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ABSTRACT

Adaptive Phase I and II Clinical Trial Designs in Oncology with Repeated
Measures using Markov Models for the Conditional Probability of Toxicity

by

Laura Levette Fernandes

Co-chairs: Professor Jeremy M.G. Taylor

Professor Susan Murray

We consider models for the dose toxicity relationship in early clinical trials in oncol-

ogy where different dose levels of a study drug are being tested over multiple cycles

in the same patient and an assessment of toxicity is made for each cycle. We propose

three models using conditional probability of toxicity in specifying the dose-toxicity

relationship in patients receiving repeated doses assuming that they did not have

any dose limiting toxicities (DLTs) on past cycles. We first develop the conditional

Markov model in a phase I settings where the patients are allowed to escalate/de-

escalate dose levels, from a choice of five possibilities, over six cycles. In the second

setting the conditional Markov model is applied to a completed phase II clinical trial

xiii



in sarcoma patients from the paper by Worden et al. (2005) where two dose levels

of the study drug, ifosamide, were tested over four cycles. The model adequately

fits the dose-toxicity relationship at each of the cycles and demonstrates flexibility

offered in including additional covariate terms to describe the relationship. Finally

the conditional Markov model is extended to the ordinal case where patient responses

are classified as severe, mild or none and might prove beneficial in assigning future

doses closer to the patient’s actual frailty. Bayesian estimation of the parameters is

formulated and evaluated through simulations in all the three methods. Methods for

utilizing the dichotomous and ordinal outcome method to conduct a phase I study,

including choices for selecting doses for the next cycle for each patient, are developed

and designs of clinical trials using the models in simulation settings are presented.

Comparison of the dichotomous and ordinal outcome Markov models are also pre-

sented exploring the potential benefits of using ordinal outcomes in conducting a

trial.
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CHAPTER 1

Introduction

Early phase I clinical trials of a new agent in oncology are conducted as dose-

finding experiments with a focus on estimating the maximum tolerated dose (MTD)

and understanding the dose-toxicity relationship. The designs of such trials typically

explore the toxicity at a predefined set of possible dose levels of the agent. Since

the MTD will be used in subsequent studies of the agent it is important that it

be established with some level of confidence from the phase I trial. The trials are

typically small with less than 30 patients, non-randomized and sequential in nature

so that during the trial patients are assigned the maximum dose considered safe

and tolerable based on available information at that point. A key question in the

conduct of these studies is what dose should be assigned to the next patient who is

about to enroll in the study. There are many different approaches that can be taken,

some are algorithmic, such as the commonly used ‘3+3’ design, others are based

on a statistical model such as the continual reassessment method (CRM) [O’Quigley

1
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et al., 1990] and variations of it such as the escalation with overdose control (EWOC)

[Babb et al., 1998] design. Model based designs are based on statistical principles

and use information from all the patients in the trial to make decisions on dose

assignment for new patients. Much research has shown that model based designs

are better at estimating the MTD and in treating patients closer to the therapeutic

dose level than the ‘3+3’ design [O’Quigley and Chevret, 1991, Thall and Lee, 2003].

In model based designs an explicit target toxicity rate of say 30% is specified, and

a statistical model is posited for the relationship between the dose and the toxicity.

At the time the new patient is about to enroll the model is fit to the data, then the

dose that would give at or just below the expected target toxicity rate is selected for

the new patient. The form of the statistical model for the relationship between dose

and probability of a dose limiting toxicity (DLT) would usually be simple and have

a smooth, sigmoid, monotonic shape. As the data accumulates during the trial the

model is refit, leading to possibly a different dose assignment for the next patient.

The initial patients in single-dose trials are started off in their first cycle of treat-

ment at low dose levels and even if they continue to receive multiple doses on addi-

tional cycles only the data from the first cycle is used when deciding the dose level

for the next patient. A clinical drawback of considering the outcome measure to be

based on just the first one or two cycles, is what if there is a DLT at a later cycle,

it would probably be important to take that into consideration in recommending a

dose to use in the future. [Postel-Vinay et al., 2011] showed that DLT’s do frequently



3

occur in later cycles. From an ethical standpoint this design could be improved by

allowing patients to receive the highest dose level that is the most safest and by using

the data from all the patients in the trial when making dose assignment decisions.

Trials that allows multiple doses per patient, impose restrictions on the dose assign-

ment choices available to the patients wherein patients are administered the same

dose level on all the cycles. Such restrictions prevent patients from escalating to a

higher dose level and receiving more of the study drug when other patients in the

trial are performing well and vice versa the patients are prevented from de-escalating

to a lower dose level in the event that many toxicities are observed in the trial from

the other patients.

The benefit of accelerated titration designs was recognized by [Simon et al., 1997]

who provided the rationale for allowing patients to vary doses across cycles. [Simon

et al., 1997] considered a random effects models to simulate data with separate

toxicities measures for each cycle. This model was used to simulate data for the

evaluation of the accelerated titration method, but the model was not used for data

analysis and trial conduct. Motivated by considerations of pharmacokinetics [Leg-

edza and Ibrahim, 2000] developed a model for repeated toxicity measures for each

patient. Their model included a random effect to allow for different levels of frailty

for a person, giving within subject correlation, and also included a term to represent

cumulative effects of toxicity. However, they had considerable computational diffi-

culties in fitting their model and eventually a much simplified version of the model
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was able to be fit without estimating the random effects. More recently [Doussau

et al., 2013] presented models incorporating ordinal outcomes from patients receiv-

ing multiple cycles of doses. One of the major drawbacks of these models is that

they only apply to situations in which the patients receive the same dose level on

all the cycles thereby taking away the advantages of intra-patient dose escalation or

de-escalation described earlier.

If a patient does experience a toxicity on any cycle they are typically taken off

the study and they would not provide further data for the assessment of toxicity.

Denoting 0 to represent no dose limiting toxicity (DLT) and 1 to represent a DLT

from a dosing cycle, where the National Cancer Institute [NCI, 2003] criteria of

grading toxicities defines grades higher than 3 as a DLT. The data for each patient

would either consist of a series of zeroes (for example 000000) or a series of zeroes

followed by a one (for example 001). While a subject-specific random effect is an

appealing way to incorporate concepts of frailty, it is clear that fitting models with

random effects to the above type of data is going to be very challenging.

This dissertation presents a new approach of using conditional probability of

toxicity to model the dose-toxicity relationship in patients with multiple cycles of

the study drug assuming that further drugs are given only if the patient had no

DLTs in the previous cycles. The use of conditional Markov models is the novel

unifying idea in the three chapters of the dissertation.

In Chapter 2 the conditional Markov model in presented in a phase I setting.
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We develop a two-state Markov model, with the states being 0 and 1. State 1 is

considered a terminating state occurring when a patient experiences a DLT. The

model is presented for five dose levels assuming that patients in the study would

receive doses until completion of six cycles without a DLT. We adopt a Bayesian

approach to estimation and to provide improved small sample performance of the

estimates we utilize informative priors that can be solicited from experts prior to the

trial. Parameter estimation by allowing patients to vary dose levels over the course of

the trial will be demonstrated. Additional simulations to demonstrate the potential

benefits of analyzing data from all the patients over all the cycles as opposed to

reducing it to a single binary outcome per patient will be presented. Finally the use

of the model in designing and executing a sequential trial will be presented.

Chapter 3 focuses on the applicability and extensions of the conditional Markov

model in modeling the data generated from a completed phase II clinical trial. Data

from the oncology trial conducted by [Chugh et al., 2007] is used as an example. In

this randomized phase II clinical trial two dose levels of the study drug ifosamide

were tested over four cycles in patients having soft tissue sarcoma. Various models

incorporating covariates are proposed to correctly specify the dose-toxicity relation-

ship. Priors are developed for the parameters in the model and the flexibility offered

in including additional covariate terms is demonstrated both via simulations and

through the example dataset.

Chapter 4 provides extensions to the concept of modeling the conditional proba-
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bilities in a phase I setting with three ordinal outcomes; severe, mild or none toxicity

in the response. The dichotomized conditional Markov model is modified to account

for the mild toxicity responses in the past and its use is demonstrated in the con-

duct of an adaptive clinical trial. The benefits of using the ordinal outcomes are

presented via simulations when compared to the initial two-state Markov model pre-

sented in Chapter 2. To conclude Chapter 5 presents an overall discussion of the

proposed conditional Markov models and considers a number of potential extensions

and modifications of these models in other settings.



CHAPTER 2

Adaptive Phase I Clinical Trial Design Using

Markov Models for Conditional Probability of

Toxicity

2.1 Introduction

A key question in the conduct of dose-finding phase I trials in oncology is what

dose should be assigned to the next patient who is about to enroll in the study. The

algorithmic approach could use ‘3+3’ design [Storer, 1989] while a statistical model

based approach could use the continual reassessment method (CRM) [O’Quigley

et al., 1990] and variations of it such as the escalation with overdose control (EWOC)

design [Babb et al., 1998]. Much research [O’Quigley and Chevret, 1991, Thall and

Lee, 2003] has shown that model based designs are better in estimating the maximum

tolerated dose (MTD) and in treating patients closer to the therapeutic dose level

than the ‘3+3’ design. In such model based designs a smooth, sigmoid, monotonic

7
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shape is posited for the relationship between the dose and the probability of toxicity

and an explicit target toxicity rate of say 30% is specified. When a new patient is

about to enroll the model is fit to the data, and the dose at the acceptable expected

target toxicity rate is selected for the new patient. As the data accumulates during

the trial the model is refit, leading to possibly a different dose assignment for the

next patient.

Because the trials typically start at a cautiously low dose level, some of the pa-

tients, especially early on in the study, are treated at a low dose level and hence

probably receive limited benefit from the treatment. [Simon et al., 1997] provided

the rationale for the accelerated titration design, where patients were allowed to re-

ceive different doses on each cycle. A random effects model was used to simulate

the toxicities that could occur on different cycles. Motivated by pharmacokinetic

considerations [Legedza and Ibrahim, 2000] developed models for repeated toxicity

measures for each patient by including a random effect to account for patient corre-

lation and a term for capturing the cumulative effect of toxicity. Due to considerable

computational difficulties in fitting the model, owing to the nature of the data, they

were only able to fit a much simplified version.

If a patient does experience a dose limiting toxicity (DLT) on any cycle they are

typically taken off the study not providing further data for the assessment of toxicity.

If 0 represents no toxicity from a cycle and 1 represents a DLT then the data for each

patient would either consist of a series of zeroes (for example 000000) or a series of
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zeroes followed by a one (for example 001). While a subject-specific random effect

is an appealing way to incorporate concepts of frailty, fitting models with random

effects to such example data is challenging. In this chapter as an alternative we

develop a two-state Markov model, with the states being 0 and 1. Because 1 is a

terminating state, we only need to consider the transition probabilities out of state

0. We explicitly model conditional probabilities of toxicity in a cycle given that the

patient is toxicity-free to date. At the first cycle the probability of toxicity depends

just on the dose, at later cycles the conditional probability of toxicity can depend

on additional covariates such as the cumulative dose and the maximum of the past

doses.

The model includes a number of parameters, which need to be estimated from

the data. Since we envision that the model would be fit during the conduct of the

trial, an estimation method is necessary that can be used even for small sample sizes,

as would be the situation early in the trial. We adopt a Bayesian approach and to

provide improved small sample performance of the estimates we utilize informative

priors that can be solicited from experts prior to the trial.

Once the parameter values are known the form of the model allows a number of

different calculations to be made. For example, the probability of toxicity on the

next cycle as a function of dose can be calculated. Also the probability of toxicity on

any future cycle can be calculated, and this will be a function of the sequence of doses

that will be given on each of the future cycles. This raises an interesting question
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as to how to select the next dose. Should it only be influenced by the probability of

toxicity on the next cycle, or should a more long term horizon be taken into account

and the probability of toxicity at any future time be considered. In selecting the

dose for the next cycle it may be beneficial to think not just about the dose for that

cycle, but also the doses for future cycles.

Since the design allows for intra-patient dose changes during the conduct of the

trial, the recommendation at the end of the trial could also be a sequence of doses,

which vary from one cycle to the next. Wild between-cycle variations in the recom-

mended dose level are unlikely to be clinically acceptable, however a modest variation,

such as dose level 3 for the first 2 cycles, then dose level 4 for the last four cycles,

could be envisioned. Allowing for intra-patient dose variation also presents another

practical concern. At the end of the trial a recommended schedule of doses will be

provided, yet no patient in the trial may have exactly followed this regimen. Thus

another consideration in deciding the next dose for each patient, is that the schedule

of doses for that patient should be one that could be recommended at the end of the

trial, or at least close to one that it is conceivable to recommend.

In Section 2.2 we describe the Markov model providing intuition on model fea-

tures. The Bayesian estimation method is described, with consideration given to

the selection of the prior distributions. In Section 2.3 we evaluate properties of the

estimation method in a static situation of a small and a moderate sample size. In

Section 2.4 we consider using the model in the design and conduct of a trial and



11

consider optimality criteria for choosing the next dose for a patient. We evaluate the

designs and compare them with some simple alternatives. We end with a discussion

in Section 2.5.

2.2 Methodology

2.2.1 Notation and data structure

We assume that there are five increasing dose levels of an experimental study

drug represented by dg, g = 1, . . . 5, that will be studied in i = 1 . . . N patients.

Each patient i completes Ki ≤ 6 cycles, where Ki may be less than six if a patient

experiences a DLT or if the patient drops out for other reasons. On each cycle

k = 1, . . . , Ki, patient i receives a dose di,k equal to one of the five values of dg.

A patient’s cumulative dose prior to cycle k = 1, . . . , Ki is Di,k =
∑k

j=1 di,j−1, so

that Di,1 = 0. We also use the notation that di,k−1 = 0 for cycle k = 1 and

d‡i,k = max(di,1, . . . , di,k−1), the maximum of doses assigned to patient i until current

cycle k.

The occurrence of a DLT for patient i on cycle k is Yi,k, with Yi,k = 0 indicating

no DLT and Yi,k = 1 for a DLT. Patients stop receiving the drug if they experience

a DLT thus the possible patterns of Yi,k values for a patient are a sequence of zeroes

or a sequence of zeroes followed by one. The observed data after n patients have

enrolled in the trial is {(Yi,1, . . . , Yi,Ki , di,1, . . . , di,Ki), i = 1, . . . , n}.
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2.2.2 Proposed Markov model

We propose Model 2.1 for the conditional probability of toxicity, pi,k = P (Yi,k =

1|Yi,k−1 = 0, . . . , Yi,1 = 0), for patient i on cycle k given that patient i has experienced

no previous DLTs as,

ln (1− pi,k) = −α
(
di,k − ρd‡i,k

)+

− βDi,kdi,k (2.1)

or equivalently,

pi,k = 1− exp

{
−α
(
di,k − ρd‡i,k

)+

− βDi,kdi,k

}
.

The term (di,k− ρd‡i,k)+ is, equal to (di,k− ρd‡i,k) if di,k > ρd‡i,k, and is zero otherwise.

Intuition behind Model 2.1 can be appreciated by starting with the first cycle, k = 1,

when pi,1 = 1−exp(−αdi,1) and only α comes into play in explaining the dose related

toxicity. To obtain valid probability estimates, α ∈ [0,∞] so that pi,1 ∈ [0, 1] is

an increasing function of di,1. Note that we do not need to develop a model for

P (Yi,k = 1|Yi,k−1 = 1) since once a patient develops a DLT at cycle k − 1 no further

dose is administered to the patient.

On subsequent cycles we have two different terms to account for the conditional

probability of toxicity. The first term (di,k − ρd‡i,k)+ accounts for difference between

the current assigned dose di,k and a factor (ρ) of the maximum of the previous doses
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d‡i,k, while the second term tries to capture the effect of the cumulative dose Di,k.

The parameter ρ can be thought of as reflecting the amount of memory about

whether a dose was tolerable. When ρ = 1, (di,k − ρd‡i,k)+ reduces to (di,k − d‡i,k)+ as

the difference between the current assigned dose and the maximum of the previous

doses. If the current dose is less or equal to the maximum of the previous doses, the

difference will be zero and will not contribute towards the probability estimate i.e.,

there is a strong memory that a dose equal to or higher than the current dose was

tolerable hence the current dose is more likely to be tolerable. When ρ = 0, the term

(di,k − ρd‡i,k)+ reduces to di,k and implies that there is no memory of the previous

doses that had been tolerated. Intermediate values of ρ between zero and one have

intermediate amount of memory. Thus this term tries to capture the within-patient

correlation between dose cycles.

The term βdi,kDi,k, β ≥ 0 is designed to capture the idea that there may be

“damage” accumulated from prior doses and the amount of this “damage” plays a

role in determining the probability of toxicity when a new dose is administered. This

term is constructed so that the contribution of the cumulative dose is in proportion

to the current dose di,k and will not be relevant if di,k = 0.

Figure 2.1 plots the conditional probability of toxicity for different instances of

α, β and ρ and aids in understanding the working properties of the Markov Model

2.1. The solid line with open circles shows the probability of toxicity for the first

cycle at each of the five dose groups. The curve is the same in all the nine panels
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since the probability of toxicity on the first cycle is influenced only by α which is the

same in all the instances. The dashed line with crosses corresponds to the conditional

probability of toxicity on the second cycle assuming that patients have received dose

level three with no DLTs on cycle 1 and any one of the five dose levels on the second

cycle. In the top left panel with β = 0, ρ = 0 cycle 2 gives probabilities equivalent to

those seen in cycle 1. This is because there is no cumulative effect of dose (β = 0) and

patients surviving the first cycle are treated as though they are similar to patients

on cycle 1 with respect to chance of toxicity since (ρ = 0) i.e., no memory. The

first row from left to right indicates that increasing β gives increasing probabilities

of toxicity on cycle 2 even when ρ = 0. Panels in the first column from top to

bottom indicate that when there is no cumulative effect of dose (β = 0) on cycle 2

increases in ρ make patients less likely to experience a toxicity. For instance ρ = 1

suggests that all patients who would have experienced toxicity at dose level three

(di,1 = d3) were eliminated from the trial during cycle 1 resulting in probability of

toxicity equal to zero until di,2 > d3 in the lower left panel. Hence toxicities in cycle

2 are both a function of patient selection in subsequent cycles as influenced by ρ as

well as cumulative dose effects as influenced by β

2.2.2.1 Comparison to existing models

This section provides a brief comparison of the dose-toxicity relationship captured

by the Markov Model 2.1 compared to alternative models. [Simon et al., 1997]
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modeled a latent continuous toxic response Wi,j for person i at time period j as,

Wi,j = βSi + εi,j + log(dSi,j + αSDS
i,j) (2.2)

where dSi,j is the dose for person i at time j, DS
i,j is the ith person’s cumulative

dose prior to time j and the two random effect terms, βSi ∼ N(µβS , σ
2
βS) accounting

for inter-patient variability or frailty and εi,j ∼ N(0, σ2
ε ) representing the intra-

patient variability. This model was used to model data generated from a trial using

a pre-defined escalation plan with the continuous toxicity response categorized into

different levels using pre-defined thresholds. On the first cycle there is no cumulative

dose and there is no parameter to capture the contribution of the current dose dSi,j

which is simply reduced to a log transformed term, βSi and εi,j are the only terms that

help in explaining the effect of the first dose. On subsequent cycles αS captures the

effect of the cumulative dose and can be likened to the β parameter in the Markov

model. The effect of the current dose is not captured by any parameter but is tied

in with the σ2
ε which also tries to capture the intra-patient dose dependency. Hence

in broad terms βSi can be likened to the α term and σ2
ε to the ρ term in the Markov

model. The Markov Model 2.1 has one less parameter to estimate and yet provides

a similar explanation of the dose toxicity profile.
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[Legedza and Ibrahim, 2000] proposed the use of clearance rate λL for cumulative

effects. The form of their model is as follows,

logit(pLi,j) = εL + βL log(dLi,j +DL
i,jexp(−λL)) (2.3)

where pLi,j and dLi,j is the probability of toxicity and the dose for person i at time j

respectively, DL
i,j is the ith person’s cumulative dose prior to time j. The εL term

is not patient or cycle dependent. A simpler model which excluded the εL term was

also considered. Due to the in-feasibility in estimating λL with small sample sizes

the clearance rate was assumed to be a constant, λL = log(2). The model has a

fixed intercept and the effect of the current dose is captured by βL while λL captures

the effect of the cumulative dose. Legedza’s model needs the estimation of only two

parameters and in the absence of the εL term a single parameter βL, however it does

not capture any dependency between the response of a patient on different cycles.

Notice that Legedza’s model has increasing probability of toxicity with dose on

subsequent cycles. There is no concession given to the patient for surviving a higher

dose level on the first cycle. In comparison the Markov model 2.1 allows the toxicity

on the second cycle to be higher or lower than that on the first cycle. Depending

upon the cumulative effect of the dose, patients surviving a higher dose on the first

cycle are less likely to have a toxicity on the second cycle and the model adequately

accounts for this.
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A third approach using a cure rate model for estimating the cumulative effect of

multiple administrations of the study drug is provided by [Zhang and Braun, 2013].

This approach considers multiple dose levels administered to patients at fixed time

points with a goal to select the optimal dose level and schedule (regimen) at the

end of the study. Individual hazard contributions from the doses are summed up in

estimating the cumulative effect of the multiple administrations. A cure rate model

is used to describe the hazard function. The hazard of a DLT at time t following

administration of dose d1 at t1 is given by the formula, h(t) = θi,1F (νi,1|φ). Thus

the probability of having a DLT in an interval (tk, tk+1) can be calculated by solving

the integral, pk = exp(−
∫ tk+1

tk
h(u)du). Zhang et al assumes that the time to DLT

from any of the individual administrations is independent in contrast to the Markov

model that considers the dependency between patient responses through the concept

of frailty in ρ. This also leads to the second difference where the probability of

toxicity (defined via the hazard) is assumed to increase with dose administrations

while the Markov model allows flexibility for a decrease in probability on the second

cycle. The Markov Model 2.1 assumes that the observed response in a cycle is

due to the drug administered during that cycle while in Zhang’s method, doses are

administered based on a schedule until the toxic response is observed allowing for

delayed toxicities which are not allowed in the Markov model. Although the Markov

model is presented for six cycles the final recommendation of the regimen could be

made for cycles less than six that provide an acceptable overall probability of toxicity
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which is similar to the idea used by Zhang in schedule selection.

[Pye and Whitehead, 2012] presented at a conference a Bayesian designs for phase

I clinical trials in cancer by assuming the the observations arose as interval-censored

from a survival model. They used a generalized linear model to represent the relation-

ship between the probability of experiencing a DLT during cycle j of the treatment

conditional on there being no DLT prior to cycle j on dose level k in a time to event

(survival) setting. The probability of observing a toxicity on cycle j assuming dose

level k has been administered is given by pPk,j and estimated using the model:

pPk,j = 1− exp(−exp(γj + βP log(dk))) (2.4)

A Beta prior is assigned on pPk,j by incorporating prior beliefs through pseudo-data.

Parameters estimates are found using GLM software. Their model would have to

estimate j + 1 parameters, corresponding to the j dosing cycles and the effect of the

dose. For the particular case with six cycles a total of seven parameters would have to

be estimated, in contrast the Markov model estimates only three parameters. Their

model also assumes proportional hazard across the dose levels and requires that the

same dose level be given on all the cycles. There is no parameter to account for the

cumulative effect of the dose. The conditional aspect of the model is similar to our

Markov model and shares the same feature of estimating the probability of toxicity

on all the cycles.
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More recently [Doussau et al., 2013] provided a mixed effects proportional odds

model to incorporate ordinal outcomes in a phase I setting to describe the probability

of a severe toxicity and the trend in the risk of toxicity with time. This method

does not explicitly model the tendency to discontinue cycles for patients who have

demonstrated previous DLT, although the resulting estimated toxicity rates may be

conditional in nature. In addition the cumulative effect of the dose is not captured

and patients are not allowed to escalate or de-escalate doses. The details of this

method will be discussed further in Chapter 4 when the ordinal Markov model is

presented.

2.2.3 The likelihood, prior and posterior distributions

2.2.3.1 Probability Skeleton

The dose levels to be studied are transformed to dg via pre-specified skeleton prob-

abilities denoted by qg. The skeleton probabilities incorporate prior beliefs about the

dose-toxicity relationship and correspond to the probability of observing a toxicity

on the first cycle for each of the dose levels. In our set up of the Markov model

the probability of toxicity on the first cycle is given by ln(1 − pi,1) = −αdi,1 and

does not depend on ρ and β. The doses dg are obtained by transforming qg via

dg = − ln(1 − qg) and thereby setting the prior mean on α = 1. Similar transfor-

mations are described by [Lee and Cheung, 2009] in the context of the CRM and

have been used by many other authors in other contexts [Lee et al., 2011, Cheung
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and Elkind, 2010]. The probability skeleton information can be elicited from prior

animal studies or from the clinicians. In the absence of such information, [Lee and

Cheung, 2009] suggest sensitivity analysis across different skeleton choices.

2.2.3.2 Prior selection and posterior distribution

Based on the study design, patients contribute to the likelihood until they ex-

perience a DLT or the final Kth cycle is completed. That is, a person with toxicity

on cycle Ki gives data (Yi,1 = 0, Yi,Ki−1 = 0, . . . , Yi,Ki = 1, di,1 . . . di,Ki) and the

contribution to the likelihood is,

P (Yi,1 = 0, . . . , Yi,Ki−1 = 0, Yi,Ki = 1) = pi,Ki

Ki−1∏
j=1

(1− pi,j). (2.5)

And a person completing K cycles without toxicity gives data (Yi,1 = 0, . . . , Yi,K−1 =

0, Yi,K = 0, di,1 . . . di,K) with likelihood contribution as

P (Yi,1 = 0, . . . , Yi,K−1 = 0, Yi,K = 0) =
K∏
j=1

(1− pi,j). (2.6)

In general, subject i on cycle k contributes Li,k(Yi,k|α, β, ρ) = (pi,k)
Yi,k(1− pi,k)1−Yi,k

to the likelihood, with pi,k parameterized as in Model 2.1 and interpreted as the

probability of toxicity on cycle k conditional on having no prior DLTs in previous
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cycles. The resulting likelihood for the entire study population is given by,

L(Y |α, β, ρ) =
N∏
i=1

Ki∏
k=1

Li,k(Yi,k|α, β, ρ).

Our goal lies in estimating the posterior distribution of pi,k, k = 1, . . . , K in

terms of the posterior distributions of parameters α, β and ρ. Prior distributions on

these parameters should reflect any auxiliary knowledge of the toxicity profile for the

drug/agents being used in the trial, with a large prior variance when this knowledge

is limited. In setting the prior on α, the positive real axis is the permitted range of

values and a lognormal (µ, σ2) is used as a suitable prior having the form

π(α|µ, σ) =
1√

2πσ2

exp(−(logα− µ)2/2σ2)

α

Specifying the prior mean for α as 1 and the prior variance as 4, providing a coefficient

of variance (CV) of 2, µ, σ are estimated using the expressions for the mean and

variance of the lognormal density, E(α|µ, σ) = exp(µ + σ2/2) and V ar(α|µ, σ) =

exp{2(µ+ σ2)} − exp(2µ+ σ2).

On cycles k > 1 we have multiple dose administrations and need to assign priors

on β and ρ. As mentioned earlier in Section 2.2.2 ρ ∈ [0, 1] and captures the corre-

lation within patients receiving multiple doses, with values near zero indicating that

the toxicity outcome is not influenced by previously administered doses and a value
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near one indicating a lower chance of toxicity from a previously administered dose.

A Beta(a, b) prior is used on ρ having density of the form

π(ρ|a, b) = (ρ)a−1(1− ρ)1−b

The hyperparameters are set to a = 5 and b = 1 and using the expressions for the

mean a/{a + b} and variance ab/{(a + b)2(a + b + 1)} the prior on ρ has a mean of

0.833 and variance of 0.02.

The lognormal density is used as the prior on β > 0. In setting the prior mean

for β two approaches could be considered. Based on the construction of the βDi,kdi,k

term its contribution is likely to be much smaller than that of the α(di,k − ρd‡i,k)

term. Arbitrarily set the ratio of these two terms to be 0.2 for patients receiving the

third dose level (dg = d3) on the fourth (k = 4) cycle. Setting ρ = 0.80 and solving

for β provides the mean of the prior on β. The standard deviation (SD) of the prior

is set to two times the mean to provide a coefficient of variation of two. A second

method for setting the prior involves eliciting another skeleton, the probabilities of

completing the entire regimen of K = 6 cycles with no toxicities assuming that the

dose was the same on all the cycles. By setting α = 1 and ρ = 0.80, five different

values of β corresponding to the dose levels dg are obtained. The prior mean is set
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to the mean of these five values of β and the variance is set to either the SD of these

five values or to two times the mean to obtain a CV of two.

The posterior distribution for α, β and ρ given the observed data Y is then

f(α, β, ρ|Y ) =

∏N
i=1

∏Ki
k=1 Li,k(Yi,k|α, β, ρ)πβ(β)πα(α)πρ(ρ)∫ 1

0

∫∞
0

∫∞
0

∏N
i=1

∏Ki
k=1 Li,k(Yi,k|α, β, ρ)πβ(β)πα(α)πρ(ρ)dβdαdρ

.

The posterior distribution of α, β and ρ from Model 2.1 can be estimated via Markov

Chain Monte Carlo (MCMC) methods [Robert and Casella, 1999] using just another

Gibbs sampler (JAGS) rjags [Plummer, 2011] package through [R Development Core

Team, 2011]. JAGS includes several algorithms for sampling from the posterior dis-

tributions produced from the MCMC iterations, for instance the standard Gibbs

sampler is available for this purpose. Details of setting up the MCMC simulations

are given in Section 2.2.4.

2.2.4 MCMC sampling procedure

MCMC is a general method based on drawing values of α, β and ρ from approx-

imate distributions and then correcting the draws to better approximate the target

posterior distribution f(α, β, ρ|Y ) [Gelfand and Smith, 1990, Gilks et al., 1993]. New

samples are drawn based on the current value (the Markov property) and often from

two chains starting at disparate initial values. The goal is to have the simulated

draws trace a path throughout the parameter space of α, β and ρ, this is achieved by
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running the simulations for a large number of draws and monitoring the convergence

through diagnostic tests. The Gibbs sampler is the most frequently used algorithm

for drawing samples in a multivariate set up. At each iteration of the Gibbs sampler,

samples are drawn for each of the parameters conditional on the values of the other

parameters. In practice JAGS uses different samplers for each of the parameters de-

pending on the best choice i.e., ease in simulation and simplicity. Inference is based

on the posterior samples which need to be assessed for convergence. The early sim-

ulation runs known as the burn-in period are discarded, to allow the model to cover

most of the sample space values before drawing values for the posterior distribution.

Assessing the dependence of iterations in each sequence through correlation plots,

helps in determining the need for thinning. If samples are found to have a high

degree of correlation between samples they defy the assumption that subsequent

draws from the posterior are independent. To remedy this issue a thinning factor is

used to discard the samples in the sequence and retain only a subset of the samples.

Monitoring the convergence based on multiple sequences with over disparate starting

or initial values gives rise to mixing of several chains and provides the calculation of

the R statistic or the potential scale reduction factor [Gelman and Rubin, 1992]. The

idea is that the distributions generated from the two separate initial values should

converge to the same target distribution confirmed through the Gelman-Rubin plots

and R statistic which measures whether there is a significant difference between

the variance within several chains and the variance between several chains by scale
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reduction factors. Values lower than 1.1 are considered to be acceptable indications of

convergence. Samples are discarded and additional samples are iteratively generated

until acceptable convergence diagnostics are obtained. Posterior means and other

quantities are then estimated from the final chosen sample.

2.2.4.1 Implementation in JAGS

The JAGS MCMC approach runs in three stages. In the first compilation stage,

the data likelihood and the density definitions of the priors are specified in a model

file saved under a .bug extension. The model file and the data are passed into the

JAGS for compilation along with the list of parameters , α, β and ρ, that have to

be monitored. The number of parallel chains to be run by JAGS are also defined

at the compilation stage, where each parallel chain produces independent samples

from the posterior distribution. At this stage the compiled model also contains the

initial values for all the parameters that are monitored in each of the chains. The

JAGS code is provided in Appendix 2.6.1. In the second adaptive stage, samplers

are automatically assigned by JAGS after a pre-specified adaptive phase for each of

the parameters based on the likelihood definition of the model. In the third burn-

in stage, 10K samples are discarded and finally posterior samples of 100K (thinned

by 20) are used in simulations presented in later sections. Before using the samples

from the two chains for reporting they are monitored and assessed through diagnostic

tests. The correlation between samples generated at each iteration of the MCMC
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chain for each of the parameters needs to be sufficiently low. The posterior means,

α̂, β̂ and ρ̂ of the three parameters, are used to calculate the various probabilities of

interest.

2.3 Operating characteristics/Results

All simulation results presented in this section demonstrate the estimation of pa-

rameters assuming that all the patients have completed the trial. This section studies

the following model properties when used in estimating the conditional probabilities

1) the effect of the priors on parameter estimation, 2) the efficiency gains obtained

in the parameter estimates when patients are allowed to have dose escalation and/or

de-escalation over multiple cycles and lastly 3) demonstration of the benefits in us-

ing the Markov Model 2.1 in comparison to two different models with single binary

endpoints.

2.3.1 Effect of priors on estimation

The effect of the degree of informativeness as defined by the SD of the priors in

estimating the parameters is explored in this section via simulations. In addition the

robustness of the estimation process to prior misspecification when the mean of the

prior does not coincide with the parameter true values used in generating the data

is also studied. A total of 500 datasets were generated under four different cases

and using the skeleton probabilities qg = (0.02, 0.05, 0.10, 0.15, 0.23). In the first and
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second case, true values of the parameters were α = 1, β = 0.5 and ρ = 0.8 which

were changed to α = 0.8, β = 0.5 and ρ = 0.8 in the third case and α = 1, β = 0.8

and ρ = 0.8 in the fourth case. The N = 30 patients were distributed equally to

receive one of the five dose levels on all the cycles until completion of K = 6 cycles

or occurrence of a DLT.

The degree of informativeness in the priors differed at the estimation stage. The

prior means E(α) = 1 and E(β) = 0.5 were the same in all the four cases and

matched the true value in Cases 1 and 2 but differed from the true values in Cases 3

and 4. The SD was set to two times the mean, SD(α) = 2 and SD(β) = 1 in Cases

1, 3 and 4. In the second case the prior standard deviations were set to five times

the mean, SD(α) = 5 and SD(β) = 2.5. In all the four cases Beta(5, 1) prior was

used on ρ.

