

Safe and Efficient Robot Action Choice Using Human Intent Prediction in Physically-

Shared Space Environments

by

Catharine L. R. McGhan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Aerospace Engineering)

in the University of Michigan

2014

Doctoral Committee:

Associate Professor Ella M. Atkins, Chair

Assistant Professor James W. Cutler

Professor Ilya V. Kolmanovsky

Assistant Professor Emily Mower Provost

© Catharine L. R. McGhan 2014

ii

For my mother, who explained what an engineer is.

For my brother, my first and closest friend.

For my father, frustrating, but still loving.

For those who encouraged me, when I doubted myself.

For everyone else, who might find this of use.

And for myself, because I can.

iii

Acknowledgments

I’d like to thank my advisor, Ella Atkins, who has been both my advisor and my mentor

since way back when I first started my college career at the University of Maryland in

2000. She had been exceedingly kind, patient, and helpful over these many years. For

being willing to share her knowledge and experience with me, and for giving me a chance

in the first place, I will be forever grateful. I would also like to thank the undergraduate

research students who were a part of the Undergraduate Research Opportunities Program

and helped develop our safe robot manipulator platform – Jeremy Green, Kevin Matzen,

and Ryan Wolcott – and Gabriel Arroyo, who helped conduct human subject experiments

the following summer. I’d also like to thank both the graduate and undergraduate student

volunteers from the Department of Aerospace Engineering at the University of Michigan

who participated in the human subject testing that gave us the reference data for our

Chapter 3 findings. I would also like to thank Ali Nasir, who helped me to understand

Markov Decision Processes and their use, and who was willing to bounce ideas back and

forth with me, helping me create the original MDP software for policy calculation, and

also in the determination of the MDP HIP formulation and representation. Ali, your help

has been invaluable! Thanks also to Justin Bradley, Derrick Yeo, Ryan Eubank, and

Aaron Hoskins for being good friends and colleagues over the years – you’ve really

helped me keep my spirits up, to keep the ‘imposter syndrome’ at bay, and to focus on

the main prize. Finally, a big thank-you goes out to my mother, Judy, who went above

and beyond the call of duty by proofreading this manuscript from start to finish. She

didn’t have to do it, but she did it anyway, for me. So believe me when I say: anything

that somehow escaped both her and my advisor that might possibly have dared to remain

in error is all on me!

iv

Table of Contents

Dedication .. ii

Acknowledgments ... iii

List of Figures ... viii

List of Tables... xiii

List of Appendices ... xv

List of Symbols ..xvi

Abstract ... xxiii

Chapter 1 Introduction ...1

1.1 Motivation ...2

1.2 Problem Statement ..9

1.3 Research Objectives .. 13

1.4 Approach ... 14

1.5 Contributions ... 15

1.6 Innovations .. 16

1.7 Outline .. 16

Chapter 2 Background ... 18

2.1 Introduction ... 18

2.2 Robotic Manipulation .. 19

2.2.1 Kinematics and dynamics ... 19

2.2.2 Manipulator Trajectory Generation ... 24

2.3 Task Planning & Scheduling.. 26

v

2.3.1 Deterministic planning ... 26

2.3.2 Probabilistic planning ... 28

2.4 Space Robotics and Manipulation .. 31

2.5 Human-Robot Interaction (HRI) .. 33

2.5.1 Human Modeling.. 38

2.5.2 Robot Decision-Making with Integrated Human Models 39

2.5.3 Human Subject Experiments... 40

Chapter 3 Experiments on Human-Robot Operation in a Shared Workspace 42

3.1 Introduction ... 42

3.2 Test Environment .. 43

3.2.1 Test conductor interface ... 45

3.2.2 Test subject interface .. 46

3.3 MM-Arm Hardware and Control ... 47

3.4 Human Subject Experiments .. 52

3.4.1 Test Methodology .. 52

3.4.2 Assumptions and Constraints .. 55

3.4.3 Test Matrix ... 55

3.5 Test Metrics... 60

3.6 Results... 62

3.6.1 Learning Curve... 63

3.6.2 Paired Complementary Test Comparisons – Robot-as-Subordinate 67

3.6.3 Task Category Comparisons ... 69

3.6.4 Task Completion Times .. 73

3.6.5 Subject Reaction ... 75

3.7 Preliminary Conclusions .. 76

vi

Chapter 4 System Architecture with Feedback for Human-Robot Interaction 79

4.1 Introduction ... 79

4.2 Motivating Example .. 80

4.3 System Architecture .. 81

Chapter 5 Human Intent Prediction .. 90

5.1 Introduction ... 90

5.2 Markov Decision Process (MDP) Formulation for Human Intent Prediction 91

5.2.1 States and Actions .. 92

5.2.2 Transition Probability Function .. 95

5.2.3 Rewards ... 100

5.3 Metrics for Performance Evaluation .. 102

5.4 Case Studies .. 103

5.4.1 Encoding Pre-existing Script(s) within a Markov Decision Process 104

5.4.2 Case Study #1 – EVA space repair example, deterministic system 108

5.4.3 Stochastic HIP modeling .. 119

5.4.4 Case Study #2 – IVA scenario, stochastic system 119

5.4.5 Inclusion of action-recognition input i

nh
a 1 for one-step predictive

lookahead .. 158

5.5 Conclusions and Discussion .. 159

5.5.1 Future work: evaluation and comparison against other methods 160

5.5.2 Future work: handling of model uncertainty .. 161

5.5.3 Future work: simulated human vs. human matching models 162

5.5.4 Future work: computation of action history length 163

Chapter 6 Robot Planning for Optimal Human-Robot Interaction 164

6.1 Introduction ... 164

vii

6.2 Markov Decision Process (MDP) for Robot Action Choice (RAC) 165

6.2.1 States and Actions .. 166

6.2.2 Transition Probabilities... 171

6.2.3 Rewards ... 178

6.3 Metrics for RAC MDP Performance Evaluation .. 183

6.4 Case Studies .. 184

6.4.1 Encoding Zone Information within an RAC MDP state space 184

6.4.2 Case Study #1 – IVA scenario, with and without human state input 194

6.5 Conclusions and Discussion .. 214

6.5.1 Feedback of RAC into HIP ... 215

6.5.2 Comparison of primarily-scripted HIP+RAC to A*, POMDP, or other

methods ... 216

6.5.3 Markov chains for progression of robot action choice 218

6.5.4 Differing choice of R2 algorithm ... 218

6.5.5 Impact of allowing reactive controller to handle conflict resolution

‘intelligently’ ... 219

6.5.6 Similar state spaces, same or different transition probability and reward

functions .. 220

6.5.7 Explicit zone calculations and mappings ... 220

6.5.8 Relaxation of assumption of perfect HIP information 220

6.5.9 Relaxation of fixed-base assumption .. 221

Chapter 7 Conclusions and Future Research Directions ... 222

7.1 Summary and Conclusions .. 222

7.2 Future Work .. 223

Appendices .. 225

Bibliography .. 245

viii

List of Figures

Figure 1-1: Astronaut working in the International Space Station’s Kibo laboratory3

Figure 1-2: EVA spacewalk finishing repairs on a torn solar array3

Figure 1-3: Summary Timeline for Two Astronauts on EVA1, Flight STS-135 [3]4

Figure 1-4: Partial Timeline for “Install COLTS” and “SSRMS Setup” Tasks on EVA1,

Flight STS-135 [3] ...5

Figure 2-1: Markov Chain Model ... 28

Figure 2-2: Hidden Markov Model ... 28

Figure 2-3: MDP Representation .. 30

Figure 2-4: POMDP Representation.. 30

Figure 3-1: Hardware Subsystems for Human-Robot Experiments 43

Figure 3-2: Software Infrastructure ... 45

Figure 3-3: Test Conductor Interface Keyboard Bindings (number keys = button-pushing

actions, yellow keys = drink soda, pink keys = eat chip) .. 46

Figure 3-4: Sample Math Problem Display (with Blue Waypoint Target in Foreground)

 .. 47

Figure 3-5: Workspace Setup with MM-arm; buttons b1, b2, and b3 are indicated to the

Test Subject by Blue Reflectors ... 48

Figure 3-6: Test Scenarios .. 58

Figure 3-7: Selected TLX Load Source Ratings Relative to Baseline: Subject 5, Test Set

1 .. 64

Figure 3-8: TLX Load Source Ratings for Baseline Cases Over All Test Subjects 65

Figure 3-9: Correctness Rate for Math Problems: Across All Subjects, Test Set 1 66

Figure 3-10: Selected TLX Load Source Ratings Relative to Baseline by Task Type,

Subject .. 70

ix

Figure 3-11: Comparing Correctness Rates between Test Groupings Across All Subjects

 .. 71

Figure 3-12: Selected TLX Load Source Ratings Relative to Baseline Across All

Subjects and Tests by Task Type (no overtasking cases) .. 72

Figure 3-13: Task Completion Times, Across-All-Tests per Subject 74

Figure 4-1: General 3T Architecture for Space HRI with Feedback, System-Level 82

Figure 4-2: 3T Architecture with Decomposed Human Intent Prediction (HIP) and Robot

Action Choice (RAC) .. 84

Figure 4-3: Timing of Intent Updates as Used by Robot Action Choice (RAC) 88

Figure 5-1: General transition cases for HIP, with no in-progress action supplied 97

Figure 5-2: State evolution for the optimal MDP policy, case 4c (7 goals, nh=0), starting

from s
i
 = {no goals set}, for  iiiiiiii gggggggs 43433323121 ,,,,,, 117

Figure 5-3: State evolution for the optimal MDP policy, case 4b (4 goals, nh=4), starting

from s
i
 = {no goals set, all actions in history toolbox_retrieval (a1)}, for

 iiiiiiiii aaaaggggs 43214321 ,,,,,,, .. 118

Figure 5-4: State Transition Diagram and transition matrix for work_motivation only,

nh=0 ... 124

Figure 5-5: State Transition Diagram and transition matrix for button_1_inactive only,

nh=0 ... 124

Figure 5-6: State Transition Diagram and transition matrices for blood_sugar_level and

hydration_level only, nh=0 ... 125

Figure 5-7: Finite State Machine Diagram for case 5a Representation, fully-connected

(not all links labeled), nh=1 .. 126

Figure 5-8: State/policy-action progression outcomes, column 1 from Table 5-13

(blood_sugar_level g1 vs. work_motivation g3),  iiiii fgggs 1321 ,,, 131

Figure 5-9: State/policy-action progression outcomes, column 2 from Table 5-13

(blood_sugar_level g1 vs. work_motivation g3),  iiiii fgggs 1321 ,,, 132

Figure 5-10: State/policy-action progression outcomes, column 1 from Table 5-14

(blood_sugar_level g1 vs. hydration_level g2),  iiiii fgggs 1321 ,,, 134

x

Figure 5-11: State/policy-action progression outcomes, column 2 from Table 5-14

(blood_sugar_level g1 vs. hydration_level g2),  iiiii fgggs 1321 ,,, 135

Figure 5-12: State/policy-action progression outcomes, column 1 from Table 5-15

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 138

Figure 5-13: State/policy-action progression outcomes, column 2 from Table 5-15

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 139

Figure 5-14: State/policy-action progression outcomes, column 1 from Table 5-16

(work_motivation g3 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 140

Figure 5-15: State/policy-action progression outcomes, column 2 from Table 5-16

(work_motivation g3 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 141

Figure 5-16: State/policy-action progression outcomes, column 1 from Table 5-17

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 144

Figure 5-17: State/policy-action progression outcomes, column 2 from Table 5-17

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 145

Figure 5-18: State/policy-action progression outcomes, column 3 from Table 5-17

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,, 146

Figure 5-19: State/policy-action progression outcomes, column 1 from Table 5-18,

(nh=0),  iiiii fgggs 1321 ,,, .. 150

Figure 5-20: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , full diagram (low-resolution overview) 151

Figure 5-21: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (left-most)... 152

Figure 5-22: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (left-center) ... 153

Figure 5-23: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (center) ... 154

Figure 5-24: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (right-center) 155

file:///D:/Documents/My%20Box%20Files/research%20work-notes/thesis%20proposal/thesis%20blah%203.0%20--%20final.docx%23_Toc378111730
file:///D:/Documents/My%20Box%20Files/research%20work-notes/thesis%20proposal/thesis%20blah%203.0%20--%20final.docx%23_Toc378111730
file:///D:/Documents/My%20Box%20Files/research%20work-notes/thesis%20proposal/thesis%20blah%203.0%20--%20final.docx%23_Toc378111731
file:///D:/Documents/My%20Box%20Files/research%20work-notes/thesis%20proposal/thesis%20blah%203.0%20--%20final.docx%23_Toc378111731
file:///D:/Documents/My%20Box%20Files/research%20work-notes/thesis%20proposal/thesis%20blah%203.0%20--%20final.docx%23_Toc378111732
file:///D:/Documents/My%20Box%20Files/research%20work-notes/thesis%20proposal/thesis%20blah%203.0%20--%20final.docx%23_Toc378111732

xi

Figure 5-25: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (right of right-center) 156

Figure 5-26: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (right-most) .. 157

Figure 6-1: Algorithm for calculating)|(ij HHp .. 174

Figure 6-2: Algorithm for calculating likelihood of increase for },{ i

HIP

Hi

obs

Hi aaH  ... 181

Figure 6-3: Algorithm for calculating  ii

k Haar ,,23 for },{ i

HIP

Hi

obs

Hi aaH  182

Figure 6-4: Zone partitioning using Definition #1, 2-D case, overhead view; fixed-base

frames for agents are shown; zones are designated orange = occupiable by both, green =

reachable by robot only, blue = reachable by human only, grey = non-occupiable........ 187

Figure 6-5: Action-zone partitioning using Definition #2, 2-D case, overhead view,

stationary arm positions ... 189

Figure 6-6: Action-zone partitioning using Definition #2, 2-D case, overhead view,

example with possible-conflict case ... 191

Figure 6-7: Algorithm for calculating),|(11 k

ij aggp ... 199

Figure 6-8: Algorithm for calculating),,,,,|(k

ijjiij abFGFGbp 200

Figure 6-9: Algorithm for calculating)|(ij HHp for  i

HIP

Hi

obs

Hi aaH , 201

Figure 6-10: Algorithm for calculating)|(ij HHp for  i

obs

Hi aH  201

Figure 6-11: Algorithm for calculating),,,|(j

k

i

z

ij

z HafHfp for  i

HIP

Hi

obs

Hi aaH ,

and  i

obs

Hi aH  ... 202

Figure 6-12: Algorithm for calculating),|(k

i

z

j

z affp for ØiH 203

Figure 6-13: Algorithm for calculating),,,|(jjjij baHHdp for  i

HIP

Hi

obs

Hi aaH ,

and  i

obs

Hi aH  ... 204

Figure 6-14: Algorithm for calculating noconflict(H
i
,a,H

j
) for  i

HIP

Hi

obs

Hi aaH , 204

Figure 6-15: Algorithm for calculating noconflict(H
i
,a,H

j
) for  i

obs

Hi aH  205

Figure 6-16: Algorithm for calculating a flag representing danger increase potential for

 i

HIP

Hi

obs

Hi aaH , ... 207

xii

Figure 6-17: Algorithm for calculating a flag representing danger increase potential for

 i

obs

Hi aH  ... 208

Figure 6-18: Algorithm for calculating  ii

k Haar ,,23 for  i

HIP

Hi

obs

Hi aaH , 209

Figure 6-19: Algorithm for calculating  ii

k Haar ,,23 for  i

obs

Hi aH  209

xiii

List of Tables

Table 3-1: MM-arm D-H parameters .. 49

Table 3-2: MM-arm poses .. 51

Table 3-3: Test session 1: distribution of task category combinations............................ 59

Table 3-4: Expected relationship of test result data in test set 1 63

Table 3-5: Exhibited statistically-significant learning curves: test set 1 comparison 65

Table 3-6: Trends for correctness rates: objective data .. 67

Table 3-7: Trends for overall workload: TLX data .. 69

Table 5-1: Mission-goal transition probabilities for HIP ... 98

Table 5-2: First example representation, computer work then eat chip 105

Table 5-3: First example representation, computer work and eat chip (in any order) ... 105

Table 5-4: Second example representation, computer work then eat chip 106

Table 5-5: Third example representation, computer work then eat chip 107

Table 5-6: Domain Representation of actions i

ka .. 109

Table 5-7: Domain Representation of goal-objectives ... 110

Table 5-8: Memory requirements, case 4a (1 goal, nh=8) .. 112

Table 5-9: MDP policy illustrating action-history use, case 4b (4 goals, nh=4) 115

Table 5-10: MDP policy illustrating action-history use, case 4c (7 goals, nh=0) 115

Table 5-11: Domain representation of actions .. 121

Table 5-12: Domain representation of goal-objectives .. 121

Table 5-13: Impact of reward weightings, eat_chip (a1) / blood_sugar_level (g1) vs.

computer_work (a3) / work_motivation (g3) ... 130

Table 5-14: Impact of reward weightings, eat_chip (a1) / blood_sugar_level (g1) vs.

drink_soda (a2) / hydration_level (g2) .. 133

Table 5-15: Impact of reward weightings, eat_chip (a1) / blood_sugar_level (g1) vs.

push_button (a4) / button_1_inactive (f1).. 136

i

ka

xiv

Table 5-16: Impact of reward weightings, computer_work (a3) / work_motivation (g3)

vs. push_button (a4) / button_1_inactive (f1) .. 137

Table 5-17: Impact of transition probabilities, eat_chip (a1) / blood-sugar_level (g1) vs.

computer_work (a3) / work_motivation (g3) ... 142

Table 5-18: Impact of transition probabilities, nh=0 through nh=2 147

Table 5-19: Impact of transition probabilities, nh=0 and nh=3 148

Table 6-1: Use of Human State Information in RAC ... 172

Table 6-2: Zone partitioning using Definition #2, robot’s zones as related to button 1

(
R
b1), button 2 (

R
b2), and unstow position (

R
u1) .. 191

Table 6-3: Zone partitioning using Definition #2, human’s zones as related to button 1

(
H
b1) and button 2 (

H
b2).. 192

Table 6-4: Domain Representation of human actions   i

HIP

Hi

obs

Hi

x

H aaa ,, 192

Table 6-5: Domain Representation of (robot) actions ka .. 193

Table 6-6: Human zone partitioning using Definition #2 ... 194

Table 6-7: Robot zone partitioning using Definition #2 ... 194

Table 6-8: Domain Representation of human actions   i

HIP

Hi

obs

Hi

x

H aaa ,, 195

Table 6-9: Domain Representation of
i

z

i

z fg , goal-objectives 195

Table 6-10: Domain Representation of (robot) actions ka .. 196

Table 6-11: Collision spread according to policy, robot action ak, in-progress action .. 211

Table 6-12: Collision spread according to policy, robot action ak, future-predicted action

 .. 211

Table 6-13: Collision spread versus value, robot action ak, in-progress action; 213

xv

List of Appendices

Appendix A ... 226

MichiganMan(ipulator) Arm Characteristics .. 226

Specific Measured D-H parameters of the Michigan Manipulator 227

Forward Kinematics Equations .. 228

Inverse Kinematics Equations (numerical solution methods for generalized solutions /

position-only waypoint) ... 228

MM-Arm Dynamics & Singularity Identification ... 237

Appendix B ... 241

Task Timelines for Test Sets .. 241

xvi

List of Symbols

PA translation vector, location in frame A

BORG

AP translation vector, locates frame B’s origin with respect to frame A

RA

B rotation matrix from frame B to frame A

TA

B 4x4 transformation matrix

iX̂ , iẐ unit vectors attached to manipulator arm linkages (see Craig [1])

1ia distance from 1
ˆ
iZ to iẐ measured along 1

ˆ
iX

1i angle from 1
ˆ
iZ to iẐ measured about 1

ˆ
iX

id distance from 1
ˆ

iX to iX̂ measured along iẐ

i (variable) angle from 1
ˆ

iX to iX̂ measured about iẐ

rxy parameter in a rotation matrix RA

B at row x column y

px parameter in a translation vector PA

)(JA
 Jacobian matrix with respect to frame A

vA 6x1 vector with Cartesian velocity with respect to frame A

A 3x1 linear velocity vector of the tooltip with respect to frame A

A 3x1 angular velocity vector of the tooltip with respect to frame A

xvii

 nx1 vector of joint angles of the manipulator (with n joints)

A 6x1 force vector with respect to frame A

FA 3x1 (linear) force vector of the tooltip with respect to frame A

NA 3x1 (angular) moment vector of the tooltip with respect to frame A

 nx1 vector of joint torques of the manipulator

DI danger index

 () distance factor

 () velocity factor

 () inertia factor

kD,kV constant values used to calculate the danger index

 minimum allowable distance between human and robot

 distance between human and robot at which safety is assured

 minimum relative velocity

 maximum relative velocity

 effective inertia of the critical point

 maximum safe value of robot inertia

 approach velocity

 distance from critical point to nearest point on person

Si Markov Chain state (value)

Oi Hidden Markov Model observation (value)

S set of possible states s
i

xviii

s
i
 Markov Decision Process state i

A set of available actions ak

ak action-choice

R(s
i
,ak) set of state-dependent rewards for performing action ak at state s

i

T(s
i
,ak,s

j
) set of all transition probabilities p(s

j
|s

i
,ak.)

p(s
j
|s

i
,ak.) the probability of a state s

j
 outcome, given ak executed from a state s

i

π(s
i
) optimal policy for state s

i

ns number of states in S

na number of actions in A

 () value of state s
i

 discount factor

Ai (PO)MDP action (value)

Ri (PO)MDP reward (value)

o
i
 observation vector at POMDP state S

i

S
i
 POMDP vector of all possible states s

i
 and beliefs o

i
 associated with them

ri NASA TLX rating

Wi NASA TLX weight for load source i

Ri NASA TLX adjusted ratings

RW NASA TLX weighted rating, overall workload

Tf arrival time to reach goal pose from the initial pose

Ts initial time of goal selection

xix

t time

N number of joint angle divisions/waypoints, constant value

H
aHIP next intended human action, predicted future intent

H
aobs currently-observed human action, in-progress

nh length of action-history (number of actions)

i

nh
a 1 human’s current or in-progress action in state s

i

G
i
 set of mission goal states in state s

i

F
i
 set of high-priority goal states in state s

i

A
i
 abbreviated action-history of observed actions in state s

i

ng number of mission goals in G
i

i

zg mission goal z in G
i

nf number of high-priority goals in F
i

i

zf high-priority (interruptive) goal z in F
i

i

ka action k in abbreviated action-history A
i

i

zn minimum number of actions to complete goal
 for a sequence in A

i

pkz probability of action ak not transitioning a mission-goal
i

zg

i

bkn number of nonzero probabilities in tensor T(s
i
,ak,s

j
) for ak and state s

i

i

Tkn number of state transitions s
j
 with non-zero probability for T(s

i
,ak,s

j
)

i

bn total number of possibilities of transition minus the number of actions

 small nonzero probability of transitioning to states not defined by pkz

xx

 number of low-likelihood states transitions from state s

i

R(s
i
) reward function for state s

i

 reward weight for mission goal
i

zg

 reward weight for high-priority goal
i

zf

rx reward function x

kz cost associated with
i

zf

 discount factor

p probability

kz transition probability weight for impact of action ak on mission goal
i

zg

gz label for value of mission goal
i

zg

fz label for value of high-priority goal
i

zf

 set of human companion states in state s
i

 set of robot states in state s
i

 discretized danger index attribute in s
i

R
A set of available robot actions

R
na number of robot actions in

R
A

H
Ai set of human actions in H

i

H
A set of available human actions

 human’s in-progress action output by the observer module in state s

i

 human’s action output from the HIP policy in state s

i

xxi

a
i
 robot’s current action in R

i

b
i
 robot’s current action-status in R

i

R
Zi set of robot zones (zone data) in state s

i

 robot zone k in

R
Zi

R
Z set of robot zones

R
nz number of robot zones in

R
Z

H
Zi set of human zones (zone data) in state s

i

 human zone k in

H
Zi

H
Z set of human zones

H
nz number of human zones in

H
Z

D set of all discretized danger index values

Dmax maximum value of d
i
 in D

DIx threshold value x of danger index

 probability that

 will not transition

wx reward weight for reward function Rx

wxy weight on reward function rxy

rxy reward function xy

wd weighted penalty for binary d
i

ay label for value of robot action

A
bm label for button location m assigned to agent A

A
um label for unstowed position (location) m assigned to agent A

xxii

zx label for zone x

I
x,

I
y inertial coordinate system axes

A
azx action-zone of agent A

xxiii

Abstract

Emerging robotic systems are capable of autonomously planning and executing well-

defined tasks, particularly when the environment can be accurately modeled. Robots

supporting human space exploration must be able to safely interact with human astronaut

companions during intravehicular and extravehicular activities. Given a shared

workspace, efficiency can be gained by leveraging robotic awareness of its human

companion. This dissertation presents a modular architecture that allows a human and

robotic manipulator to efficiently complete independent sets of tasks in a shared physical

workspace without the robot requiring oversight or situational awareness from its human

companion. We propose that a robot requires four capabilities to act safely and optimally

with awareness of its companion: sense the environment and the human within it;

translate sensor data into a form useful for decision-making; use this data to predict the

human’s future intent; and then use this information to inform its action-choice based

also on the robot’s goals and safety constraints. We first present a series of human subject

experiments demonstrating that human intent can help a robot predict and avoid conflict,

and that sharing the workspace need not degrade human performance so long as the

manipulator does not distract or introduce conflict. We describe an architecture that

relies on Markov Decision Processes (MDPs) to support robot decision-making. A key

contribution of our architecture is its decomposition of the decision problem into two

parts: human intent prediction (HIP) and robot action choice (RAC). This

decomposition is made possible by an assumption that the robot’s actions will not

influence human intent. Presuming an observer that can feedback human actions in real-

time, we leverage the well-known space environment and task scripts astronauts rehearse

in advance to devise models for human intent prediction and robot action choice. We

describe a series of case studies for HIP and RAC using a minimal set of state attributes,

including an abbreviated action-history. MDP policies are evaluated in terms of model

xxiv

fitness and safety/efficiency performance tradeoffs. Simulation results indicate that

incorporation of both observed and predicted human actions improves robot action

choice. Future work could extend to more general human-robot interaction.

1

Chapter 1

Introduction

Effective human-robot interaction can make hazardous and potentially repetitive work

traditionally done by humans safer and more productive by offloading work to the robot.

In a space environment, risk to an astronaut is cumulative with exposure time to high-risk

situations such as extravehicular activities (EVA). A highly-capable robotic system

could separately accomplish the simpler, well-modeled tasks usually performed by

human astronauts on EVA or IVA (intra-vehicular activity). Adding intelligence to these

robotic systems will allow them to work alongside humans to reduce supervision

overhead for the astronaut(s) thus increasing overall productivity. Human-robot

interaction (HRI) scenarios often assume that the human and robotic agents’ workspaces

have little to no overlap while performing their tasks. However, under some local

working conditions – for example, servicing a spacecraft or constructing a lunar habitat –

the only way to shorten the work schedule to a reasonable timescale would be to allow

humans and robots to share their physical workspace. Yet, allowing this overlap

introduces safety issues that must be addressed.

Modern sensor systems can now enable robots to reliably sense nearby humans in real-

time with sufficient accuracy to support safe close-proximity operations. Further, this

information can be integrated into the robot’s decision-making processes to allow the

robot to be made “human-aware,” customizing its reactions based on its human

companion’s observed and expected activities. Doing so allows us to relax the extremely

conservative safety constraint of separating agent workspaces, when the input is within

the bounded error that the decision-making scheme can support. Towards achieving safe

yet efficient interaction, in this dissertation we develop and evaluate an autonomous

framework for determining a robotic manipulator’s optimal actions in real-time when

interacting in close physical proximity to a human in a shared workspace environment.

2

This framework allows the robot to purposefully choose to avoid physical and mental

conflicts with a human companion while each of these agents performs tasks to complete

their own separately-assigned goals. We apply this framework to the space environment,

and focus on interaction scenarios where the human does not or should not need to divert

their attention to the robot. The robot is meant to unobtrusively work around the human

rather than directly collaborate on task completion, minimizing requirements for the

human to maintain situational awareness of the robot and its goals. We assume that this

strategy will minimize mental-workload thus increase efficiency relative to models in

which the human must supervise or actively avoid conflicts with the robot.

1.1 Motivation

Astronauts in a space environment are exposed to substantially more risk on a day-to-day

basis than are their Earth-bound counterparts. Risk on EVA is particularly high, so

mission directors seek to minimize the frequency and duration of astronaut EVA. For

intra-vehicular activities (IVA), risk is linked to the confined, zero-gravity pressurized

habitat module environment. In an emergency, or when a set of hard task deadlines exist,

an astronaut needs to be able to travel from point A to point B with minimal delay. In

this case, overall productivity is increased by keeping the environment clean and clear of

the most common traversal paths as much as possible.

Some of the HRI challenges in space stem from the nature of the microgravity

environment. Because objects float in space, there is no preferred body orientation, e.g.,

feet on the ground. Additionally, given even minor disturbances such as air currents,

objects will not remain in a fixed location unless they are strapped down or actively held

in place (see Figure 1-1). A human or robot also will freely float in space, a condition

that can create a highly dynamic environment that can only be modeled and managed

with constraints to simplify the large range of all possible interactions. Generally,

astronauts will pick a preferred orientation based on characteristics of their environment

then try to restrict their lower-body motion through anchoring devices when performing

tasks in microgravity (see Figure 1-2) [2]. Fixtures such as restraining belts and foot/base

restraints may also be available both for astronaut and robotic entities, creating a “fixed

3

base” condition that simplifies the environment and also improves force application

capability.

Figure 1-1: Astronaut working in the International Space Station’s Kibo laboratory

(from:

http://www.nasa.gov/mission_pages/station/expeditions/expedition30/science_from_s

pace.html , Photo credit: NASA). Astronaut’s feet are stabilized by elastic straps

mounted to the wall.

Figure 1-2: EVA spacewalk finishing repairs on a torn solar array

(from: http://twitpic.com/7782v4 , Photo credit: Douglas H. Wheelock / NASA).

Astronaut motion is stabilized by an articulating portable foot restraint (APFR).

http://www.nasa.gov/mission_pages/station/expeditions/expedition30/science_from_space.html
http://www.nasa.gov/mission_pages/station/expeditions/expedition30/science_from_space.html
http://twitpic.com/7782v4

4

Although astronauts have demonstrated the ability to adapt to unexpected situations as

they are encountered, numerous tasks are also executed “by the book” through scripts that

may need to be repeated many times for a variety of maintenance or mission tasks.

Figure 1-3 and Figure 1-4 give examples of these scripted procedures.

Figure 1-3: Summary Timeline for Two Astronauts on EVA1, Flight STS-135 [3]

5

Figure 1-4: Partial Timeline for “Install COLTS” and “SSRMS Setup” Tasks on

EVA1, Flight STS-135 [3]

While human productivity can be increased to an extent by careful scheduling and

improved workspace layouts, astronaut productivity might also be increased by

reassigning the most ‘dull and dirty’ tasks to highly-capable robotic systems. For

example, a robot could complete some of the setup and cleanup tasks for EVA, or station

cleaning and upkeep tasks on IVA. Overall productivity could also be increased further

by adding intelligence to these robotic systems such that neither teleoperation nor close

supervision is necessary. A fundamental assumption of this work is that eliminating the

need for explicit communication or oversight reduces the astronaut’s mental workload or

situational awareness with respect to dealing with the robotic system. Under

circumstances where the robot and astronaut need to accomplish tasks in a common space

such as a particular habitation module, productivity could be increased even further if we

can lift the usual safety restriction of needing to keep the human and robotic workspaces

separate. In such cases, the robotic system’s presence must neither introduce

6

unacceptable levels of risk nor interfere with humans in a way that reduces productivity

or that introduces unacceptable annoyance or workload.

Including this capability in current systems would be immediately useful. NASA has

deployed two robotic platforms to the ISS, one manipulator (Robonaut 2) [4] and one

free-flying observer (SPHERES) [5], that are beginning to support experimental

investigations of HRI on EVA. Both of these platforms are currently controlled primarily

by teleoperation or some form of oversight with limited autonomy, acting generally

nearby but not within an astronaut’s immediate reach. Robonaut 2 moves slowly, is well-

padded, and includes an onboard sensor system that immediately safes the robot in place

if an unexpected impact occurs. SPHERES is small and moves slowly. Neither system

can yet sense humans on their own, nor do they include autonomy that can perform

human-avoidance should this information be supplied. Currently, any needed

deconfliction must be handled by their human operators. Adding these capabilities would

greatly enhance their performance and allow their use without diverting attention of the

astronauts in orbit from other tasks. Such capabilities could also enhance performance

for interactive mission tasks with the astronauts.

Human-robot interaction in a common workspace requires three basic capabilities. First,

a robotic system must be designed to perform the set of tasks that have been off-loaded

from the astronaut. Such a robotic system must be equipped with sufficient sensing and

force/torque application capabilities to effectively and autonomously execute each task.

Second, the robot system must be able to operate independently for extended time

periods, requiring a basic capability to identify, prioritize, sequence, and execute tasks

without supervision. Third, a safety management system must mitigate risk to sufficient

levels for robot and astronaut to occupy the same physical workspace. Significant

research has been devoted to the first two of these required capabilities [6,7,8,9]

[10,11,12,13]; the third is currently being explored as state-of-the-art research

[14,15,16]. This thesis focuses on achieving the second and third challenges: task

selection and execution in the presence of safety constraints. We use the danger index for

safe trajectory execution from Ref. [14] as a metric for safety, and we use a Markov

7

Decision Process (MDP) with passively sensed human state data to find such a policy

(rather than a Partially-Observable MDP with explicit communication as in Ref. [15]).

For this work, safety is defined as “the condition of being protected against physical… or

other types or consequences of failure, damage, error, accidents, harm or any other event

which could be considered non-desirable, [or otherwise] the control of recognized

hazards to achieve an acceptable level of risk” [17]. We categorize three different types

of safety in our robotics research: electromechanical system, software system, and

environmental. Electromechanical system failures that might compromise safety include

electrical component failure, loss of power, physical device failures and consequences of

wear-and-tear on the joints, linkages, and so forth. Software failures include loss of

communication between devices caused by conditions such as sensor dropout or

unaccounted-for data signal lag, and bugs in the operational code. As a simplifying

assumption, our research presumes that mechanical and software safety can be assured

for the duration of the mission. Thus, we focus on environmental safety issues, primarily

resulting from the possibility of physical conflict.

A robot may encounter the potential for physical and mental conflict during interactions

with the physical environment, including other agents and itself. A physical conflict

results when there is potential for collision with other agents or the environment. We

define a ‘mental’ conflict to represent situations in which an object to be sensed is

occluded from the sensor. For example, the robot can move its arm between the

astronaut’s eyes and a target of interest to the astronaut.

Recent research in safety management has focused on the types of damage and injury that

can occur with physical collision, as well as the creation of useful safety metrics to

catalogue and classify risks [18,19]. Other research has focused on reactive strategies for

robotic systems: how to design them to be collision-safe, such as mechanical designs that

reduce the inertia of a hit when a hit occurs, or control system feedback that allows a

manipulator arm to stop in place or reverse its trajectory upon sensing an imminent

collision [20,7]. We focus on an additional mitigation measure that could be combined

with these efforts for maximal effect: the value of attempting to strategically plan the

8

robot’s actions to avoid potential conflicts as well as achieve task-level goals based on a

priori predictions of companion near-term intent.

We build from previous work in defining metrics for real-time conflict avoidance [14]

and extend this work to predict future conflicts, enabling the robot to optimize action

choices over predictions of human companion intent as well as its own task-level goals.

Human intent prediction (HIP) is itself a challenging endeavor. While it is unrealistic to

precisely predict specific movements over time, predictions at a higher level, of a

human’s goals, are far more reasonable, especially when given substantial knowledge of

the companion’s possible goals and the assumption of a known or fully-observable

environment. In space, both the internal and external environments (IVA and EVA) are

carefully modeled in advance, and most tasks are accompanied by detailed checklists and

procedures for the astronauts to follow. Astronauts are also extensively trained on these

procedures prior to each mission. A human astronaut’s actions and goals are therefore

expected to be more predictable than might be possible in most Earth-based HRI

scenarios. Further, the gross motion sequences associated with task completion will also

be more predictable and known for space applications because astronauts train

extensively (e.g., in neutral buoyancy) for each EVA task and subtask in facilities with

layouts similar to habitation modules and are closely observed as they do so.

Despite increased predictability, even experienced astronauts do not always follow the

checklists exactly, and reacting to any anomaly, large or small, will likely result in

intentional deviation from predicted sequences. Further, some scenarios are unscripted,

as when the astronaut is eating a meal or just relaxing. This is a feature, not a bug: we

want astronauts to be free to adapt to evolving circumstances. However, if we want a

robot to share the environment with a human, then to help maintain safety, we must

account for the uncertainty associated with human choice. If the robot cannot accurately

predict the human’s intent, this may annoy the astronaut or reduce overall efficiency, but

safety can still be maintained so long as we also include reactive strategies that can sense

and accommodate the actual physical trajectories of the human’s motion.

We hypothesize that by predicting a human’s gross motions from intent, we can program

a robot to intelligently use this information to act in a manner that is optimal with respect

9

to both task-level goals and safety metrics. Therefore, a human-robot team in a shared

workspace with separate goals can maximize overall productivity without compromising

safety when there is no direct communication or supervision of the robot. If the robot is

indeed successful at avoiding conflicts without supervision, the astronaut will have

offloaded tasks without new overhead so that s/he may accomplish remaining tasks as

efficiently as if the robot were not occupying the shared workspace.

1.2 Problem Statement

Given a human and robotic manipulator arm with separate goals sharing a common

workspace, this thesis studies the problem of enabling an autonomous human-aware robot

to act optimally and safely so that the robot achieves its goals and has little to no impact

on the motion or goals of the human.

We propose that a robot need only do four things to act safely and optimally with

awareness of the human: sense the environment and the human within it; translate sensor

data into a form useful for decision-making; use this data to predict the human’s future

intent; and then use this information to inform its action-choice based also on the robot’s

goals and safety constraints. First, the robot must sense its environment, including the

position and pose of its human companion. This can be a nontrivial problem depending

on the type of sensory data and accuracy needed from the available sensors as well as the

possibility for sensor occlusion or environmental noise. It can also be difficult to quickly

and automatically identify a human within a cluttered visual scene, let alone to accurately

isolate and extract their physical position and pose for estimation. However, once

available, this data can be used to ensure trajectory-level safety constraints are respected

[21], giving the robot a local physical awareness of the human. While acquiring this

sensor data presents challenges, human sensing is not the focus of this thesis so we

presume such data is available to the robot. Once human and environment states can be

reliably observed, the robot must translate this information into a semantic representation

that can support the robot’s decision-making processes.

Because humans can move and change directions of motion quickly, a robot will have

significant uncertainty regarding future pose and position if armed only with observations

of current pose and position of its human companion. If a robot could translate its

10

observations of past and current human state to predictions of future state, this

uncertainty could be reduced. Such a “human-aware” robot might enjoy substantially

improved safety and efficiency relative to a robot without such models, especially if such

determinations could be taken into account during task planning and scheduling.

Knowing and responding to the human’s current state at this level allows early reactions

that reduce the chances for near-term conflict. Accurate prediction of the human’s future

intent allows the robot to select actions expected to offer greater reward over a longer-

term. To achieve such awareness, the robot needs to translate its sensor data, e.g. a

history of human position and pose estimates, to a goal-seeking behavioral state, e.g. a

history of the human’s goals and actions. It must then decompose that goal-seeking

behavior into expected future motions in a manner that informs robot decision-making.

For the robot to exhibit goal-driven behavior, it must have the ability to plan and schedule

its actions at an abstract level, translating goals, observations, and predicted intent into

safe and optimal actions. To do so, the robot must be capable of representing the

traversable environment, including human companion state, its own state, and the impact

of its own goals and actions. It then must incorporate and use this information to devise a

safe, optimal action plan or policy. Defining optimality at this higher level is a challenge,

as is selecting useful metrics for safety and goal completion. In a deterministic

environment, a plan can be specified as a linear sequence of actions to accomplish a

mission, with pre-scripted trajectories optimized offline that allow the robot to

accomplish each planned activity. In an uncertain but observable environment, at each

step the robot must sense the state, and then act in an optimal manner conducive to both

safety and goal accomplishment for each reachable state. As our environment is

uncertain, we seek to combine these two approaches: the robot plans in advance, but

updates state estimates based on real-time sensor feedback to re-direct the robot toward

safety-preserving actions or alternate goal-seeking actions as needed. Providing a safe

and efficient real-time response when predictions are wrong requires that the robot’s

autonomy architecture support task and trajectory planning and repair capabilities.

Human intent prediction (HIP) and robot action-choice (RAC) decision-making, the third

and fourth challenges described above, are the focus areas of our research. We assume

11

that raw sensor data is handled by another process and that optimal robot motion

trajectory sequences can be calculated offline and stored in a database for online use.

With respect to HIP and RAC, we seek to enable the robot to understand what the human

wants (their goals) and is trying to do (their actions), and to use this knowledge to

determine the robot’s optimal action-choice in each state to accomplish goals while

avoiding destructively interfering with a human companion.

As a precursor to our investigation of HIP and RAC, we studied the viability of allowing

a human and robot to pursue independent goals without communication in a shared

workspace through a series of baseline human subject experiments. The challenge in this

initial work was to collect evidence supporting or disputing a hypothesis that such

operations could be both safe and of minimal impact to the human under these

circumstances. Because we restrict ourselves in this research to interaction cases where

the human’s and robot’s goals are separated and no direct collaboration occurs, we

believe that it is reasonable to assume that the human does not need to divert attention to

internally model the robot’s behavior, or track or acknowledge the robot’s actions. This

is a reasonable assumption when the astronaut can trust the highly-capable robotic system

to work without his or her oversight (i.e., the robot works autonomously in such a way

that there is no need for situational awareness of the robot’s tasks). The robot’s goals and

actions can then be ignored by the astronaut. If this is true, explicit communication

should not be necessary during operations. This also implies that an optimal choice for a

human-aware robot will never negatively impact the human as the robot works around

the human. However, this idea of interaction without a need for explicitly

communicating is an unusual and significant assumption. Most research assumes that a

shared mental model and situational awareness must exist. A need to show that this may

not be necessary motivated our initial experiments, which was used to inform our

subsequent work to address HIP and RAC.

We make a number of simplifications in this work to scope the effort appropriately.

First, we assume robot tasks always have a lower priority than human tasks, and the

human is a non-adversarial agent. The first simplification drives the robot to select

actions that do not interfere with predicted human activities, even if alternate, potentially-

12

interfering actions would derive greater reward with respect to the robot’s goals. The

second simplification allows the robot to presume the human will ignore the robot so long

as it doesn’t interfere. This implies that the human’s actions thus productivity will be

approximately the same alone versus in a shared space so long as no conflict occurs.

Further, this implies that overall productivity for the human-robot team will be at least as

high as the productivity achieved should the human or robot act alone as long as the

human and robot avoid conflict. If the robot completes its own separate goals in addition

to the human’s efforts, more goals will be completed overall. If the robot completes none

of its goals, the human will still have the same level of productivity.

We make several assumptions about our problem space:

 We assume that the robot has full observability of the human and its environment.

Proper sensor placement and data parsing makes this a reasonable assumption.

This simplifying assumption allows us to avoid reasoning about hidden states.

 We assume that the space environment is itself deterministic. This is reasonable

because the EVA and IVA environments that we assume our astronauts will work

within are completely engineered. Procedures for nominal and off-nominal

scenarios are developed well in-advance of any circumstance requiring such

planned action. This allows us to ignore any possibility of needing to perform

automated environmental learning in our work, and allowing specification of all

domain knowledge offline.

 We assume that the interaction scenarios of interest can be modeled with a

“closed” (complete) action set as well as the specification of factors that lead the

human to his/her choice of actions in this closed action set. This is an expansion

of the previous assumption.

 We assume that each action is of sufficiently short duration that it can complete

without interruption unless risk of an unexpected conflict occurs.

 We assume that humans generally act as rational agents and that this rationality

can be exploited. This allows us to treat any random, unpredictable behaviors due

to the uncertainty inherent in the human-sensing problem as bounded noise in our

human model.

13

Simplifications to further constrain the problem space to a reasonable size for the space

robotics application include:

 The human’s most-likely structured action sequences are known in advance for

EVA operations, or can be informed by long-term observation of human behavior

for IVA collaboration. This eliminates the need to learn and match poses to

actions during real-time operations.

 Human motion is so cumbersome and restricted on EVA due to the spacesuit that

unscripted actions are unlikely to be attempted. This reduces the set of possible

mismatches or uncertainty in human action-recognition.

 The human model does not include a model of the robot state, nor does it need to

contain such a model. This assumption is valid so long as the human is indeed

not distracted or impeded by the robot.

 We have sufficient memory and computational resources for robot decision-

making and the storage of offline-calculated information. The assumptions of full

observability and complete knowledge (thus pre-computation of plans/policies)

make this assumption reasonable.

1.3 Research Objectives

This research studies challenges in modeling and decision-making associated with a robot

operating in a workspace shared by a human. Specifically, the robot must accomplish its

objectives and avoid environmental conflict during physically-proximal HRI when

conflict-avoidance is of significant importance for safe, efficient operations. In this

work, we assume that the human and robot have distinct goals, do not communicate, and

that the robot must not interfere with any activity in which the human is engaged.

The goal of this research is to build a robot decision-making scheme that can predict a

human’s current and future intent, based on a known history of actions and goal state, and

then use this knowledge to schedule the robot’s activities. We also wish to characterize

the full system in a manner that supports baseline safety and system-level performance

evaluation.

14

Under the assumptions and constraints above, we make the following hypotheses, which

drive each chapter of this work:

 Productivity of a collaborating human-robot team operating in a shared workspace

can be maximized when the human has no need to supervise the robot.

Supervision is no longer necessary when a robot can autonomously operate safely

and efficiently with acceptable or no impact on its companion’s productivity.

 If a human’s actions can be classified as rational to within a known and bounded

uncertainty, we can find a model that will assure an acceptable level of risk

introduced by the robot during human-robot team operations.

 A robot can predict companion intent by identifying actions based on sensor

observations without relying on explicit communication, then recognizing those

observed actions as part of a sequence.

 The use of predicted companion intent results in improved real-time robot action

choices over those made without it, when the relative worth of the intent data is

known and both are supplied to a procedure derived from a sufficient domain

model.

1.4 Approach

To accomplish the above objectives, we investigate a series of research thrusts that

collectively support the safe, autonomous HRI challenges posed above. First, we devise,

conduct, and analyze a set of human-subject experiments to validate our concept of

realizing an HRI scenario with independent goals, shared workspace, and no explicit

communication. These experiments offer insights into the types and impact of conflicts

as well as the attitude of test subjects toward the nearby robot. Next, we introduce a

novel autonomy architecture designed to decompose the activities of human intent

prediction (HIP) and robot action choice (RAC) in a manner that simplifies decision-

making complexity by enabling a full observability assumption and minimizing state-

space thus search-space size. The remainder of the thesis studies formulation of HIP and

RAC as Markov Decision Processes (MDP) in the context of space robotics simulation

case studies. The following paragraphs introduce further specifics of our HIP and RAC

formulations.

