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ABSTRACT

Bayesian Joint Modeling of Longitudinal Trajectories and Health Outcome: A Broad
Evaluation of Mean and Variation Features in Risk Profiles and Model Assessments

by

Bei Jiang

Co-Chair: Professors Michael R. Elliott and Naisyin Wang

This dissertation consists of methodology developments and applications for joint

modeling of repeated measurements of health risk factors (i.e., longitudinal trajec-

tories) and health outcome data. Joint modeling is a natural choice to link longitu-

dinally observed covariates and disease outcomes: a mixed-effect model postulates

the longitudinal trajectories and features extracted therein serve as predictors in a

primary disease-outcome model. In the first chapter, we consider joint models that

incorporate information from both long-term mean trends and short-term variability

in the longitudinal submodel. We then utilize both multiple shared random-effects

(MSRE) and latent class (LC) approaches to predict a binary disease outcome in the

primary model. We develop simulation studies to compare and contrast these two

modeling strategies; in particular, we study in detail the effects of the primary model

misspecification. In the second chapter, we develop a joint modeling method that

uses the individual-level longitudinal measurements of follicle stimulating hormone

(FSH) to predict the occurrence of severe hot flashes in a manner that distinguishes

long-term trends of the mean trajectory, cumulative change captured by the deriva-

xii



tive of mean trajectory, and short-term residual variability. Our method allows the

potential effects of longitudinal trajectories on the health risks to vary and accumu-

late over time. We further utilize the proposed methods to narrow down the critical

time windows of increased health risks. The third chapter is a detailed study of

model assessment. We evaluate six Bayesian model assessment criteria in the con-

text of a model that simultaneously considers a set of longitudinal predictors and

a primary outcome, connected through either LC or MSRE predictors. We focus on

two evaluation aspects: goodness-of-fit adjusted for the complexity of the models, and

prediction evaluation based on both training and test samples as well as their con-

trasts. An interesting result is that when the data are generated under an MSRE

mechanism but fit assuming an LC mechanism, a very highly predictive “artifact”

can be generated under certain scenarios. The consequence of this phenomenon is

that an over-optimistic classification estimate can be built on such an artifact.

The methods developed in all three papers are applied to data from the Penn

Ovarian Aging Study, a 13-year longitudinal study comprised of a population-based

sample of 436 women aged 35-47 years selected via random-digit dialing in Philadel-

phia, PA during 1996-97 and followed through 2010. The study goal is to explore

the associations between reproductive hormone levels (follicle stimulating hormone

or FSH) and symptoms in the transition to menopause (severe hot flashes).
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CHAPTER I

Introduction

Epidemiology studies or clinical trials often measure both the risk factors and

disease outcome repeated over time in order to seek useful features in these lon-

gitudinal risk profiles to predict disease progression. In previous developments of

statistical tools to analyze such data, the focus has often been on a single longitudi-

nal risk process with the goal of using the true underlying longitudinal process (i.e.,

mean profile) to relate to the disease process. It is therefore natural to model both the

observed longitudinal and disease processes jointly to gain more efficient inference,

where a longitudinal submodel is outlined for the observed longitudinal risk profiles

Y and a primary disease outcome model is defined to link the true underlying longi-

tudinal process and disease process O together. The common approach is to assume

a latent process u underlying both Y and O such that u account for all correlations

between Y and O, i.e., [Y,O]= ∫
[Y,O |u]du= ∫

[Y |u] [O |u]du. Within this general

joint modeling framework, the longitudinal submodel is usually a mixed effect model

and the latent variable u takes one of the two forms: the random effects, defined to

capture the individual variations from the population mean, and the latent class, de-

fined to capture the heterogeneity in the random effects in the sense of Verbeke and

Lesaffre (1996) such that subjects in a particular latent class have similar shapes in

the longitudinal risk profiles and share the same disease risk, possibly conditional on

1



other covariates. Each approach has its own focuses and strengths as we will explore

in later chapters.

Many joint models based on these two approaches have been developed in the

context of cancer research and HIV/AIDS studies, mainly focusing on novel devel-

opments of longitudinal and outcome submodels. Such innovations include the use

of semi- and non-parametric longitudinal models to accommodate more flexible risk

profiles and developing outcome submodels to accommodate more complex disease

outcomes, such as zero-inflated outcomes, competing events, multiple failure times

and cure fractions. For example, Rizopoulos and Ghosh (2011) linked multiple lon-

gitudinal processes of different types to a time-to-event outcome. Thorough reviews

of the topic are given by Ibrahim et al. (2001), Tsiatis and Davidian (1996), Ibrahim

et al. (2010) and Rizopoulos (2012); and a recent special issue of Lifetime Data Anal-

ysis edited by Chen and Gustafson (2011) was dedicated to various aspects of joint

modeling of longitudinal and time-to-event data. However, these previous joint mod-

eling strategies have focused on using the true underlying longitudinal process (i.e.,

mean profile) to predict a disease outcome while treating the residual variability

(i.e., variance) in the longitudinal profile as a nuisance parameter such that it does

not influence the disease progression. Recently, Elliott et al. (2012) proposed a new

method focusing on multiple shared random effects (MSRE) with the individual level

variance in the longitudinal profiles as another latent variable to link both sources

of data. This new method laid out a new framework of joint modeling of longitudi-

nal data and disease outcome data by linking the features in not only the long term

mean trend but also short term variability in the longitudinal trajectories to predict

a disease outcome.

This dissertation contributes to this fast growing area by developing novel joint

models to combine information from both mean trajectory and residual variability

in longitudinal predictors of key health outcomes. Motivating our work is the Penn

2



Ovarian Aging Study (Freeman et al. 2001; Manson et al. 2001), a longitudinal

study consisting of a population-based sample of 436 women aged 35-47 years se-

lected via random digit dialing in Philadelphia County, PA during 1996-97 and fol-

lowed through 2010. One of the major goals of this study is to explore associations

between reproductive hormone levels and symptoms in the transition to menopause.

Follicle stimulating hormone (FSH) is of particular interest because it is known to

stimulate folliculogenesis, an important factor in ovarian aging. Our aim is to de-

velop flexible modeling tools that allow us to uncover new dynamic features in the

various aspects of the FSH evolution history that predict the menopausal symptoms

of interest (in particular, cross-sectional onset of severe hot flashes and severity of

hot flashes).

We base our developments within the framework of joint models of longitudinal

and disease outcome data. We outline one longitudinal submodel for the longitudi-

nal history of FSH levels, and one primary outcome model for symptoms of inter-

est along with assumptions of how the FSH evolution process relates to subsequent

menopausal symptoms. In particular, the formulation of a longitudinal submodel

for the FSH data takes into account the following data features: 1) the FSH data

are highly unbalanced with available measurements across women taken at differ-

ent ages and ranging from 1 to 26 out of the maximum 26 possible measurements;

2) overall, the FSH evolution pattern is relatively flat between age 35 and 40 and

then has an increasing period later on where there exist both acute and gradual

increase periods; 3) the fluctuations of the FSH levels are highly variably among

these women, reflecting low or high short term variabilities around the mean trends.

Motivated by specific scientific questions, we consider association structures that go

beyond the common SRE and LC approaches to relate the important features in the

FSH evolution process to menopausal symptoms.

In Chapter II, we start our analysis with the popular shared random effect and
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latent class approach but built within the new framework proposed by Elliott et al.

(2012) to investigate the interesting features of FSH trajectories that are manifest in

both the mean trends and the short term fluctuations. However, an important limita-

tion of the shared random effects approach is the difficulty of interpreting the effects

when the random effects are associated with complex functions of time (for example,

spline representations). To avoid this difficulty, we seek features in FSH trajectories

from the perspective of linear deviations from a population trend estimated by the

LOWESS method; the individual level mean trends are therefore assumed to deviate

from the LOWESS estimated population trend in the direction of intercept and slope

while also accounting for different rates of change in FSH levels among women. Fi-

nite mixture lognormal distributions are used to model the individual level residual

variance because evidence suggests that the highly variable short term fluctuations

in the FSH evolution process cluster into low or high categories. Although shared

random effect and latent class approaches have their own focuses, a lack of exist-

ing knowledge about the strengths and weaknesses of each approach motivates us

further to compare and contrast these two approaches with the goal of providing use-

ful insights into interpreting our data analysis results. This investigation reveals

interesting phenomena that are new to the literature.

While there are advantages of using summary measures of the longitudinal tra-

jectories to relate to the disease outcome, as in Chapter II, it is also of clinical interest

to investigate the contribution of the history of the FSH levels over the entire late re-

productive period to the menopausal symptoms by quantifying the cumulative time

varying effects and identifying the critical age range when the elevated FSH lev-

els lead to increased risks of more severe symptoms. To meet this aim, in Chapter

III, we consider alternative association structures to link the FSH evolution process

and menopausal symptoms. In particular, we borrow existing tools from functional

data analysis literature while building our models within the framework proposed
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by Elliott et al. (2012), with the goal to distinguish between long-term mean trends

and short-term variability. This proposed association structure relates the primary

outcome of interest to an integral of long-term mean trend µ(t) over certain time

windows, i.e.,
∫

Tµ(t)θ(t)dt, where θ(t) is the functional coefficient function capturing

the cumulative time varying effect due to the longitudinal history. We consider the

Bayesian penalized B spline approach by Lang and Brezger (2004) to achieve smooth

but flexible representation of θ(t). Further, we consider a robust semi-parametric

model to smooth the underlying FSH trajectories by 1) associating random effects

with B spline basis functions in a mixed effect model and using penalty term to

shrink unnecessary fluctuation towards zero; and 2) assuming within-subject resid-

ual errors follow a t distribution rather than a typical normal distribution to avoid

the potential influence of outlying observations, where a mixture of log normal distri-

butions is assumed to allow for potential over-dispersion of the within-subject scale

parameters. In contrast to the two-step procedure used in Chapter II to simplify the

random effects structure, this formulation of the longitudinal submodel is more flex-

ible and makes the evaluation of an alternative association structure
∫

Tµ
′(t)θ1(t)dt

possible, where µ′(t) = ∂µ(t)/∂t and conceptually captures the cumulative changes in

the long-term mean trends. The implementation of the new proposed joint model-

ing approach in Bayesian paradigm is straightforward. It allows for simultaneous

evaluation of the uncertainty in estimating θ(t) or θ1(t) by providing point-wise cred-

ible intervals and eventually leads to easy identification of the critical age range of

increased risks.

In Chapter IV, we focus on the model assessment for the joint models considered

in Chapter II. In practice, such joint models can be used as prognostic tools to predict

prospective event risks for a particular patient, given the patient’s history of longi-

tudinal measurements. However, investigations studying the pros and cons of joint

LC and MSRE models in Chapter II reveal that different numbers of mixture compo-
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nents as well as the assumed association structure to link the longitudinal submodel

and primary outcome model (either in the form of MSRE or LC for these random

effects) can greatly affect the target individualized predictions. In these settings,

it is relevant to consider how to choose among these candidate models and how to

assess which model best predicts the risk of the health outcome of interest. Moti-

vated by these considerations, in this chapter, we evaluate several Bayesian model

assessment criteria, including a recently proposed one, WAIC by Watanabe (2010).

Some criteria are modified following the Bayesian principle when necessary to ac-

commodate the joint modeling framework that analyzes longitudinal predictors and

binary health outcome data. We base our evaluation on empirical numerical studies

and focus on two evaluation aspects: goodness-of-fit adjusted for the complexity of

the models, reflected by the numbers of latent features in the longitudinal trajecto-

ries that are part of the hierarchical structures in the joint models, and prediction

evaluation based on both training and test samples as well as their contrasts.

Finally, we conclude this dissertation in Chapter V, summarizing our major find-

ings, exploring in some depth issues that were set aside in the main chapters, and

discussing limitations and suggestions for future research.
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CHAPTER II

Joint Modeling of Cross-Sectional Health Outcomes

and Longitudinal Predictors via Mixtures of Means

and Variances

2.1 Introduction

Joint models are a natural choice to link longitudinally observed covariates and

disease outcomes. Many joint models have been developed in the context of cancer

research and HIV/AIDS clinical trials, where a mixed-effect model is outlined for the

longitudinal trajectories and a primary outcome model is defined for the disease out-

come. The two models are usually linked together in one of two ways: (1) shared

random effects (SRE) models, where a functional form of the random effects in the

mixed effect model is a covariate in the outcome model, and (2) latent class (LC) mod-

els, where there exists heterogeneity (precisely, latent classes) in the mean profiles

of the longitudinal trajectories, and the subjects in a particular latent class share the

same risk of event, possibly conditional on other covariates. Each approach has its

strengths.

For SRE models, the random effects are assumed to capture the main features

in the longitudinal trajectories that predict the outcomes. The concept of “shared

parameters” was used in Wu and Carroll (1988) to model non-ignorable missing data.
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Articles by Tsiatis and Davidian (2004) and Ibrahim et al. (2010) and the book by

Ibrahim et al (2001) offer excellent general reviews of these models.

In the LC model literature, growth mixture models (Verbeke and Lesaffre (1996),

Muthén and Shedden (1999), Muthén et al. (2002)) are often used to classify longi-

tudinal trajectories. Proust-Lima et al (2012) studied the joint LC modeling in detail

and contrasted its use with that of joint SRE models. To the best of our knowledge,

their work was the first to investigate and compare the goodness of fit and prediction

accuracy of joint LC versus joint SRE modeling. They illustrate and compare model

performance using data from a prostate cancer study.

In this paper, we use both approaches to investigate the association between

longitudinal hormone levels and menopausal symptoms for a group of middle-aged

women. The Penn Ovarian Aging Study (Freeman et al. 2001; Manson et al. 2001) is

a longitudinal study consisting of a population-based sample of 436 women aged 35-

47 years selected via random digit dialing in Philadelphia County, PA during 1996-

97. At each annual assessment period, study personnel visited each subject two

times approximately one month apart for an in-person interview and a blood sam-

ple for hormone measurements. One of the major goals of this study is to explore

associations between reproductive hormone levels and symptoms in the transition

to menopause. Changes in hormone levels alter menstrual bleeding patterns prior

to the cessation of menstruation (menopause) marking the end of a woman’s repro-

ductive years. This course of events, which can last 5 or more years, coincides for

a majority of women with the development of hot flashes, sleep disorders, and bone

loss, among other symptoms. While researchers have focused on the associations

between these symptoms and hormone levels, the impact of within woman rate of

change and variability in hormones, such as Follicle Stimulating Hormone (FSH), is

not well understood.

To address such questions, we investigate methods that can model different as-
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pects of the dynamic process of hormone change and variability and simultaneously

link them with the symptoms of interest. A novel feature of our modeling effort is

to link both longitudinal profiles and residual variability of the FSH measures to

risk of experiencing severe hot flashes. While most joint models have treated within-

subject variability as a nuisance parameter, recently a small literature has developed

to evaluate the associations between within-subject variability in longitudinal data

and the primary outcomes (Sammel 2001; Elliott 2007, 2012). Because of biological

considerations that subject-level hormone fluctuation may accentuate menopausal

symptoms (Gracia et al. 2004; Freeman et al. 2006), we develop a joint modeling

approach that simultaneously examines the association between subject-level mean

trajectories and variability of FSH, and the binary indicator of severe hot flashes.

Because of evidence that these trajectories or variabilities are heterogenous and

cluster into possibly clinically relevant groupings, we develop a first-stage growth

mixture model for FSH hormone that also includes latent classes for the subject-level

variability. We consider two second-stage outcome models: one based on a “multiple

shared random effects” (MSRE) model that uses the individual level trajectories and

variabilities to predict severe hot flash experience, and the other based on an LC

model that uses the latent classes themselves to predict the experience of severe

hot flashes. Our key focus is not on one second-stage model or the other, but their

contrast. In addition to model fit and model checking efforts, we develop simulation

studies to examine the robustness and predictive accuracy of each approach when the

model may or may not be correctly specified. While Proust-lima et al.’s work (2012)

mainly focuses on comparing different modeling strategies on a real data example,

our simulation investigation sheds light on the potential impact of model misspecifi-

cation in terms of model estimation and predictive power.
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2.2 Joint models and corresponding approaches

The joint modelling approach consists of a model for the longitudinal trajectories

and a primary model for the outcomes.

• The longitudinal submodel is a generalized growth mixture model (Muthén and

Shedden 1999) with subject-specific mean trajectories and residual variances:

yi j|bi,σ2
i ∼N{ f (bi; ti j),σ2

i }

D i ∼Multinomial(πD
1 , ...,πD

KD
)

bi|D i = d ∼N(βd,Σd),d = 1, ...,KD

Ci ∼Multinomial(πC
1 , ...,πC

KC
)

σ2
i |Ci = c ∼ log-N(µc,τ2), c = 1, ...,KC

(2.1)

where, yi j denotes the longitudinal covariate for the ith subject at time ti j, j =
1, ...,ni, i = 1, ...,n, bi are random effects that reflect the subject-level trajectory

patterns, and σ2
i is the residual variance. D i and Ci define the latent classes

for the longitudinal means and individual variance memberships, respectively.

• The primary outcome model is a probit regression model:

Φ−1(P(oi = 1))=Z′
iη, (2.2)

where oi denotes the binary indicator of outcome, Zi denotes a vector of the co-

variates in the probit model for subject i, i = 1, · · · ,n and Φ(·) is the cumulative

distribution function for the standard normal distribution. For the LC probit

model, Zi contains the latent class membership indicators D i and Ci; while

for the MSRE probit model, Zi contains the specific shared random effects and

residual variances. Other fully-observed baseline predictors may be included

in Zi as well.
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2.2.1 Likelihood specification

Let φ = (πD
d , βd, Σd, d = 1, ...,KD ; πC

c , µc, c = 1, ...,KC, τ2, η)′, where we as-

sume each parameter in φ has independent prior distribution with the joint prior

distribution denoted by π(φ), and z include all unobserved latent variables, i.e.,

z = (b,σ,C,D)′. The observed data x consists of the longitudinal profiles y1, ...,yn

and the observed outomes o1, ..., on. Then the complete data likelihood of φ based on

the complete data (x,z) is given by

f (x,z|φ)∝
{

n∏
i=1

[∏
d

[
πd(2π)−

r
2 |Σd|−

1
2 exp

{
−1

2
(
bi −βd

)′
Σd

(
bi −βd

)}]I(D i=d)

×∏
c

[
πc(2πτ2)−

1
2σ−2

i exp
{
− 1

2τ2

(
logσ2

i −µc
)2

}]I(Ci=c)

×
ni∏
j=1

1√
2πσ2

i

exp

[
− 1

2σ2
i

{
yi j − f (bi; ti j)

}2
]

×Φ(Z′
iη)oi

{
1−Φ(Z′

iη)
}1−oi

]}
π(φ)

(2.3)

2.2.2 Prior specification and posterior computation

We propose a fully Bayesian approach to estimate model parameters. Weakly

informative conjugate priors were used whenever possible. For the mixture normal

distribution of the random effects, we let βd ∼ N(0,V), V = nĈov(β̂) where β̂ is the

linear regression estimator of y on the design matrix of t defined by f (·; ti j). This

corresponds to a prior “single observation” data-driven inflated covariance structure

centered at a null model, and avoids improper posteriors resulting from the possi-

bility that some of the latent classes are not represented in the data (Elliott et al.

2005). For the the variance-covariance matrix for the random effects Σd, we use the

prior proposed by Kass and Natarajan (2006): Σd ∼ Inverse-Wishart(df= r,Λ), where

Λ= r
(∑n

i=1 Ĉov(b̃i)−1/n
)−1

, b̃i is given by OLS estimator of bi for subject i and r is the

dimension of bi. This prior restrains the eigenvalues of the variance-covariance ma-
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trices away from 0, avoiding the improper posterior that can result from unbounded

likelihoods when the variance-covariance matrix is unrestricted in normal mixture

models (Day 1969).

For the mixture log normal distribution for the residual variances, we used dif-

fuse priors: µc ∼ N(0,v), τ−2 ∼ Gamma(a,b) with v = 1000 and a = b = .001. For

the class membership probabilities, we assume conjugate Dirichilet(4, ...,4) on both

πC = (πC
1 , ...,πC

KC
) and πD = (πD

1 , ...,πD
KD

) (Frühwirth-Schnatter 2006); this is equiva-

lent to assuming a priori 4 observations in each class, avoiding the existence of empty

classes. Lastly, we let θ ∼ N(0, (9/4)I) in the probit regression, where (9/4)I is chosen

to bound the estimated outcome probabilities to be away from 0 and 1 (Garrett and

Zeger 2000; Elliott et al. 2007, and Neelon et al., 2011).

Gibbs sampling is used to obtain draws from the corresponding posterior distribu-

tions. For (θ |C,D,O) we use the Albert and Chib (1993) data augmentation method

for probit regression models. The draws of (σ2
i |Ci,µc,τ2,bi, oi, {yi j} j) for i = 1, ...,n are

obtained the inverse cumulative distribution method. The exact specifications of all

priors and MCMC sampling procedures are provided in the Appendix A.

Three chains from diverse starting points were run and Gelman-Rubin statistics

(Gelman et al. 2003) were used to assess the convergence of the MCMC chains. For

the well-documented issue of "label switching" in finite mixture modeling (Redner

and Walker 1984), we applied the post-processing relabeling algorithm (Stephens,

2000) in which all possible permutations of class assignments are considered at each

iteration of the Gibbs sampler. The permutation of the class assignment was chosen

to maximize the posterior probability so that the labeling of classes was consistent

with the previous assignments. For our models with KD = 2 or KC = 2, there is

little evidence of label switching and Stephens’s relabeling algorithm converged very

rapidly with the class labels from the initial MCMC output. But for models with

more classes (KD = 3 or KC = 3), where label switching happens more frequently, we
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initialized the class labels prior to running the algorithm by "reordering" the labels

within chains based on visual inspection, since the convergence speed of Stephens’s

algorithm may depend on the quality of initial labels.

2.2.3 The choice of the number of classes

The choice of the number of latent classes is known to be a challenging problem;

see discussions by McLachlan and Peel (2000) and Beunckens et al. (2008). We con-

sidered two criteria: the deviance information criterion (DIC), proposed by Spiegel-

halter et al. (2002), and the logarithm of the pseudomarginal likelihood (LPML)

(Geisser and Eddy 1979). DIC uses the discrepancy between the posterior mean of

the deviance D(φ) = Eφ

{−2log f (x |φ) | x}
and the deviance evaluated at the poste-

rior mean D(φ) =−2log f
{
x | E(φ | x)

}
to estimate the effective number of degrees of

freedom in the model pD . DIC is then given by the analog of the Akaike Information

Criterion (AIC):

DIC(x)= D(φ)+ pD = 2D(φ)−D(φ)=−4Eφ

{
log f (x |φ) | x}+2log f

{
x |E(φ | x)

}
.

In our setting, f (x |φ), where x = (y,o)′ consisting of the fully-observed data, is not

available in closed form; instead we use the approach outlined in Celeux et al. (2006)

to obtain

DIC(x)=Ez {DIC(x,z)}=−4Ez,φ
{
log f (x,z |φ) | x}+2Ez

[
log f

{
x,z |Eφ(φ | x,z)

} | x]

where integration over the latent variables z= (b,σ,C,D)′ is obtained via numercial

methods; detailed are provided in Appendix A.

LPML corresponds to a Bayesian cross-validation measure, defined as LPML =
n∑

i=1
log(CPOi), where CPOi = f (yi, oi|y(−i),o(−i)) represents a cross-validated posterior

predictive density for (yi, oi) given the data excluding (yi, oi) (denoted by (y(−i),o(−i))).
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The model with higher value of LPML provides better fit to the data (Ibrahim et al.,

2001). Details of the LPML computation are also provided in Appendix A.

2.2.4 Goodness of fit evaluation

We assessed the model goodness of fit to the data in two ways. First, we examined

the posterior predictive distributions (PPDs; Gelman et al. 2003), where a PPD p

value close to 0.5 implies a good fit of the model to the data. For the longitudinal

trajectories, we use repeated posterior draws to compute the PPD p values

P
{
Ti(yi;bi,σ2

i )< Ti(y
rep
i ;bi,σ2

i )
}

,

where we consider a χ2-like statistic, Ti(yi;bi,σ2
i ) = ∑

j
{
yi j − f (bi; ti j)

}2 /σ2
i for sub-

ject i. For the outcome oi, we compute P
(
Trep < Tobs

)
using repeated posterior

draws, where Tobs = n−1 ∑
i I(oi = 1), and Trep = n−1 ∑

i orep
i with orep

i following a

Bernoulli distribution of the success probability Φ(Z′
iη).

Second, we assessed the discriminatory ability of the model using receiver-operating

characteristic (ROC) curves, in particular the area under the ROC curve (AUC). ROC

curves plot true positive rate (TP) versus false positive rate (FP) for all possible cut-

offs based on predicted P(oi = 1) = Φ(Z′
iη) obtained from (4.3). The ROC curve and

AUC were computed at each MCMC iteration using the ROCR package in R (Sing

et al. 2005). The ROC is computed by ordering the observations (i) = 1, ...,n so that

P̂(o(i) = 1) ≥ P̂(o(i+1) = 1), computing changepoints c = 2, ...,nc, nc ≤ n where the ob-

servations change from positive to negative (i.e., o(c−1) = 1, o(c) = 0), and plotting∑c
(i)=1(1− o(i))/

∑n
(i)=1(1− o(i)) on the x-axis versus

∑c
(i)=1 o(i)/

∑n
(i)=1 o(i) on the y-axis.

Area under the ROC is then computed using a trapezoidal approximation. The pos-

terior mean AUC is calculated as the average AUC’s across MCMC iterations. To

obtain the posterior mean and the pointwise 95% credible interval of ROC curve,
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we select 250 points equally spaced along the FP axis and take the vertical average

or 95% quantiles of TP’s at the 250 chosen points. This approach is referred to as

vertical averaging of ROC curves at fixed FP rates by Fawcett (2006).

2.3 Simulations

In this section, we conduct simulation studies to evaluate the inferential proper-

ties of the LC and MSRE approaches when the model is correctly specified and when

it is not (i.e., the data are generated under the LC model but analyzed using the

MSRE model, and vice versa). We consider four scenarios for the longitudinal model

with different levels of overlap between two mixtures in both mean profiles and vari-

ance patterns, crossed with two cross-sectional outcome models. For the longitudinal

observations, we generate data from the following model with two mean profile and

two variance classes,

yi j|bi,σ2
i ∼N(b0i +b1i ti j,σ2

i )

bi ∼πdN(β1,Σ1)+ (1−πd)N(β2,Σ2)

logσ2
i ∼πcN(µ1,τ2)+ (1−πc)N(µ2,τ2)

(2.4)

where i = 1, ...,200 and ti j = 0,1,2, ...,ni with ni ≡ 20. For k = 1,2, we let βk =
(βk1,βk2)′ and

Σk =

 ω2
k1 ρkωk1ωk2

ρkωk1ωk2 ω2
k2

 .

We let β1 = (0,0)′ and β2 = (2
p

2,2
p

2)′, ρ1 = 0 and ρ2 = −0.6, and µ1 = −2 and

µ2 = −.5 in all scenarios. Thus the mean of the two bivariate normals differs by 4

throughout, while the mean log of the variances are separated by 1.5. Our four lon-

gitudinal model scenarios are defined by (ω2,τ2)′ = (2, .25), (1, .25), (2, .06), and (1, .06),

respectively, where ω=ω11 =ω12 =ω21 =ω22.

15



Figure 2.1 shows the 95% contours for the two components in the mixture mean

profiles and the density plots of the mixture log-variance classes in each of the four

scenarios: both mean and variance classes heavily overlapping (scenario # 1, the

most challenging in terms of identification), only the variance classes heavily over-

lapping (scenario # 2), only the mean classes heavily overlapping (scenario # 3), nei-

ther the mean nor the variance classes heavily overlapping (scenario # 4, the least

challenging in terms of identification). In all scenarios, we let πd = 0.35 and πc = 0.65.

For each of the simulation scenarios proposed for the longitudinal observations,

the following two underlying probit models are considered for health outcome:

1. latent class (LC) probit submodel:

Φ−1 {P(oi = 1)}= θ0 +θ1I(D i = 2)+θ2I(Ci = 2)+θ3I(D i = 2,Ci = 2) (2.5)

2. multiple shared random effect (MSRE) probit submodel:

Φ−1 {P(oi = 1)}= γ0 +γ1bi0 +γ2bi1 +γ3σ
2
i +γ4bi0σ

2
i +γ5bi1σ

2
i (2.6)

where D i = 1 corresponds to the mean profile class N((0,0)′,Σ1), and Ci = 1 corre-

sponds to the variance class N(−2,τ2) in the longitudinal submodel (4.8). We replace

η in (4.3) by θ for the LC and by γ for the MSRE probit primary models to simplify

the task of presentation; θ0 and γ0 are chosen for each scenario so that the outcome

prevalence is approximately 50 percent.

To investigate the robustness to model mis-specification for each approach, we

generated data from LC and MSRE primary models from equations (4.9) and (4.10)

under each of the four longitudinal mixture scenarios, and then applied the ap-

proaches assuming the LC and MSRE structure to all generated data sets regard-

less of how the data were generated. (For scenarios in which the assumed model is
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mis-specified, we generated observations from 10,000 subjects, obtained the corre-

sponding maximum likelihood estimates constructed under the assumed model, and

repeated the process 1000 times to obtain the averages of the estimated parameters.

We then used these average estimates as the “true” parameters for that simulation

scenario. This practice allows us to compare the robustness for the two different

modeling considerations under the same simulation scenario.) For each scenario,

we simulate 100 data sets and report the Monte Carlo bias, standard deviation (SD),

mean squared error (MSE) and 95% credible interval coverage (95% COV) for the cor-

responding parameters under the correctly and incorrectly specified models. We also

consider the correct classification of subjects to latent classes based on the posterior

mean of P(D i = d | y,o) and P(Ci = c | y,o).

Table 2.1 shows the bias, SD, MSE, and nominal coverage for the probit regres-

sion parameters in the primary outcome model; see Tables 2.5-2.8 for the complete

results for all parameters in the model. Results were quite similar for scenarios #1

and #3: the mean parameters are estimated with bias and sometimes less than nom-

inal coverage, even when the model is correctly specified, due to the difficulties in

separating the two with overlapping distributions (the parameters associated with

the first mean component tend to be better estimated since they compose a larger

fraction of the sample). Incorrectly specifying the MSRE model has less impact on

longitudinal mean estimation than incorrectly specifying the LC model. Incorrect

specification damages the estimation of the mixture proportions for scenarios #1 and

#3; even when correctly specified, the LC model still yields somewhat biased and

undercovered estimates of the mixture proportions, again due to the difficulties in

separating mixture components. In general, both methods performed well in estima-

tion of longitudinal mean components for scenarios #2 and #4, although some bias

and coverage issues remained for the slope of the second component in scenario #2.

The variance components of the longitudinal model were generally well estimated

17



under all scenarios, regardless of model misspecification.

For estimation of the primary outcome model, the correctly specified LC model

has some bias and modest undercoverage for the estimation of the longitudinal mean

effect in scenarios #1 and #3, again resulting from the difficulty in separation of the

clusters. The correctly specified MSRE model generally does well, with some very

modest downward bias in the estimation of the individual residual variance effects.

When incorrectly specified, the LC model is biased, overestimating the main effects

of the longitudinal mean and variance class but underestimating the interaction ef-

fect between these two classes, which eventually leads to very poor coverage. The

MSRE appears to be more robust, with little bias and good coverage of the implied

target MSRE parameters under LC model. Under scenarios #2 and #4, estimation

of the primary outcome model appears to be approximately correct under both the

LC and MSRE models and largely robust to model misspecification, although using

the LC model when the MSRE model is correct under scenario #2 yields some bias

and reduction of coverage due to the imperfect separation of the variances mixtures.

While our findings appear to suggest the use of MSRE approach over that of LC if the

goal is the estimation of regression parameters in the primary outcome model, such

a conclusion must be tempered by the fact that, if the LC model is actually correct,

the target parameters under the MSRE model may be of less interest.

We next turn our attention to evaluating the correctness of outcome prediction

and mis-classification of mixture classes. Again, generating data from the 4 longitu-

dinal scenarios and LC vs MSRE primary models, we evaluate the true area under

the ROC curves (AUC) as well as the corresponding values predicted by assuming the

LC/MSRE models, respectively, in Table 2.2 (a), and compare those with the mean

AUC obtained under the true values of the model. The misclassification rates for

the mixture components are given in Table 2.2 (b). We denote C̃i = argmaxcπ̂
C
ic and

D̃ i = argmaxdπ̂
D
id, where π̂C

ic and π̂D
id are the posterior mean assignment probabilities
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of class-membership of the mean profile and variance class for subject i, respectively.

We also use “D̃ = i|D = j” indicate the case of the true D = j while the predicted D̃ = i

and equivalently define the cases for variable C.

When the model is correctly specified, the repeated sampling mean of the poste-

rior mean AUC is fairly close to the repeated sampling mean of the AUC obtained us-

ing the true parameter value. When the LC model is correctly specified, the empirical

95% credible intervals of AUC when the mean mixtures overlap (scenarios #1 and #3)

are wider than the truth, while the empirical 95% credible intervals of AUC when the

mean mixtures are well-separated (scenarios #2 and #4) are of similar length to the

truth, reflecting the difficulty in separating the mean mixture components in the LC

model and therefore larger variabilities in the predictive power. The empirical 95%

credible intervals of AUC under all 4 scenarios are all very close to the truth when

the MSRE model is correctly specified, since the main outcome model is a function of

the continuous subject-level mean and variance parameters and hence not affected

by any degree of difficulty in separating the mean clusters. When the MSRE model

is used and LC is the truth, it loses a little predictive power only when the mean

mixtures overlap (scenarios #1 and #3); otherwise the results are similar to that of

the correctly specified LC model. However, when the MSRE model is the truth and

the LC model is used, it is interesting to note that, when it is more difficult to sep-

arate the components within the mean class and there exists considerable potential

for misclassification as in scenario #1 and #3, the LC model can achieve either much

higher or lower AUC than the AUC based on ML estimates of probit LC submodel

given known class memberships. Figure 2.2 presents two typical data examples out

of the total 100 data sets that have either very low or very high AUC estimated by the

LC model. In both examples, the AUC’s by the correctly specified MSRE model are

very close to the truth. However, the much higher AUC by LC compared to the MLE

estimate given known class membership suggests that the LC model has some ability
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to create "artificial clusters" of very high predictive performance when MSRE model

is the truth, while the MSRE AUC estimates suffered from imperfect prediction of

the true probabilities of the outcome. On the other hand, when almost all subjects

are being assigned to one mean class by the LC model, prediction of the outcome is

solely dependent on the variance class and consequently the LC model had worse

predictive performance than the ML estimates of probit LC submodel given known

class membership. This phenomenon is an unique artifact of joint LC modeling, and

may be due to the fact that the mixture classification is computed given both the

longitudinal data y and the outcome o. When the information from the longitudinal

data is weak, the class membership can be “artificially” explained by the outcome o.

With the outcome o being binary, classes were artificially created to match the two

outcome groups of o = 0 and o = 1. These two commonly observed cases presented

in Figure 2.2 illustrate this phenomenon which leads to overly inflated variation for

LC estimated AUC (i.e., considerably wide 95% credible intervals of AUC given in

Table 2.2); what is observed in Figure 2.2 (a) and (b) also leads to the high mis-

classification rate of class membership. This phenomenon for joint LC modeling also

happens when the data are generated with the LC model, but the effect is much less

prominent. To our knowledge this has not been previously noted in the literature

and could have strong implications for model interpretation.

Finally, in terms of misclassification rates of mean class membership, we see con-

sistent patterns with the above discussion. The LC model tends to perform reason-

ably well when correctly specified; when LC is fit using MSRE data, the misclassi-

fication rates for the mean classes are high. In addition, the LC approach seems to

perform a bit better than the MSRE when the model is correctly specified, where the

latter deteriorates for Scenarios # 1 and # 3, regardless of whether the model is cor-

rect or not. This is consistent with what we have observed for the MSRE longitudinal

mean parameters. When the mixture components are well separated, as in scenario
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#4, both approaches perform well regardless of model specification. Variance classes

are generally well estimated; there is some modest reduction in accuracy under Sce-

narios # 1 and # 2, where the separation is less complete, but results are robust to

model misspecification.

