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Abstract 
All cells must accurately copy and maintain their DNA to ensure the faithful 

transmission of their genetic material to the next generation. Organisms ranging from 

bacteria to humans contain a suite of DNA repair pathways dedicated to the specific 

recognition and repair of the myriad of damaged or incorrect bases that occur 

throughout the lifetime of a cell. Here, I study the mechanisms of Bacillus subtilis 

mismatch repair and homologous recombination that maintain DNA integrity in the 

complex environment of a living cell. 

I. Mismatch repair increases the fidelity of DNA replication by identifying and 

correcting replication errors. Although Mismatch repair has been thoroughly 

studied in vitro, little is known about how its central components, MutS and MutL, 

identify replication errors and orchestrate their repair within a living cell. Here, I 

investigate how the B. subtilis processivity clamp DnaN aids mismatch detection 

by MutS in vivo. I found that DnaN serves as an essential platform for mismatch 

detection, targeting the MutS search for mismatches to nascent DNA.  

II. Following mismatch detection, MutS recruits MutL to the mismatch by an 

unknown mechanism. I identified a discrete site composed of two adjacent 

phenylalanine residues on MutS that binds MutL. Disruption of this site renders 

MutS defective in binding MutL in vitro and in vivo, while eliminating mismatch 

repair in vivo. Analysis of MutS repair complexes defective in MutL recruitment 

revealed a continuous loading response by MutS, revealing an intermediate step 

in the repair process.  

III. The recombinase RecA is required for homologous recombination and 

stabilization of stalled replication forks in many bacteria, yet the polypeptides 

important for RecA loading remains unclear in organisms lacking RecBCD. Here, 



	  

	  

xiii	  

I find that RecA loading is dependent on the presence of RecOR; proteins that 

associate with the SSB DNA maintenance hub, ensuring that RecA loading 

localizes to active replication forks. Furthermore, we find that RecF is not 

required for RecA loading; however, provides an enhancement in either RecA 

filament nucleation or elongation. 
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Chapter I 
Background on Prokaryotic Mismatch Repair. 

Chapter composed by JSL. 

Introduction 
Mismatch repair (MMR) is a DNA repair pathway primarily involved in correcting 

errors formed by DNA polymerases. Polymerase errors deviate from Watson-Crick 

base-pairing rules, including incorrect base pairings, termed mismatches, as well as 

extrahelical nucleotides termed insertion/deletion loops (IDLs). In the presence of 

mismatch repair, the chromosomes genetic information is maintained with extraordinary 

precision (~1*10-3 mutation per genome per generation), yet in its absence, the fidelity of 

chromosome replication can be reduced up to a 1000 fold. MMR defects that reduce 

fidelity are demonstrated by genome instability, and in mammals, represents a key 

hallmark in the transition of a normal cell to a cancer cell. To facilitate mismatch 

correction, MMR must perform two basic functions: 1) identify replication errors within 

the complicated 3-Dimensional context of a dynamic chromosome and 2) determine 

which base of the mispair is incorrect. Within this chapter, we discuss the current 

understanding of the MMR pathway and how it maintains guard against mutation and 

genome instability. We will focus on recent in vivo advancements in prokaryotes lacking 

the MutH/Dam-containing mismatch repair pathway. 

 
Background: Mismatch repair in Escherichia coli. 

The paradigm for prokaryotic mismatch repair (MMR) has been the Gram-

negative bacterium Escherichia coli. Work in this model system includes extensive 

biochemical characterization of all MMR components, including a successful 

reconstitution of the pathway in vitro (1)(See (2, 3) for review). Importantly, E. coli and a
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few closely related bacteria represent systems where the MMR strand-discrimination 

signal are known: methylation of adenine in GATC sequences by the Dam methylase. 

At the start of the cell cycle, these GATC sites are fully methylated; however upon 

replication, most GATC sites exist in a transient hemimethylated state for >2 min (4). 

This brief hemimethylated state is exploited by MMR to correct the base located in the 

unmethylated strand, and hence the newly replicated daughter strand.  

E. coli MMR is initiated upon the identification of a replication error by the 

homodimer sensor protein MutS (Figure 1A) (5). Upon mismatch detection, MutS 

recruits the homodimer MutL through a yet unknown mechanism. One model suggests 

that the MutS•MutL binary complex will rapidly dissociates from the mismatch and 

diffuse away along the DNA (Figure 1B). A third principal component, the restriction 

endonuclease-like protein MutH, follows transiently behind the ongoing replication fork 

through association with the hemi-methylated GATC sites (6). The diffusing MutS•MutL 

binary complex physically interacts with and activates MutH, which upon activation will 

specifically nick the unmethylated strand of the hemimethylated GATC site (7). The 

combination of the Dam methylase and MutH activities provides a signal directing the 

MMR pathway to the template strand in a process termed strand discrimination (8). At 

this newly incised nick, MutL loads and stimulates the activity of UvrD, a helicase with 

3´-5´ polarity, on either the continuous strand or the incised strand, depending on 

whether the MutH-directed nick exists 5´ or 3´ to the mismatch respectively (Figure 1C) 

(9-11). Helicase loading ensures that helicase unwinding occurs toward the detected 

mismatch, removing the replication error, while the unwound mismatch containing 

strand is degraded by one of several single-stranded exonucleases (ExoI, RecJ, ExoVII, 

ExoX), producing a tract of SSB-bound ssDNA (12). In the final step, the DNA 

Polymerase III holoenzyme replicates over the gap employing the ssDNA as a template 

and DNA ligase seals the nick in the sugar-phosphate backbone (Figure 1D). In total, 

the repair of replication errors in vitro and in vivo relies on a minimum set of protein 

activities: MutS, MutL, MutH, Dam, UvrD, ExoI, the Pol III holoenzyme, LigA, and SSB 

(1).   
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Figure 1. Model of Escherichia coli Methyl-Directed Repair. 
A. A replication error is detected by MutS within a narrow window (≤ 2 minutes) after the 
progression of the replication fork where GATC sites are hemimethylated. To assist with the 
detection of the mismatch, the DnaN clamp positions MutS on nascent DNA. MutL is recruited by 
mismatch-bound MutS. B. The MutS•MutL binary complex diffuses away from the mismatch, 
colliding with and activating MutH. MutH is positioned at hemimethylated GATC sites and upon 
activation, will nick the unmethylated strand. C. MutL recruits the UvrD helicase to the nick, where 
it will unwind the unmethylated strand through the mismatch. Simultaneously, exonucleases will 
degrade the strand. D. SSB bound ssDNA surrounding the recently removed mismatch is 
replicated by the Pol III holoenzyme. Ligase will seal the remaining gap, completing repair.	  

 

The E. coli model system has traditionally represented the prokaryotic paradigm 

for MMR studies; however, most prokaryotes and all eukaryotes rely on a MutH and 

methylation-independent pathway. Most prokaryotic and eukaryotic MutL homologues 

(MLHs) contain a heavily conserved endonuclease active site, where extensive 

conservation is apparent among distantly related organisms from human to Arabidopsis 

to the Gram-positive bacterium Bacillus subtilis. Despite this extensive evolutionary 

conservation of MLHs, E. coli MutL lacks an intrinsic endonuclease activity that defines 

eukaryotic, and even most prokaryotic, MMR pathways (13). Although E. coli has 

served as the MMR paradigm since the discovery of mutator alleles in the 1960’s, it 
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represents the exception rather than the rule for the study of in vivo MMR mechanisms 

in most prokaryotes (3).  

	  

Figure 2 MutS: The hands of a guardian. 
A. The crystal structure of Escherichia coli MutS dimer bound to a G•T mismatch (PDB 1E3M). 
ADP in Protomer A is represented by a dot structure in pink. B. The crystal structure of the 
Thermus aquaticus MutS dimer bound to a G•T mismatch (PDB 1EWQ). C. A Phyre2 model of the 
Bacillus subtilis MutS monomer. The domain organization has been labeled and indicated by the 
corresponding colors. The processivity clamp-binding domain (Domain VI), which is not present in 
MutS crystal structures in (A) and (B) was included in the the B. subtilis model, and is pictured in 
orange.	  

 
Biochemical characterization of MutS 
 In the E. coli, Thermus aquaticus, Saccharomyces cerevisiae, and human model 

systems, there has been extensive in vitro biochemical characterization of MutS 

homologues. These studies have revealed extensive mechanistic and biochemical 

conservation from mismatch detection through MutS sliding clamp formation in these 

systems. Here, important biochemical conclusions of this work will be discussed and 

used to understand MMR in an in vivo context. 

Crystal structures of the E. coli and T. aquaticus MutS dimer, as well as the 

human MutSα heterodimer, has revealed that MutS homologues form a characteristic 

structure that resembles a pair of praying hands, with a DNA substrate being inspected 

between the thumb and the forefingers (Figure 2) (14-16). In the absence of DNA, the 

main dimer contacts of MutS homologues exist within Domain V (the wrist in our 
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analogy and the ATPase domain). In the T. aquaticus crystal structure, in the absence 

of DNA, the thumbs and fingers (Domains I and IV) are not resolved, illustrating a 

dynamic and mobile behavior of these domains without DNA. The addition of DNA 

stabilizes the mismatch bound praying hand structure by making additional dimer 

contacts between the thumbs (Domain I) and the forefingers (Domain IV) (Figure 2). 

Additionally upon DNA binding, structural changes occur in the ATPase active site 

(Domain V), suggesting that mismatch binding by MutS ultimately influences the 

ATPase cycle, and subsequent behavior of the MutS dimer during repair. 

During association with DNA, MutS homodimers make both low affinity contacts, 

as well as specific interactions used for interrogating nucleobases for replication errors. 

Minor DNA contacts between the thumbs (Domain I) and the forefingers (Domain IV) 

position MutS on complementary DNA sequences, forming numerous salt-bridges with 

the sugar-phosphate backbone (14, 15). These interactions facilitate rotational 

movement in accordance with the helical contour (corkscrew-like rotation) of the DNA 

during the mismatch search. Furthermore, a second and more extensive DNA contact is 

made in Domain I of a single protomer (protomer A). Here, a phenylalanine in a highly 

conserved GxFxE motif specifically interrogates base pairs by inserting into the helix 

and stacking with the nitrogenous bases (in this case, a mismatch) (14, 15, 18). All 

specific contacts outside of this motif are made only with the sugar-phosphate 

backbone, ensuring unrestrained movement over complementary DNA, while 

preventing neighboring sequence context from influencing mismatch detection. Upon 

the phenylalanine stacking with the mismatched base, the DNA contour at the mismatch 

becomes bent (~60˚ from linear) (14, 15, 19). Little to no bending is observed by MutS 

on a complementary DNA substrate, suggesting that the degree of bending acts as a 

critical biochemical signal of mismatch recognition (19). Upon dissociation of MutS from 

the mismatch, all MutS-mediated bending ceases (19).  

The ATPase site of MutS directs each step of MMR through ATP-mediated 

conformational changes, and importantly, signals for mismatch excision upon 

identification of a mismatch. The ATPase cycle has been shown to be conserved in all 

MutS homologues, as the ATP active sites (characteristic of ATP-binding cassette 

[ABC] ATPases) and the Walker A and B motifs that compose them, are heavily 
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conserved (17). In the Apo form, evidence suggests that MutS resides in an open 

structure, preventing DNA association, suggesting that partial occupancy of one of the 

ATPase sites with a nucleotide is required for DNA association (15) (Figure 3). The 

crystal structure of E. coli MutS bound to a mismatch revealed that the ATPase active 

sites were not super-imposable, identifying an asymmetry that is used to drive mismatch 

repair via the nucleotide cycle (14). During the search for replication errors, the 

nucleotide binding site of protomer A (the protomer interrogating the DNA) is occupied 

by ADP (14, 15). Upon mismatch detection, MutS exchanges ADP for ATP in a defined 

ordered transition, which after a brief pause will facilitate an extensive conformational 

change that signals for MutL recruitment in preparation for mismatch excision.  

During the ADP to ATP transition, conformational changes in MutS domain I 

releases DNA, while Domain IV maintains dimer contacts, forming a MutS sliding DNA 

clamp (7, 20-24) (Figure 3). Specifically, this conformational change elicits a contraction 

of the ATPase domains, which causes a retraction of domain I towards the outside of 

the connector domain (Domain III) (26). The contraction of the ATPase active site was 

captured upon diffusing ATP into preformed crystals and elucidating the structure (25), 

whereas the retraction of domain I towards Domain III can be captured using chemical 

crosslinking (26). MutS, now devoid of any specific DNA contacts due to an increased 

solvent channel gauge, diffuses freely along the DNA. This diffusion occurs at a faster 

velocity than during the initial mismatch search, since rotational movements have been 

lost in the sliding clamp conformation (20, 21). This loss of constant register with the 

sugar-phosphate backbone is further illustrated by observed increases in the diffusion 

coefficient in both an ionic-strength-dependent, as well as a flow rate-dependent (due to 

laminar flow) manner (20). While in this state, ATP hydrolysis is suppressed, 

maintaining a prolonged complex (t1/2 ≥ 268 ± 62 s) that is passive to further mismatch 

detection (20, 21).   
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Figure 3. Biochemical schematic of mismatch detection by MutS. 
The MutS dimer is pictured with each protomer assigned a unique color: protomer A is red while 
protomer B is grey. Protomer A represents the protomer that interrogates the DNA helix with the 
conserved phenylalanine. Predicted nucleotide occupancy is indicated based on the legend 
(Inset). A. MutS is scanning for mismatches on complementary DNA. Protomer A is 
predominantly in the ADP bound form. B. Upon detection of a mismatch, MutS pauses for a brief 
moment before signaling the need to initiate mismatch repair. C. After a pause of a few seconds, 
ATP occupancy in the active site of protomer A and possibly protomer B induces the formation of 
a sliding clamp via extensive conformational changes. D. The sliding clamp diffuses along the 
DNA refractory for further mismatch association to prevent re-binding to the same mismatch. 
Sliding clamp formation exposes the mismatch for further MutS binding events, facilitating 
iterative loading. E. The MutS dimer is unable to associate with DNA absent nucleotide 
occupancy. Domains I and IV are highly mobile, opening up the structure.  
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Replication coupling of mismatch repair 
 Despite the extensive studies elucidating the biochemical mechanisms of 

mismatch detection by MutS homologues on in vitro substrates, much less is known 

about how mismatch detection is performed in vivo. The main challenge posed to 

replication-error detection by MutS in vivo is the low frequency of their formation (~1 

error per 108 bases replicated) (27, 28). Furthermore, a dynamic chromosome further 

obfuscates mismatch detection of these rare mismatches through DNA supercoiling, 

chromosome compaction, and a myriad of DNA-binding proteins. Furthermore, 

mismatch repair assemblies must engage in a competition with active processes such a 

transcription that could disrupt repair. Despite these challenges, early assertions were 

made that MutS identified errors via one-dimensional (1D) scanning of the whole 

genome in between replication cycles; however recent findings reveal that most 

mismatch detection is physically coupled to active replication forks, with subsequent 

repair occurring on replication proximal DNA (72). For example, Saccharomyces 

cerevisiae MMR is proficient only when MutSα is available during S-phase, and is 

conversely ineffective when MutSα is only made available during G2 or M phase after 

ongoing replication has ceased. This study illustrates temporal coupling of mismatch 

detection with active replication (29).   

 Spatial replication-coupled repair was also suggested due to the effect of strand 

breaks on the efficiency of MMR. Early biochemical studies using either cell extracts or 

reconstituted enzymatic systems observed that circular heteroduplex (mismatch 

containing) substrates were repaired efficiently only when a mismatch proximal nick (≤ 

1kb away) was present (30-32). Furthermore, a nick near the mismatch is sufficient for 

strand discrimination by designating the cis strand as the strand targeted for nucleotide 

removal and repair. These nicks may represent strand termini that form during DNA 

replication, asymmetrically distributed to the lagging strand. In favor of strand termini 

directing repair, genetic evidence shows that MMR displayed a strand bias in vivo; 

where the lagging strand is repaired more efficiently than the leading strand (33-35). 

These observations suggest that either topological landmarks and/or protein factors 
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associated with DNA termini may direct efficient MMR and the strand discrimination 

step.  

 

Replication coupling of mismatch detection in vivo. 
One possible source of MMR coupling to replication is DnaN and PCNA 

(Proliferating Cell Nuclear Antigen), representing the prokaryotic and eukaryotic 

processivity clamps, respectively. DnaN (β-clamp) and PCNA are loaded at DNA termini 

by clamp loader complexes and primarily serve to tether replicative polymerases to 

DNA, increasing processive replication. Moreover, these clamps act as an organization 

scaffold for the replisome, as many proteins including MutS homologues are recruited to 

nascent DNA via interaction with processivity clamps (36-39). The majority of these 

interactions occur on the C-terminal face of the DnaN clamp in a cleft between domains 

2 and 3, designated as the hydrophobic pocket. Many proteins have a dedicated clamp-

binding motif (QL[SD]LF in prokaryotes; QxxLxxFF in eukaryotes) required for binding 

processivity clamps. The specific interaction between MutS homologues and 

processivity clamps is direct but weak, and occurs through the clamp-binding motif 

found within the unstructured C-terminal domain of MutS (40). Disruption of the clamp-

binding motif or deletion of the C-terminal domain of MutS is sufficient to eliminate 

binding to DnaN in vitro (38, 39). However, attempts to discern an in vivo function for 

this interaction were complicated by observations that plasmid-borne mutS alleles 

defective in DnaN interaction successfully complemented a ΔmutS allele, failing to 

produce an elevated mutation rate, which led to the suggestion that interaction between 

MutS and DnaN does not contribute to mismatch repair in vivo (14, 38, 41). In B. 

subtilis, a clamp-binding motif mutant (MutS-806AAAAA810) at its native locus produced a 

minor increase in mutation rate (39). However, truncation of the amino acids that 

comprise the unstructured clamp binding domain of MutS (Domain VI-producing 

MutS800) in both E. coli and B. subtilis eliminates repair, revealing a dependence on 

yet-to-be identified binding interfaces within this domain (39, 42, 43). This increase of 

mutation rate is completely suppressed via over-expression of mutS800, revealing a 

dependence on the DnaN•MutS interaction for mismatch detection at native MutS 

concentrations (~100 nM in vivo), and perhaps explaining why disruption of the motif in 
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E. coli, B. subtilis, and Pseudomonas aeruginosa fails to produce elevated rates of 

mutagenesis at high expression levels (≥500 nM) ((38, 41-43) and Chapter 2). 

 The important role that processivity clamps play in in vivo mismatch detection 

was elucidated in part through cytological studies. In both prokaryotes and eukaryotes, 

DnaN and PCNA forms large clamp assemblies termed “clamp-zones” immediately 

following the progressing replication forks (44, 45) (Figure 4A). In B. subtilis, these 

clamp zones have been shown to contain as many as 200 DNA-bound DnaN clamp 

dimers as clamp loading and unloading rates reach an equilibrium (45). Importantly, 

these clamps are unevenly distributed in favor of the lagging strand due to Okazaki 

fragment synthesis and maturation; an asymmetry that may facilitate the increased 

MMR efficiency on the lagging strand. Initially, MutS is targeted to nascent DNA via its 

interaction with DnaN, allowing it to maintain a critical spatial and temporal relationship 

with the replication forks ((43) and Chapter 2). This occurs at a step prior to mismatch 

detection as MutSF30A, a mutant defective for mismatch detection, localizes to the 

clamp zone. This localization optimizes mismatch detection efficiency in part by 

restricting the search for mismatches to newly replicated DNA. When the MutS•DnaN 

interaction is disrupted, eliminating MutS enrichment on nascent DNA, 90% of MMR 

capacity is lost, emphasizing the importance of spatial-temporal coupling between 

mismatch detection and the replication forks on MMR (Chapter 2).  

Alternatively, the clamp may increase processive DNA scanning of nascent DNA, 

much the same as the clamp imparts on the replicative DNA polymerases. In the 

absence of the DnaN clamp interaction, more MutS is needed to search DNA for 

mismatches using one-dimensional scanning. On short, end-blocked DNA substrates, 

as well long, 15.3 kb λ-based DNA curtains, DNA sampling times of MutS without the 

processivity clamp were ~1 s, with diffusion distances spanning between 700-1000 bps 

of naked DNA. Once a mismatch has been detected, MutS undergoes conformational 

changes that may facilitate dissociation from the clamp (46). Importantly, S. cerevisiae 

MutSα also forms replication-coupled foci preceding mismatch detection; however, 

active MMR repair centers are unable to be discerned due to low stoichiometry of 

MutSα during repair (47). Overall, coupling mismatch detection to replication forks by 
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processivity clamps increases the efficiency of mismatch detection, and may provide 

proximity to strand discrimination signals (See Below) to complete the repair process. 

 
MutL recruitment to a mismatch. 

Upon mismatch detection by MutS, MutL is recruited forming a DNA bound 

binary complex. Early cytological studies of B. subtilis mutS-gfp showed that MutS-GFP 

formed foci in response to mismatch detection (39, 43, 48). For visualization on an 

epifluorescence microscope, a minimum of 8 constrained fluorophores must distinctly 

localize to form a focus; visualization of MutS foci therefore suggested that during active 

repair within a living cell, numerous MutS dimers (directly quantitated as ≤12) must be 

involved (49). This observation suggested that MutS loads iteratively at a single 

mismatch, producing a transient increase in the local DNA-bound MutS concentration, 

which may aid in the recruitment of MutL (Figure 4B). This finding is consistent with 

observed repetitive loading of E. coli MutS in EMSA assays (7). When the downstream 

step of MutL recruitment is lost, MutS repair centers became brighter, signifying the 

continued loading (quantified as ≤ 30 dimers) of MutS on mismatch proximal DNA ((49) 

and Chapter 3). This exacerbated loading even continued upon successful MutL 

recruitment if the MutL endonuclease active site was disrupted, suggesting that only 

DNA incision and mismatch removal halts MutS repetitive loading at a mismatch, and 

not simply successful recruitment of MutL ((49) and Chapter 3).  

Two possible mechanisms explain MutL recruitment by iterative loading of MutS: 

MutL binds MutS 1) upon sliding clamp formation or 2) exclusively when MutS is 

currently bound to a mismatch. Work with Surface Plasmon Resonance (SPR) found 

that MutS and MutL form stable complexes on a substrate containing both G/T 

mismatch and blocked ends in the presence of the non-hydrolysable ATP analogue 

ATPγS (7, 24). In a complementary approach, a gel retardation assay found that the 

MutS�MutL binary complex was refractory to an excess of G/T competitor DNA when 

incubated with ATPγS and not ATP (7). This supports the model where MutS•MutL 

interaction on DNA, despite sliding clamp formation by MutS forms a stable complex. 

Furthermore, both of these approaches failed to observe a MutS•MutL complex when 

MutS was bound at a mismatch in the presence of ADP (7). An alternate possibility for 
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in vivo iterative loading is that MutL must bind MutS bound at the mismatch, which has 

been observed to last ~3s in vitro (21, 24). Direct in vitro imaging failed to observe 

MutLα association with the MutSα sliding clamp after its departure from the mismatch 

(21), suggesting that MutL homologues (at least human) must bind MutS homologues 

while simultaneously bound to a mismatch (21, 24). Therefore, iterative loading would 

increase the opportunity for MutL to bind MutS by increasing the duration of mismatch 

occupancy by MutS (24, 49-51).  

 MutL recruitment is orchestrated through a physical association with MutS. A 

conserved motif found in the core domain (Phe 319, Phe 320) of MutS, that when 

disrupted, eliminates interaction in vitro and eliminates repair in vivo ((49) and Chapter 

3). This motif is conserved within a significant number of Gram-positive bacteria, 

including many nosocomial pathogens (49). Interestingly in E. coli, a dual Glutamine 

motif is found on the opposite side of the MutS monomer from the B. subtilis binding 

interface in the connector domain (51). In both organisms, this places one MutL binding 

interface on each face of MutS, supporting interactions when diffusing either 5ʹ′ or 3ʹ′ to 

the mismatch. It is attractive to hypothesize that these MutL binding interfaces may only 

be exposed for interactions upon mismatch detection and occupancy of the ATPase site 

with ATP, providing a logical ‘on-switch’ for MutL binding and initiation of the 

downstream events of repair. Unfortunately, stoichiometries of MutL at MutS repair 

centers are unknown in B. subtilis; however, in cytological studies in S. cerevisiae, a 

functional Pms1 fluorescent fusion is speculated to localize to MutSα repair centers in 

supra-stoichiometries relative to MutSα (47, 48). Whether B. subtilis MMR is similar to 

S. cerevisiae remains unknown. 

 

MutL endonuclease activity and activation. 
In organisms with methylation-independent MMR, a highly conserved 

endonuclease active site was found within the C-terminal domain of MutL homologues 

(13). Discovery of the endonuclease activity in human MutLα subunit PMS2 explained 

how EXO1, a 5ʹ′-3ʹ′ exonuclease important for human MMR, could paradoxically perform 

bi-directional excision of a mismatch initiated from a nick either 5ʹ′ or 3ʹ′ to the mismatch 

in vitro. During repair, MutLα endonuclease activity is directed along the strand 
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containing the pre-existing nick, with the goal of nicking upstream (5ʹ′) of the mismatch. 

This provides a 5ʹ′ loading site for EXO1, which can then mediate digestion of the 

mismatch containing strand, and thus bidirectional repair (13). 

A Mn2+ coordinating motif DQHA(X)2E(X)4E composes a weak endonuclease 

active site in the C-terminal domain of PMS2 that nicks mismatch proximal DNA (13, 

52). In B. subtilis, a homologous Mn2+ dependent endonuclease activity has been 

shown to exist in its C-terminal domain, and is found to be essential for MMR in vivo 

(53). A crystal structure of the C-terminal domain of B. subtilis MutL revealed two 

distinct metal coordinating sites within the endonuclease active site. The main site, 

which coordinates the catalytic Mn2+ ion, is primarily composed of the 
462DQHA(X)2E(X)4E with the Asp462 and His464 residues predicted to define the 

catalytic residues (53). Additional conserved motifs 604CPHGRP and 572SCK, and a third 
623FKR motif originated from the C-terminus of other protomer in the MutL dimer, 

assisted with Mn2+ coordination (54). A second catalytic site was identified adjacent to 

the Mn2+ binding site that coordinated Zn2+. The E468 residue from the 
462DQHA(X)2E(X)4E site and 604CPHCRP motif stabilized the Zn2+ ion. Although Zn2+ 

isn’t necessary to facilitate in vitro nicking, disruption of Zn2+ coordination eliminated 

mismatch repair in vivo, suggesting an essential structural role in the coordination of the 

catalytic Mn2+ ion during endonuclease-mediated catalysis (53).  

 Regulation of the endonuclease activity of MutL is an important consideration, 

because aberrant nicking could result in loss of viability and increased genome 

instability. Part of this regulation is dependent on the intrinsically weak nature of the 

endonuclease activity, which suggests a licensing event that must occur to activate 

MutL at the proper time (53). A view of the electrostatic surface potential surrounding 

the active site reveals a sheath of negative charged residues guarding against DNA 

docking within the site until licensing occurs (53). Consequently, the C-terminal domain 

is unable to bind DNA, because it relies on dimerization of the N-terminal domain of 

MutL after association with newly replicated DNA. Additionally, conformational changes 

of MutL facilitated by its nucleotide bound state may indirectly or directly modulate 

endonuclease activity. Previous biochemical studies of S. cerevisiae MutLα using 

atomic force microscopy showed that at an ATP concentration that supports both Mlh1 
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and Pms1 binding of ATP (5 mM), MutLα formed a condensed conformation, which 

could draw the endonuclease site towards bound DNA, overcoming the repulsive forces 

of the electrostatically charged surface surrounding the active site (55).  

Other protein factors may further license MutL endonuclease activity. Human 

MutLα endonuclease activity is stimulated by the processivity clamp PCNA (56). In B. 

subtilis, the C-terminal domain of MutL contains a conserved, albeit degenerate DnaN 

clamp binding motif. Disruption of this motif eliminates interaction with DnaN in vitro, 

and abrogates mismatch repair in vivo (53, 57). Importantly in E. coli, disruption of an 

analogous motif fails to produce a significant increase in mutation rate, demonstrating 

that organisms employing methyl-directed repair rely less on the MutL•DnaN interaction 

than organisms that employ a MutL-contained endonuclease activity (57). Interestingly 

while loaded onto DNA, the clamp maintains a specific orientation, with its single-C-

terminal face positioned to interact with the replicative polymerases. Furthermore, the 

clamp is tilted on DNA (22˚ off perpendicular) upon being loaded by the clamp loader 

complex, potentially dictating strand orientation ((58) Figure 4C). One idea is that 

strand discrimination can be determined in vitro by PCNAs loaded orientation (56). 

Overall, both intrinsic acitivites of MutL, as well as the processivity clamp can regulate 

endonuclease nicking. Yet, the complete mechanism remains unclear.  

 
Ribonucleotides as strand discrimination signals. 
 During DNA replication, rNTPs (ribonucleoside triphophates) are occasionally 

incorporated in place of their corresponding dNTPs (deoxyribonucleoside triphosphates) 

since their intracellular concentrations are 10-100 fold greater (59-61). In vitro, the rate 

of rNTP incorporation by the E. coli Pol III holoenzyme is1 rNMP for every 2.3 kb of 

replicated DNA, which in vivo would correspond to ~2,000 rNMPs embedded per 

chromosome per replication cycle (61). dNMPs are less reactive (~100,000 fold less), 

and subsequently more stable than rNMPS, which when incorporated into DNA, 

produce both single stranded and deleterious double stranded breaks via alkali-

promoted transesterification (62). Furthermore, rNTPs and template rNMPs slow the 

rate of progression of the replicative polymerase in vitro (61). Despite these detriments, 

their incorporation could provide a benefit to the cell: their removal would produce a nick 
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in the newly replicated stand, marking the nascent DNA strand for MMR (63, 64). During 

Ribonucleotide Excision Repair (RER), RNase HII (RnhB in B. subtilis) incises the rNMP 

embedded in DNA 5ʹ′ of the ribonucleoside, generating a nick with 3ʹ′-hydroxyl and 5ʹ′-

phospho-ribonucleotide ends (65). Preceding further processing, these RER-dependent 

nicks appear to be used by the MMR pathway to direct repair to the newly replicated 

DNA. In B. subtilis, deletion of rnhB causes a ~2.4 fold increase in mutation rate 

(compared to the 60 fold increase of ΔmutSL strain) (61). This elevated mutation rate is 

further increased when combined with a deletion of another RNase H enzyme: the 

RNase HI RnhC, causing a 5 fold increase in the spontaneous mutation rate (61). A 

deletion of rnhC alone does not affect MMR efficiency. In S. cerevisiae, MMR is more 

dependent on incorporated rNMPs for strand discrimination signals in the leading 

strand, whereas on the lagging strand where there are significantly more 3ʹ′ and 5ʹ′ DNA 

termini and DNA-bound PCNA, there is little effect on MMR (63, 64). This data suggests 

that incorporated rNMPs act as strand discrimination signals, but most likely on the 

leading strand in B. subtilis, accounting for the relatively minor mutator phenotype. 

