
Efficient Sensor Fault Diagnosis in Wireless Sensor
Networks

by

Chun Lo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2014

Doctoral Committee:

Professor Mingyan Liu, Co-Chair
Associate Professor Jerome P. Lynch, Co-Chair
Professor Anna C. Gilbert
Professor Jun Ni



c© Chun Lo 2014

All Rights Reserved



To my mother

ii



ACKNOWLEDGEMENTS

I would like to express my deep gratitude to the many people who have helped me

complete my Ph.D education. Foremost, I would like to express my sincere gratitude

to my advisors Prof. Mingyan Liu (EECS) and Prof. Jerome Lynch (CEE/EECS) for

their continuous support of my Ph.D research. They patiently provided encourage-

ment, vision, and advice that allowed me to proceed through the Doctorial program

and to complete my dissertation.

Besides my advisors, I would like to also thank the rest of my thesis committee:

Prof. Anna Gilbert (MATH/EECS) and Prof. Jun Ni (ME), for their insightful

comments and support. I also got important inspiration and guidance on part of my

research from Prof. Anna Gilbert’s class in compressive sensing.

I would like to give sincere thanks to Prof. Demosthenis Teneketzis (EECS)

and Prof. Clayton Scott (EECS) for their insightful and interesting courses; and to

Ms. Becky Turanski (EECS) for her assistance and advice throughout my graduate

program.

I am thankful for my many friends in the US. I appreciate the joy and support

they have provided and for burning the midnight oil together. Special thanks to

Yelin Kim, Sammy Lee, Shao-Yuan Chen, Sunjoon Park, Nellie Kim, Yao Wang, Vic-

tor Chan, Wonhyung Lee, Eugene Wu, Sean O’Conner, the entire Li family, Henry

Fan, AACCC, Miku Kawakami, Yumi Hasegawa, Seow Yuen Yee, Bhargav Avasar-

ala, Takanori Watanabe and Michael Allison. Special thanks also goes to the many

supporters I have from Hong Kong including my undergraduate advisor, Prof. Roger

iii



Cheng, and my friends: Fanco Tsang, Derrick Liu, Roger Chan, Michelle Ng, Kathy

Hon and Cheuk Fung Ling.

Last but not least, I would like to thank my family, especially my mother, Lai

Hung Ng, for her support and love throughout my life

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Distributed Model-based Sensor Fault Detection . . . . . . . 16

III. Detection and Identification of Spike Faults . . . . . . . . . . . 25

3.1 Spike Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Spike Detection by Matched Filters . . . . . . . . . . . . . . . 26
3.3 Simulation and Results . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Simulation Settings . . . . . . . . . . . . . . . . . . 31
3.3.2 Simulation Results under Various Scenarios . . . . . 35
3.3.3 Performance on Real Spike Corrupted Sensor Data . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IV. Detection and Identification of Non-linearity Faults . . . . . . 44

4.1 Non-linearity Faults . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Non-linearity Fault Detection and Identification Methodology 47

4.2.1 Feature Point Calculation . . . . . . . . . . . . . . . 48
4.2.2 Largest Empty Rectangle (LER) Problem . . . . . . 52

v



4.3 Simulation and Results . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 System for Validation . . . . . . . . . . . . . . . . . 55
4.3.2 Simulation Methodology . . . . . . . . . . . . . . . 56
4.3.3 Simulation Results . . . . . . . . . . . . . . . . . . 57

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

V. Field Experiment on Grove Street Bridge . . . . . . . . . . . . 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Performance Evaluation on Grove Street Bridge . . . . . . . . 70

5.2.1 Deployment Details . . . . . . . . . . . . . . . . . . 70
5.2.2 ARX Model Training Method . . . . . . . . . . . . 71
5.2.3 The Flow of the Experiments . . . . . . . . . . . . . 72

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Spike Detection using Matched Filters . . . . . . . . 74
5.3.2 The Relationship between the Detection Accuracy

and the Similarity between the ARX Coefficients . . 76
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VI. Efficient Sensor Fault Detection Using Combinatorial Group
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Group Testing . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Kalman Filter Based Group Test . . . . . . . . . . . 91

6.3 A Combinatorial Group Testing Based Fault Detection Method 94
6.3.1 Group Selection and Number of Group Tests . . . . 95
6.3.2 Practical Implementation . . . . . . . . . . . . . . . 96

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.1 Sensor Fault Types . . . . . . . . . . . . . . . . . . 97
6.4.2 Bridge Vibration Data and State Estimation . . . . 98

6.5 Performance of the Combinatorial Group Testing (CGT) Method100
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VII. Efficient Sensor Fault Detection Using Bayesian Group Testing108

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Bayesian Group Testing . . . . . . . . . . . . . . . . . . . . . 109
7.3 Performance of the Bayesian Group Testing Method . . . . . 115

7.3.1 Performance of the BGT Method on the New Car-
quinez Bridge Sensors . . . . . . . . . . . . . . . . . 115

7.3.2 Performance of BGT Method on Larger-Scale Systems118
7.4 The Design and Performance of KF-BGT Method . . . . . . 123
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



VIII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



LIST OF FIGURES

Figure

2.1 During training: (a) each sensor broadcasts its output, (b) a linear
relationship between sensor pairs is calculated, and (c) finally pair-
wise linear relationships of the network are constructed . For fault
detection: (d) the base station divides the sensor network into pairs,
(e) each pair performs the fault detection method, and (f) each pair
sends their results, e, back to the base station (B.S.). . . . . . . . . 18

3.1 Description of cross-error functions due to spike faults: (a) the su-
perposition of a spike fault on a sensor output; (b) sensor 1 exhibits
a spike fault; (c) sensor 2 exhibits a spike fault; (d) both sensor 1 and
2 exhibit spike faults. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Five degree-of-freedom (DOF) spring-mass-damper system for method-
ology validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Response of m1 and m2 under a two tone harmonic excitation: (a)
fault free displacement time history; (b) same displacement time his-
tories with spike faults (40% of the maximum response amplitude)
randomly introduced. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 (a) Cross-error function between sensor 1 and 2 corresponding to
outputs presented in Fig. 3.3(b); (b) error function convoluted with
coefficients a; (c) error function convoluted with coefficients b. . . . 35

3.5 Detection rate of spike faults versus different spike amplitudes when
measuring displacement. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Detection rate of spike faults versus different spike amplitudes when
measuring acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



3.7 Detection rate of spike faults versus different spike amplitudes when
measuring acceleration. The viscous damping constant is decreased
from 10.5 to 0.6Nsec/m. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Detection rate of spike faults versus different levels of sensor obser-
vation noise when measuring displacement. Spike are fixed at 30% of
the maximum peak-to-peak amplitude of the sensor measurement. . 39

3.9 Detection rate of spike faults versus different percentage of coincide
spike error on both sensors. . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 The trade off between the sensor fault detection method’s detection
rate and false alarm rate with different threshold levels. . . . . . . . 41

3.11 Strain signals from wired sensors. . . . . . . . . . . . . . . . . . . . 43

3.12 Strain signals form wireless sensors with spike errors ((a) and (c))
and the corresponding output of the matched error function ((b) and
(d)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Bilinear non-linear sensor fault model . . . . . . . . . . . . . . . . . 46

4.2 A unit amplitude sinusoidal signal and the corresponding non-linearity
faulty measured signal with r1 = 0.6, r2 = −∞ and θ1 = 30◦ . . . . 47

