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ABSTRACT

Trapping Rydberg Atoms in Ponderomotive Optical Lattices

by

Sarah E. Anderson

Chair: Georg Raithel

I examine the trapping of Rydberg atoms in an optical standing wave. This trap,

called an optical lattice, offers a platform for utilizing Rydberg atoms and their unique

properties in applications such as atomic spectroscopy and quantum computing. To-

ward this end, I demonstrate the capability to trap 85Rb Rydberg atoms in a one-

dimensional 1064 nm wavelength optical lattice with high efficiency. I have achieved

a 90% trapping efficiency by inverting the lattice immediately after Rydberg-atom

excitation, using an electro-optic technique. In addition, I investigate the depen-

dence of optical-lattice trapping potentials for Rydberg atoms on the angular portion

of the atomic wavefunction. While ground-state atoms are point-like in relation to

an optical-lattice field, Rydberg-atom wavefunctions extend over a substantial frac-

tion of the lattice period, leading to an angular dependence of the lattice trapping

potentials. I measure the potentials using various angular sublevels of Rydberg nD

states prepared in the optical lattice with a superimposed transverse DC electric field.

This unique angular dependence of Rydberg-atom optical lattices may be exploited

to tailor the trapping potentials as needed for spectroscopy or quantum computing.

Further, atom loss due to lattice-induced photoionization of Rydberg atoms must be

xix



characterized for applications. I investigate the photoionization process as a func-

tion of position within the volume of a Rydberg atom. Since Rydberg-atom sizes

approximately equal the lattice period, the lattice intensity varies maximally within

the atomic volume. I find that photoionization rates are higher for lattice intensity

maxima located near the nucleus than within the lobes of the electronic probabil-

ity distribution. Photoionization therefore occurs near the Rydberg-atom nucleus.

Finally, I calculate photoionization rates for Rydberg atoms in optical fields and in-

vestigate how these rates relate to the validity of the electric dipole approximation.

This approximation is usually central to matter-field interactions, and Rydberg atoms

in optical fields present a system for studying the approximation in a limiting case. I

further apply the photoionization calculations to experimentally-relevant conditions.

With these advances, this thesis lays essential groundwork for the employment of

Rydberg-atom optical lattices in applications.
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CHAPTER I

Introduction

1.1 Background and motivation

Rydberg atoms are atoms in highly excited states, in which a valence electron is

loosely bound at a large radial separation from the positive ionic core. First observed

in an astronomical context, Rydberg atoms have only been studied in a laboratory

setting since the advent of the laser, which allows for straightforward excitation of

ground-state atoms to Rydberg states. When in Rydberg states, atoms exhibit ex-

aggerated properties that arise since the Rydberg electron is so far removed from the

ionic core. These properties include large sizes that can be on the order of a microm-

eter, long lifetimes in the range of microseconds to milliseconds, and an exquisite

sensitivity to external fields. Due to these unique properties and their potential ap-

plications, a growing number of researchers are utilizing Rydberg atoms in a diverse

array of studies.

One of the exaggerated properties of Rydberg atoms that has attracted consider-

able interest for applications is the strong interactions between Rydberg atoms. Due

to their large sizes, Rydberg atoms exhibit strong van der Waals or dipole-dipole

interactions that are easily tuned by applying static electric fields or by choice of

atomic state [1]. An application in which the interactions between Rydberg atoms

are exploited, and which has been a major motivating force behind recent Rydberg-
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atom research, is quantum computing [2–4]. In quantum computing schemes that

involve Rydberg atoms, the quantum bit (qubit) is formed by two hyperfine ground-

state levels, and two-qubit gate operations are performed by exciting the atoms to

Rydberg states. While in Rydberg states, the atoms interact strongly, enabling fast

gate operations. After completion of the gate operation, the atoms are returned to

the ground-state levels for storage of the information, since in the ground-state levels

the atoms interact only weakly with the environment and each other. Rydberg atoms

are therefore ideal for quantum computing because their interactions are strong and

controllable. Recent experimental progress towards the implementation of Rydberg

atoms in quantum computing applications includes a demonstration of entanglement

between Rydberg atoms, a phase gate, and a controlled-NOT gate [5–7].

The strong interactions between Rydberg atoms also facilitate studies of many-

body physics [8]. Simply by laser-exciting a gas of atoms to Rydberg states, strongly

correlated many-body states are created, in which a Rydberg excitation is shared

coherently among a large number of atoms. This entangled many-body state can

give rise to a spatially-ordered “crystalline” structure of Rydberg excitations in the

otherwise disordered gas [9, 10]. Rydberg atoms therefore enable exotic phases of mat-

ter [11] that allow for such studies as the generation of light-matter entanglement [12],

disorder in many-body systems [13], and universal quantum simulation [14].

The extreme sensitivity of Rydberg atoms to electric fields makes them advanta-

geous for applications in field sensing. Rydberg atoms are excellent sensors for DC

electric fields. The static polarizability of a Rydberg atom scales strongly with the

principal quantum number n, being proportional to n7, and reaches values of about

1 GHz/(V/cm)2 at n = 70. Furthermore, Rydberg atoms are quite sensitive to mi-

crowave fields. Transitions between nearby Rydberg states have frequencies in the

GHz−THz frequency range and dipole moments that scale with n2, giving values of

∼ 10−26 C·m near n = 60. Rydberg atoms have been employed in measurements of
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microwave fields as small as ∼ 8 µV cm−1 [15] and DC fields of ∼ 20 µV cm−1 [16].

Rydberg atoms provide excellent opportunities for tests of fundamental physics.

High-precision spectroscopy of circular Rydberg states, which are states of maxi-

mal angular momentum and are described in the next section, would allow for a

measurement of the Rydberg constant that does not depend heavily on quantum

electrodynamics (QED) corrections. Comparing the measured Rydberg constant to

previous measurements based on other methods that do rely on QED corrections

gives a valuable test of the theories of QED [17]. In addition, Rydberg states play a

role in anti-hydrogen trapping experiments at the CERN laboratory in Switzerland.

Through a three-body recombination process in these experiments, anti-protons and

positrons combine to form Rydberg states of anti-hydrogen that eventually decay to

their ground-state in the trap. Comparing spectroscopic studies of anti-hydrogen to

those of hydrogen provides a test of charge conjugation, parity, and time reversal

invariance (CPT theory) [18, 19].

There is yet a broad scope of phenomena in physics beyond the applications al-

ready mentioned whose investigation is made possible by Rydberg atoms. Since

Rydberg atoms are nearly macroscopic objects at the boundary of the quantum and

classical regimes, they are used to study this cross-over region. For example, single

Rydberg atoms have been entangled with microwave photons in a superconducting

cavity, allowing for the study of entanglement, decoherence, and the quantum-to-

classical boundary [12, 20, 21]. S. Haroche shared the 2012 Nobel Prize in Physics for

this work. Rydberg atoms are also intimately tied into plasma studies. Three-body

recombination in a plasma forms Rydberg atoms, and ionization of a Rydberg-atom

gas presents a channel through which a plasma is formed [22]. Ionization of a spatially-

ordered “crystal” of Rydberg excitations may present a pathway to achieve ordered

structures within the plasma and thereby to reach deeply into the strong-coupling

regime, a regime as of yet difficult to achieve [23]. As a final example of the versatil-
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ity of Rydberg atoms, the scattering of a ground-state atom from a Rydberg electron

can result in a novel molecular binding mechanism. The Rydberg and ground-state

atom pair form a molecule, which bears the name of a “trilobite” since the electronic

wavefunction in such a molecular state resembles this prehistoric creature [24]. This

is the first known homonuclear molecule to have a permanent electric dipole moment,

which may allow for easy manipulation and control of the molecule [25]. Rydberg

atoms and their exaggerated properties thus offer a versatile platform for promising

applications as well as for rich explorations of fundamental physics.

In order to take full advantage of the unique properties of Rydberg atoms for the

studies described above, we must have a way to confine the Rydberg atoms. For ex-

ample, in quantum computing protocols utilizing Rydberg states, a trap for the atoms

would allow for multiple, sequential gate operations using the same atoms. In the

applications of electric field sensing and high-precision measurements, a mechanism

for trapping the Rydberg atoms would allow for maximal atom-field interaction times

and thus for maximal precision and accuracy. In high-precision measurements, the

atoms would be confined in a region where stray fields have been carefully minimized,

reducing systematic uncertainties. This thesis focuses on the development of a trap

for Rydberg atoms that allows us to confine and manipulate the atoms as needed for

applications. This trap is called a ponderomotive optical lattice. In the rest of this

chapter, I will first discuss some properties of Rydberg atoms in Section 1.2, ones that

make Rydberg atoms so attractive for applications. In Section 1.3, I will review the

types of Rydberg-atom traps that have been demonstrated to date and will introduce

the ponderomotive optical lattice, which is the type of Rydberg trap developed in my

work. The layout of the thesis is given in Section 1.4.
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1.2 Properties of Rydberg atoms

It is the unique properties of Rydberg atoms that afford the abundant and varied

opportunities for study mentioned already in the Introduction. In this section, these

properties of Rydberg atoms are derived and summarized.

1.2.1 Scaling laws

Since Rydberg atoms, with their large values of the principal quantum number

n, approach the classical limit, the classical Bohr model of the atom explains many

of the interesting properties of Rydberg atoms and allows us to derive scaling laws

for these properties. In the Bohr picture of the atom, an electron with mass me and

charge −e revolves in a classical circular orbit around the nuclear core of charge Ze.

This orbit is described using Newton’s second law,

mev
2

r
=

Ze2

4πε0r2
, (1.1)

where r is the radius of the electron’s orbit and v is its velocity. In this section,

I will consider Rydberg states of the hydrogen atom, for which Z = +1. With

quantization of angular momentum, mevr = n~, the radius of a Rydberg atom follows

from Equation 1.1,

r =
n2~24πε0
e2me

. (1.2)

The orbital radius of the Rydberg electron therefore scales as n2, illustrating how

Rydberg atoms can attain large, almost macroscopic sizes.

To find the energy of the Rydberg electron, which I denote by Wb, I sum its kinetic

and potential energy. Using Equation 1.2 for r, I find that

Wb =
1

2
mev

2 − e2

4πε0r
= − e4me

2n2~2(4πε0)2
. (1.3)
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The energy is negative, since the electron is bound to the atom, and scales as n−2.

With the Rydberg constant defined as Ry ≡ (e4me)/[2~2(4πε0)2], the expression for

the binding energy of the Rydberg electron becomes Wb = −Ry/n2. In atomic units,

the binding energy is expressed Wb = −1/(2n2) (for a note about atomic units, see

Appendix A). For large n, the binding energy of the Rydberg electron becomes

very small, which is essential for understanding the mechanism for Rydberg-atom

trapping that this work is based on and that is discussed in Section 1.3.2. These first

two scaling laws for the orbital radius and binding energy of the Rydberg electron

therefore illustrate the picture that a Rydberg atom is characterized by a loosely

bound electron orbiting the ionic core in a large trajectory.

Several other scaling laws for Rydberg-atom properties that underpin the work in

this thesis can be derived from the simple model given above. The Kepler frequency,

which describes the orbital frequency of the Rydberg electron and also gives the

frequency spacing between adjacent n manifolds of states, can be obtained by ωK =

v/r. Using the condition of quantization of angular momentum and Equation 1.2,

the Kepler frequency is

ωK =
me

n3~3

(
e2

4πε0

)2

.

The Kepler frequency therefore scales as n−3. This frequency will be a consideration

in Section 1.3.2, where I derive trapping potentials for Rydberg atoms in the pon-

deromotive optical lattice, as well as in Section 6.4.2, where I consider the case of

very deep trapping potentials.

A commonly cited, exaggerated property of Rydberg atoms is their long lifetimes,

which enable, for example, long atom-field interaction times in high-precision specro-

scopic measurements. For low angular momentum (low-`) Rydberg states, which are

the states under consideration in this thesis, the scaling of the lifetimes can be consid-

ered classically using the orbital period of the Rydberg electron, T = (2π)/ωK. This
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method assumes that the Rydberg electron is most likely to decay to a low-lying orbit

when the electron is undergoing maximal acceleration at the inner turning point of its

orbit, near the nucleus (for discussions of such an argument, see Section 5.3). With

the scaling of the Kepler frequency found above, the lifetime T for these low-` states

therefore scales as n3. A proper derivation of the scaling laws for Rydberg lifetimes

requires a quantum mechanical treatment, using the Coulombic wavefunctions and

the Einstein A coefficient that describes spontaneous emission [26]. After a proper

quantum mechanical treatment, the lifetime of the low-` states is still found to scale

as n3, while the high-` states decay more slowly, with lifetimes that tend to scale as

n5.

Since the Rydberg electron is loosely bound and far removed from the ionic core,

it is extremely sensitive to external fields. For example, the electron is easily ionized

by DC electric fields. The ionization electric field is derived from the Coulomb-Stark

potential for the Rydberg electron, which is given in atomic units and for the electric

field E along the z direction as

VCS = − 1

|z|
+ Ez.

There is a saddle point in the potential at VCS = −2
√
E. An electron with energy

above this potential will ionize. Setting this saddle point energy equal to the binding

energy, Wb = −1/(2n2), one finds that the atoms will ionize in electric field values of

E = 1/(16n4). The ionization of Rydberg atoms by DC fields will be central to the

detection of Rydberg atoms in this thesis, as will be discussed in Section 2.2.2.

Some of the scaling laws for Rydberg-atom properties that play important roles

in this thesis are summarized in Table 1.1. I provide some additional laws to those

derived in this section.
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Table 1.1: Rydberg-atom scaling laws. The variable d is atom-atom distance.

Orbital radius n2

Radiative lifetime (low-`) n3

Kepler frequency n−3

Ionization electric field n−4

DC polarizability n7

Transition dipole moment n2

Van der Waals interactions n11/d6

Electric dipole interactions n4/d3

1.2.2 Quantum defects

The work in this thesis is performed with the alkali metal rubidium (Rb). Rydberg

states of the alkali metals, such as Rb, are very similar to Rydberg states of hydrogen,

since the alkali-metal Rydberg electron orbits an ionic core of charge +1. Differences

between the alkali and hydrogenic cases arise from the finite size of the ionic core for

the alkali metals, which for Rb consists of the nucleus and 36 electrons. For low-`

Rydberg states of the alkali metals, the Rydberg electron can both penetrate and

polarize the ionic core. The wavefunctions and energies of the alkali metals are mod-

ified by the interaction with the core in comparison to the case of hydrogen. The

wavefunctions acquire a phase factor that can give rise to effects such as a Cooper

minimum in the photoionization cross sections of the alkali Rydberg states, which

for Rb is from Rydberg S states into P states in the continuum (see Sections 3.4.3

and 6.4, as well as Reference [26]). The energies of the alkali Rydberg states are de-

pressed in comparison to those of hydrogen. These modifications of the energies and

wavefunctions by the interaction with the core are taken into account through the

use of an empirically determined correction factor to the principal quantum number,

called a quantum defect. Alkali Rydberg states are then described by the same equa-

tions as hydrogen, but with the principal quantum number replaced by an effective

principal quantum number n∗ = n− δ`, where δ` is the quantum defect. For example,

the energies of the alkali Rydberg states are then given by Wb = −1/(2n∗2) and the
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ionization electric fields by E = 1/(16n∗4). For Rb, the δ` values are 3.13 for S states,

2.65 for P states, 1.35 for D states, and 0.02 for F states [27].

For high-` states, the Rydberg electron does not penetrate the core, and the

quantum defects arise from effects due to polarization of the core. The quantum

defects for the high-` states are given by δ` = 3
4
αD

`5
[28], where αD is the dipolar

polarizability of the ionic core and is equal to 9.2 atomic units for Rb [29]. The

quantum defects for the high-` states are generally very small and are often negligible

in experiments. These high-` states with near-zero quantum defects are consequently

referred to as the “hydrogenic” states, since they are essentially like the states of

hydrogen. Special cases of high-` states that will be of interest in later chapters of

this thesis are those of maximal angular momentum, with quantum numbers |m| =

` = n − 1. These states are referred to as “circular” Rydberg states, because their

wavefunctions take the form of a thin torus encircling the ionic core. Circular Rydberg

states come very close to a Bohr-model-like atom. Such states will be important in

Section 7.3.

1.3 Rydberg-atom trapping

As mentioned in the Introduction, a trapping mechanism for Rydberg atoms would

allow us to make use of Rydberg-atom properties in such applications as quantum

computing [30], high-precision spectroscopy [31], field sensing [15], and many-body

physics [11]. An example of the need for a Rydberg-atom trap is found in quantum

computing schemes involving neutral atoms excited to Rydberg states. In experiments

that have demonstrated two-qubit quantum gates based on Rydberg excitations of

two atoms in neighboring ground-state optical dipole traps (see Section 2.1.2), the

trapping light was turned off while the gate operations were performed since the

trapping light was repulsive for the Rydberg states [6, 7, 32]. However, turning

off the ground-state trapping light is not scalable for larger arrays of atom traps,
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which are envisioned to be created by diffractive optics. It is impractical to turn off

the trapping light for an entire array of atoms in order to perform a gate operation

between two atoms within the larger array. Instead, it is desirable to develop a trap for

Rydberg atoms that is compatible with traps for ground-state atoms. Furthermore,

a trap that provides identical potentials for both the ground and Rydberg states in

quantum computing schemes would reduce motional decoherence [30, 33], which is

due to entanglement of the atom’s internal state with its external degrees of freedom

and is induced by a change in vibrational state of the atom in the trap.

1.3.1 Previous work on Rydberg-atom traps

Rydberg-atom traps that have been proposed or realized mainly involve static elec-

tric or magnetic fields. Rydberg-atom trapping was first proposed by W. Wing [34]

and T. Breeden and H. Metcalf [35] in the early 1980s, who suggested using static elec-

tric fields and the Stark effect to confine the atoms. F. Merkt and co-workers realized

a trap for Rydberg atoms based on these proposals in 2008, trapping low-field-seeking

Rydberg states in a static three-dimensional electric field minimum [36]. The first

trap for Rydberg atoms was demonstrated in the Raithel research group in 2005 using

an Ioffe-Pritchard style trap with magnetic fields of strength 3 T at the trap mini-

mum [37]. Rather recently, circular Rydberg states were also confined in a magnetic

trap (with fields ∼ 10 G) in the Raithel lab, making use of the large magnetic mo-

ments of these states [38]. P. Schmelcher and I. Levanovsky have studied quadrupole

magnetic field traps for Rydberg atoms in theoretical detail [39]. These electro- or

magneto-static Rydberg-atom traps have some significant associated drawbacks, how-

ever. Trap-induced shifts to the atomic energy levels can reach several GHz, which

is detrimental for applications in quantum computing or high-precision spectroscopy.

Furthermore, these traps are not universal traps for all Rydberg states.

An alternative type of trap for Rydberg atoms involves optical fields, a trapping
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mechanism first proposed by the Raithel group [40]. An optical trap for Rydberg

atoms offers the benefit of small trap-induced level shifts in comparison to the static-

field traps. These shifts are on the order of MHz in my work, although the shifts

could be reduced further by lowering trap depth and atom temperature. Minimal

trap-induced shifts are important to applications in high-precision measurements, in

which certain correction factors to measured transition frequencies scale with absolute

trap depth. Optical traps further afford flexibility in selecting and modifying trap

parameters. For example, the wavelength of the trapping light can be tuned to min-

imize trap-induced shifts on transitions of interest (i.e. achieve a trap with “magic”

wavelength [33]), which is crucial to quantum computing for minimizing motional de-

coherence as mentioned earlier. Optical traps are also universal traps for all Rydberg

states. While optical traps have been widely known and utilized for ground-state

atoms in a breadth of applications, they have never before been used for Rydberg

atoms. Here, I extend the benefits of optical traps to Rydberg states.

In this thesis, I study the trapping of Rydberg atoms in the standing waves of

interfering laser beams, a trap called an optical lattice. Reference [41] provided the

first evidence of Rydberg-trapping in an optical lattice; this was initial work performed

in the Raithel research group. In these previous studies, the Rydberg-atom trapping

efficiency was limited to about 5%. In my work, I develop and characterize the

first efficient optical Rydberg-atom trap. Thus, my work provides a new tool for

exploiting the unique properties of Rydberg atoms and lays essential groundwork for

the employment of optical Rydberg-atom traps in the applications discussed here and

in Section 1.1.

1.3.2 Rydberg atoms in ponderomotive potentials

Optical lattices for Rydberg atoms are similar to conventional optical lattices for

ground-state atoms. Both consist of a periodic array of wavelength-size potential wells
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made by the standing waves of interfering laser beams. The trapping mechanism

for Rydberg atoms in optical lattices, however, is distinct from that for ground-

state atoms. An optical lattice for ground-state atoms acts on a field-induced dipole

created by coupling nearby bound states (see Section 2.1.2). Transitions between

Rydberg states, however, are not in the optical regime, and Rydberg atoms do not

couple significantly to other levels in optical fields. Instead, the trapping mechanism

for Rydberg atoms in an optical lattice utilizes the oscillating electric field in the

optical standing waves to create a ponderomotive potential that acts on the quasi-

free Rydberg electron.

The ponderomotive potential can be understood by considering the motion of a

free electron in a rapidly oscillating electric field [42, 43]. In the oscillating field,

the free electron undergoes a quiver motion as its charge is driven by the field. The

energy of the electron in the field is raised by an amount equal to its time-averaged

kinetic energy; this is known as the ponderomotive potential. In a laser field of the

form E = x̂E0 cos (ωt), with electric-field amplitude E0 and angular frequency ω, the

motion of the electron follows from Newton’s second law, ẍ = − e
me
E0 cos (ωt), and

therefore, ẋ = − e
meω

E0 sin (ωt). The time-averaged kinetic energy of the electron in

the field is

〈KE〉T =
ω

2π

2π/ω∫
0

1

2
meẋ

2 dt =
ω

2π

e2E2
0

2meω2

2π/ω∫
0

sin2(ωt) dt,

and the expression for the ponderomotive potential for the free electron is conse-

quently

Vp =
e2E2

0

4meω2
. (1.4)

Aside from considering the time-averaged kinetic energy of the free electron in an

oscillating field, another way to derive the ponderomotive potential for a free electron

12



is from the minimal coupling Hamiltonian, in which the interaction of the electron

with the field is taken into account by replacing p with p + |e|A [44, 45]. Here, A

is the vector potential for the field, which is related to a source-free radiation field

by A(r, t) = −∂E(r,t)
∂t

[46]. For a free electron, the Hamiltonian is simply given by

its kinetic energy, H = p2

2me
. With p replaced with p + |e|A, the minimal coupling

Hamiltonian is

H =
[p + |e|A(r, t)]2

2me

.

The vector potential for a plane-wave electromagnetic field propagating in the

z direction and polarized in the x direction is given by A(z, t) = x̂ E0

2iω
[ei(kz−ωt) +

e−i(kz−ωt)], where k is the wavenumber. When this expression for the vector potential

is inserted into the minimal coupling Hamiltonian, the ponderomotive potential arises

from the portion that is proportional to A2. This portion describes two-photon

processes and is given by

e2E2
0

8meω2
[e2i(kz−ωt) + e−2i(kz−ωt) + 2].

The first and second terms above are energy non-conserving terms that describe

two-photon absorption and two-photon emission, respectively. These energy non-

conserving terms are negligible in my work. The third term above is an energy-

conserving term that corresponds to absorption and emission of a photon and gives

rise to the ponderomotive potential of Equation 1.4.

In an optical lattice, the electric field is periodic in space, and the ponderomo-

tive potential is therefore also periodic in space. For a one-dimensional optical lat-

tice formed by two counter-propagating laser beams, the electric field is of the form

E(z, t) = x̂2E0 cos(kz) cos(ωt), for laser beam propagation in the z direction, linear

polarization in the x direction, and single-beam electric field amplitude E0. The
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corresponding ponderomotive lattice potential is given by

Vp(z) =
e2E2

0

2meω2
[1 + cos(2kz)]. (1.5)

The resultant gradient force, Fp = −∇Vp, in the lattice pushes the free electrons

towards regions of minimum intensity. Ponderomotive effects of optical lattices on

electrons have been demonstrated in Kapitza-Dirac scattering of free electrons [47]

and above-threshold ionization [42]. Other phenomena where ponderomotive effects

on charged particles play a role include Paul traps for ions [48] and the generation of

high harmonics and x-rays in strong fields [49, 50].

In the case of a Rydberg atom, the Rydberg electron is so loosely bound that it

can be considered quasi-free. In an optical lattice, the quasi-free Rydberg electron ex-

periences a periodic ponderomotive potential much like that which the free electron

experiences. A simple picture that captures the essential physics is that the pon-

deromotive lattice potential traps the quasi-free Rydberg electron at lattice intensity

minima, and the entire atom is then trapped since the Rydberg atom’s ionic core is

weakly bound to the Rydberg electron. Due to the central role of the ponderomo-

tive potential in the trapping of Rydberg atoms in optical fields, an optical lattice

for Rydberg atoms is called a ponderomotive optical lattice (POL) throughout this

thesis.

To derive the trapping potential for the entire Rydberg atom in a ponderomotive

optical lattice, the motion of the Rydberg atom in the optical field is described using

three coordinates (indicated in Figure 1.1) that reflect three different, well-separated

timescales of motion [40]. As will be described in the following, the distinct timescales

of motion allow for application of the Born-Oppenheimer approximation, which takes

into account the fast timescales of motion in the problem by adding a static potential

to the Hamiltonian that governs the slower degrees of freedom [44].

