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Abstract 
The rapid evolution of omics technologies for profiling the human genome, 

transcriptome and proteome is revolutionizing cancer research and driving a 

paradigm shift in clinical care. Omics have forever changed our view of cancer, 

from a uniform disease to a highly heterogeneous ecosystem of diseases driven 

by different genetic events. Standard care is, as well, evolving from “one size” fits 

all treatments towards more precise and molecularly informed therapies. The 

success of this precision medicine paradigm will depend on our ability to 

integrate diverse omics measurements to distill clinically relevant information that 

can be act upon. This thesis developed bioinformatics approaches to integrate 

multi-omics datasets and applied these approaches in three distinct studies that 

identified novel actionable genes and pathways in cancers.  

 

In the first study, we aim at finding alternative target proteins in cancer 

samples that share activating mutations in KRAS a well-known, but undruggable, 

oncogene. We profile the transcriptome, proteome and phosphoproteome in a 

panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct 

targetable networks associated with KRAS dependency. A bioinformatics 

strategy was developed addressing the challenge of integrating these disparate 

datasets and the Prize Collecting Steiner Tree algorithm was used to identify 

functional sub-networks. Three modules centered on KRAS and MET, LCK and 

PAK1 and -Catenin were identified. We validated activation of these proteins in 

KRAS-dependent cells and performed functional studies defining LCK as a 

critical gene for cell proliferation in KRAS-dependent but not KRAS-independent 

NSCLCs. These results are the first evidence that suggest LCK as a potential 

druggable target protein in KRAS-dependent lung cancers. 

 



 
 

xxii

In the second study, the landscape of fusions in lung adenocarcinoma and 

lung squamous carcinoma tissue types was described in order to identify 

potentially oncogenic gene fusions in driver negative patients. The landscape 

was found to be highly heterogeneous and gene fusions incidence was 

discovered to be an independent prognostic factor for poor outcome. By 

integrating gene mutation status, the lung cohort was divided into driver positive 

and driver negative patients (who do not have mutations in known cancer genes). 

Focusing in driver negative patients we identify NRG1 as a novel low recurrence 

3’ fusion partner present exclusively in this subset; resembling previously 

reported kinase fusions. The documented success of targeted therapies against 

low recurrence oncogenic fusions in lung cancer and the high heterogeneity of 

the fusions’ landscape, shown in this study, reinforce the demand for more 

personalized and tailored drug therapies.  

 

Finally in the third study, the landscape of antisense expression in human 

cancers was characterized in order to identify sense-antisense gene pairs 

involving tumor suppressors and oncogenes, which could be suitable for 

emerging antisense-targeted therapies. More than 60% of DNA loci were found 

to have measurable antisense transcription. Expression of sense and antisense 

transcript pairs is in general positively correlated and directed by bidirectional 

promoters in cases of overlapping divergent genes. By comparing with known 

sense-antisense pairs, our results raise the possibility that antisense transcripts 

could be regulating the expression of well-known tumor suppressors and 

oncogenes. This study provides a resource, oncoNATdb, a catalogue of cancer 

related genes with significant antisense transcription, which will allow cancer 

researchers to investigate the mechanisms of sense-antisense regulation and 

further advance our understanding of their role in cancer.  



 
 

xxiii

We anticipate that the computational methods developed and the results 

found in this thesis would assist others with similar tasks and warrant further 

studies of the therapeutic opportunities provided by these novel targets. 
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Chapter 1  
Multi-omics data integration 

 

 

1.1 Background and significance 

 

The collective characterization and quantification of pools of biological 

molecules such as genes, transcripts and proteins have emerged as the 

complete new fields of genomics, transcriptomics and proteomics. Collectively, 

these and others high-throughput fields are known as Omics.  

 

Omics technologies for high-throughput profiling of the human genome, 

transcriptome and proteome are revolutionizing cancer research and driving a 

paradigm shift on clinical care. Omics have forever changed our view of cancer, 

from a uniform disease to a highly heterogeneous ecosystem of diseases driven 

by different genetic events. Standard care is, as well, evolving from “one size” fits 

all treatments towards more precise and molecularly informed therapies. This 

precision medicine paradigm depends on our ability for integrating diverse omics 

measurements to distill clinically relevant information that can be act upon. This 

dissertation focuses on developing bioinformatics approaches to integrate multi-

omics datasets to identify novel actionable genes and pathways in cancer. In 

three independent studies we integrate multi-omics cancer data in order to 

reconstruct novel targetable pathways in KRAS dependent lung cancer, search 

for novel oncogenic fusions in lung cancer patients with no known driver genes 

and study sense/antisense gene regulation in cancer. Our results warrant further 

studies of the therapeutic opportunities provided by these novel targets.
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1.2 Molecular characterization of lung cancers  

 

Lung cancer is the leading cause of cancer mortality in the world with 

more than one million deaths a year1. Non-small cell lung cancer (NSCLC) is the 

most predominant type of this malignancy, and it can be subdivided into lung 

adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC).  

 

Recent genomic analyses have deepened our understanding of the 

genetic alterations characterizing both LUAD and LUSC, and have revealed very 

different mutation landscapes. LUAD are mutated in several well-characterized 

oncogenes and tumor suppressor genes including KRAS (~30%), EGFR (~14%), 

BRAF (~10%), TP53 (~46%), and STK11 (~17%) among others2. Importantly, 

activating mutations in KRAS are mutually exclusive with activating mutations in 

EGFR. On the other hand, LUSC is characterized by mutations in TP53 (~81%), 

CDKN2A (15%), PTEN (8%), PIK3CA (16%), DDR2, AKT1, MLL2, NOTCH1, and 

RB1 as well as several recurrent gene copy number alterations of FGFR1, SOX2 

and TP633. This molecular heterogeneity underlies the difficulties in effectively 

treating patients with this disease. 

 

Remarkably, despite this deep molecular characterization of lung cancer, 

there is still above 30% of patients with no known driver genes. This driver 

negative subpopulation has been recently subject to intense study and additional 

driver events such as oncogenic gene fusions have been discovered.  

 

Several important gene fusions occur in lung cancer including the EML4-

ALK fusion gene identified in approximately 4% of adenocarcinomas4. This fusion 

protein links the N-terminal portion of echinoderm microtubule-associated 

protein-like 4 (EML4) with the intracellular signaling portion of the anaplastic 

lymphoma kinase (ALK) tyrosine kinase receptor. The EML4-ALK translocation is 
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mutually exclusive with EGFR and KRAS5. Additional gene fusions have now 

been identified in LUAD involving ROS1 6, as well as RET 7,8 kinases as 3’ 

partner genes.  

 

1.2.1 KRAS mutations lung cancers 

 

As mentioned above, mutations in the Ras oncogenes characterize 30-

40% of all NSCLC, with KRAS, NRAS, and HRAS being somatically mutated in 

30%, 1-5%, and 1% of the cases respectively 9. Recent studies suggest that a 

subset of KRAS mutant tumors are dependent on KRAS for survival10, implying 

that targeting KRAS or other genes downstream in this signaling cascade could 

yield potential drug targets to treat NSCLC. 

 

Ras is a GTP binding protein that communicates signaling information 

through five major cancer related pathways: Akt/PI3K, Raf –MAPK, RalGDS, 

phospholipase-Ce, and Rac 11. Mutations on residues 12, 13 and 61 in the 

GTPase pocket disrupt Ras GTPase activity generating constitutively active Ras 

proteins, which in turn affect transcription of numerous genes promoting cell 

proliferation and survival. Microarray profiling has been extensively used for 

defining gene expression signatures characterizing Ras activity in cell lines and 

tissues10,12,13 but results are inconsistent across studies. Complicating this 

matter, it has been shown that NSCLC can be subdivided into KRAS-dependent 

(KRAS-Dep) and KRAS-independent (KRAS-Ind) according to their requirement 

of KRAS for survival10,14; and more importantly KRAS pathway activity predicts 

KRAS dependency and drug resistance better than mutation status12.  

 

The active KRAS signaling pathway transmits information in the form of 

post-translational modification such as phosphorylation. Although previous 

studies have used semi or quantitative phospho-proteomics experiments to 

characterize these pathways15-17, none of those studies profiled simultaneously 
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gene expression, protein abundance and protein phosphorylation status6,15-19,  as 

we have accomplished in chapter 2, missing the key opportunity of synthesizing 

all these levels of information.  

 

1.2.2 Targeted therapies 

 

Lung cancer patients whose tumors harbor EGFR activating mutations 

show responsiveness to drugs inhibitors such as Erlotinib and Gefitinib that 

target these particular alterations20.  More importantly, the presence of the ALK 

fusions is an indicator of therapeutic responsiveness to ALK inhibitors such as 

Crizotinib4. These results have accelerated the development of new drug 

inhibitors targeting additional genetic aberrations such as ROS1 and RET fusions 

and mutations in FGFR and PI3KCA among others.  

 

Remarkably, however, it is the absence of therapeutic options for treating 

the two biggest groups of lung cancers: patients with mutations in KRAS and 

driver negative patients.  

 

1.2.3 Drug therapies targeting Ras pathways 

 

The development of drug therapies aimed at disrupting Ras activity or 

blocking Ras pathways has proved challenging9. However, Ras driven tumors 

could harbor vulnerabilities in other pathways due to proteins which are not 

oncogenic themselves but are required for Ras dependency21. Therefore, 

inhibitors targeting various Ras effectors could be indirectly effective in treating 

tumors driven by Ras activity22. RNAi profiling studies aiming at identifying genes 

whose inhibition constitutes synthetic lethality with KRAS have identified 

vulnerable points in networks as diverse as the mitotic21,  the epithelial 

differentiation10 and NF-kB pathways14. Each study reported a different but not 

overlapping set of vulnerable genes. Remarkably, no strong susceptibility points 
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were detected in the Akt/PI3K and Raf –MAPK pathways neither in NSCLC cell 

lines10,14 nor in the KRAS dependent DLD-1 colorectal cell line21, indicating that 

other poorly characterized pathways may be contributing to the KRAS-induced 

oncogenic state. 

 

1.3 Omics Technologies 

 

Second generation sequencing, or next generation sequencing (NGS) as 

was initially named, allows researchers to sequence billions of DNA strands in 

parallel generating substantially more high throughput than conventional Sanger 

sequencing. Although recently developed, NGS technologies are being applied in 

a variety of fields ranging from gene mutation profiling, gene fusions detection, 

novel transcripts discovery, transcript expression, ribosome profiling and nascent 

RNA characterization to mention just a few. Through this dissertation we have 

primarily used DNA exome sequencing (ExomeSeq), RNA sequencing 

(RNASeq) and strand-specific RNA sequencing (ssRNASeq). 

 

1.3.1 DNA Sequencing 

 

In 2008 the first whole cancer genome was sequenced using NGS and 

since then several more genomes have been sequenced as part of The Cancer 

Genome Atlas project (TCGA). Although very useful for detecting large 

chromosomal rearrangements and somatic mutations of non-coding regions 

including promoters, enhancers and un-annotated regions the cost of sequencing 

the whole genome is still high enough to prevent its implementation on a routine 

basis. Exome sequencing, or targeted NGS of the coding regions of the genome 

is a more cost effective approach to reliably detect somatic mutations in the 

regions of interest due to increased sequence coverage gained by concentrating 

all the sequencing efforts to a small region of the genome. In contrast to 
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maximum sequence coverage of about 30x seen for whole genome sequencing, 

ExomeSeq can typically deliver greater than 100x over the targeted regions. 

 

1.3.2 RNA sequencing 

 

NGS of the transcriptome, or RNASeq, has been used to profile mRNA, 

total RNA and small RNAs in cancer and normal samples. RNASeq allows 

transcript quantification, transcript discovery and detection of in-frame oncogenic 

gene fusions, as well as alternative splice variants. RNASeq can also be used to 

detect somatic mutations; however, determining this without matched normal is 

challenging because normal tissues should not express the same gene repertoire 

as cancers. Moreover, gene expression level and infrequent mechanisms, such 

as RNA editing, need to be taken into account when using RNASeq for somatic 

mutation calling. Despite these challenges, several studies have properly used 

RNASeq to determine somatic mutations, cleverly restricting the analysis to well-

known mutations in cancer genes23. 

 

1.3.3 Strand specific RNA sequencing 

 

Standard RNASeq does not preserve information about which DNA strand 

was originally transcribed. In this method double stranded cDNA is randomly 

primed followed by addition of adaptors for NGS. In this process the information 

about what strand was present in the original mRNA template is lost. Strand 

information can improve the value of RNASeq experiments by providing accurate 

information about antisense transcripts, helping to clearly delimit gene 

boundaries of adjacent genes and to correctly resolve the expression levels of 

overlapping transcripts. 

 

Although many methods have been developed for generating strand 

specific RNASeq, they rely on one of three approaches: ligation of adaptors in 
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predetermined orientation to ends of the RNAs molecules, direct sequencing of 

the first-strand cDNA products, or selective marking of the second-strand cDNA 

and subsequent degradation of the first-strand cDNA. Selective labeling is 

accomplished by using dUTP during cDNA synthesis or by bisulfite conversion of 

cytosine to uracil in RNA. Levin et al., 201024 compared the performance of 

seven ssRNASeq protocols and observed differences with respect to their level 

of strand specificity, evenness of coverage, agreement with known annotations, 

library complexity and the ability to generate quantitative expression profiles. 

They identified the dUTP labeling methods and Illumina RNA adaptor-ligation 

methods as the leading protocols, with dUTP libraries providing the additional 

advantage of conducting pair-end sequencing. 

 

 

1.3.4 Proteomics 

 

Proteomics high-throughput methods, for profiling the abundance and 

post-translational modifications of proteins, is providing deep insights about the 

proteome organization of normal and cancer tissues25.  

 

In particular quantitative phospho-proteomics, label or label-free, allows 

researchers to characterize signaling pathways15-17. A general pipeline for label-

free phospho-proteome quantification is summarized in the following steps26-41: 

tryptic sample preparation, phospho-peptide enrichment, label-free quantitative 

tandem mass spectrometry, peptide identification through database search, and 

quantification. It is important to note that phospho-peptide enrichment is 

necessary because phospho-peptides correspond to a small fraction of all 

peptides obtained after tryptic digestion. Several enrichment methods have been 

proposed 36, such as immobilized metal affinity chromatography (IMAC), Titanium 

or Zirconium dioxide (TiO2, ZrO2) and phosphoamidate chemistry (PAC), which 

is the one most commonly used 36,41,42. In addition, phospho-tyrosine peptides 
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are typically under-represented with respect to phospho-Ser/Thr peptides, but 

they play an important role upstream and downstream of many signaling 

cascades. Finally, peptides and phospho-peptides are quantified by label or 

label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

 

Improvements in LC-MS/MS mass spectrometers are increasing the 

coverage of the proteome that is achieved in a single experiment to above 

10,000 proteins 43. Continuous improvements on the mass spectrometers 

resolution will close the gap between the number of transcripts identified by 

RNASeq experiments and the number of proteins identified by LC-MS/MS, 

allowing for better comparisons between the transcriptome and proteome of 

matched samples. 

 

1.4 Software used for data processing 

 

In order to organize the following sections, the data levels schema 

proposed by TCGA consortium1 was adopted. There are four data levels: Level 1 

(for Raw Data), Level 2 (for Processed Data), Level 3 (for Segmented or 

Interpreted Data) and Level 4 (for Summary or Region of Interest Data).  Table 

1.1-1 below describes the data levels with examples. The aims of this 

dissertation focus primarily on integration of level 3 and 4 datasets; however, a 

significant amount of work was devoted to generate bioinformatics pipelines for 

processing raw data from level 1 to level 3 for hundreds of samples.  A great deal 

of expertise on the computational tools for cancer genomics was gained through 

this process.  A list of computational tools for processing next generation 

sequencing data and proteomics is given in Table 1.1-2. 

 

 

 

                                            
1 https://wiki.nci.nih.gov/display/TCGA/Data+Classification 
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Table 1.1-1. Data levels as adopted from the Cancer Genome Atlas project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data level Level type Description Example 

1 Raw 
Low-level data for single sample 

Not normalized 

Raw sequences 
Raw 

spectra 

2 Processed 

Normalized single sample data 
Interpreted for presence 

or absence of specific molecular 

abnormalities 

Germline and 
Somatic 

mutations 

3 
Segmented/I

nterpreted 
Aggregate of processed data 

from single sample 

Gene expression 
data for all genes 

across sample 
and cohort 

4 Summary 
Quantified association across 

classes of samples 

Integrative 
analysis and 
association 

between 
molecular 

variables and 
clinical 

parameters 
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Table 1.1-2. Computational tools for cancer genomics and proteomics.   

 

Category Method Comments Refs 

Alignment 
 

BWA Genome and exome alignment 44 

Bowtie/Bowtie2 Transcriptome alignment 45, 46 

ELAND Transcriptome and genome alignment  

TopHat2 Transcriptome alignment  47 

Mutation 
Calling 

VarScan2 Germline and somatic mutation calling 48 

GATK Germline and somatic mutation calling 49 

Samtools SNV mutation calling 50 

Gene 
Expression 

Cufflinks Gene expression quantification, FPKM 51 

Samtools Gene expression quantification, read counts 50 

HTSeq-count Gene expression quantification, read counts  

Differential 
Expression 

Analysis 

DESeq Negative binomial and variance estimation 52 

Cufflinks Differential expression analysis 53 

EdgeR Negative binomial and variance estimation 54 

Fusion 
Calling 

TopHat-Fusion Fusion discovery from pair end sequencing 55 

ChimeraScan Fusion discovery from pair end sequencing 56 

Defuse Fusion discovery from pair end sequencing 57 

Proteomics 

X!Tandem mzXML search  

PeptideProphet and 
ProteinProphet Post‐processing of X!Tandem Searches 58, 59 
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1.5 Integration of omics datasets 

 

The term data integration is used in different contexts and does not always 

have the same meaning. The term is often employed to describe tools, methods 

and software used to interrogate different data sources such as databases or 

federate data repositories. The term is also utilized when combining related 

studies in order to obtain stronger conclusions or to increase the power of 

previous studies by collecting more data of the same type. Finally, the term is 

used when combining diverse and heterogeneous data types, measured in the 

same individual, in order to improve our understanding of a biological process or 

to uncover previously unappreciated relationships or measurements. Throughout 

this dissertation we will use the term data integration referring to the second and 

third examples described above. 

 

Genomics, transcriptomics, proteomics and epigenomics, to mention just a 

few of the omics platforms, each provides a one dimensional view of the cell 

components; integrative analysis promises a global and systemic view of these 

levels and their interactions. However, the huge amount of information obtained 

from each of these omics technologies and diversity in the platforms discussed 

above pose multiple bioinformatics challenges for data processing and 

combination.  

Despite these challenges collaborative projects such as the Encode 

project (ENCODE) and The Cancer Genome Atlas project (TCGA) are 

generating vast muti-omics datasets. The Encode project has deepened our 

understanding of gene elements and gene regulation, while TCGA is providing a 

full characterization of more than 25 different cancer types. These efforts 

highlight the importance and challenges of multi-omics data integration60. 

 

There are numerous methods for integrating omics datasets. This diversity 

is explained by the fact that the types of data integration used in a particular 

situation depend on the scientific question motivating the analyses. In general, 
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however, algorithms for multi-omics data integration usually belong to one of few 

categories: data reduction supervised algorithms and unsupervised algorithms. 

 

1.5.1 Data reduction 

 

In omics projects data reduction happens at several levels. For example, 

in RNASeq and ChipSeq the first step of data processing is to reduce the million 

of reads produced by the sequencing machine to a few hundreds or thousands of 

points (integers) representing the amount of those reads over a genomic interval. 

Then, a popular method of data integration is to perform intersection analysis 

between those genomic intervals and other regions from the same or different 

experiment, such as ChIPSeq peaks indicating specific chromatin marks. 

 

In a second level of data integration, data reduction statistical methods 

such as principal component analysis, multiple factor analysis and non-negative 

matrix factorization61,62 aim at reducing or transforming the variable space into 

one that represents the stronger tendencies in the data. Importantly, these 

methods are individually applied to each data set and then the results are 

combined. When applied to the full multi-omics datasets these methods usually 

depend on a strong correlation between the genomic levels, which are being 

combined. For example the positive correlation observed between the number of 

copies of a gene and its transcription level has been exploited for several 

methods to integrate copy number changes profiles (CNVs) with gene expression 

profiles63,64. 

 

1.5.2 Unsupervised data integration 

 

In unsupervised learning the goal is to summarize a large dataset into 

smaller groups that can be easily understood. The methods in this category 

answer the question, “What are the more frequent patterns present in the 
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dataset?” An assumption to have in mind when applying these methods is that 

the patterns that are discovered are usually the ones that appear more 

frequently, and therefore outlier events would not be identified despite their 

potential importance. An important caveat of these methods is that they will 

always find a pattern in the data regardless of its biological significance.  

 

Similarly to data reduction methods a standard approach with these 

unsupervised, or clustering, methods is to first find clusters in each data set and 

then map clusters between data types. The mapping procedure is not 

unsupervised and usually constitutes the most demanding part, for example 

clusters found at the gene expression level, representing co-expressed genes, 

are analyzed in light of clusters found in the chromatin level, representing co-

regulated loci. Because clustering methods are agnostic, as long as “pattern 

frequency” represents genes/proteins activity, they can be used, in principle, for 

summarizing multiple omics datasets at once as long as the data are properly 

normalized in advance and a strong correlation exists between data types65.  

 

1.5.3 Limitations of data reduction and unsupervised methods 

 

As described above statistical data reduction techniques and 

unsupervised clustering algorithms depended on strong correlation between data 

types in order to be useful in multi-omics integration tasks. This degree of 

correlation has been shown for example, between gene copy number and gene 

expression and activating chromatin marks and gene expression.  

 

However, this degree of correlation between omics datasets is not the 

norm and it is, indeed, not expected when integrating somatic mutations and 

gene expression, mRNA and protein abundance, or mRNA levels and 

phosphorylation status. In these cases the degree of correlation observed is 

usually low and in some cases it is determined by true biological factors. 
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Mutations abolishing gene expression, unstable mRNAs that are not correlated 

with protein abundance level, and proteins with constant abundance, but 

differential levels of phosphorylation, are some examples. The lack of correlation 

in those contexts is therefore not only due to noise but also due to the biological 

phenomena that are being studied.  

 

Another challenge when integrating heterogeneous omics datasets is the 

wide level of coverage between different technologies.  For example, a single 

RNASeq experiment can identify above 20,000 expressed transcripts, while a 

very good proteomics experiment will identify at the most 10,000 proteins. 

Similarly, the number of genes harboring somatic non-synonymous mutations in 

a sample is typically less than a 1000, and usually closer to 100. The number of 

phospho-proteins detected varies greatly depending on the enrichment protocol 

and LC-MS/MS mass spectrometer instrument used. This wide range of 

coverage generated by different omics platforms creates a high number of 

missing values and sparsity. The high number of missing values impedes the use 

of data reduction methods such as standard principal component analysis. 

 

1.6 Network biology approaches to data integration 

 

Another approach to multi-omics-based data integration is network 

biology. This approach leverages our current knowledge about the systemic 

relationships between the different components; such as, genes, proteins, and 

their interactions, and at the same time find new relationships in the data. 

Molecular pathways and protein-to-protein interactions are typical 

representations of our current knowledge about the molecular interactions in the 

cell.  

 

Network biology approaches address the challenges imposed by the low 

correlations between omics-based measurements and the diverse coverage 
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range of different omics platforms, by using the pathways or networks as 

common frameworks over which the information obtained from different omics-

based measurements is combined.  Overlaying different omics measurements on 

top biological networks brings functional information in order to make sense of 

the information gained through a multi-omics-based experiment. These 

approaches, are, therefore, becoming a common strategy for multi-omics data 

analysis.  

 

1.6.1 Network reconstruction 

 

Identification of pathways, modules, or functional sub-networks is a central 

theme in understanding oncogenesis from an integrative perspective, as well as 

a very challenging computational problem66. However, multi-omics data 

integration has been successful in building more complete models of cancer 

molecular networks29,67-80. 

Numerous computational methods are being proposed to identify 

functional and/or differential expressed modules68,77-79,81-94. Those methods can 

be sub-divided into two main different approaches according to their use of a 

priori information regarding the network of interactions. Inference methods that 

do not use a priori information require vast amounts of data in order to estimate 

their model’s parameters, which make them inappropriate for small datasets with 

few conditions. Methods that use a priori information depend on the quality and 

extent of this information. Fortunately, our knowledge of biological pathways and 

interactions is increasing constantly and pathway models can be refined and 

updated as needed. The focus of this dissertation is on the second type of 

methods, but a detailed comparison of both can be found elsewhere95. Within 

methods that use a priori information, methods proposed so far aim at finding a 

dense connected sub-network, based on a pre-specified protein-to-protein 

interaction network (PPI) and gene expression data. Gene expression profiles 
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are treated as a snapshot of the dynamic behavior of the system, while the PPI, 

although incomplete, represents the universe of potential interactions.  

From a computational point of view, extracting functional sub-modules 

from high throughput omics-based data can be formulated as an optimization 

problem whose objective function is defined according to specific requirements. 

There are two types of module extraction methods heuristic and exact90. 

Heuristic methods were used to find cancer modules that distinguish breast 

cancer subtypes78 and to organize the Reactome database into pathways81. 

Heuristic approaches cannot guarantee the optimality of their solutions, whereas 

‘exact’ methods do so. Exact methods commonly employ integer or mixed-

integer linear programming techniques in order to find optimal solutions to the 

network extraction problem84,91,96. Among exact approaches, the Prize Collecting 

Steiner Tree (PCST) formulation has been successfully applied to find functional 

sub-networks in yeast and cancer77,842. In the second chapter of this dissertation 

the problem of integrating NSCLC transcriptome, proteome and phospho-

proteome datasets will be formulated as Prize Collecting Steiner Tree Problem, 

which solutions allow us to reconstruct active networks in KRAS dependent cells.  

 

1.7 Aims and structure of this thesis 

 

This dissertation focuses on developing bioinformatics approaches to 

integrate multi-omics datasets. As emphasized through this first chapter, data 

integration itself is designed to generate novel hypothesis that can be 

experimentally or computationally tested in order to answer specific scientific 

questions. The bioinformatics approaches developed in this thesis are all aimed 

at identifying novel actionable genes and pathways in cancer. These approaches 

were applied to find novel targets in three distinct scenarios, representing 

different cancer patient populations with unmet therapeutic needs.  

                                            
2 Notably, Zhao, et al 2008 algorithms can be formulated as the PCST problem used for Dittrich, et al., 
2008. 
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In the first study, we aim at finding alternative target proteins in cancer 

samples sharing activating mutations in KRAS a well known, but undruggable, 

oncogene. We profile the transcriptome, proteome and phosphoproteome in a 

panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct 

targetable networks associated with KRAS dependency. We develop a 

bioinformatics strategy addressing the challenge of integrating these disparate 

datasets and use the Prize Collecting Steiner Tree algorithm to identify functional 

sub-networks. We identify three modules centered on KRAS and MET, LCK and 

PAK1 and -Catenin. We validate activation of these proteins in KRAS-

dependent cells and perform functional studies defining LCK as a critical gene for 

cell proliferation in KRAS-dependent but not KRAS-independent NSCLCs. These 

results are the first evidence to suggest LCK as a potential druggable target 

protein in KRAS-dependent lung cancers. 

In the second study, we describe the fusions landscape of lung 

adenocarcinoma and lung squamous carcinoma tissue types in order to identify 

potentially oncogenic gene fusions in driver negative patients. We show the high 

heterogeneity of this landscape and discover that gene fusions incidence is an 

independent prognostic factor for poor outcome. By integrating gene mutation 

status, we divide the cohort into driver positive and driver negative patients, who 

do not have mutations in known cancer genes. Focusing in driver negative 

patients we identify NRG1 as a novel low recurrence 3’ fusion partner present 

exclusively in this subset; resembling previously reported receptor kinase 

fusions. The documented success of targeted therapies against low recurrence 

oncogenic fusions in lung cancer and the high heterogeneity of the fusions’ 

landscape, shown in this study, reinforce the demand for more personalized and 

tailored drug therapies.  

