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Abstract

The rapid evolution of omics technologies for profiling the human genome,
transcriptome and proteome is revolutionizing cancer research and driving a
paradigm shift in clinical care. Omics have forever changed our view of cancer,
from a uniform disease to a highly heterogeneous ecosystem of diseases driven
by different genetic events. Standard care is, as well, evolving from “one size” fits
all treatments towards more precise and molecularly informed therapies. The
success of this precision medicine paradigm will depend on our ability to
integrate diverse omics measurements to distill clinically relevant information that
can be act upon. This thesis developed bioinformatics approaches to integrate
multi-omics datasets and applied these approaches in three distinct studies that

identified novel actionable genes and pathways in cancers.

In the first study, we aim at finding alternative target proteins in cancer
samples that share activating mutations in KRAS a well-known, but undruggable,
oncogene. We profile the transcriptome, proteome and phosphoproteome in a
panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct
targetable networks associated with KRAS dependency. A bioinformatics
strategy was developed addressing the challenge of integrating these disparate
datasets and the Prize Collecting Steiner Tree algorithm was used to identify
functional sub-networks. Three modules centered on KRAS and MET, LCK and
PAK1 and B-Catenin were identified. We validated activation of these proteins in
KRAS-dependent cells and performed functional studies defining LCK as a
critical gene for cell proliferation in KRAS-dependent but not KRAS-independent
NSCLCs. These results are the first evidence that suggest LCK as a potential

druggable target protein in KRAS-dependent lung cancers.

XXi



In the second study, the landscape of fusions in lung adenocarcinoma and
lung squamous carcinoma tissue types was described in order to identify
potentially oncogenic gene fusions in driver negative patients. The landscape
was found to be highly heterogeneous and gene fusions incidence was
discovered to be an independent prognostic factor for poor outcome. By
integrating gene mutation status, the lung cohort was divided into driver positive
and driver negative patients (who do not have mutations in known cancer genes).
Focusing in driver negative patients we identify NRG1 as a novel low recurrence
3’ fusion partner present exclusively in this subset; resembling previously
reported kinase fusions. The documented success of targeted therapies against
low recurrence oncogenic fusions in lung cancer and the high heterogeneity of
the fusions’ landscape, shown in this study, reinforce the demand for more

personalized and tailored drug therapies.

Finally in the third study, the landscape of antisense expression in human
cancers was characterized in order to identify sense-antisense gene pairs
involving tumor suppressors and oncogenes, which could be suitable for
emerging antisense-targeted therapies. More than 60% of DNA loci were found
to have measurable antisense transcription. Expression of sense and antisense
transcript pairs is in general positively correlated and directed by bidirectional
promoters in cases of overlapping divergent genes. By comparing with known
sense-antisense pairs, our results raise the possibility that antisense transcripts
could be regulating the expression of well-known tumor suppressors and
oncogenes. This study provides a resource, oncoNATdb, a catalogue of cancer
related genes with significant antisense transcription, which will allow cancer
researchers to investigate the mechanisms of sense-antisense regulation and

further advance our understanding of their role in cancer.
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We anticipate that the computational methods developed and the results
found in this thesis would assist others with similar tasks and warrant further

studies of the therapeutic opportunities provided by these novel targets.
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Chapter 1
Multi-omics data integration

1.1 Background and significance

The collective characterization and quantification of pools of biological
molecules such as genes, transcripts and proteins have emerged as the
complete new fields of genomics, transcriptomics and proteomics. Collectively,

these and others high-throughput fields are known as Omics.

Omics technologies for high-throughput profiling of the human genome,
transcriptome and proteome are revolutionizing cancer research and driving a
paradigm shift on clinical care. Omics have forever changed our view of cancer,
from a uniform disease to a highly heterogeneous ecosystem of diseases driven
by different genetic events. Standard care is, as well, evolving from “one size” fits
all treatments towards more precise and molecularly informed therapies. This
precision medicine paradigm depends on our ability for integrating diverse omics
measurements to distill clinically relevant information that can be act upon. This
dissertation focuses on developing bioinformatics approaches to integrate multi-
omics datasets to identify novel actionable genes and pathways in cancer. In
three independent studies we integrate multi-omics cancer data in order to
reconstruct novel targetable pathways in KRAS dependent lung cancer, search
for novel oncogenic fusions in lung cancer patients with no known driver genes
and study sense/antisense gene regulation in cancer. Our results warrant further

studies of the therapeutic opportunities provided by these novel targets.
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1.2 Molecular characterization of lung cancers

Lung cancer is the leading cause of cancer mortality in the world with
more than one million deaths a year’. Non-small cell lung cancer (NSCLC) is the
most predominant type of this malignancy, and it can be subdivided into lung

adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC).

Recent genomic analyses have deepened our understanding of the
genetic alterations characterizing both LUAD and LUSC, and have revealed very
different mutation landscapes. LUAD are mutated in several well-characterized
oncogenes and tumor suppressor genes including KRAS (~30%), EGFR (~14%),
BRAF (~10%), TP53 (~46%), and STK11 (~17%) among others®. Importantly,
activating mutations in KRAS are mutually exclusive with activating mutations in
EGFR. On the other hand, LUSC is characterized by mutations in TP53 (~81%),
CDKNZ2A (15%), PTEN (8%), PIK3CA (16%), DDR2, AKT1, MLL2, NOTCH1, and
RB1 as well as several recurrent gene copy number alterations of FGFR1, SOX2
and TP63°. This molecular heterogeneity underlies the difficulties in effectively

treating patients with this disease.

Remarkably, despite this deep molecular characterization of lung cancer,
there is still above 30% of patients with no known driver genes. This driver
negative subpopulation has been recently subject to intense study and additional

driver events such as oncogenic gene fusions have been discovered.

Several important gene fusions occur in lung cancer including the EML4-
ALK fusion gene identified in approximately 4% of adenocarcinomas®. This fusion
protein links the N-terminal portion of echinoderm microtubule-associated
protein-like 4 (EML4) with the intracellular signaling portion of the anaplastic

lymphoma kinase (ALK) tyrosine kinase receptor. The EML4-ALK translocation is
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mutually exclusive with EGFR and KRAS®. Additional gene fusions have now
been identified in LUAD involving ROS? ©, as well as RET "® kinases as 3’

partner genes.

1.2.1 KRAS mutations lung cancers

As mentioned above, mutations in the Ras oncogenes characterize 30-
40% of all NSCLC, with KRAS, NRAS, and HRAS being somatically mutated in
30%, 1-5%, and 1% of the cases respectively °. Recent studies suggest that a
subset of KRAS mutant tumors are dependent on KRAS for survival'®, implying
that targeting KRAS or other genes downstream in this signaling cascade could

yield potential drug targets to treat NSCLC.

Ras is a GTP binding protein that communicates signaling information
through five major cancer related pathways: Akt/PI3K, Raf —-MAPK, RalGDS,

" Mutations on residues 12, 13 and 61 in the

phospholipase-Ce, and Rac
GTPase pocket disrupt Ras GTPase activity generating constitutively active Ras
proteins, which in turn affect transcription of numerous genes promoting cell
proliferation and survival. Microarray profiling has been extensively used for
defining gene expression signatures characterizing Ras activity in cell lines and
tissues'®'?™ but results are inconsistent across studies. Complicating this
matter, it has been shown that NSCLC can be subdivided into KRAS-dependent
(KRAS-Dep) and KRAS-independent (KRAS-Ind) according to their requirement
of KRAS for survival'®'*; and more importantly KRAS pathway activity predicts

KRAS dependency and drug resistance better than mutation status'?.

The active KRAS signaling pathway transmits information in the form of
post-translational modification such as phosphorylation. Although previous
studies have used semi or quantitative phospho-proteomics experiments to

15-17

characterize these pathways ', none of those studies profiled simultaneously
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gene expression, protein abundance and protein phosphorylation status®'>"®,

as
we have accomplished in chapter 2, missing the key opportunity of synthesizing

all these levels of information.

1.2.2 Targeted therapies

Lung cancer patients whose tumors harbor EGFR activating mutations
show responsiveness to drugs inhibitors such as Erlotinib and Gefitinib that
target these particular alterations®®. More importantly, the presence of the ALK
fusions is an indicator of therapeutic responsiveness to ALK inhibitors such as
Crizotinib*. These results have accelerated the development of new drug
inhibitors targeting additional genetic aberrations such as ROS7 and RET fusions
and mutations in FGFR and PI3KCA among others.

Remarkably, however, it is the absence of therapeutic options for treating
the two biggest groups of lung cancers: patients with mutations in KRAS and

driver negative patients.

1.2.3 Drug therapies targeting Ras pathways

The development of drug therapies aimed at disrupting Ras activity or
blocking Ras pathways has proved challenging®. However, Ras driven tumors
could harbor vulnerabilities in other pathways due to proteins which are not
oncogenic themselves but are required for Ras dependency”. Therefore,
inhibitors targeting various Ras effectors could be indirectly effective in treating
tumors driven by Ras activity??. RNAi profiling studies aiming at identifying genes
whose inhibition constitutes synthetic lethality with KRAS have identified
vulnerable points in networks as diverse as the mitotic®’, the epithelial
differentiation’® and NF-kB pathways'*. Each study reported a different but not

overlapping set of vulnerable genes. Remarkably, no strong susceptibility points
4



were detected in the Akt/PI3K and Raf -MAPK pathways neither in NSCLC cell

%1 nor in the KRAS dependent DLD-1 colorectal cell line?!, indicating that

lines
other poorly characterized pathways may be contributing to the KRAS-induced

oncogenic state.

1.3 Omics Technologies

Second generation sequencing, or next generation sequencing (NGS) as
was initially named, allows researchers to sequence billions of DNA strands in
parallel generating substantially more high throughput than conventional Sanger
sequencing. Although recently developed, NGS technologies are being applied in
a variety of fields ranging from gene mutation profiling, gene fusions detection,
novel transcripts discovery, transcript expression, ribosome profiling and nascent
RNA characterization to mention just a few. Through this dissertation we have
primarily used DNA exome sequencing (ExomeSeq), RNA sequencing

(RNASeq) and strand-specific RNA sequencing (ssRNASeq).

1.3.1 DNA Sequencing

In 2008 the first whole cancer genome was sequenced using NGS and
since then several more genomes have been sequenced as part of The Cancer
Genome Atlas project (TCGA). Although very useful for detecting large
chromosomal rearrangements and somatic mutations of non-coding regions
including promoters, enhancers and un-annotated regions the cost of sequencing
the whole genome is still high enough to prevent its implementation on a routine
basis. Exome sequencing, or targeted NGS of the coding regions of the genome
is a more cost effective approach to reliably detect somatic mutations in the
regions of interest due to increased sequence coverage gained by concentrating

all the sequencing efforts to a small region of the genome. In contrast to



maximum sequence coverage of about 30x seen for whole genome sequencing,

ExomeSeq can typically deliver greater than 100x over the targeted regions.

1.3.2 RNA sequencing

NGS of the transcriptome, or RNASeq, has been used to profile mRNA,
total RNA and small RNAs in cancer and normal samples. RNASeq allows
transcript quantification, transcript discovery and detection of in-frame oncogenic
gene fusions, as well as alternative splice variants. RNASeq can also be used to
detect somatic mutations; however, determining this without matched normal is
challenging because normal tissues should not express the same gene repertoire
as cancers. Moreover, gene expression level and infrequent mechanisms, such
as RNA editing, need to be taken into account when using RNASeq for somatic
mutation calling. Despite these challenges, several studies have properly used
RNASeq to determine somatic mutations, cleverly restricting the analysis to well-

known mutations in cancer genes®.

1.3.3 Strand specific RNA sequencing

Standard RNASeq does not preserve information about which DNA strand
was originally transcribed. In this method double stranded cDNA is randomly
primed followed by addition of adaptors for NGS. In this process the information
about what strand was present in the original mRNA template is lost. Strand
information can improve the value of RNASeq experiments by providing accurate
information about antisense transcripts, helping to clearly delimit gene
boundaries of adjacent genes and to correctly resolve the expression levels of

overlapping transcripts.

Although many methods have been developed for generating strand

specific RNASeq, they rely on one of three approaches: ligation of adaptors in
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predetermined orientation to ends of the RNAs molecules, direct sequencing of
the first-strand cDNA products, or selective marking of the second-strand cDNA
and subsequent degradation of the first-strand cDNA. Selective labeling is
accomplished by using dUTP during cDNA synthesis or by bisulfite conversion of
cytosine to uracil in RNA. Levin et al., 2010** compared the performance of
seven ssRNASeq protocols and observed differences with respect to their level
of strand specificity, evenness of coverage, agreement with known annotations,
library complexity and the ability to generate quantitative expression profiles.
They identified the dUTP labeling methods and lllumina RNA adaptor-ligation
methods as the leading protocols, with dUTP libraries providing the additional

advantage of conducting pair-end sequencing.

1.3.4 Proteomics

Proteomics high-throughput methods, for profiling the abundance and
post-translational modifications of proteins, is providing deep insights about the

proteome organization of normal and cancer tissues®.

In particular quantitative phospho-proteomics, label or label-free, allows
researchers to characterize signaling pathways'>"". A general pipeline for label-
free phospho-proteome quantification is summarized in the following steps?®**:
tryptic sample preparation, phospho-peptide enrichment, label-free quantitative
tandem mass spectrometry, peptide identification through database search, and
quantification. It is important to note that phospho-peptide enrichment is
necessary because phospho-peptides correspond to a small fraction of all
peptides obtained after tryptic digestion. Several enrichment methods have been
proposed *°, such as immobilized metal affinity chromatography (IMAC), Titanium
or Zirconium dioxide (TiO2, ZrO2) and phosphoamidate chemistry (PAC), which

is the one most commonly used ***'“? In addition, phospho-tyrosine peptides
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are typically under-represented with respect to phospho-Ser/Thr peptides, but
they play an important role upstream and downstream of many signaling
cascades. Finally, peptides and phospho-peptides are quantified by label or

label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Improvements in LC-MS/MS mass spectrometers are increasing the
coverage of the proteome that is achieved in a single experiment to above
10,000 proteins *. Continuous improvements on the mass spectrometers
resolution will close the gap between the number of transcripts identified by
RNASeq experiments and the number of proteins identified by LC-MS/MS,
allowing for better comparisons between the transcriptome and proteome of

matched samples.

1.4 Software used for data processing

In order to organize the following sections, the data levels schema
proposed by TCGA consortium’ was adopted. There are four data levels: Level 1
(for Raw Data), Level 2 (for Processed Data), Level 3 (for Segmented or
Interpreted Data) and Level 4 (for Summary or Region of Interest Data). Table
1.1-1 below describes the data levels with examples. The aims of this
dissertation focus primarily on integration of level 3 and 4 datasets; however, a
significant amount of work was devoted to generate bioinformatics pipelines for
processing raw data from level 1 to level 3 for hundreds of samples. A great deal
of expertise on the computational tools for cancer genomics was gained through
this process. A list of computational tools for processing next generation

sequencing data and proteomics is given in Table 1.1-2.

! https://wiki.nci.nih.gov/display/TCGA/Data+Classification
8



Table 1.1-1. Data levels as adopted from the Cancer Genome Atlas project.

Data level Level type | Description \ Example |
) Raw sequences
Low-level data for single sample Raw
1 Raw Not normalized
spectra
Normalized single sample data
Interpreted for presence Germline and
2 Processed or absence of specific molecular Somatic
. mutations
abnormalities
Gene expression
3 Segmented/| Aggregate of processed data data for all genes
nterpreted from single sample across sample
and cohort
Integrative
analysis and
association
Quantified association across between
4 Summary
classes of samples molecular
variables and
clinical
parameters




Table 1.1-2. Computational tools for cancer genomics and proteomics.

Category Method Comments Refs
BWA Genome and exome alignment 4
. Bowtie/Bowtie2 Transcriptome alignment 45,46
Alignment
ELAND Transcriptome and genome alignment
TopHat2 Transcriptome alignment 4
VarScan2 Germline and somatic mutation calling 48
Mutation GATK Germline and somatic mutation calling 49
Calling
Samtools SNV mutation calling %0
Cufflinks Gene expression quantification, FPKM >
E Genel Samtools Gene expression quantification, read counts %0
xpression
HTSeq-count Gene expression quantification, read counts
DESeq Negative binomial and variance estimation 5
Differential
Expression Cufflinks Differential expression analysis %
Analysis
EdgeR Negative binomial and variance estimation >
TopHat-Fusion Fusion discovery from pair end sequencing %
E:ﬁ:gg ChimeraScan Fusion discovery from pair end sequencing %
Defuse Fusion discovery from pair end sequencing >
X!Tandem mzXML search
Proteomics
PeptideProphet and 58, 59

ProteinProphet

Post-processing of XITandem Searches
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1.5 Integration of omics datasets

The term data integration is used in different contexts and does not always
have the same meaning. The term is often employed to describe tools, methods
and software used to interrogate different data sources such as databases or
federate data repositories. The term is also utilized when combining related
studies in order to obtain stronger conclusions or to increase the power of
previous studies by collecting more data of the same type. Finally, the term is
used when combining diverse and heterogeneous data types, measured in the
same individual, in order to improve our understanding of a biological process or
to uncover previously unappreciated relationships or measurements. Throughout
this dissertation we will use the term data integration referring to the second and

third examples described above.

Genomics, transcriptomics, proteomics and epigenomics, to mention just a
few of the omics platforms, each provides a one dimensional view of the cell
components; integrative analysis promises a global and systemic view of these
levels and their interactions. However, the huge amount of information obtained
from each of these omics technologies and diversity in the platforms discussed
above pose multiple bioinformatics challenges for data processing and
combination.

Despite these challenges collaborative projects such as the Encode
project (ENCODE) and The Cancer Genome Atlas project (TCGA) are
generating vast muti-omics datasets. The Encode project has deepened our
understanding of gene elements and gene regulation, while TCGA is providing a
full characterization of more than 25 different cancer types. These efforts

highlight the importance and challenges of multi-omics data integration®.

There are numerous methods for integrating omics datasets. This diversity
is explained by the fact that the types of data integration used in a particular

situation depend on the scientific question motivating the analyses. In general,
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however, algorithms for multi-omics data integration usually belong to one of few

categories: data reduction supervised algorithms and unsupervised algorithms.

1.5.1 Data reduction

In omics projects data reduction happens at several levels. For example,
in RNASeq and ChipSeq the first step of data processing is to reduce the million
of reads produced by the sequencing machine to a few hundreds or thousands of
points (integers) representing the amount of those reads over a genomic interval.
Then, a popular method of data integration is to perform intersection analysis
between those genomic intervals and other regions from the same or different

experiment, such as ChIPSeq peaks indicating specific chromatin marks.

In a second level of data integration, data reduction statistical methods
such as principal component analysis, multiple factor analysis and non-negative

matrix factorization®'®?

aim at reducing or transforming the variable space into
one that represents the stronger tendencies in the data. Importantly, these
methods are individually applied to each data set and then the results are
combined. When applied to the full multi-omics datasets these methods usually
depend on a strong correlation between the genomic levels, which are being
combined. For example the positive correlation observed between the number of
copies of a gene and its transcription level has been exploited for several
methods to integrate copy number changes profiles (CNVs) with gene expression

profiles®*,

1.5.2 Unsupervised data integration

In unsupervised learning the goal is to summarize a large dataset into
smaller groups that can be easily understood. The methods in this category

answer the question, “What are the more frequent patterns present in the
12



dataset?” An assumption to have in mind when applying these methods is that
the patterns that are discovered are usually the ones that appear more
frequently, and therefore outlier events would not be identified despite their
potential importance. An important caveat of these methods is that they will

always find a pattern in the data regardless of its biological significance.

Similarly to data reduction methods a standard approach with these
unsupervised, or clustering, methods is to first find clusters in each data set and
then map clusters between data types. The mapping procedure is not
unsupervised and usually constitutes the most demanding part, for example
clusters found at the gene expression level, representing co-expressed genes,
are analyzed in light of clusters found in the chromatin level, representing co-
regulated loci. Because clustering methods are agnostic, as long as “pattern
frequency” represents genes/proteins activity, they can be used, in principle, for
summarizing multiple omics datasets at once as long as the data are properly

normalized in advance and a strong correlation exists between data types®®.

1.5.3 Limitations of data reduction and unsupervised methods

As described above statistical data reduction techniques and
unsupervised clustering algorithms depended on strong correlation between data
types in order to be useful in multi-omics integration tasks. This degree of
correlation has been shown for example, between gene copy number and gene

expression and activating chromatin marks and gene expression.

However, this degree of correlation between omics datasets is not the
norm and it is, indeed, not expected when integrating somatic mutations and
gene expression, mRNA and protein abundance, or mRNA levels and
phosphorylation status. In these cases the degree of correlation observed is

usually low and in some cases it is determined by true biological factors.
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Mutations abolishing gene expression, unstable mRNAs that are not correlated
with protein abundance level, and proteins with constant abundance, but
differential levels of phosphorylation, are some examples. The lack of correlation
in those contexts is therefore not only due to noise but also due to the biological

phenomena that are being studied.

Another challenge when integrating heterogeneous omics datasets is the
wide level of coverage between different technologies. For example, a single
RNASeq experiment can identify above 20,000 expressed transcripts, while a
very good proteomics experiment will identify at the most 10,000 proteins.
Similarly, the number of genes harboring somatic non-synonymous mutations in
a sample is typically less than a 1000, and usually closer to 100. The number of
phospho-proteins detected varies greatly depending on the enrichment protocol
and LC-MS/MS mass spectrometer instrument used. This wide range of
coverage generated by different omics platforms creates a high number of
missing values and sparsity. The high number of missing values impedes the use

of data reduction methods such as standard principal component analysis.

1.6 Network biology approaches to data integration

Another approach to multi-omics-based data integration is network
biology. This approach leverages our current knowledge about the systemic
relationships between the different components; such as, genes, proteins, and
their interactions, and at the same time find new relationships in the data.
Molecular pathways and protein-to-protein interactions are typical
representations of our current knowledge about the molecular interactions in the

cell.

Network biology approaches address the challenges imposed by the low

correlations between omics-based measurements and the diverse coverage

14



range of different omics platforms, by using the pathways or networks as
common frameworks over which the information obtained from different omics-
based measurements is combined. Overlaying different omics measurements on
top biological networks brings functional information in order to make sense of
the information gained through a multi-omics-based experiment. These
approaches, are, therefore, becoming a common strategy for multi-omics data

analysis.

1.6.1 Network reconstruction

Identification of pathways, modules, or functional sub-networks is a central
theme in understanding oncogenesis from an integrative perspective, as well as
a very challenging computational problem®. However, multi-omics data
integration has been successful in building more complete models of cancer
molecular networks?*¢7-8,

Numerous computational methods are being proposed to identify
functional and/or differential expressed modules®®’""°#1®* Those methods can
be sub-divided into two main different approaches according to their use of a
priori information regarding the network of interactions. Inference methods that
do not use a priori information require vast amounts of data in order to estimate
their model’s parameters, which make them inappropriate for small datasets with
few conditions. Methods that use a priori information depend on the quality and
extent of this information. Fortunately, our knowledge of biological pathways and
interactions is increasing constantly and pathway models can be refined and
updated as needed. The focus of this dissertation is on the second type of
methods, but a detailed comparison of both can be found elsewhere®. Within
methods that use a priori information, methods proposed so far aim at finding a
dense connected sub-network, based on a pre-specified protein-to-protein

interaction network (PPI) and gene expression data. Gene expression profiles
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are treated as a snapshot of the dynamic behavior of the system, while the PPI,
although incomplete, represents the universe of potential interactions.

From a computational point of view, extracting functional sub-modules
from high throughput omics-based data can be formulated as an optimization
problem whose objective function is defined according to specific requirements.
There are two types of module extraction methods heuristic and exact®™.
Heuristic methods were used to find cancer modules that distinguish breast
cancer subtypes’® and to organize the Reactome database into pathways®'.
Heuristic approaches cannot guarantee the optimality of their solutions, whereas
‘exact’ methods do so. Exact methods commonly employ integer or mixed-
integer linear programming techniques in order to find optimal solutions to the
network extraction problem®*°"%_ Among exact approaches, the Prize Collecting
Steiner Tree (PCST) formulation has been successfully applied to find functional
sub-networks in yeast and cancer’”®*?. In the second chapter of this dissertation
the problem of integrating NSCLC transcriptome, proteome and phospho-
proteome datasets will be formulated as Prize Collecting Steiner Tree Problem,

which solutions allow us to reconstruct active networks in KRAS dependent cells.

1.7 Aims and structure of this thesis

This dissertation focuses on developing bioinformatics approaches to
integrate multi-omics datasets. As emphasized through this first chapter, data
integration itself is designed to generate novel hypothesis that can be
experimentally or computationally tested in order to answer specific scientific
questions. The bioinformatics approaches developed in this thesis are all aimed
at identifying novel actionable genes and pathways in cancer. These approaches
were applied to find novel targets in three distinct scenarios, representing

different cancer patient populations with unmet therapeutic needs.

2 Notably, Zhao, et al 2008 algorithms can be formulated as the PCST problem used for Dittrich, et al.,
2008.
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In the first study, we aim at finding alternative target proteins in cancer
samples sharing activating mutations in KRAS a well known, but undruggable,
oncogene. We profile the transcriptome, proteome and phosphoproteome in a
panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct
targetable networks associated with KRAS dependency. We develop a
bioinformatics strategy addressing the challenge of integrating these disparate
datasets and use the Prize Collecting Steiner Tree algorithm to identify functional
sub-networks. We identify three modules centered on KRAS and MET, LCK and
PAK1 and pB-Catenin. We validate activation of these proteins in KRAS-
dependent cells and perform functional studies defining LCK as a critical gene for
cell proliferation in KRAS-dependent but not KRAS-independent NSCLCs. These
results are the first evidence to suggest LCK as a potential druggable target
protein in KRAS-dependent lung cancers.

In the second study, we describe the fusions landscape of lung
adenocarcinoma and lung squamous carcinoma tissue types in order to identify
potentially oncogenic gene fusions in driver negative patients. We show the high
heterogeneity of this landscape and discover that gene fusions incidence is an
independent prognostic factor for poor outcome. By integrating gene mutation
status, we divide the cohort into driver positive and driver negative patients, who
do not have mutations in known cancer genes. Focusing in driver negative
patients we identify NRG1 as a novel low recurrence 3’ fusion partner present
exclusively in this subset; resembling previously reported receptor kinase
fusions. The documented success of targeted therapies against low recurrence
oncogenic fusions in lung cancer and the high heterogeneity of the fusions’
landscape, shown in this study, reinforce the demand for more personalized and
tailored drug therapies.

Finally in the third study, we characterize the landscape of antisense
expression in human cancers in order to identify sense-antisense gene pairs
involving cancer related genes, which could be suitable for emerging antisense

targeted therapies. We show that > 60% of DNA loci have measurable antisense
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transcription and that the expression of sense and antisense transcript pairs is in
general positively correlated and directed by bidirectional promoters in cases of
overlapping divergent genes. By comparing with known sense-antisense pairs,
our results raise the possibility that antisense transcripts could be regulating the
expression of well-known tumor suppressors and oncogenes. This study
provides a resource, oncoNATdb, a catalogue of cancer related genes with
significant antisense transcription, which will allow cancer researchers to
investigate the mechanisms of sense-antisense regulation and further advance
our understanding of their role in cancer.

These studies are presented consecutively in chapters 2, 3, and 4,

followed for general conclusions and the future directions of this work.
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Chapter 2
Reconstructing targetable pathways in KRAS
dependent lung cancers

The content of this chapter was previously published by the author as an original article in Nature
Communications .

2.1 Background

Activating mutations in the Ras oncogenes characterize 20-40% of all
non-small cell lung cancer (NSCLC)***8, the leading cause of cancer mortality
in the United States®, which establishes Ras genes as the most commonly
mutated oncogenes in this malignancy. KRAS, NRAS, and HRAS, the main
members of this family of GTPase proteins, are activated by somatic mutations in
20-30%, 1-5%, and 1% of the NSCLC cases respectively’. Mutated Ras has
been implicated in activating numerous pathways that control cell proliferation
and survival; however, development of drug therapies aimed at disrupting Ras
activity has proved challenging®. Consequently, recent efforts have focused on
identifying indirect mechanisms to disrupt Ras signaling by targeting either
upstream activators or downstream effectors'® 422190191 T4 this end, microarray
gene expression profiling has been extensively used to define expression
signatures characterizing Ras mutations in cell lines and tumors'#"°® but gene

signatures vary considerably across these studies.

Complicating these initial studies, recent work has shown that NSCLCs
with activating KRAS mutations can be stratified into KRAS-dependent (KRAS-

Dep) or KRAS-independent (KRAS-Ind) groups according to their requirement for
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10,13,101,102 Therefore

mutant KRAS signaling to sustain growth and proliferation
after shRNA knock down of KRAS, KRAS-Ind cells would grow at rates
resembling cells treated with control shRNAs, while KRAS-Dep grow at slower
rates. Here, gene expression profiles of NSCLC cell lines found that KRAS
dependency correlated with a differentiated phenotype, whereas KRAS
independency was associated with the epithelial mesenchymal transformation

10192 = Moreover, recent work associated KRAS dependency with

phenotype
activation of the Wnt signaling pathway in colorectal cancers'®?. Taken together,
these results suggest that specific pathways are activated in KRAS-Dep cell lines
but not in KRAS-Ind cells, and that those pathways play a role in the varying

disease phenotypes found in these cancers.

While such expression profiling studies are useful for the analysis of
KRAS signaling, it is well established that KRAS frequently exerts oncogenic
functions through changes in protein abundance or post-translational
modifications of proteins, specifically kinases that in turn induce a signaling
cascade of downstream effectors'> 4?19 Consequently, global transcriptome,
proteome and phosphophospho-proteome profiling methods should be applied in
order to identify causative pathways in KRAS-Dep and KRAS-Ind NSCLC cells in
an unbiased fashion. However, to date no study has comprehensively integrated

these diverse sets of data'#!%1840.7982103

, leading to potential biases and
inadequacies in our understanding of the mechanistic basis for KRAS function in

NSCLC.

One reason why such studies are lacking is because integration of such
diverse datasets is a major challenge with existing integrative methods. Yet
when employed, integrative methods have been successful in building more

comprehensive models of molecular signaling networks in cancer®’®.
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2.2 Aims of this study

In this study we generate a matched dataset of KRAS-mutated NSCLC
cell lines with global and unbiased transcriptome, proteome and
phosphoproteome profiles. We develop a bioinformatics approach to integrate
these disparate omics datasets and nominate biologically informative signaling
modules using network analysis. We find that KRAS-dependent cell lines harbor
an active and targetable sub-network composed of lymphocyte-specific tyrosine
kinase (LCK), cMET, KRAS and the p21 serine/threonine activated kinase
(PAK1). We characterize a KRAS-LCK-PAK1 pathway and show that KRAS-
Dep, but not KRAS-Ind cell lines require LCK for proliferation. This KRAS-LCK-
PAK1 network further coordinates anti-apoptotic pathways both through inhibition
of pro-apoptotic proteins such as BAD and/or activation of anti-apoptotic proteins
in KRAS-Dep cell lines. In summary this study identifies active networks
associated with the KRAS-dependent phenotype in NSCLC and nominates a
novel KRAS-LCK-PAK1 pathway in KRAS-Dep cells that may serve as a
druggable pathway for treating KRAS-dependent lung cancers.

2.3 Bioinformatics Methods

2.3.1 Protein quantification by label free LC-MS/MS

The mass spectrometry proteomics and phosphoproteomics data have
been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository
with the dataset identifier PXD000439. The general workflow used for label-free
phosphoproteome quantification is summarized in the following steps®®™":
sample preparation, phospho-peptides enrichment, Ilabel-free quantitative
tandem mass spectrometry, peptide identification through database search, and
quantification by the spectral count method. Cell lines were grown on vendors

recommended media until they were 70% confluent and then protein extraction
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and sample preparation was performed as previously reported®® in the presence

of proteases and phosphatases inhibitors.