As illustrated in Figure 1.1, the fastest timescale of motion for the Rydberg atom
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Figure 1.1: A Rydberg atom in an optical lattice is described using three coordinates,
reflecting three timescales of motion. The quiver motion of the electron (ρ) evolves
on the fastest timescale, followed by the relative motion of the electron (r) around
the core. The center-of-mass motion of the atom in the optical potential (R) evolves
on the slowest timescale. The three timescales of motion are separated by several
orders of magnitude.

in the optical field is the quiver motion of the electron, described by the ρ coordinate.

The quiver motion evolves at the frequency of the field, which is 2.8 × 1014 Hz for

a 1064 nm laser field (which is the case in my work). The next slowest timescale of

motion is the relative motion of the electron around the core of the atom, indicated by

the r coordinate in Figure 1.1. The relative motion of the electron evolves on various

timescales. The fastest relative motion is the Kepler motion of the electron around

the core, which is at the Kepler frequency or 1011 Hz for n = 40. Slower frequencies

of relative motion arise from precession of the electron orbit due to residual fields, as

the classical Kepler orbit of the electron precesses in electric or magnetic fields. The

frequency of the precession is at the Stark frequency, 3
2
nE in atomic units, in electric

fields, or at the Larmor frequency, B/2 in atomic units, in magnetic fields [51, 52].

Estimates of the fields in our setup yield precession frequencies of about 107 Hz [40].

After the relative motion, the slowest timescale of motion is the center-of-mass motion

of the Rydberg atom in the optical potential. For our lattices, this timescale is on

the order of 104 Hz, which is several orders of magnitude smaller than the slowest

timescale for the relative motion of the electron.

Since the three timescales of motion described in Figure 1.1 are separated by
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several orders of magnitude, the Born-Oppenheimer approximation may be applied

twice to eliminate the quiver and relative motion of the electron and to find a potential

for the center-of-mass of the atom. First, since the fastest timescale of relative motion

is several orders of magnitude slower than the quiver motion of the electron, the Born-

Oppenheimer approximation is applied to adiabatically eliminate the quiver motion

of the electron. The quiver motion is then taken into account by adding the static

ponderomotive potential Vp of Equation 1.5 to the Hamiltonian of the Rydberg atom.

Second, since the center-of-mass motion is slower than the relative motion by several

orders of magnitude, another application of the Born-Oppenheimer approximation

eliminates the relative motion of the electron. The adiabatic potential for the center-

of-mass of the Rydberg atom in the optical potential is then

Vad (R) =

∫
d3r Vp (r + R) |ψ (r) |2. (1.6)

Here, the uppercase R is the center-of-mass coordinate of the Rydberg atom, and the

lowercase r is the relative coordinate of the Rydberg electron, as described in Fig-

ure 1.1. The Vp is the free-electron ponderomotive lattice potential from Equation 1.5,

and ψ is the Rydberg wavefunction. The Vad describe the trapping potentials for the

Rydberg atoms in the ponderomotive optical lattice, and therefore Equation 1.6 is of

central importance to this thesis. The trapping potentials for the Rydberg atoms in

the optical lattice are given by a spatial average of the free-electron ponderomotive

potential weighted by the Rydberg wavefunction. Calculations of adiabatic potentials,

Vad, are performed in Section 6.4.

The adiabatic potentials in the lattice are accompanied by lattice-induced state-

mixing. The Rydberg wavefunction ψ in Equation 1.6 is generally a superposition

of lattice-free atomic states, due to the state-mixing. For relatively low-intensity

lattices (∼ 106 W/cm2, corresponding to modulation potential depths of∼ 10 MHz for

counter-propagating 1064 nm laser beams), the lattice induces some m-mixing, under
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the absence of cylindrical symmetry, for states with ` > 0; the lattices are shallow

enough to avoid `-mixing. For high-intensity lattices (∼ 108 W/cm2, corresponding

to modulation potential depths of ∼ 1 GHz for counter-propagating 1064 nm laser

beams), the lattice induces strong `-mixing.

Lattice-induced state-mixing highlights a novel feature of the ponderomotive op-

tical lattice for Rydberg atoms, which is the large number of nearly degenerate states

(the degeneracy scales as n2 for hydrogen). The lattice can therefore couple large

numbers of states, and Rydberg wavefunctions in the lattice can be coherent super-

positions of tens to hundreds of states. This coupling of many degenerate states gives

rise to a complex structure of adiabatic potentials in the lattice [53]. Examples of

these complex adiabatic potentials are shown and discussed in Section 6.4.2.

Another novel feature exhibited by the ponderomotive optical lattice arises from

the size difference between Rydberg atoms and ground-state atoms in the lattice.

Ground-state atoms can be considered as point-like in relation to the lattice potential

well (sizes of∼ 10−10 m and∼ 10−7 m, respectively), whereas Rydberg atoms can have

sizes on the same order as the lattice wells. The large size of the Rydberg atom means

that the shape of its electronic probability distribution has a significant effect on the

averaging in Equation 1.6. Rydberg atoms consequently experience unique state-

dependent trapping potentials in the lattice. The state-dependence of the trapping

potentials is illustrated in Figure 1.2 for two Rydberg S states of different principal

quantum number. Generally, Rydberg atoms with larger spatial extents along the

axis of the lattice experience shallower potentials in the lattice, since they average

over more of the free-electron ponderomotive potential. Also generally, the Rydberg-

atom center-of-mass is attracted to intensity minima in the lattice. There are special

cases when the center-of-mass of the Rydberg atom is attracted to intensity maxima

in the lattice, however; the trapping potentials are then “flipped” from the usual

case (see illustration in Figure 5.5). This occurs when the size of the Rydberg atom
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Figure 1.2: State-dependent trapping potentials for Rydberg atoms in a pondero-
motive optical lattice (black indicates low intensity, white high intensity). Rydberg
states with larger spatial extents in the direction of the lattice axis (blue) generally
experience shallower trapping potentials.

approximately equals the lattice period. Such states are measured and discussed in

Section 4.3.

The exact shape of the adiabatic trapping potentials in the lattice depends on

all quantum numbers (n, `, j, mj), since these quantum numbers describe Rydberg

wavefunctions with varying shapes that average over the free-electron ponderomo-

tive potential differently. The state-dependence of the adiabatic potentials has been

experimentally verified previously in the Raithel research group using spherically sym-

metric Rydberg nS states [41]. In Chapter IV, I extend the characterization to states

with various angular distributions of the electronic probability distribution.

To summarize and emphasize the differences in ponderomotive optical lattices

for Rydberg atoms compared to conventional optical lattices for ground-state atoms,

the trapping mechanism for a Rydberg atom is fundamentally different in origin.

Rydberg atoms are trapped by the ponderomotive potential acting on the quasi-

free Rydberg electron. Further, since the ponderomotive potential is proportional

to the square of the electric field, the potential results only from intensity gradients

and not polarization gradients (as is the case, for example, for Sisyphus cooling of
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ground-state atoms in optical lattices [54]). Due to the large size of Rydberg atoms

in comparison to the optical lattice wells, Rydberg atoms experience state-dependent

lattice trapping potentials. Due to the large number of degenerate Rydberg states,

lattice-induced state-mixing can result in a rich structure of adiabatic potentials in

the lattice.

As a final note about optical traps for Rydberg atoms, another type of optical

Rydberg-atom trap has been proposed by M. Jones, T. Pohl, and co-workers [55].

This proposed type of optical trap is for alkaline-earth Rydberg atoms, which have

two valence electrons and which would be confined in the optical fields using the polar-

izability of the non-Rydberg valence electron. This trapping mechanism is therefore

also fundamentally different from that considered in this thesis.

1.4 Thesis framework

The objective of my work described in this thesis is to establish a ponderomo-

tive optical lattice as an effective Rydberg-atom trap and to characterize the trap,

thus paving the way for employment of the Rydberg-atom optical lattice system in

applications. The framework of the thesis is as follows. I begin in Chapter II by ex-

plaining the experimental setup and procedure used throughout the thesis to prepare

and detect Rydberg atoms in optical lattices. In Chapter III, I describe experiments

that provide the first demonstration of highly efficient optical Rydberg-atom trap-

ping. While the presence of trapped Rydberg atoms in the optical lattice had been

detected earlier in our lab [41], the trapping efficiency in that work was limited to

a few percent. This limitation was due to the Rydberg-atom preparation scheme,

in which the atoms were excited to maxima in the lattice Rydberg-atom trapping

potential. To overcome this obstacle and achieve efficient Rydberg-atom trapping,

I implement a technique to rapidly invert the Rydberg-atom potential immediately

following Rydberg-atom excitation, placing the potential minima at the location of
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the excited atoms. This inversion technique results in a 90% trapping efficiency.

In Chapter IV, I measure the dependence of the ponderomotive optical lattice

potentials for Rydberg atoms (the Vad in Equation 1.6) on the angular portion of the

Rydberg wavefunction. In previous work, the state-dependence of the potential was

measured for Rydberg nS states with isotropic electronic wavefunctions [41]. I extend

the characterization to Rydberg states with angular variation in their wavefunctions.

States with wavefunctions that are elongated in the direction of the lattice axis are

expected to have shallower potentials in the lattice than those elongated transverse to

the lattice axis, since those elongated in the direction of the lattice axis can average

over more of the free-electron ponderomotive potential in Equation 1.6. I measure

lattice potential modulation depths for various Rydberg nD states and find them to

vary substantially, in agreement with calculations. This result demonstrates how the

Rydberg-atom trapping potentials may be tailored as needed for an application by

choice of Rydberg state.

In Chapter V, I investigate the process by which Rydberg atoms may be photoion-

ized by the lattice light. The motivation for this work is the agreement of measured

photoionization rates for Rydberg atoms in optical fields with calculated rates based

on the electric dipole approximation. This approximation is typically made when the

wavelength of the light is much larger than the size of the atom; however, Rydberg-

atom sizes may exceed the wavelength of the light. The apparent inconsistency can

be resolved by arguing that the photoionization process for a Rydberg atom occurs

near the nucleus, within a volume that is still small with respect to the wavelength

of the light. While this argument has undergirded Rydberg-atom experiments for

three decades, in this thesis I provide the first spatially-resolved study of the pho-

toionization process within the volume of a Rydberg atom. I use the optical lattice

as a maximally inhomogeneous field probe within the atom. The measured photoion-

ization rates depend on the intensity near the center of the atom and not within the
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lobes of the electronic probability distribution. A complete understanding of the pho-

toionization process is important to applications of Rydberg atoms in optical traps, as

it may either represent a loss mechanism from the trap or be exploited as a detection

method.

In Chapter VI, I elaborate on the theoretical description of the photoionization

of Rydberg atoms by optical fields and the role of the electric dipole approximation

in these calculations. I derive and analyze expressions for the matrix elements and

photoionization cross sections for Rydberg atoms in optical fields, without and with

the dipole approximation. The results illustrate that Rydberg-atom photoionization

rates are in good agreement with the dipole approximation because the matrix el-

ements accumulate within a small volume near the nucleus. I also find conditions

under which the dipole approximation breaks down. Further, I apply the results to

consider photoionization effects in Rydberg-atom experiments in optical lattices of

both low and high intensity.

Finally, in Chapter VII, I review the main accomplishments of this thesis and

describe future directions for Rydberg-atom optical lattice experiments.
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CHAPTER II

Experimental Apparatus and Techniques

The work in this thesis examines the trapping of cold Rydberg atoms in optical

lattices. In this chapter, I describe the experimental process used throughout the

thesis to prepare and detect samples of Rydberg atoms in an optical lattice. I first

review the basics of ground-state atom trapping in magneto-optical traps (MOTs) and

optical dipole traps, as these are two fundamental tools in this work which provide

the launching point for the rest of the experiment. I then outline the procedure used

to excite and detect Rydberg atoms as well as to align the optical lattice.

2.1 Laser cooling and trapping of ground-state atoms

The advent of laser cooling and trapping has revolutionized the study of ground-

state atoms. The unique methods employed in the cooling and trapping of atoms have

not only provided a new process for investigating atoms but also an unprecedented

means for controlling them. The innovations involved in the development of laser

cooling and trapping of atoms led the Nobel Prize in Physics to be awarded to S. Chu,

C. Cohen-Tannoudji, and W. Phillips in 1997. In these innovative methods, laser light

is used to exert forces on atoms, forces which can bring the atoms from speeds near

that of sound to speeds near that of a mosquito. The forces that the laser light exerts

on the atoms can be categorized into two types: a dissipative scattering force and a
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conservative dipole force. The first laser-based trap for atoms that is discussed below,

the magneto-optical trap, utilizes the scattering force; the second, the optical dipole

trap, utilizes the dipole force.

2.1.1 Magneto-optical traps

Atoms within a gas at room temperature move with speeds of ≈ 300 m/s. These

atoms may be slowed significantly by scattering a large number of photons, each

of which have an associated momentum p = ~k. If an atomic beam is counter-

propagating with a laser beam that has a frequency near an atomic resonance, atoms

that absorb a photon will receive a momentum kick in the opposite direction of the

atomic motion. Since photons are spontaneously re-emitted by the atoms in random

directions, the momentum imparted to the atoms by the spontaneously emitted pho-

tons averages to zero over many scattering events. Therefore, by scattering many

photons, the atoms experience an average force that slows them down [56]. The laser

beam is then said to be “cooling” the atoms.

Using three pairs of counter-propagating laser beams, atoms may be cooled in

three dimensions. In this configuration, the laser beams have a frequency (denoted

by angular frequency ω) that is lower than the frequency of the atomic resonance

(angular frequency ω0). Atoms traveling toward a laser beam will be blue-shifted into

resonance with that beam due to the Doppler shift, while atoms that are traveling

away from a beam will be red-shifted further out of resonance with it. The atoms

then preferentially scatter photons from the beam that they are traveling toward

and are consequently slowed in their direction of motion. The force on the atoms is

proportional to the velocity of the atoms, and the atoms move as if they are suspended

in a viscous fluid. This configuration is therefore coined an “optical molasses” [57].

While the optical molasses slows the atoms in all directions of motion, it does not

provide a position-dependent restoring force that confines the atoms. This is achieved
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Figure 2.1: a) Magnetic field (B) and laser beam configuration for a magneto-optical
trap. b) Level diagram illustrating the operating principle of a magneto-optical trap.
The atomic energy levels are shifted by the magnetic field. The laser polarizations
shown are relative to the z-axis. The polarizations are chosen such that an atom
displaced from trap center preferentially scatters photons from the laser beam that
pushes the atoms back towards trap center.
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through the addition of an inhomogeneous magnetic field and circular polarization of

the laser beams. The magnetic field is a quadrupole field of the form (α
2
x, α

2
y, −αz),

created by two current-carrying coils arranged in an anti-Helmholtz configuration

[currents flowing in opposite directions, see Figure 2.1(a)]. Typically, α ≈ 20 G/cm.

The atomic energy levels are shifted by the magnetic field using the Zeeman effect and

vary with position, creating a spatially-dependent resonance condition. As illustrated

in Figure 2.1(b), for atoms displaced from the field zero in the +z-direction, the

laser frequency ω is closer to resonance with the ∆m = −1 transition. The atoms

therefore preferentially scatter photons from the σ−-polarized beam, since by selection

rules ∆m = −1 for σ− polarized light. The atoms are then driven back to the field

zero. The same holds if the atoms drift to −z. The atoms then preferentially scatter

photons from the σ+ beam. Thus, the atoms always experience a restoring force

towards the field zero. Due to the combined action of the magnetic field and the

optical fields, this atom trap is called a magneto-optical trap (MOT) [58]. Most

MOTs are operated with alkali-metal elements, due their high vapor pressure, simple

level structure that offers a nearly-closed cycling transition (see below), and atomic

resonances with frequencies that are readily available in low-cost laser diodes.

In the experiments presented in this thesis, I begin by cooling and trapping ru-

bidium 85 in a MOT. The MOT light has a wavelength of about 780 nm and is

about 10 MHz red-detuned from the 5S1/2, F = 3 → 5P3/2, F
′ = 4 transition (see

Figure 2.2). This transition is referred to as the cycling transition. Since the split-

ting between 5P3/2, F
′ = 4 and 5P3/2, F

′ = 3 is only ≈ 120 MHz, about one out of

every 1,600 scattering events results in population that decays from 5P3/2, F
′ = 3

into 5S1/2, F = 2. This level is 3 GHz detuned from the cycling transition and is a

so-called “dark state” since it is inaccessible to the cycling transition laser frequency.

Atoms in this state are no longer being cooled or trapped by the MOT. To reintroduce

the atoms into the cycling transition and to keep the MOT from becoming depleted,
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Figure 2.2: a) Hyperfine structure of the 5S1/2 and 5P3/2 levels of 85Rb.
Experimentally-relevant transitions are indicated by red arrows. b) A photograph
of the magneto-optical trap in the experiments of this thesis.

we add another laser beam that is resonant with the 5S1/2, F = 2 → 5P3/2, F
′ = 3

transition, called the Repumper. The MOT will essentially not work without this

Repumper beam.

An image of a typical MOT used in the experiments of this thesis is shown in

Figure 2.2(b). The cloud of atoms in the MOT is visible since the atoms are scattering

photons from the trapping light. In our experiments, atomic densities in the MOT

are on the order of 109 atoms/cm3. MOT sizes are about 1 mm in diameter and

contain about 106 atoms. The temperature of the atoms is about 150 µK, which is

the Doppler cooling limit for 85Rb (a limit on the temperature that arises from a

random walk induced by spontaneous emission). This temperature corresponds to

atomic velocities of ≈ 10 cm/s.

2.1.2 Optical dipole traps and lattices

Aside from the MOT, another type of widely employed laser trap for ground-state

atoms is an optical dipole trap. In this type of trap, atoms are confined in a focused
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laser beam using the AC Stark effect, which is a shift in the atomic energy levels

induced by an oscillating electric field (for example, a laser field). If the laser field is

assumed to have an angular frequency ω and to be linearly polarized in the z-direction,

the electric field is expressed in the electric dipole approximation as E = ẑE0 cosωt.

The Hamiltonian for an N -electron atom in the field is

H =
N∑
i=1

p2
i

2me

+ V + eE0

N∑
i=1

zi cosωt.

To obtain the eigenenergies and eigenstates of the atom in the field, one must

apply perturbation theory. The result for first order vanishes, since the time average

of cos(ωt) over one period vanishes. In second order, the resulting shifts to the energy

levels in the atom are given by [45]

∆W (2)
n = −e

2E2
0

4

[ ∑
Wm+~ω 6=Wn

|〈ψn|z|ψm〉|2

Wm −Wn + ~ω
+

∑
Wm−~ω 6=Wn

|〈ψn|z|ψm〉|2

Wm −Wn − ~ω

]
. (2.1)

Here, ψm and ψn are the unperturbed eigenfunctions, and Wm and Wn are the un-

perturbed eigenenergies [(Wm − Wn)/~ = ω0, the angular frequency of an atomic

resonance]. When using Equation 2.1 to determine shifts to an atomic energy level

induced by an optical field, the couplings of the level to all other levels are summed.

For the ground state or for low-lying excited states, the strongest couplings are to

nearby bound states. The 5S ground state of Rb, for example, only couples signif-

icantly to the first excited states, 5P1/2 and 5P3/2, in near infrared fields (such as

those used in this thesis). The origin of the energy level shifts for ground or low-lying

excited states is therefore distinct from that for Rydberg states, since Rydberg levels

do not couple significantly to other bound levels for laser wavelengths in the near

infrared.

The energy shifts of Equation 2.1 are dependent on the frequency ω of the field and
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can be expressed in terms of a frequency-dependent polarizability. The frequency-

dependent polarizability α(ω) describes the tendency of the atom’s electronic proba-

bility distribution to be distorted by the field and is given by

α(ω) = e2

[ ∑
Wm+~ω 6=Wn

|〈ψn|z|ψm〉|2

Wm −Wn + ~ω
+

∑
Wm−~ω 6=Wn

|〈ψn|z|ψm〉|2

Wm −Wn − ~ω

]
. (2.2)

Using the frequency-dependent polarizability defined above, the AC Stark shift to

the atomic energy levels is ∆W = −1
4
α(ω)E2

0 . This shift of the atomic energy levels

in a laser field is commonly called a light shift. For the “red-detuned” case when

ω < ω0, α(ω) is positive. For the “blue-detuned” case when ω > ω0, α(ω) is negative.

The shift of the energy levels in the field (i.e. whether they are raised or depressed

in energy) is therefore determined by the frequency of the field with respect to the

atomic resonance structure. For a plot of the polarizability of the Rb ground state as

a function of ω, see Reference [59].

Variations in the intensity profile of a laser field results in gradients in the AC

Stark shifts of the atomic energy levels. These gradients result in a force on the atoms

called the optical dipole force, which can be used to confine atoms in traps known

as optical dipole traps [57]. The atoms are attracted to the intensity maximum of

the beam profile if the frequency of the laser field is red-detuned with respect to the

atomic resonance, or to the intensity minimum if the frequency of the field is blue-

detuned. Optical dipole traps usually use large laser intensities, I, as well as large

detunings, δ = ω − ω0. This parameter space is desirable since the scattering rate

scales as I/δ2, while the optical dipole potential scales as I/δ [60]. Large frequencies

and detunings therefore allow for workable trap depths while minimizing heating of

the atoms due to scattering of photons from the trapping light.

Typical red-detuned dipole traps for ground-state atoms are formed by focusing
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a moderately high-power laser beam with Gaussian intensity profile into the atomic

cloud of a MOT. Typical powers of the dipole-trap beam are ∼ 1 W with beam foci

in the range of tens of µm. The force from the optical dipole potential is conservative.

Therefore, in order for any atoms initially in the MOT to be trapped in the optical

dipole potential well, they must experience another force that dissipates their kinetic

energy as they fall into the well. This dissipative force can result from scattering

of MOT light, for example. An alternative method for loading atoms into a dipole

trap involves carefully placing the atoms at the bottom of the dipole potential well,

for example by adiabatically increasing the intensity of the dipole-trapping beam.

In the trapping-beam intensity profile, the atoms are more tightly confined in the

radial direction than along the axis of the beam, since the gradient in the intensity is

weaker in the axial direction. This leads the atom cloud in the optical dipole trap to

be “cigar-shaped.” Typical atomic densities in red-detuned optical dipole traps are

on the order of 1010 atoms/cm3.

In order to realize a blue-detuned optical dipole trap, the laser beam profile must

consist of a three-dimensional intensity minimum. This can be achieved by a number

of methods, examples of which include focusing a Laguerre-Gaussian beam, focusing

four parallel Gaussian beams arranged in a square pattern, or interfering two Gaussian

beams of different focal spot sizes [30]. A benefit of blue-detuned dipole traps is that

there is less heating of the atoms due to scattering of photons in the trapping light

since the atoms are trapped at intensity minima; however, loading the atoms into

the trap is less straightforward and typically results in lower atomic densities in the

trap [61].

In an optical lattice, the intensity profile is formed by two (or more) pairs of

counter-propagating laser beams that are often red-detuned and of Gaussian profile.

The electric field of the counter-propagating laser beams has the form E(z, t) =

x̂E0[cos (ωt+ kz)+cos (ωt− kz)], where E0 is the single-beam electric field amplitude.
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The resulting interference intensity pattern is

I(z) =
1

2
cε0〈|E(z, t)|2〉T = cε0E

2
0 cos2 (kz).

The intensity pattern has a periodicity of λ/2, which is typically on the size scale of

a few hundred nm. Intensity gradients are therefore quite large in an optical lattice,

as the intensity changes from a maximum to basically zero within a few hundred nm.

This results in strong confining forces for atoms in an optical lattice.

The optical lattice utilized in this thesis is formed by two counter-propagating

laser beams of wavelength 1064 nm. This wavelength is red-detuned with respect to

the 5S → 5Pj transitions of Rb, and therefore the ground-state atoms are attracted to

intensity maxima in the lattice. More experimental details about the optical lattice

and its alignment are given below in Section 2.3.

2.2 Experimental sequence

Here, I give a brief overview of the experimental sequence used throughout this

thesis, and further experimental details are given in the sections that follow. In the

experiments, 85Rb atoms are first cooled and trapped in a MOT inside a vacuum

chamber with a pressure of about 10−9 Torr. The chamber is a cryogenic chamber,

and the experiments are performed at 77 K. The atoms in the MOT are loaded into

the optical lattice (of laser wavelength 1064 nm) by overlapping the lattice with the

MOT. The sequence of events that constitute an experimental cycle are illustrated

in Figure 2.3(a) and are repeated at a 200 Hz repetition rate. First in the cycle, the

MOT and Repumper light is switched off. An optional sample clean-up pulse, which

we refer to as the “Dumper” and which is discussed in more detail in Section 2.3.2,

is applied to eliminate untrapped ground-state atoms. The remaining atoms in the

lattice are then excited to Rydberg states via two-photon excitation from the 5S
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Figure 2.3: a) Timing diagram of the events involved in one experimental cycle.
After excitation to Rydberg states, the electric field ionization ramp used for Rydberg
detection is applied at a variable time delay, td. b) Scheme for excitation from the
ground state to Rydberg states.

ground state to nS or nD Rydberg states, as described in Section 2.2.1. The Rydberg

atoms are detected after a delay time td by ionizing them with a pulsed electric field

and subsequently detecting the ionized electrons, a method discussed in Section 2.2.2.