Finally in the third study, we characterize the landscape of antisense 

expression in human cancers in order to identify sense-antisense gene pairs 

involving cancer related genes, which could be suitable for emerging antisense 

targeted therapies. We show that > 60% of DNA loci have measurable antisense 
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transcription and that the expression of sense and antisense transcript pairs is in 

general positively correlated and directed by bidirectional promoters in cases of 

overlapping divergent genes. By comparing with known sense-antisense pairs, 

our results raise the possibility that antisense transcripts could be regulating the 

expression of well-known tumor suppressors and oncogenes. This study 

provides a resource, oncoNATdb, a catalogue of cancer related genes with 

significant antisense transcription, which will allow cancer researchers to 

investigate the mechanisms of sense-antisense regulation and further advance 

our understanding of their role in cancer. 

These studies are presented consecutively in chapters 2, 3, and 4, 

followed for general conclusions and the future directions of this work. 
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Chapter 2  
Reconstructing targetable pathways in KRAS 

dependent lung cancers 
 

The content of this chapter was previously published by the author as an original article in Nature 
Communications 70. 

 
 

2.1 Background 

 

Activating mutations in the Ras oncogenes characterize 20-40% of all 

non-small cell lung cancer (NSCLC)9,97,98, the leading cause of cancer mortality 

in the United States99, which establishes Ras genes as the most commonly 

mutated oncogenes in this malignancy. KRAS, NRAS, and HRAS, the main 

members of this family of GTPase proteins, are activated by somatic mutations in 

20-30%, 1-5%, and 1% of the NSCLC cases respectively9. Mutated Ras has 

been implicated in activating numerous pathways that control cell proliferation 

and survival; however, development of drug therapies aimed at disrupting Ras 

activity has proved challenging9. Consequently, recent efforts have focused on 

identifying indirect mechanisms to disrupt Ras signaling by targeting either 

upstream activators or downstream effectors13,14,22,100,101. To this end, microarray 

gene expression profiling has been extensively used to define expression 

signatures characterizing Ras mutations in cell lines and tumors12,79,82, but gene 

signatures vary considerably across these studies. 

 

Complicating these initial studies, recent work has shown that NSCLCs 

with activating KRAS mutations can be stratified into KRAS-dependent (KRAS-

Dep) or KRAS-independent (KRAS-Ind) groups according to their requirement for 
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mutant KRAS signaling to sustain growth and proliferation10,13,101,102.  Therefore, 

after shRNA knock down of KRAS, KRAS-Ind cells would grow at rates 

resembling cells treated with control shRNAs, while KRAS-Dep grow at slower 

rates. Here, gene expression profiles of NSCLC cell lines found that KRAS 

dependency correlated with a differentiated phenotype, whereas KRAS 

independency was associated with the epithelial mesenchymal transformation 

phenotype10,102.  Moreover, recent work associated KRAS dependency with 

activation of the Wnt signaling pathway in colorectal cancers102. Taken together, 

these results suggest that specific pathways are activated in KRAS-Dep cell lines 

but not in KRAS-Ind cells, and that those pathways play a role in the varying 

disease phenotypes found in these cancers. 

 

While such expression profiling studies are useful for the analysis of 

KRAS signaling, it is well established that KRAS frequently exerts oncogenic 

functions through changes in protein abundance or post-translational 

modifications of proteins, specifically kinases that in turn induce a signaling 

cascade of downstream effectors15,17,40,103. Consequently, global transcriptome, 

proteome and phosphophospho-proteome profiling methods should be applied in 

order to identify causative pathways in KRAS-Dep and KRAS-Ind NSCLC cells in 

an unbiased fashion.  However, to date no study has comprehensively integrated 

these diverse sets of data14,15,18,40,79,82,103, leading to potential biases and 

inadequacies in our understanding of the mechanistic basis for KRAS function in 

NSCLC. 

 

One reason why such studies are lacking is because integration of such 

diverse datasets is a major challenge with existing integrative methods.  Yet 

when employed, integrative methods have been successful in building more 

comprehensive models of molecular signaling networks in cancer67,68.   
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2.2 Aims of this study 

 

In this study we generate a matched dataset of KRAS-mutated NSCLC 

cell lines with global and unbiased transcriptome, proteome and 

phosphoproteome profiles.  We develop a bioinformatics approach to integrate 

these disparate omics datasets and nominate biologically informative signaling 

modules using network analysis.  We find that KRAS-dependent cell lines harbor 

an active and targetable sub-network composed of lymphocyte-specific tyrosine 

kinase (LCK), cMET, KRAS and the p21 serine/threonine activated kinase 

(PAK1).  We characterize a KRAS-LCK-PAK1 pathway and show that KRAS-

Dep, but not KRAS-Ind cell lines require LCK for proliferation. This KRAS-LCK-

PAK1 network further coordinates anti-apoptotic pathways both through inhibition 

of pro-apoptotic proteins such as BAD and/or activation of anti-apoptotic proteins 

in KRAS-Dep cell lines.  In summary this study identifies active networks 

associated with the KRAS-dependent phenotype in NSCLC and nominates a 

novel KRAS-LCK-PAK1 pathway in KRAS-Dep cells that may serve as a 

druggable pathway for treating KRAS-dependent lung cancers. 

 

2.3 Bioinformatics Methods 

2.3.1 Protein quantification by label free LC-MS/MS 

 

The mass spectrometry proteomics and phosphoproteomics data have 

been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

with the dataset identifier PXD000439. The general workflow used for label-free 

phosphoproteome quantification is summarized in the following steps26-41: 

sample preparation, phospho-peptides enrichment, label-free quantitative 

tandem mass spectrometry, peptide identification through database search, and 

quantification by the spectral count method. Cell lines were grown on vendors 

recommended media until they were 70% confluent and then protein extraction 
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and sample preparation was performed as previously reported40 in the presence 

of proteases and phosphatases inhibitors.  

 

For mass Spectrometry eluted proteins were separated by 1D SDS-PAGE 

(4-12% Bis-Tris Novex-Invitrogen, Carlsbad, CA).  24 equal-sized gel bands were 

excised and subjected to in-gel tryptic digestion.  Because phospho-peptides 

correspond to a small fraction of all peptides of after tryptic digestion, phospho-

peptide enrichment was performed using immobilized metal affinity 

chromatography (IMAC). Tryptic peptides were then divided into two fractions: 

phospho-enriched and flow-through or unmodified peptides. Both fractions of 

extracted peptides were independently reconstituted with mobile phase A prior to 

on-line reverse phase nanoLC-MS/MS (LTQ-Velos with Proxeon nanoHPLC, 

ThermoFinnigan).   Peptides were eluted on-line to the mass spectrometer with a 

reverse phase linear gradient from 97% A (0.1 % formic acid in water) to 45 % B 

(0.1 % formic acid in acetonitrile) over 60-minutes.   Peptides were detected and 

fragmented in the mass spectrometer in a data-dependent manner sending the 

top 12 precursor ions that exceeded a threshold of 500 ion counts, excluding 

singly charged ions, for collisional-induced dissociation.  Dynamic mass 

exclusion was enabled with a repeat count of 2 for 1.5 minutes for a list size of 

500 m/z.  

 

For the database search raw spectra files were converted to mzXML using 

ReadAW.  The mzXML files were searched using X!Tandem with the k-score 

plug-in104. The proteomic searches were performed using the following options: 

allow up to 2 missed tryptic cleavages, a parent ion tolerance window of -1 to +4 

Daltons, and a fragment ion tolerance of 0.8 Da. The following variable 

modifications were allowed: phosphorylation of Serine, Threonine, and Tyrosine 

(+79.966331@[STY]), oxidation of Methionine (+15.994920@M), and 

carbamidomethylation of Cysteine (+57.021460@C). All protein searches were 

performed using the Human Refseq protein database (release 47). Appended to 

this database were common proteomic contaminants and reversed protein 
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sequences to serve as decoys105,106. The X!Tandem results were then post 

processed with PeptideProphet and ProteinProphet58,59. Spectral counts were 

then obtained for all of the proteins identified in our cohort of 13 cell lines using 

the Abacus software tool107. For Abacus, the following parameters were used:  

count only peptide-to-spectrum-matches (PSMs) with a PeptideProphet score 

above 0.5 (iniProbTH=0.50), retain only proteins with at least one peptide with a 

PeptideProphet score above 0.99 (maxIniProbTH=0.99) and a ProteinProphet 

probability greater than 0.9 in the COMBINED file (minCombinedFilePw=0.90).  

For the phosphorylated fraction, peptides were required to have at least one 

phosphorylated Serine, Threonine or Tyrosine 

(reqAAmods=+S[167];+T[181];+Y[243]). Proteins and phospho-proteins identified 

with at least one spectral count in two independent cell lines were kept for 

downstream analysis (Balbin et al., 201370, Supplementary Data 1, 3), while 

those identified in one cell line only were filter out (Balbin et al., 201370 

Supplementary Data 2, 4).  

 

The spectrum counts for each protein were normalized with respect to the 

total number of spectrum counts within each sample. This normalization was 

applied independently for unmodified and modified proteins. Common 

contaminants and “Deja vu”108 proteins were filter out before quantification of 

differentially abundant proteins.  For both, unmodified and phosphorylated 

proteins, the fold change was calculated with respect to the comparison KRAS-

Dep vs. KRAS-Ind cell lines. This fold change was then log transformed and z-

score normalized. Finally, the p-value was calculated using the standard normal 

distribution. The final master tables with the normalized spectrum counts for 

phosphorylated and flow through fraction for each cell line are provided as 

Supplementary Data 1 and 2 in Balbin et al 2013.  

 

Phospho-enrichment was calculated as the ratio between the number of 

phospho-peptides identified and the total number of peptides (phosphorylated 

and unphosphorylated) at a particular PeptideProphet score for the best peptide 
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match (bestInitProbability). All enrichment calculations were made using only 

peptides that have Ser, Thr or Tyr in them. Peptides without any of those amino 

acids were excluded from the calculation. Finally, the phospho-enrichment value 

is taken for a PeptideProphet score above 0.94 (bestInitProbability=0.9413), 

which produces a 0.01 FDR. The calculated phospho-peptide enrichment, for all 

samples, ranges from 26 to 38%.  

 

2.3.2 Gene Expression Data 

 

Gene expression data used in this study are publicly available at 

ArrayExpress with accession number E-MTAB-783. Gene expression was scaled 

and log2 normalized previous to additional downstream analysis. 

 

2.3.3 Integration of Datasets 

 

Because different protein functional groups (e.g. transcription factors, 

kinases or secretory proteins) have distinct gene expression dynamic range, the 

gene expression dataset was split into two different categories: “informative” 

genes and “all other” genes and subsequently analysis were performed 

independently on each one of them. “Informative” refer to genes that are well 

known to drive a carcinogenic process such as KRAS, TP53, ERBB2 and 

CDKN2A, etc., as well as to genes that could have the potential to drive 

oncogenesis as kinases, phosphatases among others. A list of “Informative” 

genes was compiled by combining the Sanger’s cancer census genes, all 

kinases and phosphatases as well as additional and recently reported genes 

important for carcinogenesis (Balbin et al., 201370 Supplementary Data 8).  

 

Raw data was preprocessed as described in the experimental methods 

section. Phosphoproteome, proteome and transcriptome datasets were log 

transformed and the log fold change (LFC) was taken with respect to the 
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comparison KRAS-Dep vs KRAS-Ind cell lines. The LFC was z-score normalized 

and a p-value was calculated using the standard normal distribution. 

 

In order to synthesize for each protein the information obtained from gene 

expression, protein and phospho-protein abundance, we calculated a combined 

abundance S score as ܵ ൌ
∑ ௪ೖ௭೔	
ೖ
೔

ට∑௪ೖ
మ

, where z is the z-transformed LFC of protein i 

in the dataset k, while w corresponds to the weight of each dataset ݓ௞ ൌ 1 ඥ ௞ܰ⁄ . 

௞ܰ	represents the size of dataset k. 

 

Finally a p-value for the combined score was calculated using the 

standard normal distribution and then adjusted using the Hochberg procedure in 

order to correct for multiple hypothesis testing. 

 

2.3.4 Network Analysis 

 

We use the Signaling Pathway Impact Analysis Algorithm (SPIA109) in 

order to perform network enrichment analysis. The source code for this algorithm 

is available as an R package from http://bioconductor.org/biocLite.R. SPIA 

calculates the significance of a pathway according to both the over-

representation evidence (e.g. any commonly used enrichment test) and 

perturbation’s based evidence using the topology of the network. The KEGG 

database (http://www.genome.jp/kegg/kegg1.html) was used as the main source 

for pathway’s definition and we used the set of differential expressed genes as 

defined by the combined abundance score with adjusted p-value <=0.05 as the 

seed genelist. Significant pathways with FDR <=0.05 are reported (Table A-1). 

 

For the Network reconstruction methodology, we built a focused 

undirected and weighted protein-to-protein interaction network (G) using 

significant (FDR<=0.05) pathways identified by the SPIA algorithm109. Those 
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pathways were downloaded from the KEGG database଺ହand then merged into a 

unified meta-pathway (G) using the bioconductor KEGGgraph library଺଺ . This 

meta-pathway (G) is provided for the interested reader as Supplementary Data 9 

in Balbin et al., 201370. 

 

We assigned weights to both nodes (V) and edges (E). Node weights 

correspond to the combined score (S) for differential abundance between KRAS-

Dep and KRAS-Ind phenotypes, while the edge weights correspond to the 

experimental confidence on that interaction as derived from the STRING 

database. For each edge in the meta-pathway, we obtained from STRING the 

experimental and physical interaction scores and then combined them into a 

single score using a naïve Bayes approach. In addition, in order to decrease 

redundancy, multiple gene family members with the same interaction partners 

were summarized into a “consensus gene” defined as the gene with highest 

scoring interaction neighborhood. This step is advised due to the node 

redundancy introduced within the KEGG database and the fact that the 

interactions for many gene family members are annotated by similarity to other 

members in the family and not by direct experimental validation. 

 

Finally, we used the Prize Collecting Steiner Tree (PCST) algorithm to find 

sub-networks, T, in the meta-pathway (G) that represent the most differentially 

abundant proteins connected through the most reliable interactions. Formally, the 

PCST is formulated as follows:  

ܶ ൌ 		min ாᇲ⊆ா;	௏ᇲ⊆௏
൫ாᇲ,௏ᇲ൯௖௢௡௡௘௖௧௘ௗ	

ሺ∑ ܿ௘௘	∈	ாᇲ െ ∑ߣ ܾ௩ሻ௩	∈	௏ᇲ 	[1] 

where ܾ௩ ൌ 	െ log  ሺܵሻ as the p-value for the S score of each݌  with	ሺܵሻ݌

protein, and ܿ௘ ൌ 1 െ	∏ ܴ௜
௞
௜ 	with ܴ௜  for the string score for the edge’s physical 

and experimental evidence. This choice of ܾ௩ and ܿ௘ assigns high values to the 

most differentially abundant proteins in the pathway, and low values to the high 

confidence interactions in the network. Finally, the constant ߣ controls the trade 

off of adding new proteins into the reconstructed network, by balancing the cost 
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of new edges and the prize gained by bringing in a new protein. ߣ	 indirectly 

controls the size of the final sub-networks. All results presented here were 

obtained with 0.3=ߣ. In order to choose	ߣ, we solved the prize collecting steiner 

problem, varying ߣ between 0.01-1 in increments of 0.01, and choose the value 

of ߣ at which 60% of the essential nodes of simulated network of similar size 

were recovered. In order to solve the PCST, we used the implementation based 

on information message passaging described by 110, for which the source code 

availability is annotated in the Table A-2. 

 

The PCST has been used in similar settings before75,84,110 because it identifies 

sub-networks that represent cross talk between pathways, as well as “connecting 

proteins” that are not directly measured in the experiment but that are relevant to 

link other measured proteins with high weight in the network. 

 

 

 

2.3.5 Analysis of LCK knock-down experiments 

 

We used the Signaling Pathway Impact Analysis Algorithm (SPIA) as 

described above to identify pathways specifically activated or inhibited after LCK 

knockdown (Table A-5), confirming the involvement of a lung cancer pathway but 

more importantly several pathways controlling apoptosis induction such as the 

natural killer cell-mediated cytotoxicity, Toll-like receptor signaling and the NOD-

like receptor signaling pathway. This is in agreement with the fact that Module 

M1 containing LCK and PAK1 were enriched for proteins belonging to the 

apoptosis pathways (Figure A.7A). Therefore, we focused the additional analysis 

of the microarray data on identifying altered proteins belonging to the apoptosis 

pathways. 
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To perform BCL2A1 nomination we first collect apoptosis gene concepts 

from KEGG, gene ontology and Reactome and generate a meta-apoptosis gene 

concept with all unique genes found. We reasoned that proteins specifically 

activated by LCK should simultaneously satisfy the following three 

characteristics: to be overexpressed when comparing KRAS-Dep vs KRAS-Ind 

cells, to be under-expressed when comparing the LCK knock down vs. the non-

targeting control in H441 and H358 cell lines and to be unaffected after knocking 

down any other gene in different cell lines. Characteristic 3 is included to control 

for changes in gene expression induced by any knockdown treatment 

irrespective of the gene of interest.  

 

Representing conditions 1, 2, and 3 in Cartesian plot results in a plot 

shown in Figure A.8A.  The x-axis shows the differential expression of those 

genes when comparing KRAS-Dep vs KRAS-Ind cell lines. The y-axis shows the 

average differential expression of the same genes when comparing a siRNA 

knockdown of LCK in H441 and H358 cell lines with respect to the targeting 

control (red dots), or the average differential expression when comparing the 

knockdown of a “random” gene compared to its respective control (black dots) in 

three unrelated prostate cell lines. Genes affected by the overall siRNA treatment 

would by overlapping or very close in this plot, while genes specifically affected 

by LCK would be located far apart in the y-axis. We measure this effect by taking 

the Euclidean distance between red and black dots representing the same gene 

in the above representation.  

 

Genes that are specifically affected by LCK would have positive or 

negative Euclidean distances according to the magnitude of their perturbation, 

while genes nonspecifically affected by the siRNA treatment would have 

Euclidean distances close to 0 (Figure A.8). 
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2.4 Experimental Methods 

2.4.1 Cell lines 

 

All cell lines were obtained from ATCC and maintained using standard 

procedures.  Specifically, H441, H358, H2009, H1734, H727, H460, H2122, 

H1792, H23, H1155 cells were maintained in RPMI 1640 (Gibco) plus 10% FBS 

and 1% penicillin-streptomycin.  A549 cells were maintained in DMEM (Gibco) 

plus 10% FBS and 1% penicillin-streptomycin.  SKLU1 cells were maintained in 

DMEM/F12 plus 10% FBS and 1% penicillin-streptomycin. SW900 cells were 

maintained in L15 plus 10% FBS and 1% penicillin-streptomycin.  Cell lines were 

grown at 37°C in a 5% CO2 cell culture incubator.  All cell lines were genotyped 

for identity at the University of Michigan Sequencing Core. 

 

2.4.2 shRNA knock down studies 

 

For LCK and KRAS knockdowns all cells were plated at 100000 cells/ml in 

6 well plates and let them attached overnight. Cells were infected next day with 

the lentivirus RNA and 24 hours after infection old media was replaced with new 

cell media. Cells were allowed to grow for 96 hours in this fresh media. At this 

point cells were treated with 1mg/ml puromycin for 5 days to eliminate uninfected 

cells. Media was replaced and proliferation assays set up with the stable selected 

clones. Knockdown efficiency was confirmed by Western blot. shRNA sequences 

are provided in the supplementary methods. 

 

2.4.3 siRNA knockdown studies 

 

Cells were plated in 100mM plates at 30% confluency and transfected 

twice at 12 hours and 24 hours post-plating.  Knockdowns were performed using 

20uM siRNA oligos or non-targeting controls (Dharmacon) with Oligofectamine 
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(Invitrogen) in Opti-MEM media (Gibco).  Knockdown efficiency was confirmed by 

Western blot.  siRNA used are listed in the supplementary methods. 72 hours 

post-transfection, cells were rinsed twice with 10mL PBS, harvested with a 

rubber policeman in 1mL PBS and centrifuged for 5 min at 2,500x g.  The 

supernatant was discarded and the cells were prepared for Western blot 

analysis. 

 

2.4.4 Western Blots 

 

Cell pellets were lysed in RIPA lysis buffer (Sigma) supplemented with 

HALT protease inhibitor and phosphatase inhibitor (Fisher).  Western blotting 

was performed using standard protocols.  Briefly, protein lysates were boiled in 

sample buffer for 5 min at 98C and 10ug of protein was separated by SDS-PAGE 

gel electrophoresis.  Proteins were transferred onto a PVDF membrane (GE 

Healthcare) and blocked for 30 minutes in blocking buffer (5% milk in 1x TBS 

supplemented with 0.1% Tween (TBS-T)).  Membranes were incubated with 

primary antibody overnight at 4C and then with secondary antibody for 2 hours at 

room temperature.  Signals were visualized by enhanced chemiluminescence 

system (GE Healthcare). The primary antibodies used are listed in the 

supplementary methods and full blots can be found in Supplementary Fig S9-S15 

in Balbin et al., 2013. 

2.4.5 Proliferation Assays 

 

Proliferation assays were performed with stable clones of the scramble 

RNA, and two independent constructs against LCK or KRAS for each cell line. 

Cells were plated at 30000 cells/ml in 24 well plates and cell counts were taken 

with a Beckman coulter Z2 particle count instrument every 48 hours for 8 days. 

Three independent replicates of each experiment were performed. 
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2.4.6 WST Drug Assays 

 

Cells were plated in a 96-well plate 12 hours prior to drug treatment at a 

density of 3500 cells per well in a 100ul of growth media.  Desired concentrations 

of LCK Inhibitor (Santa Cruz, sc-204052,CAS 213743-31-8) and LCK Inhibitor II 

(Millipore, Lck Inhibitor II,CAS 918870-43-6) were prepared using growth media and 

100ul of the drug solution was added directly to the wells.  After 72 hours of 

incubation at 37C, 20ul of WST Cell proliferation reagent (Roche) was added to 

each well.  Following 2 hours of incubation at 37C, the absorbance of the wells 

was measured at 450nm. 

 

2.4.7 Confocal microscopy 

 

H460 and H441 cells were fixed with 3.7% paraformaldehyde, and then 

permeabilized with 0.1% (w/v) saponin for 15 min. Cells were co-incubated with 

primary antibodies against phosphor �-catenin and total beta catenin for 12hr at 

4 °C, followed by incubating with appropriate Alexa-Fluor-conjugated secondary 

antibodies for 30 min at 37 °C. Cells were washed and mounted onto glass slides 

using Vectashield mounting medium containing DAPI. Samples were analyzed 

using a Nikon A1 laser-scanning confocal microscope equipped with a Plan-Apo 

×63/1.4 numerical aperture oil lens objective. Acquired images were then 

analyzed using ImageJ software (version 1.41o). 

 

2.4.8 KRAS Genotyping 

 

Genomic DNA from resected lung cancer tissue samples was prepared 

using a Qiagen Blood and Tissue Kit (Qiagen) according to the manufacturer’s 

instructions.  KRAS mutations were determined using standard RT-PCR and 

Sanger sequencing protocols for KRAS exon 1, which harbors codons 12 and 13, 

and exon 2, which harbors codon 61.  RT-PCR was performed with 5 ng genomic 
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DNA with 38 cycles of PCR according to the following conditions: 94C for 30 

seconds, 56C for 30 seconds, 68C for 45 seconds.  PCR products were 

subsequently purified using ExoSAP-IT PCR purification product 

(USB/Affymetrix) according to the manufacturer’s instructions.  PCR products 

were then unidirectionally sequenced using the M13 forward primer at the 

University of Michigan Sequencing Core.  Sequence data was analyzed for the 

presence of canonical activating KRAS mutations at codons 12, 13, and 61. 

Primers used for the PCR reactions are listed in the supplementary methods. 

 

2.4.9 Immunohistochemistry 

 

Immunohistochemical (IHC) analyses on paraffin-embedded formalin-fixed 

(FFPE) tumor tissue sections were carried out using the automated DiscoveryXT 

staining platform from Ventana Medical Systems. All FFPE sections were 

represented in triplicate on the tissue microarray.  The primary rabbit monoclonal 

LCK antibody was obtained from Cell Signaling (#2984).  Antigen recovery was 

conducted using heat retrieval and CC1 standard, a high pH Tris/borate/EDTA 

buffer (VMSI, catalogue no. 950-124). Slides were incubated with 1:50 of the 

LCK antibody (Cell Signaling) overnight at room temperature.  Primary antibody 

was detected using the ChromoMap DAB detection kit (VMSI, catalogue no. 760-

159) and UltraMap anti-Rb HRP (VMSI, catalo no. 760-4315).  The anti-Rb HRP 

secondary antibody was applied for 30 minutes at room temperature.  Slides 

were counterstained with Hematoxylin for 10 minutes followed by Bluing Reagent 

for 5 minutes at 37C.  Staining was scored (DG Beer) as negative (score = 0), 

minimal (score = 1), weak (score = 2), moderate (score = 3), or high (score = 4). 

 

2.5 Results 

2.5.1 Omics integration improves the nomination of actionable protein 
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To study KRAS function in lung cancer, we generated matched global 

transcriptome, proteome and phosphoproteome datasets for a panel of KRAS-

Dep and KRAS-Ind NSCLC cell lines, as well as a bioinformatics methodology to 

integrate all those data types (Figure 2.1A). Transcript, protein and phospho-

protein abundance were measured by microarrays and label free LC-MS/MS 

respectively (Methods). We identified 3213 proteins in the unmodified state and 

1044 proteins in the phosphorylated state, with at least 1 spectrum count in two 

independent cell lines. The number of unique peptides and phospho-peptides for 

each cell line are shown in the Figure A.1A, Figure A.1B, and the full proteome 

and phosphoproteome datasets for all cell lines are given in Balbin et al 201370 

Supplementary Data 1, 2 and Supplementary Data 3, 4 respectively. 
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A) A panel of KRAS-dependent and -independent cell lines was interrogated by transcriptomics, proteomics 
and phospho-proteomics techniques. Transcripts were split in two different categories: “informative” genes 
and “all other” genes. Proteome and phopho-proteome datasets were normalized with respect to the total 
number spectral counts in each library, and common contaminants and “Deja vu” proteins were filtered out 
before quantification of differentially abundance. All datasets were log transformed and the log fold change 
(LFC) was taken with respect to the comparison KRAS-Dep vs KRAS-Ind cell lines. The LFC was z-score 
normalized and a p-value was calculated using the standard normal distribution. The combined S score was 
used to integrate all three datasets (methods) and select differentially expressed proteins. Network and 
enrichment analysis were performed using the Signaling Pathway Analysis Algorithm (SPIA) and the Prize 
Collecting Steiner Tree Algorithm (PCST). B) Naïve integration of datasets. Only ~ 5.2 % of the proteins are 
shared among two of the datasets (adjusted p-value <= 0.05 was used as a threshold to select differentially 
expressed proteins). A major drawback of this method is the absence of an objective criterion to include 
proteins differentially expressed in only one dataset. C) A meta-integration of the independent signatures 
using the combined S score (S). The S score integration improves by five-fold the percentage of shared 
proteins among datasets (~ 26 %), and defines an objective rule for including proteins differentially 
expressed in one, two or all datasets. D) Integrative analysis of transcriptome, proteome and phospho-
proteome nominates receptor tyrosine kinases MET and ERBB3, Src family members LCK and LYN, PAK1, 
and CTNNB1, CTNNA1, and CDH1 among others as differentially “activated” proteins in KRAS-Dep cell 
lines. Left) Presence/absence heatmap. Proteins that are differentially abundant in a particular dataset are 
represented in yellow and unaffected proteins are represented in blue. Middle) Combined S score (S) for all 
differentially abundant proteins in KRAS-Dep vs KRAS-Ind cell lines. Right) Combined statistical significance 
each differentially abundant protein. –log of the Hochberg adjusted p-value, -log(0.05)= 1.30. 

 
 

Integration of transcriptome, proteome and phosphoproteome data is 

challenging due to differences in technological methods and detection power. 

Hence, we first calculated the log fold change (LFC) in transcript, protein and 

phospho-protein abundance between KRAS-Dep and KRAS-Ind cell lines. We 

then correlated LFC mRNA abundance with LFC protein abundance as well as 

LFC protein abundance with LFC phospho-protein abundance. We found 

generally low to intermediate correlations, which is consistent with previous 

studies describing intermediate correlations between mRNA and protein 

abundance 111-113 (Figure A.2A, B) Correlation between LFC transcript and LFC 

protein 95 confidence interval (CI) = 0.29 - 0.36, p-value <= 2 x 10-16; correlation 

between LFC unmodified protein and LFC phospho-protein 95 CI=0.29 - 0.43, p-

value <=2 x 10-16).  

