
Hybrid Techniques for Simulating Quantum
Circuits using the Heisenberg Representation

by

Héctor J. Garćıa-Ramı́rez

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2014

Doctoral Committee:
Professor Igor L. Markov, Chair
Professor John P. Hayes
Associate Professor Yaoyun Shi
Professor Kim Winick

c© Héctor J. Garćıa-Ramı́rez 2014

All Rights Reserved

Dedicado principalmente a mi amada esposa, Myriam Estevez. Vida mı́a, gracias

por confiar en mi y apoyarme en esta gran aventura. Los frutos de mis esfuerzos van

dedicados a mis tres hijos: José David, Gael Ernesto y Luis Eduardo. Ustedes han

sido el compás de mi destino y la verdadera manifestación de mi orgullo y amor.

ii

ACKNOWLEDGEMENTS

First and foremost, I must thank my beautiful and lovely wife, Myriam Estevez.

Without her love and support, none of this would have been possible so she deserves as

much credit as I do for the completion of this PhD dissertation. I am forever grateful

to my three sons, José David, Gael Ernesto and Luis Eduardo, who drove me crazy

just enough to help me keep my sanity during these past few years. Special thanks to

my advisor Professor Igor L. Markov for providing me with excellent research ideas.

I would like to acknowledge the work and effort from the members of my dissertation

committee. Thanks to all my Michigan friends (too many to list here, but you know

who you are) for your constant emotional and academic help and support. Finally,

I must thank my mother, Elsie M. Ramı́rez, for her unyielding encouragement and

confidence in my success. You are an exemplary human being and I am very proud

to call you mother.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . xiii

LIST OF ALGORITHMS . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Toward Scalable Simulation of Quantum Circuits 2
1.2 Quantum States and Circuits 5
1.3 Quantum Measurements . 7
1.4 Quantum Error-correcting Codes and Fault-tolerant

Quantum Computation . 9
1.5 The Pauli operator basis . 12
1.6 Simulation of Quantum Circuits 17
1.7 Objectives of the Dissertation 18
1.8 Dissertation Outline . 21

II. Simulation Techniques and the Heisenberg Representation . 23

2.1 Classification of Simulation Techniques 24
2.1.1 Strong versus weak 24
2.1.2 Stateless versus direct 25

2.2 The Stabilizer Formalism . 27
2.2.1 Stabilizer gates and circuits 29
2.2.2 Stabilizer states . 31
2.2.3 Canonical forms . 38

iv

2.3 Algorithms for Simulation and Equivalence-checking
of Stabilizer Circuits . 52

2.3.1 The tableau technique 52
2.3.2 Equivalence checking 56
2.3.3 Global-phase maintenance 56

2.4 Stateless Simulation of Stabilizer Circuits 58
2.5 Summary . 62

III. Metric Geometry of Stabilizer States 64

3.1 Geometric Properties of Stabilizer States 66
3.1.1 Inner products and k-neighbor stabilizer states . . . 68
3.1.2 Exterior products and stabilizer bivectors 76
3.1.3 Linear dependence of stabilizer states 79

3.2 The Embedding of Stabilizer Geometry in Hilbert Space . . . 81
3.2.1 Approximating an arbitrary quantum state with one

stabilizer state . 82
3.2.2 Approximating arbitrary states with superpositions

of stabilizer states 83
3.3 Summary . 87

IV. Computational Geometry of Stabilizer States 89

4.1 Synthesis of Canonical Stabilizer Circuits 89
4.2 An Inner-product Algorithm 93
4.3 Orthogonalization of Stabilizer States 95
4.4 Computation of Stabilizer Bivectors 97
4.5 Applications of Geometric Algorithms 100

4.5.1 Mixed stabilizer states 100
4.5.2 Simulation of quantum systems 101

4.6 Empirical Studies . 102
4.7 Summary . 105

V. Engineering Stabilizer-based Simulation
of Generic Quantum Circuits . 106

5.1 Stabilizer Frames . 106
5.1.1 Frame Operations 108
5.1.2 Frame-based Simulation of Quantum Circuits 110
5.1.3 Frame measurements 113

5.2 Multiframe Simulation . 113
5.2.1 Orthogonality of Multiframes 116
5.2.2 Parallel Frame-based Simulation 117

5.3 Empirical Validation . 119
5.3.1 Stabilizer circuits 119

v

5.3.2 Quantum ripple-carry adders 120
5.3.3 Quantum Fourier transform (QFT) circuits 123
5.3.4 Fault-tolerant (FT) circuits 125

5.4 p-blocked Multiframes . 129
5.5 Summary . 132

VI. Stateless Simulation of Generic Quantum Circuits 135

6.1 Pauli Expansions of Linear Operators 135
6.2 Stateless Simulation of Generic Quantum Circuits 137

6.2.1 Compact Representation using Decision Diagrams . 139
6.2.2 Empirical Validation 140

6.3 Summary . 142

VII. Graph-based Techniques and Matrix Product States 144

7.1 Matrix Product State (MPS) Simulation 145
7.2 Quantum Multivalued Decision Diagrams (QMDDs) 148
7.3 MPS-based Decision Diagrams 150
7.4 Summary . 154

VIII. Conclusions . 156

8.1 Summary of Contributions 157
8.2 Open Challenges . 162
8.3 Future Directions . 163

8.3.1 Frame-based simulation using Pauli expansions . . . 164
8.3.2 Stabilizer-based matrix product states 164

APPENDIX . 166

BIBLIOGRAPHY . 170

vi

LIST OF FIGURES

Figure

1.1 A software architecture for synthesizing, optimizing and simulating
quantum circuits. 4

1.2 Graphical representation of the EPR pair circuit. 7

1.3 The one-qubit Pauli operators. 10

1.4 Transversal implementation of a stabilizer circuit acting on 3-qubit
QECC registers. 11

1.5 The stabilizer gates: Hadamard (H), Phase (P) and controlled-NOT
(CNOT). Note that H† = H and CNOT † = CNOT . Furthermore
P 4 = I, thus P † = P 3. 17

2.1 General quantum circuit for decision problems. 26

2.2 Implementation of the (a) Controlled-Z (CPHASE) and (b) Controlled-
Y operations using Pauli and Clifford gates. These gates can be
simulated directly on the stabilizer or using the equivalences shown
here. 31

2.3 Representation of the states generated by the EPR-pair circuit using
stabilizer matrices. The phase array is omitted for simplicity. The
rows of the matrices {R1, R2} denote the stabilizer generators of the
corresponding two-qubit state. 31

2.4 Canonical (row-reduced echelon) form for stabilizer matrices. The
X-block contains a minimal set of rows with X/Y literals. The rows
with Z literals only appear in the Z-block. Each block is arranged
so that the leading non-I literal of each row is strictly to the right
of the leading non-I literal in the row above. The number of Pauli
(non-I) literals in each block is minimal. 46

vii

2.5 Simulation of EPR-pair circuit using the tableau technique. We omit
phase vectors for clarity. 54

2.6 Classical simulation complexities for sets of Clifford computational
tasks [40]. IN(BITS) and IN(PROD) refer to allowing computa-
tional basis states and general product states as inputs. OUT(1) and
OUT(MANY) refer to having single bit and multi-bit outputs. NON-
ADAPT and ADAPT refer to circuits with intermediate measure-
ments and gates conditioned on measurement outcomes (ADAPT).
WEAK and STRONG refer to two notions of classical simulation as
defined in Section 2.1.1. Cl-P denotes that classical efficient simula-
tion is possible, QC-hard denotes that universal quantum computa-
tion is possible, and #P-hard asserts that classical simulation could
be used to solve arbitrary problems in the classical class #P (and
hence NP too). 63

3.1 The angle between any stabilizer state and its nearest neighbors is
45◦ and the distance is

√
2−
√

2. Here, |s1〉 is a nearest neighbor
of both |00〉 and |10〉. Similarly, |s2〉 is a nearest neighbor of |00〉
and |01〉. The angle between these two nearest neighbors of |00〉 is
60◦. Consider the linearly-dependent triplets {|00〉 , |10〉 , |s1〉} and
{|00〉 , |01〉 , |s2〉}. Each set contains two pairs of nearest neighbors
and one pair of orthogonal states. 65

3.2 (a) For an n-qubit stabilizer state |ψ〉, the fraction (≈ 2/3) of all
stabilizer states that are oblique to |ψ〉 is dominated by its (n − k)-
neighbors, where k ∈ {0, 1, 2, 3, 4}. (b) The stabilizer states orthog-
onal to |ψ〉 together with its (n − k)-neighbors (k < 3) account for
≈ 99% of all states. 77

3.3 A ball B with radius
√

2 centered on the unit sphere covers half of
the unit sphere. Every such ball contains at least one stabilizer state
(in most cases, half of all stabilizer states). 87

4.1 Template structure for the basis-normalization circuit synthesized by
Algorithm 4.1.1. The input is an arbitrary stabilizer state |ψ〉 while
the output is a basis state |b1b2 . . . bn ∈ {0, 1}n〉. 91

4.2 (a) Average runtime for Algorithm 4.2.1 to compute the inner product
between two random n-qubit stabilizer states. The stabilizer matrices
that represent the input states are generated by applying βn log2 n
unitary stabilizer gates to |0⊗n〉. (b) Average number of gates in the
circuits produced by Algorithm 4.1.1. 103

viii

4.3 Average runtime for Algorithm 4.2.1 to compute the inner product
between (a) |0⊗n〉 and random stabilizer state |φ〉 and (b) the n-qubit
GHZ state and random stabilizer state |φ〉. 103

4.4 (a) Runtime and (b) circuit-size comparisons between Algorithm 4.1.1
and the circuit synthesis portion of the Audenaert-Plenio inner-product
algorithm. On average, Algorithm 4.1.1 runs roughly twice as fast
and produces canonical circuits that contain less than half as many
gates. Furthermore, the Audenaert-Plenio circuits are not canonical. 104

5.1 Example of a stabilizer frame that represents |ψ〉. Observe that while
|ψ〉 is composed of four computational-basis amplitudes, its frame
representation has only two phase vectors. For |a1|2 = |a2|2, one
can manipulate F to reduce its size. We discuss this technique in
Section 5.1.2. 108

5.2 Simulation of TOFc1c2t |Ψ〉 using a stabilizer-state superposition (Equa-
tion 5.3). Here, c1 = 1, c1 = 2 and t = 3. Amplitudes are omitted
for clarity and the (±)-phase vectors are shown as columns prefixed
to their corresponding matrices. The X gate is applied to the third
qubit of the |Ψc1c2=11〉 cofactor. 111

5.3 Example of how a multiframe representation is derived from a single-
frame representation. 115

5.4 Overall simulation flow for Quipu. 118

5.5 Our C++11 template function for executing the frame operations
(Func f) described in Section 5.1.2 in parallel. The function accepts
a range of vector elements defined by iterators Iter begin and Iter
end. Params... p is the variadic template argument that defines
the parameters of Func f. The number of threads allowed is defined
by MTHREAD. The function returns a vector of std::futures, which
can be used to access the result of the asynchronous operations. . . 119

5.6 Average time needed by Quipu and CHP to simulate an n-qubit sta-
bilizer circuit with βn log n gates and n measurements. Quipu is
asymptotically as fast as CHP but is not limited to stabilizer circuits. 121

5.7 Ripple-carry (Cuccaro) adder for 3-bit numbers a = a0a1a2 and b =
b0b1b2 [25, Figure 6]. The third qubit from the top is an ancilla and
the z qubit is the carry. The b-register is overwritten with the result
s0s1s2. 121

ix

5.8 Average runtime and memory needed by Quipu and QuIDDPro to sim-
ulate n-bit Cuccaro adders after a superposition of all computational-
basis states is obtained using a block of Hadamard gates (Figure 5.7).
The quadratic function f(x) = 0.5248x2 − 15.815x + 123.86 fits
Quipu’s curve with R2 = .9986. 122

5.9 The three-qubit QFT circuit. In general, The first qubit requires one
Hadamard gate, the next qubit requires a Hadamard and a controlled-
R(α) gate, and each following qubit requires an additional controlled-
R(α) gate. Summing up the number of gates gives O(n2) for an
n-qubit QFT circuit. 124

5.10 Average runtime and memory needed by Quipu (single-threaded and
multi-threaded) and QuIDDPro to simulate n-qubit QFT circuits,
which contain n(n+1)/2 gates. We used the |11 . . . 1〉 input state for
all benchmarks. 124

5.11 Fault-tolerant implementation of a Toffoli gate. Each line represents
a 5-qubit register and each gate is applied transversally. The state
|cat〉 = (

∣∣0⊗5
〉

+
∣∣1⊗5

〉
)/
√

2 is obtained using a stabilizer subcircuit (not
shown). The arrows point to the set of gates that is applied if the
measurement outcome is 1; no action is taken otherwise. Controlled-
Z gates are implemented as HjCNOTi,jHj with control i and target j.
Z gates are implemented as P 2. 126

5.12 Adder circuits from our benchmarks. We used the 5-qubit DiVincen-
zo/Shor QECC and implemented Toffoli gates using the FT architec-
ture from Figure 5.11. 126

5.13 Mod-exp with M = 15 implemented as (2, 4)-LUTs [44] for several co-
prime base values. Negative controls are shown with hollow circles.
We apply Hadamards to each x-qubit to generate a superposition of
all the input values for x. Our benchmarks implement these compu-
tations using the 3-qubit bit-flip code [51, Ch. 10] and the FT-Toffoli
architecture from Figure 5.11. 127

5.14 (a) Stabilizer frame (single-term multiframe) representation for U |1111〉,
where U is the 4-qubit QFT circuit. (b) p-blocked multiframe rep-
resentation for U |1111〉. Observe that V = V1 ⊗ V2 ⊗ V3 ⊗ V4. . . . 130

5.15 Average runtime and memory for Quipu to simulate n-qubit QFT
circuits on input state |11 . . . 1〉 using p-blocked multiframes. The
poly-fit functions for runtime and memory have R2 = .9886 and R2 =
.9964, respectively. 132

x

6.1 MDD for addition operator ADD2. The circular (internal) nodes rep-
resent Pauli literals and the edges represent possible values for such
literals. The square (terminal) nodes represent the possible phases
(±1, ±i) of each term in ADD2. 141

6.2 Average time needed by Quipu (stateless) and CHP to simulate an n-
qubit stabilizer circuit with 2n + 1 gates and a single measurement
(circuit structure from Figure 2.1). Quipu runs in linear time for such
instances while CHP takes quadratic time. 142

6.3 (a) Average time needed by Quipu (stateless) and Quipu (direct)
to simulate n-bit adders (Section 5.3) after a superposition of all
computational-basis states is obtained. A single measurement is per-
formed on qubit 2n+ 2, which is the highest carry bit. The stateless
approach takes exponential time and scales to around 18-bit instances
only. (b) Comparison of the number of terms in the direct frame-
based approach (size of multiframe) and the stateless approach (size
of the Pauli-string list). 143

7.1 Average runtime and peak memory for ZKCM to simulate n-qubit QFT
circuits on input state |11 . . . 1〉. The maximum Schmidt rank χ ob-
served for each benchmark is 1. R2 = .999 for polynomial fit f(x) in
both plots. 147

7.2 Several representations for the controlled-V gate on three qubits,
where V = 1+i

2

(
1 −i
−i 1

)
. The second and third qubits from the top

are the control and target, respectively. The first qubit is not modi-
fied. The QMDD exploits the structure of the matrix and thus pro-
vides a more compact representation. Note that the edge weights are
normalized as described in Definition VII.2. 150

7.3 General form for an MPMDD. Level l of the diagram (dotted rect-
angles) corresponds to a tensor A[l] in Equation 7.3. The degree
(number of outgoing edges) of each internal node in an MPMDD is
equal to twice the local Schmidt rank (χA in Equation 7.2). There-
fore, the width of the graph is twice the Schmidt rank χ for the state.
The weights of nodes and edges depends on the particular variable
assignment (Definition VII.4-iv). 152

7.4 Two graph-based representations for the separable state |ψ〉 = (|00〉+
|01〉+|10〉+|11〉)/2. Here, v[1]

1 = v
[2]
1 = 1.0 and A[1]0

1 = A
[1]1
1 = A

[2]0
1 =

A
[2]1
1 = 1/

√
2. 153

xi

7.5 Two graph-based representations for the entangled state |ψ〉 = (|00〉+
|01〉 + |10〉 − |11〉)/2. The tensor (A) and vector (v) values for the
MPMDD are listed in Example VII.1. 154

xii

LIST OF TABLES

Table

1.1 Graphical representation of basic quantum gates. 6

1.2 Multiplication table for Pauli matrices. The shaded cells indicate
anticommuting products. 13

2.1 (a) Transformation properties of the Pauli-group elements under con-
jugation by the Clifford operators [51]. In the CNOT case, subscript
1 indicates the control and 2 the target. (b) Pauli matrices expressed
as Clifford sequences. 29

2.2 Clifford sequences for generating an arbitrary permutation of the
Pauli operators. Subscripts indicate qubit indices. Given two dif-
ferent generators, such as X1Y2 one can apply one qubit rotation(s)
to obtain homogenous generators, such as Y1Y2, and then apply a
two-qubit sequence. A pure Y Z swap is achieved by conjugating β
and γ. Conjugating the pure Y Z swap with γ achieves any pure
swap, e.g., βγα achieves an XY swap. 30

2.3 One-qubit stabilizer states and their Pauli-matrix stabilizer. Short-
hand notation lists only the normalized amplitudes of the basis states. 33

xiii

2.4 Sixty two-qubit stabilizer states and their corresponding Pauli gener-
ators. Shorthand notation represents a stabilizer state as α0, α1, α2, α3
where αi are the normalized amplitudes of the basis states. The ba-
sis states are emphasized in bold. The first column lists states whose
generators do not include an upfront minus sign, and other columns
introduce the signs. A sign change creates an orthogonal vector.
Therefore, each row of the table gives an orthogonal basis. The cells
in dark grey indicate stabilizer states with four non-zero basis am-
plitudes, i.e., αi 6= 0 ∀ i. The ∠ column indicates the angle between
that state and |00〉, which has twelve nearest-neighbor states (light
gray) and 15 orthogonal states (⊥). All three-qubit stabilizer states
are listed in Appendix A. 34

2.5 Several unbiased states that are not stabilizer states. The three-qubit
state is not a stabilizer state because its |0〉-cofactor on the third qubit
is not a stabilizer state. 42

2.6 One- and two-qubit stabilizer states that generate non-trivial global
phases when a stabilizer gate is applied. For simplicity, the 2−n/2
factors where omitted in columns two and three. The third column
shows the normalized output state obtained with the stabilizer for-
malism (Definition II.14). 45

2.7 Addition table for Z2
2 representation of Pauli operators. 53

2.8 Comparison between direct (stabilizer formalism) and stateless sim-
ulation for n-qubit Clifford circuit with g gates and m ancilla qubits
(used for multi-qubit measurements in stateless simulation). 60

3.1 Distribution of inner products (angles) between any one n-qubit sta-
bilizer state and all other stabilizer states for n ∈ {1, . . . , 7}. The
last column indicates the ratio of orthogonal (⊥) states. 74

5.1 Average time and memory needed by Quipu and QPLite to simulate
our benchmark set of quantum FT circuits. The second column in-
dicates the QECC used to encode k logical qubits into n physical
qubits. We used the 3-qubit bit-flip code for larger benchmarks and
the 5-qubit DiVincenzo/Shor code [16] for smaller ones (∗). The third
column shows the total number of qubits including ancillas required
to implement FT-Toffoli gates. We used the |00 . . . 0〉 input state for
all benchmarks. The multithreaded version of Quipu exhibited simi-
lar runtime and memory requirements for these benchmarks since the
total number of states observed is relatively small. 128

xiv

LIST OF ALGORITHMS

Algorithm

2.2.1 Canonical form reduction for stabilizer matrices 47

2.2.2 Computation of 2n basis amplitudes for a stabilizer state 49

4.1.1 Synthesis of a basis-normalization circuit 92

4.2.1 Inner product for stabilizer states . 95

4.3.1 Orthogonalization procedure for linear combinations of stabilizer states 98

4.4.1 Computation of stabilizer bivectors 99

5.1.1 Frame-based simulation of the Toffoli gate 111

5.2.1 Frame coalescing . 114

5.2.2 Frame coalescing (extended) . 115

5.2.3 Simulation-flow steps . 116

5.4.1 p-blocked multiframe simulation . 134

A. The 1080 three-qubit stabilizer states 167

xv

ABSTRACT

Hybrid Techniques for Simulating Quantum Circuits using the Heisenberg
Representation

by

Héctor J. Garćıa-Ramı́rez

Chair: Igor L. Markov

Simulation of quantum information processing remains a major challenge with impor-

tant applications in quantum computer science and engineering. Generic quantum-

circuit simulation appears intractable for conventional computers and may be un-

necessary because useful quantum circuits exhibit significant structure that can be

exploited during simulation. For example, Gottesman and Knill identified an im-

portant subclass, called stabilizer circuits, which can be simulated efficiently using

the Heisenberg representation for quantum computers. Stabilizer circuits are exclu-

sively composed of stabilizer gates – Hadamard, Phase and CNOT – followed by

one-qubit measurements in the computational basis. Such circuits are applied to

a computational-basis state and produce so-called stabilizer states. Aaronson and

Gottesman generalized stabilizer-circuit simulation to additionally handle a small

number of non-stabilizer gates. We design new, more efficient data structures and

algorithms for such beyond-stabilizer simulation using superpositions of stabilizer

states. One such data structure, a stabilizer frame, offers more compact storage than

previous approaches but require additional algorithms to maintain the global phases

xvi

of each state in the superposition. To explore the advantages and limitations of our

technique, we analyze the geometric structure of stabilizer states and their embedding

in Hilbert space. Our analysis includes results on the computational geometry of sta-

bilizer states such as efficient algorithms for computing distances, angles and volumes

between them. The main advantages of using stabilizer-state superpositions to simu-

late quantum circuits are: (i) stabilizer subcircuits are simulated with high efficiency,

(ii) superpositions can be restructured and compressed on the fly during simulation to

reduce resource requirements, and (iii) operations performed on such superpositions

lend themselves to distributed or asynchronous processing. Our software implemen-

tation, called Quipu, simulates certain quantum arithmetic circuits (e.g., reversible

ripple-carry adders) and quantum Fourier transform circuits in polynomial time and

space for specific input states. On such instances, known linear-algebraic simulation

techniques, such as the (state-of-the-art) BDD-based simulator QuIDDPro, take expo-

nential time. We simulate quantum fault-tolerant circuits using Quipu, and the results

indicate that our stabilizer-based technique empirically outperforms QuIDDPro in all

cases. While previous structure-aware simulations of quantum circuits were difficult

to parallellize, we demonstrate a parallel version of Quipu that achieves a nontrivial

speedup.

xvii

CHAPTER I

Introduction

Among the principal questions studied in quantum information processing are

the computational complexity and achievable empirical performance of quantum-

mechanical simulation on conventional computers [51]. The apparent intractability

of generic quantum simulation suggested the idea of using quantum phenomena to

accelerate conventional computation. The key insight is to replace the familiar 0 and

1 bits of conventional computing with information units called qubits (quantum bits)

that capture quantum states of elementary particles or atomic nuclei. By operat-

ing on qubits, a quantum computer can, in principle, process exponentially more data

than a classical computer in a similar number of steps. Quantum information process-

ing has been demonstrated with a variety of physical technologies (NMR, ion traps,

Josephson junctions in superconductors, optics) and used in recently developed com-

mercial products. High-speed quantum communication systems have been built by

the National Institute of Standards and Technology, BBN Technologies and start-ups

in the United States and Europe. Some of these systems are currently available com-

mercially, and others are operated for research purposes and as testbeds for network

protocol development. In the mid-nineties, several researches discovered quantum

algorithms to carry out computation more efficiently than conventional computers.

One example is Shor’s number-factoring algorithm [62], which finds the prime fac-

1

tors of an integer exponentially faster than the most efficient known classical factoring

algorithm. These developments have fueled research efforts to build and program scal-

able quantum computers. In order to scale quantum information processing, including

computation and communication, to large and complex systems, quantum device op-

eration is compactly captured by the abstract formalism of quantum circuits [51].

These circuits consist of interconnected quantum gates that act on qubits. They can

be composed in a hierarchical manner, using design techniques similar to those used

in digital logic design. However, as quantum circuits offer a much broader range of

information-processing possibilities, their design and evaluation entail a dramatic in-

crease of complexity, requiring new levels of sophistication in design algorithms and

tools [53, 64]. A particularly important class of design tools performs simulation of

quantum circuits on conventional workstations, i.e., these tools produce representa-

tive outputs of ideal quantum circuits on particular inputs, but without requiring

quantum hardware. The most serious fundamental obstacle to practical quantum

information processing known today is the inherent instability of qubits. This obsta-

cle is traditionally addressed by quantum error-correction techniques [17, 33, 51, 56],

which are generally available but require significant overhead and require adaptation

to individual quantum circuits.

1.1 Toward Scalable Simulation of Quantum Circuits

Quantum simulation tools typically consist of a front-end and a back-end [64, 67].

The front-end facilitates the development of quantum software and the back-end

acts as a temporary replacement of (hardware) quantum processing units to run

such software. Once quantum hardware is available, it can be used in conjunction

with pre-existing front-end to run the accumulated software with increased efficiency.

Figure 1.1 shows an ideal design flow for a comprehensive software architecture for

synthesizing and simulating quantum circuits. The primary component of the initial

2

phase in the design flow consists of a compiler for quantum computers (q-compiler).

One important job of the compiler is to access the functional modules contained in a

separate library – e.g., quantum Fourier transform (QFT), quantum walks, quantum

search, etc. – and integrate the functionality of these modules into high-level programs

as specified. Thus, the details of such reusable modules are abstracted away from the

high-level quantum programmer. The output of the compiler is an intermediate,

technology-independent circuit specification that is manipulated in later parts of the

design flow.

After generating quantum circuits from a high-level program, and after several

possible optimization steps, it may be useful to simulate such a circuit in order to:

(i) characterize the effect of various errors in practical quantum circuits, (ii) test

error correction techniques or (iii) verify the correctness of synthesized quantum cir-

cuits. Researchers have developed many different approaches to quantum computer

simulation, each focusing on a particular set of quantum circuits and requiring data

structures and algorithms that are dependent on the techniques used [51, 67]. Such

diversity makes it more challenging to develop a comprehensive software architecture

for quantum computing design tools. Therefore, it is of particular importance to de-

sign data structures and algorithms that incorporate a variety of modeling techniques

and are flexible enough to exploit the performance speedups offered by different simu-

lation approaches. To this end, we have completed a large body of work on the design

of new hybrid simulation techniques that exploit the Heisenberg representation for

quantum computers [33, 51]. This work includes a thorough analysis of the geometry

of stabilizer states – the class of quantum states that admits a compact representation

on conventional computers via the Heisenberg representation [30, 31]. We leveraged

our theoretical analysis to develop several data structures including: stabilizer frames,

multiframes and p-blocked multiframes. We describe the design of practical software

methods that implement these data structures and algorithms to facilitate simulation

3

Figure 1.1: A software architecture for synthesizing, optimizing
and simulating quantum circuits.

4

of larger sets of quantum circuits on conventional computers [28, 29]. However, be-

fore we take a closer look at the Heisenberg representation for quantum computers

in Chapter II, it is instructive to first review background information on quantum

computation.

1.2 Quantum States and Circuits

Quantum information processes, including quantum algorithms, are often modeled

using quantum circuits, which are sequences of gate operations that act on some

register of qubits – the basic unit of information in a quantum system. The quantum

state |ψ〉 of a single qubit is described by a two-dimensional complex-valued vector.

In contrast to classical bits, qubits can be in a superposition of the 0 and 1 states.

Formally, |ψ〉 = α0 |0〉 + α1 |1〉, where |0〉 = (1, 0)> and |1〉 = (0, 1)> are the two-

dimensional computational-basis states and αi are probability amplitudes that satisfy

|α0|2 + |α1|2 = 1. An n-qubit register is the tensor product of n single qubits and thus

is modeled by a complex vector |ψn〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 = ∑2n−1
i=0 αi |bi〉, where each

bi is a binary string representing the value i of each basis state. Furthermore, |ψn〉

satisfies ∑2n−1
i=0 |αi|2 = 1. Each gate operation or quantum gate is a unitary matrix

that operates on a small subset of the qubits in a register. For example, the quantum

analogue of a NOT gate is the operator X = (0 1
1 0),

α0 |00〉+ α1 |10〉 X⊗I7−−→ α0 |10〉+ α1 |00〉

Similarly, the two-qubit CNOT operator flips the second qubit (target) iff the first

qubit (control) is set to 1, e.g.,

α0 |00〉+ α1 |10〉 CNOT7−−−−→ α0 |00〉+ α1 |11〉

5

Another operator of particular importance is the Hadamard (H), which is frequently

used to put a qubit in a superposition of computational-basis states, e.g.,

α0 |00〉+ α1 |10〉 I⊗H7−−→ α0(|00〉+ |01〉) + α1(|10〉+ |11〉)√
2

Note that the H gate generates unbiased superpositions in the sense that the squares

of the absolute value of the amplitudes are equal.

Definition I.1. An arbitrary pure state |ψ〉 with computational-basis decomposition∑n
k=0 λk |k〉 is said to be unbiased if for all λi 6= 0 and λj 6= 0, | λi |2=| λj |2.

Otherwise, the state is biased.

Graphical representation

Just like conventional digital circuits, quantum circuits are commonly represented

by diagrams [51, 67]. Table 1.1 shows what those diagrams look like for the gates

described in Section 1.2. The last gate shown in the table is called the Toffoli (TOFF)

gate, which is a 3-qubit gate that maps (a, b, c) to (a, b, c⊕ (ab)). It is also known as

the “controlled-controlled-NOT” gate. The Toffoli gate along with single-qubit gates

(e.g., Hadamard) can used for universal quantum computation. The horizontal lines

seen in the drawings represent the passage through time of the qubit system and are

Table 1.1: Graphical representation of basic quantum gates.
Gate Graphical Symbol

Hadamard
H

NOT ��������
CNOT •��������
TOFF •

•��������

6

|0〉 H •  |00〉+|11〉√
2

|0〉 ��������

Figure 1.2: Graphical representation of the EPR pair circuit.

read from left to right. Figure 1.2 shows a graphical representation for the quantum

circuit that generates an entangled EPR pair. Note that wires are usually labeled

from top to bottom. Vertical lines indicate the control and target qubits of a gate.

The “•” symbol indicates that the gate is activated when the state of the controlling

qubit is |1〉. If a “◦” (not shown in the figure) symbol is used instead of a “•” the

gate is activated if the state of the controlling qubit is |0〉. The “⊕” symbol indicates

which target qubits are negated when the gate is activated. Lastly, other gates like

the Hadamard and measurement gates are depicted using a labeled box that covers

the wires on which they act.

1.3 Quantum Measurements

The dynamics involved in observing a quantum state are described by non-unitary

measurement operators [51, Section 2.2.3]. There are different types of quantum mea-

surements, but the type most pertinent to this work comprises projective measure-

ments in the computational basis, i.e., measurements with respect to the |0〉 or |1〉

basis states. The corresponding single-qubit measurement operators are P0 = (1 0
0 0)

and P1 = (0 0
0 1), respectively. The probability p(x) of obtaining outcome x ∈ {0, 1}

on the jth qubit of state |ψ〉 is given by the inner product 〈ψ|P j
x |ψ〉, where 〈ψ| is

the conjugate transpose of |ψ〉. For example, the probability of obtaining |1〉 upon

measuring state |ψ〉 = α0 |0〉+ α1 |1〉 is

p(1) = (α∗0, α∗1)P1(α0, α1)> = (α0, α
∗
1)(0, α1)> = |α1|2

7

Post-measurement states are computed as, P j
x |ψ〉 /

√
p(x) where x ∈ {0, 1} is the

outcome obtained after measuring qubit j. In the above example, P1 |ψ〉 /
√
p(1) =

(0, α1)>/|α1| = (0, 1)> .

Cofactors of quantum states. When dealing with single-qubit computational-

basis measurements, we call the post-measurement states cofactors. Such states are

separable states of the form |0〉 |ψ0〉 and |1〉 |ψ1〉. We denote the |0〉- and |1〉-cofactor

by |ψj=0〉 and |ψj=1〉, respectively, where j is the index of the measured qubit. The

states |α0〉 and |α1〉 are called reduced cofactors. One can also consider iterated co-

factors, such as double cofactors |ψqr=00〉 . . . |ψqr=11〉. Cofactoring with respect to all

qubits produces the individual amplitudes of the computational-basis states.

Definition I.2. Let |ψ〉 = ∑2n−1
k=0 αk |k〉 and x ∈ {0, 1}. Furthermore, let Cj=x be the

set of computational-basis states in |ψ〉 with the jth qubit set to x and αk 6= 0. The

support of |ψj=x〉, denoted by | ψj=x |, is | Cj=x |.

(i) The support of |ψj=x〉, denoted by | ψj=x |, is | Cj=x |.

(ii) Projections onto the cofactors are denoted by Cofj=x : |ψ〉 7→ |ψj=x〉 , x ∈ {0, 1}.

Observation I.3. The |0〉-cofactor of |ψ〉, with respect to qubit j, is |ψj=0〉 =∑
|k〉∈Cj=0 αk |k〉. The |1〉-cofactor of |ψ〉, with respect to j, is |ψj=1〉 = ∑

|k〉∈Cj=1 αk |k〉.

In Section 1.4, we will see that quantum measurements are often performed as an

intermediate step in a quantum circuit. Furthermore, the measurement results are

used to conditionally control subsequent quantum gates. The following two important

theorems are worth bearing in mind about quantum circuits.

Theorem I.4 (Principle of deferred measurements [51]). Measurements can always

be moved from an intermediate stage of a quantum circuit to the end of the circuit;

if the measurement results are used at any stage of the circuit then the classically

controlled operations can be replaced by conditional quantum operations.

8

Theorem I.5 (Principle of implicit measurements [51]). Without loss of generality,

any unterminated quantum wires (qubits which are not measured) at the end of a

quantum circuit may be assumed to be measured.

1.4 Quantum Error-correcting Codes and Fault-tolerant

Quantum Computation

Quantum information involves manipulating the quantum states of particles that

are in coherent quantum superpositions. Quantum states are intrinsically delicate in

the sense that they are prone to environmental noise and decay easily – a phenomenon

called decoherence [51]. Therefore, reliable quantum computers will require methods

for protecting quantum information and preventing the environment from interacting

with the data. The theory of quantum error-correcting codes (QECC) shares some

similarities with its classical counterpart, but also exhibits important differences.

On conventional computers, error correction works by storing the information in a

redundant way. However, as the following theorem shows, one cannot make a “backup

copy” of a qubit.

Theorem I.6 (No-cloning [33, 51]). There is no quantum operation that takes a

quantum state |ψ〉 to |ψ〉 ⊗ |ψ〉 for all states |ψ〉.

Instead of using multiple copies of qubits, a QECC distributes the information

of a single “logical” qubit over a block of physical qubits (QECC register) so that

a small number of errors in the qubits of any block has little or no effect on the

encoded qubits [7, 17, 33, 61]. A quantum code using n qubits to encode k qubits is

written as an [[n, k]] code (the double brackets distinguish it from a classical code).

Most well-known quantum codes express the evolution of an encoded qubit as a linear

combination of four possibilities: (i) no error occurs, (ii) bit flip |0〉 ←→ |1〉 occurs,

(iii) relative phase flip |0〉 + |1〉 ←→ |0〉 − |1〉 occurs, and (iv) combined bit and

9

phase flip error occurs. Such errors can be described as Pauli operations acting on

the encoded qubits. The one-qubit Pauli matrices are shown in Figure 1.3 along

with the identity matrix, which corresponds to the case where no error occurs. In

Section 1.5, we review specific properties of multi-qubit Pauli operators and show

that such operators form an error basis that facilitates detection and correction of

arbitrary qubit errors.

Once the quantum information is properly encoded, one can diagnose which of

the four error types (Figure 1.3) occurred by making a suitable measurement. Then,

the error is corrected by applying one of the four Pauli transformations.

Example I.7. Consider a variant of the [[9, 1]] code from [61]. We encode a qubit

state |ψ〉 = α |0〉+ β |1〉 as a tensor product of nine qubits
∣∣∣ψ〉 = α

∣∣∣0̄〉+ β
∣∣∣1̄〉, where

∣∣∣0̄〉 = 1
2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

∣∣∣1̄〉 = 1
2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

The three sets of qubits that encode each logical qubit are designed to detect bit-flip

errors. To diagnose such errors, we first measure the parity of the first two qubits

and the parity of the second and third qubits in each set of three. Then, we take the

majority within each set and correct the error, e. g., |010〉 ± |101〉 → |000〉 ± |111〉.

Pauli Action Error
Operator (b ∈ {0, 1}) Type

I =
(

1 0
0 1

)
I |b〉 = |b〉 None

X =
(

0 1
1 0

)
X |b〉 = |b⊕ 1〉 Bit flip

Z =
(

1 0
0 −1

)
Z |b〉 = (−1)b |b〉 Phase flip

Y =
(

0 −i
i 0

)
Y |b〉 = i(−1)b |b⊕ 1〉 Bit-phase flip

Figure 1.3: The one-qubit Pauli operators.

10

The first qubit of each set can be used to diagnose a phase-flip error – one takes the

majority of the three signs, e. g., (|000〉+|111〉)⊗(|000〉−|111〉)⊗(|000〉+|111〉)→
∣∣∣0̄〉.

Since these two error correction steps are independent, the code also works if there is

both a bit-flip error and a phase-flip error.

Observe that, in order for a correction procedure to be effective, one needs to

design measurements in such a way that the superposition used in the code is not de-

stroyed. Such measurement procedures often require ancilla qubits that are discarded

after errors are corrected.

The code used in Example I.7 facilitates prolonged storage of quantum information

and error-correction procedures. However, it is also important to understand: (i) how

to perform operations on an encoded state without disrupting the coding scheme, and

(ii) how to safely correct errors when the gates themselves are noisy. Quantum circuits

that implement procedures to perform such tasks are said to be fault-tolerant (FT). FT

operations limit the propagation errors from one qubit in a QECC register to another

qubit in the same register, and a single faulty gate damages at most one qubit in each

register. To accomplish this, FT procedures make use of transveral gates whenever

possible. In a transversal operation, the ith qubit in each QECC register interacts

only with the ith qubit of other QECC registers. Figure 1.4 shows a transversal

implementation of a stabilizer circuit. Universal quantum computations using only

H •
|x〉 H • |x〉


H •

H •

P '&%$!"#
|y〉 P '&%$!"# |y〉


P '&%$!"#
P '&%$!"#

(a) Logical operation (b) Transversal implementation

Figure 1.4: Transversal implementation of a stabilizer circuit
acting on 3-qubit QECC registers.

11

transversal gates does not appear to be possible. Therefore, researches have designed

quantum FT architectures that require ancilla QECC registers, FT measurement

schemes, and correction procedures conditioned on measurement outcomes. Such

architectures implement protocols that carry out reliable computation in the presence

of individual circuit-component failures. In Section 5.3, we describe and show several

examples of quantum FT circuits that implement half-adders, full-adders and modular

exponentiation. For a comprehensive review of QECC and quantum FT architectures,

we refer the reader to the work in [33, 51, 56, 61].

1.5 The Pauli operator basis

As discussed in Section 1.4, the Pauli matrices (Figure 1.3) play a large role in

quantum error correction because they define the set of possible one-qubit errors –

bit-flip, phase-flip, and combined bit and phase flip. In this section, we introduce key

properties of n-qubit Pauli operators – n-fold tensor products of Pauli matrices – and

prove that the Pauli operators form an orthonormal error basis allowing QECC to

correct not only single-qubit errors but any linear combination of such errors.

Definition I.8. The Pauli group Pn on n qubits consists of the n-fold tensor product

of Pauli matrices, P = ±ikP1⊗ · · · ⊗Pn such that Pj ∈ {I,X, Y, Z}. For brevity, the

tensor-product symbol is often omitted so that P is denoted by the string of I, X, Y

and Z characters. Each such character is called a literal.

Table 1.2 shows the multiplication table for P1. One can check that the Pauli oper-

ators with phases are closed under multiplication, and their inverses are also Pauli

operators. Therefore Pn is a group. The string representation for Pauli operators

in Definition I.8 allows us to compute the product of Pauli operators without ex-

plicitly computing the tensor products,1 e.g., (−IIXI)(iIY II) = −iIY XI. Since
1This holds true due to the following identity: (A⊗B)(C ⊗D) = (AC ⊗BD).

12

I X Y Z

I I X Y Z
X X I iZ −iY
Y Y −iZ I iX
Z Z iY −iX I

Table 1.2: Multiplication table for Pauli matrices. The shaded cells
indicate anticommuting products.

| Pn |= 4n+1, Pn can have at most log2 | Pn |= log2 4n+1 = 2(n + 1) irredundant

generators.

Lemma I.9. Let P = ikP1 . . . Pn ∈ Pn and Q = ilQ1 . . . Qn ∈ Pn,

(i) P 2 = i2kI.

(ii) P and Q either commute (PQ = QP) or anticommute (PQ = −QP).

(iii) For a given P , half of the possible Q that can be selected will commute with it

while the other half will anticommute.

Proof. (i) Table 1.2 shows that ∀j P 2
j = I. Therefore, P 2 = (ik)2I . . . I = i2kI.

(ii) The case of single Pauli matrices can be checked using Table 1.2. Therefore,

in the general case, each pair Pj and Qj, j ∈ {1, . . . , n} either commutes or

anticommutes. Since the tensor components share the same global phase, P

commutes with Q iff the number of anticommuting components is even; other-

wise P anticommutes with Q.

(iii) Since commutation and anticommutation are determined by the parity of the

number of anticommuting components, the commuting and anticommuting cases

will occur as often.

Lemma I.10. Let P = P1 . . . Pn be a Pauli-matrix tensor product such that P 6= I⊗n.

(i) P has two eigenvalues ±1, each with a 2n−1-dimensional eigenspace.

13

(ii) The 1- and (−1)-eigenvectors of P are orthogonal.

(iii) I±P
2 is a projector onto the ±1 eigenspace.

Proof. (i) Consider the following two properties.

• Table 1.2 shows that ∀j (Pj)2 = I. If Pj 6= I then tr(Pj) = 0 and the two

eigenvalues of Pj are ±1. Thus, each eigenvector of Pj has either +1 or

−1 eigenvalue.

• Let the eigenvectors of Pi and Pk be |ψi〉 and |ψk〉 with corresponding

eigenvalues λi and λk. Then the eigenvalue of PiPk is equal to λi · λk,

which is the eigenvalue of |ψi〉 ⊗ |ψk〉.

Let |ψ1,...,j〉 = |ψ1〉 ⊗ · · · ⊗ |ψj〉 be an eigenvector of P1 . . . Pj. By the first

property, we define the parity of |ψ1,...,j〉 as odd (even) if the number of −1

eigenvalues of its tensor components is odd (even). By the second property, the

eigenvalue of P1 . . . Pj is given by the parity of |ψ1,...,j〉.

Consider the base case j = 1. Since P1 6= I, the even parity of its eigenvector

|ψ1〉 occurs as often as its odd parity. Thus, each ±1 eigenspace of P1 has

dimension 21

2 = 1. Assume that the parity of |ψ1,...,j〉 is even (odd). Two cases

need to be considered.

• |ψj+1〉 is an eigenvector of Pj+1 = I and P1 . . . Pj 6= I⊗j. Then the parity

of |ψ1,...,j+1〉 remains even (odd).

• |ψj+1〉 is an eigenvector of Pj+1 6= I. If the eigenvalue of Pj+1 is +1, then

the parity of |ψ1,...,j+1〉 remains even (odd). If the eigenvalue of Pj+1 is −1,

then the parity of |ψ1,...,j+1〉 is odd (even).

Since the even parity of |ψ1,...,n〉 occurs as often as its odd parity, the dimension

of each ±1 eigenspace of P is 2n
2 = 2n−1.

14

(ii) Since P is self-adjoint, the 1- and (−1)-eigenvectors are orthogonal.

(iii) Note that
(
I±P

2

)2
= I±P

2 because P 2 = I. Consider an arbitrary vector |ψ〉.

Then P I+P
2 |ψ〉 = P+I

2 |ψ〉, and P I−P
2 |ψ〉 = P−I

2 |ψ〉 = − I−P
2 |ψ〉.

Definition I.11. Let A be an n× n square matrix. The trace of A is defined as the

sum of its diagonal entries,

tr(A) =
n∑
i

Aii (1.1)

Definition I.12. Let LH be the set of linear operators on Hilbert space H. Clearly

LH is a vector space. The function 〈·, ·〉 on LH × LH is defined by

〈A†, B〉 := 1
2tr(A†B) A,B ∈ LH (1.2)

is called the Hilbert-Schmidt inner product.

It is not hard to show that the operator function from Definition I.12 satisfies the

three axioms of an inner product.

Corollary I.13. The set of linear operators on a complex H is a Hilbert space under

the Hilbert-Schmidt inner product.

Theorem I.14. The n-qubit Pauli group Pn forms an orthonormal basis for the set

of linear operators LHN on a Hilbert space HN , where N = 2n.

Proof. Recall that LHN is a Hilbert space (Corollary I.13). For LHN to fully span HN ,

it must be able to map any vector in HN into itself and into any other vector in HN .

Thus there must be N2 = 4n different linear operators. Since Pn is a group of linear

operators and |Pn| = 4n, it suffices to show that (i) for all P ∈ Pn, 〈P †, P 〉 = 1 under

the Hilbert-Schmidt inner product (Definition I.12), and (ii) for all P,Q ∈ Pn, P 6=

Q, 〈P †, Q〉 = 0. Since Pauli operators are Hermitian, we can effectively ignore the

Hermitian conjugate in the definition of the inner product.

15

(i) Clearly, the identity has norm 1 under the Hilbert-Schmidt inner product:

〈I, I〉 = 1
2tr(I × I) = 1

2(1 + 1) = 1. By Theorem I.9, P 2 = I for all P ∈ P thus

we have: 〈P, P 〉 = 1
2tr(P × P) = 1

2tr(I) = 1. Therefore, all Pauli operators

have norm 1 under the Hilbert-Schmidt inner product.

(ii) By Definition I.8, the product of any two Pauli operators, up to a factor of ±i,

is another Pauli operator. Thus, let P,Q and L be distinct Pauli operators, we

have: 〈P,Q〉 = 1
2tr(P × Q) = 1

2tr(±iL) = ±i
2 tr(L). However, since any Pauli

operator has zero trace, 〈P,Q〉 = 0.

Therefore, Pn forms an orthonormal basis over LHN .

Theorem I.14 implies that Pn forms an error basis and thus any code that can

correct errors in a subgroup of Pn (e.g., I, X, Y , and Z in the one-qubit case) can

then also correct an arbitrary linear combination of such errors. Theorem I.14 also

implies that one can decompose an arbitrary operator into a linear combination of

Pauli operators.

Definition I.15. The Pauli expansion of a linear operator U is UP = ∑
i αiPi where

Pi ∈ P . If U is unitary, |U | = ∑
i |αi|2 = 1.

Proposition I.16. The Pauli expansion of a linear operator is unique.

Proof. From the proof of Theorem I.14 we know that the terms in a Pauli expansion

is are orthogonal. Thus, the expansion is unique.

Definition I.17. Let U be linear operator acting on an n-qubit Hilbert space. We

define the Pauli expansion operator function as

fp(U) =
∑
∀P∈Pn

〈P,U〉P = 1
2ntr(P × U) (1.3)

16

Pauli expansions of quantum operators have useful applications in the context of

quantum-circuit simulation. Such applications along with related software methods

are discussed in Chapters II, V and VI.

1.6 Simulation of Quantum Circuits

Building on the background information about the quantum-circuit model and the

properties of Pauli operators, we now turn to known techniques for efficient classical

simulation of quantum circuits. As mentioned in Section 1.1, generic quantum-circuit

simulation appears intractable for conventional computers. However, it may be un-

necessary because useful quantum circuits exhibit significant structure that can be

exploited during simulation. For example, Gottesman [34] and Knill identified an im-

portant subclass, called stabilizer circuits, which can be simulated efficiently using the

Heisenberg representation for quantum computers. Stabilizer circuits are exclusively

composed of stabilizer gates – Hadamard, Phase and controlled-NOT (Figure 1.5) –

followed by one-qubit measurements in the computational basis. Such circuits are

applied to a computational-basis state (usually |00...0〉) and produce so-called sta-

bilizer states. In the context of quantum-circuit simulation, the Heisenberg model

is also known as the stabilizer formalism because it describes the evolution of Pauli

stabilizer2operators rather than quantum states.

Only a polynomial number of such stabilizer operators are maintained during
2An operator U is a stabilizer for state |ψ〉 iff U |ψ〉 = |ψ〉.

H = 1√
2

(
1 1
1 −1

)
P =

(
1 0
0 i

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Figure 1.5: The stabilizer gates: Hadamard (H), Phase (P)
and controlled-NOT (CNOT). Note that H† = H and CNOT † =
CNOT . Furthermore P 4 = I, thus P † = P 3.

17

simulation and they uniquely represent stabilizer states up to an unobservable global

phase. Because of their extensive applications in QECC, stabilizer circuits have been

studied extensively. Equation 2.2 shows that the number of n-qubit stabilizer states

grows as 2n2/2, therefore, describing a generic stabilizer state requires at least n2/2

bits. Thus, any simulation technique dealing directly with stabilizer states will use

Ω(n2) memory. Aaronson and Gottesman [2] proposed an improved technique that

uses a bit-vector representation to simulate stabilizer circuits. This simulation tech-

nique was implemented by Aaronson in his software tool CHP [2], which simulates

each stabilizer gate in Θ(n) time and O(1) additional space. However, the overall

execution time of CHP is dominated by the number of measurement gates, which re-

quire O(n2) time to simulate. In this work, we provide a comprehensive review of the

stabilizer formalism, restating major results from published literature, with proofs,

emphasizing efficient computation.

Anders and Briegel [5] designed a graph-based data structure that allows their

software tool GraphSim to simulate measurement gates in O(n log2 n) time. This

improvement applies to circuits where the number of entangled qubits is O(log n).

Each qubit is represented by a vertex in the graph, and there is an edge between

every interacting pair of qubits. Any quantum state that can be represented using

this graph-based approach is called a graph state. It has been shown that any stabilizer

state is equivalent to a graph state under local stabilizer operations. For circuits that

produce maximally-entangled states (worst case), the graph-based data structure from

[5] does not offer an asymptotic efficiency improvement over CHP.

1.7 Objectives of the Dissertation

This dissertation seeks to expand the existing body of research in computational

techniques including new data structures and algorithms for efficient simulation of

quantum circuits. To this end, our work considers four main objectives which are

18

presented here along with an outline of key contributions.

(1) Study of geometric properties of stabilizer states. One of the objectives of

our work is to provide a comprehensive analysis of the geometric structure of stabilizer

states and their embedding in Hilbert space. Our analysis includes important results

on the computational geometry of stabilizer states such as efficient algorithms for

computing distances, angles and volumes between them. This line of research allowed

us to identify efficient techniques for representing and manipulating new classes of

quantum states, rule out some techniques as inefficient, and quantify entanglement

of relevant states.