15

To predict human intent, a robot must recognize actions of its human companion based

on observed physical motions. Presuming full observability of the human’s physical

state, but an uncertain model of how observed physical state translates to future state

changes, we can construct a Markov chain to describe the evolution of the human’s state.

Inclusion of limited state history over a finite horizon within each state can improve

prediction of future states given that most goals can only be accomplished by executing a

sequence of tasks. Then, rather than human intent being cast as hidden state features in a

partially-observable (hidden) Markov model, we instead treat intent as the “actions to

optimize” in a Human Intent Prediction (HIP) Markov Decision Process (MDP) designed

to generate a human action (intent) policy based on decision-making criteria (models,

rewards) that simulate those used by the human. Use of the MDP formulation

specifically for HIP helps reduce the state space to a tractable size. Keeping this human

intent prediction model separate from the robot action-choice (RAC) part of the decision-

making process also allows us to project human intent forward in time through the MDP

model, maximizing the Bellman equation over immediate and discounted future reward

with the expectation that we will be able to use this HIP information to then optimize

robot behavior through the RAC MDP.

1.5 Contributions

The contributions of this work are as follows:

 Initial human subject experiment results show that a safe robotic manipulator arm

with limited human-aware planning can operate in a shared physical workspace

with a human performing separate tasks without that human suffering a

statistically-significant decrease in his or her task completion efficiency.

 The assumption of independent human and robot goals, in a scenario where the

robot is directed to not interfere with the human, is exploited in our autonomy

architecture to reduce complexity through separation of deliberations associated

with HIP versus RAC. This novel problem decomposition reduces computational

complexity and enables observability assumptions not possible in an integrated

HIP/RAC framework.

16

 The HIP problem has been structured in such a way that a Markov Decision

Process (MDP) can be used instead of a Partially-Observable MDP (POMDP) to

determine predicted human intent without unduly increasing the model

complexity.

 This research represents the first application of HIP-informed RAC to a space-

based application. Indeed, space is a compelling first application because our

assumptions are more likely to hold true: astronaut actions are more constrained

and scripted than would be expected for humans operating in most Earth-based

environments.

 The impact of a specific combination of safety and efficiency terms used in a

robot action-choice (RAC) planner is evaluated; we integrate Kulic’s danger

index [14] as a safety term, and the incentive for goal completion and estimated

energy use necessary for action-completion as efficiency terms. Our work

therefore extends Kulic’s work by including danger index in a multi-objective

cost / reward function used by RAC that is in turn informed by HIP.

1.6 Innovations

The innovations of this work are as follows:

 Our exploitation of the independent human and robot goal assumption enables a

novel decision-making architecture for HRI that is innovative in its decomposition

of knowledge, data flow, and complexity management.

 Use of Kulic’s danger index [14] in the safety term within the integrated RAC

MDP reward function is innovative in that it enables explicit tradeoffs between

safety and efficiency and because it implicitly includes up-to-date information on

the human’s intent in RAC while still supporting decoupling between the HIP and

RAC MDPs.

1.7 Outline

In Chapter 2, we present background on robot kinematics and dynamics, autonomous

planning and scheduling focusing on those developed for space applications, and

information relevant to HRI in space applications. We then give a brief introduction to

uncertain reasoning using Markov Decision Processes (MDPs). In Chapter 3, we

17

describe a set of human-robot collaboration experiments designed to enable evaluation of

the impact of a robot’s presence and motions on human performance, workload, and

focus of attention using a series of objective and subjective metrics. A safe robotic

manipulator arm is used, and the human-robot productivity is evaluated for a ‘dumb’

system that only avoids current-action near-term conflicts when given “ideal” intent data.

The data obtained from these experiments reinforces our hypothesis that HRI with

independent goals is possible and can be safe and efficient. Chapter 4 outlines our

system architecture, describing the decomposition of decision-making into HIP and RAC

MDPs and their connections to observer and other robot systems. Chapter 5 describes the

human intent prediction (HIP) MDP and its application to a space robotics case study.

Chapter 6 discusses the robot action-choice (RAC) MDP and presents simulation results

from the combined HIP+RAC system, comparing results RAC performed without human

state data. Chapter 7 presents conclusions and outlines future work related to further

development and deployment of the HIP+RAC architecture.

18

Chapter 2

Background

2.1 Introduction

The study of robotics encompasses many disciplines. The architecture in this work relies

on background in knowledge representation and decision-making under uncertainty,

human-robot interaction, and robotic manipulation as a fixed-base manipulator is the

platform used for case studies. Sensor technology and algorithms for navigation and

feedback control are also critical for an autonomous robot, although not the focus of this

work. Robotic manipulators can be mounted on either a fixed-base platform or to a free-

base platform such as a roving vehicle or aerial system. In this work, we assume the

manipulator is affixed to an in-space structure, similar to how the astronaut would anchor

to a fixture for stability.

In our research, we focus on human-robot interaction (HRI) between a human astronaut

and an autonomous fixed-base robotic manipulator arm in a space environment. The

study of human-robot interaction requires the integration of concepts from computer

science (artificial intelligence, multi-layer architectures, symbolic decision making, etc.),

physics-based control systems (feedback control, navigation, and sensing), human factors

or cognitive engineering, and psychology. Most HRI work presumes shared goals and

tasks between all agents with explicit communication used to optimize task assignment

and coverage at a high level; the safety of the agents is usually not called into question

because the workspaces are not shared. Conversely, our two agents are restricted to

implicit communication to minimize distraction for the astronaut and do not share tasks.

Because of the safety issues inherent in occupying a shared workspace, we must therefore

quantify safety in a manner that can be factored into robot decision-making.

Below, background relevant to this work is presented in the following areas: kinematics,

dynamics, and control of a robotic manipulator, autonomy architectures and planning

19

methods for decision-making, and work relevant to defining and assuring safe physically-

proximal HRI.

2.2 Robotic Manipulation

2.2.1 Kinematics and dynamics

To control a manipulator arm, we must know the joint angle and angular velocity of each

joint in joint space, from which we can calculate the position and velocity of each joint

and the tooltip in three-dimensional space for trajectory-following of an absolute path

relative to objects in the environment. We discuss the mathematics of the former below.

We do not model a specific tooltip in this work as the localized action of a tooltip does

not typically impact actions of a human companion so long as tasks are distinct.

2.2.1.1 Robot Manipulator Kinematics

There are two main conventions for placing the location of reference frames along a

manipulator arm and calculating the transformation matrices for kinematics called the

Denavit-Hartenberg (D-H) parameter method. The first specification is discussed in

Spong and Vidyasagar [22], the second in Craig [1]. We follow the formulation specified

by Craig in our simulations and experiments. A kinematic transformation matrix is

specified in terms of two frames A and B, where BORG

AP locates frame B’s origin with

respect to frame A and RA

B is a rotation matrix from frame B to frame A. Then

 BORG

ABA

B

A PPRP  (2-1)

can be given in the form

 PTP BA

B

A  (2-2)

where the 4x4 transformation matrix TA

B is given by:

 









1000

BORG

AA

BA

B

PR
T (2-3)

20

As specified in Craig [1], the transformation matrix between frames attached to the

manipulator arm linkages with Denavit-Hartenberg (D-H) parameters
i ,

1i ,
id ,

1ia is

given by:
































1000

)cos()cos()sin()cos()sin()sin(

)sin()sin()cos()cos()cos()sin(

0)sin()cos(

1111

1111

1

1

iiiiiii

iiiiiii

iii

i

i
d

d

a

T






 (2-4)

where

1ia = the distance from 1
ˆ
iZ to iẐ measured along 1

ˆ
iX ;

1i = the angle from 1
ˆ
iZ to iẐ measured about 1

ˆ
iX ;

id = the distance from 1
ˆ

iX to iX̂ measured along iẐ ; and

i = the (variable) angle from 1
ˆ

iX to iX̂ measured about iẐ .

Since the transformation matrix is given by

















































10001000

)cos()cos()sin()cos()sin()sin(

)sin()sin()cos()cos()cos()sin(

0)sin()cos(

333231

232221

131211

1111

1111

1

z

y

x

iiiiiii

iiiiiii

iii

prrr

prrr

prrr

d

d

a







 (2-5)

















333231

232221

131211

rrr

rrr

rrr

is the rotation matrix and

















z

y

x

p

p

p

is the translation vector.

2.2.1.2 Inverse Kinematics

Consider a closed-form symbolic solution for fully-specified position and orientations

(Craig, pp. 113-114, 117-121) [1]. From the forward kinematics transformation matrix

shown above, we can find a closed form joint-space inverse kinematics solution by

21

manipulating transformation equalities via an algebraic or geometric method. Closed-

form solutions are easier to implement and faster to compute, and many manipulators are

designed to take advantage of this (see pp. 117-125 of Craig [1]). A derivation of the

inverse kinematics equations for the Michigan Manipulator Arm (MM-Arm) used for this

research is shown in Appendix A.

2.2.1.3 Robot Manipulator Dynamics

For robotic manipulators, a 6x6 Jacobian matrix is used to relate joint velocities to

Cartesian velocities of the manipulator arm tooltip:

  )(00 Jv (2-6)

where














0

0

0v , a 6x1 vector with

0 the 3x1 linear velocity vector of the tooltip with respect to the base frame

0 the 3x1 angular velocity vector of the tooltip with respect to the base frame





















n






2

1

, the nx1 vector of joint angles of the manipulator (with n joints)

Often the Jacobian matrix is partitioned into a translational Jacobian (from joint velocities

to linear velocities) and a rotational Jacobian (from joint velocities to angular velocities).

 















 

rot

i

trans

i

i

i

J

J




 (2-7)

transJ0 can be calculated by direct differentiation:

Since

22

TT p00  (2-8)

and

  
transT J00 (2-9)

by taking the partial derivative of

TT pTp 50

5

0  (2-10)

we get the Jacobian.

rotJ0 can be calculated from:

  )()()(00

2

0

1

0 zRzRzRJ nrot  (2-11)

where



















1

0

0

ˆ)(RzRzR A

B

A

B

A

B (2-12)

the third column of the rotation matrix.

Note that one can easily change a Jacobian’s frame of reference:

)(
0

0
)(








 J

R

R
J B

A

B

A

BA (2-13)

Jacobians in the force domain are related to Jacobians in the velocity domain through:

  00)(TJ (2-14)

where

23











N

F
0

0

0 , a 6x1 vector with

F0 the 3x1 (linear) force vector of the tooltip with respect to the base frame

N0 the 3x1 (angular) moment vector of the tooltip with respect to the base frame





















n







2

1

, the nx1 vector of joint torques of the manipulator (with n joints)

2.2.1.4 Singularities

The Jacobian describes a linear transformation (mapping) from joint velocity to Cartesian

space. If the Jacobian is nonsingular, we may invert it to calculate joint velocities from

tooltip Cartesian velocities.

 vJ)(1   (2-15)

Using this equation, if we had a pre-specified trajectory to follow, we could calculate the

necessary joint rates given a certain desired velocity vector at each instant along the path.

Those values of  for which the Jacobian is not invertible (singular) are called

singularities. There are always singularities at the boundary of a manipulator’s

workspace, but sometimes there are also singularities inside the workspace. When a

manipulator is in a singular configuration, it has lost one (or more) degrees of freedom of

movement (in Cartesian space) – in other words, there is some direction or subspace (in

Cartesian space) in which it is impossible to move the arm. These singularities need to

be known and avoided, because loss of a degree of freedom implies loss of control in a

certain direction. From a safety standpoint, if we need to replan the arm’s

trajectory/motion, we will not want to restrict our movements in such a manner. This

problem is even more clear in the force domain:

  00)(TJ (2-16)

24

When the Jacobian loses full rank (which happens at a singularity), there are certain

directions in which the tooltip cannot exert static forces. In some cases, this can be seen

to be an advantage of the manipulator – the arm can exert large forces with small joint

torques to create mechanical advantage. In terms of safety, however, this would be

something one would want to avoid. From a practical standpoint, however, an inability

of the arm to exert a force in a particular direction also means that if a force is exerted

from that direction on the arm (and no joint torque is needed to balance it) then the

structure of the arm itself is the only mechanism resisting it.

A Jacobian and singularity analysis for the robotic manipulator arm used in this work is

given in Appendix A. For the experimental system utilized in Chapter 3, we issued joint

angle reference commands and relied on joint-level servo control loops embedded in

COTS (commercial off-the-shelf) servos to follow these trajectories.

2.2.2 Manipulator Trajectory Generation

Given a desired tooltip waypoint or sequence of such waypoints, a trajectory planner

must produce sequences of joint motions to achieve each commanded tooltip position and

orientation. With no obstacles or singularity issues, these commands can simply represent

smooth motions from an initial joint angle to the final joint angle. Given obstacles, such

as static objects or a human occupying a shared workspace, the robot must optimize its

motion in a manner that is efficient but meets safety (collision-avoidance) constraints.

There are numerous methods for trajectory generation in three-dimensional (3D) space,

both Cartesian and joint space, which can provide time-optimal or path-optimal or gross

(non-optimal but fast) solutions [23,24,25]. There are grid-based search [26], optimal B-

spline [27], and neural network methods [28], as well as gradient descent and artificial

potential field methods [29]. Common metrics for manipulator trajectory optimization

include time, fuel, energy, path length, distance from objects, velocity and acceleration of

tooltip, and force of impact. Computational complexity can be an issue, especially when

obstacle avoidance is required.

There are a few methods for implementing object avoidance in real-time; one way to do

this in a mostly-static environment is to calculate offline a database of robust trajectories

25

online, and then choose the trajectory that meets constraints online. We are able to use

this method because the set of possible tooltip waypoint goals can be known a priori.

In addition to the traditional cost metrics listed above, for safety purposes we adopt

Kulic’s danger criterion and danger index [21,14,30]. The first term can provide a safety-

oriented cost metric for trajectory optimization or repair (replanning); the latter can be

used to reduce the velocity of the trajectory in real-time, as well as a safety constraint

used to eliminate cached paths from consideration.

The danger index DI is the product of three terms:

 (2-17)

a distance factor () {
 (

)

where

 (

)

 (2-18)

a velocity factor () {
 ()

where

 (

)

 (2-19)

and an inertia factor ()

.

The terms above are defined as:

 =minimum allowable distance between human and robot (sets factor to 1),

 =distance between human and robot at which safety is assured (factor becomes 0),

26

 =set to a negative value (factor is zero when robot is moving away from a person),

 =maximum relative velocity (sets factor to 1),

 =effective inertia of the critical point,

 =maximum safe value of robot inertia,

 =approach velocity (positive when moving towards each other), and

 =distance from critical point to nearest point on person.

2.3 Task Planning & Scheduling

To plan tasks, mission goals are decomposed and sequenced into a series of activities that

collectively accomplish goals. Deterministic planning methods can be used in cases

where models and the environment are sufficiently static or certain for a pre-set sequence

of activities to be applicable, at least over the horizon for which the plan executes.

Probabilistic planning methods taking uncertainties in models and the environment into

account must be used when we have some information about the likelihood of events and

the success of actions but uncertainty in how each action will change world state. Task

planners typically rely on search to optimize solutions thus are generally

computationally-intensive. Because of their computational complexity, planning cycles

are typically executed offline in advance of the system entering the world. Then in real-

time, the plans or policies that have been generated are executed. Should events transpire

that were not fully handled within the pre-computed plan/policy, techniques such as

iterative plan repair [31,32,33] can then be applied to enable the system to adequately

function. Repeated occurrence of anomalous events can also prompt machine learning

[34] to better enable the system to account for these events in its future planning cycles.

2.3.1 Deterministic planning

Deterministic planning assumes a closed-world (no unexpected events) and is based on

search over a set of actions from an initial state to a goal state. State transitions map

actions to changes in world state features, and with deterministic models each state is

uniquely transformed to another state given a particular action with absolute certainty.

Optimal search methods typically select actions based on a function (g(n)) describing cost

27

of traversing from the initial to current node n in the search space, and a heuristic cost-to-

go estimate (h(n)). Techniques such as A*, uniform cost, and greedy search guide

exploration through the search-space.

A number of planning methods have been defined by Artificial Intelligence researchers.

Early techniques such as STRIPS use forward or backward chaining to select action

sequences that match symbolic goal feature-value pairs, with later extension to partial-

order planning (POP) addressing issues such as the Sussman Anomaly that prevent

simple chaining algorithms from always yielding optimal results [35]. Techniques such

as hierarchical task network (HTN) planning focus on establishing multiple layers of

abstraction to decompose planning into a tractable set of local planning instances. HTN

can enable an agent or multiple agents to solve relatively complex planning problems

efficiently, so long as the domain is specified in a manner conducive to the HTN structure

[36].

Some of the above approaches may be extended to non-deterministic spaces by

performing conditional planning and execution monitoring. Conditional planning must

occur when the outcome of an agent’s actions cannot be predicted with certainty, where

at every node a set of different possibilities must be expanded and new plans generated

depending on the various possible states of the environment [37]. In partially-observable

environments, we must also account for a belief state that is computed based only on

what we can observe. Execution monitoring is then used to determine when the plan is

valid versus when replanning must occur (see also: Russell and Norvig, Chapter 12.4-

12.5) [35].

Although nondeterminism can be exploited to model uncertainty, any available

information on the probability of certain events or states being reached is lost. As a

result, it is impossible to optimize plans based on a sense of expected outcomes, and it is

also impossible to prune unlikely but possible states from a search space to manage

complexity.

28

2.3.2 Probabilistic planning

Researchers have developed uncertain planning techniques that take into account both the

likelihood of each world state being reached for each choice of action, and the relative

reward of reaching each state. Such techniques have been built on Markov Chain models

of discrete state evolution, which are extended to Hidden Markov Models (HMMs) when

state is only partially observable.

S0 S1 S2 …

Figure 2-1: Markov Chain Model

Each state in a Markov chain is subject to the Markov assumption: that we only need to

know the previous state to know the probabilities of reaching any state Sj = {S0,S1,S2,…}

in the next cycle.

S0

O0

S1

O1

S2

O2

…

Figure 2-2: Hidden Markov Model

Hidden Markov Models are used when we only have partial observability of the system

state. In this case, we use what we observe to determine a belief state – a set of possible

states and the probabilities that we are in each state, given the observation Oi. They are

an expansion of Markov Chains.

Markov Chains are good for characterizing how a state space evolves over time given

some initial state probability vector. For planning, the Markov chain concept must be

extended to include the notion of action choice. The Markov Decision Process (MDP)

has been developed for this purpose, with the MDP applicable to state-space systems with

29

full observability while the Partially-Observable MDP (POMDP) applied to systems with

hidden state features [38]. The goal of the MDP or POMDP is to specify an optimal

policy mapping actions to states. This policy, when executed, will assure that the system

executes the best possible action in each observed state.

The MDP, also known as discrete-time stochastic dynamic programming (SDP), can be

described as: [39,35]

 MDP = {S, A, T(s
i
,ak,s

j
), R(s

i
,ak)}  π(s

i
) (2-20)

where S denotes the set of possible states s
i
; A denotes the set of available actions ak.

R(s
i
,ak) is the set of state-dependent rewards for performing action ak at state s

i
, and

T(s
i
,ak,s

j
) is the set of all transition probabilities p(s

j
|s

i
,ak.), the probability of a state s

j

occurring as an outcome, given an action ak executed from a state s
i
. We assume that the

optimal policy is time-invariant, i.e., consistent across all decision epochs.

The transition probability function tensor can be described as:

   
 

 

   as

nj

j

k

i

k

jij

k

i

k

ij

nknisasT

AaSsSssasTassp

s

,...,1,,...,1,1,,satisfying

,,,,,,|

,...,1








 (2-21)

representing the probability that the system will transition to a state s
j
, when performing

an action ak in a particular state s
i
. Optimal policies are typically computed using Gauss-

Seidel value iteration or policy iteration over the infinite-horizon Bellman equation

(Puterman [39], Chapter 6.2):

 () { (
) ∑ () (

) } (2-22)

Policies can also be optimized over a finite horizon or discounted infinite horizon. The

MDP as formulated has a reward function but not a cost function, but costs can be

represented as negative reward.

30

Once the optimal policy π(s
i
) is computed, this policy can be executed. The resulting

Markov chain is then annotated by actions applied at each state, which generate

associated rewards.

S0

A0

R0

S1

A1

R1

S2

A2

R2

…

Figure 2-3: MDP Representation

S0

O0

A0

R0

S1

O1

A1

R1

S2

O2

A2

R2

…

Figure 2-4: POMDP Representation

POMDPs are to MDPs as HMMs are to Markov Chains: they include an observation

element as part of the extended representation. This represents added uncertainty – we

are not sure of current state s
i
, we only have beliefs of the likelihood of each s

i
 given

current observation vector o
i
. Thus, a state S

i
 in a POMDP is a vector of all possible

states s
i
 and the beliefs associated with them. The goal of a POMDP is to find the

mapping of probability distributions (over states) to actions. The probability distribution

vector over all possible states is called the belief state, and the belief space is the

probability tensor for the corresponding MDP if we had full observability [40]. Thus,

one can approximate a POMDP using a MDP when the belief state is either known and

unchanging (thus allowing the uncertainty to be incorporated directly into the transition

31

probability model) or the certainty in the state estimate remains sufficiently high that any

future increase in certainty would have negligible effect.

MDP and POMDP methods are generally optimal, but are computationally intensive both

in terms of memory and time requirements. The POMDP is in fact more computationally

intensive to the extent that it is impractical for large-scale models. For this reason, the

MDP (full observability) is preferred when possible, and policy development is best done

offline and potentially on offboard computing resources, particularly when considering

the limited capability of space-based computing platforms. For this research, we require

uncertain reasoning because human behavior and the environment are uncertain, but

developed models are formulated to be as tractable as possible through problem

decomposition and formulation in a manner that enables a full observability assumption.

2.4 Space Robotics and Manipulation1

Most deployed space robotic systems have to-date been human-centric, with space

robotic human-support systems either requiring direct human supervision or having been

designed to halt when close to impinging on a human’s work envelope to prevent injury.

There are many examples of these systems. AERCam [41,42] is a free-flying six degree-

of-freedom (DOF) spherical camera platform flown on shuttle mission STS-87.

AERCam was intended to improve situational awareness for shuttle and extravehicular

activity (EVA) missions. The Personal Satellite Assistant (PSA) [43,44], a similar zero-g

six DOF free-flyer, was developed and tested at NASA Ames. While AERCam was

teleoperated, the PSA had sufficient autonomy to station-keep based on fiducial markings

in its environment, but it did not sense or react to human presence (unless the human

carried fiducial(s) to track). SPHERES is a set of three zero-g free-flying robots, used

inside the ISS cabin; they are teleoperated but can perform stationkeeping maneuvers

relative to each other [45,46,5]. The Mars Exploration Rover (MER) [47] pair, Spirit and

Opportunity, are remote teleoperated systems designed for planetary surface exploration

without humans in their physical environment. Over their highly-successful

deployments, MER rovers have seen substantial upgrades to their autonomy software for

1 This information in this section is from a paper accepted by the AIAA Journal of Aerospace Information

Systems (JAIS) to be reproduced under the title “Human Productivity in a Workspace Shared with a Safe

Robotic Manipulator” [106]

32

data compression, navigation, and planning/scheduling. These technologies are

transferable to collaborative missions including augmentations in the robotic system’s

ability to perceive and react to other agents, human or robotic.

Several large-scale space manipulator systems have defined the state of the art for space-

based manipulation: Ranger, Canadarm, Canadarm2, and Dextre [8,9,48]. The latter two

are currently on the International Space Station (ISS), and have recently been joined by

the smaller Robonaut 2 platform. The Ranger and Dextre systems have two highly

dexterous ‘arms’ designed to complete scripted EVA activities while astronauts remain

indoors. The Canadarm is a single multipurpose arm, as is Canadarm2; in addition to

manipulation without an astronaut, both Canadarms have been used to interact with an

astronaut on EVA by use of their end effector as a work platform upon which astronauts

can stand and be maneuvered about, decreasing their physical movement effort. Ranger

and the Canadarms are teleoperated systems, while Dextre is a supervised system capable

of executing scripted automation sequences. Launched in 2008, Dextre completed its

long testing cycle in December 2010, and successfully finished its first official repair job

in February 2011 [49,50]; as of June 2012, it has completed two rounds of joint

operations with NASA’s Robotic Refueling Mission (RRM), demonstrating the

feasibility of on-orbit robotic satellite servicing and repair [51,52].

There have also been advances in systems meant to physically collaborate with humans.

Notably, NASA’s Robonaut systems [53,4,54], highly-dexterous human-analogue

designs, have been extensively tested on Earth for eventual automated space operations.

Robonaut was originally meant to replace astronauts, but now is intended to complement

humans on EVA. The first Robonaut (R1) was initially teleoperated, with incremental

implementation of capabilities, allowing it to automatically execute task sequences (such

as grabbing objects) while operating near humans with minimal workspace impingement

[53]. The Robonaut 2 (R2) system was developed in collaboration with General Motors,

and one of two prototypes now resides on the ISS; its mission dictates it undergo a year-

long testing cycle inside an isolated chamber to study and validate its operational

characteristics in a zero-g interior environment prior to use [4]. R2 is equipped with

force-sensing capabilities that will stop the robot’s motion if it contacts a human (or other

33

object) or shut it down completely if struck with sufficient force; the arm itself is well-

padded in case such a hit occurs [55,56]. This capability is an important first step in

enabling safe physical human-robot interaction [18,19]. This, combined with research

into intent prediction and smart planning, may contribute to a further increase in the

autonomy of such highly-capable systems, allowing for direct close-proximity human-

robot collaboration. Our research is complementary to the R2 tests: we focus on human-

robot interaction in a “safe lab”, but do not attempt to mimic the zero-gravity constrained

ISS environment in the experiments we conduct.

2.5 Human-Robot Interaction (HRI)

Robots are good at performing preprogrammed dull, repetitive tasks for long periods of

time with speed, efficiency, and accuracy. From an ethical viewpoint, robots are also

more easily replaceable than humans, so we have tended to give them the dirty and

dangerous jobs that humans do not want to perform. However, as robotic functionality

has increased, we have begun to see the advantages of having robots work in human

spaces, and this has led to a discussion of what robots should do, and what humans

should do, and who is best at each task. For instance, humans are better at thinking and

planning than robots because we are able to learn and intuit knowledge dynamically on

the fly, and we are more flexible in our thinking. Thus, most robotics have been

controlled by humans to some extent as we have slowly increased their capabilities; it is

intuitive that we have had humans dictate to the robots or computer systems what must be

done to fill in these gaps of functionality in the interim. More abstractly, robots are

designed by humans to help humans, and those humans must decide at some level what

tasks they want the robots to be able to perform for them.

There are multiple levels of autonomy for robotic systems being used in HRI: [57]

Teleoperation: A human operator sends low-level motion commands to the robot

through devices such as joysticks or haptic devices; in some cases the operator may

command scripted motion sequences, these would be low-level commands explicitly

sequenced by the human operator.

34

Supervisory control: direct oversight: A human operator manually inputs traversal

waypoints, grasp directives, and action timings and monitors the robot as it computes and

follows low-level control sequences to accomplish operator-specified directives. The

human operator can interrupt at any time to change or re-prioritize actions.

Supervisory Control: partial oversight: The robot makes some decisions on its own,

including decomposing high-level goals into primitive motion sequences and

autonomously executing each motion primitive, but will query a human when detecting

any unexpected or anomalous situation, or will wait for new directives each time a

designated goal has been completed. Human supervisors may interrupt decisions or offer

additional input to the system, but such supervision is not a full-time activity.

Full automation: A robot is given all necessary goal, constraint, environmental state, and

task information at the beginning of its work cycle, and all decision-making is expected

to be done by the robot. If the robot cannot complete a task, it either adapts until it can

handle the situation effectively, or it replans to enable continued operation, potentially in

pursuit of a different goal.

The person teleoperating or issuing supervisory directives to the robot could be the one

sharing their physical environment, or they could be using the robot as a medium through

which to interact with its companion. Either or both is considered HRI. Robots are not

necessarily restricted to one mode of operation. There is fixed-mode autonomy when it

only operates at one level of autonomy during a particular mission; in sliding-mode

autonomy, the robot may itself choose to switch between different levels of autonomy in

real-time during its mission [57,58]. Transitions between these modes are initiated by the

robot and are usually assumed to occur immediately. If a nontrivial transition sequence

must occur, then corresponding procedures and analyses must ensure continued stable

and safe operation.

As robots and computing power have grown cheaper and ubiquitous, the fields of human-

computer interaction (HCI) and human-robot interaction (HRI) have grown. In human-

computer interaction, no physical interaction occurs except perhaps minimally at

keyboard, mouse, and [touch]screen interfaces. Human-robot interaction, by comparison,

35

often but not necessarily involves direct physical interaction; HRI also may include

varying levels of verbal and nonverbal communication. Human-robot collaboration is

similar to HRI, but explicitly deals with cases where the human and robot must interact

together to achieve a common goal or goals which usually require physical interaction.

Note that this thesis deals strictly with interaction, not collaboration. There has also been

increasing demand for robots that can act around humans with little to no human input or

oversight. Researchers are beginning to show that inclusion of a ‘smart’ manipulator in a

common workspace can result in a decrease in overall human workload and increase in

productivity [59,60].

However, we cannot simply insert a fully-autonomous robot and human into the same

environment: there are safety and efficiency concerns that must be addressed. The

highly-capable robots that might be most productive might also be the most “physically

persuasive" because, whether they are faster or stronger or heavier, they have the

capability to physically overwhelm humans [60,61]. This 'natural physical

persuasiveness' becomes a serious problem when robots are working in close proximity

to humans; this is the exact reason why industrial robots and humans have needed to

have their physical workspaces segregated from each other: these robots move without

regard for, or awareness of, human presence and will injure any human sufficiently

unlucky to get in their way. Because of the previous research conducted in segregated

HRI teams, we have begun to determine when it would be most convenient and efficient

to be able to have physical interactions occurring over close-range distances. We no

longer want to keep our physical workspace separate and segregated from robots when it

is unnecessary.

To address this issue, researchers have developed systems to sense and model human

state in real-time, then account for the human in a robot's decision-making process.

Examples of recent research into tools supporting safe and efficient autonomy include

safe real-time trajectories for physically-proximal operations [62], safety/injury metrics

[18,19], industrial collaboration safety standards [63,64,65], the efficient/productive

distribution of teams of agents and the breakdown and assignment of tasks (both

homogeneous and heterogeneous) [12], scheduling problems (centralized and distributed)

36

[66], real-time plan repair [13], and implicit or explicit communication between agents.

[67,68] As an example of state-of-the-art in HRI, in Ref. [62], experiments were

conducted where a robot was directed to find an object in the environment, pick it up,

move into a human’s workspace, and hand the requested object to that human. The

human’s position was sensed using an automated laser-based positioning system and real-

time trajectories were created by running an A* search to find a path to the handoff state

through a potential field ‘safety bubble’ determined from a cost function.

In Ref. [18] and Ref. [19], the need for effective safety metrics is emphasized, as it is

clearly demonstrated that the current widespread use of car-crash safety metrics for these

purposes is flawed. An example of this is a lack of warning in a crushing or excessive

force application case. In such a scenario, acceleration would be low or negative

(deceleration), normally indicating a safer situation, while conversely the manipulator

could be pinning a person between itself and an immovable object thus applying

excessive force. Industry is incrementally revising their industrial robot safety standards

to support limited human movement within the reachable workspace during active

operation [63,64,65]. By using a manipulator that can sense its environment and that

constrains force and torque application below acceptable limits in experimental testing

and real-world use, safety will be promoted by first enabling the robot to avoid a nearby

human then second to sense and limit force application should contact with the human

actually occur.

HRI safety concerns in a space environment include:

Human safety on EVA: Astronaut suit integrity must be maintained, and the robot must

not puncture or otherwise damage the hull of the station. Environmental concerns, such

as suit climate and radiation exposure, the stress and fatigue levels of the humans, and

maintenance of a direct, unimpeded route to egress for emergency situations are

important considerations.

Human safety on IVA: The astronaut will not wear a suit during IVA, so in this case the

robot must avoid damaging physical contact, blocking routes between modules for

extended periods of time or in case of a need for emergency egress or module isolation;

37

the robot must also exhibit controlled predictable motions that humans can adapt to or

move around.

Physical safety is not the only issue in HRI. The reason the robot is typically in a shared

environment is because it can offload tasks that otherwise must be performed by humans.

There is therefore a tradeoff between safety and efficiency in operations, in the amount of

interference with or endangerment of the human versus the efficiency with which the

robot is able to plan and execute its activities. The robot needs sufficient data to plan and

react in a manner that is efficient but not intrusive. Without information about the

human’s goals or intent, robots can only treat human motions as random processes to be

avoided, not anticipated.

Efficient human-robot operations have traditionally required communication between

agents, enabling agreement upon goals and coordination of actions. Robotic system

understanding of a human’s goal state is critical in a shared environment due to the safety

issues and a need to avoid harmful physical collision and visual occlusion, i.e., the robot

blocks the human’s ability to see a target of interest. Further, when the human’s

activities are prioritized over robot activities, the robot must be sufficiently aware of the

human’s goals and how they translate to actions so it can first ensure it does not interfere

with the human, before attempting to achieve its own goals.

There is a nontrivial workload associated with communicating clear, concise, and

relevant goal and action information and instructions to a robot, and the situational

awareness issues associated with such oversight further decrease the human’s

productivity level [69,57]. Operator oversight of a human-robot team forces centralized

decision-making which can increase efficiency but may lower overall productivity by

placing high workload demands on the operator and requiring substantial communication.

Further, humans tend to be unhappy when they are given no leeway to make decisions for

themselves.

While explicit communication, via speech, gestures, or other methods, requires a

mandatory minimum workload overhead for humans [69], implicit communication,

accomplished when the robot observes and characterizes physical motion, can provide

38

cues on human intent without introducing communication overhead for the human

companion. Decentralized decision-making for each robot and human and more freedom

of choice for the human then becomes possible.

2.5.1 Human Modeling

Researchers have devised multiple methods to model a human. One can start from raw

data characterizing physical motion, using time-sequenced video imagery to match a

model of gross actions, or audio communication to determine a human’s goal state or

intent. Human action recognition – the process of sensing and determining a human’s

current task or action from observing their motion – is a difficult but solvable problem.

Prior work has shown that this is possible using such methods as template matching and

state-space models, the latter of which use a Hidden Markov Model (HMM) to identify

gestures in real-time, a process also sometimes called “intention recognition” [70] [71]

[72] [73] [74] [75] [76]. A survey of non-invasive visual human sensing methods, from

which human intent can be derived, is provided in [77]. Newer surveys on this include

real-time techniques for 3D decomposition and reconstruction of the explicit geometric

poses and motion using similar methods based on regression [78], and methods action

recognition through classification [79], for which many still utilize modified or expanded

HMM methods. With speed and computational increases in computing technology, these

HMM now may incorporate discretized 3D pose information directly as their input [79].

Other works also discuss prediction of intent from explicit and implicit non-verbal

communication without action-mapping [80,81]; these show the feasibility of using

“ideal” intent information without regard for source, as is done in our experiments. Such

techniques supply not just the current state of the human, but also the known action state-

space for the human. There has also been work done into physics-based 3D full-body

human motion tracking using Bayesian filtering methods [82].

Such work deals with identifying an in-progress state, not predicting what a human will

do next. At a low-level, it is very hard to predict exactly what motions a human may

make. It is for this reason that humans in HRI have generally been treated as having

random, unpredictable behaviors, especially given uncertainties in human sensing and

translation of sensor data to actions/intent. However, because humans generally act as

39

rational agents, we believe that this knowledge can and should be leveraged and

exploited. At a higher cognitive level, humans tend to be more consistent in their

decision-making process than at lower levels where trajectory planning tends to be

incremented on-the-fly, resulting in far more efficient pose trajectories. The action-state

space at a cognitive level also is abstracted from minor trajectory discrepancies to task-

level goals thus has significantly reduced variation in possible choices.

2.5.2 Robot Decision-Making with Integrated Human Models

Although there has been a great deal of research done in classifying human action-intent

from motion, not much work has been done to use the output of these action-recognition

processes to predict the next most likely human action. There are two recent works that

use Partially-Observable Markov Decision Processes (POMDP’s) to predict the ongoing

or current action. [Karami, et.al, 2010] computes the current task from observations of

the human’s actions given no explicit communication, showing results for a case where

the human has only two possible mission tasks to choose between [15]. [Karami, et.al,

2009] describes a robot and human with a shared mission without explicit communication

and differing goals, and tests the accuracy of using extended MDP’s to predict human

intent in simulation with two different simulated human policies: random-choice and

closest-first. Results were encouraging when the simulated human’s policy was not

completely random, and help motivate our choice of an MDP for our work [83].

However, neither paper addresses both using human subject experiment data to populate

the models and dealing with multiple mission tasks. [Matignon, et.al, 2010] discusses the

use of a POMDP by a closely-supervised robotic system in explicit communication with

a human to determine the next task it should accomplish; this system uses the POMDP to

determine the task that the robot should perform next with strongest-belief of the

human’s preferences, and identifies when its own model of human preferences does not

seem to match the observed human actions such that it must explicitly request new

information from the human [84]. [Schmidt-Rohr, et.al, 2008] pursues a similar thrust,

with a filterPOMDP approach: a HMM is used to filter multi-modal explicit

communications, which is then fed into the nominal POMDP formulation; the focus is

on continued human direction of a supervised robot [85]. Their setup uses human dialog

and gestures as observations to help calculate a combined belief state for the hidden,

40

uncertain human activity state, with the output being the robot’s next explicitly-directed

action, rather than its acting as a pure human prediction module in the course of the robot

making its own decisions.

MDP’s can be used to learn from and help deconflict collaborative activities by

establishing a common task assignment distribution between human and robot via a

shared mental model (SMM); the robot chooses the best action according to the model it

is learning as both agents adapt to each other. This SMM approach is applicable when

both of the agents are capable of performing all actions in an overlapping workspace and

would like to efficiently share the work [86]. There is also recent work on the use of a

hierarchy of connected MDP models for a robotic bartending application, where the robot

is trained for direct social interaction with multiple humans. This work uses a type of

human action-recognition called a Social State Recognizer [87].

Hands-off socially-assistive robotics that interact with humans near but outside their

workspace are also relevant to this dissertation. These systems do not perform “helpful

work” that completes tasks their human partner would otherwise perform, and they do not

pose a collision risk to their human companion. Instead, the physical embodiment

(presence and motion) of these verbally- and gesturally-communicative systems is used

to motivate their human partner as the human works, to increase the human’s

productivity. One recent study in this field details a robotic exercise coach that

determines when and how to communicate helpful support using a type of human action-

recognition called user activity recognition. This system performed robust real-time arm

pose recognition and reported results of human subject testing to validate the concept

[88].

2.5.3 Human Subject Experiments

Human subject experiments are essential to evaluate HRI concepts and protocols. Per

Institutional Review Board (IRB) protocol, experiments must be designed carefully

following Design of Experiments (DoE) practices established by the human factors and

engineering communities [89,90], such that the data obtained can be used to support or

disprove a given hypothesis.

41

Some examples of system- and agent-level performance measures are given in [61] and

[91]. The second reference discusses one procedure useful for obtaining subjective

workload assessments called the NASA Task Load Index (TLX). The Task Load Index

was developed during a three-year, 40-experiment research effort by the Human

Performance Group at NASA Ames Research Center [91]. The Task Load Index has

been subjected to numerous validation studies, some of which include supervisory control

in laboratory experiments.

The TLX has six load sources: mental, physical, temporal, performance, effort, and

frustration. These are measured by a combination of weights and ratings. The weights

and ratings are selected by the test subject after each test. Each rating ri is selected as a

tick mark upon a number line between 0 and 100, with gradations of 5 points. Weights

Wi for each load source are found by comparing pairs of load sources in unrepeated

combinations and tallying the number of times that load source is chosen. This is a

maximum across all n=6 weights in pairs (k=2), of (

)

 ()

 ()

 points to be distributed across all 6 Wi, with the maximum possible tally for any

weight being 5. Weights account for “differences in workload definition between

[subjects] within a task and differences in the sources of workload between tasks,” while

ratings “reflect the magnitude of that factor in a given task” [91]. Derived data such as

the adjusted ratings and the weighted rating defined below can be compared

between subjects with less variability than other methods.

 (2-23)

∑

 (2-24)

42

Chapter 3

Experiments on Human-Robot Operation in a Shared Workspace1

3.1 Introduction

Through a series of human-robot experiments, recounted in this chapter, we sought to

support or disprove the following principle hypothesis, as well as to analyze the validity

of the associated assumption.

Hypothesis: Productivity of a collaborating human-robot team operating in a shared

workspace can be maximized when the human has no need to supervise the robot.

Supervision is no longer necessary when a robot can autonomously operate safely and

efficiently with acceptable or no impact on its companion’s productivity.

Assumption: We presume human-robot team overall productivity will be higher than the

productivity achieved should the human or robot act alone.

Definitions: We define productivity as performance when impacted by workload

(adverse conditions). Task performance is a function of safety (or risk), efficiency (task

completion over time), and user preference (task priority); while efficiency implies

optimal or near-optimal decision-making and quick execution of such by all agents.

To test this, we describe a set of human-robot collaboration experiments designed to

enable evaluation of the impact of a robot’s presence and motions on human

performance, workload, and focus of attention using a series of objective and subjective

metrics. During test operations, a seated human test subject was asked to complete

simple cognitive and motor tasks, some with the robot idle and others with it moving to

accomplish independent goals. We describe the manipulator and computer systems

deployed in our tests, and then specify the experiments used to assess our hypothesis.

1 This information in this chapter has been accepted by the AIAA Journal of Aerospace Information

Systems (JAIS) to be reproduced under the title “Human Productivity in a Workspace Shared with a Safe

Robotic Manipulator” [106].

43

Next, the test methodology is explained. Note that to focus our attention on human-robot

productivity rather than robot capabilities and limitations, we provide “ideal” intent data

to the robot: a human test conductor acts as a “Wizard of Oz,” pressing keys indicating

which next task the human test subject appears to be pursuing when that task is initiated.

This intent data has a low a level of uncertainty, given the experimental setup and the

circumstances of the test. This data enables the robot to predict near-term conflicts and

react appropriately to complete its own motion-based task(s), either by avoiding physical

contact with the human or line-of-sight occlusion of the human’s gaze [92]. We then

discuss our results and conclusions drawn from processing the suite of subjective and

objective datasets.

3.2 Test Environment

Our experiments placed a robotic manipulator and seated human in a common physical

workspace populated with fixtures that allow the robot and human to accomplish simple

but realistic task-level goals. Figure 3-1 and Figure 3-2 provide an overview of the test

setup, detailing the three interfaces used in human-subject testing: the robotic

manipulator arm, the test subject interface, and the human sensor system (test conductor)

interface.

Subject Interface

Monitor

Keyboard

Computer

Test Subject

Headphones

Human Sensor

System Interface

Test Conductor Keyboard

Computer

MM-Arm

Manipulator Arm

Computer (PC/104+)

Figure 3-1: Hardware Subsystems for Human-Robot Experiments

44

Note that the dashed lines in Figure 3-1 show data that has an indirect impact on the

receiving block, while solid lines indicate explicit communication between blocks via

keystrokes on a keyboard or a direct data connection between components. Also note

that while the task activations (“button activations” and “message display information”)

in Figure 3-2 were created offline, they are not known to the test subject or robotic agents

prior to their activation times.

The computers used by the test subject and test conductor were Dell single-core systems

with adequate processing power running a Linux-based operating system. The robotic

manipulator used in the experiments is called the MichiganMan(ipulator) arm, or MM-

arm, a low-cost platform designed in-house and constructed primarily from commercial

off-the-shelf (COTS) hardware [92,93]. The MM-arm is controlled by a PC/104+

computer stack which receives “ideal” sensor data from the “human sensor system”

computer. This data is generated in real-time by a human test conductor who indicates

changes in the human test subject’s task status via keystrokes, circumventing many

challenges in sensing and inference associated with human task recognition that would

otherwise complicate the testing. Meanwhile, a test subject interacts with a separate

computer interface, nominally completing cognitive (math) tasks and sporadically

completing physical tasks prompted by computer-generated messages (e.g., drink soda,

eat a chip, press button). Test subjects listened to low-impact music on noise-cancelling

headphones to tune out background noise, in particular the manipulator motor noise that

introduces additional, possibly distracting, auditory information whenever the

manipulator moves between target poses.

45

MMarm controller

(nominally initiates

shutdown of test)

Test subject interface

Human arm motion:

Current task performed by test subject
Message

display

information

Button

activations

Test state:

(1) initialization,

(2) normal operation,

(3) shutdown

(emergency stop, if active)

Active button ID,

Button activation time

Message to display,

Message generation time

(emergency stop, if active)

Test conductor interface

Figure 3-2: Software Infrastructure

Communication between computers occurs through a wireless router. During testing, the

data shown in Figure 3-2 were communicated between modules in real-time via basic

TCP/IP socket protocols. The data processed post-test included this information, as well

as information logging keystrokes and internal processes. All three C++ software

modules in Figure 3-2 (one per Figure 3-1 hardware module) time-stamped this data and

stored it locally on each computer system in text files; the computers had synchronized

system clocks, and data files were transferred to a main server after each test. The MM-

arm control software included a communications interface, a task scheduler, and a motion

controller. The test conductor interface included a communications interface and a

keystroke logger, while the test subject interface included a more advanced visually

interactive keylogger and a timed reader-displayer to display task activation messages.

Both user interfaces were command-line text interfaces, capturing user keystrokes and

reacting as described below. Shell scripts were set up on all three systems to help

automate this process – reading a command from the console to determine the test set and

test to run, synching the times, running the software modules using the corresponding test

script, and copying the collected data to a centralized location once complete.

3.2.1 Test conductor interface

The purpose of the test conductor interface (simulated human sensor system) was to

receive keystrokes from the test conductor corresponding to portions of the test subject’s

46

motion over the course of their task completion progress and send this information to the

MM-arm control software for use. The keys used on the test conductor’s keyboard were

marked with colored paper with the possible test subject actions. Keys indicate human

arm and hand motion segments enacted to complete the particular task in progress. For

example, the “eat chip” task requires human arm movement outward to the chip bowl,

grabbing a chip at the bowl, and return arm movement to bring the chip to the mouth for

consumption. Keys for a subtask sequence were chosen in a close grouping together on

the keyboard and given the same color-coding. Figure 3-3 shows the key layout used.

Figure 3-3: Test Conductor Interface Keyboard Bindings (number keys = button-

pushing actions, yellow keys = drink soda, pink keys = eat chip)

Note that no differentiation was made between motions for a particular task by the MM-

arm control software, and mappings from task to conflict were predefined. The test

conductor interface software was a simple text-based program run at the console. During

testing, the screen listed the key bindings and last selected motion. One key was also set

up as an “emergency stop” switch for the MM-arm robot, as a last resort safety

precaution. This switch stops all three programs gracefully, pausing the MM-arm before

shutting it down and exiting the two interfaces.

3.2.2 Test subject interface

The purpose of the test subject interface was two-fold: (1) to show math problems and

task activations to the screen, record keystrokes, and update the screen with partial math

solutions or clear messages over the course of each test, and (2) to receive survey data

from the test subject after each test. The keys used on the test subject’s keyboard were

marked with colored paper – the number line, backspace, delete, enter key, and spacebar.

