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ABSTRACT 
 

Soluble oligomers of amyloid-β peptide have been implicated as the proximal 

neurotoxins in Alzheimer’s disease. However, the precise stoichiometric identity of the 

neurotoxic aggregate(s) and the mechanisms by which these species induce neuronal 

dysfunction remain uncertain. Amyloid-β (Aβ) may damage cells by binding to and 

interfering with membrane integral protein receptors or by directly disrupting the 

neuronal cell membrane, allowing Ca2+ to leak into the cell. Physiologically relevant 

experimentation is hindered by the low endogenous concentrations of the peptide, the 

metastability of Aβ oligomers, and the wide range of observed interactions between Aβ 

and biological membranes. Single-molecule microscopy represents one avenue for 

overcoming these challenges. Using this technique, we find that monomeric amyloid-β 

oligomerizes at low nanomolar concentrations on exposure to physiological buffers and 

glass or poly-D-lysine coated surfaces. Amyloid-β(1-40) forms larger oligomers or 

clusters within minutes of binding to SH-SY5Y neuroblastoma cells but induces only 

minor Ca2+ leakage. Aβ binds to the neurites of primary rat hippocampal cells with higher 

affinity. While amyloid-β(1-40) (Aβ40) and amyloid-β(1-42) (Aβ42) form larger 

oligomers than those detected on slides immediately after binding, a 1:1 mix of the two 

peptides results in smaller neurite-bound oligomers than those detected on-slide or for 

either peptide alone. On-neurite oligomer growth over time requires the presence of 

solution peptide. With 1 nM peptide in solution, Aβ40 oligomers do not grow over the 

course of 48 hours, Aβ42 oligomers grow slightly, and oligomers of a 1:1 mix grow 

substantially. These results are significant in light of the increased Aβ42:Aβ40 ratios 

correlated with familial Alzheimer’s disease mutations. While the majority of neurite-

bound oligomers are immobile, a small population exhibits diffusive or directed motion. 

Neurite-bound oligomers do not preferentially associate with synapses and bind at only 

slightly higher density on dendrites than on axons. These results point to a mechanism by 



 

 xv 

which small Aβ oligomers bind to neurons and grow at rates dependent on local 

Aβ42:Aβ40 ratio and peptide concentrations, with neurotoxicity emerging at some later 

point in time.  

 

 

 

 



 

 1 

Chapter 1  
 

Introduction to Alzheimer’s Disease and Amyloid-β 

1.1 Alzheimer’s Disease 

Alzheimer’s disease, the most common cause of adult dementia, is the seventh 

leading cause of death in the United States. Approximately 1 in 8 adults over 65 suffers 

from Alzheimer’s (AD), and while deaths attributed to many other major illnesses have 

decreased, deaths due to Alzheimer’s increased 46% between 2000 and 2006  (Figure 

1.1.1).  

 
Figure 1.1.1 Changes in deaths due to various causes between 2000 and 2006.  
Figure adapted from 1. 

While some of this increase is likely due to improvements in diagnosis, Alzheimer’s is 

likely to become an increasing burden on public health as healthcare improvements 

continue to extend lifespan in the developed world. Understanding AD at a molecular 

level may prove crucial to the development of targeted neuroprotective therapies, and 

with an aging population, these therapies will be desperately needed.  

The classic histological lesions of Alzheimer’s disease were first formally 

described by Alois Alzheimer in the early 1900’s. On examining the brain of a deceased 
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patient afflicted with dementia, Alzheimer noted “ ‘one or several fibrils…[with] 

characteristic thickness and peculiar impregnability. Numerous small military foci…are 

determined by the storage of a peculiar substance in the cerebral cortex.’ ”2. In short, he 

recognized neurofibrillary tangles, intracellular deposits composed of the microtubule-

binding protein tau, and neuritic plaques, extracellular aggregates composed primarily of 

fibrils of the amyloid-β peptide. In the years since Alzheimer’s discovery, tau and 

amyloid-β (Aβ) have both been extensively studied as possible sources of the symptoms 

of AD.  

1.2 Amyloid-β Production and Aggregation 

Amyloid-β is a 39-to-43 residue peptide produced by cleavage of an integral 

membrane protein, amyloid-precursor peptide (APP). In the canonical APP processing 

pathway, α-secretase cleaves APP in the central part of the Aβ domain, with γ-secretase 

then liberating the remaining small fragment of the Aβ sequence. Production of Aβ 

occurs when β-secretase performs the first cleavage step at the N-terminus of the Aβ 

domain, and the γ-secretase cleavage site moves downstream3.  

 
Figure 1.2.1 Schematic for Aβ production from amyloid precursor proten (APP).  
From 3.  

Aβ is present in both normal and AD human brain tissue, albeit at low (picomolar 

to nanomolar) concentrations4,5.  Aβ40 is the more abundant, less amyloidogenic form of 
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the protein, normally constituting about 90% of the soluble Aβ pool. The remaining 10% 

of the peptide is mostly Aβ42, a more amyloidogenic and more highly toxic form with 

two additional hydrophobic residues at the C-terminus (Figure 1.2.2). 

 
Figure 1.2.2 Aβ peptide amino acid sequence from N to C terminus.  
Sequence taken from 6.  

Monomeric Aβ is thought to be predominantly unstructured in solution; the middle 

segment of the peptide in particular likely samples a wide ensemble of conformations, 

depending on conditions6,7. At the low concentrations present in vivo, the oligomeric state 

of the peptide is also likely to be in a constant state of flux, with small aggregates 

(monomers to hexamers) interconverting in a dynamic equilibrium8–10. Above a certain 

critical concentration, oligomeric “seeds” rapidly add subunits to form fibrils, and 

aggregation proceeds via nucleation-dependent fibrillization. Monitoring this processs by 

fluorescence of Thioflavin T, a fluorophore activated by binding to β-sheet structure, 

reveals a sigmoidal aggregation curve (Figure 1.2.3). Aggregation is characterized by an 

initial lag phase, during which aggregation proceeds slowly, followed by rapid fibril 

formation, until fluorescence plateaus as the mixture of fibrils and small oligomers reach 

a stable equilibrium. 
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Figure 1.2.3 Aβ40 fibril formation as monitored by Thioflavin T (ThT) fluorescence.  
A 46 µm aliquot of Aβ40 in 10 mM sodium phosphate buffer, pH 7.4, was incubated at 
37°C with 60 rpm stirring. ThT fluorescence was monitored on a Jasco fluorimeter, ex. 
440 nm, em. 485 nm, following addition of 15 µL of Aβ40 sample to 235 µL of 10 µM 
ThT. 

Composed of peptide chains stacked in a cross-β sheet structure, Aβ fibrils are 

generally nanometers in diameter but may be micrometers in length. Large deposits of 

these structures are the primary component of the plaques originally identified by Alois 

Alzheimer in AD patients’ brains.  While these aggregates are polymorphic, most 

published structures contain monomeric peptide with a bend or turn occurring between 

residues 23-29, with the 10-13 residues immediately before and after this turn forming β-

strands stacked into β-sheets11,12. 

 
Figure 1.2.4 Two proposed fibril structures for Aβ40.  
(a) The “striated-ribbon” model contains two protofilament strands per fibril. (b) The 
“twisted-pair” model contains three protofilament strands per fibril. Both structures 
contain a β-turn or bend at residues 23-29, with β-sheet structure before and after. Images 
from 12. 

The physiological functions of both APP and Aβ are poorly understood. Both 

proteins may play a role in promotion of synaptic plasticity or synapse formation13,14, and 

Aβ may transition from a physiological role to a neurotoxic one depending on its 
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concentration15 and the ratio of different forms present in the brain. The roughly 10% of 

Alzheimer’s disease cases that are genetic in nature (familial Alzheimer’s disease, or 

FAD) are by and large correlated with mutations in presenilins, the catalytic subunit of γ-

secretase, or in APP. Most of these mutations increase the ratio of Aβ42 to Aβ40, which 

may contribute strongly to AD development in these patients3,16.  The APOE4 

apolipoprotein E isoform, possession of which is a major risk factor for so-called 

“sporadic” late-onset Alzheimer’s disease, has been shown to both stabilize oligomers17 

and reduce Aβ clearance18. 

1.3 Amyloid-β Oligomer Toxicity and Structure 

The past 20 years have brought about a major shift in the AD experimental 

paradigm. Since Alzheimer’s initial discovery of amyloid plaques, research had focused 

on amyloid fibrils as a likely causative factor for the clinical symptoms of AD, an idea 

referred to in the literature as “the amyloid hypothesis.” More recently emerging 

evidence indicates, however, that small soluble oligomers of Aβ may be the critical 

neurotoxic species of the peptide, prompting a transition to an “amyloid oligomer 

hypothesis”19–21. Plaque load and insoluble Aβ aggregates correlate poorly with 

Alzheimer’s disease symptoms as compared to soluble Aβ levels and synapse loss22–24, 

and oligomers have largely been found to induce greater toxicity to cultured cells than 

similar quantities of fibrils25–27.  

The progress of research on these species has been inhibited by the multiplicity of 

different Aβ oligomers described, variations in the abilities of these oligomers to form 

fibrils (pre-fibrillar versus off-pathway), and the problem of linking oligomers prepared 

in vitro or detected in human-APP expressing mice to structures that are actually present 

in human AD brain.  A vast array of distinct sub-fibrillar Aβ aggregates has been 

characterized and may contribute to AD neurotoxicity; some of these are depicted in 

Figure 1.3.1.   
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Figure 1.3.1 Aβ oligomers prepared in vitro or detected in brain-derived samples.  
These include low-n-oligomers such as SDS-stable dimers, trimers, and tetramers, 
ADDL’s (amyloid-derived diffusible ligands), the Aβ*56 dodecameric oligomer, AβO’s, 
ASPD’s (SDS-stable amylospheroids), and APF’s (annular protofibrils). Figure from 21. 

Two specific exchanges in the literature provide examples for the level of 

confusion that wildly differing preparation protocols and inadequate characterization of 

oligomers can cause. Several widely used in vitro oligomer preparation protocols include 

treatment with hexafluoroisopropanol (HFIP) for initial monomerization of the peptide.  

In 2005, Demuro et al. showed that oligomers formed from HFIP-treated Aβ induced 

immediate, drastic calcium leakage in SH-SY5Y cells, while monomers and fibrils did 

not26. Later experiments with model membranes attributed these changes to a membrane-

thinning mechanism, by which Aβ oligomers carpet the membrane and gradually destroy 

its integrity28. Capone et al. later presented evidence that HFIP itself was sufficient to 

induce such changes and that the observed “membrane thinning effect” was likely due to 

trace quantities of HFIP still present in the samples29.  Similar issues arose when Shankar, 

at al. reported the potent inhibition of long-term potentiation (LTP) by a cross-linked 

dimer version of Aβ(1-40), mutant S26C, citing this as evidence that dimers were 

sufficient to induce synaptotoxicity30. A later report by O’Nuallain and colleagues 

indicated that only when these dimers were allowed to aggregate to a much larger 

protofibrillar stage did they affect LTP. A freeze-thaw cycle like that used by Shankar 

and colleagues on the dimerized S26C peptide was sufficient to induce this aggregation31.  

These two cases illustrate not only the inherent difficulty of working with Aβ but also the 

need for a deeper understanding of the mechanisms by which the monomeric peptide 

forms neurotoxic aggregates under physiological conditions. 
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A brief discussion of a subset of these aggregates will help motivate the work 

discussed in this thesis. Low-molecular weight oligomers alone may be sufficient to 

cause significant damage to neurons. Dimers and trimers purified from human AD post-

mortem brain tissue and from the medium of cells expressing human APP have recently 

been shown to induce deficits in long-term potentiation and increases in long-term 

depression30,32.  The ratio of Aβ40 to Aβ42 in these oligomers was not characterized, and 

it has not been established whether these purified dimers aggregate quickly when frozen 

down, like the previously discussed S26C cross-linked dimers used in the same study31. 

Another recent study indicated that Aβ40 dimers, trimers, and tetramers exhibited 

nonlinear increases in cellular toxicity with molecular weight25.  Amyloid-derived 

diffusible ligands, or ADDL’s, generally prepared from synthetic Aβ42 by a method 

pioneered by William Klein’s laboratory in the late 1990’s, generally contain oligomers 

from 10 kDa to 100 kDa in molecular weight, or roughly trimers to 24-mers33, as 

depicted in Figure 1.3.1. These small globular aggregates have been shown to bind 

specifically to synapses, reduce dendritic spine density, and alter normal tau sorting and 

localization34–36. In 2006, Lesne et al. detected an Aβ42 dodecamer in the brains of 

hAPP-expressing transgenic mice (Tg2576) that appeared to correlate well with memory 

deficits37. Once purified and injected into the brains of young mice, this aggregate 

(termed Aβ*56) caused long-term memory deficits, as measured by the Morris water 

maze. However, this species was not detected in Aβ purified from human AD brain30,38.  

Finally, several reports in the 1990’s indicated that freshly solubilized Aβ was 

capable of forming cation-selective ion channels with stepwise conductances in 

biological membranes39,40. Pore-like protofibrillar structures formed  from Aβ  and other 

amyloids were later detected by electron microscopy and atomic force microscopy41–43.  

The imaged “annular protofibrils” or APF’s were generally in the range of 10 to 20 nm in 

diameter, with 1 nm to 2 nm central pores, and appeared to contain between 4 and 6 

distinct subunits, each likely containing multiple peptide monomers. These data were 

interpreted as evidence that Aβ and other amyloids might disrupt membranes in the same 

fashion bacterial pore-forming peptides42. Most discussions of these annular structures 

place their probable size between 12 and 60 monomeric peptides. One recent crystal 

structure for an amyloid-forming protein β-barrel (designated a “cylindrin”) contains only 
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six subunits44. However, the central pore in such a structure is not likely to be hydrated, 

reducing the probability of cation conductance. Interestingly, an APF-specific antibody 

has recently been developed and used to further characterize these structures45. Kayed 

and colleagues found that APF’s formed when pre-fibrillar oligomers were exposed to a 

hydrophilic/hydrophobic interface. Following purification and separation from the 

membrane, these structures retained their pore-like morphology, but not their ability to 

permeabilize membranes. Membrane disruption was necessarily preceded by APF 

formation within the same membrane45.  

The role of membrane interactions in the formation of toxic Aβ oligomers is a 

subject of particularly strong debate.  A number of groups have found that pre-aggregated 

Aβ induces greater toxicity than monomeric or fibrillar Aβ, implying that oligomers 

formed in solution without contact with biological membranes must be capable of 

interacting with cell membrane moieties26,46. At least superficially, these reports 

contradict previously mentioned reports that treatment of biological membranes with un-

aggregated Aβ leads to formation of cation-selective, stepwise conductance changes39,40.  

Zhang and associates recently used surface pressure measurements to determine the 

relative abilities of monomeric Aβ, ADDL’s, and protofibrillar Aβ to insert into planar 

membranes47. Monomers of the peptide inserted into the membrane more rapidly than 

oligomers of either type and oligomerized following binding, in a distinct process from 

oligomerization in solution.  Zhang et al. propose that intra-membrane and extra-

membrane oligomerization may produce two separate pools of Aβ whose toxicities are 

mediated by completely distinct mechanisms47. Oligomers formed in the membrane may 

directly disrupt membrane integrity by transient pore formation, allowing toxic calcium 

leakage. At the same time, oligomers formed in solution may interact with specific 

cellular receptors, altering their function and resulting in toxicity. All in all, multiple 

mechanisms may be at work in this system, and multiple structures may be implicated in 

mediating the effects.  A complete understanding of Aβ’s toxicity will require identifying 

the specific molecular interactions involved. 
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1.4 Possible Mechanisms for Amyloid-β Oligomer Toxicity 

As previously discussed, Aβ has been shown to induce toxicity in numerous 

respects. In addition to the changes in synaptic plasticity, dendritic spine loss and 

damage, altered tau physiology, and membrane disruption alluded to above, Aβ 

oligomers can induce oxidative stress, mitochondrial disruption, and impaired axonal 

transport3. For the purpose of introducing the current work, a review of the molecular 

mechanisms by which extracellular Aβ interacts with cells will suffice. A number of 

hypotheses have been put forth to explain the toxicity of extracellular amyloid-β 

oligomers. These can in general be grouped into mechanisms involving direct interaction 

with the cell membrane and mechanisms involving binding to or interaction with 

membrane integral protein receptors, summarized in Figure 1.4.1. 

 
Figure 1.4.1 Possible mechanisms for amyloid-β oligomer-induced toxicity.  
These include membrane thinning (the “carpet” mechanism), pore or channel formation, 
and binding to endogenous cellular receptors, particularly those present at the synapse.  

As mentioned above, application of Aβ to both cellular and model membranes has 

been shown to cause conductance changes. The dominant hypothesis explaining these 

changes involves the formation of transiently opening membrane integral Aβ “pores” or 

“ion channels” as reviewed in the previous section. These structures are generally thought 

to be cation-selective, inducing toxicity by allowing catastrophic calcium leakage into the 

cell42,48,49.  The majority of these studies were performed using un-aggregated or freshly 

solubilized Aβ at higher than physiological (micromolar) concentrations.  While these 

preparations do not contain membrane-damaging solvents, the exact composition of the 
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initial sample in terms of oligomer size is not generally characterized. These pores can 

often be blocked by Zn2+ or by short peptides composed of residues 8-14 of the Aβ 

peptide40,49–51.  A competing explanation for membrane conductance changes, termed the 

“carpet” mechanism, posits that Aβ oligomers uniformly coat membranes, forcing lipid 

head groups apart and resulting in general thinning of the membrane. This in theory 

removes the energetic barriers for ion transfer, allowing calcium and other cations to leak 

across the membrane. This mechanism was proposed to account for the immediate 

calcium leakage observed in SH-SY5Y cells by Charles Glabe’s group in 200526 as well 

as for more gradual Aβ-induced changes in conductance later observed on model 

membranes28. Interestingly, most of the evidence for the “carpet mechanism” lies in 

studies performed with peptide pre-treated with HFIP, mentioned above as a membrane-

toxic solvent29. More recently, oligomers formed from HFIP-pre-treated peptide have 

been shown to induce stepwise conductance changes as single, optically detectable 

channels52, lending increased credence to the pore hypothesis.  While such structures 

might induce only transient, local changes in calcium concentration, low-level leakage 

over extended time periods would have a decided impact on neuronal function. It should 

be noted that neuronal calcium levels play a pivotal role in intercellular signal 

transmission, intracellular signaling, synaptic plasticity, gene expression, and a variety of 

other processes. Even slight changes to calcium homeostasis can drastically impact 

neuronal physiology53.  The requirement of long-term exposure for observable functional 

deficits might explain the age dependence of clinical Alzheimer’s disease.   