(2) Stabilizer-based simulation of generic quantum circuits. Another ob-

jective of our work is to generalize the stabilizer formalism to admit simulation of

non-stabilizer gates such as Toffoli gates (Section 1.2). This line of research was

first outlined in [2], where the authors describe a stabilizer-based representation that

stores an arbitrary quantum state as a sum of density-matrix3 terms. In contrast, we

store arbitrary states as superpositions4 of pure stabilizer states. Such superpositions

are stored more compactly than the approach from [2], although we do not handle

mixed stabilizer states. The key obstacle to the more efficient pure-state approach has

been the need to maintain the global phase of each stabilizer state in a superposition,

where such phases become relative. We develop a new algorithm to overcome this

obstacle. The main advantages of using stabilizer-state superpositions to simulate

quantum circuits are:

(i) Stabilizer subcircuits are simulated with high efficiency.

(ii) Superpositions can be restructured and compressed on the fly during simulation
3Density matrices are self-adjoint positive-semidefinite matrices of trace 1.0, that describe the

statistical state of a quantum system [51].
4A superposition is a norm-1 linear combination of terms.

19

to reduce resource requirements.

(iii) Operations performed on such superpositions can be computed in parallel and

lend themselves to distributed or asynchronous processing.

To complete our study of known stabilizer-based simulation techniques, we de-

scribe and analyze the stateless approach from [39], which simulates stabilizer circuits

efficiently without maintaining a state representation. We explore Pauli decomposi-

tions of several non-stabilizer operators and design a technique to represent them

compactly using Pauli multivalued decision diagrams. We use these Pauli expansions

to generalize the technique from [39] and develop stateless simulation of generic quan-

tum circuits. We discuss the advantages and limitations of such an approach, and

compare it to our techniques based on superpositions of stabilizer states.

(3) Compact representation of new classes of quantum states. Vidal [68]

established a necessary condition for a quantum algorithm to defy efficient classical

simulation. This condition demands that the amount of entanglement generated by

the algorithm on n qubits grow faster than log(n). In other words, if an algorithm

does not generate sufficiently high entanglement, it can be simulated efficiently. Since

stabilizer states can be maximally entangled, entangled states are not sufficient to

prevent efficient simulation. Therefore, a key objective of our work is to: (i) facilitate

simulation of new classes of entangled states and circuits that generate them, and

(ii) identify classes of states that cannot be simulated using our stabilizer-based

approach and may therefore suggest new types of quantum speedups.

Our stabilizer-based technique simulates certain quantum arithmetic and quantum

Fourier transform circuits in polynomial time and space for input states consisting of

equal superpositions of computational-basis states. Therefore, we demonstrate that

the quantum states generated by such circuits are not sufficient to provide compu-

tational speedups. By comparison, simulating these same circuits using well-known

20

generic techniques takes exponential time.

(4) Fast simulation of quantum fault-tolerant quantum circuits. As men-

tioned in Section 1.1, quantum circuits require functional simulation to determine the

best fault-tolerant (FT) design choices given limited resources. In particular, high-

performance simulation is a key component in quantum design flows [64] that facili-

tate analysis of trade-offs between performance and accuracy. Since the state-vector

representation outlined in Section 1.2 requires excessive computational resources in

general, simulation-based reliability studies (e.g. fault-injection analysis) of quantum

FT architectures using general-purpose simulators has been limited to small quantum

circuits [24]. Therefore, designing fast simulation methods that target quantum FT

circuits facilitates robust reliability analysis of larger quantum circuits. Quantum FT

circuits are dominated by stabilizer subcircuits and contain a relatively small num-

ber of non-stabilizer components. Since our simulation techniques exploit speedups

offered by the stabilizer formalism, they facilitate parallel simulation of such circuits.

We simulate various quantum FT circuits, and the results demonstrate that our tech-

niques lead to orders-of-magnitude improvement in runtime and memory as compared

to state-of-the-art simulators.

1.8 Dissertation Outline

This dissertation is structured as follows. In Chapter II we review the stabilizer

formalism following [13, 14, 33, 34, 51] in detail, and describe techniques for simulating

stabilizer circuits and equivalence checking [2, 5]. We also define the notion of stateless

simulation for stabilizer circuits as discussed in [8, 11, 39].

Our findings related to the geometric structure of stabilizer states and their em-

bedding in Hilbert space are described in Chapter III. In particular, we characterize

the nearest-neighbor structure of stabilizer states and explore the approximation of

21

non-stabilizer states by single stabilizer states and short superpositions of stabilizer

states. In Chapter IV, we exploit our analysis of stabilizer-state geometry to de-

sign algorithms for the following fundamental tasks: (i) synthesizing new canonical

stabilizer circuits that reduce the number of gates required for QECC encoding proce-

dures, (ii) computing the inner product between stabilizer states, and (iii) computing

stabilizer bivectors.

In Chapter V, we describe our proposed techniques for representing, manipulating

and compressing superpositions of stabilizer states. This includes our primary data

structure called stabilizer frames, which offer more compact storage than previous

approaches but require more sophisticated bookkeeping. We use several quantum

circuits as benchmarks to evaluate the performance of our technique and the results

indicate that stabilizer frames enable efficient simulation of certain instances of quan-

tum circuits that act on input computational-basis states. On such instances, known

linear-algebraic simulation techniques, such as the (state-of-the-art) BDD-based sim-

ulator QuIDDPro, take exponential time. We also describe significant extensions that

yield improved performance on additional benchmarks.

Chapter VI describes our technique for generalizing the stateless approach from [8,

11, 39] to admit simulation of generic quantum circuits. We perform comparisons and

show that this technique is outperformed by stabilizer frames for practical bench-

marks. In Chapter VII, we describe matrix product states and derive a graph-based

representation for such states. The results of our work are summarized in Chap-

ter VIII, which also discusses open questions and directions for further research.

22

CHAPTER II

Simulation Techniques and the Heisenberg

Representation

In general, to simulate a quantum circuit C, we first initialize the quantum system

to some desired state |ψ〉 (usually a basis state). |ψ〉 can be represented using a fixed-

size data structure (e.g., an array of 2n complex numbers) or a variable-size data

structure (e.g., an Algebraic Decision Diagram). We then track the evolution of |ψ〉

via its internal representation as the gates in C are applied until one obtains the

output state C |ψ〉 [2, 51, 67]. Therefore, most quantum-circuit simulators such as

QCL, QuIDDPro and the parallel simulators proposed in [52] and [22] support some form

of the linear-algebraic operations described above. The drawback of such simulators

is that their runtime grows exponentially in the number of qubits [67]. This holds

true not only in the worst case but also in many practical applications involving

fault-tolerant circuits. For example, although QuIDDPro uses QuIDD’s to store some

state vectors more compactly, it takes an average of 18 minutes to simulate 50-qubit

circuits that are representative of QECC implementations (Section 1.4).

Consequently, researchers have focused on finding non-trivial classes of quantum

circuits that can be simulated efficiently on conventional computers. One example

is the class of stabilizer circuits, which has important applications in the design of

fault-tolerant quantum architectures. Gottesman [34] developed a simulation method

23

for such circuits involving the Heisenberg representation often used by physicists to

describe atomic phenomena. In this model, one keeps track of the symmetries of

an object rather than represent the object explicitly. In the context of quantum-

circuit simulation, this model represents quantum states by their symmetries, rather

than complex vectors. The symmetries are operators for which these states are 1-

eigenvectors. Algebraically, symmetries form group structures, which can be specified

compactly by group generators. Taking advantage of this fact, Gottesman showed

that his technique requires only polynomial memory and runtime when simulating

stabilizer circuits [33]. We discuss this technique in Section 2.2. However, the gates

that comprise a stabilizer circuit do not form a universal set for quantum computing.

Shi [60] demonstrated that to make the set of stabilizer gates universal one can add

any single-qubit gate type that does not preserve the computational basis (e.g., the

T gate). In Chapter V, we describe simulation techniques that admit a universal gate

library while taking advantage of the speed-ups offered by the stabilizer formalism.

2.1 Classification of Simulation Techniques

In this section, we describe several properties of known simulation techniques.

Such properties can be used to categorize distinct simulation approaches in order to

facilitate performance comparisons and resource trade-offs.

2.1.1 Strong versus weak

The work in [14, 40] describes two notions of classical simulation for quantum

computation. Weak simulation refers to a set of classical randomized computational

tasks which, given a description of quantum process Q as input, outputs a sample of

the output distribution p(y) = p(yj1 , . . . , yjl) of Q. The string y denotes the output

obtained from a final measurement on a specified set 1 ≤ j1 < . . . < jl ≤ n for l

lines in an n-qubit circuit. In contrast, a strong simulation approach is a classical

24

computation whose input is a description of Q and bit values for the subset of its

output lines. The output is the value of the corresponding marginal probability of

p(y). Therefore, such an approach yields a classical computation of any desired

output probability or marginal probability of Q [40]. Strong simulation is preferable

over a weak approach because it facilitates studying intermediate states generated by

a quantum algorithm, e.g., estimates of the amount of quantum entanglement in such

states. In the rest of this document, the term simulation refers to the strong sense

unless otherwise noted.

2.1.2 Stateless versus direct

Thus far, our notion of simulation has been concerned with maintaining a descrip-

tion of some quantum process Q. For example, we can maintain a full representation

of the quantum state |ψ〉, and then record the updates to |ψ〉 as defined by circuit

C. Therefore, we regard C |ψ〉 as the output of a specific computation performed on

input state |ψ〉. If C can be simulated in polynomial time on a classical computer,

the computation defined by C can also be simulated efficiently. We now consider a

different notion of quantum simulation based on the techniques outlined in [8, 11, 39].

Definition II.1 (Stateless simulation). The simulation of an n-qubit quantum circuit

C on state |ψ〉 is considered stateless if it computes the probabilities of measurement

outcomes to d digits without directly computing C |ψ〉. Such an approach is termed

efficient if the output probabilities are computed in poly(n, d) time.

Observe that stateless simulation does not maintain a quantum-state representa-

tion during simulation. This is in contrast to a direct simulation approach which does

maintain a description of the quantum state. Although stateless simulation seems

counter-intuitive (How does one determine measurement probabilities without know-

ing the state of the system?), it emulates how a user would interface with an actual

quantum computer since a user would not have direct access to the quantum state.

25

To see how stateless simulation works, consider an arbitrary decision problem, i.e.,

a problem where the answer is either “yes” or “no.” Many interesting problems are

either explicitly decision problems (e.g., satisfiability) or can be recast as equivalent

decision problems (e.g., travelling salesman, factoring). In particular, it is possible to

simulate the quantum computation of such problems by maintaining only a single ma-

trix element of the circuit that defines the computation. Let Cx be a quantum circuit

that computes f(x) for an instance of a decision problem. Without loss of generality

assume that the output is indicated by the value of the first qubit |q1 := f(x)〉, i.e., if

|q1 = 0〉, the answer is “no” and “yes” otherwise. The state of the remaining output

qubits can be safely ignored. We make use of an ancilla qubit |qa〉 appended to the

input register and initialized to |0〉. We apply a CNOT with control |q1〉 and target

|qa〉 so that the answer f(x) is copied into |qa〉. Then, we apply the inverse operation

C†x as shown in Figure 2.1 to obtain the output state |0〉q1
|0〉q2

. . . |0〉 |f(x)〉qa . There-

fore, any quantum circuit for an instance of a decision problem outputs one of two

possible states: |00 . . . 0〉 |0〉 or |00 . . . 0〉 |1〉. This implies that estimating the single

matrix element m = 〈00 . . . 0|Cx |00 . . . 0〉 is sufficient to simulate the computation

since this gives the output probability. In the stateless simulation model one seeks

to estimate m without explicitly computing Cx |00 . . . 0〉. If m can be computed in

poly-time and space on a classical computer, the simulation is considered efficient in

the sense of Definition II.1. However, in general, estimating m on a classical computer

to some constant precision requires an exponential number of trials [11]. Nonetheless,

|0〉

U U †

|0〉

|0〉 |0〉
...
|0〉 • |0〉

|0〉 �������� |f(x)〉

Figure 2.1: General quantum circuit for decision problems.

26

Section 2.2 describes a stateless approach that simulates Clifford (stabilizer) circuits

efficiently on classical computers.

2.2 The Stabilizer Formalism

A unitary operator U is said to stabilize a state |ψ〉 if U |ψ〉 = |ψ〉. We will mostly

be interested in operators U derived from the Pauli matrices shown in Figure 1.3. For

example, the Pauli matrix Z stabilizes the state |0〉 since Z |0〉 = |0〉, while the Pauli

matrix X destabilizes it because X |0〉 = |1〉. Furthermore, observe that I stabilizes

all states and −I does not stabilize any state. Another example is the entangled state

(|00〉+ |11〉)/
√

2, which is stabilized by the Pauli operators XX, −Y Y and ZZ.

The stabilizer formalism allows one to represent some quantum states compactly

by keeping track of the Pauli operators that stabilize them, rather than use an ex-

ponential set of complex amplitudes. Such compact representations are based on the

fact that the Pauli matrices along with the identity I form a group.

Definition II.2. The stabilizer group of a pure state |ψ〉, denoted by S(|ψ〉), is the

group of Pauli operators (subgroup of Pn) that stabilize |ψ〉.

In this document, all quantum states are assumed to be pure unless indicated

otherwise.

Theorem II.3. For an n-qubit pure state |ψ〉, there exists a k ≤ n such that S(|ψ〉) ∼=

Zk2. If k = n, |ψ〉 is specified uniquely by S(|ψ〉) and is called a stabilizer state.

Proof. (i) To prove that S(|ψ〉) is commutative, let P,Q ∈ S(|ψ〉) such that PQ |ψ〉 =

|ψ〉. If P and Q anticommute, −QP |ψ〉 = −Q(P |ψ〉) = −Q |ψ〉 = − |ψ〉 6= |ψ〉.

Thus, P and Q cannot both be elements of S(|ψ〉).

(ii) To prove that every element of S(|ψ〉) is of degree 2, let P ∈ S(|ψ〉) such

that P |ψ〉 = |ψ〉. Observe that P 2 = ilI for l ∈ {0, 1, 2, 3}. Since P 2 |ψ〉 =

P (P |ψ〉) = P |ψ〉 = |ψ〉, we obtain il = 1 and P 2 = I.

27

(iii) From group theory, a finite Abelian group with a2 = a for every element must

be ∼= Zk2.

(iv) We now prove that k ≤ n. First note that each independent generator P ∈

S(|ψ〉) imposes the linear constraint P |ψ〉 = |ψ〉 on the 2n-dimensional vector

space. The subspace of vectors that satisfy such a constraint has dimension

2n−1, or half the space. Let gen(|ψ〉) be the set of generators for S(|ψ〉). We

add independent generators to gen(|ψ〉) one by one and impose their linear

constraints, to limit |ψ〉 to the shared 1-eigenvector. Thus the size of gen(|ψ〉)

is at most n. In the case |gen(|ψ〉)| = n, the n independent generators reduce

the subspace of possible states to dimension one. Thus, |ψ〉 is uniquely specified.

The proof of Theorem II.3 shows that S(|ψ〉) is specified by only log2 2n = n

irredundant stabilizer generators.

Definition II.4. A stabilizer matrix M for n-qubit stabilizer state |ψ〉 is a matrix

of Pauli literals, where the rows represent the generators R1, . . . , Rn of S(|ψ〉). Since

each Ri is a string of n Pauli literals, the size of the matrix is n× n.

In the rest of this document, we use the terms stabilizer matrix and generator set

interchangeably. The fact that Ri ∈ S(|ψ〉) implies that the leading phase of Ri can

only be ±1 and not ±i.1 Therefore, we store the phases of each Ri separately using

a binary vector of size n.

The storage cost for M is Θ(n2), which is an exponential improvement over the

O(2n) cost often encountered in vector-based representations.

Example II.5. The state |ψ〉 = (|00〉 + |11〉)/
√

2 is uniquely specified by any of the

following stabilizer matrices: M1 = +
+
[
XX
ZZ

]
, M2 = +

−
[
XX
Y Y

]
, M3 = −

+
[
Y Y
ZZ

]
.

1Suppose the phase of Ri is ±i, then R2
i =-I ∈ S(|ψ〉) which is not possible since -I does not

stabilize any state.

28

Theorem II.3 suggests that Pauli literals can be represented using only two bits,

e.g., 00 = I, 01 = Z, 10 = X and 11 = Y . Therefore, a stabilizer matrix can be

encoded using an n × 2n binary matrix or tableau. The advantage of this approach

is that this literal-to-bits mapping induces an isomorphism Z2n
2 → Pn because vector

addition in Z2
2 is equivalent to multiplication of Pauli operators up to a global phase.

The tableau implementation of the stabilizer formalism is covered in Section 2.3.1.

2.2.1 Stabilizer gates and circuits

Proposition II.6. Consider n-qubit state |ψ〉 stabilized by the Pauli operator P , and

U ∈ U(2n). Then the state U |ψ〉 is stabilized by UPU †.

Proof. Since P |ψ〉 = |ψ〉, we have (UPU †)U |ψ〉 = UP |ψ〉 = U |ψ〉.

Definition II.7. Let P ∈ Pn. The Clifford group Cn on n qubits consists of the

operators U ∈ U(2n) such that UPU † ∈ Pn.

The group Cn can be generated by CNOT , H and P gates [7], which all conjugate

the Pauli group Pn into itself (Table 2.1a). In fact, any Pauli matrix can be expressed

as a sequence of Clifford operations as shown on Table 2.1b. Furthermore, Table 2.2

suggests that any permutation and sign change of Pauli operators can also be achieved

Operation Input Output
X Z

H Y −Y
Z X
X Y

P Y −X
Z Z

Operation Input Output

CNOT

I1X2 I1X2
X1I2 X1X2
I1Y2 Z1Y2
Y1I2 Y1X2
I1Z2 Z1Z2
Z1I2 Z1I2

Clifford Pauli
sequence matrix
HP 2H X

PHP 2HP 3 Y
P 2 Z

(a) (b)

Table 2.1: (a) Transformation properties of the Pauli-group el-
ements under conjugation by the Clifford operators [51]. In the
CNOT case, subscript 1 indicates the control and 2 the target. (b)
Pauli matrices expressed as Clifford sequences.

29

One-qubit Clifford sequences Pauli matrices Interpretation
Identity X Y Z No action
α : PH Z X Y X → Y → Z rotation
β : PHP 3 −X Z Y Y Z swap with X sign flip

Two-qubit Clifford sequence Pauli matrices Interpretation
Identity X1X2 Y1Y2 Z1Z2 No action
γ1,2 : P1H1C1,2P2H2P

3
2C2,1P

2
2H2P1H1 −X1X2 Y1Y2 Z1Z2 X sign flip

Table 2.2: Clifford sequences for generating an arbitrary permuta-
tion of the Pauli operators. Subscripts indicate qubit indices. Given
two different generators, such as X1Y2 one can apply one qubit ro-
tation(s) to obtain homogenous generators, such as Y1Y2, and then
apply a two-qubit sequence. A pure Y Z swap is achieved by con-
jugating β and γ. Conjugating the pure Y Z swap with γ achieves
any pure swap, e.g., βγα achieves an XY swap.

by applying the proper sequence of Clifford gates. For example, let Q be an n-tensor

Pauli operator, then γi,jβjQ achieves a pure Y -Z swap on the jth Pauli matrix of Q.

All other pure swaps can be achieved by combining the Y -Z swap (γβ) with rotations

(α). Using pure swaps we can generate any permutation of Pauli operators. We can

also combine the X sign change (γ) with permutations to obtain other sign changes.

Thus, an arbitrary set of sign changes is also possible.

The CNOT , P and H gates are commonly called stabilizer gates because their

action on stabilizer states can be directly simulated via the stabilizer formalism (up

to a global phase) as shown in Example II.8. One can also simulate the Controlled-Y

and Controlled-Z (CPHASE) operations since these gates can be implemented by

conjugating Pauli matrices and Clifford sequences as shown in Figure 2.2.

Example II.8. Figure 2.3 shows the circuit for generating an EPR pair and the

stabilizer-matrix updates after simulating each gate.

Theorem II.9. [7, Section 2] The number of elements in Cn is

| Cn | = 2n2+2n+3
n∏
j=1

(4j − 1) (2.1)

30

• •
≡

Z H �������� H

• •
≡

Y Y P �������� P 3 Y

(a) (b)

Figure 2.2: Implementation of the (a) Controlled-Z (CPHASE)
and (b) Controlled-Y operations using Pauli and Clifford gates.
These gates can be simulated directly on the stabilizer or using the
equivalences shown here.

Definition II.10. A stabilizer or Clifford circuit is an array of quantum gates com-

posed exclusively of CNOT , P , H and one-qubit computational basis measurements

(Z measurements). A unitary stabilizer circuit is a stabilizer circuit that does not

include measurement gates. A basis-preserving stabilizer circuit is a unitary stabilizer

circuit composed exclusively of CNOT , CPHASE and P gates.

2.2.2 Stabilizer states

As shown in Theorem II.3, an n-qubit stabilizer state can be represented by spec-

ifying n irredundant n-tensor Pauli generators of its stabilizer group. The following

theorem-definition specifies properties of stabilizer states relevant to quantum-circuit

simulation.

Theorem-definition II.11. Any n-qubit stabilizer state |ψ〉 can be obtained by ap-

plying a stabilizer circuit to the state |0〉⊗n. This class of states is equivalently char-

acterized by each of the following properties [2]:

H •

↓ ↓ �������� ↓
|ψ〉 |ψ′〉 |ψ′′〉

|ψ〉 = |00〉 ≡ R1
R2

[
Z I
I Z

]
|ψ′′〉 = |00〉+|11〉√

2 ≡ R1
R2

[
X X
Z Z

]

|ψ′〉 = |00〉+|10〉√
2 ≡ R1

R2

[
X I
I Z

]
Figure 2.3: Representation of the states generated by the EPR-pair
circuit using stabilizer matrices. The phase array is omitted for
simplicity. The rows of the matrices {R1, R2} denote the stabilizer
generators of the corresponding two-qubit state.

31

(i) |ψ〉 can be obtained from |0〉⊗n by CNOT , H and P gates only without mea-

surement gates.

(ii) |ψ〉 is stabilized by exactly 2n Pauli operators.

(iii) S(|ψ〉) ∼= Zn2 .

(iv) |ψ〉 is uniquely determined by S(|ψ〉) according to Definition II.2.

Proof. The fact that the addition or removal of measurement gates does not affect

the set of stabilizer states is demonstrated on the next page. Therefore, we only need

to show the equivalence of definitions (i), (ii), (iii) and (iv).

To show that (i) ⇒ (ii), note that the |0〉⊗n state is stabilized by any and all

n-tensor products of I and Z. Furthermore, when a CNOT , H or P gate is applied,

the stabilizers change according to Table 2.1a. Verifying that this table defines a

group isomorphism also proves (i) ⇒ (iii).

To prove that (ii) ⇒ (iii), note that the stabilizers form the group S(|ψ〉). Since

the size of S(|ψ〉) is 2n, the group must be Zn2 .

To prove that (iii) ⇒ (iv) one uses an argument similar to that used in the proof

of Theorem II.3-iv. Namely, each generator imposes a linear constraint on any given

stabilizer state, and reduces the dimension of the possible of states by a factor of

two. Therefore, n independent generators reduce the subspace of possible states to

dimension one.

To prove that (iv)⇒ (i), the work in [2] represents the generators using a tableau,

and then shows how to construct a unitary stabilizer circuit from the tableau. We

refer the reader to [2, Theorem 8] for details of the proof. The tableau approach to

stabilizer simulation is discussed in Section 2.3.1.

Given Theorem-definition II.11-iv, we can track the evolution of |ψ〉, under the

action of any given unitary stabilizer circuit C, by conjugating each stabilizer gate in

C with the generators of S(|ψ〉).

32

Corollary II.12. Any n-qubit stabilizer state |ψ〉 can be transformed by unitary sta-

bilizer gates into the |0〉⊗n state.

Proof. Since every stabilizer state can be produced by applying some unitary sta-

bilizer circuit C to the |0〉⊗n state, it suffices to reverse C to perform the inverse

transformation. To reverse a stabilizer circuit, reverse the order of gates and replace

every P gate with P 3.

Tables 2.3 and 2.4 list all one- and two-qubit stabilizer states, respectively.

Proposition II.13. [2, Proposition 2] The number of n-qubit pure stabilizer states

is given by

N(n) = 2n
n−1∏
k=0

(2n−k + 1) = 2(.5+o(1))n2 (2.2)

Proof. Let G(n) be the total number of generating sets and A(n) the number of

equivalent generating sets for stabilizer S. Then N(n) = G(n)/A(n). To calculate

G(n), recall from Section 1.5 that | Pn |= 4n. Thus there are 4n − 1 choices for

the first generator g1 since it can be anything but I. g2 cannot be g1 or I and, by

Theorem II.3-i, it must commute with g1. According to Lemma I.9-iii, half of the

possible generators will commute, which gives 4n/2 − 2 choices for g2. In general,

gk must commute with gi, i ∈ {1, . . . , k − 1} and cannot be in the group generated

by them. Therefore, the number of choices for gk is 4n/2k − 2k. Since each of the

n generators has a ±1 multiplicative factor, the number of sign configurations is 2n.

Thus G(n) = 2n∏n−1
k=0

(
4n
2k − 2k

)
. To calculate A(n), note that given S, there are

Stabilizer Shorthand Pauli Stabilizer Shorthand Pauli
state notation generator state notation generator

(|0〉+ |1〉)/
√

2 1, 1 X (|0〉 − |1〉)/
√

2 1,−1 -X
(|0〉+ i |1〉)/

√
2 1, i Y (|0〉 − i |1〉)/

√
2 1,−i -Y

|0〉 1,0 Z |1〉 0,1 -Z

Table 2.3: One-qubit stabilizer states and their Pauli-matrix stabi-
lizer. Shorthand notation lists only the normalized amplitudes of
the basis states.

33

State Gen’tors ∠ State Gen’tors ∠ State Gen’tors ∠ State Gen’tors ∠

Se
pa

ra
bl

e

1, 1, 1, 1 IX, XI π/3 1,−1, 1,−1 -IX, XI π/3 1, 1,−1,−1 IX, -XI π/3 1,−1,−1, 1 -IX, -XI π/3
1, 1, i, i IX, YI π/3 1,−1, i,−i -IX, YI π/3 1, 1,−i,−i IX, -YI π/3 1,−1,−i, i -IX, -YI π/3

1, 1, 0, 0 IX, ZI π/4 1,−1, 0, 0 -IX, ZI π/4 0, 0, 1, 1 IX, -ZI ⊥ 0, 0, 1,−1 -IX, -ZI ⊥
1, i, 1, i IY, XI π/3 1,−i, 1,−i -IY, XI π/3 1, i,−1,−i IY, -XI π/3 1,−i,−1, i -IY, -XI π/3

1, i, i,−1 IY, YI π/3 1,−i, i, 1 -IY, YI π/3 1, i,−i, 1 IY, -YI π/3 1,−i,−i,−1 -IY, -YI π/3
1, i, 0, 0 IY, ZI π/4 1,−i, 0, 0 -IY, ZI π/4 0, 0, 1, i IY, -ZI ⊥ 0, 0, 1,−i -IY, -ZI ⊥
1, 0, 1, 0 IZ, XI π/4 0, 1, 0, 1 -IZ, XI ⊥ 1, 0,−1, 0 IZ, -XI π/4 0, 1, 0,−1 -IZ, -XI ⊥
1, 0, i, 0 IZ, YI π/4 0, 1, 0, i -IZ, YI ⊥ 1, 0,−i, 0 IZ, -YI π/4 0, 1, 0,−i -IZ, -YI ⊥
1,0,0,0 IZ, ZI 0 0,1,0,0 -IZ, ZI ⊥ 0,0,1,0 IZ, -ZI ⊥ 0,0,0,1 -IZ, -ZI ⊥

E
nt

an
gl

ed

0, 1, 1, 0 XX, YY ⊥ 1, 0, 0,−1 -XX, YY π/4 1, 0, 0, 1 XX, -YY π/4 0, 1,−1, 0 -XX, -YY ⊥
1, 0, 0, i XY, YX π/4 0, 1, i, 0 -XY, YX ⊥ 0, 1,−i, 0 XY, -YX ⊥ 1, 0, 0,−i -XY, -YX π/4

1, 1, 1,−1 XZ, ZX π/3 1, 1,−1, 1 -XZ, ZX π/3 1,−1, 1, 1 XZ, -ZX π/3 1,−1,−1,−1 -XZ, -ZX π/3
1, i, 1,−i XZ, ZY π/3 1, i,−1, i -XZ, ZY π/3 1,−i, 1, i XZ, -ZY π/3 1,−i,−1,−i -XZ, -ZY π/3
1, 1, i,−i YZ, ZX π/3 1, 1,−i, i -YZ, ZX π/3 1,−1, i, i YZ, -ZX π/3 1,−1,−i,−i -YZ, -ZX π/3
1, i, i, 1 YZ, ZY π/3 1, i,−i,−1 -YZ, ZY π/3 1,−i, i,−1 YZ, -ZY π/3 1,−i,−i, 1 -YZ, -ZY π/3

Table 2.4: Sixty two-qubit stabilizer states and their corresponding
Pauli generators. Shorthand notation represents a stabilizer state
as α0, α1, α2, α3 where αi are the normalized amplitudes of the basis
states. The basis states are emphasized in bold. The first column
lists states whose generators do not include an upfront minus sign,
and other columns introduce the signs. A sign change creates an
orthogonal vector. Therefore, each row of the table gives an or-
thogonal basis. The cells in dark grey indicate stabilizer states with
four non-zero basis amplitudes, i.e., αi 6= 0 ∀ i. The ∠ column
indicates the angle between that state and |00〉, which has twelve
nearest-neighbor states (light gray) and 15 orthogonal states (⊥).
All three-qubit stabilizer states are listed in Appendix A.

2n − 2k choices for gk. Thus A(n) = ∏n−1
k=0

(
2n − 2k

)
. Finally, we have

N(n) = G(n)
A(n) = 2n

n−1∏
k=0

(4n
2k − 2k

2n − 2k

)
= 2n

n−1∏
k=0

(2n−k + 1) (2.3)

An alternate interpretation of Equation 2.2 is given by the simple recurrence

relation N (n) = 2(2n + 1)N (n− 1) with base case N (1) = 6. For example, for n = 2

the number of stabilizer states is 60, and for n = 3 it is 1080. This recurrence relation

stems from the fact that there are 2n+1 ways of combining the generators of theN (n−

1) states with additional Pauli matrices to form valid n-qubit generators. The factor

of 2 accounts for the increase in the number of possible sign configurations. Table 2.4

and Appendix A list all two-qubit and three-qubit stabilizer states, respectively.

34

Definition II.14. The lexicographic ordering of stabilizer states is defined as follows:

• We order generator-based representations of stabilizer states, which are phase-

invariant. When listing the amplitudes for such states, we normalize the global

phase so that the first non-zero amplitude is 1.0 (i.e., this normalization does

not affect the ordering defined in terms of generators).

• We write the tensor products of n Pauli matrices as strings and order them

lexicographically (for the leading phase, we assume α ≺ −α).

• For a given stabilizer state, we consider different generating sets (each ordered

lexicographically) — of those we choose the lexicographically smallest.

• When dealing with multiple stabilizer states, we order them lexicographically

in terms of their lexicographically smallest generating set.

This ordering is illustrated in Table 2.4 for all two-qubit stabilizer states. For

reference, the list of all three-qubit stabilizer states is shown in Appendix A.

Proposition II.15. The tensor product |ψ〉 ⊗ |ϕ〉 of two stabilizer states |ψ〉, |ϕ〉 is

a stabilizer state.

Proof. Consider two Pauli operators, P and Q, which stabilize the n-qubit state

|ψ〉 and the m-qubit state |ϕ〉, respectively. The (n + m)-qubit state |ψ〉 ⊗ |ϕ〉 is

stabilized by P ⊗Q = PQ since PQ |ψ〉 |ϕ〉 = P |ψ〉Q |ϕ〉 = |ψ〉 |ϕ〉. Let {P1, . . . , Pn}

and {Q1, ..., Qm} be sets of generators for S(|ψ〉) and S(|ϕ〉), respectively. We create

an (n + m)-element set of Pauli operators as follows, Pj ⊗ I⊗m, j ∈ {1, ..., n} and

I⊗n ⊗ Qk, k ∈ {1, ...,m}. This is a generator set for S(|ψ〉 |ϕ〉) because each of

the operators in the set stabilizes |ψ〉 |ϕ〉 and the set generates all tensor products

PjQk.2

2This holds true due to the following identity: (A⊗B)(C ⊗D) = (AC ⊗BD).

35

Table 2.4 illustrates tensor products of stabilizer states from Table 2.3, as well as

entangled stabilizer states.

Corollary II.16. Each computational-basis state is a stabilizer state.

Observation II.17. Consider a stabilizer state |ψ〉 represented by a set of generators

of its stabilizer group S(|ψ〉). Recall from the proof of Theorem II.3 that, since

S(|ψ〉) ∼= Zn2 , each generator imposes a linear constraint on |ψ〉. Therefore, the set

of generators can be viewed as a system of linear equations whose solution yields

the 2k (for some k between 0 and n) non-zero computational basis amplitudes that

make up |ψ〉. Thus, one needs to perform Gaussian elimination to obtain such basis

amplitudes from a generator set.

Computational basis measurements. In addition to unitary stabilizer gates, sta-

bilizer circuits contain one-qubit measurements in the computational basis (Z mea-

surements). Here we explain how the generating set of an n-qubit stabilizer state

|ψ〉 is affected by such non-unitary operations. Lemma I.10 shows how to associate

a projection with a Pauli operator, e.g., to apply a Z measurement on the kth qubit

of |ψ〉 we set P = I1 . . . Zk . . . In. Upon measurement, the evolution of the generating

set is dependent on whether P commutes with all the generators of S(|ψ〉).

(i) If P commutes with all generators, then either P or −P is an element of S(|ψ〉).

To see this, note that for each generator Qi of S(|ψ〉), QiP |ψ〉 = PQi |ψ〉 =

P |ψ〉. Thus, P |ψ〉 is stabilized by S(|ψ〉). Since the eigenvalues of P are ±1

(Lemma I.10-i), P |ψ〉 = ± |ψ〉. Therefore, either P ∈ S(|ψ〉) or −P ∈ S(|ψ〉),

and the measurement is deterministic with outcomes +1 and −1, respectively.

Since the measurement does not affect the state of the system, the generating

set of S(|ψ〉) remains unchanged.

(ii) If P does not commute with at least one generator, we can assume without loss

of generality that it only anticommutes with one generatorQ (if P anticommutes

36

with another generator R, then we can replace R with QR, which does commute

with P .3) In this case, the measurement does affect the state of the system,

and the ±1 outcomes are random with equal probability. To see this, note that

the projectors for the measurement outcomes ±1 are given by I±P
2 , respectively.

Let p(a) denote the probability of outcome a after measuring |ψ〉,

p(+1) = tr
(
I + P

2 Q |ψ〉 〈ψ|
)

= tr
(
Q
I − P

2 |ψ〉 〈ψ|
)

(2.4)

since P and Q anticommute. Using the fact that Q = Q† we have,

p(+1) = tr
(
I − P

2 |ψ〉 〈ψ|Q†
)

= tr
(
I − P

2 |ψ〉 〈ψ|
)

= p(−1) (2.5)

Since p(+1) + p(−1) = 1, the probability of each outcome is 1/2. After the

projector is applied to |ψ〉, the generating set of S(|ψ〉) is modified as follows.

If the outcome of the measurement is +1, then Q is replaced by P ; otherwise

Q is replaced by −P .

Example II.18. Consider the stabilizer state |ψ〉 = |00〉+|10〉√
2 , which has generators

{IZ,XI}. To measure the first qubit, let P = ZI. Assume that the measurement

outcome is +1, then the new state is |ψ′〉 = I+P√
2 |ψ〉 = |00〉, which has generators

{IZ, ZI}. Similarly, if the measurement outcome is −1, then |ψ′〉 = I−P√
2 |ψ〉 = |10〉,

which has generators {IZ,−ZI}.

The generators of the reduced cofactors (Section 1.3) can be obtained from the

generators of the respective cofactors by dropping the generator added during mea-

surement and removing from each remaining generator the Z symbol at the jth posi-

tion.
3The above procedure works for any projective measurement. For single-qubit Z measurements,

the commutativity check can be simplified by looking at the kth operators only, which takes O(1)
time per generator. Thus, it is possible to check commutativity in linear time. However, replacing
a generator by a product of two generators still takes linear time, therefore the overall runtime is
Θ(n2) for n generators.

37

2.2.3 Canonical forms

In this section, we characterize the amplitudes of stabilizer states and describe

canonical forms for unitary stabilizer circuits and stabilizer states. We use these

canonical forms to derive several general properties that are useful for circuit simula-

tion and equivalence-checking.

Reversible circuits, made of NOT , CNOT and Toffoli gates, preserve unbiased

states. This is due to the fact that such gates only permute amplitudes of a quantum

state. In particular, the modular exponentiation circuit that plays a key role in Shor’s

factoring algorithm [62] is a reversible circuit. In this algorithm, the modular expo-

nentiation circuit is applied after a chain of H gates. However, as we demonstrate

below, H gates do not introduce bias when applied to stabilizer states. They may

change the support of a stabilizer state, which we track below through parameter k,

such that 2k captures the number of basis vectors supporting a given stabilizer state.

The Z2-form for stabilizer states. The following theorem shows that any stabilizer

state can be specified using linear transformations and bilinear forms over the two-

element field.

Theorem II.19. Each n-qubit stabilizer state |ψ〉 is of the form [14, Equation 2]

|ψ〉 = 1
2k/2

∑
x∈Zk2

il(y)(−1)q(y) |y = Rx + t〉 (2.6)

where k ≤ n, R is an n×k matrix with full column rank k and t ∈ Zn2 . Furthermore, l

maps the n-bit string y = y1...yn to l(y) = dTy for d ∈ Zn2 and q(y) = ∑
cijyiyj +ciyi,

for cij, ci ∈ {0, 1}.

Proof. According to Definition II.11, a stabilizer state |ψ〉 is constructed by applying

CNOT , H or P gates to the initial state |0〉⊗n. The initial state is described by

Equation 2.6 with R = 0 and t = 0. Assume that after applying m stabilizer gates,

38

|ψ〉 is given by Equation 2.6. We now show that when the (m+ 1)th gate is applied,

|ψ〉 retains this form.

(i) Consider the action of the Phase gate on qubit k, Pk |y1 . . . yn〉 = iyk |y1 . . . yn〉.

After Pk is applied, the resulting state is

|ψ′〉 = 1
2k/2

∑
x∈Zk2

il(y)iyk(−1)q(y) |y = Rx + t〉 (2.7)

which is of the form given by Equation 2.6 since il(y)iyk = (−1)l(y)·ykil(y)⊕yk .

(ii) Note that CNOTj,l |y1 . . . yn〉 = |y1 . . . yj . . . (yl ⊕ yj) . . . yn〉, which is a permu-

tation of basis amplitudes. Therefore, CNOTj,lR = R′ and CNOTj,lt = t′. The

resulting state is

|ψ′〉 = 1
2k/2

∑
x∈Zk2

il(y)(−1)q(y) |y = R′x + t′〉 (2.8)

which is of the form given by Equation 2.6.

(iii) Without loss of generality, assume the Hadamard gate is applied to the first

qubit: H1 |y1 . . . yn〉 = |0 · y2 . . . yn〉+ (−1)y1 |1 · y2 . . . yn〉. Let r be the first row

of R, let R be the (n − 1) × k matrix obtained by removing r from R, and

t = (t2, . . . , tn). The resulting state is

|ψ′〉 = 1
2k/2

∑
y1∈{0,1}

∑
x∈Zk2

il(y)(−1)q(y)+y1·(rTy)+y1t1
∣∣∣y = y1, Rx + t

〉
(2.9)

where y now denotes the concatenation of y1 with the (n−1)-bit string obtained
from Rx + t. Since R has full column rank k, R has either full rank k or
rank k − 1. If R has full rank, then Equation 2.9 is of the same form as
Equation 2.6. If R is of rank k− 1 then we must transform R to have full rank.
Let ci, i ∈ {1, . . . , k}, denote the ith column of R, i.e., R = [c1 | c2 | . . . | ck].
Without loss of generality, assume that c1 = ∑k

i=2 aic
i and ci, i ∈ {2, . . . , k} are

linearly independent. We use the vector a = (a2, . . . , ak) to create the following
k × k invertible matrix

39

Q =


1
a2 1
... . . .
ak 1



such that RQ = [0 | c2 | . . . | ck]. Since a is the solution to a system of linear

equations over Z2, it can be efficiently computed. Let u = (u1, . . . , uk) such

that x = Qu, and let q′(y) = q(y) + y1 · (rTy) + y1t1. We rewrite Equation 2.9

as follows

|ψ′〉 = 1
2k/2

∑
y1∈{0,1}

∑
u∈Zk2

il(y)(−1)q′(y)
∣∣∣y = y1, RQu + t

〉
(2.10)

Since the first column of RQ is zero, RQu does not depend on u1. Thus,

RQu = [c2 | . . . | ck]u, where u = (u2, . . . , uk). This implies that we can rewrite

Equation 2.10 using u.

First, we find l′, q′′ and l∗ from l and q′ on Zk−1
2 such that

1
2k/2

∑
u1∈{0,1}

il(yu)(−1)q′(yu) = 1
2(k−1)/2 i

l′(yu)(−1)q′′(yu)δl∗(yu),0 (2.11)

where yu = y1, RQu+t and yu = y1, RQu+t. This can be performed efficiently

since these are operations on Z2.

Second, let R′′ be the (n− 1)× (k− 1) matrix with full rank k− 1 obtained by

removing the first column of RQ. Making the proper substitutions, we rewrite

Equation 2.10 as

|ψ′〉 = 1
2(k−1)/2

∑
y1∈{0,1}

∑
u∈Zk−1

2

il
′(y)(−1)q′′(y) |y = y1, R

′′u + t〉 (2.12)

which is of the form given by Equation 2.6.

40

Example II.20. The EPR pair (|00〉− i |11〉)/
√

2 can be obtained from Equation 2.6

by setting the following parameters.

R =

1

1

 t =

0

0

 x1 =
[
0
]

x2 =
[
1
]

l(y) = q(y) =

0

1


>

y

Corollary II.21. The basis amplitudes of a stabilizer state |s〉 have the following

properties:

(i) The number of non-zero amplitudes (support) in |s〉 is a power of two.

(ii) State |s〉 is unbiased, and every non-zero amplitude is ±1√
|s|

or ±i√
|s|

, where |s| is

the support of |s〉.

(iii) The number of imaginary amplitudes in |s〉 is either zero or half the number of

non-zero amplitudes.4

(iv) The number of negative amplitudes in |s〉 is either zero or a power of two.5

(v) For each qubit q of |s〉, the number of basis states with q = 0 in the |0〉- and

|1〉-cofactors is either zero or a power of two. Furthermore, if both |0〉- and

|1〉-cofactors with respect to a given qubit are nontrivial, the supports of the

cofactors must be equal and the norms of the cofactors must be equal.

Corollary II.21 allows one to quickly distinguish non-stabilizer states, e.g., those

in Table 2.5.
4Assuming the amplitudes are normalized as in Definition II.14, otherwise all amplitudes can be

complex.
5For normalized amplitudes, this might require multiplying by a −1 global phase.

41

Unbiased state Shorthand notation
(|00〉+ |01〉+ |10〉)/

√
3 1, 1, 1, 0

(|00〉+ |01〉+ |10〉+ i |11〉)/2 1, 1, 1, i
(|00〉+ i |01〉+ i |10〉+ i |11〉)/2 1, i, i, i
(|000〉+ |010〉+ |100〉+ |111〉)/2 1, 0, 1, 0, 1, 0, 0, 1

Table 2.5: Several unbiased states that are not stabilizer states. The
three-qubit state is not a stabilizer state because its |0〉-cofactor on
the third qubit is not a stabilizer state.

2.2.3.1 The global phase of a stabilizer state

In quantum mechanics, the states eiθ |ψ〉 and |ψ〉 are considered phase-equivalent,

and the statistics of measurement are the same. Since global phases are unobserv-

able, they can be safely ignored during simulation. Since both the Z2 formulation

and the stabilizer-matrix representation simulate stabilizer gates via their action-by-

conjugation, relative phases are accurately maintained but global phases are not.

Example II.22. (a) Suppose we have the stabilizer state |1〉. In the state-vector

representation, P |1〉 = i |1〉. According to Table 2.3, the state |1〉 is stabilized by −Z.

Applying P leaves the stabilizer unchanged since P (−Z)P † = −Z (Table 2.1a). Since

|1〉 and i |1〉 are equal up to a global phase, the stabilizer formalism safely ignores the

factor eiπ/2 = i.

(b) Suppose we have the stabilizer state |ψ〉 = (|0〉 + |1〉)/
√

2. In the state-vector

representation, P |ψ〉 = (|0〉 + i |1〉)/
√

2. According to Table 2.3, the state |ψ〉 is

stabilized by X. Applying P to the stabilizer gives P (X)P † = Y , which stabilizes

P |ψ〉 and reflects the change in relative phase.

Lemma II.23. Consider a stabilizer gate U ∈ {P,CNOT,H} acting on an n-qubit

stabilizer state |ψ〉. Without loss of generality, we assume that the global phase of |ψ〉

is 1. Then the posterior state U |ψ〉 has global phase α ∈ {±1,±i,±1±i√
2 }.

Proof. We consider the effect of U ∈ {P,CNOT,H} on the cofactors of |ψ〉 with

respect to the qubits on which the gate acts, and show the global phases generated

42

in each case. Let |ψ〉 = ∑2n−1
k=0 αk |k〉, where k denotes the integer representation of

each computational basis. Let δ(ψ) denote the smallest k such that αk 6= 0, e.g.,

if |ψ〉 ∝ |01〉 + |10〉, δ(ψ) = 01 since 01 < 10. By Definition II.14, |ψ〉 and U |ψ〉

are normalized such that |δ(ψ)〉 and |δ(Uψ)〉 have amplitude 1. Furthermore, in any

cofactoring of |ψ〉, |δ(ψ)〉 must be an element of exactly one of the cofactors.

(i) Let |ψ〉 ∝ α1 |ψj=0〉 + α2 |ψj=1〉, where αi ∈ {±1,±i} according to Theorem

II.19. Consider the action of P on qubit j, Pj |ψ〉 ∝ α1 |ψj=0〉 + iα2 |ψj=1〉. If

|δ(ψ)〉 ∈ |ψj=0〉, α1 = 1 and the global phase generated is 1 since the relative i

phase is absorbed into the stabilizer. If |δ(ψ)〉 ∈ |ψj=1〉, α2 = 1 and the global

phase generated is i since Pj |ψ〉 is normalized such that the amplitude of |δ(ψ)〉

is 1.

(ii) Let |ψ〉 ∝ α1 |ψi=0,j=0〉+ α2 |ψi=0,j=1〉+ α3 |ψi=1,j=0〉+ α4 |ψi=1,j=1〉, where αi ∈

{±1,±i}. Consider the action of CNOT on control qubit i and target j,

CNOTi,j |ψ〉 ∝ α1 |ψi=0,j=0〉 + α2 |ψi=0,j=1〉 + α4 |ψi=1,j=0〉 + α3 |ψi=1,j=1〉. If

|δ(ψ)〉 ∈ {|ψi=0,j=0〉 , |ψi=0,j=1〉}, the global phase is 1 since no action is per-

formed by CNOT on these cofactors. If |δ(ψ)〉 ∈ |ψi=1,j=0〉, we know α3 = 1

and the global phase generated is α4 since the basis amplitudes get swapped.

Conversely, if |δ(ψ)〉 ∈ |ψi=1,j=1〉, α4 = 1 and the global phase is α3.

(iii) Observe that when H is applied to qubit j, the support of |ψ〉 may increase

(decrease) or remain the same. We consider these two cases separately.

Case 1 Let |ψ〉 ∝ α1 |ψj=0〉 + α2 |ψj=1〉, where αi ∈ {±1,±i}. Suppose Hj |ψ〉 ∝

α1

∣∣∣ψ′j=0

〉
+ α2

∣∣∣ψ′j=1

〉
, where |ψ′j=0| > |ψj=0| and |ψ′j=1| > |ψj=1|, i.e., the

support increased. If |δ(ψ)〉 ∈ |ψj=0〉 and |δ(Hjψ)〉 ∈
∣∣∣ψ′j=1

〉
, the global

phase generated is α2. If |δ(ψ)〉 ∈ |ψj=1〉 and |δ(Hjψ)〉 ∈
∣∣∣ψ′j=0

〉
, the global

phase is α1. Otherwise, the global phase is 1. The case when the support

decreases, namely, when |ψ′j=0| < |ψj=0| and |ψ′j=1| < |ψj=1|, follows in the

43

same way. We now consider the special cases when either |ψ〉 or Hj |ψ〉

has an empty cofactor.

Case 1-a Let |ψ〉 = α |ψj=a〉, where a ∈ {0, 1} and α = 1 by Definition II.14.

Then Hj |ψ〉 ∝ |ψj=a〉± |ψj=ā〉 and the support of |ψ〉 increases. Since

the stabilizer absorbs the relative ±1 phases, only the trivial global

phase is generated.

Case 1-b Let |ψ〉 ∝ |ψj=0〉+ α |ψj=1〉, where α = ±1. Suppose Hj |ψ〉 ∝ |ψj=a〉,

where a ∈ {0, 1}. In this case, the support of |ψ〉 decreases since the

relative ±1 phases cancel out. If |δ(ψ)〉 ∈ |ψj=0〉 and Hj |ψ〉 ∝ |ψj=1〉,

then the global phase is α. Otherwise, the global phase is 1.

Case 2 Without loss of generality, let |ψ〉 ∝ α1 |ψj=0〉+ α2 |ψj=1〉, where α1 = ±1

and α2 = ±i. Then Hj |ψ〉 ∝ α1√
2 |ψj=0〉+ α1√

2 |ψj=1〉+ α2√
2 |ψj=0〉− α2√

2 |ψj=1〉 =
α1+α2√

2 |ψj=0〉 + α1−α2√
2 |ψj=1〉 = α1+α2√

2 (|ψj=0〉 ∓ α2 |ψj=1〉). Thus, the global

phase generated is ±1±i√
2 .

Table 2.6 shows the cases in which a non-trivial global phase was generated for one-

and two-qubit stabilizer states.6

Although Lemma II.23 tells us the possible values of the global phase (Table 2.6),

calculating the global phase directly from a stabilizer generator set is not straightfor-

ward. In Section 2.3.3, we describe an algorithm based on the cofactoring approach

used to prove Lemma II.23. It computes the global phase by comparing a subset of

the basis amplitudes of a stabilizer state before and after a gate is applied.

2.2.3.2 Canonical stabilizer generators

Although stabilizer states are uniquely determined by their stabilizer group, the
set of generators may be selected in different ways. For example, the state |ψ〉 =
(|00〉+ |11〉)/

√
2 is uniquely specified by any of the following:

6We double-checked the completeness of this table by applying stabilizer gates to all two- and
three-qubit stabilizer states.