2.4 Analysis of Penn Ovarian Aging Study data

One goal of the Penn Ovarian Aging Study is to determine to what extent the

longitudinal Follicle Stimulating Hormone (FSH) observations are predictive of se-

vere hot flashes during the follow-up period. After taking into account the population

level non-linear trend of these annual measurements, we seek to evaluate whether

subject-specific trends in FSH as well as underlying latent class membership de-

termined by these trends are associated with severe hot flashes. Out of the 436

women in the study, we restrict our analysis to the 245 who a) reported having not

experienced severe hot flash symptoms at baseline and b) had at least 3 follow-up

measurements of FSH levels. Hormone values were treated as missing if a woman

was pregnant, breast feeding or taking exogenous hormones during the 13 years of

follow-up, since these circumstances will dramatically affect FSH levels. A total of

4,244 hormone values were observed during follow-up, with a minimum of 3 and a

maximum of 26 per woman. Of the 245 women without severe hot flash symptoms

at baseline, 118 (48.2%) had experienced severe hot flashes at least once during the

study.

We let yi j denote the mean detrended log(FSH) obtained from the lowess residu-

als (Figure 2.3) and oi denote the severe hot flash indicator: oi = 1 if had experienced

severity score ≥ 2 at least once during study. Preliminary analysis using standard

linear mixed effects (LME) models indicated that a random intercept and linear slope

model is sufficient to capture the trends in the residual subject-level trajectories. In

particular, orthogonality of design matrices can help improve chain mixing and con-
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vergence. Thus we let f (bi; ti j) = bi0 + bi1ti j, where ti j is the first degree orthogonal

polynomial of subject age, and bi0 and b1i are the subject specific random intercepts

and slopes, respectively. We then jointly model the FSH mean profile and variance to

predict the onset of severe hot flash using our models in (4.2) and (4.3). We examine

the strategies of using the primary probit LC and MSRE models under the joint mod-

elling framework, as presented in section 2.2. We also adjust for additional baseline

covariates log(BMI) and smoking status in both primary models.

For all the models considered in this section, we ran three MCMC chains of 50,000

iterations, with the first 10,000 iterations discarded as burn-in. We retained every

10th draw to reduce autocorrelation. We assessed convergence of the chains using

the Gelman-Rubin statistic R̂, based on the ratio of the total variance across the

chains to the within-chain variance. The maximum value among all population and

subject-specific parameters was less than 1.1, indicating convergence.

Given the moderate sample size, we consider the models with a maximum of three

components for both mean profile and variance classes: i.e., we let KD = 1,2,3 and

KC = 1,2,3. As shown in Table 2.3, both the likelihood and LPML measures (note:

log likelihood is computed as the posterior mean of the log likelihood) suggest that

the models with multiple components in both mean profile and variance classes fit

the data much better than models with single-component mean profile and variance

classes under both joint MSRE and LC models. In constrast, DIC favors simpler mod-

els for both joint modeling strategies. The likelihood is essentially flat for the MSRE

model for KD ≥ 2,KC ≥ 2; for the LC model, the likelihood continues to decrease as

the number of mean and variance classes increase. Under the DIC, a model with one

class for the mean trajectory and two for the variance fits best for both the MSRE

and LC models, with a two-class model for both the mean and variance a somewhat

close second for both the MSRE and LC models. Accounting for model predictive per-

formance with LPML, the two-class mean and one-class variance provides the best fit
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for the MSRE model, with the two-class mean and two-class variance a close second;

similar results are obtained for the LC model, with the best (now two-class mean and

variance) and second-best (two-class mean and one-class variance) switched from the

MSRE model. Hence we focus on the KD = 1,KC = 2 class in the remainder of the

analysis, although we report the results for the KD = 2,KC = 2 as well.

Figure 2.4 shows the mean trajectories and the variances for the KD = 1,KC = 2

model (MSRE on the left side, LC on the right side), indicating the bimodal nature

of the posterior means of the individual variances. Table 2.4 reports the results for

both the KD = 1,KC = 2 and KD = KC = 2 MSRE and LC models. There is little

difference between the LC and MSRE model with respect to the estimation of the

longitudinal submodel. The two class mean model separates the mean trajectories

into two approximately equal-sized classes, with one a “null class” with slope and

intercept near zero, the other a “high and rising” class with an slope of .21 under the

MSRE model and .20 under the LC model, and an intercept of .16 under both models.

All models suggest that a little more than one in five women (23% under MSRE, 21%

under LC) belong to a low residual variance class (centered at .07(MSRE)/.06(LC)),

while the remainder belong to a higher variance class centered at .32(MSRE)/.31(LC).

For the outcome, both the MSRE model and the LC model suggests positive and

highly significant association between subject-level variance and risk of hot flash. For

a non-smoking woman at mean BMI of 27.7 with detrended FSH slope and intercept

at the population mean, the probability of experiencing a severe hot flash under the

MSRE model with KD = 1,KC = 2 is 29.7% (19.0%, 41.7%) if her residual variance is

at the Class 1 mean and 45.9% (37.8%, 54.0%) if her residual variance is at the Class

2 mean. The difference is greater under the LC model with KD = 1,KC = 2, where

non-smoking women with mean BMI have a predicted hot flash probability of 17.2%

(4.1%, 32.0%) if they are in the low variance class (Class 1) and 51.6% (43.0%, 60.2%)

if they are in the high variance class (Class 2). The MSRE model also provides some
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evidence that subjects with higher baseline FSH are at reduced risk of hot flash (95%

credible interval barely excludes 0 under KD = 1,KC = 2 and barely includes 0 under

KD = KC = 2); the LC model with KD = 1,KC = 2 by definition excludes mean tra-

jectories from influencing the outcome, but even assuming KD = KC = 2 provides no

evidence that the different mean classes are associated with the hot flash outcomes.

Neither the MSRE or LC models provide any evidence of interaction between the

subject-level residual trajectories and subject-level variances (interactions can only

be estimated for the KD = KC = 2 LC model). All models provided marginal evidence

to support smoking at baseline as contributing to higher risk of severe hot flash; this

evidence was somewhat weaker under the LC model than under the MSRE model

due to somewhat greater uncertainty in the smoking effect. Baseline BMI was not

found to be important to the risk of severe hot flash under any model.

2.4.1 Model Fit and Model Checking

For final joint MSRE and LC models with KD = 1,KC = 2, the resulting his-

tograms of the 245 PPD p values shown in Figure 2.3 indicate good fit of the LOWESS

mean detrended log(FSH) values. The PPD p values range from 0.06 to 0.94 with me-

dian 0.53 under MSRE model and range from 0.09 to 0.92 with median 0.53 under

the LC model. The top row in Figure 2.7 shows three randomly selected individual

fits with PPD p values between 0.1 and 0.9, where both MSRE and LC models lead

to almost identical and fairly good fits by visual inspection; the bottom row in Figure

2.7 shows the total three individual fits with PPD p values less than 0.1 or greater

than 0.9 under either model, indicating that the small PPD p values appear to be

driven by the individual outlying points and large p values are caused by the "almost

perfect" fits. Web Figure 2.8 shows that only about 4% of the points are not covered

by the subject-level posterior predictive intervals under both LC and MSRE models,

again indicating good fit of the longitudinal trajectories except a few outlying obser-
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vations. For the outcome submodel, the PPD p values are 0.519 and 0.533 under

MSRE and LC models respectively, indicating a good fit to the onset of severe hot

flash.

Further, we found that the MSRE model had somewhat greater predictive power

as assessed by ROC curves (posterior mean of AUC=.685) than the LC model (poste-

rior mean of AUC=.648) (Figure 2.5), although a comparison of AUCs suggests that

the difference in the performance was not clearly delineated (∆AUC is .037 (-0.040,

0.114)). Comparing the posterior mean of MSRE (.679) and LC models (.688) when

KD = KC = 2 suggests that the mean trajectories do carry a modest amount of infor-

mation to predict hot flash experience, since information about the trajectories can

only be used in the LC outcome model when KD > 1.

2.4.2 Summary

In our analysis of FSH and severe hot flash data from Penn ovarian aging study,

there appeared to be weak evidence for two types of subject-level FSH residual trajec-

tories (one “null" with slope and intercept near zero, the other with higher intercept

and increasing values over age), and strong evidence for two clearly distinct underly-

ing clusters of subject-level FSH residual variances (one low, one high). There was no

strong evidence in either model that the mean profile was associated with such risks,

although the MSRE model gave some evidence that subjects with higher predicted

baseline (age 35) residual FSH measures were less likely to experience hot flashes.

However, both the MSRE and LC modeling strategies revealed that higher within-

subject variability (which can be interpreted as larger short-term fluctuations) con-

tributes to significantly increased risk of severe hot flash while adjusting for baseline

covariates of smoking and BMI. This important message from the data could have

been overlooked if we had treated variability as a nuisance parameter, as is usually

done even in joint longitudinal predictor/cross-sectional outcome settings.

25



In selecting between the LC and MSRE models for the Penn ovarian aging study

data, measures of model fit give some preference to the MSRE model. Although,

with the variances being the only key predictor outside of baseline smoking status,

their clear separation into two components suggests that, per the simulation results,

both the LC and MSRE modeling strategies will behave well regardless of the true

outcome model generation mechanism.

2.5 Concluding Remarks

The joint LC and SRE models were originally proposed to link the important char-

acteristics or features in the longitudinal mean trajectories to the primary health

outcome of interest. While the joint LC model focuses on the clustering of those fea-

tures (mean profile class), the joint SRE model focuses on the feature itself (random

effect itself). In this paper, we consider an extended version of joint LC and SRE mod-

eling by also considering the latent class in the variance structure. Therefore, our

modeling approach allows discovery of predictive longitudinal features that distin-

guish between short-term variability (defined by variance class) and long-term trend

(defined by mean profile class).

Both LC and MSRE models are built upon different assumptions that are gener-

ally difficult to verify without knowing the truth. However, relatively little attention

has been paid to the potential impact of model misspecification in the joint modeling

framework. This work provides guidance concerning the potential impact of choos-

ing the wrong model to link both longitudinal and health outcome data under our

extended LC and MSRE modeling strategy. In particular, we conducted simulation

studies to investigate 1) the performance of LC and MSRE models, and 2) their ro-

bustness to model misspecification, when assuming two components in each latent

class–mean profile class and variance class. For the longitudinal parameters, the

MSRE model performed poorly when the components of the latent classes were not
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well separated, and well when they were; these results were consistent whether the

outcome model data were generated under the MSRE model or the LC model. In

contrast, the LC model outperformed the MSRE model when the components of the

latent classes were not well separated, but was more sensitive to model misspecifi-

cation unless components were well-separated. In terms of the parameter estima-

tion and outcome prediction in the primary outcome model, LC and MSRE modeling

strategy performed differently. First, the MSRE approach was not as sensitive to

small separations of latent classes as LC approach because correct class assignment

is more critical to estimating the outcome model parameters under LC modeling

strategy. Second, the MSRE approach was more robust to model misspecification:

it enjoyed smaller elevated biases and maintained more sensible coverage than LC

approach under model misspecification, while the misspecified MSRE AUC measure

was almost identical to the truth while LC approach suffered considerable loss of

predictive power when misspecified. When the LC model is misspecified, the loss

of predictive power phenomenon can be explained by the potential loss of informa-

tion when replacing a continuous variable by a discretized version in the regression

analysis. On the other hand, even when the information is fully captured by the cat-

egorical variable (i.e., the MSRE model is misspecified relative to the LC model), the

use of its continuous version can help fully recover the true information. These two

advantages motivate us to recommend MSRE modeling strategy to achieve the goal

of inference in the primary outcome model. However, the interpretation in MSRE

model is not as easy as LC model, where one can relate the outcome risk to distinct

features identified by the various latent classes.

This work can be extended in a variety of manners. For example, the assumption

of a simple linear or low-order polynomial function for the longitudinal predictors

could be relaxed to allow for a penalized spline or functional regression model. This

may provide a more non-parametric parsing of “short term” and “long term” subject-
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level variability, if sufficient data are available at the subject level to allow estimation

of such terms. Also, developing methods to compensate for missing data in both the

longitudinal predictors and outcome measures, particularly under non-missing-at-

random mechanisms, will have practical application as well.
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Figure 2.1: Simulation setup for the mean profiles and variance classes: left column:
95% contour plots of the two components for mean profile class; right
column: density plots of the two components for variance class (dotted
curves are the density curves for the variances).
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Figure 2.2: Two typical ROC’s when the truth is joint MSRE model: (a) and (b) are
from the data set where “artificial mean clusters” are created by joint
LC model; (c) and (d) are from the data set when an almost empty mean
cluster is created by joint LC model. Note: “assumed” refers to the ML
estimates of LC probit submodel given known class memberships.
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Figure 2.4: Posterior pointwise 95% credible intervals for the mean profile classes
and the histograms of log-variances with KD = 1,KC = 2: (a) and (c): un-
der joint MSRE model and (b) and (d): under joint LC model.

32



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

joint MSRE
joint LC

Figure 2.5: Posterior average of the receiver operating characteristic (ROC) curves
under joint MSRE model (average AUC=0.685 with 95% CI (0.632,
0.736)) and joint LC model (average AUC=0.648 with 95% CI (0.590,
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Figure 2.7: The individual fits in the analysis of Penn ovarian aging data with solid
line: under joint MSRE model and dashed line: under joint LC model;
top row: 3 randomly selected individual fits with PPD p values between
0.1 or great than 0.9 and bottom row: individuals with PPD p values less
than 0.1 or great than 0.9.
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Table 2.1: Simulation results from 100 datasets of size, n = 200.
(a) Generated from longitudinal scenario # 1

True LC structure True MSRE structure

Assumed 95% 95%
Structure TRUE BIAS SD RMSE COV TRUE BIAS SD RMSE COV
LC θ0 −0.80 −0.65 0.50 0.82 0.89 −0.40 −1.00 1.13 1.51 0.35

θ1 1.80 0.61 0.66 0.90 0.88 −0.11 2.40 2.34 3.35 0.35
θ2 −0.20 0.20 0.69 0.72 0.98 0.53 1.64 1.76 2.41 0.36
θ3 −0.30 −0.28 0.82 0.87 0.97 0.16 −3.69 3.73 5.24 0.35

MSRE γ0 −0.32 0.00 0.21 0.21 0.95 −1.00 0.19 0.24 0.30 0.92
γ1 0.20 0.01 0.11 0.11 0.96 1.00 −0.09 0.16 0.18 0.95
γ2 0.18 −0.01 0.11 0.11 0.96 −1.00 0.04 0.17 0.18 0.96
γ3 −0.22 −0.15 0.60 0.62 0.92 2.00 −0.52 0.58 0.78 0.87
γ4 −0.04 0.01 0.32 0.32 0.93 −2.00 0.29 0.36 0.46 0.90
γ5 −0.04 0.06 0.30 0.30 0.94 2.00 −0.14 0.38 0.41 0.95

(b) Generated from longitudinal scenario # 2

True LC structure True MSRE structure

Assumed 95% 95%
Structure TRUE BIAS SD RMSE COV TRUE BIAS SD RMSE COV
LC θ0 −0.80 −0.06 0.25 0.25 0.98 −0.48 −0.19 0.30 0.36 0.89

θ1 1.80 0.13 0.37 0.39 0.98 0.06 0.03 0.45 0.45 0.92
θ2 −0.20 −0.07 0.52 0.52 0.96 0.65 0.52 0.66 0.84 0.84
θ3 −0.30 −0.05 0.69 0.69 0.96 −0.08 −0.09 0.91 0.92 0.87

MSRE γ0 −0.66 0.01 0.24 0.24 0.98 −1.00 0.07 0.24 0.25 0.97
γ1 0.28 −0.02 0.12 0.12 0.96 1.00 −0.05 0.17 0.17 0.94
γ2 0.28 0.02 0.11 0.11 0.94 −1.00 0.02 0.17 0.17 0.93
γ3 −0.22 −0.28 0.56 0.62 0.97 2.00 −0.33 0.59 0.68 0.96
γ4 −0.05 0.12 0.33 0.35 0.89 −2.00 0.17 0.37 0.40 0.95
γ5 −0.05 −0.02 0.29 0.30 0.94 2.00 −0.06 0.39 0.39 0.97

(c) Generated from longitudinal scenario # 3

True LC structure True MSRE structure

Assumed 95% 95%
Structure TRUE BIAS SD RMSE COV TRUE BIAS SD RMSE COV
LC θ0 −0.80 −0.60 0.42 0.74 0.87 −0.41 −1.02 1.15 1.54 0.34

θ1 1.80 0.53 0.55 0.77 0.91 −0.12 2.52 2.28 3.40 0.31
θ2 −0.20 0.10 0.62 0.63 1.00 0.57 1.30 1.50 1.98 0.34
θ3 −0.30 −0.11 0.77 0.77 1.00 0.15 −3.42 3.15 4.65 0.36

MSRE γ0 −0.28 −0.01 0.20 0.20 0.96 −1.00 0.16 0.22 0.28 0.96
γ1 0.19 0.02 0.13 0.13 0.89 1.00 −0.09 0.15 0.18 0.92
γ2 0.20 0.00 0.14 0.14 0.93 −1.00 0.04 0.16 0.17 0.92
γ3 −0.37 −0.12 0.47 0.49 0.98 2.00 −0.42 0.53 0.68 0.94
γ4 −0.07 −0.10 −0.03 0.34 0.92 −2.00 0.25 0.35 0.43 0.94
γ5 −0.07 −0.04 0.04 0.36 0.93 2.00 −0.10 0.35 0.37 0.96

(d) Generated from longitudinal scenario # 4

True LC structure True MSRE structure

Assumed 95% 95%
Structure TRUE BIAS SD RMSE COV TRUE BIAS SD RMSE COV
LC θ0 −0.80 −0.01 0.19 0.19 0.97 −0.50 −0.05 0.24 0.25 0.91

θ1 1.80 0.00 0.25 0.25 0.99 0.06 0.05 0.30 0.30 0.90
θ2 −0.20 −0.08 0.51 0.52 0.95 0.69 0.10 0.38 0.40 0.94
θ3 −0.30 0.09 0.57 0.58 0.95 −0.08 −0.09 0.49 0.49 0.95

MSRE γ0 −0.62 −0.01 0.23 0.23 0.98 −1.00 0.14 0.25 0.29 0.93
γ1 0.29 −0.01 0.12 0.12 0.97 1.00 −0.08 0.15 0.17 0.90
γ2 0.29 0.03 0.13 0.13 0.94 −1.00 0.05 0.17 0.18 0.93
γ3 −0.36 −0.16 0.69 0.71 0.95 2.00 −0.44 0.58 0.73 0.93
γ4 −0.09 0.07 0.35 0.35 0.95 −2.00 0.22 0.36 0.43 0.90
γ5 −0.08 −0.02 0.30 0.30 0.97 2.00 −0.10 0.42 0.43 0.94
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Table 2.2: (a) Mean Area under the ROC curves for the prediction of outcome and (b)
misclassification rates for mixture membership. Left columns: data gen-
erated from the LC model; right columns: data generated from the MSRE
model. LC-Assumed refers to AUC results obtained fitting a probit model
using the known latent classes as predictors when the data are generated
under the MSRE model, and similarly MSRE-Assumed refers to AUC re-
sults obtained fitting a probit model using the known random effects and
variances as predictors when the data are generated under the LC model.
“Percentile” refers to the 2.5 and 97.5 percentils of the AUC computed un-
der the true parameters across the simulations; “95% CI” refers to mean
of the lower and upper 95% credible intervals across simulations.

(a) Area under the ROC curves
TRUE: joint LC model TRUE: joint MSRE model

Scenario Scenario
# 1 # 2 # 3 # 4 # 1 # 2 # 3 # 4

Truth
mean 0.80 0.81 0.81 0.81 0.84 0.85 0.83 0.84

Percentile (0.75, 0.86) (0.75, 0.86) (0.75, 0.87) (0.75, 0.86) (0.79, 0.89) (0.80, 0.90) (0.77, 0.88) (0.78, 0.89)
LC
mean 0.80 0.82 0.80 0.81 0.85 0.69 0.83 0.64
95% CI (0.58, 0.91) (0.75, 0.88) (0.63, 0.92) (0.75, 0.86) (0.63, 0.97) (0.58, 0.82) (0.60, 0.96) (0.56, 0.72)
LC
Assumed
mean — — — — 0.64 0.63 0.65 0.64
95% CI (0.58, 0.70) (0.56, 0.70) (0.58, 0.70) (0.58, 0.72)
MSRE
mean 0.76 0.80 0.77 0.81 0.84 0.85 0.83 0.83
95% CI (0.69, 0.83) (0.73, 0.85) (0.71, 0.85) (0.74, 0.86) (0.79, 0.89) (0.79, 0.90) (0.76, 0.88) (0.77, 0.89)
MSRE
Assumed
mean 0.77 0.80 0.78 0.81 — — — —
95% CI (0.69, 0.83) (0.74, 0.85) (0.72, 0.85) (0.75, 0.87)

(b) Misclassification rates (%) for the mixture component membership

TRUE: joint LC model TRUE: joint MSRE model

D̃=2|D=1 D̃=1|D=2 C̃=2|C=1 C̃=1|C=2 D̃=2|D=1 D̃=1|D=2 C̃=2|C=1 C̃=1|C=2
Scenario #1

LC 10 2 5 6 19 31 4 8
MSRE 33 0 5 5 32 1 5 6

Scenario #2

LC 0 0 5 6 0 1 5 8
MSRE 0 0 5 6 0 0 5 6

Scenario #3

LC 9 2 1 2 18 32 1 2
MSRE 32 2 1 2 32 2 1 2

Scenario #4

LC 0 0 1 2 1 0 1 2
MSRE 1 0 1 2 1 0 1 2

38



Table 2.3: Model comparison statistics from different joint models for the analysis of
Penn ovarian aging data.

Number Number of Variance Classes
of Mean LPML DIC
Classes 1 2 3 1 2 3

(a) Joint MSRE Model
1 -3825.1 -3838.3 -3845.4 7293.3 7240.1 7433.1
2 -3808.9 -3817.8 -3828.6 7294.9 7249.4 7444.7
3 -3820.7 -3835.3 -3834.6 7377.4 7321.3 7516.2

(b) Joint LC Model
1 -3921.4 -3843.4 -3846.6 7289.8 7245.5 7472.2
2 -3830.2 -3828.3 -3832.4 7291.7 7260.0 7495.9
3 -3855.8 -3846.8 -3842.9 7375.7 7347.6 7567.2
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Table 2.5: Simulation results from 100 datasets of size, n = 200, generated from lon-
gitudinal scenario # 1 and the primary probit (a) LC, (b) MSRE models.
Left columns: fitted assuming the LC model; right column: fitted assum-
ing the MSRE model.

(a) TRUE: joint LC model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 −0.19 −0.19 0.34 0.39 0.91 −0.53 −0.53 0.95 1.08 0.87
β12 0.00 −0.04 −0.04 0.22 0.23 0.96 0.06 0.06 0.36 0.37 0.92
β21 2.83 2.39 −0.44 0.23 0.49 0.40 1.79 −1.04 0.18 1.06 0.00
β22 2.83 2.31 −0.52 0.21 0.56 0.18 1.73 −1.10 0.15 1.11 0.00
ω2

11 2.00 1.83 −0.17 0.62 0.64 0.90 0.60 −1.40 0.63 1.54 0.57
ω2

12 2.00 1.90 −0.10 0.67 0.68 0.89 0.44 −1.56 1.03 1.87 0.19
ω2

21 2.00 2.56 0.56 0.48 0.74 0.74 3.66 1.66 0.38 1.71 0.03
ω2

22 2.00 2.65 0.65 0.52 0.83 0.65 3.75 1.75 0.40 1.79 0.04
ρ1 0.00 −0.12 −0.12 0.22 0.26 0.94 −0.72 −0.72 0.20 0.75 0.80
ρ2 0.60 0.66 0.06 0.06 0.09 0.77 0.69 0.09 0.04 0.10 0.44
πd 0.35 0.27 −0.08 0.07 0.11 0.78 0.05 −0.30 0.05 0.30 0.03
µ1 −2.00 −1.95 0.05 0.11 0.12 0.98 −1.98 0.02 0.09 0.09 0.99
µ2 −0.50 −0.61 −0.11 0.22 0.25 0.87 −0.58 −0.08 0.19 0.20 0.90
τ2 0.25 0.33 0.08 0.12 0.14 0.90 0.30 0.05 0.10 0.11 0.95
πc 0.65 0.63 −0.02 0.05 0.06 0.97 0.63 −0.02 0.04 0.05 0.98
θ0 −0.80 −1.45 −0.65 0.50 0.82 0.89
θ1 1.80 2.41 0.61 0.66 0.90 0.88
θ2 −0.20 0.00 0.20 0.69 0.72 0.98
θ3 −0.30 −0.58 −0.28 0.82 0.87 0.97
γ0 −0.32 −0.32 0.00 0.21 0.21 0.95
γ1 0.19 0.20 0.01 0.11 0.11 0.96
γ2 0.18 0.17 −0.01 0.11 0.11 0.96
γ3 −0.22 −0.38 −0.15 0.60 0.62 0.92
γ4 −0.04 −0.02 0.01 0.32 0.32 0.93
γ5 −0.04 0.02 0.06 0.30 0.30 0.94

(b) TRUE: joint MSRE model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 0.85 0.85 0.91 1.25 0.33 −0.53 −0.53 1.03 1.16 0.85
β12 0.00 1.27 1.27 0.95 1.59 0.36 0.13 0.13 0.45 0.47 0.87
β21 2.83 2.02 −0.81 0.29 0.86 0.14 1.81 −1.02 0.25 1.05 0.02
β22 2.83 1.05 −1.78 0.57 1.87 0.00 1.69 −1.14 0.33 1.18 0.00
ω2

11 2.00 2.78 0.78 1.69 1.87 0.24 0.70 −1.30 0.87 1.56 0.57
ω2

12 2.00 2.28 0.28 1.43 1.46 0.16 0.49 −1.51 1.08 1.86 0.18
ω2

21 2.00 3.26 1.26 0.58 1.39 0.38 3.60 1.60 0.54 1.69 0.06
ω2

22 2.00 4.07 2.07 0.63 2.16 0.06 3.70 1.70 0.55 1.79 0.06
ρ1 0.00 0.25 0.25 0.71 0.75 0.32 −0.71 −0.71 0.27 0.76 0.74
ρ2 0.60 0.77 0.17 0.08 0.19 0.29 0.68 0.08 0.13 0.15 0.46
πd 0.35 0.46 0.11 0.31 0.33 0.03 0.07 −0.28 0.13 0.31 0.04
µ1 −2.00 −1.93 0.07 0.08 0.10 0.86 −1.97 0.03 0.08 0.09 1.00
µ2 −0.50 −0.47 0.03 0.15 0.16 0.90 −0.56 −0.06 0.18 0.19 0.91
τ2 0.25 0.30 0.05 0.08 0.10 0.93 0.30 0.05 0.09 0.10 0.93
πc 0.65 0.67 0.02 0.04 0.05 0.92 0.63 −0.02 0.04 0.05 0.98
θ0 −0.40 −1.40 −1.00 1.13 1.51 0.35
θ1 −0.11 2.29 2.40 2.34 3.35 0.35
θ2 0.53 2.17 1.64 1.76 2.41 0.36
θ3 0.16 −3.53 −3.69 3.73 5.24 0.35
γ0 −1.00 −0.81 0.19 0.24 0.30 0.92
γ1 1.00 0.91 −0.09 0.16 0.18 0.95
γ2 −1.00 −0.96 0.04 0.17 0.18 0.96
γ3 2.00 1.48 −0.52 0.58 0.78 0.87
γ4 −2.00 −1.71 0.29 0.36 0.46 0.90
γ5 2.00 1.86 −0.14 0.38 0.41 0.95
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Table 2.6: Simulation results from 100 datasets of size, n = 200, generated from lon-
gitudinal scenario # 2 and the primary probit (a) LC, (b) MSRE models.
Left columns: fitted assuming the LC model; right column: fitted assum-
ing the MSRE model.

(a) TRUE: joint LC model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 0.01 0.01 0.13 0.13 0.93 0.01 0.01 0.13 0.13 0.94
β12 0.00 −0.02 −0.02 0.11 0.11 0.98 −0.02 −0.02 0.11 0.11 0.99
β21 2.83 2.91 0.08 0.09 0.12 0.89 2.91 0.08 0.09 0.12 0.89
β22 2.83 2.69 −0.14 0.09 0.17 0.64 2.69 −0.14 0.09 0.17 0.65
ω2

11 1.00 0.99 −0.01 0.16 0.16 0.98 0.99 −0.01 0.16 0.16 0.97
ω2

12 1.00 1.03 0.03 0.19 0.19 0.93 1.03 0.03 0.20 0.20 0.93
ω2

21 1.00 0.99 −0.01 0.14 0.14 0.92 0.99 −0.01 0.15 0.15 0.89
ω2

22 1.00 1.01 0.01 0.12 0.12 0.97 1.01 0.01 0.12 0.12 0.96
ρ1 0.00 0.00 0.00 0.12 0.12 0.98 0.00 0.00 0.12 0.12 0.98
ρ2 −0.60 −0.59 0.01 0.07 0.07 0.93 −0.59 0.01 0.07 0.07 0.93
πd 0.35 0.35 0.00 0.03 0.03 0.94 0.35 0.00 0.03 0.03 0.93
µ1 −2.00 −1.95 0.05 0.11 0.12 0.97 −1.99 0.01 0.08 0.08 0.98
µ2 −0.50 −0.62 −0.12 0.21 0.24 0.93 −0.56 −0.06 0.15 0.17 0.93
τ2 0.25 0.33 0.08 0.13 0.15 0.91 0.29 0.04 0.09 0.10 0.92
πc 0.65 0.63 −0.02 0.05 0.05 0.97 0.63 −0.02 0.05 0.05 0.97
θ0 −0.80 −0.86 −0.06 0.25 0.25 0.98
θ1 1.80 1.93 0.13 0.37 0.39 0.98
θ2 −0.20 −0.27 −0.07 0.52 0.52 0.96
θ3 −0.30 −0.35 −0.05 0.69 0.69 0.96
γ0 −0.66 −0.65 0.01 0.24 0.24 0.98
γ1 0.28 0.26 −0.02 0.12 0.12 0.96
γ2 0.28 0.30 0.02 0.11 0.11 0.94
γ3 −0.22 −0.49 −0.28 0.56 0.62 0.97
γ4 −0.05 0.07 0.12 0.33 0.35 0.89
γ5 −0.05 −0.07 −0.02 0.29 0.30 0.94

(b) TRUE: joint MSRE model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 0.02 0.02 0.17 0.17 0.93 0.01 0.01 0.13 0.13 0.94
β12 0.00 −0.01 −0.01 0.18 0.18 0.98 −0.02 −0.02 0.11 0.11 0.99
β21 2.83 2.91 0.08 0.12 0.14 0.88 2.91 0.08 0.09 0.12 0.89
β22 2.83 2.68 −0.14 0.12 0.19 0.65 2.69 −0.14 0.09 0.17 0.65
ω2

11 1.00 1.00 0.00 0.18 0.18 0.96 0.99 −0.01 0.16 0.16 0.97
ω2

12 1.00 1.06 0.06 0.34 0.35 0.91 1.03 0.03 0.20 0.20 0.92
ω2

21 1.00 0.98 −0.02 0.16 0.16 0.89 0.99 −0.01 0.15 0.15 0.91
ω2

22 1.00 1.00 0.00 0.14 0.14 0.94 1.01 0.01 0.12 0.12 0.95
ρ1 0.00 0.01 0.01 0.13 0.13 0.97 0.01 0.01 0.12 0.12 0.97
ρ2 −0.60 −0.59 0.01 0.07 0.07 0.93 −0.59 0.01 0.07 0.07 0.95
πd 0.35 0.36 0.01 0.05 0.05 0.92 0.35 0.00 0.03 0.03 0.93
µ1 −2.00 −1.94 0.06 0.10 0.11 0.95 −1.99 0.01 0.08 0.08 0.97
µ2 −0.50 −0.55 −0.05 0.17 0.18 0.92 −0.54 −0.04 0.15 0.16 0.93
τ2 0.25 0.33 0.08 0.11 0.14 0.87 0.29 0.04 0.09 0.10 0.92
πc 0.65 0.65 0.00 0.05 0.05 0.96 0.63 −0.02 0.05 0.05 0.98
θ0 −0.48 −0.68 −0.19 0.30 0.36 0.89
θ1 0.06 0.09 0.03 0.45 0.45 0.92
θ2 0.65 1.17 0.52 0.66 0.84 0.84
θ3 −0.08 −0.18 −0.09 0.91 0.92 0.87
γ0 −1.00 −0.93 0.07 0.24 0.25 0.97
γ1 1.00 0.95 −0.05 0.17 0.17 0.94
γ2 −1.00 −0.98 0.02 0.17 0.17 0.93
γ3 2.00 1.67 −0.33 0.59 0.68 0.96
γ4 −2.00 −1.83 0.17 0.37 0.40 0.95
γ5 2.00 1.94 −0.06 0.39 0.39 0.97
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Table 2.7: Simulation results from 100 datasets of size, n = 200, generated from lon-
gitudinal scenario # 3 and the primary probit (a) LC, (b) MSRE models.
Left columns: fitted assuming the LC model; right column: fitted assum-
ing the MSRE model.