For mass Spectrometry eluted proteins were separated by 1D SDS-PAGE
(4-12% Bis-Tris Novex-Invitrogen, Carlsbad, CA). 24 equal-sized gel bands were
excised and subjected to in-gel tryptic digestion. Because phospho-peptides
correspond to a small fraction of all peptides of after tryptic digestion, phospho-
peptide enrichment was performed using immobilized metal affinity
chromatography (IMAC). Tryptic peptides were then divided into two fractions:
phospho-enriched and flow-through or unmodified peptides. Both fractions of
extracted peptides were independently reconstituted with mobile phase A prior to
on-line reverse phase nanoLC-MS/MS (LTQ-Velos with Proxeon nanoHPLC,
ThermoFinnigan). Peptides were eluted on-line to the mass spectrometer with a
reverse phase linear gradient from 97% A (0.1 % formic acid in water) to 45 % B
(0.1 % formic acid in acetonitrile) over 60-minutes. Peptides were detected and
fragmented in the mass spectrometer in a data-dependent manner sending the
top 12 precursor ions that exceeded a threshold of 500 ion counts, excluding
singly charged ions, for collisional-induced dissociation. = Dynamic mass
exclusion was enabled with a repeat count of 2 for 1.5 minutes for a list size of
500 my/z.

For the database search raw spectra files were converted to mzXML using
ReadAW. The mzXML files were searched using X!Tandem with the k-score
plug-in'®. The proteomic searches were performed using the following options:
allow up to 2 missed tryptic cleavages, a parent ion tolerance window of -1 to +4
Daltons, and a fragment ion tolerance of 0.8 Da. The following variable
modifications were allowed: phosphorylation of Serine, Threonine, and Tyrosine
(+79.966331@[STY]), oxidation of Methionine (+15.994920@M), and
carbamidomethylation of Cysteine (+57.021460@C). All protein searches were
performed using the Human Refseq protein database (release 47). Appended to

this database were common proteomic contaminants and reversed protein
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sequences to serve as decoys'®'%. The X!Tandem results were then post
processed with PeptideProphet and ProteinProphet®°. Spectral counts were
then obtained for all of the proteins identified in our cohort of 13 cell lines using
the Abacus software tool'®”. For Abacus, the following parameters were used:
count only peptide-to-spectrum-matches (PSMs) with a PeptideProphet score
above 0.5 (iniProbTH=0.50), retain only proteins with at least one peptide with a
PeptideProphet score above 0.99 (maxIniProbTH=0.99) and a ProteinProphet
probability greater than 0.9 in the COMBINED file (minCombinedFilePw=0.90).
For the phosphorylated fraction, peptides were required to have at least one
phosphorylated Serine, Threonine or Tyrosine
(regAAmods=+S[167];+T[181];+Y[243]). Proteins and phospho-proteins identified
with at least one spectral count in two independent cell lines were kept for
downstream analysis (Balbin et al, 2013’°, Supplementary Data 1, 3), while
those identified in one cell line only were filter out (Balbin et al., 2013"°

Supplementary Data 2, 4).

The spectrum counts for each protein were normalized with respect to the
total number of spectrum counts within each sample. This normalization was
applied independently for unmodified and modified proteins. Common

»198 proteins were filter out before quantification of

contaminants and “Deja vu
differentially abundant proteins. For both, unmodified and phosphorylated
proteins, the fold change was calculated with respect to the comparison KRAS-
Dep vs. KRAS-Ind cell lines. This fold change was then log transformed and z-
score normalized. Finally, the p-value was calculated using the standard normal
distribution. The final master tables with the normalized spectrum counts for
phosphorylated and flow through fraction for each cell line are provided as

Supplementary Data 1 and 2 in Balbin et al 2013.

Phospho-enrichment was calculated as the ratio between the number of
phospho-peptides identified and the total number of peptides (phosphorylated

and unphosphorylated) at a particular PeptideProphet score for the best peptide
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match (bestInitProbability). All enrichment calculations were made using only
peptides that have Ser, Thr or Tyr in them. Peptides without any of those amino
acids were excluded from the calculation. Finally, the phospho-enrichment value
is taken for a PeptideProphet score above 0.94 (bestInitProbability=0.9413),
which produces a 0.01 FDR. The calculated phospho-peptide enrichment, for all

samples, ranges from 26 to 38%.

2.3.2 Gene Expression Data

Gene expression data used in this study are publicly available at
ArrayExpress with accession number E-MTAB-783. Gene expression was scaled

and log2 normalized previous to additional downstream analysis.

2.3.3 Integration of Datasets

Because different protein functional groups (e.g. transcription factors,
kinases or secretory proteins) have distinct gene expression dynamic range, the
gene expression dataset was split into two different categories: “informative”
genes and “all other” genes and subsequently analysis were performed
independently on each one of them. “Informative” refer to genes that are well
known to drive a carcinogenic process such as KRAS, TP53, ERBB2 and
CDKNZ2A, etc., as well as to genes that could have the potential to drive
oncogenesis as kinases, phosphatases among others. A list of “Informative”
genes was compiled by combining the Sanger's cancer census genes, all
kinases and phosphatases as well as additional and recently reported genes

important for carcinogenesis (Balbin et al., 2013"° Supplementary Data 8).

Raw data was preprocessed as described in the experimental methods
section. Phosphoproteome, proteome and transcriptome datasets were log

transformed and the log fold change (LFC) was taken with respect to the
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comparison KRAS-Dep vs KRAS-Ind cell lines. The LFC was z-score normalized

and a p-value was calculated using the standard normal distribution.

In order to synthesize for each protein the information obtained from gene
expression, protein and phospho-protein abundance, we calculated a combined
ZfWkZi

in the dataset k, while w corresponds to the weight of each dataset w, = 1/,/N,.

abundance S score as S = , Where z is the z-transformed LFC of protein i

N, represents the size of dataset k.

Finally a p-value for the combined score was calculated using the
standard normal distribution and then adjusted using the Hochberg procedure in

order to correct for multiple hypothesis testing.

2.3.4 Network Analysis

We use the Signaling Pathway Impact Analysis Algorithm (SPIA™®) in
order to perform network enrichment analysis. The source code for this algorithm
is available as an R package from http://bioconductor.org/biocLite.R. SPIA
calculates the significance of a pathway according to both the over-
representation evidence (e.g. any commonly used enrichment test) and
perturbation’s based evidence using the topology of the network. The KEGG
database (http://www.genome.jp/kegg/kegg1.html) was used as the main source
for pathway’s definition and we used the set of differential expressed genes as
defined by the combined abundance score with adjusted p-value <=0.05 as the

seed genelist. Significant pathways with FDR <=0.05 are reported (Table A-1).

For the Network reconstruction methodology, we built a focused
undirected and weighted protein-to-protein interaction network (G) using
significant (FDR<=0.05) pathways identified by the SPIA algorithm'®. Those
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pathways were downloaded from the KEGG database®>and then merged into a
unified meta-pathway (G) using the bioconductor KEGGgraph library®®. This
meta-pathway (G) is provided for the interested reader as Supplementary Data 9
in Balbin et al., 2013™.

We assigned weights to both nodes (V) and edges (E). Node weights
correspond to the combined score (S) for differential abundance between KRAS-
Dep and KRAS-Ind phenotypes, while the edge weights correspond to the
experimental confidence on that interaction as derived from the STRING
database. For each edge in the meta-pathway, we obtained from STRING the
experimental and physical interaction scores and then combined them into a
single score using a naive Bayes approach. In addition, in order to decrease
redundancy, multiple gene family members with the same interaction partners
were summarized into a “consensus gene” defined as the gene with highest
scoring interaction neighborhood. This step is advised due to the node
redundancy introduced within the KEGG database and the fact that the
interactions for many gene family members are annotated by similarity to other

members in the family and not by direct experimental validation.

Finally, we used the Prize Collecting Steiner Tree (PCST) algorithm to find
sub-networks, T, in the meta-pathway (G) that represent the most differentially
abundant proteins connected through the most reliable interactions. Formally, the

PCST is formulated as follows:

T = min E'cE;Vv'cy (Ze ee' Ce — AZUEV’ bv) [1]
(E'.v")connected

where b, = —logp(S) with p(S) as the p-value for the S score of each
protein, and ¢, = 1 — [[¥R; with R; for the string score for the edge’s physical
and experimental evidence. This choice of b, and c, assigns high values to the
most differentially abundant proteins in the pathway, and low values to the high
confidence interactions in the network. Finally, the constant A controls the trade

off of adding new proteins into the reconstructed network, by balancing the cost
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of new edges and the prize gained by bringing in a new protein. A indirectly
controls the size of the final sub-networks. All results presented here were
obtained with 1=0.3. In order to choose 4, we solved the prize collecting steiner
problem, varying A between 0.01-1 in increments of 0.01, and choose the value
of A at which 60% of the essential nodes of simulated network of similar size
were recovered. In order to solve the PCST, we used the implementation based
on information message passaging described by ''°, for which the source code

availability is annotated in the Table A-2.

The PCST has been used in similar settings before”® 1% pecause it identifies
sub-networks that represent cross talk between pathways, as well as “connecting
proteins” that are not directly measured in the experiment but that are relevant to

link other measured proteins with high weight in the network.

2.3.5 Analysis of LCK knock-down experiments

We used the Signaling Pathway Impact Analysis Algorithm (SPIA) as
described above to identify pathways specifically activated or inhibited after LCK
knockdown (Table A-5), confirming the involvement of a lung cancer pathway but
more importantly several pathways controlling apoptosis induction such as the
natural killer cell-mediated cytotoxicity, Toll-like receptor signaling and the NOD-
like receptor signaling pathway. This is in agreement with the fact that Module
M1 containing LCK and PAK1 were enriched for proteins belonging to the
apoptosis pathways (Figure A.7A). Therefore, we focused the additional analysis
of the microarray data on identifying altered proteins belonging to the apoptosis

pathways.
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To perform BCL2A1 nomination we first collect apoptosis gene concepts
from KEGG, gene ontology and Reactome and generate a meta-apoptosis gene
concept with all unique genes found. We reasoned that proteins specifically
activated by LCK should simultaneously satisfy the following three
characteristics: to be overexpressed when comparing KRAS-Dep vs KRAS-Ind
cells, to be under-expressed when comparing the LCK knock down vs. the non-
targeting control in H441 and H358 cell lines and to be unaffected after knocking
down any other gene in different cell lines. Characteristic 3 is included to control
for changes in gene expression induced by any knockdown treatment

irrespective of the gene of interest.

Representing conditions 1, 2, and 3 in Cartesian plot results in a plot
shown in Figure A.8A. The x-axis shows the differential expression of those
genes when comparing KRAS-Dep vs KRAS-Ind cell lines. The y-axis shows the
average differential expression of the same genes when comparing a siRNA
knockdown of LCK in H441 and H358 cell lines with respect to the targeting
control (red dots), or the average differential expression when comparing the
knockdown of a “random” gene compared to its respective control (black dots) in
three unrelated prostate cell lines. Genes affected by the overall siRNA treatment
would by overlapping or very close in this plot, while genes specifically affected
by LCK would be located far apart in the y-axis. We measure this effect by taking
the Euclidean distance between red and black dots representing the same gene

in the above representation.

Genes that are specifically affected by LCK would have positive or
negative Euclidean distances according to the magnitude of their perturbation,
while genes nonspecifically affected by the siRNA treatment would have

Euclidean distances close to 0 (Figure A.8).
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2.4 Experimental Methods

2.41 Celllines

All cell lines were obtained from ATCC and maintained using standard
procedures. Specifically, H441, H358, H2009, H1734, H727, H460, H2122,
H1792, H23, H1155 cells were maintained in RPMI 1640 (Gibco) plus 10% FBS
and 1% penicillin-streptomycin. A549 cells were maintained in DMEM (Gibco)
plus 10% FBS and 1% penicillin-streptomycin. SKLU1 cells were maintained in
DMEM/F12 plus 10% FBS and 1% penicillin-streptomycin. SW900 cells were
maintained in L15 plus 10% FBS and 1% penicillin-streptomycin. Cell lines were
grown at 37°C in a 5% CO; cell culture incubator. All cell lines were genotyped

for identity at the University of Michigan Sequencing Core.

2.4.2 shRNA knock down studies

For LCK and KRAS knockdowns all cells were plated at 100000 cells/ml in
6 well plates and let them attached overnight. Cells were infected next day with
the lentivirus RNA and 24 hours after infection old media was replaced with new
cell media. Cells were allowed to grow for 96 hours in this fresh media. At this
point cells were treated with 1mg/ml puromycin for 5 days to eliminate uninfected
cells. Media was replaced and proliferation assays set up with the stable selected
clones. Knockdown efficiency was confirmed by Western blot. shRNA sequences

are provided in the supplementary methods.

2.4.3 siRNA knockdown studies

Cells were plated in 100mM plates at 30% confluency and transfected
twice at 12 hours and 24 hours post-plating. Knockdowns were performed using

20uM siRNA oligos or non-targeting controls (Dharmacon) with Oligofectamine
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(Invitrogen) in Opti-MEM media (Gibco). Knockdown efficiency was confirmed by
Western blot. siRNA used are listed in the supplementary methods. 72 hours
post-transfection, cells were rinsed twice with 10mL PBS, harvested with a
rubber policeman in 1mL PBS and centrifuged for 5 min at 2,500x g. The
supernatant was discarded and the cells were prepared for Western blot

analysis.

2.4.4 Western Blots

Cell pellets were lysed in RIPA lysis buffer (Sigma) supplemented with
HALT protease inhibitor and phosphatase inhibitor (Fisher). Western blotting
was performed using standard protocols. Briefly, protein lysates were boiled in
sample buffer for 5 min at 98C and 10ug of protein was separated by SDS-PAGE
gel electrophoresis. Proteins were transferred onto a PVDF membrane (GE
Healthcare) and blocked for 30 minutes in blocking buffer (5% milk in 1x TBS
supplemented with 0.1% Tween (TBS-T)). Membranes were incubated with
primary antibody overnight at 4C and then with secondary antibody for 2 hours at
room temperature. Signals were visualized by enhanced chemiluminescence
system (GE Healthcare). The primary antibodies used are listed in the
supplementary methods and full blots can be found in Supplementary Fig S9-S15
in Balbin et al., 2013.

2.4.5 Proliferation Assays

Proliferation assays were performed with stable clones of the scramble
RNA, and two independent constructs against LCK or KRAS for each cell line.
Cells were plated at 30000 cells/ml in 24 well plates and cell counts were taken
with a Beckman coulter Z2 particle count instrument every 48 hours for 8 days.

Three independent replicates of each experiment were performed.
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2.4.6 WST Drug Assays

Cells were plated in a 96-well plate 12 hours prior to drug treatment at a
density of 3500 cells per well in a 100ul of growth media. Desired concentrations
of LCK Inhibitor (Santa Cruz, sc-204052,CAS 213743-31-8) and LCK Inhibitor Il
(Millipore, Lck Inhibitor II,CAS 918870-43-6) were prepared using growth media and
100ul of the drug solution was added directly to the wells. After 72 hours of
incubation at 37C, 20ul of WST Cell proliferation reagent (Roche) was added to
each well. Following 2 hours of incubation at 37C, the absorbance of the wells

was measured at 450nm.

2.4.7 Confocal microscopy

H460 and H441 cells were fixed with 3.7% paraformaldehyde, and then
permeabilized with 0.1% (w/v) saponin for 15 min. Cells were co-incubated with
primary antibodies against phosphor [J-catenin and total beta catenin for 12hr at
4 °C, followed by incubating with appropriate Alexa-Fluor-conjugated secondary
antibodies for 30 min at 37 °C. Cells were washed and mounted onto glass slides
using Vectashield mounting medium containing DAPI. Samples were analyzed
using a Nikon A1 laser-scanning confocal microscope equipped with a Plan-Apo
x63/1.4 numerical aperture oil lens objective. Acquired images were then

analyzed using ImagedJ software (version 1.410).

2.4.8 KRAS Genotyping

Genomic DNA from resected lung cancer tissue samples was prepared
using a Qiagen Blood and Tissue Kit (Qiagen) according to the manufacturer’s
instructions. KRAS mutations were determined using standard RT-PCR and
Sanger sequencing protocols for KRAS exon 1, which harbors codons 12 and 13,

and exon 2, which harbors codon 61. RT-PCR was performed with 5 ng genomic
31



DNA with 38 cycles of PCR according to the following conditions: 94C for 30
seconds, 56C for 30 seconds, 68C for 45 seconds. PCR products were
subsequently  purified using ExoSAP-IT PCR purification  product
(USB/Affymetrix) according to the manufacturer’'s instructions. PCR products
were then unidirectionally sequenced using the M13 forward primer at the
University of Michigan Sequencing Core. Sequence data was analyzed for the
presence of canonical activating KRAS mutations at codons 12, 13, and 61.

Primers used for the PCR reactions are listed in the supplementary methods.

2.4.9 Immunohistochemistry

Immunohistochemical (IHC) analyses on paraffin-embedded formalin-fixed
(FFPE) tumor tissue sections were carried out using the automated DiscoveryXT
staining platform from Ventana Medical Systems. All FFPE sections were
represented in triplicate on the tissue microarray. The primary rabbit monoclonal
LCK antibody was obtained from Cell Signaling (#2984). Antigen recovery was
conducted using heat retrieval and CC1 standard, a high pH Tris/borate/EDTA
buffer (VMSI, catalogue no. 950-124). Slides were incubated with 1:50 of the
LCK antibody (Cell Signaling) overnight at room temperature. Primary antibody
was detected using the ChromoMap DAB detection kit (VMSI, catalogue no. 760-
159) and UltraMap anti-Rb HRP (VMSI, catalo no. 760-4315). The anti-Rb HRP
secondary antibody was applied for 30 minutes at room temperature. Slides
were counterstained with Hematoxylin for 10 minutes followed by Bluing Reagent
for 5 minutes at 37C. Staining was scored (DG Beer) as negative (score = 0),

minimal (score = 1), weak (score = 2), moderate (score = 3), or high (score = 4).

2.5 Results

2.5.1 Omics integration improves the nomination of actionable protein
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To study KRAS function in lung cancer, we generated matched global
transcriptome, proteome and phosphoproteome datasets for a panel of KRAS-
Dep and KRAS-Ind NSCLC cell lines, as well as a bioinformatics methodology to
integrate all those data types (Figure 2.1A). Transcript, protein and phospho-
protein abundance were measured by microarrays and label free LC-MS/MS
respectively (Methods). We identified 3213 proteins in the unmodified state and
1044 proteins in the phosphorylated state, with at least 1 spectrum count in two
independent cell lines. The number of unique peptides and phospho-peptides for
each cell line are shown in the Figure A.1A, Figure A.1B, and the full proteome
and phosphoproteome datasets for all cell lines are given in Balbin et al 2013"°

Supplementary Data 1, 2 and Supplementary Data 3, 4 respectively.
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Figure 2.1 Integrative analysis of omics data reveals targetable kinases in NSCLC KRAS dependent
cell lines.
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A) A panel of KRAS-dependent and -independent cell lines was interrogated by transcriptomics, proteomics
and phospho-proteomics techniques. Transcripts were split in two different categories: “informative” genes
and “all other” genes. Proteome and phopho-proteome datasets were normalized with respect to the total
number spectral counts in each library, and common contaminants and “Deja vu” proteins were filtered out
before quantification of differentially abundance. All datasets were log transformed and the log fold change
(LFC) was taken with respect to the comparison KRAS-Dep vs KRAS-Ind cell lines. The LFC was z-score
normalized and a p-value was calculated using the standard normal distribution. The combined S score was
used to integrate all three datasets (methods) and select differentially expressed proteins. Network and
enrichment analysis were performed using the Signaling Pathway Analysis Algorithm (SPIA) and the Prize
Collecting Steiner Tree Algorithm (PCST). B) Naive integration of datasets. Only ~ 5.2 % of the proteins are
shared among two of the datasets (adjusted p-value <= 0.05 was used as a threshold to select differentially
expressed proteins). A major drawback of this method is the absence of an objective criterion to include
proteins differentially expressed in only one dataset. C) A meta-integration of the independent signatures
using the combined S score (S). The S score integration improves by five-fold the percentage of shared
proteins among datasets (~ 26 %), and defines an objective rule for including proteins differentially
expressed in one, two or all datasets. D) Integrative analysis of transcriptome, proteome and phospho-
proteome nominates receptor tyrosine kinases MET and ERBB3, Src family members LCK and LYN, PAK1,
and CTNNB1, CTNNA1, and CDH1 among others as differentially “activated” proteins in KRAS-Dep cell
lines. Left) Presence/absence heatmap. Proteins that are differentially abundant in a particular dataset are
represented in yellow and unaffected proteins are represented in blue. Middle) Combined S score (S) for all
differentially abundant proteins in KRAS-Dep vs KRAS-Ind cell lines. Right) Combined statistical significance
each differentially abundant protein. —log of the Hochberg adjusted p-value, -log(0.05)= 1.30.

Integration of transcriptome, proteome and phosphoproteome data is
challenging due to differences in technological methods and detection power.
Hence, we first calculated the log fold change (LFC) in transcript, protein and
phospho-protein abundance between KRAS-Dep and KRAS-Ind cell lines. We
then correlated LFC mRNA abundance with LFC protein abundance as well as
LFC protein abundance with LFC phospho-protein abundance. We found
generally low to intermediate correlations, which is consistent with previous
studies describing intermediate correlations between mMRNA and protein
abundance """'"® (Figure A.2A, B) Correlation between LFC transcript and LFC
protein 95 confidence interval (Cl) = 0.29 - 0.36, p-value <= 2 x 107'°; correlation
between LFC unmodified protein and LFC phospho-protein 95 CI1=0.29 - 0.43, p-

value <=2 x 107'),

A naive method of integrating those diverse sets of data is either to look
for genes that are differentially abundant at the transcript, protein and phospho-
protein level or to look for genes differentially abundant in at least one of these

datasets. In this study, naive integration called 675 differentially abundant
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transcripts, 173 differentially abundant proteins in the unmodified state and 61
differentially abundant proteins in the phosphorylated state (Figure 2.1B and
Supplementary Data 5 provided in Balbin et al, 2013). However, naive
integration commonly produces a limited number of proteins that are differentially
abundant across all signatures. Out of the 862 unique proteins called as
differentially abundant, only 2 proteins are shared across all signatures and 45 by
two independent datasets (Hochberg-adjusted p-value <=0.05, Figure 2.1B)
resulting in only a ~ 5.2 % overlap among signatures. Furthermore, naive
integration typically produces a final list of differentially abundant proteins that is
dominated by proteins identified only in the largest dataset, the transcriptome in
this case (Figure A.2C). Moreover, this list is enriched in genes that appear not to
be causative cancer genes but which have a high dynamic range of expression
(Figure A.2D, A2E, A2F).

In order to address these issues, we developed a bioinformatics
methodology to integrate transcriptomics, proteomics and phosphoproteomics
datasets that aims at identifying differentially abundant proteins that are
nominated as such by any combination of these datasets. This methodology
focuses on identifying proteins that change consistently across transcript, protein
and phospho-protein levels as they constitute candidates that can be uniformly
assessed, and therefore potentially used for interrogating tissue samples at

either the protein, phospho-protein or transcript level with similar results.

We first distinguish between “informative” and “all other” genes and assign
weights to each dataset in proportion to that dataset’s size (Figure 2.1A, and
Methods) in order to control for differences in the dynamic range of different
proteins and the coverage of each “omics” dataset. We then calculate the
combined “abundance score”, S, to measure the overall differential abundance of
2Fwiezi

protein i in the dataset k, while w corresponds to the weight of each dataset
36
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wy = 1/,/N,. N, represents the size of dataset k. Our score is inspired by the
Stouffer’s score that is used for meta-analysis''™. Variations of the Stouffer score
have been previously used to aggregate multiple studies involving only one type

of “omics” datasets, such as microarrays''°.

Moreover, although other integration methods such as the combined
Fisher p-value or the scores proposed by Ramasay et al., and Huang et al.,”>'"
could be used for nominating differentially abundant proteins, when compared to
those methods the S score demonstrates several key advantages for
discriminating informative genes. First, because the S score normalizes the
original data into z-scores, the combined distribution is also normal, allowing for
simple statistics (Figure A.3A). Second, the weight for each dataset is flexibly
defined, i.e. according to the size of the dataset. Third, the S score can identify
consistently changing proteins that would be missed otherwise (Figure A.3B).
Fourth, because the S score is based on the average of z; and the fisher method
on the average of -log(p-value), these scores follow a close linear relationship for
most values of S. Deviations of this linear relationship are observed for extreme
values of S and instances where the transcript, protein and phospho-protein
abundances change in discordant directions (Figure A.3C). Therefore, the
combined used of the Fisher and S scores could identify proteins with discordant
changes in abundance. In summary, by using the S score we defined a metric for
selecting transcripts, proteins and phospho-proteins that are differentially
abundant uniquely or consistently across different datasets, overcoming the

drawbacks of naive integration.

Our S-score analysis of the phosphoproteome, proteome and
transcriptome nominated 115 differentially abundant proteins at a Hochberg-
adjusted p-value <= 0.05. Out of the 115 proteins, 30 were nominated uniquely
by our method and were missed using naive integration of the datasets (Figure

2.1C). The S score also helps with prioritizing, as 20 proteins in phosphorylated

37



state, 28 proteins in un-phosphorylated state and 6 transcripts that were
differentially expressed would have been unattended by a naive approach
(Figure 2.1C). By using the S score, the percentage of overlap among datasets in
the list of differentially expressed proteins is ~26 %, which represents an
increase of five-fold with respect to the naive integration approach. Moreover,
genes identified by our method show higher correlation between the LFC
abundance of the transcript and protein in unmodified state as well as the protein
in unmodified and phosphorylated state (Figure A.2A, Figure A.2B). We also note
that the list of differentially expressed genes nominated by the S score is
enriched for proteins with functions such as kinase, phospho-transferase activity
and alternative splicing, and localized both in the cytoplasm and nucleus (Figure
A.2G). These functions are expected for proteins in signaling cascades, such as
the ones downstream of KRAS, but these functions were completely missed on

the proteins nominated by the naive integration approach.

Finally, comparison of NSCLC KRAS-Dep cell lines against KRAS-Ind cell
lines showed that of 115 proteins nominated by our integrative analysis, 68 also
demonstrated increased mRNA, unmodified protein or phosphorylated protein
abundance in KRAS-Dep cells, whereas 47 were found to be decreased (Figure
2.1D, Supplementary Data 6 provided in Balbin et al., 2013). Of the 68 that were
increased, 57 proteins are classified as phospho-proteins, 14 as kinases, 8 as
proto-oncogenes and 9 as involved in lymphocyte activation among other
functions. Similarly, out of the 47 genes that were decreased, 37 are classified as
phospho-proteins, 8 as kinases and 5 as proto-oncogenes among other
functions. These results demonstrate that our analysis is able to identify
functionally relevant proteins by integrating the transcriptome, proteome and

phosphoproteome datasets.
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2.5.2 Validation in NSCLC cell lines

To confirm our computational predictions, we employed a panel of 13
NSCLC cell lines for experimental studies, for which profiles of somatic mutations
is provided in Table A-3. Of these, 8 have been defined as KRAS-Ind and 5

10192 3nd confirmed

have been defined as KRAS-Dep based on previous studies
in our hands. We selected highly ranking proteins predicted to be up-regulated in
KRAS-Dep but not KRAS-Ind cells for further experimental validation. Of the top
20 nominated proteins, we included several proteins known to be associated with
KRAS dependency in colorectal cancers (CTNNB1, PAK1) '®2''® and others that
have not been implicated to date (LCK and cMET) with the KRAS-dependent
phenotype in any cancer (Figure 2.2). Western blot analyses of these proteins
and their phosphorylated forms validated that cMET, LCK, PAK1, and []-catenin
were enriched in expression in KRAS-Dep cell lines. Furthermore,
phosphorylated forms of these proteins were also specific, suggesting that these
proteins are activated in KRAS-Dep cells. These experiments validate our
computational method and suggest that the S score accurately identifies proteins

that are highly activated in KRAS-Dep cell lines.
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Figure 2.2. Activation of proteins nominated by the S score was confirmed by an orthogonal and low
throughput method.

The western blot demonstrates high levels of total and phosphorylated protein for MET, LCK, PAK1, and B-
catenin in KRAS-Dep. This pattern confirms the utility of our integrative analysis in nominating differentially
activate proteins. It also suggests signaling modules that are differentially active in KRAS-dependent but not
in KRAS-independent cell lines. Total RAS, and B-actin were used as controls.
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2.5.3 Network analysis identifies active modules in KRAS-Dep cells

We next developed a three-step methodology for reconstruction of
biological modules associated with KRAS status (Figure 2.3A). In the first step,
we identified differential expressed pathways using the Signaling Pathway Impact

Analysis algorithm (SPIA 1%

). We then build a focused undirected and weighted
protein-to-protein interaction network (G). Finally, in the third step, we used the
Prize Collecting Steiner Tree algorithm to find sub-networks, T, in the weighted
protein-protein interaction network (G) that maximized the number of differential
expressed proteins recovered as well as the confidence in their interaction

(Methods).

Specifically, in the first step we performed pathway enrichment analysis
using SPIA in order to identify pathways with overall increased or decreased
activity in KRAS-Dep cell lines (Figure A.4A). SPIA calculates the significance of
a pathway according to both a gene set over-representation index and a
network’s perturbation index that takes into consideration the topology of and
interactions within the pathway (Methods). This analysis revealed activation of
main signaling programs in KRAS-Dep NSCLC cell lines when compared to
KRAS-Ind, such as the ERBB signaling pathway, cancer specific associated
pathways and tight junctions/cell adhesion pathways (Figure A.4B). Interestingly,
immune-related signaling modules such as the T cell receptor, natural killer cell
mediated cytotoxicity and Fc epsilon Rl pathways were present, which suggested
a relationship to LCK as immune-predominant kinase aberrantly up-regulated in
KRAS-Dep cells. Moreover, although cancer associated-pathways are expected
to appear enriched in our analysis of cancer cell lines, it is remarkable that the
cancer pathways enriched in KRAS-Dep cell lines correspond to cancers types
driven by activating Ras oncogene mutations (Figure A.4C), suggesting that
certain molecular features are common to KRAS dependency across different

cancers types.
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Figure 2.3. PCST-based network reconstruction method identifies active sub-modules in KRAS
dependent cell lines.

A) Network reconstruction methodology. We built a focused undirected and weighted protein-to-protein
interaction network (G) using differential expressed pathways identified by the SPIA algorithm '*°. We assign
weights to both nodes (V) and edges (E). Node weights (bv) correspond to —log(pvalue(Sscore)) for
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differential abundance between KRAS-Dep and KRAS-Ind phenotypes, while the edge's (Ce) weight
correspond to the experimental confidence of that interaction as reported for the STRING database. Finally,
we used the Prize Collecting Steiner Tree algorithm to find sub-networks, T, in G that maximized the number
of differential expressed proteins recovered as well as the confidence in their interaction. B) Module M1.
This module, identified by the PCST, connects LCK and PAK1 in KRAS-dependent cell lines. The module
joins LCK and PAK1 with other proteins that belong to the NF-Kappa B and apoptosis pathways such as
NFKBIA, NFKBs, TRAFs, and BIRCs. Node size is proportional to the absolute value of the combined S
score. Node color represents over-expressed (red) or under-expressed (green) in KRAS-Dep cells. Edge
thickness corresponds to edge’s confidence as calculated from STRING database (methods). C) Module
M2. This module, identified by the PCST, involves KRAS and MET in KRAS-dependent cell lines. Additional
targetable proteins such as SYK and LYN are also part in this module. Described as in b. D) Module M3.
This module, identified by the PCST, connects CTNNB1 (B-catenin), CTNNA1, CDH1, TJP2 and other
proteins associated cell adhesion complexes and the tight junction pathways. Described as in b.