47

Math problems were solved right to left in a tabular format using the number line (not

number pad) and enter key to submit answers; this promoted use of only the right hand

during testing. The ~ symbol was used to represent the user’s current cursor position

onscreen, and the backspace and delete keys removed the number value to the right of

this cursor, to allow for the correction of mistypes. At the bottom of the screen below the

math problems, predetermined messages instructing completion of an interruptive

physical task were displayed on an interval specified by a test script. Test subjects were

instructed to press the spacebar once when a task activation message is first registered

and again after completing the corresponding physical task. Task activation messages

were presented sequentially; in the event that a human-assigned task was not completed

before a new task activation, the old task was dropped and the new task replaced the old.

The test subject interface software was a simple text-based program run at the console, as

shown in Figure 3-4. After each human-robot test series, this interface was replaced with

an instance of an open source spreadsheet editor and a survey to be completed.

Figure 3-4: Sample Math Problem Display (with Blue Waypoint Target in

Foreground)

3.3 MM-Arm Hardware and Control

Figure 3-5 gives an overview of the physical workspace in which human subject testing

was conducted. The manipulator was located in the center of the space (shown at full

extension), while the human subject sat in the chair (lower center) with task locations to

the left, right, and forward of their station. A monitor for display was situated directly in

front of the chair, and inclined lightly above head level. The manipulator and human

were situated near each other so they shared the majority of their physical arm and end

effector (hand) workspaces. This overlap in collaborative space did not extend into the

space containing the human’s head, torso, or legs when the human had a seated neutral

48

body-position, a design feature we conveyed to help test subjects focus on tasks

completed in the overlapping workspace. The position of tasks and of objects associated

with task completion were chosen such that manipulator arm and human arm movements

would come into conflict, but also in such a way that manipulator would only physically

conflict within a small envelope of trajectories the human was expected to follow when

completing physical tasks.

mental conflict

(math, b1)

physical conflict

(chips, b2)

physical

proximity

(soda, b3)

mental

conflict

(math, b1)

physical

conflict

(chips, b2)

physical

proximity

(soda, b3)

Figure 3-5: Workspace Setup with MM-arm; buttons b1, b2, and b3 are indicated

to the Test Subject by Blue Reflectors

The MichiganMan(ipulator) arm (MM-arm) was designed to move in a workspace

comparable to that reachable by the arm of a seated human. Emphasis was placed on

ensuring MM-arm would be safe for the human subject testing described above. The

MM-arm is a low-power, lightweight 4-DOF (degree-of-freedom) R-P-R-P (roll-pitch-

roll-pitch) manipulator developed from low-cost components by University of Michigan

49

students. This fixed-base manipulator has size, speed, and range of motion similar to a

human arm and its D-H parameters, which follow Craig’s convention [1], approximately

correspond to both a human arm and NASA’s Robonaut 1 (R1) system [92,94]. These

are given in Table 3-1. For our implementation, we specify an offset from the final joint

axes to a fixed tooltip frame at d5 = -11.25 inches, which extends from the wrist to the

center of the soft padded “hand.” The forward kinematics of the manipulator can then be

represented by a single transformation matrix. The MM-arm has an analytical solution

for its inverse kinematics, due to the joint alignment.

Table 3-1: MM-arm D-H parameters

i
1i , deg 1ia , in. id , in. i , deg

1 0 0 3.814
1

2 -90 0.345 0
2

3 -90 -0.345 -16.5
3

4 90 0 0
4

MM-arm joints are plastic pan-tilt shoulder and elbow joint mechanisms, while the

linkages between the joints are composed of multiple carbon fiber tubes. Cushioning

materials of a neutral color are added over the quasi-rigid structures to mitigate any

impact force a collision with the structure might impart, increasing the safety of the

system. The manipulator wrist is covered with a ball of white cotton batting material to

make it visually attentive and to soften the end. Speed and torque of the manipulator

actuators are constrained to levels that would not be capable of injuring the seated test

subject, particularly given the padding affixed to the manipulator. Commercial off-the-

shelf (COTS) digital servos were used as the joint actuators, as they are robust, reliable,

and relatively low-torque and low-power compared to typical industrial manipulator

motors and motor-driver systems. The particular servos used have internal PD

controllers and can be treated as black-box mechanisms with only joint angle inputs.

Battery power is fed into a line driver board, preventing runaway and overvoltage power

situations. This low-power setup mitigates the fact that there is currently no sensory

closed-loop: the MM-arm cannot tell whether it has reached its destination or whether

50

contact has or may shortly occur. Ref. [95] gives an example of a different research

platform with such sensing capabilities.

MM-arm’s closed world model includes all goal location and human conflict information

for goal-based decision making. “Closed world” for the MM-arm domain is a valid

assumption in our experimental setup due to the further assumptions that all targets of

interest remain at known, fixed positions, that the MM-arm has a fixed base, and that the

human is seated in a known location with features (e.g., arm length, gaze height) similar

to those of a “generic” human model. We explicitly specify a conflict mapping prior to

testing. For each human task, we define a set of robot poses that could or would

potentially cause a physical or mental (gaze) conflict with the human. Because of the

closed-world assumption, we can compute offline the set of trajectory poses or three-

dimensional envelope through which the robot will command movements while

completing each task. We can compute a similar envelope for the human tasks using a

generic human kinematic model, and then compare these to determine the set of

conflicting task-pose pairs. While this procedure was sufficient for tests described in this

paper, real-world applications where either agent may not have a fixed-base location

would likely require online identification of local conflict sets based on target, robot base,

and human body movements near and through the shared workspace.

During each test, the MM-arm control software receives the human’s current task, checks

the conflict mapping, and selects its current goal. A PC/104+ computer stack, two serial

servo controller boards, and a line driver board are used to command and control the

manipulator servos at the 9600 maximum baud rate imposed by the servo controller

boards. For this work, the robot’s task scheduler is a simple FIFO (first-in first-out)

queue with the task sequence for each test predefined in a text file (test script). To reduce

risk and annoyance in a shared workspace, the robot was instructed to defer to human

activities to (1) avoid physical contact and (2) minimize human gaze obstruction when

the human is viewing the computer screen. This simple strategy effectively gives the

human tasks priority over robot tasks. In the event of a conflict, the queue blocks as long

as the conflict exists. The first task with no conflict is initiated; if no such task exists,

the robot moves to a preset “neutral” (e.g., stowed) pose that never conflicts with the

51

human given our workspace configuration, or maintains its station if already at that pose.

This simple task queue is sufficient for our experiments and would be replaced by a

planner-scheduler in a deployed platform.

Table 3-2: MM-arm poses

 Joint angle pose,

deg

End-effector location from MM-arm

base, in.

Pose name 1 2 3 4 x y z

Stowed 90 -90 0 0 0 -27.405 3.469

Unstowed 1 0 -90 0 90 -16.155 0 14.719

Unstowed 2 0 -32 0 90 0.8493 0 23.5856

b1 -55 -53 0 47 -8.154 11.6451 24.6568

b2 -35 10 21 6 4.5867 -3.7261 30.9510

b3 0 45 0 68 22.124 0 11.3295

The MM-arm was designed to emulate human arm motions in part because this has been

a convention for human-interactive robots (e.g., for Robonaut) and also because humans

are good at predicting how other humans move [96]. While explicit communication is

disallowed for the testing, the human may still want to implicitly predict what the MM-

arm is doing, even if this prediction is merely to establish a higher level of comfort or

confidence in the robot. MM-arm movement is determined by a simple “direct path”

joint-space algorithm that plans a smooth joint-space trajectory between forward-

kinematic poses. Each robot-assigned task had only one unique “goal pose” associated

with it. These poses were found by utilizing a test program to move the MM-arm such

that the tooltip location corresponded to the necessary goal location (e.g., button

locations), and the pose was selected according to the visual obstruction requirements for

that goal pose. Once the final pose was determined, the joint angle set was recorded and

used in subsequent testing.

Table 3-2 gives representative poses. Once a task with corresponding goal pose is

selected, an arrival time Tf to reach this goal pose from the initial pose is determined

(generally the initial time of goal selection Ts plus a preset time-of-motion, e.g., two

seconds). To execute this maneuver joint angle commands are incremented as shown in

Equations (3-1) and (3-2):

52

 () ⁄ (3-1)

 () () () () (3-2)

 for our experiments was 30. A larger helps reduce the speed of motion by

commanding more interim waypoints to be met. This constrains manipulator joints to

move at speeds significantly slower than the maximum rates despite the use of COTS

servo modules. Such slow speeds promote safety and minimize distraction for the test

subject. Within the range of acceptable safe speeds, our choice of N and time-of-motion

were made carefully. A perception of too-slow motion would cause irritation and lower

productivity, due to increased chance and duration of conflict, while motion perceived

too quick would cause undue stress, apprehension, or fear. Either would lead to eventual

distrust of the robot’s motions. Feedback from test subjects on manipulator speed is

described below. Note that because the arm movements are done in joint space, the

speed of tooltip motion is not consistent between poses, but for these tests safety and

distraction factors dominate concerns over consistency in tooltip speed. Manipulator and

servo constraints restrict the choice of valid angles for each joint. In software we further

limit the elbow joint to emulate a “human-like” range of motion. With smooth motions

between arm poses, the MM-arm never attempts to move outside the joint limits.

3.4 Human Subject Experiments

3.4.1 Test Methodology

This section describes our test setup and execution procedures. Human subject testing

was pre-approved by the University of Michigan’s Institutional Review Board (IRB) in

Behavioral Sciences.

3.4.1.1 Test Subject Selection

All test subjects were Aerospace Engineering student volunteers found by posting flyers

and via email solicitation. Test incentives were free food before, during, and after test

sessions. A nearly even mix of graduate and undergraduate students participated, with

one female subject. No subject had appreciable background in robotics or human subject

experiments.

53

3.4.1.2 Test Conductor Responsibilities

The testing process for each subject was supervised by a test conductor. Test conductors

were required to take online certification tests created by the Behavioral Sciences Internal

Review Board (IRB). Prior to testing, the test conductor educated test subjects on the

testing process and fully informed of all procedures before being asked to sign a consent

form. The test conductors or “wizards” were also tasked with maintaining a safe,

comfortable, and unpressured test environment, as well as test subject confidentiality.

They prepared and ran the test equipment and acted as the “ideal observer” for the human

sensor system interface. They maintained safety in the test environment and acted as an

ideal observer, supplying intent data with a low a level of uncertainty, by performing the

following actions during each test: paying attention to the robot and human so that the

‘emergency stop’ could be struck to end the test if necessary, paying attention to the

human’s motion and supplying new input to the robot only once the test subject’s next

new motion had begun, tracking the action(s) being requested of the test subject on their

screen (certainty in the test subject’s action), and correcting any input error to the robot

immediately. This last action allowed the error due to mistaken keystrokes to remain

negligible due to the robot’s low motion speed: once noticed a new keystroke could be

performed and transmitted quickly, well before the manipulator arm could substantially

follow through with a response.

3.4.1.3 Testing Procedure

Three test sets of nine tests were developed. Nine test subjects were run through all three

test sets in the main round of testing; an additional three subjects completed only the first

test set in the initial round. Test activities and timings were the same across subject and

managed by the automated test scripts. To avoid cumulative fatigue, each subject

completed all three test sets within a two week period, with a maximum of two test

sessions per week and one test session per day within ~1.5-2 hours, with each test

running 3-4 minutes. Prior to testing, subjects were given a quick ‘demo’ of the robotic

arm, and had the opportunity to hold and physically move the manipulator when in a

depowered state. This allowed test subjects to become more knowledgeable of the

weight, inertia, and padding of the robotic arm. This introduction was designed to allow

the subjects to make or better validate their own safety assessment when working near the

54

robot. Subjects were also shown a ‘demo’ of robotic motion at this time to familiarize

them with the robot’s common poses and movements during task completion. Test

subjects were told prior to each test whether the robot would be active; this was done to

avoid unnecessary “surprise” or stress when the robot started its tasks. Without this

information, the subjects might have felt increased levels of agitation or stress if/when the

robot did not perform as the subject might naïvely expect, which would have required in-

test discovery of this information, potentially resulting in a higher learning curve.

Subjects were also told what types of tasks to expect, but nothing regarding task timing or

frequency so they could not anticipate or plan task timings or sequences. Surveys were

completed immediately post-test.

During testing, the test subject completed as many cognitive tasks as possible but was

sporadically directed to complete the higher-priority physical tasks. Messages requesting

the user complete a physical task were shown in large print along the bottom of the

monitor where cognitive tasks were presented. Once requested, cognitive work could not

continue until the physical task was completed, and task initiation (acknowledgement of

message) and task completion was logged by the test subject. Test subjects were

instructed to complete physical movements at their preferred pace to create a more

realistic and relaxed environment. They were told the robot would defer to their

movements, and taking longer to complete non-conflicting tasks would allow the arm

more time to complete its own tasks, but instructed to focus on their own tasks rather than

the manipulator’s motions or task progress. They were also told not to complete “button

pressing” tasks for the robot.

3.4.1.4 Data Collection

We collected two main types of data to test our hypothesis: test subject data (in three

subsets), and “sensor” data. Objective quantitative data derived from test subject

keystrokes (Type I), which captured all GUI interface interactions, was post-processed to

retrieve the time duration and success or failure of each completed activity as related to

human performance for the computation of rates. Subjective qualitative data derived

from NASA TLX surveys (Type II) captures the test subject’s opinions of how efficient

they thought they were, the relative stress they felt from the given workload, and their

55

comfort level with the robot. An open-ended questionnaire (Type III) allowed more

direct answers on the test subject’s comfort level with the testing and robot interaction.

Quantitative sensor data obtained from keystrokes by the test conductor was available to

the robot in real-time and tracked the test subject’s intended task goal (Type IV).

3.4.2 Assumptions and Constraints

To realistically scope experiments and focus results on the examination of efficiency and

workload, we make the following assumptions:

 No faults or failures occur in either actuators or sensors (including test conductor data

entry). Tests in which any such issues occurred were terminated and not used in our

analysis.

 Seated human torso and manipulator base locations are known and constant, and all

waypoint targets for human and robot tasks are stationary and predefined. This

enables definition of robot trajectories and conflict sets prior to test script creation

and testing.

 No appreciable learning curve, no task-switching subject overload, and no variability

from choice of handedness existed. We investigate this learning curve assumption as

part of our experimental results.

 Test subjects stay on task unless the robot distracts them. The learning curve and task

focus assumptions allow us to assume user preference and task priorities are constant.

Tasks with the same level of difficulty require approximately the same execution time to

simplify data processing, and each task has common best-case and worst-case execution

times. This last assumption allows the use of test scripts developed offline for all test

subjects.

3.4.3 Test Matrix

In this section, we define the task sets the human-manipulator team complete and identify

appropriate combinations of conflict scenarios in order to test our hypothesis. The test

subject is asked to complete three types of tasks: cognitive tasks, multi-step physical

tasks, and movement-only physical tasks. The robot can only accomplish (physical)

movement-only tasks in the shared workspace. While the necessary tools and objects for

56

task completion are shared in some cases (e.g., button pressing), for our experiments

human and robot tasks are presumed independent, i.e., neither human nor robot can

offload tasks from the other. To identify changes in human performance, we perform

direct comparisons between complementary pairs of tests – one where the human

performs all tasks, and one where tasks the robot can accomplish are offloaded from

human to robot. (In these experiments, responsibility for completing movement-only

physical tasks is given to only the human or only the robot for any particular test. The

human and robot are not given the same type of task in the same test – real-time

collaboration in task assignment is beyond the scope of this work.) We treat the

cognitive task as “most important” and the physical tasks as desired but either unplanned

or unexpected. To identify changes in test subject workload, we chose low-impact tasks

with minimal learning curve so the metrics would be more sensitive to changes from the

robot’s activity than differences in task sequences. To accommodate this, simple,

everyday tasks were chosen that have analogues to tasks completed during on-orbit

operations. These tasks were independent, easily completed, and not expected to create

cumulative fatigue given the short test duration, making robot activity the sole major

impact on productivity.

To identify changes in (human) focus of attention, avoidable collisions or close-proximity

motion of the robot near the human are represented by classifying human-robot paired

tasks as conflicting vs. nonconflicting. This yields four task classes: i) nonconflicting,

robot stationary, ii) nonconflicting, robot moving, iii) visual (gaze) conflict (mental

conflict), and iv) physical conflict. The first represents tests in which the robot was not

moving to complete any tasks, while the latter three encompass active robot tests. The

use of test scripts of tasks and activation times can then ensure the human-manipulator

team will encounter the appropriate suite of conflicts.

We first defined specifics of each task, ensuring at least one task of each type was

specified. We used mathematical addition as a cognitive task, consumption for the multi-

step physical tasks, and “button pressing” for the movement-only physical tasks. These

tasks were chosen because they have similar analogues to common tasks in a space

environment, such as an EVA for spacecraft repair. The cognitive task requires moderate

57

concentration and a clear line-of-sight, as might be required when following familiar

steps to inspect or diagnose a problem with an electronics module. The physical tasks

involving consumables are multi-motion pick-and-place tasks, one for stowing or

retrieving consumables such as repair or habitation module supplies. The button-pressing

involved ‘quick’ movement to handle an overriding concern, such as grabbing a toolbox

that might be able to float away.

For the math problems task, we chose randomized simple addition problems, in a three

line XXX + XX = ? format to avoid cognitive delay that would otherwise result from

switching math operations. Input was acquired right to left (ones, tens, hundreds,

thousands place) from the keyboard number line to nominally occupy both hands and to

avoid an ‘expert’ number pad typist biasing statistics. The two consumption tasks were

eating chips from a nearby chip bowl and drinking soda from a nearby soda can. “Button

pushing” required touching reflectors at static locations b1, b2, and b3, and was simulated

as an external interruptive event. Next, we chose test subject task locations and robot

poses to satisfy the task classes: non-conflicting stationary as the robot’s default (robot at

rest and stowed so it posed no conflict, nc), non-conflicting human-robot task

combinations with nearby moving robot (e.g., drinking soda with robot goal to press b3,

nc), and human-robot tasks with conflict either in the subject’s visual gaze given math

problems with robot goal to press b1 (mental conflict, mc) or in physical workspace

overlap eating chips with robot goal to press b2 (physical conflict, pc). To best compare

the impact of the robot on human performance, we constructed six test scenarios as

shown in Figure 3-6. The chosen physical placements allowed multiple robot-active no-

conflict comparisons. Robot movement could occur both near and far from the human, or

the robot could not move at all. The ‘eat chips during b2 activation’ and ‘solve math

during b1 activation’ tasks were the only activities with conflicts studied in our

comparisons. We expected changes in human productivity according to the types of

robot task (proximity of the robot) and the speed of the robot, and attempted to choose

task activations exploring these factors in testing.

58

• Nominal robot action

• Robot action without consideration for human test subject actions (showcases all arm

movements to the human, a demonstration case)

• Ideal

• Nominal human cognition only (math problem-solving with the manipulator at a static

workspace position)

• Human-only

• Human problem-solving with interruption (math tasks with interspersed messages to eat

chips, drink soda, press buttons, or some combination thereof)

• Robot-active, no-conflict

• Collaborative operation baseline with manipulator sporadically avoiding the human

(similar to human-only, but with button tasks offloaded to the robot – best case with

robot)

• Robot-active with conflict

• Collaborative operation inducing frequent conflicts (mental conflicts, physical conflicts,

or a mix of both)

• Robot-active with conflict, overtasking

• Collaborative operation “stress tests” (more tasks than can be accomplished, or close to it

– worst-case with robot)

Figure 3-6: Test Scenarios

Next, we built a test matrix over a set of test scenarios and conflict combinations. Table

3-3 shows the mix of non/conflicting tasks for the first test session. The robot-only

scenario (Z) is introduced before the first test session to familiarize the test subject with

the robot’s baseline motions. All test sessions begin with a math-only test (ideal

scenario, A) to provide a best-case performance benchmark for each subject and to help

check for the existence of a learning curve. Tests then become progressively more

complex, introducing consumption and button-pressing tasks into the human’s schedule

and moving the robot through a series of progressively more conflicting task sequences.

Task timings allow tasks to be completed before reactivation, except in overtasking

scenarios. We do not randomize the test order, with different orders of scenarios for

different subjects, so that test results could be compared explicitly between subjects.

Maintaining a fixed test order allows direct discussion of potential learning curve, task

familiarity, and fatigue effects for the different tests.

59

Table 3-3: Test session 1: distribution of task category combinations

 Human tasks Robot Conflicts Overtasking

Scenario type Math Food/drink Buttons Buttons b1 b2

Z X

A X

B X X

C X X

D X X X

E X X

F X X X

G X X X X

H X X X X

I X X X X X

J X X X X X X

The second test session consists of paired complementary tests to the first session given

in the same time sequence as the first session. This avoids the possibility of

unaccountable differences due to fatigue that could result from a differing order of

completion. Complementary test scripts are created from a test script by modifying it so

that button tasks assigned to the human are reassigned to the robot (leaving the human

more time for math problem completion) when the original script is human-only. When

the original script is robot-active, button tasks assigned to the robot are reassigned to the

human, but only when the human does not already have a task scheduled. Physical tasks

that would overlap in time (within an assumed minimum time of completion) are

discarded because the human subject is not asked to remember a task queue. We discard

overlapping button tasks when creating human-solo complementary tests because this

should lighten the workload in the human-solo tests; we want detrimental effects from

the robot’s presence to be clear. The third test session also included tests across the

Table 3-3 scenarios. For this session, the MM-arm moves more quickly when aborting

motion toward b1 in an attempt to minimize screen occlusion (conflict) when the test

subject resumes solving cognitive tasks earlier than expected. Comparisons with

previous tests allow determination of manipulator speed impact on human performance.

60

Appendix B contains details on the number of interactions and conflicts that occurred in

each test in every test set.

3.5 Test Metrics

In our human subject experiments, we track changes in human performance and

workload to support or disprove our hypothesis following the standard Design of

Experiments (DoE) practices established by the human factors and engineering

communities [89,90]. We computed our objective performance measures from test

subject keystroke data. First, we captured task completion time, the time elapsed between

subject acknowledgement and completion of a task. We also evaluated cognitive task set

completeness, correctness, and incorrectness rates, computed from the number of

cognitive tasks (completed, correctly completed, or incorrectly completed) divided by the

amount of time not spent on the physical tasks. These statistics provide measures of a

test subject’s ability to focus on the cognitive (math) tasks. The use of rates allows

comparisons of tests across different test subjects regardless of test duration, number of

task activations, or the comparative difficulty of the physical tasks.

We also investigated subjective performance measures. To establish metrics for

subjective survey data acquired during our tests, we adopted the NASA Task Load Index

(TLX), a procedure for obtaining subjective workload assessments developed during a

three-year, 40-experiment research effort by the Human Performance Group at NASA

Ames Research Center [91]. The Task Load Index has been subjected to validation

studies, some of which included supervisory control and laboratory tasks. The adjusted

ratings and the weighted rating metrics are defined as discussed in Chapter 2.5.3.

During data processing, we utilize the adjusted ratings for performance, effort, and

frustration, as well as overall workload . Performance provides an evaluation of a test

subject’s view of their own performance. Effort and frustration capture workload

changes directly related to the robot’s involvement. Given its definition in the TLX

instructions, effort should be the most sensitive load source to any learning curve.

Overall workload is divorced from test and test subject specifics and is used for cross-

subject comparisons, similarly for the objective rates.

61

To put the TLX load scale ratings in perspective, adjusted ratings Ri have a range of 0

through 500 and the weighted rating RW has a range of 0 through 100. We define “noise”

as a change in the weighted rating of a load source by up to ~10-20, since a change in

rating or weight by one gradation has a proportional effect on the adjusted weight. We

describe how specific weights and rankings were determined in our results section below.

Higher ratings indicate the test subject felt higher workload or pressure from that

particular source, except for performance rating where lower ratings indicate a feeling of

poor performance during that particular test. Higher weights indicate the test subject felt

those load sources were more important contributors for that test than those with lower

weights.

To identify changes in human performance, we perform direct comparisons between

complementary pairs of tests and the robot’s impact, positive or negative, is inferred from

differences in the task completeness and correctness rate and the human’s perception of

their own performance between paired tests. To identify changes in test subject

workload, we infer trends through: (1) task-specific workload, comparing task

completion times and task incorrectness rates between task types, and (2) test-specific

workload, from the TLX survey data [91]. The TLX load sources demonstrating

workload come from cognitive task completion (performance rating) and robot presence

(frustration rating), as well as overall workload . To identify changes in human focus

of attention, we infer the robot’s impact on level of distraction from differences in

performance and workload between the human-solo and robot-active tests.

The ideal outcome of our experiments would be increased performance, decreased

workload, and increased focus of attention on human tasks when the robot is active. This

or neutral results in all cases would support our hypothesis and make a strong case for

improvement of the robot’s collaborative processes. Major sources of distraction could

result from the visible motion of the robot or hidden stresses from the lack of explicit

human-robot communication such as fear of collision. Fear of collision would suggest

lack of trust in the robot, where the human would be more comfortable or efficient with

supervisory control or a non-overlapping workspace. Unavoidably, some distraction is

expected due to hard-wired biological reflexes when confronted with motion in the field

62

of view, but a lack of consistency in task completion times may indicate that the human

was diverting more attention to the robot than attributable to uncontrollable impulse.

Distraction could decrease with further increased familiarity with the robot. However,

since an attempt at this type of mitigation was included as the first test in session 1

(scenario Z, Table 3-3), a further decrease would not be expected.

3.6 Results

This section describes objective and subjective results compiled for our nine test subjects

over the metrics and test scenarios outlined above. As described above, human

productivity was determined from performance and workload comparisons between

paired complementary tests and between human-only versus robot-active tests. Objective

rate data was used for all twelve test subjects to assess any learning curve effects and

evaluate human performance. However, data from the three test subjects who only

completed test set 1 was removed from the learning curve and paired complementary

curve comparisons. Subjective TLX data was collected in digital form for nine test

subjects to provide further evidence for existence or absence of a learning curve as well

as workload. We utilized eight of the nine test subjects’ data. We excluded Subject 9’s

TLX data, as his ratings were anomalous. For Subject 9, the data saturated the low end of

the recordable TLX rating scale and showed minimal, if any, variation in the ratings.

Overall TLX workload scores for Subject 9 were outliers at the low end compared to all

other subject TLX scores. Because we examined differences in ratings, this data was

generally unhelpful for subject-specific analysis. Note that exclusion of Subject 9 data

did not give the data a hypothesis-friendly bias; inclusion of the Subject 9 data would in

fact have helped bias support towards our primary hypothesis.

We also discarded incomplete TLX survey data on a test-by-test basis. Comparisons

between the two types of data identified possible correlations between workload and

objective performance. For subjective metrics we define ‘no significant change’ as data

occurring within one standard deviation. We plot this as simple lines for single-test

comparisons and box plots for aggregated tests, with the box centered on the average and

spanning standard deviation. For objective metrics we define ‘no significant change’ as

confidence within noise of the median value(s). We plot this using bowtie plots, with the

63

lower quartile, median, and upper quartile values as horizontal lines; vertical whiskers

extend to the extrema while +’s at the outer edges symbolize outliers, and the ‘notches’ –

sloping inward lines of the bowtie – show the span of negligible noise. No overlap

between ‘notches’ implies that the data have different medians with 95% confidence

(a.k.a. difference at the 5% significance level, similar to the T-test for means). We

discuss statistical outliers in the context of our hypothesis. Below, we first examine

learning curve effects. Next, we perform paired complementary test and task

comparisons. Finally, we study task completion time and subject-reaction comparison

results.

3.6.1 Learning Curve

The TLX data gave mixed results in subject perception regarding learning curve. For the

first test set, the order in which tests were run was: test Z, solo tests A-D in that order,

and the rest included robot assistance (see Table 3-3 for “scenario type” identifiers). Test

A was the math-only baseline, B was consumption-only, C was button-pressing only, and

D included all human task types. Expected results according to the mix of task type and

relative difficulty level are given in Table 3-4; test letter indicates what metric value

listed on that row should be plugged in for that test. Figure 3-7 gives an example of a

case exhibiting no learning curve effect.

Table 3-4: Expected relationship of test result data in test set 1

 Learning curve

Metric

being

compared No Yes (distinct) Only math Only consumables

TLX rating

(subjective)

min(B,C) < D

or

D < max(B,C)

D < min(B,C)

Correctness

rate

(objective)

(min(B,C) < D

or

D < max(B,C))

and

max(B,C) < A

A < min(B,C)

and

max(B,C) < D

A < min(B,C)

and

(min(B,C) < D

or

D < max(B,C))

max(B,C) < min(D,A)

64

Figure 3-7: Selected TLX Load Source Ratings Relative to Baseline: Subject 5, Test

Set 1

From the test set 1 data, aggregating across all subjects, the standard deviation is ±20 Ri

or Rw, and the noise level is ~0.04-0.05 problems/sec (about 2-3 problems per minute).

The specifics of single-subject comparisons to these values for no significant change are

listed in Table 3-5; on a row, numbers indicate subjects for which that type or lack of

learning curve held true, - indicate subjects for which it was unindicative of a learning

curve, and * represent subjects excluded from comparison due to anomaly or lack of data.

We include a symbol ^ denoting a not-statistically-significant learning curve (a trend seen

with noise level of 0) for completeness. The TLX data shows no perceived (subjective)

learning curve for overall workload for any subject and a first-day learning curve for two

test subjects in effort rating. The correctness rate data shows that no subject exhibited a

statistically-significant learning curve. Three subjects exhibit no learning curve trend at

all, and three subjects exhibited a distinct but not-statistically-significant learning curve

on the first day. So, 1/4 of the subjects showed a clear trend, while three-quarters of the

subjects showed a trend of some sort. There is a clear discrepancy between the TLX data

and the objective data.

B C D F G H I J
-100

-80

-60

-40

-20

0

20

40

60

80

100

task in the test set

c
h
a
n
g
e
 i
n
 (

a
d
ju

s
te

d
 o

r
w

e
ig

h
te

d
)

ra
ti
n
g

performance

effort

frustration

overall workload

robot-activesolo

65

Table 3-5: Exhibited statistically-significant learning curves: test set 1 comparison

Learning curve Subject number

None – overall workload 1 2 3 4 5 6 7 8 * * * *

None – correctness rate 1 2 3 4 5 6 7 8 9 10 11 12

Distinct – effort rating 1 2 – – – – – – * * * *

Distinct – correctness rate – – ^ ^ – – ^ – – – – –

Any – correctness rate ^ – ^ ^ ^ – ^ ^ ^ ^ – ^

Only consumables – correctness rate ^ – – – ^ – – ^ ^ ^ – ^

Only math – correctness rate – – – – – – – – – – – –

a * denotes subjects that were excluded from the comparison, while a dash denotes a

negative conclusion.

a ^ denotes a not-statistically-significant learning curve (noise level of 0); a number

denotes significance

We also check for learning effects across test sets; this is indicated by a marked decline

in the baseline cases across all three days that the test sets were performed. However, the

correctness rate data shows no significant decline between the baselines, and neither do

the TLX results shown in Figure 3-8. Both the objective and TLX data thus indicate no

learning curve across different days.

Figure 3-8: TLX Load Source Ratings for Baseline Cases Over All Test Subjects

s1 s2 s3 s4 s5 s6 s7 s8
0

50

100

150

200

250

1st, 2nd, 3rd baseline task per subject

a
d
ju

s
te

d
 o

r
w

e
ig

h
te

d
 r

a
ti
n
g
 (

im
p
o
rt

a
n
c
e
/d

if
fc

u
lt
y
 l
e
v
e
l
*

w
e
ig

h
t)

mental

physical

temporal

performance

effort

frustration

overall w orkload

66

Figure 3-9: Correctness Rate for Math Problems: Across All Subjects, Test Set 1

Figure 3-9 shows the aggregated correctness rate data for each test type on the first-day

across all subjects. Differences are within noise for tests B-D, indicating no general first-

day learning curve for test subjects. We also verified there is no significant change

across the multiple test days (not shown). Thus, no general learning curve from both the

objective and subjective datasets is seen across multiple days, nor does the objective rate

data show a trend to indicate the presence of learning curve on the first day. As the TLX

data straightforwardly showed no learning curve for individuals when comparing overall

workload (the main metric), there is also no general learning curve from the TLX results.

There are individual subjects who appeared to believe they experienced a first-day

learning curve based on TLX effort rating (which could bias the results of the robot-

active cases to seem more efficient); a slight learning curve effect might also be discerned

in the rate data. However, rate differences were not appreciable, inconsistent between

individuals, and did not impact our conclusions, so we do not remove initial tests from

consideration.

A B C D F G H I J

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

ra
te

 o
f

c
o
m

p
le

ti
o
n
 (

in
 p

ro
b
le

m
s
/s

e
c
o
n
d
)

test set 1 - per test correct (A-D=solo, F-J=robot-active)

67

3.6.2 Paired Complementary Test Comparisons – Robot-as-Subordinate

To determine objective performance, we compare the correctness rates of paired

complementary tests both singly and as aggregates across all subjects. This provides a

comparison of human performance when the human must accomplish all tasks versus

when the robot helps by completing button-pushing tasks for the human. Note that an

increase in correctness rate represents performance improvement. A significant change is

noted when correctness rates for single-subject solo vs. robot-active cases are outside

noise. An increase in correctness rate indicates the change in rate was outside error and

higher in the robot case than the solo case; a decrease in correctness rate indicates the

change in rate was outside the error range and lower in the robot case than the solo case.

Based on aggregate rates, some of which are shown in Figure 3-9, the solo vs. robot-

active tests are within statistical noise in every case, with an average noise range of about

±0.02 math problems/sec. This implies no significant difference in the subjects’

objective workload between when there is and is not visible robot motion in the human’s

field-of-view.

Table 3-6: Trends for correctness rates: objective data

Scenario type

(robot case)

Number of

significant

increase

Number

within noise

Number of

significant

decrease

E 4 5 0

F 3 6 0

G 0 5 4

H(1) 2 7 0

H(2) 1 7 1

I 0 6 3

J 4 5 0

E-F = robot-active no-conflict, G-I = robot-active with

conflict, J = overtasking.

Table 3-6 shows a distribution of the number of test subjects who showed significant

change in objective performance between their solo and robot-active paired tests. In this

direct comparison, the no conflict (nc) cases (E,F) and one mental conflict (mc) case (H1)

show clear improvement in correctness rate when the robot takes over tasks, while clear

performance degradation only occurred for physical conflict (pc) cases (G,I). There are

68

mixed results for the second mc case (H2). These results suggest mental conflicts disrupt

the subjects less than physical conflicts, while no conflict cases do not disrupt. However,

this could be an artifact of the particular task since the mental math problems did not

require the subjects to watch the screen at all times, but rather encouraged many quick

bursts of attention over the course of each problem. The overtasking case (J) also

displays clear improvement relative to conflict cases without overtasking. This illustrates

the existence of a tradeoff between overtasking and inclusion of the robot since the

human was overtasked but not distracted by the robot in scenario J. This objective data

provides evidence that a human does not have increased workload when there is no

conflict or only mental conflict with an active robot, but that a human may have increased

workload when there are physical conflicts with the robot. The worst-case degradation is

from a pc test case, and resulted in a decrease of 0.07 correct/second. With average

correctness rate of 0.15-0.2 correct/second, this is a drop of up to half the average rate, or

12-20 problems over a 3-4 minute test. This result suggests we want to avoid close

physical operations when possible, and identify and mitigate all conflicts as soon as

possible when close physical proximity of robot and human is required.

Table 3-7 shows a distribution of the number of test subjects who showed significant

change in subjective overall workload between solo and robot-active paired tests. Note

that an increase in workload implies the robot had a negative impact on performance.

The TLX workload data has standard deviation of ~10 for perceived overall workload,

which is within the 10-20 of the TLX ratings scale noise discussed previously. Overall

workload remains the same or decreases with the robot active, as does the effort subscale

rating; none are higher than standard deviation. There are no clear indications from the

TLX data (increases in workload) that correspond to the degradation (decreases in rate

data) seen in the objective rates data. This dichotomy suggests human subjects are more

forgiving and “feel” less stressed by the robot than the objective measure of their work

output heralds.

69

Table 3-7: Trends for overall workload: TLX data

Scenario type

(robot case)

Number of

significant

increase

Number within

standard

deviation

Number of

significant

decrease

E 0 6 3

F 0 8 1

G 0 8 1

H(1) 0 8 1

H(2) 0 7 2

I 0 7 2

J 0 3 6

E-F = robot-active no-conflict, G-I = robot-active with

conflict, J = overtasking.

3.6.3 Task Category Comparisons

3.6.3.1 Solo versus Robot-Active Cases

In this section we compare two test groupings – those where the human works alone

(human-solo), and those where the robot is moving to press buttons (robot-active). A

significant increase in test subject workload in the robot-active cases provides evidence

that the presence of the robot was distracting the human, while no increase or a decrease

would suggest the robot does not distract. Figure 3-10 shows adjusted ratings per-person

across all tests within a test grouping, excluding overtasking cases. For each subject, for

each load source, and for all cases, the change in TLX ratings was either within standard

deviation or showed significant decrease. This indicates that the inclusion of the robot’s

involvement did not change subjective performance or workload significantly. Those

cases in which a clear decrease occurred were unsurprising, given that in the robot-active

cases less physical tasks were assigned to the human and the mental task of solving math

problems is of lower impact than other tasks.

70

Figure 3-10: Selected TLX Load Source Ratings Relative to Baseline by Task Type,

Subject

It should be noted that in almost all cases shown in Figure 3-10, the maximum change in

adjusted rating is not higher than 150, and the change in overall workload is not higher

than 25. This implies that worst-case there is a 30% change in adjusted workload and

25% in overall workload between non-overtasking cases. We also compute the objective

incorrectness rate, providing an indication of math mistakes expected to be more frequent

when a test subject is distracted by the robot. This data (not shown) is within statistical

noise when comparing solo and robot-active cases per test set, per subject, except for

subject 7 where the incorrectness rate was significantly lower than noise for the solo tests

on test day 1. This is the only time this happened so it was likely not a true improvement

and this subject exhibited learning curve effects on test day 1. Our data therefore

indicates that significant increase in test subject’s objective workload when the robot was

active.

solo robot
-100

-50

0

50

100

comparison of change-in-ratings by task-type, per subject

task type for performance rating

c
h
a
n
g
e
 i
n
 (

a
d
ju

s
te

d
 o

r
w

e
ig

h
te

d
)

ra
ti
n
g

solo robot
-100

-50

0

50

100

task type for effort rating

solo robot
-50

0

50

100

150

200

task type for frustration rating

s1

s2

s3

s4

s5

s6

s7

s8

all

solo robot
-20

-10

0

10

20

30

task type for overall workload

71

Figure 3-11: Comparing Correctness Rates between Test Groupings Across All

Subjects

Next we look for more subtle changes in correctness rates. The aggregate correctness

rates in Figure 3-11 show that within each test set, the solo vs. robot-active tests were

within statistical noise, with an average error range of about ±0.02 math problems/sec.

Thus, the rates show no appreciable difference from each other. Across all tests, per

person, the correctness rates are all consistent in average. Differences are within noise

when comparing the solo and robot-active cases, except for subjects 3 and 7 who exhibit

improved (higher than noise) correctness rates for the robot-active tests than the solo tests

on only the first test day – also probably due to learning curve, for reasons similar to

above, and thus negligible. This data also indicates that there are no major differences in

subjective or objective workload with robot activity.

3.6.3.2 Robot-Active Conflict Cases

While there is negligible distraction effect seen between the solo and robot-active cases,

there is some variation within the datasets themselves. As discussed above and shown in

Table 3-3, there are several types of robot-active cases. For completeness, we also

looked for trends in workload for the different conflict subcases– no conflict (nc),

1-b 1-s 1-r 2-b 2-s 2-r 3-b 3-s 3-r
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ra
te

 o
f

c
o
rr

e
c
tn

e
s
s
 (

in
 p

ro
b
le

m
s
/s

e
c
o
n
d
)

test set - b(est)/s(olo)/r(obot-active) - avgs over all people correct

72

physical conflict only (pc), mental conflict only (mc), and both physical and mental

conflicts (pc&mc). Note that the intersection of any of these subcases is empty.

We next compared individual TLX ratings over the robot-active conflict cases.

Frustration rating was high for all subjects in the mc cases. Verbal and written survey

results indicated the subjects wanted the robot to move away faster in these cases. The

subjective performance rating for pc&mc was much higher than for other subcases:

dealing with more conflicts while still completing all tasks may have given a greater

sense of accomplishment than less challenging tests. Objectively, we see that, per

person, the range of correctness rates across tests is 0.02 correct/s within a test set (and

0.05 correct/s across all tests) with the error about half that. This is a noticeable but not

dramatic change since this only translates to a maximum difference of 4-6 problems over

a 3-4 minute test. Also, trends indicated no particular conflict type was better or worse,

with overall performance consistent across conflict types in a per-person comparison.

Type of conflict therefore does not appear to play a significant role in task completion or

correctness, although subjects can be more frustrated by some conflicts than others.

Figure 3-12: Selected TLX Load Source Ratings Relative to Baseline Across All

Subjects and Tests by Task Type (no overtasking cases)

performance effort frustration overall workload
-100

-50

0

50

100

150

200

task type

c
h
a
n
g
e
 i
n
 (

a
d
ju

s
te

d
 o

r
w

e
ig

h
te

d
)

ra
ti
n
g

nc

pc

mc

pc&mc both

robot

solo

73

In Figure 3-12, we show aggregate results across all test subjects and test types. It is

apparent that regardless of the robot’s involvement, differences within-rating appear to

fall within standard deviation. An interesting caveat is that the solo test-type cases have a

larger standard deviation for effort and frustration and double the standard deviation in

overall workload than do the robot-active cases. This echoes the Type III data: many

subjects responded that they preferred the robot to complete the "annoying" button-

pushing tasks. Such comments may be linked to the physical distance to the task location

– the test subject had to lean forward to reach button b1 – and nearby tasks reportedly

caused less to no stress, according to Type III data. Future work could explore this issue

in more detail by varying button locations between tests, allowing mixed-button-pushing

(collaborative task assignments) between human and robot, and utilizing directed surveys

querying subjects about this specific preference. An alternative explanation is that the

test subject realized that the robot could not complete two of the four nearby tasks

(eating/drinking) thus considered all tasks within this near physical space to be candidates

for more efficient completion by the human test subject. In summary, both the subjective

and objective datasets indicate that test subject workload increases with differing types of

robot involvement, which supports our initial hypothesis.

3.6.4 Task Completion Times

If the offset of standard deviation for average completion time of a type of task does not

overlap sufficiently between different tasks, then the workloads of the tasks can be

considered different. Figure 3-13 shows aggregate task completion times.

74

Figure 3-13: Task Completion Times, Across-All-Tests per Subject

From the figure, button b2 and b3 tasks have similar workload to each other, but less than

b1 which was most physically distant from the test subjects. Chip eating tasks by

different subjects had a consistent standard deviation of ~1-2 seconds, but the average

time of completion differs substantially between subjects. Soda drinking tasks have less

variation per-subject and took 3-5 seconds more time to complete than the chip tasks;

however, the standard deviations are so large for food/drink consumption tasks that this is

not a statistically significant result. Individually, some subjects were internally consistent

(low standard deviation) for the consumption tasks; however, those who were

inconsistent followed no pattern to link with a distraction. From observation, the chip

and soda tasks have more timing variation in portions of the movement done at the task

locations (grasping the chip/can and the actual eating/drinking) rather than in physical

extension and retraction arm movements. Although this might initially appear to be

motivation to change the eating/drinking tasks in future work, the larger variation in

delays observed at worksites would be expected in real-world tasks where the human or

robot would typically grasp, complete a physical or inspection activity, or release an

object at each site.

1 2 3 4 5 6 7 8 9 10 11 14

5

10

15

20

test subject number

ta
s
k
 c

o
m

p
le

ti
o
n
 t

im
e
 (

in
 s

e
c
o
n
d
s
)

button 1

button 2

button 3

eat chip

drink soda

75

3.6.5 Subject Reaction

Test subjects provided notable feedback regarding robot speed and conflicts. Many test

subjects indicated the speed of the manipulator was too slow, particularly in conflict

cases. However, many of these same test subjects said that the manipulator was moving

too fast when the motions were sped up slightly in test set 3, though the faster motions

occurred infrequently. The speedup was from a 3 second traversal to a 1.5 second

traversal, and could only occur up to two times per relevant test for movement away from

button 1 if the task was interrupted. This data suggests the existence of a crossover point

at which the manipulator’s speed is perceived differently by the test subjects.

Qualitatively, this crossover point likely exists between these two speeds for most

subjects. Unfortunately, we cannot draw a strong conclusion at this time, as we did not

include an explicit survey question to formally collect this information from every subject

in this round of testing; this could be future work. However, despite this verbal reaction

regarding manipulator speed, it is notable that when asked directly, subjects said that they

felt safe working near the manipulator at all times. A dichotomy of behavior was

observed during the mc cases with b1: some subjects would attempt to look over the

manipulator to continue their work, while others either waited patiently for the arm to

move away or slowed their movements during other tasks to give the manipulator time to

finish. This behavior suggests subjects were unclear on the proper protocol for this

conflict, suggesting additional guidance in how to react to conflict (wait vs. attempt to

circumvent problem) in future testing. In this case, the uncontrolled factor was the

tradeoff between the relative importance of completing the designated cognitive tasks in

the timeliest manner versus conserving energy by patiently waiting.

In one interesting case not included in our statistics, a physical conflict occurred but the

sensor signal was not sent by the test operator. The test subject quickly noticed the robot

continued the conflicting task, paused to wait for the robot to finish, then completed their

own task while casually commenting verbally upon the lack of response. This single data

point suggests the human test subject could recognize and handle differences in the

robot’s behavior between cases in which it reacts to the human and cases when it does not

(but remains a safe companion). This is important once the robot is responsible for

sensing the human and predicting intent, as the goal would be for the robot to correctly

76

predict human response is most cases; however, it will be difficult to prove the robot's

predictions will be accurate in all cases.

3.7 Preliminary Conclusions

We have proposed a hypothesis that a collaborating human-robot team operating in a

shared workspace can enjoy maximum productivity when the human need not supervise

the robot. To support or refute this hypothesis through human subject tests, we

constructed and utilized a human-robot experimental apparatus that placed a seated

human and fixed-base robotic manipulator in a shared physical workspace. We

characterized test subject performance given a series of experiments in which a human

completes cognitive and physical tasks with and without a manipulator executing its own

conflicting or non-conflicting tasks. The goal of these experiments was to determine the

extent to which a robot manipulator impacts human task performance and workload when

operating in a shared physical workspace. Our results, both objective and subjective,

support our hypothesis: productivity of the human in the shared workspace remains

comparable to productivity of the human working alone so long as the robot does not

interfere directly with the human’s physical motions or perceptual focus of attention.

Key results from the above data processing section are summarized below:

 No first day learning curve is evident from overall workload. There are mixed results

regarding first day learning curve in objective performance (correctness rate); no

statistically-significant learning curve was evident from the object data, but there

were some noticeable trends. No multi-day learning curve is evident from either

objective or subjective datasets.

 The paired complementary test objective rate data indicates that test subjects are

unaffected by robot presence except when physical conflicts occur. The subjective

TLX data, however, shows no clear increase in workload under the tested conditions.

 In solo versus robot-active test aggregate comparisons, data indicates robot

involvement did not significantly change subjective or objective performance or

workload.

