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ABSTRACT

Trapping Rydberg Atoms in Ponderomotive Optical Lattices
by
Sarah E. Anderson

Chair: Georg Raithel

I examine the trapping of Rydberg atoms in an optical standing wave. This trap,
called an optical lattice, offers a platform for utilizing Rydberg atoms and their unique
properties in applications such as atomic spectroscopy and quantum computing. To-
ward this end, I demonstrate the capability to trap ®*Rb Rydberg atoms in a one-
dimensional 1064 nm wavelength optical lattice with high efficiency. I have achieved
a 90% trapping efficiency by inverting the lattice immediately after Rydberg-atom
excitation, using an electro-optic technique. In addition, I investigate the depen-
dence of optical-lattice trapping potentials for Rydberg atoms on the angular portion
of the atomic wavefunction. While ground-state atoms are point-like in relation to
an optical-lattice field, Rydberg-atom wavefunctions extend over a substantial frac-
tion of the lattice period, leading to an angular dependence of the lattice trapping
potentials. I measure the potentials using various angular sublevels of Rydberg nD
states prepared in the optical lattice with a superimposed transverse DC electric field.
This unique angular dependence of Rydberg-atom optical lattices may be exploited
to tailor the trapping potentials as needed for spectroscopy or quantum computing.

Further, atom loss due to lattice-induced photoionization of Rydberg atoms must be

Xix



characterized for applications. I investigate the photoionization process as a func-
tion of position within the volume of a Rydberg atom. Since Rydberg-atom sizes
approximately equal the lattice period, the lattice intensity varies maximally within
the atomic volume. I find that photoionization rates are higher for lattice intensity
maxima located near the nucleus than within the lobes of the electronic probabil-
ity distribution. Photoionization therefore occurs near the Rydberg-atom nucleus.
Finally, I calculate photoionization rates for Rydberg atoms in optical fields and in-
vestigate how these rates relate to the validity of the electric dipole approximation.
This approximation is usually central to matter-field interactions, and Rydberg atoms
in optical fields present a system for studying the approximation in a limiting case. I
further apply the photoionization calculations to experimentally-relevant conditions.
With these advances, this thesis lays essential groundwork for the employment of

Rydberg-atom optical lattices in applications.



CHAPTER I

Introduction

1.1 Background and motivation

Rydberg atoms are atoms in highly excited states, in which a valence electron is
loosely bound at a large radial separation from the positive ionic core. First observed
in an astronomical context, Rydberg atoms have only been studied in a laboratory
setting since the advent of the laser, which allows for straightforward excitation of
ground-state atoms to Rydberg states. When in Rydberg states, atoms exhibit ex-
aggerated properties that arise since the Rydberg electron is so far removed from the
ionic core. These properties include large sizes that can be on the order of a microm-
eter, long lifetimes in the range of microseconds to milliseconds, and an exquisite
sensitivity to external fields. Due to these unique properties and their potential ap-
plications, a growing number of researchers are utilizing Rydberg atoms in a diverse
array of studies.

One of the exaggerated properties of Rydberg atoms that has attracted consider-
able interest for applications is the strong interactions between Rydberg atoms. Due
to their large sizes, Rydberg atoms exhibit strong van der Waals or dipole-dipole
interactions that are easily tuned by applying static electric fields or by choice of
atomic state [1]. An application in which the interactions between Rydberg atoms

are exploited, and which has been a major motivating force behind recent Rydberg-



atom research, is quantum computing [2-4]. In quantum computing schemes that
involve Rydberg atoms, the quantum bit (qubit) is formed by two hyperfine ground-
state levels, and two-qubit gate operations are performed by exciting the atoms to
Rydberg states. While in Rydberg states, the atoms interact strongly, enabling fast
gate operations. After completion of the gate operation, the atoms are returned to
the ground-state levels for storage of the information, since in the ground-state levels
the atoms interact only weakly with the environment and each other. Rydberg atoms
are therefore ideal for quantum computing because their interactions are strong and
controllable. Recent experimental progress towards the implementation of Rydberg
atoms in quantum computing applications includes a demonstration of entanglement
between Rydberg atoms, a phase gate, and a controlled-NOT gate [5-7].

The strong interactions between Rydberg atoms also facilitate studies of many-
body physics [8]. Simply by laser-exciting a gas of atoms to Rydberg states, strongly
correlated many-body states are created, in which a Rydberg excitation is shared
coherently among a large number of atoms. This entangled many-body state can
give rise to a spatially-ordered “crystalline” structure of Rydberg excitations in the
otherwise disordered gas [9, 10]. Rydberg atoms therefore enable exotic phases of mat-
ter [11] that allow for such studies as the generation of light-matter entanglement [12],
disorder in many-body systems [13], and universal quantum simulation [14].

The extreme sensitivity of Rydberg atoms to electric fields makes them advanta-
geous for applications in field sensing. Rydberg atoms are excellent sensors for DC
electric fields. The static polarizability of a Rydberg atom scales strongly with the
principal quantum number n, being proportional to n”, and reaches values of about
1 GHz/(V/cm)? at n = 70. Furthermore, Rydberg atoms are quite sensitive to mi-
crowave fields. Transitions between nearby Rydberg states have frequencies in the
GHz—THz frequency range and dipole moments that scale with n?, giving values of

~ 1072¢ C-m near n = 60. Rydberg atoms have been employed in measurements of



microwave fields as small as ~ 8 yV em™! [15] and DC fields of ~ 20 puV em™! [16].

Rydberg atoms provide excellent opportunities for tests of fundamental physics.
High-precision spectroscopy of circular Rydberg states, which are states of maxi-
mal angular momentum and are described in the next section, would allow for a
measurement, of the Rydberg constant that does not depend heavily on quantum
electrodynamics (QED) corrections. Comparing the measured Rydberg constant to
previous measurements based on other methods that do rely on QED corrections
gives a valuable test of the theories of QED [17]. In addition, Rydberg states play a
role in anti-hydrogen trapping experiments at the CERN laboratory in Switzerland.
Through a three-body recombination process in these experiments, anti-protons and
positrons combine to form Rydberg states of anti-hydrogen that eventually decay to
their ground-state in the trap. Comparing spectroscopic studies of anti-hydrogen to
those of hydrogen provides a test of charge conjugation, parity, and time reversal
invariance (CPT theory) [18, 19].

There is yet a broad scope of phenomena in physics beyond the applications al-
ready mentioned whose investigation is made possible by Rydberg atoms. Since
Rydberg atoms are nearly macroscopic objects at the boundary of the quantum and
classical regimes, they are used to study this cross-over region. For example, single
Rydberg atoms have been entangled with microwave photons in a superconducting
cavity, allowing for the study of entanglement, decoherence, and the quantum-to-
classical boundary [12, 20, 21]. S. Haroche shared the 2012 Nobel Prize in Physics for
this work. Rydberg atoms are also intimately tied into plasma studies. Three-body
recombination in a plasma forms Rydberg atoms, and ionization of a Rydberg-atom
gas presents a channel through which a plasma is formed [22]. Ionization of a spatially-
ordered “crystal” of Rydberg excitations may present a pathway to achieve ordered
structures within the plasma and thereby to reach deeply into the strong-coupling

regime, a regime as of yet difficult to achieve [23]. As a final example of the versatil-



ity of Rydberg atoms, the scattering of a ground-state atom from a Rydberg electron
can result in a novel molecular binding mechanism. The Rydberg and ground-state
atom pair form a molecule, which bears the name of a “trilobite” since the electronic
wavefunction in such a molecular state resembles this prehistoric creature [24]. This
is the first known homonuclear molecule to have a permanent electric dipole moment,
which may allow for easy manipulation and control of the molecule [25]. Rydberg
atoms and their exaggerated properties thus offer a versatile platform for promising
applications as well as for rich explorations of fundamental physics.

In order to take full advantage of the unique properties of Rydberg atoms for the
studies described above, we must have a way to confine the Rydberg atoms. For ex-
ample, in quantum computing protocols utilizing Rydberg states, a trap for the atoms
would allow for multiple, sequential gate operations using the same atoms. In the
applications of electric field sensing and high-precision measurements, a mechanism
for trapping the Rydberg atoms would allow for maximal atom-field interaction times
and thus for maximal precision and accuracy. In high-precision measurements, the
atoms would be confined in a region where stray fields have been carefully minimized,
reducing systematic uncertainties. This thesis focuses on the development of a trap
for Rydberg atoms that allows us to confine and manipulate the atoms as needed for
applications. This trap is called a ponderomotive optical lattice. In the rest of this
chapter, I will first discuss some properties of Rydberg atoms in Section 1.2, ones that
make Rydberg atoms so attractive for applications. In Section 1.3, I will review the
types of Rydberg-atom traps that have been demonstrated to date and will introduce
the ponderomotive optical lattice, which is the type of Rydberg trap developed in my

work. The layout of the thesis is given in Section 1.4.



1.2 Properties of Rydberg atoms

It is the unique properties of Rydberg atoms that afford the abundant and varied
opportunities for study mentioned already in the Introduction. In this section, these

properties of Rydberg atoms are derived and summarized.

1.2.1 Scaling laws

Since Rydberg atoms, with their large values of the principal quantum number
n, approach the classical limit, the classical Bohr model of the atom explains many
of the interesting properties of Rydberg atoms and allows us to derive scaling laws
for these properties. In the Bohr picture of the atom, an electron with mass m, and
charge —e revolves in a classical circular orbit around the nuclear core of charge Ze.