The parameter estimates from the 500 simulated datasets are presented in Table

2.1 with the rows grouped by the four cases. The four columns report (1) the

true value of the parameters, (2) the mean and SD of the prior, (3) the mean of

the estimated values from 500 datasets and the mean bias from the true value in

parenthesis, (4) the mean SD (MSD) of the estimates from 500 datasets, (5) the

empirical SD (ESD) of the 500 estimates, (6) the coverage rate of the 95% credible

interval across the 500 datasets. Results indicate that the bias in parameter estimates

is low except for β in Case 4. The mean SD is slightly higher than the ESD giving

slightly conservative estimates of variability that lead to higher coverage rates. The
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MSD of the estimates is lower than the prior SD for α and β but comparable in the

case of ρ indicating minimal information in estimating this parameter.

The probability estimates obtained from the 500 simulated datasets are presented

in Table 2.2 grouped by the four cases and each of the rows corresponding to one

of the five dose levels. The columns indicate the mean estimate of the conditional

probability of toxicity on the first, the second, the sixth cycle and the overall prob-

ability of toxicity on any of the cycles along with the bias from the true values in

parenthesis. The results suggest that the model performs suitably, even with prior

misspecification, in estimating the true values. It was decided to use the prior from

the first case for the simulation results presented hereafter.

2.3.2 Properties of parameter estimates with intra-patient dose variabil-
ity

The simulation results presented in Section 2.3.1 assumed that the patients were

assigned to receive the same dose level on each of the six cycles. This section explores

the effects on estimation in the presence of dose heterogeneity within each patient

i.e., allowing patients to have dose escalation and de-escalation across the six cycles

assuming that there are a total of N = 30 patients in the trial. In actual trial

conduct we would have dose combinations that are sensible and that do not vary

at every cycle. For instance in a regimen of six cycles we might expect to have the

first three cycles on d1 and then switch to d2 on the subsequent cycles, implying that
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dose escalation happened on the fourth cycle. A typical combination of de-escalation

might include higher doses d3, d4 or d5 on the first three cycles and the lower dose

on the next three cycles. Given that we have five dose levels it is possible to have

P 5
2 = 20 different combinations of two doses at a time with either escalation or

de-escalation. In general we do not allow patients to skip dose levels and ignoring

such dose combinations results in eight assignable combinations, d1d2, d2d3, d3d4, d4d5

and d2d1, d3d2, d4d3, d5d4 where patients change their dose level on the fourth cycle.

Additional dose combinations include three dose levels with changes on cycle three

and cycle five of the form, d1d2d3, d2d3d4, d3d4d5 and d3d2d1, d4d3d2, d5d4d3, providing

another six combinations. In total there are 19 possible treatment courses including

the five without dose variation listed in Table 2.3.

In the simulation results presented earlier with N = 30 patients there was an

equal distribution of patients over the five dose levels dg, with each of the six patients

having the same dose level on all the six cycles. This gives 36 assigned cycles for

every dg i.e., d1 is assigned 36 times, d2 is assigned 36 times etc.. To obtain a fair

comparison to the current setting, the N = 30 patients were assigned to each of the

19 combinations while ensuring that there were 36 cycles of each of the dose levels.

The dosing profile of these 30 patients is given in Table 2.25 in the Appendix 2.6.3.

The skeleton probability used for the dose transformations is dg is qg = (0.02, 0.05

, 0.10, 0.15, 0.23) similar to the one used in earlier simulations. A total of 500 datasets

were simulated with patients having regimens as listed in Table 2.25. Conditional
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probability of toxicity, pi,k, for each patient i at each cycle k was calculated using

the Markov Model 2.1 for fixed values of α = 1 and β = 0.5 and ρ = 0.8 and their

probabilities were used to simulate toxicities. Priors on the parameters used were

similar to those in the previous analyses.

The results of the parameter estimates from the simulations are presented in

Table 2.4 under Section 2.3.2. The corresponding parameter estimates from Case

1 in Table 2.1 are placed under Section 2.3.1 for easy comparison. We notice that

the bias and mean SD of α is slightly lower in Section 2.3.2 but that of β is slightly

higher.

Table 2.5 presents the corresponding probability estimates. The columns present

the probability of toxicity estimates with the bias from the true value in parenthesis

and the empirical SD (ESD) of the estimates from the 500 replicates. The results

indicate that the bias is comparable but the variability across simulation goes down

slightly when patients have the same dose. We conclude that there were no problems

in fitting the model by allowing patients to have dose variability and that the results

do not have major deviations with regard to the bias and efficiency.

2.3.3 Comparison with models for a single binary endpoint

This section explores the potential gains in using all the data from the six cycles

in estimating the probability of toxicity on the first cycle or on any cycle using the

Markov Model 2.1 versus models with a single binary end point per patient. We
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consider the special case with no dose variation across cycles.

Simulation results are presented based on 500 datasets each having either N = 10

and N = 30 patients, distributed equally to receive one of the five doses dg for a

maximum of K = 6 cycles. The probability skeleton used for the doses is qg =

(0.02, 0.05, 0.10, 0.15, 0.23). For every patient i assigned to dose dg on cycle k the

probability of a toxic response pi,k is calculated using the Markov Model 2.1 and

known values of α = 1, β = 0.5 and ρ = 0.8. A DLT response Yi,k is assigned based

on a Bernouli(pi,k) random draw. A patient i continues to receive the same dose on

cycle k + 1 until Yi,k = 1, k < 6 or k = 6.

As mentioned earlier in Chapter 1 existing methods for analyzing trials with

multiple cycles for a single patient either consider the data only from the first cycle

in estimating the probability of toxicity ignoring the toxicities that happen on later

cycles or consider an overall toxic response that might have occurred on any of the

cycles. In either of the two cases the data for each patient is reduced to a single

binary outcome.

Continuing with the notation from the Markov Model 2.1, in the first instance

the data is reduced to a single binary outcome by defining Ỳi = 1 for patient i if

Yi,1 = 1 and Ỳi = 0 if Yi,1 = 0. The probability of toxicity, p̀i, on the first cycle is

given by Model 2.7 as follows,

ln(1− p̀i) = −γdi. (2.7)
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The prior on γ is similar to that used on α, a lognormal density with mean one and

variance four.

In the second instance the data is reduced to a single binary outcome Y ′i = 1,

across all of the cycles for each patient i if Yi,j = 1, for any j ≤ 6 and Y ′i = 0 if

Yi,6 = 0. The Model 2.8 used in estimating the probability of toxicity on any cycle,

p′i in this case is,

ln(1− p′i) = −δd′i. (2.8)

Where the probability of toxicity on any of the six cycles (mj) corresponds to

Markov Model 2.1 via

mj = 1−
K∏
j=1

(1− pi,j), (2.9)

with pi,j as defined in equation 2.6. The doses d′i are based on using a probability

skeleton (m1,m2,m3,m4,m5) corresponding to having a toxicity on any of the six

cycles. We then assume that δ has a lognormal prior distribution with mean of one

and variance four.

Results in Table 2.6 indicates adequate model fit for the parameters from Markov

Model 2.1 and Models 2.7 and 2.8. Table 2.7 presents the simulation results from

comparing the Markov Model 2.1 to the two alternatives, Model 2.7 and Model 2.8.

The rows are grouped based on the comparison with Model 2.7 or Model 2.8. The

columns are grouped by N = 10 and N = 30 patients and present the probability
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of toxicity estimates with the bias in parenthesis and the Empirical SD (ESD) of

the 500 estimates. Comparing the results from N = 10 and N = 30 patients we

notice that there is a gain in efficiency and decrease in the bias for all the three

models for the larger sample size. The efficiency is slightly higher with comparable

bias in the estimates from the Markov Model 2.1 in comparison to both the simpler

models. We conclude that there is mild gain in efficiency especially when using

N = 10 patients and no harm is done is fitting a larger model. The slight gain

in efficiency in comparison to Model 2.8 could be attributed to fact the Markov

Model 2.1 incorporates the cycle specific information in the process of estimating the

parameters and hence provides better overall estimates of the probability of toxicity.

2.3.4 Comparison with models for a single binary endpoint with unequal
subjects at the dose levels

In the previous Section 2.3.3 the comparison of the Markov Model 2.1 with the

alternative two models was presented when the patients were distributed equally over

all the dose levels. In practice there is unequal distribution of patients in a trial at the

various dose levels. Simulations results in this section explore the differences in the

estimation when there are 3, 3, 10, 10 and 4 patients assigned to each of the five dose

levels in a trial with a total of N = 30 patients. In the case with N = 10 patients the

distribution of the patients was 1, 2, 3, 3 and 1 among the five dose levels. Keeping

all other features of the data generation unchanged from the equal patient per dose
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level case described in Section 2.3.3 a total of 500 datasets were simulated. Table

2.8 presents the results of the parameter estimates for the three models while Table

2.9 presents the probability estimates from comparing the Markov Model 2.1 to the

two alternatives, Model 2.7 and Model 2.8.

Comparing the results from N = 10 and N = 30 patients in Table 2.9 we notice that

there is a gain in efficiency and decrease in the bias for all the three models. The

bias is lower and the efficiency is higher in the estimates from the Markov Model

2.1 in comparison to the Binary Model 2.7. In the case of comparison to the Binary

Model 2.8, either the bias or the empirical SD of the estimates is lower in Markov

Model 2.1 if not both simultaneously.

2.4 Implementation of a clinical trial

This section describes the application of the Markov Model 2.1 in designing a

sequential clinical trial. The safety criteria for dose assignment, two possible plans

in conducting the trial and the evaluation of the trial properties are considered.

2.4.1 Safety Criteria

We begin by defining the safety criteria rules for dose assignment in carrying out

a trial with dose escalation and/or de-escalation. Define rg,k = g, g = 1 . . . 5 as one

of the five dose levels on cycle k corresponding to dg, g = 1 . . . 5 the transformed

doses using the probability skeleton. Let rmaxg,k+1 denote the maximum allowed dose
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that could be assigned on cycle k+ 1. The following commonly used dose escalation

rules will be followed in defining the safety criteria to be used while carrying out an

adaptive clinical trial based on Markov Model 2.1.

• The first and the second patient on the trial will be assigned the second lowest

dose level, rg,1 = 2, on cycle 1, allowing the lowest dose level to be eligible for

future patients if DLTs are seen in the first few patients on study. For the first

patient if there is no DLT, the same dose level is assigned on the second cycle.

For subsequent patients and cycles the following rules will be effective.

• Patients are allowed to escalate by one dose level from their previous dose, i.e.,

a patient tolerating dose level rg,k on cycle k can be assigned doses no higher

than min(rg,k + 1, 5) on cycle k + 1.

• A patient can experience a maximum of three dose levels in a dosing regimen,

unless de-escalation to a lower dose is required. I.e.,a patient tolerating dose

level rg,1 on cycle 1 can possibly receive rg,1 + 2, as its highest dose level in the

dosing regimen. In combination with the previous rule a patient tolerating dose

level rg,k on cycle k can be assigned doses no higher than rmaxg,k+1 = min(rg,1 +

2,rg,k + 1, 5) on the cycle k + 1.

• For each new patient being assigned a dose level on cycle 1, the maximum dose

level choice would be limited to rmaxg,1 = max(r‡g,1 + 1, r‡g,k), where r‡g,1 is the

maximum of all the past dose levels assigned to the patients on cycle k = 1
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and r‡g,k is the maximum of all the past dose levels assigned to the patients in

the study on cycles k > 1. This ensures that the new patient may only jump

one dose level from previously assigned cycle 1 doses and may not exceed doses

experienced on the trial otherwise.

• The study will conclude when none of the dose levels are included in the tolera-

ble range as determined by the safety criteria defined below or the N th patient

has completed the trial.

2.4.2 Defining the eligible regimen set, Rregimen
i,k

Typically in single dose, single cycle trials one assumes a toxicity bound of, say,

30%. Then the current estimate of the probability of toxicity for each dose is com-

pared with this bound to decide on the next dose. Defining bounds is more complex

when patients can receive multiple doses on multiple cycles. We will consider the

probability of toxicity for the next dose, for the whole sequence of doses and for the

sequence of future doses. Let P̊ (A) = {P̊ (A1), . . . , P̊ (AK)} be a vector of acceptable

toxicity limits for each cycle 1, . . . , K. It is convenient to restrict limits for cycles

2, . . . , K to be equivalent and equal to P̊ (A2), rather than justify different acceptable

toxicity levels at each cycle. Define P̊ (C) as the upper limit of the acceptable prob-

ability of toxicity across all K cycles, and for patients who have already completed

at least one cycle let P̊ (B) be the acceptable probability of toxicity limit on all the

remaining cycles.
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In general, for the bounds to be consistent with one another, we require {1 −

P̊ (C)} ≤
∏K

k=1{1−P̊ (Ak)} and {1−P̊ (B)} ≤
∏K

k=2{1−P̊ (Ak)}; these further reduce

to {1− P̊ (C)} ≤ {1− P̊ (A1)}×{(1− P̊ (A2)}K−1 and {1− P̊ (B)} ≤ {(1− P̊ (A2)}K−1

when we assume the limit P̊ (A2) for cycles 2, . . . , K. In practice, one selects bounds

for P̊ (A1) and P̊ (C), and this automatically places restrictions on P̊ (A2) and P̊ (B).

For instance with P̊ (A1) in the range of 0 − 0.2 and setting P̊ (C) as either 0.30 or

0.40, legitimate values for P̊ (A2) are presented in Table 2.10. So for P̊ (A1) = 0.20,

P̊ (C) = 0.30, we find that P̊ (A2) can be no larger than 2.64% and P̊ (B) can be no

larger than 12.5% so that conditional probabilities of toxicity on later cycles 2, . . . , K

are very small.

Monitoring the safety of the patients is ensured by assigning doses that sat-

isfy the set of safety criteria defined in Section 2.4.1 as well as satisfy the bounds

P̊ (A1), P̊ (A2), P̊ (B) and P̊ (C) defined above.

In general denote dosing regimens by the vector of doses across the K cycles

(rg,1, . . . , rg,K). As each patient progresses through cycles k = 1 . . . K, members m of

the set of eligible regimens denoted by Rregimen
i,k change over time as experience on the

study matures. For instance, on cycle k, potential members m, of Rregimen
i,k for patient

i take the form (oi,1, . . . , oi,k−1, rg,k, rg,6) where oi,k denote previously tolerated doses

for patient i on cycle k and future assigned doses (rg,k, . . . , rg,6) must not exceed rmaxg,l

for l = k, . . . , 6 and must not conflict with bounds defined by P̊ (A1), P̊ (A2), P̊ (B)

and P̊ (C). For a patient on cycle 1, it is convenient to limit members of Rregimen
i,1 to
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reduce computation. Table 2.3 lists a set of desirable regimens that can be used to

construct a limited version of Rregimen
i,1 satisfying safety constraints.

The following random variables are useful to collect and statistically summarize

immediate and accumulated toxicities during the conduct of the trial. Define Ai,k,j

as the event of toxicity on cycle k for patient i at dose level j given that there

were no DLTs in the past. Hence P(Ai,k,j) = pi,k, where pi,k is calculated using the

Markov Model 2.1 for dose level j, and current estimates of α̂, β̂ and ρ̂ can be used

to define its corresponding estimate, P̂ (Aî,k,j) = p̂i,k. Define Bi,k,m as the event of

having a toxicity on any remaining cycle k until K for a member m of the regimen

set Rregimen
i,k , where P(Bi,k,m) = 1−

∏K
l=k(1− pi,l) and P̂ (Bi,k,m) = 1−

∏K
l=k(1− p̂i,l).

Also define Ci,k,m as the event of toxicity for a future patient assigned to regimen m

from person i′s regimen set Rregimen
i,k i.e., Ci,k,m = Bi,1,m with P̂ (Ci,k,m) = P̂ (Bi,1,m).

During the course of the trial P̂ (Bi,k,m) estimates the current best guess of patient

toxicity probability on the remaining cycles while P̂ (Ci,k,m) estimates the best guess

of the toxicity probability profile for future patients undergoing regimen m.

2.4.3 Expected dose

A higher planned dose might not be attractive if fewer cycles can be completed

at that dose level due to DLTs. During the course of the trial, Markov Model 2.1 can

be used to estimate the expected total dose for members m of the eligible regimen

set Rregimen
i,k+1 and potentially use this information as part of selecting the current best
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regimen for patient i. Using the expression presented in equations 2.5 and 2.6 the

expected total dose for a new patient i is,

= di,1pi,1 +
K−1∑
k=2

{(
k∑
j=1

di,j

)
pi,k

k−1∏
j=1

(1− pi,j)

}
+

K∑
j=1

di,j

K−1∏
j=1

(1− pi,j).

For a continuing patient i in the study who is ready for dose administration on cycle

k in the trial the expression for the expected dose is,

=
k−1∑
j=1

di,j + di,kpi,k +
K−1∑
m=k+1

{(
m∑
j=1

di,j

)
pi,m

m−1∏
j=k

(1− pi,j)

}
+

K∑
j=1

di,j

K−1∏
j=k

(1− pi,j).

2.4.4 Running the trial

Dosing decisions are governed by Markov Model 2.1 and safety criteria laid out in

section 2.4.1. In practice, this requires having current information on all patients in

the trial so that new and continuing patients have the most up-to-date information as

dose recommendations are made. In particular, each time a dose is recommended we

should have current estimates α̂, β̂ and ρ̂, a defined set of eligible regimensRregimen
i,k for

patient i being dosed on cycle k and estimates of P̂ (Ai,k,j), P̂ (Bi,k,m) and P̂ (Ci,k,m).

Hence, development of an automated procedure is recommended for this trial design.

At the start of the trial assign two patients to the second lowest dose level,

rg,1 = 2. Patients completing a cycle without a DLT will usually either stay at the

same dose level or escalate to a higher dose level, although a de-escalation recom-
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mendation is possible if additional data on other patients is trending toward lower

dose recommendations. On the first cycle a patient i on the study has rmaxg,1 pos-

sible choices for dose level with corresponding estimated conditional probabilities

of toxicity P̂ (Ai,1,j), j = 1 . . . rmaxg,1 . Eligible choices for dose level j must satisfy

P̂ (Ai,1,j) ≤ P̊ (A1) on cycle one and P̂ (Ai,k,j) ≤ P̊ (A2) on cycles, k > 1. If no eligi-

ble doses are identified, then the model fit indicates that the trial has no remaining

safe dose levels. More often, multiple dose levels satisfy the P̊ (A) safety criterion,

and we consider not just the subsequent dose, but all remaining doses in making a

recommendation. I.e., we must consider the estimates of P̂ (Bi,k,m) and P̂ (Ci,k,m) of

all possible members m of Rregimen
i,k .

Two plans for choosing a dose level in this case include 1) maximizing the expected

dose over the entire regimen for a patient or 2) selecting a dose that aligns (matches)

with one of the dosing schemes from a list of desirable regimens presented in Table

2.3. These two plans are outlined below.

2.4.4.1 Maximizing the expected dose

For a patient being dosed on cycle k, the expected dose is calculated using ex-

pressions in Section 2.4.3 for each of the regimens in Rregimen
i,k . The dose level that

maximizes the expected dose and satisfies P̂ (Bi,k,m) ≤ P̊ (B) and P̂ (Ci,k,m) ≤ P̊ (C)

is selected for cycle k.
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2.4.4.2 Matching a regimen

Cycle 1 patients still base their first dose on maximizing their expected dose using

current data and subject to eligibility of regimens as previously described. Otherwise,

to gain the most possible experience with regimens that would be recommended at

the end of the trial, one may favor members m of Rregimen
i,k that “nudge” the current

patient’s regimen toward one of the q = 1, . . . , 19 suggested dosing regimens in Table

2.3, some subset of these or completely different user defined regimens not included

in this table.

Define distance between a regimen vector m in Rregimen
i,k and a regimen vector q

from Table 2.3 as Rl =
∑K

c=1 |mc − qc|. We may wish to select the regimen m that

minimizes this distance across all m and q. Alternatively, one might select the subset

of regimens from Rregimen
i,k that satisfy some prespecified distance limit Rl < a and

then choose the regimen that assigns the maximum allowable dose from that subset

on the next cycle.

2.4.5 Recommending a regimen

At the conclusion of the study, the estimates α̂, β̂ and ρ̂ are used to calculate

the overall probability of toxicity P̂ (Cj) for all of the j = 1 . . . 19 regimens listed

in Table 2.3. During the conduct of the trial the target probability bounds used

were P̊ (A), P̊ (B) and P̊ (C). These bounds especially, P̊ (C), are usually set at

higher than acceptable values in practice and when selecting the final regimen we
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would use P r(A1) and P r(C) which might be lower than or equal to P̊ (A1) and

P̊ (C) respectively. For example in running the trial P̊ (C) = 0.40 which implies an

overall toxicity of 40% but in practice 30% toxicities are what we would want to

see in the trials. The final recommended (R) regimen can be selected using both

P r(A1) and P r(C) or using P r(C) alone. In the first option the regimen satisfying

P̂ (A1) ≤ P r(A1), P̂ (Cj) ≤ P r(C) and maximizing the expected dose is selected as

the recommended dosing regimen while in the second option only P̂ (Cj) ≤ P r(C)

and maximizing the expected dose condition is used in regimen selection.

A corresponding target (T) regimen is also selected and used as a reference for

gauging the properties of the completed trial. The target regimen is selected by

calculating P (A1) and P (C) based on the true values of α, β and ρ and is also selected

from one of the 19 regimens presented in Table 2.3. For example corresponding to the

19 regimens, the columns in Table 2.11 list the probability of toxicity on the first cycle

P (A1), the probability of toxicity on any cycle P (C), the expected dose on the entire

regimen, a flag set to one if the regimen qualifies when using only P r(C) = 0.30 and

three other flags set to one when using P r(C) = 0.30 and P r(A1) = (0.05, 0.10, 0.20).

The regimen 12, 444333, has the maximum expected dose and is selected when only

option one P r(C) = 0.30 is used. If option 2 is used for the selection of the target

regimen then regimen 15, 223344 is selected when P (A1) = 0.05 or 0.10 and regimen

12, 444333, when P (A1) = 0.20. In this instance with α = 1, β = 0.2, ρ = 0.8

regimens that offered dose variation were recommended since they offered a higher
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expected dose.

2.4.6 Algorithmic form of the two plans

Plan 1 - Maximize the expected dose on the study for each patient i.

• For new patient î on cycle 1

1. Estimate P̂ (Aî,1,j) using current estimates α̂, β̂ and ρ̂ at each of the

j = 1 . . . rmaxg,1 dose levels. Where rmaxg,1 = max(r‡g,1 + 1, r‡g,k), r
‡
g,1 is the

maximum of all the past dose levels assigned to the patients on cycle k = 1

and r‡g,k is the maximum of all the past dose levels assigned to the patients

in the study on cycles k > 1.

2. Subset the dose levels that satisfy P̂ (Aî,1,j) ≤ P̊ (A1) over all dose levels.

3. For the dose levels satisfying P̂ (Aî,1,j) ≤ P̊ (A1) subset the list of possible

regimens from Table 2.3 and calculate the overall probability of toxicity

P̂ (Cî,1,j).

4. Select the dose level that has an overall probability of toxicity P̂ (Cî,1,j) ≤

P̊ (C) and maximum expected dose.

5. If none of the doses satisfy P̂ (Aî,1,j) ≤ P̊ (A1) and if there are continuing

patients in the study then wait until updated estimates α̂, β̂ and ρ̂ allow

doses to be assigned else the study is terminated.

• For continuing patient i on cycle k > 1,



44

1. List doses P̂ (Ai,k+1,j) ≤ P̊ (A2) from rmaxg,k+1 = min(rg,1 + 2,rg,k + 1, 5)

possible choices.

2. If there is more than one satisfying dose level then list the possible dose

regimen set Rregimen
i,k+1 .

3. Calculate the probability of toxicity P̂ (Bî,k+1,m) on the remainder of the

cycles for each of the regimens m in Rregimen
i,k+1 and the corresponding ex-

pected dose using the current estimates α̂, β̂ and ρ̂.

4. Select the dose level that has probability of toxicity P̂ (Bî,k+1,m) ≤ P̊ (B)

and maximizes the expected dose.

5. If none of the doses satisfy P̂ (Aî,k+1,j) ≤ P̊ (A2) and if there are continuing

patients in the study then wait until updated estimates α̂, β̂ and ρ̂ allow

doses to be assigned else the study is terminated.

Plan 2 - Observing a favorable dosing regimen by the end of the study

• For new patient î on cycle 1

1. Estimate P̂ (Aî,1,j) at each of the j = 1 . . . rmaxg,1 dose levels. Where rmaxg,1 =

max(r‡g,1 + 1, r‡g,k), r
‡
g,1 is the maximum of all the past dose levels assigned

to the patients on cycle k = 1 and r‡g,k is the maximum of all the past

dose levels assigned to the patients in the study on cycles k > 1.

2. Subset the dose levels that satisfy P̂ (Aî,1,j) ≤ P̊ (A1) over all dose levels.
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3. For the dose levels satisfying P̂ (Aî,1,j) ≤ P̊ (A1) subset the list of possible

regimens from Table 2.3 and calculate the overall probability of toxicity

P̂ (Cî,1,j) using the current estimates α̂, β̂ and ρ̂

4. Select the dose level that has an overall probability of toxicity P̂ (Cî,1,j) ≤

P̊ (C). Select the highest dose if more than one satisfying dose level.

5. If none of the doses satisfy P̂ (Aî,1,j) ≤ P̊ (A1) and if there are continuing

patients in the study then wait until updated estimates of α̂, β̂ and ρ̂ allow

doses to be assigned else the study is terminated.

• For continuing patient i on cycle k > 1,

1. List doses P̂ (Ai,k+1,j) ≤ P̊ (A2) from rmaxg,k+1 = min(rg,1 + 2,rg,k + 1, 5)

possible choices.

2. If there is more than one satisfying dose level then list the possible dose

regimen Rregimen
i,k+1 set.

3. Subset the regimens satisfying probability of toxicity P̂ (Bi,k+1,m) ≤ P̊ (B)

from the Rregimen
i,k+1 set.

4. For each of the regimens l in the subset calculate the distance Rl from the

favorable dosing regimens based on Table 2.3.

5. Select the highest dose level that has Rl ≤ a pre-specified value. If none

of the regimens satisfy the Rl condition then select the dose level that

maximizes the total expected dose.
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6. If none of the doses satisfy P̂ (Ai,k+1,j) ≤ P̊ (A2) and if there are continuing

patients in the study then wait until updated estimates α̂, β̂ and ρ̂ allow

doses to be assigned else the study is terminated.

2.4.7 Properties of the design

For the purposes of evaluating the properties of the simulation of clinical trials

over multiple replications and comparing the various plans and properties of the tar-

get probabilities various test statistics will be calculated that can be grouped into 1)

trial conduct or patient characteristics and 2) regimen characteristics as explained

below.

Patient characteristics

1. Mean dose per patient over all the replicates. In each of the replicates the

total dose given to all the patients will be tracked and then averaged across the

number of the patients in that trial. A higher mean dose is desirable implying

that the patients in the trial were able to receive as much of the study drug as

possible.

2. Mean number of toxicities per study across all the replicates. Also noting the

percentage of trials stopping early. Lower values of the mean toxicities are

desirable and lower number of trials of stopping early indicate that all patients

were assigned to dose levels within the framework of the safety criteria.
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3. At the conclusion of every trial the proportion of patients receiving a cumulative

dose greater than the expected dose of the recommended regimen is averaged

over all the iterations. Higher values are desirable indicating that patients in

the trial had experience of the dose quantity recommended at the end of the

trial.

4. The proportion of patients receiving dose greater than the expected dose based

on the target regimen target (T) regimen is also considered. A higher value

is desirable indicating patients in the trial received dose quantities considered

safe by the target regimen.

5. Mean number of patients whose regimen matches exactly with the recom-

mended regimen. The distance from the recommended regimen is calculated

for each of the patients in the study, and the proportion of patients having

distance = 0 are averaged all the replications. Higher values are desirable indi-

cating that patients in the trial had experience with the recommended regimen.

6. Mean number of patients having a regimen that matches the target regimen.

Higher values are desirable indicating that patients in the trial had dosing

regimens matching the target regimen.

7. Mean number of patients having distance ≤ 2 from the recommended (R)

regimen. A slightly less stricter rule checking patients with regimens differing

by two dose levels. Higher values are desirable.
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8. Mean number of the patients having distance ≤ 2 from the target (T) regimen.

Higher values are desirable.

Regimen characteristics

1. The mean distance between the target (T) and the recommended (R) regimen

over all the replicates. Lower values are desirable indicating a match between

the target and recommended regimen.

2. The proportion of trials with an exact match between the target and the rec-

ommended regimen. Higher values are desirable.

3. Mean of expected dose based on the target regimen. Higher values are desirable.

4. Mean of expected dose based on the recommended regimen. Higher values

matching the target regimen are desirable.

5. The mean of target regimen toxicities. The probability of observing a toxi-

city on any cycle given the target regimen and the true parameter values is

calculated. Low values are desirable.

6. The mean of recommended regimen toxicities. Low values are desirable.

2.4.8 Simulation Design and Results

A clinical trial recruiting a maximum of N=30 patients and each patient hav-

ing a maximum of six cycles was conducted over 500 replicates. The values of
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α = 1, β = 0.2, ρ = 0.8 were used as the true values in generating the patient

response. The skeleton probability used for the doses was 0.02, 0.05, 0.10, 0.16, 0.23.

It is assumed that a new patient is ready to be assigned a dose on the first cycle when

the continuing patients in the trial have completed their dosing cycles. This assump-

tion tallies with simulation settings in [Pye and Whitehead, 2012] and simplifies the

number of iterations performed during the estimation process. An alternative to this

assumption would be to induce an arrival time model via an Exponential distribution

and has been excluded to present simplified results.

The following factors and questions were studied via simulation studies:

1. Differences in trial properties when using Plan 1 - Maximize the expected dose

or Plan 2 - Match a regimen.

2. Selection of distance restriction Rj in executing Plan 2.

3. Whether to use both P̊ (B) and P̊ (C) or only P̊ (C) in trial conduct?

4. What values to use for P̊ (A), P̊ (B) and P̊ (C)?

5. Whether to use P r(C) = 0.30 or P r(A1) = P̊ (A1) and P r(C) = 0.30 in regimen

selection at trial conclusion for recommended regimen selection?

6. Acceptable values for P r(C) and P r(A1).

For different combinations of P̊ (A), P̊ (B) and P̊ (C) a total of 500 trials were

simulated. Table 2.12 lists the results for the patient characteristics with the rows
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grouped by the option used to select the regimen (option 1 or 2) at the conclusion

of the trials executed using Plan 1, maximizing the expected dose. The rows are

further grouped by P̊ (B) = (0.30, 0.40) within which each row correspond to cases

of P̊ (A1) = (0.05, 0.10, 0.20). The columns list the eight criteria presented in Section

2.4.7 for the patient characteristics. Tables 2.13 through 2.15 list the patient charac-

teristics of trials executed when Plan 2 was in effect with Rl ≤ 3, Rl ≤ 2 and Rl set

to the minimum distance possible. The results for the regimen characteristics are in

Tables 2.16 through 2.19. The columns list the six criteria presented in Section 2.4.7

for the regimen characteristics. Results within each table are grouped by the two

options for regimen selection and P̊ (B) = (0.30, 0.40) with the rows corresponding

to P̊ (A1) = (0.05, 0.10, 0.20). Some remarks are presented on the various aspects of

the trial results.

Remark 1: Contrast using P̊ (A1) = (0.05, 0.10, 0.20). Varying the cap on the

first cycle affects the trial conduct in terms of which dose level is eligible on the first

cycle. Lower values of P̊ (A1) = (0.05, 0.10, 0.20) imply stringent rules for selecting

doses with higher toxicities but also results in a less stringent rules on subsequent

cycles due to the relationship between P̊ (A1), P̊ (A2) and P̊ (C). Based on Tables 2.12

through 2.15 we notice that as the values of P̊ (A1) increase the mean dose received by

the patients in the trial also increases. Secondly the observed mean toxicities tend to

be low when P̊ (A1) is high, this could be because the toxicities on subsequent cycles
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are averted due to the low P̊ (A2) value and also because ρ = 0.8 in the simulations

once the patients receive a high dose and survive it without a DLT, they are less

likely to have a DLT on subsequent cycles. No clear trend is observed in the number

of patients receiving cumulative dose greater than the recommended expected dose.

The number of patients receiving the recommended regimen increases with increase

in P̊ (A1). The number of trials stopping early also decreases with increase in P̊ (A1)

suggesting that higher values of P̊ (A1) allow patients to have dose assignment. In

the case of the regimen characteristics the mean distance between the target (T) and

the recommended (R) regimen increases as P̊ (A1) increases. In general it seems that

having a high value of P̊ (A1) = 0.20 gives rise to properties that are favored in terms

of patients receiving a higher mean dose and recommended dose matching the target

regimen selection more often.

Remark 2: Contrast the effect of distance in the regimen matching plan. Com-

paring Tables 2.13, 2.14 and 2.15 for differences in the patient characteristics results

corresponding to distance less than 3, distance less than 2 and distance equal to the

minimum possible value some differences are observed. In the first two instances

when none of the regimens satisfy the distance criterion the algorithm switches to

Plan 1 - maximizing the dose, while in the third instance the algorithm selects the

dose that offers the the minimum distance from one of the 19 regimens. At low values

of P̊ (A1) = 0.05 the difference in the number of patients matching the recommended

regimen exactly increases drastically to 12.14 from 0.61 but not much of a differ-
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ence when P̊ (A1) = 0.20. The Tables 2.17 and 2.19 do have major differences since

they deal mostly with the regimen selection at the conclusion of the trial. We can

conclude that patients having an exact match with the recommended regimen differs

when using Plan 2 for low values of P̊ (A1) and that the differences are minimal when

P̊ (A1) increases.

Remark 3: Contrast using P r(A1) and P r(C) versus only P r(C) in selection of

the regimens. These flags are concerned with the selection of the recommended and

the target regimen at the end of the trial. Consider results within Table 2.12 and

2.13 for contrasting the effects of the regimen selection option. The number of pa-

tients having total dose higher than the recommended or the target expected dose is

higher in option 1 when both the flags P r(A1) and P r(C) are considered. The results

in both the options are comparable in the instance when P̊ (A1) = 0.20 (the third

row). Comparing the proportion of trials having an exact match between the target

and the recommended regimen within Table 2.16 and 2.17 the proportions drop for

restrictive P r(A1) = 0.05, 0.10 case while remain unchanged for the P r(A1) = 0.20

case. The expected dose of the regimens selected based on the single condition is

higher than that when using both the conditions. The number of trials that cannot

offer a recommended regimen reduces when using a single condition for the regimen

selection. Having a restrictive condition on the first cycle plays a huge role in running

of the trial and definitely affects the regimen selection.
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Remark 4: Contrast the two plans of maximizing the dose and regimen matching.