4.3 Exponential non-linearity sensor fault model (one-sided version shown). 47

4.4 Pair-wise fault detection in a sensor network . . . . . . . . . . . . . 48

4.5 Overview of detecting and identifying non-linearity faults within the
S1 − S2 pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Abnormal signal detection and feature data point extraction: (a)
true signal of S1, y1, (b) true signal of S2, y2, (c) measured signal
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cross-error function, e12 of the sensor pair. . . . . . . . . . . . . . . 51

4.7 Location of extracted feature points when: a) S1 is faulty and S2 is
normal, b) S1 is normal and S2 is faulty and c) both S1 and S2 are
faulty. The dotted lines correspond to the boundaries between the
normal and abnormal regions. . . . . . . . . . . . . . . . . . . . . . 52

4.8 Illustration of the sub-optimal LER detection algorithm proposed to
identify non-linear fault types in the two sensors. . . . . . . . . . . . 54

ix



4.9 Five degree-of-freedom (DOF) spring-mass-damper system for vali-
dation of the non-linearity fault diagnosis method. . . . . . . . . . . 55

4.10 Faulty sensor detection accuracy versus a) different slope degree θ
(bilinear model) and b) variations in the exponential model parameter
ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Normalized normal region boundary detection accuracy: a) White
noise excitation under bilinear model, b) harmonic excitation under
bilinear model, c) White noise excitation under exponential model
and d) harmonic excitation under exponential model . . . . . . . . . 59

4.12 Comparison of detection performance between using the optimal LER
method and the proposed low complexity LER method. . . . . . . . 61

4.13 Detection accuracy versus number of available feature points when
using a) bilinear model and b) exponential model. . . . . . . . . . . 63

4.14 Detection accuracy versus sensor measurement noise when using a)
bilinear model and b) exponential model. . . . . . . . . . . . . . . . 64

4.15 Detection accuracy versus abnormal signal amplitude when using: a)
bilinear model and b) exponential model. . . . . . . . . . . . . . . . 66

4.16 Illustration of the detected LER when one of the sensors is corrupted
by: a) spike faults, b) mean-drift faults, and c) excessive noise faults. 67

5.1 The Grove Street Bridge . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 The flow diagram of spike generation . . . . . . . . . . . . . . . . . 71

5.3 The observation of a normal sensor . . . . . . . . . . . . . . . . . . 74

5.4 An example of spike corrupted data observed by sensor 4 and sensor
13 on the bridge. The detected sensor 4 spikes are indicated by
rectangle markers and The detected sensor 12 spikes are indicated by
star markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 The output of cross-error function and matched filters. The detected
sensor 4 spikes are indicated by rectangle markers and The detected
sensor 12 spikes are indicated by star markers. . . . . . . . . . . . . 77

5.6 The relationship between detection rate and Cm(ȧ, ḃ). . . . . . . . . 78
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ABSTRACT

Efficient Sensor Fault Diagnosis in Wireless Sensor Networks

by

Chun Lo

Co-Chair: Mingyan Liu

Co-Chair: Jerome P. Lynch

Nodes in wireless sensor networks (WSN) are prone to faults due to their inexpensive

components and due to the harsh environments in which they are deployed. Therefore,

automated fault diagnosis algorithms are necessary to ensure network functionality

and measurement quality. Because wireless sensor networks have limited energy re-

sources and consist of a large number of sensors, there is a need for fast and power

efficient sensor fault diagnosis algorithms. This thesis proposes two frameworks of

efficient sensor fault diagnosis. The first is a distributed model-based fault diagnosis

framework for embedment in the WSN nodes. Fault specific algorithms are designed

under this framework for detecting and identifying spike and non-linearity faults

without the use of reference sensors. These algorithms fill the gap between existing

centralized model-based and distributed model-free frameworks. In addition, they

have the benefit of being scalable, power efficient and highly accurate. In the second

framework, group testing-based fault diagnosis algorithms are proposed for situations

where the number of faulty sensors is much smaller than the number of sensors in

the network. These group testing algorithms evaluate sensors on a collective basis

xiv



instead of on the traditional individual basis. This study designs a Kalman-filtering

based method for evaluating a group of sensors to determine if faulty sensors exist in

the group. This method, together with the combinatorial group testing technique, is

able to detect faulty sensors in O(d2 log(N)) tests, where d is the number of faulty

sensors and N is the size of the network. This study also develops a Bayesian adap-

tive group testing algorithm in which test pools are designed based on previous group

test results. This adaptive method further reduces the required number of tests and

is suitable for noisy group test systems. Algorithms of both frameworks are evalu-

ated by simulated and real sensor data with faults present. Results show that the

distributed algorithms are able to achieve a detection rate of 85% or higher while

keeping the false alarm rate low (∼ 1%) under typical faulty signals. The group

testing algorithms are able to reduce the required number of tests significantly while

achieving similar accuracy as the traditional fault detection methods.
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CHAPTER I

Introduction

Wireless sensor networks (WSNs) consist of a large number of distributed au-

tonomous sensors developed to monitor physical and environmental conditions. Each

sensor is capable of sensing, signal processing, and communicating wirelessly. WSNs

can also be installed at low cost because wire installation is no longer necessary. This

provides a great incentive for WSN adoption in large-scale systems in which mon-

itoring is traditionally accomplished by wired sensors, such as in structural health

monitoring (Lynch, 2007) and environmental monitoring (Wark et al., 2007) sys-

tems. For example, wire installation in structural health monitoring system accounts

for about 25% of the total system cost and 75% of the installation time (Straser and

Kiremidjian, 1998). The high mobility and random deployment ability of WSNs are

opening a range of new applications that had been impractical in the past such as an-

imal tracking (Sikka et al., 2004) and battlefield surveillance (Bokareva et al., 2006).

The ubiquitous computing paradigm (Weiser , 1993; Estrin et al., 2002) adoption is

accelerating with the help of wireless sensor technologies, whereby the physical world

instrumented with pervasive networks of sensor-rich embedded systems. These sys-

tems will respond to our actions quickly and autonomously while blending into the

background without people noticing them. This vision of the future has recently been

termed the internet-of-things, or IoT.
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To maintain small sizes and low costs, the electronics and enclosures of wireless

sensors tend to be low cost thereby leaving them vulnerable to experiencing faults and

failures. Moreover, the harsh environments in which WSN are usually deployed also

increase the chances of abnormal sensor behavior (Akyildiz et al., 2002). Therefore,

wireless sensors in WSNs are more prone to error than traditional (wired) sensors.

Incorrect measurements from malfunctioning sensors not only deteriorate the ability

of the network to accurately take measurements but also can lead to wrong decisions

which can be hazardous. Because WSNs consist of numerous sensors and these sensors

are usually difficult to access after deployment, automated malfunction diagnosis

capability would be an indispensable tool in maintaining the functionality and quality

of the WSN.

System malfunction diagnosis has long been an important research topic in the

field of control theory (Chen and Patton, 2012; Frank , 1990; Borner et al., 2001;

Liu et al., 2009; Venkatasubramanian et al., 2003). The sensor malfunction diagnosis

for WSNs, however, has unique challenges and thus requires further study. The two

major new challenges of sensor malfunction diagnosis in WSNs are (Paradis and Han,

2007):

• A WSN usually contains a large number of sensors. These sensors can generate

huge amounts of data that can be difficult for diagnosis algorithms to manage

and process. Consequently, malfunction diagnosis algorithms must be both

efficient and scalable for large WSNs.