44

Stabilizer Input Normalized Global
gate state output state phase
Phase |1〉 |1〉 i

CNOT |10〉 − |11〉 |10〉 − |11〉 −1
|01〉 − |11〉 |10〉 − |01〉 −1

(first qubit is the control) |10〉+ i |11〉 |10〉 − i |11〉 −i
|10〉 − i |11〉 |10〉+ i |11〉 i
|00〉 − i |10〉 |00〉 − i |11〉 i
|01〉 − i |11〉 |10〉+ i |01〉 −i

Hadamard |0〉+ i |1〉 |0〉 − i |1〉 1+i√
2

|0〉 − i |1〉 |0〉+ i |1〉 1−i√
2

|10〉 − |01〉 |00〉 − |01〉 − |10〉 − |11〉 −1
Hadamard |10〉+ i |01〉 |00〉 − |01〉 − i |10〉 − i |11〉 i

(applied to 2nd qubit) |10〉 − i |01〉 |00〉 − |01〉+ i |10〉+ i |11〉 −i

Table 2.6: One- and two-qubit stabilizer states that generate non-
trivial global phases when a stabilizer gate is applied. For simplicity,
the 2−n/2 factors where omitted in columns two and three. The
third column shows the normalized output state obtained with the
stabilizer formalism (Definition II.14).

M1 = XX M2 = XX M3 = -Y Y
ZZ -Y Y ZZ

One obtains M2 from M1 by left-multiplying the second row by the first. Similarly,

one can also obtainM3 fromM1 orM2 via row multiplication. Observe that multi-

plying any row by itself yields II, which stabilizes |ψ〉. However, II cannot be used

as a stabilizer generator because it is redundant and carries no information about the

structure of |ψ〉. This also holds true in general forM of any size. Any stabilizer ma-

trix can be rearranged by applying sequences of elementary row operations in order

to obtain a particular matrix structure. Such operations do not modify the stabilizer

state. The elementary row operations that can be performed on a stabilizer matrix

are transposition, which swaps two rows of the matrix, and multiplication, which

left-multiplies one row with another. Such operations allow one to rearrange the

stabilizer matrix in a series of steps that resemble Gauss-Jordan elimination.7 Given

an n× n stabilizer matrix, row transpositions are performed in constant time8 while
7Since Gaussian elimination essentially inverts the n×n matrix, this could be sped up to O(n2.376) time by using

fast matrix inversion algorithms. However, O(n3)-time Gaussian elimination seems more practical.
8Storing pointers to rows facilitates O(1)-time row transpositions — one simply swaps relevant pointers.

45

row multiplications require Θ(n) time. Algorithm 2.2.1 rearranges a stabilizer ma-

trix into a row-reduced echelon form that contains: (i) a minimum set of generators

with X and Y literals appearing at the top, and (ii) generators containing a mini-

mum set of Z literals only appearing at the bottom of the matrix. This particular

stabilizer-matrix structure, shown in Figure 2.4, defines a canonical representation

for stabilizer states [18, 34]. Several row-echelon (standard) forms for stabilizer gen-

erators along with relevant algorithms to obtain them have been introduced in the

literature [6, 34, 51]. However, such standard forms are not always canonical, e.g,

the row-echelon form described in [6] does not guarantee a minimum set of Z liter-

als. Since most of our algorithms manipulate canonical stabilizer matrices, we will

describe in detail our Gaussian-elimination procedure for obtaining the canonical

structure depicted in Figure 2.4. The algorithm iteratively determines which row

operations to apply based on the Pauli (non-I) literals contained in the first row and

column of an increasingly smaller submatrix of the full stabilizer matrix. Initially, the

submatrix considered is the full stabilizer matrix. After the proper row operations

are applied, the dimensions of the submatrix decrease by one until the size of the

submatrix reaches one. The algorithm performs this process twice, once to position

the rows with X(Y) literals at the top, and then again to position the remaining rows

containing Z literals only at the bottom. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , n} be

Figure 2.4: Canonical (row-reduced
echelon) form for stabilizer matrices. The
X-block contains a minimal set of rows
with X/Y literals. The rows with Z liter-
als only appear in the Z-block. Each block
is arranged so that the leading non-I lit-
eral of each row is strictly to the right of
the leading non-I literal in the row above.
The number of Pauli (non-I) literals in
each block is minimal.

46

the index of the first row and first column, respectively, of submatrix A. The steps to

construct the upper-triangular portion of the row-echelon form shown in Figure 2.4

are as follows.

1. Let k be a row in A whose jth literal is X(Y). Swap rows k and i such that k

is the first row of A. Decrease the height of A by one (i.e., increase i).

2. For each row m ∈ {0, . . . , n},m 6= i that has an X(Y) in column j, use row

multiplication to set the jth literal in row m to I or Z.

3. Decrease the width of A by one (i.e., increase j).

Algorithm 2.2.1 Canonical form reduction for stabilizer matrices
Require: Stabilizer matrix M for S(|ψ〉) with rows R1, . . . , Rn
Ensure: M is reduced to row-echelon form
⇒ ROWSWAP(M, i, j) swaps rows Ri and Rj of M
⇒ ROWMULT(M, i, j) left-multiplies rows Ri and Rj , returns updated Ri

1: i← 1
2: for j ∈ {1, . . . , n} do . Setup X block
3: k ← index of row Rk∈{i,...,n} with jth literal set to X(Y)
4: if k exists then
5: ROWSWAP(M, i, k)
6: for m ∈ {0, . . . , n} do
7: if jth literal of Rm is X or Y and m 6= i then
8: Rm = ROWMULT(M, Ri, Rm) . Gauss-Jordan elimination step
9: end if

10: end for
11: i← i+ 1
12: end if
13: end for
14: for j ∈ {1, . . . , n} do . Setup Z block
15: k ← index of row Rk∈{i,...,n} with jth literal set to Z
16: if k exists then
17: ROWSWAP(M, i, k)
18: for m ∈ {0, . . . , n} do
19: if jth literal of Rm is Z or Y and m 6= i then
20: Rm = ROWMULT(M, Ri, Rm) . Gauss-Jordan elimination step
21: end if
22: end for
23: i← i+ 1
24: end if
25: end for

47

To bring the matrix to its lower-triangular form, one executes the same procedure

with the following difference: (i) step 1 looks for rows that have a Z literal (instead of

X or Y) in column j, and (ii) step 2 looks for rows that have Z or Y literals (instead

of X or Y) in column j. Observe that Algorithm 2.2.1 ensures that the columns in

M have at most two distinct types of non-I literals. Since Algorithm 2.2.1 inspects

all n2 entries in the matrix and performs a constant number of row multiplications

each time, its runtime is O(n3).

Definition II.24. Two stabilizer matrices are similar if they contain the same Pauli

generators with different ±1 phases, i.e., the matrices are equivalent up to a phase-

vector permutation. Otherwise, the matrices are called dissimilar.

Observation II.25. The total number of dissimilar n-qubit canonical stabilizer ma-

trices is N (n)/2n.

Once a stabilizer matrix is in canonical form, it is possible to obtain the 2n basis

amplitudes of the corresponding stabilizer state. Given stabilizer matrixM as input,

Algorithm 2.2.2 implements the process described in Observation II.17. The algo-

rithm requires exponential resources and only works when the number of non-zero

amplitudes is small. This can be predetermined by looking at the return value (the

logarithm of the support of the stabilizer state) obtained when Algorithm 2.2.1 is

initially applied to M. Then, we use the Z-only rows in M to find an operator P

such that the basis state P |00 . . . 0〉 occurs with non-zero amplitude in |ψ〉. Next, we

create a new stabilizer matrix M′ whose rows consist of the rows in M that contain

X and Y literals and find the group of operators Q generated by M′. Note that

|Q| = 2k ≤ 2n, where k is the number of rows in M′. Finally, each operator Qi ∈ Q

is multiplied by P to obtain the basis state (Qi × P) |00 . . . 0〉 = Ui |00 . . . 0〉 and its

corresponding non-zero amplitude. Each basis-amplitude pair is obtained by iterating

over the literals of Ui and observing the state of the qubit stabilized by that literal

48

Algorithm 2.2.2 Computation of 2n basis amplitudes for a stabilizer state
Require: Stabilizer matrix M for S(|ψ〉) with rows R1, . . . , Rn
Ensure: Vector a = {a1, . . . , a2n} of basis amplitudes for |ψ〉
⇒ GROUP(M) returns the group Q = {Q1, . . . , Q2k} generated by the first k rows of M

1: a← {a1 ← 0, . . . , a2n ← 0}
2: P ← I⊗n

3: GAUSS(M) . Algorithm 2.2.1
4: for each row Ri ∈M with only Z and I literals do . Find P |00 . . . 0〉 for P ∈ Pn
5: for each Z literal at position j in Ri do
6: if phase of Ri is negative and the jth literal of P is I then
7: set the jth literal of P to X
8: end if
9: end for

10: end for
11: M′ ← ∅ . Initialize a new stabilizer matrix
12: for each row Ri ∈M with X or Y literals do
13: M′ ←M′ ∪Ri
14: end for
15: Q← GROUP(M′) . Note |Q| = 2k, k ≤ n
16: for each operator Qi ∈ Q do
17: Ui ← Qi × P
18: b← 0
19: s← leading (±1)-phase of Ui
20: for each literal l ∈ Ui at position j do . Set basis state and amplitude directly from Ui
21: if l = X or l = Y then
22: b← b+ 2j−1

23: if l = Y then
24: s← s · i
25: end if
26: end if
27: end for
28: ab = s/

√
2|Q| . Store the basis-amplitude pair

29: end for
30: return a

while keeping track of the phase. Note that Algorithm 2.2.2 will generate a normalized

set of basis amplitudes where the first non-zero amplitude is 1.0 (Definition II.14).

Example II.26. Suppose we have the following stabilizer matrix where the ± column
indicates the phase of the generator row.

M ≡
R1
R2
R3

I I X
I Z I
I I Z

+
−
−

Following Algorithm 2.2.2, we use R2 and R3 to create P = IXX (lines 4 –

49

10) such that P |000〉 = IXX |000〉 = |011〉, and R1 to create M′ ≡
[
I I X

]
+.

In this case, Q = {Q1 = III, Q2 = IIX} and the two basis states are given by

Q1P |000〉 = Q1 |011〉 = |011〉 and Q2P |000〉 = Q2 |011〉 = |010〉.

2.2.3.3 Canonical stabilizer circuits

We now describe the canonical forms for stabilizer circuits proposed in [2] and [14].

Such forms are useful for synthesizing stabilizer circuits that minimize the number of

gates and qubits required to produce a particular computation.

Definition II.27. Given a finite sequence of quantum gates, a circuit template de-

scribes a segmentation of the circuit into blocks where each block uses only one gate

type. The blocks must match the sequence and be concatenated in that order. For

example, a circuit satisfying the H-C-P template starts with a block of Hadamard

(H) gates, followed by a block of CNOT (C) gates, followed by a block of Phase (P)

gates.

Definition II.28. A circuit with a template structure consisting entirely of stabilizer-

gate blocks is called a canonical stabilizer circuit.

Definition II.29. Two unitary stabilizer circuits C1 and C2 are equivalent if ∀ |ψ〉 ,

C1 |ψ〉 = C2 |ψ〉.

Theorem II.30. Any stabilizer state |ψ〉 can be produced by an H-C-X-P -CZ canon-

ical circuit, where the X and CZ blocks consist of NOT and Controlled-Z gates.

Proof. Consider the Z2-form for |ψ〉 given by Equation 2.6. We construct a cir-

cuit C that outputs |ψ〉 given the initial state |0〉⊗n. First, apply h Hadamard

gates to yield 1
2h/2

∑
x∈Zh2
|x〉 |0〉n−h. Second, apply CNOT and NOT gates to yield

1
2h/2

∑
x∈Zh2
|Rx + t〉. Finally, apply P and gates to get

|ψ〉 = C |0〉⊗n = 1
2h/2

∑
x∈Zh2

il(y)(−1)q(y) |y = Rx + t〉 (2.13)

50

Corollary II.31. [14, Theorem 2] For any stabilizer circuit C there is an H-C-

X-P -CZ canonical circuit C′ such that C1 |0〉⊗n = C2 |0〉⊗n.

Using Corollary II.31, one can show that any unitary stabilizer circuit has an

equivalent circuit with template structure B1-H-B2, where Bi are basis-preserving

circuit blocks [14, Theorem 3].

Note that the H-C-X-P -CZ canonical form C′ only applies when the initial state

is |0〉⊗n since the original circuit and C′ might not be equal as 2n×2n matrices, e.g., the

single-qubit circuit C = HPH has no equivalent C′ such that C = C′. For arbitrary

initial states, the work in [2] establishes a 7-block9 canonical-circuit template with the

sequence H-C-P -C-P -C-H. In Section 4.1, we describe an algorithm for synthesizing

canonical circuits with the block sequence H-C-CZ-P -H. Our circuits are therefore

close to the smallest known circuits proposed in [14].

Corollary II.32. [2, Corollary 9] For any n-qubit unitary stabilizer circuit C there

is an equivalent circuit C′ with only O(n2/ log n) gates.

Proof. As stated above, we can transform C into the 7-round canonical circuit C′

proposed in [2]. Clearly, the H and P segments of C′ each have O(n) gates. Using

the result by Patel, Markov and Hayes [54], the CNOT segments can be minimized

to have only O(n2/ log n) gates.

A Shannon counting argument shows that the result in Corollary II.32 is optimal

[2].
9Theorem 8 in [2] actually describes an 11-step procedure to obtain such circuits. However, the

last four steps are used to reduce destabilizer rows, which we do not consider here.

51

2.3 Algorithms for Simulation and Equivalence-checking

of Stabilizer Circuits

In the previous section, we described how the stabilizer formalism allows us to

represent n-qubit stabilizer states with only Θ(n2) storage cost. We now describe the

check-matrix or tableau technique for simulating stabilizer circuits, which also uses

Θ(n2) space, but asymptotically improves the simulation of measurement [2] from

O(n3) time to O(n2) time. This technique can also be used to determine whether two

unitary stabilizer circuits are equivalent. Furthermore, we describe a tableau-based

algorithm to compute the non-trivial global phases that arise during simulation of

stabilizer circuits.

2.3.1 The tableau technique

In this approach, the generator set of a stabilizer state is represented using binary

vectors by encoding each Pauli literal using two bits.

Definition II.33. A tableau for the n-qubit stabilizer state |ψ〉 is an n × 2n binary

matrix that encodes the stabilizer matrix of |ψ〉. The jth tensor factor (Pauli literal)

of generator gi ∈ {g1, . . . , gn} in the stabilizer matrix is determined by the bits xijzij

as follows: 00 = I, 01 = Z, 10 = X and 11 = Y . Tableaux have the following general

structure. 
x11 · · · x1n z11 · · · z1n

...

xn1 · · · xnn zn1 · · · znn

 (2.14)

As in the stabilizer-matrix representation, the tableau technique stores the phase

array separately. The advantage of this approach is that the literal-to-bits mapping

from Definition II.33 induces an isomorphism Z2n
2 → Pn because vector addition in

Z2
2 is equivalent to multiplication of Pauli operators up to a global phase. Table 2.7

52

I(00) X(10) Y (11) Z(01)
I(00) I(00) X(10) Y (11) Z(01)
X(10) X(10) I(00) iZ(01) −iY (11)
Y (11) Y (11) −iZ(01) I(00) iX(10)
Z(01) Z(01) iY (11) −iX(10) I(00)

Table 2.7: Addition table for Z2
2 representation of Pauli operators.

shows the equivalence between binary addition and multiplication for one-qubit Pauli

operators.

Upon application of stabilizer gates, the evolution of a generator set represented

by a tableau is recorded as follows. When a unitary stabilizer gate is applied, update

the proper entries in each row of the tableau and each entry in the phase array

according to Table 2.7. Since there is a constant number of such updates per row,

the runtime for applying a unitary stabilizer gate is Θ(n). Example II.34 illustrates

how the tableau evolves while simulating the EPR-pair circuit. On the other hand,

updating the tableau to simulate a measurement on qubit j is not as efficient. As

discussed in Section 2.2.1, the outcome can be random or deterministic. The outcome

is random if the jth Pauli matrix of the measurement operator anticommutes with

the jth Pauli matrix of some generator(s); otherwise the outcome is deterministic.

In the random case, updating the tableau after the measurement takes O(n2) time

since we need to update the generators (rows of the tableau).10 If the outcome is

deterministic, then we apply Algorithm 2.2.1 to rearrange the tableau such that (i)

the number of X and Y literals is minimized, and (ii) the rows with only Z literals are

contained in the lower-triangular section of the tableau. To determine the outcome

of the measurement, we multiply the rows in the lower triangle that have a Z in their

jth position and return the resulting phase factor, which is either +1 or −1. Since

the runtime bottleneck of this procedure is Gaussian elimination, the procedure has

O(n3) runtime complexity.11

10Whether generators can be updated in O(n) time is an open question.
11Alternative algorithms with lower complexity exist, but Gaussian elimination typically runs

faster than n3 in practice and remains a reasonable implementation choice.

53

Example II.34. The EPR-pair circuit from Example II.8 can be simulated using the

tableau (check-matrix) technique as shown in Figure 2.5.

Definition II.35. The destabilizer generators {D1, . . . , Dn} of stabilizer state |ψ〉 are

the set of Pauli operators such that Di |ψ〉 6= |ψ〉, which, together with the n stabilizer

generators of S(|ψ〉), generate Pn.

Aaronson and Gottesman [2] improved the runtime of deterministic measurements

by doubling the size of the tableaux to include n destabilizer generators in addition to

the n stabilizer generators. Thus, the cost is a factor of two increase in the size of the

tableau. Let Ri represent the ith row of the tableau. Ri, i ∈ {1, . . . , n} represent the

destabilizer generators and Ri, i ∈ {n+ 1, . . . , 2n} represent the stabilizer generators.

Proposition II.36. [2, Proposition 3] The following are invariant properties of

the tableau:

(i) Rn+1, . . . , R2n generate S(|ψ〉), and R1, . . . , R2n generate Pn by Definition II.35.

(ii) R1, . . . , Rn commute.

(iii) For all h ∈ {1, . . . , n}, Rh anticommutes with Rh+n.

(iv) For all i, h ∈ {1, . . . , n} such that i 6= h, Ri commutes with Rh+n

H •

↓ ↓ �������� ↓

|ψ〉 |ψ′〉 |ψ′′〉

|ψ〉 = |00〉 ≡
[
Z I
I Z

]
=

 xi,1 xi,2 zi,1 zi,2
0 0 1 0
0 0 0 1


|ψ′〉 = |00〉+|10〉√

2 ≡
[
X I
I Z

]
=

 xi,1 xi,2 zi,1 zi,2
1 0 0 0
0 0 0 1


|ψ′′〉 = |00〉+|11〉√

2 ≡
[
X X
Z Z

]
=

 xi,1 xi,2 zi,1 zi,2
1 1 0 0
0 0 1 1


Figure 2.5: Simulation of EPR-pair circuit using the tableau tech-
nique. We omit phase vectors for clarity.

54

The measurement algorithm proposed in [2] uses a subroutine called rowsum(h, i),

which sets generator h equal to i + h and keeps track of the phase factor when

multiplying the Pauli matrices. Since rowsum looks at each Pauli matrix in rows i and

h, the runtime is on the order of Θ(n). See [2] for implementation details. Suppose

that a measurement of qubit j yields a deterministic outcome. The measurement

operator Zj must commute with all the stabilizer generators

n∑
h=1

chRh+n = ±Zj (2.15)

where ch ∈ {0, 1} and the sum over Rh+n are defined by the rowsum procedure. To

determine the phase factor representing the outcome, one needs to find vector c =

c1, . . . , cn such that the appropriate Rh+n are summed. Observe that Rh commutes

with Ri if the symplectic inner product

Rh ·Ri = xh1zi1 ⊗ · · · ⊗ xhnzin ⊗ xi1zh1 ⊗ · · · ⊗ xinzhn. (2.16)

equals 0, and anticommutes if it equals 1. Using this fact, we can use the destabilizer

generators to find c since for all i ∈ {1, . . . , n}

ci ≡
n∑
h=1

ch(Ri ·Rh+n) ≡ Ri ·
n∑
h=1

chRh+n ≡ Ri · Zj mod 2 (2.17)

by Proposition II.36. Thus, we learn whether ci = 1 by checking if the destabilizer

generator Ri anticommutes with Zj. Since the tableau provides constant-time access

to the destabilizer generators, determining c takes Θ(n) time. In the worst case,

ci = 1 ∀ i ∈ {1, . . . , n}, and there will be n calls to rowsum. Since each call to rowsum

takes Θ(n) time, the overall runtime of the measurement algorithm is O(n2).

Observation II.37. Given two stabilizer circuits C1 and C2, the concatenated cir-

cuits C1C2 and C2C1 are also simulatable.

55

Observation II.37 follows from the tableau-based implementation of the Gottesman-

Knill theorem. While most simulation techniques also possess this property, some

techniques such as tensor-network contraction [45] do not.

2.3.2 Equivalence checking

Using the tableau approach we can directly determine whether two unitary stabi-

lizer circuits are equivalent, as shown next.

Lemma II.38. [2, Lemma 5] Let τ1 and τ2 be the final tableaux obtained by applying

the unitary stabilizer circuits C1 and C2 to the initial state |0〉⊗n. Then C1 and C2

are equivalent iff τ1 = τ2.

Proof. Clearly, if C1 and C2 are equivalent, then τ1 = τ2. It remains to show that, if

τ1 = τ2, then C1 and C2 are equivalent. By Proposition II.36-i, the rows of the initial

tableau generate Pn. Since each unitary stabilizer circuit acts linearly on the Pauli

generators, the basis is preserved. Therefore, the linear transformations given by C1

and C2 are equivalent.

2.3.3 Global-phase maintenance

As discussed in Section 2.2.3, the stabilizer formalism (and its tableau-based im-

plementation) does not maintain global phases since U and eiθU have the same ac-

tion by conjugation. Maintaining such phases is important in order to compute

complex-valued inner products of stabilizer sates (Section 4.2). Furthermore, let

|Ψ〉 = ∑k
j=1 aj |ψj〉, where each |ψj〉 is a stabilizer state. Then,

U |Ψ〉 =
k∑
j=1

ajU |ψj〉 =
k∑
j=1

aje
iθj |ϕj〉 (2.18)

The global phase eiθj of each |ϕj〉 becomes relative with respect to U |Ψ〉. There-

fore, such phases need to be computed explicitly in order to maintain a consistent

56

representation based on linear combinations of stabilizer states (Section 5.1).

During simulation, the global phase of a stabilizer state can be maintained sep-

arately from the stabilizer tableau. Let U be a stabilizer gate applied to the state

|ψ〉 represented by stabilizer matrix M. The following process computes the global

phase of U |ψ〉:

1. Use Gaussian elimination to obtain a basis state |b〉 fromM (Observation II.17)

and store its non-zero amplitude α. If U is the Hadamard gate, it may be

necessary to sample a sum of two non-zero (one real, one imaginary) basis

amplitudes (see Example II.39).

2. Compute αU |b〉 = α′ |b′〉 directly using the state-vector representation.

3. Obtain |b′〉 from UMU † and store its non-zero amplitude β.

4. The phase factor generated is α′/β.

Example II.39. Suppose |ψ〉 = |00〉 + |01〉 − i |10〉 − i |11〉, where we omit the

normalization factor for clarity. A generator set for |ψ〉 isM = {−Y I, IX}. We will

compute the global-phase factor generated when a Hadamard gate is applied to the

first qubit. Following Step 1, we obtain basis states |00〉 and i |10〉 from M, and set

α = 1 (the amplitude of |00〉). Next, we compute H1(|00〉+i |10〉) = 1−i√
2 |00〉+ 1+i√

2 |10〉

and set α′ = 1−i√
2 (Step 2). According to Step 3, we obtain the |00〉 amplitude from

H1MH†1 = {Y I, IX}, which gives β = 1. The global-phase factor is α′/β = 1−i√
2 . One

can obtain the factor generated when CNOT, Phase and measurements gates are

applied in a similar fashion. However, for such gates, only one basis-state amplitude

needs to be sampled in Step 1.

57

2.4 Stateless Simulation of Stabilizer Circuits

In Section 2.2, we discussed how the stabilizer formalism facilitates the compact

representation of certain quantum states using only Ω(n2) bits on classical comput-

ers. We will show in Chapter III, that such a compact representation is useful for

the analysis of specific geometric properties of stabilizer states and error correcting

codes. Furthermore, in Chapter V, we describe algorithms that take advantage of

this compact representation to directly simulate generic quantum circuits. However,

in the context of stateless simulation (Section 2.1.2), maintaining such state repre-

sentations is not necessary, making the simulation task simpler as compared to direct

simulation. We now describe how the stateless model works in the context of stabi-

lizer (Clifford) circuit simulation and compare it to direct simulation using stabilizer

matrices (Section 2.2).

Theorem II.40. [39] Consider a unitary Clifford circuit C such that: (i) the input

state |ψ〉 is a product (separable) state and (ii) the output is a final Z-measurement on

any single qubit. Then the computation may be simulated in linear time on a classical

computer in the sense of Definition II.1.

Proof. The case where |ψ〉 is a stabilizer state is entailed by the Gottesman-Knill

theorem. We now show this holds in general for any product state. Let C be a

stabilizer circuit on starting product state |ψ0〉. Suppose we want to measure qubit k

after C is applied. Recall from Section 2.2.2 that Z-measurements are given by the

projectors associated with Pauli operators of the form I · · ·Zk · · · I, where k is the

qubit we seek to measure. Let E(Zf
k) denote the expectation value of Zk in the final

state C |ψ0〉,

E(Zf
k) = 〈ψ0|C†ZkC |ψ0〉 (2.19)

Since Zk ∈ Pn and C is a Clifford circuit, we have P = C†ZkC where P is a Pauli

string, i.e., P = P1 ⊗ · · · ⊗ Pn ∈ Pn. By Theorem I.10, the eigenvalues of P are ±1

58

and therefore E(Zf
k) = p0− p1, where p0 and p1 are the probabilities that the output

is 0 and 1, respectively. Using Equation 2.19 and the relation p0 + p1 = 1, one can

derive both p0 and p1. Since |ψ0〉 = |s1〉 ⊗ |s2〉 · · · |sn〉,

E(Zf
k) =

n∏
j=1
〈sj|Pj |sj〉 (2.20)

which can be computed on a classical computer in O(n) time. Since P can also be

computed in time linear in the size of the circuit (Section 2.2), this approach leads to

linear-time classical simulation algorithm.

As compared to the stabilizer formalism, the simulation approach from Theo-

rem II.40 has several key different properties:

(i) The input state allowed is any general product (separable) state. In stabilizer-

based simulation only computational-basis input states are allowed.

(ii) E(Zf
k) is calculated without computing the state C |ψ0〉 and only a linear num-

ber of bits is needed. (Storing a stabilizer matrix requires Ω(n2) bits.)

(iii) Instead of propagating the state description forward, the final measurement is

propagated backwards – one conjugates Zk by the gates in C in reverse. We

call this reverse simulation.

(iv) The overall runtime including single-qubit measurements is linear in n. (In the

stabilizer formalism, it takes O(n2)-time to decide deterministic measurements

even if one does not compute the post-measurement state.)

(v) Since post-measurement states are not computed, one cannot simulate unitary

gates that are applied adaptively based on measurement outputs.

Table 2.8 lists key differences between the two techniques. In general, given that

intermediate measurements can always be moved to the end of a circuit (Theorem I.4),

59

Simulation property Stateless Stabilizers
Input state Product Computational-basis
Gate conjugation order Reverse Forward
Gates conditioned on meas. output Not allowed Allowed
Multi-qubit output Not allowed Allowed
Memory O(n+m) Ω(n2)
Runtime O(g +m) O(g · n)

Table 2.8: Comparison between direct (stabilizer formalism) and
stateless simulation for n-qubit Clifford circuit with g gates and
m ancilla qubits (used for multi-qubit measurements in stateless
simulation).

property (3) does not impact performance. In Chapter VI, we describe an extension of

Theorem II.40 that admits non-stabilizer circuits. In this case, we show that property

(3) can have a considerable impact on the runtime performance of the simulation. We

now summarize the simulation technique established by the results of Theorem II.40

in the following steps:

1. Initialize the Zk-measurement operator.

2. Conjugate Zk by each gate in C in reverse.

3. Compute E(Zf
k) as per Equation 2.20. If the initial state is a computational

basis state, E(Zf
k) ∈ {0,±1}.

• If E(Zf
k) = 0, then p0 = p1 = 1

2 .

• If E(Zf
k) = 1, then p0 = 1 and p1 = 0.

• If E(Zf
k) = -1, then p0 = 0 and p1 = 1.

Example II.41. Suppose |ψ0〉 = |00〉 and we want to simulate the EPR-pair circuit

C = CNOT1,2 · H1 from Example II.8 using a stateless approach. We compute the

outcome probabilities for the first qubit as follows,

E(Zf
1) = 〈00| (C†)ZI(C) |00〉 〈00| (H1 · CNOT1,2)ZI(CNOT1,2 ·H1) |00〉

= 〈00| (H1)ZZ(H1) |00〉 = 〈00|XZ |00〉 = 〈00|10〉 = 0

60

By Step 3 above, since the expected value is zero, the probability of measuring zero

(one) for the first qubit is 1
2 .

An assumption of Theorem II.40 is that the output of the quantum computation

is the result of measuring a single qubit. Recall from our discussion in Section 2.1.2

that decision problems (output is only a “yes/no” answer) are amenable to such a

computational approach. Suppose that we are computing the solution to a decision

problem, but we have to perform multiple measurements in order to arrive at our

solution. In this case, one can adjoin a |0〉-initialized ancilla qubit j for each mea-

surement step and replace each measurement gate on qubit i by a CNOT with control

i and target j. Qubit j is not used in any other way and its purpose is to decohere

qubit i into the post-measurement mixture so that the final output of the “answer”

qubit is unchanged. For an n-qubit stabilizer circuit with g unitary gates and m

distinct measurement gates, this approach requires O(n + m) bits of memory and

O(g +m) runtime.

In the proof of Theorem II.40 we used two properties: (i) since P ∈ Pn, 〈ψ0|P |ψ0〉

can be computed in linear time for any product state |ψ0〉, and (ii) since C ∈ Cn,

C†PC can also be computed in linear time. It turns out that both these properties can

be generalized since they do not depend on any special group or algebraic structure

on Pn or Cn [39]. Therefore, let Sn be a set of n-qubit operators and Un be a class of

unitary operators such that:

(i) for S ∈ Sn, 〈ψ0|S |ψ0〉 can be computed in poly-time for any allowable input

state |ψ0〉,

(ii) U †SU ∈ Sn can be computed in poly-time for all S ∈ Sn and U ∈ Un.

The two properties above are sufficient for efficient stateless simulation (as outlined

in the proof of Theorem II.40) over the sets of operators Sn and Un.

61

We have focused on comparing details of the Clifford-circuit simulation techniques

that are most relevant to our work. It is important to note that a more comprehensive

analysis can be found in [40], which compares the classical simulation complexity of

all combinations of the simulation properties outlined here: (i) strong vs. weak

simulation, (ii) inputs being computational basis states vs. general product states,

(iii) adaptive vs. non-adaptive gates for circuits with intermediate measurements and

(iv) single vs. multi-qubit output. Figure 2.6 is borrowed from [40] as it provides a

good summary of the results. In particular, observe that stabilizer-based simulation

of Clifford circuits falls into the category: [NONADAPT, IN(BITS), OUT(MANY),

STRONG]. If gates conditioned on measurement outcomes are allowed, then it falls

in the [ADAPT, IN(BITS), OUT(MANY), WEAK] category. Both these categories

admit efficient simulation on conventional computers (Cl-P). Stateless simulation falls

in the [NONADAPT, IN(PROD), OUT(1), STRONG] category and also admits

efficient classical simulation. Figure 2.6 demonstrates a remarkable sensitivity of the

classical simulation complexity of Clifford circuits under various small modifications

and thus a surprising proximity of classical to quantum computing power.

2.5 Summary

In this chapter, we introduce our notion of quantum-circuit simulation and em-

phasize key properties of known simulation techniques that are relevant to our work.

We review the stabilizer formalism, restating major results from the published lit-

erature, with proofs, emphasizing efficient computation. In particular, we design an

algorithm to maintain the global phase of a stabilizer state during simulation. As

we show in Chapter V, global-phase maintenance facilitates our technique for sim-

ulation of generic quantum circuits using superpositions of stabilizer states. Our

technique avoids the shortcomings in prior work [2] and exhibits significant speedups

over state-of-the-art simulators for specific circuits.

62

Figure 2.6: Classical simulation complexities for sets of Clifford
computational tasks [40]. IN(BITS) and IN(PROD) refer to al-
lowing computational basis states and general product states as
inputs. OUT(1) and OUT(MANY) refer to having single bit and
multi-bit outputs. NONADAPT and ADAPT refer to circuits with
intermediate measurements and gates conditioned on measurement
outcomes (ADAPT). WEAK and STRONG refer to two notions of
classical simulation as defined in Section 2.1.1. Cl-P denotes that
classical efficient simulation is possible, QC-hard denotes that uni-
versal quantum computation is possible, and #P-hard asserts that
classical simulation could be used to solve arbitrary problems in the
classical class #P (and hence NP too).

63

CHAPTER III

Metric Geometry of Stabilizer States

Despite their compact representation, stabilizer states can exhibit multi-qubit en-

tanglement and are encountered in many quantum information applications such as

Bell states, GHZ states, error-correcting codes and one-way quantum computation.

To better understand the role stabilizer states play in such applications, researchers

have designed techniques to quantify the amount of entanglement [26, 37, 69] in

such states and studied related topics such as purification schemes [19], Bell inequal-

ities [35] and equivalence classes [15]. In particular, the authors of [16, 42, 48] show

that the uniform distribution over the n-qubit stabilizer states is an exact 2-design1.

Therefore, similar to general random quantum states, stabilizer states exhibit a dis-

tribution that is close to uniform. Furthermore, the results from [10, 63] show that

the entanglement of stabilizer states is nearly maximal and similar to that of general

random states. This suggests the possibility of using stabilizer states as proxies for

generic quantum states, e.g., represent arbitrary states by superpositions of stabilizer

states. To this end, the work in [1] proposes a hierarchy for quantum states based on

their complexity — the number of classical bits required to describe the state. Such a

hierarchy can be used to describe which classes of states admit polynomial-size clas-

sical descriptions of various kinds. To explore the boundaries between these classes,
1A state k-design is an ensemble of states such that, when one state is chosen from the ensemble

and copied k times, it is indistinguishable from a uniformly random state [16, 36].

64

one can design new stabilizer-based representations (e.g., superpositions of stabilizer

states and tensor products of such superpositions) that (i) admit polynomial-size de-

scriptions of practical non-stabilizer states, and (ii) facilitate efficient simulation of

generic quantum circuits.

In this chapter, we advance the understanding of the geometry of stabilizer states.

This line of research helps us identify efficient techniques for representing and ma-

nipulating new classes of quantum states, rule out some techniques as inefficient, and

quantify entanglement of relevant states. Our work contributes the following:

(1) We quantify the distribution of angles between pairs of stabilizer states and

characterize nearest-neighbor stabilizer states.

(2) We study linearly-dependent sets of stabilizer states and show that every linearly-

dependent triplet of such states that are non-parallel to each other includes two

pairs of nearest neighbors and one pair of orthogonal states. Such triplets are

illustrated in Figure 3.1. We also describe an orthogonalization procedure for

stabilizer states that exploits this rather uniform nearest-neighbor structure.

(3) We show that: (i) for any n-qubit stabilizer state |ψ〉, there are at least 5(2n−1)

states |ϕ〉 such that |ψ ∧ ϕ〉 is a stabilizer bivector, and (ii) the norm of the

|01〉
|10〉

|00〉

|s2〉 = |00〉+|01〉√
2

|s1〉 = |00〉+|10〉√
2

60◦

45◦45◦

Figure 3.1: The angle between any
stabilizer state and its nearest neigh-
bors is 45◦ and the distance is

√
2−
√

2.
Here, |s1〉 is a nearest neighbor of both
|00〉 and |10〉. Similarly, |s2〉 is a near-
est neighbor of |00〉 and |01〉. The an-
gle between these two nearest neighbors
of |00〉 is 60◦. Consider the linearly-
dependent triplets {|00〉 , |10〉 , |s1〉} and
{|00〉 , |01〉 , |s2〉}. Each set contains two
pairs of nearest neighbors and one pair of
orthogonal states.

65

wedge product between any two stabilizer states is
√

1− 2−k, where 0 ≤ k ≤ n.

(4) We explore the approximation of non-stabilizer states by single stabilizer states

and short superpositions of stabilizer states.

3.1 Geometric Properties of Stabilizer States

Given 〈ψ|ϕ〉 = reiα, we normalize the global phase of |ψ〉 to ensure, without loss

of generality, that 〈ψ|ϕ〉 ∈ R+.

Theorem III.1. Let S(|ψ〉) and S(|ϕ〉) be the stabilizer groups for |ψ〉 and |ϕ〉,

respectively. If there exist P ∈ S(|ψ〉) and Q ∈ S(|ϕ〉) such that P = -Q, then |ψ〉

and |ϕ〉 are orthogonal.

Proof. Since |ψ〉 is a 1-eigenvector of P and |ϕ〉 is a (−1)-eigenvector of P , they must

be orthogonal.

Theorem III.2. [2] Let |ψ〉, |ϕ〉 be oblique stabilizer states. Let s be the minimum,

over all sets of generators {P1, . . . , Pn} for S(|ψ〉) and {Q1, . . . , Qn} for S(|ϕ〉), of

the number of different i values for which Pi 6= Qi. Then, |〈ψ|ϕ〉| = 2−s/2.

Proof. Since 〈ψ|ϕ〉 is not affected by unitary transformations U , we choose a stabilizer

circuit such that U |ψ〉 = |b〉, where |b〉 is a basis state. For this state, select the

stabilizer generators M of the form I . . . IZI . . . I. Perform Gaussian elimination

on M to minimize the incidence of Pi 6= Qi. Consider two cases. If U |ϕ〉 6= |b〉

and its generators contain only I/Z literals, then U |ϕ〉 ⊥ U |ψ〉, which contradicts

the assumption that |ψ〉 and |ϕ〉 are oblique. Otherwise, each generator of U |ϕ〉

containing X/Y literals contributes a factor of 1/
√

2 to the inner product.

Corollary III.3. Let |ψ〉 and |φ〉 be oblique n-qubit stabilizer states such that |ψ〉 6=

eiα |φ〉. Then, 2−n/2 ≤ |〈ψ|φ〉| ≤ 2−1/2.

66

Corollary III.4. Given a stabilizer state |ψ〉, there exists an orthonormal basis in-

cluding |ψ〉 and consisting entirely of stabilizer states.

Proof. Observe that, by Theorem III.1, one can create a state |ϕ〉 that is orthogonal

to |ψ〉 by changing the signs of an arbitrary non-empty subset of generators of S(|ψ〉).

Moreover, selecting two different subsets will produce two mutually orthogonal states.

Thus, one can produce 2n − 1 additional orthogonal stabilizer states. Such states,

together with |ψ〉, form an orthonormal basis.

Corollary III.4 is illustrated by Table 2.4 were each row constitutes an orthonormal

basis. More generally, the orthogonality of two stabilizer states can sometimes be

established by finding a pair of generators P and Q that satisfy the condition that

P = -Q. For n-qubit states, this search can be performed in Θ(n2 log(n)) worst-

case time by sorting the generators (e.g., using the lexicographical ordering from

Definition II.14), or even in Θ(n2) time with radix sort. Alternatively, this search

can be performed using hashing in expected Θ(n2) time. Pre-sorting the generators

does not improve asymptotic complexity, but if the generators are pre-hashed (or

if the hashes are incrementally updated during simulation), then the search can be

performed in Θ(n) time.

Unfortunately, the P = -Q condition may not hold for any generators (from given

generating sets) of two orthogonal stabilizer states.2 In this case, orthogonality can

be checked by computing the inner product, which takes O(n3) time as discussed in

Section 4.2.

Lemma III.5. Let |α〉 and |β〉 be arbitrary states such that 〈α|β〉 = 0 and 〈α|α〉 =

〈β|β〉 = 1. Then, each of the four unbiased superpositions |ψ+〉 = |α〉+|β〉√
2 , |ψ−〉 =

|α〉−|β〉√
2 , |ψ+i〉 = |α〉+i|β〉√

2 and |ψ−i〉 = |α〉−i|β〉√
2 , satisfies 〈ψ·|ψ·〉 = 1 and |〈ψ·|α〉| =

|〈ψ·|β〉| = 1√
2 .

2Table 2.4 contains pairs of orthogonal states not in the same row for whose generators this
condition does not hold.

67

Proof. Consider the case of |ψ−i〉.

〈ψ−i|ψ−i〉 = 〈ψ−i|α− iβ〉√
2

= 〈ψ−i|α〉 − i〈ψ−i|β〉√
2

(3.1)

Since the inner product is conjugate-linear on the first argument,

〈ψ−i|α〉 − i〈ψ−i|β〉√
2

=
1√
2〈α|α〉 − i

i√
2〈β|β〉√

2
= 1 (3.2)

Furthermore, |〈ψ−i|α〉| =
∣∣∣ 〈α|α〉√2

∣∣∣ = 1√
2 and |〈ψ−i|β〉| =

∣∣∣ i〈β|β〉√
2

∣∣∣ = 1√
2 . Other cases are

analogous.

3.1.1 Inner products and k-neighbor stabilizer states

Definition III.6. Given an arbitrary state |ψ〉 with ||ψ|| = 1, a stabilizer state |ϕ〉

is a k-neighbor stabilizer state of |ψ〉 if |〈ψ|ϕ〉| = 2−k/2.

When two stabilizer states are 1-neighbors we will also refer to them as near-

est neighbors since, by Corollary III.3, this is the maximal inner-product value 6= 1.

Furthermore, the distance between a stabilizer state and any of its k-neighbors is
√

2− 21−k/2. Therefore, the distance between closest stabilizer states (nearest neigh-

bors) is
√

2−
√

2 ≈ 0.765.

Proposition III.7. Consider two orthogonal stabilizer states |α〉 and |β〉 whose un-

biased superposition |ψ〉 is also a stabilizer state. Then |ψ〉 is a nearest neighbor of

|α〉 and |β〉.

Proof. Since stabilizer states are unbiased, |〈ψ|α〉| = |〈ψ|β〉| = 1√
2 . Thus, |ψ〉 is a

1-neighbor or nearest-neighbor stabilizer state to |α〉 and |β〉. Figure 3.1 illustrates

this case.

Lemma III.8. Any two stabilizer states have equal numbers of k-neighbor stabilizer

states.

68

Proof. Any stabilizer state can be mapped to another stabilizer state by a stabilizer

circuit (Corollary II.12). Since such circuits effect unitary operators, inner products

are preserved.

Lemma III.9. Let |ψ〉 and |ϕ〉 be n-qubit stabilizer states such that 〈ψ|ϕ〉 6= 1. Then
|ψ〉+il|ϕ〉√

2 , l ∈ {0, 1, 2, 3}, is a stabilizer state iff 〈ψ|ϕ〉 = 0 and |ϕ〉 = P |ψ〉, where

P ∈ Gn.

Proof. We first prove that, if 〈ψ|ϕ〉 = 0 and |ϕ〉 = P |ψ〉, an unbiased sum of such

states is also a stabilizer state. Suppose S(|ψ〉) = 〈gk〉k=1,2,...,n is generated by elements

gk of the n-qubit Pauli group. Let

f(k) =


0 if [P, gk] = 0

1 otherwise

and write S(|ϕ〉) = 〈(−1)f(k)gk〉. Conjugating each generator gk by P we see that

|ϕ〉 is stabilized by 〈(−1)f(k)gk〉. Let Zk (respectively Xk) denote the Pauli operator

Z (X) acting on the kth qubit. By Corollary II.12, there exists an element C of

the n-qubit Clifford group such that C|ψ〉 = |0〉⊗n and C|ϕ〉 = (CPC†)C|ψ〉 =

im|f(1)f(2) . . . f(n)〉. The second equality follows from the fact that CPC† is an

element of the Pauli group and can therefore be written as imX(v)Z(u) for some

m ∈ {0, 1, 2, 3} and u, v ∈ Zk2. Therefore,

|ψ〉+ il|ϕ〉√
2

= C†(|0〉⊗n + it=(l+m)mod 4 |f(1)f(2) . . . f(n)〉)√
2

(3.3)

The state in parentheses on the right-hand side is the product of an all-zeros state

and a GHZ state. Therefore, the sum is stabilized by S ′ = C†〈Szero, Sghz〉C where

Szero = 〈Zi, i ∈ {k|f(k) = 0}〉 and Sghz is supported on {k|f(k) = 1} and equals

〈(−1)t/2XX . . .X, ∀i ZiZi+1〉 if t = 0 mod 2 or 〈(−1)(t−1)/2Y Y . . . Y, ∀i ZiZi+1〉 if

t = 1 mod 2.

69

We now prove the opposite implication. Let |u〉 = |ψ〉+il|ϕ〉√
2 , where |ψ〉 and |ϕ〉

are n-qubit stabilizer states and 〈ψ|ϕ〉 6= 1. Let C1 and C2 be Clifford circuits such

that |ψ〉 = C1 |0〉 and |ϕ〉 = C2 |0〉, where |0〉 = |0〉⊗n. Observe that C1 6= C2 by

our assumption that 〈ψ|ϕ〉 6= 1. Therefore, |u〉 = (C1 |0〉 + ilC2 |0〉)/
√

2 = C1(|0〉 +

ilC†1C2 |0〉)
√

2, and

C†1 |u〉 = |0〉+ ilC†1C2 |0〉√
2

Since C†1C2 6= I⊗n and C†1 |u〉 is a stabilizer state, C†1C2 |0〉 must simplify to a basis

state |b〉 6= |0〉 (otherwise, C†1 |u〉 is either biased or has 2n−1 basis states). It follows

that 〈ψ|ϕ〉 = 〈0|C†1C2 |0〉 = 〈0|b〉 = 0. Let il |b〉 = P |0〉, where P is an element of

the Pauli group,

C†1 |u〉 = |0〉+ P |0〉

|u〉 = C1 |0〉+ C1P |0〉 = C1 |0〉+ (C1PC†1)C1 |0〉

= C1 |0〉+ P ′C1 |0〉 = |ψ〉+ P ′ |ψ〉

Corollary III.10. Let |ψ〉+i
l|ϕ〉√
2 be a stabilizer state. Then the canonical stabilizer

matrices for |ψ〉 and |ϕ〉 are similar.

Proof. Let Mψ = {R1, R2, . . . , Rn} be the canonical stabilizer matrix for |ψ〉. Since

|ϕ〉 = P |ψ〉 by Lemma III.9, Mϕ = {(−1)cR1, (−1)cR2, . . . , (−1)cRn}, where c = 0

if P and Ri commute, and c = 1 otherwise.

Theorem III.11. For any n-qubit stabilizer state |ψ〉, there are 4(2n − 1) nearest-

neighbor stabilizer states, and these states can be produced as described in Lemma III.9.

Proof. The all-zeros basis amplitude of any stabilizer state |ψ〉 that is a nearest neigh-

bor to |0〉⊗n must be ∝ 1/
√

2. Therefore, |ψ〉 is an unbiased superposition of |0〉⊗n

70

and one of the other 2n − 1 basis states, i.e., |ψ〉 = |0〉⊗n+P |0〉⊗n√
2 , where P ∈ Gn such

that P |0〉⊗n 6= α |0〉⊗n. As in the proof of Lemma III.9, we have |ψ〉 = |0〉⊗n+il|ϕ〉√
2 ,

where |ϕ〉 is a basis state and l ∈ {0, 1, 2, 3}. Thus, there are 4 possible unbiased

superpositions, and a total of 4(2n−1) nearest-neighbor stabilizer states. Since |0〉⊗n

is a stabilizer state, all stabilizer states have the same number of nearest neighbors

by Lemma III.8.

Corollary III.12. For any n-qubit stabilizer state |ψ〉, there exists a set of states

Vψ = {|si〉}2n−1
i=1 such that each |si〉 is a nearest-neighbor to |ψ〉 and 〈si|sj〉 = 1/2 for

i 6= j. This set Vψ together with |ψ〉 forms a basis in H⊗n.

Proof. Without loss of generality, assume that |ψ〉 = |0〉⊗n. Theorem III.11 shows

that, for any given stabilizer states, its nearest neighbors come in groups of four.

Taking any one representative from each group of four, we get a set of states Vψ ={
|si〉 = |0〉⊗n+il|bi〉√

2

}2n−1

i=1
, where l ∈ {0, 1, 2, 3} and |bi〉 are computational-basis states

other than |ψ〉. Thus, for all |si〉 and |sj〉 such that i 6= j,

〈si|sj〉 =
(
〈0⊗n|+ 〈bi|√

2

)(
|0⊗n〉+ |bj〉√

2

)
= 1

2 (3.4)

Vψ together with |ψ〉 form a linearly independent set (one can subtract |ψ〉 from each

|si〉 to get an orthogonal set) and thus a basis. Figure 3.1 illustrates this nearest-

neighbor structure for a small set of states.

In Table 2.4, one can find the twelve nearest-neighbor states of |00〉. We computed

the angles between all-pairs of 3-qubit stabilizer states and confirmed that each was

surrounded by exactly 28 nearest neighbors. The same procedure confirmed that the

number of nearest neighbors for any 4-qubit stabilizer state is 60. In Section 4.3, we

describe an orthogonalization procedure for linear combinations of stabilizer states

that takes advantage of the nearest-neighbor structure described in Theorem III.11.

71

Alternatively, Theorem III.11 can also be proven using a counting argument. By

Theorem III.2, we know that any nearest-neighbor stabilizer state to |0⊗n〉 can be

represented by a stabilizer matrix that has exactly one generator (row) with at least

one X/Y literal. Therefore, there are 2(4n − 2n) choices for the first generator P1.

The factor of 2 accounts for the possible signs of P1. The remaining (independent)

generators, P2, . . . , Pn, are then selected such that they commute with P1 and consist

of Z/I literals only. Observe that such generators can be selected arbitrarily since

they generate the same (Z/I)-element subgroup.

Example III.13. Suppose P1 = XII, then P2 and P3 can be selected arbitrarily

from the set {IZI, IZZ, IIZ}. To account for stabilizer matrices that describe the

same state, consider that P1 can be replaced by P1Q, where Q is an arbitrary product

of the Z/I generators.

Therefore, the number of nearest-neighbor stabilizer states Ln(1) is given by,

Ln(1) = 2(4n − 2n)
2n−1 = 4(2n − 1) (3.5)

The following theorem generalizes Equation 3.5 to the case of k-neighbor stabilizer

states.

Theorem III.14. For any n-qubit stabilizer state, the number of k-neighbor stabilizer

states is,

Ln(k) = 2k(k+1−n)
k−1∏
j=0

4n/2j − 2n
2k − 2j (3.6)

Proof. Without loss of generality, we count the k-neighbors of |0⊗n〉 (Lemma III.8).

By Theorem III.2, we know that such states are represented by an n-qubit stabilizer

matrix with k independent X/Y generators and n − k independent Z/I generators.

Assume, for j ≤ k, that the X/Y generators P1, . . . , Pj−1 have been chosen, and let

Qj, . . . , Qn be Z/I generators that commute with them. Given this generating set, we

72

count the possible choices for Pj to replace any one of the Z/I generators. Observe

that Pj must commute with P1, . . . , Pj−1 and cannot be an element of the subgroup

generated by P1, . . . , Pj−1, Qj, . . . , Qn. Thus, there are 2(4n/2j−1−2n) choices for Pj.