This orbit is described using Newton’s second law,

(1.1)

r Amegr?’
where r is the radius of the electron’s orbit and v is its velocity. In this section,
I will consider Rydberg states of the hydrogen atom, for which Z = +1. With
quantization of angular momentum, mcvr = nh, the radius of a Rydberg atom follows
from Equation 1.1,

n?h*4me,

The orbital radius of the Rydberg electron therefore scales as n?, illustrating how
Rydberg atoms can attain large, almost macroscopic sizes.
To find the energy of the Rydberg electron, which I denote by W), I sum its kinetic

and potential energy. Using Equation 1.2 for r, I find that

1 e? e‘m
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The energy is negative, since the electron is bound to the atom, and scales as n=2.

With the Rydberg constant defined as Ry = (e*m.)/[2h*(4mep)?], the expression for
the binding energy of the Rydberg electron becomes W}, = —Ry/n?. In atomic units,
the binding energy is expressed W}, = —1/(2n?) (for a note about atomic units, see
Appendix A). For large n, the binding energy of the Rydberg electron becomes
very small, which is essential for understanding the mechanism for Rydberg-atom
trapping that this work is based on and that is discussed in Section 1.3.2. These first
two scaling laws for the orbital radius and binding energy of the Rydberg electron
therefore illustrate the picture that a Rydberg atom is characterized by a loosely
bound electron orbiting the ionic core in a large trajectory.

Several other scaling laws for Rydberg-atom properties that underpin the work in
this thesis can be derived from the simple model given above. The Kepler frequency,
which describes the orbital frequency of the Rydberg electron and also gives the
frequency spacing between adjacent n manifolds of states, can be obtained by wx =
v/r. Using the condition of quantization of angular momentum and Equation 1.2,

the Kepler frequency is

2
Me e?
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n3h3 \ 4dreq

The Kepler frequency therefore scales as n=3. This frequency will be a consideration
in Section 1.3.2, where I derive trapping potentials for Rydberg atoms in the pon-
deromotive optical lattice, as well as in Section 6.4.2, where I consider the case of
very deep trapping potentials.

A commonly cited, exaggerated property of Rydberg atoms is their long lifetimes,
which enable, for example, long atom-field interaction times in high-precision specro-
scopic measurements. For low angular momentum (low-¢) Rydberg states, which are
the states under consideration in this thesis, the scaling of the lifetimes can be consid-

ered classically using the orbital period of the Rydberg electron, T' = (27) /wk. This



method assumes that the Rydberg electron is most likely to decay to a low-lying orbit
when the electron is undergoing maximal acceleration at the inner turning point of its
orbit, near the nucleus (for discussions of such an argument, see Section 5.3). With
the scaling of the Kepler frequency found above, the lifetime 7" for these low-¢ states
therefore scales as n®. A proper derivation of the scaling laws for Rydberg lifetimes
requires a quantum mechanical treatment, using the Coulombic wavefunctions and
the Einstein A coefficient that describes spontaneous emission [26]. After a proper
quantum mechanical treatment, the lifetime of the low-¢ states is still found to scale
as n3, while the high-¢ states decay more slowly, with lifetimes that tend to scale as
n®.

Since the Rydberg electron is loosely bound and far removed from the ionic core,
it is extremely sensitive to external fields. For example, the electron is easily ionized
by DC electric fields. The ionization electric field is derived from the Coulomb-Stark

potential for the Rydberg electron, which is given in atomic units and for the electric

field E along the z direction as

1
VCS =——+ Bz
E

There is a saddle point in the potential at Vs = —2v/E. An electron with energy
above this potential will ionize. Setting this saddle point energy equal to the binding
energy, W, = —1/(2n?), one finds that the atoms will ionize in electric field values of
E =1/(16n"). The ionization of Rydberg atoms by DC fields will be central to the
detection of Rydberg atoms in this thesis, as will be discussed in Section 2.2.2.
Some of the scaling laws for Rydberg-atom properties that play important roles
in this thesis are summarized in Table 1.1. I provide some additional laws to those

derived in this section.



Table 1.1: Rydberg-atom scaling laws. The variable d is atom-atom distance.

Orbital radius n?
Radiative lifetime (low-¢) n?
Kepler frequency n=3
Tonization electric field -4
DC polarizability n’
Transition dipole moment n?

Van der Waals interactions n'!/d®
Electric dipole interactions — n*/d>

1.2.2 Quantum defects

The work in this thesis is performed with the alkali metal rubidium (Rb). Rydberg
states of the alkali metals, such as Rb, are very similar to Rydberg states of hydrogen,
since the alkali-metal Rydberg electron orbits an ionic core of charge +1. Differences
between the alkali and hydrogenic cases arise from the finite size of the ionic core for
the alkali metals, which for Rb consists of the nucleus and 36 electrons. For low-£
Rydberg states of the alkali metals, the Rydberg electron can both penetrate and
polarize the ionic core. The wavefunctions and energies of the alkali metals are mod-
ified by the interaction with the core in comparison to the case of hydrogen. The
wavefunctions acquire a phase factor that can give rise to effects such as a Cooper
minimum in the photoionization cross sections of the alkali Rydberg states, which
for Rb is from Rydberg S states into P states in the continuum (see Sections 3.4.3
and 6.4, as well as Reference [26]). The energies of the alkali Rydberg states are de-
pressed in comparison to those of hydrogen. These modifications of the energies and
wavefunctions by the interaction with the core are taken into account through the
use of an empirically determined correction factor to the principal quantum number,
called a quantum defect. Alkali Rydberg states are then described by the same equa-
tions as hydrogen, but with the principal quantum number replaced by an effective
principal quantum number n* = n — d,, where ¢, is the quantum defect. For example,

the energies of the alkali Rydberg states are then given by Wy, = —1/(2n*?) and the



ionization electric fields by E = 1/(16n*!). For Rb, the §, values are 3.13 for S states,
2.65 for P states, 1.35 for D states, and 0.02 for F' states [27].
For high-¢ states, the Rydberg electron does not penetrate the core, and the

quantum defects arise from effects due to polarization of the core. The quantum

defects for the high-¢ states are given by d, = %O‘ESD [28], where ap is the dipolar
polarizability of the ionic core and is equal to 9.2 atomic units for Rb [29]. The
quantum defects for the high-¢ states are generally very small and are often negligible
in experiments. These high-¢ states with near-zero quantum defects are consequently
referred to as the “hydrogenic” states, since they are essentially like the states of
hydrogen. Special cases of high-¢ states that will be of interest in later chapters of
this thesis are those of maximal angular momentum, with quantum numbers |m| =
¢ = n — 1. These states are referred to as “circular” Rydberg states, because their
wavefunctions take the form of a thin torus encircling the ionic core. Circular Rydberg

states come very close to a Bohr-model-like atom. Such states will be important in

Section 7.3.

1.3 Rydberg-atom trapping

As mentioned in the Introduction, a trapping mechanism for Rydberg atoms would
allow us to make use of Rydberg-atom properties in such applications as quantum
computing [30], high-precision spectroscopy [31], field sensing [15], and many-body
physics [11]. An example of the need for a Rydberg-atom trap is found in quantum
computing schemes involving neutral atoms excited to Rydberg states. In experiments
that have demonstrated two-qubit quantum gates based on Rydberg excitations of
two atoms in neighboring ground-state optical dipole traps (see Section 2.1.2), the
trapping light was turned off while the gate operations were performed since the
trapping light was repulsive for the Rydberg states [6, 7, 32]. However, turning

off the ground-state trapping light is not scalable for larger arrays of atom traps,



which are envisioned to be created by diffractive optics. It is impractical to turn off
the trapping light for an entire array of atoms in order to perform a gate operation
between two atoms within the larger array. Instead, it is desirable to develop a trap for
Rydberg atoms that is compatible with traps for ground-state atoms. Furthermore,
a trap that provides identical potentials for both the ground and Rydberg states in
quantum computing schemes would reduce motional decoherence [30, 33], which is
due to entanglement of the atom’s internal state with its external degrees of freedom

and is induced by a change in vibrational state of the atom in the trap.

1.3.1 Previous work on Rydberg-atom traps

Rydberg-atom traps that have been proposed or realized mainly involve static elec-
tric or magnetic fields. Rydberg-atom trapping was first proposed by W. Wing [34]
and T. Breeden and H. Metcalf [35] in the early 1980s, who suggested using static elec-
tric fields and the Stark effect to confine the atoms. F. Merkt and co-workers realized
a trap for Rydberg atoms based on these proposals in 2008, trapping low-field-seeking
Rydberg states in a static three-dimensional electric field minimum [36]. The first
trap for Rydberg atoms was demonstrated in the Raithel research group in 2005 using
an loffe-Pritchard style trap with magnetic fields of strength 3 T at the trap mini-
mum [37]. Rather recently, circular Rydberg states were also confined in a magnetic
trap (with fields ~ 10 G) in the Raithel lab, making use of the large magnetic mo-
ments of these states [38]. P. Schmelcher and I. Levanovsky have studied quadrupole
magnetic field traps for Rydberg atoms in theoretical detail [39]. These electro- or
magneto-static Rydberg-atom traps have some significant associated drawbacks, how-
ever. Trap-induced shifts to the atomic energy levels can reach several GHz, which
is detrimental for applications in quantum computing or high-precision spectroscopy.
Furthermore, these traps are not universal traps for all Rydberg states.