77

 Differing types of robot involvement show no general trend that test subject workload

increases in either subjective or objective datasets.

 All tasks had task completion times with standard deviation on the order of their task

completion times.

From our hypothesis, experiments, and data processing efforts, we draw the following

conclusions:

 Our hypothesis and assumptions were supported by our results, with the exception of

physical conflicts where the robot was not able to perform efficiently.

 Fast real-time response by the robot is essential to avoid human productivity decrease

in the case of physical conflict.

 Cases were observed where the robot needs to begin moving away from a possible

conflict site before the human physically moves toward completing this conflicting

action due to upper (safety-constrained) bounds on the robot’s movement speed.

 Test subjects consistently felt safe with their robotic companion, with some subjects

requesting higher manipulator speeds to minimize conflicts/delays.

 Subjects could easily interpret whether the robot was continuing to pursue its goals

versus executing a conflict avoidance action. The robot was not yet equipped to

predict human intent beyond keyboard inputs provided by the test director.

The physical conflict scenarios suggest that intent prediction, potentially achieved with

look-ahead or model-predictive planning to avoid the need for explicit communication of

intent, could increase efficiency and minimize frustration when physical conflicts would

otherwise arise. Intent prediction might redirect the robot to other objectives, or might

simply require the robot to expedite or delay its current task sequence. Scheduling

algorithms with probabilistic prediction will be key to meeting safety constraints while

also maximizing collaborative performance. Test subject confidence in such a fully-

automated system will be important to evaluate in future tests.

78

Future work could also include longer-duration testing to determine the impact of human

fatigue on ongoing human performance and overall system performance. If the robotic

system is able to offload dull and repetitive tasks from the human without significantly

impacting human productivity levels, we anticipate the human-robot team will be more

productive than the human alone. Longer-duration tests can enable a study of the

tradeoffs between varying human-robot task allocation and task intensity versus work

session duration on cumulative fatigue. There is also a question of when or whether a

tradeoff occurs in level of distraction due to robot proximity for the different types of

tasks. This was tested somewhat, but not exhaustively, in this work; testing for these

purposes would involve changing the physical placement of the task in the workspace

(eating near versus eating far) as well as the proximity of robot motion. Direct

comparisons of near-conflicts versus far-conflicts for physical and mental tasks were also

not tested in this work (only near-physical and far-mental tasks were performed); testing

with fewer or no mixtures of task types would be interesting to pursue. It will also be

interesting to conduct a longer series of tests over several weeks or months, seeking

individuals with a background in robotics, or offering less-knowledgeable participants a

more thorough understanding of the robotic test platform prior to testing. Tests could

then examine the effects of extended prior knowledge and/or newly learned knowledge

versus multi-test experience on human productivity. Productivity comparisons broken

down by gender and age might also be interesting, if a study with enough individuals for

a statistically-significant comparison can be conducted.

79

Chapter 4

System Architecture with Feedback for Human-Robot Interaction

4.1 Introduction

In this chapter, we present a three-tier autonomy architecture [97] that enables a robot to

incorporate human observations and models in a manner that best supports safe, efficient,

and autonomous (unsupervised) robot decision-making in a shared environment under

uncertainty. We aim to increase the robot’s efficiency while still safely avoiding conflict

with a human companion by using the human’s current sensed status to also predict

future human intent, and then supply this information to the robot’s planner so it can

better optimize its choices when working in close proximity to that sensed human.

Algorithms and models were chosen to accommodate shared workspace human-robot

interaction (HRI) when there are distinct task sets for each agent. We assume the

human’s current state is fully-observable. Autonomy architectures have typically been

cast within a three-tier (3T) framework for robotics [97,98,99] with separate layers for

planning/scheduling, plan execution, and low-level device or feedback control. In this

work, we focus on the planning and execution layers, although we illustrate interfaces to

a lower-level observer and controller typically found in the lowest architectural layer.

With respect to the 3T architecture concept, we incorporate symbolic task planning as the

highest layer of decision-making. This layer allows the robot to develop plans or policies

that incorporate observed human actions into robot decisions, with resulting plans then

capable of reacting accordingly. Robot (manipulator) trajectory tracking and state

estimation through an observer populate the lowest layer of 3-T and are presumed in this

work to always function correctly. This strict separation of task-level planning and plan

execution from physics-based control and sensor data processing (state estimation)

allows us to explicitly focus our attention on higher-level decision making and to

carefully define the dataflow between modules in a manner consistent with state-of-the-

80

practice. Exploration of interfaces and shared information impact on system performance

is a key to successful autonomous behavior in an HRI context.

While most planning layers in a 3T structure are modeled as integrated planning systems,

abstraction and decomposition are common mechanisms to accurately and efficiently

model the domain of interest. As discussed in Chapter 2, most researchers use methods

such as Hidden Markov Models (HMMs) to characterize human intent. If HMMs were

incorporated into a robot decision-making framework, a Partially-Observable Markov

Decision Process (POMDP) would be required to then solve for the robot’s state changes

and optimal actions based on the human’s state. However, POMDPs are widely

recognized as being impractical for decision problems of even modest complexity.

Fortunately, as discussed at the end of Chapter 2.3.2, so long as the accuracy of the input

(characterized human intent) is higher than a user-specified threshold, indicating the

MDP can closely approximate the POMDP with uncertain belief state, the human action

can be considered observed thus “recognized”. The choice to use the MDP rather than

POMDP significantly reduces computational complexity, which is important given the

suite of HRI activities that might be required and given the potential need for space-based

computing resources to be used to build optimal policies. One of our key architectural

contributions, as discussed below, is to then further simplify the problem space by

separating the decision-making related to human intent prediction (HIP) from the

decision-making process associated with robot action choice (RAC). This novel

architectural choice decomposes the problem and will be shown to enable full

observability of each MDP state-space. The use of (predicted) human intent as feedback

for robot decision-making, both for operation in a shared workspace and for space

applications, is novel. These HIP and RAC processes, which are the main focus areas of

Chapters 5 and 6, are discussed with respect to our autonomy architectural framework

below.

4.2 Motivating Example

Throughout the rest of this work, we assume that this prediction of a human’s motion in a

physically shared workspace takes place in a space environment. We therefore present a

case study for an astronaut on IVA inside a pressurized spacecraft to help ground

81

discussion of our architecture as well as subsequent more detailed discussion of decision

processes. In our IVA example, the astronaut is tasked with computer work while

keeping an eye on a nearby experiment that may require some upkeep. He/she is sitting

in front of a computer console with food and drink nearby, snacking intermittently while

working. This environment lends itself well to human intent prediction (HIP), as the

motion prediction element complexity is greatly reduced due to the physical constraints

imposed by the seating device that secures the human in place in the zero gravity

environment. Meanwhile, the robot is conducting maintenance requiring traversal

between multiple worksites in the shared workspace. For the robot to work without

disturbing the human, it must predict situations in which the human will need to access

different parts of the workspace as well as view without occlusion parts of the habitat

(e.g., a computer display showing data associated with the ongoing experiment).

The demands imposed by a spacesuit on on-orbit EVA are far more physically restrictive

than the shirt-sleeve garments worn on IVA. However, we can still assume that tasks are

somewhat scripted, and that mobility will be purposely restricted to enable the astronaut

on EVA to move and apply forces and torques efficiently. Due to the suit, IVA tasks

generally require less time and energy expenditure to complete than would a similar task

on EVA. Further, risk is increased in EVA because the suit and anchoring mechanisms

provide less protection and security than does the space habitation module. This suggests

that IVA HRI with an autonomous robot is more likely to be explored near-term than

EVA HRI, although both could be beneficial to a mission. The laboratory experimental

setting in Chapter 3 was intentionally chosen to be an analogue of the IVA setting

described here, to allow us to familiarize ourselves with the scenario and capture

knowledge of similar motion-primitives to those expected in our IVA scenario.

4.3 System Architecture

Our architecture depicted as a 3T structure is given in Figure 4-1. The mission operator

supplies the mission goals and tasks to both the astronaut and to the robot’s planning

process, including environmental information, task sequences to accomplish each goal,

and goal priorities and assignments. This is done prior to the start of any given HRI

episode. The mission operator can update the planner with more scenarios so that the

82

robot can create additional plans for later use, or send commands to the executor directly

(not shown) if he/she wishes to circumvent the planner and take direct control of the

robot’s actions. In our research, the role of the mission operator is not explored as we

devote our attention to decision-making and execution processes found within the

planning and executor layers.

Reactive ControlExecutorPlanner

Observer

Guidance
and Control

Robot
Actuators

EnvironmentAstronaut

Robot
Sensors

Mission
Operator

Figure 4-1: General 3T Architecture for Space HRI with Feedback, System-Level

The inclusion of sensor updates as feedback into the system lets higher decision-making

and executor layers reconfigure – thus react – to observations in real-time. The observer

module in the reactive control layer supplies the majority of the feedback used by the

executor and planner, including the results of the robot’s own actions as well as the

current state of the human and the environment. The guidance and control module

outputs actuator commands to follow the trajectories supplied by the executor, but the

module can react immediately to unexpected actions sensed by the observer and modify

its commands for safe physical distancing using Kulic’s danger index, as will be

discussed in later chapters [14]. The guidance and control module supplements the

observer with trajectory error information, both for the robot and for the human, to help

83

the higher automation layers react appropriately. The executor chooses the optimal action

for the robot in real-time according to the activated plan it has previously received from

the planning layer, driven by the feedback from the observer includes knowledge of

itself, the human, and the environment.

The planning layer supplies the plans for the executor to follow. However, because

symbolic planning tends to be computationally complex, replanning at this higher level

should occur as infrequently as possible. Ideally, all plans or policies would be created

offline then executed online, although in anomalous situations such a model may not be

sufficient to support fully-autonomous contingency operation. The planning layer is told

which scenario is taking place by the mission operator before the start of each interaction

and, in our work, supplies a single optimal policy to the executor that includes

appropriate robot actions for all possible outcomes (states) expected in our closed-world

system for that particular scenario. In future work, a feedback loop could be added

between the observer and planner, then scenario-recognition logic could direct the

planner to either replan or activate a cached plan when an unexpected event renders the

executing policy as no longer valid. Such an extension would support autonomous policy

switching and replanning under most circumstances.

Because we assume separate tasks and goals for the human and robot in our problem

space, a natural decomposition is to separate this problem into two parts: one dealing

with inferring human tasks and goals thus intent, and one for selecting robot tasks and

goals. Robot action choice requires knowledge of its own goals, the environment, and of

the human’s current and future intent to enable avoidance of physical conflict. Because

we also assume that the human will not react to the robot if the robot acts in a manner

that does not interfere, the human’s goal driven intent is assumed not to change due to the

robot’s actions; thus, while the robot must account for the human in its decision-making,

we assume the human decision-making process need not account for the robot. This

simplifies the problem in that, while feedforward from human intent prediction (HIP) to

robot action choice (RAC) is essential, feedback from RAC to HIP is not needed.

Thus, we formulate our planning system as two separate MDPs: a human intent

prediction (HIP) MDP that models the human and predicts their next action(s), and a

84

robot action-choice (RAC) MDP that determines the robot’s optimal policy action-

choice. The resulting policies are separate but linked by the output of current and future

predicted intent of the human that is output by the HIP policy and used by the RAC

policy, as shown by the blue arrow in Figure 4-2. The green boxes indicate the areas of

focus in this thesis.

Reactive ControlExecutorPlanner

Observer
HIP

Policy
Execution

RAC
Policy

Execution
RAC
MDP

HIP
MDP

Guidance
and Control

Robot
Actuators

EnvironmentAstronaut

Policy library

Policy library

Robot
Sensors

Mission
Operator

Figure 4-2: 3T Architecture with Decomposed Human Intent Prediction (HIP) and

Robot Action Choice (RAC)

Specifics of our autonomy architecture are shown above in Figure 4-2. Sensor data is

processed and evaluated by an observer, which generates both continuous and symbolic

parameter estimates. This information in turn drives the policies and the lower-level

executor processes. The MDP computes policies offline and updates policy use online as

needed (in future work). The mission operator selects which policies in the library

database should be used and triggers the update process when necessary. The locally-

optimal robot action-choice is given to the trajectory generator as the reference input,

which in turn outputs a signal used by a low-level controller which creates the explicit

85

actuator commands for the robot to follow. The robot then acts on the environment and

the feedback loop closes.

The robot senses its human companion, and the observer module processes the

information to extract the human’s current state using known state-of-the-art methods.

This includes the human’s goals and action-history. This human state data is input into

the HIP MDP policy, which then outputs the action the human is most likely to take,

which we call a human’s intent. Human intent is predicted based on a priori knowledge

and real-time observations, and we define it as the best-matched or most-likely in-

progress and future action-choice(s) that the human is or will be pursuing to complete

their mission goals. This predicted human intent is then taken as part of the input state

vector to the RAC MDP executor, along with the robot’s own internally-tracked task-

level goals, action-history, and zone information which details the safe distance between

the human and robot, to select the optimal next action or action sequence for the robot to

enact. Selected actions are then executed by the reactive controller and the cycle repeats.

Consider the IVA problem in which we sense the position and pose of the human within

the space station environment. This data is added to an evolving time-history of pose and

position information and used by the observer to determine the velocity and acceleration

of the human’s torso and limbs. Through a simple mapping process, also presumed to

exist distinct from our MDP and policy executor modules, we match a currently-evolving

trajectory to a physical zone that may correspond to a particular action of goal with some

accuracy, such as an in-progress but as-yet incomplete movement of a hand towards a

drink. These physical zones are calculated offline in the context of the scenario,

according to the environment, the actors (human and robot in the environment), and the

goals to be accomplished within the environment. We use sensors and a known model of

the environment to determine when particular tasks have been completed by the human

by sensing the impact of action-completion – for instance, a hand coming into contact

with a drink container and then grasping it – and matching it explicitly to start and end

segments along the timeline of the trajectory of human motion. We assume that these

actions are sensed with 100% certainty once resolved by the recognition process. These

known actions are added to an evolving action-history, which the observer tracks as well.

86

The potential for incorrect resolution by a well-trained system is presumed sufficiently

low to be negligible in this work, which allows us to reduce our transition probability

tensor by declaring the action-history to only evolve forward in time. If actions are ever

incorrectly identified, the action-history will include this action but it will ultimately

cycle off the stored history. In this case, transition probabilities may be biased by the

incorrect action history element, but safety will still be preserved through the reactive

layer. To execute the MDPs in Matlab on a traditional computer, the size of the state

space of each MDP model generally needs to remain below √

, where na is

the number of unique possible choices of policy action. Otherwise memory and

computational time constraints may arise, given a standard MDP implementation in

which the full probability tensor and policy for each state are stored.

Note that, under our assumptions, if there is no possibility of human conflict or if no

human is present, then there is no need for uncertain reasoning. The only uncertainty we

explore here stems from the inclusion of the human in the robot’s space. Also note that

when future human prediction is unnecessary, the HIP policy block reduces to a pass-

through for the fully-observable human goal and action information; the RAC then

becomes a reactive planner at the discrete-action level, similar to the one-step reactive

implementation discussed in Chapter 3.

Note that while the human need not model the robot during interaction, we must formally

restrict our models to not include human tasks or goals that are directly dependent upon

the robot’s completion of its own goals. This allows us to simplify our models, but this

restriction is unnecessary if we can guarantee the robot’s on-time completion of such

cooperative tasks. Relaxation of this assumption is necessary to include the general

impact of robot actions on human goals and intent for cooperative work, but this is

outside the scope of this thesis which presumes independent agent task sets.

The observer supplies the HIP and RAC policy executors with current MDP state.

Specifically, HIP policy matches observed human and environmental state to the

predicted human intent action (
H
aHIP); this in turn is fed into the RAC policy which

outputs the optimal robot action given observed robot and environment state, currently-

87

observed human action (
H
aobs), and the next predicted action from HIP (

H
aHIP). We

assume that the robot does not fail in any action that it may take, but that it is

interruptible mid-action, e.g., to activate a new action when a change in RAC MDP state

indicates this new action is optimal prior to ongoing action completion. We presume full

observability of each MDP’s state, reasonable for a well-equipped IVA environment.

In

Figure 4-3, we show the timing of the state update process for human intent input to

RAC, provided through prediction (HIP) and through direct observation. The observer

necessarily lags HIP, in that HIP outputs the next predicted action which will be

ultimately observed. There are two possible scenarios for observer output: a recognized

action is provided (including no-op), or the observer outputs a flag indicating the ongoing

action is “unknown” (not yet identified). Note that HIP state updates are considered

instantaneous for simplicity, meaning that the HIP will never predict the “currently

observed action”, instead it will always predict the next action, until the observer

recognizes that next action as in-progress.

Consider Figure 4-3. In case (A), the current action has not yet been predicted, and the

observer will output
H
aobs as “unknown.” This prompts the HIP policy to calculate the

most-likely in-progress action for
H
aHIP, and the RAC policy to use the HIP output as the

in-progress action; no future intent can be determined with high accuracy for RAC use.

In case (B), the observer has now (correctly) identified the in-progress action
H
aobs, which

is used by the HIP policy to generate the future intent. The RAC policy uses
H
aobs as the

in-progress action and
H
aHIP as the predicted future intent. The cycle then repeats.

If the HIP model is not perfectly accurate, there is the possibility that the observed action,

once finally resolved, may not match what the HIP policy first predicted the in-progress

action to be. Thus, in the RAC MDP transition probabilities, we allow for cases where

the HIP model might be wrong by allowing an intermediate transition of
H
aobs to

“unknown” for the wider spread of possibilities prior to that resolution process.

88

Haobs =
unknown

HaHIP = 1...

time

tn tn+1

...

(A)

...

...

Haobs = 1

1 HaHIP = 1...

time

tn tn+1

...

(B)

...

...

HaHIP = 1

Haobs =
unknown

...

time

tn tn+1

...

(A)

...

...

Figure 4-3: Timing of Intent Updates as Used by Robot Action Choice (RAC)

89

While we assume that the mission operator is a human being at mission control, we

expect that the role of the mission operator could be filled by an intelligent sensing

system that can identify contexts where mode- and policy-switching is necessary. The

inclusion of this module is used to allow a decomposition of the policy state space over

multiple task sets, rather than requiring a policy that encompasses the whole of the

physical space available to the human and robot over an entire mission. An example of

this would be to create the policies necessary over a 24-hour period given the general task

timeline for the space station that day. The state spaces for each policy-solution could be

decomposed by temporal (time of day) or spatial (per room or working area) separation.

Theoretically, to automate the mission operator position, it could be replaced with a MDP

that could match likely scenarios – and their associated policies – to the current human-

robot system sensed state, take into account the human’s sensed actions and priorities

within context, and would output the policy and operational mode most likely to be

needed by the robot for the next bout of human-robot interaction.

This brings into focus the delineation of responsibility and oversight between the mission

operator and the policy-space of the robot’s planning layer. The planner in our

architecture, while in the operating mode that is the focus of our research – human-robot

co-location – does not attempt to determine correlations between the shift among larger

task sets at different physical locations. Determining what must be included in the state

space representation that the robot uses for its determination is the realm of the mission

operator. For example, if there are three task sets in a room that a human might perform,

the created HIP and RAC policies might include state spaces that include each task set

separately, and then every possible combination of the task set spaces. The mission

operator would select which of these policies should be used at any point in time, and

would attempt to include uncertain terms inside the MDPs that model when a transition

between these policies might, or might need to, occur. The planning layer would only

concern itself with aspects of, and transitions within, the state space it is given. The

mission operator would also concern itself with controlling mode shifts to alternate

operational modes outside the scope of this research, such as direct human-robot

interaction or other types of collaboration that require explicit verbal or gestural

communication.

90

Chapter 5

Human Intent Prediction1

5.1 Introduction

For human-robot interaction (HRI) to occur in a shared workspace without collision or

conflict, we must have some way for the robot to sense the human and act appropriately

based on that knowledge. Chapter 4 described the autonomy architecture defined for this

purpose. Chapter 5 now describes and evaluates the Markov Decision Process (MDP)

strategy used to predict human intent, which we define as the goal-driven action that a

human is or will be attempting to complete. This policy action is a one-step lookahead to

the action the human is expected to execute, beyond what the observer is currently able to

predict. No explicit communication takes place between agents, yet we assume that the

human’s state is fully observable for the reasons outlined in Chapter 4.3. Therefore, this

human intent prediction (HIP) MDP model takes as input knowledge-engineered

information that allows a best-matching policy to be output for use by the robot. This

knowledge is manually generated in this research; any process for experimentally

learning such information is relegated to future work. The resulting HIP MDP policy

takes as input only a human’s current high-level goals and abbreviated action history.

This includes their current in-progress action, which we assume can be found using one

of any number of available action-recognition techniques, as discussed in Chapter 2.5.1.

The HIP policy outputs the most likely future action(s) of the human, requiring modeling

and detection of all actions that have an impact within and upon the shared environment.

We hypothesize that solving for and making available this additional predictive

lookahead to the robot’s action-choice procedures will enable the robot to make better-

informed decisions under the majority of circumstances.

1 Some of the information in this chapter is reproduced or modified in part or in full from References [104],

[105], and [107].

91

Most MDP problem formulations give policies that match observed state to an optimal

“action” when executed. Our HIP model requires a non-standard formulation because the

idea of “optimality” under these circumstances is non-traditional. Here, we do not try to

find the “best” parameters that would result in the most rational human behavior or action

and the most efficient state transitions towards goal satisfaction. Instead, we measure

HIP MDP performance (reward) by how well the policy is expected to match a human’s

actual semi-rational responses in real-time. We explain below how this performance

metric translates to parameter selection in the HIP MDP formulation, particularly the

reward function. We define two types of human models: a ‘simulated human’ model,

which is generalized to statistical norms of human reaction obtained from human subject

testing; and a ‘human matching’ model, which attempts to produce the same output as a

particular human subject and requires online updates for improved accuracy. These two

modeling perspectives can be represented using the single HIP MDP formulation

presented in this chapter.

Below, we first describe our HIP MDP formulation. Next, we present two case studies

and their domain representations, discuss the expected impact of changes in the model

parameters, and then evaluate simulation results. The two scenarios we discuss are cast

in EVA and IVA environments. The EVA case requires the astronaut to remove a panel

on a spacecraft, where the astronaut’s actions include the retrieval of a screwdriver,

removal of screws and removal of the panel. The IVA environment is similar to the test

scenario used in the human subject experiments described in Chapter 3; the astronaut’s

actions include eating chips, drinking soda, solving math problems, and pressing a button

while seated at a workstation. We present metrics for evaluating the performance of the

generated HIP policies, and apply them to analyze simulation results.

5.2 Markov Decision Process (MDP) Formulation for Human Intent Prediction

The MDP is defined as: [39,35]

 MDP = {S, A, T(s
i
,ak,s

j
), R(s

i
)}  π(s

i
) (5-1)

It is comprised of a set of states S, available actions A, state-dependent rewards R(s
i
), and

transition probabilities T(s
i
,ak,s

j
). We define an “action” ak as a primitive task that may

92

require multiple motions but will complete without interruption. An optimal policy for

the MDP can be found using Bellman’s equation (see Chapter 2.3.2, Equation (2-22)).

The human’s physical state is received from the observer module in the architecture (see

Figure 4-2 in Chapter 4.3) and is assumed to be fully-observable. State includes the

human’s goals and a k-observation history of human actions we denote as the action-

history with k = nh. State may include the current action being undertaken by the human

i

nh
a 1 (in-progress but not yet completed), if available for the application domain. The

actions represent the task-level primitives the human would execute alone or in sequence

to achieve a goal. The reward of executing a task-level action in any state is a function of

expected goal satisfaction. The transition probabilities are calculated from the current

state, which includes the action-history. In a well-formulated HIP MDP, the optimal

action chosen for any given state most closely matches the choice that the human would

actually take given current goals and environment state.

The MDP requires a finite, discretized state-space, and computational tractability requires

minimization of state-space size thus model complexity. In the HIP MDP, the state is

comprised of a set of features, most of which have binary values except for the action-

history. Each attribute in the action-history is integer-valued and can take the value of

any corresponding action in the set of actions A, which has cardinality na each denoted by

an element in [1 na]. The specific model for the HIP MDP is given below.

5.2.1 States and Actions

The set of sn modeled human states  sn
sssS ,...,, 21 each denoted is includes two

elements: the human’s goal-state  ii FG , , and the abbreviated action-history  i

n

i

h
aA 1, 

of observed actions.

Thus, each HIP MDP state is given by:

  i

n

iiii

h
aAFGs 1,,,  (5-2)

93

The human attempts to satisfy goals in  ii FG , via action-choice ak at any given time.

We differentiate between two types of human goals: a set of gn mission goals

 i

n

iii

g
gggG ,...,, 21 , and a set of fn high-priority interruptive goals  i

n

iii

f
fffF ,...,, 21 .

We assume that these objectives are conditionally-independent from each other and that

they cannot be further simplified or combined. A human’s need to satisfy a high-priority

goal F
i
 could conditionally impact the probability of achieving mission goals in G

i
, the

reward they associate with goal completion, or a mixture of both. These dependencies,

however, would be difficult to accurately capture, so our models instead simply quantify

the relative reward of each goal to guide HIP MDP policy optimization.

Generally, an action could also impact more than one goal, but again for simplicity we

map actions to not more than two distinct goals so that interaction and dependence can be

minimized. A sequence of actions may be needed to accomplish some goals, while in

other instances, a single action may be sufficient. Action sequences are central to our

model as astronaut and robot task completion often requires a multi-step script. For

instance, all high-priority goals are assumed to complete following one uninterruptible

action associated with that goal
i

zf .

High-priority goal achievement may be required either from flags set at the onset of the

mission or by sensed events that trigger the binary-valued goal achievement flags.

Examples of high-priority goals include handling a warning or alarm or “catching” an

unexpectedly dislodged “floating” object. Generally, each mission goal and high-priority

goal is binary-valued,    1,0,1,0  i

z

i

z fg . A mission goal is only fulfilled (1, complete)

or unfulfilled (0, incomplete), and a high-priority goal is active (0, flagged as requiring

attention) or inactive (1, complete or not required). We could use a finite-valued set for

each goal in cases where the additional knowledge of the explicit action-history sequence

does not change the outcome of transition probability or reward. Instead, we estimate

progress toward goal completion through inclusion of an abbreviated action-history, as

described below.

94

Action-history is part of the state s
i
, supporting a finite-memory structure that allows

recent past action choices to impact future rewards but still supports the Markov

assumption required for the MDP formulation. The abbreviated action-history

 i

n

iii

h
aaaA ,...,, 21 of limited length hn supplies sufficient information about the

human’s past for HIP MDP decision-making (‘human intent prediction’). The actions

stored in the action-history can indicate partial goal completion in the transition

probability function to determine the likelihood of future goal fulfillment. The action-

history can also be used to reward certain sequences of actions over others. The

parameters in the action-history, i

ka ,  hnk ,...,1 , are from the set of human actions

 anA ,...,2,1 , thus Aa i

k  . We assume that the set of human actions A modeled in the

MDP collectively support completion of all specified mission objectives. An MDP

action refers to a subtask that may require multiple primitive movements through or

manipulations within the workspace to complete. We further assume an external action-

recognition capability underlying policy execution that can accurately translate thus

“observe” each task-level action from observed motions and manipulations. For now, we

also assume that every action included in the action-history did complete successfully.

The last term, i

nh
a 1 , is the current or in-progress action as identified by the observer

through real-time action-recognition. If the in-progress action is identified with certainty,

the optimal policy for the HIP MDP is the next most-likely action that the human will

undertake after i

nh
a 1 completes. Since we assume all movement to be goal-oriented, if

the process of action-recognition cannot surpass a threshold of certainty for its result, the

observer labels the action i

nh
a 1 as either “no-op” (human appears to be idle) or

“unknown” (when identified as moving but the goal is not yet identified). The policy

output of the HIP MDP in this case is a model-predictive estimate of i

nh
a 1 . Per the

Chapter 4 architecture, i

nh
a 1 is then passed to RAC.

In summary, the HIP MDP predicts the human’s next intended action, thus is always one

step ahead of the observer. An accurate HIP model will find the optimal choice ak that

matches the next action i

nh
a 1 actually observed.

95

5.2.1.1 Length of action-history

We assume conditional independence of the goal objectives, as previously discussed. For

now, we assume that the value of nh is consistent for each model and can be chosen or

otherwise optimized offline.

A goal can be completed by a single action or sequence of actions. An action-sequence

may be interruptible or non-interruptible. If the latter, the sequence must be restarted

after any interruption. If each sequence is non-interruptible, the length of the action-

history can be set to the length of the longest action-sequence. An example of a non-

interruptible sequence would be running and observing an experiment, where skipping a

step or failing to record data over a period of time would require the experiment to be

restarted. Interruptible action sequences are perhaps more common. For example, hand-

tightening a bolt can be performed by multiple “turn-bolt” actions with no negative

consequence due to interruptions between turns of the bolt.

In some cases, the order of actions may be partially specified. For instance, in

unfastening a panel from a wall, each screw must be removed, but the screws could be

removed in any order. Interruptible action sequences can require an increase to action

history length, while partial orders do not lengthen the history but do require recognition

of more permutations in the sequence when computing transition probabilities. We

discuss action-history length in the context of specific case studies below. The MDP

assumption requires this.

We have chosen action history over inclusion of intermediate goal state values because

this allows an intuitive mapping of observed action-sequences into the state, whereas

partial goal completion might be more difficult to observe. Including the action history

also allows the reward function to assign preferences to specific action orderings based

on historic preference over the ak past action horizon.

5.2.2 Transition Probability Function

The transition probabilities for the HIP MDP are dependent upon the action-history and

the current goal state. We use the action-history and in-progress action (A
i
, i

nh
a 1) to

determine how likely it is that a goal will or will not transition from

96

incomplete/unfulfilled (0) to complete/fulfilled (1). Each goal is fulfilled by an n-tuple

action-sequence, where
i

zn is the minimum number of actions to complete a particular

goal
 for a sequence of actions in A

i
 for state s

i
. Action-sequences may be totally or

partially ordered in A
i
, as well as interruptible or non-interruptible. Mapping a sequence

of actions to a goal requires knowledge of the sequence of events, hence the action-

history. This is necessary to correctly represent scripted action sequences within our

formulation. We include all combinations of possible orderings in the set of sequences

that may accomplish a goal
 . All high-priority goals

 are assumed to be

accomplished with a single action for simplicity and because they require simpler short-

term actions. Action history length nh is consistent for each model and presumed pre-

specified. In our case studies, we choose values of nh that reflect memory or reference to

an action script followed by a human astronaut.

Goal sequences from Equation (5-3) simplify transition probability computation by

eliminating consideration of impossible state transitions (p=0). Action-sequences can be

ranked by efficiency and expected preference.

The MDP transition probability tensor is:

   
 

 

   as

nj

j

k

i

k

jij

k

i

k

ij

nknisasT

AaSsSssasTassp

s

,...,1,,...,1,1,,satisfying

,,,,,,|

,...,1








 (5-3)

Equation (5-3) represents the probability that the system will transition to a state s
j
 when

the human performs action ak in state s
i
.

The transition probability map, specified as a tensor or set of action-specific matrices,

capitalizes on the fact that for the astronaut-robot domain, the astronaut will likely follow

step-by-step procedures for typical activities conducted on the space station. For cases

where there are known procedures, HIP transition probabilities are set to near one for the

expected state-action outcomes. Alternative paths, while less likely, can still be modeled.

The transition probability equation we use for human intent prediction is:

97

 



gf n

z

k

ij

z

n

z

k

ij

z

j

k

i asgpasfpsasT
11

),|(*),|(),,((5-4)

This product formulation for the MDP probability tensor presumes conditional

independence between mission goal and high-priority goal flags, and reduces to Equation

(5-5) for conditional independence between all goal flags:

 







g

h

f

h

n

z

k

i

n

ii

z

j

z

n

z

k

i

n

ii

z

j

z

j

k

i aaAggpaaAffpsasT
1

1

1

1),,,|(*),,,|(),,((5-5)

In Equation (5-5), we presume the action history in s
j
 will contain action ak as the

“previous action” with 100% probability at the next iteration. We also nominally assume

that either a mission goal (or goals) or a high-priority goal will transition from one state

to the next, but not both simultaneously. This reflects the expectation that either a

mission goal or goals will transition, a high-priority goals flag will change, or no goal

flags will transition between s
i
 and s

j
. The action history is always expected to update

between states. These cases are illustrated in Figure 5-1.

Gi,Fi,Ai

Gi,Fj,AjGj,Fi,Aj Gi,Fi,Aj

gz
i
gz

j no goal
transition

fz
i
fz

j

Figure 5-1: General transition cases for HIP, with no in-progress action supplied

To reduce the complexity of our probability tensor, only next states s
j
 corresponding to

action-history updates that follow an expected action sequence or script will be reachable

98

from s
j
, where reachability implies a nonzero transition probability from s

i
 to s

j
. The

action-history update process from A
i
A

j
 as shown in Figure 5-1 is assumed to proceed

as follows: the oldest history action is forgotten, all history actions are shifted by one

timestep (slot in the history), and the newest action is set to the chosen action ak.

This handling of the action-history described above requires an assumption that all

actions will be observed thus properly inserted in the action-history. We also allow an

action to be unknown to represent delay in observations.

As shown in Table 5-1, we refer to a transition for a mission-goal i

zg due to a completing

action ak as having probability pkz in the no-change case (
kzk

i

z

j

z paggp ),0|0(),

and (1-pkz) for a transition from 0 to 1 (kzk

i

z

j

z paggp  1),0|1(). In the general

case, these could have superscript i (
) to distinguish between separate probabilities for

each state s
i
.

Table 5-1: Mission-goal transition probabilities for HIP

Action Goal state transition Probability

ak
0

0

0

1

pkz

1-pkz

ak
1

1

0

1

0

1

The first term of Equation (5-5) is the effect of the high-priority goal flag on the

transition probability. For our work, we assume that any action that influences a high-

priority goal has a 100% probability of that high-priority goal becoming inactive once the

action is completed.

Mission goal transition probabilities – the second term in Equation (5-5) – are a function

of goals already accomplished, the action history, and the current selected action.

However, there are several simpler cases that capitalize on conditional independence

when possible. Mission goal probability may become:

   11|1  i

z

j

z ggp when the goal flag is set and cannot reset (
i

z

j

z gg )

99

  k

j

z agp | when only the current choice of action matters in determining goal

satisfaction, (e.g., for a coin flip)

  k

i

z

j

z aggp ,| when a goal is accomplished by a single action

  ii

z

j

z Aggp ,| when there is a delayed reaction time (for instance, after taking a

medication) but no new action is required.

A simple example formulation for the probability of
i

zf is:


















otherwise1

satisfy not does andunknown and 0 if

satisfy not does andunknown and 0 if

0

0

),|(
11

1

i

znn

i

z

i

zkn

i

z

k

ij

z faaf

faaf

asfp
hh

h

 (5-6)

In Equation (5-6), i

zf remains set (fulfilled) once accomplished. If i

zf is clear

(unfulfilled), we assume an action (ak or i

nh
a 1) that can fulfill i

zf will fulfill i

zf with

probability 1.

An example formulation for the second term,),|(k

ij

z asgp , may have two parts: the

probability of mission goal objective j

zg being or becoming 1 (completed) due to the

action history A
i
 of state s

i
, e.g. the impact of the action history on the transition

probability of the goal completion, independent of the action ak; and the impact of the

selected ak alone.

A more general form of Equation (5-5) is necessary to allow for conditional dependence

between some of the goal states. We do this to enforce constraints on possible transitions

between states. This is discussed further in Chapter 5.4.1 and Chapter 5.4.2.

),|(),,(k

ijj

k

i assfsasT  (5-7)

For models with a mixture of conditionally-dependent and conditionally-independent

goals, each can be calculated individually and the product of transition probabilities can

then be taken, as will be described for specific case studies.

To simplify our model and reduce computational complexity, we reduce the number of

non-zero probabilities in our tensor to i

bkn per action ak. The uppermost bound on i

bkn is

100

the number of states s
j
 in S with a possible action-history including an updated A

j
 with

parts of A
i
, i

nh
a 1

, and ak. We define i

Tkn as the number of state transitions with non-zero

probability T(s
i
,ak,s

j
). i

bkn is the number of possibilities of transition minus one,

1 i

Tk

i

bk nn , representing the final probability computed to make all sum to 1. i

bn , for a

state s
i
, is then defined as the total number of possibilities of transition minus the number

of actions:

 a

n

k

i

Tk

n

k

i

Tk

i

b nnnn
aa

 


)()1(
11

 (5-8)

Above, we are simplifying the MDP by eliminating unlikely transitions from the (s
i
,ak)

pair. If we need to relax this assumption but do not have additional statistical knowledge,

we could subtract a small from each non-zero probability pkz and divide the

evenly among all the other
 states, where

 ∑

 , for a transition

probability of
 for each of these low-likelihood states from s

i
. Doing so allows the

model to account for cases where there is low but nonzero possibility of transition to a

state with low or negative reward, in particular to ensure such state sequences are handled

properly in a real policy.

5.2.3 Rewards

The reward function defined for human intent prediction is given by:

    



fg n

z

i

zz

n

z

i

zz

i frgrsR
1

2

1

1)( (5-9)

This reward function R(s
i
) for each state is based on fulfillment of single-event and

recurrent objectives of the human, providing a straightforward representation of human

preference for the MDP. The reward functions are based on the normal or expected

behavior of the human – a baseline of average behavior. We assume that discounted

rewards for future states are the sole means to account for action preferences. Similarly,

we also assume that, prior to learning, a human feels rewarded after seeing the results of

the goals they completed, but not necessarily from performing each action itself. Once

101

the human understands and has learned which precursor actions will lead to eventual

reward (e.g., from a script or experience), the full sequence will be seen as rewarding,

including intermediate steps taken towards that goal. This initial pre-learning state is

comparable to Equation (5-9), where reward is given once an objective is met; there is

no reward for partial success. Use of the Gauss-Seidel value-iteration procedure over the

Bellman equation allows value to be, in essence, back propagated through the model

during the optimization process, similar to the way that reward is learned by a human.

Function r1 calculates the impact of the current mission goal states on total reward to the

human astronaut, while function r2 calculates the impact of the high-priority goal states.

Because we assume i

zg and i

zf are known sensed states, r1 and r2 are independent of A
i

in our formulation. When the model transitions to a new state s
j
, the goals and the action

history in s
i
 are also updated inside the transition equation. We restrict function r1 to

non-negative values, while r2 can be positive or negative.

Reward weights , are chosen in the range [0 1] and scaled based on maximum

possible values of r1 and r2. We assume that the weighting variables are constant for a

given MDP policy. If a high-priority goal flag is active but not complete, the value of r2

is negative and incurs a large cost so that, when accounting for weighting factors, the

model will favor accomplishing high-priority goals. While our simple reward function

does not contain costs (e.g., fuel, energy) for action completion of ak, such costs could be

included. Any no-op action with zero “cost” would then be selected as a default when no

action can otherwise accomplish a rewarded goal.

Because the goals are binary-valued {0,1} attributes, we can use the goal flags directly

when calculating reward r1. Equation (5-10) shows an example reward function; we

assume that |kz|>1 to encourage high-priority goal achievement.

 

 











0 if

1 if1
2

1

i

zz

i

zi

z

i

z

i

z

fk

f
fr

ggr

 (5-10)

102

In our HIP models, reward is only given once an objective is met; there is no reward for

partial success. If a goal requires multiple actions to accrue in the action-history, those

interim states receive no reward. Specific action history content could then factor into

reward computation. In the above example, however, multi-action sequences will be

identified through iteration with the Bellman equation and a relatively high discount

factor given transition probabilities that appropriately reflect reward only after

accomplishing specific action sequences.

To encode human preference with respect to goal-driven behaviors, we must address

whether each behavior is driven by goals without context, or whether context drives

human adaptation to the special circumstances of the environment [100]. We define

structured context as prior knowledge specific to the environment – the human and

robotic agent’s placement and movements within it, according to the goals which must be

achieved. Ref. [86] gives an example of learning for a related problem involving

collaborative human-robot team training. Because we reward only goal completion,

rather than also rewarding intermediate milestones toward each goal, differentiation

between multiple solution paths is only by path length, given a discount factor .

5.3 Metrics for Performance Evaluation

We evaluate HIP MDP formulations by comparing policy outputs. We assess the impact

of reward function weights by varying reward weightings of two goals at a time, and

assess the impact of action-history length by varying the values of nh. We assess the

level of transience of these impacts by comparing the policy outcomes of the same

reward and action-history length variations against different choices of probabilities pkz.

When evaluating the policies resulting from different parameter choices, we discuss:

 changes in optimal action-choice as determined by the policy for the various G
i

and F
i
 goal state transitions over all possible states

 changes in optimal action-choice as determined by the policy over each of a set of

four “groupings” per the two tested goal-states { i

qg ,
i

rg } in s
i
 – when both are

unfulfilled ({0,0}), when one is unfulfilled and one is fulfilled ({0,1} and {1,0}),

and when both are already fulfilled ({1,1})

103

We can evaluate the relative impact of changes in the model by varying the values of two

parameters in the HIP model at a time, solving for the optimal policies for each set of

parameters, and looking for the tradeoffs.

Note that we are not using common performance metrics such as time, energy, or

efficiency to evaluate these models. Instead, what is most important here is how well the

models can track human behavior – how well they can match a human’s statistics and

explicit observed partial action-policy. What is also important is whether the model is

reasonable and human-intelligible; we want the policies created by using a particular set

of equations and parameters to make sense (intuitive setup and outcome), thus changes in

the model parameters need to have explainable and understandable effects on the policy-

output (consistency).

Below, we examine the ability to model both deterministic and stochastic problems using

the HIP MDP formulation. We start by discussing the ability of our representation to

model the simpler deterministic case, and then move to a discussion into how changes in

the parameter values impact the behavior (policy output) when we move to a stochastic

model. We also discuss stochastic model options, and examine the tradeoff between

different types of goal interdependencies, e.g., independent goals (e.g., eating and math),

partially-dependent goals (e.g., eating and drinking), and low-priority mission goals

versus high-priority goals (e.g., eating and button-pushing). Currently, values for the

transition probabilities are manually chosen, though they could also be determined from

experimental results, and tuned to individual human actors when possible.

5.4 Case Studies

We investigate the impact of changes in MDP parameter choices including relative goal

completion rewards and action history lengths, then we examine the effects of transition

probabilities on policies. A series of simple examples are used to illustrate HIP MDP

modeling choices.

Below we first show how HIP can occur with a deterministic model, then discuss

uncertainty modeling. Next, we discuss domain representations for a deterministic HIP

model applied to an EVA scenario with an unknown in-progress action. We then present

104

a series of progressively-complex stochastic HIP models for an IVA scenario, also with

an unknown in-progress action. Finally, we discuss how to include the in-progress action

in our models, and its impact on modeling and policy output. Evaluation of the HIP

method in relation to other HIP algorithms is left to future work. A sound comparison

would require human subject data for learning and comparatively evaluating modeling

and inference methods.

For the presented case studies, we evaluate the changes in policy seen when varying the

reward weightings, transition probability parameters, and action history length. For all

examples, MDP policies are generated using the standard Gauss-Seidel value iteration

algorithm over an infinite horizon, with discount factor 0.95 and an acceptable error

bound of 1*10
-5

. The choices of infinite horizon and a relatively high discount factor

allow the MDP solver to account for reward obtained after multiple steps in a sequence.

5.4.1 Encoding Pre-existing Script(s) within a Markov Decision Process

While deterministic planners are effective at finding optimal solutions in deterministic

spaces, a MDP can also find solutions in deterministic spaces when all probability tensor

values are in the set (
) = {0,1}. This section proposes a series of deterministic

HIP examples. Such deterministic models may be realistic for space EVA or IVA

scenarios in which an astronaut follows a rehearsed script. A script provides a known

progression of state changes and actions which produce them, an explicit set of actions

will always occur in a certain order given a starting state. A series of deterministic HIP

cases is presented below.

5.4.1.1 Case #1 – explicit transition path (goals), reward all goal tasks equally

In this case, we explicitly define the possible transition path according to the goal/policy-

action progression in the script, while rewarding all goal tasks equally (i.e., all goal

rewards set to 1).

Table 5-2 shows an example motivated by the Chapter 3 study. In this domain, there are

two goals (work motivation, blood sugar level) and two actions (computer work, eat

chip). An example script using the domain from Chapter 3 would be: someone will do

105

computer work (to satisfy work motivation), then eat a chip (raise blood sugar level). No

action-history is used.

Table 5-2: First example representation, computer work then eat chip

State # ig1
 =

raise

blood

sugar

level

ig2
 = work

motivation

R(si) =
ii gg 21 

Transitions to next state

by action ax

(p=?)

1a eat chip 2a

computer

work

 1 2 3 4 1 2 3 4

1 0 0 R(s
i
) = 0 1 0 0 0 0 1 0 0

2 0 1 R(s
i
) = 1 0 0 0 1 0 1 0 0

3 (unreachable) 1 0 R(s
i
) = 1 0 0 1 0 0 0 1 0

4 1 1 R(s
i
) = 2 0 0 0 1 0 0 0 1

If we relax the order of actions in the script, allowing a partially-ordered plan instead, the

state space will still include two goals and no action-history; however, the transition

probabilities change slightly, as shown in Table 5-3 (changes are shown in italics+bold).

Table 5-3: First example representation, computer work and eat chip (in any

order)

State # ig1 = raise

blood

sugar

level

ig2 = work

motivation

R(si) =
ii gg 21 

Transitions to next state

by action ax

(p=?)

1a eat chip 2a

computer

work

 1 2 3 4 1 2 3 4

1 0 0 R(s
i
) = 0 0 0 1 0 0 1 0 0

2 0 1 R(s
i
) = 1 0 0 0 1 0 1 0 0

3 1 0 R(s
i
) = 1 0 0 1 0 0 0 0 1

4 1 1 R(s
i
) = 2 0 0 0 1 0 0 0 1

106

5.4.1.2 Case #2 – explicit future-reward path, equal transition probabilities

In this case, we explicitly define one sequence for goal completion as the most rewarding,

according to the goal/policy-action progression in the script, while distributing equal

probability among all transitions to current (same) and future (forward-progressing)

states. This sequence is encoded within the reward function weights, with decreasing

weight assigned to goals that can be completed last or near last.

Table 5-4 presents a case with the same goals and actions as before, but a different

reward and probability tensor structure. This different structure represents the

progression of goal completion as given in the script. In this example, the state space

includes two goals and no action-history, and follows the same ordered script as case #1

above. The reward function weight for work motivation goal is 2, reward function

weight for raising the blood sugar level is 1, and all other reward function weights are set

to 0. (Note, however, that state 3 could have R(s
i
) set to 0 for greater efficiency.)

Technically, this MDP model is not deterministic, but its policy output has been verified

to match the deterministic script with an appropriate choice of discount factor (close to

1).

Table 5-4: Second example representation, computer work then eat chip

State # ig1 = raise

blood sugar

level

ig2 = work

motivation

R(si) =
ii gg 21 2

Transitions to next state # by

action ax

(p=?)

