
 

 

 

Characterization of  Bioeffects on Endothelial Cells Under 

Acoustic Droplet Vaporization 

 

by  

 

Robinson Seda 

 

A dissertation submitted in partial fulfillment  

of  the requirements for the degree of   

Doctor of  Philosophy  

(Biomedical Engineering)  

in the University of  Michigan 

2014 

 

 

 

 

Doctoral Committee: 

 

Professor Joseph L. Bull 

Professor Steven L. Ceccio 

Professor J. Brian Fowlkes 

Professor Shuichi Takayama 

 

  



 

 

 

 

©Robinson Seda 

 

2014 
 



ii 

 

Dedication 
 

To my mom, Awilda 

And my sister, Awilmarie 

 

  



iii 

 

Acknowledgements 
 

This has been an extremely long and rough ride, but I can finally say I am done.  I 

never thought I could have accomplished half  of  what I have accomplished in my life, 

but the truth of  the matter is that these things just happen, and that there are people 

that help make it happen.  There was never a moment during this journey when I 

can say I acted all by myself.  This page is dedicated to those people who have been 

part of  my life either academically, socially and personally, making this a more 

enjoyable experience.   

First and foremost, I would like to thank my family, especially my mother and 

sister whom I love dearly, for all of  their kind words of  support during my entire 

career as a graduate student.  I know they are really proud of  what I have 

accomplished; without them I would have not been the man I am today.  

I would like to thank my immediate advisors, Dr. Bull and Dr. Fowlkes for 

multiple things: for their guidance and understanding, but also for their patience.  I 

know I was probably not the average graduate student and maybe I was stubborn and 

difficult at times, but I always appreciated all the words of  feedback.  Thank you for 



iv 

 

guiding me and teaching me the ways of  becoming a successful graduate student as 

well as for all the scientific exchange of  words in every Friday meeting; I am going to 

definitely miss those.  I also thank the other members of  my committee, Dr. 

Takayama and Dr. Ceccio for helping shape this big project from the very beginning.  

Although our interaction has been limited in the past couple of  years, your feedback 

was still important for the execution and conclusion of  this work. 

I would also like to thank my previous and current labmates, especially David Li, 

Stan Samuel and John Pitre for their help with experiments, long discussions and 

camaraderie.  This journey has definitely been a lot more enjoyable because of  the 

people I had the pleasure to have worked with and they are probably in the top of  the 

list.  Doing science and finding ways to relax our minds is what we do best.

I am immensely thankful for being able to interact not only with the people from 

my lab, but also other labs with which I have being directly involved running 

experiments, using equipment or having long conversations of  just about anything.  

I would like to thank Dr. Mario Fabiilli from the Radiology department for all of  his 

help, supply of  droplets and feedback; Paras Patel from the Kipke Lab for sharing 

materials and being helpful; Marian Vigen from the Putnam Lab for sharing 

equipment and teaching me how to use it and Dr. Yohan Kim from the Ultrasound 

Lab for taking time to do calibrations for our lab during the weekends. 

I am also thankful for the excellent caliber of  people we have running our 



v 

 

department.  The BME staff  is perhaps the coolest, most responsible set of  people I 

know.  Special thanks go to Maria Steele, for all of  her hard work and for being our 

mom away from home. 

Finally, I would like to thank all my friends for being part of  my life and making 

me look forward to every single day.  I have learned as much outside of  the lab as I 

have inside.  Thank you all for being who you are, for loving me, respecting me and 

believing in me.  You have all made a contribution to this dream and have made my 

life just perfect.  Thank you! 

 

Robinson



vi 

 

Contents 
Dedication ............................................................................................................. ii 

Acknowledgements ............................................................................................... iii 

List of  Figures ...................................................................................................... ix 

List of  Appendices ............................................................................................... xii 

List of  Acronyms ................................................................................................ xiii 

Abstract ................................................................................................................ xv 

Chapter 1 .............................................................................................................. 1 

Introduction .......................................................................................................... 1 

1.1 Motivation ............................................................................................................1 

1.2 Significance ...........................................................................................................7 

Chapter 2 ............................................................................................................. 15 

Characterization of  ADV-induced bioeffects on endothelial cells using a 3.5 MHz 

transducer............................................................................................................. 15 

2.1 Introduction ..............................................................................................................15 

2.2 Materials and Methods .............................................................................................18 

2.2.1 Cell Culture .......................................................................................................18 

2.2.2 Droplets .............................................................................................................18 

2.2.3 Ultrasound Setup ...............................................................................................19 

2.2.4 Exposure Protocol .............................................................................................20 

2.2.5 Fluorescence Microscopy .................................................................................22 

2.2.6 Image Processing ..............................................................................................23 

2.2.7 Statistics ............................................................................................................23 

2.3 Results ......................................................................................................................23 

2.3.1 Bubble cloud and localized damage .................................................................24 

2.3.2 Cell attachment .................................................................................................25 

2.3.3 Cell Death .........................................................................................................26 



vii 

 

2.3.4 Additional Experiments ....................................................................................26 

2.5 Discussion ................................................................................................................27 

Chapter 3 ............................................................................................................. 47 

Comparison of  frequency-dependent bioeffects on endothelial cells ........................ 47 

3.1 Introduction ..............................................................................................................47 

3.2 Materials and Methods .............................................................................................49 

3.2.1 Cell Culture .......................................................................................................49 

3.2.2 Droplets .............................................................................................................50 

3.2.3 Ultrasound Setup ...............................................................................................50 

3.2.4 Exposure Protocol .............................................................................................50 

3.2.5 Fluorescence Microscopy .................................................................................51 

3.2.6 Image Processing ..............................................................................................51 

3.2.7 Statistics ............................................................................................................51 

3.3 Results ......................................................................................................................52 

3.3.1 Bubble Cloud ....................................................................................................52 

3.3.2 Total Cell Fraction and Death Cell Fraction .....................................................53 

3.3.3 Frequency-dependent effects ............................................................................54 

3.4 Discussion ................................................................................................................58 

Chapter 4 ............................................................................................................. 74 

Vaporization proximity and confinement effects .................................................... 74 

4.1 Introduction ..............................................................................................................74 

4.2 Materials and Methods .............................................................................................77 

4.2.1 Cell Culture .......................................................................................................77 

4.2.2 Ultrasound Setup ...............................................................................................77 

4.2.3 Exposure Protocol .............................................................................................78 

4.2.4 Fluorescence Microscopy .................................................................................79 

4.2.5 Image Processing ..............................................................................................79 

4.2.6 Statistics ............................................................................................................79 

4.3 Results ......................................................................................................................80 

4.3.1 Confinement ......................................................................................................80 



viii 

 

4.3.2 Proximity...........................................................................................................81 

4.4 Discussion ................................................................................................................82 

Chapter 5 ............................................................................................................. 91 

Conclusions .......................................................................................................... 91 

Chapter 6 ............................................................................................................. 94 

Recommendations and Future Work ..................................................................... 94 

Appendices ......................................................................................................... 101 

References .......................................................................................................... 135 

 



ix 

 

List of Figures 
Figure 1.1: An illustration of  gas embolotherapy. .................................................. 11 

Figure 1.2: Anatomy of  a blood vessel showing the location of  the endothelium.... 12 

Figure 1.3: ADV applications in drug delivery and cancer therapies.. .................... 13 

Figure 1.4: Progression of  an artery with endothelial dysfunction ......................... 14 

Figure 2.1: Droplets of  various sizes flow inside the blood vessel (1) until an 

ultrasound beam triggers ADV that may occur near or at the vessel wall (2) impacting 

endothelial cells and ultimately important vessel functions (3)………………………36 

Figure 2.2: Ultrasound setup. ............................................................................... 37 

Figure 2.3: Bubble clouds as generated during ADV at 4 MPa (left column), 6 MPa 

(middle) and 8 MPa (right column). ..................................................................... 38 

Figure 2.4: Bubble cloud area versus pulse length .................................................. 39 

Figure 2.5: Endothelial cells stained with fluorescent dye calcein (live cells) and 

EthD-1 (dead cells). ............................................................................................. 40 

Figure 2.6: Representative images depicting cell damage after ADV compared to a 

control (top left). .................................................................................................. 41 

Figure 2.7: Total cell fraction as normalized by our control. .................................. 42 

Figure 2.8: Dead cell fraction as normalized by our control. .................................. 43 

Figure 2.9: Total cell fraction as a function of  peak negative pressure .................... 44 

Figure 2.10: Total cell fraction as a function of  peak negative pressure and cycles .. 45 

Figure 2.11: Dead cell fraction as a function of  peak negative pressure. ................. 46

Figure 3.1: Acoustic cavitation…………………………………………………………63 



x 

 

Figure 3.2: Bubble clouds as generated during ADV at 3 MPa (upper row), 4 MPa 

(middle) and 5 MPa (bottom row). ....................................................................... 64 

Figure 3.3: Bubble cloud area in mm2 for different pressure-cycle combinations using 

a 7.5 MHz transducer .......................................................................................... 65 

Figure 3.4: Representative images depicting cell damage after ADV using a 7.5 MHz 

transducer. ........................................................................................................... 66 

Figure 3.5: Total cell fraction as normalized by our control. .................................. 67 

Figure 3.6: Dead cell fraction as normalized by our control. .................................. 68 

Figure 3.7: The KZK model shows how a saturation point is reached for both 

transducers as the input power (W) to the transducer is increased .......................... 69 

Figure 3.8: Bubble cloud area (mm2) plotted against the spatial peak-pulse average 

intensity (Isppa) for the 3.5 MHz and 7.5 MHz transducers ..................................... 70 

Figure 3.9: Total cell fraction (TCF) plotted against the spatial peak-pulse average 

intensity (Isppa) for the 3.5 MHz and 7.5 MHz transducers...................................... 71 

Figure 3.10: The plot above presents the total cell fraction (TCF) and a normalized 

bubble cloud area (NBCA) plotted against the spatial peak-pulse average intensity 

(Isppa) for each transducer ...................................................................................... 72 

Figure 3.11: Total cell fraction (TCF) plotted against a normalized bubble cloud area 

(NBCA)............................................................................................................... 73 

Figure 4.1: Blood vessel size relative to beam size ....................................................... 84 

Figure 4.2: Diagram depicting three cases where ADV could take place inside blood 

vessels using OptiCell™ chambers ................................................................................. 85 

Figure 4.3: ADV inside an open (left) versus confined (right) environments ............. 86 

Figure 4.4: Fluorescence images depicting cell density after ADV in an open 

environment (left) and confined environment (right) ................................................... 87 

Figure 4.5: Total cell fraction after ADV for an open versus a confined environment



xi 

 

........................................................................................................................................... 88 

Figure 4.6: ADV and associated damages for vaporization at the EC monolayer (top 

row) versus vaporization away from the EC monolayer, but in confined environment 

(bottom row). ................................................................................................................... 89 

Figure 4.7: Total cell fraction (TCF) for the cases presented in Figure 4.2. ............... 90 

Figure 6.1: Endothelial cell culture with a solution of  albumin-coated DDFP droplets.  

........................................................................................................................................... 98 

Figure 6.2: Proposed setup for the study of  droplet-endothelial interaction. ............. 99 

Figure 6.3: Preliminary results depicting the effects of  shear stress in droplet 

settlement under flow conditions ................................................................................. 100 

Figure A.A. 1: This figure shows the fitted line through the data with 95% confidence 

interval (CI) and 95 % prediction interval (PI).. ......................................................... 104 

Figure A.D. 1: Beam profiles for both transducers ..................................................... 132 

Figure A.D. 2: Ultrasound pulse for the 3.5 MHz transducer with a 4 (top) and 16 

(bottom) input cycle ...................................................................................................... 133 

Figure A.D. 3: Ultrasound pulse from the 7.5 MHz transducer with 4 (top) and 16 

(bottom) input cycles ..................................................................................................... 134 



xii 

 

List of Appendices 
Appendix A ........................................................................................................ 101 

Appendix B ........................................................................................................ 115 

Appendix C ........................................................................................................ 130 

Appendix D ........................................................................................................ 132 

 



xiii 

 

List of Acronyms  
ADV  acoustic droplet vaporization 

BCA  bubble cloud area 

BSA bovine serum albumin 

BW/HW beam width/half  width 

DCF dead cell fraction 

DDFP dodecafluoropentane 

DNA deoxyribonucleic acid 

EC endothelial cell 

EGM  endothelial cell growth medium 

EthD-1 ethidium homodimer-1 

FDA Food and Drug Administration 

GE gas embolotherapy 

HCC hepatocellular carcinoma 

HIFU high intensity focused ultrasound 

HUVEC human umbilical vein endothelial cell

IC inertial cavitation



xiv 

 

KZK Khokhlov-Zabolotskaya-Kuznetsov 

MI mechanical index 

NO nitric oxide

PBS    phosphate buffer saline 

PFC perfluorocarbon

PNP peak-negative pressure  

SPPA    spatial peak-pulse average

TCF total cell fraction 

US ultrasound

VEGF vascular endothelial growth factor



xv 

 

Abstract 
  

Characterization of  Bioeffects on Endothelial Cells Under 

Acoustic Droplet Vaporization 

 

By Robinson Seda-Padilla 

An ultrasound-mediated cancer treatment called gas embolotherapy has the potential 

for providing selective occlusion of  blood vessels for therapy.  Vessel occlusion is 

achieved by locally vaporizing micron-sized droplets through acoustic droplet 

vaporization (ADV), which results in bubbles that are large enough to occlude blood 

flow directed to tumors.  Endothelial cells, lining of  our blood vessels, will be 

directly affected by these vaporization events and as such are the subject of  this study.  

Damage to the endothelium could lead to a number of  pathological states that, if  left 

untreated could be harmful.  However, if  under control, these bioeffects could 

provide benefits that would be synergistic with bubble occlusion like increased 

endothelial permeability or occlusion by thrombosis.  We investigate bioeffects 

caused by ADV under worst-case scenario cases by using a static endothelial culture 

model. 
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Two insonation frequencies (3.5 MHz and 7.5 MHz) were chosen to characterize 

the effects of  ADV and aid in the exploration of  frequency dependent effects.  

Damage was observed through changes in peak-negative (rarefactional) pressure and 

pulse length, and described by the absence of  cells after treatment.  Damage was 

dependent in bubble cloud area and highly localized.  Additional data was obtained 

to elucidate the role of  ADV in open or confined environments, which simulate 

relatively large and small vessels, respectively.  Through these experiments we try to 

provide the reader with some of  the tools necessary to make an assessment on the 

repercussions of  performing ADV in situations that allow the droplets and ultimately 

the bubbles, to be in direct contact with the endothelium.  Knowing when 

significant damage is expected in gas embolotherapy could help in the development 

of  preventive measures as well as additional therapeutic aids during treatment.   
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Chapter 1 

Introduction 

1.1 Motivation 

 

Embolotherapy is the intentional injection of  a blocking agent (embolus) to slow or 

stop the blood flow for therapeutic purposes.  It has been shown that permanent 

damage to tissue is possible if  enough solid emboli are delivered or sufficient 

occlusion can be achieved during the therapy [1, 2].  Embolotherapy can also be 

implemented in conjunction with drug-releasing emboli for localized drug delivery.  

Some potential applications of  embolotherapy include hemorrhage, and some types 

of  cancers, such as hepatocellular carcinoma (HCC), and hypervascular tumors such 

as renal cell carcinoma [3].  HCC for example, has been treated more effectively 

using embolotherapy than using chemotherapy or resection [4]. However, 

embolotherapy is only used as a last resort after conventional treatments have failed.   

The success of  embolotherapy greatly depends on several factors, such as the 
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selection of  the embolic agent, the application and the ability to direct and confine 

the emboli to the targeted area [3].  Unfortunately, all of  these factors present 

unique challenges that need to be taken into consideration.  For example, the 

selection of  the embolus can be quite difficult.  They can be extremely toxic and 

painful (e.g. ethanol), permanent (e.g. n-butyl cyanoacrylate), thrombogenic (e.g. 

coils and balloons) or non-target specific (e.g. microspheres).  In addition to the 

selection and confinement of  the emboli, some embolotherapy procedures may 

involve more complicated and invasive work, exposing the patient to other health 

risks.  Future embolic agents need to be non-toxic, easily transported and 

target-specific in order to provide a more robust, localized and less invasive therapy.  

Consequently, there is a need for improving current embolotherapy techniques.  

Gas embolotherapy (GE) is a minimally invasive procedure that provides means 

for selective occlusion of  blood vessels and offers relief  to most of  the disadvantages 

encountered in conventional embolotherapy techniques [5, 6, 7].  The principle 

behind GE is the use of  albumin (or lipid)-coated microdroplets that are vaporized 

locally to provide gas emboli [8, 9, 10].  These droplets are small enough to pass 

through the microcirculation (d < 6 µm), thus avoiding the risk of  occlusion of  

vessels feeding healthy tissue.  These bubbles are generated using focused ultrasound 

(US) via acoustic droplet vaporization (ADV) [8, 10, 11].  During this process 

(Figure 1), microdroplets, with a dodecafuoropentane (DDFP, C5F12) core are 
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Table 1.1: Physical Properties of  Dodecafluoropentane (C5F12) 

Property Value 

Molecular weight  288 g/mol 

Boiling point  29ºC 

Density  1630 kg/m3 

Viscosity  0.00652 N s/m2 

Surface tension  0.7 N/m 

 

injected into the bloodstream and allowed to circulate the body until an area (tumor) 

has been targeted.  DDFP (29ºC boiling point) is a perfluorocarbon (PFC) capable 

of  undergoing vaporization at body temperature due to its level of  superheat, but it is 

stabilized by the albumin or lipid shell.  Table 1.1 summarizes the physical 

properties of  DDFP.   

 

 

 

 

 

 

 

 

 

Once the cancerous tissue has been targeted (with the aid of  imaging tools) and 

the vaporization threshold is reached, the ADV process will take place.   This 

process will be capable of  transforming these microdroplets into bubbles that are 125 

to nearly 150 times their original volume capable of  occluding blood vessels feeding 

the tumor [8].  A focused US transducer will make possible that vaporization of  

these droplets and subsequent occlusion will only occur at or near the tumor reducing 
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the risk of  collateral damage.  Also, due to the low solubility of  PFC gases in water, 

a large number of  these bubbles will be able to provide prolonged occlusion to cause 

tumor infarction.  While it was previously stated that the ADV process would be 

localized, there are still some important things to consider, which are subject of  this 

dissertation.  High pressures and shear stresses generated during this event (i.e. 

phase transition and bubble expansion processes), capable of  affecting blood cells 

and the vessel wall, are examples of  important considerations that may affect the 

advancement of  this therapy.  Therefore, we focus our efforts in investigating the 

impact of  ADV on the vessel wall.        

