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ABSTRACT

Simulations of Laser Propagation and X-Ray Radiation Generation in Laser
Wakefield Accelerators

by

Paul G. Cummings Jr.

Chair: Alec G. R. Thomas

Chief among the advantages of of the laser-wakefield accelerator scheme is the gener-

ation of short, bright x-rays via the betatron motion of electrons in the wake fields.

In addition to being useful for applications in its own right, this radiation can be used

as a non-invasive diagnostic for the electron beam properties. In this dissertation, we

explore the generation of betatron radiation in laser-wake-field acceleration (LWFA)

experiments using particle-in-cell (PIC) simulations coupled to a Monte Carlo radia-

tion generation algorithm.

First, we discuss the theoretical background necessary for this dissertation. Models

of basic plasma physics, the particular physics of LWFA, radiation generation by

charged particles, betatron motion in LWFA, and plasma optics are all presented

and discussed. Additionally, we discuss the computational background necessary for

the work presented in this dissertation. Methods in computational electrodynamics

and plamsa physics are presented, including the basic concepts of the PIC method.

Finally, the particular implementation of the PIC method used in the OSIRIS 2.0

code is presented.
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Second, the method used to simulate the generation of radiation is presented, along

with results from verification simulations. Detailed descriptions of the theoretical,

computational, and algorithmic underpinnings of the technique are given. The results

from verification simulations of electrons undergoing basic cyclotron are presented,

and compared to theory. These verification simulations show excellent agreement

with the theory across a wide range of radii of curvature and electron energies.

Third, we present the results from three basic LWFA parameter sweeps performed

using the aforementioned method. Results from a parameter sweep over the normal-

ized laser vector potential a0 are presented and discussed. Scalings from this sweep,

both between a0 and total the radiated energy and between a0 and the effective tem-

perature of the emitted radiation, are established and found to be in good agreement

with analytic predictions. Results from a parameter sweep over the electron plasma

density ne are presented. Scalings from this sweep are also presented, and found to

diverge from analytic predictions, which we attribute to the electron beam re-entering

the bulk plasma and undergoing a hosing instability. Results from a simulation with

an unusually long propagation distance, used to affect a parameter sweep over the

propagation length, are analyzed. Further evidence of the aforementioned hosing in-

stability is evident in this simulation, and its impact on the generated radiation is

established.

Finally, we present the results from two different, related parameter sweeps. The

first investigated the impact of the presence of a comatic aberration on the per-

formance of a LWFA system as an electron accelerator. Relationships between the

electron beam parameters and severity of the coma are commented upon. Scalings

between the coma severity parameter α and the electron beam energy, beam current,

and beam emittance are established; the peak electron beam energy and electron en-

ergy spectral spread were found to be relatively unaffected by the presence of even a

severe coma, while the beam emittance was found to increase with coma severity in

xxix



the laser polarization direction.

The second parameter sweep investigated the impact of the presence of a comatic

aberration on the synchrotron-like radiation produced by the LWFA system. Re-

sults from this parameter sweep are presented and analyzed. Scalings between the

coma severity parameter α and both the total radiated energy and emitted radiation

temperature are calculated, where appropriate. The affects of varying the relative

directions of laser polarization and coma asymmetry on both of these scalings are

considered. A clear relationship between the coma severity and total emitted energy

is found; as the coma severity is increased, the total radiated energy initially increases

by ∼ 20%, then decreases by roughly the same amount.

The main conclusion drawn from this work is that radiation emission in LWFA

can be driven by many different affects depending on the particular LWFA parame-

ters. Contemporary analytic models of betatron radiation in LWFA are based on the

dynamics of single electrons oscillating in ion channels. Simulation results presented

in this dissertation indicate that interaction with the wake-field, interaction with the

laser field, and/or hosing instabilities caused by the electron beam interacting with

the bulk plasma may all dominate the electron beam’s betatron motion, depending

on the laser vector potential, plasma density, and/or laser propagation distance.
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CHAPTER I

Introduction

1.1 Overview & Outline

The following is a dissertation representing the cumulation of the author’s research

in pursuit of a doctor of philosophy in nuclear engineering and radiological sciences

at the University of Michigan. The subject of the dissertation is the generation of

synchrotron-like and betatron radiation from the motion of electrons during laser

wake-field acceleration. The research was pursued computationally, using a series of

simulations. This dissertation is organized as follows:

1. The remainder of this initial chapter will present the background and motivation

for this research, as well as a review of the current state of the literature relating

to the subject.

2. Chapter 2 will present abridged derivations of the physical theories and concepts

which describe the phenomena being investigated in this dissertation.

3. Chapter 3 will present summaries of the established, pre-existing computational

concepts and methodologies used.

4. Chapter 4 will present detailed explanations of the theory and methodologies

underlying the new algorithm for radiation generation that was used for this
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dissertation, as well as results from validation simulations used to verify the

accuracy of the new algorithm.

5. Chapter 5 will present the results from using the algorithm to explore the rela-

tionship between the LWFA system parameters, the electron beam properties,

and the radiation parameters.

6. Chapter 6 will present the results from research investigating the relationship

between the performance of a laser wake-field acceleration-based electron accel-

erator and the presence of a comatic aberration in the driving laser pulse, as

well as the relationship between the radiation generated and the presence of a

comatic aberration.

7. Chapter 7 will present a summary of the results, a conclusion, and possible

avenues for future work.

8. Appendix A will present a more detailed physical derivation of the one-dimensional

generation of a plasma wake in response to an ultrashort laser pulse.

9. Appendix B will present a reproduction of the electron beam results from Chap-

ter 6, as they were published by the author in the journal Physics of Plasmas.

1.2 Particle Acceleration

1.2.1 History & Overview

For almost a century, the technology to accelerate subatomic particles to highly

relativistic energies has been one of humanity’s most important tools for expanding

our understanding of the universe. Initially, particle acceleration technology consisted

of simple direct-current (DC) voltage, electrostatic accelerators. The maximum par-

ticle energy such a device can achieve is limited by the maximum voltage it can

2



sustain before undergoing breakdown. Tandem devices, and later staged devices like

the Cockroft-Walton, were used to increase this maximum energy.

However, a far more efficient mechanism of acceleration was soon discovered based

on alternating current voltage. By using a radio-frequency (RF) voltage applied to

a cavity, and with careful tuning of the frequency and beam timing, the accelerating

field can be maintained in phase with the accelerated beam. This mechanism was

used in linear accelerators (LINAC), but also allowed the construction of circular

accelerators, such as betatrons, cyclotrons, and synchrotrons, where magnets are

used to curve the trajectory of the accelerated particles in a circle, such that the

same acceleration stage can be used to impart energy to the beam over and over

again.

Circular accelerators were not without their drawbacks, however. A charged par-

ticle being accelerated on a curved path of radius ρ emits radiation with a power

P that scales with the particle energy E as P ∼ E4/ρ [3]. Nevertheless, the syn-

chrotron remains a successful design for ion acceleration; high-energy synchrotrons

have been used to validate the Standard Model, synthesize new elements, and push

the boundaries of our understanding of the universe.

1.2.2 Accelerator-Based Light Sources

The phenomenon of synchrotron radiation was initially considered a drawback; it

was a major energy loss mechanism in circular accelerators. For electrons, this loss

mechanism is severe enough that linear accelerators are considered the only option for

achieving high particle energies. For example, the design for the proposed Interna-

tional Linear Collider [4], which would be one of the largest electron accelerators ever

build, is a linear accelerator. However, many applications for this radiation have been

discovered; consequently many modern devices are designed to deliberately generate

this radiation via a number of mechanisms.
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One technique for harnessing this radiation is to simply construct a circular elec-

tron accelerator, and allow it to operate in a regime where the energy imparted by the

accelerating RF cavity is matched by the energy lost to synchrotron radiation. In such

a device, whenever the electron beam passes through a bending magnet, radiation is

emitted.

Another very successful technique consists of passing a linear electron beam through

a series of alternating-polarity magnetic fields, causing the beam to undergo trans-

verse oscillations as it propagates. Such devices are characterized by the wiggler

parameter K = γψ, where γ is the lorentz factor γ of the electron beam and ψ is the

maximum angle reached by the beam’s trajectory relative to the propagation direc-

tion [5]. For K >> 1, such a device is known as a “wiggler,” and generates a broad

spectrum of radiation. For K << 1, such a device is known as an “undulator,” and

generates radiation in a narrow bandwidth around a characteristic frequency. More

detail about the physics of these devices is given in Chapter 2 of this dissertation.

Additionally, devices operating in the undulator regime can be constructed such

that the emitted radiation is amplified due to a stimulated emission effect as it prop-

agates along the device; such devices are known as “free electron lasers (FEL).” In an

FEL, the generated radiation and electron beam co-propagate; consequently, the elec-

tron beam forms a sequence of bunches as it interacts with the light. These bunches

oscillate at the dominant radiation frequency (in the electron beam’s center-of-mass

frame, not the laboratory frame), coherently contributing to the radiation at that

frequency and creating stimulated emission.

1.2.3 Current Facilities

The ubiquity of accelerator-based light sources is a testament to their usefulness.

For example, the French Soleil [6] facility possess a 90-period undulator which gener-

ates radiation with a photon energy range of 3− 18keV . The Swiss Light Source [7]
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generates radiation with a photon energy range of 5− 40keV . These sources do not

use the stimulated emission effect associated with FELs.

For decades, the highest-energy electron accelerator in the world was the Stanford

Linear Accelerator (SLAC), capable of generating 50GeV electron beams. So useful

are the aforementioned accelerator-based light sources, however, that SLAC was con-

verted to a free-electron laser known as the Linac Coherent Light Source (LCLS) [8].

The LCLS was the first x-ray free-electron laser in the world, providing 100fs pulses

at a repetition rate of 60Hz, with a photon energy range of 0.48 − 10keV [8]. An

aerial image of some of the target facilities at SLAC is shown in Figure 1.1.

Figure 1.1: An aerial image of the Stanford Linear Accelerator [1]

LCLS is by no means the only operational FEL. The Free-Electron Laser in Ham-

burg (FLASH) [9] has produced coherent light pulses in a photon energy range of

200−300eV . Even larger FELs are currently under construction, or being considered

for construction. The European X-Ray Free-Electron Laser (XFEL) [10] is currently

under construction, and is designed to use a 17.5GeV electron beam to produce 100fs

pulses.
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1.2.4 Applications

Electron accelerators have a host of applications, beyond serving as the source for

FELs [11]. As sources of high-energy electrons, they can be used in nanofabrication

via electron beam lithography [12], or as electron sources for radiation medicine [13].

Of course, the popularity of electron-accelerator-based light sources is due to their

host of applications, including:

1. Interrogating for the presence of special nuclear materials via nuclear resonance

fluorescence [14]

2. Nuclear transmutation and induced fission via photonuclear reactions [15], [16],

[17], [18]

3. Probing crystalline structures via nuclear resonant scattering and absorption

[19], [20]

4. Analyzing intermediate states in fast chemical reactions [21]

5. High-pressure macromolecular crystallography [22]

6. Protein crystallography (specifically, determining the structure of viruses) [23],

[24], [25]

1.3 Laser Wake-Field Acceleration

1.3.1 History & Overview

The RF cavities used in modern electron accelerators are still fundamentally lim-

ited by the onset of breakdown. This places an upper limit on the maximum electric

field, and consequently on the maximum accelerating gradient, these devices can

maintain. For example, the proposed design for the Compact Linear Collider is pro-

jected to maintain an accelerating gradient of ∼ 107MeV/m [26]. This means that,

6



in order to achieve electron energies on the order of ∼ 100GeV , physical device scales

on the order of 1km are needed.

Consequently, alternative acceleration schemes that could maintain larger gradi-

ents, and subsequently reduce these large device scales, are a subject of significant

interest. One potential mechanism for particle acceleration is the ponderomotive force

(see Chapter 2), which acts opposite direction of the laser intensity gradient, i.e. it

acts to expel charged particles from regions of higher intensity towards regions of

lower intensity.. Using the laser pulse to directly accelerate electrons is known as

Direct Laser Acceleration (DLA) [27].

Another laser-based particle acceleration is laser wake-field acceleration (LWFA),

where a nonlinear plasma wave is driven by a high-intensity, short-pulse laser. This

mechanism was originally proposed in 1979 [28]; however contemporary laser technol-

ogy was not capable of achieving the necessary parameters when the LWFA scheme

was proposed. Specifically, the LWFA scheme as originally proposed required a pulse

length comparable to the plasma wavelength; the first lasers used in LWFA experi-

ments had pulse durations much longer than this. These limits were circumvented by

using two lasers of slightly different frequencies to form a beat pattern in the laser

envelope whose spacing was comparable to the plasma wavelength; this scheme was

known as plasma beat wave acceleration [29], [30]. This scheme was validated by us-

ing a carbon dioxide laser to generate the beat waves, which were used to accelerate

externally injected electrons [31]. Another approach to this scheme was to use the

self-modulation of the laser [32], [33], [34], [35], [36], which is a plasma optics phe-

nomenon discussed further in Chapter 2. These schemes relied upon wave-breaking

to inject electrons into the wake structure [37], [38].

Sufficiently short (< 100fs) laser pulses allowed LWFA to operate in the forced

regime [39], [40], and eventually the bubble regime, which will be discussed in Chapter

2. Operating in this regime, which allowed for electrons to be injected via self-injection
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(also discussed in Chapter 2), three groups independently observed ∼ 100MeV quasi-

monoenergetic beams in 2004 [41], [42], [43]. In 2006, a relatively high-quality, ∼

1GeV , beam was generated using a 3.3cm capillary discharge tube [44]. Particle

acceleration via LWFA is a robust and established field for electron acceleration [45],

[46], [47].

1.3.2 LWFA as an X-Ray Source

It is abundantly clear that LWFA is a robust method for generating high-energy

electron beams. It has also been made clear that a major application of high-energy

electron beams is a source of synchrotron x-rays. It is no surprise, therefore, that

the generation of x-rays via synchrotron-like radiation is an important application

for LWFA-based systems. One obvious motivation for LWFA as an x-ray source is

the previously-mentioned reduction in device scale size for a given electron energy.

Another motivation is the time-scale of the emitted radiation; the duration of the

electron beam generated in a LWFA experiment is comparable to that of the laser

pulse; consequently, LWFA systems are capable of producing femtosecond-time-scale

bursts of x-ray radiation, permitting the investigation of ultrafast phenomenon.

The feasibility of using LWFA as an x-ray source was computationally demon-

strated in 2004 [48], [49]. It was shown that self-injected electrons in the bubble

regime undergo betatron oscillations because of the transverse fields of the plasma

wake. Additionally, it was shown that an externally injected 28.5GeV electron beam

emitted x-rays with a spectral peak at 210MeV , and peak photon energies of up to

10GeV . In 2010, it was experimentally demonstrated [2] that the x-rays generated

by LWFA exhibit a high degree of spatial coherence, making them ideally suited for

high-resolution micro-scale imaging; the high resolution achieved in these experiments

is shown in Figure 1.2. Further theoretical work has established scalings between the

LWFA and plasma parameters and the effective wiggler parameters for the generated
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radiation [50].

Figure 1.2: Results from using LWFA-generated synchrotron x-rays to perform phase-
contrast imaging on a number test targets [2]

In the bubble regime, where the electrons are completely expelled from the re-

gion of the pulse, the electric and magnetic fields of the bubble are approximately

linear, which by themselves would lead to simple harmonic motion for a monoener-

getic, trapped beam [51]. Many analytic scalings for radiation generation in LWFA

have been derived in this picture by considering the motion of a single electron in

an ion channel [52], [53]. However, the interaction of the beam with the laser fields

results in a much more complicated physical picture [51]. More advanced experiments

which consider counter-propagating a laser pulse with a LWFA-accelerated electron

beam [54], [55] further complicate the picture, as the radiation reaction force becomes

non-negligible. More fundamentally, under certain experimental parameters, classi-

cal theory predicts that the energy of a single photon at the frequency at which the

electron is radiating will exceed the electron’s kinetic energy; this is obviously incor-

rect. Consequently, as these effects begin to dominate, a classical framework must be

abandoned entirely in favor of a QED-based framework in order to accurately model
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reality [55].

Simulating these effects is a non-trivial challenge, since depending on the regime

in question, entirely different physical models are required. A diverse array of models

exists for simulating radiation generation in particle-in-cell codes, whether that radi-

ation is generated from shocks [56], [57], LWFA [58], or arbitrary particle motion [59].

For this dissertation, a classical treatment was used, in a regime where the radiation

reaction force was negligible (although considerations were made for its inclusion).

10



CHAPTER II

Theoretical Background

2.1 Overview

In this chapter, we will present a general overview of the fundamental theoretical

concepts which are relevant to this research. First, the relevant mathematics under-

lying plasma physics will be presented. The meaning of the plasma approximation

in the context of computational methods is presented. Cursory summaries of plasma

modeling via the Klimontovich and Vlasov-Maxwell equations are presented for com-

pleteness. A one-dimensional derivation of the nonlinear response of a plasma to a

short laser pulse of arbitrary intensity is presented as a demonstration of the basic

physics of laser wake field acceleration (LWFA).

2.2 Basic Plasma Physics

2.2.1 The Plasma Parameter

In brief, a plasma is an ionized gas; the resulting free charges mean that the

plasma is strongly affected by electromagnetic fields. A defining characteristic of

ideal, weakly-coupled plasmas is that the plasma parameter ND >> 1; in other
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words, that there are many particles within a Debye sphere:

ND =
4

3
πλ3

Dn =
4π

3q3

√
1

n
(ε0kTe)

3/2 >> 1 (2.1)

where n is the plasma density, ε0 is the permittivity of free space, k is the Boltzmann

constant, Te is the electron temperature, and ND is the number of particles in a

Debye sphere. A Debye sphere is a sphere whose radius is equal to the Debye length

λD =
√
kTe/4πne2, which represents the characteristic length scale in a plasma over

which electrostatic shielding occurs. This condition means that there are enough

particles within a Debye sphere for charge shielding to occur, and therefore collective

effects (as opposed to particle-particle interactions) dominate the system dynamics.

It can be shown that this statement is nearly equivalent to stating that the electron

plasma frequency, ωp, is greater than the electron-ion collision frequency, νe,i:

ωp >> νe,i (2.2)

Note that the electron plasma frequency, given by ωp =
√

4πne2/me, represents the

characteristic response frequency of the electrons in a plasma. This is an important

result for computational plasma physics, as it means that a model written to include

one of these conditions will automatically include the other. Consequently, if a com-

putational technique can be written that ensures the collision frequency is much less

than the plasma frequency, the system will also behave as though there are a large

number of particles within a Debye sphere (i.e., the system will behave like a plasma).

It should be noted that, while matter which meets these conditions is plasma, not all

plasmas meet these conditions.
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2.2.2 The Klimontovich Equation

The Klimontovich equation [60] is a basic plasma physics model which, while

not particularly useful for modeling real physical systems, does provide a basis for

deriving other plasma physics models. A plasma species is modeled as a collection of N

point-like particles in a six-dimensional spatial/velocity phase-space; the phase-space

density of this collection of particles is represented by:

N
(
~x,~v,~t

)
=

N∑
i=1

δ [~x− ~xi (t)] δ [~v − ~vi (t)] (2.3)

where ~xi (t) and ~vi (t) are, respectively, the position and velocity of the ith particle in

the distribution. The individual particle positions and velocities are given by:

d

dt
~xi (t) = ~vi (t) (2.4)

d

dt
~vi (t) =

qi
mi

{
~E [~xi (t) , t] + ~vi × ~B [~xi (t) , t]

}
(2.5)

where qi is the charge of the ith particle, mi is the mass of the ith particle, and the

electric field ~E and magnetic field ~B are determined by Maxwell’s equations:

~∇ · ~E = 4πρ (2.6)

~∇× ~E = −1

c

∂ ~B

∂t
(2.7)

~∇ · ~B = 0 (2.8)
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~∇× ~B = 4π ~J +
1

c

∂ ~E

∂t
(2.9)

where ρ is the charge density, ~J is the current density, and c is the speed of light. By

differentiating the density equation, Equation 2.3, with respect to time, we can find

the Klimontovich equation for the jth particle species:

∂

∂t

[
Nj

(
~x,~v,~t

)]
=
(
~v · ~∇x

)
Nj

(
~x,~v,~t

)
+

[
qj
mj

(
~E + ~v × ~B

)
· ~∇v

]
Nj

(
~x,~v,~t

)
(2.10)

where ~∇x is the position-space gradient, ~∇v is the velocity-space gradient, and we have

assumed that every particle of the jth species has an identical charge qj and mass mj.

This equation, though accurate, is practically not very useful, as solving it ultimately

entails solving for the individual trajectories of every particle in the plasma. Such a

calculation becomes computationally infeasible well before any physically meaningful

amount of plasma can be simulated.

2.2.3 The Vlasov Equation

These models can be streamlined be either following the BBGKY hierarchy [61],

or by introducing the Vlasov equation; here we pursue the latter model. The Vlasov

equation trades accuracy, by approximating the plasma as a smooth distribution in

~x + ~v phase-space, for ease of use, by allowing the plasma density to be modeled as

a 6-dimensional function in phase space rather than a set of N individual particle

trajectories. By taking equation 2.10 and integrating out the small-scale effects re-

sulting from treating the plasma as a collection of points, we can replace our discrete

phase-space density, Nj (~x,~v, t), with a smoothed phase-space distribution fj (~x,~v, t):

∂fj
∂t

+
(
~v · ~∇x

)
fj +

{
qj
mj

[
~E +

(
~v × ~B

)]
· ~∇v

}
fj =

(
∂fj
∂t

)
collisions

(2.11)
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where, physically, fj (~x,~v, t) represents the number of particles in a phase-space vol-

ume dx · dy · dz · dvx · dvy · dvz, centered about the position ~x and the velocity ~v,

for the jth species in the plasma. Consequently, the units of f, in three dimensions,

are particles per unit length cubed per unit velocity cubed. If collisional effects are

ignored, this becomes:

∂fj
∂t

+
(
~v · ~∇x

)
fj +

{
qj
mj

[
~E +

(
~v × ~B

)]
· ~∇v

}
fj = 0 (2.12)

Furthermore, the charge and current densities can be rewritten in terms of the dis-

tribution functions fi; consequently equations 2.6 and 2.9 become:

~∇ · ~E =
M∑
j

4πqj

∞∫
∞

fj (~x,~v, t) d~v (2.13)

~∇× ~B =

4π
M∑
j

qj

∞∫
∞

~vfj (~x,~v, t) d~v

+
1

c

∂ ~E

∂t
(2.14)

where M is the total number of species, and the differential element d~v = dvxdvydvz

represents the differential volume element in velocity space. These two equations,

along with the other two Maxwell’s equations (equations 2.7 and 2.8), combined with

the Vlasov equation (equation 2.12), form a set of five integro-differential equations

that govern the evolution of a plasma species’ distribution in the six-dimensional

phase space.

By representing the plasma as a smooth distribution, and therefore allowing the

plasma to be computationally modeled on a gridded phase space, this equation proves

far more useful for modeling real physical systems than the Klimontovich equation.

It is the method of choice for modeling kinetic, anisotropic plasmas. However, the

Vlasov equation is defined on a six-dimensional phase-space, which can make model-
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ing larger systems, or systems with higher resolutions, computationally challenging.

The dimensionality of the Vlasov equation means that doubling the resolution re-

quires increasing the total number of grid points (and therefore the total amount of

computational resources) by a factor of 64.

2.3 Laser Wake-Field Acceleration

2.3.1 Basic LWFA Scalings

Laser wake-field acceleration is an experimental particle acceleration technique

where the strong electric fields established within the wake driven by the interaction

of an ultrashort laser pulse with a plasma are used to accelerate electrons to relativistic

energies [28]. When the system was initially proposed, several important scalings were

derived for the linear limit where the wave does not break; the maximum electron

Lorentz factor γ attainable by an electron accelerated in this limit is [28]:

γmax = 2
ω2

ω2
p

(2.15)

where ω is the laser frequency and ωp is the electron plasma frequency. The propaga-

tion distance of the laser pulse required to achieve this energy (called the “dephasing

length,” as this is the distance over which the electron beam dephases with the ac-

celerating wake field) is given by [28]:

Ld ≈ 2
ω2c

ω3
p

(2.16)

where c is the speed of light. The critical longitudinal field is given by [28], [62]:

EL ≈
mcωp
e

(2.17)
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where m and e are, respectively, the mass and charge of an electron. This is the field

above which wave-breaking (the point at which the electron motion in a single wave

cycle exceeds the wavelength, i.e. the point at which electrons “jump” from one wave

to the next) occurs. For a nonlinear wave, the maximum Lorentz factor γ is given by

[63]:

γmax = γp (1 + γp∆φ) + γpβp
[
(1 + γp∆φ)2 − 1

]1/2
(2.18)

where γp is the Lorentz factor γ associated with the phase velocity of the wave, βp is

the phase velocity of the wave divided by the speed of light c, and ∆φ = φmax−φmin

is the difference between the maximum and minimum electrostatic potentials of the

nonlinear plasma wave. These maximum and minimum electrostatic potentials are

given by [64]:

φmax/min = γ⊥ − 1 +
1

2
Ẽ2
m ± βp

[(
γ⊥ +

1

2
Ẽ2
m

)2

− γ2
⊥

]1/2

(2.19)

where γ⊥ is the Lorentz factor γ associated with the electrons’ transverse motion, and

Ẽm is the maximum longitudinal electric field normalized to the previously-mentioned

critical longitudinal field EL.

2.3.2 Laser Wake-Field Acceleration in One Dimension

In one dimension, the nonlinear response of a plasma to a short laser pulse can be

calculated. While the results of this calculation do not encapsulate all of the physics

of LWFA, they nevertheless can provide valuable insight into the dynamics of the

LWFA mechanism. Here we present a summary of this calculation; a more detailed

overview of the results are shown in Appendix A.

We will derive a closed set of 5 differential equations that govern the response of

the plasma to the laser pulse of arbitrary field strength ~A (i.e., the nonlinear response).
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We start with the Maxwell-Lorentz system of equations for electrons[65]:

∂~p

∂t
+
(
~v · ~∇

)
~p = −e

[
~E +

1

c

(
~v × ~B

)]
(2.20)

~∇ · ~E = 4πe (n0 − ne) (2.21)

~∇× ~E = −1

c

∂ ~B

∂t
(2.22)

~∇× ~B = −4π

c
ene~v +

1

c

∂ ~E

∂t
(2.23)

~∇ · ~B = 0 (2.24)

where ~p is the fluid momentum, n0 is the background ion density (assumed to be

static) and ne is the electron density. We begin by assuming a one-dimensional

geometry, in the direction of laser propagation, with an arbitrary laser pulse defined

by the vector potential [65]:

~A = Ay (x− vgt) ŷ (2.25)

Additionally, we employ a coordinate transform, boosting to a co-moving frame with

an arbitrary group velocity vg [65]:

τ ≡ t; ξ ≡ x− vgt (2.26)

along with the the quasi-static approximation (QSA). This approximation says that,
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in the comoving frame, the characteristic time over which the pulse evolves is much

greater than the period of the laser pulse. Mathematically, the QSA lets us say [65]:

∂

∂τ
<< vg

∂

∂ξ
(2.27)

By applying this coordinate transformation and approximation, we can derive the

following set of equations [65]:

ψ ≡

√√√√√1−
(
1 + a2

y

)
γ2
g

(
φ̃+ 1

)2 (2.28)

γ = γ2
g

(
φ̃+ 1

)
(1− βgψ) (2.29)

ux =
βg − ψ

(1− βgψ)
(2.30)

n = βgγ
2
g

(
1

ψ
− βg

)
(2.31)

∂2φ̃

∂ξ2
= k2

peγ
2
g

 βg

(
1 + φ̃

)
√(

1 + φ̃
)2

− γ−2
g

(
1 + a2

y

) − 1

 (2.32)

where ψ is a parameter defined for convenience, γg is the relativistic Lorentz fac-

tor associated with the group velocity, ay is the laser vector potential normalized to

e/mc2, φ̃ is the electrostatic potential normalized to e/mc2, γ is the electron relativis-

tic Lorentz factor, βg is the group velocity normalized to the speed of light c, and ux

is the electron fluid velocity normalized to the speed of light c [65].
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The results of these equations are plotted in Figures 2.1 and 2.2 for the following

parameters:

1. Peak laser potential ay0 = 5.0

2. Bulk plasma density n0 = 0.01ncrit

3. Group velocity βg = 0.99

4. Pulse spread σ = 5λlaser

where ncrit is the critical density of the laser, i.e. the density for which ωp = ωlaser,

so ncrit = ω2
laserme/4πe

2, and λlaser is the laser wavelength. From Figure 2.1, it is

-50 -40 -30 -20 -10 10 20
Ξ, in Λ_laser

2

4

6

8

10

Figure 2.1: The bulk parameters of a plasma in response to the propagation of a short,
nonlinear laser pulse in one dimension. The laser intensity is shown in
blue. The normalized electrostatic potential φ̃, is shown in maroon. The
electron relativistic Lorentz factor γ is shown in gold. The units of the
horizontal axis are laser wavelengths (i.e. λlaser)

apparent that there are sharp gradients in the wake electrostatic potential, resulting in

strong accelerating fields. These fields result in relativistic electrons within the wake

structure. Figure 2.2 confirms this, showing a trapped bunch of electrons propagating

at ux ∼ 1 (i.e., vx ∼ c). While this one-dimensional calculation is only a rough
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Figure 2.2: The bulk parameters of a plasma in response to the propagation of a short,
nonlinear laser pulse in one dimension. The laser intensity is shown in
blue. The electron velocity ux, normalized to the speed of light c, is shown
in maroon. The electron density ne, shown as a fraction of the critical
density ncrit, is shown in gold.

approximation to the true three-dimensional case, it nevertheless demonstrates the

key physical characteristics of LWFA systems: the generation of a plasma wake, by a

short pulse laser, which traps and accelerates electrons to relativistic velocities [65].