 

A naïve method of integrating those diverse sets of data is either to look 

for genes that are differentially abundant at the transcript, protein and phospho-

protein level or to look for genes differentially abundant in at least one of these 

datasets. In this study, naïve integration called 675 differentially abundant 



 
 
 

36

transcripts, 173 differentially abundant proteins in the unmodified state and 61 

differentially abundant proteins in the phosphorylated state (Figure 2.1B and 

Supplementary Data 5 provided in Balbin et al., 2013). However, naïve 

integration commonly produces a limited number of proteins that are differentially 

abundant across all signatures. Out of the 862 unique proteins called as 

differentially abundant, only 2 proteins are shared across all signatures and 45 by 

two independent datasets (Hochberg-adjusted p-value <=0.05, Figure 2.1B) 

resulting in only a ~ 5.2 % overlap among signatures. Furthermore, naïve 

integration typically produces a final list of differentially abundant proteins that is 

dominated by proteins identified only in the largest dataset, the transcriptome in 

this case (Figure A.2C). Moreover, this list is enriched in genes that appear not to 

be causative cancer genes but which have a high dynamic range of expression 

(Figure A.2D, A2E, A2F). 

 

In order to address these issues, we developed a bioinformatics 

methodology to integrate transcriptomics, proteomics and phosphoproteomics 

datasets that aims at identifying differentially abundant proteins that are 

nominated as such by any combination of these datasets. This methodology 

focuses on identifying proteins that change consistently across transcript, protein 

and phospho-protein levels as they constitute candidates that can be uniformly 

assessed, and therefore potentially used for interrogating tissue samples at 

either the protein, phospho-protein or transcript level with similar results.  

 

We first distinguish between “informative” and “all other” genes and assign 

weights to each dataset in proportion to that dataset’s size (Figure 2.1A, and 

Methods) in order to control for differences in the dynamic range of different 

proteins and the coverage of each “omics” dataset. We then calculate the 

combined “abundance score”, S, to measure the overall differential abundance of 

a protein across all datasets as ܵ ൌ
∑ ௪ೖ௭೔	
ೖ
೔

ට∑௪ೖ
మ

, where z is the z-transformed LFC of 

protein i in the dataset k, while w corresponds to the weight of each dataset 
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௞ݓ ൌ 1 ඥ ௞ܰ⁄ . ௞ܰ	represents the size of dataset k. Our score is inspired by the 

Stouffer’s score that is used for meta-analysis114. Variations of the Stouffer score 

have been previously used to aggregate multiple studies involving only one type 

of “omics” datasets, such as microarrays115.  

 

Moreover, although other integration methods such as the combined 

Fisher p-value or the scores proposed by Ramasay et al., and Huang et al.,75,115 

could be used for nominating differentially abundant proteins, when compared to 

those methods the S score demonstrates several key advantages for 

discriminating informative genes. First, because the S score normalizes the 

original data into z-scores, the combined distribution is also normal, allowing for 

simple statistics (Figure A.3A). Second, the weight for each dataset is flexibly 

defined, i.e. according to the size of the dataset. Third, the S score can identify 

consistently changing proteins that would be missed otherwise (Figure A.3B). 

Fourth, because the S score is based on the average of ݖ௜ and the fisher method 

on the average of -log(p-value), these scores follow a close linear relationship for 

most values of S. Deviations of this linear relationship are observed for extreme 

values of S and instances where the transcript, protein and phospho-protein 

abundances change in discordant directions  (Figure A.3C). Therefore, the 

combined used of the Fisher and S scores could identify proteins with discordant 

changes in abundance. In summary, by using the S score we defined a metric for 

selecting transcripts, proteins and phospho-proteins that are differentially 

abundant uniquely or consistently across different datasets, overcoming the 

drawbacks of naïve integration. 

 

Our S-score analysis of the phosphoproteome, proteome and 

transcriptome nominated 115 differentially abundant proteins at a Hochberg-

adjusted p-value <= 0.05. Out of the 115 proteins, 30 were nominated uniquely 

by our method and were missed using naïve integration of the datasets (Figure 

2.1C). The S score also helps with prioritizing, as 20 proteins in phosphorylated 
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state, 28 proteins in un-phosphorylated state and 6 transcripts that were 

differentially expressed would have been unattended by a naïve approach 

(Figure 2.1C). By using the S score, the percentage of overlap among datasets in 

the list of differentially expressed proteins is ~26 %, which represents an 

increase of five-fold with respect to the naïve integration approach. Moreover, 

genes identified by our method show higher correlation between the LFC 

abundance of the transcript and protein in unmodified state as well as the protein 

in unmodified and phosphorylated state (Figure A.2A, Figure A.2B). We also note 

that the list of differentially expressed genes nominated by the S score is 

enriched for proteins with functions such as kinase, phospho-transferase activity 

and alternative splicing, and localized both in the cytoplasm and nucleus (Figure 

A.2G). These functions are expected for proteins in signaling cascades, such as 

the ones downstream of KRAS, but these functions were completely missed on 

the proteins nominated by the naïve integration approach. 

  

Finally, comparison of NSCLC KRAS-Dep cell lines against KRAS-Ind cell 

lines showed that of 115 proteins nominated by our integrative analysis, 68 also 

demonstrated increased mRNA, unmodified protein or phosphorylated protein 

abundance in KRAS-Dep cells, whereas 47 were found to be decreased (Figure 

2.1D, Supplementary Data 6 provided in Balbin et al., 2013). Of the 68 that were 

increased, 57 proteins are classified as phospho-proteins, 14 as kinases, 8 as 

proto-oncogenes and 9 as involved in lymphocyte activation among other 

functions. Similarly, out of the 47 genes that were decreased, 37 are classified as 

phospho-proteins, 8 as kinases and 5 as proto-oncogenes among other 

functions. These results demonstrate that our analysis is able to identify 

functionally relevant proteins by integrating the transcriptome, proteome and 

phosphoproteome datasets.  
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2.5.2 Validation in NSCLC cell lines 

 

To confirm our computational predictions, we employed a panel of 13 

NSCLC cell lines for experimental studies, for which profiles of somatic mutations 

is provided in Table A-3.  Of these, 8 have been defined as KRAS-Ind and 5 

have been defined as KRAS-Dep based on previous studies 10,102 and confirmed 

in our hands.  We selected highly ranking proteins predicted to be up-regulated in 

KRAS-Dep but not KRAS-Ind cells for further experimental validation.  Of the top 

20 nominated proteins, we included several proteins known to be associated with 

KRAS dependency in colorectal cancers (CTNNB1, PAK1) 102,116 and others that 

have not been implicated to date (LCK and cMET) with the KRAS-dependent 

phenotype in any cancer (Figure 2.2). Western blot analyses of these proteins 

and their phosphorylated forms validated that cMET, LCK, PAK1, and �-catenin 

were enriched in expression in KRAS-Dep cell lines.  Furthermore, 

phosphorylated forms of these proteins were also specific, suggesting that these 

proteins are activated in KRAS-Dep cells.  These experiments validate our 

computational method and suggest that the S score accurately identifies proteins 

that are highly activated in KRAS-Dep cell lines. 
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2.5.3 Network analysis identifies active modules in KRAS-Dep cells 

 

We next developed a three-step methodology for reconstruction of 

biological modules associated with KRAS status (Figure 2.3A). In the first step, 

we identified differential expressed pathways using the Signaling Pathway Impact 

Analysis algorithm (SPIA 109). We then build a focused undirected and weighted 

protein-to-protein interaction network (G). Finally, in the third step, we used the 

Prize Collecting Steiner Tree algorithm to find sub-networks, T, in the weighted 

protein-protein interaction network (G) that maximized the number of differential 

expressed proteins recovered as well as the confidence in their interaction 

(Methods). 

 

Specifically, in the first step we performed pathway enrichment analysis 

using SPIA in order to identify pathways with overall increased or decreased 

activity in KRAS-Dep cell lines (Figure A.4A). SPIA calculates the significance of 

a pathway according to both a gene set over-representation index and a 

network’s perturbation index that takes into consideration the topology of and 

interactions within the pathway (Methods). This analysis revealed activation of 

main signaling programs in KRAS-Dep NSCLC cell lines when compared to 

KRAS-Ind, such as the ERBB signaling pathway, cancer specific associated 

pathways and tight junctions/cell adhesion pathways (Figure A.4B). Interestingly, 

immune-related signaling modules such as the T cell receptor, natural killer cell 

mediated cytotoxicity and Fc epsilon RI pathways were present, which suggested 

a relationship to LCK as immune-predominant kinase aberrantly up-regulated in 

KRAS-Dep cells. Moreover, although cancer associated-pathways are expected 

to appear enriched in our analysis of cancer cell lines, it is remarkable that the 

cancer pathways enriched in KRAS-Dep cell lines correspond to cancers types 

driven by activating Ras oncogene mutations (Figure A.4C), suggesting that 

certain molecular features are common to KRAS dependency across different 

cancers types. 
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differential abundance between KRAS-Dep and KRAS-Ind phenotypes, while the edge's (Ce) weight 
correspond to the experimental confidence of that interaction as reported for the STRING database. Finally, 
we used the Prize Collecting Steiner Tree algorithm to find sub-networks, T, in G that maximized the number 
of differential expressed proteins recovered as well as the confidence in their interaction. B) Module M1. 
This module, identified by the PCST, connects LCK and PAK1 in KRAS-dependent cell lines. The module 
joins LCK and PAK1 with other proteins that belong to the NF-Kappa  and apoptosis pathways such as 
NFKBIA, NFKBs, TRAFs, and BIRCs. Node size is proportional to the absolute value of the combined S 
score. Node color represents over-expressed (red) or under-expressed (green) in KRAS-Dep cells. Edge 
thickness corresponds to edge’s confidence as calculated from STRING database (methods). C) Module 
M2. This module, identified by the PCST, involves KRAS and MET in KRAS-dependent cell lines. Additional 
targetable proteins such as SYK and LYN are also part in this module. Described as in b. D) Module M3. 
This module, identified by the PCST, connects CTNNB1 (-catenin), CTNNA1, CDH1, TJP2 and other 
proteins associated cell adhesion complexes and the tight junction pathways. Described as in b. 

 

 

Furthermore, in the second step we built a focused undirected and 

weighted protein-to-protein interaction network (G) using all proteins that belong 

to those pathways identified by SPIA and we assigned weights to both nodes (V) 

and edges (E). The weight of each Node (Bi) corresponds to the combined score 

(S) for differential abundance between KRAS-Dep and KRAS-Ind phenotypes, 

while the weight of each edge (Ce) corresponds to the experimental confidence 

on that interaction. The edge weight is derived from the STRING database 117, by 

combining STRING’s experimental and physical interaction scores using a naïve 

Bayesian approach. 

 

Finally in the third broad step of this methodology, in order to identify 

specific network sub-modules that are active in KRAS-Dep cell lines, we 

formulated this network reconstruction task as a Prize Collecting Steiner Tree 

(PCST) problem75,84,96,110 (Methods). The PCST allowed us to synthesize 

transcriptome, proteome and phosphoproteome signatures in the context of the 

weighted protein-to-protein interaction network mentioned above. This 

formulation facilitated the identification of crosstalk between pathways nominated 

by SPIA, as well as identification of relevant proteins that were not directly 

measured in our experiments. We identified three modules –referred to as M1, 

M2, M3 – using the PCST formulation.  
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M1 contains LCK, PAK1, and PRKCH as well as proteins involved in 

regulation of inflammation, antiviral responses and apoptosis proteins such as 

several TRAFs, BIRCs and NFKBs (Figure 2.3B). M2 contains KRAS as well as 

the kinases MET, LYN, SYK, and MAPK1 among others (Figure 2.3C). M3 

contains CTNNB1 (-catenin), CDH1, CTNNA1 (-catenin), TJP2 and other 

proteins associated with the adhesion complex (Figure 2.3D). M3 is consistent 

with our observation that �-catenin is mainly localized in the cellular membrane 

of KRAS-Dep cells (Figure A.4D), supporting a role in cellular adhesion in 

NSCLC cell lines.  

 

2.5.4 KRAS-LCK-PAK1 signaling axis in KRAS-Dep lung cancer 

 

Intriguingly, module M1 suggests a link between LCK and PAK1 that has 

not been reported previously in solid tumors despite the fact that PAK1 

overexpression has been already implicated in lung and breast cancers118. LCK 

is a tissue-specific kinase normally expressed in T-lymphocytes.  It is commonly 

overexpressed in myeloid and lymphocytic leukemia, as well as Burkitt and non-

Hodgkin’s B-cell lymphoma 119 and acts as a proto-oncogene, inducing cellular 

transformation through regulation of cell proliferation and survival119,120.  A role 

for LCK is not known in solid tumors.  Therefore, we hypothesized that the 

aberrant overexpression of LCK in KRAS-Dep lung cancers could also play a role 

in this disease. 

 

To confirm our network reconstruction approach and further dissect the 

functional connections among KRAS, MET and LCK, we performed knockdown 

experiments using independent siRNAs in the H441 and H358 cell lines that 

display KRAS dependency10.  Immunoblot analysis showed that knockdown of 

KRAS decreased the abundance of MET, phospho-MET, LCK, phospho-LCK, 

phospho-PAK1/2 and phospho-BAD (Figure 2.4A, Figure A.5A, A.5B).  These 

results demonstrate that MET, LCK, PAK1/2 and BAD are downstream of  
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does not affect phosphorylation or protein level of LCK in H441-Dep cell line. D) LCK knockdown increases 
the level of cleaved PARP and caspase-3, markers of apoptosis in H441 KRAS-Dep cell line. 

 

KRAS and regulated by KRAS in vitro.  In contrast, knockdown of LCK did not 

reduce KRAS levels indicating that LCK does not regulate KRAS protein 

abundance (Figure 2.4B, Figure A.5C), although previous reports have 

suggested a role for LCK in KRAS activation121.  Knockdown of LCK did however 

reduce phospho-PAK1/2 levels, but not total PAK1/2 protein, defining PAK1/2 as 

targets for LCK-mediated phosphorylation (Figure 2.4B, Figure A.5C). Figure 

2.3B indicates that this effect is potentially mediated through a small network of 

interacting proteins. Moreover, knockdown of PAK1/2 did not change the 

phosphorylation or protein levels of LCK, confirming that PAK1 and PAK2 are 

downstream of LCK (Figure 2.4C). Taken together, our bioinformatics and 

experimental results suggest an active KRAS-LCK-PAK1/2 network in KRAS-

Dep cell lines (Figure A.5D). Our results also present evidence that KRAS can 

influence both the phosphorylation and protein levels of LCK and MET kinases, 

which complements previous reports suggesting that those kinases could be 

upstream of the RAS-MEK pathways121,122, and suggests the possibility of a 

feedback loop among these proteins in KRAS-dependent cells (Figure A.5D). 

 

2.5.5 KRAS-Dep cells are also dependent on LCK for proliferation 

 

In order to extend our results and investigate potentially aberrant 

expression of LCK in other cell lines, we performed a gene outlier expression 

analysis on an extended panel of 122 lung cancer cell lines (11 KRAS-Dep, 18 

KRAS-Ind and 93 KRAS-WT) (Methods). We evaluated informative genes 

observed as outliers in KRAS-Dep but not in KRAS-Ind cell lines (Figure 2.5A).  

 

This analysis revealed LCK, MET, ERBB3, MST1R and LYN are kinases 

that frequently exhibit outlier expression in KRAS-Dep cell lines, with expression 

levels in the top 80 percentile in over 60% of cell lines in this group (Figure 2.5B).   
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confirms high levels of LCK in KRAS dependent cell lines and none or negligible expression in KRAS-Ind or 
WT cell lines.  Cell line H2347 (blue label) harbors NRAS Q61K mutation, but its dependency status could 
not be established. Bar height corresponds to the average over three independent replicates and error bars 
are defined as s.e.m. 

 

 

By contrast, the kinases DIRK4 and MARK4 showed outlier expression in KRAS-

Ind cell lines (Figure 2.5A).  To validate our approach, we experimentally 

confirmed that LCK is overexpressed in KRAS-Dep cells using quantitative PCR 

on a panel of 43 lung cell lines (Figure 2.5C). 

 

Given that LCK is a known lineage-specific proliferation factor in B-

lymphocytes, we hypothesized that KRAS-Dep NSCLC overexpressing LCK also 

require this kinase for cell growth and survival.  We performed shRNA 

knockdown experiments for LCK and determined whether ablation of LCK activity 

with independent shRNAs could selectively impair cell proliferation on KRAS-Dep 

cells (Methods).  Figure 2.6A shows that knockdown of LCK dramatically impairs 

cell proliferation in KRAS-Dep cells but not KRAS-Ind cells, validating our 

predictions (shRNA1 t-test p-value=0.0001822, shRNA3 t-test p-value = 4.14 exp 

-6).  We further confirmed that independent knockdown of KRAS also produced 

similar results (Figure A.6A).   

 

Moreover, as a kinase, LCK is also an attractive candidate for strategies of 

targeted therapy.  While specific LCK inhibitors are still in development, we 

tested whether prototype small molecule inhibitors of LCK would selectively 

affect the viability of NSCLC KRAS-Dep cells.  We treated a panel of 3 KRAS-

Dep cell lines and 2 KRAS-Ind cell lines with increasing doses of LCK inhibitor 

(CAS 213743-31-8) and measured cell viability at different drug concentrations.  

All three KRAS-Dep cell lines tested in this experiment were sensitive to LCK 

inhibition while the KRAS-Ind cell lines were insensitive to LCK inhibition, as 

expected from our hypothesis (Figure 2.6B).  We further confirmed these results 
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in KRAS-Ind cell lines. Points represent the average over four independent experiments and error bars are 
defined as s.e.m. 

 

 

These results demonstrate that KRAS-Dep lung cancer cell lines have aberrant 

overexpression and activity of LCK.  Similarly, we observed that MET shRNA 

knockdown as well as MET inhibition with small molecule inhibitors selectively 

impaired cell growth of KRAS-Dep cell lines (Figure A.6C, Figure A.6D), further 

supporting the biological relevance of our computational network reconstructions 

and predictions of targetable proteins in KRAS-Dep cells. 

 

To evaluate whether LCK expression can be used to stratify the KRAS 

dependency status of human lung cancers, we assessed LCK expression in a 

panel of 29 lung adenocarcinoma tissue samples with mutations in KRAS. To 

confirm the KRAS mutations, we genotyped canonical positions in codons 12, 13 

and 61, known to produce a constitutively active KRAS when mutated (Table 

A-4). As there is currently no clinical biomarker to identify the KRAS dependency 

status of NSCLCs, we sought to evaluate LCK expression in these samples as a 

potential biomarker for KRAS dependency.  Because LCK is normally highly 

expressed in lymphocytes, LCK mRNA expression from surgical samples is not 

an accurate method to assess LCK expression in epithelial-derived lung cancer 

cells, as the infiltrating lymphocytes in these samples would distort the analysis. 

Thus, a previous study that detected LCK in lung cancer tissues by gene 

expression microarrays is likely confounded by the lack of cell-type specificity 123.   

 

We therefore used immunohistochemistry (IHC) to determine the 

abundance of phosphorylated LCK in epithelial lung cancer cells in our 29 clinical 

samples.  We first validated our IHC assay using a panel of normal tissues and 

cell lines that demonstrated high levels of LCK expression in the spleen where 

lymphocytes are abundant, but not in other tissue types. Next, a TMA of KRAS-

Dep cell lines H441 and H358 also showed high levels of phosphorylated LCK 
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expression, while a TMA of H460 and H23 KRAS-Ind cell lines did not showed 

any staining.  Finally, applying this method to our 29 lung tumor samples 

harboring KRAS mutation, we found that 58.6% (17/29) of tumors showed high 

levels of phosphorylated LCK staining, whereas 41.4% (12/29) tumors showed 

low levels of phosphorylated LCK (Supplementary Table S1). These results are 

consistent with in vitro data demonstrating that KRAS-mutant lung cancer tissues 

can be subdivided in two groups according to their levels of phosphorylated LCK, 

similar to NSCLC cell lines. Although, it is not possible currently to determine the 

dependency status of a tissue through direct experimentation, this subdivision of 

tumor samples is suggestive of the correlation described here between KRAS 

dependency and LCK activation in cell lines. However, a larger cohort of tissues 

with matched profiles of KRAS mutation, gene expression as well as 

immunohistochemistry of phosphorylated LCK would be required to further 

determine the prognostic value and the extent of this association between KRAS 

dependency and LCK activation in tissue specimens. A proof of principle analysis 

in this direction is shown in Figure A.6E. 

 

2.5.6 KRAS and LCK could regulate anti-apoptosis pathways 

 

To explore potential functional roles of the KRAS-LCK-PAK1/2 pathway, 

we evaluated our computational predictions of modules M1, M2, and M3 in lung 

cancer.  We were struck by the enrichment for apoptosis-related proteins in 

module M1 that included LCK and PAK1 (Figure A.7A), suggesting a potential 

connection between LCK and apoptosis.  Indeed knockdown of LCK in H441 

cells was correlated with increased levels of cleaved PARP and caspase-3, 

markers of apoptosis, which further supports the association between LCK and 

apoptosis (Figure 2.4D).  

 

To further explore this association, we used microarrays to profile gene 

expression changes following knockdown of LCK in the H441 and H358 KRAS-
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Dep cell lines, and we evaluated the microarray data for pathways specifically 

inhibited or activated by LCK (Table A-5 and methods for specific details on this 

analysis of these microarray data). We assumed that pathways activated 

specifically by LCK in the context of KRAS dependency would be inhibited after 

knockdown of this kinase.  Interestingly, we observed a module comprised of 

TRAF1, BIRC3 and BCL2L1, three proteins that regulate apoptosis (Figure 

A.7B).  These proteins were part of a canonical KEGG pathway for lung small 

cell cancer, a pathway specifically inhibited after LCK knockdown (Table A-5).  

 

Moreover, we reasoned that causative genes should be both 

overexpressed in KRAS-Dep compared to KRAS-Ind cell lines and also down 

regulated upon LCK knockdown in H441 and H358 (Methods).  Performing this 

analysis yielded BCL2A1, a BCL2-related protein A1 (Figure A.8A, A.8B). 

BCL2A1 can bind to and inhibit or neutralize pro-apoptotic multi-domain proteins 

such as BAK and BAX as well as pro-apoptotic BH3-only proteins such as tBID, 

BIM, PUMA, BIK, HRK and NOXA but not BAD 124. Pro-apoptotic protein BAD is 

inhibited when phosphorylated 125,126.  Indeed, knockdown of KRAS in H441 

decreased phosphorylation levels of BAD (p112, p136) (Figure 2.5A), which is 

consistent with increased levels of cleaved PARP observed in the knockdown 

samples (Figure 2.4A) and supports a role for KRAS in preventing apoptosis via 

BAD.  The effect on BAD phosphorylation was observed downstream of KRAS 

but not downstream of LCK or PAK1/2. Knockdown of LCK or PAK1/2 did not 

decrease phosphorylation levels of BAD suggesting independent mechanisms. 

 

Taken together, these computational and experimental data suggest a 

potential regulatory network in KRAS-Dep cells that both “directly” inhibits 

apoptosis by inducing phosphorylation of BAD and “indirectly” by modulating the 

apoptotic response through the LCK module. 
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2.6 Discussion 

 

The advent of high-throughput technologies has greatly advanced the 

study of cancer biology.  However to date, most studies employ only an individual 

technology and studies that do include multiple profiling technologies frequently 

analyze them separately without integrating across modalities.  While these 

approaches are effective for identifying single events in cancer (i.e. a new point 

mutation or an overexpressed gene), they do not uncover integrated biological 

modules that coordinate higher-level biological processes (i.e. apoptosis, RNA 

splicing, etc).   

 

Here we developed a novel method to integrate disparate profiling 

modalities to explore novel functional networks differentiating KRAS-dependent 

from KRAS-independent NSCLCs.  We used transcriptome, proteome, and 

phosphoproteome profiling to comprehensively analyze gene expression at the 

RNA and/or protein level, as well as signaling proteins activated or inactivated by 

post-translational modification.  Using this approach on 13 KRAS-mutant NSCLC 

cell lines known to be KRAS-Dep or KRAS-Ind, our integrative analysis 

nominated 115 proteins that were differentially abundant between these two 

groups (Hochberg-adjusted p-value <= 0.05).  Specifically, our method identified 

a set of proteins with highly correlated changes between transcript and protein 

levels or unmodified protein and phosphorylated protein levels, and then 

enriched these results for specific functions associated with KRAS.  Of these, we 

validated four proteins (LCK, MET, PAK1 and -catenin) selected from the top 20 

nominated genes.  LCK, MET, and PAK1 have not previously been studied in the 

context of KRAS-dependent lung cancer. 

 

Of particular interest to this study was LCK, a lymphocyte-specific kinase 

well studied in B-lymphocyte development 119,120 but uncharacterized in solid 

tumors.  We define a KRAS-LCK-PAK1/2 pathway in KRAS-Dep lung cancers 
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that has not previously been described.  We find that KRAS regulates LCK 

protein and phospho-protein levels, and LCK in turn regulates PAK1/2 

phosphorylation but not total protein levels.  Previous studies have identified a 

role for PAK1/2 in the phosphorylation of -catenin in KRAS-mutated colorectal 

cancer 102,116; however, we did not observe -catenin as a direct target of the 

KRAS-LCK-PAK1/2 pathway in lung cancer.  Knockdown of KRAS and LCK did 

not impact -catenin phosphorylation or cellular localization.  Indeed -catenin 

localized to the cell membrane in our experiments (Figure A.4D), not the cell 

nucleus where �-catenin is known to be active in the stimulation of the Wnt 

signaling pathway 102,116.  In addition, our work finds that �-catenin associates 

with the M3 reconstructed network module that also contains cell surface 

adhesion proteins such as CDH1, CTNNA1 (-catenin), and TJP2.  Thus �-

catenin in NSCLC cell lines may operate through cell adhesion pathways as 

opposed to a role in regulating transcription as reported in colorectal cancer 102. 

This further helps to explain earlier observations that associate KRAS-Dep lung 

cancer cell lines with differentiated phenotypes 10. 

 

To explore the function of LCK in lung cancer, we performed knockdown 

experiments and observed that depletion of LCK impaired cellular proliferation 

and phenocopied knockdown of KRAS in KRAS-Dep cell lines.  In addition, small 

molecule inhibition of LCK resulted in preferential decrease in cell viability in 

KRAS-Dep cells.  Using the Prize Collecting Steiner Tree formulation, we also 

found that LCK was associated with a reconstructed Module M1 containing 

several proteins involved in regulation of apoptosis in addition to PAK1.  Indeed, 

we observed that knockdown of LCK or KRAS induces an increase in cleaved 

PARP levels indicating an increase in apoptosis. KRAS-Dep cells may then 

modulate apoptosis through two complementary mechanisms. KRAS may 

regulate the apoptotic response by regulating phosphorylation of BAD, while LCK 

may regulate BCL2-related anti-apoptotic proteins. Previous studies in T cells 

and CLL cells support this role of LCK as a guardian against apoptosis, as well 
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as LCK inhibition through small molecule inhibitors as an effective mean to 

sensitize those cells to apoptosis 119. Finally, we evaluated LCK expression in 

KRAS-mutant NSCLC tumors.  We observed that almost 60% (17/29) of the 

KRAS-mutated tumors showed high staining levels of phosphorylated LCK by 

IHC, suggesting they are likely KRAS-dependent. As projects such as The 

Cancer Genome Atlas (TCGA) approach their goal of enrolling thousands of 

patients with matched -omics datasets such as exome/genome and RNA 

sequencing and reverse phase protein arrays (among others), as well as detailed 

clinical follow ups, we will be able to assess the prognostic value of the LCK-

KRAS-PAK1/2 pathway in the context of KRAS dependency. A proof of principle 

analysis in this direction is presented in Figure A.6E.  

  

Taken together, this study establishes a potentially actionable pathway in 

KRAS-Dep NSCLCs comprised of KRAS, LCK, and PAK1/2.  We find that KRAS 

induces LCK activation, leading to a signaling cascade specific to KRAS-Dep 

cells that promotes cell proliferation and could reinforce a positive feedback loop 

with KRAS activity (Figure A.5D).  Furthermore, our study develops a method to 

integrate multiple proteomic and transcriptomic datasets for the identification of 

biologically relevant modules in cancer.  We thus provide a framework for the 

complex analysis of multiple cancer datasets to make biologically-informed 

computational predictions for uncharacterized signaling pathways in cancer. 

