, Kettelarij N, Kemmeren P, Miles AJ, Lijnzaad P, et al. 
An expression profile for diagnosis of lymph node metastases from primary head 
and neck squamous cell carcinomas. Nat Genet. 2005;37(2):182-6. 

159. Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, et al. Genome-
wide expression profiling reveals EBV-associated inhibition of MHC class I 
expression in nasopharyngeal carcinoma. Cancer Res. 2006;66(16):7999-8006. 

160. Slebos RJ, Yi Y, Ely K, Carter J, Evjen A, Zhang X, et al. Gene expression 
differences associated with human papillomavirus status in head and neck 
squamous cell carcinoma. Clin Cancer Res. 2006;12(3 Pt 1):701-9. 

161. Talbot SG, Estilo C, Maghami E, Sarkaria IS, Pham DK, P Oc, et al. Gene 
expression profiling allows distinction between primary and metastatic squamous 
cell carcinomas in the lung. Cancer research. 2005;65(8):3063-71. 

162. Toruner GA, Ulger C, Alkan M, Galante AT, Rinaggio J, Wilk R, et al. Association 
between gene expression profile and tumor invasion in oral squamous cell 
carcinoma. Cancer genetics and cytogenetics. 2004;154(1):27-35. 

163. Ye H, Yu TW, Temam S, Ziober BL, Wang JG, Schwartz JL, et al. Transcriptomic 
dissection of tongue squamous cell carcinoma. Bmc Genomics. 2008;9. 

164. Labelle M, Hynes RO. The initial hours of metastasis: the importance of 
cooperative host-tumor cell interactions during hematogenous dissemination. 
Cancer discovery. 2012;2(12):1091-9. 



175 
 

165. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer 
cells in metastatic sites. Nature reviews Cancer. 2002;2(8):563-72. 

166. Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 
2005;26(3):513-23. 

167. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis 
revisited. Nature reviews Cancer. 2003;3(6):453-8. 

168. Paget S. The distribution of secondary growths in cancer of the breast. 1889. 
Cancer metastasis reviews. 1989;8(2):98-101. 

169. Rahima B, Shingaki S, Nagata M, Saito C. Prognostic significance of perineural 
invasion in oral and oropharyngeal carcinoma. Oral surgery, oral medicine, oral 
pathology, oral radiology, and endodontics. 2004;97(4):423-31. 

170. Fagan JJ, Collins B, Barnes L, D'Amico F, Myers EN, Johnson JT. Perineural 
invasion in squamous cell carcinoma of the head and neck. Archives of 
otolaryngology--head & neck surgery. 1998;124(6):637-40. 

171. Tai SK, Li WY, Yang MH, Chu PY, Wang YF. Perineural invasion in T1 oral 
squamous cell carcinoma indicates the need for aggressive elective neck 
dissection. The American journal of surgical pathology. 2013;37(8):1164-72. 

172. Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom 
AC. Critical steps in hematogenous metastasis: an overview. Surgical oncology 
clinics of North America. 2001;10(2):243-55, vii. 

173. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. 
Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of 
metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315-28. 

174. Yamamoto N, Yang M, Jiang P, Xu M, Tsuchiya H, Tomita K, et al. Determination 
of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. 
Cancer research. 2003;63(22):7785-90. 

175. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor 
self-seeding by circulating cancer cells. Cell. 2009;139(7):1315-26. 

176. Jackson TL, Byrne HM. A mechanical model of tumor encapsulation and 
transcapsular spread. Mathematical biosciences. 2002;180:307-28. 

177. Rodriguez-Cerdeira C, Sanchez-Blanco E, Molares-Vila A. Clinical application of 
development of nonantibiotic macrolides that correct inflammation-driven immune 
dysfunction in inflammatory skin diseases. Mediators of inflammation. 
2012;2012:563709. 

178. Muller JM. Potential inhibition of the neuro-neoplastic interactions: the clue of a 
GPCR-targeted therapy. Progress in experimental tumor research. 2007;39:130-
53. 

179. O'Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-
coupled receptor signaling in cancer. Current opinion in cell biology. 
2014;27C:126-35. 

180. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. The 
Journal of clinical investigation. 2009;119(6):1429-37. 