Importantly, deletion of rnhB in E. coli, the only RNase H2 enzyme, fails to increase the 

mutation rate, arguing that RER predominantly contributes as a strand discrimination 

signal in methylation-independent organisms (61). Moving forward, two directions 

should be pursued in prokaryotes: 1) reconstitution of rNMP-directed repair in vitro and 

2) comprehensive analysis of the contribution of RER on spontaneous mutation rate, as 

well as its distribution between leading and lagging strands, in vivo. These directions 

are necessary to ultimately validate that the observed increase in spontaneous mutation 

rate is due to a MMR defect and not the rNMP mispairing during replication. However, 

this is unlikely since base pairing is affected by alterations to the nitrogenous bases, not 

the sugar subunit. Since the discovery of rNTP incorporation in DNA synthesis in 2010, 

many reports have been published on RER, yet to date, both the RER mechanism and 

its crosstalk on MMR in bacterial systems remains unclear. 
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Figure 4. Model of Mismatch Repair in Methyl-Independent Systems. 
A. Replication coupling of mismatch detection is facilitated by a DnaN clamp zone. B. Upon 
mismatch detection, the ATPase cycle of MutS facilitates loading and subsequent release of MutS 
from the mismatch, producing a local increase in mismatch proximal MutS in a process termed 
iterative loading. MutL is recruited to mismatch proximal DNA by MutS. C. MutL endonuclease 
activity is regulated via strand discrimination signals. D. WalJ loads/is loaded at a MutL processed 
nick 5´ to the mismatch. WalJ degrades the mismatch containing strand in the 5´ - 3´ polarity. After 
strand removal by WalJ, error free replication over the mismatch will result in the correction of the 
error. 

 

Strand Removal and Resynthesis 
 Upon mismatch detection, the newly replicated strand containing the base pairing 

error needs to be removed to facilitate its correction. This process is initiated after an 

endonuclease nicks the newly replicated strand upstream of a mismatch. This nicked 

strand is either unwound or displaced towards the mismatch, allowing for an 

exonuclease to degrade the mismatch containing DNA tract. In E. coli and other 
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MutH/Dam containing bacteria, the UvrD helicase is required to unwind the mismatch-

containing strand, followed by strand degradation by one of several redundant 

exonucleases (1). In Bacillus anthracis, a uvrD mutant fails to produce an elevation in 

spontaneous mutation frequency, arguing against a role in MMR in this bacterium (66). 

In B. anthracis, disruption of recD2, a member of Superfamily 1 helicases for which 

UvrD is a member, results in an increase in mutagenesis consistent with a loss of MMR 

(66). However, despite an extensive phylogenetic distribution of recD2, B. subtilis 

RecD2 appears to function outside of MMR, engaging in the repair of other types of 

DNA damage (67). Therefore, the extent of RecD2 helicase function in bacterial MMR 

requires further study. Furthermore, further study is needed to determine whether a 

dedicated helicase exists in other MutH/Dam-independent bacterial species. One 

possibility is that these bacterial MMR systems resemble that of eukaryotes, where a 

helicase has not been identified to function in MMR. For mismatch removal, eukaryotes 

either rely on direct strand digestion by the EXO1 exonuclease or strand displacement 

by polymerase δ loaded at a 3ʹ′ terminus upstream of the identified mismatch, followed 

by nucleolytic processing by Fen1 or a single-stranded nuclease (68). One possibility is 

that a newly discovered exonuclease, YycJ, functions in an analogous role to eukaryotic 

EXO1. Disruption of yycJ produces a spontaneous mutation rate equivalent to a MMR 

deficient strain in both B. anthracis and B. subtilis (69). Biochemical studies of YycJ 

show that it is a Mn2+ dependent 5ʹ′-3ʹ′ exonuclease (70) (Figure 4D). After removal of 

the mismatch containing tract, a polymerase extends the upstream 3ʹ′ terminus 

resynthesizing the gap generated a single nick, which is then sealed by DNA ligase to 

complete the repair process.  

 

Conclusion 
 Since the development of B. subtilis as an experimental system, important 

advancements have been made during the study of the in vivo architecture and 

mechanistic steps of MMR in organisms lacking MutH and Dam methylase. 

Advancements in replication coupling of mismatch repair, the crystallization of the first 

MutL endonuclease domain, iterative loading, and identifying DNA embedded 

ribonucleotides as strand discrimination signals have been made. Yet much still remains 
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unanswered and in need of further study. 1) How is the MutL endonuclease activity 

regulated and directed. Does MutL nick DNA at strand discrimination signals, or does it 

rely on the orientation of MutS and its subsequent interaction during recruitment? 2) 

How does MMR co-opt rNMP removal to facilitate/direct repair to the correct strand? 3) 

Upon strand nicking, how does the mismatch-containing tract get removed? 

Advancements here can trigger new and exciting studies, just as the initial discovery of 

the mutS in E. coli by Siegel and Bryson in 1964 triggered 5 decades of intense study of 

Mismatch Repair in organisms from bacteria to humans (71). 
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Abstract   
Mismatch Repair (MMR) increases the fidelity of DNA replication by identifying and 

correcting replication errors. Processivity clamps are vital components of DNA 

replication and mismatch repair, yet the mechanism and extent to which they participate 

in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity 

clamp DnaN, and found that it serves as a platform for mismatch detection and coupling 

of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, 

we find that MutS forms foci independent of mismatch detection at sites of replication 

(i.e., the replisome). These MutS foci are directed to the replisome by DnaN clamp 

zones that aid mismatch detection by targeting the search to nascent DNA. Following 

mismatch detection, MutS disengages from the replisome, facilitating repair. We tested 

the functional importance of DnaN-mediated mismatch detection for MMR, and found 

that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by 

increasing MutS concentration within the cell, indicating a secondary mode of detection 

in vivo whereby MutS directly finds mismatches without associating with the replisome. 

Overall, our results provide new insight into the mechanism by which DnaN couples 

mismatch recognition to DNA replication in living cells.  
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Introduction 
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying 

and correcting errors made by the replicative DNA polymerase [for review (2, 3)]. Upon 

detection of an error, MMR orchestrates its removal and accurate resynthesis of the 

surrounding DNA, ultimately increasing the fidelity of DNA replication by several 

hundred-fold [for review (2-4)]. Due to this important role in maintaining genome 

stability, MMR is found in all domains of life, with a high degree of conservation, 

specifically among MutS and MutL proteins (5). In bacteria, deletion of either mutS or 

mutL homologs leads to an increased mutation rate (6-10). This mutator phenotype is 

known to accelerate acquisition of multidrug resistant strains in hospital settings, while 

also enabling increased survival of bacterial pathogens in harsh environments, including 

growth inside the lungs of cystic fibrosis patients [(11-17) and for review (18, 19)]. MMR 

defects in eukaryotes are characterized by hypermutability and microsatellite instability; 

both of which have been linked to an increased predisposition for spontaneous 

tumorigenesis, as well as inherited conditions such as Lynch syndrome and Turcot 

syndrome (20-23).  

In bacteria, the MutS homodimer initiates MMR by detecting base-base 

mismatches or small insertion/deletion loops (IDLs) (24). In eukaryotes, base-base 

mismatches and small IDLs (1 or 2 extrahelical nucleotides) in DNA are primarily 

recognized by Msh2-Msh6 (MutSα), while larger IDLs (1-15 extrahelical nucleotides) are 

recognized by Msh2-Msh3 (MutSβ) heterodimers (25-28). In all systems, following 

mismatch or IDL detection by a MutS homolog, MutL (MutLα or MutLβ in eukaryotes) is 

recruited to the site of the mismatch in a reaction that requires ATP (29). Following this 

step, MutL is hypothesized to facilitate removal of the mismatch by coordinating 

numerous DNA transactions including endonuclease nicking, helicase driven unwinding, 

and excision of the segment containing the misincorporated base(s) (30). 

 Since replicative DNA polymerases have high fidelity, base pairing errors occur 

at a low frequency of one in 107-108 correctly paired bases [(31) and for review (32, 

33)]. In addition to the challenges posed by the low rate or error formation, base 

mispairs may also be obscured by DNA supercoiling, compaction, and protein binding. 

MutS must also contend with other active processes on the DNA, including 
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transcription, when searching for mismatches and IDLs in DNA [for review on 

chromosome organization (34)]. Given these challenges, it has been proposed that 

MutS is coupled to DNA replication forks in order to facilitate efficient mismatch 

detection where mismatches are newly formed, and where the DNA is more likely to be 

free of protein impediments (35, 36). In support of this model, cytological studies 

conducted in B. subtilis, S. cerevisiae, and human cells have shown that prokaryotic 

MutS-GFP and eukaryotic MutSα (Msh6-mCherry) form foci that are often coincident 

with DNA replication foci in vivo (35-38). Furthermore, in B. subtilis, MutS and 

mismatches were shown to alter localization of an essential DNA polymerase (39). 

These results suggest that MutS is spatially coordinated with active replisomes in these 

systems. In addition to possible spatial coupling between MMR and DNA replication, S. 

cerevisiae MMR was shown to be defective when Msh6 was unavailable during S phase 

(DNA replication), supporting the importance of temporal coupling of MutSα to DNA 

replication in eukaryotes (40). 

Studies in various model organisms indicate that DNA processivity clamps 

function in MMR (35, 37, 38, 41-44). Processivity clamps exist as either a homodimer in 

bacteria (DnaN) or a homotrimer in archaea and eukaryotes (PCNA) (45-47). These 

clamps are loaded onto the 3ʹ′ termini of DNA by the clamp loader complex [e.g. (48-

50)], and once loaded, DnaN and PCNA confer processive activity to replicative 

polymerases by tethering the polymerase to the DNA template (51, 52). MutS homologs 

contain a conserved DnaN clamp-binding motif, or PIP box [PCNA Interacting Protein] 

in eukaryotes, that mediates interactions between MutS proteins and their cognate 

processivity clamps (35, 37, 38, 41-44, 53). Studies in B. subtilis showed that deletion of 

the unstructured region of MutS (MutS800) containing a putative DnaN clamp-binding 

motif, reduced interaction with DnaN, yet MutS800 maintained the ability to 

preferentially bind mismatched DNA in vitro (35). In vivo, the mutS800 allele eliminated 

functional MMR, and when translationally fused to gfp, failed to form foci demonstrating 

that although proficient in mismatch detection, MutS800 was defective for forming repair 

complexes in vivo (35). Recent work in S. cerevisiae demonstrates that PCNA-

associated MutSα accounts for 10-15% of MMR in vivo, and that Msh6-GFP (MutSα) 

foci are dependent upon interaction with PCNA through the Msh6 PIP box (37). 
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Processivity clamps are also proposed to function in downstream steps of MMR, such 

as facilitating activation of endonuclease activity in MutL homologs (54-57) and in re-

synthesis of the gap in DNA following strand excision [for review (58, 59)]. While it is 

clear that interactions between MutS and processivity clamps play a role in MMR, 

important questions remain about their significance and the mechanism(s) by which 

clamps might influence MMR in vivo. Three models have been used to explain the role 

of processivity clamps in MMR: 1) that clamps stabilize MutS at a mismatch (35, 41, 

60), 2) clamps recruit MutS to sites of DNA replication (37, 38), or 3) that clamps are 

required for DNA synthesis and do not have an earlier role during MMR (61).  

In vivo studies of DNA replication in B. subtilis show that the DnaN processivity 

clamp exists in a “clamp zone” immediately following the progressing replication forks. 

DnaN clamps are retained on nascent DNA during Okazaki fragment maturation and 

accumulate until a steady state level is reached between actively loaded and unloaded 

clamps (1). Because DnaN clamp zones trail the replication fork, these zones have the 

potential to serve as platforms that maintain the spatial and temporal relationship 

between mismatch recognition and active replication forks. In this work, we used 

several separation-of-function MutS mutants that are defective in either mismatch 

detection or DnaN binding to determine when and where during repair the MutS•DnaN 

interaction is mechanistically significant in live cells. Using functional mutS-gfp fusions 

expressed from the mutS native locus, we report that DnaN clamp zones position MutS 

at newly replicated DNA prior to, and independent of, mismatch binding. After mismatch 

detection, MutS no longer remains coincident with the replication machinery, instead 

localizing to sites of repair. Importantly, ~90% of MMR in vivo is initiated through DnaN-

clamp-zones, revealing a heavy reliance by MutS on the clamp during the initial steps of 

repair. We used the MutS800 mutant to uncouple MMR from DnaN and found that this 

mutant could account for only ~10% of in vivo repair. Remarkably, we were able to 

restore DnaN-independent MMR to wild-type levels by increasing the cellular levels of 

MutS800, illustrating that the functional significance of the DnaN•MutS interaction lies in 

maximizing the efficiency of mismatch detection in vivo. Ultimately, by having MutS bind 

to DnaN clamp zones that closely trail replication forks, MMR and DNA replication 
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become tightly coupled, allowing for efficient mismatch detection, MutL activation and 

subsequent repair in B. subtilis cells. 

 
Results 
B. subtilis MutSF30A is mismatch repair deficient due to loss of mismatch 
binding specificity.  
In order to determine if mismatch binding is necessary for MutS localization, we 

monitored MutSF30A, which has a mutation that should abolish mismatch recognition 

(62). During high affinity interaction between MutS and mismatched DNA, the 

phenylalanine residue in the conserved GXFY(X)5DA motif stacks with the mismatched 

or unpaired base (Figure 5A) (63, 64). Substitution of phenylalanine to alanine 

eliminates mismatch detection in vitro and functional MMR in vivo in several organisms 

(62, 65, 66). This mutation does not disrupt the ATPase mechanism, indicating that 

MutSF30A activities other than mismatch binding are unaffected (67).  

 We tested the corresponding mutSF30A mutation for the ability to support both 

mismatch binding in vitro and functional repair in B. subtilis. We purified B. subtilis 

MutSF30A using standard chromatography techniques without the use of an affinity tag 

(Figure 5B). We found that purified MutS binds a T-bulge DNA substrate (containing an 

extrahelical thymidine) selectively and with a Kd of 24 nM, while MutSF30A shows little 

binding to either a T-bulge or a homoduplex DNA substrate precluding us from 

calculating a Kd (Figure 5C). Furthermore, we verified that the F30A mutation did not 

have an adverse affect on MutS binding to DnaN. An immunodot blot analysis shows 

comparable retention of DnaN by MutS and MutSF30A (Figure 5D).  

 MutSF30A function was also tested in vivo by introducing an unmarked 

mutSF30A allele at the native mutS locus by allelic replacement (see “Experimental 

Procedures”). Immunoblot analysis confirmed that the mutant MutS protein, as well as 

the downstream gene product MutL, accumulated to wild-type levels in vivo (Figure 
5E). Using spontaneous rifampicin resistance as an indicator for mutation rate, we 

found that the mutSF30A allele conferred a mutation rate of 155.4 x 10-9 

mutations/generation, significantly higher than the mutation rate of the wild type strain, 

which was 1.82 x 10-9 mutations/generation (Table 1). The mutSF30A mutation rate 
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was indistinguishable from a strain with the mutSL::spec allele, which eliminates all in 

vivo MMR, showing an ~85 fold increase in mutagenesis to 154.5 x 10-9 

mutations/generation. With these data we conclude that the B. subtilis mutSF30A allele 

is MMR defective in vivo due to a loss in mismatch binding specificity.  

	  
 

 

Figure 5. MutSF30A is unable to bind mismatches in vitro. 
(A) The following conserved motif necessary for mismatch binding (GXFYXXXXXDA) is found in a wide 
range of eukaryotic and prokaryotic MutS homologs. Indicates (*) organisms previously demonstrated that 
substitution of the conserved phenylalanine residue (F) eliminates mismatch binding in vitro and prevents 
MMR in vivo. (B) 1 µg of purified MutS and MutSF30A protein electrophoresed on a 4-15% SDS-PAGE 
gradient gel. (C) In vitro binding of MutS and MutSF30A to T-bulge substrate. Legend: black squares and 
pink diamonds show MutS and MutSF30A interaction with T-bulge containing DNA, respectively, and blue 
triangles show MutS interaction with homoduplex DNA. (D) An immunodot blot (far western) analysis was 
performed to monitor interaction between MutS or MutSF30A with DnaN. Purified MutS and MutSF30A 
were blotted onto a nitrocellulose membrane over a range of 0.625 pmol to 40 pmols of dimer. Purified 
DnaN was incubated with the membrane and probed with affinity-purified antisera against DnaN in a 
1:500 dilution. Shown (left most blot) is the purified antisera control against purified MutS and MutSF30A. 
Shown (right most blot) is the retention of DnaN by MutS and MutSF30A as described in “Experimental 
Procedures.” (E) In vivo steady state levels of MutS, MutL, and DnaN. A total of 5 µg of cell extract 
derived from the indicated strain was electrophoresed and immunoblotted in the indicated lanes.	  
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Table 1. mutSF30A is defective for mismatch repair in vivo. 
Relevant 
genotype 

No. of  
cultures 

Mutation rate (10-9 
mutations/generation)±[95%CI] 

Relative 
mutation 

rate 

Total MMR 
activity (%) 

PY79 (wild type) 51 1.82 [1.14-2.37] 1 100% 

mutSL::spc 23 154.4 [146.6-162.2] 84.9 0% 

mutSF30A 24 155.9 [147.5-163.3] 85.5 -0.7% 

dnaN5 30 39.2 [33.7-44.7] 21.6 75.5% 

Mismatch repair proficiency and analysis of the mutation rate of the mutSF30A strain compared to wild 
type cells and MMR deficient cells. The bracketed values represent the lower and upper bounds of the 
95% confidence limit.  
 
MutSF30A-GFP forms foci on DNA independent of mismatch binding.  
After demonstrating that B. subtilis MutSF30A is defective for mismatch binding, we 

sought to determine whether mismatch binding is a prerequisite for localization of MutS 

into discrete foci in vivo. We first determined that the mutS-gfp native locus allele 

exhibits ~90% of wild-type MMR activity, indicating that the gfp fusion has little impact 

on MutS function in vivo (Table 6:Ap). MutS-GFP foci were detected in only ~9% of 

untreated, exponentially growing cells, whereas treatment with the mismatch forming 

agent 2-aminopurine (2-AP) resulted in >45% of cells with MutS-GFP foci (Figure 6A 
and C). A similar increase in MutS-GFP foci occurred following introduction of a DNA 

polymerase mutant, polC mut-1 defective in proofreading (herein referred to as polCexo-

), which substantially increases the frequency of errors during DNA replication (68). 

MutS-GFP focus formation was observed in ~25% of cells when polCexo- was the sole 

source of the replicative DNA polymerase in the cell (Figure 6C). These results 

demonstrate that MutS-GFP focus formation responds to natural mismatches formed by 

normal bases during DNA replication. 

 To test if mismatch binding was a prerequisite for MutS localization, we built a 

mutSF30A-gfp reporter allele at its native locus. Strikingly, MutSF30A-GFP formed foci 

during exponential growth in ~6% of cells (Figure 6A and C). As a control, we 

determined via immunoblot that the cellular level of MutS and MutSF30A-GFP were 

indistinguishable (Figure 6B). When MutSF30A-GFP cells were challenged with 2-AP, 

we did not observe an increase in foci above ~6% (Figure 6C) supporting our data that 

MutSF30A is defective in mismatch recognition. Furthermore, MutL-GFP focus 

formation in mutSF30A cells was not stimulated by 2-AP treatment, indicating that MutS 
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must be able to bind a mismatch in order to efficiently activate the downstream steps of 

repair in vivo, including recruitment of MutL (Appendix 1 Results and Figure 24). 

Thus, MutSF30A fails to detect and respond to 2-AP formed mismatches in vivo, 

consistent with the above data showing loss of mismatch binding in vitro (Figure 5).  

Interestingly, we did observe a small, though statistically significant difference in 

the percent of cells with foci between untreated mutSF30A-gfp and mutS-gfp cells 

(Figure 6C and Figure 23:App). This result is not explained by differences in binding of 

MutS or MutSF30A to DnaN since both proteins bind DnaN equally. Because we expect 

a small subset of cells to undergo MMR in the functional mutS-gfp background, we 

suggest that the slightly greater percentage 

of cells with MutS-GFP foci relative to the 

MutSF30A-GFP in untreated cells represents 

MutS-GFP foci engaged in repair. We 

conclude that MutS forms two types of foci: 

one licensed by mismatch detection and one 

that is mismatch-detection independent. 

Together our results demonstrate that MutS 

forms foci on DNA independent of, or prior to, 

mismatch binding in live cells. 

 
 
 

 
 

Figure 6. MutS-GFP forms foci independently of 
mismatch formation. 
(A) Representative images of MutS-GFP or 
MutSF30A-GFP foci in cells with or without 600 
µg/mL of 2-AP. The white bar is 4 µm. (B) An 
immunoblot of the indicated MutS derivative and 
DnaN as a loading control. (C) Bar graph of the 
groups represented in (A) showing the percent of 
cells with MutS-GFP foci. Total number of cells 
scored for each condition was from left to right: 
n=1234, 1410, 2380, 1222, and 1797. 
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Figure 7. MutS-GFP colocalizes with the replisome prior to mismatch detection.  
(A) Representative images of CFP-Spo0J and DnaX-YFP colocalization with the replisome. (B) 
Representative images of colocalization between MutS-YFP with DnaX-CFP following 2-AP 
treatment. White arrows denote MutS-YFP foci that colocalize with the DnaX-CFP, whereas red 
arrows denote MutS-YFP foci that do not colocalize with DnaX-CFP (C) Representative images of 
colocalization between MutSF30A-YFP with DnaX-CFP following 2-AP treatment. The vital 
membrane stain TMA-DPH is shown in blue. The white bar is 4 µm. (D) Scoring of colocalization of 
MutS-YFP and MutL-GFP at the replisome in presence and absence of 2-AP, p-values are one- 
tailed; p= * 2.03x10-5; **2.77; ***4.77 x 10-10; # 0.0568 

 
MutS is staged at active replisomes prior to mismatch recognition.  
We investigated the localization dynamics of MutS foci before and after mismatch 

detection in order to better understand the spatial-temporal coupling of MutS to the 

replisome. We define the replisome as replication associated proteins (replicative 

polymerases, clamp loader components, processivity clamp, etc.) that localize as 

discrete foci at the replication forks in vivo. In B. subtilis, the replisome occupies 
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characteristic subcellular positions denoting the site of DNA synthesis (69-71). 

Immediately after replication initiation from oriC, origin regions and replicated DNA 

translocate away from the replisome toward the opposite cell poles (72, 73). Previously, 

it was shown that B. subtilis MutS-YFP colocalizes with the replisome in ~48% of cells 

(36). As shown above, the percent of cells with MutS-GFP foci increase following 2-AP 

treatment (Figure 6) (35, 36, 39), indicating that more repair complexes are formed. As 

DNA replication progresses, the newly replicated chromosomal DNA moves toward the 

cell poles (72), presumably taking replication errors away from the replisome. Thus, we 

hypothesized that the MutS-GFP foci would initially associate with mismatches in DNA 

at or near the replisome, and as repair and replication continued, the mismatch•MutS 

complex would move toward the cell poles, reducing colocalization with the replisome.  

Initially, we tested our ability to spatially resolve replicated DNA from the 

replisome by monitoring the colocalization of CFP-Spo0J with DnaX-YFP. We grew 

cells slowly so that most cells would have one or two replisome foci during this analysis 

(Figure 25:App) (see “Experimental Procedures”). Spo0J, which localizes to and helps 

organize the origin of replication (oriC), should only colocalize with the clamp loader 

protein DnaX during replication of the origin region, and then translocate away from the 

replisome to the cell pole (74, 75). We found that in cells containing a single DnaX-

mYFP focus, only 12.8% of replisome foci colocalized with CFP-Spo0J (n=297). 

Furthermore, inspection of these cells shows that most single replisome cells contain 

the expected origin-replisome-origin localization pattern along their longitudinal axis 

(Figure 7).  

To test our hypothesis that MutS moves away from the replisome after mismatch 

binding, we introduced functional dnaX-cfp and mutS-yfp alleles (>90% MMR activity) 

(Table 6:App) into B. subtilis cells, with both fusions placed at their native locus and 

under control of their native promoters. During exponential growth, MutS-YFP foci 

colocalized with the replisome in ~56% of cells containing at least one DnaX-CFP focus 

and one MutS-YFP focus (Figure 7B). When cells were treated with 2-AP to form 

mismatches, we observed a significant decrease in colocalization to ~35% (p =2.03 x 

10-5) (Figure 7B and D). These data support the hypothesis that mismatch recognition 

by MutS-YFP reduces colocalization with the replisome.   



	  

	   	   	   	  

35	  

When the same experiment was performed with mutSF30A-yfp, we observed 

that for the foci that form MutSF30A-YFP foci colocalize with the replisome ~73% of the 

time in the absence of 2-AP challenge (Figure 7C and D). When this strain was treated 

with 2-AP, there was no significant statistical difference in the position of MutSF30A-

YFP foci compared with the untreated group (~70.1% colocalized: p=0.277). Thus, 

lacking the ability to detect mismatches in DNA, MutSF30A-YFP remains colocalized 

with the replisome. These results lead us to conclude that MutS-GFP foci, when not 

bound to mismatches, are staged near the active replisome, possibly due to physical 

coupling with a replication protein. Subsequently, upon encountering a mismatch, MutS 

disengages from the advancing replisome and remains behind on nascent DNA to direct 

the remaining steps in repair. This result provides insight into how mismatch recognition 

affects the dynamic association of MutS with the replisome in vivo.  

Based on this model, we hypothesized that if MutS is positioned on newly 

replicated DNA through interaction with a replisome protein, then increasing expression 

of MutS or MutSF30A should increase the number of mismatch-independent foci by 

promoting this interaction in vivo. To this end, we constructed an in frame mutS deletion 

that maintains transcriptional control of mutL from its native promoter (Figure 5D & 
Figure26:App). We then expressed MutS-GFP or MutSF30A-GFP from an ectopic 

locus driven by an IPTG regulated promoter (Pspac). The ΔmutS, amyE::PspacmutS-gfp 

strain was 88.7% functional compared to ΔmutS, amyE::PspacmutS (Table 6:App). 

When either mutS-gfp or mutSF30A-gfp was ectopically expressed, we observed a 2-3 

fold increase in the percent of untreated cells with foci (Figure 8A, compare with 
Figure 6C). This result was not affected by the presence or absence of mutL.  

We then asked if increased expression of mutS-gfp and mutSF30A-gfp and the 

associated mismatch independent foci correlated with colocalization with the replisome 

marker dnaX-mcfp. We found that ectopic expression caused an increase in 

colocalization to ~65%, (Figure 8B). When these cells were challenged with 2-AP, we 

expect a decrease in colocalization and indeed found  ~41% were colocalized following 

2-AP challenge (Figure 8B). Ectopic expression of MutSF30A increased the percent of 

cells with foci, and colocalization of MutSF30A, which only forms mismatch-independent 

foci, remained at ~70% upon ectopic expression. These results show that increased 
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expression of MutS increases the percentage of cells with foci (Figure 8A), supporting 

the hypothesis that MutS is positioned at the replisome via a binding partner prior to 

mismatch identification. 

It should be noted that in 

our colocalization experiments 

we used DnaX as a replisome 

marker instead of DnaN, which 

binds MutS in vitro, because 

the dnaN-mcfp fusion maintains 

an elevated mutation frequency 

(25.3 x 10-9 mutations/ 

generation) whereas dnaX-

mcfp is wild type for mutation 

rate (data not shown). We 

determined that the smaller 

DnaX-mCherry foci colocalizes 

with DnaN-GFP foci in ~89% of 

cells, establishing DnaX as an 

appropriate substitute for DnaN 

in this analysis (Figure 
27:App). 

 
 
 
 
 

 
 

	  

Figure 8. Elevated expression of MutS-GFP or 
MutSF30A-GFP increases replisome-associated foci. 
(A) Elevated expression of mutS-gfp and mutSF30A-gfp 
increases the percentage of cells with MutS foci. The first 
four groups contain a ΔmutS deletion and the expressed 
GFP fusion represents the sole copy of mutS within the cell. 
The second four groups represent a deletion of the entire 
mutSL locus with mutS- or mutSF30A-GFP expressed 
ectopically from a Pspac promoter (B) Elevated expression of 
mutS-gfp causes an increase in colocalization of MutS foci to 
DnaX-mCherry foci. Total number of cells scored is 106-196. 
(C) MutSF30A-GFP foci expressed from the mutS native 
locus form in a higher percentage of cells at a lower 
temperature for DNA replication in a dnaN5 background (30 
ºC).	  
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MutSF30A-GFP foci are positioned at the replisome by DnaN prior to mismatch 
binding.  
The ability of MutSF30A-GFP to assemble into foci without mismatch identification 

suggests that MutS may be positioned at the replisome as a mechanism to spatially 

target newly formed mismatches in DNA. Furthermore, colocalization of MutSF30A with 

the replisome and MutSF30A binding to DnaN in vitro (Figure 5E) suggests that 

MutSF30A localization is dependent on an interaction with a protein component of the 

replisome. In B. subtilis, DnaN forms large clamp assemblies termed “clamp zones” that 

form behind progressing replication forks (1). DnaN clamp zones contain ~200 

accumulated clamps as clamp loading and unloading rates achieve equilibrium (1). We 

hypothesized that a clamp zone facilitates the formation of mismatch-independent foci 

by recruiting MutS to the replisome via contact with DnaN. To test this hypothesis, we 

took advantage of the dnaN5 allele, which exhibits an increase in mutation frequency 

due to partial loss of MMR [(35, 76) and Table 6:App]. The dnaN5 allele exhibits a 

temperature sensitive defect in MMR, which leads to a significant decrease in MutS-

GFP focus formation at 37oC relative to 30oC. We determined that DnaN5 functions 

normally in DNA replication by measuring replication in vivo and found that dnaN5 is 

wild type for DNA synthesis and growth rate at both 30oC and 37oC (Figure 28:App). 