 

 

2.7 Contributions 

 

Science is a collective enterprise and it is much more fun when done with 

friends and good collaborators. The results presented in this chapter were made 

possible because of the great collaboration and support of a team of people in 

the Chinnayian and Nesvizhskii labs. 
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Chinnayian designed the study; O. Alejandro Balbin developed all bioinformatics 

methods and computational analysis, designed functional assays, and performed 

proliferation assays; John Prensner., Benjamin Chandler and Anirban Sahu 

performed knock down functional assays and western blots; Anirban Sahu 

performed the drug assays; Anastasia Yocum completed Mass Spectrometry; 

Damian Fermin helped with proteomics analyses; Rohit Malik performed -
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2.8 Dedication 

 

I want to dedicate this research to my father, Jesus William. Jesus William fought 

a very aggressive KRAS mutated colorectal cancer. While he was giving the fight 

for his life, I was, paradoxically, trying to find alternative ways to treat KRAS 

dependent cancers. Although, the results of this research were not on time to 

help saving his life, I hope they can contribute to save the life of some other 

fathers. 
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Chapter 3  
Identifying driver fusions in lung cancers 

without known driver mutations 
 

 

3.1 Background 

3.1.1 Lung cancer 

 

Lung cancer is the leading cause of cancer-related deaths worldwide, 

generating more than a million deaths each year127,128. Lung cancer is 

histologically classified as either non–small cell lung cancer (NSCLC) or small 

cell lung cancer (SCLC). NSCLC accounts for 80% of all lung cancers and 

includes lung adenocarcinoma (LUAD), squamous cell carcinoma (LUSC) and 

large cell carcinoma (LULC).  Adenocarcinoma is the most prevalent subtype and 

most often observed in non-smokers, however tobacco smoking is associated 

with the majority of lung cancers129. The overall 5-year survival rate for lung 

cancer remains poor ~15%, due primarily to late diagnosis when tumor removal 

is no longer an option128. 

 

Genomic analyses of LUAD have revealed mutations in several well-

characterized tumor suppressor and oncogenes including TP53, STK11, KRAS, 

EGFR and BRAF among others2. These tumors also demonstrate copy number 

alterations with most occurring at relatively low frequency with some having 

therapeutic implications such as ERBB2 amplification130. Remarkably mutations 

in KRAS are mutually exclusive with mutations in EGFR. Recent analyses by 
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TCGA for lung squamous cell carcinomas indicate that these tumors undergo 

TP53, FGFR1, DDR2, AKT1, PIK3CA, CDKN2A, MLL2, NOTCH1, and RB1 gene 

mutations as well as several recurrent gene copy number alterations in genes 

such as FGFR1, SOX2 and TP633. The heterogeneity observed in lung cancer 

both histologically and molecularly, underlie the difficulties in effectively treating 

patients with this disease. 

 

Similar to these known “driver” somatic gene mutations, several important 

gene fusions, formed by the breakage and re-joining of two different genes, occur 

in lung cancer including the EML4-ALK gene fusions identified in approximately 

4% of adenocarcinomas4,8. This fusion protein links the N-terminal portion of 

echinoderm microtubule-associated protein-like 4 (EML4) with the intracellular 

signaling portion of the anaplastic lymphoma kinase (ALK) tyrosine kinase 

receptor. The EML4-ALK translocation is mutually exclusive with EGFR and 

KRAS mutations and tumors with EML4-ALK translocation have fewer TP53 

gene mutations5. EML4-ALK gene fusions occur in LUAD and in never- or light 

smokers. Additional gene fusion events have now been identified in LUAD 

including ALK 131, ROS16, as well as RET7,8 kinases. These chromosomal 

rearrangements have been strongly associated with a history of never or light 

smoking.  

 

Most importantly, patients with tumors containing EGFR mutations show 

at least initial responsiveness to drugs that target these alterations20 and the 

presence of the EML4-ALK gene fusion is an indicator of therapeutic 

responsiveness to ALK inhibitors4. Under this logic, lung tumors with KIF5B-ALK 

fusions also have the potential for sensitivity to ALK inhibitors and RET fusions 

may be treated using drugs that target this kinase132. These chromosomal 

rearrangements have been strongly associated with a history of never or light 

smoking.  Our group also identified the NFE2-R3HDM2 and FGFR3 gene fusions 

present in a small percent of lung cancers133,134.  
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3.1.2 Gene fusion detection and control of the false positive rate 

 

The increase on RNASeq experiments to study the cancer transcriptome 

has propelled the development of numerous algorithms for fusions discovery55-

57,135,136. A major task in fusion discovery is handling false positive. False 

positives can be generated during the sequencing and bioinformatics steps. In 

the sequencing step chimeric cDNA artifacts are generated by template switching 

during reverse transcription and amplification137. Template switching occurs 

when the nascent cDNA that is being synthesized dissociates from the template 

RNA and re-anneals to a different stretch of RNA with a similar sequence to the 

initial template, generating artifactual gene fusions137. This behavior is observed 

even more for highly abundant transcripts such as ribosomal RNA. In the 

bioinformatics step false positives are generated because all fusion discovery 

tools are error prone; they all identify fusion genes that are not present in control 

synthetic datasets138. Strikingly, the number of false positive fusions increased 

with read length for all tools, and all tools detected less fusion reads than were 

expected. 

 

A recent comparison of eight fusion calling algorithms showed that overall 

algorithms have a maximum sensitivity of about 80%. However, in order to 

recover the higher number of true positives, the most sensitive algorithms pay an 

extremely high prize increasing by several orders of magnitude the number of 

false positives. For example, TopHat-fusions (THF) and ChimeraScan the most 

sensitive algorithms produced well above 13000 false positive fusions in order to 

detect 27 true fusions139. False positives can be generated by the software or 

during the sequencing step. 

 

Taken together those results demonstrate that reducing the number of 

false positives would be the biggest challenge on a high throughput assessment 

of gene fusions across large cohort of patients, such as the TCGA cohorts and 

the one assembled for this study. 
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Previous studies have relied on applying hard thresholds to filter out 

potential false positives. For example establishing a minimum number of reads 

that support the gene fusion product. According to the identification of fusion 

boundary, the nucleotide coordinates defining the breakpoint of both genes 

involved in the fusion, we can define three types of reads: read spanning, read 

encompassing and mate pair encompassing reads (for pair-end sequencing). 

Encompassing reads harbor a fusion boundary and each read maps on a 

different gene of the fused gene couple; in spanning reads one mate overlaps 

with a fusion event, while the corresponding paired-end mate matches with one 

of the two genes involved in the chimera; lastly in mate pair encompassing reads 

one read maps to one side of the fusion boundary while its mate maps to the 

other side, but none of them harbor the fusion breakpoint.  

 

Although effective for blindly eliminating most false chimeric events, two 

issues appear with applying hard thresholds using the minimum number of reads. 

First, there are real and functional fusions such as EML4-ALK, which have a low 

read support despite being driver fusions. On the other hand, highly expressed, 

such as ribosomal proteins, tend to form a great variety of chimeric fusions due 

to template switching during the sequencing step. In consequence, thresholding 

approaches would eliminate real and functional fusions while keeping clear false 

positives.  

  

In this study, we address that challenge of controlling the false positive 

rate on fusion detection from a completely different perspective. Here, we 

developed a gene fusion classifier to distinguish between true and false 

positives. We used structural properties such as: 3’ and 5’ partner genes, cohort, 

3’ breaking exon, 5’ breaking exons, median alignment quality of reads that 

support 3’ gene, median alignment quality of reads that support 5’ gene, number 

of spanning reads, encompassing reads, spanning mate pairs, expression of the 

5’ and 3’ gene in the sample, among other characteristics. We employed a 
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random forest algorithm for classification, because random forest algorithms do 

not make assumptions about the distribution of the data. Moreover, random 

forest algorithms determine the importance of each feature in the classification 

process and therefore they allow for feature selection. This approach showed to 

be very efficient while at the same time it recovered the main structural properties 

that are frequently used for thresholding.  

 

3.1.3 Aims of this study 

 

Given the importance of gene fusions, yet their apparent low frequency in 

lung cancer, in the present study we examine the landscape of gene fusions in 

the largest RNASeq cohort of NSCLC assembled so far. We have performed 

comprehensive RNA sequencing of our cohort of primary NSCLC with a history 

of heavy smoking and integrated the results with the available data from TCGA 

and another public available dataset, the “Seoul” cohort.  

 

We characterize gene fusions in lung tumors both with and without known 

driver mutated genes, and we examine the relationship between fusions 

incidence, tumor and clinical characteristics including patient survival. This is the 

first study to show that fusions incidence is an independent factor associated with 

poor prognosis. Moreover, we identified recurrent Neuregulin 1 (NRG1) gene 

fusion events exclusively in driver negative patients, resembling known kinase 

fusions, which may provide future therapeutic opportunities for patients harboring 

NRG1 rearrangements. This study also generates a database of lung cancer 

fusions that can be used by other researches looking for low recurrent fusions in 

this disease. 
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3.2 Bioinformatics methods 

3.2.1 Sequence alignment 

 

Sequence alignment was performed using the Tuxedo pipeline: Bowtie2 

(Bowtie2/2.0.2) and Tophat2 (TopHat/2.0.6)47. We supplied TopHat with the set 

of transcript models annotated in the Homo sapiens ensemble database version 

69. The flag fr-firststrand was used for the strand specific RNASeq libraries while 

fr-unstranded was used for the unstranded libraries. All other parameters were 

used with default values. 

 

3.2.2 Fusion calling 

 

Fusion calling was performed with TopHat-fusion47 (THF) on the UMICH, 

TCGA and Seoul cohorts. ChimeraScan56 was applied to the UMICH cohort to 

increase sensitivity in our discovery cohort. TopHat-fusion was run with the 

following arguments: bowtie, fusion-search, keep-fasta-order, no-coverage-

search, fusion-min-dist=0, fusion-anchor-length=13, fusion-ignore-

chromosomes=chrM. TopHat post-processing was run with the arguments: skip-

blast, num-fusion-reads=1, num-fusion-pairs=1, num-fusion-both=3. 

Chimerascan was run with the following options: trim5=1, trim3=1, 

frag_size_percentile=1.0, arg= -v, keep-tmp. 

 

3.2.3 Fusion annotation and lung cancers fusions database 

 

A database of fusions in lung cancers was developed, and for each fusion 

structural and functional annotation was recorded. The structural information 

correspond to chromosomes of 3’ and 5’ partner genes, cohort, 3’ chromosome, 

5’ chromosome, 3’ breaking exon, 5’ breaking exons, median alignment quality of 

reads that support 3’ gene, median alignment quality of reads that support 5’ 
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gene, number of spanning reads, spanning mate pairs and encompassing reads, 

3’ and 5’ partner recurrence across the cohort and fusion type (Inter-

chromosomal, Intra-chromosomal, Tandem-duplication).  

 

The functional annotation corresponds to kinase status, oncogene status, 

tumor suppressor status and targetable status  (TRUE/FALSE) of both 3’ and 5’ 

partner genes. Other functional annotations include the gene family of both 

fusion genes, as well as the their gene biotype (protein-coding, ncRNA, rRNA, 

etc.). Moreover, the gene expression of each fusion gene was calculated in 

fragments per-kilobase per million (FPKM) using Cufflinks140 and stored in the 

database. In addition, an outlier score was calculated for the expression of both 

5’ and 3’ partners in order to identify cases in which the 3’ partner is highly 

expressed as consequence of the fusion event. 

 

This database was created using pytables and hd5 format for fast access 

and storage and includes the following tables: patient table, patient clinical 

information table, fusions structural information table and expression table. In 

addition to these tables corresponding to fusion events, we create an additional 

table to store the mutation status for each patient, mutation table. The mutation 

table allows us to classify each patient as “driver positive” or “driver negative” 

according to mutation status of well-known cancer related genes (see below). 

 

3.2.4 Fusions classifier 

 

As described in section 3.1.2 all fusion calling algorithms produce a 

significant number of false positive fusions when applied on RNASeq data. Many 

of these spurious fusions are due to diverse and difficult to model bioinformatics, 

sequencing and biological factors such as: template switching and random 

chimeric events associated with amplicon regions among others.  
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Therefore, in order to separate potentially genuine fusions from spurious 

ones, we developed a classifier to predict potentially true fusions based on the 

structural and functional features collected for each fusion, which were described 

above and stored in our fusion’s database. 

 

THF called 31,304 fusions across the combined cohort. The task of 

separating false positive fusions from potentially true ones in this dataset is then 

far from trivial. We first reason that functional fusion proteins have open reading 

frames (ORFs); therefore fusions in which the exon of one gene is fused to the 

intron of another or two introns are fused together would not produce fusion 

products with ORFs. This first level filtering reduced to 6,465 the number of 

fusions to classify. Then, we reason that fusions found in normal samples; 

fusions involving pseudogenes, lincRNAS, or antisense transcripts and fusions 

for which the median alignment quality of reads supporting any of the gene 

partners was equal to zero (indicating multi-mapping) are potentially false 

positives, and there were excluded from downstream analysis. This second level 

filtering reduced to 4,990 the number of fusions called by THF. Assessing the 

quality of each one of those fusions manually is impossible in practice.  

Therefore, we build a random forest classifier to determine the potentially true 

and false positives out those 4,990 gene fusions. 

 

For the classification step, we train a random forest classifier with 10,000 

trees using the following features: chromosomes of 3 and 5’ genes, 3’ gene, 5’ 

gene, 3’ breaking exon, 5’ breaking exons, median alignment quality of reads that 

support 3’ gene, median alignment quality of reads that support 5’ gene, number 

of spanning reads, spanning mate pairs and encompassing reads, 3’ and 5’ 

partner recurrence, fusion type, gene biotype of both 3’ and 5’ genes, FPKM 

expression of both 3’ and 5’ genes, and FPKM expression of both 3’ and 5’ 

genes normalized across the combined cohort. 
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True positives examples were selected from the TCGA, Seoul and UMICH 

cohorts. On one hand, the examples chosen from the TCGA and Seoul Cohorts 

correspond to well known fusions involving ALK, RET and ROS1 kinases. On the 

other, the examples chosen from the UMICH cohort correspond to fusions called 

by at least two independent algorithms, carefully curated manually and validated 

by PCR (Table B-1). False positive examples were selected representing 

different types of spurious fusions: e.g. overlapping genes, fusions involving 

highly expressed genes such as ribosomal proteins among others. 

 

An additional advantage of using a classifier to determine the potential 

true fusions, as opposed to hard filters defined a priori, is that we can learn those 

features or rules from the data itself. In our dataset, the top five features that 

contributed the most for the random forest classifier were, in decreasing order of 

importance, fusion type (Inter-chromosomal, Intra-chromosomal, Tandem-

duplication), sum of the median alignment quality of both gene partners, number 

of reads spanning and encompassing reads across the fusion junction and the 

cohort normalized expression value of the 3’ gene (Figure 3.4). 

 

Two additional sets of true fusions were left out of the training dataset to 

calculate the recovery rate. First, a set of 11 fusions called in the Seoul cohort23 

and validated by PCR by the same authors, and a second set of 15 fusions 

called in the UMICH cohort by THF, ChimeraScan, manually curated and 

validated by PCR. In the first of these datasets, our classifier recovered 10 out 11 

fusions for a 90.1% recovery rate (Table 3.3-1). In the second set, the classifier 

recovered 14 out 15 validated fusions for a 93.3% recovery rate (Table 3.3-2). 
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Table 3.3-1. Fusions recovered by our classifier in the Seoul cohort.  

All these fusions were called and validated independently of our study. Recovered fusions are label with 1, while missed fusions with 0.  
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Seoul_lc_c25 3 6 ASCC3 UBE2E1 Seoul 1 5 9 9 18 16 2 9 InterC 1 

Seoul_lc_s11 11 11 C11orf93 HYOU1 Seoul 13 3 9 9 18 155 7 49 IntraC 1 

Seoul_lc_c25 1 6 CGA ZFYVE9 Seoul 15 4 9 9 18 16 3 12 InterC 1 

Seoul_lc_s18 19 19 DNM2 NMRK2 Seoul 8 2 3 3 6 3 1 1 IntraC 0 

Seoul_lc_s18 11 11 FGF3 RBM14‐RBM4 Seoul 1 2 9 9 18 20 1 8 IntraC 1 

Seoul_lc_c17 12 12 GPR133 TXNRD1 Seoul 16 14 9 9 18 14 2 10 IntraC 1 

Seoul_lc_s23 19 14 MBIP AXL Seoul 19 6 9 9 18 1566 153 1210 InterC 1 

Seoul_lc_s38 12 4 PDGFRA SCAF11 Seoul 15 2 9 9 18 132 13 110 InterC 1 

Seoul_lc_s9 10 6 ROS1 CCDC6 Seoul 5 9 9 9 18 77 6 53 InterC 1 

Seoul_lc_c36 12 12 SLC16A7 MUCL1 Seoul 2 3 9 9 18 82 7 16 IntraC 1 

Seoul_lc_c15 11 13 TNFSF11 APLP2 Seoul 7 5 9 9 18 150 12 83 InterC 1 
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Table 3.3-2. Fusions recovered by our classifier in the UMICH cohort.  

All these fusions were called and validated independently of our study. Recovered fusions are label with 1, while missed fusions with 0.  
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A28 9 9 PTCH1 FAM120AOS umich  23 2 7 7 14 8 2 6 IntraC 1 

C028 1 1 WASF2 FGR umich  9 12 9 9 18 21 48 2 TD 1 

C074 8 8 GTF2E2 GSR umich  5 1 9 9 18 87 33 0 TD 1 

C004 3 3 HLTF HPS3 umich  18 11 9 9 18 40 7 37 TD 1 

A49 11 11 CPT1A HRASLS2 umich  6 3 9 9 18 105 13 115 IntraC 1 

C040 11 11 AHNAK KAT5 umich  6 6 6 6 12 9 43 6 IntraC 1 

H1838 6 6 PCMT1 LATS1 umich  3 6 9 9 18 15 6 7 TD 1 

A52 9 12 PTPRD LRMP umich  43 5 9 9 18 12 2 8 InterC 1 

C004 3 3 UBA5 MRAS umich  10 2 9 9 18 12 2 13 IntraC 1 

H1792 12 12 SRGAP1 MSRB3 umich  3 2 9 9 18 79 14 119 IntraC 1 

H23 2 2 THADA MTA3 umich  38 9 9 9 18 33 12 16 IntraC 1 

H441  1  1  MEAF6  SCMH1  umich  5  9  4  7  11  7  27  4  IntraC  1 

C051  15  15  MYO5C  TNFAIP8L3  umich  12  1  9  9  18  15  52  15  IntraC  1 

A25  3  3  IP6K1  TRAIP  umich  4  5  9  9  18  63  46  58  TD  1 

A85  8  8  RBM12B  MMP16  umich  3  6  2  2  4  2  4  3  IntraC  0 
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3.2.5 Mutation calling 

 

UMICH cohort: Single nucleotide variants (SNVs) were called using 

Varscan2 (Varscan2/2.2.8)48 on the ssRNAseq libraries of the UMICH cohort. 

Because, we did not have matched normal for each tumor sample, we consider 

only SNVs that were previously reported in the Catalogue of Somatic Mutations 

database (COSMIC version 56). Single nucleotide mutations in other positions 

were not considered for reporting or downstream analysis. SNVs present in 

dbSNP (v135) were filter out, as well as SNVs with variant fraction smaller than 

10%, or with less than six reads covering the position. Insertions and deletions 

were not called from the RNAseq data, because currently there are not available 

algorithms to efficiently assess these genetic aberrations on RNASeq libraries. 

SNVs for all tumor samples were aggregated and annotated using variant-

tools141.  

 

TCGA cohort: All somatic mutations both SNVs and indels called on 

Exome sequencing data for the TCGA consortium were extracted from 

aggregated Mutation Annotation Format (MAF) files available at the Broad 

institute firehose Genome Data Analysis Center MAF dashboard on May 11 of 

2013.  

 

Seoul cohort: All SNV and insertion/deletion somatic mutations reported 

by Seo et al (2012) were used23. 

 

3.2.6 Sample annotation 

 

We annotated the mutation status of oncogenes and tumor suppressor 

well known to be involved in lung adenocarcinoma and squamous carcinomas. 

On one hand, known activating mutations were considered for KRAS, NRAS, 
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HRAS, EGFR, BRAF, PIK3CA, and MET, while missense or non-sense 

mutations were considered for TP53, STK11, NF1, PTEN, SMARCA4, CDKN2A, 

and APC. Mutations reported in COSMIC were considered for AKT, MEK, ATM, 

AKT1, KEAP1, U2AF1, RBM10, ARID10, and MYC which have been recently 

implicated on these indications3,142. Finally, we used the somatic mutation 

information to divide the combined cohort in two groups: samples with known 

drivers and samples of unknown drivers. The first group corresponds to samples 

with somatic mutations in KRAS, NRAS, HRAS, EGFR, BRAF and/or PIK3CA, 

while the second group to samples that do not harbor alterations in those well-

known driver genes.  

 

3.3 Experimental methods 

3.3.1 Sample acquisition 

 

We collected tumor samples from 67 patients with lung adenocarcinomas 

and 36 patients with lung squamous carcinoma. Matched normal lung tissues 

samples were collected at the edge of cut lung lobe, as far as possible and at 

least 3 cm far away from tumor, following surgery at the University of Michigan. 

The recruitment of subjects and informed consent were reviewed and approved 

by our IRB. These tissues were preserved by flash freezing immediately following 

surgical resection, and clinical and follow-up data have been collected. None of 

the patients used in this study received preoperative chemotherapy or radiation 

therapy. The 24 cell lines included in this study were all acquired from The 

American Type Culture Collection (ATCC) and grown according to the ATCC 

suggested media conditions.  

 

3.3.2 Total RNA isolation 
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Regions of tumor tissue containing a minimum of 70% tumor cellularity 

defined by cryostat sectioning were utilized for RNA isolation. Tissues or cell 

lines RNAs were isolated using miRNeasy mini kit (Qiagen). RNA quality was 

analyzed using the 2100 Bioanalyzer (Agilent Santa Clara, CA). Only samples 

with RNA integrity number (RIN) >8.0 were subjected to RNA sequencing. 

 

3.3.3 Preparation of RNASeq libraries 

 

Transcriptome libraries were prepared following a modified protocol 

previously described for generating strand specific RNASeq libraries24.  Briefly 

2.5 μg of total RNA was subjected to polyA selection using oligodT beads 

(Invitrogen, Carlsbad, CA).  Purified polyA RNA was fragmented and reverse 

transcribed using SupersciptII (Invitrogen, Carlsbad CA).  Second strand 

synthesis was performed with DNA Polymerase I (New England Biolabs, Ipswich, 

MA) in the presence of dNTP mix containing dUTP instead of dTTP.  The product 

was then subjected to end repair, A base addition and adaptor ligation steps.  

Libraries were next size selected in the range of 350 bps after resolving in a 3% 

Nusieve 3:1 (Lonza, Basel, Switzerland) agarose gel and DNA recovered using 

QIAEX II gel extraction reagent (Qiagen, Valencia, CA). Libraries were barcoded 

during the 14-cycle PCR amplification with Phusion DNA polymerase (New 

England Biolabs, Ipswich, MA) and purified using AMPure XP beads (Beckman 

Coulter, Brea, CA). Library quality was estimated with Agilent 2100 Bioanalyzer 

for size and concentration. The paired end libraries were sequenced with Illumina 

HiSeq 2000 (2x100 bases, read legth). Reads that passed the filters on Illumina 

BaseCall software were used for further analysis.     

 

3.3.4 PCR fusion validation 

 

We validated a subset of nominated fusion genes by THF from UMICH 

cohort using real-time (RT-PCR). Of the 27 attempted fusions, 24 were validated, 
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2 had inconclusive results and 1 was not validated, representing a validation rate 

of 89%. 

 

3.3.5 RNA isolation, cDNA synthesis and quantitative RT-PCR 

 

Total RNA was isolated using either QIAzol reagent or RNAeasy micro kit 

(QIAGEN, Valencia, CA).  cDNA was synthesized from total RNA using 

Superscript III in presence of random primers (Invitrogen, Carlsbad, CA). 

Quantitative Real-time PCR (qPCR) was performed using SYBR Green Master 

mix on the StepOne Real-Time PCR System (Applied Biosystems). All 

oligonucleotide primers for the qPCR assays were obtained from Integrated DNA 

Technologies (Coralville, IA); NRG1 forward 

5’GATTCCTACCGAGACTCTCCTC3’ and reverse 

5’TGGAAGGCATGGACACCGTCAT3’ and GAPDH forward 

5’GTCTCCTCTGACTTCAACAGCG3’ and reverse primer 

5’ACCACCCTGTTGCTGTAGCCAA3’. Fold changes were calculated relative to 

GAPDH and normalized to the non-targeting control. 

 

3.4 siRNA knockdown studies 

 

Lung cancer cell line NCI-H1793 were plated in 6-well plates at a desired 

numbers and transfected with 2 nmol of NRG1 siRNAs (J-004608-11; and J-

004608-12) or non-target control siRNA (Thermo Scientific). Transfection with 

oligofectamine reagent (Invitrogen, Carlsbad, CA) was performed twice over a 

period of 48 hours.  Knockdown efficiency was determined by qPCR.  Cell 

proliferation assessed by Incucyte, 24 hours after transfection, cells were 

trypsinized and plated in triplicate at 8,000 cells per well in 24-well plates. The 

plates were incubated in the IncuCyte live-cell imaging system (Essen 

Biosciences) at 37°C with 5% CO2 atmosphere. Cell proliferation rate was 

assessed by kinetic imaging confluence measurements at 3-hour time intervals.  
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3.4.1 Cloning and expression of CD74-NGR1 fusions and cell proliferation 

and migration assays 

 

CD74-NRG1 fusion transcript was amplified from the Index lung cancer 

sample tissue cDNA with forward 

5’CACCATGCACAGGAGGAGAAGCAGGAGCTGT3’ and reverse primers 

5’TTCAGGCAGAGACAGAAAGGGAGTGGA3’ using Hi-fidelity polymerase 

(Qiagen, Valencia, CA). The PCR product was gel purified and cloned into plenti-

TOPO cloning vector (Invitrogen, Carlsbad, CA) and the DNA sequence was 

independently verified by Sanger sequencing.  The control LacZ or C-terminal V5 

tagged CD74-NRG1 constructs were transfected into the normal lung epithelial 

cell line BEAS-2B cells. The stable cells generated after selection in BEBM 

media (Lonza, Basel, Switzerland) containing 3 micrograms of blasticidin 

(Invitrogen, Carlsbad, CA). For proliferation assays, 50,000 cells were plated in 

12-well plates and grown in regular media. Cells were harvested by trypsinization 

and counted manually at indicated time points. All assays were performed in 

quadruplicates. For migration assays, stable cells were re-suspended in medium 

without growth factors, then seeded at 50,000 cells per well into Boyden 

chambers (8 μm pore size, BD Biosciences) and were incubated for 24 hours in a 

humidified incubator at 37°C, 5% CO2 atmosphere. The bottom chamber 

contained medium with growth factors as chemo-attractant. The top non-

migrating cells were removed with a cotton swab moistened with medium and the 

lower surface of the membrane was stained with Diff-Quick Stain Set (Siemens). 

The number of cells migrating to the basal side of the membrane was visualized 

with an Olympus microscope at 20x magnification. Pictures of five random fields 

from 4 wells were obtained and the number of cells stained manually quantified.   

 

3.4.2 Protein isolation and western blot analysis 
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Cells were plated in 100 mm plates and incubated at 37ºC in 5% CO2 

overnight to allow cells to adhere. Cells were washed with ice cold PBS twice. 

Whole-cell extracts from treated or untreated cell lines were harvested using cell 

lysis buffer (Cell Signaling), according to the manufacturer’s protocol. Protein 

concentrations in cell lysates were measured using the protein assay 

quantification (bicinchoninic) (Pierce, Rockford, IL). Equal amounts of protein 

were loaded in each lane. Cell lysates were resolved under reducing conditions 

by 10% SDS-PAGE and then transferred to PDVF membranes. After being 

blocked with 5% milk in tris-buffered saline (TBS) with 0.1% Tween20, the 

membranes were incubated with antibodies against activated or total forms of 

protein overnight at 4°C, washed three times with 0.1% Tween 20 - TBS and 

then incubated for 60 minutes with 2000:1 peroxidase-conjugated anti-rabbit IgG. 