181. Wu H, Lotan R, Menter D, Lippman SM, Xu XC. Expression of E-cadherin is 
associated with squamous differentiation in squamous cell carcinomas. Anticancer 
Res. 2000;20(3A):1385-90. 



176 
 

182. Calmon MF, Colombo J, Carvalho F, Souza FP, Filho JF, Fukuyama EE, et al. 
Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 
in head and neck cancer. Cancer Genet Cytogenet. 2007;173(1):31-7. 

183. Dikshit RP, Gillio-Tos A, Brennan P, De Marco L, Fiano V, Martinez-Penuela JM, 
et al. Hypermethylation, risk factors, clinical characteristics, and survival in 235 
patients with laryngeal and hypopharyngeal cancers. Cancer. 2007;110(8):1745-
51. 

184. Zhao Z, Ge J, Sun Y, Tian L, Lu J, Liu M, et al. Is E-cadherin immunoexpression 
a prognostic factor for head and neck squamous cell carcinoma (HNSCC)? A 
systematic review and meta-analysis. Oral Oncol. 2012. 

185. Huang DH, Su L, Peng XH, Zhang H, Khuri FR, Shin DM, et al. Quantum dot-
based quantification revealed differences in subcellular localization of EGFR and 
E-cadherin between EGFR-TKI sensitive and insensitive cancer cells. 
Nanotechnology. 2009;20(22):225102. 

186. Eriksen JG, Steiniche T, Overgaard J. The role of epidermal growth factor receptor 
and E-cadherin for the outcome of reduction in the overall treatment time of 
radiotherapy of supraglottic larynx squamous cell carcinoma. Acta Oncol. 
2005;44(1):50-8. 

187. Yang Z, Zhang X, Gang H, Li X, Li Z, Wang T, et al. Up-regulation of gastric cancer 
cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. 
Biochem Biophys Res Commun. 2007;358(3):925-30. 

188. Nguyen PT, Kudo Y, Yoshida M, Kamata N, Ogawa I, Takata T. N-cadherin 
expression is involved in malignant behavior of head and neck cancer in relation 
to epithelial-mesenchymal transition. Histology and histopathology. 
2011;26(2):147-56. 

189. Qian F, Zhang ZC, Wu XF, Li YP, Xu Q. Interaction between integrin alpha(5) and 
fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys 
Res Commun. 2005;333(4):1269-75. 

190. Dyce OH, Ziober AF, Weber RS, Miyazaki K, Khariwala SS, Feldman M, et al. 
Integrins in head and neck squamous cell carcinoma invasion. The Laryngoscope. 
2002;112(11):2025-32. 

191. Nakahara S, Miyoshi E, Noda K, Ihara S, Gu J, Honke K, et al. Involvement of 
oligosaccharide changes in alpha5beta1 integrin in a cisplatin-resistant human 
squamous cell carcinoma cell line. Molecular cancer therapeutics. 
2003;2(11):1207-14. 

192. Koontongkaew S, Amornphimoltham P, Monthanpisut P, Saensuk T, 
Leelakriangsak M. Fibroblasts and extracellular matrix differently modulate MMP 
activation by primary and metastatic head and neck cancer cells. Med Oncol. 2011. 

193. Lim KP, Cirillo N, Hassona Y, Wei W, Thurlow JK, Cheong SC, et al. Fibroblast 
gene expression profile reflects the stage of tumour progression in oral squamous 
cell carcinoma. The Journal of pathology. 2011;223(4):459-69. 

194. Chen C, Wei Y, Hummel M, Hoffmann TK, Gross M, Kaufmann AM, et al. Evidence 
for epithelial-mesenchymal transition in cancer stem cells of head and neck 
squamous cell carcinoma. PloS one. 2011;6(1):e16466. 

195. Paccione RJ, Miyazaki H, Patel V, Waseem A, Gutkind JS, Zehner ZE, et al. 
Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin 



177 
 

RNA interference, which inhibits growth and motility. Molecular cancer 
therapeutics. 2008;7(9):2894-903. 