The factor of 2 accounts for the choice of sign. We need to account for choices of

X/Y generators that describe the same state. Consider the subgroup generated by

Pi∈{1,...,k}. There are 2k − 1 choices for P1, 2k − 2 for P2, 2k − 4 for P3, and so on.

This gives a factor of ∏k
j=1(2k− 2j−1). Furthermore, we can replace Pi by PiQ, where

Q is an arbitrary product of the Z/I generators. This gives k factors of 2n−k.

Ln(k) =
k∏
j=1

2
2n−k

4n/2j−1 − 2n
2k − 2j−1

Corollary III.15. For an arbitrary n-qubit stabilizer state |ψ〉, the number of stabi-

lizer states orthogonal to |ψ〉 is,

Ln(⊥) = N (n)−
n∑
k=1
Ln(k)− 1 = N (n)(2n − 1)

3 · 2n (3.7)

where N (n) is the number of n-qubit stabilizer states (Proposition II.13). In other

words, for any n-qubit stabilizer state |ψ〉 with a sufficiently large n, almost 1/3 of

remaining stabilizer states are orthogonal to |ψ〉.

As an illustration of Theorem III.14 and Corollary III.15, Table 3.1 numerically

describes the distribution of inner products between any one n-qubit stabilizer state

and all other stabilizer states for n ∈ {1, . . . , 7}. This table shows that the number

of nearest-neighbor stabilizer states as a fraction of all n-qubit stabilizer states ap-

proaches zero as n increases. We now formalize other trends gleaned from Table 3.1.

Lemma III.16. For an arbitrary n-qubit stabilizer state, consider the quantity an,k =
Ln(k)
N (n) , where 0 < k ≤ n. Then, for fixed m, the sequence {an,n−m}n→∞ is monotoni-

cally convergent.

73

Table 3.1: Distribution of inner products (angles) between any
one n-qubit stabilizer state and all other stabilizer states for n ∈
{1, . . . , 7}. The last column indicates the ratio of orthogonal (⊥)
states.

n N (n)
Ln(k)/(N (n)− 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 ⊥
(45.00◦) (60.00◦) (69.30◦) (75.52◦) (79.82◦) (82.82◦) (84.93◦) (90.00◦)

1 6 80% 20%
2 60 20.34% 54.24% 25.42%
3 1080 2.59% 20.76% 47.45% 29.19%
4 36720 0.16% 3.05% 20.92% 44.62% 31.25%
5 2423520 0.01% 0.20% 3.27% 20.96% 43.27% 32.29%
6 315057600 ≈ 0% 0.01% 0.23% 3.39% 20.97% 42.60% 32.81%
7 81284860800 ≈ 0% ≈ 0% 0.01% 0.24% 3.44% 20.97% 42.27% 33.07%

Proof. Using Theorem III.14 and the recurrence relation of Equation 2.2 we obtain,

an,k
an+1,k+1

= Ln(k)
N (n) ·

2(2n+1 + 1)N (n)
Ln+1(k + 1) = 2(2n+1 + 1) Ln(k)

Ln+1(k + 1) (3.8)

where

Ln(k)
Ln+1(k + 1) = 2n−k−1

k−1∏
j=0

(
4n/2j − 2n

2k − 2j

)
k∏
j=0

(
2 2k − 2j−1

4n+1/2j − 2n+1

)

= 2n
k∏
j=1

(
4n/2j−1 − 2n

2k − 2j−1

)
k∏
j=0

(
2k − 2j−1

4n+1/2j − 2n+1

)

= 2n
(

2k − 1/2
4n+1 − 2n+1

)
k∏
j=1

(
1
2

4n/2j−1 − 2n
2(4n/2j)− 2n

)
= 2k+1 − 1

2k(2n+3 − 4)

Inserting the above result in Equation 3.8 gives,

an,k
an+1,k+1

= 2(2n+1 + 1) 2k+1 − 1
2k(2n+3 − 4) = 2n+k+3 + 2k+2 − 2n+2 − 2

2n+k+3 − 2k+2 (3.9)

Consider the case 0 < k < n,

2n+k+3 + 2k+2 − 2n+2 − 2
2n+k+3 − 2k+2 < 1 and thus 2k+2

2n+1 + 1 < 1

74

Therefore, for fixed 0 < m < n, {an,n−m}n→∞ is monotonically increasing. It con-

verges because 0 < an,k < 1. For the case k = n,

an,n
an+1,n+1

= 22n+3 − 2
22n+3 − 2n+2 = 2n+1 − 2−n−1

2n+1 − 1 = 1 + 1
2n+1 > 1 (3.10)

Therefore, the sequence {an,n}n→∞ is monotonically decreasing and convergent.

Theorem III.17. For an arbitrary n-qubit stabilizer state, the limit of the sequence

{an,n−k}n→∞, 0 ≤ k < n, lies in the interval [l(k), u(k)], where

l(k) = M5

2k(k+5)/2 · exp
(1

32 −
2

2k+5 − 1

)
u(k) = M5

2k(k+3)/2 · exp
(1

15 −
2

2k+5 + 1

)

and

M5 =
5∏
j=1

(1
1− 2−j

) 5∏
j=1

(
1− 2

2j+k + 1

)

Proof. From the proof of Lemma III.16 we know 0 < l(k) < u(k) < 1. We now

derive the sharper bounds, l(k) and u(k), for {an,n−k}n→∞. Using Theorem III.14

and Proposition II.13 we obtain,

an,n−k = 2−k
n−k∏
j=1

(1
1− 2−j

)
︸ ︷︷ ︸

An−k

n−k∏
j=1

(
1− 2

2j+k + 1

)
︸ ︷︷ ︸

Bn−k

k∏
j=1

(1
1 + 2j

)
︸ ︷︷ ︸

Ck

(3.11)

We now derive upper and lower bounds for the products An−k, Bn−k and Ck.

n−k∏
j=1

exp
(1

2j
)
< An−k <

n−k∏
j=1

exp
(1

2j − 1

)
n−k∏
j=1

exp
(−2

2j+k − 1

)
< Bn−k <

n−k∏
j=1

exp
(−2

2j+k + 1

)
1

2k(k+5)/2 =
k∏
j=1

1
2j+1 < Ck <

k∏
j=1

1
2j = 1

2k(k+1)/2

75

Therefore, as n→∞,

A5 · exp
(1

32

)
< A∞ < A5 · exp

(1
15

)
B5 · exp

(−2
2j+k − 1

)
< B∞ < B5 · exp

(−2
2j+k + 1

)

In particular, observe that u(k) ≈ 0 for k > 4. Thus, the fraction of all stabilizer

states that are oblique to some n-qubit stabilizer state |ψ〉 is dominated by its (n−k)-

neighbors, where k ∈ {0, 1, 2, 3, 4}. Limit values for Ln(n−k)/N (n) are approximated

in Figure 3.2a.

Theorem III.18. For two n-qubit stabilizer states |ψ〉 and |φ〉 drawn independently

from a uniform distribution, the expected value E[〈ψ|φ〉]→ 0 as n→∞.

Proof. Let |ϕn−k〉 be an (n− k)-neighbor of |ψ〉. By Theorems III.2 and III.17,

E[〈ψ|φ〉] =
n−1∑
k=0

an,n−k|〈ψ|ϕn−k〉| <
n−1∑
k=0

u(k)|〈ψ|ϕn−k〉| ≈
4∑

k=0
u(k)2(k−n)/2 (3.12)

Therefore, E∞[〈ψ|φ〉] < ∑4
k=0 u(k)2(k−n)/2, which approaches zero as n→∞.

Theorem III.18 suggests that stabilizer states are distributed in a way similar to

random quantum states [16, 42, 48].

3.1.2 Exterior products and stabilizer bivectors

In this section, we study pairs of stabilizer states and the parallelograms they

form, which lie in a 2n-qubit Hilbert space. Such pairs of states are called bivectors

and are obtained by computing the wedge product |ψ ∧ φ〉 = |ψ〉 ⊗ |φ〉 − |φ〉 ⊗ |ψ〉

between stabilizer states. The wedge product is antisymmetric and yields zero for

parallel vectors. The norm of a stabilizer bivector can be interpreted as the signed

area of the parallelogram defined by non-parallel stabilizer states.

76

k lim
n→∞

Ln(n− k)
N (n)

0 41.9422%
1 20.9712%
2 3.4952%
3 .2497%
4 .0083%
5 ≈ 0%
... ...

n− 1 ≈ 0%

0

.1

.2

.3

.4

.5

.6

.7

 2 4 6 8 10 12 14

k = 0

k = 1

k = 2

k = 3

90°

Ln(n−k)
N (n)

n
(a) (b)

Figure 3.2: (a) For an n-qubit stabilizer state |ψ〉, the fraction
(≈ 2/3) of all stabilizer states that are oblique to |ψ〉 is dominated
by its (n−k)-neighbors, where k ∈ {0, 1, 2, 3, 4}. (b) The stabilizer
states orthogonal to |ψ〉 together with its (n− k)-neighbors (k < 3)
account for ≈ 99% of all states.

Definition III.19. A stabilizer bivector |ϕ〉 is a 2n-qubit stabilizer state such that

|ϕ〉 ∝ |ψ ∧ φ〉, where |ψ〉 and |φ〉 are n-qubit stabilizer states.

Example III.20. The wedge product of the stabilizer states |ψ〉 = |00〉 + |11〉 and

|φ〉 = |00〉 − |11〉 produces the stabilizer bivector |ψ ∧ φ〉 = |1100〉 + |0011〉 (up to

a phase). In contrast, given the states |ψ〉 = |00〉 + |11〉 and |φ〉 = |10〉, |ψ ∧ φ〉 =

|0010〉+ |1100〉+ |1110〉− |0011〉− |1000〉− |1011〉 is not a stabilizer bivector because

the number of constituent basis states is not a power of two (Corollary II.21-ii).

The work in [20, 38] derives measures of entanglement for general pure bipartite

states based on the alternating tensor product space defined by the wedge product of

two states. Furthermore, Hayashi et al. [23] conclude that the antisymmetric basis

states (the wedge product of basis states) are more entangled than any symmetric

basis states. Therefore, stabilizer bivectors are potential candidates for developing

new entanglement monotones for quantifying quantum resources. In Section 4.4, we

describe how to efficiently compute a generator set for stabilizer bivectors.

77

Theorem III.21. For any n-qubit stabilizer state |ψ〉, there are at least 5(2n − 1)

distinct stabilizer states |φ〉 such that the wedge product |ψ ∧ φ〉 is a stabilizer bivector.

Proof. By Proposition II.15, |ψ〉 |φ〉 and |φ〉 |ψ〉 are both stabilizer states. Consider

two cases.

Case 1: |ψ〉 and |φ〉 are orthogonal. From Lemma III.9 and Corollary III.10 we

know that, if |ψ〉 |φ〉−|φ〉 |ψ〉 is a stabilizer state, the canonical matrices of |ψ〉 and |φ〉

must be similar (Definition II.24). Since each dissimilar matrix (Definition II.24) can

be used to represent 2n states (the number of possible phase-vector permutations) and

|ψ ∧ ψ〉 = 0, there are 2n − 1 such wedge products that produce stabilizer bivectors.

Case 2: |ψ〉 and |φ〉 are 1-neighbors. By Theorem III.11, |ψ〉 = |φ〉+P |φ〉√
2 and

|φ〉 = |ψ〉+P ′|ψ〉√
2 , where P and P ′ are Pauli operators. Therefore,

|ψ ∧ φ〉 =
(
|φ〉+ P |φ〉√

2

)
∧ |φ〉 = (P |φ〉) ∧ |φ〉√

2
(3.13)

Since |φ〉 and P |φ〉 are orthogonal with similar stabilizer matrices (Case 1), |ψ ∧ φ〉 is

a stabilizer bivector (up to a normalizing factor), and there are 4(2n− 1) such wedge

products.

We now show that for k-neighbors |ψ〉 and |φ〉, k > 1, |ψ ∧ φ〉 is not a stabilizer

bivector. Without loss of generality, let |ψ〉 = |0〉 and |φ〉 = ∑2k−1
i=0 αi |bi〉, where the

|bi〉 are computational-basis states.

|ψ ∧ φ〉 = |0〉 ∧
2k−1∑

i=0
αi |bi〉

 =
2k−1∑
i=1
|0 ∧ bi〉 (3.14)

Therefore, |ψ ∧ φ〉 has 2k+1 − 2 computational-basis states, which is not a power of

2 for k > 1. By Corollary II.21-i, |ψ ∧ φ〉 is not a stabilizer bivector for (k > 1)-

neighbors.

Proposition III.22. Given any two n-qubit stabilizer states |ψ〉 and |φ〉, the area of

78

the parallelogram formed by these states is ‖ψ ∧ φ‖ =
√

1− 2−k, 0 ≤ k ≤ n.

Proof. Consider the determinant of the Gramian matrix of the states,

det

∣∣∣∣∣∣∣∣
1 〈ψ|φ〉

〈φ|ψ〉 1

∣∣∣∣∣∣∣∣ = ‖ψ ∧ φ‖2 = 1− |〈ψ|φ〉|2

Thus, by Theorem III.2, ‖ψ ∧ φ‖ =
√

1− 2−k.

3.1.3 Linear dependence of stabilizer states

We now characterize linearly-dependent triplets of stabilizer states and discuss

properties of minimally-dependent sets. Such properties can help in exploring succinct

representations of arbitrary pure states using linear combinations of stabilizer states.

Corollary III.23 (of Theorem III.11). Every linearly-dependent triplet {|s1〉 , |s2〉 , |s3〉}

of stabilizer states that are non-parallel to each other includes two pairs of nearest

neighbors and one pair of orthogonal states. Furthermore, every nearest-neighbor pair

gives rise to a triplet of linearly-dependent stabilizer states with two pairs of nearest

neighbors and one pair of orthogonal states.

Proof. Without loss of generality, assume that |s1〉 = α |s2〉 + β |s3〉 and |s1〉 =

|00 . . . 0〉. Recall from Corollary II.21 that the non-zero amplitudes of a stabilizer

state |s〉 are ±1/
√
|s| or ±i/

√
|s| and its support |s| is a power of two. By our

assumptions, the supports of |s2〉 and |s3〉 cannot differ by more than one.

Case 1: |s2| 6= |s3|. Then one of |s2〉 and |s3〉 has support one, while the other

has support two. Suppose |s2| = 2. By Lemma III.9, |s2〉 = |00...0〉+il|b〉√
2 , where

l ∈ {0, 1, 2, 3} and |b〉 is computational-basis state other than |00 . . . 0〉. Thus, |s1〉

and |s2〉 are nearest neighbors. Since |s3| = 1 and the triplet is linearly dependent,

|s3〉 =
√

2 |s2〉 − |s1〉 = il |b〉. Therefore, |s3〉 is orthogonal to |s1〉 and a nearest

neighbor to |s2〉.

79

Case 2: |s2| = |s3|. At least one of |s2〉 and |s3〉 must have a non-zero amplitude

at |00 . . . 0〉. If only one does, say |s2〉, then |s3〉 will have a non-zero amplitude at

some other basis state where |s2〉 has zero amplitude, preventing |s1〉 = α |s2〉+β |s3〉

from being |00 . . . 0〉. Thus, both |s2〉 and |s3〉 must have a non-zero amplitude at

|00 . . . 0〉 and, more generally, their non-zero amplitudes must all be at the same basis

elements.

As non-zero amplitudes of stabilizer states must be either real or imaginary, we

normalize the global phases of |s2〉 and |s3〉 so that the |00 . . . 0〉 amplitudes are real,

which implies that α and β are real. Using additional multiplication by ±1, we

ensure that α, β > 0. Considering the amplitudes at |00 . . . 0〉, linear dependence

implies ± α√
|s2|
± β√

|s3|
= 1. Furthermore, α, β > 0 and |s2| = |s3| leave three

possibilities: α ± β =
√
|s2| and β − α =

√
|s2|. At any other basis element where

|s2〉 and |s3〉 have non-zero amplitudes, there is the additional constraint that α = β

since these amplitudes must cancel out while α, β > 0. This eliminates two of the

three possibilities above, implying α = 1√
|s2|

, β = 1√
|s2|

and |s2| = |s3| = 2. By

Lemma III.9, |s2〉 and |s3〉 are nearest neighbors of |s1〉 and 〈s2|s3〉 = 0.

Minimally-dependent sets of stabilizer states. Given k > 3, we now consider

sets of k stabilizer states that are linearly dependent, but such that all of their proper

subsets are independent. One such possibility are sets that contain k − 1 mutually

orthogonal stabilizer states and their sum. Consider the computational basis and

a superposition of basis states that is also a stabilizer state. Theorem II.19 and

Corollary II.21 suggest examples of such minimally-dependent sets with k = 2m + 1

stabilizer states. Suppose k = 2m − d and |s〉 is a stabilizer state in a superposition

of all 2m computational-basis states. To construct a minimally-dependent set of size

k, replace 2d+ 2 basis states with d+ 1 stabilizer states formed as half-sums of d+ 1

disjoint pairs of basis states. Note that all stabilizer states except for |s〉 remain

orthogonal and contribute to |s〉.

80

Example III.24. Let |s〉 = 1
2
√

2
∑7
i=0 |bi〉 where each |bi〉 is a computational-basis

state. One can obtain a minimally-dependent set of size k = 5 as {(|b0〉+ |b1〉),

(|b2〉+ |b3〉), (|b4〉+ |b5〉), (|b6〉+ |b7〉), |s〉}, where each state in parentheses is a half-

sum of two basis states.

We close this section by outlining how to test the linear (in)dependence of a

finite set of stabilizer states s = {|s1〉 , . . . , |sk〉}. Recall that the Gramian of s is

a matrix whose entries are given by 〈sj|si〉, and that s is linearly dependent if and

only if the determinant of its Gramian matrix is zero. In Section 4.2, we describe an

inner-product algorithm for stabilizer states. Thus, to test the linear (in)dependence

of s, generate the Gramian matrix by computing pairwise inner products using our

algorithm.3 Then, compute the determinant of the Gramian matrix and compare it

to zero.

3.2 The Embedding of Stabilizer Geometry in Hilbert Space

The geometric structure of stabilizer states described in Section 3.1.1 suggests

an equally-spaced embedding in the finite-dimensional Hilbert space that can be ex-

ploited to study arbitrary quantum states. This is further evidenced by two types of

results. First, the uniform distribution over stabilizer states is close to the uniform dis-

tribution of arbitrary quantum states in terms of their first two moments [16, 42, 48].

Second, the entanglement of stabilizer states is nearly maximal and similar to that of

random states [10, 63].

Consider a linear combination of k stabilizer states Σk
i=1αi |si〉 and the task of

finding a closest stabilizer state:

arg max
|φ〉∈Stab(H)

|Σk
i=1αi〈φ|si〉| (3.15)

3The performance of pairwise computation of inner products between stabilizer states using
techniques in Section 4.2 can be improved by pre-computing and storing a basis normalization
circuit for each state, rather than computing it from scratch for each pair of states.

81

where Stab(H) is the set of stabilizer states in the Hilbert space H. Here, we can

work with any representation of |φ〉 that allows us to compute inner products with

stabilizer states, e.g., a succinct superposition of stabilizer states. The large count

of nearest-neighbor stabilizer states given by Theorem III.14 and the rather uniform

structure of stabilizer geometry (Theorem III.18, Corollary III.12) motivate the use

of local search to compute Formula 3.15. However, it turns out that greedy local

search does not guarantee finding a closest stabilizer state.

3.2.1 Approximating an arbitrary quantum state with one stabilizer state

We analyze a simple greedy local-search algorithm that starts at the stabilizer

state |sm〉 in |ψ〉 = Σk
i=1αi |si〉 with the largest |αi|. At each iteration, this algo-

rithm evaluates the nearest neighbors N(|sm〉) of the current state |sm〉 by computing

max|φ〉∈N(|sm〉) |〈φ|ψ〉|, and then moves to a neighbor that satisfies this metric. The

algorithm stops at a stabilizer state that is closer to |ψ〉 than any of its nearest

neighbors. As an illustration, consider the state

|ψ〉 = (1 + ε) |00〉+ |01〉+ |10〉+ |11〉 (3.16)

Given a sufficiently small ε > 0, the unique closest stabilizer state to |ψ〉 is |00〉 +

|01〉 + |10〉 + |11〉. We start local search at |sm〉 = |00〉 which contributes most to

|ψ〉. By Theorem III.11, all nearest neighbors of |00〉 have the form |00〉+J |ab〉√
2 where

ab ∈ {01, 10, 11} and J ∈ {±1,±i}. Here we maintain global constants, as they

make a difference. We also pick a representative value ab = 01 and note that the

inner product with |ψ〉 is maximized by J = 1. Let |r〉 = (|00〉 + |01〉)/
√

2. When

〈ψ |00〉 = 1 + ε < 〈ψ |r〉 = (2 + ε)/
√

2 (up to the same constant), the algorithm sets

|sm〉 = |r〉. Nearest neighbors of |sm〉 = |00〉+|01〉√
2 are its half-sums with its orthogonal

82

stabilizer states, hence we arrive at |00〉+|01〉+|10〉+|11〉
2 . Consider the n-qubit state

|ψn〉 = (1 + ε) |0 . . . 00〉+ |0 . . . 01〉+ . . .+ |1 . . . 1〉 (3.17)

Its inner products with |0 . . . 00〉 and the full-superposition state (up to the same

constant) are (1 + ε) and (2n + ε)/2n/2, respectively. The full-superposition state will

be closer as long as ε < 2n−2n/2

2n/2−1 = 2n/2. If we start local search at |0 . . . 0〉, it will

terminate there when ε > 2−
√

2√
2−1 =

√
2, regardless of n. Thus, local search stops at a

suboptimal stabilizer state when
√

2 < ε < 2n/2.

Even though constructive approximation by single stabilizer states appears dif-

ficult, it is important to know if good approximations exist. As we show next, the

answer is negative for the more general case of approximating by stabilizer superpo-

sitions.

3.2.2 Approximating arbitrary states with superpositions

of stabilizer states

The geometric structure of stabilizer states also motivates the approximation of

arbitrary n-qubit unbiased states using superpositions of poly(n) stabilizer states. In

particular, some optimism for obtaining quality approximations using small superpo-

sitions is motivated by the count of n-qubit stabilizer states from Equation 2.2 — the

Ω(2n2/2) growth rate can be contrasted with the 2n growth rate of the number of basis

states.

To evaluate the quality of approximation by stabilizer states, we employ the quan-

tities

Υ = lim
n→∞

inf
|ψ〉

max
|s〉∈Sn

〈s|ψ〉 and Υpoly = sup
poly p(n)

lim
n→∞

inf
|ψ〉

sup
|s〉∈Sp(n)

n

〈s|ψ〉 (3.18)

where Sp(n)
n contains superpositions of up to p(n) states from the set of all Sn for a

83

given polynomial p(n). For illustration, replace Sn with a set Bn of 2n orthogonal basis

states. The state |ψ〉 = 1
2n/2 Σ2n−1

k=0 |k〉 minimizes maxs∈Bn〈s|ψ〉 with the value 1
2n/2 .

Because this value approaches zero at an exponential rate, taking polynomial-sized

superpositions of basis states (rather than single basis states) will still produce the

zero limit. Perhaps, this result is not surprising given that max|s1〉6=|s2〉∈Bn〈s1|s2〉 = 0.

However, since max|s1〉6=|s2〉∈Sn〈s1|s2〉 = 1/
√

2, and each stabilizer state |s1〉 ∈ Sn has

2n+2 − 4 nearest neighbors |s2〉 ∈ Sn such that 〈s1|s2〉 = 1/
√

2, one might hope that

Υ = 1/
√

2.

Lemma III.25. Given an n-qubit stabilizer state |s〉 and two qubits q and r, supports

and norms of all non-zero double cofactors |sqr〉 are equal. In particular, since all

supports are powers of two, the number of double cofactors with non-zero support

cannot be three.

Proof. The claim is trivial when only one double cofactor is non-zero. When only two

are non-zero, they may originate from one single-qubit cofactor or from two different

single-qubit cofactors. By Corollary II.21-iv, the supports and norms of cofactors

must be equal. When all four double cofactors are non-zero, Corollary II.21-iv implies

that their support must be one fourth of that of the initial state. Additionally, the

orthogonality of cofactors implies that their norm must be one half of the original

norm. Now we show that the case of exactly three non-zero double cofactors is

impossible. Without the loss of generality, assume that |ψqr=11〉 = 0, but other

cofactors are 6= 0. Then single cofactors must have equal support. Therefore |ψr=1| =

|ψqr=01| = |ψqr=00| + |ψqr=10| = |ψr=0| = 2|ψqr=10|, but also |ψq=1| = |ψqr=10| =

|ψqr=00| + |ψqr=01| = |ψq=0| = 2|ψqr=01|. Thus |ψqr=01| = 4|ψqr=01|, which contradicts

|ψqr=01| 6= 0.

Lemma III.25 is illustrated in Table 2.4 and Appendix A.

Theorem III.26. Υ = Υpoly = 0.

84

Proof. Consider the family of 2n-qubit unbiased states µ2n =
(
|00〉+|01〉+|10〉√

3

)⊗n
, which

are not stabilizer states per Lemma III.25. For an arbitrary stabilizer state |s〉, double

cofactoring over q = 2n− 1 and r = 2n− 2 yields

〈s|µ2n〉 = 〈sqr=00|µ2n
qr=00〉+ 〈sqr=01|µ2n

qr=01〉+ 〈sqr=10|µ2n
qr=10〉 (3.19)

because |µ2n
qr=11〉 = 0. We can upper-bound this expression by over-estimating each

non-zero term with 〈v|w〉 ≤ ||v|| · ||w||. To this end, ||µ2n
qr || = 1√

3 , while the norm of

(orthogonal) double cofactors of |s〉 depends on how many of them are non-zeros —

one, two or four. In these cases, the norms are 1,
√

2
2 and 1

2 , respectively, yielding

upper bounds 〈s|µ2n〉 ≤ α =
√

3
3 ,

√
6

3 and
√

3
2 . Therefore, cumulatively, 〈s|µ2n〉 ≤

√
3

2 .

More accurate bounds can be obtained by rewriting the same three terms using

〈v|w〉 = ||v|| · ||w|| 〈v|w〉
||v|| · ||w||

,

then observing that 〈v00|w00〉 = 〈v|w〉, 〈v01|w01〉 = 〈v|w〉, and 〈v10|w10〉 = 〈v|w〉.

In particular,
√

3|µ2n
qr=00〉,

√
3|µ2n

qr=01〉 and
√

3|µ2n
qr=10〉 can be replaced by |µ2n−2〉,

noting that |µ2n〉 is separable. Then the cofactors of |s〉 can be relaxed to a best-case

(2n− 2)-qubit stabilizer state s′ to obtain

〈s|µ2n〉 ≤
√

3
2 〈s

′|µ2n−2〉 ≤
(√

3
2

)n
(3.20)

Therefore

Υ = lim
n→∞

inf
|ψ〉

max
|s〉∈S2n

〈s|ψ〉 = lim
n→∞

(√
3

2

)n
= 0 (3.21)

For any polynomial p(n),

lim
n→∞

inf
|ψ〉

sup
|s〉∈Sp(n)

2n

〈s|ψ〉 = lim
n→∞

p(n)
(√

3
2

)n
= 0 (3.22)

85

Therefore Υpoly = 0 as well.

Theorem III.26 is somewhat surprising because no n-qubit state can be orthogo-

nal to the set of all stabilizer states, which contains many basis sets. However, they

establish asymptotic orthogonality, which can be viewed as an infinite-dimensional

phenomenon. Such families of states that are asymptotically orthogonal to all stabi-

lizer states can be neither represented nor approximated by polynomial-sized super-

positions of stabilizer states.

Our construction of stabilizer-evading states can be modified to yield other separa-

ble states with similar properties, e.g., µ̄3n =
(
|001〉+|010〉+|100〉√

3

)⊗n
. Superpositions such

as (µ6n+ µ̄6n)/
√

2 offer entangled states that cannot be approximated by polynomial-

sized superpositions of stabilizer states.

The above results along with the results from Section 3.2.1 suggest that there are

wide gaps between stabilizer states. The following proposition quantifies the size of

such gaps.

Proposition III.27. Consider 2n-dimensional balls centered at a point on the unit

sphere that maximizes the number of n-qubit non-stabilizer states in their interior but

do not contain any stabilizer states. The radius of such balls cannot exceed
√

2, but

approaches
√

2 as n→∞.

Proof. Consider an arbitrary ball B with radius
√

2 and centered on the unit sphere

as shown in Figure 3.3. B covers half of the unit sphere. Let |s〉 be a stabilizer

state that does not lie on the boundary of B. Then, either |s〉 or -|s〉 is inside B.

Furthermore, observe that the intersection of the unit sphere and the boundary of B

is contained in a hyperplane of dimension n−1. If all stabilizer states were contained

there, they would not have included a single basis set. However, since stabilizer states

contain the computational basis, they cannot all be contained in that intersection. An

asymptotic lower bound for the radius of B is obtained using the family of stabilizer-

86

1

1

√
2

√
2

Unit sphere
B

Figure 3.3: A ball B with radius
√

2 centered on the unit sphere
covers half of the unit sphere. Every such ball contains at least one
stabilizer state (in most cases, half of all stabilizer states).

evading states defined in Theorem III.26. These states are asymptotically orthogonal

to all n-qubit stabilizer states (n → ∞). Therefore, the distance to their closest

stabilizer state approaches
√

2.

3.3 Summary

The stabilizer formalism facilitates compact representation of stabilizer states and

efficient simulation of stabilizer circuits [2, 33, 34]. Stabilizer states arise in appli-

cations of quantum information processing, and their efficient manipulation via ge-

ometric and linear-algebraic operations may lead to additional insights in quantum

entanglement, quantum error correction and quantum-circuit simulation. Further-

more, stabilizer states are closely related to valence-bond states [65], cluster/graph

states [5, 19, 37], and measurement-based/one-way quantum computation [57]. The

emphasis of our work on the full set of (pure) n-qubit stabilizer states is justified by

the desire to succinctly represent as many quantum states as possible [1]. This is in

contrast to identifying structured representations of more specialized quantum states.

In this chapter, we characterize the nearest-neighbor structure of stabilizer states

and quantify the distribution of angles between pairs of stabilizer states. Specifically,

87

we derive and prove combinatorial formulas for computing the number of k-neighbor

stabilizer states. We use our formulas to characterize the distribution of real-valued

inner products between any stabilizer state and its neighboring stabilizer states. We

prove that each n-qubit stabilizer state |ψ〉 has exactly 4(2n − 1) nearest-neighbor

stabilizer states and that, as a fraction of all stabilizer states, the number of k-

neighbors of |ψ〉 for all k = 0, 1, . . . , n − 4 cumulatively approaches zero as n → ∞.

Therefore, almost all stabilizer states are either orthogonal or nearly orthogonal to

|ψ〉 as n→∞.

We introduce the notion of a stabilizer bivector |ϕ〉, which are 2n-qubit stabilizer

states such that |ϕ〉 ∝ |ψ ∧ φ〉, where |ψ〉 and |φ〉 are n-qubit stabilizer states. We

show that, for any stabilizer state |ψ〉, there are 5(2n − 1) distinct stabilizer states

|φ〉 such that their wedge product is a stabilizer bivector. The stabilizer bivector

obtained from the simple wedge product of k-neighbor states forms a parallelogram

with area equal to
√

1− 2−k.

Although the geometric structure of stabilizer states is fairly uniform [16, 42, 48],

we show that local search is not guaranteed to find the closest stabilizer state to an

arbitrary quantum state. Furthermore, we define a family of unbiased states that

cannot be approximated by polynomial-sized superpositions of stabilizer states, and

prove that the maximal radius of any 2n-dimensional ball centered at a point on the

unit sphere that does not contain any n-qubit stabilizer states cannot exceed
√

2, but

approaches
√

2 as n→∞.

88

CHAPTER IV

Computational Geometry of Stabilizer States

Section 3.2 illustrates how straightforward approaches to several natural geomet-

ric tasks fail despite the fairly uniform geometric structure of stabilizer states. In

this chapter, we focus on more specialized, but no less useful tasks and develop ef-

ficient computation of distances, angles and volumes between stabilizer states. In

Section 4.1, we discuss our algorithm for synthesizing new canonical stabilizer cir-

cuits. In Section 4.2, we turn our attention to the computation of inner products

of stabilizer states and, by extension, their linear combinations. As Gram-Schmidt

orthogonalization cannot be used directly with stabilizer states, we develop an al-

ternative approach in Section 4.3. The efficient computation of generator sets for

stabilizer bivectors is discussed in Section 4.4. We present an empirical evaluation of

our circuit-synthesis and inner-product algorithms in Section 4.6

4.1 Synthesis of Canonical Stabilizer Circuits

A crucial step in the inner-product computation for stabilizer states (Theorem III.2)

is the synthesis of a stabilizer circuit that brings an n-qubit stabilizer state |ψ〉 to a

computational-basis state |b〉, which we represent by the following stabilizer matrix

structure.

Definition IV.1. A stabilizer matrix is in basis form if it has the following structure.

89

±
±
...
±


Z I · · · I
I Z · · · I
...
I I · · · Z



Consider a stabilizer matrixM that uniquely identifies |ψ〉. M is reduced to basis

form (Definition IV.1) by applying a series of elementary row and column operations.

Recall that row operations (transposition and multiplication) do not modify the state,

but column (Clifford) operations do. Thus, the column operations involved in the

reduction process constitute a unitary stabilizer circuit C such that C |ψ〉 = |b〉,

where |b〉 is a basis state. Algorithm 4.1.1 reduces an input matrix M to basis form

and returns such a circuit C.

Canonical forms are useful for synthesizing stabilizer circuits that minimize the

number of gates and qubits required to produce a particular computation. This is

particularly important in the context of quantum fault-tolerant architectures that

are based on stabilizer codes. The work in [2] establishes a 7-block1 canonical-circuit

template with the sequence H-C-P -C-P -C-H. Furthermore, the work in [14] proves

the existence of canonical circuits with the shorter sequence H-C-X-P -CZ, where

the X and CZ blocks consist of NOT and Controlled-Z (CPHASE in Figure 2.2a)

gates, respectively. However, the synthesis algorithm sketched in [14] employs the

Z2-representation for states (Theorem II.19) rather than the stabilizer formalism.

Thus, no detailed algorithms are known for obtaining such canonical circuits given

an arbitrary generator set. Algorithm 4.1.1 takes as input a stabilizer matrixM and

synthesizes a 5-block canonical circuit with template H-C-CZ-P -H (Figure 4.1). We

now describe the main steps in the algorithm. The updates to the phase vector under

row/column operations are left out of the discussion as such updates do not affect

the overall execution of the algorithm.
1Theorem 8 in [2] actually describes an 11-step procedure to obtain such circuits. However, the

last four steps are used to reduce destabilizer rows, which we do not consider here.

90

H CNOT CPHASE P H

|b1〉

|b2〉
|ψ〉

 |b3〉
... ...

|bn〉

Figure 4.1: Template structure for the basis-normalization circuit
synthesized by Algorithm 4.1.1. The input is an arbitrary stabilizer
state |ψ〉 while the output is a basis state |b1b2 . . . bn ∈ {0, 1}n〉.

1. Reduce M to canonical form.

2. Use row transposition to diagonalize M. For j ∈ {1, . . . , n}, if the diagonal

literal Mj,j = Z and there are other Pauli (non-I) literals in the row (qubit is

entangled), conjugate M by Hj. Elements below the diagonal are Z/I literals.

3. For each above-diagonal element Mj,k = X/Y , conjugate by CNOTj,k. Ele-

ments above the diagonal are now I/Z literals.

4. For each above-diagonal elementMj,k = Z, conjugate by CPHASEj,k. Elements

above the diagonal are now I literals.

5. For each diagonal literal Mj,j = Y , conjugate by Pj.

6. For each diagonal literal Mj,j = X, conjugate by Hj.

Proposition IV.2. For an n × n stabilizer matrix M, the number of gates in the

circuit C returned by Algorithm 4.1.1 is O(n2).

Proof. The number of gates in C is dominated by the CPHASE block, which consists

of O(n2) gates. This agrees with previous results regarding the number of gates

needed for an n-qubit stabilizer circuit in the worst case [9, 13].

91

Algorithm 4.1.1 Synthesis of a basis-normalization circuit
Require: Stabilizer matrix M for S(|ψ〉) with rows R1, . . . , Rn
Ensure: (i) Unitary stabilizer circuit C such that C |ψ〉 equals basis state |b〉, and (ii) reduce M

to basis form
⇒ GAUSS(M) reduces M to canonical form (Figure 2.4)
⇒ ROWSWAP(M, i, j) swaps rows Ri and Rj of M
⇒ ROWMULT(M, i, j) left-multiplies rows Ri and Rj , returns updated Ri
⇒ CONJ(M, αj) conjugates jth column of M by Clifford sequence α

1: GAUSS(M) . Set M to canonical form
2: C← ∅
3: for j ∈ {1, . . . , n} do . Apply block of Hadamard gates
4: k ← index of row Rk∈{j,...,n} with jth literal set to X or Y
5: if k exists then
6: ROWSWAP(M, j, k)
7: else
8: k2 ← index of last row Rk2∈{j,...,n} with jth literal set to Z
9: if k2 exists then

10: ROWSWAP(M, j, k2)
11: if Rj has X, Y or Z literals in columns {j + 1, . . . , n} then
12: CONJ(M,Hj)
13: C← C ∪Hj

14: end if
15: end if
16: end if
17: end for
18: for j ∈ {1, . . . , n} do . Apply block of CNOT gates
19: for k ∈ {j + 1, . . . , n} do
20: if kth literal of row Rj is set to X or Y then
21: CONJ(M,CNOTj,k)
22: C← C ∪ CNOTj,k
23: end if
24: end for
25: end for
26: for j ∈ {1, . . . , n} do . Apply a block of Controlled-Z gates
27: for k ∈ {j + 1, . . . , n} do
28: if kth literal of row Rj is set to Z then
29: CONJ(M,CPHASEj,k)
30: C← C ∪ CPHASEj,k
31: end if
32: end for
33: end for
34: for j ∈ {1, . . . , n} do . Apply block of Phase gates
35: if jth literal of row Rj is set to Y then
36: CONJ(M,Pj)
37: C← C ∪ Pj
38: end if
39: end for
40: for j ∈ {1, . . . , n} do . Apply block of Hadamard gates
41: if jth literal of row Rj is set to X then
42: CONJ(M,Hj)
43: C← C ∪Hj

44: end if
45: end for
46: return C

92

Observe that, for each gate added to C, the corresponding column operation is

applied to M. Since column operations run in Θ(n) time, it follows from Proposi-

tion IV.2 that the runtime of Algorithm 4.1.1 is O(n3). Audenaert and Plenio [6]

described an algorithm to compute the fidelity between two mixed stabilizer states.

Similar to our use of basis-normalizing circuits, the approach from [6] relies on a

stabilizer circuit to map a stabilizer state to a normal form where all basis states

have non-zero amplitudes. However, the circuits generated by the Audenaert-Plenio

algorithm exhibit two disadvantages: (i) they are not canonical and (ii) they have,

on average, twice as many gates as our basis-normalization circuits (Section 4.6).

We note that our canonical stabilizer circuits can be optimized using the tech-

niques from [49], which describes how to restructure circuits to facilitate parallel

quantum computation. The authors show that such parallelization is possible for

circuits consisting of H and CNOT gates, and for diagonal operators. Since CPHASE

gates are diagonal, one can apply the techniques from [49] to parallelize our canonical

circuits and produce equivalent circuits with O(n2) gates and parallel depth O(log n).

Canonical stabilizer circuits that follow the 7-block template structure from [2] can be

optimized to obtain a tighter bound on the number of gates. As in our approach, such

circuits are dominated by the size of the CNOT blocks, which contain O(n2) gates.

The work in [54] shows that any CNOT circuit has an equivalent CNOT circuit with

O(n2/ log n) gates. Thus, one simply applies such techniques to each of the CNOT

blocks in the canonical circuit. It is an open problem whether one can apply some

variation of the same techniques to CPHASE blocks, which would facilitate similar

optimizations for our 5-block canonical form.

4.2 An Inner-product Algorithm

Let |ψ〉 and |φ〉 be two stabilizer states represented by stabilizer matrices Mψ

and Mφ, respectively. Our approach for computing the inner product between these

93

two states is shown in Algorithm 4.2.1. Following the proof of Theorem III.2, Al-

gorithm 4.1.1 is applied to Mψ in order to reduce it to basis form. The stabilizer

circuit generated by Algorithm 4.1.1 is then applied to Mφ in order to preserve the

inner product. Then, we minimize the number of X and Y literals inMφ by applying

Algorithm 2.2.1. Lastly, each generator in Mφ that anticommutes with Mψ (since

Mψ is in basis form, we only need to check which generators in Mφ have X or Y

literals) contributes a factor of 1/
√

2 to the inner product. If a generator inMφ, say

Qi, commutes with Mψ, then we check orthogonality by determining whether Qi is

in the stabilizer group generated by Mψ. This is accomplished by multiplying the

appropriate generators in Mψ such that we create Pauli operator R, which has the

same literals as Qi, and check whether R has an opposite sign to Qi. If this is the case,

then, by Theorem III.1, the states are orthogonal. The bottleneck of Algorithm 4.2.1

is the call to Algorithm 4.1.1, and the overall runtime is O(n3). As Section 4.6 shows,

the performance of our algorithm is sensitive to the input stabilizer matrix and takes

O(n2) time in important cases.

Complex-valued inner product. Recall that Algorithm 4.2.1 computes the real-

valued (phase-normalized) inner product r = e−iθ〈ψ|φ〉. To compute the complex-

valued inner product, one needs to additionally calculate e−iθ. This is accomplished

by modifying Algorithm 4.2.1 such that it maintains the global phases generated

when computing C |ψ〉 and C |φ〉, where C is the basis-normalization circuit from Al-

gorithm 4.1.1. Let α and β be the global phases of C |ψ〉 and C |φ〉, respectively. Both

phases can be computed using the process outlined in Section 2.3.3. The complex-

valued inner product is then calculated as α∗ · β · 2−k/2.

94

Algorithm 4.2.1 Inner product for stabilizer states
Require: Stabilizer matrices (i) Mψ for |ψ〉 with rows P1, . . . , Pn, and (ii) Mφ for |φ〉 with rows

Q1, . . . , Qn
Ensure: Inner product between |ψ〉 and |φ〉
⇒ BASISNORMCIRC(Mψ) reduces M to basis form, i.e, C |ψ〉 = |b〉, where |b〉 is a basis state, and

returns C
⇒ CONJ(M,C) conjugates M by Clifford circuit C
⇒ GAUSS(M) reduces M to canonical form (Figure 2.4)
⇒ LEFTMULT(P,Q) left-multiplies Pauli operators P and Q, and returns the updated Q

1: C← BASISNORMCIRC(Mψ) . Apply Algorithm 4.1.1 to Mψ

2: CONJ(Mφ,C) . Compute C |φ〉
3: GAUSS(Mφ) . Set Mφ to canonical form
4: k ← 0
5: for each row Qi ∈Mφ do
6: if Qi contains X or Y literals then
7: k ← k + 1
8: else . Check orthogonality, i.e., Qi /∈ S(|b〉)
9: R← I⊗n

10: for each Z literal in Qi found at position j do
11: R← LEFTMULT(Pj , R)
12: end for
13: if R = −Qi then
14: return 0 . By Theorem III.1
15: end if
16: end if
17: end for
18: return 2−k/2 . By Theorem III.2

4.3 Orthogonalization of Stabilizer States

We now shift our focus to the task of orthogonalizing a linear combination of

stabilizer states |Ψ〉 = ∑N
j=1 cj |ψj〉, where each |ψj〉 is represented by its own stabi-

lizer matrix. To simulate measurements of |Ψ〉, it is helpful to transform the set of

states that define |Ψ〉 into an orthogonal set. Since a linear combination of stabilizer

states is usually not a stabilizer state, Gram-Schmidt orthogonalization cannot be

used directly. Therefore, we develop an orthogonalization procedure that exploits

the nearest-neighbor structure of stabilizer states (Section 3.1.1) and their efficient

manipulation via stabilizers.

Proposition IV.3. Let |ψ〉 be a state represented byMψ, which contains at least one

row with at least one X or Y literal. Then |ψ〉 can be decomposed into a superposition

95

|φ〉+il|ϕ〉√
2 , where |φ〉 and |ϕ〉 are nearest neighbors of |ψ〉 whose matrices are similar to

each other.

Proof. Let Rj be a row inMψ with an X/Y literal in its jth position, and let Zj be a

Pauli operator with a Z literal in its jth position and I everywhere else. Observe that

Rj and Zj anticommute. If any other rows in Mψ anticommute with Zj, multiply

them by Rj to make them commute with Zj. Let Mφ and Mϕ be the matrices

obtained by replacing row Rj in Mψ with Zj and -Zj, respectively. This operation

is equivalent to applying (±Zj)-measurement projectors to |ψ〉 (Section 2.3). Thus,

|φ〉 ≡ (I+Zj)|ψ〉√
2 and |ϕ〉 ≡ (I−Zj)|ψ〉√

2 , such that |〈ψ|φ〉| = |〈ψ|ϕ〉| = 1/
√

2. The matrices

Mφ and Mϕ are similar since Mϕ = Xj(Mφ)X†j (and Mφ = Xj(Mϕ)X†j), where

Xj is a Pauli operator with an X literal in its jth position and I everywhere else.

This implies that the jth qubit in |φ〉 and |ϕ〉 is in the deterministic state |0〉 and |1〉,

respectively. (|φ〉 and |ϕ〉 are cofactors of |ψ〉 with respect to qubit j.) To produce
|φ〉+il|ϕ〉√

2 , we need the il factor, which is not maintained by the stabilizer Mϕ. This

factor can be obtained by the same global-phase computation procedure described in

Section 4.2 in the context of complex-valued inner products.

Algorithm 4.3.1 takes as input a linear combination of n-qubit states |Ψ〉 rep-

resented by a pair consisting of: (i) a list of canonical stabilizer matrices M =

{M1, . . . ,MN} and (ii) a list of coefficients c = {c1, . . . , cN}. The algorithm itera-

tively applies the decomposition procedure described in the proof of Proposition IV.3

until all the matrices in M are similar (Definition II.24) to each other. At each iter-

ation, the algorithm selects a pivot qubit based on the composition of Pauli literals

in the corresponding column. The states in the linear combination are decomposed

with respect to the pivot only if there exists a pair of matrices in M that contain

different types of Pauli literals in the pivot column. Since similar matrices contain

distinct phase vectors, the states represented by the modified list of matrices are mu-

tually orthogonal (Theorem III.1). The algorithm maintains the invariant that the

96

sum of stabilizer states (represented by the pair M and c) equals the (non-stabilizer)

vector |Ψ〉. Observe that, for each pivot qubit that satisfies b = 1, the size of M

doubles. Let m be the maximum value in {m1, . . . ,mN}, where mj is the number of

rows with X/Y literals in matrix Mj. An orthogonalization approach that obtains

|Ψ〉 in the computational basis (i.e., calculating computational-basis amplitudes of

each |ψj〉 and summing them with weights cj) requires exactly 2m terms. In contrast,

Algorithm 4.3.1 expands M to 2k terms, where k ≤ m. In particular, if the matrices

in M are “close” to similar (Definition II.24), then k < m and thus Algorithm 4.3.1

provides an advantage over direct computation of basis amplitudes.

Example IV.4. Let M = {M1,M2}, where M1 and M2 are n-qubit matrices.

Suppose M1 has X literals along its diagonal and I literals everywhere else. Simi-

larly, assumeM2 follows the same diagonal structure, but replaces an X at diagonal

position p with Y . Algorithm 4.3.1 decomposes both matrices over the selected pivot

qubit p using Proposition IV.3, which yields a list of two similar matrices. In con-

trast, calculating the basis amplitudes of the states represented byM1 andM2 would

require summing over 2n terms.

4.4 Computation of Stabilizer Bivectors

In Section 3.1.2, we defined the notion of a stabilizer bivector, which can be used

to represent antisymmetric basis states [23] compactly on conventional computers.

We now describe an algorithm to efficiently compute a generator set for stabilizer

bivectors.

Let |ψ〉 and |φ〉 be two stabilizer states represented by matrices Mψ and Mφ,

respectively. Algorithm 4.4.1 shows our approach to computing the stabilizer bivector

|ψ ∧ φ〉. First, we compute 〈ψ|φ〉 and obtain the canonical matrices for Mψ and

Mφ. This allows us to determine whether the conditions established by the proof

97

Algorithm 4.3.1 Orthogonalization procedure for linear combinations of stabilizer
states
Require: Linear combination of n-qubit states |Ψ〉 =

∑N
j=1 cj |ψj〉 represented by (i) a list of

canonical stabilizer matrices M = {M1, . . . ,MN} and (ii) a list of coefficients c = {c1, . . . , cN}
Ensure: Modified lists M′ and c′ representing a linear combination of mutually orthogonal states
⇒ PAULI(M, j) returns 0 if jth column in M has Z literals only (ignores I literals), 1 if it has X

literals only, 2 if it has Y literals only, 3 if it has X/Z literals only, 4 if it has Y/Z literals only
⇒ REMOVE(M, c, j) removes the jth element in M and c
⇒ INSERT(M, c,M, c) appends M to M and c to c if an equivalent matrix does not exist in M;

otherwise, sets cj = cj + c, where cj is the coefficient of the matrix in M equivalent to M
⇒ DECOMPOSE(M, j, a ∈ {0, 1}) implements the proof of Proposition IV.3 and returns the pair

[Mj=a, α], whereMj=a is the nearest-neighbor canonical matrix with the jth qubit in state |a〉,
and α is the phase factor

1: for j ∈ {1, . . . , n} do
2: b← 0
3: l← PAULI(M1, j)
4: for each Mi, i ∈ {2, . . . , N} do
5: k ← PAULI(Mi, j)
6: if k 6= l or the rows with Pauli literals in the jth column are distinct then
7: b← 1
8: break
9: end if

10: end for
11: if b = 1 then
12: for each Mi, i ∈ {1, . . . , N} do
13: if PAULI(Mi, j) 6= 0 then
14: [Mi

j=0, α]← DECOMPOSE(Mi, j, 0)
15: [Mi

j=1, β]← DECOMPOSE(Mi, j, 1)
16: REMOVE(M, c, i)
17: INSERT(M, c,Mi

j=0, α/
√

2)
18: INSERT(M, c,Mi

j=1, β/
√

2)
19: end if
20: end for
21: end if
22: end for

of Theorem III.21 are satisfied. In the case that |ψ〉 and |φ〉 are 1-neighbors, we

modify the dissimilar matrices as per the proof of Theorem III.21. This ensures that

the input matrices are similar before computing the matrices for the tensor products

|ψ ⊗ φ〉 and |φ⊗ ψ〉.

Example IV.5. Suppose Mψ = {ZI, IZ} and Mφ = {XI, IZ}, which represent

a nearest-neighbor pair. Following Equation 3.13, we replace Mφ with X1MψX†1 =

{−ZI, IZ} (orMψ with X1MφX†1 = {−XI, IZ}) to make the input matrices similar.

98

The last step is to compute the difference |ψ ⊗ φ〉 − |φ⊗ ψ〉 as follows:

1. Obtain the basis-normalization circuit C for both Mψ⊗φ and Mφ⊗ψ. Observe

that its the same circuit since the matrices are similar.