2.2.1 Rydberg excitation

Ground-state atoms are transferred to Rydberg states via two-photon excitation

5S1/2 → 5P3/2 → Rydberg, as illustrated in Figure 2.3(b). The laser light for the 5S−

5P transition has a wavelength of 780 nm and is ≈ 1.2 GHz detuned from the 5P3/2

intermediate state. The laser light for the 5P −Rydberg transition has a wavelength

of ≈ 480 nm and is tuned to achieve two-photon resonance with a 5S → Rydberg nS

or nD transition (which are the two choices allowed by selection rules). By performing

the two-photon transition off-resonance with the 5P intermediate state, we achieve

a more coherent transition (since spontaneous emission from 5P is avoided) and

narrower Rydberg excitation lines.

The arrangement of the excitation laser beams in the experimental setup is illus-

trated in Figure 2.4. The 5S − 5P beam is co-propagating with the lattice beams; it

is therefore focused by the same lens that focuses the ingoing lattice beam (for details
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Figure 2.4: a) Qualitative illustration of the laser beam and detection apparatus
geometry utilized in the experimental setup. The 5S − 5P excitation beam and the
lattice beam are co-propagating. After Rydberg atoms are excited, they are detected
using electric field ionization and a microchannel plate (MCP). b) Close-up view of
the overlap of the excitation and lattice laser beams at the MOT.

about the lattice setup, see Section 2.3). Due to chromatic aberrations, the focus of

the 5S − 5P beam lies about 2 mm away from the lattice focus. The FWHM of the

5S − 5P beam at the location of the atoms is 150 µm. The 5S −Rydberg excitation

beam forms an angle of about 45◦ with the 5S− 5P and lattice beams and is focused

to a FWHM of ≈ 15 µm. This focal size of the 5S − Rydberg beam is chosen to

approximately match the lattice focus.

The excitation light is pulsed during the experiment, with typical pulse durations

of τex = 0.5 µs. The powers of the excitation pulses are set such that the number

of Rydberg atoms excited per cycle is about one, so that Rydberg-atom interactions

and collisions do not play an important role in the experimental results. In a typical

experiment, I use 30 µW and 30 mW of 5S − 5P and 5P − Rydberg laser power,

respectively. Using the beam powers, beam profiles, intermediate state detuning, and

5P −Rydberg transition matrix elements, two-photon Rabi frequencies are estimated

to be up to 2π × 500 kHz. With the lattice off, the observed FWHM of the Rydberg
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excitation lines are between 2-3 MHz, which is just slightly above the width of the

power spectrum of a square pulse with 0.5 µs duration. Hence, for my excitation

pulse duration, transition broadening due to saturation plays no significant role. The

slight broadening of the lattice-free Rydberg excitation lines is attributed to electric

field inhomogeneities and the MOT magnetic field1.

As for the hardware used for excitation light production and control, the source

of the 5S − 5P laser light is a homebuilt external cavity diode laser (ECDL). The

wavelength of the ECDL (≈ 780 nm) is stabilized by feedback on the diode current

and the diffraction grating in order to lock to a saturated absorption spectroscopy res-

onance (for an explanation of ECDLs see [62], for saturated absorption spectroscopy

see [60]). Stabilization of the wavelength off-resonance with the 5P3/2 intermediate

state is achieved by locking the ECDL to the 5S1/2, F = 2→ 5P3/2, F
′ = 3 transition

of 87Rb, which is ≈ 1.2 GHz red-detuned from the 5S1/2, F = 3 → 5P3/2, F
′ = 4

transition of 85Rb.

The source of the laser light for the 5P − Rydberg transition is a Topica SHG

laser system, which outputs ≈ 200 mW of 480 nm light. In this laser system, the

output beam of a 960 nm diode laser is first amplified and then frequency-doubled to

480 nm. The frequency doubling is achieved by second harmonic generation using a

nonlinear crystal (a process first demonstrated by P. Franken and co-workers at the

University of Michigan [63]), which is located inside a cavity arranged in a bow-tie

configuration. The wavelength of the 5P − Rydberg laser is stabilized by providing

feedback on the 960 nm diode laser current to lock to a transmission peak from a

pressure-tuned Fabry-Pérot cavity. The Fabry-Pérot cavity was designed and built by

the Raithel lab [64]. It consists of two mirrors in a chamber with an attached bellows.

A stepper motor connected to a translation stage compresses or expands the bellows,

changing the pressure and consequently also the index of refraction in the cavity.

1The MOT magnetic field is not switchable in the experimental setup because of eddy currents
in the system that persist for ≈ 50 ms.
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The change in index of refraction shifts the frequency of the transmission peak, thus

tuning the frequency of the laser. The typical drift rate of the transmission peaks

from the Fabry-Pérot cavity is ∼ 350 kHz per minute. Therefore, when performing

experiments with the 5P−Rydberg laser frequency set to a particular value, data can

be taken for about five minutes before the laser frequency needs to be checked. The

full scan range of the Fabry-Pérot is ∼ 1 GHz, which is about equal to the spacing

between adjacent Rydberg states.

The excitation light pulses are created by passing the laser beams through acousto-

optic modulators (AOMs) and pulsing the rf power applied to the AOMs. The first-

order light from the AOMs is coupled into the optical fiber that transmits the light

to the experimental chamber. Pulsing the rf power essentially turns the first-order

light on and off, thus creating light pulses at the fiber output.

2.2.2 Rydberg detection

Since Rydberg electrons are so loosely bound to the atomic core, they are ionized

by a modest DC electric field. Rydberg atoms are therefore readily detected by pulsing

an electric field and detecting the ionized electrons. In the experiments presented in

this thesis, I use state-selective electric field ionization as the Rydberg-atom detection

method. In this method, an electric field is increased as a function of time from zero

to values above the Rydberg-atom ionization limit. The electric field values at which

the ionized electrons are detected determine the spectrum of states present.

To understand the state-selective electric field ionization method, one must con-

sider the Stark shift of the atomic energy levels in a DC electric field. These shifts

are illustrated for Rb in Figure 2.5. As the electric field is increased, adjacent states

that are initially non-degenerate eventually (anti-)cross, a point referred to as the

Ingles-Teller limit (≈ 6 V/cm in Figure 2.5). For higher electric field values (and

also for non-hydrogenic atoms), low-` states of different n undergo avoided crossings,
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Figure 2.5: Calculated Stark map of Rb energy levels as a function of DC electric
field. Red: mj = 1/2. Green: mj = 3/2. Black: mj = 5/2.
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due to the large, non-zero quantum defects (see Gallagher, Reference [26]). In Rb,

the quantum defects are large for S, P , and D states, since the radial wavefunctions

penetrate into the finite-sized ionic core (see Section 1.2.2). The ionization process

for these states therefore depends on how quickly the electric field increases with time

from zero field to the ionization field (i.e. the slew rate, S = dE/dt). If the slew rate

is sufficiently slow and the avoided crossings sufficiently large, the states will traverse

the Stark map from zero field to the ionization field adiabatically. An adiabatic ion-

ization process preserves the zero-field ordering of the energy levels and allows for

unambiguous determination of the initial, zero-field n states from the electric field

at which they ionize. The ionization electric field for low-` states is E = 1/16n∗4 in

atomic units, as determined in Section 1.2.

For high-` states, the avoided level crossings are smaller, due to the near-zero

quantum defects. For the same electric field slew rate as in the low-` case, the high-`

states will traverse the Stark map diabatically and ionize at higher electric fields. The

ionization electric fields for high-` states are between E = 1/9n∗4 and E = 1/4n∗4 [26].

A diabatic ionization process does not allow for a straightforward determination of

initial n states from the electric field values at which the states ionize, since the

zero-field ordering of the states may not be preserved.

In this thesis, I am only concerned with the low-` Rydberg states nS or nD, which

fortunately undergo adiabatic ionization. In the experimental setup, the ionization

electric field is created by ramping the electrode on the LVIS side of the chamber [see

Figure 2.4(a)] from 0 to −350 V (corresponding to peak electric fields of ∼ 130 V/cm)

with a rise-time of ≈ 10 µs. After the Rydberg atoms are ionized, the freed electrons

are pushed by the electric field to a microchannel plate (MCP) assembly for detection.

The MCP is composed of an array of lead glass capillaries with diameter ≈ 10 µm and

spacing of ≈ 15 µm. The capillaries are oriented at an angle of ≈ 8◦ with the normal

to the face of the MCP [65]. A freed electron strikes the wall of one of the capillaries
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Figure 2.6: Experimental state-selective field ionization trace. The voltage applied
to the field ionization electrode is indicated in black, and the corresponding detected
electron signal is indicated in red. The 50S and 51S states are ionized at slightly
different electric field values. The 51S state, being more loosely bound to the atom,
is ionized by a smaller field.
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and creates a shower of secondary electrons which are further accelerated by the

voltages applied across the MCP. In my work, I use two MCPs in series, which yield

a charge gain of about 106. Behind the MCP, a phosphor screen converts the shower of

electron impacts to light, which may be used to obtain spatial information about the

distribution of electrons hitting the face of the MCP [10]. The electrical signal, which

yields temporal information about the detected electrons, is capacitively coupled out

of the phosphor screen and directed to a counter. The counter communicates with the

computer for recording the electron detections. The temporal information about the

ionized electrons is correlated with the electric field values at which they are detected

and is thereby used to determine the spectrum of Rydberg states present. The MCP

has a ≈ 30% detection efficiency.

Figure 2.6 illustrates the electric field ionization ramp (black) utilized in the ex-

periments of this thesis and the detected electron signal corresponding to the states

50S and 51S (red). Since the 51S state is more loosely bound to the atom than

the 50S state, it ionizes at a slightly lower electric field value. The signal from the

two states is resolved, as between the 50S and 51S peaks, the signal almost dips to

the background value. While there is a slight overlap of the 50S and 51S signals, I

estimate this crosstalk to be less than 5%. The ability to resolve these two states is

an important prerequisite for the experiments presented in Chapter III.

2.3 The optical lattice

2.3.1 Alignment of the lattice

The laser used for the optical lattice is a 1064 nm ytterbium fiber laser, with an

output power ≤ 10 W. The one-dimensional optical lattice is established by focusing

the 1064 nm beam into the MOT, retroreflecting it with a corner cube retroreflector,

and refocusing it. The corner cube retroreflector is composed of three intersecting
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planar mirrors that are mutually orthogonal. Since the corner cube always reflects

the beam back parallel to its incoming path, the corner cube plays a crucial role in the

stability of the lattice alignment. We have confirmed that the retroreflector preserves

the polarization of the lattice light. The ingoing lattice beam is focused to a FWHM

of 13 µm, and in typical experiments, the power in the ingoing beam is ≈ 1 W. The

return beam has a FWHM of ≈ 25 µm (see Section 3.3 and Reference [66]), which

is larger than the ingoing beam focus due to cumulative aberrations caused by the

optical components in the retroreflection beam path. Also, the optical components

in the beam path reduce the power of the return lattice beam at the location of the

atoms to 0.56 times that of the ingoing beam. The lattice is therefore not a perfect

standing wave, due to the mismatch in intensities of the ingoing and return lattice

beams. However, the contrast in the lattice is still about a factor of 5. Peak intensities

in the lattice are on the order of 106 W/cm2. The lattice is linearly polarized and is

always on for measurements involving the optical lattice.

In the first step of aligning the lattice, the return beam is blocked, and the ingo-

ing beam establishes a running-wave dipole trap for ground-state atoms in the MOT.

The focus of the ingoing beam is positioned to maximize dipole-trap-induced light

shifts of the optical ground-to-Rydberg transition frequency. An example of an op-

tical excitation spectrum of the 50S Rydberg level in the dipole trap is shown in

Figure 2.7(a) (black). The spectrum is obtained by scanning the frequency of the

5P − Rydberg excitation laser and plotting the number of detected Rydberg atoms

as a function of frequency. The peak in the spectrum at 0 MHz is due to atoms

that are excited in the MOT outside of the dipole trap [i.e. in the regions where the

excitation beams overlap outside of the 1064 nm beam, see Figure 2.4(b)]. This peak

therefore corresponds to the unperturbed ground-to-Rydberg transition frequency, as

indicated by the solid arrows in Figure 2.7(a),(b). The blue-shifted feature in the

excitation spectrum of Figure 2.7(a) is from atoms located in the dipole trap that
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Figure 2.7: a) Optical excitation spectra for 50S in the running-wave dipole trap
(black) and standing-wave optical lattice (red), obtained by scanning the frequency
of the upper transition excitation laser and plotting the number of detected Ryd-
berg atoms. On the x-axis, 0 MHz corresponds to the unshifted transition frequency
5S1/2 → 50S1/2. The arrows correspond to the ground-to-Rydberg transition fre-
quency at the locations indicated in (b). b) Qualitative illustration of the light shift
of the ground and Rydberg potentials in the dipole trap (black) and the lattice (red),
for a cut transverse to the lattice axis. The solid arrow corresponds to the unperturbed
ground-to-Rydberg transition frequency. The dashed and dotted arrows correspond
to the transition frequencies for atoms located near the bottoms of the dipole-trap
and optical-lattice potential wells, respectively.
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experience dipole-trap-induced light shifts [dashed arrows in Figure 2.7(a),(b)]. To

optimize the dipole trap alignment, both the position of the ingoing beam focus and

the overlap of the 5P − Rydberg excitation beam with the 1064 nm focal spot are

optimized for maximal shift and sharpest cutoff on the blue-frequency side of the

excitation spectrum in Figure 2.7(a). The maximal shift and sharp cutoff means that

the focus of the dipole trap beam is overlapped with the center of the MOT and that

I am exciting atoms located near the bottom of the ground-state potential wells.

To align the return beam of the lattice, the return-beam focus is positioned to

optimize the back-coupling through the optical fiber (that transmits the 1064 nm

light to the experimental chamber; see Figure 3.2). Since I couple the 1064 nm light

out and back into the same fiber (which is a single mode fiber), I ensure that the

incident and return foci overlap. An optical excitation spectrum for the standing-

wave optical lattice is shown in Figure 2.7(a) (red). The shift of the blue-frequency

cutoff from the unperturbed transition frequency in the lattice spectrum is about two

times that for the dipole trap, due to the increased light intensity in the lattice [see

light shifts and dotted arrow in Figure 2.7(b)]. In a lattice with perfect visibility, the

lattice-induced shift would be four times the dipole-trap-induced shift. The reduction

in the experimentally observed lattice-induced shift is due to the imperfect visibility

in the lattice, which results from the reduction in power and enlargement in focus

of the return beam discussed above. In the lattice spectrum of Figure 2.7(a), the

sharp cutoff on the blue-frequency side of the spectrum indicates that the ground-

state atoms in the lattice are localized near the bottoms of the lattice potential wells.

They are therefore efficiently cooled by the MOT light, which is effectively increased in

red-detuning as the atoms in the lattice experience lattice-induced light shifts [67, 68].

Optical excitation spectra for 50S in the lattice as a function of lattice laser power

is shown in Figure 2.8 (indicated powers are for the ingoing lattice beam). For powers

. 1 W, the blue-shifted feature due to atoms in the lattice is well-localized on the
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Figure 2.8: Optical excitation spectra for 50S in the lattice as a function of lattice
power (indicated values are for the ingoing beam), plotted on a logarithmic scale to
emphasize detail in low count regions. The spectra demonstrate that for powers higher
than about 1 W the ground-state atoms are cooled less efficiently to the bottoms of
the lattice potential wells.

high-frequency side, and the frequency shift scales linearly with lattice power. For

powers & 1 W, the blue-shifted feature spreads out, indicating that the atoms are not

as well localized near the bottoms of the ground-state lattice wells. This indicates

a deterioration in the laser cooling of the atoms in the deeper lattice wells, as the

detuning of the MOT light approaches 60 MHz at the highest powers. The MOT

light is then too far detuned to efficiently cool the atoms in the lattice. Due to this

deterioration of the laser cooling at high lattice powers, I limit the lattice ingoing beam

power to ≈ 1 W for the experiments presented in this thesis. Since the temperature

of the ground-state atoms in the lattice largely determines the temperature of the

atoms after they are excited to Rydberg states, it is beneficial to cool the ground-

state atoms as efficiently as possible to enable high Rydberg-atom trapping efficiencies

in the lattice (see Section 3.4).

The maximal lattice-induced shifts in optical excitation spectra, as shown in Fig-
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Figure 2.9: Effect of the Dumper pulse. Optical excitation spectra for 45D in the
lattice, with (red) and without (black) the Dumper.

ure 2.7, yield information on the lattice potential modulation depths for both the

ground state and the Rydberg state; this is discussed in detail in Section 4.2.2.

Lattice-induced shifts in optical excitation spectra are therefore used daily for verify-

ing alignment of the optical lattice. The Rydberg potential modulation depth varies

for different Rydberg states, both in magnitude and sign. As a reference point, the

lattice modulation depth for 50S and 1 W of ingoing lattice beam power is ≈ 10 MHz.

The modulation depth of the ground-state lattice potential for 1 W of ingoing lattice

beam power is ≈ 20 MHz.

2.3.2 Signal improvement using optical pumping techniques

As illustrated in the excitation spectra of Figures 2.7 and 2.8, a significant number

of atoms are excited outside of the lattice (evidenced in the peak at 0 MHz). This

signal is undesirable for my experiments, as it may overwhelm signal from the atoms

in the lattice. To reduce or eliminate the signal from atoms outside of the lattice,
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I apply a sample clean-up pulse, referred to as the “Dumper” pulse, between the

turnoff of the MOT/Repumper light and the application of the excitation pulses [see

Figure 2.3(a)]. The Dumper pulse has a duration of 25 µs and is resonant with

the 5S1/2, F=3 → 5P3/2, F
′=3 transition (see Figure 2.2). Due to light shifts for

atoms in the lattice, the Dumper is closer to resonance with the atoms outside of

the lattice. The Dumper therefore optically pumps the atoms outside of the lattice

into the F=2 ground state much more efficiently than the atoms inside the lattice.

Since the Repumper light is off, these atoms do not return to the cycling transition.

Following the Dumper pulse, the F=3 atoms left in the lattice are accessible for

optical excitation to the Rydberg state. Figure 2.9 shows optical excitation spectra

for 45D with (red) and without (black) the Dumper pulse applied. With the Dumper,

the signal at relative frequencies of 0 MHz and 130 MHz from atoms outside of the

lattice disappears, leaving only the signal from the atoms in the lattice. The Dumper

is therefore an effective method to obtain a clean sample of atoms in the lattice for

use in experiments.

In the following chapters of this thesis, the experimental setup and procedures de-

scribed in this chapter are employed to study Rydberg atoms in optical lattices. The

trapping of Rydberg atoms in optical fields was first proposed in 2000 [40] and first

achieved in 2010 [41]. Now, optical Rydberg-atom traps are anticipated to become a

mainstream technique for quantum information processing [4, 30, 59], high-precision

spectroscopy [31], or many-body physics [11]. In the next chapter, I discuss work

that led to the first highly efficient optical trap for Rydberg atoms, a development

that moves this system a significant step closer to being available for use in applica-

tions [66].
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CHAPTER III

Lattice Inversion for Highly Efficient

Rydberg-atom Trapping

Rydberg-atom trapping has emerged as a tool in such applications as quantum

computing [2, 4, 32, 69] and high-precision spectroscopy [31], as described in Sec-

tion 1.3. Small lattice-induced energy-level shifts distinguish optical Rydberg-atom

traps from static-field traps [36, 37] and make them attractive for these applications.

While optical traps for Rydberg atoms were first proposed by the Raithel group [40],

several groups are now pursuing traps along these lines [30, 70], largely motivated by

the possibility to create “magic wavelength” traps that minimize trap-induced shifts

on transitions of interest in quantum computing or high-precision spectroscopy [33].

Despite potential applications, efficient optical traps for Rydberg atoms had not been

realized until the work described in this chapter. In this work, I demonstrate an

optical lattice with high Rydberg-atom trapping efficiency.

3.1 Rydberg-atom preparation in the lattice

To understand the technique for achieving high trapping efficiencies developed in

this chapter, one must first consider the preparation process for the Rydberg atoms

in the 1064 nm optical lattice. Ground-state 85Rb atoms are initially laser-cooled
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into the wells of the 5S lattice potential and are then laser excited to Rydberg states

(see Section 2.2.1). As discussed in Section 1.3.2, the Rydberg electron experiences a

ponderomotive potential in the optical lattice much like that a free electron experi-

ences, Vp = e2E2
0/(4meω

2), where ω is the angular frequency of the field and E0 is the

amplitude of the linearly polarized field at the location of the Rydberg electron. The

polarizability of the Rydberg state is therefore approximately that of a free electron.

The free-electron polarizability, αp, is found by comparing Vp to the expression for

the AC Stark shift, W = −1
4
αE2

0 . Thus, αp = −e2/(meω
2). In a 1064 nm laser field,

αp = −4πε0 × 545a30 in SI units. To find the polarizability αR of a specific Rydberg

state in the optical lattice, one must multiply αp by a state-dependent factor, ξR,

that takes into account the averaging of the Rydberg-atom wavefunction over the

free-electron ponderomotive potential (see Equation 1.6). In general, the ξR depend

on the geometry of the lattice; here, I consider my case of two counter-propagating

laser beams of the same linear polarization. For the 50S state in my lattice, a case

under consideration in this chapter, the averaging factor is ξ50S = 0.415. The polariz-

ability of the 50S state in the optical lattice is therefore α50S = −4πε0×0.415×545a30

in SI units. For the 50S state and most Rydberg states, the polarizability is negative1,

and the Rydberg atoms are attracted to regions of intensity minimum in the lattice.

In contrast to the Rydberg states, atoms in the 85Rb 5S ground state have a pos-

itive dynamic polarizability at 1064 nm, since this wavelength is red-detuned relative

to the 5S → 5P transition (see Section 2.1.2). The polarizability of the 5S ground

state is α5S = 4πε0 × 711a30 in SI units at 1064 nm [71], and the ground-state atoms

are attracted to regions of intensity maximum in the lattice.

Due to the (usually) different signs of αR and α5S for the 1064 nm optical lat-

tice, the ground-state lattice potential minima, which are co-located with light inten-

1An exception occurs when the size of the Rydberg atom approximately equals the lattice period.
In this case, ξR becomes negative, resulting in a positive polarizability αR. Such a case is measured
and discussed in Section 4.2.2.
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Figure 3.1: Configuration for an electro-optic modulator (EOM) used as a polarization
switch. In a simplified picture, the EOM contains a KD∗P crystal with index of
refraction along x that changes in response to an electric field, E. The change in index
of refraction introduces a phase shift between the x- and y-polarization components,
thus modifying the polarization state of the light at the output. The EOM splits the
linearly-polarized input beam of power P into orthogonal output components with
powers P − Ptrans and Ptrans.

sity maxima, coincide with Rydberg-state potential maxima. Laser excitation of the

ground-state atoms in the lattice produces Rydberg atoms near the maxima of the

Rydberg-atom lattice potential. This results in limited Rydberg-atom trapping in the

lattice. Previously, we have trapped a few percent of these atoms in the lattice [41].

The few trapped atoms were fortuitously excited partway down the Rydberg lattice

wells, due to the linewidth of the excitation lasers, and did not have enough energy to

escape the wells. In the work presented in this chapter, I develop a method to rapidly

invert the lattice potential after Rydberg-atom preparation. Since the inverted poten-

tial has minima near the locations of the initially prepared Rydberg atoms, I achieve

highly efficient optical Rydberg-atom trapping.

3.2 Lattice inversion

To invert the lattice, I use an electro-optic technique. This technique is enabled by

an electro-optic modulator (EOM; Conoptics, Inc., model 350-105) used as a polariza-
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tion switch. Here, I present a simplified explanation of how the EOM switches the po-

larization. The EOM contains a crystal (KD∗P) that exhibits the linear electro-optic

effect. This effect is a modification in the index of refraction of the crystal in response

to an applied electric field, by an amount proportional to the field strength [72]. I

use the controllable index of refraction in the EOM to modify the polarization state

of the lattice light passing through the device. The configuration for an EOM as

a polarization switch in our setup is illustrated in Figure 3.1. The 1064 nm beam

incident on the EOM is linearly polarized and has power P . The electric field in the

EOM is applied to the crystal in the x-direction in Figure 3.1, which is transverse to

the 1064 nm beam propagation direction and at a 45◦ angle to the incident 1064 nm

polarization direction. Depending on the electric field strength, the 1064 nm polariza-

tion component in the x-direction may experience a different index of refraction than

that in the y-direction. This difference in index of refraction introduces a phase shift

between the x and y components that consequently modifies the polarization state of

the light at the EOM output. In general, the total incident power P is split into two

orthogonal linear-polarization components at the EOM output, with variable powers

Ptrans and P −Ptrans as indicated in Figure 3.1. When the electric field in the EOM is

set such that the index of refraction in the x- and y-directions in Figure 3.1 is equal,

the light passes through with its polarization state unaltered (Ptrans = 0). When the

electric field is set such that the relative phase shift between x and y components is

π, the input linear polarization is rotated by 90◦ (Ptrans = P ).

In the experiment, the EOM switches the polarization state of the lattice light

immediately after Rydberg-atom excitation. For a complete lattice inversion, the

EOM switches the polarization from one linear direction (Ptrans = 0) to the orthogonal

linear direction (Ptrans = P ). The lattice light is then transmitted to the atoms

using a polarization-maintaining (PM) fiber (see diagram of the experimental setup

in Figure 3.2). The two orthogonal linear lattice polarization directions are aligned
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Figure 3.2: Sketch of the experimental setup. Rydberg atoms are optically excited
at potential maxima of a one-dimensional Rydberg-atom optical lattice. An EOM is
used to switch the lattice polarization by 90◦ from A to B immediately after excitation,
resulting in lattice inversion and efficient Rydberg-atom trapping.

with the axes of a quarter waveplate in the return beam of the lattice that introduces a

total differential phase shift of π between the polarization components. For a complete

lattice inversion, a phase shift of π in the return beam alters the locations of intensity

maxima and minima in the lattice by λ/4. Thus, a complete lattice inversion applied

immediately after Rydberg-atom excitation results in intensity minima at the location

of the excited atoms. For the lattice inversion to be most effective, the timescale over

which the inversion occurs must be faster than the center-of-mass oscillation period

of the atoms in the lattice. In the utilized lattice, the oscillation period is ∼ 5 µs

while 85% of the polarization switch occurs within 0.2 µs.