196. Yoon Y, Liang Z, Zhang X, Choe M, Zhu A, Cho HT, et al. CXC chemokine 
receptor-4 antagonist blocks both growth of primary tumor and metastasis of head 
and neck cancer in xenograft mouse models. Cancer research. 2007;67(15):7518-
24. 

197. Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, et al. Rap1 stabilizes beta-
catenin and enhances beta-catenin-dependent transcription and invasion in 
squamous cell carcinoma of the head and neck. Clin Cancer Res. 2010;16(1):65-
76. 

198. Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype. Annu 
Rev Cell Dev Biol. 2003;19:207-35. 

199. Tsai YP, Yang MH, Huang CH, Chang SY, Chen PM, Liu CJ, et al. Interaction 
between HSP60 and beta-catenin promotes metastasis. Carcinogenesis. 
2009;30(6):1049-57. 

200. Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen 
scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22(5):697-706. 

201. Van Tubergen E, Broek RV, Lee J, Wolf G, Carey T, Bradford C, et al. 
Tristetraprolin Regulates Interleukin-6, Which Is Correlated With Tumor 
Progression in Patients With Head and Neck Squamous Cell Carcinoma. Cancer. 
2011;117(12):2677-89. 

202. Mitra RS, Goto M, Lee JS, Maldonado D, Taylor JM, Pan Q, et al. Rap1GAP 
promotes invasion via induction of matrix metalloproteinase 9 secretion, which is 
associated with poor survival in low N-stage squamous cell carcinoma. Cancer 
research. 2008;68(10):3959-69. 

203. Tapper J, Kettunen E, El-Rifai W, Seppala M, Andersson LC, Knuutila S. Changes 
in gene expression during progression of ovarian carcinoma. Cancer Genet 
Cytogenet. 2001;128(1):1-6. 

204. Kauppila S, Stenback F, Risteli J, Jukkola A, Risteli L. Aberrant type I and type III 
collagen gene expression in human breast cancer in vivo. J Pathol. 
1998;186(3):262-8. 

205. Schmidt M, Schler G, Gruensfelder P, Hoppe F. Differential gene expression in a 
paclitaxel-resistant clone of a head and neck cancer cell line. Eur Arch 
Otorhinolaryngol. 2006;263(2):127-34. 

206. Chen C, Mendez E, Houck J, Fan W, Lohavanichbutr P, Doody D, et al. Gene 
expression profiling identifies genes predictive of oral squamous cell carcinoma. 
Cancer epidemiology, biomarkers & prevention : a publication of the American 
Association for Cancer Research, cosponsored by the American Society of 
Preventive Oncology. 2008;17(8):2152-62. 

207. Dooley TP, Reddy SP, Wilborn TW, Davis RL. Biomarkers of human cutaneous 
squamous cell carcinoma from tissues and cell lines identified by DNA microarrays 
and qRT-PCR. Biochemical and biophysical research communications. 
2003;306(4):1026-36. 

208. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, 
et al. Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled 



178 
 

antibody L19-SIP for selective targeting of tumor vasculature. Journal of nuclear 
medicine : official publication, Society of Nuclear Medicine. 2006;47(7):1127-35. 

209. Warawdekar UM, Zingde SM, Iyer KS, Jagannath P, Mehta AR, Mehta NG. 
Elevated levels and fragmented nature of cellular fibronectin in the plasma of 
gastrointestinal and head and neck cancer patients. Clinica chimica acta; 
international journal of clinical chemistry. 2006;372(1-2):83-93. 

210. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell 
carcinoma. Nature reviews Cancer. 2007;7(5):370-80. 

211. Mendez E, Houck JR, Doody DR, Fan W, Lohavanichbutr P, Rue TC, et al. A 
genetic expression profile associated with oral cancer identifies a group of patients 
at high risk of poor survival. Clinical cancer research : an official journal of the 
American Association for Cancer Research. 2009;15(4):1353-61. 

212. Lyons JG, Patel V, Roue NC, Fok SY, Soon LL, Halliday GM, et al. Snail up-
regulates proinflammatory mediators and inhibits differentiation in oral 
keratinocytes. Cancer research. 2008;68(12):4525-30. 

213. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, et al. Overexpression 
of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 
and Snail predicts metastasis of head and neck cancer. Oncogene. 
2007;26(10):1459-67. 