A number of specific components of the lipid bilayer have been implicated as 

possible binding sites where Aβ binding or on-membrane aggregation might begin. These 

sites include externalized phosphatidylserines54,55, GM1 ganglioside-containing micro- or 

nano-domains56,57, or regions with increased cholesterol content58. However, substantial 

evidence has also been put forth for protein receptors as probable Aβ binding sites. One 

recent study found that while blocking phosphatidylserine and GM1-gangliosides had 

little affect on Aβ binding, pre-treating SH-SY5Y cells with trypsin (and then 

neutralizing the trypsin) reduced Aβ binding by over 60%59.  

Most postulated membrane-integral protein “receptors” for Aβ have been 

proposed in an effort to explain the peptide’s well-documented effects on synaptic 
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plasticity. Aβ promotes NMDA receptor endocytosis60 but has not been found to bind 

directly to NMDA receptors61. Snyder and colleagues suggest that the endocytosis may 

be mediated by previously demonstrated high-affinity binding of Aβ to α-7 nicotinic 

acetylcholine receptors (α7nAchR’s)62.  Knockout of α7nAchR in hAPP-expressing 

model mice accelerates of AD-like pathophysiology but appears to be protective at late 

stages of cognitive decline63,64.  Lauren et al. demonstrated that Aβ also binds with high 

affinity to cellular prion protein (PrPC), and PrPC knockout and treatment with anti-PrPC 

antibodies eliminate Aβ-induced LTP deficits65. However, others failed to reproduce 

these results, calling the conclusions into question66.  More recently, Aβ oligomers were 

found to bind to the membrane and subsequently to metabotrobic glutamate receptor 5 

(mGluR5), promoting clustering of the receptor and reducing its diffusion67. This resulted 

in decreases in synaptically localized NMDA receptors. Finally, EphB2 receptors have 

been shown to play a part in up-regulating surface NMDA receptor levels, and Cisse and 

colleagues recently demonstrated that Aβ oligomers bind to the fibronectin III domain of 

this receptor and increase its destruction by the proteome68. Cisse et al. also showed that 

hAPP mouse cognitive and LTP deficits in the dentate gyrus can be rescued by EphB2 

overexpression.  In other words, Aβ oligomer binding to α7nAchR, PrPC, mGluR5, and 

EphB2 have all been implicated as mechanisms by which surface levels of NMDA 

receptors might be reduced in Alzheimer’s.  A parallel hypothesis for deficits in long-

term potentiation and increases in long-term depression is that Aβ blockage of glutamate 

transporters increases extrasynaptic glutamate levels, activating extrasynaptic NMDA 

receptors32,69. However, Li et al. present no direct evidence that Aβ binds to these 

transporters.  Overall, proposed specific molecular targets for Aβ binding are numerous, 

and further research will be required to determine which if any of these sites are the key 

mediators of toxicity induced by soluble Aβ oligomers in Alzheimer’s disease.  

1.5 Microscopy of Aβ Binding on Live Cell Membranes 

Previously, our group has utilized single molecule TIRF microscopy to study the 

size distribution of Aβ40 oligomers formed in solution at physiological concentrations10. 

We also recently used single molecule intensity measurements to examine which Aβ40 
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oligomers correlate with conductance changes on a model membrane70.  These studies 

provide valuable insights into the mechanisms by which amyloid-β oligomers form, 

evolve, and interact with biological membranes. However, as many of the previously 

discussed possible mechanisms of toxicity can only be studied on the membranes of 

living cells, live cell imaging could serve as a highly useful complementary method to 

model membrane work. While live cell single molecule studies are limited by greater 

restrictions on imaging conditions (pH, temperature, and ionic strength must all lie within 

strict limits to maintain homeostasis), and by increased autofluorescence, they do provide 

us with an enhanced ability to answer certain physiologically critical questions. These 

include: to which particular sites on a neuron do oligomers bind? Are cell-bound 

oligomers mobile, or restricted by interactions with the cytoskeleton and other 

membrane-associated biomolecules? How is oligomer growth and aggregation at 

physiological concentrations affected by the increased complexity of the cell membrane, 

in comparison to model membranes?  Immortalized neuronal model cell lines such as PC-

12 and SH-SY5Y cells are easily maintained and can be used as a starting point for 

investigation of some of these unknowns. Cultured primary hippocampal neurons, 

however, more closely approach the cell types likely to be affected by Aβ in vivo, 

presenting a better opportunity to determine neuron-bound oligomer sizes, binding sites, 

and effects on neurophysiology.  

A number of groups have begun to study Aβ membrane binding and mobility on 

live cells using fluorescence-based techniques. Using confocal microscopy, Bateman, et 

al. monitored the formation of fluorescently-labeled Aβ42 aggregates on living PC12 

cells71. At low micromolar concentrations, they observed formation of two distinct types 

of large membrane-bound aggregates.  More recently, Nag and colleagues have studied 

FITC-labeled Aβ40 bound to PC12 cell membranes after several minutes’ exposure to 

near-physiological Aβ concentrations72. Fluorescence correlation spectroscopy and 

fluorescence lifetime measurements were used to characterize the mobility and 

membrane insertion of the peptide, but no specific cell-bound oligomers were identified.  

As previously discussed, Aβ aggregation is exquisitely sensitive to changes in 

concentration, and the physiological effects of the peptide may also be deeply impacted 
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by the amount of peptide in solution15.  These studies were both performed at Aβ levels 

of at least 150 nM, significantly higher than in vivo levels. 

Single-particle tracking experiments have provided insight into the motion of Aβ 

oligomers on cell membranes at low solution concentrations but have offered little insight 

into oligomer growth and binding on the cell.  In one report, oligomers labeled with a 

fibril-specific quantum-dot tagged antibody were found to be more confined than those 

detected by a pre-fibril-specific tagged antibody, in one report73, but no detail beyond 

“fibrillar” and “prefibrillar” was provided regarding the stoichiometric identities of the 

particles involved.  Another single-particle tracking study used biotinylated Aβ oligomers 

coupled to streptavidin-linked quantum dots to measure diffusion coefficients of cell-

bound oligomers67. Increased clustering of the oligomers at synapses was observed over 

time, but no information was gleaned regarding how membrane binding affected 

oligomer size or how oligomers themselves changed conformationally over time.  In fact, 

both studies employed in vitro oligomer preparation protocols drawn from previously 

published work33,46. While these procedures are widely used to produce neurotoxic Aβ 

oligomers, as previously discussed, their utilization obscures mechanistic details about 

how Aβ oligomers may form from monomers in the brain. Their relationship to 

oligomers isolated from AD human brain30, for instance, is poorly understood.  

To truly gain an understanding of how physiological concentrations of Aβ 

oligomers bind to and develop on neuronal cell membranes over time, we adapted single 

molecule microscopy techniques to investigate the binding of freshly prepared Aβ 

peptide bound to live cells.  Single-molecule microscopy provides several advantages for 

the study of this system. Experiments can be performed at low concentrations, so as to 

more closely simulate peptide concentrations in the brain. Dynamics of rapidly shifting 

oligomer populations and the motion of individual particles can be easily monitored over 

time.  Single oligomers that might be lost in an ensemble measurement can be resolved 

and potentially associated with toxic effects. These properties combine to make single-

molecule techniques uniquely well-suited for studies of Aβ-membrane interactions. The 

necessary modifications to our previous techniques will be described and novel insights 

into Aβ oligomer growth upon membrane binding, membrane-bound Aβ oligomer 
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evolution over time, oligomer motion, and oligomer binding sites will be presented in the 

following thesis.  

1.6 Thesis Summary 

In the current work, we present single molecule data showing that small Aβ 

oligomers form in solution and bind directly to living cells at physiological 

concentrations. In Chapter 2, we describe in detail the methods used to conduct these 

studies: single molecule TIRF microscopy, lifetime-adjusted single-molecule confocal 

microscopy, and a number of adjunct methodologies. Chapter 3 focuses on single 

molecule work characterizing the size distributions of Aβ40 oligomers bound to SH-

SY5Y neuroblastoma cells at near physiological concentrations (50 nM). These 

oligomers, ranging in size from dimers to hexamers and larger, are relatively immobile 

and widely distributed on the cell body. Using slide-localized oligomers as a cross section 

of the species present in solution, we compare the sizes of cell-bound aggregates to the 

distribution observed for Aβ40 in solution. We find that cell-bound oligomers include a 

small proportion of distinctly larger (hexameric and greater) oligomers, demonstrating 

that oligomers may grow or colocalize following binding to the cell membrane.  In the 

work discussed in Chapter 4, we extend single-molecule microscopy of Aβ oligomers to 

neurons in culture, examining the size distributions of oligomers of Aβ40, Aβ42, and a 

1:1 mix of the two peptides on the neurites of primary rat hippocampal neurons. We 

study the evolution of these oligomers in the absence and presence of 1 nM peptide over 

up to 48 hours, demonstrating that while a 1:1 mix of the peptides initially produces 

smaller cell-bound oligomers, these oligomers grow more substantially over time than 

aggregates composed of either peptide alone. We also show that while the majority of 

cell bound oligomers do not exhibit motion, a small portion exhibit diffusive or directed 

motion on the neurite, and that cell-bound oligomers do not initially bind preferentially to 

synapses. Finally, in Chapter 5, we conclude with a discussion of the meaning of this 

work in the broader context of the amyloid-β field and present possible future directions.  
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Chapter 2  
 

Methods: Single-Molecule Microscopy 

2.1 Rationale for Single Molecule Studies of Amyloid-β 

Single molecule techniques offer some advantages over ensemble methods simply 

in the level of detail of the data obtained. Ensemble methods produce averaged data; for 

example, one might perform an ensemble FRET experiment to get averaged information 

about a structural transition or run a FRAP experiment to measure an average diffusion 

constant. If behavior of a small population in a sample is responsible for a large 

downstream effect, the dominating effect of the majority can obscure the connection74. 

Populations that make comparatively small contributions to the overall signal are ignored. 

With single molecule techniques, the behavior of individuals is monitored and classified, 

greatly reducing the chances that such important relationships in the data will be 

overlooked75.  

Beyond this general rationale, studying amyloid-β oligomerization and membrane 

binding at physiological peptide concentrations presents a number of challenges which 

single molecule fluorescence microscopy is uniquely suited to overcome.  Soluble Aβ is 

only detected at nanomolar to picomolar levels in the human brain4,5. While this can be 

an obstacle for many traditional ensemble biochemical methods, very low probe 

concentrations are actually required to reach low enough fluorophore density to resolve 

single molecules. Efforts to pinpoint the neurotoxic aggregates have also been 

complicated by the finding that at physiological concentrations, Aβ exists as a mixture of 

metastable species8–10.  Single molecule microscopy experiments can be conducted with 

milliseconds-to-minutes temporal resolution, offering a window into changes occurring 

on this time scale. The data are literally snapshots of the distribution of Aβ species that 

exists at a certain moment in time, and when aggregates exhibit structural transitions, 

these changes can be visualized. Finally, Aβ-membrane interactions are complex and 
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variable, as previously discussed. Binding sites may include a number of membrane 

integral receptors and specific lipid moieties (see Section 1.4).  Binding affinity and 

membrane permeabilization may be strongly affected by factors such as membrane 

curvature and charge 76. The membranes of neuronal cell somas, neurites, dendritic 

spines, and postsynaptic densities are distinctive, chemically and morphologically77–79 It 

follows that Aβ may have widely varying binding behavior and membrane effects in 

different cellular membrane compartments. Single molecule microscopy allows precise 

visualization of individual oligomers and their on-cell locations. Additionally, with the 

wide variety of fluorescent probes available, it can easily be used to determine whether 

particular membrane molecules may be acting as Aβ binding sites.  

2.2 Confocal Photobleaching for Oligomer Size Measurement 

High signal-to-background ratio is a requirement for single fluorophore detection, 

and confocal scanning microscopy can be used to achieve this. The advantage of confocal 

microscopy over traditional epifluorescence lies in its reduced out-of-plane fluorescence. 

In epifluorescence, a beam focused at the back focal plane of the objective is collimated 

by the objective lens for sample illumination. The laser beam illuminates all fluorophores 

in its cylindrical path in the axial direction; the detected fluorescence signal includes 

emission from all fluorophores in this volume. In confocal mode, the laser beam is 

focused at the plane to be imaged and scanned across the sample, providing the most 

intense illumination to a specific slice of the sample74. Out-of-focus fluorescence is 

greatly reduced by placing a small aperture between the sample and detector (Figure 

2.2.1). 
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Figure 2.2.1 Optical pathways for fluorescence microscopy.  
A pathway for confocal laser scanning microscopy is shown at left and one for 
epifluorescence microscopy is shown at right. Figure from 74.  

Our laboratory and others have recently developed and validated confocal mode 

single-molecule photobleach step counting for measurement of small Aβ oligomer size at 

physiological concentrations. Dukes et al. tethered FAM (carboxyfluorescein) - labeled 

Aβ-biotin to a PEG-coated glass surface using a streptavidin-biotin linker; samples were 

prepared with 30 pM peptide. These samples were imaged in confocal scanning mode to 

obtain fluorescence photobleaching trajectories on single oligomers80.  Dukes et al. 

showed that known accelerators of oligomerization (zinc, acidic conditions) did indeed 

promote formation of larger oligomers from the mostly monomeric starting mixture. 

Similarly, Ding immobilized single HiLyte Fluor 488-labeled oligomers on coverslips at 

0.1 to 1 nM concentrations by spin-coating and obtained photobleaching trajectories in 

confocal scanning mode10.  When specific oligomer populations were purified by gel 

filtration chromatography and applied to slides, the distribution of oligomers observed by 

single molecule photobleaching did indeed exhibit an increase in oligomers of that size 

and commensurate decreases in flanking oligomers. Both studies drew the conclusion that 

for Aβ labeled with a single fluorophore, photobleaching step count correlated well with 

the number of monomers present per oligomer.  

Obtaining such trajectories in confocal mode does have a disadvantage in that 

large amounts of time are required for scanning samples and obtaining photobleach 

trajectories.  As a result, acquiring data in a system that exhibits substantial changes over 
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time can be difficult.  For studies in which interesting dynamics may be observed—for 

instance, diffusion of peptide on a membrane—other imaging modalities offer greater 

potential. 

2.3 Total Internal Reflection Fluorescence (TIRF) 

Total Internal Reflection Fluorescence (TIRF) microscopy has gained favor over 

the last 20 years as a method for achieving single molecule detection in samples with 

high background fluorescence. Like the confocal scanning microscopy method discussed 

above, TIRF mode imaging greatly reduces of out-of-plane fluorescence, but it also offers 

the advantage of obtaining wide field, real time images, so that both photobleaching 

trajectories (generally of static particles) and motion of diffusing or trafficked particles 

can be captured in the same data set.  

2.3.1 Theory of TIRF Microscopy  

Briefly, in TIRF, an illumination beam is directed toward the sample surface at 

just beyond the critical angle to normal. Due to the discrepancy between the index of 

refraction of a microscope coverslip (usually n2 = 1.51-1.52) and that of the sample 

solution (n1 = 1.3-1.4) or the air above a dry sample (n1 = 1), the laser beam is completely 

reflected back into the coverslip, incidentally creating an evanescent fluorescent 

excitation field that penetrates, at most, a few hundred nanometers into the sample. The 

decay of the evanescent field intensity, moving upwards from the sample in the z-

direction) is described by the following equation81: 

𝐼 𝑧 = 𝐼 0 𝑒!! !        Eq. 1 

The exponential decay distance, d, is determined by the angle of incidence θ, the 

wavelength of the incident light λ, and the respective indices of refraction in the 

coverglass n2 and sample n1, as follows81:  

 𝑑 = !
!!
(𝑛!!𝑠𝑖𝑛!𝜃 − 𝑛!!)!! !       Eq. 2 

By modifying the angle of incidence, one can modulate the depth of penetration of the 

excitation field into the sample, thereby restricting excitation to those fluorophores near 
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the surface. This produces a vast reduction in background fluorescence as compared to 

epifluorescence mode imaging, a particular advantage for imaging single fluorophores in 

living cells.  

 TIRF geometry can be achieved by one of two generally used setups, a prism-

based method or an objective-based method (Figure 2.3.1). We chose to use through-the-

objective TIRF; although one major caveat of this method is the requirement of a high 

magnification, high numerical aperture (NA>1.45) objective lens, through-the-objective 

TIRF offers advantages in terms of the ease of switching between TIRF and 

epifluorescence and accessing one’s sample.  

 

 
Figure 2.3.1 Two geometries for achieving Total Internal Reflection.  
Shown are the  prism-based (a) and through-the-objective based (b) configurations. 
Figure from 82. 
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In recent years, a number of groups have combined the single molecule 

photobleach method (Section 2.2) with TIRF microscopy in order to determine the 

number of subunits in cell membrane-localized proteins. Notable among these studies is 

Ulbrich and Isacoff’s use of single molecule photobleaching to show that NMDA 

receptors composed of NR1 and NR3B subunits have a 2:2 stoichiometry, like the 

NR1:NR2B-containing receptor. Importantly, these studies were conducted on GFP-

labeled proteins expressed and localized to the membranes of living Xenopus laevis 

oocytes83. Leake et al. used TIRF-mode single molecule photobleaching step intensity to 

estimate the number of GFP-MotB units per flagellar motor in living E. coli cells84. In 

both studies, photobleach steps were shown to be roughly equivalent in size. To achieve 

this result, TIRF penetration distance, laser power, and distance of each aggregate from 

the fluorophore must be equal across experiments. Given these conditions, however, such 

a result implies that only photobleaching step count but also initial particle fluorescence 

intensity can be used to measure oligomer size, at least for small aggregates.  

As previously discussed, single molecule microscopy and the photobleaching step 

count method provide an opportunity to gain unique insight into amyloid-β oligomer size 

at physiological concentrations. Single molecule TIRF microscopy enables researchers to 

study the structure and dynamics of single protein aggregates on live cell membranes. 

The current work began with an effort to utilize these methods to determine the particular 

size distribution of Aβ oligomers that binds to living cells.  

2.3.2 TIRF Microscopy: Data Acquisition and Analysis 

Initial studies of single Aβ oligomers on live cell membranes were performed on a 

custom-built TIRF microscope, using an Argon positive laser (Coherent) for 488 nm 

illumination. After preliminary data revealed that autofluorescence prohibited single 

molecule detection at this wavelength (see Section 3.2 for discussion), further single 

molecule TIRF microscopy was performed on an Olympus IX-71 inverted microscope 

with 633 nm or 643 nm illumination. A HeNe red laser (633 nm, Uniphase) or a single-

mode diode laser (643 nm, Power Technology, Inc.) was focused onto the back focal 

plane of a 60x, 1.45 NA Olympus PlanAPO TIRFM objective; laser power at the plane of 
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the coverslip was measured at 300 µW.  Through-the-objective TIRF was performed by 

translation of a mirror just upstream of the objective lens.  A multi-band pass SEMRock 

dichroic mirror was used to separate excitation from emission signal; a 620/60 excitation 

band pass filter (Chroma Technology Corporation) and 700/75 emission filter (Chroma 

Technology Corporation) were included in the setup. Images were acquired on a back-

illuminated Ixon EMCCD camera, model DV887ACS-BV (Andor) and analyzed in 

ImageJ (for trajectories in solution) or in custom-written LabView photobleach trajectory 

software, as described (for spin-coated samples)10. 