Antibodies against E-Cadherin, Vimentin, phospho-Erbb3, phospho-Erbb3, 

phosho-ERK and total-ERK were purchased from Cell Signaling Technology Inc. 

(Beverly, MA). Total Erbb3 and Erbb4 were purchased from Santa Cruz 

Biotechnology Inc. (Dallas, TX). The membrane-bound peroxidase activity was 

detected using ECL Prime Western Blotting Detection kits (Amersham, Arlington 

Heights, IL) and chemiluminescent images were captured by exposing film.  

 

3.4.3 Chemicals and cell proliferation assays 

 

Two MEK inhibitors (AZD6244 and GSK1120212), an EGFR/ERBB2 

inhibitor (Afatinib) and a MET/ALK inhibitor (Crizotinib) were obtained from 

SelleckChem. The effect of these drugs on proliferation of NCI-H1793, NCI-

H1299 and NCI-H1792 was measured. Cells were plated at 1.5 – 2.5 × 103 

cells/well in 100µl of appropriate culture medium using 96-well plates and 

incubated at 37ºC in 5% CO2 overnight and then treated 24 hours later with the 

respective drugs. Each inhibitor was prepared at 7 serial dilutions ranging from 

0.03 to 30µM at the final concentration. On day 3, cell viability was assessed 

using 10μl/well of WST-1 reagent (Roche), according to manufacturer’s 
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instructions. The absorbance at 450 nm and reference at 630 nm were measured 

using an automated plate reader (ELx808 Bio-Tek) at different time-points. Cell 

proliferation was estimated by dividing the mean absorbance of the treatment 

group divided by the mean absorbance of the vehicle-treated control X 100%. 

Inhibitory concentration 50% (IC50) was calculated using GraphPad Prism 6 

software. 

 

3.5 Results 

3.5.1 Patient cohort description 

 

We have assembled a cohort of 732 patient samples, which includes lung 

adenocarcinoma and squamous carcinoma patients, by combining our UMICH 

cohort with public available data from TCGA and the recently published cohort by 

Seo et al., 201223 (from here on the Seoul cohort).  

  

We sequenced mRNA from 133 samples by using strand specific RNA 

paired-end sequencing (ssRNASeq) technology. The UMICH cohort includes 67 

LUAD, 36 LUSC, 24 lung cancer cell lines and 6 matched nonmalignant lung 

samples. Moreover this cohort included 64 stage I, 17 stage II and 22 stage III 

patients. Eighty-nine patients were smokers, whereas 8 were never-smokers and 

in 4 cases the smoking status was unknown. The median smoking pack years 

was 45 (range, 2 – 300) and practically all patients were heavy smokers (more 

than 10 pack years). The average follow up was 5.05 years. Sample acquisition 

details were described provided in the methods section. The TCGA cohort used 

in this study encompasses 305 LUAD and 216 LUSC samples. This includes 250 

stage I, 112 stage II, 101 stage III, and 19 stage IV cases as well as 39 with 

unknown stage. This cohort includes 4 never-smokers, 20 light smokers (defined 

by less than 10 pack years of tobacco use) and 365 heavy smokers (more than 

ten pack years of tobacco smoking), and the average follow up was 1.72 years. 

Finally, the Seoul cohort includes 79 LUAD, which did not have public available 
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clinical information. The Seoul cohort includes 79 matched normal samples; 

fusions called in these normal samples were used for filtering as described in the 

methods. 

 

In summary, the combined cohort used in this study includes 451 lung 

adenocarcinomas, 251 lung squamous carcinomas and 24 NSCLC cell lines, 

making this the most comprehensive RNA-Sequencing cohort of lung cancers 

assembled so far. A summary of the Clinic-pathological characteristics is 

provided in Table 3.3-3. 

 

Table 3.3-3. Clinic-pathological characteristics of the combined lung cohort used in this study. 

SAMPLES 
LUAD LUSC LUCL TOTAL 

UMICH 67 36 24 127 
SEOUL 79 0 0 79 
TCGA 305 216 0 521 

TOTAL 451 251 24 727 
SEX 

MALE FEMALE 
UMICH 56 55 
SEOUL 48 31 
TCGA 298 223 

TOTAL 402 309 
FOLLOW UP TIME 

MIN MEDIAN MAX AVAILABLE
UMICH 0.26 4.6411 17.3726 111 
SEOUL NA NA NA 0 
TCGA 0 0.9233 18.6630 436 

TUMOR STAGE 
STAGE I STAGE II STAGE III STAGE IV 

UMICH 64 17 22 0 
SEOUL NA NA NA NA 
TCGA 250 112 101 19 

SMOKING 
NEVER LIGHT HEAVY 

UMICH 8 NA 89 
SEOUL NA NA NA 
TCGA 4 20 365 
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3.5.2 Global overview of the fusions’ landscape 

 

Fusion calling has lagged behind single nucleotide variant calling, and 

currently there are not best practices for fusion identification, removal of false 

positives neither benchmarking comparison of different algorithms on public 

available dataset with golden truth positives. In order to have comparable results 

among samples and cohorts it is important to develop unified and data driven 

fusion prediction pipelines. We used the workflow described in Figure 3.1 (See 

Methods) to identify fusions, quantify the total number of observed fusions in 

each of patient, and integrate mutation and clinical data for each of the 732 

patients in our combined cohort 
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We detected an average of 13 fusions per tumor sample (range, 0 - 67). 

Although, both lung adenocarcinoma and squamous carcinoma have similarly 

high single nucleotide mutation rate of about 8.1 mutations/Mb3,130, they showed 

different average number of fusions per sample. We observed an average of 11 

fusions in lung adenocarcinoma tumors, while 17 in squamous carcinoma 

(student t-test p-value < 2.2 x 10-16). Moreover, we did not observe statistically 

significant differences on the average number of fusions between heavy and light 

smokers (LUAD student t-test p-value= 0.75; LUSC student t-test p-value=0.42); 

nor among different clinical stages regardless of the tissue type (Table B-2, Table 

B-3). However, we did find that tumors harboring missense or nonsense 

mutations in TP53 showed greater average number of fusions as compared to 

samples with TP53 wild type (Supplementary Figures 1a, 1b, p-value = 0.0012). 

Because > 80% of lung squamous carcinomas have somatic mutations in TP533; 

that difference is consistent with the one observed on the average number of 

fusions between LUAD and LUSC carcinomas.  In LUAD, we also observed a 

significant correlation among the presence of oncogenic mutations (e.g. KRAS 

activating mutations) and TP53 deleterious mutations (stop codon or splice site 

mutations), and the number of fusions (Fisher’s exact test p-value=0.0089). This 

correlation could not be tested in LUSC because in this indication there were a 

very few number of samples with mutations in KRAS, EGFR or other oncogenes. 
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A) Kaplan-Meyer survival curve for the combined cohort samples with low (0-7), intermediate (8-16), or high 
(≥17) number of fusions (p-value=p=0.0089).  Samples with high number of fusions have worst prognosis 
(Cox survival analysis p-value=0.0053) B) Kaplan-Meyer survival curve for LUAD samples with low (0-6), 
intermediate (7-12), or high (≥13) number of fusions (p-value=0.076).  Samples with high number of fusions 
have worst prognosis (Cox survival analysis p-value=0.029) b) Kaplan-Meyer survival plot for LUSC samples 
with low (0-11), intermediate (12-18) and high (≥19) number of fusions (p=0.169). Samples with high number 
of fusions have worst prognosis (Cox survival analysis p-value= 0.0717).  

 

Statistically significant clinical covariates in the univariate Cox model 

(Table 3.3-4) were used in a multivariate analysis examining the prognostic value 

of number of fusions.  

 

Table 3.3-4. Univariate Cox regression for overall survival according to clinical variables (n = 621). 

  
 

Overall survival 
HR 95% CI p-value 

Age, continuous 1.03 1.01 – 1.04 < 0.001 
Sex   

Female 1.00 -- 
Male 1.33 1.02 – 1.74 0.037 

Stage, continuous  1.55 1.35 – 1.76 < 0.001 
Smoking status   

Non-smoker 1.00 -- 
Smoker (<35 pack-year) 1.31 0.52 – 3.30 0.565 
Smoker (≥35 pack-year) 1.49 0.61 – 3.67 0.378 

Histology    
Adenocarcinoma 1.00 --  
Squamous cell 

carcinoma 0.99 0.76 – 1.29 0.989 
TP53 status    
   Wild-type 1.00 --  
    Mutant 0.94 0.66 – 1.33 0.717 
KRAS status    

Wild-type 1.00 --  
Mutant 0.94 0.66 – 1.33 0.717 

EGFR status    
Wild-type 1.00 --  
Mutant 1.01 0.77 – 1.33 0.924 

 

Strikingly, high number of fusions was independently associated with 

worse overall survival (HR = 1.56, 95% CI 1.13 – 2.15, p-value = 0.007, Table 

3.3-5), after adjusting for gender and disease stage. When mutation statuses of 
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TP53, KRAS and EGFR or smoking status were included in the analysis, number 

of fusions remained independently associated with worse outcome as well (p-

value =0.005).  

 

 

Table 3.3-5. Multivariate Cox regression for overall survival according to number of fusions in 621 
NSCLC patients adjusted by age, gender and stage. 

Covariates in the model Hazard 
Ratio  

95% confidence 
intervals 

p-value  

Age, continuous  1.04 1.02 – 1.05 <0.001 

Gender Female 1.00 –  

0.270 Male 1.17 0.89 – 1.54 

Stage, continuous 1.64 1.43 – 1.88 <0.001 

Number of fusions Low 1.00   

 

0.007 

Intermediate 1.11 1.78 – 1.59 

 High 1.56 1.13 – 2.15 

 

 

3.5.4 Lung fusions landscape is dominated by low recurrence and private 

fusions 

 

In order to prioritize fusion candidates and discriminate potentially true 

fusions from spurious ones, we developed a classifier to distinguish potentially 

genuine fusions from false positive ones (See Methods). This classifier uses 

structural and functional annotation features of each fusion in order to predict 

whether a fusion is potentially genuine or not.   

 

Remarkably, our classifier has a recovery rate greater than 90% and it 

automatically recapitulates our intuitive knowledge about the important structural 

properties defining bona fide fusions (Methods). In our fusions’ dataset, the top 

five features contributing the most to the fusion classifier are, in decreasing order 
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sequence is preserved). Given the size of our cohort, we could better estimate 

the recurrence of different gene fusions and so we distinguish between three 

types of recurrence: molecular, functional and family recurrence. Molecular 

recurrence refers to fusions in which the same 5’ and 3’ partners are observed in 

different samples such as SLC34A2-ROS1; functional recurrence refers to cases 

in which either the 5’ or 3’ partner is the same (CCDC6-RET and KIF5B-RET); 

and gene family recurrence correspond to gene fusions in which 5’ or 3’ partner 

belongs to the same gene family (FGFR3-TACC3, FGFR2-CCDC6, BAG4-

FGFR1). Functionally recurrent kinase fusions ROS1, RET and ALK were found 

on 0.86%, 0.29%, and 0.14% across this combined cohort (Table B-4,Table B-5). 

Other functionally recurrent gene fusions include BCAS3-MAP3K3, MRC2-

MAP3K3; and GOSR1-NF1 and NLK-NF1 and NF1-PSMD11. The recurrent 

gene fusions involving the tumor suppressor Neurofibromin 1 (NF1) do not 

generate productive fusion proteins (GOSR1-NF1, NLK-NF1, NF1-PSMD11) and 

instead destroy the functional activity of NF1, suggesting that this could be an 

additional mechanism for NF1 inactivation in lung cancers. NF1 inactivation leads 

to activation of the PIK3CA pathway. 

 

Our results confirm the high heterogeneity and low recurrence of lung 

cancer fusions, as most fusions found were private fusions or appeared at very 

low frequency (Fusions Table and Table B-4,Table B-5)).  

 

Although present in a small percentage of patients, known targetable 

fusions are preferentially observed in samples lacking any other known 

oncogenic drivers. We therefore determine for each sample in our combined 

cohort the mutation status of well-known oncogenes and tumor suppressor 

playing a role in lung cancers (Methods), reproducing previous results about the 

mutational landscape of LUAD and LUSC (Figure 3.5) and confirming that known 

fusions involving ROS1, RET and ALK are exclusively found in samples without 

other oncogenic drivers. In this set of samples the frequency of those fusions 

was 1.3%, 0.52 and 0.26 respectively. Moreover, our integrative analysis 
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combining mutational and fusion status with gene expression also showed that 

for fusions such as ROS1 in some index samples the expression of the fusion 

kinase was an outlier across the combined cohort (e.g., 3 out 6 in ROS1). 

Interestingly, we also identified the presence of samples with outlier expression 

of ROS1, and FGFR3 almost exclusively in samples without other oncogenic 

drivers (Fisher exact test p-values= 0.0048 and 0.0864 respectively, Figure 3.5). 

While the mechanism of overexpression remains to be delineated, the outlier 

kinase expression may have a potential driving role and this patient subset may 

also benefit from the available tailored drug therapies. 
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A) Lung adenocarcinoma (LUAD, n=451). B) Lung squamous carcinoma (LUSC, n=251). Top panel: 
Histograms represent the number of high quality fusions identified in each sample. Central Panel: Heatmap 
denotes the presence or absence of activating mutations in known oncogenes (red) and deleterious 
mutations in tumor suppressors (blue). Samples are presented in columns and genes are presented in rows. 
Right middle panel: Bar plot summarizes the number of samples harboring activating or deleterious 
mutations for each gene. Bottom Panel: Heatmap displays samples harboring both known and novel gene 
fusions (green) involving either receptor kinase genes or NRG1. Samples in red indicate outlier expression 
pattern observed in the respective genes. The ordering of samples in center panels was dictated by 
mutation status in KRAS, NRAS, HRAS, EGFR, BRAF, PIK3CA, and TP53 genes in that order. Remarkably, 
NRG1 gene fusions were observed in samples that lack other driver events similar to the RTK fusions 
involving ROS1, RET, ALK and FGFR3 genes. The NRG1 fusion index samples exhibited outlier NRG1 
expression and the outlier samples harbored no other known driver events in both LUAD and LUSC. 

 

3.5.5 Recurrent NRG1 fusions in lung cancers 

 

Remarkably, we found a novel functionally recurrent gene fusion where 

the common 3’-gene Neuregulin 1 (NRG1) was fused to different 5’ partners 

(Figure 3.6a). The gene fusions, CD74-NRG1, RBPMS-NRG1 and WRN-NRG1, 

occurred in both LUAD and LUSC samples. While both CD74-NRG1 and 

RBPMS-NRG1 fusion events resulted in the production of chimeric fusion 

proteins, the WRN-NRG1 fusion results in the overexpression of full length NRG1 

controlled by the WRN gene promoter. As a member of EGF family of ligands, 

the growth factor NRG1 transduces its signal through the HER/ErbB receptor 

tyrosine kinases143,144. NRG1 protein contains various domains such as kringle 

like, immunoglobulin like domains and the EGF domain that is located in the C-

terminal region143.  Notably the EGF domain that is essential for receptor 

interaction145 is preserved in all the NRG1 fusions identified (Figure 3.6a). All 

NRG1 fusion index samples were found in the driver negative group (0.78% 

frequency) and displayed outlier expression of NRG1 specifically in the tumor 

sample and not in the matched normal tissue (Figure 3.6b and Figure 3.6c). 

Strikingly similar to the pattern described above for known kinases fusions such 

as ROS1.  Therefore, we reason that NRG1 overexpression could be implicated 

in its dysregulation. Among all samples in our combined cohort, the driver 

negative lung cancer cell line H1793 exhibited the highest expression of NRG1 

(more than 250 FPKM) (Figure 3.6d), but no NRG1 fusion was detected either by 

RNASeq or FISH. To understand NRG1 functionality in this cell line we resorted 
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to siRNA mediated gene knock down. A 70% knock down achieved with two 

independent NRG1 siRNAs (Figure 3.6e) affected cell proliferation rate as 

indicated by cell growth assay (Figure 3.6f). Outlier NRG1 expression was also 

observed in 10 other driver negative samples (Table 3.3-6), elevating the 

frequency of samples with NRG1 dysregulation to 13/314 (4.14% recurrence in 

the driver negative group) implicating a potential causal role for NRG1 in this 

patient subpopulation.  
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Table 3.3-6. Lung cancer samples harboring fusions and/or outlier expression of NRG1. 

Patient Cohort Disease Fusi
on 

Onco
gene 

Mutation Outlier 
Percentile

FPKM NRG1 
Cohort 

A35 umich LUAD YES NO 
TP53 p.P33R p.P72R;  RBM10 p.A630P 
p.A696P;  SMARCA4 p.R513W;  APC 
p.V1822D p.V1804D; ATM p.N1983S 

99% 29.08 0.9273 

lc_s17 seoul LUAD YES NO TP53 p.PXXXR 99% 33.08 0.9273 

C028 umich LUAD 
NO/
TBD

NO 
SMARCA4 p.E1056X; TP53 p.R248L p.R209L;  

APC p.V1822D p.V1804D; ATM p.N1983S; 
99% 83.92 0.9273 

0232d299-4cdf-4fd7-
9a5e-8d13c208b40c tcga LUAD 

NO/
TBD

NO 
TP53 p.R156P; KEAP1 p.D236N; RBM10 

p.S781L;  
99% 21.32 0.9273 

7b0622ab-63ea-483f-
ae40-d3ea587bdbba tcga LUAD NO/

TBD
NO - 99% 25.86 0.9273 

H1793 umich LUAD_cl 
NO/
TBD

NO 
SMARCA4 p.E514X; TP53 p.P33R p.R141H; 
APC p.V1822D p.E1991D;  EGFR p.C311F; 

ATM p.N1983S;  
99% 281.86 10.1265 

a3e1ac67-a1f2-44fb-8343-
a7e8239fc24a tcga LUSC YES NO TP53 p.G244C;  PIK3CA p.D1045V 99% 49.5573 4.2247 

ce8612ab-3149-4a6a-
b424-29c0c21c9b8b tcga LUSC 

NO/
TBD

NO 
TP53 p.S314fs; CDKN2A p.P3fs; APC p.S966G; 

NF1 p.E1734V. 
99% 34.5314 4.2247 

7e691df8-8ea6-472c-86bf-
504c7ba6983d tcga LUSC 

NO/
TBD

NO 
APC p.S966G; CDKN2A p.P3fs; TP53 p.S314fs; 

NF1 p.E1734V 
99% 49.3324 4.2247 

791f1b21-695e-4db1-
b41d-80590c09d257 tcga LUSC NO/

TBD
NO KEAP1 p.R320Q p.R470C; PIK3CA p.E453K 99% 31.2416 4.2247 

14a4a93a-e24d-46f2-
bee3-18bd792ef95a tcga LUSC NO/

TBD
NO TP53 p.E271* 99% 36.7394 4.2247 

6394fe4a-6034-4c79-b28f-
aa43e3753730 tcga LUSC 

NO/
TBD

NO - 99% 57.5317 4.2247 
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In addition to characterizing NRG1 fusions, we used normal lung BEAS-

2B cells to generate stable overexpression of CD74-NRG1 fusion protein. Fusion 

overexpression significantly increased both cell proliferation (Figure 3.7a) and 

migration (Figure 3.7b, Figure 3.7c) and induced a notable phenotypic alteration 

in cell shape (Figure 3.7d). Western blot analysis revealed evidence for epithelial 

mesenchymal transition (EMT) upon CD74-NRG1 overexpression as supported 

by increased vimentin protein expression (Figure 3.7e). In order to identify 

potential pathways activated by the CD74-NRG1 fusion, we performed gene 

expression microarray profiling of CD74-NRG1 and LacZ clones. Significant 

analysis of microarrays (SAM) shows vimentin as one of the top overexpressed 

genes in CD74-NRG1 confirming the western blots (Figure B.1), as well as, down 

regulation of cadherins, supporting the hypothesis of EMT in CD74-NRG1 

positive cells. Gene set enrichment analysis identified down regulation of cell 

adhesion pathways (Figure B.1) and, interestingly, up-regulation of SRC (Figure 

3.7f) and ERBB  (Figure 3.7g) pathways in CD74-NRG1 cells. In light of these 

results we assessed the activation of those pathways by western blot and 

confirmed that, compared to LacZ control, the CD74-NRG1 cells showed 

substantially increased levels of phosphorylated ERBB3 and phosphorylated 

JNK, while a modest increase in phospho-ERK (Figure 3.7h). Having functionally 

characterized CD74-NRG1 fusion in lung cancers, we looked for productive and 

outlying NRG1 fusions in other cancer types and found the presence of 

RAB2IL1-NRG1 in ovarian cancer. As noted in the lung cancer fusions, functional 

EGF domain is retained in RAB2IL1-NRG1 and the fusion index case exhibited 

outlier NRG1 expression (Figure 3.7a and Figure 3.7b).  
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membrane after Diff-Quick staining with an Olympus microscope at 20x magnification. C) Cell counting for 
cells migrating through the Boyden chamber membrane after 24 hours. BEAS-2B cells expressing CD74-
NRG1 fusion showed a higher migration rate as compared to Lac-Z (=0.0014). D) Representative pictures of 
BEAS-2B cells expressing the CD74-NRG1 fusion or Lac-Z. Cells expressing the CD74-NRG1 fusion 
appeared smaller and more fusiform as compared to Lac-Z, suggesting that they acquired a more 
mesenchymal phenotype. E) Western blot analysis of V5 Tag, E-cadherin (CDH-1) and Vimentin in 
transfected BEAS-2B cells. V5 Tag was expressed only in CD71-NRG1 transfected cells, which showed a 
slightly lower expression of CDH-1 and a significant increase of Vimentin expression. F,G) Gene set 
enrichment analysis based on differentially-expressed genes among BEAS-2B cells transfected with the 
CD74-NRG1 fusion or Lac-Z. Significant up-regulation of SRC and ERBB2 pathways was observed in 
CD74-NRG1 cells. H) Western blot analysis of ERBB3, ERK and JNK1 activation. CD74-NRG1 cells 
showed a noticeably activation of ERBB3 and JNK1 as compared to Lac-Z cells, whereas ERK activation 
was discreetly higher in the cells harboring the fusion. 

 

3.6 Discussion 

 

Treatment and diagnosis of NSCLC, especially LUAD, has been 

transformed by the use of targeted therapies and companion diagnostics tests. 

For example, EGFR activating mutations in exons 18, 19 and 21 are now 

routinely assessed before recommending treatments with Gefitinib and Erlotinib; 

as the response rate is close to 70%146 in the mutation positive subpopulation of 

advanced NSCLC. More recently, fusions involving tyrosine kinases such as 

ROS1, ALK and RET8,132,147 have been identified primarily in young lung 

adenocarcinomas patients with no other driver mutations and no history of 

tobacco smoking. Despite the low frequency of those fusions in the population, 

phase I clinical trials have shown that patients with EML4-ALK fusions respond 

well to Crizotinib148,149 a drug targeting ALK, demonstrating the efficacy of 

targeting these kinases in the rearrangement positive subpopulation of patients. 

In this study, we use RNA sequencing to characterize, in an unbiased manner, 

the fusions’ landscape of lung adenocarcinoma and lung squamous carcinoma 

indications in order to identify potentially new oncogenic fusions. 

 

We showed that the fusions landscape is highly heterogeneous and 

dominated by low recurrence and private fusions (Figure 3.5); with on average 

higher number of fusions per sample being observed in LUSC than LUAD (t-test 

p-value < 2.2 x 10-16), but not statistically significant differences with respect to 
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any other clinical characteristics such as smoking history or disease stage (Table 

3.3-4). We also found that tumors harboring missense or nonsense mutations in 

TP53 have greater average number of fusions than TP53 wild type, although this 

result is potentially confounded by the high prevalence of TP53 mutations in 

squamous carcinomas. Remarkably, high number of fusions was independently 

associated with worse overall survival (Table 3.3-5, Figure 3.3), after adjusting 

for gender, disease stage and mutation status of TP53, KRAS and EGFR. As 

RNA sequencing becomes widely adopted for profiling transcript expression and 

gene fusions, our results suggest that the number of fusions could be used as an 

independent prognostic marker in lung cancers. 

 

The recurrent tyrosine kinase fusions, previously reported, are found 

almost exclusively in driver negative lung adenocarcinomas, and have not been 

reported in squamous carcinoma. Here, we found recurrent fusions involving 

3’gene Neuregulin 1 (NRG1) (CD74-NRG1, RBPMS-NRG1 and WRN-NRG1) 

and NRG1 outlier expression in both LUAD and LUSC indications (Figure 3.6). 

NRG1, a growth factor receptor that transduces its signal through the HER/ErbB 

receptor tyrosine kinases pathway, is expressed in a subset cancers, namely 

breast, lung and others150. CD74 is a known 5’-fusion partner in lung cancer 

involved in ROS1 kinase fusions. While CD74-NRG1 and WRN-NRG1 fusions 

contains the signal peptide and type II transmembrane domain to locate NRG1 in 

the plasma membrane, cellular location of RAB2IL1-NRG1 and RBPMS-NRG1 

needs to be further characterized.  Nevertheless, it has been previously reported 

that of the 20 NRG1 transcript variants (several transcripts lack the N-terminal 

signal sequence required for transport to extracellular space and for membrane 

localization. In these instances an internal hydrophobic amino acid stretch is 

speculated to substitute the N-terminal signal sequence143,145. 

 

Remarkably, NRG1 fusions are present in samples with no other driver 

events (Table 2, Figure 3) and the index samples display outlying expression of 

the NRG1 gene (Figure 3.6), resembling oncogenic fusions such as ROS1. 
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Moreover, we also found 10 additional cases of outlying NRG1 expression in 

driver negative samples, suggesting NRG1 potential role as a driver on those 

samples. We demonstrated that abrogating NRG1 outlying expression affects 

cell proliferation (Figure 3.6) and more importantly we showed that the fusion 

construct (CD74-NRG1) increased proliferation and migration in cell line models 

(Figure 3.7). Taken together, NRG1 fusions and outlying expression of NRG1 

account for 4.14% of the driver negative lung cancer patients. 

 

The therapeutic potential of NRG1-ERBB autocrine loop has been 

previously suggested151 and more recently blocking NRG1 and other ligand-

mediated Her4 signaling were shown to be useful in enhancing the magnitude 

and duration of the chemotherapeutic response of NSCLC152. Further studies of 

the therapeutic opportunities for LUAD and LUSC patients with NRG1 

rearrangements are warranted. 

 

In conclusion, the previously documented success of targeted therapies 

against low recurrence oncogenic fusions in lung cancer and the high 

heterogeneity of the fusions’ landscape, shown in this study, reinforce the 

demand for more personalized and tailored drug therapies for this disease. 

 

3.7 Contributions 

Science is a collective enterprise and it is much more fun when done with 

friends and good collaborators. The results presented in this chapter were made 

possible for the great collaboration and support of a team of people in the 

Chinnayian and Nesvizhskii labs. 

 

O. Alejandro Balbin: Omics data integration, RNASeq data processing, 

development of fusion classifier, fusions database, mutation analysis, additional 

bioinformatics and clinical analysis, NRG1 functional experiments design. 

Manuscript writing. Saravana M. Dhanasekaran: Beautiful RNASeq strand 
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specific libraries for the UMICH lung cohort, CD74-NRG1 construct and 

transfection, ORFs construction of the NRG1 fusion proteins, NRG1 functional 

experiments design. Manuscript writing. Ernest Nadal: Functional 

characterization of the CD74-NRG1 fusion protein, proliferation and invasion 

assays for BEAS-2B transformed cells with CD74-NRG1, clinical analysis, 

Western blots for JNK and ERBB3 activation. Manuscript writing. Guoan Chen: 

Tissue collection and PCR gene fusion validation. Matthew Iyer: RNASeq data 

processing. Dan Robinson: RNA Sequencing. Xuhong Cao: RNA Sequencing. 

David Beer: Experiment design and overall scientific project oversee. Arul M. 