• Each sensor usually has a limited amount of energy, which can constrain its

operation. Aggregating data from wireless sensors and transmitting data sets

to powerful base stations for malfunction diagnosis is not desired because of

the significant communication energy required to do so. Therefore, diagnosis

algorithms are required to be energy efficient by minimizing communications

and distributing computing workload across the network.

2



This thesis defines sensor malfunctions to be the unexpected deviation of the

actual sensor measurement from the true value. The malfunction of sensors is divided

into two main types: failure and faults. Sensor failure refers to the situation in which

the sensor is not responding or giving measurements. This type of malfunction is often

due to major system problems such as the depletion of energy or communication

errors. Sensor fault refers to the situation in which the sensor is still responding

and monitoring the environment. The observations of these sensors, however, are

corrupted such that their measurements do not reflect the real situation. Sensor

faults are less severe and are due to less critical problems, such as bad installations

and poor shielding of sensors. Sensor failures are usually detected by query-and-listen

methods (Ramanathan et al., 2005; Staddon et al., 2002; Goodrich and Hirschberg ,

2006; Marti et al., 2000). In contrast, sensor faults are more difficult to detect and

characterize since the validity of the data must be analyzed. This thesis focuses

exclusively on sensor fault diagnosis.

In the past decade, many studies have developed sensor fault diagnosis meth-

ods. However, only a few of them are tailor-made for WSNs and take WSN energy

constraints into account. Sensor fault diagnosis contains three main stages. The first

stage, malfunction detection, refers to the detection of whether malfunctioning sensors

exist in the network. This stage may not necessarily point out which sensors are ab-

normal. The second stage, malfunction isolation and malfunction type identification,

refers to the isolation of abnormal sensors and the identification of the malfunction

type that is occurring in the identified sensor. The third stage, malfunction recovery,

refers to the automatic correction of the detected errors. Each stage is increasingly

difficult to achieve. Hence, not all malfunction diagnosis methods achieve all three

stages of analysis.

In order to reveal the faulty sensors, a reference system is required. A simple

method is based on hardware redundancy. This method uses duplicate sensors to

3



perform the same monitoring task. Faulty sensors can be detected by comparing

measurements between sensors (e.g., (Broen, 1974)). This method is simple but its

chief weakness is the high cost in hardware. The major approach currently in use for

sensor fault diagnosis is based on the concept of analytical redundancies. The basis

of this approach is that for sensors that are attached to the same physical system,

correlation exists between the observations of the sensors. This correlation can be

exploited to monitor the behavior of an unknown sensor. Any detected abnormal

behavior is subject to further fault investigation. The general flow of faulty sensors

diagnosis by analytical redundancy (Isermann, 1997) is summarized in three stages.

First, Sensor measurements are processed to extract features that are useful for fault

diagnosis. Second, these extracted features will be verified by other sensors based

on the redundancies that exist in the sensor network. Examples of redundancies are

correlation between sensors, system models with model parameters of the underlying

system, etc. Third, any discrepancies found in the validation process is denoted as

residuals. The residuals are further analyzed to detect whether there is a fault. If a

fault exists, the diagnosis algorithm further isolates and identifies the fault types, if

possible.

Analytical redundancy based detection methods can be classified as centralized or

distributed methods and model-based or model-free methods. Centralized methods

collect all the required data to a base-station and then carry out the fault detection by

the base-station. In contrast, distributed methods carry out the fault detection locally,

i.e., near where the data is observed. The fault detection process of distributed meth-

ods usually only has local data available but it usually requires less communication

energy as data only are transmitted over a short distance. Model-based methods use

a mathematical model to emulate the dynamics of the system that is under monitor-

ing. Analytical redundancies are then obtained directly from this model. The system

model can be acquired by the physical properties of the system (i.e., physics-based)

4



or learned from the historical data of the system (i.e., data-driven). Data-driven

methods are specially valuable when the system being monitored is too complex to

be modeled analytically. The acquired system model then acts as a fundamental

reference system for sensor fault diagnosis. Model-free methods do not have a so-

phisticated mathematical model and the analytical redundancies are usually based

on simple assumptions of the system. Therefore, model-based methods usually have

higher accuracy (if the model is accurate) the model-free methods while model-free

methods usually have lower computation requirement than the model-based methods.

Most of the model-based methods require a complete observation of the system,

thereby they are usually implemented as a centralized method. On the other hand, the

simple assumptions used in model-free methods can be easily implemented distribu-

tively. As a result, most of the existing methods are either centralized model-based

methods (e.g., Li et al. (2007); Kobayashi and Simon (2003); Da and Lin (1995);

Ricquebourg et al. (1991); Xu et al. (1999); Dunia et al. (2004); Jiang (2011)) or dis-

tributed model-free methods (e.g., Ding et al. (2005); Chen et al. (2006); Luo et al.

(2006)).

Recent studies provide illustrative examples. Da et al. (Da and Lin, 1995) and

Kobayashi et al. (Kobayashi and Simon, 2003) each proposed a centralized sensor

fault diagnosis method that uses a bank of Kalman filters. Both methods assume

that the system model is linear, and they formulate the model as a state space model.

For a network of N sensors, an N-Kalman filter system is established such that the

ith Kalman filter is based on all but the ith sensor. Assuming that there is only one

faulty sensor in the network, exactly one Kalman filter (out of the N Kalman filters)

behaves differently from the others. Therefore, the faulty sensor can be detected

and isolated. The difference between Da’s method and Kobayashi’s method is the

way they measure the discrepancies between the Kalman filters. When the state-

space model is accurate, both methods give accurate detection results. The main
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constraint of both methods is at most one faulty sensor is allowed in the system.

Li et al. (2007) relaxes the at-most-one-faulty-sensor constraint by introducing

reference sensors. Reference sensors refer to sensors that are known to be function-

ing normally during the fault detection process. Li’s method requires the number

of reference sensors to be more than the number of uncertain sensors (i.e., those in

unknown fault state). A relationship between each uncertain sensor and the reference

sensors can be found based on the state-space-model of the underlying system. (In

order for the relationships to be exist, the method also has a special restriction on the

feed-through matrix D in the state-space model.) With measurements of reference

sensors, the output of an uncertain sensor can be predicted. If the observed measure-

ments of the uncertain sensor do not agree with the predicted value, the uncertain

sensor will be diagnosed as faulty. Although this method allows more than one faulty

sensors exist in the system, it also increases the operation cost as reference sensors

are expensive to maintain.

The previous three methods use physics-based system model to establish analytical

redundancies. In the following, methods that use data-driven-based system model are

introduced. For example, a faulty sensor diagnosis algorithm based on a probabilistic

model is presented by Ricquebourg et al. (1991). This study based on the result of a

previous study (Ricquebourg et al., 2007) which suggested the sensor data could be

converted to finite symbolic states. As a result, the paper models the sensor dynamics

by a Markov Chain model (Bremaud , 1999). A Markov chain model is a discrete

time stochastic model which a state at any time is related to the previous state only.

Consequently, a list of states and the transition probability between states are enough

to describe a Markov chain model. The method suggested by Ricquebourg et al.

(1991) first learns the dynamics of the system under the framework of Markov chain

model based on the sensor historical data. This method is different from other fault

diagnosis methods by its probabilistic nature. The sensor symbolic state estimated by

6



the Markov model may not agree with the observed sensor state in a short time even

the sensor is normal. Therefore, the diagnosis is done by evaluate the discrepancies

over a long period of time. The study further constructed a 3- level decision criterion

and tried to isolate the sensors which have a significant discrepancies in a short time.