2.4 Intensity-based Single Molecule Confocal Microscopy 

As mentioned previously, both Ulbrich and Isacoff and Leake et al. offer evidence  

that fluorescence intensity as well as photobleach step count can be used to measure the 

stoichiometry of labeled protein aggregates in living cell membranes. We recently used 

confocal mode fluorescence intensity to measure oligomer size on black lipid 

membranes70. To measure oligomer size on living cells, we developed a protocol to 

correlate particles’ confocal mode fluorescence intensity values with the number of Aβ 

monomers they contain. When laser power is below saturation, the fluorophore emission 

varies linearly with excitation power. Under these conditions, the slope of total intensity 

from a given volume versus the number of molecules present in the volume yields 

intensity-per-molecule. The fluorescence intensity of an oligomer can be divided by this 

value to yield the number of Aβ monomers present in the oligomer (assuming the 

quantum yields of the free dye and peptide-bound dye are the same, as discussed below). 

2.4.1 Confocal Fluorescence Intensity Calibration 

To determine the intensity of a single HL647 dye molecule in solution, a series of 

confocal scans were performed on various dilutions of HL647 hydrazide. The average 

intensity of a 1.6 µm by 1.6 µm by 1 µm volume element was measured at 10 nM HL647 

hydrazide concentration increments from 0 nM to 60 nM (0 to 102 dye molecules per 

volume element). In this regime, intensity per number of molecules in a volume element 
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is linear, with a best-fit correlation coefficient of 0.996558. The slope of this line 

represents an intensity-per-molecule value that can be used to extract HL647-labeled Aβ 

oligomer size (Figure 2.4.1).  

 
Figure 2.4.1 Confocal intensity calibration plot for single molecule studies.  
Total fluorescence intensity in a 40 by 40 by 1 pixel (1.6 µm by 1.6 µm by 1 µm) volume 
element versus expected number of HiLyte Fluor 647 hydrazide molecules present in that 
element. Intensity measurements were made at dye concentrations of 0 nM to 60 nM.  
Error bars represent the standard deviation for four different experiments. The slope of 
this line represents the fluorescence intensity of a single dye molecule. 

2.4.2 Fluorescence Lifetime Measurement 

The validity of this calibration method requires the assumption that the 

fluorescence yields of HL647-labeled Aβ and free HL647 hydrazide in solution are 

identical. Collisional quenching from the attached peptide or differences in the local 

electronic environment might alter the efficiency of photon emission of the fluorophore 

in HL647-labeled Aβ. Fluorescence lifetime measurement was used to eliminate this 

possibility. For dynamic quenching, the ratio of intensity of the quenched fluorophore (Iq) 

to that of the unquenched fluorophore (I0) is equal to the ratio of the fluorophore lifetimes 

(τq and τ0, respectively) under each condition85: 
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Accordingly, fluorescence lifetimes of HL647 hydrazide and the HL647cAβ40 

used in SH-SY5Y neurobastoma cell experiments were measured in imaging buffer on a 

custom-built fluorescence lifetime system, as described70. Fitting the fluorescence decay 

curves using the Exponential Series Method yielded lifetimes of 1.55 ± 0.24 ns for the 

free dye and 1.64 ± 0.09 ns for HL647cAβ40.  Hence, the two lifetimes are equivalent 

within experimental error. Collisional quenching from Aβ40 does not alter the quantum 

yield of the dye in HL647cAβ40.   

For primary hippocampal neuron studies, fluorescence lifetimes of HL647 

hydrazide, HL647Aβ40, and HL647Aβ42 were assessed using the Time-Resolved 

Confocal Microscope ALBA system at the University of Michigan SMART (Single 

Molecule Analysis in Real Time) Center.  Fitting the resulting decay curves yielded 

fluorescence lifetimes of 1.538 ± 0.009 ns for the HL647 hydrazide free dye, 1.646 ± 

0.002 ns for the HL647Aβ40, and 1.688 ± 0.004 ns for the HL647Aβ42. The slightly 

increased lifetimes of the dye when bound to the peptide likely reflect slight changes to 

the local electronic environment. As these lifetimes are not equivalent within 

experimental error, the HL647 hydrazide fluorescence intensity per monomer was 

multiplied by 1.0702, the ratio of τHL647AB40 to τHL647, obtain expected intensity per 

HL647Aβ40 monomer. For HL647Aβ42, the correction ratio (ratio of τHL647AB42 to τHL647) 

was 1.0974, and for experiments with a 1:1 mix of the two peptides, the average of the 

two ratios, 1.0838, was used to determine expected monomer intensity.  

Other factors may also affect the relative fluorescence efficiencies of the free dye 

and the peptide-bound dye when the fluorescently labeled peptide aggregates or 

associates with surfaces.  One possibility is that oligomerization of the HL647-labeled Aβ 

peptide, its insertion into a biological membrane, or its interaction with a surface results 

in significant quenching.  However, we have previously addressed these questions using 

Aβ40 N-terminally labeled with HiLyte Fluor 488 and established that oligomers up to 20 

monomers in size have fluorescence decays that fit well to a single exponential, and 

fluorescence lifetime is not altered for aggregates of this size even after binding to (and 

insertion in) lipid bilayers70.  As HL647cAβ40, HL647Aβ40, and HL647Aβ42, like 

HL488Aβ40, have N-terminally located fluorophores, it is reasonable that the 
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fluorophores on low-order oligomers also retain the lifetime of the dye attached to the 

free monomer under these conditions.  

2.4.3 Single Molecule Photobleach Versus Integrated Intensity 

To further verify the accuracy of this method, a distribution generated with our 

calibration was compared to one compiled from photobleach trajectories taken on a total 

internal reflection fluorescence (TIRF) microscope. Samples for both measurements were 

prepared by dilution of HL647cAβ40 to 50 nM in media over a kilned, autoclaved glass 

slide, which results in oligomers binding to the slide (Figure 3.5.1; Figure 2.4.2).  

 
Figure 2.4.2 Data examples for confocal and TIRF single-molecule studies.  
At left is an example of a 40 by 40 pixel (1.6 µm by 1.6 µm) region of interest (ROI) in 
the confocal mode; this ROI contains a slide-bound HL647cAβ40 particle with the 
integrated intensity of a trimer. To the right is an example photobleach trace taken from a 
Total Internal Reflection Fluorescence (TIRF) film. Three discrete photobleach steps can 
easily be identified, marking the particle as a trimer.          

The oligomer size distributions obtained using the two methods were highly 

similar (Figure 2.4.3). In both samples, approximately 70% of oligomers fall in the 

monomer-to-dimer range, with roughly 30% trimers to hexamers.  
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Figure 2.4.3 Confocal intensity and TIRF photobleaching produce similar results. 
HL647cAβ40 was diluted to 50 nM in media, bound a kilned glass slide, and imaged on 
the slide in solution, without cells present. Size was measured by confocal scan integrated 
intensity (blue, N = 112 and 112 particles) or by TIRF-mode single molecule 
photobleach step count (green, N =100 and 117 particles).   

These distributions resemble those presented in the literature upon for Aβ40 in 

media or physiological buffers at nanomolar concentrations8–10,86. We note that unlike our 

earlier studies on dried samples10, where we demonstrated significant variations in dipole 

orientation between monomers in a given oligomer, these measurements were made in 

solution. The data shows that this change allows orientational motion of the fluorophore 

emission dipoles, leading to the same time-averaged intensity for each monomer in an 

oligomer. The equal magnitudes of the photobleach steps for oligomers in solution 

observed here (Figure 2.4.2) support this assumption.  

2.4.4 Confocal Microscopy: Data Acquisition and Analysis 

Confocal laser scanning microscopy was performed on an Olympus FluoView 

500 microscope mounted on an Olympus IX-71 frame.  Images were acquired in line 

scan mode using an Olympus PlanAPO 60x, 1.42 NA oil immersion objective. The 488 

nm line of an Argon laser was used to obtain FITC channel and Differential Interference 

Contrast (DIC) images, with illumination power of 140 µW, and a 633 nm HeNe red 

laser was used for HL647 excitation at a power of 28 µW.  A BA660IF emission filter 

and Cy5 channel PMT settings of 850 volts, 6.0 gain, and 6% offset were used for all 
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single molecule experiments. Scans were taken at medium speed (10.67 seconds per 

scan).  Scans of a 43 µm by 43 µm field of view were taken at 1024 by 1024 pixel 

resolution, yielding an image plane pixel size of 42 nm by 42 nm.  Axial resolution (full 

width at half-maximum in the z-direction) was set to 1 µm by adjusting the confocal 

aperture diameter to 590 µm.  Imaging was performed at 37°C under 5% CO2 within 1 

hour of exposure to Aβ. 

For SH-SY5Y neuroblastoma cell data, an outline representing the cell membrane 

was drawn around the inner edge of the cell’s image in the differential interference 

contrast (DIC) scan (Figure 2.4.4).  

 
Figure 2.4.4 Data analysis for SH-SY5Y cell confocal single-molecule work.  
From left to right: An outline was drawn onto the DIC image of each cell, just within the 
membrane. This outline was then pasted onto the corresponding fluorescence image. 
Edge-localized particles were identified as those spots whose maxima fell on or outside 
the outline and boxed with a 40 by 40 pixel region of interest. An adjacent off-cell 40 by 
40 pixel region of interest was then identified as background. 

This outline was then overlaid on the fluorescence scan. All diffraction-limited 

fluorescence spots whose maxima fell on or within 1 µm outside of this line were 

designated as “cell-bound oligomers”.  For primary hippocampal neurite studies, “cell-

bound oligomers” were defined as those fluorescence spots whose maxima fell on or 

within 500 nm of a neurite. Irregularly shaped fluorescence spots, spots saturating the 

detector at four or more pixels, and spots associated with a clear non-membrane artifact 

(i.e., bigger than a resolution element) on the DIC image were rejected from the analysis.  

Remaining “cell-bound oligomers” were boxed with a 40 pixel by 40 pixel 

(approximately 1.6 µm by 1.6 µm) region of interest. The total photodetector output for 

such a square represents the intensity of a “volume element” containing the oligomer—a 

box 1.6 µm in length, 1.6 µm in width, and 1 µm in height with the oligomer at its center. 
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The total fluorescence counts for this region of interest were recorded. An adjacent off-

cell square of the same dimensions was designated as “local background”. The total 

counts for this box were then subtracted from the total counts present in the “oligomer” 

box to yield an integrated fluorescence intensity value for the oligomer.  Dividing this 

value by the intensity per dye molecule (Figure 2.4.1) yields an oligomer size, in 

monomers, for each individual particle included in the analysis. 

2.5 Additional Methods 

While the majority of the data discussed in Chapters 3 and 4 was collected using 

single molecule microscopy, a number of other methods were utilized in preparing 

samples for these experiments and in conducting adjunct studies. Here we discuss peptide 

preparation and characterization, cell culture techniques, and fluorescence techniques 

used to study Aβ membrane permeabilization and binding location. 

2.5.1 Amyloid-β(1-40) and (1-42) Preparation 

Synthetic unlabeled amyloid-β(1-40), C2 maleimide HiLyte Fluor 647-labeled 

amyloid-β(1-40) (HL647cAβ40), N-terminally HiLyte Fluor 647-labeled amyloid-β(1-

40) and (1-42) (HL647Aβ40 and 42, respectively), and HiLyte Fluor 647 hydrazide were 

from Anaspec.  HL647cAβ40 was synthesized with an additional N-terminal cysteine 

residue, to which HiLyte Fluor 647 was attached by a C2 maleimide linkage.  Amyloid-β 

(Aβ) peptides were dissolved in 1% NH4OH at 0.1 mg/mL and vortexed for 30 seconds. 

Peptides were then lyophilized and stored at -20°C. To prepare fresh Aβ, single aliquots 

were dissolved in 10 mM sodium phosphate buffer, pH 7.4, at a concentration of 1 to 2 

µM and pipetted 5 to 8 times to mix.  Freshly prepared Aβ was used within 30 minutes to 

1 hour. For spin-coated sample preparation, freshly solubilized HL647cAβ40, 

HL647Aβ40, or HL647Aβ42 was diluted to 0.5 nM in 10 mM sodium phosphate, pH 7.4, 

and a droplet of this was spin-coated onto a kilned glass slide.   
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2.5.2 SH-SY5Y Neuroblastoma Cell Culture and Imaging 

SH-SY5Y neuroblastoma cells (ATCC) were maintained in phenol-red free 1:1 

DMEM/Ham’s F12 (Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen) 

and 200 units/mL penicillin/streptomycin (Invitrogen).  Prior to plating, 25 mm circular 

No. 1 cover glasses (Fisher Scientific) were kiln-baked at 500°C for 2 hours and then 

autoclaved.  For live-cell imaging, cells were plated onto coverslips at a density of 28,000 

cells per cm2 and imaged 2 to 4 days following plating.  Prior to imaging, cells were 

exposed to 50 nM HL647cAβ40 or unlabeled Aβ40 for 10 minutes at 37°C. Freshly 

dissolved peptide was added directly into media and pipetted over coverslips twice to 

mix. Following peptide exposure, coverslips were washed three times in Hanks’ 

Balanced Salt Solution (HBSS), placed into a sampleholder and covered in 1 mL of 

HBSS for imaging.  

2.5.3 Flow Cytometry 

For flow cytometry experiments, adherent SH-SY5Y cells were grown to 

confluence in a 6-well plate, washed 1x with media, and treated for 90 minutes with 5µM 

peptide (one well each with HL488Aβ40, unlabeled Aβ40, HL488Aβ42 (lyophilized by 

Pamela Wong in 50% acetonitrile), or unlabeled Aβ42 (also lyophilized by Pamela Wong 

in 50% acetonitrile). Cells were then washed twice with D-PBS containing calcium and 

magnesium and removed from slides by 5 min incubation at 37°C with citric saline 

(1.35M potassium chloride, 0.15M sodium citrate).   Cells were then resuspended in 

Annexin V binding buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl2, pH 7.4) at 2 x 

106 cells/well and labeled with 10 µL per well Pacific BlueTM Annexin V (BioLegend) 

for 10 minutes in the dark. Cells were then resuspended in 300 µL/well PBS with 1% 

FCS for flow cytometry.  

Flow cytometry was performed on a Becton-Dickinson LSR-II flow cytometer, 

using an Argon laser for 488 nm excitation and a vioflame laser for 405 nm excitation, 

with assistance from Bryan Petersen (Nicholas Lukacs laboratory, University of 

Michigan). PMT voltage settings were 410 V for FITC and 470 V for Pacific Blue 

channels. Data were gated by forward and side scatter to remove counts representing 



 

 29 

clumped cells and debris. Data were also gated for Pacific BlueTM Annexin V staining, to 

reject dead cells from the analysis. A total of 94,000-98,000 cells per condition were 

counted.  

2.5.4 HPLC 

Gel filtration chromatography was performed at 23°C on a Shodex PROTEIN 

KW-802.5 size exclusion column.  Injections of 20 µL of 8 µM labeled and unlabeled 

Aβ40 were run on the column in 10 mM sodium phosphate, 100 mM sodium chloride, 

pH 7.4, at a flow rate of 1 mL/minute. The column was calibrated for molecular weight 

under these conditions with the following protein standards: thyroglobulin (660 kDa), 

aldolase (158 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), peroxidase 

(40.2 kDa), adenylate kinase (32 kDa), myoglobin (17 kDa), RNAse A (13.7 kDa), and 

cyanocobalamin (1.35 kDa). 

2.5.5 DiO Labeling and Colocalization 

For membrane colocalization studies on HL647cAβ40, SH-SY5Y neuroblastoma 

cells were first incubated with or without 50nM HL647cAβ40 in 1 mL media for 10 

minutes.  An aliquot of 6 µL of 1 mM Vybrant DiO cell-labeling solution (Invitrogen) 

was then added and cells were swirled to mix. Cells were incubated at 37°C prior to 

washing and imaging as described above. Colocalization analysis was performed in 

ImageJ using an open-source macro entitled Colocalization (written by Pierre 

Bourdoncle, available on the web at http://rsbweb.nih.gov/ij/plugins/). Pixels where the 

ratio of HL647 to DiO fluorescence intensity was greater than 40% were designated 

“colocalized” regions. 
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2.5.6 Cell-bound Oligomer Quenching 

For potassium iodide oligomer quenching, a 3 M solution of potassium iodide was 

prepared in HBSS and added onto SH-SY5Y cells to a final concentration of 300 mM. 

Cells were imaged before and after 2 minutes exposure to potassium iodide.  

2.5.7 Calcium Leakage Experiments 

SH-SY5Y cells were loaded with fluorescent calcium indicator Fluo4-AM 

(Invitrogen) at room temperature for 15 minutes at a concentration of 1.7 µM. Cells were 

then incubated in HBSS for an additional 15 minutes prior to washing and loading into 

sampleholders. 50 µL of 1 µM unlabeled Aβ40 or HL647cAβ40 were added by pipette to 

950 µL HBSS in the sampleholder, for a final concentration of 50 nM. To induce 

maximal calcium leakage, ionomycin in HBSS was added by pipette to a final 

concentration of 6 µM. Fluo4-AM ΔF for each frame n was calculated as: 
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where Fc,n represents cell body fluorescence in frame n, Fbg,n represents 

fluorescence of an off-cell background region in frame n, Fc,i represents initial cell body 

fluorescence, and Fbg,i represents initial background fluorescence.  Images were acquired 

in confocal mode on the microscope used for single molecule confocal studies or in 

epifluorescence mode on the microscope utilized for TIRF studies, using the 488 nm line 

of an Argon laser (Coherent) and a FITC filter cube. 

2.5.8 Primary Rat Hippocampal Neuron Culture 

Primary rat hippocampal neuron cultures were prepared in Michael Sutton’s 

laboratory by Cynthia Carruthers and Christian Althaus, as described87. Cells were plated 

at 30,000/well on poly-D-lysine coated glass coverslips adhered to 35 mm wells 

(MatTek). Imaging experiments were performed between DIV 12 and DIV 18. For single 
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molecule oligomer size measurement experiments, cells were incubated for 10 minutes at 

37°C in HBS (HEPES-Buffered Saline) containing 1 nM HL647Aβ, washed three times 

in HBS, and imaged at room temperature in HBS within an hour of exposure. For time 

course experiments, following initial incubation with 1 nM HL647Aβ, cells were placed 

back in the original media containing either no Aβ or 1 nM Aβ and incubated at 37°C for 

the time specified. Immediately prior to imaging, cells were washed three times in HBS 

and then imaged within an hour.  

