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Abstract

The effectiveness of synaptic transmission at most mammalian synapses depends 

largely on the maintenance of a high density of postsynaptic receptors. In a mature synapse, 

this density is highly dynamic and can be regulated by several factors including synaptic 

activity, post-translational modifications of receptors, and scaffold proteins. In my thesis 

work, I focused on the regulation of AChR clustering, which is the hallmark of a 

neuromuscular junction, a well characterized cholinergic synapse between the motor neuron 

and the skeletal muscle. Among several pathways, I first focused on the role of α-syntrophin 

(α-syn), a member of the dystrophin glycoprotein complex (DGC), in the development and 

modulation of nAChR dynamics of the mouse NMJ. Using α-syn knock-out mice, I showed 

that α-syn is not required for synapse formation, but it is essential for synapse maturation. 

Particularly, I demonstrated that during the maturation of synapses, the integrity of the 

postsynaptic apparatus is altered, the turnover rate of AChRs increases significantly, and the 

number/density of AChRs is impaired. The synaptic alterations observed in this mouse 

mutant were explained by the loss of tyrosine phosphorylated α-dystrobrevin (α-dbn).  

Interestingly, when GFP-α-dbn1 was electroporated into sternomastoid muscles of α-syn 

mutant, most of synaptic abnormalities were partially restored. In the second part of my thesis 

work, I investigated the role of serine/threonine kinases, particularly PKC and PKA on the 

regulation of nAChR trafficking. We found that PKC accelerates nAChR removal and 

inhibits recycling at the NMJ, while PKA has the opposite effect. Finally, I begin to address 

the role of the Wnt/β-catenin pathway in the adult NMJ, and we show that β-catenin interacts 

with the DGC in mature synapses, via rapsyn. Taken together, these results provide new 
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insights into the cellular and molecular underlying signaling of the regulation of nAChR 

trafficking and dynamics.  
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Chapter I 

Introduction

Communication between neurons is crucial for transmission and processing of 

information in the central nervous system (CNS), as well as control of functional effectors by 

nerves. Most synapses in the nervous systems of mammals are chemical synapses, 

characterized by a specialized presynaptic terminal juxtaposed to a highly distinct 

postsynaptic density. From the presynaptic terminal, the neuronal action potential triggers the 

release of neurotransmitter-packed vesicles; these molecules then diffuse through the few 

micrometers-wide synaptic space. In the postsynaptic membrane, in most mammalian CNS 

synapses, there is a markedly high density of postsynaptic receptors. These postsynaptic 

receptors usually trigger ionic currents directly (ionotropic receptors) or modulate ion 

channels indirectly (metabotropic receptors) to modulate the excitability or the activity of the 

postsynaptic cell. Therefore, the concentration of receptors at the postsynaptic density is 

crucial for the modulation of synaptic strength. In fact, in the past decades, an extensive body 

of research has shown that posttranslational modifications and regulation of intracellular 

trafficking of receptors can modulate the postsynaptic density of receptors, in turn leading to 

those forms of synaptic plasticity most relevant for memory consolidation, long-term 

potentiation (LTP) and depression (LTD) (Huganir and Nicoll, 2013). 

Due to the difficulties in accessibility and small size (≈ 1 µm) of central synapses, the 

peripheral neuromuscular junction (NMJ) has been widely used as a model synapse. Since 

NMJs and central synapses share many similarities, understanding the behavior of receptors 

at the NMJ may also give insights into changes at the less accessible central synapses. The 
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NMJ is an excitatory synapse in which maintenance of a high density of ionotropic nicotinic 

acetylcholine receptors (nAChRs) is crucial for maintaining appropriate physiological 

function. It has remarkable features that make it an excellent model to investigate the 

dynamics of synaptic receptors in living animals: 1) the high density of synaptic nAChRs 

facilitates detection; 2) the availability of a marker (α-bungarotoxin; BTX) that binds 

specifically and quasi-irreversibly to muscle nAChRs and that can be labeled with different 

fluorescent and/or biochemical tags; 3) its easy accessibility for manipulation and its simple 

morphology for examination; and 4) the possibility of viewing the same individual synapses 

over days or perhaps even months, a pre-requisite for understanding the basics of long term 

changes in neuronal circuitry function. In addition to its relevance as a model synapse, 

neuromuscular transmission is also required for life, and deleteriously affected in many 

pathological conditions, such as trauma, degenerative diseases (lateral amyotrophic sclerosis, 

multiple sclerosis etc.), dystrophies and myasthenias. In all those disease states, the 

postsynaptic apparatus, most specifically receptor density is affected (Akaaboune et al., 1999; 

Grady et al., 1999; Durbeej and Campbell, 2002; Dupuis and Loeffler, 2009; Gilhus, 2012). 

Together, our knowledge about these pathologies highlights the relevance of: a) 

maintaining a high density of postsynaptic nAChRs for proper NMJ function, b) the nAChR 

trafficking pathways, such as internalization and, more recently, recycling (Bruneau et al., 

2005), in the maintenance of this density and c) the role of receptor-associated proteins in 

nAChR stability (Gilhus, 2012). Accordingly, this introduction will further discuss the 

nAChR intracellular trafficking pathways and the role of receptor-associated proteins in the 

regulation of receptor dynamics. Further, in this work, we will explore the role of the 

dystrophin-associated protein α-syntrophin in the development and regulation of nAChR 

dynamics in the mouse NMJ. Then, we will characterize the effect of PKA and PKC on the 

regulation of nAChR removal from synaptic sites as well as their recycling in adult NMJs. 
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Finally, we will show the results of our initial investigation into a possible role of the Wnt/β-

catenin pathway in the adult NMJ. Together, these results advance our understanding of 

signaling mechanisms involved in the regulation of the crucial dynamics that maintain the 

density of postsynaptic receptors in the NMJ. 

 

Dynamics of Nicotinic Acetylcholine Receptors and Receptor-Associated 

Proteins at the Vertebrate Neuromuscular Junction 

Previously published in Current Alzheimer Research (Curr Alzheimer Res. 2013 Jul;10(6):631-41) 

Marcelo Pires-Oliveira, Derek Moen and Mohammed Akaaboune (I was responsible for most 

of the literature review and writing of the manuscript) 

 

Abstract 

The mature neuromuscular junction (NMJ) is the best characterized cholinergic 

synapse. The maintenance of a high number and density of nicotinic acetylcholine receptors 

(nAChRs) at the postsynaptic membrane adjacent to the nerve terminal are crucial for NMJ 

function. This density is maintained by several factors, ranging from synaptic activity to 

postsynaptic scaffold proteins. Decreases in postsynaptic nAChR density are related to 

myasthenic syndromes in the peripheral NMJ, but are also associated in central synapses with 

neurodegenerative diseases such as Alzheimer’s. In this review, we focus particularly on our 

increasing knowledge about the molecular dynamics of nAChR at the peripheral cholinergic 

NMJ and their regulation by the postsynaptic proteins of the dystrophin glycoprotein complex 

(DGC). 
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Introduction 

The mature neuromuscular junction (NMJ) is characterized by a high postsynaptic 

density of nicotinic acetylcholine receptors (nAChRs) (Fambrough and Hartzell, 1972; 

Hartzell and Fambrough, 1972). Over the last decades, genetic, molecular and biochemical 

approaches have identified several molecules involved in the initial clustering of nAChRs 

(which have been extensively reviewed elsewhere) (Sanes and Lichtman, 2001; Wu et al., 

2010) and in the stability of postsynaptic nAChRs. In the adult NMJ, the maintenance of a 

high density of receptors at the postsynaptic membrane is crucial for a normal, functioning 

synapse. Activity-dependent changes in receptor density are critical for both synaptic 

development and synaptic plasticity (Collingridge et al., 2004; Martinez-Pena y Valenzuela et 

al., 2010). In the central nervous system (CNS), the disassembly of the postsynaptic density is 

also a hallmark of many neurological diseases and pathological conditions. For example, the 

cholinergic system is consistently and dramatically affected in Alzheimer’s disease (AD) 

(Picciotto and Zoli, 2002; Buckingham et al., 2009; Schliebs and Arendt, 2011). The 

expression of neuronal nAChRs subtypes, mainly α4β2 and α7, is markedly reduced in many 

brain regions of AD animal models and human patients (Buckingham et al., 2009). These 

changes are not due to transcriptional regulation of nAChR subunit genes, as mRNA remains 

unchanged (Buckingham et al., 2009), suggesting that AD-induced nAChR down-regulation 

resulted from defects in intracellular trafficking pathways or in their metabolic stability. 

At cholinergic synapses in the CNS, the understanding of molecular dynamics of 

nAChRs and the underlying cellular and molecular mechanisms involved in their regulation 

is complicated by many factors, such as the large diversity of nAChR subunits, the 

prevalence of extrasynaptic clustered and unclustered nAChRs in neurons, and the crucial 

role of presynaptic nAChRs (Huh and Fuhrer, 2002; Lendvai and Vizi, 2008; McCann et al., 
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2008). However, the accessibility of the NMJ provides obvious advantages in the study of 

nicotinic neurotransmission. Molecular signals involved in initial nAChR clustering and 

plasticity, postsynaptic receptor dynamics and the role of receptor-associated proteins on 

receptor stability all have been first studied at the NMJ, and were later found to be similar in 

neuronal-neuronal synapses (Huh and Fuhrer, 2002; Lai and Ip, 2003; Bruneau and 

Akaaboune, 2007; McCann et al., 2008; Shi et al., 2012). Therefore, this review will focus on 

these mechanisms that are presumed to be conserved between peripheral and CNS synapses. 

At mature synapses, the steady-state of synaptic receptors is maintained by the dynamic 

equilibrium between five main pathways: synthesis, lateral diffusion, internalization and 

degradation, and recycling (Figure 1.1). The regulation of each of these individual pathways 

in the NMJ will be discussed further. 

 

Synthesis of nicotinic acetylcholine receptors in  developing and mature synapses  

During development, nAChRs are expressed throughout the muscle fiber. Even before 

muscle innervation, nAChRs cluster to the median region of muscle fibers, in a process called 

prepatterning (Harris, 1981; Lin et al., 2001; Yang et al., 2001). Several proteins expressed 

by the muscle have been implicated in initial receptor clustering, such as rapsyn, Dok7, 

lipoprotein receptor-related protein 4 (LRP4) and muscle-specific kinase (MuSK) (Sanes and 

Lichtman, 2001; Wu et al., 2010). More recently, expression of a constitutively active form 

of MuSK in muscle cells has been shown to be sufficient to prepattern receptor clusters and 

control where synapses can be formed (Kim and Burden, 2008). In the mature NMJ, the bulk 

of nAChR clusters in the postsynaptic membrane appears to come from subsynaptic nuclei, 

under the direct control of neuronal factors. 
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Figure 1.1. Dynamics of nicotinic acetylcholine receptors at the neuromuscular junction. Nicotinic 

acetylcholine receptors (nAChR) subunits are synthesized in the ER and exported to the muscle 

plasma membrane. From the ER, instead of being targeted to the cell surface, most nAChR subunits 

are degraded by the ER-associated ubiquitin-proteasome degradation pathway. In the postsynaptic 

membrane, there is significant lateral diffusion between the synaptic and perisynaptic membrane 

spaces. Lateral diffusion of nAChRs from the perisynapse into the NMJ contributes significantly to 

maintain the synaptic receptor density. Conversely, when receptors escape from the postsynaptic 

density into the perisynaptic space, there is significant internalization of nAChRs into endosomal 

compartments. Trafficking through the endosomal pathway, a fraction of internalized nAChRs is 

targeted for degradation. However, a significant portion of those nAChRs actually recycle back into 

the synaptic membrane, contributing to the maintenance of the synaptic nAChR pool. Most of these 

dynamics are tightly regulated in the NMJ by several stimuli, such as synaptic activity or association 

of dystrophin glycoprotein complex components (see text). 
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The molecular mechanisms by which neural activity induces gene expression in the 

subsynaptic nuclei encompass multiple simultaneous signaling pathways, but the two major 

factors involved are agrin and neuregulin-1 (NRG-1) released by the presynaptic terminal. 

Agrin binds the agrin receptor LRP4 in the sarcolemma, activating MuSK, which in turn 

activates the Rac/MKK7/JNK pathway, leading to expression of AChR subunits (Jones et al., 

1996; Lacazette et al., 2003; Wiesner and Fuhrer, 2006). 

The role of NRG-1 on regulation of nAChR synthesis is less clear. Based on work in 

cultured myotubes, it was long believed that NRG-1 could directly stimulate transcription of 

the nAChRε subunit gene, through the activation of mitogen-activated protein kinases 

(MAPK), ERK and JNK, which in turn activate the transcriptional regulator GA-binding 

protein (GABP) (Tansey et al., 1996; Altiok et al., 1997; Si et al., 1999). However, the role of 

NRG-1 in vivo remains highly controversial. It has been shown that mice deficient in NRG-1 

or mice lacking in postsynaptic erbB2 and erbB4 NRG-1 receptors have normal synapses 

where receptors are normally clustered (Escher et al., 2005; Jaworski and Burden, 2006), 

suggesting that NRG-1 is not involved in regulation of AChR synthesis. Recently, a new role 

of NRG-1 in controlling the stabilization of recycled nAChRs has been uncovered (Schmidt 

et al., 2011) (see below). Based on these results and others, it appears that agrin is indeed the 

dominant signaling pathway through which motor neurons regulate nAChR synthesis in the 

subsynaptic compartment. 

It is well established that electrical activity is important for nAChR expression at 

synaptic sites. In extrasynaptic regions, electrical activity is the predominant signal that ‘shuts 

off’ expression of synaptic proteins (Goldman et al., 1988; Sanes and Lichtman, 1999). 

Several molecular cues have been shown to be involved in the repression of synaptic 

components in the extrasynaptic regions. In the nuclei of these regions, the chromatin is 

typically condensed and transcriptionally inactive (Méjat et al., 2005). At the innervated 
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muscle, synaptic impulses (i.e., Ca
2+

 influx) activate Ca
2+

-calmodulin-dependent kinase II 

(CaMKII) δ, which is highly concentrated at the NMJ and acts as a neural activity sensor. 

Activated CaMKIIδ tethers HDAC4 to the sarcolemma and prevents its translocation to the 

nucleus (Cohen et al., 2007). This relieves the repression of HDAC4 over two myogenin 

(MGN) repressors: the HDAC9 splice-variant MEF2-interacting transcription repressor 

(MITR)/histone deacetylase-related protein (HDRP) and Dach2 (Cohen et al., 2007, 2009; 

Tang et al., 2009). MITR recruits HDAC1 and HDAC3 to perform the catalytic activity 

involved in MGN suppression, since it lacks the catalytic domain required for histone 

deacetylase activity (Zhou et al., 2001; Méjat et al., 2005). Another transcription factor, 

Dach2, is thought to repress MGN at the MEF3 promoter site through its interaction with 

Six/Eya proteins (Li et al., 2003b; Tang and Goldman, 2006). Therefore, in the innervated 

muscle, MGN is highly repressed, as well as its target E-box promoter (5’-CANNTG-3’) 

genes, including nAChRε, nACHRδ, and MuSK (Bessereau et al., 1994; Merlie et al., 1994; 

Méjat et al., 2005). Therefore, these synaptic proteins are mostly absent from the 

extrasynaptic sarcolemma. On the converse, denervation is sufficient to reverse this 

myogenic silencing program of synaptic genes in extrasynaptic nuclei: it induces nuclear 

accumulation of HDAC4 throughout the entire muscle fiber, decreases MITR, and increases 

MGN and ectopic nAChR synthesis throughout the whole muscle fiber (Adams et al., 1995a; 

Cohen et al., 2007). 

 

Surface diffusion of nAChR 

Early in muscle fiber development, nAChRs start to be expressed on the cell surface. 

While many nAChR molecules move freely throughout the sarcolemma, a few receptors 

presumably diffuse into and are trapped in spontaneous clusters, where newly synthesized 

nAChRs will then be inserted (Stya and Axelrod, 1983). The contribution of lateral diffusion 
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of surface nAChR into receptor clusters was initially demonstrated by Axelrod et al. (1976) 

using fluorescence recovery after photobleaching. They showed two populations of nAChRs 

on the surface of cultured myotubes that had distinguishable mobilities: largely immobilized 

nAChRs within clusters and highly mobile outside (Axelrod et al., 1976). Similar 

observations were obtained in adult muscle fibers, with densely packed, immobile junctional 

nAChRs and mobile extrajunctional ones (Stya and Axelrod, 1984). More recently, lateral 

diffusion of nAChRs was explored in vivo using the photo-unbinding method, which allows 

selective labeling of the nAChR populations within synaptic clusters with high spatial and 

temporal resolution. It is clear that nAChRs are in continuous movement between synaptic 

and non-synaptic regions and can constantly migrate from one region to another within the 

same synapse to maintain the steady-state postsynaptic receptor density overtime (Akaaboune 

et al., 2002). 

It appears that the mobility of nAChRs is tightly regulated by intracellular scaffolding 

proteins (Axelrod et al., 1978). Recent studies using quantum dot-based single-molecule 

tracking techniques have shown that in myotubes deficient in rapsyn, where receptor clusters 

do not form (Gautam et al., 1995), the mobility of diffuse nAChRs is significantly increased, 

suggesting that association with rapsyn dramatically limits nAChR mobility (Piguet et al., 

2011).  However, it remains unknown whether other synaptic scaffold proteins are also 

limiting factors for nAChR mobility.  

 

Internalization and degradation of nAChR from the postsynaptic membrane 

At the NMJ, the steady-state density of postsynaptic nAChRs is established by rates 

of lateral diffusion, endocytosis and exocytosis (insertion of new and recycled receptors). It is 

well established that nAChRs migrate from the synapse into the perijunctional membrane, 
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where they are internalized through clathrin- and non-clathrin-dependent mechanisms (Berg 

and Hall, 1975; Chang and Huang, 1975; Akaaboune et al., 1999; Schmidt et al., 2011). The 

removal of receptors from synaptic sites and their internalization appear to be dependent on 

synaptic activity. For example, when neuromuscular transmission is functional, nAChR half-

life is markedly long (10-14 days) (Akaaboune et al., 1999). However, when synaptic activity 

is blocked (surgically or pharmacologically), nAChR half-life decreases substantially to only 

a few hours (Akaaboune et al., 1999). Muscle depolarization appears to be critical for the 

stability of receptors. In denervated muscles or muscles treated with synaptic blockers, in 

which nAChR internalization is sped up, direct electrical stimulation is sufficient to re-

stabilize them (Fumagalli et al., 1990; Caroni et al., 1993; Akaaboune et al., 1999). The 

stabilizing effect of electrical stimulation on nAChRs is fast, dependent on L-type Ca
2+

 influx 

(Rotzler et al., 1991) and cAMP increases, and occurs without further nAChR synthesis 

(Caroni et al., 1993), suggesting that synaptic activity controls post-translational 

modifications of nAChRs. This is supported by studies in cultured myotubes, in which 

increased phosphorylation of nAChRβ was found to be associated with stabilization of 

nAChRs (Sava et al., 2001). Interestingly, nAChRs are mostly not phosphorylated in 

denervated and cultured myotubes, where nAChR stability is reduced. However, when cAMP 

concentration increases, more nAChRs are phosphorylated in vitro (Miles et al., 1987). Also 

in vivo, in mature NMJs of diaphragm muscles, synaptic nAChRs are heavily phosphorylated 

and, upon denervation, nAChR phosphorylation is reduced (Qu et al., 1990). Together, these 

data suggest that neuronal activity regulates Ca
2+

 influx and cAMP production, which 

modulate protein kinases responsible for nAChR phosphorylation, a signal for receptor 

stabilization. 

Despite evidence for regulation of endocytosis as a key component for maintaining 

synaptic nAChR density, the endocytosis machinery for nAChRs remains unclear. In CHO-
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K1/A5 cells heterologously expressing nAChRs, it appears to occur in a dynamin-, clathrin-, 

and caveolin-independent manner (Kumari et al., 2008). nAChR endocytosis is induced by 

the auto-phosphorylation of the c-Src kinase and subsequent activation of Rac1, which may 

modulate actin dynamics to form the endosomal compartment (Kumari et al., 2008). 