(a) TRUE: joint LC model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 −0.14 −0.14 0.27 0.31 0.91 −0.49 −0.49 1.11 1.21 0.80
β12 0.00 −0.04 −0.04 0.20 0.20 0.97 0.12 0.12 0.54 0.55 0.81
β21 2.83 2.44 −0.39 0.20 0.44 0.47 1.81 −1.02 0.28 1.06 0.06
β22 2.83 2.34 −0.49 0.19 0.53 0.22 1.66 −1.17 0.43 1.25 0.01
ω2

11 2.00 1.88 −0.12 0.54 0.56 0.96 0.68 −1.32 0.91 1.61 0.48
ω2

12 2.00 1.93 −0.07 0.55 0.55 0.95 0.38 −1.62 0.94 1.87 0.16
ω2

21 2.00 2.49 0.49 0.48 0.68 0.80 3.62 1.62 0.61 1.73 0.08
ω2

22 2.00 2.61 0.61 0.51 0.79 0.71 3.69 1.69 0.68 1.82 0.02
ρ1 0.00 −0.10 −0.10 0.23 0.25 0.93 −0.71 −0.71 0.30 0.77 0.68
ρ2 0.60 0.65 0.05 0.06 0.08 0.86 0.66 0.06 0.20 0.21 0.43
πd 0.35 0.28 −0.07 0.07 0.09 0.76 0.07 −0.28 0.15 0.32 0.02
µ1 −2.00 −2.00 0.00 0.04 0.04 0.95 −2.00 0.00 0.04 0.04 0.96
µ2 −0.50 −0.50 0.00 0.06 0.06 0.95 −0.51 −0.01 0.06 0.06 0.91
τ2 0.06 0.06 0.00 0.02 0.02 0.89 0.06 0.00 0.02 0.02 0.94
πc 0.65 0.65 0.00 0.03 0.03 0.96 0.65 0.00 0.03 0.03 0.97
θ0 −0.80 −1.40 −0.60 0.42 0.74 0.87
θ1 1.80 2.33 0.53 0.55 0.77 0.91
θ2 −0.20 −0.10 0.10 0.62 0.63 1.00
θ3 −0.30 −0.41 −0.11 0.77 0.77 1.00
γ0 −0.28 −0.30 −0.01 0.20 0.20 0.96
γ1 0.19 0.22 0.02 0.13 0.13 0.89
γ2 0.20 0.20 0.00 0.14 0.14 0.93
γ3 −0.37 −0.49 −0.12 0.47 0.49 0.98
γ4 −0.07 −0.10 −0.03 0.34 0.34 0.92
γ5 −0.07 −0.04 0.04 0.36 0.36 0.93

(b) TRUE: joint MSRE model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 0.77 0.77 1.15 1.39 0.26 −0.50 −0.50 1.01 1.12 0.79
β12 0.00 1.26 1.26 0.93 1.57 0.30 0.14 0.14 0.52 0.54 0.80
β21 2.83 2.02 −0.80 0.27 0.85 0.13 1.81 −1.02 0.27 1.06 0.04
β22 2.83 1.03 −1.80 0.62 1.90 0.01 1.65 −1.18 0.47 1.27 0.01
ω2

11 2.00 2.85 0.85 1.67 1.88 0.24 0.68 −1.32 0.81 1.55 0.46
ω2

12 2.00 2.39 0.39 1.44 1.49 0.13 0.42 −1.58 1.04 1.89 0.15
ω2

21 2.00 3.14 1.14 0.82 1.40 0.40 3.61 1.61 0.71 1.76 0.08
ω2

22 2.00 3.98 1.98 0.91 2.18 0.12 3.66 1.66 0.77 1.83 0.03
ρ1 0.00 0.31 0.31 0.68 0.75 0.29 −0.70 −0.70 0.30 0.76 0.67
ρ2 0.60 0.73 0.13 0.24 0.27 0.26 0.65 0.05 0.24 0.25 0.41
πd 0.35 0.48 0.13 0.31 0.34 0.05 0.08 −0.27 0.16 0.32 0.02
µ1 −2.00 −1.99 0.01 0.04 0.04 0.96 −2.00 0.00 0.04 0.04 0.95
µ2 −0.50 −0.49 0.01 0.06 0.06 0.95 −0.49 0.01 0.06 0.06 0.93
τ2 0.06 0.06 0.00 0.03 0.03 0.91 0.06 0.00 0.02 0.02 0.90
πc 0.65 0.66 0.01 0.03 0.03 0.96 0.65 0.00 0.03 0.03 0.94
θ0 −0.41 −1.43 −1.02 1.15 1.54 0.34
θ1 −0.12 2.40 2.52 2.28 3.40 0.31
θ2 0.57 1.87 1.30 1.50 1.98 0.34
θ3 0.15 −3.27 −3.42 3.15 4.65 0.36
γ0 −1.00 −0.84 0.16 0.22 0.28 0.96
γ1 1.00 0.91 −0.09 0.15 0.18 0.92
γ2 −1.00 −0.96 0.04 0.16 0.17 0.92
γ3 2.00 1.58 −0.42 0.53 0.68 0.94
γ4 −2.00 −1.75 0.25 0.35 0.43 0.94
γ5 2.00 1.90 −0.10 0.35 0.37 0.96
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Table 2.8: Simulation results from 100 datasets of size, n = 200, generated from lon-
gitudinal scenario # 4 and the primary probit (a) LC, (b) MSRE models.
Left columns: fitted assuming the LC model; right column: fitted assum-
ing the MSRE model.

(a) TRUE: joint LC model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 0.00 0.00 0.12 0.12 0.97 −0.01 −0.01 0.12 0.12 0.98
β12 0.00 0.00 0.00 0.11 0.11 0.98 0.00 0.00 0.11 0.11 0.97
β21 2.83 2.90 0.08 0.09 0.12 0.87 2.90 0.07 0.10 0.12 0.85
β22 2.83 2.67 −0.16 0.09 0.18 0.61 2.67 −0.16 0.09 0.18 0.61
ω2

11 1.00 0.98 −0.02 0.19 0.19 0.94 0.98 −0.02 0.19 0.20 0.92
ω2

12 1.00 0.99 −0.01 0.18 0.18 0.92 0.99 −0.01 0.19 0.19 0.92
ω2

21 1.00 1.00 0.00 0.12 0.12 0.95 1.00 0.00 0.12 0.12 0.94
ω2

22 1.00 1.01 0.01 0.13 0.13 0.95 1.01 0.01 0.13 0.13 0.97
ρ1 0.00 0.00 0.00 0.13 0.13 0.97 0.00 0.00 0.13 0.13 0.96
ρ2 −0.60 −0.59 0.01 0.07 0.07 0.92 −0.59 0.01 0.07 0.07 0.94
πd 0.35 0.36 0.01 0.03 0.04 0.96 0.36 0.01 0.03 0.04 0.96
µ1 −2.00 −2.00 0.00 0.04 0.04 0.96 −2.00 0.00 0.04 0.04 0.96
µ2 −0.50 −0.50 0.00 0.06 0.06 0.93 −0.50 0.00 0.07 0.07 0.91
τ2 0.06 0.06 0.00 0.02 0.02 0.93 0.06 0.00 0.02 0.02 0.91
πc 0.65 0.64 −0.01 0.04 0.04 0.94 0.64 −0.01 0.04 0.04 0.92
θ0 −0.80 −0.81 −0.01 0.19 0.19 0.97
θ1 1.80 1.80 0.00 0.25 0.25 0.99
θ2 −0.20 −0.28 −0.08 0.51 0.52 0.95
θ3 −0.30 −0.21 0.09 0.57 0.58 0.95
γ0 −0.62 −0.64 −0.01 0.23 0.23 0.98
γ1 0.29 0.28 −0.01 0.12 0.12 0.97
γ2 0.29 0.31 0.03 0.13 0.13 0.94
γ3 −0.36 −0.52 −0.16 0.69 0.71 0.95
γ4 −0.09 −0.02 0.07 0.35 0.35 0.95
γ5 −0.08 −0.10 −0.02 0.30 0.30 0.97

(b) TRUE: joint MSRE model
Assumed LC structure Assumed MSRE structure

TRUE MEAN BIAS SD RMSE 95% COV MEAN BIAS SD RMSE 95% COV
β11 0.00 0.00 0.00 0.12 0.12 0.96 −0.01 −0.01 0.12 0.12 0.96
β12 0.00 0.00 0.00 0.11 0.11 0.97 0.00 0.00 0.11 0.11 0.97
β21 2.83 2.90 0.07 0.10 0.12 0.84 2.90 0.07 0.10 0.12 0.85
β22 2.83 2.67 −0.16 0.09 0.18 0.59 2.67 −0.16 0.09 0.18 0.60
ω2

11 1.00 0.98 −0.02 0.20 0.20 0.93 0.98 −0.02 0.19 0.20 0.94
ω2

12 1.00 0.99 −0.01 0.19 0.19 0.92 0.99 −0.01 0.19 0.19 0.92
ω2

21 1.00 1.00 0.00 0.13 0.13 0.95 1.00 0.00 0.12 0.12 0.95
ω2

22 1.00 1.01 0.01 0.13 0.14 0.95 1.01 0.01 0.13 0.13 0.97
ρ1 0.00 0.00 0.00 0.13 0.13 0.98 0.00 0.00 0.13 0.13 0.96
ρ2 −0.60 −0.59 0.01 0.07 0.07 0.94 −0.59 0.01 0.07 0.07 0.94
πd 0.35 0.36 0.01 0.03 0.04 0.96 0.36 0.01 0.03 0.04 0.96
µ1 −2.00 −1.99 0.01 0.04 0.04 0.96 −1.99 0.01 0.04 0.04 0.96
µ2 −0.50 −0.49 0.01 0.06 0.06 0.94 −0.49 0.01 0.06 0.06 0.94
τ2 0.06 0.06 0.00 0.02 0.02 0.94 0.07 0.01 0.02 0.02 0.91
πc 0.65 0.65 0.00 0.04 0.04 0.92 0.65 0.00 0.04 0.04 0.94
θ0 −0.50 −0.55 −0.05 0.24 0.25 0.91
θ1 0.06 0.11 0.05 0.30 0.30 0.90
θ2 0.69 0.79 0.10 0.38 0.40 0.94
θ3 −0.08 −0.16 −0.09 0.49 0.49 0.95
γ0 −1.00 −0.86 0.14 0.25 0.29 0.93
γ1 1.00 0.92 −0.08 0.15 0.17 0.90
γ2 −1.00 −0.95 0.05 0.17 0.18 0.93
γ3 2.00 1.56 −0.44 0.58 0.73 0.93
γ4 −2.00 −1.78 0.22 0.36 0.43 0.90
γ5 2.00 1.90 −0.10 0.42 0.43 0.94
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CHAPTER III

Modeling Short- and Long-Term Characteristics of

Follicle Stimulating Hormone as Predictors of

Severe Hot Flashes in Penn Ovarian Aging Study

3.1 Introduction

The Penn Ovarian Aging Study (Manson et al., 2001) is a longitudinal study con-

sisting of a population based sample of 436 women aged 35-47 years selected via ran-

dom digit dialing in Philadelphia County, PA during 1996-97. The study goal is to

explore the associations between reproductive hormone levels and symptoms in the

transition to menopause. Follicle stimulating hormone (FSH) is of particular inter-

est because it is known to stimulate folliculogenesis, an important factor in ovarian

aging. Thus there has been interest in using longitudinal FSH information to define

menopause transition stages as discussed by Sowers et al. (2008). For example, it

is well accepted that increasing FSH is an indicator of ovarian aging. However, the

FSH levels are not consistently elevated throughout the whole period of late repro-

ductive years. Sowers et al. (2008) found both acceleration and deceleration periods

in the gradually increasing FSH levels for a group of women from the late reproduc-

tive years. Exploratory analysis of the FSH data in the Penn Ovarian Aging Study

shows both acute and gradual increase periods of FSH levels of the population level.
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It is therefore of clinical interest to investigate whether elevated FSH levels signal

risks of severe menopausal symptoms. Moreover, clinicians also want to quantify

the cumulative impact of the FSH histories on the severity of the menopausal symp-

toms (e.g., hot flashes). To meet these aims, we develop a joint modeling method

that accommodates individual contributions of means, time-varying change rates in

the long-term trends, and short-term residual variabilities as predictors of health

outcomes of interest.

Joint models of longitudinal and health outcome data (mostly time-to-event) have

been extensively developed in the literature. The early developments of such joint

models were mainly motivated by HIV/AIDS clinical trials and cancer research (Tsi-

atis et al.,1995; Muthén and Shedden, 1999; Wang and Taylor, 2001; Law et al., 2002;

Song et al. 2002; Brown and Ibrahim, 2003a, 2003b; Ibrahim et al., 2004; Yu et al.,

2008, among many others). For example, interest has focused on using the “true”

underlying longitudinal process (i.e., mean profile) of CD4 or viral load trajectories

to relate to the time to progression to AIDS or death. It is therefore natural to model

both the observed longitudinal trajectories and disease outcome jointly to gain more

efficient inference results, where a longitudinal submodel in the form of a mixed

effect model is outlined for the observed longitudinal trajectories and a primary dis-

ease outcome model is defined to link the “true” underlying longitudinal process and

disease outcome together. Most of these developments have focused on using 1) a

summary of important features in the longitudinal profiles, such as the random ef-

fects (REs) and the latent classes (LCs); or 2) the last available “true” value (i.e., a

function form of REs) as a time dependent covariate, with the earlier values being

considered irrelevant to the outcome of interest. These early joint modeling strate-

gies were built assuming that the mean profile was the only feature in the “true”

underlying longitudinal process that could predict a disease outcome. The residual

variation in the longitudinal profile was treated as a nuisance parameter and as-
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sumed not to influence the disease progression. Thorough reviews of the topic are

given by Ibrahim et al. (2010) and Rizopoulos (2012). For a comparison of using REs

versus LCs, please see Proust-Lima et al. (2012) and Chapter II of this dissertation.

Recently, Elliott et al. (2012) and we in Chapter II proposed new methods to link

the features in not only the mean profiles but also residual variation in the longitu-

dinal trajectories to predict a disease outcome. However, these existing methods did

not consider the potential time varying effects of the dynamic process in longitudinal

trajectories.

In this work, we extend these existing approaches by borrowing the idea of relat-

ing scalar response and functional predictors in functional data analysis paradigm.

Here, we treat the mean longitudinal trajectories as functional predictors linked to

the health outcome through a standard functional regression model in the sense of

Ramsay and Dalzell (1991) and James (2002) among many others. This modeling

strategy implicitly allows the effects of FSH histories (i.e., FSH values up to a par-

ticular time point) that are represented by a functional coefficient curve to be time

varying and accumulative over time. To the best of our knowledge, such a modeling

strategy has not been considered in the joint modeling literature. To estimate the

functional coefficient curve, we propose to use a Bayesian penalized spline approach.

The advantage is that it also allows for simultaneous evaluation of the uncertainty of

the estimated functional coefficient curves by providing pointwise Bayesian credible

intervals, which leads to easy identification of critical time windows of increased risk

of health outcome of interest, while in standard functional regression, such intervals

are typically obtained by bootstrap methods.

For the longitudinal submodel development, the proposed work also extends that

of Jiang et al. (2013), who focused on using the latent growth curve features de-

rived from each individual’s linear deviation from a population trend as predictors

of a health outcome. A key contribution from that paper is to make contrast of pros
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and cons of the use of latent classes and multiple shared random effects in joint

mixture modeling under correctly or incorrectly specified models. Consequently, the

focus differs from this work in terms of exploring model flexibility. Although the

posterior predictive checking from Jiang et al. (2013) indicated adequate fit for the

majority of the individual FSH trajectories, in the current work we explore more

flexible ways of modeling FSH trajectories that can accommodate potentially time

varying rates of change, as well as t- rather than just normal distributions to avoid

the potential influence of outlying observations. In particular, we consider a robust

semiparametric model using Bayesian penalized B splines, which were developed by

Lang and Brezger (2004) as a Bayesian version of the penalized splines proposed by

Eilers and Marx (1996). In contrast to fully parametric splines, penalized splines

are not as sensitive to the exact number and location of the knots as long as enough

knots are being used, since “unnecessary” knots will be smoothed away by shrinking

random effects toward 0. Recently, the penalized spline approach has gained pop-

ularity in smoothing individual curves by associating random effects with a spline

basis in mixed effect models under a frequentist framework. For example, Durban

et al. (2005) modeled the individual heights of children suffering from acute lym-

phoblastic leukemia from a clinical trial conducted at Dana Farber Cancer Institute;

Chen and Wang (2011) considered modeling longitudinal systolic blood pressure data

from Framingham Heart Study. In our work, we explore the use of penalized splines

to smooth longitudinal trajectories in the joint modeling framework. Finally, we in-

crease modeling flexibility in two ways: allowing t-distributed errors and using mix-

tures in mean profiles. These extensions allow us to avoid the potential impact of

outlying observations.

In summary, our work brings together advanced statistical ideas including func-

tional data analysis, robust inference and joint longitudinal and outcome modeling

in novel ways:
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1. It extends conventional functional data analysis to the framework of joint mod-

eling of both the longitudinal (functional predictor) and outcome data, which

allows us to select different aspects of the features in the dynamics of longitu-

dinal process as functional predictors. In particular, we focus on the the values

or the gradients of the mean trajectories at certain time windows as potential

long term functional predictors while also adjusting for the effect of short term

variability captured by the variance of the residuals.

2. It uses flexible mixed effects models with B spline basis and heterogeneity (pre-

cisely, latent classes) in the first stage submodel, which allows longitudinal

trajectories of uneven spacing and unequal length to be used as functional pre-

dictors.

3. It allows the effects of FSH histories (values or gradients) to be time varying

and to accumulate over time. Statistical tests of the functional coefficient func-

tion in the primary outcome submodel can then be used to identify critical time

windows where the true association exists. Using a Bayesian approach allows

easy calculation of pointwise credible intervals for the functional coefficient

functions in comparison to frequentist approaches.

4. It uses a robust model to accommodate outlying observations in the longitudi-

nal data.

3.2 The proposed model

In this section, we present our flexible semiparametric model to use functional

regression models for the longitudinal FSH levels to predict the ordinal outcome,

severity of hot flashes.
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• Longitudinal submodel:

Yi j|bi =µi(ti j)+εi j

εi j ∼ tv(0,σ2
i )

D i ∼Multinomial(πD
i1, ...,πD

iKD
)

Ci ∼Multinomial(πC
i1, ...,πC

iKC
)

µi(ti j)=
L∑

l=1
bilφl(ti j)

bi = (bi1, ...,biL)′|D i = d ∼N(βd,Σd)

logσ2
i |Ci = c ∼N(µc,τ2)

(3.1)

where Yi j denotes the observed longitudinal FSH values for subject i, i = 1, ...,n

at time ti j, j = 1, ...,ni, µi j ≡ µi(ti j) denotes the mean of Yi j at time ti j and

the vector µi = (µi1, ...,µini )
T defines the mean profile or trajectory for subject

i. Note that µi can be interpreted as the mean long term trend for subject i,

so that the vector of the derivatives µ′
i = (µ′

i1, ...,µ′
ini

)T with respect to time t

measures the degree of change of the trajectory in a long-term fashion.

To flexibly model the mean profile, we use truncated power splines con-

sists of piecewise polynomials of certain order connected at pre-specified knot

locations (Ruppert et al., 2003). Given the same order and knot locations, trun-

cated power spline and B spline are equivalent in the sense that there exist

unique one-to-one linear transformations between these two sets of basis func-

tions (Ruppert et al., 2003), leading to the same fitted values from these two

splines in the regression setup. However, the B spline is more numerically sta-

ble than the truncated power spline because the B spline basis functions are

almost orthogonal while the truncated power spline basis functions are not.

Therefore, we use B spline basis functions φl(ti j) ≡ φl,d(ti j) , l = 1, ...,L of de-
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gree d = 3, where φl,3(ti j) is obtained by the recursion relation:

φl,d(ti j)=
ti j −κl

κl+d −κl
φl,d−1(ti j)+

κl+1+d − ti j

κl+d+1 −κl+1
φl+1,d−1(ti j)

for knots at points κ1, ...,κL−d−1, where φl,0(ti j)= I(κl ≤ ti j ≤ κl+1). The number

of interior knots is denoted by Jµ(t), such that
∑L

l=1φl(t)= 1 with L = Jµ(t)+d+1.

We defer discussion of selection of knot points to Section 3.2.5. Following Lang

and Brezger (2004), we use a Gaussian random walk prior on the fixed effect

coefficients βd1, ...,βdL to penalize large differences among coefficients of the

adjacent spline basis and therefore control the smoothness of the mean profile

curve to avoid potential overfitting. The specific prior distributions are given

in Section 3.2.3. Thus, the vector of fixed effect coefficients βd = (βd1, · · · ,βdL)T

determines the shape and also the smoothness of the mean profile for the dth

latent class, defined as fd(ti j) = ∑L
l=1βdlφl(ti j), d = 1, · · · ,KD . The random co-

efficients bil , l, · · · ,L capture the individual deviations from the class specific

mean profile.

The residual εi j denotes the deviation of Yi j from the subject specific mean

at ti j and is assumed to follow a Student’s t-distribution with v degrees of free-

dom, assuming mean 0 and scale σ2
i . The value of v is assumed to be known.

Thus the variance of Yi j is equal to v
v−2σ

2
i , which can be interpreted as a mea-

surement of short term variability around the mean profile µi(ti j). In the case

of v =∞, εi j is normally distributed with mean 0 and variance σ2
i . To allow for

over-dispersion of the within-subject scale parameter σ2
i , we assume a mixture

of log normal distributions.

• Outcome submodel is specified conditional on individual longitudinal mean tra-
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jectories and variances and has the form:

Wi ∼N(ηW
i ,1), i = 1, ...,n.

ηW
i =α0 +xTλ0 +

∫
T

µi(t)θ0(t)dt,

Oi = 0⇔Wi <ω0,

Oi = s ⇔ωs−1 <Wi ≤ γs, s = 1, ...,S−1

Oi = S ⇔Wi >ωS−1

(3.2)

where x is a vector of baseline covariates with associated (constant) parameter

λ0, and the functional coefficient function θ0(t) represents the effect of subject

specific mean trend µi(t) at time t while adjusting for the mean trends at other

time points within the time window T. The purpose of considering the integral

over the chosen time domain T, i.e.,
∫

Tµi(t)θ0(t)dt is to identify critical time

windows of elevated outcome risks, which have several advantages over simply

summing up over the observed time points ti j, j = 1, ...,n. First, longitudinal

observations often have missing values and can be measured at different time

points (known as unbalanced data) and hence summation over the observed

time points becomes problematic. Second, an integral over a chosen time do-

main implicitly uses the information at infinite time points within time window

T while summation only uses the information at finitely observed time points.

As in the mean profile trajectories, we let θ0(t) = ∑K0
k=1 θ̃0kψ

0
k(t) for cubic B-

spline basis functions ψ0
k(t), with θ̃0k following a random walk prior, given in

Section 3.2.3 to avoid overfitting. Given that we express µi(t) by bT
i φ(t) and

θ0(t) by ψ0(t)T θ̃0, thus
∫

Tµi(t)θ0(t)dt = ∫
T bT

i φ(t)ψ0(t)T θ̃0dt = bT
i G0

Tθ̃0, where

φ(t) is a vector of L basis functions chosen to express µi(t) in the longitudinal

submodel and φ0(t) is a vector of K0 basis functions; G0
T = ∫

Tφ(t)ψ0(t)T dt. We

can calculate or numerically evaluate G0
T for any given spline basis functions
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and the estimation of unknown parameters in the outcome primary model be-

comes fully parametric. For the multinomial probit model, we use the common

constraint for the cutoffs 0= γ1 ≤ ·· · ≤ γS =∞.

Alternatively, one may postulate that the cumulative changes of the individual

trajectories are potentially predictive of the outcome of interest. To accommodate

such a possibility, we can consider the first derivative of µi(t), i.e., µ′
i(t) = ∂µi(t)/∂t

as a functional predictor by taking advantage of the nice properties of B spline of

continuity and write our alternative outcome submodel as follows:

Wi ∼N(ηW
i ,1), i = 1, ...,n.

ηW
i =α1 +xTλ1 +

∫
T

µ′
i(t)θ1(t)dt,

Oi = 0⇔Wi < γ0,

Oi = s ⇔ γs−1 <Wi ≤ γs, s = 1, ...,S−1

Oi = S ⇔Wi > γS−1

(3.3)

where similarly as for θ0(t), functional coefficient function θ1(t) has the interpreta-

tion of the effect of derivative of mean trend µ′
i(t) at time t while adjusting for the

derivatives of mean trends at other time points within the time window T. To empha-

size the fact that we can use different spline basis functions to express θ1(t), we ex-

press θ1(t)=∑K1
k=1 θ̃1kψ

1
k(t) using a different set of B spline basisψ1(t)= (ψ1

1(t), ...,ψ1
K1

(t))′

and the associated coefficient vector θ̃1 = (θ̃11, ..., θ̃1K0)′. A penalized approach was

used by requiring a random walk prior on θ̃1, i.e., θ̃1l ∼N(θ̃1l−1,τ2
θ1

), k = 2, ...,K1. Sim-

ilarly, we have
∫

Tµ
′
i(t)θ1(t)dt = ∫

T bT
i φ

′(t)ψ1(t)T θ̃1dt =bT
i G1

Tθ̃1, where φ′(t)= ∂φ(t)/∂t

given φ(t) is a vector of L basis functions chosen to express µi(t) in the longtitudinal

submodel and φ′(t) is a vector of K1 basis functions; G1
T = ∫

Tφ
′(t)ψ1(t)T dt.
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3.2.1 Likelihood specification

Let φ = (πD
d ,βd, Σd, d = 1, ...,KD ; πC

c , µc, c = 1, ...,KC, τ2, α0, λ0, θ̃0,γ), where

we assume each parameter in φ has independent prior distribution with the joint

prior distribution denoted by π(φ), and z include all unobserved latent variables, i.e.,

z= (b,σ,C,D)′. The observed data x consists of the longitudinal profiles y1, ...,yn and

the observed outomes o1, ..., on. Then the complete data likelihood of φ based on the

complete data (x,z) is given by

f (x,z|φ)∝
n∏

i=1

{∏
d

[
πd(2π)−

p
2 |Σd|−

1
2 exp

{
−1

2
(bi −βd)′Σd(bi −βd)

}]I(D i=d)

∏
c

[
πc(2πτ2)−

1
2σ−2

i exp

{
− (logσ2

i −µc)2

2τ2

}]I(Ci=c) ni∏
j=1

p
{
yi j;v,bi,σ2

i
}

S∏
s=0

{
Φ(γs −ηW

i )−Φ(γs−1 −ηW
i )

}I(oi=s)
}
π(φ)

(3.4)

where

p
{
yi j;v,bi,σ2

i
}=


1√

2πσ2
i

exp
{
−

(
yi j−

∑L
l=1 bilφl (ti j)

)2

2σ2
i

}
if v =∞;

Γ( v+1
2 )

Γ( v
2 )

√
πvσ2

i

{
1+ 1

v

(
yi j−

∑L
l=1 bilφl (ti j)

)2

2σ2
i

}− v+1
2

if v <∞.

3.2.2 Data augmentation step to impute missing data

Given the minimum number of available repeatedly measured FSH levels in our

final sample (ranging between 6 and 26 per woman), we are limited to the number of

knots when choosing cubic B spline basis functions to express µi(ti j). To maximize

the number of knots we can consider, we fill in those with fewer than 26 observations

based on data augmentation within each iteration of Gibbs sampling (Chapter 10

in Little and Rubin, 2002). When assuming missing completely at random (MCAR)

missing data mechanism, this data augmentation procedure proceeds as follows,
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• draw Y(t+1)
mis from p(Ymis |Φ)

• draw Φ(t+1) from p(Φ |Xobs,Ymis)

where Φ denotes all unknown variables, Ymis denotes the missing longitudinal ob-

servations of FSH levels, and Xobs denotes all observed data including observed lon-

gitudinal observations and primary outcome of interest. The above simulation leads

to draws from the joint distribution of (Φ,Ymis) given observed data Xobs. There-

fore, this procedure leads to the same inference about Φ as when we only focus on

the marginal distribution of Φ given observed data Xobs. However, this trick allows

us to put in more knots to fully take advantage of the penalized spline approach that

is free from knot location selection given enough number of knots.

3.2.3 Prior specification

We propose a fully Bayesian approach to estimate model parameters. For the

mixture normal distribution of the random effects, we assume a first-order Gaussian

random walk prior as proposed by as Lang and Brezger (2004): βdl ∼ N(βd,l−1,τ2
βd),

l = 2, ...,L with diffuse prior βd1 ∼ N(0,100) for the initial coefficient, and τ2
βd ∼

IG(1,0.005) to control the smoothness of the fitted curves. We do not impose restric-

tions on the structure of the variance-covariance matrix for the random effects Σd. To

avoid problems with unbounded likelihoods in normal mixture models with unstruc-

tured variance-covariance matrices (Day 1969), we use the prior proposed by Kass

and Natarajan (2006): Σd ∼ Inverse-Wishart(df= r,Λ), whereΛ= r
(∑n

i=1 Ĉov(b̃i)−1/n
)−1

,

b̃i is given by OLS estimator of bi for subject i and r is the dimension of bi.

For the mixture log normal distribution for the residual variances, we used diffuse

priors: µc ∼ N(0,v), τ2 ∼ IG(a,b) with v = 1000 and a = b = .001. For the class mem-

bership probabilities, we assume conjugate Dirichlet(4, ...,4) on both πC = (πC
1 , ...,πC

KC
)

and πD = (πD
1 , ...,πD

KD
) (Frühwirth-Schnatter 2006); this is equivalent to assuming a

priori 4 observations in each class, avoiding the existence of empty classes.
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Lastly, in the probit submodel we assign independent priors N(0,9/4) for the

α0 and every element of λ0; for the coefficients associated with functional coeffi-

cient function θ0(t), θ̃0 = (θ̃01, ..., θ̃0K0)′, similarly we use a first-order Gaussian ran-

dom walk prior, i.e., θ̃0k ∼ N(θ̃0k−1,τ2
θ0

), k = 2, ...,K0 with θ̃01 ∼ N(0,9/4) and τ2
θ0

∼
IG(1,0.005), where the prior variance 9/4 is chosen to bound the probabilities of oi = 1

to be away from 0 and 1 (Garrett and Zeger, 2000; Elliott et al., 2007 and Neelon et

al., 2011). We put flat uniform priors on γs for s ∉ {0,S}, that is, γs ∼Uniform(−∞,∞).

3.2.4 Posterior computation

Gibbs sampling is used to obtain draws from the corresponding posterior distri-

butions. For (α0,λ0, θ̃ |b,σ,o) we use the Albert and Chib (1993) data augmentation

method for probit regression models. The draws of (σ2
i |Ci,µc,γ2,bi, oi,Wi, {yi j} j) for

i = 1, ...,n are obtained by the inverse cumulative distribution method. The exact

specification of all priors and MCMC sampling procedures are provided in Appendix

B.

Three chains from diverse starting points were run and Gelman-Rubin statis-

tic
√

R̂ (Gelman et al., 2003) (square root of total variance to within-chain variance

ratio) were used to assess the convergence of the MCMC chains. For the popula-

tion level parameters, the maximum
√

R̂ = 1.030 for models assuming less than 3

classes; and when assuming 3 classes for either mean profile or the variance class,

the maximum
√

R̂ = 1.184. For the well-documented issue of "label switching" in

finite mixture modeling (Redner and Walker 1984), we applied the post-processing

relabeling algorithm (Stephens, 2000) in which all possible permutations of class as-

signments were considered at each iteration of the Gibbs sampler. The permutation

of the class assignment was chosen to maximize the posterior probability so that the

labeling of classes was consistent with the previous assignments. We post-process

our chains using Stephen’s algorithm to untangle the draws for model parameters.
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All the calculations were performed by calling stand alone C++ codes in R, de-

veloped using an open source C++ library for statistical computation, the Scythe

statistical library (Pemstein et al., 2007), which is available for free download at

http://scythe.wustl.edu.

3.2.5 The choice of the number of classes and number of knots in penalized

splines

We consider the deviance information criterion (DIC), proposed by Spiegelhalter

et al. (2002) to select both the number of components for the latent classes and

to choose the number of knots in the penalized splines. DIC uses the discrepancy

between the posterior mean of the deviance D(φ) = Eφ

{−2log f (x |φ) | x}
and the

deviance evaluated at the posterior mean D(φ)=−2log f
{
x | E(φ | x)

}
to estimate the

effective number of degrees of freedom in the model pD . DIC is then given by the

analog of the Akaike Information Criterion (AIC):

DIC(x)= D(φ)+ pD = 2D(φ)−D(φ)=−4Eφ

{
log f (x |φ) | x}+2log f

{
x |E(φ | x)

}
.

In our setting, f (x |φ) where x= (yobs,o)′ consisting of the fully-observed data is not

available in closed form; instead we use the approach outlined in Celeux et al. (2006)

to obtain

DIC(x)=Ez {DIC(x,z)}=−4Ez,φ
{
log f (x,z |φ) | x}+2Ez

[
log f

{
x,z |Eφ(φ | x,z)

} | x]

where integration over the latent variables z = (b,σ,C,D,ymis)′ is obtained via nu-

merical methods.
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3.2.6 Goodness of fit evaluation

We assessed the model goodness of fit to the data in two ways: pivotal discrep-

ancy measures (PDMs) (Yuan and Johnson 2012), which yield an overall goodness-of-

fit measure for both the longitudinal predictor component and the ordinal outcome

component of the joint model, and area under the receiver-operator characteristic

(ROC) curve (AUC), a goodness-of-fit measure focusing on prediction of the ordinal

outcome of interest.

PDMs generalize the pivotal quantities proposed by Johnson (2007); in contrast

to more general posterior predictive distribution measure of fit (Gelman et al., 1996),

they are defined to depend only on the data and the model parameters with a known

distribution. If the model is correctly specified, the PDMs evaluated at the true pa-

rameter value and the draws from the posterior distribution should have the same

sampling distribution. Therefore, model adequacy can be tested by treating the

PDMs as a test statistic to obtain a uniformly distributed p value. However, the

posterior samples of PDMs are not independent as they are all derived from the ob-

served data (Johnson, 2004), thus p-value calculation is difficult. Instead, Yuan and

Johnson (2012) focused on the upper bound of p values and hence the upper bound

of a p value being less than 0.05 provided strong evidence of model inadequacy.

For the longitudinal trajectories, we define subject level PDMs to examine the fit

of longitudinal trajectories, which are constructed in the following steps:

1. For each subject i, define the standardized residuals zi j = [yi j −µi(ti j)]/σi, j =
1, ...,ni.

2. Partition zi j into K groups according to the values of µi(ti j). We choose K = 2

given that the repeated measurements per subject ranges from 6 to 26.

3. If the assumed longitudinal submodel is correct, then r i j = P−1 (
yi j;v,µi(ti j

)
,σ2

i )

is [0,1] uniformly distributed, where P(·) is the corresponding cumulative dis-
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tribution (CDF) function for yi j. Let nik denote the total number of residuals

in group k for subject i based on the partition in previous step, k = 1, ...,K , and

then paritition the interval [0,1] into L sub-intervals of length pl ; we would

then expect nik pl CDF transformed r i j ’s would fall into each of the L bins. We

consider L = 3 intervals: (0, 1
3 ], (1

3 , 2
3 ] and (2

3 ,1] and hence p1 = p2 = p3 = 1
3 .

Let õikl denote the observed r i j, j = 1, ...,ni in sub-interval l, l = 1, ...,L within

group k, then dik(yi,φ) =
L∑

l=1

(
õikl −nik plpnik pl

)2
is χ2 distributed with degrees of

freedom L−1 given that the assumed model is correct.

4. Sum the defined χ2 statistic for each group k, we define our PDM for each

subject i as
K∑

k=1
dik(y,φ), which is χ2 distributed with degrees of freedom K(L−1)

when the assumed model is correct for subject i.

For the ordinal outcome of interest, our PDM is defined based on realized latent

continuous residuals as considered by Gelman et al. (2000). That is, we define the

standardized latent residuals e i = Wi −ηW
i with ηW

i = α0 −xT
i λ0 −

∫
Tµi(t)θ0(t)dt and

then partition e i into K̃ groups according to the values of ηW
i , where we let K̃ = 10

given our sample size is 235. Next, for Φ−1(e i), i = 1, ...,n we calculated PDM for

outcome data by following steps similar to 2 and 3 above for individual trajectories.

Finally, we use repeated posterior draws to obtain the sampling distribution of

PDMs and compute the upper bounds of the p values based on ordered statistics of

PDMs using the equation given in Yuan and Johnson (2012). If the upper bound of p

value is less than 0.05, it provided strong evidence of inadequate fits.

Second, we assessed the prediction of the outcome using receiver-operator char-

acteristic (ROC) curves, in particular the area under the ROC curve (AUC). ROC

curves plot true positive rate (TP) versus false positive rate (FP) for all possible cut-

offs based on predicted P(oi = s)=Φ(Z′
iη) obtained from (3.2) for s = 0, ...,S. The ROC

curve and AUC were computed at each MCMC iteration using the ROCR package in

R (Sing et al. 2005). The ROC is computed by ordering the observations (i)= 1, ...,n so
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that P̂(o(i) = 1) ≥ P̂(o(i+1) = 1), computing changepoints c = 2, ...,nc, nc ≤ n where the

observations change from positive to negative (i.e., o(c−1) = 1, o(c) = 0), and plotting∑c
(i)=1(1− o(i))/

∑n
(i)=1(1− o(i)) on the x-axis versus

∑c
(i)=1 o(i)/

∑n
(i)=1 o(i) on the y-axis.

Area under the ROC is then computed using a trapezoidal approximation. The pos-

terior mean AUC is calculated as the average AUC’s across MCMC iterations. To

obtain the posterior mean and the pointwise 95% credible interval of ROC curve, we

choose 250 points equally spaced along the FP axis and take the vertical average

or 95% quantiles of TP’s at the 250 chosen points. This approach is referred to as

vertical averaging of ROC curves at fixed FP rates by Fawcett (2006).

3.3 Predicting severity of hot flash from longitudinal follicle

stimulating hormone data

In the Penn Ovarian Aging Study, participating women had their hormone mea-

sures taken annually during the early follicular phase of a menstrual cycle for 2

sequential menstrual cycles, with up to 13 years of follow-up available at the time of

our analysis. Hormone values were censored if a woman was pregnant, breast feed-

ing or taking exogenous hormones during the follow-up. This led to the number of

FSH levels available for each woman ranging from 1 to 26 out of the maximum 26.