We introduced dnaN5 into a strain bearing the mutSF30A-gfp allele at its native locus 

and scored the number of MutSF30A-GFP foci at 30°C and 37°C. At 30°C, we found 

that ~7% of cells contain a MutSF30A-GFP focus, results consistent with that of a 

dnaN+ strain (Figure 8C). In contrast, at 37°C, the percentage of cells with MutSF30A-

GFP foci decreased to <2% (p=9.45 x 10-8). Two prominent models have been used to 

explain the role of DnaN in mismatch repair. The first model suggests that MutS is 

stabilized by the replication clamp after mismatch recognition (35, 41, 60). The second 

model supported from studies in human cell culture and S. cerevisiae predicts that MutS 

is recruited to sites of replication prior to mismatch binding (37, 38). Our data show that 

interaction with DnaN is critical for formation of the mismatch-independent MutS foci in 

vivo. We further interpret these results to mean that DnaN clamp zones stage MutS 

immediately behind the advancing replication forks in vivo supporting the model that 

MutS is recruited to sites of replication before mismatch binding. 
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Table 2. DnaN allows for efficient mismatch repair in vivo. 
Relevant genotype No. of  

cultures 
Mutation rate (10-9 

mutations/generation)±[95%CI] 
Relative 
mutation 

rate 

Total 
MMR 

activity 
(%) 

ΔmutS, 
amyE::PspacmutS 

25 3.09 [1.35-4.68] 1 100 

ΔmutS 28 159.3 [152.0-166.6] 51.5 0 

mutS800 25 144.5 [134.9-154.2] 46.7 9.5 

ΔmutS, 
amyE::PspacmutS800 

23 7.10 [4.39-9.74] 2.3 97.4 

The ΔmutS designation indicates an in frame deletion of mutS, maintaining a functional mutL at 
its native locus (see “Materials and Methods”). The mutS800, allele was expressed from its 
native locus with mutL expressed ectopically from amyE using 1 mM IPTG. Brackets enclose the 
lower bounds and upper bounds of the 95% confidence limits. Percent MMR activity was 
determined using the following equation: [(R.M.R.null - R.M.R.strain)/( R.M.R.null-R.M.R.wild 
type)]•100. RMR=relative mutation rate. Mutations per culture (m) are as follows: ΔmutS, 
amyE::PspacmutS (1.78); ΔmutS (104.5); mutS800 (64.2); ΔmutS, amyE::PspacmutS800 (5.0). 

 
DnaN clamp zones increase efficiency of mismatch detection by targeting MutS to 
nascent DNA.  

In defined in vitro MMR systems, purified MutS and MutSα can detect a mismatch in 

DNA without the need for a processivity clamp [e.g. (77, 78)]. We hypothesized that the 

association of MutS with DnaN might be necessary in vivo in order to restrict the search 

for mismatches to nascent DNA, making mismatch detection more efficient relative to 

MutS identifying a mismatch independent of DnaN binding. To test this key hypothesis, 

we took advantage of the mutS800 allele, which lacks a C-terminal tether and is 

defective in DnaN binding but proficient for mismatch identification (35). When the B. 

subtilis mutS800 allele was expressed from its native promoter, only ~9.5% of MMR 

activity is observed in vivo (Table 2). MMR activity of the mutS800 allele recovers to 

97.4% when this mutant protein is overexpressed from an IPTG driven Pspac promoter 

from an ectopic locus in a strain lacking the native mutS locus (Table 2). 

Immunoblotting shows that the PspacmutS800 protein level was 4-fold higher than the 

level produced from the mutS800 allele located at the mutS native locus (Figure 
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29:App). This result supports the hypothesis that increasing MutS800 concentration can 

compensate for the loss of interaction with DnaN and restore efficient MMR activity.  

 When mutS800-gfp is expressed from the mutS native locus, the protein is 

defective in forming foci in response to mismatches in vivo (35). Since mutS800 

restores MMR activity when ectopically expressed, we asked if mutS800-gfp also forms 

foci following ectopic expression. Upon visualizing ectopically expressed MutS800-GFP 

in a ΔmutS background, we found that MutS800-GFP formed occasional foci in 

untreated cells (Figure 9A); however, focus intensity was barely above the elevated 

background fluorescence and only formed in ~3.3% of cells. Upon 2-AP treatment, the 

percent of cells with faint foci substantially increased to 14.1%, indicating that like MutS-

GFP (Figure 6), MutS800-GFP focus formation is responsive to an increase in 

mismatches in DNA. To verify this observation, we asked if mismatch binding by 

MutS800 was important for focus formation. To answer this question, mutSF30A800-gfp 

was placed under the control of an IPTG driven Pspac promoter and inserted at an 

ectopic locus in a ΔmutS background. This allele is defective in both DnaN clamp 

binding and mismatch detection. We predicted that overexpressed MutSF30A800 would 

fail to localize into foci if the observed localization of ectopically expressed mutS800 

was dependent on mismatches and independent of DnaN. Indeed, we found that 

MutSF30A800 was blocked for focus formation (Figure 9B) (<1% in both 2-AP treated 

and untreated samples). We conclude that when the DnaN tether on MutS is removed, 

mismatch binding becomes obligatory for focus formation in vivo (Figure 9A, B, C). We 

further verified this observation by inserting the dnaN5 allele into the ΔmutS, 

amyE::PspacmutS-gfp background. At both 30°C and 37°C, MutS800-GFP formed foci in 

~14% of cells, consistent with our results for the dnaN+ allele (Figure 8C) and further 

confirming bypass of the DnaN role in MMR following overexpression (Figure 9C, D). 
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Since overexpression of 

mutS800 restores MMR to near wild 

type levels, bypassing the need for 

DnaN (Table 2), we asked where 

ectopically expressed MutS800 foci 

form in vivo. To address this 

question, we visualized and scored 

the subcellular location of ectopically 

expressed MutS800-GFP in 

comparison to natively expressed 

MutS-GFP. Upon scoring focus 

positions in the cell relative to the 

closest pole, we found that 

MutS800-GFP foci formed in the 

same subcellular positions as MutS-

GFP foci (Figure 10A). Moreover, 

following 2-AP challenge, MutS800-

GFP colocalizes with DnaX-mCherry 

to almost the same extent as wild-

type MutS-GFP (Figure 10B, 

29.9±6.28% for MutS800-GFP and 

35.5±5.6 for MutS-GFP: P=0.099). 

Finally, the vast majority of foci that 

do not colocalize with the replisome 

are replisome proximal (Figure 
10C). These results indicate that 

ectopically expressed MutS800-GFP also localizes to replisome proximal DNA for 

mismatch detection and initiation of repair; however, as shown previously, higher 

amounts of this mutant protein are required to achieve the same level of MMR as wild-

type MutS (Table 2). Thus, MMR in B. subtilis is initiated and occurs predominantly in 

replisome proximal regions of DNA, and association of MutS with DnaN increases the 

	  
Figure 9. Mismatch detection by MutS800-GFP 
induces focus formation at nascent DNA when 
ectopically expressed. 
(A) MutS800-GFP foci form in response to mismatches 
independent of DnaN (faint foci indicated by white circles) 
(B) MutSF30A800 fails to form foci. The vital membrane 
stain TMA-DPH is shown in red. The white scale bar is 4 
µm. (C) Bar graph of ectopically expressed MutS800-
GFP and MutSF30A800-GFP foci with and without 2AP. 
From left to right, total scored cells: 1114, 1154, 883, 
1343. P-values are 1-tailed: *p=2.69x10-17, **p=1.20x10-5, 
***p=3.22x10-7. (D) Bar graph of ectopically expressed 
MutS800-GFP foci within the dnaN5 background revealed 
no statistical difference at 30 ºC and 37°C (p=0.38). 
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efficiency of mismatch detection and repair by targeting MutS to replisome proximal 

DNA. When DnaN-mediated mismatch detection is bypassed as with MutS800 following 

overexpression, we found that MutS800 still forms foci in replisome proximal DNA in 

vivo (see discussion). Together, our results show that in order to initiate MMR, MutS 

must localize to the replisome or at least replisome proximal DNA in B. subtilis.  

	  

Figure 10. DnaN-independent focus formation of MutS800-GFP localizes to the same 
subcellular position as MutS-YFP. 
(A) Position of MutS-GFP, ectopically expressed MutS800-GFP, and DnaX-GFP foci scored 
relative to cell length (n=125 cells for each group). (B) 29.9+6.3% (n=204) of the MutS800-GFP 
colocalizes with DnaX-mCherry. These results are not statistically different with p=0.099 when 
compared with MutS-YFP colocalization with DnaX-CFP 35.5+5.6 shown in Figure 3. The left most 
image is the negative image, MutS800-GFP, DnaX-mCherry, and a merge.  The membrane is 
stained with TMA-DPH and is shown in blue. The scale bar represents 4 µm. (C) We measured the 
inter-focal distance (IFD) between MutS-YFP and MutS800-GFP foci that failed to colocalize with 
DnaX-mCherry foci. No IFDs were measured less than 0.2 µm. We measured 94 MutS800-GFP, 
DnaX-mCherry and 105 MutS-YFP, DnaX-CFP focal pairs that failed to colocalize. Each bar 
represents the percentage of cells with IFD between the indicated distance. 
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Discussion 

Three current models are used to explain the role of processivity clamps in 

mismatch repair: that clamps stabilize MutS at a mismatch (35, 41, 60), clamps recruit 

MutS to sites of DNA replication (37, 38), or that clamps are required for DNA synthesis 

and do not have an earlier role during MMR (61). We have shown in this study that the 

B. subtilis processivity clamp, DnaN, facilitates ~90% of MMR and targets MutS to 

replisome proximal DNA prior to mismatch binding. A DnaN clamp zone forms in the 

wake of active replication forks (1), providing a platform for MutS to maintain a critical 

spatial and temporal relationship with the replisome (Figure 11). We propose that 

DnaN-mediated targeting of MutS to nascent DNA allows for efficient mismatch 

detection by allowing for MutS to target newly formed errors. 

MutS homologs spanning bacteria to humans exhibit the near-ubiquitous 

presence of a clamp-binding motif, suggesting that association with processivity clamps 

is important for MMR (79). It has been known for decades that MutS is able to detect 

mismatches without accessory factors in vitro [e.g. (24, 26, 80)]. Nevertheless MutS800, 

which lacks the DnaN clamp-binding tether, is largely inactive for MMR while under 

control of its native promoter, retaining less than 10% activity. Interestingly, the same 

mutS800 allele restored MMR activity to 97% in vivo upon over expression.  

 

Figure 11. Model for temporal coupling of MutS to DNA replication. 
MutS relies on a DnaN clamp zone- to target MutS to nascent DNA. DnaN-dependent 
mode of mismatch detection represents 90% of repair. This figure is adapted from the 
clamp zone model (1). 
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Our finding that MutS800 is capable of mismatch detection in the absence of 

DnaN in vivo led us to speculate that the protein could find mismatches and initiate 

repair at chromosomal locations distal to the replisome. To the contrary, we found that 

ectopically expressed MutS800-GFP formed foci at virtually identical subcellular 

positions as MutS-GFP, while MutSF30A800-GFP, which cannot bind mismatches or 

DnaN, was completely defective for focus formation. This result demonstrates that 

MutS800 binds mismatches in a replisome-proximal position like wild type MutS; 

however, a high concentration of the mutant protein is required to restore mismatch 

detection efficiency and compensate for the loss of interaction with DnaN. It was shown 

previously that B. subtilis MutL binds DnaN, and disruption of this contact causes 

complete loss of MMR in vivo (55, 56). Overexpression of MutL mutants defective in 

binding DnaN fail to bypass the need for interaction with DnaN in MMR (55, 56). We 

propose that MutS800 must identify mismatches in replisome proximal DNA to enable 

the downstream steps of repair, which include MutL recruitment and activation of its 

endonuclease activity. Current data suggests that these steps are dependent on 

interaction with DnaN, and may therefore require MutS to bind mismatches in the DnaN 

clamp zone in order to complete the downstream steps of MMR (55, 56). 

Consistent with our findings in B. subtilis, in E. coli when mutS800 is expressed 

from its native promoter it confers an MMR defect, but is close to wild type for MMR 

when overexpressed from a plasmid (63, 81). Similarly, the equivalent mutant in P. 

aeruginosa, mutS798, complements a mutS deficient strain when overexpressed from a 

plasmid (53). Thus, in these systems, MutS is also capable of operating independent of 

DnaN since both P. aeruginosa MutS798 and E. coli MutS800 fail to bind their cognate 

DnaN clamps (43, 53, 81). We propose that in these bacteria, when MutS is present at 

wild type levels, interaction with DnaN is important for targeting MMR to nascent DNA. 

When the protein is overexpressed, the requirement for DnaN is bypassed due to the 

increased likelihood of MutS directly binding mismatches in nascent DNA without DnaN 

association.  

 The model of a DnaN clamp zone that facilitates spatial and temporal coupling of 

mismatch detection with replication is an intriguing one, especially when considering the 
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conservation of processivity clamp-binding motifs in MutS homologs (41, 79). 

Consistent with the clamp zone model, fluorophore-labeled processivity clamps form 

foci in vivo in bacteria and eukaryotes [e.g. (37, 38)], suggesting that substantial local 

concentrations of clamps are present in organisms other than B. subtilis. The 

observation that a PCNA clamp zone may exist also agrees well with the higher 

proficiency of MMR on the lagging strand relative to the leading strand in S. cerevisiae 

(82). Other B. subtilis studies have shown that DnaN clamps are competent for protein 

recruitment to nascent DNA in vivo, as fluorophore-labeled peptides encoding a DnaN-

binding motif are sufficient for forming replisome-localized foci (1, 35). A similar finding 

was reported for S. cerevisiae msh6 305-1242Δ, the unstructured region of msh6 that 

contains the PIP motif for binding PCNA (27-QSSLLSFF-34), when expressed from the 

native msh6 promoter (37). Furthermore, in human cell culture, overexpression of either 

MSH6 or MSH3 (which contain PIP motifs 4QSTLYSFF-11 and 21-QAVLSRFF-28, 

respectively) resulted in colocalization of MutSα and MutSβ with both PCNA and BrdU 

stain (38). Truncating the N-terminal 77 residues of MSH6 eliminated both MSH6 

binding to PCNA in vitro and focus formation in vivo, indicating that localization of 

human MutS homologs to nascent DNA is dependent on interaction with PCNA (38). 

Collectively, these results support the hypothesis that a PCNA clamp zone present at 

nascent DNA facilitates mismatch detection in vivo. Our data further agrees well with 

the observation that MMR must occur concurrently with DNA replication in S. cerevisiae 

(40).  It was recently reported in S. cerevisiae, that PCNA-dependent MMR accounts for 

only 10-15% of MMR (37), whereas DnaN-dependent MMR in B. subtilis accounts for 

~90% of MMR by MutS. This is a notable difference in the orchestration of MMR 

between these organisms in vivo. 

 Another important finding from our study is that MutS localizes near the 

replisome independent of mismatch identification through the DnaN clamp zone. This 

conclusion is based on the observation that MutSF30A also forms foci that colocalize 

with the replisome, despite its inability to bind mismatches. Moreover, the MMR 

compromised dnaN5 mutant nearly abolishes MutSF30A-GFP localization in B. subtilis, 

indicating that MutSF30A foci are dependent on interaction with DnaN. Based on these 

data, we propose that MutS is coupled with the progressing replication fork prior to 
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mismatch identification. An additional important finding is that after detecting a 

mismatch, MutS appears to detach from the replisome (DnaN) and remains at the 

mismatch site to conduct repair. This conclusion is based on the observation that MutS-

YFP colocalizes less frequently with the replisome in 2-AP treated cells even though the 

percentage of cells with MutS foci increase following 2-AP treatment. Moreover, 

overexpression of MutS-YFP increases colocalization to the replisome in untreated 

cells, but there is little increase in colocalization following 2-AP treatment. Finally, the 

frequency of MutSF30A colocalization with the replisome is unchanged following 2-AP 

treatment, again, supporting the hypothesis that binding to mismatches causes release 

of MutS from the replisome. Overall, this study shows that MutS foci represent 

assemblies undergoing active repair of replication errors with two distinctive steps 

clearly identified: DnaN-coupled targeting of MutS to nascent DNA and release of MutS 

from the replisome following mismatch recognition. 

 
Experimental Procedures 
Bacteriological methods 
All B. subtilis strains (Table 7:App) are isogenic derivatives of PY79 and grown 

according to standard procedures (83). To determine relative mutation rate, B. subtilis 

cells were grown at 37°C to OD600 of ~1.2, concentrated, and resuspended in 100 µL of 

0.85% saline. A portion of the cells was serial diluted (10-6) and plated onto LB agar 

plates to determine total the viable count within the culture. The remaining resuspension 

was plated onto LB agar plates supplemented with 150 µg/mL rifampin. Mutation rate 

analysis was performed using MSS Maximum Likelihood Method with the 95% 

confidence interval, and statistical significance assessed using a one- or two-tailed T-

test (84-86). 

 
Epifluorescence microscopy 
Cells were prepared for live cell imaging essentially as described (87-89). Briefly, strains 

were inoculated to a starting OD600 in S750 minimal media supplemented with 2% D-

glucose. Cells were grown past 3 doublings to an OD600 of 0.4-0.5 and were split: one 

control culture and one culture challenged with 2-aminopurine to a final concentration of 
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600 µg/mL for one hour. Cell membranes were visualized using the fluorescent probe 

TMA-DPH at a working concentration of 10 µM. Replisome fusions were imaged with 

0.5-1.0s exposures while MMR fusion proteins were imaged at 1.2-2.5s exposures. 

Scoring of cells as containing a MutS focus is outlined in Figure 30. The average cell 

focus encompasses ~4% of the cell area with an average intensity 2-fold greater than 

background. Colocalization and localization experiments were conducted as above 

except cells were grown in S750 minimal media supplemented with 1% L-arabinose. 

These conditions were used to produce cells with predominantly 1 DnaX-GFP focus per 

cell (avg. is 1.72 foci per cell with 39.1% of cells containing one focus) (Figure 27). 

Image capture of both fusion proteins during colocalization experiments was performed 

in immediate succession and timed <2s of total capture to minimize any intracellular 

movement of either the MutS or replisomal fusions. For temperature release 

experiments, cells were grown and treated as above, but the prepared slide was 

incubated for 15 minutes at indicated temperature. Upon removal from the temperature-

regulated chamber, slides were imaged for five minutes immediately upon removal. 

 
Statistical analysis 
Bar graphs are presented with error bars representing the 95% confidence interval, and 

statistical significance was determined using a one- or two-tailed T-test.  

 
Immunoblotting 
B. subtilis whole cell extracts were obtained basically as described (90). Briefly, mid-

exponential phase cultures were centrifuged and lysed by sonication (20 Hz), 

resuspended in lysis buffer [10 mM Tris-HCl (pH 7.0), 0.5 mM EDTA, 1 mM AEBSF, 

and 1X Protease Inhibitor Cocktail (Thermo Scientific)], and protein concentration was 

determined using Pierce BCA Protein Assay Kit (Thermo Scientific). Equal amounts of 

total protein were applied to each lane on a 4-15% gradient gel, and protein levels were 

probed with purified antisera: α-MutS (MI-1042), α-MutL (MI-1044), and α-DnaN (MI-

1039). Immunoblots were developed as described previously (91).  
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Immunodot blotting 
Immunodot blotting was performed as previously described (39, 92). Briefly, indicated 

proteins were immobilized onto a nitrocellulose membrane with the assistance of a Bio-

dot microfiltration apparatus (Bio Rad). The membrane was incubated in blocking buffer 

(5% dry non-fat milk, 17.4 mM Na2HPO4, 2.6 mM NaH2PO4, 150 mM NaCl, 0.05% 

Tween-20) at 22˚C for one hour. All subsequent washes and incubations took place in 

blocking buffer. After blocking, the membrane was incubated with 0.4 µM DnaN in 

blocking buffer for 3 hours at 22˚C. The blot was subsequently washed three times and 

then incubated with affinity purified α-DnaN antisera overnight at 4˚C. The blot was 

removed from primary antibody (MI 1038) and washed three times at 22˚C and placed 

in secondary antisera (1:2000 α-Rabbit) for 2 hours at 22˚C. The blot was washed 3 

more times, followed by a wash in PBS (17.4 mM Na2HPO4, 2.6 mM NaH2PO4, 150 mM 

NaCl, 0.05% Tween-20) to remove excess milk proteins. The membrane was developed 

with chemiluminescence (Super-Signal Altra, Pierce) and expose to film as described 

(39).  

B. subtilis MutS–DNA interactions at equilibrium 
Procedures used to purify untagged MutS and MutSF30A are detailed within the 

supplemental methods.  

The mismatched DNA substrates for the MutS-DNA binding assay were prepared by 

annealing 37 nt 2-aminopurine (2-AP) labeled +T strand (5´ - TAA AGG AAG TCG TCT 

AT2-Ap TAT GGT ATG ACT AAG TGT A - 3') with 36 nt (5' - T ACA CTT AGT CAT 

ACC AT TAT AGA CGA CTT CCT TTA - 3') or with 37 nt (5' - T ACA CTT AGT CAT 

ACC ATG TAT AGA CGA CTT CCT TTA - 3') strands to yield 2-AP(+T) and 2-AP(GT) 

duplexes, respectively. The matched substrate, 2-AP(GC) was prepared by annealing 

37 nt 2-AP labeled strand (5' - TAA AGG AAG TCG TCT AT2Ap CAT GGT ATG ACT 

AAG TGT A - 3') with a 37 nt strand (5' - T ACA CTT AGT CAT ACC ATG TAT AGA 

CGA CTT CCT TTA - 3'). The strands were heated to 95 °C, followed by slowly cooling 

to room temperature to obtain annealed duplex DNAs. 

DNA binding was measured on a FluoroMax-3 fluorimeter (Jobin-Yvon Horiba 

Group; Edison, NJ). Titrations of 0.02 µM 2-AP(+T), 2-AP(GC) and 2-AP(GT) duplex 
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DNAs with 0 – 0.4 µM MutS were performed in 3 ml quartz cuvettes in DNA 

binding buffer (20 mM Tris-HCl, pH 7.6, 50 mM NaCl, 5 mM MgCl2) at 25 °C. MutS was 

added incrementally to the sample, and fluorescence intensity was measured after 

mixing for 30 seconds (λEX = 315 nm and λEM = 375 nm). The data were corrected for 

intrinsic MutS fluorescence by subtracting data from parallel experiments with unlabeled 

DNA. Fluorescence intensity was plotted versus MutS concentration and the apparent 

dissociation constant (KD) for the interaction was obtained by fitting the data to a 

quadratic equation:  

[D·M]=F0+(Fmax−F0){[KD+[Dt]+[Mt])−[(KD+[Dt]+[Mt])2−4[Dt][Mt]]1/2]/2[Dt]}where D·M is the 

fraction of MutS•DNA, F0 is 2-AP(+T) fluorescence in the absence of protein and Fmax is 

maximal fluorescence, and Dt and Mt are total molar concentrations of DNA and MutS, 

respectively. The data were fit by non-linear regression using KaleidaGraph (Synergy 

Software) 

 

Supplemental Material 

Supplemental Material accompanying Chapter II is found in Appendix I: Supplemental 

Methods and Results, Table 6 and 7, and Figures 23-30. 
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Abstract 

During mismatch repair, MutS is responsible for mismatch detection and the 

recruitment of MutL to the mismatch through a mechanism that is unknown in most 

organisms. Here, we identified a discrete site on MutS that is occupied by MutL in 

Bacillus subtilis. The MutL binding site is composed of two adjacent phenylalanine 

residues located laterally in an exposed loop of MutS. Disruption of this site renders 

MutS defective in binding MutL in vitro and in vivo, while also eliminating mismatch 

repair. Analysis of MutS repair complexes in vivo shows that MutS mutants defective in 

interaction with MutL are “trapped” in a repetitive loading response. Furthermore, these 

mutant MutS repair complexes persist on DNA away from the DNA polymerase, 

suggesting that MutS remains loaded on mismatch proximal DNA awaiting arrival of 

MutL. We also provide evidence that MutS and MutL interact independent of mismatch 

binding by MutS in vivo and in vitro, suggesting that MutL can transiently probe MutS to 

determine if MutS is mismatch bound. Together, these data provide insights into the 

mechanism that MutS employs to recruit MutL, and the consequences that ensue when 

MutL recruitment is blocked.  
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Introduction 
Mismatch repair (MMR) is a highly conserved pathway responsible for identifying 

and correcting DNA polymerase errors, which substantially improves the overall fidelity 

of genome replication (1-4). Defects in bacterial MutS or MutL cause a substantial 

increase in mutation rate (5-9), while inactivation of the eukaryotic homologues, MutSα 

and MutLα, causes an increase in mutation rate and microsatellite instability (10, 11). In 

humans, disruption of MMR can lead to the development of sporadic cancers, as well as 

hereditary cancers such as Lynch and Turcot syndromes (12-15). In prokaryotes, 

disruption of MMR can lead to an increased possibility of generating mutations that 

confer antibiotic resistance, and has been linked to antibiotic resistant strains of 

nosocomial human pathogens (16-19).  

In bacteria, the pathway and the mechanisms underlying MMR are best 

understood in the MutH and Dam containing bacterium Escherichia coli. In E. coli, MMR 

is initiated upon the recognition of single base mismatches or insertion/deletion loops 

(IDLs) by the mismatch binding protein MutS [for review (1, 3, 20)]. While scanning for 

replication errors, MutS exists in an ADP bound state (21, 22). Following mismatch 

recognition, a prominent model is that MutS exchanges ADP for ATP, converting MutS 

to a sliding clamp causing MutS to diffuse away from the mismatch along the DNA in 

search of MutL (23, 24). After arrival, MutL then performs several tasks necessary to 

facilitate removal of the strand bearing the mismatch (25-27).  

The initial steps of MMR have been thoroughly studied and elucidated in the 

Gram-positive bacterium Bacillus subtilis, an organism lacking the Dam and MutH 

dependent pathway [for review (3)]. Preceding mismatch detection, MutS is targeted to 

newly replicated DNA through interaction with the DNA replication processivity clamp 

DnaN (3, 28-30). DnaN, a critical component of the pathway, is required for 90% of 

MMR in B. subtilis (31). During Okazaki fragment maturation, DnaN accumulates behind 

the progressing replication forks forming a transient DnaN clamp zone that facilitates 

coupling between mismatch detection and concurrent DNA replication (31). Within this 

zone, MutS detects mismatches and initiates the downstream steps of repair, which 

includes MutL recruitment. The mechanism used by MutS to recruit MutL is unknown in 

vivo and in vitro for B. subtilis.  
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Even though MutS and MutL have been extensively characterized at the 

biochemical and genetic level, their binding interface and the mechanism used to recruit 

MutL is poorly understood in most organisms. In E. coli, an effort employing 

hydrogen/deuterium exchange mass spectrometry identified a MutL docking site on 

MutS composed of two adjacent glutamines (residues 211 and 212) found within the 

MutS connector domain (32).  However, this site is not conserved in Gram-positive 

bacteria (Figure S1), suggesting a separate uncharacterized interface that facilitates 

binding in other organisms. To our knowledge, no other sites have been identified in any 

bacterium lacking the Dam/MutH-dependent MMR, and the effect of MutS mutants 

defective for MutL interaction have not been tested on repair intermediates in vivo for 

any organism. Therefore, very little is known about MutL recruitment, yet this step 

represents the second step in one of the most important pathways for maintaining high 

fidelity replication in organisms from bacteria to humans.  

Here we define the MutS•MutL interface in B. subtilis. We show that MutS binds 

the N-terminal domain of MutL via two adjacent phenylalanine residues, F319 and F320. 

Substitution of these phenylalanines to serine eliminates crosslinking of MutS to the N-

terminal domain of MutL in vitro while also eliminating MMR in vivo. Importantly, these 

substitutions do not seem to affect other biochemical properties of MutS, including 

dimerization, ATPase activity, and mismatch binding. Furthermore, using single cell 

fluorescence microscopy, we show that MutS mutants defective in MutL interaction form 

repair centers that increase in both frequency within the cell population, as well as 

overall fluorescence intensity. These data provide in vivo evidence for in vitro models 

proposing that MutS loads repetitively at a mismatch. Our work also defines a regulatory 

role for MutL in limiting or preventing additional MutS dimers from loading at a mismatch. 

We show that repetitive loading of MutS is repressed following excision of the mismatch, 

which requires not only MutL recruitment but also endonuclease directed nicking of the 

DNA. We also provide evidence against the paradigm that MutL requires MutS bound to 

a mismatch to initiate interaction. We show that within living cells and with purified 

components, we can selectively crosslink MutS to MutL in the absence of a mismatch, 

suggesting a mechanism where MutL can transiently probe MutS to determine if MutS is 

indeed mismatch bound, and if so, license repair. Together, our data provide new 
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insight into the MutL recruitment mechanism, the physiological consequences that result 

from MutS mutants unable to bind and recruit MutL, and we describe a model where 

MutL can transiently probe MutS before initiating the second step of MMR.  