Comparing 2.12 and 2.15 for differences in the patient characteristics. The mean

dose received is higher in Plan 1 when P̊ (A1) = 0.05, 0.10 and not much different

from Plan 2 when P̊ (A1) = 0.20. The proportion of toxicities is slightly higher in

Plan 1. The proportion of expected dose received in patients similar in both the

plans but differs only when P̊ (A1) = 0.20 being much higher in plan 2. The number

of patients having an exact match with the recommended regimen is higher in Plan

2. The mean of the distance between the true and recommended regimens is mostly

higher in Plan 1 based on Tables 2.16 and 2.19. The results depict differences in

trial properties between the two plans. Although Plan 1 offers higher mean dose

the number of toxicities are also slightly higher. Plan 2 on the other hand offers a

higher number of patients matching the recommended regimen and lower toxicities

but tends to have lower mean dose per patient.

Remark 5: Is there a difference in using different values of P̊ (B) = (0.30, 0.40).

Within each of the Tables 2.12 - 2.15 comparing the results of the mean dose and

toxicity of the trials there does not seem to be huge differences in the results. It is

not so obvious how the use of P̊ (B) affects the patient trial properties. In reference

to the regimen characteristic Tables 2.16 through 2.19 there seem to be some slight

differences in Plan 1 but no difference in the tables for regimen matching Plan 2.

There does not seem to be any effect of using P̊ (B) during the trial conduct. To
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further understand the effect of using both P̊ (C) and P̊ (B) versus only P̊ (C) in

conducting the trial an additional set of simulations were carried out by assigning

doses on cycles after the first cycle by calculating the probability of toxicity on the

entire regimen and selecting the regimens that satisfy the P̊ (C) condition. In the

case of Plan 2 Rl was set to the minimum distance possible. Simulations were carried

out for a single setting of P̊ (A1) = 0.20 and P̊ (C) = 0.40 and are presented in Table

2.20 which should be compared to the case when P̊ (A1) = 0.20 from results in Table

2.12 and Table 2.15. The mean dose and toxicities are comparable in both Plan 1

and Plan 2. The numbers are different in the case of patients having dose greater

than the recommended dose, the patients with distance ≤ 2 is higher.

Remark 6: Contrast the use of differing values of P̊ (C) = (0.30, 0.40) for fixed

P̊ (A1) = 0.20 and absence of P̊ (B) . Based on Table 2.20 it was seen that having

higher value of P̊ (C) has better trial properties in terms of higher mean dose. The

mean number of toxicities increase but are still lower than 30%. The number of

patients matching the recommended regimen are also higher when the P̊ (C) is higher.

2.5 Discussion

The Markov Model 2.1 presented in this chapter is simple in the sense that it

allows for estimation of only three parameters and yet is capable of modeling the

complex repeated data structure by accounting for the within-patient dose depen-

dency through ρ. In the instance with larger amounts of data, more terms could be



55

added to the model that account for patient characteristics like gender or age but

in the setting of small number of patients it might not be feasible to estimate the

parameters especially in the early stages of the trial.

Besides the conditional nature, the major feature of the Markov Model 2.1 is its

ability to allow patients surviving previous dose levels to have a lower probability of

toxicity on subsequent cycles. The extension of the Markov Model 2.1 in carrying

out a trial within the framework of safety criteria provides an excellent model based

approach in designing adaptive clinical trials. The dose level selection considered

in this chapter is complicated because of repeated measures aspect of the data and

the choices that have to be made regarding skeleton probabilities, prior probabili-

ties, escalation rules and safety criteria. The model presented and the simulations

performed represent a framework for considering these issues. The results obtained

apply to the specific situation that is being considered in the simulations for the

probability skeleton, particular values of α,β and ρ. Further simulations need to be

done to understand the working of the model in a broader framework. Thus while

the specific choices we made are, we believe, reasonable, we do not claim they are

optimal or necessarily appropriate in every conceivable context. But we do think

that the framework and ideas are adequate and adaptable to match other contexts.

Through simulations we have demonstrated that the Markov model is able to

estimate the conditional probabilities adequately in both small (N = 10) and larger
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(N = 30) sample sizes. The model also performs better in comparison to using a

single binary endpoint and shows that that there are gains in estimation through use

of all the data from all the patients in the trial. Simulation results have also shown

that there are benefits in allowing patients to escalate or de-escalate dose levels to

both the patients and the estimation of the parameters.

The simulation results for carrying out an adaptive clinical trial are affected by

multiple factors and further investigation of how the parameters, safety rules, target

probabilities and the regimen selection criteria on the selection of the doses for each

of the patients in needed. The model could be extended to any number of dose levels

and cycles although we have presented the model for five dose levels and six cycles.

The Markov model presented in this chapter is most relevant to clinical trials

involving cytotoxic drugs where the toxicity is assumed to increase with the cumu-

lative effect. Having non-delayed outcomes is also essential to the study design so

that the DLT could be assigned at the end of the cycle to the appropriate dose level

for the patient.
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Figure 2.1: Conditional P(toxicity) with cycle 1 as the reference based on Model
2.1. Open circles depict probabilities for cycle 1 with α = 0.5 across the five dose
levels; crosses depict conditional probabilities of toxicity on cycle 2, assuming dose
level three was administered on cycle 1 and one of five dose levels on the second
cycle. Probabilities on cycle 2 are arranged by increasing β shown left to right and
increasing ρ shown from top to bottom
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Table 2.1: Table comparing the effect of priors in estimating the parameters using
Model 2.1 from 500 simulated datasets containing N = 30 patients each receiving
one of five dose groups d1 . . . d5.

True Value Prior Mean (SD) Estimate(Bias) MSD1 ESD2 Coverage
Case 1
α 1 1 (2) 0.957 ( -0.043 ) 0.458 0.417 96.6
β 0.50 0.50 (1) 0.511 ( 0.011 ) 0.338 0.296 97.8
ρ 0.80 0.83 (0.14) 0.806 ( 0.006 ) 0.132 0.056 100

Case 2
α 1 1 (5) 0.969 ( -0.031 ) 0.477 0.455 94.6
β 0.50 0.50 (2.5) 0.464 ( -0.036 ) 0.353 0.338 95.0
ρ 0.80 0.83 (0.14) 0.793 ( -0.007 ) 0.136 0.057 100

Case 3
α 0.80 1 (2) 0.795 ( -0.005 ) 0.407 0.360 96.0
β 0.50 0.50 (1) 0.500 (< 0.001) 0.318 0.274 97.8
ρ 0.80 0.83 (0.14) 0.809 ( 0.009 ) 0.134 0.053 100

Case 4
α 1 1 (2) 1.013 ( 0.013 ) 0.477 0.450 95.4
β 0.80 0.50 (1) 0.719 ( -0.081 ) 0.450 0.373 95.2
ρ 0.80 0.83 (0.14) 0.793 ( -0.007 ) 0.140 0.055 100

1 MSD is mean of the SD from 500 estimates
2 ESD is empirical SD of the 500 estimates
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Table 2.2: Table comparing the effect of priors in estimating the conditional prob-
ability of toxicity (with bias from the true value in parenthesis) using Model 2.1
from 500 simulated datasets containing N = 30 patients each receiving one of five
dose groups d1 . . . d5. Case 1 and 2 use α = 1, β = 0.5, ρ = 0.8 , while Case 3 use
α = 0.8, β = 0.5, ρ = 0.8 and Case 4 uses α = 1, β = 0.8, ρ = 0.8 to generate the
datasets. The priors have means of α = 1, β = 0.5, ρ = 0.8 and SD = 2 in Cases 1,
3 and 4 and SD = 5 in Case 2.

Cycle 1 Cycle 2 Cycle 6 Any Cycle
Est(bias) Est(bias) Est(bias) Est(bias)

Case 1
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.041 ( -0.002 )
d2 0.048 ( -0.002 ) 0.011 (< 0.001) 0.016 (< 0.001) 0.111 ( -0.004 )
d3 0.095 ( -0.005 ) 0.025 ( -0.001 ) 0.047 (< 0.001) 0.246 ( -0.008 )
d4 0.152 ( -0.008 ) 0.048 ( -0.001 ) 0.104 ( -0.001 ) 0.425 ( -0.014 )
d5 0.217 ( -0.013 ) 0.081 ( -0.002 ) 0.197 ( -0.002 ) 0.623 ( -0.022 )

Case 2
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.041 ( -0.002 )
d2 0.048 ( -0.002 ) 0.011 (< 0.001) 0.016 ( -0.001 ) 0.110 ( -0.005 )
d3 0.096 ( -0.004 ) 0.025 ( -0.001 ) 0.045 ( -0.003 ) 0.242 ( -0.013 )
d4 0.153 ( -0.007 ) 0.047 ( -0.002 ) 0.098 ( -0.007 ) 0.413 ( -0.025 )
d5 0.218 ( -0.012 ) 0.079 ( -0.004 ) 0.184 ( -0.016 ) 0.604 ( -0.040 )

Case 3
d1 0.016 (< 0.001) 0.003 (< 0.001) 0.004 (< 0.001) 0.034 ( -0.001 )
d2 0.040 (< 0.001) 0.009 (< 0.001) 0.014 (< 0.001) 0.094 ( -0.003 )
d3 0.080 ( -0.001 ) 0.021 ( -0.001 ) 0.043 ( -0.001 ) 0.216 ( -0.007 )
d4 0.128 ( -0.002 ) 0.041 ( -0.002 ) 0.096 ( -0.002 ) 0.385 ( -0.013 )
d5 0.184 ( -0.004 ) 0.071 ( -0.003 ) 0.186 ( -0.005 ) 0.583 ( -0.023 )

Case 4
d1 0.020 (< 0.001) 0.005 (< 0.001) 0.006 (< 0.001) 0.045 ( 0.001 )
d2 0.050 (< 0.001) 0.013 (< 0.001) 0.020 ( -0.001 ) 0.125 ( -0.001 )
d3 0.100 (< 0.001) 0.03 (< 0.001) 0.060 ( -0.003 ) 0.282 ( -0.009 )
d4 0.159 ( -0.001 ) 0.057 ( -0.001 ) 0.134 ( -0.010 ) 0.487 ( -0.023 )
d5 0.227 ( -0.003 ) 0.098 ( -0.003 ) 0.254 ( -0.024 ) 0.700 ( -0.039 )
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Table 2.3: Table with the 19 favorable dose regimen combinations over the six cycles.
Each of the row regimens indicate the dose level assigned on corresponding cycle.

Cycle 1 2 3 4 5 6
Regimen 1 1 1 1 1 1 1
Regimen 2 2 2 2 2 2 2
Regimen 3 3 3 3 3 3 3
Regimen 4 4 4 4 4 4 4
Regimen 5 5 5 5 5 5 5
Regimen 6 1 1 1 2 2 2
Regimen 7 2 2 2 3 3 3
Regimen 8 3 3 3 4 4 4
Regimen 9 4 4 4 5 5 5
Regimen 10 2 2 2 1 1 1
Regimen 11 3 3 3 2 2 2
Regimen 12 4 4 4 3 3 3
Regimen 13 5 5 5 4 4 4
Regimen 14 1 1 2 2 3 3
Regimen 15 2 2 3 3 4 4
Regimen 16 3 3 4 4 5 5
Regimen 17 5 5 4 4 3 3
Regimen 18 4 4 3 3 2 2
Regimen 19 3 3 2 2 1 1
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Table 2.4: Parameter estimates from two different patient profiles, based on Model
2.1 from 500 simulated datasets containing N = 30 patients receiving one of five dose
groups d1 . . . d5 over six cycles. Results presented for α = 1, β = 0.5 and ρ = 0.8

Estimate(Bias) MSD1 ESD 2 Coverage
Section 2.3.2
α 0.989 ( -0.011 ) 0.446 0.425 95.2
β 0.561 ( 0.061 ) 0.361 0.322 98
ρ 0.808 ( 0.008 ) 0.134 0.056 100

Section 2.3.1
α 0.957 ( -0.043 ) 0.458 0.417 96.6
β 0.511 ( 0.011 ) 0.338 0.296 97.8
ρ 0.806 ( 0.006 ) 0.132 0.056 100

1 MSD is mean of the SD from 500 estimates
2 ESD is empirical SD of the 500 estimates

Table 2.5: Estimates with bias from the true value of conditional probability of
toxicity on each of the six cycles estimated using Model 2.1 from 500 simulated
datasets containing N = 30 patients with dose variability in Section 2.3.2 and same
dose level in Section 2.3.1, each receiving one of five dose groups d1 . . . d5. Results
presented for α = 1, β = 0.5 and ρ = 0.8

Cycle 1 Cycle 2 Cycle 6 Any Cycle
Section 2.3.2 Est(bias) ESD1 Est(bias) ESD1 Est(bias) ESD1 Est(bias) ESD1

d1 0.020 (< 0.001) 0.008 0.004 (< 0.001) 0.002 0.005 (< 0.001) 0.002 0.041 ( -0.001 ) 0.016
d2 0.049 ( -0.001 ) 0.021 0.011 ( -0.001 ) 0.005 0.017 (< 0.001) 0.006 0.113 ( -0.002 ) 0.037
d3 0.098 ( -0.002 ) 0.04 0.026 ( -0.001 ) 0.010 0.049 ( 0.002 ) 0.018 0.253 ( -0.001 ) 0.067
d4 0.156 ( -0.004 ) 0.06 0.048 ( -0.001 ) 0.017 0.110 ( 0.005 ) 0.042 0.437 ( -0.001 ) 0.098
d5 0.223 ( -0.007 ) 0.082 0.083 (< 0.001) 0.027 0.209 ( 0.009 ) 0.080 0.640 ( -0.005 ) 0.113

Section 2.3.1
d1 0.019 ( -0.001 ) 0.008 0.004 (< 0.001) 0.002 0.005 (< 0.001) 0.002 0.041 ( -0.002 ) 0.016
d2 0.048 ( -0.002 ) 0.020 0.011 (< 0.001) 0.004 0.016 (< 0.001) 0.005 0.111 ( -0.004 ) 0.036
d3 0.095 ( -0.005 ) 0.039 0.025 ( -0.001 ) 0.008 0.047 (< 0.001) 0.016 0.246 ( -0.008 ) 0.065
d4 0.152 ( -0.008 ) 0.060 0.048 ( -0.001 ) 0.014 0.104 ( -0.001 ) 0.038 0.425 ( -0.014 ) 0.093
d5 0.217 ( -0.013 ) 0.081 0.081 ( -0.002 ) 0.023 0.197 ( -0.002 ) 0.073 0.623 ( -0.022 ) 0.108

1 ESD is empirical SD of the 500 estimates
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Table 2.6: Parameter estimates from 500 simulated datasets containing N = 10 and
N = 30 patients receiving one of five dose groups d1 . . . d5 over six cycles comparing
comparing estimates based on Model 2.1 to estimates based on Models 2.7 and 2.8
and having equal patients on all the dose levels.

Estimate(Bias) MSD1 ESD2 Coverage
N=10 patients
α 0.945 ( 0.055 ) 0.682 0.585 99.6
β 0.515 ( -0.015 ) 0.464 0.308 100
ρ 0.820 ( -0.020 ) 0.137 0.040 100
γ 0.916 ( 0.084 ) 0.703 0.630 99.8
δ 0.976 ( 0.024 ) 0.548 0.536 92.6

N=30 patients
α 0.989 ( 0.011 ) 0.466 0.408 96.0
β 0.507 ( -0.007 ) 0.343 0.285 98.8
ρ 0.802 ( -0.002 ) 0.133 0.058 99.8
γ 0.940 ( 0.060 ) 0.474 0.428 96.6
δ 0.998 ( 0.002 ) 0.333 0.331 94

1 MSD is mean of the SD from 500 estimates
2 ESD is empirical SD of the 500 estimates
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Table 2.7: Probability of toxicity estimates based on 500 simulated datasets contain-
ing N = 10 and N = 30 patients receiving one of five dose groups d1 . . . d5 over six
cycles with α, β, ρ based on Model 2.1, γ from Model 2.7, δ from Model 2.8. Results
presented for α = 1, β = 0.5 and ρ = 0.8 and with equal patients on the five dose
levels.

N = 10 N = 30
Estimate(Bias) ESD1 Estimate(Bias) ESD1

First cycle
Markov Model 2.1
d1 0.019 (-0.001) 0.011 0.020 (< 0.001) 0.008
d2 0.047 (-0.003) 0.028 0.049 (-0.001) 0.020
d3 0.093 (-0.007) 0.053 0.098 (-0.002) 0.038
d4 0.148 (-0.012) 0.081 0.156 (-0.004) 0.059
d5 0.21 (-0.02) 0.109 0.223 (-0.007) 0.081

Binary Model 2.7
d1 0.018 (-0.002) 0.012 0.019 (-0.001) 0.008
d2 0.045 (-0.005) 0.030 0.047 (-0.003) 0.021
d3 0.090 (-0.010) 0.057 0.093 (-0.007) 0.040
d4 0.143 (-0.017) 0.086 0.149 (-0.011) 0.062
d5 0.203 (-0.027) 0.114 0.213 (-0.017) 0.085

Any cycle
Markov Model 2.1
d1 0.038 (-0.004) 0.021 0.042 (-0.001) 0.016
d2 0.105 (-0.011) 0.050 0.113 (-0.002) 0.038
d3 0.234 (-0.021) 0.092 0.250 (-0.005) 0.068
d4 0.405 (-0.033) 0.132 0.428 (-0.010) 0.095
d5 0.598 (-0.046) 0.152 0.626 (-0.019) 0.109

Binary Model 2.8
d1 0.041 (-0.001) 0.022 0.042 (< 0.001) 0.014
d2 0.111 (-0.004) 0.055 0.114 (-0.001) 0.035
d3 0.241 (-0.014) 0.107 0.251 (-0.004) 0.070
d4 0.407 (-0.032) 0.153 0.428 (-0.011) 0.102
d5 0.590 (-0.055) 0.176 0.624 (-0.02) 0.115

1 ESD is empirical SD of the 500 estimates
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Table 2.8: Parameter estimates from 500 simulated datasets containing N = 10
and N = 30 patients receiving one of five dose groups d1 . . . d5 over six cycles with
α, β, ρ based on Model 2.1, γ from Model 2.7, δ from Model 2.8 and having unequal
patients on all the dose levels.

Estimate(Bias) MSD1 ESD2 Coverage
N=10 patients
α 0.965 ( 0.035 ) 0.688 0.566 99.8
β 0.530 ( -0.030 ) 0.489 0.340 100
ρ 0.818 ( -0.018 ) 0.137 0.046 100
γ 0.924 ( 0.076 ) 0.704 0.590 99.8
δ 0.995 ( 0.005 ) 0.543 0.570 94.6

N=30 patients
α 0.986 ( 0.014 ) 0.446 0.398 95.8
β 0.487 ( 0.013 ) 0.329 0.236 99.0
ρ 0.803 ( -0.003 ) 0.131 0.058 100
γ 0.945 ( 0.055 ) 0.455 0.419 92.2
δ 0.980 ( 0.020 ) 0.311 0.299 95.6

1 MSD is mean of the SD from 500 estimates
2 ESD is empirical SD of the 500 estimates
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Table 2.9: Probability of toxicity estimates based on 500 simulated datasets contain-
ing N = 10 and N = 30 patients receiving one of five dose groups d1 . . . d5 over six
cycles comparing estimates based on Model 2.1 to estimates based on Models 2.7 and
2.8. Results presented for α = 1, β = 0.5 and ρ = 0.8 and with unequal patients on
the five dose levels.

N = 10 N = 30
Estimate(Bias) ESD1 Estimate(Bias) ESD1

First cycle
Markov Model 2.1
d1 0.019(-0.001) 0.011 0.02(< 0.001) 0.008
d2 0.048(-0.002) 0.027 0.049(-0.001) 0.019
d3 0.095(-0.005) 0.052 0.098(-0.002) 0.037
d4 0.151(-0.009) 0.079 0.156(-0.004) 0.057
d5 0.215(-0.015) 0.106 0.223(-0.007) 0.078

Binary Model 2.7
d1 0.018(-0.002) 0.012 0.019(-0.001) 0.008
d2 0.046(-0.004) 0.028 0.047(-0.003) 0.02
d3 0.091(-0.009) 0.054 0.094(-0.006) 0.039
d4 0.144(-0.016) 0.082 0.15(-0.010) 0.06
d5 0.206(-0.024) 0.11 0.214(-0.016) 0.083

Any cycle
Markov Model 2.1
d1 0.04(-0.003) 0.022 0.041(-0.001) 0.016
d2 0.108(-0.007) 0.053 0.112(-0.003) 0.036
d3 0.24(-0.015) 0.097 0.246(-0.008) 0.064
d4 0.413(-0.025) 0.137 0.423(-0.016) 0.088
d5 0.605(-0.04) 0.156 0.621(-0.024) 0.101

Binary Model 2.8
d1 0.042(< 0.001) 0.023 0.042(-0.001) 0.012
d2 0.113(-0.003) 0.058 0.112(-0.003) 0.032
d3 0.244(-0.011) 0.112 0.247(-0.007) 0.064
d4 0.41(-0.028) 0.158 0.424(-0.015) 0.094
d5 0.592(-0.052) 0.179 0.621(-0.024) 0.107

1 ESD is empirical SD of the 500 estimates
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Table 2.10: Target probability bound choices for P̊ (A2) assuming bounds on P̊ (A1)
and P̊ (C).

P̊ (C)

P̊ (A1) 0.30 0.40
0.05 0.0592 0.0878
0.10 0.0490 0.0779
0.15 0.0381 0.0673
0.20 0.0264 0.0559
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Table 2.11: Table listing the probability of toxicity on the first cycle P (A1), the
probability of toxicity on any cycle P (C), the expected dose on the entire regimen,
flags set to one if the regimen qualifies when using only option 1, P r(C) = 0.30
and three instances of using option 2, P r(C) = 0.30 and P r(A1) = (0.05, 0.10, 0.20)
corresponding to the 19 favorable dose regimen listed in Table 2.3. α = 1, β =
0.2, ρ = 0.8 are the true values of the parameters.

Reg Regimen P (A1) P (C) Exp P r(C) P r(A1) P r(A1) P r(A1)
ID Dose ≤ 0.30 ≤ 0.05 ≤ 0.10 ≤ 0.20
1 1 1 1 1 1 1 0.02 0.04 5.86 1 1 1 1
2 2 2 2 2 2 2 0.05 0.10 11.29 1 1 1 1
3 3 3 3 3 3 3 0.10 0.22 15.84 1 0 1 1
4 4 4 4 4 4 4 0.16 0.36 19.33 0 0 0 0
5 5 5 5 5 5 5 0.23 0.52 21.54 0 0 0 0
6 1 1 1 2 2 2 0.02 0.08 8.63 1 1 1 1
7 2 2 2 3 3 3 0.05 0.18 13.71 1 1 1 1
8 3 3 3 4 4 4 0.10 0.31 17.81 0 0 0 0
9 4 4 4 5 5 5 0.16 0.46 20.76 0 0 0 0
10 2 2 2 1 1 1 0.05 0.07 8.57 1 1 1 1
11 3 3 3 2 2 2 0.10 0.15 13.46 1 0 1 1
12 4 4 4 3 3 3 0.16 0.26 17.43 1 0 0 1
13 5 5 5 4 4 4 0.23 0.40 20.21 0 0 0 0
14 1 1 2 2 3 3 0.02 0.15 11.22 1 1 1 1
15 2 2 3 3 4 4 0.05 0.26 15.89 1 1 1 1
16 3 3 4 4 5 5 0.10 0.41 19.48 0 0 0 0
17 5 5 4 4 3 3 0.23 0.34 18.67 0 0 0 0
18 4 4 3 3 2 2 0.16 0.22 15.34 1 0 0 1
19 3 3 2 2 1 1 0.10 0.13 10.96 1 0 1 1
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Table 2.12: Trial/Patient summary results for Plan 1, maximizing expected dose over 500 simulated clinical
trials. Columns present 1) mean dose received per patient, 2) mean toxicities over the trials with trial stopping
early in parenthesis, 3) average patients having dose ≥ the recommended expected dose, 4) average patients
having dose ≥ the target expected dose, 5) average patients having regimen exactly equal to the recommended
regimen 6) average patients having regimen exactly equal to the target regimen, 7) average patients having
regimen ≤ 2 from the recommended regimen and 8) average patients having regimen ≤ 2 from the target
regimen.

Mean Mean Patients Patients Patients Patients P.R.Dist P.T.Dist

Dose Toxicities* ≥R.Edosea ≥T.Edosea =R.Distb =T.Distb ≤2 ≤ 2
Using P r(A1)&P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.48 0.31 ( 48 ) 20.27 15.02 0.62 0.83 5.66 5.35

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.91 0.30 ( 25 ) 18.09 18.09 1.64 0.64 11.75 4.89

P̊ (A1) = 0.2, P̊ (A2) = 0.06 16.21 0.27 ( 11 ) 16.73 17.22 3.96 1.83 10.86 8.57

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.53 0.31 ( 48 ) 20.28 14.96 0.60 0.83 5.40 5.24

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.99 0.31 ( 25 ) 17.98 17.68 1.59 0.69 11.3 4.67

P̊ (A1) = 0.2, P̊ (A2) = 0.06 16.33 0.28 ( 11 ) 16.82 17.38 4.46 2.16 11.26 9.31
Using P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.48 0.31 ( 48 ) 12.84 12.71 0.45 0.13 8.15 2.09

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.91 0.3 ( 25 ) 15.46 13.51 1.81 0.68 11.09 4.95

P̊ (A1) = 0.2, P̊ (A2) = 0.06 16.21 0.27 ( 11 ) 16.73 17.22 3.95 1.83 10.81 8.57

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.53 0.31 ( 48 ) 12.81 12.77 0.43 0.12 7.68 2.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.99 0.31 ( 25 ) 15.29 13.37 1.72 0.65 10.71 5.44

P̊ (A1) = 0.2, P̊ (A2) = 0.06 16.33 0.28 ( 11 ) 16.82 17.38 4.47 2.16 11.24 9.31
* Values in parenthesis indicates the number of trials out of 500 that stopped early
a T/R.Edose - Target/Recommended expected dose.
b T/R.Dist - Distance of patient regimen from Target/Recommended regimen.



69

Table 2.13: Trial/Patient summary results for Plan 2- matching a regimen with Rl ≤ 3 over 500 simulated
clinical trials.

Mean Mean Patients Patients Patients Patients P.R.Dist P.T.Dist

Dose Toxicities* ≥R.Edosea ≥T.Edosea =R.Distb =T.Distb ≤2 ≤ 2
Using P r(A1)&P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.57 0.31 ( 48 ) 20.18 15.02 0.61 0.82 5.52 5.18

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.07 0.31 ( 25 ) 17.98 17.8 1.44 0.64 10.85 4.7

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.33 0.31 ( 11 ) 19.75 18.98 4.57 3.33 12.83 11.81

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.55 0.31 ( 48 ) 20.28 15.03 0.6 0.82 5.36 5.21

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.10 0.31 ( 25 ) 17.89 17.88 1.39 0.63 10.89 4.71

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.34 0.31 ( 11 ) 19.76 19.00 4.64 3.36 12.94 11.85
Using P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.57 0.31 ( 48 ) 12.85 12.92 0.42 0.11 7.47 2.36

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.07 0.31 ( 25 ) 15.60 13.71 1.87 1.08 10.74 6.13

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.33 0.31 ( 11 ) 19.75 18.98 4.7 3.33 12.99 11.81

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.55 0.31 ( 48 ) 13 12.88 0.42 0.11 7.49 2.36

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.10 0.31 ( 25 ) 15.62 13.79 1.85 1.09 10.76 6.10

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.34 0.31 ( 11 ) 19.76 19.00 4.73 3.36 13.04 11.85
* Values in parenthesis indicates the number of trials out of 500 that stopped early
a T/R.Edose - Target/Recommended expected dose.
b T/R.Dist - Distance of patient regimen from Target/Recommended regimen.
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Table 2.14: Trial/Patient summary results for Plan 2- matching a regimen with Rl ≤ 2 instead of 3 over 500
simulated clinical trials.

Mean Mean Patients Patients Patients Patients P.R.Dist P.T.Dist

Dose Toxicities* ≥R.Edosea ≥T.Edosea =R.Distb =T.Distb ≤2 ≤ 2
Using P r(A1)&P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.54 0.31 ( 48 ) 20.4 14.99 0.58 0.82 5.31 5.21

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.11 0.31 ( 25 ) 17.97 17.88 1.41 0.63 10.97 4.71

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.34 0.31 ( 11 ) 19.74 18.99 4.65 3.35 12.86 11.82

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.54 0.31 ( 48 ) 20.2 14.93 0.60 0.84 5.38 5.2

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.08 0.31 ( 25 ) 17.91 17.84 1.40 0.63 10.82 4.71

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.34 0.31 ( 11 ) 19.73 19.00 4.60 3.37 12.81 11.84
Using P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.54 0.31 ( 48 ) 12.83 12.88 0.41 0.12 7.63 2.36

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.11 0.31 ( 25 ) 15.7 13.79 1.81 1.09 10.64 6.07

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.34 0.31 ( 11 ) 19.73 18.99 4.75 3.35 12.98 11.82

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 15.54 0.31 ( 48 ) 12.75 12.83 0.42 0.12 7.47 2.36

P̊ (A1) = 0.1, P̊ (A2) = 0.08 16.08 0.31 ( 25 ) 15.58 13.74 1.81 1.08 10.68 6.11

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.34 0.31 ( 11 ) 19.73 19.00 4.70 3.37 12.91 11.84
* Values in parenthesis indicates the number of trials out of 500 that stopped early
a T/R.Edose - Target/Recommended expected dose.
b T/R.Dist - Distance of patient regimen from Target/Recommended regimen.
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Table 2.15: Trial/Patient summary results for Plan 2- matching a regimen with min(Rl) over 500 simulated
clinical trials.

Mean Mean Patients Patients Patients Patients P.R.Dist P.T.Dist

Dose Toxicities* ≥R.Edosea ≥T.Edosea =R.Distb =T.Distb ≤2 ≤ 2
Using P r(A1), P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 13.91 0.26 ( 48 ) 17.28 15.12 12.14 10.82 18.06 15.31

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.15 0.27 ( 25 ) 15.91 17.84 2.84 2.40 11.75 9.03

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17 0.30 ( 11 ) 19.2 18.76 4.41 3.46 10.96 10.30

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 13.92 0.27 ( 50 ) 17.21 15.53 11.81 10.73 18.69 15.72

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.2 0.28 ( 25 ) 16.12 18.01 2.42 2.42 12.26 9.27

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.01 0.30 ( 11 ) 19.24 18.79 4.61 3.48 11.24 10.40
Using P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 13.91 0.26 ( 48 ) 7.91 11.58 2.08 0.15 7.31 1.88

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.15 0.27 ( 25 ) 13.64 13.49 3.24 1.30 10.33 4.81

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17 0.3 ( 11 ) 19.19 18.76 4.54 3.46 11.03 10.30

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 13.92 0.27 ( 50 ) 8.03 11.49 1.60 0.14 7.50 1.95

P̊ (A1) = 0.1, P̊ (A2) = 0.08 15.2 0.28 ( 25 ) 13.95 13.39 2.98 1.32 10.73 4.99

P̊ (A1) = 0.2, P̊ (A2) = 0.06 17.01 0.30 ( 11 ) 19.22 18.79 4.72 3.48 11.3 10.40
* Values in parenthesis indicates the number of trials out of 500 that stopped early
a T/R.Edose - Target/Recommended expected dose.
b T/R.Dist - Distance of patient regimen from Target/Recommended regimen.
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Table 2.16: Regimen recommendation summary for Plan 1 -maximizing the expected dose over 500 simulated
clinical trials. Columns correspond to 1) the mean distance between the target (T) and recommended (R)
regimen, 2) the proportion of trials have an exact match between the T and R regimens, 3) the expected dose
for the T regimen, 4) the expected dose for the R regimen, 5) the probability of toxicity on any cycle under
the T regimen and 6) the probability of toxicity on any cycle under the R regimen.

Mean(T-R)a Prop of Target Rec Target Rec

Distance* T-R=0* Exp Dose* Exp Dose* Toxicities Toxicities
Using P r(A1)&P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.77 ( 452 ) 0.51 ( 452 ) 15.89 ( 500 ) 15 ( 452 ) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.92 ( 475 ) 0.25 ( 475 ) 15.89 ( 500 ) 16.25 ( 475 ) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.99 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.03 ( 489 ) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.84 ( 452 ) 0.51 ( 452 ) 15.89 ( 500 ) 15 ( 452 ) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.96 ( 475 ) 0.23 ( 475 ) 15.89 ( 500 ) 16.18 ( 475 ) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 4.04 ( 489 ) 0.18 ( 489 ) 17.43 ( 500 ) 17.17 ( 489 ) 0.26 0.28
Using P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.70 ( 489 ) 0.16 ( 489 ) 17.43 ( 500 ) 17.11 ( 489 ) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.32 ( 489 ) 0.21 ( 489 ) 17.43 ( 500 ) 16.82 ( 489 ) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.96 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.04 ( 489 ) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.61 ( 489 ) 0.18 ( 489 ) 17.43 ( 500 ) 17.14 ( 489 ) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.22 ( 489 ) 0.19 ( 489 ) 17.43 ( 500 ) 16.79 ( 489 ) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.99 ( 489 ) 0.18 ( 489 ) 17.43 ( 500 ) 17.19 ( 489 ) 0.26 0.28
* Values in parenthesis indicates the number of trials out of 500 that had a regimen selection
a T - Target/True regimen, R - Recommended regimen
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Table 2.17: Regimen recommendation summary for Plan 2 - matching the regimen with Rl ≤ 3 over 500
simulated clinical trials.

