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If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
. . .
If you can dream – and not make dreams your master;
If you can think – and not make thoughts your aim;
. . .
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And – which is more – you’ll be a Man, my son!
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CHAPTER 1

Introduction

Physicists have long sought to come to terms with the nature of interactions between light

and matter. In 1928, Chandrasekar V. Raman introduced a veritable revolution in the field

when he demonstrated that sunlight could scatter inelastically from molecular vibrations

in liquids [1]. Today, sophisticated laser sources and spectrometers capable of measuring

fractions of a nanometer have allowed Raman’s early methods to be refined into the spec-

troscopic techniques that are now the state-of-the-art in the analysis of the vibrational and

electronic properties of gasses, liquids, and solids. We now have the ability to study the op-

tical properties of materials in unprecedented detail, and are able to probe new phenomena

with greater precision.

Bulk semiconductors are systems that are particularly well-suited to study with light

scattering methods. The lattice dynamics of many semiconducting materials have been

investigated in great detail using a variety of light scattering techniques. A particularly

interesting system involves semiconductors with large carrier densities introduced via dop-

ing or photoexcitation. In both these cases, the carrier density can be controlled, and at

large values, plasma effects become important and can manifest as new excitations in the

system. Coulomb interactions between the carriers introduce collective phenomena which

manifests as quantized longitudinal oscillations of the plasma known as optical plasmons.

The properties of optical plasmons and their interactions with lattice oscillations in semi-

conductors have been extensively studied using both CW and ultrafast scattering techniques
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(see for example [2, 3, 4, 5, 6, 7, 8, 9]).

The existence of multiple distinct charge species in a plasma, as is the the case for pho-

texcited semiconductors, has a profound impact on the plasma excitations present within

the system. Here, the intraspecies Coulomb effects are supplemented by interactions be-

tween the different charge species. As first postulated by Nozières and Pines [10], in certain

cases, a strong screening of the Coulomb interaction can lead to a second type of collective

phenomenon known as acoustic plasmons. These possess a linear dispersion, in contrast

to the parabolically dispersed optical branch [11]. Theoretical work on high-Tc supercon-

ductors has shown that acoustic plasmons may mediate electron-electron interactions in

these materials [12]. This aspect has been extensively studied by Ruvalds and coworkers in

transition metal compounds [13, 11, 14]. In addition, acoustic plasmons are also thought

to play a role in the superconductivity associated with layered materials [15, 16, 17, 18].

Light scattering from acoustic plasmons in a semiconductor was first demonstrated by

Pinczuk et al. in the 1980s using spontaneous inelastic light scattering in GaAs [19]. They

were able to show not only the excitation of the low energy acoustic plasmon, but also

that experimental observations matched theoretical predictions calculated under the random

phase approximation for a multi-component plasma. The success of these experiments was

a remarkable achievement given the difficulties associated with the analysis of low energy

excitations obscured by elastic scattering, resonance effects, and band-gap luminescence.

More recently, the presence of acoustic plasmons has been demonstrated experimentally in

metallic and low dimensional systems [20, 21, 22, 23], but here the excitations fundamen-

tally differ from the bulk case [24], and involve screening of the surface electron state by

the bulk electrons. To this day, bulk acoustic plasmons in semiconductors remain an elu-

sive excitation, and a detailed analysis of their properties, particularly within the context of

the supporting medium’s geometry, merits further investigation. Furthermore, despite ex-

tensive research into the ultrafast excitation of semiconducting materials, coherent acoustic

plasmon states have yet to be identified.
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The aim of this dissertation is to provide new insights into the nature of acoustic plas-

mons in semiconductors, and address not only the properties of this excitation under con-

finement, but also to show that they can be coherently generated using pump-probe tech-

niques. Beginning with a simple model of the two component plasma under the Drude

and Thomas-Fermi approximations, I will present a full treatment of the problem under

the random phase approximation (Chapter II). I will also discuss the effect of band struc-

ture subtleties on the acoustic plasmon properties. Further, using the fluid-description of

the electron-hole plasma, I will show that when the plasma is confined to a finite slab, the

acoustic plasmon exists as discretized standing waves. I have experimentally validated this

theory using spontaneous light scattering, which shows that the acoustic plasmon spec-

tral peak frequency possesses a thickness dependence characteristic of confinement effects

(Chapter V). The coupling of light to these acoustic plasmon standing waves can be ex-

plained under the framework of the photoelastic model. Here the strain wave that accom-

panies the density fluctuation associated with the acoustic plasmon mode can mix with the

incident light field to generate a nonlinear polarization. The relative intensities of the re-

sulting scattered fields correspond to the scattering efficiency of a given acoustic plasmon

mode. The experimental acoustic plasmon spectra is then theoretically reproduced as the

weighted superposition of contributions from several standing wave modes. The success

of this model, which is also used to describe light scattering from confined LA phonons,

further solidifies the analogy between acoustic plasmons and longitudinal acoustic (LA)

phonons. I have also investigated the properties of the acoustic plasmon in the time-domain

using ultrafast pump-probe spectroscopy, where I generated a coherent acoustic plasmon

state using an entirely optical technique (Chapter VI). This state exists as a discrete stand-

ing wave mode, in agreement with the spontaneous scattering experiments. In addition, the

results reveal that the coherent acoustic plasmon is coupled to the lower frequency branch

of the coherent LO phonon-plasmon coupled mode, and this can serve as a possible gener-

ation mechanism.
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The importance of the experimental results contained within this dissertation are mul-

tifold. In a general sense, they add to the body of knowledge associated with bulk acoustic

plasmons, and this may better allow for the assessment of their role in phenomena such

as superconductivity. Further, heat conduction in semiconductors is associated with sound

waves and, in general, with the acoustic phonons of the system [25]. However, the obser-

vation of a coherent acoustic plasmon state represents a fundamentally new type of sound

wave that can be supported by the semiconductor. This is particularly intriguing as the

group velocity of the acoustic plasmon is more than an order of magnitude larger than that

associated with the LA phonon. This may then prove to be a pathway for more efficient

heat transfer in semiconducting materials.
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CHAPTER 2

Theory of acoustic plasmons

We can analyze the properties of both optical and acoustic plasmons in semiconductors by

looking at the longitudinal dielectric function associated with the system. In order to do

this, we must first construct the longitudinal dielectric function of a multi-component semi-

conductor plasma. The simplest way to do this is to use the framework of the Drude and

Thomas-Fermi models. This is a limiting approximation and a more complex treatment

begins with the Hamiltonian of the electron-hole plasma, from which we construct the di-

electric function using the constituent susceptibilities associated with the various carrier

species. In this chapter, I will begin by explaining the relationship between the dielectric

function and plasmons and then present the simple treatment before discussing the micro-

scopic theory of acoustic plasmons. I will conclude by discussing the form of the charge

density fluctuations associated with the acoustic plasmons.

2.1 Plasmons and the dielectric function

Both optical and acoustic plasmons are essentially collective oscillations of the plasma

system, and more specifically, they represent fluctuations about the mean plasma density.

We can ascertain the properties of both optical and acoustic plasmons from the longitudinal

dielectric function of the plasma system. Consider an electron gas in which we embed a

weak external charge. Let this external charge be Z and the density be next (r, t). Then, the
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charge density is simply Znext (r, t). From Maxwell’s equations in media, we can write:

[26]

r · E (r, t) = 4⇡ [�e hn (r, t)i F�! ik · E (k,!) = 4⇡ [�e hn (k,!)i

+Znext (r, t)] +Znext (k,!)] (2.1)

r ·D (r, t) = 4⇡Znext (r, t)
F�! ik ·D (k,!) = 4⇡Znext (k,!) (2.2)

E (r, t) = �r� (r, t) F�! E (k,!) = �ik� (k,!) (2.3)

�r2�ext (r, t) = 4⇡Znext (r, t)
F�! k2�ext (k,!) = 4⇡Znext (k,!) . (2.4)

In essence, the Fourier transform of the electric field is proportional to the Fourier transform

of the external charge density and the expectation value of the electron plasma density

fluctuation. In contrast, the displacement field is only proportional to the external charge

density. Now, a spatio-temporally varying dielectric function leads to the relation

D (k,!) = ✏ (k,!)E (k,!) . (2.5)

If we take E and D to be longitudinal (E,Dkk) and insert Equations (2.1) and (2.2) into

(2.5), we obtain
1

✏ (k,!)
� 1 =

�e hn (k,!)i
Z⇢ext (k,!)

. (2.6)

Inserting Equations (2.3) into (2.1) and using (2.6) gives us an equivalent form for the

dielectric function, namely

✏ (k,!)� 1 =

4⇡e

k2

hn (k,!)i
� (k,!)

. (2.7)

Equation (2.6) reveals that if ✏ = 0, a vanishingly small perturbation (�ext ! 0) will still

yield a non-zero value for the density fluctuation. This is the condition for the existence

of a plasmon. By finding the zeros of the dielectric function at various values of k and !,
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we can obtain the dispersion of the plasmon. For a single component plasma, the plasmon

frequency has a quadratic dispersion. However, for a multi-component plasma, we will find

that the screening of Coulomb interactions leads to a second root of ✏ that has an acoustic

character.

2.2 A simple look at acoustic plasmons

A straight-forward way to find an expression for the dielectric function of a two-component

plasma is to invoke the random phase approximation (RPA). As I will show in the following

section, the RPA allows us to write the longitudinal dielectric function as the sum of the

susceptibilities associated with the two charge species. The additional term in the dielectric

function due to the second species has a profound impact on the collective oscillations of

the plasma system. We find that in addition to the quadratically dispersed optical branch, a

second branch emerges due to the interaction between the two charge species [11].

Let us consider a two-component plasma system where the two species have drastically

different masses (m1 ⌧ m2). In this case, we can treat species 1 under the Thomas-Fermi

approximation as they quasi-statically screen the Coulomb interactions between species 2

[11, 2]. We treat the second species in the dynamic limit using the Drude model. Then, the

total dielectric function of the system under the RPA is given by [11]

✏RPA (k,!) = 1� !2
2

!2
+

k2
TF,1

k2
, (2.8)

where !2 =

p

4⇡n2e2/m2 is the plasma frequency of species 2, and kTF,1 =

p

3!2
1/v

2
F1

is the Thomas-Fermi screening wave vector of species 1, where vF and !1 are its Fermi

velocity and plasma frequency, respectively. Setting ✏RPA = 0 and taking the limit when k

is small yields

!AP (k) =

!2

kTF,1
k. (2.9)
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This is the dispersion relation for the acoustic plasmon, and as expected it is linear in k

with !AP ! 0 as k ! 0.

2.3 Microscopic theory of acoustic plasmons

In deriving Equation (2.8), we have bypassed a great deal of subtlety by using the Drude and

Thomas-Fermi approximations. Thus, even though we obtain a qualitative understanding

of how the acoustic plasmon emerges, any calculations of properties would far too approx-

imate to make meaningful comparisons to experiments. As I will discuss in subsequent

chapters, the composition of the plasma, particularly the density, damping, temperature,

and energy dispersion of the various species all have a profound effects on the properties of

the acoustic plasmon. We therefore need to go beyond this simple description and develop

a theory that allows us to incorporate the interplay of these parameters. To do this, we will

begin by using the Hamiltonian of a single-component plasma to obtain the expression for

the RPA susceptibility of the plasma species and the longitudinal dielectric function. We

can then extend this treatment to the case of a two-component plasma. The procedure I will

present follows the derivation by Bohm and Pines in the formalism of second quantization

[27].

2.3.1 RPA � and ✏ for a single-component plasma

L

ρ
0

Figure 2.1: Schematic of a charge density fluctuation with k = 2⇡/L.
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The main approach in deriving the susceptibility and dielectric function under the RPA

will center on finding the expression for hn (k,!)i in Equation (2.7). To begin, let us

consider an electron plasma with Coulomb interactions between the charge carriers and an

added external time-varying potential. For the moment, we will disregard the spin of the

electrons. The Hamiltonian for the system is given by

H =

X

p

E (p) c†pcp +

X

k0,q,q0



Vk0

2

c†q�k0c
†
q0+k0cq0cq � en†

k�ext (k,!) e
�i!te�t + c.c

�

.

(2.10)

Here, ck (c†k) is the annihilation (creation) operator for an electron in state k, Vk = 4⇡e2/k2,

� is an infinitesimal positive quantity that ensures the external perturbation is adiabatic, and

nk =

P

p
c†pcp+k is the density fluctuation operator. For k = 0, n0 simply represents the

average density of electrons in the system. For k 6= 0, we can interpret nk by considering

a box of electrons with average density n0 and length L. If, for example, k = 2⇡/L,

nk represents a density fluctuation such as the one pictured in Figure 2.1, and essentially

measures a quantity equivalent to the amplitude of the fluctuation. The first two terms on

the right hand side of Equation (2.10) correspond to the kinetic and Coulomb interaction

energy of the electrons. The third term describes the energy associated with the interactions

between the electrons and the external potential. We obtain this term as follows:

Hint,ext = e

ˆ
d3rn (r)�ext (r)

= e

ˆ
d3r

ˆ
d3qeiq·rnq

� ˆ
d3keik·r�ext (k)

�

= e

ˆ
d3k�ext(k)

ˆ
d3qnq

ˆ
d3rei(k+q)·r

= e

ˆ
d3k�ext (k)

ˆ
d3qnq� (k+ q)

= e

ˆ
d3kn†

k�ext (k)

= e
X

k

n†
k�ext (k) . (2.11)

9



In writing Equation (2.10), we have chosen the external potential to be harmonic in both

space and time.

In order to determine the form of hn (k,!)i , we must calculate the equation of motion

of nk by forming the commutator with the Hamiltonian. We can break the relevant commu-

tator into 4 parts, each corresponding to one of the terms on the right hand side of Equation

(2.10), and evaluate them as
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"

c†pcp+k,
X

p0

~2p02
2me

c†p0cp0

#

=

X

p0

E (p

0
) c†pcp+kc

†
p0cp0 �

X

p0

E (p

0
) c†p0cp0c†pcp+k

justspace =

X

p0

E (p

0
) c†p

⇣

�p+k,p0 � c†p0cp+k

⌘

cp0 �
X

p0

E (p

0
) c†p0

�

�p,p0 � c†pcp0
�

cp+k

= E (p+ k) c†pcp+k � E (p) c†pcp+k

�
X

p0

E (p

0
) c†pc

†
p0cp+kcp0

+

X

p0

E (p

0
) c†pc

†
p0cp+kcp0

= [E (p+ k)� E (p)] c†pcp+k, (2.12)

h

c†pcp+k,�en†
k�ext (k,!) e

�i!te�t
i

=

"

c†pcp+k,�e
X

p0

c†p0cp0�k�ext (k,!) e
�i!te�t

#

justspace = �e
"

c†pcp+k,
X

p0

c†p0cp0�k

#

�ext (k,!) e
�i!te�t

= �e
(

X

p0

c†pcp+kc
†
p0cp0�k �

X

p0

c†p0cp0�kc
†
pcp+k

)

�ext (k,!) e
�i!te�t

= �e
(

X

p0

c†p

⇣

�p0,p+k � c†p0cp+k

⌘

cp0�k �
X

p0

c†p0

�

�p0�k,p � c†pcp0�k

�

cp+k

)

⇥�ext (k,!) e
�i!te�t

= �e
(

X

p0

c†pcp0�k�p0,p+k � c†pc
†
p0cp+kcp0�k

�
X

p0

c†p0cp+k�p0�k,p � c†p0c
†
pcp0�kcp+k

)

�ext (k,!) e
�i!te�t

= �
n

c†pcp � c†p+kcp+k

o

e�ext (k,!) e
�i!te�t, (2.13)
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h

c†pcp+k,�enk�
†
ext (k,!) e

i!te�t
i

=

"

c†pcp+k,�e
X

p0

c†p0cp0+k�
†
ext (k,!) e

i!te�t

#

= �e
"

c†pcp+k,
X

p0

c†p0cp0+k

#

�†
ext (k,!) e

i!te�t

= �e
(

X

p0

c†pcp+kc
†
p0cp0+k �

X

p0

c†p0cp0+kc
†
pcp+k

)

�†
ext (k,!) e

i!te�t

= �e
(

X

p0

c†p

⇣

�p0,p+k � c†p0cp+k

⌘

cp0+k

�
X

p0

c†p0

�

�p0+k,p � c†pcp0+k

�

cp+k

)

�†
ext (k,!) e

i!te�t

= �e
(

X

p0

c†pcp0+k�p0,p+k � c†pc
†
p0cp+kcp0+k

�
X

p0

c†p0cp+k�p0+k,p � c†p0c
†
pcp0+kcp+k

)

�†
ext (k,!) e

i!te�t

= �
n

c†pcp+2k � c†p�kcp+k

o

e�†
ext (k,!) e

i!te�t, (2.14)

and the contribution due to the interaction term (which requires a bit more perseverance)

"

c†pcp+k,
X

k0,q,q0

Vk0

2

c†q�k0c
†
q0+k0cq0cq

#

=

"

c†n�kcn,
X

k0,q,q0

Vk0

2

c†q�k0c
†
q0+k0cq0cq

#

=

X

k0,q,q0

Vk0

2

n

c†n�kcnc
†
q�k0c

†
q0+k0cq0cq + c†q�k0c

†
q0+k0cq0cqc

†
n�kcn

o

= �
X

k0,q0

Vk0

n

c†n�kc
†
q0�k0cn�k0cq0

+ c†n�k�k0c
†
q0+k0cq0cn

o

. (2.15)

Making the change of variables n = p+ k, we obtain
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"

c†pcp+k,
X

k0,q,q0

Vk0

2

c†q�k0c
†
q0+k0cq0cq

#

thisisjustsomespacertextthatIput

= �
X

k0,q0

Vk0

n

c†pc
†
q0�k0cp+k�k0cq0

+ c†p�k0c
†
q0+k0cq0cp+k

o

RPA⇡ �
X

q0,s0

Vk

n

c†pc
†
q0�kcpcq0

+ c†p+kc
†
q0�kcq0cp+k

o

. (2.16)

In the last step, we have made the random phase approximation where we only keep terms

with k

0
= k in the first term and k

0
= �k in the second term on the right hand side. Recall

that k is the wave vector associated with the density fluctuation of interest. In essence

then, the RPA is a statement identifying that the only important term in the spatial Fourier

transform of the Coulomb potential is the one whose k-value coincides with the density

fluctuation. If we rearrange the orders of the operators, we obtain

"

c†pcp+k,
X

k0,q,q0

Vk0

2

c†q�k0c
†
q0+k0cq0cq

#

thisisjustsomespacertextthatIputanditneedstobeabitlonger

RPA⇡ �
X

q0

Vk

n

c†p

⇣

�q0�k,p � cpc
†
q0�k

⌘

cq0 � c†p+k

⇣

�q0�k,p+k � cp+kc
†
q0�k

⌘

cq0

o

= �
X

q0

Vk

n

c†pcp+k � c†pcpc
†
q0�kcq0 � c†p+kcp+2k + c†p+kcp+kc

†
q0�kcq0

o

(2.17)

Within the RPA, we can now write the the equation of motion for the summand in the

density fluctuation as

i~ṅp,k =

⇥

c†pcp+k, H
⇤

= [E (p+ k)� E (p)] c†pcp+k

�
n

c†pcp � c†p+kcp+k

o

e�ext (k,!) e
�i!te�t

�
n

c†pcp+2k � c†p�kcp+k

o

e�†
ext (k,!) e

i!te�t

+

n

c†pcp � c†p+kcp+k

o

Vknk, (2.18)
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and summing over all p gives us the equation of motion for the density fluctuation operator.

The third time on the right hand side vanishes if we take the expectation value of both sides

with appropriate states of the Hamiltonian. Hence, we are left with

i~ hṅp,ki = [E (p+ k)� E (p)] hnp,ki

+

n

⌦

c†pcp
↵

�
D

c†p+kcp+k

Eo

⇥
�

�e�ext (k,!) e
�i!te�t + Vk hnki

 

. (2.19)

Taking the Fourier transform of both sides gives

hnp,k (!)i =

� {np � np+k} {e�ext (k,!)� Vk hnk (!)i}
~ (! � ! (k, p) + i�)

(2.20)

where ~! (k, p) = E (p+ k)� E (p). We may then sum over p to obtain

hnk (!)iRPA =

X

p

4⇡e2

k2

✓

n̄p+k � n̄p

~ (! � ! (k, p) + i�)

◆

⇥
⇢

k2

4⇡e
�ext (k,!)�

k2

4⇡e

4⇡e

k2
hnk (!)i

�

= 4⇡�0 (k,!)
k2

4⇡e

⇢

�ext (k,!)�
4⇡e

k2
hnk (!)i

�

= 4⇡�0
(k,!)

k2

4⇡e
� (k,!) . (2.21)

In the final step, I have introduced the function �0, which is the susceptibility of the electron

gas. Inserting this relation into Equation (2.7) gives

✏ (k,!)RPA = 1 +

4⇡e

k2

hn (k,!)iRPA

� (k,!)
= 1 + 4⇡�0

(k,!) , (2.22)

with

�0
(k,!) =

e2

k2

X

p

n̄p+k � n̄p

~! + E (p)� E (p+ k) + i~� . (2.23)
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Equations (2.22) and (2.23) are the two central results for the one-component plasma under

the RPA.

2.3.2 RPA � and ✏ for a two-component plasma

With the results of the previous section in hand, we are now ready to consider a plasma

composed of both electrons and holes. The charge density fluctuation operator of the sys-

tem is now given by the sum of the operators for electrons and holes:

nk =

X

p

c†pcp+k +

X

p

d†pdp+k. (2.24)

The interaction portion of the Hamiltonian is given by Hint =

Vk
2 {nkn�k � ne � nh}

where ne and nh are the average densities of electrons and holes, respectively. Inserting

Equation (2.24) into the expression for the interaction hamiltonian gives

Hint =

X

k,p,p0

Vk

2

c†p�kc
†
p0+kcpcp0

+

X

k,p,p0

Vk

2

d†p�kd
†
p0+kdpdp0

+

X

k,p,p0

Vkc
†
pcp�kd

†
p0dp0+k. (2.25)

The three terms represent the coulomb interaction between the electrons, holes, and elec-

trons with holes. The first two terms give results identical to what we already derived and

only the equation of motion for the third term remains to be found:
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"

c†pcp+k,
X

k0,q,q0

Vk0c
†
qcq�k0d†q0dq0+k0

#

=

"

c†n�kcn,
X

k0,q,q0

Vk0c
†
qcq�k0d†q0dq0+k0

#

=

X

k0,q,q0

Vk0

n

c†n�kcnc
†
qcq�k0d†q0dq0+k0 � c†qcq�k0d†q0dq0+k0c†n�kcn

o

=

X

k0,q,q0

Vk0

n

c†n�kcnc
†
qcq�k0d†q0dq0+k0 � c†n�kcnc

†
qcq�k0d†q0dq0+k0

+c†n�kcq�k0d†q0dq0+k0�n,q � c†qcnd
†
q0dq0+k0�n�k,q�k0

o

=

X

k0,q0,s0

Vk0

n

c†n�kcn�k0d†q0dq0+k0 � c†n�k+k0cnd
†
q0dq0+k0

o

RPA⇡
X

q,s0

Vk

n

c†n�kcn�kd
†
q0dq0+k � c†ncnd

†
q0dq0+k

o

(2.26)

Finally, we make the change of variables p = n� k:

"

c†pcp+k,
X

k0,q,q0

Vk0c
†
qcq�k0d†q0dq0+k0

#

RPA⇡
X

q0

Vk

n

c†pcpd
†
q0dq0+k

�c†p+kcp+kd
†
q0dq0+k

o

(2.27)

Upon summing over p, both terms in the bracket on the right hand side will cancel each

other, and consequently, we may neglect the third term in Equation (2.25). As a result, the

form of hn (k,!)iRPA for the two-component plasma will simply have an additional term

for holes equivalent in form to the electronic term. Therefore,

✏ (k,!)RPA = 1 + 4⇡�0
e (k,!) + 4⇡�0

h (k,!) , (2.28)

where

�0
j (k,!) =

e2

k2

X

p

n̄j
p+k � n̄j

p

~! + Ej (p)� Ej (p+ k) + i~� , (2.29)

and j = e, h. These are the RPA dielectric function of the two-component plasma and

the susceptibility of species j, respectively. Plasmas consisting of more than 2 species can

be treated identically by simply adding the individual susceptibility contributions for each
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species.

2.4 Visualizing the dielectric functions

Having covered the microscopic theory of acoustic plasmons, it is beneficial for us to spend

some time visualizing the dielectric functions that we derived. Specifically, let us treat the

case where the plasma is within a semiconductor. In order to do this, we will need to

modify the dielectric function expression slightly to account for the background dielectric

constant of the semiconductor. That is,

✏RPA (q,!) = ✏1 + 4⇡�e (q,!) + 4⇡�h (q,!) . (2.30)

In order to evaluate the susceptibility terms, we can assume we are in quasi-equilibrium and

use the Fermi-Dirac distribution function for the expectation values of the number operators

appearing in (2.29). Converting the sum to an integral by letting
P

k ! (1/8⇡3
)

´
d3k, we

can write

�0
j (q,!) =

2e2

k2

1

8⇡3

ˆ
d3k



fj (k, T )� fj (k+ q, T )

Ej (k+ q)� Ej (k)� ~!

�

, (2.31)

with

fj (k, T ) =
1

exp (Ej (k) /kBT ) exp (�µj/kBT ) + 1

, (2.32)

and where µj is the quasi-chemical potential of species j. The factor of 2 in Equation (2.31)

comes from taking into account the the two spin states. Calculating the dielectric function

now seems like a simple application of Equations (2.30) and (2.31), but doing so would be

incorrect. First and foremost, we need to include the effects of collision damping within

the plasma. Ostensibly, the way to do this would be to pass ! ! ! + i� where ⌧ = �

�1 is

the lifetime of the carrier. Unfortunately, this approach does not conserve the local density

of the plasma. N.D. Mermin solved this problem by requiring that the plasma system relax

toward a local equilibrium rather than the thermodynamic equilibrium [28]. The result is
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Figure 2.2: (a) The real and imaginary part of the dielectric function for a one-component
plasma, and (b) the real and imaginary part of the dielectric function for a two-component
plasma.

the so-called Lindhard-Mermin susceptibility given by [29]

�j (q,!) =
(1 + i�/!)

⇥

�0
j (q,! + i�)

⇤

1 + (i�/!)
⇥

�0
j (q,! + i�) /�0

j (q, 0)
⇤ . (2.33)

As we would expect, when � ! 0, we recover Equation (2.31). We now have an ex-

pression for the susceptibility that is dependent on carrier density (through µ in fj (k, T )),

temperature, and damping.

Computing (2.33) is straightforward, provided we know the energy dispersion associ-

ated with the two plasma species. This is a major caveat, but for the moment, lets use the

simplest approximation and treat the two charge species as free-particle-like. In this case,

the energies will be parabolic in k with the curvature defined by some effective mass. This

is known as the Lindhard approximation, and with it, we can evaluate and plot Equation

(2.30) and also see how the roots behave upon changing q and the average carrier density

n0 = ne = nh. Figure 2.2(a) shows the real and imaginary parts of the dielectric function

for a one-component plasma composed of electrons. We can see that the real part of the di-

electric function has two roots, but only one of these is at a frequency where the imaginary

part of the dielectric function is small. Physically, the lower frequency root corresponds
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Figure 2.3: (a) The optical and acoustic plasmon dispersion under the Lindhard approxi-
mation. These curves were obtained using a carrier density of Ne = Nh = 1 ⇥ 10

17 cm�3

at T = 10 K. (b) The carrier density dependence of the optical and acoustic plasmon under
the Lindhard approximation for q = 7.3⇥ 10

5 cm�1 at T = 10 K.

to single particle excitations (SPE) of the electrons from a state just inside to outside the

Fermi sphere. These excitations form a continuum, and play a significant role in the damp-

ing of the collective excitations of the plasma. The higher frequency root corresponds to

the optical plasmon. Figure 2.2(b) shows the real and imaginary parts of the dielectric

function for an EHP. We see that the real part now has four zeros. The lowest frequency

root, which coincides with the first peak in the imaginary part of the dielectric function,

represents the SPE of holes. The second root coincides with the minima in the imaginary

part of the dielectric function, and it is this root that gives rise to acoustic plasmons. The

last two roots in the real part of the dielectric function have the same interpretation as those

in Figure 2.2(a).

The optical and acoustic plasmon frequencies depend on q and more subtly upon the

carrier density, n0, which enters through the Fermi-Dirac term in Equation (2.31) where

it changes the quasi-chemical potential. Figure 2.3(a) shows the dispersion of the optical

and acoustic plasmon in the Lindhard approximation. As expected, the optical plasmon

has a quadratic dispersion, while the acoustic plasmon’s is nearly linear with ! ! 0 as

q ! 0. The two shaded regions correspond to the continuum of single particle excitations
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for the electrons (blue) and holes (red). The optical plasmon only intersects with electron

continuum after a certain value of q. At wave vectors lower than this, the lack of overlap

means that the optical plasmon is not coupled to any single particle excitations. In contrast,

the acoustic plasmon is embedded in the SPE region for low q. This means that in light

scattering experiments, the branch will usually be coupled to at least one continuum of

single particle excitations in a process known as Landau damping. As a result, spectral

lines associated with acoustic plasmons can be very broad and the lifetimes short in the time

domain [30]. Figure 2.3(b) shows a plot of the carrier density dependence of the plasmons,

both exhibit a fractional power law dependence, albeit with different exponential factors.

Both the wave vector and density dependence of the acoustic plasmon played an important

role in my experiments, as I will discuss in Chapters 5 and 6.

2.5 Dealing with transitions

Thus far, we have used the RPA to find the longitudinal dielectric function of for a multi-

component plasma, and in the previous section we have explored the simple case of

parabolic energy dispersion. However in the preceding discussion, we have not consid-

ered the nature of the crystal lattice and how it may affect the calculation of the dielectric

function (apart from the inclusion of ✏1). Since I use GaAs in my experiments, we must in

fact play close attention to three bands (i.e. three charge species), namely the conduction

band electrons, heavy hole, and light hole. We now have to contend with two issues. First,

we must determine the likelihood with which a charge species will make an intraband tran-

sition. Strictly speaking, in writing the susceptibility in Equation (2.31) we have assumed

this probability to be unity. However, for GaAs and other similar semiconductors, this is

only valid for the conduction band electrons. For both the heavy and light holes, the struc-

ture of the eigenstates depends on the direction of the wave vector [31, 32]. As a result,

the intraband transition probability depends upon the direction of the excitation. In light of

20



this fact, we must modify Equation (2.31) as [33, 34]

�0
j (q,! + i�) =

e2

4⇡3q2

ˆ
d3k
 !
Mj

fj (k, T )� fj (k+ q, T )

Ej (k+ q)� Ej (k)� ~! � i~� (2.34)

where
 !
Mj is the intraband matrix element given by

 !
Mj =

8

>

>

<

>

>

:

1, j = e

1
4 +

3
(

k2+q·k
)

2

4k2(q2+k2+2q·k) , j = hh or lh.
(2.35)

The second consideration involves interband transitions. If we were dealing with a

system composed of just two bands, say the conduction band and the heavy hole, there

would be no real need to worry about interband transitions and their impact on the longitu-

dinal dielectric function. This is because in the wave vector regime we are concerned with

(⇠ 10

5 cm�1), the band gap is far too large to allow for interband transitions through the

creation or annihilation of a quasiparticle such as a plasmon or phonon. However, when

the light holes are included in the system, the energy gap between the heavy hole and light

hole bands around k = 0 (the �-point) is small enough to allow interband scattering via

quasiparticles. As a result, if we want to make quantitative comparisons between experi-

ment and theory, we must include the susceptibility contribution due to hh$ lh interband

transitions in the dielectric function calculations. In order to do this, we use an expression

similar to Equation (2.34), where the energy denominator and matrix element take into

account the fact that the initial and final states are in different bands. Namely[33, 34],

�0
inter (q,! + i�) =

e2

4⇡3q2

ˆ
d3k ⇥ !M inter



flh (k, T )� fhh (k+ q, T )

Ehh (k+ q)� Elh (k) + ~! + i~�

+

flh (k, T )� fhh (k+ q, T )

Ehh (k+ q)� Elh (k)� ~! � i~�

�

, (2.36)
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where
 !
M inter =

3

4

� 3 (k2
+ q · k)2

4k2
(q2 + k2

+ 2q · k) . (2.37)

The first term in the brackets in Equation (2.36) represents lh ! hh transitions and the

second term to hh ! lh transitions. Equations (2.34)-(2.37) are the final forms of the

electron and hole susceptibility expressions that I will use in theoretical calculations of the

acoustic plasmon properties.