An alternative type of trap for Rydberg atoms involves optical fields, a trapping

10



mechanism first proposed by the Raithel group [40]. An optical trap for Rydberg
atoms offers the benefit of small trap-induced level shifts in comparison to the static-
field traps. These shifts are on the order of MHz in my work, although the shifts
could be reduced further by lowering trap depth and atom temperature. Minimal
trap-induced shifts are important to applications in high-precision measurements, in
which certain correction factors to measured transition frequencies scale with absolute
trap depth. Optical traps further afford flexibility in selecting and modifying trap
parameters. For example, the wavelength of the trapping light can be tuned to min-
imize trap-induced shifts on transitions of interest (i.e. achieve a trap with “magic”
wavelength [33]), which is crucial to quantum computing for minimizing motional de-
coherence as mentioned earlier. Optical traps are also universal traps for all Rydberg
states. While optical traps have been widely known and utilized for ground-state
atoms in a breadth of applications, they have never before been used for Rydberg
atoms. Here, I extend the benefits of optical traps to Rydberg states.

In this thesis, I study the trapping of Rydberg atoms in the standing waves of
interfering laser beams, a trap called an optical lattice. Reference [41] provided the
first evidence of Rydberg-trapping in an optical lattice; this was initial work performed
in the Raithel research group. In these previous studies, the Rydberg-atom trapping
efficiency was limited to about 5%. In my work, I develop and characterize the
first efficient optical Rydberg-atom trap. Thus, my work provides a new tool for
exploiting the unique properties of Rydberg atoms and lays essential groundwork for
the employment of optical Rydberg-atom traps in the applications discussed here and

in Section 1.1.

1.3.2 Rydberg atoms in ponderomotive potentials

Optical lattices for Rydberg atoms are similar to conventional optical lattices for

ground-state atoms. Both consist of a periodic array of wavelength-size potential wells
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made by the standing waves of interfering laser beams. The trapping mechanism
for Rydberg atoms in optical lattices, however, is distinct from that for ground-
state atoms. An optical lattice for ground-state atoms acts on a field-induced dipole
created by coupling nearby bound states (see Section 2.1.2). Transitions between
Rydberg states, however, are not in the optical regime, and Rydberg atoms do not
couple significantly to other levels in optical fields. Instead, the trapping mechanism
for Rydberg atoms in an optical lattice utilizes the oscillating electric field in the
optical standing waves to create a ponderomotive potential that acts on the quasi-
free Rydberg electron.

The ponderomotive potential can be understood by considering the motion of a
free electron in a rapidly oscillating electric field [42, 43]. In the oscillating field,
the free electron undergoes a quiver motion as its charge is driven by the field. The
energy of the electron in the field is raised by an amount equal to its time-averaged
kinetic energy; this is known as the ponderomotive potential. In a laser field of the

form E = xFEj cos (wt), with electric-field amplitude Ey and angular frequency w, the

motion of the electron follows from Newton’s second law, & = —-=FE; cos (wt), and
therefore, @ = — € Fysin (wt). The time-averaged kinetic energy of the electron in
the field is
w 27r/Wl w e’E? e
(KE)r = > / §mex'2 dt = %Qm(j? / sin?(wt) dt,
0 0

and the expression for the ponderomotive potential for the free electron is conse-

quently
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(1.4)

Aside from considering the time-averaged kinetic energy of the free electron in an

oscillating field, another way to derive the ponderomotive potential for a free electron
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is from the minimal coupling Hamiltonian, in which the interaction of the electron
with the field is taken into account by replacing p with p + |e|A [44, 45]. Here, A
is the vector potential for the field, which is related to a source-free radiation field
by A(r,t) = —% [46]. For a free electron, the Hamiltonian is simply given by
its kinetic energy, H = %. With p replaced with p + |e|A, the minimal coupling

Hamiltonian is

[P+ e[ A,
2me

H =

The vector potential for a plane-wave electromagnetic field propagating in the
z direction and polarized in the = direction is given by A(z,t) = ﬁ%[e“kz’“t) +
e~kz=wt)] where k is the wavenumber. When this expression for the vector potential
is inserted into the minimal coupling Hamiltonian, the ponderomotive potential arises

from the portion that is proportional to A?. This portion describes two-photon

processes and is given by

2772
e“ I
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[e2i(kz—wt) +6—2i(kz—wt) _'_2}

The first and second terms above are energy non-conserving terms that describe
two-photon absorption and two-photon emission, respectively. These energy non-
conserving terms are negligible in my work. The third term above is an energy-
conserving term that corresponds to absorption and emission of a photon and gives
rise to the ponderomotive potential of Equation 1.4.

In an optical lattice, the electric field is periodic in space, and the ponderomo-
tive potential is therefore also periodic in space. For a one-dimensional optical lat-
tice formed by two counter-propagating laser beams, the electric field is of the form
E(z,t) = x2F cos(kz) cos(wt), for laser beam propagation in the z direction, linear

polarization in the z direction, and single-beam electric field amplitude E,. The
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corresponding ponderomotive lattice potential is given by

e?E?
Vo(2) = D [1 4 cos(2kz)]. (1.5)
The resultant gradient force, F, = —VV,, in the lattice pushes the free electrons

towards regions of minimum intensity. Ponderomotive effects of optical lattices on
electrons have been demonstrated in Kapitza-Dirac scattering of free electrons [47]
and above-threshold ionization [42]. Other phenomena where ponderomotive effects
on charged particles play a role include Paul traps for ions [48] and the generation of
high harmonics and x-rays in strong fields [49, 50].

In the case of a Rydberg atom, the Rydberg electron is so loosely bound that it
can be considered quasi-free. In an optical lattice, the quasi-free Rydberg electron ex-
periences a periodic ponderomotive potential much like that which the free electron
experiences. A simple picture that captures the essential physics is that the pon-
deromotive lattice potential traps the quasi-free Rydberg electron at lattice intensity
minima, and the entire atom is then trapped since the Rydberg atom’s ionic core is
weakly bound to the Rydberg electron. Due to the central role of the ponderomo-
tive potential in the trapping of Rydberg atoms in optical fields, an optical lattice
for Rydberg atoms is called a ponderomotive optical lattice (POL) throughout this
thesis.

To derive the trapping potential for the entire Rydberg atom in a ponderomotive
optical lattice, the motion of the Rydberg atom in the optical field is described using
three coordinates (indicated in Figure 1.1) that reflect three different, well-separated
timescales of motion [40]. As will be described in the following, the distinct timescales
of motion allow for application of the Born-Oppenheimer approximation, which takes
into account the fast timescales of motion in the problem by adding a static potential
to the Hamiltonian that governs the slower degrees of freedom [44].

As illustrated in Figure 1.1, the fastest timescale of motion for the Rydberg atom
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Figure 1.1: A Rydberg atom in an optical lattice is described using three coordinates,
reflecting three timescales of motion. The quiver motion of the electron (p) evolves
on the fastest timescale, followed by the relative motion of the electron (r) around
the core. The center-of-mass motion of the atom in the optical potential (R) evolves
on the slowest timescale. The three timescales of motion are separated by several
orders of magnitude.

in the optical field is the quiver motion of the electron, described by the p coordinate.
The quiver motion evolves at the frequency of the field, which is 2.8 x 10'* Hz for
a 1064 nm laser field (which is the case in my work). The next slowest timescale of
motion is the relative motion of the electron around the core of the atom, indicated by
the r coordinate in Figure 1.1. The relative motion of the electron evolves on various
timescales. The fastest relative motion is the Kepler motion of the electron around
the core, which is at the Kepler frequency or 10!t Hz for n = 40. Slower frequencies
of relative motion arise from precession of the electron orbit due to residual fields, as
the classical Kepler orbit of the electron precesses in electric or magnetic fields. The
frequency of the precession is at the Stark frequency, %nE in atomic units, in electric
fields, or at the Larmor frequency, B/2 in atomic units, in magnetic fields [51, 52].
Estimates of the fields in our setup yield precession frequencies of about 107 Hz [40].
After the relative motion, the slowest timescale of motion is the center-of-mass motion
of the Rydberg atom in the optical potential. For our lattices, this timescale is on
the order of 10* Hz, which is several orders of magnitude smaller than the slowest
timescale for the relative motion of the electron.

Since the three timescales of motion described in Figure 1.1 are separated by
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several orders of magnitude, the Born-Oppenheimer approximation may be applied
twice to eliminate the quiver and relative motion of the electron and to find a potential
for the center-of-mass of the atom. First, since the fastest timescale of relative motion
is several orders of magnitude slower than the quiver motion of the electron, the Born-
Oppenheimer approximation is applied to adiabatically eliminate the quiver motion
of the electron. The quiver motion is then taken into account by adding the static
ponderomotive potential V}, of Equation 1.5 to the Hamiltonian of the Rydberg atom.
Second, since the center-of-mass motion is slower than the relative motion by several
orders of magnitude, another application of the Born-Oppenheimer approximation
eliminates the relative motion of the electron. The adiabatic potential for the center-

of-mass of the Rydberg atom in the optical potential is then

Vi (B) = [V (4 R) o (). (1.6)

Here, the uppercase R is the center-of-mass coordinate of the Rydberg atom, and the
lowercase r is the relative coordinate of the Rydberg electron, as described in Fig-
ure 1.1. The Vj, is the free-electron ponderomotive lattice potential from Equation 1.5,
and v is the Rydberg wavefunction. The V,4 describe the trapping potentials for the
Rydberg atoms in the ponderomotive optical lattice, and therefore Equation 1.6 is of
central importance to this thesis. The trapping potentials for the Rydberg atoms in
the optical lattice are given by a spatial average of the free-electron ponderomotive
potential weighted by the Rydberg wavefunction. Calculations of adiabatic potentials,
Vaa, are performed in Section 6.4.