In general, I characterize the lattice inversion by the parameter η = Ptrans/P ,

which ranges from zero (no inversion) to 1 (complete inversion). For η values be-

tween zero and 1, the polarization of the light at the output of the EOM is elliptical.

The Rydberg-atom lattice potentials are insensitive to the polarization of the lattice
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Figure 3.3: a) Experimental timing diagram for performing microwave spectroscopy
on the atoms in the lattice. b) Level diagram illustrating the excitation scheme.
After ground-state atoms are excited to the 50S Rydberg state, they are driven via
a two-photon microwave transition to 51S.

light (in contrast to ground-state atoms, which have polarization-dependent trapping

potentials [54]) and depend only on the powers in the two orthogonal linear polar-

izations. Due to the waveplate in the return beam, one linear component acquires

a phase of π that shifts the locations of intensity minima and maxima by λ/4 for

that component. In the special case of circular polarization (η = 0.5), for example,

the two components have equal powers, but the interference pattern for one of the

components is shifted by λ/4. The corresponding lattice potentials in this case are

flat. Lattice potentials for selected values of η are depicted in Figure 3.5(b).

3.3 Microwave spectroscopy

Demonstrating that the lattice inversion results in efficient Rydberg-atom trapping

is not a straightforward task. Methods usually employed in demonstrating the trap-

ping of ground-state atoms involve holding the trapped atoms while the untrapped

atoms fall away under the influence of gravity. However, this method is not feasible

for the 50S Rydberg state under consideration here, since its lifetime of ≈ 100 µs at
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77 K is not long enough for the untrapped atoms to fall out of the detection region.

Instead, I make use of the unique state-dependent potentials for Rydberg atoms in

the lattice (see Section 1.3.2) to establish the presence of trapped atoms using mi-

crowave spectroscopy of the 50S → 51S transition. S-states are well-suited for these

experiments due to their insensitivity to residual electric and magnetic fields and

their isotropic wavefunctions, which eliminate the orientational effects discussed in

Section 4.1. These features of S-states allow for transform-limited microwave spectra.

The experimental sequence for performing microwave spectroscopy is illustrated in

Figure 3.3. Excitation laser pulses of duration τex are applied, as described in Sec-

tion 2.2.1, to prepare 50S atoms in the lattice. The frequency of the 5P → Rydberg

excitation laser is set to excite atoms at the deepest part of the lattice wells (see Fig-

ure 2.7). Immediately after the excitation laser pulses, the lattice potential is inverted.

The Rydberg atoms then interact for 6 µs with microwave radiation that drives the

50S → 51S two-photon transition (transitions proceed off-resonantly through an in-

termediate P state). Subsequently, the Rydberg-state distribution is measured using

state-selective electric field ionization (see Section 2.2.2). The 50S and 51S states

produce distinct ionization signals, shown in Figure 2.6, that are recorded separately

with a gated pulse counter. The microwave power in the experiment is set such that

the fraction of the population transferred to the 51S state on-resonance without the

lattice is 50%.

The microwave spectroscopy method of investigating the lattice trapping efficiency

exploits the fact that the lattice-induced shift of the microwave transition depends

on the atomic position in the lattice. To illustrate, I first consider the case without

a lattice inversion (η = 0). In this case, the atoms are initially located near lattice

potential maxima following excitation to the 50S Rydberg state. The microwave spec-

trum for the 50S → 51S transition in this case is shown in the lowermost spectrum

in Figure 3.5(a). The x-axis in Figure 3.5(a) is scaled such that 0 corresponds to the
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Figure 3.4: The 50S and 51S lattice potentials. The 50S potential is shown shifted
up in energy by the unperturbed 50S → 51S transition energy, ~ω0. The arrows
indicate that atoms located near 50S potential maxima (minima) and driven from
50S → 51S have transition frequencies that are red-shifted (blue-shifted) from the
unperturbed transition frequency.

unperturbed 50S → 51S transition frequency (which is ω0 ≈ 2π × 61.92 GHz). The

microwave spectrum for η = 0 exhibits three features, labeled A, B, and C. Feature

A is associated with untrapped atoms without much kinetic energy that spend the

majority of the microwave-interaction time near the lattice potential maxima. This

feature is red-shifted in transition frequency since the potential for the 51S state is

slightly shallower than for 50S, as illustrated in Figure 3.4 (see also Section 1.3.2).

Atoms that are located near 50S potential maxima and driven from 50S → 51S

are red-shifted in transition frequency. Feature B is due to untrapped atoms with

enough energy that their trajectories traverse several lattice wells. Since these atoms

sample many regions of the lattice, the shift of this feature averages to near zero.

The B-signal is still slightly red-shifted since the atoms spend more time near the

potential maxima, where their kinetic energy is less. The blue-shifted feature C is

largely due to atoms trapped in a single lattice well. Due to the linewidth of the

excitation lasers, these atoms are excited partway down the lattice wells and lack

enough energy to escape those wells. Atoms located near potential minima are blue-

shifted in transition frequency since the 51S state is slightly shallower than 50S, as

illustrated in Figure 3.4. Without a lattice inversion, the C-signal in Figure 3.5(a) is

weak, showing that only a few percent of the Rydberg atoms are trapped. The case

η = 0 is analyzed in detail in References [41, 73].
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Figure 3.5: a) Experimental microwave spectra for the indicated values of η =
Ptrans/P for an ingoing lattice beam power of 0.8 W and optical pulse length
τex = 0.5 µs (spectra offset for clarity). b) Lattice potentials after inversion vs. posi-
tion for several of the η-values used in panel (a). The fully inverted case, η = 1, leads
to the strongest blue-shifted signal component, indicative of most efficient Rydberg-
atom trapping.

In Figure 3.5(a), I show microwave spectra for several values of η. As η is increased

from 0 to 1, the signal shifts almost entirely into the C-component, which presents

a qualitative measure for the fraction of trapped atoms. Hence, the η = 1 spectrum

demonstrates that the fully inverted lattice forms a highly efficient Rydberg-atom

trap. The high trapping efficiency occurs because the Rydberg atoms do not move

significantly during the optical excitation pulse length (τex = 0.5 µs) and the 0.2 µs

lattice inversion time. Following the lattice inversion, the atoms find themselves

trapped at a minimum of the Rydberg-atom trapping potential, despite the fact that

they were initially excited at a maximum of that potential. Integrating the areas

under the B and C-signals in the curve for η = 1 in Figure 3.5(a), we obtain a first

estimate of the trapping efficiency of about 80%. However, we expect this estimate

to be too low because the red-detuned Fourier side peaks of the strong C-component

overlap with the relatively weak B-component.
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Figure 3.6: a) Simulated microwave spectra for the indicated values of η = Ptrans/P
and the same conditions as in Figure 3.5. b) Simulated atomic trajectories for the
cases of no inversion (bottom) and complete inversion (top). The Rydberg-atom
trapping potential is shown in the background on a scale from 3 MHz (dark) to
15 MHz (white).

In order to obtain a more accurate estimate of the trapping efficiency, we perform

simulations to model the entire microwave spectrum (the simulations are very simi-

lar to those described in Reference [41]). In the simulations, the internal dynamics

are treated quantum mechanically, and the external dynamics are treated classically,

which is allowable because of the depth of the Rydberg-atom lattice wells (≈ 10 MHz

for 50S, which is much larger than the recoil energy of ≈ 2 kHz). Initial positions

and velocities of 5S atom ensembles are assumed to follow a Maxwell-Boltzmann dis-

tribution in the ground-state trapping potential (temperature T ' 100 µK, which

is on the order of the laser cooling Doppler limit for Rb). After randomly selecting

positions and momenta from this distribution, the probabilities that the atoms are

excited to 50S is determined. The optical excitation 5S → 50S is assumed to be reso-

nant at the lattice intensity maxima, where the 5S atoms collect, and we assume low
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saturation and an excitation bandwidth of 3 MHz (the measured width of lattice-free

optical Rydberg resonance lines). The classical center-of-mass Rydberg-atom trajec-

tories follow from the Vad trapping potential calculated for 50S from Equation 1.6

and are computed using a fourth-order Runge-Kutta method. Note that while the

atomic state is actually a coherent superposition of 50S and 51S, the trajectories are

determined from the 50S potential. (The difference in the 50S and 51S potentials

is only 1.8%, causing negligible effects on the trajectories over the timescales of in-

terest.) The atom-lattice interaction times are randomly chosen between 6 µs and

6 µs+τex, consistent with the timing used in the experiment. Since the frequency of

the 50S → 51S transition depends on the location of the atoms as they move through

the lattice potential, the detuning of the microwave transition is time-dependent. The

microwave-driven quantum evolution in the internal state space {|50S〉, |51S〉} is com-

puted along the trajectories by integrating the time-dependent Schrödinger equation.

In Figure 3.6, we show theoretical spectra obtained for our experimental conditions,

as well as 100 typical Rydberg-atom trajectories for the cases η = 0 and η = 1.

Most parameters in the simulation have values known from the experiment. The

Rabi frequency of the microwave transition is set to a fixed value at which the on-

resonant 50S → 51S transition probability is 50% when the lattice is off (which we

use as a calibration point in the experiment). The measured powers of the ingoing

and return lattice beams and the measured FWHM diameter of the ingoing lattice

beam (13 µm) are also entered as fixed values. The only free fit parameters of the

simulation are the initial atom temperature T and the FWHM diameter of the return

lattice beam, wr, which could not be measured.

Excellent agreement between experimental and simulated microwave spectra is

found for wr = 25 µm and T = 100 µK (used in Figure 3.6), with respective estimated

uncertainties of 2 µm and 20 µK. For these parameters, we find that 90% of the atoms

are trapped in the fully inverted lattice (η = 1). We have studied how sensitive
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this result is to these parameters. Over a temperature range of 40 µK to 300 µK,

the trapping efficiency decreases approximately linearly from 99% to 64%, with all

other parameters unchanged. Variation of wr from 13 µm to 40 µm leads to a linear

drop of the trapping fraction from 95% to 84%. Hence, the temperature T affects

the Rydberg-atom trapping efficiency the most. The wr is larger than the FWHM

diameter of the ingoing beam because of cumulative aberrations caused by the optical

components in the retroreflection beam path. This retroreflection beam path includes

two passes through a vacuum window, a lens, and a quarter waveplate, as well as

multiple reflections within the retroreflector (see Figure 3.2).

The simulated atomic trajectories of Figure 3.6(b) confirm our interpretations

of the features A−C in the microwave spectra. For η = 0, the atomic trajecto-

ries span over several wells, with only a few trapped trajectories. The simulation

therefore shows limited Rydberg-atom trapping for no lattice inversion. For η = 1,

the trajectories are confined to a lattice well, with only a few escaped trajectories.

The simulation therefore shows high Rydberg-atom trapping efficiency for a complete

lattice inversion.

3.4 Characterizing the trap

Now that I have established that the ponderomotive optical lattice traps Rydberg

atoms with 90% efficiency, I characterize the lattice’s trapping capabilities. Specif-

ically, I investigate the dependence of the trapping efficiency on excitation pulse

duration and lattice power, the photoionization of Rydberg atoms by lattice light,

and the trap lifetime.

3.4.1 Dependence of trapping efficiency on excitation pulse duration

Experimental microwave spectra for selected values of excitation pulse length,

τex, and η = 1 are shown in Figure 3.7(a). As τex is increased, the C-signal in the
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Figure 3.7: Effect of varying excitation pulse length τex and lattice power on trapping
efficiency for η = 1 (complete lattice inversion). a) Varying τex at a fixed lattice
power, ingoing lattice beam power of 0.8 W. b) Varying the lattice power at a fixed
τex = 0.5 µs.

microwave spectra diminishes while the B-signal grows. Lower values of τex therefore

result in higher trapping efficiencies. This is because Rydberg atoms are excited at

random times during the excitation pulse; however, the lattice is not inverted until

the completion of the excitation pulse. For shorter τex, the Rydberg atoms have,

on average, less time to slide down the lattice potential wells before the lattice is

inverted. The atoms then gain less kinetic energy, resulting in better trapping.

3.4.2 Dependence of trapping efficiency on lattice power

In Figure 3.7(b), I show microwave spectra for several values of the lattice power

(values given are for the ingoing lattice beam). The detuning of the C-peaks scales lin-

early with trap laser power, as expected. For the three lowest powers of Figure 3.7(b),

the spectral signal is almost entirely in the C-component, indicating efficient Rydberg-

atom trapping. For the highest power of 1.2 W, the emerging B-signal indicates a loss

in trapping efficiency. Simulations analogous to the ones in Figure 3.6 show that this
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loss is in part due to a temperature increase of the optically trapped ground-state

atoms to about 160 µK. The temperature increase is attributed to a deterioration of

laser cooling, as the red-detuning of the MOT cooling light approaches ten linewidths

in the ground-state potential wells. This is supported by Figure 2.8 that displays

optical excitation spectra in the lattice as a function of lattice power. The spectra

show that the ground-state atoms are less well-localized near the bottoms of the lat-

tice wells for an ingoing lattice beam power & 1 W, indicating a deterioration in laser

cooling for deep lattice wells. Also, as the lattice power is increased in Figure 3.7,

the excited atoms (partially) slide down steeper lattice potential wells before lattice

inversion. Therefore, the kinetic energy that the atoms gain between optical excita-

tion and lattice inversion increases with lattice power. The simulations show that this

effect is noticeable even at τex = 0.5 µs. As a result of both effects, the kinetic energy

of the Rydberg atoms is higher in deeper lattices, leading to reduced Rydberg-atom

trapping efficiency. However, this is not a fundamental limitation on the trapping

efficiency. High trapping efficiencies in deep lattices can be achieved by adiabatically

increasing the lattice intensity.

3.4.3 Photoionization effects

Since the Rydberg atoms are trapped by a relatively intense light field, it is im-

portant to consider if there are any additional effects of the field on the atoms. For

example, the Rydberg atoms may be ionized by the lattice light. To study lattice-

induced photoionization, which could be a concern in applications, I have measured

the Rydberg atom number as a function of delay time between excitation and de-

tection. For 50S Rydberg atoms, measurements with and without the optical lattice

show exponential decays with nearly identical lifetimes of ≈ 100 µs, seen in Fig-

ure 3.8. Hence, there is no photoionization of 50S atoms in the lattice, and the decay

is entirely due to radiative decay and decay induced by black-body radiation. The
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Figure 3.8: 50S atom number vs. time after excitation without (a) and with lattice for
η = 0 (b) and η = 1 (c). All decay rates (a-c) are nearly identical, yielding lifetimes
of about 100 µs. Photoionization effects are therefore too small to be measurable.

measured decay times are in line with anticipated values [74]. The absence of measur-

able photoionization rates reflects the low photoionization cross sections of S Rydberg

levels of Rb. The low photoionization cross sections are due to a minimum in the

oscillator strength for transitions from S states of Rb into P states in the continuum

just above the ionization limit. This minimum, called a Cooper minimum, results

from the phases of the S and P wavefunctions being different by π/2 (due to the

quantum defects for the two states differing by ≈ 0.5, see Reference [26] for a more

thorough discussion). Reference [59] shows a photoionization cross section of about

45 barns for the 50S state2, while we have calculated 65 barns (see Section 6.4). Un-

der our experimental conditions, these cross sections translate into photoionization

rates < 100 s−1, which are too small to be detectable.

For comparison, I have studied the decay of 50D5/2 Rydberg atoms, for which

both Reference [59] and our calculations show a photoionization cross section of about

1.3× 104 barns. Here, there is clear evidence of photoionization, as Figure 3.9(a),(b)

21 barn = 10−28 m2.
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a) b) c)

Figure 3.9: a), b) Measurements of lattice-induced photoionization of 50D5/2 Rydberg
atoms in the optical lattice (ingoing beam power of 0.8 W). Atom number vs. time
after excitation without (black squares) and with lattice (red circles) for η = 0 (a)
and η = 1 (b). The data without lattice are fit with an exponential function (lifetime
100± 15 µs). c) Symbols: ratios F (t), which equal the number of 50D5/2 atoms with
the lattice divided by the number without the lattice as a function of time, obtained
from the experimental data in panels (a) and (b). Lines: simulation results.

demonstrate that 50D5/2 atoms in the lattice (red circles) decay considerably faster

than atoms without lattice (black squares). Also, photoionization occurs faster with-

out lattice inversion (η = 0) than with inversion (η = 1). This is because the lattice

inversion places the atoms at a lattice intensity minimum immediately after excita-

tion, where the photoionization rate is lower. More detailed investigations of pho-

toionization of Rydberg atoms in the lattice can be found in Chapters V and VI.

3.4.4 Trap lifetime

To estimate the typical trapping time of Rydberg atoms in the lattice, I use

photoionization as a tool to probe how long the atoms stay in the lattice. I measure

the ratio F (t) of the Rydberg-atom number with the lattice on divided by the number

with the lattice off for the 50D5/2 state. The following considerations illustrate how
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the ratio F (t) allows for an estimation of the atom dwell time in the lattice. While

the atoms are in the lattice, they decay at a faster rate than the atoms without the

lattice, due to the added effect of photoionization; the ratio F (t) will decrease in this

case. When the atoms have left the lattice, they decay at the same rate as the atoms

without the lattice, and the ratio F (t) will be a constant value. Thus, the time at

which F (t) reaches a steady-state value indicates the time when all the atoms have

left the lattice or have been ionized.

Experimentally, I determine F (t) by dividing the decay data from Figure 3.9(a),(b)

in the lattice (red circles) by that without the lattice (black squares). The results

for F (t) are shown in Figure 3.9(c). F (t) has an initial value of 1.0, since at t = 0

there has been no time for photoionization to happen. The number of atoms with the

lattice is the same as the number of atoms without the lattice. F (t) then drops to

asymptotic values that are reached when all Rydberg atoms in the lattice either have

photoionized or have moved out of the lattice and are decaying at the same rate as

the atoms without the lattice. Hence, the F (t) data shows the time over which the

lattice has an effect on the decay of the state. I define the average dwell time to be

the time at which F (t) drops by half of the total drop. Inspecting the F (t) curves of

Figure 3.9(c), I estimate average dwell times of about 15 µs for η = 0 and somewhat

larger values for η = 1. In the inverted case η = 1, the dwell time is expected to

be longer because the photoionization rate is lower and because the atoms leave the

lattice more slowly, as there is a smaller transverse gradient force pushing them out

of the lattice.

Using the known trapping potentials, photoionization cross sections, and lattice-

free decay rates, we have simulated the lattice-induced dynamics of 50S and 50D5/2

Rydberg atoms over 200 µs, taking photoionization and radiative decay processes into

account. We find that the 50S and 50D5/2 atoms exhibit similar dwell times of several

tens of µs in the lattice. As seen in the experiment, the 50D5/2 atoms undergo some
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photoionization-induced decay while they move out of the lattice. Photoionization is

insignificant for the 50S atoms. Simulated curves for F (t), included in Figure 3.9(c),

qualitatively agree with the experimental results. We attribute the deviations at late

times to an unaccounted-for reduction in photoionization cross section, which occurs

when atoms transition from 50D5/2 into neighboring P - or F -states (mainly due to

black-body radiation [26]). As will be seen in Figure 6.3, D states have the largest

photoionization cross sections for Rb. Therefore, a transition into any neighboring

state will reduce the photoionization cross section for the atoms in the experiment

and thereby also reduce the overall photoionization yield integrated over time.

3.5 Conclusion

I have shown that a lattice inversion technique enables Rydberg-atom trapping

in a red-detuned optical lattice with 90% efficiency. The trapping efficiency is ex-

pected to approach 100% after reduction of the initial atom temperature. Currently,

the atoms in the lattice still lack confinement in the radial direction. With the ad-

dition of radial confinement, which would provide three-dimensional trapping, we

can expect a trapping time identical to the Rydberg-atom decay time (≈ 100 µs for

50S). Such a trapping time would be long enough for a sequence of gate operations

in quantum information applications or for high-precision spectroscopy applications.

Three-dimensional optical lattice traps for Rydberg atoms are discussed in Section 7.1.

After demonstrating the trapping of Rydberg atoms in the ponderomotive optical

lattice, another important step in the development of this Rydberg-atom trap is a

characterization of its unique state-dependent trapping potentials. While the depen-

dence of the potentials on the principal quantum number was demonstrated using

spherically symmetric S-states in 2010 [41] and was utilized in this chapter to probe

the trapping efficiency of the lattice, the dependence on angular degrees of freedom
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had not yet been investigated. In the next chapter, I characterize the ponderomotive

optical lattice trapping potentials for various angular Rydberg states. The ability to

tune the potentials using angular degrees of freedom will be important for applica-

tions of Rydberg-atom optical lattices in both quantum computing and high-precision

spectroscopy, where it is desirable to minimize trap-induced shifts on transitions of

interest.
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CHAPTER IV

Angular Dependence of Rydberg-atom Trapping

Potentials in an Optical Lattice

In optical lattices of all kinds, the dependence of the optical potentials on the mag-

netic quantum number, m, is of fundamental importance. For ground-state atoms,

this dependence has been well known since the late 1980s [75, 76] and has been widely

exploited in laser cooling experiments, for example in achieving sub-Doppler tempera-

tures through the mechanism of Sisyphus cooling [54]. In optical lattices for Rydberg

atoms, an analogous dependence of the trapping potentials on the m quantum num-

ber has not been previously observed. The m-dependence of the lattice potentials

affects both the trapping behavior as well as lattice-induced shifts of electromagnetic

transitions of the atoms in the lattice. The tunability of the Rydberg-atom trapping

potentials using the angular degrees of freedom will be important for applications of

Rydberg-atom optical lattices. For instance, in quantum computing applications of

such lattices [4], it is desirable to tailor the lattice in such a way that lattice-induced

shifts of ground- to Rydberg-state transitions are minimized. In high-precision spec-

troscopy applications [31], it will also be beneficial to minimize the lattice-induced

shifts of microwave transitions between selected Rydberg levels. The angular degrees

of freedom will provide a way to tailor the lattice potentials to minimize these lattice-

induced shifts in quantum computing and high-precision spectroscopy applications.
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In this chapter, I investigate the angular dependence of the ponderomotive optical

lattice potentials for Rydberg atoms.

4.1 Angular dependence of lattice potentials for ground and

Rydberg states

The lattice potentials for atoms in low-lying or in Rydberg states are generally

expected to depend on (j, mj); however, the reasons for that dependence are quite

different in the two cases. For atoms in low-lying states, the lattice potential arises

from an AC electric dipole moment between bound atomic states (see Section 2.1.2),

and the (j, mj)-dependence reflects the differences of Clebsch-Gordan coefficients in

the atom-field interaction [77]. This leads to intensity- and polarization-dependent

trapping potentials.

In contrast, for Rydberg atoms in ponderomotive optical lattices, the trapping

results from the free-electron polarizability, as discussed in Section 1.3.2. The adia-

batic potentials for Rydberg atoms in a ponderomotive optical lattice (Vad, see Equa-

tion 1.6) are a spatial average of the free-electron ponderomotive energy weighted by

the Rydberg electron’s probability distribution [40]. Since the Rydberg-atom wave-

function covers a substantial fraction of the lattice period, the detailed shape of the

wavefunction will determine the averaging in Equation 1.6. The Vad therefore depend

on all quantum numbers (n, l, j, mj). In previous work performed in the Raithel

research group, the dependence of the adiabatic trapping potentials of the pondero-

motive optical lattice on the principal quantum number, n, has been experimentally

demonstrated using various Rydberg nS states (which do not exhibit angular sub-

structure) [41].

The angular portion of the Rydberg wavefunction can have a dramatic effect on

the averaging in Equation 1.6, resulting in a (j, mj)-dependence of the adiabatic po-
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Figure 4.1: Angular dependence of the ponderomotive optical lattice potentials for
Rydberg atoms. A Rydberg state with wavefunction extended mostly transverse to
the lattice axis (green) averages over less of the free-electron potential and conse-
quently experiences a more deeply modulated potential in the lattice than a wave-
function elongated in the direction of the lattice axis (blue).

tentials. As illustrated in Figure 4.1, states having wavefunctions extended mostly

transverse to the lattice axis (green case in Figure 4.1) experience more deeply mod-

ulated lattice potentials than those elongated in the direction of the lattice axis (blue

case). The adiabatic potentials obtained from Equation 1.6 depend on light intensity

but not on polarization. In the work presented in this chapter, I demonstrate the

dependence of the lattice trapping potentials on the angular portion of the Rydberg

wavefunction by measuring the ponderomotive optical lattice depth (indicated in Fig-

ure 4.1, given by lattice modulation depth) for several (j, mj) sublevels of Rydberg

nD states.
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Figure 4.2: Calculated 50D level in a DC electric field. The degeneracies of the
|mj| sublevels are lifted through the Stark effect. The red dashed line corresponds
to the electric field value used in the experiments. The levels are labeled in order of
increasing energy.