Furthermore, in the second step we built a focused undirected and
weighted protein-to-protein interaction network (G) using all proteins that belong
to those pathways identified by SPIA and we assigned weights to both nodes (V)
and edges (E). The weight of each Node (Bi) corresponds to the combined score
(S) for differential abundance between KRAS-Dep and KRAS-Ind phenotypes,
while the weight of each edge (Ce) corresponds to the experimental confidence
on that interaction. The edge weight is derived from the STRING database ', by
combining STRING’s experimental and physical interaction scores using a naive

Bayesian approach.

Finally in the third broad step of this methodology, in order to identify
specific network sub-modules that are active in KRAS-Dep cell lines, we
formulated this network reconstruction task as a Prize Collecting Steiner Tree
(PCST) problem”>8%.11% (Methods). The PCST allowed us to synthesize
transcriptome, proteome and phosphoproteome signatures in the context of the
weighted protein-to-protein interaction network mentioned above. This
formulation facilitated the identification of crosstalk between pathways nominated
by SPIA, as well as identification of relevant proteins that were not directly
measured in our experiments. We identified three modules —referred to as M1,
M2, M3 — using the PCST formulation.
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M1 contains LCK, PAK1, and PRKCH as well as proteins involved in
regulation of inflammation, antiviral responses and apoptosis proteins such as
several TRAFs, BIRCs and NFKBs (Figure 2.3B). M2 contains KRAS as well as
the kinases MET, LYN, SYK, and MAPK1 among others (Figure 2.3C). M3
contains CTNNB1 (B-catenin), CDH1, CTNNA1 (a-catenin), TJP2 and other
proteins associated with the adhesion complex (Figure 2.3D). M3 is consistent
with our observation that [1-catenin is mainly localized in the cellular membrane
of KRAS-Dep cells (Figure A.4D), supporting a role in cellular adhesion in
NSCLC cell lines.

2.5.4 KRAS-LCK-PAK1 signaling axis in KRAS-Dep lung cancer

Intriguingly, module M1 suggests a link between LCK and PAK1 that has
not been reported previously in solid tumors despite the fact that PAK1
overexpression has been already implicated in lung and breast cancers''®. LCK
is a tissue-specific kinase normally expressed in T-lymphocytes. It is commonly
overexpressed in myeloid and lymphocytic leukemia, as well as Burkitt and non-
Hodgkin’s B-cell lymphoma ''° and acts as a proto-oncogene, inducing cellular
transformation through regulation of cell proliferation and survival'*'%. A role
for LCK is not known in solid tumors. Therefore, we hypothesized that the
aberrant overexpression of LCK in KRAS-Dep lung cancers could also play a role

in this disease.

To confirm our network reconstruction approach and further dissect the
functional connections among KRAS, MET and LCK, we performed knockdown
experiments using independent siRNAs in the H441 and H358 cell lines that
display KRAS dependency’. Immunoblot analysis showed that knockdown of
KRAS decreased the abundance of MET, phospho-MET, LCK, phospho-LCK,
phospho-PAK1/2 and phospho-BAD (Figure 2.4A, Figure A.5A, A.5B). These
results demonstrate that MET, LCK, PAK1/2 and BAD are downstream of
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Figure 2.4 Experimental validation of protein modules in KRAS-Dep cells.

A) KRAS influences total and phosphorylated protein level of potential druggable kinases LCK and MET in
KRAS-Dep cell lines. Knock down of KRAS with two independent siRNAs reduces phosphorylation levels of
LCK, MET, PAK1/2 in H441 cell line. KRAS-KD also reduced total protein levels of LCK and MET, but not
PAK1/2. B) LCK influences PAK1/PAK2 activation in KRAS-dependent cell lines. Knockdown of LCK using
two independent siRNAs reduces phosphorylation levels of PAK1/2 but not their protein level in H441
KRAS-Dep cell line. C) PAK1/2 are downstream of LKC in KRAS-dependent cell lines. PAK1/2 knockdown
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does not affect phosphorylation or protein level of LCK in H441-Dep cell line. D) LCK knockdown increases
the level of cleaved PARP and caspase-3, markers of apoptosis in H441 KRAS-Dep cell line.

KRAS and regulated by KRAS in vitro. In contrast, knockdown of LCK did not
reduce KRAS levels indicating that LCK does not regulate KRAS protein
abundance (Figure 2.4B, Figure A.5C), although previous reports have
suggested a role for LCK in KRAS activation'®'. Knockdown of LCK did however
reduce phospho-PAK1/2 levels, but not total PAK1/2 protein, defining PAK1/2 as
targets for LCK-mediated phosphorylation (Figure 2.4B, Figure A.5C). Figure
2.3B indicates that this effect is potentially mediated through a small network of
interacting proteins. Moreover, knockdown of PAK1/2 did not change the
phosphorylation or protein levels of LCK, confirming that PAK1 and PAK2 are
downstream of LCK (Figure 2.4C). Taken together, our bioinformatics and
experimental results suggest an active KRAS-LCK-PAK1/2 network in KRAS-
Dep cell lines (Figure A.5D). Our results also present evidence that KRAS can
influence both the phosphorylation and protein levels of LCK and MET kinases,
which complements previous reports suggesting that those kinases could be

121,122

upstream of the RAS-MEK pathways , and suggests the possibility of a

feedback loop among these proteins in KRAS-dependent cells (Figure A.5D).

2.5.5 KRAS-Dep cells are also dependent on LCK for proliferation

In order to extend our results and investigate potentially aberrant
expression of LCK in other cell lines, we performed a gene outlier expression
analysis on an extended panel of 122 lung cancer cell lines (11 KRAS-Dep, 18
KRAS-Ind and 93 KRAS-WT) (Methods). We evaluated informative genes
observed as outliers in KRAS-Dep but not in KRAS-Ind cell lines (Figure 2.5A).

This analysis revealed LCK, MET, ERBB3, MST1R and LYN are kinases
that frequently exhibit outlier expression in KRAS-Dep cell lines, with expression

levels in the top 80 percentile in over 60% of cell lines in this group (Figure 2.5B).
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Figure 2.5. Outlying kinases in KRAS-Dep cell lines.

A) Cancer outlier profile analysis (COPA) of “informative” genes on an extended gene expression dataset of
KRAS-mutated cell lines (KRAS-Dep=10, KRAS-Ind=11) confirms LCK, MET, LYN and ERBB3 as
differentially abundant proteins in KRAS-dependent but not in KRAS-independent cell lines. 11 KRAS-Dep
and 18 KRAS-Ind were analyzed. B) Overexpressed LCK is present in at least 60% but in less than 10% of
the either wild type or KRAS-Ind cell lines. MET, ERRB3, MST1R and LYN show a similar pattern. 11
KRAS-Dep, 18 KRAS-Ind and 93 KRAS-WT cell lines were analyzed. C) LCK expression measured by
RTQ-PCR in a panel of KRAS-Dep (red label), KRAS-Ind (green label) and KRAS-WT (black label) cell lines
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confirms high levels of LCK in KRAS dependent cell lines and none or negligible expression in KRAS-Ind or
WT cell lines. Cell line H2347 (blue label) harbors NRAS Q61K mutation, but its dependency status could
not be established. Bar height corresponds to the average over three independent replicates and error bars
are defined as s.e.m.

By contrast, the kinases DIRK4 and MARK4 showed outlier expression in KRAS-
Ind cell lines (Figure 2.5A). To validate our approach, we experimentally
confirmed that LCK is overexpressed in KRAS-Dep cells using quantitative PCR

on a panel of 43 lung cell lines (Figure 2.5C).

Given that LCK is a known lineage-specific proliferation factor in B-
lymphocytes, we hypothesized that KRAS-Dep NSCLC overexpressing LCK also
require this kinase for cell growth and survival. We performed shRNA
knockdown experiments for LCK and determined whether ablation of LCK activity
with independent shRNAs could selectively impair cell proliferation on KRAS-Dep
cells (Methods). Figure 2.6A shows that knockdown of LCK dramatically impairs
cell proliferation in KRAS-Dep cells but not KRAS-Ind cells, validating our
predictions (shRNA1 t-test p-value=0.0001822, shRNAS3 t-test p-value = 4.14 exp
-6). We further confirmed that independent knockdown of KRAS also produced

similar results (Figure A.6A).

Moreover, as a kinase, LCK is also an attractive candidate for strategies of
targeted therapy. While specific LCK inhibitors are still in development, we
tested whether prototype small molecule inhibitors of LCK would selectively
affect the viability of NSCLC KRAS-Dep cells. We treated a panel of 3 KRAS-
Dep cell lines and 2 KRAS-Ind cell lines with increasing doses of LCK inhibitor
(CAS 213743-31-8) and measured cell viability at different drug concentrations.
All three KRAS-Dep cell lines tested in this experiment were sensitive to LCK
inhibition while the KRAS-Ind cell lines were insensitive to LCK inhibition, as

expected from our hypothesis (Figure 2.6B). We further confirmed these results
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using a second LCK inhibitor (CAS 918870-43-6) that showed similar results
(Figure A.6B).
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Figure 2.6. LCK constitutes a potential novel drug target in NSCL KRAS-Dep cell lines.

A) LCK knockdown impairs cell proliferation specifically in KRAS-dependent cell lines. LCK knockdown with
two independent shRNAs showed statistically significant reduction in cell proliferation in KRAS-Dep but not
KRAS-Ind cell lines (LCK shRNA-1 t-test p-value = 0.0001822 and LCK shRNA-3 t-test p-value 4.14exp-06).
Bars correspond to the average of three independent experiments and error bars are defined as s.e.m. B)
Inhibition of LCK using small molecule inhibitor preferentially impaired cell proliferation in KRAD-Dep but not
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in KRAS-Ind cell lines. Points represent the average over four independent experiments and error bars are
defined as s.e.m.

These results demonstrate that KRAS-Dep lung cancer cell lines have aberrant
overexpression and activity of LCK. Similarly, we observed that MET shRNA
knockdown as well as MET inhibition with small molecule inhibitors selectively
impaired cell growth of KRAS-Dep cell lines (Figure A.6C, Figure A.6D), further
supporting the biological relevance of our computational network reconstructions

and predictions of targetable proteins in KRAS-Dep cells.

To evaluate whether LCK expression can be used to stratify the KRAS
dependency status of human lung cancers, we assessed LCK expression in a
panel of 29 lung adenocarcinoma tissue samples with mutations in KRAS. To
confirm the KRAS mutations, we genotyped canonical positions in codons 12, 13
and 61, known to produce a constitutively active KRAS when mutated (Table
A-4). As there is currently no clinical biomarker to identify the KRAS dependency
status of NSCLCs, we sought to evaluate LCK expression in these samples as a
potential biomarker for KRAS dependency. Because LCK is normally highly
expressed in lymphocytes, LCK mRNA expression from surgical samples is not
an accurate method to assess LCK expression in epithelial-derived lung cancer
cells, as the infiltrating lymphocytes in these samples would distort the analysis.
Thus, a previous study that detected LCK in lung cancer tissues by gene

expression microarrays is likely confounded by the lack of cell-type specificity '*°.

We therefore used immunohistochemistry (IHC) to determine the
abundance of phosphorylated LCK in epithelial lung cancer cells in our 29 clinical
samples. We first validated our IHC assay using a panel of normal tissues and
cell lines that demonstrated high levels of LCK expression in the spleen where
lymphocytes are abundant, but not in other tissue types. Next, a TMA of KRAS-
Dep cell lines H441 and H358 also showed high levels of phosphorylated LCK
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expression, while a TMA of H460 and H23 KRAS-Ind cell lines did not showed
any staining. Finally, applying this method to our 29 lung tumor samples
harboring KRAS mutation, we found that 58.6% (17/29) of tumors showed high
levels of phosphorylated LCK staining, whereas 41.4% (12/29) tumors showed
low levels of phosphorylated LCK (Supplementary Table S1). These results are
consistent with in vitro data demonstrating that KRAS-mutant lung cancer tissues
can be subdivided in two groups according to their levels of phosphorylated LCK,
similar to NSCLC cell lines. Although, it is not possible currently to determine the
dependency status of a tissue through direct experimentation, this subdivision of
tumor samples is suggestive of the correlation described here between KRAS
dependency and LCK activation in cell lines. However, a larger cohort of tissues
with matched profiles of KRAS mutation, gene expression as well as
immunohistochemistry of phosphorylated LCK would be required to further
determine the prognostic value and the extent of this association between KRAS
dependency and LCK activation in tissue specimens. A proof of principle analysis

in this direction is shown in Figure A.GE.

2.5.6 KRAS and LCK could regulate anti-apoptosis pathways

To explore potential functional roles of the KRAS-LCK-PAK1/2 pathway,
we evaluated our computational predictions of modules M1, M2, and M3 in lung
cancer. We were struck by the enrichment for apoptosis-related proteins in
module M1 that included LCK and PAK1 (Figure A.7A), suggesting a potential
connection between LCK and apoptosis. Indeed knockdown of LCK in H441
cells was correlated with increased levels of cleaved PARP and caspase-3,
markers of apoptosis, which further supports the association between LCK and
apoptosis (Figure 2.4D).

To further explore this association, we used microarrays to profile gene
expression changes following knockdown of LCK in the H441 and H358 KRAS-
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Dep cell lines, and we evaluated the microarray data for pathways specifically
inhibited or activated by LCK (Table A-5 and methods for specific details on this
analysis of these microarray data). We assumed that pathways activated
specifically by LCK in the context of KRAS dependency would be inhibited after
knockdown of this kinase. Interestingly, we observed a module comprised of
TRAF1, BIRC3 and BCL2L1, three proteins that regulate apoptosis (Figure
A.7B). These proteins were part of a canonical KEGG pathway for lung small

cell cancer, a pathway specifically inhibited after LCK knockdown (Table A-5).

Moreover, we reasoned that causative genes should be both
overexpressed in KRAS-Dep compared to KRAS-Ind cell lines and also down
regulated upon LCK knockdown in H441 and H358 (Methods). Performing this
analysis yielded BCL2A1, a BCL2-related protein A1 (Figure A.8A, A.8B).
BCL2A1 can bind to and inhibit or neutralize pro-apoptotic multi-domain proteins
such as BAK and BAX as well as pro-apoptotic BH3-only proteins such as tBID,
BIM, PUMA, BIK, HRK and NOXA but not BAD '?*. Pro-apoptotic protein BAD is
inhibited when phosphorylated "% Indeed, knockdown of KRAS in H441
decreased phosphorylation levels of BAD (p112, p136) (Figure 2.5A), which is
consistent with increased levels of cleaved PARP observed in the knockdown
samples (Figure 2.4A) and supports a role for KRAS in preventing apoptosis via
BAD. The effect on BAD phosphorylation was observed downstream of KRAS
but not downstream of LCK or PAK1/2. Knockdown of LCK or PAK1/2 did not

decrease phosphorylation levels of BAD suggesting independent mechanisms.

Taken together, these computational and experimental data suggest a
potential regulatory network in KRAS-Dep cells that both “directly” inhibits
apoptosis by inducing phosphorylation of BAD and “indirectly” by modulating the
apoptotic response through the LCK module.
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2.6 Discussion

The advent of high-throughput technologies has greatly advanced the
study of cancer biology. However to date, most studies employ only an individual
technology and studies that do include multiple profiling technologies frequently
analyze them separately without integrating across modalities. While these
approaches are effective for identifying single events in cancer (i.e. a new point
mutation or an overexpressed gene), they do not uncover integrated biological
modules that coordinate higher-level biological processes (i.e. apoptosis, RNA

splicing, etc).

Here we developed a novel method to integrate disparate profiling
modalities to explore novel functional networks differentiating KRAS-dependent
from KRAS-independent NSCLCs. We used transcriptome, proteome, and
phosphoproteome profiling to comprehensively analyze gene expression at the
RNA and/or protein level, as well as signaling proteins activated or inactivated by
post-translational modification. Using this approach on 13 KRAS-mutant NSCLC
cell lines known to be KRAS-Dep or KRAS-Ind, our integrative analysis
nominated 115 proteins that were differentially abundant between these two
groups (Hochberg-adjusted p-value <= 0.05). Specifically, our method identified
a set of proteins with highly correlated changes between transcript and protein
levels or unmodified protein and phosphorylated protein levels, and then
enriched these results for specific functions associated with KRAS. Of these, we
validated four proteins (LCK, MET, PAK1 and B-catenin) selected from the top 20
nominated genes. LCK, MET, and PAK1 have not previously been studied in the
context of KRAS-dependent lung cancer.

Of particular interest to this study was LCK, a lymphocyte-specific kinase
well studied in B-lymphocyte development ''*'?° but uncharacterized in solid
tumors. We define a KRAS-LCK-PAK1/2 pathway in KRAS-Dep lung cancers
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that has not previously been described. We find that KRAS regulates LCK
protein and phospho-protein levels, and LCK in turn regulates PAK1/2
phosphorylation but not total protein levels. Previous studies have identified a
role for PAK1/2 in the phosphorylation of B-catenin in KRAS-mutated colorectal
cancer '92'"%: however, we did not observe B-catenin as a direct target of the
KRAS-LCK-PAK1/2 pathway in lung cancer. Knockdown of KRAS and LCK did
not impact B-catenin phosphorylation or cellular localization. Indeed p-catenin
localized to the cell membrane in our experiments (Figure A.4D), not the cell
nucleus where [J-catenin is known to be active in the stimulation of the Wnt

102116 |n addition, our work finds that [I-catenin associates

signaling pathway
with the M3 reconstructed network module that also contains cell surface
adhesion proteins such as CDH1, CTNNA1 (a-catenin), and TJP2. Thus (-
catenin in NSCLC cell lines may operate through cell adhesion pathways as
opposed to a role in regulating transcription as reported in colorectal cancer '%2.
This further helps to explain earlier observations that associate KRAS-Dep lung

cancer cell lines with differentiated phenotypes '°.

To explore the function of LCK in lung cancer, we performed knockdown
experiments and observed that depletion of LCK impaired cellular proliferation
and phenocopied knockdown of KRAS in KRAS-Dep cell lines. In addition, small
molecule inhibition of LCK resulted in preferential decrease in cell viability in
KRAS-Dep cells. Using the Prize Collecting Steiner Tree formulation, we also
found that LCK was associated with a reconstructed Module M1 containing
several proteins involved in regulation of apoptosis in addition to PAK1. Indeed,
we observed that knockdown of LCK or KRAS induces an increase in cleaved
PARP levels indicating an increase in apoptosis. KRAS-Dep cells may then
modulate apoptosis through two complementary mechanisms. KRAS may
regulate the apoptotic response by regulating phosphorylation of BAD, while LCK
may regulate BCL2-related anti-apoptotic proteins. Previous studies in T cells

and CLL cells support this role of LCK as a guardian against apoptosis, as well
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as LCK inhibition through small molecule inhibitors as an effective mean to
sensitize those cells to apoptosis ''°. Finally, we evaluated LCK expression in
KRAS-mutant NSCLC tumors. We observed that almost 60% (17/29) of the
KRAS-mutated tumors showed high staining levels of phosphorylated LCK by
IHC, suggesting they are likely KRAS-dependent. As projects such as The
Cancer Genome Atlas (TCGA) approach their goal of enrolling thousands of
patients with matched -omics datasets such as exome/genome and RNA
sequencing and reverse phase protein arrays (among others), as well as detailed
clinical follow ups, we will be able to assess the prognostic value of the LCK-
KRAS-PAK1/2 pathway in the context of KRAS dependency. A proof of principle

analysis in this direction is presented in Figure A.6E.

Taken together, this study establishes a potentially actionable pathway in
KRAS-Dep NSCLCs comprised of KRAS, LCK, and PAK1/2. We find that KRAS
induces LCK activation, leading to a signaling cascade specific to KRAS-Dep
cells that promotes cell proliferation and could reinforce a positive feedback loop
with KRAS activity (Figure A.5D). Furthermore, our study develops a method to
integrate multiple proteomic and transcriptomic datasets for the identification of
biologically relevant modules in cancer. We thus provide a framework for the
complex analysis of multiple cancer datasets to make biologically-informed

computational predictions for uncharacterized signaling pathways in cancer.

2.7 Contributions

Science is a collective enterprise and it is much more fun when done with
friends and good collaborators. The results presented in this chapter were made
possible because of the great collaboration and support of a team of people in

the Chinnayian and Nesvizhskii labs.

55



Author contributions: O.Alejandro Balbin, Alexey Nesvizhskii, and Arul M.
Chinnayian designed the study; O. Alejandro Balbin developed all bioinformatics
methods and computational analysis, designed functional assays, and performed
proliferation assays; John Prensner., Benjamin Chandler and Anirban Sahu
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2.8 Dedication

| want to dedicate this research to my father, Jesus William. Jesus William fought
a very aggressive KRAS mutated colorectal cancer. While he was giving the fight
for his life, | was, paradoxically, trying to find alternative ways to treat KRAS
dependent cancers. Although, the results of this research were not on time to
help saving his life, | hope they can contribute to save the life of some other

fathers.
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Chapter 3
Identifying driver fusions in lung cancers
without known driver mutations

3.1 Background

3.1.1 Lung cancer

Lung cancer is the leading cause of cancer-related deaths worldwide,

generating more than a milion deaths each year"'®,

Lung cancer is
histologically classified as either non—small cell lung cancer (NSCLC) or small
cell lung cancer (SCLC). NSCLC accounts for 80% of all lung cancers and
includes lung adenocarcinoma (LUAD), squamous cell carcinoma (LUSC) and
large cell carcinoma (LULC). Adenocarcinoma is the most prevalent subtype and
most often observed in non-smokers, however tobacco smoking is associated
with the majority of lung cancers'®. The overall 5-year survival rate for lung
cancer remains poor ~15%, due primarily to late diagnosis when tumor removal

is no longer an option'%,

Genomic analyses of LUAD have revealed mutations in several well-
characterized tumor suppressor and oncogenes including TP53, STK11, KRAS,
EGFR and BRAF among others®. These tumors also demonstrate copy number
alterations with most occurring at relatively low frequency with some having
therapeutic implications such as ERBB2 amplification’*°. Remarkably mutations
in KRAS are mutually exclusive with mutations in EGFR. Recent analyses by
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TCGA for lung squamous cell carcinomas indicate that these tumors undergo
TP53, FGFR1, DDR2, AKT1, PIK3CA, CDKN2A, MLL2, NOTCH1, and RB1 gene
mutations as well as several recurrent gene copy number alterations in genes
such as FGFR1, SOX2 and TP63°. The heterogeneity observed in lung cancer
both histologically and molecularly, underlie the difficulties in effectively treating

patients with this disease.

Similar to these known “driver” somatic gene mutations, several important
gene fusions, formed by the breakage and re-joining of two different genes, occur
in lung cancer including the EML4-ALK gene fusions identified in approximately
4% of adenocarcinomas®®. This fusion protein links the N-terminal portion of
echinoderm microtubule-associated protein-like 4 (EML4) with the intracellular
signaling portion of the anaplastic lymphoma kinase (ALK) tyrosine kinase
receptor. The EML4-ALK translocation is mutually exclusive with EGFR and
KRAS mutations and tumors with EML4-ALK translocation have fewer TP53
gene mutations®. EML4-ALK gene fusions occur in LUAD and in never- or light
smokers. Additional gene fusion events have now been identified in LUAD
including ALK ™' ROS1°, as well as RET"® kinases. These chromosomal
rearrangements have been strongly associated with a history of never or light

smoking.

Most importantly, patients with tumors containing EGFR mutations show
at least initial responsiveness to drugs that target these alterations® and the
presence of the EML4-ALK gene fusion is an indicator of therapeutic
responsiveness to ALK inhibitors®. Under this logic, lung tumors with KIF5B-ALK
fusions also have the potential for sensitivity to ALK inhibitors and RET fusions
may be treated using drugs that target this kinase'*’. These chromosomal
rearrangements have been strongly associated with a history of never or light
smoking. Our group also identified the NFE2-R3HDMZ2 and FGFR3 gene fusions

present in a small percent of lung cancers'>'3,
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3.1.2 Gene fusion detection and control of the false positive rate

The increase on RNASeq experiments to study the cancer transcriptome
has propelled the development of numerous algorithms for fusions discovery55'
1135136 - A major task in fusion discovery is handling false positive. False
positives can be generated during the sequencing and bioinformatics steps. In
the sequencing step chimeric cDNA artifacts are generated by template switching

during reverse transcription and amplification’

. Template switching occurs
when the nascent cDNA that is being synthesized dissociates from the template
RNA and re-anneals to a different stretch of RNA with a similar sequence to the
initial template, generating artifactual gene fusions'®’. This behavior is observed
even more for highly abundant transcripts such as ribosomal RNA. In the
bioinformatics step false positives are generated because all fusion discovery
tools are error prone; they all identify fusion genes that are not present in control
synthetic datasets'®. Strikingly, the number of false positive fusions increased
with read length for all tools, and all tools detected less fusion reads than were

expected.

A recent comparison of eight fusion calling algorithms showed that overall
algorithms have a maximum sensitivity of about 80%. However, in order to
recover the higher number of true positives, the most sensitive algorithms pay an
extremely high prize increasing by several orders of magnitude the number of
false positives. For example, TopHat-fusions (THF) and ChimeraScan the most
sensitive algorithms produced well above 13000 false positive fusions in order to
detect 27 true fusions'”. False positives can be generated by the software or

during the sequencing step.

Taken together those results demonstrate that reducing the number of
false positives would be the biggest challenge on a high throughput assessment
of gene fusions across large cohort of patients, such as the TCGA cohorts and

the one assembled for this study.
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Previous studies have relied on applying hard thresholds to filter out
potential false positives. For example establishing a minimum number of reads
that support the gene fusion product. According to the identification of fusion
boundary, the nucleotide coordinates defining the breakpoint of both genes
involved in the fusion, we can define three types of reads: read spanning, read
encompassing and mate pair encompassing reads (for pair-end sequencing).
Encompassing reads harbor a fusion boundary and each read maps on a
different gene of the fused gene couple; in spanning reads one mate overlaps
with a fusion event, while the corresponding paired-end mate matches with one
of the two genes involved in the chimera; lastly in mate pair encompassing reads
one read maps to one side of the fusion boundary while its mate maps to the

other side, but none of them harbor the fusion breakpoint.

Although effective for blindly eliminating most false chimeric events, two
issues appear with applying hard thresholds using the minimum number of reads.
First, there are real and functional fusions such as EML4-ALK, which have a low
read support despite being driver fusions. On the other hand, highly expressed,
such as ribosomal proteins, tend to form a great variety of chimeric fusions due
to template switching during the sequencing step. In consequence, thresholding
approaches would eliminate real and functional fusions while keeping clear false

positives.

In this study, we address that challenge of controlling the false positive
rate on fusion detection from a completely different perspective. Here, we
developed a gene fusion classifier to distinguish between true and false
positives. We used structural properties such as: 3’ and 5’ partner genes, cohort,
3’ breaking exon, 5 breaking exons, median alignment quality of reads that
support 3’ gene, median alignment quality of reads that support 5° gene, number
of spanning reads, encompassing reads, spanning mate pairs, expression of the

5 and 3’ gene in the sample, among other characteristics. We employed a
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random forest algorithm for classification, because random forest algorithms do
not make assumptions about the distribution of the data. Moreover, random
forest algorithms determine the importance of each feature in the classification
process and therefore they allow for feature selection. This approach showed to
be very efficient while at the same time it recovered the main structural properties

that are frequently used for thresholding.

3.1.3 Aims of this study

Given the importance of gene fusions, yet their apparent low frequency in
lung cancer, in the present study we examine the landscape of gene fusions in
the largest RNASeq cohort of NSCLC assembled so far. We have performed
comprehensive RNA sequencing of our cohort of primary NSCLC with a history
of heavy smoking and integrated the results with the available data from TCGA

and another public available dataset, the “Seoul” cohort.

We characterize gene fusions in lung tumors both with and without known
driver mutated genes, and we examine the relationship between fusions
incidence, tumor and clinical characteristics including patient survival. This is the
first study to show that fusions incidence is an independent factor associated with
poor prognosis. Moreover, we identified recurrent Neuregulin 1 (NRG1) gene
fusion events exclusively in driver negative patients, resembling known kinase
fusions, which may provide future therapeutic opportunities for patients harboring
NRG1 rearrangements. This study also generates a database of lung cancer
fusions that can be used by other researches looking for low recurrent fusions in

this disease.
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3.2 Bioinformatics methods

3.2.1 Sequence alignment

Sequence alignment was performed using the Tuxedo pipeline: Bowtie2
(Bowtie2/2.0.2) and Tophat2 (TopHat/2.0.6)47. We supplied TopHat with the set
of transcript models annotated in the Homo sapiens ensemble database version
69. The flag fr-firststrand was used for the strand specific RNASeq libraries while
fr-unstranded was used for the unstranded libraries. All other parameters were

used with default values.

3.2.2 Fusion calling

Fusion calling was performed with TopHat-fusion*” (THF) on the UMICH,
TCGA and Seoul cohorts. ChimeraScan®® was applied to the UMICH cohort to
increase sensitivity in our discovery cohort. TopHat-fusion was run with the
following arguments: bowtie, fusion-search, keep-fasta-order, no-coverage-
search, fusion-min-dist=0, fusion-anchor-length=13, fusion-ignore-
chromosomes=chrM. TopHat post-processing was run with the arguments: skip-
blast, num-fusion-reads=1, num-fusion-pairs=1, num-fusion-both=3.
Chimerascan was run with the following options: trim5=1, trim3=1,

frag_size_percentile=1.0, arg= -v, keep-tmp.

3.2.3 Fusion annotation and lung cancers fusions database

A database of fusions in lung cancers was developed, and for each fusion
structural and functional annotation was recorded. The structural information
correspond to chromosomes of 3’ and 5’ partner genes, cohort, 3 chromosome,
5’ chromosome, 3’ breaking exon, 5’ breaking exons, median alignment quality of

reads that support 3’ gene, median alignment quality of reads that support 5
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gene, number of spanning reads, spanning mate pairs and encompassing reads,
3 and 5 partner recurrence across the cohort and fusion type (Inter-

chromosomal, Intra-chromosomal, Tandem-duplication).

The functional annotation corresponds to kinase status, oncogene status,
tumor suppressor status and targetable status (TRUE/FALSE) of both 3’ and &’
partner genes. Other functional annotations include the gene family of both
fusion genes, as well as the their gene biotype (protein-coding, ncRNA, rRNA,
etc.). Moreover, the gene expression of each fusion gene was calculated in

140 and stored in the

fragments per-kilobase per million (FPKM) using Cufflinks
database. In addition, an outlier score was calculated for the expression of both
5 and 3’ partners in order to identify cases in which the 3’ partner is highly

expressed as consequence of the fusion event.

This database was created using pytables and hd5 format for fast access
and storage and includes the following tables: patient table, patient clinical
information table, fusions structural information table and expression table. In
addition to these tables corresponding to fusion events, we create an additional
table to store the mutation status for each patient, mutation table. The mutation
table allows us to classify each patient as “driver positive” or “driver negative”

according to mutation status of well-known cancer related genes (see below).

3.2.4 Fusions classifier

As described in section 3.1.2 all fusion calling algorithms produce a
significant number of false positive fusions when applied on RNASeq data. Many
of these spurious fusions are due to diverse and difficult to model bioinformatics,
sequencing and biological factors such as: template switching and random

chimeric events associated with amplicon regions among others.