The adiabatic potentials in the lattice are accompanied by lattice-induced state-
mixing. The Rydberg wavefunction ¢ in Equation 1.6 is generally a superposition
of lattice-free atomic states, due to the state-mixing. For relatively low-intensity
lattices (~ 10° W /cm?, corresponding to modulation potential depths of ~ 10 MHz for

counter-propagating 1064 nm laser beams), the lattice induces some m-mixing, under
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the absence of cylindrical symmetry, for states with ¢ > 0; the lattices are shallow
enough to avoid ¢-mixing. For high-intensity lattices (~ 108 W /cm?, corresponding
to modulation potential depths of ~ 1 GHz for counter-propagating 1064 nm laser
beams), the lattice induces strong ¢-mixing,.

Lattice-induced state-mixing highlights a novel feature of the ponderomotive op-
tical lattice for Rydberg atoms, which is the large number of nearly degenerate states
(the degeneracy scales as n? for hydrogen). The lattice can therefore couple large
numbers of states, and Rydberg wavefunctions in the lattice can be coherent super-
positions of tens to hundreds of states. This coupling of many degenerate states gives
rise to a complex structure of adiabatic potentials in the lattice [53]. Examples of
these complex adiabatic potentials are shown and discussed in Section 6.4.2.

Another novel feature exhibited by the ponderomotive optical lattice arises from
the size difference between Rydberg atoms and ground-state atoms in the lattice.
Ground-state atoms can be considered as point-like in relation to the lattice potential
well (sizes of ~ 1071% m and ~ 1077 m, respectively), whereas Rydberg atoms can have
sizes on the same order as the lattice wells. The large size of the Rydberg atom means
that the shape of its electronic probability distribution has a significant effect on the
averaging in Equation 1.6. Rydberg atoms consequently experience unique state-
dependent trapping potentials in the lattice. The state-dependence of the trapping
potentials is illustrated in Figure 1.2 for two Rydberg S states of different principal
quantum number. Generally, Rydberg atoms with larger spatial extents along the
axis of the lattice experience shallower potentials in the lattice, since they average
over more of the free-electron ponderomotive potential. Also generally, the Rydberg-
atom center-of-mass is attracted to intensity minima in the lattice. There are special
cases when the center-of-mass of the Rydberg atom is attracted to intensity maxima
in the lattice, however; the trapping potentials are then “flipped” from the usual

case (see illustration in Figure 5.5). This occurs when the size of the Rydberg atom
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Figure 1.2: State-dependent trapping potentials for Rydberg atoms in a pondero-
motive optical lattice (black indicates low intensity, white high intensity). Rydberg
states with larger spatial extents in the direction of the lattice axis (blue) generally
experience shallower trapping potentials.

approximately equals the lattice period. Such states are measured and discussed in
Section 4.3.

The exact shape of the adiabatic trapping potentials in the lattice depends on
all quantum numbers (n, ¢, j, m;), since these quantum numbers describe Rydberg
wavefunctions with varying shapes that average over the free-electron ponderomo-
tive potential differently. The state-dependence of the adiabatic potentials has been
experimentally verified previously in the Raithel research group using spherically sym-
metric Rydberg nS states [41]. In Chapter IV, I extend the characterization to states
with various angular distributions of the electronic probability distribution.

To summarize and emphasize the differences in ponderomotive optical lattices
for Rydberg atoms compared to conventional optical lattices for ground-state atoms,
the trapping mechanism for a Rydberg atom is fundamentally different in origin.
Rydberg atoms are trapped by the ponderomotive potential acting on the quasi-
free Rydberg electron. Further, since the ponderomotive potential is proportional
to the square of the electric field, the potential results only from intensity gradients

and not polarization gradients (as is the case, for example, for Sisyphus cooling of
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ground-state atoms in optical lattices [54]). Due to the large size of Rydberg atoms
in comparison to the optical lattice wells, Rydberg atoms experience state-dependent
lattice trapping potentials. Due to the large number of degenerate Rydberg states,
lattice-induced state-mixing can result in a rich structure of adiabatic potentials in
the lattice.

As a final note about optical traps for Rydberg atoms, another type of optical
Rydberg-atom trap has been proposed by M. Jones, T. Pohl, and co-workers [55].
This proposed type of optical trap is for alkaline-earth Rydberg atoms, which have
two valence electrons and which would be confined in the optical fields using the polar-
izability of the non-Rydberg valence electron. This trapping mechanism is therefore

also fundamentally different from that considered in this thesis.

1.4 Thesis framework

The objective of my work described in this thesis is to establish a ponderomo-
tive optical lattice as an effective Rydberg-atom trap and to characterize the trap,
thus paving the way for employment of the Rydberg-atom optical lattice system in
applications. The framework of the thesis is as follows. I begin in Chapter II by ex-
plaining the experimental setup and procedure used throughout the thesis to prepare
and detect Rydberg atoms in optical lattices. In Chapter III, I describe experiments
that provide the first demonstration of highly efficient optical Rydberg-atom trap-
ping. While the presence of trapped Rydberg atoms in the optical lattice had been
detected earlier in our lab [41], the trapping efficiency in that work was limited to
a few percent. This limitation was due to the Rydberg-atom preparation scheme,
in which the atoms were excited to maxima in the lattice Rydberg-atom trapping
potential. To overcome this obstacle and achieve efficient Rydberg-atom trapping,
I implement a technique to rapidly invert the Rydberg-atom potential immediately

following Rydberg-atom excitation, placing the potential minima at the location of

19



the excited atoms. This inversion technique results in a 90% trapping efficiency.

In Chapter IV, I measure the dependence of the ponderomotive optical lattice
potentials for Rydberg atoms (the V,4 in Equation 1.6) on the angular portion of the
Rydberg wavefunction. In previous work, the state-dependence of the potential was
measured for Rydberg nS states with isotropic electronic wavefunctions [41]. I extend
the characterization to Rydberg states with angular variation in their wavefunctions.
States with wavefunctions that are elongated in the direction of the lattice axis are
expected to have shallower potentials in the lattice than those elongated transverse to
the lattice axis, since those elongated in the direction of the lattice axis can average
over more of the free-electron ponderomotive potential in Equation 1.6. I measure
lattice potential modulation depths for various Rydberg nD states and find them to
vary substantially, in agreement with calculations. This result demonstrates how the
Rydberg-atom trapping potentials may be tailored as needed for an application by
choice of Rydberg state.

In Chapter V, I investigate the process by which Rydberg atoms may be photoion-
ized by the lattice light. The motivation for this work is the agreement of measured
photoionization rates for Rydberg atoms in optical fields with calculated rates based
on the electric dipole approximation. This approximation is typically made when the
wavelength of the light is much larger than the size of the atom; however, Rydberg-
atom sizes may exceed the wavelength of the light. The apparent inconsistency can
be resolved by arguing that the photoionization process for a Rydberg atom occurs
near the nucleus, within a volume that is still small with respect to the wavelength
of the light. While this argument has undergirded Rydberg-atom experiments for
three decades, in this thesis I provide the first spatially-resolved study of the pho-
toionization process within the volume of a Rydberg atom. I use the optical lattice
as a maximally inhomogeneous field probe within the atom. The measured photoion-

ization rates depend on the intensity near the center of the atom and not within the
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lobes of the electronic probability distribution. A complete understanding of the pho-
toionization process is important to applications of Rydberg atoms in optical traps, as
it may either represent a loss mechanism from the trap or be exploited as a detection
method.

In Chapter VI, I elaborate on the theoretical description of the photoionization
of Rydberg atoms by optical fields and the role of the electric dipole approximation
in these calculations. I derive and analyze expressions for the matrix elements and
photoionization cross sections for Rydberg atoms in optical fields, without and with
the dipole approximation. The results illustrate that Rydberg-atom photoionization
rates are in good agreement with the dipole approximation because the matrix el-
ements accumulate within a small volume near the nucleus. I also find conditions
under which the dipole approximation breaks down. Further, I apply the results to
consider photoionization effects in Rydberg-atom experiments in optical lattices of
both low and high intensity.

Finally, in Chapter VII, I review the main accomplishments of this thesis and

describe future directions for Rydberg-atom optical lattice experiments.
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CHAPTER II

Experimental Apparatus and Techniques

The work in this thesis examines the trapping of cold Rydberg atoms in optical
lattices. In this chapter, I describe the experimental process used throughout the
thesis to prepare and detect samples of Rydberg atoms in an optical lattice. I first
review the basics of ground-state atom trapping in magneto-optical traps (MOTs) and
optical dipole traps, as these are two fundamental tools in this work which provide
the launching point for the rest of the experiment. I then outline the procedure used

to excite and detect Rydberg atoms as well as to align the optical lattice.

2.1 Laser cooling and trapping of ground-state atoms

The advent of laser cooling and trapping has revolutionized the study of ground-
state atoms. The unique methods employed in the cooling and trapping of atoms have
not only provided a new process for investigating atoms but also an unprecedented
means for controlling them. The innovations involved in the development of laser
cooling and trapping of atoms led the Nobel Prize in Physics to be awarded to S. Chu,
C. Cohen-Tannoudji, and W. Phillips in 1997. In these innovative methods, laser light
is used to exert forces on atoms, forces which can bring the atoms from speeds near
that of sound to speeds near that of a mosquito. The forces that the laser light exerts

on the atoms can be categorized into two types: a dissipative scattering force and a
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conservative dipole force. The first laser-based trap for atoms that is discussed below,
the magneto-optical trap, utilizes the scattering force; the second, the optical dipole

trap, utilizes the dipole force.