Mean(T-R)a Prop of Target Rec Target Rec

Distance* T-R=0* Exp Dose* Exp Dose* Toxicities Toxicities
Using P r(A1)&P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.84 ( 452 ) 0.5 ( 452 ) 15.89 ( 500 ) 15.09 ( 452 ) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.86 ( 475 ) 0.25 ( 475 ) 15.89 ( 500 ) 16.21 ( 475 ) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.85 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.21 ( 489 ) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.83 ( 452 ) 0.5 ( 452 ) 15.89 ( 500 ) 15.02 ( 452 ) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.84 ( 475 ) 0.24 ( 475 ) 15.89 ( 500 ) 16.26 ( 475 ) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.84 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.24 ( 489 ) 0.26 0.28
Regimen selected using P r(C)

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.64 ( 489 ) 0.17 ( 489 ) 17.43 ( 500 ) 17.16 ( 489 ) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.24 ( 489 ) 0.21 ( 489 ) 17.43 ( 500 ) 16.78 ( 489 ) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.78 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.24 ( 489 ) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.65 ( 489 ) 0.17 ( 489 ) 17.43 ( 500 ) 17.12 ( 489 ) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.23 ( 489 ) 0.21 ( 489 ) 17.43 ( 500 ) 16.83 ( 489 ) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.76 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.26 ( 489 ) 0.26 0.28
* Values in parenthesis indicates the number of trials out of 500 that had a regimen selection
a T - Target/True regimen, R - Recommended regimen
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Table 2.18: Regimen recommendation summary for 500 simulated clinical trials executed using Plan 2,
matching the regimen with Rl ≤ 2.

Mean(T-R)a Prop of Target Rec Target Rec

Distance* T-R=0* Exp Dose* Exp Dose* Toxicities Toxicities
Regimen selected using P r(A1)&P r(C)

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.87 (452) 0.5 (452) 15.89 (500) 14.95 (452) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.83 (475) 0.25 (475) 15.89 (500) 16.26 (475) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.87 (489) 0.22 (489) 17.43 (500) 17.26 (489) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.93 (452) 0.49 (452) 15.89 (500) 15.03 (452) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.81 (475) 0.25 (475) 15.89 (500) 16.25 (475) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.89 (489) 0.22 (489) 17.43 (500) 17.24 (489) 0.26 0.28
Regimen selected using P r(C)

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.65 (489) 0.17 (489) 17.43 (500) 17.13 (489) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.24 (489) 0.20 (489) 17.43 (500) 16.82 (489) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.80 (489) 0.22 (489) 17.43 (500) 17.28 (489) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.62 (489) 0.18 (489) 17.43 (500) 17.13 (489) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.25 (489) 0.21 (489) 17.43 (500) 16.80 (489) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.81 (489) 0.22 (489) 17.43 (500) 17.26 (489) 0.26 0.28
* Values in parenthesis indicates the number of trials out of 500 that had a regimen selection
a T - Target/True regimen, R - Recommended regimen
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Table 2.19: Regimen recommendation summary for 500 simulated clinical trials executed using Plan 2,
matching the regimen with regimen distance equal to min(Rl) and switching to Plan 1 not allowed.

Mean(T-R)a Prop of Target Rec Target Rec

Distance* T-R=0* Exp Dose* Exp Dose* Toxicities Toxicities
Regimen selected using P r(A1)&P r(C)

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.71 ( 452 ) 0.51 ( 452 ) 15.89 ( 500 ) 14.87 ( 452 ) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.89 ( 475 ) 0.27 ( 475 ) 15.89 ( 500 ) 16.13 ( 475 ) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.89 ( 489 ) 0.21 ( 489 ) 17.43 ( 500 ) 17.17 ( 489 ) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 2.64 ( 450 ) 0.52 ( 450 ) 15.89 ( 500 ) 14.91 ( 450 ) 0.26 0.22

P̊ (A1) = 0.1, P̊ (A2) = 0.08 2.82 ( 475 ) 0.27 ( 475 ) 15.89 ( 500 ) 16.16 ( 475 ) 0.26 0.26

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.77 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.21 ( 489 ) 0.26 0.28
Using P r(C) = 0.30

P̊ (B) = 0.3, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.68 ( 489 ) 0.17 ( 489 ) 17.43 ( 500 ) 16.85 ( 489 ) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.26 ( 489 ) 0.2 ( 489 ) 17.43 ( 500 ) 16.69 ( 489 ) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.83 ( 489 ) 0.21 ( 489 ) 17.43 ( 500 ) 17.19 ( 489 ) 0.26 0.28

P̊ (B) = 0.4, P̊ (C) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.09 4.7 ( 489 ) 0.18 ( 489 ) 17.43 ( 500 ) 16.81 ( 489 ) 0.26 0.28

P̊ (A1) = 0.1, P̊ (A2) = 0.08 4.17 ( 489 ) 0.21 ( 489 ) 17.43 ( 500 ) 16.74 ( 489 ) 0.26 0.28

P̊ (A1) = 0.2, P̊ (A2) = 0.06 3.72 ( 489 ) 0.22 ( 489 ) 17.43 ( 500 ) 17.23 ( 489 ) 0.26 0.28
* Values in parenthesis indicates the number of trials out of 500 that had a regimen selection
a T - Target/True regimen, R - Recommended regimen
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Table 2.20: Trial/Patient summary -using only P̊ (C) flag in carrying out 100 simulated trials.

Mean Mean Patients Patients Patients Patients P.R.Dist P.T.Dist

Dose Toxicities* ≥R.Edosea ≥T.Edosea =R.Distb =T.Distb ≤2 ≤ 2
Plan 1: P r(A1)&P r(C) = 0.30

P̊ (C) = 0.30 P̊ (A1) = 0.20, P̊ (A2) = 0.03 15.91 0.24 ( 2 ) 13.55 15.48 3.26 1.25 11.08 6.28

P̊ (C) = 0.40P̊ (A1) = 0.20, P̊ (A2) = 0.06 16.40 0.27 ( 2 ) 16.67 17.68 4.87 1.97 11.69 8.68
Using P r(C) = 0.30 in regimen selection

P̊ (C) = 0.30 P̊ (A1) = 0.20, P̊ (A2) = 0.03 15.91 0.24 ( 2 ) 13.5 15.48 2.72 1.25 10.57 6.28

P̊ (C) = 0.40P̊ (A1) = 0.20, P̊ (A2) = 0.06 16.40 0.27 ( 2 ) 16.64 17.68 4.19 1.97 11.04 8.68
Plan 2:P r(A1)&P r(C) = 0.30

P̊ (C) = 0.30P̊ (A1) = 0.20, P̊ (A2) = 0.03 16.45 0.27 ( 2 ) 18.62 18.39 5.09 8.20 10.04 12.67

P̊ (C) = 0.40 P̊ (A1) = 0.20, P̊ (A2) = 0.06 17.20 0.30 ( 2 ) 19.19 19.25 5.37 3.63 12.02 10.91
Using P r(C) = 0.30 in regimen selection

P̊ (C) = 0.30P̊ (A1) = 0.20, P̊ (A2) = 0.03 16.45 0.27 ( 2 ) 18.59 18.39 4.68 8.20 9.60 12.67

P̊ (C) = 0.40 P̊ (A1) = 0.20, P̊ (A2) = 0.06 17.20 0.30 ( 2 ) 18.93 19.25 5.10 3.63 11.66 10.91
* Values in parenthesis indicates the number of trials out of 100 that stopped early
a T/R.Edose - Target/Recommended expected dose.
b T/R.Dist - Distance of patient regimen from Target/Recommended regimen.
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Table 2.21: Regimen recommendation summary using P̊ (C) instead of P̊ (B) on later cycles for Plan 1 and
2, with Plan 2 executed by setting Rl to the minimum distance possible in 100 simulated trials.

Mean(T-R)a Prop of Target Rec Target Rec

Distance* T-R=0* Exp Dose* Exp Dose* Toxicities Toxicities
Plan 1: Regimen selected using P r(A1)&P r(C)

P̊ (C) = 0.30, P̊ (A1) = 0.20, P̊ (A2) = 0.03 4.26 ( 98 ) 0.14 ( 98 ) 17.43 ( 100 ) 18.06 ( 98 ) 0.26 0.27

P̊ (C) = 0.40,P̊ (A1) = 0.20, P̊ (A2) = 0.06 4.01 ( 98 ) 0.15 ( 98 ) 17.43 ( 100 ) 17.62 ( 98 ) 0.26 0.28

Regimen selected using P̂ (C)

P̊ (C) = 0.30,P̊ (A1) = 0.20, P̊ (A2) = 0.03 4.13 ( 98 ) 0.17 ( 98 ) 17.43 ( 100 ) 18.12 ( 98 ) 0.26 0.28

P̊ (C) = 0.40,P̊ (A1) = 0.20, P̊ (A2) = 0.06 3.89 ( 98 ) 0.18 ( 98 ) 17.43 ( 100 ) 17.67 ( 98 ) 0.26 0.28
Plan 2: Regimen selected using P r(A1)&P r(C)

P̊ (C) = 0.30,P̊ (A1) = 0.20, P̊ (A2) = 0.03 4.21 ( 98 ) 0.20 ( 98 ) 17.43 ( 100 ) 17.62 ( 98 ) 0.26 0.27

P̊ (C) = 0.40,P̊ (A1) = 0.20, P̊ (A2) = 0.06 3.89 ( 98 ) 0.21 ( 98 ) 17.43 ( 100 ) 17.77 ( 98 ) 0.26 0.28
Regimen selected using P r(C)

P̊ (C) = 0.30, P̊ (A1) = 0.20, P̊ (A2) = 0.03 4.09 ( 98 ) 0.23 ( 98 ) 17.43 ( 100 ) 17.67 ( 98 ) 0.26 0.28

P̊ (C) = 0.40, P̊ (A1) = 0.20, P̊ (A2) = 0.06 3.64 ( 98 ) 0.26 ( 98 ) 17.43 ( 100 ) 17.87 ( 98 ) 0.26 0.28
* Values in parenthesis indicates the number of trials out of 100 that had a regimen selection
a T - Target/True regimen, R - Recommended regimen
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2.6 Appendix

2.6.1 Outline of the code written in JAGS

The code presented below corresponds to applying Model 2.1 in simulations for

parameter estimation from the posterior samples.

#Defining the model.bug file1

model {2

#Define the likelihood for each of the N subjects3

for (i in 1:N) {4

prob[i]< − 1- exp( -alpha* ( dose[i] - rho*maxprevdose[i])*step(dose[i] -rho*maxprevdose[i])5

- beta*dose[i]*cumdose[i] )6

response[i] ∼ dbern(prob[i])7

}8

#Setting up the priors9

#prior on α - E(α) = 1 and V ar(α) = 210

mu1 < − -0.8047190; tau1 < − 0.621334911

alpha ∼ dlnorm(mu1,tau1)12

#prior on ρ13

a1 < − 5 ; b1 < − 114

rho ∼ dbeta(a1,b1)15

#Prior on β - E(β) = 0.5 and V ar(β) = 116

mu2 < − -1.498; tau2 < − 0.62117

beta ∼ dlnorm(mu2,tau2)18

}19

#Initializing the parameters20

inits< −list(list(alpha=1,beta=0.1,rho=0.2),21

list(alpha=0.5,beta=0.8,rho=0.9) )22

parameters < −c(“alpha”,“beta”, “rho”)23

#updating the simulations24

data < −list(“response”=response,“maxprevdose”=maxprevdose,25

“cumdose”=cumdose,“dose”=dose,“N”=N)26

jags < − jags.model(file=”prior.bug”, data = data, inits=inits, n.chains = 2, n.adapt27
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= 5000)28

adapt(jags,n.iter=1000)29

update(jags,10000) # burin samples30

sim1< −coda.samples(jags, parameters, 100000,thin=20)31

#check for convergence32

plot(sim1)33

gelman.plot(sim1)34

gelman.diag(sim1)35

geweke.plot(sim1)36

geweke.diag(sim1)37

autocorr(sim1)38

autocorr.plot(sim1)39

#report the mean and quantiles of the posterior distributions40

y3< −summary(sim1)41

ystat< −data.frame(y3statistics)42

yquant = data.frame(y3quantiles)43

2.6.2 Parameter Estimation with different burn-in period

In this section simulation results are presented explaining the rationale behind

the decisions for setting the variance of the priors and the choice of burn-in period.

The effect of changing the variance of the prior distributions of α and β was

studied with N = (10, 30) patients in completed trials. The probability skeleton

qg = (0.02, 0.05, 0.10, 0.15, 0.23) was used to obtain doses dg. Patients were assumed

to receive the same dose on all the K = 6 cycles and the N patients were divided

equally among the five dose levels. The conditional probability of toxic response

pi,k for patient i on cycle k was calculated using Model 2.1 for dose dg and fixed

parameters α = 1, β = 0.5 and ρ = 0.8. A Bernoulli (pi,k) random variable was used

to assign the response for each patient at every cycle. Further doses were assigned
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until a DLT response was observed or until completion of K = 6 cycles. Simulation

results are presented over 500 such replicates/datasets.

The use of probability skeleton requires that the prior mean of α be set at one.

The prior mean of β was set to 0.5, matching the true value used for data generation

in simulations. To study the effect of the priors at the estimation stage, two different

cases were considered. In the first case the prior means used were E(α) = 1 and

E(β) = 0.5 matching the true values used to generate the data. The SD was set to

two times the mean, SD(α) = 2 and SD(β) = 1.

In the second case the means of the prior were E(α) = 1 and E(β) = 0.5 matching

the true values used to generate the data while the standard deviation was set to

five times the mean, SD(α) = 5 and SD(β) = 2.5

In both the cases Beta(5, 1) prior was used on ρ. The goal was to observe the

effect of varying the informativeness of the priors on the estimation of the parameters.

After an adaptive phase of 10K samples and a burn-in period of 10K samples, 100K

MCMC samples were drawn from the posterior with a thinning of 20. The effect

of using a longer burn-in period was also studied by drawing an additional 100K

MCMC samples effectively increasing the burn-in period to 110K (10K from the

initial burn-in and 100K from the first sample). The goal of studying estimates from

two different burn-in periods was to study and determine the appropriate burn-in

period for use in further simulations.

The simulation results of the parameter estimates from these simulations are
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presented in Table 2.22 for N = (10, 30, 90) patients. Within each of the sample size,

the rows are grouped by the two cases followed by the two burn-in periods with each

row corresponding to estimates of either α, β or ρ . Each of the four columns report

(1) the estimated value and the mean bias from the true value, (2) the mean SD

(MSD) of the estimates across 500 iterations, (3) the empirical SD (ESD) of the 500

estimates, (4) the credible interval coverage rate across the 500 replicates/datasets.

The corresponding probability estimates are presented in Table 2.23 for N = 10

patients and Table 2.24 for N = 30 patients. The columns indicate the mean estimate

of probability of toxicity on the first, the second, the sixth cycle and the overall

probability of toxicity on any of the cycles along with the bias from the true values

in parenthesis. The rows are grouped by the two cases studying the effect of varying

variances of the prior and within each case the results are further grouped by the

two different burn-in periods with each of the rows corresponding to one of the dose

levels. The following are the conclusions from these simulations results.

• Using a longer burn-in period does not provide improve the parameter esti-

mates in terms of the bias. Hence using the shorter burn-in period of 10K is

recommended for further simulation setups.

• The bias difference between the two cases not very different and showed that

having the SD equal to two times the mean with a CV of 2 provided a fair

degree of variability. There was not much gain from using a larger variance.
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• The bias of the parameter estimates seems quite high in Table 2.22 but when

compared to the conditional probability estimates in Tables 2.23 and 2.24 the

bias was not high. So it seems like the model estimates the values of the

conditional probabilities of toxicity correctly even though the parameters might

have a slight bias from the true values. Subsequent tables will display either the

probabilities or the parameter estimates to prevent replication of information.

• These results demonstrate the best the model can achieve in determining the

parameters and the probabilities since the prior means are completely aligned

with the true values used to generate the data. This provides a sense of how

well the model does in terms of estimation and will provide a benchmark in

assessing the model fit in later simulation settings.

• An improvement in bias and efficiency was seen in terms of lower SD of the

estimates with an increase in the sample size. Also the empirical SD of the

estimates and the mean SD from the 500 datasets was comparable as the sample

size increased. This confirms that the having a larger sample size improves

estimates and that the distribution of the estimates obtained is alike to the

sampling distribution.
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Table 2.22: Parameter Estimates Based on Model 2.1 from 500 simulated datasets
containing N = (10, 30) patients receiving one of five dose groups d1 . . . d5 over six
cycles comparing different burin periods. Results presented for α = 1, β = 0.5 and
ρ = 0.8

Estimate(Bias) MSD 1 ESD 2 Coverage
N=10

Burn in 10K Case 1
α 0.945 ( -0.055 ) 0.683 0.584 99.6
β 0.515 ( 0.015 ) 0.463 0.308 100
ρ 0.820 ( 0.02 ) 0.137 0.040 100

Burn in 110K
α 0.945 ( -0.055 ) 0.683 0.584 99.6
β 0.515 ( 0.015 ) 0.463 0.308 100
ρ 0.820 ( 0.02 ) 0.137 0.040 100

Burn in 10K Case 2
α 0.932 ( -0.068 ) 0.725 0.697 95.2
β 0.481 ( -0.019 ) 0.498 0.387 94.6
ρ 0.813 ( 0.013 ) 0.140 0.039 100

Burn in 110K
α 0.932 ( -0.068 ) 0.724 0.697 95.2
β 0.481 ( -0.019 ) 0.498 0.386 94.8
ρ 0.813 ( 0.013 ) 0.140 0.039 100

N=30
Burn in 10K Case 1
α 0.957 ( -0.043 ) 0.458 0.417 96.6
β 0.511 ( 0.011 ) 0.338 0.296 97.8
ρ 0.806 ( 0.006 ) 0.132 0.056 100

Burn in 110K
α 0.957 ( -0.043 ) 0.457 0.416 96.6
β 0.511 ( 0.011 ) 0.339 0.296 98.0
ρ 0.806 ( 0.006 ) 0.132 0.055 100

Burn in 10K Case 2
α 0.969 ( -0.031 ) 0.477 0.455 94.6
β 0.464 ( -0.036 ) 0.353 0.338 95.0
ρ 0.793 ( -0.007 ) 0.136 0.057 100

Burn in 110K
α 0.968 ( -0.032 ) 0.476 0.455 94.4
β 0.464 ( -0.036 ) 0.353 0.338 95.0
ρ 0.793 ( -0.007 ) 0.136 0.057 100

1 MSD is mean of the SD from 500 estimates
2 ESD is empirical SD of the 500 estimates
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Table 2.23: Table comparing the effect of using two different burn-in periods and the
effect of using two different priors (Case 1 and Case 2) on the parameters. Estimates
(bias) from the true value of conditional probability of toxicity on each of the six
cycles estimated using Model 2.1 from 500 simulated datasets containing N = 10
patients each receiving one of five dose groups d1 . . . d5.Results presented for α =
1, β = 0.5 and ρ = 0.8

Cycle 1 Cycle 2 Cycle 6 Any Cycle
Est(bias) Est(bias) Est(bias) Est(bias)

Case 1
Burn in 10K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.04 ( -0.002 )
d2 0.047 ( -0.003 ) 0.011 ( -0.001 ) 0.016 (< 0.001) 0.109 ( -0.006 )
d3 0.093 ( -0.007 ) 0.025 ( -0.001 ) 0.047 ( -0.001 ) 0.242 ( -0.013 )
d4 0.148 ( -0.012 ) 0.047 ( -0.002 ) 0.104 ( -0.001 ) 0.415 ( -0.023 )
d5 0.210 ( -0.020 ) 0.081 ( -0.002 ) 0.197 ( -0.003 ) 0.609 ( -0.036 )

Burn in 110K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.04 ( -0.002 )
d2 0.047 ( -0.003 ) 0.011 ( -0.001 ) 0.016 (< 0.001) 0.109 ( -0.006 )
d3 0.093 ( -0.007 ) 0.025 ( -0.001 ) 0.047 (< 0.001) 0.242 ( -0.013 )
d4 0.148 ( -0.012 ) 0.047 ( -0.002 ) 0.104 ( -0.001 ) 0.416 ( -0.023 )
d5 0.210 ( -0.020 ) 0.081 ( -0.002 ) 0.197 ( -0.003 ) 0.609 ( -0.036 )

Case 2
Burn in 10K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.039 ( -0.003 )
d2 0.046 ( -0.004 ) 0.011 ( -0.001 ) 0.016 (< 0.001) 0.106 ( -0.009 )
d3 0.091 ( -0.009 ) 0.025 ( -0.002 ) 0.045 ( -0.003 ) 0.233 ( -0.021 )
d4 0.144 ( -0.016 ) 0.046 ( -0.003 ) 0.099 ( -0.006 ) 0.399 ( -0.040 )
d5 0.204 ( -0.026 ) 0.078 ( -0.005 ) 0.185 ( -0.015 ) 0.582 ( -0.063 )

Burn in 110K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.039 ( -0.003 )
d2 0.046 ( -0.004 ) 0.011 ( -0.001 ) 0.016 (< 0.001) 0.106 ( -0.009 )
d3 0.091 ( -0.009 ) 0.025 ( -0.002 ) 0.045 ( -0.003 ) 0.233 ( -0.022 )
d4 0.144 ( -0.016 ) 0.046 ( -0.003 ) 0.099 ( -0.006 ) 0.398 ( -0.040 )
d5 0.204 ( -0.026 ) 0.078 ( -0.005 ) 0.185 ( -0.015 ) 0.582 ( -0.063 )
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Table 2.24: Table comparing the effect of using two different burn-in periods and the
effect of using four different priors on the parameters. Parameter Estimates with bias
from the true value of conditional probability of no toxicity on each of the six cycles
estimated using Model 2.1 from 500 simulated datasets containing N = 30 patients
each receiving one of five dose groups d1 . . . d5.Results presented for α = 1, β = 0.5
and ρ = 0.8

Cycle 1 Cycle 2 Cycle 6 Any Cycle
Est(bias) Est(bias) Est(bias) Est(bias)

Case 1
Burn in 10K
d1 0.019 ( -0.001 ) 0.004(< 0.001) 0.005(< 0.001) 0.041 ( -0.002 )
d2 0.048 ( -0.002 ) 0.011 (< 0.001) 0.016 (< 0.001) 0.111 ( -0.004 )
d3 0.095 ( -0.005 ) 0.025 ( -0.001 ) 0.047 (< 0.001) 0.246 ( -0.008 )
d4 0.152 ( -0.008 ) 0.048 ( -0.001 ) 0.104 ( -0.001 ) 0.425 ( -0.014 )
d5 0.217 ( -0.013 ) 0.081 ( -0.002 ) 0.197 ( -0.002 ) 0.623 ( -0.022 )

Burn in 110K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.041 ( -0.002 )
d2 0.048 ( -0.002 ) 0.011 (< 0.001) 0.016 (< 0.001) 0.111 ( -0.004 )
d3 0.095 ( -0.005 ) 0.025 ( -0.001 ) 0.047(< 0.001) 0.246 ( -0.008 )
d4 0.151 ( -0.009 ) 0.048 ( -0.001 ) 0.104 ( -0.001 ) 0.425 ( -0.014 )
d5 0.217 ( -0.013 ) 0.081 ( -0.002 ) 0.198 ( -0.002 ) 0.623 ( -0.022 )

Case 2
Burn in 10K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.041 ( -0.002 )
d2 0.048 ( -0.002 ) 0.011 (< 0.001) 0.016 (< 0.001) 0.110 ( -0.005 )
d3 0.096 ( -0.004 ) 0.025 ( -0.001 ) 0.045 ( -0.003 ) 0.242 ( -0.013 )
d4 0.153 ( -0.007 ) 0.047 ( -0.002 ) 0.098 ( -0.007 ) 0.413 ( -0.025 )
d5 0.218 ( -0.012 ) 0.079 ( -0.004 ) 0.184 ( -0.016 ) 0.604 ( -0.040 )

Burn in 110K
d1 0.019 ( -0.001 ) 0.004 (< 0.001) 0.005 (< 0.001) 0.041 ( -0.002 )
d2 0.048 ( -0.002 ) 0.011 (< 0.001) 0.016 (< 0.001) 0.11 ( -0.005 )
d3 0.096 ( -0.004 ) 0.025 ( -0.001 ) 0.045 ( -0.003 ) 0.242 ( -0.013 )
d4 0.153 ( -0.007 ) 0.047 ( -0.002 ) 0.098 ( -0.007 ) 0.414 ( -0.025 )
d5 0.218 ( -0.012 ) 0.079 ( -0.004 ) 0.184 ( -0.016 ) 0.604 ( -0.040 )
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2.6.3 Patient profiles for mixed dose assignment

The following table shows the potential dose course for the 30 patients to be
used in the simulations to compare the efficiency gain in using dose variation within
patients.

Table 2.25: Table showing the dose level assignment at each cycle for the N = 30
patients so that each of the dose occurs 36 times over all the patients.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 2 2 2 2 2 2
5 3 3 3 3 3 3
6 4 4 4 4 4 4
7 5 5 5 5 5 5
8 5 5 5 5 5 5
9 5 5 5 5 5 5
10 1 1 1 2 2 2
11 1 1 1 2 2 2
12 2 2 2 3 3 3
13 2 2 2 3 3 3
14 3 3 3 4 4 4
15 3 3 3 4 4 4
16 4 4 4 5 5 5
17 4 4 4 5 5 5
18 2 2 2 1 1 1
19 3 3 3 2 2 2
20 4 4 4 3 3 3
21 5 5 5 4 4 4
22 1 1 2 2 3 3
23 1 1 2 2 3 3
24 2 2 3 3 4 4
25 2 2 3 3 4 4
26 3 3 4 4 5 5
27 3 3 4 4 5 5
28 5 5 4 4 3 3
29 4 4 3 3 2 2
30 3 3 2 2 1 1

2.6.4 Example of an adaptive trial in progress

Based on the algorithm presented in Section 2.4.4.1 for Plan 1, an example of a

trial in progress is presented in this section for demonstrating the dose assignment



87

in practice. The target probability bounds used during the execution are P̊ (C) =

0.40, P̊ (B) = 0.30, P̊ (A1) = 0.05, P̊ (A2) = 0.09 and the true values of the parameters

are α = 1, β = 0.2, ρ = 0.8.

Table 2.26 presents the current patient profile in the trial. The rows correspond

to the unique patients added sequentially in the trial. The columns correspond

to the six cycles with the dose level assigned to the patient and the response in

parenthesis. A zero signifies no DLT while a 1 denotes a DLT, a cross is placed in

all cycles once a DLT response is observed for a patient. There are 12 patients in

the trial and decisions need to be made for dose assignment to patients 8, 9, 10, and

11 and a new patient 13. Before patient 12 was added to the trial the parameter

estimates were α̂ = 0.421(0.404), β̂ = 1.142(0.8377) and ρ̂ = 0.826(0.147) with the

posterior standard deviations in parenthesis. The updated current estimates of the

parameters are α̂ = 0.7635(0.566) β̂ = 0.917(0.711) and ρ̂ = 0.829(0.147). Notice

that the estimate of α̂ increases in response to the DLT observed by patient 12 on

cycle 1.

The probability of toxicity on dose levels 1 through 4 for patient 8 are 0.010,0.025,

0.051,0.103 of which dose level 3 has probability of toxicity≤ P̊ (A2) = 0.09 and is also

able to provide a regimen combination that satisfies the P̊ (C) = 0.40, P̊ (B) = 0.30

and hence is assigned to patient 8 on cycle 6. Using the true values of the parameters

and the current dose assignment the true probability of toxicity is calculated and a

Bernoulli response is generated. In a similar fashion the remaining patients are
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assigned doses and responses and the updated patient profile is presented in Table

2.27. The updated parameter estimates are now α̂ = 0.684(0.519), β̂ = 1.323(0.829)

and ρ̂ = 0.838(0.146). Notice the decrease in estimate of α̂ since no fresh toxicities

on the first cycle but there is an increase in β̂ reflecting the toxicity on cycle 6 for

patient 8.

At the end of the trial the completed patient profile is presented in Table 2.28.

The parameter estimates at the conclusion of the trial are α̂ = 0.943(0.482), β̂ =

0.738(0.4234) and ρ̂ = 0.866(0.129). The probability of toxicity on the first cycle and

on any cycle is calculated using the current estimates of the parameters for all the

19 regimens in Table 2.3 to select the recommended regimen and by using the true

parameter values to select the target regimen. By setting P r(A1) = P̊ (A1) = 0.05

and P r(C) = 0.3 and using the true parameter values the target regimen selected

is 223344 while the recommended regimen is 222333 using the parameter estimates

obtained at the conclusion of the trial. If only P r(C) = 0.3 is used the target regimen

is 444333 while the recommended regimen is 333333.
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Table 2.26: Table showing the dose level assignment and patient responses in paren-
thesis for an adaptive trial in progress with accrual of 12 patients.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 2 (0) 2 (0) 3 (0) 4 (0) 4 (1) X
2 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
3 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
4 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
5 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
6 2 (0) 3 (0) 4 (1) X X X
7 3 (0) 3 (0) 2 (0) 3 (0) 3 (0) 3 (0)
8 3 (0) 4 (0) 2 (0) 3 (0) 3 (0) ?
9 2 (0) 3 (0) 3 (0) 4 (0) ? ?
10 3 (0) 3 (0) 3 (0) ? ? ?
11 3 (0) 3 (0) ? ? ? ?
12 3 (1) X X X X X

X- Terminated patient having a severe toxicity (1)
? Continuing patient
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Table 2.27: Table showing the dose level assignment and patient responses in paren-
thesis for an adaptive trial in progress with accrual of 13 patients.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 2 (0) 2 (0) 3 (0) 4 (0) 4 (1) X
2 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
3 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
4 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
5 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
6 2 (0) 3 (0) 4 (1) X X X
7 3 (0) 3 (0) 2 (0) 3 (0) 3 (0) 3 (0)
8 3 (0) 4 (0) 2 (0) 3 (0) 3 (0) 3(1)
9 2 (0) 3 (0) 3 (0) 4 (0) 4 (0) ?
10 3 (0) 3 (0) 3 (0) 3 (0) ? ?
11 3 (0) 3 (0) 3 (0) ? ? ?
12 3 (1) X X X X X
13 2 (0) ? ? ? ? ?

X- Terminated patient having a severe toxicity (1)
? Continuing patient
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Table 2.28: Table showing the dose level assignment and patient responses in paren-
thesis for a completed adaptive trial.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 2 (0) 2 (0) 3 (0) 4 (0) 4 (1) X
2 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
3 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
4 2 (0) 3 (0) 4 (0) 4 (0) 4 (0) 3 (0)
5 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
6 2 (0) 3 (0) 4 (1) X X X
7 3 (0) 3 (0) 2 (0) 3 (0) 3 (0) 3 (0)
8 3 (0) 4 (0) 2 (0) 3 (0) 3 (0) 3(1)
9 2 (0) 3 (0) 3 (0) 4 (0) 4 (0) 3(0)
10 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
11 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
12 3 (1) X X X X X
13 2 (0) 3 (1) X X X X
14 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
15 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
16 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
17 2 (0) 3 (0) 3 (0) 3 (0) 3 (1) X
18 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
19 2 (0) 3 (0) 4 (0) 3 (0) 3 (0) 3 (0)
20 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
21 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
22 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
23 2 (0) 3 (0) 4 (0) 4 (0) 3 (0) 3 (0)
24 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
25 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
26 2 (0) 3 (1) X X X X
27 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
28 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
29 2 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
30 2 (1) X X X X X

X- Terminated patient having a severe toxicity (1)



CHAPTER 3

Multivariate Markov Models for the Conditional

Probability of Toxicity in Phase II Trials

3.1 Background and significance

The study of dose toxicity relationships in oncology occurs in phase I and phase

II clinical trials and variations of these. We focus on the setting where patients are

randomized to two, or more, dose groups administered over several cycles. An ex-

ample of this study design can be found in [Worden et al., 2005, Chugh et al., 2007],

which investigated two randomized doses of ifosamide plus doxorubicin and granu-

locyte colony-stimulating factor, hereafter called ifosamide for brevity. Depending

on whether they had metastases, patients received either six or four cycles of either

6g/m2 or 12g/m2 of ifosamide given over a 4 day period at the beginning of a 21

day cycle. As is often the case, patients who experienced treatment toxicity were not

continued in subsequent cycles. Adverse events are classified by Common Toxicity

92
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Criteria as defined by National Cancer Institute [NCI, 2003] and grade 3 or higher

toxic responses are considered to be a dose limiting toxicity (DLT). Proportions of

continuing patients in each cycle who had a hemoglobin DLT are show in Figure

3.1. Two important features of the data are (1) the conditional nature of toxicity

proportions observed at each cycle that are based on previously toxicity-free patients

and (2) the trend towards higher conditional toxicity rates as dose accumulates over

cycles in the high dose group. Possible analytical tools for this data are general-

ized estimating equations (GEE) or generalized linear mixed models (GLMM) that

account for correlation within a patient treated over multiple cycles. These mod-

els allow covariates for cycle, dose, cumulative dose and other mitigating factors in

modeling the probability of toxicity. An example of analyzing such data can also be

found in [Legedza and Ibrahim, 2000] that applies to phase I clinical trials and as

a special case of [Doussau et al., 2013] that uses ordinal outcomes also in a phase I

setting. All these methods do not explicitly model the tendency to discontinue cycles

for patients who have demonstrated previous DLT, although the resulting estimated

toxicity rates may be conditional in nature. In fact, conditional probabilities of tox-

icity are precisely what are needed in order to advise patients during subsequent

therapy. Developing models that explicitly capture these conditional probabilities

are key.

A large number of parameters may be necessary to capture all features of the dose-

toxicity relationship, and with the typically small sample size available for modeling
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purposes, a Bayesian approach is an attractive alternative. Our model is an extension

to transitional models with first-order Markov chains [Agresti, 2002] considering only

the previous cycle. In this chapter, we use a Markov model to explicitly model

conditional probabilities of toxicity in a cycle given that the patient did not have a

DLT in the past. The proposed model allows for a cumulative effect of dose on toxicity

after the first cycle and allows covariates to influence the toxicity profile over cycles.

A parameter is included to reflect an individual’s tendency to respond consistently

with past dose experience. In Section 3.2, we formulate a model useful in this phase II

clinical trial setting, describe the Bayesian estimation method and provide intuition

on model behavior. We then study finite sample operating characteristics through

simulation in Section 3.3. In Section 3.4 we apply the methods to the ifosfamide

study described earlier and follow with a discussion in Section 3.5.

3.2 Methodology

In Section 3.2.1, we define the data structure and the proposed dose-toxicity

model. Calculations for the expected total dose over K potential treatment cycles

as well as the expected number of completed cycles is presented in Section 3.2.2.