214. Hayry V, Makinen LK, Atula T, Sariola H, Makitie A, Leivo I, et al. Bmi-1 expression 
predicts prognosis in squamous cell carcinoma of the tongue. British journal of 
cancer. 2010;102(5):892-7. 

215. Mendelsohn AH, Lai CK, Shintaku IP, Fishbein MC, Brugman K, Elashoff DA, et 
al. Snail as a novel marker for regional metastasis in head and neck squamous 
cell carcinoma. American journal of otolaryngology. 2012;33(1):6-13. 

216. Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, et al. Regulation of 
excision repair cross-complementation group 1 by Snail contributes to cisplatin 
resistance in head and neck cancer. Clinical cancer research : an official journal 
of the American Association for Cancer Research. 2010;16(18):4561-71. 

217. Peinado H, Moreno-Bueno G, Hardisson D, Perez-Gomez E, Santos V, Mendiola 
M, et al. Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell 
carcinomas. Cancer Res. 2008;68(12):4541-50. 

218. Huang CH, Yang WH, Chang SY, Tai SK, Tzeng CH, Kao JY, et al. Regulation of 
membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-
mediated metastasis. Neoplasia. 2009;11(12):1371-82. 

219. Ou DL, Chien HF, Chen CL, Lin TC, Lin LI. Role of Twist in head and neck 
carcinoma with lymph node metastasis. Anticancer research. 2008;28(2B):1355-
9. 

220. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, et al. Bmi1 is 
essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol. 
2010;12(10):982-92. 

221. Jouppila-Matto A, Narkio-Makela M, Soini Y, Pukkila M, Sironen R, Tuhkanen H, 
et al. Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma 
is related to cancer progression. BMC Cancer. 2011;11:350. 

222. Hatsell S, Rowlands T, Hiremath M, Cowin P. Beta-catenin and Tcfs in mammary 
development and cancer. J Mammary Gland Biol Neoplasia. 2003;8(2):145-58. 



179 
 

223. Segrelles C, Moral M, Lara MF, Ruiz S, Santos M, Leis H, et al. Molecular 
determinants of Akt-induced keratinocyte transformation. Oncogene. 
2006;25(8):1174-85. 

224. Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, et 
al. Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-
associated epithelial-mesenchymal transition processes. Cells Tissues Organs. 
2007;185(1-3):61-5. 

225. Nemeth Z, Szasz AM, Somoracz A, Tatrai P, Nemeth J, Gyorffy H, et al. Zonula 
occludens-1, occludin, and E-cadherin protein expression in biliary tract cancers. 
Pathol Oncol Res. 2009;15(3):533-9. 

226. Hirakawa H, Shibata K, Nakayama T. Localization of cortactin is associated with 
colorectal cancer development. Int J Oncol. 2009;35(6):1271-6. 

227. Drake JM, Barnes JM, Madsen JM, Domann FE, Stipp CS, Henry MD. ZEB1 
coordinately regulates laminin-332 and {beta}4 integrin expression altering the 
invasive phenotype of prostate cancer cells. J Biol Chem. 2010;285(44):33940-8. 

228. Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, et al. ZEB1-
responsive genes in non-small cell lung cancer. Cancer Lett. 2011;300(1):66-78. 

229. Montserrat N, Gallardo A, Escuin D, Catasus L, Prat J, Gutierrez-Avigno FJ, et al. 
Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal 
carcinomas of the breast: a cooperative effort? Hum Pathol. 2011;42(1):103-10. 

230. Farina AK, Bong YS, Feltes CM, Byers SW. Post-transcriptional regulation of 
cadherin-11 expression by GSK-3 and beta-catenin in prostate and breast cancer 
cells. PloS one. 2009;4(3):e4797. 

231. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, et al. Cancer stem 
cells in squamous cell carcinoma switch between two distinct phenotypes that are 
preferentially migratory or proliferative. Cancer research. 2011;71(15):5317-26. 

232. Prud'homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr 
Pharm Des. 2012;18(19):2838-49. 

233. Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and 
breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev. 
2012;38(6):689-97. 