4.2 Experimental setup

4.2.1 DC electric field

Since the various (j, mj) sublevels of Rydberg nD states have different angu-

lar wavefunctions and consequently also different lattice modulation depths, I must

measure each mj sublevel individually. For nD levels in zero fields, there is the fine

structure splitting of nD3/2 and nD5/2, and all the mj sublevels for the same j are

degenerate. In order to investigate the lattice potentials for the (j, mj) sublevels

individually, it is necessary to lift degeneracies to allow for selective excitation of the

sublevels. I therefore apply a DC electric field, which shifts the sublevels of the nD

states according to the magnitude of mj. Figure 4.2 shows an example of the calcu-
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lated Stark splitting of the 50D Rydberg level in a DC electric field. The levels 50D3/2

and 50D5/2 split into a total of five Stark substates in the DC field, since there are

three values of |mj| for 50D5/2 and two values for 50D3/2. The five Stark substates are

labeled in order of increasing energy in the field. In the limit of small DC field, the

five components connect with the following levels: (1) 50D3/2 |mj|=3/2, (2) 50D5/2

|mj|=5/2, (3) 50D3/2 |mj|=1/2, (4) 50D5/2 |mj|=3/2, and (5) 50D5/2 |mj|=1/2. The

fact that the ±mj levels remain degenerate in the DC field has no effect on our mea-

surements, since the shape of the wavefunction is the same for both levels; both levels

therefore average over the free-electron ponderomotive potential equally and experi-

ence the same modulation depth in the lattice. The red dashed line in Figure 4.2

indicates the electric field value where the experiments are performed for 50D. For

technical reasons1, the DC field in the experiment is oriented transverse to the axis of

the lattice. With the DC field applied, the Stark effect is the dominant perturbation,

with a quantization axis transverse to the lattice beams.

Figure 4.3 shows an experimental spectrum of the 50D Rydberg level in both

the lattice and a transverse DC electric field of 1.6 V/cm, obtained by scanning the

frequency of the upper transition excitation laser. As expected, the 50D3/2 and 50D5/2

levels split into a total of five components, labeled again in Figure 4.3 in order of

increasing energy. The large peaks for each component are signal from atoms outside

of the lattice (red solid arrows indicate two examples in Figure 4.3), while the blue-

shifted triangular structures reflect the shifts of the optical transition frequency due

to the lattice trapping potentials. Since the atoms are laser-cooled near the bottoms

of the 5S lattice wells, the lattice-induced structures in the spectrum exhibit a sharp

cutoff on the high frequency side (for example, see dashed arrows in Figure 4.3). For

more on the shape of optical excitation spectra in the lattice, see Section 2.3.

1See geometry of electrodes in Figure 2.4(a).
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Figure 4.3: Experimental optical excitation spectrum of the 50D Rydberg level in the
lattice and a transverse DC electric field. The Stark components, labeled 1-5, exhibit
structures on the high-frequency side that reflect lattice-induced shifts of the optical
transitions. Inset: Ground and Rydberg levels in the lattice. The arrows indicate
how the maxima in the experimental spectrum correlate with the shapes of the lattice
potentials.

4.2.2 Lattice-induced shifts and measurement procedure

The blue-shifted structures in the spectrum shown in Figure 4.3 yield information

on the depth of the Rydberg lattice for the different Stark levels, which we expect to

vary in depth. The maximum lattice-induced shift consists of the ground-state mod-

ulation depth (κ5S in the inset of Figure 4.3), the Rydberg-state modulation depth

(κRyd), and an offset (κo). Here, I am interested in how κRyd depends on the angu-

lar structure of the five Stark levels. The inset of Figure 4.3 shows that κRyd can

be obtained by subtracting κ5S and κo from the measured maximum lattice-induced

shift. The procedure for determining the ground-state lattice depth, κ5S, is explained

in Appendix B. The offset κo can arise from an imbalance of the intensities of the
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lattice beams, leading to a reduced lattice intensity modulation depth. The reduced

intensity modulation depth affects both the ground and Rydberg levels. There is also

a contribution to κo from the intrinsic averaging of the Rydberg-atom wavefunction

over the free-electron ponderomotive potential in Equation 1.6. Due to the aver-

aging, the modulation of the Rydberg level does not reach zero even in a perfectly

intensity-modulated lattice. For an independent measurement of κo, I invert the

lattice potential immediately before Rydberg-atom excitation using the electro-optic

technique described in Section 3.2 and Reference [66]. Following the lattice inver-

sion, the ground-state atoms are located near maxima in the ground-state potential.

Before they move away, they are excited to minima of the Rydberg-state potential

(green dotted arrow in the inset of Figure 4.3 and corresponding curve in Figure 4.4).

Measurement of the lattice-induced shift in the inverted lattice case yields κo.

In the experimental spectra, signal from atoms outside of the lattice (solid red

arrows in Figure 4.3) tends to overwhelm the desired signal from the atoms inside the

lattice. To address this issue, I apply the Dumper pulse (see Section 2.3.2) between

the turnoff of the MOT laser beams and the application of the excitation pulses.

Following the Dumper pulse, only the F=3 atoms left in the lattice are accessible

for optical excitation to the Rydberg state, resulting in a cleaner spectrum of the

lattice-induced shifts.

In Figure 4.4, I show typical optical excitation spectra of level 2 from Figure 4.3

for the two cases of an inverted and a non-inverted lattice, which illustrate how to

obtain a measurement of κo and subsequently extract κRyd. While the frequency of

the upper transition excitation laser is stepped in the experiment (see Section 2.2.1)

to take the spectrum shown in Figure 4.4, I engage the Dumper pulse for frequencies

higher than about 5 MHz. This leaves the unshifted signal (the large peak at 0 MHz)

as a frequency reference. Figure 4.4 clearly shows that the peak in the inverted-lattice

spectrum (indicated by the green dotted arrow) is shifted from that in the case of the
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Figure 4.4: Experimental optical excitation spectra for level 2 of Figure 4.3 in a
transverse DC field and a non-inverted lattice and inverted lattice. Spectral features,
indicated by arrows, enable a measurement of the Rydberg-state lattice depth (κRyd).

non-inverted lattice (indicated by the blue dashed arrow). As indicated in the figure,

I use these peak positions to determine the shifts κo and κo + κ5S + κRyd.

To extract κRyd from the spectra, one must consider exactly how the experimen-

tally observed peaks in the lattice-induced features are related to the various values

of κ. For the inverted lattice, the ground-state atoms are located near a saddle point

of the light shift potentials, which is illustrated in Figure 4.5(a) and results from the

mismatched spot sizes of the two lattice beams (see Sections 2.3 and 3.3). The atoms

sitting at this saddle point see a decreasing potential in the longitudinal z-direction,

along the lattice axis, and an increasing potential in the radial direction. The cor-

responding peak in the excitation spectrum (green dotted arrow in Figure 4.4) is

broadened both to the low- and high-frequency sides, due to atoms that are displaced

from the saddle point radially and longitudinally relative to the lattice axis, respec-

tively. Due to the balanced broadening, the peak center gives an accurate reading for
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Figure 4.5: Calculated potentials for ground-state atoms in the lattice with and
without a lattice inversion. a) Saddle point in the potential following the lattice
inversion. b) Three-dimensional potential minimum with no lattice inversion.

the offset κo.

In contrast, for the non-inverted lattice the ground-state atoms are located near

a three-dimensional intensity maximum, not a saddle point. This three-dimensional

intensity maximum is also a three-dimensional potential minimum for the ground-

state atoms and is illustrated in Figure 4.5(b). Any thermal spread of the atoms

away from the intensity maximum causes a shift of the Rydberg-atom excitation

frequency to lower frequencies. Hence, in the non-inverted lattice the excitation

spectrum is only broadened to the low frequency side, and the peak in the spectrum

is shifted toward lower frequency. To obtain a quantitative estimate for how far the

peak is shifted toward lower frequency, we have simulated the excitation spectrum for

temperatures ranging from 100− 300 µK for light-shift potentials that correspond to

our experiment. The simulated spectra show that the frequency corresponding to a

one-third drop in signal from the peak (blue dashed arrow in Figure 4.4) approximates

the value of κo + κ5S + κRyd to within ±1 MHz. We therefore use this one-third drop

in signal as our measurement point in the experiment. The procedure is indicated in

Figure 4.4. With this measurement for κo + κ5S + κRyd, the reading for κo, and the

value of κ5S, I obtain the Rydberg lattice depth κRyd.

To investigate the angular dependence of the ponderomotive optical lattice poten-

tials, I repeat the procedure explained in Figure 4.4 for several other nD Stark levels
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with 50 ≤ n ≤ 65. In all cases, the DC electric field value is chosen so that the level

structure is consistent with that shown in Figure 4.2 (at the red dashed line). The

measurement results for κRyd are listed in Table 4.1.

Table 4.1: POL depth measurement results.

Level Measured κRyd (MHz) Label

65D level 2 -4.1±3 A
55D level 2 1.4±3 B
50D level 2 4.5±3 C
65D level 5 1.1±3 D
55D level 5 10.0±3 E
50D level 5 9.5±3 F

4.3 Ponderomotive optical lattice potential depths and un-

certainties

The measured values of κRyd shown in Table 4.1 clearly vary from state to state,

demonstrating the angular dependence of the Rydberg lattice depth. I also compare

the measured results with calculated κRyd values for the cases studied in the experi-

ment. In the calculation, the depth of the Rydberg adiabatic potentials is obtained

by numerical diagonalization of the Rydberg atoms’ internal-state Hamiltonian at

the light-field maxima and minima. The lattice depth for a given Rydberg level is

determined by the difference between that level’s energy at these two locations. Note

that the computation requires large Rydberg-state basis sets, since the system does

not have any continuous symmetry in crossed DC electric and optical lattice force

fields. In Figure 4.6(a), the experimental measurements of κRyd are plotted against

the calculated values. The data follow the expected trend, as the linear fit to the

data has a slope of one and passes through the origin within the bounds of the fitting

uncertainty. In Figure 4.6(b), the experimental measurements of κRyd (black squares)

are plotted along with the calculated values (red circles). There is good agreement
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listed in Table 4.1. The error bars reflect systematic and measurement uncertainties.
Line: A linear fit to the data points. b) Symbols: Measured (black squares) and
calculated (red circles) POL potential depths for the same levels as in (a).

between the measured and calculated depths.

The error bars in Figure 4.6 reflect the measurement and systematic uncertainties

associated with the data. The measurement uncertainty is ±1 MHz and mostly

arises from the uncertainty in measuring the lattice-induced shift in the non-inverted

lattice, as described above. Systematic error sources include daily variations in optical

lattice alignment. Comparing day-to-day results, I estimate an alignment-induced

uncertainty of ≈ 2 MHz. Since the excitation laser is locked to a Fabry-Pérot cavity

(see Section 2.2.1), a source of systematic error is also thermal drift of the Fabry-

Pérot. Monitoring the count rate as a function of time with the laser initially set

to the peak of a Rydberg excitation line of known width, I found a thermal drift

uncertainty of ≈ 1 MHz. Nonlinearity in the Fabry-Pérot mechanical tracking (the

experimental method used to scan the laser across the spectrum) also adds to the

systematic error. By scanning the laser repeatedly over a fixed frequency range, I
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found a mechanical tracking uncertainty of . 2 MHz.

In order to obtain further insight into the angular dependence of the ponderomo-

tive optical lattice potentials and to interpret the measured negative value of κRyd,

we calculated κRyd for (j, mj) levels of nD states as a function of DC field. The result

for 65D is shown in Figure 4.7 (curve labels 1 − 5 correspond to the ones used in

Figure 4.3). For DC field values . 0.05 V/cm in Figure 4.7, the fine structure is dom-

inant and the DC field provides a small perturbation. For DC field values & 0.1 V/cm

in Figure 4.7, the DC field effects dominate the fine structure; however, the DC field

is still weak enough to largely avoid mixing of the D states with neighboring P and

F states. Between the fine-structure- and the electric-field-dominant regimes, the an-

gular wavefunctions rearrange, causing a reshuffling of the curves around 0.07 V/cm

in Figure 4.7. The structures in the curves near 0.25 V/cm and 1.1 V/cm are due to

crossings of Stark states in the electric-field-dominant regime. In the experiment, the

depths of the 65D levels are measured in an electric field of about 0.65 V/cm.

For the states with negative κRyd in Figures 4.6 and 4.7, the extent of the Rydberg-
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atom wavefunction along the lattice axis approximately equals the lattice period.

While the center-of-mass of the atom is located at an intensity maximum, the lobes

of the electronic probability distribution are located at adjacent intensity minima,

where they experience a minimal ponderomotive energy. The Rydberg center-of-

mass is attracted to the lattice intensity maximum located between the wavefunction

lobes. This is a unique case, as for most levels the Rydberg center-of-mass is attracted

to intensity minima in the lattice. In this special case, the minima of the adiabatic

Rydberg-atom trapping potential are co-located with the minima of the ground-state

potential. I refer to this case throughout this thesis as a “flipped” potential (see

illustration in Figure 5.5). Flipped potentials are desirable for certain applications

because they allow for straightforward preparation of trapped Rydberg atoms from

red-detuned optical traps for ground-state atoms.

4.4 Conclusion

I have provided an experimental demonstration of the angular dependence of the

ponderomotive optical lattice potentials for Rydberg atoms. Lattice depths for (j, mj)

sublevels of nD5/2 states were measured and found to vary substantially in magnitude.

I have also demonstrated that certain aspect ratios of atom size to lattice period

result in Rydberg lattice potential depths that are sign-matched with the ground-

state potential depths. Thus, the potentials of the ponderomotive optical lattice

may be tailored to a wide extent, in both magnitude and sign, to meet the specific

requirements of an application. In future work, one may prepare highly elongated

Stark states in the optical lattice using larger DC fields. Such states have essentially

one-dimensional atomic wavefunctions oriented in the direction of the transverse DC

field, leading to very deep trapping potentials. Since they also have large permanent

electric dipole moments, such a system could provide a platform to study strong

interactions and many-body effects in systems of optically trapped Rydberg atoms.
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While the ponderomotive optical lattice for Rydberg atoms presents the attrac-

tive feature that the trapping potentials may be tuned by choice of Rydberg state,

photoionization of the Rydberg atoms by the intense trapping light may be a limiting

factor for applications. It is therefore necessary to have a thorough understanding of

the photoionization process and its associated rates. In the next chapter, I provide an

experimental study of the photoionization process as a function of position within the

volume of a Rydberg atom. While the tendency of a Rydberg atom to photoionize

close to the nucleus has been an assumption underlying Rydberg-atom experiments

for decades, I provide the first experimental investigation of this tendency. Since the

wavelength of the photoionizing light field in the experiments is on the same order

as the size of the Rydberg atom (an apparent violation of the electric dipole approx-

imation, which is typically made when λ >> r), these experiments also represent a

study of fundamental light-matter interactions in a limiting case.
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CHAPTER V

Photoionization of Rydberg Atoms in Optical

Lattices

When electromagnetic radiation induces atomic transitions, the size of the atom

is usually much smaller than the wavelength of the radiation, allowing the spatial

variation of the radiation field’s phase to be neglected in the description of transi-

tion rates. This approximation, known as the electric dipole approximation, is made

by setting eikx to 1 in the transition-rate calculations (which are described in de-

tail in Chapter VI). The electric dipole approximation is central to perturbative

atomic photoionization studies at low intensity [45]. To understand the approxima-

tion’s boundaries, it is important to explore cases in which one might expect it to

break down. In the extreme case of soft x-rays interacting with ground-state atoms

(wavelength ∼ 10−8 m and atom size ∼ 10−10 m), experiments have demonstrated

non-dipole photoemission patterns [78].

A complementary extreme case occurs in the interaction of Rydberg atoms with

light fields (atom size ∼ wavelength ∼ 10−6 m). Despite the apparent violation of the

dipole approximation in this case, photoionization rates agree with calculated rates

based on the approximation. For example, measured photoionization rates for various

nD5/2 states of Cs Rydberg atoms in an approximately homogeneous 1064 nm field

are in agreement with calculations that make the approximation [79]. To reconcile
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Figure 5.1: 58D states in an optical lattice and DC electric field. a) The lattice inten-
sity, I(Z), and projections of the electron probability density in the (xz)-plane, the
z-coordinate, and the radial r-coordinate. Lowercase letters are relative coordinates
of the Rydberg electron; uppercase letters are center-of-mass coordinates. Atoms
prepared with initial condition CMAX (CMIN) have center-of-mass positions located
near intensity maxima (minima). b) Stark energy level diagram. The fine structure
splitting at zero electric field (double-headed arrow) is 60 MHz. Electric fields and
energies for the projections are indicated by circles. Solid line: |mj| = 5/2. Dotted
lines: |mj| = 3/2. Dashed lines: |mj| = 1/2.

this apparent inconsistency, one may argue that the photoionization process occurs

close to the nucleus in the atom [80–82]. This argument has been utilized in Rydberg-

atom wavepacket experiments to probe the probability of the wavepacket return to

the nucleus [83, 84]. However, the argument has never been directly verified with

a photoionization probe that has sub-atomic spatial resolution. Yet, a complete

understanding of the photoionization process is a prerequisite to the studies involving

Rydberg atoms in optical fields mentioned in Section 1.3.

In this chapter, I investigate the photoionization process as a function of position

within the volume of a Rydberg atom. I employ 85Rb Rydberg nD levels in the

one-dimensional optical lattice of wavelength 1064 nm. Laser beam intensities are

on the order of 106 W/cm2, which is low enough that higher-order effects such as
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above-threshold ionization do not occur, and photoionization rates scale proportion-

ally to intensity. The extent of the Rydberg electronic wavefunction approximately

equals the lattice period, which results in maximal intensity contrast of the light field

within the volume of the atom. Figure 5.1(a) illustrates the relation between the

wavefunctions and the optical lattice for two of the states that I examine. The lattice

intensity maxima are placed either near the atom’s center or within the main lobes

of the electronic probability distribution. The measured photoionization rates under

these contrasting conditions indicate whether it is the light-field intensity near the

center of the atom or within the lobes of the electronic probability distribution that

matters in the photoionization process. While intuition might suggest that photoion-

ization occurs where the probability of finding the electron is greatest, I demonstrate

in this chapter that the process in fact happens near the nucleus. The lattice therefore

acts as a microscope with sub-atomic resolution in these experiments, allowing me to

study where the photoionization process occurs inside the atom.

5.1 Experimental setup

In the experiment, ground-state atoms in the optical lattice are transferred to

Rydberg states with principal quantum numbers 45 ≤ n ≤ 65 (the levels used are

given in Table 5.1 along with the level’s identifiers). The Rydberg atoms are prepared

in the lattice with initial center-of-mass positions either near intensity maxima, which

I refer to as initial condition CMAX, or near intensity minima, referred to as initial

condition CMIN. For condition CMAX, the electronic probability distributions are

predominately peaked near intensity minima, whereas for condition CMIN, they pre-

dominately peak near intensity maxima. A comparison of photoionization for these

two conditions reveals whether it is the light-field intensity near the atom’s nucleus

or within the lobes of the electronic probability distribution that determines the pho-

toionization rates.
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Table 5.1: Measured levels and corresponding identifiers.

Level # Label

45D5/2 |mj|=1/2 5 A

50D5/2 |mj|=1/2 5 B

58D5/2 |mj|=1/2 5 C

65D5/2 |mj|=1/2 5 D

50D5/2 |mj|=5/2 2 E

58D5/2 |mj|=5/2 2 F

65D5/2 |mj|=5/2 2 G

To prepare the initial Rydberg-atom center-of-mass positions near either inten-

sity maxima or minima in the lattice, I use an electro-optic modulator to apply a

controllable phase shift to the lattice’s return beam immediately following Rydberg

excitation (as described in Section 3.2 and Reference [66]). Ground-state atoms in

the lattice are collected at intensity maxima, since the lattice light is red-detuned

relative to the 5S → 5P transition of Rb. Therefore, with no phase shift applied

after excitation to Rydberg states, the Rydberg-atom center-of-mass positions are

initially located near intensity maxima (CMAX). With a π phase shift applied to the

return beam, the Rydberg-atom center-of-mass positions are prepared near intensity

minima in the lattice (CMIN).

To establish well-defined electronic probability distributions in the optical lattice

with which to probe the photoionization behavior, I apply a DC electric field (see

Figure 5.1), oriented transverse to the lattice axis. The Stark effect lifts the degen-

eracy of the |mj|-sublevels of the Rydberg nD states. As shown in Figure 5.1(b), the

frequency of the excitation lasers is chosen to excite the Rydberg levels #2 or #5

within the Stark nD manifolds. I choose these levels because their electronic prob-

ability distributions with respect to the lattice are quite different, to test whether

such differences influence the photoionization behavior. In Figure 5.1(a), I display

projections of the electron density, P (x, z) and P (z), as well as the radial probability

distribution, P (r), where x, z, and r are relative coordinates of the Rydberg electron.
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Figure 5.2: Photoionization of Rydberg atoms in an optical lattice. a) Example of
measured atom number vs. time for 45D level #5. Decay rates are determined from
fits. Solid symbols and linear fits: Lattice present; atom center-of-mass positions with
initial conditions CMAX (squares) and CMIN (triangles). Hollow circles and dashed
exponential fit: Without lattice. b) Normalized photoionization lifetimes for CMAX
(squares) and CMIN (triangles). Level labels explained in Table 5.1. The lifetimes
are an average of 1000 (levels A, B, E), 1250 (D, F), and 1750 (C, G) measurements.
Error bars represent the standard error of the mean, s.e.m.

In the experiment, I aim to demonstrate whether the photoionization rate is depen-

dent on the overlap
∫
P (z)I(z + Z)dz of the electron with the lattice intensity I, or

whether it only depends on the intensity at the center-of-mass location Z and the

probability of finding the electron close to the nucleus [that is, within a small central

region of P (r)].

5.2 Photoionization measurement procedure

I determine the photoionization rate (γPI) of a Rydberg level from measurements

of its decay rate within the lattice (which yields the sum of radiative, blackbody,

and photoionization decay rates, γrad+γbb+γPI) and without the lattice (which yields

γrad+γbb). By subtracting the lattice-free decay rate from that within the lattice, I
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Table 5.2: Photoionization lifetime measurement conditions and results. The first
five columns indicate the the level, the power of the ingoing lattice beam (Plat), the
DC electric field value, the modulation depth of the lattice trapping potential Vad,
and whether the potential is flipped or non-flipped [see Figure 5.5(a)]. The τPI and
τo columns give the measured photoionization and lattice-free lifetimes, respectively.
Errors, s.e.m.

Level Plat E field Depth Flipped or τPI (µs) τo (µs)
label (W) (V/cm) (MHz) non-flipped CMAX CMIN

A 0.88 2.3 11.8 NF 16.5±1.0 45.3±5.8 76.9±1.2
B 0.88 1.4 9.4 NF 18.8±1.2 40.8±6.8 127.2±3.8
C 0.88 0.65 5.7 NF 43.3±6.7 73.0±19 213.3±3.9
D 1.10 0.40 4.6 NF 37.5±4.2 53.6±6.6 251.1±5.5
E 0.88 1.4 3.8 NF 23.6±2.8 37.0±5.5 111.8±1.7
F 0.88 0.65 -1.1 FL 49.0±6.9 71.4±19 185.8±6.1
G 1.10 0.40 -3.1 FL 33.6±2.3 61.9±12 228±6.9

obtain a measurement of γPI. I measure a level’s decay rate by recording the number of

Rydberg atoms as a function of td, the delay time between the end of the excitation

pulse and detection. The number of Rydberg atoms excited per cycle is only 1-2,

ensuring that interactions and collisions between Rydberg atoms have no role.

To determine the lattice-free decay rate of a level, the number of atoms is measured

for 0 ≤ td ≤ 60 µs (n = 45) and 0 ≤ td ≤ 150 µs (n = 50, 58, and 65). The data

are fit to an exponential; the fit yields the lattice-free decay rate (γrad + γbb) := 1/τo.

An example of lattice-free decay data is shown in Figure 5.2(a) (hollow circles). The

measured values of τo, found in Table 5.2, are consistent with our calculations for a

77 K environment (my setup) and with values found elsewhere [59, 74].

To determine decay rates within the lattice, the number of atoms is measured

for 0 ≤ td ≤ 3 µs. I limit td to ≤ 3 µs so that the atoms spend a large fraction of

the atom-field interaction time near the intensity maxima or minima where they are

initially prepared (the oscillation period of the atoms in the lattice is ∼ 5 µs). I fit

the measured number of atoms as a function of td to a line. The slope of the line

divided by its y-intercept approximates the decay rate γrad+γbb+γPI, averaged over

the 3 µs. An example of decay data within the lattice is shown in Figure 5.2(a) for
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both initial conditions CMAX (squares) and CMIN (triangles).

The final measurement results of the photoionization lifetime τPI = 1/γPI for all

levels are found in Figure 5.2(b) and Table 5.2. The results shown in Figure 5.2(b)

are normalized by the overall (n∗3/I1)-scaling [85] of τPI with ingoing beam intensity

I1 and effective principal quantum number n∗ (n∗ = n − δ where δ = 1.35 for nD

states of Rb, see Section 1.2.2 and Reference [27]). The normalized lifetimes are

denoted by τ̃PI. For each level, τ̃PI is shorter for atom center-of-mass positions with

initial condition CMAX than for initial condition CMIN, regardless of the Rydberg

electron’s probability distribution. This is true even for cases in which the main lobes

of the electronic wavefunction and the atomic nucleus are separated by about half the

lattice period (1064 nm/4), a situation that maximizes the intensity contrast within

the atom. This situation occurs when the atomic radius, r ≈ 2n2, approximately

equals 1064 nm/4, corresponding to n ∼ 50 (where most of the data is taken). Thus, a

qualitative analysis of the data already demonstrates that the photoionization process

depends more on the light-field intensity near the nucleus of the atom than on that

within the main lobes of the electronic probability distribution.