2.3.3 Electron Trapping

The injection and trapping of electrons into the plasma wake is the last essential

step necessary for the laser wake-field acceleration scheme to function. We will con-

sider electron trapping in the one-dimensional formulation discussed in the previous

section.

Electron trapping is best understood by considering the dynamics of a single test

electron interacting with the plasma wake [63], [64]. The Hamiltonian of such an

electron is given by [64]:

H (u, ξ) =
(
γ2
⊥ + u2

)1/2 − βpu− φ (ξ) (2.33)
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where u is the electron momentum normalized to mec, ξ = z − vpt is the comoving

longitudinal coordinate as before, and φ is the plasma wave’s electrostatic potential.

Note that here the Hamiltonian is normalized to mec
2. The Hamiltonian is a con-

stant of the particle’s motion and, therefore, is constant in time; the above equation

therefore describes to a set of trajectories in the (u, ξ) phase-space. Each trajectory

corresponds to a single, constant value of H.

It is important to note that, in this phase-space, an electron is trapped when

the (u, ξ)-trajectory corresponding to its Hamiltonian H asymptotically approaches

some minimum, finite value for ξ. Remembering that ξ corresponds to the electron’s

longitudinal position in the comoving frame, if the particle’s trajectory in (u, ξ)-

space does not drop below some finite value of ξ, then that electron will remain co-

propagating with the laser pulse. The trajectory which separates trapped electrons

from untrapped electrons (the “separatrix”) is given by [64]:

H = Hs =
γ⊥ (ξm)

γp
− φ (ξm) (2.34)

where ξm is the position that maximizes the Hamiltonian H [γ⊥ (ξ) γpβp, ξ].

First, however, we consider the consequences of this Hamiltonian formulation.

Noting that [64]:

γ2
⊥ = 1 +

a2

2
+ u2

⊥,0 (2.35)

where a is the normalized laser vector potential and u⊥,0 is the initial transverse

momentum of the electron normalized to mec, and making the assumption that u⊥,0

is negligible when compared to the magnitude of the laser field a in this nonlinear

limit, we may say:

H (u, ξ) =

(
1 +

a2

2
+ u2

)1/2

− βpu− φ (ξ) (2.36)
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Plots of the resulting electron trajectories for various values of H are shown in Figure

2.3. Note that trapped electrons are accelerated to arbitrarily high momenta in this

one-dimensional, quasi-static picture. Figure 2.3 shows that electrons can be trapped

and accelerated in the wake structure as long as their initial momenta are high enough.

It is worth noting that Figure 2.3 also captures the physics of another popular

injection scheme, that of ionization injection [66], [67]. In this scheme, the high-

intensity fields near the center of the pulse are used to ionize the inner-shell electrons

of a dopant in the background gas; this results in the introduction of low-momentum

electrons in regions of sufficiently high laser intensity.

As seen in Figure 2.3, low-energy electrons (i.e., u ≈ 0) from the bulk plasma (i.e.,

those which are introduced from the right hand-side) are introduced in the untrapped

region, and therefore do not see significant acceleration. However, in the region of

high-intensity on the back end of the pulse, we see that that minimum momentum

necessary for trapping is much lower; an electron with u ≈ 0 in this region resides

comfortably within the trapping region and will be accelerated.

2.3.4 The Ponderomotive Force & the Bubble Regime

An important effect in LWFA systems is the ponderomotive force, which is a

nonlinear effect that arises in the presence of oscillating, high-intensity electric fields.

Here, we present a brief summary of the derivation of this effect, and a derivation of

its impact on LWFA systems.

We begin with the expression for the Lorentz force on an electron [68]:

d~p

dt
= −e

{
~E (~r, t) +

1

c

[
~v × ~B (~r, t)

]}
(2.37)

and consider an oscillating electric field of the form [68]:

~E = ~Es (~r) cos (ωt) (2.38)
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Figure 2.3: The electron trajectories in (u, ξ)-space for various values of the Hamilto-
nian. Dashed black lines show untrapped electrons, while solid black lines
show trapped electrons. For clarity, the normalized laser vector potential
and electrostatic wake potential (in red and blue respectively) are shown
in arbitrary units as functions of position.
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where ~Es (~r) is the spatial envelope of the wave. We consider both the first- and

second- order consequences of this equation by considering linearized parameters of

the form a = a0 + a1. For a single, initially stationary electron interacting with the

wave, we have [68]:

m
d (~v0 + ~v1)

dt
= −e

{
~E (~r0 + ~r1, t) +

1

c

[
(~v0 + ~v1)× ~B1 (~r0 + ~r1, t)

]}
; v0 = 0(2.39)

m
d~v1

dt
= −e

{
~E (~r0 + ~r1, t) +

1

c

[
~v1 × ~B1 (~r0 + ~r1, t)

]}
(2.40)

We expand the electric field about ~r0 [68]:

~E (~r0 + ~r1) = ~E (~r0) +
[(
~r1 · ~∇

)
~E
] ∣∣∣∣

r=r0

+ [h.o.t.] (2.41)

Using this expression, in first order, Equation 2.40 becomes [68]:

m
d~v1

dt
= −e ~E (~r0, t) = −e ~Es (~r0) cos (ωt) (2.42)

(note that, to first order, we can ignore the magnetic field). We may solve for the

first order velocity and position perturbations, ~v1 and ~r1 [68]:

~v1 =
−e
m

~Es (~r0)

∫
cos (ωt) dt =

−e
mω

~Es (~r0) sin (ωt) =
d~r1

dt
(2.43)

~r1 =
−e
mω

~Es (~r0)

∫
sin (ωt) dt =

e

mω2
~Es (~r0) cos (ωt) (2.44)

In second order (with terms of the form a = a0 + a1 + a2), we may no longer ignore
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the magnetic field; we calculate the magnetic field from the electric field [68]:

~∇× ~E = −1

c

∂ ~B

∂t
(2.45)

~B1 = −c
∫ [

~∇× ~E
] ∣∣∣∣

r=r0

dt = −c
[
~∇× ~Es (~r)

] ∣∣∣∣
r=r0

∫
cos (ωt) dt (2.46)

~B1 =
−c
ω
sin (ωt)

[
~∇× ~Es (~r)

] ∣∣∣∣
r=r0

(2.47)

We consider the second-order terms in Equation 2.40 (noting that we may cancel out

the first order terms) [68]:

m
d~v2

dt
= −e

{[(
~r1 · ~∇

)
~E
] ∣∣∣∣

r=r0

1

c

(
~v1 × ~B1

)}
(2.48)

and insert the results from Equations 2.43, 2.44, and 2.47 (we evaluate at ~r = ~r0; we

omit explicit statements to this effect for brevity) [68]:

m
d~v2

dt
=
−e2

mω2

{
cos2 (ωt)

(
~Es · ~∇

)
~Es + sin2 (ωt)

[
~Es ×

(
~∇× ~Es

)]}
(2.49)

We take the time average of this equation [68]:

m〈d~v2

dt
〉 =

−e2

2mω2

{(
~Es · ~∇

)
~Es +

[
~Es ×

(
~∇× ~Es

)]}
(2.50)

Noting via the vector identity that [68]:

~Es ×
(
~∇× ~Es

)
=

1

2
~∇
(
~Es · ~Es

)
−
(
~Es · ~∇

)
~Es (2.51)

we have an expression for the time-averaged, second-order, nonlinear force acting on
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a single particle [68]:

m〈d~v2

dt
〉 = ~Fpon =

−e2

4mω2
~∇
(
~Es · ~Es

)
(2.52)

which we identify as the ponderomotive force. We may rewrite this expression slightly

[68]:

~Fpon = −~∇
(

e2

4mω2
~Es · ~Es

)
(2.53)

to identify the ponderomotive potential [68]:

φpon =
e

4mω2

(
~Es · ~Es

)
(2.54)

such that ~Fpon = −e~∇φpon. Note that this result is non-relativistic; the relativistic

result was derived by Quesnel and Mora [69]:

d~̄p

dt
= ~Fpon,rel =

−1

2mγ̄
~∇|q ~̃A|2 (2.55)

where bars represent averaging over fast time-scales (i.e. the laser frequency) and

tildes represent quantities which vary over these same fast time scales (i.e. ~̃A is the

laser field).

The ponderomotive force is an important effect in laser wake-field acceleration.

For sufficiently high-intensity pulses, it expels electrons from the region of the laser,

forming a “bubble” of positive charge co-propagating with the laser. To demonstrate

the significance of this effect, we will assume that the ponderomotive force is exclu-

sively balanced by the electrostatic force established in the positive charge “bubble:”

~Fpon = ~Fes = −e ~E (2.56)
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Note that this is a crude assumption, which neglects entirely the effect of the

background ion current, electric current, magnetic fields, and direct interaction be-

tween the laser and the plasma. We seek only to demonstrate the significance of the

ponderomotive force as a contributor to the electron dynamics. We assume a laser

pulse propagating through a plasma with the following parameters:

1. Plasma Density n0 = 0.01ncrit = 1.75× 1019cm−3

2. Laser Wavelength λ = 0.8µm

3. Gaussian Transverse Laser Profile, FWHM spot size = 5µm

4. Gaussian Temporal Laser Profile, FWHD pulse length = 25fs

5. Normalized Peak Laser Vector Potential a0 = 4.0

6. Peak Laser Intensity = 3.5× 1019W/cm2

where the acronym “FWHM” refers to the “Full-Width at Half-Maximum”, i.e. the

distance between the locations where the intensity is half of the maximum, and sim-

ilarly the acronym “FWHD” refers to the “Full-Width at Half-Duration,” and refers

to the length of time between the points in the pulse where the intensity is half of

its maximum. The electric field and intensity of this laser pulse are shown in Figures

2.4 and 2.5, respectively. The ponderomotive potential produced by this laser pulse

is shown in Figure 2.6, which results in the density perturbation shown in Figure 2.7.

The electric fields established by this density perturbation are shown in Figure 2.8. It

is apparent that the ponderomotive force is a dominant effect in LWFA experiments

where a0 > 1.

To make more accurate, quantitative statements about the evolution of the plasma

in this regime, a far more rigorous theoretical treatment is necessary. Unfortunately,

the details of this, more precise analytic treatment are beyond the scope of this dis-

sertation; consequently only their results will be summarized here. These results are
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Figure 2.4: The electric field of an example laser pulse in (left) two dimensions and
(right) one dimension, respectively.
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Figure 2.5: The intensity of an example laser pulse in (left) two dimensions and (right)
one dimension, respectively.
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Figure 2.6: The ponderomotive potential generated by a laser pulse in (left) two di-
mensions and (right) one dimension, respectively.
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Figure 2.7: The electron density profile resulting from the interaction of a laser pulse
with the plasma via the ponderomotive force in (left) two dimensions and
(right) one dimension, respectively.
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Figure 2.8: The electrostatic fields in the propagation direction (left) and transverse
direction (right) generated in the unrealistic approximation that the pon-
deromotive force is balanced purely by the electrostatic fields of the den-
sity perturbation shown in the previous figure.

drawn from the article “A nonlinear theory for multidimensional relativistic plasma

wave wakefields,” published in Physics of Plasmas in 2006 by W. Lu et al [70].

The first analytical result is the simplified ring model, which is used to look

for trajectory crossing. Basically, this model treats the electrons in the plasma as

a series of nested, cylindrically symmetric rings which respond to the driving laser

pulse. Trajectory crossing is an important concept used to consider the formation of

the propagating “bubble” region of positive charge discussed previously [70].

Consider the cylindrically symmetric electron rings of the ring model. The mo-

tion of these electrons will be confined to the radial and propagation directions by

definition; the trajectories formed by electrons which start at various initial radii can

either cross or not cross. If the electron trajectories do not cross, then any given

electron trajectory which confines electrons at smaller radii will continue to confine

the same number of electrons at smaller radii for all time. Therefore, if the electron

trajectories do not cross, and the electron density is initially non-zero and uniform,

electrons will always be present in the region of space occupied by the laser pulse [70].

Conversely, if the electron trajectories do cross, then it is no longer true that elec-
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trons confined by a given trajectory will remain confined by that trajectory. Under

these conditions it is possible for the electrons to be excluded entirely from the region

of the pulse, leaving only ions (this is known as the “blowout” regime). Thus, trajec-

tory crossing provides a necessary (but not sufficient) condition for the formation of

a propagating ion “bubble.” [70]

The trajectory of an electron ring in the simplified ring model, in the non-

relativistic limit where vz << v⊥ << 1 and v⊥ ≈ dr/dξ (remember that these limits

are defined in terms of the electron velocity within the copropagating frame, not the

laboratory frame) is given by [70]:

d2r

dξ2
= −1

2
r +

c (r0, r, ξ)

r
(2.57)

where r is the electron beam radius, ξ = c0t − z is the position of the electron in

the propagation direction, boosted to the frame co-propagating with the laser (which

is assumed to be propagating at the speed of light c0), and c (r0, r, ξ) is the total

electron charge per unit length within a sheet, which starts at r0, and has a radius r

at a longitudinal position ξ [70].

Although laser-driven wake-fields are the focus of this dissertation, the dynamics

of bubble formation are similar regardless of whether or not the wake-field is driven

by a laser pulse or an electron beam. Since the case of a beam-driven wakefield is

somewhat easier to consider analytically, we will numerically solve equation 2.57 for

the electron-beam-driven wake-field case. If a bi-flat-top model is assumed for the

driving beam, so that the driving beam’s charge density profile is given by[70]:

nb (r, ξ) = nb0, r < a, 0 < ξ < L

nb (r, ξ) = 0.0, elsewhere (2.58)
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where nb0 is the peak beam charge density normalized to the background plasma

density, a is the beam spot size, and L is the beam length, the function c (r0, r, ξ) in

Equation 2.57 becomes[70]:

c (r0, r, ξ) =
1

2

(
r2

0 + nb0r
2
)

(2.59)

for r < a, and:

c (r0, r, ξ) =
1

2

(
r2

0 + nb0a
2
)

(2.60)

for r > a. Therefore, equation 2.57 becomes[70]:

d2r

dξ2
= −1

2
r +

r2
0 + nb0r

2

2r
(2.61)

for r < a and:

d2r

dξ2
= −1

2
r +

r2
0 + nb0a

2

2r
(2.62)

for r > a. We solve these equations for a = 0.5, L = 4.0, and nb0 = 0.2, 2.0 for a

range of initial radii r0; these plots are shown in Figure 2.9.

Figure 2.9 shows that trajectory crossing can occur for sufficiently intense (i.e.,

non-linear) driving pulses. Further calculation reveals that the initial condition r0

which corresponds to the onset of trajectory crossing is given by[70]:

ln

(
r̄2
m

r̄2
0

)
=
nb
r̄2

0

(2.63)

where the bar indicates that the radii have been normalized to a, and rm is the

maximum radii reached by a trajectory starting at r0. The value of r0 at which this
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Figure 2.9: The trajectories of electron rings (shown in red) in the simplified ring
model for nb0 = 0.2 (on the left) and nb0 = 2.0 (on the right). Both plots
have a = 0.5 and L = 4.0. The blue line shows the radius and length of
the driving beam.

equation is true is noted as r0m. Solving this equation yields[70]:

nb
r̄2

0m

= 1.7933 (2.64)

If we assume that r0m > a (as this is the blowout regime), then r̄0m > 1.0 and

nb > 1.7933 is the condition for trajectory crossing. In addition, the blowout radius,

the maximum radius rm for the electron trajectory which starts at r0m, is given by[70]:

rmax = rm (r0m) = 1.831
√
nba2 (2.65)

From these analyses, it is clear that for a sufficiently nonlinear driver, the system will

enter a bubble regime, where electrons are excluded from the region surrounding the

driver pulse, leaving a propagating ion column behind[70].
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2.3.5 Wave Breaking

The phenomenon of trajectory crossing discussed in the previous section is closely

related to the phenomenon of nonlinear wave breaking, an important nonlinear effect

in laser wake-field acceleration. The wave-breaking limit represents the maximum field

a plasma can sustain according to the fluid model. In general (and unsurprisingly),

the wave-breaking limit requires that the maximum longitudinal electric field not

exceed the critical electric field given in Equation 2.17 [63], [71]:

Ẽm ≡
Emax
EL

=
eEmax
mcωp

> 1

Beyond this limit, trajectory crossing and wave-breaking occur, the fluid equations

break down, and the field will not increase. However, this is a non-relativistic limit;

the relativistic wave-breaking limit is given by [71]:

Ẽm,r ≡
Emax,r
EWB

=
Emax,r√

2 (γp − 1)EL
> 1

where γp is the Lorentz factor gamma associated with the phase velocity of the laser.

Effectively the relativistic critical electric field is given by
√

2 (γp − 1)EL.

2.3.6 Betatron Motion in LWFA Systems

Based on the density profile shown in figure 2.7, we can make some qualitative

statements about the behavior of particles that become trapped within this bubble.

Unlike the bulk electrons of the plasma, trapped electrons are not affected by the

ponderomotive force; this can be seen immediately from equation 2.55, where the

relativistic ponderomotive force scales as 1/γ. Ergo, electrons which are trapped and

accelerated to relativistic energies (i.e., with γ >> 1) are only weakly affected by the

ponderomotive force; the motion of these electrons will instead be dominated by the
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laser field and the electrostatic response to the ponderomotive force.

Now consider the approximated electrostatic fields in Figure 2.8. Even in this

crude model, the accelerating fields in the propagation direction (shown on the left

in Figure 2.8) are accompanied by transverse restoring fields (shown on the right in

Figure 2.8). It is apparent that, according to this crude model, trapped electrons

with γ >> 1 which are injected off-axis will undergo oscillations about the axis of

propagation.

The more detailed analysis based on the work of Lu et al., and illustrated by Figure

2.9, reinforces this picture with a far more robust calculation of the formation of the

blowout regime. The radial particle and charge densities assumed by this work (which

show excellent agreement with simulation) are shown in Figure 2.10. The transverse

electric field resulting from these density distributions is shown in Figure 2.11. The
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Figure 2.10: (Left) The electron density (in blue) and ion density (in green) assumed
by the theoretical models of Lu et al. (Right) The resulting charge
density from these particle density distributions.

area highlighted by the dashed black box in Figure 2.11 shows that there exists a

roughly linear restoring force along the central axis of the channel; this field drives

trapped electrons to undergo simple harmonic motion in the transverse direction,

which, when coupled with their acceleration along the propagation direction, results

in betatron motion. For a sufficiently non-linear driver, this phenomenon occurs
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Figure 2.11: The electric field resulting from the particle densities shown in Figure
2.10. Note the boxed area highlighting the approximately linear restoring
force along the central axis of the channel.
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automatically for electrons injected off-center from the propagation axis.

2.4 Plasma Optics

2.4.1 Overview

Obviously, the propagation of light waves through plasmas is a critical subject for

this dissertation. A full treatment of this subject is beyond the scope of this work;

however we would be remiss if we did not include a discussion of some of the phenom-

ena most relevant to laser wake-field acceleration. Therefore, we will discuss three

particularly relevant processes in plasma optics: Raman forward scattering (RFS),

relativistic self-focusing (RSF), and relativistic self-phase modulation (RSPM).

The interaction of a propagating laser with a plasma can be understood in terms

of the index of refraction of the plasma. In a plasma with electron plasma frequency

ωp, the index of refraction for an electromagnetic wave of frequency ω0 is given by

[72]:

η =

√
1−

ω2
p

γ⊥ω2
0

where γ⊥ is the Lorentz factor γ of the transverse momentum of the electrons as they

oscillate in the laser field, and is given by [72]:

γ⊥ =

√
1 +

a2
0

2

These two equations can be combined, and η can be expanded for small values of the

perturbation ω2
p/γ⊥ω

2
0 [72]:

η =

[
1− 1

2

ω2
p

ω2
0

(
1 +

δn

n
− 〈a

2〉
2
− 2

δω0

ω0

)]
(2.66)
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where δn and δω0 are the density and laser frequency perturbations, respectively. Note

that both the light’s frequency and intensity affect the index of refraction, which in

turn affects the propagation of the light, creating a complicated interaction between

the light and the plasma. Recalling that the phase velocity vp is given by vp = cη−1,

we have [72]:

vp = c

[
1 +

1

2

ω2
p

ω2
0

(
1 +

δn

n
− 〈a

2〉
2
− 2

δω0

ω0

)]
(2.67)

Finally, the group velocity can be written as [72]:

vg = c

[
1− 1

2

ω2
p

ω2
0

(
1 +

δn

n
− 〈a

2〉
2
− 2

δω0

ω0

)]
(2.68)

To consider plasma optical phenomena, we will analyze how the laser envelope

〈a2〉 is effected by interaction with the plasma in the speed-of-light frame (with the

variables τ = t and ψ = t − x/c). If we assume that the total number of photons

within some length L is constant, we can say [72]:

〈a2〉ω0σ
2L = constant

where σ is the laser spot size; this means the change in the the time-average of the

laser intensity ∆〈a2〉 is given by [72]:

∆〈a2〉 = −∆L

L
〈a2〉 − 2

∆σ

σ
〈a2〉 − ∆ω0

ω0

〈a2〉 (2.69)

We can see that the laser intensity can be altered via three parameters: longitudinal

extent L, spot size σ, and laser frequency ω0. These three quantities evolve according
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to the following differential equations [72]:

1

L

∂L

∂τ
= −1

c

∂vg
∂ψ

(2.70)

1

L

∂2σ

∂τ 2
= −

(
vp1 − vp2

σ

)
c (2.71)

1

ω

∂ω

∂τ
= −1

c
η−2 ∂η

∂ψ
(2.72)

where, in Equation 2.71, vp1 and vp2 are the phase velocities at the edge of the beam

a distance σ from the axis and on the axis of laser propagation, respectively [72].

2.4.2 Raman Forward Scattering

RFS is an instability by which the a2/2 term in Equation 2.66 drives a modulation

in the plasma density, δn, which in turn drives a modulation in the laser intensity,

〈a2〉1 [72]. Effectively, there exist two decay modes (k+ and k−) which interact with

the light wave k0 and the plasma wave kp such that k0+kp = k+ and k−+kp = k0; these

two decay modes grow exponentially as they interact with the laser and plasma waves

simultaneously [65]. A diagram of the relationship between these waves in k-space is

shown in Figure 2.12. Note that because there are two decay waves interacting with

two driving waves, FRS is a “four-wave” process.

If we consider RFS as a one-dimensional process (i.e., the growth rate of the laser

field perturbation, ∆〈a2〉1, is unaffected by perturbations to the spot size) where the

modulations in the index of refraction η are driven only by modulations in the plasma

density, then by considering Equations 2.69, 2.70, and 2.72, it can be shown that the
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Figure 2.12: The k-space relationship between the plasma wave, laser wave, and scat-
tered waves in Raman Forward Scattering.

density perturbations cause modulations to the laser intensity according to [72]:

∂∆〈a2〉1
∂τ

= ic
ω2
p

ω2
0

kp
a2

0

2

δn

n
(2.73)

Note that the factor of i on the right-hand side of this equation means that the density

modulations are out of phase with the intensity modulations by a factor of π/2.

Simultaneously, modulations to the laser intensity also drive density perturbations

according to [72]:

[
∂2

∂ψ2
+ ω2

p

]
δn

n
=

∂2

∂ψ2

〈a2〉
2

(2.74)

Equations 2.73 and 2.74 can be combined to yield [72]:

∂2

∂ψ
∂τ〈a2〉1 = γ2

0〈a2〉1
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γ0 =
a0ω

2
p√

8ω0

(2.75)

For the limit where a0 << 1, γ0 is the growth rate Γ of the RFS instability [65]. In

general, the growth rate for the RFS instability is given by [65]:

Γ =
ω2
pa0

√
8ω0

(
1 +

a2
0

2

) (2.76)

2.4.3 Relativistic Self-Phase Modulation

Similar to RFS, RSPM is a process by which the a2/2 term in Equation 2.66

drives a modulation in the laser frequency perturbation ∆ω, which in turn drives a

modulation in the laser intensity 〈a2〉. However, unlike RFS, in RSPM, the secondary

modulations in 〈a2〉 are out of phase with the original modulations driving the process.

The net result is a modulation of the group velocity vg, which leads to longitudinal

energy bunching [72].

If we begin with Equation 2.69, assuming that the perturbations to ∆〈a2〉 are

caused only by the ∆L/L term; and combine it with Equation 2.68, assuming that

the perturbations to vg are caused only by the ∂ω0/ω0 term, we may say that pertur-

bations in the laser intensity are driven by perturbations in the the laser frequency

according to [72]:

∂2∆〈a2〉
∂τ 2

=
ω2
p

ω2
0

∂

∂ψ

(
1

ω0

∂∆ω0

∂τ

a2
0

2

)
(2.77)

Meanwhile, perturbations to the laser frequency ω0 are driven by perturbations in

the laser intensity a2
0 are driven by [72]:

1

ω0

∂∆ω0

∂τ
= −1

4

ω2
p

ω2
0

∂

∂ψ
〈a2〉 (2.78)
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Equations 2.77 and 2.78 can be combined to find the equation for relativistic self-phase

modulation [72]:

∂2〈a2〉1
∂τ 2

=
c2k2

8

ω4
p

ω4
0

a2
0

(
1− 2k2

ω2
0

c2

a2
0

)
〈a2〉1 (2.79)

where 〈a2〉1 is the laser vector potential perturbation. The threshold for the RSPM

instability is therefore [72]:

c2k2 <
ω2

2
a2

0 (2.80)

and the maximum growth rate of the instability is [72]:

Γm =
1

8

a2
0ω

2
p

ω0

(2.81)

2.4.4 Relativistic Self-Focusing

RSF is a process by which the intensity-dependent index of refraction interacts

with the variable intensity of the laser spot to produce a self-focusing effect [72]. If

we start with Equation 2.71, and insert Equation 2.67 while assuming that the phase

velocity is driven only by the 〈a2〉/2 term in Equation 2.67, we can say that the spot

size σ evolves according to [72]:

∂2σ

∂τ 2
= −1

8

ω2
p

ω2
0

c2

σ
a2

0 (2.82)

However, this equation fails to take into account variations in the spot size due to

vacuum diffraction, which is given by [72]:

σ = σ0

√
1 +

τ 2

t2R
(2.83)
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where σ0 is the spot size at the focus and tR ≡ 1/2k0/2σ
2
0 is the diffraction time. We

can differentiate this equation near the focus [72]:

∂2σ

∂τ 2
≈ 4

k2
0σ

3
0

(2.84)

We can combine Equations 2.82 and 2.84 [72]:

∂2σ

∂τ 2
≈ 4

k2
0σ

3
0

[
1−

a2
0σ

2
0ω

2
p

32c2

]
(2.85)

Self-focusing occurs when ∂2σ
∂τ2 < 0, i.e. when [72]:

a2
0σ

2
0ω

2
p

32c2
> 1 (2.86)

Since this product is proportional to a2
0σ

2
0, it is proportional to the power [72], and

we can rewrite the condition of Equation 2.86 as:

P

Pcrit
> 1

where the critical power is given by [72]:

Pcrit = 17
ω2

0

ω2
p

[GW ] (2.87)
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2.5 Radiation Emission by Charged Particles

2.5.1 Instantaneous Radiation Spectrum

The four-potentials produced by a charged particle moving with a four-velocity

V α (τ) are known as the Liénard-Wiechert potentials:

Aα (x) =
eV α (τ)

~V · [~x− ~r (τ)]

∣∣∣∣∣
τ=τ0

(2.88)

where τ0 is the retarded proper time. These potentials can be evaluated to yield the

field strength tensor:

Fαβ =
e

V · (x− r)
d

dτ

[
(x− r)α V β − (x− r)β V α

~V · (~x− ~r)

]
(2.89)

which can itself be rewritten as explicit statements of the electric and magnetic fields:

~E (~x, t) = e

 ~n− ~β

γ2
(

1− ~β · ~n
)3

R2


ret

+
e

c

{
~n×

[(
~n− ~β

)
× β̇

]
(

1− ~β · ~n
)3

R

}
ret

(2.90)

~B =
(
~n× ~E

)
ret

(2.91)

If we consider that the power radiated per unit solid angle is given by:

dP (t)

dΩ
=

c

4π

∣∣∣∣ [R~E]
ret

∣∣∣∣2 (2.92)

we can can calculate energy radiated per unit frequency, per unit solid angle by a

particle traveling instantaneous circular motion with a radius of curvature ρ:

d2I

dωdΩ
=

3γ2e2

π2c
ω̃2
(

1 + θ̃2
)2
[
K2

2
3

(ξ) +
θ̃2

1 + θ̃2
K2

1
3

(ξ)

]
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ξ ≡ ω̃

2

(
1 + θ̃2

)3/2

(2.93)

where γ is the radiating particle’s relativistic Lorentz factor, e is the charge of an

electron, c is the speed of light in a vacuum, θ̃ is the angle-of-emission normalized to

θcrit ≡ 1/γ, and ω̃ is the frequency normalized to ωcrit ≡ (3/2) γ3 (c/ρ), where ρ is the

radius of curvature of the particle’s instantaneous circular motion. This spectrum is

shown both linearly and logarithmically in Figure 2.13. The angular dependence of

this spectrum can be integrated out to yield the one-dimensional synchrotron spec-

trum:

dI

dω
=

2
√

3e2γ

c
ω̃

∞∫
2ω̃

K 5
3

(x) dx (2.94)

This spectrum is shown in Figure 2.14. Note that Equation 2.93 is in units of energy

per unit frequency, per unit angle (i.e., ergs-second per radian), while Equation 2.94

is in units of energy per unit frequency (i.e., ergs-seconds). Both represent the total

energy emitted (either per unit angle per unit frequency as in Equation 2.93, or per

unit frequency as in Equation 2.94) by a particle that travels in one complete orbit

of its circular motion.