Jiang et al. (2007) suggested a model-based method which distinguishes sensor

faults from monitored system faults and detect abnormal changes in system time

constants (Lipták , 2005) and gains in both sensor system and monitored system. This

method assumes the normal state-space model of the system and sensor dynamics is

known and the monitored system has much smaller time constant than the sensor

system’s. During the fault detection process, a window of the sensor measurements

and system inputs are used to identify system dynamics by subspace method. If

the identified model shows discrepancies from the normal model in slow dynamics, a

degradation of the monitored system is concluded. Similarly, if the identified model

shows discrepancies in fast dynamics region, a degradation of the sensor is concluded.

The identified system model is also used to calculate the changes in the gains of the

system and the sensor such that the correct gain of the sensor measurements can be

corrected.

Xu et al. (1999) proposed a centralized sensor diagnosis method based on a Neural

Network model. In general, Neural Networks contains an input variable layers, a

output variable layers and at least one hidden variable layers. The variables in a layer

affect the next layer’s variables by weighting functions. These weighting functions can

be non-linear. Therefore, a Neural Network model is able to capture the dynamics of

complex non-linear systems. In the study, the input layer and output layer of a Neural

Network are equal to the measurements of the same group of sensor. The weighting

function is trained by the historical sensor measurements. When a sensor or a small

number of sensors become faulty, their outputs will be detected to be inconsistent

with other sensors’ output. Moreover, the correct outputs can be estimated by other
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normal sensors based on the captured correlations. The advantage of this method is

its ability to model complex and/or non-linear systems. However, the corresponding

disadvantage is the high computation complexity. Also, the accuracy decreases when

the number of fault sensors increase.

Dunia et al. (2004) proposed a fault detection method based on the Principal

Component Analysis (PCA) model. The study assumed that the sensors are highly

correlated and that therefore their output dynamics can be captured in a much smaller

dimension space than the dimension of the original observation space. When the dy-

namics of a sensor’s observation are not concentrated on the principal components,

the sensor is regarded as faulty. The high dynamics outside the principal compo-

nents, which are regarded as having large residuals, indicate that the sensor has lost

its original correlation with other sensors, and imply sensor fault based on the sys-

tem assumption. The study further analyzed how different types of faults affect the

residuals differently and therefore provides a tool to identify the fault types occurring

in the faulty sensors.

All of the aforementioned methods are centralized methods. A base-station has

the knowledge of the system model and collects observations from the sensors for

performing fault diagnosis. The data collection process inevitably consumes a large

amount of energy for communication, especially for large scale networks. Therefore,

centralized methods are usually not preferred for energy limited wireless sensor net-

works. As a result, researchers have started to develop distributive fault diagnosis

methods, which generally require less transmission of data (Chen et al., 2006; Ding

et al., 2005; Luo et al., 2006).

These distributive fault diagnosis method usually have a simple assumption on the

sensor relations, such as that sensors are closely deployed and thus observe similar

signals. They do not require a formal system model of the underlying system and

thus are regarded as model-free methods. Because of the simplicity, the diagnosis
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algorithm is usually more easily formulated in a distributive fashion. For instance,

Ding et al. (2005) assumed that sensors in close proximity should have similar mea-

surements. Therefore, the proposed method suggested that each sensor compares

its output with the mean output value of the neighbor sensors. If the result of the

comparison of a sensor is bigger than the results obtained by its neighbor sensors

by a predefined threshold, this sensor is regarded as faulty. This method has low

complexity requirement but accuracy is sensitive to the threshold value.

Chen et al. (2006) proposed an iterative fault diagnosis technique which also as-

sumes the measurements of neighbor sensors are similar. In order to detect fault

sensors, each sensor first calculates a “tendency state”. This state measures how

likely of the sensor being normal or faulty by comparing its own measurements with

the neighbor sensors. If the comparison is larger than a threshold for more than half

of the neighboring sensors, the “tendency state” is set to likely faulty, otherwise is

likely normal. For a likely normal sensor, if there are more than a quarter of its

neighbors are also being likely normal, the sensor will be regarded as normal and this

result will be used to diagnose other sensors. Although the detection process occurs

locally, each sensor is required to compare its output with its neighbors several times;

at least five neighbors are recommended to ensure the method has a high level of ac-

curacy. This drives the communication cost higher and increases the processing time,

and thus has higher complexity than the method introduced by Ding et al. (2005).

Another distributive method was proposed for event-detection WSNs (Luo et al.,

2006). In this study, each sensor reports the occurrence of an event . In an event-

detection network, each sensor will make a binary decision on whether a target event

happened based on its observation. Luo et al. assumed the sensor faults are stochas-

tically unrelated, i.e., each sensor has the same probability of being faulty. A final

decision of an event state is made by a majority vote from the individual decisions

of a group of sensors, and sensors that frequently give different results are considered
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to be faulty. By showing that the error probability of final decisions decreases expo-

nentially with the number of sensors, the study determined the optimal number of

sensors that participate in the majority voting and the optimal threshold for majority

voting, based on the probability for a sensor to be faulty. One of the limitations of

this method is that it does not consider the case when sensors are at the boundary

of an event (i.e., neighbor sensors are observing different events).

A model-less faulty sensor detection method which utilizes the geometric locations

of sensors is presented by Guo et al. (2009). This method focuses on the monitoring

networks where the source of signal is located within a small area and the measure-

ment of sensors is dependent on their geometric location. For example, the sound

intensity detected by a sensor from an audio source is monotonically decreasing with

the distance of the sensor from the source. The method used by Guo et al. divided

the sensing area into different faces of subareas. For a source in any location within a

face, the deployed sensors will have the same order of observed signal magnitude. The

total number of possible orders of sensors is much larger than the possible number of

faces. If the sensors are ordered according to the detected signal strength, faulty sen-

sors can corrupt the order arbitrarily. For each object detection, the method maps the

detected order to the closest possible order. After several detections (with the signal

source appears in different faces), the faulty sensor could be isolated by comparing the

detected orders and the closest orders after mapping. The limitation of this method

is that the location of the sensors is required, and the faces should be updated after

each movement of the sensors. Also, as the detection of faulty sensors requires the

information from the entire network, this model-less sensor fault detection method is

a centralized method.

In this thesis, a model-based distributed sensor fault detection method is pro-

posed (Chapter 2, 3 and 4). The proposed method fills the gap between model-based

centralized methods and model-less distributed sensor fault methods, with the goal
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of reducing communication energy consumption while maintaining high detection ac-

curacy. As can be seen, most of the published studies only focus on the detection

and isolation steps. Dunia et al. (2004) is one study that also studied fault identi-

fication and recovery. Though fault identification is more difficult to achieve, being

able to identify the type of fault is important. This is because knowing the type

of faults allows us to find out the cause of the fault more easily and possibly also

leads to better sensor output recovery, which therefore reduces the cost of the net-

work maintenance. Therefore, fault identification algorithms are also presented for

identifying non-linearity faults and spike faults. This family of detection methods is

also implemented and validated by a field study on the Grove Street Bridge located

on Ypsilanti, Michigan.