Technical details of dose modeling via skeleton probabilities of toxicity during the

first cycle of treatment are covered in Section 3.2.3. Selection of priors and the

formulation of the posterior distribution is presented in Section 3.2.4 followed by a

section 3.2.5 reviewing model selection strategies.
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3.2.1 Proposed Markov model

We assume patients i = 1 . . . N are randomized to one of two doses Sg, g = 1, 2. In

Section 3.2.3, we will show that it is convenient to rescale doses Sg to dg; a strategy

useful for incorporating beliefs about toxicity on the first cycle, similar to what was

proposed in [O’Quigley et al., 1990, Lee and Cheung, 2009]. For convenience, dg

terms will hereafter be referred to as the dose assigned per cycle to group g, even

though numerically dg must be transformed back to the Sg scale to reflect actual

doses.

Each dose group is scheduled to undergo K cycles of treatment, however, indi-

vidual patients complete Ki cycles, where Ki may be less than K if experiencing a

DLT. On each cycle k = 1, . . . , Ki, patient i randomized to group g receives dose

di,k = dg. Since dose is constant across cycles, we will typically use the notation

di,1 for the dose given to patient i at each cycle. A patient’s cumulative dose prior

to cycle k is Di,k = (k − 1) × di,1, with Di,1 = 0. We also use the convention that

di,k−1 = 0 for cycle k = 1.

A Bernoulli random variable, Yi,k, denotes the occurrence of a DLT for patient i

on cycle k. In general, Yi,k = 0 for k = 1, . . . , Ki − 1, indicating no DLT on these

cycles. If patient i completes Ki = K cycles, then Yi,K may be either zero or one,

depending on manifestation of a DLT in the final cycle. Additional patient covariates

(Z) are available for modeling the dose-toxicity relationship. So the observed data

becomes (Yi,1, . . . , Yi,Ki , Zi, di,1).
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We define pi,k = P (Yi,k = 1|Yi,k−1 = 0, . . . , Yi,1 = 0, Zi, di,1) as the conditional

probability of a DLT for patient i on cycle k given that patient i has experienced no

previous DLTs. Model 3.1 for pi,k is

log (1− pi,k) = −g1(α,Z)(di,1 − g2(ρ,Z)di,k−1)− g3(β,Z)Di,k, (3.1)

where α,ρ, and β parameterize the relationship between dose, Z and pi,k. In the

simplest case, g1(·), g2(·) and g3(·) are identity functions not involving Z, so that

Model 3.1 reduces to Model 3.2 below:

log (1− pi,k) = −α(di,1 − ρdi,k−1)− βDi,k (3.2)

or equivalently, pi,k = 1− exp[−α(di,1 − ρdi,k−1)− βDi,k]. (3.3)

Intuition behind the parameters is easiest to follow for the special case in Model 3.2,

where α, ρ and β are 1-dimensional parameters. The parameter, α, accounts for DLT

encountered on cycle 1. The parameter, 0 ≤ ρ ≤ 1, allows for a reduced probability of

toxicity related to dose di,1 in a subsequent cycle if patient i has previously tolerated

this dose; this term captures dependency in short-term toxicity outcomes between

cycles. The effect of cumulative dose from previous cycles is captured by β.

Figure 3.2 shows the dose-toxicity relationship across cycles and pi,k for two dose



97

groups for several parameter combinations with K = 4 cycles. For instance, in the

top left panel where α is the only parameter driving the dose-toxicity relationship,

a patient has an independent DLT response at each dose administration so that pi,k

is constant across cycles. In the top right panel, the parameter ρ equals 1 indicating

that a patient tolerating dose di,1 on cycle 1, will not experience future toxicity at

this dose level. In the lower three panels, the influence of increasing β alters the

dose-toxicity relationship based on the effect of cumulative dose.

3.2.2 Expected total dose and completed cycles

A higher dose might not be attractive if fewer cycles can be completed at that

dose level based on DLTs. Investigators should gain a clear understanding of the

expected number of completed cycles for a dose level as well as the expected total

dose over the entire trial based on Model 3.1 or the special case without covariates,

Model 3.2. An individual i’s total expected dose is based on probabilities P (Yi,1 =

0, . . . , Yi,Ki−1 = 0, Yi,Ki = 1)

= (1− pi,1)(1− pi,2) · · · (1− pi,Ki−1)pi,Ki = pi,Ki

Ki−1∏
j=1

(1− pi,j) (3.4)

and similarly, P (Yi,1 = 0, . . . , Yi,K−1 = 0, Yi,K = 0) =
K∏
j=1

(1− pi,j). (3.5)
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Hence for person i, the expected number of completed cycles:

= pi,1 +
K−1∑
k=2

kpi,k

k−1∏
j=1

(1− pi,j) +K

K−1∏
j=1

(1− pi,j) (3.6)

and the expected total dose:

= pi,1di,1 +
K−1∑
k=2

kdi,1pi,k

k−1∏
j=1

(1− pi,j) +Kdi,1

K−1∏
j=1

(1− pi,j). (3.7)

3.2.3 Model calibration using skeleton probabilities

For ease of interpretation of the parameter α, it is convenient to rescale the doses.

As explained below they are rescaled based on initial guesses (skeleton probabilities)

of the toxicity rate for the first cycle. For simplicity, we first describe use of skeleton

probabilities for the simple case with no covariates, as in Model 3.2, and later sug-

gest modifications for the more complex settings. Our strategy of defining skeleton

probabilities and corresponding (transformed) dose values consistent with Model 3.2

is similar to that described by [O’Quigley et al., 1990, Lee and Cheung, 2009] in

the context of the continual reassessment method in phase I studies as well as other

contexts [Lee et al., 2011, Cheung and Elkind, 2010].

In our phase II setting, patients are given S1 = 6g/m2 of ifosamide or S2 =

12g/m2 of ifosamide over K = 4 cycles of treatment. Suppose qg is an initial guess

(skeleton probability) of a DLT at cycle one for dose Sg. Instead of using dose Sg in
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Model 3.2, we use dose values dg, g = 1, 2, satisfying ln(1− qg) = −dg. For example,

if we choose q1 = 0.10, the resulting d1 that stands in for 6g/m2 of ifosamide in Model

3.2 is d1 = −ln(1− 0.10) ≈ 0.11. In defining dg, we’ve conveniently normalized α to

1.0 if the skeleton probability for toxicity at cycle 1 is correct, making it easier to see

deviations from the skeleton in the posterior distribution of α. Skeleton probabilities

may be elicited from clinicians, previous animal studies or earlier phase clinical trials.

In Model 3.1, g1(α,Z), will be a known function of covariates, Z, and skeleton

probabilities for toxicity will need to be defined for reference values of Z in this

relationship. For example, in Section 3.4, we consider the effect of gender (M, F) on

α via g1(α,Z) = α1 + α2I(F). In this case, we use the male gender as the reference

group, normalizing α1 to one, as before, in obtaining d1 and d2 for this group. So the

posterior distribution for α1 deviating from one gives a sense of how on target the

skeleton probabilities for the men were on the two doses. The posterior distribution

of α2 gives a sense of the effect of female gender on the toxicity rates for cycle 1.

3.2.4 Prior selection and posterior distribution

Based on the study design, patients contribute to the likelihood until they expe-

rience a DLT or the final Kth cycle is completed. That is, a person with toxicity

on cycle Ki gives data (Yi,1 = 0, Yi,Ki−1 = 0, . . . , Yi,Ki = 1, Zi, di,1) and a contri-

bution to the likelihood as in equation 3.4. And a person completing K cycles

without toxicity gives data (Yi,1 = 0, . . . , Yi,K−1 = 0, Yi,K = 0, Zi, di,1) with likeli-
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hood contribution as in equation 3.5. In general, subject i on cycle k contributes

Li,k(Yi,k|α,β, ρ) = (pi,k)
Yi,k(1 − pi,k)1−Yi,k to the likelihood, with pi,k parameterized

as in equation 3.1 and interpreted as the the probability of toxicity on cycle k con-

ditional on having no prior DLTs in previous cycles. The resulting likelihood is,

L(Y |α,β, ρ) =
N∏
i=1

Ki∏
k=1

Li,k(Yi,k|α,β, ρ).

Our goal lies in estimating the posterior distribution of α, β and ρ and hence of pi,k.

Prior distributions on these parameters should reflect any auxiliary knowledge of

the study design, with a large prior variance when this knowledge is limited. We

first consider priors in the case with no covariates, so that g1(α,Z)=α, g2(ρ,Z)=ρ

and g3(β,Z) = β. Modifications of this approach for more complex settings will

be discussed after this more simple case is described. The priors are programmed

using just another Gibbs sampler (JAGS) rjags [Plummer, 2011] package through [R

Development Core Team, 2011].

3.2.4.1 Special case with no covariates

Recall that with no covariates, α relates to the probability of toxicity on cycle

one, with α = 0 implying no toxicity and increasing values of α giving larger toxicity

probabilities. The skeleton described in Section 3.2.3 is calibrated to give α =1 when

correctly specified. For many phase II trials the low dose is associated with very little
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or no toxicity on the first cycle, so that a prior with a pre-specified point mass at

α = 0 and ranging across non-negative values is desirable. In Appendix 3.6.1.1, we

describe our recommended prior on α, with cumulative distribution function (cdf)

Fα(α), mean µα = 1 and variance σ2
α, as a mixture distribution of a lognormal density

and a qα×100% point mass at zero. We denote the probability density function (pdf)

of the lognormal component of the mixture distribution as gα(x), with mean µg and

variance σ2
g . The cdf of α then becomes Fα(x) = qα + (1 − qα)

∫ x
0
gα(u)du. The

µg parameter of the lognormal distribution shifts as a function of the point mass

percentage to maintain a mean one prior; that is, µg = (1 − qα)−1 yields µα = 1.

The lognormal variance parameter, σ2
g depends on the desired variance for the prior

mixture, σ2
α, as well as the point mass probability, qα, that is, σ2

g = (1−qα)−1σ2
α−µ2

gqα.

For convenience, an example of JAGS code for generating this prior is included on

lines 10 through 17 of Appendix 3.6.1.3.

The ρ parameter (0 ≤ ρ ≤ 1) captures dependency in toxicity outcomes within a

patient, with values near zero indicating that the current toxicity outcome is virtually

unaffected by previous tolerance of dose and values near one indicating an almost

certain chance of tolerating previously administered doses. In Appendix 3.6.1.2, we

develop this prior as a mixture distribution of pre-specified qρ × 100% point masses

at 0 and 1 and a trapezoidal density with height b at zero and slope m = 2(1 − b)

comprising the remainder of the distribution over (0, 1). The cdf of ρ is Fρ(x) =

qρ + (1 − 2qρ)
∫ x

0
[b+ 2(1− b)u] du + qρI(x = 1). The b parameter governs whether
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the trapezoidal shape favors low or high values of ρ, with b = 1 reducing to a uniform

shape and b = 0 or b = 2 reducing to triangular shapes with positive and negative

slopes. An example of JAGS code for this prior is located on lines 18 through 30 of

Appendix 3.6.1.3.

The remaining prior that we define is for the β parameter, which captures the

effect of cumulative dose on the conditional probability of toxicity. When β = 0,

the probability of toxicity does not change based on cumulative dose. When β > 0,

toxicities are more likely to occur as dose accumulates. The model also allows the

possibility of developing an increased tolerance for dose with repeated exposure, that

is, β may be negative subject to the constraint that toxicity probabilities remain in

the [0, 1] range. A lower bound for β is obtained by noting that di,k = di,1 for k ≥ 1,

in equation 3.3 giving 0 < α(di,1 − ρdi,1) + β(k − 1)di,1 <∞,∀k. It is convenient to

define the prior in terms of a shared boundary at all cycles, β > −α(1− ρ)/(K − 1).

In particular, for the ifosamide study we investigate later, K = 4 cycles and the

lower boundary on the prior for β becomes −α(1− ρ)/3, depending on α and ρ.

In constructing a prior for β conditional on α and ρ, with cdf Fβ(β|α, ρ), we use

a Normal(µ, σ2) distribution truncated on the left by −α(1− ρ)/3. To program this

truncated Normal prior with mean µβ and standard deviation σβ in JAGS, we need to

input mean µ and standard deviation σ of an untruncated Normal distribution giving

mean µβ and variance σβ upon left truncation at −α(1− ρ)/3. This can be achieved

in the following way using JAGS. Expressions for deriving µβ and σβ based on known
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parameters (µ, σ2) of the untruncated Normal distribution exist [Johnson and Kotz,

1970, Greene, 2003]. The variance, σ, of the untruncated distribution is involved in

calculating both µβ and σβ for the truncated distribution so that arbitrary specifica-

tion of these prior parameters does not always give a viable untruncated distribution

to work with. The R function, findbetaroots, in Appendix 3.6.1.4 solves for param-

eters (µ, σ2) required by the JAGS program based on desired prior parameters for β,

(µβ, σβ) or indicates that no possible solution exists for that combination of values.

For convenience, Tables 3.8 and 3.9 lists helpful examples of prior parameters for β

and the corresponding parameters of the untruncated distribution that are used in

JAGS. An example of JAGS code for this prior on lines 31 through 37 of Appendix

3.6.1.3.

A few more definitions using Stieltjes notation help in characterizing the posterior

distribution. Let hα(α) = qαI(α = 0) + {1 − qα}I(α > 0)g(α) and hρ(ρ) = qρI(ρ =

0) + {1− 2qρ}I(0 < ρ < 1){b+ 2(1− b)ρ}+ qρI(ρ = 1) capture either a probability

mass or a density function as appropriate. In addition define dFα(α) = hα(α)dα and

dFρ(ρ) = qρI(ρ = 0) + {1 − 2qρ}I(0 < ρ < 1){b + 2(1 − b)ρ}dρ + qρI(ρ = 1). Also

let fβ(β|α, ρ) be the prior density function of β. The posterior distribution for α, β

and ρ given the observed data Y is then f(α, β, ρ|Y ) =

∏N
i=1

∏Ki
k=1 Li,k(Yi,k|α, β, ρ)fβ(β|α, ρ)hα(α)hρ(ρ)∫ 1

0

∫∞
0

[∫∞
−α(1−ρ)
K−1

∏N
i=1

∏Ki
k=1 Li,k(Yi,k|α, β, ρ)fβ(β|α, ρ)dβ

]
dFα(α)dFρ(ρ)

. (3.8)
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The posterior distribution of α, β, ρ from Model 3.2 can be estimated via Markov

Chain Monte Carlo (MCMC) methods [Robert and Casella, 1999] using JAGS [Plum-

mer, 2011] called in [R Development Core Team, 2011]. JAGS includes several al-

gorithms for sampling from the posterior distributions produced from the MCMC

iterations, for instance the standard Gibbs sampler is available for this purpose.

Parallel chains starting from different initial values for each parameter (α, β, ρ) are

followed through to convergence after an appropriate burn-in period. After conver-

gence the posterior distributions of the parameters are available as well as functions

of these parameters, such as the desired conditional toxicity profiles. The mean of

the posterior distributions are used as estimates of the quantities of interest.

3.2.4.2 Covariate specific priors

Priors from section 3.2.4.1 can be easily extended to allow dependence of α,ρ,β

on Z in Model 3.1. As an instructive example, we again consider the case where

Z includes gender (M, F) and dose group (d1, d2) so that g1(α,Z) = α1I(M, d1) +

α2I(M, d2) +α3I(F, d1) +α4I(F, d2) for a total of four required priors. Each of these

four priors can be built just as in Section 3.2.4.1 if there is no prior information

suggesting deviations from Model 3.2, i.e., the model that parameterizes a single

α to account for dose-toxicity on cycle 1. We include an additional subscript to

distinguish between priors for α. That is, with a qαj point mass at zero, the prior

for αj, j = 1, . . . , 4 has CDF Fαj(x) = qαj + {1 − qαj}
∫ x

0
gαj(u)du, where density
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function gαj(u) is a lognormal {(1 − qαj)−1, σ2
αj

= (1 − qαj)−1σ2
αj
− µ2

gj
qαj}. When

prior information on gender related toxicity is available, prior means of α3 and α4 may

be chosen to reflect this additional knowledge. The priors for α1 and α2 are generally

left with a mean of one since the skeleton discussed in Section 3.2.3 calibrated these

values to one based on initial assumptions about dose-toxicity on cycle 1. In the case

where we desire a prior with mean, µαj , and variance, σ2
αj

, we would define density

function gαj(x) as lognormal {µαj(1− qαj)−1, (1− qαj)(µ2
gj
qαj + σ2

gj
)}.

Prior parameterization of ρ is technically straightforward using trapezoidal shapes

described in section 3.2.4.1. However for limited sample sizes it makes sense to

model a common prior for ρ. Priors for α and ρ affect prior definition of β.

Recall that when parameterizing the prior for β in Section 3.2.4.1, the range of

the prior was [−α(1 − ρ)/(K − 1),∞), with negative β indicating an increased

dose tolerance upon repeated exposure and positive β indicating increased toxicity

with accumulating dose. Continuing our instructive example, suppose g3(β,Z) =

β1I(M, d1) + β2I(M, d2) + β3I(F, d1) + β4I(F, d2). Priors for each of the four β′s can

be constructed as in Section 3.2.4.1, provided that the lower bound of each βj is

maintained to be consistent with values of αj and ρ for those with the same covari-

ates, Z. In particular, in the case with gender and dose influencing all parameters,

the range of βj is restricted on the left by −αj(1− ρ)/3, j = 1, . . . , 4.

Depending upon the number of priors set up on α,ρ,β the likelihood and the

posterior distribution will change accordingly in Equation 3.8.
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For instance, assuming four subgroups for αj and βj, j = 1, . . . , 4 that correspond

to levels of gender and dose and assuming a common ρ across all Z, the posterior

distribution, f(α1, . . . , α4, β1, . . . , β4, ρ|Y ), becomes

∏4
j=1

∏Nj
i=1

∏Ki
k=1 Li,k(Yi,k|αj, βj, ρ)fβj(βj|αj, ρ)hαj(αj)hρ(ρ)∫ 1

0

[∏4
j=1

∫∞
0

{∫∞
−αj(1−ρ)

3

∏Nj
i=1

∏Ki
k=1 Li,k(Yi,k|αj, βj, ρ)fβj(βj|αj, ρ)dβj

}
dFαj(αj)

]
dFρ(ρ)

where
∑4

j=1Nj = N is the sum of patients in the four categories of gender and dose.

3.2.5 Model selection

There is no restriction requiring the same covariates be included in parameter-

izations of g1(α,Z), g2(ρ,Z) and g3(β,Z). We recommend two common model

selection criteria: (1) a plot of observed and predicted values of toxicity, along with

95% credible bands for the true probabilities of toxicity over the cycles. (2) The de-

viance information criteria (DIC) [Spiegelhalter et al., 2002] is calculated by adding

the effective number of parameters (pD) to the expected deviance, where the expected

deviance is the deviance at the posterior mean parameter values and the effective

number of parameters are estimated using the approach suggested by [Plummer,

2002, 2008]. Smaller DIC values indicate the preferred model.
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3.3 Operating characteristics

To study operating characteristics of Model 3.2 we consider a trial with two dose

groups (S1, S2) receiving a maximum of K = 4 cycles with 50 patients per group

for a total of N = 100 . Following Section 3.2.3, skeleton probabilities are set at

qg = (0.05, 0.10), that is, 5% and 10% of patients are expected to have a DLT on the

first cycle in the low and high dose groups, respectively. Then the transformed doses,

dg, g = 1, 2, used to stand in for Sg, g = 1, 2, in Model 3.2 become d1 = − ln(1−0.05)

and d2 = − ln(1−0.10). Model 3.2 defines conditional probabilities of toxicity during

the trial with α = 1 and varying values of β = {0, 0.2} and ρ = {0.25, 0.75}, i.e.,

4 different simulated cases. Simulated toxicity outcomes across cycles are based on

Bernoulli(pi,k) random variables until a DLT is observed or the 4th cycle is completed.

Five hundred independent datasets (simulation replications) were created to assess

coverage rates, bias and standard deviations.

Priors are set on α, β, ρ as in Section 3.2.4.1 for Model 3.2. In particular, the

prior on α is a mixture with point mass qα = 4% on zero and a lognormal density

component with parameters µg = 1.04 and σ2
g = 9.33 giving prior mean and variance

for α, µα = 1 and σ2
α = 9. The prior for ρ is a mixture with point masses qρ = 2%

at zero and one and an intercept b = 0.20 trapezoidal density, resulting in prior

mean and variance µρ = 0.6280 and σ2
ρ = 0.0736. This prior indicates a moderate

to high correlation in toxicity responses within-patient. The prior set on β is a

Normal distribution truncated at −1/3 having mean, µβ = 2 and variance, σ2
β = 4,
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providing a coefficient of variance of two. Since truncation of this distribution of β

is conditional on prior values of α and ρ, current values from the MCMC simulation

are used for the truncation point at each sampling. Based on Model 3.2, toxicity

probabilities are also sampled and monitored for convergence; an adaptive phase of

1,000 samples is used to choose the best sampling algorithm and an additional 10K

samples are discarded as part of the burn-in period.

The conditional probability of toxicity for each of the four simulated cases are

presented in Table 3.1 and displayed in Figure 3.3. Each of the four columns of Table

3.1 indicate treatment cycles during the study. Rows are separated according to

different parameter selections (cases) and dose group within case, d1 or d2. Reported

values are (1) the estimated conditional probability of toxicity for an arbitrary patient

i at cycle k, p̂i,k, (2) the mean bias, p̂i,k − pi,k, across 500 iterations (3) the mean

standard deviation (SD) of p̂i,k across 500 iterations, (4) the empirical SD of the 500

p̂i,k estimates, (5) the credible interval coverage rate of pi,k across the 500 iterations

and (6) the mean number of patients who enter the following cycle toxicity-free.

Within a particular case (1 - 4), the same posterior values of α, β and ρ are used to

calculate finite sample characteristics of the eight cells of dose and cycle combinations.

Table 3.1 indicates that estimates of the conditional probability of toxicity have

very low bias and that mean SD and empirical SD are comparable. This low bias is

evident in Figure 3.3 where solid shapes (true conditional probabilities) and hollow

shapes (estimated conditional probabilities) are very close to one another. In cases
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1 and 3, where ρ takes on the lower value of 0.25, there is a higher decrease in

the average number of patients making it through successive cycles as additional

patients exhibit toxicity patterns that remove them from the study. Cases 2 and

4, with ρ = 0.75, have a higher tendency to avoid toxicity once they have tolerated

their first cycle. In cases 3 and 4, where β = 0.2, there is a tendency for slightly more

patients to discontinue due to accumulated toxicity, particularly in cycles 3 and 4.

Case 4 shows the most impact of patients dropping out due to accumulating toxicity

in cycles 3 and 4, since in this case the high value of ρ = 0.75 usually causes those

with single dose susceptibility to be eliminated in cycle one rather than later cycles.

The major focus of estimation in these small studies is typically on estimated

probabilities of toxicity, which seem to have little bias regardless of the model’s

ability to clearly identify individual parameter estimates. However, we summarize

results from simulation studies of parameter estimates α̂, β̂ and ρ̂ in Table 3.2. Each

row corresponds to one of the four simulated cases and presents (1) the mean of

the estimated values, (2) the mean bias of the estimates from the true value of the

parameter, (3) the mean SD of the parameter estimates, (4) the empirical SD from

the 500 simulated datasets and (5) the coverage rate for the true parameter value in

the credible intervals.

Higher values of ρ make it easier to isolate information on β since after tolerating

cycle 1, toxicity observed after the first cycle is more likely to be caused by accu-

mulating toxicity captured by β. This is reflected in Table 3.2 cases 2 and 4 where
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ρ = 0.75 and bias for β is at its lowest. Lower values of ρ allow the current dose on

every cycle to play a higher role in the manifestation of the toxicity, so that infor-

mation on α is better identified. Table 3.2 cases 1 and 3, where ρ = 0.25, provide

the lowest bias in estimation of α by correctly attributing toxicity to the effect of

the current dose. The ability to estimate ρ, when the prior is not compatible with

the true model, is a challenge in these small studies. In additional simulations, not

shown, larger sample sizes do improve estimation of ρ, as well as the other param-

eters. As in all early phase studies, model assumptions are relied upon in making

inferences. In the following section we perform additional sensitivity analyses for

misspecification of the skeleton probabilities on estimation of conditional probability

of toxicity.

3.3.1 Sensitivity to choice of skeleton probabilities

Given fixed values of α = 1, β = 0.2 and ρ = 0.75, as in case 4 above, data was

simulated as before. Recall that the probabilities of toxicity during the first cycle

on doses 1 and 2 are 0.05 and 0.10 and that these probabilities were assumed in

creating the skeleton used for analysis in the previous section. As opposed to the

previous section, this section mis-specifies the probability skeleton when performing

the analysis. In scenario 1, a skeleton that is 1.5 times higher than that used to

generate the data is used in the analysis. That is, the probabilities of toxicity on

cycle one are assumed to be 0.075 and 0.150 for doses 1 and 2, respectively. In
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scenario 2, the probabilities of toxicity on cycle 1 were assumed to be 0.06 and 0.15

for the two dose levels, i.e., 20% and 50% overestimates of toxicity on cycle 1 for dose

levels 1 and 2, respectively. Otherwise, the assumed priors and estimation procedure

remained unchanged from the previous section.

Table 3.3 provides results on estimation of the conditional probabilities of toxicity

across 500 iterations of the simulation study. The columns correspond to the four

cycles. Within different skeleton misspecifications (scenarios 1 and 2) the rows are

grouped by the two dose levels, d1 or d2. Reported values are (1) the estimated

conditional probability of toxicity for an arbitrary patient i at cycle k, p̂i,k, (2)

the mean bias, p̂i,k − pi,k, across 500 iterations (3) the mean SD of p̂i,k across 500

iterations, (4) the empirical SD of the 500 p̂i,k estimates, (5) the credible interval

coverage rate of pi,k across the 500 iterations and (6) the mean number of patients

who enter the following cycle toxicity-free. Within a particular scenario (1 or 2), the

same posterior values of α, β and ρ are used to calculate finite sample characteristics

of the eight cells of dose and cycle combinations.

Results are comparable to those from case 4 in Table 3.1, where the correct

skeleton was used in the analysis. The only exception is seen in scenario 2, cycle 1,

dose 1, where bias is higher and coverage is lower than desired. Since the empirical

and mean SD are very close in this case, the coverage is likely being effected by the

bias for this term.
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3.4 Application to the ifosamide study

The original ifosamide study was a phase II randomized clinical trial comparing

the toxicity and efficacy of doxorubicin with high-dose ifosamide or standard-dose

ifosamide in patients with soft-tissue sarcoma [Worden et al., 2005, Chugh et al.,

2007]. The treatment was given for 4 consecutive days at the beginning of each 21

day cycle. The original study considered six cycles for metastatic disease and four

cycles for localized disease but for convenience we consider just the first four cycles

for each group. We evaluate 77 patients with data on toxicity, where 39 of these

were randomized to the standard 6g/m2 ifosamide dose group and 38 of these were

randomized to receive 12g/m2 of ifosamide. We use a patient’s minimum hemoglobin

(HGB) value during a cycle to define a DLT in this example, so that a patient is

removed from the study if their HGB value drops below 8 mg. This criteria is defined

as a grade 3/4 toxicity by NCI. Table 3.4 and Figure 3.1 present the empirical data

from the study with conditional probabilities at each of the four cycles for the two

dose groups.

Based on DIC criteria, Model 3.2 was improved by allowing differential cumulative

effects of dose by dose group resulting in Model 3.9 of the form:

ln(1− pi,k) = −α(di,1 − ρdi,k−1)− β1Di,kI(d1)− β2Di,kI(d2). (3.9)

Resulting empirical and model-based conditional probabilities of toxicity by dose
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group on each of four cycles are shown in Figure 3.4, along with 95% credible inter-

vals. Priors for α and ρ used to perform the analysis are identical to those used in

Section 3.3. Priors for β1 and β2 are identical to the prior used for β in Section 3.3.

Parameter estimates model are shown in Table 3.5 indicate indicate a particularly

high cumulative effect of the dose in patients on the high group.

Following Section 3.2.2, the total expected completed cycles for the low and

high dose groups, respectively, are 3.69 (3.68 observed on average) and 3.19 (3.23

observed on average) with corresponding expected total doses of 22.108 g/m2 (22.06

g/m2 observed on average) and 38.259 g/m2 (38.70 g/m2 observed on average). A

patient in the high-dose group tends to receive more total ifosamide than a patient

in the low-dose group before a DLT, but is less likely to successfully complete all

four cycles without a DLT 29.3% and 71.3% respectively.

Upon further study, DLTs in the high-dose group are especially high in women,

but not necessarily men, as seen in Figure 3.5 and Table 3.6. DIC criteria suggested

further improvement in the model with inclusion of gender terms for the parameter

α and gender by dose group terms for the cumulative toxicity. To account for the

steep quadratic trend in toxicities for the females on the high-dose group a quadratic

(squared) term was also included in the model and results in Model 3.10 as follows,

log (1− pi,k) = −{α1 + α2I(F )}(di,1 − ρdi,k−1)− β1Di,kI(M,d1)

− β2Di,kI(F, d1)− β3Di,kI(M,d2)− β4D
2
i,kI(F, d2).

(3.10)
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Figures 3.6 and 3.7 display the empirical and model-based conditional probabil-

ities of toxicity, along with 95% credible intervals, by gender on the low and high

dose groups, respectively, using Model 3.10. Priors were identical to those used in

Section 3.3. That is, priors on α1 and α2 were identical to the prior on α in Section

3.3, the prior on ρ was left unchanged, and priors on β1, β2, β3 and β4 were identical

to the prior used for β in Section 3.3.

Parameter estimates of the model are shown in Table 3.7 indicate that the toxicity

due to cumulative effect of the dose is high in females in comparison to males on

both the dose groups.

The total expected completed cycles for the low-dose female group is 3.55 (3.62

observed) with a total expected dose of 21.27 g/m2 (21.71 g/m2 observed). Women

on the high-dose are expected to complete 2.95 cycles (2.97 observed) with a total

expected dose of 35.44 g/m2 (35.59 g/m2 observed). Men are expected to complete

roughly the same number of cycles in the low and high dose groups, 3.78 (3.58) and

3.46 (3.36) cycles, respectively, for total expected doses of 22.70 g/m2 (21.49 g/m2)

and 41.51 g/m2 (40.28 g/m2) in the corresponding dose groups.

3.5 Discussion

We have presented a novel conditional probability model for the dose toxicity

relationship in data arising from a Phase II study setting having patients with mul-

tiple cycles of the same dose over their treatment course. The conditional nature of
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the model takes into account that patients having a DLT on a particular cycle will

not continue further cycles. The use of ρ allows dependence of toxicity in a current

cycle to depend on tolerance on previous cycles. The α and β parameters capture

the effect of current and cumulative dose effects at each cycle. This three parameter

model may be all that is estimable in small studies, but the model offers flexibility to

include additional parameters to account for covariate dependent effects on toxicity.

Priors and skeletons described in this work offer a wide variety of prior beliefs to

be included in the analyses. Our investigation of mis-specified skeleton probabilities

showed very little effect on model performance.

One limitation of the model is that there must be sufficient cycles in the study

to allow plausible estimation of ρ and β parameters that are based on data beyond

cycle one; two cycles would not be sufficient to disentangle the effects of cumulative

dose from tolerance to previous dose. As most studies of this type have between

three and six cycles of therapy, this limitation should not impede use of the model

in practice.



116

● ● ●

●

Cycles

C
on

di
tio

na
l P

(t
ox

ic
ity

)

● ● ●

●

● ● ●

●

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● Dose 6 mg
Dose 12 mg

Figure 3.1: Observed proportion of low HGB in continuing subjects with one stan-
dard error intervals in the ifosamide trial.



117

● ● ● ●

Cycle

C
on

di
tio

na
l P

(T
ox

ic
ity

)

1 2 3 4

0.
0

0.
2

0.
4

ρ = 0

β 
=

 0
 

●

● ● ●

Cycle

C
on

di
tio

na
l P

(T
ox

ic
ity

)

1 2 3 4
0.

0
0.

2
0.

4

ρ = 0.75

●

● ● ●

Cycle

C
on

di
tio

na
l P

(T
ox

ic
ity

)

1 2 3 4

0.
0

0.
2

0.
4

ρ = 1

● ● ● ●

Cycle

C
on

di
tio

na
l P

(T
ox

ic
ity

)

1 2 3 4

0.
0

0.
2

0.
4

β 
=

 0
.2

 

●

● ● ●

Cycle

C
on

di
tio

na
l P

(T
ox

ic
ity

)

1 2 3 4

0.
0

0.
2

0.
4

●

● ● ●

Cycle

C
on

di
tio

na
l P

(T
ox

ic
ity

)

1 2 3 4

0.
0

0.
2

0.
4

Figure 3.2: Conditional P(Toxicity) on cycle k, pi,k based on Model 3.2, for two
dose levels with α = 1, β = (0, 0.2) and ρ = (0, 0.75, 1). Solid triangles and circles
correspond to the high and low dose groups respectively.
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Figure 3.3: Simulation study results. Plot of conditional P(Toxicity), based on
equation 3.2 for two dose levels with α = 1 β = (0, 0.2) and ρ = (0.25, 0.75). Cases
1 through 4 in the Table 3.1. The panels in the first and second column correspond
to β = 0 and β = 0.2 respectively while the top row corresponds to ρ = 0.25 and
the bottom row to ρ = 0.75. The solid circles and triangles are the true values of
the conditional P(toxicity) at each of the cycles on the lower and higher dose group
respectively. The corresponding hollow circles and triangles are the average of the
estimates of the values and the average of the limits of the 95% credible bands.
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Figure 3.5: Empirical conditional probabilities of toxicity for patients on the low (in
solid circles) and high (in solid triangles) dose groups by gender, males in solid lines
and females in dotted lines.