2.6 Acoustic plasmon standing waves

The final aspect we must consider involves the form of the acoustic plasmon when the

supporting plasma is constrained to a slab. Recall that an acoustic plasmon represents a

density fluctuation of the EHP. As such, in order to determine the form of this fluctuation,

we can treat the EHP as a hydrodynamic fluid confined to a layer of GaAs, and use the

hydrodynamic equations to derive the boundary conditions on the density fluctuation in

order to determine its form.

2.6.1 Momentum equation for a plasma

There are three major forces that act on the plasma that we must consider in developing

an equation governing momentum conservation. They are the Lorentz force due to exter-

nal fields, the force associated with the “pressure”, and finally the force due to collisions

between the different species of the plasma. Each of these can be written as [35]

FL = e (E+ v ⇥B) (2.38)

Fp =

�rP
n

(2.39)

Fc = �m
X

a,b

⌫a,b (va � vb) (2.40)
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where n is the plasma density, m is the mass density, and a and b are plasma species labels.

The net force must be equivalent to m times the total time derivative of the fluid velocity.

If we ignore the collision term, we obtain [35]

m



@v

@t
+ (v ·r)v

�

= e (E+ v ⇥B)� rP
n

. (2.41)

If we further assume that vz = vz (z), then the z-component of (2.41) is

@vz
@t

+ vz
@vz
@z

= eEz + vxBy � vyBx �
1

n

@P

@z
(2.42)

In my experiment, I deal with a photoexcited EHP in a layer of GaAs cladded by AlAs

layers. In the z-direction (normal to the sample plane), the plasma is confined to the GaAs

layer since the AlAs layers serve as potential barriers preventing photoexcited carriers from

crossing the interface. This means that vz = 0 at the interface, so the second term on the

left hand side of Equation (2.41) must go to zero. Also, since the local velocity of the fluid

at the interfaces must be zero at all times, the partial derivative with time must vanish at

the interfaces as well. If we assume no magnetic fields are present, Equation (2.42) now

becomes
1

n

@P

@z

�

�

�

�

z=0,d

= e Ez|z=0,d . (2.43)

There are two major electric fields that are present in the photoexcited volume. The first

is due to the LO phonon, but due to the mismatch in the AlAs and GaAs phonon energies,

it will not propagate from the GaAs layer into the AlAs cladding [36]. As a result, the

lattice displacement in the cladding must be zero as well, so it and the associated electric

field must vanish at the interface to preserve continuity. The second source of an electric

field comes from a non-zero net charge density on the interface. The difference in the

electric displacement between the two layers must be equal to the interface charge density.

At equilibrium, it is net neutral, and in the absence of any other fields, the carrier induced
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electric field must be zero. All this means that the right hand side of Equation (2.43) must

vanish at the interfaces. Furthermore, in the adiabatic limit [35]

P / n�,

where � is the polytropic index. This means that @P/@z / @n/@z, so we are left with

dn

dz

�

�

�

�

z=0,d

= 0.

This condition, coupled with the assumption that the density fluctuation is small, is suffi-

cient to show the form of the acoustic plasmon exists as a set of standing waves confined

to the active layer of GaAs.

2.6.2 Standing waves

Since we are treating the plasma as a fluid, we must also satisfy particle conservation

through the continuity equation given by [35]

@n

@t
+ (v ·r)n+ nr · v = 0. (2.44)

This can be expanded as

@n

@t
+ vx

@n

@x
+ vy

@n

@y
+ vz

@n

@z
+ n

@vx
@x

+ n
@vy
@y

+ n
@vz
@z

= 0. (2.45)

Now, let us write the particle density term as n = n0 + �n and make the reasonable

assumption that the density fluctuation is small (i.e. �n⌧ n0). Further, if we assume that

the average density (n0) does not vary in time and is uniform, and that vx = vy = 0, we
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can approximate the continuity equation to

@�n

@t
+ n0

@vz
@z

= 0. (2.46)

We can solve this partial differential equation by assuming a general (complex) solution of

the form

�en = aeiqze�i!t
+ be�iqze�i!t

+ a⇤e�iqzei!t + b⇤eiqzei!t. (2.47)

Inserting Equation (2.47) into (2.46) and integrating gives

vz (z) =
!a

n0q
e�i!teiqz � !b

n0q
e�i!te�iqz

+

!a⇤

n0q
ei!te�iqz � !b⇤

n0q
ei!teiqz + C. (2.48)

The z-component of the velocity must vanish at the interfaces between the active GaAs

layer and the AlAs claddings. Imposing these conditions on Equation (2.48) yield

8

>

>

<

>

>

:

!
n0q

e�i!t
(a� b) + !

n0q
ei!t (a⇤ � b⇤) + C = 0

!
n0q

e�i!t
�

aeiqd � be�iqd
�

+

!
n0q

ei!t
�

a⇤e�iqd � b⇤eiqd
�

+ C = 0

(2.49)

We also know that @n/@z = 0 at the interfaces, and we may impose these conditions on

Equation (2.47):

8

>

>

<

>

>

:

e�i!t
(a� b)� ei!t (a⇤ � b⇤) = 0

e�i!t
�

aeiqd � be�iqd
�

� ei!t
�

a⇤e�iqd � b⇤eiqd
�

= 0

(2.50)

Equations (2.49) and (2.50) can only be simultaneously satisfied when C = 0 and a = b.

With these, the density fluctuation takes the form

�en = aeiqze�i!t
+ ae�iqze�i!t

+ a⇤e�iqzei!t + a⇤eiqzei!t )

�n ⇡ cos (qz) cos (!t+ �) . (2.51)
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The fact that @n/@z = 0 at z = 0 and z = d is satisfied by Equation (2.51) as long as

q = qm =

m⇡

d
, m = 1, 2, 3... (2.52)

Thus, if the carriers are confined to a finite slab, the acoustic plasmon exists as stand-

ing wave modes with discrete wavevectors. The separation between these wavevectors is

dependent upon the thickness of the layer. We shall see, in Chapters 5 and 6, that the dis-

cretization of the acoustic plasmon into standing waves will have a significant effect on

light scattering spectra and time-domain dynamics in thin samples.

2.7 Summary

Acoustic plasmons represent the density fluctuation of a multi-component plasma due to

screening of Coulomb interactions. While a simplified description using the Thomas-Fermi

and Drude models provides us with a qualitative understanding of the phenomenon, it is

only through a rigorous treatment under the random phase approximation that we can ob-

tain a more complete description of the phenomenon. In particular, this approach gives us a

means to understand the effects of plasma density, temperature, and damping. In addition,

we can incorporate the intraband and interband transition probabilities into theoretical pre-

dictions. As I will show in the subsequent chapters, these parameters play an important part

in determining not only the properties of the acoustic plasmon, but also its light scattering

cross section. Furthermore, when confined to a finite slab, the acoustic plasmon exists as

a set of standing waves, each with a unique wavevector defined by an integer multiple of

a fundamental value proportional to the inverse sample thickness. This discretization has

a significant impact on the interpretation of light scattering spectra and also the observed

time-domain dynamics seen in pump-probe experiments.
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CHAPTER 3

Light scattering from semiconductor plasmas

Inelastic light scattering is a versatile tool well-suited to the investigation of a wide range

of material properties. As this work focuses upon the study of acoustic plasmons in GaAs,

this requires us to consider the nature of light scattering from semiconductor plasmas. This

forces us to consider not only how a plasma interacts with light, but also how the crystal

structure and resonant photoexcitation can affect the process. Several approaches have been

used to address this problem, beginning with simple models of the plasma as a free-electron

gas, to more complex theories that allow us to take into account the Bloch periodicity,

multi-component composition, and resonant effects within a photoexcited semiconductor

plasma.

In this chapter, I will review the development of the relevant scattering cross sections

for various classes of plasma and light field configurations. After developing the general

form of the scattering cross section from a simple plasma, we will see how the inclusion

of multiple carrier species introduces resonant scattering from LO phonon-optical plasmon

coupled modes and single particle excitations, both of which can be used to determine the

plasma parameters. I will then discuss the scattering associated with acoustic plasmons,

and conclude with a discussion of how to calculate the necessary susceptibilities given the

band structure of GaAs.
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3.1 Inelastic light scattering

Before looking at the details of light scattering from semiconductor plasmas, let us take

a moment to discuss inelastic light scattering in general terms. We are interested in is a

process by which an incident photon of frequency !I is scattered to a frequency !S by

some type of excitation (plasmon, phonon, etc.). In the case that !I > !S , the process is

known as Stokes scattering, and energy and momentum conservation require that

8

>

>

<

>

>

:

! = !I � !S

q = kI � kS

, (3.1)

where ! and q are the frequency and wavevector of the Stokes excitation.
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Figure 3.1: Schematic diagram of the Stokes and anti-Stokes scattering processes.

There is also a second process in which !I < !S , and this is known as anti-Stokes

scattering. In this case, the conservation conditions are

8

>

>

<

>

>

:

! = !S � !I

q = kS � kI

, (3.2)

Schematically, we can diagram the two processes as in Figure 3.1.
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Figure 3.2: Schematic of an idealized scattering experiment, reproduced from [37]

An idealized schematic of the the inelastic light scattering experiment is shown in Fig-

ure 3.2. We shine light with intensity II on the sample from a given direction and then

measure the scattered light intensity IS emanating from a scattering volume V in the sam-

ple. It is typically impractical to collect light in all directions, so instead, we restrict our

attention to light scattered at some angle '. Also, since the lens we use to do this has a

finite aperture, we are only able to collect light over a solid angle d⇥. We then convert the

measured quantities into their counterparts within the sample using the optical properties

of the scatterer. If we use a spectrometer to interrogate the spectral composition of the scat-

tered light, we are measuring what is known as the double differential spectral scattering

cross section associated with this process, or d2�/d⌦d!. Physically, this quantity repre-

sents the rate of removal of energy from the incident beam as a result of scattering within

some volume V into a differential solid angle element d⌦ with a scattered light frequency

between ! and ! + d! divided by IId⌦d! [37].

In a typical light scattering experiment, we obtain spectra such as the one shown in

Figure 3.3. The central peak corresponds to elastic scattering of light from the sample. The

high and low energy side peaks correspond to the the anti-Stokes and Stokes scattering from

an excitation, respectively. When not on resonance with the sample, the ratio of anti-Stokes

to Stokes intensity is related by

Ias
Istokes

=

n (!)

n (!) + 1

, (3.3)
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Figure 3.3: Typical light scattering spectra

where n (!) is the Bose-Einstein factor defined as

n (!) =
1

e~!/kBT � 1

. (3.4)

where T is the temperature associated with the excitation. Therefore, measuring the anti-

Stokes-Stokes ratio allows us to measure the excitation temperature. In general, for low

temperature experiments, the Stokes scattering intensity will be much larger than the anti-

Stokes intensity. Additionally, the presence of the Stokes and anti-Stokes peaks are often

dependent upon satisfying certain selection rules pertinent to the scattering process. For

scattering from semiconductor plasmas, these involve the orientation of the incident and

scattered electric field polarizations with respect to the tensor describing the mass of the

carrier in the crystal.

3.2 Fermi’s Golden Rule and the scattering cross section

Our goal is to obtain expressions that describe the situation in which an incident photon of

some momentum and polarization scatters from a plasma into another photon while causing
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the plasma to transition to a new state. In order to derive an expression for the scattering

cross section, we need to construct a Hamiltonian for the relevant process. In our case, we

can begin with the interaction between a radiation field and a gas of free electrons defined

by [2]

He�R =

e2

2m0c2

X

j

|A (rj, t)|2 +
e

2m0c

X

j

[pj ·A (rj, t) +A (rj, t) · pj] . (3.5)

Here, rj and pj are the j-th electron’s position and momentum, respectively. A is the

vector potential of the light-field, which when quantized, is given by

A (rj, t) =

X

k

✏̂k

n

ˆA exp (ik · r� i!t) + ˆA†
exp (�ik · r+ i!t)

o

=

X

k

✏̂k

✓

2⇡~c2
n2
!V !

◆1/2

(3.6)

⇥
n

âk exp (ik · r� i!t) + â†k exp (�ik · r+ i!t)
o

,

where n! is the refractive index of the scatterer at !, âk (â†k) is the annihilation (creation)

operator for a photon with wave vector k, and ✏̂k is the polarization. For now, let us only

consider the first term on the right hand side of Equation (3.5), since this is the important

term for the simplest case of scattering from a free electron gas [38, 37]. Here, the lack

of band-band transitions leads to a ratio of A · p to A

2 terms approximately equal to

~!I/m0c
2, which is negligibly small at visible incident frequencies (!I). If we take the

scattered frequency as !S , we can rewrite the A

2 term as [38]

H1
e�R =

✓

e2

m0c2

◆

(✏̂I · ✏̂S) ˆAI
ˆA†
S exp (�i!t)

X

j

exp (iq · rj) +H.C., (3.7)

where ! = !I�!S , q = kI�kS , and
P

j exp (iq · rj) = n̂�q =

P

k ĉ
†
k+qĉk is the density

fluctuation operator. We consider the initial and final states of the system of electrons and
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photons as

|ni = |↵i |ii = |nI , nSi |ii (3.8)

|mi = |�i |fi = |nI � 1, nS + 1i |fi , (3.9)

where nI and nS are the occupation numbers of the incident and scattered photon states,

and |ii and |fi are the initial and final many-body states of the electron gas. As such, we

are interested in the process where an incident photon is annihilated and a scattered photon

is created as the plasma transitions from the initial to final state. Using Equation (3.5) and

Fermi’s Golden Rule, given by

Wi!f =

2⇡

~
�

�hm|H1
e�R |ni

�

�

2
� (Ei + ~!I � Ef � ~!S) (3.10)

we can write the scattering cross section as [39]

@2�

@⌦@!
=

✓

e2

m0c2

◆2✓
!S

!I

◆2

(✏̂I · ✏̂S)2

⇥
X

f

|hf | n̂�q |ii|2 � (~! + Ei � Ef ) . (3.11)

Equation (3.11) is the general form of the scattering cross section due to the A2 term of

the electron-radiation hamiltonian. We can actually put this into a more useful form by

converting the �-function term into an integral. Since

� (~! + Ei � Ef ) =
1

2⇡

1̂

�1

exp [i (Ei + ~! � Ef ) t] dt, (3.12)
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we can re-write the scattering cross section as [40]
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✓

e2
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⇥ 1
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1̂
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dtei!t
X

f

hi| n̂q |fi ei(Ei�Ef)t hf | n̂�q |ii

=

✓

e2

m0c2

◆2✓
!S

!I

◆2

(✏̂I · ✏̂S)2

⇥ 1

2⇡

1̂

�1

dtei!t
X

f

hi| eiHtn̂qe
�iHt |fi hf | n̂�q |ii

=

✓

e2

m0c2

◆2✓
!S

!I

◆2

(✏̂I · ✏̂S)2

⇥ 1

2⇡

1̂

�1

dtei!t hn̂ (q, t) n̂ (q, 0)i , (3.13)

and finally we get

@2�

@⌦@!
=

✓

e2

m0c2

◆2✓
!S

!I

◆2

(✏̂I · ✏̂S)2 S (q,!) , (3.14)

where

S (q,!) =
1

2⇡

1̂

�1

dtei!t hn̂ (q, t) n̂ (q, 0)i . (3.15)

S (q,!) is known as the dynamic structure factor, and it explicitly shows that density fluc-

tuations are responsible for light scattering in a plasma.

The situation of light scattering from a semiconductor plasma is slightly more compli-

cated. The periodicity of the lattice leads to the formation of many electronic energy bands,

and in second order perturbation theory, electrons in these bands can undergo transitions

through A · p term. In semiconductors, this scattering process can become significant, and

we must therefore include it in any discussion of the scattering cross section. Let us as-

sume we are dealing with a semiconductor that has a parabolic conduction band; this is a
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reasonable assumption for a material like GaAs. If we are non-resonantly photo-exciting

the semiconductor we may write an effective Hamiltonian that essentially combines the A2

and A · p contributions as [38]:

ˆHeff =

e2

m0c2
�

✏̂I ·m0m
�1 · ✏̂S

�

ˆAI
ˆA†
S exp (�i!t) n̂�q +H.C., (3.16)

where m

�1 is the inverse effective mass tensor describing the conduction band. The scat-

tering cross section is now [2]

@2�

@⌦@!
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✓

e2

m0c2

◆2

m2
0

✓

!S

!I

◆2
�

✏̂I ·m�1 · ✏̂S
�2

S (q,!) . (3.17)

S (q,!) is again given by Equation (3.15). The key to understanding light scattering from a

plasma lies in evaluating the dynamic structure factor given the nature of the plasma under

consideration.

3.3 The fluctuation dissipation theorem

The
⌦

n̂ (q, t) n̂†
(q, 0)

↵

term appearing in Equation (3.15) is taken over initial and final

many-electron states. However, because the exact form of these states is unknown, we

cannot calculate an exact analytical solution for the structure factor. What we can do,

however, is relate the thermal fluctuations of the plasma density to the dielectric function

of the plasma using the fluctuation dissipation theorem. In general, in the absence of an

applied force, an observable in a system will vary randomly about it’s mean value; we

refer to these as thermal fluctuations. Now, if we were to apply a force to the system, the

observable would be subject to a driven force that must be dissipated by some systematic

resistance. It turns out that this resistive response originates from the same source as the

thermal fluctuations of the system. As such, the fluctuation dissipation theorem allows us

to relate the systematic response to the thermal fluctuations of the observable.
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The mathematical formulation of the fluctuation dissipation theorem was first done by

Callen and Welton [41]. In general, we wish to connect some generalized “force” to the

thermal fluctuations of an observable that occur in the absence of any perturbations. Our

ability to do this is contingent on the observable and “force” being conjugates of each other

such that, when multiplied, they represent a Hamiltonian such as [42],

H = X (r, t)F (r, t) . (3.18)

In Fourier space, the observable and force are linked as [42]

X (q,!) = T (q,!)F (q,!) , (3.19)

where T (q,!) is the linear response function of the system. The central result of the

fluctuation dissipation theorem is that, for Stokes scattering [42, 43],

1

2⇡

1̂

�1

dt exp (i!t)
D

ˆX (q, t) ˆX†
(q, 0)

E

=

~
⇡
(n (!) + 1)= {T (q,!)} , (3.20)

where n (!) is the Bose-Einstein factor. Equation (3.20) allows us to relate the power

spectrum of the thermal fluctuation of the observable X to the imaginary, or dissipative,

part of the response function T .

3.4 The single-component plasma

In order to apply the fluctuation dissipation theorem to evaluate the structure factor for a

single component plasma, I will follow the treatment in Ref. [2]. Poisson’s equation tells

us that the polarization and plasma density operators are related by

r ·P (r, t) = �en̂ (r, t) . (3.21)

35



Taking the spatial Fourier transform of the both sides of Equation (3.21) allows us to write

n̂ (q, t) = � i

e
q ·P (q, t) . (3.22)

We can then re-write the structure factor in (3.15) as

S (q,!) =

1

2⇡

1̂

�1

dt exp (i!t)
⌦

n̂ (q, t) n̂†
(q, 0)

↵

=

1

2⇡e2

1̂

�1

dt exp (i!t)
⌦

q ·P (q, t)q ·P†
(q, t)

↵

=

q2

2⇡e2

1̂

�1

dt exp (i!t)
D

ˆP (q, t) ˆP †
(q, t)

E

. (3.23)

In the last step, we have assumed that q is parallel to P. Let us set ˆX = P and F = D (the

externally applied field). Then, using Equation (3.20) and assuming that P, D, and q are

parallel, we can write

V ˆP (q,!) = T (q,!)D (q,!) . (3.24)

The electric displacement is related to the total field and polarization by the constitutive

relation:

D (q,!) = ✏1E (q,!) + 4⇡P (q,!) . (3.25)

Also, by using the susceptibility of the plasma, we can relate the polarization to the total

field by writing

P (q,!) = � (q,!)E (q,!) . (3.26)

Combining (3.24)-(3.27), we obtain

T (q,!) =
� (q,!)

✏1 + 4⇡� (q,!)
=

� (q,!)

✏ (q,!)
. (3.27)
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Figure 3.4: The scattering cross section for a one component plasma n = 7 ⇥ 10

17 cm�3,
q = 7.33⇥ 10

5 cm�1, T = 100 K, � = 1.3 meV.

Finally, we can write the expression for the scattering cross section of a single component

plasma by combining (3.17), (3.20), and (3.23)-(3.27) to get

@2�

@⌦@!
=

✓

e2

m0c2

◆2

m2
0

✓

!S

!I

◆2
�

✏̂S ·m�1 · ✏̂I
�2 ~q2

⇡e2
(n (!) + 1)=

⇢

� (q,!)

✏ (q,!)

�

. (3.28)

We can evaluate the susceptibility and dielectric function appearing in Equation (3.28)

using the RPA expressions developed in Chapter 2. Since we are interested in the �-point

electron behavior in GaAs, we can assume that the conduction band is parabolic and we

can take m

�1 to be a diagonal matrix if we orient the cartesian coordinate system with the

principal axis. Accordingly, the scattering cross-section can be non-zero only for polarized

configurations in which ✏̂L = ✏̂S . In Figure 3.4, I have plotted the scattering cross section

for a simple electron plasma in GaAs. As expected, since the system is only a free-particle-

like plasma comprised of electrons, there should be only one collective oscillation branch,

and accordingly, we see a single well defined peak corresponding to the optical plasmon.
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3.5 The multi-component plasma

Thus far, we have restricted ourselves to the consideration of a plasma composed of a

single charge species. Furthermore, despite dealing with a plasma in a crystal structure, we

have not considered the susceptibility due to lattice oscillations, and how this may affect

the scattering cross section. In order to do this, we have to extend our treatment of the

scattering cross section to the case of a plasma comprised of many charge species. The

generalization of (3.17) was put forth by McWhorter and is given by [2]

@2�

@⌦@!
=

✓

e2

c2

◆2✓
!S

!I

◆2
X

a,b

�

✏̂I ·m�1
a · ✏̂S

� �

✏̂I ·m�1
b · ✏̂S

�

Sab (q,!) , (3.29)

with

Sab (q,!) =
1

2⇡

1̂

�1

dt exp (i!t)
D

n̂a (q, t) n̂
†
b (q, 0)

E

, (3.30)

where a and b label the charge species. The structure factor is now a tensor, each element

corresponding to the contribution of a particular species combination. We can now apply

the fluctuation dissipation theorem. The polarization of the plasma will be the sum of

contributions due to each plasma species. Likewise, the response function will also be a

tensor linking the polarization of a species a with the displacement field associated with

species b (a and b may be the same species). Specifically, we can write [2]

Pa (q,!) =
X

b

Tab (q,!)Db (q,!) (3.31)

and

Da (q,!) = ✏1Ea (q,!) + 4⇡
X

b

Pb (q,!) . (3.32)

Each species’ polarization is still proportional to the corresponding field through the species

susceptibility as [2]

Pa (q,!) = �a (q,!)Ea (q,!) . (3.33)
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In general, the evaluation of the response function can be quite complicated, particularly

for cases where the different species are defined by different principal axes as is the case

for materials like n-Ge and n-Si [38, 44]. However, for the conduction band of GaAs, this

is not an issue since the effective mass tensor is diagonal near the �-point. In this case, the

response function between species a and b is given by [2]

Tab (q,!) =



�a (q,!)� 4⇡
�a (q,!)�b (q,!)

✏ (q,!)

�

, (3.34)

where

✏ (q,!) = ✏1 + 4⇡
X

a

�a (q,!) (3.35)

can be found using the RPA susceptibility functions.

In theory, the scattering cross section in Equation (3.29) can be evaluated for each

combination of species in the multi-component plasma. However, since I am working

with GaAs, we can take advantage of certain material properties to simplify the problem.

In particular, the conduction band electrons have a much smaller effective mass than the

heavy and light holes. Since the scattering process is the result of an effective A

2 term,

the smaller effective mass of the electrons will greatly enhance their contribution to the

scattering relative to the holes through the inverse effective mass terms. For this reason, the

scattering cross section will be dominated by the electronic response.

3.6 A note on resonance

In deriving the preceding expression, we began with the assumption that we were not using

light on resonance with any gap of the semiconductor. This, however, is typically not valid

when generating a high density photoexcited plasma. Blum, Hamilton, and McWhorter

have developed the theory to deal with scattering cross sections in near-resonant conditions

[45, 46]. The primary result is that the scattering spectrum is enhanced under resonant
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photoexcitation. This introduces a few problems. Primarily, we need a whole new set of

scattering cross section expressions to treat resonant phenomena. The approach typically

taken is to define a new effective Hamiltonian for the scattering process; one that takes into

account both band anisotropy and spin orbit effects that play a role in certain single particle

excitations. This is done by changing the density fluctuation to a generalized pair operator

defined as [45]

n̂0
=

X

↵,�

�↵,� ĉ
†
� ĉ↵, (3.36)

allowing us to write the scattering cross section as [2]
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h↵| ✏̂S · pe�ikS ·r |�0i h�0| ✏̂I · pe�ikI ·r |�i
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h↵| ✏̂I · pe�ikI ·r |�0i h�0| ✏̂S · pe�ikS ·r |�i
E� � E�0 � ~!S

�

. (3.38)

In general, the dynamic structure factors of the from of (3.37) are very difficult to calculate.

However, if we make the assumptions that !I ⇡ !S and E�0 � E� is approximately equal

to the band gap, then we can separate �↵,� into

�↵,� = ✏̂I ·
 !
R · ✏̂S h↵| eiq·r |�i

i (✏̂I ⇥ ✏̂S) ·
 !
B h↵| eiq·r�̂ |�i

where �̂ is the Pauli spin matrix and
 !
R and

 !
B describe the resonance enhancement. The

result is that we will now have two separate contributions to the scattering cross section, one

40



Figure 3.5: Schematic of the longitudinal electric field associated with LO phonons in
GaAs.

for polarized and the other for depolarized scattering. In this case, the polarized scattering

cross sections are simply modified versions of the one’s we have already derived, where

the inverse effective mass tensor is replaced by
 !
R /m0. The depolarized term is associated

with a particular class of single particle excitations, that are quite useful in determining the

parameters of the plasma.

3.7 LO phonon-optical plasmon coupled modes

One of the notable features of light scattering spectra in resonantly photoexcited GaAs is

related to LO phonon-optical plasmon coupled modes. In polar semiconductors, the LO

phonons (see Appendix A) carry a macroscopic longitudinal electric field resulting from

displacements of planes of positively and negative charged ions relative to each other as

shown in Figure 3.5. The optical plasmon also carries a longitudinal electric field and when

the plasmon frequency approaches the phonon frequency at sufficiently high carrier densi-

ties, the two oscillators can interact through their macroscopic fields; the optical plasmon

screens the longitudinal electric field of the LO phonon [47]. The result of this interaction

are two repulsive phonon-plasmon coupled mode branches. In GaAs, the scattering spec-

trum due to the coupled modes are visible in the polarized configuration (i.e. ✏̂I k ✏̂S) if the

polarization vector is parallel to the [0

¯

11] or [0¯1¯1] crystallographic directions.
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Strictly speaking, the coupled modes exist in a semiconductor even in the absence of

a significant hole density. In fact, much of the early experimental work on coupled modes

was performed on n-type GaAs where the only significant contributions to the longitudinal

dielectric functions come from conduction band electrons and the lattice [5, 4, 3]. In such

a system, the dielectric function is

✏ (q,!) = ✏1 + 4⇡�e (q,!) + 4⇡�L (q,!) , (3.39)

where �e (q,!) is calculated from Equations (2.33) and (2.35), and , and �L (q,!) is the

lattice susceptibility given by [48]

�L =

1

4⇡

!2
TO (✏ (0)� ✏1)

!2
TO � (! + i�ph)

2 . (3.40)

!LO and !TO are the LO and TO phonon frequencies, respectively, �ph is the damping

of the phonon, and ✏ (0) is the static dielectric constant. Since the coupled modes still
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involve a collective excitation of the electrons in GaAs (albeit with frequencies different

from the optical plasmon), the peak locations of = {1/✏} correspond to the frequencies of

the lower (L�) and upper (L+) branch of the coupled modes. Figure3.6 shows the change in

!L�and !L+ as a function of carrier density for the specified values of wavevector, carrier

temperature, and damping. For lower carrier densities, the L� mode exhibits plasmon-

like behavior while the L+ is phonon-like slightly up-shifted from LO phonon frequency.

At higher carrier densities however, the behavior flips, with the L� mode behaving as a

phonon and the L+ appearing plasmon-like. As expected, the coupled modes frequencies

change significantly with carrier density with the lower and upper branch asymptotically

approaching the TO phonon and plasmon frequencies, respectively. This behavior is due

to the quasi-chemical potential’s effect on the susceptibility. In my experiment, the shift in

!L� and !L+ with carrier density served as a metric to assign the density of the photoexcited

plasma, which was a necessary step in investigating the acoustic plasmon.

In theory, we can calculate and plot the electronic contribution to the scattering from

the coupled modes using (3.29) and (3.34). However, there are two important points that

we must consider. First, the plasma consists of conduction band electrons, heavy holes,

and light holes. Furthermore, the longitudinal dielectric function of the system has con-

tributions not just from the three carrier species and lattice, but one also due to interband

transitions between the light and heavy hole bands [19, 49]. For this reason, we need to

construct the dielectric function as

✏ (q,!) = ✏1 + 4⇡�e (q,!) + 4⇡�hh (q,!)

+4⇡�lh (q,!) + 4⇡�inter (q,!) + 4⇡�L (q,!) . (3.41)

The species susceptibilities are calculated using Equations (2.33)-(2.37) and the lattice sus-

ceptibility using Equation (3.40).

We can write the polarized scattering cross section by modifying Equation (3.29), re-
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placing the inverse effective mass tensor with a resonance factor given by [46]

 !
R =

 !
I



1 +

3P 2
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✓
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E2
G1 � (~!L)

2 +
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E2
G2 � (~!L)

2 +

EG3

E2
G3 � (~!L)

2

◆�

. (3.42)

Here,
 !
I is the identity matrix, P is the interband matrix element, and EG1, EG2, and

EG3 are the band gap energies between the conduction band and the heavy hole, light

hole, and split-off bands, respectively. Since the laser wavelength is very close to EG3

in my experiment, only the third term in (3.42) makes a significant contribution to the

enhancement effect. Moreover, since the range of wave vectors we are dealing with is

small (compared to the edge of the Brillouin zone), we can treat the enhancement term

as a constant factor independent of wave vector. Accordingly, we can write the Stokes

scattering cross section as

@2�
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=

1

m0

✓

e2

c2

◆2✓
!S
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◆2
⇣
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⌘2 ~q2

⇡e2
(n (!) + 1)= {Tee (q,!)} , (3.43)

where

Tee (q,!) =



�e (q,!)� 4⇡
�2
e (q,!)

✏ (q,!)

�

. (3.44)

Just as before, since
 !
R is diagonal, the coupled modes only appear in the polarized config-

uration. Equations (3.43) and (3.44) are the expressions that I used to model the polarized

light scattering spectra in my experiment.

In Figure 3.7, I have plotted the electronic component of the scattering cross section

due to the L� and L+ modes for a plasma of just electrons and the lattice, the inclusion

of heavy and light holes, and the subsequent inclusion of interband transitions between

the hole bands. We can see that the holes cause a noticeable shift in the coupled mode

frequencies and also a broadening effect in the peak associated with the L+ mode. The

former is due to the intraband hole terms, while the latter is due to the interband hole term.

The primary conclusion is that in order to compare theoretical predictions of the coupled
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Figure 3.7: Calculated electronic scattering cross sections due to the L� and L+ modes for
electrons and the lattice (blue), with holes (green), and also with hole interband transitions
(red). The inclusion of the hole terms causes a shift in the peak locations and the interband
term causes a broadening of the L+ peak. The conditions used in the theoretical calculation
are q = 7.30⇥105cm�1, T = 100K, !LO = 296cm�1, !TO = 273cm�1, and � = 1.3meV.

mode behavior to experimental results, we must include the contributions of holes to the

dielectric function.

3.8 Single particle excitations

Single particle excitations are the second major class of phenomenon that are visible in

resonant light scattering experiments. In general, single particle excitations are those where

a carrier just below the quasi-Fermi energy level is excited to a state just above the level.