1a eat chip 2a computer

work

 1 2 3 4 1 2 3 4

1 0 0 R(s
i
) = 0 ½ 0 ½ 0 ½ ½ 0 0

2 0 1 R(s
i
) = 2 0 ½ 0 ½ 0 1 0 0

3 1 0 R(s
i
) = 1 0 0 1 0 0 0 ½ ½

4 1 1 R(s
i
) = 3 0 0 0 1 0 0 0 1

For HIP, transition probabilities must capture the likelihood that the human will succeed

vs. fail in performing the action they are attempting. The optimal policy gives the

maximum reward, including expected future reward. In Table 5-4, this highest-weighted

term is completed in-sequence, but this method will only work when the ‘end’ goals (goal

107

tasks, not compound tasks) cannot deactivate and reactivate again. This is because, if

interim states are expected to reactivate according to the transition probability model, the

policy may give undue weight to this condition and cycle between lower-reward states,

never attempting to complete all goals. If cost is incurred for each action and the final

reward is not sufficiently high, the necessary action-sequence may never be selected.

5.4.1.3 Case #3 – explicit transition path (actions), reward all goal tasks equally

In this case, we explicitly define deterministic multi-step action sequences according to

the action-history/policy-action progression in the script, while rewarding all goal tasks

equally. The history length nh is set equal to the number of goal-impacting actions in the

script (e.g., not no-op); the transition probability is set to 1 only when the exact action-

sequence of events up to that point in the sequence matches the script perfectly.

The script is the same as the ordered script for case 1 above. In this example, the state

space includes one goal (which encapsulates both goals having been completed) and an

action-history of length nh=2. We combine the goals here for simplicity of explanation.

Table 5-5: Third example representation, computer work then eat chip

State # ig1 = raise

blood sugar

level and

sate work

motivation

},{ 21

ii aa

 =

action-

history

R(si) =
ig1

Transitions to next state # by action

ax

(p=?)

1a eat

chip
2a

computer

work

0a = no-op

 1 2 3 1 2 3 1 2 3

1 0 {0,0} R(s
i
) = 0 1 0 0 0 1 0 1 0 0

2 0 {0,2} R(s
i
) = 0 0 0 1 0 1 0 0 1 0

3 1 {2,1} R(s
i
) = 1 0 0 1 0 0 1 0 0 1

X (all

others)

-- {--,--} R(s
i
) = 0 p=1 to

remain X

p=1 to

remain X

p=1 to

remain X

Note that this third method is effective because we are using an infinite horizon solver

with a large discount factor – the belated reward will be back-propagated to the beginning

state only through those states with possible transitions.

108

5.4.1.4 Multiple domain-modeling options

While each of the deterministic case studies works in isolation, it might be more efficient

to combine modeling strategies. Some of these examples result in larger state spaces

with long convergence times. The distribution of equal transition probability across all

forward-progressing states in case 2 is the only exception. An example of another option

would be: explicitly define the deterministic multi-step action sequences and also define

one sequence for each goal completion flag as the most rewarding, according to the

goal/policy-action progression in the script (rather than rewarding all goal tasks equally).

These options should, however, be chosen for their accuracy in modeling the domain, as

some domains may contain goals that can be satisfied flexibly with little overhead for an

“alternate” sequence.

Using a policy resulting from a MDP for a deterministic scenario would have the same

effect as giving a copy of the human’s explicit action-script to the RAC module. The

robot is aware of the script the human is following, so it would use a perfect model of the

human’s action assuming that the human does not deviate from the script.

5.4.2 Case Study #1 – EVA space repair example, deterministic system

In this section, an example HIP MDP is developed for a simple EVA scenario, a

“spacecraft panel removal” activity. For illustrative purposes, we again assume that the

observer always treats the in-progress action as ‘unknown’, implying that the action-

recognition observer will provide the observed action to the MDP policy executor only

after that action has completed. We also assume deterministic execution in this initial

EVA case.

In the nominal case, this panel removal activity requires that a toolbox be retrieved for a

screwdriver, four screws removed from the panel, and then the panel itself removed.

Note that this is a partially-ordered plan, given that the screws could be removed in any

order.

In this human task model, we define the baseline problem to include only the goal of

panel-removal, with no trade-offs with other goals – we wish to demonstrate the model’s

capability of encoding a structured script in a MDP. The actions associated with panel-

109

removal have ordering constraints. For instance, in the ideal case a human cannot grasp

and remove a panel while already holding a screwdriver in one hand, due to a lack of

dexterity in the space suit gloves on EVA.

For the MDP, we assume that action-sequences do not need to be specified for each leg

of the trajectory, only at the task level. For instance, unscrewing a screw would involve

the following sequence: move hand to object (the screw), adjust screwdriver in hand to

correct position, unscrew object, move object to destination (tether to side of panel),

deposit object (place screw at correct secondary location). We assume for now that each

of these task-level actions are uninterruptable, and that an action has not been included in

the action-history unless it has been completed successfully.

5.4.2.1 States and Actions

For our case study, we model the above simple extra-vehicle activity (EVA) scenario

including the actions of toolbox retrieval (1), picking up a screwdriver (2), removing a

screw from a panel from a given position X (X={1,2,3,4}, completed by actions a31, a32,

a33, and a34, respectively), setting down a screwdriver (7), and removing a panel (8).

These eight tasks are required for astronauts in EVA as well as for humans on Earth. We

do not include a no-op action because in this section we assume these EVA scripts are

executed deterministically and thus should involve ‘pauses’ in expected work.

Table 5-6 and Table 5-7 describe the human’s actions and goals, and the meanings of the

variable status used for our domain. The actions are integers from 1 to 8, corresponding

to the eight labels given below.

Table 5-6: Domain Representation of actions
i

ka

Discrete Value Corresponding Action

1 toolbox_retrieval (a1)

2 retrieve_screwdriver (a2)

3,4,5,6 remove_screw_from_panel_position_X

(a3X, X={1,2,3,4})

7 set_down_screwdriver (a4)

8 remove_panel (a5)

110

The mission goals are binary-valued, with 0 corresponding to incomplete and 1

corresponding to complete; we use subsets of these in our example representations (see

Table 5-7).

Table 5-7: Domain Representation of goal-objectives

Goal Obj. Values Corresponding Goal
ig1 {0,1} panel_removed (g1)

ig2 {0,1} close_positioning_of_toolbox (g2)

ig 3 {0,1} all_screws_removed (g3)

i

Xg3 {0,1} screw_in_position_X_removed

(g3X, X={1,2,3,4})
ig4 {0,1} holding_screwdriver (g4)

In this case study, this script includes several constraints: the toolbox must be positioned

close to the human before the screwdriver can be retrieved, the screwdriver must be held

for a screw to be removed, all screws must be removed and secured, and the screwdriver

must not be held before the panel can be removed. A relaxed order in screw removal

might require the ability to encode a partially-ordered plan into the model.

For the case study above, there are three basic ways to define the state space, with pros

and cons for each:

Case 4a:
 
     akaa

i

k

i

z

iiii

nannag

aags

,...,1,8,,...,1,1,0

,...,, 811




 (5-11)

Case 4b:
 
     akaa

i

k

i

z

iiiiiii

nannag

aaggggs

,...,1,8,,...,1,1,0

,...,,,,, 414321




 (5-12)

Case 4c:
 
   aka

i

z

iiiiiiii

nang

gggggggs

,...,1,8,1,0

,,,,,, 43433323121




 (5-13)

The first state space representation (case 4a), given by Equation (5-11), includes one goal

and an action-history one larger than the minimum length necessary for goal-completion

111

to be recognized. It is the least efficient representation, with ns=2
1
*8

8
=33,554,432 states,

and follows the Case #3 example of deterministic domain representation discussed above

in Chapter 5.4.1.3. However, it is the most straightforward and human-readable

representation. We show how this is encoded, but we do not run an example to

completion, in part due to memory constraints and largely due to the timescales involved

in calculating even the policy outcomes. Table 5-8 shows the projected memory

requirements. From the simulation results below (Chapter 5.4.2.4), we estimate a

calculation time for the policy’s value iteration stage alone of at least 56 minutes per

iteration.

To allow the calculation and use of the reduced transition probability tensor, three

internal lookup tables are necessary. There is a direct tradeoff between calculation time

and memory space for the reduced tensor implementation here: these tables only need be

computed once per state space representation for varying probability and reward

parameter sets, but take a nontrivial amount of memory and time to compute. Memory

requirements could theoretically be reduced further by functionally calculating these

mappings during runtime instead; however, this would likely exponentially increase the

time necessary to calculate the reward and transition probabilities and for the value

iteration procedure to complete. It is also noteworthy that the reduced transition

probability tensor requires only half a gigabyte of memory for 1 byte per data element

(ns*na*2). Recasting the problem using a full-sized transition probability tensor would

have required ns*ns*na=33,554,432
2
*8=9.0072*10

15
, or upwards of 9 million gigabytes

of memory for 1 byte per data element, instead, illustrating savings in the reduced

transition probability functional model.

Because of the memory constraints and runtime issues, it is prudent to reduce the size of

the state space whenever possible, decomposing our mission into smaller MDPs. Recall

that our architecture in Chapter 4 has already taken this into account – in a space

application, an astronaut would be expected to touch base with a mission operator at

mission control whenever he/she moves on to a new set of activities. The mission

operator they are talking to will note these changes and can dictate to the robot when to

switch between policies. Thus, many small MDPs could be made to cover portions of the

112

astronaut’s workday, instead of attempting to use one large MDP to cover all

circumstances.

Table 5-8: Memory requirements, case 4a (1 goal, nh=8)

Item Size (number of

elements)

Approx. memory allocation needed

Reduced transition

probability tensor

(binary-valued)

ns*na*2

= 33,554,432*8*2

= 536,870,912

4.3 GB, default (double, 64 bits)

minimum: 0.54 GB (uint8, 8 bits)

Mapping of i to

state attributes (for

given s
i
)

(integer-valued)

ns*(ng+nf+nh)

= 33,554,432*(1+0+8)

= 301,989,888

2.4 GB, default (double, 64 bits)

minimum: 302 MB (uint8, 8 bits)

Mapping of state

attributes to i of s
i

(for given vector of

state attributes)

(integer-valued)

(range of gz)
ng

*(range of

fz)
fn
*(range of ak) hn

= (2)
1
*(2)

0
*(8)

8

= 33,554,432

272 MB, default (double, 64 bits)

minimum: 34 MB (uint8, 8 bits)

Mapping of s
i
 to s

j

corresponding to

values in reduced

probability tensor

(integer-valued)

ns*2 = 33,554,432*2

= 67,108,864

536 MB, default (double, 64 bits)

minimum: 67 MB (uint8, 8 bits)

Reward vector

(binary-valued)

ns*1=33,554,432 270 MB, default (double, 64 bits)

minimum: 34 MB, (uint8, 8 bits)

Value vector

(floating point)

ns*1=33,554,432 270 MB, default (double, 64 bit)

minimum: 135 MB (single, 32 bit)

Policy vector

(integer-valued)

ns*1=33,554,432 270 MB, default (double, 64 bits)

minimum: 34 MB, (uint8, 8 bits)

Matlab instance

(64-bit 2012a under

64-bit Windows 7)

-- 718 MB

Totals:

(max. 6 GB of 8 GB

free for process)

1,040,187,392 9.036 GB, default

minimum: 1.864 GB

The second state space representation (case 4b), given by Equation (5-12), includes four

goals and an action-history of size 4 and follows the Case #1 example from Chapter

5.4.1.1. It only tracks the goal progress of the entire set of screws being removed, and the

action-history can be used to explicitly track the order in which screws have been

removed. This is of manageable computational size, with ns=2
4
*8

4
=65,536 states.

113

The third state space representation (case 4c), given by Equation (5-13), includes seven

goals and no action-history and follows the Case #1 example from Chapter 5.4.1.1. It

tracks the goal progress of the screw positions overall; but, with no action-history, we

cannot tell what the explicit ordering of the screw removal process is at every point in

time (e.g., if }0,0,0,1{},,,{ 34333231 iiii gggg , then we know the first screw was removed

first, but if }0,0,1,1{},,,{ 34333231 iiii gggg , then we don’t know whether it was the first

screw or the second screw that was removed first). This is the most compact MDP

representation, with ns=2
7
=128 states.

Both cases 4b and 4c could be represented using either Case #1 or Case #2 of the

deterministic domain representation. We use Case #1 here.

5.4.2.2 Transition Probability Function

Transition probabilities for this case study are given in Equation (5-14), and are

dependent on aspects of the current state as well as the predicted next action choice ak:

  



gn

z

k

ij

zz

j

k

i asgpsasT
1

,|),,((5-14)

Note that the form is derived from Equation (5-4) because dependencies exist for goals

with precedence constraints due to the script. For the case study in this section, there are

at most only 2 possible transitions for each state given a choice of ak: either stay the

same or change; the no-op action is not included in this state space. All transitions for

each goal state have either p=0 or p=1. Because we may need to look at all the goal

states for some cases to determine whether goal transition is possible, we include s
i
, not

only
i

zg and A
i
. However, because our transition probabilities are restricted to 0 or 1, we

can still use the equation in the form of Equation (5-14) in this deterministic case because

any combination of impossible states will have p=0 in at least one multiplicand.

As described above, the transition probability is dependent upon the past action history A
i

and the predicted next action choice of the human ak. There are no explicit mappings

between a goal state and an action-choice, but the probabilities are constrained to the

possible outcomes of the action-choices for goal-completion to simplify the number of

114

parameters to optimize. By leveraging this information, we do not need to specify the

full tensor, only the possible transitions for each set of actions for each state, thereby

reducing the computational complexity. This makes our deterministic probability tensor

for each case of size ns x na x 2 – that is, the number of states (combinatorial set) times

twice the number of actions (as there are at maximum only two possible outcomes for

each action).

For case 4a (Equation (5-11)), the only possible transition leading to goal completion is

an action-history (plus ak) with a sequence that meets the following criteria:

o retrieve_screwdriver (a2) can only occur after toolbox_retrieval (a1)

o any action remove_screw_from_panel_position_X (a3X) can only occur after

retrieve_screwdriver (a2) (and before set_down_screwdriver (a4))

o remove_panel (a5) can only occur after all remove_screw_from_panel_position_X

(a3X) actions and the set_down_screwdriver (a4) action

An explicit choice of ordering for the a3X actions may also be enforced at the scripter’s

discretion.

For case 4b (Equation (5-12)), the constraints are dependent on the goal state and action-

history as follows (also shown in Table 5-9):

o close_positioning_of_toolbox (g2) must be true for retrieve_screwdriver (a2) to be

able to transition holding_screwdriver (g4) to true

o holding_screwdriver (g4) must be true and retrieve_screwdriver (a2) must come

before all other remove_screw_from_panel_position_X (a3X) actions in the action-

history and ak, for ak to be able to transition all_screws_removed (g3) to true

o holding_screwdriver (g4) must be true for set_down_screwdriver (a4) to be able to

transition holding_screwdriver (g4) to false

o all_screws_removed (g3) must be true and holding_screwdriver (g4) must be false

for remove_panel (a5) to be able to transition panel_removed (g1) to true

115

Table 5-9: MDP policy illustrating action-history use, case 4b (4 goals, nh=4)

(x denotes don’t care)

State

 iiiiiii aaggggs 414321 ,...,,,,,

Policy action ak

(T(s
i
,ak,s

j
)=1 to new state)

New state

 jjjjjjj aaggggs 414321 ,...,,,,,

{x 1 x x x x x x} retrieve_screwdriver (a2) {x 1 x 1 x x x x}

{x x x 1 a2 a3m a3n a3o }

 { }

remove_screw_from_panel

_position_X (a3p),

 { }

{x x 1 1 x x x x}

{x x x 1 x x x x} set_down_screwdriver (a4) {x x x 0 x x x x}

{x x 1 0 x x x x} remove_panel (a5) {1 x 1 0 x x x x}

For case 4c (Equation (5-13)), the constraints are dependent on the goal state as follows

(also shown in Table 5-10):

o close_positioning_of_toolbox (g2) must be true for retrieve_screwdriver (a2) to be

able to transition holding_screwdriver (g4) to true

o holding_screwdriver (g4) must be true for set_down_screwdriver (a4) to be able to

transition holding_screwdriver (g4) to false

o all screw_in_position_X_removed (g3X, X={1,2,3,4}) goals must be true and

holding_screwdriver (g4) must be false for remove_panel (a5) to be able to

transition panel_removed (g1) to true

Table 5-10: MDP policy illustrating action-history use, case 4c (7 goals, nh=0)

(x denotes don’t care)

State














ii

iiiii

i

gg

ggggg
s

434

33323121

,

,,,,,

Policy action ak

(T(s
i
,ak,s

j
)=1 to new state)

New state














jj

jjjjj

j

gg

ggggg
s

434

33323121

,

,,,,,

{x 1 x x x x x} retrieve_screwdriver (a2) {x 1 x x x x 1}

{x x x x x x 1} set_down_screwdriver (a4) {x x x x x x 0}

{x x 1 1 1 1 0} remove_panel (a5) {1 x 1 1 1 1 0}

Action-history progression constraints are similar for all policies. Using case 4b as an

example:  iiiii aaaaA 4321 ,,, with ak as the action-choice becomes  k

iiij aaaaA ,,, 432 .

116

5.4.2.3 Rewards

The reward functions for our case study are consistent with the form shown in Equation

(5-9) and Equation (5-10):

 



gn

z

i

zz

i gsR
1

)( (5-15)

For all three cases (4a, 4b, 4c) our reward function is the same:

 ii gsR 11 *)( (5-16)

We include goals in cases 4b and 4c that can potentially result in partially-ordered plans

(multiple scripts that could work). Using the Case #1 example in Chapter 5.4.1.1 as a

guide, only 1 is set to a nonzero value, so that only
ig1 has an impact. Thus, for case 4a,

ig1 is the only goal to achieve. Because there are no competing objectives we can set 1

=1.

5.4.2.4 Simulation Results

We encoded the states, actions, transition probability functions, and reward functions for

cases 4a, 4b, and 4c as-given above. On a quad-core AMD processor laptop with 8GB

memory running Matlab R2012a, case 4c took approximately 3-4 seconds total runtime.

The infinite horizon value iteration solver completed the necessary 124 iterations in 2-3

seconds. Case 4b took approximately 11 minutes total runtime. The infinite horizon

value iteration solver completed the necessary 23 iterations in a little under 3½ minutes.

For cases 4b and 4c, the results were as-expected for the script sequencing, as shown

below:

117

Figure 5-2: State evolution for the optimal MDP policy, case 4c (7 goals, nh=0),

starting from s
i
 = {no goals set}, for  iiiiiiii gggggggs 43433323121 ,,,,,,

118

Figure 5-3: State evolution for the optimal MDP policy, case 4b (4 goals, nh=4),

starting from s
i
 = {no goals set, all actions in history toolbox_retrieval (a1)}, for

 iiiiiiiii aaaaggggs 43214321 ,,,,,,,

In both examples, the scripts are initially followed from the initial state, s
i
={no goals

set}. Because we do not include no-op in this state space, for the state to become

‘stable’, the policy moves into an absorbing state, which includes holding the

screwdriver, before attempting to remove the panel again and again to no further effect.

Including a no-op action with slightly lower cost to execute in the state space would

resolve this issue.

Considering off-nominal states for case 4b, with s
i
={panel_removed,

close_positioning_of_toolbox, all_screws_removed, holding_screwdriver, {action-

history}}, the policy chose action a1 for every (starting) state s
i
={0,0,0,0,x,x,x,x} (with x

119

being any action in the action sequence), and chose action a2 from every follow-on state

s
i
={0,1,0,0,x,x,x,x} once the toolbox was close enough to pick up the screwdriver.

Screw removal can then be performed in any order, resulting in a partial ordering. For

case 4b, the screw removal actions in any order are able to achieve the goal represented

by the transition from state s
i
={0,1,0,1,x,x,x,x} to s

i
={0,1,1,1,x,x,x,x}. The next action

chosen from state s
i
={0,1,1,1,x,x,x,x} is always set_down_screwdriver action a5 and

transitions the state to s
i
={0,1,1,0,x,x,x,x}. From state s

i
={0,1,1,0,x,x,x,x} the next

selected action is remove_panel to s
i
={1,1,1,0,x,x,x,x}. All sequences worked as

intended, following the script within the constraints given.

For case 4c, with s
i
={panel_removed, close_positioning_of_toolbox,

screw_in_position_1_removed, screw_in_position_2_removed,

screw_in_position_3_removed, screw_in_position_4_removed, holding_screwdriver},

the policy is also able to always work its way from any state where one or more screws

need to be removed s
i
={0,1,x,x,x,x,1} to state s

i
={0,1,1,1,1,1,1} where the screws are all

removed. All other policy-enacted transitions follow the strict set sequence as shown in

Figure 5-2, as intended.

5.4.3 Stochastic HIP modeling

While the above examples demonstrate use of the MDP for deterministic scripts, the

MDP’s strength is in its application to uncertain systems. Uncertainty may be present in

human action selection (model internal match where the human decides to do something

else), completion (ability-based, including effects of distraction), and/or outcome

(external/environmental). With conditional independence, each probability is pkz for the

action to have no impact on the goal flag (goal remains the same), or (1-pkz) for an action

impacting the goal flag. With dependence, structures such as Bayes nets or probability

tables may be used.

5.4.4 Case Study #2 – IVA scenario, stochastic system

In this section, an example HIP MDP is developed for a simple IVA scenario, one whose

main task is to complete computer work but with uncertainty due to the insertion of

eat/drink actions. For illustrative purposes, we assume that the observer always treats the

in-progress action as ‘unknown’, implying that the observer tasked with action-

120

recognition from sensor data will provide each observed action to the MDP policy

executor when recognized, and that the observer also can flag when that action is

completed. This would be the case both when the observer recognizes the action early

and when it merely observes the consequences of completing a particular action.

We use a domain model with mental concentration (computer work) and pick-and-place

(eat/drink) tasks that would be appropriate for astronauts performing intravehicular

activity (IVA) as well as humans in their homes on Earth. Our previous experiments

described in Chapter 3 provide insight as to human behaviors in such an environment,

and here we assume that our basic simulation and experimental results will translate to

models of humans performing similar activities in IVA in space.

We define a base case to include a sporadic (interruptive) goal to press only one button.

This initially simplifies the human choice preference to be between just blood sugar

level/hydration level/work motivation (traditional goals) versus a high-priority button-

pushing goal, with the latter objective able to override all other operations, depending on

the parameters used in our reward and transition probability function formulation. This

also is consistent with our assumption that only one high-priority goal will be active at a

time, avoiding the need to carefully model relative priorities over an interruptive goal set.

This scenario parallels on-orbit EVA space-repair at a satellite electronics panel: ‘chip

eating’ is a retrieval action, such as consumables that may need to be used to fix internal

electronics; ‘soda drinking’ is a pick-and-place action, a simple analogue to the retrieval,

use, and stowing of a screwdriver; ‘computer work’ is a cognition-intensive action, such

as troubleshooting problems inside a panel through careful visual inspection; and ‘button

pushing’ is a task of overriding importance, a time-critical task like noticing and grabbing

a toolkit before it floats away.

5.4.4.1 States and Actions

For this case study, we model the above simple inter-vehicle activity (IVA) scenario

including the actions of eating (1), drinking (2), interacting with a computer (3), high-

priority button-pushing (4), and no-op (5). These five tasks are required for astronauts in

IVA as well as for humans on Earth. The state has three mission goals of raise blood

121

sugar level (1), raise hydration level (2), and complete a general mission-oriented work-

effort (3), and one high-priority goal of button-inactive (1) that indicates that a button

needs to be pushed (corresponding to a safety-critical mission task that might need to be

completed). We have conducted previous human subject experiments of these tasks with

a safe robotic manipulator arm that confirm the feasibility of such a shared workspace

(see Chapter 3).

Table 5-11 and Table 5-12 describe the human’s actions, goals, and the meanings of the

variable status used for our domain. The actions are integers from 1 to 5, corresponding

to the labels given above (see Table 5-11).

Table 5-11: Domain representation of actions

Discrete Value Corresponding Action

1 eat_chips (a1)

2 drink_soda (a2)

3 computer_work (a3)

4 push_button (a4)

5 no_op (a5)

The mission goals and high-priority goal are binary-valued, with 0 corresponding to

incomplete and 1 corresponding to complete (see Table 5-12). A 0 value indicates that a

high-priority goal needs to be satisfied (a high cost is incurred for remaining in that state),

and a 1 indicates that the button is inactive and does not need to be pushed again. A

modest reward is offered for remaining in this safe state.

Table 5-12: Domain representation of goal-objectives

Goal Obj. Values Corresponding Action

 {0,1} ?blood_sugar_level? (nominal = 1) (g1)

 {0,1} ?hydration_level? (nominal=1) (g2)

 {0,1} ?work_motivation? (lazy/done=1) (g3)

if1 {0,1} ?button_1_inactive? (inactive=1) (f1)

i

ka

ig1

ig2

ig 3

122

Note that we do not explicitly differentiate between physical and mental tasks in our

MDP representation, mixing actions such as computer work (math) with eating, drinking,

and button-pushing.

For the case study above, there are two basic ways to define the state space:

Case 5a:

 
   

   akaa

i

k

i

z

i

z

i

n

iiiiii

nanna

fg

aafgggs
h

,...,1,5,,...,1

1,0,1,0

,...,,,,, 11321







 (5-17)

Case 5b:

 

 

 aka

i

z

hh

i

z

iiiii

nan

f
nn

g

fgggs

,...,1,5

1,0,1,...,
1

2
,

1

1
,0

,,, 1321

















 (5-18)

For the first state space representation (case 5a), and the value of nh is constant for any

particular MDP policy; the action history lengths explored in this case study range from

nh=0 to nh=3. Note that the action i

nh
a 1 is always “unknown” and thus not included for

simplicity, as we are assuming in this case study that action-recognition cannot supply the

in-progress action. For the second state space representation (case 5b), the mission goals

are multi-valued, corresponding to nh+2 terms, and no action-history is included –

instead, nh determines the number of divisions in the goal state; an example formulation

where this might be most useful is in tracking a fuel-meter’s state.

Note that for the nh=0 case, however, both case 5a and case 5b simplify to the following

representation:

 
 

   1,0,1,0

5,4,3,2,1

,,, 1321







i

z

i

z

k

iiiii

fg

a

fgggs

 (5-19)

123

In all of our simulations, we use the case 5a representation. Equation (5-19) is used for

the reward and transition probability tradeoffs, and Equation (5-17) is used for testing the

effect of the action-history.

5.4.4.2 Transition Probability Function

Transition probabilities for this case study are given in Equation (5-20) below; goals are

conditionally-independent from each other, but are dependent on all other aspects of the

current state as well as the predicted next action choice ak:

  



3

1

11 ,,|*),|(),,(
z

k

ii

z

j

zk

ijj

k

i aAggpaffpsasT (5-20)

For this case study, if a goal has already been completed, it stays in the absorbing state

set with 100% probability (1 stays 1, 1 never transitions back to 0). If an action ak does

not impact a goal, then that goal stays in the same state with 100% probability. For

convenience, we refer to a transition for a mission goal i

zg due to a completing action ak

in the nh=0 case as having probability pkz in the no-change case from 0 to 0, and (1-pkz)

for transitioning from 0 to 1. We assume high-priority goals will complete with 100%

probability if action ak affects that goal, and 0% probability otherwise. We also assume

no goal can ever transition back to active (0) once inactive (complete, 1).

For our case study there are at most only 10 possible transitions for each state, and the

no-op action is included for use when no goal requires accomplishment. Figure 5-4

shows the transition system for work completion. The push_button and no_op actions

each have only one possible next state with transition probability 1. Figure 5-5 shows the

transition system associated with high-priority button deactivation states.

124

work
motivation

g3=0

computer work a3,
T=p33

work
motivation

g3=1

computer work a3,
T=(1-p33)

computer work a3,
T=1

computer work
a3

sj=
{g3=0}

sj=
{g3=1}

si={g3=0} p33 1-p33

si={g3=1} 0 1

Figure 5-4: State Transition Diagram and transition matrix for work_motivation

only, nh=0

button 1
inactive

f1=0
(active)

button 1
inactive

f1=1
(inactive)

push button a4,
T=1

push button a4,
T=1

push button a4 sj=
{f1=0}

sj=
{f1=1}

si={f1=0} 0 1

si={f1=1} 0 1

Figure 5-5: State Transition Diagram and transition matrix for button_1_inactive

only, nh=0

The eat_chip and problem-solving action (computer_work) have at most two outcomes

each: staying in the same state (no change) or transitioning to corresponding goals being

completed as shown in Figure 5-6 and Figure 5-4 respectively. In Figure 5-6, the

drink_soda action has up to four possible outcomes, due to a coupling of the drink_soda

action with both the blood_sugar_level and hydration_level goal objectives. The action

of taking a drink, in this case, may raise a person’s blood sugar level, if it is a sugary

drink. In all case studies, we presume the drink is sugary, as was the Coke consumed

during human subject experiments from Chapter 3.

125

blood
sugar level

g1=0
hydration
level g2=0

blood
sugar level

g1=0
hydration
level g2=1

blood
sugar level

g1=1
hydration
level g2=0

drink a2,
T=p21*(1-p22)

eat a1,
T=1-p11

drink a2,
T=p21*1

eat a1,
T=1-p11

eat a1,
T=1

aX,
T=1

eat a1,
T=p11

eat a1,
T=p11

drink a2,
T=(1-p21)*p22

drink a2,
T=p21*p22

drink a2,
T=(1-p21)*(1-p22)

drink a2,
T=1*(1-p22)

drink a2,
T=1*p22

drink a2,
T=(1-p21)*1

eat chip
a1 {g1,g2}

sj=
{0,0}

sj=
{0,1}

sj=
{1,0}

sj=
{1,1}

si={0,0} p11 0 1-p11 0

si={0,1} 0 p11 0 1-p11

si={1,0} 0 0 1 0

si={1,1} 0 0 0 1

drink soda a2 {g1,g2} sj={0,0} sj={0,1} sj={1,0} sj={1,1}

si={0,0} p21*p22 p21*(1-p22) (1-p21)*p22 (1-p21)*(1-p22)

si={0,1} 0 p21*1 0 (1-p21)*1

si={1,0} 0 0 1*p22 1*(1-p22)

si={1,1} 0 0 0 1

blood
sugar level

g1=1
hydration
level g2=1

Figure 5-6: State Transition Diagram and transition matrices for blood_sugar_level

and hydration_level only, nh=0

A limited example of the general finite state machine diagram for the domain

representation is given in Figure 5-7, with nh=1. Recall that case 5a refers to the domain

representation given by Equation (5-17) above.

126

{0,0,0,0}
{no-op}

{0,0,0,0}
{a1}

{1,0,0,0}
{a1}

{0,0,0,0}
{a2}

{0,1,0,0}
{a2}

eat chip a1,
T=p11*1*1*1

eat chip a1,
T=(1-p11)*1*1*1

drink soda a2,
T=p21*p22*1*1

drink soda a2,
T=p21*(1-p22)*1*1

{g1, g2, g3, f1} = goals
{a1} = action-history
g1 = blood sugar level
g2 = hydration level
g3 = work motivation
f1 = button 1 inactive

no-op a5,
T=1*1*1*1

Figure 5-7: Finite State Machine Diagram for case 5a Representation, fully-

connected (not all links labeled), nh=1

An example of probability calculation for the goal of sating work motivation (by

performing computer_work) is given in Equation (5-21) for an action-history of length

nh=0:

   1,0,
1

)(
*)1(,,| 33

3
3333 


 jik

k

iij gg
aa

paAggp (5-21)

Equation (5-22) gives an example with an action-history of length nh=3:

   1,0,
13

)()()()(
*,,| 33

3333231
3333 




 jik

iii

k

iij gg
aaaaaaaa

aAggp  (5-22)

Here, we look to see how many times the computer_work action a3 appears in the history.

Every time a match is found, a “1” is tallied; we sum the number of times the action

appears. We divide by the number of terms to normalize. We then multiply by a

127

weighting factor in the range [0 1] to scale this value. If 133  , then finishing computer

work tasks four times in a row will model work_motivation as sated with 100%

probability.

The general form of Equation (5-22) that we use for this case study is given in Equation

(5-23):

  

   k

ii

z

j

zk

ii

z

j

zkz

h

kkkz

n

x

n

m

x

i

mxz

k

ii

z

j

zkz

aAggpaAggpp

n

aaaa

aAggpp

a h

,,0|11,,0|0

1

)()(

,,0|1)1(
1 1


















 



 (5-23)

For nh=0, this equation simplifies to having a direct relationship with weight kz :

 

    kzk

ii

z

j

zk

ii

z

j

zkz

kz
kkkz

k

ii

z

j

zkz

aAggpaAggpp

aa
aAggpp














1,,0|11,,0|0

10

)(0
,,0|1)1(

 (5-24)

The summation term is used to check each term in the action-history in order; we add

xz to the numerator if that particular action ax at history location m has some impact on

goal gz transitioning from 0 to 1. The impact kz of choosing action ak is then added, and

the numerator divided by the number of total possible terms in the numerator.

This formulation gives equal weight to each action in the action history and action ak.

Due to the normalizing term in the denominator of Equation (5-23), the transition

probability cannot be higher than the largest kz for a goal
i

zg ; the highest probability of

transition for a particular goal occurs when every action in the action-history is the same

as ak and ak has the highest likelihood of transition for that goal.

As described above, the transition probability is dependent upon the past action history A
i

and the predicted next action choice of the human ak. There are no explicit mappings

between a goal state and an action-choice, but the probabilities are constrained to the

known valid action-choices for goal-completion to simplify the number of parameters to

128

optimize. By leveraging this information, we do not need to specify the full tensor,

thereby reducing the computational complexity.

For the case study, we assume that a goal
i

zg may transition from 0 to 1 only if the

action-choice ak impacts that goal (is nonzero), and will not transition otherwise. In

our models there are no delayed effects. Thus, to calculate that conditionally-

independent goal’s transition probability, when is zero we use Equation (5-24) that

effectively ignores the “history” term, and we use Equation (5-23) when is nonzero

for the multiplicand in Equation (5-20). For),|(11 k

ij affp , we use Equation (5-6) to

calculate the multiplicand, recalling that the in-progress action is always ‘unknown’.

As shown, our state-space model includes an action history as well as attributes

describing sensed events. By reducing the mapping of objectives directly to actions, we

are effectively tracking action-completion in our state.

5.4.4.3 Rewards












0 if*

1 if
)(

11332211

1332211

i

j

iii

i

j

iii

i

fkggg

fggg
sR




 (5-25)

The above reward function for our case study is consistent with the form shown in

Equation (5-9) and Equation (5-10). To equally reward the completion of all goals and

an inactive high-priority goal, we set all weighting factors to 1. k1 is then set to a large

positive constant that prioritizes completion of the high-priority goal. In this example so

long as (11 *k)>3 the MDP will prioritize high-priority task completion above any

mission-related action, even if such an action may contribute to the completion of

multiple mission goals.

We tested weights in the range of [0 1] with a change in weight of either 25.0 or

10.0 .

kz

kz

kz

129

5.4.4.4 Simulation Results

For the stochastic case, we use illustrative examples to evaluate the impact of reward

weightings on the policy, the impact of the transition probabilities on the policy, and the

impact of action-history length on the policy.

Changes in reward weighting should impact policy output in accordance with astronaut

preferences. We test changes in policy that occur when we trade off weights between:

 unconnected independent nominal goals (blood_sugar_level and work_motivation)

 independent nominal goals impacted by more than one action (blood_sugar_level and

hydration_level)

 nominal goal impacted by more than one action versus ‘high-priority’ goal

(blood_sugar_level versus button_1_inactive)

 nominal goal impacted by only one action versus ‘high-priority’ goal

(work_motivation versus button_1_inactive)

High-priority goals differ from nominal goals in that they effectively “override” the

completion of other goals, in the majority of cases where the (nominal) mission goal

weighting terms are much smaller than cost of not fulfilling high-priority goals.

To test the impact of these weightings, we fix the transition probabilities, set nh=0 (no

action-history), and zero the reward weights for all non-tested mission-goals. For cases

not testing the high-priority goal of button pushing explicitly, we set 1 =1, k1=4.

The transition probability function is from Equation (5-24) – the probability pkz that

action ak does not transition goal
i

zg from 0 to 1. We use p11=0.25, p21=0.75, p22=0.50,

p33=0.25, and p44=0.00 for the reward weight examples, and set p5X=1, indicating that no-

op action a5 never changes the state. All other pkz are set to 1. Once a goal flag becomes

1 it has reached an absorbing state: transitions from
i

zg =1 to
j

zg =1 are always p=1, and

transitions from
i

zg =1 to
j

zg =0 are always p=0. For the nh=0 cases, simulation time

using the same computing power as in Chapter 5.4.2.4 took a little more than half-a-

130

second total runtime. The infinite horizon value iteration solver completed after ~220-

250 iterations in 0.20-0.30 seconds.

Table 5-13 and Table 5-14 show the impact of reward weightings on policy outcomes.

Table 5-13 shows the impact on policy outcome for tradeoffs between the

blood_sugar_level and work_motivation goals.

Table 5-13: Impact of reward weightings, eat_chip (a1) /

blood_sugar_level (g1) vs. computer_work (a3) / work_motivation

(g3)

State Features Policy action for reward weights

1=eat, 2=drink, 3=work, 4=button press, 5=no-op

(constant weights: 2 =0.00, 1 =1.00, k1=4)

g1 g2 g3 f1 1 =0.50

3 =0.01

1 =0.50

3 =0.50

1 =0.50

3 =1.00

0 0 0 1 1 (eat) 3 (work) 3 (work)

0 0 1 1 1 (eat) 1 (eat) 1 (eat)

0 1 0 1 1 (eat) 3 (work) 3 (work)

0 1 1 1 1 (eat) 1 (eat) 1 (eat)

1 0 0 1 3 (work) 3 (work) 3 (work)

1 0 1 1 5 (no-op) 5 (no-op) 5 (no-op)

1 1 0 1 3 (work) 3 (work) 3 (work)

1 1 1 1 5 (no-op) 5 (no-op) 5 (no-op)

x x x 0 4 (button) 4 (button) 4 (button)

In Table 5-13, near the {0.50,0.50} weight set, there is a tradeoff for the transition

probabilities given. While 1 =0.50 and 3 <0.50, eat is always chosen when g1=0; once

3 ≥0.50, computer_work is always chosen when g3=0; these cases are consistent in their

optimal action choice. Figure 5-8 and Figure 5-9 show the associated state progression

tree.

131

Figure 5-8: State/policy-action progression outcomes, column 1 from Table 5-13

(blood_sugar_level g1 vs. work_motivation g3),  iiiii fgggs 1321 ,,,

132

Figure 5-9: State/policy-action progression outcomes, column 2 from Table 5-13

(blood_sugar_level g1 vs. work_motivation g3),  iiiii fgggs 1321 ,,,

133

Table 5-14: Impact of reward weightings, eat_chip (a1) /

blood_sugar_level (g1) vs. drink_soda (a2) / hydration_level (g2)

State Features Policy action for reward weights

1=eat, 2=drink, 3=work, 4=button press, 5=no-op

(constant weights:
1 =0.00,

1 =1.00, k1=4)

g1 g2 g3 f1 1 =0.50

2 =0.01
1 =0.50

2 =0.41
1 =0.50

2 =1.00

0 0 0 1 1 (eat) 2 (drink) 2 (drink)

0 0 1 1 1 (eat) 2 (drink) 2 (drink)

0 1 0 1 1 (eat) 1 (eat) 1 (eat)

0 1 1 1 1 (eat) 1 (eat) 1 (eat)

1 0 0 1 2 (drink) 2 (drink) 2 (drink)

1 0 1 1 2 (drink) 2 (drink) 2 (drink)

1 1 0 1 5 (no-op) 5 (no-op) 5 (no-op)

1 1 1 1 5 (no-op) 5 (no-op) 5 (no-op)

x x x 0 4 (button) 4 (button) 4 (button)

Table 5-14 shows the impact on policy outcome for tradeoffs between the

blood_sugar_level and hydration_level goals. Notice that in Table 5-14 with the

drink_soda action, the tradeoff weights are set to {0.50,0.41}. This is because the

drink_soda choice does have some likelihood of sating/raising the blood_sugar_level

goal on its own, and a lower but still nonzero probability of sating both those goals at

once. Figure 5-10 and Figure 5-11 show the state progression tree.

134

Figure 5-10: State/policy-action progression outcomes, column 1 from Table 5-14

(blood_sugar_level g1 vs. hydration_level g2),  iiiii fgggs 1321 ,,,

135

Figure 5-11: State/policy-action progression outcomes, column 2 from Table 5-14

(blood_sugar_level g1 vs. hydration_level g2),  iiiii fgggs 1321 ,,,

136

 Table 5-15: Impact of reward weightings, eat_chip (a1) /

blood_sugar_level (g1) vs. push_button (a4) / button_1_inactive (f1)

State Features Policy action for reward weights

1=eat, 2=drink, 3=work, 4=button press, 5=no-op

(constant weights:
2 =0.00, 3 =0.00)

g1 g2 g3 f1 1 =0.50

1 =0.01, k1=4
1 =0.50

1 =0.075, k1=4
1 =0.50

1 =1, k1==4

0 0 0 0 1 (eat) 4 (button) 4 (button)

0 0 1 0 1 (eat) 4 (button) 4 (button)

0 1 0 0 1 (eat) 4 (button) 4 (button)

0 1 1 0 1 (eat) 4 (button) 4 (button)

1 0 0 0 4 (button) 4 (button) 4 (button)

1 0 1 0 4 (button) 4 (button) 4 (button)

1 1 0 0 4 (button) 4 (button) 4 (button)

1 1 1 0 4 (button) 4 (button) 4 (button)

0 0 0 1 1 (eat) 1 (eat) 1 (eat)

0 0 1 1 1 (eat) 1 (eat) 1 (eat)

0 1 0 1 1 (eat) 1 (eat) 1 (eat)

0 1 1 1 1 (eat) 1 (eat) 1 (eat)

1 0 0 1 5 (no-op) 5 (no-op) 5 (no-op)

1 0 1 1 5 (no-op) 5 (no-op) 5 (no-op)

1 1 0 1 5 (no-op) 5 (no-op) 5 (no-op)

1 1 1 1 5 (no-op) 5 (no-op) 5 (no-op)

For the reward tradeoffs done against the high-priority button goal, shown in Table 5-15

and Table 5-16, the tradeoff weighting is {0.50,{0.075,4}} for both. This is not

surprising, given that the eat_chip and computer_work actions are both given the same

likelihood of sating the blood_sugar_level and work_motivation goals, respectively. For

the tradeoff of sating the blood_sugar_level goal in Table 5-15, drink_soda is never

selected in the optimal policy (1) because there is no reward for that goal, and (2) because

in all situations, the drink_soda action has lower likelihood of transitioning

blood_sugar_level to being sated than the eat_chip action does.

137

Table 5-16: Impact of reward weightings, computer_work (a3) /

work_motivation (g3) vs. push_button (a4) / button_1_inactive (f1)

State Features Policy action for reward weights

1=eat, 2=drink, 3=work, 4=button press, 5=no-op

(constant weights:
1 =0.00, 2 =0.00)

g1 g2 g3 f1 3 =0.50

1 =0.01, k1=4

3 =0.50

1 =0.075, k1=4

3 =0.50

1 =1, k1=4

0 0 0 0 3 (work) 4 (button) 4 (button)

0 0 1 0 4 (button) 4 (button) 4 (button)

0 1 0 0 3 (work) 4 (button) 4 (button)

0 1 1 0 4 (button) 4 (button) 4 (button)

1 0 0 0 3 (work) 4 (button) 4 (button)

1 0 1 0 4 (button) 4 (button) 4 (button)

1 1 0 0 3 (work) 4 (button) 4 (button)

1 1 1 0 4 (button) 4 (button) 4 (button)

0 0 0 1 3 (work) 3 (work) 3 (work)

0 0 1 1 5 (no-op) 5 (no-op) 5 (no-op)

0 1 0 1 3 (work) 3 (work) 3 (work)

0 1 1 1 5 (no-op) 5 (no-op) 5 (no-op)

1 0 0 1 3 (work) 3 (work) 3 (work)

1 0 1 1 5 (no-op) 5 (no-op) 5 (no-op)

1 1 0 1 3 (work) 3 (work) 3 (work)

1 1 1 1 5 (no-op) 5 (no-op) 5 (no-op)

138

Figure 5-12: State/policy-action progression outcomes, column 1 from Table 5-15

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,,

139

Figure 5-13: State/policy-action progression outcomes, column 2 from Table 5-15

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,,

140

Figure 5-14: State/policy-action progression outcomes, column 1 from Table 5-16

(work_motivation g3 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,,

141

Figure 5-15: State/policy-action progression outcomes, column 2 from Table 5-16

(work_motivation g3 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,,

Figure 5-12 and Figure 5-13 and show the state progression trees for Table 5-15, and

Figure 5-14 and Figure 5-15 show the state progression trees for Table 5-16, respectively.

To test the impact of transition probabilities, we run cases with the reward weightings as

above, for nh=0, but different pkz. Changes in the transition probabilities should have a

large impact on the choice of policy action for goals with more than one satisficing action

(e.g., sating the blood_sugar_level goal, with a choice between eat_chip and drink_soda

actions for goal satisfaction). Changes in transition probability also should have an

impact on action-choice, in terms of the order of action-choice within the policy when

presented with multiple unsatisfied goals (e.g., if work_motivation has intermediate

reward compared to other goals but a near-zero likelihood of completing, other goals with

higher likelihood of completion and lower reward may still be pursued first, as seen via

the policy’s action-choice). These could either appear to be ‘greedy’ choices in action-

goal accomplishment (short-term) or more ‘tactical’ choices (longer-term), depending

142

upon the relative likelihood of transition when balanced with the reward, due to the

nature of the value iteration solver we use for the MDPs.

Table 5-17: Impact of transition probabilities, eat_chip (a1) / blood-sugar_level

(g1) vs. computer_work (a3) / work_motivation (g3)

State Features Policy action for reward weights

1=eat, 2=drink, 3=work, 4=button press, 5=no-op

(constant weights:
1 =0.50, 2 =0.00, 3 =0.50,

1 =1.00, k1=4)

(constant p: p44=0, p5X=1)

g1 g2 g3 f1 Probability set 1

p11=0.25, p21=0.75,

p22=0.50, p33=0.25

Probability set 2

p11=0.25, p21=0.75,

p22=0.50, p33=0.75

Probability set 3

p11=0.75, p21=0.75,

p22=0.50, p33=0.25

0 0 0 1 3 (work) 1 (eat) 3 (work)

0 0 1 1 1 (eat) 1 (eat) 2 (drink)

0 1 0 1 3 (work) 1 (eat) 3 (work)

0 1 1 1 1 (eat) 1 (eat) 2 (drink)

1 0 0 1 3 (work) 3 (work) 3 (work)

1 0 1 1 5 (no-op) 5 (no-op) 5 (no-op)

1 1 0 1 3 (work) 3 (work) 3 (work)

1 1 1 1 5 (no-op) 5 (no-op) 5 (no-op)

x x x 0 4 (button) 4 (button) 4 (button)

In Table 5-17, we compare eat_chip against computer_work by changing the probabilities

for the likelihood of completion for eat_chip towards the goal of sating/raising the

blood_sugar_level, and the act of computer_work towards work_motivation. Note that in

all cases, the high-priority goal weight will override other action-choices, for an optimal

solution where the button-pressing action will always be picked if the button is active.