Some of  the first studies addressing the potential impact of  ADV on the anatomy 

of  a blood vessel showed the results of  two direct numerical simulations that 

recreated the bubble expansion process following ADV in a rigid and flexible tube [12, 

13].  Pressures and shear stresses were found to be much higher in the rigid tube 

case compared to the flexible tube suggesting that flexibility of  the vessels might have 

a dampening effect.  A limitation of  this study was the lack of  an appropriate 

internal bubble pressure condition (due to unavailable empirical data), which yielded 

rather high results.  However, both studies are relevant to our application because 

they show the role of  blood vessel flexibility and its impact on bubble expansion and 

possible implications on the cellular response.  Our blood vessels are naturally 

flexible, but the level of  flexibility depends on their type and size.  Capillaries, for 
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example, are stiffer because they lack smooth muscle and are embedded in 

surrounding tissue.  Consequently, if  vaporization occurred in small, rigid vessels 

close to the targeted area, high wall stresses could develop.  These stresses in 

conjunction with vessel wall strength may lead to rupture, petechial hemorrhage or 

even cell death.  On the other hand, if  vaporization occurred in relatively large 

(flexible) vessels, stresses will be dampened out, but direction and confinement of  the 

emboli will be lost jeopardizing the selectivity of  the therapy.   

Gas bodies formed as a result of  ADV provide means for yet other important 

biological effects (bioeffects) when interacting with US pulses.  A review article 

described these bioeffects considering diagnostic US and contrast agents [14].  

When in contact with contrast agents, US produces microbubble pulsations that can 

trigger cavitation events (stable or transient) that could be harmful to surrounding 

tissue [15, 14].  These events may involve the expansion of  the gas bubble followed 

by a violent collapse driven by the inertia of  the inrushing fluid, which is the case in 

transient (or inertial) cavitation.  Many bioeffects have been associated with inertial 

cavitation (IC), including cell death, vessel rupture, hemorrhage and platelet 

aggregation [14, 16].  Other effects related to microbubbles driven by US pulses, 

which may not be so undesirable, include angiogenesis, remodeling of  vessels and 

increased cell permeability [17, 18, 19].  For example, studies have found that the 

use of  US and contrast agents, such as microbubbles, may facilitate the delivery and 
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increase the endothelial uptake of  several molecular species, such as calcium, nitric 

oxide and growth factors, such as VEGF (vascular endothelial growth factor) [2, 20, 

21, 22, 23].  These studies demonstrated that the interaction between US and 

microbubbles does increase the permeability of  cells through what has been referred 

to as sonoporation [24, 25].   However, it was found that reduced cell viability [26, 

27] and other altered cellular responses have also been observed [28].  Reduced 

viability has been attributed to this US-microbubble interaction capable of  generating 

high temperatures, pressures and fluid velocities [29, 30, 31].   

While the aforementioned bioeffects were generated by the interaction of  an 

acoustic field and preexisting bubbles, it is important to emphasize that ADV will go 

through different stages before a stable bubble is formed.  We believe that the ADV 

process may generate other bioeffects that may be unknown in addition to those 

generated by an US-microbubble interaction, while providing the added advantage of  

vessel occlusion (Figure 1.3).  In addition, it is vital to understand that although 

most of  these vaporization events are limited to the blood vessels, these bioeffects 

could magnify and propagate elsewhere [17, 18].  More specifically, the 

endothelium, as one of  the possible targets during ADV and main subject of  this 

dissertation, could give rise to a cascade of  events that could affect a number of  vital 

bodily functions.  A more detailed description of  these effects is provided in section 

1.2.   
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Knowing the degree of  these effects may be important for multiple reasons.  For 

instance, as GE is in its early investigative stages, it will be important to know what 

the potential pitfalls of  this technique are as well as when and where these are more 

likely to occur.  This is not only interesting, it is also necessary for subsequent 

improvement of  this therapy.  Alternatively, these bioeffects could potentially be 

used as new mechanisms for enhancing drug delivery to the tumor through 

permeabilization of  the endothelial wall.  It has been shown that permeabilization 

of  the endothelial wall is possible when US is applied to thin-shelled microbubbles in 

vivo, which can aid in the delivery of  drugs and genes through regions in the body 

where the endothelial wall is highly impermeable, such as the blood brain barrier [32, 

33, 34, 35].   

1.2 Significance 

The endothelium is a very thin layer of  cells that covers the lumen of  our blood 

vessels (Figure 1.2).  It is composed of  endothelial cells (ECs), which are constantly 

exposed to mechanical (pressure, shear) and hormonal stimuli associated with the 

blood flow [36, 37].  They adapt and respond to these stimuli by signaling cascades 

that can lead to different events such as cytoskeleton reorganization, release of  

cytokines, up and down regulation of  protein expression, cell division and 

programmed cell death (apoptosis) [17, 38].  Depending on their location ECs may 
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experience a level of  shear stresses in the range of  5-20 dyne/cm2 (in major vessels) 

average pressures of  around 120 mmHg (for the systolic phase) and up to 24% of  

deformation [17, 37].  However, several studies have shown that ECs may respond 

and adapt to an increase in these normal levels of  stresses and that their response is 

dependent on the location of  ECs around the cardiovascular circuitry in the body 

[39].  For example, ECs experiencing laminar flow shear stresses might decrease the 

rate of  cell proliferation, while those subjected to altered flow shear stresses, as 

observed in the aortic arch or stenotic vessels, will increase DNA synthesis and cell 

proliferation [36].  The endothelium is a also regulator of  vascular homeostasis 

because it acts as selective barrier, reduces turbulence and play vital roles in other 

physiological events, such as white blood cell migration, coagulation, angiogenesis 

and vasoactive functions by the secretion of  important signaling molecules like 

nitric-oxide (NO).  Damage to the endothelium can lead to endothelial dysfunction, an 

important cardiovascular risk factor. 

During endothelial dysfucntion, ECs reduce their ability to secrete nitric oxide 

(NO) [40], leading to impairment of  vasodilation, which reduces the ability of  the 

blood vessels to relax and decrease vascular resistance.  There is also an increase in 

endothelial permeability, platelet aggregation and leukocyte adhesion; events that 

promote atherosclerosis [41], (Figure 1.4).  This pathological state can be quite serious 

if  necessary measures are not taken, yet it could be a great tool if  used intelligently in 
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conjunction with available cancer treatments, especially GE.  Local platelet 

aggregation, clotting and thrombosis, for example, could potentially be beneficial if  

vessels supplying the tumor are affected.  This could provide a parallel mechanism 

for vessel occlusion without additional vaporization.   

It is known that ECs are more stable than cancer cells and as such have been 

pursued as possible targets for anti-angiogenic therapies to treat tumors using the 

anti-VEGF monoclonal antibody [42].  This antibody blocks VEGF, which is a 

chemical signal that stimulates blood vessel growth.  However, recent studies [43] 

have shown that ECs growing within a tumor might develop genetic abnormalities 

that could make them more resistant to these therapies.  Therefore, local mechanical 

injury caused by high stresses, preferably through ADV, could potentially be more 

effective.   

Through this set of  experiments we intended to identify some of  the bioeffects of  

GE on ECs by investigating the direct impact of  ADV on a cultured monolayer.  

The main focus is primarily to determine the extent of  the damage once ADV is 

triggered, its immediate effect on cell viability and differences between peak-negative 

pressure (PNP), pulse length and insonation frequencies.  Vaporization at two levels 

of  confinement in the presence of  ECs is also investigated to provide a broader view 

of  the significance and impact of  these effects in vivo.  We also comment on the 

droplet-endothelial interaction that may facilitate these effects.  Currently, bioeffects 
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associated with ADV and the endothelium have not been reported yet, thus this 

dissertation is aimed to fill this void.     

The dissertation is organized into five chapters.  Chapter 2 presents the first 

findings on the effects of  vaporizing droplets on a cell monolayer of  ECs using a 

focused, single-element 3.5 MHz.  In this chapter we present the bubble cloud 

(generated as a result of  ADV) as a function of  pressure and pulse length while 

observing and quantifying cell detachment and cell viability.  Chapter 3 discusses 

these bioeffects when using a 7.5 MHz transducer and makes a comparison to those 

obtained when insonating at 3.5 MHz providing explanations to possible 

frequency-dependent mechanisms of  cell injury.  Chapter 4 investigates vaporization 

confinement and proximity effects.  This chapter shows how the effects seen in the 

previous chapters are lessened or amplified by localizing vaporization away from the 

cell monolayer in open or confined environments.  Finally, chapter 5 summarizes 

our findings and makes appropriate conclusions based on our evidence, while chapter 

6 discusses some of  the limitations of  our studies and provides ideas for future 

experiments.  It is the intention of  this dissertation to build a platform for 

subsequent studies that are capable of  filling the remaining voids in the quest for a 

better cancer treatment: Gas Embolotherapy.
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Figure 1.1: An illustration of  gas embolotherapy.  Droplets circulate freely through 

the bloodstream until the target is detected.  Acoustic droplet vaporization using a 

highly focused ultrasound turns the microdroplets to gas bubbles that will eventually 

lodge in the tumor vasculature and cause tissue necrosis. 
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Figure 1.2: Anatomy of  a blood vessel showing the location of  the endothelium 

(innermost layer). http://en.wikipedia.org/wiki/File:Anatomy_artery.png 
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Figure 1.3: ADV applications in drug delivery and cancer therapies. In addition to 

occlusion of  vessels, leaky endothelium in tumors may allow droplets to enter and 

accumulate in the intersituim allowing for highly localized drug delivery to cancerous 

cells.(top).  Bubbles formed through ADV and subsequent interaction with US may 

increase endothelial wall permeabilization and induce upregulation or 

downregulation of  certain molecular species (bottom).     
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Figure 1.4: Progression of  an artery with endothelial dysfunction.  The first lesion 

occurring during the first decade will develop into a major lesion that could lead to 

atherosclerosis (seeing at the fourth decade). 

http://www.hivandhepatitis.com/0_images2009/endothelial.jpg
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Chapter 2 

Characterization of ADV-induced 

bioeffects on endothelial cells using a 

3.5 MHz transducer 
 

 

2.1 Introduction 

ADV is capable of  transforming DDFP microdroplets into bubbles that are up to 150 

times – in volume – larger than the original droplet size [8].  This dramatic change 

in size will provide enough volume for occlusion of  small blood vessels supplying 

tumors, but could also lead to significant cell injury due to the generation of  high 

pressures and shear stresses during bubble expansion [8, 10, 12, 13, 44, 45].  Bubble 

expansion resulting from ADV inside tubes was previously investigated by our group, 

but it was not until recently that effects of  initial droplet size along with the liquid 

consumption phase and bubble evolution was further investigated in a series of  

studies [44, 45].  These new studies presented a theoretical [44] and computational 

[45] model that described the evolution of  a droplet undergoing ADV inside a rigid 
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tube, from the liquid consumption (phase transition) to bubble expansion and whose 

initial conditions were empirically obtained.  The results showed the existence of  a 

critical droplet size below which the bubble evolution is highly oscillatory, whereas a 

damped evolution is observed otherwise.  These differences in bubble evolution 

represent oscillations driven by viscous dampening inside a tube sufficiently large 

when compared to the initial droplet diameter.  Three bubble growth regimes with 

particularly high pressures in the early stage of  bubble evolution were also observed.  

With these new studies, shear stresses were found to be dependent on the initial 

droplet size, but were significantly lowered (by five orders of  magnitude) when 

compared to those previously reported in earlier studies [12, 13].  Nonetheless, 

calculated pressures were still far above those found physiologically.    

As thousands of  these microdroplets of  various sizes circulate the bloodstream 

spanning the entire cross section of  a blood vessel it will be possible for multiple 

vaporization events to occur at or near the vessel wall (Figure 2.1).  The relative size 

of  the US beam when compared to the diameter of  the blood vessel under treatment 

will likely determine the extent of  the damage, making smaller vessels (relative to the 

beam width) more susceptible to events near the vessel wall.  Not only will these 

vaporization events be important, but also the rapid oscillations of  the subsequently 

formed bubbles if  the US remains on after vaporization has been completed [46, 47, 

48, 49, 50].   
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Droplet concentration, bubble evolution (dependent on droplet size), relative 

location inside the blood vessel and also the selection of  acoustic parameters could 

determine the range of  bioeffects associated with ADV and consequently their 

clinical relevance and potential application.  The high probability of  these events 

due to droplet concentration in conjunction with high pressures and shear stresses 

generated during vaporization and bubble expansion could translate to a higher risk 

of  denuding or affecting the endothelium, for example.  However, if  under control 

these effects could aid in a number of  applications, such as cellular permeability and 

localized thrombosis for therapy.   

This chapter focuses on ADV events close to a vessel wall and using a 3.5 MHz 

transducer.  Other parameters like peak negative pressure (PNP) and pulse length 

are varied, while droplet concentration is held constant.  With this study we intend 

to provide the first insights in bioeffects of  ADV on endothelial cells.  It is of  

particular interest to characterize the direct effects of  ADV while finding those 

acoustic parameters that would allow us to perform significant ADV with minimal 

damage to the endothelium as well as understanding the underlying mechanism of  

cellular injury.     
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2.2 Materials and Methods 

2.2.1 Cell Culture  

Primary human umbilical vein endothelial cells (HUVEC) were cultured and 

supplemented with EGM-2 cell media (Lonza Clonetics™; Walkersville, MD).  

These cells were incubated at 37ºC in a humidified environment and 5% CO2.  Cells 

were grown in culture flasks for one passage and then transferred to OptiCell™ 

culture chambers (Nalgene Nunc International; Rochester, NY) previously coated 

with fibronectin (Ca. No. 354008, BD Biosciences; San Diego, CA) prior to US 

experiments.  The cells were grown to ~90% confluence and only passages one 

through four were used in these experiments. 

2.2.2 Droplets  

Albumin-coated droplets with a DDFP core were obtained from the Department of  

Radiology at the University of  Michigan, Ann Arbor.  The droplet solution was 

made following a procedure described elsewhere [8].  Briefly, droplets were made by 

combining 750 µL of  4 mg/mL (BSA) bovine serum albumin (Sigma Aldrich, St 

Louis, MO), dissolved in normal saline (0.9% w/v, Hospira Inc., Lake Forest, IL), 

and 250 µL of  perfluoropentane (C5F12, CAS Number 678-26-2), Strem Chemicals, 

Inc., Newburyport, MA).  While in an ice bath the two phases were emulsified via 

sonication using a tapered microtip accessory (model 450, 20 kHz, 3.2 mm diameter, 
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Branson Ultrasonics, Danbury, CT) operating at 125 W/cm2 for 30 seconds in 

continuous mode.     

2.2.3 Ultrasound Setup  

A schematic of  the setup is provided in Figure 2.2.  All experiments were conducted 

in a tank containing degassed, deionized water maintained at 37ºC.  The tank was 

made from acrylic with a polystyrene window at the bottom to provide a clearer view 

when looking through the microscope.  Six pegs located around the polystyrene 

window were used to slide an OptiCell™ chamber and hold it in place.  The tank 

was placed on top of  an inverted microscope (Nikon Eclipse TE2000-S, Nikon 

Instruments, Inc., USA) to observe and record the ADV event and for fluorescence 

microscopy.  A single-element 3.5-MHz (A381S, 1.9 cm-diameter, 3.81 cm-focal 

length, Olympus Panametrics-NDT, Waltham, MA) transducer was focused at a 40º 

angle to the bottom membrane of  an OptiCell™ chamber located at the bottom of  

the tank.  The transducer was calibrated using an in house designed fiber-optic 

probe hydrophone [51].  Data on the axial and cross sectional beam profiles as well 

as pressure at the focus were obtained ().  The transducer was placed at an angle to 

minimize standing waves from the bottom of  the tank.  A “dummy” OptiCell™ 

(upper membrane cut out) was used for the alignment of  the transducer.  The US 

pulses were generated using two function generators.  A primary function generator 
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(HP-3314, Hewlett Packard) was used to produce a signal while a secondary function 

generator (33120A, Agilent Technologies; Palo Alto, CA) was used as a gate.  The 

output signal was then amplified using a power amplifier (-60 dB, GA 2500A, Ritec 

Inc.; Warwick, RI) whose output was connected to the single-element transducer.  

An omnidirectional hydrophone (ITC-1089D, International Transducer Co.; Santa 

Barbara, CA) was also used to record acoustic noise.  All the signals were 

monitored using an oscilloscope (WaveSurfer 44Mxs, LeCroy; Chestnut Ridge, NY).  

2.2.4 Exposure Protocol 

The cell media was replaced with fresh, warm (37ºC) media prior to the experiments.   

A volume of  100 microliters of  a solution containing 108 droplets per milliliter was 

added to the 10-mililiter cell culture chamber to produce a final concentration of  106 

droplets per milliliter.  This concentration yielded and approximate 10:1 droplet to 

cell ratio.  The OptiCell™ was gently tilted side to side to evenly distribute the 

droplets over the cell monolayer.  The OptiCell™ was then submerged inside the 

tank and left for 2 minutes to equilibrate and for the droplets to settle to the bottom 

of  the chamber.  One OptiCell™ chamber was divided into a grid that consisted of  

13 rows and 9 columns.  This accounted for 13 different experimental groups and at 

most, 9 different replicates.  These 13 experimental groups contained all 

combinations of  pressure and pulse length including a treatment with zero (0 MPa) 
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pressure.  A second OptiCell™ chamber was used and divided in the same way to 

perform a control experiment that included the same treatments, but without droplets.  

Both OptiCells™ were seeded using the same cell density and kept until they reached 

~90% confluence.  A motorized stage (Proscan II, Prior Scientific; Rockland, MA) 

mounted onto the inverted microscope was used to move the tank along with the 

OptiCell™ to the specific area for treatment.  The transducer was moved away from 

previously formed bubble clouds to avoid any shadowing effects.  PNPs ranged from 

0 to 8 MPa, while pulse length was varied by changing the number of  cycles to 4, 8 or 

16.  The number of  cycles was the input number into the system and were used as 

the nominal value, however due to the ring-up/ring-down artifacts, the actual number 

of  cycles was 3, 7 and 15, respectively (see Apendix D).  These corresponded to 

pulse durations of  0.86 µs, 2 µs and 4.29 µs, respectively.  The upper limit of  the 

pressure range selected corresponded to the saturation pressure of  the transducer, 

while the cycles corresponded to a range that has been previously used in our lab for 

in vivo experiments [52].  The ADV events (i.e. bubble clouds) were recorded using a 

camera (CoolSNAP ES, Roper Scientific Photometrics; Tucson, AZ) mounted into 

the inverted microscope and MetaMorph Premier (Molecular Devices, Sunnyvale, 

CA).  Upon completion of  the treatments, the chambers were immediately taken 

out of  the tank for fluorescence staining. 
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2.2.5 Fluorescence Microscopy  

The cell media was carefully withdrawn from the culture chambers using a 10 

milliliter syringe.  The cell culture was rinsed 2x with phosphate buffered saline 

(PBS) containing 2% bovine serum albumin (BSA) to remove any excess droplet 

solution.  One milliliter of  a solution containing nucleic acid stain Hoechst 33342 

(Ca. No. H3570, Molecular Probes®, Life Technologies™, Carlsbad, CA) and 

ethidium homodimer-1 (Ca. No. L-3224 (component B) Molecular Probes®, Life 

Technologies™, Carlsbad, CA) was added to the culture chamber and supplemented 

with 9 milliliters of  culture media to a final concentration of  3 µM.  OptiCells™ 

were incubated for 30 minutes at 37ºC in the dark.  Following incubation the 

staining solution was withdrawn; the OptiCells™ were rinsed with PBS and fixed in 

4% paraformaldehyde for 15 minutes.  After fixation, the OptiCells™ were rinsed 2x 

and stored in HEPES (with sodium azide) at 8ºC.   