A common characteristic of most of the proposed fault detection methods is that

uncertain sensors are evaluated individually. We observe that while certain regional

effects or disaster events may result in a large number of faulty sensors at the same

time, faults occur randomly and sporadically during normal operation and in the ab-

sence of systemic problems. When faults are rare and sparse, evaluating sensors one

by one seems inefficient, especially when the number of sensors in the network is large.

Hence, this study develops another family of efficient fault detection methods which is

based on group testing and Kalman filter. There are only a few studies that adopted

group testing to detect malfunction sensors. Specifically, Goodrich and Hirschberg

(2006) proposed a group testing based algorithm for detecting failure (dead) sensors.

This algorithm uses broadcast-and-response technique to make requests to sensors

that belong to a particular group, T , which then verify their existence. The re-

sponses are aggregated along the routing tree to the base station. Since |T | is known,

the base station is able to detect whether a group T contains any failure sensor.

Tosic and Frossard (2012) proposed a distributive sensor fault detection algorithm

that measures a smooth phenomenon (which implies neighboring sensors have simi-
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lar measurements), while a group test is performed using an unspecified dissimilarity

comparison of neighboring sensors’ measurements. The proposed method is different

from these two studies because it focuses on detecting faulty sensors which are still

responsive to queries. Also, the proposed method does not have the constraint that

sensors are highly correlated, i.e., it does not assume neighboring sensors have similar

measurements. Therefore, whether a group contains faulty sensor(s) is not as straight

forward as counting the total responses from the sensors or calculating the variance of

the measurements of a group of sensors. A Kalman filter-based group testing method

is proposed for model-based sensor fault detection.

In the rest of this chapter, the problem statement and main structures of this

thesis is presented. Consider a group of N monitoring sensors attached to a common

system, as well as a base station, that together form a multi-hop wireless sensor

network. Some of the sensors are able to communicate directly with the base station

but most of them can communicate with the base station only through other sensors.

The requirement that sensors be attached to a common system ensures the existence

of correlation between sensors’ observations. Each sensor periodically collects a noisy

measurement of the environment. A sensor may fail at any time. This study focuses

on sensor fault diagnosis, i.e., diagnosis of faulty sensors that are still responding and

monitoring the environment but the reporting measurements that are corrupted. We

target that detecting the faulty sensors based solely on the reported measurements

from the sensors. This thesis can be divided into two main parts; both focused

on developing energy efficient algorithms and algorithms that are scalable for huge

networks.

In the first part, we aim at developing a scalable model-based faulty diagnosis

algorithm that is also able to identify fault types. We assume that the common system

in which the sensors are attached is a linear system. Each sensor has a fixed location

and periodically collects measurements of the system. We will develop a model-
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based distributive fault diagnosis algorithm. As mentioned in the previous chapter,

the existing fault diagnosis algorithms are either model-based centralized methods

or model-free distributive methods. Model-based centralized algorithms usually have

higher accuracy but also have high communication energy consumption. Model-free

distributive algorithms reduces communication significantly but it also sacrificing the

diagnosis accuracy. Therefore the diagnosis algorithm has advantages from both type

of algorithms, i.e., energy efficiency and at the same time achieves high accuracy.

Moreover, the algorithm will be able to identify and recover the type of faults, such

as spike and non-linearity, in addition to performing the basic fault detection and

isolation. We also chose not to use reference sensors (i.e., a priori defined sensors

that will perform normally during diagnosis process) of which are required in many

other systems. This is a significant advantage as reference sensors usually have higher

cost and/or require special maintenance.

In the second part, we focus on algorithm implementation and design issues in

wireless sensor networks. As we aim at developing efficient sensor fault diagnosis

algorithms that are suitable for energy-limited sensors, it is important to implement

the algorithms on real sensors and evaluate the performance under real-world envi-

ronments. This study can also confirm the complexity of the algorithm is suitable

for low cost sensors (which equipped with 8-bit micro-processor). We implemented

our algorithms on sensors that are deployed on a bridge for monitoring bridge vi-

brations. Sensor faults are created artificially for performance evaluation. As the

proposed distributive model-based fault diagnosis algorithm partitions the network

into sensor pairs. The partition affects both communication cost and fault detec-

tion accuracy. This study presents a edge covering based method for proper network

partition. Moreover, this partitioning process could be carried out by the sensors,

instead of a base-station, to further reduce the communication energy.

In the third part, we aim at developing fast sensor fault diagnosis algorithms for a
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situation in which the number of faulty sensors is much smaller than the total number

of sensors in the sensor network. When most of the sensors are normal, evaluating

sensors individually may not be an efficient way to perform sensor fault diagnosis,

especially for applications that use thousands of sensors. A efficient fault detection

method based on Combinatorial Group Testing (CGT) and Kalman filter is proposed.

Each time, a group of sensor is tested and determine whether the group contains any

faulty sensor. If the group members are chosen properly, the number of required group

tests to detect all the faulty sensors is much smaller than the total number of sensors.

In additional to the existing CGT method, we also proposed a novel Bayesian Group

Testing (BGT) method. The BGT method is a adaptive method as for each group

test, the group member is determined based on the previous group test results. Also,

the BGT method is suitable for noisy group testing systems, i.e., the result of group

tests may be incorrect. Both the CGT method and BGT method are evaluated by

simulations and real data collected by bridge monitoring sensors. The performance

of these two methods are also compared to other Kalman filter based sensor fault

detection methods.

Therefore, the contribution of the thesis can summarized as followings:

1. A distributed model-based fault detection algorithm is suggested to fill the

gaps between centralized model-based methods and the distributed model-less

methods.

2. Under the distributed model-based detection framework, fault type specific algo-

rithms are proposed for detecting and identifying spike and non-linearity faults

without using reference sensors.

3. A field experiment is conduct to evaluate the real-world performance of the

distributed model-based fault detection algorithm. Network partition methods

and insights are also given based on the field study.
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4. An efficient sensor fault detection method based on Combinatorial Group Test-

ing and Kalman filter is proposed for detecting rare faulty sensors.

5. A novel Bayesian group testing algorithm is proposed to further reduce the

number of required group tests that is required by the Combinatorial Group

Testing method. This Bayesian group testing method is also suitable for noisy

group testing systems.
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CHAPTER II

Distributed Model-based Sensor Fault Detection

This chapter proposes the framework of a Distributed Model-based sensor fault

detection method. This method partitions the sensor network into sensor pairs and

the dynamics of each pair of sensors is modeled by a simple linear model. This

chapter lays a theoretical foundation for the sensor fault detection methodology to

be described in Section III and Section IV.

Consider a set of wireless sensors attached to a time-invariant physical system.

Since sensor responses all depend on the common physical system, a linear relationship

exists between the system outputs measured by these sensors. This relationship can

then be exploited to evaluate the “correctness” of the sensor measurements. Specif-

ically, sensors can pair up and check whether their outputs are consistent with this

linear relationship; inconsistencies can then be used to determine whether one or both

of the sensors may be faulty. This pair-wise comparison can be performed between

any pair of sensors and only the result of the comparison needs to be conveyed to the

base station or a central processing node in the WSN. For the purpose of conserv-

ing energy in the WSN, sensors are generally grouped within close proximity of each

other.

The structure of the proposed algorithm is illustrated in Fig. 2.1. The algorithm

can be separated into a training (also called “model parameter identification”) phase
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and a detection phase. During the training phase, each sensor node learns the rela-

tionship between itself and each of its neighbors. For example, in Fig. 2.1(a), sensor

2 broadcasts its measurement data to neighbouring sensors 1 and 3. After the data is

received, sensors 1 and 3 calculate the relationship between their outputs and sensor

2’s output (Fig. 2.1(b)). This model parameter identification processes is performed

by each sensor one after another and the results are stored locally, as shown in Fig.