2. Conjugate both matrices by C to obtain the matrices for computational-basis

states |b1〉 and |b2〉.

3. Following the proof of Lemma III.9, obtain the matrix Mb1−b2 for the sum

|b1〉 − |b2〉.

4. Conjugate Mb1−b2 by C† to obtain the matrix Mψ∧φ.

Proposition IV.6. Let |ψ〉 and |φ〉 be two n-qubit stabilizer states. The 2n-qubit

stabilizer bivector |ψ ∧ φ〉 can be computed in O(n3) time.

Algorithm 4.4.1 Computation of stabilizer bivectors
Require: Stabilizer matrices Mψ and Mφ representing |ψ〉 and |φ〉, respectively
Ensure: Stabilizer matrix Mψ∧φ for bivector |ψ ∧ φ〉, if it exists
⇒ BASISNORMCIRC(Mψ) returns circuit C such that C |ψ〉 = |b〉, where |b〉 is a basis state
⇒ CONJ(M,C) conjugates M by Clifford or Pauli operator C and returns the modified matrix
⇒ GAUSS(M) reduces M to canonical form
⇒ TENSOR(Mψ,Mφ) computes |ψ〉⊗|φ〉 and returns the resulting matrixMψ⊗φ (Proposition II.15)
⇒ INPROD(Mψ,Mφ) computes and returns 〈ψ|φ〉
⇒ SUM(Mb1 ,Mb2) computes |b1〉 − |b2〉 and returns the resulting matrix Mb1−b2

1: α← INPROD(Mψ,Mφ) . Apply Algorithm 4.2.1
2: GAUSS(Mψ) . Set Mψ to canonical form
3: GAUSS(Mφ) . Set Mφ to canonical form
4: if (α = 0 and Mψ dissimilar from Mφ) or (α = 1) or (0 < α < 1/

√
2) then

5: exit . By Theorem III.21
6: end if
7: if Mψ dissimilar from Mφ then . 1-neighbor case from Theorem III.21
8: Mφ ← CONJ(Mψ, P) .Mφ now represents P |ψ〉, where P is a Pauli operator
9: end if

10: Mψ⊗φ ← TENSOR(Mψ,Mφ)
11: Mφ⊗ψ ← TENSOR(Mφ,Mψ)
12: C← BASISNORMCIRC(Mψ⊗φ) . Obtains basis-normalization circuit
13: Mb1 ← CONJ(Mψ⊗φ,C) . Maps Mψ⊗φ to basis state |b1〉
14: Mb2 ← CONJ(Mφ⊗ψ,C) . Maps Mφ⊗ψ to basis state |b2〉
15: Mb1−b2 ← SUM(Mb1 ,Mb2) . Obtains matrix for |b1〉 − |b2〉 (proof of Lemma III.9)
16: Mψ∧φ ← CONJ(Mb1−b2 ,C†)
17: return Mψ∧φ

99

Proof. The bottleneck in Algorithm 4.4.1 is the computation of the basis-normalization

circuit for the 2n× 2n stabilizer matrix Mψ⊗φ, which takes O(n3) time.

4.5 Applications of Geometric Algorithms

In this section, we describe additional applications for several of our algorithms.

First, we describe how Gaussian elimination facilitates representation and manipu-

lation of mixed states using the stabilizer formalism. Second, we explain how our

circuit-synthesis algorithm can be used to simulate and analyze strongly correlated

quantum many-body systems.

4.5.1 Mixed stabilizer states

The work in [2] describes mixed stabilizer states, which form uniform distributions

over all k-qubit states in the subspace generated by an n-qubit stabilizer matrix with

k < n. Recall from Lemma I.10-iii that the projection onto the +1 eigenspace of

Pauli operator Q is given by (I +Q)/2. Therefore, the density matrix of an n-qubit

state with stabilizer matrix M = {Q1, Q2, . . . , Qn} can be written as,

ρ = 1
2n (I +Q1)(I +Q2) · · · (I +Qn) (4.1)

Expanding Equation 4.1 yields a uniform sum of density-matrix terms. Since k-qubit

mixed stabilizer states can be written as the partial trace of a pure n-qubit state, they

can be represented compactly using stabilizer matrices. Recall from Theorem II.3

that the set of Pauli operators (rows) in a stabilizer matrix that represents a pure

state are linearly independent. In contrast, to represent mixed stabilizer states, one

needs to maintain stabilizer matrices with linearly-dependent rows [2, 6]. This implies

that a subset of the rows in the matrix can be reduced to the identity operator. Since

Algorithm 2.2.1 reduces a stabilizer matrix to its Gauss-Jordan form, it can be used

100

to find and eliminate linearly-dependent rows. Such rows will show up as I-literal

only rows at the bottom of the matrix after Algorithm 2.2.1 is applied. Similarly,

Algorithms 4.1.1 and 4.2.1, generalize to the case of mixed stabilizer states since

one can identify linearly-dependent rows via Algorithm 2.2.1 and then ignore them

throughout the rest of the computation. Therefore, if the input matrices represent

mixed states, Algorithm 4.2.1 computes the fidelity between them.

As outlined in [2] and proven in [6], one can also compute the partial trace over

qubit j as follows: (i) apply a modified version of Algorithm 2.2.1 such that the jth

column of the stabilizer matrix has at most one X/Y literal (if X/Y literals exist in

the column) and one Z literal (if Z literals exist in the column), and (ii) remove the

rows and columns containing such literals. The resulting stabilizer matrix represents

the reduced mixed state.

4.5.2 Simulation of quantum systems

Verstraete et al. [66] describe how to construct finite-depth quantum circuits that

allow one to simulate strongly correlated quantum many-body systems. Such circuits

diagonalize or disentangle the Hamiltonian that describes the dynamics of the physical

system under simulation. Disentanglement circuits convert the whole Hamiltonian

into one corresponding to non-interacting particles (i.e., it yields the steady-state

solution of the corresponding Schrödinger equation), and thus allow us to gain a

better understanding of such systems. In particular, the Hamiltonian of a stabilizer

state can be written as a sum of Pauli-generator terms. Thus, it can be derived

directly from the stabilizer matrix that represents the state. We note that Algorithm

4.1.1 can be used to construct diagonalization circuits for such Hamiltonians because

it disentangles a stabilizer state by reducing its stabilizer matrix to basis form.

101

4.6 Empirical Studies

Our circuit-synthesis (Section 4.1) and inner-product (Section 4.2) algorithms hold

potential to be used in several practical applications including quantum error cor-

rection, quantum-circuit simulation, and the computation of geometric measures of

entanglement. Therefore, we implemented these algorithms in C++ and empirically

validated their performance. Recall that the runtime of Algorithm 4.1.1 is dominated

by the two nested for-loops (lines 20-35). The number of times these loops execute

depends on the amount of entanglement in the input stabilizer state. In turn, the

number of entangled qubits depends on the the number of CNOT gates in the circuit

C used to generate the stabilizer state C |0⊗n〉 (Theorem II.11). By a simple heuristic

argument [2], one generates highly entangled stabilizer states as long as the number

of CNOT gates in C is proportional to n log2 n. Therefore, we generated random

n-qubit stabilizer circuits for n ∈ {20, 40, . . . , 500} as follows: fix a parameter β > 0;

then choose βdn log2 ne unitary gates (CNOT, Phase or Hadamard) each with prob-

ability 1/3. Then, each random C is applied to the |00 . . . 0〉 basis state to generate

random stabilizer matrices (states). The use of randomly generated benchmarks is

justified for our experiments because (i) our algorithms are not explicitly sensitive to

circuit topology and (ii) random stabilizer circuits are considered representative [21].

Both our inner-product and exterior-product algorithms exhibited similar asymptotic

runtime behavior since the bottleneck in both algorithms is the execution of Algo-

rithm 4.1.1. Therefore, for conciseness, we present experimental results only for our

inner-product algorithm. For each n, we applied Algorithm 4.2.1 to pairs of random

stabilizer matrices and measured the number of seconds needed to compute the inner

product. The entire procedure was repeated for increasing degrees of entanglement by

ranging β from 0.6 to 1.2 in increments of 0.1. Our results are shown in Figure 4.2a.

The runtime of Algorithm 4.2.1 appears to grow quadratically in n when β = 0.6.

However, when we double the number of unitary gates (β = 1.2), the runtime exhibits

102

Av
g.

ru
nt

im
e

(s
ec

s)

 0

 5

 10

 15

 20

 100 150 200 250 300 350 400 450 500

0.6

0.7

0.8
0.9

1.0

β = 1.2

1.1

Av
g.

ci
rc

ui
t

siz
e

10K

20K

30K

40K

50K

 50 100 150 200 250 300 350 400 450 500

0.6

0.7

0.8

0.9

1.0

1.1

β = 1.2

Number of qubits Number of qubits
(a) (b)

Figure 4.2: (a) Average runtime for Algorithm 4.2.1 to compute
the inner product between two random n-qubit stabilizer states.
The stabilizer matrices that represent the input states are generated
by applying βn log2 n unitary stabilizer gates to |0⊗n〉. (b) Average
number of gates in the circuits produced by Algorithm 4.1.1.

Av
g.

ru
nt

im
e

(m
ill

ise
cs

)

 0

 20

 40

 60

 80

 100

 100 150 200 250 300 350 400 450 500

0.6

0.7
0.8

0.9

1.0

β = 1.2〈00...0|φ〉

1.1

Av
g.

ru
nt

im
e

(s
ec

s)

 0

 0.5

1.0

 1.5

 100 150 200 250 300 350 400 450 500

0.6

0.9
1.0

β = 1.2

|φ=0...0〉

〈GHZ|φ〉

0.7

0.8

1.1

Number of qubits Number of qubits
(a) (b)

Figure 4.3: Average runtime for Algorithm 4.2.1 to compute the
inner product between (a) |0⊗n〉 and random stabilizer state |φ〉 and
(b) the n-qubit GHZ state and random stabilizer state |φ〉.

cubic growth. Therefore, Figure 4.2a shows that the performance of Algorithm 4.2.1

is highly dependent on the degree of entanglement in the input stabilizer states.

Figure 4.2b shows the average size of the basis-normalization circuit returned by

the calls to Algorithm 4.1.1. As expected (Proposition IV.2), the size of the circuit

grows quadratically in n. Figure 4.3 shows the average runtime for Algorithm 4.2.1

to compute the inner product between: (i) the all-zeros basis state and random n-

103

qubit stabilizer states, and (ii) the n-qubit GHZ state and random stabilizer states.

GHZ states are maximally entangled states of the form |GHZ〉 = |0
⊗n〉+|1⊗n〉√

2 that

have been realized experimentally using several quantum technologies and are often

encountered in practical applications such as error-correcting codes and fault-tolerant

architectures. Figure 4.3 shows that, for such practical instances, Algorithm 4.2.1

computes the inner product in roughly O(n2) time (e.g., 〈GHZ|0〉). However, without

apriori information about the input stabilizer matrices (e.g., a measure of the amount

of the entanglement), one can only say that the performance of Algorithm 4.2.1 will

be somewhere between quadratic and cubic in n. We compared Algorithm 4.1.1 to

the circuit synthesis approach developed by Audenaert and Plenio (AP) [6] as part

of their inner-product algorithm. The benchmark consists of randomly generated

n-qubit stabilizer circuits with n log n unitary gates. Figure 4.4 shows that the AP

algorithm produces (non-canonical) circuits with more than twice as many gates as

our canonical circuits and takes roughly twice as long to produce them.

Av
g.

ru
nt

im
e

(s
ec

s)

1.0

2.0

3.0

20 80 140 200 260 320 380 440 500

1

2

3

Algorithm-4.1.1

Audenaert-Plenio

Audenaert-Plenio:Algorithm-4.1.1

R
at

io

Av
g.

ci
rc

ui
t

siz
e

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

20 80 140 200 260 320 380 440 500

1

2

3

Algorithm-4.1.1

Audenaert-Plenio

Audenaert-Plenio:Algorithm-4.1.1

R
at

io

Number of qubits Number of qubits
(a) (b)

Figure 4.4: (a) Runtime and (b) circuit-size comparisons between
Algorithm 4.1.1 and the circuit synthesis portion of the Audenaert-
Plenio inner-product algorithm. On average, Algorithm 4.1.1 runs
roughly twice as fast and produces canonical circuits that contain
less than half as many gates. Furthermore, the Audenaert-Plenio
circuits are not canonical.

104

4.7 Summary

In this chapter, we study algorithms for: (i) computing the inner product between

stabilizer states, (ii) orthogonalizing a set of stabilizer states, and (iii) computing

stabilizer bivectors. A crucial step of our inner-product algorithm is the synthesis

of a circuit that transforms a stabilizer state into a computational-basis state. Our

algorithm synthesizes such circuits using a 5-block canonical template structure using

O(n2) stabilizer gates. Such canonical circuits play a key role in quantum fault-

tolerant architectures since they minimize the number of gates required to initialize

error-correcting codes. Our technique produces circuits with half as many gates as the

approach from [6] using a block sequence that is shorter than the approach from [2].

Furthermore, we describe how our circuit-synthesis algorithm can be used to obtain

diagonalization circuits for the Hamiltonian of a stabilizer state. We analyze the

performance of our inner-product algorithm and show that, although its runtime is

O(n3), it can take quadratic time in practice.

105

CHAPTER V

Engineering Stabilizer-based Simulation

of Generic Quantum Circuits

As noted in Chapter II, the stabilizer gates by themselves do not form a universal

set for quantum computation [2, 51]. However, the Hadamard and Toffoli gates do [4].

To simulate Toffoli and other non-stabilizer gates, we extend the formalism to include

the representation of arbitrary quantum states as superpositions of stabilizer states.

Example V.1. Recall from Section 2.2.2 that computational-basis states are stabi-

lizer states. Thus, any one-qubit state |ψ〉 = α0 |0〉 + α1 |1〉 is a superposition of the

stabilizer states |0〉 and |1〉. In general, any state decomposition in a computational

basis is a stabilizer superposition.

Suppose |ψ〉 in Example V.1 is unbiased, i.e., |α0|2 = |α1|2, then |ψ〉 can be

represented using a single stabilizer state instead of two (up to a global phase). The

key idea behind our technique is to identify and compress large unbiased superpositions

on the fly during simulation to reduce resource requirements.

5.1 Stabilizer Frames

Recall from Theorem I.14 that the Pauli operators form an orthonormal basis

for linear operators and thus any unitary operator U has a unique Pauli expansion

106

(Proposition I.16). Consider the non-stabilizer gate U with Pauli expansion fp(U) =∑
i αiPi (Definition I.17). The action of U on the n-qubit stabilizer state |ψ〉 can be

described by a superposition of states,

U |ψ〉 =
∑
i

αiPi |ψ〉 =
∑
i

αi |φi〉

Since each state |φi〉 in the superposition is a stabilizer state, we can represent

U |ψ〉 using a list of stabilizer matrices. Let the stabilizer matrix for |ψ〉 be M =

{R1, . . . , Rn}, where Ri are the rows of the matrix. To compute each element of the

list for U |ψ〉, we conjugate the rows of M by Pi as follows.

UMU † =
∑
i

αi{PiR1P
†
i , . . . , PiRnP

†
i } (5.1)

For any pair of Pauli operators P and Q, PQP † = (−1)cQ, where c = 0 if P and Q

commute, and c = 1 otherwise. Therefore, Equation 5.1 can be represented by a list

of similar stabilizer matrices (Definition II.24).

Definition V.2. An n-qubit stabilizer frame F is a set of k ≤ 2n stabilizer states

{|ψj〉}kj=1 that forms an orthogonal subspace basis in the Hilbert space. We represent

F by a pair consisting of (i) a stabilizer matrix M and (ii) a set of distinct phase

vectors {σj}kj=1, where σj ∈ {±1}n. We use Mσj to denote the ordered assignment

of the elements in σj as the (±1)-phases of the rows in M. Therefore, state |ψj〉 is

represented by Mσj . The size of the frame, which we denote by |F|, is equal to k.

Each phase vector σj can be viewed as a binary (0-1) encoding of the integer

index that denotes the respective basis vector. Thus, when dealing with 64 qubits

of less, a phase vector can be compactly represented by a 64-bit integer (modern

CPUs also support 128-bit integers). To represent an arbitrary state |Ψ〉 using F ,

one additionally maintains a vector of complex amplitudes a = (a1, . . . , ak), which

107

corresponds to the decomposition of |Ψ〉 in the basis {|ψj〉}kj=1 defined by F , i.e.,

|Ψ〉 = ∑k
j=1 aj |ψj〉 and ∑k

j=1 |aj|2 = 1. Observe that each aj forms a pair with phase

vector σj in F since |ψj〉 ≡ Mσj . Any stabilizer state can be viewed as a one-element

frame.

Example V.3. Let |Ψ〉 = a1(|00〉+|01〉)+a2(|10〉+|11〉). Then |Ψ〉 can be represented

by the stabilizer frame F depicted in Figure 5.1.

5.1.1 Frame Operations

We now describe several frame operations that are useful for manipulating stabilizer-

state superpositions.

ROTATE(F , U). Consider the stabilizer basis {|ψj〉}kj=1 defined by frame F . A stabilizer

or Pauli gate U acting on F maps such a basis to {U |ψj〉 = eiθj |ϕj〉}kj=1, where eiθj

is the global phase of stabilizer state |ϕj〉. Since we obtain a new stabilizer basis

that spans the same subspace, this operation effectively rotates the stabilizer frame.

Computationally, we perform a frame rotation as follows. First, update the stabilizer

matrix associated with F as per Section 2.2.2. Then, iterate over the phase vectors

in F and update each one accordingly (Table 2.1). Let a = (a1, . . . , ak) ∈ Ck be the

Figure 5.1: Example of a stabilizer frame that represents |ψ〉.
Observe that while |ψ〉 is composed of four computational-basis am-
plitudes, its frame representation has only two phase vectors. For
|a1|2 = |a2|2, one can manipulate F to reduce its size. We discuss
this technique in Section 5.1.2.

108

decomposition of |Ψ〉 onto F . Frame rotation simulates the action of stabilizer gate

U on |Ψ〉 since,

U |Ψ〉 =
k∑
j=1

ajU |ψj〉 =
k∑
j=1

aje
iθj |ϕj〉 (5.2)

Observe that the global phase eiθj of each |ϕj〉 becomes relative with respect to U |Ψ〉.

Therefore, our approach requires that we compute such phases explicitly using the

approach outlined in Section 2.3.3 in order to maintain a consistent representation.

Recall from Section 2.3.3 that global-phase computation requires sampling of

computational-basis amplitudes from the stabilizer matrixM. By Observation II.17,

M needs to be in row-echelon form (Figure 2.4) to perform such sampling. Thus,

simulating gates with global-phase maintenance would take O(n3|F|) time for n-qubit

stabilizer frames. To improve this, we introduce a simulation invariant.

Invariant V.4. The stabilizer matrix M associated with F remains in row-echelon

form during simulation.

Since stabilizer gates affect at most two columns of M, Invariant V.4 can be

repaired with O(n) row multiplications. Since each row multiplication takes Θ(n),

the runtime required to update M during global-phase maintenance simulation is

O(n2). Therefore, for an n-qubit stabilizer frame, the overall runtime for simulating

a single stabilizer gate is O(n2 + n|F|) since one can memoize the updates to M

required to compute each aj. Another advantage of maintaining this invariant is that

the outcome of deterministic measurements (Section 2.2.2) can be decided in time

linear in n since it eliminates the need to perform Gaussian elimination.

COFACTOR(F , c). This operation facilitates measurement of stabilizer-state superpo-

sitions and simulation of non-stabilizer gates using frames. (Recall from Section 1.3

that post-measurement states are also called cofactors.) Here, c ∈ {1, 2, . . . , n} is the

cofactor index. Let {|ψj〉}kj=1 be the stabilizer basis defined by F . Frame cofactoring

109

maps such a basis to {
∣∣∣ψc=0
j

〉
,
∣∣∣ψc=1
j

〉
}kj=1. Observe that, after a frame is cofactored,

its size either remains the same (qubit c was in a deterministic state and thus one

of its cofactors is empty) or doubles (qubit c was in a superposition state and thus

both cofactors are non-empty). We now describe the steps required to cofactor F .

Suppose qubit c is in a deterministic case. SinceM is maintained in row-echelon form

(Invariant V.4) no frame updates are necessary. In the randomized-outcome case, we

apply the measurement algorithm described in Section 2.2.2 to M while forcing the

outcome to x ∈ {0, 1} in order to generate the |x〉-cofactor. This is done twice –

once for each cofactor, and the row operations performed on M are memoized each

time. We then iterate over each phase vector in F and permute its elements according

to the memoized operations, and generate additional phase vectors corresponding to

the cofactor states. As in the case of frame rotation, this operation is linear in the

number of phase vectors and quadratic in the number of qubits. However, by the

end of the operation, the number of phase vectors (states) in F will have grown by a

(worst case) factor of two. Furthermore, any state |Ψ〉 represented by F is invariant

under frame cofactoring.

5.1.2 Frame-based Simulation of Quantum Circuits

Let F be the stabilizer frame used to represent the n-qubit state |Ψ〉. Following

our discussion in Section 5.1, any stabilizer or Pauli gate can be simulated directly

via frame rotation. Suppose we want to simulate the action of TOFc1c2t, where c1 and

c2 are the control qubits, and t is the target. First, we decompose |Ψ〉 into all four

of its double cofactors (Section 1.3) over the control qubits to obtain the following

equal superposition of orthogonal states:

|Ψ〉 = |Ψ
c1c2=00〉+ |Ψc1c2=01〉+ |Ψc1c2=10〉+ |Ψc1c2=11〉

2

110

Then, we compute the action of the Toffoli as,

TOFc1c2t |Ψ〉 = |Ψ
c1c2=00〉+ |Ψc1c2=01〉+ |Ψc1c2=10〉+Xt |Ψc1c2=11〉

2 (5.3)

where Xt is the Pauli gate (NOT) acting on target t. We simulate Equation 5.3 with

the following frame operations. (An example of the process is depicted in Figure 5.2.)

Algorithm 5.1.1 Frame-based simulation of the Toffoli gate
1) COFACTOR(F , c1).
2) COFACTOR(F , c2).
3) Let Zj be the Pauli operator with a Z literal in its jth position and I everywhere
else. Due to Steps 1 and 2, the matrix M associated with F must have two rows of
the form Zc1 and Zc2 . Let u and v be the indices of such rows, respectively. For each
phase vector σj∈{1,...,|F|}, if the u and v elements of σj are both -1 (i.e., if the phase
vector corresponds to the

∣∣Ψc1c2=11〉 cofactor), flip the value of element t in σj (apply
Xt to this cofactor).

Controlled-phase gates R(α)ct can also be simulated using stabilizer frames. This

gate applies a phase-shift factor of eiα if both the control qubit c and target qubit t

Figure 5.2: Simulation of TOFc1c2t |Ψ〉 using a stabilizer-state
superposition (Equation 5.3). Here, c1 = 1, c1 = 2 and t = 3.
Amplitudes are omitted for clarity and the (±)-phase vectors are
shown as columns prefixed to their corresponding matrices. The X
gate is applied to the third qubit of the |Ψc1c2=11〉 cofactor.

111

are set. Thus, we compute the action of R(α)ct as,

R(α)ct |Ψ〉 = |Ψ
ct=00〉+ |Ψct=01〉+ |Ψct=10〉+ eiα |Ψct=11〉

2 (5.4)

Equation 5.4 can be simulated via frame-based simulation using a similar approach

as discussed for TOF gates. Let (a1, . . . , a|F|) be the decomposition of |Ψ〉 onto F .

First, cofactor F over the c and t qubits. Then, for any phase vector σj∈{1,...,|F|}

that corresponds to the |Ψct=11〉 cofactor, set aj = aje
iα. Observe that, in contrast to

TOF gates, controlled-R(α) gates produce biased superpositions. The Hadamard and

controlled-R(α) gates are used to implement the quantum Fourier transform circuit,

which plays a key role in Shor’s factoring algorithm.

Prior work on simulation of non-stabilizer gates using the stabilizer formalism and

related “beyond stabilizer” techniques can be found in [2]. The authors represent the

resulting non-stabilizer state as a sum of density-matrix terms. Let ρ be an n-qubit

stabilizer state whose stabilizer is generated by {Q1, Q2, . . . , Qn}. Then,

ρ = 1
2n (I +Q1)(I +Q2) · · · (I +Qn) (5.5)

If a stabilizer operation is performed, we keep track of ρ using the tableau technique.

Consider a non-stabilizer gate U = ∑
i αiPi,

UρU † = 1
2n

(∑
i

αiPi

)∏
j

(I +Qj)
(∑

k

α∗kPk

)

= 1
2n
∑
i,k

αiα
∗
kPiPk

∏
j

(
I + (−1)Qj ·PkQj

)
(5.6)

where Qj · Pk is the symplectic inner product (Equation 2.16), which is 0 when Qj

and Pk commute and 1 otherwise. Simplifying Equation 5.6 yields a sum of at most

42d terms, where d is the number of qubits that U acts on. Each term is described

by a Pauli operator (PiPk) and a vector of eigenvalues for the stabilizer. Applying

112

a stabilizer gate to Equation 5.6 maps the Pauli operators in the sum of terms into

other Pauli operators. If another non-stabilizer gate is applied, each term in Equation

5.6 is expanded in the same manner according to the Pauli expansion of the gate.

Thus, after m non-stabilizer operations, the number of terms is at most 42md. In

contrast, the number of states in our technique is O(2m) although we do not handle

density matrices and perform more sophisticated bookkeeping.

5.1.3 Frame measurements

Since the states in F are orthogonal, the outcome probability when measuring F

is calculated as the sum of the normalized outcome probabilities of each state. The

normalization is with respect to the superposition amplitudes stored in a (Exam-

ple V.3). Thus, the overall measurement outcome may have a non-uniform distribu-

tion. Formally, let |Ψ〉 = ∑
i ai |ψi〉 be the superposition of states represented by F ,

the probability of observing outcome x ∈ {0, 1} upon measuring qubit m is,

p(x)Ψ =
k∑
i=1
|ai|2 〈ψi|Pm

x |ψi〉 =
k∑
i=1
|ai|2p(x)ψi

where Pm
x denotes the measurement operator in the computational basis x as dis-

cussed in Section 1.3. The outcome probability for each stabilizer state p(x)ψi is

computed as outlined in Section 2.2.2. Once we compute p(x)Ψ, we flip a (possibly

biased) coin to decide the outcome and cofactor the frame such that only the states

that are consistent with the measurement remain in the frame.

5.2 Multiframe Simulation

Although a single frame is sufficient to represent a stabilizer-state superposition

|Ψ〉, one can sometimes tame the exponential growth of states in |Ψ〉 by constructing

a multiframe representation. Such a representation cuts down the total number of

113

states required to represent |Ψ〉 by at least a half, thus improving the scalability of

our technique. Our experiments in Section 5.3 show that, when simulating certain

instances of ripple-carry adders, the number of states in |Ψ〉 grows linearly when

multiframes are used but exponentially when a single frame is used. To this end, we

introduce an additional frame operation.

COALESCE(F). One derives a multiframe representation directly from a single frame

F by examining the set of phase vectors and identifying candidate pairs that can be

coalesced into a single phase vector associated with a different stabilizer matrix. Since

we maintain the stabilizer matrixM of a frame in row-echelon form (Invariant V.4),

examining the phases corresponding to Zk-rows (Z-literal in kth column and I’s in all

other columns) allows us to identify the columns in M that need to be modified in

order to coalesce candidate pairs. More generally, suppose 〈σr, σj〉 is a pair of phase

vectors from the same n-qubit frame. Then 〈σr, σj〉 is considered a candidate iff it has

the following properties: (i) σr and σj are equal up to m ≤ n entries corresponding

to Zk-rows (where k is the qubit the row stabilizes), and (ii) ar = idaj for some

d ∈ {0, 1, 2, 3} (where ar and aj are the frame amplitudes paired with σr and σj).

Let e = {e1, . . . , em} be the indices of a set of differing phase-vector elements, and let

v = {v1, . . . , vm} be the qubits stabilized by the Zk-rows identified by e. The steps

in our coalescing procedure are:

Algorithm 5.2.1 Frame coalescing
1) Sort phase vectors such that candidate pairs with differing elements e are next to
each other.
2) Coalesce candidate pairs into a new set of phase vectors σ′.
3) Create a new frame F ′ consisting of σ′ and matrix CMC†, where
C=CNOTv1,v2CNOTv1,v3 · · ·CNOTv1,vmPd

v1Hv1 .
4) Repeat Steps 2–3 until no candidate pairs remain.

The output of this coalescing operation is a list of n-qubit frames F = {F ′1,F ′2, . . . ,F ′s}

114

(i.e., a multiframe) that together represent the same superposition as the original

input frame F . The runtime of this procedure is dominated by Step 1. Each phase-

vector comparison takes Θ(n) time. Therefore, the runtime of Step 1 and our overall

coalescing procedure is O(nk log k) for a single frame with k phase vectors.

Example V.5. Suppose we coalesce frame F depicted in Figure 5.3. To obtain F1,

conjugate the second column of M by an H gate and coalesce the first two phase

vectors in F . To obtain F2, conjugate the second column by H, then conjugate the

second and third columns by CNOT, and coalesce the last two phase vectors in F .

Observe that no P gates are applied since d = 0 for all pairs in a.

Candidate pairs can be identified even in the absence of Zk-rows in an n-qubitM.

By Corollary II.12, one can always find a stabilizer circuit C that maps M to the

matrix structure depicted in Figure 2.4a, whose rows are all of Zk form. We lever-

age the circuit synthesis algorithm described in Section 4.1 to extend our coalescing

operation as follows:

Algorithm 5.2.2 Frame coalescing (extended)
1) Find C that maps M to computational-basis form (Algorithm 4.1.1).
2) ROTATE(F ,C).
3) {F ′1,F ′2, . . . ,F ′s} ← COALESCE(F).
4) ROTATE(F ′i ,C†) for i ∈ {1, . . . , s}.

Figure 5.3: Example of how a multiframe representation is derived
from a single-frame representation.

115

To simulate stabilizer, Toffoli and controlled-R(α) gates using multiframe F, we

apply single-frame operations to each frame in the list independently. For Toffoli and

controlled-R(α) gates, additional steps are required:

Algorithm 5.2.3 Simulation-flow steps
1) Apply the coalescing procedure to each frame and insert the new “coalesced”
frames in the list.
2) Merge frames with equivalent stabilizer matrices.
3) Repeat Steps 1–2 until no new frames are generated.

5.2.1 Orthogonality of Multiframes

We introduce the following invariant to facilitate simulation of quantum measure-

ments on multiframes.

Invariant V.6. The stabilizer frames that represent a superposition of stabilizer

states remain mutually orthogonal during simulation, i.e., every pair of (basis) vectors

from any two frames are orthogonal.

Given multiframe F = {F1, . . . ,Fk}, one needs to consider two separate tasks in

order to maintain Invariant V.6. The first task is to verify the pairwise orthogonality

of the states in F. The orthogonality of two n-qubit stabilizer states can be checked

using the inner-product algorithm describe in Section 4.2, which takes O(n3) time.

To improve this, we derive a heuristic based on Corollary III.4, which takes advantage

of similarities across the (canonical) matrices in F to avoid expensive inner-product

computations in many cases. We note that, when simulating quantum circuits that ex-

hibit significant structure, F contains similar stabilizer matrices with equivalent rows

(Pauli operators). Let M = {M1, . . . ,Mk} be the set of n-qubit stabilizer matrices

in F. Our heuristic keeps track of a set of Pauli operators P = {P1, P2, . . . , Pk≤n},

that form an intersection across the matrices in M.

116

Example V.7. Consider the multiframe from Figure 5.3. The intersection P consists

of the Pauli operator ZII (first row of M1 and M2).

By Corollary III.4, if two phase vectors (states) have different entries correspond-

ing to the Pauli operators in P, then the states are orthogonal and no inner-product

computation is required. For certain practical instances, including the benchmarks

described in Section 5.3, we obtain a non-empty P and our heuristic proves effective.

When P is empty or the phase-vector pair is equivalent, we use the Algorithm 4.2.1

to verify orthogonality. Therefore, in the worst case, checking pairwise orthogonal-

ity of the states in F takes O(n3k2) time for a multiframe that represents a k-state

superposition.

The second task to consider when maintaining Invariant V.6 is the orthogonaliza-

tion of the states in F = {F1, . . . ,Fk} when our check fails. To accomplish this, we

iteratively apply the COFACTOR operation to each frame in F in order to decompose

F into a single frame. This process is equivalent to the orthogonalization procedure

described in Algorithm 4.3.1.

Observe that each iteration of Algorithm 4.3.1 can potentially double the number

of states in the superposition. Since the algorithm terminates when a single frame

remains, the resulting states are represent by distinct phase vectors and are therefore

pairwise orthogonal.

The overall simulation flow of our frame-based technique is shown in Figure 5.4

and implemented in our software package Quipu.

5.2.2 Parallel Frame-based Simulation

Unlike other techniques based on compact representations of quantum states (e.g.,

using BDD data structures [67]), most frame-based operations are inherently parallel

and lend themselves to multi-threaded implementation. The only step in Figure 5.4

that presents a bottleneck for a parallel implementation is the orthogonalization pro-

117

Figure 5.4: Overall simulation flow for Quipu.

cedure, which requires communication across frames. All other processes at both

the single- and multi-frame levels can be executed on large subsets of phase vectors

independently.

We implemented a multithreaded version of Quipu using the C++11 thread sup-

port library. Each worker thread is launched via the std::async() function. Fig-

ure 5.5 shows our wrapper function for executing calls to std::async(). The func-

tion async launch() takes as input: (i) a frame operation (Func f), (ii) a range

of phase-vector elements defined by Iter begin and Iter end, and (iii) any ad-

ditional parameters (Params... p) required for the frame operation. Furthermore,

the function returns a vector of std::future – the C++11 mechanism for accessing

the result of an asynchronous operation scheduled by the C++ runtime support sys-

tem. As Figure 5.5 shows, the workload (number of phase vectors) of each thread is

distributed evenly across the number of cores in the system (MTHREAD). The results

from each thread are joined only when orthogonalization procedures are performed

since they require communication between multiple threads. This is accomplished

by calling the std::future::get() function on each future. All stabilizer gates and

measurements are simulated in parallel.

118

template < c l a s s Func , c l a s s Iter , c l a s s ... Params >
auto async_launch (Func f, Iter begin , Iter end , Params ... p)

-> vector < decltype (async(f, begin , end , p...)) >
{

vector < decltype (async(f, begin , end , p...)) > futures ;
int size = distance (begin , end);
int n = size/ MTHREAD ;
futures . reserve (MTHREAD);
for (int i = 0; i < MTHREAD ; i++)
{

Iter first = begin + i*n;
Iter last = (i < MTHREAD - 1) ? begin + (i+1)*n : end;
futures . push_back (async(f, first , last , p...));

}
return futures ;

}

Figure 5.5: Our C++11 template function for executing the
frame operations (Func f) described in Section 5.1.2 in parallel.
The function accepts a range of vector elements defined by iterators
Iter begin and Iter end. Params... p is the variadic template
argument that defines the parameters of Func f. The number of
threads allowed is defined by MTHREAD. The function returns a vec-
tor of std::futures, which can be used to access the result of the
asynchronous operations.

5.3 Empirical Validation

We tested a single-threaded and multi-threaded versions of Quipu on a conven-

tional Linux server using several benchmark sets consisting of stabilizer circuits,

quantum ripple-carry adders, quantum Fourier transform circuits and quantum fault-

tolerant (FT) circuits.

5.3.1 Stabilizer circuits

We compared the runtime performance of single-threaded Quipu against that of

CHP using a benchmark set similar to the one used in [2]. We generated random

stabilizer circuits on n qubits, for n ∈ {100, 200, . . . , 1500}. The use of randomly

generated benchmarks is justified for our experiments because (i) our algorithms are

119

not explicitly sensitive to circuit topology and (ii) random stabilizer circuits have

been considered representative [21]. For each n, we generated the circuits as follows:

fix a parameter β > 0; then choose βdn log2 ne random unitary gates (CNOT, P or H)

each with probability 1/3. Then measure each qubit a ∈ {0, . . . , n− 1} in sequence.

We measured the number of seconds needed to simulate the entire circuit. The entire

procedure was repeated for β ranging from 0.6 to 1.2 in increments of 0.1. Figure

5.6 shows the average time needed by Quipu and CHP to simulate this benchmark

set. The purpose of this comparison is to evaluate the overhead of supporting generic

circuit simulation in Quipu. Since CHP is specialized to stabilizer circuits, we do

not expect Quipu to be faster. When β = 0.6, the simulation time appears to grow

roughly linearly in n for both simulators. However, when the number of unitary gates

is doubled (β = 1.2), the runtime of both simulators grows roughly quadratically.

Thus, the performance of both CHP and Quipu depends strongly on the circuit being

simulated. Although Quipu is 5× slower than CHP, we note that Quipu maintains

global phases whereas CHP does not. Nonetheless, Figure 5.6 shows that Quipu is

asymptotically as fast as CHP when simulating stabilizer circuits that contain a linear

number of measurements. Moreover, when simulating non-stabilizer circuits, the

multi-threaded version of Quipu runs twice as fast as the single-threaded version

(Figure 5.10). This speedup is not available when simulating stabilizer circuits.

5.3.2 Quantum ripple-carry adders

Our second benchmark set consists of n-bit ripple-carry (Cuccaro) adder [25] cir-

cuits, which often appear as components in many quantum arithmetic circuits [44].

The Cuccaro circuit for n = 3 is shown in Figure 5.7. Such circuits act on two n-

qubit input registers, one ancilla qubit and one carry qubit for a total of 2(n + 1)

qubits. We applied H gates to all 2n input qubits in order to simulate addition on

a superposition of 22n computational-basis states. Figure 5.8 shows the average run-

120

Av
g.

Ru
nt

im
e

(s
ec

s)

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600

CHP
β = .6

β = .7

β = .8

β = .9

β= 1.0

β= 1.1

β = 1.2

Av
g.

Ru
nt

im
e

(s
ec

s)

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600

Quipu
β = .6
β = .7
β = .8
β = .9

β= 1.0
β= 1.1

β = 1.2

Number of qubits Number of qubits

Figure 5.6: Average time needed by Quipu and CHP to simulate an
n-qubit stabilizer circuit with βn log n gates and n measurements.
Quipu is asymptotically as fast as CHP but is not limited to stabilizer
circuits.

time needed to simulate this benchmark set using Quipu. For comparison, we ran

the same benchmarks on an optimized version of QuIDDPro, called QPLite1, specific

to circuit simulation [67]. When n < 15, QPLite is faster than Quipu because the

QuIDD representing the state vector remains compact during simulation. However,

for n > 15, the compactness of the QuIDD is considerably reduced, and the majority

of QPLite’s runtime is spent in non-local pointer-chasing and memory (de)allocation.
1QPLite is up to 4× faster since it removes overhead related to QuIDDPro’s interpreted front-end

for quantum programming.

|b0〉 H • • �������� |s0〉

|a0〉 H • • • |a0〉
|0〉 �������� �������� • • • �������� �������� |0〉
|b1〉 H �������� • �������� �������� • �������� �������� |s1〉

|a1〉 H • • �������� �������� • • �������� �������� • • |a1〉

|b2〉 H �������� • �������� �������� |s2〉

|a2〉 H • • • • • |a2〉
|z〉 �������� �������� |z ⊕ s3〉

Figure 5.7: Ripple-carry (Cuccaro) adder for 3-bit numbers a =
a0a1a2 and b = b0b1b2 [25, Figure 6]. The third qubit from the top is
an ancilla and the z qubit is the carry. The b-register is overwritten
with the result s0s1s2.

121

Thus, QPLite fails to scale on such benchmarks and one observes an exponential in-

crease in runtime. Memory usage for both Quipu and QPLite was nearly unchanged

for these benchmarks. Quipu consumed 4.7MB on average while QPLite consumed

almost twice as much (8.5MB).

We ran the same benchmarks using both the single-frame and multiframe ap-

proaches. In the case of a single frame, the number of states in a superposition grows

exponentially in n. However, in the multiframe approach, the number of states grows

linearly in n. This is because TOF gates produce large equal superpositions that are

effectively compressed by our coalescing technique. Since our frame-based algorithms

require poly(k) time for k states in a superposition, Quipu simulates Cuccaro circuits

in polynomial time and space for input states consisting of large superpositions of

basis states. On such instances, known linear-algebraic simulation techniques (e.g.,

QuIDDPro) take exponential time while Quipu’s runtime grows quadratically (best

quadratic fit f(x) = 0.5248x2 − 15.815x+ 123.86 with R2 = .9986).

The work in [44] describes additional quantum arithmetic circuits that are based

Av
g.

ru
nt

im
e

(s
ec

s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25

QPLite

Quipu

Quadratic fit

0

5

10 15

zoomed-in

n-bit Cuccaro adder (2n+ 2 qubits)

Figure 5.8: Average runtime and memory needed by Quipu
and QuIDDPro to simulate n-bit Cuccaro adders after a superpo-
sition of all computational-basis states is obtained using a block
of Hadamard gates (Figure 5.7). The quadratic function f(x) =
0.5248x2 − 15.815x+ 123.86 fits Quipu’s curve with R2 = .9986.

122

on Cuccaro adders (e.g., subtractors, conditional adders, comparators). We used

Quipu to simulate such circuits and observed similar runtime performance as that

shown in Figure 5.8.

5.3.3 Quantum Fourier transform (QFT) circuits

Our third benchmark set consists of circuits that implement the n-qubit QFT,

which computes the discrete Fourier transform of the amplitudes in the input quantum

state. Let |x1x2 . . . xn〉, xi ∈ {0, 1} be a computational-basis state and x1,2,...,m =∑m
k=1 xk2−k. The action of the QFT on this input state can be expressed as:

|x1 . . . xn〉 = 1√
2n
(
|0〉+ e2iπ·xn |1〉

)
⊗
(
|0〉+ e2iπ·xn−1,n |1〉

)
⊗

· · · ⊗
(
|0〉+ e2iπ·x1,2,...,n |1〉

)
(5.7)

The QFT is used in many quantum algorithms, notably Shor’s factoring and dis-

crete logarithm algorithms. Such circuits are composed of a network of Hadamard

and controlled-R(α) gates, where α = π/2k and k is the distance over which the

gate acts. The three-qubit QFT circuit is shown in Figure 5.9. Figure 5.10 shows

average runtime and memory usage for both Quipu and QPLite on QFT instances

for n = {10, 12, . . . , 20}. Quipu runs approximately 10× faster than QPLite on av-

erage and consumes about 96% less memory. For these benchmarks, we observed

that the number of states in our multiframe data structure was 2n−1. This is because

controlled-R(α) gates produce biased superpositions (Section 5.1.2) that cannot be ef-

fectively compressed using our coalescing procedure. Therefore, as Figure 5.10 shows,

the runtime and memory requirements of both Quipu and QPLite grow exponentially

in n for QFT instances. However, Quipu scales to 24-qubit instances whereas QPLite

scales to only 18 qubits. The multithreaded implementation of Quipu exhibited a 2×

speedup and used a comparable amount of memory on a four-core Xeon server.

123

|x2〉 • • H |y0〉

|x1〉 • H R(π/2) |y1〉

|x0〉 H R(π/2) R(π/4) |y2〉

Figure 5.9: The three-qubit QFT circuit. In general, The
first qubit requires one Hadamard gate, the next qubit requires a
Hadamard and a controlled-R(α) gate, and each following qubit re-
quires an additional controlled-R(α) gate. Summing up the number
of gates gives O(n2) for an n-qubit QFT circuit.

We compared Quipu to a straightforward implementation of the state-vector model

using an array of complex amplitudes. Such non-compact data structures can be

streamlined to simulate most quantum gates (including Hadamard and controlled-

R(α) gates) with limited runtime overhead, but scale to only around 30 qubits due to

poor memory scaling. Our results showed that Quipu was approximately 3× slower

than an array-based implementation when simulating QFT instances. However, such

implementations cannot take advantage of circuit structure and, unlike Quipu and

QPLite, do not scale to instances of stabilizer and arithmetic circuits with > 30

qubits (see Figures 5.6 and 5.8).

Av
g.

ru
nt

im
e

(s
ec

s)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 12 14 16 18 20 22 24

QPLite Quipu

QuipuMT

Av
g.

pe
ak

m
em

or
y

(M
B)

 0

 100

 200

 300

 400

 500

 600

 700

 10 12 14 16 18 20 22 24

QPLite Quipu

QuipuMT

n-qubit QFT circuit n-qubit QFT circuit

Figure 5.10: Average runtime and memory needed by Quipu
(single-threaded and multi-threaded) and QuIDDPro to simulate n-
qubit QFT circuits, which contain n(n + 1)/2 gates. We used the
|11 . . . 1〉 input state for all benchmarks.

124

5.3.4 Fault-tolerant (FT) circuits

Our last benchmark set consists of circuits that, in addition to preparing en-

coded quantum states, implement procedures for performing FT quantum operations

(Section 1.4). One constructs FT stabilizer circuits by executing each stabilizer gate

transversally across QECC-registers [34, 51, 56] as shown in Figure 1.4. Non-stabilizer

gates need to be implemented using a FT architecture that often requires additional

ancilla qubits, measurements and correction procedures conditioned on measurement

outcomes. Figure 5.11 shows a circuit that implements a FT-Toffoli operation [56].

The presence of adaptable operations (gates conditioned on measurement outcomes)

in such circuits implies that one needs to perform weak simulation (Section 2.1.1) of

quantum fault-tolerant architectures. (Recall from Figure 2.6 that strong simulation

of adaptable circuits is #P-hard as proven in [40, Theorem 2].) Quipu simulates

adaptable gates by flipping a coin to decide a measurement outcome and then ap-

plying the corresponding circuit if the condition evaluates to true. Therefore, such

simulation outputs a sample of the overall output probability distribution for the cir-

cuit. We note that weak simulation of circuits is sufficient for fault-tolerance threshold

and reliability analysis.

We implemented a benchmark (listed as toffoli in Table 5.1) based on the circuit

from Figure 5.11. Each line in Figure 5.11 represents a 5-qubit register implementing

the DiVincenzo/Shor2 code. We implemented FT benchmarks for the half-adder

and full-adder circuits (Figure 5.12) as well as for computing f(x) = bxmod 15.

Each circuit from Figure 5.13 implements f(x) with a particular co-prime base value

b as a (2, 4) look-up table (LUT).3 The Toffoli gates in all our FT benchmarks are

implemented using the FT architecture from Figure 5.11. Since FT-Toffoli operations
2The DiVincenzo/Shor code has been shown to function successfully in the presence of both

bit-flip and phase-flip errors even if they occur during correction procedures [16].
3A (k,m)-LUT takes k read-only input bits and m > log2 k ancilla bits. For each 2k input

combination, an LUT produces a pre-determined m-bit value, e.g., a (2, 4)-LUT is defined by values
(1, 2, 4, 8) or (1, 4, 1, 4).

125

|0〉
|0〉
|0〉
|cat〉
|cat〉
|cat〉
|x〉
|y〉
|z〉

H

H

H

H

H

H

rr

e e
r

rr
e er

rr
e e

r
e
r

er
r

e

r

e r

e

H

Meas.
Meas.
Meas.

Meas.
Meas.

Meas.

r
Z

Z
6

r
ee
6

ere
6

|x〉
|y〉
|z ⊕ xy〉

Figure 5.11: Fault-tolerant implementation of a Toffoli gate.
Each line represents a 5-qubit register and each gate is applied
transversally. The state |cat〉 = (

∣∣0⊗5
〉

+
∣∣1⊗5

〉
)/
√

2 is obtained using
a stabilizer subcircuit (not shown). The arrows point to the set of
gates that is applied if the measurement outcome is 1; no action is
taken otherwise. Controlled-Z gates are implemented as HjCNOTi,jHj

with control i and target j. Z gates are implemented as P 2.

require 6 ancilla registers, a circuit that implements t FT-Toffolis using a k-qubit

QECC, requires 6tk ancilla qubits. Therefore, to compare with QPLite, we used the

3-qubit bit-flip code [51, Ch. 10] instead of the more robust 5-qubit code in our larger

benchmarks. Our results in Table 5.1 show that Quipu is typically faster than QPLite

by several orders of magnitude and consumes 8× less memory for the toffoli, half-

adder and full-adder benchmarks. Table 5.1 also shows that our coalescing technique

is very effective as the maximum size of the stabilizer-state superposition is much

smaller when multiple frames are used.

|a〉 • • |x〉
|x〉 • • |x〉 |b〉 • • |y〉
|y〉 • /.-,()*+ |sum〉 |z〉 • /.-,()*+ • /.-,()*+ |sum〉
|0〉 /.-,()*+ |carry〉 |0〉 /.-,()*+ /.-,()*+ |carry〉

(a) Half adder (b) Full adder

Figure 5.12: Adder circuits from our benchmarks. We used the 5-
qubit DiVincenzo/Shor QECC and implemented Toffoli gates using
the FT architecture from Figure 5.11.

126

x0 �������� • �������� • �������� • �������� • �������� • �������� • �������� • x0
x1 �������� �������� • • • �������� �������� • �������� • • �������� x1
0 /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ y0
0 /.-,()*+ /.-,()*+ /.-,()*+ y1
0 /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ y1
0 /.-,()*+ /.-,()*+ /.-,()*+ y2

b = 2 b = 4 b = 7 b = 8

x0 • • �������� • �������� • �������� • • • x0
x1 • • �������� �������� x1
0 /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ y0
0 /.-,()*+ /.-,()*+ /.-,()*+ y1
0 /.-,()*+ /.-,()*+ /.-,()*+ y2
0 /.-,()*+ /.-,()*+ /.-,()*+ y3

b = 11 b = 13 b = 14

Figure 5.13: Mod-exp with M = 15 implemented as (2, 4)-LUTs
[44] for several co-prime base values. Negative controls are shown
with hollow circles. We apply Hadamards to each x-qubit to gener-
ate a superposition of all the input values for x. Our benchmarks
implement these computations using the 3-qubit bit-flip code [51,
Ch. 10] and the FT-Toffoli architecture from Figure 5.11.