However, in contrast to the heterologous expression system, recent work in vivo has shown 

that treatment with the dynamin inhibitor dynasore leads to a significant decrease in receptor 

internalization from postsynaptic sites, highlighting the additional contribution of clathrin-

mediated processes (Schmidt et al., 2011). 

Upon internalization, most nAChRs are presumably targeted to degradation via the 

late endosome/lysosomal pathway. The progression of internalized receptors appears to be 

temporally graded, moving from the early endosome (co-localized with EEA1) to the late 

endosome (co-localized with LAMP1) with relatively stable kinetics (Kumari et al., 2008). 

Treatment of cultured muscle cells with leupeptin, a lysosomal proteinase inhibitor, increases 

the amount of labeled receptors in the late endosome, suggesting that most, if not all, late 

endosomal receptors are targeted for degradation by lysosomes (Hyman and Froehner, 1983; 

Kumari et al., 2008). Therefore, the regulation of nAChR likely occurs at the trafficking of 

the early endosomal compartment, by modulation of the nAChR pools targeted for 

degradation or recycling (see below). 

The role of synaptic protein degradation via the ubiquitin-proteasome system (UPS) 

has been explored in detail at the CNS (Mabb and Ehlers, 2010). In the NMJ, ubiquitin is 

highly concentrated, but the role of ubiquitination and proteasome activity has only recently 

begun to be explored (Serdaroglu et al., 1992; Christianson and Green, 2004; Rezvani et al., 

2010). Ubiquitin ligase activity as well as proteasome activity are highly regulated and have 

been shown to work in an activity-dependent manner in the CNS through CaMKII activity 

(Djakovic et al., 2009). In C2C12 myotubes, the UPS has also been shown to play an 
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important role during post-translational processing of receptor subunits in the ER 

(Christianson and Green, 2004). Inhibition of proteasome-mediated ER-associated 

degradation (ERAD) with lactacystin increased surface nAChR expression, without having a 

significant impact on fidelity of receptor assembly (Christianson and Green, 2004). This 

suggests that a significant amount of functional nAChR subunits are normally targeted to 

ERAD by the UPS as a regulatory mechanism of receptor density. More recently, it has been 

shown that the α-kinase-anchoring protein plays a crucial role to protect nAChRs in the 

synthetic pathway from proteosomal degradation, providing new insights into the possible 

role of the UPS on the regulation of nAChR density (Mouslim et al., 2012). 

 

Recycling of nAChR into the postsynaptic membrane in vivo 

For decades, it was widely believed that nAChRs were stable in the postsynaptic 

membrane until they were removed for degradation. Recent work from our lab has shown 

that, instead, many internalized nAChRs recycle back to the plasma membrane, and this 

‘recycled pool’ contributes significantly to the steady-state of the postsynaptic receptor 

density (Bruneau et al., 2005; Bruneau and Akaaboune, 2006). This process has been shown 

to occur in an activity-dependent manner, as blocking synaptic activity depresses the 

recycling of receptors into synaptic sites. However, much of the molecular machinery 

governing the recycling and trafficking of receptor-containing vesicles remains unknown 

(Bruneau et al., 2005, 2008, 2009; Bruneau and Akaaboune, 2006; Wu et al., 2010). The 

discovery of recycled receptors at the NMJ has prompted us to re-evaluate the metabolic 

stability of receptors. Indeed, by monitoring the removal rate of receptor pools (recycled and 

pre-existing) from the same synapse, we found that the life-time of pre-existing nAChRs is 

much longer (t1/2 ≈ 5-6 days) than that of recycled ones (t1/2 ≈ 1 day) (Bruneau and 

Akaaboune, 2006). Recent studies have shown that the long-described stabilizing effect of 
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cAMP on synaptic nAChRs is at least partially mediated by the recruitment of myosin Va 

into the nAChR recycling pathway (Röder et al., 2008; Rudolf et al., 2011). Remarkably, the 

rate of recycling is tightly regulated by synaptic activity, via an intracellular Ca
2+

/CaMKII 

pathway (Martinez-Pena y Valenzuela et al., 2010). Electrical stimulation increases 

intracellular Ca
2+

, activates CaMKII and leads to increased delivery of recycled receptors to 

the synapse (Martinez-Pena y Valenzuela et al., 2010). Furthermore, upon inhibition of 

CaMKII, more receptors accumulated in the internal pool, suggesting that CaMKII activation 

is required in the translocation to the membrane (Martinez-Pena y Valenzuela et al., 2010). In 

the denervated muscle, where nAChR recycling is severely depressed, electrical stimulation 

and subsequent activation of CaMKII rescued internalized receptors from the degradation 

pathway and promoted their recycling back into the membrane (Martinez-Pena y Valenzuela 

et al., 2010). This significant shift in nAChR dynamics and accumulation of internalized 

receptors is due to a novel, specific modulation of the recycling pathway, as internalization of 

synaptic nAChRs is unaffected by CaMKII inhibition. It is tempting to say that the role of 

nAChR recycling in NMJ plasticity and its regulation by synaptic activity 

(denervation/stimulation) quite closely parallels the regulation of AMPA receptor recycling 

during long-term potentiation at central synapses (Park et al., 2004; Wang et al., 2008b).  

 

The dystrophin glycoprotein complex and regulation of synaptic receptor dynamics 

The dystrophin glycoprotein complex (DGC), which connects the extracellular basal 

lamina to the intracellular cytoskeleton, is critical for preserving the integrity of the skeletal 

muscle fiber. Its molecular composition consists of syntrophins and α-dystrobrevin (α-dbn) 

sub-complexes; dystrophin/utrophin, transmembrane dystroglycans and the sarcoglycan-

sarcospan complex (Figure 1.2) (Pilgram et al., 2010). Mutations in genes encoding several 

DGC components cause muscular dystrophy in both human and animal models. In humans, 
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complete or partial loss of dystrophin results in Duchenne muscular dystrophy (DMD) or 

Becker muscular dystrophy, respectively. Deficiencies in sarcoglycans cause limb-girdle 

muscular dystrophies and deficiencies in α-dystroglycan glycosylation cause glycanopathies 

(Durbeej and Campbell, 2002). In mouse models, loss of DGC components also results in 

muscular dystrophy, as in the dystrophin-lacking mdx mouse or the α-dbn knockout (Durbeej 

and Campbell, 2002) (see below). In addition to maintaining the structural stability of 

myofibers, several DGC components play key roles in the maintenance of the postsynaptic 

receptor density. 

 

Dystrophin and utrophin 

Dystrophin is a large protein (427 kDa) of the DGC that associates with the 

sarcolemma throughout the entire muscle fiber and is highly concentrated at synaptic sites 

(Bonilla et al., 1988; Watkins et al., 1988; Zubrzycka-Gaarn et al., 1988; Arahata et al., 

1989). In mice deficient in dystrophin (mdx model), postsynaptic nAChR clusters are 

fragmented and NMJ exhibit fewer postsynaptic folds. This synaptic remodeling seems to be 

secondary to muscle fiber regeneration, as changes in the distribution of synaptic proteins are 

only seen in regenerating myofibers (i.e., fibers with centrally located nuclei) (Torres and 

Duchen, 1987). The postsynaptic density of nAChRs appears normal and loss of dystrophin 

seems to have little effect on the electrophysiological properties (i.e., frequency and 

amplitude of mini-endplate potentials and quantal content) of the NMJ (Lyons and Slater, 

1991).  
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Figure 1.2. The dystrophin glycoprotein complex in the skeletal muscle. The dystrophin glycoprotein 

complex (DGC) anchors the sarcolemma to the intracellular cytoskeleton (actin) and extracellular 

matrix components (laminin). Its main cytosolic components are two large proteins, dystrophin and 

utrophin. While utrophin is exclusively found in the neuromuscular junction (NMJ), dystrophin is 

expressed throughout the sarcolemma, but is concentrated at the NMJ. Dystrophin/utrophin associate 

to the transmembrane β-dystroglycan (β-DG), which in turn recruits α-dystroglycan (α-DG). α-DG 

anchors extracellular matrix proteins such as laminin and agrin, both of which are involved in 

nicotinic acetylcholine receptor (nAChR) clustering in the developing fiber. α-DG also stabilizes the 

interaction of β-DG with the sarcospan-sarcoglycan sub-complex. In the NMJ, mainly α-, β-, γ- and δ-

sarcoglycan are found in the sarcolemma, which in turn are required for stable association of 

oligomers of the four-transmembrane-loop protein, sarcospan. Rapsyn associates in a 1:1 ratio with 

nAChRs and binds them to the DGC through interactions with β-DG. In the cytoplasmic face of the 

sarcolemma, there are several dystrophin-associated proteins that are not crucial for DGC assembly, 

but that have key signaling role in the muscle fiber. Mainly, lack of α-dystrobrevin and α-syntrophins 

lead to heavily decreased nAChR density in the NMJ. α- and β-syntrophins are recruited to the DGC 

through interactions with dystrophin and α-dystrobrevin and are themselves crucial for neuronal nitric 

oxide synthase (nNOS) tethering to the sarcolemma and NMJ. α-Dystrobrevin is recruited to the DGC 

through interactions with dystrophin, α-syntrophin and the sarcoglycan complex. Deficiencies in DGC 

components shown in red lead to sarcolemma destabilization and muscle dystrophy; knockouts for 

components shown in blue have reduced nAChR density in the postsynaptic membrane. Therefore, 

the dystroglycans and α-dystrobrevin are shown in purple to represent both roles. 
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Earlier reports proposed that absence of dystrophin could lead to an increase in the 

rate of nAChR degradation (Xu and Salpeter, 1997). However, these studies were based on 

degradation measurements of radioactively-labeled nAChRs in whole-muscle homogenates, 

containing both dystrophic and intact muscle cells. In fact, in 2002, by monitoring single 

NMJ over time, Akaaboune et al. were able to show that the degradation rate of nAChRs is 

not affected in mdx mice and nAChR density is maintained at normal levels. Interestingly, 

dystrophin has been implicated in α3β4/β2 nAChR stability in sympathetic neurons (Di 

Angelantonio et al., 2011), suggesting that dystrophin may have distinct roles in stability of 

different nAChR subtypes, or that the loss of surface nAChRs in mdx sympathetic ganglion 

neurons is an indirect effect of the absence of dystrophin. Indeed, dystroglycans are crucial 

for nAChR stability in the NMJ (see below) and their expression was previously found to be 

reduced in the same mdx ganglia (Zaccaria et al., 2000). 

Utrophin was initially identified as a transcript with 80% amino acid identity to 

dystrophin (Love et al., 1989), and has since been shown to be a close homolog of dystrophin 

that is highly clustered at the NMJ (Khurana et al., 1991; Ohlendieck et al., 1991). 

Interestingly, utrophin is upregulated in mdx muscle fibers (Matsumura et al., 1992), though 

loss of utrophin from the postsynaptic DGC leads to a very slight reduction (≈ 30%) in the 

density of postsynaptic nAChRs, with no detectable muscle dystrophy (Deconinck et al., 

1997). Even when DGC assembly is severely impaired in a dystrophin and utrophin double 

knockout mouse, the effects on nAChR synaptic density and miniature endplate potential 

amplitude are very mild (Grady et al., 1997). The maintenance of a mostly unaltered synaptic 

nAChR density in mdx and/or utrophin
-/-

 mice can be explained by the presence of an intact 

dystrobrevin-syntrophin sub-complex (Peters et al., 1998; Yoshida et al., 2000; Daval et al., 

2010), because mice deficient in components of this sub-complex show marked alterations in 

nAChR distribution and dynamics. 
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The dystrobrevin-syntrophin sub-complex and nAChR dynamics 

α-dbn is a cytosolic component of the DGC that is expressed in at least three 

alternatively-spliced isoforms in adult skeletal muscle: α-dbn1, α-dbn2 and α-dbn3 (Rees et 

al., 2007). α-dbn1 and α-dbn2 share a common NH2-terminus, with two syntrophin-binding 

sites, but have distinct COOH-terminal domains (Blake et al., 1996; Peters et al., 1997). α-

dbn1, the longest isoform, has an additional 188 amino acids which serve as a substrate for 

protein tyrosine kinases (Balasubramanian et al., 1998); it associates with utrophin and 

syntrophins and is highly concentrated at nAChR clusters in cultured muscle cells and the 

NMJ in vivo (Balasubramanian et al., 1998; Nawrotzki et al., 1998; Peters et al., 1998; 

Pawlikowski and Maimone, 2008) (Figure 1.2). α-dbn2 is predominantly present at 

extrasynaptic sites, where it associated mainly with dystrophin (Peters et al., 1998). α-dbn3, 

the shortest isoform, does not co-localize with nAChR clusters and lacks syntrophin-binding 

sites, and its function, if any, remains unclear (Pawlikowski and Maimone, 2008). 

The importance of α-dbn for muscle integrity and synaptic nAChR stability is 

evidenced in mice deficient in α-dbn. These animals are mildly dystrophic (50% fibers), with 

a muscle phenotype similar to mdx mice, albeit with slower cycles of fiber degeneration and 

regeneration (Grady et al., 1999). The density of nAChRs is dramatically reduced (≈ 30% of 

wild-type mice) and synapses have a distinctly aberrant speckled appearance (Grady et al., 

1999, 2000, 2003; Akaaboune et al., 2002). These alterations in nAChR distribution appear at 

least one week after birth, implicating α-dbn in maturation, but not formation, of the NMJ 

(Grady et al., 1999). Interestingly, these morphological alterations are accompanied by an 

increase in the rate of nAChR degradation (both in α-dbn
-/-

 cultured myotubes and living 

mice), when compared to wild-type mice or mice deficient in dystrophin and/or utrophin 

(Grady et al., 2000; Akaaboune et al., 2002). In conclusion, α-dbn plays a key role in nAChR 

stability, despite the fact that α-dbn does not interact directly with nAChRs. 
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Interestingly, it appears the ability of α-dbn isoforms to stabilize nAChR clusters 

involves tyrosine phosphorylation. Only α-dbn1, which has tyrosine phosphorylation sites, is 

able to rescue fully the synaptic phenotype of α-dbn
-/-

 NMJ, while a mutated form of α-dbn1 

with no tyrosine phosphorylation sites is not (Grady et al., 2003). However, the signaling 

pathways regulating α-dbn phosphorylation, as well as its relevance for nAChR stabilization 

remain unknown, but their elucidation is likely to clarify the role of the DGC in stabilizing 

nAChRs. Of note is the fact that α-dbn is also widely present in the CNS (Rees et al., 2007), 

though α-dbn knockout mice exhibit no remarkable neurological phenotype (Grady et al., 

1999, 2006; Rees et al., 2007). This is probably because neurons, unlike skeletal muscle, 

express the α-dbn homolog, β-dystrobrevin (Peters et al., 1997; Grady et al., 2006; Rees et 

al., 2007). Indeed, when both α-dbn and β-dystrobrevin are absent, GABAA receptor 

clustering is impaired in cerebellar synapses, leading to severe motor defects (Grady et al., 

2006). 

α-dbn also interacts with α- and β-syntrophins (Figure 1.2) (Butler et al., 1992), and in 

the absence of α1-syntrophin (α-syn), α-dbn is reduced in the NMJ (Adams et al., 2000). 

Syntrophins are a family of five dystrophin-binding adapter proteins (α1, β1, β2, γ1 and γ2) 

with a similar domain structure, containing a pleckstrin homology (PH), a PDZ protein 

interaction and a C-terminal domain unique to syntrophin (Adams et al., 1995b). In the 

mouse skeletal muscle, α1- and β1-syntrophins are found throughout the sarcolemma and are 

highly concentrated at the NMJ (Peters et al., 1997; Kramarcy and Sealock, 2000); β2-

syntrophin is found almost exclusively at the NMJ (Peters et al., 1994, 1997; Kramarcy and 

Sealock, 2000) and γ2-syntrophin is present at the subsynaptic sarcoplasmic reticulum (Alessi 

et al., 2006). Of these, α-syn is the only isoform closely associated with nAChRs at the crests 

of the NMJ (Kramarcy and Sealock, 2000). Mice deficient in α-syn (α-syn
-/-

) display synaptic 

aberrations, with markedly reduced nAChR density (≈ 30% of wild type synapses) and a 
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distinct speckled phenotype (Adams et al., 2000) that is similar to α-dbn
-/-

 synapses. Despite 

these synaptic defects, α-syn
-/-

 mice exercise voluntarily to the same extent as wild type mice 

(Adams et al., 2000) and show no muscle dystrophy or changes in contractile properties 

(Kameya et al., 1999). 

Like α-dbn, α-syn does not seem to be involved in NMJ formation, as developing 

synapses are formed properly, but mature abnormally (Martinez-Pena y Valenzuela et al., 

2011). Interestingly, recently published work from our lab shows the rate of nAChR 

degradation is also increased, similar to α-dbn
-/-

 synapses (Martinez-Pena y Valenzuela et al., 

2011). In contrast to α-syn
-/-

, absence of β2-syntrophin does not cause any synaptic 

phenotype (Adams et al., 2004), though there is partial functional compensation between α-

syn and β2-syntrophin, as evidenced by the severe synaptic defects of the α1/β2-syntrophin 

double knockout mouse, in which nAChR density is only 23% of wild type synapses (Adams 

et al., 2004). 

Previous studies have shown that the synaptic defects of α-syn
-/-

 mice include loss of 

several other components recruited by syntrophin protein-interaction domains. Consistent 

with the hypothesis of α-syn as a recruiter of key factors in maintaining synaptic receptor 

density, expression of syntrophin with intact PDZ and PH domains is required to rescue the 

synaptic α-syn
-/-

 phenotype (Adams et al., 2010). Among these proteins, utrophin and 

neuronal nitric oxide synthase (nNOS) are completely absent and α-dbn is dramatically 

reduced in α-syn
-/-

 NMJ (Kameya et al., 1999; Adams et al., 2000; Thomas et al., 2003). It is 

possible that loss of these proteins could contribute to the abnormal α-syn
-/-

 synaptic 

phenotype. Indeed, mice deficient in nNOS display NMJ aberrations and possibly alterations 

in nAChR stability (Shiao et al., 2004). Similarly, loss of utrophin, could also contribute to 

the α-syn
-/-

 synaptic phenotype, as utrophin-deficient NMJ also have reduced nAChR density, 

albeit much less pronounced (Deconinck et al., 1997; Grady et al., 1997). The reduced levels 



 

20 
 

of utrophin in α-syn
-/-

 synapses are particularly puzzling, as utrophin is thought to associate to 

the DGC mainly through interactions with β-dystroglycan (Tommasi di Vignano et al., 2000; 

Pilgram et al., 2010). It is conceivable that syntrophin could play a role in targeting DGC 

molecules for assembly in the postsynaptic membrane. In support of this idea, in the Torpedo 

electrical organ, syntrophin first associates with nAChRs in post-Golgi vesicles throughout 

the exocytic pathway and is inserted into the postsynaptic membrane, where in turn it may 

recruit dystrophin/utrophin and dystrobrevin from the cytosol (Marchand et al., 2001). 

More recently, we have found that rapsyn and α-dbn are also reduced in α-syn
-/-

 

muscles (Martinez-Pena y Valenzuela et al., 2011). The presence of fewer rapsyn molecules 

at the α-syn
-/-

 NMJ could be a consequence of the loss of utrophin, as rapsyn is known to 

associate the DGC and nAChRs through utrophin (Apel et al., 1995; Cartaud et al., 1998). 

However, it is unlikely that loss of rapsyn could account for the reduced nAChR density, 

since rapsyn-GFP overexpression is unable to rescue the α-syn
-/-

 phenotype, suggesting that 

rapsyn loss is a secondary event to the loss of synaptic nAChRs. On the other hand, α-dbn1 

overexpression in α-syn
-/-

 deficient muscle is able to partially rescue the aberrant nAChR 

distribution and slow the rate of receptor degradation, indicating that loss of dystrobrevin 

could contribute to synaptic deficiencies of α-syn
-/-

 NMJ (Martinez-Pena y Valenzuela et al., 

2011). 