In light scattering spectra, there are generally two major contributions to the SPE: spin

density (SDF) and energy density fluctuations (EDF). The former is particularly important

since, at the large carrier densities typically created under resonant photoexcitation, they

are unscreened and the associated scattering cross section can be very large [46]. As we

shall see, scattering from SDFs appears in the depolarized configuration and we can use it

to extract several important plasma parameters, chief among them the carrier temperature.
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Scattering from spin density fluctuations occurs through spin-orbit coupling. Here,

the p · A terms in the electron-radiation Hamiltonian allows light to induce spin flips in

electrons via virtual transitions. Much like Equation (3.16), we can write the effective

Hamiltonian for the process in the absence of magnetic fields as [2]

ˆHSDF
eff = i

e2

2m0
(✏̂I ⇥ ✏̂S) ·

 !
B · ✏̂µ

✓

n̂q" � n̂q#

2

◆

ˆAI
ˆA†
S, (3.45)

where ✏̂µ is a unit vector along a cartesian direction and n̂q" (n̂q#) is the number density

operator for up (down) spins.
 !
B is a resonance enhancement term that is analogous to

 !
R

appearing in (3.43). given by [46]
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2

�

. (3.46)

Equation (3.45) tells us that SDF scattering should only appear when the incident and scat-

tered light polarizations are orthogonal. Also, since any spin flip up reduces the occupation

number of a spin down electron, the net electron density fluctuation n̂q = n̂q" + n̂q# does

not change. As a result, there is no collective excitation involved in SDFs, and the scattering

process has a single particle character.

The general expression for the scattering cross section from spin density fluctuations

was developed by Hamilton and McWhorter [46]. If the wavevector dependence of the

resonance term is ignored, the electronic SDF Stokes scattering cross section is [2]
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Pinczuk et al. have noted that treating the resonance term as a constant does lead to shifts

in the calculated spectrum relative to experimental results [50]. However, these shifts are

small enough that taking the simplified expression given by (3.47) is a reasonable approx-

46



imation. Light scattering from SDFs is useful in my case for three main reasons. First,

scattering from SDFs occur in the depolarized configuration. As a result, there is no need

to contend with the subtraction of the coupled mode scattering component prior to extract-

ing the relevant plasma parameters. Second, the lineshape of the SDFs provides a direct

measure of the carrier temperature from the anti-Stokes-Stokes ratio. Lastly, it provides

another method by which we can assign the carrier density and damping since we can

calculate �e to see how it depends on these parameters.

There is also a polarized component of SPE, and the usually weak polarized signal can

become quite strong in cases where the carrier density and temperature are sufficiently

high [50]. Additionally, the lineshape of the polarized SPE can be affected, since the

anisotropies in the band can have a significant effect on the resonance enhancement term.

Unfortunately, analytical treatments of polarized SPE are complicated and most methods

only allow for a qualitative description of the enhancement effects [51].

3.9 Acoustic plasmons

The last major feature in the scattered light spectra, the one central to this work, comes

from acoustic plasmons. Since acoustic plasmons are another branch of collective plasma

oscillations the scattering cross section is determined by expressions developed for the

electronic contribution to polarized scattering from the multicomponent plasma. For the

purposes of this work, the main question lies in how the wavevector and plasma parame-

ters change the scattering cross section associated with the acoustic plasmon. Figure 3.8(a)

shows a contour plot of the carrier density dependence of the scattering cross section of

an EHP in GaAs. As expected, the L� and L+ modes show behavior commensurate with

Figure 3.6 and the acoustic plasmon shows a fractional power law behavior with carrier

density as discussed in Chapter 2. Figure 3.8(b) shows the scattering cross section’s de-

pendence on the wavevector. While we see that the coupled modes cross sections do not
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Figure 3.8: (a) Contour plot showing the carrier density dependence of the scattering cross
section for q = 7.3⇥105 cm�1, T = 100 K, and � = 1.3 meV and (b) contour plot showing
the dispersion of the scattering cross section for N = 7.0 ⇥ 10

17 cm�3, T = 100 K, and
� = 1.3 meV

vary significantly for small q, the acoustic plasmon cross section shows a linear dependence

with wavevector.

Having identified how the scattering cross section varies with wave vector and plasma

density, it is now necessary for us to consider the wavevector, q, appearing in the cross

section expressions. For a thick sample, finite size effects are irrelevant and, subsequently,

we can disregard confinement of the modes. In this case, the relevant wavevector in the

scattering process is determined by k-conservation. For backscattering, this means that

q = 2kI = 4⇡n/�I , where n is the index of material and �I is the wavelength of the

incident light. Moreover, for an optical mode, the dispersion is virtually flat near the center

of the Brillouin zone, so the choice of q is all but irrelevant near the �-point.

The acoustic plasmon, however, is entirely another matter. As I showed in Chapter 2,

the form of the density fluctuation associated with acoustic plasmons in a slab are standing

waves with q = m⇡/d, where d is the slab thickness. As a result, in a thick layer, the spac-

ing between adjacent modes is small, and light may couple strongly to a mode that satisfies

k-conservation. However, for a thin sample, the large spacing between the modes causes
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wavevector conservation to breakdown since there may not be a mode with appropriate q.

This allows the light to couple to “forbidden” modes over a range of q values [52]. Now,

if the dispersion of the excitation was flat, the frequency variation between these modes

would be negligible and spectrally, we would see nothing different from the case of a thick

sample. However, since the acoustic plasmon has a linear dispersion with a relatively large

group velocity, the frequency separation can become quite large between adjacent modes.

As a result, we would see spectra that differs from the bulk-case. The number of accessible

“forbidden” modes and the efficiency with which light couples to them is determined by

the details of the scattering process. In Chapter 5, I will demonstrate that we can exploit

an analogy between LA phonons and acoustic plasmons to determine the scattering spectra

from acoustic plasmons in thin samples.

3.10 Calculating the susceptibilities

In the preceding sections, we have seen several scattering cross sections for GaAs given a

set of electron-hole plasma parameters. However, we have yet to consider the energy de-

nominators appearing in the susceptibility functions used to form the longitudinal dielectric

function. The simplest approach is to treat the electron and hole bands as parabolic, de-

fined by some effective mass. When combined with the RPA expressions we derived in

Chapter 2, the resulting functions are known as the Lindhard susceptibilities. In general,

this approach, though qualitatively sound, fails to reproduce the substantive effects of band

anisotropies and non-parabolicities on the acoustic plasmon and coupled mode scattering

cross sections. In Figure 3.9 I have plotted the band structure of GaAs calculated with a

30-band model using a direct diagonalization of the k · p Hamiltonian [53, 54]. As we can

see, the conduction band electrons and light holes are isotropic near the �-point, though the

latter is non-parabolic. In contrast, the heavy hole band, though parabolic, is anisotropic

and depends strongly upon the crystallographic direction. Thus, it is clear that in order to
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Figure 3.9: Band structure of GaAs at T = 0 K calculated using a direct diagonalization of
a 30-band k · p model.

make accurate quantitative comparisons between my experiment and theory, I must take

into account the complexity in the band structure of GaAs.

There are many effective approaches to compute susceptibility integrals of the form of

Equations (2.34) and (2.36) that extend over the entire Brillouin zone. In one such method,

the Brillouin zone is adaptively meshed and divided into tetrahedral elements [55, 56].

The relevant band energies are evaluated at the vertices of each tetrahedron (using, for

example, the k · p method) and these values are used to analytically sum the integrand

over the Brillouin zone using interpolation inside each tetrahedron. By all accounts, this

method is as exact as computationally permissible. It does, however, suffer from a major

drawback. This has to do with the difficulty in handling situations where the temperature

is non-zero. In this case, the quasi-Fermi surface is diffuse due to the smearing of the edge

by the Fermi-Dirac distribution. Several methods exist to adapt the tetrahedron method to

account for finite temperature effects, but in general, they are difficult to implement and

computationally intensive [57].

Another approach to computing the susceptibility integrals, one I have chosen to im-

plement in my work, takes advantage of the particular structure of the 3 bands in question.
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Since the conduction band of GaAs is isotropic near the �-point, the energy of an electron

in this band is only dependent on the magnitude of the wave vector. In this case, performing

a full 3D integral is unnecessary. If the wave vector of the excitation (q) is chosen to be

along the lab x-axis (the crystallographic [100] direction) then we can reduce the integral

to 2⇡ (from the azimuthal integral) times the integrals over k (radial magnitude) and ✓ (the

polar angle). This is because in this case

E (k+ q) = E
�

k2
+ q2 + 2kq cos ✓

�

. (3.48)

We can then calculate the energy dispersion function using the 30-band k ·p method along

one of the high symmetry directions of GaAs (e.g. �! X), and since the shape will be the

same in any direction from the �-point, we can cubically interpolate the band dispersion

as necessary by the an adaptive 2D integration method (integral2, see [58]). We choose

the k-space bounds of the integration so that it extends to the point where the Fermi-Dirac

distributions appearing in Equations (2.34) and (2.36) sufficiently suppress the integrand to

negligible values. Of course, if the bounds of integration were very large (i.e. a significant

fraction of the Brillouin zone edge), then this method would fail since the assumption of

isotropy becomes invalid. However, for the region of k-space I was dealing with, this was

not an issue, and comparisons with the tetrahedron method showed good agreement. The

advantage of this method is that temperature can easily be introduced since the smearing

of the quasi-Fermi level is handled adaptively by the integration method. Moreover, this

computation is significantly faster than the tetrahedron method allowing for virtually on-

the-fly susceptibility calculations that are particularly useful in implementing the iterative

method I employ to determine the plasma parameters (discussed in the Chapter 5). Finally,

since this method is only contingent upon the band being isotropic, it was also applied to

the susceptibility calculations for the light hole.

The case of the heavy hole is more complicated due to the anisotropy of the band. In
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this case, since the band energy is not just dictated by the magnitude of the wave vector, we

would in fact need to compute a full 3D integral and interpolate the k ·p calculation in 3 di-

mensions. This, in fact, is merely a stripped down version of the tetrahedron method and is

not as accurate and quite slow. Instead we make use of the fact that, though anisotropic, the

heavy hole band is parabolic in the vicinity of the �-point for any given direction. Dressel-

haus and coworkers proposed an analytical expression for the heavy hole band dispersion

based on the assumption that the fermi surface was an elongated spheroid [59]. In this case,

the energy band is given by [60]

E (k) =

|A| ~2k2

2m0
(1� g (✓,�)) ,

where
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4 ✓ cos2 � sin2 �
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,

and A, B, and C are material specific parameters. With this analytical function, the 3D

integral is performed using standard methods. In using this approach for the susceptibility,

we are approximating the band more significantly than in the case of the electrons and light

holes. However, the enormously reduced computation time, and the still relatively good

agreement with the tetrahedron method make this a worthwhile tradeoff.

3.11 Summary

In this Chapter, we have developed the theory of light scattering from plasmas assuming

systems comprised of either one or many charge species in a crystal lattice. The scatter-

ing cross sections show the emergence of spectral peaks associated with several different

phenomena. One involves the interaction of the optical plasmon with LO phonon modes.

These are known as the coupled modes and both the frequency and spectral lineshape are
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strongly affected by the composition and parameters of the plasma. Additionally, on reso-

nance, we see spectral features associate single particle excitations of electrons, which can

emerge in both the polarized and depolarized configurations due to different mechanisms.

In plasmas comprised of both electrons and holes, a spectral peak associated with acoustic

plasmon emerges. Finally, when modeling these spectra, particularly for comparison to

experiments, we must be sure to take into account the shape of the band structure as this

may have a significant impact on both peak locations and spectral lineshapes.
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CHAPTER 4

Experimental equipment and methods

Most experimental physicists can attest that the collection of data is far from a trivial mat-

ter. One would imagine that interpreting the results would be the challenging part, but

often, merely obtaining data to analyze can prove to be a most arduous task. Certainly,

advancements in equipment and experimental methodologies have made the job easier,

but as is often the case, the complex nature of the tools of the trade can sometimes intro-

duce unforeseen subtleties into an otherwise well conceived experiment. In an effort to

expose these subtle considerations, I will provide an overview of the various equipment

and methods that make light scattering experiments possible. In particular I will focus on

CW and pulsed laser systems, and when discussing the latter I will present an overview

of the nonlinear phenomena associated with their operation. I will also discuss the issues

surrounding pulse width measurement and techniques to combat temporal broadening of

ultrashort pulses. Finally, I will provide an overview of the experimental configurations

that we typically use in spontaneous and stimulated light scattering studies.

4.1 Laser systems

The most important element in any light scattering experiment is the light source. Today,

laser systems are the backbone of the field, used in either a continuous wave (CW) configu-

ration for spontaneous scattering or pulsed configuration for pump-probe studies. As lasers

have been in use for decades, the physics and operational theory are well documented.
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Figure 4.1: Schematic of the CW dye laser system.

However, as they play such an important role in my work, it is worth discussing them in

order to gain insight into their operation. As part of my research, I used a tunable CW dye

laser for spontaneous scattering and a Ti:Sapphire oscillator, regenerative amplifier, and

optical parametric amplifier for pump-probe experiments.

4.1.1 Continuous wave dye laser

CW dye lasers allow us to generate coherent light that we can tune across a wide wave-

length range. Figure 4.1 shows a schematic of the laser cavity. The gain medium is a

pigment suspended in an appropriate solvent. This solution circulates in a closed loop sys-

tem through a nozzle which produces a laminar dye stream oriented at Brewster’s angle

relative to a focused pump beam supplied by another laser source. We can set the operating

wavelength range through the choice of dye chemistry. In my experiments, I used DCM

dissolved in a 3:2 mixture of ethylene glycol and benzyl alcohol. This mixture provided a

tuning range of 608-727 nm with a maximum at 655 nm [61]. The pump source was an

Argon-ion gas laser (Spectra-Physics Beamlok 2060) operating in multiline mode, which

supplied approximately 5W of CW power.

The basic cavity supports multiple longitudinal modes with a frequency separation of

approximately 400 MHz. As a result of this and the spectrally broad gain curve, the un-

55



tuned laser has a bandwidth that is broad and highly structured. This is unsuitable for

spectroscopy, particularly in cases where the features of interest are very close to the cen-

tral frequency of the laser. To resolve this issue, a birefringent filter is placed in the cavity

to both narrow the linewidth and allow for continuous wavelength tuning across most of

the gain curve. In practice, at 647 nm, the FWHM of the laser line was approximately 2.5

cm-1.

4.1.2 The Ti:Sapphire Oscillator

In order to perform typical pump probe experiments, we need a source of femtosecond

laser pulses. In the last several years, Ti:Sapphire oscillators have become a widely used

system for this purpose, routinely producing sub-80 fs pulses tunable in the 780-820 nm

range with MHz repetition rates.

Figure 4.2: A schematic of the MIRA Ti:Sapphire oscillator, reproduced from [62].

Figure 4.2 shows a schematic of the oscillator I use in my experiments (Coher-

ent MIRA). A diode pumped solid state (DPSS) laser (Coherent Verdi G-5) excites the

Ti:Sapphire crystal and light circulating within the cavity intensifies via stimulated emis-

sion. Since light propagating perpendicular to the reflectors does not walk out of the bounds

of the cavity after multiple trips, it is preferentially amplified; this accounts for the strong
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directionality of the laser’s output. The optical distance between the high reflector and the

output coupler defines the length of the optical cavity. The cavity supports many longitudi-

nal modes, akin to the standing modes of a string, that satisfy the condition that the cavity

length is equivalent to an integer multiple of the half-wavelength of the mode. In practice,

the lasing cavity supports many of these modes simultaneously, and this fact is integral to

the concept of mode-locking. If the phase relationships between these modes are random,

then the output will be CW-like with random fluctuations. If, however, the various modes

have a particular phase relationship with respect to one another, they can constructively and

destructively interfere in such a way as to generate pulses of light. This phase relationship

can be established either actively or passively; the MIRA uses the latter technique.

Passive mode-locking takes advantage the nonlinear optical properties of the

Ti:Sapphire crystal. In pulsed operation, the peak intensity of the pulse is large enough

to cause a local change in the refractive index of the gain medium (through the intensity

dependence of the refractive index). As a result, the pulsed beam focuses as though it were

passing through a gradient index lens; this effect is known as Kerr lensing. Kerr lensing

causes the pulsed beam to have a smaller diameter within the cavity compared to the CW

beam, since the intensity of the latter is too low to trigger the effect. An adjustable mechan-

ical slit in the optical cavity can then block the CW beam, while still passing the pulsed

beam. In this way, only the pulsed beam circulates through the cavity and the output of the

laser system will be a pulse train with a repetition rate defined by the cavity length.

In order to initiate mode-locking, the random fluctuations that exist in the cavity prior

to mode-locking must be large enough to cause Kerr lensing. This can only occur if many

longitudinal modes exist simultaneously. In the transient regime, this can be accomplished

by quickly changing the angle of a piece of glass in the optical cavity, effectively changing

the path length and briefly allowing more modes to exist. Once the fluctuations caused by

the addition of these modes is sufficient to cause Kerr lensing, mode-locking initiates and

the starting mechanism can be deactivated [62]. The Coherent MIRA is able to generate a
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sub-80 fs 76 MHz pulse train in the 780-820 nm range with an average power of 350 mW.

4.1.3 The regenerative amplifier

In my experiments, I need to generate high carrier densities, and this is easiest to accom-

plish by using light that is on resonance with a direct gap of GaAs. However, the limited

wavelength range of the oscillator makes it impossible to do this using the MIRA pulses

directly. For this reason, I used an optical parametric amplifier (Coherent OPA 9400) to

generate pulses that can be tuned across the visible spectrum. Since the OPA requires a

high energy input pulse, the MIRA pulses must be regeneratively amplified (using a Coher-

ent RegA 9000). Figure 4.3 shows a schematic of the RegA 9000 system. A diode pumped

Figure 4.3: Schematic of the RegA 9000, reproduced from [63].

solid state laser (Coherent Verdi V10) supplies a 10W beam used to pump the Ti:Sapphire

crystal in the cavity. The Q-switch prevents spontaneous lasing in the cavity. At a certain

time, the Q-switch is deactivated and a single pulse from the MIRA is injected into the

amplifier by the cavity dumper. This pulse makes several round trips of the cavity and am-

plifies on each pass through the Ti:Sapphire crystal. Once the pulse has depleted the gain

of the crystal, the cavity dumper ejects the pulse. A Faraday isolator separates the injected

and ejected pulses. In my experiment, I operated the RegA at a repetition rate of 250 kHz

to produce 800 nm pulses with a temporal width less than 80 fs. The average power of the

pulse train was approximately 1.2 W corresponding to a pulse energy of 4.8 µJ.

Figure 4.4 shows a temporal schematic of the Q-switch and cavity dumper timing. The

58



Figure 4.4: Timing of the Q-switch and cavity dumper in the RegA, reproduced from [64].

Q-switch ensures that lasing within the amplifier cavity only occurs when a pulse is in-

jected. It consists of a TeO2 crystal fitted with a PZT transducer that generates an 80 MHz

acoustic wave within the crystal. This wave is aligned at the Bragg-angle with respect to

the incident beam so that some of the light is Bragg-diffracted out of the optical path by

the acoustic wave; this small loss is sufficient to prevent spontaneous lasing. When a pulse

is injected by the cavity dumper, the RF signal to the Q-switch is tuned off and the pulse

is amplified as it makes numerous round trips through the cavity. Once the amplification

process is complete, the pulse is ejected, the RF signal to the Q-switch is restored, and the

gain of the Ti:sapphire crystal is reestablished.

The cavity dumper controls pulse injection and ejection of the seed pulse. It is also

TeO2 crystal fitted with a PZT transducer aligned at the Bragg-angle. A 380 MHz RF

signal supplied to the transducer Bragg-diffracts the pulses in and out of the cavity. At a

given time, the controller sends two 380 MHz RF pulses with a 4 µs delay to the cavity

dumper. This signal is phase locked to the 76 MHz pulse train generated by the oscillator.

The first RF pulse signals the injection of a single optical pulse, and this pulse is amplified

on successive round trips through the cavity. Upon gain depletion, the second RF pulse

signals the cavity dumper to eject the optical pulse. The number of round trips through the

amplifier cavity can be tuned by adjusting the delay between the RF pulses [63].
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4.1.4 Optical parametric amplifier

The optical parametric amplifier converts the 800 nm pulse from the RegA into one that can

be tuned across the visible and near-IR spectrum. Figure 4.5 shows a schematic of the OPA,

Figure 4.5: A Schematic of the Coherent OPA 9400, reproduced from [65].

which consists of two main paths. The first converts 25% of the 800 nm input pulse into a

white light continuum that serves as the seed pulse for the parametric process. The white

light continuum has a bandwidth that spans the ultraviolet to the infrared, from which the

desired wavelength (the signal) can be amplified. The second path in the OPA serves as the

pump for the parametric process. Here, 75% of the 800 nm input pulse is converted to 400

nm through second harmonic generation (SHG) using a ß-Barium-Borate (BBO) crystal.

Both the seed and pump then focus onto a second BBO crystal and through parametric

amplification, energy is transferred from the pump to the signal. The output of the OPA

consists of an amplified signal, a residual pump, and an idler at the frequency difference

between the signal and pump [66]. The OPA is capable of generating visible pulses between

400-700 nm with pulse widths less than 75 fs. The pulse train has an average power of 30

- 90 mW at a repetition rate that matches the regenerative amplifier. Below, I will provide

a brief description of second harmonic generation, white light continuum generation, and

optical parametric amplification.
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Figure 4.6: Second harmonic amplitude as a function as a function of propagation distance
for various phase differences, reproduced from [68]. Here, �s is a dimensionless phase-
difference.

4.1.4.1 Second harmonic generation

Second harmonic generation is a non-linear process in which an input beam at frequency

! (fundamental) is doubled to 2! (second harmonic). We achieve this frequency dou-

bling by mixing the light-field with itself though the second order susceptibility of a non-

centrosymmetric crystal such as BBO. For a light-field of the form E!
= A!

exp (ik!z),

the coupled wave equations describing the first and second harmonic beams in the slowly

varying envelope approximation are [67]

dA!

dz
= i

!

n!c
�(2)A!A2!⇤

exp [�i�kz]

dA2!

dz
= i

!

n2!c
�(2)

(A!
)

2
exp [i�kz] ,

where �k = 2k! � k2! is the wave vector mismatch between the fundamental and second

harmonic. The value of �k plays a crucial role in the efficiency of the second harmonic

process. In Figure 4.6, we can see that the maximal amplitude of the second harmonic

increases as �k ! 0, a limit that we refer to as perfect phase matching. Moreover, in the

absence of perfect phase matching, the amplitude of the second harmonic is periodically

dependent on the distance z through the crystal.

The perfect phase matching condition for SHG is satisfied when n! = n2!. In the

OPA, this condition is satisfied using the fact that the BBO is also a negative uniaxial
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crystal. As such, a wave propagating at some angle �, relative to the optical axis has two

eigenpolarizations. The first, known as the ordinary wave, sees a fixed index of refraction

as it propagates regardless of the value of �. The second is the extraordinary wave and it

sees a varying refractive index that changes with � according to [67]

1

n2
e (�)

=

cos

2
(�)

n2
o

+

sin

2
(�)

n2
E

, (4.1)

where no is the ordinary index and nE is the maximum value of the extraordinary index.

If we choose the fundamental to be the ordinary wave and the the second harmonic to be

the extraordinary wave, we must satisfy n!
o = n2!

e (�), and combining this with (4.1) gives

[67]

sin

2 �m =

[n!
o ]

�2 � [n2!
o ]

�2

[n2!
e ]

�2 � [n2!
o ]

�2 ,

where �m is the phase matching angle. As we shall see later, angle phase matching of this

sort is also used to satisfy the condition for the parametric amplification process as well.

4.1.4.2 White light continuum generation

We choose the signal frequency we want to amplify in the optical parametric process from

a white light continuum. In the OPA, 25% of the RegA beam focuses onto the surface

of a sapphire crystal, with an intensity sufficient to induce self-focusing (SF) of the beam

through Kerr lensing. As the beam diameter reduces, diffraction begins to counteract the

effects of SF. However, if the intensity of the beam is sufficiently high, the two effects can

balance each other leading to the formation of an optical filament with a radius on the order

of the wavelength.

The extremely high intensity in the filament causes a further increase in the refractive

index through its intensity dependence. This leads to a nonlinear phase change in the pulse

given by [67]

�NL (t) = �
n2I (t)!0L

c
,
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Figure 4.7: Schematic of parametric amplification process.

where !0 is the central frequency and L is the length of the crystal. The corresponding time-

dependent instantaneous frequency is ! (t) = !0 + d�/dt, and given a gaussian intensity

of the form I (t) = I0e
�t2/⌧2 , we can write

! (t) = !0 +
2n!0I0L

c⌧ 2
t exp

✓

� t2

⌧ 2

◆

.

This means that the leading side of the pulse (t < 0) is shifted to lower frequencies, while

the trailing side (t > 0) is shifted to higher frequencies. Moreover, if the intensity of the

pulse is large enough, this effect can broaden the spectrum of the pulse beyond its initial

bandwidth. In practice, this broadening is large enough to add wavelength components

from 400-700 nm and results in a white light continuum, from which we can select the

desired signal frequency.

4.1.4.3 Optical parametric amplification

Once the second harmonic pump and white light continuum have been generated, both

beams are used to complete optical parametric amplification. Figure 4.7 shows a schematic

of the parametric amplification process. Here, energy is transferred from the pump to

the signal. The output of the process is an amplified signal (!s) and an idler (!i) at the

difference frequency between the pump (!p) and the signal. The phase matching condition
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for parametric amplification is [67]

n!p
=

!in
!i
+ !sn

!s

!i + !s
.

In the OPA, this phase matching is accomplished by focusing the 400 nm pump and white

light seed onto a thin BBO crystal. Setting the idler and signal as the ordinary waves and

the pump beam as the extraordinary wave, we can tune the angle of the BBO according to

(4.1) to phase match to the signal frequency. In the schematic shown in Figure 4.5, we see

that the parametric process is in a two pass configuration to maximize power. In the first

pass, the delay between the pump and seed sets the central frequency of the signal, while

the second pass delay ensures correct pulse timing.

4.2 Pulse width measurement and compression

The measurement of pulse width is the first step in any ultrafast experiment. This is nec-

essary because we need to characterize the light used in the experiment and verify that the

optical pulse is indeed temporally compressed to a sufficient degree. This is particularly

important since the optical components we use to manipulate the beam typically broaden

the pulses in time. As such, we need to not only be able to measure the pulsewidth, but also

correct for the temporal expansion incurred in experimental setups.

4.2.1 Pulse width measurement

While there are a many of methods available to measure the pulse width [69], the most

accessible is autocorrelation. Figure 4.8 shows the typical non-collinear intensity autocor-

relation configuration. Here, we focus two input pulses of equal energy density onto a BBO

crystal with matching angles of incidence. We send one of these pulses through a delay line

so that it’s relative delay with respect to the other pulse can be changed. When we adjust
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Figure 4.8: A schematic of a typical autocorrelation using a BBO crystal to measure pulse
width.

the delay so that the pulses overlap in time at the BBO, a portion of the light will behave

like a pulse with no net in-plane wave vector. We can adjust the crystal to phase match to

the second harmonic of this beam, resulting in a frequency doubled pulse that propagates

orthogonal to the plane of the crystal. We measure the intensity of the second harmonic

pulse using a photodetector by scanning the delay from negative to positive values. This

trace corresponds to the convolution of the input pulse intensities. Provided the two input

pulses are identical and have a Gaussian profile, the temporal width of each is

�⌧FWHM =

�⌧AFWHMp
2

where �⌧AFWHM is the full-width-half-maximum of the the autocorrelated intensity.

This method of autocorrelation does have two down sides. First, we get no phase in-

formation, so we know nothing about the pulse chirp. Second, if the input pulses have

some asymmetric temporal structure, the autocorrelation trace will still be symmetric. This

means that it is very difficult to back out the real temporal profile of the input pulse from

the autocorrelated intensity. If these issues are of great concern, they can be overcome

by using other techniques such as frequency resolved optical gating (FROG) [70]. In my

experiments, however, autocorrelation was sufficient and FROG was only necessary when

re-aligning the laser components.
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Figure 4.9: A schematic of a diffraction grating based compressor.

4.2.2 Dispersion and temporal pulse broadening

In ultrafast experiments, we typically use optical pulses < 100 fs in temporal width, and as

these pulses pass through various optical elements, their pulse width changes. The reason

for this has to do with the dispersive properties of materials, which causes the group veloc-

ity of light to change with frequency. This is known as group velocity dispersion (GVD),

and away from resonances, most materials have positive GVD. Here, the higher frequency

components of a pulse move more slowly through the material than the lower frequency

components, so a chirpless or positively chirped pulse will broaden each time it passes

through the material [71]. This is a major problem for ultrafast experiments where the ex-

citation amplitude is often highly dependent on the pulse’s width. We therefore need some

way to balance the positive GVD in order to recompress the pulse. The two most com-

monly used methods are grating compressors and prism compressors. In discussing these

techniques, I will refer to group delay dispersion (GDD) which is the GVD multiplied by

the path length.

A grating compressor exploits the fact that spectrally dispersing a pulse can force dif-

ferent wavelengths to travel slightly different path lengths, thereby introducing a delay

between different wavelength components. Figure 4.9 shows a schematic of a grating com-
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Figure 4.10: A schematic of a folded prism pair compressor.

pressor in the folded configuration. The path lengths of the redder frequencies are longer

than that of bluer frequencies, and accordingly the grating compressor has negative GDD.

For any given groove spacing, the separation distance G between the gratings controls the

degree to which a prism compressor can compensate for positive material GDD. In gen-

eral, grating can introduce large amounts of negative GDD but are lossy due to their limited

diffraction efficiency. I use a grating system to stretch the pulse before injection into the

RegA and then to re-compress the pulse after ejection to maximize the power of the signal

from the OPA.

Another method to compensate positive GDD is through the use of prisms. Figure 4.10

shows a prism pair compressor in the folded configuration. Here there are two sources

of GDD. The first is due to the angular dispersion and is negative. The second is due

to the material dispersion of the prism material and is positive, but typically smaller in

magnitude than that introduced through angular dispersion. When both contributions are

added together, the typical prism compressor has negative GDD. The GDD can be adjusted

coarsely by changing the separation length L between the prisms, or finely by translating

the second prism in and out of the optical path. The utility of prism compressors lies in the
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Figure 4.11: Schematic of spontaneous scattering experiment.

fact that it is virtually lossless if the prisms are cut at Brewster’s angle. The MIRA uses

an internal prism pair compressor for dispersion compensation. Additionally, I use two

external prism compressors to minimize the pulse widths of the OPA and pick-off RegA

pulses that I use in my experiments.

The preceding discussion deals exclusively with second order dispersion. There are

also higher order dispersion terms that can play a role in cases where the pulse width re-

quirements are more demanding. In these cases grating and prism compressors can be used

in tandem since their third order dispersions have opposite signs. As such, with careful

choices of geometry and materials, both second and third order dispersion can be simulta-

neously compensated.

4.3 Experimental configuration

4.3.1 Spontaneous light scattering

When dealing with opaque materials, we typically use the backscattering geometry to study

the optical properties as in Figure 4.11. Here, we use a light source to photoexcite the sam-

ple, and collect the resulting scattered light along the opposite direction. The scattered
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light is passed through a polarizer and then into a spectrometer with a resolution capable

of resolving the features of interest. Passing the incident beam through a separate polarizer

allows us to study the selection rules of the scattering process. In order to ensure accurate

measurements, the scattered light must be focused through the entrance slit of the spec-

trometer using a lens f/# matched to the internal parabolic mirror. This can be done in one

of two ways, either using a single lens for collection and focusing or two lenses dedicated

to each task. The latter approach was more useful in my case since I could place the col-

lection lens very close to the cryostat containing my sample, maximizing the amount of

scattered light I was able to collect.

Since I was using a dye laser, the mode of the raw beam was, at best, elliptical. As I

needed a tight focal spot on the sample, I used a spatial filter to clean the beam. Here a

lens focuses the beam onto a circular pinhole placed at the focal plane. The radius of the

pinhole is smaller than the beam waist. As a result of diffraction, the beam emanating from

the other side has an Airy pattern, the central lobe of which is nearly-Gaussian. Thus, by

passing it through an iris and re-collimating, I obtain a beam that is a good approximation

of a Gaussian beam. Using this method, I was able to obtain an approximately 20 µm focal

spot at the sample.

4.3.2 Pump-probe spectroscopy

Ultrafast pump-probe spectroscopy is widely used to study the time-domain dynamics of

materials, and has been used to investigate a variety of fundamental excitations and systems

[72, 73, 74, 75, 76, 77]. In general, the method relies upon an ultrafast pump pulse to excite

the sample, and a probe pulse to measure the dynamics of the system at some time after the

arrival of the pump. The experiment can be configured to measure pump-induced effects

through the changes in reflectivity, transmittivity, or birefringence.