2.5.2 Radiation Regimes

When being emitted by electrons traveling along a sinusoidal trajectory, radia-

tion can be broadly classified into two separate regimes: “undulator” radiation and

“wiggler” radiation. These two regimes are defined by the wiggler parameter, K [5]:

K = γψ

where γ is the relativistic Lorentz factor of the radiating electron and ψ is the max-

imum angle reached by the electron’s trajectory relative to its averaged, forward
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Figure 2.13: The two-dimensional, angular and frequency spectrum produced by a
charged particle moving in instantaneous circular motion with a linear
frequency scale (left) and a logarithmic frequency scale (right), in terms
of the critical frequency and angle

Figure 2.14: The distribution of radiation frequencies (presented as a probability den-
sity function), in terms of the critical frequency.
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propagation direction. For the undulator regime, K << 1, while for the wiggler

regime, K >> 1 [5]. The difference between these two regimes is shown in Figure

2.15, along with a graphical representation of the angle ψ.

Figure 2.15: A cartoon of the electron trajectories for the undulator case (top) and
wiggler case (bottom). The electron trajectories are shown in blue, and
the emitted radiation is shown in red. Note that the wiggler parameter K
is the ratio between the maximum angle between the electron trajectory
and the propagation direction (shown in the figure) and the critical angle
of the emitted radiation spectrum, θcrit = 1/γ, which depends on the
emitting particle’s Lorentz factor γ and is not shown in the figure.

Recalling from the previous section that the characteristic angle-of-emission is

given by θcrit = 1/γ, we can write K = ψ/θcrit. This reformulation clarifies the

physical difference between the undulator and wiggler regimes. For the undulator
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regime, K << 1 means that ψ << θcrit. The angular divergence of the emitted

radiation is primarily due to the angular dependence of the synchrotron spectrum as

defined by Equation 2.93 in this case. Conversely, for the wiggler regime, K >> 1

means that ψ >> θcrit. The angular divergence of the emitted radiation is primarily

due to the radiating electron’s trajectory in this case [5].

More significant than the differences in the angular distributions, however, are the

differences in the spectrum of radiation emitted in each of these two regimes. For the

undulator regime (where K << 1), the radiation is continuously emitted in the same

direction, resulting in a coherent superposition of the radiation [3]. Consequently, the

spectrum takes the form of a single, sharp peak at a frequency ωu given by [3]:

ωu ≈
2γ2

1 + γ2θ2

(
2π

λ0

)
(2.95)

where λ0 is the wavelength of the electron’s periodic motion. While an ideal infinite-

length undulator would emit light at a single frequency, a real undulator of N periods

emits light with a frequency bandwidth of ∆ω/ω ∼ 1/N [3].

Conversely, for the wiggler regime (where K >> 1), the radiation is emitted in

a broad spectrum resembling that described by Equations 2.93 and 2.94 [3]. In this

case, the effective critical frequency of the radiation, ωc,wig is given by [3]:

ωc,wig = 2πcγ3 ψ

λ0

(2.96)

For the transitional regime where K ∼ 1, a full treatment is beyond the scope

of this dissertation. Qualitatively, the spectrum for this regime shows a number of

sharp peaks located at harmonics of the fundamental frequency given by Equation

2.95. As the wiggler parameter K increases, the heights of these peaks increase

and broaden, asymptotically approaching a synchrotron-like spectrum with a critical

frequency given by Equation 2.96 [5].
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By analyzing the trajectory of a single electron undergoing betatron motion in

an ion channel, scalings can be found that relate the wiggler parameter K and the

betatron frequency ωβ to the plasma parameters [50], [2]:

ωβ =
ωp√
2γ

; K = γrβ
ωβ
c

(2.97)

where ωp is the electron plasma frequency, γ is the Lorentz factor of the radiating

electron, and rβ is the maximum distance the radiating particle travels away from the

centerline as it undergoes betatron oscillation.
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CHAPTER III

Computational Background & Methodology

3.1 Introduction

In this section we will present a general overview of the fundamental compu-

tational concepts which are relevant to this research. First, the relevant mathe-

matics of computational electrodynamics will be presented, specifically the forward-

differencing time domain used in this research’s simulations. The important concept

of the Courant-Friedrichs-Lewy (CFL) condition will also be presented, and how it

relates to numerical diffusion and dispersion will be discussed.

Second, the mathematics and techniques of the particle-in-cell (PIC) model are

presented. An explanation of the computational cycle of PIC codes is presented. Also,

a review of the instabilities and nonphysical phenomena which occur when using PIC

codes is presented.

Finally, the implementation specific to the PIC code OSIRIS 2.0 (used for the

majority of this research) is presented. An explanation of how OSIRIS 2.0 specifically

implements each step in the PIC computational cycle is given.
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3.2 Computational Electrodynamics

We first present the relevant methods for numerically solving Maxwell’s equations

[3]:

~∇ · ~E = 4πρ (3.1)

~∇× ~E = −1

c

∂ ~B

∂t
(3.2)

~∇ · ~B = 0 (3.3)

~∇× ~B = 4π ~J +
1

c

∂ ~E

∂t
(3.4)

for the time evolution of the electric and magnetic fields ~E and ~B in the presence of

charge and current densities ρ and ~J .

3.2.1 Forward-Differencing Time Domain (FDTD)

The FDTD algorithm begins with equations 3.2 and 3.4 rearranged:

∂ ~B

∂t
= −c~∇× ~E (3.5)

∂ ~E

∂t
= c

(
~∇× ~B − 4π ~J

)
(3.6)
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The time derivatives in equations 3.5 and 3.6 are replaced with approximate numerical

forms:

∂ ~B

∂t
≈

~Bt+1 − ~Bt

∆t
(3.7)

∂ ~E

∂t
≈

~Et+1 − ~Et
∆t

(3.8)

where t is the time-index of the numeric calculation. The revised Maxwell’s equations

become [73]:

~Bt+1 − ~Bt

∆t
≈ −c

(
~∇× ~E

)
t+1/2

(3.9)

~Et+1/2 − ~Et−1/2

∆t
≈ c

[(
~∇× ~B

)
t
− 4π ~Ji

]
(3.10)

(An explanation of how the spatial derivatives of ~E and ~B are calculated numerically

is provided in the section 3.2.2). We rewrite these equations in a form that permits

iteration:

~Bt+1 = ~Bt − c∆t
(
~∇× ~E

)
t+1/2

(3.11)

~Et+1/2 ≈ ~Et−1/2 + c∆t
[(
~∇× ~B

)
t
− 4π ~Jt

]
(3.12)

These two numerical equations have two features of note. First, the electric and

magnetic fields iterate one half-step out of sync with one another; consequently the

FDTD method first iterates one field, than uses that new value to iterate the other

field, and so on, effectively leap-frogging back and forth between the electric and
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magnetic field [73].

Second, the charge density ρ does not appear at all in these equations. While

this seems counterintuitive at first, the presence of the current density ~J in these

equations encapsulates all of the information necessary about the evolution of the

charge density ρ. The only information missing is the initial charge distribution ρ0,

which is accounted for if the initial electric field is defined according to equation 3.1.

3.2.2 Yee Cell

The next step when numerically calculating the electric and magnetic fields is to

numerically calculate the spatial derivatives in equations 3.11 and 3.12. For simplicity,

we initially consider only the x-component of equation 3.11 [73]:

Bx,i+1 = Bx,i − c∆t
(
~∇× ~E

)
x,i+1/2

(3.13)

Bx,i+1 = Bx,i − c∆t
(
∂Ez,i+1/2

∂y
−
∂Ey,i+1/2

∂z

)

We introduce the indices a, b, and c to represent the discretization of quantities in,

respectively, the x, y, and z directions, and discretize these derivatives [73]:

Bx,a,b+ 1
2
,c+ 1

2
,t+1 = Bx,a,b+ 1

2
,c+ 1

2
,t − c∆t

(
Ez,a,b+1,c+ 1

2
,t+1/2 − Ez,a,b,c+ 1

2
,t+1/2

∆y

)

+c∆t

(
Ey,a,b+ 1

2
,c+1,t+1/2 − Ey,a,b+ 1

2
,c,t+1/2

∆z

)
(3.14)
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Similarly, we find for the remaining two components of equation 3.11 [73]:

By,a+ 1
2
,b,c+ 1

2
,t+1 = By,a+ 1

2
,b,c+ 1

2
,t − c∆t

(
Ex,a+ 1

2
,b,c+1,t+1/2 − Ex,a+ 1

2
,b,c,t+1/2

∆z

)

+c∆t

(
Ez,a+1,b,c+ 1

2
,t+1/2 − Ez,a,b,c+ 1

2
,t+1/2

∆x

)
(3.15)

Bz,a+ 1
2
,b+ 1

2
,c,t+1 = Bz,a+ 1

2
,b+ 1

2
,c,t − c∆t

(
Ey,a+1,b+ 1

2
,c,t+1/2 − Ey,a,b+ 1

2
,c,t+1/2

∆x

)

+c∆t

(
Ex,a+ 1

2
,b+1,c,t+1/2 − Ex,a+ 1

2
,b,c,t+1/2

∆y

)
(3.16)

and for the three components of the electric field (from equation 3.12) [73]:

Ex,a+ 1
2
,b,c,t+ 1

2
= Ex,a+ 1

2
,b,c,t− 1

2
+ c∆t

(
Bz,a+ 1

2
,b+ 1

2
,c,t −Bz,a+ 1

2
,b− 1

2
,c,t

∆y

)

−c∆t

(
By,a+ 1

2
,b,c+ 1

2
,t −By,a+ 1

2
,b,c− 1

2
,t

∆z

)
− c∆t4πJx,a+ 1

2
,b,c,t+ 1

2
(3.17)

Ey,a,b+ 1
2
,c,t+ 1

2
= Ey,a,b+ 1

2
,c,t− 1

2
+ ∆t

(
Bx,a,b+ 1

2
,c+ 1

2
,t −Bx,a,b+ 1

2
,c− 1

2
,t

∆z

)

−∆t

(
Bz,a+ 1

2
,b+ 1

2
,c,t −Bz,a− 1

2
,b+ 1

2
,c,t

∆x

)
−∆t4πJy,a,b+ 1

2
,c,t+ 1

2
(3.18)
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Ez,a,b,c+ 1
2
,i+ 1

2
= Ez,a,b,c+ 1

2
,t− 1

2
+ ∆t

(
By,a+ 1

2
,b,c+ 1

2
,t −By,a− 1

2
,b,c+ 1

2
,t

∆x

)

−∆t

(
Bx,a,b+ 1

2
,c+ 1

2
,t −Bx,a,b− 1

2
,c+ 1

2
,t

∆y

)
−∆t4πJz,a,b,c+ 1

2
,t+ 1

2
(3.19)

Note again that, as with the time derivatives, the spatial indices of the electric and

magnetic fields are 1/2 step out of sync with one another in the dimensions in which

the derivatives are taken. Functionally, this means that the electric and magnetic

fields are defined at different points on the grid. For a given (cubic) grid cell, the

electric field lines are defined at the centers of each cell edge, and are defined parallel

to the edge. By contrast, the magnetic fields are defined at the centers of each cell

face, and are defined normal to the face [73].

The use of indices obfuscates the layout of this complicated arrangement, which

is much easier to understand graphically. The definitions of the magnetic field vector

components shown with respect to a grid cell are shown in Figure 3.1. The same

definitions for the electric field are shown in Figure 3.2.

This seemingly complex arrangement greatly simplifies calculating the curls in

equations 3.11 and 3.12. Each vector component requires that one component of a

curl be numerically calculated for iteration. The Yee lattice ensures that each vector

component lies exactly halfway between both pairs needed for its iteration [73].

3.2.3 CFL Condition

The Courant-Friedrichs-Lewy condition, or CFL condition, is an important con-

cept when numerically solving differential equations of hyperbolic form [74]. Conse-

quently, it is an important factor to consider in computational plasma physics. The

CFL condition is a stability relating the spatial resolution, time-step, and character-

istic velocity of a gridded differential equation being solved with explicit, numerical
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Figure 3.1: The definitions of the magnetic field (shown in blue) with respect to the
numeric grid (shown in black). Also shown for clarity are the grid cell
spacings (also in black). Note that the magnetic field vector components
are defined normal to, and originating at the center of, the cell surfaces.

Figure 3.2: The definitions of the electric field (shown in red) with respect to the
numeric grid (shown in black). Note that the electric field vector com-
ponents are defined parallel to, and originating ath the center of, the cell
edges.
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methods [75],[76], and is defined in terms of the Courant number S; in one dimension

this parameter and the stability condition related to it are given by [73]:

S ≡ c∆t

∆x
≤ 1 (3.20)

where c is the velocity, ∆t is the time step, and ∆x is the grid spacing. In three

dimensions, this becomes [73]:

S ≡ c∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
≤ 1 (3.21)

It is important note that applying this condition too severely, i.e.:

S ≡ c∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
<< 1 (3.22)

can introduce a non-physical (though stable) numerical diffusion [76]. This diffusion

is minimized when S ∼ 1 [76].

3.2.4 Numerical Dispersion

Non-physical dispersion (i.e., when the phase velocity of a wave can differ from

c by an amount varying with the wavelength) is introduced by the FDTD method

[73]; this dispersion is dependent on the grid discretization. Moreover, the numerical

dispersion varies with propagation direction if the grid discretization is different in

different dimensions. Consider that, in real-space, the dispersion of a wave with

wave-number ~k ≡ kxx̂+ kyŷ + kz ẑ is given by [73]:

(ω
c

)2

= k2
x + k2

y + k2
z (3.23)
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For a similar wave propagating via the FDTD method, the dispersion relationship is

given by [73]:

[
1

c∆t
sin

(
ω∆t

2

)]2

=

[
1

∆x
sin

(
kx∆x

2

)]2

+

[
1

∆y
sin

(
ky∆y

2

)]2

+

[
1

∆z
sin

(
kz∆z

2

)]2

(3.24)

It is immediately apparent from Equation 3.24 that, if the quantities ∆x, ∆y, and

∆z are not equal (i.e., if the grid is discretized differently in different directions), then

the numerical dispersion of a wave will depend upon its direction of propagation (i.e.,

the relative values of kx, ky, and kz), unless ka∆a << 1 (where a = (x, y,&z)).

It is of course desirable to reduce the effects of this dispersion in order to accurately

capture the propagation of electromagnetic waves. For a simple electromagnetic wave,

recall that the dispersion relationship for a non-magnetized electromagnetic plasma

wave propagating entirely in the z-direction is given by [77]:

ω2 = ω2
p + c2k2

z = ω2
p + k2

z (3.25)

when c is normalized to one (a common normalization scheme chosen for laser plasma

simulation to avoid excessively large/small floating point numbers). It can be shown

[78]that Equation 3.25 is a solution to Equation 3.24 if the time-step is given by:

∆t = ∆z
kz
ω

(3.26)

which becomes ∆t = ∆zc for a sufficiently under-dense plasma (∆t = ∆z for c

normalized to 1). Recall that, for a three-dimensional simulation with c normalized
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to 1, the CFL condition is:

∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
< 1 (3.27)

However, recall that to minimize numerical diffusion, we want:

∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
∼ 1 (3.28)

Introducing the ∆t = ∆zc constraint (with c normalized to 1) necessary to accurately

model our desired electromagnetic wave, we have:

(
∆z2

∆x2
+

∆z2

∆y2
+

∆z2

∆z2

)
∼ 1 (3.29)

(
∆z2

∆x2
+

∆z2

∆y2

)
∼ 0 (3.30)

It is clear that both of these constraints cannot be realized with finite grid sizes.

Nevertheless, we can come close by having ∆x > ∆z and ∆y > ∆z.

In conclusion, the two non-physical effects of simulating electromagnetic waves

via the FDTD method, namely numerical dispersion and numerical diffusion, can be

minimized for waves traveling in one direction by making the grid discretization in the

transverse dimensions larger than the grid discretization in the propagation direction,

while still satisfying the CFL condition. Obviously, the more severely this constraint

is applied, the more poorly the simulation will model waves traveling in directions

other than the chosen propagation direction.
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3.2.5 Field Boundary Conditions

Since it is impossible to simulate an infinite domain, it is necessary to specify

how the electromagnetic field solver interacts with the boundaries of the simulation

domain. This is done by determining the boundary conditions used by the code; the

choice of boundary condition is an important design decision, and many codes permit

a choice of boundary conditions [73].

Mathematically, recall that the updating the value of some field ~Aa at the ath grid

cell requires defined values for the field at ~Aa−1 and ~Aa+1. For the majority of cells in

the grid, there is no problem with this requirement; however, for a grid with A cells

defined from a = 1 to a = A, updating the values of the fields at ~A1 and ~AA require

defined values of the fields at cells a = 0 and a = A+ 1, which do not (by definition)

exist. The algorithm by which values for cells outside of the grid are determined, so

that values at the boundaries of the grid may be updated, is known as the boundary

condition of the model [73].

One of the most common and basic set of boundary conditions for electromagnetic

field solvers are periodic boundaries. Mathematically, periodic boundary conditions

are calculated by [73]:

~A1−a = ~AA+1−a; ~AA+a = ~Aa (3.31)

Effectively, the system is assumed to be simulating one of an infinite series of adjacent

cells which repeat in the direction in which periodic boundaries have been chosen.

Another common, basic set of boundary conditions which are closely related to

periodic boundaries are reflecting boundaries.. Mathematically, reflecting boundary

conditions are calculated by [73]:

~A1−a = − ~A1+a; ~AA+a = − ~AA−a (3.32)
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Effectively, the system is assumed to be simulating one of an infinite series of adjacent

cells, similar to that of periodic boundary conditions, but which mirror one another

at the boundaries. Since this behavior is identical to that of a perfect conductor

being placed on the boundaries, this boundary condition is sometimes also called a

conducting boundary.

Lindmann open-space boundary conditions are somewhat more complex boundary

conditions which absorb, rather than reflect, incident waves, acting (in effect) as

though the simulation domain resides within an infinite region of free space [79]. A

rigorous mathematical development of this boundary condition is beyond the scope

of this dissertation; instead we will only say that it consists of applying corrections

to the electromagnetic wave’s source term at the boundaries, so that the reflection

coefficient at the boundaries is reduced to zero. These corrections must be updated

as the simulation proceeds[79].

3.3 Particle-in-Cell (PIC) Codes

3.3.1 Overview

The Particle-in-Cell method, or PIC method, is a kinetic plasma modeling tech-

nique which is ideally suited for simulating anisotropic, collisionless plasmas. The

PIC method consists of two components: the electromagnetic field, defined on a Yee

grid and iterated via the FDTD method as previously described in section 3.2.1, and

the plasma, which is defined as a collection of kinetic macroparticles which move in

response to the electromagnetic fields. The charge and current densities of the plasma

are calculated from this collection of macroparticles, and these quantities are then

fed back into the FDTD iteration of the electromagnetic field [80].

At first glance, the PIC method sounds very similar to the Klimontovich equation

discussed in section 2.2.2, which was stated to be computationally infeasible for physi-
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cally interesting plasmas. One might be inclined to suspect the same thing of the PIC

method, except for one important distinction: the PIC method does not track every

particle in the plasma, but rather a much smaller number of macroparticle ”clouds”

that each represent many individual particles. Additionally, these macroparticles are

not point-like, but rather given finite a finite physical size; this effectively treats the

particles as diffuse [80].

The diffuse nature of the PIC particles circumvents a major disadvantage of the

Klimontovich equation, in that the small-scale, microscopic elements of the elec-

tromagnetic field are averaged out, leaving smoother macroscopic fields. However,

another possible concern about the PIC model is that, by reducing the number of

particles to a computationally feasible level, we risk violating the plasma condition (as

discussed in section 2.2.1), thereby preventing collective effects from dominating the

system dynamics. We are saved from this pitfall, however, by the near-equivalence

of the conditions that ND >> 1 and ωp,e >> νe,i, The diffuse nature of the PIC

macroparticles means that the impact of inter-particle collisions (which derive from

the point-like nature of the interacting particles) is greatly reduced, which in turn

reduces the effective collision frequency to a point where ωp,e >> νe,i. Therefore,

the system will behave as though ND >> 1; i.e., it will behave like a plasma [80]. It

should be noted that, even though the effect of inter-particle collisions in PIC codes is

greatly reduced, it is possible to include collisions in these models. However, collisions

were not considered for the work presented in this dissertation.

From an algorithmic point of view, the PIC method has four steps; these steps

repeat cyclically until the conclusion of the simulation [80]:

1. Iterating the Macroparticle Momenta and Positions from the Fields

2. Weighting the Particle Momenta to the Grid to Calculate the Current Density

3. Iterating the Electromagnetic Fields Using the Particle Current and FDTD
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Method

4. Weighting the Electromagnetic Fields Back to the Particles

Note that particle collisions are not modeled by the method as presented; for this

dissertation particle collisions were not considered.

3.3.2 Computational Cycle: Macroparticle Pushing

Advancing the particle positions and momenta requires numerical approximations

to the equations of motion [3]:

∂~x

∂t
=

~pc√
m2c2 + p2

(3.33)

∂~p

∂t
= q

{
~E +

[(
~p√

m2c2 + p2

)
× ~B

]}
(3.34)

where p ≡ |~p| is the magnitude of the momentum. Discretizing the first equation is

fairly straightforward [80]:

~xt+ 1
2
− ~xt− 1

2

∆t
=

c√
m2c2 + p2

t

~pt (3.35)

~xt+ 1
2

= ~xt− 1
2

+

(
c∆t√

m2c2 + p2
t

~pt

)
(3.36)

Note that, much as with the electric and magnetic fields in the FDTD method, we

solve for the positions and momenta of the particles one half-time-step out of sync

with one another. Unfortunately, such a neat discretization does not exist for the
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momentum equation:

~pt+1 − ~pt
∆t

= q

{
~E
(
~xt+ 1

2

)
+

 ~pt+ 1
2√

m2c2 + p2
t+ 1

2

× ~B
(
~xt+ 1

2

)}

as observant readers will no doubt note that the momentum ~p is not defined at the

timestep t + 1
2
. The most common solution to this problem is known as the “Boris

pusher;” wherein the particle undergoes half of the acceleration due to the electric

field [81]:

~p− = ~pt +
q ~E
(
~xt+ 1

2

)
2

∆t (3.37)

then is rotated according to the magnetic field [81], [80]:

~p+ − ~p−
∆t

= q

[(
~p+ + ~p−

2

)
× ~B

]
(3.38)

which can be solved via the following sequence[81], [80]:

~pprime = ~p− +

[
~p− ×

(
q ~B∆t

2γmc

)]
(3.39)

~p+ = ~p− +

{
~pprime ×

q ~B∆t

γmc

 1

1 + q2| ~B|2∆t2

4γ2m2c2

} (3.40)

and finally the particle undergoes the remaining half of its acceleration due to the

electric field [81], [80]:

~pt+1 = ~p+ +
q ~E
(
~xt+ 1

2

)
2

∆t (3.41)
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The Boris scheme allows the momentum to be effectively center-differenced explicitly

[81], and is a standard method for PIC particle pushers.

3.3.3 Computational Cycle: Macroparticle Weighting

Determining the charge and current densities of the particles requires mapping

the particles’ finite shapes and locations (which are defined continuously) onto the

discrete grid upon which the fields are defined. Effectively, each particle’s ”mass”

needs to be weighted to one or more of the grids’ cells; the precise nature of the

algorithm which performs this operation effectively determines the ”shape” of the

particle in physical space [80].

Macroparticle weighting schemes are defined by their order; higher-order weight-

ing schemes are more computationally intensive, and distribute a macroparticle’s

mass over more cells. However, they also result in much smoother charge and current

densities, and therefore produce less noisy results. Figures 3.3 and 3.4 present graphi-

cal representations of, respectively, first- and second-order one-dimensional weighting

schemes. In each of these figures, the macroparticle’s “mass” is shown by its height

above the axis; the “area” of the figure contained within the boundaries of a given

cell therefore represents the proportional “weight” that macroparticle contributes to

that cell’s charge and current density. Consequently, the weight a macroparticle con-

tributes to a given cell can be thought of as the ratio of the “area” contained within

that cell to the macroparticle’s total “area.” [80]

Assume we have a macroparticle at position xmp, on a one-dimensional grid with a

grid spacing of ∆x. Assuming the particle lies within ∆x/2 of the location of the ath

grid cell (i.e., within the range xa−∆x/2 < xmp < xa + ∆x/2), then for a first-order

weighting scheme, the proportional contribution of the particle to cells a and a− 1 is
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[80]:

wa =

[(
xmp + ∆x

2

)
− xa

]
∆x

(3.42)

wa−1 =

[
xa −

(
xmp − ∆x

2

)]
∆x

(3.43)

Graphically, this scheme is shown in Figure 3.3. Graphically, the weight of a particle’s

contribution to a given cell is equal to the ”area” of the particle that lies within that

cell’s borders. The scheme is slightly different in second order. Here, we assume the

Figure 3.3: A graphical representation of a one-dimensional, first-order weighting
scheme for a PIC code; the proportional weight of a particle assigned
to a given cell is represented by the proportional area of the shape con-
tained within that cell’s boundaries.

particle lies within the ath cell (i.e., such that xa < xmp < xa+1). For this weighting

scheme, the proportional contribution of the particle to cells a − 1, a, and a + 1 is

[80]:

wa−1 =
(xa+1 − xmp)2

2∆x2
(3.44)

wa = 1− (xa+1 − xmp)2

2∆x2
− (xmp − xa)2

2∆x2
(3.45)
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wa+1 =
(xmp − xa)2

2∆x2
(3.46)

Graphically, this scheme is shown in Figure 3.4. Ultimately, determining which

Figure 3.4: A graphical representation of a one-dimensional, second-order weighting
scheme for a PIC code; the proportional weight of a particle assigned to a
given cell is represented by the proportional area of the shape contained
within that cell’s boundaries.

weighting scheme to use in a PIC code is a design decision made between the in-

creased smoothing of a higher-order weighting scheme and the reduced computational

complexity of a lower-order weighting scheme.

Semantically, it should be noted that we have presented the particle densities and

currents as being weighted to “cells” on the discrete grid. Astute readers will note,

however, that the electric and magnetic fields, as modeled using the Yee cell, are not

defined on individual cells, but rather on cell faces (in the case of the magnetic field)

or cell edges (in the case of the electric field). This distinction does not fundamentally

alter the nature of weighting particle currents to the discrete grid, but it does mean

that weighting needs to be implemented with care to ensure that the points at which

the discrete current is defined correctly correspond to the fields as defined by the Yee

cell.
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3.3.4 Computational Cycle: Electromagnetic Field Iteration

Once the current density has been mapped to the spatial grid, the electric and

magnetic fields can be iterated using the FDTD method (i.e., equations 3.14 through

3.19). Note that the positions and individual components of the momenta of the

macroparticles have to be carefully mapped to the correct index points and half-index

points to properly integrate the fields using the FDTD method [80].