For probability set 1, we set the transition probabilities high and to the same value for

both eating and working; eat_chip will sate blood_sugar_level 75% of the time. Note

also that drink_soda will sate blood_sugar_level 50% of the time. Because the goals are

weighted equally and so are the transition probabilities, our MDP policy solver defaults

to the highest-numbered action as the tie-breaker (a3) for the cases where both goals are

unfulfilled. For states where only one of those two goals (blood_sugar_level,

work_motivation) is not sated, the action with the highest probability of completion that

active goal (a1, a3) is chosen.

143

For probability set 2, computer_work has far lower likelihood of completing the

work_motivation goal – only 25% probability of transition – while eat_chip still has 75%

chance of sating blood_sugar_level. Because the reward is the same for both sating

blood_sugar_level and work_motivation, the optimal policy chooses the eat_chip action

explicitly over the computer_work action in all states where both these goals are

unfulfilled; it tries to fulfill that higher-likelihood goal earlier.

For probability set 3, eat_chip has far lower likelihood of satiating blood_sugar_level –

only 25% probability of transition – while computer_work has 75% chance of completing

the work_motivation goal. This policy looks similar to the first case, except that the

drink_soda action is chosen instead of the eat_chip action. This is because the

drink_soda action has a higher likelihood of satiating blood_sugar_level (50%) than

eat_chip does in this case.

All of these policy outcomes are intuitive given our equations and the choice of weights

and probabilities. Figure 5-16, Figure 5-17, and Figure 5-18 show the development of

the state progression trees for Table 5-17.

144

Figure 5-16: State/policy-action progression outcomes, column 1 from Table 5-17

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,,

145

Figure 5-17: State/policy-action progression outcomes, column 2 from Table 5-17

(blood_sugar_level g1 vs. button_1_inactive f1),  iiiii fgggs 1321 ,,,

146

F
ig

u
re

 5
-1

8
:

 S
ta

te
/p

o
li

cy
-a

ct
io

n
 p

ro
g
re

ss
io

n
 o

u
tc

o
m

es
,

co
lu

m
n

 3
 f

ro
m

 T
a
b

le
 5

-1
7
 (

b
lo

o
d

_
su

g
a
r_

le
v
el

 g
1
 v

s.

b
u

tt
o
n

_
1
_
in

a
ct

iv
e

f 1
),

{

}

147

In Table 5-18 and Table 5-19, we also test the impact of varying the action-history length

for dependent nominal actions (eat_chip and drink_soda) for similar transition

probability weights as used above (p11=0.25, p21=0.75, p22=0.50, p33=0.25, p44=0.00,

p5X=1; all other pkz=1) for MDPs with action-history of length nh={0,1,2,3}, respectively,

but for a more realistic set of non-zero reward and cost weights :
1 =0.25,

2 =0.25, 3

=0.50, 1 =1.00, k1=4. The z , z , and k parameter values chosen for the analysis are

common sense values, given a lack of statistically-significant human subject experiment

data. The run times specified as {history length, total time, infinite horizon value

iteration time only, number of iterations} were: {nh=0, < 0.5s, ~0.30s, 239}, {nh=1, <

0.5s, ~0.30s, 59}, {nh=2, < 2.1s, ~1.0s, 38}, and {nh=3, < 10s, ~3.8s, 32}.

Table 5-18: Impact of transition probabilities, nh=0 through nh=2

State

Features

Policy action for reward weights, percentage chosen for A
i

a1=eat, a2=drink, a3=work, a4=button press, a5=no-op

(constants: 1 =0.25, 2 =0.25, 3 =0.50, 1 =1.00, k1=4,

p11=0.25, p21=0.75, p22=0.50, p33=0.25, p44=0, p5X=1)

 nh=0 nh=1, % chosen for A
i
 nh=2, % chosen for A

i

{g1,g2,g3,f1} -- a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

{0,0,0,1} a3 1 .16 .84

{0,0,1,1} a2 1 1

{0,1,0,1} a3 1 .04 .96

{0,1,1,1} a1 1 1

{1,0,0,1} a3 1 1

{1,0,1,1} a2 1 1

{1,1,0,1} a3 1 1

{1,1,1,1} a5 1 .2 .2 .2 .4

{x,x,x,0} a4 1 1

148

Table 5-19: Impact of transition probabilities, nh=0 and nh=3

State

Features

Policy action for reward weights, percentage chosen for A
i

a1=eat, a2=drink, a3=work, a4=button press, a5=no-op

(constants: =0.25, =0.25, =0.50, =1.00, k1=4,

p11=0.25, p21=0.75, p22=0.50, p33=0.25, p44=0, p5X=1)

 nh=0 nh=3, % chosen for A
i

{g1,g2,g3,f1} -- a1 a2 a3 a4 a5

{0,0,0,1} a3 .256 .744

{0,0,1,1} a2 1

{0,1,0,1} a3 .048 .952

{0,1,1,1} a1 1

{1,0,0,1} a3 1

{1,0,1,1} a2 1

{1,1,0,1} a3 1

{1,1,1,1} a5 .2 .2 .2 .4

{x,x,x,0} a4 1

In Table 5-18 and Table 5-19, we compare the nominal “no action-history” MDP to the

distribution of actions over all combinations of A
i
 for each set of goal states, as shown in

the leftmost column. Here, deactivation of the high-priority button_1_inactive goal has

overriding cost, and sating work_motivation has higher reward than sating either

blood_sugar_level or hydration_level, which have equivalent reward to each other. Also,

eat_chip and computer_work have 75% likelihood of transitioning each of their

respective goals if the entire action-history plus choice of ak consists of that action (see

Equation (5-23) in the general form for a longer explanation of this). Similarly,

drink_soda has 50% likelihood of sating (only) hydration_level and 25% chance of sating

(only) blood_sugar_level under similar circumstances. However, with an action-history

of non-zero length, probabilities of eat_chip and drink_soda and computer_work span the

entire combinatorial set of possibilities within the action-history. In states where the

button is inactive, we expect to see: computer_work have highest priority for states

where work_motivation has not yet been satisfied; the drink_soda action more likely to

be chosen in states where both blood_sugar_level and hydration_level are not sated

(since drink_soda is able to transition both those goals at once) and also where

hydration_level alone is not sated; and eat_chip action for states where only

blood_sugar_level is not sated. For states where none of the three mission goals are

1 2 3 1

149

satisfied, we expect that for the probabilities and weights selected, computer_work would

be chosen most often (with work_motivation having higher priority), followed by

drink_soda (able to impact two goals) and then eat_chip (only impacting

blood_sugar_level).

In comparing the MDP policy outputs for state spaces with differing action-history length

in Table 5-18 and Table 5-19, we see that the single-goal incomplete cases are

straightforward in that the associated action with the highest probability of transition is

chosen across all cases. For states where two goals are not satisfied, the policy output

follows our expectations as given. In cases with longer action-histories, the choice of

action seems to begin to fragment according to the individual circumstances of each state.

However, this is partly due to a higher number of less-likely combinations being included

in our rudimentary statistical model (e.g., A
i
={a2,a2,a5} for goal state={0,0,0,1} leading

to a choice of drink_soda (a2) instead of computer_work (a3) due to multiple occurrences

of action a2 in the action-history). It should be noted, however, that while the transition

probability is higher for eat_chip sating the blood_sugar_level goal than drink_soda for

hydration_level, drink_soda actions are more likely to be chosen earlier-on than eat_chip

actions due to the reward being equal for both being completed, and a high-enough

likelihood for both goals being completed at the same time if drink_soda is chosen,

similar to observed policies from earlier examples. Thus, we expect the percentages of

choice across that subset of A
i
 to vary more consistently between eating and drinking for

cases where both of their goals have not been met.

Figure 5-19 and Figure 5-20 shows the development of states according to two of the

policies in Table 5-18. Figure 5-21 through Figure 5-26 are zoomed-in portions of Figure

5-20. From every starting state, states progress from no goals satisfied, to one goal

satisfied, and so forth, with all paths meeting at the absorbing ‘all goals satisfied’ state.

This demonstrates that, even if our model is incorrect and some unexpected transition

occurs, so long as unexpected states only progress ‘sideways’ (different goal achieved) or

‘down’ (one or more goals achieved) then we still have a path to goal completion that

will eventually be realized.

150

F
ig

u
re

 5
-1

9
:

 S
ta

te
/p

o
li

cy
-a

ct
io

n
 p

ro
g
re

ss
io

n
 o

u
tc

o
m

es
,

co
lu

m
n

 1
 f

ro
m

 T
a
b

le
 5

-1
8
,
(n

h
=

0
),

{

}

151

F
ig

u
re

 5
-2

0
:

 S
ta

te
/p

o
li

cy
-a

ct
io

n
 p

ro
g
re

ss
io

n
 o

u
tc

o
m

es
,

co
lu

m
n

 2
 f

ro
m

 T
a
b

le
 5

-1
8
,
(n

h
=

1
),

{

} ,

 f
u

ll

d
ia

g
ra

m
 (

lo
w

-r
es

o
lu

ti
o
n

 o
v
er

v
ie

w
)

152

Figure 5-21: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (left-most)

153

Figure 5-22: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (left-center)

154

Figure 5-23: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (center)

155

Figure 5-24: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (right-center)

156

Figure 5-25: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (right of right-center)

157

Figure 5-26: State/policy-action progression outcomes, column 2 from Table 5-18,

(nh=1),  iiiiii afgggs 11321 ,,,, , partial diagram (right-most)

158

5.4.5 Inclusion of action-recognition input i

nh
a 1

 for one-step predictive lookahead

We have discussed several cases where action-recognition was assumed to not have

provided a prediction of the in-progress action. However, this is a simplification – there

will be times that action-recognition will recognize the currently in-progress action with

sufficient confidence that we can treat it as observed. Thus, we can extend the equations

above to include not only the “unknown” case at the very beginning of a human’s

movement, but also this one-step lookahead case.

As an example, Equation (5-17) becomes:

 
   

   akaaa

i

k

i

z

i

z

i

n

i

n

iiiiii

nannna

fg

aaafgggs
hh

,...,1,5,1,,...,1

1,0,1,0

,,...,,,,, 111321





 

 (5-26)

with no-op (5) signifying lack of motion as before, and the addition of a new action,

“unknown” (6). The “unknown” action implies that motion has been observed as

occurring – signifying that a new action has been initiated but that the motion itself has

not been identified, categorized, or labeled with sufficient confidence to feed back to the

MDP executor. The reward function remains the same as before, being a function of

goals, not actions or action-history, while Equation (5-20) becomes:

  



3

1

1111 ,,|*),|(),,(
z

n

ii

z

j

zn

ijj

k

i

hh
aAggpaffpsasT (5-27)

Note that ak is replaced by 1hna in this equation. In this formulation, 1hna is treated as

ak was previously. This is because, when is known, it becomes the in-progress

action that will have an immediate impact once completed, while ak is a future-predicted

action that has delayed impact. Our MDP should react just the same way as it did before,

as we were effectively finding our best guess at the in-progress action, action ak , as

discussed in Chapter 5.2.2.

1hna

159

For the “new” cases where we transition with 1hna known, we model the system in the

following manner: no past action in A
i
 is “no-op” or “unknown” due to our earlier

assumption of observability, 1hna is instead set. If is known, transitions represent

delay, e.g.  1,,| hn

ii

z

j

z aAggp and not  kn

ii

z

j

z aaAggp
h

,,,| 1 . If is indicated by the

observer as unknown, transitions are not delayed, e.g.  k

ii

z

j

z aAggp ,,| , and 1hna

remains unknown. Goal states must be updated according to the given 1hna , which by

definition has not yet had an observed impact on the goal states in observed state s
i
.

5.5 Conclusions and Discussion

We have presented a Markov Decision Process (MDP) formulation for predicting human

astronaut intent during a space mission. We rely on the presence of scripts and a well-

characterized environment to build action sequences and to presume an observer capable

of action-recognition. The optimal MDP policy generates human action predictions that

are then used by a robotic manipulator arm for decision-making. We have presented

initial simulation results where we generate and examine policies developed from

formulated models to better understand the characteristics of this ‘simulated human’

model. The models appear to have reasonable and intuitive policy results. We expect

that the accuracy of the HIP system’s predictions will fall within the robustness

constraints necessary to be useful for real-time task scheduling for a robot. Ground-based

examples related to EVA and IVA are explored here, but it is assumed that, once

astronauts become comfortable working side-by-side with robots that use HIP as part of a

total HRI system (e.g., on space station), they will be much more ready to also accept

them as companions on EVA.

As demonstrated above, we can encode a structured environment in the form of

deterministic scripts into a MDP and recreate expected policies. We can then inject

uncertainty into those transition probabilities, and use a reduced set of parameters to tune

our models intuitively to create models with a sliding scale of internal uncertainty. This

will allow us to predict and account for somewhat irrational or unexpected behavior in

human agents who might be acting nearby or within a robot’s shared workspace. Policies

that are partially-ordered also seem to be able to ‘recover’ when starting from unexpected

1hna

1hna

160

states, despite being suboptimal due to the unmodeled transitions. In terms of parameter

choice, there are tipping points in policy outcomes between pairs of reward weightings

from our simulation results. Drawing from this, it would likely be a good choice to

determine in isolation a human’s likelihood for selecting and completing each action-

sequence, then determine the relative reward weightings for pairs of goals one set at a

time, and only then combine all the model parameters together. This would also help to

identify unexpected dependencies between goals, if they exist. Work to further mature

the HIP MDP defined in this chapter is summarized below.

5.5.1 Future work: evaluation and comparison against other methods

In this thesis, we do not evaluate the MDP for HIP in comparison to any other methods.

Instead, we describe the structure of how to formulate HIP as a separate MDP. The most

commonly used alternative formulation is the POMDP. In future work, it would be

instructive to compare and contrast how the observability assumption in the HIP MDP

impacts constraints (a negative for the MDP) used in reducing complexity relative to the

POMDP. To compare the accuracy of HIP to other methods, it could also be beneficial to

conduct human subject experiments. These experiments could be used to learn MDP

parameters as well as to compare HIP methods. To evaluate the HIP MDP alone, learned

models could be tested with additional human subject experiments. While tailoring MDP

models to specific human preferences might be unrealistic for terrestrial applications, this

would be feasible for space applications given the small size of the astronaut corps.

Benefits from performing human subject experiments would be twofold: we could

explicitly evaluate the utility of our method, and we could determine whether the

assumptions we have made to enable the MDP formulation are accurate. For instance,

currently we assume the human remains sated short-term once they have finished eating.

However, it is reasonable to assume that on a longer time scale, a human would see that

goal as requiring satiation again. Not allowing these transitions back to an incomplete

state makes the MDP policies suboptimal. We would need to observe the human long-

term to see how important these divergences are and whether it might be necessary to

update the general HIP formulation.

161

5.5.2 Future work: handling of model uncertainty

To prevent the necessity to revert to a POMDP formulation, we restricted the state-space

to directly observed and “recognized action” state features in s
i
. We presumed an

external observer could recognize actions underway and/or completed by the human,

thereby enjoying the significant representational and computational advantage of a MDP

relative to a POMDP. We presume action-recognition and sensor deconfliction within

the observer module, although in reality such capabilities would themselves carry some

uncertainty in their conclusions. For more accuracy, there may be critical cases where we

must include a belief-state associated with the outcome of the observed action

within the model, and recast the problem in a limited POMDP form.

With the current MDP formulation, we do not directly model the partial-completion of a

goal; instead, we effectively calculate partial goal-completion using the action-history.

A more expressive representation of goal might be needed for some task/goal models.

Also, we currently disallow a fulfilled goal to transition to an unfulfilled state, a

simplification that can be relaxed by allowing such transitions in the MDP probability

tensor. This constraint should be relaxed, especially for progressively achieved

(dynamic) goals (e.g., raising the blood sugar level or hydration level, which could

conceivably transition to a less-complete state as energy is burned and the food and drink

is digested).

Uncertainty may be present in human action selection (model internal match where the

human decides to do something else), completion (ability-based, including effects of

distraction), and/or outcome (external/environmental). Currently, our model only

includes some sources of uncertainty in completion. We do not include selection cases

where we allow nonzero probability of transitioning to a certain class of states that go

off-script by breaking assumed constraints, e.g., an astronaut might be able to hold their

screwdriver while removing a panel. We also do not include selection cases to account

for the model possibly generating the wrong action; we currently assume that every

action ak will be present in the nh’th action-history attribute in the next state s
j
. If we

wished to include uncertainty in the action model, this might require including a third

parameter, representing a nontrivial probability that the nh’th attribute in the action-

1hna

162

history for state s
j
 is some other action with some other goal-state effect. This set of

possible transitions would need to include not just the set of states where A
i
A

j
 for ak,

but all sets of states A
i
A

j
 for each and every possible choice of action for ak.

We originally chose a MDP modeling method because it keeps the computational

complexity low relative to a POMDP. We assume that the other safety measures, namely

a reactive capability to avoid collision even when the human’s action is unexpected, will

allow the observer to update quickly enough that the HIP MDP policy output meets given

robustness and accuracy constraints.

5.5.3 Future work: simulated human vs. human matching models

The HIP MDP outputs expected human actions, but the human is not guaranteed to

always stick to the expected behaviors. Thus, the selection of internal structure for the

transition probabilities should represent the possibility of deviation from the MDP-

optimized action through uncertainty in action outcome, given that the MDP always

anticipates that it can execute an action but does not require the outcome of this action to

be deterministic. We currently handle this possibility by incorporating into the action

history the human’s sensed response, the subjective action choice they made as specified

by the action-recognition observer, rather than inserting the action retrieved from the

policy into the history without feedback.

We have chosen functional forms for the reward function and probability tensor that are

intuitive. However, if we want to use this model to actually predict a human, we need

experimentally-informed data to populate our HIP model. There are many learning

techniques that could be used to find best-fit model parameters. We could run a set of

human subject experiments to determine those probabilities from observation, and then

survey the astronauts regarding what importance they assign to the tasks to provide better

reward weightings, thus giving us a ‘seeded’ model from which to start our learning

process for our human intent model(s). We define two model types: a simulated human

model that is a baseline for performing offline testing and can be used to seed the HIP

module at the start of a scenario, and a human-matching model that can be updated online

through model learning of the parameters to a better fit, requiring recalculation of the

optimal policy output.

163

A simulated human model could be developed by aggregating statistics obtained through

human subject experiments run prior to a mission in a scenario similar to the mission. A

human-matching model would need to be more refined, and the output of this policy is

what would be needed to supply input to the robot action-choice (RAC) MDP module

online. The latter would be expected to give exactly the same predicted output as the

human actually decides; the former would be expected to give output that corresponds to

the statistical norm, for use in testing and to seed the human-matching model with an

initial baseline. The parameters captured by such a learning process include reward

weightings, the parametric values in the transition probability function, or the transition

probability tensor directly. Such experimentally-derived models could be used for

action-recognition and for specifying or augmenting the HIP MDP parameters online.

5.5.4 Future work: computation of action history length

For model simplicity, we assumed that actions older than the action-history are no longer

relevant. However, there are times when this simplifying assumption may not be valid,

such as circumstances where actions made towards completing one goal could be

interrupted and resumed later. In this case, a very long action-history might need to be

maintained to keep track of the progression towards goal-completion. In the worst-case

scenario, the history might need to cover the entire length of the mission. The inclusion

of intermediate goal states reduces dependence on long-term action history (as briefly

illustrated in Chapter 5.4.2.1).

Some actions could also belong to more than one set of action-sequences, and thus help

satisfy (or impact) more than one goal at a time. An example is picking up and holding a

tool that could be used for more than one purpose. These cases would require a longer

action-history so ‘forgetting’ important past events would not be a concern. The possible

difficulties in, and impact of, correctly and consistently including additional MDP model

complexity would be interesting to explore.

164

Chapter 6

Robot Planning for Optimal Human-Robot Interaction

6.1 Introduction

Given human intent information, the robot must decide how to act to achieve its own

goals without negatively impacting its companion. This chapter describes a Markov

Decision Process (MDP) for this process of robot action choice (RAC), which we define

as decision-making for robot mission completion given as input the robot state, goals

already accomplished, observed environment state, and predicted human intent.

Assuming robot tasks are independent of and do not have higher-priority than human

tasks, the robot must plan its actions to minimize probability of conflict with the human

as well as achieving its own task-level goals.

Consistent with previous chapters, we assume no explicit communication between agents

occurs. By assuming intent predictions from the HIP MDP described in Chapter 5 are

“observations” of human intent, RAC can also make the assumption of full observability

in its state, enabling use of the simpler MDP rather than a POMDP formulation for

decision-making. This is because the observer module updates its output in real-time,

and the HIP policy’s output updates near-instantaneously from that. HIP does not need to

be perfect, as the reactive layer will preserve safety even in cases where the robot

attempts actions that introduce conflicts. HIP does need to update its predictions to

ensure RAC is receiving the best HIP estimate at each decision epoch. The RAC MDP

therefore can define its fully-observable state from HIP input and the current state of the

environment, while internally keeping track of the robot’s own goal state and action

history as needed.

Use of an MDP for robot action choice (RAC) is not itself new [86]. The original

contributions of this dissertation are instead the simplification of RAC for HRI, in a way

that exploits the availability of human input. The assumption of full observability

improves computational tractability relative to POMDP models. Inclusion of limited

165

memory in the form of a selective action history also can improve performance through

improved consistency in action sequences. Incorporation of novel metrics into the

reward function enables RAC to account for human and robot deconfliction (safety) as

well as robot goal achievement. RAC safety metrics inspired by Kulic’s danger index

[21] are designed to support a direct tradeoff between the safety of the human and the

efficiency of the human-robot team.

Below, we first outline the general RAC MDP formulation and its instantiations for a

single astronaut-robot case study that will be carried through the chapter. The scenario

follows a similar physical setup to the human subject experiments in Chapter 3 that was

investigated from the HIP perspective in Chapter 5. In the scenario, the (human)

astronaut’s actions include eating chips, drinking soda, and solving math problems while

seated at a workstation, while the robot’s actions involve pressing buttons in the shared

workspace. We then present a series of simulation results for RAC alone versus RAC

that uses HIP-supplied information provided through the integrated architectural

framework described in Chapter 4, followed by an analysis of the safety-efficiency

tradeoff for RAC policies using different weights.

6.2 Markov Decision Process (MDP) for Robot Action Choice (RAC)

Recall that a MDP is specified as the tuple: [39,35]

 MDP = {S, A, T(s
i
,ak,s

j
), R(s

i
, ak)}  π(s

i
) (6-1)

which includes a set of ns discrete states S, a set of na actions A, state dependent rewards

R(s
i
, ak) representing the reward of executing action ak in state s

i
, and transition

probability tensor T(s
i
,ak,s

j
) representing the likelihood of transitioning from state s

i
 to s

j

given action ak. ak is the action the robot takes in state s
i
 given policy optimal π(s

i
). The

MDP assumes state s
i
 is fully-observable. For RAC, we presume that human intent

predictions are observations available within state s
i
.

We abstract action and state sets to reduce model complexity: most state feature values

are either binary (0 or 1) or a finite set of values with low cardinality. The discretized

model for our problem formulation is as follows.

166

6.2.1 States and Actions

The robot must model both itself and the human to make good decisions about how to act

and react safely and efficiently in the shared work environment. The robot’s overarching

goal is to complete its own goal tasks without the physically-proximal human changing

his/her behavior due to the robot.

For this reason, each state s
i
 in the set of all robot states { } includes

three main components: describing the state of the human companion, describing

the state of the robot, and a state feature called the discretized danger index attribute

that expresses a snapshot of safety for the human-robot system.

 { }, (6-2)

Each RAC policy action ak is chosen from:

 { } (6-3)

6.2.1.1 Human state features

Human state for RAC only must represent ongoing or upcoming human action choices

that could impact robot state or action choice. Specifically, we only need information

translatable to potential physical conflicts to make sure the robot doesn’t distract or pose

a risk of collision to its human companion. The robot does not need to know the human’s

task-level goals, as it is working independently. In our current formulation, the robot

always defers to the human as needed to avoid conflict.

Human state for RAC thus can be specified by the human’s actions , as shown in

Equation (6-4). Each action in turn maps to action-zone(s) which represent locations in

physical space expected to be occupied or transited by the human:

 { } (6-4)

Action-zones are annotations to the state. To simplify the problem of translating task-

level actions to zones, we assume the human and robot stay in or move through a

167

common set of zones for the duration of their work. This is consistent for our space

application involving a fixed-base manipulator and an anchored astronaut (simulated by a

seated human on Earth). With this assumption, knowing the human’s current and

upcoming task-level actions gives an understanding of his/her physical movements,

which in turn allows specification of the conflicts that occur through action-zone

occupation. The human is expected to occupy zones where task-level goals are currently

being completed based on direct observation (obs) and also to occupy zones that must be

transited to reach the site(s) where the next action predicted by HIP will be completed.

RAC therefore models two human actions: the in-progress (directly observed) action and

next action predicted by HIP:

 {

 }
 { }

 { } (6-5)

 is the in-progress action output by the observer module (called

i

nh
a 1 in Chapter 5),

and
 is the action output from the HIP policy (ak from Chapter 5). As explained in

Chapter 4, if the human’s motion indicates that he/she has just initiated a new action, the

observer identifies this new in-progress action as “unknown” (value 0), and the HIP

output is effectively the in-progress action that has not yet been recognized, with no

future predicted intent available to RAC. After the observer recognizes the in-progress

action above a threshold of certainty/confidence, the HIP output shifts to the next

predicted action of the human. We make the simplifying assumption that RAC can treat

both of these attributes as 100% certain, a critical assumption enabling use of an MDP

instead of a POMDP.

Note that
H
A does not include 0 in its count, as the value 0 is a reserved number; HIP

never outputs an
 that is “unknown” (value 0) – the HIP MDP will always give its

best guess as its action output.

6.2.1.2 Robot state features

The robot state features include:

 { } (6-6)

168

which describe the robot’s mission goals and high-priority goals , current action ,

and current action-status , respectively.

The robot’s mission goals {

 } and high-priority goals

{

 } mirror human goal sets from the HIP MDP and are binary-valued. We do

not include a robot action-history in RAC because it is unnecessary. The robot can

choose its next action. It is not attempting to recognize a past-sequence by cross-

referencing a script; it is instead determining the optimal action to take.

For RAC, the robot’s current (in-progress) action must be included in the state since

actions may be sufficiently long-term or with unpredictable duration to warrant

interruption. The status of robot action completion must therefore be sensed by the

observer, which in turn enables RAC policies to purposely continue or abort (interrupt)

an ongoing action.

The human and robot have their own separate tasks to complete. In this work, we assume

our robot will never fail to complete a task (i.e., it is guaranteed to reach a “halting state”

for each action), although the outcome of executing an action may be uncertain.

 { }

 { }
 (6-7)

Action is in-progress if the action-status or assumed to have just completed if

 . We require the action-status so the robot is able to model where the robot (arm)

is currently located after an action has completed. The value 1 is a reserved number in

R
A; this is the no-op action. In the simple case, . However, does

not need to include the no-op action explicitly, as the external sensors the observer

module uses will not be able to distinguish between a planned wait action (no-op) and a

pause in an in-progress action. The observer module can recognize human motion, robot

motion, and changes in the environment, so keeping track of the difference between a

wait versus a pause within RAC is unnecessary. The human and robot actions are

annotated with zone information, and the zones give an understanding of physical

169

location and motion mapped to each action in the workspace. Thus, for the purposes of

maintaining safety, the differences between a no-op action (holding at a particular

location) and a pause (during a particular motion) are negligible, so long as the observer

updates the next action before a change in motion diverges significantly from the current

physical location. Thus,
R
A in Equation (6-7) can be simplified to reduce the size of the

state space:

 { }

 {
 }

 (6-8)

6.2.1.2.1Action-zone annotation

Each human or robot action has one or more expected trajectories through physical space,

representing motions or even just the volume of space occupied, as an agent completes an

action in-place. In this work, actions map onto action-zones in 3D space, but this is not a

one-to-one correspondence. To determine how the robot must act to accomplish its goals

while avoiding interference with its human companion, physical conflict must be

modeled in each action the robot and human executes. To model such conflicts, we define

action-zones each agent is expected to occupy as each goal-seeking action is executed.

There are three aspects to each action: an action-zone that defines the physical space

occupied (or being transited), directionality associated with the motion within the action-

zone, and intent that implies the action’s effect on goal completion. Note that these

action-zones may overlap and may be occupied by either human or robot operating in the

shared workspace. However, human and robot action-zone spaces may be defined

distinctly, with translation as needed. Zones for each robot and human action modeled in

the RAC MDP are given by:

 {

 }

 {

 }

 {

 }

 {

 }

 (6-9)

170

We assume zone data
H
Z

i
 and

R
Z

i
 are fully-observable and identified as part of the action-

recognition process. The zones represent annotations to RAC MDP state thus are not

explicitly listed in the MDP to minimize state complexity. Defining physical action-

zones and their correspondence to the human and robot actions provides a method to

calculate danger index and to better estimate the reward and transition probability

functions than would be possible without this spatial data.

Action-zone definitions are discussed further in subsequent case studies (Chapter 6.4.1).

6.2.1.3 Conflict (danger) state feature

The discretized danger index, [21] indicates the expected level to which the robot’s

presence and motion may pose risk to or introduce interference with its human

companion. is a discrete value, assigned corresponding to the bin (interval) in set D

containing the current floating-point danger index:

 { } (6-10)

As an example, for a binary-valued index, a discretized danger index =0 would

correspond to the interval [0 DI1], where DI1 is the threshold value for that piece of the

continuum of possible values of the danger index DI, as given in Chapter 2.2.2. This

state implies that there is no chance of unsafe physical conflict in the near-future, so the

robot can effectively ignore what the human is doing at-present. =1 would then

correspond to the interval (DI1 DI2], when the robot must begin to worry about collision

occurring. DI2 would be the highest danger index value allowable for safe human-robot

operations with an HIP+RAC implementation.

A translation from physical space properties to danger index levels is calculated offline

and dependent on the speed, inertia, and response time of the manipulator arm or more

generally robot motion for each action. In the simplest case, and in our case studies, the

danger index is a binary attribute and is effectively a flag that states whether the robot is

moving too close to the human. This could be further discretized. For this HIP+RAC

method, one might set thresholds of DI1=0.3 (as Kulic chooses this value in [30] to avoid

false positives) and a DI2=0.8 (rather than the upper limit of 1), as values exceeding DI2

171

would cause the reactive controller to take over until a sufficiently low DI is again

restored. For safer, more conservative operations, lower threshold values could be

chosen.

Recall that DI, the raw value of the danger index computed in real-time, corresponds to

the maximum state of danger at a snapshot in time; usually this is defined by the closest

approach point at the highest speed over the expected action trajectory. If the human and

robot are motionless relative to each other, DI will be 0 regardless of the distance

between them (due to the velocity factor (); refer to Chapter 2.2.2).

The danger index can also be used in the lower-level reactive controller to prevent a

collision, even if the RAC MDP policy selects a conflicting action. This will delay or

interrupt the robot’s action but will preserve safety. We assume that this capability is

available to the robot engaged in HIP+RAC. Details of this process are left for future

work.

6.2.2 Transition Probabilities

Transition probabilities are calculated from the robot’s action-choice ak and goal

accomplishment status flags in the robot’s state. These values are then modified by the

sensed and predicted human intent to reflect the possibility of collision avoidance

reactions. The robot executes action ak output from the RAC policy at each timestep.

We can account for the robot’s reactive avoidance of conflict with the human in the MDP

transition probability tensor.

The transition probability tensor for the MDP is given by:

 (
) () (6-11)

which for RAC expands to:

 (
) () (6-12)

Applying the chain rule p(A,B) = p(A) p(B|A) enables a series of simplifications. First

separate human state from robot and danger state:

172

 (
) () (

) (6-13)

Next separate robot and danger state:

 (
) ()

 (
) (

) (6-14)

This yields a product of three functions computing probabilities of the next human state,

robot state, and collision danger state, respectively. Each of these probability terms is

described below.

6.2.2.1 Human state probability

Because we assume that the human is not impacted by the robot, we can write the

probability of as:

 () (
) (6-15)

Observed (obs) and predicted (HIP) human state H
j
 will evolve in accordance with

human action input computed in the current, observed human state H
i
.

Table 6-1: Use of Human State Information in RAC

Case Discrete Value Moves to Case

1 X Y
1, if X has not completed (

)

2, if X completes

2 0 Y
2, if Y has not completed (

)

1, if Y completes (

 is expected)

As shown in Table 6-1, two cases are present with respect to available human state

information. In case 1, both observed action value X and HIP-supplied action Y are

available. In case 2, HIP provides an action prediction but the observer has not yet

recognized the current (in-progress) action. When transitioning, two outcomes are

possible: (a) the human state remains the same, or (b) the human state transitions, in

173

which case the predicted intent remains the same (Y) until the action is recognized. We

assume that the observer and HIP give perfect information to RAC in our case studies.

Note, however, that we could relax our assumption that HIP is perfect so long as we

incorporate non-zero probability of an incorrect prediction.

Because we assume that the human state information given to RAC is observable, this

state transition demonstrates the progression of the human state within RAC with respect

to the robot’s actions. Relative to the rest of the RAC state features, if the human state

remains the same after an internal MDP transition, then this indicates that the robot has

transitioned its own state before the human finished their current action. If the human

state changes asynchronously, the robot must now reconsider the best action to pursue or

continue accounting for the new (or avoided) conflict situations.

An algorithm to compute () is given below.

 is the probability that the

action
 will stay in a case 1 state (not transition to case 2);

 is the probability

that the action
 will stay in a case 2 state (not transition to case 1). The algorithm

is as follows: if
 is not unknown (0), we assume

 and
 remain the same

with probability

 , and that

 doesn’t change while
 becomes unknown

(

=0) with probability

 ; if

 is unknown, we assume that
 and

 remain the same with probability

 , and that
 is accurate and is the

new

 while

 could transition to any action in
H
A with equal probability

.

174

Figure 6-1: Algorithm for calculating)|(ij HHp

In our case studies, we assume that every

 =

 =0.50; this represents a model

of equal probability that the human will complete their latest action before, or

during/after, the robot attempts the action. This models the possibility of the robot

noticing a change in human state while both agents are in the midst of working to

complete actions.

6.2.2.2 Robot state probability

The second term of Equation (6-14) can be simplified. Recall the components of R
i
:

 (
) (

) (6-16)

Rewrite as:

 (
) (

)

 (

) (6-17)

Algorithm ()= (

):

if (
) and (

)

if (

)

 return

else if (

)

 return

 else return 0

else if (
)

 if (

) and (

)

 return

 else if (

)

 return

 else return 0

else return 0

175

Because we define

 as independent of everything but ak and assume that a
i
, as ak will

always complete if it is not interrupted, and ak can be no-op:

 () (

) (

) (6-18)

with:

 (

) {

 -

 (6-19)

Recall that

 is the in-progress or complete status of . A constraint of our modeling

method is that every time a robot action is completed we should see a goal state change,

except when ak is no-op. We also assume that the robot will not fail to complete a task

for the action taken. Thus, if a goal didn’t transition, then the action did not complete.

This lets us simplify

, as it is only dependent upon change in goal status and the ak that

causes it, becoming 1 when ak finishes. Therefore, we can rewrite Equation (6-18) as:

 () (
) (

)

 (

) (6-20)

with:

 (

)

{

 - (

) () ()

 (()

) (()
)

 (()

) (()
)

 (6-21)

176

The effect(s) of ak on G
i
 and F

i
, whether in-progress (

) or complete (

), can be

read from a lookup table. This is a deterministic model although the MDP formulation

would also support uncertainty.

The () term from Equation (6-20) represents the likelihood of goal completion

of the robot given the current state (i), human state, and the robot’s action-choice. ,

the danger index, can be removed as a dependency if is binary-valued, as this will

change according to ak, so d
i
 will not directly influence goal states {G

j
,F

j
}.

 (
) (

)(6-22)

Also, the previous robot action does not determine the goal outcome as that action is no

longer in progress – only ak does.

 () (
) (6-23)

Equation (6-24) gives an example formulation. Here, the probability is 1 only when

transitioning to states s
j
 where: the action is no-op and there is no change in goal state,

the action ak is likely to complete successfully (will not be interrupted due to upcoming

conflict with the human) and the future goal it impacts is set to true (completed), or the

action ak is not likely to complete successfully (high chance of conflict) and no goals

change. It is assumed that goal(s) not acted upon will remain the same. For likelihood of

completion, conflict checks are performed on the assumption that both the in-progress

action is finished and the robot’s associated goal has been achieved.

 (
)

{

 - () ()

 ((
)

) (()
)

 (
) ()

 (6-24)

177

We can generally assume conditional independence (p(A,B)=p(A)*p(B)) between goals in

G
i
 and F

i
. The joint probability is therefore the product of the individual probabilities of

the goals:

 (
) ∏ (

)

 ∏ (

)

 (6-25)

These terms are used to determine the likelihood of goal completion of the robot given

the current goal state {G
i
,F

i
}, the current and assumed-next-transitory state of the human

{H
i
,H

j
} that might cause conflict and make a goal’s completion less-likely, and the

robot’s action-choice ak.

6.2.2.3 Collision danger state probability

Consider the p(d
j
|…) term from Equation (6-14).

 (
)

 (

) (6-26)

The discretized danger index is the maximum state of danger existing between the

human and robot in the current MDP state. Thus, is a calculation dependent upon

relative human and robot motion in state j.

 (
)

 (

) (6-27)

In the simplest case when d
i
 is binary-valued, (

) is 1 only when a

conflict will not occur and d
j
 is 0, or 1 when a conflict will occur and d

j
 is 1, a case in

which risk is mitigated by MDP policy or (if considered not possible by mitigation) at the

178

reactive control layer. We assume that risk actively mitigated by MDP policy action will

be performed in time for the reactive controller to not need to take over.

6.2.2.4 Complete transition probability function

To summarize, RAC MDP transition probabilities are given by:

 (
) ()

 (
)

 (

) (

)

 (

) (6-28)

With conditionally independent robot goals this simplifies to:

 (
) ()

 ∏ (

)

 ∏ (

)

 (

) (

)

 (

) (6-29)

In this formulation, we assume the reachable set of states s
j
 from a particular s

i
 are always

going to be combinations between the various end-states of each human and robot action.

6.2.3 Rewards

The RAC MDP reward is dependent upon goal completion, safety of an action in terms of

potential for collision, and robot energy consumed by an action:

179

 () (
) (

)

 (
) (6-30)

The first term R1 gives a reward for advancing overall robot goal-completion, R2 is the

safety cost, and R3 subtracts from reward depending on energy cost.

Goal completion reward is given by:

 (
) ∑

 (

) ∑

 (

) (6-31)

r11 rewards accomplishment of goals in the set G
i
. Term r12 rewards high-priority goal

completion and imposes cost for incomplete but active high-priority goals. and

are the weights on r11 and r12, respectively.

Equation (6-32) gives the general form of the reward terms:

 

 











 



complete)not / (active 0 if

(complete) 1 if1

otherwise0

1 if1

12

11

i

z

i

zi

z

i

zi

z

fk

f
fr

g
gr

 (6-32)

Because the goals are binary-valued, we can use them directly to calculate the reward R1

as we did in Chapter 5. Equation (6-33) gives an example formulation for our case

studies:

 

 











0 if

1 if1
*)1(12

11

i

zz

i

z

z

i

zz

i

z

i

z

i

z

fk

f
kfkfr

ggr

 (6-33)

This is the same form as Equation (5-10).

180

If we wanted to equally weigh all goals and non-active high-priority goals, we would set

all weighting factors to 1. So long as
zzk * > (), with |kz|>1, the MDP

will prioritize high-priority task completion above each mission-goal action.

The second term R2 penalizes risky states by assigning high costs to low human-robot

separation distances (influenced by speed), and lesser costs to a choice of ak that might

cause conflict with future predicted actions without mitigation by the reactive controller.

 (

) (
) (

) (

) (6-34)

Term r21 is a weighted penalty for the (binary) discretized danger index:

 (
) {

 (6-35)

This penalizes the robot for close distances or unsafe operating speeds. If d
i
 is 0, the

safety is dependent upon the relative action status, because the robot arm might be

motionless and waiting rather than far outside an unsafe shared zone. An example of this

function as used in our case studies is Equation (6-36):

 (
)

 (6-36)

wd is a positive weighting factor. As d
i
 is a discretized term (ranges of DI map to set

values), we can use the scaled value directly in our reward function.

Term r22 is a cost term that measures the change in safety in choosing ak, relative to the

in-progress action. The general form of r22 is:

 (

)

 { -

 (6-37)

181

If our safety constraints are of overriding importance, weights w22 and w2 should be

chosen greater than w1 to ensure the maximum total reward is achieved by also

maximizing R1. Determining the expectation of an increase in discretized danger index

requires comparison between and ak with ; the likelihood of collision is then

assessed to determine relative change in d
i
. For binary d

i
, there can only be an increase if

d
i
=0 and d

j
= 1, or if the type of collision could have greater negative consequence

(physical versus mental). An example algorithm for calculating of the likelihood of

increase is given below.

Figure 6-2: Algorithm for calculating likelihood of increase for },{ i

HIP

Hi

obs

Hi aaH 

We use an assignment of values for known conflicts shown in Equation (6-38). The type

of expected conflict, if any, is read from a lookup table of conflict information that is

calculated from the zone information that annotates each action; see the case study

presented in Chapter 6.4.1 for more detail.

 (
) {

 (6-38)

Algorithm likelihood of increase for {

 }:

if

if (
) (

)
return 1

else if (
) (

)

if (
) (

)
 return 1

 else return 0

else if (
) (

)
return 0

else if

if (
) (

)
return 1

else return 0

182

Term r23 is a cost term indicative of the risk of choosing ak given the upcoming predicted

human actions in ; the higher the risk of future conflict, the higher the cost. There are

two components to r23: weight w231 enacts a cost for conflict with the in-progress action,

and w232 enacts a cost for conflict with the future-predicted action. (Thus, if
 is

unknown,
 is the in-progress action, while the future-predicted action is unknown,

value 0.) An example calculation that uses the lookup function conflictR as given above

is shown below:

Figure 6-3: Algorithm for calculating  ii

k Haar ,,23 for },{ i

HIP

Hi

obs

Hi aaH 

Note that we compare ak against each human action separately because we do not know

whether the robot’s action ak will complete before or after the human’s in-progress action

has been completed – the amount of passage of time is not explicitly identified in the

MDP models we use. This is preferable to the alternative, however, because we need to

model time fluidly; humans can take non-trivial varying amounts of time to complete

their tasks. The same lookup table used for r22 can be used to determine the conflicting

actions and the risk of collision between them.

The third term R3 penalizes the relative energy consumption for an action as a cost in the

reward function. We assume that we know the physical location for each action and

completion status pair { }. If we know which goal we want to complete next, we

know where we need to go next (new endpoint), we already know where we currently are

(last endpoint known) and that we are stopped (motion stopped).

Algorithm (
) for {

 }:

if
 and -

return (

) (

)

else if
 and -

return (
) (

)

else if
 and -

return (

) (

)

else if
 and -

return (
) (

)

183

 (
) (

) () (6-39)

Term r31 defines the action switching cost, encouraging actions to run to completion once

begun. There is usually a balance between this and the cost associated with the current

state of the actions and the discretized danger index in R2.

 (
) {

 -

 (6-40)

Term r32 is the cost of motion, and is read from a lookup table; only the action ak needs

be known for this determination.

6.3 Metrics for RAC MDP Performance Evaluation

For each case study, we evaluate MDP formulations by comparing policy outputs as

parameters – such as reward weightings – are varied for a consistent set of transition

probabilities.

Our main evaluation metric is the percentage of an action-choice ak – the number of times

ak is chosen by the policy divided by the number of states, given a particular reward

weighting or other parameter choice.

When evaluating the policies resulting from different parameter choices, we discuss:

 Changes in optimal action-choice as determined by the policy for the various G
i

and F
i
 goal state transitions over all possible states and the likelihood of conflict

over time for selected scenarios given H
i

 Changes in optimal action-choice comparing each of the reward terms individually

(R1,R2,R3) and the total reward (R1+R2+R3)

We can evaluate the relative impact of changes in the model by varying the values of two

parameters in the HIP model at a time, solving for the optimal policies for each set of

parameters, and looking for the tradeoffs.

184

Below, we examine the policy outcomes for RAC using differing amounts of human

prediction information. We also examine the tradeoff between the various reward

function term weightings and how this impacts the conflicts that occur – or are avoided.

There are actions-to-goals that may cause physical conflict, mental conflict, or no

conflict.

6.4 Case Studies

The IVA scenarios following from HIP studies investigated in Chapter 5 are presented

here. These studies are similar to those used in the human subject testing in the Chapter 3

human subject experiments. Each scenario is presented below, following a discussion of

action-zone definition for the case studies. We compare the policy output of RAC

MDP’s that do and do not use HIP-supplied information, and then look into the tradeoff

between safety (number and type of expected collisions) and efficiency (policy value) in

policies with tradeoffs in reward weights w1, w2, w3.

6.4.1 Encoding Zone Information within an RAC MDP state space

Actions and zones are interrelated. We assume progressions through or transitions

between zones are predictable for a given action. Once the motion is matched as

belonging to a zone with sufficient certainty, the correct action will be identified.

To simplify the problem of tracking risk of collision for task-level actions, we assume the

human and robot stay in or move through a common set of zones in physical space for the

duration of their work. This is consistent with our space application involving a fixed-

base manipulator and an anchored astronaut (simulated by a seated human on Earth).

With this assumption, knowing the human’s current and upcoming task-level actions can

be translated to a prediction of his/her physical movements, which in turn allows

specification of the conflicts expected to occur through action-zone occupation. The

human is expected to occupy zones where task-level goals are currently being completed

based on direct observation (obs) and also to occupy zones that must be transited to reach

the site(s) where the next action predicted by HIP will be completed. A similar

translation can also be applied to the robot.

185

A zone is a discretization of 3-D space near the human and robot. An action-zone is a

discretization of 3-D space occupied by the human and robot during an action. Each

action-zone can be comprised of one or more partitions in physical space and represents

one of two quantities: a snapshot of the volume an agent occupies once its goal-seeking

action is “complete”, or a trajectory envelope bounding the space through which the

agent is or will be moving. The latter is computed based on both a starting location and

an ending location. In our case studies, we assume each agent has a known fixed base

location within an inertial coordinate system, enabling unambiguous and compact

definition of the collectively reachable workspace. Each action in the MDP state has an

action-zone annotation. This annotation is used to help calculate the probability of

collision, or increase/decrease in discretized danger index state. Danger is then estimated

with respect to relative separation between human and robot.

Two options for representing action-zones are possible:

1) 2D or 3D space is partitioned: in this protocol, human and robot occupation

regions are defined. For any action, a binary mapping of expected occupation

(1=occupied, 0=vacant) for human and robot is generated. Distances between

zones can be tabulated based on worst-case (closest possible approach) or

centroid distances.

2) Envelopes of space can be generated around an action’s expected trajectory: with

this representation, there are two sets of integer-valued attributes. One set

indicates presence of the human in a set of zones, the other indicates the presence

of the robot in a set of zones.

Examples of using the two methods for a case of pressing two buttons are given below.