 
Results 
The E. coli MutL binding interface is not conserved in B. subtilis.  
The MutS•MutL interface has previously been characterized in the Gram-negative 

bacterium E. coli (32). The interface is found within the connector domain of MutS, and 

centers around a double glutamine motif (Q211 and Q212) (32). Disruption of this site 

causes a loss of mismatch repair in vivo and has been shown to eliminate interaction 

with MutL on a mismatched DNA substrate in vitro (32). Initially, we asked if the E. coli 

MutL binding motif was conserved in the Gram-positive bacterium B. subtilis; however, 

a sequence alignment revealed that the connector domain motif is not conserved, and 

the surrounding amino acid sequence is highly variable (Figure 31:App). Further 

examination of a B. subtilis MutS model shows that although the amino acid sequence 

in the connector domain is not conserved, the secondary and tertiary structure of the 

connector domain is conserved with that of E. coli MutS (Figure 31 B and C: App). 

Therefore, we mutated four residues, 205VTII (mutS Patch Ec), which directly align with 

the E. coli 211QQ motif, and occupy the corresponding location in a B. subtilis MutS 

model. Mutation of 205VTII to 205ASAA has no effect on MMR in vivo, conferring a 

mutation rate identical to the wild type control (2.47X10-9 mutations /generation [0.95-

3.82]) (Table 3, last row). With this result, we conclude that the MutL binding site on B. 

subtilis MutS is distinct from the site identified for E. coli MutS. 

 
MutL binds several surface exposed peptides on MutS. 

We previously showed that a direct interaction between MutS and MutL can be 

detected in B. subtilis without a DNA substrate using a far Western blot (33). To verify 

the direct MutS•MutL interaction, we performed a far Western blot to compare the 

binding of MutL to MutS and another known binding partner, the replication processivity 

clamp DnaN (Figure 12A) (29). We found that MutS retained MutL and DnaN on the 

nitrocellulose membrane during the binding reaction.  
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Figure 12 Bacillus subtilis MutL binds surface exposed peptides in MutS. 
A) A far Western blot using MutL to probe for interaction with purified MutS, DnaN, and BSA. Equal 
amounts of the indicated protein monomer was applied via a dot blot apparatus and probed with 0.4 
µM purified MutL. B) Screening of a MutS peptide array library with MutL-Myc. MutL-Myc was 
incubated with 0.5 mM of either ADP or AMPPNP during incubation with the peptide array. MutL-Myc 
bound peptides were detected with α-Myc antibodies. Indicated position of positive peptides on the 
array, as well as the amino acid sequence, is shown adjacent to the MutL-Myc bound peptides. C) B. 
subtilis MutS was modeled using the SWISS-MODEL server (59). Both monomers of the model are 
shown as a ribbon diagram, with either the five functional domains of MutS (left panel) or the surface 
exposed peptides identified in the peptide array (right panel) color-coded and labeled according to 
their representative patch definition.  
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 To identify candidate residues in MutS that may be important for MutL binding, 

we employed a peptide array library, which functions analogously to the far Western, 

using peptides in place of purified proteins. We screened a peptide array library 

composed of peptides representing the entire MutS primary structure. The MutS peptide 

library consisted of 10mer peptides offset by 3 residues, providing 3-fold coverage of 

the entire sequence of MutS. We determined the association of MutL bearing a single 

C-terminal Myc tag with the MutS peptide array library in the presence of ADP and the 

non-hydrolysable ATP analog adenosine 5ʹ′-(β,γ-imido) triphosphate (AMPPNP). We 

used ADP and AMPPNP to determine if the nucleotide bound state altered the putative 

MutL binding sites on MutS, because it has been previously shown that MutL undergoes 

substantial conformation changes during ATP binding and hydrolysis (34).  

We found that MutL•AMPPNP bound to 18 of 292 total peptides screened while 

MutL•ADP showed a nearly identical pattern and bound to 16 of the 18 peptides 

identified with MutL•AMPPNP (Figure 1B, showing only surface exposed peptides). 

Peptides 508 and 808 did not retain MutL•ADP binding (Figure 12B). The data further 

shows that MutL-ADP bound at least one peptide in groups of overlapping peptides, 

suggesting that interaction within these regions occurred regardless of the nucleotide 

cofactor, and that overall, the nucleotide composition of MutL doesn’t affect the specific 

MutS peptides bound. Further analysis of the amino acid composition of the MutS 

peptides bound by MutL-Myc revealed an enrichment of glutamic acid and 

phenylalanine residues, suggesting a preferred amino acid target on the MutS peptide 

array (Figure 32: App).  

To determine the location of each putative MutS binding peptides, we modeled B. 

subtilis MutS based on the E. coli and T. aquaticus structures (35, 36). In doing so, we 

found that most peptides (13 in the AMPPNP group and 11 in the ADP group) were 

surface exposed and located on the outer rim of the MutS dimer (Figure 12B and C). 

Based on the location of the surface exposed peptides, we defined six unique regions 

(identified as patch 1-6) composed of single or multiple MutL-Myc bound peptides, 

which could facilitate an interaction between MutS and MutL (Figure 12C). Since the 

peptides spanning residues 802-817 (patch 6) are absent from the crystal structures of 

E. coli and T. aquaticus MutS (35, 36), we were unable to include them in the model. 
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Interestingly, patch 6, overlaps with the site known to bind DnaN, referred to as the 

DnaN clamp-binding motif (Figure 12B, 806QLSFF) (29, 37). In B. subtilis mutation of 

this region does reduce MutL recruitment into foci although the mutant mutS still retains 

almost all MMR activity in vivo suggesting this region is not critical for binding MutL (29).  

Table 3. Mutation rate analysis of mutS patch variants 

Genotype mutS variant Number of 
cultures 

Mutation rate (10-9 
mutations/generation)± [95% CI] 

Relative mutation rate 
(% MMR activity) 

Wild-Type 
(PY79) 

mutSWT 24 3.30 [1.44-5.00] 1 (100%) 

mutL::spec mutSWT 18 159.9 [152.5-167.2]* 48.5 (0%) 

mutS Patch 1 E155S, R156S, 
L157A, E158S 

19 4.50 [2.23-6.64] 1.36 (99.2%) 

mutS Patch 2 E245S, E247S, 
E248S 

24 4.28 [2.10-6.34] 1.30 (99.4%) 

mutS Patch 3A E306S, E307S, 
E310S 

25 4.19 [2.18-6.11] 1.27 (99.4%) 

mutS Patch 3B F320S, E321S, 
R322S, E323S 

26 78.2 [72.2-84.2]* 23.7 (52.1%) 

mutS Patch 4 E392S, E395S, 
E396S 

20 5.60 [2.59-8.40] 1.70 (98.5%) 

mutS Patch 5 E510S, E512S, 
E514S 

20 7.24 [4.45-9.94] 2.20 (97.5%) 

mutS Patch 6A Q806A, L807A, 
F809A, F810A 

23 8.83 [6.03-11.58]* 2.68 (96.5%) 

mutS Patch 6B D811S, E812S, 
E814S 

20 3.03 [1.37-4.57] 0.92 (101%) 

mutS Patch Ec V205A, T206S, 
I207A, I208A 

18 2.47 [0.95-3.82] 
 

0.03 (101%) 

All mutS variants were constructed using allelic replacement (see “Experimental Procedures”), 
which maintains the mutS variant gene at its normal genetic locus and under the control of its 
native promoter. The downstream mutL gene remains intact. Brackets enclose the lower bounds 
and upper bounds respectively of the 95% confidence limits. Percent MMR activity was 
determined using the following equation: [(R.M.R.null-R.M.R.strain)/(R.M.R.null-R.M.R.wild 
type)]•100. RMF=relative mutation rate. Relative mutation rate was obtained by dividing the 
mutation rate of each strain by that obtained for the wild type control.  
 

Substitution of surface exposed residues within the putative MutL interaction 
sites on MutS causes defects in MMR.  

The peptide array analysis identified sites on MutS that could potentially mediate 

a direct interaction with MutL, thus we began by introducing three to four amino acid 
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substitutions in residues both conserved and surface exposed within each “patch” to 

determine the effect on repair (Table 8 in appendix for summary of substitutions). Each 

mutant mutS patch allele encoding a set of missense mutations was used to replace the 

wild type allele at the native mutS locus by allelic exchange as described (31). For each 

mutant allele, we determined the mutation rate by measuring the rate of spontaneous 

rifampin resistant colony formation as an indicator for mutagenesis and MMR 

dysfunction [(28, 30, 31, 38) and “Experimental Procedures”]. Patch mutants 1, 2, 3A, 4, 

5 and 6B conferred a statistically equivalent mutation rate to wild type mutS, showing no 

effect on the MMR pathway in vivo (Table 3). Patch mutant 6A, which contains the 

DnaN clamp-binding motif, showed a slight but significant increase in mutation rate at 

8.83X10-9 mutations/generation (Table 3) as we previously reported (29). Interestingly, 

we found that the four missense mutations introduced into patch 3B caused a significant 

increase in mutation rate (78.2X10-9 mutations/generation), resulting in this mutant 

retaining only 50% of MMR activity in vivo. With these data, we conclude that patch 

mutant 3B, which includes the F320S, E321S, R322S, and E323S missense mutations, 

causes a significant defect in the MMR pathway in B. subtilis (Table 3). Hereafter, we 

refer to the patch mutant 3B as MutS3B. 
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Figure 13. Purified MutS3B fails to 
crosslink with the N-terminal domain of 
MutL. 
A) Crosslinking of MutS or MutS variants to 
the N-terminal domain of MutL with a 90 bp 
DNA substrate containing a centrally 
located G/T mismatch (Mis90).  Mixtures of 
each protein, 10 mM ATP, and the G/T 
DNA substrate were incubated with the 
crosslinker BS3. Protein complexes were 
then resolved on a 4-15% gradient SDS 
polyacrylamide gel. The bands 
corresponding to the MutS and MutL-NTD 
monomers, as well as the MutS•MutL-NTD 
complex are labeled. All MutS variants 
show similar ATPase activity B) and DNA 
binding to the G/T mismatched DNA 
substrate C) to wild-type MutS. Bar 
diagrams present the average of three 
independent measurements and the error 
bars correspond to the standard errors of 
the mean (SEM=s/√n, where s is the 
standard deviation and n the sample size). 

 
 
MutS3B is defective for interaction with MutL.  

The MutS•MutL interaction has been previously monitored using chemical 

crosslinking (24). The work by Winkler and co-workers demonstrated that the 

MutS•MutL interaction only requires the N-terminal domain of MutL (MutL-NTD) and it is 

enhanced in the presence of ATP and a heteroduplex. Therefore, we purified N-terminal 

His6 tagged variants of B. subtilis MutS and MutL-NTD and screened for interaction 

defects using this approach. Incubation of MutS and the chemical crosslinker 

bis(sulfosuccinimidyl)suberate (BS3) in the presence of ATP and a 90 base-pair G/T 

mismatch DNA substrate (Mis90) resulted in the formation of several high molecular 

weight species. Conversely, incubation of MutL-NTD with BS3 predominantly yielded 

monomers, as expected due to the absence of the dimerization domain of the proteins. 

Incubation of MutS with MutL-NTD and BS3 in the presence of ATP and Mis90, yielded 

a new species that was not present when either protein was incubated with BS3 and 

corresponded to the molecular weight of the MutS•MutL-NTD complex (Figure 13A).  

We excised this band, and using LC MS/MS, verified the presence of both MutS and 
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MutL-NTD as the sole components of this band (data not shown). Interestingly, we do 

observe some interaction between MutS and MutL-NTD in the presence of a 90 bp DNA 

homoduplex in place of Mis90, showing that the MutS•MutL-NTD interaction is not 

strictly dependent on the presence of a mismatched substrate (Figure 33:App).  

We subsequently tested whether any of the MutS patch variants abrogated the 

interaction with MutL-NTD. We found that all MutS variants formed a MutS•MutL-NTD 

complex except for the MutS3B variant (F320S, E321S, R322S and E323S) (Figure 
13A). We note that the MutS5 variant (including the E510S, E512S and R514S 

mutations) showed a very prominent band of a molecular weight consistent with 

formation of a MutS tetramer. In fact, this prominent species was present in the 

crosslinking reaction of all MutS variants when MutL-NTD was not present (data not 

shown), but disappeared upon incubation with MutL-NTD. Since our goal was to probe 

for the formation of a MutS•MutL complex, and MutS5 retained the interaction with 

MutL-NTD, we did not characterize this variant further. The crosslinking defect of 

MutS3B agrees well with the mutation rate analysis showing that patch 3B lost 50% of 

MMR activity in vivo (Table 3). All “patch” variants of MutS behave similar and have 

similar mismatch binding and ATPase activities compared to wild-type MutS (Figure 
13B and C), implying that the reduced MMR activity of the MutS3B variant is unlikely 

due to improper folding or attenuation of other critical biochemical activities. 

Furthermore, all of the MutS variants eluted from a gel filtration column similarly to the 

wild type protein (Data Not Shown) and formed dimers in solution as measured by 

dynamic light scattering (Figure 34:App). Collectively, we show that the MMR defect 

associated with the MutS3B variant is due to the impaired interaction with MutL rather 

than loss of some other biochemical activity of MutS. Furthermore, we conclude that 

residues changed in the MutS3B (F320, E321, R322, and E323) variant are important 

for direct interaction between B. subtilis MutS and MutL-NTD. 

 

Residues F319 and F320 define the MutL binding site on MutS.  
Since mutS3B contains four successive missense mutations, we replaced the 

native mutS gene in B. subtilis with alleles encoding each of the single missense 

mutations that comprise mutS3B using allelic exchange in order to further define the 
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functional residues important for MutL interaction. We also included amino acids S317, 

H318, and F319 in this analysis due to their adjacent position in MutS relative to the 

peptide identified in the array and because each residue is predicted to be surface 

exposed. We found that mutation of F319S and F320S separately reduced MMR activity 

below 50% in vivo (Table 4). In addition, we found that mutSE323S had the most 

striking effect of all the single missense mutations on MMR as this allele supported only 

7% of MMR activity in vivo. It should be noted that the effect observed in the 

mutSE323S mutant far exceeds that of the mutS3B mutant, which reduced MMR to 50% 

of wild type level. We suggest that the E321S and R322S substitutions may partially 

suppress the defect caused by E323S on its own. All other substitutions examined 

confer a mutation rate indistinguishable from wild type (Table 4). We did not pursue 

E323S for a role in MutL binding because this single mutant blocks MutS localization on 

its own and may have a folding defect. We describe the effects of this mutant later 

within this manuscript. 
Table 4. Mutation rate analysis of missense mutations in and near mutS3B. 

Genotype	   Mutation rate (10-9 
mutations/generation)± [95% CI]	  

Fold increase in 
mutation rate 

    % MMR activity 

Wild-Type (PY79) 3.30 [1.44-5.00] 1 100 

mutL::spec 159.9 [152.5-167.2] 48.5 0 

mutSS317A 2.62 [0.94-4.09]* 0.63 100.4 

mutSH318S 2.36 [0.79-3.69]* 0.55 100.6 

mutSF319S 105.1 [97.9-112.4] 31.9 35.0 

mutSF320S 94.8 [87.3-102.4]  28.8 41.5 

mutSE321S 4.02 [1.83-6.06]* 1.22 99.5 

mutSR322S 2.46 [0.92-3.78]* 0.75 100.5 

mutSE323S 148.7 [140.1-157.2]# 45.1 7.2 

mutSF319SF320S 156.0 [148.9-163.1]# 47.3 2.5 

mutSF319SF320S, 
amyE::Pspac mutL 

134.0 [127.3-140.5]# 40.6 16.6 

All mutS variants were constructed using allelic replacement (see “Experimental Procedures”), which 
maintains the mutS variant gene at its normal genetic locus and under the control of its native promoter. 
The downstream mutL gene remains intact. Brackets enclose the lower bounds and upper bounds 
respectively of the 95% confidence limits. Percent MMR activity was determined using the following 
equation: [(R.M.R.null-R.M.R.strain)/(R.M.R.null-R.M.R.wild type)]•100 RMF=relative mutation rate. 
Relative mutation rate was obtained by dividing the mutation rate of the strain by that of wild type. The 
symbols * and # indicates that the mutation rate is statistically equivalent to that of the wild type and MMR 
deficient strains respectively. For expression of mutL, 1 mM IPTG was added to the media during growth. 
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Because mutSF319S and mutSF320S showed significant and substantial defects 

in MMR, we combined these missense mutations to measure the effect on MMR in vivo. 

The resulting mutSF319SF320S allele showed a mutation rate (156X10-9 mutations/ 

generation) indistinguishable from a strain lacking mutL (mutL::spc) function (Table 4). 

Immunoblot analysis verified that MutSF319SF320S, as well as MutS variants 

containing each individual mutation, accumulate to the same steady state levels as wild-

type MutS in vivo (Figure 14A). These results show that mutSF319SF320S 

phenocopies loss of mutL function in B. subtilis supporting the hypothesis that 

mutSF319SF320S is defective in MutL interaction. In addition we asked if 

overexpression of mutL could suppress the increased mutation rate caused by 

MutSF319SF320S. We expressed mutL using an IPTG inducible promoter from and 

ectopic locus and recovered only ~16 of MMR (Table 4, last row). This experiment 

further supports our conclusion that the MutSF319SF320S variant is substantially 

impaired for MutL interaction in vivo. 
Figure 14. A distinct di-phenylalanine 
binding site within and around MutS3B 
defines the MutL binding interface. 
A) Immunoblot analysis indicated proteins from 
the soluble fraction of cell lysates. 50 µg of 
soluble fraction was probed for MutS, MutL and 
DnaN. B) Complex formation of MutS, MutS3B, 
and MutSF319SF320S to the N-terminal 
domain of MutL was assayed on a 90 bp DNA 
substrate containing a centrally located G/T 
mismatch using crosslinking analysis.  
Reactions contained 10 µM MutS variants, 20 
µM MutL-NTD, protein, 10 mM ATP, and 10 
µM of the G/T DNA substrate were incubated 
with the hydrophilic crosslinker BS3 (+=0.8 mM 
and ++=1.6 mM, respectively). The products 
were then separated on a 4-15% gradient 
SDS-PAGE. The bands corresponding to the 
MutS and MutL-NTD monomers, as well as the 
MutS•MutL-NTD complex are labeled. The 
biochemical activity of purified MutS, MutS3B, 

and MutSF319SF320S were tested for C) ATPase activity and D) DNA binding to the G/T DNA substrate. Bar 
diagrams present the average of three independent measurements and the error bars correspond to the SEM. 
  

 In order to determine if residues F319 and F320 of MutS define a MutL binding 

site, we purified MutSF319SF320S and tested its ability to interact with MutL-NTD using 

chemical crosslinking (Figure 14B). Like MutS3B, MutSF319SF320S fails to crosslink 
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with MutL-NTD, indicating that the mutation of the phenylalanine pair is sufficient to 

eliminate interaction between MutS and MutL in vitro. We also verified that these 

substitutions were wild type for other biochemical activities of MutS. MutSF319SF320S 

maintained wild type levels of ATPase activity, binding to mismatched DNA substrate, 

and dimer formation (Figure 14C and D, and Data Not Shown), suggesting that loss of 

in vivo MMR in the mutSF319SF320S background is attributed to loss of binding to 

MutL.  

 

MutSF319SF320S defines a highly conserved MutL binding site on MutS in Gram-
positive bacteria.  

We asked if the MutL binding site on MutS is conserved in other organisms. The 

MutS residues important for MutL binding, F319 and F320, model to the outer rim of 

MutS and reside in the loop connecting helices α4 and α5 of the core domain (Figure 

15A). Importantly, both residues appear solvent exposed, and available for interaction 

with MutL based on our structural model (Figure 15A). In human MSH2 and the Gram-

negative bacteria E. coli and T. aquaticus MutS, the site appears to be structurally 

conserved, despite the limited sequence conservation (Figure 15B).  Based on 

previous results (32), this interface is not the sole binding interface for E. coli MutL, but 

may however function as a secondary site located on the opposite side of the MutS face. 

Importantly, helix α4 is part of the allosteric transmitter proposed to connect the ATP- 

and DNA-binding sites of MutS (36), and hence, F319 and F320 pose an attractive 

mechanism to relay the nucleotide- and mismatch-bound state of MutS to MutL. 

Interestingly, we do find that the di-phenylalanine site is conserved in several eukaryotic 

proteins known to bind MutL homolog Mlh1 (39) including MutSβ (Figure 35:App), as 

well as in anchoring interaction between mammalian Rev1 and Polκ (40-42) (see 

discussion). 
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Figure 15. The di-phenylalanine site is conserved in MutS homologs. 
A) Ribbon diagram of the connector (light green) and core (light yellow) domains of MutS. The side 
chains of the di-phenylalanine motif are shown in orange, those of the QQ motif are shown in teal (32) 
and the structural elements of the transmitter proposed by Obmolova and co-workers belonging to the 
core domain are colored in purple (36). B) Structure based sequence alignment of B. subtilis MutS and 
other MutS homologs for which the three-dimensional structure are known. Conserved hydrophobic 
(blue), polar (green), positive- (purple) and negative-charged (red) residues are highlighted. The 
secondary structure elements are color-coded for domains II, domain III and transmitter as in A. The 
location of the QQ and FF motifs is indicated with teal and orange carets, respectively. C) Sequence 
alignment of MutS from Gram-positive bacteria shows conservation of F319 and F320. 
 

 When we align MutS sequences from Gram-positive bacteria, many of which 

cause serious health concerns including Staphylococcus aureus and Listeria 

monocytogenes, we find that these residues are highly conserved in mutS homologs 

(Figure 15C). In some Gram-positive bacteria, a few accepted substitutions are 

tolerated at these positions, such as the aromatic residue tyrosine or the hydrophobic 

residue isoleucine (Figure 15C). Based on our results, we suggest that mutation of 

these conserved residues could eliminate MMR function in related pathogenic bacteria, 

increasing mutagenesis and altering antibiotic susceptibility and persistence within the 

host environment. 
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mutSF319SF320S is defective for recruitment of MutL in vivo.  
It has been previously shown that MutL-GFP forms foci in response to 

spontaneous or 2-aminopurine (2-AP) formed mismatches detected by MutS, providing 

an in vivo assay to monitor MutL recruitment in response to mismatch detection by 

MutS (31, 43). A caveat with this assay is that the mutL-gfp allele is nearly defective for 

MMR as measured by mutation rate (43), however focus formation of MutL-GFP is 

dependent on mutS, providing a single cell assay for MutL-GFP recruitment in live cells 

(31, 43). We asked if MutSF319SF320S was able to recruit MutL-GFP into foci in cells 

grown with 2-AP. In a background with the native mutS gene, we observed MutL-GFP 

repair centers in ~25% of cells (Figure 16A). We found that cells with 

mutSF319SF320S or the ΔmutS allele did not support MutL-GFP focus formation, as 

MutL-GFP repair centers only formed in ~3% of the cell population in both genetic 

backgrounds. Furthermore, we also found that MutSF319SF320S is defective for 

recruitment of MutL-GFP in response to mismatch detection in vivo, supporting the in 

vitro experiments showing that mutSF319SF320S is defective for interaction with MutL.  
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Figure 16. MutS mutants defective for MutL interaction form persistent complexes in vivo. 
Fluorescent single cell microscopy of MutL-GFP repair centers responding to mismatch formation in a mutS, 
mutSF319SF320S or ΔmutS background (n=1320, 1559, and 988 cells scored). Cells were treated with 600 µg of 2-
AP and incubated for 1 hour prior to imaging. 95% confidence intervals are shown. B) Shown is a schematic for 
cloning an unmarked in frame fusion of mutS to mutS-22-mgfpmut3 (mutS-gfp), while maintaining expression of the 
mutL gene downstream (“Experimental Procedures”). C) Representative micrographs of the indicated MutS-GFP 
fusion proteins. The cell membrane was imaged using the vital membrane stain TMA-DPH, which was pseudo-
colored red. D) Shown is a bar graph of the percent of cells with each MutS-GFP fusion untreated during exponential 
growth (n=1276, 957, 796, 1568, 1008, 1382, and 1148 respectively refers to the number of cells scored for each 
strain). Error bars represent 95% confidence intervals (CI). All groups are statistically significant with respect to MutS, 
including MutS Patch 3B (P= 0.0038) and MutSF320S (P= 0.0013). The strain with ΔmutL has a mutS-mgfpmut2 



	  

	   	   	   	  

73	  

fusion. E) The percent of cells with the indicated MutS-GFP fusion following challenge with 2-AP (n=879, 1212, 711, 
and 725 are the number of cells scored respectively) the error bars represent 95% CI.  F) Focus intensity was 
determined by normalizing total signal of the repair centers to the total cell fluorescence. A total of 75 MutS-GFP foci 
were analyzed for each group. All foci examined were in cells statistically equivalent in regards to area, length, and 
average intensity of cellular fluorescence. G) Using the number of MutS molecules per cell (Figure S6) and the 
average MutS repair center fluorescent intensity F), we were able to determine the average number of MutS dimers 
per repair center ± standard deviation, as well as the highest observed number of MutS dimers within repair centers 
scored.	  
 

MutSF319SF320S forms large repair complexes in vivo, supporting a model for 
persistent loading.  

With a MutS variant defective in recruitment of MutL, we can now uncouple 

mismatch binding from functional repair and “trap” repair intermediates that would 

normally be resolved during repair. To observe mismatch repair intermediates, we fused 

mutS to a monomeric gfpmut3 variant (gfpmut3 referred to herein as gfp) since gfpmut3 

represents the most monomeric derivative of GFP, providing the least invasive method 

for observing protein localization in living bacterial cells (44). We constructed a native 

locus mutS-gfp strain by allelic exchange in order to maintain expression of the 

downstream gene mutL under its native promoter (Figure 16B). The mutS-gfp 

background maintained ~85% of MMR activity (mutation rate 2.56X10-8 [2.0-3.1]), 

providing a functional fusion to observe active repair in real time. Upon mismatch 

detection, MutS-GFP forms complexes in response to mismatches in order to 

orchestrate repair. The mutS-gfp strain forms repair centers in ~9% of cells within the 

population during exponential growth, and repair center formation is stimulated to ~42% 

of cells by addition of 2-AP to the growth media (Figure 16C, D, and E) (28-31). Thus, 

using B. subtilis, we can bridge biochemical and genetic data to understand how 

disruption of MutL recruitment by MutS alters repair center dynamics in vivo, providing 

important mechanistic insight into intermediate steps.  

 We subsequently fused gfp to mutS3B, mutSF319S, mutSF320S, 

mutSF319SF320S, and mutSE323S and found that all strains except for mutSE323S-

gfp formed repair complexes in vivo (Figure 16C). Interestingly, MutSE323S-GFP, 

which was defective for repair in vivo, was also completely defective for focus formation 

suggesting that although this protein accumulates in vivo (Figure 14A), the E323S 

mutation appears to cause some defect other than blocking MutL interaction, since it 

failed to form a repair complex. The MutSE323S variant was not amenable to 
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recombinant expression and purification and therefore we did not further pursue 

characterization of this variant (Data Not Shown).  

MutSF319S-GFP, MutSF320S-GFP, and MutSF319SF320S-GFP all formed foci 

in a higher percentage of untreated cells than the MutS-GFP control. We hypothesized 

that the increase in focus formation is a consequence of an increase in the duration of 

repair center formation due to unproductive repair caused by a failure to properly signal 

for MutL. Another possibility is that there is an increase in mismatch detection, however, 

we ruled out this possibility by showing that a deletion of mutL downstream of mutS-gfp 

causes the same effect by increasing MutS-GFP repair centers in vivo (Figure 16D). 

Furthermore, since the error rate of the replication process in the absence of functional 

MMR is one mispair every two rounds of replication the likelihood of closely spaced 

errors is extremely low [(31, 38) and Table 3]. Time-lapse imaging of repair center 

formation and resolution would be preferred to support our hypothesis, but is not 

feasible due to long exposure times of the MutS-GFP fusions and rapid photobleaching 

dynamics (Data Not Shown). MutSF319S-GFP, MutSF320S-GFP, and MutS3B-GFP 

formed repair complexes in a nearly indistinguishable percentage of cells (12-13% of 

the population) (Figure 16D). The double mutant, MutSF319SF320S-GFP, shows an 

increase in the percentage of cells with MutS-GFP foci above our measurements for 

each of the single variants (Figure 16D). Furthermore, 2-AP treatment elicited an 

increase in the percentage of cells with MutSF319SF320S-GFP, showing that this 

variant still binds mismatches and initiates repair, further supporting our in vitro results 

that mismatch binding is unaffected (Figure 16E and Figures 14D). Ultimately, loss of 

MutL recruitment by MutS causes a corresponding increase in the percentage of cells 

with MutS repair complexes. 

We also asked if MutS repair center formation is not only affected by MutL 

recruitment, but also by the next step of repair--incision. To do so, we asked if MutS-

GFP repair centers accumulate in cells where MutL endonuclease nicking is prevented 

using the mutLE468K allele (45). Nicking by MutL is a required step for repair and we 

have previously shown that the E468K substitution eliminates MutL endonuclease 

activity in vitro and MMR activity in vivo (45). Indeed, the percentage of cells with MutS-

GFP foci increased in the mutLE468K background to levels observed in both the 
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mutSF319SF320S and the ΔmutL backgrounds, indicating that if MutL-directed nicking 

is prevented, MutS-GFP foci persist when the next step of repair is blocked (Figure 
16D). With these data we argue that MutL recruitment is not sufficient to halt MutS 

loading in vivo per se, but that timely repair of the mismatch is required to prevent 

further loading. 

We also found that a proportion of repair centers exhibited high fluorescence 

intensity in backgrounds defective for MutL recruitment and MutL endonuclease activity 

(Figure 16C, F and G). We quantified percent focus intensity relative to whole cell 

fluorescence intensity. In doing so, we found that many repair centers associated with 

MutSF319SF320S had elevated focus intensities relative to a MutL recruitment 

proficient MutS-GFP strain (Figure 16F). These data suggest that more MutS 

protomers are present in a focus for MutS mutants defective in MutL interaction or in 

strains where MutL function has been eliminated by blocking incision (mutLE468K) 

(Figure 16F). We also analyzed MutSF319SF320S foci in cells where mutL expression 

was induced and observed no difference in percent of cells with foci or focus intensity 

(Data Not Shown).  