We focus our analysis on the 234 women who 1) had not experienced hot flash symp-

toms at baseline, 2) had baseline measurements of BMI and smoking status (0 or 1)

that are to be included as baseline covariates in the outcome submodel, and 3) had at

least 6 measurements of FSH levels. We let yi j denote the natural log transformed

FSH levels i.e., log(FSH) and oi denote the ordinal outcome of interest, severity of

hot flashes (0, 1, and 2), defined as oi = 0 if never had severe hot flashes (that is,

severity score < 2 throughout the follow up period); oi = 1 if had severe but not more

severe hot flashes (that is, severity score at least once =2 or once =3 that occurred
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before 40 yrs. old) and oi = 2 if had more severe hot flash (that is, severity score at

least once =3 after 40 yrs old). In our final sample, 117 (50%) never experienced any

severe hot flashes during follow-up (severity score=0), 80 (34%) had a severity score

of 1, and 37 (16%) had a severity score of 2. The average number of available FSH

levels per woman is 18.7 (range: 6-26) in our final sample. Since it is commonly be-

lieved that most women start to experience menopausal related symptoms between

the age of 45 and 50 and reach menopause by the age 55, we consider T = [45,55] as

a potential risk time window in our analysis for the impact of changes in FSH levels

on risk of severe hot flashes.

We use model 3.1 to describe longitudinal measured FSH and model 3.2 to re-

late long- and short-term FSH characteristics to the occurrence of severe hot flashes.

Preliminary analysis suggested using cubic B spline basis functions with 1 to 3 inner

knots to express µi(ti j) and cubic B spline basis functions with 1 to 5 inner knots

to express the functional coefficient function θ0(t). Thus we consider models with 1,

3 or 5 knots; putting these knots at the equally spaced quantiles of the distinctly

observed ages of these women as recommended by Ruppert et al. (2003). This is

equivalent to assuming piecewise cubic orthogonal polynomials connected at those

chosen knot locations. Next, we consider the number of components for both mean

profile and variance classes. Previous analysis of fitting mixture distributions for

both the random effects and variances (Chapter II) successfully identified 1 mean

profile class and 2 variance classes under normality assumption for εi j. However,

our current approach assumes a t distribution for εi j that will potentially impact the

effect of any outliers on estimation of the mean trajectories, which may alter the opti-

mal numbers of components for the mean profile and variance classes. With all these

considerations, we consider KD = 1,2 and 3 and KC = 1,2 and 3 in our analysis. To

deal with outlying observations that cannot be fitted well by normal model, Jeffreys

(1973) (page 65) suggested using t distribution with degrees of freedom within the
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range of [4,15].

We attempted to estimate the degrees of freedom by treating it as a true param-

eter in our model, but found its estimation unstable without use of an informative

prior. Hence we perform a sensitivity analysis, comparing results from a normal

model (df=∞) with a submodel with df=4 and 7, respectively. We chose these three

scenarios as representative settings to reflect the assumptions of presence of extreme

outliers, mild outliers or absence of outliers relative to a normal distribution in the

FSH data.

Table 3.1 presents the DIC statistics for all models considered: 1,2, or 3 latent

classes for the mean profiles and variances; normal, t (df=7) and t (df=4) assump-

tions for the errors in longitudinal submodel; and 1,3 or 5 knots for the longitudinal

trajectories or functional varying coefficient function respectively. In general, DIC

suggests that joint models with t (df=4) assumption for the longitudinal submodel

fits the data much better than t (df=7), and much better than the normal model. Un-

der this t assumption, KD = KC = 2 is selected for both df=4 and df=7. Given these

selected number of components for both the mean profile and variance classes for

each model, DIC further suggests that 1 knot (i.e., Jµ(t) = 1) at 46.6 years of age for

the longitudinal trajectories and 3 knots (i.e., Jθ0(t) = 3) at 41.6, 46.6 and 51.5 years

of age for the functional varying coefficient function offers the best balance between

goodness of fit and smoothness under all these three longitudinal submodel assump-

tions. Next, we will only focus on these best fitting models summarized as:

• best fitting normal model: KD = 1, KC = 2 with Jµ(t) = 1 at 46.6 years of age and

Jθ0(t) = 3 at 41.6, 46.6 and 51.5 years of age

• best fitting t (df=7) model: KD = KC = 2 with Jµ(t) = 1 at 46.6 years of age and

Jθ0(t) = 3 at 41.6, 46.6 and 51.5 years of age

• best fitting t (df=4) model: KD = KC = 2 with Jµ(t) = 1 at 46.6 years of age and
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Jθ0(t) = 3 at 41.6, 46.6 and 51.5 years of age

For these best fitting models, PDMs also confirmed our previous finding based

on model selection criterion DIC that the t (df=4) model fits the longitudinal FSH

trajectories better than the t (df=7) and normal distribution. Figure 3.1 shows the

upper bounds of the p values based on PDMs for longitudinal trajectories fitted by all

three final models. If the upper bound of a p value is less than 0.05, there is strong

evidence of inadequate fit. We see that the normal model fits the large majority of

subjects well, with 40 individual trajectories being considered to have inadequate

fit by PDMs. Out of these 40 individual trajectories, assuming t distribution with 7

degree of freedom improved the fits of 27 individual trajectories, leaving still 13 indi-

vidual trajectories with inadequate fit; among the 13 individual trajectories, further

assumption of even more heavy tailed t distribution with 4 degrees of freedom still

resulted in 8 individual trajectories to have inadequate fit. Further examination of

these 8 (3.4% of total 234 trajectories) individual level observed trajectories indicates

the existence of varying degrees of outlying observations. For example, the first row

in Figure 3.2 shows three trajectories that are considered to have inadequate fits

by all three best fitting models based on PDMs (i.e., upper bound of p values are

less than 0.05). The second row in Figure 3.2 shows 3 trajectories that have upper

bounds of p values less than 0.05 by our best fitting normal model but upper bounds

of p values greater than 0.05 by both our best fitting t (df=7) and t (df=4) models,

while the third row shows 3 trajectories that have upper bounds of p values less than

0.05 by our best fitting normal and t (df=7) models but upper bounds of p values

greater than 0.05 by both our best fitting t (df=4) models. Clearly, these plots suggest

that t models with 4 and 7 degrees of freedom show considerably less influence by

outlying observations than the normal model and they both have almost identical

fits visually. Finally, the last row of Figure 3.2 shows three trajectories that have

upper bounds of p values greater than 0.05 by all three of our best fitting models:
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the normal and t models with df=4 and df=7 show very similar fits. Therefore, the

inadequate fit of longitudinal FSH trajectories identified by PDMs is likely due to

these varying degrees of extreme outliers. Although we could consider even smaller

degrees of freedom of t distribution or more heavily tailed distribution for the longi-

tudinal submodel to accommodate these extreme outlying observations, the t model

with either 4 or 7 degrees of freedom already shows almost identical robustness to

them and seems to provide reasonably good fit to the FSH data.

Next, we contrast the estimation results from these models to demonstrate the in-

fluence of not appropriately accommodating outlying observations. Figure 3.3 presents

the mean profile components and two variance components identified by the three

best fitting models. Consistent with the finding reported in Chapter II, under the

normal model assumption, a single-component mean profile is favored by DIC. In

contrast, under both the t (df=7) and t (df=4) model assumptions, a two-component

mean profile is favored by DIC: the major mean class (86% of women) whose FSH lev-

els begin increasing in their late 40s and the minor mean class (14% of women) with

increasing FSH levels starting around age 40 capturing a proportion of women who

might transition into menopause at an earlier age. The variance class has different

meanings under t and normal assumptions but in both scenarios measure the short

term variations in FSH levels: according to their magnitudes, both t and normal

models would classify them to either "low" and "high" classes. Based on the posterior

estimates of these component-specific parameters given in Table 3.2, we can further

see more subtle differences in these estimated mixture components under varying

assumptions.

In general, under all these three model assumptions, we have reached the same

broad conclusions: the high short term variability in the FSH levels is strongly asso-

ciated with increased risks of more severe hot flash; smoking is marginally associated

and there was no association with BMI or the individual mean trajectories between
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age 45 and 55. The most dramatic difference between the different df models oc-

curs for the estimated functional coefficient θ0(t). Figure 3.4 (a), (b) and (c) show

the estimated functional coefficient θ0(t) by our best fitting normal, t (df=7) and t

(df=4) models, respectively. The estimated θ0(t) under our best fitting normal model

tends to have larger effect size (larger magnitude in θ0(t)) before age 53 and an over-

all wider pointwise 95% credible interval than the estimated θ0(t)’s under our best

fitting t (df=4) and t (df=7) models. All three coefficient curves suggest that, when

adjusting for the whole history of mean FSH levels over the age range of age 45 to

age 55, higher mean FSH levels before age 53 reduce risk of severe hot flashes, while

higher mean FSH levels between age 53 and age 55 increase this risk, but there is no

conclusive evidence of a true association between the FSH trajectory histories and

the risk of more severe hot flash.

Finally, to consider the effect of the derivative of the mean profile µ′
i(t), we focus

on the best-fitting t (df=4) model, for which the lower bound of p value based on PDM,

is 1.0, indicating a good fit to the risks of different severities of hot flash. Figure 3.5(a)

considers the effect of cumulative changes in the mean profiles across the age range

T̃ = [45,55], while Figure 3.5(b) considers the equivalent effect across the age range

T̃ = [50,55], potentially a more clinically relevant age range since the median age of

menopause is 51 and therefore the hormone dynamics in this time window are more

likely to play a role in the menopausal related symptoms. When fit over the wider age

range, higher values of µ′
i(t) decrease risk slightly before age 50 and increase it over

age 50, although the 95% credible intervals include 0 by a wide margin. In contrast,

a more narrowly-focused age range of T̃ = [50,55] suggested significantly increased

risk of severe hot flash associated with higher values of µ′
i(t) in the age range of 52.5-

55, with θ̂1(52.5) = 0.408 (95% CI=0.019, 0.843) and θ̂1(55) = 0.514 (95% CI=0.003,

1.290).

Figure 3.6 shows the receiver-operator characteristic (ROC) curves for the best-
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fitting t (df=4) model, comparing the use of the µi(t) and µ′
i(t) between age 45 and

55 to discriminate each of the hot flash severities (0, 1 and 2), along with the other

predictors (residual variance, BMI, and smoking status). These ROCs and their as-

sociated area under the curve (AUCs) suggest that using either functional predictors

led to moderately accurate classifications of different hot flash severities. Visually,

there is not much differences in these ROC curves; a further comparison of AUCs

also suggests that the predictive performances by using µi(t) and µ′
i(t) have negli-

gible differences (δ AUCs for severity 0, 1, and 2 are -0.012 (-0.097, 0.070), -0.002

(-0.073, 0.071) and -0.020 (-0.131, 0.091) respectively).

3.4 Conclusions and Discussion

In this paper we develop a novel joint modeling approach to answer the scien-

tifically important research question of how long-term history of FSH values or its

change rates affects the severity of hot flash, a symptom almost every woman ex-

periences during the menopausal transition. While many joint models have been

developed in the context of cancer research and HIV/AIDS clinical trials in the past

decade, most methods focus on the features in the “true” underlying longitudinal

process (i.e., mean profile) that take the forms of random effects or latent classes; or

alternatively the last available “true” underlying value as a time-dependent covari-

ate. Following Elliott et al. (2012) and Chapter II, we seek the useful longitudinal

features in both the mean profiles and the short-term variability. Further we allow

the mean of the longitudinal process and the corresponding derivatives to be time

varying, and their effects toward the responses to be accumulative over time. To

summarize, we propose a broadly applicable joint modeling approach that

1. makes efficient use of the available information in the longitudinal data, by

including the short-term and long-term dynamic feature in the mean histories
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as functional predictors in the second stage primary outcome model while also

adjusting for short-term variability,

2. allows selection of longitudinal features within certain clinically relevant time

windows to predict the health outcome of interest in the second stage primary

outcome submodel, where the effects outside this particular time window are

assumed to be negligible,

3. can handle balanced or unbalanced longitudinal data that are densely or sparsely

measured.

To realize these modeling goals, we use a penalized spline approach to allow the

flexible modeling of longitudinal features and the functional coefficient curve repre-

senting the time varying effect of longitudinal feature, although in principle they can

also be fit by a more restrictive parametric approach. Since the ultimate goal is to

simultaneously model both the mean trajectories and the residual variability but dis-

tinguish between their effects in the outcome submodel, we choose a t distribution

to properly model residual variability to avoid the impact of outlying FSH values.

In particular, we demonstrate the importance of assuming this robust distribution

assumption instead of the typical normal assumption used in most of the joint mod-

eling literature. However, due to the limited number of longitudinal observations for

some women (i.e., ranging from 6 to 26), there is insufficient information in the data

to assume individually varying degrees of freedom in t distribution, we are limited

to assume a global degrees of freedom common to all trajectories. In addition, our

attempts to use the data to estimate even the global degrees of freedom parameter

using the informative exponential distribution proposed by Geweke (1993), the trun-

cated uniform prior on the inverse of the degree of freedom suggested in Lange et

al. (1989) and Gelman and Hill (2007) and the Jefferys prior derived by Fonseca et

al. (2008) all failed: the estimated global degrees of freedom were always close to an
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prior cutoff value, implying the existence of extreme outliers in the FSH data that

tend to drive the degrees of freedom in t distribution to low values. Given that the

fitted values are only modestly affected by different values of degree of freedom in t

distribution (Lange et al. (1989)), we chose to fix the degrees of freedom parameter

at a small number of fixed values and conduct a sensitivity analysis using DIC to

choose among the models.

The proposed model also allows latent heterogeneities in both the individual level

mean trajectories and the residual variability as in Chapter II. Under our best fitting

t (df=4) model, as shown in Figure 3.3 (e), the mean FSH trajectories can be separated

into two classes, one minor class with 14% of trajectories and the other major one

with 86% of trajectories. Both classes are reflective of three typical FSH change

patterns for women in the transition to menopause (Burger et al., 1999) in that FSH

is relatively flat prior to the menopause transition, has an increasing period during

the menopause transition, and will eventually plateau once women get about 2 years

post menopause; but women in the minor class tend to have an earlier increasing

time frame in the FSH trajectories along with higher FSH values than the women in

the major class. As shown in Figure 3.7, the fitted mean FSH curves for the total 28

women assigned to the minor class and a random sample of 20 women assigned to

the major class based on the posterior mode were plotted. This once again shows the

heterogeneous nature in the mean FSH trajectories that is supported by our model

selection criterion DIC and implies that the women in the minor class tend to reach

menopause at a much earlier age. Also, as shown in Figure 3.3, even with the use of

the t distribution to account for extreme outlying observations, it seemed that there

still exists a true mixture in residual variability.

Generally, the functional coefficient curves θ0(t) and θ1(t) can be fit by any spline

basis with or without penalty. In particular, if the shape of θ0(t) or θ1(t) is known, for

example, θ0(t) is a linear function, then we can let ψ0(t)= (1, t) and assume a regular
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flat normal prior on the coefficients associated with basis function 1 and t. When the

true shape of θ0(t) or θ1(t) is unknown, we recommend starting the analysis using a

more flexible penalized approach to get some idea of the shape of θ0(t) or θ1(t), which

may be further reduced to simple parametric form to stabilize estimation of model

parameters and reduce the length of pointwise credible or confidence intervals for

θ0(t) or θ1(t).

Finally, we feel that our proposed model lays out an example of efficiently using

information in the longitudinal data to predict a primary outcome by borrowing var-

ious existing tools from the literature. Based on this framework, there are several

directions for future work. Most generally, the longitudinal studies often measure

several variables repeatedly, for example, in our case several other hormone profiles

are also available. Developing methods to model these potentially correlated longi-

tudinal trajectories simultaneously while also using this information effectively to

predict or relate to the outcome of interest are areas for future research.
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Figure 3.1: Upper bounds of p values based on PDMs for individual trajectories fit
by our best fitting models with µi(t) i = 1, ...,n within the time window
T = [45,55] as a functional predictor in primary outcome submodel.

Table 3.1: DIC from different joint models for the analysis of Penn ovarian aging
data, assuming normal, t (df=7) and t (df=4) distribution for the longitudi-
nal submodel and using µi(t) i = 1, ...,n within the time window T = [45,55]
as a functional predictor in primary outcome submodel.

KC = 1 KC = 2 KC = 3
Model KD = 1 KD = 2 KD = 3 KD = 1 KD = 2 KD = 3 KD = 1 KD = 2 KD = 3

Normal
Jµ(t) =1, Jθ0(t) =1 11439.0 11477.2 11492.9 11333.6 11369.1 11399.3 11511.6 11545.1 11560.7
Jµ(t) =1, Jθ0(t) =3 11437.5 11487.9 11501.8 11327.7 11364.9 11386.7 11506.8 11542.9 11561.5
Jµ(t) =1, Jθ0(t) =5 11435.0 11480.5 11493.3 11330.6 11369.1 11385.7 11500.7 11552.2 11574.9
Jµ(t) =2, Jθ0(t) =1 11923.4 11912.4 11924.6 11809.6 11788.7 11798.9 12000.1 11977.5 11984.4
Jµ(t) =2, Jθ0(t) =3 11923.8 11901.3 11915.5 11807.0 11803.5 11799.8 11995.0 11971.6 11997.1
Jµ(t) =2, Jθ0(t) =5 11924.7 11892.4 11919.2 11799.7 11788.2 11801.4 11993.1 11965.6 11991.5
Jµ(t) =3, Jθ0(t) =1 12419.3 12400.5 12418.6 12319.9 12308.2 12316.5 12506.2 12489.0 12499.3
Jµ(t) =3, Jθ0(t) =3 12421.8 12398.8 12412.5 12317.6 12306.7 12320.6 12506.5 12486.7 12489.2
Jµ(t) =3, Jθ0(t) =5 12416.6 12399.3 12409.5 12317.0 12298.1 12307.5 12504.7 12472.7 12485.0

t, df=4
Jµ(t) =1, Jθ0(t) =1 10335.0 10257.5 10271.0 10303.3 10215.4 10246.8 10425.0 10326.3 10347.2
Jµ(t) =1, Jθ0(t) =3 10333.2 10255.7 10272.5 10308.8 10210.8 10235.5 10419.9 10330.3 10374.1
Jµ(t) =1, Jθ0(t) =5 10331.2 10260.0 10273.9 10298.5 10230.4 10228.3 10432.3 10322.7 10371.9
Jµ(t) =2, Jθ0(t) =1 10831.8 10823.6 10826.4 10803.1 10774.6 10778.2 10947.6 10906.7 10889.1
Jµ(t) =2, Jθ0(t) =3 10830.0 10821.0 10833.2 10821.3 10776.0 10812.1 10929.6 10897.9 10934.2
Jµ(t) =2, Jθ0(t) =5 10828.0 10818.8 10822.3 10818.0 10780.1 10791.6 10936.8 10914.8 10922.0
Jµ(t) =3, Jθ0(t) =1 11280.6 11259.2 11256.8 11287.8 11255.8 11257.5 11406.5 11369.9 11397.4
Jµ(t) =3, Jθ0(t) =3 11275.4 11251.5 11256.8 11276.3 11251.4 11271.0 11393.9 11356.3 11382.0
Jµ(t) =3, Jθ0(t) =5 11278.3 11250.5 11265.0 11298.1 11253.6 11264.5 11409.9 11381.4 11384.1

t, df=7
Jµ(t) =1, Jθ0(t) =1 10626.5 10585.0 10606.3 10566.9 10518.2 10533.3 10679.8 10603.3 10652.2
Jµ(t) =1, Jθ0(t) =3 10624.0 10584.2 10600.6 10567.8 10511.5 10532.0 10694.9 10633.9 10648.5
Jµ(t) =1, Jθ0(t) =5 10622.5 10579.8 10598.3 10558.1 10512.0 10536.6 10670.4 10615.5 10628.7
Jµ(t) =2, Jθ0(t) =1 11127.3 11114.8 11125.2 11065.8 11051.9 11067.9 11214.9 11205.2 11201.2
Jµ(t) =2, Jθ0(t) =3 11123.7 11116.2 11132.3 11074.7 11062.0 11061.8 11210.6 11195.2 11207.4
Jµ(t) =2, Jθ0(t) =5 11126.5 11115.4 11128.0 11069.1 11055.4 11056.6 11225.2 11185.2 11206.9
Jµ(t) =3, Jθ0(t) =1 11604.1 11582.4 11585.9 11570.0 11550.0 11544.7 11652.8 11651.3 11661.6
Jµ(t) =3, Jθ0(t) =3 11601.5 11577.1 11588.5 11572.0 11541.7 11547.4 11687.8 11644.0 11672.1
Jµ(t) =3, Jθ0(t) =5 11600.6 11586.8 11587.9 11569.2 11540.3 11548.9 11672.2 11671.7 11651.9
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Figure 3.2: Selected individual trajectories fitted by our best-fitting joint models with
µi(t) i = 1, ...,n within the time window T = [45,55] as a functional pre-
dictor in primary outcome submodel: first row: fitted trajectories by all
three models have upper bounds of p values less than 0.05; second row:
fitted normal trajectories have upper bounds of p value less than 0.05
but fitted t (df=4) and t (df=7) trajectories have upper bounds of p value
greater than 0.05; third row: fitted normal and t (df=7) trajectories have
upper bounds of p value less than 0.05 but fitted t (df=4) trajectories have
upper bounds of p value greater than 0.05; forth row: fitted trajectories
by all three models have upper bounds of p values greater than 0.05.
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Figure 3.3: longitudinal profiles from our final models with Jµ = 1 and KD = KC =
2 in longitudinal submodel; µi(t) as functional predictor with time win-
dow T = [45,55] and Jθ0 = 3 in primary outcome submodel with different
assumptions for longitudinal submodel: a) and b) under normal assump-
tion; c) and d) under t assumption with df=7; e) and f) under t distribution
with df=4.

72



−
0.

4
−

0.
2

0.
0

0.
2

0.
4

(a)  normal, T=[45,55]

age

θ 0
(t)

45 50 55

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

(b)  t (df=7), T=[45,55]

age

θ 0
(t)

45 50 55

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

(c) t (df=4), T=[45,55]

age

θ 0
(t)

45 50 55

Figure 3.4: Functional coefficient function θ0(t) from our best fitting t (df=4),
t(df=7) and normal models with µi(t), i = 1, ...,n within the time window
T = [45,55] as a functional predictor in primary outcome submodel.
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Figure 3.6: ROC curves from our final t model: AUC0 is obtained by using µi(t) with
Jθ0(t) = 3 within the time window T = [45,55] as a functional predictor
in outcome submodel and AUC1 is obtained by using µ′

i(t) with Jθ1(t) =
3 within the time window T = [45,55] as a functional predictor with in
outcome submodel.
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Table 3.2: Estimates of model parameters by our best fitting models with µi(t) i =
1, ...,n within the time window T = [45,55] as a functional predictor in
primary outcome submodel.

normal t, df=7 t, df=4
p mean se 95% CI mean se 95% CI mean se 95% CI
β11 1.666 0.145 (1.374, 1.95) 1.508 0.152 (1.195, 1.794) 1.475 0.152 (1.166, 1.766)
β12 1.993 0.094 (1.808, 2.177) 2.118 0.094 (1.937, 2.308) 2.142 0.091 (1.963, 2.321)
β13 1.286 0.153 (0.985, 1.585) 0.933 0.147 (0.643, 1.22) 0.889 0.144 (0.608, 1.175)
β14 5.416 0.225 (4.981, 5.862) 5.506 0.24 (5.029, 5.969) 5.586 0.238 (5.115, 6.051)
β15 4.253 0.445 (3.358, 5.114) 4.272 0.418 (3.44, 5.09) 4.122 0.396 (3.345, 4.897)
ω2

11 0.94 0.265 (0.535, 1.556) 2.321 1.86 (0.786, 6.4) 2.357 1.597 (0.811, 6.39)
ω2

12 0.606 0.137 (0.379, 0.915) 2.588 2.556 (0.698, 7.717) 2.838 2.357 (0.808, 8.107)
ω2

13 2.022 0.396 (1.343, 2.887) 3.942 2.215 (1.327, 9.512) 3.644 1.911 (1.291, 8.433)
ω2

14 5.68 0.927 (4.08, 7.692) 4.612 2.91 (1.376, 12.195) 4.232 2.51 (1.306, 10.495)
ω2

15 9.43 3.235 (4.643, 17.328) 23.262 25.851 (3.639, 87.769) 17.166 16.618 (3.364, 61.141)
ρ1,12 -0.763 0.073 (-0.877, -0.592) -0.633 0.213 (-0.914, -0.096) -0.653 0.202 (-0.917, -0.133)
ρ1,13 0.661 0.098 (0.436, 0.816) 0.527 0.223 (0.002, 0.862) 0.54 0.214 (0.042, 0.857)
ρ1,14 -0.199 0.146 (-0.468, 0.102) -0.374 0.257 (-0.786, 0.203) -0.381 0.249 (-0.783, 0.165)
ρ1,15 -0.017 0.167 (-0.338, 0.31) 0.17 0.308 (-0.462, 0.707) 0.163 0.299 (-0.445, 0.688)
ρ1,23 -0.818 0.047 (-0.894, -0.711) -0.632 0.19 (-0.902, -0.169) -0.644 0.182 (-0.903, -0.216)
ρ1,24 0.459 0.103 (0.239, 0.64) 0.378 0.273 (-0.229, 0.808) 0.369 0.268 (-0.219, 0.802)
ρ1,25 -0.172 0.15 (-0.452, 0.133) -0.076 0.347 (-0.7, 0.589) -0.061 0.333 (-0.671, 0.581)
ρ1,34 -0.552 0.078 (-0.69, -0.385) -0.861 0.116 (-0.974, -0.537) -0.863 0.096 (-0.971, -0.606)
ρ1,35 0.262 0.14 (-0.031, 0.517) 0.563 0.271 (-0.111, 0.909) 0.56 0.251 (-0.055, 0.897)
ρ1,45 -0.744 0.08 (-0.865, -0.554) -0.733 0.199 (-0.953, -0.198) -0.722 0.197 (-0.948, -0.192)
β21 2.5 0.527 (1.481, 3.574) 2.599 0.524 (1.612, 3.705)
β22 1.233 0.439 (0.38, 2.118) 1.146 0.432 (0.275, 1.982)
β23 4.129 0.493 (3.13, 5.103) 4.263 0.479 (3.336, 5.233)
β24 5.267 0.544 (4.234, 6.387) 5.211 0.526 (4.196, 6.279)
β25 3.996 1.371 (1.109, 6.594) 4.006 1.316 (1.313, 6.584)
ω2

21 0.895 0.262 (0.507, 1.521) 0.909 0.265 (0.51, 1.535)
ω2

22 0.55 0.125 (0.344, 0.835) 0.552 0.122 (0.347, 0.824)
ω2

23 1.561 0.319 (1.027, 2.275) 1.597 0.323 (1.042, 2.303)
ω2

24 5.367 0.891 (3.815, 7.292) 5.391 0.893 (3.835, 7.324)
ω2

25 6.35 1.948 (3.326, 10.87) 6.017 1.744 (3.278, 10.062)
ρ2,12 -0.769 0.07 (-0.881, -0.608) -0.773 0.069 (-0.88, -0.613)
ρ2,13 0.65 0.101 (0.421, 0.814) 0.657 0.1 (0.431, 0.818)
ρ2,14 -0.253 0.157 (-0.545, 0.064) -0.261 0.158 (-0.554, 0.065)
ρ2,15 0.07 0.175 (-0.269, 0.41) 0.077 0.175 (-0.263, 0.417)
ρ2,23 -0.858 0.041 (-0.923, -0.764) -0.858 0.041 (-0.922, -0.763)
ρ2,24 0.51 0.108 (0.279, 0.699) 0.511 0.106 (0.281, 0.7)
ρ2,25 -0.282 0.151 (-0.557, 0.03) -0.296 0.148 (-0.57, 0.008)
ρ2,34 -0.686 0.073 (-0.809, -0.525) -0.686 0.071 (-0.808, -0.529)
ρ2,35 0.398 0.135 (0.112, 0.633) 0.4 0.132 (0.119, 0.637)
ρ2,45 -0.745 0.085 (-0.871, -0.539) -0.761 0.078 (-0.878, -0.575)
πD

1 0.865 0.035 (0.787, 0.926) 0.861 0.033 (0.788, 0.918)
πD

2 0.135 0.035 (0.074, 0.213) 0.139 0.033 (0.082, 0.212)
µ1 -2.859 0.18 (-3.23, -2.521) -3.03 0.223 (-3.481, -2.637) -3.128 0.203 (-3.537, -2.712)
µ2 -1.261 0.059 (-1.378, -1.144) -1.701 0.078 (-1.859, -1.555) -1.91 0.092 (-2.102, -1.74)
πC

1 0.205 0.044 (0.126, 0.295) 0.242 0.07 (0.123, 0.384) 0.293 0.08 (0.148, 0.449)
πC

2 0.795 0.044 (0.705, 0.874) 0.758 0.07 (0.616, 0.877) 0.707 0.08 (0.551, 0.852)
τ2 0.208 0.046 (0.133, 0.309) 0.154 0.059 (0.065, 0.29) 0.134 0.072 (0.03, 0.319)
θ0 (intercept) 0.305 0.995 (-1.631, 2.329) 0.279 0.972 (-1.637, 2.268) 0.012 0.985 (-1.886, 1.979)
θ1 (log(BMI)) 0.068 0.277 (-0.501, 0.607) 0.039 0.264 (-0.497, 0.573) 0.101 0.273 (-0.449, 0.627)
θ2 (smoking) 0.386 0.17 (0.052, 0.717) 0.37 0.17 (0.039, 0.708) 0.371 0.171 (0.036, 0.708)
θ3 (variance) 1.576 0.565 (0.498, 2.703) 1.887 0.747 (0.451, 3.394) 1.96 0.723 (0.579, 3.403)
θ̃01 -0.144 0.6 (-1.453, 1.125) -0.104 0.554 (-1.3, 1.096) -0.098 0.555 (-1.303, 1.138)
θ̃02 -0.158 0.624 (-1.4, 1.055) -0.113 0.579 (-1.223, 0.945) -0.11 0.565 (-1.198, 0.981)
θ̃03 -0.175 0.487 (-1.141, 0.624) -0.117 0.413 (-0.888, 0.644) -0.113 0.417 (-0.899, 0.642)
θ̃04 -0.139 0.144 (-0.444, 0.069) -0.1 0.117 (-0.332, 0.086) -0.101 0.118 (-0.329, 0.088)
θ̃05 0.037 0.187 (-0.268, 0.453) 0.009 0.159 (-0.29, 0.326) 0.007 0.162 (-0.297, 0.321)
θ̃06 0.085 0.317 (-0.542, 0.709) 0.072 0.278 (-0.428, 0.671) 0.078 0.286 (-0.412, 0.697)
θ̃07 0.09 0.668 (-1.185, 1.304) 0.082 0.59 (-0.905, 1.235) 0.08 0.582 (-0.942, 1.219)
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CHAPTER IV

Bayesian Model Assessments in Evaluating

Mixtures of Longitudinal Trajectories and Their

Associations with Cross-Sectional Health Outcomes

4.1 Introduction

There is a growing body of literature that models information from longitudinal

data to predict risks of health outcome of interest (Taylor et al., 2005; Yu et al., 2008;

Proust-Lima and Taylor, 2009; Rizopoulos, 2011; Proust-Lima et al.,2012; Elliott et

al., 2012; Taylor et al., 2013; Chapter II and III). An attractive feature of such pre-

dictions is that they are individualized. However, when several candidate models are

available, the derived outcomes can be greatly affected by the use of different mod-

els. For example, different numbers of mixture components as well as the assumed

association structure (e.g., multiple shared random effect vs. latent class structures)

to link the longitudinal and primary outcome submodels can affect the target indi-

vidualized predictions, as discussed in Chapter II. In general, researchers also tend

to use the resulting latent classes to interpret the class-specific association findings.

Various model selection criteria can be adopted to guide the selection of the proper

number of components and the association structure. However, the performances

of these model selection criteria have not been well studied in the joint modeling

77



framework.

Choosing the number of mixture components in a finite mixture setting is non-

trivial. The difficulty arises mainly because the parameter estimation in finite mix-

ture models is not a regular problem but a singular problem; hence log-likelihood

function is not well approximated by a quadratic function, and maximum likelihood

estimates are not asymptotically normal. See McLachlan and Peel (2000, section 6),

Frühwirth-Schnatter (2006, section 4), Steele and Raftery (2010) as well as the ref-

erences therein for thorough discussions of parameter estimation in finite mixture

models.

Here we consider six model selection criteria. They are Akaike information crite-

rion (AIC) (Akaike, 1974), Bayesian information criterion (BIC) (Schwartz, 1978), in-

tegrated classification likelihood criterion (ICL) (Biernacki et al., 1998), the deviance

information criterion (DIC) (Spiegelhalter et al., 2002), the logarithm of the pseudo-

marginal likelihood (LPML) (Geisser and Eddy 1979) and the widely applicable infor-

mation criterion (WAIC) (Watanabe, 2010). AIC and BIC are long-standing and most

commonly used information based model selection criteria in general; ICL is closely

related to BIC with focus on the classification likelihood and entropy, whereas LPML

has been most widely used in Bayesian model assessment. More details, including

certain necessary modifications to accommodate the joint modeling framework are

provided in Sections 4.3.1.3 to 4.3.1.5. DIC is often viewed as a Bayesian version of

AIC with prior information on model parameters and is equivalent to AIC for non-

hierarchical models with non-informative or flat priors. Many authors have proposed

alternative versions of DIC. For example, Plummer (2002, 2006 and 2008) and Gel-

man et al. (2003) proposed alternative definitions of model complexity, while Celeux

et al. (2006) proposed eight variations of DIC for “missing data” problems, including

hierarchical models with latent variables.

WAIC, a recently proposed approach, was derived based on singular learning the-
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ory (Watanabe, 2009) as an asymptotically unbiased approximation to the out-of-

sample prediction error, and is a generalization of AIC that is applicable for both

regular and singular statistical models. It is straightforward to compute based on

the posterior draws, even for complex hierarchical models. Gelman et al. (2013) dis-

cussed the construction of AIC, DIC and WAIC from a Bayesian perspective using

some simple examples and concluded that WAIC is a “very fast and computationally-

convenient alternative" to their most preferred but often computationally expensive

cross-validation approach to choose among several candidate models. However, its

properties have not been studied in the setting of choosing numbers of components

for finite mixture distributions.

Model assessment for the joint models consisting of mixture distributions as con-

sidered in Chapter II is even more challenging due to various reasons. First of all,

the variables that are assumed to have mixture distributions are unobserved latent

features of the longitudinal trajectories. AIC, BIC or DIC based on the observed

data likelihood is not available in closed form. Secondly, the evaluation of model

goodness-of-fit has to take into account of the model fits of longitudinal submodel

and the primary outcome model jointly; this can be problematic, as the relatively

larger gain in the fit of the primary outcome model, which contains a larger num-

ber of components, may dominate the overall model fit. This phenomenon could lead

to favoring larger class models. Thirdly, when data are generated from a multiple

shared random effect (MSRE) model, incorrectly assuming a latent class (LC) struc-

ture to link the longitudinal submodel and the primary outcome model has a high

chance of creating an “outcome-informed artifact” as reported previously in Chap-

ter II. When the primary outcome is binary and the information about the mixture

components from the longitudinal data is weak, artificial mixture-components are

created to match the two outcome groups of 0 or 1 under the assumed LC structure,

which could lead to a false sense of accurate prediction than when the correct model is
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fit. Despite the artificial enhancement in the predictive performance, such outcome-

informed mixture-components are completely due to this artifact. Therefore, some

naturally relevant and important questions arise: (i) whether such artifacts due to

the assumed association structure in the primary outcome model would play any role

in the performances of model selection criteria in choosing the numbers of mixture

components; and (ii) whether model selection criteria would favor the assumed LC

structure, which leads to seemingly better prediction over the MSRE structure in the

presence of outcome-informed artifacts.