2.1.1 Magneto-optical traps

Atoms within a gas at room temperature move with speeds of ~ 300 m/s. These
atoms may be slowed significantly by scattering a large number of photons, each
of which have an associated momentum p = hk. If an atomic beam is counter-
propagating with a laser beam that has a frequency near an atomic resonance, atoms
that absorb a photon will receive a momentum kick in the opposite direction of the
atomic motion. Since photons are spontaneously re-emitted by the atoms in random
directions, the momentum imparted to the atoms by the spontaneously emitted pho-
tons averages to zero over many scattering events. Therefore, by scattering many
photons, the atoms experience an average force that slows them down [56]. The laser
beam is then said to be “cooling” the atoms.

Using three pairs of counter-propagating laser beams, atoms may be cooled in
three dimensions. In this configuration, the laser beams have a frequency (denoted
by angular frequency w) that is lower than the frequency of the atomic resonance
(angular frequency wp). Atoms traveling toward a laser beam will be blue-shifted into
resonance with that beam due to the Doppler shift, while atoms that are traveling
away from a beam will be red-shifted further out of resonance with it. The atoms
then preferentially scatter photons from the beam that they are traveling toward
and are consequently slowed in their direction of motion. The force on the atoms is
proportional to the velocity of the atoms, and the atoms move as if they are suspended
in a viscous fluid. This configuration is therefore coined an “optical molasses” [57].

While the optical molasses slows the atoms in all directions of motion, it does not

provide a position-dependent restoring force that confines the atoms. This is achieved
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Figure 2.1: a) Magnetic field (B) and laser beam configuration for a magneto-optical
trap. b) Level diagram illustrating the operating principle of a magneto-optical trap.
The atomic energy levels are shifted by the magnetic field. The laser polarizations
shown are relative to the z-axis. The polarizations are chosen such that an atom
displaced from trap center preferentially scatters photons from the laser beam that
pushes the atoms back towards trap center.
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through the addition of an inhomogeneous magnetic field and circular polarization of
the laser beams. The magnetic field is a quadrupole field of the form (§z, Sy, —az),
created by two current-carrying coils arranged in an anti-Helmholtz configuration
[currents flowing in opposite directions, see Figure 2.1(a)]. Typically, o ~ 20 G/cm.
The atomic energy levels are shifted by the magnetic field using the Zeeman effect and
vary with position, creating a spatially-dependent resonance condition. As illustrated
in Figure 2.1(b), for atoms displaced from the field zero in the +z-direction, the
laser frequency w is closer to resonance with the Am = —1 transition. The atoms
therefore preferentially scatter photons from the o~ -polarized beam, since by selection
rules Am = —1 for o~ polarized light. The atoms are then driven back to the field
zero. The same holds if the atoms drift to —z. The atoms then preferentially scatter
photons from the ot beam. Thus, the atoms always experience a restoring force
towards the field zero. Due to the combined action of the magnetic field and the
optical fields, this atom trap is called a magneto-optical trap (MOT) [58]. Most
MOTs are operated with alkali-metal elements, due their high vapor pressure, simple
level structure that offers a nearly-closed cycling transition (see below), and atomic
resonances with frequencies that are readily available in low-cost laser diodes.

In the experiments presented in this thesis, I begin by cooling and trapping ru-
bidium 85 in a MOT. The MOT light has a wavelength of about 780 nm and is
about 10 MHz red-detuned from the 55,5, F' = 3 — 5P5/5, F' = 4 transition (see
Figure 2.2). This transition is referred to as the cycling transition. Since the split-
ting between 5Ps/,, F' = 4 and 5P, I’ = 3 is only ~ 120 MHz, about one out of
every 1,600 scattering events results in population that decays from 5Ps/, F' = 3
into 55,2, F' = 2. This level is 3 GHz detuned from the cycling transition and is a
so-called “dark state” since it is inaccessible to the cycling transition laser frequency.
Atoms in this state are no longer being cooled or trapped by the MOT. To reintroduce

the atoms into the cycling transition and to keep the MOT from becoming depleted,
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Figure 2.2: a) Hyperfine structure of the 5Sj, and 5P; levels of ®Rb.
Experimentally-relevant transitions are indicated by red arrows. b) A photograph
of the magneto-optical trap in the experiments of this thesis.

we add another laser beam that is resonant with the 55,0, F' = 2 — 5P5)5, F' = 3
transition, called the Repumper. The MOT will essentially not work without this
Repumper beam.

An image of a typical MOT used in the experiments of this thesis is shown in
Figure 2.2(b). The cloud of atoms in the MOT is visible since the atoms are scattering
photons from the trapping light. In our experiments, atomic densities in the MOT
are on the order of 10° atoms/cm?®. MOT sizes are about 1 mm in diameter and
contain about 10° atoms. The temperature of the atoms is about 150 K, which is
the Doppler cooling limit for ¥Rb (a limit on the temperature that arises from a
random walk induced by spontaneous emission). This temperature corresponds to

atomic velocities of ~ 10 cm/s.

2.1.2 Optical dipole traps and lattices

Aside from the MOT, another type of widely employed laser trap for ground-state

atoms is an optical dipole trap. In this type of trap, atoms are confined in a focused
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laser beam using the AC Stark effect, which is a shift in the atomic energy levels
induced by an oscillating electric field (for example, a laser field). If the laser field is
assumed to have an angular frequency w and to be linearly polarized in the z-direction,
the electric field is expressed in the electric dipole approximation as E = zFE cos wt.

The Hamiltonian for an N-electron atom in the field is

N N
o P;
H= ;1 S +V +eEy ;1 z; cos wt.

To obtain the eigenenergies and eigenstates of the atom in the field, one must
apply perturbation theory. The result for first order vanishes, since the time average
of cos(wt) over one period vanishes. In second order, the resulting shifts to the energy

levels in the atom are given by [45]

awe — B Walzlgm)l_ (AT G B
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Here, v, and 1, are the unperturbed eigenfunctions, and W,, and W,, are the un-
perturbed eigenenergies [(W,, — W,,)/h = wy, the angular frequency of an atomic
resonance]. When using Equation 2.1 to determine shifts to an atomic energy level
induced by an optical field, the couplings of the level to all other levels are summed.
For the ground state or for low-lying excited states, the strongest couplings are to
nearby bound states. The 55 ground state of Rb, for example, only couples signif-
icantly to the first excited states, 5P/, and 5Ps5, in near infrared fields (such as
those used in this thesis). The origin of the energy level shifts for ground or low-lying
excited states is therefore distinct from that for Rydberg states, since Rydberg levels
do not couple significantly to other bound levels for laser wavelengths in the near
infrared.

The energy shifts of Equation 2.1 are dependent on the frequency w of the field and
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can be expressed in terms of a frequency-dependent polarizability. The frequency-
dependent polarizability a(w) describes the tendency of the atom’s electronic proba-

bility distribution to be distorted by the field and is given by

| (| 2[0m) |* | (4 2[0m) |°
a(w) = € + : (2.2)
ngyéwn Wi = Wa + hw Wm—zm;;ewn Wi = W — hw

Using the frequency-dependent polarizability defined above, the AC Stark shift to
the atomic energy levels is AW = —ioz(w)Eg. This shift of the atomic energy levels
in a laser field is commonly called a light shift. For the “red-detuned” case when
w < wp, a(w) is positive. For the “blue-detuned” case when w > wy, a(w) is negative.
The shift of the energy levels in the field (i.e. whether they are raised or depressed
in energy) is therefore determined by the frequency of the field with respect to the
atomic resonance structure. For a plot of the polarizability of the Rb ground state as
a function of w, see Reference [59].

Variations in the intensity profile of a laser field results in gradients in the AC
Stark shifts of the atomic energy levels. These gradients result in a force on the atoms
called the optical dipole force, which can be used to confine atoms in traps known
as optical dipole traps [57]. The atoms are attracted to the intensity maximum of
the beam profile if the frequency of the laser field is red-detuned with respect to the
atomic resonance, or to the intensity minimum if the frequency of the field is blue-
detuned. Optical dipole traps usually use large laser intensities, I, as well as large
detunings, 6 = w — wy. This parameter space is desirable since the scattering rate
scales as I/62, while the optical dipole potential scales as I/d [60]. Large frequencies
and detunings therefore allow for workable trap depths while minimizing heating of
the atoms due to scattering of photons from the trapping light.

Typical red-detuned dipole traps for ground-state atoms are formed by focusing
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a moderately high-power laser beam with Gaussian intensity profile into the atomic
cloud of a MOT. Typical powers of the dipole-trap beam are ~ 1 W with beam foci
in the range of tens of ym. The force from the optical dipole potential is conservative.
Therefore, in order for any atoms initially in the MOT to be trapped in the optical
dipole potential well, they must experience another force that dissipates their kinetic
energy as they fall into the well. This dissipative force can result from scattering
of MOT light, for example. An alternative method for loading atoms into a dipole
trap involves carefully placing the atoms at the bottom of the dipole potential well,
for example by adiabatically increasing the intensity of the dipole-trapping beam.
In the trapping-beam intensity profile, the atoms are more tightly confined in the
radial direction than along the axis of the beam, since the gradient in the intensity is
weaker in the axial direction. This leads the atom cloud in the optical dipole trap to
be “cigar-shaped.” Typical atomic densities in red-detuned optical dipole traps are
on the order of 10'% atoms/cm?.

In order to realize a blue-detuned optical dipole trap, the laser beam profile must
consist of a three-dimensional intensity minimum. This can be achieved by a number
of methods, examples of which include focusing a Laguerre-Gaussian beam, focusing
four parallel Gaussian beams arranged in a square pattern, or interfering two Gaussian
beams of different focal spot sizes [30]. A benefit of blue-detuned dipole traps is that
there is less heating of the atoms due to scattering of photons in the trapping light
since the atoms are trapped at intensity minima; however, loading the atoms into
the trap is less straightforward and typically results in lower atomic densities in the
trap [61].