120

●
●

●
●

Cycles

C
on

di
tio

na
l P

(T
ox

ic
ity

)
●

●
●

●

● ●

●

●
●

●

●

●

● ●

●

●

1 2 3 4

0.
0

0.
2

0.
4

●

●

Males 6 mg
Females 6 mg

Figure 3.6: Estimates of the conditional probabilities of toxicity from Model 3.10
for patients on the low dose group in hollow circles with empirical values in solid
circles, using two different β terms to estimate the cumulative effect for males (solid
lines) and females (dotted lines).
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Figure 3.7: Estimates of the conditional probabilities of toxicity from Model 3.10 for
patients on the high dose group in hollow triangles with empirical values in solid
triangles, using two different β terms to estimate the cumulative effect for males
(solid lines) and females (dotted lines).
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Table 3.1: Estimates of conditional probability of toxicity based on Model 3.2 from 500 simulated datasets
containing N = 100 patients receiving one of two dose groups d1 and d2 over four cycles. Results presented
for α = 1 and various combinations of β = (0, 0.2) and ρ = (0.25, 0.75)

Cycle 1 2 3 4
Case 1: α = 1 β = 0 ρ = 0.25

d1 Mean Estimated p̂ik 0.0480 0.0335 0.0400 0.0464
Mean Bias p̂ik -0.0020 -0.0043 0.0023 0.0087
Mean SD p̂ik 0.0158 0.0093 0.0097 0.0153
Empirical SD p̂ik 0.0157 0.0077 0.0092 0.0145
Coverage rate of pik 93.0 94.6 95.2 92.8
Average patients 47.5 45.8 44.0 42.4

d2Mean Estimated p̂ik 0.0956 0.0674 0.0803 0.0926
Mean Bias p̂ik -0.0044 -0.0086 0.0043 0.0166
Mean SD p̂ik 0.0305 0.0183 0.0191 0.0297
Empirical SD p̂ik 0.0305 0.0152 0.0181 0.0282
Coverage rate of pik 93.0 94.6 95.2 92.8
Average patients 45.1 41.7 38.5 35.6

Case 2: α = 1 β = 0 ρ = 0.75
d1Mean Estimated p̂ik 0.0443 0.0161 0.0162 0.0163

Mean Bias p̂ik -0.0057 0.0034 0.0035 0.0036
Mean SD p̂ik 0.0153 0.0071 0.0059 0.0085
Empirical SD p̂ik 0.0157 0.0051 0.0051 0.0073
Coverage rate of pik 89.8 99.2 94.6 96.2
Average patients 47.5 46.9 46.8 45.8

d2 Mean Estimated p̂ik 0.0883 0.0327 0.0330 0.0331
Mean Bias p̂ik -0.0117 0.0067 0.0070 0.0071
Mean SD p̂ik 0.0297 0.0142 0.0119 0.0170
Empirical SD p̂ik 0.0305 0.0102 0.0103 0.0147
Coverage rate of pik 89.8 99.2 94.6 96.2
Average patients 44.9 43.9 42.7 41.6

Case 3: α = 1 β = 0.2 ρ = 0.25
d1Mean Estimated p̂ik 0.0498 0.0435 0.0603 0.0765

Mean Bias p̂ik -2e-04 -0.0040 0.0030 0.0096
Mean SD p̂ik 0.0163 0.0103 0.0123 0.0191
Empirical SD p̂ik 0.0155 0.0086 0.0122 0.0183
Coverage rate of pik 95.2 95.0 95.0 92.6
Average patients 47.4 45.1 42.4 39.5

d2Mean Estimated p̂ik 0.0991 0.0872 0.1195 0.1501
Mean Bias p̂ik -9e-04 -0.0081 0.0054 0.0176
Mean SD p̂ik 0.0315 0.02 0.0235 0.0359
Empirical SD p̂ik 0.0301 0.0169 0.0234 0.0344
Coverage rate of pik 95.2 95.0 95.0 92.6
Average patients 44.9 40.7 36.1 31.3

Case 4: α = 1 β = 0.2 ρ = 0.75
d1Mean Estimated p̂ik 0.0444 0.0272 0.0359 0.0444

Mean Bias p̂ik -0.0056 0.0044 0.0031 0.0018
Mean SD p̂ik 0.0153 0.0084 0.0091 0.0139
Empirical SD p̂ik 0.0162 0.0064 0.0088 0.0134
Coverage rate of pik 89.8 98.0 95.2 96.4
Average patients 47.5 46.5 44.9 43.1

d2Mean Estimated p̂ik 0.0885 0.0549 0.0721 0.0887
Mean Bias p̂ik -0.0115 0.0086 0.0060 0.0031
Mean SD p̂ik 0.0297 0.0166 0.0180 0.0271
Empirical SD p̂ik 0.0315 0.0128 0.0173 0.0261
Coverage rate of pik 89.8 98.0 95.2 96.4
Average patients 45.1 42.9 40.1 36.8

1 SD refers to the standard deviation of the estimates.
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Table 3.2: Estimates of parameters based on Model 3.2 from 500 simulated datasets
containing N = 100 patients receiving one of two dose groups d1 and d2 over four
cycles. Results presented for α = 1 and various combinations of β = (0, 0.2) and
ρ = (0.25, 0.75).

α β ρ
Case 1 : α = 1, β = 0, ρ = 0.25

Estimated Value 0.9651 0.1332 0.4370
Mean Bias -0.0349 0.1332 0.1870
Mean SD 0.3260 0.1672 0.2652
Empirical SD 0.3232 0.1446 0.1357
Coverage rate 93.0 89.2 99.6

Case 2 : α = 1, β = 0, ρ = 0.75
Estimated Value 0.8886 0.0022 0.6025
Mean Bias -0.1114 0.0022 -0.1475
Mean SD 0.3153 0.1027 0.2560
Empirical SD 0.3227 0.0729 0.1375
Coverage rate 89.8 99.8 99.8

Case 3 : α = 1, β = 0.2, ρ = 0.25
Estimated Value 1.0018 0.3455 0.4649
Mean Bias 0.0018 0.1455 0.2149
Mean SD 0.3382 0.1982 0.2761
Empirical SD 0.3203 0.1608 0.1287
Coverage rate 95.2 93.2 99.8

Case 4 : α = 1, β = 0.2, ρ = 0.75
Estimated Value 0.8909 0.1758 0.5626
Mean Bias -0.1091 -0.0242 -0.1874
Mean SD 0.3153 0.1438 0.2724
Empirical SD 0.3331 0.1193 0.1329
Coverage rate 89.8 98.0 99.0
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Table 3.3: Estimates of conditional probability of no toxicity based on Model 3.2
from 500 simulated datasets containing N = 100 patients receiving one of two dose
groups d1 and d2 over four cycles. Results presented for α = 1, β = 0.2 and ρ = 0.75
for different mis-specified probability skeletons.

Cycle 1 2 3 4
Scenario 1: d1 = 0.0780, d2 = 0.1625

d1

Mean Estimated p̂ik 0.0456 0.0271 0.0357 0.0441
Mean Bias p̂ik -0.0044 0.0043 0.0029 0.0014
Mean SD p̂ik 0.0155 0.0084 0.0091 0.0139
Empirical SD p̂ik 0.0157 0.0064 0.0088 0.0132
Coverage rate of true pik 93.2 97.6 94.8 96.2
Average patients 47.5 46.432 44.8 42.9
d2

Mean Estimated p̂ik 0.0922 0.0556 0.0728 0.0893
Mean Bias p̂ik -0.0078 0.0093 0.0066 0.0036
Mean SD p̂ik 0.0304 0.0170 0.0181 0.0273
Empirical SD p̂ik 0.0308 0.013 0.0176 0.0261
Coverage rate of true pik 94.4 97.6 94.6 96.6
Average patients 45.0 42.9 40.1 36.7

Scenario 2: d1 = 0.0620, d2 = 0.1625
d1

Mean Estimated p̂ik 0.0389 0.0232 0.0306 0.0379
Mean Bias p̂ik -0.0111 4e-04 -0.0022 -0.0048
Mean SD p̂ik 0.0133 0.0072 0.0078 0.0119
Empirical SD p̂ik 0.0135 0.0055 0.0076 0.0114
Coverage rate of true pik 84.2 97.6 93.4 92.8
Average patients 47.5 46.4 44.8 42.9
d2

Mean Estimated p̂ik 0.0982 0.0596 0.0781 0.0959
Mean Bias p̂ik -0.0018 0.0133 0.012 0.0102
Mean SD p̂ik 0.0323 0.0181 0.0194 0.0292
Empirical SD p̂ik 0.0329 0.0139 0.0190 0.0280
Coverage rate of true pik 93.0 96.0 92.2 95.0
Average patients 45.0 42.9 40.1 36.7
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Table 3.4: Grade 3/4 dose dose limiting toxicities (DLTs) observed when the
hemoglobin levels dropped below 8mg on the two dose groups in patients completing
the previous cycle without a DLT over the four cycles of treatment.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
dose 6 2/39 2/35 2/29 3/24
dose 12 3/38 4/31 9/24 6/15

Table 3.5: Parameter estimates of the parameters with SD obtained using Model 3.9

Estimate SD
α 0.76 0.33
β1 0.81 0.37
β2 1.66 0.44
ρ 0.54 0.30
DIC 167.90 -

Table 3.6: Dose limiting toxicities (DLTs), grouped by gender, inpatients completing
the previous cycle without a DLT when the hemoglobin levels dropped below 8mg
over four cycles of the treatment

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Males

dose 6 1/20 1/17 0/14 1/13
dose 12 0/18 2/15 3/12 1/9

Females
dose 6 1/19 1/18 2/15 2/11
dose 12 3/20 2/16 6/12 5/6
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Table 3.7: Parameter estimates of the parameters with SD obtained using Model
3.10

Estimate SD
α1 0.49 0.33
α2 0.60 0.53
β1 0.58 0.42
β2 1.33 0.65
β3 0.97 0.43
β4 15.62 4.70
ρ 0.55 0.30
DIC 160.49 -

3.6 Appendix

3.6.1 Further details on prior distributions discussed in Section 3.2.4.1

3.6.1.1 Prior distribution for α

Recall that α is a mixture distribution of a lognormal random variable and a

point mass at zero of size qα. In the case with no covariates, the prior mean of α

should be 1.0 to be consistent with skeleton calibration beliefs described in Section

3.2.3. When α depends on covariates, we may desire more flexibility in defining prior

means. In this section, we derive parameters for the lognormal component of the

mixture distribution that give desired means and variances of the overall mixture

distribution. Let X be the lognormal random variable in the mixture distribution

of α with density gα(x), mean µg and variance σ2
g . If B is Bernoulli(qα) then the

mixture random variable we desire can be written as α = (1−B) ∗X. The mean of
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α is

µα = E{E(α|B)} = E{(1−B)E(X)} = µg ∗ (1− qα).

When qα = 1, E(α) becomes 0 as we would expect if the prior was a point mass at

zero, and qα = 0 gives E(α) = µg, the mean of the lognormal, X. For 0 < qα < 1, we

can obtain a mean µα prior for α by defining the mean of X to be µg = µα(1−qα)−1.

The variance of α is

σ2
α = V {E(α|B)}+ E{V (α|B)}

= V {µg(1−B)}+ E{(1−B)2σ2
g}

= µ2
gqα(1− qα) + σ2

g(1− qα)

= (1− qα)(µ2
gqα + σ2

g)

Again, qα = 1 gives σ2
α = 0 (pointmass) and qα = 0 gives σ2

α = σ2
g , the variance of

the lognormal. For 0 < qα < 1, we can obtain prior variance σ2
α for α by defining

σ2
g = (1− qα)−1σ2

α − µ2
gqα. Appendix 3.6.1.3, includes code for this prior on lines 10

through 17.

3.6.1.2 Prior distribution for ρ

Recall that ρ ∈ [0, 1] follows a mixture distribution with qρ × 100% point masses

at 0 and 1 and a trapezoidal density shape for 0 < ρ < 1. The family of trapezoidal

density shapes included in the mixture distribution for ρ is a special case of that
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seen in [van Dorp and Kotz, 2003] and [van Dorp et al., 2007]. In this section we

define the mixture distribution for ρ in more detail and give means and variances

associated with this prior distribution.

We define the random variable, X, to have density gρ(x) = I(0 < x < 1)(mx+ b),

with b and m standing in for the intercept and slope of the line that determines

the trapezoidal density shape over (0, 1). To be a proper density function that

integrates to 1.0 the constraint m = 2(1 − b) must be satisfied. Hence, although

m is convenient for defining the trapezoidal shape, gρ(x) may be defined in terms

of b only, gρ(x) = b + 2(1 − b)x. The expected value and variance of X are found

to be (4 − b)/6 and (2 + 2b − b2)/36 respectively. Special cases include (i) b=0,

giving gρ(x) = 2x, with a positive slope and higher mass on values favoring one

(mean=2/3); (ii) b=1, giving gρ(x) = 1, a Uniform distribution, (mean=1/2); and

(iii) b = 2, giving gρ(x) = 2 − 2x with a negative slope and higher mass on values

closer to zero (mean=1/3).

To incorporate X into a mixture distribution with point masses at 0 and 1, we

define a multinomial random variable M = (M1,M2,M3), where M1,M2 and M3 are

dependent Bernoulli random variables with M1 + M2 + M3 = 1 and probabilities

(qρ, 1− 2qρ, qρ).
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The mixture distribution of ρ can be written as M2X +M3, that is,

ρ =


0 when M1 = 1, with probability qρ

X when M2 = 1, with probability 1− 2qρ

1 when M3 = 1, with probability qρ

The CDF of ρ becomes,

Fρ(x) = P (M1 = 1) + P (ρ ≤ x|M2 = 1)P (M2 = 1) + I(x = 1)P (M3 = 1)

= qρ + (1− 2qρ)

x∫
0

[b+ 2(1− b)u] du+ qρI(x = 1).

Also,

E(ρ) = E(M2X +M3)

= E(M2)E(X) + E(M3)

= (1− 2qρ)E(X) + qρ

= (1− 2qρ)(
4− b

6
) + qρ.
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and

V (ρ) = V {E(ρ|M)}+ E{V (ρ|M)}

V {E(ρ|M)} = V {E(M2X +M3)|M}

= V {M2E(X) +M3)}

= E(X)2V (M2) + V (M3) + 2E(X)Cov(M2,M3)

= E(X)2(1− 2qρ)2qρ + qρ(1− qρ)− 2E(X)(1− 2qρ)qρ

= 2E(X)(1− 2qρ)qρ{E(X)− 1}+ qρ(1− qρ)

E{V (ρ|M)} = E{V (M2X +M3)|M}

= E{V (M2X)|M}

= E{M2
2V (X)}

= V (X)E(M2
2 )

= V (X){1− 2qρ}



130

V (ρ) = 2E(X)(1− 2qρ)qρ{E(X)− 1}+ qρ(1− qρ) + V (X){1− 2qρ}

= 2

(
4− b

6

)
(1− 2qρ)qρ

{
4− b

6
− 1

}
+ qρ(1− qρ) + {1− 2qρ}

{
2 + 2b− b2

36

}
= qρ(1− qρ)− 2

(
(4− b)(b+ 2)

36

)
(1− 2qρ)qρ + {1− 2qρ}

{
2 + 2b− b2

36

}
=

3− (1− b)2

36
+

(
1

2
+
−(8 + 2b− b2)− (2 + 2b− b2)

36

)
2qρ +

(
4(8 + 2b− b2)

36
− 1

)
q2
ρ

=
3− (1− b)2

36
+

(
1

2
+
−10− 4b+ 2b2)

36

)
2qρ +

(
(8 + 2b− b2)− 9

9

)
q2
ρ

=
3− (1− b)2

36
+

(
18− 10− 4b+ 2b2)

36

)
2qρ +

(
(−1 + 2b− b2

9

)
q2
ρ

=
3− (1− b)2

36
+
b2 − 2b+ 4

9
qρ −

(1− b)2

9
q2
ρ

When qρ = 0, the mean and variance of ρ are those of the trapezoidal distribution,

X, defined earlier. Table 3.10 summarizes values of E(ρ), V (ρ) and m by choices for

b and qρ. Appendix 3.6.1.3, includes code for this prior on lines 18 through 30.

3.6.1.3 Outline of the code written in JAGS

The code presented below corresponds to the applying the model to the data as

presented in Section 3.4 for the simple case with no covariates.

#Defining the model.bug file1

model {2

c < − 1000 #a constant used in defining the mixture prior3

#Define the likelihood for each of the N subjects4

for (i in 1:N) {5
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prob[i]< − 1- exp( -alpha* ( dose[i] - rho*maxprevdose[i])*step(dose[i] -rho*maxprevdose[i])6

- beta*cumdose[i])7

response[i] ∼ dbern(prob[i]) }8

#Setting up the priors9

#prior on α - E(α) = 1 and V ar(α) = 9 and qα = 0.04, the point mass at zero10

Using these values µg = (1 − 0.04)−1 = 1.04 and σ2
g = (1 − qα)−1σ2

α − µ2
gqα = 9.3311

the mean and variance for the random variable X described in 3.6.1.1.12

mu1 < − -1.09313

tau1 < − 0.441614

alpha1 ∼ dlnorm(mu1,tau1)15

alphazero ∼ dbern(0.96) #point mass of 0.04 at zero16

alpha < − (1-alphazero)*0 + alphazero*alpha117

#prior on ρ based on 3.6.1.218

intercept < − 0.20 ; slope < − 2 - 2*intercept19

zero1 ∼ dpois(phi1)20

phi1< − -log(intercept + slope*(rho1)) +c21

rho1 ∼ dunif(a1,b1)22

a1 < − 0 b1 < − 123

#Mimicking the Multinomial by using a Uniform distribution for the two point24

masses25

u ∼ dunif(0,1)26

z1 < −(u <= 0.04)27

z2 < −(u > 0.04&u < 0.96)28

z3 < −(u >= 0.96)29

rho < −z1 ∗ 0 + z2 ∗ rho1 + z3 ∗ 130

#Truncated Normal prior on β - µbeta = −5.44 and σ2
β = 1/0.047 = 21.3731

# Using the zeroes trick to simulate a non-standard prior32

zero ∼ dpois(phi)33

phi < − 0.047*0.5*pow(beta+5.44,2) +c34

beta ∼ dunif(a2,b2)35

a2 < − -alpha*(1-rho)/436

b2 < − 100037

#calculate the probabilities of toxicity38

#define the two dose groups39

d1 < −-log(1-0.05)40

d2 < −-log(1-0.10)41

#probability of no toxicity on each of the four cycles for the lower dose group42

prob11 < − exp(-alpha*d1)43
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prob12 < − exp(-alpha*(d1-rho*d1)*step(d1-rho*d1) - beta*d1)44

prob13 < − exp(-alpha*(d1-rho*d1)*step(d1-rho*d1) - beta*2*d1)45

prob14 < − exp(-alpha*(d1-rho*d1)*step(d1-rho*d1) - beta*3*d1)46

#probability of no toxicity on each of the four cycles for the higher dose group47

prob21 < − exp(-alpha*d2)48

prob22 < − exp(-alpha*(d2-rho*d2)*step(d2-rho*d2) - beta*d2)49

prob23 < − exp(-alpha*(d2-rho*d2)*step(d2-rho*d2) - beta*2*d2)50

prob24 < − exp(-alpha*(d2-rho*d2)*step(d2-rho*d2) - beta*3*d2)51

}52

#Initializing the parameters53

inits< −list(list(zero=0,zero1=0,alpha1=1,beta=0.1,rho1=0.2,u=0.2,alphazero=0 ),54

list(zero=0,zero1=0,alpha1=.5,beta=0,rho1=0.8,u=0.2,alphazero=0 ) )55

parameters < −c(“alpha”,“beta”, “rho”,“prob11”,“prob12”,“prob13”,“prob14”,56

“prob21”,“prob22”,“prob23”,“prob24”)57

#updating the simulations58

data < −list(“response”=response,“maxprevdose”=maxprevdose,59

“cumdose”=cumdose,“dose”=dose,“N”=N)60

jags < − jags.model(file=”prior.bug”, data = data, inits=inits, n.chains = 2, n.adapt61

= 5000)62

adapt(jags,n.iter=1000)63

update(jags,20500) # burin samples64

sim1< −coda.samples(jags, parameters, 100000,thin=20)65

#check for convergence66

plot(sim1)67

gelman.plot(sim1)68

gelman.diag(sim1)69

geweke.plot(sim1)70

geweke.diag(sim1)71

autocorr(sim1)72

autocorr.plot(sim1)73

#Monitor DIC74

sim1.dic< −dic.samples(jags, n.iter=40000,n.thin=35, type=”pD”)75

#report the mean and quantiles of the posterior distributions76

y3< −summary(sim1)77

ystat< −data.frame(y3statistics)78

yquant = data.frame(y3quantiles)79
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3.6.1.4 Function code in R to find the parameters of the truncated Nor-
mal for β prior

# x[1] is the mean µβ and x[2] is the standard deviation or σβ1

# y[1] gives the mean µ and y[2] the corresponding σ.2

findbetaroots = function(x) {3

y = numeric(2)4

a.low=0 #the truncation point when ρ = 05

a.low=-1/3 # the truncation point when ρ 6= 06

pdf.fun = dnorm( (a.low-x[1]/x[2]),0,1)7

cdf.fun= 1-pnorm((a.low-x[1])/x[2],0,1)8

y[1]=x[1] + x[2]*pdf.fun/cdf.fun - 39

alp= a.low - x[1]/ x[2]10

delta.alp=pdf.fun/cdf.fun * (pdf.fun/cdf.fun - alp)11

y[2]=x[2]2 * (1-delta.alp) - 312

}13

xstart = c(-2,5)14

out=nleqslv(xstart, findbetaroots, control=list(btol=.01))15

Table 3.8: Parameters for obtaining truncated Normal prior, fβ(β|α, ρ) ∼ N(µ, σ2)
on β from a Normal(µβ, σ

2
β) distribution truncated at zero.

µ/σ2 0.5 1 2 3 4 5
1 0.40, 1.10 - - - - -
2 2.00, 0.51 1.89, 1.21 0.80, 4.39 -5.16, 17.32 - -
3 2.99, 0.50 2.99, 1.01 2.89, 2.30 2.57, 4.28 1.83, 7.50 0.31, 13.08
4 4.00, 0.50 3.99, 1.00 3.98, 2.04 3.93, 3.28 3.79, 4.82 3.54, 6.81
5 5.00, 0.50 4.99, 1.00 4.99, 2.00 4.99, 3.06 4.95, 4.22 4.89, 5.56
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Table 3.9: Parameters for obtaining truncated Normal prior, fβ(β|α, ρ) ∼ N(µ, σ2)
on β from a Normal(µβ, σ

2
β) distribution truncated at −1/3, α = 1, ρ = 0, k = 3.

µ/σ2 0.5 1 2 3 4 5
1 0.90, 0.64 -0.26, 2.68 - - - -
2 2.00, 0.50 1.96, 1.09 1.54, 3.08 -0.028, 7.73 -5.44, 21.37 -42.64, 109.16
3 2.99, 0.50 2.99, 1.00 2.95, 2.16 2.77, 3.75 2.83, 6.06 1.64, 9.52
4 4.00, 0.50 3.99, 1.00 3.99, 2.02 3.96, 3.17 3.88, 4.53 3.72, 6.21
5 5.00, 0.50 5.00, 1.00 4.99, 2.00 4.99, 3.03 4.97, 4.15 4.93, 5.38

Table 3.10: Values of slope m,E(ρ) and V (ρ) for different values of the intercept b
and point mass qρ based on the expressions derived in Section 3.6.1.2

qρ=0 qρ=0.02 qρ=0.04
b = 0,m = 2 0.6670, 0.0556 0.6600, 0.0644 0.6533, 0.0732
b = 0.2,m = 1.6 0.6330, 0.0656 0.6280, 0.0736 0.6227, 0.0816
b = 0.4,m = 1.2 0.6000, 0.0733 0.5960, 0.0808 0.5920, 0.0882
b = 0.6,m = 0.8 0.5667, 0.0789 0.5640, 0.0859 0.5613, 0.0929
b = 0.8,m = 0.4 0.5333, 0.0822 0.5320, 0.0890 0.5307, 0.0957
b = 1,m = 0 0.5000, 0.0833 0.5000,0.0900 0.5000, 0.0967
b = 1.2,m = −0.4 0.4667, 0.0822 0.4680, 0.0890 0.4693, 0.0957
b = 1.4,m = −0.8 0.4333, 0.0789 0.4360, 0.0859 0.4387, 0.0929
b = 1.6,m = −1.2 0.4000, 0.0733 0.4040, 0.0808 0.4080, 0.0882
b = 1.8,m = −1.6 0.3667, 0.0656 0.3720, 0.0736 0.3773, 0.0816
b = 2.0,m = −2.0 0.3333, 0.0556 0.3400, 0.0644 0.3467, 0.0732



CHAPTER 4

Adaptive Phase I Clinical Trial Design Using

Markov Models in Oncology for Patients with

Ordinal Outcomes with Repeated Measures

4.1 Introduction/Background

Most dose finding clinical trial designs including the ‘3+3’ [Storer, 1989] and

the continual reassessment method (CRM) [O’Quigley et al., 1990] are based on

dichotomizing the response into either a dose limiting toxicity (DLT) or no DLT,

typically using the Common Toxicity Criteria defined by National Cancer Institute

[NCI, 2003] that classifies grade 3 or higher toxic response as DLT. The literature that

considers expanded levels of toxicity [Iasonos et al., 2011, Lee et al., 2012, Ivanova

and Kim, 2009] confirms loss of information by grouping grade 1 or 2 toxicities into

the ‘no DLT’ category. There are many examples of the extension of the CRM to

an ordinal response [Lee et al., 2011, Van Meter et al., 2012, 2011, Bekele and Thall,

135
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2004, Yuan et al., 2007, Wang et al., 2000] showing benefits in using ordinal response

outcomes but are primarily for trials involving single dose administrations of the

drug to the patient.

Instead of allowing patients to receive only a single dose, [Simon et al., 1997]

provided the rationale for the accelerated titration design where patients could have

intra-patient dose escalation. A random effects models with a continuous response

was considered in this design with cut-offs for classifying the toxicity into four cat-

egories. This model was used to simulate data for the evaluation of the accelerated

titration method, but the model was not used for data analysis. Motivated by con-

siderations of pharmacokinetics [Legedza and Ibrahim, 2000] developed a model for

repeated toxicity measures for each patient but dichotomized the response at each

cycle for the patients. Both these methods assumed that the dose would remain

constant for the patient on every cycle in the study.

There are ethical benefits in allowing a patient to receive a higher dose on subse-

quent cycles if no DLTs are manifested in the previous cycles. Alternatively the dose

could be reduced if a higher than expected number of toxicities are observed in other

patients in the study. Such a study conduct with repeated doses per patient in a

binary outcome setting has been described in Chapter 2. Potential efficiency gains in

estimating the dose-toxicity relationship through use of dose escalation/de-escalation

have also been demonstrated in Chapter 2 especially in the setting of small sample

sizes.
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The use of ordinal outcomes is especially important in the setting when a patient

is allowed to have multiple doses with possible dose escalation schemes so that the

dose could be de-escalated or kept the same on the next cycle if a mild toxicity

is observed on the current cycle. More recently [Doussau et al., 2013] provided a

mixed effects proportional odds model to incorporate ordinal outcomes in a phase I

setting to identify the probability of a severe toxicity and trend in risk of toxicity

with time at the end of the trial. This method does not explicitly model the tendency

to discontinue cycles for patients who have demonstrated previous DLT, although

the resulting estimated toxicity rates may be conditional in nature. In addition the

cumulative effect of the dose is not captured and patients are not allowed to escalate

or de-escalate doses. In this setting where there are multiple cycles, doses may change

and there are more than two levels of toxicity a large number of parameters may be

necessary to capture all features of the dose-toxicity relationship. Furthermore, with

the typically small sample size available for modeling purposes, a Bayesian approach

is an attractive alternative. The ordinal Markov model presented in this chapter

is an extension to the dichotomous Markov Model 2.1 from Chapter 2 which is an

example of transitional models with Markov chains [Agresti, 2002] considering the

toxicity on previous cycles.

In this chapter we will discuss extensions to the Markov Model in Chapter 2 for

ordinal outcomes in phase I clinical trials using the concepts of the cumulative logit

models. The binary outcomes are extended to three ordinal outcomes - none, mild
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and severe denoted by 1, 2 and 3 respectively. A patient experiencing a severe toxicity

would be considered a DLT and would not receive any further doses, while patients

having a mild or no toxicity on the previous cycle would be considered eligible for

further dose assignments. If a patient experiences a severe toxicity on any cycle they

are typically taken off the study and they would not provide further data for the

assessment of toxicity. The data for each patient would either consist of a series of

ones (for example 11111) for a patient with no toxicity or a series of ones with some

mild toxicities, (for example 1122) and some terminating with a severe toxicity (for

example 11223). Typically in practice if a mild toxicity is observed the dose is lowered

or kept the same on the next cycle. As an alternative to the 2 state Markov model

we develop a three state Markov model with the states being 1, 2 and 3. Because 3 is

a terminating state, we only need to consider the transition probabilities out of state

1 and 2. We explicitly model conditional probabilities of toxicity in a cycle given

that the patient is either toxicity-free or has mild toxicities to date. The proposed

model allows for a cumulative effect of dose on toxicity after the first cycle and allows

covariates to influence the toxicity profile over cycles. A parameter is included to

reflect an individual’s tendency to respond consistently with past dose experience.

Another parameter is included to account for the ordinal responses. In Section

4.2, we formulate the model, describe the Bayesian estimation method and provide

intuition on model behavior. We then study finite sample operating characteristics

and adaptive design through simulations in Sections 4.3 and 4.4 respectively and end
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with a discussion in Section 4.5.

4.2 Methodology

4.2.1 Notation and data structure

We assume that there are five increasing dose levels of an experimental study

drug represented by dg, g = 1, . . . 5, that will be studied in i = 1 . . . N patients.

Each patient i completes Ki ≤ 6 cycles, where Ki may be less than six if a patient

experiences a DLT. On each cycle k = 1, . . . , Ki, patient i receives a dose di,k equal to

one of the five values of dg. The toxicity response for patient i on cycle k is Yi,k with

Yi,k = 1 indicating none toxicity and Yi,k = 2 or Yi,k = 3 indicating a mild or severe

toxicity respectively. Patients stop receiving further administrations of the the drug if

they experience a severe toxicity which is usually a DLT. Thus the possible patterns of

Yi,k values for a patient are a sequence of ones or a sequence of ones and twos followed

by a three. The observed data is {(Yi,1, . . . , Yi,Ki , di,1, . . . , di,Ki), i = 1, . . . , N}. A

patient’s cumulative dose prior to cycle k = 1, . . . , Ki is Di,k =
∑k

j=1 di,j−1, so that

Di,1 = 0.

Borrowing on the idea from Chapter 2, the history of tolerating the previous doses

is captured through the dose term d‡i,k which is designed to represent the maximum

dose level a patient has tolerated with no toxicity on the past cycles. If a patient i

had a mild toxicity on any dose level then d‡i,k = φ×min (di,j | Yi,j = 2, j = 1 . . . k−1)
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and if the patient had no toxicities in the past then d‡i,k = max(di,j × I [Yi,j=1], j =

1 . . . k−1), where I [Yi,j=1] denotes the indicator function that takes value 1 if Yi,j = 1

and 0 otherwise. The intuition behind this is that the maximum dose level tolerated

is set to be slightly lower by a factor φ, than the minimum dose at which the mild

toxicity occurred. Note that d‡i,k = 0 for cycle k = 1.

4.2.2 Proposed Markov model

For a patient i from a set of N patients, receiving k(1 . . . K) repeated cycles until

a severe toxicity (grade 3 or higher) occurs, we define pi,k(3) to be the probability

of severe outcome, Yi,k = 3, at dose di,k on cycle k and pi,k(2+) be the cumulative

probability of severe and mild outcomes, Yi,k = 2 or 3. Using the concepts of the

cumulative logit models for modeling ordinal outcomes we define the following prob-

abilities,

P (Yi,k ≥ 3) = P (Yi,k = 3) = pi,k(3)

P (Yi,k ≥ 2) = P (Yi,k = 2, 3) = pi,k(2+)

P (Yi,k = 1) = pi,k(1) = 1− pi,k(2+)

P (Yi,k = 2) = pi,k(2) = pi,k(2+) − pi,k(3)

Where pi,k(1), pi,k(2) and pi,k(3) are the probabilities of observing one of the three

outcomes which follow a multinomial distribution. The ordinal Markov Model 4.1
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for the ordinal outcomes is as follows,

1− pi,k(3) = exp

{
−α
(
di,k − ρd‡i,k

)+

− βDi,kdi,k

}
(4.1a)

1− pi,k(2+) = exp

{
(θ + 1)

(
−α
(
di,k − ρd‡i,k

)+

− βDi,kdi,k

)}
(4.1b)

where α, β, ρ and θ are required to be non-negative. Model intuition can be obtained

by beginning with the first cycle, k = 1, when the probability of the severe toxicity

is pi,1(3) = 1− exp(−αdi,1) and pi,1(2+) = 1− exp(−(θ + 1)αdi,1) is the probability of

having a mild or severe toxicity. The only parameters that are relevant are α and

θ on the first cycle. The probability of severe toxicity on the first cycle is captured

by α ≥ 0. Because θ ≥ 0, the probability of severe toxicity is less than or equal

to the probability of severe or mild toxicity. The parameter θ tries to capture the

probability of observing a mild toxicity and can be thought of as a scaling parameter

in the probability estimation of severe toxicity, which will be determined by the

prevalence of mild toxicities.

On subsequent cycles, k > 1, the probability of toxicity is modified by the effect

of the current dose and the cumulative dose captured by the two linear terms. In the

first term (di,k − ρd‡i,k) consider first the role of φ which is set to a constant factor -

ranging from 0− 1 and comes into play through d‡i,k. A value of φ = 0 implies that

the patient cannot tolerate the dose level at which the mild toxicity occurred on a

previous cycle while φ = 1 implies that the mild toxicity can be ignored and assumed
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(or override) that the patient could handle the full dose. The parameter φ in some

sense captures the dependency of the patient responses on past doses to tolerability

of the dose level in the presence of mild toxicity.

The term (di,k − ρd‡i,k)+ is not allowed to be negative to ensure that pi,k ∈ [0, 1].

The parameter ρ can be thought of as reflecting the amount of memory about whether

a dose was tolerable, with ρ = 1 reflecting perfect memory and ρ = 0 reflecting no

memory. Thus this term tries to capture the within-patient correlation between dose

cycles. If ρ = 1, (di,k − ρd‡i,k)+ reduces to (di,k − d‡i,k)+ as the difference between the

current assigned dose and the dose tolerated from previous cycles. If the current dose

is less or equal to dose tolerated from previous cycles, the difference will be zero and

will not contribute towards the probability estimate i.e., there is a strong memory

that a higher or equal dose to the current one was tolerable hence the current dose is

more likely to be tolerable. When ρ = 0, the term (di,k − ρd‡i,k)+ reduces to di,k and

thus there is no memory of the previous doses that had been tolerated. Intermediate

values of ρ between zero and one have intermediate amount of memory.