234. Koontongkaew S, Amornphimoltham P, Monthanpisut P, Saensuk T, 
Leelakriangsak M. Fibroblasts and extracellular matrix differently modulate MMP 
activation by primary and metastatic head and neck cancer cells. Medical 
oncology. 2012;29(2):690-703. 

235. Chang HW, Roh JL, Jeong EJ, Lee SW, Kim SW, Choi SH, et al. Wnt signaling 
controls radiosensitivity via cyclooxygenase-2-mediated Ku expression in head 
and neck cancer. International journal of cancer Journal international du cancer. 
2008;122(1):100-7. 

236. Scanlon CS IR, Russo N, Banerjee R, Hariharan A, D'Silva NJ. CDH11 is a novel 
biomarker of EMT in HNSCC: Discovery and validation using an in silico approach. 
(under review). 2014. 

237. Malik A, Singh H, Andrabi M, Husain SA, Ahmad S. Databases and QSAR for 
cancer research. Cancer informatics. 2006;2:99-111. 

238. Arauzo-Bravo M, Ahmad S. Protein Sequence and Structure Databases: A 
Review. Current Analytical Chemistry. 2005;1(3):355-71. 



180 
 

239. Hanauer DA, Rhodes DR, Sinha-Kumar C, Chinnaiyan AM. Bioinformatics 
approaches in the study of cancer. Curr Mol Med. 2007;7(1):133-41. 

240. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in 
cancer pathology. Pathology. 2007;39(3):305-18. 

241. Choi P, Jordan CD, Mendez E, Houck J, Yueh B, Farwell DG, et al. Examination 
of oral cancer biomarkers by tissue microarray analysis. Archives of 
otolaryngology--head & neck surgery. 2008;134(5):539-46. 

242. Carmona FJ, Villanueva A, Vidal A, Munoz C, Puertas S, Penin RM, et al. 
Epigenetic disruption of cadherin-11 in human cancer metastasis. The Journal of 
pathology. 2012;228(2):230-40. 

243. Kuriakose MA, Chen WT, He ZM, Sikora AG, Zhang P, Zhang ZY, et al. Selection 
and validation of differentially expressed genes in head and neck cancer. Cellular 
and molecular life sciences : CMLS. 2004;61(11):1372-83. 

244. Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, et al. Transcriptomic 
dissection of tongue squamous cell carcinoma. BMC genomics. 2008;9:69. 

245. Russo N, Wang X, Liu M, Banerjee R, Goto M, Scanlon C, et al. A novel approach 
to biomarker discovery in head and neck cancer using an autoantibody signature. 
Oncogene. 2013;32(42):5026-37. 

246. Mitra RS, Zhang Z, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and 
rap1B ras-family proteins are prominently expressed in the nucleus of squamous 
carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 
2003;22(40):6243-56. 

247. Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-
Garcia A, et al. Proteome profiling of cancer-associated fibroblasts identifies novel 
proinflammatory signatures and prognostic markers for colorectal cancer. Clinical 
cancer research : an official journal of the American Association for Cancer 
Research. 2013;19(21):6006-19. 

248. Scanlon CS, D'Silva NJ. Personalized medicine for cancer therapy: Lessons 
learned from tumor-associated antigens. Oncoimmunology. 2013;2(4):e23433. 

249. Rhodes DR, Kalyana-Sundaram S, Tomlins SA, Mahavisno V, Kasper N, 
Varambally R, et al. Molecular concepts analysis links tumors, pathways, 
mechanisms, and drugs. Neoplasia. 2007;9(5):443-54. 

250. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. 
Integrative molecular concept modeling of prostate cancer progression. Nature 
genetics. 2007;39(1):41-51. 

251. Morris DS, Tomlins SA, Rhodes DR, Mehra R, Shah RB, Chinnaiyan AM. 
Integrating biomedical knowledge to model pathways of prostate cancer 
progression. Cell cycle. 2007;6(10):1177-87. 

252. Hanauer DA, Rhodes DR, Chinnaiyan AM. Exploring clinical associations using '-
omics' based enrichment analyses. PloS one. 2009;4(4):e5203. 