2.5.9 PSD95 Colocalization Experiments 

To determine whether HL647Aβ oligomers localized to post-synaptic densities, 

HL647Aβ-exposed neurons were fixed and stained with an antibody for the post-synaptic 

density marker protein, PSD95. Cultures were treated with 10 nM HL647Aβ in HBS for 

10 minutes, washed once in D-PBS, then fixed for 20 minutes in room temperature 2% 

paraformaldehyde / 2% sucrose. The cells were then washed three times in D-PBS, and 

cell membranes were permeabilized by 10 minutes exposure to 0.3% Tween 20 in D-

PBS. Fixed, permeabilized cells were washed once in 0.3% Tween 20, stained for 1 hour 

with anti-PSD95 monoclonal mouse antibody 7E3-1B8 (Calbiochem, 1:400 dilution) or 

anti-Aβ monoclonal mouse antibody, clone W0-2 (Millipore, 1:2000 dilution), then 

stained for 1 hour with AlexaFluor488-labeled monoclonal anti-mouse antibody 

(Molecular Probes, 1:2000 dilution). Cells were then mounted in 1:9 D-PBS-glycerol and 

sealed with a coverslip.  

Imaging was performed as described for single molecule confocal microscopy 

experiments, with illumination by 488 nm Argon laser, emission filtered with a BA 505-

525 emission filter, and FITC channel PMT settings of 900V, 1.0x gain, and 5% offset.  

2.5.10 HL647Aβ Binding Density on Axons and Dendrites 

To assess HL647Aβ oligomer binding density on axons versus dendrites, 

HL647Aβ-treated neurons were fixed and stained with antibodies for the dendritic marker 

MAP2 and axonal neurofilament. Cultures were treated with 5 nM HL647Aβ40 or 
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HL647Aβ42 for 10 minutes, then washed three times in D-PBS.  Fixation and 

permeabilization were performed as described in Section 2.5.9. Cells were then stained 

for 1 hour with anti-MAP2 mouse monoclonal antibody, clone HM-2 (Sigma, 1:2000 

dilution), then for 1 hour with AlexaFluor488-labeled monoclonal anti-mouse antibody 

(1:2000 dilution). Pan-axonal neurofilament marker (clone SMI-312) mouse monoclonal 

antibody was labeled with the Zenon® 405 Mouse IgG Labeling Kit as per kit 

instructions (Molecular Probes). Cells were then stained with Zenon® 405-labeled anti-

neurofilament antibody for 30-45 minutes in the dark, fixed for an additional 5 minutes in 

room temperature 2% paraformaldehyde / 2% sucrose, and mounted in 1:9 D-PBS-

glycerol and sealed with a coverslip.  

Imaging was performed as described for PSD95 experiments (Section 2.5.9), with 

additional illumination by a 405 nm diode laser. FITC channel PMT settings were 650V, 

3.0x gain, and 5% offset, and CFP channel PMT settings were 650V (HL647AB40 

experiment) or 700V (HL647AB42 experiment), 6x gain, and 5% offset.  

2.5.11 eGFP Transfection and Spine Density Analysis 

For preliminary studies on Aβ effects on spine density, DIV 11-12 primary rat 

hippocampal neurons were transfected with eGFP (provided by Amber McCartney, 

Sutton laboratory). Briefly, cells were placed in 500 µL fresh, prewarmed NGM 

(neuronal growth medium: Neurobasal A supplemented with 2% B27 and 1% GlutaMax) 

for 1-2 hours; conditioned media was saved. During incubation, eGFP was prepared as 

follows: eGFP plasmid was thawed at room temperature, and 0.5 µg eGFP plasmid (e.g. 

1 µL for a 0.5µg/µL stock) per dish was added to ddH2O, then 3.1 µL 2M calcium 

phosphate solution per dish was added to the DNA in water, to a final volume of 25 µL 

per dish. An equivalent volume of 2x HBS was then added to this in small amounts, 

vortexing at low speed for 3 seconds between additions. The plasmid solution was then 

incubated at room temperature for 20 minutes. 50 µL plasmid solution was then added 

dropwise to each dish of cells, and cells were incubated at 37°C, 5% CO2 for 1-3 hours. 

Media containing plasmid was then removed and replaced with 1 mL fresh media 

(prewarmed at 37°C , in 10% CO2). Cells were placed in a 37°C, 10% CO2 incubator for 
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20 minutes, then washed 2x in prewarmed Neurobasal A and placed back in the original 

media.  

After 24 hours, HL647Aβ42 was added to the media. Cells were incubated an 

additional 24 hours prior to imaging in confocal mode. Images were acquired in z-stack 

mode, with 20 scans per stack and a z-resolution of 0.4 µM, using 2x zoom with a 60x 

objective and PMT voltages in the FITC channel ranging from 400 V to 600 V.  Images 

were analyzed manually for spine density per micron of neurite in ImageJ.  

2.5.12 Single Particle Tracking and Lateral Diffusion Analysis 

Particle tracking experiments with primary rat hippocampal neurons were 

performed on the same system used for TIRF mode studies, using a 300 ms exposure 

time. Coordinates of particles exhibiting motion were assessed by hand, and particle 

trajectories were obtained with the SpotTracker2D open-source macro for ImageJ, 

available at http://bigwww.epfl.ch/sage/soft/spottracker/ (courtesy of Daniel Sage, 

Biomedical Image Group, Ecole Polytechnique Federale de Lausanne, Switzerland)88.  

Diffusion coefficients were determined in LabView software custom-written by 

Chun-Chieh Chang (Gafni-Steel lab). Only trajectories with at least 15 consecutive 

frames were used with integration time of 300 ms.  The mean square displacement 

(MSD) was calculated using the following formula: 

MSD(ndt) = !
!!!

[ x !!! −   x!
! +    y !!! −   y!

!  ]
!!!

!!!
  Eq. 3 

where x! and y! are the coordinates of an object on frame i, N is the total number of 

frames of the trajectory, n is the number of intervals, dt is the time between two 

successive frames, and ndt is the time interval over which the displacement is averaged. 

The initial diffusion coefficient (D) was determined by fitting the first 2-5 points of the 

MSD plot versus time with MSD t = 4D!!!t+ b, as referenced67,73. 
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2.5.13 Primary Hippocampal Neuron Calcium Indicator Experiments 

Calcium indicator experiments in primary hippocampal neurons were performed 

as described for SH-SY5Y cells (Section 2.5.7), with the exception that Fluo4-AM 

loading and imaging were performed in HBS rather than HBSS. 
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Chapter 3  
 

Studies of Single Aβ Oligomers on SH-SY5Y Cells 

3.1 Motivation for Live Cell Studies 

Model membrane studies conducted by our lab and others have provided much 

mechanistic insight into amyloid-β’s interactions with lipid membranes28,29,70,76. 

Experiments conducted in such model systems can yield quantitative data on binding 

affinity, association and dissociation rates, and dependence of binding on membrane 

charge and curvature. Additionally, these systems can be used to characterize the 

conditions under which amyloid peptides affect membrane conductance and to study the 

mechanism by which permeabilization occurs. However, the complexity of the 

membranes of hippocampal and cortical neurons with which extracellular Aβ likely 

interacts in vivo is difficult to approach with model systems. The lipid component of 

neuronal membranes alone includes sphingomyelin, phosphatidylcholine, 

phosphatidylethanolamine, inositol phospholipids, phosphatidylserine, cerebrosides, 

sulfatides, gangliosides, and free fatty acids77. Membrane integral proteins can also 

influence membrane fluidity and curvature, possibly affecting binding and insertion, and 

they provide a plethora of possible Aβ binding sites that are not represented in model 

membranes (see Introduction for details). In short, obtaining a complete picture of Aβ’s 

interactions with membranes and how these phenomena relate to toxicity necessitates 

complementary studies on live cell membranes89. 

SH-SY5Y neuroblastoma cells are a commonly used model neuronal cell line. 

Composed of homogeneous N-type (neuronal-type) cells, this line was subcultured from 

SK-N-SH cells, a line taken from a neuroblastoma tumor in the 1970’s; they exhibit 

several neuronal marker phenotypes and proliferate well in culture, making them highly 

suitable for in vitro live cell studies90. In recent years, these cells have been utilized 

frequently in the Alzheimer’s research community for in vitro toxicity, permeabilization, 
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and uptake experiments26,29,91.  We therefore chose to begin our development of live-cell 

single-molecule microscopy with SH-SY5Y cell experiments.  

3.2 Autofluorescence Inhibits 488 nm Single Molecule Microscopy  

Our previous work on the interaction of Aβ with model membranes has involved 

the use of a version of the peptide labeled with a single HiLyte Fluor 488 molecule 

(HL488Aβ40)10,70.  However, initial attempts to perform single-molecule TIRF 

experiments with HL488Aβ40 on live cells were frustrated by extremely high 

autofluorescence levels in the 488 nm channel (Figure 3.2.1).  With TIRF microscopy at 

this wavelength, determining whether Aβ bound to individual cells was problematic, due 

to the widespread and heterogeneous baseline fluorescence of the cells and the low 

number of individual cells which could be imaged over the course of a single experiment.  

 

 
Figure 3.2.1 Autofluorescence obscures single molecule size determination at 488 nm. 
SH-SY5Y cells were treated with nanomolar HL488Aβ40 for several minutes; results are 
typical for concentrations up to 50 nM and treatment times of up to an hour. Scale bars, 
10 µm. 

Flow cytometry, by contrast, allows fluorescence measurements to be made on 

hundreds of thousands of individual cells during a single experiment. When SH-SY5Y 

cells were treated with 5 µM HL488Aβ for 90 minutes and a flow cytometry experiment 

was performed, results showed that on a population level, both HL488Aβ40 and 

HL488Aβ42 did bind to cells (Figure 3.2.2). Both peptides bound at two levels; cells in 

the main population exhibited only a small increase in fluorescence as compared to 
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controls, representing low-level binding, while less than 10% of cells in each sample 

exhibited high-level fluorescence, indicative of a high level of binding. Importantly, 

Annexin V staining was employed to screen out dead or dying cells, indicating that the 

cells exhibiting high-level binding do represent living cells.  

 

 
Figure 3.2.2 Flow cytometry demonstrates that HL488Aβ binds to SH-SY5Y cells.  
Low-level binding is seen in the main cell population in each group treated with the 
labeled peptide, and high-level binding is seen in a smaller population (roughly 2% of 
cells for HL488Aβ40, 7% for HL488Aβ42).  

 As these experiments indicated that binding was present on a population scale, 

autofluorescence appeared to be the main hindrance to single-molecule TIRF microscopy 

on live cells at 488 nM. This conclusion is consistent with the wide range of endogenous 

cellular fluorophores whose excitation maxima fall in the UV-to-low-visible range of the 

electromagnetic spectrum, three of which are listed in Table 3.2.1.  These molecules have 

been implicated in autofluorescence studies as the main source of the strong mammalian 

cultured cell fluorescence emission observed in the 500 nm - 600 nm range92,93.  
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Table 3.2.1 Endogenous cellular fluorophores may contribute to autofluorescence at 488 
nm excitation 94. 
Fluorophore Excitation Maxima Emission Maxima 

NADH 340 nm 450 nm 

Lipofuscin 340 nm - 395 nm 430 nm - 460 nm, 540 nm 

FAD 450 nm 515 nm 

 

In contrast, the far-red to infrared region of the electromagnetic spectrum has been 

recognized as a low-autofluorescence window, and probes at this wavelength have the 

advantage of lower competition from background fluorophores95.  Therefore, some 

preliminary experiments were conducted in confocal mode as described in Chapter 2, 

using HiLyte Fluor 647-labeled Aβ. The autofluorescence level at this wavelength in 

confocal mode proved satisfactory for single-molecule studies, as discussed below 

(Figure 3.3.1; Figure 3.6.2).  

3.3 Comparison of HL647cAβ40 and Unlabeled Aβ40 

In order to examine the cell membrane binding behavior of Aβ40, nanomolar 

concentrations of Aβ40, labeled with HiLyte Fluor 647 at the N-terminus, were applied to 

SH-SY5Y neuroblastoma cells.  The N-terminus of Aβ is solvent-exposed and therefore 

unlikely to be involved in the β-sheet formation which drives fibrillization11,96. Also, 

work done in our laboratory and others indicates that various forms of N-terminally 

labeled Aβ40 behave similarly to unlabeled Aβ40 in terms of fibrillization (Bateman, 

McLaurin, & Chakrabartty, 2007), ability to permeabilize synthetic membranes (Ding et 

al., 2009; Schauerte et al., 2010) as well as rat basophilic leukemia cell-derived 

membrane blebs (Figure 3.3.1), and toxicity to cultured cells27.  
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Figure 3.3.1: Unlabeled Aβ40 and HL647Aβ40 permeabilize cell-derived blebs.  
Blebs are prepared from rat basophilic leukemia (RBL) cells. The blebs are first loaded 
with 5.7 µM calcein-AM. Blebs are then incubated on a kilned coverslip for 20 minutes, 
followed by gentle washing with buffer (10 mM HEPES, 150 mM NaCl, 2 mM CaCl2, 
pH 7.4).  Imaging begins after another 10 minutes. Then, 45 minutes after the blebs are 
first imaged (green line), 200 nM HL647Aβ40 (red), 200 nM unlabeled Aβ40 (blue), or 
buffer (black) is washed over the coverslip. Average bleb fluorescence for each sample is 
plotted over time. Error bars represent the standard deviation of 3 to 6 single blebs for 
each sample. Data courtesy of Kathleen Wisser and Joe Schauerte. 

 
The current studies were performed using Aβ40 labeled with HiLyte Fluor 647 by 

a C2-maleimide linkage at the N-terminus. To confirm that this peptide behaves similarly 

to the unlabeled peptide on solubilization, we ran freshly prepared HL647cAβ40 and 

unlabeled Aβ40 on HPLC (Figure 3.3.2). Both peptides as a single peak with dimer-to-

trimer molecular weight.  
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Figure 3.3.2: HPLC scans for 8 µM HL647cAβ40 and unlabeled Aβ40.  
The 215 nm absorbance spectrum is shown (dark solid line, HL647AB40; gray dashed 
line, UnlabAB40). Both versions of the peptide elute primarily as a single peak with 
dimer-to-trimer molecular weight. An additional minor peak, visible in the void volume 
for the HL647cAβ0, may consist of peptide aggregates greater than 200 kDa; however, 
no fluorescent spots of the size and intensity expected for such large particles were 
observed in spin-coated samples examined by single molecule microscopy (see Figure 
3.5.1). A limited number of large aggregates were detected in on-slide, in-solution 
samples, but these were a relatively small component (less than 10%) of the species 
observed. 

 

3.4 HL647cAβ40 Binds Rapidly to SH-SY5Y Cells 

To examine the questions of how Aβ40 binds to cell membranes and what species 

are present following binding, we applied HL647cAβ40 to live neuroblastoma cells at 

near physiological peptide concentrations and measured the integrated intensity of cell-

bound particles.  Cells were imaged following a 10-minute exposure to 50 nM 

HL647cAβ40 in media; in order to obtain cross-sections through the cell membranes, the 

objective was focused at a z-plane that fell halfway between the apical and basal portions 

of the cell membrane.  
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Figure 3.4.1: SH-SY5Y cells treated with HL647cAβ40 or unlabeled Aβ40.  
Cells were treated with 50 nM Aβ for 10 minutes. Differential Interference Contrast 
images with confocal mode HL647 channel fluorescence overlaid in red are shown to the 
left of the corresponding HL647 channel only images. Scale bars, 10 µm. 

Representative images of cells exposed to HL647cAβ40 and unlabeled Aβ40 

(Figure 3.4.1) reveal both internal and surface-localized fluorescent particles in the 

HL647cAβ40 samples.  Some form of membrane binding is believed to be a key step in 

toxicity directly mediated by Aβ40, and while several groups have observed 

internalization of fluorescently labeled Aβ40 and Aβ42 by neuroblastoma cell lines27,91, 

only one has reported binding to live cells at physiological concentrations72. During 

analysis, we focused on measuring the size of those particles that were edge-localized (as 

this is where membrane-bound oligomers could be most clearly identified).  
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3.5 Fresh HL647cAβ40 Contains Primarily Monomers 

To study how Aβ40 oligomerization and binding occur at physiological 

concentrations, we wished to begin with monomeric Aβ40. We therefore examined the 

size distribution of oligomers present in freshly dissolved HL647cAβ40 samples by 

recording photobleach trajectories on dry, spin-coated peptide (left image in Figure 3.5.1; 

Figure 3.5.2).  

 

 
Figure 3.5.1 Spin-coated and on-slide, in solution HL647cAβ40.  
The confocal image on the left depicts single molecules of dry HL647cAβ40. A droplet 
of 0.5 nM HL647Aβ40 in 10 mM sodium phosphate buffer, pH 7.4, was spin-coated onto 
a kilned glass slide.  The confocal image on the right shows single molecules of 
HL647cAβ40 adhered to a glass slide after ten minutes’ incubation of the slide with 50 
nM peptide in media. Frames are 43 µm by 43 µm.    
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Figure 3.5.2 Typical confocal mode photobleach traces for HL647cAβ40.  
Peptide was diluted to 0.5 nM and spin-coated onto a kilned glass coverslip. An example 
monomer trace is shown at top left; an example dimer is shown at top right.  Example 
trajectories for two spots that do not photobleach in digital steps are shown at bottom left 
and right. Approximately 65% to 70% of particles bleached in clean, digital steps. Of 
these, 83% ± 3% bleach as monomers, and 15% ± 3% bleach as dimers. Of the particles 
that did not bleach in single steps, 5% ± 1% had intensities greater than was typical for 
observed monomers and dimers. 

Of spots with clean photobleach traces, 83% ± 3% bleach as monomers and 15% ± 3% 

bleach as dimers (Figure 3.5.3). These results led us to conclude that the majority of 

freshly dissolved HL647cAβ40 is monomeric or dimeric.  
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Figure 3.5.3 Oligomer size distribution for freshly solubilized HL647cAβ40.  
Peptide was diluted to 0.5 nM in 10 mM phosphate buffer and spin-coated onto a kilned 
glass slide (purple, N = 70 and 91 particles). Size was measured by counting 
photobleach steps in sequences of confocal scans.  Error bars represent the standard 
deviation for 2 experiments. 

3.6 Small Oligomers Bind to the Membranes of SH-SY5Y Cells 

Even a short incubation in media at 37°C results in some formation of oligomers 

in the trimer-to-hexamer size range. Interestingly, however, comparing the size 

distribution obtained for on-cell oligomers with the on-slide distribution (Figure 3.6.1) 

reveals a small decrease in the numbers of dimers and trimers observed on cells. 