3.3.5 Computational Cycle: Electromagnetic Field Weighting

The final step in the PIC computational cycle involves calculating the electro-

magnetic fields at the positions of the particles; effectively this involves weighting the

gridded fields back to the continuous positions of the particles, and is therefore the

reverse of the macroparticle weighting scheme described in section 3.3.3 [80].

Once again, assume we have a macroparticle at position xmp, on a one-dimensional

grid with a grid spacing of ∆x. Assuming the particle lies within ∆x/2 of the location

of the ath grid cell (i.e., within the range xa −∆x/2 < xmp < xa + ∆x/2), then for a

first-order weighting scheme, the value of a given field ~A at the particle’s position is

given by a weighted average of the fields defined grid points a and a− 1 [80]:

~Amp = wa−1
~Aa−1 + wi ~Aa (3.47)

~Amp =

[
xa −

(
xmp − ∆x

2

)]
∆x

~Aa−1 +

[(
xmp + ∆x

2

)
− xa

]
∆x

~Aa (3.48)

Once again, note that these weights can be thought of as the ratios of the “area” of

the particle within the cells to the total “area” of the particle, as depicted in Figures

3.3 and 3.4. For a second-order weighting scheme, where ~xmp lies between ~xa and

69



~xa+1, we have [80]:

~Amp = wa−1
~Aa−1 + wa ~Aa + wa+1

~Aa+1 (3.49)

~Amp =
(xa+1 − xmp)2

2∆x2
~Aa−1 +

[
1− (xa+1 − xmp)2

2∆x2
− (xmp − xa)2

2∆x2

]
~Aa+

(xmp − xa)2

2∆x2
~Aa+1 (3.50)

Additionally, recall once more that the electric and magnetic fields are defined

on the edges and faces of the discrete grid cells, rather than the center of the cells.

This does not fundamentally alter the nature of the process by which the electric and

magnetic fields are weighted to the macroparticle positions. However, it does mean

that, for example, the weighting factors wx for the electric and magnetic fields may

differ.

Finally, it is important to note that it is not entirely necessary to use the same

order scheme to both weight the particles to the grid, and to weight the electromag-

netic fields to the particles. Using the same scheme for both weighting processes

generally ensures a conservation of momentum; however by varying the two schemes,

other quantities (such as energy) can instead be conserved [80].

3.3.6 Particle Boundary Conditions

As with the field solver, it is impossible to simulate an infinite number of particles.

Consequently, the behavior of the particles when they exit the simulation domain

needs to be determined. Again, as with the field solver, choosing which boundary

conditions to use for the particle solver is an important design decision, and many

codes permit a choice of boundary conditions.
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For particle solvers, periodic and reflecting boundary conditions are conceptually

very similar to their field-solver counterparts. For periodic boundary conditions, any

particles which exit the domain re-enter the domain through the opposite boundary.

For reflecting boundary conditions, particles which exit the domain are redirected

back into the domain with the component of their momentum in the exiting direction

reversed. In both cases, the boundary conditions effective simulate an infinite series

of repeating domains, exactly as with their field-solver counterparts.

For absorbing boundary conditions, particles which exit the simulation are as-

sumed to be lost, and are removed from the simulation. Effectively, the simulation

domain is assumed to be suspended in an infinitely-absorbing medium.

3.4 OSIRIS 2.0 Features & Implementations

The previous section presented the basic concepts and methods underlying all PIC

codes. For this section, we present the specific implementation of these concepts in

OSIRIS 2.0, the PIC code used for the entirety of this dissertation; it was developed

by the Osiris Consortium at IST Portugal and UCLA.

3.4.1 PIC Cycle

The computational cycle used by OSIRIS is as follows [82]:

1. The selected diagnostics are executed

2. The particle positions and momenta are pushed using the current field values

3. The particle and current boundaries are updated, and the nodes communicate

if necessary

4. The current grid is calculated from the weighted particle momenta.

5. The deposited currents are smoothed, if smoothing has been specified
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6. The electric and magnetic fields are updated, and their boundaries are updated

7. If it has been requested, the code’s last step is to write restart information

3.4.2 Boundary Conditions & Moving Box

A major advantage of OSIRIS 2.0 is its moving window feature [82]. For LWFA

simulations, the interaction length is substantially longer than the pulse length; con-

sequently, a simultaneous simulation of the entire plasma would inefficiently devote a

majority of the system’s computational resources to simulating non-interacting bulk

plasma [82]. OSIRIS 2.0 circumvents this difficulty by only simulating the plasma

locally around the pulse in the laboratory frame. As the pulse advances through

the plasma, the simulation window (and the simulation grid) moves with the pulse;

cells exiting the back of the window are removed from the simulation, while new,

un-interacted cells are introduced at the leading edge of the box [82]. The initial

validation simulations considering simple cyclotron motion used a stationary box;

however, all other simulations used in this dissertation featured a moving window.

OSIRIS allows the user to chose from the following boundary conditions for the

fields [82]:

1. Periodic

2. Reflecting/Conducting

3. Lindmann Open-Space

and from the following boundary conditions for the particles [82]:

1. Periodic

2. Absorbing

3. Reflecting
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4. Thermal Bath

Note that “thermal bath” boundary conditions consist of re-injecting exiting particles

with new velocities taken from a specified thermal distribution [82]. Additionally,

the boundary conditions for the particles at the leading and trailing edge of the

moving simulation window are determined by the moving box dynamics as previously

discussed. For this dissertation, periodic boundary conditions were used for both the

particles and fields out of simplicity, and the domain was made large enough to

minimize edge effects.

3.4.3 Pulse Definition, Field Calculation, & Pulse Propagation

OSIRIS supports a number of mechanisms for defining and generating laser pulses

on its grid. The method used for this dissertation was the “zpulse” routine, wherein

the electromagnetic fields in the simulation window are initialized as a laser pulse

of the specified characteristics; the electromagnetic field solver then propagates the

pulse as normal. This routine is supported for both moving and stationary simulation

windows [82]. The transverse pulse envelope (i.e. the laser spot) can be specified to

have one of the following shapes [82]:

1. Planar: A simple plane wave

2. Hermite/Gaussian: A pulse shape of the form ∼ e−r
2/σ2

3. Bessel: The bessel function of the first kind ∼ J1 (r)

4. Asymmetric Gaussian: An off-axis Gaussian profile

For the aberrant pulse simulations in the next chapter, “aberrant hermite” and “aber-

rant Gaussian” profiles (profiles consisting of hermite/Gaussian profiles modified by

the presence of an optical aberration) were also added. The longitudinal pulse enve-

lope can be specified to have one of the following shapes:
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1. Hermite/Gaussian: A longitudinal profile of the form ∼ e−z
2/L2

z

2. Polynomial: A fifth-order polynomial approximation to the Gaussian envelope

3. Sine-squared: A longitudinal profile of the form ∼ sin2 (z), over a single half-

period of the sine function.

4. Math: A user-specified mathematical function

For this dissertation, a (fifth-order) polynomial longitudinal profile was used.

Additionally, OSIRIS allows fields to be launched from the simulation boundaries

via an antenna routine [82]. This routine allows pulses to be generated which propa-

gate in non-orthogonal directions, or which start at some time after the start of the

simulation.

The propagation of the pulse is determined by the field solver used; OSIRIS uses

a finite difference solver like that previously discussed. Consequently, waves propa-

gating in OSIRIS are subject to a directionally-dependent numerical dispersion if the

grid discretization varies with dimension, as shown in equation 3.24. This was the

case for the simulations featured in this dissertation; the grid spacing in the pulse

propagation direction was four times smaller than the grid spacing in the transverse

directions. This decision was made because the dominant electromagnetic waves in

the simulation were traveling in the propagation direction; consequently the differen-

tial grid spacing was chosen to minimize the effects of both numerical diffusion and

numerical dispersion. This allowed us to model the laser pulse propagation in the

forward direction as accurately as possible, as previously discussed in the sections

regarding numerical dispersion and the CFL condition.

3.4.4 Weighting, Deposition, & Conservation Properties

OSIRIS permits the user to select a weighting scheme from between 1st and 4th

order. The current deposition scheme used in OSIRIS is covered in detail in Appendix
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B of [83]. This scheme was chosen because it is charge-conserving, and allows the

local field solver to be used [82]. It works as follows:

1. The particle’s position is advanced as normal.

2. The total change in the particle’s position in one time-step, ∆~r, is calculated.

3. The half-way point of the particle’s displacement, ∆~r/2, is calculated.

4. The distances between this half-way point and the centers of the nearby local

cells are calculated according to the chosen weighting scheme.

3.4.5 Other Features

OSIRIS supports a number of other features which were not directly relevant this

dissertation but are included here for completeness [82].

1. The code outputs data as HDF5 files, which is platform-independent.

2. Current versions of the code also simulate the effects of ionization using several

different models. This feature was not used for this dissertation.

3. OSIRIS is massively parallel; its parallelization scheme is based on the MPI

library.

4. OSIRIS also features dynamic load balancing, where the domain mapping to

the available nodes is dynamically altered to maximize efficiency.
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CHAPTER IV

Simulation of Synchrotron-Like Radiation:

Algorithm Methodology

4.1 Algorithm Motivation

The simulation of radiation generated by LWFA-accelerated electrons is a non-

trivial problem. An exact analytical solution requires that the retarded field equations

be integrated over the entire trajectory of each radiating particle:

~E (~x, t) = e

 ~n− ~β

γ2
(

1− ~β · ~n
)3

R2


ret

+
e

c

{
~n×

[(
~n× ~B

)
× ~̇β

]
(

1− ~β · ~n
)3

R

}
ret

(4.1)

~B (~x, t) =
(
~n× ~E

)
ret

(4.2)

where ~β is the particle’s velocity normalized to the speed-of-light c, ~n is the direction

of observation, γ is the particle’s relativistic Lorentz factor, and R is the distance

from the particle to the observer. When this radiation is of sufficiently high intensity,

the situation is made more difficult still by the nontrivial radiation reaction force

experienced by the emitting particle.

One approach to this problem used by the makers of OSIRIS 2.0, the Osiris
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Consortium, is as follows [84]:

1. Run the simulation normally

2. Determine which particles’ spectra are relevant

3. Flag the particles-of-interest and rerun the simulation

4. Extract the trajectories of the particles-of-interest

5. Integrate equations 4.2 over the particle trajectories to calculate the radiation

spectra and intensities

If the radiation reaction force is expected to be significant, the particle equations-of-

motion:

mec
duµ

ds
=
e

c
F µνuν ;

dxµ

ds
= uµ (4.3)

(shown here in four-vector notation) are modified to include this effect by including

a radiation friction term gµ:

mec
duµ

ds
=
e

c
F µνuν + gµ (4.4)

This term represents the recoil force acting on the radiating particles by the emitted

radiation. There are several forms for the radiation friction term; one such term is

the Landau-Lifshitz equation:

gµ =
2e3

3mec3

{
∂F µν

∂xλ
uνuλ −

e

mec2

[
F µλFνλu

ν −
(
Fνλu

λ
)

(F νκuκ)u
µ
]}

(4.5)

A reduced version of this equation is featured in the previously-described method

used by the Osiris consortium.
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A more in-depth summary of methods for the simulation radiation emission in

PIC codes is given by Sokolov et al [85]. Different methods of radiation simulation

are presented depending on the strength of the electric field E, characterized by the

parameter χ:

χ =
2

3

E

Es
(4.6)

where Es = 1.3 × 1018V/m is the Schwinger limit [86], a threshold electric field

above which QED effects become significant. For χ << 1 (QED-weak fields), QED

effects are negligible. For χ ∼ 1 (QED-moderate fields), QED corrections need to be

incorporated to accurately model the physics, and when χ >> 1 (QED-strong fields),

QED effects like electron-positron pair production are dominant [85].

4.1.1 QED-Weak Fields

For χ << 1, the spectral distribution can be calculated first from the following

integral [85]:

dEm
rad

d~ndω̄
=

t∫
0

[
N∑
i

Icl
ωc
δ2

(
~n− ~p

p

)
δ (log (ω̄)− log (ωc))

]
dt (4.7)

and convoluting it [85]:

dErad
d~ndω′

=

∫
Qcl

(
ω′

ω̄

)
dEm

r ad

d~ndω̄
dlog (ω̄) (4.8)

where ~n is the direction of observation of the emitted radiation, ω̄ is the radiation

frequency, Icl is the radiation energy loss rate, Qcl is the unity-normalized spectrum of

the synchrotron emission, ωc is the critical frequency, and ~p is the individual particle

momentum. Note that the first integral includes a summation over all particles i,

and is integrated over time t. Radiation reaction force can be handled by altering the
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equations of motion for the individual particles [85]:

d~p

dt
=

~FL
mec

+
e
(
~̄u× ~B

)
mec2

−
~uE2

(
~̄u · ~FL

)
mec3

(4.9)

d~x

dt
= ~u+ ~̄u (4.10)

~̄u =
τ0

me

~FL − ~u~u·
~FL

c2

1 + τ0
~u·~FL

mc2

(4.11)

where ~FL is the Lorentz force, ~̄u is the back-reaction effect on the electron velocity, ~u

is the electron velocity normalized to the speed of light, and τ0 is the initial proper

time.

4.1.2 QED-Moderate & QED-Strong Fields

For this dissertation, QED effects were not considered; consequently we only

briefly summarize the methods for simulating radiation in QED-moderate and QED-

strong fields. For χ ∼ 1, i.e. QED-moderate fields, the methods presented in the

previous section can be modified so that the radiation spectrum (and resulting effects

like radiation back-reaction) are consistent with QED effects. For χ >> 1, i.e. QED-

strong fields, however, photons must be treated as kinetic macroparticles which can

interact with the plasma. Effects like electron-positron pair production are important

in this regime.

4.1.3 Comparisons with Chosen Algorithm

The results presented in this dissertation are from simulations in an entirely classi-

cal regime. For simplicity of implementation, a monte carlo algorithm approximating
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the classical spectrum was implemented. This algorithm was initially also chosen to

allow in-situ radiation simulation, as opposed to the methods described in the pre-

vious which require integration over the entire simulation time; however this utility

was ultimately not taken advantage of in the results.

4.2 Mathematical Basis

We begin by reiterating the expression for the energy radiated per unit frequency,

per unit solid angle, by a charged particle traveling in instantaneous circular motion,

as previously stated in chapter 2:

d2I

dωdΩ
=

3γ2e2

π2c
ω̃2
(

1 + θ̃2
)2
[
K2

2
3

(ξ) +
θ̃2

1 + θ̃2
K2

1
3

(ξ)

]
(4.12)

ξ ≡ ω̃

2

(
1 + θ̃2

)3/2

(4.13)

as well as the one-dimensional, angularly-integrated spectrum:

dI

dω
=

2
√

3e2γ

c
ω̃

∞∫
2ω̃

K 5
3

(x) dx (4.14)

where ω̃ is the normalized frequency of the emitted radiation, θ̃ is the out-of-plane

angle at which the radiation is emitted, γ is the particle’s relativistic Lorentz factor,

and the frequency and angle are normalized to the critical values:

ω̃ ≡ ω

ωc
; θ̃ ≡ θ

θc
; ωcrit ≡ 3γ3

(
c

ρ

)
; θcrit ≡

1

γ
(4.15)

This normalization scheme allows the frequency and angle-of-emission of a particle’s

instantaneous radiation to be characterized independently of its motion.
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The algorithm used for this dissertation uses equations 4.13 as a two-dimensional

probability distribution to randomly determine a normalized frequency/normalized

angle pair (ω̃, θ̃) for each radiating particle at a particular time step (i.e., a Monte

Carlo method is used). The real frequency and angle are then calculated by mul-

tiplying ω̃ and θ̃ by ωcrit and θcrit, respectively. Finally, a ”macrophoton” is emit-

ted with this frequency and at this angle; rather than representing a single photon,

this macrophoton represents all of the energy the particle would have radiated over

the timestep. While the utility to model the interaction of the macrophoton with

the plasma was considered, it was ultimately not included in this research, and the

macrophotons’ properties were immediately printed after generation.

To determine the total amount of energy radiated by a charged particle in motion

in a given time step, we begin with Liénard’s result for the power radiated by a

moving charge [[3]]:

P =
2

3

e2

c
γ6

{(
~̇β · ~̇β

)
−
[(
~β × ~̇β

)
·
(
~β × ~̇β

)]}
(4.16)

and simply multiply by the simulation timestep:

E = ∆t
2

3

e2

c
γ6

{(
~̇β · ~̇β

)
−
[(
~β × ~̇β

)
·
(
~β × ~̇β

)]}
(4.17)

4.3 Implementation & Normalization in OSIRIS 2.0

4.3.1 Normalization Scheme

The normalization scheme for the algorithm is, ultimately, the normalization

scheme used by the code in which the algorithm is implemented: OSIRIS 2.0. In

OSIRIS 2.0, spatial and temporal quantities are normalized to the laser parameters
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as follows:

λnorm =
λl
2π

; τnorm =
λnorm
c

(4.18)

where λl is the laser wavelength, c is the speed of light, and λnorm and τnorm are the

normalizing length and time, respectively. In other words, to convert from normalized

spatial and temporal units (xnorm and tnorm, respectively) to real spatial and temporal

units (xreal and treal, respectively), we multiply:

xreal = λnormxnorm; treal = τnormtnorm (4.19)

For the primary laser simulated by the code, HERCULES, λl = 800 nm; therefore we

assume unless explicitly stated otherwise:

λnorm =
800nm

2π
= 127nm; τnorm =

1.27× 10−7m

3.0× 108m/s
= 0.423fs (4.20)

4.3.2 Implementation Overview

The algorithm is implemented in the following sequence:

1. The particle’s initial and final positions and momenta are used to calculate the

radius-of-curvature of its instantaneous circular motion.

2. The particle’s critical frequency and critical angle are determined according to

equation 4.15.

3. A normalized frequency ω̃ is generated according to the distribution given by

equation 4.14.

4. The normalized frequency is compared to the two-dimensional distribution for

ω̃ and θ̃ given by equation 4.13 to determine the probability density function

for the normalized angle-of-emission θ̃.
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5. The normalized angle-of-emission is randomly generated from this probability

density function.

6. The normalized frequency and angle-of-emission are then multiplied by the crit-

ical frequency and angle, respectively, to determine the frequency and angle-of-

emission in normalized units.

7. The energy of the macrophoton is calculated according to equation 4.16.

8. To capture the effects of radiation friction (i.e., the loss of particle energy to the

emitted radiation), the momentum of the photon is taken to be E/c, and the

emitting particle is recoiled from the photon, if the user has chosen to consider

photon recoil. For the work presented in this dissertation, regimes were chosen

where radiation friction was not a significant effect, so this step was not used.

9. Finally, the macrophoton’s direction-of-emission, frequency, and total energy

are all outputted.

10. To improve statistics, the macrophoton generation is repeated N times, where

N is a user-specified integer.

A semantic note: we are using the term “macrophoton” to refer to the kinetic

particles generated at each time-step. However, since we are diving the total radiated

energy into N particles, it is possible that the total energy of a given generated

macrophoton of frequency ω may be less than the energy of a photon of that frequency

Ehν = hω/2π. If we wish to consider the system in a regime where QED effects are

important, then this eventuality needs to be considered. However, for the result

4.3.3 Radius of Curvature Calculation

The radius of curvature at the tth time step, ρt, is calculated from the particle

position and momenta at time steps t and t− 1, ~rt, ~pt+1/2, ~rt−1, and ~pt−1/2, as shown
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in Figure 4.1.

Figure 4.1: The calculation of the radius of curvature from the particle positions and
momenta before and after a single time step. It is apparent from basic
trigonometry that the angle between the two vectors ~rt and ~rt−1 is the
same as the angle between the two vectors ~pt−1/2 and ~pt+1/2, when the
vectors ~rt and ~rt−1 both originate at the center of the circle to which both
~pt−1/2 and ~pt+1/2 are tangent. This is the circle along which the particle
is assumed to be traveling instantaneously for this time step.

To calculate the radius of curvature ρ, we assume that the particle momenta before

and after the time-step are both tangential to a circle of radius ρ. Figure 4.1 shows

that the angle θ of the arc along this circle through which the particle moves is equal

to the angle between the particle momenta, which can be calculated from the dot

product of these two vectors:

~pt+1/2 · ~pt−1/2 = |~pt+1/2||~pt−1/2| cos (θ) (4.21)
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θ = arccos

(
~pt+1/2 · ~pt−1/2

|~pt+1/2||~pt−1/2|

)
(4.22)

Once this angle has been calculated, the radius of curvature ρ can be calculated.

We may construct a right triangle whose hypotenuse is ρ, whose height is the half the

distance separating the two points ~rt and ~rt−1, and whose angle opposite that height

is θ/2:

sin

(
θ

2

)
=
|~rt − ~rt−1|

ρ
(4.23)

ρi =
|~rt − ~rt−1|
2 sin

(
θ
2

) (4.24)

Therefore, the radius of curvature is given by:

ρi =
|~rt − ~rt−1|

2 sin
[

1
2
arccos

(
~pt+1/2·~pt−1/2

|~pt+1/2||~pt−1/2|

)] (4.25)

Note that it is possible to make this calculation more efficient by considering the

relativistic centripetal force equation [87]:

F⊥ =
p2

γmρ
(4.26)

ρ =
p2

γF⊥m
(4.27)

where F⊥ is the component of the force acting on the particle perpendicular to the

particle’s motion. For the work presented in this dissertation, however, Equation 4.25

was used.
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4.3.4 Random Number Generation

Random numbers were generated using Fortran 90’s “RANDOM NUMBER” func-

tion. To ensure variability, the index of the radiating particle was combined with the

date and time to generate new seeds for each radiating particle and simulation run.

4.3.5 Normalized Frequency Generation

To generate the normalized frequency ω̃, the one-dimensional distribution, given

by equation 4.14 and shown in Figure 4.2, is used as an arbitrary probability density

function (a PDF).

Figure 4.2: The one-dimensional frequency spectrum as a probability density func-
tion.

The first step to implementing an arbitrary function as a PDF is to divide the

function’s domain into equally-spaced bins, and calculate the height of those bins.

This is shown graphically in Figure 4.3, along with the normalized frequencies ω̃

corresponding to each bin.
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Figure 4.3: A: The normalized frequency spectrum divided into bins. B: The heights
of those bins, and the normalized frequency associated with each bin.

Once the heights of the individual bins have been calculated, they are combined

into a single, monotonically-increasing array of values that can be compared to a

randomly-generated number R that is linearly distributed between 0.0 and 1.0 (pro-

ducing such a number can be done easily with commonly available functions and/or

subroutines available in most standard programming languages). This process is best

thought of graphically, as shown in Figure 4.4.

The array of values is constructed from the individual bin heights as follows: the

first value of the array is equal to the height of the first bin. The second value of the

array is equal to the first value plus the height of the second bin, the third value is

equal to the second plus the height of the third bin, and so forth. The relationship

between the bin heights and the length of this array is shown graphically on the

bottom of Figure 4.4.

Once this array is constructed, its values are normalized to the maximum (i.e.

final) value of the array so that it increases monotonically from 0.0 to 1.0. There

is now a direct correlation between the spectrum of numbers R randomly generated

from a uniform distribution between 0.0 and 1.0, and the spectrum of normalized

frequencies that we started with. The correlation works as follows: if a random
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Figure 4.4: A graphical representation of the process by which the bins of the
normalized frequency distribution are compared to a randomly generated
number between 0.0 and 1.0, to calculate a normalized frequency between
0 and 10 according to a PDF given by equation 4.14.

Observe that each bin is effectively ”stacked” on top of the previ-
ous bin, creating an array of “widths” wherein the normalized frequency
corresponding to each bin is assigned a weight equivalent to the height
of that bin.

The distribution of randomly generated values on the bottom of
the figure is compared to the weighted array above it, which is in turn
based on the bin heights as previously discussed. So, in this example, a
randomly generated number between 0.0 and 0.5 would correspond to
a normalized frequency of 0.5 A randomly generated number between
0.5 and 0.75 would correspond to a normalized frequency of 1.5. A
randomly generated number between 0.75 and 0.86 would correspond to
a normalized frequency of 2.5, and so forth.
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number R is generated, and is greater than 0.0, but less than the first value of the

array, then R corresponds to the normalized frequency of the first bin. If R is greater

than the first value of the array, but less than the second, R corresponds to the

normalized frequency of the second bin. If R is greater than the the second, but less

than the third, R corresponds to the ω̃ of the third bin, and so on.

This correlation is shown graphically along the bottom of Figure 4.4. We see

the spectrum of randomly generated numbers R underneath the array constructed

from the bin heights of the normalized frequency spectrum. In this example, the

method results in a 50% (i.e., 0.0 < R < 0.5) chance that the first value (0.5) will be

generated, a 25% (0.5 < R < 0.75) chance that the second value will be generated, a

10% (0.75 < R < 0.85) chance that the third value will be generated, and so on.

Since the normalized frequency spectrum is continuous, rather than discrete, it is

necessary to interpolate between the values of the aforementioned array to produce a

continuous spectrum of randomly-generated normalized frequencies. The algorithm

uses linear interpolation for this process. So, if the randomly generated number R is

half-way between 0.0 and the first value of the array, the corresponding normalized

frequency ω̃ that is generated is equal to half the value of the normalized frequency

that corresponds to the first value of the array (one-half of 0.5, or 0.25, in the example

shown in Figure 4.4). If R is halfway between the first and second values of the array,

then ω̃ is halfway between the normalized frequencies corresponding to those array

values (halfway between 0.5 and 1.5, or 1.0, in Figure 4.4), and so forth.

The example shown in Figures 4.3 and 4.4 split the distribution into 10 bins,

covering a range from ω̃ = 0.0 to ω̃ = 10.0. The actual implementation of the

algorithm used 1000 bins, covering a range from ω̃ = 0.001 to ω̃ = 10.0.
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4.3.6 Normalized Angle Generation

The normalized angle-of-emission θ̃ is generated in a similar fashion to the normal-

ized frequency, however the process is somewhat more complicated, as the probability

distribution function for the angle-of-emission is the two-dimensional equation 4.13.

This equation is shown in Figure 4.5 (note that the frequency scale in this image is

logarithmic).

Figure 4.5: The normalized two-dimensional frequency spectrum. Note that this im-
age shows the resolution used in the code.

Once the normalized frequency ω̃hν has been calculated (as shown in the previous

section), the (one-dimensional) angular distribution of the radiation can be deter-

mined. From this distribution, a normalized angle θ̃ can be generated alongside the

normalized frequency.

The first step in this process is to determine the one-dimensional angular distri-

bution of the radiation from the two-dimensional distribution shown in Figure 4.5.
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To do this, it is helpful to think of the two-dimensional distribution of Figure 4.5 as a

sequence of one-dimensional angular distributions, each corresponding to a different

normalized frequency ω̃n. Since we have the macrophoton’s normalized frequency ω̃hν ,

determining the angular distribution is as simple as comparing the value of ω̃hν to

the values ω̃n. This comparison is shown in Figure 4.6. Note that the frequency dis-

tribution in this Figure is not linear, but logarithmic; this scaling was chosen because

the structure of the angular distribution varies more significantly for small values of

ω̃ than for large values.

Figure 4.6: The logarithmic coarse 1D grid. The relationship between the values
of the normalized frequency ω̃ and the distribution grid cell numbers is
shown. This example shows the distribution split into 8 cells; in other
words, for this example, the two-dimensional distribution shown in Figure
4.5 would consist of 8 separate, sequential angular distributions. Note
that the frequency scale is logarithmic.

In Figure 4.6, the logarithmic frequency spectrum is divided up into cells. Each

cell corresponds to a different angular distribution (i.e., each cell corresponds to a
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different vertical column in the two-dimensional distribution shown Figure 4.5). So,

in the example shown in Figure 4.6, if 10−2.0 < ω̃hν < 10−1.5, the angular distribution

for the macrophoton would correspond to the 3rd distribution out of 8.

For greater accuracy, this method was expanded to include linear interpolation.

Instead of a single distribution (column) from Figure 4.5 being used to generate the

macrophoton’s angle-of-emission, the two distributions at ω̃n and ω̃n+1 which bound

the macrophoton’s normalized frequency ω̃hν such that ω̃n < ω̃hν < ω̃n+1 are both

used to generate normalized angles θ̃hν , and a weighted average of the two is taken.

This process is demonstrated graphically in Figures 4.7 and 4.8 .

Figure 4.7: (a) The two-dimensional angular resolution with 8 bins in the frequency
dimension to match Figure 4.6. The location of sample random normal-
ized frequency ω̃hν is shown. (b) The angular distribution corresponding
to cell 3, which is the lower bound for ω̃hν . (c) The angular distribution
corresponding to cell 4, which is the upper bound for ω̃hν .