To address these issues, we conduct numerical studies to compare and contrast

the performances of several commonly used model selection criteria. We consider

WAIC and other modified criteria based on Bayesian principles in the joint modeling

setting considered in Chapter II. Our main goals include understanding the perfor-

mances of these commonly used criteria under different scenarios, including when

the data-generating scheme differ from the assumed structure; gaining insights on

similarity of selection performances of different criteria; and uncovering the model

predictive performances based on out-of-sample validation, where the performances

of the selected models are further linked with model selection criteria.

The remainder of this article is organized as follows. In Section 4.2, we describe

the joint LC and MSRE models with mixture distributions for the mean and residual

variances profiles of the longitudinal trajectories. In Section 4.3.1, we briefly review

the Bayesian model assessment criteria as well as the overall model predictive per-

formance measure to be included in our simulation. In Section 4.4, we describe our

simulation study and report the outcomes. In Section 4.5, we describe the proce-

dures used to validate prediction performances of the selected models by different

criteria using newly generated independent samples. In Section 4.6, we study the

performances of the selection criteria for the joint modeling of the follicle stimulat-

ing hormone trajectories and severity of hot flash for a group of middle-aged women
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from the Penn ovarian aging study. Concluding remarks are given in Section 4.7.

4.2 Joint LC and MSRE models

Mixture modeling is commonly used to identify unique and distinct feature sub-

groups (i.e., latent classes) in longitudinal trajectories, e.g., the proposal of growth

mixture models (GMMs) in Muthén and Shedden (1999). Chapter II considered

two classes of joint models for normally distributed longitudinal data and a binary

health outcome data. Both models used a generalized GMM for the longitudinal

data. GMMs assume latent classes for the subject-level mean profiles. Our extension

in Chapter II considered latent classes for not only the mean profiles but also the

residual variabilities of the longitudinal trajectories. Specifically, the longitudinal

submodel has the form

yi j|bi,σ2
i ∼N{µ(bi; ti j),σ2

i }, (4.1)

where, yi j denotes the longitudinal covariate for the ith subject at time ti j, j =
1, ...,ni, i = 1, ...,n, bi is the vector of r random effects that reflects the subject-level

mean profile/trajectory patterns and σ2
i is the subject-level residual variance. D i and

Ci define the latent class memberships for the individual mean profile and variance

respectively:

D i ∼Multinomial(πD
1 , ...,πD

KD
);

bi|D i = d ∼N(βd,Σd),d = 1, ...,KD

Ci ∼Multinomial(πC
1 , ...,πC

KC
);

σ2
i |Ci = c ∼ log-N(µc,τ2), c = 1, ...,KC

(4.2)

We consider two commonly used association structure to link longitudinal trajec-

tory features with the binary outcome of interest: first, an MSRE structure, where

the random effects bi, σ2
i and their interactions bi×σ2

i are included as linear predic-

tors in the primary outcome model and second, an LC structure, where the main and
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interaction effects of latent classes D i and Ci are included in the primary outcome

model. In both cases, the primary outcome model can be written as

Φ−1(P(oi = 1))=Z′
iη, (4.3)

where oi denotes the binary indicator of outcome, Zi denotes a vector of the covari-

ates in the probit model for subject i, i = 1, · · · ,n and Φ(·) is the cumulative distri-

bution function for the standard normal distribution. For the LC model, Zi contains

indicators for the latent classes D i and Ci; for the MSRE model, Zi contains the

subject-specific random effect bi and residual variance σ2
i ; other fully observed base-

line covariates of interest can be included in Zi in either model as well.

4.2.1 Likelihood specification

Let φ = ({βd}KD
d=1, {Σd}KD

d=1, {πD
d }KD

d=1, {µc}
KC
c=1, {πC

c }KC
c=1, τ2, η)′. We assume each com-

ponent of φ has an independent prior distribution with the joint prior distribution

denoted by π(φ). All unobserved latent variables are denoted by z, z = (b,σ,C,D)′.

The observed data x consists of the longitudinal profiles y1, ...,yn and the observed

outcomes o1, ..., on. Then the complete data likelihood of φ based on the complete

data (x,z) is given by

f (x,z|φ)∝
{

n∏
i=1

[∏
d

[
πd(2π)−

r
2 |Σd|−

1
2 exp

{
−1

2
(
bi −βd

)′
Σd

(
bi −βd

)}]I(D i=d)

×∏
c

[
πc(2πτ2)−

1
2σ−2

i exp
{
− 1

2τ2

(
logσ2

i −µc
)2

}]I(Ci=c)

×
ni∏
j=1

1√
2πσ2

i

exp

[
− 1

2σ2
i

{
yi j − f (bi; ti j)

}2
]

×Φ(Z′
iη)oi

{
1−Φ(Z′

iη)
}1−oi

]}
π(φ).

(4.4)
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4.2.2 Prior specification and posterior computation

We consider the same prior distributions as considered in Chapter II, where cer-

tain empirical data-driven priors were considered for some parameters to avoid ei-

ther improper posterior or existence of empty classes during the iterations of MCMC

sampling. We found that our considered model assessment criteria were not sensitive

to these choices.

For the mixture normal distribution of the random effects, we let βd ∼ N(0,V),

V = nĈov(β̂) where β̂ is the linear regression estimator of y on the design matrix

of t defined by f (·; ti j). This corresponds to a prior “single observation” data-driven

inflated covariance structure centered at a null model, and avoids improper poste-

riors resulting from the possibility that some of the latent classes are not repre-

sented in the data (Elliott et al. 2005). For the the variance-covariance matrix for

the random effects Σd, we use the prior proposed by Kass and Natarajan (2006):

Σd ∼ Inverse-Wishart(df= r,Λ), where Λ= r
(∑n

i=1 Ĉov(b̃i)−1/n
)−1

, b̃i is given by OLS

estimator of bi for subject i and r is the dimension of bi. This prior restrains the

eigenvalues of the variance-covariance matrices away from 0, avoiding the improper

posterior that can result from unbounded likelihoods when the variance-covariance

matrix is unrestricted in normal mixture models (Day, 1969).

For the mixture log normal distribution for the residual variances, we used dif-

fuse priors: µc ∼ N(0,v), τ−2 ∼ Gamma(a,b) with v = 1000 and a = b = .001. For

the class membership probabilities, we assume conjugate Dirichilet(4, ...,4) on both

πC = (πC
1 , ...,πC

KC
) and πD = (πD

1 , ...,πD
KD

) (Frühwirth-Schnatter, 2006); this is equiva-

lent to assuming a priori 4 observations in each class, avoiding the existence of empty

classes. Lastly, we let θ ∼ N(0, (9/4)I) in the probit regression, where (9/4)I is chosen

to bound the estimated outcome probabilities to be away from 0 and 1 (Garrett and

Zeger, 2000; Elliott et al., 2007, and Neelon et al., 2011).

Gibbs sampling is used to obtain draws from the corresponding posterior distribu-
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tions. For (η |C,D,O) we use the Albert and Chib (1993) data augmentation method

for probit regression models. The draws of (σ2
i |Ci,µc,τ2,bi, oi, {yi j} j) for i = 1, ...,n are

obtained the inverse cumulative distribution method. The detailed MCMC sampling

procedures are provided in the Appendix A.

4.3 Model selection and assessment criteria

4.3.1 Model selection criteria

We consider several commonly used model selection criteria that are both com-

putationally feasible and stable for our joint models. For a comprehensive review of

Bayesian model selection criteria, please refer to Vehtari and Ojanen (2012).

4.3.1.1 Log-pseudo marginal likelihood criterion

The log-pseudo marginal likelihood (LPML) (Geisser and Eddy, 1979) corresponds

to a Bayesian cross-validation measure, defined as LPML =
n∑

i=1
log(CPOi), where

CPOi = f (yi, oi|y(−i),o(−i)) represents a cross-validated posterior predictive density

for xi = (yi, oi) given the data excluding (yi, oi) (denoted by (y(−i),o(−i)) = x(−i)). The

model with higher value of LPML provides better fit to the data (Ibrahim et al., 2001).

Details of the LPML computation are provided in the Appendix A.

4.3.1.2 Deviance information criterion

DIC (Spiegelhalter et al., 2002) is a Bayesian analog of the original AIC (Akaike,

1974), but DIC uses the discrepancy between the posterior mean of the deviance

D(φ)= Eφ

{−2log f (x |φ) | x}
and the deviance evaluated at the posterior mean D(φ)=

−2log f
{
x | E(φ | x)

}
to estimate the effective number of degrees of freedom in the
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model pD :

DIC(x)= D(φ)+ pD

= 2D(φ)−D(φ)

= D(φ)+2pD

=−4Eφ

{
log f (x |φ) | x}+2log f

{
x |E(φ | x)

}
(4.5)

In our setting, the observed data likelihood f (x |φ) is not available in closed form,

where x = (y,o)′; instead we use the approach outlined in Celeux et al. (2006) to ob-

tain Ez {DIC(x,z)}=−4Ez,φ
{
log f (x,z |φ) | x}+2Ez

[
log f

{
x,z |Eφ(φ | x,z)

} | x]
, where

the complete data likelihood f (x,z | φ) has a closed form as specified in (4.4), and

Eφ(φ | x,z) is obtained via numerical methods. The detail of DIC computation is

provided in the Appendix A.

4.3.1.3 Modified AIC

Although the original AIC proposed by Akaike (1974) is developed for “regular”

models and hence is not directly defined for Bayesian hierarchical model, we con-

sider AIC modified based on the complete data likelihood using Bayesian principle.

Specifically, the modified AIC is defined using the deviance based on the complete

data likelihood with a penalty term to account for the number of model parameters

as follows:

• AIC1 = D(φ)+2p =−2Ez,φ
{
log f (x,z |φ) | x}+2p

• AIC2 = D(φ)+2p =−2Ez
[
log f

{
x,z |Eφ(φ | x,z)

} | x]+2p

where for joint LC model, p = KD + rKD + r2KD +KC +KC +KCKD +1 and for joint

MSRE model, p = KD + rKD + r(r + 1)KD /2+ KC + KC + 2(r + 1)+ 1, where r is the

dimension of random effect bi. For both models, there are KD parameters for πd,

rKD for µd, r(r+1)KD /2 for Σd in the mean profile; there are KC parameters for πc,

KC for µc, 1 for τ2 in the variance profile. For the LC structure, since we consider a
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saturated model with all possible main and interaction effect between the mean and

the variance profiles, there are KCKD parameters in the primary outcome model;

for the MSRE structure, since we consider all possible main and interaction effect

between random effects bi and variances σ2
i , there are 2(r + 1) parameters in the

primary outcome model.

4.3.1.4 Modified BIC and ICL

Accordingly, we consider the following modified BIC’s that correspond to the above

definition of AIC’s:

• BIC1 = D(φ)+ p log(n)=−2Ez,φ
{
log f (x,z |φ) | x}+ p log(n)

• BIC2 = D(φ)+ p log(n)=−2Ez
[
log f

{
x,z |Eφ(φ | x,z)

} | x]+ p log(n)

To identify the correct number of components for finite mixture distributions, Bier-

nacki et al. (1998) also suggested an integrated classification likelihood criterion

(ICL), which was shown by McLachlan and Peel (2006, page 216) to be approximately

equal to BIC plus two times the entropy of classification probability into assumed

number of clusters. Here, we adopt this approximated version of ICL. Further, given

that we have two mixture distributions for the random effects and the residual vari-

ances, respectively, we have the following two forms of ICL,

• ICL1 =BIC1 +2Ez,φ
{
EN(φ,z) | x}

• ICL2 =BIC2 +2Ez
[
EN

{
Eφ(φ | x,z),z

} | x]
where

EN(φ,z)=−
KD∑
d=1

n∑
i=1

P(D i = d |φ,z) logP(D i = d |φ,z)

−
KC∑
c=1

n∑
i=1

P(Ci = c |φ,z) logP(Ci = c |φ,z)

(4.6)

where, the expressions of P(D i = d |φ,z) and P(D i = d |φ,z) differ for LC and MSRE

models and are given in the Appendix C.

86



4.3.1.5 WAIC

Following Gelman et al. (2013), we consider the following two forms of WAIC,

defined based on the conditional data likelihood f (xi | z,φ):

WAICi =−2
n∑

i=1
log

[
Ez,φ

{
f (xi | z,φ) | x}]+2pWAICi (4.7)

• pWAIC1 = 2
n∑

i=1

[
log

[
Ez,φ

{
f (xi | z,φ) | x}]−Ez,φ

[
log f (xi | z,φ) | x]]

• pWAIC2 =
n∑

i=1
Varz,φ

[
log f (xi | z,φ) | x

]

where f (xi | z,φ)= [
oiΦ(ZT

i η)+ (1− oi)(1−Φ(ZT
i η))

]∏ni
j=1φ(yi j|µ(bi; ti j),σ2

i ), and

φ(yi j|µ(bi; ti j),σ2
i ) represents the normal density with mean µ(bi; ti j) and variance

σ2
i evaluated at yi j.

4.3.2 Overall model performance measure

For each model considered, we also summarize its predictive performance to link

with different model selection criteria. There are many choices to quantify the perfor-

mance of a predictive model for binary prediction (Taylor et al., 2008 and Steyerberg

et al., 2010). Here, we consider the widely-used the area under the curve (AUC) based

on the receiver operating characteristic (ROC) curve to assess the overall model dis-

crimination ability averaged across all predictive cutoffs. For out-of-sample predic-

tion validation in Section 4.5, we consider the Brier-score based posterior predictive

mean squared error as an additional performance measurement; details are provided

therein.

Briefly, the ROC curve plots true positive rate (TP) versus false positive rate

(FP) for all possible cutoffs based on predicted P(oi = 1) = Φ(Z′
iη) obtained from

(4.3). The ROC curve and AUC were computed at each MCMC iteration using the

ROCR package in R (Sing et al. 2005). The ROC curve is computed by ordering
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the observations (i) = 1, ...,n so that P̂(o(i) = 1) ≥ P̂(o(i+1) = 1), computing change-

points c = 2, ...,nc, nc ≤ n where the observations change from positive to negative

(i.e., o(c−1) = 1, o(c) = 0), and plotting
∑c

(i)=1(1−o(i))/
∑n

(i)=1(1−o(i)) on the x-axis versus∑c
(i)=1 o(i)/

∑n
(i)=1 o(i) on the y-axis. The AUC is then computed using a trapezoidal ap-

proximation. The reported AUC is calculated as the posterior mean AUC averaged

across all MCMC iterations.

4.4 Simulation Study

In this section, we conduct several simulation studies to evaluate the perfor-

mances of these model selection criteria under both scenarios that the data gen-

erating schemes, LC or MSRE, and the fitted model coincide with each other and

when they do not. In what follows, we refer to the model where the observations are

generated from as the “true model”. Two representative data-generating structures,

KD = KC = 2 and KD = KC = 1, are considered. The former, with different combi-

nations of relative mixture locations, represents a simple but informative mixture

structure; while the latter represents the null model. We report the number of com-

ponents selected by each criterion and under each scenario. We also report the within

and out-of samples prediction performances.

4.4.1 Simulation Setup

We specify a combination of sub-structures for our simulation studies below.
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4.4.1.1 KD = KC = 2

For the longitudinal observations, we generate data from the following models

with two components within both the mean and the variance profiles,

yi j|bi,σ2
i ∼N(b0i +b1i ti j,σ2

i ),

bi ∼πN(β1,Σ1)+ (1−π)N(β2,Σ2),

logσ2
i ∼πN(µ1,τ2)+ (1−π)N(µ2,τ2),

(4.8)

where i = 1, ...,200 and ti j = 0,1,2, ...,ni with ni ≡ 20. For k = 1,2, we denote βk =

(βk1,βk2)′ and Σk =

 ω2 ρkω
2

ρkω
2 ω2

.

We let β1 = (0,0)′ and β2 = (2
p

2,2
p

2)′, ρ1 = 0 and ρ2 =−0.6, µ1 =−2 and µ2 =−.5.

Thus the mean of the two bivariate normals differs by 4 throughout, while the

mean log of the variances are separated by 1.5. In our investigation, we consider

the cases of “overlapped” versus “separated” mixture components, crossed with “bal-

anced” 50:50 versus “unbalanced” 20:80 mixing proportions for both the mean and

the variance profiles. Besides the separation in mixture components, we anticipate

the mixing proportion of 50:50 to yield more difficult to separate latent classes, since

the populations provide no information about class memberships. Figure 4.1 shows

the corresponding 95% contours and density plots of the two “overlapped” versus

“separated” components for the mean and the variance profile, respectively. Fi-

nally, our eight longitudinal model scenarios are defined by (ω2,τ2,π) = (2, .25, .5),

(1, .25, .5), (2, .06, .5), (1, .06, .5), (2, .25, .2), (1, .25, .2), (2, .06, .2), and (1, .06,0.2), re-

spectively.

For each scenario, we simulate 100 data sets and report the models (i.e., KD and

KC) selected by each selection criteria. The setups considered include the combina-

tions where the assumed and fitted structures from the choices of LC and MSRE

models match or dis-match each other, with the assumed numbers of components
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being KD = 1,2,3 and KC = 1,2,3.

For each of the simulation scenarios proposed for the longitudinal observations,

the following two underlying probit models are considered for the health outcome:

1. latent class (LC) probit submodel:

Φ−1 {P(oi = 1)}= θ0 +θ1I(D i = 2)+θ2I(Ci = 2)+θ3I(D i = 2,Ci = 2); (4.9)

2. multiple shared random effect (MSRE) probit submodel:

Φ−1 {P(oi = 1)}= γ0 +γ1bi0 +γ2bi1 +γ3σ
2
i +γ4bi0σ

2
i +γ5bi1σ

2
i , (4.10)

where D i = 1 corresponds to the mean component N((0,0)′,Σ1), and Ci = 1 corre-

sponds to the variance component N(−2,τ2) in the longitudinal submodel (4.8). We

replace η in the general models (4.3) by θ for the LC and by γ for the MSRE probit

primary models to simplify the task of presentation; we let θ = (−0.8,1.8,−.2,−.3)

and γ = (−1,1,−1,2,−2,2)′ for each scenario so that the outcome prevalence is ap-

proximately 50 percent.

4.4.1.2 KD = KC = 1

Further, we consider the null case when there does not exist mixture/latent class

for either the mean or the variance profiles by dropping the corresponding second

mixture components where D i = Ci = 0. Consequently, the primary probit models for

the health outcomes are:

1. latent class (LC) probit submodel:

Φ−1 {P(oi = 1)}= θ0; (4.11)
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2. multiple shared random effect (MSRE) probit submodel:

Φ−1 {P(oi = 1)}= γ0 +γ1bi0 +γ2bi1 +γ3σ
2
i +γ4bi0σ

2
i +γ5bi1σ

2
i . (4.12)

For each scenario, we simulate 100 data sets and report the models (i.e., KD and

KC) selected by each selection criteria under variour scenarios, equivalently to those

in Section 4.4.1.1, but only consider the fitted models with KD = 1,2 and KC = 1,2.

4.4.2 Simulation Results

4.4.2.1 KD = KC = 2

Among the 100 simulated data sets, in Tables 4.1 to 4.4, we report the number

of times each model, indicated by particular numbers of mixture components (KD ,

KC), is selected by one of the criteria given in the first column. Table 4.1 and 4.2

show the results when the true data-generating model has LC structure while Ta-

ble 4.3 and 4.4 reports those under the MSRE structure. In general, separations in

mixture components play an important role in the performances of these criteria in

identifying the correct number of components: when there is a sufficiently large de-

gree of separation in either the mean or the variance profiles, it is generally easier to

choose the correct number of components. Scenario (a)-(d) represent different levels

of separation of mean (or variance) components, as indicated in the Tables. Mixing

proportion might also play a role in selecting correct numbers of mixture compo-

nents. We use an unbalanced 20% vs. 80% mixing design to create some asymmetry

in the mixture density. In our study, all criteria seem to perform slightly better in

the cases of the unbalanced design. Incorrectly assuming the outcome structure has

some impacts on the performances of these criteria, the degrees of impact depend

on the criteria and hence the goal in model selection, as well as the true association

structure in the outcome model. In particular, the outcome-informed artifacts due to
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fitting an LC structure to the data generated under a true MSRE model, reported in

Chapter II, also have some connection with the performances of these criteria, which

we re-visit later in this section.

Overall, under the correctly assumed association structure in the primary out-

come model, the modified AIC, BIC and ICL perform very well in selecting the correct

numbers of components even for the harder to separate mixture scenarios. When the

true structure in the primary outcome model is LC, the modified AIC, BIC and ICL

still perform equally well regardless of fitting LC or MSRE models. However, when

the true structure is MSRE, fitting an LC structure can affect the performances of

the modified AIC, BIC and ICL. This phenomenon is most prominent for scenario (a)

in Table 4.3. The reported results corresponding to the two different versions of AIC,

BIC, ICL or WAIC differ sometimes, but not to a noteworthy level, and therefore we

do not differentiate the summary according to the versions used.

In contrast, DIC, LPML and WAIC tend to choose too many components for both

the mean and the variance in all scenarios. In particular, the numbers of mixture

components selected by WAIC and LPML tend to agree regardless of the fitted model

structure used in the primary outcome model. More interestingly to note is that,

when fitting with a joint LC model, both WAIC and LPML tend to always select

the numbers of components that lead to a higher AUC value. When fitting with a

joint MSRE models, WAIC and LPML still tend to select models with more mixture

components for both the mean and the variance, but the model based on such a

selection does not have a higher value of the AUC. In fact, the AUC values vary little

under different fitted models.

As we can see from the AUC values given in Tables 4.1 and 4.2, even correctly

assuming the LC structure can lead to either (i) lower or (ii) higher AUC values

than the AUC values by the true models. We believe that (i) is due to the difficulty

to separate the mixture components of the means and, as a consequence, leads to
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high potential for misclassification. An extreme case is when almost all subjects

are assigned to one mixture component and the prediction of the outcome is solely

determined by the variance profile, which results in worse prediction ability than

the true model. On the other hand, (ii) is likely due to the outcome-informed artifact,

where subjects are assigned to spurious mixture components to generate predictions

that are more accurate than those obtained with the true model, as discussed in

Chapter II. Meanwhile, fitting joint MSRE models when LC is the true structure

only leads to slightly loss of the predictive power relative to the true model, when

the mixture components within the mean profile overlap; otherwise the AUC values

obtained by the MSRE model are similar to the true model.

On the other hand, as shown in Tables 4.1 and 4.2, when MSRE is the true data-

generating mechanism, the AUC values obtained by fitting the joint MSRE models

are always close to the AUC values by the true models in all scenarios we consider,

indicating that the predictive ability under such scenarios is not affected much by

any potential misclassification due to the overlapping mixture components. How-

ever, when MSRE is the true structure, fitting LC models would lead to either an

increase in predictive power, indicated by extremely high AUC values due to artifi-

cially recognized new components, or loss of predictive power with low AUC values,

originated from replacing a set of continuous variables (i.e., MSRE) by a discretized

version (i.e., LC) in the primary outcome model. Because of these mentioned poten-

tials when fitting joint LC and MSRE models, all criteria suggest that it is difficult

in differentiating the LC and MSRE models under the scenarios with overlapping

components. Table 4.5, focusing on the performances of all criteria in distinguish-

ing between LC and MSRE assumed structure with the true numbers of mixture

components, further illustrates this phenomenon. Each criterion could be in favor

of the structure other than the true data-generating one, notably when the mixture

components overlap. The performances of LPML and WAIC consistently reflect such
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difficulties by frequently favoring the models with higher AUC values regardless of

the truth.

4.4.2.2 KD = KC = 1

As shown in Table 4.6, under the true LC model and for all fitting structures, the

modified AIC, BIC and ICL all perform very well when distinct mixture components

do not exist for both the mean and the variance. The AICs behave slightly different

from BIC and ICL, in favor of more complex structures at times. DIC, LPML and

WAIC have the tendency to select models with too many mixture components, where

LPML and WAIC tend to select the number of components that lead to higher AUC

values. This once again suggests that WAIC and LPML tend to select models with

high prediction accuracy regardless of true association structure.

Under this null structure, we clearly see that the joint LC model has the ability to

create additional outcome-informed components that lead to misleadingly high AUC

values. The highest spurious AUC value is 0.97 as shown in Table 4.6 when the true

model is MSRE, giving the impression of almost perfect prediction when there is no

mixture at all in either the mean or the variance profiles. In this case, all criteria

under the assumed LC model tend to choose more numbers of components than that

of the data-generating scheme, reaching a better goodness-of-fit.

4.5 Validation of the models selected by different criteria

It is well known that using the predictive model built on the same data set where

the prediction is conducted would lead to optimistically biased prediction evaluation.

In this section, we conduct evaluations of different model-selection criteria using

newly generated independent samples to obtain a fair assessment of the predictive

performances. With Tables 1 to 4.6 showing that the key over-fitting phenomenon

reflected by AUC is preserved in the the simplest data-generation scheme of KD =
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KC = 1, we focus on this setup and again allow the fitted models to have 1 or 2

components. We choose this particular scenario as an extreme case of completely

overlapped mixture components to amplify the effects of potential outcome-informed

artifacts by fitting LC models, since the true LC model is essentially a null model

with AUC=0.5. For this simplest scenario, we observe that the joint LC models with

KD > 1 or KC > 1 could lead to exceedingly high AUC values relative to the true

AUC, and that such joint LC models are frequently favored by LPML and WAIC.

On the positive side, when the observations are generated from the MSRE model

but fitted with LC ones, the models selected by LPML, WAIC and DIC do result in

better prediction performances on the validation samples. The obtained outcomes

also allow us to see whether such high predictive accuracy is real or an artifact.

For each data set {(y(s)
i , o(s)

i )}n
i=1, s = 1, · · · ,100, generated from the given true joint

LC and MSRE models, we generate an additional new validation data set {(ỹ(s)
i , õ(s)

i )}ñ
i=1,

ñ = 50. We use H(s)
a to denote the model selected by model selection criteria a ∈

{DIC,LPML,AIC1,BIC1,ICL1,WAIC1} for the data set {(y(s)
i , o(s)

i )}n
i=1 and then each

H(s)
a has unique values of KD and KC.

When introducing our target prediction, we drop the superscript (s) in the no-

tations for notational simplicity. We also split the model parameter vector φ into

two components: 1) φlong =
(
{βd}KD

d=1, {Σd}KD
d=1, {πD

d }KD
d=1, {µc}

KC
c=1,τ2, {πC

c }KC
c=1

)T
, includ-

ing all the population level parameters in the longitudinal submodel, and 2) η, the

vector of coefficients in the primary outcome model. We let z̃ = (
D̃,C̃, b̃, σ̃

)T include

all individual level latent variables for the new validation sample and, compatibly,

z = (D,C,b,σ)T includes all such latent variables for the original sample set used to

obtain the fitted model. The prediction of the primary outcome for new validation
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sample is then based on the following quantity,

p (õ|ỹ,y,o,Ha)

=
∫

p
(
õ|z̃,η,Ha

)
p

(
z̃,z,φlong,η|ỹ,y,o,Ha

)
dφlongdηdz̃dz

' 1
M

M∑
m=1

p
(
õ|z̃(m),η(m),Ha

)
(4.13)

where, z̃(m),z(m),φ(m)
long and η(m), for m = 1, · · · , M are drawn from the posterior dis-

tribution p(z̃,z,φlong,η|ỹ,y,o,Ha). Details of the MCMC sampling algorithm are

given in the Appendix. Further, p̃(m)
i := p(õi = 1|η(m), z̃(m)

i ) can be obtained from

Φ((η(m))TZ(m)
i ) as described in (4.3).

Then, for each validation data set, we focus on two performance measures: 1)

the posterior predictive mean squared error (PMSE): PMSE = M−1 ∑M
m=1 PMSE(m),

where PMSE(m) = ñ−1 ∑ñ
i=1(õpred,(m)

i − õi)2 with õpred,(m)
i as a draw of a Bernoulli

random variable with success probability p̃(m)
i ; 2) the area under the ROC curve

AUC = M−1 ∑M
m=1 AUC(m) (i.e., test AUC), where AUC(m) is obtained based on p̃(m)

i ,

i = 1, · · · , ñ, using the approach as described in Section 4.

For each criteria a, we calculate the posterior PMSE and test AUC for the valida-

tion sample {(ỹ(s)
i , õ(s)

i )}ñ
i=1 fitted by model H(s)

a , s = 1, · · · ,100, and report the posterior

mean PMSE and AUC as well as the 95% credible intervals based on 100 simulations.

As a comparison, we also summarize the training AUC for the sample {(y(s)
i , o(s)

i )}ñ
i=1

that are reported in Table 4.6 for each criteria. We then repeat this procedure for the

two simulation scenarios as described in previous section: when the data is generated

from the joint LC and the joint MSRE model, respectively.

Table 4.7 shows the PMSE and test AUC for the new validation test samples,

along with the AUC for the training samples, based on the selected models by DIC,

LPML, modified AIC1, BIC1 and ICL1, as well as WAIC1, respectively. When the

data is generated from the LC models with KD = KC = 1, the true AUC is always 0.5.
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Fitting both LC and MSRE models leads to comparable predictive performances on

the test sample, with the values of PMSE and test AUC varying little among different

model selection criteria, and the estimates of training AUC all centering around the

true value. As expected, the values of test AUC are slightly smaller than those of the

training AUC.

When fitting joint MSRE models, the values of PMSE and test AUC vary little

among different model selection criteria, with the 95% credible intervals of training

AUC always covering the true AUC value for the test sample, regardless of the true

structure in the primary outcome model. In particular, when the data are generated

from LC models, fitting MSRE models leads to comparable predictive performances

on the validation sample in comparison to those obtained by LC models. We note

that this is due to choosing the setups of the LC and MSRE models to be compatible

to each other. As expected, the values of test AUC are slightly smaller than those of

the training AUC.

In contrast, when we study LC fitting, the values of training/test AUC and PMSE

differ for different criteria and are affected by the true data generation mechanism.

When fitting the LC generated data, DIC, LPML and WAIC frequently select the

models that better classify the outcome with higher training AUC values than those

chosen by other criteria. However, the values of PMSE and test AUC do not vary

much by different criteria, with the training AUC centering around the true value

0.5, indicating that the better predictive performance of the models selected by LPML

and WAIC is likely due to potential overfitting. When the data is generated from the

MSRE models, the LC models selected by DIC, LPML and WAIC lead to a higher

number and potentially outcome-informed mixture components, and consequently to

the optimistically-biased training AUC relative to the test AUC. The joint LC models

chosen by LPML, WAIC and DIC still lead to higher test AUC and lower MPSE, in-

dicating somewhat more accurate prediction for validation sample than the models
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chosen by other criteria. The modified AIC1, BIC1 and ICL1, which tend to select

the correct numbers of mixture components frequently, perform as expected for the

training versus test samples, suggesting the validity of the compatibly chosen mod-

els. Since now the data is generated from the MSRE models, fitting LC models causes

inferior predictive performances on the validation sample in comparison to those ob-

tained by MSRE models. However, only focusing on the predictive performance on

the training sample leads to an impression that LC models tend to classify the out-

come much better.

4.6 Penn ovarian aging study revisited

In this section, we use the knowledge obtained from the simulation study to guide

us to identify the plausible models in Penn ovarian aging study with the purpose of

linking the longitudinal trajectory of Follicle Stimulating Hormone (FSH) and the

occurrence of severe hot flashes during the study period. In our analysis, a total of

4,244 FSH values were observed for the final sample of 245 women, with a minimum

of 3 and a maximum of 26 observations per woman. Of the 245 women without

severe hot flash symptoms at baseline, 118 (48.2%) had experienced the outcome of

interest, an indicator variable for experiencing severe hot flashes at least once during

the study. We fit both joint LC and MSRE models, as described in Section 2, to the

FSH trajectories and severe hot flash outcome data, adjusting for baseline log(BMI)

and smoking indicator in the primary outcome model (2).

Table 4.8 reports the model selection statistics for the joint LC and MSRE model

for the analysis of Penn ovarian aging study, with KD and KC ∈ {1, 2, 3}, respec-

tively. For both joint LC and MSRE models, DIC, the modified AIC, BIC and ICL

choose KD = 1 and KC = 2, while LPML and WAIC prefer models with more mix-

ture components. Under the joint MSRE model, the AUC in the primary outcome

model vary little, with the values being likely close to the truth. The AUC for the

98



joint LC model is elevated in models with more latent classes and WAIC and LPML

tend to favor such LC models, likely due to their higher AUC values. This overall

finding is not surprising and reflects some typical behaviors of these criteria as we

have observed in the simulation study. In particular, the outcomes in our simulation

study suggest that the notable difference between the AUC under the joint LC model

chosen by WAIC, with KD = KC = 3, and the AUC under the MSRE model with any

values of KD and KC implies potential over-fitting of the larger model. As the second

best choice for both LC and MSRE models, the model with KD = KC = 2 is favored by

DIC, the modified AIC and BIC. The true model is likely to be a model of KC = 2 and

KD = 1 or, alternatively, KD = 2 but with the two components closely overlapped with

each other. However, as already indicated by AUC values, assuming KD = 2 instead

of KD = 1 when KC = 2 had very little impact on the predictive power for both joint

LC and MSRE models; Chapter II also reported that the effect of mean profile is

not significantly associated with the risk of severe hot flash in the primary outcome

model using both models. Therefore, KD = 1 and KC = 2 is the most parsimonious

choice for both joint LC and MSRE models.

Finally, in terms of choosing between LC and MSRE models assuming KD = 1 and

KC = 2, DIC, the modified AIC, BIC and ICL do not choose the same model although

these statistics from the two models are very similar, indicating similar fit to the

FSH trajectories and severe hot flash outcome. The LC and MSRE models also share

similar overall prediction performance; with ∆AUC being .04 and the corresponding

credible set covering 0, (−0.04,0.11), as reported in Chapter II. The advantages of

studying this data set using both modeling approaches with different evaluation cri-

teria lie on a higher level of confidence that suitable models are used and that the

results are not heavily determined by the assumed model.
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4.7 Discussion

In this article, we studied several commonly-used model selection criteria in terms

of choosing the numbers of mixture components in a joint modeling context, when

both correctly and incorrectly assuming the association structure to link the longi-

tudinal submodel and the primary outcome model. These criteria are all built upon

Bayesian principles in the sense that they are evaluated over the entire posterior dis-

tribution rather than conditional on single point estimates. In particular, DIC and

the modified AIC, BIC, ICL are based on deviance, while LPML is based on leave-

one-out cross validated predictive density, which is shown by Watanabe (2010) to be

asymptotically equivalent to WAIC.

In terms of choosing the numbers of mixture components, the performances of the

modified AIC, BIC and ICL appear to be more reliable and predictable than other cri-

teria when fitting joint LC and MSRE models with correctly assumed structure in the

primary outcome model in the sense that, when the mixture components are easily

separated, they frequently identify the correct numbers of mixture components while

when the mixture components are fairly overlapped and hence difficult to separate,

they frequently choose one instead of multiple mixture components. On the contrary,

the numbers of mixture components chosen by DIC, LPML and WAIC are often more

than the truth for the purpose of reaching improved prediction. In particular, WAIC

and LPML tend to select the same models with higher AUC values relative to the

models selected by other criteria.

For joint MSRE models, assuming different numbers of mixture components is

not crucial in deciding the predictive performance as assessed by AUC values; how-

ever, for joint LC models, the predictive performance is closely related to the assumed

numbers of mixture components. In particular, when the mixture components are dif-

ficult to separate and the true structure is MSRE, joint LC models tend to have high

chance of artificially creating spurious mixture components to enhance AUC values
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for the sample that is used to derive the model, giving the impression of much better

prediction power by LC models than MSRE models. This phenomenon could cause

some of our considered criteria to frequently choose incorrect numbers of mixture

components and favor specific LC structure.

When this happens, our simulation studies suggest that new independent sam-

ple validation can be helpful to confirm whether the chosen models are suitable for

the desired purposes. We find that the test AUC values for the validation sample

based on the models chosen by WAIC and LPML also tend to be higher than the test

AUC values based on the models chosen by other criteria. One needs to be cautious,

though, that the overly optimistic training AUC values relative to the test AUC val-

ues contradicts the validity of the chosen models and therefore suggests that the

seemingly high predictive power of the chosen LC models is unlikely to be the truth.