63



Therefore, in order to separate potentially genuine fusions from spurious
ones, we developed a classifier to predict potentially true fusions based on the
structural and functional features collected for each fusion, which were described

above and stored in our fusion’s database.

THF called 31,304 fusions across the combined cohort. The task of
separating false positive fusions from potentially true ones in this dataset is then
far from trivial. We first reason that functional fusion proteins have open reading
frames (ORFs); therefore fusions in which the exon of one gene is fused to the
intron of another or two introns are fused together would not produce fusion
products with ORFs. This first level filtering reduced to 6,465 the number of
fusions to classify. Then, we reason that fusions found in normal samples;
fusions involving pseudogenes, lincRNAS, or antisense transcripts and fusions
for which the median alignment quality of reads supporting any of the gene
partners was equal to zero (indicating multi-mapping) are potentially false
positives, and there were excluded from downstream analysis. This second level
filtering reduced to 4,990 the number of fusions called by THF. Assessing the
quality of each one of those fusions manually is impossible in practice.
Therefore, we build a random forest classifier to determine the potentially true

and false positives out those 4,990 gene fusions.

For the classification step, we train a random forest classifier with 10,000
trees using the following features: chromosomes of 3 and 5’ genes, 3’ gene, 5
gene, 3 breaking exon, 5’ breaking exons, median alignment quality of reads that
support 3’ gene, median alignment quality of reads that support 5° gene, number
of spanning reads, spanning mate pairs and encompassing reads, 3’ and 5
partner recurrence, fusion type, gene biotype of both 3’ and 5’ genes, FPKM
expression of both 3’ and 5’ genes, and FPKM expression of both 3’ and 5

genes normalized across the combined cohort.
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True positives examples were selected from the TCGA, Seoul and UMICH
cohorts. On one hand, the examples chosen from the TCGA and Seoul Cohorts
correspond to well known fusions involving ALK, RET and ROS1 kinases. On the
other, the examples chosen from the UMICH cohort correspond to fusions called
by at least two independent algorithms, carefully curated manually and validated
by PCR (Table B-1). False positive examples were selected representing
different types of spurious fusions: e.g. overlapping genes, fusions involving

highly expressed genes such as ribosomal proteins among others.

An additional advantage of using a classifier to determine the potential
true fusions, as opposed to hard filters defined a priori, is that we can learn those
features or rules from the data itself. In our dataset, the top five features that
contributed the most for the random forest classifier were, in decreasing order of
importance, fusion type (Inter-chromosomal, Intra-chromosomal, Tandem-
duplication), sum of the median alignment quality of both gene partners, number
of reads spanning and encompassing reads across the fusion junction and the

cohort normalized expression value of the 3’ gene (Figure 3.4).

Two additional sets of true fusions were left out of the training dataset to
calculate the recovery rate. First, a set of 11 fusions called in the Seoul cohort®
and validated by PCR by the same authors, and a second set of 15 fusions
called in the UMICH cohort by THF, ChimeraScan, manually curated and
validated by PCR. In the first of these datasets, our classifier recovered 10 out 11
fusions for a 90.1% recovery rate (Table 3.3-1). In the second set, the classifier

recovered 14 out 15 validated fusions for a 93.3% recovery rate (Table 3.3-2).

65



Table 3.3-1. Fusions recovered by our classifier in the Seoul cohort.

All these fusions were called and validated independently of our study. Recovered fusions are label with 1, while missed fusions with 0.

e ;
2 2 8 28 8%
< < i g )
1) () = e x
Seoul Ic_c25 3 6 ASCC3 UBE2E1 Seoul 1 5 9 9 18 16 2 9 InterC | 1
Seoul Ic_s11 11 11 Cl11orf93 HYOU1 Seoul | 13 3 9 9 18 155 7 49 IntraC | 1
Seoul Ic_c25 1 6 CGA ZFYVE9 Seoul | 15 4 9 9 18 16 3 12 InterC | 1
Seoul Ic_s18 19 19 DNM?2 NMRK?2 Seoul 8 2 3 3 6 3 1 1 IntraC | O
Seoul Ic_s18 11 11 FGF3 RBM14-RBM4 | Seoul 1 2 9 9 18 20 1 8 IntraC | 1
Seoul Ic_c17 12 12 GPR133 TXNRD1 Seoul | 16 14 9 9 18 14 2 10 IntraC | 1
Seoul Ic_s23 19 14 MBIP AXL Seoul | 19 6 9 9 18 1566 | 153 | 1210 | InterC | 1
Seoul Ic_s38 12 4 PDGFRA SCAF11 Seoul | 15 2 9 9 18 132 13 110 | InterC | 1
Seoul Ic_s9 10 6 ROS1 CCDC6 Seoul 5 9 9 9 18 77 6 53 InterC | 1
Seoul Ic_c36 12 12 SLC16A7 MUCL1 Seoul 2 3 9 9 18 82 7 16 IntraC | 1
Seoul_Ic_c15 11 13 TNFSF11 APLP2 Seoul 7 5 9 9 18 150 12 83 InterC | 1
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Table 3.3-2. Fusions recovered by our classifier in the UMICH cohort.

All these fusions were called and validated independently of our study. Recovered fusions are label with 1, while missed fusions with 0.

c (0]

¢ g § f &1 5

2 2 o S £ 5 3

< < 5 5 3 ® S

R @ = § L

A28 9 9 PTCH1 FAM120A0S | umich | 23 2 7 7 14 8 2 6 IntraC | 1
C028 1 1 WASF2 FGR umich | 9 12 9 9 18 21 48 2 TD 1
C0o74 8 8 GTF2E2 GSR umich | 5 1 9 9 18 87 33 0 TD 1
C004 3 3 HLTF HPS3 umich | 18 11 9 9 18 40 7 37 TD 1
A49 11 11 CPT1A HRASLS2 umich | 6 3 9 9 18 105 13 115 | IntraC 1
C040 11 | 11 AHNAK KAT5 umich | 6 6 6 6 12 9 43 6 IntraC | 1
H1838 6 6 PCMT1 LATS1 umich | 3 6 9 9 18 15 6 7 D 1
A52 9 12 PTPRD LRMP umich | 43 5 9 9 18 12 2 8 InterC | 1
C004 3 3 UBAS MRAS umich | 10 2 9 9 18 12 2 13 IntraC | 1
H1792 12 12 SRGAP1 MSRB3 umich | 3 2 9 9 18 79 14 119 | IntraC 1
H23 2 2 THADA MTA3 umich | 38 9 9 9 18 33 12 16 IntraC 1
H441 1 1 MEAF6 SCMH1 umich | 5 9 4 7 11 7 27 4 IntraC 1
C051 15 15 MYO5C TNFAIP8L3 umich | 12 1 9 9 18 15 52 15 IntraC 1
A25 3 3 IP6K1 TRAIP umich | 4 5 9 9 18 63 46 58 D 1
A85 8 8 RBM12B MMP16 umich | 3 6 2 2 4 2 4 3 IntraC | O
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3.2.5 Mutation calling

UMICH cohort: Single nucleotide variants (SNVs) were called using
Varscan2 (Varscan2/2.2.8)48 on the ssRNAseq libraries of the UMICH cohort.
Because, we did not have matched normal for each tumor sample, we consider
only SNVs that were previously reported in the Catalogue of Somatic Mutations
database (COSMIC version 56). Single nucleotide mutations in other positions
were not considered for reporting or downstream analysis. SNVs present in
dbSNP (v135) were filter out, as well as SNVs with variant fraction smaller than
10%, or with less than six reads covering the position. Insertions and deletions
were not called from the RNAseq data, because currently there are not available
algorithms to efficiently assess these genetic aberrations on RNASeq libraries.
SNVs for all tumor samples were aggregated and annotated using variant-

tools™!.

TCGA cohort: All somatic mutations both SNVs and indels called on
Exome sequencing data for the TCGA consortium were extracted from
aggregated Mutation Annotation Format (MAF) files available at the Broad
institute firehose Genome Data Analysis Center MAF dashboard on May 11 of
2013.

Seoul cohort: All SNV and insertion/deletion somatic mutations reported
by Seo et al (2012) were used®.

3.2.6 Sample annotation

We annotated the mutation status of oncogenes and tumor suppressor
well known to be involved in lung adenocarcinoma and squamous carcinomas.

On one hand, known activating mutations were considered for KRAS, NRAS,
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HRAS, EGFR, BRAF, PIK3CA, and MET, while missense or non-sense
mutations were considered for TP53, STK11, NF1, PTEN, SMARCA4, CDKNZ2A,
and APC. Mutations reported in COSMIC were considered for AKT, MEK, ATM,
AKT1, KEAP1, U2AF1, RBM10, ARID10, and MYC which have been recently

implicated on these indications®'#?

. Finally, we used the somatic mutation
information to divide the combined cohort in two groups: samples with known
drivers and samples of unknown drivers. The first group corresponds to samples
with somatic mutations in KRAS, NRAS, HRAS, EGFR, BRAF and/or PIK3CA,
while the second group to samples that do not harbor alterations in those well-

known driver genes.

3.3 Experimental methods

3.3.1 Sample acquisition

We collected tumor samples from 67 patients with lung adenocarcinomas
and 36 patients with lung squamous carcinoma. Matched normal lung tissues
samples were collected at the edge of cut lung lobe, as far as possible and at
least 3 cm far away from tumor, following surgery at the University of Michigan.
The recruitment of subjects and informed consent were reviewed and approved
by our IRB. These tissues were preserved by flash freezing immediately following
surgical resection, and clinical and follow-up data have been collected. None of
the patients used in this study received preoperative chemotherapy or radiation
therapy. The 24 cell lines included in this study were all acquired from The
American Type Culture Collection (ATCC) and grown according to the ATCC

suggested media conditions.

3.3.2 Total RNA isolation
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Regions of tumor tissue containing a minimum of 70% tumor cellularity
defined by cryostat sectioning were utilized for RNA isolation. Tissues or cell
lines RNAs were isolated using miRNeasy mini kit (Qiagen). RNA quality was
analyzed using the 2100 Bioanalyzer (Agilent Santa Clara, CA). Only samples
with RNA integrity number (RIN) >8.0 were subjected to RNA sequencing.

3.3.3 Preparation of RNASeq libraries

Transcriptome libraries were prepared following a modified protocol
previously described for generating strand specific RNASeq libraries®*. Briefly
2.5 pg of total RNA was subjected to polyA selection using oligodT beads
(Invitrogen, Carlsbad, CA). Purified polyA RNA was fragmented and reverse
transcribed using Supersciptll (Invitrogen, Carlsbad CA). Second strand
synthesis was performed with DNA Polymerase | (New England Biolabs, Ipswich,
MA) in the presence of dNTP mix containing dUTP instead of dTTP. The product
was then subjected to end repair, A base addition and adaptor ligation steps.
Libraries were next size selected in the range of 350 bps after resolving in a 3%
Nusieve 3:1 (Lonza, Basel, Switzerland) agarose gel and DNA recovered using
QIAEX Il gel extraction reagent (Qiagen, Valencia, CA). Libraries were barcoded
during the 14-cycle PCR amplification with Phusion DNA polymerase (New
England Biolabs, Ipswich, MA) and purified using AMPure XP beads (Beckman
Coulter, Brea, CA). Library quality was estimated with Agilent 2100 Bioanalyzer
for size and concentration. The paired end libraries were sequenced with lllumina
HiSeq 2000 (2x100 bases, read legth). Reads that passed the filters on lllumina

BaseCall software were used for further analysis.

3.3.4 PCR fusion validation

We validated a subset of nominated fusion genes by THF from UMICH

cohort using real-time (RT-PCR). Of the 27 attempted fusions, 24 were validated,
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2 had inconclusive results and 1 was not validated, representing a validation rate
of 89%.

3.3.5 RNA isolation, cDNA synthesis and quantitative RT-PCR

Total RNA was isolated using either QIAzol reagent or RNAeasy micro kit
(QIAGEN, Valencia, CA). cDNA was synthesized from total RNA using
Superscript 1ll in presence of random primers (Invitrogen, Carlsbad, CA).
Quantitative Real-time PCR (gPCR) was performed using SYBR Green Master
mix on the StepOne Real-Time PCR System (Applied Biosystems). All

oligonucleotide primers for the gPCR assays were obtained from Integrated DNA

Technologies (Coralville, IA); NRG1 forward
5GATTCCTACCGAGACTCTCCTC?Z and reverse
5TGGAAGGCATGGACACCGTCAT3’ and GAPDH forward
5GTCTCCTCTGACTTCAACAGCG3’ and reverse primer

5ACCACCCTGTTGCTGTAGCCAAZ'. Fold changes were calculated relative to

GAPDH and normalized to the non-targeting control.

3.4 siRNA knockdown studies

Lung cancer cell line NCI-H1793 were plated in 6-well plates at a desired
numbers and transfected with 2 nmol of NRG1 siRNAs (J-004608-11; and J-
004608-12) or non-target control siRNA (Thermo Scientific). Transfection with
oligofectamine reagent (Invitrogen, Carlsbad, CA) was performed twice over a
period of 48 hours. Knockdown efficiency was determined by qPCR. Cell
proliferation assessed by Incucyte, 24 hours after transfection, cells were
trypsinized and plated in triplicate at 8,000 cells per well in 24-well plates. The
plates were incubated in the IncuCyte live-cell imaging system (Essen
Biosciences) at 37°C with 5% CO, atmosphere. Cell proliferation rate was

assessed by kinetic imaging confluence measurements at 3-hour time intervals.
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3.4.1 Cloning and expression of CD74-NGR1 fusions and cell proliferation

and migration assays

CD74-NRG1 fusion transcript was amplified from the Index lung cancer
sample tissue cDNA with forward
5CACCATGCACAGGAGGAGAAGCAGGAGCTGT3 and reverse primers
5TTCAGGCAGAGACAGAAAGGGAGTGGAZ using Hi-fidelity polymerase
(Qiagen, Valencia, CA). The PCR product was gel purified and cloned into plenti-
TOPO cloning vector (Invitrogen, Carlsbad, CA) and the DNA sequence was
independently verified by Sanger sequencing. The control LacZ or C-terminal V5
tagged CD74-NRG1 constructs were transfected into the normal lung epithelial
cell line BEAS-2B cells. The stable cells generated after selection in BEBM
media (Lonza, Basel, Switzerland) containing 3 micrograms of blasticidin
(Invitrogen, Carlsbad, CA). For proliferation assays, 50,000 cells were plated in
12-well plates and grown in regular media. Cells were harvested by trypsinization
and counted manually at indicated time points. All assays were performed in
quadruplicates. For migration assays, stable cells were re-suspended in medium
without growth factors, then seeded at 50,000 cells per well into Boyden
chambers (8 um pore size, BD Biosciences) and were incubated for 24 hours in a
humidified incubator at 37°C, 5% CO, atmosphere. The bottom chamber
contained medium with growth factors as chemo-attractant. The top non-
migrating cells were removed with a cotton swab moistened with medium and the
lower surface of the membrane was stained with Diff-Quick Stain Set (Siemens).
The number of cells migrating to the basal side of the membrane was visualized
with an Olympus microscope at 20x magnification. Pictures of five random fields

from 4 wells were obtained and the number of cells stained manually quantified.

3.4.2 Protein isolation and western blot analysis
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Cells were plated in 100 mm plates and incubated at 37°C in 5% CO;
overnight to allow cells to adhere. Cells were washed with ice cold PBS twice.
Whole-cell extracts from treated or untreated cell lines were harvested using cell
lysis buffer (Cell Signaling), according to the manufacturer’s protocol. Protein
concentrations in cell lysates were measured using the protein assay
quantification (bicinchoninic) (Pierce, Rockford, IL). Equal amounts of protein
were loaded in each lane. Cell lysates were resolved under reducing conditions
by 10% SDS-PAGE and then transferred to PDVF membranes. After being
blocked with 5% milk in tris-buffered saline (TBS) with 0.1% Tween20, the
membranes were incubated with antibodies against activated or total forms of
protein overnight at 4°C, washed three times with 0.1% Tween 20 - TBS and
then incubated for 60 minutes with 2000:1 peroxidase-conjugated anti-rabbit 1gG.
Antibodies against E-Cadherin, Vimentin, phospho-Erbb3, phospho-Erbb3,
phosho-ERK and total-ERK were purchased from Cell Signaling Technology Inc.
(Beverly, MA). Total Erbb3 and Erbb4 were purchased from Santa Cruz
Biotechnology Inc. (Dallas, TX). The membrane-bound peroxidase activity was
detected using ECL Prime Western Blotting Detection kits (Amersham, Arlington

Heights, IL) and chemiluminescent images were captured by exposing film.

3.4.3 Chemicals and cell proliferation assays

Two MEK inhibitors (AZD6244 and GSK1120212), an EGFR/ERBB2
inhibitor (Afatinib) and a MET/ALK inhibitor (Crizotinib) were obtained from
SelleckChem. The effect of these drugs on proliferation of NCI-H1793, NCI-
H1299 and NCI-H1792 was measured. Cells were plated at 1.5 — 2.5 x 10°
cells/well in 100ul of appropriate culture medium using 96-well plates and
incubated at 37°C in 5% CO, overnight and then treated 24 hours later with the
respective drugs. Each inhibitor was prepared at 7 serial dilutions ranging from
0.03 to 30uM at the final concentration. On day 3, cell viability was assessed

using 10ul/well of WST-1 reagent (Roche), according to manufacturer’s
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instructions. The absorbance at 450 nm and reference at 630 nm were measured
using an automated plate reader (ELx808 Bio-Tek) at different time-points. Cell
proliferation was estimated by dividing the mean absorbance of the treatment
group divided by the mean absorbance of the vehicle-treated control X 100%.
Inhibitory concentration 50% (ICso) was calculated using GraphPad Prism 6

software.

3.5 Results

3.5.1 Patient cohort description

We have assembled a cohort of 732 patient samples, which includes lung
adenocarcinoma and squamous carcinoma patients, by combining our UMICH
cohort with public available data from TCGA and the recently published cohort by

Seo et al., 20122 (from here on the Seoul cohort).

We sequenced mRNA from 133 samples by using strand specific RNA
paired-end sequencing (ssRNASeq) technology. The UMICH cohort includes 67
LUAD, 36 LUSC, 24 lung cancer cell lines and 6 matched nonmalignant lung
samples. Moreover this cohort included 64 stage |, 17 stage Il and 22 stage IlI
patients. Eighty-nine patients were smokers, whereas 8 were never-smokers and
in 4 cases the smoking status was unknown. The median smoking pack years
was 45 (range, 2 — 300) and practically all patients were heavy smokers (more
than 10 pack years). The average follow up was 5.05 years. Sample acquisition
details were described provided in the methods section. The TCGA cohort used
in this study encompasses 305 LUAD and 216 LUSC samples. This includes 250
stage |, 112 stage Il, 101 stage lll, and 19 stage IV cases as well as 39 with
unknown stage. This cohort includes 4 never-smokers, 20 light smokers (defined
by less than 10 pack years of tobacco use) and 365 heavy smokers (more than
ten pack years of tobacco smoking), and the average follow up was 1.72 years.

Finally, the Seoul cohort includes 79 LUAD, which did not have public available
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clinical information. The Seoul cohort includes 79 matched normal samples;
fusions called in these normal samples were used for filtering as described in the

methods.

In summary, the combined cohort used in this study includes 451 lung
adenocarcinomas, 251 lung squamous carcinomas and 24 NSCLC cell lines,
making this the most comprehensive RNA-Sequencing cohort of lung cancers
assembled so far. A summary of the Clinic-pathological characteristics is
provided in Table 3.3-3.

Table 3.3-3. Clinic-pathological characteristics of the combined lung cohort used in this study.

SAMPLES
LUAD LUSC LUCL TOTAL
UMICH 67 36 24 127
SEOUL 79 0 0 79
TCGA 305 216 0 521
TOTAL 451 251 24 727
SEX
MALE FEMALE
UMICH 56 55
SEOUL 48 31
TCGA 298 223
TOTAL 402 309
FOLLOW UP TIME
MIN  MEDIAN MAX AVAILABLE
UMICH 0.26 4.6411 17.3726 111
SEOUL NA NA NA 0
TCGA 0 0.9233 18.6630 436
TUMOR STAGE |
STAGE I STAGEII STAGEIII  STAGE IV
UMICH 64 17 22 0
SEOUL NA NA NA NA
TCGA 250 112 101 19
SMOKING
NEVER LIGHT HEAVY
UMICH 8 NA 89
SEOUL NA NA NA
TCGA 4 20 365
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3.5.2 Global overview of the fusions’ landscape

Fusion calling has lagged behind single nucleotide variant calling, and
currently there are not best practices for fusion identification, removal of false
positives neither benchmarking comparison of different algorithms on public
available dataset with golden truth positives. In order to have comparable results
among samples and cohorts it is important to develop unified and data driven
fusion prediction pipelines. We used the workflow described in Figure 3.1 (See
Methods) to identify fusions, quantify the total number of observed fusions in
each of patient, and integrate mutation and clinical data for each of the 732

patients in our combined cohort
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COMBINED COHORT n =732

UMICH n =133 TCGA n=521 SFOU
| | | I | | | TCGA
RNASequencing Exome
i l l Sequencing
Gene Fusion Expressed DNA
i . Mutations Mutations
Expression Detection J l
Determine All
Outlier genes FUSION CLASSIFIER Mutations
Samples
X Known Drivers
Pontentially true fusions Vs
n =422 Unknown Drivers
Determine fusions recurrence
and functional annotation
Tumor annotation: fusions,
mutations and outlier expression

Potential driving events
in lung cohort

Figure 3.1 Schematic diagram of the data generation and analysis workflow of lung cancer RNASeq
data.

A total of 732 lung cancer samples that include 708 clinical specimens and 24 cell lines, representing 451
LUAD and 251 LUSC, were interrogated for gene fusions and somatic mutations. The cohort was
assembled combining 133 University of Michigan samples (UMICH), 79 Seoul National University samples
(SEOUL), and 521 Cancer Genome Atlas samples (TCGA). The RNASeq data was mapped to human
RefSeq Hg19 using TopHat2. Fusion calls were made with TopHat-Fusion (THF). In all cases fusions
present in normal samples were considered false positives and filtered out. We developed and applied a
fusion classifier that retained 422 gene fusions for further downstream analysis. The 422 fusions were
classified into recurrent (>2 samples) and private fusions and further divided into inter chromosomal, intra
chromosomal or fusions resulting from potential tandem duplication events. In addition somatic mutations in
well-known lung oncogene drivers and tumor suppressors were determined and annotated for each sample.
Finally, both LUAD and LUSC cohorts were divided into either samples harboring oncogene driving
mutations or samples without known driver genes.
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We detected an average of 13 fusions per tumor sample (range, 0 - 67).
Although, both lung adenocarcinoma and squamous carcinoma have similarly
high single nucleotide mutation rate of about 8.1 mutations/Mb>'*®, they showed
different average number of fusions per sample. We observed an average of 11
fusions in lung adenocarcinoma tumors, while 17 in squamous carcinoma
(student t-test p-value < 2.2 x 107'°). Moreover, we did not observe statistically
significant differences on the average number of fusions between heavy and light
smokers (LUAD student t-test p-value= 0.75; LUSC student t-test p-value=0.42);
nor among different clinical stages regardless of the tissue type (Table B-2, Table
B-3). However, we did find that tumors harboring missense or nonsense
mutations in TP53 showed greater average number of fusions as compared to
samples with TP53 wild type (Supplementary Figures 1a, 1b, p-value = 0.0012).
Because > 80% of lung squamous carcinomas have somatic mutations in TP53>;
that difference is consistent with the one observed on the average number of
fusions between LUAD and LUSC carcinomas. In LUAD, we also observed a
significant correlation among the presence of oncogenic mutations (e.g. KRAS
activating mutations) and TP53 deleterious mutations (stop codon or splice site
mutations), and the number of fusions (Fisher’s exact test p-value=0.0089). This
correlation could not be tested in LUSC because in this indication there were a

very few number of samples with mutations in KRAS, EGFR or other oncogenes.
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Figure 3.2. Comparison between the number of fusions in samples with TP53 wild type vs TP53
mutated samples.

3.5.3 Number of fusions is associated with prognosis

Because fusions wusually result as a consequence of genomic
rearrangements, the number of fusions might indicate the level of rearrangement
undergone by the cancer patient’s genome. Therefore, we investigate the relation
between number of fusions by patient and their prognosis. Patients in our
combined cohort were classified into three categories: patients with low (0-7),
intermediate (8-17), or high (=18) number of fusions and performed a 10-year
Kaplan-Meyer survival analysis. Patients with high number of fusions had
significantly shorter median overall survival (35.6 months, 95% confidence
interval (Cl) 27.2 — 43.9) as compared to tumors with intermediate (49.5 months,
95% Cl 23.9 — 75.1) or low number of fusions (62.3 months, 95% CI 44.6 — 80.1;

log-rank p-value 0.017, Figure 3.3).
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Figure 3.3. Gene fusion frequency is a prognostic indicator in both LUAD and LUSC.
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A) Kaplan-Meyer survival curve for the combined cohort samples with low (0-7), intermediate (8-16), or high
(217) number of fusions (p-value=p=0.0089). Samples with high number of fusions have worst prognosis
(Cox survival analysis p-value=0.0053) B) Kaplan-Meyer survival curve for LUAD samples with low (0-6),
intermediate (7-12), or high (213) number of fusions (p-value=0.076). Samples with high number of fusions
have worst prognosis (Cox survival analysis p-value=0.029) b) Kaplan-Meyer survival plot for LUSC samples
with low (0-11), intermediate (12-18) and high (219) number of fusions (p=0.169). Samples with high number
of fusions have worst prognosis (Cox survival analysis p-value= 0.0717).

Statistically significant clinical covariates in the univariate Cox model
(Table 3.3-4) were used in a multivariate analysis examining the prognostic value

of number of fusions.

Table 3.3-4. Univariate Cox regression for overall survival according to clinical variables (n = 621).

Overall survival

HR 95% CI p-value
Age, continuous 1.03 1.01 - 1.04 <0.001
Sex

Female 1.00 --

Male 1.33 1.02-1.74 0.037
Stage, continuous 1.55 1.35-1.76 <0.001
Smoking status

Non-smoker 1.00 --

Smoker (<35 pack-year) 1.31 0.52-3.30 0.565
Smoker (>35 pack-year) 1.49 0.61 —3.67 0.378

Histology

Adenocarcinoma 1.00 --

Squamous cell
carcinoma 0.99 0.76 —1.29 0.989
TP53 status

Wild-type 1.00 --

Mutant 0.94 0.66 —1.33 0.717
KRAS status

Wild-type 1.00 --

Mutant 0.94 0.66 —1.33 0.717
EGFR status

Wild-type 1.00 --

Mutant 1.01 0.77—-1.33 0.924

Strikingly, high number of fusions was independently associated with
worse overall survival (HR = 1.56, 95% CI 1.13 — 2.15, p-value = 0.007, Table

3.3-5), after adjusting for gender and disease stage. When mutation statuses of
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TP53, KRAS and EGFR or smoking status were included in the analysis, number
of fusions remained independently associated with worse outcome as well (p-
value =0.005).

Table 3.3-5. Multivariate Cox regression for overall survival according to number of fusions in 621
NSCLC patients adjusted by age, gender and stage.

Covariates in the model Hazard 95% confidence  p-value
Ratio intervals
Age, continuous 1.04 1.02 -1.05 <0.001
Gender Female 1.00 —
Male 1.17 0.89 - 1.54 0.270
Stage, continuous 1.64 1.43 —1.88 <0.001
Number of fusions Low 1.00
Intermediate 1.11 1.78 — 1.59
High 1.56 1.13-2.15 0.007

3.5.4 Lung fusions landscape is dominated by low recurrence and private

fusions

In order to prioritize fusion candidates and discriminate potentially true
fusions from spurious ones, we developed a classifier to distinguish potentially
genuine fusions from false positive ones (See Methods). This classifier uses
structural and functional annotation features of each fusion in order to predict

whether a fusion is potentially genuine or not.

Remarkably, our classifier has a recovery rate greater than 90% and it
automatically recapitulates our intuitive knowledge about the important structural
properties defining bona fide fusions (Methods). In our fusions’ dataset, the top

five features contributing the most to the fusion classifier are, in decreasing order

82



of importance, fusion type (Inter-chromosomal, Intra-chromosomal, Tandem-
duplication), sum of the median alignment quality of reads supporting the fusions,
number of spanning and encompassing reads across the fusion junction and the

cohort normalized expression value for the 3’-partner gene (Figure 3.4).

Fusion Type J

Sum of alignment Qual o
Num of spanning reads o
Num of encompasing reads -
Norm 3' expression (-}
5’ Align Qual -
5' Chromosome o
3' Align Qual °
Norm 5' expression °
5' breaking exon o
kinase_status o
5’ genebiotype o

3' genebiotype L]

3' Chromosome o
Partner_recurrence o
3' breaking exon o
5' gene expression o
Num of mate pairs -
Norm 5' gene expression o
oncogene_status o

tumorsup_status
targetable_status

0 2 4 6
MeanDecreaseGini

Figure 3.4. Features used for the fusion’s classifier.

Features are in decreasing order of importance according to the mean decrease in the Gini score.

Using this classifier, 422 potentially genuine fusions were nominated
across the whole cohort (Fusions Table?). Sixty-four out those 422 fusions (15%)
involved kinases (either as 3’ or 5-partner) including known ROS1, RET and
ALK, 52 fusions involved oncogenes and 63 involved tumor suppressors
(Fusions Table). Moreover, of those fusions involving cancer-related genes we
found 61 productive fusions (fusion protein is produced), 63 disruptive (ORFs of

original genes are destroyed) and 6 promoter fusions (3’ partner full wild type

* The complete fusion table is available upon request as an excel file. It is not included in this document
because of the large number rows (> 400), making inefficient to paste it into a text document.
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sequence is preserved). Given the size of our cohort, we could better estimate
the recurrence of different gene fusions and so we distinguish between three
types of recurrence: molecular, functional and family recurrence. Molecular
recurrence refers to fusions in which the same 5’ and 3’ partners are observed in
different samples such as SLC34A2-R0OS1; functional recurrence refers to cases
in which either the 5’ or 3’ partner is the same (CCDC6-RET and KIF5B-RET);
and gene family recurrence correspond to gene fusions in which 5’ or 3’ partner
belongs to the same gene family (FGFR3-TACC3, FGFR2-CCDC6, BAG4-
FGFR1). Functionally recurrent kinase fusions ROS1, RET and ALK were found
on 0.86%, 0.29%, and 0.14% across this combined cohort (Table B-4,Table B-5).
Other functionally recurrent gene fusions include BCAS3-MAP3K3, MRC2-
MAP3K3; and GOSR1-NF1 and NLK-NF1 and NF1-PSMD11. The recurrent
gene fusions involving the tumor suppressor Neurofibromin 1 (NF1) do not
generate productive fusion proteins (GOSR1-NF1, NLK-NF1, NF1-PSMD11) and
instead destroy the functional activity of NF1, suggesting that this could be an
additional mechanism for NF1 inactivation in lung cancers. NF1 inactivation leads
to activation of the PIK3CA pathway.

Our results confirm the high heterogeneity and low recurrence of lung
cancer fusions, as most fusions found were private fusions or appeared at very

low frequency (Fusions Table and Table B-4,Table B-5)).