Figure 4.7 shows the first step in calculating the normalized angle of emission θ̃. A

randomly generated normalized frequency ω̃hν is shown on Figure 4.7-a, which shows
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Equation 4.13 with the same frequency resolution as shown in Figure 4.6. Figures

4.7-b and 4.7-c are, respectively, the angular distributions corresponding to the lower

and upper boundary frequencies, ω̃n and ω̃n+1, such that ω̃n < ω̃hν < ω̃n+1. The

normalized angle-of-emission is calculated from these distributions via the process

shown in Figure 4.8.

Figure 4.8 shows the final step in calculating the normalized angle-of-emission θ̃.

The two angular distributions (from the previous step) are each mapped to a uniform

distribution of random numbers between 0.0 and 1.0 in exactly the same manner

as the randomly-generated normalized frequency ω̃hν . Only one random number is

generated from this distribution.

Once this single number has been generated, it is mapped to both angular distri-

butions (again, via exactly the same process as that used to calculate the normalized

frequency ω̃). The same random number is used with both the upper-bounding and

lower-bounding distribution; this results in two normalized-angles-of-emission that

are only slightly divergent. The final normalized angle-of-emission is a weighted aver-

age of these two values, where the weights are based on the mapping of the normalized

frequency ω̃hν to the coarse frequency grid, as shown in Figure 4.6.

Note that, in the above example, the coarse frequency grid contained 8 elements,

and the angular distributions contained 10 elements. In the code implementation, the

coarse frequency grid contained 50 elements, and the angular distributions contained

100 elements, for a total grid size of 5000.
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Figure 4.8: (a) The angular distribution corresponding to the lower-boundary
normalized frequency ω̃n and (b)the angular distribution corresponding
to the upper-boundary normalized frequency ω̃n+1 mapped to (c) a
uniform distribution of random numbers between 0.0 and 1.0. Note that
this mapping process is identical to that shown in Figure 4.4, except that
the two adjacent angular distributions are simultaneously mapped to the
same random number distribution.

When a single random number, between 0.0 and 1.0, is generated,
it is mapped to both distributions, producing a slightly different
normalized angle-of-emission θ̃. These two divergent normalized angles-
of-emission are then averaged together to calculate the macrophoton’s
final angle-of-emission. By this process, we can effectively linearly
interpolate between the two distributions.
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4.3.7 Photon Direction-of-Emission

The direction-of-emission of the photon is calculated from the angle-of-emission

(the generation of which is described in the previous section) and the initial momen-

tum vector of the radiating particle. The angle-of-emission θ describes the angle out

of the plane of particle rotation at which the radiation is generated; this is illustrated

graphically in Figure 4.9.

Figure 4.9: The relationship between the particle’s initial and final positions and mo-
menta, the particle’s plane of rotation, and the direction-of-emission of
the particle’s radiation.

The vector describing the radiation’s direction-of-emission is constructed as fol-

lows: first, a unit vector is constructed parallel to the particle’s initial momentum.

This unit vector is then raised orthogonally out of the particle’s plane-of-rotation

until the angle between the particle’s plane of rotation and the radiation’s direction-

of-emission is equal to θ.

As-written, there is an inaccuracy in this method: the radiation angle-of-emission

does not take into account angular deviations that occur in the plane of rotation,

only angular deviations that occur out of the plane of rotation. The accuracy of

this method for taking into account angular deviations in the emitted radiation is

therefore predicated on the approximation that plane-of-rotation angular deviations
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in the spectrum are dominated by the electron motion, rather than the synchrotron

spectrum. Additionally, for the results presented in this dissertation, the angular

properties of the emitted radiation are not considered (all spectra presented are an-

gularly integrated); consequently we are confident that this approximation does not

diminish the accuracy of the presented results.

4.3.8 Radiative Cooling

The method of radiation generation described in the previous section provides

an ancillary benefit: including the radiation reaction force is straightforward. The

magnitude of the momentum, |~p|, of a photon of energy E is given by:

|~p| = E

c
(4.28)

Therefore, the radiation reaction force can be included by multiplying this value (pre-

viously calculated according to Equation 4.17) by the unit vector ~u which describes

the radiation’s direction-of-emission, and subtracting this quantity from the particle’s

final momentum:

~pf = ~pi+1 −
E

c
~u (4.29)

Again, the simulations shown in this dissertation were run in a regime where radiation

reaction could be ignored.

4.4 Verification Simulations

Verification tests were performed on the algorithm by running simulations of a

single particle undergoing simple gyrotron motion, affected using a static magnetic

field and with photon recoil deactivated. The parameters for these simulations were
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as follows:

1. 27 particles: OSIRIS 2.0 requires a minimum grid size of 3 x 3 x 3 cells, with a

minimum of 1 particle per cell. Consequently, these “single-particle” verification

simulations contained 27 particles simultaneously undergoing gyrotron motion,

all of which generated radiation which was averaged together.

2. Electron Lorentz factor γ = 500, 1000,& 2000.

3. Magnetic field strength: 10, 50, & 250 normalized units, or 0.0844, 0.422, &

2.11 MT. Note that these field strengths were not chosen to be realistic, only

to produce high energy x-ray radiation.

The results from these simulations are shown in Figures 4.10 through 4.12. The

simulated results are plotted alongside the theoretical spectrum as given by equa-

tion 4.14; these results show excellent agreement between the numerical and analytic

spectra over a wide range of critical frequencies. Additionally, note that, for electrons

undergoing cyclotron motion with a radius ρ [[3]]:

P =
2

3

e2c

ρ2
β4γ4 (4.30)

Figure 4.13 shows the total radiated energy for these simulations (in normalized

units) as a function of the cyclotron radius ρ, alongside the relationship given by this

equation. Again, the simulation results show excellent agreement with theoretical

values. There is one final salient fact regarding these verification simulations;

the energy of the radiated photons greatly exceeds the kinetic energy of the radiated

electrons; to actually capture the physics of the systems being simulated would require

a QED-complete model. However, these simulations are not intended to represent a

physically accurate picture of the system, rather they are simply intended to verify

that the classical radiation spectrum is being correctly generated.
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Figure 4.10: The spectra produced when simulating the radiation emitted by 27 elec-
trons with γ = 500, undergoing gyrotron motion with radii of, from left
to right, 50, 10, and 2 normalized units, or 6.365, 1.273 and 0.2546 µm.
Simulated data is shown in blue; theoretical spectra are shown in green.

Figure 4.11: The spectra produced when simulating the radiation emitted by 27 elec-
trons with γ = 1000, undergoing gyrotron motion with radii of, from left
to right, 100, 20, and 4 normalized units, or 12.73, 2.546 and 0.5092 µm.
Simulated data is shown in blue; theoretical spectra are shown in green.
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Figure 4.12: The spectra produced when simulating the radiation emitted by 27 elec-
trons with γ = 2000, undergoing gyrotron motion with radii of, from left
to right, 194, 40, and 8 normalized units, or 24.70, 5.092 and 1.018 µm.
Simulated data is shown in blue; theoretical spectra are shown in green.

Figure 4.13: The total radiated energy as a function of radius of curvature for γ =
500, 1000,& 2000. The circles represent the simulated results, while the
dashed lines represent the theoretical values for the radiated energy as
a function of radius of curvature.
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CHAPTER V

Simulation of Synchrotron-Like Radiation:

Betatron Radiation Scalings

5.1 Introduction

In this chapter, we present results from simulating several fundamental LWFA

parameter sweeps, using the algorithm discussed in the previous section. Data are

presented describing the phase-space behavior of the electrons, the radiation gener-

ated during the simulation, and the correlations between the electron trajectories and

radiation properties.

The first three sections of this chapter contain descriptions of the visualization

methods used in this and the next chapter. Visualization methods for the electron

phase-space data, betatron radiation, and radiation/trajectory correlation data are

presented and explained.

The next three sections contain the simulation results. Each section first presents

the simulation parameters used for the parameter sweep, the results of the parameter

sweep, and commentaries on observed trends and behaviors. Where appropriate,

comparisons between the computational results and theoretical models are presented.

First, results are presented from a sweep over the laser vector potential a0. Then,

results are presented from a sweep over the electron plasma density ne. Finally, a
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single simulation with a very long propagation time was used to affect a sweep over

the propagation distance L.

5.2 Phase Space Data Visualization

There are two different types of phase-space data presented in this chapter: the

time-evolution of the electron energy distribution function (EEDF), and the time-

evolution of the electron beam’s momentum phase-space profile. An example of the

EEDF time-evolution plot is shown on the left of Figure 5.1; an example of the

momentum profile evolution plot is shown on the right of this figure..

Figure 5.1: (Left) An example plot of the time-evolution of the electron energy dis-
tribution function; (right) an example plot of the time-evolution of the
electron beam momentum profile

For the EEDF plots, the electron energy spectrum is shown on the vertical axis,

and is calculated for the entire plasma. The EEDF is calculated at each time step,

and its height at a given energy is translated to a logarithmic color scale. The EEDF

at each time step forms a single column of the image; in this way, the horizontal axis

of the image corresponds to time. A vertical magneta line is used to indicate the point

where the system passes the dephasing length (as given by Tajima and Dawson in

[28]); for systems with very long propagation times, a second magenta line indicates

the point where the system passes twice the dephasing length.
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For the momentum phase-space evolution, the system pXp1 momentum phase-

space files were used, where X corresponds to either transverse direction and p1

corresponds to the electron momentum in the propagation direction. These data files

were integrated in p1 for all electrons whose forward momentum exceeded 25MeV/c;

this cutoff was used to isolate the electron beam from the bulk plasma. This integra-

tion was done at each time step to produce the total beam profile in the corresponding

momentum’s phase space. The profile at each time step was then mapped to a linear

color scale, and used to form a single column of the image; as with the EEDF, the hor-

izontal axis corresponds to time. Similarly, the magenta line(s) represent the point(s)

where the system passes the dephasing length (and twice the dephasing length, where

appropriate).

5.3 Radiation Data Visualization

There are three plots of radiation data presented in this chapter: the time-

evolution of the radiation spectra, the total time-integrated radiation spectra, and

the total radiated power and energy with respect to time. Examples of the first two

kinds of plots are shown in Figure 5.2. The spectral evolution plot (shown on the

left of Figure 5.2 is constructed in a fashion similar to that of the EEDF evolution

plot; the total spectrum of radiation emitted at each time-step is calculated, and

mapped to a logarithmic color scale. The spectrum at each time-step is used to make

that time-step’s corresponding column in the image; consequently the vertical axis

corresponds to photon frequency, while the horizontal axis corresponds to simulation

time.

The radiated power plot (shown on the right of Figure 5.2) is calculated from

the total amount of radiated energy in a given time-step divided by the length of

the time-step; the radiated energy plot is simple the radiated energy plot integrated

from the start time to that time. The total time-integrated spectra (not shown) is
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calculated by simply integrating the time-evolution of the spectra.

Figure 5.2: (Left) An example plot of the time-evolution of the radiation spectrum;
(right) an example plot of the radiated power and total radiated energy
vs. time

5.4 Radiation and Phase-Space Correlation Visualization

There are two different plots used to represent the correlation between the radi-

ation and phase-space data: density plots of the emitted frequency of radiation and

the kinetic energy of the emitting electron, and density plots of the emitted frequency

of radiation and the instantaneous radius-of-curvature of the emitting electron’s tra-

jectory. Examples of these plots are shown in Figure 5.3.

For both plots, the total number of emitted macrophotons, frequency of the emit-

ted radiation macrophotons, Lorentz factor gamma of the emitting electrons, and

radius-of-curvature of the emitting electron trajectories were printed. These data were

then used to generate the density plots (representing the total number of macropho-

tons with the given frequency, emitted by electrons with the given energy or radius

of curvature), which were then mapped to a logarithmic color scale. These plots were

used to correlate the electron motion with the radiation properties.
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Figure 5.3: (Left) An example plot of the correlation between the emitting electron
energy and emitted radiation frequency; (right) an example plot of the
correlation between the emitting electron trajectory radius-of-curvature
and emitted radiation frequency

Parameter Normalized Value Real Value
Peak Plasma Density: 0.01ncrit 1.75× 1019cm−3

Simulation Box Size: 300× 200× 200 39× 26× 26µm
Box Propagation Speed: c 3.0× 1010cm/s

Total Propagation Time: 5900 2.5ps

Table 5.1: The plasma parameters for the normalized vector potential sweep

5.5 Normalized Vector Potential Sweep

5.5.1 Simulation Parameters

The plasma parameters, plasma density profile, laser parameters, and computa-

tional parameters used for the normalized vector potential sweep are listed in tables

5.1, 5.2, 5.3, and 5.4, respectively. These were serial (i.e. single-processor) runs that

took ∼ 16 − 17 hours to finish. For each value of the parameter sweep, a single

simulation was performed.

5.5.2 Electron Phase-Space Results

A number of clear trends arise when analyzing the phase-space behavior of the

electron population in response to the sweep over a0. From the time-evolution plots
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Density Initial Position Final Position
0.0 (Vacuum) 0.0µm 65µm

Linear Ramp from 0.0 to 0.01ncrit 65µm 130µm
0.01ncrit (Bulk Plasma) 130µm 637µm

Linear Ramp from 0.01ncrit to 0.0 637µm 702µm
0.0 (Vacuum) 702µm 767µm

Table 5.2: The density profile for the normalized vector potential sweep

Parameter Normalized Value Real Value
FWHM Spot Size: 40 5.2 µm

FWHD Pulse Length: 64 28 fs
Peak Normalized Vector Potential: Swept from 3.0 to 8.0 in 1.0 increments

Peak Laser Intensity: 1.9− 14.0× 1019W/cm2

Table 5.3: The laser parameters for the normalized vector potential sweep

Parameter Value
Simulation Grid Size: 600× 100× 100 cells

Particles Per Cell: 2
System Grid Spacing: 0.066× 0.26× 0.26µm

System Time-Step: 0.172fs
Printing Time-Step: 50.1fs

Table 5.4: The computational parameters for the normalized vector potential sweep.
Note that the highest resolution was in the propagation direction.
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of the EEDF, we can see that the peak electron energy increases as the laser intensity

is increased. This is consistent with the basic physics of LWFA, as higher-intensity

laser pulses drive stronger, more non-linear wakes. Additionally, we see that the

electron beam structure tends to become less well-defined relative to the background

plasma(i.e., the density of the beam is smaller relative to the density at the minima

that lies between the beam and the bulk plasma) for higher-intensity drive pulses.

The time-evolution plots of the electron momentum profiles show a very interesting

trend. The lower-intensity simulations (a0 = 3.0 and a0 = 4.0) show relatively long-

wavelength betatron oscillations, indicating that the dominant effect driving betatron

motion at these intensities is the field structure of the plasma wake. Conversely, the

higher-intensity simulations (a0 = 7.0 and a0 = 8.0) show much shorter-wavelength

betatron oscillations, indicating that the dominant effect driving betatron motion

at these intensities could be direct interaction between the electron beam and the

laser field. At intermediate intensities (a0 = 5.0 and a0 = 6.0), we see that the

betatron motion is initially driven by the plasma wake fields, but transitions to this

higher-frequency regime as the system passes the dephasing length.

Unfortunately, two salient facts complicate the conclusion that this higher-frequency

betatron motion is due to direction interaction with the laser. First, the frequency

of these oscillations approaches the sampling frequency of the simulation (recall from

Table 5.4 that the printing time step significantly exceeded the system time-step).

Second, the effective frequency of the laser in the center-of-mass frame of the elec-

trons in the beam will vary depending on the individual electrons’ kinetic energies.

These issues must first be resolved before the higher-frequency motion can be defini-

tively attributed to interaction with the laser field; this is left to future work (see

Chapter 7).

106



Figure 5.4: (Left) The time-evolution of the EEDF and (right) the time-evolution of
the electron beam p3 momentum phase-space profile for the a0 = 3.0 sim-
ulation. The magenta line indicates the location of the dephasing length.
The color scales on the left are logarithmic, and in units of normalized
charge per MeV per ps. The color scales on the right are linear, and are
in units of normalized charge per mec per ps.

Figure 5.5: (Left) The time-evolution of the EEDF and (right) the time-evolution of
the electron beam p3 momentum phase-space profile for the a0 = 4.0 sim-
ulation. The magenta line indicates the location of the dephasing length.
The color scales on the left are logarithmic, and in units of normalized
charge per MeV per ps. The color scales on the right are linear, and are
in units of normalized charge per mec per ps.
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Figure 5.6: (Left) The time-evolution of the EEDF and (right) the time-evolution of
the electron beam p3 momentum phase-space profile for the a0 = 5.0 sim-
ulation. The magenta line indicates the location of the dephasing length.
The color scales on the left are logarithmic, and in units of normalized
charge per MeV per ps. The color scales on the right are linear, and are
in units of normalized charge per mec per ps.

Figure 5.7: (Left) The time-evolution of the EEDF and (right) the time-evolution of
the electron beam p3 momentum phase-space profile for the a0 = 6.0 sim-
ulation. The magenta line indicates the location of the dephasing length.
The color scales on the left are logarithmic, and in units of normalized
charge per MeV per ps. The color scales on the right are linear, and are
in units of normalized charge per mec per ps.
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Figure 5.8: (Left) The time-evolution of the EEDF and (right) the time-evolution of
the electron beam p3 momentum phase-space profile for the a0 = 7.0 sim-
ulation. The magenta line indicates the location of the dephasing length.
The color scales on the left are logarithmic, and in units of normalized
charge per MeV per ps. The color scales on the right are linear, and are
in units of normalized charge per mec per ps.

Figure 5.9: (Left) The time-evolution of the EEDF and (right) the time-evolution of
the electron beam p3 momentum phase-space profile for the a0 = 8.0 sim-
ulation. The magenta line indicates the location of the dephasing length.
The color scales on the left are logarithmic, and in units of normalized
charge per MeV per ps. The color scales on the right are linear, and are
in units of normalized charge per mec per ps.
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5.5.3 Radiation Emission Results

The first and most obvious trend in the radiation emission results from the a0

parameter sweep is the power-law increase in total emitted energy as a0 is increased.

This trend is summarized in Figure 5.16. It has been analytically demonstrated, for

an idealized bubble structure, that the total radiated energy in a LWFA system is

given by [[88]]:

Erad =
Lintωp
c

π3/2γ
3/2
p

8
a

9/2
0 mec

2 (5.1)

where Erad is the total radiated energy, Lint is the interaction length, c is the speed

of light, γp is the Lorentz factor corresponding to the bubble’s phase velocity, me is

the electron mass, and a0 is the normalized laser vector potential. The important

conclusion to draw from this equation is that the total emitted energy scales with the

normalized vector potential as Erad ∼ a
9/2
0 ; a 9/2 scaling has been fitted to the data

in Figure 5.16, showing excellent agreement.

The time-evolutions of the radiated power, shown on the right-hand sides of Fig-

ures 5.10 through 5.15, also show some interesting consistencies; noticeably that the

radiated power tends to increase over time as the simulation continues to propagate.

This slope seems to increase somewhat for higher-intensity simulations, but does not

appear to fundamentally change. Furthermore, these consistently show significant

fluctuations in power as the power increases. It is unclear whether these fluctuations

are due to noise, or some underlying secondary effect that results in periodic increases

in radiated power.

The time-evolution of the radiated spectra (shown on the left in Figures 5.10

through 5.15) show an interesting, if somewhat qualitative, trend in addition to the

simple scaling previously observed. All of the simulations show that the maximum

frequency of the emitted radiation (the tail of the spectrum) initially increases in
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time up to a certain point. However, for lower-intensity simulations, the tail energy

then either drops off or plateaus, while for higher-intensity simulations, two separate

peaks in the maximum tail energy are observable, at two different times.

More quantitative trends can be seen by observing the time-integrated spectra,

shown logarithmically in Figure 5.17. Upon first observation, it appears that there

are two distinct “regions” in these spectra, with the energy of the higher-frequency

region several orders of magnitude smaller than the energy of the lower-frequency

region. These two regions are separated by an intermediate region of statistical noise;

however the time evolutions of the radiated spectra (Figures 5.10 through 5.15) shows

that the high-energy regions of these spectra are consistently emitted at the end of the

simulation after the laser-plasma interaction has concluded; this radiation is presumed

to be a numerical artifact.

It is not entirely accurate to describe these spectra with a single critical frequency,

since each spectrum represents the outputs of many electrons with a spread of energies

and many different trajectories. Consequently, we will characterize these spectra by

the effective temperatures of the high frequency tails of their distributions (the regions

for which ω > 3ωc) , which were found by fitting exponential curves to these regions

of the spectra. Plots of both of these quantities scaling with a0 are shown in Figure

5.18. It has been analytically demonstrated that the effective critical frequency of the

radiation emitted by a LWFA system is given by [[88]]:

ωc = ωp6a
5/2
0

(
nc
3ne

)13/8

(5.2)

where ωc is the critical frequency of the emitted radiation spectrum, ωp is the plasma

frequency, a0 is the normalized laser vector potential, nc is the critical density calcu-

lated from the laser frequency, and ne is the electron plasma density. The important

conclusion to draw from this equation is that the critical frequency of the emitted
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radiation spectrum scales with the normalized vector potential as ωc ∼ a5/2; conse-

quently, a 5/2 scaling has been fitted to the data in Figure 5.18. The plot of the

high-energy tail temperature shows a slight power scaling, which does not contradict

these analytic predictions. However it is clear that there is a significant amount of

noise (at least 10%) in the calculation of the high-energy tail temperature, so we

should be conservative in drawing conclusions from this plot.

Figure 5.10: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
a0 = 3.0 simulation. The magenta line indicates the location of the
dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

5.5.4 Radiation and Phase-Space Correlations
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Figure 5.11: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
a0 = 4.0 simulation. The magenta line indicates the location of the
dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

Figure 5.12: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
a0 = 5.0 simulation. The magenta line indicates the location of the
dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)
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Figure 5.13: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
a0 = 6.0 simulation. The magenta line indicates the location of the
dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

Figure 5.14: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
a0 = 7.0 simulation. The magenta line indicates the location of the
dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)
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Figure 5.15: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
a0 = 8.0 simulation. The magenta line indicates the location of the
dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

Figure 5.16: The total energy emitted produced by the simulation (shown in blue).

A fit to a
9/2
0 is shown in green.
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Figure 5.17: The logarithmic, cumulative spectra as a function of the normalized
vector potential a0.
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Figure 5.18: The temperature of the high-frequency tail of the spectrum. Data are
shown in blue. A fit to a

5/2
0 is shown in green.

Figure 5.19: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the a0 = 3.0
simulation. Note that the color scale for these plots is logarithmic.
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Figure 5.20: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the a0 = 4.0
simulation. Note that the color scale for these plots is logarithmic.

Figure 5.21: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the a0 = 5.0
simulation. Note that the color scale for these plots is logarithmic.
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Figure 5.22: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the a0 = 6.0
simulation. Note that the color scale for these plots is logarithmic.

Figure 5.23: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the a0 = 7.0
simulation. Note that the color scale for these plots is logarithmic.
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Figure 5.24: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the a0 = 8.0
simulation. Note that the color scale for these plots is logarithmic.

Parameter Normalized Value Real Value
Peak Plasma Density: 0.01− 0.06ncrit 1.75− 10.5× 1019cm−3

Simulation Box Size: 300× 200× 200 39× 26× 26µm
Box Propagation Speed: c 3.0× 1010cm/s

Total Propagation Time: 5900 2.5ps

Table 5.5: The plasma parameters for the electron density sweep

5.6 Electron Density Sweep

5.6.1 Simulation Parameters

The plasma parameters, plasma density profile, laser parameters, and computa-

tional parameters used for the electron density sweep are listed in tables 5.5, 5.6,

5.7, and 5.8, respectively. These were serial (i.e. single-processor) runs that took

∼ 16− 17 hours to finish. For each value of the parameter sweep, a single simulation

was performed.
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Density Initial Position Final Position
0.0 (Vacuum) 0.0µm 65µm

Linear Ramp from 0.0 to Peak Density 65µm 130µm
Peak Density (Bulk Plasma) 130µm 637µm

Linear Ramp from Peak Density to 0.0 637µm 702µm
0.0 (Vacuum) 702µm 767µm

Table 5.6: The density profile for the electron density sweep

Parameter Normalized Value Real Value
FWHM Spot Size: 40 5.2 µm

FWHD Pulse Length: 64 28 fs
Peak Normalized Vector Potential: 4.0

Peak Laser Intensity: 3.4× 1019W/cm2

Table 5.7: The laser parameters for the electron density sweep

Parameter Value
Simulation Grid Size: 600× 100× 100 cells

Particles Per Cell: 2
System Grid Spacing: 0.066× 0.26× 0.26µm

System Time-Step: 0.172fs
Printing Time-Step: 50.1fs

Table 5.8: The computational parameters for the electron density sweep. Note that
the highest resolution was in the propagation direction.
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5.6.2 Electron Phase-Space Results

The first and most obvious trend in the electron phase-space results is the reduc-

tion in the dephasing length and total interaction length; this is to be expected, as

the dephasing length as calculated by Tajima and Dawson is given by:

Ld =
2ω2c

ω3
p

and since the plasma frequency ωp scales with the square root of the plasma density

ne, the dephasing length scales with the density as Ld ∼ n
−3/2
e . The time-evolution of

the EEDF shows an initial increase in the peak electron energy (as the density moves

to ne = 0.02ncrit, however the peak electron energy quickly falls off as the density

increases.

The transverse momentum profiles of the electron beams show an interesting trend:

for most of these simulations, the dephasing length is reached relatively early, and the

largest-amplitude betatron motion occurs after the system passes twice the dephasing

length. This indicates that the strongest drive of betatron motion for many of these

simulations is not the interaction of the electron beam with the wake structure, but

rather is the hosing instability caused by the electron beam re-entering the bulk

plasma [89]. The hosing instability is a transverse instability in current filaments,

where the magnetic field generated by the current causes transverse oscillations in

the filament structure to be amplified in time. This hypothesis is further supported

by the fact that the radiated power is transient in nature; if the betatron motion

is driven by this affect, the motion will vanish as the beam ultimately breaks apart

during the final stages of the hosing instability.
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Figure 5.25: (Left) The time-evolution of the EEDF and (right) the time-evolution
of the electron beam p3 momentum phase-space profile for the n0 =
0.01ncrit simulation. The magenta line indicates the location of the de-
phasing length. The color scales on the left are logarithmic, and in units
of normalized charge per MeV per ps. The color scales on the right are
linear, and are in units of normalized charge per mec per ps.

Figure 5.26: (Left) The time-evolution of the EEDF and (right) the time-evolution
of the electron beam p3 momentum phase-space profile for the n0 =
0.02ncrit simulation. The magenta line indicates the location of the de-
phasing length. The color scales on the left are logarithmic, and in units
of normalized charge per MeV per ps. The color scales on the right are
linear, and are in units of normalized charge per mec per ps.
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Figure 5.27: (Left) The time-evolution of the EEDF and (right) the time-evolution
of the electron beam p3 momentum phase-space profile for the n0 =
0.03ncrit simulation. The magenta line indicates the location of the de-
phasing length, and the dashed magenta line indicates the location of
twice the dephasing length. The color scales on the left are logarithmic,
and in units of normalized charge per MeV per ps. The color scales on
the right are linear, and are in units of normalized charge per mec per
ps.

Figure 5.28: (Left) The time-evolution of the EEDF and (right) the time-evolution
of the electron beam p3 momentum phase-space profile for the n0 =
0.04ncrit simulation. The magenta line indicates the location of the de-
phasing length, and the dashed magenta line indicates the location of
twice the dephasing length. The color scales on the left are logarithmic,
and in units of normalized charge per MeV per ps. The color scales on
the right are linear, and are in units of normalized charge per mec per
ps.
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Figure 5.29: (Left) The time-evolution of the EEDF and (right) the time-evolution
of the electron beam p3 momentum phase-space profile for the n0 =
0.05ncrit simulation. The magenta line indicates the location of the de-
phasing length, and the dashed magenta line indicates the location of
twice the dephasing length. The color scales on the left are logarithmic,
and in units of normalized charge per MeV per ps. The color scales on
the right are linear, and are in units of normalized charge per mec per
ps.

Figure 5.30: (Left) The time-evolution of the EEDF and (right) the time-evolution
of the electron beam p3 momentum phase-space profile for the n0 =
0.06ncrit simulation. The magenta line indicates the location of the de-
phasing length, and the dashed magenta line indicates the location of
twice the dephasing length. The color scales on the left are logarithmic,
and in units of normalized charge per MeV per ps. The color scales on
the right are linear, and are in units of normalized charge per mec per
ps.
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5.6.3 Radiation Emission Results

The radiation emission trends track very closely with the electron phase-space

trends. The time-evolution plots of the radiation spectra show that the peak radiation

frequencies are emitted while the electron beam is undergoing betatron radiation; the

plots of the radiated power and energy show that the peak radiated power also occurs

at this time. Furthermore, results from the higher-density simulations show that

both the peak radiated power and peak radiated frequency occur after the system

has passed twice the dephasing length, providing further indication that the primary

driving effect for these simulations is the hosing instability of the electron beam as it

re-enters the bulk plasma. Additionally, the plots of the radiated power as a function

of time consistently show significant fluctuations in power as the power increases,

just as with the normalized vector potential sweep. It is again unclear whether these

fluctuations are due to noise, or some underlying secondary effect.