Based on our experience in the simulation study and the data example, we sug-

gest fitting both LC and MSRE models and comparing the two sets of results with

the same numbers of mixture components. When the outcome-informed artifact is

present, the inference about the mixture components from the two models usually do

not match and the AUC value obtained by LC model is often much higher than that

by MSRE model. Otherwise, the two models assuming the same numbers of mixture

components tend to lead to similar inference results, including similar scientific in-

terpretation in the primary outcome and similar predictive power assessed by AUC.

In addition to comparing the results by different model selection criteria, these rules

can be helpful to guide us to choose the suitable models the best we can in practice.

101



−5 0 5

−
4

0
2

4
6

overlapped: mean profile

random intercpet

ra
nd

om
 s

lo
pe

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

4

(2.83,2.83)

(0,0)

ω2=2

−4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

overlapped: variance

log(variance)
de

ns
ity

τ2=.4

−5 0 5

−
4

0
2

4
6

separated: mean profile

random intercpet

ra
nd

om
 s

lo
pe

●●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●
●

●

● ●●

●

●

●●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●● ●

●
●

● ●

●

●●

●

●

4

(2.83,2.83)

(0,0)

ω2=1

−4 −3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

separated: variance

log(variance)

de
ns

ity

τ2=.06

Figure 4.1: Simulation setup for the mean and variance profiles representing low
versus high levels of separation. Left panels: 95% contour plots of the
two components for the mean profiles; right panels: density plots of the
two components for the variance profiles.
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Table 4.1: Number of times each specified fitted model are selected by using the
10 criteria given in the first column of each sub-table. Observations are
generated as described in Section 4.4.1 under the joint LC model with
KD = KC = 2 and the (TD ,TC) mixture structure for the mean and the vari-
ance profiles, respectively, where TD ,TC ∈ {separated, overlapped}. Sce-
narios (a)-(d) specify the data-generating mechanism. The fitted models
consist of both LC and MSRE structures with KD = 1,2,3 and KC = 1,2,3.
The mixing proportions are 50-50. The corresponding values of AUC were
reported at the end of the table for each scenario. The “true AUC” is the
AUC obtained when predictions are generated using the correct outcome
model (true parameters and random effects/latent classes).

fitting LC model (KD ,KC) fitting MSRE model (KD ,KC)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(a) true model=LC; (separated, separated) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 0 0 0 0 26 0 0 73 1 0 0 0 0 36 1 0 62 1
LPML 0 0 0 0 8 47 0 5 40 0 11 11 0 15 33 0 7 23
AIC1 0 0 0 0 90 1 0 9 0 0 0 0 0 90 1 0 8 1
AIC2 0 0 0 0 88 1 0 11 0 0 0 0 0 85 1 0 13 1
BIC1 0 0 0 0 99 1 0 0 0 0 0 0 0 98 1 0 1 0
BIC2 0 0 0 0 99 1 0 0 0 0 0 0 0 97 1 0 2 0
ICL1 0 0 0 1 98 1 0 0 0 0 0 0 0 98 1 0 1 0
ICL2 0 0 0 1 98 1 0 0 0 0 0 0 0 98 1 0 1 0
WAIC1 0 0 0 0 0 49 0 0 51 0 14 51 0 4 26 0 0 5
WAIC2 0 0 0 0 1 68 0 1 30 0 31 24 0 16 22 0 2 5

Area under the ROC curves
true AUC=0.81 0.5 0.54 0.66 0.79 0.81 0.85 0.79 0.82 0.86 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

(b) true model=LC; (overlapped, overlapped) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 56 0 0 2 0 0 42 0 0 27 0 0 17 0 0 56 0 0
LPML 0 0 1 3 13 38 2 15 28 9 14 22 10 13 12 5 8 7
AIC1 76 0 0 19 0 0 5 0 0 80 0 0 17 0 0 3 0 0
AIC2 70 0 0 21 0 0 9 0 0 72 0 0 23 0 0 5 0 0
BIC1 94 0 0 6 0 0 0 0 0 100 0 0 0 0 0 0 0 0
BIC2 92 0 0 8 0 0 0 0 0 99 0 0 1 0 0 0 0 0
ICL1 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
ICL2 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
WAIC1 0 0 0 0 2 60 1 0 37 32 19 27 9 8 1 0 1 3
WAIC2 0 0 2 0 2 65 1 0 30 16 25 36 4 8 5 1 0 5

Area under the ROC curves
true AUC=0.81 0.5 0.63 0.72 0.78 0.85 0.88 0.78 0.85 0.88 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

(c) true model=LC; (overlapped, separated) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 0 57 0 0 3 2 0 37 1 0 41 1 0 12 1 0 45 0
LPML 0 0 0 0 13 43 0 11 33 0 9 28 0 16 19 0 13 15
AIC1 0 80 0 0 17 1 0 2 0 0 81 1 0 14 1 0 3 0
AIC2 0 72 0 0 24 1 0 3 0 0 76 1 0 19 1 0 3 0
BIC1 0 97 1 0 2 0 0 0 0 0 98 2 0 0 0 0 0 0
BIC2 0 94 0 0 5 1 0 0 0 0 98 2 0 0 0 0 0 0
ICL1 0 99 1 0 0 0 0 0 0 0 99 1 0 0 0 0 0 0
ICL2 0 99 1 0 0 0 0 0 0 0 99 1 0 0 0 0 0 0
WAIC1 0 0 1 0 2 66 0 0 31 0 22 45 0 0 20 0 3 10
WAIC2 0 0 0 0 2 65 0 1 32 0 39 19 0 16 7 0 14 5

Area under the ROC curves
true AUC=0.82 0.5 0.55 0.66 0.80 0.83 0.87 0.80 0.83 0.87 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78

(d) true model=LC; (separated, overlapped) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 0 0 0 11 0 0 88 1 0 1 0 0 16 0 0 82 1 0
LPML 0 0 0 0 17 37 2 11 33 6 8 2 13 14 16 8 16 17
AIC1 0 0 0 85 0 0 15 0 0 1 0 0 77 1 0 21 0 0
AIC2 0 0 0 73 1 0 26 0 0 1 0 0 71 0 0 27 1 0
BIC1 0 0 0 100 0 0 0 0 0 1 0 0 98 0 0 1 0 0
BIC2 0 0 0 100 0 0 0 0 0 1 0 0 98 0 0 1 0 0
ICL1 0 0 0 100 0 0 0 0 0 2 0 0 98 0 0 0 0 0
ICL2 0 0 0 100 0 0 0 0 0 1 0 0 98 0 0 1 0 0
WAIC1 0 0 0 0 0 59 0 0 41 31 16 28 6 7 9 2 1 0
WAIC2 0 0 0 0 0 74 0 0 26 13 17 29 6 10 17 1 2 5

Area under the ROC curves
true AUC=0.82 0.5 0.65 0.73 0.79 0.85 0.88 0.79 0.85 0.88 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
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Table 4.2: As in Table 4.1 but the mixing proportions are 80-20.

fitting LC model (KD ,KC) fitting MSRE model (KD ,KC)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(a) true model=LC; (separated, separated) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 0 0 0 0 27 0 0 73 0 0 0 0 0 41 0 0 59 0
LPML 0 0 0 0 3 51 0 2 44 0 6 4 0 16 36 0 13 25
AIC1 0 0 0 0 96 0 0 4 0 0 0 0 0 93 0 0 7 0
AIC2 0 0 0 0 95 0 0 5 0 0 0 0 0 83 0 0 17 0
BIC1 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
BIC2 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
ICL1 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
ICL2 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
WAIC1 0 0 0 0 0 60 0 0 40 0 18 67 0 4 7 0 0 4
WAIC2 0 0 0 0 0 67 0 0 33 0 24 34 0 12 15 0 3 12

Area under the ROC curves
true AUC=0.72 0.5 0.55 0.70 0.68 0.72 0.81 0.69 0.72 0.81 0.73 0.74 0.74 0.73 0.74 0.74 0.73 0.74 0.74

(b) true model=LC; (overlapped, overlapped) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 12 1 0 17 0 0 70 0 0 19 0 0 22 1 1 57 0 0
LPML 0 3 15 1 5 38 1 8 29 18 17 15 13 7 10 12 4 4
AIC1 64 1 0 28 0 0 7 0 0 75 1 1 21 0 0 2 0 0
AIC2 54 1 0 35 0 0 10 0 0 71 1 1 25 0 0 2 0 0
BIC1 95 1 0 4 0 0 0 0 0 97 1 1 1 0 0 0 0 0
BIC2 93 1 0 6 0 0 0 0 0 97 1 1 1 0 0 0 0 0
ICL1 100 0 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0 0
ICL2 100 0 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0 0
WAIC1 0 0 9 0 2 39 0 2 48 11 29 32 3 5 9 1 4 6
WAIC2 0 1 17 0 2 44 0 1 35 7 31 30 6 7 10 1 2 6

Area under the ROC curves
true AUC=0.72 0.5 0.63 0.73 0.59 0.70 0.78 0.60 0.71 0.78 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

(c) true model=LC; (overlapped, separated) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 0 23 0 0 10 0 0 67 0 0 26 0 0 18 0 0 56 0
LPML 0 0 11 0 5 44 0 4 36 0 12 27 0 10 21 0 12 18
AIC1 0 72 1 0 23 0 0 4 0 0 78 0 0 19 0 0 3 0
AIC2 0 58 1 0 34 0 0 7 0 0 76 0 0 19 0 0 5 0
BIC1 0 94 0 0 6 0 0 0 0 0 98 0 0 2 0 0 0 0
BIC2 0 91 0 0 9 0 0 0 0 0 97 0 0 3 0 0 0 0
ICL1 0 99 0 0 1 0 0 0 0 0 99 0 0 1 0 0 0 0
ICL2 0 99 0 0 1 0 0 0 0 0 99 0 0 1 0 0 0 0
WAIC1 0 0 6 0 0 43 0 0 51 0 16 46 0 3 23 0 4 8
WAIC2 0 0 8 0 2 50 0 0 40 0 30 27 0 13 11 0 12 7

Area under the ROC curves
true AUC=0.72 0.5 0.54 0.70 0.60 0.64 0.76 0.60 0.65 0.77 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

(d) true model=LC; (separated, overlapped) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 0 0 0 23 0 0 76 1 0 0 0 0 24 0 0 74 2 0
LPML 0 0 0 2 7 40 1 6 44 0 1 2 23 18 18 20 14 4
AIC1 0 0 0 90 1 0 9 0 0 0 0 0 89 0 0 11 0 0
AIC2 0 0 0 87 1 0 12 0 0 0 0 0 85 2 0 13 0 0
BIC1 0 0 0 99 0 0 1 0 0 0 0 0 100 0 0 0 0 0
BIC2 0 0 0 99 0 0 1 0 0 0 0 0 99 0 0 1 0 0
ICL1 0 0 0 99 0 0 1 0 0 0 0 0 100 0 0 0 0 0
ICL2 0 0 0 99 0 0 1 0 0 0 0 0 100 0 0 0 0 0
WAIC1 0 1 0 0 0 56 0 0 43 11 30 34 4 5 13 0 2 1
WAIC2 0 0 0 0 0 68 0 1 31 9 20 24 13 9 17 3 4 1

Area under the ROC curves
true AUC=0.72 0.5 0.63 0.74 0.69 0.77 0.83 0.69 0.77 0.83 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
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Table 4.3: As in Table 4.1 but the observations are generated under the joint MSER
model.

fitting LC model (KD ,KC) fitting MSRE model (KD ,KC)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(a) true model=MSRE; (separated, separated) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 0 1 0 0 25 4 0 65 5 0 0 0 0 37 1 0 60 2
LPML 0 3 14 0 8 47 0 3 25 0 6 7 0 21 32 0 11 23
AIC1 0 1 0 0 57 5 0 34 3 0 0 0 0 88 3 0 9 0
AIC2 0 1 0 0 55 5 0 36 3 0 0 0 0 81 3 0 16 0
BIC1 0 3 0 0 73 4 0 19 1 0 0 0 0 94 3 0 3 0
BIC2 0 2 0 0 72 4 0 20 2 0 0 0 0 94 3 0 3 0
ICL1 0 5 0 0 74 2 0 19 0 0 1 0 0 97 1 0 1 0
ICL2 0 5 0 0 71 3 0 21 0 0 1 0 0 96 1 0 2 0
WAIC1 0 0 18 0 7 45 0 1 29 0 24 45 0 8 18 0 1 4
WAIC2 0 0 31 0 8 48 0 1 12 0 37 21 0 19 13 0 4 6

Area under the ROC curves
true AUC=0.82 0.5 0.64 0.72 0.52 0.70 0.80 0.54 0.70 0.77 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

(b) true model=MSRE; (overlapped, overlapped) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 15 0 0 11 3 0 56 13 2 23 0 0 17 0 0 60 0 0
LPML 0 1 2 0 32 30 0 20 15 13 24 17 8 7 11 5 6 9
AIC1 74 0 0 15 8 1 2 0 0 84 0 0 13 0 0 3 0 0
AIC2 63 0 0 18 13 1 5 0 0 73 0 0 21 0 0 6 0 0
BIC1 98 0 0 0 2 0 0 0 0 100 0 0 0 0 0 0 0 0
BIC2 95 0 0 1 4 0 0 0 0 99 0 0 1 0 0 0 0 0
ICL1 99 0 0 0 1 0 0 0 0 100 0 0 0 0 0 0 0 0
ICL2 99 0 0 0 1 0 0 0 0 100 0 0 0 0 0 0 0 0
WAIC1 0 1 3 0 50 18 0 20 8 23 32 26 3 3 8 3 0 2
WAIC2 0 1 4 0 39 27 0 17 12 7 30 38 1 5 14 1 1 3

Area under the ROC curves
true AUC=0.85 0.5 0.74 0.79 0.52 0.91 0.92 0.53 0.92 0.93 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

(c) true model=MSRE; (overlapped, separated) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 0 65 3 0 3 2 0 18 9 0 38 2 0 16 2 0 42 0
LPML 0 0 3 0 10 44 0 8 35 0 19 31 0 7 21 0 8 14
AIC1 0 83 3 0 7 6 0 0 1 0 81 4 0 10 0 0 5 0
AIC2 0 77 3 0 10 4 0 1 5 0 79 4 0 12 0 0 5 0
BIC1 0 95 2 0 0 3 0 0 0 0 97 3 0 0 0 0 0 0
BIC2 0 94 2 0 0 4 0 0 0 0 96 4 0 0 0 0 0 0
ICL1 0 98 1 0 0 1 0 0 0 0 98 2 0 0 0 0 0 0
ICL2 0 98 1 0 0 1 0 0 0 0 97 3 0 0 0 0 0 0
WAIC1 0 0 0 0 0 54 0 3 43 0 26 54 0 3 9 0 2 6
WAIC2 0 0 0 0 2 55 0 4 39 0 42 27 0 9 10 0 6 6

Area under the ROC curves
true AUC=0.82 0.5 0.63 0.71 0.52 0.83 0.88 0.53 0.84 0.89 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

(d) true model=MSRE; (separated,overlapped) mixtures; 50:50 proportion
No. of times selected from 100 simulations

DIC 0 0 0 16 0 0 83 1 0 0 0 0 19 1 0 80 0 0
LPML 0 2 8 0 30 32 0 9 19 5 8 10 12 18 21 7 7 12
AIC1 0 0 0 79 0 0 21 0 0 0 0 0 78 1 0 21 0 0
AIC2 0 0 0 71 0 0 29 0 0 0 0 0 68 1 0 31 0 0
BIC1 2 0 0 94 1 0 3 0 0 1 0 0 91 1 0 7 0 0
BIC2 1 0 0 94 1 0 4 0 0 1 0 0 91 1 0 7 0 0
ICL1 2 0 0 95 0 0 3 0 0 2 0 0 91 0 0 7 0 0
ICL2 2 0 0 95 0 0 3 0 0 2 0 0 91 0 0 7 0 0
WAIC1 0 4 10 0 37 22 0 7 20 13 21 41 8 9 5 0 3 0
WAIC2 0 2 19 0 33 23 0 6 17 7 17 36 9 12 14 0 3 2

Area under the ROC curves
true AUC=0.85 0.5 0.75 0.80 0.53 0.85 0.88 0.54 0.81 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
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Table 4.4: As in Table 4.2 but the observations are generated under the joint MSER
model.

fitting LC model (KD ,KC) fitting MSRE model (KD ,KC)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(a) true model=MSRE; (separated, separated) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 0 0 0 0 18 0 0 82 0 0 0 0 0 25 0 0 74 1
LPML 0 1 12 0 0 36 0 1 50 0 2 5 0 16 37 0 10 30
AIC1 0 0 0 0 95 0 0 5 0 0 0 0 0 89 1 0 10 0
AIC2 0 0 0 0 86 0 0 14 0 0 0 0 0 87 1 0 12 0
BIC1 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
BIC2 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
ICL1 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
ICL2 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0
WAIC1 0 0 28 0 0 37 0 0 35 0 25 53 0 5 9 0 1 7
WAIC2 0 1 47 0 0 29 0 0 23 0 25 28 0 13 15 0 8 11

Area under the ROC curves
true AUC=0.77 0.5 0.59 0.74 0.52 0.60 0.77 0.52 0.61 0.77 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

(b) true model=MSRE; (overlapped, overlapped) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 18 1 0 21 0 0 57 3 0 21 0 0 22 0 0 55 2 0
LPML 0 3 17 0 13 23 0 16 28 16 17 7 10 5 13 14 14 4
AIC1 83 2 0 12 1 0 2 0 0 78 2 0 18 0 0 2 0 0
AIC2 82 1 0 12 2 0 3 0 0 76 2 0 20 0 0 2 0 0
BIC1 99 1 0 0 0 0 0 0 0 98 1 0 1 0 0 0 0 0
BIC2 99 1 0 0 0 0 0 0 0 98 1 0 1 0 0 0 0 0
ICL1 100 0 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0 0
ICL2 100 0 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0 0
WAIC1 0 5 12 0 19 21 0 17 26 10 21 41 0 7 14 1 1 5
WAIC2 0 4 22 0 8 29 0 10 27 16 23 33 1 4 10 3 5 5

Area under the ROC curves
true AUC=0.82 0.5 0.77 0.82 0.51 0.81 0.85 0.51 0.82 0.85 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

(c) true model=MSRE; (overlapped, separated) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 0 19 1 0 28 0 0 51 1 0 27 0 0 23 0 0 50 0
LPML 0 1 39 0 2 27 0 0 31 0 11 35 0 6 22 0 6 20
AIC1 0 85 2 0 9 1 0 3 0 0 80 0 0 15 0 0 5 0
AIC2 0 80 2 0 13 1 0 4 0 0 73 0 0 20 0 0 7 0
BIC1 0 98 2 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0
BIC2 0 98 2 0 0 0 0 0 0 0 97 0 0 3 0 0 0 0
ICL1 0 100 0 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0
ICL2 0 100 0 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0
WAIC1 0 0 27 0 0 30 0 0 43 0 19 51 0 6 13 0 4 7
WAIC2 0 0 38 0 0 30 0 0 32 0 22 36 0 11 16 0 5 10

Area under the ROC curves
true AUC=0.75 0.5 0.59 0.74 0.51 0.61 0.76 0.51 0.62 0.76 0.75 0.74 0.75 0.75 0.74 0.75 0.75 0.74 0.75

(d) true model=MSRE; (separated,overlapped) mixtures; 20:80 proportion
No. of times selected from 100 simulations

DIC 0 0 0 22 0 0 77 1 0 0 0 0 25 0 0 75 0 0
LPML 0 4 12 0 11 38 0 5 30 2 2 1 20 21 20 11 14 9
AIC1 0 0 0 92 1 0 7 0 0 0 0 0 90 0 0 10 0 0
AIC2 0 0 0 92 1 0 7 0 0 0 0 0 84 0 0 16 0 0
BIC1 0 0 0 99 1 0 0 0 0 0 0 0 100 0 0 0 0 0
BIC2 0 0 0 99 1 0 0 0 0 0 0 0 100 0 0 0 0 0
ICL1 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0
ICL2 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0
WAIC1 0 10 48 0 2 16 0 1 23 4 22 42 4 9 13 0 2 4
WAIC2 0 7 53 0 2 24 0 2 12 5 13 24 7 12 23 1 7 8

Area under the ROC curves
true AUC=0.84 0.5 0.74 0.80 0.52 0.75 0.82 0.53 0.76 0.82 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
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Table 4.5: Number of times correct association structure identified by model selec-
tion criteria when comparing joint LC versus joint MSRE model with
KD = KC = 2. Observations are generated as described in Section 4.4.1
under both the joint LC and MSRE model with KD = KC = 2 and the
(TD ,TC) mixture structure for the mean and the variance profiles, respec-
tively, where TD ,TC ∈ {separated, overlapped}. Scenarios (a)-(d) specify
the data-generating mechanism.

(a) true model=LC

AUC No. of times LC model selected from 100 simulations

Truth LC MSRE DIC LPML AIC1 AIC2 BIC1 BIC2 ICL1 ICL2 WAIC1 WAIC2

(separated, separated) mixtures; 50:50 proportions

0.81 0.81 0.81 65 81 76 73 94 92 97 96 91 89

(overlapped, overlapped) mixtures; 50:50 proportions

0.81 0.85 0.77 12 90 12 12 15 15 17 19 98 98

(overlapped, separated) mixtures; 50:50 proportions

0.82 0.83 0.78 10 88 12 12 14 14 13 13 96 90

(separated,overlapped) mixtures; 50:50 proportions

0.82 0.85 0.81 64 97 67 66 71 70 77 77 98 96

(separated, separated) mixtures; 20:80 proportions

0.72 0.72 0.74 29 67 40 37 68 68 70 68 90 85

(overlapped, overlapped) mixtures; 20:80 proportions

0.72 0.70 0.69 33 74 39 38 45 47 51 51 81 69

(overlapped, separated) mixtures; 20:80 proportions

0.72 0.64 0.70 2 47 4 4 10 11 9 10 58 52

(separated,overlapped) mixtures; 20:80 proportions

0.72 0.77 0.72 60 92 63 62 74 74 74 72 98 97

(b) true model=MSRE

AUC No. of times MSRE model selected from 100 simulations

Truth LC MSRE DIC LPML AIC1 AIC2 BIC1 BIC2 ICL1 ICL2 WAIC1 WAIC2

(separated, separated) mixtures; 50:50 proportions

0.82 0.70 0.81 100 87 100 100 100 100 100 100 83 90

(overlapped, overlapped) mixtures; 50:50 proportions

0.85 0.91 0.85 39 34 37 34 30 29 13 13 18 30

(overlapped, separated) mixtures; 50:50 proportions

0.82 0.83 0.82 97 46 97 97 93 93 91 92 35 50

(separated,overlapped) mixtures; 50:50 proportions

0.85 0.85 0.85 82 67 80 80 73 73 29 29 60 68

(separated, separated) mixtures; 20:80 proportions

0.77 0.60 0.76 97 99 95 95 93 93 92 93 100 100

(overlapped, overlapped) mixtures; 20:80 proportions

0.82 0.81 0.82 58 86 53 54 51 51 30 30 50 86

(overlapped, separated) mixtures; 20:80 proportions

0.75 0.61 0.74 96 95 96 96 91 93 91 92 98 97

(separated,overlapped) mixtures; 20:80 proportions

0.84 0.75 0.84 81 100 78 79 76 76 50 50 91 100
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Table 4.6: Number of times each specified fitted model are selected by using the 10
criteria given in the first column of each sub-table. Observations are gen-
erated as described in Section 4.4.1 under the joint LC model for scenario
(a), and MSRE model for scenario (b), with KD = KC = 1. The fitted mod-
els consist of both LC and MSRE strutures with KD = 1,2, and KC = 1,2.
The mixing proportions are 50-50. The corresponding values of AUC were
reported at the end of the table for each scenario.

fitting LC model fitting MSRE model
(KD ,KC) (KD ,KC)

(1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)

(a) True model=LC

No. of times selected
DIC 9 0 91 0 10 0 90 0
LPML 0 58 0 42 30 23 22 25
AIC1 92 0 8 0 81 0 19 0
AIC2 76 0 24 0 72 0 28 0
BIC1 100 0 0 0 100 0 0 0
BIC2 100 0 0 0 100 0 0 0
ICL1 100 0 0 0 100 0 0 0
ICL2 100 0 0 0 100 0 0 0
WAIC1 0 46 0 54 43 41 9 7
WAIC2 0 56 0 44 27 49 10 14

Area under the ROC curves
true AUC=0.5 0.5 0.68 0.51 0.69 0.57 0.57 0.57 0.57

(b) True model=MSRE

No. of times selected
DIC 7 0 92 1 14 0 86 0
LPML 0 0 50 50 31 28 19 22
AIC1 15 0 84 1 84 0 16 0
AIC2 10 0 89 1 73 0 27 0
BIC1 42 0 58 0 100 0 0 0
BIC2 34 0 66 0 100 0 0 0
ICL1 69 0 31 0 100 0 0 0
ICL2 59 0 41 0 100 0 0 0
WAIC1 0 1 66 33 40 33 11 16
WAIC2 0 1 58 41 35 42 6 17

Area under the ROC curves
true AUC=0.88 0.5 0.69 0.95 0.97 0.88 0.88 0.88 0.88
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Table 4.7: Values of AUC for independent validation sample (ñ = 50) based on the
models selected by DIC, LPML, AIC1, BIC1, ICL1 and WAIC1. Both the
new validation sample and the original sample to build the models are
generated as described in Section 4.4.1 under the the joint LC model, for
scenario (a), and MSRE model, for scenario (b), with KD = KC = 1.

fitting joint LC fitting joint MSRE

PMSE test AUC training AUC PMSE test AUC training AUC
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

(a) true model=LC (true test AUC=0.50)

DIC 0.50 (0.48,0.51) 0.50 (0.49,0.52) 0.51 (0.50,0.53) 0.50 (0.47,0.52) 0.50 (0.40,0.59) 0.57 (0.52,0.63)
LPML 0.50 (0.48,0.51) 0.50 (0.49,0.52) 0.68 (0.64,0.74) 0.50 (0.47,0.52) 0.50 (0.40,0.59) 0.57 (0.52,0.62)
AIC1 0.50 (0.48,0.51) 0.50 (0.50,0.50) 0.50 (0.50,0.53) 0.50 (0.47,0.52) 0.50 (0.40,0.59) 0.57 (0.52,0.62)
BIC1 0.50 (0.48,0.51) 0.50 (0.50,0.50) 0.50 (0.50,0.50) 0.50 (0.47,0.52) 0.50 (0.40,0.59) 0.57 (0.52,0.63)
ICL1 0.50 (0.48,0.51) 0.50 (0.50,0.50) 0.50 (0.50,0.50) 0.50 (0.47,0.52) 0.50 (0.40,0.59) 0.57 (0.52,0.63)
WAIC1 0.50 (0.48,0.51) 0.50 (0.48,0.52) 0.69 (0.65,0.74) 0.5 (0.47,0.52) 0.50 (0.40,0.59) 0.57 (0.52,0.62)

(b) true model=MSRE (true test AUC=0.88)

DIC 0.31 (0.24,0.44) 0.68 (0.50,0.76) 0.93 (0.50,0.98) 0.28 (0.22,0.35) 0.86 (0.76,0.93) 0.88 (0.85,0.93)
LPML 0.3 (0.24,0.36) 0.70 (0.63,0.76) 0.96 (0.93,0.98) 0.28 (0.22,0.34) 0.86 (0.76,0.93) 0.88 (0.85,0.93)
AIC1 0.32 (0.24,0.47) 0.66 (0.50,0.76) 0.89 (0.50,0.98) 0.28 (0.22,0.35) 0.86 (0.76,0.93) 0.88 (0.85,0.93)
BIC1 0.36 (0.24,0.49) 0.61 (0.50,0.75) 0.77 (0.50,0.98) 0.28 (0.22,0.34) 0.86 (0.76,0.93) 0.88 (0.85,0.93)
ICL1 0.4 (0.25,0.50) 0.56 (0.50,0.75) 0.65 (0.50,0.98) 0.28 (0.22,0.34) 0.86 (0.76,0.93) 0.88 (0.85,0.93)
WAIC1 0.3 (0.24,0.37) 0.69 (0.62,0.76) 0.96 (0.93,0.98) 0.28 (0.22,0.34) 0.86 (0.76,0.93) 0.88 (0.85,0.93)
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Table 4.8: Model comparison statistics from different joint models for the analysis of
Penn ovarian aging data. The ten selection criteria are given in the first
column of the table. The top and bottom panels correspond to the scenarios
of fitting with the joint LC and MSRE models, respectively. Best fit model
is given by boldface.

joint model (KD ,KC)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

fitting joint LC model

DIC 6930.1 6857.9 7024.4 6924.5 6860.5 7020.9 6973.7 6899.9 7076.3
LPML −3794.1 −3779.6 −3772.9 −3779.8 −3763.1 −3757.3 −3780.3 −3761.5 −3747.3
AIC1 6941.5 6875.7 7043.6 6943.7 6882.6 7051.2 7001.4 6934.9 7118.5
AIC2 6932.9 6864.9 7030.9 6928.9 6865.3 7031.5 6981.1 6911.9 7092.7
BIC1 6976.5 6921.3 7099.7 7003.3 6956.1 7138.7 7085.4 7036.4 7237.5
BIC2 6967.9 6910.5 7086.9 6988.5 6938.8 7119.0 7065.1 7013.4 7211.8
ICL1 6976.5 6949.5 7261.9 7131.7 7102.3 7392.5 7265.8 7222.4 7546.7
ICL2 6967.9 6938.4 7249.6 7117.3 7084.9 7372.8 7247.0 7200.0 7522.2
WAIC1 7078.8 7025.2 6986.4 7054.3 6997.1 6948.9 7045.9 6964.9 6938.7
WAIC2 7343.8 7305.0 7279.1 7322.6 7287.9 7258.8 7322.0 7268.3 7251.3
AUC 0.55 0.65 0.78 0.59 0.67 0.83 0.69 0.79 0.86

fitting joint MSRE model

DIC 6907.9 6852.9 7044.0 6910.8 6862.9 7060.6 6991.4 6938.4 7128.3
LPML −3788.2 −3784.0 −3776.9 −3773.2 −3768.8 −3764.4 −3778.3 −3769.9 −3768.3
AIC1 6927.1 6874.2 7067.5 6936.5 6890.3 7090.3 7023.7 6972.4 7164.9
AIC2 6916.3 6861.5 7052.9 6920.2 6871.6 7070.0 7001.9 6948.4 7139.5
BIC1 6979.6 6933.7 7134.0 7010.0 6970.8 7177.8 7118.2 7073.9 7273.4
BIC2 6968.8 6921.0 7119.4 6993.7 6952.2 7157.5 7096.4 7049.9 7248.0
ICL1 6979.6 6964.3 7355.7 7143.2 7135.8 7538.7 7334.1 7318.6 7711.7
ICL2 6968.8 6951.3 7342.0 7127.2 7117.1 7519.9 7314.9 7296.6 7689.6
WAIC1 7062.6 7032.6 7033.7 7043.9 7012.4 7011.6 7046.1 7015.6 7015.8
WAIC2 7328.6 7309.6 7310.5 7309.1 7293.3 7291.5 7314.5 7301.5 7298.9
AUC 0.68 0.69 0.69 0.67 0.68 0.68 0.67 0.68 0.68
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CHAPTER V

Discussion

In this dissertation, we have extended the joint modeling framework to incor-

porate both mean and variability features from longitudinal data to predict cross-

sectional outcomes. In particular, we focus on studying the association between FSH

trajectories and severity of menopausal hot flashes using the data from the Penn

Ovarian Aging study.

In Chapter II, we use latent growth curve features derived from each individual’s

linear deviation from a population trend as predictors of a binary health outcome,

i.e., occurrence of moderate-to-severe hot flashes. Moderate to severe hot flashes are

defined as those rated 2 or 3 by the participants, when asked whether hot flashes or

night sweats occurred in the past month and the severity, rated as 0 (none), 1 (mild), 2

(moderate), 3 (severe) at each follow-up. A key contribution from this work is to make

contrast of pros and cons of the use of latent classes and multiple shared random ef-

fects in joint mixture modeling when the data-generating mechanism both matches

and differs from the fitting one. In Chapter III, we consider a robust semi-parametric

model that uses Bayesian penalized B splines, mixture distributions and Student

t-error assumptions to improve model flexibility and robustness to potential outly-

ing observations in the FSH hormone trajectories to predict an ordinal menopausal

symptom severity, 0 (if self-rated severity score is < 2 throughout the follow-up), 1
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(self-rated severity score is once 2 or once 3 but that occurred before age 40) and 2 (if

self-rated severity score is once 3 after age 40).

Although the two proposed methodologies seek trajectory features from two dif-

ferent perspectives, both indicate the heterogeneous nature in the mean and the

residual variability of the FSH trajectories for the women in the study, revealing

four distinct patterns of change in the FSH profiles. Specifically, the mean FSH

profile has two patterns featuring 1) women who tend to have an earlier increasing

time frame in the FSH trajectories along with higher FSH values in comparison to

2) women who tend to have increasing FSH levels at later ages and hence lower FSH

values; the residual variation in the FSH trajectories can also be clustered into low

versus high categories.

However, since the two mean profile patterns are mainly due to relatively early or

late ages when women experience elevated FSH levels, considering FSH patterns in

relation to the Final Menstrual Period (FMP) might eliminate such differences due to

different timing of FSH change. To further compare and contrast the differences in

the FSH trajectory clustering between the use of years relative to FMP versus that

of chronological age, we refit the model considered in Chapter III for a subgroup of

152 women for whom the FMP was observed, using the FSH levels in relation to both

chronological age and the years prior to or post FMP to predict the ordinal severity

of hot flashes.

5.1 FSH patterns in relation to Final Menstrual Period (FMP)

Figure 5.1 (a) and (b) show the estimated population-mean trends of FSH levels in

relation to the years relative to FMP and chronological age, respectively. Both plots

show similar patterns in the population trend, reflecting the typical FSH change

patterns for women in the transition to menopause. FSH is relatively flat prior to

the menopause transition, and then has an increasing period during the menopause
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transition with acceleration and deceleration patterns (Sowers et al., 2008). As

shown in Figure 5.2, when clustering the mean FSH trajectories in relation to FMP,

the majority of the subjects (93% of trajectories) follow the typical change pattern in

FSH levels as observed in the population trend, while 7% of trajectories form a sepa-

rate cluster with relatively constant FSH levels over the observation period. That is,

there is a notable reduction on the distinctions between the two clusters of subjects

due to the early versus late ages in experiencing elevated FSH levels. This finding

is not surprising since all the women included in the analysis experience FMP and

such typical patterns of change in their FSH levels during the transition period are

anticipated. Note that the estimated decreasing trend in the FSH trajectories 5 to

10 years following FMP is likely due to the sparsity of observations. Figure 5.1 (a)

and (b) both show evidence of the existence of subgroups of “low” versus “high” resid-

ual variation; however, the large sampling variability in estimating the means of the

variance class is likely due to the dropping of 35% women without experiencing FMP.

To obtain additional insight into the trajectory patterns in each of the mean pro-

file class, we look at the individual level fitted FSH curves. Figure 5.3 (a) and (b)

present several chosen fitted FSH trajectories by fitting the models using the FMP

and chronological age, respectively. Note the trajectories of the same colors in both

(a) and (b) belong to the same women and all the class membership assignments

are based on the maximum of the posterior mean assignment probabilities of cluster

membership. In particular, the green curves shown in Figure 5.3 (a) are the total six

curves that are assigned to the minor mean class when fitting the model using the

FMP; they all show relatively constant trends over the years around FMP, in compar-

ison to the curves assigned to the major class that show the typical increasing and

slightly plateau pattern over the years around FMP. In contrast, when using chrono-

logical age, as shown in Figure 5.3 (b), these six green curves are all assigned to

the major class that features increasing FSH period at relatively late ages with rel-
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atively stable FSH levels during the period when women in the minor class already

experience elevated FSH levels. For the randomly selected curves shown in both

red and blue colors in Figure 5.3 (a), they show typical FSH change patterns in that

their FSH levels started to rise 5 to 10 years prior to the FMP and started to plateau

around 2 years following the FMP; however, when using chronological age, since they

differ in the ages of experiencing elevated FSH levels, they are assigned into the “late

rising” versus “early rising” FSH mean cluster, respectively. Finally, Figure 5.3 (a)

and (b) suggest that although these trajectories are clustered differently because of

different timing of reaching FMP, considering either FMP or chronological age leads

to almost identical trajectory fitting except some horizontal shift in either the axis of

years in relation to FMP or chronological age.