In an optical lattice, the intensity profile is formed by two (or more) pairs of
counter-propagating laser beams that are often red-detuned and of Gaussian profile.
The electric field of the counter-propagating laser beams has the form E(z,t) =

xEp[cos (wt + kz)+cos (wt — kz)], where Ejy is the single-beam electric field amplitude.
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The resulting interference intensity pattern is

1
I(z) = Eceo(|E(z, t)?)r = ceo B2 cos? (kz).

The intensity pattern has a periodicity of A\/2, which is typically on the size scale of
a few hundred nm. Intensity gradients are therefore quite large in an optical lattice,
as the intensity changes from a maximum to basically zero within a few hundred nm.
This results in strong confining forces for atoms in an optical lattice.

The optical lattice utilized in this thesis is formed by two counter-propagating
laser beams of wavelength 1064 nm. This wavelength is red-detuned with respect to
the 5S — 5P, transitions of Rb, and therefore the ground-state atoms are attracted to
intensity maxima in the lattice. More experimental details about the optical lattice

and its alignment are given below in Section 2.3.

2.2 Experimental sequence

Here, I give a brief overview of the experimental sequence used throughout this
thesis, and further experimental details are given in the sections that follow. In the
experiments, ®*Rb atoms are first cooled and trapped in a MOT inside a vacuum
chamber with a pressure of about 107 Torr. The chamber is a cryogenic chamber,
and the experiments are performed at 77 K. The atoms in the MOT are loaded into
the optical lattice (of laser wavelength 1064 nm) by overlapping the lattice with the
MOT. The sequence of events that constitute an experimental cycle are illustrated
in Figure 2.3(a) and are repeated at a 200 Hz repetition rate. First in the cycle, the
MOT and Repumper light is switched off. An optional sample clean-up pulse, which
we refer to as the “Dumper” and which is discussed in more detail in Section 2.3.2,
is applied to eliminate untrapped ground-state atoms. The remaining atoms in the

lattice are then excited to Rydberg states via two-photon excitation from the 55
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Figure 2.3: a) Timing diagram of the events involved in one experimental cycle.
After excitation to Rydberg states, the electric field ionization ramp used for Rydberg
detection is applied at a variable time delay, t4. b) Scheme for excitation from the
ground state to Rydberg states.

ground state to nS or nD Rydberg states, as described in Section 2.2.1. The Rydberg
atoms are detected after a delay time t4 by ionizing them with a pulsed electric field

and subsequently detecting the ionized electrons, a method discussed in Section 2.2.2.

2.2.1 Rydberg excitation

Ground-state atoms are transferred to Rydberg states via two-photon excitation
5512 = 5P5/5 — Rydberg, as illustrated in Figure 2.3(b). The laser light for the 55—
5P transition has a wavelength of 780 nm and is ~ 1.2 GHz detuned from the 5P;/,
intermediate state. The laser light for the 5P — Rydberg transition has a wavelength
of &~ 480 nm and is tuned to achieve two-photon resonance with a 55 — Rydberg n.S
or nD transition (which are the two choices allowed by selection rules). By performing
the two-photon transition off-resonance with the 5P intermediate state, we achieve
a more coherent transition (since spontaneous emission from 5P is avoided) and
narrower Rydberg excitation lines.

The arrangement of the excitation laser beams in the experimental setup is illus-
trated in Figure 2.4. The 55 — 5P beam is co-propagating with the lattice beams; it

is therefore focused by the same lens that focuses the ingoing lattice beam (for details
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Figure 2.4: a) Qualitative illustration of the laser beam and detection apparatus
geometry utilized in the experimental setup. The 55 — 5P excitation beam and the
lattice beam are co-propagating. After Rydberg atoms are excited, they are detected
using electric field ionization and a microchannel plate (MCP). b) Close-up view of
the overlap of the excitation and lattice laser beams at the MOT.

about the lattice setup, see Section 2.3). Due to chromatic aberrations, the focus of
the 55 — 5P beam lies about 2 mm away from the lattice focus. The FWHM of the
58 — 5P beam at the location of the atoms is 150 um. The 5S — Rydberg excitation
beam forms an angle of about 45° with the 5S — 5P and lattice beams and is focused
to a FWHM of ~ 15 pum. This focal size of the 55 — Rydberg beam is chosen to
approximately match the lattice focus.

The excitation light is pulsed during the experiment, with typical pulse durations
of 7ex = 0.5 us. The powers of the excitation pulses are set such that the number
of Rydberg atoms excited per cycle is about one, so that Rydberg-atom interactions
and collisions do not play an important role in the experimental results. In a typical
experiment, I use 30 uW and 30 mW of 55 — 5P and 5P — Rydberg laser power,
respectively. Using the beam powers, beam profiles, intermediate state detuning, and
5P — Rydberg transition matrix elements, two-photon Rabi frequencies are estimated

to be up to 2w x 500 kHz. With the lattice off, the observed FWHM of the Rydberg
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excitation lines are between 2-3 MHz, which is just slightly above the width of the
power spectrum of a square pulse with 0.5 us duration. Hence, for my excitation
pulse duration, transition broadening due to saturation plays no significant role. The
slight broadening of the lattice-free Rydberg excitation lines is attributed to electric
field inhomogeneities and the MOT magnetic field!.

As for the hardware used for excitation light production and control, the source
of the 5S — 5P laser light is a homebuilt external cavity diode laser (ECDL). The
wavelength of the ECDL (~ 780 nm) is stabilized by feedback on the diode current
and the diffraction grating in order to lock to a saturated absorption spectroscopy res-
onance (for an explanation of ECDLs see [62], for saturated absorption spectroscopy
see [60]). Stabilization of the wavelength off-resonance with the 5P;/, intermediate
state is achieved by locking the ECDL to the 55,9, F' = 2 — 5P5)5, F' = 3 transition
of ®"Rb, which is ~ 1.2 GHz red-detuned from the 555, F' = 3 — 5P, F' = 4
transition of *Rb.

The source of the laser light for the 5P — Rydberg transition is a Topica SHG
laser system, which outputs ~ 200 mW of 480 nm light. In this laser system, the
output beam of a 960 nm diode laser is first amplified and then frequency-doubled to
480 nm. The frequency doubling is achieved by second harmonic generation using a
nonlinear crystal (a process first demonstrated by P. Franken and co-workers at the
University of Michigan [63]), which is located inside a cavity arranged in a bow-tie
configuration. The wavelength of the 5P — Rydberg laser is stabilized by providing
feedback on the 960 nm diode laser current to lock to a transmission peak from a
pressure-tuned Fabry-Pérot cavity. The Fabry-Pérot cavity was designed and built by
the Raithel lab [64]. It consists of two mirrors in a chamber with an attached bellows.
A stepper motor connected to a translation stage compresses or expands the bellows,

changing the pressure and consequently also the index of refraction in the cavity.

IThe MOT magnetic field is not switchable in the experimental setup because of eddy currents
in the system that persist for ~ 50 ms.
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The change in index of refraction shifts the frequency of the transmission peak, thus
tuning the frequency of the laser. The typical drift rate of the transmission peaks
from the Fabry-Pérot cavity is ~ 350 kHz per minute. Therefore, when performing
experiments with the 5P — Rydberg laser frequency set to a particular value, data can
be taken for about five minutes before the laser frequency needs to be checked. The
full scan range of the Fabry-Pérot is ~ 1 GHz, which is about equal to the spacing
between adjacent Rydberg states.

The excitation light pulses are created by passing the laser beams through acousto-
optic modulators (AOMs) and pulsing the rf power applied to the AOMs. The first-
order light from the AOMs is coupled into the optical fiber that transmits the light
to the experimental chamber. Pulsing the rf power essentially turns the first-order

light on and off, thus creating light pulses at the fiber output.

2.2.2 Rydberg detection

Since Rydberg electrons are so loosely bound to the atomic core, they are ionized
by a modest DC electric field. Rydberg atoms are therefore readily detected by pulsing
an electric field and detecting the ionized electrons. In the experiments presented in
this thesis, I use state-selective electric field ionization as the Rydberg-atom detection
method. In this method, an electric field is increased as a function of time from zero
to values above the Rydberg-atom ionization limit. The electric field values at which
the ionized electrons are detected determine the spectrum of states present.

To understand the state-selective electric field ionization method, one must con-
sider the Stark shift of the atomic energy levels in a DC electric field. These shifts
are illustrated for Rb in Figure 2.5. As the electric field is increased, adjacent states
that are initially non-degenerate eventually (anti-)cross, a point referred to as the
Ingles-Teller limit (= 6 V/cm in Figure 2.5). For higher electric field values (and

also for non-hydrogenic atoms), low-¢ states of different n undergo avoided crossings,
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Figure 2.5: Calculated Stark map of Rb energy levels as a function of DC electric
field. Red: m; = 1/2. Green: m; = 3/2. Black: m; = 5/2.
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due to the large, non-zero quantum defects (see Gallagher, Reference [26]). In Rb,
the quantum defects are large for S, P, and D states, since the radial wavefunctions
penetrate into the finite-sized ionic core (see Section 1.2.2). The ionization process
for these states therefore depends on how quickly the electric field increases with time
from zero field to the ionization field (i.e. the slew rate, S = dE/dt). If the slew rate
is sufficiently slow and the avoided crossings sufficiently large, the states will traverse
the Stark map from zero field to the ionization field adiabatically. An adiabatic ion-
ization process preserves the zero-field ordering of the energy levels and allows for
unambiguous determination of the initial, zero-field n states from the electric field
at which they ionize. The ionization electric field for low-£ states is £ = 1/16n** in
atomic units, as determined in Section 1.2.