253. Yoshizawa M, Feinberg SE, Marcelo CL, Elner VM. Ex vivo produced human 
conjunctiva and oral mucosa equivalents grown in a serum-free culture system. 
Journal of oral and maxillofacial surgery : official journal of the American 
Association of Oral and Maxillofacial Surgeons. 2004;62(8):980-8. 

254. Izumi K, Takacs G, Terashi H, Feinberg SE. Ex vivo development of a composite 
human oral mucosal equivalent. Journal of oral and maxillofacial surgery : official 



181 
 

journal of the American Association of Oral and Maxillofacial Surgeons. 
1999;57(5):571-7; discussion 7-8. 

255. Izumi K, Terashi H, Marcelo CL, Feinberg SE. Development and characterization 
of a tissue-engineered human oral mucosa equivalent produced in a serum-free 
culture system. Journal of dental research. 2000;79(3):798-805. 

256. Palanisamy V, Jakymiw A, Van Tubergen EA, D'Silva NJ, Kirkwood KL. Control of 
cytokine mRNA expression by RNA-binding proteins and microRNAs. Journal of 
dental research. 2012;91(7):651-8. 

257. Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA. The 
mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 
expression during colon carcinogenesis. Gastroenterology. 2009;136(5):1669-79. 

258. Hansson A, Bloor BK, Haig Y, Morgan PR, Ekstrand J, Grafstrom RC. Expression 
of keratins in normal, immortalized and malignant oral epithelia in organotypic 
culture. Oral oncology. 2001;37(5):419-30. 

259. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, et al. 
Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. 
Nature protocols. 2012;7(5):850-8. 

260. Kim JB. Three-dimensional tissue culture models in cancer biology. Seminars in 
cancer biology. 2005;15(5):365-77. 

261. Sutherland RM. Cell and environment interactions in tumor microregions: the 
multicell spheroid model. Science. 1988;240(4849):177-84. 

262. Clark JM, Hirtenstein MD. Optimizing culture conditions for the production of 
animal  cells in microcarrier culture. Annals of the New York Academy of Sciences. 
1981;369:33-46. 

263. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen-
-chitosan matrices for tissue engineering. Tissue engineering. 2001;7(2):203-10. 

264. Lloyd WR, Chen L-C, Mycek M-A. Fluorescence Spectroscopy. In: S.P. M, S.J. M, 
F. R, editors. Optical Techniques in Regenerative Medicine. London, UK: Taylor & 
Francies Group; 2013, in press. 

265. Lloyd WR, Chen L-C, Wilson RH, Mycek M-A. Biophotonics: Clinical Fluorescence 
Spectroscopy and Imaging. In: D.J. M, J.E. MJ, editors. Biomedical Technology 
and Devices Handbook. 2 ed. London, UK: Francis & Taylor; 2013, in press. 

266. Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-
dimensional retinal and cortical tissues. Nature protocols. 2012;7(1):69-79. 

267. Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The 
morphological and molecular features of the epithelial-to-mesenchymal transition. 
Nature protocols. 2009;4(11):1591-613. 

268. Dongari-Bagtzoglou A, Kashleva H. Development of a highly reproducible three-
dimensional organotypic model of the oral mucosa. Nature protocols. 
2006;1(4):2012-8. 

269. Choe MM, Tomei AA, Swartz MA. Physiological 3D tissue model of the airway wall 
and mucosa. Nature protocols. 2006;1(1):357-62. 

270. Grivel JC, Margolis L. Use of human tissue explants to study human infectious 
agents. Nature protocols. 2009;4(2):256-69. 

271. Levi-Montalcini R. Effects of mouse tumor transplantation on the nervous system. 
Annals of the New York Academy of Sciences. 1952;55(2):330-44. 



182 
 

272. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker 
of aggressive breast cancer and promotes neoplastic transformation of breast 
epithelial cells. Proceedings of the National Academy of Sciences of the United 
States of America. 2003;100(20):11606-11. 

273. Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent 
basement membrane transmigration program in cancer cells by Snail1. 
Proceedings of the National Academy of Sciences of the United States of America. 
2009;106(48):20318-23. 

274. Busch C, Krochmann J, Drews U. The chick embryo as an experimental system 
for melanoma cell invasion. PloS one. 2013;8(1):e53970. 