 

Dystroglycans and NMJ stability 

Dystroglycans (DG) are encoded by a single gene that produces a precursor protein, 

which is then cleaved into α- and β-DG (Ibraghimov-Beskrovnaya et al., 1992; Deyst et al., 

1995). β-DG is a transmembrane glycoprotein that links α-DG in the extracellular surface to 

dystrophin, and α-DG is a highly glycosylated protein that constitutes the core of the DGC 



 

21 
 

(Smalheiser and Schwartz, 1987). Through its glycosylated sites, it interacts with several 

proteins of the basal lamina, such as laminin and agrin (Figure 1.2) (Smalheiser and 

Schwartz, 1987). Abnormal function of α-DG has been shown to lead to dystrophic 

phenotypes (Grewal et al., 2001; Côté et al., 2002; Michele et al., 2002), but DG-null mice 

die at early embryonic stages, before muscle differentiation (Williamson et al., 1997), 

hindering the investigation of the role of DG on nAChR clustering and stability. Therefore, in 

1999, Côté et al. generated chimeric mice with severe muscle DG deficiency to investigate 

the effect of DG on synaptic phenotype. These mice show severe synaptic disruption, even in 

non-dystrophic fibers (with fragmented NMJ and markedly reduced density of synaptic 

nAChRs) (Côté et al., 1999; Jacobson et al., 2001). However, it remains unknown whether 

these defects are related to abnormalities in nAChR molecular dynamics and whether they are 

caused by deficiencies in the dystrobrevin/syntrophin sub-complex.  

 

Sarcoglycans and sarcospan 

Sarcoglycans are transmembrane proteins encoded by separate, homologous genes. In 

the skeletal muscle, most sarcoglycan complexes are composed of α-, β-, γ-, and δ-

sarcoglycans. The sarcoglycan complex appears to assemble sequentially: β- and δ-

sarcoglycan are assembled first, followed by γ-, and α-sarcoglycan (Shi et al., 2004). Mice 

and hamsters deficient in sarcoglycans exhibit severe myopathy, without obvious synaptic 

aberrations (Yamanouchi et al., 1994; Duclos et al., 1998; Hack et al., 1998, 2000b; Araishi 

et al., 1999). Density of nAChRs appears not to be affected, indicating that sarcoglycans are 

not involved in the maintenance of receptor stability. 

Sarcospan was identified as a four transmembrane spanning DGC component and part 

of the tetraspanin superfamily of proteins (Crosbie et al., 1997). Sarcospan is targeted to the 
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DGC through interaction with the sarcoglycan complex (Crosbie et al., 1999). The function 

of sarcospan has remained elusive for several years, since sarcospan null mice show no 

distinguishable phenotype and the DGC are assembled normally (Lebakken et al., 2000). 

Strikingly, transgenic mice overexpressing sarcospan have severe muscle degeneration (Peter 

et al., 2007). The mechanism seems to involve aberrant DGC assembly, with overexpression 

of most components and aggregation into insoluble complexes (Peter et al., 2007). Further 

insight into sarcospan function was provided by Peter et al. (Peter et al., 2008), who showed 

sarcospan directly interacts and stabilizes the utrophin-associated glycoprotein complex. 

These findings, together with the observation that sarcospan is enriched at the NMJ (Crosbie 

et al., 1999), indicate that sarcospan might have a role in the maintenance of the postsynaptic 

density. In fact, sarcospan is able to post-translationally stabilize the utrophin glycoprotein 

complex (Peter et al., 2008). Since utrophin is usually restricted to the NMJ, this might imply 

a physiological role of sarcospan in synaptic maintenance, but it is unclear whether the 

degenerative phenotype of sarcospan transgenic mice is accompanied by NMJ disassembly 

and/or nAChR loss. 

 

Scaffolding protein rapsyn and nAChR dynamics 

Rapsyn is a 43-kDa protein that is crucial for nAChR clustering, as NMJ fail to form 

in rapsyn
-/-

 mice and nAChRs fail to cluster in rapsyn
-/-

 myotubes (Gautam et al., 1995). 

Rapsyn associates to the postsynaptic plasma membrane through myristoylation (Musil et al., 

1988) and binds to nAChRs in a 1:1 ratio (LaRochelle and Froehner, 1987). Despite the 

constant steady-state rapsyn:AChR ratio, there is significant divergence in their turnover at 

synaptic sites. Rapsyn is remarkably dynamic when compared to the nAChR, turning over 3-

6 times more rapidly in receptor clusters in cultured myotubes (Bruneau and Akaaboune, 

2007) and at the adult NMJ (Bruneau and Akaaboune, 2010). Also, while blockade of 
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synaptic activity is known to increase nAChR turnover (Akaaboune et al., 1999), it has no 

effect on the rates of rapsyn removal from and association to synaptic sites (Bruneau and 

Akaaboune, 2010). 

These results show that the marked dynamism seen in the trafficking of synaptic 

receptors might be a hallmark of most or all synaptic components. In fact, receptor-associated 

proteins might play an even greater role on synaptic plasticity, as their turnover rate might be 

faster than the receptors’ themselves. Therefore, a better understanding about the 

characteristics and mechanisms of receptor-associated protein turnover is warranted, in 

particular for those known to maintain synaptic receptor density, such as rapsyn and DGC 

components α-dystrobrevin and syntrophins. 

 

Conclusion 

Despite decades of work on the molecular regulation of nAChR clustering and 

trafficking at the postsynaptic density, the molecular mechanisms involved in maintaining the 

synaptic density of nAChRs are not yet fully elucidated. Also, despite our knowledge of 

several receptor-associated proteins of the DGC, it remains puzzling how those molecules, 

particularly the dystrobrevin-syntrophin sub-complex, are assembled and how they contribute 

to the stability of nAChRs. Presumably, a more complete understanding of the role of the 

postsynaptic DGC on nAChR stability will increase our understanding of neuromuscular 

diseases, which may help to define new therapeutic interventions. 
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Abstract 

α-syntrophin (α-syn), a scaffold protein, links signaling molecules to the dystrophin 

glycoprotein complex (DGC). Absence of α-syn from the DGC is known to lead to 

structurally aberrant neuromuscular junctions (NMJs) with few acetylcholine receptors 

(AChRs) clustered at synaptic sites. Using α-syn knockout mice, we show that during the first 

postnatal week, α -syn is not required for synapse formation. However, at postnatal day 7, the 

structural integrity of the postsynaptic apparatus is altered, the turnover rate of AChRs 

increases significantly, and the number/density of AChRs is impaired. At adult α-syn
-/-

 NMJ, 

the turnover rate of AChRs is about 4 times faster than wild type synapses, and most removed 

receptors are targeted to degradation as few AChRs recycled to synaptic sites. Biochemical 
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analyses show that in muscle cells of adult knockout α-syn mice, total AChRs and scaffold 

protein rapsyn are significantly reduced, the 89 kDa and 75 kDa isoforms of tyrosine 

phosphorylated α-dystrobrevin (α-dbn) 1 (which are required for the maintenance and 

stability of AChR in α-dbn
-/-

 synapses) are barely detectable. Electroporation of GFP- α-dbn1 

in α-syn
-/-

 muscle cells partially restored receptor density, turnover rate, and the structural 

integrity of the postsynaptic apparatus, whereas expression of rapsyn-GFP failed to rescue the 

α-syn
-/-

 synaptic phenotype. These results demonstrate that α-syn is required for the 

maturation and stability of the postsynaptic apparatus and suggest that α-syn may act via 

α-dbn1. 

 

Introduction 

α-syntrophin (α-syn) is a component of the dystrophin glycoprotein complex (DGC), 

which also includes dystrophin/utrophin, dystroglycan, sarcoglycan, sarcospan, and α-

dystrobrevin (α-dbn) (Straub and Campbell, 1997; Hack et al., 2000a; Dalkilic and Kunkel, 

2003). It is thought to function as an adaptor molecule that recruits signaling and structural 

proteins to the transmembrane DGC. α-syn directly interacts with dystrophin/utrophin, 

dystrobrevins, neuronal nitric oxide synthase (nNOS), voltage-gated sodium channels, several 

kinases, aquaporin-4 and other channels and signaling proteins (Kramarcy et al., 1994; Ahn 

and Kunkel, 1995; Dwyer and Froehner, 1995; Brenman et al., 1996; Froehner et al., 1997; 

Gee et al., 1998; Adams et al., 2000; Neely et al., 2001).  

At mature neuromuscular junctions (NMJs), α-syn is highly concentrated at both the 

troughs and the crests of the junctional folds and was found to accumulate with acetylcholine 

receptors (AChRs) at synaptic sites as early as postnatal day 1 (Kramarcy and Sealock, 2000). 

Adult animals deficient in α-syn show dramatic changes in the structural organization of the 
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synapses (Adams et al., 2000). AChRs are fewer in number and density, and the pattern in 

which they are clustered differs dramatically from wild type mice, with speckles of receptors 

extending from edges of mutant synapses. Several other proteins of the DGC are either 

decreased or completely absent from the postsynaptic apparatus (nNOS and utrophin, 

respectively) (Adams et al., 2000; Kramarcy and Sealock, 2000). However, it remains 

unknown how the absence of α-syn from synapses reduces receptor density and number in 

the postsynaptic membrane and at which stage of synaptic development the absence of α-syn 

begins to impair structural organization of the postsynaptic membrane.   

The phenotype of the α-syn
-/-

 NMJ appears very similar to the α-dbn null mice in 

many ways. α-dbn
-/-

 NMJs have dramatically reduced levels of AChR, with an abnormal 

pattern of AChR distribution that resembles the α-syn mutant. In contrast to mice deficient in 

α-dbn, in which ≈50% of muscle fibers are dystrophic, α-syn null mice have no sign of 

muscular dystrophy (Adams et al., 2000; Grady et al., 2000). Previous studies have shown 

that α-dbn is necessary for tight tethering of AChRs in the postsynaptic membrane, and is 

required for the maturation of the synapse (Grady et al., 2000, 2003; Akaaboune et al., 2002). 

However, it is not known whether α-syn is involved in controlling the metabolic stability of 

AChRs and whether removed or decreased proteins of the DGC from α-syn
-/-

 NMJ mediate 

the AChR postsynaptic phenotype of α-syn mutants.  

In this work, we investigate the effect of the absence of α-syn from the postsynaptic 

membrane on synapse formation and maturation in vivo. Using a multidisciplinary approach, 

we show that α-syn is required for synaptic maturation and postsynaptic receptor stability and 

that α-syn acts in part through α-dbn1, as overexpression of α-dbn1 partially rescues the 

postsynaptic phenotype of α-syn deficient mice. 
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Materials and Methods 

Animals and confocal microscopy 

In this study, we used non-Swiss albino adult female mice (6–10 weeks old, 25–30 g) 

that were purchased from Harlan, mice deficient in α-syn that were bred in our animal facility 

from a pair provided by Dr. Froehner’s laboratory, and mice deficient in α-dbn bred from a 

pair from Dr. Joshua Sanes’s laboratory. All animal usage followed methods approved by the 

University of Michigan Committee on the Use and Care of Animals.  

To determine whether α-syn is essential for synapse maturation, wild type and α-syn 

mutant mice from P0 to P60 were anesthetized by i.p. injection of 72 mg/kg ketamine and 12 

mg/kg xylazine and their sternomastoid muscles were bathed with Alexa Fluor 488-

conjugated α-bungarotoxin (BTX-Alexa488) (Invitrogen) to label AChRs (30 min, 5 μg/mL). 

Pups and adult mice were then fixed and NMJs were scanned with a confocal microscope 

(Leica SP5) using a 100× 1.46 NA oil immersion objective (Leica). The z-stacks were then 

collapsed and the contrast adjusted with Adobe Photoshop CS2. 

 

Quantitative fluorescence assay 

To determine whether absence of α-syn affects postsynaptic receptor density as 

synapses develop, the sternomastoid muscle of wild type and mutant mice from P0 to P60 

were exposed and bathed with a saturating dose of BTX-Alexa488 to label all AChRs at 

superficial synapses (5 μg/mL, 1 h). The non-bound fluorescence was washed out with 

lactated Ringer’s superfusion continuously for 10-15 min and synapses were imaged. The 

fluorescence intensity of labeled receptors at NMJ was assayed using a quantitative 

fluorescence imaging technique, as described by Turney and colleagues (Turney et al., 1996), 

with minor modifications.  
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In situ imaging of developing and mature synapses  

The techniques of animal preparation, sternomastoid exposure, and neuromuscular 

imaging have been previously described in detail (Lichtman et al., 1987; van Mier and 

Lichtman, 1994; Akaaboune et al., 1999). The anesthetized mouse was placed on its back on 

the stage of a customized epifluorescence microscope, and superficial NMJs were viewed 

under a coverslip with a water-immersion objective (Olympus UAPO 20×W3/340 0.7 NA) 

and a digital CCD camera (Retiga EXi; Qimaging) and imaged (IPLap software; BioVision 

Technologies). At the end of an imaging session, the incision was closed and the mouse was 

allowed to recover until re-anesthetized and prepared for a second imaging session. 

Several different experimental protocols were carried out. In each case, multiple 

animals were used (typically 5-8). In the first series of experiments, neonatal pups (3 days 

after birth) of control and mutant mice were injected in the tail with a low dose of BTX-

Alexa488 (20 μL, 1 μg/mL). This concentration labels few receptors at the NMJ (less than 

20%). At postnatal day 4 (P4), pups were anaesthetized and the sternomastoid muscle was 

exposed and superficial synapses were imaged immediately (time 0). Twenty-four hours later 

(P5), the same synapses were re-imaged and their fluorescence intensity was measured.  

When synapses were imaged multiple times, the wound was sutured (7-0 Ethilon 

monofilament Nylon), a local antiseptic was applied to prevent local infection of the neck 

after each session and the animal allowed to fully recover before the next imaging session. 

In the second series of experiments, pups at P4 and P7 were injected with a low dose 

of BTX-Alexa488 and at P5 and P8, animals were anaesthetized, the sternomastoid muscle 

was exposed and superficial synapses were imaged immediately and re-imaged 24 hours later 

(P6 and P9).  
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In the last series of experiments, the sternomastoid muscle of adult wild type and 

mutant mice were bathed with a low dose of BTX-Alexa488 (0.1 μg/mL for 2 min) to label 

few receptors or injected with a low dose of BTX-Alexa488. The sternomastoid was then 

washed continuously for 10 min with lactated Ringer’s solution. Under this condition of 

labeling, less than 30% of receptors were labeled with fluorescent α-bungarotoxin (BTX), 

leaving synapses functional (Akaaboune et al., 1999). 

To investigate whether the absence of α-syn affects the insertion of newly synthesized 

receptors at adult synapses, the sternomastoid muscle was bathed with a single saturating 

dose of BTX-Alexa488 (5 μg/mL, 1 h). The superficial synapses were imaged and their 

fluorescence intensities were measured. Three days later, mice were anaesthetized, 

sternomastoid muscles exposed, and the same synapses were imaged and then re-saturated 

with the same fluorescently tagged BTX.  

To investigate whether absence of α-syn has any effect on the recycling of AChRs, 

sternomastoid muscles of adult wild type and α-syn null mice were labeled with biotinylated 

α-bungarotoxin (BTX-biotin) (5 μg/mL, 1 h; Invitrogen) followed by a saturating dose of 

Alexa Fluor 488-tagged streptavidin (strept-Alexa488) (10 μg/mL, 3 h; Invitrogen), as 

described previously in details by Bruneau et al., 2005. Briefly, after three days of initial 

labeling (to allow more internalization of AChRs), the mouse was anaesthetized and the 

sternomastoid muscle was imaged, then incubated with strept-Alexa488 (10 μg/mL, 3 h) to 

label the recycled receptors; later, superficial synapses were re-imaged and their fluorescence 

intensities were measured to determine the contribution of recycled AChRs to total receptors 

at wild type and mutant synaptic sites. Control experiments for ruling out dissociation of 

streptavidin from biotin on the surface of the muscle cells were described in our previous 

work (Bruneau et al., 2005; Bruneau and Akaaboune, 2006; Martinez-Pena y Valenzuela et 

al., 2010). Based on the fact that after internalization of AChR-BTX-biotin/streptavidin 
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complexes inside the muscle, Alexa-labeled streptavidin dissociates rapidly from AChR-

BTX-biotin within internal vesicles (likely endosomes), and on the extracellular surface the 

rate of dissociation of Alexa-labeled streptavidin from biotin was too slow to be detected 

even after several days, we can assess recycling by adding fresh Alexa-streptavidin hours or 

days after an initial saturating dose.  

To determine the effects of the absence of α-syn on half-life of pre-existing and 

recycled pools, the sternomastoid muscle was exposed and bathed with BTX-biotin (5 

μg/mL, 30 min) to label AChR following by a saturating dose of strept-Alexa488 (10 μg/mL, 

3 h) (Bruneau et al., 2005; Bruneau and Akaaboune, 2006). Three days later, the animal was 

anaesthetized and the sternomastoid was exposed and bathed with Alexa Fluor 594-tagged 

streptavidin (10 μg/mL, 3 h; Invitrogen) to specifically label the recycled AChRs, as has been 

previously described in detail (Bruneau et al., 2005). Superficial doubly labeled synapses 

(red, recycled; and green, “pre-existing”) were imaged and re-imaged several days later and 

their fluorescence intensities were assayed. 

 

Western blot 

Sternomastoid muscles were removed from wild type and α-syn null mice, minced, 

and homogenized on ice in a buffer containing 50 mM HEPES, pH 7.4, 2 mM EDTA, 250 

mM sucrose, 150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate. Homogenates were 

shaken for 30 min and centrifuged at 10,000 × g for 10 min, giving a supernatant (S) and a 

pellet (P). The supernatant was collected and proteins were quantified using Pierce BCA 

protein assay. Identical amount of proteins were separated by 12% SDS-PAGE and 

transferred onto a polyvinylidene fluoride membrane. The membranes were bathed in PBS 

pH 7.4, 2% skimmed milk, 0.05% Tween 20, blocking solution for 1 h, incubated in either 
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monoclonal anti-rapsyn (R2029, clone 1234; Sigma) diluted at 0.5 μg/mL, anti-dystrobrevin 

(610766 Clone 23; BD biosciences) diluted at 1:4,000, or anti-α1-AChR subunit (MAB210; 

MMS-609R; Covance) diluted at 1:5,000 in PBS plus 0.05% Tween 20 at 4 °C overnight. 

The membranes were then incubated for 1 h in HRP-conjugated goat anti-rat or donkey anti-

mouse secondary antibody at 1:20,000 (Jackson ImmunoResearch). After extensive washing, 

the membranes were incubated with SuperSignal West Femto Maximum Sensitivity Substrate 

(Pierce).  

To determine the amount of receptors on the surface of muscle cells of mutant and 

wild type mice, sternomastoid muscles were exposed and bathed with 5 μg/mL of BTX-biotin 

for 1 h and receptors bound to BTX-biotin were pulled down using NeutrAvidin-coated 

agarose beads. 

To determine the amount of intracellular AChR, sternomastoid muscles were bathed 

in 5 μg/mL of unlabelled BTX for 1 h to saturate all surface AChRs and non-bound unlabeled 

BTX was extensively washed out. Muscles were then removed, homogenized and muscle 

lysates were incubated with 300 nM BTX-biotin for 1 h at 4 °C. Receptors were then isolated 

using NeutrAvidin-coated agarose beads from 300 μg of total proteins. 

In both intracellular and surface isolated receptors, the NeutrAvidin beads were 

collected by brief centrifugation and washed three times with homogenization buffer without 

detergents. The beads were resuspended in 75 μL of 2  LDS buffer (Invitrogen) and boiled 

for 5 min to release proteins, which were separated on 12% SDS-PAGE and transferred onto 

a polyvinylidene fluoride membrane. After blocking in 2% non-fat milk, the membranes were 

incubated in rat anti-α1-AChR subunit at 4°C overnight. The membranes were then incubated 

for 1 h in HRP-conjugated goat anti-rat secondary antibody at 1:10,000 (Jackson 

ImmunoResearch). After extensive washing, the membranes were incubated with 
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SuperSignal West Pico Substrate (Pierce). Immunoblot quantitation was performed by 

scanning films and using the NIH ImageJ software. 