2.1(c). During the detection phase, the network is partitioned into pairs of neighbor-

ing sensors; this can be done centrally or in a distributed fashion. Each pair of sensors

then performs a comparison according to their trained relationship. Fig. 2.1(d) shows

a network partitioned into 3 pairs: {1, 2}, {2, 3} and {4, 5}. For example, consider

sensor pair {1, 2}. Sensor 2 first transmits its output to its partner, sensor 1. Sensor

1 then checks whether its measured output agrees with the output predicted by the

previously trained relationship (Fig. 2.1(e)). Finally, each sensor pair will report

its results to the base station (Fig. 2.1(f)). In this architecture, fault detection is

executed locally and only the diagnostic results need to be sent to the base station,

thereby drastically reducing the communication cost in the multi-hop communication

network. With computation and communication requirements distributed over the

entire network, the WSN is more scalable to larger node counts while consuming less

energy.

The relationship between sensor outputs, yp = f(yq) is now derived. To simplify

the discussion, the relationship is established between two sensors but the derivation

can be generalized to sets of sensors. Consider a physical system that is represented

mathematically by the following deterministic state space model,

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) , (2.1)
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Figure 2.1: During training: (a) each sensor broadcasts its output, (b) a linear rela-
tionship between sensor pairs is calculated, and (c) finally pair-wise linear
relationships of the network are constructed . For fault detection: (d) the
base station divides the sensor network into pairs, (e) each pair performs
the fault detection method, and (f) each pair sends their results, e, back
to the base station (B.S.).

where x(k) ∈ Rn is the state vector of the system, u(k) ∈ Rl is the input vector,

and y(k) ∈ RN is the output vector of the sensors. Furthermore, A ∈ Rn×n is the

state transition matrix which defines the transition of system states, B ∈ Rn×l is

the input matrix which represents the relationship between the input and the system

state, C ∈ RN×n is the output matrix, and D ∈ RN×l is the feed-through matrix. In

the remainder of this paper, time-invariant is assumed. The system is also assumed

to be stable, i.e., the output of the system, y, is bounded when the system input, u,

is bounded.

Taking the Z-transform of Equation 6.2, the discrete-time frequency domain rep-
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resentation is derived:

zX(z) = AX(z) + BU (z)

Y (z) = CX(z) + DU(z) . (2.2)

Eliminating X(z) in the second equation of (2.2) using the first equation of (2.2),

resulting in the following expression:

Y (z) = (C(zI −A)−1B + D)U (z) . (2.3)

For the pth sensor, the individual observation model is,

Yp(z) = (Cp(zI −A)−1B + Dp)U(z) , (2.4)

where Cp and Dp are the pth rows of the matrices C and D, respectively. As a result,

the transfer function Hpq(z) between the outputs of sensor p and q is:

Hpq(z) =
Yp(z)

Yq(z)
=

(Cp(zI −A)−1B + Dp)U(z)

(Cq(zI −A)−1B + Dq)U(z)
. (2.5)

The above expression shows that there exists a linear relationship between any

pair of sensors. If the expression (Cp(zI − A)−1B + Dp) ∈ R1×l is expressed as

a polynomial function of z, then the ith element of the vector can be expressed as∑n
j=0 a

′
ijz

j, where n is the rank of (zI−A)−1 and the coefficients a′ij, i = 1, · · · , l, j =

1, · · · , n, are determined by the various state space matrices (i.e., A,B,C and D).

Similarly, the ith element of (Cq(zI −A)−1B + Dq) can be expressed as
∑n

j=0 b
′
ijz

j.

Let UT (z) = [U1, · · · , Ul], and the transfer function (2.5) can be written as:

Yp(z)

Yq(z)
=

∑n
j=0(

∑l
i=1 Uia

′
ij)z

j)∑n
j=0(

∑l
i=1 Uib

′
ij)z

j)
. (2.6)
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Notice that this relationship depends on the system input U . The input driving

the system dynamics may be known or can be measured by sensors; in other cases, it

can be difficult to obtain. However, if the excitation of the system can be aggregated

as a single source (i.e., as a scalar time-history function), then l = 1 and U in the

numerator and denominator cancel each other. Thus the dependence on the system

input in (2.5) is eliminated. Hence, a linear relationship uniquely defined by the

physics of the system and the sensors measurements can be obtained:

Yp(z)

Yq(z)
=
a′nz

n + a′n−1z
n−1 + · · ·+ a′1z + a′0

b′nz
n + b′n−1z

n−1 + · · ·+ b′1z + b′0
. (2.7)

Reduction of the system input to a single source is quite common in many engi-

neering systems. For example, mechanical systems excited by ambient, white noise

processes and civil engineering structures exposed to base motion (i.e., earthquakes),

would all be modeled by a single excitation source. In order to simplify the discus-

sion, the scalar system input case is considered in the remainder of the paper. Note

however that the following derivation and discussion remain valid under multi-input

systems if they are known (or measurable) and a′j(and b′j) is replaced with
∑l

i=1 Uia
′
ij

(and
∑l

i=1 Uib
′
ij ) in (2.7).

Both yp and yq correspond to system outputs. However, if yp is viewed as the

output while yq is viewed as the input of another, unspecified system, then (2.7) is

essentially the Z-domain representation of an autoregressive with exogenous input

(ARX) time-series model (Lennart , 1999). ARX(ν1,ν2) is a linear time series model

with ν1 output terms (autoregressive terms) and ν2 (exogenous) input terms. It is

widely used to model various types of systems and natural phenomena. The definition

of an ARX model is :

ν1∑
i=0

a′iyq(k − i) =

ν2∑
i=0

b′iyp(k − i) . (2.8)
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The above derivation shows that the relationship between the outputs of two

sensors is precisely captured by the ARX model, which is defined by of coefficients a′i

and b′i. This ARX model (a′i and b′i) can be acquired by first storing the output pairs,

yp and yq over a certain period of time when sensors work under normal conditions

and then a′i and b′i are calculated from the stored data through standard least square

calculations (Bishop, 2006; Lennart , 1999) or through the iterative Yule-Walker based

method (Monden et al., 1982b; Pan and Levine, 1990). Even if the historical data are

corrupted by (zero mean) Gaussian noise, these training methods are able to extract

accurate model coefficients. This is because when the size of the historical data is large

enough, least square calculation or Burg’s method is able to eliminate the variance

of the noise in the data. Therefore, the ARX model training is insensitive to noise

existing in the training data. After the training, only the ARX model coefficients (a′i

and b′i) need to be stored for use in future fault detection. The length of the time

history needed is equal to the dimension of the state x of the original state space

model in (6.2). Consequently, the number of coefficients n of the ARX model should

be equal to or larger than the size of the state dimension.

In terms of computational complexity on wireless sensors, the training of ARX

coefficients requires O(ν2N) operations for the least square regression method (Tre-

fethen and Bau III , 1997) or O(ν2 + νN) operations for the Yule-Walker equation

based algorithms (Monden et al., 1982b; Pan and Levine, 1990), where ν is the num-

ber of ARX coefficients and N is the number of training data samples. The ARX

training with Yule-Walker equation based algorithms has been implemented on real

wireless sensors in a field study presented in Chapter V. In the field study, each sensor

was equipped with a 8-bit, 16MHz low power controller (Atmel ATmega128). The

controller takes 62.44 seconds of execution time for training the ARX coefficients with

ν = 18 and N = 6000. This is feasible in WSNs as the need for ARX model training

is usually infrequent. The detection process, as shown in Chapter III and Chapter
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IV, is significantly faster than the training process.