Chinnayian: Experiment design and overall scientific project oversight.  
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Chapter 4  
Antisense gene expression in human cancers: 

understanding cis-acting mechanisms of 
transcript regulation 

 

4.1 Background 

 

High throughput RNA sequencing has revealed widespread transcription 

in the human genome153. However, the extent to which both DNA strands 

(forward and reverse) are transcribed in regions of the genome with overlapping 

genes is less well characterized. This lack of understating is in part due to the 

fact that initial RNASeq protocols did not preserve the strand of the original RNA. 

Overlapping transcripts originating from the same locus of DNA but on opposite 

strands are known as sense-antisense transcript pairs (S-AS) and they have 

been described in eukaryotes and bacteria. Natural antisense transcripts (NATs) 

are transcribed from the opposite strand to that of the sense transcript of either 

protein-coding or non-protein-coding genes154,155. In this study, the originally 

annotated transcript will be considered as the sense transcript and the more 

recently identified one on the opposite strand as the antisense transcript, 

following Pelachano and Steinmetz (2013)155. 

 

4.1.1 Natural antisense transcripts classification 

 

NATs may arise from independent transcriptional units including cryptic 

promoters situated within genes, typically in intronic regions, or near 
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4.1.3 Antisense expression 

 

Several attempts to describe the patterns and magnitude of antisense 

expression suggested that antisense expression might be far more extensive 

than previously anticipated; with 10-20% of loci exhibiting antisense expression 

in humans176, though up to 72% in mice177. However, previous studies attempting 

to characterize the magnitude of antisense expression used methods such as 

ASSAGE 4  176 or SAGESeq 5  for identifying NATs and quantifying antisense 

expression. These methods are intrinsically limited in their accuracy and 

coverage of the entire transcriptome, allowing only the assessment of a small 

fraction of the total number of genes and missing transcripts expressed at low 

levels. Due to these limitations and their laborious experimental protocols, those 

methods have been applied only to small datasets. This has limited our 

understanding of the landscape of antisense expression, the patterns of 

expression between overlapping transcripts and more importantly the role of 

antisense expression in cancer.  

 

4.1.4 Strand specific RNA sequencing 

 

RNA sequencing (RNASeq) has opened the way for a comprehensive 

analysis of the entire transcriptome. However, standard libraries for RNASeq do 

not preserve the information about which DNA strand was originally transcribed. 

This information is lost during the synthesis of randomly primed double stranded 

cDNA followed by addition of adaptors for next-generation sequencing24. In some 

cases, the strand is inferred by computational methods relying in known open 

reading frames and splice-site orientation in eukaryotic genomes, but these 

                                            
4 ASSAGE: asymmetric strand-specific analysis of gene expression 
5 SAGESeq: Serial analysis of gene expression coupled with sequencing 
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methods are not able to accurate resolve the expression of locus with 

overlapping genes. 

 

Strand specific RNA sequencing (ssRNASeq) solves those problems by 

providing direct information on the DNA strand that was originality transcribed. 

Several methods for strand specific RNA library preparation has been proposed, 

but dUTP second strand labeling and the illumina RNA ligation are the leading 

protocols for ssRNASeq (see Chapter 1)24. ssRNASeq enhances the value of 

RNASeq experiments by allowing an accurate characterization of antisense 

transcripts, demarcation of the exact boundaries of adjacent genes in opposite 

strands and accurate resolving the expression of overlapping transcripts.  

 

4.1.5 Aims of this study 

 

In this study we use strand specific RNA paired-end sequencing 

(ssRNASeq) to comprehensively characterize the landscape of antisense 

expression. We applied ssRNASeq on a cohort of 376 patients including 9 

different cancer tissue types, making this the biggest cohort of ssRNASeq data 

assembled so far. Our results reveal that greater than 60% of human annotated 

transcripts have measureable expression coming from the opposite strand of the 

DNA. We also demonstrate that cis-NAT gene pairs have in general a positive 

correlation between their levels of expression, and that this pattern is stronger for 

head-to-head overlapping pairs. Moreover, by analyzing CpG islands localization 

with respect to the regions of overlap between transcripts, we suggest that the 

high gene expression correlation of HTH pairs would reflect shared bidirectional 

promoters between the sense and antisense transcripts.  

 

Furthermore, according to the expression across tissues, four groups of 

antisense loci were identified: tissue-specific, tissue-enriched/non-specific, 

ubiquitously and cancer specific (in tumor but not in normal samples). Finally, this 
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study creates and makes available a catalogue of tumor suppressors and 

oncogenes with significant antisense expression (oncoNATdb), which will allow 

cancer researchers to investigate the mechanisms of sense-antisense regulation 

in cancer. 

 

4.2 Methods 

4.2.1 Bio-repository description 

 

The Michigan Center for Translational Pathology (MCTP) strand specific 

RNASeq repository included in this study has 376 samples. Most of the samples 

correspond to cancer tissues, being the largest tissue cohorts: breast, lung 

adenocarcinoma, lung squamous carcinoma, prostate cancer, ovarian cancer, 

pancreatic cancer, meningioma, rare cancers, and lung cell lines. Table 4.4-1 

presents a break down of major and minor cohorts included in this study. 
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Table 4.4-1.Tissues and number of samples the MCTP ssRNASeq cohort.  

Major Cohorts 

Tissue Abbreviation Number of samples 

Breast cancer BRCA 66 

Lung adenocarcinoma LUAD 66 

Lung squamous carcinoma LUSC 37 

Lung cell lines LUCL 31 

Prostate cancer PRCA 27 

Ovarian cancer OVARIAN 23 

Pancreas cancer PANC 17 

Meningioma MENINGIOMA 13 

Rare cancers RARE  39 
Minor Cohorts 

Tissue Abbreviation Number of samples 

Cholangiocarcinoma CHOLANGIO 8 

Lung large cell carcinoma LULC 8 

Merkel cell carcinoma MERKEL 8 

Lung match normals LUNO 7 

Sarcomas SARCOMA 7 

Osteosarcoma OSTEOSARCOMA 5 

Adrenocortical carinoma ADRENOCORTICAL 4 

Hodgkin’s lymphoma  HODGKINS 4 

Rhabdomyosarcoma RHABDOMYOSARCOMA 3 

Combined Cohort  376 
 

4.2.2 Preparation of RNASeq libraries 

 

Transcriptome libraries were prepared following a modified protocol 

previously described for generating strand specific RNASeq libraries24.  Briefly 

2.5 micrograms of total RNA was subjected to polyA selection using oligodT 

beads (Invitrogen, Carlsbad, CA).  Purified polyA RNA was fragmented and 

reverse transcribed using SupersciptII (Invitrogen, Carlsbad CA).  Second strand 

synthesis was performed with DNA Polymerase I (New England Biolabs, Ipswich, 

MA) in presence of dNTP mix containing dUTP instead of dTTP.  The product 

was then subjected to end repair, A base addition and adaptor ligation steps.  

Libraries were next size selected in the range of 350 bps after resolving in a 3% 
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Nusieve 3:1 (Lonza, Basel, Switzerland) agarose gel and DNA recovered using 

QIAEX II gel extraction reagent (Qiagen, Valencia, CA). Libraries were barcoded 

during the 14-cycle PCR amplification with Phusion DNA polymerase (New 

England Biolabs, Ipswich, MA) and purified using AMPure XP beads (Beckman 

Coulter, Brea, CA). Library quality was estimated with Agilent 2100 Bioanalyzer 

for size and concentrations.  The paired end libraries were sequenced with 

Illumina HiSeq 2000 (2x100 bases, read length). Reads that passed the filters on 

Illumina BaseCall software were used for further analysis. Importantly, because 

of the nature of this protocol the second read in each pair is complementary to 

the original mRNA and therefore indicates what DNA strand was transcribed. 

 

4.2.3 Sequence Alignment  

 

Sequence alignment was performed using the Tuxedo pipeline: Bowtie2 

(Bowtie2/2.0.2) and Tophat2 (TopHat/2.0.4)47. We supplied TopHat with the set 

of transcript models annotated in the Homo sapiens Ensembl database version 

69. The option fr-firststrand was used for the strand specific RNASeq libraries 

while all other parameters were used with default values. When provided with 

ssRNASeq data TopHat2 annotates aligned reads with the tag XS indicating the 

strand of origin in the DNA. 

 

4.2.4 Transcript summarization  

 

We used Ensembl v69 as the reference transcriptome to reconstruct the 

longest annotation for each gene based on the transcript and exon information 

provided by this assembly. We only included transcript isoforms that satisfied the 

following criteria: gene and transcript biotypes were annotated with the same 

type; transcript isoform annotation level was manual or automatic followed by 

manual revision (annotation levels 1 or 2) and transcript isoform was not reported 

as a problematic in the Encode-Gencode attributes table (e.g: transcript biotype 
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is retained_intron, to be experimentally confirmed, or disruptive_domain).  

Moreover, each transcript isoform used for our gene models was annotated with 

their “isoform expression rank” across the tissue cohorts, and their support level 

(tsl) provided by the Genecode project. Tsl equal to 1 indicates that all splice 

junctions of that transcript are supported by at least one non-suspect mRNA; any 

other number suggests that the transcript is supported by suspicious ESTs. 

These final gene models were used as the reference loci, or features, for 

downstream analysis. 

 

4.2.5 Strand specific expression 

  

The final gene models in the summarized transcriptome obtained in 4.2.4 

were used to compute strand specific expression. Paired-end reads mapping to 

the forward or opposite strand of a feature were counted in order to quantify the 

raw amount of forward and reverse transcription on a particular locus.  In order to 

determine what DNA strand a read pair was originated from, we first used the 

reads’ XS tag, provided by TopHat2, to identify the strand for each read in the 

pair. Then, we use the fact that in our ssRNASeq protocol the second read is 

complementary to original mRNA and therefore the second read has to be on the 

same strand than the feature, while the first read on the opposite strand. These 

criteria unambiguously define a read pair DNA strand of origin.  

 

We discard all pairs in which one or both reads map to multiple locations 

in the genome, and all read pairs in which any of the reads was improperly 

mapped or did not have the XS flag provided by TopHat2 to indicate the strand of 

origin. 

 

4.2.6 Read counts normalization 
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Read counts normalization was performed using DESeq52, which models 

the read counts data using a negative binominal distribution and estimates the 

variance by modeling the sum of the shot or Poisson noise and the sample-to-

sample variation. DESeq first estimates the effective library size, and then divide 

the counts by the effective library size in order to bring counts into a common 

scale. Given the size of our cohort, we used the following parameters to estimate 

the variance (dispersion): method="per-condition", sharingMode="gene-est-only", 

fitType="local". Normalized counts were used for all other downstream analysis. 

 

4.2.7 ssRNASeq strand specificity estimation 

 

ssRNASeq protocol’s strand specificity is defined as the number or reads 

mapping to known transcribed regions at the expected strand. Assuming that 

most genes are transcribed in the sense direction, Levin et al., (2010) measured 

the strand specificity or protocol error rate of a library, as the fraction of reads 

mapped to the opposite strand generated by the forward gene. This fraction 

constitutes a measure of the protocol error rate, ranging from 0.5 for the best 

method to 12% for the less specific one24.  

 

In order to determine the protocol error rate, we select loci that do not 

overlap any other transcripts in our reference transcriptome, and do not have any 

other neighboring gene within 20Kb in either side (3’ or 5’ ends). We reason that 

the fraction of reads mapped to the opposite strand of those loci would constitute 

an estimate of our ssRNASeq protocol error rate (pe). The average pe in our 

cohort of 376 samples is 0.64% (min=0.17%, max=0.69%, sd=0.0055), 

demonstrating the high strand specificity of our libraries. 

 

4.2.8 Detection of transcripts with expression in both strands  
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In order to determine how many loci consistently express both forward and 

reverse strands, we first determined for each sample the protocol error rate as 

describe above as an estimate of the background noise in the opposite strand of 

a particular loci. For each sample, loci with read counts in both the forward and 

reverse strands, and opposite strand ratio (OPSratio= Reverse read 

counts/(Forward read counts + R read counts)) greater than the pe for the 

sample were considered as expressing both strands. Next, we leveraged the size 

of our full cohort (n=376) aiming at identifying those loci that are expressing both 

strands consistently across multiple samples. We reason that recurrent 

expression is an indicator of genuine transcripts; therefore antisense transcript 

expressed above the protocol error rate in different samples across the cohort 

would have a higher chance of being genuine. We defined a locus as having 

measurable antisense expression if that locus has OPSratio > pe in at least 5% 

(n=20) of the cohort samples. 

  

4.2.9 Antisense loci identification  

 

We used a probabilistic method for natural antisense transcripts 

identification using RNASeq (NASTI-seq178). That method incorporates the 

protocol error rate (pe) of the ssRNASeq procedure and employs a model 

comparison framework to identify loci with significant antisense expression. 

Briefly, for each locus in a reference transcriptome the method first calculates the 

probability of the observed read count data under a sense only model, in which it 

is assumed that the sense gene is the only one being expressed and the reads 

mapped to the opposite strand are due to the pe. Then, the method calculates 

the probability of the observed data under a second model, antisense model, in 

which the reads mapping to the opposite strand of a particular locus in the 

genome come from two different sources: pe and the bona fide expression of an 

antisense transcript overlapping the locus. The NASTIscore, a type of Bayesian 

information criteria (BIC) score is calculated to determine what model fits best the 
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data. Finally, a training dataset of true positives and true negative pairs was used 

to determine the minimum NASTIscore score that distinguishes between 

potentially true antisense loci from the background noise. 

 

We build the training datasets as follows. First, we determine all 

overlapping pairs in our reference transcriptome. Then, we annotated each pair 

according to the Ensembl gene biotype of the genes involved and the length of 

the overlapping regions. The true positive pairs dataset was conformed by all 

pairs of genes, with an exonic overlapping greater than one base pair and 

involving a protein coding gene and a known antisense transcript. The true 

negative dataset was conformed by all protein coding genes that do not overlap 

exons or introns of other genes, the closest neighboring gene in either direction 

is more than 20 Kb away and the mean number of reads mapping to the opposite 

strand of that gene is less than 50.  

 

4.2.10 Identification of lineage- and cancer-specific antisense loci 

 

We computed the NASTIscore for all loci with expression in both strands 

in at least one sample of a tissue cohort. The NASTIscore calculation was 

performed for each tissue type independently. Then loci with significant antisense 

expression, as determined by a NASTIscore greater than the minimum 

NASTIscore for each cohort (see 4.2.9), were aggregated. These loci will be 

denoted as antisense loci (ASloci) from here on. Furthermore, we defined three 

groups of antisense loci according to their presence in different cohorts. 

Antisense loci identified in all cohorts were termed ubiquitous ASloci, while 

ASloci identified in only one tissue type were name tissue or lineage specific. We 

also observed ASloci that were expressed in more than two tissue types but not 

in all and we treated this group as tissue enriched or non-specific ASloci. 

 Because our compendium is substantially enriched for cancer samples 

and all benign samples correspond to match normal of lung adenocarcinoma 
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(LUAD) and squamous carcinoma (LUSC) patients, we identified lung cancer 

specific ASloci, that is, ASloci identified as such in the LUAD and LUSC tumor 

cohorts but not in the benign cohort. We further determined what ASloci were 

detected in our cohort of 31 lung cell lines and which ones were also identified in 

other cancers. The first of these groups correspond to lung cancer specific ASloci 

while the second one to cancer non-specific ASloci. 

 

4.2.11 Correlation between sense and antisense transcripts 

 

In order to determine the patterns of expression between genes of a cis-

NAT pair, we calculated different measures of correlation between the 

expression of the sense and antisense genes. The measures of correlation 

calculated were the Spearman correlation coefficient, the Pearson correlation 

coefficient, the coefficient of robust correlation and the mutual information. All 

these metrics produced very similar correlation results; therefore we chose the 

Spearman correlation for further analyses. The correlation was computed 

independently for each cis-NAT pair in each tissue cohort, as well as, across the 

combined cohort of 376 samples. The statistical significance of each correlation 

was corrected for multiple hypotheses testing using the Hochberg's procedure.  

We compute the null or random distribution, as the distribution of 

correlations between any two random genes. Similar to the cis-NAT calculation, 

we compute the null distribution for each tissue type and across our combined 

cohort.  

 

4.2.12 CpG islands analysis 

 

CpG islands have been found in 30 to 60% of unidirectional and 80% to 

95% of bidirectional promoters179. Bidirectional promoters refer to intergenic 

sequence between the transcription start sites of bidirectional genes pairs. 

Bidirectional gene pairs, in turn, are defined as two non-overlapping genes 
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arranged in head-to-head configuration and separated by less than 1000 bp180.  

Therefore, we used the presence or absence of CpG islands in a genomic region 

as proxy for the presence or absence of a gene promoter in that region.  

 

In order to determine whether overlapping regions of head-to-head cis-

NAT pairs harbor potential bidirectional promoters, we downloaded, from UCSC 

genome browser, tracks providing CpG island strength predictions, and mapping 

of bona fide CpG islands for the human genome hg19. These tracks are based 

on large-scale epigenome predictions described by 181.  Next, for each pair of cis-

NAT genes, we defined the DNA regions of overlap between those genes and 

then tabulated how many CpG islands are found within that overlapping region. 

We reason that if a gene promoter exists within the overlapping regions of cis-

NAT pairs, we should observe an enrichment of CpG islands in those regions. As 

a positive control we identified a set of bidirectional protein coding gene pairs 

using the definition presented above and including only gene pairs with gene 

expression correlation greater than 0.2 across our cohort of 376 samples. A 

mean correlation of 0.2 between the expressions of bidirectional genes was 

previously described180 and it is confirmed in by our own analyses. 

 

4.2.13 Differential expression analysis of sense/antisense pairs 

 

DESeq normalized read counts as described in 4.2.6 were used for 

differential expression analysis between lung adenocarcinoma and lung 

squamous tumor samples and their match normal samples. We reasoned that 

the forward and reverse expression of a particular locus could change in a 

consistent or inconsistent fashion between tumor and normal samples. In a 

consistent change, the expression of forward and opposite strands will be over or 

under expressed between tumor and normal samples. On the other hand in an 

inconsistent change, the expression of forward and reverse strands will change 

in opposite directions between tumor and normal samples. Therefore, when the 
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forward strand is over expressed the opposite strand will be under-expressed 

and vice versa, suggesting potential mechanisms of interference between sense 

and antisense genes.  

 

In order to identify loci with consistent or inconsistent changes in the 

expression of forward and reverse strands, we used a negative binomial test as 

described by Anders et al., (2010)52 to determine differential expressed cis-NAT 

pairs between tumor and normal samples. We first identified cis-NAT pairs for 

which both sense and antisense genes were differentially expressed with 

adjusted p-value <= 0.1. Then we defined a log fold change threshold (lfcth) of 1 

and select as consistent pairs differentially expressed cis-NAT pairs for which the 

absolute log fold change expression of sense and antisense genes were >= lfcth. 

Inconsistent cis-NAT pairs were defined as differentially expressed pairs for 

which the log fold change expression of the sense gene was >= lfcth, while the 

expression of antisense gene <= -1* lfcth, or vice versa. 

 

4.3 Results 

4.3.1 Development of a bioinformatics analysis workflow for antisense 

transcript analysis 

 

Strand specific RNA paired sequencing (ssRNASeq) data from a 

compendium of 376 samples (303 tissue and 69 cell lines samples), representing 

both cancer and benign from 9 different tissue types recently generated for our 

laboratory, was used to develop a bioinformatics workflow for the analysis and 

characterization of antisense expression in human cancers (Figure 4.1, 

Methods).  

 

First, sequencing reads were mapped to the human genome (hg19, 

GRh37) using TopHat2 (TopHat/2.0.4)47. Then, a summarized transcriptome was 

build by reconstructing the longest annotation for each gene, using transcript and 
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exon information provided in the Ensembl.v69 assembly. Only high quality 

transcript isoforms were included, while problematic and miss-annotated 

transcripts were filtered out (see Methods). This procedure generated 42,129 

gene models. Second, these gene models were used as reference loci to 

compute the number of strand specific pair-end reads mapping to the forward or 

reverse strand of each locus; and then to calculate the expression level of each 

strand in that locus (see Methods). Loci expression was then normalized using 

DESeq52. Third, strand specificity was calculated for each library in order to 

determine the protocol error or background noise affecting our estimation of the 

expression coming from the opposite strand (see Methods). Fourth, loci 

consistently expressing both, forward and reverse, strands across our cohort 

were identified. Moreover, a locus that has OPSratio > pe in at least 5% (n=20) of 

the cohort samples (Methods) was considered as a locus with measurable 

antisense expression. Fifth, a probabilistic method was used for natural 

antisense transcripts identification using RNASeq (NASTI-seq178). This method 

accounts for the variable protocol error in order to identify loci with significant 

antisense expression (Methods). 
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Finally, we calculated the correlation between sense and antisense 

transcripts forming cis-NAT pairs and determined tissue specific, tissue-

enriched/non-specific, ubiquitous and cancer specific antisense loci. Taken 

together this bioinformatics pipeline nominates expressed antisense loci across 9 

different tissue types and establishes their pattern of expression. The pipeline 

further aggregates tumor suppressor and oncogenes with significant antisense 

expression in a single catalogue, oncoNATdb.  

 

4.3.2 Antisense expression is pervasive across the human transcriptome.  

 

Figure 4.4a and Figure 4.4b show that in any given locus most of the 

observed expression originates on the annotated or forward strand; the 

expression originating from the opposite or reverse strand is overall two to three 

orders of magnitude lower (median of reverse/forward = 0.001). Accurate 

quantification of strand-specific expression is further complicated by the 

ssRNASeq protocol error (pe)24. To address this, we calculated the protocol error 

for each of our samples and then determined the fraction of the transcriptome 

with measurable expression in the opposite strand. pe ranges from 0.5 for good 

ssRNASeq libraries to 12% for the less specific ones24. The average pe in our 

cohort of 376 samples is 0.64% (min=0.17%, max=0.69%, sd=0.0055), which 

indicates a high strand specificity of our libraries (Methods) and supports the use 

of these data for identifying loci harboring expression of both strands. We defined 

a locus as having measurable antisense expression if that locus has opposite 

strand ratio (OPSratio) greater than pe in at least 5% (n=20) of the cohort 

samples.  
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authors. Figure C.1b indicates that forward loci would represent 87% of 

transcripts, reverse loci 4%, and forward-reverse loci 9% respectively.  

 

Although useful as an initial assessment, thresholding approaches, which 

use the OPSratio or the minimum number of reads in the opposite strand176,184-

186, as the only criteria to determine antisense loci, can be affected by biological 

variation, library size differences and the efficiency of the strand specific libraries. 

Thus, these approaches introduce error into the identification of antisense loci. 

More importantly, these methods do not account for the generally two-orders-of-

magnitude lower expression of reverse strand compared to the forward strand 

(Figure 4.4) Therefore, using only the OPSratio likely underestimates the number 

of antisense loci; missing loci with significant antisense expression, especially in 

those cases in which the sense strand is expressed at intermediate or high 

levels.  

 

In order to overcome these limitations, we used a probabilistic method for 

natural antisense transcript’s identification using RNASeq (NASTI-seq178) that 

incorporates the variable pe of ssRNASeq protocols and employs a model 

comparison framework to identify loci with significant antisense expression 

(Methods). Briefly, for each locus in a reference transcriptome the method 

calculates both the probability of the observed read count data under a sense 

only model and an antisense model. In the first model, reads mapped to the 

opposite strand are due to the pe only, while in the second one reads mapping to 

the opposite strand of a particular locus come from two different sources: the pe 

and the bona fide expression of an antisense transcript overlapping the locus. 

Therefore, an antisense locus is defined as a region of DNA in which the 

antisense model explains better than the sense only model the read count data 

observed over that region (Methods). 

 

Out of all transcribed loci consistently expressing the reverse strand 

across our entire cohort, an average of 6398 (sd=1019.30) genes were identified 
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4.3.4 Bidirectional promoters would direct the expression of head-to-head 

cis-NAT pairs 

 

As shown in Figure 4.8b, HTH cis-NAT pairs have the highest positive 

gene expression correlation and this expression pattern is observed across 

different tissues types, suggesting that a common structural mechanism 

coordinates the expression of both genes in the pair. Similarly, co-expression 

patterns have also been observed for divergent but not overlapping genes driven 

by bidirectional promoters180. Inspecting the structural properties of the HTH cis-

NAT pairs, we realized that close to 60% of those pairs involve overlapping 

regions between the 5’UTR (5UTR-5UTR) regions of each gene or the 5’UTR 

and the first exon (5UTR-exon, specially between protein coding and ncRNAs 

where UTRs are not defined).  Taken all these together, we hypothesize that 

HTH cis-NAT pairs may share bidirectional like promoters that direct the 

concerted expression of both genes in the pair. 

 

Bidirectional promoters are genomic regions that initiate transcription in 

both directions191. In metazoans, bidirectional promoters have typically been 

associated with the intergenic sequence between the transcription start sites of 

two non-overlapping genes arranged in divergent orientation and separated by 

less than a 1000 bp180. Recent studies have estimated that about 10% of protein-

coding genes would share a bidirectional promoter179. Bidirectional promoters are 

CG rich and CpG islands are present in 80% to >95% of bidirectional promoters, 

while only present in 30 to 60% of unidirectional promoters192. Other marks of 

active transcription such as RNA polymerase II occupancy and modified histones 

H3K4me2, H3K4me3, and H3K9ac have also been observed in bidirectional 

promoters179. Because of their high association with bidirectional promoters, we 

used the presence or absence of CpG islands in a genomic region as proxy for 

the presence or absence of a gene promoter in that region. 
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(transcription start site associate RNAs) from the opposite strand154,193. 

Increasing evidence also suggests that these non-coding transcripts influence 

the expression of their cognate protein coding genes through multiple 

mechanisms that are still incompletely understood191. For NATs in particular, 

several examples of highly co-expressed HTH cic-NAT pairs have been reported 

in which the antisense gene regulates the expression of their sense counterpart. 

Sessa et al., 2007156 demonstrated that the expression of antisense transcripts to 

human HOXA genes promotes a collinear activation of the corresponding 

cognate HOXA sense genes. Extending these observations, Zhang et al., 

2009157 showed that HOTAIRM1, a non-coding RNA, was co-expressed with the 

HOXA gene locus and HOTAIRM1 positively regulated the expression levels of 

the HOXA gene. 

 

Our results give additional support to these observations regarding the 

pattern of expression of HOXA genes and their respective antisense genes 

(Figure 4.14a, Figure C.2). Moreover based on the similarities with those 

examples, both in the genomic structure and the high genes expression 

correlation, we illustrate several representative examples of other gene pairs in 

the HOXD (chr2), HOXC (chr12) and HOXB (chr17) clusters that exhibit similar 

co-expression patterns to the one described for the HOXA (chr7) cluster (Figure 

4.14b, Figure C.2a,b). These data suggests that a similar regulation mechanism 

between sense and antisense transcripts could exist in those other clusters.  

 

Importantly, these regulation patterns are not restricted to homeotic 

genes, as our results also nominate other known examples such as WT1/WT1-

AS (Figure 4.10a), as well as novel cis-NAT pairs with the characteristics 

described above and functions as diverse as cell adhesion and migration (BVES) 

(Figure 4.14b), Ras guanine nucleotide-releasing factors (RASGRF2) (Figure 

C.2c), transmembrane proteins (TMEM220, TMEM176B, TMEM176A) and 

transcription factors (NKX2-1, WT1, TBX5, HAND2, FOXD3) among others 

(Figure 4.14b). Similarly to NKX2-1, we validated the positive correlation between 
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BCL2L11 represent particular cases of the HTH cis-NAT pattern described 

before, while KRAS, PIK3CA and RAF1 correspond to tail-to-tail configurations. 

In these last cases, the transcription of a neighboring protein coding gene 

overlaps or runs into the 3UTR and the body of those oncogenes (Figure C.3).  

 

A second group of, an average, 2881 (sd=967.96) antisense loci were 

expressed at high levels in several tissue types and display low or absent 

expression in the others. These tissue enriched/non-specific antisense loci 

account for 26.21% - 53.23% out of all antisense loci identified in each cohort 

(Figure 4.16a). Protein coding genes in this group were enriched for cell 

adhesion, activation of protein kinases and embryonic morphogenesis (Figure 

4.16c, middle). Notably, 133 known cancer genes were also found in this 

category including AXL, MTUS1, E2F2, TET2, JAK2, STK11 MAP4K1, BCAS1 

and CCND1.  