 
Figure 3.6.1 Oligomer size distributions for HL647cAβ40 on slide or on cells.  
Peptide was diluted to 50 nM in media and bound to the slide in samples containing cells 
(blue, N = 119 and 122 particles) and bound to cells (red, N = 114 and 112 particles).   
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Conversely, particles with intensities corresponding to oligomer sizes from heptamers to 

14-mers comprise a significant component of the on-cell distribution (10.6%), while the 

largest measurable oligomers observed on slides are heptamers (1.5% of the total on-slide 

distribution). The oligomer size distribution on the cell surface is thus shifted towards 

larger aggregates. (Note: These histograms exclude rarely detected spots with full width 

at half-maximum exceeding 250 nm and particles saturating the detector at more than 

three pixels—20-mers and larger by integrated intensity). 

A prominent concern in live-cell single molecule microscopy involves signal 

contamination by autofluorescence. As an autofluorescence control, we performed our 

analysis on cells treated with unlabeled Aβ40. Figure 3.6.2 shows that the vast majority 

of detected spots in the HL647cAβ40 sample indeed represent fluorescently labeled 

peptide.  Additionally, all of the autofluorescent spots detected by our analysis in the 

unlabeled Aβ40 sample have integrated fluorescence intensities that place them in the 

monomer-to-tetramer range. 

 
Figure 3.6.2 Raw oligomer size distributions for HL647cAβ40 and unlabeled Aβ40.  
The analysis protocol was performed on similar numbers of cells treated with labeled 
(crimson, N = 60 frames, 117 particles detected) and unlabeled Aβ40 (blue, N= 63 
frames, 14 particles detected). Both distributions were obtained using confocal mode 
integrated intensity. 

3.7 Edge-localized HL647cAβ40 Oligomers are Membrane-bound 

Potassium iodide quenching studies were performed to determine whether edge-

localized HL647cAβ40 oligomers were solvent-accessible. Iodide, a well-known 
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collisional quencher, has formerly been used to characterize live cell-associated Aβ40 

aggregates71. We imaged cells treated for 10 minutes with 50 nM HL647cAβ40 before 

and after the addition of 300 mM potassium iodide (Figure 3.7.1A).  

 

 
Figure 3.7.1: HL647cAβ40 is membrane bound. 
(A) Colocalization images of cells treated with 50 nM labeled or unlabeled Aβ40 for 10 
minutes prior to labeling with the lipophilic membrane marker, DiO. HL647 fluorescence 
is shown in red, DiO fluorescence in green, and pixels where the two are colocalized in 
white. Edge-localized fluorescent particles colocalizing with DiO are marked with yellow 
arrows. Scale bars, 10 µm. (B) Cells treated for 10 minutes or overnight with 50 nM 
HL647cAβ40 were imaged before and 2 minutes after addition of 300 mM potassium 
iodide. HL647cAβ40 oligomers that quench are marked with yellow arrows. New 
fluorescence spot (marked with teal arrow) presumably represents an endosome 
containing HL647cAβ40 which has migrated into the image plane during the incubation 
period. Scale bars, 10 µm. 

Under these conditions, cell-perimeter localized peptide was highly susceptible to 

quenching. Interestingly, the majority of large internalized aggregates in cells exposed to 

50 nM peptide overnight did not quench. Subsequent experiments verified that potassium 

iodide is able to permeate cells and quench fluorophores localized to the cytoplasm 

(Figure 3.7.2).  
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Figure 3.7.2: Potassium iodide permeates quenches internal fluorophores.  
Confocal images of cells loaded with the cytoplasmic marker CellTracker™ Orange 
CMTMR (5- (and-6) - ( ( (4-chloromethyl) benzoyl) amino) tetramethylrhodamine) 
(Invitrogen), before and after addition of potassium iodide to a final concentration of 300 
mM (top row) or vehicle (Hanks’ Balanced Salt Solution) (bottom row). The collisional 
quencher potassium iodide permeates the cell membrane quenches internal (cytoplasmic) 
fluorescence. Images are 43 µm by 43 µm. 

Late stage aggregate quenching resistance may represent a fundamental change in 

aggregate structure71 or an inability of iodide ions to permeate the endosome-lysosome 

system.  

We also stained cell membranes with a lipophilic membrane dye, DiO, and 

performed colocalization studies. The vast majority of the HL647cAβ40 signal is 

colocalized with DiO (Figure 3.7.1B), suggesting that HL647cAβ40 in and on the cell is 

nearly all membrane-associated, bound to membrane-associated proteins, or enclosed in 

membrane-bound vesicles. 
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3.8 HL647cAβ40 and Unlabeled Aβ40 Induce Little Calcium Leakage 

Application of either extracellular Aβ at supraphysiological concentrations or of 

chemically prepared oligomers26,97 has previously been shown to result in dramatic 

calcium influx (3-fold or greater increases in calcium indicator fluorescence), and this 

effect was observed within seconds in a majority of cells. To test whether freshly 

prepared Aβ permeabilized cell membranes to calcium at physiological Aβ levels, SH-

SY5Y cells were loaded with the fluorescent calcium indicator Fluo4-AM and exposed to 

50 nM Aβ. The calcium ionophore ionomycin was used as a permeabilization control. 

Only a small proportion (roughly 10%) of cells treated with unlabeled Aβ40 (Figure 

3.8.1A) or HL647cAβ40 (Figure 3.8.1B) exhibited any increase in fluorescence as 

compared to controls (Figure 3.8.1C).  Observed fluorescence increases were less than 2-

fold and occurred gradually over the course of 3 to 5 minutes.  

 

 
Figure 3.8.1: Physiological Aβ40 levels induce low level calcium leakage.  
(A) Fluo4 fluorescence intensity plot for 8 cells treated with unlabeled Aβ40 and imaged 
by sequential confocal scans. Unlabeled Aβ40 was added to 50 nM after 1 minute and 40 
seconds; ionomycin was added to 6 µM after 5 minutes and 20 seconds. (B) Plot for 9 
cells treated with HL647cAβ40 and imaged in epifluorescence. HL647cAβ40 was added 
to 50 nM after 25 seconds; ionomycin was added to 6 µM after 2 minutes and 20 
seconds. (C) Plot for 13 cells treated with vehicle and imaged by sequential confocal 
scans. 10 mM sodium phosphate was added to 50 nM after 1 minute and 40 seconds; 
ionomycin was added to 6 µM after 5 minutes and 20 seconds. 
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3.9 Fresh HL647cAβ42 Contains Primarily Monomers 

As Aβ42 is generally acknowledged to be both more fibrillogenic and more 

neurotoxic than Aβ40, we wanted to compare the size distribution of Aβ42 oligomers on 

neuroblastoma cells to that obtained for Aβ42.  To determine the size distribution of 

HL647Aβ42 oligomers in freshly prepared peptide, newly dissolved HL647Aβ42 was 

spin-coated onto a kilned glass slide and imaged in TIRF mode. Oligomer sizes were 

measured by single-molecule photobleach step counting . 

 
Figure 3.9.1 Oligomer size distributions for freshly solubilized HL647cAβ42. 
Peptide was diluted to 0.5 nM in 10 mM phosphate buffer and spin-coated onto a kilned 
glass slide (orange, N = 471, 255, and 364 particles). Size was measured by counting 
photobleach steps in TIRF mode image sequences.  Error bars represent the standard 
deviation for 3 experiments. 

As shown in Figure 3.9.1, 83% of analyzable traces bleached as monomers, and 

15% as dimers, indicating that the majority of freshly solubilized HL647cAβ42 is exists 

as monomer.  

3.10 HL647cAβ42 Binds Sparsely to SH-SY5Y Cells  

When SH-SY5Y cells were treated for 10 minutes with 50 nM HL647cAβ42 and 

imaged in single-molecule confocal mode, single particles were visualized both inside 

cells and along the cells periphery. As seen in the representative images in Figure 3.10.1, 

while the edge-localized oligomers observed were generally comparable in brightness 

those seen in the HL647cAβ40 samples, the overall number of edge-localized oligomers 
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per cell was greatly reduced. Autofluorescence was therefore slightly higher in 

comparison to the number of observed “cellbound” oligomers.  

 
Figure 3.10.1 SH-SY5Y cells treated with HL647cAβ42 or unlabeled Aβ42. 
Cells were treated with 50 nM peptide for 10 minutes and then imaged in single-molecule 
confocal mode. Fewer particles were detected per cell in comparison to experiments with 
HL647cβ40 (see Figure 3.4.1). 

Furthermore, a greater proportion of these edge-localized particles saturated the detector, 

reducing the overall number of measurable edge-localized oligomers from roughly 2 per 

cell in HL647cβ40-treated cells (Figure 3.6.2) to slightly over one per cell in 

HL647cAβ42-treated samples (Figure 3.10.2).  
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Figure 3.10.2 Raw oligomer size distributions for HL647cAβ42 and unlabeled Aβ42.  
The analysis protocol was performed on similar numbers of cells treated with 
HL647cAβ42 (red, N = 104 frames, 118 particles detected) and unlabeled Aβ42 (blue, 
N= 104 frames, 21 particles detected). Data is compiled from 3 separate experiments. 
Both distributions were obtained using confocal mode integrated intensity. 

Due to the reduced yield of these experiments in terms of data per image and the 

difficulty of interpreting these distributions in the context of higher levels of internalized 

peptide, SH-SY5Y neuroblastoma cells studies with HL647cAβ42 were concluded after 

the 3 trials shown above. However, these results do show that HL647cAβ42 and 

HL647cAβ40 form similarly sized oligomers on SH-SY5Y cells, with the mode of the 

distribution falling in the dimer-to-trimer range for both peptides. Decamers to 14mers 

were the largest measurable oligomers detected in both samples and comprised a small 

portion (less than 10%) of the overall population.  

Calcium indicator experiments were also conducted on Fluo4-AM-loaded SH-

SY5Y cells treated with concentrations ranging from 1 nM up to 1 µM unlabeled Aβ42. 

Results were similar to those obtained with labeled and unlabeled Aβ40 (data not shown), 

with a small minority (<10%) of cells exhibiting transient, low-level calcium leakage on 

exposure to the peptide (data not shown). 

3.11 Chapter Summary 

We used single particle fluorescence intensity measurements to obtain direct 

optical evidence that small Aβ oligomers bind to living SH-SY5Y neuroblastoma cells at 
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near physiological (50 nM) Aβ concentrations. Results indicate that cell-bound Aβ40 and 

Aβ42 species range in size from monomers to hexamers and greater, with the majority of 

bound oligomers falling in the dimer-to-tetramer range.  Furthermore, while low-

molecular weight oligomeric species do form in solution, the membrane-bound oligomer 

size distribution is shifted towards larger aggregates, indicating either that bound Aβ 

oligomers can rapidly increase in size or that these oligomers cluster at specific sites on 

the membrane.  Calcium indicator studies demonstrate that small oligomer binding at 

physiological concentrations induces only mild, sporadic calcium leakage in SH-SY5Y 

neuroblastoma cells.  
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Chapter 4  
 

Studies of Aβ40 and Aβ42 on Primary Neuron Neurites 

4.1 Motivation for Primary Rat Hippocampal Cell Studies 

Single-molecule investigation of HL647Aβ40 oligomer size on SH-SY5Y 

neuroblastoma cells demonstrates that oligomers grow or cluster rapidly following 

binding to live cells, even at near physiological concentrations.  However, the paucity of 

Aβ-induced calcium leakage in these cells suggested that toxicity may be associated with 

features unique to neurons.  Interest in Aβ oligomer effects on structures and functions 

particular to neuronal cells has skyrocketed in the past 10 years, in part because synaptic 

loss is one of the earliest markers of AD98. While studies in immortalized neuronal cell 

lines provide useful insight into biophysical interactions of the peptide with real cell 

membranes, their similarity to real neurons is limited. In particular, these cells generally 

do not form active electrical signaling networks, axonal or dendritic polar morphology, 

dendritic spines, or functioning synapses.  

By contrast, neurons in primary hippocampal cell cultures share many more 

morphological and functional traits with neurons in the brain.  Measures of synaptic 

plasticity such as long-term potentiation have been found to be dampened by Aβ 

exposure in brain slices30 and can also be studied in primary cell cultures99. The level of 

complexity reached by neurites in these preparations enables their use in studies of Aβ’s 

effects on neurite structure and composition. Dendritic spines can be visualized in 

primary hippocampal cell cultures by labeling with fluorescent proteins or specific post-

synaptic density markers, and several groups have utilized this technique to demonstrate 

that Aβ can decrease spine density35,100 Finally, many possible synapse-specific Aβ 

receptor proteins have been identified on cells in primary hippocampal cultures65,67,68.  

Importantly, organotypic brain slices also offer the abililty to observe all of these effects. 

Fluorescence microscopy in living slices is notably more difficult, however, and two-
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photon methods are often necessary to obtain low enough background fluorescence to 

visualize the desired fluorophores101.  Here we show that single-molecule microscopy of 

HL647Aβ is feasible on the neurites of primary hippocampal neurons in culture. 

Evidence is presented for interesting differences between HL647Aβ40, HL647Aβ42, and 

1:1 mixed oligomers’ binding to and evolution on neurites. Initial neurite-bound 

HL647Aβ40 and HL647Aβ42 oligomers are larger than those bound nonspecifically to 

coverslips, and grow little over the course of an additional 48 hours. A 1:1 mix of the two 

peptides, however, binds initially to neurites as very small oligomers, and these 

oligomers grow substantially over the next 2 days.  These results have important 

implications for Alzheimer’s disease. Familial AD-associated mutations in presenilins 1 

and 2 significantly increase Aβ42: Aβ40 ratio in transfected cultured cells and transgenic 

mice102–104, and higher Aβ42:Aβ40 ratio is correlated with earlier age-of-onset in humans 

with these mutations105,106. Our results imply that localized increases in the Aβ42:Aβ40 

ratio, independently of changes in overall Aβ concentration, significantly alter the 

kinetics of on-membrane oligomer growth.  

We also demonstrate that these early oligomers do not preferentially bind to 

synapses. Finally, we present preliminary experiments that illustrate how working in this 

system opens up prospects for studying oligomer stoichiometry and evolution in 

combination with synaptotoxicity and changes in neuronal calcium homeostasis.  

4.2 Fresh HL647Aβ40 and Aβ42 Contain Primarily Monomers 

For experiments with primary rat hippocampal neurons, we utilized Aβ40 and 

Aβ42 N-terminally labeled with HiLyte Fluor 647 (HL647Aβ40 and HL647Aβ42). 

According to a recent report, HL647Aβ40 aggregates at the same rate as unlabeled Aβ40 

in ThT assays, and fibrils formed from mixed HL647Aβ40 and HL488Aβ40 have similar 

morphology to fibrils formed from unlabeled peptide107. As with SH-SY5Y cell 

experiments, we began our study of Aβ oligomer growth and binding by ascertaining that 

freshly prepared labeled peptide contained primarily monomeric peptide. Accordingly, 

spin-coated samples were imaged in TIRF mode, and oligomer size was measured by the 
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single-molecule photobleach step counting method. Over 85% of particles bleached as 

monomers in both samples. 

 
Figure 4.2.1 Oligomer size distributions for freshly prepared HL647Aβ40 and Aβ42.  
The majority of both are present as monomer. Measurements were made in TIRF mode, 
using single-molecule photobleach step count to determine oligomer size, and 
proportions represent the averages for three separate films (N = 326, 225, and 227 
particles for HL647Aβ40; N = 522, 464, and 408 particles for HL647Aβ42). Error bars 
represent S.E.M. 

We conclude from these data that freshly prepared HL647Aβ40 and HL647Aβ42 contain 

mostly monomeric peptide. 

4.3 Neurite Autofluorescence is Negligible 

Initial studies of HL647Aβ40-treated and control primary rat hippocampal cells 

indicated cell bodies exhibited prohibitive levels of autofluorescence at single-molecule 

sensitivity settings. Neurites, however, had exceedingly low autofluorescence levels, and 

HL647Aβ40 appeared to have an extremely high affinity for these structures. 

Approximately 10 minutes’ exposure at 50 nM HL647Aβ40 produced images with too 

high a binding density for measurement of single oligomer size. Exposure concentration 

was hence titrated to produce appropriate fluorescent particle density for single molecule 

studies. We found that 10 minutes exposure at only 1 nM HL647Aβ40 resulted in 

significant binding at a low enough density for single oligomer size measurements to be 

performed.  
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To quantify autofluorescence in these experiments, we compared single oligomer 

size data from equal numbers of confocal images of neurites treated with 1 nM 

HL647Aβ40 and 1 nM unlabeled Aβ40 (Figure 4.3.1).  

 
Figure 4.3.1 Neurites treated with HL647Aβ40 or unlabeled Aβ40.  
Primary rat hippocampal cells were treated for 10 minutes with 1 nM Aβ. Overlays with 
brightfield are shown to the left, with corresponding HL647 fluorescence images on the 
right. Scale bars, 5 µm. 

While 237 particles were detected on HL647Aβ40-treated neurites, only 2 were detected 

on neurites in cultures treated with unlabeled Aβ40, and both of these had monomer-

equivalent fluorescence intensities (Figure 4.3.2).  
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Figure 4.3.2 Neurites have low autofluorescence levels. 
Analysis of 20 frames of neurites in cultures treated for 10 minutes with 1 nM 
HL647Aβ40 yielded a total of 237 diffraction-limited fluorescent particles, while only 2 
particles were detected in 20 frames from cultures treated with 1 nM unlabeled Aβ40. 

These data imply that less than 1% of detected particles in HL647Aβ-treated samples 

represent autofluorescent contamination or “false” oligomers, rendering rat primary 

hippocampal cell neurites an excellent model system for single molecule studies. 

4.4  Size Differences between Neurite and Slide-bound Oligomers  

We began our study of the population of oligomers bound to primary rat 

hippocampal cell neurites by obtaining separate size distributions for slide-bound and 

neurite-bound oligomers. As SH-SY5Y experiments provided evidence that rapid growth 

or clustering of HL647Aβ40 oligomers occurs on binding cell membranes, we 

hypothesized that similar results would be observed on neurites.   Representative images 

from these experiments are shown in Figure 4.4.1. 
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Figure 4.4.1 HL647Aβ binds both to poly-D-lysine coated slides and to neurites. 
Cultures were treated for 10 minutes with 1 nM HL647Aβ40, HL647Aβ42, or a 1:1 mix 
of the two.  Overlays with brightfield are shown to the left, with corresponding HL647 
fluorescence images on the right.  Scale bars, 5 µm. 