The second linear term βdi,kDi,k, β ≥ 0 is designed to capture the idea that there

may be “damage” accumulated from prior doses and the amount of this “damage”

plays a role in determining the probability of toxicity when a new dose is adminis-

tered. The impact of the accumulated damage will be larger if di,k is larger and will

not be relevant if di,k = 0. In the case of a dose de-escalation and if the (di,k−ρd‡i,k)+

term is equal to zero then the cumulative effect is the only term that would account
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for the probability of toxicity and will not be the driving force when the contribution

from the current dose is too little or none at all.

Figure 4.1 plots the conditional probability of mild and severe toxicity in left and

right columns respectively for different values of θ along the rows for fixed values of

α = 1, β = 0, φ = 0.8 and ρ = 0.8 and aids in understanding the working properties

of the ordinal Markov Model 4.1. The solid circles with dashed lines in the plots on

the left panels represent the probability of mild toxicity on the first cycle at each of

the five possible doses and is provided as a reference for comparison. While in the

right panels the solid triangles represent the equivalent probability of severe toxicity

on the first cycle at each of the five possible doses. The probabilities of toxicity

on the second cycle are calculated at each of the five dose levels assuming that the

patient received the third dose level on the first cycle. In both the mild/severe panels

the open circles and crosses correspond to the probability of mild/severe toxicity on

second cycle assuming mild and none toxicity respectively on the first cycle. In

the first row when θ = 0.1 there is not much difference between the probability of

a mild toxicity on both cycle 1 and cycle 2. In contrast the probability of severe

toxicity on the second cycle is lower than that on the first cycle. The probability of

severe toxicity on second cycle given a mild toxicity on the first cycle is higher than

the probability of severe toxicity given no toxicity on the first cycle as indicated by

the open circles and crosses. Varying the values of θ does not have any effect on

the probability of severe toxicity as evidenced by the identical left panel plots. For
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increasing values of θ the probability of mild toxicity increases with the probability

of observing a mild toxicity on the second cycle given that a mild toxicity occurred

on the first cycle being higher than that when a none toxicity was observed on the

first cycle. The non-zero value of ρ = 0.8 confers patients in cycle 2 to be less likely

to experience a toxicity as a function of dose and hence the probability of toxicity

on the second cycle is always lower than that on the first cycle.

The effect of using different values of φ is explored through Figure 4.2 with fixed

values of α = 1, β = 0, ρ = 0.8 and θ = 1 with the layout of the panels and symbols in

the plots holding the same definitions as Figure 4.1 and differing only by the varying

values of φ along the rows. When φ = 0 the probability of having a mild toxicity on

the second cycle given that a mild toxicity was observed on the first cycle overlaps

with the probability of observing a mild toxicity on the first cycle. Since φ = 0 the

patient is not given any credit on the second cycle for surviving the first cycle with a

mild toxicity but surviving the first cycle with none toxicity confers a lower chance

of mild toxicity on the second cycle as seen by the crosses. For increasing values

of φ the probability of mild toxicity on the second cycle begins to differ from the

first cycle and eventually for φ = 1 the probability of a mild toxicity is the same

irrespective of whether a mild or none toxicity was observed on the first cycle. The

trends are similar in the case of the panels on the left for the probability of severe

toxicity. There will be a positive contribution to the probability of both mild and

severe toxicity on the second cycle when a non zero value of β is used in both these
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plots. It is also easy to see that probability of toxicity on the first cycle will be

higher/lower for increasing/decreasing values of α.

We can now compare the ordinal Markov model 4.1 to the model presented by

Doussau [Doussau et al., 2013] using the mixed effects proportional odds model for

three response outcomes as,

logit(P (Yi,j ≤ k|dl)) = αk − β1dl − ui, ui ∼ N(0, σ2
0)

Doussau’s model has four parameters, α1, α2, β1 and σ0, which are equal to the

number of parameters estimated using the Markov model. The correlation between

patient responses is captured by the random effects term ui. The authors also impose

the condition that the dose levels remain constant within the patient. In contrast

the ordinal Markov Model 4.1 allows patients the possibility of dose escalation or

de-escalation especially when a mild toxicity is observed during the course of their

treatment. Doussau’s model formulation allows for a non-zero probability of toxicity

in the absence of any dose, in general when dose (dl) is zero the probability of toxicity

should be zero, which is ensured in the ordinal Markov Model 4.1. Doussau’s model

does not capture the effect of the cumulative dose through an implicit parameter as

is done in the Markov model through β. The probability of toxicity is assumed to be

only due to the current dose although there exists a possibility for cumulative effect of

toxicity. The random effect term ui might be inadequate in capturing the additional
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Figure 4.1: Conditional probability of mild and severe on the second cycle in the left
and right columns respectively for different dose levels on the x-axis and assuming
dose level three was given on cycle 1. The probability of mild and severe on the
first cycle is in solid circles and triangles respectively for reference. The open circles
correspond to assuming a mild toxicity while the crosses to none toxicity on cycle 1.
Probabilities on cycle 2 are arranged by increasing values of θ from top to bottom
with fixed values of α = 1, β = 0, φ = 0.8 and ρ = 0.8



147

●

●
●

●
● ●

0 1 2 3 4 5

0.
0

0.
3

0.
6

Dose levels

●

●

●
●

● ●

φ 
=

 0
P

(C
yc

le
 2

)
Mild

●

●

●

●

●
●

0 1 2 3 4 5

0.
0

0.
3

0.
6

Dose levels

Severe

● ● ●

●
●

●

0 1 2 3 4 5

0.
0

0.
3

0.
6

Dose levels

●

●

●
●

● ●

φ 
=

 0
.8

P
(C

yc
le

 2
)

● ● ●

●

●

●

0 1 2 3 4 5

0.
0

0.
3

0.
6

Dose levels

● ● ●
●

●
●

0 1 2 3 4 5

0.
0

0.
3

0.
6

Dose levels

●

●

●
●

● ●

φ 
=

 1
P

(C
yc

le
 2

)

● ● ●
●

●

●

0 1 2 3 4 5

0.
0

0.
3

0.
6

Dose levels

Figure 4.2: Conditional probability of mild and severe on the second cycle in the left
and right columns respectively for different dose levels on the x-axis and assuming
dose level three was given on cycle 1. The probability of mild and severe on the first
cycle is in solid circles and triangles respectively. The open circles correspond to
assuming a mild toxicity while the crosses to no toxicity on cycle 1. Probabilities on
cycle 2 are arranged by increasing values of φ from top to bottom with fixed values
of α = 1, β = 0, θ = 1 and ρ = 0.8
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effect of the cumulative dose. Maximum likelihood estimates were obtained using

Laplace approximations and adaptive Gauss-Hermite quadrature through a package

in R. In contrast we set priors on the parameters and use Bayesian MCMC methods

for parameter estimation through R.

4.2.3 Probability Skeleton

The dose levels to be studied are transformed to dg via pre-specified skele-

ton probabilities denoted by qg, g = 1 . . . 5. The skeleton probabilities incorporate

prior knowledge of the dose-toxicity relationship and correspond to the probabil-

ity of observing a severe toxicity on the first cycle for each of the dose levels. On

the first cycle the probability of severe toxicity is parameterized only by α since,

1− pi,1(3) = exp(−αdi,1). Using the probability skeleton values qg, the corresponding

values for dg are calculated assuming α = 1 and solving dg = −log(1 − qg). These

transformed values of dg are used as doses in the model formulation. Such use of

probability skeleton is seen in the works of other authors like [O’Quigley et al., 1990,

Lee and Cheung, 2009] in the context of the CRM and [Lee et al., 2011, Cheung and

Elkind, 2010] in other contexts.
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4.2.4 Prior and posterior distribution

Based on the study design, patients contribute to the likelihood until they expe-

rience a DLT or the final Kth cycle is completed. In general, subject i contributes,

Li,k(Yi,k|α, β, ρ, θ) =

Ki∏
k=1

(pi,k(1))
I
[Yi,k=1]

(pi,k(2))
I
[Yi,k=2]

(pi,k(3))
I
[Yi,k=3]

to the likelihood, where I [Yi,k=j] denotes the indicator function that takes value 1 if

Yi,k = j and 0 otherwise. The resulting likelihood for the entire study population is

given by,

L(Y |α, β, ρ, θ) =
N∏
i=1

Ki∏
k=1

Li,k(Yi,k|α, β, ρ, θ).

Our goal lies in estimating the posterior distributions of pi,k(1), pi,k(2), pi,k(3), k =

1, . . . , K in terms of the posterior distributions of parameters α, β, ρ and θ. Prior

distributions on these parameters should reflect any auxiliary knowledge of the tox-

icity profile for the drug/agents being used in the trial, with a large prior variance

when this knowledge is limited. In setting the prior on α ≥ 0 a lognormal (µ, σ2) is

used as a suitable prior having the form:

π(α|µ, σ) =
1√

2πσ2

exp(−(logα− µ)2/2σ2)

α

The prior mean for α is set at 1 to align with the use of the probability skele-
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ton information. Setting the variance of the prior to 4, provides a coefficient of

variance (CV) of 2. Parameters µ and σ are estimated using the expressions for

the mean and variance of the lognormal density, E(α|µ, σ) = exp(µ + σ2/2) and

V ar(α|µ, σ) = exp{2(µ+ σ2)} − exp(2µ+ σ2).

As mentioned earlier in Section 4.2.2, ρ ∈ [0, 1], captures the correlation within

patients receiving multiple doses, with values near zero indicating that the toxicity

outcome is not influenced by previously administered doses and a value near one

indicating a lower chance of toxicity from a previously administered dose. Since there

is limited information to estimate ρ, we use a prior distribution with a small variance

to allow some uncertainty in ρ, rather then choosing a fixed value. A Beta(a, b) prior

is used on ρ having density of the form:

π(ρ|a, b) = (ρ)a−1(1− ρ)1−b

The hyperparameters are set to a = 5 and b = 1 and using the expressions for the

mean a/(a+ b) and variance ab/{(a + b)2(a + b + 1)} the prior on ρ has a mean of

0.833 and variance of 0.02

The probability of toxicity is assumed to increase with an increase in the cumu-
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lative dose and hence the lognormal density is used as the prior on β ≥ 0. The prior

mean is set to 0.5 and variance is set 1 obtaining a CV of 2.

In the case of θ a lognormal prior with mean 4 and variance 16 is used to span

the positive real axis conforming to its bounds of 0 ≤ θ ≤ ∞. Simulation studies

proved that it was difficult to estimate all the five parameters and hence φ has been

set to a constant. Simulation results explore the effects of using φ=0.8 or 0.9.

The posterior distribution for α, β, ρ and θ given the observed data Y is then

f(α, β, ρ, θ|Y ) =

∏N
i=1

∏Ki
k=1 Li,k(Yi,k|α, β, ρ, θ)πα(α)πβ(β)πρ(ρ)πθ(θ)∫∞

0

∫ 1

0

∫∞
0

∫∞
0

∏N
i=1

∏Ki
k=1 Li,k(Yi,k|α, β, ρ, θ)πα(α)πβ(β)πρ(ρ)πθ(θ)dαdβdρdθ

.

The posterior distribution of α, β, ρ and θ can be estimated via Markov Chain Monte

Carlo (MCMC) methods [Robert and Casella, 1999] using just another Gibbs sam-

pler (JAGS) rjags [Plummer, 2011] package through [R Development Core Team,

2011]. JAGS includes several algorithms for sampling from the posterior distributions

produced from the MCMC iterations, for instance the standard Gibbs sampler is

available for this purpose. Details of setting up the MCMC simulations are given in

Section 4.2.5.
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4.2.5 Implementation in JAGS

The data likelihood and the density definitions of the priors are specified in a

model file saved under a .bug extension. The model file and the data are passed into

the JAGS for compilation along with the list of parameters, α, β, ρ and θ, that have

to be monitored. The number of parallel chains to be run by JAGS are also defined

at the compilation stage, where each parallel chain produces independent samples

from the posterior distribution. The compiled model then needs to be initialized for

all the parameters that need to be monitored in each of the chains. The JAGS code

is provided in Appendix 4.6.1. Samplers are automatically assigned by JAGS at the

initialization stage after a pre-specified adaptive phase for each of the parameters

based on the likelihood definition of the model. A relatively large burn-in period of

1000K samples with posterior samples of 500K (thinned by 5) are used in simulations

presented in later sections. A slightly longer burn-in period is used when there are

fewer patients in the sequential trial design. Before using the samples from the two

chains for reporting they are monitored and assessed through diagnostic tests. The

correlation between samples generated at each iteration of the MCMC chain for each

of the parameters needs to be sufficiently low. The posterior means, α̂, β̂, ρ̂ and θ̂, of

the four parameters, are used to calculate the various probabilities of interest.
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4.3 Operating Characteristics/Results

This section presents simulation results studying the working properties of the

Ordinal Markov model in two different settings, 1) a static setting, demonstrating the

parameter estimation and 2) an adaptive setting with patients recruited sequentially.

4.3.1 Parameter Estimation

A 100 datasets were generated each having N = 30 patients. Patients were

distributed equally over the five dose levels receiving the same dose over six cycles.

The probability skeleton used for the five dose levels was (0.02,0.05,0.10,0.16,0.23),

implying that the lowest and highest doses expected a 2% and 23% chance of severe

toxicity on the first cycle respectively. The priors used on the parameters are as

discussed earlier in Section 4.2.4, α, β and θ with lognormal prior distributions while

ρ with a Beta prior distribution. Ordinal responses were generated for the patients

under two different scenarios. The true values of the parameters were α = 1, β =

0.5, φ = 0.9, ρ = 0.8, θ = 4 in scenario 1 and α = 1, β = 0.8, φ = 0.9, ρ = 0.8, θ = 3

in scenario 2.

Table 4.1 shows the results of the simulations from 100 datasets. The parameters

in the rows are grouped by the two scenarios. The columns provide 1) true value 2)

mean of the prior with SD in parenthesis 3) mean of the estimates from 100 datasets

with the bias from the true value in parenthesis 4) mean SD (MSD) from the 100

datasets 5) empirical SD (ESD) of the parameter from 100 datasets and 6) coverage
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rate of the true value in the 95% credible intervals. Based on the results in Table

4.1 there seems to be an acceptable level of bias in the parameter estimates. The

estimates of θ are close to the true values used in generating the data. The values of

the MSD and ESD are comparable (slightly higher) indicating sufficient variability,

except for ρ where we used a tight prior. In comparison to the prior SD of the first

three parameters the data provided information and hence the MSD was reduced

considerably compared to the prior SD. But for ρ there was a small decrease from

the prior because the data was minimally informative about this parameter. The

coverage rates are between 89% and 100%. These results are from simulations where

the patients receive the same dose on all the cycles. Similar simulation results could

be obtained when patients are allowed to escalate or de-escalate. We conclude that

the model is able to provide accurate estimates of the parameters.

4.4 Adaptive Trial Design and Simulation

This section describes application of the ordinal Markov Model 4.1 in designing

a sequential clinical trial to be used in practice assuming that patients would be

assigned to one of the five dose levels. On completion of the first cycle without

any severe toxicity the patient would be eligible to either stay at the same dose

level or escalate to a higher dose level or de-escalate to a lower dose level based

on the recommendations of the algorithm using the ordinal Markov Model 4.1 and

the specified safety criterion. It will be assumed that a new patient is ready to
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be assigned a dose once other continuing patients in the trial have completed their

dosing cycle. That is, all active patients in the study and the new patient to be

enrolled all receive their dose assignment simultaneously. Maximizing the expected

total dose is the optimizing strategy used in choosing the best dose to be assigned to

a patient on the next cycle when multiple choices are presented. In the next section

we begin by defining the safety criteria for dose assignment and the notation used for

the probabilities in defining the criterion, followed by defining the particulars of the

maximizing strategy to be used in dose assignment. Finally a simulation example

of a trial and results evaluating trial conduct properties comparing various criterion

through simulations will be presented in this section.

4.4.1 Safety Criteria

We begin by defining the safety criteria rules for dose assignment in carrying out

a trial with dose escalation and/or de-escalation. Define rg,k = g, g = 1 . . . 5 as one

of the five dose levels on cycle k corresponding to dg, g = 1 . . . 5 the transformed

doses using the probability skeleton. The following commonly used dose escalation

rules will be followed in defining the safety criteria to be used while carrying out an

adaptive clinical trial based on ordinal Markov Model 4.1.

• The first and the second patient on the trial will be assigned the second lowest

dose level, rg,1 = 2, on cycle 1. Given that there is no severe toxic response,

the same dose level will be assigned on the second cycle for the first patient.
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For subsequent patients and cycles the following rules will be used.

• A patient will only be allowed single dose jumps in dose escalations, i.e., a

patient i completing cycle k on dose level rg,k could have a maximum dose

level min(rg,k + 1, 5) on cycle k + 1.

• A patient can have a maximum of three dose levels in a dosing regimen, unless

de-escalation to a lower dose is required i.e.,a patient i receiving dose level rg,1

on cycle 1 can possibly receive rg,1 + 2, as its highest dose level in the dosing

regimen. In combination with the previous rule a patient i completing cycle

k on dose level rg,k, can have rmaxg,k+1 = min(rg,1 + 2,rg,k + 1, 5) as its highest

possible dose level on any cycle k + 1 in the study.

• For a new patient, î, on the first cycle, to ensure a considerable degree of safety

especially during the early stages of the trial, the maximum dose level choice

would be limited to rmaxg,1 = max(r‡g,1 + 1, r‡g,k), where r‡g,1 is the maximum of

all the past dose levels assigned to the patients on cycle k = 1 and r‡g,k is the

maximum of all the past dose levels assigned to the patients in the study on

cycles k > 1. This ensures that new patient î on the first cycle will not jump

a dose level that has not been assigned previously to any patient in the study

(there could be a possibility of a dose jump on the first cycle).

• The study will conclude when none of the dose levels are included in the toler-

able range as determined by the safety criteria defined below.
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4.4.1.1 Notation for probabilities used in safety criteria

Monitoring the safety of the patients is ensured by assigning doses that satisfy a

set of safety criteria and the following notation is useful to understand these rules. For

a patient i who has completed cycle k on dose level rg,k without a DLT, the possible

dose levels for this patient are j = 1 . . . rmaxg,k+1, allowing for dose de-escalation.

Define Ai,k+1,j as the event of severe toxicity on cycle k + 1 for patient i at dose

level j given that there were no DLTs in the past. Hence P(Ai,k+1,j) = pi,k+1(3),

where pi,k+1(3) is calculated using the Markov Model 4.1 for dose level j.

Given rmaxg,k+1 for patient i the potential regimens considered are denoted by the set

Rregimen
i,k+1 . Members, rregimeni,k+1,m , of this regimen set have length K = 6, corresponding

to the number of cycles, where the first k elements are the doses received and future

doses constrained by min(rg,1 + 2,rg,k + 1, 5) for cycles (k + 1) . . . K.

Define Bi,k+1,m as the event of having a severe toxicity on any cycle k + 1 until

K for a member m of the regimen set Rregimen
i,k+1 , where P(Bi,k+1,m) = 1−

∏K
l=k+1(1−

pi,m(3)). For regimen m from patient i’s regimen set define Ci,k+1,m as the event of

severe toxicity for that regimen on any cycle from 1 through K i.e., Ci,k+1,m = Bi,1,m.

P (Bi,k+1,m) captures the probability of severe toxicity for a patient on the remaining

cycles while P(Ci,k+1,m) captures the overall probability of severe toxicity on the

entire regimen m.
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4.4.1.2 Target probability bounds

In conducting a clinical trial with multiple doses we define the following prob-

ability bounds P̊ (A), P̊ (B) and P̊ (C) based on clinical inputs. P̊ (A) is a vector

of K = 6 probabilities corresponding to the acceptable conditional probability of

severe toxicity on the next cycle. P̊ (A1) is the acceptable probability of severe

toxicity limit on first cycle, while P̊ (A2) . . . P̊ (Ak) . . . P̊ (A6) are the corresponding

limits on subsequent cycles. Given the properties of the current Markov model

used to specify the dose toxicity relationship wherein the conditional probabili-

ties post cycle 1 are much lower and affected mainly by the cumulative effect, the

bounds on the conditional probabilities are assumed to be equal to each other i.e.,

P̊ (A2) = P̊ (A3) = . . . = P̊ (A6), and will be referred to as P̊ (A2). For a contin-

uing patient, P̊ (B) is the acceptable probability of severe toxicity limit on all the

remaining cycles while P̊ (C) is the acceptable probability of severe toxicity limit on

the entire regimen. The relationship between these target probabilities is explored

as follows.

Typically in single dose trials the acceptable level of toxicities is set at 30% which

in the case of multiple dose trial would correspond to P̊ (C), the probability of se-

vere toxicity bound on all the cycles. For the bounds to be consistent with each

other, 1 − P̊ (C) ≤
∏6

k=1{1 − P̊ (Ak)} which further reduces to {1 − P̊ (C)} ≤

{1 − P̊ (A1)} × {1 − P̊ (A2)}5. Assuming this relationship, provides an easy way to

specify the bounds on P̊ (A2), given the acceptable bounds on P̊ (A1) and P̊ (C). In
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the simulations presented slightly higher bounds are used to demonstrate differences

in results. P̊ (B) controls the bounds on the probability of toxicity on the remain-

der of the cycles and its value is chosen in relation to P̊ (C) and would typically be

≤ P̊ (C). We have set the value of P̊ (B) = P̊ (C) in the simulations presented in this

chapter.

4.4.2 Maximizing the Expected dose

With the safety criteria rules in place an optimizing strategy needs to be defined

upfront in the event that multiple dose level qualify on the next cycle. As mentioned

earlier the goal of the study is to maximize the total dose assigned to every patient

and we proceed by deriving the expression for the expected dose followed by the

algorithm for dose maximization.

4.4.2.1 Expected dose

In the presence graded toxicity outcomes the expected dose is calculated condi-

tional on the past responses. A patient having a severe toxicity is considered to be

a DLT and a terminating state hence the past responses of mild and none toxicities

need to be accounted for in calculation of the expected dose. The following equations

indicate the pattern in estimating the probabilities needed for the calculation of the
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expected dose.

P(severe on cycle 1)

P (Yi,1 = 3) = pi,1(3)

P(severe on cycle 2)

P (Yi,2 = 3) = P (Yi,2 = 3, Yi,1 = 1) + P (Yi,2 = 3, Yi,1 = 2)

= P (Yi,2 = 3|Yi,1 = 1)P (Yi,1 = 1) +

P (Yi,2 = 3|Yi,1 = 2)P (Yi,1 = 2)

= pi,1(1)pi,2(3|1) + pi,1(2)pi,2(3|2)

P(severe on cycle 3)

P (Yi,3 = 3) = pi,1(1)pi,2(1|1)pi,3(3|11) + pi,1(1)pi,2(2|1)pi,3(3|12) +

pi,1(2)pi,2(1|2)pi,3(3|21) + pi,1(2)pi,2(2|2)pi,3(3|22)

Similarly the P(mild on cycle 3) is given by,

P (Yi,3 = 2) = pi,1(1)pi,2(1|1)pi,3(2|11) + pi,1(1)pi,2(2|1)pi,3(2|12) +

pi,1(2)pi,2(1|2)pi,3(2|21) + pi,1(2)pi,2(2|2)pi,3(2|22)
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And the P(none on cycle 3) is given by,

P (Yi,3 = 1) = pi,1(1)pi,2(1|1)pi,3(1|11) + pi,1(1)pi,2(2|1)pi,3(1|12) +

pi,1(2)pi,2(1|2)pi,3(1|21) + pi,1(2)pi,2(2|2)pi,3(1|22)

The probability of observing a severe toxicity on cycle 3 for a given dose combi-

nation is a functional sum of the four combinations of past responses; none toxicities

on the first two cycles, none toxicity on the first cycle and a mild toxicity on the

second cycle, a mild toxicity on the first cycle and none toxicity on the second cy-

cle and lastly both mild toxicities on the first two cycles. The exact probability of

severe toxicity on every cycle k is calculated by forming a binary tree branch that

tracks the past responses with 2(k−1) combinations of mild and none toxicity. Using

the expressions for exact probabilities of severe toxicity defined above and extending

them mild and none toxicity, the expected dose for a patient i having a particular

planned dose sequence di,1 . . . di,k is

=
K∑
m=1

{(
m∑
j=1

di,j

)
P (Yi,m = 3)

}
+

(
K∑
j=1

di,j

)
P (Yi,K = 2) +

(
K∑
j=1

di,j

)
P (Yi,K = 1).

4.4.2.2 Recommending a regimen

At the conclusion of the study, the estimates α̂, β̂, ρ̂ and θ̂ are used to estimate

the overall probability of toxicity P(Cj) for all of the j = 1 . . . 19 regimens listed in
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Table 2.3. During the conduct of the trial the target probability bounds used were

P̊ (A), P̊ (B) and P̊ (C). These bounds especially, P̊ (C), are usually set at higher

than acceptable values in practice and when selecting the final regimen we would

use P r(A1) and P r(C) which might be lower than or equal to P̊ (A1) and P̊ (C)

respectively. For example in running the trial P̊ (C) = 0.40 could be used which

implies an overall toxicity of 40% but in practice 30% toxicities are what we would

want to see in the trials. Results will be presented when the final selection of the

regimen is based on P r(A1) and P r(C). The recommended regimen satisfies P (A1) ≤

P r(A1) on the first cycle and P(Cj) ≤ P r(C) and has the highest possible maximum

expected dose. The target regimen (T) is identified using the true parameter values

of α, β, ρ and θ instead of the estimates obtained at the trial conclusion and is used

as a reference for gauging the properties of the trial.

4.4.2.3 Algorithm maximizing the expected dose

The algorithmic plan for maximizing the expected dose on the study for each

patient i is outlined below.

• For new patient î on cycle 1

1. Estimate P̂ (Aî,1,j) using current estimates α̂, β̂, ρ̂ and θ̂ at each of the

j = 1 . . . rmaxg,1 dose levels. Where rmaxg,1 = max(r‡g,1 + 1, r‡g,k), r
‡
g,1 is the

maximum of all the past dose levels assigned to the patients on cycle k = 1
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and r‡g,k is the maximum of all the past dose levels assigned to the patients

in the study on cycles k > 1.

2. Subset the dose levels that satisfy P̂ (Aî,1,j) ≤ P̊ (A1) over all dose levels.

3. For the dose levels satisfying P̂ (Aî,1,j) ≤ P̊ (A1) subset the list of possible

regimens from Table 2.3 and calculate the overall probability of severe

toxicity P̂ (Cî,1,j) tracking all combinations of mild and none toxicities.

4. Select the dose level that has an overall probability of toxicity P̂ (Cî,1,j) ≤

P̊ (C) and maximum expected dose.

5. If none of the doses satisfy P̂ (Aî,1,j) ≤ P̊ (A1) and if there are continuing

patients in the study then wait until updated estimates α̂, β̂, ρ̂ and θ̂ allow

doses to be assigned else the study is terminated.

• For continuing patient i on cycle k > 1,

1. List doses P̂ (Ai,k+1,j) ≤ P̊ (A2) from rmaxg,k+1 = min(rg,1 + 2,rg,k + 1, 5)

possible choices.

2. If there is more than one satisfying dose level then list the possible dose

regimen set Rregimen
i,k+1 .

3. Calculate the probability of severe toxicity P̂ (Bî,k+1,m) assuming all com-

binations of mild and none toxicities on the remainder of the cycles for

each of the regimens m in Rregimen
i,k+1 and the corresponding expected dose

using the current estimates α̂, β̂, ρ̂ and θ̂.
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4. Select the dose level that has probability of toxicity P̂ (Bî,k+1,m) ≤ P̊ (B)

and maximizes the expected dose.

5. If none of the doses satisfy P̂ (Aî,k+1,j) ≤ P̊ (A2) and if there are continuing

patients in the study then wait until updated estimates α̂, β̂, ρ̂ and θ̂ allow

doses to be assigned else the study is terminated.

For the purposes of evaluating the properties of the simulation of clinical trials over

multiple replications and comparing the properties of the target probabilities various

test statistics will be calculated that can be grouped into 1) trial conduct or patient

characteristics and 2) recommended regimen characteristics as explained below.

Patient characteristics

1. Mean dose per patient over all the replicates. In each of the replicates the

total dose given to all the patients will be tracked and then averaged across the

number of the patients in that trial. High values of mean dose are considered

favorable indicating that the patients received higher quantities of the drug in

the study.

2. Mean number of severe toxicities per study across all the replicates. The num-

ber of patients having a severe toxicity are averaged across the number of

patients in the trial. Low values of severe toxicities are considered favorable.

3. The trials that stop early without recruiting allN = 30 patients. Lower number
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of trials stopping are considered favorable because in the situations considered

there is a regimen that is not too toxic.

4. Mean number of patients having a regimen that matches the recommended

regimen.The distance from the recommended regimen is calculated for each of

the patients in the study, and the proportion of patients having distance less

than or equal to two are summarized and the average proportion across all the

replications is presented. High values of patients matching or very similar to

the recommended regimen are considered favorable implying that the regimen

recommended at study conclusion was actually observed in patients in the trial.

Recommended regimen characteristics

1. Mean of expected dose using the true values of α, β, ρ and θ given the recom-

mended regimen. High values of mean expected dose are considered favorable

implying that the recommended regimen if completed on all the six cycles would

provide the highest and safest amount of the study drug to the patients.

2. Mean of probability of severe toxicity on any cycle using the true values of

α, β, ρ and θ given the recommended regimen. Low values of mean toxicities

are considered favorable since the recommended regimen should provide low

levels of severe toxicities.

3. The fraction of recommended regimens that have toxicity less than say 40%

calculated using the true values is also presented. Higher proportions are fa-
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vorable and imply that the recommended regimen does not have a high toxicity

level.

4. A green region is defined as the list of five target regimens with highest ex-

pected dose that satisfy the safety constraints. The proportion of times the

recommended regimen belongs to this green region is also presented. High val-

ues of the proportion values are considered favorable and indicating a higher

degree of concordance between the recommended and target regimens.

4.4.3 Simulation results

Simulation results demonstrating the algorithm in sequential clinical trials are

presented in this section. Additional details of the set-up are that each trial enrolls a

maximum of N = 30 patients with each patient having a maximum of six cycles. A

total of 100 replicates are conducted with the true values of α = 1, β = 0.5, ρ = 0.8

and θ = 4.0 used in generating the patient responses. Dose assignment is based on

the algorithm outlined in Section 4.4.2.3 with a focus on maximizing the dose received

by each patient on the trial. The skeleton probability for cycle 1 used for the doses

was 0.02, 0.05, 0.10, 0.16, 0.23. The priors used on the parameters are as outlined in

the Section 4.2.4, specifically α, β and θ with lognormal prior distributions while ρ

with a Beta prior distribution. Data from a 100 replicates/trials were simulated to

study the design properties under different settings.

1. Effect of using two different values of φ = 0.8, 0.9, implying that a patient could



167

handle about (80%, 90%) of the drug effect if a mild toxicity occurred at that

dose level.

2. Effect of using different values of P̊ (A), P̊ (B) and P̊ (C) during trial conduct.

Table 4.2 presents simulation result summaries of trials carried out under different

settings. Each row corresponds to summaries from 100 different replicates and are

grouped firstly by φ = 0.8 or φ = 0.9 followed by P̊ (B) = 0.3 and P̊ (C) = 0.4

or P̊ (B) = P̊ (C) = 0.4 with three different combinations of P̊ (A1) and P̊ (A2).

The columns correspond to the four patient and three regimen characteristics as

mentioned in Section 4.4.2.3. While Table 4.2 has P̊ (A1) = P̊ (A2), Table 4.3 presents

results with P̊ (A1) 6= P̊ (A2) and all other settings remaining the same.

The results from Table 4.2 indicate a very slight increase in the mean dose in trials

with φ = 0.9 as compared to φ = 0.8. This aligns with the model intuition that lower

values of φ imply the patient is able to handle a lower proportion of the dose when

experiencing a mild toxicity. The mean dose also increases with a higher threshold of

P̊ (B) = 0.4 as compared to P̊ (B) = 0.30 as expected since patients can be assigned

a higher dose level with a lenient threshold of P̊ (B) = 0.4. The mean dose increases

with higher thresholds of P̊ (A1) and P̊ (A2) since higher dose levels qualify for dose

assignment. Within a category of P̊ (B) and P̊ (C) the mean toxicity is the highest

when P̊ (A1) and P̊ (A2) are at the highest threshold of 0.2 conveying the trade off

between being lenient in dose assignment and patient safety. The number of trials
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stopping early due to an inability to assign doses is highest when P̊ (A1) and P̊ (A2)

are the most stringent at 0.05 essentially allowing only 5% severe toxicities at each

cycle. The mean on the recommended dose is calculated using the true values given

the recommended regimen. When P̊ (A1) = 0.05 the mean dose is lower than mean

recommended dose implying that the patients received a lower dose during the study

conduct. There is a close match between the mean dose and the recommended mean

dose when P̊ (A1) = 0.10 and when P̊ (A1) = 0.20 the mean dose is higher than that

mean of the recommended dose. The mean toxicity of the recommended regimen

given the true values is always below 30% which is a very good feature. The fraction

of recommended regimens that have toxicity less than say 40% is always ≥ 95%.

Also the recommended regimens are mostly above 72% in the green region.

The results from Table 4.3 are generated with P̊ (A1) 6= P̊ (A2) and better un-

derstanding of the results can be obtained by comparing the results to the corre-

sponding row in Table 4.2. For example consider the first row corresponding to

φ = 0.8 and P̊ (C) = 0.4, P̊ (B) = 0.30, P̊ (A1) = 0.05 and the difference is only due

to P̊ (A2) = 0.05 or P̊ (A2) = 0.10. As expected the higher value of P̊ (A2) increases

the mean dose assigned from 10.96 to 13.91 along with an increase in the mean tox-

icity from 0.17 to 0.29. The mean dose is now slightly higher than the mean of the

recommended expected dose and the proportion of patients having the recommended

regimen during the course of the trial also increases. In contrast notice the case when

P̊ (A1) = 0.20 and P̊ (A2) = 0.20 or P̊ (A2) = 0.05 the mean dose decreases from 17.45
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to 13.20 and the mean toxicities from 0.40 to 0.20 with none of the trials stopping

early in both cases. In general Table 4.3 results indicate that having P̊ (A2) lower

than P̊ (A1) provides lower values of mean toxicity and closer agreement between the

mean dose and the recommended mean dose. Also the recommended regimens are

mostly above 73% in the green region, the instance when the value drops to 69%

could be ascribed to φ = 0.90 and the stringent bounds during trial conduct and

regimen selection at the end of the trial.