 

Finally, we identified a third group of antisense loci that are mainly 

expressed at high levels in only one tissue type. We consider these to be 

lineage-specific (Figure 4.16b), with the possibility that such transcripts contribute 

to tissue specific processes. This category of transcripts represented the smallest 

group, with an average of 244 (sd=166) loci by tissue, representing only 1.8 - 7% 

out of all antisense loci identified in each cohort.  In contrast with the ubiquitous 

group, tissue specific antisense loci indeed were enriched for functions related 

with tissue development, morphogenesis and differentiation (Figure 4.16c, right. 

Out of 1563 linage specific loci, 113 involved tumor suppressors or oncogenes 

(Figure 4.16a) such as GTSE1, ERCC6 and GSK3B in LUAD; ABL2 in LUSC; 

ROS1, LCK and BCL2 in BRCA; TP53 and KLK10 in PRCA; CREBL2 and CDK2 

in PANC; and RET, ABL1, TBX1 and VAV1 in the lung cell lines (Figure 4.16a). 

By inspecting the coverage maps of these examples, we found that ROS1, RET, 

VAV1, ABL2 and BLC2 do not have annotated overlapping transcripts; however 

we observed clear evidence of embedded antisense transcription in all of them 

(Figure C.5).  
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4.3.6 Antisense loci in lung cancers 

 

Because our compendium is substantially enriched for cancer samples, and 

benign samples correspond only to match normal samples of lung cancer 

patients (lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC)), we 

investigate lung cancer specific antisense loci. 2101 cancer-specific antisense 

loci were found expressed in LUAD or LUSC but not in the benign samples 

(Figure 4.17a); 1456 were expressed in both tissues and 1212 out of those were 

also found in our cohort of lung cell lines.  Out of those 1456 loci, 1260 were 

found in lung and at least another tissue type  (Figure 4.17a) whereas 196 were 

lung cancer specific (Figure 4.17b).  

Interrogating antisense loci involving cancer related genes, 88 cancer-

related genes were found in which the expression of the opposite strand was 

statistically significant according to the NASTIseq score. Interestingly several of 

those genes do not have a previously annotated antisense transcript; however 

our ssRNASeq data suggest the presence of promoter associated, intronic and 

3UTR antisense expression. E2F2 antisense transcript that locates to the 3UTR 

region of this gene has not been previously and is preferentially observed in lung 

cancers. ABL2, MTAP and GTSE1 display unannotated antisense expression 

originating from an embedded intronic transcript and they were mainly observed 

in LUAD and LUSC respectively. 
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adenocarcinoma or lung squamous carcinoma but not in lung normal samples. C) Tumor suppressors and 
oncogenes specific antisense loci. D) Functional analysis of all protein coding genes identified as cancer 
specific antisense sense loci. The heatmaps represent presence/absence of antisense the Antisense loci in 
a particular tissue type. 

 

Next, we focused on analyzing how the sense and antisense expression 

on a given locus changed between tumor and normal samples. We reasoned that 

the forward and reverse expression of a particular locus could change in a 

consistent or inconsistent fashion between tumor and normal samples. In a 

consistent change, the expression of forward and opposite strands will be over or 

under expressed between tumor and normal samples. In an inconsistent change, 

the expression of forward and reverse strands will change in opposite directions 

between tumor and normal samples. Therefore, when the forward strand is over 

expressed the opposite strand will be under-expressed and vice versa, 

suggesting different potential mechanisms of regulation between sense and 

antisense genes.  

 

In order to identify loci with consistent or inconsistent expression changes, 

we used DESeq normalized read counts over forward and reverse strand of a 

locus to perform differential expression analysis between tumor samples and 

normal samples (Methods). A negative binomial test52 was used to determine loci 

whose forward and reverse strands were differentially expressed. Both strands 

were required to have an absolute log fold change (lfc) greater than 1 with 

identical signs for consistent loci (lfc>=1 or lfc<=-1), while opposite signs for 

inconsistent loci (forward lfc>=1 and reverse lfc<=-1; or forward lfc<=-1 and 

reverse lfc>=1) (Methods).  

 

First an analysis of 3 pairs of matched LUAD tumor and normal samples 

was performed, revealing the four groups of loci that we hypothesized (Figure 

4.18a) and then this proof of concept analysis was extended to the full lung 

adenocarcinoma (n=66) and lung squamous carcinoma (n=36) cohorts. Figure 

4.18b identified those groups by showing the average log fold change for each 
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Table 4.4-2. Number of consistent and inconsistent differential expressed antisense loci.  

 LUAD LUSC 

 All Cancer-related All Cancer-related 

Consistent 
loci 

831 55 1258 71 

Inconsistent 
loci 

258 10 417 18 

 

Table 4.4-3. Break down by configuration of consistent and inconsistent differential expressed 
antisense loci.  

 LUAD LUSC 

 EMB HTH TTT EMB HTH TTT 

All cis-NAT 6807 1944 2152 6807 1944 2152 

Consistent 
loci 

125 133 65 171 131 84 

Inconsistent 
loci 

60 14 37 74 11 64 

Analyzing each tissue independently shows that HTH cis-NAT pairs are over-represented in consistent loci 
fisher test p-value=1e-5 and for both LUAD and LUSC 3x3 contingency table. Fisher test p-value<2.2e-16 
and 1.41e-15 for the 2x2 contingency table including the consistent loci. 

 

 

The Hypoxia-inducible factor 1-alpha (HIF1A) and the Tubulin 

Polymerization Promoting Protein (TPPP) are representative examples of 

consistent and inconsistent loci respectively. In the HIF1A locus the expression 

of forward and reverse strands increase in tumors samples with respect to 

normals (Figure 4.20a); while in the TPPP locus the expression of the antisense 

transcript increases in tumors while TPPP sense expression decreases Figure 

4.20b). Our data shows HIF1A and TPPP sense/antisense expression changes 

are rather general phenomena that is observed in both match tumor-normal pairs 

(Figure C.4) and the rest of tumor samples (Figure 4.21a, Figure 4.21b). 
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4.3.7 oncoNATdb: a catalogue of antisense loci involving tumor 

suppressor and oncogenes 

 

Given the increasing evidence for the role of antisense dysregulation in 

cancer167-175,194, recent studies have suggested that targeting antisense 

transcripts in the clinical setting may represent a promising technology for 

modulating the expression of specific genes158,195. The first step in bringing these 

emerging therapies into the cancer arena is to catalogue and characterize all 

cancer related genes involved in cis-antisense regulation.  

We therefore created, oncoNATdb, the first catalogue of cis-NAT pairs 

involving cancer related genes. To do so, we first performed an unbiased search 

of cis-NAT pairs in which at least one of overlapping genes was a known tumor 

suppressor or oncogene and calculated the gene expression correlation for the 

cis-NAT pair across our combined cohort of 376 cancer samples. 51% of tumor 

suppressors and 46% of oncogenes were found overlapping with another gene in 

the opposite direction (Table 4.4-4). Given that 46% of other protein coding 

genes harbor overlapping transcripts, these data suggest that tumor suppressors 

are slightly enriched for overlapping antisense transcripts (Fisher exact test p-

value=0.0027), raising the possibility that antisense transcription could play a key 

role in modulating the expression of those genes.  

 

Table 4.4-4. Number of tumor suppressors, oncogenes and other protein coding forming overlapping 
pairs.  

 

 
Protein 

coding genes
Tumor 

suppresors 
Oncogenes 

Overlapping 
other transcript 

8650 379** 168 

Not overlapping 
other transcript 

10072 357 200 

Total 18722 736 368 
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Next, we focused in HTH cis-NAT pairs involving tumor suppressors or 

oncogenes that had evidence of bidirectional promoters, high gene expression 

correlation and statistically significant expression of the antisense strand (high 

NASTIscore). A representative list of these candidates is presented in Table 

4.4-5. Remarkably, our bioinformatics analyses capture the majority of cancer 

related genes known to be regulated by antisense transcripts. Furthermore our 

approach nominates new cis-NAT pairs involving tumor suppressors and 

oncogenes such as CCND2, MYCN, TP73, ATM and ETV7. An assessment of 

the mechanisms of regulation in these cis-NAT pairs will be informative for 

deciphering the role of antisense regulation in cancer.  

 

Then, we look for TTT cis-NAT pairs involving cancer related genes within 

the linage specific, tissue enriched, ubiquitous and cancer specific antisense loci 

groups described earlier. We observed known oncogenes such as KRAS, 

PIK3CA and RAF1, in which the transcription of a neighboring protein coding 

gene overlaps or runs into the 3’-UTR and body of those oncogenes. Moreover, 

we applied the same analysis for annotated EMB cis-NAT pairs involving cancer 

related genes and found cases such as HIF1A, a cancer specific antisense locus 

that changes consistently between tumor and normal samples, and NF1. A list of 

representative examples for these categories is presented in Table 4.4-6. 

Finally, we use our ssRNASeq data to directly examine the antisense 

expression on cancer related genes that did not have annotated overlapping 

transcripts. We found additional examples of oncogenes and tumor suppressors 

with significant expression of the antisense strand, suggesting potential novel 

transcripts that are overlapping and might regulate those genes. Such genes 

included RET, VAV1, E2F2, and BLC2. A representative list of those cases is 

presented in Table 4.4-7. 
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4.4 Discussion 

 

In this study, we used strand specific RNA sequencing on a cohort of 376 

samples to describe the magnitude and patterns of antisense expression in the 

human cancer transcriptome. Based on our analyses, we have further created 

oncoNATdb, a catalogue of antisense loci involving tumor suppressor and 

oncogenes. Our results indicated that more than 60% of all human loci have 

measurable expression of the antisense strand, suggesting that antisense 

transcription is widespread phenomenon across the genome. In addition, we also 

show that, on average, 37% of those loci would correspond to bona fide 

expressed cis-NAT pairs (Figure 4.7). Our estimates expand upon earlier limited 

assessments of the extent of the antisense transcriptome86,87. 

 

Moreover, by analyzing the expression patterns of overlapping genes, we 

confirmed that gene expression of overlapping genes is positively correlated 

(median Spearman correlation coefficient R=0.27), and in particular, that HTH 

cis-NAT pairs have the highest correlation (median Spearman correlation 

coefficient R=0.4) among all other configurations types (Figure 4.8). This high 

correlation of HTH pairs, we hypothesize, is due to bidirectional promoters that 

direct the expression of both genes in the pair.  Supporting this, greater than 78% 

of HTH cis-NAT pairs have CpG islands in their overlapping regions, suggesting 

bidirectional promoters; similarly 83% of bidirectional but not overlapping genes 

had CpG islands in their intergenic regions (Figure 4.12).  This hypothesis is 

further supported by detailed analyses of known examples in the HOXA cluster 

and experimental validation of the co-expression pattern of novel candidates in a 

panel of lung cell lines (Figure 4.14, Figure 4.15). Remarkably, differentially 

expressed cis-NAT pairs between tumor and normal samples that exhibit a 

consistent behavior are enriched for HTH pairs (Table 4.4-3), implying a common 

mechanism of regulation.  
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Furthermore, by analyzing the expression of antisense loci in the major 

tissue types in our compendia, we observed three broad groups of loci according 

to the expression of their antisense strand across different tissue types. A first 

group of 3025 ubiquitously expressed antisense loci were found present in all 

tissue types in our cohort (Figure 4.16a). Those loci were enriched for functions 

such as DNA repair, phosphorylation and ncRNA processing. Notably we found 

116 cancer related genes such as Fli-1 Proto-Oncogene ETS-Transcription 

Factor (FLI1), which forms a HTH cis-NAT pair with FLI1-AS1 transcript, and 

KRAS, PIK3CA and RAF1 oncogenes that form TTT cis-NAT pairs with 

neighboring protein-coding genes. Although the potential functional 

consequences of such tail-to-tail configurations remain largely unknown, a recent 

study in gastric cancer showed that two TTT overlapping protein-coding genes 

could concordantly regulate each other by forming a RNA duplex at the 

overlapping 3’-UTRs which increased their mutually stability162. Our resource 

provides potential new candidates for this phenomenon, which merit further 

investigation and raise the exciting possibility of new avenues for regulating the 

expression of well-known oncogenes. 

 

 A second group of, on average, 2881 (sd=967.96) tissue enriched 

antisense loci expressed at high levels in several tissue types and absent in the 

others (Figure 4.16b) was also found. Within this group 133 cancer-related genes 

displayed significant antisense expression. The last group corresponds to lineage 

specific antisense loci that are mainly expressed in only one tissue type (Figure 

4.16b). Despite representing only 1.8 - 7% out of all antisense loci identified in 

each cohort, lineage specific antisense loci were enriched by tissue specific 

morphogenesis functions and thus have the potential of regulating biological 

processes unique to distinct tissue types. We found 113 cancer-related genes in 

this group, such as ROS1, ABL2, and BLC2. Interestingly, several of those genes 

do not have annotated overlapping transcripts, however our ssRNASeq shows 

clear evidence of embedded or promoter associated antisense transcription in all 

of them (Figure C.5). These observations demonstrate the advantages of using 
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ssRNASeq to resolve the expression of complicated regions with overlapping 

transcripts and to discovered potential new loci with significant but unannotated 

antisense expression. 

 

In addition, comparing tumor and benign lung adenocarcinoma and 

squamous carcinoma samples we found cancer specific loci (Figure 4.17) and 

showed that the expression of the two genes in a cis-NAT pair can change in the 

same (consistent) or opposite (inconsistent) direction when comparing tumor and 

normal samples (Figure 4.18, Figure 4.19). Noteworthy examples of consistently 

regulated cancer related genes loci in LUAD were Zinc Finger E-Box Binding 

Homeobox 2 (ZEB2) and Polo-Like Kinase 4 (PLK4). ZEB2 and ZEB2-AS1 form 

a bidirectional HTH cis-NAT pair that is essential for down regulation of E-

cadherin during epithelial-mesenchymal transition. Beltran et al 2008196 elegantly 

showed that ZEB2 and ZEB2-AS1 transcription is directed by a bidirectional 

promoter and more importantly that ZEB2-AS1 up-regulates Zeb2 protein 

expression, which in turn down regulates E-cadherin expression. On the other 

hand PLK4 is essential for centriole duplication and when overexpressed is 

important in tumorigenesis by inducing centrosome aberrations. Notably, the 

antisense transcript overlapping PLK4 has not been annotated yet, but according 

to our ssRNASeq data it is oriented in a HTH configuration overlapping the 5 

prime region of PLK4. Elucidating the biological implications of those very 

different expression patterns would deepen our understanding of antisense 

regulation and their role in cancer. 

 

Finally, our study comprehensively examined, for the first time, the extent 

of antisense expression in cancer related genes and aggregated these findings in 

oncoNATdb, a catalogue of cancer-related genes with significant antisense 

expression. We show that 608 (50.08%, out of 1214) of cancer-related genes 

have annotated overlapping transcripts and 296 out of those 608 have significant 

antisense expression. 48.64% of the overlapping pairs formed by those 296 

genes are HTH cis-NAT examples, with high correlation (R>=0.3) and evidence 
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of bidirectional promoters, whereas 25.02% are TTT and 24.34% are EMB gene 

pairs. In addition, 155 cancer-related genes have significant antisense 

expression, but do not have annotated overlapping transcripts. 27 out those 155 

have a very close gene nearby (<=500bp) whose UTRs transcription could 

extend into the neighboring gene. The reaming 128 cancer-related genes could 

have putative novel antisense transcripts.  

 

Antisense transcripts regulate several well-studied tumor suppressors and 

oncogenes and there is increasing evidence of antisense dysregulation in 

cancer167-175. The molecular mechanisms of this regulation are multiple and 

poorly understood. Nevertheless controlled modulation of natural antisense 

transcripts, in order to modify the expression of sense genes158, is an emerging 

technology that promises to deliver gene specific targeted therapies. 

 

This study characterizes the landscape of antisense expression in human 

cancers and provides a resource, oncoNATdb, which will enable cancer 

researchers to investigate sense-antisense regulation and its role in cancer.  

  

 

4.5 Contributions 

Science is a collective enterprise and it is much more fun when done with 

friends and good collaborators. The results presented in this chapter were made 

possible for the great collaboration and support of a team of people in the 

Chinnayian and Nesvizhskii labs. 

 

O. Alejandro Balbin: Sense and antisense bioinformatics analysis pipeline, Omics 

data integration, ssRNASeq data processing, statistical analysis, Manuscript 

writing. John Prenser: PCR validation of sense and antisense gene pairs. Rohit 

Malik: Experimental validation of sense/antisense gene pairs. Saravana M. 

Dhanasekaran, Dan Robinson and Yi-Mi Wu: Beautiful RNASeq strand specific 
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libraries for the MCTP cohort. Xuhong Cao: RNA Sequencing. Alexey 

Nesvizhskii: Data analysis oversee and manuscript writing. Arul M. Chinnayian: 

Overall scientific project oversight and manuscript writing.  
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Table 4.4-5. Representative tumor suppressors and oncogenes head-to-head cis-NAT pair with bidirectional promoters.  

The column Status indicates that, according to previous reports, the antisense transcript regulates the actionable gene expression. 

Status Gene Pair Overlap region 
Transcript 
biotypes 

Overlap 
Type* 

Spearman 
correlation 

Adj-pvalue 
NASTI 
score 

Gene 
Type* 

Reported 
CDKN2B-

AS1_CDKN2A 
chr9:21994787-

21995300 
Antisense-

protein_coding 
HTH 

 
0.8042 

 
1.51E-83 

 
799633.48 

 
TS/ONC 

Reported 
HIF1A_RP11-

618G20.4 
chr14:62162255-

62162557 
protein_coding-

lincRNA 
HTH 

 
0.5203 

 
1.28E-24 

 
165798.13 

 
TS/ONC 

Reported 
WRAP53_TP53 

 
chr17:7589616-

7592397 
protein_coding-
protein_coding 

H2H 
 

0.3658 
 

1.09E-10 
 

23555.416 
 

TS/ONC 

Reported 
HOTAIRM1_HOXA

1 
chr7:27135175-

27135615 
Antisense-

protein_coding 
H2H 

 
0.6145 

 
1.66E-37 

 
12623.264 

 
TS/ONC 

Reported 
ZEB2-AS1_ZEB2 

 
chr2:145277418-

145277677 
Antisense-

protein_coding 
H2H 

 
0.6727 

 
6.26E-48 

 
10518.263 

 
TS/ONC 

Reported 
WT1-AS_WT1 

 
chr11:32456243-

32457392 
Antisense-

protein_coding 
H2H 

 
0.8939 

 
1.92E-129 

 
- TS/ONC 

- 
CCND2_RP11-

264F23.4 
chr12:4361898-

4414516 
protein_coding-

antisense 
H2H 

 
0.7983 

 
6.56E-81 

 
144673.84 

 
TS/ONC 

- 
MYCN_MYCNOS 

 
chr2:16082067-

16082976 
protein_coding-

antisense 
H2H 

 
0.6500 

 
5.42E-44 

 
122128.44 

 
TS/ONC 

- 
TP73_WRAP73 

 
chr1:3547328-

3652765 
protein_coding-
protein_coding 

H2H 
 

0.4131 
 

1.59E-13 
 

13637.53 
 

TS/ONC 

- 
PROX1_PROX1-

AS1 
chr1:213992975-

214214853 
protein_coding-

antisense 
H2H 

 
0.8537 

 
1.41E-104 

 
4072.8672 

 
TS 

- 
CAV2_AC002066.

1 
chr7:116139405-

116139985 
protein_coding-

antisense 
H2H 

 
0.8354 

 
2.73E-96 

 
2231070.7 

 
TS 

- 
PDX1_PDX1-AS1 

 
chr13:28403903-

28500368 
protein_coding-

antisense 
H2H 

 
0.7379 

 
2.18E-62 

 
46064.246 

 
TS 

- 
ATM_NPAT 

 
chr11:10809320

8-108093913 
protein_coding-
protein_coding 

H2H 
 

0.6919 
 

6.49E-52 
 

7131.8909 TS 

- 
RP1-

50J22.4_ETV7 
chr6:36322416-

36359771 
Antisense-

protein_coding 
H2H 

 
0.7268 

 
1.64E-59 

 
13477.113 

 
ONC 

- 
ARHGEF5_RP4-

798C17.6 
chr7:144052378-

144052613 
protein_coding-

antisense 
H2H 

 
0.7634 

 
5.09E-70 

 
25937.039 

 
ONC 
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- 
TYMS_C18orf56 

 
chr18:657601-

658340 
protein_coding-
protein_coding 

H2H 
 

0.7484 
 

1.03E-65 
 

458624.82
49 ONC 

 
*HTH=Head-to-Head, TS=Tumor suppressor, ONC=Oncogene. All gene pairs in this table have had CpG islands in the overlapping regions between the 
genes and the loci was called as antisense loci by NASTISeq. 
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Table 4.4-6. Representative tumor suppressors and oncogenes tail-to-tail and embedded cis-NAT pair with bidirectional promoters.  

The column Status indicates that, according to previous reports, the antisense transcript regulates the actionable gene expression. 

Status Gene Pair Overlap region 
Transcript 
biotypes 

Overl
ap 

Type*

Spearman 
correlation 

Adj-pvalue 
NASTI 
score 

Gene 
Type* 

- PIK3CA_KCNMB3 
chr3:178951879
‐178957881 

protein_coding&pr
otein_coding 

T2T 0.3179 9.74E‐08 48034.56 ONC 

- LYRM5_KRAS 
chr12:25357022

‐25362845 

protein_coding&pr
otein_coding 

T2T 0.3097 3.53E‐07 977660.66 TS/ONC 

- MKRN2_RAF1 
chr3:12623612‐

12626156 

protein_coding&pr
otein_coding 

T2T 0.4221 7.80E‐15 62380.91 ONC 

- ESR1_SYNE1 
chr6:152011628
‐152958936 

protein_coding&pr
otein_coding 

T2T 0.3356 5.52E‐08 430288.52 TS 

- CREB1_METTL21A 
chr2:208394458
‐208490652 

protein_coding&pr
otein_coding 

T2T 0.2866 3.26E‐05 934027.76 TS 

- FLI1_FLI1‐AS1 
chr11:12856238
6‐128563286 

protein_coding&an
tisense 

EMB 0.8385 4.54E‐98 12775.55 TS 

- TPPP2_NDRG2 
chr14:21484919

‐21539031 

protein_coding&pr
otein_coding 

EMB 0.6476 1.32E‐42 26275.06 TS 

- 
WNT5A‐

AS1_WNT5A 

chr3:55499740‐
55523973 

antisense&protein
_coding 

EMB 0.5328 1.65E‐25 36668.81 ONC 

- NF1_EVI2B 
chr17:29421942

‐29708905 

protein_coding&pr
otein_coding 

EMB ‐0.2357 
0.0070990

35 
881428.7 TS 

- DLG3_DLG3‐AS1 
chrX:69664708‐

69725337 

protein_coding&an
tisense 

EMB 0.5592 7.27E‐29 54784.17  

- NF1_EVI2A 
chr17:29421942

‐29708905 

protein_coding&pr
otein_coding 

EMB ‐0.2789 7.99E‐05 881428.7 TS 
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- NTRK1_INSRR 
chr1:156811870
‐156812063 

protein_coding&pr
otein_coding 

EMB 0.5510 1.70E‐28 47464.80 ONC 
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Table 4.4-7. Representative tumor suppressors and oncogenes with significant antisense expression but no annotated overlapping transcripts. 

 

Status Gene Pair Overlap region 
Transcript 
biotypes 

Overlap 
Type* 

Spearman 
correlation 

Adj-pvalue 
NASTI 
score 

Gene 
Type* 

- RET chr10:43572473‐
43625799

protein_coding  EMB - - 179.81  ONC 

- VAV1 Chr19:6772720‐ 
6857371

protein_coding  EMB - - 186.39  ONC 

- E2F2 
 

chr1:23832920-
23857712 

protein_coding  TTT - - 5405.11  ONC 

- BCL2 
chr18:60790577-

60987361 
protein_coding  EMB - - 1270.35  TS 

- PTEN 
chr10:89622868-

89731687 
protein_coding  HTH - - 1118.89  TS 

- VAV2 
chr9:136627014-

136857726 
protein_coding  EMB - - 1611.13  ONC 

- CDKN2C 
chr1:51426415-

51440305 
protein_coding  HTH, 

paRNA? 
- - 4239.83  ONC 
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Chapter 5  
Conclusions and future directions  

 

Omics technologies for high-throughput profiling of human genome, 

transcriptome and proteome are revolutionizing cancer research and nourishing 

a nascent paradigm in clinical care. The success of this new precision medicine 

paradigm will depend on our ability to combine diverse omics-based 

measurements to distill clinically relevant information that can be acted upon. 

This thesis developed bioinformatics approaches to integrate multi-omics 

datasets and applied these approaches in three distinct studies that identified 

novel actionable genes and pathways in cancer.    

 

 In Chapter 2, alternative targetable proteins were found in non-small cell 

lung cancers (NSCLC) with activating mutations in KRAS (a well-know but 

undruggable oncogene) by profiling their transcriptome, proteome and 

phosphoproteome. By reconstructing targetable networks associated with KRAS 

dependency, we nominated lymphocyte-specific protein tyrosine kinase (LCK) as 

a critical gene for cell proliferation in these samples, suggesting LCK as a novel 

druggable protein in KRAS-dependent NSCLC.  

 

In Chapter 3, novel oncogenic gene fusions were identified in NSCLC 

patients with previous to this work unknown driver genes. By characterizing the 

landscape of fusions in NSCLC, this study revealed that gene fusions incidence 

is an independent prognostic factor for poor outcome. It was also discovered that 

Neuregulin 1 (NRG1) is a novel low recurrence 3’ fusion partner present 
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exclusively in patients with an unknown driver; resembling previously reported 

and targetable kinase fusions in lung cancers.  

 

Chapter 4 focused on the characterization of cancer-related genes that 

are involved in sense-antisense gene pairs and could be regulated by natural 

antisense transcripts. By determining the extent of antisense gene expression 

across human cancers and comparing with well-documented sense-antisense 

pairs, our results raise the possibility that antisense transcripts could modulate 

the expression of well-known tumor suppressors and oncogenes. This study 

provided a resource, oncoNATdb, a catalogue of cancer related genes with 

significant antisense transcription. The oncoNATdb catalogue will enable 

researchers to investigate the mechanisms of sense-antisense regulation and 

further advance our understanding of their role in cancer, which may lead to the 

discovery of novel therapies. 

 

Collaborative projects such as the Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium (ICGC) are generating vast amounts 

of omics-based datasets. These projects are profiling the genome, transcriptome 

and proteome for thousands of patients, providing an unprecedented molecular 

characterization of multiple cancer types. These datasets also provide an 

exceptional opportunity to discover novel targetable genes and pathways on 

patient populations with currently unmet needs. Integrative analyses would be 

essential to translate this molecular information into informative findings that 

points towards new therapies and novel targets. The bioinformatics methods 

presented in this thesis illustrated different approaches to integrate these multi-

omics datasets.  

 

In the future, I anticipate building scalable bioinformatics approaches 

based upon the computational methods presented in this thesis to integrate the 

multi-omics datasets produced by projects such as the TCGA and the ICGC. 

Such a system should be able to generate a detailed molecular profile for each 
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patient in the cohort (using all omics-based measurements), integrate relevant 

clinical information and determine patient communities based on those molecular 

and clinical profiles. As fundamental feature of this system should include a 

patient’s molecular profile oriented search, allowing researchers (and patients) to 

use a patient’s molecular profile in order to retrieve those other patients 

(community of patients) with molecular profiles that closely resemble the query. 

The community of patients generated by this “patients like me-molecular” search, 

may facilitate the discovery of novel targets and unappreciated therapeutic 

opportunities.  

 

The discovery of LCK kinase as druggable target in KRAS-dependent 

NSCLC merits additional experimental and bioinformatics studies to explore its 

specific role in these cancers and potential avenues to inhibit its activity. 