We quantified the number of MutS dimers found within B. subtilis under the exact 

conditions used during live cell imaging, and found that in B. subtilis steady state levels 

of MutS are ~80 dimers per cell (100 nM) (Figure 36:App). Using these data, we 

determined that the mean number of MutS dimers in a repair center was ~8.5 (this 

corresponds to 17 GFP moieties) (Figure 16G). Both the MutL recruitment and 

endonuclease-deficient backgrounds contained a higher mean number of MutS-GFP 

dimers per repair center (12.1 and 11.5 respectively) (Figure 16G). The increase in 

repetitively loaded MutS-GFP dimers is more pronounced in the broad distribution of 

individual intensity measurements of the repair centers, with as many as >3 fold (~30 

MutS-GFP dimers; ~35% of cellular MutS) more molecules in the highest intensity MutS 

complexes observed in repair deficient strains. These observations support a model 

where MutS can load iteratively at a mismatch, increasing the local concentration of 

MutS. We propose that iterative MutS loading aids in efficient MutL recruitment to the 

mismatch, providing in vivo support for in vitro observations (23). We also find it 

interesting that we quantify 8.6±2.7 MutS dimers per focus and in S. cerevisiae the 
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number of Msh6 dimers per focus was determined to be 10.8±4.4 (46). Therefore, the 

stoichiometry of MutS within a focus is remarkable similar between these two organisms. 

 

MutSF319SF320S repair centers localize away from the replisome.  
During DNA replication, chromosomal DNA is replicated within an organized 

replisome (47-49). Here, the replisome is defined as replication associated proteins that 

localize as discrete foci in vivo.  Within B. subtilis, replisomes maintain a well-

characterized subcellular position (47-49).  Once replication is initiated from the single 

origin of replication (ori), two sets of replication forks are often contained within a single 

replisome predominantly found at midcell (47-49). Once replicated, the daughter 

chromosomes begin to translocate to the cell poles, taking mismatched DNA away from 

the centrally located replisome. We have previously shown that MutS foci colocalize to 

the replisome preceding mismatch detection and are released following mismatch 

binding (31). Therefore, we asked if localization of MutS repair complexes is altered 

when MutS is broken for MutL recruitment. 

In order to test if the MutSF319SF320S repair centers persist at the site of 

mismatch identification, we monitored their position during DNA replication in minimal 

medium under slow growth conditions (~ 123 min. doubling time). Slow growth 

maintains approximately half of the cell population with a single replisome focus (~52% 

of cells). We first determined the distance of the MutS and MutSF319SF320S repair 

centers relative to the cell poles (Figure 17A). MutS-GFP repair centers maintain a 

mostly midcell position with 48.4% found within the middle 10% of the cell. Only 10.5% 

of these repair centers occupy a distal position within the outer quarters of the cell. 

Relative to the distribution of MutS-GFP, MutSF319SF320S-GFP position was more 

dispersed, as only 27.2% of repair centers were found within the middle 10% of the cell 

(Figure 17B). About 2 fold more MutSF319SF320S repair centers (20%) were found in 

the distal quarter of the cell. These data support the hypothesis that upon identifying a 

mismatch at the replisome, the assembled MutS repair center is maintained at the site 

of the mismatch for extended periods of time, causing migration away from the 

replisome as DNA synthesis continues, an effect more pronounced when MutL 

recruitment is blocked. 
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To further test this hypothesis, we examined colocalization between the MutS-

GFP repair centers and replisomes during the same slow growth conditions described 

above. Colocalization between MutS-GFP and DnaX-mCherry (a component of the 

processivity clamp loader complex) was performed and scored as described (31). 

During exponential growth, MutS-GFP forms repair complexes that colocalize with the 

replisome in about 51% of cells. When we stimulate mismatch formation by adding 2-AP 

to the media, we found a decrease in colocalization to ~35% (p=0.00052), consistent 

with previous results (Figure 17C) (31). During exponential growth, MutSF319SF320S 

repair complexes colocalize with the replisome in 38% of the population; a significant 

decrease compared to MutS-GFP during exponential growth (p=0.0090). Upon 

treatment with 2-AP, only 29% of repair complexes colocalize with the replisome. With 

these results we conclude that when MutS-GFP is unable to recruit MutL to the site of a 

mismatch, repetitive loading of MutS-GFP at the mismatch will continue, resulting in a 

brighter and more persistent MutS-mismatch complex, which migrates away from the 

replisome as replication continues. 

 
MutL crosslinks with MutS independent of mismatch detection in vivo and in 
vitro. 

An outstanding problem in MMR is how MutL senses when MutS is mismatch 

bound to initiate downstream steps of repair. Previously, we showed that the mutSF30A 

allele, supports formation of more MutL-GFP repair centers than are observed in the 

ΔmutS background (31). MutSF30A is a variant that is unable to distinguish mismatched 

DNA from complementary DNA (31). This observation is interesting because it suggests 

that MutS can interact with MutL, in the absence of mismatch binding in vivo, even 

though the interaction is reduced (31). Here, we directly test the hypothesis that MutL 

can transiently probe MutS for the appropriate conformational change to initiate MMR. 

To test this hypothesis, we used immunoprecipitation (IP) targeting MutS to co-IP any 

proteins associated with MutS in vivo. Since the MutS•MutL interaction is transient in 

nature, we employed the use of the thiol-cleavable, membrane permeable crosslinker 

Dithiobis[succinimidyl propionate] (DSP) to crosslink MutS•MutL complexes formed in 

growing cells (Figure 18).  
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The IP was accomplished under normal growth conditions in the absence of 2-

AP to test for association in the absence of active MMR. Using this procedure, we were 

able to IP ~10.0% of the intracellular MutS. Importantly, we were able to capture the 

MutS•MutL interaction in the wild type strain, yet failed to IP MutL in the ΔmutS strain, 

validating the requirement of MutS for successful co-IP of MutL. We were able to detect 

a MutL band (0.02% of input) in the IP lane from the wild type strain. The low amount of 

MutL recovered in the wild type strain is likely because we are precipitating only 10.0% 

of intracellular MutS, as well as we expect only 9% of cells to have ongoing MMR as 

determined by the assembly of active MutS-GFP repair centers. In agreement with our 

Figure 17. MutSF319SF320S foci persist on DNA away from the replisome in the absence of 
MutL recruitment. 
The position of repair centers for A) MutS-GFP and B) MutSF319SF320S-GFP within each cell was 
plotted by the coordinates (cell length, distance to pole). Solid black line indicates midcell, whereas 
dashed lines indicates the quarter cell positions. The thick black line indicates the cell end. n=125 C) 
Table indicating colocalization values for MutS-GFP with DnaX-mCherry. The number of cells scored 
is indicated (n). p-values: *=0.00052, **=0.040, #=0.0090, and difference between the 2-AP 
treatment groups =0.105. 
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in vitro data and the MutL-GFP microscopy (Table 4 and Figure 16A), we recovered 

low amounts of MutL in the IP lane from the mutSF319SF320S lysate (<0.001% of the 

input), confirming that MutSF319SF320S is compromised for interaction with MutL in 

vivo (Figure 18). In Figure 7, we also present error measurement from three 

independent IP experiments. In the other experiments performed we did not recover any 

detectable amount of MutL in the MutSF319SF320S lysate further supporting our 

conclusion that this mutant does not interact with MutL (data not shown).  

We then tested whether mismatch detection was necessary to facilitate 

MutS•MutL interaction in vivo, speculating that MutL may frequently probe MutS for the 

appropriate protein conformation, signaled by mismatch detection. To test this, we IPed 

MutSF30A: a MutS variant capable of DNA binding, yet incapable of discriminating 

mismatched DNA from complementary DNA (31). When MutSF30A was 

immunoprecipitated, we found that we successfully captured MutL (~0.007% of input). 

This result shows that the MutS•MutL interaction may dynamically occur independent 

from mismatch identification in vivo, suggesting that MutL is capable of transiently 

“checking” to determine if MutS is mismatch bound before licensing downstream repair 

events. Similar observations have been seen in S. cerevisiae in vitro showing that 

MutSα interaction with MutLα is not entirely mispair dependent (50). 

 

 
Figure 18. MutS crosslinks with MutL in the absence of 

mismatch detection in vivo. 
Co-immunoprecipitation of MutS and MutL in the indicated 
backgrounds with affinity purified polyclonal antibodies against MutS. 
MutS and MutL levels were probed for using antiserum directed 
against MutS and for MutL. Band intensity was determined by using 
ImageJ quantitation software (See Experimental Procedures). 
Relative IP MutL levels reflect absolute band intensity per lane 
normalized to the wild type MutS lane. The error (SEM) were 
calculated from 3 independent experiments.    
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Discussion  
Here, we have identified a conserved MutL binding site on MutS in the Gram-

positive bacterium B. subtilis.  Using peptide array mapping, extensive mutagenesis, 

single-cell fluorescence microscopy and in vitro crosslinking studies, we have identified 

residues found within the core domain, important for MMR in vivo and interaction with 

MutL-NTD in vitro. This site was further refined to a discrete MutL docking site 

composed of adjacent phenylalanine residues F319 and F320. Substitution of both 

phenylalanines to serine completely eliminates MMR in vivo and is defective for 

crosslinking to MutL-NTD in vitro. We also show that purified MutSF319SF320S is 

similar to wild type MutS for dimerization, ATPase activity, and binding to mismatched 

DNA substrates. We can therefore attribute the loss of MMR in vivo to a failure in MutL 

binding and recruitment. To our knowledge this effort defines the first MutL binding site 

on MutS in a bacterial organism lacking a methylation-directed MMR pathway.  
Importantly, the di-phenylalanine motif that we identified in B. subtilis MutS to 

mediate interaction with MutL appears to be conserved and is part of a larger S[X]FF 

motif known to mediate MutL interaction with eukaryotic proteins. In S. cerevisiae, the 

S[X]FF motif was shown to be important for interaction between eukaryotic MutL 

homolog (Mlh1) and several Mlh1 bindings partners including Exo 1, BLM and Sgs1 

proteins (39).  Furthermore, a S[X]FF motif was also shown to mediate interaction 

between MutSβ (Msh2-Msh3) and MutLβ (Mlh1-Pms2), for the human proteins (42). In 

addition, a di-phenylalanine motif has been shown to be critical for interaction between 

mammalian translesion polymerases Rev1 and pol κ (40, 41). Our results in 

consideration with those above, show that adjacent phenylalanine residues play 

important roles in mediating protein interactions in a wide-variety of organisms. 

Previous analysis of the E. coli MutS•MutL interaction identified residues in the 

mismatch recognition and connector domains involved in this interaction (24, 32). 

However, the connector domain of E. coli MutS on its own only weakly interacts with 

MutL, suggesting that additional surfaces on MutS may be involved in this interaction. 

While the mismatch recognition and connector domains are in close proximity to the 

core domain, the residues identified previously in E. coli MutS (Q211 and Q212) and 

patch 3B (F319 and F320) reside in opposite faces of the monomer and are separated 
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by the allosteric transmitter that connects the mismatch- and ATP-binding domains 

(Figure 19). It is conceivable that the different techniques used in our study and that by 

Mendillo and co-workers may have revealed distinct anchoring points of the MutS•MutL 

interface. If true, the MutS•MutL complex could adopt two distinct architectures. MutL 

could interact with both protomers of the MutS dimer to form a productive complex 

(arrow ii in Figure 19), thereby implying a mechanism to “check” MutS for mismatch 

binding through contacts with the mismatch-binding domain that would support the 

distance restraints reported by Winkler and co-workers (24).  

Alternatively, MutL could interact with a single protomer of the MutS dimer (arrow 

i in Figure 19).  This model poses an attractive mechanism to sense the mismatch and 

nucleotide binding states of MutS.  The mismatch- and the nucleotide-binding domains 

of MutS are connected by a transmitter helix that runs along the outer rim of the MutS 

protomer (Figure 19) (36).  Therefore, if MutL binds this face of MutS, the transmitter 

helix is probably a central feature of the interaction interface.  This model also supports 

the established idea that only one of the MutS protomers mediates the interaction with 

MutL (32, 51, 52). Interestingly, mutation of patch 3A, which is part of the MutS 

transmitter, does not affect mismatch repair in vivo (Table 3 and Figure 1). However, 

the MutS3A variant could not be over-expressed recombinantly in E. coli, implying a 

stability defect that could result from mutation of the transmitter. This, in turn, implies 

that MutL senses a different region of the transmitter, potentially α-helix 10 located in 

the C-terminus of the core domain (Figures 15 and 19).  
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Figure 19. Potential interfaces of the MutS•MutL complex. 
A) Orthogonal views of the B. subtilis MutS dimer shown as a ribbon diagram with the residues 
deemed important for the interaction with MutL shown in orange (FF motif, this work), teal (QQ 
motif, {32}) or green (distance constraints identified by crosslinking, {24}) The transmitter region of 
MutS is highlighted in purple.  B) Ribbon diagram of the E. coli MutL-NTD dimer shown as a ribbon 
diagram with the residues identified in crosslinking studies shown in green (24) and additional 
residues deemed important for the interaction with MutS shown in red (60). Dimensions of the 
MutS and MutL dimer surfaces are indicated in angstroms (Å) and the two potential surfaces of 
MutS that MutL could recognize are indicated with pink arrows and labeled i and ii, respectively. 
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Upon identifying the binding interface, we extended our study to investigate the 

dynamic nature of MutS repair complexes in vivo. We present data showing that 

disruption of MutL recruitment causes repetitive MutS loading in response to mismatch 

formation. Since MutL recruitment is blocked we interpret this to mean that a MutS 

intermediate is “trapped” because the downstream step is prevented and we find that 

MutS foci persist with the number of MutS dimers per focus increased. These results 

support a model for repetitive loading by MutS in response to mismatch formation. 

Furthermore, even upon successful recruitment of MutL to a mismatch, we show that 

loss of function due to disruption of the endonuclease active site phenocopies a ΔmutL 

allele, supporting the hypothesis that not only does MutS loading occur independent 

from MutL recruitment, but that endonuclease directed nicking, and presumably excision 

of the mismatch, is a critical feature to disassemble MutS complexes. As more dimers of 

MutS load onto the mismatch proximal DNA, more MutS is available to recruit MutL. In 

support of this hypothesis, real-time in vitro imaging of MutSα and MutLα on DNA 

curtains revealed that the interaction requires a mismatch, yet interaction between 

MutSα and MutLα may occur after MutSα formed the ATP hydrolysis-dependent sliding 

clamp (53). Therefore, even mismatch-dissociated MutSα dimers can still facilitate a 

MutLα interaction, in essence amplifying a signal for MutL recruitment and for the 

advancement of repair. Our experiments represent in vivo data supporting repetitive 

loading of MutS at a mismatch, supporting previous in vitro experiments showing 

repetitive loading using circular mismatch containing substrates (23, 54). In addition to 

providing evidence for repetitive loading in vivo, we also provide evidence that 

mismatch excision is an important step in disassembling MutS repair complexes.  

After excision of the mismatch, MutS loading is halted and the already bound 

MutS dimers will dissociate from the DNA in a timely manner, leading to disassembly of 

the repair center.  In vitro, single molecule imaging reveals that after lesion recognition, 

the newly formed MutSα sliding clamp will remain on DNA with a lifetime of 

t1/2≥198±23.4s (53). If loading is restricted to nascent DNA, then defective repair centers 

should persist on DNA flanking mismatches for up to 10 minutes after initial mismatch 

recognition. Furthermore, as DNA replication continues, newly replicated DNA moves 

farther away from the replisome, taking newly formed mismatches with it. In support of 
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the hypothesis that MutS repair centers defective for MutL recruitment persist longer on 

DNA surrounding the mismatch, the distribution of these MutS centers are located 

farther away from the replisome than repair centers engaging in active repair. Moreover, 

in exponentially growing cells, less repair centers colocalize with predominantly midcell 

replication centers. These two observations support the hypothesis that unproductive 

MutS repair centers persist on mismatch proximal DNA. 

In B. subtilis, a model is emerging for the early steps of mismatch repair in vivo. 

We propose that MutS is positioned at the replisome preceding mismatch detection by a 

DnaN clamp zone that results from Okazaki fragment maturation (Figure 37:App) (31). 

MutS binds free DnaN clamps via a DnaN-binding motif (806QLSFF) found in the 

unstructured C–terminal clamp-binding domain. MutS is able to find ~90% of 

mismatches through a DnaN coupled mechanism. Once MutS detects a mismatch, we 

propose that MutS (Figure 37B) loads repetitively at the mismatch, producing 

numerous DNA-bound MutS dimers (Figure 37C). We propose that repetitive MutS 

loading facilitates efficient MutL recruitment by increasing the local concentration of 

DNA bound MutS dimers surrounding the mismatch. MutS diffusing away from a 

mismatch with MutL may also help MutL identify strand discontinuities necessary to 

direct incision to the nascent strand (Figure 37D). Finally, the data presented here 

support the model that MutL-incision is necessary for disassembly of MutS complexes 

suggesting that mismatch excision is important for preventing further MutS loading. 

Overall, this work describes the interaction between the core domain of MutS and 

MutL both in vitro and in vivo, and the implications of this interaction for the recruitment 

and activation of MutL at MutS repair centers, providing insight into the intermediate 

steps of mismatch repair in live cells. 

 

Experimental Procedures 
Bacteriological methods 

 B. subtilis strains were grown according to established procedures (28). Briefly, 

strains were grown in Luria-Bertani (LB) medium or defined S750 minimal medium. 

Unless otherwise stated antibiotics were used when appropriate with the following 

concentrations: 100 µg/mL spectinomycin (spc), 5 µg/mL chloramphenicol (cam), 5 
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µg/mL tetracycline (tet), 0.5 µg/ml erythromycin and 12.5 µg/mL lincomycin (mls), 5 

µg/mL kanamycin (kan), 150 µg/mL rifampin (rif).  

 

Peptide array analysis 
 The MutS peptide array was synthesized at the Massachusetts Institute of 

Technology Biopolymers laboratory, (Cambridge, MA). The synthesized MutS peptides 

provided 1x coverage spanned the entire amino acid sequence of MutS by overlapping 

10 mer peptides offset by 3 residues. The final array consisted of 282 spotted peptides. 

The peptide array was activated by wetting with 100% ethanol, followed by 3 successive 

washes in Tris-buffered saline + Tween 20 (TBS-T) (50 mM Tris-Cl pH 7.5, 150 mM 

NaCl and 0.05% Tween 20) (pH 7.6) for 5 minutes to remove excess ethanol. The array 

was then blocked overnight in TBS-T and 10% milk solids at 4˚C. The following day, the 

array was washed in TBS-T, and then incubated in 56 nM MutL-myc in protein 

incubating solution (40 mM HEPES-KOH pH 7.6, 23 mM KCl, 1 mM MgSO4, 1 mM DTT, 

0.5 mg/mL BSA, 2% glycerol, and 0.5 mM of either AMPPNP or ADP) for 15 hours at 

4˚C with gentle rocking. The next day, the array was washed for 30 minutes total with 3 

washes each of the following buffers in order: TBS-T, TBS-T with 500 mM NaCl, TBS-

T+0.5% Triton X-100, and TBS-T. The array was then incubated with 1:5000 α-myc 

antibody in TBS-T+5% milk for one hour at room temperature. The wash series was 

repeated, followed by incubation with 1:2000 anti-mouse in TBST+5% milk for 1 hour at 

room temperature. After antibody incubation, one more wash series was performed and 

the array was exposed using Pierce SuperSignal. Exposure time course of 2 minutes, 5 

minutes, and overnight were obtained to identify bound peptides. 

False-positive peptides were removed by comparing to a negative control (no 

myc-tagged protein exposure). Finally, peptides that were surface exposed based on a 

structure-guided sequence alignment of MutS homologs were deemed putative MutL 

binding peptides.  

 

Strains and Plasmids 
All B. subtilis strains used are derivatives of PY79 and are described in 

supplemental Table 1. Plasmids created for use in this study are as follow: 
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B. subtilis mutS and mutL expressing plasmids MutS (pAG 8483; residues 1-858) 

was amplified from B. subtilis strain 168 genomic DNA and ligated into pET-15b 

(Novagen) using restriction sites NdeI and BamHI. MutS variants Patch 1 (pAG 8561; 

E155S, R156S, L157A, E158S), Patch 2 (pAG 8674; E245S, E247S, E248S), Patch 3B 

(pAG 8635; F320S, E321S, R322S, E323S), Patch 4 (pAG 8634; E392S, E395S, 

E396S), Patch 5 (pAG 8616; E510S, E512S, E514S), Patch 6A (pAG 8646; Q806A, 

L807A, F809A, F810A), and Patch 6B (pAG 8535; D811S, E812S, E814S) were 

generated using overlap PCR and ligated into pET-15b using NdeI and BamHI. B. 

subtilis MutL N-terminal domain (MutL-NTD) (pAG 8286; residues 1-339) was amplified 

and ligated into pProEX HTa (Invitrogen) using NcoI and XhoI. All mutants were verified 

by DNA sequencing (MOBIX, McMaster University). 

 
Purification of his6MutS 

 B. subtilis MutS variants were overproduced in BL21 (DE3) pRARE or BL21 

(DE3) pRARE pLysS cells (Invitrogen) and induced with 1 mM IPTG for 5 hours at 

25°C.  Cells were resuspended in buffer A (20 mM Tris pH 8.0, 0.5 M NaCl, 30 mM 

imidazole, 1.4 mM 2-mercaptoethanol, and 5% glycerol), lysed by sonication, and 

clarified by centrifugation at 39,000 g. The soluble fraction was purified over a nickel-

chelating column equilibrated with buffer A and eluted with 240 mM imidazole. MutS 

was then injected onto an ion exchange column (Q-Sepharose, GE Healthcare) 

equilibrated with buffer B (20 mM Tris pH 8.0, 5 mM EDTA, 2.8 mM 2-mercaptoethanol, 

100 mM NaCl, and 5% glycerol) and eluted using a linear gradient to 400 mM NaCl. 

MutS was injected into a gel filtration column (Superdex-200, GE Healthcare) 

equilibrated with crosslinking buffer (20 mM Hepes pH 7.5, 100 mM NaCl, 5 mM DTT, 

and 5% glycerol). Protein concentration was measured at 280 nm.  

 

Purification of the MutL N-terminal domain 
B. subtilis MutL-NTD was overexpressed in BL21 Star (DE3) cells (Invitrogen) 

with 0.5 mM IPTG for 5 hours at 25°C. MutL-NTD was purified using a nickel chelating 

column equilibrated with buffer A (pH 9.0) and eluted using 240 mM imidazole. MutL-

NTD was then injected into a sizing column (Superdex-200, GE Healthcare) equilibrated 
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with crosslinking buffer.  Protein concentration was measured by absorbance at 280 

nm. 

 

Spontaneous mutation rate analysis 
Fluctuation analysis was performed essentially as described (31, 38). We 

inoculated 3 mL of LB with a single colony, and grew at 37˚C until an OD600 of ~1.2. At 

that point, 1 mL of culture was pelleted and resuspended in 100 µL of saline. A portion 

of this resuspension was further diluted to 10-6, and plated onto LB plates in order to 

enumerate the total viable cells with incubation overnight at 30oC to ensure the plates 

with viable cells did not over grow. The original resuspension was plated on LB 

supplemented with 150 µg/mL rifampin plates overnight at 37oC in order to determine 

the number of spontaneous mutations causing rifampin resistance. After performing a 

minimum of 15 independent cultures, the mutation rate was determined using the MSS 

Maximum Likelihood Method using the publicly available FALCOR tool at 

http://www.mitochondria.org/protocols/FALCOR.html. 95% confidence intervals were 

determined and percent mismatch repair activity, was determined using the following 

equation: 

[(RMR null – RMR strain)/(RMR null – RMR wild type)]•100   where RMR = relative 

mutation rate (55). 

 

Chemical crosslinking 

B. subtilis MutS variants (20 µM), 20 µM Mis90, and 20 mM ATP were pre-

incubated on ice for 1 hour. MutL-NTD (40 µM) was then added with equal volume to 

the MutS•ATP•DNA reaction and incubated for 30 minutes at 4°C. Reactions were then 

incubated with 0.8-1.6 mM bis (sulfosuccinimidyl) suberate (Sigma, BS3) for 30 minutes 

at 22°C. Reactions (10 µL) were quenched with 30 mM Tris pH 7.5 for 15 minutes at 

22°C and separated on a 4-15% SDS gradient gel (BioRad) and stained with 

Coomassie Blue. 
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ATPase Assay 
ATP hydrolysis assays were performed as previously described (56) with minor 

modifications. ATPase activity was measured with 0.3 µM MutS and 5 mM MgCl2 in 

reaction buffer (20 mM Tris pH 8.0, 90 mM KCl, 1 mM DTT, 1 mg/ml BSA, and 5% 

glycerol). Reactions (15 µL) were initiated by the addition of 1 mM α-32P-labeled ATP 

and incubated for 1 hour at 22°C. Reactions were stopped with 25 mM EDTA and 

hydrolyzed product was detected by thin-layer chromatography using 750 mM KH2PO4 

for running buffer. ATPase activity was measured in triplicates for each MutS variant. 

DNA binding- Mis90 is a 90 base pair DNA substrate harboring a G/T base mismatch 

(5’ 

gaaaacctgtattttcagggcaggcctattggaattcaacatatgaagtcgacgcagctggcggccgcttctagaggatcc

ctcgagaag 3’ annealed to 5’ 

gcttctcgagggatcctctagaagcggccgccagctgcgtcgacttcatatgttgaattccaataggcctgccctggaaata

caggtttt 3’). MutS (600 pmol) was incubated with equimolar Mis90 in binding buffer (10 

mM Hepes pH 7.5, 70 mM KCl, 2 mM DTT, 5 mM MgCl2, 1 mg/ml BSA, and 15% 

glycerol) for 1 hour on ice. Reactions (15 mL) were resolved on a 6% TBE gel and 

stained with ethidium bromide. Bands were quantified using ImageJ 

(http://rsbweb.nih.gov/ij/). DNA binding activity was measured in triplicates for each 

MutS variant.  

Live cell microscopy 
Cultures for imaging were prepared as described previously (28, 30, 31). Briefly, 

strains for imaging were inoculated in pre-warmed S750 minimal media supplemented 

with either 1% L-arabinose or 2% D-glucose at a starting OD600 of 0.05. Cells were 

grown past three doublings to an OD600 of 0.4-0.5 and imaged. To treat cultures with the 

mismatch-forming drug 2-aminopurine, we split the cultures and added a mock 

treatment to one and 600 µg/mL 2-aminopurine to the other followed by growth for an 

additional hour. Cell membranes were visualized with the fluorescent dye TMA-DPH at 

a working concentration of 10 µM (31). MutS fluorescent fusions were captured with a 

1.2 second exposure. Colocalization experiments were conducted with L-arabinose as 

the sole carbon source, where all other experiments used D-glucose.  
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In vivo crosslinking/co-immunoprecipitation 
B. subtilis cultures were inoculated in LB at a starting OD600 of 0.05 and grown at 

37°C to an OD600 of 0.7. Cells were pelleted, washed twice with crosslinking buffer (40 

mM HEPES pH 7.4, 500 mM sucrose, 2 mM MgCl2, 150 mM NaCl, 0.02% Tween-20) to 

remove LB, and resuspended in 1.75 mL of crosslinking buffer. To crosslink intracellular 

protein complexes, 0.5 mM of Dithiobis[succinimidyl propionate] (DSP) was added to 

the growing cells and crosslinking occurred for 30 minutes at room temperature on a 

rotisserrie. Cultures were quenched by adding Tris-HCl (pH 7.5) to a final concentration 

of 20 mM, and incubated an additional 30 minutes at room temperature on a rotisserrie. 

After quenching, cells were lysed via sonication. Lysates were cleared of debris by 

centrifugation for 30 minutes at 4° C at 14,000 rpm. Lysates were then concentrated to 

50 µL, resuspended in crosslinking buffer supplemented with 1X protease inhibitor 

cocktail and 0.5 mM EDTA to a final volume of 500 µL. A 5% input fraction was pulled 

from the final volume. The 5% input and the rest of the prepared lysate were incubated 

overnight on a rotisserie at 4°C. The IP fraction was incubated with 50 µL equilibrated 

magnetic beads bound with affinity purified α-MutS antisera (MI-1042). Beads were 

prepared according to protocol. In the morning, the lysates were washed 5X for 5 

minutes each with crosslinking buffer on a room temperature rotisserrie. The antibodies 

were eluted from the magnetic beads by a 10 minute incubation in 900 µL of antibody 

stripping buffer (5 mM Glycine pH 2.4, 150 mM NaCl). The IP fraction was concentrated 

by TCA precipitation, and resuspended in 1X western loading dye. IP and Input 

fractions were electrophoresed on the same gel (4-15% gradient gel). Quantitative 

analysis of the resulting bands was conducted in ImageJ. The numbers represent the 

statistical mean of 3 independent experiments with the background subtracted from the 

JSL281 strain. Relative numbers were determined relative to JSL364 (PY79 wild type 

strain).   

 

Western and Far Western Blotting 
B. subtilis whole-cell extracts were obtained by centrifuging 25 mL of mid-

exponential cultures, followed by resuspension in lysis buffer [10 mM Tris-HCl (pH 7.0), 

0.5 mM EDTA, 1 mM AEBSF, 1X Protease Inhibitor cocktail) followed by 3 rounds of 
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sonication (20 Hz, 45 second duration) on ice as described (31). After sonication, SDS 

was added to a final concentration of 1% and non-soluble cellular debris and whole cells 

were removed by centrifugation at 4˚C. The lysate was divided into one-time use 

samples and stored at -20˚C. Total protein concentration of prepared soluble lysates 

was determined using Pierce BCA Protein Assay Kit (Thermo Scientific). Equal amounts 

of total protein were applied to each lane on a 4-15% gradient gel followed by transfer to 

a nitrocellulose membrane (57, 58). Protein levels were determined by using primary 

antisera: α-MutS (MI-1042), α-MutL (MI-1044), and α-DnaN (MI-1038).  