For both HL647Aβ40 and HL647Aβ42 nonspecifically bound to slides, around half the 

total monomer was present as monomer, and roughly 35% was present as dimers (Figure 

4.4.2). As with SH-SY5Y cell experiments (Chapter 3), larger oligomers were observed 

on-slide in physiological buffer than were detected in spin-coated, dry samples of freshly 

solubilized peptide (Figure 4.2.1). This again indicates that significant oligomer growth 

occurs for Aβ upon dilution into physiological buffers or culture media and exposure to 

surfaces. HL647Aβ40 oligomers detected on slide were slightly smaller than slide-bound 

HL647Aβ42 oligomers. The neurite-bound populations of both peptides contained 

significantly larger oligomers than the slide-bound population, with the largest proportion 

of monomer present as dimers.   
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Figure 4.4.2 On-neurite HL647Aβ40 and Aβ42 oligomers are larger than those on-slide. 
Distributions are shown as percentage of total monomer present as oligomer of each size 
for HL647Aβ40 and HL647Aβ42, nonspecifically bound to slides or bound to primary rat 
hippocampal neurites. Proportions represent the average percentage for three separate 
experiments, 20 images per experiment (Aβ40 on slide, N = 627, 301, and 281 particles; 
Aβ40 on neurites, N = 303, 218, and 237 particles; Aβ42 on slide, N = 728, 887, and 
1030 particles; Aβ42 on neurites, N = 403, 778, and 612 particles). Error bars represent 
S.E.M. 

Surprisingly, HL647Aβ42 formed slightly smaller oligomers on cells than did 

HL647Aβ40. Whereas 25% of Aβ40 monomers on the neurites had aggregated to form 

tetramers or larger, only 11% of total Aβ42 monomers fell in the same region of the 

distribution.  This may indicate that initially membrane binding has a slightly greater pro-

aggregation effect on Aβ40 than on Aβ42. This result is unexpected, given that Aβ42 has 

generally been found to aggregate more rapidly than Aβ42 and forms larger initial 

oligomers108. However, overall, the results were as predicted by our hypothesis. 

 We also examined the on-slide and on-neurite distributions of a 1:1 mixture of the 

two peptides (Figure 4.4.3). The on-neurite population interestingly contains smaller 

oligomers than the distributions for either peptide alone. For mixed on-neurite oligomers, 

80% of the peptide shows up in the monomer-dimer populations. Only 50% and 66% of 

HL647Aβ40 and 42, respectively, are present as monomers-dimers. This result is not 

unexpected, given that Aβ40 and Aβ42 have been shown to inhibit each other’s 

oligomerization109.  Perhaps more surprisingly, the size distribution of mixed oligomers 

observed on the slides is shifted towards larger oligomers as compared to what is seen for 

either peptide alone.  This may indicate that interaction with the poly-D-lysine coated 

coverslip is facilitating oligomerization of the mixed peptide, at least more so than it does 

for Aβ40 or Aβ42 individually. 
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Figure 4.4.3 On neurite 1:1 HL647Aβ40:Aβ42 are smaller than those on-slide. 
Distributions are shown as percentage of total monomer present as oligomer of each size 
for a 1:1 HL647Aβ40 and HL647Aβ42 mixture  nonspecifically bound to slides or bound 
to primary rat hippocampal neurites. Proportions represent the average percentage for 
three separate experiments for neurite-bound and 2 separate experiments for slide-bound, 
20 images per experiment (Mixed, on slide, N = 1330 and 1221 particles; Mixed, on 
neurites, N = 299 (only 15 frames), 328, and 307 particles). Error bars represent S.E.M. 

These two trends combined result in the neurite-bound population of mixed oligomers 

containing smaller aggregates than the slide-bound population.  

4.5 Oligomer Growth of HL647Aβ40, Aβ42, and a 1:1 Mix 

We assessed the stability of these distributions over time by performing 

experiments in which cultures were treated with HL647Aβ for a brief binding period (10 

minutes, as in the above experiments) and then either (a) placed back into conditioned 

media containing no Aβ, for 6 to 48 hours (“washout”) or (b) placed into conditioned 

media containing 1 nM Aβ for 6 to 48 hours (“1 nM”). Representative images for the 48 

hour time points in each culture are shown in Figure 4.5.1. 
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Figure 4.5.1 In general, on-neurite oligomer growth requires HL647Aβ in solution. 
Primary rat hippocampal cell cultures were treated for 10 minutes with HL647Aβ and 
then placed into media not containing HL647Aβ (Washout + 48 hr) or into media 
containing 1 nM HL647Aβ (48 hr @ 1 nM). Cultures were then incubated another 48 
hours prior to imaging. Overlays with brightfield are shown to the left, with 
corresponding HL647 fluorescence images on the right.  Scale bars, 5 µm. 

As experiments with model membranes have indicated that on-membrane oligomer 

growth requires the presence of solution peptide (Hao Ding, unpublished results; Chun-

Chieh Chang, unpublished results), we hypothesized that this would also be the case on 

neurites. The results of the washout experiment with each peptide individually are shown 

in Figure 4.5.2.  Neither distribution exhibits substantial changes over the course of 48 

hours without peptide in solution. Slight increases are present in the proportion of peptide 

present as monomer and dimer in the HL647Aβ40 distribution and as monomer in the 

HL647Aβ42 distribution.   
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Figure 4.5.2 HL647Aβ40 or 42 washout decreases on-neurite oligomer size. 
Primary rat hippocampal cell cultures were treated with 1 nM HL647Aβ40 or 42 for 10 
minutes, then incubated a further 6, 24, or 48 hours in media containing no Aβ. On-
neurite distributions from Figure 4.4.2 (0 hr bars) are shown for comparison. Results are 
plotted as proportion of total monomer present as oligomers of each size. Data represent 
the average of proportions from two separate experiments, 30 images per experiment 
(HL647Aβ40: 6 hr N = 141 and 155 particles; 24 hr N = 157 and 111 particles; 48 hr N 
= 222 and 258 particles. HL647Aβ42: 6 hr N = 173 and 524 particles; 24 hr N = 254 
and 255 particles; 48 hr N = 258 and 324 particles). Error bars represent S.E.M. 

This may be due to dissociation of large oligomers into monomers on the membrane once 

the solution pool of Aβ has been removed. In other words, the oligomer size equilibrium 

on the membrane is slightly perturbed by the removal of solution Aβ.  Another possible 

explanation is that larger oligomers may be more easily or quickly cleared from the 

membrane via endocytosis, shifting the distribution towards monomers over time.  As we 

observed no oligomer growth, these results are in agreement with our initial hypothesis. 

 We performed a similar experiment with a 1:1 mix of the two peptides, including 

only 24 and 48 hour time points. Interestingly, the 1:1 mixed oligomers appear to exhibit 

slight oligomer growth in the absence of solution peptide, with greater proportions of the 

total peptide showing up in the trimer and tetramer populations after 24 and 48 hours. 
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Figure 4.5.3 On neurite 1:1 HL647Aβ40:42 oligomer size increase slightly after washout. 
Primary rat hippocampal cell cultures were treated with 1 nM 1:1 HL647Aβ40:42 for 10 
minutes, then incubated a further 24 or 48 hours in media containing no Aβ. On-neurite 
distribution from Figure 4.4.3 (0 hr) is included for reference. Results are plotted as 
proportion of total monomer present as oligomers of each size. Data represent the average 
of proportions from two separate experiments, 30 images per experiment (24 hr N = 725 
and 632 particles; 48 hr N = 552 and 623 particles). Error bars represent S.E.M. 

Again, mixing the two peptides appears to cause substantial differences in behavior. 

These results may simply indicate that a 1:1 mix of the two peptides requires more time 

(hours instead of minutes) for the oligomer size distribution to reach equilibrium on the 

membrane. In other words, initial membrane-facilitated oligomerization occurs more 

slowly for the 1:1 mix of the two peptides than for either Aβ40 or Aβ42 alone.  

 We next assessed oligomer growth in the presence of 1 nM Aβ by first treating 

cells for 10 minutes with each peptide and then placing the cells back into media 

containing Aβ for 1 nM 6 to 48 hours. We anticipated that substantial on-membrane 

growth would be observed for all three of the treatment conditions. Interestingly, Aβ40 

on the membrane appears to maintain the same size distribution for at least 48 hours in 

the presence of 1 nM peptide (Figure 4.5.4). 
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Figure 4.5.4 On-neurite HL647Aβ40 or 42 oligomers grow little in 48 hours at 1 nM. 
Primary rat hippocampal cell cultures were treated with 1 nM HL647Aβ40 or 42 for 10 
minutes, then incubated a further 6, 24, or 48 hours in media containing 1 nM 
HL647Aβ40 or 42. On-neurite distributions from Figure 4.4.2 (0 hr bars) are shown for 
comparison. Results are plotted as proportion of total monomer present as oligomers of 
each size. Data represent the average of proportions from two separate experiments, 30 
images per experiment (HL647Aβ40: 6 hr N = 378 and 547 particles; 24 hr N = 469 and 
749 particles; 48 hr N = 502 and 675 particles. HL647Aβ42: 6 hr N = 392 and 521 
particles; 24 hr N = 425 and 492 particles; 48 hr N = 491 and 615 particles). Error bars 
represent S.E.M. 

HL647Aβ42, however, does exhibit some slight growth in oligomer size over this time 

period. The portion of peptide present as monomers decreases after 24 to 48 hours, while 

the proportion in tetramers, hexamers, and heptamers and larger increases.  These trends 

are consistent with the widely cited observation that HL647Aβ40 is the more slowly 

aggregating of the two versions of the peptide. 

 Possibly the most intriguing result to emerge from this set of experiments comes 

from the 1 nM time lapse 1:1 mixed peptide data (Figure 4.5.5). While changes in the 

size distribution for either peptide alone over up to 48 hours are small, the 1:1 mixed 

peptide oligomer size distribution exhibits a substantial shift towards larger structures. 

These results are deeply interesting, considering the recent observation that increases 

from the physiological 1:9 Aβ40:Aβ42 ratio can substantially decrease neuronal firing 

rate, possibly to a greater degree than Aβ42 alone110. 
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Figure 4.5.5 On-neurite 1:1 HL647Aβ40:42 oligomers are larger after 48 hours at 1 nM. 
Primary rat hippocampal cell cultures were treated with 1 nM 1:1 HL647Aβ40:42 for 10 
minutes, then incubated a further 24 or 48 hours in media containing 1 nM 1:1 
HL647Aβ40:42. On-neurite distribution from Figure 4.4.3 (0 hr) is shown for 
comparison. Results are plotted as proportion of total monomer present as oligomers of 
each size. Data represent the average of proportions from two separate experiments, 30 
images per experiment (24 hr N = 1081 and 618 particles; 48 hr N = 930 and 659 
particles). Error bars represent S.E.M. 

The oligomer population containing the largest quantity of peptide changes from dimers 

to trimers. At time zero, only 20% of the total neurite-bound peptide is present as trimers 

or larger, but after 24 hours, these larger oligomers account for 70% of the total peptide. 

 Some additional insight into the mechanisms behind these changes can be gained 

by displaying the data in a slightly different manner. The number of each oligomer 

detected per 30 images at each time point is plotted for HL647Aβ40 and HL647Aβ42 

(Figure 4.5.6). 

 
Figure 4.5.6 Average numbers of HL647Aβ40 or 42 oligomers across 48 hours at 1 nM.  
Average raw oligomers of each size per 30 frames at each time point for HL647Aβ40 
oligomers on neurites (left) and HL647Aβ42 oligomers on neurites (right) are shown, 
over 48 hours in 1 nM peptide. 
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By examining the plot for HL647Aβ40, we see that in general, the raw number of 

oligomers of each size on the membrane increases slightly over time during incubation at 

1 nM peptide. When looked at with Figure 4.5.4, these data would indicate that while the 

size distribution of small oligomers remains constant over time for HL647Aβ40, the 

overall quantity of peptide bound does not remain constant. On the contrary, for 

HL647Aβ42, the raw numbers of monomers and dimers on the membrane remain 

relatively constant within experimental error for up to 48 hours. However, increases are 

seen in the trimer and tetramer counts. The shift towards larger HL647Aβ42 oligomers 

observed in Figure 4.5.4 is therefore purely due to an increase in the number of large 

oligomers over time, not to a depletion of monomers and dimers.  

Again, however, the most interesting results are seen with the 1:1 mix of the two 

peptides (Figure 4.5.7). 

 
Figure 4.5.7 Average numbers of 1:1 HL647Aβ40:42 oligomers across 48 hours at 1 nM. 
Changes in the average raw number of each oligomer per 30 frames on neurites over time 
are shown for a 1:1 mix of HL647Aβ40:42. Cultures were incubated for 0, 24, or 48 
hours in media containing 1 nM peptide. 

The raw number of monomers bound to neurites decreases significantly over the course 

of 48 hours, and the dimer count increases slightly. Very large increases are observed in 

the numbers of trimers and larger oligomers.  The shift in overall distribution shown in 

Figure 4.5.5 can thus be partially attributed to a roughly 50% decrease in the number of 

on-neurite monomers and partially to large increases in the numbers of trimers, tetramers, 

and pentamers on the neurites. 

 In order to form final conclusions about these data, it is helpful to examine the 

total quantities of peptide bound to the neurites at each time point (Figure 4.5.8).   
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Figure 4.5.8 Total quantities of monomeric HL647Aβ present on neurites over time. 
Raw number of monomeric subunits on neurites is shown for 6 hours, 24 hours, and 48 
hours following an initial 10 minute incubation. Bars labeled with “WO” represent 
“washout” samples incubated without peptide in the media; bars labeled “@ 1 nM” 
represent samples incubated with 1 nM peptide in the media. 

Interestingly, the total quantity of peptide bound after a 10 minute incubation at 1 nM is 

equivalent for all three conditions.  Under washout and 1 nM incubation conditions, 

HL647Aβ40 and HL647Aβ42 total peptide follow similar trends: total neurite-bound 

peptide decreases significantly over time when no peptide is present in solution and 

increases slightly on incubation with 1 nM. The 1:1 mix of the two peptides, however, 

shows an unexpected increase in total peptide bound when no peptide is present in 

solution. How is this possible? One explanation may be that slide-bound 1:1 peptide 

dissociates over time, acting as a source of new solution peptide after the cultures have 

been placed into saved media that does not contain peptide.  Images shown in Figure 

4.5.9 illustrate that approximately 50% of the slide-bound 1:1 HL647Aβ40:42 oligomers 

are lost after 24 to 48 hours’ incubation without peptide in solution. Similar degrees of 

dissocation are noted for both HL647Aβ40 and HL647Aβ42 alone, but the on-slide 

oligomer density is lower for each of these (20 ± 5 oligomers per frame for HL647Aβ40 

and 44 ± 4 oligomers per frame for HL647Aβ42, versus 64 ± 2 oligomers per frame for 

the mixed peptide). 
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Figure 4.5.9 Loss of slide-bound peptide when slides are incubated after washout. 
Images of 1:1 HL647Aβ40:42 oligomers on a Poly-D-Lysine coated slide at various time 
points show that dissociation occurs. Cultures were incubated with 1 nM peptide, then 
incubated for 24 or 48 hours in peptide-free media (washout) or media containing 1 nM 
peptide. A, B, G, & H, 0 hours; C & I, 24 hours after washout ; D & J, 48 hours after 
washout; E & K, 24 hours’ incubation with 1 nM peptide; F & L, 48 hours’ incubation 
with 1 nM peptide. Scale bar, 5 µm. 

Assuming that half the slide-bound peptide dissociates into solution results in a 

concentration of approximately 2 fM 1:1 HL647Aβ40:42.  The binding affinity of the 1:1 

mixed oligomers for the membrane would have to be extremely high for the neurites to 

bind peptide under these conditions. However, the 1:1 mixed oligomers appear to 

aggregate rapidly enough on the membrane to reduce the overall number of neurite-

bound monomers over time, possibly opening up monomer “binding sites” to solution 

peptide. Additionally, possibly due to their increased size, oligomers formed from 1:1 

HL647Aβ40:42 may have unique effects on the neurite membrane composition which 

increase the Aβ-membrane affinity (enrichment in externalized phosphatidylserine, for 

instance). 

4.6 Motion of a Small Portion of Neurite-Bound Oligomers  

To obtain preliminary data on the motion of neurite-bound oligomers, 10-frame 

xyt scans were performed on cultures treated with 1 nM HL647Aβ40, HL647Aβ42, or 

HL647Aβ40:42 for 10 minutes. Kymographs were then assembled to determine whether 

oligomers exhibited significant motion over the 2 minutes during which the scans were 

acquired. Oligomers were sorted into categories based on whether they exhibited 
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significant motion. Examples of kymographs for oligomers falling in each category are 

shown in Figure 4.6.1. 

 
Figure 4.6.1 Kymographs of HL647Aβ imaged in confocal mode show oligomer motion. 
Three different neurite-bound 1:1 HL647Aβ40:42 oligomers classified according to the 
motion they exhibit over 10 sequential frames (roughly 2 minutes). Included are 
kymographs for a particle which disappears (top row), a particle which is immobile 
(middle row), and a particle which exhibits motion (bottom row). Boxes are 40 x 40 
pixels, or roughly 1.6 µm x 1.6 µm. 

Overall, 60% to 70% of particles did not exhibit detectable motion over the course 

of 10 scans (Figure 4.6.2).  This value is consistent with the proportion of cell-bound 

oligomers exhibiting “confined” motion in a recent single-particle tracking study of Aβ42 

on SH-SY5Y cells (52% to 77%, depending on type of oligomer)73. Between 10% and 

20% of particles in each sample bleached or moved out of the z-plane of the image by the 

end of the series of images, making their motion impossible to classify, and 20% to 30% 

of particles were mobile. Mobility was defined as (a) moving more than 0.25 µm within a 

1.6 µm x 1.6 µm region of interest during the image series, (b) moving out of the 1.6 µm 

x 1.6 µm region of interest over the image series, or (c) appearing to split or merge with 

another particle over the course of the image series. 
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Figure 4.6.2 Most oligomers are immobile, according to kymographs. 
Oligomers were classified by their behavior in kymographs. A total of 137 particles were 
analyzed in 4 frames of neurites treated with 1 nM HL647Aβ40. A total of 118 particles 
were analyzed in 4 frames of neurites treated with 1 nM HL647Aβ42. A total of 98 
particles were analyzed in 2 frames of neurites treated with 1 nM 1:1 HL647Aβ40:40.  

These data confirmed that a majority of detected neurite-bound oligomers remain 

motionless on a time scale of minutes but also identified a population of oligomers which 

exhibited movement.  