Each area exposed to an ADV event was examined using a 4x magnification 

objective (Plan Fluor, Nikon; Melville, MA).  A fluorescence image consisting of  a 

Hoechst stained (total cell count) and an EthD-1 stained (dead cell count) frame was 

obtained for each area and recorded using MetaMorph 7.5 (Molecular Devices, 

Sunnyvale, CA).  In a different experiment, a 2 µM solution of  calcein AM (Ca. No. 

L-3224 (component A) Molecular Probes®, Life Technologies™, Carlsbad, CA) was 

used to stain the cytoplasm of  the cells (green fluorescence).  
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2.2.6 Image Processing  

The collected images were post processed using Adobe Photoshop CS5.1 (Adobe 

Systems Inc., San Jose, CA) to create overlays.  Individual frames of  cells were 

transferred to ImageJ (U. S. National Institutes of  Health, Bethesda, Maryland) for 

image processing that included conversion to binary (black and white) and particle 

count using the “Analyze Particles” tool to determine the total number of  cells and 

the number of  dead cells per frame.   

2.2.7 Statistics  

Each treatment consisted of  between 6 and 9 replicates. R (The R Project for 

Statistical Computing) and Minitab 16 (Minitab Inc., State College, PA) were used to 

carry out the statistical analysis.  Statistical significance of  effects was assessed by 

performing a general linear model (GLM) analysis as well as a Dunnet’s test to 

compare experimental groups to our control.  P-values below 0.05 were considered 

statistically significant throughout the experiments. 

2.3 Results 

Each spot in the culture chamber was exposed to only one pressure and pulse length 

combination.  All treatments were randomly selected inside the chamber to 

minimize uncontrollable sources of  error like differences in cell density.  

Comparisons between the control and experimental groups were used to identify the 
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effects caused by ADV including those caused by either US alone or droplets alone.  

As we mentioned in section 2.2.4, the control group consisted of  all the pressure and 

pulse length combinations without the addition of  droplets, while the experimental 

group consisted of  all the combinations with the addition of  droplets and thus 

provided the elements necessary for ADV.  It has been previously shown that ADV 

is a threshold phenomenon [8] , and as such it only happened when the PNP was 

above said threshold (~4 MPa).  This threshold was optically obtained by observing 

consistent vaporization (production of  bubbles) as the acoustic pressure and pulse 

length was increased.  DDFP droplets have minimal acoustic scattering compared 

to gas bubbles so those treatments below the threshold served to investigate the effect 

of  droplets alone.     

2.3.1 Bubble cloud and localized damage  

Once above threshold, the size of  the bubble cloud generated by ADV increased with 

pressure, but was not affected by the pulse length (Figure 2.3 and Figure 2.4).  

Preliminary experiments showed damaged areas as stained with fluorescent dye 

calcein AM and EthD-1 after ADV was performed.  These areas were inspected and 

overlaid using the corresponding bubble clouds to evaluate the localization of  the 

damage.  Qualitative observations of  these images showed that the impact of  ADV 

was highly localized as damage zones corresponded to an area that was almost equal 
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in size to that of  the bubble cloud (Figure 2.5).  In addition, viable cells were 

observed inside the damage (vaporization) area.          

2.3.2 Cell attachment  

The total number of  cells from each spot was used to determine differences in cell 

density within and between culture chambers.  This number not only helped 

determine initial cell density, but also the number of  cells that could have been 

sheared-off  during ADV (Figure 2.6), and as a consequence, washed away from the 

chamber during rinsing steps.  This was carried out for both the control and the 

experimental culture chambers.  The total number of  cells between treatments in the 

control group, which included all treatments without droplets, was not significantly 

different.  Forty five untreated spots were randomly selected in the experimental 

chamber to account for cell density.  These were not significantly different when 

compared to our control chamber.  This result showed that the same order of  cell 

density was found in both chambers.   

According to the statistical analysis, pressure was a significant factor, but a 

change in pulse length (number of  input cycles) was not significant.  However, a 

two-way interaction effect was also found significant.  Major and significant 

differences were found when the pressure-pulse length combination was greater or 

equal to 6 MPa and 4 cycles (Figure 2.7).  These pressures were responsible for the 
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generation of  larger bubble clouds and as a consequence, larger affected areas.  

Significant differences in the total number of  cells when compared to our control 

(100%) ranged from an average of  20% to 47% cell reduction when the pressure-pulse 

length combination was increased from 6 MPa and 4 cycles to 8 MPa and 8 cycles, 

respectively.  For those treated with pressures below the ADV threshold (pressures 

under 4 MPa) there were no significant differences when compared to the control 

group.   

2.3.3 Cell Death  

The number of  dead cells was also obtained for both the control and experimental 

groups.  No significant differences were found across treatments in the control 

group.  Cell death was approximately 1% of  the total cell count.  In the 

experimental group pressure was found to be a significant factor, whereas cycles were 

not.  However, an interaction effect was found to be significant as well.  Cell death 

was no higher than 5% of  the total cell count in the experimental group, but was 

found to be significantly different when compared to the control group at a 

pressure-pulse length combination of  6 MPa – 8 cycles or higher (Figure 2.8).       

2.3.4 Additional Experiments  

Another experiment was carried out following the procedure aforementioned having 

pressure as the only dependent variable with increments of  1 MPa.  Pulse length 
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was not a significant factor in the previous experiment (Figure 2.9) and as such was 

kept constant at 8 cycles. Cell attachment and viability was not significantly affected 

in the control group.  A pressure greater or equal to 6 MPa was found to be 

significant for the experimental group (Figure 2.10).  Cell death was still kept at 

near 1% of  the total cell count for the control group and between 2% and 5% for the 

experimental group (Figure 2.11).  However, cell death was significantly different 

between the control and experimental group for all treatments.    

2.5 Discussion 

The present study shows the effects of  ADV on an EC monolayer.  To the best of  

our knowledge this is the first study that shows the ADV-endothelial interaction 

under acoustic conditions relevant to GE.  The main findings of  this work are the 

dependency of  bubble cloud area (BCA) and cell attachment to PNP at a given 

frequency and droplet concentration.  Both BCA and cell detachment increase with 

increasing PNP.  The increase in BCA can be explained by the shape of  the US 

beam and the area fraction above threshold and its direct relationship to pressure.  A 

maximum area, limited by the saturation limit of  the transducer, will be reached even 

if  the transducer is driven at higher pressures.  Consequently, this increase in BCA 

can explain the increase in cell detachment as more droplets were included (and 

vaporized) under the beam area as the pressure was increased.  Interestingly, cell 
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death did not behave as such.  Cell death was found to be significant only above a 

certain pressure-pulse length combination indicating that a threshold phenomenon 

may be responsible for this effect.  However, a second experiment did not support 

this hypothesis as cell death was significantly different across all treatments 

containing droplets when compared to the control group.  This discrepancy may be 

due to inherent differences between cell populations coming from different donors.   

Another important finding of  this work is the lack of  an effect due to pulse 

length for bubble cloud formation.  In theory, one effective cycle (from amplifier to 

transducer) above threshold should be sufficient to trigger vaporization, while 

subsequent cycles of  the pulse would be responsible for driving the previously formed 

bubbles.  Hence, the lack of  dependency on this parameter was no surprise.  Other 

studies [53, 54] have shown similar trends in which pulse length had no effect on the 

ADV threshold, especially for pulse lengths under 1000 µs.  However, these studies 

did not address the size of  the bubble cloud.  Bubble cloud size was considered by 

other studies [55, 56] and found to be dependent on pulse length; however these 

results were based on cavitating bubble clouds generated by histotripsy pulses (PNP > 

21 MPa).  The pulses used in the present study were kept under 5 µs with PNPs not 

exceeding 8 MPa.   

If  a bubble is formed with one cycle, then cell damage may be affected by pulse 

length as cells will be exposed other mechanical events aside ADV, as for example, 
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bubble oscillations.  Interestingly, cell damage (detachment and death) was not 

affected by pulse length.  An explanation for these results may be that cell injury 

happens during the first cycle(s) of  the US pulse when the bubble cloud is initially 

created or during the phase transition stage.  This event may be so violent that cells 

are killed and sheared off  almost immediately from the insonated area and as a result, 

subsequent bubble oscillations occurring in a depleted area will have no effect.   

A two-way interaction effect was found to be significant between pulse lengths 

and PNP.  The relevance of  these interaction effects falls under the definition of  

non-additive effects.  In other words, a change in one variable (e.g. pulse length) 

does not yield a proportional (additive) effect in the response (total cell fraction) 

when a second variable (PNP) is kept constant, but rather it may subdue or amplify 

such effects.  For example, pulse length was doubled each time, but the total number 

of  dead or detached cells did not respond proportionally.  Notion of  this interaction 

effect may confirm that it is in fact a portion of  the US pulse responsible for the 

observed damage as this did not respond proportionally to an increase in the pulse 

length.  In other words, the first couple of  cycles of  the US pulse (and not the whole 

pulse) were responsible for most of  the damage.  Addition to more cycles should 

have translated to more damage proportionally had this not shown an interaction 

effect.   

No depletion or significant cell death was observed in any of  the controls 
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indicating that it is indeed, an US-droplet and/or US-bubble interaction, the cause of  

significant bioeffects.  Phase transition, bubble formation and subsequent expansion 

may have been responsible for injuring, killing or weakening the anchor created 

between the cells and the fibronectin coating the culture chamber, and as such cells 

were released and lost as fluid was withdrawn and replaced from the chamber during 

rinsing steps.  In addition, droplets may have been directly attached to the cell 

surface breaking off  the cell membrane at the time of  vaporization.  In the results 

from experiments as the ones observed in Figure 2.5 the number of  dead cells is 

appreciable for a pressure of  4.5 MPa, while those affected by a pressure of  4 MPa in 

a second experiment, where significantly less.  These discrepancies in dead cells are 

attributed to the differences in staining protocols for both experiments, in which it 

was necessary to perform more rinses in the second experiment when compared to 

the first possibly removing more “floating” or weakly attached injured cells. 

Shear forces created with the syringe during fluid replacement were thought to be 

important, but only near the inlet or outlet ports.  Special care was taken when 

injecting and withdrawing fluid to avoid any cell detachment.  The success of  this 

technique was evaluated by observing the cell attachment and viability in the control 

group chamber, where differences in cell count in a number of  spots including those 

near the inlet ports were non-significant.  Cell detachment was also reported in an 

earlier study [27] in which Chinese hamster ovarian (CHO) cells were exposed to 
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ADV for the delivery of  a chemotherapy agent using dual phase microdroplets.  Cell 

detachment was thought to be caused by high velocities generated by a rapid liquid 

consumption and bubble expansion process or IC during ADV, which in turn could 

potentially induce high pressures and shear stresses during the collapse phase.   

The area depleted of  cells was optically compared to the bubble cloud area 

generated during ADV by overlaying both images. It was observed that the affected 

area was less than or equal to the bubble cloud area.  This matching of  areas is 

another important finding of  this work because it demonstrates that the cell damage 

is limited by the size of  the bubble cloud as it is implied by the absence of  detached 

or dead cells beyond the bubble cloud area emphasizing the concept of  localized 

damage.  This result hints yet another explanation of  the mechanism of  cell injury 

in which the droplet’s albumin shell may play an important role.  The EC surface 

contains a number of  albumin-binding proteins that have been described previously 

and are believed to induce endocytosis [57, 58, 59].  Hence, it is plausible to state 

that the albumin shell covering the surface of  the droplets may have stimulated an 

endocytosis pathway leading to attachment or partial transport of  some droplets 

inside the ECs putting these at risk of  direct ADV events capable of  affecting vital 

organelles and the cell membrane.   

Cell death was evaluated by the uptake of  ethidium homodimer-1 (EthD-1), a 

cell-impermeant nucleic acid stain that produces a bright red fluorescence on 
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damaged or dead cells.  Cell death is a naturally occurring phenomenon mediated 

either by a necrotic or apoptotic pathway, so the presence of  dead cells in our 

controls was normal.  Therefore, a normalized dead cell count was used to estimate 

the percentage of  cells affected by ADV.  This was achieved by obtaining the ratio of  

the number of  dead cells for each experimental case over that of  our control.  Dead 

cell fractions were found to be significantly different from our control when the 

pressure-pulse length combination was 6 MPa and 8 cycles or higher, but kept below 

5%.  However, on a second experiment cell death was found to be significantly 

different from our control for all treatments going from an average dead cell 

percentage of  1% to 4%.  Although, this dead cell percentage was still maintained at 

or below 5%, we believe that a phenomenon described by a rolling “sticky ball” may 

have been partially responsible for this increase in cell death.  This mechanism 

involves droplets (sticky balls) rolling down the cell monolayer (mainly during the 

removal of  these from the culture chamber), constantly sticking and detaching from 

the cells possibly breaking off  the cell membrane.   

Error in the measurement of  the dead cell count, quantified as one standard 

deviation from our mean for each case was rather high for all treatments containing 

droplets.  This observation led us to comment on another event capable of  causing 

an increase in cell death.  As mentioned earlier, ADV and IC are both threshold 

phenomena, but it was shown in an earlier study that IC is also a probabilistic event 
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[53].  Thus, cell injury during ADV may be attributed to permanent factors such as 

rapid liquid consumption and bubble expansion, but also to probabilistic events such 

as IC.  Therefore small error bars should be found at pressures where IC is very 

unlikely or very likely to happen (low and high pressures respectively).  Conversely, 

higher error should be present at mid-range pressures where IC is equally bound to 

occur or not.  Unfortunately, our data showed no evidence of  this, as there was high 

error for all treatments.            

In the vasculature, EC sense shear stresses and other mechanical stimuli and 

through mechanotransduction can change their morphology as well as alter 

important intra or intercellular signaling cascades to meet metabolic needs and the 

overall body homeostasis [38].  Some examples of  altered endothelial functions 

include the upregulation of  growth factors, cytoskeletal reorganization and increased 

permeability.  However, if  these stresses are increased (or decreased) beyond 

physiological conditions EC functions could be impaired resulting in endothelial 

dysfunction or death [23].  From a physiological perspective, impairment of  

endothelial functions could be of  great concern and even pathological if  they are not 

identified promptly and controlled [38].  Risks of  thrombus formation, fat 

accumulation, and atherosclerosis are major consequences of  endothelial dysfunction 

to name a few.  However, it is pertinent to point out that loss of  normal endothelial 

functions will not necessarily translate to undesired effects.  As a cancer treatment, 
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gas embolotherapy could potentially benefit from some of  these effects providing yet 

additional mechanisms to aid in the eradication of  the cancerous tissue, which is the 

ultimate goal of  any cancer therapy.  Damage to the endothelium could induce 

thrombosis at the site of  vaporization providing additional occlusion to those affected 

vessels.  Controlled impairment of  endothelial functions like permeability could 

also aid in the delivery of  drugs or other substances that will need to cross the 

endothelial barrier during treatments.  Several studies [20, 22, 28] have confirmed 

this by showing an increase in the uptake of  different molecular species when 

endothelial cells were exposed to US in the presence of  contrast agents, but more 

importantly, ADV was also proved to provide similar effects in cell permeability [27].  

In other words, if  controlled, not only will ADV provide an embolus to a specific 

location in the vasculature, but will also provide a mechanism for triggering local 

drug delivery following occlusion given that cell viability can be sustained.       

It is imperative to emphasize to the reader that the aforementioned results were 

obtained in a controlled in vitro experiment and that in vivo situations are difficult to 

mimic.  An idealized monolayer of  endothelial cells (HUVEC) supported by 

fibronectin was used when in actuality the endothelium is supported by an 

extracellular matrix composed of  a mesh of  different molecular components and 

other different layers of  cells with different mechanical properties.  HUVECs are 

commonly used cells in this field; however it is worth mentioning that the cellular 
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response endothelial cells in general may vary depending on their origin as well as 

their initial pathological state in the vascular tree [39].  These experiments only 

accounted for damage to the endothelium when ADV happened in close proximity to 

the cell monolayer and probably represent a worst case scenario that may occur 

during treatment, but how this damage changes with distance away from the 

monolayer is still unknown, but a work in progress.  Other parameters like droplet 

to cell ratio and droplet size are believed to affect the degree of  damage and should 

also be studied.  Longer pulses or the inclusion of  pulse repetition frequency (PRF) 

may be needed in clinical practice to increase the number of  vaporized droplets in the 

vasculature and increase the probability of  occlusion.     
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Figure 2.1: Droplets of  various sizes flow inside the blood vessel (1) until an 

ultrasound beam triggers ADV that may occur near or at the vessel wall (2) impacting 

endothelial cells and ultimately important vessel functions (3).  Note: droplet in (2) 

is the source of  the final bubble and not a droplet inside a bubble. 
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Figure 2.2: Ultrasound setup.  A single element transducer is placed at an angle 

focused at the bottom of  an OptiCell™ culture chamber.  ADV events are recorded 

using a camera attached to an inverted microscope. 
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Figure 2.3: Bubble clouds as generated during ADV at 4 MPa (left column), 6 MPa 

(middle) and 8 MPa (right column).  Rows represent number of  cycles as follows: 4 

(upper), 8 (middle) and 16 (bottom).  The US beam travels from NE to SW (arrow).  

The scale bar is 500 µm. 
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Figure 2.4: Bubble cloud area versus pulse length.  Vaporization (ADV) threshold is 

at 4 MPa, 4 cycles.  Error bars correspond to one standard deviation (n=8).  

Significant differences found across pressures (p<0.05), but not across cycles 

(p>0.05). 
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Figure 2.5: Endothelial cells stained with fluorescent dye calcein (live cells) and 

EthD-1 (dead cells) after ADV at 3.5 MPa (left column) and 4.5 MPa (right column).  