Although present in a small percentage of patients, known targetable
fusions are preferentially observed in samples lacking any other known
oncogenic drivers. We therefore determine for each sample in our combined
cohort the mutation status of well-known oncogenes and tumor suppressor
playing a role in lung cancers (Methods), reproducing previous results about the
mutational landscape of LUAD and LUSC (Figure 3.5) and confirming that known
fusions involving ROS1, RET and ALK are exclusively found in samples without
other oncogenic drivers. In this set of samples the frequency of those fusions

was 1.3%, 0.52 and 0.26 respectively. Moreover, our integrative analysis
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combining mutational and fusion status with gene expression also showed that
for fusions such as ROS1 in some index samples the expression of the fusion
kinase was an outlier across the combined cohort (e.g., 3 out 6 in ROS1).
Interestingly, we also identified the presence of samples with outlier expression
of ROS1, and FGFR3 almost exclusively in samples without other oncogenic
drivers (Fisher exact test p-values= 0.0048 and 0.0864 respectively, Figure 3.5).
While the mechanism of overexpression remains to be delineated, the outlier
kinase expression may have a potential driving role and this patient subset may

also benefit from the available tailored drug therapies.
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Figure 3.5. The gene fusion and mutational landscape of lung cancers.
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A) Lung adenocarcinoma (LUAD, n=451). B) Lung squamous carcinoma (LUSC, n=251). Top panel:
Histograms represent the number of high quality fusions identified in each sample. Central Panel: Heatmap
denotes the presence or absence of activating mutations in known oncogenes (red) and deleterious
mutations in tumor suppressors (blue). Samples are presented in columns and genes are presented in rows.
Right middle panel: Bar plot summarizes the number of samples harboring activating or deleterious
mutations for each gene. Boftom Panel: Heatmap displays samples harboring both known and novel gene
fusions (green) involving either receptor kinase genes or NRG1. Samples in red indicate outlier expression
pattern observed in the respective genes. The ordering of samples in center panels was dictated by
mutation status in KRAS, NRAS, HRAS, EGFR, BRAF, PIK3CA, and TP53 genes in that order. Remarkably,
NRG1 gene fusions were observed in samples that lack other driver events similar to the RTK fusions
involving ROS1, RET, ALK and FGFR3 genes. The NRG1 fusion index samples exhibited outlier NRG1
expression and the outlier samples harbored no other known driver events in both LUAD and LUSC.

3.5.5 Recurrent NRG1 fusions in lung cancers

Remarkably, we found a novel functionally recurrent gene fusion where
the common 3’-gene Neuregulin 1 (NRG1) was fused to different 5’ partners
(Figure 3.6a). The gene fusions, CD74-NRG1, RBPMS-NRG1 and WRN-NRG1,
occurred in both LUAD and LUSC samples. While both CD74-NRG1 and
RBPMS-NRG1 fusion events resulted in the production of chimeric fusion
proteins, the WRN-NRG1 fusion results in the overexpression of full length NRG1
controlled by the WRN gene promoter. As a member of EGF family of ligands,
the growth factor NRG1 transduces its signal through the HER/ErbB receptor
tyrosine kinases'**'**. NRG1 protein contains various domains such as kringle
like, immunoglobulin like domains and the EGF domain that is located in the C-
terminal region'®. Notably the EGF domain that is essential for receptor

interaction'*®

is preserved in all the NRG1 fusions identified (Figure 3.6a). All
NRG1 fusion index samples were found in the driver negative group (0.78%
frequency) and displayed outlier expression of NRG1 specifically in the tumor
sample and not in the matched normal tissue (Figure 3.6b and Figure 3.6c).
Strikingly similar to the pattern described above for known kinases fusions such
as ROS1. Therefore, we reason that NRG1 overexpression could be implicated
in its dysregulation. Among all samples in our combined cohort, the driver
negative lung cancer cell line H1793 exhibited the highest expression of NRG1
(more than 250 FPKM) (Figure 3.6d), but no NRG1 fusion was detected either by

RNASeq or FISH. To understand NRG1 functionality in this cell line we resorted
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to siRNA mediated gene knock down. A 70% knock down achieved with two
independent NRG1 siRNAs (Figure 3.6e) affected cell proliferation rate as
indicated by cell growth assay (Figure 3.6f). Outlier NRG1 expression was also
observed in 10 other driver negative samples (Table 3.3-6), elevating the
frequency of samples with NRG1 dysregulation to 13/314 (4.14% recurrence in
the driver negative group) implicating a potential causal role for NRG1 in this

patient subpopulation.
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Figure 3.6. Recurrent cancer specific NRG1 fusions in lung cancer.

A) Recurrent fusions involving NRG1 as a 3’ partner were detected in lung adenocarcinoma and lung
squamous carcinoma in the three cohorts included in this study. Schematic representation of functional
domains present in the NRG1 fusion proteins namely CD74-NRG1; RBPMS-NRG1 (LUAD); WRN-NRG1
(LUSC) and RAB2IL1-NRG1 (Ovarian) compared to the wild type NRG1 (Top). The receptor binding EGF
domain is preserved in all fusions. TM- Transmembrane domain; RRM- domain; 1Gc2- domain; SEC2P-
domain; B) Analysis of RNASeq expression values, revealed outlier NRG1 mRNA expression in all index
cases within each cohort. C) High NRG1 mRNA expression driven by the fusion event in the index tumor
tissue compared to matched normal, in both UMICH and Seoul LUAD represented as bar plot. D) Boxplot
showing outlier expression of NRG1 in H1793 in UMICH lung cell line cohort. E) Two independent siRNAs
mediated knockdown of NRG1 in H1793 cell reduced NRG1 transcript expression (Q-PCR) and decreased
cell proliferation as monitored by Incucyte confluence analysis.
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Table 3.3-6. Lung cancer samples harboring fusions and/or outlier expression of NRG1.

Outlier

Mutation Percentile

Patient Disease

Fusi
on

TP53 p.P33R p.P72R; RBM10 p.A630P
A35 umich | LUAD | YES| NO p.AB96P; SMARCA4 p.R513W; APC 99% 29.08 0.9273
p.V1822D p.V1804D; ATM p.N1983S

lc_s17 seoul | LUAD |YES| NO TP53 p.PXXXR 99% 33.08 0.9273
. NO/ SMARCA4 p.E1056X: TP53 p.R248L p.R209L:; .
Co28 umich | LUAD | 155 | NO APC p.V1822D p.V1804D; ATM p.N1983S: 99% 83.92 0.9273
0232d299-4cdf-4fd7- NO/ TP53 p.R156P: KEAP1 p.D236N: RBM10
9ase-8d13c208p40c | ©92 | LUAD | ppp | NO p.S781L; 99% 21.32 0.9273
7b0622ab-63ea-483f- NO/
e | tega | LuaD | NI No ] 99% 25.86 0.9273

NO/ SMARCA4 p.E514X; TP53 p.P33R p.R141H;
H1793 umich | LUAD_cl TBD NO APC p.V1822D p.E1991D; EGFR p.C311F; 99% 281.86 10.1265
ATM p.N1983S;

a3elac67-a1f2-44fb-8343-

a7e82397c24a tcga LUSC YES NO TP53 p.G244C; PIK3CA p.D1045V 99% 49.5573 4.2247
ce8612ab-3149-4aba- NO/ TP53 p.S314fs; CDKN2A p.P3fs; APC p.S966G;
b424-29c0¢21c9b8b tcga LUSC TBD NO NF1 p.E1734V. 99% 34.5314 4.2247
7e691df8-8eab-472c-86bf- NO/ APC p.S966G; CDKN2A p.P3fs; TP53 p.S314fs;
504c7ba6983d tcga LUSC TBD NO NF1 p.E1734V 99% 49.3324 4.2247
791f1b21-695e-4db1- NO/ .
b41d-80590c094d257 tcga LUSC TBD NO KEAP1 p.R320Q p.R470C; PIK3CA p.E453K 99% 31.2416 4.2247
14a4a93a-e24d-46f2- NO/ *
bee3-18bd7926f954 tcga LUSC TBD NO TP53 p.E271 99% 36.7394 4.2247
6394fe4a-6034-4¢79-b28f- NO/
2a43e3753730 tcga LUSC TBD NO - 99% 57.5317 4.2247
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In addition to characterizing NRG1 fusions, we used normal lung BEAS-
2B cells to generate stable overexpression of CD74-NRG1 fusion protein. Fusion
overexpression significantly increased both cell proliferation (Figure 3.7a) and
migration (Figure 3.7b, Figure 3.7c) and induced a notable phenotypic alteration
in cell shape (Figure 3.7d). Western blot analysis revealed evidence for epithelial
mesenchymal transition (EMT) upon CD74-NRG1 overexpression as supported
by increased vimentin protein expression (Figure 3.7e). In order to identify
potential pathways activated by the CD74-NRG1 fusion, we performed gene
expression microarray profiling of CD74-NRG1 and LacZ clones. Significant
analysis of microarrays (SAM) shows vimentin as one of the top overexpressed
genes in CD74-NRG1 confirming the western blots (Figure B.1), as well as, down
regulation of cadherins, supporting the hypothesis of EMT in CD74-NRG1
positive cells. Gene set enrichment analysis identified down regulation of cell
adhesion pathways (Figure B.1) and, interestingly, up-regulation of SRC (Figure
3.7f) and ERBB (Figure 3.7g) pathways in CD74-NRG1 cells. In light of these
results we assessed the activation of those pathways by western blot and
confirmed that, compared to LacZ control, the CD74-NRG1 cells showed
substantially increased levels of phosphorylated ERBB3 and phosphorylated
JNK, while a modest increase in phospho-ERK (Figure 3.7h). Having functionally
characterized CD74-NRG1 fusion in lung cancers, we looked for productive and
outlying NRG1 fusions in other cancer types and found the presence of
RAB2IL1-NRG1 in ovarian cancer. As noted in the lung cancer fusions, functional
EGF domain is retained in RAB2IL1-NRG1 and the fusion index case exhibited
outlier NRG1 expression (Figure 3.7a and Figure 3.7b).
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Figure 3.7. Functional Characterization of NRG1 fusion.

A) Cell proliferation by WST-1 assay (upper panel) and cell counting (lower panel) on BEAS-2B cells stably
transfected with Lac-Z or CD74-NRG1 fusion. Both assays demonstrated that cells expressing the CD74-
NRG1 fusion had significantly higher proliferation rate at day 3 and 5 (p<0.001 for both time-points) as
compared to Lac-Z. B) Representative pictures of cells migrating to the basal side of the Boyden chamber
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membrane after Diff-Quick staining with an Olympus microscope at 20x magnification. C) Cell counting for
cells migrating through the Boyden chamber membrane after 24 hours. BEAS-2B cells expressing CD74-
NRG1 fusion showed a higher migration rate as compared to Lac-Z (=0.0014). D) Representative pictures of
BEAS-2B cells expressing the CD74-NRG1 fusion or Lac-Z. Cells expressing the CD74-NRG1 fusion
appeared smaller and more fusiform as compared to Lac-Z, suggesting that they acquired a more
mesenchymal phenotype. E) Western blot analysis of V5 Tag, E-cadherin (CDH-1) and Vimentin in
transfected BEAS-2B cells. V5 Tag was expressed only in CD71-NRG1 transfected cells, which showed a
slightly lower expression of CDH-1 and a significant increase of Vimentin expression. F,G) Gene set
enrichment analysis based on differentially-expressed genes among BEAS-2B cells transfected with the
CD74-NRG1 fusion or Lac-Z. Significant up-regulation of SRC and ERBB2 pathways was observed in
CD74-NRG1 cells. H) Western blot analysis of ERBB3, ERK and JNK1 activation. CD74-NRG1 cells
showed a noticeably activation of ERBB3 and JNK1 as compared to Lac-Z cells, whereas ERK activation
was discreetly higher in the cells harboring the fusion.

3.6 Discussion

Treatment and diagnosis of NSCLC, especially LUAD, has been
transformed by the use of targeted therapies and companion diagnostics tests.
For example, EGFR activating mutations in exons 18, 19 and 21 are now
routinely assessed before recommending treatments with Gefitinib and Erlotinib;
as the response rate is close to 70%'*° in the mutation positive subpopulation of
advanced NSCLC. More recently, fusions involving tyrosine kinases such as
ROS1, ALK and RET®'2'%" have been identified primarily in young lung
adenocarcinomas patients with no other driver mutations and no history of
tobacco smoking. Despite the low frequency of those fusions in the population,
phase | clinical trials have shown that patients with EML4-ALK fusions respond

b'8149 3 drug targeting ALK, demonstrating the efficacy of

well to Crizotini
targeting these kinases in the rearrangement positive subpopulation of patients.
In this study, we use RNA sequencing to characterize, in an unbiased manner,
the fusions’ landscape of lung adenocarcinoma and lung squamous carcinoma

indications in order to identify potentially new oncogenic fusions.

We showed that the fusions landscape is highly heterogeneous and
dominated by low recurrence and private fusions (Figure 3.5); with on average
higher number of fusions per sample being observed in LUSC than LUAD (t-test

p-value < 2.2 x 10™"®), but not statistically significant differences with respect to
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any other clinical characteristics such as smoking history or disease stage (Table
3.3-4). We also found that tumors harboring missense or nonsense mutations in
TP53 have greater average number of fusions than TP53 wild type, although this
result is potentially confounded by the high prevalence of TP53 mutations in
squamous carcinomas. Remarkably, high number of fusions was independently
associated with worse overall survival (Table 3.3-5, Figure 3.3), after adjusting
for gender, disease stage and mutation status of TP53, KRAS and EGFR. As
RNA sequencing becomes widely adopted for profiling transcript expression and
gene fusions, our results suggest that the number of fusions could be used as an

independent prognostic marker in lung cancers.

The recurrent tyrosine kinase fusions, previously reported, are found
almost exclusively in driver negative lung adenocarcinomas, and have not been
reported in squamous carcinoma. Here, we found recurrent fusions involving
3’'gene Neuregulin 1 (NRG1) (CD74-NRG1, RBPMS-NRG1 and WRN-NRG1)
and NRG1 outlier expression in both LUAD and LUSC indications (Figure 3.6).
NRG1, a growth factor receptor that transduces its signal through the HER/ErbB
receptor tyrosine kinases pathway, is expressed in a subset cancers, namely
breast, lung and others™®. CD74 is a known 5-fusion partner in lung cancer
involved in ROS1 kinase fusions. While CD74-NRG1 and WRN-NRG1 fusions
contains the signal peptide and type Il transmembrane domain to locate NRG1 in
the plasma membrane, cellular location of RAB2IL1-NRG1 and RBPMS-NRGH1
needs to be further characterized. Nevertheless, it has been previously reported
that of the 20 NRG1 transcript variants (several transcripts lack the N-terminal
signal sequence required for transport to extracellular space and for membrane
localization. In these instances an internal hydrophobic amino acid stretch is

speculated to substitute the N-terminal signal sequence’**'*°.

Remarkably, NRG1 fusions are present in samples with no other driver
events (Table 2, Figure 3) and the index samples display outlying expression of

the NRG1 gene (Figure 3.6), resembling oncogenic fusions such as ROS1.
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Moreover, we also found 10 additional cases of outlying NRG1 expression in
driver negative samples, suggesting NRG1 potential role as a driver on those
samples. We demonstrated that abrogating NRG1 outlying expression affects
cell proliferation (Figure 3.6) and more importantly we showed that the fusion
construct (CD74-NRG1) increased proliferation and migration in cell line models
(Figure 3.7). Taken together, NRG1 fusions and outlying expression of NRG1

account for 4.14% of the driver negative lung cancer patients.

The therapeutic potential of NRG1-ERBB autocrine loop has been
previously suggested’™' and more recently blocking NRG1 and other ligand-
mediated Her4 signaling were shown to be useful in enhancing the magnitude
and duration of the chemotherapeutic response of NSCLC'®2. Further studies of
the therapeutic opportunities for LUAD and LUSC patients with NRG1

rearrangements are warranted.

In conclusion, the previously documented success of targeted therapies
against low recurrence oncogenic fusions in lung cancer and the high
heterogeneity of the fusions’ landscape, shown in this study, reinforce the

demand for more personalized and tailored drug therapies for this disease.

3.7 Contributions

Science is a collective enterprise and it is much more fun when done with
friends and good collaborators. The results presented in this chapter were made
possible for the great collaboration and support of a team of people in the

Chinnayian and Nesvizhskii labs.

O. Alejandro Balbin: Omics data integration, RNASeq data processing,
development of fusion classifier, fusions database, mutation analysis, additional
bioinformatics and clinical analysis, NRG1 functional experiments design.

Manuscript writing. Saravana M. Dhanasekaran: Beautiful RNASeq strand
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specific libraries for the UMICH lung cohort, CD74-NRG1 construct and
transfection, ORFs construction of the NRG1 fusion proteins, NRG1 functional
experiments  design. Manuscript writing. Ernest Nadal:  Functional
characterization of the CD74-NRG1 fusion protein, proliferation and invasion
assays for BEAS-2B transformed cells with CD74-NRG1, clinical analysis,
Western blots for JNK and ERBB3 activation. Manuscript writing. Guoan Chen:
Tissue collection and PCR gene fusion validation. Matthew lyer: RNASeq data
processing. Dan Robinson: RNA Sequencing. Xuhong Cao: RNA Sequencing.
David Beer: Experiment design and overall scientific project oversee. Arul M.

Chinnayian: Experiment design and overall scientific project oversight.
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Chapter 4
Antisense gene expression in human cancers:
understanding cis-acting mechanisms of
transcript regulation

4.1 Background

High throughput RNA sequencing has revealed widespread transcription
in the human genome'®. However, the extent to which both DNA strands
(forward and reverse) are transcribed in regions of the genome with overlapping
genes is less well characterized. This lack of understating is in part due to the
fact that initial RNASeq protocols did not preserve the strand of the original RNA.
Overlapping transcripts originating from the same locus of DNA but on opposite
strands are known as sense-antisense transcript pairs (S-AS) and they have
been described in eukaryotes and bacteria. Natural antisense transcripts (NATS)
are transcribed from the opposite strand to that of the sense transcript of either

protein-coding or non-protein-coding genes'**'%

. In this study, the originally
annotated transcript will be considered as the sense transcript and the more
recently identified one on the opposite strand as the antisense transcript,

following Pelachano and Steinmetz (2013)"°.

4.1.1 Natural antisense transcripts classification

NATs may arise from independent transcriptional units including cryptic

promoters situated within genes, typically in intronic regions, or near
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transcriptional start sites of neighboring genes. According to the orientation of the
transcripts involved, overlapping pairs are classified in three groups: head-to-
head (HTH), tail-to-tail (TTT) and embedded (EMB) pairs. In the HTH group the
5’-region of both transcripts are overlapping, while the 3’-regions in the TTT
group. In EMB pairs one of the transcripts is fully contained within the other
(Figure 4.1). Intronic antisense transcripts are a special category as they overlap
partially or totally the introns of another gene in the opposite strand. In general

terms all pairs are referred as cis-NAT pairs.

HEAD-TO-HEAD (HTH) TAIL-TO-TAIL (TTT)
b <_| b)
— I W w—— 5
3 LR 5 3
5’ 3 |
| N
EMBEDDED (EMB) INTRONIC (INT)
3’ B o <_|5’ 3’ D
5’|_’ m) 3’ 5|’_’ m 3

Figure 4.1. Schematic representing different types of cis-NAT pairs, according to the orientation of
the overlapping genes.

4.1.2 Natural antisense transcripts function

The mechanisms of NAT functioning are just beginning to be elucidated.
NATs can function locally or distally and in cis or in trans to regulate the
expression of other genes. Cis-acting regulation happens when the regulatory
element and the target gene are transcribed from the same locus. This regulation
can occur locally (in the nucleus) or distally (in the cytoplasm). Local cis-
regulation tends to involve epigenetic changes in the target gene, while distal cis-
regulation involves RNA-RNA interactions between transcripts transcribed from

the same locus. Trans-acting regulation occurs in the nucleus when antisense

98



transcripts affect the expression of genes transcribed from different loci™® (

Figure 4.2).

156,157

NATs cis-regulation can activate or silence'® the corresponding

sense MRNAs. The mechanisms of this regulation are complex, diverse and it

156,157 or

can be exerted at different levels including transcriptional activation
silencing™®'® mRNA stabilization'®"'%2, alternative splicing'®®, and post-

translational regulation among others.

Moreover, several small-scale studies suggest that dysregulation of
antisense transcript expression play a role in diseases such as Alzheimer'®,
Schizophrenia'®, Parkinson'®® and cancers'®”'"®, highlighting the relevance of
antisense transcription in disease. Recently, Modarresi et al., (2012)"® used
antago-NATs to demonstrate that inhibition of natural antisense transcripts in
vivo caused gene specific up-regulation of the sense gene; providing a proof of
principle for manipulating NATs in order to specifically regulate the gene
expression of the cognate genes and opening the possibility for new therapeutic

opportunities.
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Figure 4.2. Schematic representation of cis-NAT mechanisms of action.
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4.1.3 Antisense expression

Several attempts to describe the patterns and magnitude of antisense
expression suggested that antisense expression might be far more extensive
than previously anticipated; with 10-20% of loci exhibiting antisense expression

76 though up to 72% in mice'’’. However, previous studies attempting

in humans
to characterize the magnitude of antisense expression used methods such as
ASSAGE* ' or SAGESeq® for identifying NATs and quantifying antisense
expression. These methods are intrinsically limited in their accuracy and
coverage of the entire transcriptome, allowing only the assessment of a small
fraction of the total number of genes and missing transcripts expressed at low
levels. Due to these limitations and their laborious experimental protocols, those
methods have been applied only to small datasets. This has limited our
understanding of the landscape of antisense expression, the patterns of
expression between overlapping transcripts and more importantly the role of

antisense expression in cancer.

4.1.4 Strand specific RNA sequencing

RNA sequencing (RNASeq) has opened the way for a comprehensive
analysis of the entire transcriptome. However, standard libraries for RNASeq do
not preserve the information about which DNA strand was originally transcribed.
This information is lost during the synthesis of randomly primed double stranded
cDNA followed by addition of adaptors for next-generation sequencing®. In some
cases, the strand is inferred by computational methods relying in known open

reading frames and splice-site orientation in eukaryotic genomes, but these

* ASSAGE: asymmetric strand-specific analysis of gene expression
®> SAGESeq: Serial analysis of gene expression coupled with sequencing
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methods are not able to accurate resolve the expression of locus with

overlapping genes.

Strand specific RNA sequencing (ssRNASeq) solves those problems by
providing direct information on the DNA strand that was originality transcribed.
Several methods for strand specific RNA library preparation has been proposed,
but dUTP second strand labeling and the illumina RNA ligation are the leading

protocols for ssRNASeq (see Chapter 1)

. sSSRNASeq enhances the value of
RNASeq experiments by allowing an accurate characterization of antisense
transcripts, demarcation of the exact boundaries of adjacent genes in opposite

strands and accurate resolving the expression of overlapping transcripts.

4.1.5 Aims of this study

In this study we use strand specific RNA paired-end sequencing
(ssRNASeq) to comprehensively characterize the landscape of antisense
expression. We applied ssRNASeq on a cohort of 376 patients including 9
different cancer tissue types, making this the biggest cohort of ssRNASeq data
assembled so far. Our results reveal that greater than 60% of human annotated
transcripts have measureable expression coming from the opposite strand of the
DNA. We also demonstrate that cis-NAT gene pairs have in general a positive
correlation between their levels of expression, and that this pattern is stronger for
head-to-head overlapping pairs. Moreover, by analyzing CpG islands localization
with respect to the regions of overlap between transcripts, we suggest that the
high gene expression correlation of HTH pairs would reflect shared bidirectional

promoters between the sense and antisense transcripts.

Furthermore, according to the expression across tissues, four groups of
antisense loci were identified: tissue-specific, tissue-enriched/non-specific,

ubiquitously and cancer specific (in tumor but not in normal samples). Finally, this
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study creates and makes available a catalogue of tumor suppressors and
oncogenes with significant antisense expression (oncoNATdb), which will allow
cancer researchers to investigate the mechanisms of sense-antisense regulation

in cancer.

4.2 Methods

4.2.1 Bio-repository description

The Michigan Center for Translational Pathology (MCTP) strand specific
RNASeq repository included in this study has 376 samples. Most of the samples
correspond to cancer tissues, being the largest tissue cohorts: breast, lung
adenocarcinoma, lung squamous carcinoma, prostate cancer, ovarian cancer,
pancreatic cancer, meningioma, rare cancers, and lung cell lines. Table 4.4-1

presents a break down of major and minor cohorts included in this study.
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Table 4.4-1.Tissues and number of samples the MCTP ssRNASeq cohort.

Major Cohorts

Tissue \ Abbreviation ‘ Number of samples
Breast cancer BRCA 66
Lung adenocarcinoma LUAD 66
Lung squamous carcinoma LUSC 37
Lung cell lines LUCL 31
Prostate cancer PRCA 27
Ovarian cancer OVARIAN 23
Pancreas cancer PANC 17
Meningioma MENINGIOMA 13
Rare cancers RARE 39

Minor Cohorts

Tissue Abbreviation Number of samples
Cholangiocarcinoma CHOLANGIO 8
Lung large cell carcinoma LULC 8
Merkel cell carcinoma MERKEL 8
Lung match normals LUNO 7
Sarcomas SARCOMA 7
Osteosarcoma OSTEOSARCOMA 5
Adrenocortical carinoma ADRENOCORTICAL 4
Hodgkin’s lymphoma HODGKINS 4
Rhabdomyosarcoma RHABDOMYOSARCOMA 3

Combined Cohort 376

4.2.2 Preparation of RNASeq libraries

Transcriptome libraries were prepared following a modified protocol

previously described for generating strand specific RNASeq libraries®*. Briefly

2.5 micrograms of total RNA was subjected to polyA selection using oligodT

beads (Invitrogen, Carlsbad, CA).

Purified polyA RNA was fragmented and

reverse transcribed using Supersciptll (Invitrogen, Carlsbad CA). Second strand

synthesis was performed with DNA Polymerase | (New England Biolabs, Ipswich,
MA) in presence of ANTP mix containing dUTP instead of dTTP. The product

was then subjected to end repair, A base addition and adaptor ligation steps.

Libraries were next size selected in the range of 350 bps after resolving in a 3%
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Nusieve 3:1 (Lonza, Basel, Switzerland) agarose gel and DNA recovered using
QIAEX Il gel extraction reagent (Qiagen, Valencia, CA). Libraries were barcoded
during the 14-cycle PCR amplification with Phusion DNA polymerase (New
England Biolabs, Ipswich, MA) and purified using AMPure XP beads (Beckman
Coulter, Brea, CA). Library quality was estimated with Agilent 2100 Bioanalyzer
for size and concentrations. The paired end libraries were sequenced with
lllumina HiSeq 2000 (2x100 bases, read length). Reads that passed the filters on
lllumina BaseCall software were used for further analysis. Importantly, because
of the nature of this protocol the second read in each pair is complementary to

the original MRNA and therefore indicates what DNA strand was transcribed.

4.2.3 Sequence Alignment

Sequence alignment was performed using the Tuxedo pipeline: Bowtie2
(Bowtie2/2.0.2) and Tophat2 (TopHat/2.0.4)*”. We supplied TopHat with the set
of transcript models annotated in the Homo sapiens Ensembl database version
69. The option fr-firststrand was used for the strand specific RNASeq libraries
while all other parameters were used with default values. When provided with
ssRNASeq data TopHat2 annotates aligned reads with the tag XS indicating the
strand of origin in the DNA.

4.2.4 Transcript summarization

We used Ensembl v69 as the reference transcriptome to reconstruct the
longest annotation for each gene based on the transcript and exon information
provided by this assembly. We only included transcript isoforms that satisfied the
following criteria: gene and transcript biotypes were annotated with the same
type; transcript isoform annotation level was manual or automatic followed by
manual revision (annotation levels 1 or 2) and transcript isoform was not reported

as a problematic in the Encode-Gencode attributes table (e.g: transcript biotype
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is retained_intron, to be experimentally confirmed, or disruptive_domain).
Moreover, each transcript isoform used for our gene models was annotated with
their “isoform expression rank” across the tissue cohorts, and their support level
(tsl) provided by the Genecode project. Tsl equal to 1 indicates that all splice
junctions of that transcript are supported by at least one non-suspect mRNA; any
other number suggests that the transcript is supported by suspicious ESTs.
These final gene models were used as the reference loci, or features, for

downstream analysis.

4.2.5 Strand specific expression

The final gene models in the summarized transcriptome obtained in 4.2.4
were used to compute strand specific expression. Paired-end reads mapping to
the forward or opposite strand of a feature were counted in order to quantify the
raw amount of forward and reverse transcription on a particular locus. In order to
determine what DNA strand a read pair was originated from, we first used the
reads’ XS tag, provided by TopHat2, to identify the strand for each read in the
pair. Then, we use the fact that in our ssRNASeq protocol the second read is
complementary to original mMRNA and therefore the second read has to be on the
same strand than the feature, while the first read on the opposite strand. These

criteria unambiguously define a read pair DNA strand of origin.
We discard all pairs in which one or both reads map to multiple locations
in the genome, and all read pairs in which any of the reads was improperly

mapped or did not have the XS flag provided by TopHat2 to indicate the strand of

origin.

4.2.6 Read counts normalization
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Read counts normalization was performed using DESeq®?, which models
the read counts data using a negative binominal distribution and estimates the
variance by modeling the sum of the shot or Poisson noise and the sample-to-
sample variation. DESeq first estimates the effective library size, and then divide
the counts by the effective library size in order to bring counts into a common
scale. Given the size of our cohort, we used the following parameters to estimate
the variance (dispersion): method="per-condition", sharingMode="gene-est-only",

fitType="local". Normalized counts were used for all other downstream analysis.

4.2.7 ssRNASeq strand specificity estimation

ssRNASeq protocol’s strand specificity is defined as the number or reads
mapping to known transcribed regions at the expected strand. Assuming that
most genes are transcribed in the sense direction, Levin et al., (2010) measured
the strand specificity or protocol error rate of a library, as the fraction of reads
mapped to the opposite strand generated by the forward gene. This fraction
constitutes a measure of the protocol error rate, ranging from 0.5 for the best

method to 12% for the less specific one?*.

In order to determine the protocol error rate, we select loci that do not
overlap any other transcripts in our reference transcriptome, and do not have any
other neighboring gene within 20Kb in either side (3’ or 5’ ends). We reason that
the fraction of reads mapped to the opposite strand of those loci would constitute
an estimate of our ssRNASeq protocol error rate (pe). The average pe in our
cohort of 376 samples is 0.64% (min=0.17%, max=0.69%, sd=0.0055),
demonstrating the high strand specificity of our libraries.

4.2.8 Detection of transcripts with expression in both strands

106



In order to determine how many loci consistently express both forward and
reverse strands, we first determined for each sample the protocol error rate as
describe above as an estimate of the background noise in the opposite strand of
a particular loci. For each sample, loci with read counts in both the forward and
reverse strands, and opposite strand ratio (OPSratio= Reverse read
counts/(Forward read counts + R read counts)) greater than the pe for the
sample were considered as expressing both strands. Next, we leveraged the size
of our full cohort (n=376) aiming at identifying those loci that are expressing both
strands consistently across multiple samples. We reason that recurrent
expression is an indicator of genuine transcripts; therefore antisense transcript
expressed above the protocol error rate in different samples across the cohort
would have a higher chance of being genuine. We defined a locus as having
measurable antisense expression if that locus has OPSratio > pe in at least 5%

(n=20) of the cohort samples.

4.2.9 Antisense loci identification

We used a probabilistic method for natural antisense transcripts
identification using RNASeq (NASTI-seq'’®). That method incorporates the
protocol error rate (pe) of the ssRNASeq procedure and employs a model
comparison framework to identify loci with significant antisense expression.
Briefly, for each locus in a reference transcriptome the method first calculates the
probability of the observed read count data under a sense only model, in which it
is assumed that the sense gene is the only one being expressed and the reads
mapped to the opposite strand are due to the pe. Then, the method calculates
the probability of the observed data under a second model, antisense model, in
which the reads mapping to the opposite strand of a particular locus in the
genome come from two different sources: pe and the bona fide expression of an
antisense transcript overlapping the locus. The NASTIscore, a type of Bayesian

information criteria (BIC) score is calculated to determine what model fits best the
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data. Finally, a training dataset of true positives and true negative pairs was used
to determine the minimum NASTIscore score that distinguishes between

potentially true antisense loci from the background noise.