Figure 4.12(a) shows the simplest pump-probe configuration where the pump and probe

originate from the same source beam, commonly referred to as a degenerate configuration.
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Figure 4.12: (a) The standard pump-probe scheme and (b) polarization sensitive scheme.
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Here, we send the 800 nm pump pulse from the RegA through an optical chopper to mod-

ulate the beam at some frequency !ref . We send the probe beam through a mechanical

delay stage, and then focus both beams onto the sample after appropriate modification of

their polarizations to meet the experimental criteria. The delay stage allows us to adjust

the time delay, �⌧ , between the pump and probe so that we can measure the dynamics of

the system. We measure the signal in the probe using a balanced photodetector that can

be used in one of two ways. In the first, we split a portion of the probe beam off before it

strikes the sample, and send this beam into the first channel of the detector. The reflected

probe beam is sent into the second channel and the detector outputs the difference signal.

In this way we can eliminate the low frequency noise in the probe beam. We filter the

signal from the detector using a 10 kHz low-pass preamplifier to eliminate the signal mod-

ulation associated with the repetition rate of the RegA and any other high frequency noise.

We then use phase-sensitive detection to extract the Fourier component of the probe signal

at !ref . A second detection approach, pictured in Figure 4.12(b), is to polarize the probe

beam at 45� relative to the horizontal and use a polarizing beam splitter to split the vertical

and horizontal components. We can then send these to the two channels of the detector.

This scheme is commonly used in techniques that exploit birefringent effects induced in

the material, and can sometimes be useful in isolating particularly weak signals.

In my pump-probe experiments, I modify the second method by using a double-pump

probe scheme, where a second non-degenerate pump beam excites the sample at a fixed

delay relative to the initial pump. The reasons for these changes are tied to the nature of

my experiment and phase-sensitive detection. For this reason, I will leave the discussion

of both these details to Chapter 6 when discussing my experiments involving coherent

acoustic plasmons.
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CHAPTER 5

Spontaneous scattering from confined acoustic

plasmons

In this Chapter, I will discuss the first of two experiments designed to study acoustic plas-

mons in a semiconductor. The focus here will be on spontaneous light scattering experi-

ments designed to investigate acoustic plasmons in a system in which they are confined to

a layer as a set of discrete standing waves. Here, we need to consider how efficiently light

couples to any given standing wave as the measured spectra will be some superposition of

the contributions from each of the modes. In the first section, I will begin by describing

the model used to determine the relative coupling efficiency of each mode, followed in the

second section by my experimental results and analysis.

5.1 Photoelastic Model

In Chapter 2, we saw that the form of the density fluctuations associated with acoustic

plasmons that have a wavevector normal to the surface are standing wave harmonics. Each

mode has a discrete wavevector that is an integer multiple of the one associated with the

fundamental mode. The magnitude of the fundamental wavevector is proportional to the

inverse sample thickness, and as such, the spacing between adjacent modes in thin samples

can be quite large. In this case, wavevector conservation in the light scattering process

breaks down in the normal direction leading to scattering from “forbidden” modes [78].
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In the back scattering geometry, this means that the acoustic plasmon peak is no longer

strictly associated with a wavevector q = 2kI = 4⇡n/�I . Instead, the spectra will be

the superposition of the contribution of several modes, and we must determine the relative

weight of the the contributions from each mode under an appropriate framework.

In order to determine the inelastic scattering efficiency of acoustic plasmon standing

wave modes, we can exploit the analogy between acoustic plasmons and LA phonons,

and employ the photoelastic model used to describe the scattering spectra of the latter in

heterostructures. This approach has proven successful in describing the Raman efficiency

of LA phonon scattering in semiconductor superlattices [79] and free standing membranes

[80, 81].

In the photoelastic model, an incident electric field induces a polarization in a material

by coupling to an acoustic strain wave. This polarization radiates an electric field which is

frequency shifted from the incident field by the frequency of the strain wave. Theoretical

treatments of scattering under the photoelastic model were developed by Loudon [42] for

simple film on substrate structures and extended to heterostructures by He et al. [82].

5.1.1 Strain waves and polarization from acoustic plasmons

As a first step, we need to determine the form of the strain wave associated with acoustic

plasmons. For LA phonons, there is a physical displacement of the lattice ions leading to an

extension or contraction of the sample. The resulting strain wave is given by the derivative

of the lattice displacement wave [42]. In the case of acoustic plasmons, however, we are

dealing with acoustic waves of carrier density, so we need to connect oscillations in the

density with oscillations in strain within the crystal. Photostriction can be used to explain

this relationship. The introduction of excess charge carriers into a semiconductor leads to

a change in the lattice constant of the crystal due to holes in the valence band decreasing

covalent bond energy, and electrons in the conduction band increasing the bonding or anti-

bonding energy. If �n (z, t) is the excess charge density at a given depth z into a sample at
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time t, the corresponding strain is [83]

s (z, t) =
�n (z, t) (dE/dP )T

� (C11 + 2C12)
(5.1)

where (dE/dP )T is the pressure coefficient of the band gap at lattice temperature T , � is

the material’s volume compressibility coefficient, and Cij are elements of the material’s

elasticity tensor. We see that the carrier density is directly proportion to the associated

strain wave in the crystal.

We can use the photoelastic effect to link the strain wave in (5.1) to an induced polar-

ization. Here an acoustic mode causes a modulation in the electronic susceptibility of the

crystal. This allows an incident electric field to mix with the strain wave associated with

the acoustic mode through the photoelastic constant, inducing a nonlinear polarization that

can radiate an electromagnetic field. The polarization is [42]

PS (z, t) = ps (z, t)Ei (z, t) (5.2)

where we have assumed that the incident driving field propagates in the z-direction.

5.1.2 Driving field in multilayered structure

To determine the driving field (Ei (z, t)) in an embedded polarizable layer, we must take

into account both the sample geometry and composition. Figure 5.1 shows a schematic of

the sample used in both my spontaneous light scattering and pump-probe experiments. The

active layer of GaAs is cladded by AlAs layers that prevent carrier diffusion into the GaAs

substrate. The Al0.80Ga0.20As and top GaAs are lattice matching and protective cap layers,

respectively. As Table 5.1 indicates, each layer has a different complex refractive index. We

must therefore account for both internal reflections and absorption as the wave propagates

through the heterostructure. This leads to both forward and backward propagating fields in

the active GaAs layer. We can determine these using the transfer matrix formalism [84].
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Figure 5.1: Schematic of the sample used in my experiments, grown using standard molec-
ular beam epitaxy. The GaAs active layer thickness varies from sample to sample.

Table 5.1: Complex refractive indices of GaAs, AlAs, and Al0.80GaAs. The † represents the
value at 647 nm and the ⇤ at 800 nm.

Refractive index (ñ)

GaAs
†
3.76 + 0.18i

⇤
3.62 + 0.08i

AlAs
†
3.11

⇤
3.02

Al0.80Ga0.20

†
3.24

⇤
3.14

Assume that the incident field is a monochromatic TE wave propagating in the positive

z-direction at normal incidence. As the incident wave propagates through the material, it

will encounter a different refractive index in each layer, leading to fractional reflection and

transmission at each interface. Since we know the complex refractive indices of each layer,

we can write the complex reflection and transmission coefficients for a normally incident

TE wave as

rjk =

ñj � ñk

nj + nk
, (5.3)

tjk =

2ñj

ñj + ñk
, (5.4)

where j and k are indices that label adjacent matrices and ñi is the complex index of layer

i. Using these, we can write the interface transfer matrix that governs transmitted and

75



reflected amplitudes as

Ijk =
1

tjk

2

6

4

1 rjk

rjk 1

3

7

5

. (5.5)

The interface matrix has the property Ikj = I

�1
jk . In addition, as the wave propagates

through the structure it acquires a phase that is dependent upon the index of the layer. This

propagation matrix is given by

Lj =

2

6

4

e�ik̃jdj
0

0 eik̃jdj

3

7

5

, (5.6)

where di is the thickness of the ith layer and ˜ki = 2⇡ñi/�I with �I being the vacuum

wavelength of the incident field. For an m layer structure, we can relate the incident field

on the input side (i = 0) to the field at the output side (i = m + 1) by successive products

of the interface transfer and propagation matrices. That is,

2

6

4

E

+
0

E

�
0

3

7

5

=

 

m
Y

i=1

I(i�1)iLi

!

Im(m+1)

2

6

4

E

+
m+1

E

+
m+1

3

7

5

.

=

2

6

4

S11 S12

S21 S22

3

7

5

2

6

4

E

+
m+1

E

+
m+1

3

7

5

= S

2

6

4

E

+
m+1

E

+
m+1

3

7

5

. (5.7)

Here S is the total transfer matrix of the structure. Using an analogous definition, we can

define intermediate transfer matrices of the system that will give the forward and backward

fields in a layer j:

S

0

j =

 

j�1
Y

i=1

I(i�1)iLi

!

I(j�1)j (5.8)

S

00

j =

 

m
Y

i=j+1

I(i�1)iLi

!

Im(m+1). (5.9)
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Figure 5.2: The squared incident field for the heterostructure. The shaded regions are
colored to indicate the corresponding layer in Figure 5.1.

The electric field in layer j is then

Ej (z, t) =
S

00
j11e

�ik̃j(dj�zj)
+ S

00
j21e

ik̃j(dj�zj)

S
0
j11S

00
j11e

�ik̃jdj
+ S

0
j12S

00
j21e

ik̃jdj
E

+
0 (5.10)

where zj = 0  z  dj . Equation (5.10) is the field that can drive a polarization within

layer j according to (5.2). Figure 5.2 shows the squared incident electric field in my sample.

5.1.3 Scattered field in a multilayered structure

In order to calculate the scattered field, we make use of a transfer matrix method developed

by Bethune to deal with radiation from nonlinear polarization sources in embedded layers

[85]. To begin, let us consider the active layer alone. For simplicity we assume that the

applied electric field is polarized in the x-direction and is given by

Ej (z, t) =
⇥

Aeikjzj +Be�ikjzj
⇤

e�i!I t
ˆ

x. (5.11)
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Taking a general strain wave of the form

sm (z, t) =
⇥

aeiqmz
+ be�iqmz

⇤

e�i!mt,

we can insert Equation (5.11) into (5.2) to obtain the photoelastically induced polarization

in the active layer:

PS (z, t) = p
h

aAei(k̃j+qm)zj
+ bBe�i

(

k̃j+qm)zj

+bAei(k̃j�qm)zj
+ aBe�i

(

k̃j�qm)zj
i

ˆ

x. (5.12)

The polarization will be the source term in the wave equation such that

@2ES (z, t)

@z2
� ñj

c2
@2ES (z, t)

@t2
=

1

✏0c2
@2PS (z, t)

@t2
. (5.13)

The solution to equation (5.13) is the sum of the homogenous solution and the particular

(or bound) solution. For the moment let us consider the latter. With the ansatz

E

B
S =

h

A
0
ei(k̃j+qm)zj

+B
0
e�i

(

k̃j+qm)zj

+C
0
ei(k̃j�qm)zj

+D
0
e�i

(

k̃j�qm)zj
i

e�i(!I�!m)t
ˆ

x, (5.14)

we can compute the derivatives on the left hand side of Equation (5.13) using (5.14) and the

derivative on the right hand side using (5.12). By matching terms with the same exponential
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dependence, we obtain for the coefficients

A
0

=

�p!s

✏0c2
aA

˜k2
sj �

⇣

ekj + qm

⌘2 (5.15)

B
0

=

�p!s

✏0c2
bB

˜k2
sj �

⇣

ekj + qm

⌘2 (5.16)

C
0

=

�p!s

✏0c2
bA

˜k2
sj �

⇣

ekj � qm

⌘2 (5.17)

D
0

=

�p!s

✏0c2
aB

˜k2
sj �

⇣

ekj � qm

⌘2 (5.18)

where !s = !I �!m is the Stokes frequency, ˜ksj = !sñj/c is the wavevector of the Stokes

free (homogenous) wave, and ˜kj = 2⇡ñj/�I is the complex wavevector of the applied field.

We use the amplitudes of the bound wave as the source term for a free Stokes wave

by introducing pseudo reflection and transmission coefficients that describe the coupling

efficiency of the bound wave to the free wave [85]. This represents the phase matching

requirement for efficient free wave generation. The source term is associated with two

separate bound waves, one with wavevector ˜K1 =
˜kj+qm and the other with ˜K2 =

˜kj�qm.

For the active GaAs layer, we can construct a bound wave matrix given by

Ebound = E

1
bound + E

2
bound

=

2

6

4

A
0

B
0

3

7

5

+

2

6

4

C
0

D0

3

7

5

. (5.19)

We make the assumption that ñi (!I) = ñi (!s) for every layer i, and define pseudo refrac-

tive indices ñs1 = c ˜K1/!s and ñs2 = c ˜K2/!s. This allows us to describe the coupling
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between the bound and free wave by a pseudo interface and propagation matrices given by

LS� =

2

6

4

e�i eK�D
0

0 ei
eK�D

3

7

5

(5.20)

and

IS� =

1

tS�

2

6

4

1 rS�

rS� 1

3

7

5

, (5.21)

where � = 1, 2 labels the bound source and rS� and tS� are the pseudo transmission and

reflection coefficients found from Equations (5.3) and (5.4). If the active layer is labeled as

j, we can define an effective source matrix as

Fj� =

�

LjIS�
¯

LS� � ¯

LS�

�

E

�
bound. (5.22)

Finally, we compute the scattered free wave amplitude at the input and output interfaces as

2

6

4

E+
S�,j+1

E�
S�,0

3

7

5

=

1

S11

2

6

4

1 0

S21 �S11

3

7

5

F

0

j�, (5.23)

where F0
j� = S

0
jFj� , and Sij and S

0
j are given by (5.7) and (5.8), respectively. The scattered

wave at the output propagates in the forward direction and the wave at the input side prop-

agates in the backward direction. To complete the treatment of the scattered free waves, we

add the contributions due to each bound source.

It is also useful to know the field distribution within the layered structure in addition

to the waves retreating from the input and output surfaces. In order to do this, we can

use the formalism developed by Hashizume et al. [86] based on a method proposed by

Sipe [87]. The treatment can be used as a standalone procedure, but here I incorporate

the previous results. For a normally incident driving field polarized in the x-direction, the
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Green’s function associated with a 2D polarization sheet in the xy plane in layer j is [86]

G (z, z0) = i
!2
s

2✏0c2eksj
x̂x̂ei

eksj(z�z0)✓ (z � z0)

+i
!2
s

2✏0c2eksj
x̂x̂e�ieksj(z�z0)✓ (z � z0)

⇥✓ (z0 � z)� 1

✏j
ẑẑ� (z � z0) .

This allows us to construct the scattered field from an arbitrary polarization as

ES (z) =

1̂

�1

G (z � z0)PNL (z
0
) dz0,

and specifically, we can describe the field in layer j that would exist if the entire structure

was comprised of the same material (i.e. no internal reflections). This is referred to as

E

self
j (z) and is given by

E

self
j (z) = E

r
j (z) + E

b
j (z)

where

E

r
j (z) = i

!2
s

2✏0c2eksj
x̂x̂ ·

zˆ
zj�1

PNL,j (z
0
) e�ieksjz0dz0ei

eksjz

+i
!2
s

2✏0c2eksj
x̂x̂

zjˆ
z

PNL,j (z
0
) ei

eksjz0dz0e�ieksjz (5.24)

E

b
j (z) = � 1

✏j
ẑẑ ·PNL,j (z) . (5.25)

The first and second terms of Equation (5.24) represents the forward and backward waves

from the nonlinear polarization behind and ahead of the point z, respectively. Equation

(5.25) gives the field that is bound to the nonlinear polarization.

Having defined the self-field, we can find the additional field profile that would be
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Figure 5.3: A sample of the scattered field inside the heterostructure. The shaded regions
are colored to indicate the corresponding layer in Figure 5.1.

present in any layer as a result of generation in the nonlinear layer(s) and subsequent trans-

mission and reflection at the various interfaces in the structure. Namely, [86]
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,

where the first term on the right hand side is determined from Equation (5.23). The total

field in any layer j is then given by Ej (z) = E

add
j (z) + E

self
j (z) .

Figure 5.3 shows a sample of the scattered field computed using the method outlined

above. The magnitude of the fields on the first surface show that certain modes couple

more efficiently to the incident field than others. In my analysis, I used the relative field

magnitudes to construct a set of weighting factors which I used to perform a weighted sum

of the theoretically computed spectra for a set of acoustic plasmon standing wave modes.

82



5.2 Experimental results and analysis

My experiments were focused upon three samples with GaAs active layer thicknesses of

6000 Å, 3000 Å, and 1150 Å (all other aspects of the samples were identical, see Figure

5.1). The experimental light-scattering setup used in these experiments was discussed in

Chapter 4.

5.2.1 Analysis procedure

For each sample, I took measurements at various different incident laser powers and focal

spot sizes in order to measure the sample at different photoexcited EHP densities. For

each experiment, I collected the anti-Stokes and Stokes depolarized spectrum (✏̂I ? ✏̂S) to

measure the spin density fluctuation and E0 + �0 photoluminescence line shapes. Then,

I collected the anti-Stokes and Stokes polarized spectrum (✏̂I k ✏̂S) in order to measure

the L�, L+, and acoustic plasmon spectral peaks. The polarized spectrum also included a

signal associated with the E0 + �0 photoluminescence and a polarized component of the

SPE. After fitting the photoluminescence in the depolarized spectrum with two Gaussians,

one for each side of the peak, I subtracted this estimate from the depolarized spectrum

to obtain the line shape of the SDFs. I divided the resulting SDF line by Bose factors

(n (!) + 1 for the Stokes side and n (!) for the anti-Stokes side) at various temperatures

until the Stokes and anti-Stokes sides were mirror images of each other. The temperature

which satisfied this condition was the temperature of the carriers (T ).

Using the carrier temperature, I calculated the theoretical structure factor at various

carrier densities and dampings using Equation (3.44). By comparing the calculated L�

and L+ peak positions with the corresponding experimental peaks, I was able to assign an

initial guess of the carrier density (n) and plasma damping (�) for each experiment. I then

compared theoretical SDF and measured spectra, adjusting the plasma damping term as

necessary to improve the fits. Finally, I recalculated the theoretical polarized spectra using
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n, T , and the updated �. By iterating over this process several times, I was able to obtain

consistent fits of both the SPE spectra and L� and L+ peak positions.

Once I had established the n, T , and � for the plasma, I was able calculate the associ-

ated slope of the acoustic plasmon frequency dispersion. Using this slope, the thickness of

the sample, and the associated set of mode wavevectors, qm = m⇡/dactive, I calculated the

scattering efficiency of each mode under the photoelastic model and obtained weighting

factors for the scattering contributions of several adjacent modes (10 to 20 modes depend-

ing on the thickness of the sample). After calculating the acoustic plasmon spectra for each

of the modes, I computed the theoretical acoustic plasmon spectral peak as a weighted sum

of the contributions of each mode as

IS (!) /
Nm
X

j=1

q2jwj= {S (qj,!)} ,

where Nm was the number of modes used in the sum, wj is the weighting factor associated

with mode j, and S is given by Equation (3.44). I will now discuss the comparison of these

calculations to the experimental data for each of the three samples.

5.2.2 6000 Å sample

For the 6000 Å sample, I was able to photoexcite 4 different carrier densities by chang-

ing the power of the incident laser beam. In Figure 5.4, I have plotted the experimental

SPE spectra and theoretical predictions for the four densities. The insets of each figure

show the raw depolarized spectrum and a dashed line representing the estimated photolu-

minescence. I have noted the three plasma parameters in the figures, and the red line is

the corresponding theoretical SDF lineshape. The deviation between the calculated and

experimental SDF spectra become more pronounced at lower carrier densities and is due to

errors in the photoluminescence estimates, as they are less accurate due to decreased signal

at lower densities. However, in general, the fits are consistent with the experimental data,
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Figure 5.4: The experimentally obtained spin density fluctuation spectrum for (a) n = 7.0⇥
10

17 cm�3, (b) n = 5.0⇥1017 cm�3, (c) n = 4.0⇥1017 cm�3, and (d) n = 3.0⇥1017 cm�3.
The red lines are the calculated SDF spectra for the plasma parameters indicated in the
figures. The insets of each figure show the raw depolarized spectrum (in black) and the
photoluminescence estimate (in gray).
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Figure 5.5: The experimentally obtained polarized spectrum for the 6000-Å sample for
(a) n = 7.0 ⇥ 10

17 cm�3, (b) n = 5.0 ⇥ 10

17 cm�3, (c) n = 4.0 ⇥ 10

17 cm�3, and (d)
n = 3.0⇥ 10

17 cm�3. The blue dots are the experimental spectrum after subtraction of the
luminescence and polarized SPE component, and division by the Bose factor. The calcu-
lated electronic contributions to the polarized spectra for the coupled modes are shown in
green. The theoretical photoelastically weighted spectra for acoustic plasmons is shown in
red. The insets of each figure show the raw polarized spectrum (in black) and the photolu-
minescence fit (in gray).
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Figure 5.6: Normalized weighting factors for modes 1 though 20 for n = 7 ⇥ 10

17 cm�3.
The inset shows the absolute value of the scattered fields for modes 13-15 inside the GaAs
active layer.

particularly on the anti-Stokes side where the luminescence is smaller, and for higher den-

sities where the overall signal to noise is higher. As expected, both the carrier temperature

and plasma damping decrease as the incident laser power is diminished, and are well within

range of values in the literature [50, 19].

In Figure 5.5, I have plotted the polarized spectrum for the four densities. The in-

sets show the raw polarized spectra and estimates of the photoluminescence. The calcu-

lated electronic contribution to the scattering cross section for the coupled modes appear in

green. In general, they show excellent agreement between the experimental peak positions

of the L� and L+ modes, but the line widths and relative peak heights do not match. In

the case of the L� mode, the pronounced asymmetry in the experimental peak is due to the

variation in carrier density across the focal spot of the beam. This has the effect of smearing

the spectral peak to the low frequency side due to the strong variation of the L� mode’s

frequency with carrier density (see Figure 3.6). The L+ peak does not show this asymme-

try because its frequency does not vary greatly at low densities. I attribute the difference in

relative peak heights between theory and experiment to the fact that I am only plotting the
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carrier contribution to the scattering cross section, and ignoring the contribution from the

phonon component of of the coupled modes due to the deformation scattering mechanism

[2]. Additionally the larger widths of the experimental peaks may be due, in part, to the

effect of damping mechanisms not considered in the theoretical calculations. A full line

shape analysis of the coupled modes is further complicated by the resonant behavior of the

electro-optic tensor which affects the phonon-component of the scattering cross section [2].

This is beyond the scope of this work as I am primarily interested in the peak positions as

a metric to make the carrier density assignment.

Figure 5.6 shows one set of normalized weighting factors for the n = 7 ⇥ 10

17 cm�3

case. The efficiency is highly dependent on mode order, with the 14

th mode showing

the strongest coupling. This is expected as the m = 14 mode has a wavevector of

q = 14⇡/d = 7.33⇥ 10

5 cm�1, which is extremely close to the backscattering wavevector

of the incident light (qBS = 4⇡n/�incident = 7.30 ⇥ 10

5 cm�1). Accordingly this mode

leads to a strain wave that has the best phase matching to the incident field. Additionally,

due to the relatively small wavevector spacing between adjacent modes, the distribution of

weighting factors is fairly symmetric about the dominant mode. The weighting factors for

the other carrier densities show a similar trend with only slight differences in the magni-

tude. In the inset, I have plotted the absolute value of the scattered field of the 3 highest

efficiency modes (m = 13, 14, 15). The red line in Figure 5.5 represents the calculated

weighted sum spectra of the acoustic plasmon given the weighting factors in Figure 5.6.

For all the densities, the photoelastic weighting of the first 20 modes consistently repro-

duces both the peak location and line shape of the acoustic plasmon. This reenforces the

validity of both standing wave discretization of the acoustic plasmon and the assumption

of photoelastic efficiency.
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Figure 5.7: The experimentally obtained spin density fluctuation spectrum for the 3000 Å
sample at (a) n = 7.5 ⇥ 10

17 cm�3, (b) n = 5.0 ⇥ 10

17 cm�3, (c) n = 3.8 ⇥ 10

17 cm�3,
(d) n = 2.7 ⇥ 10

17 cm�3. The red line is the calculated SDF line shape for the plasma
parameters indicated in the figure. The insets of each figure show the raw depolarized
spectrum (in black) and the photoluminescence estimate (in gray).

5.2.3 3000 Å sample

I performed experiments with the 3000 Å sample in the same way as for the 6000 Å sample.

Figure 5.7 shows the corresponding experimental and theoretical SDF spectra. As in the

previous case, the fits show excellent agreement for high densities but tend to deviate on the

low energy side at lower densities. Figure 5.8 shows the experimental polarized spectra and

the theoretical coupled mode spectra (green line). Again, we see that the plasma parameter

estimates produce consistent predictions for both the coupled mode positions and SDF line
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Figure 5.8: The experimentally obtained polarized spectrum for the 3000 Å sample at
(a) n = 7.5 ⇥ 10

17 cm�3, (b) n = 5.0 ⇥ 10

17 cm�3, (c) n = 3.8 ⇥ 10

17 cm�3, (d)
n = 2.7 ⇥ 10

17 cm�3. The blue dots are the experimental spectrum after subtraction of
the luminescence and polarized SPE component, and division by the Bose factor. The cal-
culated electronic contributions to the polarized spectra for the coupled modes are shown
in green. The theoretical photoelastically weighted spectra for acoustic plasmons is shown
in red. The insets of each figure show the raw polarized spectrum (in black) and the photo-
luminescence fit (in gray).
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Figure 5.9: The weighting factors calculated using the photoelastic model for the 3000 Å
sample for n = 7.5⇥ 10

17 cm�3.

shapes.

The 3000 Å sample has a set of wavevectors where the spacing between adjacent acous-

tic plasmon modes is twice that of the 6000 Å sample. Accordingly, we would expect that

fewer modes should couple to light since there are fewer modes that are close to the back

scattering wavevector of the incident light field. In Figure 5.9, we see that the coupling

efficiency drops to negligible levels within 15 modes. However, the dominant m = 7 mode

shares the same wavevector (q = 7.33 ⇥ 10

5 cm�1) as the dominant mode in the 6000 Å

sample. Moreover, the coupling distribution is relatively symmetric about the dominant

mode, indicating that the acoustic plasmon peak in these two samples should be at approx-

imately the same frequency. Figure 5.8 shows the theoretical weighted acoustic plasmon

spectra (red line) expected for the 3000 Å sample for the various densities . As with the

6000 Å sample, we see that the weighted spectra reproduces the acoustic plasmon peak po-

sition and lineshape. Moreover, the acoustic plasmon peak positions are roughly equivalent

to those of the 6000 Å sample for comparable plasma densities.
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5.2.4 1150 Å sample

The 1150 Å sample posed a new experimental challenge. Because it was much thinner

than the other samples, even when using low laser powers, the photoexcited carrier density

was always high (> 6 ⇥ 10

17 cm�3) when the beam was focused onto the sample. As

such, it was difficult to probe a wide range of carrier densities by merely attenuating the

laser beam. Moreover, at low laser powers, the signal to noise ratio was very low due to

the smaller scattering volume relative to the two other samples. In order to overcome both

these issues, I defocused the spot size which allowed me to achieve low carrier densities

while still maintaining a strong scattered light signal.

The results for the 1150 Å sample show much the same results as I have previously

described. There are, however, a few notable differences. In the spectra plotted in Figure

5.10, we see that the SDFs are shifted closer to the laser line. As a result, the peak appears

as a shoulder. This is primarily due to the interplay between the higher carrier dampings

and temperatures in the 1150 Å sample for comparable densities relative to the 6000 Å and

3000 Å samples. Additionally, in the polarized spectra shown in Figure 5.11, we see that

that the coupled mode peaks are very weak in comparison to the other samples. In fact, at

higher densities, the L+ mode is damped to such an extent that it is almost indiscernible,

and it was no longer a reliable metric for assigning the carrier density. As such, the carrier

density assignments for the 1150 Å sample are slightly less accurate as I had to rely upon

the L_ position and SDF line alone.

Based on the trend, we would expect that still fewer modes would couple to the incident

light field. From Figure 5.12, we see that this is in fact the case as the coupling efficiency

drops to negligible values within 10 modes, with the m = 2 (q = 5.46 ⇥ 10

5 cm�1) and

m = 3 (q = 8.20⇥ 10

5 cm�1) modes showing the highest weighting. This is reasonable as

the back scattering wavevector is positioned in between these two modes. It is interesting,

however, that the second mode shows a slightly stronger coupling despite the fact that it is

farther away from the back scattering wavevector than the third mode. Again, as with the
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Figure 5.10: The experimentally obtained spin density fluctuation spectrum for the 1150 Å
sample at (a) n = 9.0⇥ 10

17 cm�3, (b) n = 5.5⇥ 10

17 cm�3, (c) n = 5.0⇥ 10

17 cm�3, (d)
n = 3.0⇥ 10

17 cm�3, and (e) n = 2.3⇥ 10

17 cm�3. The red line is the best calculated SPE
line shape for the plasma parameters indicated in the figure. The insets of each figure show
the raw depolarized spectrum (in gray) and the photoluminescence estimate (in green). The
fit of the SPE spectrum is excellent at 150 mW but deviates as the power is decreased. This
is likely due to errors in the photoluminescence estimates at lower powers.
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Figure 5.11: The experimentally obtained polarized spectrum for the 1150 Å sample at
(a) n = 9.0 ⇥ 10

17 cm�3, (b) n = 5.5 ⇥ 10

17 cm�3, (c) n = 5.0 ⇥ 10

17 cm�3, (d)
n = 3.0 ⇥ 10

17 cm�3. The blue dots are the experimental spectrum after subtraction of
the luminescence and polarized SPE component, and division by the Bose factor. The cal-
culated electronic contributions to the polarized spectra for the coupled modes are shown
in green. The theoretical photoelastically weighted spectra for acoustic plasmons is shown
in red. The insets of each figure show the raw polarized spectrum (in black) and the photo-
luminescence fit (in gray).
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Figure 5.12: The weighting factors calculated using the photoelastic model for the 1150 Å
sample for n = 9.0⇥ 10

17 cm�3.

other samples, we see that the calculated weighted acoustic plasmon spectra (red line) in

Figure 5.11 shows excellent agreement with experiments for all the densities.

As further confirmation of the thickness dependence of the acoustic plasmon frequency,

we can see from Figure 5.13 that the 1150 Å sample exhibits a markedly different acoustic

plasmon frequency compared to the 6000 Å and 3000 Å samples for comparable carrier

densities. This is due to the fact that in the 1150 Å sample, the phase matching condition

with the incident field is not satisfied as well as for the other two samples. In both the 6000

Å and 3000 Å samples, the dominant mode has a wavevector of q = qD = 7.33⇥105 cm�1,

and is associated with some frequency !D dependent on the plasma parameters. In the 1150

Å sample, the m = 2 mode is separated from qD by 1.83 ⇥ 10

5 cm�1, while the m = 3

mode is separated by 8.93 ⇥ 10

4 cm�1. The linearity of the acoustic plasmon’s dispersion

means that the m = 2 mode is also more than twice as far away in frequency from !D than

the m = 3 mode. As a result, the net effect is that the experimental acoustic plasmon peak

locations of the 1150 Å sample are downshifted relative to the 6000 Å and 3000 Å samples

for comparable plasma densities.
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Figure 5.13: The acoustic plasmon frequency as a function of photoexcited carrier density
for the 1150 Å, 3000 Å, and 6000 Å samples.

5.2.5 A remark on the connection to LA phonons

In the preceding analysis, I have relied heavily upon the photoelastic model to support my

assertion that the acoustic plasmon must exist as a discrete set of standing waves. In doing

so, I have leveraged the analogy between light scattering from acoustic plasmons and LA

phonons. There is, however, an issue associated with this comparison. If we look at the

scattering spectra from LA phonons confined to a membrane as in Figure 5.14(a), we see

several discrete peaks associated with the scattering from individual modes. This forces us

to ask why we do not see discrete peaks in the case of acoustic plasmons. Moreover, as

I show in Figure 5.14(b), the acoustic plasmon has a much larger group velocity than LA

phonons over the range of accessible wavevectors. Ostensibly, it would seem as though

we should see separate peaks due to scattering from each acoustic plasmon mode. This is

clearly not the case in my experimental results, but the absence of several discrete acoustic

plasmon peaks in a given experiment can be explained by considering the nature of the

excitation.