By creating an overlay of  the images containing the bubble clouds (bottom row) 

generated during ADV we can see that the damage zones are practically the size of  

said bubble cloud.  Note that a few cells inside this damage zones have survived 

ADV.  The scale is 500 µm.   
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Figure 2.6: Representative images depicting cell damage after ADV compared to a 

control (top left).  Cell death (red stain) as well as sheared off  cells (empty spaces in 

the center) increase with pressure: 4MPa (top right), 6 MPa (bottom left) and 8 MPa 

(bottom right).  The ultrasound pulse consisted of  8 cycles.  Cells were stained with 

nuclei acids Hoechst (all cells) and EthD-1 (dead cells).  The scale bar is 500 µm. 
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Figure 2.7: Total cell fraction as normalized by our control.  The total cell fraction 

corresponds to the total number of  cells in each treatment divided by the total 

number of  cells in our control (0 MPa, 0 cyles, no droplets).  Each treatment is 

described by a peak-negative pressure (MPa) and a number of  cycles.  Vaporization 

(ADV) threshold is at 4 MPa, 4 cycles.  Asterisks (*) denote treatments that are 

significantly different from the control (p<0.05).  Error bars correspond to one 

standard deviation (n=8). 
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Figure 2.8: Dead cell fraction as normalized by our control.  The dead cell fraction 

corresponds to the total number of  dead cells in each treatment divided by the total 

number of  cells in our control (0 MPa, 0 cyles, no droplets).  Each treatment is 

described by a peak-negative pressure (MPa) and a number of  cycles.  Vaporization 

(ADV) threshold is at 4 MPa.  Asterisks (*) denote treatments that are significantly 

different from the control (p<0.05).  Error bars correspond to one standard 

deviation (n=8).  
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Figure 2.9: Total cell fraction as a function of  peak negative pressure for 4 cycles 

(blue diamonds), 8 cycles (red squares) and 16 cycles (green triangles).  Error bars 

correspond to one standard deviation (n=8).  No statistical significance (p<0.05) 

was found for cycles.  
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Figure 2.10: Total cell fraction as a function of  peak negative pressure.  The total 

cell fraction corresponds to the total number of  cells in each treatment divided by the 

total number of  cells in our control (0 MPa, no droplets).  Red squares correspond 

to all treatments with droplets while blue diamonds correspond to treatments without 

droplets.  Vaporization (ADV) threshold is at 4 MPa.  Asterisks (*) denote 

treatments that are significantly different from the control (p<0.05).  Error bars 

correspond to one standard deviation (n=8). 
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Figure 2.11: Dead cell fraction as a function of  peak negative pressure.  The dead 

cell fraction corresponds to the total number of  dead cells in each treatment divided 

by the total number of  cells in our control.  Red squares correspond to all treatments 

with droplets while blue diamonds correspond to treatments without droplets.  

Vaporization (ADV) threshold is at 4 MPa.  Significant differences (p<0.05) from 

our control were found for all treatments.  Error bars correspond to one standard 

deviation (n=8).
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Chapter 3 

Comparison of frequency-dependent 

bioeffects on endothelial cells  
 

 

3.1 Introduction 

 

Acoustic cavitation refers to events where previously formed cavities (gas bodies) 

expand and contract in the presence of  an acoustic field [60].  Two types of  

cavitation have been previously described and are referred to as stable and transient 

(inertial).  As mentioned in Chapter 2, stable cavitation happens when these gas 

bodies undergo small oscillations for many cycles of  the acoustic pressure.  If  the 

pressure is high enough, these gas bodies may collapse violently (Figure 3.1) due to 

inertial cavitation (IC) generating as a result, high temperatures and pressures 

capable of  inducing bioeffects on tissue [61]. 

A recent study demonstrated that changes in acoustic parameters could 

potentially establish the likelihood of  IC during ADV when insonating droplets at 3.5 
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MHz [53].  An important finding of  this work was the relationship between the 

thresholds for IC and ADV and the probability of  observing one event independently 

from the other.  According to that study, ADV could take place at pressures near 3 

MPa with almost zero chance of  IC.  In turn, IC was more probable to happen if  

pressures were greater than or equal to 5.7 MPa reaching an almost 100% chance of  

occurring if  pressures were greater than 8 MPa.  In addition, long pulse lengths 

were likely to lower the IC threshold, while keeping that of  ADV relatively constant.  

Other acoustic parameters had little effect on both thresholds as it was the case for 

PRF or were kept constant as it was the case for carrier frequency.  Carrier 

(transducer) frequency, though not investigated in that particular study, is also an 

important parameter that has been extensively studied in the diagnostic US field 

since it is known for significantly affecting the IC threshold as it is described by the 

mechanical index (MI) [15, 14, 61, 62].  The MI is an important metric in 

diagnostic US that predicts when significant bioeffects associated to transient 

cavitation are expected.  The MI is defined as the ratio of  the peak negative 

(rarefactional) pressure (PNP), which is derated for attenuation, and the square root 

of  the center frequency of  the ultrasound field and should not exceed a value of  1.9 

(per FDA regulations) in all but ophthalmic imaging where the limit is lower [63].  

The MI has also been associated with spatial peak-pulse average intensity (ISPPA) for 

which values above 1000 W/cm2 can be sufficient to induce transient cavitation [64].   
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For ADV, higher frequencies would be rather attractive as these will lower the 

ADV threshold making it easier to vaporize droplets, while being less likely to induce 

IC [53].  Unfortunately, the use of  higher frequencies for GE inside the body will be 

limited since these are not able to overcome tissue attenuation.  Therefore, the 

selection of  an appropriate carrier frequency for our application requires a more 

elaborate decision-making process.  This chapter explores this frequency-dependent 

phenomenon by comparing bioeffects generated during ADV at 3.5 MHz and 7.5 

MHz under the same conditions to elucidate the role of  carrier frequency in the 

generation of  significant bioeffects and the underlying mechanism. 

3.2 Materials and Methods 

All descriptions for materials and methods for this chapter follow those found in 

Chapter 2.  The following sections are briefly summarized for the benefit of  the 

reader.  For specific details of  materials or equipment used (i.e. manufacturer or 

catalog numbers), or other procedures please refer to Chapter 2, section 2.2.     

3.2.1 Cell Culture  

HUVECs were cultured and maintained at 37ºC in standard culture conditions.  

Cells were grown in culture flasks for one passage and then transferred to OptiCell™ 

culture chambers previously coated with fibronectin prior to US experiments.  The 

cells were grown to ~90% confluence and only passages one through four were used 



50 

 

in these experiments. 

3.2.2 Droplets  

Albumin-coated droplets with a DDFP core were obtained from the Department of  

Radiology at the University of  Michigan, Ann Arbor.   

3.2.3 Ultrasound Setup  

An acrylic tank containing degassed water was placed on top of  an inverted 

microscope to observe and record ADV events.  A single-element 7.5 MHz (A321S, 

1.9 cm-diameter, 3.81 cm-focal length, Olympus Panametrics-NDT, Waltham, MA) 

transducer was focused at a 40º angle to the bottom membrane of  an OptiCell™ 

chamber located at the bottom of  the tank.  The US pulses were generated and 

controlled using two function generators and an amplifier as described in Chapter 2, 

section 2.2.3 and monitored using an oscilloscope.  

3.2.4 Exposure Protocol 

Please refer to chapter 2, section 2.2.4 for details.  For this experiment PNPs ranged 

from 0 to 5 MPa, while pulse length was varied by changing the number of  cycles to 

a nominal value of  4, 8 and 16.  Contrary to the previously described transducer 

(3.5 MHz) in Chapter 2, the 7.5 MHz transducer reaches saturation close to 5 MPa.  

It is important to note that although the 3.5 MHz transducer was able to reach 

saturation much later (i.e. 8 MPa), the 7.5 MHz transducer is capable of  providing a 
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lower ADV threshold (2 MPa versus 4 MPa).       

3.2.5 Fluorescence Microscopy  

The OptiCells™ culture chambers were rinsed 2x with PBS containing 2% BSA to 

remove any excess droplet solution.  Cells were stained with nucleic acid dyes 

Hoechst and EthD-1 following the staining protocol, then fixed in 4% PFA and 

stored in HEPES with sodium azide to prevent fungal growth.  Each area exposed 

to an ADV event was examined using a 4x magnification objective.  A fluorescence 

image, consisting of  a blue (total cell count) and a red (dead cell count) frame, was 

obtained for each area and recorded using MetaMorph Premier software.  

3.2.6 Image Processing  

Fluorescence microscopy images were cropped using a Matlab (Mathworks, Natick, 

MA) script according to the beam width of  the new transducer in order to increase 

the signal-to-noise ratio of  each image.  These were transferred to ImageJ for image 

processing that included conversion to binary (black and white) and particle counting 

using the “Analyze Particles” tool to determine the total number of  cells and the 

number of  dead cells per frame.  Overlays were created using Adobe PhotoShop.   

3.2.7 Statistics  

Each treatment consisted of  between 6 and 9 replicates. This difference in sample 

size was due to imaging artifacts encountered during image acquisition.  Minitab 16 
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(Minitab Inc., State College, PA) was used to carry out the statistical analysis.  A 

general linear regression and an ANOVA were performed to determine significant 

factors affecting the response of  our experiments.  A Dunnet’s test was also used to 

compare experimental groups to our control.  P-values below 0.05 were considered 

statistically significant throughout the experiments. 

3.3 Results  

The results from this study are divided into three sections.  The first two will be 

focused on the results involving the 7.5 MHz transducer alone (sections 3.3.1 and 

3.3.2), while the second one will focus on making a comparison to those obtained in 

chapter 2, considering the change in carrier frequency (section 3.3.3).  Similar to 

chapter 2, this chapter shows the effects of  performing ADV using a single 7.5-MHz 

US pulse at various combinations of  PNPs and pulse lengths on ECs.  Damage was 

observed and assessed by the use of  nucleic acid stains Hoechst 33342 and ethidium 

homodimer-1 (EthD-1). 

3.3.1 Bubble Cloud 

The size of  the bubble cloud generated by ADV using a 7.5 MHz transducer was 

affected by each combination (above threshold) of  pressure and pulse length (Figure 

3.2).  A PNP of  2 MPa and 4 cycles was not able to provide sufficient energy to 

vaporize the droplets, but an increase to 8 cycles provided enough acoustic energy to 
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initiate ADV.  A general regression analysis was performed using the bubble cloud 

area (BCA) in mm2 as the response.  The variables Pressure and Cycles were used as 

predictors.  The variable Cycles was used as a categorical variable after a 

preliminary regression analysis revealed a lack-of-fit (p<0.05) for the initially 

proposed model.  This regression analysis yielded an equation for each Cycles 

group (Figure 3.3). 

According to this model, Pressure was a significant predictor, whereas Cycles 

was only a significant predictor for the treatment at 16 cycles, while Pressure*Cycles 

was a significant predictor for both the 8-cycle and the 16-cycle treatment when 

compared to the 4-cycle treatment.  Significant predictors are those variables that 

when included in a regression, significantly improve the prediction of  the response.  

The (adj) R-Sq of  this model was 92% with a non-significant lack-of-fit.  However, 

this model is only useful for predicting BCAs only at the three levels of  cycles tested, 

but for all values of  pressure between 2 and 8 MPa.   

3.3.2 Total Cell Fraction and Death Cell Fraction 

The total cell fraction (TCF) from each spot was used to determine differences in cell 

density across the culture chamber as it was shown in chapter 2.  An ANOVA of  the 

negative control group (chamber without droplets) and the treatments with droplets, 

but no ADV revealed that neither Pressure nor Cycles cause a significant change in 
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the mean and that the cell densities for both chambers were not significantly different.  

Therefore an average value of  the total cell count was used to normalize the data and 

obtain a TCF.    

  For the experimental group it was found that Pressure did not cause a 

significant change in the mean, however Cycles and an interaction between Pressure 

and Cycles were significant. A Dunnett’s test showed that only treatments with 

droplets 4, 16; 5, 8 and 5, 16 (pressure, cycles) were statistically different from our 

control (0, 0, no droplets).  Similarly, for the dead cell fraction (DCF), an ANOVA 

was performed.  However, a preliminary analysis of  the residuals revealed the need 

for a transformation of  the data.  The following analysis was performed using a 

power transformation (T) of  our data (T=Yλ) with lambda equal to 0.5 and Y equal 

to DCF.  According to the ANOVA none of  the variables used in our study affected 

significantly the value of  DCF^0.5. 

For the following section TCF was chosen over the DCF as a metric for 

bioeffects after our data indicated that the DCF did not seemed affected by a change 

in acoustic parameters (this chapter) or was maintained below 5% (Chapter 2).     

3.3.3 Frequency-dependent effects  

Chapter 2 showed how BCA could be predicted by only using pressure and how the 

pulse length (cycles) was not an important factor when vaporizing at 3.5 MHz.  In 
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this chapter however, it was observed that both pressure and cycles were significant 

variables affecting the value of  BCA.  To investigate this, the BCA data were plotted 

against the spatial peak-pulse average intensity (ISPPA) of  each treatment, which is a 

quantity that takes into account both pressure and pulse length [65].  By doing so, it 

was found that the intensities developed under the conditions tested by the 7.5 MHz 

transducer ranged from 60 to 200 W/cm2, while those from the 3.5 MHz transducer 

ranged from 150 to 1500 W/cm2.  This yielded two distinct curves, with both 

showing that BCA increased with increasing ISPPA.  

While ADV is a threshold phenomenon, both data sets were fitted using a 

sigmoid curve.  Fitting any other curve (e.g. linear, exponential) would result in less 

than ideal results as none of  these will appropriately describe the sub threshold 

region.  In addition, these curve fits will assume infinite BCA for infinite Isppa, a 

hypothesis that seems rather absurd and not supported by nonlinear acoustics which 

states that a saturation limit is expected [66].  Although there was no experimental 

data to validate the saturation region of  the sigmoid fit for the 7.5 MHz transducer, 

there is no reason to believe that this transducer will behave any differently than the 

3.5 MHz counterpart, which had data supporting our hypothesis.  In fact, a HIFU 

simulator developed by the FDA [67] was used to confirm (and estimate) the 

saturation limit.  This HIFU simulator integrates the axisymmetric KZK equations, 

which take into account the combined effects of  nonlinearity, beam diffraction, 
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interference and absorption.  Radial plots of  pressure and intensity were generated 

and used to determine the radius above threshold as the input power in watts was 

changed.     

This information provided enough evidence to confirm that in fact, the area 

available for vaporization offered by both transducers will saturate as the input power 

is increased (Figure 3.7) and that a sigmoid fit is indeed an appropriate choice.  In 

comparison to the 3.5 MHz transducer, the 7.5 MHz transducer showed a lower 

maximum area.  This result was no surprise since it is known that transducers of  the 

same focal length, but higher frequencies will saturate at lower intensities [66], 

therefore achieving smaller areas.  The sigmoidal fits yielded R-sq > 90%, which 

make the sigmoidal fit not only appropriate, but also an excellent predictor of  BCA.  

TCF data were also plotted against ISPPA for both frequencies (Figure 3.9).  It is 

worth reiterating that the TCF data was calculated taking into account the transducer 

beam width for both cases.  This was done in order to increase the signal-to-noise 

ratio of  the images used.  Both transducers showed a decrease in TCF as the ISPPA 

was increased within their respective ranges.  Significant damage occurred at an 

ISPPA of  near 200 W/cm2 for the 7.5 MHz transducer and 1000 W/cm2 for the 3.5 

MHz transducer, which corresponded to a near 40% and 50% of  the maximum 

achievable areas (as estimated from the sigmoidal fits), respectively.   

The relationship for the 3.5 MHz transducer was slightly nonlinear (R-sq = 0.85), 
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while that of  the 7.5 MHz transducer was strongly nonlinear (R-sq = 0.56).  The 7.5 

MHz TCF data was fitted using sigmoid fit following an analogous reasoning as in 

the case for BCA.  In short, the TCF was unaffected or slightly affected by intensity 

until a significant value was reached, leading to a decrease in TCF.  It is expected 

that a minimum will be reached and be limited by the saturation area of  the 

transducer.  Although there are not data to support the second half  of  the sigmoid, 

this fit significantly improves the R-sq to a 0.7, explaining our data more accurately 

when compared to the linear fit.  The 3.5 MHz R-sq counterpart did not improve 

significantly when a sigmoid fit was used (0.87 versus 0.85), however we believe it is 

still the most appropriate model.   

To see how both transducers compare in their ability to vaporize and affect cells, 

a plot that included both the BCA (as a percent of  the maximum achievable area) 

and the TCF as a function of  ISPPA was generated (Figure 3.10).  Analogous to a 

pump performance and system curves, this plot lets us analyze operating conditions 

of  each transducer with their respective losses (TCF reduction).  An operating point 

defined as the intersection between both curves yielded a value of  68% for the 3.5 

MHz transducer and a 50% for the 7.5 MHz transducer corresponding to ISPPA values 

of  1150 W/cm2 and 215 W/cm2, respectively.  Operating below or above this point 

will sacrifice either vaporization area or cell viability (or attachment), respectively 

resulting in less than optimal results.          
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The TCF data was also plotted against the BCA taking into account differences 

in the transducers maximum achievable areas (Figure 3.11).  This was done by 

defining a normalized BCA as the ratio of  the experimental BCA and the maximum 

achievable area of  each transducer.  The plots revealed inverse relationships for both 

cases, with significantly different slopes.  More specifically, the 7.5 MHz transducer 

showed a slope equal to twice of  that for the 3.5 MHz transducer.   

3.4 Discussion 

The results presented here demonstrate the differences in the use of  a 3.5 MHz versus 

a 7.5 MHz transducer for ADV purposes.  To our knowledge this is the first study 

that describes these differences applicable to ADV and ultimately GE in terms of  the 

effects of  the cloud production on endothelial cells.  Firstly, it was shown that both 

pressure and pulse length had an important role in determining the BCA when using 

the 7.5 MHz transducer, while pressure was the only significant factor for the 3.5 

MHz transducer.  This discrepancy could be due in part to the relative contribution 

of  each parameter to the value of  intensity.  Under comparable transducer 

geometries, as higher frequency transducers are not capable of  meeting the pressures 

achieved by lower frequencies and can reach saturation faster, both pressure and time 

will have an equally important role in determining intensity.  In contrast, lower 

frequency transducers may rely mostly on their ability to generate higher pressures.  
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The data showed that BCA is strongly dependent in the intensity of  the transducer, 

making Isppa a better predictor than pressure and/or cycles under the conditions tested 

here. 