 

Quantitative RT-PCR analysis of mRNA expression 

RNA was isolated using TRIzol
®

 (Invitrogen) from pairs of mouse sternomastoid 

muscles. Reverse transcription into cDNA was performed using 1 μg of total cellular RNA, 

50 pmol oligo(dT)20 primer (Invitrogen) and SuperScript® III Reverse Transcriptase 

(Invitrogen). Quantitative real-time PCR was carried with 1 μL of cDNA product and the 

Power SYBR© Green PCR Master Mix (Applied Biosystems), using a 7500 Fast Real Time 

PCR System (Applied Biosystems). We used the following primers, designed to pair with 

different exons of mouse α1-AChR subunit (Chrna1; NM_007389.4): forward 5’- 

gaggaccaccgtgagattgt-3’ and reverse 5’- aatcgacccattgctgtttc-3’ (product size, 121 bp); rapsyn 

(Rapsn; NM_009023.3): forward 5’- ctcagatgcctgcaaaacaa-3’ and reverse 5’- 

aggttgtgtggaaacccaag-3’ (product size, 111 bp); α-dbn1 (Dtna1; NM_207650.3): forward 5’- 

ctccggctcctcagacag-3’ and reverse 5’- ggcagatgctgaacggatg-3’ (product size, 195 bp). 

Expression was normalized to WT using the 2
-ΔΔCt

 method (Livak and Schmittgen, 2001) and 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh; NM_008084.2) as an internal reference, 

with primers 5’-aactttggcattgtggaagg-3’ and 5’- ggatgcagggatgatgttct-3’ (product size, 132 

bp). 

 

Immunofluorescence 

To determine if absence of α-syn affects chromatin modification and transcriptional 

activation of postsynaptic nuclei, the sternomastoid muscle of wild-type and mutant adult 

mice were exposed and bathed with a saturating dose of BTX-Alexa488 (Invitrogen) to label 
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all superficial synapses (5 μg/mL, 30 min). The non-bound fluorescence was washed out with 

lactated Ringer’s superfusion and the animals were perfused with 4% formaldehyde. After 

extraction and dissociation into thin fiber bundles, the sternomastoid muscle was 

permeabilized with 1% Triton X-100 Tris-buffered saline (TBS) for 30 min and then washed 

twice with TBS. Fiber bundles were immersed and incubated overnight in rabbit anti-

phospho (Ser10)-acetyl (Lys14)-histone H3 (Millipore), diluted 1:500 in 1% bovine serum 

albumin (BSA) TBS. After washing with TBS, fiber bundles were incubated with DyLight 

594-conjugated goat anti-rabbit IgG (Jackson Immunoresearch), diluted 1:1000 in 1% BSA 

TBS for 1 h. After washing with TBS, fibers were further dissociated, mounted in ProLong 

with DAPI (Invitrogen) and imaged with a confocal microscope (Leica SP5). The z-stacks 

were then collapsed and the contrast adjusted with Photoshop. 

 

Electroporation of GFP-α-dbn1, rapsyn-GFP, and α-syn-GFP into the sternomastoid 

muscle and confocal microscopy 

Adult mice deficient in α-syn (20–28 g) were anaesthetized, the sternomastoid muscle 

was surgically exposed and 10 μg of plasmid driving exogenous expression of GFP-α-dbn1, 

GFP-α-dbn1-P3
-
 (three tyrosine phosphorylation sites at Y685, Y693 and Y710  mutated to 

phenylalanine), rapsyn-GFP, or α-syn-GFP was added (all constructs were driven by a CMV 

promoter). The plasmid solution was layered over the muscle surface as described by 

(Bruneau and Akaaboune, 2010). Gold electrodes were placed parallel to the muscle fibers on 

either side of the muscle, and eight monopolar square-wave pulses were applied 

perpendicularly to the long axis of the muscle. Following electroporation, the mouse was 

sutured and allowed to recover in a heated recovery chamber. One to two weeks later, the 

animal was re-anaesthetized and Alexa Fluor 594-labeled α-bungarotoxin (BTX-Alexa594) 

was added to the sternomastoid muscle to label AChRs (1 h). The animal was then perfused 
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transcardially with 2% formaldehyde and the sternomastoid muscle was removed, mounted 

and scanned with a confocal microscope (Leica SP5) and imaged. The z-stacks were then 

collapsed and the contrast adjusted with Photoshop. 

 

Results 

Effect of α-syntrophin deficiency on the maturation of developing synapses   

To examine at which stage of synaptic development the absence of α-syn begins to 

alter normal postsynaptic apparatus development, sternomastoid muscles of α-syn null and 

wild type mice at different stages of development (P0, P5, P7, P15, and P60) were bathed 

with BTX-Alexa488 to label AChRs, then fixed, and imaged. High resolution confocal 

images of synapses show no significant differences in AChR distribution in mutant NMJs at 

P0 or P5, but abnormal patterning of AChRs was evident at P7 and became more pronounced 

at P15 where obvious patchy aggregates and extension of receptors from edges were 

observed. This abnormal patterning of AChR distribution persists and even worsens at mature 

synapses (P60) (Figure 2.1 A). Careful analyses of mutant and wild type synapses revealed 

that in mutants, the transition of synapses from plaque-like to perforated and to branched 

receptor distribution was delayed and the size of synapses remains relatively small compared 

to wild type (Figures 2.1 B, C). These observations suggest that α-syn is required for the 

maturation of the postsynaptic apparatus.  
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Figure 2.1. Absence of α-syn delays the maturation of the synapse. A) Sternomastoid muscles of 

mutant and wild type mice at different stages of development were bathed with BTX-Alexa488 to 

label AChRs and synapses were imaged with confocal microscope. Note that synapses at P5 of wild 

type and mutant look similar (there is no obvious abnormality in the pattern of receptor distribution). 

However, at P7, AChRs appear to have a patchy distribution in mutant synapses compared to wild-

type synapses. At P15 and P60, the structural organization (many small, high-density aggregates of 

AChRs distributed both at the crests and troughs of junction folds, with frequent speckled extensions 

of AChRs from the edges) of mutant synapses is different from wild type at the same age. Arrows 

indicate synaptic perforations and asterisks, synaptic invaginations, as quantified in Figure 2.1 C. 

Scale bars are 10 μm. B) Graph shows the area occupied by AChRs as labeled with fluorescent BTX-

Alexa488. Note that the overall synaptic area of mutant synapses is smaller than wild type as synapses 

mature. Each data point represents the mean and SEM of the area of several junctions. C) Graph 

shows fewer perforations/invaginations in developing mutant synapses than wild type, indicating that 

the maturation process is somewhat delayed in mutant synapses. Each bar represents the mean and SD 

of several junctions. *** p < 0.0001. 

 

 

Next, we examined whether the abnormal patterning of receptor distribution in α-syn
-/-

 

NMJ is accompanied by alterations in the density and number of AChRs at synaptic sites. To 

do this, sternomastoid muscles from different developmental stages (P0 to P60) were labeled 

with BTX-Alexa488 to saturate all receptors. Superficial synapses were then imaged and 

their fluorescence intensity was assayed. The density of AChRs at different stages of 

development was expressed as a percentage of the fluorescence present at mature wild type 
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NMJs.  As shown in Figure 2.2, no significant difference in receptor density between wild 

type and α-syn
-/-

 NMJs was seen at P0 (WT: 13 ± 3% SD, n = 23; α-syn
-/-

: 12.5 ± 2% SD, n = 

16) and P5 (WT: 24.6 ± 5% SD, n = 21; α-syn
-/-

: 24.2, ± 6% SD, n = 37). At P7, however, the 

density of AChR at α-syn
-/- 

NMJs is (25 ± 6% SD, n = 20), 33% lower than the density of 

AChRs at wild type synapses (37 ± 9% SD, n = 20) of the same age (Figure 2.2). In contrast 

to wild type synapses, in which the density of AChRs continues to increase as synapses 

mature, the density of AChRs at α-syn
-/-

 NMJs reaches a low maximum at P15 and remains 

unchanged thereafter (Figure 2.2). We also quantified the number of AChRs by calculating 

the product of average density and synaptic area, since during normal development of the 

synapse, both the size and average density within synaptic area increase. After postnatal day 

7 and as synapses mature, the total number of receptors at synaptic sites begins to diverge 

from wild type synapses and remains low in α-syn mice compared to wild type (data not 

shown). Together these results indicate that α-syn is required for the increase of postsynaptic 

receptor density as synapses mature.  

Figure 2.2. The density of postsynaptic 

receptors at the neuromuscular junction of α-

syn null mice is dramatically affected as 

synapses mature. AChRs in sternomastoid 

muscles of control and mutant mice were 

labeled with BTX-Alexa488 until their 

saturation. Superficial synapses were imaged 

and their fluorescence intensity was measured 

and normalized to fluorescence intensity of 

adult wild type synapses. A) Examples of 

neuromuscular junctions imaged at different 

stages of development using a quantitative 

fluorescence assay. These pseudo-color images 

provide a linear representation of the density of 

AChR (white-yellow, high density; red-black, 

low density). B) Quantification of the density 

of AChRs using the same approach shown in 

A. Each data point represents the mean and 

SEM of several NMJs. Note that at P0 and P5, 

the density of postsynaptic receptors is the 

same between wild type and mutant synapses. 

At wild type synapses, the density of 

postsynaptic receptors increases steadily as synapses mature, but the density of postsynaptic receptors 

at mutant synapses rises slowly and remains low as synapses mature. Scale bars are 10 μm. 



 

37 
 

AChR dynamics in developing synapses of mice lacking α-syntrophin  

Having found that absence of α-syn from NMJs impairs postsynaptic receptor density 

and distribution as early as P7, we asked whether failure to increase the density and number 

of postsynaptic receptors is accompanied by an accelerated rate of receptor loss from the 

postsynaptic membrane. To test this, labeled AChRs on the sternomastoid of α-syn
-/-

 and wild 

type pups at postnatal day (P4) were imaged and then re-imaged 24 hours later. Twenty-four 

hours after initial imaging, fluorescence intensity of the labeled receptors had decreased 39 ± 

8% SD (n = 26) in mutant synapses [t1/2 ≈ 34 hours] and 35 ± 8% SD (n = 20) in wild type 

synapses [t1/2 ≈ 38 hours], (p > 0.05) (Figure 2.3 A). This result indicates that absence of α-

syn has no significant effect on receptor turnover rate during the first five days after birth. 

However, at 6 days after birth, fluorescence intensity of the labeled receptors had decreased 

54 ± 6% SD (n = 18) over 24 hours in mutant synapses [t1/2 ≈ 21 hours] and only 36 ± 6% SD 

(n = 25) in wild type synapses [t1/2 ≈ 37 hours] over the same period (p < 0.0001) (Figure 

2.3 B). At P9, fluorescence intensity of the labeled AChR decreased 48 ± 6% SD (n = 24) [t1/2 

≈ 26 hours] in the α-syn
-/-

 synapses, but only 26 ± 6% SD (n = 20) [t1/2 ≈ 55 hours] in wild 

type synapses over 24 hours (p < 0.0001) (Figure 2.3 C). This indicates that α-syn is involved 

in receptor removal from postsynaptic sites as synapses mature. 
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Figure 2.3. Absence of α-syn accelerates the loss rate of AChRs at developing synapses. A) Neonatal 

pups of wild type and mutant mice aged 3 days after birth were injected with a low dose of BTX-

Alexa488 in their tails (less than 20% of AChR were labeled), and 24 hours later they were 

anesthetized and synapses on the sternomastoid muscle were imaged immediately (time 0) and re-

imaged 24 hours later. Example of two views of the same neuromuscular synapses of mutant and wild 

type imaged and re-imaged at 0 and 24 hours later. The total fluorescence intensity (a measure of the 

total number of AChRs) was expressed as 100% at the initial labeling (time 0) and normalized to this 

on the successive view (24 hours). Graph summarizes the data from many synapses using the 

approach in A. Note that the remaining fluorescently labeled AChR in mutant synapses was not 

significantly different from wild type synapses. B) Example of two images of wild type and mutant 

NMJ of pups 6 days old at time 0 and 24 hours later. Graph shows data from many synapses. Note 

that the loss of fluorescence from labeled AChR is increased in mutant synapses compared to wild 

type. C) At P9, the loss of fluorescence of labeled AChR from wild type synapses averaged at 26% 

after 24 h, whereas the loss of fluorescence from α-syn
-/-

 synapses was 48%. Note that α-syn 

deficiency dramatically decreases the half-life of AChRs. Each data point represents the mean 

percentage of fluorescence intensity (± SD) at each view. Scale bars are 10 μm. *** p < 0.0001. 

 

 

AChR dynamics at mature synapses of mice lacking α-syntrophin 

The observation that α-syn
-/-

 synapses bear fewer AChRs than controls prompted us to 

examine the possible mechanisms that lead to decreased AChR density at postsynaptic sites. 

We investigated this issue in adult mutant mice. First, we examined whether absence of α-syn 

from adult synapses decreases the half-life of AChRs. To examine this, sternomastoid 

muscles were labeled with a non-saturating dose of fluorescent BTX (less than 30% of 
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receptors were labeled, leaving synapses functional) and the loss of fluorescently tagged 

AChRs was monitored over the next 24 hours. We found that the fluorescence intensity of the 

labeled receptors had decreased 8 ± 3% SD (n = 31) of original fluorescence in wild type 

synapses [t1/2 ≈ 9 days] and 30 ± 7% SD (n = 25) of original fluorescence in mutant synapses 

[t1/2 ≈ 2 days] (Figure 2.4 A). Therefore, the half-life of AChRs at α-syn
-/-

 synapses is about 

four times faster than AChR at wild type synapses.  

Next, we used the loss rate to calculate the insertion rate of new AChRs into the 

postsynaptic membrane. Knowing that the size of mature synapses remains relatively 

constant for at least several weeks, the sternomastoid muscle was bathed with a single 

saturating dose of BTX-Alexa488 to label all AChRs on the surface of the muscle cell, and 

superficial synapses were imaged immediately (time 0). Three days later, the same synapses 

were located, re-imaged and the loss of their fluorescence intensity was measured. A second 

saturating dose of BTX-Alexa488 was added to label new AChRs and synapses were imaged 

again. We found that most lost receptors were replaced with new AChRs, indicating that the 

rate of insertion of new receptors into the postsynaptic membrane was not impaired by the 

absence of α-syn (Figure 2.4 B).  

Then, we explored whether a defect in the number of recycled receptors could account 

for the low number and density of receptors at α-syn
-/-

 NMJs, since this pool of receptors 

contributes to the density and number of AChRs in the postsynaptic membrane(Bruneau et 

al., 2005; Bruneau and Akaaboune, 2006). The sternomastoid muscle of mutant and wild type 

animals was labeled with BTX-biotin, followed by a saturating dose of strept-Alexa488, as 

described previously (Bruneau et al., 2005) and superficial synapses were imaged 

immediately (time 0). Three days after the initial labeling (to allow for a sizable amount of 

receptor internalization), the same synapses were imaged to measure the loss of fluorescence 

and then the sternomastoid muscle was bathed with strept-Alexa488 to label recycled AChRs 
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(receptors that had lost their initial strept-Alexa488 tag while retaining BTX-biotin during the 

process of internalization and reinsertion in the postsynaptic membrane). The same synapses 

were re-imaged and the percentage of recycled AChRs at mutant synapses was measured and 

compared to wild type synapses. We found that only 9 ± 4% SD (n = 21) of the original 

fluorescence had recovered at mutant synapses, while the recovery was 22 ± 3% SD (n = 23) 

in wild type synapses (Figure 2.4 C). This result indicates that in the absence of α-syn, fewer 

recycled receptors are clustered in synaptic sites.  

Having shown that AChRs are removed faster from mutant than wild type synapses, 

next we asked which of the receptor pools [recycled receptors and/or not yet internalized 

AChRs (pre-existing)] is affected by the absence of α-syn. To address this, AChRs in the 

sternomastoid muscle of wild type and mutant mice were sequentially labeled with BTX-

biotin followed by a single saturating dose of (green) strept-Alexa488 as described by 

Bruneau et al. (2005). Three days after the initial labeling, the sternomastoid muscle was 

bathed with Alexa Fluor 594-tagged streptavidin (red) to specifically label recycled AChRs 

and doubly labeled synapses were immediately imaged (time 0) and re-imaged three days 

later. The fluorescence intensity of labeled recycled AChRs at wild type and α-syn
-/-

 synapses 

decreased to 22 ± 6% SD (n = 16) and 15 ± 3% SD (n = 22) of the original fluorescence, 

respectively (p < 0.0001), while the fluorescence intensity of labeled pre-existing AChRs 

decreased to 59 ± 6% SD (n = 21) in wild type synapses and to 42 ± 8% SD (n = 18) in 

mutant synapses (p < 0.0001) (Figures 2.4 D, E). This result indicates that the stability of 

both recycled and pre-existing AChRs is affected by the absence of α-syn from synapses.    
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Figure 2.4. Dynamics of AChRs at mature neuromuscular junctions deficient in α-syn. A) Adult wild 

type and mutant mice were injected with a low dose of BTX-Alexa488 in their tails (less than 30% of 

AChR were labeled, so synapses are still functional), and 24 hours later they were anesthetized and 

synapses on the sternomastoid muscle were imaged immediately and re-imaged 24 hours later. 

Example of two views of the same neuromuscular synapses of mutant and wild-type imaged and re-

imaged at 0 and 24 hours later. Graph summarizes the data from many synapses using the approach in 

A. Note that the loss rate of labeled AChRs from mutant synapses was significantly higher than that 

of wild type synapses. B) The sternomastoid muscles of mice deficient in α-syn were labeled with a 

saturating dose of BTX-Alexa488 and superficial synapses were immediately imaged. Three days 

later, the same synapses were located, re-imaged and the loss of their fluorescence intensity was 

measured (72 h remaining). A second saturating dose of BTX-Alexa488 was added to label new 

AChRs that had been inserted during the 72 h and synapses were imaged again (72 h newly inserted). 

The total fluorescence intensity was expressed as 100% at the initial labeling and normalized to this 

on each successive view. Graph summarizes the data from many NMJs. C) The sternomastoid 

muscles of mice deficient in α-syn and wild type mice were labeled with a saturating dose of BTX-

biotin followed by a saturating dose of strept-488 and superficial synapses were imaged. The total 

fluorescence intensity was expressed as 100% at the initial labeling and normalized to this on each 

successive view. To assess the amount of recycled receptors that had been re-inserted between time 0 

and 3 days, strept-488 was then added to the muscle and the same synapses were re-imaged. Graph 

summarizes the amount of recycled receptors present at synaptic sites, obtained from many junctions. 

Each bar represents the mean percentage of original fluorescence intensity ± SD. D) Absence of α-syn 

increases the removal rates of pre-existing and recycled AChRs from the same synapse as assayed by 

loss of fluorescence intensities compared to wild type synapses. The total fluorescence intensity of 

each AChR pool was normalized to 100% at initial imaging. Pseudo-color images provide a linear 

representation of the density of AChRs. Scale bars are 10 μm. *** p < 0.0001. E) Graph shows loss of 

fluorescently labeled pre-existing and recycled AChRs from several synapses. Note that removal of 

AChRs from both pools is faster in the absence of α-syn. Each data point represents the mean 

percentage of original fluorescence intensity ± SD. 
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We also asked whether a mistargeting of the insertion of receptors into non-synaptic 

zones could also account for the low number/density of receptors at synaptic sites of mice 

deficient in α-syn. To test this, the sternomastoid muscles of mutant and wild type mice were 

labeled with BTX-biotin. Receptors on the muscle surface were isolated with NeutrAvidin-

coated beads, and analyzed by western blot using anti-α1-AChR subunit antibody (MAB210). 