To further study the movement of this subset of oligomers, we performed single-

particle tracking experiments in TIRF mode. As the proportions of particles falling in 

each category were similar across the three samples, it is likely that the mechanisms of 

membrane binding and motion on the membrane do not differ among HL647Aβ40, 

HL647Aβ42, and 1:1 mixed peptide oligomers. As extensive study of neurite-bound 

particle motion is beyond the scope of this thesis, particle-tracking experiments were only 

conducted on neurite-bound HL647Aβ40 oligomers. It is expected, however, that results  

for oligomers in the other two samples will be similar. Representative TIRF images of 

neurites treated with HL647Aβ40 and unlabeled Aβ40 are shown in Figure 4.6.3.  While 

autofluorescence levels again prohibited definitive identification of HL647Aβ40 

oligomers on cell somas, autofluorescence levels on neurites were quite low.  
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Figure 4.6.3 TIRF-mode neurite autofluorescence is low.  
Primary rat hippocampal cell cultures were treated for 10 minutes with 1 nM 
HL647Aβ40 (left) or unlabeled Aβ40 (control, right). Variations in density of bound 
HL647Aβ40 particles are representative of the full range of binding density across two 
experiments. Scale bars, 5 µm. Data obtained in cooperation with Chun-Chieh (Andrew) 
Chang. 

Accordingly, analysis of particle motion was restricted to those particles identified on 

neurites. In 2 separate experiments, a total of 89 particles overlapping with a membrane 

region in the brightfield image exhibited motion; only 2 moving particles were detected 

that were not obviously associated with a neurite. Example trajectories for three mobile 

neurite-bound HL647Aβ40 oligomers are shown in Figure 4.6.4. Of total particles 

detected bound to neurites in the initial frames of 3 separate films, 17% ± 3% of particles 

exhibited motion (N = 37, 34, and 45 total oligomers, error is standard deviation). This 

result is slightly lower than the expected proportion of mobile particles from confocal 

mode imaging kymographs (Figure 4.6.2) but is consistent with the observation that the 

majority of bound particles do not exhibit detectable motion on a seconds-to-minutes 

time scale.  
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Figure 4.6.4 TIRF mode trajectories for HL647Aβ40 oligomer in motion on neurites. 
Time-stamped stills from TIRF-mode films of neurite-bound HL647Aβ40 oligomers 
illustrate the motion of three different particles (A, B, and C). The first image in each 
sequence is an overlay of brightfield (DIC) and the first frame of the film, with 
HL647Aβ40 oligomer shown in red. For the following fluorescence images, the particle’s 
overall trajectory over the course of the sequence is shown in red. Frames are time-
stamped in seconds. Data obtained in cooperation with Chun-Chieh (Andrew) Chang. 

Particles in motion generally exhibited trajectories aligned with the membrane of the 

neurite to which they were bound, with many reversals of direction. Example trajectories 

are shown in Figure 4.6.4.  We note that many of the plotted trajectories appear 

unidirectional at first glance, but this has much to do with the restrictive tubular geometry 

of the neurites. On closer examination, for instance, the trajectory of the particle in the 

bottom row of Figure 4.6.4 records significant motion perpendicular to the neurite axis as 

well as parallel to it. Trajectories were plotted and diffusion coefficients were obtained 

for a total of 83 neurite-bound HL647Aβ40 oligomers (Figure 4.6.5). While we note that 

these values are likely 25-50% lower than the actual diffusion coefficients, due to the 

effects of projecting cylindrical trajectories onto a flat plane111, they are useful in terms of 

classifying the motion of the particles and placing their movement in context with 

previous Aβ oligomer tracking studies.  
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Figure 4.6.5 Cumulative probability plot and histogram for HL647Aβ40 oligomers. 
A total of 83 neurite-bound HL647Aβ40 exhibited motion in 14 TIRF-mode films. 
Diffusion coefficients were obtained from a LabView program written by Chun-Chieh 
(Andrew) Chang. 

The median diffusion coefficient for neurite-bound HL647Aβ particles was 0.044 

µm2 per second. This value is in good agreement with a median diffusion coefficient 

obtained for  extrasynaptic Aβ42 oligomers by Renner and colleagues (0.0341 µm2 per 

second) 67. It is an order of magnitude higher than that recently measured by Calamai and 

Pavone (0.0040 µm2 per second)73, but Calamai and Pavone included highly “confined” 

oligomers in their data set, which by and large exhibited very slow diffusion. 

Interestingly, examination of the histogram in Figure 4.6.5 reveals two peaks, one located 

at 0.01 to 0.08 µm2 per second and one at 0.1 to 0.2 µm2 per second. It is possible that 

these two peaks represent two distinct populations of oligomers which interact with the 

membrane in different ways. Fast-moving oligomers may represent freely diffusing 

particles that are loosely associated with the outer leaflet of the lipid bilayer. The slower-

moving population may represent oligomers which are actually inserted into the bilayer 

and therefore exhibit restricted diffusion. The diffusion coefficients of this group are 

similar to those measured for a number of other membrane integral proteins and receptors 

using the single-particle tracking method 112–114.  However, more statistical power would 

be required to determine whether these peaks truly represent two distinct populations. 
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Figure 4.6.6 Mean-square displacement (MSD) vs. time plots for moving oligomers. 
HL647Aβ40 oligomers in motion were classified as exhibiting Brownian diffusion, 
confined diffusion, or directed motion plus diffusion by their individual MSD vs. time 
plots. Particles were classified based on whether MSD vs. time plot (a) aligned with the 
linear plot predicted for Brownian motion (Brownian), (b) plateaued underneath the 
linear plot (confined or corralled motion) or (c) sloped upwards from the linear plot 
(directed motion in combination with diffusion). MSD plots for each type of particle were 
then averaged and plotted along with the linear MSD vs. time curve predicted by the 
mean diffusion coefficient of the group. Error bars represent S.E.M. 

We plotted mean-square displacement (MSD) versus time curves to fully 

understand the modes of diffusion exhibited by the particles115 (see Section 2.5.12 for 

details). We found that of 71 particles with trajectories long enough to be included in the 

analysis, 80% exhibited MSD versus time plots characteristic of Brownian or 

confined/corralled motion. Only 20% of oligomers exhibited directed motion (far right 

plot in Figure 4.6.6). These particles may represent endocytosed oligomers being actively 

transported within neurites, as proposed by Calamai et al73. Average velocities for this 

population were measured over at least 8 seconds (mean trajectory length 20.9 seconds, 

or 70 frames). Interestingly, average velocity values for these particles fell in the range of 

0.05 to 0.5 µm/s, with a mean value of 0.25 µm/s. If these oligomers are being actively 

transported, their motion lies on the slow end of a fairly wide range of observed rates for 

axonal transport (0.01 µm/s to 3 µm/s)116 and is roughly an order of magnitude slower 

than has been observed for axonal vesicular transport in rat neurons117. 

Half of the analyzed particles exhibit MSD plots characteristic of confined or 

corralled motion. Plateau level of MSD plots has in the past been used as an estimate of 

corral size115,118. Examination of the middle plot in Figure 4.6.6 indicates that mean corral 

size for detected “confined” oligomers is roughly 0.8 microns, or 900 nm on a side if a 

region of particle confinement is modeled as a square. This confinement is likely partially 
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a result of particles’ diffusion being restricted to the flat projection of the neurite 

membrane. Neurites in these experiments range from under 200 nm in diameter to nearly 

2 µm. However, other factors are also likely contributors. Recent years have seen the 

emergence of a new model of the cell membrane as a “partitioned” fluid bilayer, as 

multiple investigators have obtained evidence of diffusional barriers for membrane-

integral proteins in cell membranes112,118.  Posited corrals have dimensions ranging from 

tens of nanometers to over a micron. Such restriction to diffusion may result from 

molecular crowding in the membrane112, presence of micro- or nanodomains118, or 

interaction of bilayer-spanning proteins with other protein complexes or cytoskeletal 

networks113,119.  Thus, if oligomers actually insert into the lipid bilayer, as discussed 

above, they have a high probability of exhibiting this type of restricted diffusion.   

As less than 100 particles were classified, and classification of diffusion mode 

was performed by eye, we note that these results are preliminary in nature. In order to 

determine whether the observed MSD plots actually represent atypical diffusion modes, 

simulations could be performed to generate MSD vs. time plots for a similar number of 

particles taking “random walks” on tubular membranes. If similar numbers of particles 

exhibiting “confined” and “directed” motion were observed in such a simulation, we 

could conclude that these plots merely represent statistical deviation about a linear 

(Brownian) MSD vs. time plot, rather than particles exhibiting true confinement or 

directed motion.  

4.7 Oligomers Do Not Exhibit Synapse-Localized Binding 

A number of groups have observed that Aβ oligomers localize to synapses34,67,120. 

Importantly, most of these studies have been performed using anti-Aβ oligomer antibody 

to label endogenous Aβ aggregates or by applying oligomers which have been prepared 

in vitro to cultured cells. Whether the large cell-bound Aβ oligomers observed in vivo 

form directly from Aβ in solution or are seeded by dissociation from fibrils is unknown. 

The relationship of physiological concentrations of soluble, low-molecular weight Aβ 

aggregates to these synaptically targeted larger aggregates is therefore poorly understood. 

To determine whether small oligomers formed on the membrane from freshly prepared 
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HL647Aβ40 and HL647Aβ2 bind preferentially to post-synaptic membranes, neurites 

treated with 5 nM peptide were stained for PSD-95, a post-synaptic membrane marker 

protein, or for Aβ (as a positive control) (Figure 4.7.1). 

 
Figure 4.7.1 Neurite-bound HL647Aβ  does not colocalize with PSD-95. 
Primary rat hippocampal cell cultures were treated for 10 minutes with 5 nM 
HL647Aβ40 or HL647Aβ42 (red) and then stained for the post-synaptic membrane 
marker protein PSD-95 (green). A, HL647Aβ40 + anti-PSD-95; B, HL647Aβ42 + anti-
PSD-95; C, HL647Aβ40 only (negative control); D, HL647Aβ42 only (negative control); 
E, HL647Aβ40 + anti-Aβ (positive control); F, HL647Aβ42 + anti-Aβ (positive control); 
G, anti-PSD-95 + unlabeled Aβ40 (negative control); H, anti-PSD-95 alone (negative 
control). Regions of colocalization appear yellow. Scale bar, 5 µm. 

While significant colocalization is observed for neurites treated with HL647Aβ and 

stained with an anti-Aβ antibody, comparatively little overlap is visible between PSD-95 

and HL647Aβ. This data does indicates that small oligomers formed at physiological 

concentrations of HL647Aβ do not preferentially bind to synapses. 

 If HL647Aβ is binding to a specific pre-synaptic or post-synaptic membrane 

protein or receptor, it might be expected to bind differentially to a particular type of 

neurite, e.g. to exhibit a preference for dendrites over axons or vice versa.  Surface 

density of certain posited Aβ receptors or target proteins is site-specific, with mGluR5, 

NMDA receptors, and cellular prion protein all more strongly concentrated on dendrites 

or at the post-synaptic membrane than on axons65,121,122. To determine whether HL647Aβ 

oligomer binding was stronger on axons or dendrites, we assessed bound oligomer 
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density on neurites treated with 1 nM HL647Aβ and then stained with specific markers 

for axons and dendrites (Figure 4.7.2). 

 
Figure 4.7.2 Neurites treated with HL647Aβ and stained for axons and dendrites. 
Primary rat hippocampal cell cultures were treated for 10 minutes with 10 nM 
HL647Aβ40 or HL647Aβ42 (red) and then stained for the axonal marker neurofilament 
(NF, blue) or the dendritic marker MAP2 (green). Brightfield and HL647Aβ overlays are 
shown on the left, and HL647Aβ, MAP2, and NF overlays are shown on the right for 
each image. Scale bar, 5 µm. 

HL647Aβ oligomer binding density per length was then measured on axons and 

dendrites. The values were compared to determine whether oligomers exhibited any 

preference for one type of neurite over the other. Results were normalized and plotted in 

Figure 4.7.3.  
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Figure 4.7.3 Oligomer density is slightly higher on dendrites than on axons. 
HL647Aβ40 and HL647Aβ42 oligomer density is only slightly higher on  dendrites as 
compared to axons. Oligomer density per micron of neurite was assessed in 30 images of 
neurites treated with either HL647Aβ40 or HL647Aβ42, then stained with anti-MAP2 
(dendritic marker) and anti-NF (axonal marker). Results were then normalized to 
oligomer density on axons. Images containing no axon-bound or dendrite-bound 
oligomers were excluded from analysis. Error bars represent S.E.M. across images for 
each experiment (Aβ40 on axons, N = 23 images; Aβ40 on dendrites, N = 19 images; 
Aβ42 on axons, N = 20 images; Aβ42 on dendrites, N = 17 images). 

Both HL647Aβ40 and HL647Aβ42 oligomers bound to dendrites at slightly 

higher density than to axons. No significant difference is observed between the results for 

the two peptides. This implies that if HL647Aβ40 and HL647Aβ42 bind to different sites 

or receptors on neurites, these binding sites must have very similar distributions on the 

cell. Furthermore, these results indicate that binding sites for the peptide are present on 

both axonal and dendritic processes. If oligomers are binding to a specific membrane 

protein rather than directly to the lipid bilayer, this “receptor” must be present at nearly 

equivalent levels on both types of neurites. A more plausible explanation is that 

HL647Aβ40 and HL647Aβ42 oligomers bind directly to the lipid bilayer and that small 

differences in membrane composition and morphology between axons and dendrites 

result in the slight preference of the oligomers for dendrites over axons. Oligomers may 

also be exploiting more than one binding mechanism. For instance, a large population 

may be binding at fairly uniform density to the lipid bilayer of all neurites, with a smaller 

subpopulation (5% to 10% of particles) binding to a specific postsynaptic membrane 

protein, present only on dendrites.  

These results do not eliminate the possibility that Aβ oligomer neurotoxicity is 

mediated by interference with a specific membrane protein. They do, however, suggest 
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that any functional changes in membrane integral receptors of neurons exposed to the 

oligomers may be triggered indirectly, by changes in the structure of the local membrane, 

consistent with the explanation of Li, et al.32 In other words, oligomer binding may occur 

generally and nonspecifically, but toxic effects may be restricted to certain sites in the 

cell (e.g., synapses). Further studies will be necessary to determine which specific 

hypothesis best explains these data.  

4.8 Future Work: Functional Effects of Aβ on Neurons 

Aβ has been shown to have deleterious effects on multiple aspects of cell 

physiology in the brain. Application of Aβ to cultured cells has been shown to decrease 

dendritic spine density35,123, and expression of human Aβ in rodent brain also results in 

lowered spine number101,100.  The potential of single molecule microscopy in the context 

of these observations is that by expressing fluorescent proteins localized to the cytoplasm 

and studying neurite-bound oligomers, it may be possible to identify particular Aβ 

oligomers associated with the loss of specific spines. Obtaining meaningful results from 

such experiments would require extensive exploration of the parameter space involved. 

We have, however, begun to develop neuronal experiments in this direction by 

transfecting primary rat hippocampal neurons with eGFP and examining spine density 

after treatment with freshly prepared Aβ42. Results were only obtained on a small 

number of cells (n = 1 per treatment group in each of 2 separate experiments) and are 

preliminary in nature. Representative data are shown in Figure 4.8.1. 
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Figure 4.8.1 Example data in an assay for Aβ42-induced reductions in spine density.  
Primary rat hippocampal cell cultures were transfected with eGFP on DIV 12 and 
incubated in 100 nM freshly prepared unlabeled Aβ42 in media (images at left) or 
vehicle-treated media (images in center). eGFP-labeled neurites were then imaged in 
confocal mode and spine density was assessed. Example data is shown for one 
experiment (one cell per condition). Error bars represent standard deviation across images 
in each sample (n = 5 images in each sample). Total dendrite length analyzed was 999 
µm for vehicle, 994 µm for Aβ42. 

Even were this data replicated with a larger sample size, the observations would not be 

novel, as Smith et al. obtained nearly identical results123. These results do, however, 

demonstrate that examining HL647Aβ oligomer binding and dendritic spine density in 

parallel should be feasible for our group.  

 Disruption of neuronal or astrocytic calcium homeostasis has also been widely 

cited as a primary mechanism for Aβ neurotoxicity. Most recently, two groups separately 

observed that the regions around amyloid plaques in the brains of Alzheimer’s model 

mice contain increased numbers of both hyperactive neurons124, and of hyperactive 

astrocytes125, as measured by calcium transient frequency.  Events termed “intercellular 

calcium waves”, oscillations or waves of increased intracellular calcium which move 

through sequential regions of astrocytes within a network, were also observed in 

astrocytes125. To assess Aβ effects on cultured primary rat hippocampal cell calcium 

homeostasis, we loaded cultures with the calcium indicator Fluo4-AM and imaged cells 

before and after treatment with Aβ.  Results (not shown) were difficult to interpret and to 

quantify due to the cultures’ sensitivity to fluid addition and due to the high frequency of 
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spontaneous calcium transients. We did however observe an enhanced level of wavelike 

increases in indicator fluorescence moving across the cultures following addition of Aβ. 

Coincidently, Riera and colleagues have recently developed a method for describing and 

quantifying these phenomena126. Correlating such increases with the presence of specific 

HL647Aβ oligomers on cells could prove an interesting direction for further study.  

4.9 Chapter Summary 

Primary neurons provide opportunities to explore questions about the size and 

evolution of Aβ oligomers on neuronal membranes, the motion of these oligomers, and 

the sites to which they bind. We demonstrate here that primary hippocampal cell neurites 

are a suitable system for single-molecule microscopy, with very low autofluorescence 

levels in the red region of the spectrum. We show that HL647Aβ40 and Aβ42 oligomers 

on neurites, as on neuroblastoma cells, are significantly larger than oligomers that bind 

nonspecifically to slides, while neurite-bound oligomers formed from a 1:1 mix of the 

two peptides are smaller than the slide-bound population. Furthermore, we demonstrate 

that while neurite-bound size distributions change little in the absence of peptide, with 1 

nM Aβ in solution, neurite bound oligomers grow to varying degrees within 24 to 48 

hours. Degree of growth is dependent upon the identity of the peptide, with HL647Aβ40 

oligomers remaining the same size, HL647Aβ42 oligomers growing very slightly, and 

1:1 mixed oligomers exhibiting a substantial increase in oligomer size over time. We 

examine the motion of these oligomers and show that while most remain immobile, 

roughly 20% of neurite-bound species exhibit motion on the neurites. Colocalization 

studies illustrate HL647Aβ40 and HL647Aβ42 oligomers formed on the membrane do 

not localize to synapses and exhibit only a slight preference for dendrites over axons. 

Finally, spine density assays and calcium indicator experiments are discussed as potential 

methods for linking toxicity with specific neurite-bound oligomers. These may be 

promising directions for the future of this project. 
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Chapter 5  
 

  Discussion and Conclusions 

5.1 Introduction 

Physiologically meaningful experiments on Aβ binding to live cells and the 

resulting toxicity have historically been difficult due to low endogenous concentrations of 

the peptide, the dynamic nature of Aβ aggregates, and the complex nature of Aβ 

interactions with biological membranes. Emerging single molecule techniques represent 

one avenue for overcoming these barriers. Here, we adapt a conventional confocal laser 

scanning microscope to perform single molecule measurements on slide-localized and 

cell-bound single Aβ40 and Aβ42 oligomers. By optimizing our imaging parameters, we 

identified a linear regime in which integrated intensity level for a given volume element 

was directly proportional to number of molecules present. We confirmed the accuracy of 

this method by another technique commonly used for measuring oligomer size, total 

internal reflection fluorescence (TIRF) single molecule photobleaching83,127.  