In chapter 2, I plotted the acoustic plasmon’s dispersion in Figure 2.3, and we saw that

it was embedded within the single particle excitation continuum over virtually the entire
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Figure 5.14: (a) The scattering cross section for LA phonons in a 30 nm Si membrane (re-
produced from [80]). (b) The theoretical dispersion for confined LA phonons and acoustic
plasmons confined to a 1150 Å membrane. The LA phonon dispersion was obtained from
Strauch and Dorner [88].
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Figure 5.15: The theoretically calculated scattering cross section for the m = 1 (blue),
m = 2 (red), and m = 3 (green) acoustic plasmon modes for the 1150 Å sample at
n = 9.0⇥ 10

17 cm�3, T = 120 K, and � = 7.90 meV.
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range of wavevectors accessible to us in light scattering experiments. This means that the

acoustic plasmon is highly Landau damped through its coupling to the continua of single

particle excitations of both electrons and holes. Spectrally, this manifests as a scattering

peak width that is exceptionally large. As I show in Figure 5.15 for the 1150 Å sample,

the FWHM can be more than a hundred cm�1 for the relevant modes. In contrast the LA

phonons typically have widths on the order a few wave numbers as we can see in Figure

5.14(a). This is the reason why we do not see a multiple peaks, since the scattering peaks

from the individual acoustic plasmon modes are severely overlapped.

5.2.6 Conclusions

Using spontaneous light scattering experiments, I am able to generate photoexcited

electron-hole plasmas the show not only the coupled mode excitations associated with the

interaction of optical plasmons and LO phonons, but also acoustic plasmons that originate

from multi-component effects. The underlying assumption has been that, given the geome-

try of my samples, the acoustic plasmon should be confined to the active GaAs layer in my

heterostructure. As a result of this confinement and the assumption that the carrier density

fluctuation is small, the acoustic plasmon should exist as a discrete set of standing wave

modes whose wavevector is dependent upon the thickness of the layer.

Through three samples, each with a different GaAs active layer thickness, we see that

using the assumption of discrete standing wave modes that couple to light differently un-

der the photoelastic model leads to a calculated weighted sum spectra that is remarkably

good at reproducing not only the experimental acoustic plasmon peak location, but also the

spectral line shape for a variety of plasma parameters. This then, supports the conclusions

of confinement of the acoustic plasmon into a discrete set of standing waves as well as the

analogy between acoustic plasmons and LA phonons. Additionally, the marked difference

in acoustic plasmon frequency in the 1150 Å sample relative to the others indicates a thick-

ness dependence in the plasmon frequency that could no exist in the absence of standing
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wave modes. Future experiments should focus on still thinner samples, such that the fre-

quency separation between the adjacent modes becomes large enough such that we may

see several spectral lines associated with scattering from individual modes.
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CHAPTER 6

Confined coherent acoustic plasmons

Thus far, I have presented the results of experiments designed to prove the existence of

acoustic plasmon confinement from a purely frequency domain perspective. The natu-

ral extension is into the time-domain. In this chapter, I will demonstrate that I have not

only generated coherent acoustic plasmons using ultrafast techniques, but due to the fact

that we are able to generate exceptionally large photoexcited carrier densities, we can see

the discretization of the acoustic plasmon into discernible standing waves. Further, I will

demonstrate that the acoustic plasmon is in fact coupled to a coherent L� oscillation, and

this can serve as the driving term for the coherent oscillation of the acoustic plasmon.

6.1 Coherent coupled modes in opaque materials

The lower branch of the phonon-plasmon coupled mode plays an important role in our

ability to generate and detect the coherent acoustic plasmons. For this reason, I believe

it is beneficial to briefly discuss how we generate and detect coherent coupled modes in

opaque materials. Let us begin by considering the case where we have two CW laser

beams impinging on a sample of GaAs. If the beams are phase locked relative to each

other and are chosen such that their difference frequency is equal to the phonon frequency

(!1 � !2 = ⌦), we can generate a macroscopic coherent phonon field through a process

known as stimulated Raman scattering (SRS) [67]. Through k-conservation, the excited

phonons will have a well defined wavevector equal to q = k1 � k2, where k1 and k2 are
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Figure 6.1: (a) Spectrum of the pump pulse with bandwidth large enough to support multi-
ple frequency pairs with separation ⌦, the LO phonon frequency. (b) Forward wave vector
conservation. kI , kS , and q are the incident, scattered, and phonon wavevectors, respec-
tively.

the wavevectors of the incident beams. The resulting optical signals from SRS are highly

directional, coherent, and can be orders of magnitude more intense then corresponding

spontaneous Raman signals.

6.1.1 Generation through impulsively stimulated Raman scattering

There is also another way to use SRS in conjunction with femtosecond pulses. As I show

in Figure 6.1(a), we can use an optical pulse with a temporal width sufficiently small such

that its spectral bandwidth is broad enough to support numerous frequency pairs, whose

difference is equal to the phonon frequency. Since the two pairs originate from the same

source, wavevector conservation is automatically satisfied in the forward direction as indi-

cated in Figure 6.1(b). As a result, we are able to launch a coherent macroscopic phonon

field upon the arrival of the pump pulse. The macroscopic oscillation of the lattice that ac-

companies the coherent phonon causes an oscillation in the refractive index of the crystal.

Accordingly, by using a probe pulse set to strike the sample at a variable delay ⌧D relative

to pump, we can track the change in the sample induced by the pump as a function of time.

This is the foundation of pump-probe spectroscopy based on impulsive stimulated Raman

scattering (ISRS).
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ISRS differs significantly between transparent and opaque materials. However, since

my experiments involve light with photon energies above the fundamental energy gap of

GaAs, I will restrict the following discussion to the latter. Comprehensive reviews of ISRS

are available elsewhere [89, 77, 90]. In general, we can treat the coherent phonon field,

defined by the normal displacement coordinate Q, as a damped driven harmonic oscillator

governed by the differential equation

@2Q

@t2
+ 2�

@Q

@t
+ ⌦

2Q = F (t) . (6.1)

Here, � describes the damping of the phonon and F (t) is a driving force provided by the

pump pulse through the Raman tensor. This is given by [91]

F (t) /
X

ij

1̂

�1

1̂

�1

d!d⌦ exp (�i⌦t)Ej (!) ⇡
R
ijE

⇤
i (! � ⌦) (6.2)

The difference between the transparent and opaque situations is due to the form of F (t) in

each of these two cases, and stems from the nature of the Raman tensor ⇡R
ij .

Stevens et al. discovered that the Raman tensor governing ISRS is distinct from the one

responsible for spontaneous Raman scattering [91]. Namely, we can write

⇡R
ij ⇡

⌅0

4⇡~



@< {✏ij}
@!

+ 2i
= {✏ij}

⌦

�

(6.3)

for ISRS and

�R
ij ⇡

⌅0

4⇡~



@< {✏ij}
@!

+ i
@= {✏ij}

@!

�

(6.4)

for spontaneous Raman scattering, where ✏ is the dielectric tensor of the material and ⌅0 is

the deformation potential, here treated as a constant. Though very similar, we see that there

can be a great difference between the two Raman tensors for the case of absorptive materi-

als. This is because the imaginary part of ✏ can be quite large on or above resonance, and in
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this case, the second terms in the brackets of (6.3) and (6.4) dominate the expressions. For

a transparent material on the other hand, the = {✏} is negligible and the two Raman tensors

are virtually identical.

How, then, does this difference affect the driving term? Let us examine this by tak-

ing the limit where ⇡R
ij / = {✏ij} /⌦, and inserting this expression into (6.2) with fields

polarized along the y-direction. In this case, the diving force is

F (t) /
tˆ

�1

|E (t0)|2 dt0.

In the event that E (t0) is a �-function, this is nothing more than the integral form of a step

function, such that

F (t) = F0⇥ (t) . (6.5)

We can insert this into (6.1) and solve the differential equation. The solution for the dis-

placement is

Q (t) =
F0

⌦

2
+ �2

� F0e
��t

cos (⌦t� tan

�1
(�/⌦))

⌦

p

⌦

2
+ �2

.

We see that the phonon displacement has a DC offset proportional to the magnitude of

the step-like force. Further, the displacement oscillates as a cosine rather than the sine

dependence that is characteristic of a transparent material [77].

There is another point we have to consider, and this has to do with the persistence of

the driving term. We should reasonably expect that it decays in time as the system slowly

returns to it pre-excited state. We can introduce this through a phenomenological damping

�F imposed upon the step function such that

F (t) = F0⇥ (t) exp (��F t) .
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If we again solve for the phonon displacement, we obtain

Q (t) =
F0e

��F t

⌦

2
+ (�F � �)2

� F0e
��t

cos (⌦t� tan

�1
[(�F � �) /⌦])

⌦

q

⌦

2
+ (�F � �)2

.

What we find is that the decay in the driving force causes both a change in the oscillators

phase and amplitude, as well as a decay in the DC offset with time.

In the preceding discussion, we have made a fairly unphysical approximation in as-

suming that the incident pulse is �-function like. In actuality, the mode-locked lasers we

use produce Gaussian-like pulses with temporal widths . 100 fs. This can have a rather

significant affect upon the amplitude of the phonon oscillation. What we find is that the am-

plitude of Q (t) is proportional to a factor e�(⌦⌧L)
2/2 , where ⌧L is the temporal pulse width

of the pump. This means that if ⌦⌧L is large, the phonon amplitude will be significantly

suppressed. As a result, when performing pump-probe experiments, we seek to ensure that

the pulse width is smaller than the period of the phonon.

6.1.2 Detection through reflective electro-optic sampling

The final point we must consider involves the detection of the coherent phonon. In the

reflection geometry, we use a probe pulse to measure the differential reflectivity of the

sample; a change which results from the effect the phonon has upon the optical properties

of the crystal. One approach is to employ reflective electro-optic sampling (REOS). In

(100) GaAs, the principal axes are x = [0

¯

1

¯

1], y = [0

¯

11], and z = [100]. As a result of the

electro-optic effect, the index along the first two directions are dependent upon the strength

of the electric field along [100]. This relationship is governed by the expression [67]

x2

n0 � n3
0
2 r41Ez

+

y2

n0 +
n3
0
2 r41Ez

+

z2

n2
0

= 1, (6.6)
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Figure 6.2: Indicatrix for GaAs.

where r41 is the only non-zero element of the electro-optic tensor of GaAs, and Ez is the

electric field along the [100] direction.

We can plot (6.6) with z = 0 to obtain the so-called indicatrix. As I show in Figure

6.2, in the absence of any field, the indicatrix is a circle implying that the refractive indices

along [0

¯

1

¯

1] and [0

¯

11] are identical. However, when Ez 6= 0, the indicatrix is deformed

into an ellipse resulting in different indices along the two directions. Since the LO phonon

carries with it a longitudinal field, if the detected probe beam has a polarization that makes

an angle � with respect to [001], then the index it sees is given by [92]

n (�) =
1

2

+

n3
0

2

r41Ez sin (2�) .

Given this index, the differential reflectivity is [92]

�R

R0
=

1

R0

@R

@n
�n,

where R0 is the reflectivity in the absence of any perturbation. If we orient the probe

polarization at 90� relative to [001], split the reflected probe beam along [0

¯

1

¯

1] and [0

¯

11],
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and send the two signals into a balanced detector, what we measure is [92]

�R

R0
=

1

R0

�

R[01̄1̄] �R[01̄1]

�

⇡ 4n3
0r41

n2
0 � 1

E[100] (t) .

Since the electric field is proportional to the lattice displacement Q (t), we are able to detect

the coherent phonon.

The theory developed in this section can be applied directly to the L� modes in GaAs by

noting that, in this case, we need to replace the fixed LO phonon frequency with the carrier

density dependent frequency of the L� mode. As our photoexcited densities are quite large

(> 10

18 cm�3), this frequency will be essentially pegged at the TO phonon frequency as

we can see from Figure 3.6. In addition, we can safely disregard the L+ branch because

the photoexcited densities are large enough that the frequency is far beyond what we can

excite in our experiment with the limited bandwidth of our pump pulse.

6.2 Confined coherent acoustic plasmons

At first glance, we would imagine that we could generate coherent acoustic plasmons in

much the same way we do in the case of phonons. However, this proves to be quite chal-

lenging due to the need for large EHP densities. It might seem as though simply using

a pump-probe experiment with light resonant with the band gap would overcome this is-

sue, but unfortunately, this introduces another complication. In my early experiments, I

attempted just this, and the result was a probe signal mired in a great deal of electronic

background associated with the cooling of the photoexcited carriers. This was a problem

as the signals associated with both coherent phonons and plasmons are relatively small, and

any attempts to use standard techniques to remove this background proved ineffective. The

solution to this problem involves a modification of the standard pump-probe scheme that

leverages the power of phase sensitive detection and also the interaction between the L�

coupled mode and the acoustic plasmon.
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Figure 6.3: Double pump-probe scheme.

6.2.1 Double pump-probe scheme

The essence of the modified pump-probe scheme is to use two pump pulses with a fixed

separation in time and different central frequencies using the geometry shown in Figure 6.3.

The first pulse is in the infrared (IR) with a pulse width of⇠ 75 fs polarized along the [001]

direction. Since the period of the coupled mode at high densities is approximately 110 fs,

this pulse is capable of generating a coherent L� mode with a relatively large amplitude.

The second pump is in the visible and arrives at the sample 2 ps after the IR pump. The IR

and visible pumps have focal spot sizes of 200 µm and 100 µm, respectively. The central

energy of the visible pump is set to 1.92 eV, which is very close the the energy of the

E0 + �0 gap. The visible pulse has a width of ⇠ 300 fs, which is too large to generate a

coherent coupled mode oscillation of appreciable amplitude. This means that the primary

role of the visible pump is to inject carriers into the photoexcited volume. The dynamics

of the system are measured with an IR probe polarized along the [010] direction with the

same characteristics as the IR pump at a variable delay of -1 to 13 ps relative to the arrival

of the IR pump.
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Figure 6.4: Typical time domain results from my modified pump-probe experiment. The
inset shows the scattering geometry and pump pulse sequence. This experiment used a 15
mW IR pump, 12 mW visible pump, and 5 mW IR probe. The sample was maintained at
10 K using a liquid He immersion cryostat.

6.2.2 Experimental results

Figure 6.4 shows the essential features observed in a typical time-domain experiment. Fol-

lowing the IR pump, we see approximately 8 THz oscillations associated with the genera-

tion of the L� mode. Two picoseconds following the IR pump, we observe a large shift in

the reflectivity coincident with the arrival of the visible pump, which is followed by a large

amplitude low frequency oscillation due to the generation of the coherent acoustic plas-

mon. Note that the heavy Landau damping of the acoustic plasmon through single particle

excitations is evidenced by the modes large decay rate.

In order to explicitly show that the low frequency oscillation is an acoustic plasmon,

I examined the oscillation at varying visible pump powers. This is because the acoustic

plasmon frequency depends on the carrier density, which we can vary by attenuating the

beam. Upon excitation by the pump, the surface carrier density is equivalent to [93]

nsurface = Af
↵

E
,
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where A is the absorptivity of the material, f is the fluence (energy per unit area) of the

pulse, ↵ is the absorption coefficient, and E is the photon energy. Due to the absorption

coefficient, the carrier density at any depth z into the sample is given by

n (z) = nsurface exp (�↵z) .

Thus, we can determine the carrier density by integrating over n (z):

n =

1

dactive

dactiveˆ
0

nsurface exp (�↵z) dz.

In general, these estimates of carrier density are prone to variability due to the fact that

focal spot size measurements can be somewhat inaccurate, and even a 10% error in the

measurement can introduce a rather large variation in the estimated density. Unfortunately,

in situ measurements of carrier density in photoexcited samples is a challenge in an of itself,

particularly in ultrafast experiments. Still, as we shall see, the numerical estimates of the

density provided a good correspondence with the theoretical predictions for the acoustic

plasmon’s density dependence, confirming their veracity.

Figure 6.5 shows the time traces (after the arrival of the visible pump) and correspond-

ing Fourier transforms for a 1500 Å, 1150 Å, and 6000 Å sample at various photoexcited

carrier densities. In all three samples, we can see low frequency oscillations whose Fourier

peaks exhibit a marked change with carrier density. In the case of the 1150 Å sample,

we see two clear Fourier peaks, indicating the simultaneous presence of two modes. The

acoustic plasmon should show a fractional power law dependence with the carrier density.

As such, I extracted the locations of the Fourier peaks at each density for the three samples

and compared these to the theoretically expected n dependence of the acoustic plasmon

frequency under the random phase approximation. I did this by first calculating the sus-

ceptibilities (Equations (2.33)-(2.37)), dielectric function (Equation (3.41)), and structure
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Figure 6.5: Time-domain results and corresponding Fourier transforms for (a) the 1500 Å,
(b) 1150 Å, and (c) 6000 Å samples.

110



factor (Equation (3.44)) for the acoustic plasmon over a range of carrier densities. For the

wavevectors, I used several values corresponding to multiple orders of acoustic plasmon

standing waves for the three samples as given by Equation (2.52). I then used the peak lo-

cation of the acoustic plasmon at each density to determine the theoretical n-dependence in

each case. In these calculations, I used a value of 400 K for the carrier temperature and 5.9

meV for the carrier damping, which were commensurate with theoretical and experimental

values, respectively [94, 50].

Figure 6.6 shows the experimental acoustic plasmon frequencies as a function of pho-

toexcited carrier density for the three samples. The blue and red shaded regions represent

the predicted density dependence of the acoustic plasmon frequency computed for the first

and second modes, respectively, for each sample. The lower and upper bounds of each

of the shaded regions are calculated at dampings of � = 5.9 meV and � = 0.08 meV,

respectively, at a carrier temperature of T = 400 K with various values of n for the appro-

priate value of q for the given mode. The blue and red squares are the experimental data

points. The error bars in the experimental data represent the Fourier transform (vertical)

and focal spot measurement (horizontal) errors. For the 1500 Å sample, I observed a mode

that has an n dependence that coincides with an m = 1 mode (q = 2.1 ⇥ 10

5 cm�1
). The

inset shows the Fourier transform for the n = 2.2 ⇥ 10

19 cm�3 experimental datapoint

with theoretical calculations of the imaginary part of the electron response function for

the first (blue line) and second (red line) modes (calculated with n = 2.2 ⇥ 10

19 cm�3,

T = 400 K, and � = 5.9 meV). We can see that the m = 1 mode calculation shows

a reasonably good agreement with the experimental Fourier peak. For the 1150-Å sam-

ple, I see two modes corresponding to m = 1 (q = 2.7 ⇥ 10

5 cm�1
) and m = 2

(q = 5.4 ⇥ 10

5 cm�1
). Here, because of the large photoexcited carrier densities, the spac-

ing between the modes in frequency is large enough, such that the individual modes can be

clearly distinguished. This is in direct contrast to the spontaneous scattering experiments

of Chapter 5, where the frequency separation was insufficient to overcome the spectral
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Figure 6.6: (a) The theoretically calculated carrier density dependence of the acoustic plas-
mon frequency for the coherent acoustic plasmon standing wave in the 1500 Å GaAs layer.
The experimental data is shown as blue squares. The inset shows a representative Fourier
transform of the experimental time-trace for n = 2.2 ⇥ 10

19 cm�3. The blue and red lines
in the inset are the theoretically calculated imaginary part of the electron response function
for the m = 1 and m = 2 modes, respectively, at � = 5.9 meV. (b) Similar results for a
1150 Å GaAs layer for the the m = 1 and m = 2 modes. The inset shows a representative
Fourier transform of the experimental time-trace for n = 2.3 ⇥ 10

19 cm�3. The blue and
red lines in the inset are the theoretically calculated imaginary part of the electron response
function for the m = 1 and m = 2 modes, respectively, at � = 5.9 meV. (c) The theo-
retically calculated carrier density dependence of the acoustic plasmon frequency for the
m = 6 coherent acoustic plasmon standing wave mode in the 6000 Å GaAs layer. The
experimental data are shown as blue squares.
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overlapping of the modes. We can see this in the inset of Figure 6.6(b), where the Fourier

transform of the n = 2.3⇥ 10

19 cm�3 experimental datapoint shows two clear peaks. The

red and blue lines in the inset are again theoretical calculations of the imaginary part of

the electron response function (calculated with n = 2.3 ⇥ 10

19 cm�3, T = 400 K, and

� = 5.9 meV). For both modes, the experimental peaks are noticeably narrower that than

the theoretical predictions. This may be due to interference effects between the two modes

as evidenced by the dramatic dip between the Fourier peaks.

In both the 1150 Å and 1500 Å samples, there is a clear breakdown in wavevector

conservation due to the strong confinement of the acoustic plasmon. As such, the relevant

wavevector is determined by the thickness of the sample as evidenced by its good agree-

ment with the theoretical predictions made under this assumption. As a result, rather than

seeing a mode with !AP vs. n behavior matching q = 4⇡n/�probe ⇡ 5.7 ⇥ 10

5 cm�1 (as

in a bulk sample), both the 1500 Å and 1150 Å samples have a dominant modes (m = 1)

which have wavevectors that are very different from the backscattering wave vector asso-

ciated with the probe pulse. The presence of this mode is clear evidence of confinement

of the coherent acoustic plasmon as a standing wave. The case of the 6000 Å sample is

more perplexing. Figure 6.6(c) shows the experimental acoustic plasmon frequency as a

function of carrier density for this sample. We see that for all but the lowest carrier density,

the experimental data is in good agreement with the theoretical predictions for an m = 6

mode (3.14 ⇥ 10

5 cm�1) at � = 5.9 meV. This is in contrast to the other two samples

where the dominant most was the fundamental. This may be due to the fact that in the 6000

Å sample, we are beginning to enter the transitionary regime where k-conservation begins

to reestablish due to the relatively small wavevector spacing between the various standing

wave modes.

As I previously noted, the coherent acoustic plasmon is significantly Landau damped,

and as a result the oscillations in the time-domain decay within a few cycles. Figure 6.7

confirms this assessment, as we can see that at n = 2.3⇥ 10

19 cm�3, the acoustic plasmon
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Figure 6.7: Calculated acoustic plasmon dispersion for the parameters listed in the figure
and approximate electron and heavy hole SPE continua.

is completely embedded within the electron SPE continuum. Here, the upper bounds of the

SPE are calculated from T = 0 K behavior and are qualitative only as the SPE boundaries

become diffuse at non-zero temperatures. The Landau damped nature of the acoustic plas-

mon is a consistent feature across the range of photoexcited carrier densities, and not just

for those pictured in Figure 6.7.

It should be noted that the spectral features in the spontaneous light scattering experi-

ments and the oscillations in pump-probe studies are not due to the surface waves because

first and foremost, the holes do not contribute to the surface polariton as their contribu-

tions are heavily damped out by single particle excitations. Further, the splitting between

even and odd modes is negligible due to the relatively large thicknesses associated with my

samples. As a result, there should not be a pronounced thickness dependence in either the

spontaneous spectra or the time-domain oscillatory frequencies if both these features were

due to surface waves. Finally, the surface polaritons originating from the electrons have a

large peak in the density of states at frequencies much higher than what I experimentally

observe at any given plasma density.
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6.2.3 PSD and generation of coherent acoustic plasmons

In a pump-probe scheme, we need some method by which we can differentiate the pump-

induced response from other complicating signals originating from laser noise, thermal

fluctuations in the laboratory, and probe-induced changes to the sample. There are a mul-

titude of ways to do this, but one of the most convenient involves amplitude modulating

the pump with a known frequency. We can then extract the pump-induced change in the

reflected probe beam by isolating the Fourier component of the differential reflectivity with

the same modulation. This is the principle behind phase sensitive detection (PSD).

In the laboratory, we implement PSD using a lock-in amplifier (SRS 830). First, we split

the probe pulse into it’s two constituent polarizations and then send each component into a

balanced detector, as required for REOS. We send the output of the detector to a unity gain

preamplifier. The preamplifier serves as a low pass filter with a 10 kHz bandwidth. Since

the repetition rate of the laser is 250 kHz and a typical photodiode has a bandwidth of over

50 MHz, we can regard the the input signal as a continuous in time with non-zero values

approximately every 4 µs. The low pass filter pre-conditions this signal by removing high

frequency components above approximately 10 kHz originating from the laser and other

sources. This result is then sent to the lock-in amplifier.

The first stage of the lock-in amplifier is an analog-to-digital (A/D) converter that sam-

ples the continuous time input signal at 256 kHz. By the Nyquist theorem, the highest

frequency component in the input signal that will be non-aliased will be at 128 kHz. Since

our low pass preamplifier removed most of the extraneous signal above 10 kHz, and also

because the frequency component we are interested in is at 2 kHz (the chopping frequency),

this condition is not a problem in our experiment. The signal now undergoes multiplication

with an internally generated sine wave oscillating at the reference frequency supplied by

the chopper. The resultant signal is now comprised predominantly of a signal oscillating

at two times the reference frequency and one that is nearly DC. The signal after the PSD

is low-pass filtered to extract the latter. It is this DC signal that we measure at various
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delays and what constitutes the time-trace I obtain in my experiment. The importance of

phase sensitive detection within the context of my experiment is that we can only measure

the direct effect of the pump if it is modulated in some manner. In my experiment, I only

chop the IR pump. Ostensibly, we would imagine that phase sensitive detection would

only allow us to measure the oscillation in reflectivity associated with the coherent coupled

mode. Since the signal due exclusively to the visible pump would be attenuated away in

the detection process, even if we were to directly excite a coherent acoustic plasmon, we

should not be able to detect the signal associated with it.

What if, however, there were some interaction between the two excitations? Namely, if

we were to treat both as a system of coupled quantum harmonic oscillators, how would the

detected signal? To examine this, let us begin by considering a coupled system consisting

of phonons and acoustic plasmons. The Hamiltonian for a the coupled oscillator system in

second quantization can be written as [95]

H = ~!L

X

k

â†kâk + ~!AP

X

k

ˆb†k
ˆbk

�~�
X

k

⇣

âkˆb�k + âkˆb
†
k + â†k

ˆbk + â†k
ˆb†�k

⌘

. (6.7)

Here, a†k and ak (b†k and bk) are the creation and annihilation operators for the coupled mode

(acoustic plasmon) and !L (!AP ) is the frequency of the coupled mode (acoustic plasmon).

The position operators for the phonon and plasmon oscillators are

ˆQk =

r

~
2!L

⇣

âk + â†�k

⌘

(6.8)

ˆPk = i

r

~!L

2

⇣

â†�k � âk

⌘

(6.9)

q̂k =

r

~
2!AP

⇣

ˆbk +ˆb†�k

⌘

(6.10)

p̂k = i

r

~!AP

2

⇣

ˆb†�k � ˆbk

⌘

(6.11)
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To begin, we calculate the commutators of the ladder operators and the Hamiltonian as

h

âq, ˆH
i

= ~!Lâq � ~�ˆbq � ~�ˆb†�q (6.12)
h

a†�q, ˆH
i

= �~!Lâ
†
�q + ~�ˆbq + ~�ˆb†�q (6.13)

h

ˆbq, ˆH
i

= ~!AP
ˆbq � ~�âq � ~�â†�q (6.14)

h

b†�q, ˆH
i

= �~!AP
ˆb†�q + ~�âq + ~�â†�q. (6.15)

Using these and the Ehrenfest theorem, we obtain

d

dt

D

ˆQk

E

=

D

ˆPk

E

(6.16)

d

dt
hq̂ki = hp̂ki (6.17)

Now, we can derive the expression for the canonical momentum:

d

dt

D

ˆPk

E

=

1

i~

Dh

ˆPk, ˆH
iE

= �!2
L

D

ˆQk

E

+ 2�

r

~!L

2

D⇣

ˆb†�k +
ˆbk

⌘E

= �!2
L

D

ˆQk

E

+ 2�
p
!L!AP hq̂ki , (6.18)

We can derive a similar expression for hq̂ki as well:

d2

dt2
hq̂ki = �!2

AP hq̂ki+ 2�
p
!L!AP

D

ˆQk

E

. (6.19)

To account for damping of these oscillators, we include a phenomenological damping term

for both the coupled mode and acoustic plasmon along with driving terms that accounts for
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the excitation of each of these quasiparticles. Doing so, we obtain

d2

dt2
hq̂ki+ �AP

d

dt
hq̂ki+ !2

AP hq̂ki = FAP (t) + 2�
p
!L!AP

D

ˆQk

E

(6.20)

d2

dt2

D

ˆQk

E

+ �L
d

dt

D

ˆQk

E

+ !2
L

D

ˆQk

E

= FL (t) + 2�
p
!L!AP hq̂ki . (6.21)

At this point, we can make a few assumptions. First, since the visible pump is not chopped,

the only modulation in FAP (t) arises from the 250 kHz repetition rate of the OPA. As a

result, most of the signal associated with this term will be eliminated by the pre-amplifier

and lock-in system. Second, we presume that the carrier density injected by the visible

pump follows a simple rate law with the pump intensity [96]. That is

dN

dt
= N0I (t) (6.22)

where N0 is the final value of the density following the visible pump. Since the acoustic

plasmon frequency depends on the carrier density, !AP will also be time dependent. With

these assumptions we have the following system of equations which I solved numerically

d2

dt2
hq̂ki+ �AP

d

dt
hq̂ki+ !2

AP (t) hq̂ki = 2�
p

!L!AP (t)
D

ˆQk

E

(6.23)

d2

dt2

D

ˆQk

E

+ �L
d

dt

D

ˆQk

E

+ !2
L

D

ˆQk

E

= FL (t) + 2�
p

!L!AP (t) hq̂ki . (6.24)

In solving this system, FL (t) was treated as a step function in time consistent with the gen-

eration mechanism of coherent phonons in opaque materials, and � was a free parameter.

In practice, the signal sent to a detector will be the sum of contributions due to q̂k and ˆQk

(�R/R /
D

ˆQk

E

+ ⇣ hq̂ki). The relative contribution of these two terms will depend on

the relationship between qk and the associated polarization. Equations (6.23) and (6.24)

reveal that the coupled mode and acoustic plasmon are coupled through their amplitudes.

Further, even in the absence of a driving field on the acoustic plasmon, the coupling term

on the right hand side of (6.23) can coherently drive the oscillator. This is the proposed
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Figure 6.8: Comparison between the experimental (blue) and theoretical (red) differential
reflectivity calculated using the coupled oscillator model.

generation mechanism given my experimental configuration.

The exact value of ⇣ and the constant of proportionality depend upon the physical re-

lationship between the phonon and plasmon amplitudes and the differential reflectivity.

However, my experiment cannot distinguish between the detection efficiency (⇣) and the

coupling strength (�) contributions to the measured acoustic oscillation magnitude. For

this reason, I set ⇣ = 1, and the parameter space for the model is reduced to � and an

overall multiplicative factor (-1). Figure 6.8 shows the theoretically calculated differential

reflectivity (in red) against an experimentally obtained time scan (in blue). In calculating

the model, I used � = 2.50 ⇥ 10

12 s�1, F0 = 0.22 ⇥ 10

23, �L = 1.00 ⇥ 10

12 s�1, and

�AP = 1.80 ⇥ 10

12 s�1. The value for F0 and �L were determined by calculating the dif-

ferential reflectivity trace with � = 0 and fitting it to experimental results in the absence

of a visible pump. The values of � and �AP were chosen to best fit the experimental data.

The theoretical calculation was only modified by adding a step function-like offset at 2 ps

(�0.32⇥ 10

�4 ·⇥ (t� 2)) to account for the sudden shift in reflectivity associated with the

arrival of the visible pump. This modification had no impact upon the oscillation frequency.

Despite slight differences in the background (due to the reflectivity changes associated with
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the electronic background), we see a good correspondence between the oscillatory frequen-

cies and amplitudes.

6.3 Summary

Using ultrafast excitation, I have successfully generated confined coherent acoustic plas-

mons using an all-optical technique. These modes exhibit a carrier density dependence that

is in good agreement with the theoretically expected behavior of acoustic plasmon stand-

ing wave modes based on the random phase approximation. Owing to the large separation

in frequency between adjacent modes, we are able to see multiple distinguishable discrete

modes in the 1150 Å and 6000 Å samples. The generation of these modes can be explained

using a phenomenological coupled oscillator model. Here, the coherent acoustic plasmon

is generated through a coupling with the L� mode generated via impulsively stimulated Ra-

man scattering. While these modes are heavily Landau damped, the successful generation

of the coherent mode may open possibilities for the generation of these modes in systems

where damping effects are mitigated [97, 98].
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CHAPTER 7

Conclusions and future work

Acoustic plasmons in semiconductors represent longitudinal acoustic oscillations of the

electron-hole plasma. In essence, we can associate these oscillations with a second type

of sound supported by the crystal that exists in addition to that supported by longitudinal

acoustic phonons. In slabs where the carriers are confined, treating the electron-plasma as

a fluid reveals that the acoustic plasmon exists as a discrete set of standing waves. Each of

these modes has a discrete wavevector that is an integer multiple of a fundamental value

associated with the lowest order mode; this value is proportional to the inverse sample

thickness. As a result, as sample thickness diminishes, the wavevector spacing between

adjacent modes increases, and owing to the linearity of the acoustic plasmon’s dispersion,

the frequency separation between modes increases concomitantly.