If absence of α-syn specifically impairs the insertion of AChRs into the postsynaptic 

membrane, the amount of receptors on the surface should be smaller in mutant than wild type 

and greater in the internal pool of mutant than that of wild type. Conversely, if loss of α-syn 

mistargets receptors into non-synaptic zones, the amount of receptors on the surface of 

muscle cells should be comparable to wild type. Western blot analysis of receptors reveals 

the presence of few receptors in both surface and internal compartments of mutant muscle 

cells compared to wild type (Figures 2.5 A, B). This result was further confirmed by western 

blot analysis of total homogenates (membrane and internal fractions) from mutant and wild 

type muscle cells using rat anti-α1-AChR subunit, showing that the amount of total AChRs is 

significantly reduced in mutant mice compared to wild-type (Figures 2,5 A, B).  

This finding prompted us to test whether the low number of receptor is a consequence 

of a low level of AChR transcripts. To test this, the mRNA levels of α1-AChR subunit from 

mutant and wild type were measured by real-time RT-PCR using glyceraldehyde 3-phosphate 

dehydrogenase as an internal control. We found that AChR mRNA (α1 subunit) expression 

level was similar between mutants and controls, indicating that loss of α-syn has no effect on 

receptor gene expression (Figures 2.5 C). These results were further confirmed by immune-

fluorescence with antibodies against phospho (Ser10)-acetyl (Lys14)-histone H3 (Figure 

2.5 D), which indicated normal activity of subsynaptic nuclei gene expression. Together, 

these results strongly imply that α-syn is involved in controlling the stability and trafficking 

of AChRs at multiple points during the secretory process. 
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Figure 2.5. Absence of α-syn reduces both surface and internal receptors. A) Receptors on the surface 

of sternomastoid muscles of mutant and wild type mice were saturated with BTX-biotin, pulled down 

with NeutrAvidin-agarose beads and immunoblotted with anti-α1-AChR subunit. To assess the 

amount of AChRs in the internal compartment, sternomastoid muscles of mutant and wild type mice 

were incubated with unlabelled BTX to saturate all surface receptors; then muscle homogenates were 

incubated with BTX-biotin to bind AChRs in the internal pool, pulled down with NeutrAvidin-

agarose beads and probed for α1-AChR subunit. Total amount of AChRs (on the surface and in the 

internal compartment) was probed by western blotting of homogenates from sternomastoid muscles of 

mutant and wild type mice. Tubulin was used as a loading control. B) Quantitative analysis of the 

amounts of AChRs on the surface, in the internal pool, and the total of mutant and wild type muscle 

cells. At least three independent repetitions were performed in each experiment. Data are shown as 

mean ± SD; n = 5.  C) Real-time PCR of α1-AChR subunit mRNA expression levels are similar in 

sternomastoid muscles of wild type (WT) and α-syn
-/-

; error bars are SD with n = 3 mice. D) 

Transcriptional activation is similar in subsynaptic nuclei of wild-type (WT) and α-syntrophin knock-

out (α-syn
-/-

) mice. Muscle fibers were stained with Alexa Fluor 488-BTX (green) for the 

neuromuscular junction and anti-phospho (Ser10)-acetyl (Lys14)-histone H3 (red). Representative 

images are shown. Scale bar is 10 μm. ** p < 0.01; *** p < 0.001. 
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Absence of α-syntrophin sharply reduced AChR-associated scaffold protein levels in 

muscle cells   

Next, we investigated whether loss of α-syn also affects the expression levels of other 

postsynaptic scaffolding proteins, such as α-dbn and rapsyn. Previous studies have shown 

that the concentration of α-dbn was reduced at synaptic sites of muscle fibers deficient in 

α-syn (Adams et al., 2000), but it was not clear whether absence of α-syn leads to a reduction 

in total amount of α-dbn in the muscle cells and/or a decrease in recruitment of α-dbn to 

synapses. To examine this, the sternomastoid muscle was removed and muscle homogenates 

were examined by western blot analysis using antibodies against α-dbn. We found that 

isoforms of α-dbn1 and 2 expressed by the muscle were reduced. As shown in Figure 2.6, the 

89 kDa isoform of α-dbn1 was reduced more than 85% of the control, and the 75 kDa 

isoform was undetectable. It is worth mentioning that both α-dbn1 isoforms have been shown 

to be phosphorylated, but the 75 kDa isoform is more heavily phosphorylated, and contains 

more phosphotyrosine than the 89 kDa isoform in the presence of the tyrosine phosphatase 

inhibitor, pervanadate (Nawrotzki et al., 1998). This severe reduction is not due to low levels 

of α-dbn transcript, as qRT-PCR shows that mRNA levels were not affected (Figure 2.6 C). 

The concentration of α-dbn 2 (non-phosphorylated isoform) was reduced by half (Figures 

2.6 A, B). Rapsyn, a scaffolding protein required for AChR aggregation, is also reduced in 

mutant syntrophin mice. As displayed in Figure 2.6, both western blot and qRT-PCR show 

that rapsyn was reduced by half compared to wild type (Figure 2.6), indicating that α-syn is 

involved in controlling rapsyn gene expression (see discussion).  
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Figure 2.6. Absence of α-syn induces a severe reduction of α-dbn isoforms. Equal amounts (50 μg) of 

protein form total sternomastoid muscle extracts of α-syn mutant and wild type mice were separated 

on SDS-polyacrylamide gels, and subjected to immunoblotting with a pan-α-dbn antibody. A) Blots 

show a severe reduction of 89 kDa α-dbn and undetectable 75 kDa α-dbn isoforms in α-syn mutant 

compared to wild type, whereas 59 kDa α-dbn2 isoform is reduced to about 50% of wild type levels. 

Rapsyn was reduced to ~50% of wild-type. B) Graphs show quantification of western blots. C) Graph 

shows that real-time PCR of α-dbn1 mRNA expression levels are similar in sternomastoid muscles of 

wild type (WT) and α-syntrophin knockout (α-syn
-/
), whereas rapsyn mRNA expression level was 

reduced by half in α-syn knockout compared to wild type. Error bars are SD with n = 3 mice. 

** p < 0.01; *** p < 0.001. 

 

To investigate whether the phenotype of α-syn
-/-

 NMJ might be caused by loss of 

recruited scaffold proteins, we electroporated GFP-α-dbn1 into the sternomastoid muscle of 

mice deficient in α-syn. One to two weeks later, mice were perfused, muscles were removed, 

and AChRs were labeled with fluorescent BTX-Alexa594. As shown in Figure 2.7 A, GFP-α-

dbn1 was concentrated at synaptic sites of electroporated deficient muscle cells. High 

resolution images show that GFP-α-dbn1 constructs partially restored the AChR distribution 

shape (categories 2 and 3; Figure 2.7 B). The restoration was more pronounced in some 

synapses than other, most likely depending on the expression level of constructs (Figure 

2.7 B). However, we found no significant difference in AChR pattern at synapses expressing 
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GFP-α-dbn1 or GFP-tyrosine-mutated dystrobrevin isoform (Figure 2.7 A). Conversely, 

overexpression of rapsyn-GFP alone in α-syn
-/-

 muscle fibers does not restore the normal 

synaptic phenotype (Figures 2.7 A, B), nor does it change the distribution of AChR in WT 

synapses (data not shown) (Bruneau and Akaaboune, 2010). 

 

Figure 2.7. Electroporation of α-dbn1 partially rescues the pattern of AChR distribution at α-syn
-/-

 

NMJ. A) The sternomastoid muscle of adult α-syn null mice was electroporated with GFP-α-dbn1 or 

GFP-α-dbn1 with three tyrosine phosphorylation sites mutated to phenylalanine (GFP-α-dbn1-P3
-
). 

One to two weeks later, the mouse was perfused with 2% formaldehyde, and receptors were labeled 

with BTX-Alexa594. Neuromuscular synapses on electroporated and non-electroporated muscles 

were imaged with the confocal microscope. Representative high resolution images show that GFP-

constructs are expressed and localized at postsynaptic sites. Expression of either α-dbn1 and α-dbn1-

P3
-
 in α-syn

-/-
 muscle partially restored the AChR pattern of distribution. Note that synapses in muscle 

cells deficient in α-syn electroporated with GFP-α-dbn1 appear to have relatively smooth borders with 

few patchy clusters of AChR and less extensions of receptor beyond the edge. However, non-

electroporated α-syn
-/-

 muscle synapses exhibit hot spots of receptors and fragmented branch borders 

with many speckles. Rapsyn-GFP was similarly electroporated into adult α-syn knock-out muscles. 

While rapsyn-GFP is found at postsynaptic sites, rapsyn-GFP does not rescue the synaptic phenotype 
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in muscle cells deficient in α-syn. B) Synapses were categorized according to their AChR distribution, 

ranging from category 1, showing well defined troughs and synaptic borders, where most WT 

synapses are found, to 4, with markedly disorganized and patchy AChR distribution and fuzzy 

synaptic borders, typical of α-syn
-/-

 synapses. Categories 2 and 3 show intermediate phenotypes, as 

exemplified by the synapses shown. The table shows the frequency distribution (in percentages) for 

each category per group, as well as the number of synapses analyzed (N). Scale bars are 10 μm. 

 

To analyze in more detail the rescue of α-syn
-/-

 synaptic phenotype by GFP-α-dbn1, 

we examined first whether expression of GFP-α-dbn1 rescues the density of postsynaptic 

receptors of α-syn
-/-

 NMJs. To do this, the sternomastoid muscle of mice deficient in α-syn 

was electroporated with GFP-α-dbn1 and 7 days later, the sternomastoid was bathed with a 

saturating dose of BTX-Alexa594 to label all receptors. Superficial synapses of 

electroporated with GFP-α-dbn1 and non-electroporated muscle fibers from the same 

sternomastoid were imaged and the fluorescence intensity of labeled AChRs was measured. 

The density of AChRs (expressed as a percentage of the fluorescence present at mature wild 

type NMJ) at α-syn
-/- 

NMJ over-expressing GFP-α-dbn1 (66 ± 4% of WT synapses, n = 26 

NMJs) is 78% higher than the density of AChRs at non electroporated synapses (31 ± 6% 

SD, n = 20 NMJs), but lower than wild type (Figure 2.8 A). Next, we examined whether 

over-expression of GFP-α-dbn1 increases the half-life of AChRs at α-syn
-/- 

NMJ. Twenty-

four hours after initial imaging, fluorescence intensity of the labeled receptors had decreased 

16 ± 3% SD (n = 16 NMJs) in mutant synapses expressing GFP-α-dbn1 [t1/2 ≈ 4 days], 

compared to 31 ± 5% SD (n = 7 NMJs) in non-electroporated synapses [t1/2 ≈ 2 days] (p < 

0.0001) and 8 ± 3% SD [t1/2 ≈ 9 days] (n = 9 NMJs) in wild type synapses (p < 0.0001) 

(Figure 2.8 B). Finally, we tested whether the number of recycled receptor has increased in α-

syn
-/-

 NMJs expressing GFP-α-dbn1. We found that, three days after initial labeling, 74% 

more AChRs recycled back into mutant synapses expressing GFP-α-dbn1 (n = 10 NMJs), 

when compared to non-electroporated fibers (n = 12 NMJs) (Figure 2.8 C). These results 

indicate that α-dbn1 partially rescued synaptic phenotype including AChR half-life, recycling 
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and postsynaptic density. Conversely, overexpression of α-syn-GFP into the sternomastoid 

muscle of mice deficient in α-dbn, which have a similar NMJ phenotype to α-syn
-/-

 NMJ, 

does not restore the normal synaptic phenotype (Figure 2.8 D), suggesting that the synaptic 

effects of α-dbn and α-syn are not merely additive. Also, overexpression of α-dbn in wild 

type synapses does not increase receptor density (data not shown). Not all proteins lost from 

α-syn null synapses are involved in the increase of the turnover rate of receptor. In mice 

lacking utrophin, which is highly concentrated at wild type synaptic sites, but lost in the 

absence of α-syn, the AChR turnover rate is unaffected (data not shown) (Akaaboune et al., 

2002).  

 

Figure 2.8. Electroporation of α-dbn1 partially rescues the density, stability and recycling of AChRs 

at expressing α-syn
-/-

 NMJs. A) The sternomastoid muscle of adult α-syn null mice was electroporated 

with GFP-α-dbn1. One week later, AChRs were labeled with a saturating dose of BTX-Alexa594 and 

superficial synapses, with or without GFP-α-dbn1, from the same sternomastoid muscle were imaged. 

Fluorescence intensity was measured and normalized to wild type (WT) synapses. Total fluorescence 

was normalized to WT synapses. Graph summarizes the data from many synapses. B) One week after 

electroporation of GFP-α-dbn1, AChRs were labeled with BTX-Alexa594, and superficial synapses, 

with or without GFP-α-dbn1, from the same sternomastoid muscle were imaged immediately (time 0) 

and re-imaged 24 h later. Note that there are more remaining fluorescently tagged AChRs in synapses 

electroporated with GFP-α-dbn than in non electroporated synapses, though comparably less than WT 
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NMJs. Graph summarizes the data from many synapses. C) Sternomastoid muscles from α-syn
-/-

 mice 

were electroporated with GFP-α-dbn1. One week later, surface AChRs were labeled with BTX-biotin, 

followed by a saturating dose of unlabeled streptavidin, then bathed with strept-Alexa594 to label the 

AChRs recycled for 3 days. Graph summarizes the data from many synapses. Each bar represents the 

mean percentage of fluorescence intensity ± SD. *** p < 0.0001. D) The sternomastoid muscle of 

adult α-dbn null mice was electroporated with α-syn-GFP, AChRs were labeled with BTX-Alexa594, 

and imaged with a confocal microscope. Note that α-syn-GFP does not rescue the α-dbn
-/-

 synaptic 

phenotype. Scale bars are 10 μm. 

 

Discussion 

The importance of the DGC in muscle integrity is well established. However, little is 

known about the role of this complex in the molecular dynamics of receptors at postsynaptic 

sites in vivo. In this study, we examined the mechanisms by which absence of α-syn leads to 

fewer receptors at mature synaptic sites and whether α-syn is required for synaptic 

development. The main results are as follows: (1) absence of α-syn dramatically destabilizes 

AChRs at mature synapses; (2) the AChR recycling pathway is impaired in the absence of α-

syn; (3) postsynaptic defects coincide with an abnormal shift in turnover rate of AChR in 

developing synapses; (4) in the absence of α-syn, there is a dramatic reduction in the total 

amount of AChRs, rapsyn, and α-dbn in muscle cells; (5) AChR transcript levels are not 

affected by lack of α-syn; and (6) electroporation of fused GFP-α-adn1 into muscle fibers 

deficient in α-syn restores to some extent the phenotype of the NMJ. Taken together, these 

results establish a role for α-syn in the maintenance and stability of AChRs in vivo.  

Previous studies have shown that NMJs of α-syn
-/-

 muscle contain few receptors, 

raising the possibility that α-syn may be critical for the maintenance of receptor density and 

stability. The present work provides direct evidence for this idea by showing that synapses 

lacking α-syn have a significantly increased turnover rate of AChRs and drastically reduced 

density of AChRs both in developing and mature synapses. This high turnover is not a 

consequence of muscular dystrophy, since no sign of muscular dystrophy is seen in muscle 

fibers (Adams et al., 2000).  
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α-syntrophin is a component of the DGC which is present in both the troughs and the crests 

of the junctional folds (Kramarcy and Sealock, 2000), and links signaling proteins to the 

DGC (Brenman et al., 1996; Gee et al., 1998). However, no direct link between α-syn and 

AChR has been reported so far, raising the question of how α-syn might control the 

density/number and stability of receptors at the crest of the postjunctional folds. It is possible 

that absence of α-syn from the complex may change the conformation of the DGC and its 

association with other postsynaptic components, leading to instability of the complex as a 

whole, which in turn may affect the stability and/or tethering of AChRs into the postsynaptic 

membrane. At NMJs deficient in α-syn, several components of the DGC are either reduced or 

completely lost (Adams et al., 2000). For example, the total amount of α-dbn in muscle 

(Figure 2.6) is reduced, and utrophin and nNOS are completely lost from synaptic sites 

(Adams et al., 2000). From our studies, it appears that absence of α-syn has no effect on the 

gene expression of α-dbn, since we see no difference in α-dbn transcript levels between α-syn 

null and wild type animals. This raises the question of how loss of α-syn might control the 

stability and trafficking of α-dbn from the ER into the cell surface. This issue warrants further 

investigation, particularly with regard to signaling processes associated with the DGC, such 

as those involving nNOS. 

The absence of utrophin from α-syn
-/-

 NMJ is likely not responsible for the rapid 

turnover rates of AChR at α-syn
-/-

 NMJ. The turnover rate of AChR was no faster in utrophin 

null than in control mice (Akaaboune et al., 2002). Interestingly, however, in α-adbn
-/-

 

synapses, which bear few receptors and have a higher turnover rate of AChRs (Grady et al., 

2000; Akaaboune et al., 2002), α-syn appears to be unaltered and remains highly 

concentrated at the NMJ (Grady et al., 1999). Thus, it is conceivable that accelerated turnover 

rate of receptors in the α-syn mutant may be secondary to the dramatic reduction of α-dbn at 

the NMJ and muscle cells. Due to the fact that full length phosphorylated α-dbn isoforms are 
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severely reduced in α-syn mutants, that α-syn
-/-

 and α-dbn
-/- 

NMJ have similar phenotypes, 

and that α-dbn isoforms are able to rescue α-dbn mutant synapses (Grady et al., 2003), it is 

plausible that the NMJ phenotype and receptor stability in α-syn
-/-

 are controlled by α-dbn 

alone or synergistically with other factors. If the α-syn
-/-

 NMJ phenotype is caused by α-dbn 

reduction, then we expect at least some sign of muscular dystrophy. However, α-syn
-/-

 mice 

do not exhibit any sign of muscular dystrophy. Perhaps the presence of α-dbn2, which is less 

reduced (Figure 2.5), may be sufficient to prevent muscular dystrophy in these mutant mice. 

Consistent with this, previous results have shown that transgenic expression of either α-dbn2 

or 1 isoforms in α-dbn
-/-

 mice, in which muscular dystrophy was observed (Grady et al., 

1999), is sufficient to rescue the dystrophic phenotype (Grady et al., 2003). 

Our present data argue that the α-syn
-/-

 NMJ phenotype results, at least in part, from 

α-dbn reduction, since electroporation of exogenous of α-dbn restores synaptic distribution of 

AChR to some extent. In contrast to α-dbn
-/-

 NMJs, in which overexpression of 

phosphorylatable α-dbn1 is able to fully rescue the synaptic phenotype, phosphorylated and 

non-tyrosine-phosphorylated α-dbn1 isoforms partially rescue the syn
-/-

 NMJ phenotype in 

the same way, possibly because α-syn is required for the tethering and/or the signaling 

pathway of α-dbn phosphorylation. 

Deficiencies in certain DGC components do not cause defects in NMJ (Duclos et al., 

1998; Hack et al., 1998). Interestingly, only components that control localization of nNOS at 

NMJ are involved in the maintenance of the NMJ structure and mice deficient in components 

that induce removal of nNOS from synapses exhibit structural defects of NMJ similar to 

those observed in nNOS null mice (Shiao et al., 2004). This suggests that nNOS may be the 

common factor that contributes to defects in NMJ of missing DGC molecules. nNOS is lost 

from synapses deficient in α-syn and α-dbn, which raises the possibility that nNOS along 

with α-dbn may be involved in the stability of receptors at the postsynaptic sites. Indeed, 
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expression of a nNOS transgene can partially rescue NMJ phenotype in α-syn
-/-

 extensor 

digitorum longus and quadriceps muscles (Shiao et al., 2004). 