However, when it comes to estimating the time-varying effect of cumulative changes

in the mean profiles, θ1(t), considering FSH levels in relation to FMP versus chrono-

logical age leads to different results as shown in Figure 5.4. When focusing on the

time window between 7 years prior to and 3 years following FMP, it suggests that

higher values of change in the mean FSH levels, µ′
i(t), in the window of 1 to 3 years

following FMP seem to be associated with the levels of severity of hot flash; however,

such signal is masked by considering the FSH levels in relation to chronological age

in the range of [45,55]. Nevertheless, since our approaches allow the flexibility in

choosing the study time period, equivalent findings, as that of using FMP adjusted

age, were identified in Figure 3.5 (b), when we focus on studying the patterns in re-

lation to chronological age in the range of [50,55]. Obviously, one should consider

FMP adjusted age when the relevant measurements become available. However, the

FMP ages are not always observed and the reasons why they are not available usu-

ally include hysterectomy prior to natural menopause, drop-out and using hormone

therapy for hot flash.

In this sub-study, 35% of the subjects without FMP were tentatively excluded.
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A more scientifically sound and meaningful investigation may be conducted when

treating the FMP as a variable with missing observations and considering the unob-

served FMP in women using hormone therapy for hot flash as informative missing

values. The analysis accounting for this feature no doubt will bring in additional

variation. Additional efforts would also need to be made in the future to carefully

classify the reasons behind missing FMP. Based on the currently available informa-

tion, our proposed approaches using chronological age focusing on an alternative age

period suggest the potential that the changing-rate of FSH trajectories in the years

immediately prior to and post menopause could be of interest, at least for a sub-group

of women.

5.2 Future work

There are several directions of future investigation. Since our proposed method-

ologies incorporate both mean and variability features in the longitudinal trajecto-

ries, the extension to model time-to-event outcomes may help improve the accuracy

of predictions that are only based on the mean features. Extending the idea of using

latent features in longitudinal trajectories as functional predictors to predict the risk

for an event may also be desirable. For example, we can relate the latent features g(t)

(g(t) can be µ(t) or µ′(t)) of the longitudinal trajectories to the hazard of an event at

time t through h(t) = h0(t)exp
(
γTz+∫ t

0 g(t)θ(t)dt
)
, where z includes baseline covari-

ates. In contrast to the standard Cox models with time-dependent covariates, this

extension allows different “weighting” assigned to all past values of the longitudinal

features and is therefore more desirable because depending on the latent period of

the event of interest, the values within the time window of [0, t] may contribute to the

event risks differently. Given the prevalence of missing data in longitudinal studies,

another direction of future work will be to extend the proposed models to incorpo-

rate not missing at random (NMAR) missing mechanisms and assess their impact on
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statistical inferences. One approach is to add another hierarchical layer to our joint

models by modeling the probability of missingness to depend on unobserved data.

Further, we can consider modeling the within-subject heteroscedasticity, that is, to

allow subject-specific residual variances change over time. Extensions to incorpo-

rate time-varying variance structures will have practical applications in certain set-

tings. For example, some scientific evidence suggests that the residual variabilities

of reproductive hormone trajectories relative to the underlying mean trends closer to

menopause tend to be of higher degree. Developing joint models that simultaneously

consider the time-varying mean and residual variabilities of longitudinal trajectories

would provide tools for our collaborators to address this important research hypoth-

esis. In particular, the time-varying residual variance can also be considered as a

potential functional predictor to relate to an outcome of interest. Finally, it would be

of interests to investigate how to use multiple longitudinal trajectories to relate to

either one or multiple health outcomes of interest in joint modeling settings to bor-

row information from either correlated longitudinal trajectories or correlated multi-

ple health outcomes to eventually improve the prediction accuracy of the outcome of

interest.
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Figure 5.1: Estimated population longitudinal trend by lowess: (a) in relation to
years before and after the Final Menstrual Period (FMP) and (b) accord-
ing to chronological age.
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APPENDIX A

Computation Details in Chapter II

Posterior computations for the joint LC model

(1) update for longitudinal submodel

• update the mean profile class memberships D i, i = 1, ...,n: the full conditional

posterior distribution [D i|·]∼Multinomial(π̃D
i1, ..., π̃D

iKD
), where

π̃D
id =Pr(D i = d|.)= πD

d |Σd|− 1
2 exp

{−1
2 (bi −βd)′Σ−1

d (bi −βd)− 1
2 (Wi −θCi ,d)2}

KD∑
d=1

πD
d |Σd|−

1
2 exp

{
−1

2
(bi −βd)′Σ−1

d (bi −βd)− 1
2

(Wi −θCi ,d)2
}

θCi ,d = ZT
i η in the latent class probit submodel given D i = d and Ci as well as

other covariates.

• update the mean profile class parameters:

– update βd: Assuming the prior for βd
ind∼ MVN(ν,V), then the full con-

ditional posterior density for βd for d = 1, ...,KD is
[
βd|.

] ∼ MVN
(
ν̃d,Ṽd

)
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where

ν̃d =
{

V−1 +Σ−1
d

n∑
i=1

I(D i = d)

}−1 {
V−1ν+Σ−1

d

n∑
i=1

I(D i = d)bi

}

Ṽd =
{

V−1 +Σ−1
d

n∑
i=1

I(D i = d)

}−1

– update Σd: Assuming the prior for Σd
ind∼ Inverse-Wishart(m,Λ), then

the full conditional posterior density is, [Σd|·] ∼ Inverse-Wishart
(
m̃d,Λ̃d

)
where

m̃d = m+
n∑

i=1
I(D i = d)

Λ̃d =
{
Λ−1 +

n∑
i=1

I(D i = d)
(
bi −βd

)(
bi −βd

)′}−1

• update the mixing proportion {πD
d }d: assuming {πD

d }d ∼ Dirichlet(eD
1 , ...., eD

KD
)

then the full conditional posterior distribution is
[
{πD

d }d|·
] ∼ Dirichlet({eD

d +∑n
i=1 I(D i = d)}d).

• update the variance class memberships Ci, i = 1, ...,n: the full conditional

posterior distribution [Ci|·]∼Multinomial(π̃C
i1, ..., π̃C

iKC
) where

π̃C
i1 =Pr(Ci = c|.)=

πC
c exp

{
− 1

2τ2

(
logσ2

i −µc
)2 − 1

2 (Wi −θc,D i )
2
}

KC∑
c=1

πC
c exp

{
− 1

2τ2

(
logσ2

i −µc
)2 − 1

2
(Wi −θc,D i )

2
}

θc,D i = Ziη in the probit latent class submodel given Ci = c and D i as well as

other covariates.

• update the variance class parameters:
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– update µc: assuming the prior for µc
ind∼ N(a,b), then the full conditional

posterior distribution is,
[
µc|·

]∼N
(
ã, b̃

)
where

ã =

n∑
i=1

I(Ci = c)logσ2
i /τ2 +a/b

1/b+
n∑

i=1
I(Ci = c)/τ2

b̃ =
{

1/b+
n∑

i=1
I(Ci = c)/τ2

}−1

– update τ2: assuming τ2 ∼ Inverse-Gamma(v, e), then the full conditional

posterior distribution is

[
τ2|·]∼ Inverse-Gamma

{
v+ n

2
, e+

n∑
i=1

KC∑
c=1

1
2

I(Ci = c)
(
logσ2

i −µc
)2

}
.

• update the mixing proportions {πC
c }c: assuming {πC

c }c ∼ Dirichlet(eC
1 , ...., eC

KC
)

then the full conditional posterior distribution is

[
{πC

c }c|·
]
∼Dirichlet

(
{eC

c +
n∑

i=1
I(Ci = c)}c

)
.

• update the random effects bi, i = 1, ...,n the full conditional posterior distribu-

tion is bi [bi|.]∼MVN
(
β̃i, Σ̃i

)
, where

β̃i =
(
Σ−1

D i
+ 1
σ2

i

ni∑
j=1

ti jt′i j

)−1 (
Σ−1

D i
βD i

+ 1
σ2

i

ni∑
j=1

yi jti j

)

Σ̃id =
(
Σ−1

D i
+ 1
σ2

i

ni∑
j=1

ti jt′i j

)−1

ti j is a vector of functional forms of the observation time ti j for the longitudinal

measurement yi j such that yi j ∼N
{
f (bi; ti j),σ2

i
}

with f (bi; ti j)=bT
i ti j.
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• update the variances σ2
i , i = 1, ...,n

π(σ2
i |.)∝

KC∏
c=1

LN
(
σ2

i ;µc,τ2)I(Ci=c)
ni∏
j=1

N
{
yi j; f (bi; ti j),σ2

i
}

∝ (σ2
i )−

ni
2 −1exp

[
−

KC∑
c=1

I(Ci = c)

(
logσ2

i −µc
)2

2τ2 − 1
2σ2

i

ni∑
j=1

{
yi j − f (bi; ti j)

}2
]

LN
(
σ2

i ;µc,τ2) represents the density of log normal disribution with mean µc

and variance τ2 evaluated at σ2
i and N

{
yi j; f (bi; ti j),σ2

i
}

represents the density

of normal distribution with mean f (bi; ti j) and variance σ2
i evaluated at yi j.

Since there is no closed form of the full conditional posterior density, the draws

for σ2
i , i = 1, ...,n at each iteration of the Gibbs sampling are obtained using the

inverse cumulative distribution sampling method.

(2) update for LC probit model:

• update Wi, i = 1, ...,n

[Wi|oi = 1, ·]∼N(θCi ,D i ,1)I(0,∞)(·)

[Wi|oi = 0, ·]∼N(θCi ,D i ,1)I(−∞,0)(·)

where, θCi ,D i =ZT
i η in the latent class probit submodel given Ci and D i.

• update η: Assuming the prior for η ∼ MVN(νη,Vη), then the full conditional

posterior density for η is
[
η|.]∼MVN

(
ν̃η,Ṽη

)
where

ν̃η =
(
V−1
η +

n∑
i=1

ZiZ′
i

)−1 (
V−1
η νη+

n∑
i=1

WiZi

)

Ṽη =
(
V−1
η +

n∑
i=1

ZiZ′
i

)−1

Zi is the ith row of the design matrix in the probit submodel given D i and Ci

as well as other covariates.
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Posterior computations for the joint MSRE model

(1) update for longitudinal submodel

• update the mean profile class memberships D i, i = 1, ...,n: the full conditional

posterior distribution [D i|·]∼Multinomial(π̃D
i1, ..., π̃D

iKD
), where

π̃D
id =Pr(D i = d|.)= πD

d |Σd|− 1
2 exp

{−1
2 (bi −βd)′Σ−1

d (bi −βd)
}

KD∑
d=1

πD
d |Σd|−

1
2 exp

{
−1

2
(bi −βd)′Σ−1

d (bi −βd)
}

• update the mean profile class parameters:

– update βd: Assuming the prior for βd
ind∼ MVN(ν,V), then the full con-

ditional posterior density for βd for d = 1, ...,KD is
[
βd|.

] ∼ MVN
(
ν̃d,Ṽd

)
where

ν̃d =
{

V−1 +Σ−1
d

n∑
i=1

I(D i = d)

}−1 {
V−1ν+Σ−1

d

n∑
i=1

I(D i = d)bi

}

Ṽd =
{

V−1 +Σ−1
d

n∑
i=1

I(D i = d)

}−1

– update Σd: Assuming the prior for Σd
ind∼ Inverse-Wishart(m,Λ), then

the full conditional posterior density is, [Σd|·] ∼ Inverse-Wishart
(
m̃d,Λ̃d

)
where

m̃d = m+
n∑

i=1
I(D i = d)

Λ̃d =
{
Λ−1 +

n∑
i=1

I(D i = d)
(
bi −βd

)(
bi −βd

)′}−1

• update the mixing proportion {πD
d }d: assuming {πD

d }d ∼ Dirichlet(eD
1 , ...., eD

KD
)

then the full conditional posterior distribution is
[
{πD

d }d|·
] ∼ Dirichlet({eD

d +∑n
i=1 I(D i = d)}d).
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• update the variance class memberships Ci, i = 1, ...,n: the full conditional

posterior distribution [Ci|·]∼Multinomial(π̃C
i1, ..., π̃C

iKC
) where

π̃C
i1 =Pr(Ci = c|.)=

πC
c exp

{
− 1

2τ2

(
logσ2

i −µc
)2

}
KC∑
c=1

πC
c exp

{
− 1

2τ2

(
logσ2

i −µc
)2

}

• update the variance class parameters:

– update µc: assuming the prior for µc
ind∼ N(a,b), then the full conditional

posterior distribution is,
[
µc|·

]∼N
(
ã, b̃

)
where

ã =

n∑
i=1

I(Ci = c)logσ2
i /τ2 +a/b

1/b+
n∑

i=1
I(Ci = c)/τ2

b̃ =
{

1/b+
n∑

i=1
I(Ci = c)/τ2

}−1

– update τ2: assuming τ2 ∼ Inverse-Gamma(v, e), then the full conditional

posterior distribution is

[
τ2|·]∼ Inverse-Gamma

{
v+ n

2
, e+

n∑
i=1

KC∑
c=1

1
2

I(Ci = c)
(
logσ2

i −µc
)2

}
.

• update the mixing proportions {πC
c }c: assuming {πC

c }c ∼ Dirichlet(eC
1 , ...., eC

KC
)

then the full conditional posterior distribution is

[
{πC

c }c|·
]
∼Dirichlet

(
{eC

c +
n∑

i=1
I(Ci = c)}c

)
.
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• update the random effects bi, i = 1, ...,n the full conditional posterior distribu-

tion is bi [bi|.]∼MVN
(
β̃i, Σ̃i

)
, where

β̃i = Σ̃id

{
Σ−1

D i
βD i

+ 1
σ2

i

ni∑
j=1

yi jti j + (ZT
i η− g̃(η,σ2

i ))g(η,σ2
i )

}

Σ̃id =
{
Σ−1

D i
+ 1
σ2

i

ni∑
j=1

ti jtT
i j +g(η,σ2

i )g(η,σ2
i )T

}−1

ti j is a functional form of the time ti j for the longitudinal measurement yi j such

that yi j ∼ N
{
f (bi; ti j),σ2

i
}

with f (bi; ti j) = bT
i ti j. g(η,σ2

i ) is a vector such that

ZT
i η= g(η,σ2

i )′bi + g̃(η,σ2
i ) in the shared random effects and variances model.

• update the variances σ2
i , i = 1, ...,n

π(σ2
i |.)∝

KC∏
c=1

LN
(
σ2

i ;µc,τ2)I(Ci=c)
ni∏
j=1

N
{
yi j; f (bi; ti j),σ2

i
}
N(Wi;ZT

i η,1)

∝(σ2
i )−

ni
2 −1exp

{
−

KC∑
c=1

I(Ci = c)

(
logσ2

i −µc
)2

2τ2

}

×exp

[
− 1

2σ2
i

ni∑
j=1

{
yi j − f (bi; ti j)

}2 − 1
2

(Wi −ZT
i η)2

]

LN
(
σ2

i ;µc,τ2) represents the density of log normal disribution with mean µc

and variance τ2 evaluated at σ2
i ; N

{
yi j; f (bi; ti j),σ2

i
}

represents the density

of normal distribution with mean f (bi; ti j) and variance σ2
i evaluated at yi j

and similarly N(Wi;ZT
i η,1) represents the density of normal distribution with

mean ZT
i η and variance 1 evaluated at Wi. Since there is no closed form of the

full conditional posterior density, the draws for σ2
i , i = 1, ...,n at each iteration

of the Gibbs sampling are obtained using the inverse cumulative distribution

sampling method.

(2) update for MSRE probit model:
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• update Wi, i = 1, ...,m

[Wi|oi = 1, ·]∼N(ZT
i η,1)I(0,∞)(·)

[Wi|oi = 0, ·]∼N(ZT
i η,1)I(−∞,0)(·)

where, Zi is the ith row of the design matrix in the MSRE probit submodel.

• update η: Assuming the prior for η ∼ MVN(νη,Vη), then the full conditional

posterior density for η is
[
η|.]∼MVN

(
ν̃η,Ṽη

)
where

ν̃η =
(
V−1
η +

n∑
i=1

ZiZ′
i

)−1 (
V−1
η νη+

n∑
i=1

WiZi

)

Ṽη =
(
V−1
η +

n∑
i=1

ZiZ′
i

)−1

Zi is the ith row of the design matrix in the MSRE probit submodel.

Computation of DIC

DIC is given by

DIC(x)=−4Eφ

{
log f (x |φ) | x}+2log f

{
x |Eφ(φ | x)

}

Celeux et al. (2006) suggests that, when the model has missing data or latent vari-

ables, the appropriate DIC measure is obtained by first considering the DIC measure

in the “complete data” setting, where x indicates the fully observed data, and z the

unobserved (typically latent) data:

DIC(x,z)=−4Eφ

{
log f (x,z |φ) | x,z

}+2log f
{
x,z |Eφ(φ | x,z)

}
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Integrating out over the unobserved data yields

DIC(x)=Ez
[−4Eφ

{
log f (x,z |φ) | x}+2log f

{
x,z | Eφ(φ | x,z)

}]

=−4Ez,φ
{
log f (x,z |φ) | x}+2Ez

[
log f

{
x,z | Eφ(φ | x,z)

} | x]
To obtain DIC for our MSRE model, let φ denote the model parameter and zi the

latent variables (D i,Ci,bi,σ2
i ,Wi)′ for the ith subject. The data x′

i, i = 1, ...,n corre-

spond to the longitudinal data (yi1, ..., yini )
′ and the outcome oi. The complete data

log-likelihood (ignoring normalizing constants) for the latent class model is given by

log f (x,z |φ)

=
n∑

i=1

[∑
d

I(D i = d)
{

logπd −
1
2

log |Σd | −1
2

(bi −βd)′Σ−1
d (bi −βd)

}
+∑

c
I(Ci = c)

{
logπc − logτ− logσ2

i −
1

2τ2 (logσ2
i −µc)2

}
+

ni∑
j=1

{
logσi −

(yi j − f (bi; ti j))2

2σ2
i

}
− 1

2
(Wi −Z′

iη)2

]

Dividing zi into zi1 = (D i,Ci) and zi2 = (bi,σ2
i ,Wi), we have

Ez,φ
{
log f (x,z |φ) | x}=

Ez2,φ

[
n∑

i=1

[∑
d

P(D i = d | x,φ,z2)
{
logπd − 1

2 log |Σd | −1
2 (bi −βd)′Σ−1

d (bi −βd)
}

+∑
c

P(Ci = c | x,φ,z2)
{

logπc − logτ− logσ2
i −

1
2τ2 (logσ2

i −µc)2
}

+
ni∑
j=1

{
logσi −

(yi j − f (bi; ti j))2

2σ2
i

}
− 1

2
(Wi −Z′

iη)2
]
| x

]
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where

P(D i = d | x,φ,z2)= πD
d |Σd|− 1

2 exp
[−1

2 (bi −βd)′Σ−1
d (bi −βd)

]
KD∑
d=1

πD
d |Σd|−

1
2 exp

[
−1

2
(bi −βd)′Σ−1

d (bi −βd)
]

P(Ci = c | x,φ,z2)=
πC

c exp
[
−1

2

(
logσ2

i −µc
)2 /τ2

]
KC∑
c=1

πC
c exp

[
−1

2
(
logσ2

i −µc
)2

/τ2
]

This expectation can then be approximated from M MCMC draws:

Ez,φ
[{

log f (x |φ) | x,z
} | x]=

M−1
M∑

m=1

[
n∑

i=1

[∑
d

P(D i = d | x,φ,z2)(m)
{

logπ(m)
d − 1

2
log |Σ(m)

d |

−1
2

(b(m)
i −β(m)

d )′(Σ−1
d )(m)(b(m)

i −β(m)
d )

}
+∑

c
P(Ci = c | x,φ,z2)(m)

{
logπ(m)

c − logτ(m) − log(σ2
i )(m) − (log(σ2

i )(m) −µ(m)
c )2

2(τ2)(m)

}

+
ni∑
j=1

{
logσ(m)

i − (yi j − (b(m)
i )′ti j)2

2(σ2
i )(m)

}
− 1

2
(W (m)

i −Z′
iη

(m))2

]]

Obtaining Ez
[
log f

{
x,z | Eφ(φ | x,z)

} | x]
requires a bit more effort. We can broadly

use the same approach of averaging over the MCMC draws to integrate with respect

to z, but instead of using the draws of the model parameters directly, we need to

obtain their expectation conditional on the current draw of z. So

Ez
[
log f

{
x,z |Eφ(φ | x,z)

} | x]= M−1
M∑

m=1

[
n∑

i=1

[∑
d

I(D i = d)(m)

{
log π̂(m)

d − 1
2

log | Σ̂(m)
d | −1

2
(b(m)

i − β̂(m)
d )′(Σ̂−1

d )(m)(b(m)
i − β̂(m)

d )
}

+∑
c

I(Ci = c)(m)

{
log π̂(m)

c − log τ̂(m) − log(σ2
i )(m) − (log(σ2

i )(m) − µ̂(m)
c )2

2(τ̂2)(m)

}

+
ni∑
j=1

{
logσ(m)

i − (yi j − (b(m)
i )′ti j)2

2(σ̂2
i )(m)

}
− 1

2
(W (m)

i −−Z′
iη

(m))2

]]
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where φ̂(m) = Eφ(φ | x,z(m)).

Some components of φ̂(m) have closed form solutions:

π̂(m)
d = eD

d +∑n
i=1 I(D i = d)(m)∑

d eD
d +n

π̂(m)
c = eC

c +∑n
i=1 I(Ci = c)(m)∑

c eC
c +n

η̂(m) =
(
V−1
η +

n∑
i=1

Z(m)
i Z(m)′

i

)−1 (
V−1
η νη+

n∑
i=1

W (m)
i Z(m)

i

)

where Z(m)
i is the ith row of the design matrix in the probit submodel for the mth

MCMC draw and eD
d , eC

c , Vη, and νη are specified hyperprior values.

The other components of φ̂(m) will have to be obtaining by running small MCMC

chains for each of the main MCMC interations to get the marginal expectations:

β̂
(m)
d = (M∗)−1 ∑

m∗β
(m,m∗)
d and Σ̂(m)

d = (M∗)−1 ∑
m∗Σ

(m,m∗)
d , where β(m,m∗)

d and Σ(m,m∗)
d

are obtained by alternating draws from the following distributions with known hy-

perparameters V , ν, m, and Λ:

β
(m,m∗)
d ∼MVN

(
ν̃

(m,m∗)
d ,Ṽ(m,m∗)

d

)
, where

Ṽ(m,m∗)
d =

{
V−1 + (Σ(m,m∗−1)

d )−1
n∑

i=1
I(D i = d)(m)

}−1

ν̃
(m,m∗)
d = Ṽ(m,m∗)

d

{
V−1ν+ (Σ(m,m∗−1)

d )−1
n∑

i=1
I(D i = d)(m)b(m)

i

}
.

Σ
(m,m∗)
d ∼ Inverse-Wishart

(
m̃(m)

d ,Λ̃(m,m∗)
d

)
, where

m̃(m)
d = m+

n∑
i=1

I(D i = d)(m)

Λ̃
(m,m∗)
d =

{
Λ−1 +

n∑
i=1

I(D i = d)(m)
(
b(m)

i −β(m,m∗)
d

)(
b(m)

i −β(m,m∗)
d

)′}−1
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Similarly, µ̂(m)
c = (M∗)−1 ∑

m∗µ
(m,m∗)
c and (τ̂2)(m) = (M∗)−1 ∑

m∗(τ2)(m,m∗), where µ(m,m∗)
c

and (τ2)(m,m∗) are obtained by alternating draws from the following distributions with

known hyperparameters a, b, e, and f :

µ
(m,m∗)
c ∼N(ã(m,m∗), b̃(m,m∗)), where

ã(m,m∗) =

n∑
i=1

I(Ci = c)(m)log(σ2
i )(m)/(τ2)(m,m∗−1) +a/b

1/b+
n∑

i=1
I(Ci = c)(m)/(τ2)(m,m∗−1)

b̃(m,m∗) =
{

1/b+
n∑

i=1
I(Ci = c)(m)/(τ2)(m,m∗−1)

}−1

(τ2)(m,m∗) ∼ Inverse-Gamma(ṽ, ẽ(m,m∗)), where

ṽ = v+ n
2

ẽ(m,m∗) = e+
n∑

i=1

KC∑
c=1

1
2

I(Ci = c)(m)
{
log(σ2

i )(m) −µ(m,m∗)
c

}2

Because we are conditioning on z and only need the posterior expectation, a mod-

est number of drawn (here we use M∗ = 250) is found to be sufficient to obtain an

accurate approximation.

Similarly, we can obtain DIC for our LC model.
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Computation of LPML

For our model, we have

CPO−1
i = f (y(−i),o(−i)|v)

f (y,o|v)

=
∫ f (y(−i),o(−i)|C,D,b,σ2,φ,v) f (C,D,b,σ2,φ)

f (y,o|v)
dbdσ2dCdDdφ

=
∫

f (y,o|C,D,b,σ2,φ,v) f (C,D,b,σ2,φ)
f (y,o|vi) f (yi, oi|C,D,b,σ2,φ,v)

dbdσ2dCdDdφ

=
∫

1
f (yi, oi|C,D,b,σ2,φ,vi)

f (C,D,b,σ2,φ|y,o,v)dbdσ2dCdDdφ

=
∫

f (C,D,b,σ2,φ|y,o,v)
f (yi|bi,σ2

i ,φ,vi) f (oi|Ci,D i,bi,σ2
i ,φ,vi)

dbdσ2dCdDdφ

where φ is the vector of model parameters which does not include the unobserved

random effects and unknown residual variances. v= (v1, ...,vn)T include all observed

variables including obervation time ti j, i = 1, ...,ni, j = 1, ...,ni and baseline covari-

ates of interest. f (oi|Ci,D i,bi,σ2
i ,φ,vi) can be reduced to f (oi|Ci,D i,φ,vi) in the

case of LC probit submodel and f (oi|bi,σ2
i ,φ,vi) in the case of MSRE probit sub-

model. Using the MCMC posterior draws, we estimate CPO−1
i by

1
B

B∑
s=1

1
f (yi|bi,σ2

i ,φ(s),vi) f (oi|Ci,D i,bi,σ2
i ,φ(s),vi)

where B is the number of MCMC posterior draws and φ(s) is the vector of the poste-

rior draws of all model parameters at the sth iteration. We have,

f (yi|bi,σ2
i ,φ,vi)=

ni∏
j=1

1√
2πσ2

i

exp

[
−

{
yi j − f (bi; ti j)

}2

2σ2
i

]

f (oi|Ci,D i,φ,vi)=Φ(ZT
i θ)oi

[
1−Φ(ZT

i θ)
]1−oi

for LC probit submodel

f (oi|bi,σ2
i ,φ,vi)=Φ(ZT

i γ)oi
[
1−Φ(ZT

i γ)
]1−oi

for MSRE probit submodel
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where, Φ(·) is the cdf for standard normal distribution. Zi denotes the corresponding

ith row in the design matrix for either LC or MSRE probit submodel given vi.

We retain every 5th of the 100,000 posterior draws after the chains converge and

divide these posterior draws into 20 blocks of length 1000 draws. To obtain stable

LPML measures, we calculate the CPO’s and LPML based on each of the 20 blocks

of draws and then report the median LPML. We found this approach would lead to

relatively stable LPML results in our simulations.
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APPENDIX B

Computation Details in Chapter III

Details of posterior computations when assuming t model for

longitudinal observations

note: in the case of assuming normal model for longitudinal observations, we are

not updating mi j but let mi j be constant 1; and the missing longitudinal observation

yi j is drawn from N
(
µ(ti j),σ2

i
)
.

(1) update for longitudinal submodel

• update the mean profile class memberships D i, i = 1, ...,n: the full conditional

posterior distribution [D i|·]∼Multinomial(π̃D
i1, ..., π̃D

iKD
), where

π̃D
id =Pr(D i = d|.)= πD

d |Σ|−
1
2 exp

[−1
2 (bi −βd)′Σ−1

d (bi −βd)
]

KD∑
d=1

πD
d |Σ|−

1
2 exp

[
−1

2
(bi −βd)′Σ−1

d (bi −βd)
] .

• update the mean profile class parameters:

– update βd = (βd1, ...,βdL):

Assuming the prior for βd1 ∼ N(0,v) and first order random walk prior
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βdl ∼ N(βd,l−1,τ2
βd), l = 2, ...,L, then the prior for βd can be written as:

π(βd) =
(

1p
2πτβd

)L−1
exp{−1

2β
T
d Vβd}, where V =

 v−1 0

0 0

 + PTP/τ2
βd and

P=



1 −1

1 −1
. . . . . .

1 −1


is the (L−1)×L penalty matrix. Then the full

conditional posterior density for βd for d = 1, ...,KD is
[
βd|.

]∼MVN
(
ν̃d,Ṽd

)

ν̃d =
[

V+Σ−1
n∑

i=1
I(D i = d)

]−1 [
Σ−1

n∑
i=1

I(D i = d)bi

]

Ṽd =
[

V+Σ−1
n∑

i=1
I(D i = d)

]−1

.

– update Σ: Assuming the prior for Σ ind∼ Inverse-Wishart(m,Λ), where m

and Λ are the degrees of freedom and scale matrix, respectively, then

the full conditional posterior density is, [Σ|·] ∼ Inverse-Wishart
(
m̃d,Λ̃d

)
where

m̃d = m+n

Λ̃d =
[
Λ+

n∑
i=1

(
bi −βD i

)(
bi −βD i

)′] .

– update τ2
βd: assuming τ2

βd ∼ Inverse-Gamma(v, e), where v and e are the

shape and rate parameters, then the full conditional posterior distribution

is [
τ2
βd|·

]
∼ Inverse-Gamma

(
v+ L−1

2
, e+ 1

2
βT

d Pβd

)
,

where L is the number of B spline basis functions.

• update the mixing proportion {πD
d }d: assuming

[
{πD

d }d
]∼Dirichlet(eD

1 , ...., eD
KD

)
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then the full conditional posterior distribution is

[{πD
d }d|·]∼Dirichlet({eD

d +
n∑

i=1
I(D i = d)}d).

• update the variance class memberships Ci, i = 1, ...,n: the full conditional

posterior distribution [Ci|·]∼Multinomial(π̃C
i1, ..., π̃C

iKC
) where

π̃C
ic =Pr(Ci = c|.)=

πC
c exp

[
−1

2

(
logσ2

i −µc
)2 /τ2

]
KC∑
c=1

πC
c exp

[
−1

2
(
logσ2

i −µc
)2

/τ2
] .

• update the variance class parameters:

– update µc: assuming the prior for µc
ind∼ N(a,b), then the full conditional

posterior distribution is,
[
µc|·

]∼N
(
ã, b̃

)
where

ã =

n∑
i=1

I(Ci = c)logσ2
i /τ2 +a/b

1/b+
n∑

i=1
I(Ci = c)/τ2

b̃ =
(
1/b+

n∑
i=1

I(Ci = c)/τ2

)−1

– update τ2: assuming τ2 ∼ Inverse-Gamma(v, e), then the full conditional

posterior distribution is

[
τ2|·]∼ Inverse-Gamma

(
v+ n

2
, e+

n∑
i=1

KC∑
c=1

1
2

I(Ci = c)
(
logσ2

i −µc
)2

)
.

• update the mixing proportions {πC
c }c: assuming

[
{πC

c }c
]∼Dirichlet(eC

1 , ...., eC
KC

)
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then the full conditional posterior distribution is

[{πC
c }c|·]∼Dirichlet

(
{eC

c +
n∑

i=1
I(Ci = c)}c

)
.

• update the random effects bi, i = 1, ...,n the full conditional posterior distribu-

tion is bi [bi|.]∼MVN
(
β̃i, Σ̃i

)
, where

Σ̃id =
[
Σ−1 + 1

σ2
i

ni∑
j=1

mi jφi jφ
′
i j +MbiMT

bi

]−1

β̃i = Σ̃id

[
Σ−1βD i +

1
σ2

i

ni∑
j=1

yi jmi jφi j + (Wi −α1 −xT
i λ1)Mbi

]
,

where, φi j =
(
φ1(ti j), · · · ,φL(ti j)

)T a vector of B spline basis functions evaluated

at time ti j such that µi(ti j) = b′
iφi j where yi j ∼ N

(
µi(ti j),σ2

i /mi j
)

and Mbi is

defined such that
∫

Tµi(t)θ0(t)dt = ∫
T b′

iφ(t)ψ0(t)T θ̃dt =bT
i G0

Tθ̃0 =bT
i Mbi.

• update the variances σ2
i , i = 1, ...,n

π(σ2
i |.)∝ (σ2

i )−
ni
2 −1exp

[
−

KC∑
c=1

I(Ci = c)

(
logσ2

i −µc
)2

2τ2 − 1
2σ2

i

ni∑
j=1

mi j
(
yi j −b′

iφi j
)2

]

×exp

−1
2

Wi −α0 −xT
i λ0 −

∫
T

µi(t)θ0(t)dt

2
where, xi is a vector of baseline covariate including subject specific residual

variance vi
vi−2σ

2
i . Since there is no closed form of the full conditional posterior

density, the draws for σ2
i , i = 1, ...,n at each iteration of the Gibbs sampling are

obtained using the inverse cumulative distribution sampling method.

• update mi j, j = 1, ...,ni, given that mi j ∼ gamma(v/2,v/2) where v/2 and v/2 are

the shape and rate parameter in gamma distribution, then the full conditional

posterior distribution for mi j is mi j ∼ gamma
(

v+1
2 , 1

2

(
(yi j−µ(ti j))2

σ2
i

+v
))

.
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• update missing data: missing yi j at time ti j is drawn from t
(
µ(ti j),σ2

i ,v
)
.

(2) update for outcome probit submodel:

• update Wi, i = 1, ...,m

[Wi|oi = 0, ·]∼N(ηW
i ,1)I(−∞,0)(·)

[Wi|oi = 1, ·]∼N(ηW
i ,1)I(0,γ1)(·)

[Wi|oi = 2, ·]∼N(ηW
i ,1)I(γ1,∞)(·)

where, ηW
i =α0 −xT

i λ0 −
∫

Tµi(t)θ0(t)dt and γ1 is the cutoff.

• update cutoff γ1: assuming flat prior on γ1, then the full conditional posterior

density for γ1 is Unif(MaxOi=1Wi,MinOi=2Wi).

• update (α,λ)′: Assuming independent prior for (α,λ)′ ∼ MVN(ναλ,Vαλ), then

the full conditional posterior density for αλ is [αλ|.]∼MVN
(
ν̃αλ,Ṽαλ

)
where

ν̃λ =
[

V−1
αλ+

n∑
i=1

ziz′
i

]−1
V−1

αλναλ+
n∑

i=1

Wi −
∫
T

µi(t)θ0(t)dt

zi


Ṽαλ =

[
V−1
αλ+

n∑
i=1

ziz′
i

]−1

,

where zi = (1,xi)′ is a vector of constant 1, baseline covariates and residual

variance v
v−2σ

2
i

• update θ̃0 = (θ̃01, ..., θ̃0K )′: Assuming the prior for θ̃01 ∼ N(0,vθ0) and first or-

der random walk prior θ̃0k ∼ N(θ̃k−1,τ2
θ0

), k = 2, ...,K , then the prior for θ̃0 can

be written as: π(θ̃) =
(

1p
2πτθ0

)L−1
exp{−1

2 θ̃
T
0 Vθ0 θ̃0}, where Vθ0 =

 v−1
θ0

0

0 0

 +

140



PT
θ0

Pθ0 /τ2
θ0

with Pθ0 = 

1 −1

1 −1
. . . . . .

1 −1


is the (K−1)×K penalty matrix. Then the full conditional posterior density for

θ̃0 is
[
θ̃0|.