For high-¢ states, the avoided level crossings are smaller, due to the near-zero
quantum defects. For the same electric field slew rate as in the low-£ case, the high-¢
states will traverse the Stark map diabatically and ionize at higher electric fields. The
ionization electric fields for high-¢ states are between E = 1/9n* and E = 1/4n** [26].
A diabatic ionization process does not allow for a straightforward determination of
initial n states from the electric field values at which the states ionize, since the
zero-field ordering of the states may not be preserved.

In this thesis, I am only concerned with the low-¢ Rydberg states n.S or nD, which
fortunately undergo adiabatic ionization. In the experimental setup, the ionization
electric field is created by ramping the electrode on the LVIS side of the chamber [see
Figure 2.4(a)] from 0 to —350 V (corresponding to peak electric fields of ~ 130 V/cm)
with a rise-time of ~ 10 us. After the Rydberg atoms are ionized, the freed electrons
are pushed by the electric field to a microchannel plate (MCP) assembly for detection.
The MCP is composed of an array of lead glass capillaries with diameter ~ 10 gm and
spacing of ~ 15 um. The capillaries are oriented at an angle of ~ 8° with the normal

to the face of the MCP [65]. A freed electron strikes the wall of one of the capillaries
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Figure 2.6: Experimental state-selective field ionization trace. The voltage applied
to the field ionization electrode is indicated in black, and the corresponding detected
electron signal is indicated in red. The 505 and 515 states are ionized at slightly
different electric field values. The 515 state, being more loosely bound to the atom,
is ionized by a smaller field.
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and creates a shower of secondary electrons which are further accelerated by the
voltages applied across the MCP. In my work, I use two MCPs in series, which yield
a charge gain of about 10°. Behind the MCP, a phosphor screen converts the shower of
electron impacts to light, which may be used to obtain spatial information about the
distribution of electrons hitting the face of the MCP [10]. The electrical signal, which
yields temporal information about the detected electrons, is capacitively coupled out
of the phosphor screen and directed to a counter. The counter communicates with the
computer for recording the electron detections. The temporal information about the
ionized electrons is correlated with the electric field values at which they are detected
and is thereby used to determine the spectrum of Rydberg states present. The MCP
has a ~ 30% detection efficiency.

Figure 2.6 illustrates the electric field ionization ramp (black) utilized in the ex-
periments of this thesis and the detected electron signal corresponding to the states
50S and 515 (red). Since the 515 state is more loosely bound to the atom than
the 505 state, it ionizes at a slightly lower electric field value. The signal from the
two states is resolved, as between the 505 and 515 peaks, the signal almost dips to
the background value. While there is a slight overlap of the 505 and 515 signals, [
estimate this crosstalk to be less than 5%. The ability to resolve these two states is

an important prerequisite for the experiments presented in Chapter III.

2.3 The optical lattice

2.3.1 Alignment of the lattice

The laser used for the optical lattice is a 1064 nm ytterbium fiber laser, with an
output power < 10 W. The one-dimensional optical lattice is established by focusing
the 1064 nm beam into the MOT, retroreflecting it with a corner cube retroreflector,

and refocusing it. The corner cube retroreflector is composed of three intersecting
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planar mirrors that are mutually orthogonal. Since the corner cube always reflects
the beam back parallel to its incoming path, the corner cube plays a crucial role in the
stability of the lattice alignment. We have confirmed that the retroreflector preserves
the polarization of the lattice light. The ingoing lattice beam is focused to a FWHM
of 13 pum, and in typical experiments, the power in the ingoing beam is ~ 1 W. The
return beam has a FWHM of ~ 25 um (see Section 3.3 and Reference [66]), which
is larger than the ingoing beam focus due to cumulative aberrations caused by the
optical components in the retroreflection beam path. Also, the optical components
in the beam path reduce the power of the return lattice beam at the location of the
atoms to 0.56 times that of the ingoing beam. The lattice is therefore not a perfect
standing wave, due to the mismatch in intensities of the ingoing and return lattice
beams. However, the contrast in the lattice is still about a factor of 5. Peak intensities
in the lattice are on the order of 10 W/cm?. The lattice is linearly polarized and is
always on for measurements involving the optical lattice.

In the first step of aligning the lattice, the return beam is blocked, and the ingo-
ing beam establishes a running-wave dipole trap for ground-state atoms in the MOT.
The focus of the ingoing beam is positioned to maximize dipole-trap-induced light
shifts of the optical ground-to-Rydberg transition frequency. An example of an op-
tical excitation spectrum of the 505 Rydberg level in the dipole trap is shown in
Figure 2.7(a) (black). The spectrum is obtained by scanning the frequency of the
5P — Rydberg excitation laser and plotting the number of detected Rydberg atoms
as a function of frequency. The peak in the spectrum at 0 MHz is due to atoms
that are excited in the MOT outside of the dipole trap [i.e. in the regions where the
excitation beams overlap outside of the 1064 nm beam, see Figure 2.4(b)]. This peak
therefore corresponds to the unperturbed ground-to-Rydberg transition frequency, as
indicated by the solid arrows in Figure 2.7(a),(b). The blue-shifted feature in the

excitation spectrum of Figure 2.7(a) is from atoms located in the dipole trap that
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Figure 2.7: a) Optical excitation spectra for 505 in the running-wave dipole trap
(black) and standing-wave optical lattice (red), obtained by scanning the frequency
of the upper transition excitation laser and plotting the number of detected Ryd-
berg atoms. On the x-axis, 0 MHz corresponds to the unshifted transition frequency
5512 — 50S;/2. The arrows correspond to the ground-to-Rydberg transition fre-
quency at the locations indicated in (b). b) Qualitative illustration of the light shift
of the ground and Rydberg potentials in the dipole trap (black) and the lattice (red),
for a cut transverse to the lattice axis. The solid arrow corresponds to the unperturbed
ground-to-Rydberg transition frequency. The dashed and dotted arrows correspond
to the transition frequencies for atoms located near the bottoms of the dipole-trap
and optical-lattice potential wells, respectively.
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experience dipole-trap-induced light shifts [dashed arrows in Figure 2.7(a),(b)]. To
optimize the dipole trap alignment, both the position of the ingoing beam focus and
the overlap of the 5P — Rydberg excitation beam with the 1064 nm focal spot are
optimized for maximal shift and sharpest cutoff on the blue-frequency side of the
excitation spectrum in Figure 2.7(a). The maximal shift and sharp cutoff means that
the focus of the dipole trap beam is overlapped with the center of the MOT and that
I am exciting atoms located near the bottom of the ground-state potential wells.

To align the return beam of the lattice, the return-beam focus is positioned to
optimize the back-coupling through the optical fiber (that transmits the 1064 nm
light to the experimental chamber; see Figure 3.2). Since I couple the 1064 nm light
out and back into the same fiber (which is a single mode fiber), I ensure that the
incident and return foci overlap. An optical excitation spectrum for the standing-
wave optical lattice is shown in Figure 2.7(a) (red). The shift of the blue-frequency
cutoff from the unperturbed transition frequency in the lattice spectrum is about two
times that for the dipole trap, due to the increased light intensity in the lattice [see
light shifts and dotted arrow in Figure 2.7(b)]. In a lattice with perfect visibility, the
lattice-induced shift would be four times the dipole-trap-induced shift. The reduction
in the experimentally observed lattice-induced shift is due to the imperfect visibility
in the lattice, which results from the reduction in power and enlargement in focus
of the return beam discussed above. In the lattice spectrum of Figure 2.7(a), the
sharp cutoff on the blue-frequency side of the spectrum indicates that the ground-
state atoms in the lattice are localized near the bottoms of the lattice potential wells.
They are therefore efficiently cooled by the MOT light, which is effectively increased in
red-detuning as the atoms in the lattice experience lattice-induced light shifts [67, 68].

Optical excitation spectra for 505 in the lattice as a function of lattice laser power
is shown in Figure 2.8 (indicated powers are for the ingoing lattice beam). For powers

< 1 W, the blue-shifted feature due to atoms in the lattice is well-localized on the
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Figure 2.8: Optical excitation spectra for 505 in the lattice as a function of lattice
power (indicated values are for the ingoing beam), plotted on a logarithmic scale to
emphasize detail in low count regions. The spectra demonstrate that for powers higher
than about 1 W the ground-state atoms are cooled less efficiently to the bottoms of
the lattice potential wells.

high-frequency side, and the frequency shift scales linearly with lattice power. For
powers = 1 W, the blue-shifted feature spreads out, indicating that the atoms are not
as well localized near the bottoms of the ground-state lattice wells. This indicates
a deterioration in the laser cooling of the atoms in the deeper lattice wells, as the
detuning of the MOT light approaches 60 MHz at the highest powers. The MOT
light is then too far detuned to efficiently cool the atoms in the lattice. Due to this
deterioration of the laser cooling at high lattice powers, I limit the lattice ingoing beam
power to = 1 W for the experiments presented in this thesis. Since the temperature
of the ground-state atoms in the lattice largely determines the temperature of the
atoms after they are excited to Rydberg states, it is beneficial to cool the ground-
state atoms as efficiently as possible to enable high Rydberg-atom trapping efficiencies
in the lattice (see Section 3.4).