Results presented here show that loss of α-syn induces abnormal AChR distribution 

and a decrease in AChR density and stability as early as postnatal day 7. α-syntrophin is 

expressed at the postsynaptic membrane at birth (Kramarcy and Sealock, 2000), but its 

absence from synapses has no effect on receptor distribution or stability before P6, suggesting 

that α-syn is not required for the early steps of synapse maturation. While the mechanism by 

which α-syn may induce abnormal patterning of AChRs after P7 is not known, it is possible 

that such events might be triggered by loss of α-dbn, nNOS and/or other proteins. In support 

of this, α-dbn
-/-

 mice show a decrease in AChR density and abnormal patterning of AChR 

distribution as early as 7 days postnatal (Grady et al., 2000). Thus, it is conceivable that a 

partial loss of α-dbn in the α-syn mutant may initiate AChR instability during synaptic 

development, leading to a decline in the density of AChRs as development proceeds.  

One interesting finding of the current study is that the contribution of receptor 

recycling to total receptors present at α-syn
-/-

 NMJs was very low compared to mature wild 

type NMJs, where a significant number of recycled AChRs contribute to the steady-state of 

the postsynaptic receptor density (Bruneau et al., 2005). This raises the question of how α-syn 

may regulate the trafficking and degradation of internalized AChR. Previous studies have 

shown that α-dbn interacts with several cytoskeletal proteins, including the cargo-binding 

domain of the kinesin heavy chain (Ceccarini et al., 2005) and intermediate filaments 

(Mizuno et al., 2001; Newey et al., 2001). Kinesin motor proteins and other cytoskeleton 

elements have been found to be involved in the trafficking and delivery of receptors to 

synaptic sites (Setou et al., 2002). Thus, alteration in AChR recycling may involve α-dbn, 

since this later is dramatically reduced in α-syn mice.  
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Here we show that loss of α-syn is also associated with a reduction in rapsyn 

concentration, a 43-kDa protein that is critical for receptor clustering (Gautam et al., 1995). 

Conversely, AChR are necessary for the clustering of rapsyn in both mammals and fish (Ono 

et al., 2001, 2004; Bruneau et al., 2008). A threshold density of AChR likely provides a 

critical signal that enables proteins of the DGC and intracellular scaffold to remain 

aggregated. However, it is possible that α-syn reduces the levels of rapsyn, which then 

controls receptor number and density. Consistent with this, previous reports showed that 

rapsyn and receptors are trafficked in the same intracellular vesicle from the ER to cell 

surface (Marchand et al., 2002). However, in our experiments, overexpression of rapsyn-GFP 

was unable to restore the α-syn
-/-

 synaptic phenotype. While the mechanism by which 

absence of α-syn leads to instability of AChRs remains largely unknown, the present study 

implies that the effect of α-syn on AChR is in part mediated by α-dbn1. Understanding how 

DGC components are involved in regulating the postsynaptic receptor number/density at the 

NMJ will be the focus of future study. 
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Chapter III 

PKC and PKA regulate AChR dynamics at the neuromuscular junction of 

living mice 

Previously published in Plos ONE (Plos ONE. 2013 Nov;8(11):e81311) 

Isabel Martinez-Pena y Valenzuela, Marcelo Pires-Oliveira and Mohammed Akaaboune (I 

assisted I. M-P. V. in the analysis of imaging data and helped draft the manuscript)

 

Abstract 

The steady state of the acetylcholine receptor (AChR) density at the neuromuscular 

junction (NMJ) is critical for efficient and reliable synaptic transmission. However, little is 

known about signaling molecules involved in regulating the equilibrium between the removal 

and insertion of AChRs that establishes a stable postsynaptic receptor density over time. In 

this work, we tested the effect of activities of two serine/threonine kinases, PKC and PKA, on 

the removal rate of AChRs from and the re-insertion rate of internalized recycled AChRs into 

synaptic sites of innervated and denervated NMJs of living mice. Using an in vivo time-lapse 

imaging approach and various pharmacological agents, we showed that PKC and PKA 

activities have antagonistic effects on the removal and recycling of AChRs. Inhibition of 

PKC activity or activation of PKA largely prevents the removal of pre-existing AChRs and 

promotes the recycling of internalized AChRs into the postsynaptic membrane. In contrast, 

stimulation of PKC or inactivation of PKA significantly accelerates the removal of 

postsynaptic AChRs and depresses AChR recycling. These results indicate that a balance 
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between PKA and PKC activities may be critical for the maintenance of the postsynaptic 

receptor density. 

 

Introduction 

 The maintenance of a high density of nicotinic acetylcholine receptors (AChRs) at the 

postsynaptic membrane of a neuromuscular junction (NMJ) is essential for the effectiveness 

of synaptic impulse transmission. This high concentration of AChRs is established by rates of 

removal, re-insertion of recycled, insertion of newly synthesized and lateral diffusion of 

AChRs (Bruneau and Akaaboune, 2006; Bruneau et al., 2009; Pires-Oliveira et al., 2013). 

Several mechanisms have been implicated in the regulation of these rates, including synaptic 

activity, neural factors and receptor-associated scaffold proteins (Akaaboune et al., 1999, 

2002; Grady et al., 2003; Bruneau et al., 2009; Bruneau and Akaaboune, 2010; Martinez-

Pena y Valenzuela et al., 2010, 2011; Pires-Oliveira et al., 2013). Several studies have also 

reported that serine/threonine kinases PKC and PKA activities are implicated in the clustering 

and stability of AChRs in cultured muscle (Miles and Huganir, 1988; Nimnual et al., 1998; 

Lanuza et al., 2000, 2002, 2006; Nelson et al., 2003). However, it remains unknown at which 

steps of AChR trafficking PKC and PKA are involved. 

 PKA and PKC have been extensively studied in many cell types, including muscle 

cells. Predominantly, two isoforms of PKC are found to be expressed in skeletal muscle cells: 

conventional (c)PKCα (Nakano et al., 1992), mainly localized in the cytosol and sarcolemma, 

and novel (n)PKCθ, mostly localized postsynaptically at the NMJ (Ohno et al., 1991; 

Nishizuka, 1992; Johannes et al., 1994; Newton, 2001). The skeletal muscle also abundantly 

expresses cAMP-dependent PKA, whose Rα-isoform is enriched in the NMJ region (Perkins 

et al., 2001). 
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 In the present work, we explored the role of the serine/threonine kinases PKC and 

PKA on AChR dynamics in living mice, particularly on the removal of AChRs from and the 

re-insertion of recycled AChRs into the postsynaptic membrane. We found that PKC and 

PKA have antagonistic effects on the removal of pre-existing receptors and the recycling of 

AChRs into the postsynaptic membrane. These results suggest that a tight balance between 

PKC and PKA activities is crucial for the stability of the postsynaptic receptor density. 

 

Materials and Methods 

Receptor pools labeling and neuromuscular junction imaging in living mice 

This study was carried out according to the recommendations in the NIH Guide for 

the Care and Use of Laboratory Animals. The protocol was approved by the University 

Committee on the Use and Care of Animals of the University of Michigan (protocol number 

3939). Non-Swiss Albino adult female mice (6–10 weeks old, 25–30 g) were anesthetized 

with an intraperitoneal injection of a mixture of 80 mg/kg ketamine and 20 mg/kg xylazine 

and the sternomastoid muscle was exposed, labeled, and the whole animal was placed on its 

back on the stage of a customized epifluorescence microscope as described previously 

(Lichtman et al., 1987; Balice-Gordon and Lichtman, 1993; Turney et al., 1996; Bruneau and 

Akaaboune, 2006). Superficial neuromuscular junctions were imaged with a water-immersion 

objective (x20 UApo 0.8 NA Olympus BW51; Optical Analysis Corp.)  

The recycled receptor pool was identified using a method of labeling that allows one 

to  selectively label recycled receptors, as described in our previous work in detail (Bruneau 

et al., 2005; Bruneau and Akaaboune, 2006). Briefly, receptors on the sternomastoid muscle 

were labeled with biotinylated bungarotoxin (BTX-biotin) (5 μg/ml, 30 min; Invitrogen) 

followed by a single saturating dose of streptavidin-Alexa Fluor 488 (strept-Alexa488; green; 

10 μg/ml, 3 h; Invitrogen). A second color of (red) streptavidin Alexa-594 (10 μg/ml, 10–
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30 min) was then added to the sternomastoid muscle to be sure that all biotin sites are 

saturated. Four days later (after initial labeling, to allow more internalization of AChRs and 

formation of a sizeable pool), the mouse was anaesthetized and the recycled AChR pool on 

the sternomastoid muscle was specifically labeled with strept-Alexa 594 (10 µg/ml, 1 h) 

(receptors that had lost their streptavidin tag and were re-inserted in the synapses with their 

BTX-biotin tag). Superficial synapses were then imaged and re-imaged at the end of the 

experiment and their fluorescence intensities were measured. Experiments showing that the 

dissociation of streptavidin from biotin does not occur on the surface of the muscle cells but 

instead inside the muscle fiber were worked out in our previously published work (Bruneau et 

al., 2005; Bruneau and Akaaboune, 2006; Martinez-Pena y Valenzuela et al., 2010).  

 

Pharmacological treatment 

To test the effect of PKC on the removal of pre-existing AChRs form the postsynaptic 

membrane and the insertion of internalized recycled AChRs into synaptic sites, several 

experiments were performed. In the first series of experiments, the sternomastoid muscle was 

bathed with calphostin C (5 μM; Sigma), a potent, selective light-activated inhibitor for PKC 

isolated from the fungus Cladosporium cladosporioides (Iida et al., 1989; Kobayashi et al., 

1989; Bruns et al., 1991). Staurosporine (100 nM; Sigma), an agent that blocks a broad 

spectrum of kinases depending on the concentration was also used to block PKC. In a second 

series of experiments, we used phorbol-12-myristate-13-acetate (PMA), (200 nM; Sigma) 

(Bursztajn et al., 1988), a pharmacological agent that stimulates PKC.  

Stimulation of PKA was performed by using the membrane-permeant and 

metabolically resistant agonist 8-bromoadenosine-3’-5’-cyclic monophosphorothioate, Sp-8-
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Br-cAMP, (1 mM; BIOLOG) (Pacheco et al., 2003).  Inhibition of PKA activity was 

performed by using H89 (5 μM; Sigma) (Blazev et al., 2001). 

 

Muscle denervation 

Adult mice were anaesthetized, the sternomastoid was exposed and the nerve was 

excised by removing a 5 mm piece to prevent a possible re-innervation.  Four days after 

denervation, the sternomastoid muscled was bathed with BTX-biotin followed by a saturating 

dose of streptavidin (strept-Alexa488). Three days after the initial labeling, the mouse was 

reanesthetized and the sternomastoid muscle was bathed with strept-Alexa594 (to label 

recycled nAChRs), and superficial synapses were imaged.  PKC and PKA activators and 

inhibitors were used and the pre-existing receptor removal rate and recycled pool number 

were measured after 7 hours of drug treatments.   

 

Quantitative fluorescence imaging 

Quantitative fluorescence imaging was used to measure the fluorescence intensity of 

labeled receptor pools (Turney et al., 1996; Akaaboune et al., 1999; Martinez-Pena y 

Valenzuela et al., 2010). Briefly, images were calibrated to a non-fading reference standard to 

compensate for spatial and temporal changes in the light source and camera between imaging 

sessions at different time points. The same fluorescent ligands were repetitively imaged and 

as long as we verified that the image pixel intensity was not saturated, it was possible to get 

an accurate quantitative measurement of the relative number of nAChRs. Images were 

analyzed with algorithms for IPLAB (Scanalytics) and Matlab (The Mathworks). Background 

fluorescence was determined by manual selection of a boundary region around the each NMJ 
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and subtracting it from the original image, and the mean of the total fluorescence intensity 

(which corresponds to receptor  density) was measured (Turney et al., 1996). 

 

Results 

Effect of PKC on stability of AChR pools at the NMJ in vivo 

Previous studies have reported that PKC is involved in the stability of AChRs 

(Wallace, 1988; Lanuza et al., 2000, 2006, 2010; Nelson et al., 2003). In this work, we 

wanted to know which steps of AChR trafficking are regulated by PKC activity at the mature 

NMJs of living mice. To address this, we first tested whether activation or inhibition of PKC 

has any effect on the removal of AChRs from postsynaptic sites. To examine this, AChRs on 

the sternomastoid muscle were labeled with a non-saturating dose of biotinylated 

α-bungarotoxin (BTX-biotin) followed by (green) streptavidin-Alexa Fluor488 (strept-

Alexa488) to saturate all biotin sites (see Methods). Four days later, the sternomastoid muscle 

was exposed and superficial synapses were imaged (time 0) (Figure 3.1 A). The 

sternomastoid was bathed with PKC inhibitor, calphostin C, continuously for 7 hours and the 

same synapses were then re-imaged. The loss of fluorescence intensity from NMJs was 

assayed and compared with untreated synapses. In muscles treated with calphostin C, 

fluorescence intensity of pre-existing AChRs (not yet internalized) decreased by only 4% (96 

± 6% of original fluorescence; n = 33 NMJs, 3 mice), compared to untreated muscles 

(p < 0.001), where the fluorescence intensity decreased by 12% (88 ± 5% of original 

fluorescence; n = 19 NMJs, 3 mice) (Figure 3.1 B, C). In contrast, in muscles treated with 

PKC activator, phorbol-12-myristate-13-acetate (PMA), a widely used PKC activator 

(Wallace, 1988; Nishizuka, 1992), pre-existing AChRs fluorescence decreased significantly 

to 82 ± 9% (n = 39 NMJs, 5 mice), compared to untreated muscles (p < 0.05). (Figure 

3.1 B, C). 
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Next, we asked whether PKC also affects the normal rate of recycling of previously 

internalized AChRs into the postsynaptic membrane. To this end, AChRs on the 

sternomastoid muscle were sequentially labeled with BTX-biotin, followed by a saturating 

dose of strept-Alexa488, as described in our previous work (Bruneau et al., 2005; Bruneau 

and Akaaboune, 2006). Four days later, recycled receptors were specifically labeled by 

adding (red) streptavidin-Alexa594 (strept-Alexa594) to the sternomastoid muscle (strept-

Alexa594 binds to receptors that have lost their initial strept-Alexa488 tag while retaining 

BTX-biotin) (Bruneau et al., 2005). Superficial synapses were imaged immediately (time 0), 

and the sternomastoid muscle was then bathed with calphostin C, a highly specific PKC 

blocker, to inhibit PKC (Kobayashi et al., 1989; Bruns et al., 1991) for the duration of the 

experiment (7 hours). At the end of the experiment, a second dose of strept-Alexa594 was 

added to label recycled receptors that had been inserted during the treatment of muscles and 

the same synapses were imaged for a second time (Figure 3.1 D). The fluorescence intensity 

of labeled recycled AChRs was measured before and after treatment. Quantification of 

recycled AChRs shows that after 7 hours of calphostin C treatment, the fluorescence intensity 

increased to 114 ± 8% (n = 57 NMJs, 7 mice) of their original fluorescence at time 0 

(normalized at 100%) compared to untreated synapses where fluorescence remains 

unchanged, as previously described by Bruneau et al. (Bruneau et al., 2005) (102 ± 3%, n = 

15 NMJs, p < 0.001, 3 mice) (Figure 3.1 E, F). As a second test of PKC inhibition, we used 

staurosporine (100 nM), a moderately potent PKC blocker, and found that the re-insertion of 

recycled AChRs at synaptic sites after 7 hours of treatment was also increased, albeit slightly 

less than with calphostin C (fluorescence intensity of recycled receptors was 106 ± 5% (n = 

17 NMJs, 4 mice) versus untreated synapses, 99 ± 3% (n = 21 NMJs, 4 mice, p < 0.001). 

The observation that PKC inhibition promotes the recycling of AChRs into synaptic 

sites prompted us to examine whether activation of PKC would depress the recycling of 
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AChR. AChRs were labeled as described above, and four days later, the sternomastoid 

muscle was treated with PMA, and 7 hours after treatment, recycled receptors that had been 

inserted during the treatment of muscles were assessed. Quantification of fluorescently 

labeled recycled AChRs shows that the density of recycled receptors in muscles treated with 

PKC activator was significantly decreased (91 ± 7% of original fluorescence; n = 31 NMJs, 5 

mice) when compared to untreated synapses (102 ± 3% of original fluorescence; n = 15 

NMJs, 3 mice) (Figure 3.1 E, F). 

 

 

Figure 3.1. PKC activation accelerates the removal of receptors from synaptic sites in vivo. A) 

Labeling protocol for assessing the removal of preexisting AChRs from the postsynaptic membrane. 

Sternomastoid muscles were labeled with biotinylated α-bungarotoxin (BTX-biotin)/Alexa Fluor 488-

streptavidin (strept-Alexa488; green). Four days later, superficial synapses were then imaged (time 0) 

and the sternomastoid muscles were bathed with or without PKC pharmacological agents for 7 h. At 

the end of the experiment, the same synapses were then imaged. B) Examples of control, and 

neuromuscular junctions treated with PKC inhibitor calphostin C (CC) and PKC activator phorbol-12-

myristate-13-acetate (PMA), that were imaged at time 0 and 7 h later. The total fluorescence intensity 

of labeled preexisting AChRs was expressed as 100% at the time 0 and 7 hours later. Pseudo-color 

images provide a linear representation of the density of AChRs. Note that PKC inhibition with CC 

largely prevents the removal of preexisting AChRs while PKC activation accelerates their loss from 

postsynaptic membrane. C) Histogram summarizes the amount of preexisting receptors present at 

synaptic sites, obtained from many junctions by the approach shown in B. Each bar represents the 

mean percentage of original fluorescence intensity ± SD. D) Labeling method to analyze the insertion 

of recycled AChRs into the postsynaptic membrane. Sternomastoid muscles were labeled with BTX-

biotin/strept-Alexa488; green. Four days later, muscles were bathed again with a saturating dose of 

strept-Alexa594, red, to selectively label the recycled receptors that had lost their initial strept-

Alexa488 tag, while retaining BTX-biotin during the process of internalization and reinsertion. 
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Superficial synapses were then imaged (time 0) and the sternomastoid muscles were bathed with PKC 

activators and inhibitors. At the end of the experiment, a second saturating dose of strept-Alexa594 

was added to label receptors that have been recycled during the treatment. E) Example of control, and 

neuromuscular junctions treated with PKC inhibitor calphostin C (CC) and PKC activator PMA, that 

were imaged at time 0 and 8 h later. The total fluorescence intensity of labeled recycled AChRs was 

expressed as 100% at the time 0 and the fluorescence intensity 8 h later was compared with the 

fluorescence intensity of the synapse at the previous view. Note that PKC inhibition with CC 

increases the fluorescence intensity of recycled AChRs while PKC activation with PMA decreases 

their recycling. F) Histogram summarizes the amount of recycled receptors present at synaptic sites, 

obtained from many junctions by the approach shown in D. Each bar represents the mean percentage 

of original fluorescence intensity ± SD. *, p < 0.05; ***, p < 0.001. 

 

 

Given the involvement of PKC activity on AChR recycling, we asked whether the 

increase of the recycled pool is due to an enhanced stability of recycled receptors in the 

membrane and/or to the promotion of the insertion of new recycled receptors. To distinguish 

between these two possibilities, AChRs on the sternomastoid muscles were labeled with 

BTX-biotin/strept-Alexa488 and four days later, the sternomastoid muscle was exposed and 

bathed with strept-Alexa594 to specifically label AChRs that had recycled after the initial 

labeling, and then the superficial synapses were imaged. The muscles were then treated with 

either PKC inhibitor calphostin C or PKC activator PMA for 7 hours; the same synapses were 

re-imaged, and their fluorescence intensity was measured. The muscles were bathed again 

with a second dose of strept-Alexa594, and the same synapses were imaged for a third time 

(Figure 3.2 A). Quantification of recycled AChR loss treated with calphostin C showed that 

the loss of fluorescence was largely prevented, as only 8% of labeled AChR was lost (92  

5% of original fluorescence; n = 9 NMJs, 3 mice) (Figure 3.2 D, E), compared to 19% in 

non-treated muscles (p < 0.05; 81  3% of original fluorescence; n = 11 NMJs, 3 mice) 

(Figure 3.2 B, C). At the same synapses, the number of recycled receptors that had been 

inserted during the treatment was about 19% (111% – 92%) of the original fluorescence (up 

to 111  7%; n = 9 NMJs, 3 mice) (Figure 3.2 D, E), similar (p > 0.05) to the 17% (98% – 

81%) increase in control NMJs (up to 98  2%; 11 NMJs, 3 mice) (Figure 3.2 B, C). In 
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contrast, when muscles were treated with PKC activator PMA, the loss of recycled AChR 

was significantly increased (p < 0.001) to 34% of the original fluorescence (66  6%; n = 8 

NMJs, 3 mice) (Figure 3.2 F, G), compared to 19% in non-treated muscles. When the number 

of receptors recycled during the treatment was assessed, it was 17% (83% – 66%) of the 

original fluorescent pool (up to 83  11%; n = 8 NMJs, 3 mice), not significantly different (p 

> 0.05) from the 17% (98% – 81%) in non-treated muscles. These results suggest that PKC 

regulates the AChR recycled pool by reducing the half-life of recycled receptors in the 

postsynaptic membrane. 