The error bars for each τ̃PI in Figure 5.2(b) reflect statistical uncertainties and

follow from standard error propagation and fit-parameter uncertainties returned by

the fitting program (OriginPro 8). Systematic errors in the τ̃PI arise mainly from

lattice intensity variations, originating from the lattice laser itself or from deviations

in alignment of the Rydberg excitation lasers with the lattice focal spot. Based on

measurement procedures used for verifying the lattice depth (described in Section 2.3),

I determine that the relative range of the lattice intensity variation is ≤ 8%. The

effect of a reduction in lattice intensity is to move the measurements of τ̃PI for both

initial conditions CMAX and CMIN to higher values.
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5.3 Model of photoionization

To analyze the data quantitatively, we compute atomic trajectories from the lattice

trapping potentials and simultaneously simulate the photoionization-induced decay

with position-dependent γPI. The photoionization-induced decay is simulated in two

ways, chosen to reveal where the photoionization process occurs in the atom. In

the first way, we employ γPI calculated in the electric dipole approximation, γPI =

I(Z)
~ω σPI, where I(Z) is the lattice light intensity at the atomic nucleus and σPI is the

photoionization cross section [45]

σPI =
πe2ω

εoc
|Mr|2

(
a2o

27.2 eV

)
. (5.1)

Mr represents the matrix elements describing the coupling of the initial Stark level

to the continuum. In Equation 5.1, the matrix elements Mr = 〈f |x|i〉 are in atomic

units, with the free wavefunctions normalized in unit energy, and are evaluated for

|i〉 being the #2 or #5 Stark states. We sum σPI over all allowed continuum states

|f〉 = |ε′, l′,m′j, j′〉. In the second way, we calculate γPI using a comparison model in

which γPI ∝
∫
P (z)I(z + Z)dz. This comparison model is what would be expected

if the photoionization process were most likely to happen where the electron is most

likely to be found. The decay rate in the comparison model is normalized such that

the two models have the same photoionization rate when averaged over one lattice

period. The decay rate in the comparison model is dominated by the light intensity in

the regions where the electron probability distribution is greatest, while in the model

based on Equation 5.1, it is determined by the intensity at the nucleus.

In Figure 5.3, the ratios of τPI for initial condition CMIN to those for CMAX are

shown for the measurement results as well as the simulation results based on the two

models of photoionization. In the simulations, we use an initial atomic temperature

of 150 µK (Doppler cooling limit for Rb) and the beam powers and focal diameters
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Figure 5.3: Ratios of photoionization lifetimes for initial condition CMIN to those
with initial condition CMAX. Circles: Experimental. Error bars, s.e.m. Squares:
Calculated, using Equation 5.1. Triangles: Calculated, using comparison model.

employed in the experiment. There are no other free parameters in the simulations.

For a lattice with perfect contrast and for atoms frozen in place at either intensity

maxima or minima, the ratio of τPI for initial condition CMIN to that for CMAX

would be infinity. Based on the actual contrast between intensity maxima and minima

in our lattice (see Section 2.3), the maximum possible ratio that one could observe

for atoms frozen in place would be about 5. Any motion of the atoms in the lattice

or variations in their initial positions away from the intensity maxima or minima will

further reduce the experimentally observed ratio.

Comparing the simulation results for the two models of photoionization to the

measurement results in Figure 5.3, good agreement is observed between the mea-

sured ratios (circles) and the model based on Equation 5.1 (squares), which clearly

gives the better account of the data than the comparison model (triangles). Quanti-

tatively, the average deviation of the measured ratios from the calculated ratios using
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Equation 5.1 is 0.11, while the average deviation from the comparison model is 0.26.

We note that the disparities between the simulation results based on Equation 5.1

and the experimental data for levels A, B, and G can be resolved by assuming a lower

atom temperature (which generally increases the contrast between τPI for CMIN and

CMAX). There is evidence elsewhere that optical dipole traps can lead to sub-Doppler

atomic temperatures [67, 68]. Systematic errors resulting from lattice intensity varia-

tions have essentially no effect on the ratios. With the overall good agreement between

the measurement results and the model based on Equation 5.1, we confirm that the

photoionization process occurs close to the nucleus in the atom.

Classically, the photoionization process occurs close to the nucleus because the

Rydberg electron is able to exchange energy with the light field efficiently when it is

undergoing maximal Coulomb acceleration at the inner turning point of its classical

orbit. In contrast, when the Rydberg electron is far away from the nucleus, it behaves

like a free electron, oscillating in a quiver motion at the frequency of the laser light

while not exchanging energy with the light field. However, close to the nucleus, the

Rydberg electron is strongly accelerated by the Coulomb field, and the electron is able

to exchange energy with the light field by an amount proportional to its Coulomb

acceleration squared [86].

From a quantum mechanical point of view, the photoionization process occurs

close to the nucleus since the matrix element accumulates its value within a small

volume near the nucleus. In Figure 5.4(a), we show how the calculated matrix

element builds up as a function of cutoff radius for the dipole-allowed transition

from |n = 60, ` = 2,m = 0〉 to the continuum state |ε′, `′ = 3,m′ = 0〉 as well

as for the strongest dipole-violating transition from |n = 60, ` = 2,m = 0〉 to

|ε′, `′ = 4,m′ = 1〉. In the calculation, we use the formulation for the matrix ele-

ments Mp = − 1
ω
〈ε′, `′,m′|eikx ∂

∂z
|n, `,m〉, which does not include the electric dipole

approximation, the light propagation is along x, and the light polarization along z.
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Figure 5.4: Accumulation of the photoionization matrix element. a) The value of the
matrix element as a function of cutoff radius R in the radial integration for transi-
tions from |n = 60, ` = 2,m = 0〉 to |ε′, `′ = 3,m′ = 0〉 (dipole-allowed, top) and to
|ε′, `′ = 4,m′ = 1〉 (dipole-violating, bottom). The field has a wavelength of 1064 nm
(ω = 0.0428 atomic units). The matrix element for the dipole-violating transition is
essentially zero. b), c) The matrix element for the dipole-allowed transition accumu-
lates to its asymptotic value (red dashed line) within a radius of ∼ 50 ao (b). The
oscillations further out do not result in any additional accumulation (c).
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For the dipole-allowed transition in Figure 5.4, the matrix element accumulates its

value within a radius of about 50 ao from the nucleus, as highlighted in Figure 5.4(b),

and then oscillates about its asymptotic value, a finding in accordance with calcula-

tions performed elsewhere [81]. There are two oscillation periods for radii larger than

50 ao, highlighted in Figure 5.4(c). The longer period is the deBroglie wavelength of

the bound-state wavefunction (within its classically allowed regime), while the shorter

period is that of the continuum state. The matrix element does not accumulate fur-

ther for r & 50 ao due to the large difference in the wavelengths of the bound and free

states in this regime, leading to near-perfect cancellation in that integration domain.

The radiative interaction is effectively confined to the region r . 50 ao, where the

deBroglie wavelengths are quite similar. Since the region with r . 50 ao is much

smaller than the wavelength of the light, the dipole approximation is retroactively

validated (in Equation 5.1). It is therefore the light-field intensity at the nucleus of

the atom that must be used in the calculation of the photoionization rates.

The matrix element for the dipole-violating transition of Figure 5.4(a) does not

accumulate to any appreciable value in the domain r . 50 ao and undergoes some

oscillation about its near-zero asymptotic value in the domain r & 50 ao. The pho-

toionization probability for the dipole-violating case in Figure 5.4(a) is only about

10−6 times the dipole-allowed photoionization probability. Hence, the dipole approx-

imation is very well satisfied. A more detailed calculation of photoionization matrix

elements and a study of the role of the electric dipole approximation is found in

Chapter VI.

5.4 Atomic trajectories in the lattice

I now adopt the fact that photoionization occurs near the nucleus and consider

the Rydberg-atom trajectories in the lattice to explain several other trends in the

data of Figure 5.2(b) and Figure 5.3. During the 3 µs atom-field interaction time,

89



Figure 5.5: Rydberg-atom trapping potentials and trajectories in an optical lattice.
a) Qualitative illustration of typical trapping potentials Vad (bottom) for the Rydberg
wavefunctions (top) in the optical lattice (top, white indicates high intensity and black
low intensity; bottom, intensity I(Z) is proportional to dotted line). Usually, potential
maxima are co-located with intensity maxima (green). For wavefunctions with spatial
extents in the Z direction slightly larger than the lattice period, potential maxima are
“flipped” (blue). b), c) Simulated phase space diagrams (position Z vs. velocity V ) for
the lattice-induced motion of level G atoms (which have flipped trapping potentials),
with initial conditions CMAX (b) and CMIN (c), and corresponding I(Z).
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the atoms move away from their initial positions on trajectories governed by the lat-

tice adiabatic potentials Vad(Z) = e2

2meω2εoc

∫
dz P (z)I(z + Z) (see Section 1.3.2 and

Reference [73]). Since the electron density P (z) acts as a weighting factor, wavefunc-

tions with larger spatial extents in the z direction usually result in more averaging

and hence in shallower adiabatic potentials Vad(Z) in the lattice. For the same n,

level #2 atoms have larger spatial extents in z than level #5 atoms, generally result-

ing in shallower Vad(Z); this is illustrated for the case of 50D in Figure 6.4(a). For

most levels, the Vad(Z) maxima coincide with lattice intensity maxima [non-flipped

“NF” case in Figure 5.5(a)]. However, for ratios of atom size to lattice period near

1, the Vad(Z) maxima coincide with lattice intensity minima [flipped “FL” case in

Figure 5.5(a), also discussed in Section 4.3 and Reference [87]]. As shown in Ta-

ble 5.2, the modulation depth of the Vad(Z) generally decreases from level A through

G. Atomic motion in shallower Vad(Z) cause τPI for CMIN and for CMAX to approach

each other. Consequently, there is a general drop in the ratios of Figure 5.3 from A

to G.

The atomic trajectories in the lattice fall into four cases: atoms prepared with

initial condition CMAX or CMIN, in either NF or FL potentials. In the CMAX/NF

case [Figure 5.2(b), squares, A-E], the atoms are initially prepared in regions of high

intensity that are co-located with Vad(Z) maxima. These atoms tend to quickly move

through the lattice wells, sampling regions of both high and low intensity. Conse-

quently, we expect these atoms to experience an average intensity at the nucleus

given by I(Z) averaged over Z (in our experiment ∼1.2 times the intensity of the

ingoing lattice beam, independent of the level). The τ̃PI-values in this case are there-

fore expected to be approximately the same for all tested levels, which is observed in

Figure 5.2(b).

In the CMAX/FL case [Figure 5.2(b), squares, F and G], the atoms are initially

prepared in regions of high intensity that are co-located with Vad(Z) minima. Com-
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paring the estimated initial kinetic energy of the atoms (∼ 1.6 MHz) with the depth of

the trapping potentials (1.1 and 3.1 MHz for F and G, respectively), I expect atoms

in level G to be trapped at locations where the intensity at the atomic nucleus is

high; this is illustrated in the phase space plot of Figure 5.5(b). Level G is therefore

expected to have one of the shortest τ̃PI, which is indeed observed.

In the CMIN/NF case [Figure 5.2(b), triangles, A-E], the atoms are initially pre-

pared in regions of low intensity that are co-located with Vad(Z) minima. For deep NF

potentials (levels A-C; fourth column in Table 5.2), the atoms are strongly confined

near the intensity minima and therefore have particularly long τ̃PI, as observed. For

shallower potentials, the atoms are less strongly confined to the intensity minima, and

consequently the observed τ̃PI drop somewhat. For the CMIN/FL case [Figure 5.2(b),

triangles, F and G], atoms sample all regions of the lattice fairly uniformly, as seen

in Figure 5.5(c), and consequently have shorter τ̃PI (although still longer than in the

CMAX/FL case, since for CMIN the atoms start at locations of low intensity). De-

viations in the data from the general trends described above are the result of the

systematic variations in day-to-day performance of the experiment discussed earlier,

such as variations in lattice intensity and alignment.

5.5 Conclusion

Using a spatially-resolved light probe, I have provided direct experimental evi-

dence that the photoionization of Rydberg atoms by light occurs close to the nucleus

in the atom, a fundamental assumption underpinning Rydberg-atom experiments for

decades. Photoionization rates measured for several Rydberg states depend on the

light field’s intensity near the center of the atom, and not on the overlap of the

electronic probability distribution with the light field (the measurements are also de-

scribed in Reference [88]). The measurement result that photoionization occurs near

the nucleus accords with the fact that the matrix element Mr in Equation 5.1 accumu-
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lates within a range that is small with respect to the impinging radiation. The optical

lattice is an essential experimental tool in this work, as it enables spatially-resolved

photoionization. The storage and manipulation of Rydberg atoms in optical traps is

important in several emerging areas already discussed in Section 1.3, including the

realization of exotic phases of matter [11], field sensors [15], quantum information

processing [2–4], and high-precision measurements of fundamental constants [31]. In

these applications, photoionization can either represent a mechanism through which

Rydberg atoms are lost, or be exploited as a detection method [69, 89]. In order to

gain more insight into the photoionization process for Rydberg atoms in optical fields,

in the next chapter I calculate photoionization matrix elements and cross sections.

To investigate the role of the electric dipole approximation in these calculations, I

derive expressions both without and with the approximation. I find conditions under

which the approximation is valid and when it breaks down, and I apply the results

to applications of Rydberg-atom optical lattices.
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CHAPTER VI

The Role of the Electric Dipole Approximation in

Photoionization - A Theoretical Study

In Chapter V, I provided spatially-resolved measurements of photoionization within

the volume of a Rydberg atom. Since the size of the atom in these experiments was on

the same order as the wavelength of the photoionizing light field, the electric dipole

approximation appeared to be invalid in this case. However, the measured photoion-

ization rates demonstrated that the photoionization process occurred within a volume

near the nucleus that was smaller than the wavelength of the light, thus revealing the

underlying reason for the electric dipole approximation’s validity for Rydberg atoms

in optical fields. Here, in Chapter VI, I continue the study of the photoionization

process for Rydberg atoms in optical fields. To gain a deeper understanding of the

role of the electric dipole approximation in this process, I derive expressions for the

photoionization matrix elements and photoionization rates with and without mak-

ing the dipole approximation. In evaluating the expressions, I explore conditions

under which the approximation breaks down. Then, I apply the results to consider

photoionization effects in experiments with Rydberg-atom optical lattices.

This chapter is organized as follows. In Section 6.1, I review the interaction of an

atom with an electromagnetic field and the derivation of matrix elements describing

field-induced transitions between atomic states. In Section 6.2, I discuss expressions
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for the photoionization matrix elements without the dipole approximation, investi-

gating conditions when dipole transitions dominate and when dipole-violating terms

become significant. I briefly describe how the usual forms of the matrix elements

that invoke the dipole approximation follow from the expressions. In Section 6.3, I

consider photoionization cross sections for Rydberg atoms in an optical lattice. In

Section 6.4, I present results for two applications, namely photoionization of Rydberg

nD states in low-intensity optical lattices, and photoionization of adiabatic Rydberg

states in high-intensity optical lattices. The work presented in this chapter was a

collaboration with Y.-J. Chen.

6.1 Atom-field interaction

The Hamiltonian for an N -electron atom with nuclear charge Z is given by

H =
N∑
i=1

(
p2
i

2me

− Ze2

4πε0ri

)
+

1

4πε0

N∑
i>j=1

e2

|ri − rj|
. (6.1)

The terms inside of the brackets are the kinetic and potential energy of each electron

in the Coulomb field of the nucleus. The term outside of the brackets describes the

electrostatic repulsion between pairs of electrons. The interaction of the atom with an

electromagnetic field can be taken into account by replacing pi with pi + |e|A(ri, t),

where A(ri, t) is the vector potential. The resulting interaction Hamiltonian that is

added to Equation 6.1 is

Hint =
N∑
i=1

{ |e|
2me

[pi ·A(ri) + A(ri) · pi] +
e2

2me

A2(ri)}.

The A2(ri) term describes two-photon processes. This term gives rise to the

ponderomotive potential that is responsible for the trapping of Rydberg atoms in an

optical lattice, as explained in Section 1.3.2. For photoionization in plane-wave, low-

intensity fields, the A2(ri) term can be neglected. In the Coulomb gauge, ∇ ·A = 0,
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and pi and A(ri) commute1. The interaction Hamiltonian can then be simplified to

Hint =
∑
i

(
|e|
me

A(ri) · pi
)
.

We consider a Rydberg atom with one active electron. In this case, the summation

over i in Hint may be dropped, and the position and momentum operators r and

p are for the Rydberg electron. For a source-free radiation field, the electric field

and vector potential are related by E = −(∂A/∂t) [46]. We first assume that the

field is a plane wave propagating in the x-direction and polarized in the z-direction2.

Therefore, A(r, t) = E/(iω) = E0

2iω
ẑei(kx−ωt) + cc, where E0 is the field amplitude, ω

the angular frequency, k the wavenumber, and ẑ the unit vector in the z-direction.

According to Fermi’s golden rule, which is given in full in Section 6.3.1, atomic

transitions are determined by |〈f |Hint|i〉|2 [45, 90], where |i〉 and |f〉 are the initial

and final states with wavefunctions ψi and ψf . Using the expression above for A and

writing the matrix element 〈f |Hint|i〉 in position representation, 〈f |Hint|i〉 becomes

in the rotating frame

〈f |Hint|i〉 = − e~E0

2meω

∫
ψ∗fe

ikx ∂

∂z
ψi d

3r, (6.2)

where the dipole approximation has not been made. (The approximation amounts to

ignoring the phase variation of the field over the volume of the atom, which is done

by setting eikx = 1.)

To express the matrix elements M =
∫
ψ∗fe

ikx ∂
∂z
ψi d

3r in a form that can be

evaluated numerically, we use spherical coordinates. The wavefunctions are given by

ψn,`,m(r, θ, φ) = Rn,`(r)Y
m
` (θ, φ) [90], and Rn,` = un,`(r)/r. The quantum numbers

1Since p = −i~∇, if ∇ ·A = 0, then pi and A(ri) commute.
2We assume that the field is propagating in the x-direction and polarized in the z-direction for

the convenience of calculating ∂
∂zψi in Equation 6.2, which is done in spherical coordinates. In

Section 6.4, we will switch to assuming a field that is propagating in the z-direction and polarized
in the x-direction for the convenience of making the z-direction our quantization axis for m.
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(n, `,m) and (n′, `′,m′) denote those of the initial and final states, respectively. The

radial wavefunctions are calculated according to Reference [1]. The Jacobi-Anger

relation,

eiacosφ =
∞∑

m̃=−∞

im̃Jm̃(a)eim̃φ,

expresses eikx in terms of an azimuthal Fourier series. The matrix elements then

become

M = im
′−m1

2

√
2`′ + 1

2`+ 1

(`′ −m′)!
(`′ +m′)!

(`−m)!

(`+m)!

{∫
un′,`′(r)[u

′
n,`(r)−

un,`(r)

r
(`+ 1)]

×
[∫

Jm′−m(kr sin θ)Pm′

`′ (cos θ)Pm
`+1(cos θ)(`−m+ 1) sin θ dθ

]
dr

+

∫
un′,`′(r)[u

′
n,`(r) +

un,`(r)

r
`]

×
[∫

Jm′−m(kr sin θ)Pm′

`′ (cos θ)Pm
`−1(cos θ)(`+m) sin θ dθ

]
dr

}
. (6.3)

The matrix elements given in Equation 6.3 describe atomic transitions between

bound states (and do not include the dipole approximation). For transitions from

bound to free states (photoionization), the radial wavefunction un′,`′ in Equation 6.3

is replaced by a free radial wavefunction uε′,`′ . We use free wavefunctions that are

normalized in energy,
∫
uε′,`′(r)uε,`′(r) dr = δ(ε− ε′).

6.2 General behavior of the matrix elements

6.2.1 Results without invoking the electric dipole approximation

Equation 6.3 yields a selection rule for allowed transitions that arises from the

three functions within the θ integrals (one Bessel function and two associated Leg-

endre functions). Since the θ integrals are performed from 0 to π, we consider the
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Figure 6.1: a) Matrix elements squared for photoionization with π-polarized light
from |n = 15, ` = 2,m = 0〉 to the continuum states |ε′ = 0.0830, `′,m′〉 for Rb,
plotted for various values of final `′ and m′. The wavelength of the field is 532 nm.
The only transitions with matrix elements of non-negligible amplitude are the dipole-
allowed transitions. b) Matrix elements squared for the same transitions as in (a),
but with the wavelength of the field artificially reduced by a factor of κ = 1000.
Dipole-violating transitions now have matrix elements with large values.

parity behavior of the three functions about π/2 to determine the selection rule. The

Bessel function terms in Equation 6.3 are always even. The associated Legendre func-

tions Pm
` (x) are even if the sum ` + m is even. Therefore, ` + m + `′ + m′ + 1 and

`+m+ `′ +m′ − 1 must be even for the first and second θ integrals, respectively, to

yield a non-zero result for the integrals. These conditions are fulfilled simultaneously.

Therefore, the selection rule is that `+m+ `′ +m′ + 1 must be even.

In the limit λ >> r (as when the electric dipole approximation is valid), there

are additional selection rules in Equation 6.3. The argument of the Bessel functions,

kr sin θ, tends toward zero, and Bessel functions higher than J0 can be neglected.

Therefore, from the orthogonality of the Legendre polynomials, we find the familiar

dipole selection rules m′ −m = ∆m = 0 (for z-polarized light) and ∆` = ±1.

To demonstrate the typical photoionization behavior of Rydberg atoms in light

fields, we calculate matrix elements following from Equation 6.3 for a rubidium Ryd-

berg atom interacting with a field of wavelength 532 nm. In Figure 6.1(a), we dis-
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play the calculated matrix elements squared, |M |2, for transitions from |n = 15, ` =

2,m = 0〉 to the continuum states |ε′ = 0.0830, `′,m′〉. The only transitions that

have non-negligible |M |2 values are the dipole-allowed transitions, for which ∆m = 0

and ∆` = ±1. The strongest dipole-violating transitions have |M |2 values that are

smaller than those of the dipole-allowed transitions by a factor of 10−5.

To explore conditions under which dipole-violating transitions become important,

we increase the wavenumber k inside the Bessel function argument in Equation 6.3

by an artificial factor κ, while holding everything else fixed (including the continuum

state). While this does not correspond to a physically realizable situation, it allows

us to explore where the unexpected validity of the dipole approximation arises when

performing the integrations shown in Equation 6.3. By increasing the argument of

the Bessel function by κ, we artificially increase the effect of higher order Bessel func-

tions in the resulting matrix elements3. Calculated matrix elements for transitions

from |n = 15, ` = 2,m = 0〉 to the continuum states |ε′ = 0.0830, `′,m′〉 are shown

in Figure 6.1(b) for κ = 1000. Dipole-violating transitions now have matrix elements

with significant values. In Figure 6.1(b), the most significant dipole-violating transi-

tions (to |ε′ = 0.0830, `′ = 2,m′ = ±1〉) have |M |2 values that are about a factor of 5

larger than the strongest dipole-allowed transition. In both Figure 6.1(a) and (b), we

observe the “checker board” pattern of transitions allowed by the selection rule that

`+m+ `′ +m′ + 1 must be even.

It is evident from the results presented in Figure 6.1 that the dipole approximation

is valid for Rydberg atoms in optical fields, despite the size of the atom being on the

same order as the wavelength of the light. To illustrate why the dipole approximation

holds in this seemingly unlikely case, we plot in Figure 6.2 the value of the matrix

3If we were to change the wavelength of the light in the calculation, we would also change the
continuum state uε′,`′ in Equation 6.3. In order to avoid complicating matters by changing numerous
things at once, we add the factor κ to the argument of the Bessel function. As discussed above,
this allows us to effectively investigate the effect of the higher order Bessel functions in the resulting
matrix elements while holding everything else fixed.
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Figure 6.2: Value of the matrix element, M , for the dipole-allowed transition (solid
lines) from |n = 30, ` = 2,m = 0〉 to the continuum state |ε′ = 0.0850, `′ = 3,m′ = 0〉
and for the dipole-violating transition (dashed lines) from |n = 30, ` = 2,m = 0〉 to
the continuum state |ε′ = 0.0850, `′ = 2,m′ = 1〉 as a function of cutoff radius, Rc,
for Rb. The wavelength of the field is 532 nm. The κ values, explained in the text,
are indicated.

element for the transition from |n = 30, ` = 2,m = 0〉 to |ε′ = 0.0850, `′ = 3,m′ = 0〉

(solid lines) as a function of cutoff radius in the radial integral. We find that for κ = 1

the matrix element accumulates within a radius of about 50 a0 and then oscillates

around its asymptotic value at larger radii. This is a similar result to that shown in

Figure 5.4. Since the value of the matrix element is essentially unchanged outside

of the small volume with r . 50 a0, the effective range of the radiative interaction

is confined to this small region around the nucleus. The Rydberg atom tends to

photoionize close to the nucleus. This finding is in accordance with calculations

performed elsewhere [81]. Since the matrix element accumulates to its asymptotic

value in a volume that is much smaller than the physical wavelength of the light, the

phase variation of the field in the outer regions r & 50 a0 is irrelevant because there

is no more accumulation for M . The electric dipole approximation therefore applies

in the physical case (i.e. for κ = 1).