127

Table 5.1: Average time and memory needed by Quipu and QPLite to simulate our benchmark set of
quantum FT circuits. The second column indicates the QECC used to encode k logical qubits into n physical
qubits. We used the 3-qubit bit-flip code for larger benchmarks and the 5-qubit DiVincenzo/Shor code [16] for
smaller ones (∗). The third column shows the total number of qubits including ancillas required to implement
FT-Toffoli gates. We used the |00 . . . 0〉 input state for all benchmarks. The multithreaded version of Quipu
exhibited similar runtime and memory requirements for these benchmarks since the total number of states
observed is relatively small.

fault-tolerant qecc total qubits num. of gates runtime (secs) memory (MB) max size(Ψ)
circuit [n, k] (inc. ancilla) stab. toff. QPLite Quipu QPLite Quipu single F multi F
toffoli∗ [15, 3] 45 155 15 43.68 0.20 98.45 12.76 2816 32

halfadd∗ [15, 3] 45 160 15 43.80 0.20 94.82 12.76 2816 32
fulladd∗ [20, 4] 80 320 30 84.96 0.88 91.86 12.94 2816 32
2xmod15 [18, 6] 81 396 36 4.81hrs 1.48 11.85 12.96 22528 64
4xmod15∗ [30, 6] 30 30 0 0.01 < 0.01 6.14 12.01 1 1
7xmod15 [18, 6] 81 402 36 11.25hrs 1.52 12.41 13.29 22528 64
8xmod15 [18, 6] 81 399 36 11.37hrs 1.52 12.48 13.29 22528 64

11xmod15∗ [30, 6] 30 25 0 0.02 < 0.01 6.14 12.01 1 1
13xmod15 [18, 6] 81 399 36 11.28hrs 1.56 11.85 12.25 22528 64
14xmod15∗ [30, 6] 30 40 0 0.02 < 0.01 6.14 12.01 1 1

128

5.4 p-blocked Multiframes

The quantum Fourier transform (QFT) experiments presented in Section 5.3

showed that the resources required to simulate such circuits using multiframes grew

exponentially in the number of qubits. In this section, we present a modification to

our multiframe data structure that facilitates simulation of QFT circuits in linear time

and space. We call this new data structure a p-blocked multiframe since it is based

on the approach proposed in [41], which separates a quantum state into p-blocks that

do not grow exponentially in size. In this technique, states are termed p-blocked if

no subset of p + 1 qubits is entangled. More generally, the set of all qubits in state

|Ψ〉 is partitioned into k blocks B1, B2, . . . , Bk such that

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 (5.8)

where each |ψi〉 is the state vector for block Bi. Since each block requires at least

2p coefficients, the space complexity grows with the number of entangled qubits.

Therefore, when p is small (i.e., k is large), the complexity of simulation may be

reduced by decomposing the state into a tensor product of p-blocks. In contrast, when

k = 1, no advantage is obtained using this technique. Operators that affect qubits

within a single block Bi can be applied directly to |ψi〉. However, when simulating

operators that extend across several blocks, one needs to combine all affected blocks

via the tensor product into one large block. Then, the block is decomposed or factored

into separate blocks if possible.

In our p-blocking technique, we represent each |ψi〉 in Equation 5.8 using a mul-

tiframe Vi. Therefore, an n-qubit quantum state is represented as,

|Ψ〉 = V1 ⊗ V2 ⊗ · · · ⊗ Vk =
(∑

i

αi |ψi〉
)
⊗

∑
j

βj |ψj〉

⊗ · · · ⊗ (∑
l

γl |ψl〉
)

(5.9)

129

where each |ψi〉, |ψj〉 and |ψl〉 is a stabilizer state. Let SIZE(Vi) denote the number of

qubits in Vi. Observe that ∑k
i=1 SIZE(Vi) = n. Algorithm 5.4.1 describes our process

for simulating gate operators using p-blocked multiframes.

Example V.8. The stabilizer frame obtained by simulating the 4-qubit QFT circuit

on input state |1111〉 (Figure 5.14a) can be decomposed or factored into the tensor

product of 4 single-qubit operations (Equation 5.7). Therefore, such a state can be

represented using the p-blocked multiframe from Figure 5.14b.

As in the general p-blocking scheme from [41], operators that span a single mul-

tiframe Vi are applied directly to the multiframe using the algorithms described in

Section 5.2. Suppose we seek to simulate an operator that spans several multiframes.

First, relevant multiframes are tensored together into a single t-qubit frame F , where

t ≤ n equals the sum of the sizes of the tensored multiframes. Then, we analyze the

stabilizer matrix associated with F to determine potential entanglement partitions

for the frame (i.e., we identify separable sub-matrices). This is accomplished in O(t2)-

time by examining the non-I literals in the rows of the canonical matrix. For each

(a) (b)

Figure 5.14: (a) Stabilizer frame (single-term multiframe) rep-
resentation for U |1111〉, where U is the 4-qubit QFT circuit.
(b) p-blocked multiframe representation for U |1111〉. Observe that
V = V1 ⊗ V2 ⊗ V3 ⊗ V4.

130

candidate partition, we apply a decomposition procedure that attempts to partition

the phase vector-amplitude pairs of F into a set of smaller multiframes. This set of

multiframes is ordered4 such that their tensor product yields the original F . If the

decomposition is unsuccessful, F is returned as a single-term multiframe. The worst-

case runtime for decomposing the resulting frame is t|F| = O(t2t). Therefore, the

decomposition portion of Algorithm 5.4.1 should be executed only when we expect

|F| to be relatively small.

Improved simulation of QFT circuits

We implemented p-blocked multiframes as an optional data structure in Quipu and

tested our technique by simulating n-qubit QFT instances. Each controlled-R(α) gate

in a QFT circuit is simulated using the approach outlined in Algorithm 5.4.1. First,

the blocks corresponding to the input qubits of a controlled-R(α) gate are tensored

to form a two-qubit multiframe with a single term. Then, the resulting frame F is

decomposed successfully into a tensor product of two one-qubit frames. Since |F| ≤ 4

always, the overall runtime of our technique is approximately linear in n (Figure 5.15).

Figure 5.15 shows that the decomposition technique used Algorithm 5.4.1 is ef-

fective when simulating QFT circuits. However, there is no guarantee that our de-

composition approach yields the most compact p-blocking representation in general.

One can design more sophisticated decomposition techniques that exploit state sep-

arability even further at the cost of increased runtime complexity. One approach is

to generalize our technique by utilizing a modified Schmidt decomposition procedure

specific to multiframes. In Section 8.3, we discuss future research along these lines.
4We keep track of such ordering separate data structure consisting of multiframe pointers. The

pointers are updated during the decomposition process to maintain the correct order.

131

Av
g.

Ru
nt

im
e

(s
ec

s)

 0

 5

 10

 15

 20

 25

 30

1000 2000 3000 4000 5000

Quipu (p-blocked multiframe)

f(x)=8e-7x
2
+.001x+.3841 Av

g.
Pe

ak
M

em
(M

B)

4.0

4.5

5.0

5.5

6.0

1000 2000 3000 4000 5000

Quipu (p-blocked multiframe)

f(x)=4e-4x+3.7947

n-qubit QFT n-qubit QFT

Figure 5.15: Average runtime and memory for Quipu to simu-
late n-qubit QFT circuits on input state |11 . . . 1〉 using p-blocked
multiframes. The poly-fit functions for runtime and memory have
R2 = .9886 and R2 = .9964, respectively.

5.5 Summary

In this chapter, we develop new techniques for quantum-circuit simulation based

on superpositions of stabilizer states, avoiding shortcomings in prior work [2]. To

represent such superpositions compactly, we design a new data structure called a

stabilizer frame. We implemented stabilizer frames and relevant algorithms in our

software package Quipu. Current simulators based on the stabilizer formalism, such

as CHP, are limited to simulation of stabilizer circuits. Our results show that Quipu

performs asymptotically as fast as CHP on stabilizer circuits with a linear number of

measurement gates, but simulates certain quantum arithmetic circuits in polynomial

time and space for input states consisting of equal superpositions of computational-

basis states. In contrast, QuIDDPro takes exponential time on such instances. We

simulate quantum Fourier transform (QFT) and quantum fault-tolerant circuits with

Quipu, and the results demonstrate that our stabilizer-based technique leads to orders-

of-magnitude improvement in runtime and memory as compared to QuIDDPro. While

our technique uses more sophisticated mathematics and quantum-state modeling, it

is significantly easier to implement and optimize. In particular, our multithreaded

132

implementation of Quipu exhibited a 2× speed up on a four-core server.

To improve the performance of Quipu on QFT circuits, we design a tensor-product

frame representation, called p-blocked multiframes. We develop an algorithm to de-

compose an arbitrary frame into a tensor-product of smaller multiframes (p-blocking).

This decomposition technique facilitates simulation of QFT circuits in linear time and

space using Quipu for computational-basis input states.

133

Algorithm 5.4.1 p-blocked multiframe simulation
Require: (i) p-blocked multiframe Vin = V1 ⊗ V2 ⊗ · · · ⊗ Vk representing state |Ψ〉, (ii) m-qubit

operator U , and (iii) indices i1, i2, . . . , im of acting qubits for U
Ensure: Updated p-blocked multiframe Vout representing U |Ψ〉
⇒ BLOCKINDEX(i1, i2, . . . , im) returns indices b1, b2, . . . , bm denoting corresponding block indices
⇒ FINDBLOCKS(F) analyzes the stabilizer matrixM associated with frame F and returns ordered

indices p1, p2, . . . , pr denoting the first qubit of each entanglement partition
⇒ TENSOR(j1, j2, . . . , jt) returns the frame representing the tensor product Vj1 ⊗ Vj2 ⊗ · · · ⊗ Vjt

⇒ INSERT(V,V) inserts V into the ordered list of multiframes V
⇒ INSERT(V,M, σ, c) finds frame F in multiframe V with stabilizer matrix M (if no such frame

exists, F is created and appended to V) and inserts phase vector-amplitude pair (σ, c) into F
⇒ GETAMP(V,M, σ) finds frame F in multiframe V with stabilizer matrix M and returns the

amplitude c that forms a pair with phase vector σ; returns 0 if no such phase vector exists
⇒ FACTOR(M, p) factors the stabilizer matrix M along qubit p creating a pair of smaller matrices
Mleft and Mright such that M =Mleft ⊗Mright

1: b1, b2, . . . , bm ← BLOCKINDEX(i1, i2, . . . , im)
2: if b1, b2, . . . , bm are all equal then
3: APPLY(Vb1 , U) . Simulate U via algorithms from Section 5.2
4: return Vin

5: end if
6: F ← TENSOR(b1, b2, . . . , bm)
7: APPLY(F , U)
8: p1, p2, . . . , pr ← FINDBLOCKS(F)
9: Vout ← ∅

10: for pl, l ∈ {1, 2, . . . , r} do
11: d← 1 . Whether the decomposition is successful
12: Vleft ← ∅; Vright ← ∅
13: for each phase vector-amplitude pair (σi, ai), i ∈ {1, . . . , |F|} do
14: for each (σj , aj), j ∈ {i, . . . , |F|} do
15: Mσj ← assign σj as the phase vector of the stabilizer matrix for F
16: [Mleft,Mright]← FACTOR(Mσj , pl)
17: if i = 1 then . Use first iteration to setup Vright
18: INSERT(Vright,Mright, σj , aj/ai)
19: else . Otherwise, check partitions are consistent
20: c← GETAMP(Vright,Mright, σj)
21: if aj 6= c · ai then . Inconsistent partitions
22: d← 0
23: break
24: end if
25: end if
26: end for
27: if d = 1 then
28: INSERT(Vleft,Mleft, σi, ai)
29: else
30: break
31: end if
32: end for
33: if d = 1 then
34: INSERT(Vout,Vleft); INSERT(Vout,Vright) . Decomposed successfully
35: else
36: INSERT(Vout,F) . Frames are single-term multiframes
37: end if
38: end for
39: return Vout

134

CHAPTER VI

Stateless Simulation of Generic Quantum Circuits

In Section 2.4 we reviewed the stateless simulation approach for stabilizer cir-

cuits developed in [8, 11, 39], and compared it to direct simulation using stabilizer

generators. In this chapter, we describe a generalization of the approach described

in Section 2.4 that facilitates stateless simulation of generic quantum circuits and

compare its performance to stabilizer frames (Chapter V). Furthermore, we explore

compact data structures for generic stateless simulation based on multivalued decision

diagrams.

6.1 Pauli Expansions of Linear Operators

Consider the Pauli expansion fp(U) = ∑
j αjPj of a non-stabilizer gate U obtained

using the operator function from Definition I.17. Such decompositions facilitate state-

less simulation of quantum circuits that contain non-stabilizer operators.

Multi-controlled Z and X operators

We denote multi-controlled operators as Ck(U), where k is the number of control

qubits and U is the l-qubit operator applied when the control condition is satisfied.

Thus Ck(U) acts on k + l qubits. For the case U is the one-qubit Z Pauli matrix

(multi-controlled Z), Ck(Z) is diagonal. Therefore, the terms in the Pauli expansion

135

of Ck(Z) are composed of Z and I Pauli literals only. As an example, consider the

case k = 2. Using the operator function from Definition I.17 we have,

fp(C2(Z)) = 3 · III + IIZ + IZI − IZZ + ZII − ZIZ − ZZI + ZZZ

4 (6.1)

To obtain the Pauli expansion of any operator Ck(Z) without computing fp we for-

mulate a general form as follows. Let bi denote the binary representation of integer

i. We use bi to construct a Pauli string Zi as follows: if bit j in bi is set, set the jth

literal of Zi to Z; otherwise the literal is set to I. For example, Z0 = II, Z1 = IZ,

Z2 = ZI, Z3 = ZZ, etc. Let h(Zi) be the hamming weight with respect to Z0. The

Pauli expansion of Ck(Z) is defined as,

Ck(Z) = 1
2(k+1)

I⊗(k+1) +
2k+1−1∑
i=1

(−1)h(Zi)Zi

 (6.2)

Observe that Equation 6.2 can also be used to derive the Pauli expansion of Ck(X)

using the relation HZH† = X. Simply conjugate each term in Equation 6.1 by I⊗kH.

For example in the case the Toffoli gate C2(X) we get,

fp(C2(X)) = 3 · III + IIX + IZI − IZX + ZII − ZIX − ZZI + ZZX

4 (6.3)

where the only difference from Equation 6.2 is the Pauli strings have an X literal

instead of a Z in the last position.

Addition operators

It turns out that a recursive general form exists for deriving the Pauli expansion

of a linear operator that adds two n-bit numbers a = a1a2 . . . an and b = b1b2 . . . bn.

To simplify notation, let ab denote the binary string a1b1a2b2 . . . anb2. The n-qubit

addition operator ADDn maps a computational basis state |ab〉 to another computa-

136

tional basis state |ac〉, where c is the n-bit result of the addition (ignoring the carry

bit). Formally, we define the addition operator as,

ADDn =
2n−1∑
i=0

2n−1∑
j=0
|aibj〉 〈aici+j| (6.4)

We now derive a recursive general form for the Pauli expansion of ADDn. Our base

case is the 1-bit adder, which is just the Pauli expansion of a CNOT. Let A1 = II+XI

and B1 = IZ −XZ, then ADD1 = A1 + B1. For an i-bit quantum adder as defined

by Equation 6.4 we have,

Ai = II ⊗ Ai−1 + IZ ⊗Bi−1 +XI ⊗ Ai−1 + iY I ⊗Bi−1

Bi = II ⊗Bi−1 + IZ ⊗ Ai−1 −XZ ⊗ Ai−1 − iY Z ⊗Bi−1

ADDi = II ⊗ (Ai +Bi) + IZ ⊗ (Ai +Bi) +XI ⊗ Ai (6.5)

−XZ ⊗ Ai + iY I ⊗Bi − iY Z ⊗Bi

6.2 Stateless Simulation of Generic Quantum Circuits

Let E(Zf
k) denote the expectation value of performing a Z-measurement on qubit

k in the final state C |ψ0〉, where C is a generic n-qubit quantum circuit and |ψ0〉 =

|s1〉 ⊗ |s2〉 · · · |sn〉 is the initial product state.

1. Initialize the Zk-measurement operator.

2. Conjugate Zk by each gate U in circuit C in reverse order. Without loss of

generality, assume U is the first gate in C.

• If U is a Pauli or stabilizer gate, then U †ZkU = Q ∈ Pn.

137

• If U is a non-stabilizer gate, then

U †ZkU = [fp(U)]†Zk[fp(U)] =
[∑

i

αiPi

]†
Zk

∑
j

αjPj

 =
∑
i,j

α∗iαjQi,j

where Qi,j ∈ Pn.

3. Let C†ZkC = ∑
i,j α

∗
iαjQi,j,

E(Zf
k) = 〈ψ0|

∑
i,j

α∗iαjQi,j

 |ψ0〉 =
∑
i,j

α∗iαj
n∏
j=1
〈sj|Qi,j |sj〉 (6.6)

Observe that each term in the sum above is a variant of Equation 2.20 and thus

can be computed in O(n) time as outlined in Section 2.4.

Example VI.1. Consider the Pauli expansion of the non-stabilizer gate T =
(

1 0
0 eiπ/4

)
,

fp(T) =
(

1
2 + 1 + i

2
√

2

)
I +

(
1
2 −

1 + i

2
√

2

)
Z = α1I + α2Z (6.7)

Suppose we want to simulate circuit C = HTH on initial state |0〉. We compute the

outcome probabilities as follows,

E(Zf
1) = 〈0| (C†)Z(C) |0〉 〈0| (HT †H)Z(HTH) |0〉 = 〈0| (HT †)X(TH) |0〉

= 〈0|H(α∗1I + α∗2Z)X(α1I + α2Z)H |0〉

= 〈0|H(α1α
∗
1X − α2α

∗
2X − iα∗1α2Y + iα1α

∗
2Y)H |0〉

= 〈0| (α1α
∗
1Z − α2α

∗
2Z + iα∗1α2Y − iα1α

∗
2Y) |0〉 = α1α

∗
1 − α2α

∗
2

Recall from Section 2.4 that E(Zf
k) = p0 − p1. Therefore, p0 = α1α

∗
1 = .8536 and

p1 = α2α
∗
2 = .1464.

The above procedure suggests a simple data structure for stateless simulation of

generic circuits: maintain a list of Pauli strings and their corresponding coefficients.

138

One then updates the Pauli strings when stabilizer gates are simulated, and (po-

tentially) expands the list when simulating non-stabilizer gates. Although stateless

simulation has the advantage of simplicity, we will show in Section 6.2.2 that it does

not scale well. This is because the number of terms in the Pauli expansions of non-

stabilizer gates is usually exponential in the number of acting qubits. The scalability

of stateless simulation is similar to that of the density-matrix approach outlined in [2],

where the authors represent a quantum state as a sum of O(42dk) density-matrix terms

while simulating k non-stabilizer operations acting on d distinct qubits. Furthermore,

since no state representation is maintained, one cannot design compression techniques

similar to stabilizer-frame coalescing (Section 5.2). However, when the Pauli expan-

sion of a non-stabilizer operator can be expressed using a recurrence relation (e.g.,

Equation 6.5), one can arrive at a compact representation using well-known graph

techniques such as decision diagrams. We outline this technique and show examples

in the next section.

6.2.1 Compact Representation using Decision Diagrams

Recall from Section 6.1 that n-bit addition operators can be expressed using the

recurrence relation ADDn from Equation 6.5. This suggests that such operators

can be represented compactly. Specifically, if one regards Pauli literals as input

variables (taking on one of four possible values) to a discrete function, ADDn can

be represented using multivalued decision diagrams (MDDs). An MDD is a directed

acyclic graph data structure consisting of internal nodes, terminal nodes and a set

of edges connecting them. In contrast to the better-known binary decision diagrams

(BDDs), the number of outgoing edges in an internal node is not limited to two.

MDDs may be ordered and reduced in a fashion analogous to the binary case and the

resulting representation is termed a reduced ordered MDD.

Definition VI.2. Let σ1 . . . σn, σi ∈ {I,X, Y, Z} denote a term in the Pauli expansion

139

of quantum operator U . An n-qubit Pauli QMDD is a directed acyclic graph with

the following properties:

(i) Each internal node xi represents the Pauli literal σi.

(ii) The outgoing edges of xi represent the literal value assigned to σi for a particular

term in the Pauli expansion.

(iii) Each edge points downward, implying a top-down assignment of the values of

the σi depicted by the internal nodes.

(iv) Terminal nodes represent the possible phases (±1, ±i) of the expansion terms.

(v) Each path through a Pauli MDD from top to bottom represents a specific term

in the Pauli expansion of U , and ends with the corresponding phase coefficient.

Example VI.3. Figure 6.1 shows the Pauli MDD for ADD2 (Equation 6.5).

The advantage of using MDDs is that one can derive reduction rules to delete or

share redundant nodes depending on the equal assignment of Pauli literals assigned to

the internal nodes. An attractive direction for future work is to derive such rules for

Pauli MDDs in order to: (i) efficiently represent other quantum arithmetic operators

and (ii) design efficient analysis and simulation algorithms that take advantage of

this compact representation. Furthermore, it is possible to extend MDDs by allowing

arbitrary complex values in edge weights and terminals. Such improvements may lead

to additional compression in a Pauli MDD but may also introduce complexities in

terms of canonicity and algorithmic manipulation of the data structure.

6.2.2 Empirical Validation

We implemented the stateless technique described in Section 2.4 as a simulation

option in Quipu. Our benchmark consists of circuits that follow the structure shown in

Figure 2.1, where we assume U is a random n-qubit stabilizer circuit. Therefore, each

140

ADD2 = IIII + IIIZ + IIXI − IIXZ + IZII + IZIZ + IZXI − IZXZ
+XIII +XIXI −XZII −XZXI + iY IIZ − iY IXZ − iY ZIZ + iY ZXZ

Figure 6.1: MDD for addition operator ADD2. The circular (inter-
nal) nodes represent Pauli literals and the edges represent possible
values for such literals. The square (terminal) nodes represent the
possible phases (±1, ±i) of each term in ADD2.

benchmark circuit contains 2n+ 1 stabilizer gates. Figure 6.2 shows average runtime

results for simulating such circuits with n ∈ {2000, 2100, . . . , 3500} using CHP and the

stateless version of Quipu. Stateless simulation runs in linear time for such instances

and thus outperforms CHP, which takes quadratic time (Section 2.3.1). The stateless

approach has the advantage of simulating such circuits on any product state while

CHP is limited to computational-basis input states. However, stateless simulation does

not allow multi-qubit measurement or gates conditioned on measurement outcomes.

Additional comparisons of these two techniques can be found in Section 2.4.

We also compared the stateless approach to the frame-based approach described

in Chapter V. For this comparison, we used the ripple-carry adder benchmarks used

in Section 5.3 with a single measurement on the high-bit (qubit |z〉 in Figure 5.7). To

simulate Toffoli gates, we used the Pauli expansion from Equation 6.3. As Figure 6.3a

shows, the stateless approach has similar performance to QuIDDPro on such instances

141

Av
g.

Ru
nt

im
e

(s
ec

s)

 0

 2

 4

 6

 8

 10

 12

2200 2600 3000 3400

Quipu (stateless)

CHP

n-qubit stabilizer circuit

Figure 6.2: Average time needed by Quipu (stateless) and CHP
to simulate an n-qubit stabilizer circuit with 2n + 1 gates and a
single measurement (circuit structure from Figure 2.1). Quipu runs
in linear time for such instances while CHP takes quadratic time.

(Figure 5.7): it scales to 18-bit instances only and its runtime grows exponentially

with circuit size. This limited scalability is due to the exponential growth in the size

of the list-based data structure as shown in Figure 6.3b. In contrast, frame-based

simulation (labeled Quipu direct in Figure 6.3) takes poly-time and space.

6.3 Summary

The notion of stateless simulation was introduced in [8, 11, 39] in the context of

stabilizer (Clifford) circuits. Using our Pauli expansion techniques for linear operators

described in Section 6.1, we generalize the stateless approach to admit simulation of

generic quantum circuits. For stabilizer circuits that follow the structure from Fig-

ure 2.1, stateless simulation outperforms techniques based on the stabilizer formalism

(e.g., CHP). Nonetheless, stateless simulation has its drawbacks as outlined in Sec-

tion 2.4. Our experiments show that, when simulating ripple-carry adder circuits,

stateless simulation requires exponential resources. We describe a compact represen-

tation for Pauli expansions called Pauli multivalued decision diagrams, which may

mitigate the exponential increase in resources observed during stateless simulation.

142

Av
g.

Ru
nt

im
e

(s
ec

s)

 0

 2

 4

 6

 8

 10

 12

8 10 12 14 16

Quipu (stateless)

Quipu (direct)

n-bit adder (2n+ 2 qubits)

Size of Representation
n Direct Stateless
8 16 766
9 18 1534
10 20 3070
11 22 6142
12 24 12286
13 26 24574
14 28 49150
15 30 98302
16 32 196606

(a) (b)

Figure 6.3: (a) Average time needed by Quipu (stateless) and
Quipu (direct) to simulate n-bit adders (Section 5.3) after a su-
perposition of all computational-basis states is obtained. A single
measurement is performed on qubit 2n + 2, which is the highest
carry bit. The stateless approach takes exponential time and scales
to around 18-bit instances only. (b) Comparison of the number of
terms in the direct frame-based approach (size of multiframe) and
the stateless approach (size of the Pauli-string list).

143

CHAPTER VII

Graph-based Techniques

and Matrix Product States

Chapters V and VI introduced new quantum-circuit simulation techniques that

generalize the Heisenberg picture for quantum computers. Specifically, these tech-

niques exploit symmetries in a quantum state to produce compact representations in

certain cases. Another well-known technique that achieves a similar objective is the

matrix product state (MPS) representation [27, 50, 55, 68]. The idea behind MPS

is to write the 2n complex amplitudes ci1...in∈{0,1}n in a quantum state as entries in

a large tensor with indices i1, . . . , in. Such a tensor can be stored as a contraction

of several smaller tensors – one for each qubit in the state. We describe the MPS

representation in Section 7.1 along with empirical results obtained using a recently

developed software package called ZKCM. In Section 7.2, we describe quantum multi-

valued decision diagrams (QMDDs), which are symbolic data structures that can be

used to represent certain matrix operators compactly [47]. QMDD algorithms have

been developed that exploit the symbolic nature of the representation to improve

the performance of quantum simulation [32]. An open research question is whether

one can improve the performance of MPS simulation by designing graph-based tech-

niques similar to QMDDs that directly model MPS. To this end, we generalize certain

properties of QMDDs and derive MPS-based decision diagrams in Section 7.3.

144

7.1 Matrix Product State (MPS) Simulation

A matrix product state (MPS) is a weakly-entangled n-qubit quantum state,

|ψ〉 =
∑

i1...in∈{0,1}n
ci1...in |i1〉 ⊗ · · · ⊗ |in〉 (7.1)

that can be represented by a sum of product states. This approach is similar to

our p-blocking technique for multiframes described in Section 5.4. Following the

formulation from [68], let A denote a subset of the n qubits and B the rest of the

qubits. The Schmidt decomposition [51, Section 2.5] of |ψ〉 with respect to partition

A:B is,

|ψ〉 =
χA∑
α=1

λα
∣∣∣φ[A]
α

〉
⊗
∣∣∣φ[B]
α

〉
(7.2)

where the vectors
∣∣∣φ[A]
α

〉
and

∣∣∣φ[B]
α

〉
are eigenvectors with eigenvalues |λα|2 > 0 of

the reduced density matrices ρ[A] and ρ[B], respectively. The local Schmidt rank χA

is a measure of entanglement between partitions A and B. The entanglement |ψ〉

can be quantified by the maximum χA over all possible bipartite partitions A:B,

χ ≡ maxA χA [68, Equation 2]. Depending on the amount of entanglement, χ can

range from 1 for fully separable states, to 2n for fully entangled states.

The key idea driving MPS simulation is the local decomposition of the complex

coefficients ci1...in from Equation 7.1 in terms of n tensors1 A[l] and n− 1 vectors v[l],

ci1i2...in =
∑

α1,...,αn−1

A[1]i1
α1 v[1]

α1A
[2]i2
α1α2v

[2]
α2A

[3]i3
α2α3 · · ·A

[n]in
αn−1 (7.3)

where each α runs from 1 to χA. Therefore, the 2n coefficients ci1...in are expressed

in terms of roughly (2χ2 + χ)n parameters, which grows linearly in n for a fixed

value χ. Observe that Equation 7.3 can be viewed as a concatenation of n− 1 local

Schmidt decompositions, and defines a canonical form for MPS [55]. The A[l] tensors
1A k-tensor can be viewed as a k-dimensional array.

145

correspond to a changes of basis between the different Schmidt bases (one for each

qubit l) and the computational basis, and the vectors v[l] correspond to the Schmidt

coefficients. The overall decomposition depends on the particular way qubits are

ordered from 1 to n. We refer to [68] for a detailed explanation on how to obtain this

decomposition.

Example VII.1. Consider the entangled state |ψ〉 = (|00〉+|01〉+|10〉−|11〉)/2. Here

c00 = c01 = c10 = 1/2 and c11 = −1/2. The canonical matrix product representation

for |ψ〉 consists of two matrices (A[1], A[2]) and one Schmidt vector (v[1]) such that:

c00 =
2∑

α1=1
A[1]0
α1 v

[1]
α1A

[2]0
α1 ≈

1
2

c01 =
2∑

α1=1
A[1]0
α1 v

[1]
α1A

[2]1
α1 ≈

1
2

c10 =
2∑

α1=1
A[1]1
α1 v

[1]
α1A

[2]0
α1 ≈

1
2

c11 =
2∑

α1=1
A[1]1
α1 v

[1]
α1A

[2]1
α1 ≈ −

1
2

Here, v[1]
1 = v

[1]
2 = 1/

√
2, A[1]0

1 = .6030 − .0148i, A[1]0
2 = −.4297 − .6720i, A[1]1

1 =

.7430− .2900i, A[1]1
2 = .4786 + .3670i, A[2]0

1 = .9518 + .2155i, A[2]0
2 = .03461 + .2156i,

A
[2]1
1 = −.09900 − .1946i and A

[2]1
2 = −.6423 + .7347i. Since the maximum value of

α1 is 2, the Schmidt rank χ = 2 for |ψ〉.

To simulate one- and two-qubit gates, one uses algorithms that update the MPS

representation of |ψ〉. The work in [68] gives algorithms that take O(χ2) time for

one-qubit gates [68, Lemma 1] and O(χ3 + nχ2) time for two-qubit gates acting on

consecutive qubits [68, Lemma 2]. In particular, applying two-qubit gates requires

solving a potentially large eigenvalue problem to update the tensors and vectors as-

sociated with the input qubits only. Therefore, the computation cost of updating the

MPS representation is independent of the number n of qubits, and grows polynomially

in the overall Schmidt rank χ.

146

Empirical validation

To evaluate MPS-based simulation of quantum circuits, we used the ZKCM software

package [58] written in C++. We compared the performance of ZKCM to that of p-

blocked multiframes for the QFT benchmarks used in Sections 5.3 and 5.4.

Figure 7.1 shows that ZKCM simulates QFT circuits using approximate linear time

and space for computational-basis input states. The maximum Schmidt rank χ ob-

served for each QFT benchmark is 1 since the MPS decomposition always yields a

separable state. Therefore, both the p-blocked multiframes (Section 5.4) and the MPS

representations achieve exponential improvement over naive state-vector or decision-

diagram implementations. However, the Quipu is orders of magnitude faster than

ZKCM since it simulates all the benchmarks from Figure 7.1 in less than one second

(Figure 5.15). This is not surprising since the decomposition procedure defined in

Algorithm 5.4.1 is simpler than solving an eigenvalue problem – one of the steps

required to update the MPS representation.

Av
g.

Ru
nt

im
e

(s
ec

s)

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100 120 140

ZKCM

f(x)=6e-4x
2
+5e-4x+.0119 Av

g.
Pe

ak
M

em
(M

B)

18

19

20

21

22

 20 40 60 80 100 120 140

ZKCM

f(x)=2e-4x
2
+.0016x+17.529

n-qubit QFT n-qubit QFT

Figure 7.1: Average runtime and peak memory for ZKCM to sim-
ulate n-qubit QFT circuits on input state |11 . . . 1〉. The maximum
Schmidt rank χ observed for each benchmark is 1. R2 = .999 for
polynomial fit f(x) in both plots.

147

7.2 Quantum Multivalued Decision Diagrams (QMDDs)

As mentioned in Chapter II, the quantum information decision diagram (QuIDD)

data structure can be used to represent certain quantum operators and states com-

pactly. A detailed description of QuIDDs is given in [67, Chapter 7] along with other

graph-based representations for modeling and synthesizing quantum operators. In

Section 6.2.1, we defined new decision diagrams for representing Pauli expansions

of quantum operators. Section 6.2.1 considered only basis-preserving quantum op-

erators, and the Pauli decision diagrams (PDDs) we developed were limited to such

operators. One particular advantage of PDDs over previous work on decision di-

agrams and MPS is that they can compactly represent highly entangled stabilizer

states or operators. A more general form of PDDs can be developed using complex

values on edges, as illustrated by Abdollahi and Pedram [3] in their data structure

called quantum decision diagrams (QDDs). Miller and Thornton [47] developed quan-

tum multivalued decision diagrams (QMDDs), which exploit the regular structure of

the matrix operators that represent quantum circuits. Such matrices always have

dimensions that are powers of two and can therefore be partitioned into quadrants,

e. g., M =
[
M0 M1
M2 M3

]
. Each of the partitions Mi has dimensions 2n−1× 2n−1. The sub-

matrices Mi can also be further partitioned into four smaller matrices. This process

can recursively continue until the four submatrices become single values.

Definition VII.2. [47, Definition 5] An n-qubit QMDD is a directed acyclic graph

with the following properties:

(i) There is a single start vertex with only one incoming edge that itself has no

source vertex.

(ii) There is a single terminal node with no outgoing edges and fixed value 1.0.

(iii) Each internal node (variable) xi∈{0,1,...n−1} for d-valued logic has d2 outgoing

148

edges. For quantum circuits, d = 2 and the outgoing edges are labeled 0, 1, 2, 3

corresponding to the subscripts of the submatrices Mi.

(iv) The edges of each internal node are normalized such that the non-zero weight

on the lowest index edge (one must exist or the vertex is redundant) divides all

edge weights by the weight identified. The identified weight is then attached to

the edge leading to the vertex.

(v) For a fixed variable ordering x0 ≺ x1 ≺ . . . ≺ xn−1, each path through the

QMDD from the top to a terminal value visits internal nodes in the reverse of

the variable ordering, and each multiplicative edge simply multiples the terminal

at the end of the path by its value.

(vi) Like most other DD-based data structures, internal nodes are irredundant and

unique in that no two internal nodes contain the same outgoing edge values and

destination nodes.

Example VII.3. The QMDD for the controlled-V gate is shown in Figure 7.2c.

A QMDD represents a complex-valued matrix uniquely up to variable reorder-

ing and certain quantum circuits can be represented compactly using QMDDs. One

example is the cycle function benchmark cycle17 3 from [46], which is a 20-qubit cir-

cuit with 48 Toffoli gates. Straightforward simulation using complex-valued matrices

would require 48 multiplications of 220 × 220 matrices while a QMDD for such a cir-

cuit contains only 236 nodes. Although most of the previous research on QMDDs has

been devoted to their use in representing quantum circuits, the work in [32] describes

how to represent quantum states using QMDDs. In this case, each node has exactly

two outgoing edges corresponding to a recursive bipartitioning of the column vector

that represents a quantum state. Therefore, states that are separable with respect

to the computational basis can be represented compactly using QMDDs. The work

149

V

•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1+i

2 0 1−i
2 0

0 0 0 0 0 1+2
2 0 1−i

2
0 0 0 0 1−i

2 0 1+i
2 0

0 0 0 0 0 1−i
2 0 1+i

2



(a) Graphical (b) Complex matrix (c) QMDD

Figure 7.2: Several representations for the controlled-V gate on
three qubits, where V = 1+i

2

(
1 −i
−i 1

)
. The second and third qubits

from the top are the control and target, respectively. The first qubit
is not modified. The QMDD exploits the structure of the matrix
and thus provides a more compact representation. Note that the
edge weights are normalized as described in Definition VII.2.

in [47] outlines specialized QMDD algorithms for matrix multiplication, the tensor

product, and initial construction. The use of QMDDs to simulate quantum logic is

introduced in [32]. In the next section, we modify some of the properties introduced

in Definition VII.2 to facilitate graph-based representation of matrix product states.

7.3 MPS-based Decision Diagrams

Section 7.2 described several quantum circuits whose operators can be compactly

represented using QMDDs. Consider the matrix operator that defines the QFT op-

eration on n qubits is,

Fn = 1√
N



1 1 1 . . . 1

1 w w2 wN−1

1 w2 . . . w2(N−1)

...
...

1 wN−1 w2(N−1) . . . w(N−1)(N−1)


(7.4)

150

where N = 2n and w = exp(2πi
N

). Observe that recursive partitioning of Fn into

quadrants does not yield many repeated submatrices. For example, the first level of

partitioning for F2 is F [0]
2 = [1 1

1 w], F [1]
2 =

[
1 1
w2 w3

]
, F [2]

2 =
[

1 w2

1 w3

]
and F

[3]
2 =

[
w4 w6

w6 w9

]
,

which are all distinct. This is also true in general for Fn. The absence of repeated

submatrices limits compression and leads to an exponential increase in QMDD nodes.

Therefore, QMDDs are not ideal for representing QFT operators. Nonetheless, as

shown in Sections 5.4 and 7.1, it is possible to simulate the QFT operation efficiently.

This suggests a potential generalization of QMDDs that incorporates sophisticated

mathematical techniques such as those used in p-blocked multiframes and MPS. To

this end, we modify some of the properties of QMDDs to define multivalued decision

diagrams for modeling MPS.

Definition VII.4. Consider a quantum state |ψ〉modeled by the MPS representation

defined in Equation 7.3. An n-qubit matrix product multivalued decision diagram

(MPMDD) for |ψ〉 is a directed acyclic graph with the following properties:

(i) There is a single start vertex with only one incoming edge that itself has no

source vertex.

(ii) There is a single terminal node with no outgoing edges and fixed value 1.0.

(iii) For each internal node (variable) xl∈{1,2,...n}, the number of outgoing edges is

twice the local Schmidt rank (χA in Equation 7.2).

(iv) The variable ordering x1 ≺ . . . ≺ xl ≺ . . . ≺ xn is given by the MPS decompo-

sition of |ψ〉. Node xl is evaluated by assigning the pair of values (il, αl), which

correspond to the indices of tensor A[l]il
αl−1αl

in Equation 7.3. Observe that the

value of index αl−1 is implied by an assignment of xl−1.

(a) Each outgoing edge has a weight equal to A[l]il
αl−1αl

.

(b) Each internal node has weight equal to v[l]αl .

151

(v) A path through the MPMDD from the top to a terminal value corresponds

to one term of the sum in Equation 7.3. Each multiplicative edge and node

multiples the terminal at the end of the path by its value.

Observe that MPMDDs are canonical since they directly model Equation 7.3 for

an arbitrary quantum state. One advantage of using MPMDDs is that a particular

assignment of variables can be evaluated using a (recursive) depth-first traversal of

the graph. For an n-qubit MPS, the number of internal nodes in an MPMDDs is

always n and its width (largest number of outgoing edges for any node) is 2χ. The

general form of an MPMDD is shown in Figure 7.3. To compute a complex amplitude

ci1i2...in of the MPS, one performs O(χ2) depth-first traversals on the MPMDD – one

for each term in the sum from Equation 7.3.

Proposition VII.5. Any n-qubit quantum state |ψ〉 that admits an efficient QMDD

representation using poly(n) space also admits an efficient MPMDD representation.

Figure 7.3: General form for an MPMDD. Level l of the diagram
(dotted rectangles) corresponds to a tensor A[l] in Equation 7.3. The
degree (number of outgoing edges) of each internal node in an MP-
MDD is equal to twice the local Schmidt rank (χA in Equation 7.2).
Therefore, the width of the graph is twice the Schmidt rank χ for
the state. The weights of nodes and edges depends on the particular
variable assignment (Definition VII.4-iv).

152

Proof. A QMDD representation is efficient if the column vector for |ψ〉 can be recur-

sively partitioned into poly(n) blocks (Section 7.2). Such partitioning corresponds to

a decomposition of |ψ〉 into separable blocks such that |ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φk〉,

where each |φi〉 is a vector expressed in the computational basis. Since the concate-

nated Schmidt decomposition from Equation 7.3 has been shown to be canonical [55],

any efficient computational-basis decomposition implied by a QMDD yields an MPS

decomposition with Schmidt rank χ =poly(n).

Example VII.6. Figure 7.4 shows the QMDD and MPMDD for the separable state

|ψ〉 = (|00〉+ |01〉+ |10〉+ |11〉)/2.

Example VII.7. Figure 7.5 shows the QMDD and MPMDD for the entangled state

|ψ〉 = (|00〉+ |01〉+ |10〉 − |11〉)/2.

Proposition VII.5 shows that MPMDDs generalize QMDDs and facilitate efficient

graph-based representation of larger classes of quantum states. Examples VII.6 and

VII.7 illustrate some of the differences between QMDDs and MPMDDs. For such

simple instances, QMDDs are smaller than MPMDDs by a factor of n. However,

(a) QMDD (b) MPMDD

Figure 7.4: Two graph-based representations for the separable
state |ψ〉 = (|00〉+ |01〉+ |10〉+ |11〉)/2. Here, v[1]

1 = v
[2]
1 = 1.0 and

A
[1]0
1 = A

[1]1
1 = A

[2]0
1 = A

[2]1
1 = 1/

√
2.

153

(a) QMDD (b) MPMDD

Figure 7.5: Two graph-based representations for the entangled
state |ψ〉 = (|00〉+ |01〉+ |10〉 − |11〉)/2. The tensor (A) and vector
(v) values for the MPMDD are listed in Example VII.1.

for more complex cases such as those involving QFT circuits, QMDDs observe expo-

nential blowup while MPMDDs remain poly-sized (Section 7.1). Furthermore, since

one can directly obtain any of the MPS tensors directly from an MPMDD using

pointers, any MPS algorithms for quantum logic simulation can be extended to work

on MPMDDs. An open challenge is to adapt the algorithms described in [68] for

implementing one- and two-qubit operations to work directly on MPMDDs. Such

algorithms may exploit graph structure to improve performance.

7.4 Summary

In this chapter, we described two well-known techniques for quantum simulation:

matrix product states (MPS) and quantum multivalued decision diagrams (QMDD).

The results from Section 7.1 suggest that it is possible to derive hybrid modeling tech-

niques that combine MPS and QMDDs. Such an approach would expand the classes

of states that can be represented via decision diagrams and potentially improve the

performance of MPS simulation. To this end, we introduced matrix product multi-

valued decision diagrams (MPMDDs) in Section 7.3. We derived specific properties

154

for MPMDDs and showed that any quantum state that can be represented compactly

using QMDDs also admits an efficient MPMDD representation.

155

CHAPTER VIII

Conclusions

Generic quantum-circuit simulation appears intractable for conventional comput-

ers since required resources grow exponentially with circuit width. As compared to

digital logic circuits, quantum circuits have unique properties that make them signif-

icantly more complicated to analyze using traditional design-automation techniques.

Another challenge is that quantum information is fragile and prone to several types

of environmental errors, which experimental physicists find difficult to characterize.

Nonetheless, as quantum information processing gains traction, quantum-circuit sim-

ulation becomes increasingly significant for engineering purposes – evaluation, testing

and optimization – as well as for theoretical research. Therefore, quantum design and

simulation tools must incorporate sophisticated models and efficient classical algo-

rithms to overcome these challenges for classes of circuits with practical value. For

example, Gottesman and Knill identified an important subclass, called stabilizer cir-

cuits, which can be simulated efficiently using group-theory techniques and insights

from quantum physics. Realistic circuits enriched with quantum error-correcting

codes and fault-tolerant procedures are dominated by stabilizer subcircuits and con-

tain a relatively small number of non-stabilizer components. The work in this disser-

tation centers around developing new data structures and algorithms that facilitate

parallel simulation of such circuits. In the remaining sections, a detailed discussion

156

of our contributions is offered, followed by a description of open challenges and a

discussion of future applications.

8.1 Summary of Contributions

In this dissertation, we have evaluated several simulation techniques based on the

Heisenberg model for quantum computers – also known as the stabilizer formalism.

We designed a new simulation technique that facilitates simulation of generic quan-

tum circuits via the stabilizer formalism and therefore exploits the speedups offered

by such group-theory techniques. We developed and implemented a comprehensive

software tool based on this technique. Our contributions directly facilitate further

analysis of quantum speed-ups, exploitable structure in quantum information and

error characterization. The contributions of this dissertation fall into several major

categories: (i) analysis of geometric properties of stabilizer states and their embed-

ding in Hilbert space (Chapters II and III), (ii) computational geometry of stabilizer

states (Chapter IV), and (iii) design and implementation of several new stabilizer-

based simulation techniques (Chapters V and VI).

Geometric properties of stabilizer states. We defined a nearest neighbor of an n-

qubit stabilizer state |ψ〉 as a state |φ〉 such that |〈ψ|φ〉| = 1/
√

2, which is the largest

possible value 6= 1 (Corollary III.3). In Theorem III.11, we proved that every stabilizer

state has exactly 4(2n − 1) nearest neighbors. Theorem III.14 generalizes this result

to the case of k-neighbors, where 0 < k ≤ n. We used these results to quantify the

distribution of angles between any one stabilizer state and all other stabilizer states.

We showed that, for sufficiently large n, 1/3 of all stabilizer states are orthogonal to

|ψ〉 (Corollary III.15) and the fraction of k-neighbors tends to zero for 0 < k < n− 4

(Theorem III.17). Therefore, 2/3 of all stabilizer states are oblique to |ψ〉 and this

fraction is dominated by the k-neighbors, where n−4 ≤ k ≤ n. These findings suggest

157

a rather uniform geometric structure for stabilizer states. This is further evidenced

by two additional facts. First, for any n-qubit stabilizer state |ψ〉, there exists a set of

2n− 1 nearest neighbors to |ψ〉 that lie at 60◦ angles to each other (Corollary III.12).

Second, every linearly-dependent triplet of stabilizer states that are non-parallel to

each other includes two pairs of nearest neighbors and one pair of orthogonal states

(Corollary III.23). Additionally, Theorem III.21 shows that there are 5(2n− 1) states

|ϕ〉 (including all nearest-neighbor states) such that the wedge product |φ〉 = |ψ ∧ ϕ〉

can also be represented compactly (up to a phase) using the stabilizer formalism. We

call such a state a stabilizer bivector. In Proposition III.22, we proved that the norm

of any stabilizer bivector and thus the area of the parallelogram formed by any two

stabilizer states is
√

1− 2−k for 0 ≤ k ≤ n.

Embedding of stabilizer geometry in Hilbert space. In Section 3.2, we de-

scribed how the discrete embedding of stabilizer geometry in Hilbert space complicates

several natural geometric tasks. Our results on the geometric properties of stabilizer

states imply that there are significantly more stabilizer states than the dimension of

the Hilbert space in which they are embedded (Theorem III.18), and that they are

arranged in a fairly uniform pattern (Corollaries III.12 and III.23). These factors sug-

gest that, if one seeks a stabilizer state closest to a given arbitrary quantum state, local

search appears a promising candidate. To the contrary, we showed that local search

does not guarantee finding such stabilizer states (Section 3.2.1). The second natural

task we consider is representing or approximating a given arbitrary quantum state

by a short linear combination of stabilizer states. Again, having considerably more

stabilizer states than the dimension of the Hilbert space suggested a positive result at

first. However, we demonstrated a family of quantum states that exhibits asymptotic

orthogonality to all stabilizer states and can thus be neither represented nor approx-

imated by short superpositions of stabilizer states (Theorem III.26). Furthermore,

158

we showed in Proposition III.27 that the maximal radius of any 2n-dimensional ball

centered at a point on the unit sphere that does not contain any n-qubit stabilizer

states cannot exceed
√

2, but approaches
√

2 as n→∞.

Computational geometry of stabilizer states. Angles between stabilizer states

were discussed in [2], where the authors describe possible values for such angles

and outline an inner-product computation that involves the synthesis of a basis-

normalization stabilizer circuit that maps a stabilizer state to a computational basis

state. We observe that this circuit-synthesis procedure is the computational bottle-

neck of the algorithm and thus any improvements to this synthesis process translate

into increased performance of the overall algorithm. In Chapter IV, we described

an algorithm for synthesizing canonical circuits with the block sequence H-C-CZ-

P -H. Our circuits are close to the smallest known circuits proposed in [14]. Our

canonical circuits improve the computation of inner products, helping us outperform

the inner-product algorithm based on non-canonical circuits proposed in [6]. Algo-

rithm 4.1.1 produces circuits with less than half as many gates on average and runs

roughly 2× faster. Furthermore, our synthesis approach produces canonical circuits

given any input stabilizer state by first obtaining a canonical generator set for the

state. Additionally, we exploited our analysis of the geometry of stabilizer states to

design algorithms for the following fundamental tasks: (i) orthogonalization for linear

combinations of stabilizer states, and (ii) efficient computation of stabilizer bivectors.

Stabilizer-based simulation of generic quantum circuits. We leveraged our

results on the geometry of stabilizer states to design several data structures and

algorithms for manipulating superpositions of stabilizer states. Our techniques en-

sure the scalability of quantum-circuit simulation when stabilizer gates dominate as

demonstrated by our implementation which achieves significant speedups over state-

159

of-the-art simulators for such circuits. Our contributions along this line of research

include the following:

• Development of a new algorithm for maintaining the global phase of a stabilizer

state. This algorithm allowed us to overcome a key obstacle for representing

quantum states as superpositions of pure stabilizer states since global phases

become relative with respect to such superpositions.

• Design of the stabilizer frame data structure along with efficient algorithms

for frame-based operations (ROTATE, COFACTOR) that facilitate simulation of

quantum circuits with stabilizer, non-stabilizer and measurement gates.

• Development of the COALESCE operation for stabilizer frames. Such an operation

exploits symmetries in a stabilizer frame and reduces the total number of states

in a given superposition. Frame coalescing leads to a more compact multiframe

data structure.

• Implementation of simulation invariants to speed up relevant algorithms. One

invariant ensures that the stabilizer matrix for each frame is stored in row-

echelon form to avoid expensive Gaussian elimination during simulation. An-

other invariant implements a heuristic approach to maintain the orthogonality

of multiframes.

• Design of p-blocked multiframes, which generalize multiframes to incorporate

the p-blocking technique from [41].

• Implementation of our software package, called Quipu, which incorporates all

our simulation techniques and includes a software infrastructure for parallel

frame-based simulation.

• Empirical validation of stabilizer frames, multiframes and p-blocked multiframes.

Quipu simulates certain quantum arithmetic circuits (e.g., reversible ripple-carry

160

adders) in polynomial time and space for equal superpositions of n-qubits. On

such instances, known linear-algebraic simulation techniques, such as the (state-

of-the-art) BDD-based simulator QuIDDPro, take exponential time. We simulate

quantum Fourier transform (QFT) and quantum fault-tolerant circuits using

Quipu, and the results demonstrate that our frame-based techniques empiri-

cally outperforms QuIDDPro in all cases. In particular, the runtime of p-blocked

multiframe simulation of QFT circuits is approximately linear in the number of

qubits.

Generic stateless simulation and new graph-based techniques. Using our

analysis of the Pauli expansions of quantum operators, we generalized the stateless

approach from [8, 11, 39] to include simulation generic quantum circuits. Our contri-

butions along this line of research include the following:

• Derivation of Pauli expansions of several useful quantum operators including

multi-controlled X and Z operators.

• Design of a recurrence relation to express the Pauli expansion of addition oper-

ators.

• Design of Pauli multivalued decision diagrams, which can be used to represent

Pauli expansions compactly.

• Development and implementation of an algorithm for stateless simulation of

non-stabilizer gates using Pauli expansions.

• Empirical validation of stateless simulation. For stabilizer circuits that follow a

specific structure, stateless simulation outperforms stabilizer-based techniques

such as CHP. However, when simulating non-stabilizer circuits such as ripple-

carry adders, stateless simulation takes exponential time and thus is outper-

formed by our frame techniques.

161

• Design of matrix product multivalued decision diagrams, which facilitate graph-

based representation of larger classes of quantum states including matrix prod-

uct states.