Immunodot blotting was performed as described (30). Briefly, equal molar amounts of 

the indicated proteins were immobilized onto a nitrocellulose membrane with the 

assistance of a Bio-dot microfiltration apparatus (Bio Rad). The membrane was 

incubated in blocking buffer (5% milk solids, 17.4 mM Na2HPO4, 2.6 mM NaH2PO4, 150 

mM NaCl, 0.05% Tween-20, 0.5 mM ATP, 4 mM MgSO4) at 22˚C for one hour. All 

subsequent washes and incubations took place in blocking buffer. After blocking, the 

membrane was incubated with 0.4 µM MutL in blocking buffer for 3 hours at 22˚C. The 

blot was subsequently washed three times and then incubated in affinity purified α-MutL 

antisera overnight at 4˚C. In the morning, the blot was removed from primary antibody 

and washed three times at 22˚C and placed in secondary antisera (1:2000 α-Rabbit) for 

2 hours at 22˚C. The blot was washed 3 more times, followed by a wash in PBS (17.4 

mM Na2HPO4, 2.6 mM NaH2PO4, 150 mM NaCl, 0.05% Tween-20) to remove excess 

milk solids and exposed. 
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Abstract 
The recombinase RecA is required for homologous recombination and 

stabilization of stalled replication forks in many bacteria. In Escherichia coli, the 

RecFOR and RecBCD pathways serve to load RecA, and the choice between these two 

pathways depends on the type of damage encountered. Using RecA-GFP filament 

assembly as a proxy to study RecA loading in vivo, we determined which recombinase 

mediator proteins are necessary in bacteria lacking the canonical RecBCD pathway. We 

find in Bacillus subtilis that the rapid localization of RecA is dependent on the RecOR 

pathway in response to all types of damage examined. This finding excludes AddAB, 

the RecBCD functional homologue, as an alternate RecA loading pathway since RecOR 

is necessary for RecA loading to occur. Furthermore, we find that RecF is not required 

for RecOR-mediated loading of RecA in vivo, yet the presence of RecF increases the 

efficiency of either RecA filament nucleation or elongation. Additionally, we tested the 

role of the single-stranded DNA binding protein (SSB) during RecA loading, as SSB has 

two opposing roles: it represses RecA loading by competing for ssDNA, yet recruits the 

RecA mediator protein RecO to tracts of single-stranded DNA. Truncation of the C-

terminal tail of SSB, which interacts with RecO, eliminates RecA filament formation in 

response to DNA damage. We suggest that this mechanism ensures that RecA is 

loaded only when RecO is present, reducing aberrant filament formation. Overall, we 

provide novel insight into the mechanism that establishes RecA repair filaments in live 

cells. 
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Introduction 
DNA repair pathways are critical for genome maintenance in all living cells [for 

review (1)]. Both prokaryotic and eukaryotic organisms are constantly exposed to 

endogenous and exogenous sources of DNA damage that compromise genome 

integrity, where a single unrepaired double-stranded break (DSB) is lethal. In response 

to clastogenic events, DNA damage encountered by replication forks result in the 

recruitment of DNA tolerance and repair pathways, headlined by the multi-faceted 

recombinase RecA (RAD51 in eukaryotes) to stabilize stalled forks and facilitate strand 

exchange during homologous recombination [for review (2-4)].  

In vitro, RecA loads onto naked DNA in two kinetic steps: 1) nucleation and 2) 

filament elongation. When DNA is pre-coated with SSB, RecA loading is inhibited as 

SSB outcompetes RecA for ssDNA (5). Recombinase mediator proteins (RMPs) are 

biochemically and genetically defined proteins that facilitate RecA loading by reducing 

the kinetic barriers of nucleation by sliding/unwrapping SSB from ssDNA (6). Nucleation 

is complete when a RecA filament reaches a critical mass of 2-5 RecA monomers, 

establishing position on ssDNA by SSB occlusion, supporting future filament elongation 

(7, 8). Elongation of RecA nucleates occurs either by spontaneous or RMPs mediated 

addition of RecA monomers bi-directionally, with the majority of growth in the 5ʹ′-3ʹ′ 

polarity (7, 8).  

The mechanisms E. coli employs to both tolerate and repair DNA damage has 

been extensively studied. DSBs are produced when either both strands of DNA get 

severed or when the replication fork replicates over a single-stranded nick, producing a 

free DNA end. In response to DSBs, E. coli loads RecA via two major pathways: 

RecBCD and RecFOR [for review (3, 9-11)]. Most DSBs (95-99%) are processed by the 

RecBCD pathway, and when deleted, results in a substantial loss of viability (~70%) and 

increased sensitivity to DNA damaging agents (12-15). During DSB repair, double-

stranded ends are bound by the RecBCD helicase-nuclease complex, which after 

association, unwinds and digests both strands simultaneously (16, 17). Upon 

encountering a χ site (a RecBCD regulatory motif 5ʹ′-GCTGGTGG-3ʹ′), RecBCD 

nuclease activity is attenuated in the 3ʹ′-5ʹ′ polarity, while endonucleolytic activity is 

switched primarily to the 5ʹ′-3ʹ′ polarity, generating a 3´ssDNA extension (17). Concurrent 
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with end processing, RecBCD physically loads RecA onto the 3´ssDNA extension, 

which nucleates RecA filament formation (18, 19). This newly generated RecA 

nucleoprotein filament is now capable of synapsis formation and homology search, 

ultimately identifying a homologous template to facilitate repair of the DSB by error-free 

homologous recombination.  

The second loading pathway in E. coli is the RecFOR pathway, and is 

predominantly charged with RecA loading during daughter strand gap repair (20). A 

daughter strand gap is produced when the replication fork tries to replicate over a 

damaged base in the template strand, which produces ssDNA as replication restarts on 

the other side of the lesion. In this pathway, RecO and RecR form a complex (RecOR) 

that is required for RecA loading onto SSB coated ssDNA in vitro (20, 21). RecOR, 

which does not interact with RecA, is thought to locally displace SSB along the DNA. 

The third component, RecF, has been shown to bind to ss/dsDNA junctions, making it a 

critical component for RecA loading on daughter strand gaps, yet its exact biochemical 

function and whether it forms a physical complex with RecOR, is uncertain (21). 

Biochemically, RecOR and RecFOR function by accelerating RecA nucleation, while 

RecOR has been shown to further enhance the rate of filament elongation (6, 22, 23). 

The RecA loading substrates of RecFOR can be expanded to sites of DSBs when 

RecBCD and the single-stranded exonucleases ExoVIII (sbcA) and/or ExoI (sbcB) 

function are disrupted (24). Therefore, E. coli RecFOR is capable of all RecA loading 

activities in the cell when ssDNA persists at break sites in this special situation.  

The RecBCD pathway is found in 39.0% of bacteria, while the homologous 

AddAB pathway is found in 52.6% of bacteria; both pathways are mutually exclusive 

and covering most taxonomic groups (25). In B. subtilis, the AddAB helicase-nuclease 

enzyme is required for double-stranded end processing (26, 27). Like RecBCD, AddAB 

end processing generates a 3´ extension suitable for RecA binding and polymerization 

into a nucleoprotein filament (26, 27). In contrast to RecBCD, B. subtilis AddAB has not 

been shown to physically bind or directly load RecA. The B. subtilis genome also 

encodes the RecFOR proteins (28). A notable difference is that B. subtilis RecO is 

necessary and sufficient to load RecA onto SSB-coated ssDNA in vitro (21, 29). 

Interestingly, prior work showed that RecA-GFP foci were largely recO and recR-
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independent and defects in AddAB did not substantially reduce RecA-GFP foci in vivo 

(30, 31). Therefore in B. subtilis, the process responsible for loading RecA in response 

to DNA breaks, strand gaps, and damage-independent replication fork arrest remains 

unknown.  

Here, we investigate candidate RMPs for their ability to load RecA and establish 

repair centers in vivo. We employed several exogenous damaging agents in equitoxic 

doses to elicit various forms of DNA damage repair and monitor the cells ability to form 

RecA-GFP foci, a proxy for RecA loading. Strikingly, we found that the RMPs RecO and 

RecR are necessary for RecA to load and organize into repair foci/filaments in response 

to endogenous damage and all sources of exogenous DNA damage and fork arrest 

tested. These results support an exclusive role for RecOR in RecA filament nucleation 

on ssDNA in B. subtilis and show that AddAB is unlikely to direct RecA loading. RecF, 

another RMP, was shown to delay RecA filament formation when function was 

eliminated, suggesting a role in RecA nucleation, enhancement of extension, or possibly 

both for DSBs and DSGs. We also show that truncation of the C-terminal 35 amino 

acids from SSB prevents the DNA damage-dependent increase in assembly of RecA 

repair centers, supporting a model where SSB recruits the RecOR complex to damaged 

DNA at the replication fork for nucleation and assembly of RecA repair centers. With 

these results, we propose that RecOR represents the major RecA loading pathway in B. 

subtilis in response to DNA damage, damage-independent fork arrest, and double-

stranded breaks.  

 
Results 
RecA colocalizes to the replisome in response to DNA damage.  

Previous work in E. coli and B. subtilis examined the ability of RecA-GFP to 

organize into foci (14, 15, 30, 32-37). Prior experiments have either tested RecA-GFP 

as the only source of RecA in vivo (14, 32, 33, 38) or tested GFP-RecA expressed 

ectopically with or without the native recA allele intact (30, 36). Here, we examined 

RecA-GFP as the only source of RecA in the cell, expressed at its native locus and 

under control of its native promoter (33). The fusion allele is fully functional at low levels 

of damage (Figure 38: App and Appendix III Results). Unless otherwise indicated, the 
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experiments described below were performed under conditions of DNA damage where 

the recA-GFP allele was fully functional (either the dose is greater than the LD90 or 

equitoxic with PY79).  

	  
Figure 20.  RecA colocalizes to the replisome. 
(A) Percentage of DnaX-mCherry foci colocalized with RecA. (B-D) Representative micrographs of 
RecA-GFP and DnaX-mCherry in cells challenged with phleomycin (B-C) and (D) HPUra. The 
white scale bar represents 4 µm. The membranes were stained with TMA-DPH (Blue). (C) Shows 
two examples of RecA-GFP bridging replisome foci following phleomycin treatment.	  

  

One current model suggests that RecA predominantly localizes away from the 

replisome in response to DNA damage and that replication is not required for repair 

center formation (39). An alternate model predicts that replication is required for RecA-

GFP to form foci (33) and that these foci form at midcell, a localization consistent with 

the site of ongoing replication (14, 33, 36). To differentiate between these two models, 

we constructed a strain with fluorescent fusions to RecA and the replisome marker 

DnaX as the only source of each of these proteins in the cell. Imaging of this strain 

A
Colocalization to DnaX-mCherry

Condition % Colocalization (+/- 95% CI) Number of Cells 

Analyzed

Endogenous (untreated) 74.8 (8.4) 103

40 nM Mitomycin C  65.0 (6.7) 197

UV 40 Joules/m 2 84.3 (5.8) 153

400 nM Phleomycin 67.9 (6.3) 212

���ȝ0�+38UD 93.3 (3.3) 223

 Replisome  RecA-GFP Overlay

+38UD+38UD +38UD

Phleomycin PhleomycinPhleomycin

B

D

i ii

C

Figure 1.
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showed that in untreated cells, ~75% of DnaX (replisome) foci colocalized with a RecA 

focus with colocalization occurring at RecA foci or at the end of long RecA protrusions 

termed filaments. This observation, in consideration with prior published work (33), 

leads us to suggest that RecA initiates filament formation to establish repair centers at 

the replication fork, followed by a search for homologous DNA (Figure 20A).  

With this result, we asked if different forms of DNA damage cause RecA to 

differentially localize to or away from the replisome. Various agents were used to elicit 

unique DNA damage or replication stresses. Following treatment with mitomycin C 

(MMC), an agent that forms mostly bulky monoadducts and interstrand crosslinks (40), 

~65% of replisome foci colocalized with RecA filaments/repair centers (Figure 20A). 

The drug phleomycin, which is a single stranded and double stranded DNA break 

inducing peptide, predominantly requires functional end-processing. A strain lacking all 

end-processing, ΔrecJ, addA::erm, is strongly deficient in RecA filament formation in 

response to phleomycin treatment (Table 5). Similarly to MMC treatment, challenge of 

cells with phleomycin showed ~68% of RecA colocalized with replisomes (Figure 20A 
and B). Both MMC and phleomycin-induced damage are expected to require 

homologous recombination (41). The majority of RecA foci that assembled in response 

to MMC and phleomycin colocalized with the replisome, supporting earlier work that 

replication fork progression is important for RecA repair center assembly in response to 

a site-specific DSBs (33). 

We further tested co-localization of RecA during repair of daughter strand gaps 

using UV. Following challenge with UV, daughter strand gaps and replication-stalling 

thymine-thymine dimers represent the major lesion produced. Daughter strand gaps on 

the lagging strand are easily bypassed during Okazaki fragment synthesis; however, 

upon encountering damage on the leading strand, DNA synthesis between the two 

replication forks are momentarily uncoupled, producing a stretch of ssDNA. Here, we 

employed a dose of UV where the leading strand replication fork would encounter a 

lesion on average every 8.5 s (42-44). Within 5 minutes, we found that RecA foci 

formed immediately, and ~84% of replisomes were colocalized with RecA (Figure 20A). 

With these results, we conclude that the majority of RecA repair centers localize to the 
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replisome in response to endogenous and exogenous sources of DNA damage, 

including daughter strand gaps and DNA breaks. 

Interestingly, we occasionally observed RecA filaments bridging two replisomes 

in untreated cells, as well as following both phleomycin and MMC treatments (Figure 
20C). In E. coli, RecA filaments have been shown to pair with distant sister loci during 

repair (37). Likewise, we suggest that these events represent RecA coated ssDNA 

filaments probing for sister loci. We hypothesize that in these cells undergoing multi-fork 

replication (2 or more replisomes), the same loci is being replicated at roughly the same 

time, which provides the RecA filament with a sister template that is clear of protein 

occlusions, making an ideal template for homologous recombination repair. 

 

RecA colocalizes to the replisome in response to damage-independent fork 
arrest.  

The compound HPUra has been widely used as a tool to rapidly block replication 

fork progression in B. subtilis and other Gram-positive bacteria [e.g. (34, 45-50)]. HPUra 

is a replication-specific class III DNA polymerase inhibitor which reversibly blocks 

replication within minutes (51). To study the RecA response to DNA damage-

independent replication fork arrest, we chose to use this compound because it has been 

so well characterized, with the limitation that HPUra is not commercially available.  

We began by synthesizing HPUra (see Appendix III). From prior literature, the 

hydrazine congener H2-HPUra (compound 4) is described as the compound used to 

inhibit DNA synthesis [e.g. (45, 48-50)]. We show the scheme for the attempted 

synthesis of compound 4 and related congeners in Figure 21A. Briefly, we found that 

HPUra (compound 3) is readily synthesized as described (50). However, numerous 

attempts to reduce HPUra to H2-HPUra using sodium dithionite as described (48), or 

slight variations thereof, did not provide compound 4 but only recovered compound 3. 

This led us to the conclusion that either compound 3 is active as an inhibitor of DNA 

synthesis or compound 3 is reduced within the cell to produce compound 4.  A detailed 

description of the synthesis and structure determination for 3 and congeners is provided 

in Appendix III (data not shown). To test compound 3 for DNA synthesis inhibition, we 

synchronized replication initiation using a temperature sensitive mutant of dnaB as 
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described (33). We extracted untreated cells for analysis at 20 and 60 minutes post 

release and determined the position of replication forks by quantitative illumina 

sequencing (Figure 21B). Cells treated with HPUra were treated at 20 minutes post 

release and genomic DNA was isolated at 60 minutes post release. We show that 

replication forks in untreated cells progress throughout the 60-minute time course, while 

DNA replication in the HPUra treated cells arrests immediately upon HPUra addition (20 

min after release). Therefore, we show that although H2-HPUra is likely only transiently 

present during its attempted synthesis, being unstable and readily oxidizing to HPUra 

(compound 3), HPUra provides the desired effect of rapidly arresting DNA synthesis 

(Figure 21B).  

	  
Figure 21. HPUra immediately stops DNA synthesis.  
(A) Shows the synthesis scheme for HPUra (compound 3). (B) Log2 (fold-enrichment) of read 
coverage in 1000 nucleotide wide windows is plotted versus PY79 genome position. The plot is 
centered on the origin of replication. Because the HPUra stock was dissolved in 50 mM KOH, 
the 60 minute control cells were treated with an equal volume of 50 mM KOH at 20 minutes with 
cells harvested at 60 minutes	  

 

 

It has been shown previously that treatment of B. subtilis cells with HPUra blocks 

DNA synthesis and triggers replication stress as RecA-GFP forms foci in most cells 

(52). We found that at a 40 nM concentration of HPUra, RecA-GFP formed foci in most 

cells as rapidly as we could prepare the sample for inspection by microscopy, as 76% of 

cells contained RecA-GFP foci at 140 seconds post treatment (n= 74). At five minutes 

post treatment, ~94% of cells had RecA-GFP foci (Figure 20A and B). We performed 

colocalization with RecA and DnaX and found that ~93% of replisome foci (n=181) were 
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colocalized with RecA following addition of HPUra to the growth medium (Figure 20D). 

These results show that damage-independent fork arrest causes RecA to localize to 

nearly all replisomes in B. subtilis. This work also clarifies the method for HPUra 

synthesis. 

 
RecA-GFP focus formation is dependent on recO and recR.  

Having established that RecA-GFP localizes to the replisome in response to 

various sources of damage, as well as damage-independent replication fork arrest, we 

asked which proteins are required for RecA loading in vivo. We predicted that recO 

might contribute to RecA-GFP focus formation as B. subtilis since it is sufficient to 

nucleate formation of RecA onto SSB coated ssDNA in vitro (29); however RecO was 

previously reported to only moderately affect RecA thread formation, and not foci 

formation, in vivo (30). In the absence of recO, RecA-GFP formed foci in less than 2.1% 

of cells untreated or following exogenous DNA damage (DSB and DSG repair) (Table 
5). In addition, we found recO to be necessary for damage-independent RecA-GFP 

filament formation in response to fork arrest. Ectopic expression of recO complements 

the recO mutant, restoring RecA-GFP foci formation upon MMC and Phleomycin 

treatment (Figure 41B:App). These results could be explained by release of the GFP 

moiety via proteolytic cleavage from RecA in a recO mutant, however we found that 

RecA-GFP remained intact in the recO::cat background (Figure 41A:App). Together, 

these results show that regardless of the type of damage, RecO is necessary for 

assembly of RecA repair centers.  

Table 5. RecOR are necessary for RecA loading in vivo. 
 DNA Damage Assault 

Genotypes Endogenous 
Stresses/Damage 

40 nM Mitomycin C 0.4 µM 
Phleomycin 

40 µM HPUra 40 J m-2 UV 

recA23mGFPmut2	   12.4% [2.6%] 31.9% [3.8%] 47.2% [3.5%] 94.1% [2.0%] 77.6% [4.9%] 
ΔrecF	   9.2% [2.1%] 7.4% [2.1%] 8.5% [2.1%] 8.2% [2.0%] 9.0% [2.3%] 
ΔrecO	   0.7% [0.7%] 1.5% [0.9%] 2.1% [1.3%] <0.5% 0.6% [0.9%] 
ΔrecR	   2.5% [1.1%] 4.5% [1.4%] 0.7% [0.8%] 1.9% [1.2%] 0.3% [0.7%] 
ΔrecJ,	  addA::erm	   3.0% [1.0%] 25.6% [3.2%] *10.6% [2.2%] 60.7% [3.6%] 44.9% [3.8%] 

All backgrounds have the native locus recA fused to monomeric GFPmut2 via a flexible 23 amino acid 
linker. All cultures were grown to mid-log before chemical/UV treatment. Phleomycin and Mitomycin-C 
were treated for 30 minutes while UV and HPUra treatment lasted 5 minutes. Upon the end of treatment, 
immediate imaging within a 2 minute window was undertaken. The bracketed number indicates the 95% 
confidence interval. * A separate lab stock of Phleomycin was used at a dose of 0.3 µM, which was 
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separately tested to verify equitoxic damaging dose (>LD90).  

Although RecO and RecR have not been shown to form a complex in B. subtilis 

as they do in E. coli, they have been shown to function in the same genetic pathway 

(20, 21, 29, 48). We performed the same experiment in a strain where the recR gene 

was replaced by a cat cassette and obtained nearly identical results to those obtained in 

recO deficient cells (Table 5). All conditions examined in this background showed that 

RecA-GFP formed foci in 4.5% of cells or less. These results show that recO and recR 

are necessary for RecA to form foci in response to DNA damage and damage-

independent fork arrest. This result was not due to proteolytic cleavage of RecA-GFP, 

and this phenotype was complemented by ectopic recR expression (Figure 41B, Data 
Not Shown). We interpret these results to mean that the RecOR pathway is necessary 

for RecA loading in vivo.  

RecF is the third component of the RecFOR pathway, which in E. coli is 

dedicated for the repair of DSGs in vivo. This damage is the product of a single-

stranded gap following UV or mitomycin C exposure. To test the role of RecF in RecA-

GFP repair center formation, we replaced the recF locus with a cat marker (recF::cat) 

and found that the percentage of cells with RecA-GFP foci was mostly unaffected in 

untreated cells lacking recF (wild type cells  untreated: 12.4%±2.6.  recF::cat untreated: 

9.2%±2.1). However, we find that in recF::cat cells, RecA-GFP lost the ability to form 

foci in response to exogenously introduced DSBs and DSGs, as well as damage-

independent replication fork arrest (Table 5). This illustrates that unlike E. coli RecF, B. 

subtilis RecF functions in all RecA loading responses and not just DSG repair.  

 

RecF affects the efficiency of RecA focus assembly.  
We were concerned that the defects we observed in RecA-GFP foci assembly in 

the recOR and recF deficient backgrounds might reflect poor efficiency of RecA loading 

at lower doses of DNA damage. Thus, we repeated the experiments with near 

saturating levels of DNA damage for an hour, ensuring most cells had a single RecA 

focus per cell (Figure 22A and Figure 39:App). At most, RecA generally forms 1 focus 

per nucleoid under extensive damaging conditions (33). Here, we found that recO and 

recR were still necessary for assembly of RecA-GFP foci, even with more time to 
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support filament formation (Figure 22B and Figure 40:App). Interestingly, RecA-GFP 

foci were partially restored in the recF::cat strain (Figure 22B). The foci were 

predominantly circular foci or short filaments, representative of early stages of RecA 

filament assembly, suggesting that RecF may be important for reducing the lag time of 

RecA-GFP nucleation in vivo. This result shows that RecF function is distinct from that 

of RecOR, which is most likely important for both initial RecA nucleation and filament 

growth, as suggested by in vitro experiments (7).  

In total, we conclude that recOR is necessary for RecA-GFP focus formation in 

response to daughter strand gaps (UV, MMC), damage-independent fork arrest 

(HPUra), and DSBs (phleomycin). Furthermore, we conclude that RecF contributes to 

efficient RecA-GFP repair center formation for all types of damage, but is not required, 

for RecA-GFP repair center formation.   

 

SSB C-terminus contributes to the DNA damage-induced assembly of RecA-GFP 
foci.  

In both B. subtilis and E. coli, RecO has been identified as a binding partner of 

SSB (20, 53, 54). Because we show above that RecOR is necessary for RecA to 

assemble into foci, we asked if SSB contributes to this response. In E. coli, the SSB C-

terminus mediates interaction with its binding partners, with the last two residues (PF), 

being required for these interactions [for review (54)]. Therefore, the PF residues are 

essential and mutation of just the proline (ssb113) causes temperature sensitive growth 

and UV sensitivity (55-57). Such a strong phenotype limits the ability to study E. coli 

SSB binding partners in an in vivo context. Interestingly, ssb alleles in B. subtilis 

encoding truncations of the C-terminal 6 or 35 amino acids are viable (53, 58), providing 

an experimental platform for understanding the effect of the SSB C-terminus on DNA 

replication and repair in vivo (53, 58). To this end, we integrated the ssbΔ35 allele, 

which uses an IPTG regulated promoter to drive gene expression downstream and the 

corresponding wild type control (ssb3+) into an isogenic strain background carrying the 

recA-gfp allele as described (53, 58). In the ssb3+ strain, RecA-GFP foci formed in 

~15% of cells, which is similar to a native ssb+ control [Table 5 and (33, 38) (33, 38)]. 

Challenge with MMC resulted in RecA-GFP foci formation in ~35% of cells, 
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demonstrating damage-inducible assembly of RecA-GFP foci in the ssb3+ control 

(Figure 22C). In the ssbΔ35 background, we observed a similar percentage of 

untreated cells with RecA-GFP foci (~20%) and following treatment with MMC (~22%). 

This indicates a failure in the damage-inducible response of RecA in the ssbΔ35 strain 

(Figure 4C and Figure 42:App). Despite the loss of RecO recruitment, we still observe 

elevated levels of RecA foci in both the treated and untreated group. In E. coli, loss of 

the C-terminal tails leads to a loss of ssDNA binding stability (59). We hypothesize that, 

likewise, the 35 residue truncation of the C-terminal tail of B. subtilis SSB may cause a 

decrease in binding stability to ssDNA, allowing spontaneous RecA nucleation at 

elevated rates (See Discussion). Overall, these results show that the DNA damage-

induced localization of RecA is dependent on the SSB C-terminus in vivo.  

 

Discussion 
Identification of necessary recombinase mediator proteins in Bacillus subtilis.  

In B. subtilis, the proteins required to elicit formation of RecA-GFP foci have 

remained unknown. We show that RecOR are necessary for the assembly of RecA-

mediated DNA repair foci in live B. subtilis cells to both endogenous and exogenous 

sources of DNA damage, as well as HPUra, a drug that causes DNA damage-

independent replication fork arrest (52). In E. coli, DSBs are initially processed by 

RecBCD to provide the 3´ ssDNA segment, followed by RecA loading, making most 

spontaneous RecA-GFP foci in rich medium recB-dependent (14, 18). In B. subtilis, 

AddAB provides a 3´ extension (26), but AddAB has not been shown to load RecA 

biochemically. Our results with phleomycin, which requires DNA end processing to 

produce DSBs, shows that RecOR is still necessary for assembly of RecA repair 

centers on AddAB processed ends. This observation makes it unlikely that AddAB can 

physically load RecA after generating a 3ʹ′ DNA segment. We suggest that SSB binds 

the 3´ extensions to protect the DNA end, followed by recruitment of RecOR through 

interaction with the SSB C-terminus (Figure 22D). 
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Figure 22. RecF and SSB are important for efficient assembly of RecA foci. 
(A) Shown is a time course experiment representing the percentage of cells with RecA-GFP foci 
untreated (black), challenged with 100 ng/mL mitomycin C (red) or 3 µM phleomycin (purple) over 60 
minutes. Each treatment was scored in triplicate at the time points indicated. Error bars reflect the 95% 
confidence interval. (B) Shown is a bar graph for the percentage of cells with RecA-GFP foci in the 
indicated backgrounds untreated or following challenge with 100 ng/mL mitomycin C or 3 µM phleomycin. 
(C) Bar graph quantifying the percentage of cells with RecA-GFP foci following treatment with MMC. The 
number of cells quantified are from left to right are 545, 1401, 622, and 479. The difference in the 
percentage of cells with foci is significant for ssb3+ when comparing MMC treated to untreated groups 
with p=2.25X10-18. The differences in the percentage of cells with RecA-GFP foci in the ssbD35 strain are 
not significant when comparing MMC (p=0.26) to untreated using a one-tailed p-value. Error bars 
represent the 95% confidence interval. (D) A model for RecOR-dependent RecA loading and 
establishment of RecA repair centers in B. subtilis at the site of a DSB.	  
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It has been published that GFP-RecA is partly unaffected for focus formation in 

recO or recR deficient cells, as cells deficient for RecO function still showed GFP-RecA 

foci in ~25% of cells challenged with 50 ng/mL MMC (30). The differences between the 

two studies are the RecA GFP fusions. We used a recA-gfp fusion located at the native 

locus as the sole source of RecA, whereas the other study expressed GFP-RecA 

ectopically from an inducible promoter (where the native locus recA was deleted). We 

suggest that ectopic expression of GFP-RecA may have increased the levels of RecA to 

a point where RecA was able to bypass the requirement for recO and recR for repair 

center assembly. B. subtilis RecA can self-assemble on SSB coated ssDNA in vitro 

although the reaction is accelerated with RecO (29). Taking this prior work into 

consideration with our study, we suggest that recOR is necessary for RecA to load in 

vivo when RecA is expressed at its native levels. Importantly, many more bacteria use 

AddAB for end processing of DSBs than RecBCD (25). Therefore, we speculate that 

RecOR may also facilitate RecA loading in other AddAB containing bacteria as well.  

RecF has been placed with the recOR pathway by epistasis (28, 53).  We 

therefore tested the effect of a recF null allele on the ability of RecA to assemble into 

foci. We found that RecF was important, but not necessary, for RecA to rapidly organize 

into filaments in response to DNA damage. Because we found at high concentrations of 

damage that RecA formed repair filaments consistent with early stages of filament 

formation, we hypothesize that RecF may be important for reducing the lag time of 

RecA-GFP nucleation in vivo. This result shows that RecF function is distinct from that 

of RecOR, which is most likely important for both initial RecA nucleation and filament 

growth.  