Each action has a unique spatiotemporal effect on the state, both on the goal state and on

the space the agent performing the action occupies while in the goal state and while in

transit to the goal state. We depend upon the collision avoidance algorithm using Kulic’s

danger index at the reactive control layer [30], which can override the MDP and remove

itself from the area occupied by the human to assure safe operations in a worst-case

scenario. However, the tradeoffs for doing so are extra energy use for the avoidance

186

trajectory and slowing or temporarily stopping the robot’s motion toward the goal state to

avoid the collision. The possibility of a collision avoidance action must be included in

the state; in our case, it is included through a nonzero possibility that a goal-seeking

action will terminate without successful completion, leaving the robot in a safe zone

rather than in the intended goal completion zone. Thus, to preserve safety and for

completeness in our closed-world model, our collision-avoidance strategy for RAC MDP

requires us to include at least one position outside of human space to which the robot arm

can retract safely for each robot action (in-progress or completed). Trajectories to each

‘safe pose’ must be nonconflicting regardless of the human action currently active at the

time. We discuss ways of encoding or including this in the below case study.

Methods of calculating conflict potential are discussed for each action-zone definition

below.

6.4.1.1 Action-zone Definition #1 – regular grid, pattern of 2D or 3D shapes

Figure 6-4 shows an action zone example in 2-D using definition #1.

187

z11

z10z5

z9

z8

z4

z3

z7z2

z1 z6 z16 z26z21 z31

z15

z14

z13

z12

z20

z19

z18

z17

z25

z24

z23

z22

z30

z29

z28

z27

z35

z34

z33

z32

Rb1

Hb2

Hb1

Rb2

Robot Human

Ru1

Ix

Iy

Rx
Hx

Ry

Hy

Figure 6-4: Zone partitioning using Definition #1, 2-D case, overhead view; fixed-

base frames for agents are shown; zones are designated orange = occupiable by

both, green = reachable by robot only, blue = reachable by human only, grey = non-

occupiable

The numbered zones are unique discrete regions in inertial space specified in an inertial

coordinate system {
I
x,

I
y}. The set of zones that must be defined for each agent covers the

reachable workspace plus additional space occupied by the agent (e.g., body, arm(s))

while manipulating itself through the reachable workspace. As shown in Figure 6-4,

zones colored green and orange are reachable by the robot, while zones colored blue and

orange are reachable by the human. Grey zones are not reachable by either agent – they

cannot be occupied by either agent under the fixed-based assumption). The orange zones

cover the regular grid reachable by any agent. A subset of these zones – {z17,z18,z19} –

are areas that are potentially in conflict, due to the expected motions in each agent’s task

space. The human is potentially tasked with pressing a button at location
H
b1 or

H
b2, and

the robot is tasked with pressing buttons at
R
b1 or

R
b2 or may retract to a position outside

of human space at location
R
u1.

188

For this definition, occupation regions for an action-zone are defined by a given value set

of zones. Zones are set to 1 if they correspond to the space that the agent will reside at or

sweep through for the trajectory of motion associated with that action, and 0 otherwise.

Because the zones are defined as a common set, calculating a binary (yes/no) possibility

of collision can be done by comparing a human’s action-zone
H
azx for an action

H
ax and a

robot’s action-zone
R
azy for an action ay. By taking the union of the zone values of

H
azx

and
R
azy and counting how many zones are 1, we immediately see the overlapping areas

of conflict that are reachable by both. A nonzero overlap means there is collision

potential, and the more discretized zones that overlap, the higher the possibility of

collision and the more dangerous it is to have the robot perform that particular action ay

while the human performs its action
H
ax. This gives the worst-case assumption, as we are

matching possible overlap without regard for circumstances of timing. Once the zones

associated with an action-zone are determined to be in conflict or not, we can then

determine which actions conflict with each other, knowing their action-zones. In the

most conservative case, if there is a nonzero overlap between the action-zones annotating

the robot action and human action, we would set the discretized danger index d
i
=1 (or

expect d
j
=1).

6.4.1.2 Action-zone Definition #2 – custom grid, based on movement-envelopes and

areas of conflict

A custom grid is an extension of the regular grid concept. The action-zones in this

circumstance are considered to be a cohesive whole, a region in 2-D or 3-D space, rather

than a binary set of occupied/not occupied regions. Thus, zones and action-zones are

equivalent. This can be calculated for an action in one of two ways:

1) A discretization with a very small regular grid size is done as in Definition #1.

The occupied regions (set to 1) for the action’s trajectory are calculated from

kinematic models or human subject test data. The occupied regions are

aggregated to form a cohesive region in space that becomes the action-zone for

that action. This is essentially the same as Definition #1, but reducing the size of

the action-zone specification by only remembering the occupied zone regions for

each action. The resulting action-zone is then defined as a polyhedron.

189

2) A motion trajectory in space for an action is expanded outward by a safe error

margin to create an envelope in space. This envelope in space is the action-zone.

The resulting action-zone is generally defined as an envelope around a B-spline

curve that best-matches the action’s trajectory.

We calculate collision avoidance via occupation potential for 1) in a similar way as

Definition #1, by comparing the subset of zones that overlap. For 2), we calculate the

separation distances over the course of the entire action using the technique described in

Ref. [30] with Kulic’s danger index.

Rb1

Hb2

Hb1

Rb2

Robot Human

Ru1

Ix

Iy

Rx
Hx

Ry

Hy

Rzu
Rz2

Rz1

Hz2

Hz1

Figure 6-5: Action-zone partitioning using Definition #2, 2-D case, overhead view,

stationary arm positions

For the robot and its three positions as shown in Figure 6-5, there are two zones that

demarcate a stationary arm position at a button that must be pressed, one zone that

demarcates a retracted unstow position that will not cause conflict with the human, and

three zones that demarcate the area that the robot arm will pass through as it moves along

a given trajectory between two of the positions to perform a particular action – a sweep

190

zone. Each sweep zone captures an agent’s locations at action onset and completion, and

the restricted trajectory between them. Thus, stationary zones are a subset of at least one

sweep zone, e.g.
R
z1 and

R
z2 in Figure 6-5 are a subset of the sweep zone

R
z12 in Figure

6-6. For the human and its two buttons shown, there are two stationary zones and one

sweep zone. A zone
R
z0, not shown, is defined as any other robot motion or location in

the robot reachable space that does not match goal-seeking behavior and is not shared by

the human; zone
H
z0 is the human-equivalent of this. The robot’s unstowed waiting pose

is a unique action-zone: it is an area that the robot arm can reach that is outside the

human’s reachable workspace, where no impingement or conflict with the human is

possible. Figure 6-5 shows all of the end poses for both agents. Figure 6-6 shows an

example of two sweep zones with overlap. The region in orange delineates the area of

conflict that is part of both zones.

Since there is overlap between zones
R
z12 and

H
z12, we would expect it likely for a binary

discretized danger index d
i
 to become =1 at some point during a robot motion

R
b2 to

R
b1 if

the human simultaneously moves from
H
b1 to

R
b2. In fact, d

i
 may transition from 0 to 1

well before entering the (orange-colored) area of conflict as the motion is sensed if the

danger index (DI) rises above the threshold to which we attribute a high value of d
i
.

Recall that Equation (2-17), used to compute DI, consists of a product of three terms: a

distance factor fD, a velocity factor fV, and an inertia factor fI. According to the limits

discussed in Chapter 6.2.1.3, if DI > 0.3 while the robot traverses within the known

sweep zone area, the binary d
i
 is set high (e.g., when all three factors have value ~0.67 or

higher). Further, a DI ≥ 0.8 would force the reactive controller to move into collision

avoidance mode where MDP policy actions are temporarily ignored (e.g., when fI=0.67

and both fD and fV have value ~1.1 or higher).

This danger index ‘buffer’ is what gives the robot the opportunity to react at the policy-

execution level, but it also may require more immediate reaction to remain clear. We

generally assume in our case studies that collision avoidance mode, if enacted, does not

move us out of the current zone, but along a retreat path within the targeted zone.

However, so long as we can identify the motions and map them to actions with certainty,

nearby human and robot motions that give a high value of DI do not need to impact our

191

robot unless an area of conflict is upcoming. If the human is not performing a conflicting

action, d
i
 can remain in a low state without negative consequence.

Rb1

Hb2

Hb1

Rb2

Robot Human

Ru1

Ix

Iy

Rx
Hx

Ry

Hy
Rz12

Hz12

Figure 6-6: Action-zone partitioning using Definition #2, 2-D case, overhead view,

example with possible-conflict case

Table 6-2 lists the robot zones from Figure 6-5 and Figure 6-6 in summary form.

Table 6-2: Zone partitioning using Definition #2, robot’s zones as

related to button 1 (
R
b1), button 2 (

R
b2), and unstow position (

R
u1)

Zone # Relation
R
b1

R
b2

R
u1

R
z12 transit X X

R
z2u transit X X

R
z1u transit X X

R
zu at (endpoint) X

R
z1 at (endpoint) X

R
z2 at (endpoint) X

The human zones from Figure 6-5 and Figure 6-6 are listed in Table 6-3 in brief form.

192

Table 6-3: Zone partitioning using Definition #2, human’s zones as

related to button 1 (
H

b1) and button 2 (
H

b2)

Zone # Relation
H
b1

H
b2

H
z12 transit X X

H
z1 at (endpoint) X

H
z2 at (endpoint) X

Zones with the same subscripts between the human and robotic agents do not necessarily

cover the same areas (e.g.,
H
z12 does not demarcate the same 2-D space as

R
z12), nor do

they necessarily overlap each other (e.g.,
H
z1 versus

R
z1). These zones do not move

during the RAC MDP epoch, and are anchored in physical space relative to the inertial

frame due to the fixed-base assumption, though transformations can be made to other

base frames. During RAC MDP operations, the safety of the human (due to the robot’s

motion) is only communicated through the discretized danger index term, while the

action-zones are underlying physical concepts that are state annotations to the actions.

These zones are not impacting the complexity of the MDP except through how these two

sets of attributes are chosen and defined.

Table 6-4 and Table 6-5 show how action-zones in this example map to the human and

robot actions, and Table 6-5 shows the conflicts between zones. The initial occupation

region and transit are captured in the initial state (in-progress or b
i
=0), but not the final

state after the action completes (b
i
=1).

Table 6-4: Domain Representation of human actions   i

HIP

Hi

obs

Hi

x

H aaa ,,

Discrete

Value

Corresponding

Action

Corresponding Action-Zone

1 no_op ??

2
move_b2_press_b1

(“
H
a2”)

in-progress 
 H

z12

completed 
H
z1

3
move_b1_press_b2

(“
H
a1”)

in progress 
 H

z12

completed 
 H

z2

193

Table 6-5: Domain Representation of (robot) actions ka

Discrete

Value

Corresponding Action Corresponding

Action-Zone

Conflicts with

Human Action-zone

0 unknown (a0) ?? ??

1
move_unstow_press_b1

(“a1”)

b
i
=0 

 R
z1u

b
i
=1 

R
z1

H
z12

H
z12

2 move_b2_press_b1 (“a1”)
b

i
=0 

 R
z12

b
i
=1 

 R
z1

H
z12

H
z12

4 move_b1_press_b2 (“a2”)
b

i
=0 

 R
z12

b
i
=1 

 R
z2

H
z12

--

5
move_unstow_press_b2

(“a2”)

b
i
=0 

 R
z2u

b
i
=1 

 R
z2

--

--

6 move_b1_unstow (“a3”)
b

i
=0 

 R
z1u

b
i
=1 

 R
zu

H
z12

--

7 move_b2_unstow (“a3”)
b

i
=0 

 R
z2u

b
i
=1 

 R
zu

--

--

8 no_op (“a4”) varies varies

6.4.1.3 Zones for Use in Case Studies

In our IVA case studies, we use the experimental setup of Chapter 3: a human is eating

chips, drinking soda, and solving math problems, while the robot attempts to press

buttons without causing conflict.

We use Definition #2 for the action-zones in our case studies. However, for simplicity,

the case studies presented in this chapter do not contain separate “transit” zones, instead

only capturing human and robot locations at action completion. This is because, for our

specific case study, conflict only occurs at the edges of the shared workspace close to the

completed b
i
=1 pose locations. The robot moves quickly away from potential conflict

(d
i
=1), so long as the next action ak chosen is non-conflicting. Thus, only one general

trajectory is associated with each action. As in Chapter 3, we assume that “no-op” for the

human is the pose used for solving math problems; for the robot, “no-op” is the last

known zone the robot was in ().

194

Table 6-6: Human zone partitioning using Definition #2

Zone # Relation chips soda math
H
z1 to X

H
z2 to X

H
z3 to X

H
z4 at X

H
z5 at X

H
z6 at X

Table 6-7: Robot zone partitioning using Definition #2

Zone # Relation b1 b2 unstow Conflicts with Human Action-zone

R
z1 to X

H
z3,

H
z6 (math, mental conflict)

R
z2 to X

H
z1,

H
z4 (chips, physical conflict)

R
z3 to X --

R
z4 at X

H
z3,

H
z6 (math, mental conflict)

R
z5 at X

H
z1,

H
z4 (chips, physical conflict)

R
z6 at X --

The human and robot zones, and potential conflicts between them, are specified in Table

6-7 for the case study presented below.

6.4.2 Case Study #1 – IVA scenario, with and without human state input

In this case study, a simplified RAC MDP is developed to determine the relative

performance of using RAC with no knowledge of human location versus perfect HIP

information.

6.4.2.1 States and Actions

States and actions for this IVA case are simple and consistent with those from previous

examples. Table 6-8 shows the human action set.

195

Table 6-8: Domain Representation of human actions   i

HIP

Hi

obs

Hi

x

H aaa ,,

Discrete Value Corresponding Action Corresponding Action-Zone

0 unknown (a0) ?? (worst-case against robot

action chosen)

1 eat_chips (a1)
H
z1

2 drink_soda (a2)
H
z2

3 computer_work (a3)
H
z3

4 no_op (a4)
H
z3

In experiments from Chapter 3, a first-in-first-out (FIFO) queue served as the human’s

and robot’s action “scripts”, with scenarios scripted such that some had conflicts while

others did not. Goals on the queue were removed once completed, and goals were

temporarily skipped if they were ‘blocked’ due to a physical or mental conflict with the

human (e.g., the robot physically blocks the human from reaching a target or visually

distracts within or occludes an essential viewing area).

The above scenario was created by manually specifying the RAC script and reaction

“policy”. Here we ask the RAC MDP to build the policy that offers the most reward

based on real-time observer and HIP MDP policy inputs. To specify the RAC MDP

described in this chapter, FIFO queue priorities are directly mapped to the relative reward

weightings. The ‘return to unstow position’ goal is a lower priority mission goal that is

nominally overridden by any button-pushing high-priority goal. Constructing the

problem in this manner requires that a new RAC MDP be specified and executed for

every queue combination; this is expected as button events are not predictable, and the

reward weights are relative. Table 6-9 describes the RAC goals used for our domain.

Table 6-9: Domain Representation of
i

z

i

z fg , goal-objectives

Goal

Objective

Discrete

Value

Goal Definition Corresponding Action

ig1 {0,1} ?at_unstowed_location? return_to_unstow

if1 {0,1} ?b1_inactive? press_b1

if 2 {0,1} ?b2_inactive? press_b2

196

Table 6-10: Domain Representation of (robot) actions ka

Discrete

Value

Corresponding

Action

Corresponding

Action-Zone

Generally Conflicts

With Human Action

1 no_op varies (
R
z

i-1
) varies (possibly

H
ax

i-1
)

2 press_b1
b

i
=0 

 R
z1

b
i
=1 

R
z4

math, 3i

x

H a

math, 3i

x

H a

3 press_b2
b

i
=0 

 R
z2

b
i
=1 

R
z5

eat chip, 1i

x

H a

eat chip, 1i

x

H a

4 return_to_unstow
b

i
=0 

 R
z3

b
i
=1 

R
z6

n/a

n/a

Table 6-10 describes the robot’s actions with action-zone mappings. The in-progress

action
 is a subset of this set used for ak – it does not include the no-op action (value 1).

In this case study, we reduce the combinatorial action transition set to those that do not

induce collisions along one or more paths. While button presses occur in shared

workspace, the robot can also transition to an unstowed position that is outside the

human’s work envelope. When moving to “unstow”, it does not matter where the robot

is currently located – it will always be moving away from collision. Movements to and

from button 1 create only “mental conflict”, not physical collision potential. We assume

that any movement from button 2 elsewhere will move the robot away from physical

conflict, while any motion toward button 2 will cause conflict under certain

circumstances. ‘No-op’ means that the robot doesn’t move from its last position. Thus,

‘no-op’, in this instance, can also be folded into the ‘completed’ or ‘in-progress but

waiting’ states (distinguished by b
i
) for any action that the robot has performed; the robot

does not need to treat this as its own separate action.

We define the RAC state space as follows when presuming full observability:

 {{

 } {

 } }

 { } { } { }

 { }

 { } { }

 { }

 { }

 (6-41)

197

Without data
 from the HIP MDP, the state space becomes:

 {{
 } {

 } }

 { } { } { }

 { }

 { } { }

 { }

 (6-42)

where
 requires assumption of the worst-case conflict over all human action

choices.

With no feedback on human state, the RAC MDP becomes:

 {{

 }}

 { } { } { }

 { }

 { }

 (6-43)

The conservative policy in this case only allows actions that never conflict with the

human’s workspace, reverting to the status quo where human and robot occupy separate

spaces. In one series of simulations, we assume in RAC that no human exists in the

workspace to generate a worst-case conflict policy in which the human is unmodeled.

6.4.2.2 Transition Probability Function

Transition probabilities for this case study are given in Equation (6-44).

 (
) ()

 (

) ∏ (

)

 (

) (

)

 (

) (6-44)

198

Goals are presumed conditionally-independent from each other but are dependent on

other aspects of the current state as well as the action choice ak.

The goal transitions can be simplified for this case study. If a high-priority goal has been

completed, the system stays in the absorbing (completed goal) state with probability 1. If

an action ak does not impact a mission-goal, then that mission goal stays in the same state

with probability 1. The mission goal
 is a special case: it is only complete while the

robot arm remains at that location. Mission goal
 transitions back to 0 whenever the

arm attempts to complete another goal. This low-priority (mission) goal gives the robot a

preference for staying out of the way if nothing else needs to be done, if the reward is

nonzero. High-priority goals are achieved then can be “forgotten.” It should be noted

that this is inconsistent with Chapter 3 where high-priority (interrupt) goals could need

attention (action) multiple times over a specific test scenario. For a more realistic

scenario, instead of having the high-priority goal states absorbing, we could have

included a 10% probability at each epoch that the state could become 0 again once set.

For the case studies where {

 } or {
 }, the transition

probability function is:

 (
) ()

 (

) ∏ (

)

 (

) (

)

 (

) (6-45)

199

For the case study, the transition probability function is:

 (
) (

) ∏ (

)

 (

) (

) (6-46)

 (

) reduces to (

), for the case study with

g1=at_unstowed_location, because no trajectory leading to
 will cause conflict,

regardless of the human’s state.

Figure 6-7 and Figure 6-8 show the algorithmic computation of probability values for

and

, respectively. These functions are a compact representation of the associated

conditional probability tables.

Figure 6-7: Algorithm for calculating),|(11 k

ij aggp

Algorithm (

):

if (-)

if(

)

return 1

else return 0

else if ()

if (

)

 return 1

else if (

)

 return 1

 else return 0

else if ()

 if (

)

 return 1

 else if (

)

 return 1

 else return 0

else return 0

200

Figure 6-8: Algorithm for calculating),,,,,|(k

ijjiij abFGFGbp

Values used internal to these algorithms include and are consistent with previous

discussions:

 (

) {

 -

 (6-47)

 (
) {

 (6-48)

Conditional probabilities for human state H
j
 are specified in Figure 6-9 and Figure 6-10,

for cases with the observer (obs) supplying input with and without HIP, respectively.

The case-specific algorithms are:

Algorithm (

):

if (is no-op)

if (

)

 return 1

else return 0

else if (

)

 if (
)

 return 1

 else return 0

else if (

)

 if (
)

 return 1

else return 0

else return 0

201

Figure 6-9: Algorithm for calculating)|(ij HHp for  i

HIP

Hi

obs

Hi aaH ,

Figure 6-10: Algorithm for calculating)|(ij HHp for  i

obs

Hi aH 

Figure 6-11 and Figure 6-12 similarly specify conditional probability computation for

high-priority goal set

.

Algorithm () for {

 }:

if (
) and (

)

if (

)

 return 0.5

else if (

)

 return 0.5

 else return 0

else if (
)

 if (

) and (

)

 return 0.5

 else if (

)

 return

 else return 0

else return 0

Algorithm () for {
 }:

if (
)

if (

)

 return 0.5

else if (

)

 return 0.5

 else return 0

else if (
)

 if (

)

 return 0.5

 else if (

)

 return

 else return 0

else return 0

202

Figure 6-11: Algorithm for calculating),,,|(j

k

i

z

ij

z HafHfp for  i

HIP

Hi

obs

Hi aaH ,

and  i

obs

Hi aH 

Algorithm (

) for {

 } and

{
 }:

if (is no-op)

if (

)

 return 1

 else return 0

else if (

)

return 1

else if (
)

 if (

)

if (
 (

))
 return 1

else return 0

 else if (

)

if (
 (

))
 return 1

 else return 0

 else return 0

else return 0

203

Figure 6-12: Algorithm for calculating),|(k

i

z

j

z affp for ØiH

Figure 6-13 specifies binary discretized danger index conditional probability

computation; if no human state data is available, the discretized danger index is not

observable thus not part of the state as shown above in Equation (6-43). If a conflict is

expected, the discretized danger index is expected to be 1 in the next state. Coupled with

the computation given in Figure 6-11, which does not allow nonzero goal transitions to a

completed state when conflict is expected, this models the expected ‘pause’ state that the

danger index safety implementation inside the reactive controller would induce if the

robot moved too close to the human on a collision trajectory.

Algorithm (

) for :

if (is no-op)

if (

)

 return 1

 else return 0

else if (

)

return 1

else if (
)

 if (

)

if (
)

 return 1

else return 0

 else if (

)

if (
)

 return 1

 else return 0

 else return 0

else return 0

204

Figure 6-13: Algorithm for calculating),,,|(jjjij baHHdp for  i

HIP

Hi

obs

Hi aaH ,

and  i

obs

Hi aH 

Figure 6-14: Algorithm for calculating noconflict(H
i
,a,H

j
) for  i

HIP

Hi

obs

Hi aaH ,

Algorithm (

) for {

 } and

{
 }:

if () and ((

))

 return 1

else if () and (((

)))

return 1

else return 0

Algorithm () for {

 }:

if (
)

if (

)

 if ((
)>0)

 return false

 else return true

else if (

)

 if ((
) or (

)

 return false

 else return true

else if (
)

 if (

)

 if ((
)>0)

return false

else return true

 else if (

)

 if ((
)>0 or (

)>0)

 return false

else return true

else return false

205

Figure 6-15: Algorithm for calculating noconflict(H
i
,a,H

j
) for  i

obs

Hi aH 

Figure 6-14 and Figure 6-15 show computation of the noconflict function used in the

Figure 6-13 algorithm to compute probabilities. noconflict(H
i
,a,H

j
) checks ak against

the human actions that have been accomplished to see if they might have introduced

conflict with each other (e.g., if
 is not “unknown” and does not change, then the

human has not begun action
 in the interim between states s

i
 and s

j
, thus ak only

needs to be compared against
 for collision avoidance). noconflict(H

i
,a,H

j
) for

 {
 } assumes each action will not immediately be recognized; this allows us to

distinguish between repeated actions because
 will be equal to 0 before any

previous action is repeated. A similar assumption is made for {

 }.

Algorithm () for {
 }:

if (
)

if (

)

 if ((
)>0)

 return false

 else return true

else if (

)

 if ((
) or (

))

 return false

 else return true

 else return true

else if (
)

if (

)

 if ((
)>0)

 return false

 else return true

else if (

)

 if ((

))

 return false

 else return true

 else return true

else return false

206

The above algorithms provide a method to functionally compute RAC MDP state

transition probabilities in lieu of a full conditional probability tensor. These functions are

supplemented by a “default” function to trivially model each other “unreachable” state

not represented above as an absorbing state.

6.4.2.3 Rewards

Recall that the RAC MDP reward function is given by:

 () (
) (

)

 (
) (6-49)

The first term R1 gives a reward for advancing overall robot goal-completion, R2 is a cost

associated with the safety of the human, and R3 subtracts a varying cost dependent upon

the choice of action ak (e.g., energy required to accomplish ak).

For the case studies where {

 } or {
 }, the reward terms are:

 (
)

 ∑ (()
)

 (6-50)

 (

)
 (

) (

) (6-51)

 (
) (

) () (6-52)

For the case study, the reward terms are:

 (
)

 ∑ (()
)

 (6-53)

 (6-54)

 (
) (

) () (6-55)

207

Note that there is no R2 term where because this model does not include human

state (no).

In Equation (6-51):

 (

)

 { -

 (6-56)

An algorithm to set the danger_increase_flag in Equation (6-56) is specified in Figure

6-16 and Figure 6-17. Note that ak = “no-op” would keep the robot in the same zone

(thus, no increase in d
i
).

Figure 6-16: Algorithm for calculating a flag representing danger increase potential

for  i

HIP

Hi

obs

Hi aaH ,

Algorithm danger_increase for {

 }:

if

if (
) (

)
return 1

else if (
) (

)

if (
) (

)
 return 1

 else return 0

else if (
) (

)
return 0

else if

if (
) (

)
return 1

else return 0

208

Figure 6-17: Algorithm for calculating a flag representing danger increase potential

for  i

obs

Hi aH 

The conflict function used in this algorithm is defined as:

 (
) {

 (6-57)

Reward term r31 from Equation (6-52) and Equation (6-55) is given by:

 (
) {

 -

 (6-58)

where w31 is a user-specified weight.

Term r32 from these same equations is the cost of motion, and is read from a lookup table

(vector w32 of na values).

Reward term r23 from Equation (6-51) is computed as shown in Figure 6-18 and Figure

6-19. It also relies on the definition of conflict from Equation (6-57).

Algorithm danger_increase for {
 }:

if (
) (

)
return 1

else

return 0

209

Figure 6-18: Algorithm for calculating  ii

k Haar ,,23 for  i

HIP

Hi

obs

Hi aaH ,

Figure 6-19: Algorithm for calculating  ii

k Haar ,,23 for  i

obs

Hi aH 

To trade relative importance of the R1, R2, R3 terms, each expression can be normalized

then multiplied by an overall weighting factor:

 ()

 (

)

 (

)

 (

) (6-59)

We adopt the formulation from Equation (6-59) in our case study below and test weights

in the range of [0 1] with increment in weight value of either 25.0 or 10.0 .

6.4.2.4 Simulation Results

To demonstrate use of the RAC MDP for our case study, we examine the effect of

different reward weights on optimal policy actions. We compare a RAC MDP that uses

both observer and HIP data (which we denote HIP+RAC), a RAC MDP that uses only

Algorithm (
) for {

 }:

if
 and -

return (

) (

)

else if
 and -

return (
) (

)

else if
 and -

return (

) (

)

else if
 and -

return (
) (

)

Algorithm (
) for {

 }:

if -

return (

)

else if -

return (
)

210

observer data (similar to how the robot reacted in Chapter 3, which we denote RAC-

only), and a RAC MDP where no human state information is taken into account (blind-

RAC).

We use the transition probabilities given above in Chapter 6.4.2.2 and the conflicts

described in Table 6-10 in Chapter 6.4.2.1. As the transition probability function is

currently formulated, buttons are never expected to turn back on once the robot presses

them off. This means that we generally assume that the ‘normal’ starting scenario

involves a state where both buttons need to be pressed. Because these two button press

high-priority goal features are presumed conditionally-independent, the policy will select

a first action based on a relative reward of pressing one button versus the other.

We use the following reward weights for this case study:

 [] (6-60)

We set , indicating no preference to move the robot to the “unstow” position

unless cost of conflict in other locations exceeds the cost of moving to unstow. The

values we have chosen weight button 1 to be of more importance than button 2. The kz

values reinforce this, making button 1 more costly to ignore than button 2. We weight

w1=w2=w3=1 so that the R1, R2, and R3 terms are all treated equally and the inner balance

of each term is seen. wd=1 assigns cost to the danger index going high (d
i
=1) for a

conflict occurring. w22 penalizes an expected increase in d
i
. w231 and w232 explicitly

weight the risk of conflict of ak with
 and

 , respectively, as shown in Figure

6-18. We weight w231>w232 to imply that avoiding conflict with the in-progress action is

more important than avoiding conflict with the action predicted by HIP. w31 is the

switching cost for executing ak that is not a continuation of a1. w31 is small because we

want ak to change if there is an appreciable change of conflict. The lookup table for r32

holds the weights w32 for the no_op, press_b1, press_b2, and return_to_unstow actions,

respectively. Note that no-op takes no effort to maintain in a space environment, as it is

211

not working against gravity; for simplicity, all other actions are expected to require the

same level of energy expenditure.

We expand the subset of matching states of the blind-RAC policy to draw analogy to

those from the HIP+RAC policy, and perform a similar expansion of states from the

RAC-only policy. We then compare the action-choice ak for the different policies.

For each state in HIP+RAC, the policy action selected is compared with the action that

would be selected in this state for RAC-only and blind-RAC. Table 6-11 and Table 6-12

summarize the results.

Table 6-11: Collision spread according to policy, robot action ak, in-progress action

 HIP + RAC policy RAC-only policy blind-RAC policy

Action

(mc=mental)

(pc=physical)

conflict

states /

total

states

states

action

chosen

conflict

states /

total

states

states

action

chosen

conflict

states /

total

states

states

action

chosen

no_op -- 0 -- 0 -- 0

press_b1 (mc) 0% 720 2.5% 768 12.5% 960

press_b2 (pc) 0% 480 1.25% 480 6.25% 480

return_to_unstow -- 720 -- 672 -- 480

 # no

conflict

states

total #

states

no

conflict

states

total #

states

no

conflict

states

total #

states

 100% 1920 96.25% 1920 81.25% 1920

Table 6-12: Collision spread according to policy, robot action ak, future-predicted

action

 HIP + RAC policy RAC-only policy blind-RAC policy

Action

(mc=mental)

(pc=physical)

conflict

states /

total

states

states

action

chosen

conflict

states /

total

states

states

action

chosen

conflict

states /

total

states

states

action

chosen

no_op -- 0 -- 0 -- 0

press_b1 (mc) 15% 720 17.5% 768 20% 960

press_b2 (pc) 10% 480 10% 480 10% 480

return_to_unstow -- 720 -- 672 -- 480

 # no

conflict

states

total #

states

no

conflict

states

total #

states

no

conflict

states

total #

states

 75% 1920 72.5% 1920 70% 1920

212

Given our reward structure that encourages pressing buttons even when the robot is

“blind” to the human, it is not surprising that while conflicts in the current action are

always avoided in HIP+RAC, physical conflicts are encountered for RAC-only with even

more for blind-RAC. As shown in Table 6-12, some conflicts with the future (HIP)

action are allowed in the HIP+RAC policy, but these are not as common as for RAC-only

or blind-RAC.

Note that from our choice of conflict algorithm, out of the 1920 total states, there are

potentially 960 states where ak could induce a conflict with the in-progress action and

potentially 1152 states where

ak could induce a conflict with the future-predicted action.

Thus, when comparing against the percentages in Table 6-11 and Table 6-12, the worst-

case numbers we could expect to see would be conflicts of {50%,60%} likelihood, not

out of 100%.

Assuming the observer rapidly identifies the in-progress action, and assuming that the

time needed to make this identification is less than time between policy execution

iterations, the above tables accurately represent collision potential with a policy that

balances potential for collision with reward for goal achievement. Next, consider two

extreme reward weight cases: (1) robot greedily accomplishes goals without regard for

human safety, and (2) robot is ultimately conservative, always retreating to (unstowed)

safety if collision potential exists.

For this study, we use the same internal reward weights as in Equation (6-60) before:

 [] (6-61)

But now consider normalized terms for the reward function:

213

 ()

 (

)

 (

)

 (

) (6-62)

For the internal reward weightings given above in Equation (6-61) for our HIP+RAC

case, the range of values for R1 is [-8 3], for R2 is [-6 0], and for R3 is [-0.3 0]. Thus, our

normalized equation is:

 ()

 (

)

 (

)

 (

)(6-63)

We look at the policy output for these cases and compare the value of each policy against

the other (as computed within the Bellman equation). For these studies, we assume the

HIP+RAC case (i.e., HIP and observer inputs are both available).

Table 6-13: Collision spread versus value, robot action ak, in-progress action;

in-progress%, future-predicted% (out of 1920 total states)

Policy # and

Reward

weights

{w1,w2,w3}

physical

conflict

states /

total states

(press_b2)

mental

conflict

states /

total states

(press_b1)

no conflict states /

total states

(no-op)

(return_to_unstow)

Policy

total

value

P1 {1,0,0} 0%, 10% 0%, 15% 100%, 75% 11452

P2 {0,1,0} 0%, 0% 0%, 0% 100%, 100% -160

P3 {1,0,1} 5.2%, 14.2% 5.7%, 19.6% 89.1%, 66.2% 9999

P4 {1,1,0} 0%, 10% 0%, 15% 100%, 75% 10978

P5 {1,1,1} 0%, 10% 0%, 15% 100%, 75% 8216

Table 6-13 shows a summary of results from this test set. Five policies were generated.

The first two represent policies optimized over only 1 reward term (R1 versus R2). P3

ignores safety, P4 ignores action cost, and P5 weights all terms equally. For safety

purposes, return_to_unstow was the default action selected by the policy in the event of a

tie, which would remove the robot from the possibility of conflict.

Policy P1 rates the current state without regard for any upcoming conflict. It is

interesting that it still produces less conflicts than the RAC-only or blind-RAC cases.

214

This is potentially because we chose a discount factor close to 1, so future reward impacts

the present state with respect to long action sequences (i.e., actions that would cause

conflict transition to a state with d
j
=1, and while d

j
=1 the goal will never transition to

completed state, delaying future reward). Thus, because of the discount factor reducing

future reward when subject to wait times, the policy chose other tasks to complete in the

meantime. P2 shows that our RAC MDP policy can provide us with an absolutely-safe

policy, if safety is giving overriding weight in the reward function. P3 rates state reward

versus cost of motion, and in some cases the tradeoff between waiting to effect goal

completion (continuing to choose the same action for no additional movement cost and

pausing until the human performs a different action) and moving on to another goal

(action-switching for some small additional cost) sees the robot sometimes choosing to

wait in a conflict situation (d
i
=1), and thus more conflicts occur. This verifies that the R3

cost term does have some impact. However, the R2 term seems to have far more impact

than the R3 term when paired with R1, as P5’s policy is the same as the P4 policy. It is

also apparent that the restrictions within the transition probability functions do favor

conflict avoidance, as P1 and P4 generate similar policy output. The P5 policy matches

more closely to policy P1 (chose same action 98.4% of the time) than policy P3 (chose

same action 82.5% percent of the time).

It is notable that policy P1 chooses the no-op action 1.5625% of the time; and that when

no-op was chosen, it never caused a conflict for either the in-progress or future-predicted

cases. Policy P2, which weights safety above all else, always chose the return_to_unstow

action, which does keep the robot from causing any conflict, but at the obvious detriment

of never fulfilling any of its own goals. Policy P4 seems better balanced than P3,

considering that the robot should avoid conflict with the in-progress action more carefully

than the future-predicted action; P4 has higher rates of button-pushing choice with fewer

expected impending conflicts. Policy P5 seems to converge to the same policy as P4.

The tradeoff trend we see here is as-expected – lower value for less conflicts.

6.5 Conclusions and Discussion

We have presented a Markov Decision Process (MDP) formulation for using predicted

human (astronaut) intent to inform robot action choice. The robotic manipulator arm

215

optimizes task completion over safety (conflict avoidance) and its own performance

(robot goal completion). We have presented a case study to illustrate RAC MDP

formulation. We show the relative improvement in performance when HIP+RAC is

compared with models that use less or no human state information. When assuming that

the observer and HIP state input are correct, the policies that leverage the most data

choose safer policies. Reward weight tradeoffs verify that indeed goal achievement does

come at a cost of heightened risk of conflict.

6.5.1 Feedback of RAC into HIP

As we have seen above, there are tradeoffs that can be made to give us multiple policies,

some of which have a nonzero likelihood of conflict with the human in the future. We

showed the worst-case estimates: if an action was attempted to completion but might

cause a conflict, it was assumed to cause that conflict in the data we displayed. However,

these worst-case estimates are absent of the details of timing issues, reduced manipulator

speed by the reactive controller, and other mitigating factors. Thus, some flexibility on

the human’s part could help mitigate these circumstances, though this breaks our

assumption of the human lack of situational awareness of the robot. Overall, if we wish

to be able to use these policies that have higher value for the robot’s goal-completion

(R1), then we need to determine when we might be able to use these policies without

actually causing conflict.

The next step from this point is to realize that, while we wish the robot to be able to work

nearby the human without causing conflict, if we also wish to improve robot performance

beyond a certain level, there likely needs to be a tradeoff with the human’s performance

where the risk of physical conflict is higher than nonzero and may in fact require human

response. This would require some form of communication to the human – such as the

human noticing and responding to the robot once it may begin to impinge upon their

nearby workspace or trajectory path. To handle this effectively within RAC, we would

need to relax our assumptions that the human does not need to communicate with or will

not be impacted by the robot. From this, it follows that the human now might need to

internally model the robot under certain circumstances. Our HIP would need to be

expanded to include a minimal representation of robot state for human reaction, similar to

216

the way RAC includes a minimal representation of HIP for conflict avoidance. This

would likely need to only occur under conditions when there is a probability above a

given threshold that there may be a conflict between the human and the robot (e.g., a

higher danger index value). We would then need to investigate the consequences of

doing so.

In future work, it would be best to demonstrate the utility of this feedback by

demonstrating how and when HIP is wrong, in cases where no conflict with the robot is

modeled in HIP but the human does react to the robot. The main characteristics of this

set of circumstances could be determined through further human subject experiments

using the safe robotic manipulator arm as in Chapter 3. Once these previously-

unmodeled cases have been categorized, we could then update our HIP model and show

through demonstration how the new HIP-with-feedback improves the robot’s actions and

better matches the human’s actual reactions. The goal of these experiments would be to

identify (1) the minimal set of new attributes that would need to be fed back into HIP

from RAC and (2) the form of the functions that would use this information within the

HIP model. The relative utility of several different strategies to “minimally inform” RAC

could then be evaluated.

6.5.2 Comparison of primarily-scripted HIP+RAC to A*, POMDP, or other

methods

When there is very little uncertainty in the human’s actions, or the entire scenario is

highly-scripted as on EVA with few surprises (one or no high-priority goals that might

activate with no warning / cannot be predicted in-advance), the performance and safety

increase that using HIP+RAC might provide may not be highly advantageous over using

other methods. Also, goal objectives in our MDP are similar to those in a Hierarchical

Task Network (HTN) and satisfaction of these goals is through execution of primitive

tasks. The constraints among the tasks could be automatically generated and specified

using a HTN planning approach. Determining the task breakdowns from goal tasks to the

compound and primitive tasks that will complete them is a difficult but solvable problem.

We can then determine how to encode each of these tasks in the model, whether as binary

goals or actions, and the necessary action-history. Determining how to automatically

217

encode this information within our MDP’s, and determining when the complexity of

including such information, suggests use of simpler deterministic search can be explored

in future work.

Alternately, the more uncertainty there is in the outcomes, the more useful we would

expect HIP+RAC to be when compared to deterministic methods. However, as

uncertainty increases further and HIP modeling assumptions break down, use of a

POMDP for HIP or a combined POMDP might give better results (assuming a small state

space size). It would be prudent to compare the HIP+RAC split setup to an equivalent

POMDP setup, to determine how and when HIP+RAC breaks down (optimality of policy

solution sharply decreases) because the separated models are reduced to sharing only

minimal information between them. To explore the possibility of using POMDP

formulations instead of MDP formulations, the HIP input to RAC would then be linked to

a belief state. Future work should explore these possibilities.

However, it should be noted that we would not wish to replace HIP+RAC with either a

combined MDP or a combined POMDP if it proves unnecessary. For example, for the

HIP+RAC case study explored here, a combined MDP would necessarily need to include

at least (2
3
5

nh
)*(2

1
*2

2
*4

1
*2

1
*2

1
) states. For nh=4, that’s 640,000 states. If we stopped

making the simplifying assumption that we don’t have to note the starting point for our

robot motions, then the number of robot actions we need to track jumps from 4 up to 16.

For HIP+RAC, our HIP model would remain the same size, and our RAC MDP would

have 12,800 states (instead of 1,920), which would still be feasible to calculate. For the

combined MDP, that would be 2,560,000 states, which would already begin to run up

against memory and other computation issues for things like the full transition probability

tensor (2,560,000 x 2,560,000 x 5 possible robot actions ak = 3.2768*10
13

).

It is likely that, when our input noise is on the order of a random spread, it would no

longer be advantageous to use HIP; in this case, we should instead only use the

observer’s in-progress action rather than trying to look that far ahead. It is the knowledge

of the structured environment – and the human’s predictability acting within it – that

allows us to model the human and make the HIP output useful in some way. We could

look at the results of the injection of ‘noise’ into the system, using Monte Carlo

218

simulations to test the robustness of the current RAC MDP formulation. Pushing RAC to

fail would likely give us a good indication of the states in which it would most benefit the

robot to request additional state information from the human, allowing us to refine the

RAC model further. This would allow us to help characterize how robust the RAC MDP

is to an inaccurate HIP model, given that we currently assume that HIP is 100% correct in

its predictions. RAC MDP’s robustness constraints also determine the modeling

accuracy to which HIP must conform. This accuracy is the most-important metric for a

realistic HIP implementation, informing us whether our (or other) methods for HIP are

viable to use with RAC. In fact, because of the modular architecture used (see Chapter

4), any viable method for HIP could theoretically be used to supply human predicted

intent, provided that it meets the constraints that RAC requires.

6.5.3 Markov chains for progression of robot action choice

While we do compute policies for the entire state space, some states are more likely to

occur than others. It may be interesting to look at a few of the most likely starting states

and look at the progression of change, following the tree structure of all of the possible

s
i
s

j
 transitions for the optimal policy actions, to see how the states progress forward in

time for up to four levels of human state input H
i
. We may also want to relax some of

our current assumptions regarding the button activations, allowing a small (10% or less)

likelihood for a button transitioning back to an active state.

6.5.4 Differing choice of R2 algorithm

Currently, we use a function which gives varying cost to physical and mental collisions

according to whether they occur as an in-progress or future-predicted action. If we

wished to further suppress conflict, we could replace the current r23 algorithm being used

with one that will give a constant negative weight if any future-conflict is seen for either

upcoming human action. Alternately, we could use a version of r23 that does not

differentiate between the type of conflict (e.g., physical and mental conflicts are treated

as garnering equal cost).

Physical and mental conflicts could also be treated differently in both the r22 and r23

terms, with relative weight assigned to the severity of their impact on d
i
. This might be

useful for cases where we might consider mental collisions to be ‘safe but annoying’ due

219

to gross impingement into the human’s field-of-view necessary for task completion;

mental conflict does not always preclude a physical collision. Mental collisions could be

given a lower cost than physical collisions.

6.5.5 Impact of allowing reactive controller to handle conflict resolution

‘intelligently’

In future work, it would be interesting to explore the benefits and drawbacks of using

either further-refined action-zones or a trinary danger index. We could subdivide the

action-zones into more parts and extend the number of actions accordingly. This could

be done by using the danger index to calculate the breakdown of a goal-driven trajectory

into multiple trajectory pieces, each new action with their own action-zone and separate

mapping of danger index value DI to d
i
=1. In effect, every time the RAC MDP model

completes a piece of the original trajectory, the robot would pause and reconsider

continuing the same action. A trinary d
i
 would allow the robot to choose actions that

might cause conflict with the human. We would expect high weighting on d
i
 to result in

recoil when close to the human; low weighting on d
i
 with high reward on goal

achievement could cause the robot to “stay and wait” for non-binary d
i
.

While subdividing the action-zones does increase the size of the state space more quickly

than using an integer-valued d
i
, it is also very straightforward and does not lead to timing

issues that might otherwise arise with an integer-valued d
i
. For example, it is difficult to

determine how likely is it that the human will complete their action with respect to the

value of d
i
 given when we do not necessarily know how far through their action a human

has already progressed at any point in time. We can only infer this from the value of d
i
,

and DI=0 when there is no relative motion!

We also currently assume that transition probabilities for (
) are

binary; this assumption could be relaxed and we could take advantage of the fact that the

reactive controller will, at base level, make sure that the robot’s motions will not be

unsafe. A similar assumption which could be relaxed is the use of binary percentages for

the likelihood of interruption occurring in the transition probability function.

220

6.5.6 Similar state spaces, same or different transition probability and reward

functions

The MDP state space might look the same in the general case for a scenario when they

include the same goals and actions, and same basic environmental characteristics.

However, because of the relative arrangement of the robot, human, and goal locations,

the transition probabilities and reward function may end up being very different. One

example of a different reward function would be as briefly discussed above: varying

FIFO queue rewards associated with different buttons having different priority levels or

activation times. Transition probabilities may change most readily if there are blockages

within the workspace, or higher probabilities of conflict due to more overlap between

some of the human’s and robot’s trajectories.

6.5.7 Explicit zone calculations and mappings

It may be noted that we have not gone into great detail in discussing how to calculate the

3-D envelopes in space for the zone attributes. This is a nontrivial task and is completely

dependent upon the robot (type, size, speed, and maneuverability), the layout of the

workspace, and the human’s location relative to the robot within the workspace (and their

range of motion). The simplest way to determine a good first-cut approximation of each

motion-trajectory envelope would be to determine end poses to every goal for each agent,

calculate trajectories between the combinatorial set of them, and expand a bubble

outwards around each trajectory using the danger index calculation. Once this has been

accomplished, overlapping areas of conflict can be determined, and zones could be

further subdivided according to chosen ranges of increasing danger index. We consider

this an exercise to be demonstrated in future work prior to implementation on a particular

robotic platform for new human subject experiment studies.

6.5.8 Relaxation of assumption of perfect HIP information

Currently, in Chapter 6.2.2.1, we do assume that the observer and that HIP give perfect

information to RAC in our case studies. Note, however, that we could relax our second

assumption and not assume that HIP is perfect. If we did this, then transitions from Step

1 to Step 2 would need to be spread across all states {
 ,

 } with

221

unequal probability, and transitions from Step 2 to Step 1 would need to spread across all

states {
 ,

 } with unequal probability.

6.5.9 Relaxation of fixed-base assumption

A second scenario we might wish to investigate is a case simplified from the EVA

example from Chapter 5 for HIP in a highly-scripted space – working on a repair panel.

The robot in this case would be free-floating and performing similar tasks of its own –

video recording duties and supplying differing views of the workspace. The astronaut

would still be fixed-base. We would explore the differences in zone specification (if any)

and the effects that this expanded space would have on the state space formulation and

robustness in terms of the safety of the policy actions, and what changes in reward terms

may be necessary to assure this. A free-floating platform should have higher restrictions

on certain trajectories that have it moving into and out of view of a suited astronaut while

nearby their head or shoulders, for instance.

222

Chapter 7

Conclusions and Future Research Directions

7.1 Summary and Conclusions

Astronauts in a space environment are exposed to risk on both EVA and IVA. Risk could

be reduced and overall productivity increased with the introduction of autonomous

human-aware robotic systems that can perform HRI without requiring either teleoperation

or close supervision. We hypothesize that disallowing explicit communication to reduce

the astronaut’s mental workload and increase productivity will not introduce

unacceptable levels of risk during shared workspace operations, if human intent

prediction is used to determine the human’s near-term goal-based actions from the

astronaut’s rational motions so that the robot can avoid potential conflict with the human.