4.4.3.1 Comparison the dichotomous Markov model

Simulation results will now be presented showing the benefit in using an ordinal

outcome Markov model in comparison to the dichotomous Markov Model 2.1. For

the dichotomous outcome the algorithm set up for running the sequential trial is

similar to that used earlier except that the ordinal outcome model is considered to

be the true model when assigning the responses to the patients. When assigning

dose levels to the patients, the mild response is assumed to be a none toxicity. All

other details of the model set up are similar to that used in Section 4.4.3.

Tables 4.4 and 4.5 have a layout similar to Tables 4.2 and 4.3 respectively and

allow an easy comparison. First consider the results from Table 4.4. There does not

seem to be any effect of φ on the mean toxicities while there is a slight increase in

the mean dose when φ = 0.9 as compared to φ = 0.8. The mean dose differs from

the mean recommended dose in most cases and is comparable when P̊ (A1) = 0.10.
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The proportion of recommended doses in the green are mostly around 50%. There

are trials stopping early in every scenario the lowest value is when P̊ (A1) = 0.20.

The results in Table 4.5 when P̊ (A1) 6= P̊ (A2) can be explained by comparing the

results from Table 4.4. For example the mean dose increases from 11.62 to 14.13

when P̊ (A2) = 0.10 as compared to P̊ (A2) = 0.05 with φ = 0.8 and P̊ (A1) = 0.05.

Differences in other results can be explained similarly.

In comparing the results across two modes of trial conduct with the truth as

ordinal model and using either ordinal model or the dichotomous Markov model for

the trial conduct there are some noticeable differences. Comparing the results from

Table 4.4 to Table 4.2 and Table 4.5 to Table 4.3 we notice that the proportion of trials

stopping early is higher for the dichotomous outcome. The proportion of patients

having a distance ≤ 2 from the recommended regimen is lower and the proportion

of recommended regimen being in the green are also very low. The mean dose and

mean toxicity reverse equality based on the values of P̊ (C), P̊ (B), P̊ (A1) and P̊ (A2).

The mean toxicities are usually higher but low only when P̊ (A1) = P̊ (A2) = 0.20.

There seems to be a considerable improvement in the performance of the trial when

the information provided by the mild toxicities is taken into account.

4.5 Discussion

One of the main goals of a phase I clinical trial is to arrive at an accurate es-

timate of the MTD without having too many patients experience a severe toxicity.
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Assigning multiple doses to patients ensures that patients are more likely to receive

an efficacious dosage before having a toxicity. Keeping track of the graded toxicity

outcomes of patients prevents patients from receiving dose levels that could result in

more severe toxicities on future cycles and thereby making sure that patients remain

in the study for longer and receive dose levels closer to their range of tolerability.

The ordinal outcome Markov model presented in this chapter is a novel method of

incorporating both the repeated measure information from all the patients and the

ordinal toxicity information of the responses on dose levels in the past. The advan-

tage of using the data from all the patients allows making correct dose assignment

decisions in the future for the patients.

The benefits of using this model are demonstrated through comparisons with

the dichotomized Markov model. There were improved gains in trial properties by

incorporating the ordinal outcomes. The number of overall toxicities were lower and

the proportion of trials recommending the true dose regimen were also considerably

higher. We know of one other method that incorporates individual grades or toxicity

scores [Doussau et al., 2013] and having some form of comparison between the two

methods could be a great possibility for future work.

The other advantage to using the ordinal Markov model in carrying out the trial

is that the dose levels are adjusted based on the past responses of the patients espe-

cially if a mild toxicity had occurred. Such an adaptive design ensures that patients

with frail dispositions are not exposed to higher doses levels. In this regard finding
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an accurate estimate of φ instead of setting to a constant would be an advantage.

Investigating the estimation of φ merits further research in future work.

The results from using the trial in an adaptive trial setting could be more dramatic

if we used the probability of mild toxicity in dose assignment decisions. By doing do

we could have assigned doses to continuing patients by incorporating their chance

of having a mild toxicity on a particular dose level instead of only looking at the

probability of a severe toxicity. This would add to the burden of defining another set

of target probabilities on the lines of P̊ (C), P̊ (B) and P̊ (A) pertaining to the chance

of observing a mild toxicity. Although this has not been done in this chapter the

algorithm in its present form could be easily extended to do this.

The Markov model presented in this chapter is most relevant to clinical trials

involving cytotoxic drugs where the toxicity is assumed to increase with the cumu-

lative effect. Having non-delayed outcomes is also essential to the study design so

that the DLT could be assigned at the end of the cycle to the appropriate dose level

for the patient.

There exist various other possibilities for further developments of the method.

In this chapter we showed improvements over the dichotomized Markov model. The

ordinal Markov model could be further extended to include the un-grouped five

classes of toxicity ranging from zero (none) to five (death) as defined by National

Cancer Institute [NCI, 2003]. The model currently allows treating patients at the

dose level that would not result in any severe toxicity thereby focusing only on the
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safety of the patients. More recently much interest is generated in estimating a safe

and efficacious dose level [Zhang et al., 2006], such approaches could be extended to

the ordinal Markov model with repeated measures from the patients.

Table 4.1: Parameter estimates obtained through simulation of a 500 datasets with
N = 30 patients under two different scenarios of true parameter values with φ = 0.90.

True Value Prior Mean (SD) Estimate(Bias) MSD1 ESD2 Coverage
Scenario 1

α 1 1 (2) 1.114 ( 0.114 ) 0.408 0.375 99
β 0.5 0.5 (1) 0.553 ( 0.053 ) 0.325 0.315 96
θ 4 4 (4) 4.387 ( 0.387 ) 1.752 1.666 97
ρ 0.8 0.83 (0.14) 0.802 ( 0.002 ) 0.111 0.076 99

Scenario 2
α 1 1 (2) 1.044 ( 0.044 ) 0.392 0.405 93
β 0.8 0.5 (1) 0.813 ( 0.013 ) 0.405 0.423 95
θ 3 4 (4) 3.440 ( 0.440 ) 1.337 1.385 89
ρ 0.8 0.83 (0.14) 0.796 ( -0.004 ) 0.122 0.075 100

1 MSD is mean of the SD from 500 estimates
2 ESD is empirical SD of the 500 estimates
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Table 4.2: Trial/Patient summary using φ = 0.8, 0.90 while conducting 100 sequential
trials with N = 30 patients and P̊ (A1) = P̊ (A2), P̊ (B) = 0.3, 0.4 and P̊ (C) = 0.4.
True model used for generating responses is Model 4.1 and model used in running the
trial is Model 4.1. Columns correspond to the mean dose received per patient, the
mean number of severe toxicities over 100 trials, number of trials stopping early, mean
number of patients having distance less than two from the recommended regimen,
the mean expected dose for the recommended regimen, mean probability of toxicity
for the recommended regimen, the proportion of trials having recommended regimen
with an overall toxicity under 40% and the proportion of trials having recommended
regimen in the green region as defined in Section 4.4.2.3.

Mean Mean Early P.R.Dist Mean R Mean R Prop Prop in
Dose Tox Stop Trials ≤ 2 R.EDose R.Tox ≤ 40% Green

φ = 0.80

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.05 10.96 0.17 5 6.31 12.86 ( 95 ) 0.23 0.95 0.78

P̊ (A1) = 0.1, P̊ (A2) = 0.1 14.86 0.28 2 13.53 14.39 ( 98 ) 0.27 0.95 0.77

P̊ (A1) = 0.2, P̊ (A2) = 0.2 17.45 0.40 0 9.36 15.37 ( 100 ) 0.29 0.99 0.80

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.05 10.96 0.17 5 6.38 12.91 ( 95 ) 0.23 0.95 0.77

P̊ (A1) = 0.1, P̊ (A2) = 0.1 15.14 0.30 2 13.41 14.48 ( 98 ) 0.27 0.95 0.79

P̊ (A1) = 0.2, P̊ (A2) = 0.2 17.64 0.43 0 8.74 15.21 ( 100 ) 0.28 0.99 0.86
φ = 0.90

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.05 10.97 0.17 6 6.5 12.75 ( 94 ) 0.22 0.94 0.77

P̊ (A1) = 0.1, P̊ (A2) = 0.1 15.17 0.29 2 14.45 14.82 ( 98 ) 0.27 0.95 0.75

P̊ (A1) = 0.2, P̊ (A2) = 0.2 17.55 0.40 0 9.42 15.47 ( 100 ) 0.28 0.97 0.74

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.05 10.97 0.17 6 6.1 12.89 ( 94 ) 0.23 0.94 0.73

P̊ (A1) = 0.1, P̊ (A2) = 0.1 15.31 0.29 2 13.78 14.81 ( 98 ) 0.27 0.95 0.72

P̊ (A1) = 0.2, P̊ (A2) = 0.2 17.88 0.42 0 9.02 15.59 ( 100 ) 0.28 0.99 0.74
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Table 4.3: Trial/Patient summary using φ = 0.8, 0.90 while conducting 100 sequential
trials with N = 30 patients and P̊ (A1) 6= P̊ (A2), P̊ (B) = 0.3, 0.4 and P̊ (C) = 0.4.
True model used for generating responses is Model 4.1 and model used in running
the trial is Model 4.1.

Mean Mean Early P.R.Dist Mean R Mean R Prop Prop in
Dose Tox Stop Trials ≤ 2 R.EDose R.Tox ≤ 40% Green

φ = 0.80

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.1 13.91 0.29 5 10.32 12.84 ( 95 ) 0.23 0.95 0.79

P̊ (A1) = 0.1, P̊ (A2) = 0.15 15.97 0.36 2 12.04 14.49 ( 98 ) 0.26 0.97 0.86

P̊ (A1) = 0.2, P̊ (A2) = 0.05 13.20 0.20 0 9.49 14.87 ( 100 ) 0.27 1 0.81

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.1 13.92 0.29 5 9.69 12.86 ( 95 ) 0.23 0.95 0.78

P̊ (A1) = 0.1, P̊ (A2) = 0.15 16.25 0.38 2 10.18 14.53 ( 98 ) 0.27 0.97 0.80

P̊ (A1) = 0.2, P̊ (A2) = 0.05 13.16 0.20 0 9.79 14.87 ( 100 ) 0.27 1 0.86
φ = 0.90

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.1 14.09 0.28 5 9.64 12.97 ( 95 ) 0.23 0.95 0.74

P̊ (A1) = 0.1, P̊ (A2) = 0.15 16.20 0.35 2 11.85 14.49 ( 98 ) 0.25 0.98 0.82

P̊ (A1) = 0.2, P̊ (A2) = 0.05 13.32 0.20 0 9.93 15.27 ( 100 ) 0.27 0.99 0.73

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.1 14.20 0.29 5 8.20 13.10 ( 95 ) 0.24 0.95 0.69

P̊ (A1) = 0.1, P̊ (A2) = 0.15 16.51 0.37 2 10.36 14.79 ( 98 ) 0.27 0.95 0.80

P̊ (A1) = 0.2, P̊ (A2) = 0.05 13.26 0.21 0 10.17 15.32 ( 100 ) 0.27 0.99 0.77



176

Table 4.4: Trial/Patient summary using φ = 0.8, 0.90 while conducting 100 sequential
trials with N = 30 patients and P̊ (A1) = P̊ (A2), P̊ (B) = 0.3, 0.4 and P̊ (C) = 0.4.
True model used for generating responses is Model 4.1 and model used in running
the trial is Model 2.1.

Mean Mean Early P.R.Dist Mean R Mean R Prop Prop in
Dose Tox Stop Trials ≤ 2 R.EDose R.Tox ≤ 40% Green

φ = 0.80

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.05 11.62 0.22 8 4.59 13.66 ( 92 ) 0.23 0.91 0.58

P̊ (A1) = 0.1, P̊ (A2) = 0.1 14.91 0.34 5 12.92 14.80 ( 95 ) 0.26 0.94 0.45

P̊ (A1) = 0.2, P̊ (A2) = 0.2 15.55 0.34 2 12.51 15.42 ( 98 ) 0.27 0.96 0.55

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.05 11.71 0.22 9 4.54 13.83 ( 91 ) 0.24 0.90 0.54

P̊ (A1) = 0.1, P̊ (A2) = 0.1 15.30 0.38 5 13.98 14.89 ( 95 ) 0.25 0.94 0.63

P̊ (A1) = 0.2, P̊ (A2) = 0.2 16.88 0.44 2 7.92 15.34 ( 98 ) 0.26 0.96 0.58
φ = 0.90

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.05 11.81 0.22 8 4.50 13.98 ( 92 ) 0.25 0.90 0.50

P̊ (A1) = 0.1, P̊ (A2) = 0.1 15.03 0.33 5 12.69 14.91 ( 95 ) 0.26 0.94 0.43

P̊ (A1) = 0.2, P̊ (A2) = 0.2 15.63 0.34 2 13.12 15.50 ( 98 ) 0.27 0.96 0.57

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.05 11.82 0.22 8 4.32 13.93 ( 92 ) 0.24 0.91 0.52

P̊ (A1) = 0.1, P̊ (A2) = 0.1 15.73 0.38 5 12.80 15.21 ( 95 ) 0.27 0.91 0.53

P̊ (A1) = 0.2, P̊ (A2) = 0.2 17.11 0.44 2 8.78 15.58 ( 98 ) 0.27 0.97 0.53
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Table 4.5: Trial/Patient summary using φ = 0.8, 0.90 while conducting 100 sequential
trials with N = 30 patients and P̊ (A1) 6= P̊ (A2), P̊ (B) = 0.3, 0.4 and P̊ (C) = 0.4.
True model used for generating responses is Model 4.1 and model used in running
the trial is Model 2.1.

Mean Mean Early P.R.Dist Mean R Mean R Prop Prop in
Dose Tox Stop Trials ≤ 2 R.EDose R.Tox ≤ 40% Green

φ = 0.80

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.1 14.13 0.34 11 10.91 13.97 ( 88 ) 0.24 0.88 0.52

P̊ (A1) = 0.1, P̊ (A2) = 0.15 15.11 0.36 5 12.52 14.84 ( 95 ) 0.25 0.94 0.55

P̊ (A1) = 0.2, P̊ (A2) = 0.05 14.13 0.26 2 10.09 15.34 ( 98 ) 0.27 0.92 0.58

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.1 14.34 0.36 9 6.56 13.57 ( 91 ) 0.23 0.91 0.56

P̊ (A1) = 0.1, P̊ (A2) = 0.15 16.11 0.44 5 7.99 14.76 ( 95 ) 0.25 0.95 0.58

P̊ (A1) = 0.2, P̊ (A2) = 0.05 14.35 0.26 2 9.83 15.34 ( 98 ) 0.27 0.94 0.60
φ = 0.90

P̊ (C) = 0.4 P̊ (B) = 0.3

P̊ (A1) = 0.05, P̊ (A2) = 0.1 14.21 0.34 11 10.27 13.81 ( 88 ) 0.24 0.88 0.53

P̊ (A1) = 0.1, P̊ (A2) = 0.15 15.21 0.36 5 12.43 14.92 ( 95 ) 0.26 0.95 0.54

P̊ (A1) = 0.2, P̊ (A2) = 0.05 14.23 0.26 2 10.07 15.46 ( 98 ) 0.27 0.90 0.55

P̊ (C) = 0.4 P̊ (B) = 0.4

P̊ (A1) = 0.05, P̊ (A2) = 0.1 14.46 0.35 9 6.58 13.69 ( 91 ) 0.24 0.90 0.55

P̊ (A1) = 0.1, P̊ (A2) = 0.15 16.31 0.43 5 8.23 14.84 ( 95 ) 0.25 0.93 0.57

P̊ (A1) = 0.2, P̊ (A2) = 0.05 14.51 0.26 2 10.04 15.51 ( 98 ) 0.27 0.95 0.56

4.6 Appendix

4.6.1 Outline of the code written in JAGS

The code presented below corresponds to applying ordinal Markov Model 4.1 in

simulations for parameter estimation from the posterior samples.

#Defining the model.bug file1

model {2

#Define the likelihood for each of the N subjects3

for (i in 1:N) {4
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prob[i,3]< −1-exp(-alpha* ( dose[i]-rho*phi.flag[i])*step(dose[i]-rho*phi.flag[i])5

-beta*dose[i]*cumdose[i])6

prob32[i] < − 1- exp((theta+1) *(-alpha* ( dose[i] - rho*phi.flag[i])*step(dose[i] -7

rho*phi.flag[i]) - beta*dose[i]*cumdose[i] ))8

p[i,2] < − p32[i] - p[i,3]9

p[i,1] < −1 - p32[i]10

pat.response[i] ∼ dcat (p[i,])11

}12

#Setting up the priors13

#prior on α - E(α) = 1 and V ar(α) = 414

mu1 < − -0.3465736; tau1 < − 1.442695015

alpha ∼ dlnorm(mu1,tau1)16

#prior on ρ17

a1 < − 5 ; b1 < − 118

rho ∼ dbeta(a1,b1)19

#Prior on β - E(β) = 0.5 and V ar(β) = 120

mu2 < − -1.498; tau2 < − 0.62121

beta ∼ dlnorm(mu2,tau2) #Prior on θ - E(θ) = 4 and V ar(θ) = 1622

mu3 < − 1.356; tau3 < − 16.49523

theta ∼ dlnorm(mu3,tau3) }24

#Initializing the parameters25

inits< −list(list(alpha=1,beta=0.1,rho=0.7,theta=0.1),26

list(alpha=0.5,beta=0.8,rho=0.9,theta=2) )27

parameters < −c(“alpha”,“beta”, “rho”,“theta”)28

#updating the simulations29

data < −list(“response”=response,“phi.flag”=phiflag,30

“cumdose”=cumdose,“dose”=dose,“N”=N)31

jags < − jags.model(file=”prior.bug”, data = data, inits=inits, n.chains = 2, n.adapt32

= 10000)33

adapt(jags,n.iter=1000)34

update(jags,1000000) # burin samples35

sim1< −coda.samples(jags, parameters, 500000,thin=5)36

#check for convergence37

plot(sim1)38

gelman.plot(sim1)39

gelman.diag(sim1)40

geweke.plot(sim1)41

geweke.diag(sim1)42
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autocorr(sim1)43

autocorr.plot(sim1)44

#report the mean and quantiles of the posterior distributions45

y3< −summary(sim1)46

ystat< −data.frame(y3statistics)47

yquant = data.frame(y3quantiles)48

4.6.2 Example of an adaptive trial in progress

Based on the algorithm presented in Section 4.4.2.3 for maximizing the total ex-

pected dose received by a patient, an example of a trial in progress is presented in

this section for demonstrating the dose assignment in practice. The target proba-

bility bounds used during the execution are P̊ (C) = 0.40, P̊ (B) = 0.30, P̊ (A1) =

0.10, P̊ (A2) = 0.10 and the true values of the parameters are α = 1, β = 0.5, ρ =

0.8, θ = 4. The fixed parameter φ = 0.80 in these simulations.

Table 4.6 presents the current patient profile in the trial. The rows correspond to

the unique patients added sequentially in the trial. The columns correspond to the

six cycles with the dose level assigned to the patient and the response in parenthesis.

A one signifies none toxicity while a two and three denote mild and severe toxicity

respectively. A cross is placed in all cycles once a severe response is observed for a

patient. There are 13 patients in the trial and decisions need to be made for dose

assignment to patients 9, 11, 12 and 13 and a new patient 14. Before patient 13 was

added to the trial the parameter estimates were α̂ = 1.082(0.436), β̂ = 0.335(0.277),

ρ̂ = 0.903(0.102) and θ̂ = 4.111(0.959) with the posterior standard deviations in
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parenthesis. The updated current estimates of the parameters are α̂ = 1.163(0.441)

β̂ = 0.338(0.279), ρ̂ = 0.906(0.099) and θ̂ = 4.241(0.981). Notice that the estimate

of θ̂ increases in response to the mild toxicity observed by patient 11 on cycle 3.

The probability of toxicity on dose levels 1 through 4 for patient 9 are 0.003,0.023,

0.089,0.168 of which dose level 3 has probability of toxicity≤ P̊ (A2) = 0.10 and is also

able to provide a regimen combination that satisfies the P̊ (C) = 0.40, P̊ (B) = 0.30

and hence is assigned to patient 9 on cycle 6. Using the true values of the parameters

and the current dose assignment the true probability of toxicity is calculated and a

Bernoulli response is generated. In a similar fashion the remaining patients are

assigned doses and responses and the updated patient profile is presented in Table

4.7. The updated parameter estimates are now α̂ = 1.079(0.407), β̂ = 0.309(0.252),

ρ̂ = 0.905(0.099) and θ̂ = 4.214(0.974). Notice the slight decrease in estimates α̂, β̂

and θ̂ since no fresh toxicities are observed.

At the end of the trial the completed patient profile is presented in Table 4.8.

The parameter estimates at the conclusion of the trial are α̂ = 0.958(0.291), β̂ =

0.478(0.302), ρ̂ = 0.826(0.124) and θ̂ = 3.398(0.727) The probability of toxicity

on the first cycle and on any cycle is calculated using the current estimates of the

parameters for all the 19 regimens in Table 2.3 to select the recommended regimen

and by using the true parameter values to select the target regimen. By setting

P r(A1) = P̊ (A1) = 0.10 and P r(C) = 0.3 and using the true parameter values the

target regimen selected is 333333 while the recommended regimen is 33333 using the
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parameter estimates obtained at the conclusion of the trial. If only P r(C) = 0.3 is

used the target regimen is 333333 while the recommended regimen is 333333.

Table 4.6: Table showing the dose level assignment and patient responses in paren-
thesis for an adaptive trial in progress using Model 4.1 with accrual of 13 patients.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 2 (1) 2 (1) 3 (1) 4 (2) 3 (1) 3 (2)
2 2 (1) 3 (3) X X X X
3 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
4 3 (2) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)
5 2 (2) 2 (1) 2 (1) 3 (2) 2 (1) 2 (1)
6 2 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
7 2 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
8 2 (2) 2 (1) 3 (1) 2 (1) 2 (1) 2 (1)
9 2 (1) 3 (2) 2 (1) 3 (1) 3 (1) ?
10 2 (1) 3 (3) X X X X
11 2 (1) 3 (1) 4(2) ? ? ?
12 2 (1) 3 (2) ? ? ? ?
13 2 (1) ? ? ? ? ?

X Terminated patient having a severe toxicity (3)
? Continuing patient
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Table 4.7: Table showing the dose level assignment and patient responses in paren-
thesis for an adaptive trial in progress using Model 4.1 with accrual of 14 patients.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 2 (1) 2 (1) 3 (1) 4 (2) 3 (1) 3 (2)
2 2 (1) 3 (3) X X X X
3 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
4 3 (2) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)
5 2 (2) 2 (1) 2 (1) 3 (2) 2 (1) 2 (1)
6 2 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
7 2 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
8 2 (2) 2 (1) 3 (1) 2 (1) 2 (1) 2 (1)
9 2 (1) 3 (2) 2 (1) 3 (1) 3 (1) 3(1)
10 2 (1) 3 (3) X X X X
11 2 (1) 3 (1) 4(2) 3(1) ? ?
12 2 (1) 3 (2) 2(1) ? ? ?
13 2 (1) 3(1) ? ? ? ?
14 2 (1) ? ? ? ? ?

X- Terminated patient having a severe toxicity (3)
? Continuing patient
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Table 4.8: Table showing the dose level assignment and patient responses in paren-
thesis for a completed adaptive trial using Model 4.1.

Patient ID Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
1 2 (1) 2 (1) 3 (1) 4 (2) 3 (1) 3 (2)
2 2 (1) 3 (3) X X X X
3 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
4 3 (2) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)
5 2 (2) 2 (1) 2 (1) 3 (2) 2 (1) 2 (1)
6 2 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
7 2 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
8 2 (2) 2 (1) 3 (1) 2 (1) 2 (1) 2 (1)
9 2 (1) 3 (2) 2 (1) 3 (1) 3 (1) 3(1)
10 2 (1) 3 (3) X X X X
11 2 (1) 3 (1) 4(2) 3(1) 3 (1) 3 (1)
12 2 (1) 3 (2) 2(1) 3 (1) 3 (1) 3 (3)
13 2 (1) 3(1) 4(1) 4(1) 4(1) 4(3)
14 2 (1) 3(1) 4(1) 4(1) 4(3) X
15 2 (2) 2 (1) 2(2) 3(3) X X
16 2 (1) 3 (1) 4(3) X X X
17 2 (1) 3 (1) 3(2) 3 (1) 3 (1) 3 (1)
18 2 (1) 3 (1) 3(1) 3 (3) X X
19 2 (1) 3 (1) 3(1) 3 (3) X X
20 2 (1) 3 (1) 3(1) 3 (1) 3 (1) 3 (2)
21 2 (1) 3 (1) 3(1) 3 (1) 3 (1) 3 (1)
22 2 (3) X X X X X
23 2 (2) 1 (1) 2 (1) 2 (1) 2 (1) 2 (1)
24 2 (1) 3 (1) 3(1) 3 (1) 3 (1) 3 (1)
25 2 (1) 3 (1) 3(1) 3 (1) 3 (1) 3 (1)
26 2 (2) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)
27 2 (1) 3 (1) 3(1) 3 (1) 3 (1) 3 (1)
28 2 (1) 3 (1) 3(1) 3 (1) 3 (2) 4 (1)
29 2 (1) 3 (1) 3(2) 3 (1) 3 (1) 3 (1)
30 2 (1) 3 (1) 3(1) 3 (1) 3 (1) 3 (1)

X -Terminated patient having a severe toxicity (3)



CHAPTER 5

Discussion and future work

We have proposed novel models for the conditional probability of toxicity to

specify the dose-toxicity relationship in clinical trials in oncology having repeated

dose administrations. Using Bayesian methods the models can be fit to data that

arises in the conduct of a trial that allows patients to have dose escalation or de-

escalation. Allowing for intra-patient dose escalation and de-escalation gives the

patient a greater chance to be treated at a therapeutic dose, an advantage over the

current trials in oncology that restrict patients to have the same dose over all the

cycles.

The first model in Chapter 2 had three parameters to account for the effect of

the current dose, the cumulative dose and the effect of dependency between patient

responses. Benefits in modeling the data from all cycles were demonstrated. In ad-

dition estimation of parameters by allowing patients to vary doses over the course of

treatment was presented. The model application in conducting a sequential clinical

184
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trial by assigning doses to patients based on the all the available information was also

demonstrated. Chapter 3 demonstrated extensions of the model incorporating dose

and gender covariates. An ingenious way to build priors for the three parameters

was presented. Application of the model to the sarcoma dataset demonstrated its

ability to include covariates in modeling the dose-toxicity relationship. Chapter 4

demonstrated the extension of the Markov model to include ordinal outcomes ac-

counting for none, mild or severe toxicities. Sequential design of a clinical trial using

the model was presented. Benefits of using the ordinal model in comparison to the

dichotomized, two-state Markov model, were also demonstrated through simulations.

Overall, the methods proposed in this dissertation represent a meaningful con-

tribution to the field of adaptive clinical trial design. Although many statistical

methods have been proposed for adaptive clinical trials most are not used in practice

[Dent and Eisenhauer, 1996]. We are hopeful that with current interest in the CRM

in carrying out clinical trials there will be an eventual shift towards within-patient

dose-escalation trials and the methods presented in this dissertation would provide

the necessary tools and framework to carry them out. Our models provide a simple

way to model a complex data structure parsimoniously.

In general for dose escalation studies the design should be influenced by the

steepness of the dose-response curves, interpatient variability in pharmacokinetics

and whether the toxicities are reversible [Chevret, 2006]. In our setting when intra-

patient dose changes are allowed and repeated measurements of toxicity response are
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used it is also necessary that the toxicity can be attributed to the dose received in

the current cycle and that it occurs within the time frame of the cycle.

There are numerous pros and cons to using the model based methods presented in

this dissertation for adaptive clinical trial designs. It is hard to ignore the complexity

of the model design and the algorithm for dose assignment. The need to set up the

probability skeleton for the dose levels to be studied, the priors on the different

parameters of interest, the safety criteria rules for intra-patient dose escalation/de-

escalation, the choice of plans for optimizing the dose given to the patients, the

bounds for the various target probabilities and the bounds for the probabilities for

the eventual selection of a dosing regimen are a wide array of factors to consider

before carrying out the trial. The calculation of the probabilities that are used in

deciding the dose for the next cycle for a patient are based on accumulated data

that must be available in real time. In comparison the most widely used ‘3+3’

algorithmic design has a simpler approach to arriving at the maximum tolerable

dose level in a single dose setting. In actuality the model based approach presented

in this dissertation incorporates the safety criteria rules used in the algorithmic ‘3+3’

design but in contrast provides the additional benefit of treating patients close to the

safer dose level by incorporating information from all the patients in the trial and

additionally allowing patients to receive multiple doses. In situations where there are

limited patients to be recruited our model based methods provide efficient estimates

and allow the patients to be treated at the best dose level thereby making the extra
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effort of setting up the study design worthwhile.

In the evaluation of the methods we considered regimens of six cycles and the

only reason a patient would drop out prior to that was if they experienced a DLT.

In practice patients may drop out for other reasons. The Bayesian estimation ap-

proach can still be used as long as at least a few patients have a long sequence of

toxicity measurements, however there would be less precision of the parameter es-

timates with less accumulated data. In the dichotomous Markov model presented

in Chapter 2, three parameters were estimated of which the parameter ρ captured

the dependency of the within-patient responses. Estimating this parameter is chal-

lenging in the presence of limited data especially at the start of the trial. Others

including [Whitehead et al., 2001, 2006] seem to have encountered similar problems

when trying to estimate the dependency between patient responses and have resorted

to setting it to a constant. We have circumvented this issue by using a tight Beta

prior on ρ. These difficulties in estimating ρ were less profound when the sample size

increased as was the case in Chapter 3 when the Markov model was used in a Phase

II setting. This chapter presented other non-standard priors on ρ offering options to

incorporate prior belief in dependency of patient responses. A tight Beta prior was

also used on ρ in Chapter 4 since it was difficult to estimate all the four parameters

in the ordinal Markov model.

Since the parameter estimation is done via MCMC methods a fairly high under-

standing of the use of MCMC techniques is crucial and might pose a limitation to
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the use of the methods. In the simulation results presented in this dissertation a

relatively large fixed number (2000K) of simulations have been used as the burn-in

period for the initial 15 patients to ensure convergence of the posterior distributions

and a lower burn-in period (500K) for the subsequent patients in the ordinal out-

come model. The burn-in periods were determined based on the initial testing phase

of the method. A more stringent monitoring of the burn-in and convergence of the

posterior distributions is advocated when the method is being used in practice for

dose assignment in actual clinical trials.

A better understanding of the operation of the method for different values of the

target probabilities and safety criteria through simulations is advocated. The sim-

ulation results presented in Chapters 2 and 4 demonstrated the effect of the safety

criteria set up, the target probability bounds and the optimization criteria for the

dose assignment on the trial properties. Additional safety criteria rules can be incor-

porated, for example to prevent a new patient from escalating to a higher and new

dose level (rg + 1) on the first cycle given that the previous patient had a DLT on

dose level rg, the new patient could be assigned a dose level of rg or less. Clinicians

often hesitate in de-escalating the dose level when a patient tolerates the dose on

previous cycles. The algorithm could be modified to prevent continuing patients in

the trial from escalating to a higher dose level thus overriding the dose recommen-

dations made by the model algorithm. Studying the effect on the trial properties by

incorporating such safety criteria rules is strongly advocated via simulation studies.
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We have focused on using the models since they provide a good estimate of

the expected dose for the recommended regimen. In the context of multiple dose

administrations per patient once a recommended regimen is selected, the expected

dose corresponding to this regimen can be calculated and the probability of surviving

the entire regimen without a DLT can also be estimated. Given this value of the

recommended expected dose a number of dose level combinations are possible that

could match the expected dose and yet have an acceptable level of overall probability

of toxicity. Hence having an estimate of the tolerable expected dose gives rise to the

possibility of proposing various regimen combinations meeting the expected dose

level and the overall toxicity rate on all the cycles and could be used to narrow down

the possible choices of regimens for recommending to the next phase of testing.

Simulations are presented for five dose levels in Chapter 2 and 4 and for two dose

levels in Chapter 3 but in practice the model could be easily extended to different

number of dose level combinations. Also the number of cycles for the regimen are

not limited to four or six cycles are presented in Chapter 3 and Chapters 2 and 4

respectively. Currently all simulations demonstrating the sequential operation of the

models assumed that the patients complete their cycles simultaneously and that a

new patient is ready for dose assignment at the same time. Dose assignment happens

for the continuing patients and the new patient based on the parameter estimates

available at that stage. This simplistic assumption reduced the computational time of

the simulations and also minimized the complexity of the results during comparisons.
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In practice patient arrival could be generated using an exponential distribution and

the length of individual cycles could also be programmed when considering patient

completion. This would entail estimating the parameters more often since patients

would not be aligned to complete their cycles simultaneously. Simulations can be

done to study the effects of perturbation on differences in accrual rates of new pa-

tients, varying cycle duration/length and possibly varying cycle duration/length per

patient.

Another obvious extension to the models presented would be to include time to

event outcomes. We currently use the information from patients who have completed

their ongoing cycle. Using a time to event outcome on the lines of the TITE-CRM

[Cheung and Chappell, 2000, Braun, 2006], we could incorporate the partial informa-

tion from patients currently in a cycle by using weights for the period of time without

a DLT. This could provide a more accurate estimate of probability of toxicity rates

when deciding the dose level for a new patient or a continuing patient.

Thus far, we have considered incorporating only the safety information through

the occurrence of a DLT. There is an increasing use of early clinical trials to demon-

strate efficacy in addition to safety. Many authors including [Thall and Cook, 2004,

Braun, 2002, Thall et al., 1999] have provided models to be used in the phase I/II

setting to simultaneously arrive at a safe and efficacious dose level. In a similar vein

extensions to the Markov models can be envisioned that include a bivariate trial de-

sign in which the MTD is based jointly on both the toxicity and disease progression
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information.

Yet another possibly complex extension of the Markov models could be to study

the dose-toxicity profiles of two study drugs simultaneously. [Thall et al., 2003]

provided a two stage Bayesian method giving acceptable dose-pairs of two agents in

the phase I cancer chemotherapy setting. Similar extensions could be designed for

the multiple dose cycles per patient setting using the Markov models either in the

binary or the ordinal outcome setting presented in this dissertation.

One of the most promising results from the research in this dissertation is that the

use of ordinal responses can lead to improved selection of the recommended regimen

at the end of the trial. This is worthy of further research.
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