In samples on the order of 1000 Å, the spacing between modes becomes large enough

that the assumption of wavevector conservation breaks down, allowing light to couple to a

range of modes that would otherwise be forbidden. As a result, in light scattering experi-

ments, we see that the acoustic plasmon frequency changes dramatically for a thin sample

relative to thicker samples. We can model this result by leveraging the analogy with LA

phonons, and invoke the photoelastic effect to explain the efficiency with which a given

mode contributes to the scattering spectra. Theoretical calculations under this framework

are in agreement with the experimental results. It is initially puzzling as to why we do not

see discrete scattering peaks associated with several modes, as we do for the case of con-
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fined LA phonons. However, this can be explained by the large line width of the acoustic

plasmon stemming from its heavy Landau damping over the range of wavevectors that are

accessible to us in light scattering experiments. Given the thickness of my samples, the

wavevector spacing between adjacent modes was insufficient to overcome the heavy over-

lapping of the spectra, resulting in a single scattering peak that was the combination of the

contributions of several modes.

Using ultrafast pump-probe techniques, I have demonstrated that we can also gener-

ate coherent acoustic plasmons. Moreover, since the the photoexcited carrier densities are

much larger in ultrafast experiments than in spontaneous scattering, the frequency separa-

tion between acoustic plasmon standing wave modes becomes large enough that we can

distinguish between adjacent modes. As such, not only do we see coherent generation

of the acoustic plasmon, but also standing wave behavior, with some samples exhibiting

multiple modes simultaneously. The experimental results are in excellent agreement with

theoretical predictions under the random phase approximation. The generation mechanism

in my experiment is explained by coupling of the acoustic plasmon to the coherent L�

mode.

Future spontaneous scattering experiments should focus upon thinner samples where

the mode spacing is large enough to allow us the ability to discern the spectral contributions

due to each mode. This, however, will necessitate great care due to the diminished signal

and carrier density control in thinner samples. It would also be beneficial to use a two

color spontaneous scattering experiment. Here, the photoexcited electron hole plasma is

generated using a resonant beam, and a second off-resonance beam is used to perform the

light scattering measurement. The carrier temperature may still be estimated using the

spectra obtained from the resonant beam. The immediate benefit in such a scheme is that

there is no longer any photoluminescence to contend with, which greatly simplifies the

analysis procedure. Moreover, the polarized component of the SPE vanishes along with

the resonance enhancement in the spectra making the analysis of the plasma parameters
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and acoustic plasmon peak more straight-forward. The difficulty in this experiment lies

in the proper overlapping of the two beams. In particular, the off-resonant beams must be

focused to a much smaller spot size than the already tightly focused resonant beam in order

to ensure that a homogenous carrier distribution can be interrogated.

The natural extension of the ultrafast experiments contained in this work is into the

realm of direct excitation of the acoustic plasmon. Here, the coupling to L� mode can

be bypassed by using a temporally broad pulse (as compared to the L� mode period) in a

single pump probe scheme. The main difficulty in such an experiment is associated with the

large electronic background in the probe signal if the resonant pump pulse is chopped. The

difficulties associated with background subtraction may be eased using transient grating

techniques [99] or through the use of a non-degenerate pump-probe scheme with careful

choice of pump and probe frequencies [100]. In addition to direct excitation, it would be

interesting to probe the transition to k-conservation with progressively thicker samples,

though this may require the use of kHz systems to generate the required carrier densities.

Another possible avenue for future research involves potentially long-lived acoustic

plasmons. It has been shown that highly non-equilibrium plasma distributions with unoc-

cupied low momentum states may posses an undamped acoustic plasmon mode [97, 98].

Figure 7.1 shows a sample calculation of = {1/✏} for a boxcar-like carrier distribution at

n = 1 ⇥ 10

18 cm�3 for a two-component plasma assuming effective mass energy disper-

sions (m1 = 0.067m0 and m2 = 0.47m0 where m0 is the electron mass). Only states

between k = 3.1 ⇥ 10

6 cm�1 and k = 3.9 ⇥ 10

6 cm�1 are occupied. In such systems

an undamped pocket forms between the SPE of the electrons and holes. As a result, the

acoustic plasmon dispersion, which passes through this region, is not coupled to the SPE

of either electrons or holes and exists as an undamped mode. In general, these distributions

are very short lived, and equilibrate within a few hundred femtoseconds, so the experimen-

tal challenge will be to isolate these oscillations spectrally or in the time-domain before

this occurs.
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Figure 7.1: Undamped acoustic plasmon mode in a simple two-component plasma.

Due to the requirement for high carrier densities, coupled with their relatively large

damping, light scattering from acoustic plasmons has remained rather elusive. While spon-

taneous light scattering from acoustic plasmons has been previously achieved, in these

experiments, the effects of geometrical confinement was an unanswered question. My ex-

periments serve to show that the acoustic plasmon can exist as a confined mode. The suc-

cessful reproduction of the spectral line shape associated with the acoustic plasmon mode

using the photoelastic model is particularly exciting, as it serves as strong confirmation

of the analogy between LA phonons and acoustic plasmons. Furthermore, the ability to

generate a coherent state of acoustic plasmons represents the generation of a new type of

sound wave in a semiconductor, that till now, has not been seen. Owing to the relationship

between sound waves and heat transport within the crystal, this discovery introduces new

possibilities for research into the thermal properties of semiconducting materials.
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APPENDIX A

Phonons

A.1 Optical and acoustic lattice vibrations

When the lattice vibrates, the atoms execute small amplitude oscillations as though the

particles are interconnected by springs (i.e. atomic bonds). We can treat these vibrations

classically, and we then obtain two branches of vibrations of acoustic and optical character.

To get a physical interpretation of these branches, we consider a linear lattice with two

atoms per unit cell as shown in Figure A.1(a). In this system, acoustic vibrations correspond

to the two atoms in the cell moving in the same direction as shown in Figure A.1(b). Optical

vibrations are those where the two atoms move in opposite directions such that the center

of mass of the unit cell is not displaced, as in Figure A.1(c). Classically, we can treat

Figure A.1: Lattice vibrations of a diatomic 1D chain.
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this linear diatomic system as coupled oscillators. If we only consider nearest neighbor

interactions, the equation of motion are given by

M1
d2us

dt2
= C (vs + vs�1 � 2us) (A.1)

M2
d2vs
dt2

= C (us+1 + us � 2vs) , (A.2)

where M1 and M2 are the masses of the first and second atom in the unit cell. If we treat

the 1D chain as periodic with constant a0, we can solve these equations using periodic

traveling wave solutions of the form

un (t) = Aei(qna0�!t) (A.3)

vn (t) = Bei(qna0+qna0/2�!t). (A.4)

We can insert Equations (A.3) and (A.4) into (A.1) and (A.2) in order to obtain

�M1!
2A = C

�

Beiqa0/2 +Be�iqa0/2 � 2A
�

�M2!
2B = C

�

Aeiqa0/2 + Ae�iqa0/2 � 2B
�

,

which we can solve for the eigenvalues by forming the determinant

�

�

�

�

�

�

�

2C �M1!
2 �2C sin (qa0/2)

�2C sin (qa0/2) 2C �M2!
2

�

�

�

�

�

�

�

= 0.

The frequency eigenvalues are

!2
= CM ± C

s

M2 � 4 sin

2
(qa0/2)

M1M2
,

where M = 1/M1 + 1/M2. Figure A.2 shows a plot of ! as a function of q. The lower

branch corresponds to the acoustic mode where ! ! 0 as q ! 0. The upper branch is
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Figure A.2: Phonon dispersion of 1D diatomic chain.

associated with the optical mode which has a vanishing group velocity at q = 0. Near

q = 0, the acoustic branch has a linear dispersion while the optical branch is quadratic.

In a three dimensional lattice where the unit cell contains two atoms (e.g. GaAs),

vibrations can occur in three ways. In the first two, the atoms in one plane (e.g. a plane of

Ga atoms) can slide past a neighboring plane (e.g. a plane of As atoms) along either of the

two axes parallel to the planes. In this case, the spacing between the two planes remains

constant. These are the transverse vibrations. The planes can also move in the direction

orthogonal to them such that their spacing increases and decreases. This is the longitudinal

vibration. Thus, three dimensional lattice vibrations can then take on 3 polarizations, two

transverse and one longitudinal. A crystal with 2 atoms per unit cell and N unit cells has 6N

total modes: 1N longitudinal acoustic (LA), 2N transverse acoustic (TA), 2N transverse

optical (TO), and 1N longitudinal optical (LO) vibrations.

A.2 Phonons

The normal modes of these lattice vibrations can be quantized into Bosonic quasiparticles

known as phonons. First, the quantum mechanical form of the Hamiltonian for a system of
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lattice vibrations is given by

H =

X

q,�



1

2M
p̂q,�p̂�q,� +

M!2
� (q)

2

ûq,�û�q,�

�

where q and � are the wavevector and band-index of the phonon mode, p̂q,� is the mo-

mentum operator, and ûq,� is the coordinate operator. In second quantization, we can use

creation and annihilation operators to write p̂q,� and ûq,� as

ûq,� =

s

~
2M!q,�

h

âq,� + â†�q,�

i

p̂q,� = i

r

M~!q,�

2

h

âq,� � â†�q,�

i

,

where the ladder operators obey the commutation relations

h

âq,�, â
†
q0,�0

i

= �q,q0��,�0

[âq,�, âq0,�0
] =

h

â†q,�, â
†
q0,�0

i

= 0.

Physically, we can interpret the creation operator as being responsible for creating a phonon

of band-index � with wavevector q; the corresponding annihilation operator destroys a

phonon in this state. We can define a number operator n̂q,� = â†q,�âq,� that counts the num-

ber of phonons with wavevector q in the band �, and in the notation of second quantization,

an arbitrary state of the system is written as

|nq1,�1 , nq2,�2 , nq2,�2 , . . . i ,
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Figure A.3: Phonon dispersion in GaAs along the high-symmetry directions in the Brillouin
zone, reproduced from [48, 88].

where nq1,�1 is the number of phonons with q = q1 and � = �1. The ladder operators

operate on this state as

âq,� |. . . , nq,�, . . . i =

p
nq,� |. . . , nq,� � 1, . . . i

â†q,� |. . . , nq,�, . . . i =

p

nq,� + 1 |. . . , nq,� + 1, . . . i .

Finally, we can re-write the Hamiltonian in second quantization as

H =

X

q,�

~!q,�



n̂q,� +
1

2

�

,

where ~!q,� is the energy of the phonon with q in �. The utility of second quantization lies

in the fact that it allows us to deal with interaction with light more easily once we quantize

the electromagnetic field.

The number of bands and their dispersion are dependent upon the symmetry of the crys-

tal. As GaAs is a semiconductor with two atoms per unit cell, in 3-dimensions, we have

3 ⇥ 2 = 6 phonon modes: 2 TO, 2 TA, 1 LO, and 1 LA. Figure A.3 shows the phonon

dispersion in GaAs. Both the TA and LA phonons demonstrate the expected acoustic be-

havior since their frequencies vanish at the � point where q = 0. Acoustic phonons are

associated with sound waves in a crystal, TA phonons corresponding to shear sound and LA

phonons to compressive sound. The LA phonon generally has a larger group velocity than
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the TA phonon, reflecting the fact that the shear modulus is smaller than the bulk modulus

in GaAs. The TO and LO phonons both have higher energies than the acoustic modes and

have a nearly flat dispersion at the � point. In the long wavelength (small q) regime, the LO

phonon has a higher frequency than the TO mode. This is due to the fact the LO phonon

carries with it an electric field that introduces an additional restoring force to the vibration.
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APPENDIX B

Code
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B.1 spectrasim.m

  1 % NAME: spectrasim.m
  2 
  3 % PURPOSE: This code generates dynamic Xe, Xhh, Xlh, and Xinter using 
  4 % either a parabolic band, anisotropic parabolic band, or interpolated
  5 % band structure (calculated using a 30−band kp method with kp30GaAs2.m
  6 
  7 % NOTE: Run kp30GaAs2.m prior to running this script
  8 % NOTE: Parallel computing toolbox required is using multiple cores
  9 
 10 % Open Parallel workers ***************************************************
 11 myCluster = parcluster(’local’);
 12 myCluster.NumWorkers = 3;
 13 
 14 if matlabpool(’size’)==0
 15     matlabpool open 3
 16 end
 17 % *************************************************************************
 18 
 19 
 20 % Define band structures **************************************************
 21 % Electron band structure
 22 K = [−k100(end:−1:2) k100(1:end)];
 23 E = [E_00(9,end:−1:2)−E_00(9,1) E100(9,1:end)−E100(9,1)];
 24 
 25 % LH band structure
 26 K2 = [−k100(end:−1:2) k100(1:end)];
 27 E2 = −[E_00(5,end:−1:2) E100(5,1:end)];
 28 % *************************************************************************
 29 
 30 
 31 % Define Numerical parameters *********************************************
 32 % d = active layer thickness
 33 % Q = acoustic plasmon wavevector points
 34 % w = frequency
 35 % Efac = possible factors to multiple with an energy to give the Fermi E
 36 % n = reference number to set energy to be multipled by Efac
 37 % Ts = carrier temeprature
 38 % eta = carrier damping
 39 % KF = upperlimit for wavevector integration 
 40 % Efacee = the electron Efac factors
 41 % Efachh = the HH and LH Efac factors
 42 d = 6e−5;
 43 Q = (pi/d)*(1:20); %Q = [1e4 Q];
 44 %Q = 4*pi*3.76/(6.47e−5);
 45 w = 2*pi*3e10*(2.5:0.5:150);
 46 Efac = −3:0.0025:2; %−4:0.0025:1; %−3:0.0025:2; %−2:0.0025:1; %−2:0.0025:1;
 47 n = 2e19;
 48 Ts = 400;
 49 eta = 9e12;
 50 %Efac(1843);
 51 %Efac(627);
 52 
 53 % for i = 1:40
 54 %     temp = abs(Ne−1e18−(i−1)*1e18);
 55 %     [ee_idx(i) ee_idx(i)] = min(temp);
 56 % end
 57 % for i = 1:40
 58 %     temp = abs(Nh−1e18−(i−1)*1e18);
 59 %     [hh_idx(i) hh_idx(i)] = min(temp);
 60 % end
 61 % Efacee = Efac(ee_idx);
 62 % Efachh = Efac(hh_idx);
 63 
 64 KF = (3*pi^2*4e19).^(1/3);
 65 % *************************************************************************
 66 
 67 
 68 % Constants and values based on parameters ********************************
 69 m0 = 9.11e−28;
 70 me = 0.067*m0;
 71 mhh = 0.47*m0;
 72 mlh = 0.082*m0;
 73 eps_inf = 10.89;
 74 e_c = 4.803e−10;
 75 hb = 1.05e−27;
 76 kb = 1.38e−16;
 77 kFe = (3*pi^2*n).^(1/3);
 78 EFe = hb^2*kFe.^2/(2*me);
 79 EFhh = hb^2*kFe.^2/(2*mhh);
 80 % *************************************************************************
 81 
 82 
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 83 %Preallocate loop variables (commented out after first run) ***************
 84 Qe_0 = zeros(length(Efacee),length(Q));
 85 Qe = zeros(length(w),length(Efacee),length(Q));
 86 Qe_LM = zeros(length(w),length(Efacee),length(Q));
 87 eps = zeros(length(w),length(Efacee),length(Q));
 88 T11 = zeros(length(w),length(Efacee),length(Q));
 89 Ne = zeros(length(Efacee),length(Q));
 90 Qhh_0 = zeros(length(Efacee),length(Q));
 91 Qhh = zeros(length(w),length(Efacee),length(Q));
 92 Qhh_LM = zeros(length(w),length(Efacee),length(Q));
 93 Nhh = zeros(length(Efacee),length(Q));
 94 Qlh_0 = zeros(length(Efacee),length(Q));
 95 Qlh = zeros(length(w),length(Efacee),length(Q));
 96 Qlh_LM = zeros(length(w),length(Efacee),length(Q));
 97 Nlh = zeros(length(Efacee),length(Q));
 98 Qinter_0 = zeros(length(Efacee),length(Q));
 99 Qinter = zeros(length(w),length(Efacee),length(Q));
100 Qinter_LM = zeros(length(w),length(Efacee),length(Q));
101 QSPE_0 = zeros(length(Efacee),length(Q));
102 QSPE = zeros(length(w),length(Efacee),length(Q));
103 QSPE_LM = zeros(length(w),length(Efacee),length(Q));
104 speed_check = zeros(length(w),1);
105 % *************************************************************************
106 
107 
108 % % Generates N vs. Fermi energy for e, hh, lh (commented out by default) *
109 % W = length(Efac);
110 % kFe_current = KF(1);
111 % parfor_progress(W);
112 % parfor i = 1:length(Efac)
113 %     
114 %         % Use this code for complex band structure (e = interpolation..., hh = 
warped, lh = warped
115 %         Ne(i) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,EFe*Efac(i),
Ts,K,E,1),0,4*kFe_current,0,pi);
116 %         Nhh(i) = integral3(@(k,theta,phi)density(k,q,w(1),eta,theta,phi,EFhh*Efac
(i),Ts,K,E,2),0,4*kFe_current,0,pi,0,2*pi);
117 %         Nlh(i) = integral3(@(k,theta,phi)density(k,q,w(1),eta,theta,phi,EFhh*Efac
(i),Ts,K,E,3),0,4*kFe_current,0,pi,0,2*pi);
118 %         
119 %         % Use this code for effective mass band structure
120 %         %Ne(i) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,EFe*Efac
(i),Ts,K,E,4),0,4*kFe_current,0,pi);
121 %         %Nhh(i) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,EFhh*Efac
(i),Ts,K,E,5),0,4*kFe_current,0,pi);
122 %         %Nlh(i) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,EFhh*Efac
(i),Ts,K,E,6),0,4*kFe_current,0,pi);
123 %         parfor_progress;
124 % end
125 % parfor_progress(0);
126 % *************************************************************************
127 
128 
129 % Lattice susceptibility (T=0) ********************************************
130 wlo = 2*pi*3e10*295;
131 wto = 2*pi*3e10*272;
132 QL = (eps_inf/(4*pi))*(wlo^2 − wto^2)./(wto^2 − w.^2 − 1i*2*pi*3e10*5*w);
133 % *************************************************************************
134 
135     
136 % Main loop to calcualte susceptibilties, eps, and T11 ********************
137 for qi=1:length(Q)
138 % Main loop that calculates susceptibilities for all n in range and mode index qi
139     q = Q(qi);
140     T_current = Ts(1);
141     for j = 1:length(Efacee)
142             EFe_current = EFe*Efacee(j);
143             EFhh_current = EFhh*Efachh(j);
144             kFe_current = KF(1);
145     
146             % Compute carr density (complex band structure)
147             Ne(j,qi) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,
EFe_current,T_current,K,E,1),0,4*kFe_current,0,pi)
148             Nhh(j,qi) = integral3(@(k,theta,phi)density(k,q,w(1),eta,theta,phi,
EFhh_current,T_current,K,E,2),0,4*kFe_current,0,pi,0,2*pi);
149             Nlh(j,qi) = integral3(@(k,theta,phi)density(k,q,w(1),eta,theta,phi,
EFhh_current,T_current,K,E,3),0,4*kFe_current,0,pi,0,2*pi);
150             Nh = Nhh(j,qi) + Nlh(j,qi)
151     
152             % Compute carr density (simple parabolic bands)
153             %Ne(j,qi) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,
EFe_current,T_current,K,E,4),0,4*kFe_current,0,pi)
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154             %Nhh(j,qi) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,
EFhh_current,T_current,K,E,5),0,4*kFe_current,0,pi)
155             %Nlh(j,qi) = 2*pi*integral2(@(k,theta)density(k,q,w(1),eta,theta,0,
EFhh_current,T_current,K,E,6),0,4*kFe_current,0,pi)
156             %Nh = Nhh(j,qi) + Nlh(j,qi)
157 
158             tstart1 = tic;
159              
160             % Compute 0 frequency susceptibilities (complex bands)
161             Qe_0_current = 2*pi*integral2(@(k,theta)suscep(k,q,0,0,theta,0,
EFe_current,T_current,K,E,K2,E2,1),0,4*kFe_current,0,pi);
162             Qhh_0_current = integral3(@(k,theta,phi)suscep(k,q,0,0,theta,phi,
EFhh_current,T_current,K,E,K2,E2,4),0,4*kFe_current,0,pi,0,2*pi);
163             Qlh_0_current = 2*pi*integral2(@(k,theta)suscep(k,q,0,0,theta,0,
EFhh_current,T_current,K,E,K2,E2,9),0,4*kFe_current,0,pi);
164             Qinter_0_current = 2*pi*integral2(@(k,theta)suscep(k,q,0,0,theta,0,
EFhh_current,T_current,K,E,K2,E2,10),0,4*kFe_current,0,pi);
165             
166             % Compute 0 frequency susceptibilities (simple parabolic bands)
167             % Use this code for simple effective mass band structure
168             %Qe_0_current = integral(@(k)suscep(k,q,0,0,0,0,EFe_current,T_current,K,
E,K2,E2,2),0,4*kFe_current);
169             %Qhh_0_current = integral(@(k)suscep(k,q,0,0,0,0,EFhh_current,T_current,
K,E,K2,E2,5),0,4*kFe_current);
170             %Qlh_0_current = integral(@(k)suscep(k,q,0,0,0,0,EFhh_current,T_current,
K,E,K2,E2,8),0,4*kFe_current);
171             %Qinter_0_current = 1;
172 
173             parfor_progress(length(w));
174             parfor i = 1:length(w)
175         
176                 ts = tic;
177                 
178                 % Compute susceptibilities (complex bands)
179                 Qe_current(i) = 2*pi*integral2(@(k,theta)suscep(k,q,w(i),eta,theta,
0,EFe_current,T_current,K,E,K2,E2,1),0,4*kFe_current,0,pi);
180                 Qhh_current(i) = integral3(@(k,theta,phi)suscep(k,q,w(i),eta,theta,
phi,EFhh_current,T_current,K,E,K2,E2,4),0,4*kFe_current,0,pi,0,2*pi);
181                 Qlh_current(i) = 2*pi*integral2(@(k,theta)suscep(k,q,w(i),eta,theta,
0,EFhh_current,T_current,K,E,K2,E2,9),0,4*kFe_current,0,pi);
182                 Qinter_current(i) = integral3(@(k,theta,phi)suscep(k,q,w(i),eta,
theta,phi,EFhh_current,T_current,K,E,K2,E2,10),0,4*kFe_current,0,pi,0,2*pi);
183         
184                 % Compute susceptibilities (simple parabolic bands)
185                 %Qe_current(i) = integral(@(k)suscep(k,q,w(i),eta,0,0,EFe_current,
T_current,K,E,K2,E2,2),0,4*kFe_current);
186                 %Qhh_current(i) = integral(@(k)suscep(k,q,w(i),eta,0,0,EFhh_current,
T_current,K,E,K2,E2,5),0,4*kFe_current);
187                 %Qlh_current(i) = integral(@(k)suscep(k,q,w(i),eta,0,0,EFhh_current,
T_current,K,E,K2,E2,8),0,4*kFe_current);
188                 %Qinter_current(i) = 2*pi*integral2(@(k,theta)suscep(k,q,w(i),eta,
theta,0,EFhh_current,T_current,K,E,K2,E2,10),0,4*kFe_current,0,pi);
189         
190                 timer1 = toc(ts);
191                 speed_check(i) = timer1;
192                 parfor_progress;
193         
194             end
195             parfor_progress(0);
196             toc(tstart1)
197             
198             % Calculate Lindhard−Mermin suceptibilities
199             Qe_LM_current = ((1+1i*eta(1)./w).*Qe_current)./(1+(1i*eta(1)./w).*
(Qe_current/Qe_0_current));
200             Qhh_LM_current = ((1+1i*eta(1)./w).*Qhh_current)./(1+(1i*eta(1)./w).*
(Qhh_current/Qhh_0_current));
201             Qlh_LM_current = ((1+1i*eta(1)./w).*Qlh_current)./(1+(1i*eta(1)./w).*
(Qlh_current/Qlh_0_current));
202             Qinter_LM_current = ((1+1i*eta(1)./w).*Qinter_current)./(1+(1i*eta(1).
/w).*(Qinter_current/Qinter_0_current));
203             eps_current = eps_inf + 4*pi*Qe_LM_current + 4*pi*Qhh_LM_current + 
4*pi*Qlh_LM_current + 4*pi*Qinter_LM_current + 4*pi*QL;
204             T11_current = Qe_LM_current − 4*pi*(Qe_LM_current.^2)./eps_current;
205     
206             % Save all computations to variables
207             Qe_0(j,qi) = Qe_0_current;
208             Qe(:,j,qi) = Qe_current;
209             Qe_LM(:,j,qi) = Qe_LM_current;
210             Qhh_0(j,qi) = Qhh_0_current;
211             Qhh(:,j,qi) = Qhh_current;
212             Qhh_LM(:,j,qi) = Qhh_LM_current;
213             Qlh_0(j,qi) = Qlh_0_current;
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214             Qlh(:,j,qi) = Qlh_current;
215             Qlh_LM(:,j,qi) = Qlh_LM_current;
216             Qinter_0(j,qi) = Qinter_0_current;
217             Qinter(:,j,qi) = Qinter_current;
218             Qinter_LM(:,j,qi) = Qinter_LM_current;
219             QSPE_LM(:,j,qi) = QSPE_LM_current;
220             eps(:,j,qi) = eps_current;
221             T11(:,j,qi) = T11_current;
222     end
223 end
224 matlabpool close
225 % *************************************************************************
226 
227 
228 W = w/(2*pi*3e10); % Frequency in wavenumbers
229 Np12 = (1./(1−exp(−hb*abs(2*pi*3e10*W)/(kb*Ts)))−1+1*(W>0)); % Bose factor
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B.2 suscep.m

  1 % NAME: suscep.m
  2 
  3 % PURPOSE: This is a helper function for spectrasim.m. It controls the 
  4 % integrand for the susceptibility integrals using various models 
  5 % (effective mass, interpolation, aniso). 
  6 
  7 % NOTE: In all simulations, q is assumed to be in the [001] direction.
  8 
  9 function z = suscep(k,q,w,eta,theta,phi,mu,T,kdir,Ek,kdir2,Ek2,sw)
 10 
 11 
 12 % Constants
 13 hb = 1.05e−27;
 14 kb = 1.38e−16;
 15 wc = w + 1i*eta;
 16 m0 = 9.11e−28;
 17 me = 0.067*9.11e−28;
 18 mhh = 0.47*m0;
 19 mlh = 0.082*m0;
 20 e_c = 4.803e−10;
 21 vd = 0;
 22 
 23 
 24 % Warped band structure parameters
 25 A = −7.98;
 26 B = −5.16;
 27 C = 6.56;
 28 
 29 
 30 if sw == 1
 31     % Conduction band using kp and linear interpolation (2D inegral)
 32     E_k = interp1(kdir,Ek,k,’spline’);
 33     E_kpq = interp1(kdir,Ek,sqrt(k.^2 + q.^2 + 2*k.*q.*cos(theta)),’spline’);
 34     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
 35     f_kpq = 1./(exp(E_kpq/(kb*T)).*exp(−mu/(kb*T))+1);
 36     z = −(1*e_c^2./(pi^2*q.^2)).*((f_k − f_kpq)./(−E_kpq + E_k + hb*wc)).*k.^2.*sin
(theta)/(4*pi);
 37 elseif sw == 2
 38     % Conduction band using effective mass approx (1D integral)
 39     A1 = 2*hb^2*q*k/me + hb^2*q^2/me − 2*hb*wc;
 40     B1 = −2*hb^2*q*k/me + hb^2*q^2/me − 2*hb*wc;
 41     A2 = −2*hb^2*q*k/me + hb^2*q^2/me + 2*hb*wc;
 42     B2 = 2*hb^2*q*k/me + hb^2*q^2/me + 2*hb*wc;
 43     f = 1./(exp(((hb^2*((k−me*vd/hb).^2)/(2*me))−mu)/(kb*T))+1);
 44     z = (2*e_c^2*me/(pi*hb^2*q^3))*k.*f.*(log(A1./B1) − log(A2./B2));
 45 elseif sw == 3
 46     % Conduction band using effective mass approx (2D integral)
 47     E_k = hb^2*k.^2/(2*me);
 48     E_kpq = hb^2.*(k.^2 + q.^2 + 2*k.*q.*cos(theta))/(2*me);
 49     E_kmq = hb^2.*(k.^2 + q.^2 − 2*k.*q.*cos(theta))/(2*me);
 50     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
 51     z = (1*e_c^2./(pi^2*q.^2)).*f_k.*(1./(E_kpq − E_k − hb*wc)+1./(E_kmq − E_k + 
hb*wc)).*k.^2.*sin(theta);
 52 elseif sw == 4
 53     % HH band using effective approx including aniso (3D integral)
 54     g = sqrt((B/A)^2 + (C/A)^2*(sin(theta).^2.*cos(theta).^2+sin(theta).^4.*cos
(phi).^2.*sin(phi).^2));
 55     E_kpq = (abs(A)*hb^2./(2*m0)).*(1−g).*(k.^2+q.^2+2.*k.*q.*cos(theta));
 56     E_k = abs(A)*hb^2./(2*m0).*(1−g).*(k.^2);
 57     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
 58     f_kpq = 1./(exp(E_kpq/(kb*T)).*exp(−mu/(kb*T))+1);
 59     M11 = (1/4)*(1+(3*(k.^2+q*k.*cos(theta)).^2)./((k.^2).*(k.^2+q.^2+2.*k.*q.*cos
(theta))));
 60     z = (1*e_c^2./(pi^2*q.^2)).*M11.*((f_k − f_kpq)./(E_kpq − E_k − hb*wc)).*k.^2.
*sin(theta)/(4*pi);
 61 elseif sw == 5
 62     % HH band using effective mass approx (1D integral)    
 63     A1 = 2*hb^2*q*k/mhh + hb^2*q^2/mhh − 2*hb*wc;
 64     B1 = −2*hb^2*q*k/mhh + hb^2*q^2/mhh − 2*hb*wc;
 65     A2 = −2*hb^2*q*k/mhh + hb^2*q^2/mhh + 2*hb*wc;
 66     B2 = 2*hb^2*q*k/mhh + hb^2*q^2/mhh + 2*hb*wc;
 67     f = 1./(exp(((hb^2*(k.^2)/(2*mhh))−mu)/(kb*T))+1);
 68     z = (2*e_c^2*mhh/(pi*hb^2*q^3))*k.*f.*(log(A1./B1) − log(A2./B2));
 69 elseif sw == 6
 70     % HH band using kp and linear interpolation (3D inegral)
 71     E_k = interp2(kt,thetat,Emesh(:,:,1),k,theta,’spline’);
 72     E_kpq = interp2(kt,thetat,Emesh(:,:,1),sqrt(k.^2 + q.^2 + 2*k.*q.*cos(theta)),
theta,’spline’);
 73     E_kmq = interp2(kt,thetat,Emesh(:,:,1),sqrt(k.^2 + q.^2 − 2*k.*q.*cos(theta)),
theta,’spline’);
 74     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
 75     z = (1*e_c^2./(pi^2*q.^2)).*f_k.*(1./(E_kpq − E_k − hb*wc)+1./(E_kmq − E_k + 
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hb*wc)).*k.^2.*sin(theta);
 76 elseif sw == 7
 77     % LH band using effective approx including aniso (3D integral)
 78     g = sqrt((B/A)^2 + (C/A)^2*(sin(theta).^2.*cos(theta).^2+sin(theta).^4.*cos
(phi).^2.*sin(phi).^2));
 79     E_kpq = (abs(A)*hb^2./(2*m0)).*(1+g).*(k.^2+q.^2+2.*k.*q.*sin(theta).*cos(phi));
 80     E_kmq = (abs(A)*hb^2./(2*m0)).*(1+g).*(k.^2+q.^2−2.*k.*q.*sin(theta).*cos(phi));
 81     E_k = abs(A)*hb^2./(2*m0).*(1+g).*(k.^2);
 82     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
 83     z = (1*e_c^2./(pi^2*q.^2)).*f_k.*(1./(E_kpq − E_k − hb*wc)+1./(E_kmq − E_k + 
hb*wc)).*k.^2.*sin(theta);  
 84  elseif sw == 8
 85     % LH band using effective mass approx (1D integral)    
 86     A1 = 2*hb^2*q*k/mlh + hb^2*q^2/mlh − 2*hb*wc;
 87     B1 = −2*hb^2*q*k/mlh + hb^2*q^2/mlh − 2*hb*wc;
 88     A2 = −2*hb^2*q*k/mlh + hb^2*q^2/mlh + 2*hb*wc;
 89     B2 = 2*hb^2*q*k/mlh + hb^2*q^2/mlh + 2*hb*wc;
 90     f = 1./(exp(((hb^2*(k.^2)/(2*mlh))−mu)/(kb*T))+1);
 91     z = (2*e_c^2*mlh/(pi*hb^2*q^3))*k.*f.*(log(A1./B1) − log(A2./B2));
 92  elseif sw == 9
 93     % LH band using kp and linear interpolation (2D inegral)
 94     E_k = interp1(kdir2,Ek2,k,’spline’);
 95     E_kpq = interp1(kdir2,Ek2,sqrt(k.^2 + q.^2 + 2*k.*q.*cos(theta)),’spline’);
 96     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
 97     f_kpq = 1./(exp(E_kpq/(kb*T)).*exp(−mu/(kb*T))+1);
 98     M11 = (1/4)*(1+(3*(k.^2+q*k.*cos(theta)).^2)./((k.^2).*(k.^2+q.^2+2.*k.*q.*cos
(theta))));
 99     z = (1*e_c^2./(pi^2*q.^2)).*M11.*((f_k − f_kpq)./(E_kpq − E_k − hb*wc)).*k.^2.
*sin(theta)/(4*pi);
100 elseif sw == 10
101     % Interband transitions using effective mass approx including aniso
102     g = sqrt((B/A)^2 + (C/A)^2*(sin(theta).^2.*cos(theta).^2+sin(theta).^4.*cos
(phi).^2.*sin(phi).^2));
103     E_1 = (abs(A)*hb^2./(2*m0)).*(1+g).*(k.^2);
104     E_2 = (abs(A)*hb^2./(2*m0)).*(1−g).*(k.^2+q.^2+2.*k.*q.*cos(theta));
105     f_k_1 = 1./(exp(E_1/(kb*T)).*exp(−mu/(kb*T))+1);
106     f_k_2 = 1./(exp(E_2/(kb*T)).*exp(−mu/(kb*T))+1);
107     M12 = (3/4)*(1−((k.^2+q*k.*cos(theta)).^2)./((k.^2).*(k.^2+q.^2+2.*k.*q.*cos
(theta))));
108     z = (1*e_c^2./(2*pi^2*q.^2)).*M12.*((f_k_1 − f_k_2)./(E_2 − E_1 + hb*wc)+(f_k_1 
− f_k_2)./(E_2 − E_1 − hb*wc)).*k.^2.*sin(theta)/(4*pi);   
109 end
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B.3 density.m