Before determining whether human intent prediction would be useful, we first ran human

subject experiments to determine whether a semi-autonomous manipulator arm, when

sharing a workspace with a human, would impact human productivity negatively if it was

able to react to the human’s actions and avoid short-term conflict. We then created a

framework that supports safe human-aware HRI through the use of two separate Markov

Decision Processes (MDPs) for human intent prediction (HIP) and robot action choice

(RAC), respectively, and designed the system to require only a minimal amount of

information sharing. We determined a MDP formulation that includes what we believe to

be the least number of elements necessary for HIP to be useful; we also determined a

similar formulation for RAC, focusing more on the choice of reward function metrics,

such as Kulic’s danger index, to allow a direct safety-efficiency tradeoff.

Our conclusions are the following:

 Human subject testing supports the theory that the inclusion of a robot into a

human’s workspace will not degrade or otherwise impact human performance, so

long as the robot does not create conflict within the shared workspace.

223

 There are viable frameworks for supporting autonomous human-robot interaction

in close-quarters collaborative space-environment settings, where maintaining

safety is key; we have proposed such a framework based on decomposition of the

problem such that we can model a HRI scenario as two separate MDPs for HIP

and RAC that together recognize, understand, and exploit knowledge of human

intent for robot task planning.

 Our simulation results from the HIP MDP models give consistent and

understandable policies that are not overly sensitive to small variations in the

reward function weightings.

 Our RAC MDP formulation incorporates HIP and direct observations into a more-

informed state on which RAC is based. Case studies demonstrated the possible

tradeoffs in safety and efficiency, although baseline safety is consistently

maintained through a reactive collision avoidance capability.

7.2 Future Work

The simple case studies presented in Chapter 5 and 6 only begin to demonstrate and

evaluate the capabilities of the decoupled HIP+RAC architecture presented in Chapter 4.

Chapters 5 and 6 present extensive discussion of future work to further mature and

evaluate HIP and RAC, respectively. Here we focus on future work at the integrated

architecture level.

To validate the proposed framework, the first step is to run a full dynamic simulation of

the integrated system, creating a ‘simulated reality’ to test the RAC output responses and

timing effects when integrated with the HIP MDP. Differences between policy

expectations and actual output can also be compared for cases where the simulated

behavior matches the ideal HIP+RAC system model versus cases where some of the

conditions of HIP have been relaxed, resulting in discrepancies between predicated and

actual human intent. This can be done initially with simulated noise, and later using

actual human subject experiments.

Our most significant assumption is that human intent can be predicted independent of

robot activity, i.e., that there is no feedback of RAC into HIP, only feedforward from HIP

into RAC. In reality, overall productivity might be enhanced by allowing situations in

224

which the robot can choose actions with potential to distract its human companion, in

which case these actions must be considered for accurate HIP.

It will also be useful to examine impact of using a finite-horizon MDP formulation, or

reduction in discount factor, on the policy output. Realistic HIP and RAC models will be

more complex than those presented in case studies, which also will require careful

knowledge engineering to appropriately abstract and decompose tasks into multiple

MDPs per the discussion in Chapter 4. It will be critical to ensure HIP policies are

consistent with expected human behavior, a property that is only possible to validate in

human subject experiments. Such experiments can also provide insight into how

different models for HIP+RAC compare with each other.

Expansion to a more collaborative domain, potentially with shared goals as well as

feedback from RAC to HIP, would allow us to evaluate tradeoffs between expressiveness

of a fully-coupled model for HIP+RAC versus the greater simplicity enabled by

assuming the human need not consider the robot in decision-making. Such a study might

also yield insight on when it would be beneficial for the robot to directly communicate

with a human companion or supervisor. Finally, it will be essential to benchmark the

proposed HIP+RAC strategy against alternate robot decision-making strategies.

Quantitative metrics for such an evaluation include mission goal achievement (and time

to completion) for both human and robot, HIP accuracy, and safety (how many times did

conflicts emerge, and how many times (if any) were they not automatically resolved).

Qualitative metrics will also be important, particularly with respect to the human

subject’s perceived workload and attitude toward (e.g., trust of) its robot companion. For

all benchmarks, computational overhead is also an important evaluation metric. While

the MDP is more tractable than the POMDP, both have complexity related to the number

of MDP/POMDP states which, as illustrated in presented case studies, can quickly grow

to an unmanageable size.

225

Appendices

226

Appendix A

MichiganMan(ipulator) Arm Characteristics

Physical MM-arm Design (and differences upon construction)

Figure A 1: MichiganMan(ipulator) arm illustratrating Denavit-Hartenberg

Kinematic Parameters.

The MM arm is a 4 degree-of-freedom (4-DOF) revolute R-P-R-P arm (roll-pitch

shoulder, roll-pitch elbow), with an extension for possible future accommodation of a

wrist. This arm was made with similar scale to a human arm and similar shoulder/elbow

design to a Robonaut arm (see reference: Nickels, IEEE presentation), with differences

enumerated in the below table. Note that the arm is designed using the Denavit-

Hartenberg (D-H) notation convention; also note that the joint 1 and 3 axes are aligned

when joint 2 is at its “nominal” 0 degree angle.

227

Table A 1: MM-arm versus Robonaut D-H Parameters

Distance… Robonaut MM-arm explanation of differences

from base to joint 1 12” ~3.8” keeps structural stability; negligible

from joint 2 to joint 3 14.5” ~16.5” joint design changed; could be

accommodated by change in link

length; negligible

from joint 4 to tooltip 14.5” ~11.25” accommodates future addition of

wrist;

negligible

between joint 1 and

joint 2

2.5” ~0.345” differences in joint sizing/alignment;

negligible

between joint 3 and

joint 4

2” ~0” differences in joint sizing/alignment;

negligible

The following table specifies the ranges of motion of each of the four MM-arm joints.

Note that in Figure A 1, the arm is in a position where all joint angles are zeroed.

Table A 2: Joint Ranges for MM-arm

Joint number Joint range (in degrees; counter-clockwise = positive)

minimum maximum

1 -90 90

2 -90 45

3 -90 90

4 -45 90

Specific Measured D-H parameters of the Michigan Manipulator

The (approximate) D-H parameters for the MM-arm are given in the following table:

Table A 3: MM-arm D-H Parameters

i 1i (degrees) 1ia (inches) id (inches) i (degrees)

1 0 0 3.814
1

2 -90 0.345 0
2

3 -90 -0.345 -16.5
3

4 90 0 0
4

Note that for our implementation, we specify a transformation to frame 5, the tooltip

frame, as:

228





















1000

0100

010

0001

54

5

d
T (A-1)

where d5=11.25 (inches).

Forward Kinematics Equations

Using the substitutions:

)sin(

)cos(

)sin(

)(

22

11

bas

c

s

ba 











 (A-2)

The forward kinematic transformation matrix (base to tooltip) for the MM-arm is given

by:

   

  

 

   
  

 
 












































1000

5.16345.0

25.11814.3

5.16345.0

25.11

5.16345.0

25.11

22

42432

324243242432

21121

421431321

31321421431321421431321

21121

421431321

31321421431321421431321

0

5

cs

ccscs
ssccscsscccs

ssscs

csssscccs
ccscscsssscccsssscscccs

scccc

cscsssccc
csscccscssscccssccssccc

T

(A-3)

Inverse Kinematics Equations (numerical solution methods for generalized solutions

/ position-only waypoint)

We give a derivation for finding an algebraic solution for the MM-arm below. The

following matrix math equations were computed using the transformation matrix math

above and the D-H parameters given earlier in the appendix. Nonzero 1ia , id , and i

parameters are treated as variables; zeroed parameters and the 1i terms are substituted

to simplify the equations. Tractable closed-form solutions are identified for joint angles

229

i from the given waypoint, when all parameters

zyx ppprrrrrrrrr ,,,,,,,,,,, 333231232221131211
 in the T0

5
 transformation matrix are assumed

known (in other words, when we know the position and rotation of the tooltip frame in

the origin frame in 3D space).

Using this convention for shorthand substitutions:

)sin(

)cos(

)sin(

)(

22

11

bas

c

s

ba 











 (A-4)

Consider the following informal derivation, starting with:

      TTT 1

5

0

5

10

1 
 (A-5)

Using the general transformation matrix for   10

1


T and computing  T1

5
 using the

kinematic equations, we get:

 

 























































































1000

1000

*

1000

100

00

00

3222

542432

324243242432

54334343

13222

542432

324243242432

333231

232221

131211

1

11

11

dcas

dccscs
ssccscsscccs

dsscsscs

adsac

dcsscc
cccssccssccc

prrr

prrr

prrr

d

cs

sc

z

y

x

 (A-6)

Multiplying the right hand side, we get:

230

 

 







































































1000

1000

3222

542432

324243242432

54334343

13222

542432

324243242432

1333231

11231131221121211111

11231131221121211111

dcas

dccscs
ssccscsscccs

dsscsscs

adsac

dcsscc
cccssccssccc

dprrr

pcpsrcrsrcrsrcrs

pspcrsrcrsrcrsrc

z

yx

yx

 (A-7)

Note that:

  32225424321

4243232

dcasdccscsdp

ccscsr

z 


 (A-8)

Substituting and rearranging terms, we get

15323222

32225321

dpdrdcas

dcasdrdp

z

z




 (A-9)

Rewrite as:

 KPcPs yx  """" 22
 (A-10)

where

1532

3

2

""

""

dpdrK

dP

aP

z

y

x







 (A-11)

Then, employ a strategic change of variables

231

3

2

)sin(""

)cos(""

dP

aP

y

x








 (A-12)

where

),(tan)"","("tan

""""

23

11

2

3

2

2

22

adPP

daPP

xy

yx

 






 (A-13)

The equation

 KPcPs yx  """" 22
 (A-14)

then becomes





K
sccs  22 (A-15)

Using the trigonometric identity

)sin()(bassccs bababa  
 (A-16)

the equation





K
sccs  22 (A-17)

becomes





K
s )(2

 (A-18)

Using the trigonometric identity

232

 1)()(22  aa cs (A-19)

the equation

 1)()(2

)(

2

)(22
   cs (A-20)

becomes

2

2

)(

2

)(

2

1

1)(

2

2









K
c

c
K
















 (A-21)

Since

)(

)(

2

2

2)tan(










c

s
 (A-22)

we find

),(tan1,tan

1,tan),(tan

1,tan

23

1

2

2
1

2

2

2
1

23

1

2

2

2
1

2

ad
KK

KK
ad

KK






























































 (A-23)

which is a closed-form solution for 2 , since 23 ,,, adK  are all known (see above).

From Equation (A-7), also note that:

  1322254243211

42432221121

adsacdcssccpspc

cssccrsrc

yx 


 (A-24)

233

Substituting and rearranging terms, we get

 

    1322252215121

13222522112111

adsacdrpsdrpc

adsacdrsrcpspc

yx

yx




 (A-25)

Using the same method as before, rewrite as:

22121 """" KPcPs yx  (A-26)

where

132222

5122

5222

""

""

adsacK

drpP

drpP

xy

yx







 (A-27)

Then, using a strategic change of variables

512222

522222

)sin(""

)cos(""

drpP

drpP

xy

yx








 (A-28)

where

   

),(tan)"","("tan

""""

522512

1

22

1

2

2

512

2

522

2

2

2

22

drpdrpPP

drpdrpPP

yxxy

xyyx








 (A-29)

the equation

22121 """" KPcPs yx  (A-30)

becomes

2

2
11 22 



K
sccs  (A-31)

234

Using the trigonometric identity

)sin()(bassccs bababa  
 (A-32)

the equation

2

2
11 22 



K
sccs  (A-33)

becomes

2

2
)(21 



K
s  (A-34)

and, using the trigonometric identity

 1)()(22  aa cs (A-35)

the equation

 1)()(2

)(

2

)(2121
   cs (A-36)

becomes

2

2

2

2
)(

2

)(

2

2

2

1

1)(

21

21









K
c

c
K
















 (A-37)

Since

)(

)(

21

21

21)tan(










c

s
 (A-38)

235

then

),(tan1,tan

1,tan),(tan

1,tan

522512

1

2

2

2

2

2

21

1

2

2

2

2

2

21

522512

1

1

2

2

2

2

2

21

21

drpdrp
KK

KK
drpdrp

KK

yx

yx






























































 (A-39)

which is a closed-form solution for 1 , since
52251222 ,,,,,,, drpdrpK yx are all known

(see above).

Now that we have found these two angles, we can straightforwardly find the remaining

angles:

     








































































1000

0

1000

*

1000

00 54334343

35444

25334343

333231

232221

131211

11

121222121

121222121

2

5

0

5

10

2

dsscsscs

ddccs

adcscccc

prrr

prrr

prrr

cs

dcascsssc

dsacscscc

TTT

z

y

x (A-40)



















































1000

0

1000

54334343

35444

25334343

11231131221121211111

121222121332232113213222221122131221211121

121222121332232113213222221122131221211121

dsscsscs

ddccs

adcscccc

pcpsrcrsrcrsrcrs

dcaspcpsspscrcrssrscrcrssrscrcrssrsc

dsacpspcspccrsrcsrccrsrcsrccrsrcsrcc

yx

zyx

zyx

 (A-41)

Note that:

2311313

332232113213

rcrsc

rsrcsrccs




 (A-42)

By definition:

236

  33

1

3 ,tan cs (A-43)

which is a closed-form solution for 3 , since 33231321 ,,,, rrr are all known (see above).

Note that:

322222112214

312212111214

rcrssrscc

rcrssrscs




 (A-44)

By definition:

  44

1

4 ,tan cs (A-45)

which is a closed-form solution for 4 , since 32221231211121 ,,,,,,, rrrrrr are all known (see

above).

Method 1: Numerical Evaluation with an Unfixed End Effector Rotation Matrix

When we have a desired end effector position with relaxed orientation constraints, we

need to develop numerical methods for solving this problem. We cannot directly use the

closed form solution since it depends on elements of the end effector rotation matrix.

When solving numerically, we can implement constraints to try and force the computed

solution to fit our particular needs. The current algorithm being implemented solves the

equations

 

 

 2

2

2

i

i

i

zz

yy

xx

pp

pp

pp







 (A-46)

by setting them equal to zero; where xp ,
yp , and zp are the desired position components

and
ixp ,

iyp , and
izp are described in terms of the unknown joint angles 4321 ,,, 

and the known D-H parameters. With three equations and four unknowns, to minimize

237

we set one of the angles to be constant. To keep angles in a specified range we can add

additional equations that the algorithm minimizes. For example, equations that equate to

large values for angles outside of our desired range and are zero inside the correct range

would serve this purpose.

Method 2: Brute Force Search over Method 1

We call the Method 1 algorithm at incremental value steps (given) over a range of angles

(given) for the “fixed” angle in a brute force search.

Method 3: Addition of Fourth Cost Metric

Use a cost function of some kind (e.g. least squares “distance” in per-angle change) to

replace the fourth “equation”, rather than fixing one of the angles.

MM-Arm Dynamics & Singularity Identification

Note that since our arm is a 4-DOF manipulator system, our Jacobian is nonsquare.

Using the formulation above and substituting in all measured D-H parameters, we find

that the tooltip position with respect to the base frame, Tp0
, is given by:



























2242432

21121421431321

21121421431321

0

50

5

0

5.16345.0)(25.11814.3

5.16)(345.0))((25.11

5.16)(345.0))((25.11

csccscs

ssscscsssscccs

scccccscsssccc

p

pTp

T

TT

 (A-47)

Differentiating, we get:

238

 
 














0

)(25.115.16)1(345.0)(25.11

)(25.115.16)1(345.0)(25.11

14312242432

14312242432

0 ssscsccsscc

cssssccsscc

J trans

 
 

432

431321

431321

24243

12242432

12242432

25.11

)(25.11

)(25.11

)5.1625.11()345.025.11(

5.16345.0)(25.11

5.16345.0)(25.11

sss

sccscs

scsscc

sccsc

scsccscs

ccsccscs











 (A-48)















)(25.11

)()(25.11

)()(25.11

42432

421431321

421431321

scccs

ssscscccs

ssccssccc

For
rotJ0 we find that

 



























32322

3132131321211

3132131321211

0

0

5

0

4

0

3

0

2

0

1

0

01

0

0

)()()()()(

ssssc

ccscsccscsssc

csscccssccscs

J

zRzRzRzRzRJ

rot

rot

 (A-49)

However, since frame 5 has the same orientation as frame 4, we remove column 5 to

simplify:

























322

31321211

31321211

0

01

0

0

ssc

ccscsssc

cssccscs

J rot
 (A-50)

Since the servos used for joint angle control have internal (control law) programming to

force them to move at approximately constant speed during a command, the dynamics of

the arm are simplified greatly… in some respects, the problem becomes more one of

determining the dynamics from a command rather than commanding the linear and

angular velocities and accelerations we want.

In some cases, however, we would like to try to pick the linear velocities we want for the

end effector (even if we cannot command the joint angular velocities we desire). We also

239

still must try to avoid poses of the arm that may present problems in the magnitude of the

forces brought to bear on and by the arm. For this we want to determine where the

singularities of the arm may occur and concentrate more on the
transJ0 than

rotJ0 .

Looking at
transJ0 , we can see immediately that when 4 =0 or 180 degrees, the third

column zeros out and the Jacobian loses rank. Taking into consideration the valid range

of motion for the arm, whenever 4 =0 degrees, the arm is at a singularity – which makes

sense, because not pitching the elbow joint leaves the shoulder and elbow roll joints z-

axes aligned.

When we have a square matrix, the singularities can be found easily as roots of the

determinant of the matrix. Since
transJ0 is known to lose rank in the third column in

instances when 4 =0 degrees, we are more interested in cases where this is not true. If

we remove the third column from the Jacobian (thus making it square) and take the

determinant, we find that singularities for this modified matrix exist when

032

2

425324454

2

32

44

2

351341

2

4332542

2

324534224

43

2

22454143213325432324







cacsddscsdsds

cscdadsacdccdcaccsddsacc

ccaccdsaccaadccdccads

 (A-51)

Note that solutions to this determinant are not necessarily singularities of the arm. When

solutions to this equation cause loss of rank in the columns, they are singularities of the

Jacobian; however, when they cause loss of rank row-wise, one must still check the

associated row in the removed column 3 to determine if loss of rank in the Jacobian truly

occurs.

So, a simple procedure for checking whether a particular arm state (in joint space) will

cause a singularity is as follows:

1) Check 4 . If it is 0 degrees, it is a singular state. Stop. Else, step 2.

2) Substitute the state into the equation above. If it resolves =0, go to step 3, else

step 4.

240

3) Substitute the state into
transJ0 and check rank. If it loses rank, it is a singular

state. Stop. Else, step 4.

4) Substitute the state into 313213132132 cssccccscsss  to check the rank of

column 3. If the equalities resolve as true, it is a singular state. Stop. Else

(assume) it is not a singular state.

241

Appendix B

Task Timelines for Test Sets

Below are tables detailing the number of interactions and conflicts and when they

occurred in each test given.

242

Table B 1: Task timelines for human and robotic agents during tests in test set 1

Test

Scenario

type
Tasks

Task Timeline

(b1, b2, b3, ba = buttons 1, 2, 3, all; ch = chips, dr = drink

ma(th) all other times;

nc, pc, mc = no, physical, mental conflict; -- = no-op)

1 Z Human -- -- -- -- -- -- --

1 Z Robot b1 b2 b3 b1 b3 b2 b1

1 Z Conflict

2 A Human

2 A Robot --

2 A Conflict

3 B Human ch dr ch dr ch dr ch dr

3 B Robot --

3 B Conflict

4 C Human b1 b2 b3 b2 b3 b1 b3 b1 b2

4 C Robot --

4 C Conflict

5 D Human ch b3 b1 dr b2 b1 ch b2 b3 dr

5 D Robot --

5 D Conflict

6 F Human ch dr dr dr ch

6 F Robot b2 b3 b3 b3 b2 b3 b2 b2 b2 b3 b3

6 F Conflict nc nc nc nc nc

7 G Human ch ch ch ch ch ch

7 G Robot b3 b2 b3 b3 b2 b2 b2 b2 b3 b3 b3

7 G Conflict nc nc pc pc nc nc

8 H Human ch ch dr ch ch ch

8 H Robot b3 b2 b1 b3 b2 b1 b1 b2 b3 b3 b3

8 H Conflict nc nc nc nc mc mc nc nc

9 I Human ch ch ch ch ch ch

9 I Robot b2 b1 b2 b1 b2 b1 b2 b1 b2 b1 b2

9 I Conflict pc mc pc mc pc mc pc mc pc mc pc

10 J Human ch dr ch dr ch dr

10 J Robot [b1,b2,b3 reactivate every 5 seconds]

10 J Conflict pc mc nc mc pc mc nc mc pc mc nc mc

243

Table B 2: Task timelines for human and robotic agents during tests in test set 2

Test

Scenario

type
Tasks

Task Timeline

(b1, b2, b3, ba = buttons 1, 2, 3, all; ch = chips, dr = drink

ma(th) all other times;

nc, pc, mc = no, physical, mental conflict; -- = no-op)

1 A Human

1 A Robot --

1 A Conflict

2 E Human

2 E Robot b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2

2 E Conflict

3 H Human

3 H Robot b1 b2 b3 b2 b3 b1 b3 b1 b2

3 H Conflict mc mc

4 H Human ch dr ch dr

4 H Robot b3 b1 b2 b1 b2 b3

4 H Conflict mc mc

5 D Human b2 b3 ch b3 dr b3 dr b2 dr b3 ch

5 D Robot --

5 D Conflict

6 D Human ch b2 ch b3 ch b2 ch b2 ch b3 ch

6 D Robot --

6 D Conflict

7 D Human ch b2 ch dr b3 b2 ch b1 b1 ch b2 b3 ch b3 b3

7 D Robot

7 D Conflict

8 D Human ch b1 ch b1 ch b1 ch b1 ch b1 ch

8 D Robot

8 D Conflict

9 D Human ch ba dr ba ch ba dr ba ch ba dr

9 D Robot --

9 D Conflict

244

Table B 3: Task timelines for human and robotic agents during tests in test set 3

Test

Scenario

type
Tasks

Task Timeline

(b1, b2, b3, ba = buttons 1, 2, 3, all; ch = chips, dr = drink

ma(th) all other times;

nc, pc, mc = no, physical, mental conflict; -- = no-op)

1 A Human

1 A Robot --

1 A Conflict

2 G Human ch ch ch ch ch ch

2 G Robot b3 b2 b3 b3 b2 b2 b2 b2 b3 b3 b3

2 G Conflict nc nc pc pc nc nc

3 I Human ch ch ch ch ch ch

3 I Robot b2 b1 b2 b1 b2 b1 b2 b1 b2 b1 b2

3 I Conflict pc mc pc mc pc mc pc mc pc mc pc

4 J Human ch dr ch dr ch dr

4 J Robot [b1,b2,b3 reactivate every 5 seconds]

4 J Conflict pc mc nc mc pc mc nc mc pc mc nc mc

5 G / I Human

5 G / I Robot b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2 b3 b2

5 G / I Conflict

6 C / D Human b2 b3 b2 b2 b3

6 C / D Robot --

6 C / D Conflict

7 C / D Human b1 b1 b1 b1 b1

7 C / D Robot --

7 C / D Conflict

8 H / I Human

8 H / I Robot b3 b1 b2 b1 b2 b3

8 H / I Conflict mc mc

9 C / D Human b3 b1 b2 b1 b2 b3

9 C / D Robot --

9 C / D Conflict

Note that for test set 3, in tests 5 through 9 no consumption messages were displayed but

the human was told to eat or drink whenever they wished (thus, conflicts varied per

person). These tests were not included in our data processing for this paper due to the

high variability between subjects of when conflict cases could, and did, occur. It was

collected towards later determination of variability and frequency of consumption task

occurrence per subject in future work.

245

Bibliography

[1] Craig, J. J., Introduction to Robotics: Mechanics and Control, 3rd ed., Pearson Education, Inc.,
Upper Saddle River, NJ, 2005, pp. 28, 35-36, 68-69.

[2] Oman, C., "Spatial Orientation and Navigation in Microgravity," in Spatial Processing in Navigation,

Imagery and Perception, Mast, F. & Jäncke, L. eds., Springer US, 2007, pp. 209-247.

[3] NASA, Flight Data Files (STS-135), EVA Checklist, URL:

http://www.nasa.gov/centers/johnson/pdf/567070main_EVA_135_FIN_1.pdf [cited 16 January

2014].

[4] Jha, A., "Meet Robonaut 2, astronaut assistant | Science | The Guardian," URL:

http://www.guardian.co.uk/science/2010/nov/02/robonaut-2-international-space-station [cited 31

March 2011].

[5] Stoll, E., Jaekel, S., Katz, J., Saenz-Otero, A., and Varatharajoo, R., "SPHERES Interact, Human-

Machine Interaction aboard the International Space Station," Journal of Field Robotics, Vol. 29, No.
4, 2012, pp. 554-575.

[6] Pedersen, L., Kortenkamp, D., Wettergreen, D., and Nourbakhsh, I., "A survey of space robotics,"

Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation

in Space, 2003, pp. 19-23.

[7] Ahmed, M. R., Compliance Control of Robot Manipulator for Safe Physical Human Robot

Interaction, university, Ö. ed., Doctoral thesis, Örebro, Sweden, 2011.

[8] Roderick, S., Roberts, B., Atkins, E., and Akin, D., "The Ranger robotic satellite servicer and its

autonomous software-based safety system," IEEE Intelligent Systems, Vol. 19, No. 5, September-

October 2004, pp. 12-19.

[9] Haidegger, T., "Advanced Robotic Arms In Space," 55th International Astronautical Congress,

Vancouver, Canada, 2004, pp. 1-10.

[10] Liu, Y., and Najat, G., "Robotic Urban Search and Rescue: A Survey from the Control Perspective,"

Journal of Intelligent & Robotic Systems, March 2013, pp. 1-19.

[11] Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G., "Developmental robotics: a survey,"

Connection Science, Vol. 15, No. 4, 2003, pp. 151-190.

[12] Gerkey, B. P., and Matarić, M. J., "A Formal Analysis and Taxonomy of Task Allocation in Multi-

Robot Systems," The International Journal of Robotics Research, Vol. 23, No. 9, September 2004,
pp. 939-954.

[13] Van Der Krogt, R., and De Weerdt, M., "Plan Repair as an Extension of Planning," Proceedings of

the 15th International Conference on Automated Planning and Scheduling (ICAPS-05), 2005, pp.

161-170.

[14] Kulic, D., and Croft, E., "Pre-collision safety strategies for human-robot interaction," Autonomous

Robots, Vol. 22, No. 2, 2007, pp. 149-164.

[15] Karami, A.-B., Jeanpierre, L., and Mouaddib, A.-I., "Human-robot collaboration for a shared

mission," Proceeding of the 5th ACM/IEEE international conference on Human-robot interaction

(HRI'10), 2010, pp. 155-156.

[16] De Santis, A., Siciliano, B., De Luca, A., and Bicchi, A., "An atlas of physical human–robot

interaction," Mechanism and Machine Theory, Vol. 43, No. 3, March 2008, pp. 253-270.

[17] Wikipedia contributors, "Safety," URL:

http://www.nasa.gov/centers/johnson/pdf/567070main_EVA_135_FIN_1.pdf
http://www.guardian.co.uk/science/2010/nov/02/robonaut-2-international-space-station

246

http://en.wikipedia.org/w/index.php?title=Safety&oldid=507198516 [cited 17 August 2012].

[18] Haddadin, S., Albu-Schaffer, A., Frommberger, M., Rossmann, J., and Hirzinger, G., "The “DLR

Crash Report”: Towards a standard crash-testing protocol for robot safety - Part I: Results," ICRA
'09, IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 272-279.

[19] Haddadin, S., Albu-Schaffer, A., Frommberger, M., Rossmann, J., and Hirzinger, G., "The “DLR

crash report”: Towards a standard crash-testing protocol for robot safety - Part II: Discussions," ICRA

'09, IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 280-287.

[20] Albu-Schäffer, A., Ott, C., and Hirzinger, G., "A Unified Passivity-based Control Framework for

Position, Torque and Impedance Control of Flexible Joint Robots," The International Journal of

Robotics Research, Vol. 26, No. 1, January 2007, pp. 23-39.

[21] Kulic, D., and Croft, E. A., "Real-time safety for human-robot interaction," Robotics and

Autonomous Systems, Vol. 54, No. 1, 2006, pp. 1-12.

[22] Spong, M. W., and Vidyasagar, M., Robot Dynamics and Control, John Wiley & Sons, New York,

1989.

[23] Betts, and T., J., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance,

Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193-207.

[24] Pfeiffer, F., and Johanni, R., "A concept for manipulator trajectory planning," IEEE Journal of

Robotics and Automation, Vol. 3, No. 2, April 1987, pp. 115-123.

[25] Hwang, Y. K., and Ahuja, N., "Gross motion planning—a survey," ACM Computing Surveys

(CSUR), Vol. 24, No. 3, 1992, pp. 219-291.

[26] Lavalle, S. M., and Kuffner Jr., J. J., "Rapidly-Exploring Random Trees: Progress and Prospects,"

Algorithmic and Computational Robotics: New Directions: Fourth Workshop on the Algorithmic

Foundations of Robotics:, Darmouth College, 2000, p. 293.

[27] Macfarlane, S., and Croft, E. A., "Jerk-bounded manipulator trajectory planning: design for real-time

applications," IEEE Transactions on Robotics and Automation, February 2003, pp. 42-52.

[28] Yang, S. X., and Meng, M., "Neural network approaches to dynamic collision-free trajectory
generation," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 31,

No. 3, June 2001, pp. 302-318.

[29] Vadakkepat, P., Tan, K. C., and Ming-Liang, W., "Evolutionary artificial potential fields and their

application in real time robot path planning," Proceedings of the 2000 Congress on Evolutionary

Computation, Vol. 1, La Jolla, CA, 2000, pp. 256-263.

[30] Kulic, D., Safety for Human-Robot Interaction, Columbia, U. o. B. ed., Doctoral thesis, British

Columbia, Canada, 2005.

[31] Zweben, M., Davis, E., Daun, B., and Deale, M. J., "Scheduling and rescheduling with iterative

repair," IEEE Transactions on Man and Cybernetics Systems, Vol. 23, No. 6, 1993, pp. 1588-1596.

[32] Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G., "Using iterative repair to

improve the responsiveness of planning and scheduling," Proceedings of the Fifth International

Conference on Artificial Intelligence Planning and Scheduling, Brackenridge, CO, 2000.

[33] Rabideau, G., Knight, R., Chien, S., Fukunaga, A., and Govindjee, A., "Iterative repair planning for

spacecraft operations using the aspen system," Artificial Intelligence, Robotics and Automation in

Space, Vol. 440, August 1999, pp. 99-106.

[34] Alpaydin, E., Introduction to Machine Learning, 2nd ed., MIT Press, Boston, MA, 2010.

[35] Russell, S. J., and Norvig, P., Artificial intelligence: A modern approach, 2nd ed., Prentice
Hall/Pearson Education, Upper Saddle River, N.J, 2003.

[36] Malik, G., Nau, D. S., and Traverso, P., Automated planning: theory and practice, Elsevier, 2004.

[37] Musliner, D. J., Durfee, E. H., and Shin, K. G., "World Modeling for the Dynamic Construction of

Real-Time Control Plans," AI Journal, Vol. 74, No. 1, March 1995, pp. 83-127.

[38] Boutilier, C., Dean, T., and Hanks, S., "Decision-Theoretic Planning: Structural Assumptions and

Computational Leverage," Journal of Artificial Intelligence Research, Vol. 11, No. 1, 1999, pp. 1-94.

[39] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.,

http://en.wikipedia.org/w/index.php?title=Safety&oldid=507198516

247

John Wiley & Sons, New York, USA, 1994.

[40] Cassandra, A. R., Kaelbling, L. P., and Littman, M. L., "Acting optimally in partially observable

stochastic domains," Proceedings of the National Conference on Artificial Intelligence, 1995, pp.
1023-1023?

[41] Williams, T., and Tanygin, S., "On-orbit engineering tests of the AERCam Sprint robotic camera

vehicle," Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 1998, pp. 1001-1020.

[42] Wagenknecht, J., Fredrickson, S., Manning, T., and Jones, B., "Design, Development and Testing of

the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation,

and Control System," 26th Annual American Astronautical Society Guidance and Control

Conference, February 5-9, 2003.

[43] Dorais, G. A., and Gawdiak, Y., "The personal satellite assistant: an internal spacecraft autonomous

mobile monitor," Proceedings of IEEE Aerospace Conference, Vol. 1, 2003.

[44] Hexmoor, H., and Vaughn, J., "Computational adjustable autonomy for NASA Personal Satellite

Assistants," Proceedings of the 2002 ACM Symposium on Applied Computing, 2002, pp. 21-26.

[45] Mohan, S., Saenz-Otero, A., Nolet, S., Miller, D., and Sell, S., "SPHERES Flight Operations Testing

and Execution," Proceedings of the 58th International Astronautical Congress, Hyderabad, India,

2007.

[46] Katz, J., Saenz-Otero, A., and Miller, D., "Development and Demonstration of an Autonomous

Collision Avoidance Algorithm aboard the ISS," Proceedings of the 2011 IEEE Aerospace

Conference, Big Sky, MT, 2011, pp. 1-6.

[47] Biesiadecki, J. J., Leger, P. C., and Maimone, M. W., "Tradeoffs Between Directed and Autonomous
Driving on the Mars Exploration Rovers," The International Journal of Robotics Research, Vol. 26,

January 2007, pp. 91-104.

[48] Coleshilla, E. et al., "Dextre: Improving maintenance operations on the International Space Station,"

Acta Astronautica, Vol. 64, No. 9-10, May-June 2009, pp. 869-874.

[49] NASA, "NASA - Dextre's Final Exam Scheduled for December 22-23, 2010," URL:

http://www.nasa.gov/mission_pages/station/structure/dextre_final_exam.html [cited 31 March 2011].

[50] NASA, "NASA - Dextre Successfully Completes Its First Official Job," URL:

http://www.nasa.gov/mission_pages/station/expeditions/expedition26/dextre_firstjob.html [cited 31

March 2011].

[51] Harding, P., "Dextre and RRM complete record breaking week of robotics on ISS," URL:

http://www.nasaspaceflight.com/2012/03/dextre-rrm-complete-record-breaking-week-robotics-iss/
[cited 26 June 2012].

[52] Harding, P., URL: http://www.nasaspaceflight.com/2012/06/iss-dextre-rrm-complete-second-round-

joint-ops-cdra-recovered/ [cited 26 June 2012].

[53] Diftler, M. A., Culbert, C. J., Ambrose, R. O., Platt, R. . J., and Bluethmann, W. J., "Evolution of the

NASA/DARPA Robonaut control system," ICRA '03, Proceedings of IEEE International Conference

on Robotics and Automation, Vol. 2, 2003, pp. 2543 - 2548.

[54] Diftler, M. A. et al., "Robonaut 2 – The First Humanoid Robot in Space," 2011 IEEE International

Conference on Robotics and Automation, Shanghai, CN, May 2011, pp. 2178-2183.

[55] Pappas, S., "Humanoid Robot Hitching Space Ride on Shuttle Discovery | Space.com," URL:

http://www.space.com/9384-humanoid-robot-hitching-space-ride-shuttle-discovery.html [cited 31

March 2011].

[56] Choi, C. Q., "New Robot Could Aid Astronauts in Space | Space.com," URL:

http://www.space.com/7871-robot-aid-astronauts-space.html [cited 31 March 2011].

[57] Sheridan, T. B., Telerobotics, Automation, and Human Supervisory Control, MIT Press, Cambridge,

MA, 1992.

[58] Hung, J. Y., Gao, W., and Hung, J. C., "Variable structure control: a survey," IEEE Transactions on

Industrial Electronics, Vol. 40, No. 1, 1993, pp. 2-22.

[59] Ikeura, R., Inooka, H., and Mizutani, K., "Subjective evaluation for maneuverability of a robot

http://www.nasa.gov/mission_pages/station/structure/dextre_final_exam.html
http://www.nasa.gov/mission_pages/station/expeditions/expedition26/dextre_firstjob.html
http://www.nasaspaceflight.com/2012/03/dextre-rrm-complete-record-breaking-week-robotics-iss/
http://www.nasaspaceflight.com/2012/06/iss-dextre-rrm-complete-second-round-joint-ops-cdra-recovered/
http://www.nasaspaceflight.com/2012/06/iss-dextre-rrm-complete-second-round-joint-ops-cdra-recovered/
http://www.space.com/9384-humanoid-robot-hitching-space-ride-shuttle-discovery.html
http://www.space.com/7871-robot-aid-astronauts-space.html

248

cooperating with human," Proceedings of the 1999 IEEE International Workshop on Robot and

Human Interaction, 1999, pp. 201-205.

[60] Kato, R., and Arai, T., "Assessment of Mental Stress on Human Operators Induced by the Assembly
Support in a Robot-Assisted "Cellular Manufacturing" Assembly System," International Journal of

Automation Technology, Vol. 3, No. 5, 2009, pp. 569-579.

[61] Steinfeld, A. et al., "Common metrics for human-robot interaction," HRI '06, Proceedings of the 1st

ACM SIGCHI/SIGART Conference on Human-Robot Interaction, Salt Lake City, 2006, pp. 33-40.

[62] Sisbot, E. , Clodic, A., Alami, R., and Ransan, M., "Supervision and motion planning for a mobile

manipulator interacting with humans," HRI '08 Proceedings of the 3rd ACM/IEEE International

Conference on Human Robot Interaction, Amsterdam, The Netherlands, 2008, pp. 327-334.

[63] "American National Standard for Industrial Robots and Robot Systems – Safety Requirements,"

Robotic Industries Association, American National Standards Institute, ANSI/RIA R15.06-1999,

1999.

[64] "Robots for Industrial Environment - Safety Requirements - Part 1 - Robot," American National

Standards Institute, International Standard Organization, ANSI/RIA/ISO 10218-1:2007, 2007.

[65] Schuster, G., and Winrich, M., "Robotics Safety," Rockwell Automation, White Paper SAFETY-

WP009A-EN-P, December 2009.

[66] Carpin, S., and Parker, L. E., "Cooperative leader following in a distributed multi-robot system,"

ICRA '02, Proceedings of IEEE International Conference on Robotics and Automation, Washington,

D.C., 2002, pp. 2994 - 3001.

[67] Greenstein, J. S., and Revesman, M. E., "Two Simulation Studies Investigating Means of Human-
Computer Communication for Dynamic Task Allocation," IEEE Transactions on Man and

Cybernetics Systems, Vol. 16, No. 5, September 1986, pp. 726-730.

[68] Breazeal, C., Kidd, C. D., Thomaz, A. L., Hoffman, G., and Berlin, M., "Effects of nonverbal

communication on efficiency and robustness in human-robot teamwork," IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS'05), 2005, pp. 708-713.

[69] Kaupp, T., Makarenko, A., and Durrant-Whyte, H., "Human–robot communication for collaborative

decision making — A probabilistic approach," Robotics and Autonomous Systems, Vol. 58, No. 5,

May 2010, pp. 444-456.

[70] Yang, J., Xu, Y., and Chen, C. S., "Human action learning via hidden Markov model," IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 27, No. 1, 1997,

pp. 34-44.

[71] Aggarwal, J. K., and Cai, Q., "Human motion analysis: A review," Computer Vision and Image

Understanding, Vol. 73, No. 3, March 1999, pp. 428-440.

[72] Yamato, J., Ohya, J., and Ishii, K., "Recognizing human action in time-sequential images using

hidden Markov model," Proceedings of the CVPR'92, IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1992, pp. 379-385.

[73] Bregler, C., "Learning and recognizing human dynamics in video sequences," Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 568-574.

[74] Brand, M., Oliver, N., and Pentland, A., "Coupled hidden Markov models for complex action

recognition," Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 1997, pp. 994-999.

[75] Lee, C., and Xu, Y., "Online, interactive learning of gestures for human/robot interfaces,"
Proceedings of IEEE International Conference on Robotics and Automation, 1996, pp. 2982-2987.

[76] Bobick, A. F., "Movement, activity and action: The role of knowledge in the perception of motion,"

Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 352, No. 1358, August

29 1997, pp. 1257-1265.

[77] Gavrila, D. M., "The Visual Analysis of Human Movement: A Survey," Computer Vision and Image

Understanding, Volume 73, No. 1, January 1999, pp. 82-98.

[78] Poppe, R., "Vision-based human motion analysis: an overview," Computer Vision and Image

Understanding (CVIU), Vol. 108, No. 1-2, 2007, pp. 4-18.

249

[79] Poppe, R., "A survey on vision-based human action recognition," Image and Vision Computing, Vol.

28, No. 6, 2010, pp. 976-990.

[80] Takeda, T., Hirata, Y., and Kosuge, K., "Dance Step Estimation Method Based on HMM for Dance
Partner Robot," IEEE Transaction on Industrial Electronics, Vol. 54, No. 2, 2007, pp. 699-706.

[81] Anh, M., Ho, T., Yamada, Y., and Umetani, Y., "An Adaptive Visual Attentive Tracker for Human

Communicational Behaviors Using HMM-Based TD Learning With New State Distinction

Capability," IEEE Transactions on Robotics, Vol. 21, No. 3, 2005, pp. 497-504.

[82] Vondrak, M., Sigal, L., and Jenkins, O. C., "Physical simulation for probabilistic motion tracking,"

IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.

[83] Karami, A.-B., Jeanpierre, L., and Mouaddib, A.-I., "Partially Observable Markov Decision Process

for Managing Robot," 21st International Conference on Tools with Artificial Intelligence (ICTAI

'09), 2009, pp. 518-521.

[84] Matignon, L., Karami, A. B., and Mouaddib, A. I., "A Model for Verbal and Non-Verbal Human-

Robot Collaboration," 2010 AAAI Fall Symposium Series, 2010.

[85] Schmidt-Rohr, S. R., Knoop, S., Losch, M., and Dillmann, R., "Bridging the gap of abstraction for

probabilistic decision making," Robotics: Science and Systems, Zurich, 2008.

[86] Nikolaidis, S., and Shah, J., "Human-Robot Interactive Planning using Cross-Training: A Human

Team Training Approach," Proc. of Infotech@Aerospace, Garden Grove, CA, June 2012.

[87] Keizer, S., Foster, M. E., Lemon, O., Gaschler, A., and Giuliani, M., "Training and evaluation of an

MDP model for social multi-user human-robot interaction," Proceedings of the 14th Annual SIGdial

Meeting on Discourse and Dialogue, Metz, France, August 2013.

[88] Fasola, J., and Matarić, M. J., "A Socially Assistive Robot Exercise Coach for the Elderly," Journal

of Human-Robot Interaction, Vol. 2, No. 2, June 2013, pp. 3-32.

[89] Box, G., and Hunter, W., Statistics for Experimenters, Wiley-Interscience, New York, 2005.

[90] Montgomery, D., Design and Analysis of Experiments, John Wiley & Sons, Chichester, 2009.

[91] "NASA TLX Paper and Pencil Version Instruction Manual," NASA TLX Homepage [online archive],

URL: http://humansystems.arc.nasa.gov/groups/TLX/ [cited 2 January 2011].

[92] McGhan, C. L. R., and Atkins, E. M., "Physically-Proximal Human-Robot Collaboration: Enhancing

Safety and Efficiency Through Intent Prediction," Proc. Infotech@Aerospace Conference, Seattle,

WA, Apr. 2009.

[93] McGhan, C. L. R., and Atkins, E. M., "A Low-Cost Manipulator for Space Research and

Undergraduate Engineering Education," Proc. Infotech@Aerospace Conference, Atlanta, GA, Apr.
2010.

[94] Nickels, K., "Hand-Eye Calibration of Robonaut," San Antonio Chapter IEEE Computer Society Past

Meeting Presentations September 16, 2004 [online archive], URL: http://www.ieee-cs-

cts.org/past_meetings.htm [cited 2 January 2011].

[95] Rekimoto, J., "SmartSkin: an infrastructure for freehand manipulation on interactive surfaces,"

Proceedings of the SIGCHI conference on Human factors in computing systems, Minneapolis, MN,

2002, pp. 113-120.

[96] Yarrow, K., Brown, P., and Krakauer, J. W., "Inside the brain of an elite athlete: the neural processes

that support high achievement in sports," Nature Reviews Neuroscience, Vol. 10, No. 8, July 2009,

pp. 585-596.

[97] Bonasso, R. P. et al., "Experiences with an architecture for intelligent, reactive agents," Journal of
Experimental & Theoretical Artificial Intelligence, 9, Vol. 2, No. 3, 1997, pp. 237-256.

[98] Gat, E., "On Three-Layer Architectures," in Artificial Intelligence and Mobile Robots, David

Kortenkamp, R. P. B. a. R. M. ed., AAAI Press, 1997, pp. 195-210.

[99] Montemerlo, M., Roy, N., and Thrun, S., "Perspectives on standardization in mobile robot

programming: The Carnegie Mellon navigation (CARMEN) toolkit," Proceedings of 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2003. (IROS 2003)., Vol. 3, 2003, pp.

2436-2441.

http://humansystems.arc.nasa.gov/groups/TLX/
http://www.ieee-cs-cts.org/past_meetings.htm
http://www.ieee-cs-cts.org/past_meetings.htm

250

[100] Casner, S. A., "Understanding the determinants of problem-solving behavior in a complex

environment," Human Factors, Vol. 36, No. 4, December 1994, pp. 580-596.

[101] Dellnitz, M., and Junge, O., "An adaptive subdivision technique for the approximation of attractors
and invariant measures," Computing and Visualization in Science, Vol. 1, No. 2, 1997, pp. 63-68.

[102] Fonseca, C. M., and Fleming, P. J., "An Overview of Evolutionary Algorithms in Multiobjective

Optimization," Evolutionary Computation, Vol. 3, No. 1, Spring 1995, pp. 1-16.

[103] Teich, J., "Pareto-Front Exploration with Uncertain Objectives," in Evolutionary Multi-Criterion

Optimization, Lecture Notes in Computer Science, 2001, Zitzler, E., Thiele, L., Deb, K., Coello

Coello, C. & Corne, D. eds., Springer Berlin / Heidelberg, 2001, pp. 314-328.

[104] McGhan, C. L. R., Nasir, A., and Atkins, E. M., "Human Intent Prediction Using Markov Decision

Processes," Proc. Infotech@Aerospace Conference, Garden Grove, CA, June 2012.

[105] McGhan, C. L. R., and Atkins, E. M., "Towards Guaranteeing Safe and Efficient Human-Robot

Collaboration Using Human Intent Prediction," Proc. of AIAA Space 2012 Conference and

Exposition, Pasadena, CA, Sept. 2012.

[106] McGhan, C. L. R., and Atkins, E. M., "Human Productivity in a Workspace Shared with a Safe

Robotic Manipulator," Journal of Aerospace Information Systems, accepted June 27, 2012 (to be

published).

[107] McGhan, C. L. R., Atkins, E. M., and Nasir, A., "Human Intent Prediction Using Markov Decision

Processes," Journal of Aerospace Information Systems, accepted under major revision 7 June 2013

(under review 10 Sept. 2013).