 

 

Figure 3.2. Activation of PKC accelerates the removal of recycled AChRs from the postsynaptic 

membrane in vivo. A) Labeling protocol of receptors as described above. Superficial synapses were 

imaged (time 0) and the sternomastoid muscles were treated with PKC inhibitors or activators for 7 h. 

At the end of the treatments, the same superficial synapses were imaged again to assess the loss of 

fluorescence from the first view (7 h). To test whether the loss of recycled matches the re-insertion of 

newly recycled receptors, the sternomastoid muscles were incubated with the same new fresh strept-

Alexa594; (red) to selectively label the receptors that recycled during those 7 h. B, D, F) Examples of 

NMJs that were imaged immediately (time 0; recycled receptor pool), after 7 h of incubation with 

vehicle (B; control), calphostin C (D; CC), or phorbol-12-myristate-13-acetate (F; PMA), and then re-

imaged after labeling of recycled receptors that were inserted during 7 h of treatment (newly 
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recycled). C, E, G) Graphs summarizing data obtained from many synapses treated with vehicle (C; 

control), calphostin C (E; CC), phorbol ester (G; PMA) with the approach shown in B, D and F. Each 

bar represents the mean percentage of original fluorescence intensity ± SD.  

 

PKA activity antagonizes the effect of PKC on stability of AChR pools 

PKA activity has been previously shown to enhance the stability of AChRs (Shyng et 

al., 1991; Nelson et al., 2003); here, we sought to examine whether PKA activity has a 

similar effect on AChR dynamics at the NMJ of adult living mice. In particular, we 

investigated the effect of PKA on AChR removal and recycling. First, we examined the effect 

of PKA activity on the removal of pre-existing AChRs. AChRs on the sternomastoid muscle 

were labeled as described above and PKA activity was inhibited with the highly specific 

blocker H89 (Lee and Linstedt, 2000; Dong et al., 2013). Quantification of the fluorescence 

intensity of pre-existing AChRs showed significant loss after 7 h (to 77  9% of original 

fluorescence; n = 21 NMJs, 3 mice), compared to 88  5% in non-treated muscles (n = 21 

NMJs, 3 mice, p < 0.001). However, when PKA was stimulated with the metabolically stable 

activator of cAMP-dependent protein kinases, Sp-8-Br-cAMPS, receptor loss was minor (to 

97  7% of fluorescence remained; n = 23 NMJs, 3 mice, p < 0.001) (Figure 3.3 A, B). 

 Next, we evaluated whether PKA also affects AChR recycling. Quantification of 

recycled AChRs that had been inserted during treatment for 7 h with H89 showed that 

fluorescence decreased to 82 ± 11% (n = 59 NMJs, 6 mice) of the original value, compared to 

untreated synapses (98  3%, n = 27 NMJs 4 mice, p < 0.001) (Figure 3.3 C, D). In contrast, 

when sternomastoid muscles were treated with Sp-8-Br-cAMPS, the fluorescence intensity of 

recycled receptors increased to 114 ± 12% (n = 55 NMJs, 6 mice) of their original 

fluorescence (p < 0.001 versus untreated synapses) (Figure 3.3 C, D). 
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Figure 3.3. Stimulation of PKA increases the stability of AChRs at NMJ in vivo. Sternomastoid 

muscles were labeled as described above (Figure 3.1). A) Examples of two views of the same NMJ 

before and after treatment with PKA inhibitor and activator. Note that the loss of labeled preexisting 

receptors was largely prevented in muscles treated with PKA activator 8-Br-cAMP and was 

significantly accelerated in synapses treated with PKA inhibitor H89 compared to control synapses. 

B) Graph showing pre-existing receptors (retaining their strept-Alexa488 after initial labeling) from 

the same synapses as assessed in A. Each bar represents the mean percentage of original fluorescence 

intensity ± SD. ***, p < 0.001. C) Examples of recycled AChRs from control and NMJs incubated 

with PKA inhibitor H89 and PKA activator 8-Br-cAMP that were imaged at time 0 and 8 h later. D) 

Histogram summarizes the amount of recycled receptors present at synaptic sites, obtained from many 

junctions by the approach shown in A. Each bar represents the mean percentage of original 

fluorescence intensity ± SD. ***, p < 0.001. 

 

 

To investigate whether PKA regulates the insertion of newly recycled receptors or 

their stability in synaptic sites, we measured the loss and insertion of recycled receptors 

during treatments with PKA inhibitors and activators. Inhibition of PKA with H89 

accelerated the loss of recycled AChR, as 33% of the original fluorescence was lost 

(67  9%; 10 NMJs, 3 mice), when compared (p < 0.01) to 19% in control synapses. The 

insertion of recycled receptors was 16% (84% – 67%) of the original labeled pool (up to 84  

8%; 10 NMJs, 3 mice) (Figure 3.4 C, D), which was not significantly lower than 17% (98% – 

81%) in control muscles (p > 0.05) (Figure 3.4 A, B). When PKA was activated with Sp-8-

Br-cAMPs, loss of recycled AChR was only 9% of the original fluorescence (91  9%; 17 

NMJs, 4 mice) (Figure 3.4 E, F), reduced from 19% in control NMJs (p < 0.001). Insertion of 
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newly recycled receptors was 22% (113% – 91%) of the original labeled pool (up to 

113  6%; 17 NMJs, 4 mice), but not significantly higher than the 17% in control NMJs.  

 

Figure 3.4.  Activation of PKA prevents largely the removal of recycled AChRs at NMJ from 

postsynaptic membrane in vivo. Sternomastoid muscles were labeled with BTX-biotin/strept-

Alexa488; green and 4 days later were bathed again with a saturating dose of strept-Alexa594; red as 

described above (Figure 3.2). The muscles were then treated with vehicle, PKA inhibitor (H89), PKA 

activator cAMP, for 7 h. the loss and insertion of recycled AChRs during treatment was assessed.  A, 

C, E) Examples of NMJs that were imaged immediately (time 0; recycled receptor pool), after 7 h of 

incubation with vehicle (A; control), inhibitor (C; H89) or 8-Br-cAMP (E; cAMP) and then re-imaged 

after labeling of recycled receptors that were inserted during 7 h of treatment (newly recycled). B, D, 

F) Graphs summarizing data obtained from many synapses treated with vehicle (B; control), PKA 

inhibitor (D; H89), 8-Br-cAMP (F; cAMP) with the approach shown in A, C and E. Each bar 

represents the mean percentage of original fluorescence intensity ± SD. 
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PKC and PKA regulate removal of AChRs from synaptic sites and AChR recycling 

through a similar pathway 

 

Figure 3.5. PKC inhibition and PKA activation do not act synergistically on the stability of receptors. 

A, Examples of two views of the same labeled pre-existing AChRs (AChRs that are not yet 

internalized) before (time 0) and after treatment (7 h later) with both PKC inhibitor CC and PKA 

activator 8-Br-cAMP, or PKC activator PMA and PKA inhibitor H89. Note that PKC inhibition in 

combination with PKA activation significantly decreased the removal of labeled preexisting AChRs 

compared to non-treated synapses but no more than one single treatment (Figures 3.1 and 3.3). 

Simultaneous PKC activation and PKA inhibition treatment accelerate the removal of preexisting 

AChRs, but comparable to one single treatment (Figures 3.1 and 3.3). B, Histogram summarizes the 

amount of preexisting receptors present at synaptic sites, obtained from many junctions by the 

approach shown in A. Each bar represents the mean percentage of original fluorescence intensity ± 

SD. ***, p < 0.001. C, E, G, Examples of NMJs (C; control, E; CC + cAMP, G; PMA+H89), 

showing that the loss of labeled recycled pool is also affected by PKC and PKA treatment. Note that 

the loss of recycled AChRs after 7 hours is prevented in the CC+cAMP treatment, but is increased in 

the PMA+H89 treatment, though the results are similar to each treatment alone (Figures 3.1 and 3.3). 

D, F, H, Graphs summarizing data obtained from many synapses with the approach shown in C, E 

and G. 

 

 

Next, we asked whether PKC and PKA activities have a synergistic effect on AChR 

removal and recycling. We first examined the effect of a PKC inhibitor and a PKA stimulator 

on the removal of AChRs from the same synapses. In muscles treated concomitantly with 
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calphostin C and Sp-8-Br-cAMP, the fluorescently labeled pre-existing AChRs decreased by 

8% (92 ± 6% of the original fluorescence; n = 15 NMJs, 4 mice) (Figures 3.5 A, B), similar 

(p > 0.05) to either treatment alone, suggesting no additive effects of the agents used on 

AChR removal. In the second set of experiments, muscles were treated with both the PKC 

activator PMA, and PKA inhibitor H89. When both were used in combination, the loss of 

AChRs was 14% (86 ± 7% of the original fluorescence; 8 NMJs, 3 mice) (Figures 3.5 A, B), 

which was not different (p > 0.05) from either treatment alone. We also investigated the 

combined effect of PKC and PKA on AChR recycling. Treatment with calphostin C and 

cAMP did not further reduce removal of recycled AChR (91  5%, 13 NMJs, 3 mice) nor 

increase insertion (20%; 111% – 91%) (Figures 3.5 E, F) beyond any treatment alone (up to 

111  5%; 14 NMJs, 3 mice). Similarly, when both PMA and H89 were added together, 

removal of recycled AChR (68  9%, 9 NMJs, 3 mice) or their insertion (16%, up to 84  

9%; 9 NMJs, 3 mice) (Figures 3.5 G, H) were affected similarly as when the treatments were 

isolated. 

 

Effect of PKC and PKA activities on AChR dynamics in denervated synapses 

Previous studies have shown that in denervated muscles the loss of receptors is 

accelerated and only few internalized AChRs were able to recycle back into the synaptic 

original sites (Bruneau and Akaaboune, 2006; Martinez-Pena y Valenzuela et al., 2010). Here 

we asked whether PKC or PKA activity could prolong the metabolic stability of receptors in 

the postsynaptic membrane and promote the recycling of internalized ones. Receptors on 

denervated sternomastoid muscles (four days after nerve section) were labeled with BTX-

biotin followed by strept-Alexa488 and three days later (seven days after denervation), the 

sternomastoid muscle was exposed and superficial synapses were imaged, and muscles were 
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bathed with either PKC inhibitor calphostin C or PKA activator Sp-8-Br-cAMPS (both agents 

have been shown to largely prevent the removal of AChRs from innervated synapses, see 

Figures 3.1 and 3.3) for the duration of the experiment. Seven hours after treatment, the same 

synapses were re-imaged and changes in fluorescence intensities of labeled AChRs before 

and after treatment were assessed.  In muscles treated with calphostin C, the loss of 

fluorescence intensity of pre-existing AChRs was only 8% of the original fluorescence (92  

7%, n = 18 NMJs, 3 mice, p < 0.001) compared to 29% of receptor loss in non-treated 

denervated synapses (71  9%; n = 22 NMJs, 3 mice, p < 0.001).  Similar results were 

obtained when denervated muscles were treated with PKA activator Sp-8-Br-cAMP, the loss 

was 14% of the original fluorescence; 86  8%; n = 22 NMJs, 3 mice, p < 0.001 compared to 

non-treated denervated synapses) (Figures 3.6 A, B). 

Given that PKC inhibition and PKA activation were able to promote AChR recycling, 

we asked whether these treatments could rescue AChRs from degradation and promote their 

recycling into denervated NMJs. To test this, denervated sternomastoid muscle (four days 

after nerve section) was labeled as described above and three days later, recycled AChRs that 

had been inserted after the initial labeling were imaged. In muscles treated with calphostin C, 

the fluorescence intensity of recycled receptors at the NMJs increased to 100 ± 7% (n = 30 

NMJs, 3 mice) compared to untreated denervated synapses 86 ± 8% (n = 26 NMJs, 3 mice, 

p < 0.001) after 7 h. Similarly, treatment of muscles with PKA activator Sp-8-Br-cAMPS 

increased the number of recycled AChRs to 101  17% of original fluorescence (n = 23 

NMJs, 3 mice, p < 0.001 compared to non-treated denervated, 86 ± 8%) (Figures 3.6 C, D). 
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Figure 3.6. PKC inhibition and PKA activation restore recycled AChRs at denervated synapses. 

Denervated sternomastoid muscles (four days after denervation) were labeled with BTX-biotin/strept-

Alexa488 and 3 days later, superficial synapses were then imaged (time 0) and the sternomastoid 

muscles were bathed with PKC inhibitor calphostin C or PKC activator phorbol-12-myristate-13-

acetate (PMA) for 7 h. At the end of the experiment, the same synapses were then imaged. A, 

Example of denervated NMJs, non-treated or treated with CC and 8-Br-cAMP, imaged at time 0 and 7 

h later. Fluorescence intensity of both treated denervated synapses increased compared to untreated 

denervated NMJs. B, Histogram summarizing the fluorescence measurements obtained from many 

NMJs by the approach shown in A. Each bar represents the mean percentage of original fluorescence 

intensity ± SD. ***, p < 0.001. C, Examples of recycled AChRs from the same denervated synapses 

as assessed by the change in fluorescence over the 7 h period of the experiments. Fluorescence 

intensity of labeled recycled receptors from denervated synapses was less than CC or 8-Br-cAMP 

treated denervated synapses. D, Graph showing the fluorescence measurements of recycled receptors 

obtained from many synapses by the approach shown in C. Each bar represents the mean percentage 

of original fluorescence intensity ± SD. ***, p < 0.001. 

 

 

Discussion 

In this work, we show that the serine/threonine kinases PKA and PKC have 

antagonistic effects on the removal of pre-existing AChRs and the size of the recycled pool of 

AChRs at mature innervated and denervated neuromuscular junctions. Particularly, we show 

that inhibition of PKC or stimulation of PKA promotes the recycling of internalized AChR 

into synaptic sites and the anchoring of receptors at the postsynaptic membrane, while 

stimulation of PKC or inhibition of PKA depresses the recycling of AChR and accelerates the 

removal rate of receptors from the postsynaptic membrane. Furthermore, we show that 

inhibition of PKC and stimulation of PKA have no synergistic effects on AChR dynamics. 
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The present experiments show that both PKA and PKC kinase activities are linked to 

the trafficking and stability of AChRs. However, it is difficult to determine whether this 

process is a direct consequence of receptor phosphorylation or an indirect effect induced by 

phosphorylation of other proteins by PKA and PKC (effector molecules involved in 

internalization or proper delivery, for example). Previous studies have shown that all AChR 

subunits are subject to phosphorylation by different kinases. For instance, α and δ subunits 

are phosphorylated by PKC, δ and γ/ε are phosphorylated by PKA (Changeux et al., 1984; 

Huganir et al., 1984). Thus, it is tempting to speculate that phosphorylation of AChR subunits 

can either promote or alter the trafficking and metabolic stability of AChR. For instance, 

when cultured myotubes were treated with PKC activators, receptor clusters failed to form in 

response to agrin, the insertion of new receptors in the membrane was impaired, and the 

disassembly of preexisting AChR clusters was enhanced (Ross et al., 1988; Wallace, 1988; 

Lanuza et al., 2000; Li et al., 2001). Similarly, when PKC was overexpressed in muscle cells, 

the stability of receptors was reduced (Miles and Wagner, 2003). Conversely, inhibition of 

PKC activity (either by pharmacological agents or by genetic manipulations) enhanced the 

stability of receptor clusters in cultured myotubes and in living mice. Notably, in mice 

deficient in PKCθ isoform, the disassembly of receptor clusters (redistribution and 

dispersion), which normally occurs during the early stage of postnatal development, was 

delayed (Lanuza et al., 2010). The phosphorylation of δ subunit in this mutant mouse is 

reduced (Lanuza et al., 2006), suggesting that the loss of PKC activity enhances the stability 

of receptors (at least through the phosphorylation state of δ subunit). It is possible that, in 

mature synapses, changes in the phosphorylation state of δ subunit by manipulations of PKC 

may have an effect on the fate of internalized AChRs (either degradation or recycling) and 

those anchored in the postsynaptic membrane (they remain stable or disassemble). 
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The current work shows that not only is PKC involved in receptor stability, but also 

PKA. Stimulation of PKA promotes both the recycling and stability of AChRs. Consistent 

with these observations, previous studies have reported that PKA stabilizes the receptors on 

the surface of cultured myotubes (Nelson et al., 2003) and in cultured explants denervated 

diaphragms from mouse (Shyng et al., 1991). It is conceivable that phosphorylation of ε 

(Miles and Huganir, 1988) or δ subunits (sites that are different from PKC phosphorylation 

sites) by PKA may stabilize the clustering of AChRs. It is also plausible that phosphorylation 

of scaffold proteins by PKA or other kinases may play a critical role in the stability of 

AChRs. Along these lines, it was reported that the loss of tyrosine phosphorylation of α-

dystrobrevin reduces the stability of agrin-induced AChRs in cultured myotubes and in mice 

deficient in neuregulin receptors (erb2/4
-/-

) (Schmidt et al., 2011). Recently, it was suggested 

that PKA is also involved in the recycling of AChRs through its interaction with myosin Va, 

and in the stability of AChRs in the postsynaptic membrane through its anchoring by rapsyn 

(Röder et al., 2010; Choi et al., 2012). It is also possible that phosphorylation of other 

effector molecules by PKA may play an important role in the sorting and proper delivery of 

AChRs to the plasma membrane. In the central nervous system, PKA activity has also been 

found to regulate AMPAR trafficking and insertion as its inhibition reduces AMPAR 

insertion and synaptic strength (Ehlers, 2000). While it appears that the phosphorylation of 

receptors, receptor associated-scaffold proteins, and/or effector molecules by PKC and PKA 

are instrumental for the stability of AChRs, further studies are warranted to investigate when 

and how antagonistic effects of PKA and PKC are linked to receptor stability and trafficking.  

Finally, our findings suggest that PKA and PKC do not have synergistic effects on the 

removal of AChRs from or recycling into the postsynaptic membrane (Figure 3.5). This 

implies that these kinases might act to regulate receptor removal and recycling through a 

similar, overlapping pathway. In the present work, our quantitative fluorescence assay is not 
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sensitive enough to test the effect of PKC and/or PKA on the synthesis of new AChRs over 

the short time window of our experiments. Since the detection of the pool of newly 

synthesized receptors requires that all pre-existing AChRs be completely saturated with α-

bungarotoxin (and these synapses are then non-functional), insertion of new AChRs is 

heavily depressed (Akaaboune et al., 1999). 

Based on this and on previously published work, it appears that PKC and PKA act on 

a pathway distinct from CamKII, since when muscles were treated with KN93 (an inhibitor 

that blocks CamKII activity), PKC activator PMA and PKA inhibitor H89, the loss of AChRs 

from the synaptic membrane was increased significantly compared to PMA and H89 alone. 