8.2 Open Challenges

As reviewed in Section 4.5.1, the work in [2, 6, 63] describes how to represent

and manipulate mixed states using the stabilizer formalism. To this end, extensions

of our results to mixed states could be of interest. Another attractive direction

for future work is generalizing presented results and algorithms to the case of d-

dimensional qudit states [12]. Further challenges related to the geometry of stabilizer

states include:

• Characterization of possible volumes of high-dimensional parallelotopes formed

by more than two stabilizer vectors (generalizing Proposition III.22).

• Characterization of minimally-dependent sets of stabilizer states and algorithms

for efficient detection of such sets (extending our discussion in Section 3.1.3).

• Efficiency improvement for computing inner and exterior products of stabilizer

states as well as the orthogonalization procedure from Algorithm 4.3.1.

• Characterization of the complexity analysis of finding a closest stabilizer state

to a given non-stabilizer state (for appropriate representations of non-stabilizer

states).

• Describing the Voronoi-diagram structure of stabilizer states (extending Theo-

rem III.11).

Recently, new techniques for synthesizing single-qubit operators using Clifford

and T gates has been developed [43, 59]. An open problem is whether such synthesis

162

techniques can be exploited to improve (stabilizer) frame-based simulation. In Sec-

tion 5.2.2, we described a software framework for parallel simulation of multiframes

and in Section 5.4 we introduced p-blocked multiframes, which admit poly-time sim-

ulation of quantum Fourier transform circuits. Two open challenges are:

• Designing software techniques for distributed simulation of p-blocked multi-

frames.

• Identifying additional circuits for which p-blocked multiframes outperform other

frame-based techniques.

We defined Pauli decision diagrams (PDDs) in Section 6.2.1 and showed that

PDDs can represent certain quantum operators compactly. Examples of such oper-

ators include highly entangled stabilizer operators and quantum addition operators,

which previous decision diagram and matrix product techniques fail to represent ef-

ficiently. More general PDDs can be developed using complex-valued edge weights.

Such edge-valued PDDs may be used identify new classes of quantum operators that

can be represented compactly on conventional computers.

In Section 7.3, we introduced graph-based techniques for representing matrix prod-

uct states. An attractive research direction is to design graph-based algorithms for

quantum logic simulation using matrix product multivalued decision diagrams (MP-

MDDs). Such algorithms can be adapted from the work in [68] and could improve

performance of MPS simulation.

8.3 Future Directions

In this work, we have discussed different techniques to efficiently simulate various

classes of quantum circuits depending on certain properties. Our successful design

of hybrid modeling techniques that combine distinct mathematical approaches has

led to theoretical insights and improved empirical performance for quantum-circuit

163

simulation. Nonetheless, it is still unclear how much overlap exists among stabilizer

frames and other well-known techniques such as decision diagrams and matrix product

states. To this end, we now discuss future directions for generalizing frame-based

simulation to incorporate such techniques.

8.3.1 Frame-based simulation using Pauli expansions

As shown in Chapter V, frame-based simulation of n-qubit stabilizer circuits takes

time polynomial in |F|, the number of distinct phase vectors stored in the frame.

Therefore, if an arbitrary state |φ〉 can be decomposed into a stabilizer frame such

that |F| = poly(n) and U is composed exclusively of stabilizer and Pauli gates,

U |φ〉 can be simulated efficiently on a classical computer. We showed examples of

such states in Section 5.3. Furthermore, we described in Section 6.2.1 how certain

quantum operators can be represented compactly using Pauli multivalued decision

diagrams. Finding other quantum operators that admit Pauli MDD representations

can help expand the practical value of both stateless and frame-based simulation

techniques. Moreover, the overall performance of frame-based simulation may be im-

proved if one designs efficient algorithms to apply Pauli MDD’s directly to a stabilizer

frame without expanding the Pauli decomposition represented by the MDD, which

contains an exponential number of terms. Such algorithms would extend the class of

operators that can be simulated using the stateless approach and facilitate analysis

of intermediate states during the execution of a particular quantum algorithm such

as Shor’s number-factoring. This analysis can deepen our insight into why certain

algorithms achieve exponential speed-ups over classical simulation.

8.3.2 Stabilizer-based matrix product states

Recall from Section 7.1 that Matrix product states (MPS) are an efficient ap-

proximation for weakly-entangled quantum states. There are important similarities

164

between p-blocked multiframes and MPS. Both approaches make use of a decomposi-

tion algorithm for updating the underlying representation. In fact, our decomposition

algorithm (Algorithm 5.4.1) can be regarded as a modified version of Schmidt decom-

position specific to stabilizer frames. Furthermore, the stabilizer matrix associate with

a frame is analogous to the A[l] operators found MPS. Additionally, the phase vectors

in a frame are analogous to the v[l] vectors in MPS. In similarity to the Schmidt rank,

one can introduce the stabilizer rank of a quantum state – the smallest number of sta-

bilizer states whose linear combination expresses a given quantum state. For example,

while the GHZ state (|000〉+|111〉)
√

2 has Schmidt rank two, its stabilizer rank would

be one since it can be represented using a single stabilizer state. One key difference is

that MPS decomposition considers all possible bipartitions while Algorithm 5.4.1 does

not. A generalized version of Algorithm 5.4.1 can lead to a stabilizer-based matrix

product state representation that holds great promise for achieving new theoretical

insights and improved empirical performance for quantum-circuit simulation.

165

APPENDIX

166

APPENDIX A

The 1080 three-qubit stabilizer states

Shorthand notation represents a stabilizer state as α0, α1, α2, α3 where αi are the
normalized amplitudes of the basis states. Basis states are emphasized in bold. The
∠ column indicates the angle between that state and |000〉, which has 28 1-neighbor
states and 315 orthogonal states (⊥). The tables are intended for on-screen viewing
under magnification.

167

State Gen’tors State Gen’tors State Gen’tors State Gen’tors State Gen’tors State Gen’tors State Gen’tors State Gen’tors

11111111 IIX IXI XII 1111---- IIX IXI -XII 100i-00̄i IXY IYX -XII 0̄i001000 IZI YIX -XIY 11----11 IIX -IXI -XII 1̄ii--īi1 IYZ -IXX -XII 10-00i0i XYX -IXZ -YYY 1--1-11- -IIX -IXI -XII
1111iiii IIX IXI YII 1111̄īīīi IIX IXI -YII 100īi001 IXY IYX -YII 1i00-i00 IZI YIX -XIZ 11--̄īiii IIX -IXI -YII 1̄ii-̄i-1i IYZ -IXX -YII 1īi-1̄ii- XYY -IXX -YIX 1--1̄iiīi -IIX -IXI -YII

11110000 IIX IXI ZII 00001111 IIX IXI -ZII 0000100i IXY IYX -ZII 10000-00 IZI YIY -XIX 000011-- IIX -IXI -ZII 00001̄ii- IYZ -IXX -ZII 11--1-1- XYY -IXX -YYZ 00001--1 -IIX -IXI -ZII
11ii11ii IIX IYI XII 11ii--̄īi IIX IYI -XII 1-ii-1̄īi IXY IYZ -XII 1-00--00 IZI YIY -XIZ 11̄īi--ii IIX -IYI -XII 11īi--̄ii IYZ -IXY -XII 1i-īi-i- XYY -IXZ -YIZ 1-̄ii-1īi -IIX -IYI -XII
11iiii-- IIX IYI YII 11iīīi11 IIX IYI -YII 1-iīii11 IXY IYZ -YII 1̄i00i-00 IZI YIZ -XIX 11̄īīīi-- IIX -IYI -YII 11īīīi1- IYZ -IXY -YII 0-0-10-0 XYY -IXZ -YYX 1-̄iīii-1 -IIX -IYI -YII

11ii0000 IIX IYI ZII 000011ii IIX IYI -ZII 00001-ii IXY IYZ -ZII 1100īi00 IZI YIZ -XIY 000011̄īi IIX -IYI -ZII 000011īi IYZ -IXY -ZII 100-0̄ii0 XYZ -IXX -YIX 00001-̄ii -IIX -IYI -ZII
11001100 IIX IZI XII 1100--00 IIX IZI -XII 0i100i10 IXY XII -IYX 1-000000 IZI ZII -IIX 001100-- IIX -IZI -XII 11īi-1̄īi IYZ -XIZ -YXX 1-1-̄īiii XYZ -IXX -YYY 001-00-1 -IIX -IZI -XII
1100ii00 IIX IZI YII 1100̄īi00 IIX IZI -YII 11̄ii11̄ii IXY XII -IYZ 1̄i000000 IZI ZII -IIY 001100̄īi IIX -IZI -YII 1ii1-īi1 IYZ -XIZ -YXY 100̄i01i0 XYZ -IXY -YIY 001-00̄ii -IIX -IZI -YII
11000000 IIX IZI ZII 00001100 IIX IZI -ZII 11̄iīii11 IXY XIY -YYX 01000000 IZI ZII -IIZ 00000011 IIX -IZI -ZII 1-iīīi1- IYZ -XXX -YIZ 1i-̄ii1i1 XYZ -IXY -YYX 0000001- -IIX -IZI -ZII
00111100 IIX XXI YYI 11--11-- IIX XII -IXI 100i0i10 IXY XIY -YYZ 111-11-1 IZX XIX -YXY 00--1100 IIX -XXI -YYI 0̄i0-10i0 IYZ -XXX -YXY 1-īi1-̄ii XZI -IIX -YXI 00-11-00 -IIX -XXI -YYI
11iiii11 IIX XXI YZI 11̄īi11̄īi IIX XII -IYI 1-ii11̄ii IXY XYX -YIY 11īi11̄ii IZX XIX -YXZ 11iīīi-- IIX -XXI -YZI 1̄ii-̄i11̄i IYZ -XXY -YIZ 1--11-1- XZI -IIX -YYI 1-īīii-1 -IIX -XXI -YZI
110000ii IIX XYI YXI 00110011 IIX XII -IZI 1̄i-i1i1i IXY XYX -YYZ 11-1̄īīii IZX XXY -YIX 110000̄īi IIX -XYI -YXI 10i0010̄i IYZ -XXY -YXX 1̄ii11̄īi- XZI -IIY -YXI 1-0000̄ii -IIX -XYI -YXI
11--iiii IIX XYI YZI 11000011 IIX XXI -YYI 0-i0100i IXY XYZ -YIY 110000̄ii IZX XXY -YXZ 11--̄īīīi IIX -XYI -YZI 1-00-100 IZI -IIX -XII 1̄i-i1̄i1̄i XZI -IIY -YYI 1--1̄iīii -IIX -XYI -YZI
11̄īi11ii IIX XZI YXI 11̄īīīi11 IIX XXI -YZI 1i1īi-i1 IXY XYZ -YYX 11̄iīīi1- IZX XXZ -YIX 11̄īi--̄īi IIX -XZI -YXI 1-00̄ii00 IZI -IIX -YII 010i010̄i XZI -IIZ -YXI 1-̄ii-1̄ii -IIX -XZI -YXI
111111-- IIX XZI YYI 00ii1100 IIX XYI -YXI 0i100-i0 IXY YII -IYX 001-1100 IZX XXZ -YXY 1111--11 IIX -XZI -YYI 00001-00 IZI -IIX -ZII 010-0101 XZI -IIZ -YYI 1-1--11- -IIX -XZI -YYI
1i1i1i1i IIY IXI XII 1111̄īiii IIX XYI -YZI 11̄iiii1- IXY YII -IYZ 11-1iiīi IZX YIX -XXY 1i-̄i-̄i1i IIY -IXI -XII 1̄i00-i00 IZI -IIY -XII 1--1īīii YII -IIX -IXI 1̄i-i-i1̄i -IIY -IXI -XII
1i1ii-i- IIY IXI YII 11ii11̄īi IIX XZI -YXI 1-ii--īi IXY YIY -XYX 11̄iiii-1 IZX YIX -XXZ 1i-̄īi1i- IIY -IXI -YII 1̄i00̄i-00 IZI -IIY -YII 1-̄iiīi1- YII -IIX -IYI 1̄i-īi-i1 -IIY -IXI -YII

1i1i0000 IIY IXI ZII 11--1111 IIX XZI -YYI 01̄i0100i IXY YIY -XYZ 111---1- IZX YXY -XIX 00001i-̄i IIY -IXI -ZII 00001̄i00 IZI -IIY -ZII 001-00īi YII -IIX -IZI 00001̄i-i -IIY -IXI -ZII
1ii-1ii- IIY IYI XII 11--iīīi IIX YII -IXI 11̄iiīi-- IXY YYX -XIY 00-11100 IZX YXY -XXZ 1īi1-̄ii- IIY -IYI -XII 01000-00 IZI -IIZ -XII 1̄i-ii1̄i- YII -IIY -IXI 1̄īi--ii1 -IIY -IYI -XII
1ii-i--̄i IIY IYI YII 11̄īiii11 IIX YII -IYI 1i1ii1̄i- IXY YYX -XYZ 11īi--īi IZX YXZ -XIX 1īi1̄i1-̄i IIY -IYI -YII 01000̄i00 IZI -IIZ -YII 1̄īi-i11̄i YII -IIY -IYI 1̄īi-̄i--i -IIY -IYI -YII

1ii-0000 IIY IYI ZII 001100ii IIX YII -IZI 100i0̄i-0 IXY YYZ -XIY 110000īi IZX YXZ -XXY 00001īi1 IIY -IYI -ZII 00000100 IZI -IIZ -ZII 001̄i00i1 YII -IIY -IZI 00001̄īi- -IIY -IYI -ZII
1i001i00 IIY IZI XII 00̄īi1100 IIX YXI -XYI 1̄i-i-̄i-̄i IXY YYZ -XYX 1i-i1i1̄i IZY XIY -YXX 001i00-̄i IIY -IZI -XII 0-001000 IZI -XIX -YIY 010-0i0̄i YII -IIZ -IXI 001̄i00-i -IIY -IZI -XII
1i00i-00 IIY IZI YII 11ii--ii IIX YXI -XZI 0i100000 IXY ZII -IYX 1ii11īi- IZY XIY -YXZ 001i00̄i1 IIY -IZI -YII 1i00̄i-00 IZI -XIX -YIZ 010̄i0i01 YII -IIZ -IYI 001̄i00̄i- -IIY -IZI -YII
1i000000 IIY IZI ZII 110000-- IIX YYI -XXI 11̄ii0000 IXY ZII -IYZ 1i1̄īi1i1 IZY XXX -YIY 0000001i IIY -IZI -ZII 10000̄i00 IZI -XIY -YIX 0001000i YII -IIZ -IZI 0000001̄i -IIY -IZI -ZII
001i1i00 IIY XXI YYI 11------ IIX YYI -XZI 1̄i1i-i-̄i IXZ IYX -XII 00i11i00 IZY XXX -YXZ 00-̄i1i00 IIY -XXI -YYI 1-00̄īi00 IZI -XIY -YIZ 0-100̄ii0 YII -IXX -IYY 00-i1̄i00 -IIY -XXI -YYI
1ii-i-1i IIY XXI YZI 11̄īiii-- IIX YZI -XXI 1̄i1īi-̄i1 IXZ IYX -YII 1īi-̄i11̄i IZY XXZ -YIY 1ii-̄i1-̄i IIY -XXI -YZI 1̄i00-̄i00 IZI -XIZ -YIX 1īi-i-1̄i YII -IXX -IYZ 1̄ii1̄i--i -IIY -XXI -YZI
1i0000i- IIY XYI YXI 1111iīīi IIX YZI -XYI 00001̄i1i IXZ IYX -ZII 1i00001̄i IZY XXZ -YXX 1i0000̄i1 IIY -XYI -YXI 1100-100 IZI -XIZ -YIY 100̄ii001 YII -IXY -IYX 1̄i0000̄i- -IIY -XYI -YXI
1i-̄ii-i- IIY XYI YZI 11--0000 IIX ZII -IXI 111----1 IXZ IYY -XII 1i1̄ii-̄i- IZY YIY -XXX 1i-̄īi1̄i1 IIY -XYI -YZI 11-1---1 IZX -XIX -YXY 1-̄īiīi11 YII -IXY -IYZ 1̄i-īi-̄i- -IIY -XYI -YZI
1īi11ii- IIY XZI YXI 11̄īi0000 IIX ZII -IYI 111-̄īīii IXZ IYY -YII 1īi-i--i IZY YIY -XXZ 1īi1-̄īi1 IIY -XZI -YXI 11̄ii--̄ii IZX -XIX -YXZ 1̄i-̄ii1̄i1 YII -IXZ -IYX 1̄īi--īi- -IIY -XZI -YXI
1i1i1i-̄i IIY XZI YYI 00110000 IIX ZII -IZI 0000111- IXZ IYY -ZII 1i-i-̄i-i IZY YXX -XIY 1i1i-̄i1i IIY -XZI -YYI 111-̄īiīi IZX -XXY -YIX 11-1iīii YII -IXZ -IYY 1̄i1̄i-i1̄i -IIY -XZI -YYI

10101010 IIZ IXI XII 1i1i-̄i-̄i IIY IXI -XII 1i1̄i1i1̄i IXZ XII -IYX 1i0000-i IZY YXX -XXZ 10-0-010 IIZ -IXI -XII 00īi1100 IZX -XXY -YXZ 0̄i0i10-0 YIX -IXI -XIY 010-0-01 -IIZ -IXI -XII
1010i0i0 IIZ IXI YII 1i1īi1̄i1 IIY IXI -YII 1-111-11 IXZ XII -IYY 1ii1-̄ii1 IZY YXZ -XIY 10-0̄i0i0 IIZ -IXI -YII 11īīīi-1 IZX -XXZ -YIX 1i-̄i-i1̄i YIX -IXI -XIZ 010-0̄i0i -IIZ -IXI -YII
10100000 IIZ IXI ZII 00001i1i IIY IXI -ZII 111-1-11 IXZ XIZ -YYX 00̄i-1i00 IZY YXZ -XXX 000010-0 IIZ -IXI -ZII 110000-1 IZX -XXZ -YXY 1īi--īi1 YIX -IXX -XYY 0000010- -IIZ -IXI -ZII
10i010i0 IIZ IYI XII 1ii--̄īi1 IIY IYI -XII 1i1̄i1̄i1i IXZ XIZ -YYY 100i100̄i IZZ XIZ -YXX 10̄i0-0i0 IIZ -IYI -XII 1i1̄i-̄i1̄i IZY -XIY -YXX 100-0īi0 YIX -IXX -XYZ 010̄i0-0i -IIZ -IYI -XII
10i0i0-0 IIZ IYI YII 1ii-̄i11i IIY IYI -YII 1-11̄īīii IXZ XYX -YIZ 100-1001 IZZ XIZ -YXY 10̄i0̄i0-0 IIZ -IYI -YII 1īi--̄īi- IZY -XIY -YXZ 0̄i0-10̄i0 YIX -IYI -XIY 010̄i0̄i0- -IIZ -IYI -YII
10i00000 IIZ IYI ZII 00001ii- IIY IYI -ZII 10100̄i0i IXZ XYX -YYY 100̄īi001 IZZ XXX -YIZ 000010̄i0 IIZ -IYI -ZII 1i-īi1̄i- IZY -XXX -YIY 1īi1-ii1 YIX -IYI -XIZ 0000010̄i -IIZ -IYI -ZII
10001000 IIZ IZI XII 1i00-̄i00 IIY IZI -XII 1̄i1īi1̄i- IXZ XYY -YIZ 10000001 IZZ XXX -YXY 001000-0 IIZ -IZI -XII 1i0000̄i- IZY -XXX -YXZ 1̄i-̄i1i1̄i YIX -IYX -XXY 0001000- -IIZ -IZI -XII
1000i000 IIZ IZI YII 1i00̄i100 IIY IZI -YII 010-1010 IXZ XYY -YYX 1001̄i00i IZZ XXY -YIZ 001000̄i0 IIZ -IZI -YII 1ii1̄i1-i IZY -XXZ -YIY 0̄i-0100̄i YIX -IYX -XXZ 0001000̄i -IIZ -IZI -YII

10000000 IIZ IZI ZII 00001i00 IIY IZI -ZII 1i1̄ii-i1 IXZ YII -IYX 000i1000 IZZ XXY -YXX 00000010 IIZ -IZI -ZII 00-i1i00 IZY -XXZ -YXX 000̄i0010 YIX -IZI -XIY 00000001 -IIZ -IZI -ZII
00101000 IIZ XXI YYI 1i-̄i1i-̄i IIY XII -IXI 1-11īiii IXZ YII -IYY 100̄ii00- IZZ YIZ -XXX 00-01000 IIZ -XXI -YYI 100̄i-00̄i IZZ -XIZ -YXX 001i00-i YIX -IZI -XIZ 000-0100 -IIZ -XXI -YYI
10i0i010 IIZ XXI YZI 1īi11īi1 IIY XII -IYI 1-11iiīi IXZ YIZ -XYX 1001i00̄i IZZ YIZ -XXY 10i0̄i0-0 IIZ -XXI -YZI 1001-001 IZZ -XIZ -YXY 1---̄iīīi YIX -IZX -XXY 010i0̄i0- -IIZ -XXI -YZI
100000i0 IIZ XYI YXI 001i001i IIY XII -IZI 1̄i1ii-i1 IXZ YIZ -XYY 100i-00i IZZ YXX -XIZ 100000̄i0 IIZ -XYI -YXI 100īi00- IZZ -XXX -YIZ 1-iīii-- YIX -IZX -XXZ 0100000̄i -IIZ -XYI -YXI
10-0i0i0 IIZ XYI YZI 1i00001i IIY XXI -YYI 111--1-- IXZ YYX -XIZ 000̄i1000 IZZ YXX -XXY 10-0̄i0̄i0 IIZ -XYI -YZI 000-1000 IZZ -XXX -YXY 10-00-01 YIY -IXI -XIX 010-0̄i0̄i -IIZ -XYI -YZI
10̄i010i0 IIZ XZI YXI 1īi1̄i11i IIY XXI -YZI 0-011010 IXZ YYX -XYY 100--00- IZZ YXY -XIZ 10̄i0-0̄i0 IIZ -XZI -YXI 100-̄i00̄i IZZ -XXY -YIZ 1--1--11 YIY -IXI -XIZ 010̄i0-0̄i -IIZ -XZI -YXI
101010-0 IIZ XZI YYI 00i-1i00 IIY XYI -YXI 1i1̄i-i-̄i IXZ YYY -XIZ 1000000- IZZ YXY -XXX 1010-010 IIZ -XZI -YYI 1000000̄i IZZ -XXY -YXX 11īi1-̄īi YIY -IXY -XYX 01010-01 -IIZ -XZI -YYI
01011010 IXI XIX YIY 1i1īi1i- IIY XYI -YZI 10100i0̄i IXZ YYY -XYX 010-10-0 XIX YIY -IXI 1-1--1-1 IXI -IIX -XII 1--11--1 XII -IIX -IXI 100̄i0-̄i0 YIY -IXY -XYZ 0-0110-0 -IXI -XIX -YIY
1i1ii1i1 IXI XIX YIZ 1ii-1īi1 IIY XZI -YXI 1i1̄i0000 IXZ ZII -IYX 010̄i10̄i0 XIX YIY -IYI 1-1-̄iīii IXI -IIX -YII 1-̄ii1-̄ii XII -IIX -IYI 10̄i00-0i YIY -IYI -XIX 1i-̄īi-i1 -IXI -XIX -YIZ
10100i0i IXI XIY YIX 1i-̄i1i1i IIY XZI -YYI 1-110000 IXZ ZII -IYY 00010010 XIX YIY -IZI 00001-1- IXI -IIX -ZII 001-001- XII -IIX -IZI 1-̄ii--ii YIY -IYI -XIZ 10-00̄i0i -IXI -XIY -YIX
1-1-iiii IXI XIY YIZ 1i-̄ii-̄i1 IIY YII -IXI 1-īi1-īi IYI XII -IIX 1i-̄ii1̄i- XIX YIZ -IXI 1̄i1̄i-i-i IXI -IIY -XII 1̄i-i1̄i-i XII -IIY -IXI 1-11--1- YIY -IYY -XXX 1--1̄īiii -IXI -XIY -YIZ
1̄i1̄i1i1i IXI XIZ YIX 1īi1i-1i IIY YII -IYI 1̄ii11̄ii1 IYI XII -IIY 1īi1i11̄i XIX YIZ -IYI 1̄i1̄īi-̄i- IXI -IIY -YII 1̄īi-1̄īi- XII -IIY -IYI 01-01001 YIY -IYY -XXZ 1̄i-i-̄i1i -IXI -XIZ -YIX
11111-1- IXI XIZ YIY 001i00i- IIY YII -IZI 010i010i IYI XII -IIZ 001i00i1 XIX YIZ -IZI 00001̄i1̄i IXI -IIY -ZII 001̄i001̄i XII -IIY -IZI 0010000- YIY -IZI -XIX 11---11- -IXI -XIZ -YIY
01100110 IXX IYY XII 00̄i11i00 IIY YXI -XYI 10i0010i IYI XIX -YIY 1̄i-̄īi1̄i- XIX YXY -IYX 01010-0- IXI -IIZ -XII 010-010- XII -IIZ -IXI 001-00-- YIY -IZI -XIZ 0-1001-0 -IXX -IYY -XII
01100ii0 IXX IYY YII 1ii--̄ii- IIY YXI -XZI 1̄ii1̄i11i IYI XIX -YIZ 1----1-- XIX YXY -IZX 01010̄i0̄i IXI -IIZ -YII 010̄i010̄i XII -IIZ -IYI 1̄i1īi-i- YIY -IZY -XXX 0-100īi0 -IXX -IYY -YII
01100000 IXX IYY ZII 1i0000-̄i IIY YYI -XXI 0i0-10i0 IYI XIY -YIX 01̄i0100̄i XIX YXZ -IYX 00000101 IXI -IIZ -ZII 00010001 XII -IIZ -IZI 1̄ii-̄i--̄i YIY -IZY -XXZ 00000-10 -IXX -IYY -ZII
1ii11ii1 IXX IYZ XII 1i-̄i-̄i-̄i IIY YYI -XZI 11iīii1- IYI XIY -YIZ 1-ii-1ii XIX YXZ -IZX 0-0-1010 IXI -XIX -YIY 0-100-10 XII -IXX -IYY 1̄i-ii-̄i1 YIZ -IXI -XIX 1īi--̄ii1 -IXX -IYZ -XII
1ii1i--i IXX IYZ YII 1īi1i--̄i IIY YZI -XXI 1ii-1̄ii1 IYI XIZ -YIX 1īi-i1-̄i XIX YYY -IXX 1i1īi-̄i- IXI -XIX -YIZ 1īi-1īi- XII -IXX -IYZ 11--īīii YIZ -IXI -XIY 1īi-̄i1-i -IXX -IYZ -YII

1ii10000 IXX IYZ ZII 1i1ii-̄i1 IIY YZI -XYI 1-īi11ii IYI XIZ -YIY 100-01-0 XIX YYZ -IXX 10100̄i0̄i IXI -XIY -YIX 100̄i100̄i XII -IXY -IYX 11-1īīīi YIZ -IXZ -XYX 00001īi- -IXX -IYZ -ZII
1̄īi1̄i11̄i IXX XIX YYY 1i-̄i0000 IIY ZII -IXI 1-īiīi-1 IYI YII -IIX 10-00i0̄i XIY YIX -IXI 1-1-̄īīīi IXI -XIY -YIZ 1-̄īi1-̄īi XII -IXY -IYZ 1i-ii1̄i1 YIZ -IXZ -XYY 1īi-̄i-1i -IXX -XIX -YYY

01101001 IXX XIX YYZ 1īi10000 IIY ZII -IYI 1̄ii1i1-i IYI YII -IIY 10̄i00i01 XIY YIX -IYI 1̄i1̄i-̄i-̄i IXI -XIZ -YIX 1̄i-̄i1̄i-̄i XII -IXZ -IYX 1̄īi-i-1i YIZ -IYI -XIX 100-0-10 -IXX -XIX -YYZ
1ii1-ii- IXX XYY YIX 001i0000 IIY ZII -IZI 010i0i0- IYI YII -IIZ 0010000i XIY YIX -IZI 1111-1-1 IXI -XIZ -YIY 11-111-1 XII -IXZ -IYY 11̄īiīi1- YIZ -IYI -XIY 1̄ii--̄ii1 -IXX -XYY -YIX
1--1---- IXX XYY YYZ 1010-0-0 IIZ IXI -XII 0̄i0110i0 IYI YIX -XIY 1--1iīīi XIY YIZ -IXI 1001-00- IXX -IYY -XII 10-0010- XIX -IXI -YIY 1-̄īiii1- YIZ -IYZ -XXX 1-1---11 -IXX -XYY -YYZ

10010ii0 IXX XYZ YIX 1010̄i0̄i0 IIZ IXI -YII 1ii--īi- IYI YIX -XIZ 1-̄iiii11 XIY YIZ -IYI 1001̄i00̄i IXX -IYY -YII 1̄i-īi1i- XIX -IXI -YIZ 1̄īi1i-1̄i YIZ -IYZ -XXY 0īi0100- -IXX -XYZ -YIX
1111̄iiīi IXX XYZ YYY 00001010 IIZ IXI -ZII 10i00-0̄i IYI YIY -XIX 001-00ii XIY YIZ -IZI 00001001 IXX -IYY -ZII 1̄ii-̄i1-i XIX -IXX -YYY 001̄i00i- YIZ -IZI -XIX 11--̄iīii -IXX -XYZ -YYY
100i100i IXY IYX XII 10i0-0̄i0 IIZ IYI -XII 1-īi--̄īi IYI YIY -XIZ 1-11iīii XIY YXX -IYY 1̄īi1-ii- IXX -IYZ -XII 01-0100- XIX -IXX -YYZ 001100īi YIZ -IZI -XIY 100̄i-00i -IXY -IYX -XII
100ii00- IXY IYX YII 10i0̄i010 IIZ IYI -YII 1̄ii1i--̄i IYI YIZ -XIX 1̄i1i-i1i XIY YXX -IZY 1̄īi1̄i--̄i IXX -IYZ -YII 10̄i0010̄i XIX -IYI -YIY 0̄i100-i0 YIZ -IZZ -XXX 100̄īi00- -IXY -IYX -YII
100i0000 IXY IYX ZII 000010i0 IIZ IYI -ZII 11iiīi-1 IYI YIZ -XIY 0īi01001 XIY YXZ -IYY 00001̄īi1 IXX -IYZ -ZII 1̄īi-̄i1-̄i XIX -IYI -YIZ 01100̄ii0 YIZ -IZZ -XXY 0000100̄i -IXY -IYX -ZII
1-ii1-ii IXY IYZ XII 1000-000 IIZ IZI -XII 1-īi0000 IYI ZII -IIX 1̄ii--ii- XIY YXZ -IZY 1̄īi1i--i IXX -XIX -YYY 1i1̄ii1̄i1 XIX -IYX -YXY 00̄ii1-00 YXI -IIX -XYI 1-̄īi-1ii -IXY -IYZ -XII
1-iiīi-- IXY IYZ YII 1000̄i000 IIZ IZI -YII 1̄ii10000 IYI ZII -IIY 11īīii-- XIY YYX -IXY 0--01001 IXX -XIX -YYZ 100̄i01̄i0 XIX -IYX -YXZ 1-īi-1īi YXI -IIX -XZI 1-̄īīii-- -IXY -IYZ -YII

1-ii0000 IXY IYZ ZII 00001000 IIZ IZI -ZII 010i0000 IYI ZII -IIZ 100̄i0i-0 XIY YYZ -IXY 1ii11̄īi1 IXX -XYY -YIX 00100001 XIX -IZI -YIY 00̄i-1̄i00 YXI -IIY -XYI 00001-̄īi -IXY -IYZ -ZII
1-iiii1- IXY XIY YYX 10-010-0 IIZ XII -IXI 0̄i100̄i10 IYX XII -IXY 1̄i-i1i-̄i XIZ YIX -IXI 1--11111 IXX -XYY -YYZ 001̄i00̄i1 XIX -IZI -YIZ 1̄ii1-ii1 YXI -IIY -XZI 11īiīi11 -IXY -XIY -YYX

0i10100i IXY XIY YYZ 10̄i010̄i0 IIZ XII -IYI 1i-i1i-i IYX XII -IXZ 1̄īi-1īi1 XIZ YIX -IYI 10010̄īi0 IXX -XYZ -YIX 1-11-111 XIX -IZX -YXY 000̄i0100 YXI -IIZ -XYI 100̄i0̄i10 -IXY -XIY -YYZ
11̄ii1-ii IXY XYX YIY 00100010 IIZ XII -IZI 1̄i1īi1i1 IYX XIX -YXY 001̄i001i XIZ YIX -IZI 1111īīii IXX -XYZ -YYY 1-̄īi-1̄īi XIX -IZX -YXZ 010i0-0i YXI -IIZ -XZI 1-̄īi11īi -IXY -XYX -YIY
1i1i1̄i-i IXY XYX YYZ 10000010 IIZ XXI -YYI 01i0100i IYX XIX -YXZ 11--1--1 XIZ YIY -IXI 0i100̄i-0 IXY -IYX -XII 0i0̄i10-0 XIY -IXI -YIX 11-1īiii YXX -IYY -XIY 1i-̄i1̄i1̄i -IXY -XYX -YYZ
100i0-i0 IXY XYZ YIY 10̄i0̄i010 IIZ XXI -YZI 1i-i1̄i1i IYX XXY -YIX 11̄īi1-̄ii XIZ YIY -IYI 0i1001̄i0 IXY -IYX -YII 11--̄iiīi XIY -IXI -YIZ 1īi1i1-i YXX -IYY -XXZ 0-̄i0100̄i -IXY -XYZ -YIY
1̄i-ii-i- IXY XYZ YYX 00i01000 IIZ XYI -YXI 11ii1-̄ii IYX XXY -YXZ 0011001- XIZ YIY -IZI 00000i10 IXY -IYX -ZII 1-̄īiii-1 XIY -IXY -YYX 11̄ii-1ii YXX -IYZ -XIZ 1̄i1̄ii-̄i1 -IXY -XYZ -YYX
1̄i1i1̄i1i IXZ IYX XII 1010̄i0i0 IIZ XYI -YZI 100i0̄i10 IYX XXZ -YIX 1-̄īi11̄ii XIZ YXX -IYZ 11̄ii--īi IXY -IYZ -XII 0i-0100̄i XIY -IXY -YYZ 0-0̄i10̄i0 YXX -IYZ -XXY 1̄i-̄i-i1i -IXZ -IYX -XII
1̄i1ii1i- IXZ IYX YII 10i010̄i0 IIZ XZI -YXI 1-̄iīīi11 IYX XXZ -YXY 0̄i100i10 XIZ YXX -IZZ 11̄iīīi-1 IXY -IYZ -YII 0i0110̄i0 XIY -IYI -YIX 1̄i-̄i1̄i1i YXX -IZY -XIY 1̄i-̄īi-i- -IXZ -IYX -YII
1̄i1i0000 IXZ IYX ZII 10-01010 IIZ XZI -YYI 0̄i1001i0 IYX YII -IXY 1̄īi11īi- XIZ YXY -IYZ 000011̄ii IXY -IYZ -ZII 11̄īīii-1 XIY -IYI -YIZ 00-̄i1̄i00 YXX -IZY -XXZ 00001̄i-̄i -IXZ -IYX -ZII
111-111- IXZ IYY XII 10-0i0̄i0 IIZ YII -IXI 1i-ii-̄i- IYX YII -IXZ 01100-10 XIZ YXY -IZZ 1-iīīi-1 IXY -XIY -YYX 11-1̄iīīi XIY -IYY -YXX 0i100i-0 YXX -IZZ -XIZ 11-1--1- -IXZ -IYY -XII
111-iiīi IXZ IYY YII 10̄i0i010 IIZ YII -IYI 1i-i-i-̄i IYX YIX -XXY 11-11--- XIZ YYX -IXZ 0̄i-0100i IXY -XIY -YYZ 10010īi0 XIY -IYY -YXZ 0̄i000010 YXX -IZZ -XXY 11-1̄īiīi -IXZ -IYY -YII

111-0000 IXZ IYY ZII 001000i0 IIZ YII -IZI 100i0i-0 IYX YIX -XXZ 1i-i1̄i-̄i XIZ YYY -IXZ 11̄ii-1̄īi IXY -XYX -YIY 000i0010 XIY -IZI -YIX 1i1̄īi-i- YXY -IYX -XIX 000011-1 -IXZ -IYY -ZII
1-11111- IXZ XIZ YYX 00̄i01000 IIZ YXI -XYI 1̄i1ii-̄i- IYX YXY -XIX 001-1-00 XXI YYI -IIX 1i1i-i1̄i IXY -XYX -YYZ 001100̄ii XIY -IZI -YIZ 1-īīīi-- YXY -IYX -XXZ 11-1-111 -IXZ -XIZ -YYX
1̄i1i1i1̄i IXZ XIZ YYY 10i0-0i0 IIZ YXI -XZI 1-̄iiii-- IYX YXY -XXZ 001̄i1̄i00 XXI YYI -IIY 100i01̄i0 IXY -XYZ -YIY 1̄i-̄i-i-̄i XIY -IZY -YXX 1īi--ii- YXY -IYZ -XIZ 1i-i-i1i -IXZ -XIZ -YYY
111-īiii IXZ XYX YIZ 100000-0 IIZ YYI -XXI 0-̄i0100i IYX YXZ -XIX 00010100 XXI YYI -IIZ 1̄i-īi1̄i1 IXY -XYZ -YYX 1̄īi1-īi1 XIY -IZY -YXZ 10̄i00i0- YXY -IYZ -XXX 1---̄īiīi -IXZ -XYX -YIZ
0̄i0i1010 IXZ XYX YYY 10-0-0-0 IIZ YYI -XZI 11ii-1īi IYX YXZ -XXY 1-īiīi1- XXI YZI -IIX 1i1̄i-̄i-i IXZ -IYX -XII 1i-̄i1̄i-i XIZ -IXI -YIX 1-111--- YXY -IZX -XIX 0̄i0̄i10-0 -IXZ -XYX -YYY
1i1̄ii1i- IXZ XYY YIZ 10̄i0i0-0 IIZ YZI -XXI 0̄i100000 IYX ZII -IXY 1̄ii1i11̄i XXI YZI -IIY 1i1̄īi1̄i- IXZ -IYX -YII 1--111-- XIZ -IXI -YIY 1-0000-- YXY -IZX -XXZ 1̄i-̄īi1i1 -IXZ -XYY -YIZ

1010010- IXZ XYY YYX 1010i0̄i0 IIZ YZI -XYI 1i-i0000 IYX ZII -IXZ 010i0i01 XXI YZI -IIZ 00001i1̄i IXZ -IYX -ZII 1---11-1 XIZ -IXZ -YYX 0-100--0 YXY -IZZ -XIZ 10-00101 -IXZ -XYY -YYX
010i10i0 IYI XIX YIY 10-00000 IIZ ZII -IXI 100-100- IYY XII -IXX 11-11-11 XXX YIY -IYY 1-11-1-- IXZ -IYY -XII 1̄i-̄i1i-i XIZ -IXZ -YYY 00100-00 YXY -IZZ -XXX 0-0i10̄i0 -IYI -XIX -YIY
1ii-i1-i IYI XIX YIZ 10̄i00000 IIZ ZII -IYI 1---1--- IYY XII -IXZ 1̄i-̄īi-̄i1 XXX YIY -IZY 1-11̄iīīi IXZ -IYY -YII 1īi11̄īi- XIZ -IYI -YIX 100̄i0-i0 YXZ -IYX -XIX 1īi1̄i--i -IYI -XIX -YIZ
10i00i0- IYI XIY YIX 00100000 IIZ ZII -IZI 1---iiīi IYY XIY -YXX 11̄iiīi11 XXX YIZ -IYZ 00001-11 IXZ -IYY -ZII 1-̄ii11̄īi XIZ -IYI -YIY 11̄īi1-īi YXZ -IYX -XXY 10̄i00̄i0- -IYI -XIY -YIX
1-īiii-- IYI XIY YIZ 1-1-1-1- IXI XII -IIX 0ii0100- IYY XIY -YXZ 0i1001i0 XXX YIZ -IZZ 1-11---1 IXZ -XIZ -YYX 11̄ii1-̄īi XIZ -IYZ -YXX 10010̄ii0 YXZ -IYY -XIY 1-̄iīīi-- -IYI -XIY -YIZ
1̄ii11ii- IYI XIZ YIX 1̄i1̄i1̄i1̄i IXI XII -IIY 111--111 IYY XXX -YIY 0̄i0110̄i0 XXX YXY -IYZ 1̄i1i-̄i-i IXZ -XIZ -YYY 1īi-1̄īi1 XIZ -IYZ -YXY 1̄ii1-̄ii- YXZ -IYY -XXX 1̄īi--̄ii- -IYI -XIZ -YIX
11ii1-īi IYI XIZ YIY 01010101 IXI XII -IIZ 1̄īi--̄īi1 IYY XXX -YXZ 01000010 XXX YXY -IZZ 111-̄iīīi IXZ -XYX -YIZ 001i001̄i XIZ -IZI -YIX 1-̄īi1-ii YXZ -IZX -XIX 11̄īi-1īi -IYI -XIZ -YIY
1i-ii1i- IYX XIX YXY 10100101 IXI XIX -YIY 100-0110 IYY XXZ -YIY 1īi11̄ii1 XXX YXZ -IYY 0i0̄i1010 IXZ -XYX -YYY 001-0011 XIZ -IZI -YIY 00̄īi1-00 YXZ -IZX -XXY 1̄i-̄ii-i1 -IYX -XIX -YXY

100i01i0 IYX XIX YXZ 1̄i1̄īi1̄i1 IXI XIX -YIZ 1ii-i11̄i IYY XXZ -YXX 00̄i11̄i00 XXX YXZ -IZY 1i1̄īi-̄i1 IXZ -XYY -YIZ 0i100̄i10 XIZ -IZZ -YXX 1̄īi11̄ii- YXZ -IZY -XIY 0-i0100̄i -IYX -XIX -YXZ
1̄i1i1i-i IYX XXY YIX 0i0i1010 IXI XIY -YIX 100-i00̄i IYY YII -IXX 1i1̄i-i1i XXY YIX -IYX 10100-01 IXZ -XYY -YYX 0-100110 XIZ -IZZ -YXY 1̄i0000i- YXZ -IZY -XXX 1i1̄i1̄i-̄i -IYX -XXY -YIX
1-̄ii11ii IYX XXY YXZ 1111̄iīii IXI XIY -YIZ 1---īīīi IYY YII -IXZ 1-11̄iiii XXY YIX -IZX 1-īi-1̄ii IYI -IIX -XII 1-00001- XXI -IIX -YYI 1-0000-1 YYI -IIX -XXI 1-īi11̄īi -IYX -XXY -YXZ
0̄i10100i IYX XXZ YIX 1i1i1̄i1̄i IXI XIZ -YIX 111-1--- IYY YIY -XXX 1īi-i11i XXY YIZ -IYZ 1-īīii1- IYI -IIX -YII 1-̄iīii1- XXI -IIX -YZI 1--1-1-1 YYI -IIX -XZI 100̄i0̄i-0 -IYX -XXZ -YIX
11iiīi1- IYX XXZ YXY 1-1-1111 IXI XIZ -YIY 100-0--0 IYY YIY -XXZ 0-100ii0 XXY YIZ -IZZ 00001-īi IYI -IIX -ZII 1̄i00001̄i XXI -IIY -YYI 1̄i0000-i YYI -IIY -XXI 11̄īiīi-1 -IYX -XXZ -YXY
111-̄iiii IYY XIY YXX 1-1-īiīi IXI YII -IIX 1---̄īīii IYY YXX -XIY 10̄i0010i XXY YXX -IYZ 1̄ii1-īi- IYI -IIY -XII 1̄īi-̄i-1̄i XXI -IIY -YZI 1̄i-i-i-i YYI -IIY -XZI 1-11̄īiīi -IYY -XIY -YXX
100-0ii0 IYY XIY YXZ 1̄i1̄ii1i1 IXI YII -IIY 1ii-̄i--i IYY YXX -XXZ 00100i00 XXY YXX -IZZ 1̄ii1̄i-1̄i IYI -IIY -YII 01000001 XXI -IIZ -YYI 0100000- YYI -IIZ -XXI 0̄ii01001 -IYY -XIY -YXZ
1------1 IYY XXX YIY 01010i0i IXI YII -IIZ 0̄īi0100- IYY YXZ -XIY 1-īi--ii XXY YXZ -IYX 00001̄ii1 IYI -IIY -ZII 010̄i0̄i01 XXI -IIZ -YZI 010-0-0- YYI -IIZ -XZI 11-1-1-- -IYY -XXX -YIY
1ii--ii1 IYY XXX YXZ 0̄i0̄i1010 IXI YIX -XIY 1̄īi-1ii- IYY YXZ -XXX 1-0000ii XXY YXZ -IZX 010i0-0̄i IYI -IIZ -XII 1-1111-1 XXX -IYY -YIY 1-̄īīīi1- YYX -IXY -XIY 1īi1-īi- -IYY -XXX -YXZ

0110100- IYY XXZ YIY 1i1i-i-i IXI YIX -XIZ 100-0000 IYY ZII -IXX 100̄i0i10 XXZ YIX -IYX 010i0̄i01 IYI -IIZ -YII 1̄ii11īi1 XXX -IYY -YXZ 1i-̄īi-̄i- YYX -IXY -XYZ 100101-0 -IYY -XXZ -YIY
1̄īi-̄i11i IYY XXZ YXX 10100-0- IXI YIY -XIX 1---0000 IYY ZII -IXZ 1-̄īīii11 XXZ YIX -IZX 0000010i IYI -IIZ -ZII 1-̄īīīi-1 XXX -IYZ -YIZ 1-----1- YYX -IXZ -XIZ 1̄ii1̄i1-̄i -IYY -XXZ -YXX
11īi1-ii IYZ XIZ YXX 1-1----- IXI YIY -XIZ 1̄ii-1̄ii- IYZ XII -IXX 10010-10 XXZ YIY -IYY 0-0̄i10i0 IYI -XIX -YIY 10̄i00̄i01 XXX -IYZ -YXY 010110-0 YYX -IXZ -XYY 1-̄īi--īi -IYZ -XIZ -YXX
1ii11̄ii- IYZ XIZ YXY 1̄i1̄ii-i- IXI YIZ -XIX 11īi11īi IYZ XII -IXY 1̄īi1̄i-1i XXZ YIY -IZY 1ii-̄i-1̄i IYI -XIX -YIZ 1̄i1ii1̄i1 XXX -IZY -YIY 1̄ii-i-1̄i YYY -IXX -XIX 1̄īi1-̄ii1 -IYZ -XIZ -YXY
1-iiii-1 IYZ XXX YIZ 1111īiīi IXI YIZ -XIY 1-ii11īi IYZ XIZ -YXX 1̄ii1i-1i XXZ YXX -IYY 10i00̄i01 IYI -XIY -YIX 1̄i0000̄i1 XXX -IZY -YXZ 1-1-iīīi YYY -IXX -XYZ 11̄iīii-- -IYZ -XXX -YIZ

0i0110i0 IYZ XXX YXY 1-1-0000 IXI ZII -IIX 1̄ii-1ii1 IYZ XIZ -YXY 1̄i00001i XXZ YXX -IZY 1-īīīi11 IYI -XIY -YIZ 0̄i1001̄i0 XXX -IZZ -YIZ 1̄i-̄i-̄i1̄i YYY -IXZ -XIZ 0i0-10̄i0 -IYZ -XXX -YXY
1̄ii-i--i IYZ XXY YIZ 1̄i1̄i0000 IXI ZII -IIY 11īīii11 IYZ XXX -YIZ 11̄īīii1- XXZ YXY -IYX 1̄ii1-̄īi1 IYI -XIZ -YIX 00100100 XXX -IZZ -YXY 10-00̄i0̄i YYY -IXZ -XYX 1īi-̄i--̄i -IYZ -XXY -YIZ

10i00-0i IYZ XXY YXX 01010000 IXI ZII -IIZ 10i00i01 IYZ XXX -YXY 00111-00 XXZ YXY -IZX 11ii-1̄ii IYI -XIZ -YIY 1̄i-̄i-̄i-i XXY -IYX -YIX 0-10100- YYZ -IXX -XIX 10̄i00-0̄i -IYZ -XXY -YXX
01001000 IZI XIX YIY 01100--0 IXX IYY -XII 1ii1̄i-1i IYZ XXY -YIZ 1-0000īi XYI YXI -IIX 0̄i100i-0 IYX -IXY -XII 11̄īi-1̄ii XXY -IYX -YXZ 11---1-1 YYZ -IXX -XYY 000-0010 -IZI -XIX -YIY
1i00i100 IZI XIX YIZ 01100̄īi0 IXX IYY -YII 0-0i10i0 IYZ XXY -YXX 1̄i0000i1 XYI YXI -IIY 0̄i100-̄i0 IYX -IXY -YII 1̄īi1̄i1-i XXY -IYZ -YIZ 0̄i10100̄i YYZ -IXY -XIY 001i00̄i- -IZI -XIX -YIZ
10000i00 IZI XIY YIX 00000110 IXX IYY -ZII 1̄ii-i1-̄i IYZ YII -IXX 0100000i XYI YXI -IIZ 00000̄i10 IYX -IXY -ZII 010i10̄i0 XXY -IYZ -YXX 1̄i1̄i1i-̄i YYZ -IXY -XYX 0010000̄i -IZI -XIY -YIX
1-00ii00 IZI XIY YIZ 1ii1-̄īi- IXX IYZ -XII 11īiii-1 IYZ YII -IXY 1--1īiīi XYI YZI -IIX 1i-i-̄i1̄i IYX -IXZ -XII 1---īiii XXY -IZX -YIX 1-̄iiīi-1 YZI -IIX -XXI 001-00̄īi -IZI -XIY -YIZ
1̄i001i00 IZI XIZ YIX 1ii1̄i11̄i IXX IYZ -YII 11īiīi-- IYZ YIZ -XXX 1̄i-ii1i1 XYI YZI -IIY 1i-īi1i1 IYX -IXZ -YII 00ii1-00 XXY -IZX -YXZ 1-1-īīii YZI -IIX -XYI 001̄i00-̄i -IZI -XIZ -YIX
11001-00 IZI XIZ YIY 00001ii1 IXX IYZ -ZII 1ii1i1-̄i IYZ YIZ -XXY 010-0i0i XYI YZI -IIZ 00001i-i IYX -IXZ -ZII 01100īi0 XXY -IZZ -YIZ 1̄īi-i1-i YZI -IIY -XXI 001100-1 -IZI -XIZ -YIY
11-1111- IZX XIX YXY 10011001 IXX XII -IYY 1-ii--̄ii IYZ YXX -XIZ 1-̄īi--̄ii XYX YIY -IXY 1i-īi-̄i1 IYX -XIX -YXY 0i000010 XXY -IZZ -YXX 1̄i1̄ii1̄i- YZI -IIY -XYI 1---1-11 -IZX -XIX -YXY
11̄ii11īi IZX XIX YXZ 1̄īi11̄īi1 IXX XII -IYZ 010̄i10i0 IYZ YXX -XXY 1---iīii XYX YIZ -IXZ 100i0-̄i0 IYX -XIX -YXZ 0i10100̄i XXZ -IYX -YIX 010̄i0i0- YZI -IIZ -XXI 1-ii1-̄īi -IZX -XIX -YXZ
111-iīii IZX XXY YIX 1ii1i11i IXX XIX -YYY 1̄ii--̄īi- IYZ YXY -XIZ 0i0i10-0 XYX YYY -IXZ 1̄i1i-̄i1̄i IYX -XXY -YIX 1-īiii11 XXZ -IYX -YXY 01010i0̄i YZI -IIZ -XYI 1-11īīīi -IZX -XXY -YIX
00̄ii1100 IZX XXY YXZ 10010110 IXX XIX -YYZ 10i00̄i0- IYZ YXY -XXX 1i-̄i-i-i XYX YYZ -IXY 1-̄ii--̄īi IYX -XXY -YXZ 0-101001 XXZ -IYY -YIY 1--10000 ZII -IIX -IXI 1-0000̄īi -IZX -XXY -YXZ
11īiii1- IZX XXZ YIX 1̄īi1-̄īi- IXX XYY -YIX 1̄ii-0000 IYZ ZII -IXX 1̄ii-1īi- XYY YIX -IXX 0i-0100i IYX -XXZ -YIX 1īi1̄i-1̄i XXZ -IYY -YXX 1-̄ii0000 ZII -IIX -IYI 1-̄īiīi-- -IZX -XXZ -YIX