Using this calibration, we find that HL647Aβ rapidly forms oligomers in the 

trimer to hexamer range upon dilution to low nanomolar concentrations in physiological 

buffers and exposure to surfaces. Importantly, our treatment did not utilize harsh 

solvents, unnaturally high peptide concentrations, or chemical modification of oligomer 

structure, and our initial freshly prepared Aβ40 and Aβ42 samples for all experiments 

contained over 80% monomers (Figure 3.5.3, Figure 3.8.1, Figure 4.2.1).  

SH-SY5Y neuroblastoma cells proved to be a suitable cell line for development of 

live-cell single molecule imaging techniques. While high autofluorescence levels in the 

blue region of the spectrum prohibited identification of cell-bound HL488Aβ oligomers, 

endogenous fluorescence at the red wavelengths was sufficiently low for single 

HL647Aβ detection.  Primary hippocampal cell neurites, as well, had extremely low 

autofluorescence.   
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Occasional very high-intensity fluorescent structures are visible in our images of 

SH-SY5Y cells and of primary neurites (Figure 3.4.1, Figure 4.5.1). These probably 

represent peptide aggregates containing many more than 20 monomers.  Such large 

species have not been rejected as possible mediators of Aβ toxicity (see Chapter 1 for a 

complete discussion). However, given the relative rarity of these species and the lack of 

obvious morphologic abnormalities in the cells to which they are bound, we focused our 

analysis on oligomers of measurable size.  

5.2 HL647cAβ40 Binding to SH-SY5Y Cells 

SH-SY5Y cells exposed to 50 nM HL647cAβ both bind the peptide and 

internalize it, as previously reported27,91. For HL647cAβ42, the level of internalization 

and the sizes of the few detected cell-bound aggregates were determined to be too large 

for single-molecule studies to be practical. Accordingly, we limited our quantitative study 

of SH-SY5Y cell-associated Aβ to cell perimeter-localized HL647cAβ40 particles.   

Significantly, cell-bound HL647cAβ40 oligomers include a small number of 

aggregates (roughly 10%) that are greater in size than the largest particles present on 

slides (Figure 3.6.1). Decreases of approximately 20% in both monomers/dimers and 

trimers/tetramers are observed on cells as compared to the on-slide data. These decreases 

reflect a 140% increase in pentamers/hexamers and an 8-fold increase in heptamers to 14-

mers. The largest “oligomers” may simply be smaller aggregates clustered in specific, 

high-density peptide binding domains. Alternatively, these structures may represent large 

oligomers formed from the on-membrane association of several slow-moving, smaller 

oligomers or from addition of single monomers to bound oligomers.  Our recent data 

indicates that at low (2 nM) Aβ40 concentrations, oligomers form slowly on supported 

anionic lipid bilayers from self-association of diffusing monomers. However, at 100 nM, 

large oligomers appear much more quickly (within 2 hours), which may indicate that 

small oligomers binding directly from solution can recruit other species both from 

solution and from on the membrane (Hao Ding, unpublished observations).  

We found no evidence for a rapidly diffusing, uniformly distributed population of 

monomers and dimers on SH-SY5Y cells.  However, if the binding of mobile labeled 
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monomers to the membrane surface is nonuniform, or densities are lower than 

approximately 1 monomer per 3 µm2, our analysis will not detect such monomers above 

cellular autofluorescence. Nag et al. recently reported the presence of diffusible, 

membrane-bound fluorescein-labeled Aβ40 on PC12 cells exposed to near-physiological 

peptide concentrations72. Our laboratory has also observed uniformly bound pools of 

diffusible Aβ40 at densities up to 5 to 8 monomers per µm2 on synthetic lipid bilayers70. 

This disparity may result from our use of a different cell line and a lower concentration of 

Aβ40 than Nag et al. (50 nM vs. 150 to 350 nM) and from differences in membrane 

composition between living cells and model membranes.  

The majority of cell-bound oligomers appear to be immobile on a time scale of 

several seconds. This immobility is likely related both to the limited temporal resolution 

of confocal mode imaging and to Aβ40 binding or insertion sites on the membrane, a 

number of which are discussed in Chapter 1 of this thesis55,56,58,61,62. Aβ oligomers may 

bind to specific lipid microdomains, such as regions enriched in externalized 

phosphatidylserines55, cholesterol-rich regions58, or lipid rafts56. Whether such 

mechanisms would preclude detectable diffusion of cell-bound Aβ in confocal mode is 

unclear. Lipid microdomains are dynamic nanoscale structures128, with lipid confinement 

times in the tens to hundreds of milliseconds. High-affinity Aβ40 binding to such sites 

may stabilize microdomains, possibly by interacting with intracellular anchor proteins. 

Another likely explanation is that oligomers bind to or associate with specific membrane-

integral proteins or receptors30,61,62,68 that are temporarily restricted to specific locations 

within the cell membrane129,130, immobilizing the Aβ within an area small enough that 

positional fluctuations are difficult to detect by the methods used here.  Some of these 

receptors are expressed in SH-SY5Y cells and could be the binding sites of the small 

oligomers we observe on cells (e.g. NMDA NR1131, α7nAChR132, and EphB2133).  

Substantial evidence supports the hypothesis that Aβ-induced toxicity stems from 

the formation of calcium-permeable Aβ pores in cell membranes. Interestingly, treatment 

of SH-SY5Y cells with 50 nM fresh unlabeled Aβ40 or HL647Aβ40 and with similar 

Aβ42 concentrations results in minimal, sporadic calcium leakage (Figure 3.8.1, Section 

3.10). Superficially, these findings may seem contrary to the massive, immediate calcium 

influxes observed by other groups26,51,97. However, such studies have in general been 
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performed at micromolar Aβ42 concentrations55,97 or using Aβ42 prepared with solvents 

known to destabilize membranes26,29.  Our own studies of Aβ40-liposome interactions 

indicate that membrane binding and permeabilization occur in separate stages and depend 

on distinct membrane characteristics76. The low-level calcium leakage seen here may 

simply reflect how extracellular Aβ at physiological levels interacts with healthy cell 

membranes.  

5.3 HL647Aβ on Primary Rat Hippocampal Cell Neurites 

 

Similarly to HL647Aβ40 oligomers detected on SH-SY5Y neuroblastoma cells, 

neurite-bound HL647Aβ40 and HL647Aβ42 oligomers were significantly larger than 

those detected on slides. Interestingly, exposing the neurites to 1 nM HL647Aβ for only 

10 minutes produced binding at an appropriate density for single-molecule experiments, 

implying that the peptide has a higher affinity for neurites than for SH-SY5Y cell somas. 

These results are in line with those acquired by Renner et al., who were able to visualize 

single neuron-bound particles after only 5 minutes’ exposure to 20 nM Aβ oligomers67. 

The neurite-bound HL647Aβ40 size distribution at this early stage unexpectedly contains 

larger oligomers than that of HL647Aβ42; fully 25% of the total HL647Aβ40 monomers 

present on cells are part of tetramers or larger, while only 11% of HL647Aβ42 monomers 

are contained in oligomers of this size (Figure 4.4.2).  When samples with peptide bound 

were incubated for up to 48 hours without peptide in solution, both distributions shifted 

very slightly towards smaller oligomers, but the above imbalance remained (Figure 

4.5.2). The total quantity of peptide bound decreased significantly over the course of 48 

hours following washout for neurites treated with  HL647Aβ40 or HL647Aβ42 alone 

(Figure 4.5.8). These results would indicate that one or more of the following processes 

are occurring: (1) reversible binding (oligomers are released into solution when solution 

Aβ is low), (2) preferential clearance of large oligomers are from the cell surface over 

time, and/or (3) dissociation of large oligomers into smaller ones on the cell membrane.  

When neurites treated with either peptide were incubated for a further 6 to 48 

hours with 1 nM peptide in solution, no significant changes were observed in the 
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HL647Aβ40 distribution (Figure 4.5.4), implying that Aβ40 oligomers on the membrane 

reached a stable size equilibrium and were in equilibrium with oligomers in solution 

within minutes of binding. For HL647Aβ42, a slight shift towards larger oligomers was 

observed over the same time scale.  After 24 to 48 hours in solution at 1 nM HL647Aβ42, 

20% to 25% of the monomeric peptide is contained in the tetramers-and-larger 

population. These results would seem to indicate that while the two peptides reach a 

similar oligomer size equilibrium on the membrane eventually, Aβ42 requires hours-to-

days to reach this equilibrium, while for Aβ40, membrane-catalyzed oligomer growth 

occurs within minutes upon binding to membranes. Aβ42 typically forms larger 

oligomers in solution than Aβ40—hexamers and dodecamers of Aβ42 are observed, 

whereas Aβ40 populates oligomeric states ranging from monomers to tetramers8,108. The 

contrast between these results implies that oligomerization on membranes proceeds 

through different pathways than oligomerization in solution, as proposed by Zhang et 

al.47 

Both peptides exhibited small increases in the total amount of peptide bound on 

this time scale with 1 nM peptide in solution (Figure 4.5.8). These observations are 

consistent with the theory that Aβ oligomer growth on membranes requires the presence 

of solution Aβ, a trend we have observed in our single-molecule studies of Aβ oligomers 

on planar model membranes (Hao Ding and Chun-Chieh Chang, unpublished 

observations). 

The most interesting size distribution dynamics in this study were observed for 

oligomers formed from a 1:1 mix of HL647Aβ40 and HL647Aβ42. To begin with, slide-

bound oligomers in the 1:1 mix were larger than those detected on the surface for either 

peptide alone (Figure 4.4.2, Figure 4.4.3); dimers constituted the largest percentage of 

total peptide in this sample (39%) whereas for HL647Aβ40 and HL647Aβ42 

individually, the largest proportions were present as monomers (53% and 45%, 

respectively). Conversely, initial neurite-bound oligomers were smaller than both those 

bound to the slide and oligomers of either peptide alone on neurites (Figure 4.4.3), with 

only 5% of the peptide forming tetramers or larger. Unexpectedly, oligomer growth was 

observed on neurites over 24 to 48 hours even when the solution peptide was ostensibly 

gone (Figure 4.5.3).  The total quantity of peptide bound to neurites increased in the 
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apparent absence of solution Aβ (Figure 4.5.8).  This result might be explained by 

recruitment of slide-bound peptide into solution (dissociation of slide-bound Aβ from the 

slide) over the course of the hours following the initial 10-minute incubation. The 

observed increase in neurite-bound peptide could then occur if 1:1 oligomers bound to 

the membrane with extremely high affinity. Such an interpretation is consistent with the 

observation that over 24 to 48 hours at 1 nM, twice as many total monomeric peptide 

units bind to the neurites of cells treated with a 1:1 mix as compared to cells treated with 

either peptide alone (Figure 4.5.8). Significantly, when incubated for 24 to 48 hours in 

the presence of 1 nM 1:1 HL647Aβ40:Aβ42, oligomers grow substantially, with over 

40% of the total peptide eventually existing in tetramers or larger structures (Figure 

4.5.5). 

Recent surface plasmon resonance experiments have indicated that Aβ40 and 

Aβ42 bind to each other, albeit more weakly than either peptide self-associates134. In the 

same study, Aβ40 was demonstrated to slow Aβ42 fibril formation, with fibrillization 

proceeding at the same rate for both peptides in a 1:1 mix of the two. These results were 

interpreted as strong evidence for formation of mixed fibrils. Another group also recently 

showed that incubating Aβ40 at a 1:1 ratio with Aβ42 inhibits Aβ42 fibril formation, but 

the authors of the study explicitly state that formation of high-order prefibrillar structures 

is not slowed135. Conclusive evidence for mixed oligomer formation has not to our 

knowledge been previously demonstrated, decidedly not at physiological concentrations 

(1 nM). However, the most logical explanation for our current results is the formation of 

hetero-oligomers of the two peptides.  The data presented in the plots in Chapter 4 is 

summarized in Table 5.3.1; mean oligomer size for each distribution is listed to simplify 

comparison of the samples.  

Table 5.3.1 Mean oligomer sizes (in monomeric subunits) over time.  
Peptide On slide On neurites (initially) Washout, 48 hr 48 hr @ 1 nM 

Aβ40 1.38 2.19 1.91 2.22 

Aβ42 1.44 1.87 1.53 2.04 

1:1 Mix 1.87 1.57 1.86 2.87 
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Mixed peptide forms smaller oligomers on neurites and larger ones on the slide, 

but either peptide alone forms larger neurite-bound oligomers than those it forms on the 

slide. This result again demonstrates that oligomerization in solution proceeds along a 

distinct biophysical pathway in solution as compared to on surfaces. While neurite 

membrane appears to catalyze the formation of larger oligomers (or selectively bind 

larger oligomers) for each peptide individually, it initially has smaller oligomers of the 

1:1 mix. However, the total initial quantities of all three peptide combinations bound 

following 10 minutes at 1 nM are equivalent within experimental error. A mechanism in 

which monomers and dimers of the peptides bind to the neurites at the same initial rate 

but have dissociation constants, oligomer growth rates, and clearance rates dependent 

upon the peptide identity would explain this (Figure 5.3.1).  Perhaps on-neurite growth 

proceeds very rapidly—within minutes—to a stable size equilibrium for Aβ40 and to a 

lesser degree, for Aβ42, but formation of larger oligomers on the membrane is quite slow 

for the mixed peptide, translating to a longer incubation period for reaching equilibrium. 

The increased size of the mixed oligomers once equilibrium has been reached may 

indicate that the cell’s ability to clear large mixed oligomers is reduced as compared to 

aggregates of either peptide separately. This reaction scheme is almost certainly 

oversimplified in comparison to the real interactions but is useful in interpreting our 

observations.   
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Figure 5.3.1 Binding and on-membrane oligomerization schematic for HL647Aβ. 
A kinetic explanation is proposed for observed oligomer interactions with neurite 
membranes. Kd, dissociation constant for initial binding to membrane; Kd2, dissociation 
constant for on-membrane oligomerization; kon, rate constant for monomers and dimers 
binding to membrane; koff, rate constant for monomer and dimer dissociation from 
membrane; kolig, rate constant for on-membrane oligomerization; kdeol, rate constant for 
“deoligomerization” (a group of processes including dissociation of large oligomers into 
small ones, dissociation of oligomers from the membrane, and cellular clearance of 
membrane-bound oligomers). 

Understanding the functional effects of these oligomers over time will require 

further study. Jan and colleagues observed higher viability levels in rat cortical neurons 

treated with a 1:1 mix of initially monomeric Aβ40 and Aβ42 than with equimolar 

amounts of either peptide alone, but these studies were performed at 10 µM peptide 

(10,000 times the level used here) and did not assess subtle measures of 

neurophysiology135.  More recently, Kuperstein et al. treated neurons with 1 µM peptide 

for only 2 hours and demonstrated that under these conditions, a 3:7 ratio of Aβ42 to 

Aβ40 reduced neuronal firing rate to a greater degree than Aβ42 alone110. If oligomer 

neurotoxicity or modulation of synaptic function increase with oligomer size, as some 
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have suggested25,31, the current results might help explain the observations of Kuperstein 

and colleagues.  

We do not observe initial binding of Aβ40 or Aβ42 at low nanomolar 

concentrations to be synaptically localized (Figure 4.7.1), and on-neurite oligomers are 

only slightly more densely distributed on dendrites than on axons after a 10 minute 

exposure (Figure 4.7.2). While a number of studies have reported that Aβ preferentially 

binds to synapses34,67,120, these have all to our knowledge utilized pre-aggregated 

oligomers or stained for endogenous oligomers in model mice, using an anti-oligomer 

antibody. These studies may therefore overlook low-molecular weight oligomers formed 

in contact with the membrane, the behavior of which is the focus of the current work. The 

oligomers described here may represent precursor structures to pre-aggregated oligomers 

or a structurally distinct set of Aβ aggregates which can only form in contact with 

neuronal membranes.  We note, however, that confocal mode kymographs (Figure 4.6.1, 

Figure 4.6.2) identified a small portion of neurite-bound oligomers which are mobile 

(20% to 30%) and that migration of these oligomers to cell membrane regions containing 

specific receptors or even to synapses could occur given sufficient time. Diffusion 

coefficients measured here for HL647Aβ40 oligomers are consistent with those recently 

reported for pre-aggregated HL647Aβ42 oligomers on primary neurons67.  Renner et al. 

reported increased oligomer confinement, clustering, and binding to mGluR5 receptors 

over time.  Further experiments will be necessary to determine whether similar 

phenomena are occurring in our system but are beyond the scope of the current study.  

The work presented here points to a mechanism by which, at physiological 

concentrations, very small Aβ oligomers bind to the membrane and grow on the 

membrane over time, with kinetics dependent upon the local Aβ42:Aβ40 ratio (Figure 

5.3.2).  



 

 91 

 

 
Figure 5.3.2 Mechanism for oligomer formation and toxicity at low concentrations.  
At physiological Aβ concentrations, addition of solution subunits to small membrane-
bound oligomers likely leads to formation of larger potentially neurotoxic oligomers over 
time.  Our data indicates that Aβ42:40 ratio may affect the kinetics of this process. 

Such oligomers may gradually localize to synapses and interfere with function of 

specific membrane proteins or aggregate further to directly form toxic pores in biological 

membranes. Recent work in our laboratory has demonstrated that oligomers must contain 

at least 6 monomeric subunits of Aβ40 to induce significant conductivity in model 

membranes70, and the quantities of such structures observed on the time scales examined 

here are minimal and probably result in only subtle changes to neuronal function.  

Preliminary assessments of Aβ42 effects on spine density (Figure 4.8.1) and neuronal 

calcium homeostasis in cultured neurons can be considered groundwork for future studies 

combining single-molecule oligomer size measurement with these techniques.  

5.4 Conclusions 

We have developed a single-molecule microscopy method for the measurement of 

fluorescently labeled Aβ oligomers on living cells. We use the integrated intensity of 

individual particles to determine oligomer size and show that oligomers of HL647Aβ40 

and Aβ42 grow on cell membranes, with kinetics dependent on peptide identity. We 

demonstrate that while most oligomers are confined, some do exhibit motion and that 

these oligomers do not initially preferentially associate with synapses. These results 

provide new insight into the dynamics and mechanism of Aβ binding and oligomer 
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formation on membranes at physiological concentrations. They also provide a foundation 

for future studies into the time, concentration, and Aβ42:Aβ40 ratio dependence of 

oligomer growth and the correlation of these factors with neurotoxicity. 
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