 Cell damage was described by a reduction in cells attached (TCF) after the 

quantity DCF showed a poor role in representing these bioeffects.  As vaporization 

was carried out cells were likely killed, sheared-off  and washed away after rinsing 

steps were performed removing any loosely attached or floating dead cells leading to 

DCFs of  less than 0.10.  This assumption comes in part from a number of  

computational studies stating that those stresses (more specifically, pressures) 

generated during an ADV event inside an idealized blood vessel will likely be several 

orders of  magnitude above those encountered physiologically.  For a given intensity, 

the 7.5 MHz transducer was more damaging than the 3.5 MHz transducer generating 

a lower TCF value by a factor of  2.  Intensities necessary to evoke transient 

cavitation are believed to be above 1000 W/cm2, and while significant damage occurs 

at this point for the 3.5 MHz transducer, this is not the case for the 7.5 MHz 

transducer.  A possible explanation for these effects is the fact that for higher 

frequencies the ADV threshold is lowered and vaporization of  smaller droplets, 

which do not make a significant contribution to BCA, are still capable of  directly 

affecting the cells.  This was previously documented in [8], where it was shown that 

two different droplet populations (in size) had the same threshold for a given 
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frequency.  Inertial or transient cavitation is also expected to occur when the MI is 

at or above 1.9.  However, only one of  the treatments included using the 7.5 MHz 

reached this critical value.  On the other hand, the presence of  IC events in the 

experiments including the 3.5 MHz transducer was not ruled out, as intensities 

greater than 1000 W/cm2 were achieved, and MI values reached and surpassed 1.9.  

Therefore, it is unlikely that IC had a significant role in generating these bioeffects 

when using a 7.5 MHz transducer, but these may correspond to a mechanical process 

linked to ADV.  

 As mentioned in chapter 2, ADV-related events leading to cell damage may 

include the rapid phase transition and bubble expansion processes.  These events 

may be responsible for evoking high shear stresses, pressures or other mechanical 

means for disrupting the cell integrity (i.e. cell membrane, attachment).  Extremely 

high pressures at the wall were estimated in a numerical study that simulated a 

bubble expansion inside a tube [45].  These pressures were developed in time scales 

O(0.5 µs), which corresponded to expansion velocities at their highest.  Although 

our experiments did not consider a tube, these time scales are so short that it may be 

plausible to expect a similar or higher pressure generation in our case, since 

vaporization happened at the wall.  In addition, IC bioeffects have been well 

documented in the past [61, 68, 69], which are believed to be caused mainly by either 

thermal or mechanical or even chemical means as it is the production of  highly 
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reactive chemicals capable of  affecting cells [69].   

Cell lysis is perhaps the most extensively studied bioeffect because of  the 

significant reduction in viability observed in most IC experiments [69].  Depleting a 

test sample of  most cells will make it almost impossible to quantify other effects 

induced by less harmful mechanisms associated with IC.  Nevertheless, if  cell 

viability is sustained other bioeffects may include changes in morphology, cell 

permeability and growth rate.   

We believe that the effects presented here are mainly attributed to ADV.  The 

close proximity of  the DDFP droplets to the cell monolayer makes the latter more 

susceptible to the direct effects from a vaporization event causing cell damage and 

eventually loss in cell attachment.  The results obtained from the 7.5 MHz 

transducer are in good agreement with this hypothesis as this transducer was not 

capable of  generating intensities or MI values above those reported for the onset of  

IC and yet induced greater effects when compared to the 3.5 MHz transducer.  

Nevertheless, IC could still be a possible explanation for other bubble-ultrasound 

related bioeffects, but predominantly after vaporization has taken place.  A possible 

explanation for this hypothesis is the fact that during ADV the bubble is at a high 

internal pressure (near 50 atm).  In addition, ADV (mainly the liquid consumption 

phase) may be over in less than 1 µs, thus bubbles of  resonant size may come out of  

resonance before significant pressures have time to act upon them.  If  cells are lysed 
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and detached during a vaporization event, there will be no cells present to account for 

bioeffects associated to IC.  The 7.5 MHz transducer has the ability to lower the 

ADV threshold while providing vaporization of  smaller droplets compared to the 3.5 

MHz transducer [8].  These smaller droplets, which may not significantly contribute 

to vaporization area, may still be responsible for the difference in bioeffects seen for 

both transducers.  As a result, the 7.5 MHz transducer experiences a relatively lower 

effectiveness to provide significant vaporization and minimizing cell damage. 
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Figure 3.1: Acoustic cavitation.  Bubbles endure several oscillations until a bubble 

grows in an unstable manner in the presence of  an acoustic field.  If  the acoustic 

pressure is sufficiently high these bubbles may collapse violently.  Peak positive 

pressures correspond to the compression phase, whereas peak negative pressures 

correspond to the rarefaction phase.  
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Figure 3.2: Bubble clouds as generated during ADV at 3 MPa (upper row), 4 MPa 

(middle) and 5 MPa (bottom row).  Columns represent number of  cycles as follows: 

4 (left), 8 (middle) and 16 (right).  The US beam travels from NE to SW (arrow). 

The scale bar is 500 µm. 
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Figure 3.3: Bubble cloud area in mm2 for different pressure-cycle combinations using 

a 7.5 MHz transducer: 4 cycles (diamonds), 8 cycles (squares) and 16 cycles 

(triangles).  The ADV threshold is 2 MPa, 8 cycles.  The error bars correspond to 

one standard deviation (n=5).  Below threshold the value of  bubble cloud area is 0.    
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Figure 3.4: Representative images depicting cell damage after ADV using a 7.5 MHz 

transducer at 4 MPa, 16 cycles (left) and 5 MPa, 16 cycles (right).  Cells are stained 

with nucleic acid stain Hoechst, while dead cells are stained red with EthD-1. The 

scale bar is 250 µm.  
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Figure 3.5: Total cell fraction as normalized by our control.  The total cell fraction 

corresponds to the total number of  cells in each treatment divided by the total 

number of  cells in our control (0 MPa, 0 cyles, no droplets).  Each treatment is 

described by a peak-negative pressure (MPa) and a number of  cycles.  Vaporization 

(ADV) threshold is at 2 MPa, 8 cycles.  Asterisks (*) denote treatments that are 

significantly different from the control (p<0.05).  Error bars correspond to one 

standard deviation (n=5). 
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Figure 3.6: Dead cell fraction as normalized by our control.  The dead cell fraction 

corresponds to the total number of  dead cells in each treatment divided by the total 

number of  cells in our control (0 MPa, 0 cyles, no droplets).  Each treatment is 

described by a peak-negative pressure (MPa) and a number of  cycles.  Vaporization 

(ADV) threshold is at 2 MPa, 8 cycles.  No significant difference was found between 

experimental treatments and our control.  Error bars correspond to one standard 

deviation (n=5). 
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Figure 3.7: The KZK model shows how a saturation point is reached for both 

transducers as the input power (W) to the transducer is increased.  The y-axis shows 

the radius above threshold for each transducer.  
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Figure 3.8: Bubble cloud area (mm2) plotted against the spatial peak-pulse average 

intensity (Isppa) for the 3.5 MHz and 7.5 MHz transducers.  Both transducers show a 

sigmoidal behavior which is characteristic of  a threshold phenomenon reaching a 

saturation point.  The saturation point corresponds to the maximum achievable 

insonation area for each transducer as obtained using the FDA’s HIFU simulator.  

The sigmoid fit agrees favorably with the data as the R-sq for the 3.5 MHz and 7.5 

MHz fits are 0.99 and 0.91, respectively.  The insert on the top left takes a closer 

look at the fit for the 7.5 MHz. 
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Figure 3.9: Total cell fraction (TCF) plotted against the spatial peak-pulse average 

intensity (Isppa) for the 3.5 MHz and 7.5 MHz transducers.  Both transducers show a 

decrease in cell fraction as the intensity is increased within their respective ranges.  

The behavior for the 3.5 MHz transducer is slightly nonlinear (R-sq = 0.85), while 

that of  the 7.5 MHz transducer is strongly nonlinear (R-sq = 0.56).  A TCF of  1 

indicates a sample with no sheared-off  cells. 
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Figure 3.10: The plot above presents the total cell fraction (TCF, triangles and 

diamonds) and a normalized bubble cloud area (NBCA, circles and stars) plotted 

against the spatial peak-pulse average intensity (Isppa) for each transducer.  Top plot 

corresponds to the 3.5 MHz transducer; bottom corresponds to the 7.5 MHz 

transducer.  The NBCA corresponds to the experimental BCA divided by the 

maximum achievable area obtained from the sigmoid fit of  the experimental data 

(see Figure 3.8) 
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Figure 3.11: Total cell fraction (TCF) plotted against a normalized bubble cloud area 

(NBCA).  The BCA was normalized to account for each transducer maximum 

achievable area for vaporization as obtained from the sigmoid fit.  
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Chapter 4 

Vaporization proximity and 

confinement effects  
 

4.1 Introduction 

Chapters 2 and 3 focused their attention on characterizing the bioeffects of  ADV on 

ECs when varying different acoustic parameters.  This was however, presented as a 

worst case scenario since only droplets in direct contact with the monolayer were 

considered.  A direct inverse relationship between total cell fraction (TCF) and 

bubble cloud area (BCA) indicated that those events leading to bubble formation and 

further expansion were likely the cause of  cell injury.  We also presented evidence 

that suggested that the 7.5 MHz transducer will be more damaging (relative to its 

own beam width) when compared to the 3.5 MHz transducer probably due to its 

capability to lower the ADV threshold, hence vaporizing a greater number of  

droplets.   

While finding droplets in close proximity to the vessel wall (i.e. endothelium) is not 
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entirely improbable, factors such as droplet density and blood vessel size relative to 

beam size will be important in determining the extent and location of  damage.  For 

example, a beam whose width is similar to the diameter of  the targeted vessel will be 

able to provide vaporization at any point inside the vessel including those near the 

vessel wall (Figure 4.1(a)).  If  on the contrary, the beam width is smaller than the 

targeted vessel, vaporization – and as a result – damage could be localized to avoid 

(Figure 4.1(b)) or include (Figure 4.1(c)) the vessel wall, depending on the 

application.  In addition to the relative location of  the droplet inside the blood 

vessel, the relative size of  the droplet is also important.  As mentioned in the 

previous chapters, recent studies have investigated the role of  initial droplet size in 

the development of  pressures and shear stresses [12, 13, 45].  These computational 

studies determined that the generation of  stresses could change dramatically when 

going from rigid [12] to flexible [13] tube walls.   They also found that both peak 

shear stresses and peak pressures increase with increasing Rd/Rv [45], where Rd is the 

radius of  the droplet and Rv is the radius of  the vessel (tube).  Therefore, for a given 

droplet population, significant bioeffects may be generated in small blood vessels.   

These studies assumed vaporization in the center of  the tubes and neglected 

background flow.  The present study presents vaporization occurring in the wall 

opposite to the EC monolayer (Figure 4.2(b) and Figure 4.2(c)).  While it is 

understood that location of  vaporization may also play an important role the 
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generation of  shear stresses and pressures, containing droplets in the center of  

acoustically transparent tubes coated with ECs was a challenge.  We believe that 

although the absolute magnitude of  shear stresses and pressures will be altered by 

this idealized experimental setup, relevant trends related to bubble expansion and 

fluid inertia should still hold.  Significant pressures and shear stresses were found to 

occur at extremely short times O(0.5µs) regardless of  the droplet size.  Therefore, 

damage associated with ADV in our current setup can also be informative.  It is 

known that physiologically ECs are exposed to shear stresses in the range of  1-20 

dyne/cm2 with local increases – in certain areas of  the vasculature – between 30 and 

100 dyne/cm2 [70, 71, 72]. Therefore, significant deviations from these values would 

translate to major bioeffects that may include altered responses to physiological 

events or even cell detachment and lysis. 

The objective of  this chapter is to investigate how vaporization proximity as well as 

the relative level of  confinement of  vaporization affects ECs in a case-by-case basis. 

The level of  confinement will be assessed by changing Rd/Rv, while proximity will be 

explained by comparing these results to those obtained in chapters 2 and 3.  Both 

cases presented show vaporization away from the EC monolayer.  The first case 

presents vaporization with Rd/Rv = 0.01 (open environment), while the second case 

presents vaporization for Rd/Rv = 0.03 (confined environment).  For purposes of  

this study an open environment was defined as a situation where bubbles were 
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vaporized and fully expanded to its spherical shape in any direction, while a confined 

environment represented a situation where bubbles were only allowed to expand in 

one direction (Figure 4.2 and Figure 4.3).   

4.2 Materials and Methods     

4.2.1 Cell Culture  

HUVECs were cultured and maintained at 37ºC in standard culture conditions.  

Cells were grown in culture flasks for one passage and then transferred to OptiCell™ 

culture chambers previously coated with fibronectin prior to US experiments.  The 

cells were grown to ~90% confluence and only passages one through four were used 

in these experiments. 

4.2.2 Ultrasound Setup  

A similar setup to the one described in chapters 2 and 3 was used for these 

experiments.  Briefly, an acrylic tank containing degassed, warm (37ºC) water was 

placed on top of  an inverted microscope to observe and record ADV events.  A 

single-element 3.5 MHz (A381S, 1.9 cm-diameter, 3.81 cm-focal length, Olympus 

Panametrics-NDT, Waltham, MA) transducer was focused at a 40º angle to the 

bottom membrane of  an OptiCell™ chamber located at the bottom of  the tank.  US 

pulses were generated and controlled using two function generators and an amplifier 

as described in Chapter 2, section 2.2.3.   
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4.2.3 Exposure Protocol 

OptiCells™ are composed of  two flexible, 75 μm-thick polystyrene membranes 

separated by 2 mm.  The recommended maximum volume is 10 mL.  Withdrawal 

of  fluid beyond this point (< 10mL) would result in partial collapse of  the 

membranes, which is the basis for this experiment.  In the experimental group, two 

OptiCells™ were used to define two gap separations (300 and 100 µm approximately) 

that defined an open and a confined environment.  One OptiCell™ was used as a 

negative control.  In the experimental group ADV was carried out in those areas of  

the center of  the OptiCells™ were the gap separation was kept constant. The gap 

between the membranes was calculated as follows: total volume of  4 mL inside the 

OptiCell™ corresponding to a gap separation of  100 µm and 6 mL corresponding to 

300 µm.   The gap separation was verified by focusing the bottom and top 

membranes using the Z-direction motor of  the microscope and determining the 

change in focal distance.  A gap separation lower than 100 µm was particularly hard 

to achieve.  A gap distance of  200 µm was initially proposed, but the error in the 

measurement (±50 µm) did not allow for three mutually exclusive gap separations.  

These two gap separations (along with an average droplet radius of  1.5 µm) yielded 

an Rd/Rv value of  0.03 and 0.01, respectively.  ADV was generated using an 8-cycle 

pulse (3.3 µs) and 7 MPa of  acoustic pressure (peak rarefactional).  Images from the 

areas where ADV took place as well as other areas with no ADV were obtained to 
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account for the effects of  fluid withdrawal from the culture chamber.              

4.2.4 Fluorescence Microscopy  

The OptiCells™ culture chambers were rinsed 2x with PBS containing 2% BSA to 

remove any excess droplet solution.  Cells were stained with nucleic acid dye 

Hoechst following the staining protocol, then fixed in 4% PFA and stored in HEPES 

with sodium azide to prevent fungal growth.  Each area exposed to an ADV event 

was examined using a 4x magnification objective.  A fluorescence image consisting 

was obtained for each area and recorded using MetaMorph Premier software.  

4.2.5 Image Processing  

Fluorescence microscopy images were transferred to ImageJ for image processing 

that included conversion to binary (black and white) and particle counting using the 

“Analyze Particles” tool to determine the total number of  cells and the number of  

dead cells per frame.     

4.2.6 Statistics  

All cases studied consisted of  at least 10 replicates.  Minitab 16 was used to carry 

out the statistical analysis.  Statistical significance of  effects was assessed by 

performing a students’s t-test.  P-values below 0.05 were considered statistically 

significant throughout the experiments. 
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4.3 Results 

4.3.1 Confinement  

As mentioned earlier in this chapter, confinement was described by the ability of  the 

bubble cloud to contacting the opposite wall of  the OptiCell™ chamber, where the 

ECs were attached.  A confined environment had an average Rd/Rv ratio of  0.03, 

while an open environment had an average value of  0.01.  This ratio was obtained 

using an average droplet radius of  1.5 µm, however higher ratios will exist 

throughout the chamber given the polydispersity of  the droplet distribution.   

 The results obtained from this experiment were presented in the form of  total cell 

fraction (TCF) as it was done in the previous chapters.  As this chapter only 

addresses the effects of  high pressures and shear stresses due to bubble expansion, 

cell detachment and not cell death was investigated.  Cell death was ruled a 

non-significant metric of  damage as it was revealed by the results of  chapters 2 and 3 

that it was kept at or below 5% with rather high standard deviations.  Figure 4.4 

shows representative images of  the overall effects of  performing ADV in either 

scenario.  As it can be seen in the figure, there is a significant reduction in cell 

density when ADV is performed in a confined environment.  Quantitative results 

are shown in Figure 4.5.   These results were normalized using our negative control, 

where cells were maintained in normal growth conditions with no US exposure or 
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droplet solution.  By doing so, the effects of  fluid withdrawal from the chamber 

were also taken into account.  These results showed that when compared to our 

negative control, fluid withdrawal had no effect in cell attachment in either case 

maintaining a TCF of  near 1.  Our experimental group showed that for the case 

where vaporization happened in an open environment (Rd/Rv = 0.01) cell 

detachment was not significantly different from our negative control.  However, 

when vaporization happened in a confined environment (Rd/Rv = 0.03), it led to 

significantly more damage, reducing the TCF to less than 0.1. 

4.3.2 Proximity  

This section utilizes the results obtained from the current study and compares them 

to those obtained in the previous chapters for similar conditions (Figure 4.6).  

Chapters 2 and 3 discussed the effects of  vaporizing droplets in direct contact to the 

EC monolayer.  This chapter showed results of  two cases where vaporization 

occurred away from the monolayer, but in environments that allowed bubbles to 

either expand in any direction or to be confined in one direction.  Figure 4.7 

summarizes these results as cases (a), (b) and (c).  These results indicated that all 

cases were statistically different from each other showing a greater damage for the 

case where ADV occurred in a confined space, namely 0.6, 1 and 0.1 TCF, 

respectively.     
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4.4 Discussion 

ADV is a phenomenon that allows for local vaporization of  liquid droplets and 

subsequent embolism of  the gas bubbles.  Depending on the circumstances 

vaporization can occur far, near or even at the endothelial surface.  All of  these 

situations present different consequences in terms of  bioeffects induced to the vessel 

wall.  Vessel rupture and petechial hemorrhage has been observed in vivo by [52].  