 1 % NAME: density.m
 2 
 3 % PURPOSE: This is a helper function for spectrasim.m. It computes the 
 4 % carrier density using various models for the bands.
 5 
 6 function z = density(k,q,w,eta,theta,phi,mu,T,kdir,Ek,sw)
 7 
 8 hb = 1.05e−27;
 9 kb = 1.38e−16;
10 A = −7.98;
11 B = −5.16;
12 C = 6.56;
13 me = 0.067*9.11e−28;
14 mhh = 0.47*9.11e−28;
15 mlh = 0.082*9.11e−28;
16 
17 if sw == 1
18     % Electron density using linear interpolation
19     E_k = spline(kdir,Ek,k);
20     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
21     z = 2/(8*pi^3)*f_k.*k.^2.*sin(theta);
22 elseif sw == 2
23     % HH density using anisotropic effective mass approximation
24     g = sqrt((B/A)^2 + (C/A)^2*(sin(theta).^2.*cos(theta).^2+sin(theta).^4.*cos(phi).
^2.*sin(phi).^2));
25     E_k = abs(A)*hb^2./(2*9.11e−28).*(1−g).*(k.^2);
26     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
27     z = 2/(8*pi^3)*f_k.*k.^2.*sin(theta);
28 elseif sw == 3
29     % LH density using anisotropic effective mass approximation
30     g = sqrt((B/A)^2 + (C/A)^2*(sin(theta).^2.*cos(theta).^2+sin(theta).^4.*cos(phi).
^2.*sin(phi).^2));
31     E_k = abs(A)*hb^2./(2*9.11e−28).*(1+g).*(k.^2);
32     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
33     z = 2/(8*pi^3)*f_k.*k.^2.*sin(theta);
34 elseif sw == 4
35     % Electron density using effective mass approximation
36     E_k = hb^2*k.^2/(2*me);
37     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
38     z = 2/(8*pi^3)*f_k.*k.^2.*sin(theta);
39 elseif sw == 5
40     % HH density using effective mass approximation
41     E_k = hb^2*k.^2/(2*mhh);
42     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
43     z = 2/(8*pi^3)*f_k.*k.^2.*sin(theta);
44 elseif sw == 6
45     % LH density using effective mass approximation
46     E_k = hb^2*k.^2/(2*mlh);
47     f_k = 1./(exp(E_k/(kb*T)).*exp(−mu/(kb*T))+1);
48     z = 2/(8*pi^3)*f_k.*k.^2.*sin(theta);
49 end
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B.4 kp30GaAs2.m

  1 % NAME: kp30GaAs2.m
  2 
  3 % PURPOSE: Computes band structure of GaAs using 30 band direct 
  4 % diagonalization along [1 1 1], [−1 −1 −1], [1 0 0], and [−1 0 0]
  5 
  6 % References: Richard, PRB, 70 (23), 235204 (2004)
  7 
  8 clear;
  9 
 10 % Constants
 11 m0 = 9.11e−28;  %electron mass/(c^2)
 12 hb = 1.05e−27;
 13 
 14 
 15 % Gamma−point energy levels in GaAs (eV)
 16 Eq = 13.64*1.6e−12;
 17 E8d = 11.89*1.6e−12;
 18 E7d = 11.89*1.6e−12;
 19 E3 = 10.17*1.6e−12;
 20 Eu = 8.56*1.6e−12;
 21 E8C = 4.569*1.6e−12;
 22 E7C = 4.488*1.6e−12;
 23 E6 = 1.519*1.6e−12;
 24 E8 = 0*1.6e−12;
 25 E7 = −0.341*1.6e−12;
 26 E6v = −12.55*1.6e−12;
 27 
 28 
 29 % Gamma−point momentum matrix elements
 30 Ep = 22.37*1.6e−12;
 31 EPX = 16.79*1.6e−12;
 32 EP3 = 4.916*1.6e−12;
 33 EP2 = 6.280*1.6e−12;
 34 EPS = 2.434*1.6e−12;
 35 EP_prime = 0.0656*1.6e−12;
 36 EPd = 0.010*1.6e−12;
 37 EPXd = 4.344*1.6e−12;
 38 EP3d = 8.888*1.6e−12;
 39 EP2d = 23.15*1.6e−12;
 40 EPU = 19.63*1.6e−12;
 41 Ed_prime = 0;
 42 
 43 P = sqrt((hb^2/(2*m0))*Ep);
 44 PX = sqrt((hb^2/(2*m0))*EPX);
 45 P3 = sqrt((hb^2/(2*m0))*EP3);
 46 P2 = sqrt((hb^2/(2*m0))*EP2);
 47 PS = sqrt((hb^2/(2*m0))*EPS);
 48 P_prime = sqrt((hb^2/(2*m0))*EP_prime);
 49 Pd = sqrt((hb^2/(2*m0))*EPd);
 50 PXd = sqrt((hb^2/(2*m0))*EPXd);
 51 P3d = sqrt((hb^2/(2*m0))*EP3d);
 52 P2d = sqrt((hb^2/(2*m0))*EP2d);
 53 PU = sqrt((hb^2/(2*m0))*EPU);
 54 d_prime = sqrt((hb^2/(2*m0))*Ed_prime);
 55 
 56 
 57 % k−vectors
 58 a = 5.65e−8;
 59 kx = 0:1e4:2*pi/a;
 60 ky = 0:1e4:2*pi/a;
 61 kkz = 0:1e4:2*pi/a;
 62 
 63 
 64 Hdiag = diag([Eq,Eq,E8d,E8d,E8d,E8d,E7d,E7d,E3,E3,E3,E3,Eu,Eu,E8C,E8C,E8C,E8C,E7C,
E7C,E6,E6,E8,E8,E8,E8,E7,E7,E6v,E6v]);
 65 Hoffdiag = zeros(30,30);
 66 
 67 %dirs100 = {’100’ ’_00’ ’010’ ’0_0’ ’001’ ’00_’};
 68 %dirs110 = {’110’ ’_10’ ’1_0’ ’__0’ ’101’ ’_01’ ’10_’ ’_0_’ ’011’ ’0_1’ ’01_’ 
’0__’};
 69 %dirs111 = {’111’ ’_11’ ’1_1’ ’11_’ ’__1’ ’_1_’ ’1__’ ’___’};
 70 
 71 dirs100 = {’100’};
 72 dirs110 = {’_00’};
 73 dirs111 = {’111’ ’___’};
 74 
 75 dirs = [dirs100 dirs110 dirs111];
 76 
 77 q = 5.25e5; % in [100 direction]
 78 
 79 for runs = 1:length(dirs)
 80     
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 81     curr = dirs{runs}
 82     
 83     if strcmp(curr(1),’0’)
 84         kx = 0*(0:1e4:2*pi/a);
 85         x_index = ’1’;
 86     elseif strcmp(curr(1),’1’)
 87         kx = (0:1e4:2*pi/a);
 88         x_index = ’i’;
 89     elseif strcmp(curr(1),’_’)
 90         kx = −((0:1e4:2*pi/a));
 91         x_index = ’i’;
 92     end
 93     
 94         
 95     if strcmp(curr(2),’0’)
 96         ky = 0*(0:1e4:2*pi/a);
 97         y_index = ’1’;
 98     elseif strcmp(curr(2),’1’)
 99         ky = (0:1e4:2*pi/a);
100         y_index = ’i’;
101     elseif strcmp(curr(2),’_’)
102         ky = −(0:1e4:2*pi/a);
103         y_index = ’i’;
104     end
105        
106     
107     if strcmp(curr(3),’0’)
108         kkz_string = ’kkz = 0*(0:1e4:2*pi/a);’;
109         kkz = 0*(0:1e4:2*pi/a);
110         z_index = ’1’;
111     elseif strcmp(curr(3),’1’)
112         kkz_string = ’kkz = (0:1e4:2*pi/a);’;
113         kkz = (0:1e4:2*pi/a);
114         z_index = ’i’;
115     elseif strcmp(curr(3),’_’)
116         kkz_string = ’kkz = −(2*pi/a:−1e4:0);’;
117         kkz = −(0:1e4:2*pi/a);
118         z_index = ’i’;
119     end        
120     
121 
122     eval([’k’,curr,’ = sqrt(kx.^2+ky.^2+kkz.^2);’]);
123     eval([’K = k’,curr,’;’]);
124     
125     for i = 1:length(K)
126         Hoffdiag=Hoffdiag*0;
127             
128         eval([’kplus = kx(’,x_index,’) + 1i*ky(’,y_index,’);’]);
129         eval([’kminus = kx(’,x_index,’) − 1i*ky(’,y_index,’);’]);
130             
131         eval([’kz = kkz(’,z_index,’);’]);
132         eval([’Ek = (hb^2/(2*m0))*(kx(’,x_index,’)^2+ky(’,y_index,’)^2+kkz(’,
z_index,’)^2);’]);
133             
134         HEkdiag = diag([Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,
Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek,Ek]);
135               
136         Hoffdiag(1,2:end) = [0,−P2d*kplus/sqrt(2),P2d*kz*sqrt(2/3),P2d*kminus/sqrt
(6),0,P2d*kz/sqrt(3),P2d*kminus/sqrt(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,−P2*kplus/sqrt(2),
P2*kz*sqrt(2/3),P2*kminus/sqrt(6),0,P2*kz/sqrt(3),P2*kminus/sqrt(3),0,0];
137         Hoffdiag(2,3:end) = [0,−P2d*kplus/sqrt(6),P2d*kz*sqrt(2/3),P2d*kminus/sqrt
(2),P2d*kplus/sqrt(3),−P2d*kz/sqrt(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−P2*kplus/sqrt(6),
P2*kz*sqrt(2/3),P2*kminus/sqrt(2),P2*kplus/sqrt(3),−P2*kz/sqrt(3),0,0];
138         Hoffdiag(3,4:end) = [0,0,0,0,0,−P3d*kminus/sqrt(2),0,P3d*kplus*sqrt(3/2),
0,0,0,0,PXd*kplus/sqrt(3),PXd*kz/sqrt(3),0,PXd*kplus/sqrt(6),PXd*kz*sqrt(2/3),−
Pd*kminus/sqrt(2),0,0,0,0,0,0,0,0,0];
139         Hoffdiag(4,5:end) = [0,0,0,0,−P3d*kz*sqrt(8/3),−P3d*kminus/sqrt(6),0,
P3d*kplus/sqrt(2),0,0,−PXd*kminus/sqrt(3),0,0,PXd*kz/sqrt(3),0,−PXd*kplus/sqrt(2),
Pd*kz*sqrt(2/3),−Pd*kminus/sqrt(6),0,0,0,0,0,0,0,0];
140         Hoffdiag(5,6:end) = [0,0,0,P3d*kplus/sqrt(6),−P3d*kz*sqrt(8/3),−
P3d*kminus/sqrt(2),0,0,0,−PXd*kz/sqrt(3),0,0,−PXd*kplus/sqrt(3),PXd*kminus/sqrt(2),0,
Pd*kplus/sqrt(6),Pd*kz*sqrt(2/3),0,0,0,0,0,0,0,0];
141         Hoffdiag(6,7:end) = [0,0,0,P3d*kplus/sqrt(2),0,−P3d*kminus*sqrt(3/2),0,0,0,−
PXd*kz/sqrt(3),PXd*kminus/sqrt(3),0,PXd*kz*sqrt(2/3),−PXd*kminus/sqrt(6),0,Pd*kplus/sqrt
(2),0,0,0,0,0,0,0,0];
142         Hoffdiag(7,8:end) = [0,−P3d*kz*sqrt(4/3),P3d*kminus/sqrt(3),0,−P3d*kplus,
0,0,−PXd*kminus/sqrt(6),0,−PXd*kplus/sqrt(2),−PXd*kz*sqrt(2/3),0,0,Pd*kz/sqrt(3),
Pd*kminus/sqrt(3),0,0,0,0,0,0,0,0];
143         Hoffdiag(8,9:end) = [P3d*kplus/sqrt(3),P3d*kz*sqrt(4/3),−P3d*kminus,0,0,0,−
PXd*kz*sqrt(2/3),PXd*kminus/sqrt(2),0,PXd*kplus/sqrt(6),0,0,Pd*kplus/sqrt(3),−Pd*kz/sqrt
(3),0,0,0,0,0,0,0,0];
144         Hoffdiag(9,10:end) = [0,0,0,0,0,0,0,0,0,0,0,0,0,−P3*kplus/sqrt(2),−
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P3*kz*sqrt(8/3),P3*kminus/sqrt(6),0,−P3*kz*sqrt(4/3),P3*kminus/sqrt(3),0,0];
145         Hoffdiag(10,11:end) = [0,0,0,0,0,0,0,0,0,0,0,0,0,−P3*kplus/sqrt(6),−
P3*kz*sqrt(8/3),P3*kminus/sqrt(2),P3*kplus/sqrt(3),P3*kz*sqrt(4/3),0,0];
146         Hoffdiag(11,12:end) = [0,0,0,0,0,0,0,0,0,0,0,P3*kminus*sqrt(3/2),0,−
P3*kplus/sqrt(2),0,0,−P3*kplus,0,0];
147         Hoffdiag(12,13:end) = [0,0,0,0,0,0,0,0,0,0,0,P3*kminus/sqrt(2),0,−
P3*kplus*sqrt(3/2),−P3*kminus,0,0,0];
148         Hoffdiag(13,14:end) = [0,−PU*kplus/sqrt(2),PU*kz*sqrt(2/3),PU*kminus/sqrt
(6),0,PU*kz/sqrt(3),PU*kminus/sqrt(3),0,0,0,0,0,0,0,0,0,0];
149         Hoffdiag(14,15:end) = [0,−PU*kplus/sqrt(6),PU*kz*sqrt(2/3),PU*kminus/sqrt
(2),PU*kplus/sqrt(3),−PU*kz/sqrt(3),0,0,0,0,0,0,0,0,0,0];
150         Hoffdiag(15,16:end) = [0,0,0,0,0,−P_prime*kminus/sqrt(2),0,d_prime/3,
PX*kplus/sqrt(3),PX*kz/sqrt(3),0,PX*kplus/sqrt(6),PX*kz*sqrt(2/3),−PS*kminus/sqrt(2),0];
151         Hoffdiag(16,17:end) = [0,0,0,0,P_prime*kz*sqrt(2/3),−P_prime*kminus/sqrt(6),
−PX*kminus/sqrt(3),d_prime/3,0,PX*kz/sqrt(3),0,−PX*kplus/sqrt(2),PS*kz*sqrt(2/3),−
PS*kminus/sqrt(6)];
152         Hoffdiag(17,18:end) = [0,0,0,P_prime*kplus/sqrt(6),P_prime*kz*sqrt(2/3),−
PX*kz/sqrt(3),0,d_prime/3,−PX*kplus/sqrt(3),PX*kminus/sqrt(2),0,PS*kplus/sqrt(6),
PS*kz*sqrt(2/3)];
153         Hoffdiag(18,19:end) = [0,0,0,P_prime*kplus/sqrt(2),0,−PX*kz/sqrt(3),
PX*kminus/sqrt(3),d_prime/3,PX*kz*sqrt(2/3),−PX*kminus/sqrt(6),0,PS*kplus/sqrt(2)];
154         Hoffdiag(19,20:end) = [0,P_prime*kz/sqrt(3),P_prime*kminus/sqrt(3),−
PX*kminus/sqrt(6),0,−PX*kplus/sqrt(2),−PX*kz*sqrt(2/3),−2*d_prime/3,0,PS*kz/sqrt(3),
PS*kminus/sqrt(3)];
155         Hoffdiag(20,21:end) = [P_prime*kplus/sqrt(3),−P_prime*kz/sqrt(3),−PX*kz*sqrt
(2/3),PX*kminus/sqrt(2),0,PX*kplus/sqrt(6),0,−2*d_prime/3,PS*kplus/sqrt(3),−PS*kz/sqrt
(3)];
156         Hoffdiag(21,22:end) = [0,−P*kplus/sqrt(2),P*kz*sqrt(2/3),P*kminus/sqrt(6),0,
P*kz/sqrt(3),P*kminus/sqrt(3),0,0];
157         Hoffdiag(22,23:end) = [0,−P*kplus/sqrt(6),P*kz*sqrt(2/3),P*kminus/sqrt(2),
P*kplus/sqrt(3),−P*kz/sqrt(3),0,0];
158         Hoffdiag(23,:) = zeros(1,30);
159         Hoffdiag(24,:) = zeros(1,30);
160         Hoffidag(25,:) = zeros(1,30);
161         Hoffdiag(26,:) = zeros(1,30);
162         Hoffdiag(27,:) = zeros(1,30);
163         Hoffdiag(28,:) = zeros(1,30);
164         Hoffdiag(29,:) = zeros(1,30);
165         Hoffdiag(30,:) = zeros(1,30);
166             
167         Hoffdiag = transpose(conj(Hoffdiag))+Hoffdiag;
168         H = Hdiag + Hoffdiag + HEkdiag;
169         eval([’E’,curr,’(:,i) = eig(H);’]);
170         H = H*0;
171     end
172 end
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B.5 Efield.m

  1 % Name: Efield.m
  2 
  3 % PURPOSE: This program evaluates the forward and backward fields in a 
  4 % layered structure given an normally incident TE wave on a layered 
  5 % structure where each layer may have a different refractive index and 
  6 % thickness. It then uses the calculated forward and backward fields in the 
  7 % scattering layer and the form of the bound solution of photoelastic 
  8 % scattering to compute the scattered field propagating backward from the 
  9 % first surface and forward from the last surface. It also computes the
 10 % fields in each layer
 11 
 12 % References:
 13 % 1) Pettersson et. al., J. Appl. Phys., 86 (1), 487 (1999)
 14 % 2) Bethune, J. Opt. Soc. Am. B, 6 (5), 910 (1989)
 15 % 3) Hashizume, J. Opt. Soc. Am. B, 12 (10), 1894 (1995)
 16 
 17 sample_thickness = ’1150’;
 18 exp_number = ’130509 and 130510’;
 19 data_name = ’100df2’;
 20 sim_type = ’heterostructure’;
 21 
 22 EPS_save_path = [’/Users/ppadmana/Documents/Acoustic Plasmon Data and 
Simulations/Raman Data/’,sample_thickness,’−A Experiments/’,exp_number,’/Best Fits/AP 
Fits/EPS Figures/’,data_name];
 23 FIG_save_path = [’/Users/ppadmana/Documents/Acoustic Plasmon Data and 
Simulations/Raman Data/’,sample_thickness,’−A Experiments/’,exp_number,’/Best Fits/AP 
Fits/FIG Figures/’,data_name];
 24 model_report_save_path = [’/Users/ppadmana/Documents/Acoustic Plasmon Data and 
Simulations/Raman Data/’,sample_thickness,’−A Experiments/’,exp_number,’/Best Fits/AP 
Fits/’,data_name,’ (’,sim_type,’) − model report.txt’];
 25 
 26 save_switch = 1;
 27 
 28 hbar = 1.05e−34;
 29 kb = 1.38e−23;
 30 slabs = 1150e−10;
 31 temperature = 120;
 32 
 33 clearvars −except ii slabs peakvals modes hbar kb bars EPS_save_path 
sample_thickness exp_number data_name save_switch model_report_save_path sim_type 
temperature FIG_save_path test;
 34 warning(’off’,’MATLAB:plot:IgnoreImaginaryXYPart’)
 35 
 36 
 37 % MAIN DECLARATIONS
 38 % *************************************************************************
 39 % Define incoming wavelength (m), number of layers, and the index of the
 40 % layer where the scattered field originates
 41 l0 = 647e−9;
 42 numlayers = 5;
 43 NLlayer_index = 3;
 44 
 45 % Use the following code to simulate my problem
 46 a_string = ’a = (−1)^m;’;  % This is used for my experiment
 47 b_string = ’b = (−1)^m;’;  % This is used for my experiment
 48 %a_string = ’a = (−1)^m/2;’;
 49 %b_string = ’b = (−1)^m/2;’;
 50 
 51 % Use the following code to compare to Loudon
 52 %a_string = ’a = 1;’;
 53 %b_string = ’b = 0;’;
 54 
 55 % Use the following code to compare to Groenen
 56 %a_string = ’a = 1/(2*1i)*sqrt(hbar/(2*2330*wm))*(−1)^(m−1)*qm;’;
 57 %b_string = ’b = −1/(2*1i)*sqrt(hbar/(2*2330*wm))*(−1)^(m−1)*qm;’;
 58 
 59 % Define wavevector,frequency, and max mode order of the plasmon and 
 60 % scattered wavelength
 61 qm_string = ’qm = m*pi/d(NLlayer_index);’;
 62 %wm_string = ’wm = m*2*pi*3e10*4.6;’;   % This is used to compare to Groenen
 63 wm_string = ’wm = qm*4.126e−07*3e10*2*pi;’;   % This is used for my experiment
 64 ws_string = ’ws = wi−wm;’;
 65 mnumber = 10;
 66 
 67 % Constants and frequency to incident field
 68 c = 3e8;
 69 eps0 = 8.85e−12;
 70 wi = 2*pi*c/l0;
 71 
 72 % Define complex refractive indices and wave vectors    
 73 n_GaAs = 3.76 + 1i*0.18;
 74 n_AlAs = 3.11;