The ARX model representation of the relationship between sensor pairs is ex-

tremely valuable and will be exploited fully. While (2.7) provides a closed-form

analytical expression for the relationship between sensor pairs, it would require an

accurate representation of the system in the form of a state space model (i.e., knowl-

edge of A,B,C, and D). In contrast, the equivalent ARX model in (2.8) can be

determined after the network has been deployed only using sensor outputs yp and yq.

After an ARX model has been determined between two sensors, the model is stored

locally in each wireless sensor in the form of the model coefficients, a′i and b′i.

In the previous section, it was shown that an ARX model can accurately represent

the linear relationship between sensor outputs when the number of coefficients is equal

to or larger than the dimension of the system state, n. In this section, the actual

sensor fault detection methodology based on ARX models is presented. As shown in

the previous section, using the ARX model allows the outputs of two sensors, y1 and

y2 to be related through the use of coefficients a′i and b′j:

ν1∑
i=0

a′iy1(k − i) =

ν2∑
j=0

b′jy2(k − j) . (2.9)

To simplify the expression, the coefficient values are normalized by letting ai =
a′i
a′0

and bj =
b′j
a′0

for i = 0, . . . , ν1, j = 0, . . . , ν2. Moreover, as in the rest of the paper,

the model is assumed to have the same number of coefficients for y1 and y2 (i.e.,

ν1 = ν2 = ν). Now, y1 can be represented as a function of past outputs and the

current and past outputs of y2:

y1(k) =
ν∑
i=1

−aiy1(k − i) +
ν∑
j=0

bjy2(k − j) . (2.10)

The relationship of sensor outputs as provided by (2.10) will serve as the basis for
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determining if a sensor is faulty. Specifically, two error functions are defined. The first

error function denoted by e1(k), is the difference in sensor 1’s actual output ỹ1(k) and

ideal output without the fault y1(k), i.e., e1(k) = ỹ1(k)−y1(k); the error function e2(k)

is similarly defined. The second error function is the cross-error function denoted by

e12(k). This is the difference between the observed output from sensor 1, ỹ1(k), and

the estimated output of sensor 1 (based on use of the ARX model using time-history

data from sensor 1 and 2), ŷ1(k):

ŷ1(k) =
ν∑
i=1

−aiỹ1(k − i) +
ν∑
i=0

biỹ2(k − i) . (2.11)

The estimated output ŷ1(k) is stable due to the fact that, unlike a classical ob-

server, there is no feedback of the estimation error. Moreover, ŷ1(k) is a one-step

estimator with inputs solely based on the sensor measurements of a stable system.

The cross-error function can then be stated as:

e12(k) = ỹ1(k)− ŷ1(k) (2.12)

e12(k) = (y1(k) + e1(k))

−
( ν∑

i=1

−ai(y1(k − i) + e1(k − i))

+
ν∑
i=0

bi(y2(k − i) + e2(k − i)
)

(2.13)

e12(k) = e1(k) +
ν∑
i=1

aie1(k − i)−
ν∑
i=0

bie2(k − i) (2.14)

It should be noted that (2.14) can be rewritten in a compact form using vector

notation:

e12(k) = aTe1(k)− bTe2(k) , (2.15)

where aT = [1, a1, a2, . . . , aν ], b
T = [b0, b1, . . . , bν ], and eT1 (k) = [e1(k), e1(k − 1), . . . ,

e1(k − ν)], with eT2 (k) similarly defined.

23



The cross-error function consists of a weighted summation of errors from a pair

of sensors over a period of time. In general, the cross-error function gives zero val-

ues when there is no faults within the two sensors in a designated pair (i.e., they

agree with each other) and gives non-zero values when any kind of faults (e 6= 0)

exist. Therefore, faults happened within a pair of sensors can be detected by the

cross-error function. However, it is difficult to determine which sensor is faulty and

what type of fault is present since the cross-error function superimposes the error

vectors together into a scale value. Although the cross-error function may not able

to identify the faulty sensor(s) directly, it provides valuable information on the faults

characteristics. For instance, if e1 and e2 represent the sensor measurement noise

which is i.i.d. Gaussian distributed, e12 provides information of the noise character-

istic of the sensors. Specifically, if the Gaussian distribution (mean, variance) of the

measurement noise of sensor 1 and 2 are (µ1, σ2
1) and (µ2, σ2

2) respectively, the distri-

bution of e12 is Gaussian with mean equals to
∑ν

i=0(aiµ1 − biµ2) and variance equals

to
∑ν

i=0(a2
iσ

2
1 + b2

iσ
2
2). Based the known characteristics of the faults and the outcome

of the cross-error function, specific sensor faults could be detected and isolated.

In the following two Chapters, more sophisticated algorithms are introduced for

detecting and isolating two common sensor faults, Spike faults and non-linearity

faults, without reference sensors. The performance of the algorithms is extensively

evaluated on the detection rate, false alarm rate, signal recoverability, and separability

of different fault types.
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CHAPTER III

Detection and Identification of Spike Faults

This chapter presents an algorithm which detects and identifies spike faults based

on the distributed model-based sensor fault detection framework introduced in Chap-

ter II. This chapter first introduces the spike faults and its definition used in analysis.

Then the detection and identification algorithm is presented. The performance of the

algorithm is evaluated by both simulation and real spike corrupted sensor data.

3.1 Spike Faults

A spike fault is a voltage spike (or impulse) superimposed on the sensor measure-

ment. Spikes typically occur randomly in time and can be constant or of varying

magnitude. Here, it is assumed that each sensor can potentially suffer from a spike

fault and that there are no reference (i.e., known faultless) sensors at the time of

execution. The spike error could occur randomly at any time and on any sensor. It is

assumed that the duration of a spike error is short and the occurrence of these spike

errors is sparse (i.e., the probability that the spikes occur consecutively is low). The

precise definition of sparsity to be used herein is given by: the spikes occurrence fol-

lows a Poisson process with parameter λ, (or the independent arrival times of spikes

faults follows an exponential distribution with average arrival time 1/λ.
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3.2 Spike Detection by Matched Filters

As mentioned in Chapter II, the distributed model-based framework models a

pair of sensors by a ARX model with coefficients aT = [1, a1, a2, . . . , aν ], bT =

[b0, b1, . . . , bν ] learnt from historical data. With ei(k) defined to be the error hap-

pened on sensor i at time k, the cross-error function (which measures the differences

between observed sensor measurement and predicted sensor measurement) has the

form Eq. (2.15):

e12(k) = aTe1(k)− bTe2(k) ,

where eTi (k) = [ei(k), ei(k − 1), . . . , ei(k − ν)], i = 1, 2. Generally, the cross-error

function fails to indicate which sensor(s) is(are) faulty because the fault information

from the two sensors are superimposed together. However, if the error is due to a

spike (with amplitude d) in one of the sensors, say sensor 1, at time k − i , then e1

will be a perfect impulse function with zero entries except for the component at k− i

of magnitude d (Fig. 3.1(a)). When sensor 2 is fault-free, e12 will be equal to aid at

component k−i according to (2.14). As a result, a spike in sensor 1’s output produces

a cross-error function e12, proportional to the ARX coefficient vector, a (Fig. 3.1(b)).