The scaling of the total radiated energy as a function of density, shown in Figure

5.37 further elucidates these data. Recall from Equation 5.1 that the total emitted

energy is expected to scale as Erad ∼ n
−1/4
e ; it is clear from Figure 5.37 that these

simulations do not follow this trend. This is to be expected, however, as the derivation

of Equation 5.1 did not consider the large instability-driven betatron motion that can

be observed in Figures 5.27 through 5.30, which occurs as the electron beam re-enters

the bulk plasma after propagating past a distance equal to twice the dephasing length

and undergoes a hosing instability.

The spectra for these simulations are shown in Figure 5.38, and the trend for

the high-energy tail temperature with plasma density is shown in Figure 5.39. As

with the normalized vector potential sweep, two distinct regions are observed in the

integrated spectra; again, the higher-energy region is presumed to be a numerical

artifact.

Recall from Equation 5.2 that the critical frequency is expected to scale as ωc ∼
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n
9/8
e ; as with the total emitted energy is clear that these simulations do not follow this

trend. This is also to be expected, and for the same reason; the dominant driving

mechanism for the betatron motion in these simulations appears to be the hosing

instability caused by the electron beam propagating past twice the dephasing length,

which is an effect that was not taken into account in the derivation of Equation 5.2.

Figure 5.31: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
ne = 0.01ncrit. simulation. The magenta line indicates the location of
the dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

5.6.4 Radiation and Phase-Space Correlations

The electron energy/radiation frequency plots (shown on the left-hand-side of Fig-

ures 5.40 through 5.45) consistently show that the overwhelming majority of radiated

energy is emitted by the high-energy electron beam. A small amount of energy is

emitted by lower-energy electrons; this amount proportionally increases as the den-

sity increases and the total radiated energy decreases.

The radius-of-curvature/radiation frequency plots (shown on the right-hand-side

of Figures 5.40 through 5.45) show that the highest-frequency energy is emitted by

electrons with very low radii-of-curvature; this trend becomes stronger as the density
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Figure 5.32: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
ne = 0.02ncrit. simulation. The magenta line indicates the location of
the dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

Figure 5.33: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
ne = 0.03ncrit. simulation. The magenta line indicates the location of
the dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)
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Figure 5.34: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
ne = 0.04ncrit. simulation. The magenta line indicates the location of
the dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

Figure 5.35: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
ne = 0.05ncrit. simulation. The magenta line indicates the location of
the dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)
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Figure 5.36: (Left) The time-evolution of the radiated spectrum and (right) the emit-
ted power (blue) and total emitted radiation (red) vs. time for the
ne = 0.06ncrit. simulation. The magenta line indicates the location of
the dephasing length. Note that the color scale for the left-hand plot is
logarithmic, and the units are Joules/(keV*second)

Figure 5.37: The total energy emitted produced by the simulations, as a function of
density.
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Figure 5.38: The logarithmic spectra for the density sweep

Figure 5.39: The temperature of the high-frequency tail of the spectrum, as a function
of density
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increases. Recall that the transverse momentum profile evolutions of the electron

beams showed that the betatron wavelength decreases as the density increases; this is

consistent with a decrease in the radius of curvature of the electron beam as it emits

radiation.

Figure 5.40: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the corre-
lation between the radius of curvature of the emitting electrons’ trajec-
tories and the frequency of the emitted radiation for the ne = 0.01ncrit
simulation. Note that the color scale for these plots is logarithmic.
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Figure 5.41: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the corre-
lation between the radius of curvature of the emitting electrons’ trajec-
tories and the frequency of the emitted radiation for the ne = 0.02ncrit
simulation. Note that the color scale for these plots is logarithmic.

Figure 5.42: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the corre-
lation between the radius of curvature of the emitting electrons’ trajec-
tories and the frequency of the emitted radiation for the ne = 0.03ncrit
simulation. Note that the color scale for these plots is logarithmic.
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Figure 5.43: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the corre-
lation between the radius of curvature of the emitting electrons’ trajec-
tories and the frequency of the emitted radiation for the ne = 0.04ncrit
simulation. Note that the color scale for these plots is logarithmic.

Figure 5.44: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the corre-
lation between the radius of curvature of the emitting electrons’ trajec-
tories and the frequency of the emitted radiation for the ne = 0.05ncrit
simulation. Note that the color scale for these plots is logarithmic.
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Figure 5.45: (Left) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (Right)the corre-
lation between the radius of curvature of the emitting electrons’ trajec-
tories and the frequency of the emitted radiation for the ne = 0.06ncrit
simulation. Note that the color scale for these plots is logarithmic.

Parameter Normalized Value Real Value
Peak Plasma Density: 0.01ncrit 1.75× 1019cm−3

Simulation Box Size: 300× 200× 200 39× 26× 26µm
Box Propagation Speed: c 3.0× 1010cm/s

Total Propagation Time: 5900 2.5ps

Table 5.9: The plasma parameters for the electron density sweep

5.7 Propagation Length Sweep

5.7.1 Simulation Parameters

The plasma parameters, plasma density profile, laser parameters, and computa-

tional parameters used for the propagation length sweep are listed in tables 5.9, 5.10,

5.11, and 5.12, respectively. Note that, for this parameter sweep, a single simulation

was simply allowed to propagate until it passed twice the dephasing length. This was

a serial (i.e. single-processor) run which ran for 34 hours and 38 minutes.
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Density Initial Position Final Position
0.0 (Vacuum) 0.0µm 65µm

Linear Ramp from 0.0 to 0.01ncrit 65µm 130µm
0.01ncrit (Bulk Plasma) 130µm 1742µm

Linear Ramp from 0.01ncrit to 0.0 1742µm 1807µm
0.0 (Vacuum) 1807µm 1872µm

Table 5.10: The density profile for the propagation length sweep

Parameter Normalized Value Real Value
FWHM Spot Size: 40 5.2 µm

FWHD Pulse Length: 64 28 fs
Peak Normalized Vector Potential: 4.0

Peak Laser Intensity: 3.4× 1019W/cm2

Table 5.11: The laser parameters for the propagation length sweep

Parameter Value
Simulation Grid Size: 600× 100× 100 cells

Particles Per Cell: 2
System Grid Spacing: 0.066× 0.26× 0.26µm

System Time-Step: 0.172fs
Printing Time-Step: 52.7fs

Table 5.12: The computational parameters for the propagation length sweep. Note
that the highest resolution was in the propagation direction.
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5.7.2 Electron Phase-Space Results

The first and most obvious trend in the electron phase-space results can be ob-

served in the plot of the time-evolution of the EEDF, shown in Figure 5.46. As the

system approaches and passes the dephasing length, the maximum electron energy

increases, peaks, and decreases. Then, the as the system approaches twice the de-

phasing length, the electron beam re-enters the bulk plasma and a second period of

acceleration is observed as the system enters a beam-driven wake-field regime.

The evolution of the transverse momentum profile, shown in Figure 5.47, supports

the picture suggested by the time-evolution of the EEDF. The amplitude of the

betatron oscillation increases dramatically at the same time as the second period

of acceleration observed in the EEDF evolution plot; this suggests that the electron

beam is undergoing a hosing instability as it re-enters the bulk plasma. Furthermore,

the beam begins to vanish as soon as this increased amplitude is observed, suggesting

that the beam is breaking up due to the instability.

5.7.3 Radiation Emission Results

The time-evolution of the radiation spectra, shown in Figure 5.48, shows that the

maximum frequency of emitted radiation increases along with the betatron ampli-

tude, as is expected. Additionally, the maximum frequency decays along with the

magnitude of the beam as shown in Figure 5.47, further suggesting that the beam is

breaking up due to a hosing instability.

The plot of the radiated power and energy as functions of time, Figure 5.49, clearly

show that the vast majority of the energy radiated by the system is radiated after it

passes the dephasing length and enters the unstable, beam-driven wake-field regime.

Combined with the density sweep of the previous section, these results provide a

strong indication that allowing the simulation to propagate well past the dephasing

length is the most effective way to increase the total amount of emitted radiation in
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Figure 5.46: The time-evolution of the EEDF; the points where the system passes the
dephasing length and twice the dephase length are marked in magenta.
Note that the color scale for this plots is logarithmic.
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Figure 5.47: The time-evolution of the electron beam p3 momentum phase-space pro-
file; the points where the system passes the dephasing length and twice
the dephase length are marked in magenta.
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a LWFA system. As before, there appears to be significant jumps in the radiated

power that may either be due to noise or some underlying periodic phenomenon.

Figure 5.48: The time-evolution of the radiated spectrum; note that the color scale
for this plot is logarithmic, and the units are Joules/(keV*second)

5.7.4 Radiation and Phase-Space Correlations

As with the previous simulations, the correlations between the radiation frequency

and electron trajectory characteristics indicate that the vast majority of the electron

energy is radiated by the high-energy electron beam; and that while radiation is

emitted by electrons with a wide range of radii of curvatures, the highest-frequency

radiation is emitted by electrons with the lowest radii of curvature.
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Figure 5.49: The emitted power (blue) and total emitted radiation (red) vs. time;
the points where the system passes the dephasing length and twice the
dephase length are marked in magenta.
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Figure 5.50: The correlation between the kinetic energy of the emitting electrons and
the frequency of the emitted radiation. Note that the color scale for this
plots is logarithmic.
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Figure 5.51: The correlation between the radius of curvature of the emitting electrons’
trajectories and the frequency of the emitted radiation. Note that the
color scale for this plots is logarithmic.
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CHAPTER VI

The Impact of the Coma on the Electron Beam

and Betatron Radiation Properties in LWFA

Experiments

6.1 Overview

This chapter presents both results which provided the impetus for this entire

dissertation, as well as results representing its culmination. First, results are pre-

sented from a computational investigation of the impact of the presence of a comatic

aberration in the driving laser pulse on the electron beam properties produced by a

laser wake-field accelerator. These results are taken from a published work that is

reproduced as-published in Appendix B, which was, chronologically, the first piece

of research done for this dissertation. Second, results are presented from a computa-

tional investigation using the radiation simulation algorithm presented in Chapter 4

to simulate the impact of the presence of a coma on the betatron radiation generated

by a LWFA system.
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6.2 Introduction: The Impact of the Coma on the Electron

Beam Properties in a LWFA

The impetus for this entire dissertation was, initially, a study of the impact of aber-

rant (i.e. non-Gaussian) laser pulses on the performance of LWFA devices. Figure

6.1-A shows an idealized Gaussian laser pulse; this is the transverse pulse profile typ-

ically used for simulations and analytic calculations of LWFA physics [[78]]. However,

the transverse pulse profile typically produced by a real laser more closely resembles

Figure 6.1-B; a decidedly non-ideal, non-Gaussian, “aberrant” pulse profile; these

deviations can modify the laser pulse propagation [[90], [91], [92]].
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Figure 6.1: A (Left): An idealized Gaussian pulse (calculated analytically). B
(Right): An example of a typical pulse produced by a real laser (mea-
sured at the focal point of the HERCULES laser, using an f/10 focusing
optic.

The cost of LWFA as a particle acceleration technology will be dependent on

the required precision of the laser system. Since the required precision of the laser

system will ultimately depend on how the system’s performance as an accelerator

is affected by errors in the pulse profile, an understanding of this dependance is an

important step towards developing cost-effective LWFA technology. Consequently,
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the initial study used the PIC code OSIRIS 2.0 to perform a computational study of

the relationships between the presence of optical aberrations in the laser pulse, and

the parameters of the electron beam produced by the system.

The study considered the comatic aberration, one of the primary aberrations that

can occur in an optical system. This aberration (shown in Figures 6.2 and 6.3),

one of the five primary “Seidel aberrations” which occurs in geometric optics [[93]],

was chosen for investigation due to experimental evidence linking the presence and

strength of the coma to the spectra of synchrotron-like radiation generated by the

electron beam in LWFA experiments[[94]].
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Figure 6.2: Logarithmic intensity profiles of an Airy laser spot without an aberration
(left), and aberrated with a coma of severity α = 0.25.
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Figure 6.3: Logarithmic intensity profiles of a gaussian laser spot without an aberra-
tion (left), and aberrated with a coma of severity α = 0.25.

6.3 Background & Theory: The Impact of the Coma on the

Electron Beam Properties in a LWFA

In the diffraction theory of optics, the electric and magnetic fields at a given

frequency ω, ~Eω and ~Hω, are both related to the scalar diffraction integral Uω by[[93]]:

~Eω (x, y, z, t) = Re
{ω2

c2
Uω (x, y, z) a (ω) ~α (ω) ei[δ(ω)−ωt]

}
(6.1)

~Bω (x, y, z, t) = Re
{ω2

c2
Uω (x, y, z) a (ω) ~β (ω) ei[δ(ω)−ωt]

}
(6.2)

Since the intensity is proportional to the Poynting vector (in cgs units)[[93]]:

~S =
c

4π
~E × ~B (6.3)

we may say that the laser intensity is proportional to the square of the scalar diffrac-

tion integral, I ∼ U2
ω.

147



The primary, or Seidel, aberrations, are characterized by expansions to this diffrac-

tion integral [[93]]:

U (u, v, ψ) = − i
λ

Aa2

R2
ei(

R
a )

2
u ×

1∫
0

2π∫
0

ei[kφ(Y
∗
1 ,ρ,θ)−vρcos(θ−ψ)− 1

2
uρ2]ρdρdθ (6.4)

where u, v,&ψ are the optical coordinates, λ is the wavelength, A is the amplitude, a

is the radius of the exit pupil, R is the radius of the Gaussian reference sphere, k is the

wave number, θ&ρ are coordinates on the Gaussian reference sphere, andφ (Y ∗1 , ρ, θ)

is the aberration function. We expand φ in terms of Zernike polynomials Rm
n :

φ (Y ∗1 , ρ, θ) =
∑
l

∑
n

∑
m

alnmY
∗2l+m

1 Rm
n (ρ) cos (mθ) (6.5)

Inserting this expansion into the expression for the diffraction integral (and removing

the explicit dependence on Y ∗1 by assuming a fixed image size) yields the following

expression for the diffraction pattern associated with a single aberration [[93]]:

U (u, v, ψ) = 4C
∞∑
s=0

′

(−i)(m−1)s cos (msψ)

1∫
0

e−
1
2
iuρ2Js [αlnmR

m
n (ρ)] Jms (vρ) ρdρ (6.6)

The integers l, n, and m in this expression specify the type of of aberration, according

to Table 6.1 [[93]]: This expression can be expanded for small α:

Table 6.1: Aberration Types and Integers[12]

Aberration Type l n m
Spherical 0 4 0
Comatic 0 3 1

Astigmatic 0 2 2
Curvature 1 2 0
Distortion 1 1 1
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U (u, v, ψ) = C
∞∑
i=0

(iαlnm)i Ui (6.7)

The first four terms of this expansion are given by [93]:

U0 = 2

1∫
0

e−
1
2
iuρ2J0 (vρ) ρdρ (6.8)

U1 = 2(−i)mcos (mψ)

1∫
0

e−
1
2
iuρ2Rm

n (ρ) Jm (vρ) ρdρ (6.9)

U2 =
1

2!

{ 1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}2J0 (vρ) ρdρ+

i2m cos (2mψ)

1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}2J2m (vρ) ρdρ
}

(6.10)

U3 =
1

2× 3!

{
3 (−i)m cos (mψ)

1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}3Jm (vρ) ρdρ

i2m cos (2mψ)

1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}2J2m (vρ) ρdρ
}

(6.11)

Note that in this expansion, the unaberrated pulse profile (given by U0) is an Airy
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function. For a Gaussian pulse, equation 6.8 instead becomes [[93]]:

U0 =
1√
2π
e−

v2

2

As previously discussed, the aberration considered in this research was the coma.

Using the integers contained in table 6.1, Equations 6.8 through 6.11 become [[93]]:

U1 = i cos (ψ)
2J4 (v)

v
(6.12)

U2 =
1

2v

{
1

4
J1 (v)− 1

20
J3 (v) +

1

4
J5 (v)

− 9

20
J7 (v)− cos (2ψ)

[
2

5
J3 (v) +

3

5
J7 (v)

]}
(6.13)

U3 =
−i
12v

{
3 cos (mψ)

{
3

14
J10 (v)− 6

35
J8 (v) +

9

70
J6 (v)− 44

105
J4 (v) +

1

15
J2 (v)

}
+

cos (3mψ)

{
9

28
J10 (v) +

9

20
J6 (v)− 8

35
J4 (v)

}}
(6.14)

It should be noted that, for this research, the expansion was carried out to U4; however

this term is omitted from the above equations for brevity.
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6.4 Two-Dimensional Simulations: The Impact of the Coma

on the Electron Beam Properties in a LWFA

6.4.1 Overview & Motivation

The utility to directly simulate the coma is not included in the standard version of

OSIRIS 2.0; however, in two dimensions, and for small values of α, we will represent

the coma as an superposition of a TEM00 and a TEM10 pulse, which will represent

an asymmetric pulse profile not entirely unlike that of the coma. Since OSIRIS 2.0 can

simulate this pulse configuration, and since two-dimensional simulations are much less

resource-intensive than three-dimensional simulations, a computational parameter

sweep was performed in two-dimensions, studying how the performance of the system

as an accelerator was affected by the deviation of the pulse from the “ideal” TEM00

mode. Examples of these initial pulse structures are shown in Figure 6.4, while

examples of the LWFA “bubble” structure formed in the plasma are shown in Figure

6.5, and examples of the electron beams produced at the end of these simulations are

shown in Figure 6.5

6.4.2 Methodology

For the two-dimensional simulations, a TEM00-mode pulse and a TEM10-mode

pulse were superimposed upon one another such that the total pulse energy remained

constant. The relative energy deposited in each pulse was varied to represent different

aberration strengths. The relative energy was quantified via the mixing fraction,

which is defined as follows:

f00 ≡
a0,00

a0

f10 ≡
a0,10

a0

(6.15)

a2
0 = a2

00 + a2
10 = (f00a0)2 + (f10a0)2 =

(
f 2

00 + f 2
10

)
a2

0 (6.16)
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Figure 6.4: The initial laser pulses used in the two-dimensional simulations, for mix-
ing percentages of (from left to right): 5%, 50%, and 95%

Figure 6.5: The two-dimensional plasma bubble structures half-way through the sim-
ulation, for mixing percentages of (from left to right): 5%, 50%, and
95%
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Figure 6.6: The final two-dimensional electron beams, for mixing percentages of (from
left to right): 5%, 50%, and 95%

(
f 2

00 + f 2
10

)
= 1 (6.17)

The mixing fraction was therefore taken to be the quantity f 2
10; a parameter sweep in

this variable was the basis of the two-dimensional simulations.

For each simulation, the pulse was allowed to propagate into vacuum. At this

point the only remaining electrons were assumed to be the electron beam (for an

example, see Figure 6.6), and the beam properties were measured. This density

profile is shown in Figure 6.7 The properties were plotted against the mode-mixing

percentage to assess the system’s response to deviations from the Gaussian pulse.

The parameters for the two-dimensional simulations are listed in Figures 6.2, 6.3,

and 6.4.

6.4.3 Results

For the 2D simulations, the peak of the electron energy spectrum and transverse

beam emittance were measured as functions of the mixing fraction. The peak electron
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Figure 6.7: The density profile in the propagation direction for the simulations. The
region indicated by the red box is where the beam properties were mea-
sured. The transverse density profile was uniform.

Parameter Value
Peak Plasma Density: 0.01ncrit = 1.75× 1019cm−3

Simulation Box Size: 38.2× 63.7µm
Box Propagation Speed: c

Total Propagation Time: 3.5ps

Table 6.2: The plasma parameters for the two-dimensional beam properties sweep

Parameter Value
FWHM Spot Size: 5.1µm

FWHD Pulse Length: 35 fs
Peak Normalized Vector Potential: 4.0

Peak Laser Intensity: 3.5× 1019W/cm2

Table 6.3: The laser parameters for the two-dimensional beam properties sweep; note
that the laser vector potentials of the two constituent pulses were chosen
such that the total pulse energy remained constant

Parameter Value
Simulation Grid Size: 1200× 500 cells

Particles Per Cell: 2
System Grid Spacing: 0.03185× 0.1274µm

Table 6.4: The computational parameters for the two-dimensional beam properties
sweep. Note that the highest resolution was in the propagation direction.
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energy is plotted against the mixing fraction in Figure 6.8. The transverse beam

emittance is plotted against the mixing fraction in Figure 6.9

Figure 6.8: The peaks of the electron energy spectra as the mixing fraction is varied
in the two-dimensional simulations.

Figure 6.8 shows that the beak beam energy decreases by ∼ 30% − 40% as the

pulse transitions from 100% TEM00 to 100% TEM10. Figure 6.9 shows that the

beam emittance increases by a factor of ∼ 5 over the course of this transition. This

is most likely due to the nature of the TEM10 pulse, which behaves like two pulses

propagating side-by-side. It has been showed [[95]] that nonlinear interactions be-

tween co-propagating, side-by-side pulses can cause the pulses to either attract or

repel, based on the relative phases of the two pulses. Both figures show that the

performance of a LWFA experiment as a particle accelerator is significantly affected

by deviations from the Gaussian in the pulse intensity profile, demonstrating the need

for more precise three-dimensional simulations.
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Figure 6.9: The transverse emittances of the final electron beams as the mixing frac-
tion is varied in the two-dimensional simulations.

6.5 Three-Dimensional Simulations: The Impact of the Coma

on the Electron Beam Properties in a LWFA

6.5.1 Overview & Motivation

After the two-dimensional simulations demonstrated that deviations from the

Gaussian can significantly affect the performance of the LWFA system as an acceler-

ator, three dimensional simulations that explicitly included the coma were run and

analyzed. Equations 6.12 through 6.14 (as well as U4 term in the expansion which is

omitted for brevity) were integrated into the OSIRIS 2.0 pulse envelope initialization

routine so that the coma could be directly simulated. A simulated pulse featuring

these modifications is shown in Figure 6.10.
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Figure 6.10: The intensity of a laser pulse as simulated by OSIRIS 2.0, modified to
feature a coma.

Parameter Value
Peak Plasma Density: 0.01ncrit = 1.75× 1019cm−3

Simulation Box Size: 38.2× 31.8× 31.8µm
Box Propagation Speed: c

Total Propagation Time: 3.4ps

Table 6.5: The plasma parameters for the three-dimensional beam properties sweep

6.5.2 Methodology

The expansion parameter α appearing in Equations 6.12 through 6.14 was used

to quantify the severity of the aberration (for reference, the aberration shown in

Figure 6.10 has α = 1.005). The parameter α was varied from 0.0 to 1.0. As with

the two-dimensional simulations, the pulse was allowed to propagate into vacuum, at

which point the electron beam properties were measured (the density profile in the

propagation direction was again that shown in Figure 6.7).

The parameters for the three-dimensional simulations are listed in Figures 6.5,

6.6, and 6.7.
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Parameter Value
FWHM Spot Size: 5.1µm

FWHD Pulse Length: 35 fs
Peak Normalized Vector Potential: 4.0

Peak Laser Intensity: 3.5× 1019W/cm2

Table 6.6: The laser parameters for the three-dimensional beam properties sweep

Parameter Value
Simulation Grid Size: 1200× 250× 250 cells

Particles Per Cell: 2
System Grid Spacing: 0.03175× 0.1272× 0.1272µm

Table 6.7: The computational parameters for the three-dimensional beam properties
sweep. Note that the highest resolution was in the propagation direction.

6.5.3 Results

For the 3D simulations, the electron energy spectra, peak electron beam energy,

peak electron beam current, as well as the beam emittances in both the polarization

and transverse directions were all measured as functions of the parameter α. The

electron energy spectra for five values of α are shown in Figure 6.11. The energies at

which the maxima of these spectra lie, plotted vs. α, are shown in Figure 6.12. The

peak electron beam current as a function of α is shown in Figure 6.13. Finally, the

electron beam emittances as functions of α are shown in Figure 6.14.

Figures 6.11 and 6.12 show how varying the parameter α affects the energetic

properties of the electron beam produced by the LWFA system. These results are

very promising, as they show that the spectral shape is not dramatically affected,

even by the presence of a significant aberration. Similarly, the peak electron beam

energy remains relatively unaffected by the presence of a coma, varying by less than

∼ 10% as α varies from 0.0 to 1.0. Figure 6.13 shows that the peak forward current

is similarly robust against the presence of an aberration, varying by only ∼ 20% as

α varies from 0.0 to 1.0.
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Figure 6.11: The electron energy spectra for increasing values of α. The the spectra
have been offset for clarity.
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Figure 6.12: The peaks of the electron energy spectra for increasing values of α. These
are the energies at which the maximum values of the spectra lie.
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Figure 6.13: The peaks of the electron beam current for increasing values of α.
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Figure 6.14: The electron beam emittances in the polarization (top) and transverse
(bottom) directions, for increasing values of α.
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By contrast, Figure 6.14 shows that the beam emittance in the polarization di-

rection is affected by the presence of a coma, while the emittance in the transverse

direction (i.e., orthogonal to both the direction of laser polarization and the direction

of laser propagation) remains unaffected. The increase in the difference between the

two emittances as α increases indicates that the beam ellipticity is also increasing;

this could, in turn, indicate the presence of increased betatron motion, which would

enhance the generation of synchrotron-like radiation.

6.6 Conclusion: The Impact of the Coma on the Electron

Beam Properties in a LWFA

The results of this computational parameter sweep were promising for two reasons.

First, while preliminary two-dimensional simulations indicated that deviations from

the ideal Gaussian pulse can significantly affect the performance of a laser wake

field accelerator, more precise three-dimensional simulations indicated that many key

performance parameters of the system are robust against the presence of even a strong

coma. The peak beam energy was relatively unaffected, decreasing by no more than

∼ 10% for the strongest aberration considered. The electron energy spectrum was

also relatively unaffected by the presence of the aberration; if anything the spectral

peak narrowed as the aberration severity increased.

Second, the emittance of the beam in the polarization direction was significantly

affected by the presence of an aberration, while the emittance of the beam in the

transverse direction was relatively unaffected. This could indicate that the increasing

aberration strength corresponds to an increase in the beam ellipticity. This could,

in turn, indicate an increase in the magnitude of the beam’s betatron oscillations,

which would lead to an increase in the strength and critical frequency of the emitted

betatron radiation.
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Parameter Normalized Value Real Value
Peak Plasma Density: 0.01 1.75× 1019cm−3

Simulation Box Size: 300× 200× 200 39× 26× 26µm
Box Propagation Speed: c 3.0× 1010cm/s

Total Propagation Time: 5900 2.5ps

Table 6.8: The plasma parameters for the coma radiation sweep

6.7 The Impact of the Coma on Betatron Radiation Proper-

ties in LWFA

6.7.1 Overview

This section combines the radiation-generation algorithm from Chapter 4 with

the coma simulations of the previous section to investigate the impact of the presence

of a coma on the generation of betatron radiation in LWFA experiments. First, we

present an overview of the simulation parameters used for this investigation. Then,

we present the electron phase-space results from these simulations, using the same

visualizations as in Chapter 5. Subsequently, the radiation results are presented,

followed by correlations between the electron trajectories and radiation properties.

Again, the same visualizations as those in Chapter 5 are used. Trends are commented

upon and analyzed.

6.7.2 Simulation Parameters

The parameters used for the coma radiation simulations are listed in Tables 6.8,

6.9, 6.10, and 6.11.

6.7.3 Electron Phase-Space Results

For the electron phase-space results from the coma sweep simulations, we present

the results from the non-aberrated pulse simulation with the same visualization as

in Chapter 5. However, for the time-evolution of the EEDF, we instead compare the
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Density Initial Position Final Position
0.0 (Vacuum) 0.0µm 65µm

Linear Ramp from 0.0 to Peak Density 65µm 130µm
Peak Density (Bulk Plasma) 130µm 637µm

Linear Ramp from Peak Density to 0.0 637µm 702µm
0.0 (Vacuum) 702µm 767µm

Table 6.9: The density profile for the coma radiation sweep

Parameter Normalized Value Real Value
FWHM Spot Size: 40 5.2 µm

FWHD Pulse Length: 64 28 fs
Peak Normalized Vector Potential: 4.0

Peak Laser Intensity: 3.4× 1019W/cm2

Table 6.10: The laser parameters for the coma radiation sweep

Parameter Value
Simulation Grid Size: 600× 100× 100 cells

Particles Per Cell: 2
System Grid Spacing: 0.066× 0.26× 0.26µm

System Time-Step: 0.172fs

Table 6.11: The computational parameters for the coma radiation sweep. Note that
the highest resolution was in the propagation direction.