We further illustrate in Figure 6.2 how the build-up of the matrix element for
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the transition from |n = 30, ` = 2,m = 0〉 to |ε′ = 0.0850, `′ = 3,m′ = 0〉 (solid

lines) changes when the wavelength of the light is effectively reduced (by increasing

κ). We plot the value of the matrix element as a function of integration cutoff radius

for κ = 10, 100, 600, and 1000. For κ . 100, deviations from the κ = 1 result are

very small. Major deviations are observed for κ = 600 and 1000, corresponding to

effective wavelengths of about 20 a0. In this short-wavelength case, the phase of the

field does vary substantially over the volume with r . 50 a0, within which the matrix

element accumulates to its asymptotic value. Under such conditions, the electric

dipole approximation breaks down. This is verified by Figure 6.1(b), where dipole-

violating matrix elements have values larger than dipole-allowed values. It is also

verified by the dashed lines in Figure 6.2, which show the value of the matrix element

for the strongest dipole-violating transition from |n = 30, ` = 2,m = 0〉 to |ε′ =

0.0850, `′ = 2,m′ = 1〉. For κ . 100, the dipole-violating matrix elements accumulate

to values near zero, while for κ = 600 and 1000, they reach large asymptotic values.

6.2.2 Results with the electric dipole approximation

In Section 6.2.1, we have established that the electric dipole approximation applies

to Rydberg atoms in optical fields, with |M |2 values of the strongest non-dipole terms

at a typical relative level of one part in 105. In the electric dipole approximation,

Equation 6.2 for 〈f |Hint|i〉 can be simplified by setting eikx = 1. In terms of the

momentum operator p = ~
i
∇, 〈f |Hint|i〉 then becomes

〈f |Hint|i〉 = − ieE0

2meω
n̂ ·
∫
ψ∗f

~
i
∇ ψi d

3r,

where the unit vector n̂ now refers to a general linear-polarization direction. The

matrix elements for z-polarized light, M =
∫
ψ∗f

~
i
∂
∂z
ψi d

3r, are given by
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M =

√
(`> +m)(`> −m)

(2`> + 1)(2`> − 1)
×


∫
un′,`′(r)[u

′
n,`(r)−

un,`(r)

r
`>] dr if `> = `′ = `+ 1∫

un′,`′(r)[u
′
n,`(r) +

un,`(r)

r
`>] dr if `> = ` = `′ + 1

.

(6.4)

When the matrix elements are expressed in terms of the momentum operator, as

shown above, this is known as the “velocity” form of the matrix elements. In the

dipole approximation, the matrix elements can also be expressed in other forms using

commutation relations between operators. The relation [r, H0] = i~
m

p, which follows

from the fundamental position-momentum uncertainty relation, allows the matrix

elements to be written in terms of the position operator. This form of the matrix

elements is known as the “length” form. The validity of this commutation relation,

and hence of the length form of the matrix elements, depends on the potential in the

field-free atomic Hamiltonian, H0, being a function only of position, not momentum.

In the length form, 〈f |Hint|i〉 becomes

〈f |Hint|i〉 =
eE0

2
n̂ ·
∫
ψ∗f r ψi d

3r, (6.5)

where the matrix elements Mr = n̂ ·
∫
ψ∗f rψi d

3r are given in Reference [90] (equation

60.7 and following).

Alternatively, the matrix elements may be expressed in the “acceleration” form.

In this form, the commutation relation [p, H0] = −i~∇V is used to express the

matrix elements in terms of [(Zr)/r3]. The validity of this form depends on the

potential in H0 being equal to the Coulomb potential [90], clearly making this the

most restrictive form. In the length, velocity, and acceleration forms, the matrix

elements accumulate to their asymptotic values at large, intermediate, and small

values of r, respectively (which is discussed in References [81, 90, 91]). However, no

matter what the form, the value of the matrix elements builds up within a small
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radius of the nucleus and undergoes oscillations about a steady-state value for larger

radii (as observed in Figure 6.2).

6.3 Photoionization cross sections

For the applications that will be discussed in Section 6.4, the effect of photoioniza-

tion is most conveniently accounted for using photoionization cross sections. In the

present section, we provide the relevant equations that relate the computed matrix

elements with the cross sections.

6.3.1 Case of a plane wave

The transition rate between atomic states is given by Fermi’s golden rule, Pi→f =

2π
~ |〈f |Hint|i〉|2ρ(Ef ). For photoionization, the unbound final states ψf are normal-

ized per unit energy, and the density of final states ρ(Ef ) is equal to 1. To find the

expression for the photoionization rates, we use Fermi’s golden rule and the expres-

sion for 〈f |Hint|i〉 in Equation 6.2. The photoionization rates are proportional to the

intensity (even if the electric dipole approximation does not apply). The range of

relevant photoionization channels (i.e. the `′ and m′ quantum numbers of the contin-

uum state for a given initial state; see Figure 6.1) depends on how well the electric

dipole approximation is satisfied.

The photoionization cross section σPI is determined by dividing the photoioniza-

tion rate by the photon flux density [field intensity over energy per photon, I/(~ω)].

In SI units, without the electric dipole approximation, and for linearly polarized light

(polarization unit vector n̂) with wavevector k, the photoionization cross section is

σPI =
πe2~2

ε0m2
eωc

∣∣∣∣n̂ · ∫ ψ∗f e
ik·r ∇ψi d3r

∣∣∣∣2( 1

27.2 eV × a2
0

)
. (6.6)

The matrix elements are computed in atomic units, and the term in brackets converts
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the matrix elements to SI units. If the electric dipole approximation is made and the

radial matrix elements Mr are expressed in length form, the photoionization cross

section is

σPI =
πe2ω

ε0c

∣∣∣∣n̂ · ∫ ψ∗f r ψi d
3r

∣∣∣∣2( a20
27.2 eV

)
. (6.7)

The photoionization cross sections depend on all initial and final state quantum

numbers and on the polarization of the incident field. If the m sublevels of the initial

state ψi are unresolved, the photoionization cross section must be averaged over m.

The resulting shell-averaged photoionization cross section is given by

σ̄av =
πe2ω

3ε0c

`>
2`+ 1

|Mr|2
(

a20
27.2 eV

)
, (6.8)

where `> is the larger of ` and `′, and Mr is the radial matrix element calculated

in atomic units, Mr =
∫
uε′,`′un,`r dr. Averaging over the initial-state m value in a

polarized field yields the same result for σ̄av as summing over allowed transitions for

a fixed initial m state in an unpolarized field.

It is convenient to calculate photoionization cross sections for m- and polarization-

specific transitions using σ̄av. For light polarized in the z-direction and σ̄av given by

Equation 6.8, the photoionization cross section for an initial m state is given by

σz(m) =
3

4

(`2> −m2)

(2`> + 1)(2`> − 1)

(2`+ 1)

`>
σ̄av. (6.9)

In the applications discussed in Section 6.4 below, it is convenient to assume a

light field that is propagating in z and polarized in x. We therefore also give the

photoionization cross section for a field polarized in the x-direction (σx and σy are

the same),

σx(m) =
3

2

(`′(`′ + 1) +m2)

(2`> + 1)(2`> − 1)

(2`+ 1)

`>
σ̄av. (6.10)
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6.3.2 Case of an optical lattice

The results that we have given so far are for a plane wave. In an optical lattice,

the field is composed of two counter-propagating plane waves, and the expression for

the matrix elements must be modified accordingly. For the case of an optical lattice

propagating along ±x and polarized along z, the electric field is

E(x, t) =
E0

2
ẑ[ei(kx−ωt+α/2) + ei(−kx−ωt−α/2)] + cc,

where ±α/2 are the beam phases at the atom’s center-of-mass location. In the rotat-

ing frame, the electric field becomes

E(x) = ẑE0 cos(kx+ α/2). (6.11)

Using the relation A = E/(iω), spherical coordinates, and the Jacobi-Anger relation,

the vector potential for the optical lattice is expressed

A(r, θ, φ) = ẑ
E0

2iω

∞∑
m′−m=−∞

im
′−mJm′−m(kr sin θ)ei(m

′−m)φ

×

 2 cos(α/2) if m′ −m is even

2i sin(α/2) if m′ −m is odd
. (6.12)

With this expression for A and m′−m = ∆m, the matrix elements M for an optical

lattice may be obtained by multiplying those for a plane wave (Equation 6.3) by

2 cos(α/2) for the ∆m even terms and 2i sin(α/2) for the ∆m odd terms.

Photoionization in the case of an optical lattice provides further insight into the na-

ture of the photoionization process. When the dipole approximation holds, ∆m = 0,

and |M |2 is proportional to cos2(α/2), as seen from Equation 6.12. In an optical

lattice, the intensity at the center-of-mass position is also proportional to cos2(α/2),
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which follows from Equation 6.11. Therefore, when the dipole approximation is valid,

the photoionization cross sections are determined by the intensity at the exact center-

of-mass location of the Rydberg atom. It is irrelevant how the field varies over the

atomic diameter (which, for a Rydberg atom, is on the order of the wavelength). If the

dipole approximation were not valid, ∆m would take on many values, and the pho-

toionization cross sections would contain terms that would no longer be proportional

to the intensity at the center-of-mass of the Rydberg atom [as both the cos (α/2)

and the sin (α/2) terms in Equation 6.12 would be important]. The fact that the

photoionization cross section for a Rydberg atom in a strongly inhomogeneous light

field only depends on the intensity at the center-of-mass location re-emphasizes the

propensity of such atoms to photoionize close to the nucleus. This in turn ties into

the validity of the electric dipole approximation.

6.4 Experimental applications

We now apply the equations that have been derived throughout the chapter to

applications with Rydberg atoms in optical lattices. We divide the applications into

two general classes: applications of low-intensity lattices and of high-intensity lat-

tices. This thesis has dealt mainly with low-intensity lattices thus far. As discussed

in Sections 1.3.2 and 4.2.2, lattice-induced shifts to the atomic energy levels in low-

intensity lattices are on the order of 10 MHz, while lattice-induced state-mixing is

negligible. These Rydberg-atom lattices are therefore attractive for such applica-

tions as quantum computing [30] or high-precision spectroscopy [31]. In quantum

computing applications, the optical lattice would allow for sequential gate operations

utilizing the same atoms in a trap that is compatible with optical lattice traps for

ground-state atoms. Furthermore, in both quantum computing and high-precision

spectroscopy applications, it is possible to achieve magic-wavelength traps, which

would minimize trap-induced shifts on transitions of interest [33].
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Figure 6.3: Shell-averaged photoionization cross sections for Rb Rydberg n and `
states in a plane-wave 1064 nm field, calculated following Equation 6.8 (1 barn
= 10−28 m2). For each `, the n values range from 20 to 90 in steps of 5. The
red dashed line represents the Thomson scattering cross section (0.665 barn). (Any
photoionization cross sections below this value should be replaced with the Thomson
scattering cross section.)

In the case of high-intensity lattices, the ponderomotive potential is on the same

order as the Kepler frequency (∼ 1 GHz; see Section 1.2.1). The lattice in this

case not only traps the Rydberg atoms, but also induces strong ` state-mixing of

the levels. The resulting structure of the adiabatic potentials in the lattice is more

complex than for low-intensity lattices [53]. Near the inflection points, the lattice-

induced potential is approximately linear for small Rydberg atoms, resulting in a

level structure that resembles the Stark effect. Near the nodes and anti-nodes, the

lattice-induced potential is approximately quadratic, resulting in a level structure that

resembles the diamagnetic problem. Spectroscopic studies of such novel high-intensity

lattices will reveal these structures.

In both classes of applications described above, photoionization of Rydberg atoms

in the lattice may be a concern. To illustrate the photoionization probability trends for

different Rydberg states, Figure 6.3 shows calculated photoionization cross sections

for Rb as a function of n and `. The photoionization cross sections are generally
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quite large for low `. The S states are an exception, however. They exhibit very

small photoionization cross sections due to a Cooper minimum that results from the

S- and P -state quantum defects of Rb being different by almost exactly 0.5 (see

Section 3.4.3 and Reference [26]). The photoionization cross sections fall off as `

increases and reach very small values for high-` states (` & 10). The red dashed line

in Figure 6.3 indicates the Thomson scattering cross section (σ = 0.665 barn), which

describes the QED effect of scattering of light from an electron [92]. A photoionization

cross section (which is computed semi-classically) that is lower than the Thomson

scattering cross section should be replaced with this value.

In the remainder of this chapter, we consider in Section 6.4.1 the photoionization

of Rb nD states in low-intensity lattices, a case in which photoionization is easy to

measure since these states have some of the highest photoionization rates (as seen

in Figure 6.3). In Section 6.4.2, we consider the photoionization of the adiabatic Rb

Rydberg states in high-intensity lattices. Due to state-mixing in this case, all adi-

abatic states contain some low-` character, and consequently, it must be considered

whether these states will photoionize at rates that would noticeably broaden spectro-

scopic structures or affect applications of such deep Rydberg-atom optical lattices.

All calculations in the following sections are performed for a one-dimensional optical

lattice.

6.4.1 Photoionization of nD states in low-intensity lattices

Both the adiabatic potentials and photoionization rates are generallym-dependent.

In low-intensity optical lattices (∼ 106 W/cm2), the m-dependence of the potentials

and photoionization rates can be measured, for instance, as an |mj|-dependence of

Rydberg D state lattice depths and photoionization rates (where mj = m+ms, with

spin magnetic quantum number ms). In the present section, we calculate adiabatic

potentials and photoionization rates for |mj| sublevels of nD states in a low-intensity
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optical lattice, with a DC electric field applied to lift |mj| degeneracies.

The potentials for Rydberg atoms in an optical lattice are calculated by finding

and diagonalizing the Hamiltonian

Hlat = H0 + Vp(z + Z0) (6.13)

as a function of the atom’s center-of-mass position Z0 in the lattice (the z represents

the relative z-coordinate of the Rydberg electron). Further, Vp(z + Z0) = e2E2(z +

Z0)/(4meω
2) is the free-electron ponderomotive potential in the lattice field with

position-dependent amplitude E(z+Z0) (see Section 1.3.2). The adiabatic potentials

are then constructed by plotting the energy eigenvalues as a function of the position

Z0 [53]. The adiabatic potentials, Vad, for the center-of-mass motion of the Rydberg

atoms in a one-dimensional lattice (propagating in z and polarized in x) are given by

Vad (Z0) =

∫
d3r Vp (z + Z0) |ψ (r) |2, (6.14)

which is a spatial average of Vp weighted by the Rydberg wavefunction, ψ, and is

discussed in Section 1.3.2. The wavefunction ψ generally is a superposition of the

lattice-free atomic states due to lattice-induced state mixing. The Vad potentials for

Rydberg atoms have been investigated for low-intensity lattices in Chapter IV and

Reference [41].

Examples of the adiabatic potentials Vad for 50D in a lattice of depth 40 MHz

are shown in Figure 6.4(a). This depth can be achieved by focusing two counter-

propagating 1064 nm laser beams, each with a power of 1 W, into a confocal spot

with w0 = 13 µm. In Figure 6.4(a), a DC electric field of strength 1 V/cm is applied in

the z-direction to lift degeneracies of the |mj| sublevels. The 50D3/2 and 50D5/2 levels

split into a total of five components in the DC field, as described in Section 4.2.1.

The components are labeled in Figure 6.4(a) in order of increasing energy, following
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Figure 6.4: a) Adiabatic potentials in wavenumbers, W , for 50D of Rb in an optical
lattice of depth 40 MHz and a superimposed DC electric field of 1 V/cm pointing
in the lattice-beam direction. Potentials are plotted as a function of Rydberg-atom
center-of-mass position in the lattice, Z0, and are labeled in order of increasing energy
in the DC field. b) Photoionization decay rates for the same levels and experimental
parameters as in (a).

the convention used in Sections 4.2.1 and 5.1. In the limit of small DC field, the

five components connect with the following levels: (1) 50D3/2 |mj|=3/2, (2) 50D5/2

|mj|=5/2, (3) 50D3/2 |mj|=1/2, (4) 50D5/2 |mj|=3/2, and (5) 50D5/2 |mj|=1/2. The

|mj|-dependence of the potentials is clearly observed in Figure 6.4(a), as the modula-

tion depth of the adiabatic potentials for the five levels varies from strongly modulated

(levels 1-2) to barely modulated (levels 3-5). The five sublevels vary in modulation

depth because of differences in the extent of the wavefunctions along the axis of the

lattice, resulting in varying amounts of averaging in Equation 6.14 (see Section 4.1

and Reference [87]). The sublevels with wavefunctions that are extended in the direc-

tion of the lattice axis experience shallower potentials, since they average over more

of the free-electron ponderomotive potential. Levels 3-5 in Figure 6.4(a) therefore

have wavefunctions with larger extents in the direction of the lattice axis than levels

1-2.

To illustrate the m-dependence of the photoionization rates, we begin with a

hypothetical example that exhibits an extreme difference in photoionization behavior
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for the different magnetic sublevels. We consider photoionization of a P state, without

fine structure. We also assume a Cooper minimum for photoionization into D states

in the continuum, so that the only available photoionization channel is into S states.

For a π-polarized laser field, the ∆m = ±1 transitions are not allowed by selection

rules. The only allowed photoionization channel is then |nP,m = 0〉 → |ε′S ′,m′ = 0〉.

Therefore, for such a model atom, one magnetic substate would photoionize at high

rates, while the other two (|nP,m = ±1〉) are protected from photoionization by

angular momentum selection rules.

To quantitatively include the effect of photoionization in the same optical lattice

as in Figure 6.4(a), we add imaginary contributions to the energy eigenvalues of

the basis states that account for the photoionization-induced decay. The resultant

effective Hamiltonian is

H(Z0) = Hlat(Z0) +
∑
n`jmj

|n`jmj〉〈n`jmj|
(
−i

~Γn`jmj
(Z0)

2

)
, (6.15)

with Hlat defined in Equation 6.13. The second term above introduces the imaginary

contributions to the diagonal terms of the Hamiltonian. The decay rates, Γn`jmj
(Z0),

are related to photoionization cross sections and the lattice intensity I(Z0) via

Γn`jmj
(Z0) = σn`jmj

I(Z0)

~ω
=

2cε0meω

e2~
σn`jmj

Vp(Z0).

The decay rates are proportional to the position-dependent ponderomotive potential,

Vp(Z0), defined above. The decay rates are also proportional to the photoionization

cross section σn`jmj
, which for x-polarized light is a weighted average of σx(n, `,m =

mj + 1/2) and σx(n, `,m = mj − 1/2) from Equation 6.10 using the Clebsh-Gordon

coefficients as the weighting factors (and we sum over `′ = ` − 1 and `′ = ` +

1). Note that the decay rates are determined by the intensity at the center-of-mass

location of the Rydberg atom, Z0. To obtain the photoionization rates of the adiabatic
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Rydberg states in the optical lattice, the imaginary parts of the eigenvalues found

after diagonalization are multiplied with 2/~.

In Figure 6.4(b), we plot the photoionization rates Γ(Z0) in the lattice for the

|mj| sublevels of 50D. For Z0 = 0, the photoionization rates are maximal for the

five sublevels, since the atomic center-of-mass is located at an intensity maximum.

The peak values of Γ(Z0) vary for the five levels and translate into photoionization

lifetimes of about a few µs, which would be readily observed in the lifetimes of the

levels (radiative lifetime for 50D is ≈ 100 µs at 77 K). The effect of photoionization-

induced line broadening would still be negligible, as it is only a few tenths of the

linewidths of typical excitation lasers (∼ 1 MHz). For Z0 = ±λ/4 in Figure 6.4(b),

the photoionization rates for all sublevels vanish, since the atomic center-of-mass is

located at intensity minima. The |mj|-dependence of the photoionization rates is

clearly visible, as the peak photoionization rates vary over a relative range of 16%.

This dependence is less significant than the variations seen for the adiabatic-potential

depths. This is because the adiabatic potentials depend on the long-range structure

of the wavefunctions, while the photoionization rates depend only on the intensity

near the center-of-mass of the atom. The shape of the wavefunction therefore has a

larger effect on the adiabatic potentials than on the photoionization rates.

6.4.2 Photoionization of adiabatic states in high-intensity lattices

In high-intensity optical lattices (∼ 108 W/cm2), with depths on the order of

a few GHz, the lattice mixes states of different ` (and, under absence of cylindrical

symmetry, also m). The adiabatic states in the lattice are now linear superpositions of

a wide range of angular momentum states. Lattice-induced mixing of a large number

of nearly degenerate states gives rise to a rich structure of adiabatic potentials in the

lattice. This structure is illustrated in Figure 6.5, where the adiabatic potentials for

n = 50, mj = 1/2 (including fine structure in the calculation; for a detailed description
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Figure 6.5: Adiabatic potentials in wavenumbers, W , for n = 50, mj = 1/2 of Rb in
an optical lattice with depth of 3 GHz. The boxed regions in (a) correspond to the
regions in panels (b) and (c). The widths of the energy levels equals the FWHM of the
photoionization-induced linewidth multiplied with an enhancement factor of 100 (a)
and 1000 (b,c). (The enhancement factor is necessary for the photoionization-induced
level width to become visible.)

of the calculation, see Reference [53]) are plotted as a function of atomic center-of-

mass position in the lattice. The lattice primarily mixes states of zero quantum defect;

113



the thickest curves in Figure 6.5(a) are F states, which are depressed in energy due

to their quantum defect and consequently are less mixed with the hydrogenic states.

Near the inflection points of the lattice [Z0 = ±λ/8 in Figure 6.5(a)], the straight,

non-intersecting structure of the adiabatic potentials resembles the level structure

obtained with the DC Stark effect. Since the free-electron ponderomotive potential,

Vp, in these regions is linear, the analogy to the DC Stark effect (which also involves

a linear perturbation potential) is expected. The lattice is therefore interpreted as

providing an effective electric field in these regions. Near the nodes and anti-nodes

of the lattice [Z0 = 0,±λ/4 in Figure 6.5(a)], the levels resemble the rotational and

vibrational energy level series in the diamagnetic problem [52, 93–95]. In both the

diamagnetic problem and in the lattice potential near the nodes and anti-nodes, the

perturbation is quadratic. The lattice can therefore be interpreted as providing an

effective magnetic field in these regions. The structure of the adiabatic potentials in

high-intensity lattices and its interpretation is described in detail in Reference [53].

Due to lattice-induced state-mixing, even the hydrogen-like states acquire some

lower-` character and may consequently photoionize. In spectroscopic studies of

the adiabatic potentials, it must be considered whether photoionization-induced line

broadening will hinder resolution of the adiabatic potentials. To investigate this, we

calculate photoionization rates using the same procedure as in Section 6.4.1 for the

adiabatic states in a lattice of depth 3 GHz. This depth can be achieved by focusing

two counter-propagating 1064 nm laser beams, each with a power of 200 W, into a

confocal spot with w0 = 21 µm. Such a lattice could be prepared, for instance, by

using a concentric field enhancement cavity, with the Rydberg atoms at the center.

In Figure 6.5, the plotted width of the adiabatic potentials equals the FWHM of the

photoionization-induced linewidth of the potentials4, multiplied by an enhancement

factor. For the level widths to become visible in Figure 6.5, the enhancement factor

4It is important not to neglect the factor of 2π when converting linewidth to decay rate. The
linewidth of the potentials equals 2π times the decay rate.
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is 100 in Figure 6.5(a) and 1000 in Figure 6.5(b), (c).

Maximum photoionization-induced decay rates in Figure 6.5 are about 1.6×106 s−1

for the F -like states at Z0 = 0, where the lattice intensity is maximal. For the

hydrogen-like states within the range of Figure 6.5(b), which is near an intensity

maximum, the maximum decay rates are about 105 s−1. For the hydrogen-like states

within the range of Figure 6.5(c), which is near an intensity minimum, the maximum

decay rates are about 2 × 104 s−1. Since the radiative decay rates of Rydberg levels

around n = 50 are on the order of 104 s−1, the effect of photoionization-induced

decay on the lifetimes of the states would be discernable in measurements of atom

number as a function of time (such as those in Section 5.2). However, photoionization-

induced line broadening would be about 10−2 times smaller than anticipated widths

of the adiabatic potentials in spectroscopic studies (determined by the linewidths of

the excitation lasers and the decay rate of any intermediate states used in the laser

excitation). Therefore, photoionization-induced line-broadening will not play a role

in these spectroscopic studies.

In the center regions of the spectrum near Z0 = ±λ/4 in Figure 6.5(a) and (c),

the structure of the adiabatic potentials takes the form of a series of small wells with

a periodicity of 10 nm. We emphasize that this periodicity of 10 nm is achieved using

a laser wavelength of 1064 nm; it is therefore much smaller than the λ/2 limit that

usually sets the lower bound on the periodicity of optical lattices. For the intensities

used in Figure 6.5(c), the small wells have a depth of 10-100 MHz, sufficient to

support about 10 quantum levels (for a Rb atom). By decreasing the intensity of

the lattice, the depth of the wells could be made shallow enough that tunneling

becomes important. These wells may therefore become attractive for quantum state

manipulation and control experiments.
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6.5 Conclusion

We have analyzed matrix elements describing the photoionization of Rydberg

atoms by optical fields, and we have discussed implications of our calculations for

experiments with Rydberg atoms in optical lattices. The matrix elements derived for

Rb Rydberg states in a field of wavelength 532 nm without making the electric dipole

approximation accumulate within a small volume near the nucleus with r . 50 a0.