While the mechanism by which these kinases activity control AChR removal and recycling is 

not known, it is possible that these kinases act on different receptor subunits and/or substrate 

proteins involved in anchoring and/or clustering receptors at synapses. Of note, all of these 

kinases are found to be concentrated at the postsynaptic membrane of the NMJ with different 

localizations; most notably, muscle specific CaMKII βm is precisely co-localized with 

receptors at the crests of the junctional folds (Martinez-Pena y Valenzuela et al., 2010). Thus, 

it is conceivable that a spatial cellular compartmentalization of kinases in the postsynaptic 

density may play an important role in the trafficking and stability of receptors. Overall, the 

current work and other studies suggest that a balance between kinases (phosphorylation by 

PKC, PKA or CamKII) is important in controlling the molecular dynamics of AChRs at 

mature neuromuscular synapses. 
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  Chapter IV

Conclusion

In this work, we explored different aspects of the regulation of nAChR dynamics in 

the NMJ, focusing on the role of α-syn, a member of the nAChR-associated DGC, and serine-

threonine kinases PKC and PKA. Interest in studying the function of the cytosolic 

dystrophin-associated protein α-syn began in the early 2000s, when it was shown that mice 

deficient in α-syn have severely reduced numbers of nAChRs. This was somewhat puzzling, 

as α-syn does not interact directly with nAChRs. This clearly pointed at an indirect, 

regulatory role for this protein on receptor clustering. Our data elucidate the crucial role of α-

syn in controlling the rate of internalization and recycling of nAChRs in developing and 

mature synapses. 

We showed that synapses form normally in the absence of α-syn, but mature 

aberrantly and lag behind in nAChR density even in adulthood. This is likely because nAChR 

are removed more promptly from the postsynaptic membrane, while recycling is heavily 

inhibited. Interestingly, our results also suggest that the role of α-syn is mediated by an 

associated protein, α-dbn1, since α-syn
-/-

 muscle is severely depleted of α-dbn, and α-dbn 

overexpression attenuates the deficiencies of the mutant NMJ. Meanwhile, in α-dbn
-/-

 muscle 

fibers, the expression of α-syn is unaffected, despite severe NMJ defects (Grady et al., 1999). 

This seems to point at α-dbn as the crucial component for the maintenance of postsynaptic 

nAChR density. α-dbn, much like α-syn, is a cytosolic dystrophin-associated protein whose 

loss leads to increased removal of nAChRs from synaptic sites.   
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Since proper function of α-dbn1 requires intact tyrosine phosphorylation sites (Grady 

et al., 2003), it is possible that α-dbn is a point of convergence for kinases and other signaling 

mechanisms that regulate nAChR dynamics. The mechanisms regulating α-dbn 

phosphorylation and the kinases involved are poorly understood, but PKA itself can also 

phosphorylate α-dbn (Ceccarini et al., 2007). Further experiments are required to investigate 

if the effects of the PKA/PKC modulation of nAChR dynamics (see Chapter III) depend on 

α-dbn phosphorylation, and what other kinases and signaling pathways converge directly ot 

indirectly on α-dbn regulation. Also, it remains unknown how α-dbn can modulate nAChR 

dynamics; further investigation of its interactions, especially with signaling molecules or 

cytoskeletal components, are therefore warranted. 

Among these partners, dysbindin was initially identified as a dystrobrevin-binding 

protein in skeletal muscle and other tissues (Benson et al., 2001). Its encoding locus, 

DTNBP1, was later identified as a susceptibility locus for schizophrenia (Straub et al., 2002). 

Since dysbindin has been implicated in endosome-lysosome trafficking (Di Pietro et al., 

2006; Gokhale et al., 2012), it is tempting to speculate that it is a possible candidate member 

of the elusive molecular machinery involved in sorting nAChRs to degradation or recycling 

in the skeletal muscle fiber. In fact, Orozco et al. (2014) showed recently that in mice 

deficient in dysbindin, LTP is enhanced, consistent with mis-trafficking of AMPA glutamate 

receptors for recycling. While no dramatic NMJ phenotypes are reported in dysbindin-

deficient sandy mice (Li et al., 2003a), it is possible that this deficiency is either too small for 

a detectable effect in the NMJ or that there are altered nAChR density and recycling in these 

synapses, even while their overall anatomy is preserved. Therefore, the role of dysbindin on 

the regulation of nAChRs in the NMJ and the functional consequences of its association to 

α-dbn remain to be investigated. 
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In the second part of this work, we looked to other signaling pathways that regulate 

nAChR density. We showed that PKC and PKA activities balance each other, regulating 

removal and recycling of AChRs. While PKC inhibits recycling and increases removal, PKA 

has the opposite, nAChR stabilizing effect. Since PKA and PKC had long been known to 

regulate nAChR in vitro, it was presumed that they would have a role in the development and 

initial clustering of nAChRs at the NMJ. This assumption was confirmed by developmental 

in vivo studies. For the first time, however, we show a crucial role for PKA and PKC in the 

modulation of nAChR density at the adult NMJ. In fact, activation of PKA or inhibition of 

PKC were sufficient to counteract the loss of receptors induced by short-term denervation 

(Figure 3.6). This opens new avenues for therapeutic interventions to attenuate postsynaptic 

degeneration in myasthenic syndromes and traumatic transient denervations. Further work is 

required to clarify the targets of PKA and PKC phosphorylation that regulate nAChR  

dynamics. These kinases could regulate nAChR trafficking in three different ways: a) direct 

phosphorylation of nAChRs on different sites; b) phosphorylation of receptor-associated 

scaffold proteins and/or c) phosphorylation of cytosolic signaling proteins. At this point, 

mostly because the nAChR internalization and recycling machineries are still unknown (see 

Chapter I), the possible targets of PKA and PKC at the NMJ remain to be investigated. 

A caveat that must be considered in the interpretation of all our results is the reliance 

on BTX as a marker for nAChRs. BTX has been used for several decades to study nAChR 

dynamics (Changeux et al., 1970; Axelrod et al., 1976; Akaaboune et al., 1999; Bruneau et 

al., 2005; Martinez-Pena y Valenzuela et al., 2011), but it also silences the receptors that are 

being monitored. At this point, we cannot discard the possibility that BTX-tagged receptors 

internalize and/or recycle at a different rate from the non-labeled pool, even when a small 

percentage of receptors is blocked and neuromuscular junction activity is intact (Akaaboune 

et al., 1999; Bruneau et al., 2005). To circumvent this issue, one should think about 
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developing new approaches to investigate nAChR dynamics without using antagonists that 

block receptor activity. Some promising future developments might include introduction of 

nAChR subunits with non-antagonistic exogenous binding sites for labels or receptor 

subunits tagged with photoactivatable fluorescent proteins, either expressed in vitro or in 

genetically modified animals. 

In sum, we show that the density of nAChRs at the NMJ is tightly regulated by the 

receptor-associated proteins of the DGC, as well as serine-threonine kinases PKA and PKC. 

Therefore, receptor density can be finely tuned to several extracellular cues, such as nerve-

released factors and electromechanical activity. Our work adds new insights into our 

understanding of the signaling network regulating synaptic receptor density, particularly in 

neuromuscular diseases where the density of receptor is highly compromised. For instance, in 

myasthenic syndromes where nAChR density is severely reduced (Drachman et al., 1980; 

Gilhus, 2012); the use of α-syn
-/-

 and α-dbn
-/-

 animal models may provide mechanism(s) for 

the loss of receptor from the synaptic folds in these devastating diseases. Additionally, while 

no primary mutations in α-syn or α-dbn have been associated with myasthenias in humans, 

several patients were identified with secondary loss of these proteins at the NMJ (Jones et al., 

2003; Compton et al., 2008), so it is likely that loss of α-syn and/or α-dbn might also explain 

the loss of nAChRs and the myasthenia of these patients, similarly to mice models (Grady et 

al., 1999; Adams et al., 2000). 

In the central nervous system, nAChR density is also severely affected in Alzheimer’s 

disease (AD) (Picciotto and Zoli, 2002; Buckingham et al., 2009; Schliebs and Arendt, 2011), 

due to defects intracellular trafficking pathways and reduced receptor stability. Similar loss of 

nAChRs is also a hallmark of schizophrenia (Breese et al., 2000; Miwa et al., 2011) and 

bipolar disorder (Severance and Yolken, 2007). Synaptic plasticity involving modulation of 

postsynaptic receptor density is also seen in models of drug addiction, where AMPA 
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glutamate receptors are trafficked for insertion into the extrasynaptic membrane, then 

relocated into the synaptic compartment, in a PKA-dependent process (Quintero, 2013). 

Considering the crucial role for regulate synapses, the signaling pathways explored in this 

work might help elucidate the pathological mechanisms,  as well as open new therapeutic 

avenues to be explored for the attenuation of morbidity of many peripheral and central 

neurological diseases. 
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Appendix 

β-catenin interacts with receptor-associated proteins at the neuromuscular 

junction in vivo 

 

Introduction 

 During the development of the NMJ, nAChRs shift from diffuse expression 

throughout the whole surface of the muscle fiber to a pre-pattern of small clusters around the 

center of the muscle fiber (Kim and Burden, 2008). Throughout the early postnatal weeks, in 

mice, the approaching nerve releases two main factors, agrin and acetylcholine that contribute 

to the maturation of the NMJ. Agrin induces the synthesis and clustering of nAChRs at the 

postsynaptic region, while acetylcholine-induced depolarizations are required for the 

dispersion of extrasynaptic receptor clusters. By P15, most muscle fibers are monoinnervated, 

with the only postsynaptic nAChR cluster with a more characteristic, branched, ‘pretzel’-like 

shape (Balice-Gordon and Thompson, 1988; Sanes and Lichtman, 1999). In addition to agrin 

and acetylcholine, other signaling pathways are crucial for the regulation of NMJ 

development; particularly, the Wnt signaling pathway has been repeatedly implicated in the 

development of invertebrate and vertebrate synapses. These signaling pathways, including the 

role of Wnts, have been recently reviewed by Wu et al. (2010). 

Briefly, Wnt proteins are a family of phylogenetically conserved, secreted 

glycoproteins with ubiquitous function in development. These proteins bind Frizzled (Fzd) 

receptors in target cells, activating Disheveled, which in turn inhibits glycogen synthase 
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kinase 3β (GSK3β), allowing accumulation of the cadherin-associated protein β, β-catenin (β-

cat), and its translocation into the nucleus to activate gene transcription (Wu et al., 2010). β-

cat plays key roles in cell adhesion, signaling and regulation of gene expression. The Wnt 

signaling pathway and β-cat have also been implicated in several steps of the development 

and maturation of the NMJ (Wu et al., 2010). 

In vitro, β-cat mediates Wnt signaling and inhibits rapsyn expression through the 

canonical pathway (Wang et al., 2008a). Additionally, the non-transcriptional activity of β-

cat is required for agrin-induced nAChR clustering, since it is thought to bridge rapsyn and 

cytoskeletal α-catenin (Zhang et al., 2007).  Specific suppression of β-cat in the postsynaptic 

skeletal muscle disrupts differentiation of motor nerve presynaptic terminals, leading to 

ectopic nerve branches, defects in neurotransmitter release, and perinatal death, but with no 

defects in postsynaptic nAChR density (Li et al., 2008). Interestingly, overexpression of 

stable β-cat in the skeletal muscle produces a remarkably similar phenotype  (Liu et al., 2012; 

Wu et al., 2012). Since these animals die shortly after birth, any possible role of β-cat in the 

adult NMJ remains to be investigated. Previously, electroporation of β-cat into adult muscles 

was described as leading to reduced NMJ area and branching after six weeks (Wang et al., 

2008a). This raised the possibility that β-cat is involved in regulating nAChR density in adult 

NMJs. Here, we investigated the possible role of the Wnt signaling pathway in the stability of 

a mature NMJ. My results from preliminary work aimed at investigating the role of β-cat in 

mature synapses are presented here.   
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Materials and Methods 

Generation of β-catenin BiFC constructs 

 β-cat was amplified from peGFP-β-cat (a gift from Dr. Lin Mei, Georgia Regents 

University) using Pfu polymerase (Agilent) and primers to introduce flanking restriction sites. 

Amplification products (≈ 2.4 kb) and BiFC vectors were digested and ligated; specifically, 

β-cat was cloned between EcoRI and XbaI sites into pBiFC-VN173 and EcoRI and KpnI 

sites into pBiFC-VC155. pBiFC-β-cat-VN173 contains β-cat with its C-terminus fused to the 

173 N-terminal aminoacids of the Venus fuorescent protein through the linker RRSIAT 

(Shyu et al., 2008). pBiFC-β-cat-VC155 contains β-cat with its C-terminus fused to the 

155 C-terminal aminoacids of Venus through the linker ACKIPNELKGKVMNH (Shyu et 

al., 2008). We used a stabilized form of β-cat, in which glycogen synthase kinase 3β 

phosphorylation sites S33, S37, T41 and S45 are mutated to alanine, blocking ubiquitination 

and β-cat degradation (Yu and Malenka, 2003). pBiFC- α-syn-VC155, pBiFC-α-dbn-VC155 

and pBiFC-rapsyn-VN173 were previously generated in our lab by Dr. Mohamed Aittaleb. 

 

Electroporation of BIFC constructs into the sternomastoid muscle and confocal 

microscopy 

Adult mice (3-month-old), wild-type or deficient in α-syn, were anaesthetized, the 

sternomastoid muscle was surgically exposed and to a mix of 5 μg of each plasmid of the pair 

driving exogenous expression of half of the BiFC construct dissolved in water. The following 

pairs were used: pBiFC-β-cat-VN173 and pBiFC-β-cat-VC155 (positive control); pBiFC-

β-cat-VN173 and pBiFC-α-syn-VC155; pBiFC-β-cat-VN173 and pBiFC-α-dbn-VC155; and 

pBiFC-rapsyn-VN173 and pBiFC-β-cat-VC155. The plasmid solution was layered over the 

muscle surface and the muscle electroporated as described above (Chapter II). Three days 
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later, the animal was re-anaesthetized and Alexa Fluor 594-labeled α-bungarotoxin (BTX-

Alexa594; red) was added to the sternomastoid muscle to label nAChRs (30 min). The animal 

was then perfused transcardially with 2% formaldehyde PBS and the sternomastoid muscle 

was removed, dissected, mounted and imaged with a confocal microscope (Leica SP5). The 

z-stacks were then processed with Photoshop CS6 (Adobe). When there is interaction 

between the two proteins fused to the Venus halves, these are able to reform into the Venus 

full structure and emit green fluorescence (Figure A.1). 

 

 

Figure A.1. The bimolecular fluorescence complementation (BiFC) assay allows detection of protein-

protein interactions in the same macromolecular complex. A) A scheme of a pair of BiFC constructs; 

the C-terminus of protein A was fused to the 173 N-terminal aminoacids of the fluorescent Venus 

protein (VN) through the RRSIAT flexible linker. The C-terminus of protein B was fused to the 155 

C-terminal aminoacids of Venus (VC) through the linker ACKIPNELKGKVMNH. Either construct 

when expressed by itself does not emit fluorescence; B) Direct interaction between proteins A and B 

leads to pairing of both Venus halves and emission of green fluorescence; C) Indirect interactions 

between proteins A and B in the same macromolecular complex can also lead to Venus 

complementation and positive BiFC signal. Since the linkers, as well as the C-termini of the proteins 

considered in this studied are flexible, we estimate BiFC signals will be detected if both halves of 

Venus are linked to points within about 100 Å of each other (Shyu et al., 2008). 
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Results and Discussion 

 Since biochemical evidence in vitro suggested β-cat interacted with rapsyn, we first 

investigated β-cat interaction with nAChR-associated proteins in vivo, taking advantage of 

the bimolecular fluorescence complementation (BiFC) assay. For this technique, we co-

electroporated β-cat and scaffold proteins α-syn, α-dbn and rapsyn, with each of the pair 

fused to a half of the fluorescent protein Venus. When and wherever these exogenous 

proteins interact, both halves of Venus complement each other, leading to the emission of 

green fluorescence. BifC allows for the detection of direct or indirect protein interactions in 

the same macromolecular complex (Hu et al., 2002). In our system, considering the use of 

flexible linkers described above and the long, flexible sequences at both the N- and C-termini 

of β-cat (Gottardi and Peifer, 2008; Xing et al., 2008), we expect to detect interactions when 

both halves of Venus are fused to points within 100 Å of each other (Hu et al., 2002) (Figure 

A.1). 

We started by testing our self-generated β-cat BiFC constructs by co-expressing β-cat 

fused to either half of Venus. We saw diffuse BiFC signal throughout the electroporated 

muscle fibers, consistent with the signal of GFP-β-cat (Figure A.2; β-cat-VN + β-cat-VC). 

Next, we looked at the interaction between β-cat and nAChR-associated proteins. When we 

co-electroporated β-cat with α-syn or α-dbn, we saw a clear, albeit low-intensity signal in the 

synaptic region. The BiFC fluorescence was seen mostly ‘surrounding’ the α-BTX-stained 

nAChRs (Figure A.2; β-cat-VN + α-syn-VC and β-cat-VN + α-dbn-VC), due to the 

localization of α-syn or α-dbn at the troughs of the NMJ (Pires-Oliveira et al., 2013). When 

β-cat was expressed with rapsyn, there was strong BiFC emission restricted to the NMJ, 

which co-localized perfectly with nAChRs (Figure A.2; rapsyn-VN + β-cat-VC), similar to 

GFP-rapsyn (Bruneau and Akaaboune, 2010). These results indicate that β-cat interacts with 

rapsyn at the NMJ in vivo; while a direct interaction of β-cat with α-syn or α-dbn cannot be 
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discarded, the difference in signal intensity is likely explained by recruitment of β-cat by 

rapsyn to close proximity of the DGC (Figure 1.2), allowing for BiFC. The signal between 

β-cat and α-syn or α-dbn is also consistent and similar to the BiFC signal seen between 

rapsyn and α-syn or α-dbn (M. Aittaleb, unpublished observations). We will further confirm 

these β-cat molecular interactions using biochemical methods. Also, mutation of the 

α-catenin interaction site on β-cat was shown to abrogate rapsyn binding in vitro (Zhang et 

al., 2007); we will develop a similarly mutated β-cat BiFC construct to further investigate the 

specificity of this in vivo interaction. 

The presence of β-cat in the NMJ in association with rapsyn and, through it, the DGC, 

suggested the possibility that β-cat might be involved not only in the clustering of nAChRs 

during development, but also in the maintenance of receptor density at the adult NMJ. We 

therefore hypothesized whether β-cat expression or activation might be affected in α-syn
-/-

 

and NMJs, where drastic reduction of nAChRs is seen. However, when comparing muscle 

lysates from WT and α-syn
-/-

 mice, we found no reduction of β-cat expression or in the ratio 

of active β-cat (data not shown). These results implied that the synaptic phenotype of α-syn
-/-

 

mice is not associated with loss or deficient activation of β-cat. 

In our hands, we did not see any changes in NMJ morphology after electroporation 

with β-cat, though we did not investigate the NMJ after one week of electroporation. 

Additionally, β-cat expression and activity were not affected in α-syn
-/-

 skeletal muscles. 

Therefore, the role of β-cat on regulating nAChRs at the mature NMJ, if any, remains 

unclear. The generation of conditional β-cat muscle knockouts inducible at adulthood could 

elucidate these post-developmental functions. Alternatively, we are working to optimize a 

GFP-tagged β-cat-shRNA construct viable for muscle electroporation. With these techniques, 

we hope to finally clarify the role of β-cat and the molecular interactions that localize it to the 

NMJ in the regulation of nAChR density. 
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Figure A.2. β-catenin interacts with nAChR-associated proteins in mouse NMJs. When β-catenin 

(β-cat) is fused to both halves of Venus (β-cat-VN and β-cat-VC), BiFC signal is diffuse throughout 

the whole muscle fiber, as expected for the cytosolic and membrane-associated distribution of 

activated β-cat. β-cat-VN showed a weak interaction with α-syn-VC and α-dbn-VC, with signal 

clearly, albeit only slightly, above the background at the troughs of the NMJ, a localization consistent 

with α-syn and α-dbn. Interestingly, rapsyn-VN and β-cat-VC showed strong BiFC signal at the NMJ, 

which perfectly co-localized with α-BTX-labeled nAChRs, similar to rapsyn-GFP by itself. Scale bars 

are 20 µm. 
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