164



results from the two different polarizations side-by-side. These data are shown in

Figures 6.15 through 6.25. Some slight trends are observable. First, we notice that

the initial electron beam tends to become more well defined relative to the background

plasma for more severe comae. This is true regardless of the polarization. However,

we also notice that for a polarization angle of 90 degrees (i.e., when the angle of laser

polarization and angle of coma asymmetry align), we tend to see even more definition

of the electron beam compared to the background plasma.

Figure 6.15: The time-evolution of (left) the EEDF and (right) the momentum profile
in the laser polarization direction for the α = 0.0 (i.e, non-aberrated)
simulations. The color scales on the left are logarithmic, and in units
of normalized charge per MeV per ps. The color scales on the right are
linear, and are in units of normalized charge per mec per ps.

The most compelling data of this parameter sweep, however, comes from an anal-

ysis of the momentum phase-space profiles of the electron beams. Note that for these

data, the laser propagation direction was the x-direction, the direction of coma asym-

metry was the z-direction, and the direction of laser polarization was either in the

y-direction (for the 0-degree polarization case) or the z-direction (for the 90-degree

polarization case). In these data, we see a clear, consistent, and compelling trend.

For the simulations where the direction of laser polarization and the direction of

coma asymmetry are perpendicular (i.e., the 0-degree polarization cases), we see very

low-amplitude, high-frequency betatron motion in the direction of laser polarization,
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Figure 6.16: The time-evolution of the EEDF for the α = 0.1 simulations for (left)
0-degree and (right) 90-degree polarization. The color scales are loga-
rithmic, and in units of normalized charge per MeV per ps.

Figure 6.17: The time-evolution of the EEDF for the α = 0.2 simulations for (left)
0-degree and (right) 90-degree polarization. The color scales are loga-
rithmic, and in units of normalized charge per MeV per ps.
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Figure 6.18: The time-evolution of the EEDF for the α = 0.3 simulations for (left)
0-degree and (right) 90-degree polarization. The color scales are loga-
rithmic, and in units of normalized charge per MeV per ps.

Figure 6.19: The time-evolution of the EEDF for the α = 0.4 simulations for (left)
0-degree and (right) 90-degree polarization. The color scales are loga-
rithmic, and in units of normalized charge per MeV per ps.
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Figure 6.20: The time-evolution of the EEDF for the α = 0.5 simulations for (left)
0-degree and (right) 90-degree polarization. The color scales are loga-
rithmic, and in units of normalized charge per MeV per ps.

and very large-amplitude, low-frequency betatron motion in the direction of coma

asymmetry. Conversely, for the simulations where the direction laser polarization

and the direction of coma asymmetry are aligned (i.e., the 90-degree polarization

cases), we see betatron motion only in the direction of coma asymmetry/laser po-

larization; moreover this motion appears to be predominantly of the high-amplitude,

low-frequency type caused by the coma asymmetry, rather than the type caused by

direct interaction with the laser. However, for these simulations, small-amplitude,

high-frequency oscillations can be observed as perturbations in the dominant low-

frequency motion. The disparity between these two effects becomes more pronounced

as the severity of the coma increases.

It is abundantly clear from these data that, at these intensity/density conditions,

the primary driver of the betatron motion of the electron beam is the field structure

of the plasma wake, and not interaction with the laser. Consequently, alterations in

the shape of the wake due to the presence of the coma strongly effect the betatron

motion of the electron beam at this intensity and density. However, the results from

the parameter sweep in the laser vector potential a0 showed that, at higher laser

intensities, the beam interaction with the laser field tends to become the dominant
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driver for the beam’s betatron motion. As a result, it is not clear whether or not the

presence of a coma will have as dominant an effect on the beam betatron motion at

these higher intensities.
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Figure 6.21: The time-evolution of the electron beam momentum phase-space profile
in the laser polarization direction for the α = 0.1 simulations. The left-
hand images are the 0-degree polarization images (where the directions
of coma asymmetry and laser polarization are perpendicular), while the
right-hand images are the 90-degree polarization images (where the di-
rections of coma asymmetry and laser polarization are aligned). The top
images are in the p2 direction (perpendicular to the direction of coma
asymmetry), while the bottom images are in the p3 direction (aligned
with the direction of coma asymmetry). The color scales are linear, and
are in units of normalized charge per mec per ps.
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Figure 6.22: The time-evolution of the electron beam momentum phase-space profile
in the laser polarization direction for the α = 0.2 simulations. The left-
hand images are the 0-degree polarization images (where the directions
of coma asymmetry and laser polarization are perpendicular), while the
right-hand images are the 90-degree polarization images (where the di-
rections of coma asymmetry and laser polarization are aligned). The top
images are in the p2 direction (perpendicular to the direction of coma
asymmetry), while the bottom images are in the p3 direction (aligned
with the direction of coma asymmetry). The color scales are linear, and
are in units of normalized charge per mec per ps.
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Figure 6.23: The time-evolution of the electron beam momentum phase-space profile
in the laser polarization direction for the α = 0.3 simulations. The left-
hand images are the 0-degree polarization images (where the directions
of coma asymmetry and laser polarization are perpendicular), while the
right-hand images are the 90-degree polarization images (where the di-
rections of coma asymmetry and laser polarization are aligned). The top
images are in the p2 direction (perpendicular to the direction of coma
asymmetry), while the bottom images are in the p3 direction (aligned
with the direction of coma asymmetry). The color scales are linear, and
are in units of normalized charge per mec per ps.
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Figure 6.24: The time-evolution of the electron beam momentum phase-space profile
in the laser polarization direction for the α = 0.4 simulations. The left-
hand images are the 0-degree polarization images (where the directions
of coma asymmetry and laser polarization are perpendicular), while the
right-hand images are the 90-degree polarization images (where the di-
rections of coma asymmetry and laser polarization are aligned). The top
images are in the p2 direction (perpendicular to the direction of coma
asymmetry), while the bottom images are in the p3 direction (aligned
with the direction of coma asymmetry). The color scales are linear, and
are in units of normalized charge per mec per ps.
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Figure 6.25: The time-evolution of the electron beam momentum phase-space profile
in the laser polarization direction for the α = 0.5 simulations. The left-
hand images are the 0-degree polarization images (where the directions
of coma asymmetry and laser polarization are perpendicular), while the
right-hand images are the 90-degree polarization images (where the di-
rections of coma asymmetry and laser polarization are aligned). The top
images are in the p2 direction (perpendicular to the direction of coma
asymmetry), while the bottom images are in the p3 direction (aligned
with the direction of coma asymmetry). The color scales are linear, and
are in units of normalized charge per mec per ps.

6.7.4 Radiation Emission Results

As with the electron phase-space results, we plot the radiation results from the

two different polarizations side-by-side. The time-evolution of the radiation spectra,

shown in Figures 6.26 through 6.31, show consistent results; as with the a0 parameter

sweep, the peak radiation frequency (i.e. the tail of the spectrum) tends to slowly

increase in time, before sharply dropping as the electron beam exits the plasma. This

trend is more or less constant in both the polarization and coma severity. Similarly,

the radiated power (shown in Figures 6.26 and 6.32 through 6.36) tends to increase

as the laser pulse propagates, before sharply dropping as the system exits the plasma.

This trend is also more or less constant in both the polarization and coma severity.

As with other parameter sweeps, the radiated power also displays some noise-like

fluctuations, however they do not appear to be as severe as those observed in the

laser vector potential, electron density, and propagation distance sweeps.
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The spectra for the α = 0.0, 0.1,& 0.2 and α = 0.3, 0.4,& 0.5 simulations are

shown in Figures 6.37 and 6.38, respectively. While no trends are immediately ap-

parent in these plots, plotting the total radiated energies and tail temperatures as

functions of α (shown in Figures 6.39 and 6.40, respectively) immediately reveals

some interesting trends. As with the a0 and ne sweeps in Chapter 5, a high-frequency

region is observed in the spectra and presumed to be a numerical artifact.

Figure 6.39 shows that, for both polarizations, initial increases in the coma severity

from α = 0.0 to α = 0.2 increase the total radiated energy by ∼ 25%. Increasing the

coma severity beyond this point, however, causes the radiated energy to drop again.

The 90-degree polarization case, where the coma asymmetry and laser polarization

are aligned, shows a much sharper drop in the radiated energy than the 00-degree

polarization case.

Figure 6.40 demonstrates that the high-energy tail of the distribution is somewhat

noisy, as the temperatures for the α = 0.0 (i.e., Gaussian) Pulses vary between the

two polarizations by ∼ 8%. Since none of the calculated temperatures vary by more

than this, the only definitive conclusion we can draw about the effect of the coma on

the temperature of the high-energy tail of the distribution is that it is small.

Figure 6.26: The radiated power and energy (left) and time-evolution of the radiation
spectrum (right )for the α = 0.0 simulations; note that the color scale on
the left-hand plot is logarithmic and the units are Joules/(keV*second)
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Figure 6.27: The time-evolution of the radiation spectrum for the α = 0.1 simulations
for (left) 0-degree and (right) 90-degree polarization; note that the color
scale on these plots is logarithmic and the units are Joules/(keV*second)

Figure 6.28: The time-evolution of the radiation spectrum for the α = 0.2 simulations
for (left) 0-degree and (right) 90-degree polarization; note that the color
scale on these plots is logarithmic and the units are Joules/(keV*second)
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Figure 6.29: The time-evolution of the radiation spectrum for the α = 0.3 simulations
for (left) 0-degree and (right) 90-degree polarization; note that the color
scale on these plots is logarithmic and the units are Joules/(keV*second)

Figure 6.30: The time-evolution of the radiation spectrum for the α = 0.4 simulations
for (left) 0-degree and (right) 90-degree polarization; note that the color
scale on these plots is logarithmic and the units are Joules/(keV*second)
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Figure 6.31: The time-evolution of the radiation spectrum for the α = 0.5 simulations
for (left) 0-degree and (right) 90-degree polarization; note that the color
scale on these plots is logarithmic and the units are Joules/(keV*second)

Figure 6.32: The time-evolution of the emitted power (blue) and total emitted radi-
ation (red) vs. time for the α = 0.1 simulations for (left) 0-degree and
(right) 90-degree polarization.
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Figure 6.33: The time-evolution of the emitted power (blue) and total emitted radi-
ation (red) vs. time for the α = 0.2 simulations for (left) 0-degree and
(right) 90-degree polarization.

Figure 6.34: The time-evolution of the emitted power (blue) and total emitted radi-
ation (red) vs. time for the α = 0.3 simulations for (left) 0-degree and
(right) 90-degree polarization.

180



Figure 6.35: The time-evolution of the emitted power (blue) and total emitted radi-
ation (red) vs. time for the α = 0.4 simulations for (left) 0-degree and
(right) 90-degree polarization.

Figure 6.36: The time-evolution of the emitted power (blue) and total emitted radi-
ation (red) vs. time for the α = 0.5 simulations for (left) 0-degree and
(right) 90-degree polarization.
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Figure 6.37: The logarithmic spectra for the coma simulations for α = 0.0, 0.1,&0.2

Figure 6.38: The logarithmic spectra for the coma simulations for α = 0.3, 0.4,&0.5
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Figure 6.39: The total energy emitted produced by the simulation for the 0-degree
(shown in blue) and 90-degree (shown in red) simulations..
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Figure 6.40: The temperature of the high-energy tail produced by the simulation for
the 0-degree (shown in blue) and 90-degree (shown in red) simulations..
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6.7.5 Radiation and Phase-Space Correlations

Both the electron energy/radiation frequency and electron trajectory radius-of-

curvature/radiation frequency plots (shown in Figures 6.41 through 6.46) show con-

sistent, relatively unchanged results as the severity of the coma is increased. The

vast majority of the radiated energy is emitted by the high-energy electron beam, by

electrons whose trajectories exhibit a spread of radii of curvatures. The highest fre-

quency radiation is, unsurprisingly, emitted by the electrons whose trajectories have

lower radii of curvatures.

For clarity, we show the radius of curvature/frequency correlation and electron

energy/frequency correlation plots for both polarizations (i.e., four plots total) as

a single figure for each value of α considered in the parameter sweep, as with the

electron-phase space results.

Figure 6.41: (Left) The correlation between the kinetic energy of the radiating elec-
trons to the frequency of the emitted radiation and (right) the correlation
between the radius of curvature of the radiating electron trajectories to
the frequency of the emitted radiation for the α = 0.0 case.
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Figure 6.42: (Top) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (bottom) the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the α = 0.1
simulation; the left-hand images are the 0-degree polarization images
(where the directions of coma asymmetry and laser polarization are per-
pendicular), while the right-hand images are the 90-degree polarization
images (where the directions of coma asymmetry and laser polarization
are aligned)
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Figure 6.43: (Top) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (bottom) the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the α = 0.2
simulation; the left-hand images are the 0-degree polarization images
(where the directions of coma asymmetry and laser polarization are per-
pendicular), while the right-hand images are the 90-degree polarization
images (where the directions of coma asymmetry and laser polarization
are aligned)
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Figure 6.44: (Top) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (bottom) the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the α = 0.3
simulation; the left-hand images are the 0-degree polarization images
(where the directions of coma asymmetry and laser polarization are per-
pendicular), while the right-hand images are the 90-degree polarization
images (where the directions of coma asymmetry and laser polarization
are aligned)
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Figure 6.45: (Top) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (bottom) the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the α = 0.4
simulation; the left-hand images are the 0-degree polarization images
(where the directions of coma asymmetry and laser polarization are per-
pendicular), while the right-hand images are the 90-degree polarization
images (where the directions of coma asymmetry and laser polarization
are aligned)
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Figure 6.46: (Top) The correlation between the kinetic energy of the emitting elec-
trons and the frequency of the emitted radiation and (bottom) the cor-
relation between the radius of curvature of the emitting electrons’ tra-
jectories and the frequency of the emitted radiation for the α = 0.5
simulation; the left-hand images are the 0-degree polarization images
(where the directions of coma asymmetry and laser polarization are per-
pendicular), while the right-hand images are the 90-degree polarization
images (where the directions of coma asymmetry and laser polarization
are aligned)
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CHAPTER VII

Summary, Conclusions, and Future Work

7.1 Summary

This dissertation presented the results from an array of computational studies of

laser wake-field acceleration experiments. Specifically, the generation of synchrotron-

like x-ray radiation via betatron motion, and the response of this radiation to various

LWFA system parameters, was investigated.

An overview of the relevant theoretical concepts was presented. Basic plasma

physics models were presented, along with more specific models regarding the physics

laser wake-field acceleration. The physics of betatron motion in laser-wake-field ac-

celerators was also discussed. An overview of several significant plasma optical phe-

nomenon was presented. Finally, the generation of radiation by moving charge parti-

cles was also discussed.

An overview of the relevant computational methods was presented. Standard

methods and concepts in computational electrodynamics are presented and discussed.

An overview of the concepts and methodologies of particle-in-cell simulations was also

presented. Finally, the particulars of OSIRIS 2.0’s implementation of the PIC model

was presented and discussed.

The particulars of the algorithm used to simulate the generation of radiation in

this study was presented and discussed. Detailed discussions of the techniques used
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were presented and discussed as well. Finally, the results of validation simulations

of electrons undergoing simple cyclotron motion are presented and compared to the

theory.

Results from using this algorithm to perform a number of computational param-

eters sweeps were presented and discussed. Parameter sweeps over the normalized

laser vector potential a0, electron plasma density ne, and propagation distance L

were performed. Data regarding the electron phase-space properties, emitted ra-

diation properties, and correlations between the emitting electron trajectories and

radiation frequencies were presented and discussed.

Results from a computational parameter sweep of the impact of a comatic aberra-

tion in the driving laser on the performance of a LWFA system as a particle accelerator

were presented and discussed. In addition to the electron beam properties, the prop-

erties of the emitted radiation were also presented and discussed. As before, data

regarding the electron phase-space properties, emitted radiation properties, and cor-

relations between the emitting electron trajectories and radiation frequencies were

presented and discussed.

7.2 Conclusions

Validation simulations of the algorithm used showed excellent agreement with the

theoretical models for cyclotron radiation across a wide range of electron energies γ

and radii of curvature ρ.

For the parameter sweep over the normalized laser vector potential a0, both the

total emitted energy and the tail temperature of the emitted spectrum showed ex-

cellent agreement with previously derived analytic scalings given by [[88]]. The total

energy emitted scaled as a
9/2
0 , in close agreement with the scalings. The tail temper-

ature scaled roughly as a
5/2
0 , however the calculated values of the tail temperature

exhibited enough noise to prevent drawing absolute conclusions.
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For the simulation used to effect a parameter sweep over the propagation length,

it was observed that the majority of the energy radiation occurred after the system

had passed the dephasing length, and coincided with a second period of acceleration

that is most likely due to the electron beam re-entering the bulk plasma and driving

the system into a beam-driven wake-field regime. It appears that the electron beam’s

betatron motion increases dramatically in this regime; this is hypothesized to be due

to a hosing instability caused by the beam propagating through the bulk plasma.

For the parameter sweep over the plasma density ne, both the total emitted energy

and the tail temperature deviated sharply from the predicted analytic scalings given

by [[88]]. Upon closer inspection, it appears that this deviation is caused by the fact

that the majority of the radiation was emitted after the system passed twice the

dephasing length; at this point, the beam re-enters the bulk plasma and is inferred to

undergo a hosing instability. This effect appeared to dominate the emitted radiation

in the simulations, yet was not considered in the derivation of the analytic scalings.

For the parameter sweep over the coma, the performance of the LWFA system

as an electron accelerator showed a number of trends in response to the presence

of a coma. One promising result was that neither the peak energy of the electron

beam, nor the electron beams’ energy, were significantly effected by the presence of

even a severe coma, suggesting that in this regard, the LWFA is robust against the

presence of a coma. However, noticeable differences between the beam emittance

in the transverse and laser polarization directions were observed; these differences

became magnified as the severity of the coma increased.

The most significant trend observed in the emitted radiation was in the total

energy emitted, which increased significantly in the presence of a coma. However as

the coma severity increased further, this effect reversed. The temperature of the high-

energy tail was not found to vary significantly with the coma severity, when compared

to the previously mentioned noise observed in the tail temperature calculation.
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7.3 Future Work

The most significant finding of this dissertation is that the majority of betatron

radiation occurs after the electron beam has passed the bubble regime. An analytic

model of the electron beam propagation and betatron motion in this regime would

provide key insight into this mechanism of radiation generation.

Significant fluctuations were consistently observed in the radiated power. Repeat-

ing the simulations multiple times to improve statistics would help determine whether

or not these fluctuations are due to statistical noise or an underlying physical phe-

nomenon.

For the sweep in a0, a distinct transition from long-wavelength to short-wavelength

betatron motion was observed as the normalized laser vector potential was increased.

The high-frequency motion approached the sampling frequency, making it difficult

to fully characterize this motion. Running these simulations with a higher temporal

resolution would help determine the mechanism behind this shift in betatron wave-

length.

Additionally, recall that the scalings for betatron motion in a laser wake-field

accelerator given by [50], [2] are:

ωβ =
ωp√
2γ

; K = γrβ
ωβ
c

A cursory analysis of the data according to this model suggests an rβ of ∼ 1 − 10

nanometers, which is substantially less than the motion observed in the simulation.

However, consider the difference between the spatially averaged transverse electric

field and magnetic fields alongside the electron density from the ∼ 20.3fs time frame

in the a0 = 4.0 simulation from the normalized laser vector potential sweep, as shown

in Figure 7.1. The derivation of the previously-given equation was based on the

trajectory of a single electron in an ion channel, such that the electron motion was
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Figure 7.1: (Left) The transverse electric field and (right) the electron density for the
∼ 20.3fs time frame in the a0 = 4.0 simulation. The low resolution is due
to a spatial-averaging algorithm used to reduce storage space.

governed by the external plasma fields. Figure 7.1 clearly shows that the fields gen-

erated by the electron beam are non-negligible, and in certain places even cause the

Lorentz force to reverse direction. Clearly, the assumptions of the previously-given

equation are violated, and new analytic scalings need to be derived.

In a broader sense, contemporary models of betatron motion (and the resulting

radiation generation) in LWFA experiments assume a single driving mechanism: in-

teraction between the electron beam and the fields of the laser wake, unperturbed

by the presence of the electron beam. The results from the simulations presented

in this dissertation strongly indicate that, instead, several distinct mechanisms can

drive this motion: interaction between the electron beam and the unperturbed wake

field, interaction between the electron beam and a wake field that is perturbed by the

presence of the electron beam, direction interaction between the electron beam and

the laser field, and hosing instabilities caused by the electron beam re-entering the

bulk plasma.

Moreover, variations in basic LWFA parameters like normalized vector potential

a0, electron density ne, and propagation length L appear to cause the dominant

mechanism of betatron motion to change. The observed changes in these parameters
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involved increases or decreases within only a single order of magnitude. Analytical

models of each of these regimes, and the transitions between them, would be of

obvious utility when using LWFA to generate synchrotron-like radiation.
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APPENDIX A

Theoretical Derivations

A.1 One-Dimensional Derivation of the Laser Wake-Field

Initially, a comparatively simple calculation of the generation of a non-linear

plasma wake in response to the propagation of a laser pulse can provide useful insight

into the LWFA mechanism. We will derive a closed set of 5 equations that determine

the evolution of the parameters γ (the relativistic factor), ux (the electron velocity

normalized to c), φ̃ (the electrostatic potential normalized to mc2/e), ay (the laser

vector potential normalized to mc2/e), and Cne, the electron plasma density. These

parameters define both the laser pulse and the plasma response in one dimension.

The derivation begins with the relativistic Maxwell-Lorentz system of equations:

∂~p

∂t
+
(
~v · ~∇

)
~p = −e

[
~E +

1

c

(
~v × ~B

)]
(A.1)

~∇ · ~E = 4π (n0 − ne) (A.2)

~∇× ~E = −1

c

∂ ~B

∂t
(A.3)
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~∇× ~B = −4π

c
ene~v +

1

c

∂ ~E

∂t
(A.4)

~∇ · ~B = 0 (A.5)

We immediately assume a one-dimensional geometry, in the direction of laser propa-

gation, with an arbitrary laser pulse defined by the vector potential:

~A = Ay (x− vgt) ŷ

Under this assumption, we can calculate the electric and magnetic fields from the

potentials:

~E = −~∇φ− ∂ ~A

∂t
= −∂φ

∂x
x̂−

(
∂φ

∂y
+
∂Ay
∂t

)
ŷ − ∂φ

∂z
ẑ

~E ≈ −∂φ
∂x
x̂− ∂Ay

∂t
ŷ − ∂φ

∂z
ẑ (A.6)

~B = ~∇× ~A = −∂Ay
∂z

x̂+
∂Ay
∂x

ẑ

~B =
∂Ay
∂x

ẑ (A.7)

Note that we have assumed that the electric field due to the scalar potential is neg-

ligible compared to the electric field due to the laser pulse in the expression for ~E,

and that the only contribution to ~A is from the laser in both expressions. We insert

equations A.6 and A.7 into equation A.1 to find expressions for the components of
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the electron momentum ~p in terms of ~A, starting with the y-component:

[
∂

∂t
+
(
~v · ~∇

)]
py =

dpy
dt

= −e
[
~E +

1

c

(
~v × ~B

)]
y

= −e
[
Ey +

1

c
(vzBx − vxBz)

]

dpy
dt

= −e
[
Ey −

1

c
(vxBz)

]
= −e

[
−1

c

∂Ay
∂t
− 1

c

(
vx
∂Ay
∂x

)]
=
e

c

[
∂Ay
∂t

+

(
vx
∂Ay
∂x

)]

dpy
dt

=
e

c

[
∂

∂t
+

(
vx

∂

∂x

)]
Ay =

d

dt

(e
c
Ay

)

Therefore, if there is no initial momentum in the y-direction, we may say:

py =
e

c
Ay (A.8)

With equation A.8, we can derive the five equations of our closed set. For the first

equation, we look at the x-component of equation A.1:

[
∂

∂t
+
(
~v · ~∇

)]
px =

dpx
dt

= −e
[
~E +

1

c

(
~v × ~B

)]
x

= −e
[
Ex +

1

c
(vyBz − vzBy)

]

dpx
dt

=
d

dt
(γmvx) = −e

[
Ex +

1

c
(vyBz)

]
= −e

[
−∂φ
∂x

+
1

c

(
vy
∂Ay
∂x

)]

We use equation A.8 to find an expression for vy in terms of Ay, which we then insert

into this expression:

py = γmvy =
e

c
Ay; vy =

eAy
γmc
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d

dt
(γmvx) = −e

[
−∂φ
∂x

+
1

c

(
eAy
γmc

∂Ay
∂x

)]
=

[
e
∂φ

∂x
− e2

γmc2

(
Ay
∂Ay
∂x

)]

m
d

dt
(γvx) =

[
e
∂φ

∂x
− e2

2γmc2

(
∂A2

y

∂x

)]

We define the following normalized quantities:

φ̃ ≡ eφ

mc2
;~a ≡ e ~A

mc2
; ~u ≡ ~v

c
(A.9)

Inserting equations A.9 into our expression for the x-component of the electron mo-

mentum yields:

mc
d

dt
(γux) =

[
mc2∂φ̃

∂x
− mc2

2γ

(
∂a2

y

∂x

)]

d

dt
(γux) = c

[
∂φ̃

∂x
− 1

2γ

(
∂a2

y

∂x

)]
(A.10)

Equation A.10 is the first expression in the closed, 1D LWFA set of equations. For

the second equation, we consider the expression for the relativistic factor γ. If we

assume that the velocity in the ẑ direction (i.e., the direction orthogonal to both the

direction of laser polarization and the direction of laser propagation) is negligible, γ

is given by:

γ ≡
√

1

1− v2

c2

=

√
1

1−
(
u2
x + u2

y

)
We can rearrange this expression:

1

γ2
= 1− u2

x − u2
y; 1 + γ2u2

y = γ2
(
1− u2

x

)
; γ2 =

1 + γ2u2
y

1− u2
x
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If we rewrite equation A.8 in terms of the normalized quantities defined in equations

A.9, we find:

γmcuy =
e

c

mc2

e
ay; γuy = ay

and we may express γ in terms of ay and ux to form the second expression of our

closed set:

γ =

√
1 + a2

y

1− u2
x

(A.11)

The third equation couples the electromagnetic field to the plasma density response,

and begins with Ampere’s law (equation A.4):

~∇× ~B = −4π

c
ene~v +

1

c

∂ ~E

∂t

where we substitute in the expressions for the fields ~E and ~B in terms of the potentials

φ and ~A, using the Coulomb gauge:

~E = −~∇φ− ∂ ~A

∂t
; ~B = ~∇× ~A; ~∇ · ~A = 0

~∇×
(
~∇× ~A

)
= −4π

c
ene~v +

1

c

∂

∂t

(
−~∇φ− ∂ ~A

∂t

)

~∇
(
~∇ · ~A

)
− ~∇2 ~A = −4π

c
ene~v −

1

c
~∇∂φ
∂t
− 1

c2

∂2 ~A

∂t2

1

c2

∂2 ~A

∂t2
− ~∇2 ~A = −4π

c
ene~v −

1

c
~∇∂φ
∂t
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We consider the ŷ-component of this equation (i.e., the direction of laser polarization);

we may assume that the displacement current is negligible compared to the plasma

current in this direction.