For that case, non-dipole terms have matrix-element-squared values that are 10−5

times smaller than the dipole-allowed values. The electric dipole approximation is

therefore well satisfied. A noticeable breakdown of the approximation is expected

for wavelengths . 10 nm. Applications of Rydberg atoms in optical fields include

low- and high-intensity lattices. For low-intensity lattices, photoionization will have a

strong, m-dependent effect on the lifetimes of the Rydberg states. For high-intensity

lattices, photoionization will have no effect on the linewidths of the states but will be

discernable in the states’ lifetimes.

The thorough characterization of the photoionization process given in this chapter

and Chapter V provides a solid, fundamental understanding of the role of photoion-

ization in experiments with Rydberg atoms in optical fields. This understanding,

together with the ability to trap the atoms efficiently as in Chapter III and to tune

the trapping potentials by choice of Rydberg state as in Chapter IV, makes the

Rydberg-atom optical lattice ready for applications. In the next chapter, I describe

some future directions for this Rydberg-atom trap, including work already underway

towards using the ponderomotive optical lattice in microwave spectroscopy applica-

tions.
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CHAPTER VII

Future Directions

In this thesis, I have developed a novel Rydberg-atom trap that uses standing-wave

optical fields to confine the Rydberg atoms. Optical traps for Rydberg atoms, in con-

trast to those for ground-state atoms, utilize the ponderomotive potential acting on

the quasi-free Rydberg electron to trap the atoms. My accomplishments in the realiza-

tion and characterization of this trap include a demonstration of 85Rb Rydberg-atom

trapping in a 1064 nm optical lattice with 90% efficiency. Since the Rydberg atoms

were initially prepared near lattice potential maxima, the high trapping efficiency

was only possible with a lattice inversion applied immediately after Rydberg-atom

preparation, placing potential minima at the location of the atoms. I have also inves-

tigated the trapping potentials experienced by Rydberg atoms in the lattice and their

dependence on the angular portion of the Rydberg wavefunction. The modulation

depth of the potentials was demonstrated, by choice of Rydberg state, to be tunable

over a wide range, including a sign change such that the Rydberg- and ground-state

potentials were sign-matched. Further, I have characterized the process by which the

Rydberg atoms are ionized by the relatively intense lattice light. Since the lattice

intensity was maximally inhomogeneous within the volume of the Rydberg atom, it

served as a spatially-resolving light probe to study where the photoionization process

occurred. Photoionization was found to occur close to the nucleus. In the theoretical
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description of photoionization, I have shown that photoionization happens close to

the nucleus because the matrix elements describing this process accumulate within a

small radius of the nucleus, and I have determined conditions under which we may

expect this localization of photoionization to break down. Finally, I have applied

this understanding of photoionization to consider applications of Rydberg atoms in

optical lattices. Therefore, through this work, the ponderomotive optical lattice for

Rydberg atoms has progressed from being essentially a proposal to being a well de-

veloped and understood trap, ready for employment in the applications discussed in

Section 1.3. In the remainder of this chapter, I outline some future directions for the

Rydberg-atom optical lattice system, with an emphasis on applications in microwave

spectroscopy.

7.1 Three-dimensional trapping

In experiments presented earlier in this thesis, Rydberg atoms were trapped in

an optical lattice with 90% efficiency in the longitudinal z-direction of the lattice.

Since the lattice was one-dimensional, the atoms left the lattice in the transverse

direction within tens of µs. A future direction for the work presented in this thesis is

therefore to achieve three-dimensional confinement of Rydberg atoms, which would

enable long Rydberg-atom trapping times. Long trapping times are necessary for

applications such as high-precision spectroscopy, which depends on long atom-field

interaction times for high levels of precision and accuracy in the measurements.

Since Rydberg atoms are, in general, attracted to intensity minima in the lattice,

a three-dimensional Rydberg-atom trap requires a dark volume surrounded on all

sides by light. A way to achieve such a light-field profile in the current experimental

setup (i.e. in the “cryoMOT” setup) would be to adjust the spot sizes and powers

of the two counter-propagating lattice beams as illustrated in Figure 7.1. One beam

would have less power and would be focused more tightly, while the other would have
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Figure 7.1: Laser beam diagram for a three-dimensional bottle trap for Rydberg
atoms. The foci and powers of the two counter-propagating lattice beams are adjusted
to achieve intensity matching on-axis, surrounded by a non-zero light field.

more power and would be focused less tightly. This would result in a region of perfect

constructive and destructive interference on-axis that is surrounded on all sides by

light. Such a trap profile is referred to as a “bottle trap” [73, 96].

To implement such a bottle trap with minimal changes to the existing experimental

setup, one could offset the foci of the ingoing and return lattice beams to match the

on-axis intensities in the two beams (for a description of the existing lattice setup and

an explanation of why the lattice beams are not currently intensity-matched when

their foci are overlapped, see Section 2.3). In the current setup, the maximum ingoing

lattice beam power, which is denoted by P1 and is limited by power restrictions of the

optical fiber that carries the 1064 nm light to the chamber, is 1.5 W. The confocal

spot of the ingoing beam (w01) is 11 µm. As discussed in Section 2.3, the return

beam power (P2) is attenuated by 0.56, and the return beam focus is enlarged to

a confocal spot (w02) of 21 µm. For these experimental parameters, the intensity-

matching condition may be calculated with the ingoing beam focus at z + δ and the

return beam focus at z, where δ is the offset needed to match the on-axis intensities

of the two beams.

To find the trapping potentials in a lattice with the parameters given above, I cal-

culate the shift of the Rydberg levels in such a lattice. The shift of the Rydberg levels

in units of Hz is W = (−1
4
αRE

2)/h, where E is the electric field amplitude discussed

below in Equation 7.1, and αR is the state-dependent polarizability of the Rydberg
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Figure 7.2: a) Calculated 45S trapping potential, for a configuration with a single,
retroreflected λ = 1064 nm beam. The ingoing lattice beam is offset and the return
beam attenuated to match intensities on-axis. b) The modulation depth of the lon-
gitudinal trapping potential is 2.7 MHz. c) The modulation depth of the transverse
trapping potential is 195 kHz.

state discussed in Section 3.1. Here, I consider the case of 45S, a relatively small

state, so that the wavefunction averages over less of the free-electron ponderomotive

potential (in Equation 1.6) and the trapping potentials are consequently deeper. For

45S, the polarizability is α45S = 0.706×αp, where αp is the free-electron polarizabil-

ity (see Section 3.1). The total electric field in the lattice, with the offset δ for the

ingoing beam included, is

E(r, z) =

√
4P1

πcε0w2
1(z + δ)

e−r
2/[w2

1(z+δ)]eikz +

√
4P2

πcε0w2
2(z)

e−r
2/[w2

2(z)]e−ikz, (7.1)

where k is the wavenumber, and w1 and w2 are the position-dependent 1/e2 radii of

the two Gaussian beams.

A calculated trapping potential for the experimental parameters given above is

shown in Figure 7.2(a), along with slices of the trapping profile along the axis of

the lattice (z-direction) in Figure 7.2(b) and transverse to the axis of the lattice

(radial r-direction) in Figure 7.2(c). In order to reach the deepest trap possible in the

radial direction, the return beam must be attenuated further (beyond the 0.56 factor

already present), to 0.2 times the power of the ingoing beam. This corresponds to

an offset δ = 1.5 mm. These parameters are used in Figure 7.2. While the depth of

120



a) b)

z[λ]

r r

P  [W]

1.5

1.0

0.5

0

0.25

0.5

0

z[λ]= 0.25

2

r

Figure 7.3: a) Calculated 45S trapping potential, for a configuration with two in-
dependently controllable λ = 1064 nm lattice beams. For the deepest transverse
potential [as determined in (b)], one lattice beam has a power P1 of 1.5 W and a focal
spot w10 of 26 µm. The other lattice beam has a power P2 of 0.3 W and a focal spot
w20 of 11 µm. b) The transverse trapping potential at z = 0.25λ as a function of
power P2. The deepest transverse potential is found for P2 = 0.3 W to be 700 kHz
[used in (a)], and the depth of the longitudinal potential in this case is 11 MHz.

the trapping potential in the z-direction is almost 3 MHz, the trapping potential in

the r-direction is only about 200 kHz. This corresponds to an atomic temperature

of about 20 µK, which is too cold to be easily achievable in the current experimental

setup. The trapping efficiency in the radial direction would therefore be limited.

If the lattice is formed by two independently controllable, counter-propagating

lattice beams instead of by retroreflection of a single beam (as in the current setup,

see Section 2.3), the potential in the radial direction can become deeper. In the

following calculation, the foci of the two beams are assumed to be coincident with

each other. I assume a maximum power in one beam (P1) of 1.5 W (which is the

limit due to the damage threshold of the optical fibers) and a minimum focal spot

(w20) of 11 µm in the other beam. I then calculate the power of the second beam (P2,

which also determines the focus of the first beam, w01 = w02

√
P1

P2
) that is necessary

to match intensities. The resulting trapping potential is shown in Figure 7.3(a), and

the transverse trapping potential at z = 0.25λ is shown in Figure 7.3(b) as a function

of P2. As seen in Figure 7.3(b), the value of P2 that gives the deepest transverse

potential is 0.3 W; the resulting transverse potential depth is 700 kHz. This trap
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depth corresponds to temperatures of 67 µK. Atomic temperatures in this range have

been demonstrated in the cryoMOT setup using an additional molasses cooling phase

(in which the detuning of the MOT was increased and the power of the MOT reduced,

see B. Knuffman’s Ph.D. thesis). Note that switching off the MOT magnetic fields,

which is typically done during molasses cooling, is not an option in the cryoMOT

setup due to eddy currents in the system that persist for ≈ 50 ms (see the senior

thesis work of K. Crimmins). The longitudinal potential depth in Figure 7.3(a) is

11 MHz. Therefore, it would be possible to achieve three-dimensional confinement

for the Rydberg atoms using this configuration.

An alternative way to achieve a three-dimensional trap for Rydberg atoms in a

different experimental setup is by inserting a concentric resonator inside the vacuum

chamber. By coupling the 1064 nm lattice light into the resonator, the cavity acts as a

mode filter, allowing for a near perfect mode structure and hence optical lattice. This

is in contrast to the setup utilized in this thesis where the retroreflected lattice beam

is attenuated and distorted by the additional components in the return beam path.

By fine-tuning the alignment of the cavity, high order Laguerre- or Hermite-Gaussian

modes [97] can be readily achieved, which could be used to create a light-field profile

necessary for three-dimensional confinement of Rydberg atoms. The resonator also

acts as a field-enhancement cavity, which would enable spectroscopic studies of the

adiabatic potentials described in Section 6.4.2. Such a configuration is currently being

pursued in the Raithel lab.

7.2 Amplitude-modulated ponderomotive optical lattice

A novel technique enabled by the ponderomotive optical lattice allows for a new

method of performing microwave spectroscopy with Rydberg atoms. In traditional

microwave spectroscopy with Rydberg atoms, transitions are driven by direct appli-

cation of microwave radiation, as done in Section 3.3. However, by modulating the
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amplitude of the optical lattice at the appropriate microwave frequency, transitions

may be driven between two Rydberg states. This method is unique in comparison to

traditional spectroscopic methods because it allows one to drive transitions between

Rydberg states that bypass the usual dipole selection rules that govern spectroscopy.

Further, since the amplitude-modulated light for driving the Rydberg transitions

may be focused to µm-scale spot sizes, this innovative method would allow one to

drive site-selective microwave transitions between Rydberg states. It would therefore

combine the high spectral resolution of microwave spectroscopy with the spatial res-

olution of optical spectroscopy. Driving transitions between Rydberg states in this

manner is ideal for performing high-precision spectroscopy to improve determinations

of fundamental atomic constants (see Section 7.3 and References [27, 98]).

The origin of the transitions driven by amplitude modulation of the optical lattice

is distinct from that of usual spectroscopy, in that it engages the A ·A term of the

atom-field interaction Hamiltonian, Hint, in contrast to the usual p ·A term. Without

the amplitude modulation of the optical lattice, the A · A term results in trapping

potentials, as shown in Section 1.3.2. With the amplitude modulation, the term

also drives transitions between Rydberg states. As discussed in Section 6.1, atomic

transitions from an initial state |i〉 to a final state |f〉 are found by time-dependent

perturbation theory to be described by Fermi’s golden rule, in which the probability

for a transition is given by the square of the matrix elements, |〈f |Hint|i〉|2. Rydberg

states are orthogonal, and therefore in order for matrix elements for a transition to

be non-zero, the operator for Hint must have a position dependence. The traditional

method of driving atomic transitions via the p ·A term of Hint is described in Sec-

tion 6.1. For the p · A operator, the position dependence comes from the p. In

utilizing the A ·A term to drive Rydberg transitions in an optical lattice, the time

dependence of the amplitude modulation allows us to apply time-dependent pertur-

bation theory, and the spatial dependence required for the matrix elements to be
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non-zero arises from the interference pattern in the lattice intensity.

The Hamiltonian for the Rydberg electron in an amplitude-modulated optical

lattice, which has wavenumber k, is propagating along z, and is modulated in intensity

at angular frequency Ω, is given in atomic units by

H = −1

r
+ Vc(r) + (A+B cos (Ωt))[1 + cos (2k(z − Z0))]. (7.2)

Here, the first term is the Coulomb potential, and Vc is a short-range core potential

that takes into account the quantum defects (see Section 1.2.2). The last term in

Equation 7.2 represents the ponderomotive lattice potential that both varies in space

and is modulated in amplitude, where z is the relative coordinate of the Rydberg

electron, Z0 is the center-of-mass coordinate of the atom, 2A is the time-averaged

depth of the lattice, and 2B is the amplitude of the modulation. The lattice pertur-

bation described by this term varies over the size of the Rydberg atom. Therefore,

when the spatial part of the perturbation is expanded, the higher order terms have

significant values and are able to drive transitions for a wide range of ∆` values. A

full derivation of the matrix elements is found in Reference [31].

In collaboration with K. Moore, I have made progress towards implementing this

technique for driving Rydberg transitions in the laboratory. Transitions between

Rydberg states are in the tens of GHz regime, and therefore in order to realize this

novel method for driving Rydberg transitions, we must modulate the lattice inten-

sity at these frequencies. To accomplish the intensity modulation, we use a high-

frequency electro-optic modulator (EOM) of the Mach-Zehnder type (EOSpace, Inc.,

Ω . 2π×40 GHz). Since the high-frequency EOM can only tolerate low laser powers

(. 200 mW), technical challenges are associated with this experiment. High lattice

power (≈ 1 W) is needed to achieve a potential depth that confines the atoms, so

as to eliminate motion of the atoms through the lattice. This is important because

Rabi frequencies of the transitions driven by the amplitude-modulated lattice have
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Figure 7.4: Schematic of the experimental setup for driving Rydberg transitions by
lattice amplitude modulation. A Mach-Zehnder interferometer setup is used to lock
a high-power beam in phase with a low-power beam that is modulated in intensity
using a high-frequency EOM.

different signs at different regions within the lattice; if the atoms were able to travel

through the lattice and sample many regions, evidence of transitions may be impos-

sible to observe. We must therefore develop a way to perform a lattice modulation

while maintaining a deep enough atom trap.

To achieve a deep atom trap with some amplitude modulation, we use an inter-

ferometric setup to combine a high-power beam in phase with a low-power, intensity-

modulated beam. The setup is illustrated in Figure 7.4. A low-power beam is ini-

tially split from the high-power input. The low-power light is sent through the high-

frequency EOM for intensity modulation. The high- and low-power arms are then

recombined at the second, 50:50 beamsplitter. To lock the two arms in phase with

one another, one of the mirrors in the interferometric setup is mounted on a piezo-

electric transducer (pzt). The length of that arm can thereby be translated, changing

the phase acquired by the beam in that arm. The interference signal at one output

of the interferometer is monitored on a photodiode (PD). The interference signal is

passed to electronics (a lock-in amplifier and a lockbox) that provide feedback to the

pzt/mirror such that the two arms are kept in phase.
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Figure 7.5: Experimental microwave spectrum for the 58S → 59S transition, driven
by lattice amplitude modulation.

While the interferometer plays the role of providing an atom trap while including

some amplitude modulation for driving transitions, the method of combining the two

beams has even more significance. By combining the two arms, we achieve a larger

Rabi frequency than would be possible with a single amplitude-modulated beam

alone. This can be seen by considering the Rabi frequency for this setup, which is

proportional to Ilo(1+
√

2I/Ilo). Here, Ilo is the maximum intensity of the low-power,

modulated arm of the interferometer, and I is the intensity of the high-power arm. In

our setup, the ratio of high-to-low intensity (I/Ilo) at the output of the interferometer

is about 130:1. Therefore, the Rabi frequency in our setup is about 17 times higher

than it would be if the transitions were driven by a single amplitude-modulated beam.

In testing the new method, we have tried driving the 58S → 59S transition

by modulating the lattice intensity at frequencies near the one-photon transition

frequency. The 58S → 59S transition is chosen for these tests because of its high

Rabi frequency (calculated in Reference [31]). Preliminary microwave spectroscopy

results, acquired by K. Moore, are shown in Figure 7.5. We observe that transitions
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are in fact driven from 58S → 59S, indicating that the lattice amplitude modulation

technique is indeed effective in driving multipole Rydberg transitions. The x-axis

in Figure 7.5 is scaled such that 0 corresponds to twice the two-photon frequency

at which the lattice-free 58S → 59S transition is observed (≈ 38.77 GHz). The

blue-shift of the signal in Figure 7.5 is likely due to lattice-induced shifts of the

transition frequency for atoms located primarily near potential minima, along the lines

of those described in Section 3.3 (a lattice inversion is performed in the experiments

presented in Figure 7.5). Other preliminary results show that running the microwave

generator with the amplitude-modulated light blocked (in the interferometric setup)

results in no transitions. The transitions that we observe are therefore driven by

amplitude-modulation of the lattice light and not by microwave radiation leaking

into the chamber from the outside. Further experiments will involve driving higher

order transitions, for example ∆` ≥ 2 transitions.

7.3 High-precision measurement of the Rydberg constant

An application that is enabled by the ponderomotive optical lattice, by both the

lattice’s Rydberg-atom trapping capability and the technique for driving Rydberg

transitions by lattice amplitude modulation, is a high-precision measurement of the

Rydberg constant. Measurements of fundamental constants, such as the Rydberg

constant, are important because they test our current understanding of nature. By

comparing theoretical and experimental values for the constants, we may assess ex-

isting theories. The Rydberg constant, R∞, is an important fundamental constant

because it is related to the fine structure constant, α, and other fundamental quan-

tities, R∞ = α/(4πa0) = α2mec/(4π~). Previously, the Rydberg constant has been

measured using one-electron quantum cyclotron experiments [99], atom interferom-

etry [100], and precision measurements of transitions between low-lying states of

hydrogen [101]. Note that these methods rely heavily on the accuracy and precision
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of corrections based on QED calculations.

The Rydberg constant can also be extracted from high-precision measurements of

transition frequencies between circular Rydberg states (which are Rydberg states of

maximal angular momentum, see Section 1.2.2). The transition frequency is related

to the Rydberg constant via ∆ν = cR∞
M

me+M
( 1
n2
i
− 1

n2
f
), where M is the mass of the

nucleus, me is the mass of the electron, and ni and nf are the principal quantum num-

bers of the initial and final circular Rydberg states, respectively. Circular Rydberg

states are ideal for this precision measurement because of their long lifetimes (for

example, τ = 30 ms for n = 50 at 4 K) and their relative insensitivity to stray electric

fields, both of which allow for the narrowest possible transition resonance linewidths.

In addition, the electronic probability distributions of the circular Rydberg states

take the shape of a thin torus that does not penetrate into the nuclear core, mak-

ing corrections to the measured transition frequencies due to nuclear overlap, QED

effects, fine structure, or hyperfine structure minimal.

Interest in a new measurement of the Rydberg constant has been kindled recently

due to results from R. Pohl and co-workers [9], whose determination of the proton

radius deviates from previously measured results (CODATA value [102]) by 5σ. The

group concludes that in order to resolve this discrepancy either the value of the

Rydberg constant must be shifted, or the QED calculations in atomic or muonic

hydrogen are inadequate. A measurement of the Rydberg constant via spectroscopy

of circular Rydberg states is therefore timely, as the method does not rely heavily

on QED corrections (in contrast to previously mentioned measurements). It would

thus provide an independent measurement that could be instrumental in resolving

the current discrepancy.

An effort to measure the Rydberg constant through high-precision spectroscopy

of circular-state Rydberg atoms in the ponderomotive optical lattice is underway

in the Raithel research group. In our proposed procedure, cold ground-state 85Rb
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samples are first prepared in a shallow optical lattice. These atoms are excited to

low-` Rydberg states and then transformed into circular Rydberg states using either

the E × B method [38, 103, 104] or the adiabatic rapid passage method [105, 106].

After this circularization procedure to prepare the initial state, transitions to a near-

circular final state are driven by lattice intensity modulation, using the high-frequency

EOM as described in Section 7.2. A promising target transition for the spectroscopy

is |n, n1 = 0, n2 = 0, |m| = n − 1〉 → |n + 2, n1 = 1, n2 = 1, |m| = n − 1〉, where

n1 and n2 are the parabolic quantum numbers (see Reference [26]) that are related

to the spherical quantum numbers by n = n1 + n2 + |m| + 1. This transition is

attractive because it has no linear Stark or Zeeman shifts. The transition is also

an electric quadrupole transition, which requires the lattice amplitude modulation

technique to drive in first order. After a long atom-field interaction time, the Rydberg-

state distribution is measured through state-selective electric field ionization (see

Section 2.2.2).

The ponderomotive optical lattice is an integral tool in this high-precision mea-

surement. The technique for driving transitions by lattice amplitude modulation is

critical for performing the spectroscopy, as described above. The lattice also allows for

confinement of the atoms in a localized region where stray fields have been carefully

minimized. The lattice is tailored so as to be minimally perturbing to the circular

Rydberg states and so that the two states have identical lattice trapping potentials

to cancel trap-induced shifts to the transition frequency. The ponderomotive optical

lattice therefore plays an important role in propelling this method of measuring the

Rydberg constant into competitive levels of precision.

The example given in this section of an imminent application of the ponderomo-

tive optical lattice illustrates how the Rydberg-atom trap studied in this thesis is

now developed to the point where it is ready to be used. The trap is now poised

to make contributions with implications on our understanding of nature, through
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high-precision measurements such as those described above, and on our ability to

harness this understanding for our purposes, such as in quantum computing. In re-

cent decades, the advent of laser cooling and trapping has revolutionized the study

of atoms, offering not only a new process for investigating atoms but also an un-

precedented means for controlling them. The work presented in this thesis provides

an innovative approach that both augments and extends the reach of these powerful

methods for laser-based cooling and manipulation of atoms.
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APPENDIX A

Atomic Units

Atomic units are designed to make calculations in atomic physics convenient. The

units are defined such that all of the relevant parameters for the ground state of

hydrogen are equal to 1. Analyzing Equation 1.3 for the energy of the ground state

of hydrogen, one finds that in atomic units the electron charge e, the electron mass

me, Planck’s constant ~, and 1/(4πε0) all have a magnitude of 1.

Table A.1 summarizes some of the conversion factors between atomic and SI units

that are relevant to this thesis. As an example, the atomic unit of energy is the

Hartree, Eh. To convert an energy calculated in atomic units to SI units, one must

simply multiply by Eh, given in the Table. (Note that instead of remembering the

value of a Hartree given in Joules below, it may be simpler to remember that one

Hartree is twice the binding energy of the hydrogen ground state, or 27.2 eV.)
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Table A.1: Atomic units.

Quantity Definition Value in SI units

Charge Elementary charge, e 1.602× 10−19 C
Mass Electron mass, me 9.109× 10−31 kg

Length Bohr radius, a0 0.529× 10−10 m
Energy Hartree, Eh = (~2)/(a20me) 4.360× 10−18 J

Electric field (~2)/(a30mee) 5.142× 1011 V/m
Electric potential (~2)/(a20mee) 27.21 V
Dipole moment e a0 8.478× 10−30 C·m
Polarizability 4πε0a

3
0 1.649× 10−41 C2m4/J
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APPENDIX B

Determining 5S and Rydberg Level Shifts
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Figure B.1: Optical excitation spectra for level 2 of Figure 4.3 in a transverse DC
field and a non-inverted lattice and inverted lattice. Spectral features, indicated by
arrows, enable a measurement of the Rydberg-state lattice depth (κRyd).

To determine the 5S- and Rydberg-state modulation depths (κo and κRyd, respec-

tively) in Chapter IV, we use a combination of experimental results and calculations.

From the experiment, we obtain a measurement of κo + κ5S + κRyd from the optical
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excitation spectrum in the lattice without inversion and a measurement of κo from

the optical spectrum in the lattice with inversion, as described in Section 4.2.2 and

illustrated again in Figure B.1 above. By subtracting these two measurements, we

obtain

∆κ = κ5S + κRyd. (B.1)

In our calculations, we compute the modulation depth for the Rydberg level in the

lattice, κRyd,C, assuming a free-electron ponderomotive modulation depth of 20 MHz.

The depth of the Rydberg level and the 5S level are then related by the ratio

β =

(
|αp|
|α5S|

)
·
( κRyd,C

20 MHz

)
, (B.2)

so that κRyd = βκ5S. Here, αp is the free-electron polarizability and is equal to

−4πε0 × 545a30 in SI units at 1064 nm. The polarizability of the 5S ground-state

α5S = 4πε0 × 711a30 in SI units at 1064 nm [71].

Therefore, with the experimentally determined ∆κ in Equation B.1 and the cal-

culated value of β in Equation B.2, we extract κRyd and κ5S.
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