 Because we found a complete dependency on RecO for assembly of RecA repair 

centers, we tested a role for SSB since RecO is an SSB binding partner in both E. coli 

and B. subtilis (20, 53). SSB contains a C-terminal tail, which binds to and interacts with 

several proteins, recruiting them to sites of excess ssDNA (53, 54, 60, 61). In B. subtilis, 

it has been shown that RecO binds SSB, and that focus formation by ectopically 

expressed GFP-RecO relies on the SSB C-terminus (53). The data we present here 

shows that the SSB C-terminal 35 amino acids are important for the DNA damage-

dependent localization of RecA. In E. coli, it has been shown that deletion of the SSB C-
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terminal PF is lethal since these two residues mediate protein-protein interactions 

important for essential replication functions and repair (55, 56). Thus, how can B. 

subtilis tolerate truncation of the C-terminal 35 amino acids, including the ultimate PF 

motif? In contrast to E. coli, B. subtilis SSB contains three PF repeats in the C-terminal 

38 amino acids and the Δ35 truncation would leave the sequence PFG on the C-

terminus (Figure 42:App). We suggest that the remaining PF motif remaining in the 

Δ35 truncation allows for viability and recruitment of a limited number of SSB binding 

partners. It was shown previously that ssbΔ6 and ssbΔ35 alleles are sensitive to DNA 

damage, including MMC, suggesting the need for all three PF motifs to facilitate repair 

(53). Our results here show that the ssbΔ35 allele eliminates RecA-GFP assembly in a 

DNA damage-dependent manner. However, we do observe an elevated level of RecA-

GFP foci in ssbΔ35. We suggest this may be due to a reduced level of SSB DNA 

binding, as purified SSB variants lacking the C-terminal tail fails to wrap the full amount 

of SSB at physiologic NaCl levels (55 nucleotides occluded in SSB variant vs. 65 

nucleotides of WT SSB) (59). Since RecA binds a minimal dsDNA unit of 3 nucleotides, 

this disruption may be sufficient to support spontaneous nucleation, which can then 

support filament growth of RecA (8).  

 

HPUra-dependent inhibition of DNA replication.   
6-(p-Hydroxyphenylazo-uracil (HPUra) is a PolC specific inhibitor that has been 

widely used in B. subtilis and related Gram-positive bacteria to block DNA replication 

[e.g. (34, 45-50)]. HPUra has been a very important tool for investigating the 

involvement of DNA replication in a number of different DNA transactions in vivo [e.g. 

(34, 46, 47, 52)]. Prior work suggested that the hydrazine congener (H2-HPUra) is the 

active form that inhibits DNA synthesis (45, 48-50). We were unable to synthesize H2-

HPUra and could only obtain the oxidized form (HPUra). We cannot exclude the 

possibility that HPUra is reduced in vivo to form H2-HPUra, however, an HPUra 

tautomer (compound 3a) could form the proper hydrogen bonds to pair with dCMP in 

vivo in the absence of reduction to H2-HPUra. With these results, we suggest that the 

penultimate compound (HPUra), which is readily synthesized as described [(48) and 
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Supplemental Information], is the appropriate compound for rapidly inhibiting DNA 

synthesis in B. subtilis and perhaps other Gram-positive bacteria. 

We also show that HPUra is indeed both a potent inhibitor of DNA synthesis and 

triggers replication stress in live cells (Figures 1 and 2). We speculate that the cause of 

HPUra-induced replication stress is due to an uncoupling of the replicative polymerase 

PolC from the replicative helicase, DnaC. We suggest that a blockage to PolC 

movement and continued unwinding of the DNA by the helicase DnaC (different from E. 

coli DnaC) ahead of the blocked fork would form excess ssDNA, providing a substrate 

for RecA binding. Interestingly, it was shown that induction of the stringent response 

with arginine hydroxymate, which stops replication elongation via inhibition of primase 

activity, fails to form RecA-GFP filaments (52). We suggest that by directly inhibiting 

primase, the Primase-DnaC complex is maintained, causing DnaC to remain at the 

blocked fork and preventing formation of excess ssDNA and RecA-GFP recruitment.  

  

Material and Methods 
Bacteriological methods.  

The bacterial plasmids and strains are listed in Table 10 and 11 respectively.  

The following concentrations of compounds were used: 5 µg/mL chloramphenicol (cat), 

100 µg/mL spectinomycin (spc), 12.5 µg/mL tetracycline (tet), 0.5 µg/mL erythromycin 

(erm), 100 ng/mL MMC, 3 µM phleomycin, 5 µM IPTG and 0.125 xylose for recO and 

recR (62, 63). 
 
Live cell microscopy.  
Microscopy of live cells was completed as described [(64-66) for review (67)]. Briefly, a 

starting culture was inoculated in 1X defined S750 minimal media supplemented with 2% 

glucose at a starting OD600 of 0.05 and allowed to grow for three doublings (66, 67). 

Cultures were split and one culture was challenged with the indicated damaging agent, 

while the other was left untreated as a control and grown for the indicated times. 

Following incubation, 200 µL aliquots of cells were stained with the vital membrane stain 

FM 4-64 or 10µM TMA-DPH and placed onto 1% agarose pads made with 1X spizizen 

salts.  Cells were imaged with an Olympus BX61 microscope using an Olympus 100X 
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oil immersion 1.45 NA TIRFM objective lens (67). Imaging for each strain was 

performed independently a minimum of three times. 

    

Compound synthesis.  
All small molecule compounds used in this study were synthesized by the 

Vahlteich Medicinal Chemistry Core, University of Michigan.  6-(p-Hydroxyphenylazo)-

uracil (3, HPUra) was synthesized by known methods (50) along with the novel silylated 

ether analogue 5 and the known analogue, 6-(phenylhydrazino)-uracil, 6 (50). Complete 

experimental details are provided in Supplemental Information.  Stock solutions (20 

mM) of assayed compounds were prepared in dimethyl sulfoxide (DMSO) or 50 mM 

KOH in the case of HPUra, stored in the dark, and kept for no more than 4 weeks. The 

compounds were added at 162 µM except when indicated otherwise. DMSO or KOH 

were used as controls and the same volume as used for the stock solutions was added.  

 

Mitomycin C survival assay.  
In general, sensitivity to DNA damage was determined as described (38, 68, 69). 

Briefly, strains were grown with the appropriate antibiotic overnight at 30°C.  Single 

isolates were grown in 6 mL of LB in the dark to a final OD600 of 0.4-0.5.  Five 1 mL 

aliquots of culture were centrifuged for 2 minutes at 10,000 rpm and the supernatants 

were removed. Cells were resuspended in 1 mL of 0.85% saline containing various 

MMC concentrations from 0 to 40 nM in the dark.  After 30 minutes, cells were pelleted, 

damaging agents were aspirated, and cells were resuspended in 100 µL 0.85% saline. 

The suspension was serial diluted, followed by plating on LB agar plates and grown 

overnight at 30 °C.  Percent survival was calculated by taking the mean survival of an 

indicated treatment relative to the mean survival of untreated cultures.   

 

Replication inhibition assays.  
Cultures were grown in S750 minimal medium at 30°C to an OD600 of 0.35. Using 

the dnaB134 allele, replication initiation was inhibited while ongoing replication was 

completed by shifting cultures to 45°C for one hour. Upon downshift to 30°C, aliquots of 

culture were removed at specific time points and added to an equal volume of ice-cold 
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methanol prior to centrifugation and genomic DNA purification. When used, HPUra, 

RJS-7-061 or RJS-7-070 were added to cultures at a final concentration of 162 µM 20 

minutes after temperature downshift with cells harvested at 60 minutes. Genomic DNA 

was sequenced on the Illumina HiSeq-2000 platform, generating 50 base single-end 

reads. Library preparation and sequencing was performed by the University of Michigan 

DNA Sequencing Core. Sequence data were aligned to the PY79 reference genome 

(Accession number CP006881, (70)) using bwa aln with default parameters followed by 

bwa samse with the “-n” parameter set to 1 (71). For coverage calculation, the genome 

was split into 1000 nucleotide wide windows and coverage of each window was 

normalized per million reads mapped to the entire genome. Fold-enrichment for each 

sample was calculated by dividing normalized coverage for each window by the 

normalized coverage of the same window for genomic DNA harvested immediately after 

temperature downshift. Resulting enrichment values were then offset to achieve equal 

baseline between samples. 
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SUPPLEMENTAL MATERIAL 

The Supplemental Material found in Appendix III includes a description of the chemistry 

and biological methods, Table 10 and 11, and Figures 38-42. 
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Chapter V 
Summary and Perspectives 

JSL composed this chapter. 

Cytological studies in Bacillus subtilis have identified the progressing replication 

fork as a target site for the initiation of mismatch repair (MMR), daughter strand gap 

repair, and homologous recombination (1-3). Over the last few years, significant 

progress has been made towards understanding how the replication fork’s architecture 

facilitates the identification of various forms of DNA damage and base pairing errors: 

helix distorting IDLs (insertion/deletion loops), non-helix distorting Watson-Crick 

mismatches, and various forms of DNA breaks that leads to replication fork 

arrest/collapse. Hence, replication coupling appears to serve as the first step in a 

choreographed response dedicated to the rapid and efficient repair of various lesions. 

In mismatch repair, error detection by MutS is physically tied to the DnaN 

processivity clamp (1, 2). After directing processive replication by the replicative 

polymerases, DnaN continues to encircle DNA, passively diffusing along its length. 

Numerous rounds of clamp release from recycling polymerases on the leading and 

lagging strands producing an enriched zone of DNA-bound DnaN clamps, forming an 

ideal scaffolding to direct mismatch detection by MutS to nascent DNA (4, 5). This 

coupling ensures mismatch detection on replication fork-proximal DNA, which is cleared 

of inhibitory protein inclusions, as well as adjacent to the ongoing replication forks. 

Additional downstream steps, such as strand discrimination and MutL-mediated 

endonuclease cleavage, further require an intimate connection with the replication forks, 

possibly via the DnaN-clamp zone itself. 

To date, the key unresolved question in the MMR field is what comprises the 
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mechanism of strand discrimination. A mismatch itself possesses no information 

implicating one of its bases as originating from the parental (template) strand. 

Therefore, upon mismatch detection, the MMR apparatus must determine from outside 

the mismatch which strand is the parental strand containing the correct genetic 

information, and subsequently direct repair towards the daughter strand. This entails 

excision of the DNA surrounding the mismatch on the newly replicated strand. Studies 

to date have offered several clues as to how strand discrimination is accomplished: 1) 

MMR occurs preferentially on the lagging strand, 2) a single-strand nick directs strand 

excision to the mismatched base topologically contiguous to the nick, 3) MutL and 

MutLα have clamp binding motifs located adjacent to the endonuclease active site, 4) 

PCNA and the RFC clamp loader complex enhances MutLα endonuclease activity, and 

5) PCNA loading onto a covalently closed circular DNA substrate containing a mismatch 

is sufficient to license MutLα endonuclease activity, although with absolute loss of 

strand preference(6-13). These clues suggest that processivity clamps, via licensing 

endonuclease activity, function as the strand determinant during repair.  

Strand breaks function as loading sites of processivity clamps, but once loaded, 

how could they relay information to the MMR machinery? Interestingly, the monomers of 

the clamp face are non-equivalent, as clamps appear tilted at various angles when 

loaded onto DNA. A computational modeling study of PCNA on DNA predicted that a 

~20° tilt formed to optimize basic amino acid contacts of the PCNA inner ring to the 

negatively charged sugar-phosphate backbone on DNA (14). Additionally, a crystal 

structure of the E. coli clamp bound to DNA found the clamp skewed from the 

perpendicular axis by 22° (~20-40˚ for PCNA)(15). Yet further studies confirmed the 

presence of a tilt. A DNA-bound PCNA co-crystal structure was elucidated (albeit at low 

density) with a ~40° tilt (16). Finally, a single-molecule electron microscopy study of 

Pyrococcus furiosus PCNA also found a tilt on PCNA (17). Despite this evidence, it 

remains speculative that a tilt exists, yet if present on DNA loaded clamps, may reflect 

the loading orientation onto the primer termini by the clamp loader, thereby providing 

intrinsic assignment of parental and daughter strands. Mechanistically, the tilt of the 

clamp may present only one monomer to engage the MutL endonuclease via a clamp-

binding motif, licensing strand nicking to only one strand: the newly replicated daughter. 
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Importantly, the PCNA clamp has been shown capable of propagating strand polarity 

information, as it tracks along the rotational pitch of the double helix (corkscrew-like 

motion), and therefore, its loading orientation would persist as it diffuses down the 

DNA(18). Although current data predisposes us to consider processivity clamps as the 

carrier of information begetting strand discrimination, our notions of this role remain 

highly speculative. 

When B. subtilis cells are exposed to a sufficient large dose of ionizing radiation, 

potentially lethal double-strand breaks (DSBs) are formed. Cytological studies 

surprisingly found that these cells fail to produce RecA-GFP filaments in the absence of 

concurrent replication, despite the presence of potentially lethal lesions (3). This 

observation was extended to various forms of DNA damage: endonuclease-mediated 

DSBs, Mitomycin C induced inter- and intra-strand crosslinks, and UV-induced 

pyrimidine dimers. When replication is initiated, RecA filaments are generated that 

further localize to the vicinity of the replisome, arguing that the replication forks license 

or couple RecA loading to lesions encountered. This indeed appears to be the case, as 

Rec(F)OR facilitates RecA loading via association with the C-terminal tail of SSB. 

Importantly, other recombination/replication restart proteins physically bind SSB via its 

C-terminal tail: RecJ, RecS, RecQ, YrrC, RecG, SbcC, PriA, among others, suggesting 

an intimate coupling of recombination repair and replication restart with the replication 

fork and SSB (19, 20).  

Lesions that facilitate replication fork collapse are intrinsically tied to replication 

as the source of ssDNA, the intimacy between DSBs and replication remains surprising 

and raises an additional question: Is there a spatial and temporal relationship between 

DNA end-processing and DNA replication? As in Escherichia coli, B. subtilis has two 

parallel pathways for end-processing: the RecBCD-like AddAB complex, as well as the 

RecQ helicases (RecQ and RecS) and the RecJ 5ʹ′-3ʹ′ exonuclease (21). All components 

of the second pathway associate with the C-terminus of SSB, and when fused to GFP 

and overexpressed, constitutively colocalize with the replisome (19). This data suggests 

a coupling between end-processing using the RecJQS pathway, with an application of 

for processing or repairing of regressed replication forks. Yet neither AddA nor AddB 

has been shown to bind SSB. Additionally, deletion of either AddA or RecJ fails to 
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produce a significant increase in sensitivity to MMC, suggesting redundancy for end-

processing machinery in B. subtilis. AddAB is a highly processive helicase/nuclease, as 

it is able unwind and degrade dsDNA to the next χ site. If RecA loading occurs strictly at 

the replication fork, it seems logical to suspect that rapid and extensive strand 

degradation would occur at the replication fork, with the added benefit to the cell of a 

readily available homologous locus on the newly replicated sister chromosome. Yet, no 

evidence suggests a coupling exists of the AddAB associating with the replication fork 

or its protein scaffolds. How the cell balances end processing, accompanied with 

extensive stand degradation, and loss of genetic information with repair to ensure 

viability remains unclear.  
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Supplemental Results  
Mismatch detection by MutS is necessary for MutL-GFP focus formation. To 

further test the effects of the mutSF30A allele on MMR, we fused mutL to gfp to 

determine if the MutSF30A complex, which forms foci independent of mismatch binding, 

could elicit the downstream step of MutL-GFP focus formation. When native mutS is 

upstream of mutL-gfp, we found that ~16% of cells form MutL-GFP foci untreated (Fig 

S2). Challenge of MutL-GFP cells with 2-AP or placement into a genetic background 

containing a proofreading deficient polCexo- allele, we found an increase in the percent 

of cells with foci to ~36% and ~33% of cells respectively (Fig S2). This result shows that 

mismatch detection by MutS stimulates MutL to form foci in vivo. In contrast, a strain 

with a clean deletion of the mutS coding region showed a striking reduction in the 

percent of cells with MutL-GFP foci (<3% of cells) and in the absence of mutS, MutL-

GFP foci were not stimulated by treatment with 2-AP (Fig S2). We asked if mismatch 

binding by MutS was required to elicit MutL-GFP foci.  We show that in a mutSF30A 

background, MutL-GFP foci formed in ~11% of cells. These foci were qualitatively dim 

relative to MutL-GFP foci that form in a mutS+ strain. Furthermore, we found that in the 

mutSF30A strain, 2-AP failed to stimulate an increase in MutL-GFP focus formation 

when compared with wild type mutS. With these results we conclude that MutL-GFP 

focus formation is primarily driven by the formation of a binary complex between MutS 

and a mismatch, since mutSF30A is substantially reduced for MutL-GFP recruitment 

and unresponsive to 2-AP treatment (Fig S2). 
MutL-GFP colocalizes with the replication apparatus. We also characterized the 

ability of MutL-mCherry to colocalize with the replisome. We constructed a strain 

possessing both dnaX-gfp and mutL-mCherry alleles, where both were integrated at 

their native locus and expressed from their native promoters. In growing cells, MutL-

mCherry colocalized with the replisome at levels comparable to MutS (~59%, n=130) 

(Fig 3D). This is different from results obtained in S. cerevisiae, where the Mlh1-PMS1 

foci are not coincident with replication centers (1-3). It should be noted however, that 

MutL foci in both organisms are dependent on MutS. This suggests that in B. subtilis, 

MutL may also be positioned at the replisome waiting for MutS to detect a mismatch. 

When challenged with 2-AP, MutL-mCherry was reduced for colocalized with the 
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replisome to ~49% (p=0.0568). Because MutL-GFP foci behave similarly to MutS-GFP 

foci when treated with 2-AP, we speculate that MutL may be poised with MutS at the 

replisome waiting for mismatch identification. We further speculate that upon the 

initiation of repair, MutL associates with the repair complex and moves away from the 

replisome in a complex that can be observed by fluorescence microscopy. 
 
Materials and Methods 
MutS and MutSF30A protein purification 
MutS and MutSF30A were overexpressed from pET11t-mutS and -mutSF30A 

respectively in E. coli BL21DE3 using standard procedures (4). Cell pellets were 

resuspended in resuspension buffer (20 mM Tris HCl (pH 7.6), 500 mM NaCl, 4 mM 

DTT, 20 mM spermidine trihydrochloride, and 0.5 mM EDTA) and lysed by passage 

through a French pressure cell (3 passes at a setting of 15,000 PSI). Cells debris was 

pelleted at 15,000 rpm for 30 min at 4˚C. All subsequent protein purification steps were 

performed on ice or at 4˚C. Solid ammonium sulfate was added in order to achieve 30% 

saturation of the supernatant. Precipitated protein was removed by centrifugation at 

15,000 rpm for 30 minutes. The supernatant was collected and ammonium sulfate was 

added to 40% saturation, which preferentially precipitated MutS and MutSF30A. 

Precipitated protein was removed via centrifugation at 15,000 rpm for 30 min and flash 

frozen in liquid N2 and stored at -80˚C.  

The pellet was thawed on ice and then resuspended in buffer QA (20 mM Tris HCl (pH 

7.6), 100 mM NaCl, 1 mM DTT, 0.5 mM EDTA, and 10% glycerol). Once the pellet was 

resuspended, the sample was desalted using HiPrep 26/10 desalting column (GE 

Healthcare, Uppsala, Sweden) pre-equilibrated in buffer QA. This material was further 

purified with a HiTrap Q HP column (GE Healthcare, Uppsala, Sweden) pre-equilibrated 

in Buffer QA. MutS and MutSF30A were eluted with a 20 column volume gradient (from 

100 mM NaCl to 600 mM NaCl). MutS and MutSF30A containing fractions were pooled 

and once again desalted with a HiPrep 26/10 desalting column pre-equilibrated in Buffer 

HA1 (5 mM potassium phosphate (pH 7.4), 30 mM NaCl, 1mM DTT, and 10% glycerol). 

The desalted sample was purified with a hydroxyapatite Bio-Scale Mini CHT Type 1 

column (Bio-Rad) and eluted with a phosphate gradient (5 mM-400 mM) over 20 column 
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volumes. Protein samples were concentrated with a Vivaspin 20 concentrator (GE 

Healthcare-28-9323-62) with a 50 kDa molecular weight cutoff and then desalted with a 

HiPrep 26/10 column following using the following storage buffer (20 mM Tris HCl (pH 

7.6), 200 mM NaCl, 4 mM DTT, and 10% glycerol). Samples were again concentrated 

with a Vivaspin 20 concentrator and aliquoted into small usable samples and flash 

frozen in liquid N2. MutS and MutSF30A behaved identically throughout the purification 

process, indicating similar biochemical characteristics. Absorbance spectra were 

obtained using a 50-Bio UV Spectrophotometer (Varian, Palo Alto, CA) in both the 

natured state (storage buffer) and denatured state (storage buffer with 6M Guanidine 

HCl). No light scattering was observed from 300-600 nm in the native conditions, 

indicating no aggregation within the sample. In addition, no significant absorbance was 

detected at 250 nm indicating no nucleotides present. All protein concentrations were 

determined using extinction coefficients derived at ExPASy Proteomics Server 

(http://expasy.org/). DnaN was purified as described previously (5).  

Construction of an unmarked-in frame mutSF30A mutant allele 
In order to introduce the mutSF30A allele into B. subtilis, we used the pMiniMAD2 

vector as described (9). pMiniMAD2 contains an erythromycin cassette, as well as a 

temperature sensitive origin of replication. Plasmid pJSL44 was introduced into PY79 

via Campbell-type integration at the restrictive temperature (37˚C) for replication, 

selecting for integration of the plasmid into the chromosome by mls selection. After the 

initial Campbell type integration, pJSL44 was evicted as described (9). To rid the strain 

of the integrated plasmid, transformed colonies were grown in 3 ml of LB broth at a 

permissive temperature for plasmid replication (22°C) for 14 h, diluted 30-fold in fresh 

LB broth and incubated at 22°C for another 8 h. This process was continued over three 

successive days, and then serial dilutions were plated on LB agar at 37°C. Colonies 

were then colony purified on LB at the restrictive temperature and tested for mls 

resistance. Strains that were sensitive to mls selection were screened for increased 

spontaneous mutagenesis, consistent with a mismatch repair defect. Colonies with a 

high increase in mutagenesis were subject to sequencing of the mutS genetic locus to 

verify the presence of the F30A change and confirm that no other nucleotide changes 

were present.  
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Construction of an unmarked-in frame ΔmutS mutant allele 
The ΔmutS allele was built in a similar way to the unmarked-in frame mutSF30A mutant 

allele. Differences are that a 500 bp region upstream of mutS was amplified with 

primers JSL 156/157 (insert A) and a 500 bp region downstream of mutS was amplified 

with pJSL 158/159 (insert B). Furthermore, we amplified the pMiniMAD2 vector 

(previously cut with KpnI in order to linearize the plasmid) with pJS282/283 to get a ~6.3 

kB linear PCR product. These DNA fragments all maintained 20-25 bp of sequence 

homology between adjacently targeted segments. The two inserts, along with the 

prepared pMiniMAD2 vector were fused using sequence and ligation-independent 

cloning (SLIC) (10). The ΔmutS was integrated into the chromosome as described 

above for the mutSF30A mutant allele. The final strain was ΔmutS, as well as 

containing a deletion of the mutSL intergenic region. The resulting strain placed the 4-

1881 bases of mutL behind the start codon (bases 1-3) of mutS, as shown in SI Fig 4. 

Thymidine incorporation to monitor DNA synthesis 
B. subtilis cells were grown in S750 minimal media supplemented with 2% Glucose at 

37˚ C from an initial starting inoculum of 0.050. When the cells reached mid-exponential 

phase, 1.8 mL of culture was pulse labeled with 45 µL of 3H-thymidine (50 Ci/mmol; 1 

mCi/mL) and incubated at 37˚ C. At the appropriate time points (30, 120, 300 and 600s), 

0.4 mL of culture was removed and mixed into 3 mL of ice cold 10% TCA and incubated 

on ice for ≥30 min. Samples were filtered on glass microfibre filters (GF/C, Whatman) 

via vacuum. Each filter was washed three times with 5 mL ice-cold 10% TCA, followed 

by three additional washes with 5 mL of -20˚C 70% ethanol. Filters were dried under a 

heat lamp, placed into scintillation fluid, and incorporation of 3H-thymidine into nucleic 

acids via replication was elucidated using scintillation counting.    

Plasmid construction  
pJSL30 was constructed in order to place mutS-gfp expression under the control of the 

Pspac promoter at the ectopic amyE locus. mutS was amplified off of B. subtilis (PY79) 

chromosomal DNA using the primers oJSL81 and oJSL82. The insert was gel purified, 

digested with SalI and XhoI, PCR purified, and ligated into pBS226 with the original 

mutL insert removed. 
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pJSL35 was constructed to knock out the mismatch detection capability of pJSL30 my 

introducing mutSF30A. To do so, pJSL30 was quick-changed using standard protocol 

(Zheng, Baumann, Reymond, 2004) to produce the F30A mutation using the primers 

oJSL125 and oJSL126. 

pJSL36 was constructed to generate the mutSF30A mutant allele at the native locus 

without the addition of any exogenous nucleotide sequence.  The sequence spanning 

from 457 bases upstream of the mutS +1 base to 570 bases downstream was amplified 

off of the B. subtilis PY79 chromosomal DNA using the primers oJSL123 and oJSL124. 

The fragment was gel extracted, digested with BamHI and KpnI, and ligated into 

pMiniMAD2. pMiniMAD2 contains an erythromycin cassette, as well as a temperature 

sensitive origin of replication (37˚). 

pJSL40 was constructed to place codon optimized (C.o.) and monomeric CFP 

downstream of dnaX for native locus integration. C.o. cfp was amplified off of pDR200 

(Doan, Marquis, Rudner. 2005) with primers oJSL127 and oJSL128. The fragment was 

gel purified, cut with restriction enzymes SphI and XhoI, and ligated into pKL147 with 

the gfp insert removed. 

pJSL44 was constructed to knock out the mismatch detection capability of MutS at its 

native locus. pJSL44 is pJSL36 with the F30A mutation introduced via quick-change. 

The primers used for the quick-change reaction were oJSL125 and oJSL126. 

pJSL45 was constructed to over-express MutSF30A without any added tags. The F30A 

directed change was introduced into pET11t-mutS using oJSL125 and oJSL126. 

pJSL57 (See supplemental methods) 

pJSL58 was constructed in order to place mutS800 under the control of a Pspac promoter 

at the amyE ectopic locus. We amplified mutS800 off of the B. subtilis chromosome 

using primers oJSL178 and oJSL179. We gel purified and digested the PCR fragment 

with SphI and NheI, followed by a PCR clean-up step. Finally, we ligated the insert 

together with opened pDR110.  

pJSL63 was constructed to place mutS800-gfp under the control of the Pspac promoter at 

the amyE ectopic locus. We amplified mutS800 off of the B. subtilis chromosome using 

primers oJSL81 and oJSL133. We digestion and amplified and gel purified fragment 

with XhoI and SalI. This digested fragment was ligated into opened pBS226. 
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pJSL64 was constructed to place mutSF30A800-gfp under the control of the Pspac 

promoter at the amyE ectopic locus. This construct is derived from pJSL63, where the 

F30A substitution was quick-changed into the plasmid using primers oJSL125 and 

pJSL126. 

pJSL67 was constructed for localizing DnaX within the cell using the mCherry 

fluorophore. I amplified dnaX-mCherry off of pJSL52 (pKL147-dnaX-mCherry) using 

primers oJSL170 and 171. Using SLIC (see methods), I placed the insert into pBGSC6 

that was amplified using primers JSL168 and oJSL169. 