275. Rowe RG, Li XY, Hu Y, Saunders TL, Virtanen I, Garcia de Herreros A, et al. 
Mesenchymal cells reactivate Snail1 expression to drive three-dimensional 
invasion programs. The Journal of cell biology. 2009;184(3):399-408. 

276. Zhang Z, Mitra RS, Henson BS, Datta NS, McCauley LK, Kumar P, et al. Rap1GAP 
inhibits tumor growth in oropharyngeal squamous cell carcinoma. Am J Pathol. 
2006;168(2):585-96. 

277. van der Horst EH, Leupold JH, Schubbert R, Ullrich A, Allgayer H. TaqMan-based 
quantification of invasive cells in the chick embryo metastasis assay. 
Biotechniques. 2004;37(6):940-2, 4, 6. 

278. Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD, et 
al. The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. 
Neoplasia. 2005;7(11):1011-9. 

279. Raaphorst FM, Meijer CJ, Fieret E, Blokzijl T, Mommers E, Buerger H, et al. Poorly 
differentiated breast carcinoma is associated with increased expression of the 
human polycomb group EZH2 gene. Neoplasia. 2003;5(6):481-8. 

280. Breuer RH, Snijders PJ, Smit EF, Sutedja TG, Sewalt RG, Otte AP, et al. Increased 
expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells 
during bronchial carcinogenesis. Neoplasia. 2004;6(6):736-43. 

281. Cao W, Ribeiro Rde O, Liu D, Saintigny P, Xia R, Xue Y, et al. EZH2 Promotes 
Malignant Behaviors via Cell Cycle Dysregulation and Its mRNA Level Associates 
with Prognosis of Patient with Non-Small Cell Lung Cancer. PLoS One. 
2012;7(12):e52984. 

282. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss 
of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in 
cancer. Science. 2008;322(5908):1695-9. 

283. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators 
of somatic stem cells and cancer. Cell Stem Cell. 2010;7(3):299-313. 

284. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, et al. EZH2 inhibition: 
targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis 
Rev. 2012;31(3-4):753-61. 

285. Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, et al. Regulation 
of tumor angiogenesis by EZH2. Cancer Cell. 2010;18(2):185-97. 

286. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, et al. EZH2 promotes 
expansion of breast tumor initiating cells through activation of RAF1-beta-catenin 
signaling. Cancer Cell. 2011;19(1):86-100. 



183 
 

287. Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ. Biomarkers of Epithelial-
Mesenchymal Transition in Squamous Cell Carcinoma. J Dent Res. 2012. 

288. Lokman NA, Elder AS, Ricciardelli C, Oehler MK. Chick Chorioallantoic Membrane 
(CAM) Assay as an In Vivo Model to Study the Effect of Newly Identified Molecules 
on Ovarian Cancer Invasion and Metastasis. Int J Mol Sci. 2012;13(8):9959-70. 

289. Russo N, Wang X, Liu M, Banerjee R, Goto M, Scanlon C, et al. A novel approach 
to biomarker discovery in head and neck cancer using an autoantibody signature. 
Oncogene. 2012. 

290. D'Silva NJ, Ward BB. Tissue biomarkers for diagnosis & management of oral 
squamous cell carcinoma. The Alpha omegan. 2007;100(4):182-9. 

291. Laheru DA, Pardoll DM, Jaffee EM. Genes to vaccines for immunotherapy: how 
the molecular biology revolution has influenced cancer immunology. Molecular 
cancer therapeutics. 2005;4(11):1645-52. 

292. Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, et al. A survey of 
the humoral immune response of cancer patients to a panel of human tumor 
antigens. The Journal of experimental medicine. 1998;187(8):1349-54. 

293. Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next 
generation of prostate cancer biomarkers. Science translational medicine. 
2012;4(127):127rv3. 

294. Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, et al. 
Autoantibody signatures in prostate cancer. The New England journal of medicine. 
2005;353(12):1224-35. 

295. Bradford TJ, Wang X, Chinnaiyan AM. Cancer immunomics: using autoantibody 
signatures in the early detection of prostate cancer. Urologic oncology. 
2006;24(3):237-42. 

 


	title page
	UPDATED COPYRIGHT
	UPDATED ACKNOW
	1UPDATED BODY