We build the training datasets as follows. First, we determine all
overlapping pairs in our reference transcriptome. Then, we annotated each pair
according to the Ensembl gene biotype of the genes involved and the length of
the overlapping regions. The true positive pairs dataset was conformed by all
pairs of genes, with an exonic overlapping greater than one base pair and
involving a protein coding gene and a known antisense transcript. The true
negative dataset was conformed by all protein coding genes that do not overlap
exons or introns of other genes, the closest neighboring gene in either direction
is more than 20 Kb away and the mean number of reads mapping to the opposite

strand of that gene is less than 50.

4.2.10 Identification of lineage- and cancer-specific antisense loci

We computed the NASTIscore for all loci with expression in both strands
in at least one sample of a tissue cohort. The NASTIscore calculation was
performed for each tissue type independently. Then loci with significant antisense
expression, as determined by a NASTIscore greater than the minimum
NASTIscore for each cohort (see 4.2.9), were aggregated. These loci will be
denoted as antisense loci (ASloci) from here on. Furthermore, we defined three
groups of antisense loci according to their presence in different cohorts.
Antisense loci identified in all cohorts were termed ubiquitous ASloci, while
ASloci identified in only one tissue type were name tissue or lineage specific. We
also observed ASloci that were expressed in more than two tissue types but not
in all and we treated this group as tissue enriched or non-specific ASloci.

Because our compendium is substantially enriched for cancer samples

and all benign samples correspond to match normal of lung adenocarcinoma
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(LUAD) and squamous carcinoma (LUSC) patients, we identified lung cancer
specific ASloci, that is, ASloci identified as such in the LUAD and LUSC tumor
cohorts but not in the benign cohort. We further determined what ASloci were
detected in our cohort of 31 lung cell lines and which ones were also identified in
other cancers. The first of these groups correspond to lung cancer specific ASloci

while the second one to cancer non-specific ASloci.

4.2.11 Correlation between sense and antisense transcripts

In order to determine the patterns of expression between genes of a cis-
NAT pair, we calculated different measures of correlation between the
expression of the sense and antisense genes. The measures of correlation
calculated were the Spearman correlation coefficient, the Pearson correlation
coefficient, the coefficient of robust correlation and the mutual information. All
these metrics produced very similar correlation results; therefore we chose the
Spearman correlation for further analyses. The correlation was computed
independently for each cis-NAT pair in each tissue cohort, as well as, across the
combined cohort of 376 samples. The statistical significance of each correlation
was corrected for multiple hypotheses testing using the Hochberg's procedure.

We compute the null or random distribution, as the distribution of
correlations between any two random genes. Similar to the cis-NAT calculation,
we compute the null distribution for each tissue type and across our combined

cohort.

4.2.12 CpG islands analysis

CpG islands have been found in 30 to 60% of unidirectional and 80% to
95% of bidirectional promoters'’®. Bidirectional promoters refer to intergenic
sequence between the transcription start sites of bidirectional genes pairs.

Bidirectional gene pairs, in turn, are defined as two non-overlapping genes
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arranged in head-to-head configuration and separated by less than 1000 bp'°.

Therefore, we used the presence or absence of CpG islands in a genomic region

as proxy for the presence or absence of a gene promoter in that region.

In order to determine whether overlapping regions of head-to-head cis-
NAT pairs harbor potential bidirectional promoters, we downloaded, from UCSC
genome browser, tracks providing CpG island strength predictions, and mapping
of bona fide CpG islands for the human genome hg19. These tracks are based

on large-scale epigenome predictions described by '®

. Next, for each pair of cis-
NAT genes, we defined the DNA regions of overlap between those genes and
then tabulated how many CpG islands are found within that overlapping region.
We reason that if a gene promoter exists within the overlapping regions of cis-
NAT pairs, we should observe an enrichment of CpG islands in those regions. As
a positive control we identified a set of bidirectional protein coding gene pairs
using the definition presented above and including only gene pairs with gene
expression correlation greater than 0.2 across our cohort of 376 samples. A
mean correlation of 0.2 between the expressions of bidirectional genes was

d180

previously describe and it is confirmed in by our own analyses.

4.2.13 Differential expression analysis of sense/antisense pairs

DESeq normalized read counts as described in 4.2.6 were used for
differential expression analysis between lung adenocarcinoma and lung
squamous tumor samples and their match normal samples. We reasoned that
the forward and reverse expression of a particular locus could change in a
consistent or inconsistent fashion between tumor and normal samples. In a
consistent change, the expression of forward and opposite strands will be over or
under expressed between tumor and normal samples. On the other hand in an
inconsistent change, the expression of forward and reverse strands will change

in opposite directions between tumor and normal samples. Therefore, when the
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forward strand is over expressed the opposite strand will be under-expressed
and vice versa, suggesting potential mechanisms of interference between sense

and antisense genes.

In order to identify loci with consistent or inconsistent changes in the
expression of forward and reverse strands, we used a negative binomial test as
described by Anders et al., (2010)* to determine differential expressed cis-NAT
pairs between tumor and normal samples. We first identified cis-NAT pairs for
which both sense and antisense genes were differentially expressed with
adjusted p-value <= 0.1. Then we defined a log fold change threshold (Ifcth) of 1
and select as consistent pairs differentially expressed cis-NAT pairs for which the
absolute log fold change expression of sense and antisense genes were >= Ifcth.
Inconsistent cis-NAT pairs were defined as differentially expressed pairs for
which the log fold change expression of the sense gene was >= Ifcth, while the

expression of antisense gene <= -1* Ifcth, or vice versa.

4.3 Results

4.3.1 Development of a bioinformatics analysis workflow for antisense

transcript analysis

Strand specific RNA paired sequencing (ssRNASeq) data from a
compendium of 376 samples (303 tissue and 69 cell lines samples), representing
both cancer and benign from 9 different tissue types recently generated for our
laboratory, was used to develop a bioinformatics workflow for the analysis and
characterization of antisense expression in human cancers (Figure 4.1,
Methods).

First, sequencing reads were mapped to the human genome (hg19,
GRh37) using TopHat2 (TopHat/2.0.4)*". Then, a summarized transcriptome was

build by reconstructing the longest annotation for each gene, using transcript and
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exon information provided in the Ensembl.v69 assembly. Only high quality
transcript isoforms were included, while problematic and miss-annotated
transcripts were filtered out (see Methods). This procedure generated 42,129
gene models. Second, these gene models were used as reference loci to
compute the number of strand specific pair-end reads mapping to the forward or
reverse strand of each locus; and then to calculate the expression level of each
strand in that locus (see Methods). Loci expression was then normalized using
DESeq®. Third, strand specificity was calculated for each library in order to
determine the protocol error or background noise affecting our estimation of the
expression coming from the opposite strand (see Methods). Fourth, loci
consistently expressing both, forward and reverse, strands across our cohort
were identified. Moreover, a locus that has OPSratio > pe in at least 5% (n=20) of
the cohort samples (Methods) was considered as a locus with measurable
antisense expression. Fifth, a probabilistic method was used for natural
antisense transcripts identification using RNASeq (NASTI-seq'’®). This method
accounts for the variable protocol error in order to identify loci with significant

antisense expression (Methods).
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Figure 4.3. Bioinformatics workflow for characterization of Antisense loci.
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Finally, we calculated the correlation between sense and antisense
transcripts forming cis-NAT pairs and determined tissue specific, tissue-
enriched/non-specific, ubiquitous and cancer specific antisense loci. Taken
together this bioinformatics pipeline nominates expressed antisense loci across 9
different tissue types and establishes their pattern of expression. The pipeline
further aggregates tumor suppressor and oncogenes with significant antisense

expression in a single catalogue, oncoNATdb.

4.3.2 Antisense expression is pervasive across the human transcriptome.

Figure 4.4a and Figure 4.4b show that in any given locus most of the
observed expression originates on the annotated or forward strand; the
expression originating from the opposite or reverse strand is overall two to three
orders of magnitude lower (median of reverse/forward = 0.001). Accurate
quantification of strand-specific expression is further complicated by the
ssRNASeq protocol error (pe)**. To address this, we calculated the protocol error
for each of our samples and then determined the fraction of the transcriptome
with measurable expression in the opposite strand. pe ranges from 0.5 for good
ssRNASeq libraries to 12% for the less specific ones®*. The average pe in our
cohort of 376 samples is 0.64% (min=0.17%, max=0.69%, sd=0.0055), which
indicates a high strand specificity of our libraries (Methods) and supports the use
of these data for identifying loci harboring expression of both strands. We defined
a locus as having measurable antisense expression if that locus has opposite
strand ratio (OPSratio) greater than pe in at least 5% (n=20) of the cohort
samples.
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Figure 4.4. Forward and reverse expression.

A) Density plot of the expression over the forward and reverse strand across all samples in our cohort. On
any given locus most of the expression is coming from the annotated or forward strand, and the expression
coming from the opposite strand is in general two orders of magnitude lower (median of reverse/forward =
0.001). B) Average OPSratio density. R=reverse strand, F=forward strand. Loci expressing predominantly
the forward strand have OPS ratio close to 0, while loci expressing mainly the reverse strand have OPSratio
close to 1.
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Our results indicate that greater than 60% (mean=62.41%, n=26,289) of
annotated gene loci consistently express the reverse strand (Figure 4.5). Here,
we observed a similar number regardless of the tissue of origin (mean=61.81%,
sd=0.07, Figure 4.6). These results reveal that the human genome is pervasively

transcribed in both strands.
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Figure 4.5. Percentage of loci with measurable expression in the opposite strand.

A loci is considered to be measurable if it express the opposite strand above the protocol error rate in at
least 5% of the samples in the cohort (n=20).
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Figure 4.6. The percentage of loci with measurable expression in the opposite strand tissue
distribution.

The percentage of loci with measurable expression in the opposite strand is similar regardless of the tissue
of origin (mean=61.81%, sd=0.0693, Supplementary Figure 2). Dots inside the boxplot represent the

percentage of loci consistently expressing the opposite strand in the indicated fraction of each tissue cohort
independently.

In prior work by He et al., 2008, Katayama et al., 2005 and Maruyama et
al., 2012'77182183 the OPSratio was a useful tool in order to classify a DNA locus
according to the relative contribution of each strand to the total expression
observed in the locus. They defined three main categories, forward loci with
OPSratio <= 20%, reverse loci with OPSratio >=80% and forward-reverse loci
with OPSratio values between 20% and 80% (Figure 4.4b supports this
classification). Figure C.1a shows the OPSratio distribution across a wide range

of expression values in our study, supporting the groups defined by those
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authors. Figure C.1b indicates that forward loci would represent 87% of

transcripts, reverse loci 4%, and forward-reverse loci 9% respectively.

Although useful as an initial assessment, thresholding approaches, which
use the OPSratio or the minimum number of reads in the opposite strand'’®'8+
'8 "as the only criteria to determine antisense loci, can be affected by biological
variation, library size differences and the efficiency of the strand specific libraries.
Thus, these approaches introduce error into the identification of antisense loci.
More importantly, these methods do not account for the generally two-orders-of-
magnitude lower expression of reverse strand compared to the forward strand
(Figure 4.4) Therefore, using only the OPSratio likely underestimates the number
of antisense loci; missing loci with significant antisense expression, especially in
those cases in which the sense strand is expressed at intermediate or high

levels.

In order to overcome these limitations, we used a probabilistic method for
natural antisense transcript's identification using RNASeq (NASTI-seq'’®) that
incorporates the variable pe of ssRNASeq protocols and employs a model
comparison framework to identify loci with significant antisense expression
(Methods). Briefly, for each locus in a reference transcriptome the method
calculates both the probability of the observed read count data under a sense
only model and an antisense model. In the first model, reads mapped to the
opposite strand are due to the pe only, while in the second one reads mapping to
the opposite strand of a particular locus come from two different sources: the pe
and the bona fide expression of an antisense transcript overlapping the locus.
Therefore, an antisense locus is defined as a region of DNA in which the
antisense model explains better than the sense only model the read count data

observed over that region (Methods).

Out of all transcribed loci consistently expressing the reverse strand

across our entire cohort, an average of 6398 (sd=1019.30) genes were identified
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as bona fide antisense loci for each tissue type (Figure 4.7a). This corresponds
to 36.82% (26.77%-44.33%) out of all loci with measurable expression in the
opposite strand. Out of the total number of antisense loci predicted by NASTI-seq
across all tissue types (n=11773), 71.38% (n=8403) loci correspond to predicted
cis-NAT overlapping pairs of genes based on the reference transcriptome
(Methods), while 28.62% (n=3370) are potentially new antisense loci . Out of
these 3370, 526 have a gene neighbor within 500bp of either side (Figure 4.7B),
representing potentially cis-NAT pairs in which the gene annotation is shorter
than what is observed from sequencing the data. The remaining 2844 loci could

represent un-annotated novel overlapping antisense transcripts.
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Figure 4.7. Landscape of antisense expression.

A) The percentage of loci with measurable expression in the opposite strand tissue distribution. The
percentage of bona fide antisense loci was 36.82% (26.77%-44.33%) on average across all cohorts. Bona
fide antisense loci are loci with measurable and significantly high (as determined by the NASTISeq statistical
modeling) expression in the opposite strand. B) Previously un-annotated antisense loci. We report ~3500
new potential antisense loci.

4.3.3 Widespread positive correlation between sense and antisense

transcripts

Although limited and anecdotal evidence suggests the co-expression of

sense and antisense gene pairs, previous studies have been limited by the size
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of the cohorts and the inaccuracy and low coverage of previous technologies. We
therefore systematically characterize the relationship between sense and
antisense expression across our cohort of 376 samples. Figure 4.8a shows that
the expression of overlapping genes is in general positively correlated and
greater than what would be expected by chance, with a median Spearman
coefficient correlation of 0.27. Interestingly, cis-NAT gene pairs with a Head-to-
Head (HTH) orientation showed the strongest positive correlation of their gene
expression (Figure 4.8b, median R=0.40); while gene pairs in tail-to-tail (TTT),
embedded (EMD) and intronic (INTRONIC) configurations had very similar and
weaker levels of expression correlation (median R=0,23; 0,22 and 0,26

respectively)(Table C-1).
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Figure 4.8. cis-NAT pairs genes expression is highly correlated.

A) Sense and antisense expression of overlapping genes is mainly positive correlated for all overlapping
types (median R=0.27). Correlation between random pairs of genes is shown in the gray dashed line. B)
Head-to-Head cis-NAT gene pairs show the highest positive correlation among all overlapping types
(median R=0.4). Correlation between random pairs of genes is shown in the gray dashed line.
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These observations hold across different tissue types (Figure 4.9), suggesting
that a common mechanism may be responsible for the degree of co-expression

observed between sense and antisense genes.
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Figure 4.9. cis-NAT pairs genes expression correlation across different tissue types.

Co-expression of sense and antisense
WT1/WT-AS1'¥,
CDKN2A/CDKN2A-AS 8

experimentally

demonstrated for

gene pairs have been
TP53/WRAP53™®",

while an

WDR83/DHPS'®?,

among others;

anticorrelation was recently suggested for BDNF/BDNF-AS'™®. Our results
recapitulated those well-studied cases (Figure 4.10) as well as generate novel

examples of highly co-expressed cis-NAT gene pairs.
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Figure 4.10. cis-NAT gene pairs previously reported in which the antisense regulates the cognate
sense gene.

Density scatter plots for as WT1/WT1-AS (left) and BDNF/BDNF-AS (right). Two previously reported

examples of cis-NAT pairs with positive (left) and negative (right) correlation. Red points indicate the
average value for the each cohort.

We focused our attention on the cis-NAT pair formed by NKX2-1
homeobox 1 and NKX2-1-AS, because this pair has one the highest gene
expression correlation in our dataset and the potential interaction between NKX2-
1 and NKX2-1-AS has not been described yet. These genes show a positive
correlation between their expression of R=0.94 across all tissues (Figure 4.11a),
with lung adenocarcinomas and lung squamous carcinomas as the linages with
highest expression of both genes across our combined cohort. Interestingly, this
pattern is clearly observed in the ssRNASeq lung cell lines data (Figure 4.11a
inset), allowing us to further validate this observation and credential our
bioinformatics analysis. We confirmed this positive correlation in expression in a
panel of 29 lung cell lines using qRT-PCR(Figure 4.11b).

Remarkably, NKX2-1, the thyroid transcription factor 1 (also known as
TTF-1) is master regulator essential for lung development and peripheral lung
cells known as terminal respiratory units (TRU) and it plays a role as a “linage-
survival” oncogene in lung adenocarcinomas '®°. Moreover, NKX2-1 expression
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is inversely associated with p53 and KRAS mutations, and NKX2-1 positive lung
adenocarcinomas are dependent on sustained expression of this gene for
survival'®. The strong co-expression between NKX2-1 and NKX2-1-AS suggests
NKX2-1-AS potential for regulating NKX2-1, and demonstrates the utility of our

antisense compendia for uncovering potentially new aspects of tumor biology.
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Figure 4.11. Novel cis-NAT gene pairs with high gene expression correlation.

A) Density scatter plot for NKX2-1 and NKX2-1-AS. This is a novel example of highly and positively
correlated cis-NAT pair. The thyroid transcription factor 1 (also known as TTF-1) plays a role as a “linage-
survival” oncogene in lung adenocarcinomas'®. In the inset, a scatter plot showing only the sense and
antisense expression for the samples in the lung cell line cohort. B) Quantitative PCR validating the
expression of NKX2-1 and NKX2-1-AS across a lung cell line cohort of 29 samples.
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4.3.4 Bidirectional promoters would direct the expression of head-to-head

cis-NAT pairs

As shown in Figure 4.8b, HTH cis-NAT pairs have the highest positive
gene expression correlation and this expression pattern is observed across
different tissues types, suggesting that a common structural mechanism
coordinates the expression of both genes in the pair. Similarly, co-expression
patterns have also been observed for divergent but not overlapping genes driven
by bidirectional promoters €. Inspecting the structural properties of the HTH cis-
NAT pairs, we realized that close to 60% of those pairs involve overlapping
regions between the 5’UTR (5UTR-5UTR) regions of each gene or the 5UTR
and the first exon (5UTR-exon, specially between protein coding and ncRNAs
where UTRs are not defined). Taken all these together, we hypothesize that
HTH cis-NAT pairs may share bidirectional like promoters that direct the

concerted expression of both genes in the pair.

Bidirectional promoters are genomic regions that initiate transcription in
both directions™’. In metazoans, bidirectional promoters have typically been
associated with the intergenic sequence between the transcription start sites of
two non-overlapping genes arranged in divergent orientation and separated by
less than a 1000 bp'®°. Recent studies have estimated that about 10% of protein-
coding genes would share a bidirectional promoter'’®. Bidirectional promoters are
CG rich and CpG islands are present in 80% to >95% of bidirectional promoters,
while only present in 30 to 60% of unidirectional promoters'®?. Other marks of
active transcription such as RNA polymerase Il occupancy and modified histones
H3K4me2, H3K4me3, and H3K9ac have also been observed in bidirectional
promoters'”®. Because of their high association with bidirectional promoters, we
used the presence or absence of CpG islands in a genomic region as proxy for

the presence or absence of a gene promoter in that region.
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We reasoned that if a bidirectional promoter exists between the genes of a
HTH cis-NAT pair, then a CpG island should be present in the overlapping region
between those two genes (Figure 4.12a). We found that 78% of the HTH cis-NAT
pairs have CpG islands in the region of overlap between the two the genes. This
percentage increases to 85% when only pairs involving HTH genes overlapping
in the 5UTRs (5UTR-exon) regions are considered (Figure 4.12b). Similarly, we
found that 83% of bidirectional but not overlapping protein-coding genes had
CpG islands in their promoters. In contrast to these, we only observed up to 25%
of CpG islands in the overlapping regions of cis-NAT pairs with tail-to-tail (TTT)
or embedded (EMB) configurations (Figure 4.12b). Taken together, those results
support our hypothesis that shared bidirectional promoters between HTH

overlapping genes direct the tight co-expression of these cis-NAT pairs.
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Figure 4.12. Bidirectional promoters direct transcription of Head-to-Head cis-NAT gene pairs.

A) Schematics representing a bidirectional promoter. CpG islands (green) are present in 80% - 95% of
bidirectional promoters (yellow) that initiate transcription of not overlapping protein-coding genes in opposite
directions (Top). Schematics representing a HTH cis-NAT gene pair sharing a bidirectional promoter in the
overlapping region (Bottom). B) Number of gene pairs with CpG islands found in their overlapping regions.
>78% of HTH cis-NAT present CpG islands in their overlapping region.
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A representative example of the effect a bidirectional promoter has over
the co-expression of cis-NAT gene pairs is shown in Figure 4.13, which illustrates
3 neighboring genes, HOXD3, HOXD-AS1 and HOXD1. On one hand, HOXD1
and HOXD-AS1 form a HTH cis-NAT pair, which is supported by CpG islands as
well as H3K27Ac marks in the overlapping region between them. On the other,
HOXD3 and HOXD-AS1 are arranged in a TTT orientation and do not have CpG
islands or any other marks of active transcription in their overlapping region.
Remarkably, although these three transcripts are very close to each other, within
a 30Kb region, the genes expression correlation was R=0.90 (p-value<=2.2e-16)
for HOXD1 and HOXD-AS1, while only R=0.36 (p-value=1.88e-10) for HOXD3
and HOXD-AS1, suggesting stronger transcriptional co-regulation between
HOXD1 and HOXD-AS1 than between HOXD3 and HOXD-ASH1.
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Figure 4.13. Example of cis-NAT with bidirectional promoter.
This example shows how bidirectional promoters would determine high correlation between HTH cis-NAT
pairs, even when other close neighbors exist in different orientation. HOXD1/HOXD-AS1 HTH gene pairs
would share a bidirectional promoter, as there is an enrichment in CpG islands in their overlapping region.

The correlation in their gene expression is greater than the correlation observed for the HOXD3-HOXD-AS1
TTT gene pair.

Of note, recent studies have shown that promoters of protein coding
genes can initiate transcription in both directions, generating non-coding RNAs
transcripts, such as paRNAs (promotor associated RNAs) and TSSaRNAs
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(transcription start site associate RNAs) from the opposite strand’*'%.

Increasing evidence also suggests that these non-coding transcripts influence
the expression of their cognate protein coding genes through multiple
mechanisms that are still incompletely understood''. For NATs in particular,
several examples of highly co-expressed HTH cic-NAT pairs have been reported
in which the antisense gene regulates the expression of their sense counterpart.
Sessa et al., 2007"°® demonstrated that the expression of antisense transcripts to
human HOXA genes promotes a collinear activation of the corresponding
cognate HOXA sense genes. Extending these observations, Zhang et al.,
2009 showed that HOTAIRM1, a non-coding RNA, was co-expressed with the
HOXA gene locus and HOTAIRM1 positively regulated the expression levels of
the HOXA gene.

Our results give additional support to these observations regarding the
pattern of expression of HOXA genes and their respective antisense genes
(Figure 4.14a, Figure C.2). Moreover based on the similarities with those
examples, both in the genomic structure and the high genes expression
correlation, we illustrate several representative examples of other gene pairs in
the HOXD (chr2), HOXC (chr12) and HOXB (chr17) clusters that exhibit similar
co-expression patterns to the one described for the HOXA (chr7) cluster (Figure
4.14b, Figure C.2a,b). These data suggests that a similar regulation mechanism

between sense and antisense transcripts could exist in those other clusters.

Importantly, these regulation patterns are not restricted to homeotic
genes, as our results also nominate other known examples such as WT1/WT1-
AS (Figure 4.10a), as well as novel cis-NAT pairs with the characteristics
described above and functions as diverse as cell adhesion and migration (BVES)
(Figure 4.14b), Ras guanine nucleotide-releasing factors (RASGRF2) (Figure
C.2c), transmembrane proteins (TMEM220, TMEM176B, TMEM176A) and
transcription factors (NKX2-1, WT1, TBX5, HAND2, FOXD3) among others

(Figure 4.14b). Similarly to NKX2-1, we validated the positive correlation between
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sense

and

antisense

transcripts

for

representative

cis-NAT  pairs

HOXD1/HOXD1-AS1, HOXC10/HOX10-AS3 and BVES/BVES-AS (Figure 4.15).
Taken together, this study thus characterizes the landscape of antisense

expression in the human transcriptome and the genes expression patterns of

different cis-NAT pairs.
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Figure 4.14. Known and novel examples of head-to-head cis-NAT with bidirectional.

A) Sense and antisense transcripts in the HOXA cluster (chr7), such as HOTAIRM1-HOXA and HOXA11-
HOXA11-AS, have a strong co-expression pattern, and antisense genes are known to positively regulate the
expression of their cognate sense gene. HOTAIRM1-HOXA B) The HOXD cluster (chr 2) is a novel example
of HTH cis-NAT HOX genes with antisense transcripts potentially acting as positive regulators of the sense
gene. C) Representative pairs of other HTH cis-NAT pairs, outside the HOX family, for which the antisense
transcript could positively regulate the cognate gene.
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Figure 4.15. Experimental validation of positive gene expression correlation for representative HTH
cis-NAT pairs.

Quantitative PCR validating the expression of A) HOXD1-HOXD1-AS1; B) HOXC10-HOX10-AS3 and C)
BVES-BVES-AS across a lung cell line cohort of 29 samples.

4.3.5 Patterns of antisense expression in human cancer tissues

Analyzing the expression of antisense loci for tissue types with more than
10 samples in our compendia (Table 4.4-1, Major cohorts), we observed three
broad groups of loci according to the expression of their antisense strand across

different tissue types.

We identified a group of 3025 antisense loci that are expressed in all
tissue types in our cohort and were therefore named as ubiquitous antisense loci
(Figure 4.16a). These loci represent 39.27% - 65.04% out of all antisense loci
identified in each tissue type. Protein coding genes involved in ubiquitous
antisense loci are enriched for functions such as DNA repair and response to
DNA damage, protein transport and localization, regulation of ncRNA metabolic
process and phosphorylation (Figure 4.16¢ (left)). Out the 2052 protein coding
genes in this category, 116 were known cancer related genes (tumor
suppressors or oncogenes) such as FLI1, ATM, BCL2L11, NF1, TP53BP1,

KRAS, PISKCA and RAF1 among others. We noted that FLI1, ATM1 and
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BCL2L11 represent particular cases of the HTH cis-NAT pattern described
before, while KRAS, PIK3CA and RAF1 correspond to tail-to-tail configurations.
In these last cases, the transcription of a neighboring protein coding gene

overlaps or runs into the 3UTR and the body of those oncogenes (Figure C.3).

A second group of, an average, 2881 (sd=967.96) antisense loci were
expressed at high levels in several tissue types and display low or absent
expression in the others. These tissue enriched/non-specific antisense loci
account for 26.21% - 53.23% out of all antisense loci identified in each cohort
(Figure 4.16a). Protein coding genes in this group were enriched for cell
adhesion, activation of protein kinases and embryonic morphogenesis (Figure
4.16¢c, middle). Notably, 133 known cancer genes were also found in this
category including AXL, MTUS1, E2F2, TET2, JAK2, STK11 MAP4K1, BCAS1
and CCND1.

Finally, we identified a third group of antisense loci that are mainly
expressed at high levels in only one tissue type. We consider these to be
lineage-specific (Figure 4.16b), with the possibility that such transcripts contribute
to tissue specific processes. This category of transcripts represented the smallest
group, with an average of 244 (sd=166) loci by tissue, representing only 1.8 - 7%
out of all antisense loci identified in each cohort. In contrast with the ubiquitous
group, tissue specific antisense loci indeed were enriched for functions related
with tissue development, morphogenesis and differentiation (Figure 4.16c, right.
Out of 1563 linage specific loci, 113 involved tumor suppressors or oncogenes
(Figure 4.16a) such as GTSE1, ERCC6 and GSK3B in LUAD; ABL2 in LUSC;
ROS1, LCK and BCL2 in BRCA; TP53 and KLK10 in PRCA; CREBL2 and CDK2
in PANC; and RET, ABL1, TBX1 and VAV1 in the lung cell lines (Figure 4.16a).
By inspecting the coverage maps of these examples, we found that ROS1, RET,
VAV1, ABL2 and BLC2 do not have annotated overlapping transcripts; however
we observed clear evidence of embedded antisense transcription in all of them

(Figure C.5).
130



GTSE1
ERCC6
GSK3B

ABL2
ERBB4
BCL2
LCK
ROS1

TP53

KLK10
CREBL2
CDKe
MAP3K4
BCR

e S
woo m
RATAVn

(Le=u) DM
(€1=u) ONIW
(£1=U) DNVd
(£T=U) ¥D4d
(99=U) ¥Dug
(£€=u) DSN1
(99=u)avn1

AL T

ESR2

(Le=u) DM
(€1=u) ONIW|
(£1=U) DNVd
(£z=u) vDYud
(99=u) v¥Dug
(£g=u) d>sN1
(99=u) avn1

(e9sL=])
syads abeur

(680Z =I)
sypads-uoN

(zsoz=1)
snoynbiqn

o

Tissue specific

Tissue non-specific

Ubiquitous

[ juswydojansp anssi
L1 xujew Jenjjaoeixs
| —T)]
| m__*m_wmmm_mm%o a[osnw
[ sjans| suowJoy jo Bai
| —
LR3I
[ uongnualioylp [ewAyoussew
. TuonelAsooh|6 p
| ——
E— ) T TV
L lssuodsai Alojewuwiejul
 —
 —
—

diweyno suodsal
ISausboibue
10 cﬁwo_mv_mogo
[ usboydiow oAique
sisauaboydiow j9o
[ boyd

[ Ualinu 0} asuodsal
[ :.nn»oo\a ulejoid
[ uoljejAloydsoyd

w9
= -

D2,
0.5
0 0.0

JuaWwIyoLIUd

k]

1N

[ JuonesBiw e
siseuaboydiow uebio
ssao0id ploials

saseury Jo Bal sod
SOSEBUIY JO UOHBAIIY
juswdojansp Bun
uonezijeucibay
[ l6uieubis sjeweno
. JueBoydiow ouokiqu3
huswdojanap [eje|aNS
[ Guieubis |1@o-1190
lenuajod aueiquis|y

1lodsuely uoj

uoIsaype (190

v S 1 o w1
(aV] [a\} ~— ~— o
2109S JUBWIYD1IUD pIARQ

0.0/

[ ] uoueikioydsoyd
[ ] 6usseood ynou
[ ] weomeeo jo bai BoN

yodsuesy pioe oluebiQ
[ uonosfoid |80

Jredey YNQ

w o v o w
a a - - o

0.0-

9109S JUBWIYDLIUD pIARQ

Figure 4.16. Antisense loci according to their expression across tissues.

=2089) and linage specific

2052), non-specific (n
B) Zoom in of linage specific antisense loci. Several tumor suppressor and

A) Expression in the opposite strand of ubiquitous (n

(n=1563) antisense loci.

oncogenes are identified as antisense loci in different cancer tissue types. C) Functional analysis of all

protein coding genes identified as antisense sense loci, ubiquitous (left), tissue non-specific (middle) and

tissue-specific (right).
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4.3.6 Antisense loci in lung cancers

Because our compendium is substantially enriched for cancer samples, and
benign samples correspond only to match normal samples of lung cancer
patients (lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC)), we
investigate lung cancer specific antisense loci. 2101 cancer-specific antisense
loci were found expressed in LUAD or LUSC but not in the benign samples
(Figure 4.17a); 1456 were expressed in both tissues and 1212 out of those were
also found in our cohort of lung cell lines. Out of those 1456 loci, 1260 were
found in lung and at least another tissue type (Figure 4.17a) whereas 196 were
lung cancer specific (Figure 4.17b).