All constructs were sequenced prior to use (University of Michigan core sequencing 

facility).  
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Table 6. Functional characterization of fusion alleles used within Chapter II. 
Relevant genotype No. of  

cultures 
Mutation rate (10-9 

mutations/generation)± 
[95% CI] 

Relative 
mutation rate (% 
MMR activity)a 

PY79 (wild type)* 51 1.82 [1.14-2.37] 1 (100%) 
mutSL::spec* 23 154.4 [146.6-162.2] 84.9 (0%) 
mutL::mutL-GFP (spc) 25 139.8 [130.7-148.8] 76.9 (9.5%) 
mutS::mutS-GFP (spec), 
amyE::Pspac-mutL (cm) 

23 17.0 [12.5-21.5] 9.4 (89.0%) 

mutS::mutS-YFP (cm) , 
amyE::Pspac-mutL (mls), 
dnaX::dnaX-coCFP (spc) 

23 15.2 [10.5-19.9] 8.4 (90.2%) 

ΔmutS, amyE:Pspac mutS 
(kan) 

25 3.09 [1.35-4.68] 1 (100%) 

ΔmutS, amyE:Pspac mutS-
GFP (cm) 

23 20.8 [16.0-25.6] 6.7 (88.7%) 

ΔmutS, amyE:Pspac 
mutS800-GFP (cm) 

30 133.3 [125.7-140.9] 43.1 (16.6%) 

ΔmutS, amyE:Pspac 
mutS800-GFP (cm), 
dnaX::dnaX-mCherry (spc) 

19 127.5 [120.8-134.2] 41.3 (20.2%) 

* Data also found within Table 1. 
# Calculations based on data obtained in Table II using isogenic ΔmutS backgrounds 
(JSL292 and JSL281). Brackets enclose the lower bounds and upper bounds of the 
95% confidence limits 
a % MMR activity was determined by the following equation: [(R.M.F.null - 
R.M.F.strain)/( R.M.F.null-R.M.F.wild-type)]•100. The designation “co” represents the 
codon optimized version of CFP (11). 
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Table 7. Bacillus subtilis strains used in Chapter II. 
Strain Relevant Genotype Source or 

reference 
JSL1 PY79-Prototroph, SPβ˚ (12) 
LAS45 mutS::mutS800-gfpmut2 (spc), amyE::Pspac-mutL 

(cm)  
(2) 

LAS86 mutS::mutS800 (spc), amyE::Pspac-mutL (cm (2) 
LAS440 mutS::mutS-gfpmut2 (spc), amyE::Pspac-mutL (cm) (3) 
LAS397 mutL::mutL-gfp (spc) (3) 

LAS392 amyE::Pspac-mutS-mgfpmut2 (cm) (2) 
   
NMD11 
JSL171 

dnaN5(G73R), spoIIIJ::kan 
amyE::Pspac-mutS-mgfpmut2 (cm) 

 

JSL196 amyE::Pspac-mutSF30A-mgfpmut2 (cm) 
 

 

JSL201 mut-1[polC G430E, S621N] (cm), mutL::mutL-
gfpmut2(spc) 
 

This work and 
(13) 

JSL202 mut-1[polC G430E, S621N] (cm), mutS::mutS-
mgfpmut2 (spc), amyE::Pspac-mutL (mls) 
 

 

JSL204 mutSF30A 
 

 

JSL214 mutSL::spec, amyE::Pspac-mutSF30A-gfpmut2 (cm)  
JSL217 mutS::mutSF30A-mgfpmut2 (spc), amyE::Pspac-

mutL (mls) 
 

 

JSL219  mutSL::spc, amyE::Pspac-mutS-F30A-gfpmut2 (cm) 
 

 

JSL230  mutSF30A::mutS-yfp (cm), amyE::Pspac-mutL (mls) 
 

 

JSL234  
 

mutS::mutS-yfp (cm), amyE::Pspac-mutL (mls), 
dnaX::dnaX-CFP(opt)(spc) 
 

 

BKM1725  dnaX::dnaX-yfp (spc),pelB::Psoj (opt-rbs)-cfp(d)-
spo0J (ΔparS) (cm) 

(14) 
 

JSL259  dnaN5, SpoIIIJ::kan, mutSF30A::mutS-mGFPmut2, 
amyE::Pspac-mutL (mls)  
 

 

JSL281 ΔmutS  
JSL292  ΔmutS, amyE::Pspac-mutS(spc) 

 
 

JSL295  ΔmutS, amyE::Pspac-mutS-gfp mut2(cm) 
 

 

JSL297  
 

ΔmutS, amyE::Pspac-mutS800 (spc)  
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Table S2 continued 
Strain Relevant Genotype Source or 

reference 
JSL297  ΔmutS, amyE::Pspac-mutS800 (spc)  
JSL298  ΔmutS, amyE::Pspac-mutSF30A-gfpmut2 (cm)  
JSL307  ΔmutS, amyE::Pspac-mutS-gfpmut2 (cm), 

dnaX::dnaX-mCherry (spc) 
 

 

JSL308  mutL::mutL-gfpmut2 (spc), dnaX:dnaX-mCherry 
(cm) 
 

 

JSL309  mutSF30A, mutL::mutL-gfpmut2 (spc) 
 

 

JSL311  dnaN::dnaN-mgfpmut2 (spc), dnaX::dnaX-mCherry 
(cm) 
 

 

JSL315  ΔmutS, amyE::Pspac-mutSF30A-gfpmut2 (cm), 
dnaX::dnaX-mCherry 
 

 

JSL328  ΔmutS, amyE::Pspac-mutS800-GFP (cm) 
 

 

JSL330  ΔmutS, amyE::Pspac-mutSF30A800-GFP (cm) 
 

 

JSL336  ΔmutS, amyE::Pspac-mutS800-GFP (cm), 
dnaX::dnaX-mCherry (spc) 

 

All strains are derivates of PY79. 
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Figure 23. Response of MutS-GFP to the intrinsic error rate in vivo.  
Shown is a bar graph of the percent of cells with foci for MutSF30A-GFP with (+) and without (-) 2-AP 
compared to cells with MutS-GFP foci in the absence of 2-AP challenge. The p-values indicate the 
difference between the percent of cells with foci between each group shown. MutSF30A-GFP and MutS-
GFP untreated are statistically significant. The data presented here is the same as in Figure 2C.
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Figure	  24.	  MutL-GFP form foci dependent on MutS and mismatch detection.  
Different mutS alleles were placed upstream of mutL-gfp to determine their effects on MutL-GFP focus 
formation in vivo. The percentage of cells with MutL-GFP foci is shown and represented as a bar graph. 
The number of cells for each sample scored is indicated as well as each condition. Error bars denote the 
95% confidence intervals. 
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Figure 25. Scoring of DnaX-GFP foci in live cells.  
We scored the percentage of cells with DnaX-GFP foci in S750 defined minimal medium supplemented 
with 1% L-arabinose. The percentage of cells with 0, 1, 2, 3, and 4 or greater foci are shown. The number 
of cells (n) in each population are also indicated. The error bars reflect the 95% confidence interval. A 
total of 744 cells were scored over two independent experiments.
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Figure 26. Schematic representation of the in frame deletion of mutS from the mutSL operon. 
This construct (JSL281) represents a deletion of mutS that maintains mutL under the control of its native 
promoter. The start codon of mutS (ATG) replaces the start codon of mutL (GTG) in order to ensure mutL 
expression. Steady state levels of MutL in this background were ~2-3 fold higher than that observed when 
mutS+ is upstream (Figure 1D).
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Figure 27. Colocalization of DnaX-mCherry foci with DnaN-GFP foci.  
(A) The bar graph shows the percentage of cells with a single replisomal focus, visualized with DnaX-
mCherry or DnaN-GFP.  (B) Shown are representative images of DnaX-mCherry (1), DnaN-GFP (2), and 
the merge of both images with a membrane stain (3). The scale bar indicates 4 µm.
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Figure 28. DnaN5 supports DNA replication to wild type levels at 37oC.  
The rate of DNA synthesis was measured by monitoring 3H-thymidine incorporation into acid insoluble 
material. Each data point represents the mean of duplicate samples from 4 independent experiments. 
The error bars represent the standard error of the mean. 3H-thymidine incorporation was normalized to 
OD600 of the samples at each time point tested. 
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Figure 29. Quantifying ectopic expression of MutS800. 
Relative protein levels of MutS800 were determined by performing immunoblot analysis followed by 
quantification using Image J software (http://rsb.info.nih.gov/ij/). Total band intensities were determined by 
subtracting the background signal from the ΔmutSL lane followed by normalization to the total protein 
load determined from analysis of the DnaN band intensity. The relative enrichment was determined from 
3 independent samples with the standard deviation shown.  
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Figure 30. Method for scoring MutS-GFP foci in live B. subtilis cells. 
MutS-GFP and its derivatives form visible repair complexes in vivo termed foci. Repair complexes were 
scored as foci when visualized as having an elevated fluorescence signal occupying a discrete area 
above the diffuse fluorescence associated with the nucleoid. Shown in (A) and (B) are representative 
images of MutS-GFP or a mutant form defective in forming foci. The images are divided into an inverted 
monochromatic image of the GFP signal (left) and a colored image showing the GFP image in green 
overlaid with the membrane imaged with the vital membrane stain TMA-DPH (DAPI channel), pseudo-
colored red. For every experiment in this work, foci were scored using corresponding inverted 
monochrome images that were compared with the colored image. Shown in (A) is a representative image 
of cells with MutS-GFP foci that have formed in response to natural mismatches produced by the polCexo- 
allele. Black arrows indicate examples of scored foci while the red circle denotes elevated nucleoid 
fluorescence, which does not represent MutS foci and was excluded from the calculation. (B) Shown are 
cells with MutSF30A800-GFP, a mutant which fails to form repair complexes.
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Experimental Procedures 
Quantitative Western blotting (LiCOR) analysis.  
Whole cell lysates were prepared from independent JSL364 (wild-type) and JSL281 

(ΔmutS) strains in 6 mL cultures (S750 minimal media supplemented with 2% D-

Glucose) grown at 30˚C and harvested at a normalized OD600 of 0.5, while 

simultaneously plated for viables (10-6 dilution, see Spontaneous mutation rate analysis 

in the main text). Cells were pelleted and incubated in 1 mL of lysis buffer (10 mM Tris 

HCl [pH 7.5], 1 mM EDTA, 10 mM MgCl2, 1 mM AEBSF, 0.5 mg/mL lysozyme, and 

0.1mg/mL DNase I) and incubated at 37˚C for 10 minutes. After incubation, SDS was 

added to a final concentration of 1% to lyse cells. Cells were heated for 5 minutes at 

100˚C and lysates concentrated to a known final volume in a 10 kDa concentrator 

column (Amicon Ultra Centrifugal Filters, Millipore). 

 Immunodot blotting was performed essentially as described {Klocko, 2011 

#3902} and as described in “Material and Methods” in the main text. Briefly, whole cell 

lysates were immobilized onto a nitrocellulose membrane via wet transfer using the mini 

Trans-Blot electrophoresis transfer cell in transfer buffer without SDS (Bio Rad). The 

membrane was incubated in blocking buffer (5% milk solids, 17.4 mM Na2HPO4, 2.6 

mM NaH2PO4, 150 mM NaCl) at 22˚C for one hour. All subsequent washes and 

incubations took place in blocking buffer. After blocking, the membrane was incubated 

with primary antisera α-MutS (MI 1042) in blocking buffer (minus tween-20) overnight at 

4˚C with constant agitation. The next morning, the blot was washed three times for 15 

minutes each in blocking buffer supplemented with 0.05% Tween-20. After washing, the 

blots were then incubated in the dark in 1:15,000 Odyssey Goat anti-Rabbit IR Dye 

800CW (926-32211, LiCOR Biosciences) at 22˚C for 2 hours in blocking buffer. All 

subsequent steps were performed in the dark. The blot was then washed 3 more times 

in blocking buffer with 0.05% Tween-20, followed by a wash in PBST (17.4 mM 

Na2HPO4, 2.6 mM NaH2PO4, 150 mM NaCl, 0.05% Tween-20) to remove excess milk 

solids. Membranes were dried for 2 hours followed by exposure using an Odyssey CLx 

Infrared Imaging System (LiCOR, Lincoln, Nebraska). All data analysis and band 

quantifications were performed using the Odyssey CLx software.
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Figure 31. The E. coli MutS di-glutamine (Q211 and Q212) binding site for MutL is not conserved in 
B. subtilis MutS.  
A) A sequence alignment directly comparing the MutS amino acid sequence of the Gram-negative 
bacteria E. coli and V. cholerae to the MutS amino acid sequence of the Gram-positive bacteria B. subtilis 
and S. aureus. The region surrounding the di-glutamine MutL docking site (underlined in pink) is shown. 
The alignment was generated using the http://www.ebi.ac.uk/Tools/msa/clustalw2/ server. The residue 
numerical designations shown above the alignment are relative to the E. coli amino acid sequence. 
Protein structure models of the B) B. subtilis (Phyre2 server model) and the C) E. coli connector domain 
(PDB file 1E3M). Shown in red are the residues corresponding to either the 205VTII site in B. subtilis or the 
211QQLN of E. coli. D) A sequence alignment generated employing the 
http://www.ebi.ac.uk/Tools/msa/clustalo/ server to visualize the conservation of the QQ site in E. coli 
shown in both Gram-positive and negative bacteria. The order within the alignment is based on a 
phylogenetic organization of aligned MutS homologs using a Neighbour-joining tree without distance 
corrections. 
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Figure 32. Amino acid composition of MutS peptides recognized by MutL. 
Analysis of the amino acid composition of MutL interaction peptides, MutL non-bound peptides, and total 
MutS peptides in the peptide array. Results visualized with WebLogo 3.1. 
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Figure 33. Crosslinking of wild type MutS to the N-terminal domain of MutL with homoduplex DNA. 
Mixtures of each protein, 10 mM ATP, and a 90 base-pair homoduplex DNA were incubated with the 
chemical crosslinker BS3 (+=0.8 mM and ++=1.6 mM, respectively). Protein complexes were then 
separated on a 4-15% gradient SDS polyacrylamide gel. The bands corresponding to the MutS and MutL-
NTD monomers, as well as the MutS•MutL-NTD complex are labeled.
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Figure 34. Characterization of the particle size distribution of B. subtilis MutS variants at 10 µM 
(dimer) and 220 µM (tetramer) concentrations reveal similar oligomeric status.  
Samples were centrifuged at 15,700 x g for 10 minutes at 4˚C and measured using a Zetasizer Nano S 
(Malvern Instruments) with a 4 mW He-Ne laser at 633 nm. All measurements were taken using a 12 µL 
quartz cell (ZEN2112) at 4°C.
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Figure 35. Overlay of the B. subtilis MutL binding site on MutS with the Mlh1 binding site on its 
binding partners. 
Shown is an overlay of the B. subtilis MutL binding site on MutS with the MIP box (Mlh1 Interacting 
Protein box_[R/K]-S-[H/R/K]-[Y/F]-F) reveals a conserved serine followed by the di-phenylalanine shared 
between the B. subtilis MutL binding site on MutS and Mlh1 binding partners in S. cerevisiae.  The blue 
text in the overlay represents heavily conserved residues found within the MIP box, with the darkest blue 
representing the most conserved residues based on an eukaryotic Exo I alignment {Dherin, 2009 #4473}.   
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Figure 36. Determination of the absolute number of MutS molecules in B. subtilis.  
A) The steady state levels of wild type MutS from whole cell extracts grown in the same conditions as 
those used for live cell microscopy were compared to a protein standard using purified MutS to determine 
the number of MutS molecules per cell. Band intensity was determined using LI-COR quantitative 
Western analysis technology. B) Image of 2 µg of purified MutS used to construct the protein standard 
curve found in A on a 4-20% gradient gel. C) Standard curve of purified MutS protein is pictured in A. Red 
squares indicate the coordinates of total MutS found within the extracts in A. D) A fraction of the culture 
used to make the whole cell extract was used to determine the number of viable cells by plating on LB 
agar. The cellular content of MutS within the whole cell extract was determined by adjusting the total ng of 
MutS identified in A and C by normalizing the amount of MutS to g mol-1 using the molecular weight of 
MutS (97394 Da), followed by multiplying by Avogadro’s number (6.022 x 1023) to obtain total molecules 
within the extract. This amount was divided by the total viable count of the culture to obtain the number of 
MutS monomers cell-1. This number was further divided by 2 to obtain the number of dimers per cell. 
Determination of molarity (M) was based on B. subtilis cell lengths and widths under standard imaging 
conditions (avg. length=2.63 µm, avg. width=0.83 µm, Vcyl=~5.32 x 10-15 L, M=113 nM).  
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Figure 37. A model of the initial steps of B. subtilis mismatch repair.  
A) DnaN clamp zones direct MutS to newly replicated DNA to enhance mismatch detection. B) Mismatch 
detection by MutS. C) Iterative loading of MutS occurs at the site of the mismatch, which D) facilitates 
recruitment of MutL and endonuclease activation. 
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Table 8. Individual amino acid substitutions that comprise each MutS patch variant. 
Patch designation Residue substitutions Domain 

WT None  

Patch 1 E155S, R156S, L157A, E158S Connector  

Patch 2 E245S, E247S, E248S Connector 

Patch 3a E306S, E307S, E310S Core 

Patch 3b F320S, E321S, R322S, E323S Core 

Patch 4 E392S, E395S, E396S Core 

Patch 5 E510S, E512S, E514S Clamp 

Patch 6a Q806A, L807A, F809A, 

F810A 

DnaN clamp binding 

Patch 6b D811S, E812S, E814S DnaN clamp binding 

Each amino acid substitution tested in the MutS patch mutants are listed and the domain location 
for each patch mutant is indicated based on the structural determination of bacterial MutS 
homologs {Lamers, 2000 #4022;Obmolova, 2000 #4023}. 
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Table 9. Bacillus subtilis strains used in Chapter III. 
Strain  Relevant Genotype Source or Reference 

JSL364 PY79-Prototroph, SPβ˚ (Youngman et al., 1984) 

LAS393 mutL::spec (Smith et al., 2001) 

LAS435 

JSL161 

mutS::mutS-23-mgfpmut2-spec, mutL- 

mutL::mutL-23-mgfpmut2-spec 

 

JSL305 ΔmutSmutL-23-mgfpmut2-spec  

JSL342 mutS Patch 3B-1  

JSL345 mutS Patch 4-1  

JSL346 mutS Patch 5-6  

JSL355 mutS Patch 1-14  

JSL372 mutS Patch 3a  

JSL377 mutS Patch 2  

JSL380 mutSF320S (2-1)  

JSL382 mutS E321S  

JSL386 mutS Patch 6a-C2  

JSL395 mutS Patch 6b-3  

JSL400 mutS-22-mgfpmut3mutL+  

JSL402 mutSF319SF320S  

JSL414 mutSF320S-22-mgfpmut3mutL+  

JSL416 mutS R322S-1  

JSL419 mutSE323S-1  

JSL424 mutSF319S  

JSL425 mutSF319SF320S-22-mgfpmut3mutL+  
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JSL438 mutSF319SF320SmutL::mutL-23mgfpmut2-spec  

JSL440 mutS-22mgfpmut3mutL::mutLE468K-cm  

JSL450 mutSF319S-22mgfpmut3mutL+  

JSL453 mutSE323S-22mgfomut3mutL+  

JSL455 mutSF319SF320S-22mgfpmut3mutL+, 

dnaX::dnaX-23mCherry-spec 

 

JSL460 mutS-22mgfpmut3mutL+, dnaX::dnaX-

23mCherry-spec 

 

JSL467 mutS Patch 3B-22mgfpmut3mutL+  

JSL469 mutSV206A, T207S, I208A, I209AmutL+  

JSL471 mutSS317A  

JSL473 mutSH318S  

All strains listed are derivatives of PY79.  
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CHEMISTRY EXPERIMENTAL SECTION 
Synthesis of HPUra and congeners 
The scheme shown in Figure 2A in the main text was utilized for the synthesis of 

HPUra and analogs. Condensation of 5-aminouracil (1) with hydrazine (1) or 

phenylhydrazine (2) led to the adducts 2 and 6, respectively, in good yield.  Reaction of 

2 with p-benzoquinone proceeded cleanly to yield HPUra (3) as a brilliant orange solid.  

It was identical analytically and spectroscopically to a reference sample obtained from 

external sources.  Compound 3 was further characterized as a tert-butyldimethylsilyl 

(TBS) ether derivative 5 (∼ 87:13 mixture of isomers with the major one as assigned).  

The attempted synthesis of the hydrazino congener 4 (H2-HPUra) by reduction of 3 was 

conducted by procedures described previously (2, 3, 4). Numerous attempts at sodium 

dithionite, following the literature procedure (3) or slight variations thereof, did not 

provide 4 but only recovered 3.  Any quenching of solution color was always transient, 

with a return to orange or pale orange upon acidification on workup.  Other known 

methods of reducing diazenes were investigated including zinc in refluxing acetic acid 

(5), hydrazine hydrate in ethanol (6), and stannous chloride.  Neither a color discharge 

nor reaction was observed for any of these except stannous chloride, which led to 

degradation of 3. Since we were unable to produce the reduced form, we tested the 

oxidized form and found that addition of HPUra (compound 3) to cells caused a rapid 

arrest to DNA synthesis in vivo. We found that compound 3 indeed blocked replication 

fork progression (Figure 2B). Therefore, we conclude that compound 3 (HPUra) cannot 

be reduced to compound 4 (H2-HPURra).  

General chemical methods. All starting materials were obtained from commercial 

suppliers and were used without further purification. Reactions were performed under a 

blanket of nitrogen unless specified otherwise. Melting points were determined in open 

capillary tubes on a Laboratory Devices Mel-Temp apparatus and are uncorrected. 1H 

and 13C NMR spectra were recorded on a Varian 300 MHz or 400 MHz instrument 

utilizing d6-DMSO or D2O/NaOD as solvent. Chemical shifts are reported relative to the 

residual solvent peak in δ (ppm). Mass spectra were recorded on a Micromass LCT 

time-of-flight instrument utilizing the electrospray ionization mode. Thin-layer 
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chromatography (TLC) was performed on silica gel GHLF plates (250 microns) 

purchased from Analtech.   

6-Hydrazinylpyrimidine-2,4(1H,3H)-dione (2).  A stirred suspension of 6-aminouracil 

(1; 5 g, 39.3 mmol), 62% hydrazine monohydrate (9.85 mL, 197 mmol), acetic acid (5 

mL), and water (30 mL) was heated at reflux for 6 h and then cooled.  The precipitate 

was collected by filtration, washed successively with water, ethanol, ether, and then 

dried to leave 4.58 g (82%) of 2 as an off-white solid, mp 279° (dec); TLC  (4:1 

chloroform / methanol) showed complete absence of starting material.   

6-((4-Hydroxyphenyl)diazenyl)pyrimidine-2,4(1H,3H)-dione (3).  A suspension of 6-

hydrazinylpyrimidine-2,4(1H,3H)-dione (2; 12.7 g, 89 mmol), benzoquinone (9.66g, 89 

mmol), and formic acid (68.5 mL) was maintained at room temperature for 5 min, and 

then heated at 50° C for 5-8 min.  After cooling the orange solids were collected by 

filtration, and then washed successively with formic acid, water, ethanol, ether, and 

vacuum dried to leave 17.4 g (84%) of 3, mp >260°C (dec);TLC  Rf 0.67 (4:1 chloroform 

/ methanol).   

2-((tert-Butyldimethylsilyl)oxy)-6-((4-hydroxyphenyl)diazenyl)pyrimidin-4(3H)-one 
(5).  A mixture of 3 (46 mg, 0.2 mmol),  tert-butyldimethylsilyl chloride (179 mg, 1.19 

mmol),  diisopropylethylamine (DIPEA; 0.31 mL, 1.78 mmol), and DMF (0.8 mL) under 

nitrogen was heated at 50 °C  for 20 h. A deep-red solution formed within a few 

minutes.  After cooling, the mixture was diluted with 0.5 mL 2-propanol and placed in 

the refrigerator to initiate precipitation.  The precipitated solids were collected by 

filtration, rinsed with 2-propanol, and dried to leave 40 mg (58%) of 5 as an orange 

solid, mp 260°C;TLC  Rf 0.24 (1:1 ethyl acetate / hexanes).   

6-(2-Phenylhydrazinyl)pyrimidine-2,4(1H,3H)-dione (6).  A mixture of 6-aminouracil 

(1; 0.5 g, 3.9 mmol), phenylhydrazine (0.78 mL, 0.851g, 7.87 mmol), acetic acid (0.45 

mL, 7.91 mmol), and water (15 mL) was heated at reflux for 3 h.  After cooling, the 

precipitated solids were collected by filtration, washed well with water and then ethanol, 

and dried to give 0.72 g (84%) of product as cream-colored solid; TLC  Rf 0.68 (3:1 

acetonitrile / 0.2M aq. ammonium chloride).   
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BIOLOGY METHODS SECTION 
Plasmids used in this study. Unless otherwise indicated, all plasmids used in this 

study were constructed using standard cloning procedures (7). All primers used for 

plasmid construction are available upon request. 
pEB1 was constructed for integration and expression of recO from a Pspac 

promoter at the amyE locus.  The 765 nucleotide recO coding sequence was PCR 

amplified using primers oEB1 and oEB2.  The PCR product was digested with SphI and 

HindIII, the same enzymes used to digest pDR66 (8). Plasmid pEB1 was then 

constructed by ligation of the recO coding region with double digested pDR66 using the 

same enzymes. 
pEB20 was constructed by SLIC (9) of a partial fragment of recR into pBGSC6 

for the disruption of the recR gene.  The fragmented recR coding region was  PCR 

amplified using primers oEB78 and oEB79. 

 pEB21 was constructed by SLIC of the entire recR coding region into pJS101 for 

integration at the amyE locus under a xylose inducible promoter.  The recR coding 

region was PCR amplified using primers oEB83 and oEB84. The pJS101 vector was 

amplified using primers oJS431 and oJS432. 

 pJSL112 was constructed by Gibson assembly. A ~1 kB region corresponding to 

the immediate upstream and downstream regions of recF was amplified by PCR with 

primers oJSL304/oJSL305 and oJSL306/oJSL307, respectively. The chloramphenicol 

cassette was amplified from pGEM with primers oJSL294 and oJSL295. A basic 

plasmid backbone containing the ori and the ampicillin cassette was amplified from 

pDR111 using oJSL302 and oJSL303. All four DNA fragments were assembled in a 

single Gibson Assembly reaction at 50˚ C for 1 hour using standard Gibson protocol.  

All constructed clones were sequenced prior to use by the University of Michigan 

core sequencing facility (http://seqcore.brcf.med.umich.edu/). 

Immunoblot analysis. Immunoblot analysis was done essentially as described 

(11). Briefly, strains were grown in 10 mL defined S750 minimal media containing 2% 

glucose, with appropriate antibiotics to mid exponential phase, and concentrated by 

centrifugation.  Cells were resuspended using 300 µL lysis buffer [10 mM Tris-HCL (pH 

7.0), 1X Protease Inhibitor, 0.5 mM EDTA, 1 mM 4-(2-aminoethyl)-benzenesulfonyl 
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fluoride (AEBSF), 1 mg/mL lysozyme, 1 U/mL DNase I in ddH2O] as previously 

described (12) and lysed via sonication for 15 seconds twice with a 1 minute pause in-

between, followed by the addition of SDS to 1%.  Proteins were separated on a 10% 

SDS-PAGE followed by transfer to a nitrocellulose membrane (Whatman) using 1X 

transfer buffer (24 mM Tris, 192 mM glycine, pH 8.2, 15% methanol) overnight at 15 

volts as described (13, 14). The membrane was blocked with 5% non-fat milk in 

TBS+0.02% Tween 20.  1:1000 primary antibody was added to fresh blocking solution, 

and incubated with the membrane overnight on an orbital shaker at 4 °C.  The 

nitrocellulose membrane was washed 3X in 1X TBS-Tween 20 (0.02%) followed by 

1:1000 dilution of goat-anti-rabbit-HRP conjugated secondary antibody in 5% milk/TBS-

Tween on an orbital shaker at room temperature for 2 hours.  The nitrocellulose 

membrane was washed again 3X with 1X TBS-tween (0.02%) followed by incubation 

with 2 mL SuperSignal West Pico Luminol/ Enhancer Solution and 2 mL SuperSignal 

West Pico Stable Peroxide Solution (Thermo Scientific).  Blots were exposed to film 

(BioExpress) for 1 minute prior to developing. 

 
BIOLOGY RESULTS 
We also established the time dependency of formation of RecA foci before performing 

the experiments below. We found that the DNA break inducing peptide phleomycin 

caused a linear increase in the percentage of cells with foci beginning to form 7.5 

minutes after chemical treatment, with 1.2% of cells gaining RecA-GFP foci/minute 

(R2=0.983) over a 60 minute time course (Figure 38). Mitomycin C (MMC), which upon 

being imported into the cell is reduced to produce its toxic form, begins producing a 

linear increase in the percentage of cells with RecA-GFP foci at a similar rate (1.2% of 

cells gaining foci/minute) starting at 20 minutes past treatment (R2=0.998). At 30 

minutes past treatment, both MMC and phleomycin cause production of RecA filaments.  

 



 

	  

162	  

 
Table 10. List of Plasmids for Chapter IV 

Plasmids Characteristics Source 
pEB1 recO in pDR66 This work 

pEB21 recR in pJS101 This work 
pEB22 recO in pJS102 This work 

pCm::Tet pCM::Tet BGCS 
pCM::Er pCM::Er BGCS 
pJSL112 recF::cm This work 
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Table 11. List of Bacillus subtilis strains for Chapter IV. 
Strains Genotype Source 
LAS508 PY79 (wild type) {Youngman, 

1984 #3434} 
LAS40 recA-23mgfpA206K(spcr) 

(referenced below as recA-gfp) 
{Simmons, 
2007 #2929} 

ERB1 amyE::Pspac-recO(cmr) This work 
ERB2 amyE::Pspac-recO(tetr) This work 

ERB5 
amyE::Pspac-recO (tetr); recO::cat 
(cmr) 

 
This work 

ERB5 amyE::Pspac-recO(tetr) ; recO::cat 
(cmr); recA-gfp (spcr) 

This work 

ERB63 recR::cat(cmr)  This work 
ERB64 recR::cat(cmr), recA-gfp(spcr) This work 
ERB69 amyE::Pxyl-recR(mlsr) This work 

ERB70 
amyE::Pxyl-recR(mlsr); 
recR::cat(cmr) 

This work 

ERB76 
amyE::Pxyl-recR(mlsr); recR::cat; 
recA-gfp(spcr) 

This work 

ERB77 
dnaB134(ts) (tetr); recO::cat(cmr); 
recA-gfp(spcr) 

 
This work 

ERB78 recO::cat (cmr) This work 
ERB85 recO::cat(cmr); recA-gfp(spcr) This work 
JSL484 recA-gfp, dnaX::dnaX-

mCherry(cmr) 
This work 

JSL496 recF::cat(cmr); recA-gfp(spcr) This work 
JSL635 ΔrecJ, addA::erm, recA-gfp(spcr) This work 
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SUPPLEMENTAL FIGURES 

	  
Figure 38. RecA-GFP focus formation in response to DNA damage. 
(A) Shown is a survival curve of cells challenged with concentrations of mitomycin C ranging from 0-40 
nM for 30 minutes. The error bars represent the standard error of the mean (B) Shown is a time course 
experiment representing the percentage of cells with RecA-GFP foci at 40 nM mitomycin C (black) or 400 
nM phleomycin (red) over 60 minutes. Each treatment was scored in triplicate at the time points indicated. 
Error bars reflect the 95% confidence interval. 
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Figure 39. RecA-GFP focus formation in response to DNA damage.  
Shown are representative images of cells with the recA-gfp allele that were untreated, or challenged with 
100 ng/ml MMC or 3 µM phleomycin. The membrane is stained with TMA-DPH and is pseudocolored red. 
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Figure 40. The recO and recR genes are necessary for RecA-GFP focus formation. 
Shown are representative images of a recA-gfp allele in a recO::cat (A-C) or recR::cat background (D-F). 
Each strain was untreated, or challenged with mitomycin C (100 ng/ml) or phleomycin (3 µM) as 
indicated. Membranes were stained with TMA-DPH and pseudocolored red. 
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Figure 41. 
(A) Immunoblot of RecA-GFP in cells that were wild type or contained the recO::cat allele. Samples 
treated with mitomycin C are indicated (+). (B) A bar graph quantifying the percentage of cells with RecA-
GFP foci under the given condition. The error bars represent the 95% confidence interval. For each 
condition at least 850 cells were scored from at least two independent experiments.   
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Figure 42. Sequence alignment of the C-terminal residues of B. subtilis and E. coli SSB.  
Shown is the primary structure of the C-terminal 57 amino acids of B. subtilis SSB aligned with E. coli. 
The red residues correspond to the PF motif and the underlined region denotes the portion missing in the 
ssbΔ35 allele {Costes, 2010 #3427}. 
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