142



 75 n_AlGaAs = 3.24;
 76 n_Si = 5.222 + 1i*0.269;
 77 k_GaAs = 2*pi*n_GaAs/l0;
 78 k_AlAs = 2*pi*n_AlAs/l0;
 79 k_AlGaAs = 2*pi*n_AlGaAs/l0;
 80 k_Si = 2*pi*n_Si/l0;
 81 
 82 % Define layer thicknesses and layer refractive indices and computer
 83 % associated wave vectors and absorption coefficients
 84 %n0 = n_SiO2;
 85 n01 = 1;
 86 n02 = n_GaAs;
 87 k01 = 2*pi*n01/l0;
 88 k02 = 2*pi*n02/l0;
 89 d = [80e−10 100e−10 slabs(1) 500e−10 2000e−10];
 90 n = [n_GaAs n_AlAs n_GaAs n_AlAs n_AlGaAs];
 91 %n = n_GaAs;
 92 p0 = [0 0 1 0 0];
 93 %p0 = 1;
 94 k = 2*pi*n/l0;
 95 alpha = 4*pi*imag(n)/l0;
 96 
 97 
 98 % COMPUTE PROFILE OF INPUT FIELD
 99 % *************************************************************************
100 % Compute transfer and propgation matrices for the input field, which for
101 % the base of Brilluoin scattering, will be the same matrices for the
102 % scattered field (frequencies are nearly identical)
103 
104 Iholder = cell(1,numlayers+1);
105 rholder = cell(1,numlayers+1);
106 tholder = cell(1,numlayers+1);
107 I = zeros(2,2,numlayers+1);
108 L = zeros(2,2,numlayers);
109 Sp = zeros(2,2,numlayers);
110 Spp = zeros(2,2,numlayers);
111 
112 % Compute layer reflection/transmission (r,t) coefficients and matrices (I)         
113 for i = 1:numlayers+1
114     if i == 1
115         eval([’r01=’,’(n01 − n(1))/(n01+n(1));’]);
116         eval([’t01=’,’2*n01/(n01+n(1));’]);
117     elseif i == numlayers+1
118         eval([’r’,num2str(i−1),num2str(i),’=’,’(n(’,num2str(i−1),’)−n02)/(n(’,
num2str(i−1),’)+n02);’])
119         eval([’t’,num2str(i−1),num2str(i),’=’,’2*n(’,num2str(i−1),’)/(n(’,num2str(i−
1),’)+n02);’])
120     else
121         eval([’r’,num2str(i−1),num2str(i),’=’,’(n(’,num2str(i−1),’)−n(’,num2str
(i),’))/(n(’,num2str(i−1),’)+n(’,num2str(i),’));’])
122         eval([’t’,num2str(i−1),num2str(i),’=’,’2*n(’,num2str(i−1),’)/(n(’,num2str(i−
1),’)+n(’,num2str(i),’));’])
123     end
124 
125     eval([’I’,num2str(i−1),num2str(i),’=[1 r’,num2str(i−1),num2str(i),’;r’,num2str
(i−1),num2str(i),’ 1]/t’,num2str(i−1),num2str(i),’;’])
126     eval([’I(:,:,’,num2str(i),’)=I’,num2str(i−1),num2str(i),’;’])
127     
128     rholder(i) = {[’r’,num2str(i−1),num2str(i)]};
129     tholder(i) = {[’t’,num2str(i−1),num2str(i)]};
130     Iholder(i) = {[’I’,num2str(i−1),num2str(i)]};
131 end
132 
133 % Compute propagation matrices (L)
134 Lholder = cell(1,numlayers);
135 for i = 1:numlayers
136     eval([’L’,num2str(i),’=[exp(−1i*k(’,num2str(i),’)*d(’,num2str(i),’)) 0;0 exp
(1i*k(’,num2str(i),’)*d(’,num2str(i),’))];’]);
137     Lholder(i) = {[’L’,num2str(i)]};
138     eval([’L(:,:,’,num2str(i),’)=L’,num2str(i),’;’])
139 end
140 
141 % Compute scattering matrices (total (S) and intermediate (Sip and Sipp))
142 S_string = ’S=(1’;
143 for i = 1:numlayers
144     S_string = strcat(S_string,’*’,Iholder(i),’*’,Lholder(i));
145 end
146 S_string = strcat(S_string,’)*’,Iholder(end),’;’);
147 eval(cell2mat(S_string))
148 T = inv(S);
149 r = −T(2,1)/T(2,2);
150 t = 1/S(1,1);
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151 
152 S1p = I01;
153 Sp(:,:,1) = I01;
154 for i = 2:numlayers
155     Sp_string = ’(1’;
156     for j = 1:i−1
157         Sp_string = strcat(Sp_string,’*’,Iholder(j),’*’,Lholder(j));
158     end
159     Sp_string = strcat(Sp_string,’)*’,Iholder(i));
160     evalexp = cell2mat(strcat(’S’,num2str(i),’p=’,Sp_string,’;’));
161     eval(evalexp)
162     eval([’Sp(:,:,’,num2str(i),’)=S’,num2str(i),’p;’])
163 end
164 
165 for i = 1:numlayers−1
166     Spp_string = ’(1’;
167     for j = i+1:numlayers
168         Spp_string = strcat(Spp_string,’*’,Iholder(j),’*’,Lholder(j));
169     end
170     Spp_string = strcat(Spp_string,’)*’,Iholder(end));
171     evalexp = cell2mat(strcat(’S’,num2str(i),’pp=’,Spp_string,’;’));
172     eval(evalexp)
173     eval([’Spp(:,:,’,num2str(i),’)=S’,num2str(i),’pp;’])
174 end
175 eval([’S’,num2str(numlayers),’pp = I’,num2str(numlayers),num2str(numlayers+1),’;’])
176 eval([’Spp(:,:,’,num2str(numlayers),’)=S’,num2str(numlayers),’pp;’])
177 
178 % Evaluate fields and plot
179 E0_plus = 1;
180 z0 = −5000e−10:(5000e−10)/100:0;
181 Z0 = z0;
182 E0_minus = E0_plus*r*exp(−1i*k01*z0);
183 zend=0:(6000e−10)/100:6000e−10;
184 eval([’E’,num2str(numlayers+1),’=E0_plus/S(1,1)*exp(1i*k02*zend);’])
185 
186 z = 0;
187 for i = 1:numlayers
188     eval([’z = z + z’,num2str(i−1),’(end);’])
189     eval([’z’,num2str(i),’=0:d(’,num2str(i),’)/100:d(’,num2str(i),’);’])
190     eval([’Z’,num2str(i),’=z(end) + z’,num2str(i),’;’])
191     eval([’zcurrent=z’,num2str(i),’;’])
192     A = E0_plus*(Spp(1,1,i)*exp(−1i*k(i)*(d(i))))./(Sp(1,1,i)*Spp(1,1,i)*exp(−1i*k
(i)*d(i))+Sp(1,2,i)*Spp(2,1,i)*exp(1i*k(i)*d(i)));
193     Ef = A*exp(1i*k(i)*zcurrent);
194     B = E0_plus*(Spp(2,1,i)*exp(1i*k(i)*(d(i))))./(Sp(1,1,i)*Spp(1,1,i)*exp(−1i*k(i)
*d(i))+Sp(1,2,i)*Spp(2,1,i)*exp(1i*k(i)*d(i)));
195     Eb = B*exp(−1i*k(i)*zcurrent);
196     eval([’E’,num2str(i),’=Ef+Eb;’])
197     eval([’Ef’,num2str(i),’=Ef;’])
198     eval([’Eb’,num2str(i),’=Eb;’])
199     eval([’A’,num2str(i),’=A;’])
200     eval([’B’,num2str(i),’=B;’])
201 end
202 eval([’Zend=Z’,num2str(numlayers),’(end)+zend;’])
203 clear E;
204 
205 hold on;
206 f1=figure(1);
207 lineheight = 1;
208 for i=1:numlayers
209     eval([’plot(Z’,num2str(i),’,Ef’,num2str(i),’,’,char(39),’−−b’,char
(39),’,’’LineWidth’’,2);’])
210     eval([’plot(Z’,num2str(i),’,Eb’,num2str(i),’,’,char(39),’−.g’,char
(39),’,’’LineWidth’’,2);’])
211     eval([’plot(Z’,num2str(i),’,abs(E’,num2str(i),’),’,char(39),’−r’,char
(39),’,’’LineWidth’’,2);’])
212     legend(’|E|^2’,’|E^+|^2’,’|E^−|^2’)
213     eval([’line([Z’,num2str(i),’(1),Z’,num2str(i),’(1)]’,’,[−lineheight,
2*lineheight],’,char(39),’LineStyle’,char(39),’,’,char(39),’:’,char(39),’,’,char
(39),’Color’,char(39),’,’,char(39),’k’,char(39),’)’])
214 end
215 line([Zend(1),Zend(1)],[−lineheight,2*lineheight],’LineStyle’,’:’,’Color’,’k’)
216 box on;
217 xlabel(’z (m)’)
218 ylabel(’\itNormalized |E|^2’)
219 title(’\itInput field intensity \rm(arb. units)’)
220 plot(z0,abs(E0_plus*exp(1i*k01*z0)+E0_plus*r*exp(−1i*k01*z0)),’−r’,’LineWidth’,2)
221 eval([’plot(Zend,abs(E0_plus*t*exp(1i*k02*zend)),’,char(39),’−r’,char
(39),’,’’LineWidth’’,2)’])
222 hold off;
223 
224 
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225 % COMPUTE SCATTERED FIELD PROFILE − BETHUNE METHOD
226 % *************************************************************************
227 % Compute bound scattered wave amplitudes from photoelastic polarization of 
228 % layer j assuming PNL = p0*uj*Ej where 
229 % uj = a*exp(i*qm*zj) + b*exp(−i*qm*zj) and Ej = Ej_plus + Ej_minus
230 
231 Ejout0 = zeros(2,2,mnumber);
232 Ejout = zeros(2,2,numlayers,mnumber);
233 F = zeros(2,2,numlayers,mnumber);       % Holds source amplitudes for each layer
234 Fp = zeros(2,2,numlayers,mnumber);      % Prime of F
235 FscatterVmT = zeros(1,mnumber);
236 BscatterVmT = zeros(1,mnumber);
237 FscatterVm = zeros(2,mnumber);
238 BscatterVm = zeros(2,mnumber);
239 
240 % Constants to particular solution
241 for m = 1:mnumber;
242     eval(qm_string);
243     eval(wm_string);
244     eval(ws_string);
245     eval(a_string);
246     eval(b_string);
247     eval([’A=A’,num2str(NLlayer_index),’;’])
248     eval([’B=B’,num2str(NLlayer_index),’;’])
249 
250     % Free wave index and wave vector
251     kj = 2*pi*n(NLlayer_index)/l0;        % Wave vector of driving wave
252     nj = n(NLlayer_index);                % Index of photoelastic layer
253     ksj = ws*n(NLlayer_index)/c;          % Wave vector of Stokes free wave
254     ks = ws*n/c;
255 
256     % Bound wave index and wave vector
257     K1 = kj + qm;                         % Wave vector of Stokes bound wave
258     ns1 = c*K1/ws;                        % Psuedo−index associated with bound wave
259     K2 = kj − qm;
260     ns2 = c*K2/ws;
261 
262     % Bound wave amplitudes
263     Ap = (−p0(NLlayer_index)*ws^2/(eps0*c^2))*a*A/(ksj^2−(K1)^2);
264     Bp = (−p0(NLlayer_index)*ws^2/(eps0*c^2))*b*B/(ksj^2−(K1)^2);
265     Cp = (−p0(NLlayer_index)*ws^2/(eps0*c^2))*b*A/(ksj^2−(K2)^2);
266     Dp = (−p0(NLlayer_index)*ws^2/(eps0*c^2))*a*B/(ksj^2−(K2)^2);
267 
268     % Matrix of source (bound) wave amplitdues in each layer
269     Es10 = [0;0];
270     Es20 = [0;0];
271     Es1 = zeros(2,numlayers+1);
272     Es2 = zeros(2,numlayers+1);
273     Es1(:,NLlayer_index) = [Ap;Bp];
274     Es2(:,NLlayer_index) = [Cp;Dp];
275 
276     % Psuedo reflection and transmission amplitudes and interface matrix for NL 
layer 
277     rs1 = (nj−ns1)/(nj+ns1);
278     ts1 = 2*nj/(nj+ns1);
279     Is10 = zeros(2,2);
280     Is1 = zeros(2,2,numlayers+1);
281     Is1(:,:,NLlayer_index) = (1/ts1)*[1 rs1;rs1 1];
282 
283     rs2 = (nj−ns2)/(nj+ns2);
284     ts2 = 2*nj/(nj+ns2);
285     Is20 = zeros(2,2);
286     Is2 = zeros(2,2,numlayers+1);
287     Is2(:,:,NLlayer_index) = (1/ts2)*[1 rs2;rs2 1];
288 
289     % Calculate psuedo−propagation matrix for NL layer
290     Ls1 = zeros(2,2,numlayers);
291     Ls2 = zeros(2,2,numlayers);
292 
293     for i = 1:numlayers
294         Ls1(:,:,i) = [exp(−1i*K1*d(i)) 0;0 exp(1i*K1*d(i))];
295         Ls2(:,:,i) = [exp(−1i*K2*d(i)) 0;0 exp(1i*K2*d(i))];
296     end
297 
298     % Main loop to compute left−edge free stokes−wave amplitudes
299     E = zeros(2,1,numlayers+1);     % Holds forward and backward pump field 
amplitude at left edge of each layer interface
300     E0 = [1;r]*E0_plus;             % Forward and backward pumop field amplitude and 
first interface (ambient/sample)
301     G00 = [1 0;0 1];
302     G0 = zeros(2,2,numlayers+1);
303     F0(:,1) = Is10*Es10;
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304     F0(:,2) = Is20*Es20;
305     Fp0(:,1) = G00*F0(:,1);
306     Fp0(:,2) = G00*F0(:,2);
307 
308     for j = 1:2
309         eval([’Is=Is’,num2str(j),’;’])
310         eval([’Es=Es’,num2str(j),’;’])
311         eval([’Ls=Ls’,num2str(j),’;’])
312         for i = 1:numlayers+1
313             % Calculate the field on the left−hand side of each interface
314             if i == 1
315                 E(:,1,i) = I(:,:,i)\[1 0;0 1]*E0;
316             else
317                 E(:,1,i) = inv(I(:,:,i))*inv(L(:,:,i−1))*E(:,1,i−1);
318             end
319     
320             % Calculate source amplitude matrix (F)
321             if i == numlayers + 1
322                 F(:,j,i,m) = −Is(:,:,i)*Es(:,i);
323             else
324                 F(:,j,i,m) = (L(:,:,i)*Is(:,:,i)*inv(Ls(:,:,i))−Is(:,:,i))*Es(:,i);
325             end
326     
327             % Calculate Gj1 matrices (G0)
328             if i == 1
329                 G0(:,:,i) = I(:,:,i);
330             else
331                 G0(:,:,i) = G0(:,:,i−1)*L(:,:,i−1)*I(:,:,i);
332             end
333     
334             % Calculate F−prime (Fp)1
335             Fp(:,j,i,m) = G0(:,:,i)*F(:,j,i,m);       
336         end
337     
338         Ejout0(:,j,m) = (1/G0(1,1,end))*[1 0;G0(2,1,end) −G0(1,1,end)]*Fp0(:,j);
339         for i = 1:numlayers+1
340             Ejout(:,j,i,m) = (1/G0(1,1,end))*[1 0;G0(2,1,end) −G0(1,1,end)]*Fp(:,j,
i,m);
341         end
342     end
343 
344     BscatterVm(1,m) = Ejout(2,1,NLlayer_index,m);
345     FscatterVm(1,m) = Ejout(1,1,NLlayer_index,m);
346     BscatterVm(2,m) = Ejout(2,2,NLlayer_index,m);
347     FscatterVm(2,m) = Ejout(1,2,NLlayer_index,m);
348 
349     BscatterVmT(m) = Ejout(2,1,NLlayer_index,m)+Ejout(2,2,NLlayer_index,m);
350     FscatterVmT(m) = Ejout(1,1,NLlayer_index,m)+Ejout(1,2,NLlayer_index,m);
351 end
352 
353 
354 % h2 = figure(2)
355 % plot(1:mnumber,abs(BscatterVmT).^2,1:mnumber,20*abs(FscatterVmT).^2)
356 % xlabel(’Mode Order (m)’)
357 % ylabel(’arb. units’)
358 % title(’Forward and backward scattered field’)
359 % legend(’Forward’,’Bacward’)
360 
361 
362 
363 
364 
365 
366 % COMPUTE SCATTERED FIELD PROFILE − HASHIZUME METHOD
367 % *************************************************************************
368 % Use the Hashizume method to calculate scattered field profiles within the
369 % multilayer structure
370 
371 part = [’a’,’b’];
372 source = zeros(2,1,numlayers,mnumber);
373 
374 for i = 1:numlayers
375     eval([’Zcurrent=Z’,num2str(i),’;’])
376     eval([’ES’,num2str(i),’ = zeros(2,length(Zcurrent),’,num2str(mnumber),’);’])
377 end
378 
379 for m = 1:mnumber
380     eval(qm_string);
381     eval(wm_string);
382     eval(ws_string);
383     eval(a_string);
384     eval(b_string);
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385     %qm = m*pi/d(NLlayer_index);
386     %wm = m*0.02e12;
387     %ws = wi−wm;
388     %a = −1/(2*1i);%1/(2*1);
389     %b = 1/(2*1i);%1/(2*1);
390     k01s = ws*n01/c;
391     k02s = ws*n02/c;
392     
393     % Free wave index and wave vector
394     kj = 2*pi*n(NLlayer_index)/l0;        % Wave vector of driving wave
395     nj = n(NLlayer_index);                % Index of photoelastic layer
396     ksj = ws*n(NLlayer_index)/c;          % Wave vector of Stokes free wave
397     ks = ws*n/c;
398 
399     % Bound wave index and wave vector
400     K1 = kj + qm;                         % Wave vector of Stokes bound wave
401     ns1 = c*K1/ws;                        % Psuedo−index associated with bound wave
402     K2 = kj − qm;
403     ns2 = c*K2/ws;
404     
405     % Define nonlinear polarization function
406     for i = 1:numlayers
407         eval([’PNL’,num2str(i),’a_p = @(zp) (p0(’,num2str(i),’)*a*A*exp(1i*(kj+qm)
*zp) + p0(’,num2str(i),’)*b*B*exp(−1i*(kj+qm)*zp)).*exp(−1i*ks(’,num2str(i),’)*zp);’])
408         eval([’PNL’,num2str(i),’a_m = @(zp) (p0(’,num2str(i),’)*a*A*exp(1i*(kj+qm)
*zp) + p0(’,num2str(i),’)*b*B*exp(−1i*(kj+qm)*zp)).*exp(1i*ks(’,num2str(i),’)*zp);’])
409     
410         eval([’PNL’,num2str(i),’b_p = @(zp) (p0(’,num2str(i),’)*b*A*exp(1i*(kj−qm)
*zp) + p0(’,num2str(i),’)*a*B*exp(−1i*(kj−qm)*zp)).*exp(−1i*ks(’,num2str(i),’)*zp);’])
411         eval([’PNL’,num2str(i),’b_m = @(zp) (p0(’,num2str(i),’)*b*A*exp(1i*(kj−qm)
*zp) + p0(’,num2str(i),’)*a*B*exp(−1i*(kj−qm)*zp)).*exp(1i*ks(’,num2str(i),’)*zp);’])
412     end
413 
414     % Compute E_r (E_self = E_r + E_b)
415     for j = 1:numlayers
416         eval([’zcurrent=z’,num2str(j),’;’])
417         Era_p = zeros(length(zcurrent),1);
418         Era_m = zeros(length(zcurrent),1);
419         for i = 1:length(zcurrent)
420             eval([’Era_p(i) = (1i*ws^2/(2*eps0*c^2*ks(’,num2str(j),’)))*integral
(PNL’,num2str(j),’a_p,zcurrent(1),zcurrent(i))*exp(1i*k(’,num2str(j),’)*zcurrent(i));’])
421             eval([’Era_m(i) = (1i*ws^2/(2*eps0*c^2*ks(’,num2str(j),’)))*integral
(PNL’,num2str(j),’a_m,zcurrent(i),zcurrent(end))*exp(−1i*k(’,num2str(j),’)*zcurrent
(i));’])
422             eval([’Erb_p(i) = (1i*ws^2/(2*eps0*c^2*ks(’,num2str(j),’)))*integral
(PNL’,num2str(j),’b_p,zcurrent(1),zcurrent(i))*exp(1i*k(’,num2str(j),’)*zcurrent(i));’])
423             eval([’Erb_m(i) = (1i*ws^2/(2*eps0*c^2*ks(’,num2str(j),’)))*integral
(PNL’,num2str(j),’b_m,zcurrent(i),zcurrent(end))*exp(−1i*k(’,num2str(j),’)*zcurrent
(i));’])
424         end
425         eval([’E’,num2str(j),’ra_p(’,num2str(m),’,:)=Era_p;’])
426         eval([’E’,num2str(j),’ra_m(’,num2str(m),’,:)=Era_m;’])
427         eval([’E’,num2str(j),’rb_p(’,num2str(m),’,:)=Erb_p;’])
428         eval([’E’,num2str(j),’rb_m(’,num2str(m),’,:)=Erb_m;’])
429     end
430 
431     % Compute source vector
432     for i = 1:numlayers
433         eval([’source_temp1 = [E’,num2str(i),’ra_p(’,num2str(m),’,end);E’,num2str
(i),’ra_m(’,num2str(m),’,end)] − inv(L’,num2str(i),’)*[E’,num2str(i),’ra_p(’,num2str
(m),’,1);E’,num2str(i),’ra_m(’,num2str(m),’,1)];’])
434         eval([’source_temp2 = [E’,num2str(i),’rb_p(’,num2str(m),’,end);E’,num2str
(i),’rb_m(’,num2str(m),’,end)] − inv(L’,num2str(i),’)*[E’,num2str(i),’rb_p(’,num2str
(m),’,1);E’,num2str(i),’rb_m(’,num2str(m),’,1)];’])
435     
436         % source(fourward_or_backward,PNL_sourceterm,layer_index,m_value)
437         eval([’source(:,1,’,num2str(i),’,’,num2str(m),’)=source_temp1;’])
438         eval([’source(:,2,’,num2str(i),’,’,num2str(m),’)=source_temp2;’])
439     end
440     
441     % Compute scattered waves for each layer
442     clear ES
443     EScurrent = zeros(2,length(Zcurrent));
444     for j=1:2
445         ES0 = [0; BscatterVm(j,m)];
446         eval([’ES’,num2str(numlayers+1),’=[FscatterVm(j,m);0];’])
447         for i=1:numlayers
448             eval([’Zcurrent=Z’,num2str(i),’;’])
449             eval([’Tcurrent=inv(S’,num2str(i),’p);’])
450     
451             % Compute SiL
452             term1 = 0;
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453             eval([’Eir = [E’,num2str(i),’r’,part(j),’_p(’,num2str(m),’,1);E’,num2str
(i),’r’,part(j),’_m(’,num2str(m),’,1)];’])
454             term2 = −Eir;
455             if i<=3
456                 term3 = [0;0];
457             else
458                 term3 = [0;0];
459                 for h=1:i−1
460                     term3 = term3 + Sp(:,:,i)\Sp(:,:,h)*L(:,:,h)*source(:,j,h,m);
461                 end
462             end
463             SiLcurrent = term1 + term2 + term3; 
464     
465             for zj = 1:length(Zcurrent)
466                 Lcurrent = [exp(−1i*k(i)*(Zcurrent(zj)−Zcurrent(1))) 0;0 exp(1i*k(i)
*(Zcurrent(zj)−Zcurrent(1)))];
467                 Tcurrent = Sp(:,:,i)\eye(size(Sp(:,:,i)));
468                 EScurrent(:,zj) = Lcurrent\(Tcurrent*ES0+SiLcurrent);
469             end   
470 
471             eval([’ES’,num2str(i),’(:,:,’,num2str(j),’,’,num2str(m),’)=EScurrent;’])
472         end
473     end
474 end
475 
476 % Plot additional and self fields and intensities for a specific mode order
477 % h3=figure(3);
478 % mplot = 2;
479 % sourceplot = 2;
480 % hold on;
481 % lineheight = 1;
482 % for i=1:numlayers
483 %     % Plot forward "add" wave
484 %     eval([’plot(Z’,num2str(i),’,ES’,num2str(i),’(1,:,’,num2str(sourceplot),’,’,
num2str(mplot),’),’,char(39),’−b’,char(39),’,’,char(39),’LineWidth’,char(39),’,2);’])
485 % 
486 %     % Plot backward "add" wave
487 %     eval([’plot(Z’,num2str(i),’,ES’,num2str(i),’(2,:,’,num2str(sourceplot),’,’,
num2str(mplot),’),’,char(39),’−g’,char(39),’,’,char(39),’LineWidth’,char(39),’,2);’])
488 %     
489 %     % Plot forward "r" component of "self" wave
490 %     eval([’plot(Z’,num2str(i),’,E’,num2str(i),’r’,part(sourceplot),’_p(’,num2str
(mplot),’,:),’,char(39),’−−b’,char(39),’);’])
491 %     
492 %     % Plot backward "r" component of "self" wave
493 %     eval([’plot(Z’,num2str(i),’,E’,num2str(i),’r’,part(sourceplot),’_m(’,num2str
(mplot),’,:),’,char(39),’−−g’,char(39),’);’])
494 %     
495 %     % Plot forward "b" component of "self" wave
496 %     %eval([’plot(Z’,num2str(i),’,E’,num2str(i),’b’,part(sourceplot),’_p(’,num2str
(mplot),’,:),’,char(39),’.−b’,char(39),’);’])
497 %     
498 %     % Plot backward "b" component of "self" wave
499 %     %eval([’plot(Z’,num2str(i),’,E’,num2str(i),’b’,part(sourceplot),’_m(’,num2str
(mplot),’,:),’,char(39),’.−g’,char(39),’);’])
500 %     
501 %     legend(’E_S^a^d^d^,^+’,’E_S^a^d^d^,^−’,’E_S^r^,^+’,’E_S^r^,^−’,’E_S^b^,
^+’,’E_S^b^,^−’)
502 %     
503 %     %eval([’line([Z’,num2str(i),’(1),Z’,num2str(i),’(1)]’,’,[−1,1],’,char
(39),’LineStyle’,char(39),’,’,char(39),’:’,char(39),’,’,char(39),’Color’,char(39),’,’,
char(39),’k’,char(39),’)’])
504 % end
505 % box on;
506 % title([’Additional and Self (r−comp.) Electric Fields for m=’,num2str(mplot)])
507 % xlabel(’z (m)’)
508 % ylabel(’E’)
509 % hold off;
510 
511 
512 % Plot total squared scattered field for specific mode order
513 % h4 = figure(4);
514 % eval([’ymax=’,’max(abs(ES’,num2str(NLlayer_index),’(1,:,’,num2str(sourceplot),’,’,
num2str(mplot),’)+ES’,num2str(NLlayer_index),’(2,:,’,num2str(sourceplot),’,’,num2str
(mplot),’)+E’,num2str(NLlayer_index),’r’,part(sourceplot),’_p(’,num2str(mplot),’,:)+E’,
num2str(NLlayer_index),’r’,part(sourceplot),’_m(’,num2str(mplot),’,:)).^2);’])
515 % hold on;
516 % for i=1:numlayers
517 %     % Plot total |E|^2 (adds "self" and "add" waves)
518 %     eval([’plot(Z’,num2str(i),’,abs(ES’,num2str(i),’(1,:,’,num2str
(sourceplot),’,’,num2str(mplot),’)+ES’,num2str(i),’(2,:,’,num2str(sourceplot),’,’,
num2str(mplot),’)+E’,num2str(i),’r’,part(sourceplot),’_p(’,num2str(mplot),’,:)+E’,
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num2str(i),’r’,part(sourceplot),’_m(’,num2str(mplot),’,:)).^2,’,char(39),’−r’,char
(39),’,’,char(39),’LineWidth’,char(39),’,2);’])
519 %     
520 %     legend(’|E_S^T|^2’)
521 %     
522 %     eval([’line([Z’,num2str(i),’(1),Z’,num2str(i),’(1)]’,’,[0,ymax],’,char
(39),’LineStyle’,char(39),’,’,char(39),’:’,char(39),’,’,char(39),’Color’,char(39),’,’,
char(39),’k’,char(39),’)’])
523 % end
524 % line([Zend(1),Zend(1)],[0,ymax],’LineStyle’,’:’,’Color’,’k’)
525 % plot(Z0,abs(BscatterVm(sourceplot,mplot)*exp(−1i*k01s*Z0)).^2,’−r’,’LineWidth’,2);
526 % plot(Zend,abs(FscatterVm(sourceplot,mplot)*exp(1i*k02s*zend)).^2,’−r’,’LineWidth’,
2);
527 % box on;
528 % title([’Total Squared Field for m=’,num2str(mplot)])
529 % xlabel(’z (m)’)
530 % ylabel(’Normalized |E|^2’)
531 % eval(’axis([Z0(1) Zend(end) 0 ymax])’)
532 % hold off
533  
534  
535 f5 = figure(5);
536 hold on
537 color = [’b’ ’g’ ’r’ ’c’ ’m’ ’y’ ’k’ ’b’ ’g’ ’r’ ’c’ ’m’ ’y’ ’k’ ’b’ ’g’ ’r’ ’c’ ’m’ 
’y’ ’k’];
538 color = repmat(color,1,50);
539 clear ES0;
540 ES = zeros(2,101,numlayers+1,mnumber);
541 ESa = zeros(2,101,numlayers+1,mnumber);
542 ESb = zeros(2,101,numlayers+1,mnumber);
543 ES0 = zeros(2,101,mnumber);
544 ES0a = zeros(2,101,mnumber);
545 ES0b = zeros(2,101,mnumber);
546 
547 for m = 1:mnumber
548     for i=1:numlayers
549         % Plot total |E| (adds "self" and "add" waves)
550         
551         % Compute total E−field for source term 1 (A) and source term 2 (B)
552         % for layer i: ESx(forward or backward,z_value,layer_index,m_value)
553         eval([’ESa(1,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(1,:,1,’,
num2str(m),’)+E’,num2str(i),’ra_p’,’(’,num2str(m),’,:);’])
554         eval([’ESa(2,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(2,:,1,’,
num2str(m),’)+E’,num2str(i),’ra_m’,’(’,num2str(m),’,:);’])
555         eval([’ESb(1,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(1,:,2,’,
num2str(m),’)+E’,num2str(i),’rb_p’,’(’,num2str(m),’,:);’])
556         eval([’ESb(2,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(2,:,2,’,
num2str(m),’)+E’,num2str(i),’rb_m’,’(’,num2str(m),’,:);’])
557         %eval([’ESb(:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(1,:,2,’,
num2str(m),’)+ES’,num2str(i),’(2,:,2,’,num2str(m),’)+E’,num2str(i),’rb_p’,’(’,num2str
(m),’,:)+E’,num2str(i),’rb_m’,’(’,num2str(m),’,:);’])
558 
559         % Compute total E−field for forward (1) and backward (2) waves for
560         % layer i: ES(forward or backward,z_value,layer_index,m_value)
561          eval([’ES(1,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(1,:,1,’,
num2str(m),’)+ES’,num2str(i),’(1,:,2,’,num2str(m),’)+E’,num2str(i),’ra_p’,’(’,num2str
(m),’,:)+E’,num2str(i),’rb_p’,’(’,num2str(m),’,:);’])
562          eval([’ES(2,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(2,:,1,’,
num2str(m),’)+ES’,num2str(i),’(2,:,2,’,num2str(m),’)+E’,num2str(i),’ra_m’,’(’,num2str
(m),’,:)+E’,num2str(i),’rb_m’,’(’,num2str(m),’,:);’])
563          %eval([’ES(1,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(1,:,1,’,
num2str(m),’)+ES’,num2str(i),’(1,:,2,’,num2str(m),’)+E’,num2str(i),’ra_p’,’(’,num2str
(m),’,:)+E’,num2str(i),’rb_p’,’(’,num2str(m),’,:)+E’,num2str(i),’ba_p’,’(’,num2str
(m),’,:)+E’,num2str(i),’bb_p’,’(’,num2str(m),’,:);’])
564          %eval([’ES(2,:,’,num2str(i),’,’,num2str(m),’)=ES’,num2str(i),’(2,:,1,’,
num2str(m),’)+ES’,num2str(i),’(2,:,2,’,num2str(m),’)+E’,num2str(i),’ra_m’,’(’,num2str
(m),’,:)+E’,num2str(i),’rb_m’,’(’,num2str(m),’,:)+E’,num2str(i),’ba_m’,’(’,num2str
(m),’,:)+E’,num2str(i),’bb_m’,’(’,num2str(m),’,:);’])
565 
566         % Compute total E−field in layer i
567         eval([’EST(:,’,num2str(i),’,’,num2str(m),’)=ES(1,:,’,num2str(i),’,’,num2str
(m),’)+ES(2,:,’,num2str(i),’,’,num2str(m),’);’])
568         
569         %eval([’plot(Z’,num2str(i),’,abs(EST’,num2str(i),’(:,’,num2str(m),’)).^2,’,
char(39),’−’,color(m),char(39),’,’,char(39),’LineWidth’,char(39),’,2);’])
570         eval([’plot(Z’,num2str(i),’,abs(EST(:,’,num2str(i),’,’,num2str(m),’)),’,char
(39),’−’,color(m),char(39),’,’,char(39),’LineWidth’,char(39),’,2);’])
571     
572         eval([’line([Z’,num2str(i),’(1),Z’,num2str(i),’(1)]’,’,[0,1.2*max(max(max
(abs(EST(:,:,:)))))],’,char(39),’LineStyle’,char(39),’,’,char(39),’:’,char(39),’,’,char
(39),’Color’,char(39),’,’,char(39),’k’,char(39),’)’])
573     end
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574     
575     ES(1,1:length(zend),numlayers+1,m) = FscatterVmT(m)*exp(1i*k02s*zend);
576     ES(2,1:length(zend),numlayers+1,m) = 0*exp(1i*k02s*zend);
577     ESa(1,1:length(zend),numlayers+1,m) = FscatterVm(1,m)*exp(1i*k02s*zend);
578     ESa(2,1:length(zend),numlayers+1,m) = 0*exp(1i*k02s*zend);
579     ESb(1,1:length(zend),numlayers+1,m) = FscatterVm(2,m)*exp(1i*k02s*zend);
580     ESb(2,1:length(zend),numlayers+1,m) = 0*exp(1i*k02s*zend);
581     
582     ES0(1,1:length(z0),m) = 0*exp(1i*k01s*z0);
583     ES0(2,1:length(z0),m) = BscatterVmT(m)*exp(1i*k01s*z0);
584     ES0a(1,1:length(z0),m) = BscatterVm(1,m)*exp(1i*k01s*z0);
585     ES0a(2,1:length(z0),m) = 0*exp(1i*k01s*z0);
586     ES0b(1,1:length(z0),m) = BscatterVm(2,m)*exp(1i*k01s*z0);
587     ES0b(2,1:length(z0),m) = 0*exp(1i*k01s*z0);
588     
589     plot(Z0,abs(ES0(2,1:length(z0),m)+ES0(1,1:length(z0),m)),strcat(’−’,color(m)))
590     plot(Zend,abs(ES(2,1:length(zend),numlayers+1,m)+ES(1,1:length(zend),
numlayers+1,m)),strcat(’−’,color(m)))
591 end
592 line([Zend(1),Zend(1)],[0,1.2*max(max(max(abs(EST
(:,:,:)))))],’LineStyle’,’:’,’Color’,’k’)
593 box on;
594 title(’Absolute Value of Field’)
595 xlabel(’\itz \rm(m)’)
596 ylabel(’\itNormalized |E_S| \rm(arb. units)’)
597 eval(’axis([−0.25e−7 d(end)+0.25e−7 0 1.2*max(max(max(abs(EST(:,:,:)))))])’)
598 hold off
599 
600 
601 % COMPUTE WEIGHTING FACTORS FOR SCATTERING CROSS SECTIONS
602 % *************************************************************************
603 clear Eif;
604 clear Eib;
605 eval([’z=z’,num2str(NLlayer_index),’;’])
606 eval([’Eif=Ef’,num2str(NLlayer_index),’;’])
607 eval([’Eib=Eb’,num2str(NLlayer_index),’;’])
608 eval([’dz=z’,num2str(NLlayer_index),’(2)−z’,num2str(NLlayer_index),’(1);’])
609 for m = 1:mnumber
610     eval(qm_string);
611     eval(wm_string);
612     eval(ws_string);
613     eval(a_string);
614     eval(b_string);
615 
616     functi1 = (Eif+Eib).*conj(ES(1,:,NLlayer_index,m)).*(a*exp(1i*qm*z)+b*exp(−1
i*qm*z));
617     functi2 = (Eif+Eib).*conj(ES(2,:,NLlayer_index,m)).*(a*exp(1i*qm*z)+b*exp(−1
i*qm*z));
618     y1(m) = trapz(functi1);
619     y2(m) = trapz(functi2);
620     bose(m) = (1/(exp(hbar*wm/(kb*temperature))−1))+1;
621     %plot(m,y,color(m))
622 end
623 %figure(6)
624 %bar(1:mnumber,bose.*abs(dz*y1).^2,0.4,’b’)
625 %title(’Scattering Efficiency (FS)’)
626 %xlabel(’m’)
627 %figure(7)
628 %bar(1:mnumber,bose.*abs(dz*y2).^2,0.4,’g’)
629 %title(’Scattering Efficiency (BS)’)
630 %xlabel(’m’)
631 f8 = figure(8);
632 %bar(1:mnumber,bose.’.*abs(squeeze(ES0(2,31,:))).^2,0.4,’g’)
633 bar(1:mnumber,abs(squeeze(ES0(2,31,:))).^2,0.4,’g’)
634     xlabel(’\itMode order’)
635     ylabel(’\itScattering intensity \rm(arb. units)’)
636     title(’Backward Scattering’)
637     xlim([0 mnumber+0.5])
638 f9 = figure(9);
639 %bar(1:mnumber,bose.’.*abs(squeeze(ES(1,1,end,:))).^2,0.4,’b’)
640 bar(1:mnumber,abs(squeeze(ES(1,1,end,:))).^2,0.4,’b’)
641     xlabel(’\itMode order’)
642     ylabel(’\itScattering intensity \rm(arb. units)’)
643     title(’Forward Scattering’)
644     xlim([0 mnumber+0.5])
645 
646 weight_B = abs(squeeze(ES0(2,31,:))).^2;
647 weight_F = abs(squeeze(ES(1,1,end,:))).^2;
648 
649 weight_B = weight_B/sum(weight_B);
650 weight_F = weight_F/sum(weight_F);
651 
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652 end
653 beep
654 
655 if save_switch == 1
656     export_fig(f1,[EPS_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Incident Field.
eps’],’−eps’,’−transparent’,’−nocrop’)
657     export_fig(f5,[EPS_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Scattered Field 
Abs Val.eps’],’−eps’,’−transparent’,’−nocrop’)
658     export_fig(f8,[EPS_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Back Scatter.
eps’],’−eps’,’−transparent’,’−nocrop’)
659     export_fig(f9,[EPS_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Forward 
Scatter.eps’],’−eps’,’−transparent’,’−nocrop’)
660     
661     saveas(f1,[FIG_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Incident Field.
fig’],’fig’);
662     saveas(f5,[FIG_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Scattered Field Abs 
Val.fig’],’fig’);
663     saveas(f8,[FIG_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Back Scatter.
fig’],’fig’);
664     saveas(f9,[FIG_save_path,’/’,data_name,’ (’,sim_type,’) − ’,’Forward Scatter.
fig’],’fig’);
665    
666     model_report{1} = [’Sample Thickness = ’,sample_thickness,’−A’];
667     model_report{2} = [’Experiment = ’,exp_number];
668     model_report{3} = [’Data Name = ’,data_name];
669     model_report{4} = [’Simulation type = ’,sim_type];
670     model_report{5} = [’Wavelength = ’,num2str(l0)];
671     model_report{6} = a_string;
672     model_report{7} = b_string;
673     model_report{8} = qm_string;
674     model_report{9} = wm_string;
675     model_report{10} = [’Temperature = ’,num2str(temperature)];
676 
677     FID = fopen(model_report_save_path,’w+’);
678     fprintf(FID,’%s\n’,model_report{:});
679     fclose(FID);
680 end
681 
682 
683 % Use this code if you want to check single layer on substrate with Loudon
684 % results (from Alburqueque et. al 1979)
685 % *************************************************************************
686 % ks2 = ws*n02/c;
687 % ks = ws*n/c;
688 % ks0 = ws*n01/c;
689 % 
690 % P1 = 1./((ks−ks2)*(ks−ks0)*exp(2*1i*ks*d(1))−(ks+ks2)*(ks+ks0));
691 % P21 = ks0^2*A1/(eps0*((qm+k(1))^2−ks^2));
692 % P31 = (ks−ks2)*(qm+k(1)+ks)*(exp(2*1i*ks*d(1))−exp(1i*(qm+k(1)+ks)*d(1)));
693 % P41 = (ks+ks2)*(qm+k(1)−ks)*(1−exp(1i*(qm+k(1)+ks)*d(1)));
694 % P1*(P21*(P31+P41))
695 
696 
697 % n_ITO = 1.7203 + 1i*0.01206;
698 % n_SiO2 = 1.4496;
699 % n_PEDOT = 1.44317 + 1i*0.05748;
700 % n_P3 = 2.05 + 1i*0.04808154;
701 % n_Ca = 2.45 + 1i*2.5413;
702 % n_Al = 1.45625 + 1i*7.76198;
703 
704 %n = [n_ITO n_PEDOT n_P3 n_Ca n_Al n_Al];
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