Interrogating antisense loci involving cancer related genes, 88 cancer-
related genes were found in which the expression of the opposite strand was
statistically significant according to the NASTIseq score. Interestingly several of
those genes do not have a previously annotated antisense transcript; however
our ssRNASeq data suggest the presence of promoter associated, intronic and
3UTR antisense expression. E2F2 antisense transcript that locates to the 3UTR
region of this gene has not been previously and is preferentially observed in lung
cancers. ABL2, MTAP and GTSE1 display unannotated antisense expression
originating from an embedded intronic transcript and they were mainly observed
in LUAD and LUSC respectively.
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Figure 4.17. Cancer specific antisense loci.

A) Cancer specific antisense loci. Loci determined as antisense loci in lung and other cancer tissues but not
in lung normal samples. B) Lung cancer specific antisense loci. Loci determined as antisense loci in lung
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adenocarcinoma or lung squamous carcinoma but not in lung normal samples. C) Tumor suppressors and
oncogenes specific antisense loci. D) Functional analysis of all protein coding genes identified as cancer
specific antisense sense loci. The heatmaps represent presence/absence of antisense the Antisense loci in
a particular tissue type.

Next, we focused on analyzing how the sense and antisense expression
on a given locus changed between tumor and normal samples. We reasoned that
the forward and reverse expression of a particular locus could change in a
consistent or inconsistent fashion between tumor and normal samples. In a
consistent change, the expression of forward and opposite strands will be over or
under expressed between tumor and normal samples. In an inconsistent change,
the expression of forward and reverse strands will change in opposite directions
between tumor and normal samples. Therefore, when the forward strand is over
expressed the opposite strand will be under-expressed and vice versa,
suggesting different potential mechanisms of regulation between sense and

antisense genes.

In order to identify loci with consistent or inconsistent expression changes,
we used DESeq normalized read counts over forward and reverse strand of a
locus to perform differential expression analysis between tumor samples and

t°2 was used to determine loci

normal samples (Methods). A negative binomial tes
whose forward and reverse strands were differentially expressed. Both strands
were required to have an absolute log fold change (Ifc) greater than 1 with
identical signs for consistent loci (Ifc>=1 or Ifc<=-1), while opposite signs for
inconsistent loci (forward Ifc>=1 and reverse Ifc<=-1; or forward Ifc<=-1 and

reverse Ifc>=1) (Methods).

First an analysis of 3 pairs of matched LUAD tumor and normal samples
was performed, revealing the four groups of loci that we hypothesized (Figure
4.18a) and then this proof of concept analysis was extended to the full lung
adenocarcinoma (n=66) and lung squamous carcinoma (n=36) cohorts. Figure

4.18b identified those groups by showing the average log fold change for each
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locus across the LUAD cohort, while Figure 4.19 demonstrates that these

consistent or inconsistent changes are uniformly observed in all samples.
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Figure 4.18. Antisense loci dysregulation in cancer.

A) Mean sense log fold change vs mean antisense log fold change in expression between tumor and normal
matched pairs of lung samples (n=6 samples, 3 pairs). Gray dots represent unchanged pairs. Green dots
represent antisense loci that show an opposite expression of the sense and antisense strand expression
between tumor and normal. Purple dots represent loci showing a consistent change of the sense and
antisense expression between tumor and normal. A dot is colored salmon if the relationship is observed in
only one of the tumor-normal matched pairs. B) Mean sense log fold change vs mean antisense log fold
change between Tumor and Normal Samples (N=69). Color code as in A.
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Figure 4.19. Heat maps of cancer’s specific consistent and inconsistent sense-antisense pairs.

A) Heat maps of cancer’s specific consistent, B) inconsistent sense/antisense pairs.

Overall, three were about three times more consistent than inconsistent
loci in both LUAD and LUSC (Table 4.4-2). Intriguingly, by focusing on those
differentially expressed loci that are annotated as cis-NAT gene pairs, we
observed that consistent loci are enriched for head-to-head pairs, while
embedded and tail-to-tail configurations are over-represented in the inconsistent
group (Table 4.4-3). This is particularly interesting in light of the results discussed
in previous sections, and suggests that indeed HTH cis-NAT gene pairs change

in a coordinate fashion during cancer progression.
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Table 4.4-2. Number of consistent and inconsistent differential expressed antisense loci.

LUAD LUSC
Cancer-related ‘ Cancer-related
Consistent 831 55 1258 71
loci
Inconsistent 258 10 417 18
loci

Table 4.4-3. Break down by configuration of consistent and inconsistent differential expressed
antisense loci.

LUAD LUSC

HTH HTH
All cis-NAT | 6807 1944 2152 6807 1944 2152
c°"|f)i:ite"t 125 133 65 171 131 84

Inconsistent

. 60 14 37 74 11 64
loci

Analyzing each tissue independently shows that HTH cis-NAT pairs are over-represented in consistent loci
fisher test p-value=1e-5 and for both LUAD and LUSC 3x3 contingency table. Fisher test p-value<2.2e-16
and 1.41e-15 for the 2x2 contingency table including the consistent loci.

The Hypoxia-inducible factor 1-alpha (HIF1A) and the Tubulin
Polymerization Promoting Protein (TPPP) are representative examples of
consistent and inconsistent loci respectively. In the HIF1A locus the expression
of forward and reverse strands increase in tumors samples with respect to
normals (Figure 4.20a); while in the TPPP locus the expression of the antisense
transcript increases in tumors while TPPP sense expression decreases Figure
4.20b). Our data shows HIF1A and TPPP sense/antisense expression changes
are rather general phenomena that is observed in both match tumor-normal pairs

(Figure C.4) and the rest of tumor samples (Figure 4.21a, Figure 4.21b).
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Figure 4.20. Examples of consistent and Inconsistent genes.

A) Coverage map for HIF1A, an example of a consistent antisense locus. B) Coverage map for TPPP, an
example of an inconsistent antisense locus.
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Figure 4.21. Log fold change between tumors and normals for consistent and Inconsistent genes.

A) HIF1A, consistent pair, sense and antisense RNASeq log fold change between tumor and the mean of
the normal samples. The barplot shows sense and antisense expression changing in the same direction for
this gene. B) TPPP, consistent pair, sense and antisense RNASeq log fold change between tumor and the
mean of the normal samples. The barplot shows sense and antisense expression changing in opposite
directions for this gene. An RTQ-PCR validation in one of our match tumor-normal pairs is presented in the
Figure C.4.
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4.3.7 oncoNATdb: a catalogue of antisense loci involving tumor

suppressor and oncogenes

Given the increasing evidence for the role of antisense dysregulation in
cancer'®”1719 " recent studies have suggested that targeting antisense
transcripts in the clinical setting may represent a promising technology for
modulating the expression of specific genes'®'%. The first step in bringing these
emerging therapies into the cancer arena is to catalogue and characterize all
cancer related genes involved in cis-antisense regulation.

We therefore created, oncoNATdb, the first catalogue of cis-NAT pairs
involving cancer related genes. To do so, we first performed an unbiased search
of cis-NAT pairs in which at least one of overlapping genes was a known tumor
suppressor or oncogene and calculated the gene expression correlation for the
cis-NAT pair across our combined cohort of 376 cancer samples. 51% of tumor
suppressors and 46% of oncogenes were found overlapping with another gene in
the opposite direction (Table 4.4-4). Given that 46% of other protein coding
genes harbor overlapping transcripts, these data suggest that tumor suppressors
are slightly enriched for overlapping antisense transcripts (Fisher exact test p-
value=0.0027), raising the possibility that antisense transcription could play a key

role in modulating the expression of those genes.

Table 4.4-4. Number of tumor suppressors, oncogenes and other protein coding forming overlapping
pairs.

Protein Tumor
. Oncogenes
codlng genes suppresors
Overlapping 8650 37g%* 168
other transcript
Not overlapping 10072 357 200
other transcript
Total 18722 736 368
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Next, we focused in HTH cis-NAT pairs involving tumor suppressors or
oncogenes that had evidence of bidirectional promoters, high gene expression
correlation and statistically significant expression of the antisense strand (high
NASTIscore). A representative list of these candidates is presented in Table
4.4-5. Remarkably, our bioinformatics analyses capture the majority of cancer
related genes known to be regulated by antisense transcripts. Furthermore our
approach nominates new cis-NAT pairs involving tumor suppressors and
oncogenes such as CCND2, MYCN, TP73, ATM and ETV7. An assessment of
the mechanisms of regulation in these cis-NAT pairs will be informative for

deciphering the role of antisense regulation in cancer.

Then, we look for TTT cis-NAT pairs involving cancer related genes within
the linage specific, tissue enriched, ubiquitous and cancer specific antisense loci
groups described earlier. We observed known oncogenes such as KRAS,
PIK3CA and RAF1, in which the transcription of a neighboring protein coding
gene overlaps or runs into the 3'-UTR and body of those oncogenes. Moreover,
we applied the same analysis for annotated EMB cis-NAT pairs involving cancer
related genes and found cases such as HIF1A, a cancer specific antisense locus
that changes consistently between tumor and normal samples, and NF1. A list of
representative examples for these categories is presented in Table 4.4-6.

Finally, we use our ssRNASeq data to directly examine the antisense
expression on cancer related genes that did not have annotated overlapping
transcripts. We found additional examples of oncogenes and tumor suppressors
with significant expression of the antisense strand, suggesting potential novel
transcripts that are overlapping and might regulate those genes. Such genes
included RET, VAV1, E2F2, and BLC2. A representative list of those cases is
presented in Table 4.4-7.
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4.4 Discussion

In this study, we used strand specific RNA sequencing on a cohort of 376
samples to describe the magnitude and patterns of antisense expression in the
human cancer transcriptome. Based on our analyses, we have further created
oncoNATdb, a catalogue of antisense loci involving tumor suppressor and
oncogenes. Our results indicated that more than 60% of all human loci have
measurable expression of the antisense strand, suggesting that antisense
transcription is widespread phenomenon across the genome. In addition, we also
show that, on average, 37% of those loci would correspond to bona fide
expressed cis-NAT pairs (Figure 4.7). Our estimates expand upon earlier limited

assessments of the extent of the antisense transcriptome®®®’.

Moreover, by analyzing the expression patterns of overlapping genes, we
confirmed that gene expression of overlapping genes is positively correlated
(median Spearman correlation coefficient R=0.27), and in particular, that HTH
cis-NAT pairs have the highest correlation (median Spearman correlation
coefficient R=0.4) among all other configurations types (Figure 4.8). This high
correlation of HTH pairs, we hypothesize, is due to bidirectional promoters that
direct the expression of both genes in the pair. Supporting this, greater than 78%
of HTH cis-NAT pairs have CpG islands in their overlapping regions, suggesting
bidirectional promoters; similarly 83% of bidirectional but not overlapping genes
had CpG islands in their intergenic regions (Figure 4.12). This hypothesis is
further supported by detailed analyses of known examples in the HOXA cluster
and experimental validation of the co-expression pattern of novel candidates in a
panel of lung cell lines (Figure 4.14, Figure 4.15). Remarkably, differentially
expressed cis-NAT pairs between tumor and normal samples that exhibit a
consistent behavior are enriched for HTH pairs (Table 4.4-3), implying a common

mechanism of regulation.
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Furthermore, by analyzing the expression of antisense loci in the major
tissue types in our compendia, we observed three broad groups of loci according
to the expression of their antisense strand across different tissue types. A first
group of 3025 ubiquitously expressed antisense loci were found present in all
tissue types in our cohort (Figure 4.16a). Those loci were enriched for functions
such as DNA repair, phosphorylation and ncRNA processing. Notably we found
116 cancer related genes such as Fli-1 Proto-Oncogene ETS-Transcription
Factor (FLI1), which forms a HTH cis-NAT pair with FLI1-AS1 transcript, and
KRAS, PIK3CA and RAF1 oncogenes that form TTT cis-NAT pairs with
neighboring protein-coding genes. Although the potential functional
consequences of such tail-to-tail configurations remain largely unknown, a recent
study in gastric cancer showed that two TTT overlapping protein-coding genes
could concordantly regulate each other by forming a RNA duplex at the
overlapping 3-UTRs which increased their mutually stability’®>. Our resource
provides potential new candidates for this phenomenon, which merit further
investigation and raise the exciting possibility of new avenues for regulating the

expression of well-known oncogenes.

A second group of, on average, 2881 (sd=967.96) tissue enriched
antisense loci expressed at high levels in several tissue types and absent in the
others (Figure 4.16b) was also found. Within this group 133 cancer-related genes
displayed significant antisense expression. The last group corresponds to lineage
specific antisense loci that are mainly expressed in only one tissue type (Figure
4.16b). Despite representing only 1.8 - 7% out of all antisense loci identified in
each cohort, lineage specific antisense loci were enriched by tissue specific
morphogenesis functions and thus have the potential of regulating biological
processes unique to distinct tissue types. We found 113 cancer-related genes in
this group, such as ROS1, ABL2, and BLC2. Interestingly, several of those genes
do not have annotated overlapping transcripts, however our ssRNASeq shows
clear evidence of embedded or promoter associated antisense transcription in all

of them (Figure C.5). These observations demonstrate the advantages of using
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ssRNASeq to resolve the expression of complicated regions with overlapping
transcripts and to discovered potential new loci with significant but unannotated

antisense expression.

In addition, comparing tumor and benign lung adenocarcinoma and
squamous carcinoma samples we found cancer specific loci (Figure 4.17) and
showed that the expression of the two genes in a cis-NAT pair can change in the
same (consistent) or opposite (inconsistent) direction when comparing tumor and
normal samples (Figure 4.18, Figure 4.19). Noteworthy examples of consistently
regulated cancer related genes loci in LUAD were Zinc Finger E-Box Binding
Homeobox 2 (ZEB2) and Polo-Like Kinase 4 (PLK4). ZEB2 and ZEB2-AS1 form
a bidirectional HTH cis-NAT pair that is essential for down regulation of E-
cadherin during epithelial-mesenchymal transition. Beltran et al 2008
showed that ZEB2 and ZEB2-AS1 transcription is directed by a bidirectional

promoter and more importantly that ZEB2-AS1 up-regulates Zeb2 protein

elegantly

expression, which in turn down regulates E-cadherin expression. On the other
hand PLK4 is essential for centriole duplication and when overexpressed is
important in tumorigenesis by inducing centrosome aberrations. Notably, the
antisense transcript overlapping PLK4 has not been annotated yet, but according
to our ssRNASeq data it is oriented in a HTH configuration overlapping the 5
prime region of PLK4. Elucidating the biological implications of those very
different expression patterns would deepen our understanding of antisense

regulation and their role in cancer.

Finally, our study comprehensively examined, for the first time, the extent
of antisense expression in cancer related genes and aggregated these findings in
oncoNATdb, a catalogue of cancer-related genes with significant antisense
expression. We show that 608 (50.08%, out of 1214) of cancer-related genes
have annotated overlapping transcripts and 296 out of those 608 have significant
antisense expression. 48.64% of the overlapping pairs formed by those 296

genes are HTH cis-NAT examples, with high correlation (R>=0.3) and evidence
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of bidirectional promoters, whereas 25.02% are TTT and 24.34% are EMB gene
pairs. In addition, 155 cancer-related genes have significant antisense
expression, but do not have annotated overlapping transcripts. 27 out those 155
have a very close gene nearby (<=500bp) whose UTRs transcription could
extend into the neighboring gene. The reaming 128 cancer-related genes could

have putative novel antisense transcripts.

Antisense transcripts regulate several well-studied tumor suppressors and
oncogenes and there is increasing evidence of antisense dysregulation in
cancer'® ' The molecular mechanisms of this regulation are multiple and
poorly understood. Nevertheless controlled modulation of natural antisense
transcripts, in order to modify the expression of sense genes'®, is an emerging

technology that promises to deliver gene specific targeted therapies.

This study characterizes the landscape of antisense expression in human
cancers and provides a resource, oncoNATdb, which will enable cancer

researchers to investigate sense-antisense regulation and its role in cancer.

4.5 Contributions

Science is a collective enterprise and it is much more fun when done with
friends and good collaborators. The results presented in this chapter were made
possible for the great collaboration and support of a team of people in the

Chinnayian and Nesvizhskii labs.

O. Alejandro Balbin: Sense and antisense bioinformatics analysis pipeline, Omics
data integration, ssRNASeq data processing, statistical analysis, Manuscript
writing. John Prenser: PCR validation of sense and antisense gene pairs. Rohit
Malik: Experimental validation of sense/antisense gene pairs. Saravana M.

Dhanasekaran, Dan Robinson and Yi-Mi Wu: Beautiful RNASeq strand specific
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libraries for the MCTP cohort. Xuhong Cao: RNA Sequencing. Alexey
Nesvizhskii: Data analysis oversee and manuscript writing. Arul M. Chinnayian:

Overall scientific project oversight and manuscript writing.
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Table 4.4-5. Representative tumor suppressors and oncogenes head-to-head cis-NAT pair with bidirectional promoters.

The column Status indicates that, according to previous reports, the antisense transcript regulates the actionable gene expression.

Status Gene Pair Overlap region Tr_anscrlpt Overlelp Spearm_an Adj-pvalue NASTI
biotypes Type correlation score
CDKN2B- chr9:21994787- Antisense- HTH 0.8042 1.51E-83 799633.48
Reported | As1 CDKN2A 21995300 protein_coding TS/ONC
HIF1A_RP11- chr14:62162255- protein_coding- HTH 0.5203 1.28E-24 165798.13
Reported 618G20.4 62162557 lincRNA TS/ONC
WRAP53_TP53 chr17:7589616- protein_coding- H2H 0.3658 1.09E-10 23555.416
Reported 7592397 protein_coding TS/IONC
HOTAIRM1_HOXA | chr7:27135175- Antisense- H2H 0.6145 1.66E-37 12623.264
Reported 1 27135615 protein_coding TS/ONC
ZEB2-AS1_ZEB2 | chr2:145277418- Antisense- H2H 0.6727 6.26E-48 10518.263
Reported 145277677 protein_coding TS/ONC
WT1-AS_WT1 chr11:32456243- Antisense- H2H 0.8939 1.92E-129
Reported 32457392 protein_coding - TS/ONC
CCND2_RP11- chr12:4361898- protein_coding- H2H 0.7983 6.56E-81 144673.84 TS/ONC
B 264F23.4 4414516 antisense
MYCN_MYCNOS chr2:16082067- protein_coding- H2H 0.6500 5.42E-44 122128.44 TS/ONC
B 16082976 antisense
TP73_WRAP73 chr1:3547328- protein_coding- H2H 0.4131 1.59E-13 13637.53 TS/ONC
) 3652765 protein_coding
PROX1_PROX1- chr1:213992975- protein_coding- H2H 0.8537 1.41E-104 4072.8672 TS
B AS1 214214853 antisense
CAV2_AC002066. | chr7:116139405- | protein_coding- H2H 0.8354 2.73E-96 | 2231070.7 s
B 1 116139985 antisense
PDX1_PDX1-AS1 | chr13:28403903- | protein_coding- H2H 0.7379 2.18E-62 | 46064.246 s
B 28500368 antisense
ATM_NPAT chr11:10809320 protein_coding- H2H 0.6919 6.49E-52
- 8-108093913 | protein_coding 7131.8909 TS
RP1- chr6:36322416- Antisense- H2H 0.7268 1.64E-59 | 13477.113 ONG
) 50J22.4 ETV7 36359771 protein_coding
ARHGEF5_RP4- | chr7:144052378- | protein_coding- H2H 0.7634 5.09E-70 | 25937.039 ONG
) 798C17.6 144052613 antisense
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TYMS_C18orf56 chr18:657601- protein_coding- H2H 0.7484 1.03E-65 458624 .82

658340 protein_coding 49 ONC

*HTH=Head-to-Head, TS=Tumor suppressor, ONC=0Oncogene. All gene pairs in this table have had CpG islands in the overlapping regions between the
genes and the loci was called as antisense loci by NASTISeq.
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Table 4.4-6. Representative tumor suppressors and oncogenes tail-to-tail and embedded cis-NAT pair with bidirectional promoters.

The column Status indicates that, according to previous reports, the antisense transcript regulates the actionable gene expression.

Status

Gene Pair

Overlap region

Transcript

Overl
ap

Spearman
correlation

Adj-pvalue

chr3:178951879

biotypes
protein_coding&pr

i PIK3CA_KCNMB3 | © R stein coding T2T | 03179 | 9.74E-08 | 48034.56 | ONC
] LYRMS_KRAS chr_1225:§:§851;) 22 progf;?n—f::;?f:‘pr T2T | 03097 | 3.53E-07 | 977660.66 | TSIONC
; MKRN2_RAF1 Chr;tzz%zl?;%lz’ prootf;?n—f::;?f:‘pr T2T | 04221 | 7.80E-15 | 62380.91 ONC

i ESR1_SYNE1 Chff;gi%g;m progf;?n—f::;?f:‘pr T2T | 03356 | 5.52E-08 | 430288.52 TS

- CREB1_METTL21A Ch_rzzééiz%ﬁi% prootf;?n—f::;?f:‘pr T2T | 02866 | 3.26E-05 | 934027.76 TS

- FLI1_FLI1-AS1 cr;r_1112:81§§35§382§8 pr°tei;‘i;(§‘::;”g&a” EMB | 0.8385 | 4.54E-98 | 1277555 TS

} TPPP2_NDRG2 Chr_lzi::;gg;flg prootf;?n—f::;?f:‘pr EMB | 06476 | 1.32E-42 | 26275.06 TS

i ASVIV_'\\'AT/SN% A Chrs;fz‘;g;?o’ a”tise_”;e dﬁ‘:gmtei” EMB | 05328 | 1.65E-25 | 36668.81 | ONC

] NF1_EVI2B Chr_1279:72§ 35359 42 prootf;?n—f::;?f:‘pr EMB | -0.2357 O'OO;S 990 | g51428.7 TS

- DLG3_DLG3-AS1 Chr;(;gzigg%' pr°tei;;;‘::;”g&a” EMB | 05592 | 7.276-29 | 54784.17

] NF1_EVI2A chr_1279:72§;l5359 42 progf;?n—f::;?f:‘pr EMB | -0.2789 | 7.99E-05 | 881428.7 TS
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NTRK1_INSRR

chr1:156811870
-156812063

protein_coding&pr
otein_coding

EMB

0.5510

1.70E-28

47464.80

ONC
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Table 4.4-7. Representative tumor suppressors and oncogenes with significant antisense expression but no annotated overlapping transcripts.

Gene Pair

Overlap region

Transcript

Overlap

Spearman NASTI

Adj-pvalue

biotypes

Type*

correlation score

) RET chr10:43572473- protein_coding EMB ) ) 179.81 ONC
43625799
) VAV1 Chr19:6772720- protein_coding EMB ) ) 186.39 ONC
AR57371
) E2F2 chr1:23832920- protein_coding ) ) 5405.11
23857712 T ONC
i chr18:60790577- protein_coding 3 ) 1270.35
BCL2 60987361 EMB TS
i chr10:89622868- protein_coding 3 ) 1118.89
PTEN 89731687 HTH TS
i chr9:136627014- protein_coding 3 ) 1611.13
VAV2 136857726 EMB ONC
chr1:51426415- protein_coding HTH, ) i 4239.83
- CDKN2C 51440305 paRNA? ONC
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Chapter 5
Conclusions and future directions

Omics technologies for high-throughput profiling of human genome,
transcriptome and proteome are revolutionizing cancer research and nourishing
a nascent paradigm in clinical care. The success of this new precision medicine
paradigm will depend on our abilty to combine diverse omics-based
measurements to distill clinically relevant information that can be acted upon.
This thesis developed bioinformatics approaches to integrate multi-omics
datasets and applied these approaches in three distinct studies that identified

novel actionable genes and pathways in cancer.

In Chapter 2, alternative targetable proteins were found in non-small cell
lung cancers (NSCLC) with activating mutations in KRAS (a well-know but
undruggable oncogene) by profiling their transcriptome, proteome and
phosphoproteome. By reconstructing targetable networks associated with KRAS
dependency, we nominated lymphocyte-specific protein tyrosine kinase (LCK) as
a critical gene for cell proliferation in these samples, suggesting LCK as a novel
druggable protein in KRAS-dependent NSCLC.

In Chapter 3, novel oncogenic gene fusions were identified in NSCLC
patients with previous to this work unknown driver genes. By characterizing the
landscape of fusions in NSCLC, this study revealed that gene fusions incidence
is an independent prognostic factor for poor outcome. It was also discovered that

Neuregulin 1 (NRG1T) is a novel low recurrence 3’ fusion partner present
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exclusively in patients with an unknown driver; resembling previously reported

and targetable kinase fusions in lung cancers.

Chapter 4 focused on the characterization of cancer-related genes that
are involved in sense-antisense gene pairs and could be regulated by natural
antisense transcripts. By determining the extent of antisense gene expression
across human cancers and comparing with well-documented sense-antisense
pairs, our results raise the possibility that antisense transcripts could modulate
the expression of well-known tumor suppressors and oncogenes. This study
provided a resource, oncoNATdb, a catalogue of cancer related genes with
significant antisense transcription. The oncoNATdb catalogue will enable
researchers to investigate the mechanisms of sense-antisense regulation and
further advance our understanding of their role in cancer, which may lead to the

discovery of novel therapies.

Collaborative projects such as the Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC) are generating vast amounts
of omics-based datasets. These projects are profiling the genome, transcriptome
and proteome for thousands of patients, providing an unprecedented molecular
characterization of multiple cancer types. These datasets also provide an
exceptional opportunity to discover novel targetable genes and pathways on
patient populations with currently unmet needs. Integrative analyses would be
essential to translate this molecular information into informative findings that
points towards new therapies and novel targets. The bioinformatics methods
presented in this thesis illustrated different approaches to integrate these multi-

omics datasets.

In the future, | anticipate building scalable bioinformatics approaches
based upon the computational methods presented in this thesis to integrate the
multi-omics datasets produced by projects such as the TCGA and the ICGC.

Such a system should be able to generate a detailed molecular profile for each
153



patient in the cohort (using all omics-based measurements), integrate relevant
clinical information and determine patient communities based on those molecular
and clinical profiles. As fundamental feature of this system should include a
patient’'s molecular profile oriented search, allowing researchers (and patients) to
use a patient’'s molecular profile in order to retrieve those other patients
(community of patients) with molecular profiles that closely resemble the query.
The community of patients generated by this “patients like me-molecular” search,
may facilitate the discovery of novel targets and unappreciated therapeutic

opportunities.

The discovery of LCK kinase as druggable target in KRAS-dependent
NSCLC merits additional experimental and bioinformatics studies to explore its
specific role in these cancers and potential avenues to inhibit its activity.
Preliminary results, not shown in this dissertation, indicate that LCK localizes to
the nucleus of KRAS dependent cells. A previous report in T-acute lymphoblastic
leukemia (T-ALL) also showed nuclear localization of LCK. In T-ALL LCK binds
to the promoter of LIM domain only protein (Lmo2)'®’, which is a critical
transcription factor in the development of this disease'®’. Therefore, LCK could
be exerting unanticipated roles in KRAS dependent NSCLC by directly regulating
the activity of transcription factors. In order to study this hypothesis, Chip-Seq
experiments for LCK could be performed in order to determine what DNA regions
LCK binds and identify the genes that are regulated, if any exists. Coupling those
experiments with RNASeq or microarray profiling after LCK knockdown could
also reveal the precise links between LCK and the apoptosis pathways that were
suggested in chapter 2. In addition, it is essential to extend the clinical
significance of LCK in disease free survival in order to determine the prognostic
value of LCK in lung cancer. For this, we could use the currently available TCGA
NSCLC dataset to evaluate the significance of LCK as a prognostic marker. This
analysis is, however, complicated by the overall poor prognosis of lung cancers,
but we anticipate that detailed clinical follow-up of the TCGA and our internal

cohort of patients would allow us to disentangle the effect of LCK in prognosis.
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The identification of low recurrence NRG1 fusions, as well as NRG1
overexpression, in NSCLC driver negative patients suggest that close to 4% of
NSCLC driver negative patients could benefit from further studies on the role of
NRG1 in NSCLC and the development of directed therapies for targeting NRG1.
Chemotherapy is the first line treatment for more than 50% of patients with
NSCLC, regardless of the stage; however, in some cases chemotherapy cannot
remove the tumor or prevent disease recurrence. A study recently published
demonstrated that residual tumor cells after chemotherapy express high levels of
NRG1; moreover, inhibition of NRG1 signaling significantly enhanced the
magnitude and response to chemotherapy'®?. A deep characterization of all
NRG1 fusions presented in this study (localization, and interaction partners), as
well as the common signaling pathways activated in both fusion index samples
and outlier expression samples would help to determine the mechanism of action
of NRG1. Chapter 3 also presented a novel approach for identifying and filtering
out the vast amount of false positive fusions produced by any of the fusion
algorithms. The fusion classifier developed in chapter 3 could be further
improved by including information about the presence or absence of an open
reading frame (ORF) in the fusions formed. In order to include this, we would
need to extend the algorithm to determine the sequence of all potential fusion
transcripts formed between the 5 and 3’ fusion genes and then determine the
longest ORF that extends beyond the fusion breakpoint. A categorical value, 1/0,
would then be included as an additional feature in the classification step.
Including ORF information would focus the results on rearrangements producing
fusion proteins, as the previously reported kinase fusions. Finally, the fusions
database generated in this study could be extended to include additional lung
datasets and additional fusion events called with improved fusion detection
algorithms. This database could constitute a reference point for other

researchers looking for low recurrence fusions in NSCLC.
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Chapter 4 focused on the characterization of cancer-related genes that
are involved in sense-antisense gene pairs and could be regulated by natural
antisense transcripts. This is a very new field and the future directions are
unlimited. To begin with, this study suggests a relationship between HTH-cis-
NAT pairs and bidirectional promoters, which could be further enhanced by
integrating omics-based measurements of additional chromatin marks of histone
modification and nucleosome free regions. Generating these datasets for the cell
types used in this study is the only limiting factor to making progress in this
direction. The ssRNASeq utilized in this study also confirms a widespread
expression of antisense transcripts from the promoter of many genes as it was

t'%%. We have not address the extension of those

previously observed in yeas
specific type of ncRNAs, neither its relation with cancer genes. An immediate
follow up study would characterize this phenomenon as preliminary observations
of the coverage maps of gene expression shows that promoter ncRNA (paRNA)
are highly transcribed from several cancer genes across tissue types.
oncoNATdb could be further extended to include those examples of paRNA that
have not been annotated but found in cancer-related genes. More importantly,
the study presented in chapter 4 suggested that many cancer-related genes
could be regulated for antisense transcripts. Therefore, designing clever
experiments to disentangle the mechanism of regulation should be at the
forefront of future follow up studies. In particular, it would be essential to
demonstrate what antisense transcripts activate or silence their respective
cognate gene targets. Stabilization of oncogenes mRNA may lead to increased
activity in cancer cells, while interference in tumor suppressors expression may

abolish their activity promoting cancer development.

In conclusion, the computational methods for integrating omics-based
datasets developed in this thesis will assist others with similar tasks and
challenges. More importantly, these approaches nominated novel targetable

genes and pathways for patient populations with “undruggable” cancers,
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warranting further studies of the therapeutic opportunities provided by these

discoveries.
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Appendix A
Additional analyses for chapter 2
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Figure A.1. Number of proteins and phosphoproteins identified by LC-MS/MS.