The results presented here show a small portion of  all the possible bioeffects 

associated with shear stresses and pressures generated during vaporization.  

However, they provide the reader a better understanding of  how this process may 

affect ECs inside the blood vessels.  Studies carried out in [12, 13, 45] showed how 

shear stresses and pressures developed inside tubes for different initial droplet sizes 

and determined that peak shear stress increase with droplet size.  These peak shear 

stresses were found to be between 35 and 80 dyne/cm2 for droplet to tube ratios of  

0.078 and 0.144, respectively.  These shear stresses corresponded to conditions 

where fluid velocities inside the tube were at a maximum.  The same trend was 

observed here, although our ratios were well below those mentioned earlier.  A 

possible explanation for this is our inclusion of  hundreds of  droplets (bubbles) as 

opposed to the one modeled in these studies.  Multiple bubbles might have 

coalesced rapidly – matching their maximum expansion ratios – resulting in larger 

bubbles capable of  significantly increasing the fluid velocity inside the chamber.  
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This could have resulted in the generation of  shear stresses capable of  denuding the 

ECs from the membrane.  In the same manner, another explanation for the observed 

damages is the development of  high pressures during bubble expansion, which can 

reach up to 80,000 bar in 2 µs.  Shear stresses, on the other hand, will require longer 

times to develop due to the viscous resistance of  the fluid.  Thus, we believe that 

since these peak pressures occur at a much faster time scale than the peak shear 

stresses, they may be responsible for injuring cells or even rupturing the blood vessel 

before damages associated to shear stresses can be translated the endothelium.  

Shear stress will then be responsible for removing loosely attached dead cells 

explaining the reduced count of  these throughout our experiments.         

 Both proximity and confinement of  vaporization pose challenges that may not be 

easily controlled due to the polydispersity of  the droplet population.  

Monodispersity of  droplets could immensely aid in the prediction of  damages, but 

producing such a solution with the required sizes and quantity is rather difficult.  In 

addition, the ultimate goal of  the application will dictate which blood vessels will be 

targeted, putting small arterioles and capillaries at higher risk.  Therefore, reduced 

damage could be achieved if  vaporization is localized as further away from the 

endothelium (center of  blood vessel) and making an appropriate selection of  the 

transducer and acoustic parameters.        
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Figure 4.1: Blood vessel size relative to beam size.  Larger beam sizes will facilitate 

vaporization anywhere along the span of  the vessel diameter (a), while smaller beam 

sizes will aid in the localization of  damage (b and c). 
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Figure 4.2: Diagram depicting three cases where ADV could take place inside blood 

vessels using OptiCell™ chambers. Vaporization in direct contact with the 

endothelium (a), vaporization near the endothelium in an open space (b) and 

vaporization near the endothelium in a confined space (c).     
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Figure 4.3: ADV inside an open (left) versus confined (right) environments.  An 

open environment is defined as a situation where bubbles can be vaporized and 

expand fully to its spherical shape in any direction.  A confined environment 

represents a situation where bubbles are only allowed to expand in one direction. In 

both cases vaporization occurred in the wall opposite to the EC monolayer.  Scale 

bar is 500 µm.  
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Figure 4.4: Fluorescence images depicting cell density after ADV in an open 

environment (left) and confined environment (right).  Cells were stained with 

fluorescent dye Hoechst.  Scale bar is 500 µm.   
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Figure 4.5: Total cell fraction after ADV for an open versus a confined environment.  

Control group (line hatch) represents the treatments with droplets, but no ADV.  All 

data is normalized to our negative control (no droplets, no ultrasound).  Open case 

corresponds to Rd/Rv = 0.01, while confined case corresponds to Rd/Rv = 0.03  
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Figure 4.6: ADV and associated damages for vaporization at the EC monolayer (top 

row) versus vaporization away from the EC monolayer, but in confined environment 

(bottom row).  Scale is 500 µm. 
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Figure 4.7: Total cell fraction (TCF) for the cases presented in Figure 4.2.  Case (a) 

corresponds to vaporization at the EC monolayer as presented in chapters 2 and 3.  

Cases (b) and (c) correspond to vaporization in an open environment (Rd/Rv = 0.03) 

and closed environment (Rd/Rv = 0.01), respectively. 
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Chapter 5 

Conclusions 
 

 

This dissertation has presented the effects of  ADV on an idealized endothelial 

monolayer while varying acoustic parameters, such as pressure, pulse length and 

carrier frequency.  Proximity and confinement of  ADV were also investigated.  To 

the best of  our knowledge this is the first study that shows the ADV-endothelial 

interaction and effects under acoustic conditions applicable to GE and the 

implications of  such effects during and after treatment.  For the conditions tested in 

this study, these are the main findings of  this work:  

 ADV in direct contact with ECs will cause cell damage and detachment.   

 Cell damage is dependent on the BCA 

 Damage to ECs is highly localized.  No damage was found beyond the BCA 

when vaporization happened in direct contact with the cells. 

 A combination of  pressure, pulse length and frequency determine the BCA 

and hence the degree of  damage. 



92 

 

o Greater spatial peak intensities (determined by pressure amplitude and 

time) translate to grater effects.   

o The pressure contribution to BCA changes with frequency.  Greater 

contribution is seen for lower frequencies and vice versa.  

o BCAs are limited by the size of  the beam width.  

 For a given intensity, the 7.5 MHz transducer caused more damage than the 

3.5 MHz transducer relative to their own beam widths. 

 Droplet size to gap size ratio is important in the generation of  pressures and 

stresses capable of  affecting ECs. 

o Greater ratios translated to greater effects. 

 Vaporizing away from the ECs, but in a confined environment produces 

greater effects than vaporizing in direct contact to the cells. 

 High pressures may have a major role in cell damage when compared to shear 

stresses.  Shear stresses may become more important at longer time scales. 

 Though unlikely for the 7.5 MHz transducer, IC is still a possible cause of  

death, especially for the 3.5 MHz transducer.      

Under physiological conditions, EC will sense shear stresses and other 

mechanical stimuli to respond to meet metabolic needs [38].  They can also adapt 

by upregulating growth factors, cytoskeletal reorganization, among other activities.  

However, if  these stresses are altered beyond physiological conditions ECs functions 
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could be impaired [23].  Risks of  thrombus formation, fat accumulation, and 

atherosclerosis are major consequences of  endothelial dysfunction from which GE 

could benefit.  Damage to the endothelium could induce thrombosis at the site of  

vaporization providing additional occlusion to those affected vessels.  Controlled 

impairment of  endothelial functions like permeability could also aid in the delivery 

of  drugs or other substances that will need to cross the endothelial barrier during 

treatments.  In other words, if  controlled, not only could ADV provide a localized 

embolus to a specific location in the vasculature, but could also provide a mechanism 

for triggering local drug delivery following occlusion given that cell viability can be 

sustained.  

Our data have shown that ADV events occurring in close proximity to ECs as 

well as in confined environments will cause a decrease cell viability and/or 

attachment.  However cell repopulation can happen depending on the growth 

conditions.  In summary, we have found a range of  results that provide an insight 

into the potential bioeffects of  GE during ADV that not only could help us prevent 

damage, but could aid in the optimization of  this therapy and other clinical 

applications.  
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Chapter 6 

Recommendations and Future Work 
 

 

The results presented in this dissertation were obtained from controlled in vitro 

experiments simulating a worst-case scenario.  In vivo situations are often times 

difficult to mimic.  The addition of  all the necessary parameters to closely simulate 

these conditions does not allow for a controlled experiment.  Therefore, several 

variables were not considered to facilitate the explanation of  our results.   This 

study presented an idealized model in which a monolayer of  HUVECs attached to 

fibronectin was used in a static environment.  Flow of  bulk fluid, RBCs and 

transport of  macromolecules are a few of  the characteristics of  a blood vessel that 

were omitted in this study.  In particular, flow was not considered as the flow in 

target vessels is much slower than the firing frequency of  the US.  Also, the 

endothelium is supported by an extracellular matrix composed of  a mesh of  different 

proteins and other different layers of  cells with different mechanical properties.  We 

believe that the anchor these cells are attached to is an important parameter in 
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determining the likelihood of  cell detachment and as such would have different 

effects depending on its composition.  Laminin, collagen, proteoglycans and other 

important growth factors are some of  the additional proteins that make up the 

basement membrane where endothelial cells are attached to.  In addition, the 

cellular response from ECs may vary depending on their origin in the vascular tree as 

well as their initial pathological state [39].  ECs showing an initial diseased state 

may be more vulnerable to cellular injury and altered response when compared to a 

healthy cell population.              

A proposed extension to this work is the study of  how droplets behave in flow at 

physiological conditions and how these lead to interaction between the droplet 

albumin shell and the endothelium.  Preliminary studies showed that ECs have an 

affinity for albumin-coated DDFP droplets (Figure 6.1) , perhaps due to an albumin 

receptor previously described elsewhere [57, 73].  Albumin is the major blood 

protein in charge of  controlling the oncotic pressure influencing transendothelial 

fluxes of  water and other small molecules across the vessel wall.  It can also be 

transported across the endothelium, may reduce platelet adhesion and restrict surface 

binding of  other plasma proteins.  A group from the Yale School of  Medicine found 

a 60-kDa endothelial glycoprotein that is believed to be directly involved in a specific 

interaction with albumin [73].  Activation of  this glycoprotein (gp60) led to albumin 

uptake by the endothelium of  microvessels as well as transport via a transcellular 
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pathway [58].  These characteristics make an albumin-coated droplet a great 

candidate for direct interaction with the endothelium facilitating vaporization at the 

endothelial surface and perhaps aiding in other therapies as localized drug delivery.  

A flow chamber has previously been used for this purpose (Figure 6.2) and 

preliminary results point at a settlement of  these droplets in slow flow (low shear) 

conditions allowing for these to interact with the endothelium and eventually 

attaching to the endothelial surface (Figure 6.3). 

It would also be pertinent to include an in vivo experiment in which significant 

vaporization is carried out inside an animal model to quantify the number of  

circulating endothelial cells in blood.  Circulating endothelial cells (CEC) have been 

used in the past as an indicator of vascular disease, endothelial dysfunction and cancer.  

CECs can be found in the bloodstream and can be quantified by a number of methods 

including immunocytochemistry and flow cytometry.  Quantifying CECs after ADV 

events can asses both the likelihood and strength of ADV events taking place near the 

endothelium.  A high number of CEC compared to controls will be an indication that 

ADV has indeed hindered the EC attachment to the vascular wall and hence its function.    

Ultra-high speed experiments in which ADV events are limited to a single cell 

could also aid in the elucidation of  the actual mechanism of  injury.  This method 

may allow us to observe any indication of  cavitation (collapse or jet formation) or 

perhaps how bubble expansion directly affects the cell membrane.  Other parameters 
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like droplet size are believed to affect the degree of  damage and should also be 

studied.  However, for this case a monodisperse solution of  droplets may be needed.  

Monodisperse droplet solutions are currently being developed, but high throughput 

to meet the desired concentrations is still a challenge.  This study only considered 

one pulse, but in fact longer pulses or the inclusion of  pulse repetition frequency 

(PRF) may be needed in clinical practice to increase the number of  vaporized 

droplets in the vasculature and increase the probability of  occlusion.  However 

idealized this model is to address the many questions regarding the effectiveness of  

ADV and GE as a whole, this has served as a platform for subsequent studies aiming 

for the optimization of  not only GE, but other related therapies.   
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Figure 6.1: Endothelial cell culture with a solution of  albumin-coated DDFP droplets.  

After two rinses with PBS droplets were removed from intercellular spaces but 

remained attached on the cell surface.  Addition of  free albumin to the PBS solution 

aided in the detachment of  these droplets perhaps due to competition.      
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Figure 6.2: Proposed setup for the study of  droplet-endothelial interaction.  A 

syringe pump will withdraw cell media from one of  the reservoirs to prime the lines 

and the channel.  A second reservoir connected through a three-way valve and 

containing the droplet solution continuously stirred will be used to introduce them 

into the system.  An extra three-way valve connected to a syringe may be used to 

remove air bubbles from the system. 
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Figure 6.3: Preliminary results depicting the effects of  shear stress in droplet 

settlement under flow conditions.  Before and after pictures show results for 2 

dyne/cm2 (a and b) and 4 dyne/cm2 (c and d).   
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Appendix A 

Statistical Analysis - Chapter 2 

 
General Regression Analysis: BCA versus Pressure, Cycles  

 

Regression Equation 

 

BCA  =  -0.799869 + 0.320643 Pressure + 0.0037073 Cycles + 0.000588616 

        Pressure*Cycles 

 

87 cases used, 1 cases contain missing values 

 

Coefficients 

 

Term                  Coef   SE Coef        T      P 

Constant         -0.799869  0.110180  -7.2596  0.000 

Pressure          0.320643  0.020342  15.7623  0.000 

Cycles            0.003707  0.010459   0.3545  0.724 

Pressure*Cycles   0.000589  0.001927   0.3055  0.761 

 

Interpretation: We reject the null hypothesis that the pressure coefficient = 0.  

Pressure is a significant factor in the linear model and strongly changes the response, 

BCA (bubble cloud area).  There’s not enough evidence to reject the null hypothesis 

that the coefficient for Cycles or Pressure*Cycles = 0.  Therefore, these do not 

contribute to our model. 
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Summary of Model 

 

S = 0.202975     R-Sq = 93.30%        R-Sq(adj) = 93.05% 

PRESS = 3.75391  R-Sq(pred) = 92.64% 

 

Interpretation: This model can explain 93% of  the variation in BCA.  The extra 7% 

is not explained by this model and may be due to other sources of  variations not 

accounted for in the model and error.

 

Analysis of Variance 

 

Source             DF   Seq SS   Adj SS   Adj MS        F         P 

Regression          3  47.5801  47.5801  15.8600  384.962  0.000000 

  Pressure          1  47.4824  10.2359  10.2359  248.450  0.000000 

  Cycles            1   0.0938   0.0052   0.0052    0.126  0.723900 

  Pressure*Cycles   1   0.0038   0.0038   0.0038    0.093  0.760746

 

Error              83   3.4195   3.4195   0.0412 

  Lack-of-Fit       8   1.5004   1.5004   0.1876    7.330  0.000000 

  Pure Error       75   1.9191   1.9191   0.0256 

Total              86  50.9996 

 

Interpretation: Confirmation of  the linear model.  The regression fits our data 

(p<0.05), pressure is a significant factor affecting the response (p<0.05), while other 

factors or interactions are not important (p>0.05).  However, due to a lack-of-fit in 

the regression model, another model may be more adequate.  This is in part due to 

the lack of  error in the measurements for one pressure value where all responses were 

equal to 0.  For our experiments, BCA is a threshold phenomenon, dependent on 

pressure, thus the BCA below the threshold are known and equal to 0.    
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Fits and Diagnostics for Unusual Observations 

 

Obs      BCA      Fit     SE Fit   Residual  St Resid 

 61  1.70473  1.18190  0.0248204   0.522824   2.59528  R 

 73  1.39593  1.89994  0.0616738  -0.504009  -2.60633  R 

 75  2.30320  1.79894  0.0534196   0.504254   2.57510  R 

 84  2.27048  1.83261  0.0379038   0.437875   2.19591  R 

 

R denotes an observation with a large standardized residual. 

 

The following model fixes the lack-of-fit encountered in the first model by excluding 

BCA = 0 and parameters that were not significant in predicting the value of BCA.  

Note that 25 observations have been deleted. 

 

Regression Equation 

 

BCA  =  -1.21491 + 0.393339 Pressure 

 

63 cases used, 25 cases contain missing values  

Coefficients 

 

Term          Coef    SE Coef         T      P 

Constant  -1.21491  0.0956495  -12.7017  0.000 

Pressure   0.39334  0.0153193   25.6760  0.000 

 

Summary of Model 

 

S = 0.196145     R-Sq = 91.53%        R-Sq(adj) = 91.39% 

PRESS = 2.48821  R-Sq(pred) = 91.02% 

 

Analysis of Variance 

 

Source         DF   Seq SS   Adj SS   Adj MS        F         P 

Regression      1  25.3635  25.3635  25.3635  659.259  0.000000 

  Pressure      1  25.3635  25.3635  25.3635  659.259  0.000000 

Error          61   2.3468   2.3468   0.0385 
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  Lack-of-Fit   1   0.0607   0.0607   0.0607    1.593  0.211771 

  Pure Error   60   2.2861   2.2861   0.0381 

Total          62  27.7103 

 

Interpretation: This is a better model that fits and explains our data.  The lack-of-fit 

is not significant; therefore this is a more adequate model. 

 

Fits and Diagnostics for Unusual Observations 

 

Obs      BCA      Fit     SE Fit   Residual  St Resid 

 46  1.56605  1.14512  0.0247167   0.420933   2.16328  R 

 47  1.55069  1.14512  0.0247167   0.405565   2.08430  R 

 61  1.70473  1.14512  0.0247167   0.559605   2.87594  R 

 73  1.39593  1.93180  0.0389851  -0.535871  -2.78764  R 

 78  1.48633  1.93180  0.0389851  -0.445468  -2.31735  R 

 

R denotes an observation with a large standardized residual. 

 

Interpretation: These observations with large residuals are likely to be outliers.   

 

 

Figure A.A. 1: This figure shows the fitted line through the data with 95% confidence 

interval (CI) and 95 % prediction interval (PI).  The confidence interval gives us 

information on probability of  finding the mean, while the prediction interval gives us 

probability of  finding the scattered data.  We can explain ~91% of  the variation 

with this model.  Close to 9 % is due to other factors and error.   
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We can use this model to estimate the value of  BCA at pressures between 4 and 8 

MPa. 

 

General Regression Analysis: tcc versus press, cyc in R 

 

Call: 

lm(formula = tcc ~ press * cyc * drop, data = pcd) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-669.68  -96.12   16.90  123.11  455.10  

 

Coefficients: 

                Estimate Std. Error t value Pr(>|t|)     

(Intercept)    2678.2220    64.1534  41.747  < 2e-16 *** 

press            -1.9057    13.9015  -0.137  0.89113     

cyc              -2.8449     7.4194  -0.383  0.70187     

drop            -96.0977    87.7277  -1.095  0.27490     

press:cyc         0.6562     1.5088   0.435  0.66418     

press:drop      -86.1627    19.0498  -4.523 1.14e-05 *** 

cyc:drop         33.1371    10.1478   3.265  0.00132 **  

press:cyc:drop   -9.5386     2.0633  -4.623 7.48e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 200.3 on 169 degrees of freedom 

  (2 observations deleted due to missingness) 

Multiple R-squared:  0.8272,    Adjusted R-squared:   0.82  

F-statistic: 115.5 on 7 and 169 DF,  p-value: < 2.2e-16 

 

Interpretation:  Pressure (press), cycles (cyc) and droplets (drop) do not contribute to 

our regression model (p>0.05).  This does not mean that they have no effect in the 

response, tcc (total cell count).  Other parameters are better at explaining the 

changes in tcc.  We reject the null hypothesis that the coefficients are equal to zero 
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for the following interaction terms: press*drop, cyc*drop and press*cyc*drop.  