]∼MVN
(
ν̃θ0 ,Ṽθ0

)
where

ν̃θ =
[

V−1
θ0

+
n∑

i=1
zθiz′

θi

]−1 [
V−1
θ0
νθ0 +

n∑
i=1

(
Wi −α0 −xT

i λ0

)
zθi

]

Ṽθ0 =
[

V−1
θ0

+
n∑

i=1
zθiz′

θi

]−1

,

where zθi is a vector of K elements defined such that

∫
T

µi(t)θ0(t)dt =
∫
T

b′
iφ(t)ψ0(t)T θ̃0dt =bT

i G0
Tθ̃0 = θ̃T

0 zθi.

• update τ2
θ0

: assuming τ2
θ0

∼ IG( f , g), where f and g are the shape and rate

parameters, then the full conditional posterior distribution is

[
τ2
θ0
|·
]
∼ IG

(
f + K −1

2
, g+ 1

2
θ̃T

0 Pθ0 θ̃0

)
,

where K is the number of B spline basis functions to express θ0(t) in the ordinal

probit submodel.
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APPENDIX C

Computation Details in Chapter IV

Appendix

Exact expressions of P(D i = d |φ,z,x) and P(Ci = c |φ,z,x)

MSRE model

P(D i = d |φ,z)= πD
d |Σd|− 1

2 exp
{−1

2 (bi −βd)′Σ−1
d (bi −βd)

}
KD∑
d=1

πD
d |Σd|−

1
2 exp

{
−1

2
(bi −βd)′Σ−1

d (bi −βd)
}

P(Ci = c |φ,z)=
πC

c exp
{
− 1

2τ2

(
logσ2

i −µc
)2

}
KC∑
c=1

πC
c exp

{
− 1

2τ2

(
logσ2

i −µc
)2

}
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LC model

P(D i = d |φ,z)= πD
d |Σd|− 1

2 exp
{−1

2 (bi −βd)′(Σd)−1(bi −βd)− 1
2 (Wi −θCi ,d)2}

KD∑
d=1

πd|Σd|−
1
2 exp

{
−1

2
(bi −βd)′(Σd)−1(bi −βd)− 1

2
(Wi −θCi ,d)2

}

P(Ci = c |φ,z)=
πC

c exp
{
− 1

2τ2

(
logσ2

i −µc
)2 − 1

2 (Wi −θc,D i )
2
}

KC∑
c=1

πC
c exp

{
− 1

2τ2

(
logσ2

i −µc
)2 − 1

2
(Wi −θc,D i )

2
}

where, θCi ,d = ZT
i η in the probit latent class submodel given Ci and D i = d; θc,D i =

ZT
i η in the probit latent class submodel given Ci = c and D i.

Computation details to predict outcome for new validation sample

In this section, we give the details to draw z̃(m),z(m),φ(m)
long and η(m) from the

posterior distribution p(z̃,z,φlong,η|ỹ,y,o,Ha), m = 1, · · · , M for some large M.

joint LC model:

After initialize the chain, we repeat the following steps (1) to (5) for m = 1, · · · , M:

(1) update individual level latent variables z̃ for validation sample (note:

this is only conditional on the longitudinal trajectories ỹ= {ỹi}ñ
i=1)

• draw D̃(m)
i , i = 1, ..., ñ from Multinomial(π̃D

i1, ..., π̃D
iKD

), where

π̃D
id =

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2 (b̃(m)
i −β(m)

d )′(Σ(m)
d )−1(b̃(m)

i −β(m)
d )

}
KD∑
d=1

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2
(b̃(m)

i −β(m)
d )′(Σ(m)

d )−1(b̃(m)
i −β(m)

d )
}
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• draw b̃(m)
i , i = 1, ..., ñ from MVN

(
β̃i, Σ̃i

)
, where

Σ̃i =
(
(Σ(m)

D̃(m)
i

)−1 + 1

(σ(m)
i )2

ñi∑
j=1

ti jt′i j

)−1

β̃i = Σ̃i

[
(Σ(m)

D̃(m)
i

)−1β(m)
D̃(m)

i
+ 1

(σ(m)
i )2

ni∑
j=1

ỹi jti j

]

ti j is a vector of functional forms of the observation time ti j for the longitudinal

measurement ỹi j such that ỹi j ∼N
{
f (b̃i; ti j),σ2

i
}

with f (b̃i; ti j)= b̃T
i ti j.

• draw the variance class memberships C̃(m)
i , i = 1, ..., ñ from Multinomial(π̃C

i1, ..., π̃C
iKC

),

where

π̃C
ic =

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ̃(m)

i )2 −µ(m)
c

)2
}

KC∑
c=1

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ̃(m)

i )2 −µ(m)
c

)2
}

• draw the variances (σ̃(m)
i )2, i = 1, ..., ñ from

π((σ̃(m)
i )2|.)∝

KC∏
c=1

LN
(
σ̃(m)

i )2;µ(m)
c , (τ(m))2

)I(C̃(m)
i =c) ñi∏

j=1
N

{
yi j; f (b̃(m)

i ; ti j), (σ̃(m)
i )2

}

LN
(
(σ̃(m)

i )2;µ(m)
c , (τ(m))2

)
represents the density of log normal disribution with

mean µ(m)
c and variance (τ(m))2 evaluated at (σ̃(m)

i )2 and N
{

yi j; f (b̃(m)
i ; ti j), (σ̃(m)

i )2
}

represents the density of normal distribution with mean f (b̃(m)
i ; ti j) and vari-

ance (σ̃(m)
i )2 evaluated at ỹi j.

(2) update individual level latent variables z for old sample (note: this

is conditional on both the longitudinal trajectories y = {yi}n
i=1 and the outcome o =

{oi}n
i=1)
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• draw the mean profile class memberships D(m)
i , i = 1, ...,n: from Multinomial(π̃D

i1, ..., π̃D
iKD

),

where

π̃D
id =

πD(m)
d |Σ(m)

d |− 1
2 exp

{
− 1

2 (b(m)
i −β(m)

d )′(Σ(m)
d )−1(b(m)

i −β(m)
d )− 1

2 (W (m)
i −θ(m)

C(m)
i ,d

)2
}

KD∑
d=1

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2
(b(m)

i −β(m)
d )′(Σ(m)

d )−1(b(m)
i −β(m)

d )− 1
2

(W (m)
i −θ(m)

C(m)
i ,d

)2
}

θ(m)
C(m)

i ,d
= (Z(m)

i )Tη(m) in the latent class probit submodel given D(m)
i = d and C(m)

i .

• draw the random effects bi, i = 1, ...,n from ∼MVN
(
β̃i, Σ̃i

)
, where

Σ̃id =
[

(Σ(m)
D i

)−1 + 1

(σ(m)
i )2

ni∑
j=1

ti jt′i j

]−1

β̃i = Σ̃id

[
(Σ(m)

D i
)−1β(m)

D i
+ 1

(σ(m)
i )2

ni∑
j=1

yi jti j

]

ti j is a vector of functional forms of the observation time ti j for the longitudinal

measurement yi j such that yi j ∼N
{
f (bi; ti j),σ2

i
}

with f (bi; ti j)=bT
i ti j.

• draw the variance class memberships C(m)
i , i = 1, ...,n from Multinomial(π̃C

i1, ..., π̃C
iKC

)

where

π̃C
ic =

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ(m)

i )2 −µ(m)
c

)2 − 1
2 (W (m)

i −θ(m)
c,D(m)

i
)2

}
KC∑
c=1

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ(m)

i )2 −µ(m)
c

)2 − 1
2

(W (m)
i −θ(m)

c,D(m)
i

)2
}

θ(m)
c,D(m)

i
= (Z(m)

i )Tη(m) in the probit latent class submodel given C(m)
i = c and D(m)

i .

• update the variances (σ(m)
i )2, i = 1, ...,n

π((σ(m)
i )2|.)∝

KC∏
c=1

LN
(
(σ(m)

i )2;µ(m)
c , (τ(m))2

)I(C(m)
i =c) ni∏

j=1
N

{
yi j; f (b(m)

i ; ti j), (σ(m)
i )2

}
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LN
(
(σ(m)

i )2;µ(m)
c , (τ(m))2

)
represents the density of log normal disribution with

mean µ(m)
c and variance (τ(m))2 evaluated at (σ(m)

i )2 and N
{

yi j; f (b(m)
i ; ti j), (σ(m)

i )2
}

represents the density of normal distribution with mean f (b(m)
i ; ti j) and vari-

ance (σ(m)
i )2 evaluated at yi j. Since there is no closed form of the full condi-

tional posterior density, the draws for (σ(m)
i )2, i = 1, ...,n at each iteration of the

Gibbs sampling are obtained using the inverse cumulative distribution sam-

pling method.

• draw Wi, i = 1, ...,n from:

[W (m)
i |oi = 1, ·]∼N(θC(m)

i ,D(m)
i

,1)I(0,∞)(·)

[W (m)
i |oi = 0, ·]∼N(θC(m)

i ,D(m)
i

,1)I(−∞,0)(·)

where, θC(m)
i ,D(m)

i
= (Z(m)

i )Tη(m) in the latent class probit submodel given C(m)
i

and D(m)
i .

(3) update population level parameter φlong in the longitudinal sub-

model

• draw β(m)
d , d = 1, · · · ,KD : Assuming the prior for βd

ind∼ MVN(ν,V), then the

full conditional posterior density for βd for d = 1, ...,KD is
[
βd|.

]∼MVN
(
ν̃d,Ṽd

)
where

ν̃d = Ṽd

{
ν+ (Σ(m)

d )−1

(
n∑

i=1
I(D(m)

i = d)b(m)
i +

ñ∑
i=1

I(D̃(m)
i = d)b̃(m)

i

)}

Ṽd =
{

V−1 + (Σ(m)
d )−1

(
n∑

i=1
I(D(m)

i = d)+
ñ∑

i=1
I(D̃(m)

i = d)

)}−1

• draw Σ(m)
d , d = 1, · · · ,KD : Assuming the prior for Σd

ind∼ Inverse-Wishart(m,Λ),

then the full conditional posterior density is, [Σd|·] ∼ Inverse-Wishart
(
m̃d,Λ̃d

)
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where

m̃d = m+
n∑

i=1
I(D(m)

i = d)+
ñ∑

i=1
I(D̃(m)

i = d)

Λ̃d =
{
Λ−1 +

n∑
i=1

I(D(m)
i = d)

(
b(m)

i −β(m)
d

)(
b(m)

i −β(m)
d

)′
+

ñ∑
i=1

I(D̃(m)
i = d)

(
b̃(m)

i −β(m)
d

)(
b̃(m)

i −β(m)
d

)′}−1

• update the mixing proportion {πD(m)
d }d: assuming {πD

d }d ∼Dirichlet(eD
1 , ...., eD

KD
)

then the full conditional posterior distribution is

[
{πD

d }d|·
]
∼Dirichlet({eD

d +
n∑

i=1
I(D(m)

i = d)+
ñ∑

i=1
I(D̃(m)

i = d)}d).

• update µ(m)
c : assuming the prior for µc

ind∼ N(a,b), then the full conditional pos-

terior distribution is,
[
µc|·

]∼N
(
ã, b̃

)
where

ã =
(τ(m))−2

(
n∑

i=1
I(C(m)

i = c)logσ2
i +

ñ∑
i=1

I(C̃(m)
i = c)logσ̃2

i

)
+a/b

1/b+ (τ(m))−2

(
n∑

i=1
I(C(m)

i = c)+
ñ∑

i=1
I(C̃(m)

i = c)

)

b̃ =
{

1/b+ (τ(m))−2

(
n∑

i=1
I(C(m)

i = c)+
ñ∑

i=1
I(C̃(m)

i = c)

)}−1

• draw (τ(m))2: assuming τ2 ∼ Inverse-Gamma(v, e), then the full conditional

posterior distribution is
[
τ2|·]∼ Inverse-Gamma

{
v+ n+ñ

2 , ẽ
}

where ẽ = e+
KC∑
c=1

(
n∑

i=1

1
2

I(C(m)
i = c)

(
log(σ(m)

i )2 −µ(m)
c

)2 +
ñ∑

i=1

1
2

I(C̃(m)
i = c)

(
log(σ̃(m))2

i −µ(m)
c

)2
)
.
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• update the mixing proportion {πC(m)
c }c: assuming {πC

c }c ∼Dirichlet(eC
1 , ...., eC

KC
)

then the full conditional posterior distribution is

[
{πC

c }c|·
]
∼Dirichlet({eC

c +
n∑

i=1
I(C(m)

i = c)+
ñ∑

i=1
I(C̃(m)

i = c)}c).

(4) update the parameter η in the primary outcome model

• draw η(m): Assuming the prior for η ∼ MVN(νη,Vη), then the full conditional

posterior density for η(m) is
[
η|.]∼MVN

(
ν̃η,Ṽη

)
where

ν̃η =
(
V−1
η +

n∑
i=1

Z(m)
i (Z(m))T

i

)−1 (
V−1
η νη+

n∑
i=1

W (m)
i Z(m)

i

)

Ṽη =
(
V−1
η +

n∑
i=1

Z(m)
i (Z(m))T

i

)−1

Z(m)
i is the ith row of the design matrix in the probit submodel given D(m)

i and

C(m)
i .

(5) The prediction of outcome for a new validation sample i, i = 1, · · · , ñ

can be based on p̃(m)
i = Φ(η(m)TZ̃(m)

i ), where Z̃(m)
i contains D̃(m)

i and C̃(m)
i for LC

model.

joint MSRE model:

After initialize the chain, we repeat the following steps (1) to (5) for m = 1, · · · , M:

(1) update individual level latent variables z̃ for validation sample (note:

this is only conditional on the longitudinal trajectories ỹ= {ỹi}ñ
i=1)

• draw D̃(m)
i , i = 1, ..., ñ from Multinomial(π̃D

i1, ..., π̃D
iKD

), where

π̃D
i1 =

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2 (b̃(m)
i −β(m)

d )′(Σ(m)
d )−1(b̃(m)

i −β(m)
d )

}
KD∑
d=1

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2
(b̃(m)

i −β(m)
d )′(Σ(m)

d )−1(b̃(m)
i −β(m)

d )
}
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• draw b̃(m)
i , i = 1, ..., ñ from MVN

(
β̃i, Σ̃i

)
, where

Σ̃i =
[

(Σ(m)
D̃(m)

i
)−1 + 1

(σ(m)
i )2

ñi∑
j=1

ti jt′i j

]−1

β̃i = Σ̃i

[
(Σ(m)

D̃(m)
i

)−1β(m)
D̃(m)

i
+ 1

(σ(m)
i )2

ni∑
j=1

ỹi jti j

]

ti j is a vector of functional forms of the observation time ti j for the longitudinal

measurement ỹi j such that ỹi j ∼N
{
f (b̃i; ti j),σ2

i
}

with f (b̃i; ti j)= b̃T
i ti j.

• draw the variance class memberships C̃(m)
i , i = 1, ..., ñ from Multinomial(π̃C

i1, ..., π̃C
iKC

),

where

π̃C
i1 =

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ̃(m)

i )2 −µ(m)
c

)2
}

KC∑
c=1

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ̃(m)

i )2 −µ(m)
c

)2
}

• draw the variances (σ̃(m)
i )2, i = 1, ..., ñ from

π((σ̃(m)
i )2|.)∝

KC∏
c=1

LN
(
σ̃(m)

i )2; µ̃(m)
c , (τ(m))2

)I(C̃(m)
i =c) ñi∏

j=1
N

{
yi j; f (b̃(m)

i ; ti j), (σ̃(m)
i )2

}

LN
(
(σ̃(m)

i )2;µ(m)
c , (τ(m))2

)
represents the density of log normal disribution with

mean µ(m)
c and variance (τ(m))2 evaluated at (σ̃(m)

i )2 and N
{

yi j; f (b̃(m)
i ; ti j), (σ̃(m)

i )2
}

represents the density of normal distribution with mean f (b̃(m)
i ; ti j) and vari-

ance (σ̃(m)
i )2 evaluated at ỹi j.

(2) update individual level latent variables z for old sample (note: this

is conditional on both the longitudinal trajectories y = {yi}n
i=1 and the outcome o =

{oi}n
i=1)
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• draw the mean profile class memberships D(m)
i from Multinomial(π̃D

i1, ..., π̃D
iKD

),

where

π̃D
i1 =

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2 (b(m)
i −β(m)

d )′(Σ(m)
d )−1(b(m)

i −β(m)
d )

}
KD∑
d=1

πD(m)
d |Σ(m)

d |− 1
2 exp

{
−1

2
(b(m)

i −β(m)
d )′(Σ(m)

d )−1(b(m)
i −β(m)

d )
}

• draw the random effects bi, i = 1, ...,n from ∼MVN
(
β̃i, Σ̃i

)
, where

Σ̃id =
(
(Σ(m)

D(m)
i

)−1 + 1

(σ(m)
i )2

ni∑
j=1

ti jtT
i j +g(η(m),σ(m)

i )g(η(m),σ(m)
i )T

)−1

β̃
(m)
i = Σ̃id

(
(Σ(m)

D i
)−1β(m)

D i
+ 1

(σ(m)
i )2

∑ni
j=1 yi jti j + (W (m)

i − g̃(η(m),σ(m)
i ))g(η(m),σ(m)

i )
)

where ti j is a vector of functional forms of the observation time ti j for the

longitudinal measurement yi j such that yi j ∼ N
{
f (bi; ti j),σ2

i
}

with f (bi; ti j) =
bT

i ti j. g(η,σi) is a vector such that ZT
i η = g(η,σi)Tbi + g̃(η,σi) in the MSRE

primary outcome model. Zi is the ith row of the design matrix in the probit

submodel given bi and σi.

• draw the variance class memberships C(m)
i , i = 1, ...,n from Multinomial(π̃C

i1, ..., π̃C
iKC

)

where

π̃C
i1 =

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ(m)

i )2 −µ(m)
c

)2
}

KC∑
c=1

πC(m)
c exp

{
− 1

2(τ(m))2

(
log(σ(m)

i )2 −µ(m)
c

)2
}

• update the variances (σ(m)
i )2, i = 1, ...,n

π((σ(m)
i )2|.)∝

KC∏
c=1

LN
(
(σ(m)

i )2;µ(m)
c , (τ(m))2

)I(C(m)
i =c) ni∏

j=1
N

{
yi j; f (b(m)

i ; ti j), (σ(m)
i )2

}
×N(W (m)

i ; (Z(m)
i )Tη(m),1)
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LN
(
(σ(m)

i )2;µ(m)
c , (τ(m))2

)
represents the density of log normal disribution with

mean µ(m)
c and variance (τ(m))2 evaluated at (σ(m)

i )2 and N
{

yi j; f (b(m)
i ; ti j), (σ(m)

i )2
}

represents the density of normal distribution with mean f (b(m)
i ; ti j) and vari-

ance (σ(m)
i )2 evaluated at yi j and similarly N(W (m)

i ; (Z(m)
i )Tη(m),1) represents

the density of normal distribution with mean (Z(m)
i )Tη(m) and variance 1 eval-

uated at W (m)
i .

• draw Wi, i = 1, ...,n for old sample from:

[W (m)
i |oi = 1, ·]∼N((Z(m)

i )Tη(m),1)I(0,∞)(·)

[W (m)
i |oi = 0, ·]∼N((Z(m)

i )Tη(m),1)I(−∞,0)(·)

where, Z(m)
i contains b(m)

i and σ(m)
i for joint MSRE model.

(3) update population level parameter φlong in the longitudinal sub-

model

• draw β(m)
d , d = 1, · · · ,KD : Assuming the prior for βd

ind∼ MVN(ν,V), then the

full conditional posterior density for βd for d = 1, ...,KD is
[
βd|.

]∼MVN
(
ν̃d,Ṽd

)
where

ν̃d = Ṽd

{
ν+ (Σ(m)

d )−1

(
n∑

i=1
I(D(m)

i = d)b(m)
i +

ñ∑
i=1

I(D̃(m)
i = d)b̃(m)

i

)}

Ṽd =
{

V−1 + (Σ(m)
d )−1

(
n∑

i=1
I(D(m)

i = d)+
ñ∑

i=1
I(D̃(m)

i = d)

)}−1

• draw Σ(m)
d , d = 1, · · · ,KD : Assuming the prior for Σd

ind∼ Inverse-Wishart(m,Λ),

then the full conditional posterior density is, [Σd|·] ∼ Inverse-Wishart
(
m̃d,Λ̃d

)
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where

m̃d = m+
n∑

i=1
I(D(m)

i = d)+
ñ∑

i=1
I(D̃(m)

i = d)

Λ̃d =
{
Λ−1 +

n∑
i=1

I(D(m)
i = d)

(
b(m)

i −β(m)
d

)(
b(m)

i −β(m)
d

)′
+

ñ∑
i=1

I(D̃(m)
i = d)

(
b̃(m)

i −β(m)
d

)(
b̃(m)

i −β(m)
d

)′}−1

• update the mixing proportion {πD(m)
d }d: assuming {πD

d }d ∼Dirichlet(eD
1 , ...., eD

KD
)

then the full conditional posterior distribution is
[
{πD

d }d|·
] ∼ Dirichlet({eD

d +∑n
i=1 I(D(m)

i = d)+∑ñ
i=1 I(D̃(m)

i = d)}d).

• update µ(m)
c : assuming the prior for µc

ind∼ N(a,b), then the full conditional pos-

terior distribution is,
[
µc|·

]∼N
(
ã, b̃

)
where

ã =
(τ(m))−2

(
n∑

i=1
I(C(m)

i = c)logσ2
i +

ñ∑
i=1

I(C̃(m)
i = c)logσ̃2

i

)
+a/b

1/b+ (τ(m))−2

(
n∑

i=1
I(C(m)

i = c)+
ñ∑

i=1
I(C̃(m)

i = c)

)

b̃ =
{

1/b+ (τ(m))−2

(
n∑

i=1
I(C(m)

i = c)+
ñ∑

i=1
I(C̃(m)

i = c)

)}−1

• draw (τ(m))2: assuming τ2 ∼ Inverse-Gamma(v, e), then the full conditional

posterior distribution is
[
τ2|·]∼ Inverse-Gamma

{
v+ n+ñ

2 , ẽ
}
, where ẽ = e+

KC∑
c=1

(
n∑

i=1

1
2

I(C(m)
i = c)

(
log(σ(m)

i )2 −µ(m)
c

)2 +
ñ∑

i=1

1
2

I(C̃(m)
i = c)

(
log(σ̃(m))2

i −µ(m)
c

)2
)

• update the mixing proportion {πC(m)
c }c: assuming {πC

c }c ∼Dirichlet(eC
1 , ...., eC

KC
)

then the full conditional posterior distribution is

[
{πC

c }c|·
]
∼Dirichlet

({
eC

c +
n∑

i=1
I(C(m)

i = c)+
ñ∑

i=1
I(C̃(m)

i = c)

}
c

)
.
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(4) update the parameter η in the primary outcome model

• draw η(m): Assuming the prior for η ∼ MVN(νη,Vη), then the full conditional

posterior density for η(m) is
[
η|.]∼MVN

(
ν̃η,Ṽη

)
where

Ṽη =
[

V−1
η +

n∑
i=1

Z(m)
i (Z(m))T

i

]−1

ν̃η = Ṽη

[
V−1
η νη+

n∑
i=1

W (m)
i Z(m)

i

]

Z(m)
i is the ith row of the design matrix in the probit submodel and contains

b(m)
i and σ(m)

i for MSRE model.

(5) The prediction of outcome for a new validation sample i, i = 1, · · · , ñ

can be based on p̃(m)
i =Φ(η(m)TZ̃(m)

i ), where Z̃(m)
i contains b̃(m)

i and σ̃(m)
i for MSRE

model.

153



BIBLIOGRAPHY

154



BIBLIOGRAPHY

Akaike, H. (1973), Information theory and an extension of the maximum likelihood
principle, in Proceedings of the Second International Symposium on Information
Theory, edited by B. N. Petrov and F. Csaki, pp. 267–281, Budapest: Akademiai
Kiado.

Albert, J. H., and S. Chib (1993), Bayesian analysis of binary and polychotomous
response data, Journal of the American statistical Association, 88(422), 669–679.

Biernacki, C., G. Celeux, and G. Govaert (2000), Assessing a mixture model for clus-
tering with the integrated completed likelihood, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(7), 719–725.

Brown, E. R., and J. G. Ibrahim (2003a), A bayesian semiparametric joint hierarchi-
cal model for longitudinal and survival data, Biometrics, 59(2), 221–228.

Brown, E. R., and J. G. Ibrahim (2003b), Bayesian approaches to joint cure-rate and
longitudinal models with applications to cancer vaccine trials, Biometrics, 59(3),
686–693.

Celeux, G., F. Forbes, C. P. Robert, and D. M. Titterington (2006), Deviance informa-
tion criteria for missing data models, Bayesian Analysis, 1(4), 651–673.

Chen, H., and Y. Wang (2011), A penalized spline approach to functional mixed effects
model analysis, Biometrics, 67(3), 861–870.

Chen, M.-H., and P. Gustafson (2011), editors, Lifetime Data Analysis, 17, special
Issue.

Day, N. E. (1969), Estimating the components of a mixture of normal distributions,
Biometrika, 56(3), 463–474.

Durbán, M., J. Harezlak, M. P. Wand, and R. J. Carroll (2005), Simple fitting of
subject-specific curves for longitudinal data, Statistics in medicine, 24(8), 1153–
1167.

Eilers, P. H. C., and B. D. Marx (1996), Flexible smoothing with B-splines and penal-
ties, Statistical Science, 11(2), 89–121.

Elliott, M. R. (2007), Identifying latent clusters of variability in longitudinal data,
Biostatistics, 8(4), 756–771.

155



Elliott, M. R., M. D. Sammel, and J. Faul (2012), Associations between variability
of risk factors and health outcomes in longitudinal studies, Statistics in Medicine,
31(23), 2745–2756.

Fawcett, T. (2006), An introduction to ROC analysis, Pattern recognition letters, 27(8),
861–874.

Fonseca, T. C., M. A. Ferreira, and H. S. Migon (2008), Objective Bayesian analysis
for the student-t regression model, Biometrika, 95(2), 325–333.

Freeman, E. W., M. D. Sammel, J. A. Grisso, M. Battistini, B. Garcia-Espagna, and
L. Hollander (2001), Hot flashes in the late reproductive years: risk factors for
African American and Caucasian women, Journal of Women’s Health and Gender-
Based Medicine, 10(1), 67–76.

Freeman, E. W., M. D. Sammel, H. Lin, and D. B. Nelson (2006), Associations of
hormones and menopausal status with depressed mood in women with no history
of depression, Archives of General Psychiatry, 63(4), 375.

Frühwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, New
York: Springer.

Garrett, E. S., and S. L. Zeger (2000), Latent class model diagnosis, Biometrics, 56(4),
1055–1067.

Gelman, A., and J. Hill (2007), Data Analysis using Regression and Multi-
level/Hierarchical Models, New York: Cambridge University Press.

Gelman, A., X.-L. Meng, and H. Stern (1996), Posterior predictive assessment of
model fitness via realized discrepancies, Statistica Sinica, 6(4), 733–760.

Gelman, A., Y. Goegebeur, F. Tuerlinckx, and I. Van Mechelen (2000), Diagnostic
checks for discrete data regression models using posterior predictive simulations,
Journal of the Royal Statistical Society: Series C (Applied Statistics), 49(2), 247–
268.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2003), Bayesian data analysis,
CRC press.

Gelman, A., J. Hwang, and A. Vehtari (2013), Understanding predictive information
criteria for Bayesian models, Statistics and Computing, dOI: 10.1007/s11222-013-
9416-2.

Geweke, J. (1993), Bayesian treatment of the independent student-t linear model,
Journal of Applied Econometrics, 8(S1), S19–S40.

Ibrahim, J. G., M.-H. Chen, and D. Sinha (2001), Bayesian survival analysis, New
York: Springer-Verlag.

156



Ibrahim, J. G., M.-H. Chen, and D. Sinha (2004), Bayesian methods for joint mod-
eling of longitudinal and survival data with applications to cancer vaccine trials,
Statistica Sinica, 14(3), 863–884.

Ibrahim, J. G., H. Chu, and L. M. Chen (2010), Basic concepts and methods for joint
models of longitudinal and survival data, Journal of Clinical Oncology, 28(16),
2796–2801.

James, G. M. (2002), Generalized linear models with functional predictors, Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 64(3), 411–432.

Jeffreys, H. (1973), Scientific Inference, third ed., New York: Cambridge University
Press.

Johnson, V. E. (2004), A Bayesian χ2 test for goodness-of-fit, The Annals of Statistics,
32(6), 2361–2384.

Johnson, V. E. (2007), Bayesian model assessment using pivotal quantities, Bayesian
Analysis, 2(4), 719–734.

Kass, R. E., and R. Natarajan (2006), A default conjugate prior for variance com-
ponents in generalized linear mixed models (comment on article by Browne and
Draper), Bayesian Analysis, 1(3), 535–542.

Lang, S., and A. Brezger (2004), Bayesian P-splines, Journal of Computational and
Graphical statistics, 13(1), 183–212.

Lange, K. L., R. J. Little, and J. M. Taylor (1989), Robust statistical modeling using
the t distribution, Journal of the American Statistical Association, 84(408), 881–
896.

Law, N. J., J. M. Taylor, and H. Sandler (2002), The joint modeling of a longitudinal
disease progression marker and the failure time process in the presence of cure,
Biostatistics, 3(4), 547–563.

Little, R. J., and D. B. Rubin (2002), Statistical analysis with missing data, New York:
Wiley.

Manson, J. M., M. D. Sammel, E. W. Freeman, and J. A. Grisso (2001), Racial differ-
ences in sex hormone levels in women approaching the transition to menopause,
Fertility and sterility, 75(2), 297–304.

McLachlan, G., and D. Peel (2000), Finite Mixture Models, New York: Wiley.

Muthén, B., and K. Shedden (1999), Finite mixture modeling with mixture outcomes
using the EM algorithm, Biometrics, 55(2), 463–469.

Neelon, B., A. J. O’Malley, and S.-L. T. Normand (2011), A Bayesian two-part latent
class model for longitudinal medical expenditure data: assessing the impact of
mental health and substance abuse parity, Biometrics, 67(1), 280–289.

157



Pemstein, D., K. M. Quinn, and A. D. Martin (2007), The scythe statistical library:
An open source C++ library for statistical computation., Journal of Statistical Soft-
ware, 1, 29.

Plummer, M. (2002), Discussion of the paper by Spiegelhalter et al., Journal of the
Royal Statistical Society: Statistical Methodology, 4(64), 620.

Plummer, M. (2006), Comment on article by Celeux et al., Bayesian Analysis, 4(1),
681–686.

Plummer, M. (2008), Penalized loss functions for Bayesian model comparison, Bio-
statistics, 9(3), 523–539.

Proust-Lima, C., and J. M. Taylor (2009), Development and validation of a dynamic
prognostic tool for prostate cancer recurrence using repeated measures of post-
treatment psa: a joint modeling approach, Biostatistics, 10(3), 535–549.

Proust-Lima, C., M. Séne, J. M. Taylor, and H. Jacqmin-Gadda (2012), Joint latent
class models for longitudinal and time-to-event data: a review, Statistical Methods
in Medical Research.

Ramsay, J. O., and C. Dalzell (1991), Some tools for functional data analysis, Journal
of the Royal Statistical Society: Series B (Statistical Methodology), pp. 539–572.

Redner, R. A., and H. F. Walker (1984), Mixture densities, maximum likelihood and
the EM algorithm, SIAM review, 26(2), 195–239.

Richardson, S., and P. J. Green (1997), On bayesian analysis of mixtures with an
unknown number of components (with discussion), Journal of the Royal Statistical
Society: series B (statistical methodology), 59(4), 731–792.

Rizopoulos, D. (2011), Dynamic predictions and prospective accuracy in joint models
for longitudinal and time-to-event data, Biometrics, 67(3), 819–829.

Rizopoulos, D. (2012), Joint Models for Longitudinal and Time-to-Event Data: with
Applications in R, CRC Press.

Rizopoulos, D., and P. Ghosh (2011), A Bayesian semiparametric multivariate
joint model for multiple longitudinal outcomes and a time-to-event, Statistics in
medicine, 30(12), 1366–1380.

Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller
(2011), proc: an open-source package for R and S+ to analyze and compare ROC
curves, BMC bioinformatics, 12(1), 77.

Ruppert, D., M. P. Wand, and R. J. Carroll (2003), Semiparametric Regression, New
York: Cambridge University Press.

Schwarz, G. (1978), Estimating the dimension of a model, The annals of statistics,
6(2), 461–464.

158



Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer (2005), ROCR: visualizing
classifier performance in R, Bioinformatics, 21(20), 3940–3941.

Song, X., M. Davidian, and A. A. Tsiatis (2002), A semiparametric likelihood ap-
proach to joint modeling of longitudinal and time-to-event data, Biometrics, 58(4),
742–753.

Sowers, M. R., H. Zheng, D. McConnell, B. Nan, S. Harlow, and J. F. Randolph (2008),
Follicle stimulating hormone and its rate of change in defining menopause transi-
tion stages, Journal of Clinical Endocrinology & Metabolism, 93(10), 3958–3964.

Speigelhalter, D., N. Best, B. Carlin, and A. Van der Linde (2003), Bayesian measures
of model complexity and fit (with discussion), Journal of the Royal Statistical So-
ciety, Series B, 64(4), 583–616.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde (2002), Measures
of model complexity and fit, Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 64(4), 583–639.

Steel, R. J., and A. E. Raftery (2010), Performance of Bayesian model selection crite-
ria for Gaussian mixture models, in Frontiers of Statistical Decision Making and
Bayesian Analysis: In Honor of James O. Berger, edited by M.-H. Chen, P. Müller,
D. Sun, K. Ye, and D. K. Dey, pp. 113–130, New York: Springer.

Stephens, M. (2000), Dealing with label switching in mixture models, Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 62(4), 795–809.

Steyerberg, E. W., A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obuchowski, M. J.
Pencina, and M. W. Kattan (2010), Assessing the performance of prediction models:
a framework for some traditional and novel measures, Epidemiology (Cambridge,
Mass.), 21(1), 128.

Taylor, J. M., M. Yu, and H. M. Sandler (2005), Individualized predictions of disease
progression following radiation therapy for prostate cancer, Journal of clinical on-
cology, 23(4), 816–825.

Taylor, J. M., Y. Park, D. P. Ankerst, C. Proust-Lima, S. Williams, L. Kestin, K. Bae,
T. Pickles, and H. Sandler (2013), Real-time individual predictions of prostate can-
cer recurrence using joint models, Biometrics.

Tsiatis, A., V. Degruttola, and M. Wulfsohn (1995), Modeling the relationship of
survival to longitudinal data measured with error. applications to survival and
cd4 counts in patients with aids, Journal of the American Statistical Association,
90(429), 27–37.

van der Linde, A. (2012), A Bayesian view of model complexity, Statistica Neer-
landica, 66(3), 253–271.

159



Vehtari, A., and J. Ojanen (2012), A survey of Bayesian predictive methods for model
assessment, selection and comparison, Statistics Surveys, 6, 142–228.

Wang, Y., and J. M. G. Taylor (2001), Jointly modeling longitudinal and event time
data with application to acquired immunodeficiency syndrome, Journal of the
American Statistical Association, 96(455), 895–905.

Watanabe, S. (2009), Algebraic geometry and statistical learning theory, Cambridge
University Press.

Watanabe, S. (2010), Asymptotic equivalence of Bayes cross validation and widely ap-
plicable information criterion in singular learning theory, The Journal of Machine
Learning Research, 9999, 3571–3594.

Xu, J., and S. L. Zeger (2001), The evaluation of multiple surrogate endpoints, Bio-
metrics, 57(1), 81–87.

Yu, M., J. M. G. Taylor, and H. M. Sandler (2008), Individual prediction in prostate
cancer studies using a joint longitudinal survival–cure model, Journal of the Amer-
ican Statistical Association, 103(481), 178–187.

Yuan, Y., and V. E. Johnson (2012), Goodness-of-fit diagnostics for Bayesian hierar-
chical models, Biometrics, 68(1), 156–164.

160