1 1

1

with at least 6 spectrum counts

Phospho-Proteins identified in at least 2 cell lines and

A) Proteins identified in the flow through dataset in at least two different cell lines, with at least one unique
peptide and a minimum of 6 spectrum counts across all cell lines. B) Phospho-proteins identified in the
enrich fraction in at least two different cell lines, with at least one unique phospho-peptide and a minimum of
6 spectrum counts across all cell lines.
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Figure A.2. Analysis of omics signatures.

A) Overall correlation between LFC of transcript and LCF of unmodified protein. Differential abundance was
calculated as the log fold change between the transcript or protein expression in the KRAS-Dep vs KRAS-
Ind cell lines. In red proteins identified as differentially expressed by the combined S score and gray all other
proteins. The 95% confidence interval (Cl) for the Pearson correlation (p) is shown in gray for all proteins
and in red for proteins detected as differentially expressed by the S score. Only proteins with both transcript
and protein abundance are plotted. Only proteins with both transcript and protein abundance are plotted. B)
Overall correlation between LFC for unmodified protein and the LFC phosphorylated protein. Differential
abundance was calculated as in a). Colors and 95% CI as in a). Only proteins with both protein and
phosphoprotein abundance are plotted. C) A naive method for integrating transcript, protein and
phosphoprotein signatures produces a set of differentially expressed proteins overrepresented by genes
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found only in the transcriptome dataset ( ~78%). Only 17% and 5% of the proteins would be found as
differentially expressed in the proteomics or phospho-proteomics datasets respectively (A t-test adjusted
pvalue <=0.05 for the LFC was used to select differentially expressed proteins). D) Average transcript
expression of informative and non-informative genes across the panel of cell lines. Informative genes have a
smaller dynamic range of expression than the non-informative genes. Whiskers correspond to the data point
+/- 1.5 of the interquartile range of each box. The widths of the boxes are drawn proportional to the square-
roots of the number of genes in each group. E) Distribution of the differential expression values for
informative (red) and non-informative (blue) genes when comparing KRAS-Dep vs KRAS-Ind cell lines. The
longer tails in the distribution of non-informative genes determines the set of genes that are selected as
differential expressed genes by a naive approach leaving out most of the informative genes. F) Proteins
found as differentially expressed only in the transcriptome dataset have very general and unspecific
functions. Proteins in this dataset are mainly glicoproteins, transmembrane or secreted proteins, which are
characterized by a wide dynamic range of expression but are not necessary related with KRAS dependency
phenotype. G) Proteins found as differentially expressed using the S score are enriched on very specific
molecular functions such as phosphorylation, alternative splicing, and acetylation.
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Figure A.3. Comparison between integrative scores.

A) Density plot for all z-score normalized log fold change (LFC). LFC was calculated with respect to the
comparison KRAS-Dep vs KRAS-Ind. B) Combined fisher pvalue vs Combined S score pvalue. Both
pvalues were adjusted using the Hochberg method. Blue and red lines indicates pvalues=-log(0.05). C)
Volcano plot for the combined fisher pvalue and the combined S score. Blue line marks pvalue = -log(0.05).
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Figure A.4. Network enrichment analysis of integrated datasets.

A) SPIA network enrichment analysis. Horizontal axis corresponds to the enrichment probability of obtaining
at least the observed number of genes (NDE) on the given pathway just by chance (-log(p-value)). The
vertical axis corresponds to the perturbation enrichment, and represents the probability of obtaining the
observed total perturbation or more extreme on the given pathway just by chance. Pathways at the right of
the red oblique line are significant after Bonferroni correction of the global p-values obtained by combining
the pPERT and pNDE evidence, while pathways at the right of the blue oblique line are significant after a
FDR correction of the global p-values. The KEGG pathway-id is shown close to each bullet point. B) SPIA
enrichment analysis reveals activation of main signaling programs in KRAS-Dep vs KRAS-Ind cells, such as
ERBB signaling and cancer specific associated pathways, tight junctions and cell adhesion. Interestingly,
KRAS-Dep cells also activates immune related signaling modules such as T cell receptor signaling, natural
killer cell mediated cytotoxicity and Fc epsilon Rl pathway. Pathways displayed are significant after FDR
corrections with global adjusted p-values <= 0.05. Light and dark blue represent activated and inhibited
pathways, respectively, in KRAS-Dep vs KRAS-Ind cells. C) Cancer specific pathways activated in KRAS-
Dep vs KRAS-Ind cell lines correspond to cancers in which activating mutations in RAS oncogenes are
present in a significant percentage of cases. Pathways displayed were significant in the SPIA analysis after
a FDR correction with global adjusted p- <= 0.05. * The lung pathway had adjusted-pvalue <= 0.17. Data
obtained from reference 1. D) Confocal microscopy shows high levels of phosphorylated as well as total B-
catenin localized on the cell membrane of H441 KRAS-Dep cell line. This localization was not observed in
H460 KRAS-Ind cell line. High levels of B-catenin or phospho B-catenin were not observed in the nucleus of
those cell lines. The scale bar corresponds to 10um.
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Figure A.5. Feed forward loop between KRAS and LCK.

A) KRAS influences phosphorylation of BAD on sites 112 and 136/ Phosphorylation of BAD-112, BAD136
causes inactivation of this pro-apoptotic protein. KRAS knock down with two independent siRNAs in H441
dependent cell line decreases phosphorylation of BAD (residues 112 and 136), but did not affect BAD
protein levels. B) KRAS influences total and phosphorylated protein level of potential druggable kinases
LCK, PAK1/2 in KRAS-Dep cell lines. Knock down of KRAS with two independent siRNAs reduces
phosphorylation levels of LCK, and PAK1/2 in H358 cell line. KRAS-KD also reduced total protein levels of
LCK, but not PAK1/2. C) LCK influences PAK1/PAK2 activation in KRAS dependent cell lines. Knock down
of LCK using two independent siRNAs reduces phosphorylation levels of PAK1/2 but not their protein level
in H358 KRAS-Dep cell line. D) Simplified model of the signaling pathway characterized in KRAS dependent
cell lines. Red arrows represent phosphorylation (activation) events that are influenced by KRAS, and
revealed by this study as present in NSCLC KRAS dependent cell lines. Blue arrows represent potential

163



existent interactions between MET, LCK, PAK1 and BAD that were previously known but not assessed in

this study.
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Figure A.6. KRAS dependent cells would be dependent on LCK for survival.
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A) KRAS knock down impairs proliferation in NSCLC KRA-DEP but not in KRAS-Ind cell lines. Two
independent lentivirus shRNAs significantly decrease cell proliferation in KRAS-Dep cell lines but not in
KRAS-Ind ones. The error bars correspond to the standard error calculated over three independent
replicates. B) Inhibition of LCK using small molecule inhibitor (LCK Inhibitor II, Millipore, CAS 918870-43-6),
preferentially impaired cell proliferation in KRAD-Dep (red) but not in KRAS-Ind cell lines (green). C) MET
knock down impairs proliferation in NSCLC KRAS-Dep but not in KRAS-Ind cell lines mimicking the effect
observed by KRAS knock down. The error bars correspond to the standard error calculated over three
independent replicates. D) Inhibition of MET using small molecule inhibitor selectively, but mildly, decreases
cell proliferation in KRAS-Dep (H441, H358) but not in KRAS-Ind (H460, H2122, A549) cell lines. E)
Analysis of LCK staining with respect to patient overall survival. LCK positive samples = 11, LCK negative
samples = 12. We observed the largest difference in survival probability between LCK-positive and LCK-
negative patients at 3 years after diagnosis. At this point in time, the survival probability of LKC positive
samples (KRAS-Dep) is above 75% while only 50% for the LCK negative (KRAS-Ind) samples as shown in
the figure below. The Chi-square test p-value for the difference in the survival probability at 3 years is
p=0.23. Moreover, the overall survival curves for LCK positive and LCK negative are not statistically
significant over the full course of time (Chi-square test p= 0.379). This is not surprising given the small
number of samples available for the analysis, which translates in low power for detecting differences in
survival time, and the overall low survival rates of all lung cancer patients.
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Figure A.7. LCK module would be involved in modulating apoptosis.

A) Module M1 containing LCK and PAK1 is enriched on proteins belonging to the apoptosis or regulation of apoptosis pathways. David analysis of the proteins
belonging to M1 reconstructed by the PCST algorithm. The David cluster enrichment score is plotted for all pathways with a Bonferroni corrected pvalue <=0.05.
B) Small Cell lung cancer pathway enriched using the gene expression signature obtained after knock down of LCK in H441 and H358 cell lines. In blue box, a
small module of proteins (TRAF1, BIRC3 and BCL2L 1) controlling apoptosis is highlighted.
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Figure A.8. BLC2A1, an apoptosis gene that is specifically regulated by LCK in NSCLC KRAS-Dep
cell lines.

A) BCL2A1 nomination. The x-axis shows the differential expression of apoptosis genes when comparing
KRAS-Dep vs KRAS-Ind cell lines. The y axis shows the average differential expression of the same genes
when comparing a siRNA knock down of LCK in H441 and H358 cell lines with resect to the targeting control
(red dots), or the average differential expression when comparing the knock down of a “random” gene
compared to its respective control (black dots) in three unrelated prostate cell lines. Genes affected by the
overall siRNA treatment, but not specifically by LCK itself would by overlapping or very close in this plot. B)
BLC2A1 is an apoptosis gene specifically affected by LCK in NSCLC KRAS-Dep cells. The y axis
represents the Euclidean distance between a red and black dot representing the same gene in the
Supplementary Figure S7C. Genes that are specifically affected by LCK have positive or negative Euclidean
distances according to the magnitude of their perturbation, while genes nonspecifically affected by the
siRNA treatment would have Euclidean distances close to 0. LCK was left out of the plot for convenience of
the scale.
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Table A-1 SPIA analysis on the differentially abundant proteins identified by the S score. Status A=Activated, I=Inhibited

KEGG

[») Size NDE pNDE tA pPPERT pG pGFdr PGFWER  Status
Tight junction 4530 121 8 7.4E-06 | 1.4E+01 | 2.3E-01 1.6E-04 | 7.5E-03 | 1.3E-02 A
Epithelial cell signaling in bacterial 5120 | 63 6 | 1.3E-05 | 1.8E+01 | 2.8E-01 | 3.5E-04 | 7.5E-03 | 2.7E-02 | A
Focal adhesion 4510 193 10 | 4.6E-06 | 4.6E+00 | 9.1E-01 1.5E-02 | 7.7E-02 | 1.0E+00 A
Thyroid cancer 5216 29 4 9.2E-05 | 2.3E+01 1.7E-01 4.3E-04 | 7.5E-03 | 3.3E-02 A
Pathways in cancer 5200 | 312 9 1.2E-03 | 8.8E+01 | 5.2E-02 4.8E-04 | 7.5E-03 | 3.8E-02 A
ARVC 5412 69 3 2.0E-02 | 1.2E+01 | 4.0E-03 4.3E-04 | 7.5E-03 | 3.4E-02 A
Bacterial invasion of epithelial cells 5100 64 5 1.9E-04 | 1.6E+01 | 5.9E-01 9.4E-03 | 5.7E-02 | 7.4E-01 I
Colorectal cancer 5210 61 3 1.4E-02 | 2.9E+01 1.3E-02 8.9E-04 | 1.1E-02 | 7.0E-02 A
ECM-receptor interaction 4512 83 4 5.0E-03 | 2.0E+01 | 3.7E-02 1.0E-03 | 1.1E-02 | 8.0E-02 I
Endometrial cancer 5213 51 4 8.4E-04 | 2.1E+01 | 4.1E-01 8.7E-03 | 5.6E-02 | 6.8E-01 A
Osteoclast differentiation 4380 125 5 3.9E-03 | 2.8E+01 1.0E-01 2.8E-03 | 2.7E-02 | 2.2E-01 A
Fc epsilon Rl signaling pathway 4664 73 4 3.2E-03 | 3.6E+01 1.7E-01 4.5E-03 | 3.9E-02 | 3.5E-01 A
Vascular smooth muscle contraction 4270 104 2 21E-01 | 5.8E+01 4.0E-03 7.4E-03 | 5.3E-02 | 5.8E-01 A
Natural killer cell mediated cytotoxicity | 4650 120 3 7.8E-02 | 1.1E+02 | 1.3E-02 5.0E-03 | 3.9E-02 | 3.9E-01 A
Fc gamma R-mediated phagocytosis 4666 87 4 5.9E-03 | 2.6E+01 2.3E-01 1.0E-02 | 5.8E-02 | 8.2E-01 A
ErbB signaling pathway 4012 83 4 5.0E-03 | 2.5E+01 | 3.9E-01 2.2E-02 | 9.9E-02 | 1.0E+00 A
Wnt signaling pathway 4310 135 3 1.0E-01 | 2.5E+01 | 4.0E-02 1.6E-02 | 8.0E-02 | 1.0E+00 A
Renal cell carcinoma 5211 70 2 1.2E-01 | 24E+01 | 5.2E-02 2.3E-02 | 9.9E-02 | 1.0E+00 A
Cell cycle 4110 112 4 1.4E-02 | 1.5E+01 | 4.4E-01 4 9E-02 | 1.8E-01 | 1.0E+00 I
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Table A-2 Data provenance for chapter 2.

DataSet

Provenance

Used in this study in

section:

Availability

Proteome data for all NSCLC cancer cell lines

Generated by this study

Integration of omics
dataset to nominate
actionable proteins. Figure
1

Supplementary Tables ST5,
ST8

Phospho-Proteome data for all NSCLC cancer cell
lines

Generated by this study

Integration of omics
dataset to nominate
actionable proteins. Figure
1

Supplementary Tables ST6,
ST9

Gene expression data for all NSCLC cencer cell
lines

Sanger Cell Line Project.
BROAD Institute.

Integration of omics
dataset to nominate
actionable proteins. Figure
1

http://www.ebi.ac.uk/array

express/files/E-MTAB-783/

Gene expression data for Outlier analysis

Sanger Cell Line Project.
BROAD Institute.

KRAS-Dep NSCLC cell lines
are also LCK-Dep for
proliferation. Outlier

expression analysis Figure

5a

http://www.ebi.ac.uk/array
express/files/E-MTAB-783/

Microarray data for LCK-KD H441, H358

Generated by this study

LCK could be associated
with apoptosis pathways.

Supplementary Figure 7, 8.

Supp Table ST3

Available upon request

Microarray data for MET-KD H441, H358

Generated by this study

LCK could be associated
with apoptosis pathways.

Supplementary Figure 7, 8.

Supp Table ST3

Available upon request

TMA with genotype information for KRAS

Generated by this study

LCK activation is observed
in clinical samples.

Supplementary Table ST2.
Available upon request

Databases

Provenance

Used in this study in
section:

Availability

Notes
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KEGG database

Kyoto University
Bioinformatics Center

Used for Network analysis
with the SPIA and PCST
algorithms

www.genome.jp/kegg-
bin/download

* Download was free at the
time of this study, but it is
not anymore

STRING Database

Used for Network analysis
with PCST algorithm in
order to obtain the weigth
of each protein-protein
interaction

http://string-db.org

Informative Genes

Generated by this Study.
Sanger cancer concensus
genes, List of Kinases,
common genes involve in
genomic rearreagments

Used for classifying each
gene as informative or not
in the integration of omics

datasets.

Supplementary Tables ST4

Source Code

Provenance

Used in this study in
section:

Availability

Notes

X!Tandem

The global proteome
machine

mzXML search

www.thegpm.org/tandem/

PeptideProphet and ProteinProphet

Transproteomic Pipeline

Post-processing of
X1Tandem Searches

tools.proteomecenter.org/
TPP.php

Abacus

Nesvizhskii Lab Universit of
Michigan

Aggregation and
summarization of spectral
counts for each protein and
phosphoprotein across all
cell lines

nesvilab.org/software

SPIA

Tarca, A.L. et al. A novel
signaling pathway impact
analysis. Bioinformatics 25,
75-82 (2009)

Network Analysis

http://bioconductor.org/bi
oclite.R, biocLite("SPIA")

MSGSTEINER

Bailly-Bechet, M. et al.
Finding undetected protein
associations in cell signaling

by belief propagation.
Proceedings of the National
Academy of Sciences of the

United States of America
108, 882-887 (2011)

Prize Collecting Steiner
Tree Algorithm solution

http://areeweb.polito.it/ric
erca/cmp/code/bpsteiner
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KEGGGraph

Zhang and Wiemann,
KEGGgraph: a graph
approach to KEGG
PATHWAY in R and
Bioconductor.
Bioinformatics 2009, 1.

Merging KEEG pathways in
order to create the meta-
pathway (G)

http://www.bioconductor.
org/packages/2.11/bioc/ht
ml/KEGGgraph.html
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Table A-3 Mutation status of the cell lines used in this study

Cell line KRAS_STATUS KRAS_MUT KRAS NRAS HRAS | PIKBCA EGFR BRAF TP53 TP53 p.t
SW900 KRAS_IND p.G12V,c.35G>T 1 0 0 0 0 0 0 1
A549 KRAS_IND p.G12S,c.34G>A 1 0 0 0 0 0 0 0
H460 KRAS_IND p.Q61H c.183A>T 1 0 0 1 0 0 0 0
H2122 KRAS_IND p.G12C,c.34G>T 1 0 0 0 0 0 1 0
SK-LU-1 KRAS_IND p.G12D,c.35G>A 1 0 0 0 0 0 1 0
H1792 KRAS_IND p.G12C,c.34G>T 1 0 0 0 0 0 0 1
H23 KRAS_IND p.G12C c.34G>T 1 0 0 0 0 0 1 0
H1155 KRAS_IND p.Q61H,c.183A>T 1 0 0 0 0 0 1 0
H1734 KRAS_DEP p.G13C,c.37G>T 1 0 0 0 0 0 1 0
H2009 KRAS_DEP p.G12A,c.35G>C 1 0 0 0 0 0 1 0
H358 KRAS_DEP p.G12C c.34G>T 1 0 0 0 0 0 0 0
H441 KRAS_DEP p.G12V,c.35G>T 1 0 0 0 0 0 1 0
H727 KRAS_DEP p.G12V,c.35G>T 1 0 0 0 0 0 1 0
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Table A-4 TMA KRAS genotype and IHC pLCK staining.

Sample Exon 1 Genotype Zygosity Ggﬁg:'y;z)e VAY[s [ 1114 Elc;g)}((__‘lggg
1 C004 12: GGT -> TGT Heterozygous WT Homozygous 1
2 CO006 12: GGT -> GAT Heterozygous WT Homozygous 1
3 C008 12: GGT -> GAT Heterozygous WT Homozygous 1
4 C016 12: GGT -> GTT Heterozygous WT Homozygous 1
5 C026 12: GGT -> TGT Heterozygous WT Homozygous 1
6 C035 12: GGT -> TGT Heterozygous WT Homozygous 1
7 C038 12: GGT -> TGT Heterozygous WT Homozygous 1
8 C045 12: GGT -> GTT Heterozygous WT Homozygous 1
9 C046* WT Homozygous WT Homozygous 1
10 C053 12: GGT -> GTT Heterozygous WT Homozygous 1
11 C067 12: GGT -> GTT Homozygous WT Homozygous 1
12 Co087 12: GGT -> TGT Heterozygous WT Homozygous 1
13 C112 12: GGT -> GAT Heterozygous WT Homozygous 1
14 C113 13: GGC -> GAC Heterozygous WT Homozygous 1
15 C116 12: GGT -> GAT Heterozygous WT Homozygous 1
16 Cc117 WT Homozygous 34:G->T Heterozygous 1
17 C081 WT Homozygous 34:G->T Heterozygous 1
18 C083 12: GGT -> AGT Heterozygous WT Homozygous -1
19 C082 12: GGT -> GTT Heterozygous WT Homozygous -1
20 C037 12: GGT -> TGT Heterozygous WT Homozygous -1
21 C0o71 12: GGT -> TGT Heterozygous WT Homozygous -1
22 C096 12: GGT -> TGT Heterozygous WT Homozygous -1
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23 C021 12: GGT -> GCT Heterozygous WT Homozygous -1
24 C047 12: GGT -> TGT Heterozygous WT Homozygous -1
25 C062 12: GGT -> TGT Heterozygous WT Homozygous -1
26 C084 WT Homozygous 34:G->T Heterozygous -1
27 C033 WT Homozygous 35:G->A Heterozygous -1
28 C040 WT Homozygous 35:G->C Heterozygous -1
29 C058 WT Homozygous 34:G->A Heterozygous -1
11 C067 12: GGT -> GTT Homozygous WT Homozygous 1
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Table A-5 Differentially activated pathways determined by the SPIA algorithm after knock down of LCK or MET. Status A=Activated, I= Inhibited.

KEGGI
D Size [\[»]3 pNDE tA pPERT PG pGFdr pGFWER Status

Rheumatoid arthritis 5323 90 16 1.4E-08 | 0.0E+00 | 1.0E+00 | 2.8E-07 | 1.4E-05 2.9E-05 I
Amoebiasis 5146 | 104 13 1.9E-05 | -3.2E+00 | 6.1E-01 | 1.4E-04 | 3.0E-03 1.5E-02 I
Malaria 5144 51 8 1.5E-04 | 2.2E+00 | 3.3E-01 | 5.5E-04 | 8.3E-03 5.8E-02 A
Lysosome 4142 | 119 13 7.9E-05 | 0.0E+00 | 1.0E+00 | 8.2E-04 | 1.1E-02 8.6E-02 I
Natural killer cell mediated cytotoxicity | 4650 | 122 8 3.5E-02 | -8.9E+01 | 3.0E-03 | 1.1E-03 | 1.2E-02 1.1E-01 I
NOD-like receptor signaling pathway | 4621 53 7 1.1E-03 | -8.1E+00 | 3.5E-01 | 3.6E-03 | 3.1E-02 3.8E-01 I
Axon guidance 4360 | 127 10 6.0E-03 | 1.8E+01 | 7.5E-02 | 3.9E-03 | 3.1E-02 4.1E-01 A
Vibrio cholerae infection 5110 53 6 5.6E-03 | -4.6E+00 | 1.0E-01 | 4.8E-03 | 3.4E-02 5.0E-01 I
Small cell lung cancer 5222 83 8 4.0E-03 | -1.8E+01 | 1.8E-01 | 6.0E-03 | 3.7E-02 6.3E-01 I
African trypanosomiasis 5143 32 5 2.8E-03 | 2.2E+00 | 4.8E-01 | 1.0E-02 | 5.8E-02 1.0E+00 A
Antigen processing and presentation | 4612 71 7 6.2E-03 | -3.0E+00 | 3.7E-01 | 1.6E-02 | 8.4E-02 1.0E+00 I
Bile secretion 4976 69 7 5.3E-03 | -2.6E+00 | 3.0E-01 | 1.2E-02 | 6.5E-02 1.0E+00 I
Toll-like receptor signaling pathway 4620 95 9 2.6E-03 | 1.6E+01 | 2.8E-01 | 6.0E-03 | 3.7E-02 6.3E-01 A

Specific pathways associated with

MET Knock down

B cell receptor signaling pathway 4662 72 8 8.0E-04 | -8.7E+00 | 3.5E-01 | 2.5E-03 | 4.3E-02 2.6E-01 I
Renal cell carcinoma 5211 69 4.1E-02 | -1.8E+01 | 1.3E-02 | 4.6E-03 | 5.2E-02 4.7E-01 I
ErbB signaling pathway 4012 83 2.0E-03 | -1.6E+01 | 3.9E-01 | 6.4E-03 | 6.5E-02 6.5E-01 I
Focal adhesion 4510 | 192 12 7.1E-03 | -2.6E+01 | 1.7E-01 | 9.3E-03 | 8.6E-02 9.5E-01 I
Bile secretion 4976 69 9 1.1E-04 | 2.2E+00 | 5.6E-01 | 6.6E-04 | 1.3E-02 6.7E-02 A
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Appendix B
Additional analyses for chapter 3
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Figure B.1. Significant Analysis of microarrays (A) and Gene Set Enrichment Analysis for the
expression of the fusion construct CD74-NRG1 in BEAS-2B cells (B).
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Table B-1.Fusions used as true positives for the random forest classifier.

Other attributes of each fusion such as functional annotation and gene expression of both partners are not shown.

T 3 A
n ™ b e >
H441 2 2 | EIF2AK2 | SULT6B1 | umich | 14 2 9 9 18 355 408 132 D TRUE
H1793 | 21 | 12 | RUNX1 PTPRR umich 5 13 9 8 17 10 5 9 InterC TRUE
H1734 17 | 17 MRC2 MAP3K3 | umich 1 2 9 9 18 63 34 68 IntraC TRUE
H1734 12 | 14 | FAMG0OA DPF3 umich 6 8 9 9 18 268 18 1 InterC TRUE
Co057 9 6 DAPK1 GMDS umich 2 7 5 5 10 5 6 3 InterC TRUE
Co11 5 5 TTCA DOCK2 umich 2 28 9 9 18 20 11 21 IntraC TRUE
AG3 9 [19 TSC1 SMARCA4 | umich | 16 12 3 4 7 4 1 5 InterC TRUE
A35 5 8 CD74 NRG1 umich 3 6 9 9 18 275 139 150 InterC TRUE
A35 5 8 CD74 NRG1 umich 5 6 8 5 13 9 139 2 InterC TRUE
A34 3 3 RAF1 TMEM40 | umich 6 11 9 9 18 22 4 7 D TRUE
A25 5 5 | SLC12A7 TERT umich 3 12 9 9 18 56 50 41 D TRUE
A25 9 |20 CDK9 AHCY umich 5 9 2 3 5 3 7 7 InterC TRUE
A25 9 |20 CDK9 AHCY umich 3 9 1 1 2 1 7 1 InterC TRUE
Ic_s51 X | X EDA MID1 seoul 1 7 8 8 16 9 1 3 IntraC NA
Ic_s48 4 SLC34A2 ROS1 seoul 13 12 9 9 18 390 35 203 InterC NA
Ic_s42 10 | 10 KIF5B RET seoul 12 12 9 9 18 56 3 23 IntraC NA
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Ic_s39 5 6 CD74 ROS1 seoul 3 10 9 9 18 440 19 372 InterC NA
Ic_s39 5 6 CD74 ROS1 seoul 3 9 2 2 4 3 19 2 InterC NA
Ic_s26 2 2 | MAP4K3 PRKCE seoul | 34 2 7 8 15 8 1 6 IntraC NA
Ic_s26 2 2 EML4 ALK seoul 13 10 9 9 18 27 4 30 IntraC NA
Ic_s20 17 | 17 | BCAS3 MAP3K3 seoul | 22 2 5 5 10 5 1 7 IntraC NA
Ic_s13 10 | 12 | FGFR2 CIT seoul 2 25 9 9 18 25 5 23 InterC NA
fgg?gf‘ 10 | 10| ccbcs RET tega | 9 | 12 | 5 2 7 8 17 2 IntraC NA
3?Cb1fg§f8 4 | 6 | SLC34A2 | ROS1 tega | 13 | 12 | 9 0 9 86 2 44 | Interc NA
%%gﬁgg_e 6 | 6 | EzR ROS1 tcga | 5 | 10 | 8 9 17 | 31 | 223 | 16 | IntraC NA
H4a41 | 2 | 2 | EIF2AK2 | SULT6B1 | umich | 14 | 2 9 9 18 | 355 | 408 | 132 D TRUE
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Table B-2 Comparison of the number of fusions among different tumor stages in LUAD.

Student t-test p-values.

LUAD Stalgei Stage Il ‘ Stage lll  Stage IV
Stage | 0.2937 | 0.7833 0.1472
Stage Il 0.2194 | 0.04902
Stage |l 0.2008

Table B-3 Comparison of the number of fusions among different tumor stages in LUSC.

Student t-test p-values.

LUSC St“l‘ge ‘ Stage II ‘ Stage Ill| Stage IV
Stage | 0.01409 | 0.7258 | 0.09339
Stage Il 0.06015 | 0.01956
Stage Il 0.07492
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Table B-4 3’ Representative fusions recurrence across the combined cohort and in the driver positive and driver negative samples.

The full list includes 400 unique 3’genes.

3'gene # Rec In Driver .In Overall Driver + Driver - nzcr:;:er Driver Driver
Samples + Driver - recurrence recurrence recurrence samples + -

ROS1 6 0 5 0.857 0.000 1.295 700 314 | 386
NRG1 3 0 3 0.429 0.000 0.777 700 314 | 386
MAP3K3 2 0 1 0.286 0.000 0.259 700 314 | 386
RET 2 0 2 0.286 0.000 0.518 700 314 | 386
ALK 1 0 1 0.143 0.000 0.259 700 314 | 386
TERT 1 1 0 0.143 0.318 0.000 700 314 | 386
DZIP1 2 0 0 0.286 0.000 0.000 700 314 | 386
WWOX 2 0 0 0.286 0.000 0.000 700 314 | 386
ABCC5 2 0 2 0.286 0.000 0.518 700 314 | 386
Clorf22 2 1 0 0.286 0.318 0.000 700 314 | 386
LILRB2 2 1 1 0.286 0.318 0.259 700 314 | 386
RABGAP 2 0 0 0.286 0.000 0.000 700 314 | 386
ZNF585 2 0 0 0.286 0.000 0.000 700 314 | 386
AFF3 2 1 0 0.286 0.318 0.000 700 314 | 386
PEMT 2 2 0 0.286 0.637 0.000 700 314 | 386
FGFR3 2 0 2 0.286 0.000 0.518 700 314 | 386
PSMD11 2 1 1 0.286 0.318 0.259 700 314 | 386
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Table B-5 3’ Representative fusions recurrence across the combined cohort and in the driver positive and driver negative samples.

The full list includes 391 unique 5’'genes.

5'gene # Rec Overall Driver + Driver - Total number Driver + Driver -
Samples recurrence recurrence recurrence samples

SLC34A2 3 0.429 0.955 0.777 700 314 386
MYH9 3 0.429 0.955 0.777 700 314 386
TXNRD1 3 0.429 0.955 0.777 700 314 386
GPR98 3 0.429 0.955 0.777 700 314 386
DAPK1 2 0.286 0.637 0.518 700 314 386
CD74 2 0.286 0.637 0.518 700 314 386
RAF1 2 0.286 0.637 0.518 700 314 386
SLC12A7 2 0.286 0.637 0.518 700 314 386
CCDC6 2 0.286 0.637 0.518 700 314 386
UCHL5 2 0.286 0.637 0.518 700 314 386
PPP1CC 2 0.286 0.637 0.518 700 314 386
FOXK2 2 0.286 0.637 0.518 700 314 386
POLD3 2 0.286 0.637 0.518 700 314 386
SAMD12 2 0.286 0.637 0.518 700 314 386
PTPN14 2 0.286 0.637 0.518 700 314 386
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Appendix C
Additional analyses for chapter 4

ReverseloCi | .smmsumr #.

Reverse-
Forward Loci

Average OPSratio ( R/(R+F))

0.0

T T 1 T T T T T

20 15 10 5 0 2 3 4 5 6
Density (max=45), Average total loci expression (log10(norm(count)))

Forward loci 87%

Reverse loci 4 %

Average total loci Forward-Reverse loci 9 %

with reliable expression
by sample n=12623

Figure C.1. Average OPSratio for all loci across the cohort.

A) Average loci OPSratio vs loci total expression. B) Distribution of loci according to thei OPSratio.
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Table C-1 Comparison of gene expression correlation distribution for different configurations.

The head-to-head configuration is the one with highest correlation among all other ones. Student t-test p-
values. The comparison are directional and therefore not symmetric.

Tall-_to- Head-to- Embedded Ram_:lom
Tail Head pairs
Tail-to-Tail 1 0.9999 2.73E-272
Head-to- | 4 5ar 144 4.16E-42 0
Head
Embedded | 1.38E-05 1 2.03E-149
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