1100001- IZX XXZ YXY 1111-11- IXX XYY -YYZ 11īi0000 IYZ ZII -IXY 1̄i-̄ii-̄i- XYY YIZ -IXZ 11iīii-1 IYX -XXZ -YXY 1-iiīi11 XXZ -IZX -YIX 001-0000 ZII -IIX -IZI 00--1-00 -IZX -XXZ -YXY
1i1̄i1i-i IZY XIY YXX 0ii01001 IXX XYZ -YIX 1-001-00 IZI XII -IIX 10-00-0- XYY YYX -IXZ 100--001 IYY -IXX -XII 1-000011 XXZ -IZX -YXY 1̄i-i0000 ZII -IIY -IXI 1̄i1i1̄i-̄i -IZY -XIY -YXX
1īi-1ii1 IZY XIY YXZ 1--1iiii IXX XYZ -YYY 1̄i001̄i00 IZI XII -IIY 1-1-11-- XYY YYZ -IXX 100-̄i00i IYY -IXX -YII 1̄ii-i11i XXZ -IZY -YIY 1̄īi-0000 ZII -IIY -IYI 1̄ii-1̄īi1 -IZY -XIY -YXZ
1i-ii-i1 IZY XXX YIY 1001i00i IXX YII -IYY 01000100 IZI XII -IIZ 0̄ii0100- XYZ YIX -IXX 0000100- IYY -IXX -ZII 001i1̄i00 XXZ -IZY -YXX 001̄i0000 ZII -IIY -IZI 1̄i-̄ii1i- -IZY -XXX -YIY

1i0000i1 IZY XXX YXZ 1̄īi1i11i IXX YII -IYZ 10000100 IZI XIX -YIY 01i0100̄i XYZ YIY -IXY 1----111 IYY -IXZ -XII 00īi1-00 XYI -IIX -YXI 010-0000 ZII -IIZ -IXI 00i-1̄i00 -IZY -XXX -YXZ
1ii1i-1̄i IZY XXZ YIY 1̄īi11ii1 IXX YIX -XYY 1̄i00̄i100 IZI XIX -YIZ 1̄i1̄īi1i- XYZ YYX -IXY 1---̄iiii IYY -IXZ -YII 1-1-̄iiīi XYI -IIX -YZI 010̄i0000 ZII -IIZ -IYI 1̄īi1i1-̄i -IZY -XXZ -YIY
001̄i1i00 IZY XXZ YXX 0̄īi01001 IXX YIX -XYZ 0i001000 IZI XIY -YIX 11--īiīi XYZ YYY -IXX 00001--- IYY -IXZ -ZII 00i11̄i00 XYI -IIY -YXI 00010000 ZII -IIZ -IZI 1̄i0000-̄i -IZY -XXZ -YXX
100̄i100i IZZ XIZ YXX 1ii1̄i--̄i IXX YYY -XIX 1100̄ii00 IZI XIY -YIZ 1-̄ii1-īi XZI YXI -IIX 111-īīīi IYY -XIY -YXX 1̄i1̄īi-i1 XYI -IIY -YZI 0-100000 ZII -IXX -IYY 0̄i100̄i-0 -IZZ -XIZ -YXX
1001100- IZZ XIZ YXY 1--1̄īīīi IXX YYY -XYZ 1i001̄i00 IZI XIZ -YIX 1̄īi-1̄ii1 XZI YXI -IIY 100-0̄īi0 IYY -XIY -YXZ 000i0100 XYI -IIZ -YXI 1īi-0000 ZII -IXX -IYZ 011001-0 -IZZ -XIZ -YXY
100ii001 IZZ XXX YIZ 10010--0 IXX YYZ -XIX 1-001100 IZI XIZ -YIY 010̄i010i XZI YXI -IIZ 1---111- IYY -XXX -YIY 01010̄i0i XYI -IIZ -YZI 100̄i0000 ZII -IXY -IYX 0i100-̄i0 -IZZ -XXX -YIZ
00011000 IZZ XXX YXY 11111--1 IXX YYZ -XYY 1-00īi00 IZI YII -IIX 1-1-1--1 XZI YYI -IIX 1ii-1̄īi- IYY -XXX -YXZ 11īi-1ii XYX -IXY -YIY 1-̄īi0000 ZII -IXY -IYZ 0-000010 -IZZ -XXX -YXY
100-i00i IZZ XXY YIZ 10010000 IXX ZII -IYY 1̄i00i100 IZI YII -IIY 1̄i1̄i1̄i-i XZI YYI -IIY 0--0100- IYY -XXZ -YIY 1̄i1̄i-̄i1i XYX -IXY -YYZ 1̄i-̄i0000 ZII -IXZ -IYX 0-100̄īi0 -IZZ -XXY -YIZ
1000000i IZZ XXY YXX 1̄īi10000 IXX ZII -IYZ 01000i00 IZI YII -IIZ 0101010- XZI YYI -IIZ 1̄īi-i--̄i IYY -XXZ -YXX 11-1̄iiii XYX -IXZ -YIZ 11-10000 ZII -IXZ -IYY 00100̄i00 -IZZ -XXY -YXX

168

State ∠ State ∠ State ∠ State ∠ State ∠ State ∠ State ∠ State ∠

11111111 π/2.59 1111---- π/2.59 100i-00̄i π/3 0̄i001000 ⊥ 11----11 π/2.59 1̄ii--īi1 π/2.59 10-00i0i π/3 1--1-11- π/2.59
1111iiii π/2.59 1111̄īīīi π/2.59 100īi001 π/3 1i00-i00 π/3 11--̄īiii π/2.59 1̄ii-̄i-1i π/2.59 1īi-1̄ii- π/2.59 1--1̄iiīi π/2.59

11110000 π/3 00001111 ⊥ 0000100i ⊥ 10000-00 π/4 000011-- ⊥ 00001̄ii- ⊥ 11--1-1- π/2.59 00001--1 ⊥
11ii11ii π/2.59 11ii--̄īi π/2.59 1-ii-1̄īi π/2.59 1-00--00 π/3 11̄īi--ii π/2.59 11īi--̄ii π/2.59 1i-īi-i- π/2.59 1-̄ii-1īi π/2.59
11iiii-- π/2.59 11iīīi11 π/2.59 1-iīii11 π/2.59 1̄i00i-00 π/3 11̄īīīi-- π/2.59 11īīīi1- π/2.59 0-0-10-0 ⊥ 1-̄iīii-1 π/2.59

11ii0000 π/3 000011ii ⊥ 00001-ii ⊥ 1100īi00 π/3 000011̄īi ⊥ 000011īi ⊥ 100-0̄ii0 π/3 00001-̄ii ⊥
11001100 π/3 1100--00 π/3 0i100i10 ⊥ 1-000000 π/4 001100-- ⊥ 11īi-1̄īi π/2.59 1-1-̄īiii π/2.59 001-00-1 ⊥
1100ii00 π/3 1100̄īi00 π/3 11̄ii11̄ii π/2.59 1̄i000000 π/4 001100̄īi ⊥ 1ii1-īi1 π/2.59 100̄i01i0 π/3 001-00̄ii ⊥
11000000 π/4 00001100 ⊥ 11̄iīii11 π/2.59 01000000 ⊥ 00000011 ⊥ 1-iīīi1- π/2.59 1i-̄ii1i1 π/2.59 0000001- ⊥
00111100 ⊥ 11--11-- π/2.59 100i0i10 π/3 111-11-1 π/2.59 00--1100 ⊥ 0̄i0-10i0 ⊥ 1-īi1-̄ii π/2.59 00-11-00 ⊥
11iiii11 π/2.59 11̄īi11̄īi π/2.59 1-ii11̄ii π/2.59 11īi11̄ii π/2.59 11iīīi-- π/2.59 1̄ii-̄i11̄i π/2.59 1--11-1- π/2.59 1-īīii-1 π/2.59
110000ii π/3 00110011 ⊥ 1̄i-i1i1i π/2.59 11-1̄īīii π/2.59 110000̄īi π/3 10i0010̄i π/3 1̄ii11̄īi- π/2.59 1-0000̄ii π/3
11--iiii π/2.59 11000011 π/3 0-i0100i ⊥ 110000̄ii π/3 11--̄īīīi π/2.59 1-00-100 π/3 1̄i-i1̄i1̄i π/2.59 1--1̄iīii π/2.59
11̄īi11ii π/2.59 11̄īīīi11 π/2.59 1i1īi-i1 π/2.59 11̄iīīi1- π/2.59 11̄īi--̄īi π/2.59 1-00̄ii00 π/3 010i010̄i ⊥ 1-̄ii-1̄ii π/2.59
111111-- π/2.59 00ii1100 ⊥ 0i100-i0 ⊥ 001-1100 ⊥ 1111--11 π/2.59 00001-00 ⊥ 010-0101 ⊥ 1-1--11- π/2.59
1i1i1i1i π/2.59 1111̄īiii π/2.59 11̄iiii1- π/2.59 11-1iiīi π/2.59 1i-̄i-̄i1i π/2.59 1̄i00-i00 π/3 1--1īīii π/2.59 1̄i-i-i1̄i π/2.59
1i1ii-i- π/2.59 11ii11̄īi π/2.59 1-ii--īi π/2.59 11̄iiii-1 π/2.59 1i-̄īi1i- π/2.59 1̄i00̄i-00 π/3 1-̄iiīi1- π/2.59 1̄i-īi-i1 π/2.59

1i1i0000 π/3 11--1111 π/2.59 01̄i0100i ⊥ 111---1- π/2.59 00001i-̄i ⊥ 00001̄i00 ⊥ 001-00īi ⊥ 00001̄i-i ⊥
1ii-1ii- π/2.59 11--iīīi π/2.59 11̄iiīi-- π/2.59 00-11100 ⊥ 1īi1-̄ii- π/2.59 01000-00 ⊥ 1̄i-ii1̄i- π/2.59 1̄īi--ii1 π/2.59
1ii-i--̄i π/2.59 11̄īiii11 π/2.59 1i1ii1̄i- π/2.59 11īi--īi π/2.59 1īi1̄i1-̄i π/2.59 01000̄i00 ⊥ 1̄īi-i11̄i π/2.59 1̄īi-̄i--i π/2.59

1ii-0000 π/3 001100ii ⊥ 100i0̄i-0 π/3 110000īi π/3 00001īi1 ⊥ 00000100 ⊥ 001̄i00i1 ⊥ 00001̄īi- ⊥
1i001i00 π/3 00̄īi1100 ⊥ 1̄i-i-̄i-̄i π/2.59 1i-i1i1̄i π/2.59 001i00-̄i ⊥ 0-001000 ⊥ 010-0i0̄i ⊥ 001̄i00-i ⊥
1i00i-00 π/3 11ii--ii π/2.59 0i100000 ⊥ 1ii11īi- π/2.59 001i00̄i1 ⊥ 1i00̄i-00 π/3 010̄i0i01 ⊥ 001̄i00̄i- ⊥
1i000000 π/4 110000-- π/3 11̄ii0000 π/3 1i1̄īi1i1 π/2.59 0000001i ⊥ 10000̄i00 π/4 0001000i ⊥ 0000001̄i ⊥
001i1i00 ⊥ 11------ π/2.59 1̄i1i-i-̄i π/2.59 00i11i00 ⊥ 00-̄i1i00 ⊥ 1-00̄īi00 π/3 0-100̄ii0 ⊥ 00-i1̄i00 ⊥
1ii-i-1i π/2.59 11̄īiii-- π/2.59 1̄i1īi-̄i1 π/2.59 1īi-̄i11̄i π/2.59 1ii-̄i1-̄i π/2.59 1̄i00-̄i00 π/3 1īi-i-1̄i π/2.59 1̄ii1̄i--i π/2.59
1i0000i- π/3 1111iīīi π/2.59 00001̄i1i ⊥ 1i00001̄i π/3 1i0000̄i1 π/3 1100-100 π/3 100̄ii001 π/3 1̄i0000̄i- π/3
1i-̄ii-i- π/2.59 11--0000 π/3 111----1 π/2.59 1i1̄ii-̄i- π/2.59 1i-̄īi1̄i1 π/2.59 11-1---1 π/2.59 1-̄īiīi11 π/2.59 1̄i-īi-̄i- π/2.59
1īi11ii- π/2.59 11̄īi0000 π/3 111-̄īīii π/2.59 1īi-i--i π/2.59 1īi1-̄īi1 π/2.59 11̄ii--̄ii π/2.59 1̄i-̄ii1̄i1 π/2.59 1̄īi--īi- π/2.59
1i1i1i-̄i π/2.59 00110000 ⊥ 0000111- ⊥ 1i-i-̄i-i π/2.59 1i1i-̄i1i π/2.59 111-̄īiīi π/2.59 11-1iīii π/2.59 1̄i1̄i-i1̄i π/2.59

10101010 π/3 1i1i-̄i-̄i π/2.59 1i1̄i1i1̄i π/2.59 1i0000-i π/3 10-0-010 π/3 00īi1100 ⊥ 0̄i0i10-0 ⊥ 010-0-01 ⊥
1010i0i0 π/3 1i1īi1̄i1 π/2.59 1-111-11 π/2.59 1ii1-̄ii1 π/2.59 10-0̄i0i0 π/3 11īīīi-1 π/2.59 1i-̄i-i1̄i π/2.59 010-0̄i0i ⊥
10100000 π/4 00001i1i ⊥ 111-1-11 π/2.59 00̄i-1i00 ⊥ 000010-0 ⊥ 110000-1 π/3 1īi--īi1 π/2.59 0000010- ⊥
10i010i0 π/3 1ii--̄īi1 π/2.59 1i1̄i1̄i1i π/2.59 100i100̄i π/3 10̄i0-0i0 π/3 1i1̄i-̄i1̄i π/2.59 100-0īi0 π/3 010̄i0-0i ⊥
10i0i0-0 π/3 1ii-̄i11i π/2.59 1-11̄īīii π/2.59 100-1001 π/3 10̄i0̄i0-0 π/3 1īi--̄īi- π/2.59 0̄i0-10̄i0 ⊥ 010̄i0̄i0- ⊥
10i00000 π/4 00001ii- ⊥ 10100̄i0i π/3 100̄īi001 π/3 000010̄i0 ⊥ 1i-īi1̄i- π/2.59 1īi1-ii1 π/2.59 0000010̄i ⊥
10001000 π/4 1i00-̄i00 π/3 1̄i1īi1̄i- π/2.59 10000001 π/4 001000-0 ⊥ 1i0000̄i- π/3 1̄i-̄i1i1̄i π/2.59 0001000- ⊥
1000i000 π/4 1i00̄i100 π/3 010-1010 ⊥ 1001̄i00i π/3 001000̄i0 ⊥ 1ii1̄i1-i π/2.59 0̄i-0100̄i ⊥ 0001000̄i ⊥

10000000 0 00001i00 ⊥ 1i1̄ii-i1 π/2.59 000i1000 ⊥ 00000010 ⊥ 00-i1i00 ⊥ 000̄i0010 ⊥ 00000001 ⊥
00101000 ⊥ 1i-̄i1i-̄i π/2.59 1-11īiii π/2.59 100̄ii00- π/3 00-01000 ⊥ 100̄i-00̄i π/3 001i00-i ⊥ 000-0100 ⊥
10i0i010 π/3 1īi11īi1 π/2.59 1-11iiīi π/2.59 1001i00̄i π/3 10i0̄i0-0 π/3 1001-001 π/3 1---̄iīīi π/2.59 010i0̄i0- ⊥
100000i0 π/4 001i001i ⊥ 1̄i1ii-i1 π/2.59 100i-00i π/3 100000̄i0 π/4 100īi00- π/3 1-iīii-- π/2.59 0100000̄i ⊥
10-0i0i0 π/3 1i00001i π/3 111--1-- π/2.59 000̄i1000 ⊥ 10-0̄i0̄i0 π/3 000-1000 ⊥ 10-00-01 π/3 010-0̄i0̄i ⊥
10̄i010i0 π/3 1īi1̄i11i π/2.59 0-011010 ⊥ 100--00- π/3 10̄i0-0̄i0 π/3 100-̄i00̄i π/3 1--1--11 π/2.59 010̄i0-0̄i ⊥
101010-0 π/3 00i-1i00 ⊥ 1i1̄i-i-̄i π/2.59 1000000- π/4 1010-010 π/3 1000000̄i π/4 11īi1-̄īi π/2.59 01010-01 ⊥
01011010 ⊥ 1i1īi1i- π/2.59 10100i0̄i π/3 010-10-0 ⊥ 1-1--1-1 π/2.59 1--11--1 π/2.59 100̄i0-̄i0 π/3 0-0110-0 ⊥
1i1ii1i1 π/2.59 1ii-1īi1 π/2.59 1i1̄i0000 π/3 010̄i10̄i0 ⊥ 1-1-̄iīii π/2.59 1-̄ii1-̄ii π/2.59 10̄i00-0i π/3 1i-̄īi-i1 π/2.59
10100i0i π/3 1i-̄i1i1i π/2.59 1-110000 π/3 00010010 ⊥ 00001-1- ⊥ 001-001- ⊥ 1-̄ii--ii π/2.59 10-00̄i0i π/3
1-1-iiii π/2.59 1i-̄ii-̄i1 π/2.59 1-īi1-īi π/2.59 1i-̄ii1̄i- π/2.59 1̄i1̄i-i-i π/2.59 1̄i-i1̄i-i π/2.59 1-11--1- π/2.59 1--1̄īiii π/2.59
1̄i1̄i1i1i π/2.59 1īi1i-1i π/2.59 1̄ii11̄ii1 π/2.59 1īi1i11̄i π/2.59 1̄i1̄īi-̄i- π/2.59 1̄īi-1̄īi- π/2.59 01-01001 ⊥ 1̄i-i-̄i1i π/2.59
11111-1- π/2.59 001i00i- ⊥ 010i010i ⊥ 001i00i1 ⊥ 00001̄i1̄i ⊥ 001̄i001̄i ⊥ 0010000- ⊥ 11---11- π/2.59
01100110 ⊥ 00̄i11i00 ⊥ 10i0010i π/3 1̄i-̄īi1̄i- π/2.59 01010-0- ⊥ 010-010- ⊥ 001-00-- ⊥ 0-1001-0 ⊥
01100ii0 ⊥ 1ii--̄ii- π/2.59 1̄ii1̄i11i π/2.59 1----1-- π/2.59 01010̄i0̄i ⊥ 010̄i010̄i ⊥ 1̄i1īi-i- π/2.59 0-100īi0 ⊥
01100000 ⊥ 1i0000-̄i π/3 0i0-10i0 ⊥ 01̄i0100̄i ⊥ 00000101 ⊥ 00010001 ⊥ 1̄ii-̄i--̄i π/2.59 00000-10 ⊥
1ii11ii1 π/2.59 1i-̄i-̄i-̄i π/2.59 11iīii1- π/2.59 1-ii-1ii π/2.59 0-0-1010 ⊥ 0-100-10 ⊥ 1̄i-ii-̄i1 π/2.59 1īi--̄ii1 π/2.59
1ii1i--i π/2.59 1īi1i--̄i π/2.59 1ii-1̄ii1 π/2.59 1īi-i1-̄i π/2.59 1i1īi-̄i- π/2.59 1īi-1īi- π/2.59 11--īīii π/2.59 1īi-̄i1-i π/2.59

1ii10000 π/3 1i1ii-̄i1 π/2.59 1-īi11ii π/2.59 100-01-0 π/3 10100̄i0̄i π/3 100̄i100̄i π/3 11-1īīīi π/2.59 00001īi- ⊥
1̄īi1̄i11̄i π/2.59 1i-̄i0000 π/3 1-īiīi-1 π/2.59 10-00i0̄i π/3 1-1-̄īīīi π/2.59 1-̄īi1-̄īi π/2.59 1i-ii1̄i1 π/2.59 1īi-̄i-1i π/2.59

01101001 ⊥ 1īi10000 π/3 1̄ii1i1-i π/2.59 10̄i00i01 π/3 1̄i1̄i-̄i-̄i π/2.59 1̄i-̄i1̄i-̄i π/2.59 1̄īi-i-1i π/2.59 100-0-10 π/3
1ii1-ii- π/2.59 001i0000 ⊥ 010i0i0- ⊥ 0010000i ⊥ 1111-1-1 π/2.59 11-111-1 π/2.59 11̄īiīi1- π/2.59 1̄ii--̄ii1 π/2.59
1--1---- π/2.59 1010-0-0 π/3 0̄i0110i0 ⊥ 1--1iīīi π/2.59 1001-00- π/3 10-0010- π/3 1-̄īiii1- π/2.59 1-1---11 π/2.59

10010ii0 π/3 1010̄i0̄i0 π/3 1ii--īi- π/2.59 1-̄iiii11 π/2.59 1001̄i00̄i π/3 1̄i-īi1i- π/2.59 1̄īi1i-1̄i π/2.59 0īi0100- ⊥
1111̄iiīi π/2.59 00001010 ⊥ 10i00-0̄i π/3 001-00ii ⊥ 00001001 ⊥ 1̄ii-̄i1-i π/2.59 001̄i00i- ⊥ 11--̄iīii π/2.59
100i100i π/3 10i0-0̄i0 π/3 1-īi--̄īi π/2.59 1-11iīii π/2.59 1̄īi1-ii- π/2.59 01-0100- ⊥ 001100īi ⊥ 100̄i-00i π/3
100ii00- π/3 10i0̄i010 π/3 1̄ii1i--̄i π/2.59 1̄i1i-i1i π/2.59 1̄īi1̄i--̄i π/2.59 10̄i0010̄i π/3 0̄i100-i0 ⊥ 100̄īi00- π/3
100i0000 π/4 000010i0 ⊥ 11iiīi-1 π/2.59 0īi01001 ⊥ 00001̄īi1 ⊥ 1̄īi-̄i1-̄i π/2.59 01100̄ii0 ⊥ 0000100̄i ⊥
1-ii1-ii π/2.59 1000-000 π/4 1-īi0000 π/3 1̄ii--ii- π/2.59 1̄īi1i--i π/2.59 1i1̄ii1̄i1 π/2.59 00̄ii1-00 ⊥ 1-̄īi-1ii π/2.59
1-iiīi-- π/2.59 1000̄i000 π/4 1̄ii10000 π/3 11īīii-- π/2.59 0--01001 ⊥ 100̄i01̄i0 π/3 1-īi-1īi π/2.59 1-̄īīii-- π/2.59

1-ii0000 π/3 00001000 ⊥ 010i0000 ⊥ 100̄i0i-0 π/3 1ii11̄īi1 π/2.59 00100001 ⊥ 00̄i-1̄i00 ⊥ 00001-̄īi ⊥
1-iiii1- π/2.59 10-010-0 π/3 0̄i100̄i10 ⊥ 1̄i-i1i-̄i π/2.59 1--11111 π/2.59 001̄i00̄i1 ⊥ 1̄ii1-ii1 π/2.59 11īiīi11 π/2.59

0i10100i ⊥ 10̄i010̄i0 π/3 1i-i1i-i π/2.59 1̄īi-1īi1 π/2.59 10010̄īi0 π/3 1-11-111 π/2.59 000̄i0100 ⊥ 100̄i0̄i10 π/3
11̄ii1-ii π/2.59 00100010 ⊥ 1̄i1īi1i1 π/2.59 001̄i001i ⊥ 1111īīii π/2.59 1-̄īi-1̄īi π/2.59 010i0-0i ⊥ 1-̄īi11īi π/2.59
1i1i1̄i-i π/2.59 10000010 π/4 01i0100i ⊥ 11--1--1 π/2.59 0i100̄i-0 ⊥ 0i0̄i10-0 ⊥ 11-1īiii π/2.59 1i-̄i1̄i1̄i π/2.59
100i0-i0 π/3 10̄i0̄i010 π/3 1i-i1̄i1i π/2.59 11̄īi1-̄ii π/2.59 0i1001̄i0 ⊥ 11--̄iiīi π/2.59 1īi1i1-i π/2.59 0-̄i0100̄i ⊥
1̄i-ii-i- π/2.59 00i01000 ⊥ 11ii1-̄ii π/2.59 0011001- ⊥ 00000i10 ⊥ 1-̄īiii-1 π/2.59 11̄ii-1ii π/2.59 1̄i1̄ii-̄i1 π/2.59
1̄i1i1̄i1i π/2.59 1010̄i0i0 π/3 100i0̄i10 π/3 1-̄īi11̄ii π/2.59 11̄ii--īi π/2.59 0i-0100̄i ⊥ 0-0̄i10̄i0 ⊥ 1̄i-̄i-i1i π/2.59
1̄i1ii1i- π/2.59 10i010̄i0 π/3 1-̄iīīi11 π/2.59 0̄i100i10 ⊥ 11̄iīīi-1 π/2.59 0i0110̄i0 ⊥ 1̄i-̄i1̄i1i π/2.59 1̄i-̄īi-i- π/2.59
1̄i1i0000 π/3 10-01010 π/3 0̄i1001i0 ⊥ 1̄īi11īi- π/2.59 000011̄ii ⊥ 11̄īīii-1 π/2.59 00-̄i1̄i00 ⊥ 00001̄i-̄i ⊥
111-111- π/2.59 10-0i0̄i0 π/3 1i-ii-̄i- π/2.59 01100-10 ⊥ 1-iīīi-1 π/2.59 11-1̄iīīi π/2.59 0i100i-0 ⊥ 11-1--1- π/2.59
111-iiīi π/2.59 10̄i0i010 π/3 1i-i-i-̄i π/2.59 11-11--- π/2.59 0̄i-0100i ⊥ 10010īi0 π/3 0̄i000010 ⊥ 11-1̄īiīi π/2.59

111-0000 π/3 001000i0 ⊥ 100i0i-0 π/3 1i-i1̄i-̄i π/2.59 11̄ii-1̄īi π/2.59 000i0010 ⊥ 1i1̄īi-i- π/2.59 000011-1 ⊥
1-11111- π/2.59 00̄i01000 ⊥ 1̄i1ii-̄i- π/2.59 001-1-00 ⊥ 1i1i-i1̄i π/2.59 001100̄ii ⊥ 1-īīīi-- π/2.59 11-1-111 π/2.59
1̄i1i1i1̄i π/2.59 10i0-0i0 π/3 1-̄iiii-- π/2.59 001̄i1̄i00 ⊥ 100i01̄i0 π/3 1̄i-̄i-i-̄i π/2.59 1īi--ii- π/2.59 1i-i-i1i π/2.59
111-īiii π/2.59 100000-0 π/4 0-̄i0100i ⊥ 00010100 ⊥ 1̄i-īi1̄i1 π/2.59 1̄īi1-īi1 π/2.59 10̄i00i0- π/3 1---̄īiīi π/2.59
0̄i0i1010 ⊥ 10-0-0-0 π/3 11ii-1īi π/2.59 1-īiīi1- π/2.59 1i1̄i-̄i-i π/2.59 1i-̄i1̄i-i π/2.59 1-111--- π/2.59 0̄i0̄i10-0 ⊥
1i1̄ii1i- π/2.59 10̄i0i0-0 π/3 0̄i100000 ⊥ 1̄ii1i11̄i π/2.59 1i1̄īi1̄i- π/2.59 1--111-- π/2.59 1-0000-- π/3 1̄i-̄īi1i1 π/2.59

1010010- π/3 1010i0̄i0 π/3 1i-i0000 π/3 010i0i01 ⊥ 00001i1̄i ⊥ 1---11-1 π/2.59 0-100--0 ⊥ 10-00101 π/3
010i10i0 ⊥ 10-00000 π/4 100-100- π/3 11-11-11 π/2.59 1-11-1-- π/2.59 1̄i-̄i1i-i π/2.59 00100-00 ⊥ 0-0i10̄i0 ⊥
1ii-i1-i π/2.59 10̄i00000 π/4 1---1--- π/2.59 1̄i-̄īi-̄i1 π/2.59 1-11̄iīīi π/2.59 1īi11̄īi- π/2.59 100̄i0-i0 π/3 1īi1̄i--i π/2.59
10i00i0- π/3 00100000 ⊥ 1---iiīi π/2.59 11̄iiīi11 π/2.59 00001-11 ⊥ 1-̄ii11̄īi π/2.59 11̄īi1-īi π/2.59 10̄i00̄i0- π/3
1-īiii-- π/2.59 1-1-1-1- π/2.59 0ii0100- ⊥ 0i1001i0 ⊥ 1-11---1 π/2.59 11̄ii1-̄īi π/2.59 10010̄ii0 π/3 1-̄iīīi-- π/2.59
1̄ii11ii- π/2.59 1̄i1̄i1̄i1̄i π/2.59 111--111 π/2.59 0̄i0110̄i0 ⊥ 1̄i1i-̄i-i π/2.59 1īi-1̄īi1 π/2.59 1̄ii1-̄ii- π/2.59 1̄īi--̄ii- π/2.59
11ii1-īi π/2.59 01010101 ⊥ 1̄īi--̄īi1 π/2.59 01000010 ⊥ 111-̄iīīi π/2.59 001i001̄i ⊥ 1-̄īi1-ii π/2.59 11̄īi-1īi π/2.59
1i-ii1i- π/2.59 10100101 π/3 100-0110 π/3 1īi11̄ii1 π/2.59 0i0̄i1010 ⊥ 001-0011 ⊥ 00̄īi1-00 ⊥ 1̄i-̄ii-i1 π/2.59

100i01i0 π/3 1̄i1̄īi1̄i1 π/2.59 1ii-i11̄i π/2.59 00̄i11̄i00 ⊥ 1i1̄īi-̄i1 π/2.59 0i100̄i10 ⊥ 1̄īi11̄ii- π/2.59 0-i0100̄i ⊥
1̄i1i1i-i π/2.59 0i0i1010 ⊥ 100-i00̄i π/3 1i1̄i-i1i π/2.59 10100-01 π/3 0-100110 ⊥ 1̄i0000i- π/3 1i1̄i1̄i-̄i π/2.59
1-̄ii11ii π/2.59 1111̄iīii π/2.59 1---īīīi π/2.59 1-11̄iiii π/2.59 1-īi-1̄ii π/2.59 1-00001- π/3 1-0000-1 π/3 1-īi11̄īi π/2.59
0̄i10100i ⊥ 1i1i1̄i1̄i π/2.59 111-1--- π/2.59 1īi-i11i π/2.59 1-īīii1- π/2.59 1-̄iīii1- π/2.59 1--1-1-1 π/2.59 100̄i0̄i-0 π/3
11iiīi1- π/2.59 1-1-1111 π/2.59 100-0--0 π/3 0-100ii0 ⊥ 00001-īi ⊥ 1̄i00001̄i π/3 1̄i0000-i π/3 11̄īiīi-1 π/2.59
111-̄iiii π/2.59 1-1-īiīi π/2.59 1---̄īīii π/2.59 10̄i0010i π/3 1̄ii1-īi- π/2.59 1̄īi-̄i-1̄i π/2.59 1̄i-i-i-i π/2.59 1-11̄īiīi π/2.59
100-0ii0 π/3 1̄i1̄ii1i1 π/2.59 1ii-̄i--i π/2.59 00100i00 ⊥ 1̄ii1̄i-1̄i π/2.59 01000001 ⊥ 0100000- ⊥ 0̄ii01001 ⊥
1------1 π/2.59 01010i0i ⊥ 0̄īi0100- ⊥ 1-īi--ii π/2.59 00001̄ii1 ⊥ 010̄i0̄i01 ⊥ 010-0-0- ⊥ 11-1-1-- π/2.59
1ii--ii1 π/2.59 0̄i0̄i1010 ⊥ 1̄īi-1ii- π/2.59 1-0000ii π/3 010i0-0̄i ⊥ 1-1111-1 π/2.59 1-̄īīīi1- π/2.59 1īi1-īi- π/2.59

0110100- ⊥ 1i1i-i-i π/2.59 100-0000 π/4 100̄i0i10 π/3 010i0̄i01 ⊥ 1̄ii11īi1 π/2.59 1i-̄īi-̄i- π/2.59 100101-0 π/3
1̄īi-̄i11i π/2.59 10100-0- π/3 1---0000 π/3 1-̄īīii11 π/2.59 0000010i ⊥ 1-̄īīīi-1 π/2.59 1-----1- π/2.59 1̄ii1̄i1-̄i π/2.59
11īi1-ii π/2.59 1-1----- π/2.59 1̄ii-1̄ii- π/2.59 10010-10 π/3 0-0̄i10i0 ⊥ 10̄i00̄i01 π/3 010110-0 ⊥ 1-̄īi--īi π/2.59
1ii11̄ii- π/2.59 1̄i1̄ii-i- π/2.59 11īi11īi π/2.59 1̄īi1̄i-1i π/2.59 1ii-̄i-1̄i π/2.59 1̄i1ii1̄i1 π/2.59 1̄ii-i-1̄i π/2.59 1̄īi1-̄ii1 π/2.59
1-iiii-1 π/2.59 1111īiīi π/2.59 1-ii11īi π/2.59 1̄ii1i-1i π/2.59 10i00̄i01 π/3 1̄i0000̄i1 π/3 1-1-iīīi π/2.59 11̄iīii-- π/2.59

0i0110i0 ⊥ 1-1-0000 π/3 1̄ii-1ii1 π/2.59 1̄i00001i π/3 1-īīīi11 π/2.59 0̄i1001̄i0 ⊥ 1̄i-̄i-̄i1̄i π/2.59 0i0-10̄i0 ⊥
1̄ii-i--i π/2.59 1̄i1̄i0000 π/3 11īīii11 π/2.59 11̄īīii1- π/2.59 1̄ii1-̄īi1 π/2.59 00100100 ⊥ 10-00̄i0̄i π/3 1īi-̄i--̄i π/2.59

10i00-0i π/3 01010000 ⊥ 10i00i01 π/3 00111-00 ⊥ 11ii-1̄ii π/2.59 1̄i-̄i-̄i-i π/2.59 0-10100- ⊥ 10̄i00-0̄i π/3
01001000 ⊥ 01100--0 ⊥ 1ii1̄i-1i π/2.59 1-0000īi π/3 0̄i100i-0 ⊥ 11̄īi-1̄ii π/2.59 11---1-1 π/2.59 000-0010 ⊥
1i00i100 π/3 01100̄īi0 ⊥ 0-0i10i0 ⊥ 1̄i0000i1 π/3 0̄i100-̄i0 ⊥ 1̄īi1̄i1-i π/2.59 0̄i10100̄i ⊥ 001i00̄i- ⊥
10000i00 π/4 00000110 ⊥ 1̄ii-i1-̄i π/2.59 0100000i ⊥ 00000̄i10 ⊥ 010i10̄i0 ⊥ 1̄i1̄i1i-̄i π/2.59 0010000̄i ⊥
1-00ii00 π/3 1ii1-̄īi- π/2.59 11īiii-1 π/2.59 1--1īiīi π/2.59 1i-i-̄i1̄i π/2.59 1---īiii π/2.59 1-̄iiīi-1 π/2.59 001-00̄īi ⊥
1̄i001i00 π/3 1ii1̄i11̄i π/2.59 11īiīi-- π/2.59 1̄i-ii1i1 π/2.59 1i-īi1i1 π/2.59 00ii1-00 ⊥ 1-1-īīii π/2.59 001̄i00-̄i ⊥
11001-00 π/3 00001ii1 ⊥ 1ii1i1-̄i π/2.59 010-0i0i ⊥ 00001i-i ⊥ 01100īi0 ⊥ 1̄īi-i1-i π/2.59 001100-1 ⊥
11-1111- π/2.59 10011001 π/3 1-ii--̄ii π/2.59 1-̄īi--̄ii π/2.59 1i-īi-̄i1 π/2.59 0i000010 ⊥ 1̄i1̄ii1̄i- π/2.59 1---1-11 π/2.59
11̄ii11īi π/2.59 1̄īi11̄īi1 π/2.59 010̄i10i0 ⊥ 1---iīii π/2.59 100i0-̄i0 π/3 0i10100̄i ⊥ 010̄i0i0- ⊥ 1-ii1-̄īi π/2.59
111-iīii π/2.59 1ii1i11i π/2.59 1̄ii--̄īi- π/2.59 0i0i10-0 ⊥ 1̄i1i-̄i1̄i π/2.59 1-īiii11 π/2.59 01010i0̄i ⊥ 1-11īīīi π/2.59
00̄ii1100 ⊥ 10010110 π/3 10i00̄i0- π/3 1i-̄i-i-i π/2.59 1-̄ii--̄īi π/2.59 0-101001 ⊥ 1--10000 π/3 1-0000̄īi π/3
11īiii1- π/2.59 1̄īi1-̄īi- π/2.59 1̄ii-0000 π/3 1̄ii-1īi- π/2.59 0i-0100i ⊥ 1īi1̄i-1̄i π/2.59 1-̄ii0000 π/3 1-̄īiīi-- π/2.59

1100001- π/3 1111-11- π/2.59 11īi0000 π/3 1̄i-̄ii-̄i- π/2.59 11iīii-1 π/2.59 1-iiīi11 π/2.59 001-0000 ⊥ 00--1-00 ⊥
1i1̄i1i-i π/2.59 0ii01001 ⊥ 1-001-00 π/3 10-00-0- π/3 100--001 π/3 1-000011 π/3 1̄i-i0000 π/3 1̄i1i1̄i-̄i π/2.59
1īi-1ii1 π/2.59 1--1iiii π/2.59 1̄i001̄i00 π/3 1-1-11-- π/2.59 100-̄i00i π/3 1̄ii-i11i π/2.59 1̄īi-0000 π/3 1̄ii-1̄īi1 π/2.59
1i-ii-i1 π/2.59 1001i00i π/3 01000100 ⊥ 0̄ii0100- ⊥ 0000100- ⊥ 001i1̄i00 ⊥ 001̄i0000 ⊥ 1̄i-̄ii1i- π/2.59

1i0000i1 π/3 1̄īi1i11i π/2.59 10000100 π/4 01i0100̄i ⊥ 1----111 π/2.59 00īi1-00 ⊥ 010-0000 ⊥ 00i-1̄i00 ⊥
1ii1i-1̄i π/2.59 1̄īi11ii1 π/2.59 1̄i00̄i100 π/3 1̄i1̄īi1i- π/2.59 1---̄iiii π/2.59 1-1-̄iiīi π/2.59 010̄i0000 ⊥ 1̄īi1i1-̄i π/2.59
001̄i1i00 ⊥ 0̄īi01001 ⊥ 0i001000 ⊥ 11--īiīi π/2.59 00001--- ⊥ 00i11̄i00 ⊥ 00010000 ⊥ 1̄i0000-̄i π/3
100̄i100i π/3 1ii1̄i--̄i π/2.59 1100̄ii00 π/3 1-̄ii1-īi π/2.59 111-īīīi π/2.59 1̄i1̄īi-i1 π/2.59 0-100000 ⊥ 0̄i100̄i-0 ⊥
1001100- π/3 1--1̄īīīi π/2.59 1i001̄i00 π/3 1̄īi-1̄ii1 π/2.59 100-0̄īi0 π/3 000i0100 ⊥ 1īi-0000 π/3 011001-0 ⊥
100ii001 π/3 10010--0 π/3 1-001100 π/3 010̄i010i ⊥ 1---111- π/2.59 01010̄i0i ⊥ 100̄i0000 π/4 0i100-̄i0 ⊥
00011000 ⊥ 11111--1 π/2.59 1-00īi00 π/3 1-1-1--1 π/2.59 1ii-1̄īi- π/2.59 11īi-1ii π/2.59 1-̄īi0000 π/3 0-000010 ⊥
100-i00i π/3 10010000 π/4 1̄i00i100 π/3 1̄i1̄i1̄i-i π/2.59 0--0100- ⊥ 1̄i1̄i-̄i1i π/2.59 1̄i-̄i0000 π/3 0-100̄īi0 ⊥
1000000i π/4 1̄īi10000 π/3 01000i00 ⊥ 0101010- ⊥ 1̄īi-i--̄i π/2.59 11-1̄iiii π/2.59 11-10000 π/3 00100̄i00 ⊥

169

BIBLIOGRAPHY

170

BIBLIOGRAPHY

[1] S. Aaronson. Multilinear formulas and skepticism of quantum computing. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 118–127, 2004.

[2] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys-
ical Review A, 70(052328), 2004.

[3] A. Abdaollahi and M. Pedram. Analysis and synthesis of quantum circuits by us-
ing quantum decision diagrams. In Proceedings of the IEEE Design, Automation
and Test in Europe Conference and Exhibition, pages 1–6, Munich, Germany,
2006.

[4] D. Aharonov. A simple proof that toffoli and hadamard are quantum universal.
arXiv:0301040, 2003.

[5] S. Anders and H. J. Briegel. Fast simulation of stabilizer circuits using a graph-
state representation. Physical Review A, 73(022334), 2006.

[6] K. M. R. Audenaert and M. B. Plenio. Entanglement on mixed stabiliser states:
normal forms and reduction procedures. New Journal of Physics, 7(170), 2005.

[7] A. Calderbank, E. Rains, P. Shor, and N. Sloane. Quantum error correction via
codes over gf(4). IEEE Transactions on Information Theory, 44(4):1369–1387,
1998.

[8] S. Clark, R. Jozsa, and N. Linden. Generalised clifford groups and simulation of
associated quantum circuits. arXiv:quant-ph/0701103v1, 2007.

[9] R. Cleve and D. Gottesman. Efficient computations of encodings for quantum
error correction. Physical Review A, 56(1):1201–1204, 1997.

[10] O. Dahlsten and M. B. Plenio. Exact entanglement probability distribution of
bi-partite randomised stabilizer states. Quantum Information and Computation,
6(527), 2006.

[11] C. M. Dawson, A. P. Hines, D. Mortimer, H. L. Haselgrove, M. A. Nielsen, and
T. J. Osborne. Quantum computing and polynomial equations over the finite
field Z2. Quantum Information and Computation, 5(2):102–112, 2005.

171

[12] N. de Beaudrap. A linear stabilizer formalism for systems of any finite dimension.
Quantum Information and Computation, 13:73–115, 2013.

[13] J. Dehaene and B. De Moor. Clifford group, stabilizer states, and linear and
quadratic operations over gf(2). Physical Review A, 68(042318), 2003.

[14] M. Van den Nest. Classical simulation of quantum computation, the gottesman-
knill theorem, and slightly beyond. Quantum Information and Computation,
10:258–271, 2010.

[15] M. Van den Nest, J. Dehaene, and B. De Moor. On local unitary versus local
clifford equivalence of stabilizer states. Physical Review A, 71(062323), 2005.

[16] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal. Quantum data hiding. IEEE
Transactions on Information Theory, 48(3):580–599, 2002.

[17] D. P. DiVincenzo and P. W. Shor. Fault-tolerant error correction with efficient
quantum codes. Physical Review Letters, 77(3260), 1996.

[18] I. Djordjevic. Quantum Information Processing and Quantum Error Correction:
an Engineering Approach. Academic press, 2012.

[19] W. Dur, H. Aschauer, and H. J. Briegel. Multiparticle entanglement purification
for graph states. Physical Review Letters, 91(107903), 2003.

[20] C. Emary. A bipartite class of entanglement monotones for n-qubit pure states.
Journal of Physics A, 37(8293), 2004.

[21] E. Knill et al. Randomized benchmarking of quantum gates. Physical Review A,
77(1), 2007.

[22] K. De Raedt et al. Massively parallel quantum computer simulator. Computer
Physics Communications, 176(1–2):121–136, 2007.

[23] M. Hayashi et al. Entanglement of multiparty stabilizer, symmetric, and anti-
symmetric states. Physical Review A, 77(012104), 2008.

[24] O. Boncalo et al. Using simulated fault injection for fault tolerance assessment
of quantum circuits. In Proceedings of the IEEE Simulation Symposium.

[25] S. A. Cuccaro et al. A new quantum ripple-carry addition circuit.
arXiv:0410184v1.

[26] D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi, and I. L. Chuang. Entangle-
ment in the stabilizer formalism. arxiv:0406168, 2004.

[27] F. Fröwis, V. Nebendahl, and W. Dür. Tensor operators: constructions and
applications for long-range interaction systems. Physical Review A, 81(062337),
2010.

172

[28] H. J. Garćıa and I. L. Markov. Quipu: high-performance simulation of quantum
circuits using stabilizer frames. In Proceedings of the IEEE International Con-
ference on Computer Design, pages 404–410, Asheville, North Carolina, 2013.

[29] H. J. Garćıa and I. L. Markov. Simulation of quantum circuits using stabilizer
frames. IEEE Transactions on Computers, 2014. Under review.

[30] H. J. Garćıa, I. L. Markov, and A. W. Cross. Efficient inner-product algorithm
for stabilizer states. arXiv:1210.6646, 2012.

[31] H. J. Garćıa, I. L. Markov, and A. W. Cross. On the geometry of stabilizer
states. Quantum Information and Computation, 14(7–8):683–720, 2014.

[32] D. Goodman and M. A. Thornton. Quantum logic circuit simulation based on
the qmdd data structure. In Proceedings of the Workshop on Applications of the
ReedMuller Expansion in Circuit Design and Representations and Methodology
of Future Computing Technology, pages 99–105, 2007.

[33] D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis, Cali-
fornia Institute of Technology, 1997. argxiv:9705052.

[34] D. Gottesman. The heisenberg representation of quantum computers. In Pro-
ceedings of the twenty-second International Colloquium on Group Theoretical
Methods in Physics, pages 32–43, 1998. arXiv:9807006v1.

[35] O. Guehne, G. Toth, P. Hyllus, and H.J. Briegel. Bell inequalities for graph
states. Physical Review Letters, 95(120405), 2005.

[36] A. W. Harrow and R. A. Low. Random quantum circuits are approximate 2-
designs. Communications in Mathematical Physics, 291(1):257–302, 2009.

[37] M. Hein, J. Eisert, and H.J. Briegel. Multi-party entanglement in graph states.
Physical Review A, 69(062311), 2004.

[38] H. Heydari. Quantum entanglement measure based on wedge product. Quantum
Information and Computation, 6:166–172, 2006.

[39] R. Jozsa. Embedding classical into quantum computation. Lecture Notes in
Computer Science, 5393:43–49, 2008.

[40] R. Jozsa and M. Van den Nest. Classical simulation complexity of extended
clifford circuits. arXiv:1305.6190, 2013.

[41] R. Jozsa and N. Linden. On the role of entanglement in quantum computational
speed-up. In Proceedings of the Royal Society of London. Series A. Mathematical,
Physical and Engineering Sciences, volume 459, pages 2011–2032, 2003.

[42] A. Klappenecker and M. Roetteler. Mutually unbiased bases are complex pro-
jective 2-designs. arXiv:0502031, 2005.

173

[43] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient exact
synthesis of single qubit unitaries generated by clifford and t gates. Quantum
Information And Computation, 13(7–8):607–630, 2013.

[44] I. L. Markov and M. Saeedi. Constant-optimized quantum circuits for modu-
lar multiplication and exponentiation. Quantum Information and Computation,
12(5), 2012.

[45] I. L. Markov and Y. Shi. Simulating quantum computation by contracting tensor
networks. SIAM Journal on Computing, 38(3):963–981, 2008.

[46] D. Maslov, G. Dueck, and N. Scott, 2011. http://webhome.cs.uvic.ca/
˜dmaslov/.

[47] D. M. Miller and M. A. Thornton. Qmdd: A decision diagram structure for
reversible and quantum circuits. In Proceedings of the International Symposium
on Multiple Valued Logic, 2006.

[48] A. Montanaro. On the distinguishability of random quantum states. Communi-
cations in Mathematica Physics, 273(3):619–636, 2007.

[49] C. Moore and M. Nilsson. Parallel quantum computation and quantum codes.
SIAM Journal on Computing, 31(3):799–815, 2001.

[50] V. Murg, J.I. Cirac, B. Pirvu, and F. Verstraete. Matrix product operator
representations. New Journal of Physics, 12(025012), 2010.

[51] A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[52] K. M. Obenland and A. M. Despain. A parallel quantum computer simulator.
arXiv:9804039.

[53] M. Oskin, F. T. Chong, and I. L. Chuang. A practical architecture for reliable
quantum computers. IEEE Computer, 35(1):79–87, 2002.

[54] K. N. Patel, I. L. Markov, and J. P. Hayes. Optimal synthesis of linear reversible
circuits. Quantum Information and Computation, 8(3–4):282–294, 2008.

[55] D. Perez-Garćıa, F. Verstraete, M.M. Wolf, and J.I. Cirac. Matrix product state
representations. Quantum Information and Computation, 7(401), 2007.

[56] J. Preskill. Fault-tolerant quantum computation. In Introduction to Quantum
Computation. World Scientific, 1998. arXiv:9712048.

[57] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum
computation on cluster states. Physical Review A, 68(022312), 2003.

174

[58] Akira SaiToh. Zkcm: a c++ library for multiprecision matrix computation
with applications in quantum information. Computer Physics Communications,
184(8):2005–2020, 2013.

[59] P. Selinger. Efficient clifford + t approximation of single-qubit operators.
arXiv:1212.6253, 2012.

[60] Y. Shi. Both toffoli and controlled-not need little help to do universal quantum
computation. Quantum Information And Computation, 3(1):1–11, 2003.

[61] P. Shor. Scheme for reducing decoherence in quantum computer memory. Phys-
ical Review A, 52(4), 1995.

[62] P. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
1997.

[63] G. Smith and D. Leung. Typical entanglement of stabilizer states. Physical
Review A, 74(062314), 2006.

[64] K. M. Svore, A. V. Aho, A. W. Cross, I. L. Chuang, and I. L. Markov. A layered
software architecture for quantum computing design tools. IEEE Computer,
39(1):74–83, 2006.

[65] F. Verstraete and J. I. Cirac. Valence-bond states for quantum computation.
Physical Review A, 70(060302), 2004.

[66] F. Verstraete, J. I. Cirac, and J. I. Latorre. Quantum circuits for strongly cor-
related quantum systems. Physical Review A, 79(032316), 2009.

[67] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Quantum Circuit Simulation.
Springer, 2009.

[68] G. Vidal. Efficient classical simulation of slightly entangled quantum computa-
tions. Physical Review Letters, 91(147902), 2003.

[69] H. Wunderlich and M. B. Plenio. Quantitative verification of fidelities and entan-
glement from incomplete measurement data. Journal of Modern Optics, 56:2100–
2105, 2009.

175