These terms have a strong significant effect on estimating our response.  We can 

explain 82% of  the variation with this model, while the rest is due to other factors not 

included in the model and error.  This regression significantly fits our data (p<0.05).  

 

> anova(model1) 

Analysis of Variance Table 

Response: tcc 

                Df   Sum Sq  Mean Sq  F value    Pr(>F)     

press            1  7601046  7601046 189.3951 < 2.2e-16 *** 

cyc              1    66893    66893   1.6668    0.1985     

drop             1 16070320 16070320 400.4238 < 2.2e-16 *** 

press:cyc        1   767023   767023  19.1119 2.148e-05 *** 

press:drop       1  7055861  7055861 175.8107 < 2.2e-16 *** 

cyc:drop         1    39483    39483   0.9838    0.3227     

press:cyc:drop   1   857742   857742  21.3723 7.481e-06 *** 

Residuals      169  6782523    40133                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Interpretation:  Pressure and droplets significantly affect the tcc (p<0.05).  Note 

how these have an effect on the response, but cannot be used to estimate the value of  

tcc in the regression.  Cyc and cyc*drop are not significant, meaning that changing 

cycles have no effect on the response even in the presence of  droplets.  However, 

there is an interaction between pressure and the other two variables. 
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One-way ANOVA: Total Cells versus Treatment in Minitab 16 

 

Treatment 

(coded) 

Treatment 

(P,N) 
Droplets 

0 0 0 

2 2, 4 0 

3 2, 8 0 

1 2, 16 0 

5 4, 4 0 

6 4, 8 0 

4 4, 16 0 

8 6, 4 0 

9 6, 8 0 

7 6, 16 0 

11 8, 4 0 

12 8, 8 0 

10 8, 16 0 

13 0 1 

15 2, 4 1 

16 2, 8 1 

14 2, 16 1 

18 4, 4 1 

19 4, 8 1 

17 4, 16 1 

21 6, 4 1 

22 6, 8 1 

20 6, 16 1 

24 8, 4 1 

25 8, 8 1 

23 8, 16 1 
 

 

  

  

Source      DF        SS       MS      F      P 

Treatment   25  34096931  1363877  40.04  0.000 

Error      151   5143960    34066 

Total      176  39240891 

 

S = 184.6   R-Sq = 86.89%   R-Sq(adj) = 84.72% 
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All treatments have been code to be compared to our control 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  -------+---------+---------+---------+-- 

 0     7  2637.9  165.7                             (--*--) 

 1     7  2684.7  166.4                              (--*-) 

 2     6  2767.3  177.7                               (--*--) 

 3     7  2623.0  174.9                             (-*--) 

 4     6  2571.3  155.7                           (--*--) 

 5     6  2673.3  132.6                             (--*--) 

 6     5  2727.2  159.1                              (---*--) 

 7     6  2717.2  131.7                              (--*--) 

 8     8  2670.4  155.4                              (-*--) 

 9     6  2637.0  264.8                             (--*--) 

10     6  2739.7  220.6                               (--*--) 

11     6  2697.2   83.1                              (--*--) 

12     6  2622.7  104.6                            (--*--) 

13     8  2455.8  148.8                          (-*--) 

14     8  2494.0  182.3                          (--*-) 

15     7  2484.4   97.7                          (--*-) 

16     8  2471.1  235.9                          (-*--) 

17     7  2251.4  189.9                     (--*--) 

18     7  2409.6  180.5                        (--*--) 

19     7  2319.0  154.4                       (-*--) 

20     7  1615.4  328.6         (-*--) 

21     8  2118.5  126.3                   (-*--) 

22     7  1885.0  226.7              (--*-) 

23     7  1298.9  168.4  (--*--) 

24     7  1555.6  193.9       (--*--) 

25     7  1360.1  248.1   (--*--) 

                         -------+---------+---------+---------+-- 

                             1500      2000      2500      3000 

 

Pooled StDev = 184.6 

 

Grouping Information Using Dunnett Method 

 

 



109 

 

Level         N    Mean  Grouping 

 0 (control)  7  2637.9  A 

 2            6  2767.3  A 

10            6  2739.7  A 

 6            5  2727.2  A 

 7            6  2717.2  A 

11            6  2697.2  A 

 1            7  2684.7  A 

 5            6  2673.3  A 

 8            8  2670.4  A 

 9            6  2637.0  A 

 3            7  2623.0  A 

12            6  2622.7  A 

 4            6  2571.3  A 

14            8  2494.0  A 

15            7  2484.4  A 

16            8  2471.1  A 

13            8  2455.8  A 

18            7  2409.6  A 

19            7  2319.0  A 

17            7  2251.4  A 

21            8  2118.5 

22            7  1885.0 

20            7  1615.4 

24            7  1555.6 

25            7  1360.1 

23            7  1298.9 

 

Means not labeled with letter A are significantly different from control 

level mean. 

 

The following treatments were significantly different from the control: all treatments 

with 6 and all treatments with 8. 
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Dunnett's comparisons with a control 

 

Family error rate = 0.05 

Individual error rate = 0.0031 

 

Critical value = 3.01 

Control = level (0) of Treatment 

 

General Regression Analysis: dcc versus press, cyc in R 

 

Call: 

lm(formula = dcc ~ press * cyc * drop, data = pcd) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-68.830 -11.802  -2.965   6.577 131.045  

 

Coefficients: 

               Estimate Std. Error t value Pr(>|t|)   

(Intercept)    21.76423    9.64741   2.256   0.0254 * 

press           0.02414    2.04796   0.012   0.9906   

cyc            -0.33140    1.08777  -0.305   0.7610   

drop           23.00973   12.94145   1.778   0.0772 . 

press:cyc       0.05977    0.21920   0.273   0.7854   

press:drop      3.68790    2.76793   1.332   0.1846   

cyc:drop       -2.27016    1.48769  -1.526   0.1289   

press:cyc:drop  0.53667    0.29897   1.795   0.0745 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 28.56 on 167 degrees of freedom 

  (4 observations deleted due to missingness) 

Multiple R-squared:  0.4812,    Adjusted R-squared:  0.4594  

F-statistic: 22.13 on 7 and 167 DF,  p-value: < 2.2e-16 

 

Interpretation: We fail to reject the null hypothesis that the coefficients are equal to 

zero.  We cannot fit a line through our data.  We can only explain 46% of  the 
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variation with this model.  

 

> anova(model2) 

Analysis of Variance Table 

 

Response: dcc 

                Df Sum Sq Mean Sq  F value    Pr(>F)     

press            1  21747   21747  26.6603 6.833e-07 *** 

cyc              1     42      42   0.0518   0.82018     

drop             1  82210   82210 100.7834 < 2.2e-16 *** 

press:cyc        1   4069    4069   4.9884   0.02685 *   

press:drop       1  15649   15649  19.1847 2.089e-05 *** 

cyc:drop         1      3       3   0.0032   0.95508     

press:cyc:drop   1   2628    2628   3.2222   0.07446 .   

Residuals      167 136224     816                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Interpretation:  Pressure significantly affectsBCA the response, dcc (dead cell count).  

The means for the group containing droplets and that without droplets are 

significantly different (drop p<0.05).  Pressure interacts with both cycles and 

droplets. 

 

One-way ANOVA: Dead Cells versus Treatment in Minitab 16 

 

Source      DF      SS    MS     F      P 

Treatment   25  137934  5517  6.60  0.000 

Error      149  124639   837 

Total      174  262573 

 

S = 28.92   R-Sq = 52.53%   R-Sq(adj) = 44.57% 

 

Individual 95% CIs For Mean Based on Pooled StDev 
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Level  N    Mean  StDev  --+---------+---------+---------+------- 

 0     6   23.00   7.29    (------*-----) 

 1     7   20.71   4.03    (-----*-----) 

 2     6   18.33   5.50   (-----*------) 

 3     7   20.29   4.31    (-----*-----) 

 4     6   17.33   4.68  (------*------) 

 5     6   21.50   5.36   (------*------) 

 6     6   23.50   7.34    (------*-----) 

 7     6   20.67  12.58   (------*------) 

 8     8   20.88   6.17    (-----*-----) 

 9     6   21.00   8.69   (------*------) 

10     6   27.00  17.87     (------*-----) 

11     6   25.50   6.44     (-----*------) 

12     6   21.00   8.32   (------*------) 

13     8   50.13  19.61             (----*-----) 

14     7   30.86  22.65       (-----*-----) 

15     6   32.50  13.92       (-----*------) 

16     8   50.88  28.42             (-----*----) 

17     7   52.71  24.62             (-----*-----) 

18     7   66.43  56.38                 (-----*-----) 

19     7   31.00  20.23       (-----*-----) 

20     7   98.29  43.39                          (-----*-----) 

21     8   67.88  62.75                  (----*-----) 

22     7   82.14  46.67                     (-----*------) 

23     7  103.00  38.54                           (-----*------) 

24     7   93.14  36.48                        (------*-----) 

25     7   84.71  47.48                      (-----*-----) 

                         --+---------+---------+---------+------- 

                           0        35        70       105 

 

Pooled StDev = 28.92 

 

Same as before, all treatments have been coded to be compared to our control. 
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Grouping Information Using Dunnett Method 

 

Level         N    Mean  Grouping 

 0 (control)  6   23.00  A 

23            7  103.00 

20            7   98.29 

24            7   93.14 

25            7   84.71 

22            7   82.14 

21            8   67.88  A 

18            7   66.43  A 

17            7   52.71  A 

16            8   50.88  A 

13            8   50.13  A 

15            6   32.50  A 

19            7   31.00  A 

14            7   30.86  A 

10            6   27.00  A 

11            6   25.50  A 

 6            6   23.50  A 

 5            6   21.50  A 

12            6   21.00  A 

 9            6   21.00  A 

 8            8   20.88  A 

 1            7   20.71  A 

 7            6   20.67  A 

 3            7   20.29  A 

 2            6   18.33  A 

 4            6   17.33  A 

 

Means not labeled with letter A are significantly different from control 

level mean. 

 

The following treatments were significantly different from the control: 6, 8; 6, 16 and 

all treatments with 8. 
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Dunnett's comparisons with a control 

 

Family error rate = 0.05 

Individual error rate = 0.0033 

 

Critical value = 2.99 

 

Control = level (0) of Treatment 
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Appendix B 

Statistical Analysis - Chapter 3 
 

General Regression Analysis: NBCA versus Pressure, Cycle  

 

Regression Equation 

 

BCA  =  -0.0396519 + 0.0206116 Pressure - 0.00894162 Cycle + 0.00591338 

         Pressure*Cycle 

 

 

Coefficients 

 

Term                  Coef    SE Coef         T      P 

Constant        -0.0396519  0.0423412  -0.93649  0.353 

Pressure         0.0206116  0.0107619   1.91524  0.060 

Cycle           -0.0089416  0.0035897  -2.49089  0.015 

Pressure*Cycle   0.0059134  0.0009316   6.34747  0.000 

 

 

Summary of Model 

 

S = 0.0380491     R-Sq = 89.10%        R-Sq(adj) = 88.58% 

PRESS = 0.100580  R-Sq(pred) = 87.79% 

 

 

Analysis of Variance 

 

Source            DF    Seq SS    Adj SS    Adj MS        F          P 

Regression         3  0.734028  0.734028  0.244676  169.006  0.0000000 

  Pressure         1  0.409925  0.005310  0.005310    3.668  0.0600778 

  Cycle            1  0.265773  0.008982  0.008982    6.205  0.0154341 
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  Pressure*Cycle   1  0.058330  0.058330  0.058330   40.290  0.0000000 

Error             62  0.089759  0.089759  0.001448 

  Lack-of-Fit      7  0.032532  0.032532  0.004647    4.466  0.0005415 

  Pure Error      55  0.057228  0.057228  0.001041 

Total             65  0.823788Fits and Diagnostics for Unusual Observations 

 

Obs      NBCA       Fit     SE Fit   Residual  St Resid 

 49  0.314321  0.393411  0.0125392  -0.079089  -2.20160  R 

 64  0.338533  0.228408  0.0079917   0.110125   2.96031  R 

 65  0.351069  0.228408  0.0079917   0.122661   3.29730  R 

 

R denotes an observation with a large standardized residual. 

 

This model tries to predict the value of  bubble cloud area (BCA) given the 

parameters Pressure and Cycle.  P-values below 0.05 tell us which parameters 

contribute significantly to the model.  Cycle and Pressure*Cycle contribute 

significantly.  Pressure alone or the constant do not contribute significantly in 

making a prediction of  BCA.   A negative constant would be absurd to consider in 

this model given that when both Pressure and Cycle are equal to zero this would 

yield a negative BCA, which is not physically possible.  This term should be 

removed from the model.  The (adj) R-Sq tells us that we can explain ~88% of  the 

variation in BCA with this model.  The rest of  the variation can be explained by 

other parameters not accounted for in this model and other uncontrollable sources of  

error.  Further investigation and analysis would be needed to determine other 

sources of  the variation. The ANOVA table tells us which parameters caused a 

significant effect on the mean of  the response (BCA).  Parameters with p-values 
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below 0.05 significantly affect the mean.  A significant interaction tells us that the 

change in the mean is different depending on the selected levels (values) for both 

Pressure and Cycle.  In other words the effects of  Pressure depend on the value of  

Cycle.  A lack-of-fit test reveals that the model presented here may not be adequate.  

Mainly that a linear regression does not adequately fit the data.  Higher order terms 

(quadratic) should be considered to fix this model in order to make better predictions, 

but further investigation and resources may be needed.  Lastly, three observations 

with rather large residuals may suggest the presence of  outliers (mistyped data, 

different units).  After checking the input data it was determined that this are in fact 

the true measured values. 

 

General Regression Analysis: BCA versus Pressure, Cyc  

 

Regression Equation 

 

Cyc 

4    BCA  =  -0.0837196 + 0.0407188 Pressure 

 

8    BCA  =  -0.128751 + 0.0801653 Pressure 

 

16   BCA  =  -0.176862 + 0.111143 Pressure 

 

 

Coefficients 

 

Term                Coef    SE Coef         T      P 

Constant      -0.0837196  0.0367809  -2.27617  0.026 

Pressure       0.0407188  0.0090094   4.51957  0.000 

Cyc 
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  8           -0.0450314  0.0423220  -1.06402  0.292 

  16          -0.0931429  0.0423220  -2.20081  0.032 

Pressure*Cyc 

  8            0.0394465  0.0106601   3.70038  0.000 

  16           0.0704246  0.0106601   6.60637  0.000 

 

 

Summary of Model 

 

S = 0.0312096      R-Sq = 92.91%        R-Sq(adj) = 92.31% 

PRESS = 0.0701498  R-Sq(pred) = 91.48% 

 

 

Analysis of Variance 

 

Source          DF    Seq SS    Adj SS    Adj MS        F         P 

Regression       5  0.765345  0.765345  0.153069  157.148  0.000000 

  Pressure       1  0.409925  0.019896  0.019896   20.427  0.000030 

  Cyc            2  0.310846  0.005529  0.002765    2.838  0.066403 

  Pressure*Cyc   2  0.044574  0.044574  0.022287   22.881  0.000000 

Error           60  0.058442  0.058442  0.000974 

  Lack-of-Fit    5  0.001215  0.001215  0.000243    0.233  0.946181 

  Pure Error    55  0.057228  0.057228  0.001041 

Total           65  0.823788 

 

Fits and Diagnostics for Unusual Observations 

 

Obs       BCA       Fit     SE Fit    Residual  St Resid 

 13  0.236667  0.156568  0.0069787   0.0800989   2.63315  R 

 31  0.347248  0.267711  0.0069787   0.0795365   2.61466  R 

 49  0.314321  0.378855  0.0106601  -0.0645335  -2.20006  R 

 61  0.211548  0.272076  0.0106601  -0.0605278  -2.06350  R 

 64  0.338533  0.272076  0.0106601   0.0664575   2.26565  R 

 65  0.351069  0.272076  0.0106601   0.0789934   2.69302  R 

 

R denotes an observation with a large standardized residual. 
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General Regression Analysis: TCF versus Pressure, Cycles, Drop  

 

Regression Equation 

 

Drop 

0     TCF  =  0.987007 - 0.0130922 Pressure + 0.000764843 Cycles - 0.00032345 

              Pressure*Cycles 

 

1     TCF  =  1.07345 - 0.00828487 Pressure + 0.0143335 Cycles - 0.00804414 

              Pressure*Cycles 

 

 

194 cases used, 43 cases contain missing values 

 

 

Coefficients 

 

Term                       Coef    SE Coef        T      P 

Constant               0.987007  0.0183809  53.6974  0.000 

Pressure              -0.013092  0.0089759  -1.4586  0.146 

Cycles                 0.000765  0.0029480   0.2594  0.796 

Drop 

  1                    0.086441  0.0250837   3.4461  0.001 

Pressure*Cycles       -0.000323  0.0010869  -0.2976  0.766 

Pressure*Drop 

  1                    0.004807  0.0120694   0.3983  0.691 

Cycles*Drop 

  1                    0.013569  0.0041541   3.2663  0.001 

Pressure*Cycles*Drop 

  1                   -0.007721  0.0014635  -5.2754  0.000 

 

 

Summary of Model 

 

S = 0.0938903    R-Sq = 55.09%        R-Sq(adj) = 53.39% 

PRESS = 1.79328  R-Sq(pred) = 50.88% 
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Analysis of Variance 

 

Source                   DF   Seq SS   Adj SS    Adj MS        F         P 

Regression                7  2.01093  2.01093  0.287276  32.5880  0.000000 

  Pressure                1  1.00487  0.01875  0.018755   2.1275  0.146365 

  Cycles                  1  0.02855  0.00059  0.000593   0.0673  0.795579 

  Drop                    1  0.03379  0.10469  0.104688  11.8756  0.000703 

  Pressure*Cycles         1  0.36897  0.00078  0.000781   0.0886  0.766345 

  Pressure*Drop           1  0.31768  0.00140  0.001399   0.1586  0.690862 

  Cycles*Drop             1  0.01173  0.09405  0.094049  10.6687  0.001297 

  Pressure*Cycles*Drop    1  0.24533  0.24533  0.245334  27.8302  0.000000 

Error                   186  1.63966  1.63966  0.008815 

  Lack-of-Fit            24  0.35103  0.35103  0.014626   1.8387  0.014336 

  Pure Error            162  1.28864  1.28864  0.007955 

Total                   193  3.65059 

 

 

Fits and Diagnostics for Unusual Observations 

 

Obs      TCF      Fit     SE Fit   Residual  St Resid 

  2  0.87678  1.07345  0.0170686  -0.196671  -2.13019  R 

 33  0.98262  1.16579  0.0306133  -0.183171  -2.06368  R 

 54  1.23697  1.02880  0.0220665   0.208165   2.28100  R 

 59  0.84518  1.04986  0.0115058  -0.204678  -2.19652  R 

 68  1.10585  0.89181  0.0177995   0.214034   2.32172  R 

 77  0.81833  1.00940  0.0141308  -0.191073  -2.05851  R 

 89  0.48657  0.75482  0.0206602  -0.268248  -2.92882  R 

 96  1.08373  0.89756  0.0131453   0.186164   2.00250  R 

 97  1.12638  0.89756  0.0131453   0.228818   2.46132  R 

106  0.37915  0.61783  0.0285832  -0.238682  -2.66881  R 

117  0.61927  0.82493  0.0177127  -0.205653  -2.23041  R 

138  0.79661  0.98701  0.0183809  -0.190393  -2.06783  R 

160  0.77266  0.97568  0.0125363  -0.203024  -2.18189  R 

166  0.79063  0.97745  0.0156414  -0.186821  -2.01798  R 

183  0.76816  0.96177  0.0119287  -0.193602  -2.07885  R 

221  0.74870  0.90791  0.0337830  -0.159210  -1.81743     X 

223  0.98678  0.90791  0.0337830   0.078876   0.90039     X 

224  0.92689  0.90791  0.0337830   0.018980   0.21666     X 

227  0.77116  0.90791  0.0337830  -0.136749  -1.56103     X 
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R denotes an observation with a large standardized residual. 