1

c2

(
∂2Ay
∂t2

− ~∇2Ay

)
= −4π

c
enevy

We express this equation in terms of the normalized quantities defined in equations

A.9:

(
∂2ay
∂t2
− c2~∇2ay

)
=
ec

m

4π

c
eneuy = −4πe2ne

m
uy

We rewrite the electron plasma density ne as a fraction, n, of the bulk plasma density

n0, such that n = ne/n0, and immediately identify the electron plasma frequency:

(
∂2ay
∂t2
− c2~∇2ay

)
= −4πe2n0

m
nuy = −ω2

penuy

Finally recalling that γuy = ay, we have our third equation, coupling the electromag-

netic wave to the plasma density response:

(
∂2ay
∂t2
− c2~∇2ay

)
= −ω2

pen
ay
γ

(A.12)

For the fourth equation, we take the well-known fluid continuity equation:

∂ne
∂t

+∇ · (ne~v) = 0

and rewrite it in one dimension, and in terms of the normalized quantities from

equations A.9 and in terms of n = ne/n0:

∂n

∂t
+ c

∂

∂x
(nux) = 0 (A.13)
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For the fifth and final equation, we begin with Poisson’s equation, and also rewrite it

in one dimension, and in terms of our normalized quantities:

−~∇2φ = 4πe (n0 − ne)

mc2

e

∂2φ̃

∂x2
= 4πen0 (n− 1)

∂2φ̃

∂x2
=

4πn0e
2

mc2
(n− 1) =

4πn0e
2

m

1

c2
(n− 1)

∂2φ̃

∂x2
=
ω2
pe

c2
(n− 1) = k2

pe (n− 1) (A.14)

In summary, we have a closed set of five equations for the five variables n, ux, γ, ay,

and φ:

d

dt
(γux) = c

[
∂φ̃

∂x
− 1

2γ

(
∂a2

y

∂x

)]
; γ =

√
1 + a2

y

1− u2
x

(
∂2ay
∂t2
− c2~∇2ay

)
= −ω2

pen
ay
γ

;
∂n

∂t
+ c

∂

∂x
(nux) = 0;

∂2φ̃

∂x2
= k2

pe (1− n) (A.15)

To extract a useful model from these equations, we employ a coordinate transforma-

tion, boosting to a comoving frame with an arbitrary group velocity vg; the variables

used in this frame, τ and ξ, are defined by:

τ ≡ t; ξ ≡ x− vgt (A.16)
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Partial derivatives in terms of these variables are therefore given by:

∂

∂x
=

∂

∂ξ
;
∂

∂t
=

∂

∂τ
− vg

∂

∂ξ

We take the first of equations A.15 and rewrite it according to equations A.16, starting

with the left-hand side:

d

dt
(γux) =

(
∂

∂t
+ cux

∂

∂x

)
γux =

(
∂

∂τ
− vg

∂

∂ξ
+ cux

∂

∂ξ

)
γux

then the right-hand side:

c

[
∂φ̃

∂x
− 1

2γ

(
∂a2

y

∂x

)]
= c

∂φ̃

∂ξ
− c

2γ

(
∂a2

y

∂ξ

)

giving:

∂

∂τ
(γux)− vg

∂

∂ξ
(γux) + cux

∂

∂ξ
(γux) = c

∂φ̃

∂ξ
− c

2γ

(
∂a2

y

∂ξ

)

1

c

∂

∂τ
(γux)−

vg
c

∂

∂ξ
(γux) + ux

∂

∂ξ
(γux)−

∂φ̃

∂ξ
= − 1

2γ

(
∂a2

y

∂ξ

)

We may rewrite the right-hand side of this expression by using the second of equations

A.15:

1 + a2
y

1− u2
x

= γ2; a2
y = γ2

(
1− u2

x

)
− 1

∂a2
y

∂ξ
=

∂

∂ξ

[
γ2
(
1− u2

x

)
− 1
]

=
∂γ2

∂ξ
− ∂

∂ξ

(
γ2u2

x

)
= 2γ

∂γ

∂ξ
− 2u2

xγ
∂γ

∂ξ
− 2γ2ux

∂ux
∂ξ
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We therefore have:

1

c

∂

∂τ
(γux)−

vg
c

∂

∂ξ
(γux) + ux

∂

∂ξ
(γux)−

∂φ̃

∂ξ
= −∂γ

∂ξ
+ u2

x

∂γ

∂ξ
+ γux

∂ux
∂ξ

1

c

∂

∂τ
(γux) =

vg
c

∂

∂ξ
(γux)− ux

∂

∂ξ
(γux) +

∂φ̃

∂ξ
− ∂γ

∂ξ
+ ux

∂

∂ξ
(γux)

1

c

∂

∂τ
(γux) =

∂

∂ξ

[
φ− γ

(
1− vgux

c

)]
(A.17)

Equation A.17 is, of course, equation A.10 boosted into the comoving frame defined

by equations A.16. We repeat this process for the continuity equation, equation A.13:

∂n

∂t
= −c ∂

∂x
(nux)

(
∂

∂τ
− vg

∂

∂ξ

)
n = −c ∂

∂ξ
(nux)

∂n

∂τ
= vg

∂n

∂ξ
− c ∂

∂ξ
(nux) =

∂

∂ξ
[n (vg − cux)]

1

c

∂n

∂τ
=

∂

∂ξ

[
n
(vg
c
− ux

)]
(A.18)

Equation A.18 is equation A.13 boosted into the comoving frame defined by equations

A.16. At this point, we employ the quasi-static approximation (QSA), which says

that, in this comoving frame, the characteristic time of the pulse evolution, in τ , is
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much longer than the period of the laser pulse. Effectively, the QSA lets us set:

∂

∂τ
= 0

when compared with derivatives with respect to ξ. We first apply this approximation

to equation A.17 and integrate:

∂

∂ξ

[
φ− γ

(
1− vgux

c

)]
= 0

φ− γ
(

1− vgux
c

)
= const

By noting that, as ξ goes to ∞, ux = 0, φ = 0, and γ = 1 (i.e. noting that, ahead

of the pulse, there is no plasma wave), we find that the constant of integration must

equal -1:

φ− γ
(

1− vgux
c

)
= −1

Similarly, we apply the QSA to equation A.18 and integrate:

∂

∂ξ

[
n
(vg
c
− ux

)]
= 0

n
(vg
c
− ux

)
= const

Again, noting that, as ξ goes to ∞ (i. e., ahead of the pulse), ux goes to 0 and the

density fraction n must go to 1, we find that the constant of integration must equal
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vg/c:

n
(vg
c
− ux

)
=
vg
c

For clarity, we define βg ≡ vg/c, and we have:

φ− γ (1− βgux) + 1 = 0 (A.19)

n =
βg

βg − ux
(A.20)

Together with equation A.11:

γ =

√
1 + a2

y

1− u2
x

and the Poisson equation (equation A.14) rewritten in the comoving coordinates:

∂2φ̃

∂ξ2
= k2

pe (n− 1) (A.21)

equations A.19 and A.20 form a set of 3 algebraic relations and one differential equa-

tion which define the non-linear plasma response to a laser pulse, under the QSA

in a frame moving with group velocity vg. These equations can be further simplified

through algebraic manipulations, until we have expressions for γ, ux, and n exclusively

as functions of φ and ay. We begin with equation A.19:

φ+ 1 = γ (1− βgux)

(φ+ 1)2 = γ2 (1− βgux)2 = γ2
(
1− 2βgux + β2

gu
2
x

)
= γ2

[
2 (1− βgux) + β2

gu
2
x − 1

]
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We may eliminate ux in this expression by rearranging equations A.19 and A.11:

γ (1− βgux) = φ+ 1; 1− βgux =
φ+ 1

γ

γ2 =
1 + a2

y

1− u2
x

; 1− u2
x =

1 + a2
y

γ2
;u2

x = 1−
1 + a2

y

γ2

(φ+ 1)2 = γ2
[
2 (1− βgux) + β2

gu
2
x − 1

]
= γ2

[
2

(
φ+ 1

γ

)
+ β2

g

(
1−

1 + a2
y

γ2

)
− 1

]

(φ+ 1)2 = γ2

[
2

(
φ+ 1

γ

)
+ β2

g − β2
g

1 + a2
y

γ2
− 1

]

(φ+ 1)2 = 2γ (φ+ 1) + β2
gγ

2 − β2
g

(
1 + a2

y

)
− γ2 = 2γ (φ+ 1)− β2

g

(
1 + a2

y

)
− γ2

(
1− β2

g

)
We define the parameter γg:

γg =

√
1

1− β2
g

such that:

1 =
2γ

φ+ 1
−
β2
g

(
1 + a2

y

)
(φ+ 1)2 − γ2

γ2
g (φ+ 1)2

γ2
g + 1− γ2

g

γ2
g

=
2γ

γ2
g (φ+ 1)

−
β2
g

(
1 + a2

y

)
γ2
g (φ+ 1)2 −

γ2

γ4
g (φ+ 1)2
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γ2

γ4
g (φ+ 1)2 −

2γ

γ2
g (φ+ 1)

+ 1 =
γ2
g − 1

γ2
g

−
β2
g

(
1 + a2

y

)
γ2
g (φ+ 1)2

(
1− γ

γ2
g (φ+ 1)

)2

= β2
g −

β2
g

(
1 + a2

y

)
γ2
g (φ+ 1)2

1− γ

γ2
g (φ+ 1)

= βg

√
1−

(
1 + a2

y

)
γ2
g (φ+ 1)2

γ = γ2
g (φ+ 1)

[
1− βg

√
1−

(
1 + a2

y

)
γ2
g (φ+ 1)2

]

For simplicity, we define:

ψ ≡

√
1−

(
1 + a2

y

)
γ2
g (φ+ 1)2 (A.22)

such that γ, expressed as a function of ay and ψ, is given by:

γ = γ2
g (φ+ 1) (1− βgψ) (A.23)

We may find a similar expression for ux; we again begin with equation A.19; rear-

ranging to solve for ux, and using equation A.23 to cancel out γ and φ:

φ+ 1 = γ (1− βgux)

ux =
1

βg

(
1− φ+ 1

γ

)
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ux =
1

βg

[
1− 1

γ2
g (1− βgψ)

]
=

1

βg

[
(1− βgψ)−

(
1− β2

g

)
(1− βgψ)

]

ux =
βg − ψ

(1− βgψ)
(A.24)

Equation A.24 is ux expressed as a function of ay and ψ; we may insert this expression

into equation A.20 to find the density as a function of ay and ψ:

n =
βg

βg − ux
=

βg

βg − βg−ψ
(1−βgψ)

=
βg (1− βgψ)

βg (1− βgψ)− βg + ψ
=
βg (1− βgψ)

ψ
(
1− β2

g

)

n = βgγ
2
g

(
1

ψ
− βg

)
(A.25)

We can take equation A.25 and use it to eliminate n in the Poisson equation (equation

A.21:

∂2φ̃

∂ξ2
= k2

pe (n− 1) = k2
pe

[
βgγ

2
g

(
1

ψ
− βg

)
− 1

]
= k2

peγ
2
g

(
βg
ψ
− β2

g −
1

γ2
g

)

∂2φ̃

∂ξ2
= k2

peγ
2
g

[
βg
ψ
− β2

g −
(
1− β2

g

)]
= k2

peγ
2
g

(
βg
ψ
− 1

)

Finally, we have a differential equation for φ̃ in terms of ay:

∂2φ̃

∂ξ2
= k2

peγ
2
g

 βg

(
1 + φ̃

)
√(

1 + φ̃
)2

− γ−2
g

(
1 + a2

y

) − 1

 (A.26)
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which, together with equations A.22, A.23, A.24, and A.25:

ψ ≡

√√√√√1−
(
1 + a2

y

)
γ2
g

(
φ̃+ 1

)2 ; γ = γ2
g

(
φ̃+ 1

)
(1− βgψ)

ux =
βg − ψ

(1− βgψ)
; n = βgγ

2
g

(
1

ψ
− βg

)

provides a set of 4 algebraic equations and 1 differential equation that can be solved

to find the non-linear one-dimensional response of a plasma to a propagating laser

pulse. Equation A.26 can be solved numerically for an arbitrary ay (ξ, τ). For a laser

pulse with a Gaussian time envelope with the following parameters:

1. Peak laser field ay0 = 5.0

2. Bulk plasma density n0 = 0.01ncrit

3. Group velocity βg = 0.99

4. Pulse spread σ = 5λLaser

the plasma response to the laser is shown in figures A.1 and A.2. It is immedi-

ately apparent that in this nonlinear wake, highly energetic electrons (shown by the

peaks in γ in figure A.1 and in ne/ncrit in figure A.2) co-propagate with the wake-

field structure, gaining energy from the electrostatic potential shown in figure A.1.

Insight into the salient characteristics of the system can be gained by varying the

fundamental system parameters and observing the response. If the peak laser poten-

tial ay0 is reduced from 5.0 to 1.0, the wake structure is much more linear, as shown

in figures A.3 and A.4. The wake response is also severely reduced if the pulse length

is increased from σ = 5λLaser to σ = 10λLaser without varying ay0, as shown in figures
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Figure A.1: The energetic parameters of the plasma in response to an intense, short
laser pulse. The laser intensity is shown in blue. The electrostatic po-
tential response φ̃ is shown in maroon. The electron energy γ is shown
in gold.
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Figure A.2: The bulk parameters of the plasma in response to an intense, short laser
pulse. The laser intensity is shown in blue. The electron velocity ux
(normalized to the speed of light c) is shown in maroon. The electron
density ne (shown as a fraction of the critical density ncrit) is shown in
gold.
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Figure A.3: The energetic parameters of the plasma in response to a low-intensity,
short laser pulse. The laser intensity is shown in blue. The electrostatic
potential response φ̃ is shown in maroon. The electron energy γ is shown
in gold.
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Figure A.4: The bulk parameters of the plasma in response to a low-intensity, short
laser pulse. The laser intensity is shown in blue. The electron velocity
ux (normalized to the speed of light c) is shown in maroon. The electron
density ne (shown as a fraction of the critical density ncrit) is shown in
gold.
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Figure A.5: The energetic parameters of the plasma in response to an intense, long
laser pulse. The laser intensity is shown in blue. The electrostatic po-
tential response φ̃ is shown in maroon. The electron energy γ is shown
in gold.
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Figure A.6: The bulk parameters of the plasma in response to an intense, long laser
pulse. The laser intensity is shown in blue. The electron velocity ux
(normalized to the speed of light c) is shown in maroon. The electron
density ne (shown as a fraction of the critical density ncrit) is shown in
gold.
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Figure A.7: The energetic parameters of the plasma in response to an intense, very
short laser pulse. The laser intensity is shown in blue. The electrostatic
potential response φ̃ is shown in maroon. The electron energy γ is shown
in gold.
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Figure A.8: The bulk parameters of the plasma in response to an intense, very short
laser pulse. The laser intensity is shown in blue. The electron velocity
ux (normalized to the speed of light c) is shown in maroon. The electron
density ne (shown as a fraction of the critical density ncrit) is shown in
gold.
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A.5 and A.6. The wake response is actually strengthened by reducing the pulse length

from σ = 5λLaser to σ = 2.5λLaser without varying ay0, as shown in figures A.7 and

A.8.
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APPENDIX B

Published Manuscripts

B.1 Introduction

For posterity, in this section we reproduce the manuscripts that were published in

pursuit of this dissertation.

B.2 Aberrant Pulse Simulations

The following manuscript was published as an article in the journal “Physics of

Plasmas,” Volume 18, page 053110, under the title “A Computational Investigation

of the Impact of Aberrated Gaussian Laser Pulses on Electron Beam Properties in

Laser-Wakefield Acceleration Experiments.”

Realizing practical devices based on the LWFA scheme will require an understand-

ing of the sensitivity of the system’s performance as an accelerator to deviations from

the ideal physics of the LWFA regime. Parameters of interest for characterizing the

system’s performance include the peak beam energy, beam emittance [? ], and peak

beam current. One major possible deviation of the system from the idealized physics
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consists of deviations from Gaussian in the pulse intensity profile. Additional devi-

ations from an ideal pulse can take the form of aberrations in the phase front and

variations in the temporal profile of the pulse.

Furthermore, recent experimental results [? ] indicate that the introduction of

a comatic aberration in a LWFA system can enhance the production of synchrotron

x-rays via an increase in the betatron oscillation amplitude. An analysis of the re-

sponse of the LWFA system will enable supporting this research by providing robust

computational tools for introducing a comatic aberration to a LWFA system, and

analyzing the system’s response to that aberration.

Computational methods provide an ideal avenue of investigation for these prob-

lems, as both the shape and magnitude of the pulse shape’s deviation from the Gaus-

sian can be precisely controlled. In particular, the particle-in-cell (PIC) method is

an ideal computational method for studying the highly kinetic, collisionless, relativis-

tic plasmas found in LWFA systems. This paper therefore presents the results of a

computational investigation into the impact of non-Gaussian pulse intensity profiles,

stemming from the comatic optical aberration, on the performance of a LWFA-based

electron accelerator .

B.2.1 Background

B.2.1.1 Overview of the Diffraction Theory of Optical Aberrations

Here we briefly review the diffraction theory of optics. In this theory, optical

aberrations are characterized by an expansion of a diffraction integral [? ]:

U (u, v, ψ) = − i
λ

Aa2

R2
ei(

R
a )

2
u×
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1∫
0

2π∫
0

ei[kφ(Y
∗
1 ,ρ,θ)−vρcos(θ−ψ)− 1

2
uρ2]ρdρdθ (B.1)

in terms of basis functions, where u, v, and ψ are the optical coordinates [? ]. This

integral is defined such that the intensity is given by [? ]:

I (u, v, ψ) = |U (u, v, ψ) |2 (B.2)

For the diffraction pattern associated with a single aberration, equation B.1 can be

expanded in terms of Bessel functions Jn and Zernike Polynomials Rm
n [? ]:

U (u, v, ψ) = 4C
∞∑
s=0

′

(−i)(m−1)s cos (msψ)×

1∫
0

e−
1
2
iuρ2Js [αlnmR

m
n (ρ)] Jms (vρ) ρdρ (B.3)

For small aberrations (i.e. where the constant αlnm is small), the first Bessel function

in the integral of equation B.3 can be expanded in a power series; this lets us rewrite

equation B.3 as[? ]:

U (u, v, ψ) = C[U0 (u, v, ψ) + iαlnmU1 (u, v, ψ)

+ (iαlnm)2 U2 (u, v, ψ) + (iαlnm)3 U3 (u, v, ψ) +

(iαlnm)4 U4 (u, v, ψ) + ...] (B.4)
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where the expansion terms are given by the integrals[? ]:

U0 = 2

1∫
0

e−
1
2
iuρ2J0 (vρ) ρdρ (B.5)

U1 = 2(−i)mcos (mψ)×

1∫
0

e−
1
2
iuρ2Rm

n (ρ) Jm (vρ) ρdρ (B.6)

U2 =
1

2!

{ 1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}2J0 (vρ) ρdρ+

i2m cos (2mψ)

1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}2J2m (vρ) ρdρ
}

(B.7)

U3 =
1

2× 3!

{
3 (−i)m cos (mψ)×

1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}3Jm (vρ) ρdρ

i2m cos (2mψ)

1∫
0

e−
1
2
iuρ2{Rm

n (ρ)}2J2m (vρ) ρdρ
}

(B.8)
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The constants l, n, and m are integers specifying the type of aberration, as shown in

table B.1:

Table B.1: Aberration Types and Integers[? ]
Aberration Type l n m

Spherical 0 4 0
Comatic 0 3 1

Astigmatic 0 2 2
Curvature 1 2 0
Distortion 1 1 1

B.2.1.2 Comatic Aberration Implementation

Recent experimental work [? ] indicates that the presence of comatic aberration

may enhance x-ray production via synchrotron radiation in a LWFA device. There-

fore, the comatic aberration is the first aberration we study in detail. The expansion

given by equation B.4 was truncated after four terms; equations B.6 through B.8 (the

expression for U4, while included in the calculations, is omitted below for brevity),

yield:

U1 = i cos (ψ)
2J4 (v)

v
(B.9)

U2 =
1

2v

{
1

4
J1 (v)− 1

20
J3 (v) +

1

4
J5 (v)

− 9

20
J7 (v)− cos (2ψ)

[
2

5
J3 (v) +

3

5
J7 (v)

]}
(B.10)

U3 =
−i
12v

{
3 cos (mψ)

{
3

14
J10 (v)− 6

35
J8 (v)
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+
9

70
J6 (v)− 44

105
J4 (v) +

1

15
J2 (v)

}
+

cos (3mψ)

{
9

28
J10 (v) +

9

20
J6 (v)− 8

35
J4 (v)

}}
(B.11)

Figure B.1 shows the results of equations B.9 through B.11, as well as the equation

for U4, for α ≈ 1, if the unperturbed pattern U0 is take to be either an Airy pattern

or a Gaussian pattern.

Figure B.1: The intensities of an Airy pattern (left) and a Gaussian pattern (right)
perturbed with an α = 1.005 coma.

B.2.2 Simulation Methodology & Parameters

For this investigation, both two-dimensional and three-dimensional simulations

were run using the particle-in-cell code OSIRIS 2.0. The three-dimensional version of

the code was modified to explicitly include comatic aberrations. Both two- and three-

dimensional simulations were performed; the two-dimensional simulations permitted

a thorough parameter sweep, while the three-dimensional simulations permitted an

accurate depiction of the comatic aberration.
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B.2.2.1 Two-Dimensional Simulations

For small perturbations in 2D, the superposition of TEM00 and TEM10 modes

is similar to the coma aberration. Additionally, OSIRIS 2.0 can simulate this pulse

structure without any modifications to the source code. For these reasons, preliminary

simulations consisted of a TEM00 (i.e., a Gaussian) baseline pulse with a higher-order

TEM10 pulse superimposed.

For the 2D simulations, the relative intensities and positions of the pulses were

varied to effect different degrees of mode mixing and asymmetry, while keeping the

total pulse energy constant. Since pulse energy scales as the square of the normalized

vector potential, pulse energy was kept constant by keeping the quadrature sum of

the normalized vector potentials of the two pulses constant. The relative intensities

between the two pulses were quantified via the mixing fraction, which is defined as

follows; let f00 ≡ a00

a0
and f10 ≡ a10

a0
:

a2
0 = a2

00 + a2
10 = (f00a0)2 + (f10a0)2 =

(
f 2

00 + f 2
10

)
a2

0

(
f 2

00 + f 2
10

)
= 1

It is therefore most convenient to define the mixing fraction as the square of the

ratio between the maximum normalized vector potential of the TEM10-mode pulse,

and the total maximum normalized vector potential of the pulse (i.e., the maximum

normalized vector potential of the unperturbed pulse). A computational sweep of this

mixing fraction was performed; for brevity, these initial simulations were performed

using the two-dimensional version of OSIRIS.

For all two-dimensional simulations, the maximum plasma density was nmax =

0.01ncrit, or 1.75 × 1019cm−3. The simulation box size was 38.2 × 63.7µm; the box
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moved at speed c in the laser propagation direction. The propagation time was

3475fs, giving a propagation distance of 1.04mm. The plasma density profile started

with a linear ramp from n = 0 to n = nmax over a distance of 63.5µm, and ended

with a linear ramp from n = nmax to n = 0 over the same distance.

Computationally, the system was initialized with 2 particles per cell. The system

had a grid size of 1200×500 (with the highest resolution in the propagation direction).

This gave a grid spacing of ∆x×∆y = 0.03185× 0.1274µm.

For the two-dimensional simulations, the laser pulse’s full-width, half-maximum

spot size was 5.1µm. The pulse’s full-width, half-duration was 35fs. The total

normalized vector potential was a0 = 4.0. The vector potentials of the TEM00 and

TEM10 pulses were added together in quadrature to maintain a constant total pulse

energy, i.e. a2
00 + a2

10 = a2
0. This value of a0 gives a peak pulse intensity of 3.5 ×

1019W/cm2.

The emittance, current, and energy characteristics of the electron beams pro-

duced were then measured. These parameters were determined by analyzing the final

frame of the simulation, at which point the plasma density was zero and the electron

population could be assumed to consist entirely of the beam.

B.2.2.2 Three-Dimensional Simulations

The three-dimensional simulations consisted of a single Gaussian pulse, modified

by a comatic aberration defined by the expansion parameter α. The parameter α was

varied from 0.2 to 1.0 for the computational sweep.

For all three-dimensional simulations, the maximum plasma density was nmax =

0.01ncrit, or 1.75×1019cm−3. The simulation box size was 38.1µm×31.8µm×31.8µm;

the box moved at speed c in the laser propagation direction. The propagation time

was 3392fs, yielding a propagation distance of 1.02mm. As with the two-dimensional

simulations, the plasma density profile started and ended with a linear ramp from
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n = 0 to n = nmax over a distance of 63.5µm.

Computationally, the system was initialized with 2 particles per cell. The system

had a grid size of 1200 × 250 × 250 (with the highest resolution in the propagation

direction). This gave a grid spacing of ∆x×∆y×∆z = 0.03175×0.1272×0.1272µm.

As with the two-dimensional simulations, the laser pulse’s full-width, half-maximum

spot size was 5.1µm, and the pulse’s full-width, half-duration was 35fs. The normal-

ized vector potential was a0 = 4.0, yielding a peak pulse intensity of 3.5×1019W/cm2.

Again, as with the two-dimensional simulations, the emittance, current, and energy

characteristics of the electron beams produced were then measured by analyzing the

final frame of the simulation.

B.2.2.3 Parameter Characterization

For the three-dimensional simulations, the current data was extracted directly

from the code. The peak forward current, i.e. the current parallel to the direction of

laser propagation, was calculated from these distributions.

The beam emittance was calculated from:

εi = 4〈∆xi〉〈∆vi〉

where the subscript i denotes whether or not the positions and velocities are taken

in the polarization direction, or perpendicular to the polarization direction. The

quantity 〈∆xi〉 is the root-mean-square deviation of the particle position from the

mean particle position in the ith direction, and the quantity 〈∆vi〉 is the root-mean-

square deviation of the particle velocity from the mean particle velocity in the ith

direction, as a fraction of the velocity in the propagation direction.

Since OSIRIS prints the relativistic factor γ, calculating the beam energy distribu-

tion from the printed gamma distribution via E = (γ − 1)m0c
2 was straightforward.
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For the three-dimensional simulations, the peak beam energies were calculated from

the maximum of the energy spectra. However, for the two-dimensional simulations,

the average beam energies were taken, as the two-dimensional energy spectra did not

have clearly-defined single energy peaks.

B.2.3 2D TEM00/TEM10 Mode-Mixing Preliminary Simulation Results

Figure B.8 shows, respectively, the initial laser pulse for the two-dimensional,

mode-mixing simulations at mixing fractions of 0.05, 0.50, and 0.95. The results of

these simulations are shown in Figures B.2 and B.3.

Figure B.2: The effect of mode mixing on the 2D perpendicular beam emittance

Figure B.2 shows the relationship between the beam’s perpendicular emittance

and the mode mixing fraction. The TEM 10 mode is functionally similar to a pair

of copropagating pulses with 180 degree phase shift; it has been shown [? ] that
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the nonlinear interaction of two such pulses will cause them to repel, resulting in the

observed increase in the final beam emittance.

Figure B.3: The effect of mode mixing on the 2D beam averaged energy

Figure B.3 shows the relationship between the beam’s peak energy and the mode

mixing fraction. The beam energy showed weak correlation to the mixing fraction

(R2 < 0.20), oscillating between 200 and 400 MeV over the course of the parameter

sweep.

B.2.4 3D Explicit Coma Simulation Results

Figure B.9 shows the intensity profile for a three-dimensional simulation with an

α = 1.005 coma. The results of the three-dimensional simulations including a direct

calculation of the comatic aberration are shown in Figures B.4 through B.7.

Figure B.4 shows the relationship between the aberration coefficient α and the

peak beam current. The current varies by 20% over the parameter range, with a
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Figure B.4: The effect of a comatic aberration on the 3D peak beam current
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correlation of R2 = 0.74. This does not appear have a dramatic impact on the beam

performance, as even after a severe aberration is applied, the peak current varies by

less than 20%.

Figure B.5: The effect of a comatic aberration on the 3D peak beam energies

Figure B.5 shows the relationship between the aberration coefficient α and the

peak beam energy. The peak energies vary by less than 10% over the entire parameter

range, with a correlation of only R2 = 0.58. These results indicate that even in the

presence of a severe aberration, peak beam energy is relatively unaffected.

Figure B.6 shows how the shape of the beam electron energy spectra varies with α.

This figure shows that there is a weak relationship between the beam energy spread

or general shape of the energy spectrum and the aberration strength.

Figure B.7 shows the relationship between the aberration coefficient α and both

the polarization (top) and perpendicular (bottom) emittances. Note that the primary

aberration axis was in the polarization direction; Figure B.7 shows that a strong co-
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Figure B.6: The effect of a comatic aberration on the 3D beam electron energy
spectra; note that the spectral heights have been arbitrarily scaled
for clarity; the corresponding values of α are, from bottom to top:
α = 0.2, 0.4, 0.6, 0.8,&1.0 231



Figure B.7: The effect of a comatic aberration on both the polarization (top) and
perpendicular (bottom) 3D beam emittances
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matic aberration increases polarization emittance noticeably, while leaving the per-

pendicular emittance relatively unaltered.

These results support the conclusions of recent experimental work indicating that

a comatic aberration can increase the amplitude of the betatron oscillation produced

by the undulating beam in a laser-wakefield accelerator. [? ]. The difference between

the polarization and perpendicular emittances indicates that there is a high beam

ellipticity, a condition which enhances x-ray generation by synchrotron radiation [?

].

B.2.5 Conclusion

The results of this computational sweep are promising on two fronts. First, the

results indicate that the performance of a LWFA device will be relatively unaffected

by the presence of even a strong comatic aberration. Neither the peak beam energy,

nor the electron energy spread, were significantly affected by the presence of a strong

comatic aberration for the three-dimensional simulations. Second, the trends in per-

pendicular and polarization emittances indicate that the beam ellipticity increases

with the strength of the comatic aberration. This supports recent experimental work

indicating that the presence of a coma can enhance the production of x-rays via

synchrotron radiation.
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Figure B.8: The initial laser pulses for mixing fractions of, from left to right, 5%,
50%, and 95%

Figure B.9: The 3D intensity profile of the pulse for an aberration coefficient α =
1.005
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