The maximal lattice-induced shifts in optical excitation spectra, as shown in Fig-
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Figure 2.9: Effect of the Dumper pulse. Optical excitation spectra for 45D in the
lattice, with (red) and without (black) the Dumper.

ure 2.7, yield information on the lattice potential modulation depths for both the
ground state and the Rydberg state; this is discussed in detail in Section 4.2.2.
Lattice-induced shifts in optical excitation spectra are therefore used daily for verify-
ing alignment of the optical lattice. The Rydberg potential modulation depth varies
for different Rydberg states, both in magnitude and sign. As a reference point, the
lattice modulation depth for 505 and 1 W of ingoing lattice beam power is ~ 10 MHz.
The modulation depth of the ground-state lattice potential for 1 W of ingoing lattice

beam power is ~ 20 MHz.

2.3.2 Signal improvement using optical pumping techniques

As illustrated in the excitation spectra of Figures 2.7 and 2.8, a significant number
of atoms are excited outside of the lattice (evidenced in the peak at 0 MHz). This
signal is undesirable for my experiments, as it may overwhelm signal from the atoms

in the lattice. To reduce or eliminate the signal from atoms outside of the lattice,

43



I apply a sample clean-up pulse, referred to as the “Dumper” pulse, between the
turnoff of the MOT /Repumper light and the application of the excitation pulses [see
Figure 2.3(a)]. The Dumper pulse has a duration of 25 us and is resonant with
the 5519, F=3 — 5P3/5, F'=3 transition (see Figure 2.2). Due to light shifts for
atoms in the lattice, the Dumper is closer to resonance with the atoms outside of
the lattice. The Dumper therefore optically pumps the atoms outside of the lattice
into the F'=2 ground state much more efficiently than the atoms inside the lattice.
Since the Repumper light is off, these atoms do not return to the cycling transition.
Following the Dumper pulse, the F'=3 atoms left in the lattice are accessible for
optical excitation to the Rydberg state. Figure 2.9 shows optical excitation spectra
for 45D with (red) and without (black) the Dumper pulse applied. With the Dumper,
the signal at relative frequencies of 0 MHz and 130 MHz from atoms outside of the
lattice disappears, leaving only the signal from the atoms in the lattice. The Dumper
is therefore an effective method to obtain a clean sample of atoms in the lattice for

use in experiments.

In the following chapters of this thesis, the experimental setup and procedures de-
scribed in this chapter are employed to study Rydberg atoms in optical lattices. The
trapping of Rydberg atoms in optical fields was first proposed in 2000 [40] and first
achieved in 2010 [41]. Now, optical Rydberg-atom traps are anticipated to become a
mainstream technique for quantum information processing [4, 30, 59], high-precision
spectroscopy [31], or many-body physics [11]. In the next chapter, I discuss work
that led to the first highly efficient optical trap for Rydberg atoms, a development
that moves this system a significant step closer to being available for use in applica-

tions [66].
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CHAPTER III

Lattice Inversion for Highly Efficient

Rydberg-atom Trapping

Rydberg-atom trapping has emerged as a tool in such applications as quantum
computing [2, 4, 32, 69] and high-precision spectroscopy [31], as described in Sec-
tion 1.3. Small lattice-induced energy-level shifts distinguish optical Rydberg-atom
traps from static-field traps [36, 37| and make them attractive for these applications.
While optical traps for Rydberg atoms were first proposed by the Raithel group [40],
several groups are now pursuing traps along these lines [30, 70], largely motivated by
the possibility to create “magic wavelength” traps that minimize trap-induced shifts
on transitions of interest in quantum computing or high-precision spectroscopy [33].
Despite potential applications, efficient optical traps for Rydberg atoms had not been
realized until the work described in this chapter. In this work, I demonstrate an

optical lattice with high Rydberg-atom trapping efficiency.

3.1 Rydberg-atom preparation in the lattice

To understand the technique for achieving high trapping efficiencies developed in
this chapter, one must first consider the preparation process for the Rydberg atoms

in the 1064 nm optical lattice. Ground-state °Rb atoms are initially laser-cooled
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into the wells of the 55 lattice potential and are then laser excited to Rydberg states
(see Section 2.2.1). As discussed in Section 1.3.2, the Rydberg electron experiences a
ponderomotive potential in the optical lattice much like that a free electron experi-
ences, V, = €*E3 /(4mew?), where w is the angular frequency of the field and F is the
amplitude of the linearly polarized field at the location of the Rydberg electron. The
polarizability of the Rydberg state is therefore approximately that of a free electron.
The free-electron polarizability, «,, is found by comparing V;, to the expression for
the AC Stark shift, W = —1aE3. Thus, oy, = —€?/(mew?). In a 1064 nm laser field,
ap = —4meg x 545a3 in SI units. To find the polarizability ag of a specific Rydberg
state in the optical lattice, one must multiply a;, by a state-dependent factor, &g,
that takes into account the averaging of the Rydberg-atom wavefunction over the
free-electron ponderomotive potential (see Equation 1.6). In general, the {g depend
on the geometry of the lattice; here, I consider my case of two counter-propagating
laser beams of the same linear polarization. For the 505 state in my lattice, a case
under consideration in this chapter, the averaging factor is 505 = 0.415. The polariz-
ability of the 505 state in the optical lattice is therefore asgg = —4meg x 0.415 x 545a]
in SI units. For the 505 state and most Rydberg states, the polarizability is negative?,
and the Rydberg atoms are attracted to regions of intensity minimum in the lattice.

In contrast to the Rydberg states, atoms in the 8°Rb 5S ground state have a pos-
itive dynamic polarizability at 1064 nm, since this wavelength is red-detuned relative
to the 5S — 5P transition (see Section 2.1.2). The polarizability of the 55 ground
state is ass = 4mey X T11ad in SI units at 1064 nm [71], and the ground-state atoms
are attracted to regions of intensity maximum in the lattice.

Due to the (usually) different signs of ar and asg for the 1064 nm optical lat-

tice, the ground-state lattice potential minima, which are co-located with light inten-

! An exception occurs when the size of the Rydberg atom approximately equals the lattice period.
In this case, &g becomes negative, resulting in a positive polarizability ag. Such a case is measured
and discussed in Section 4.2.2.
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Figure 3.1: Configuration for an electro-optic modulator (EOM) used as a polarization
switch. In a simplified picture, the EOM contains a KD*P crystal with index of
refraction along = that changes in response to an electric field, E. The change in index
of refraction introduces a phase shift between the z- and y-polarization components,
thus modifying the polarization state of the light at the output. The EOM splits the
linearly-polarized input beam of power P into orthogonal output components with
powers P — Pians and Pipans.

sity maxima, coincide with Rydberg-state potential maxima. Laser excitation of the
ground-state atoms in the lattice produces Rydberg atoms near the maxima of the
Rydberg-atom lattice potential. This results in limited Rydberg-atom trapping in the
lattice. Previously, we have trapped a few percent of these atoms in the lattice [41].
The few trapped atoms were fortuitously excited partway down the Rydberg lattice
wells, due to the linewidth of the excitation lasers, and did not have enough energy to
escape the wells. In the work presented in this chapter, I develop a method to rapidly
invert the lattice potential after Rydberg-atom preparation. Since the inverted poten-
tial has minima near the locations of the initially prepared Rydberg atoms, I achieve

highly efficient optical Rydberg-atom trapping.

3.2 Lattice inversion

To invert the lattice, I use an electro-optic technique. This technique is enabled by

an electro-optic modulator (EOM; Conoptics, Inc., model 350-105) used as a polariza-
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tion switch. Here, I present a simplified explanation of how the EOM switches the po-
larization. The EOM contains a crystal (KD*P) that exhibits the linear electro-optic
effect. This effect is a modification in the index of refraction of the crystal in response
to an applied electric field, by an amount proportional to the field strength [72]. T
use the controllable index of refraction in the EOM to modify the polarization state
of the lattice light passing through the device. The configuration for an EOM as
a polarization switch in our setup is illustrated in Figure 3.1. The 1064 nm beam
incident on the EOM is linearly polarized and has power P. The electric field in the
EOM is applied to the crystal in the x-direction in Figure 3.1, which is transverse to
the 1064 nm beam propagation direction and at a 45° angle to the incident 1064 nm
polarization direction. Depending on the electric field strength, the 1064 nm polariza-
tion component in the z-direction may experience a different index of refraction than
that in the y-direction. This difference in index of refraction introduces a phase shift
between the x and y components that consequently modifies the polarization state of
the light at the EOM output. In general, the total incident power P is split into two
orthogonal linear-polarization components at the EOM output, with variable powers
Pirans and P — P, s as indicated in Figure 3.1. When the electric field in the EOM is
set such that the index of refraction in the z- and y-directions in Figure 3.1 is equal,
the light passes through with its polarization state unaltered (Pians = 0). When the
electric field is set such that the relative phase shift between x and y components is
7, the input linear polarization is rotated by 90° (Pians = P).

In the experiment, the EOM switches the polarization state of the lattice light
immediately after Rydberg-atom excitation. For a complete lattice inversion, the
EOM switches the polarization from one linear direction (P;ans = 0) to the orthogonal
linear direction (Pans = P). The lattice light is then transmitted to the atoms
using a polarization-maintaining (PM) fiber (see diagram of the experimental setup

in Figure 3.2). The two orthogonal linear lattice polarization directions are aligned
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Figure 3.2: Sketch of the experimental setup. Rydberg atoms are optically excited
at potential maxima of a one-dimensional Rydberg-atom optical lattice. An EOM is
used to switch the lattice polarization by 90° from A to B immediately after excitation,
resulting in lattice inversion and efficient Rydberg-atom trapping.

with the axes of a quarter waveplate in the return beam of the lattice th