Preliminary results, not shown in this dissertation, indicate that LCK localizes to 

the nucleus of KRAS dependent cells. A previous report in T-acute lymphoblastic 

leukemia (T-ALL) also showed nuclear localization of LCK. In T-ALL LCK binds 

to the promoter of LIM domain only protein (Lmo2)197, which is a critical 

transcription factor in the development of this disease197. Therefore, LCK could 

be exerting unanticipated roles in KRAS dependent NSCLC by directly regulating 

the activity of transcription factors. In order to study this hypothesis, Chip-Seq 

experiments for LCK could be performed in order to determine what DNA regions 

LCK binds and identify the genes that are regulated, if any exists. Coupling those 

experiments with RNASeq or microarray profiling after LCK knockdown could 

also reveal the precise links between LCK and the apoptosis pathways that were 

suggested in chapter 2. In addition, it is essential to extend the clinical 

significance of LCK in disease free survival in order to determine the prognostic 

value of LCK in lung cancer. For this, we could use the currently available TCGA 

NSCLC dataset to evaluate the significance of LCK as a prognostic marker.  This 

analysis is, however, complicated by the overall poor prognosis of lung cancers, 

but we anticipate that detailed clinical follow-up of the TCGA and our internal 

cohort of patients would allow us to disentangle the effect of LCK in prognosis. 
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The identification of low recurrence NRG1 fusions, as well as NRG1 

overexpression, in NSCLC driver negative patients suggest that close to 4% of 

NSCLC driver negative patients could benefit from further studies on the role of 

NRG1 in NSCLC and the development of directed therapies for targeting NRG1. 

Chemotherapy is the first line treatment for more than 50% of patients with 

NSCLC, regardless of the stage; however, in some cases chemotherapy cannot 

remove the tumor or prevent disease recurrence. A study recently published 

demonstrated that residual tumor cells after chemotherapy express high levels of 

NRG1; moreover, inhibition of NRG1 signaling significantly enhanced the 

magnitude and response to chemotherapy152. A deep characterization of all 

NRG1 fusions presented in this study (localization, and interaction partners), as 

well as the common signaling pathways activated in both fusion index samples 

and outlier expression samples would help to determine the mechanism of action 

of NRG1. Chapter 3 also presented a novel approach for identifying and filtering 

out the vast amount of false positive fusions produced by any of the fusion 

algorithms. The fusion classifier developed in chapter 3 could be further 

improved by including information about the presence or absence of an open 

reading frame (ORF) in the fusions formed. In order to include this, we would 

need to extend the algorithm to determine the sequence of all potential fusion 

transcripts formed between the 5’ and 3’ fusion genes and then determine the 

longest ORF that extends beyond the fusion breakpoint. A categorical value, 1/0, 

would then be included as an additional feature in the classification step. 

Including ORF information would focus the results on rearrangements producing 

fusion proteins, as the previously reported kinase fusions. Finally, the fusions 

database generated in this study could be extended to include additional lung 

datasets and additional fusion events called with improved fusion detection 

algorithms. This database could constitute a reference point for other 

researchers looking for low recurrence fusions in NSCLC. 
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Chapter 4 focused on the characterization of cancer-related genes that 

are involved in sense-antisense gene pairs and could be regulated by natural 

antisense transcripts. This is a very new field and the future directions are 

unlimited. To begin with, this study suggests a relationship between HTH-cis-

NAT pairs and bidirectional promoters, which could be further enhanced by 

integrating omics-based measurements of additional chromatin marks of histone 

modification and nucleosome free regions. Generating these datasets for the cell 

types used in this study is the only limiting factor to making progress in this 

direction. The ssRNASeq utilized in this study also confirms a widespread 

expression of antisense transcripts from the promoter of many genes as it was 

previously observed in yeast193. We have not address the extension of those 

specific type of ncRNAs, neither its relation with cancer genes. An immediate 

follow up study would characterize this phenomenon as preliminary observations 

of the coverage maps of gene expression shows that promoter ncRNA (paRNA) 

are highly transcribed from several cancer genes across tissue types. 

oncoNATdb could be further extended to include those examples of paRNA that 

have not been annotated but found in cancer-related genes. More importantly, 

the study presented in chapter 4 suggested that many cancer-related genes 

could be regulated for antisense transcripts. Therefore, designing clever 

experiments to disentangle the mechanism of regulation should be at the 

forefront of future follow up studies. In particular, it would be essential to 

demonstrate what antisense transcripts activate or silence their respective 

cognate gene targets. Stabilization of oncogenes mRNA may lead to increased 

activity in cancer cells, while interference in tumor suppressors expression may 

abolish their activity promoting cancer development.  

 

In conclusion, the computational methods for integrating omics-based 

datasets developed in this thesis will assist others with similar tasks and 

challenges. More importantly, these approaches nominated novel targetable 

genes and pathways for patient populations with “undruggable” cancers, 
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warranting further studies of the therapeutic opportunities provided by these 

discoveries. 
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found only in the transcriptome dataset ( ~78%). Only 17% and 5% of the proteins would be found as 
differentially expressed in the proteomics or phospho-proteomics datasets respectively (A t-test adjusted 
pvalue <=0.05 for the LFC was used to select differentially expressed proteins). D) Average transcript 
expression of informative and non-informative genes across the panel of cell lines. Informative genes have a 
smaller dynamic range of expression than the non-informative genes. Whiskers correspond to the data point 
+/- 1.5 of the interquartile range of each box. The widths of the boxes are drawn proportional to the square-
roots of the number of genes in each group. E) Distribution of the differential expression values for 
informative (red) and non-informative (blue) genes when comparing KRAS-Dep vs KRAS-Ind cell lines. The 
longer tails in the distribution of non-informative genes determines the set of genes that are selected as 
differential expressed genes by a naïve approach leaving out most of the informative genes. F) Proteins 
found as differentially expressed only in the transcriptome dataset have very general and unspecific 
functions. Proteins in this dataset are mainly glicoproteins, transmembrane or secreted proteins, which are 
characterized by a wide dynamic range of expression but are not necessary related with KRAS dependency 
phenotype.  G) Proteins found as differentially expressed using the S score are enriched on very specific 
molecular functions such as phosphorylation, alternative splicing, and acetylation.  
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A) KRAS knock down impairs proliferation in NSCLC KRA-DEP but not in KRAS-Ind cell lines. Two 
independent lentivirus shRNAs significantly decrease cell proliferation in KRAS-Dep cell lines but not in 
KRAS-Ind ones. The error bars correspond to the standard error calculated over three independent 
replicates. B) Inhibition of LCK using small molecule inhibitor (LCK Inhibitor II, Millipore, CAS 918870-43-6), 
preferentially impaired cell proliferation in KRAD-Dep (red) but not in KRAS-Ind cell lines (green). C) MET 
knock down impairs proliferation in NSCLC KRAS-Dep but not in KRAS-Ind cell lines mimicking the effect 
observed by KRAS knock down. The error bars correspond to the standard error calculated over three 
independent replicates. D) Inhibition of MET using small molecule inhibitor selectively, but mildly, decreases 
cell proliferation in KRAS-Dep (H441, H358) but not in KRAS-Ind (H460, H2122, A549) cell lines. E) 
Analysis of LCK staining with respect to patient overall survival. LCK positive samples = 11, LCK negative 
samples = 12. We observed the largest difference in survival probability between LCK-positive and LCK-
negative patients at 3 years after diagnosis. At this point in time, the survival probability of LKC positive 
samples (KRAS-Dep) is above 75% while only 50% for the LCK negative (KRAS-Ind) samples as shown in 
the figure below.  The Chi-square test p-value for the difference in the survival probability at 3 years is 
p=0.23. Moreover, the overall survival curves for LCK positive and LCK negative are not statistically 
significant over the full course of time (Chi-square test p= 0.379).  This is not surprising given the small 
number of samples available for the analysis, which translates in low power for detecting differences in 
survival time, and the overall low survival rates of all lung cancer patients. 
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Table A-1 SPIA analysis on the differentially abundant proteins identified by the S score. Status A=Activated, I=Inhibited 

 
KEGG
ID Size NDE pNDE tA pPERT pG pGFdr pGFWER Status 

Tight junction 4530 121 8 7.4E-06 1.4E+01 2.3E-01 1.6E-04 7.5E-03 1.3E-02 A 

Epithelial cell signaling in bacterial 
infection

5120 63 6 1.3E-05 1.8E+01 2.8E-01 3.5E-04 7.5E-03 2.7E-02 A 

Focal adhesion 4510 193 10 4.6E-06 4.6E+00 9.1E-01 1.5E-02 7.7E-02 1.0E+00 A 

Thyroid cancer 5216 29 4 9.2E-05 2.3E+01 1.7E-01 4.3E-04 7.5E-03 3.3E-02 A 

Pathways in cancer 5200 312 9 1.2E-03 8.8E+01 5.2E-02 4.8E-04 7.5E-03 3.8E-02 A 

ARVC 5412 69 3 2.0E-02 1.2E+01 4.0E-03 4.3E-04 7.5E-03 3.4E-02 A 

Bacterial invasion of epithelial cells 5100 64 5 1.9E-04 1.6E+01 5.9E-01 9.4E-03 5.7E-02 7.4E-01 I 

Colorectal cancer 5210 61 3 1.4E-02 2.9E+01 1.3E-02 8.9E-04 1.1E-02 7.0E-02 A 

ECM-receptor interaction 4512 83 4 5.0E-03 2.0E+01 3.7E-02 1.0E-03 1.1E-02 8.0E-02 I 

Endometrial cancer 5213 51 4 8.4E-04 2.1E+01 4.1E-01 8.7E-03 5.6E-02 6.8E-01 A 

Osteoclast differentiation 4380 125 5 3.9E-03 2.8E+01 1.0E-01 2.8E-03 2.7E-02 2.2E-01 A 

Fc epsilon RI signaling pathway 4664 73 4 3.2E-03 3.6E+01 1.7E-01 4.5E-03 3.9E-02 3.5E-01 A 

Vascular smooth muscle contraction 4270 104 2 2.1E-01 5.8E+01 4.0E-03 7.4E-03 5.3E-02 5.8E-01 A 

Natural killer cell mediated cytotoxicity 4650 120 3 7.8E-02 1.1E+02 1.3E-02 5.0E-03 3.9E-02 3.9E-01 A 

Fc gamma R-mediated phagocytosis 4666 87 4 5.9E-03 2.6E+01 2.3E-01 1.0E-02 5.8E-02 8.2E-01 A 

ErbB signaling pathway 4012 83 4 5.0E-03 2.5E+01 3.9E-01 2.2E-02 9.9E-02 1.0E+00 A 

Wnt signaling pathway 4310 135 3 1.0E-01 2.5E+01 4.0E-02 1.6E-02 8.0E-02 1.0E+00 A 

Renal cell carcinoma 5211 70 2 1.2E-01 2.4E+01 5.2E-02 2.3E-02 9.9E-02 1.0E+00 A 

Cell cycle 4110 112 4 1.4E-02 1.5E+01 4.4E-01 4.9E-02 1.8E-01 1.0E+00 I 
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Table A-2 Data provenance for chapter 2. 

   

DataSet Provenance 
Used in this study in 

section: 
Availability Notes 

Proteome data for all NSCLC cancer cell lines Generated by this study 

Integration of omics 
dataset to nominate 

actionable proteins. Figure 
1 

Supplementary Tables ST5, 
ST8   

Phospho‐Proteome data for all NSCLC cancer cell 
lines Generated by this study 

Integration of omics 
dataset to nominate 

actionable proteins. Figure 
1 

Supplementary Tables ST6, 
ST9   

Gene expression data for all NSCLC cencer cell 
lines 

Sanger Cell Line Project. 
BROAD Institute. 

Integration of omics 
dataset to nominate 

actionable proteins. Figure 
1 

http://www.ebi.ac.uk/array
express/files/E‐MTAB‐783/   

Gene expression data for Outlier analysis Sanger Cell Line Project. 
BROAD Institute. 

KRAS‐Dep NSCLC cell lines 
are also LCK‐Dep for 
proliferation. Outlier 

expression analysis Figure 
5a 

http://www.ebi.ac.uk/array
express/files/E‐MTAB‐783/   

Microarray data for LCK‐KD H441, H358 Generated by this study 

LCK could be associated 
with apoptosis pathways. 
Supplementary Figure 7, 8. 

Supp Table ST3 

Available upon request   

Microarray data for MET‐KD H441, H358 Generated by this study 

LCK could be associated 
with apoptosis pathways. 
Supplementary Figure 7, 8. 

Supp Table ST3 

Available upon request   

TMA with genotype information for KRAS Generated by this study LCK activation is observed 
in clinical samples. 

Supplementary Table ST2. 
Available upon request   

Databases Provenance Used in this study in 
section: Availability Notes 
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KEGG database Kyoto University 
Bioinformatics Center 

Used for Network analysis 
with the SPIA and PCST 

algorithms 

www.genome.jp/kegg‐
bin/download 

* Download was free at the 
time of this study, but it is 

not anymore 

STRING Database   

Used for Network analysis 
with PCST algorithm in 

order to obtain the weigth 
of each protein‐protein 

interaction 

http://string‐db.org   

Informative Genes 

Generated by this Study. 
Sanger cancer concensus 
genes, List of Kinases, 

common genes involve in 
genomic rearreagments 

Used for classifying each 
gene as informative or not 
in the integration of omics 

datasets.  

Supplementary Tables ST4   

Source Code Provenance Used in this study in 
section: Availability Notes 

X!Tandem The global proteome 
machine mzXML search www.thegpm.org/tandem/   

PeptideProphet and ProteinProphet Transproteomic Pipeline Post‐processing of 
X!Tandem Searches 

tools.proteomecenter.org/
TPP.php   

Abacus Nesvizhskii Lab Universit of 
Michigan 

Aggregation and 
summarization of spectral 
counts for each protein and 
phosphoprotein across all 

cell lines 

nesvilab.org/software   

SPIA 

Tarca, A.L. et al. A novel 
signaling pathway impact 
analysis. Bioinformatics 25, 

75‐82 (2009) 

Network Analysis http://bioconductor.org/bi
ocLite.R, biocLite("SPIA")   

MSGSTEINER 

Bailly‐Bechet, M. et al. 
Finding undetected protein 
associations in cell signaling 

by belief propagation. 
Proceedings of the National 
Academy of Sciences of the 
United States of America 
108, 882‐887 (2011) 

Prize Collecting Steiner 
Tree Algorithm solution 

http://areeweb.polito.it/ric
erca/cmp/code/bpsteiner   
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KEGGGraph 

Zhang and Wiemann, 
KEGGgraph: a graph 
approach to KEGG 
PATHWAY in R and 
Bioconductor. 

Bioinformatics 2009, 1. 

Merging KEEG pathways in 
order to create the meta‐

pathway (G) 

http://www.bioconductor.
org/packages/2.11/bioc/ht

ml/KEGGgraph.html 
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Table A-3 Mutation status of the cell lines used in this study   

 

 

 

 

 

 

 

 

 

Cell line KRAS_STATUS KRAS_MUT KRAS NRAS HRAS PIK3CA EGFR BRAF TP53 TP53_p.t 

SW900 KRAS_IND p.G12V,c.35G>T 1 0 0 0 0 0 0 1 

A549 KRAS_IND p.G12S,c.34G>A 1 0 0 0 0 0 0 0 

H460 KRAS_IND p.Q61H c.183A>T 1 0 0 1 0 0 0 0 

H2122 KRAS_IND p.G12C,c.34G>T 1 0 0 0 0 0 1 0 

SK-LU-1 KRAS_IND p.G12D,c.35G>A 1 0 0 0 0 0 1 0 

H1792 KRAS_IND p.G12C,c.34G>T 1 0 0 0 0 0 0 1 

H23 KRAS_IND p.G12C c.34G>T 1 0 0 0 0 0 1 0 

H1155 KRAS_IND p.Q61H,c.183A>T 1 0 0 0 0 0 1 0 

H1734 KRAS_DEP p.G13C,c.37G>T 1 0 0 0 0 0 1 0 

H2009 KRAS_DEP p.G12A,c.35G>C 1 0 0 0 0 0 1 0 

H358 KRAS_DEP p.G12C c.34G>T 1 0 0 0 0 0 0 0 

H441 KRAS_DEP p.G12V,c.35G>T 1 0 0 0 0 0 1 0 

H727 KRAS_DEP p.G12V,c.35G>T 1 0 0 0 0 0 1 0 
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Table A-4 TMA KRAS genotype and IHC pLCK staining. 

ID Sample Exon 1 Genotype Zygosity 
Exon 2 

Genotype 
Zygosity 

pLCK_Anti
body_1500 

1 C004 12: GGT -> TGT Heterozygous WT Homozygous 1 

2 C006 12: GGT -> GAT Heterozygous WT Homozygous 1 

3 C008 12: GGT -> GAT Heterozygous WT Homozygous 1 

4 C016 12: GGT -> GTT Heterozygous WT Homozygous 1 

5 C026 12: GGT -> TGT Heterozygous WT Homozygous 1 

6 C035 12: GGT -> TGT Heterozygous WT Homozygous 1 

7 C038 12: GGT -> TGT Heterozygous WT Homozygous 1 

8 C045 12: GGT -> GTT Heterozygous WT Homozygous 1 

9 C046* WT Homozygous WT Homozygous 1 

10 C053 12: GGT -> GTT Heterozygous WT Homozygous 1 

11 C067 12: GGT -> GTT Homozygous WT Homozygous 1 

12 C087 12: GGT -> TGT Heterozygous WT Homozygous 1 

13 C112 12: GGT -> GAT Heterozygous WT Homozygous 1 

14 C113 13: GGC -> GAC Heterozygous WT Homozygous 1 

15 C116 12: GGT -> GAT Heterozygous WT Homozygous 1 

16 C117 WT Homozygous 34: G -> T Heterozygous 1 

17 C081 WT Homozygous 34: G -> T Heterozygous 1 

18 C083 12: GGT -> AGT Heterozygous WT Homozygous -1 

19 C082 12: GGT -> GTT Heterozygous WT Homozygous -1 

20 C037 12: GGT -> TGT Heterozygous WT Homozygous -1 

21 C071 12: GGT -> TGT Heterozygous WT Homozygous -1 

22 C096 12: GGT -> TGT Heterozygous WT Homozygous -1 
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23 C021 12: GGT -> GCT Heterozygous WT Homozygous -1 

24 C047 12: GGT -> TGT Heterozygous WT Homozygous -1 

25 C062 12: GGT -> TGT Heterozygous WT Homozygous -1 

26 C084 WT Homozygous 34: G -> T Heterozygous -1 

27 C033 WT Homozygous 35: G -> A Heterozygous -1 

28 C040 WT Homozygous 35: G -> C Heterozygous -1 

29 C058 WT Homozygous 34: G -> A Heterozygous -1 

11 C067 12: GGT -> GTT Homozygous WT Homozygous 1 
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Table A-5 Differentially activated pathways determined by the SPIA algorithm after knock down of LCK or MET. Status A=Activated, I= Inhibited. 

 
KEGGI
D Size NDE pNDE tA pPERT pG pGFdr pGFWER Status 

Rheumatoid arthritis 5323 90 16 1.4E-08 0.0E+00 1.0E+00 2.8E-07 1.4E-05 2.9E-05 I 

Amoebiasis 5146 104 13 1.9E-05 -3.2E+00 6.1E-01 1.4E-04 3.0E-03 1.5E-02 I 

Malaria 5144 51 8 1.5E-04 2.2E+00 3.3E-01 5.5E-04 8.3E-03 5.8E-02 A 

Lysosome 4142 119 13 7.9E-05 0.0E+00 1.0E+00 8.2E-04 1.1E-02 8.6E-02 I 

Natural killer cell mediated cytotoxicity 4650 122 8 3.5E-02 -8.9E+01 3.0E-03 1.1E-03 1.2E-02 1.1E-01 I 

NOD-like receptor signaling pathway 4621 53 7 1.1E-03 -8.1E+00 3.5E-01 3.6E-03 3.1E-02 3.8E-01 I 

Axon guidance 4360 127 10 6.0E-03 1.8E+01 7.5E-02 3.9E-03 3.1E-02 4.1E-01 A 

Vibrio cholerae infection 5110 53 6 5.6E-03 -4.6E+00 1.0E-01 4.8E-03 3.4E-02 5.0E-01 I 

Small cell lung cancer 5222 83 8 4.0E-03 -1.8E+01 1.8E-01 6.0E-03 3.7E-02 6.3E-01 I 

African trypanosomiasis 5143 32 5 2.8E-03 2.2E+00 4.8E-01 1.0E-02 5.8E-02 1.0E+00 A 

Antigen processing and presentation 4612 71 7 6.2E-03 -3.0E+00 3.7E-01 1.6E-02 8.4E-02 1.0E+00 I 

Bile secretion 4976 69 7 5.3E-03 -2.6E+00 3.0E-01 1.2E-02 6.5E-02 1.0E+00 I 

Toll-like receptor signaling pathway 4620 95 9 2.6E-03 1.6E+01 2.8E-01 6.0E-03 3.7E-02 6.3E-01 A 

 
Specific pathways associated with 

MET Knock down 
  
  

B cell receptor signaling pathway 4662 72 8 8.0E-04 -8.7E+00 3.5E-01 2.5E-03 4.3E-02 2.6E-01 I 

Renal cell carcinoma 5211 69 5 4.1E-02 -1.8E+01 1.3E-02 4.6E-03 5.2E-02 4.7E-01 I 

ErbB signaling pathway 4012 83 8 2.0E-03 -1.6E+01 3.9E-01 6.4E-03 6.5E-02 6.5E-01 I 

Focal adhesion 4510 192 12 7.1E-03 -2.6E+01 1.7E-01 9.3E-03 8.6E-02 9.5E-01 I 

Bile secretion 4976 69 9 1.1E-04 2.2E+00 5.6E-01 6.6E-04 1.3E-02 6.7E-02 A 
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Table B-1.Fusions used as true positives for the random forest classifier.  

Other attributes of each fusion such as functional annotation and gene expression of both partners are not shown.  
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H441 2 2 EIF2AK2 SULT6B1 umich 14 2 9 9 18 355 408 132 TD TRUE 

H1793 21 12 RUNX1 PTPRR umich 5 13 9 8 17 10 5 9 InterC TRUE 

H1734 17 17 MRC2 MAP3K3 umich 1 2 9 9 18 63 34 68 IntraC TRUE 

H1734 12 14 FAM60A DPF3 umich 6 8 9 9 18 268 18 1 InterC TRUE 

C057 9 6 DAPK1 GMDS umich 2 7 5 5 10 5 6 3 InterC TRUE 

C011 5 5 TTC1 DOCK2 umich 2 28 9 9 18 20 11 21 IntraC TRUE 

A63 9 19 TSC1 SMARCA4 umich 16 12 3 4 7 4 1 5 InterC TRUE 

A35 5 8 CD74 NRG1 umich 3 6 9 9 18 275 139 150 InterC TRUE 

A35 5 8 CD74 NRG1 umich 5 6 8 5 13 9 139 2 InterC TRUE 

A34 3 3 RAF1 TMEM40 umich 6 11 9 9 18 22 4 7 TD TRUE 

A25 5 5 SLC12A7 TERT umich 3 12 9 9 18 56 50 41 TD TRUE 

A25 9 20 CDK9 AHCY umich 5 9 2 3 5 3 7 7 InterC TRUE 

A25 9 20 CDK9 AHCY umich 3 9 1 1 2 1 7 1 InterC TRUE 

lc_s51 X X EDA MID1 seoul 1 7 8 8 16 9 1 3 IntraC NA 

lc_s48 4 6 SLC34A2 ROS1 seoul 13 12 9 9 18 390 35 203 InterC NA 

lc_s42 10 10 KIF5B RET seoul 12 12 9 9 18 56 3 23 IntraC NA 
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lc_s39 5 6 CD74 ROS1 seoul 3 10 9 9 18 440 19 372 InterC NA 

lc_s39 5 6 CD74 ROS1 seoul 3 9 2 2 4 3 19 2 InterC NA 

lc_s26 2 2 MAP4K3 PRKCE seoul 34 2 7 8 15 8 1 6 IntraC NA 

lc_s26 2 2 EML4 ALK seoul 13 10 9 9 18 27 4 30 IntraC NA 

lc_s20 17 17 BCAS3 MAP3K3 seoul 22 2 5 5 10 5 1 7 IntraC NA 

lc_s13 10 12 FGFR2 CIT seoul 2 25 9 9 18 25 5 23 InterC NA 

a8d6694
c-a213-

10 10 CCDC6 RET tcga 9 12 5 2 7 8 17 2 IntraC NA 

36bf02f8
-c1c8-

4 6 SLC34A2 ROS1 tcga 13 12 9 0 9 86 2 44 InterC NA 

028e99e
9-5b9a-

6 6 EZR ROS1 tcga 5 10 8 9 17 31 223 16 IntraC NA 

H441 2 2 EIF2AK2 SULT6B1 umich 14 2 9 9 18 355 408 132 TD TRUE 
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Table B-2 Comparison of the number of fusions among different tumor stages in LUAD.  

Student t-test p-values. 

LUAD 
Stage 

I 
Stage II Stage III Stage IV 

Stage I  0.2937 0.7833 0.1472 

Stage II   0.2194 0.04902 

Stage III    0.2008 

 

Table B-3 Comparison of the number of fusions among different tumor stages in LUSC.  

Student t-test p-values. 

LUSC 
Stage 

I 
Stage II Stage III Stage IV 

Stage I  0.01409 0.7258 0.09339 

Stage II   0.06015 0.01956 

Stage III    0.07492 
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Table B-4 3’ Representative fusions recurrence across the combined cohort and in the driver positive and driver negative samples.  

The full list includes 400 unique 3’genes. 

3’gene 
# Rec 

Samples 
In Driver 

+ 

In 
Driver ‐ 

Overall 
recurrence 

Driver + 
recurrence 

Driver ‐ 
recurrence 

Total 
number 
samples 

Driver 
+ 

Driver 
‐ 

ROS1 6 0 5 0.857 0.000 1.295 700 314 386 

NRG1 3 0 3 0.429 0.000 0.777 700 314 386 

MAP3K3 2 0 1 0.286 0.000 0.259 700 314 386 

RET 2 0 2 0.286 0.000 0.518 700 314 386 

ALK 1 0 1 0.143 0.000 0.259 700 314 386 

TERT 1 1 0 0.143 0.318 0.000 700 314 386 

DZIP1 2 0 0 0.286 0.000 0.000 700 314 386 

WWOX 2 0 0 0.286 0.000 0.000 700 314 386 

ABCC5 2 0 2 0.286 0.000 0.518 700 314 386 

C1orf22
2

2 1 0 0.286 0.318 0.000 700 314 386 

LILRB2 2 1 1 0.286 0.318 0.259 700 314 386 

RABGAP
1L

2 0 0 0.286 0.000 0.000 700 314 386 

ZNF585
B

2 0 0 0.286 0.000 0.000 700 314 386 

AFF3 2 1 0 0.286 0.318 0.000 700 314 386 

PEMT 2 2 0 0.286 0.637 0.000 700 314 386 

FGFR3 2 0 2 0.286 0.000 0.518 700 314 386 

PSMD11 2 1 1 0.286 0.318 0.259 700 314 386 
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Table B-5 3’ Representative fusions recurrence across the combined cohort and in the driver positive and driver negative samples.  

The full list includes 391 unique 5’genes. 

5’gene 
# Rec 

Samples 
Overall 

recurrence 

Driver + 
recurrence 

Driver ‐ 
recurrence 

Total number 
samples 

Driver + Driver ‐ 

SLC34A2 3 0.429 0.955 0.777 700 314 386 

MYH9 3 0.429 0.955 0.777 700 314 386 

TXNRD1 3 0.429 0.955 0.777 700 314 386 

GPR98 3 0.429 0.955 0.777 700 314 386 

DAPK1 2 0.286 0.637 0.518 700 314 386 

CD74 2 0.286 0.637 0.518 700 314 386 

RAF1 2 0.286 0.637 0.518 700 314 386 

SLC12A7 2 0.286 0.637 0.518 700 314 386 

CCDC6 2 0.286 0.637 0.518 700 314 386 

UCHL5 2 0.286 0.637 0.518 700 314 386 

PPP1CC 2 0.286 0.637 0.518 700 314 386 

FOXK2 2 0.286 0.637 0.518 700 314 386 

POLD3 2 0.286 0.637 0.518 700 314 386 

SAMD12 2 0.286 0.637 0.518 700 314 386 

PTPN14 2 0.286 0.637 0.518 700 314 386 
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Table C-1 Comparison of gene expression correlation distribution for different configurations.  

The head-to-head configuration is the one with highest correlation among all other ones. Student t-test p-
values. The comparison are directional and therefore not symmetric. 

 
Tail-to-

Tail 
Head-to-

Head 
Embedded 

Random 
pairs 

Tail-to-Tail  1 0.9999 2.73E-272 

Head-to-
Head 

1.23E-144  4.16E-42 0 

Embedded 1.38E-05 1  2.03E-149 
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