X denotes an observation whose X value gives it large leverage. 

 

Results for: Control 

  

General Regression Analysis: TCF versus Pressure, Cycles  

 

Regression Equation 

 

TCF  =  0.987007 - 0.0130922 Pressure + 0.000764843 Cycles - 0.00032345 

        Pressure*Cycles 

 

 

90 cases used, 29 cases contain missing values 

 

Coefficients 

 

Term                  Coef    SE Coef        T      P 

Constant          0.987007  0.0174721  56.4904  0.000 

Pressure         -0.013092  0.0085321  -1.5345  0.129 

Cycles            0.000765  0.0028022   0.2729  0.786 

Pressure*Cycles  -0.000323  0.0010331  -0.3131  0.755 

 

Summary of Model 

 

S = 0.0892482     R-Sq = 8.68%         R-Sq(adj) = 5.49% 

PRESS = 0.751784  R-Sq(pred) = -0.22% 

 

Analysis of Variance 

 

Source             DF    Seq SS    Adj SS     Adj MS        F         P 

Regression          3  0.065110  0.065110  0.0217033  2.72475  0.049136 

  Pressure          1  0.064303  0.018755  0.0187546  2.35455  0.128589 

  Cycles            1  0.000026  0.000593  0.0005934  0.07450  0.785554 

  Pressure*Cycles   1  0.000781  0.000781  0.0007807  0.09801  0.754984 

Error              86  0.685011  0.685011  0.0079652 

  Lack-of-Fit      12  0.117304  0.117304  0.0097754  1.27421  0.251993 

  Pure Error       74  0.567707  0.567707  0.0076717 

Total              89  0.750121 
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Fits and Diagnostics for Unusual Observations 

 

Obs       TCF       Fit     SE Fit   Residual  St Resid 

 20  0.796615  0.987007  0.0174721  -0.190393  -2.17539  R 

 42  0.772656  0.975681  0.0119165  -0.203024  -2.29538  R 

 48  0.790625  0.977446  0.0148681  -0.186821  -2.12294  R 

 65  0.768164  0.961767  0.0113389  -0.193602  -2.18698  R 

117  0.733724  0.914727  0.0183779  -0.181003  -2.07250  R 

 

R denotes an observation with a large standardized residual. 

 

Results for: Experimental 

  

General Regression Analysis: TCF versus Pressure, Cycles  

 

Regression Equation 

 

TCF  =  1.07345 - 0.00828487 Pressure + 0.0143335 Cycles - 0.00804414 

        Pressure*Cycles 

 

 

104 cases used, 14 cases contain missing values 

 

Coefficients 

 

Term                 Coef    SE Coef        T      P 

Constant          1.07345  0.0177623  60.4341  0.000 

Pressure         -0.00828  0.0083966  -0.9867  0.326 

Cycles            0.01433  0.0030458   4.7061  0.000 

Pressure*Cycles  -0.00804  0.0010199  -7.8870  0.000 

 

 

Summary of Model 

 

S = 0.0977062    R-Sq = 66.78%        R-Sq(adj) = 65.78% 

PRESS = 1.04149  R-Sq(pred) = 63.76% 
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Analysis of Variance 

 

Source              DF   Seq SS   Adj SS    Adj MS        F         P 

Regression           3  1.91910  1.91910  0.639700  67.0088  0.000000 

  Pressure           1  1.27891  0.00929  0.009294   0.9736  0.326175 

  Cycles             1  0.04635  0.21143  0.211426  22.1469  0.000008 

  Pressure*Cycles    1  0.59384  0.59384  0.593843  62.2053  0.000000 

Error              100  0.95465  0.95465  0.009547 

  Lack-of-Fit       12  0.23372  0.23372  0.019477   2.3774  0.010511 

  Pure Error        88  0.72093  0.72093  0.008192 

Total              103  2.87375 

 

 

Fits and Diagnostics for Unusual Observations 

 

Obs      TCF      Fit     SE Fit   Residual  St Resid 

  2  0.87678  1.07345  0.0177623  -0.196671  -2.04699  R 

 54  1.23697  1.02880  0.0229634   0.208165   2.19191  R 

 59  0.84518  1.04986  0.0119735  -0.204678  -2.11074  R 

 68  1.10585  0.89181  0.0185229   0.214034   2.23105  R 

 89  0.48657  0.75482  0.0214999  -0.268248  -2.81444  R 

 97  1.12638  0.89756  0.0136795   0.228818   2.36519  R 

106  0.37915  0.61783  0.0297449  -0.238682  -2.56458  R 

117  0.61927  0.82493  0.0184326  -0.205653  -2.14330  R 

 

R denotes an observation with a large standardized residual. 

 

Grouping Information Using Dunnett Method 

 

Level          N     Mean  Grouping 

 1 (control)  23  1.00000  A 

20             6  1.13481 

21             4  1.10269  A 

17            27  1.08028  A 

18             4  1.05845  A 

19             6  1.05161  A 

23             4  1.05095  A 

10             3  1.03071  A 

22             5  1.03033  A 
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24             5  0.99968  A 

 5             4  0.99652  A 

 9             4  0.99277  A 

29             6  0.98841  A 

 8             4  0.98753  A 

 2             5  0.96582  A 

 4             5  0.96402  A 

28             5  0.95703  A 

25             5  0.95513  A 

13             6  0.95409  A 

31             6  0.94471  A 

26             4  0.94352  A 

11             4  0.94074  A 

 6             5  0.93647  A 

12             5  0.93168  A 

15             4  0.92389  A 

 7             3  0.91691  A 

 3             6  0.89370  A 

16             5  0.88047  A 

14             4  0.85838  A 

32             5  0.80284 

27             6  0.71511 

30             6  0.57372 

 

Means not labeled with letter A are significantly different from control 

level mean. 

 

Dunnett's comparisons with a control 

 

Family error rate = 0.05 

Individual error rate = 0.0018 

 

Critical value = 3.18 

Control = level (1) of Treatment 
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Intervals for treatment mean minus control mean 

 

Level     Lower    Center     Upper   

--+---------+---------+---------+------- 

 2     -0.17413  -0.03418   0.10577                  (-----*----) 

 3     -0.23632  -0.10630   0.02371                (----*----) 

 4     -0.17593  -0.03598   0.10397                  (-----*----) 

 5     -0.15713  -0.00348   0.15017                   (-----*-----) 

 6     -0.20348  -0.06353   0.07642                 (----*-----) 

 7     -0.25720  -0.08309   0.09101               (------*------) 

 8     -0.16612  -0.01247   0.14118                  (------*-----) 

 9     -0.16088  -0.00723   0.14642                   (-----*-----) 

10     -0.14339   0.03071   0.20481                   (------*------) 

11     -0.21291  -0.05926   0.09439                (------*-----) 

12     -0.20827  -0.06832   0.07163                 (----*-----) 

13     -0.17593  -0.04591   0.08411                  (----*----) 

14     -0.29527  -0.14162   0.01203             (-----*-----) 

15     -0.22976  -0.07611   0.07754                (-----*-----) 

16     -0.25948  -0.11953   0.02042               (----*-----) 

17     -0.00020   0.08028   0.16075                         (--*--) 

18     -0.09520   0.05845   0.21210                     (-----*-----) 

19     -0.07841   0.05161   0.18162                      (----*----) 

20      0.00479   0.13481   0.26482                         (----*-----) 

21     -0.05096   0.10269   0.25633                       (-----*-----) 

22     -0.10962   0.03033   0.17028                     (----*-----) 

23     -0.10270   0.05095   0.20460                     (-----*-----) 

24     -0.14027  -0.00032   0.13963                   (-----*-----) 

25     -0.18482  -0.04487   0.09508                  (----*-----) 

26     -0.21013  -0.05648   0.09717                 (-----*-----) 

27     -0.41490  -0.28489  -0.15487        (-----*----) 

28     -0.18292  -0.04297   0.09698                  (----*-----) 

29     -0.14160  -0.01159   0.11843                   (-----*----) 

30     -0.55629  -0.42628  -0.29626   (----*----) 

31     -0.18531  -0.05529   0.07472                  (----*----) 

32     -0.33711  -0.19716  -0.05721            (----*-----) 

                                      --+---------+---------+---------+------- 

                                     -0.50     -0.25      0.00      0.25 
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General Regression Analysis: DCF^0.5 versus Pressure, Cycles, Drop  

 

Regression Equation 

 

Drop 

0     DCF^0.5  =  0.0885781 + 0.0046958 Pressure - 0.000241549 Cycles - 

                  0.000282005 Pressure*Cycles 

 

1     DCF^0.5  =  0.12295 + 0.0134112 Pressure + 0.00144206 Cycles - 

                  0.000805295 Pressure*Cycles 

 

Coefficients 

 

Term                        Coef    SE Coef         T      P 

Constant               0.0885781  0.0140989   6.28264  0.000 

Pressure               0.0046958  0.0068781   0.68272  0.495 

Cycles                -0.0002415  0.0022260  -0.10851  0.914 

Drop 

  1                    0.0343720  0.0199318   1.72448  0.086 

Pressure*Cycles       -0.0002820  0.0007867  -0.35844  0.720 

Pressure*Drop 

  1                    0.0087154  0.0096976   0.89872  0.370 

Cycles*Drop 

  1                    0.0016836  0.0031600   0.53280  0.595 

Pressure*Cycles*Drop 

  1                   -0.0005233  0.0011261  -0.46469  0.643 

 

Summary of Model 

 

S = 0.0816880    R-Sq = 12.22%       R-Sq(adj) = 9.53% 

PRESS = 1.62611  R-Sq(pred) = 6.59% 

 

 

Analysis of Variance 

 

Source                   DF   Seq SS   Adj SS     Adj MS        F         P 

Regression                7  0.21265  0.21265  0.0303788  4.55254  0.000089 

  Pressure                1  0.01708  0.00311  0.0031103  0.46610  0.495477 

  Cycles                  1  0.00214  0.00008  0.0000786  0.01177  0.913685 
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  Drop                    1  0.17701  0.01984  0.0198441  2.97383  0.085971 

  Pressure*Cycles         1  0.00639  0.00086  0.0008574  0.12848  0.720341 

  Pressure*Drop           1  0.00808  0.00539  0.0053897  0.80770  0.369745 

  Cycles*Drop             1  0.00051  0.00189  0.0018943  0.28387  0.594691 

  Pressure*Cycles*Drop    1  0.00144  0.00144  0.0014409  0.21594  

0.642596 

Error                   229  1.52810  1.52810  0.0066729 

  Lack-of-Fit            24  0.30087  0.30087  0.0125361  2.09407  0.003085 

  Pure Error            205  1.22723  1.22723  0.0059865 

Total                   236  1.74075 

 

Fits and Diagnostics for Unusual Observations 

 

Obs   DCF^0.5       Fit     SE Fit  Residual  St Resid 

 37  0.331178  0.138908  0.0096048  0.192270   2.37015  R 

 42  0.326732  0.138908  0.0096048  0.187824   2.31535  R 

 46  0.339895  0.141455  0.0119318  0.198439   2.45557  R 

 54  0.322226  0.147076  0.0165087  0.175149   2.18930  R 

 71  0.362787  0.147603  0.0141753  0.215185   2.67481  R 

 86  0.308310  0.148129  0.0176117  0.160181   2.00811  R 

 89  0.333378  0.148129  0.0176117  0.185249   2.32238  R 

 91  0.344170  0.169479  0.0156842  0.174692   2.17907  R 

 92  0.346288  0.169479  0.0156842  0.176810   2.20548  R 

 97  0.324487  0.162362  0.0111582  0.162125   2.00346  R 

 99  0.333378  0.162362  0.0111582  0.171016   2.11334  R 

135  0.299739  0.088578  0.0140989  0.211161   2.62436  R 

172  0.350409  0.085081  0.0165184  0.265328   3.31658  R 

182  0.319097  0.091525  0.0090665  0.227572   2.80319  R 

198  0.276346  0.093965  0.0087710  0.182381   2.24564  R 

229  0.286979  0.105451  0.0203239  0.181528   2.29436  R 

 

R denotes an observation with a large standardized residual. 
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General Regression Analysis: TCF versus NBCA, Freq  

 

Weighted analysis using weights in Weight 

 

Regression Equation 

 

Freq 

0     TCF  =  1.0281 - 0.175594 NBCA 

 

1     TCF  =  0.93824 - 0.186347 NBCA 

 

Coefficients 

 

Term           Coef    SE Coef        T      P 

Constant    1.02810  0.0256005  40.1593  0.000 

Freq 

  1        -0.08986  0.0310388  -2.8950  0.008 

NBCA       -0.17559  0.0271881  -6.4585  0.000 

Freq*NBCA 

  1        -0.01075  0.0318473  -0.3376  0.739 

 

 

Summary of Model 

 

S = 0.701335     R-Sq = 89.35%        R-Sq(adj) = 87.96% 

PRESS = 18.3296  R-Sq(pred) = 82.74% 

 

 

Analysis of Variance 

 

Source         DF   Seq SS   Adj SS   Adj MS        F         P 

Regression      3   94.892  94.8924  31.6308  64.3071  0.000000 

  Freq          1   12.278   4.1225   4.1225   8.3813  0.008165 

  NBCA          1   82.558  20.5170  20.5170  41.7122  0.000001 

  Freq*NBCA     1    0.056   0.0561   0.0561   0.1140  0.738704 

Error          23   11.313  11.3130   0.4919 

  Lack-of-Fit  18   10.756  10.7557   0.5975   5.3602  0.036046 

  Pure Error    5    0.557   0.5574   0.1115 

Total          26  106.205 
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Fits and Diagnostics for Unusual Observations 

 

Obs       TCF       Fit     SE Fit   Residual  St Resid 

 15  0.543804  0.607237  0.0516042  -0.063433  -1.13872     X 

 16  0.929513  0.938240  0.0175505  -0.008728  -0.46704     X 

 22  0.792606  0.689793  0.0162534   0.102812   3.55943  R 

 

R denotes an observation with a large standardized residual. 

X denotes an observation whose X value gives it large leverage. 
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Appendix C 

Statistical Analysis - Chapter 4 
 

Two-Sample T-Test and CI  

 

Sample   N   Mean  StDev  SE Mean 

1       16  1.080  0.300    0.075 

2       16  1.120  0.300    0.075 

 

 

Difference = mu (1) - mu (2) 

Estimate for difference:  -0.040 

95% CI for difference:  (-0.257, 0.177) 

T-Test of difference = 0 (vs not =): T-Value = -0.38  P-Value = 0.709  DF 

= 30 

 

  

Two-Sample T-Test and CI  

 

Sample   N   Mean  StDev  SE Mean 

1       16  1.080  0.300    0.075 

2       16  1.030  0.190    0.048 

 

 

Difference = mu (1) - mu (2) 

Estimate for difference:  0.0500 

95% CI for difference:  (-0.1328, 0.2328) 

T-Test of difference = 0 (vs not =): T-Value = 0.56  P-Value = 0.578  DF = 

25 
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Two-Sample T-Test and CI  

 

Sample   N   Mean  StDev  SE Mean 

1       16  1.120  0.300    0.075 

2       16  0.170  0.110    0.028 

 

 

Difference = mu (1) - mu (2) 

Estimate for difference:  0.9500 

95% CI for difference:  (0.7822, 1.1178) 

T-Test of difference = 0 (vs not =): T-Value = 11.89  P-Value = 0.000  DF 

= 18 

 

Two-Sample T-Test and CI  

 

Sample   N   Mean  StDev  SE Mean 

1        9  0.600  0.120    0.040 

2       16  1.030  0.190    0.048 

 

 

Difference = mu (1) - mu (2) 

Estimate for difference:  -0.4300 

95% CI for difference:  (-0.5588, -0.3012) 

T-Test of difference = 0 (vs not =): T-Value = -6.92  P-Value = 0.000  DF 

= 22 

 

Two-Sample T-Test and CI  

 

Sample   N   Mean  StDev  SE Mean 

1        9  0.600  0.120    0.040 

2       16  0.170  0.110    0.028 

 

 

Difference = mu (1) - mu (2) 

Estimate for difference:  0.4300 

95% CI for difference:  (0.3265, 0.5335) 

T-Test of difference = 0 (vs not =): T-Value = 8.86  P-Value = 0.000  DF = 

15 
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Appendix D 

Transducer Calibration Plots 

 

 

 

Figure A.D. 1: Beam profiles for both transducers.  The y-axis corresponds to a 

normalized intensity using the maximum value at the origin.  
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Figure A.D. 2: Ultrasound pulse for the 3.5 MHz transducer with a 4 (top) and 16 

(bottom) input cycle.  The y-axis shows pressure at the focus of  the transducer.  

Note that the output signal shows one less cycle compared to the input due to 

ring-up/ring down artifacts.  
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Figure A.D. 3: Ultrasound pulse from the 7.5 MHz transducer with 4 (top) and 16 

(bottom) input cycles.  The y-axis shows pressure at the focus of  the transducer.  

Note that the output signal shows three less cycles compared to the input due to 

ring-up/ring-down artifacts.
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