Similarly, if a spike occurred in sensor 2 and no spike error occurred in sensor 1, the

cross-error e12 will be proportional to the ARX coefficients b (Fig. 3.1(c)). When

both sensors have spike errors, the cross-error function e12 will be equal to the sum

of ARX coefficients a and b with appropriate proportionality (Fig. 3.1(d)). This

insight provides a method for identifying spikes in the cross-error function and to

classify the sensor fault status (i.e., no faults, sensor 1 faulty, sensor 2 faulty and

both sensors faulty). In addition, this method allows the fault to be identified in

time. The detection performance depends on the baseline ARX coefficient vectors a

and b which can be divided into 2 cases.

Case1: a 6= cb for any c ∈ R
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Figure 3.1: Description of cross-error functions due to spike faults: (a) the superpo-
sition of a spike fault on a sensor output; (b) sensor 1 exhibits a spike
fault; (c) sensor 2 exhibits a spike fault; (d) both sensor 1 and 2 exhibit
spike faults.
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For case 1, coefficient a is not proportional to b. As the cross-error function of a

spike signal carries the characteristics of the ARX coefficients, detecting spike errors

is similar to detecting a target signal with a known waveform but with unknown

amplitude and delay. In the telecommunication field, one popular method to detect

signals under a binary hypothesis is to use matched filtering (Proakis , 2007). It

convolves the received unknown signal with a filter which is the same as the target

signal. When the target signal arrives, it will “match” with the filter and yield a high

output. To identify spike errors, the cross-error function can be passed through two

matched filters which have coefficients equal to a and b, respectively. The spikes can

have either positive or negative magnitude; this information is unknown to the system.

As a result, only the absolute value of a matched filter’s output are considered.

Consider the cross-error function e12(k) with measurement noise, ξ, which is ad-

ditive from both sensors’ noise processes. Assume there is a spike error on sensor 1

at time j (e1(k) = 0 for k 6= j) and a spike error on sensor 2 at time l (e2(k) = 0 for

k 6= l), the cross-error function (2.14) becomes:

e12(k) =
ν∑
i=0

aie1(k − i)−
ν∑
i=0

bie2(k − i) + ξ(k) (3.1)

e12(k) = ak−je1(j)− bk−le2(l) + ξ(k) . (3.2)

If we treat the ARX coefficients a and b as the matching filter, then the output

of the matched filters, defined as matched error function ea12 and eb12 respectively, at

time k are:,

ea12(k) = |
∞∑

i=−∞

ai−ke12(i)| (3.3)

eb12(k) = |
∞∑

i=−∞

bi−ke12(i)| , (3.4)

where ai = 0, bi = 0 when i < 0 or i > ν (i.e., outside the range of the filter).
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Replace e12(i) with (3.2) in (3.3):

ea12(k) = |
∞∑

i=−∞

ai−k(ai−je1(j)− bi−le2(l) + ξ(i))| (3.5)

ea12(k) = |
∞∑

i=−∞

(ai−kai−je1(j)− ai−kbi−le2(l) (3.6)

+ ai−kξ(i))| .

Equation (3.5) is dominated by the first two terms if the spike errors (e1, e2)

have much larger magnitude than the measurement noise ξ. Also, the first term is

maximized when k = j and this maximum value is always bigger than the second

term if ‖a‖2 ≈ ‖b‖2 and e1(j) ≈ e2(l). This means that if a spike error appears in

sensor 1, it will be enlarged by matched filter a to result in a large value in ea12 and

suppressed by matched filter b to result in a small value in eb12. The reverse holds

true for a spike error in sensor 2. As a result, the fault detection algorithm can detect

peaks in the function and discriminate the corresponding spike error in sensor 1 and

sensor 2, respectively. Moreover, the matched error function can locate exactly when

the spike error occurred.

The following shows the computation complexity of the detection process. Let ν

be the number of ARX coefficients and N ′ be the number of data to be detected.

From (2.11) and (2.12), the complexity for calculating the cross-error function for N ′

data is O(νN ′). Similarly, the complexity for calculation the matched filter outputs

(Equation (3.3) and (3.4)) for N ′ data is O(νN ′). Therefore, the overall complexity

for the detection process is O(νN ′).

Case2: a ≈ cb where c ∈ R

When a and b can be related as a ≈ cb for some constant c ∈ R, the transfer function

of Y1

Y2
will be close to c. This means that the outputs of sensor 1 and sensor 2 are highly

correlated to each other. For these systems, the proposed fault detection algorithm
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can detect a spike fault which has occurred in the sensor pair, but is not able to decide

which sensor the spike fault belongs to. Intuitively, this is because the characteristic

waveforms of the spike error in the cross-error function corresponding to sensor 1

and sensor 2 will have the same shape. Hence, the separating ability of the matched

filter is lost. Although the magnitude and sign of the waveforms (which depend on

the magnitude, d, and sign of the spike errors) are different and thus have different

matched filter outputs, these outputs are not useful in identifying a faulty sensor

since the sign and magnitude of the spike error is not known a priori. However,

the detection algorithm does at least know a spike error has occurred because the

cross-error function still carries the characteristics of the ARX coefficients and is thus

not equal to zero. In fact, the output of sensors being highly correlated is equivalent

to having hardware redundancy. If a pair of sensors gives contradicting outputs, the

algorithm is not able to tell which sensor is abnormal (without knowing which sensor

is normal).

For the case a ≈ cb, it is possible that the method fails to tell there is a spike

error within the sensor pair when both sensors have spikes at the same time with

appropriate magnitude. For example, if the system output at sensor 1 is proportional

to the system output at sensor 2, y1(k) = cy2(k), and the spike errors are e1(k) = m

and e2(k) = cm, then the cross-error function e12(k) = aTe1 − bTe2 = 0. Therefore,

both matched filters will give zero results, which means no error is detected. In other

words, if both sensors have faults such that their faulty outputs agree with each

other, the method is unable to detect either error solely by evaluating the two sensor

outputs.

Although there are limitations to the proposed detection algorithm, it should be

mentioned that these limitations are neither common nor important cases. Having

highly correlated sensors deployed in the same system is in general not cost effective

because the output of one sensor is just a scale of the other. Also, the case where
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the algorithm is completely ineffective (i.e., when both sensors have spike errors at

the same time instance with appropriate magnitude) has a very low probability of

occurring because spike errors due to loose electrical contacts or electro-magnetic

wave occur randomly.

Once spike errors are detected, the detection algorithm also provides a method to

correct these errors. Recall that the coefficient a0 is normalized to 1. The cross-error

function, therefore, is directly representing the magnitude of the spike error if signals

used in prediction ŷ(k) are not corrupted by other spike errors and the sensor does

not have background noise. Moreover, the matched error functions, ea12 and eb12, reveal

the position of the spike errors. As a result, the spike error can be eliminated easily.

3.3 Simulation and Results

This section verifies the performance of the proposed ARX-based sensor fault de-

tection method. These simulations will explore the accuracy of the methodology with

respect to: the magnitude of the spike fault, the frequency of spike fault occurrence,

and the type of sensor measurement.

3.3.1 Simulation Settings

A generic lumped mass dynamical system will be adopted to simulate a physical

system such as a bridge, vehicle, etc. Fig. 4.9 presents a five degree-of-freedom lumped

mass dynamical system whose degrees-of-freedom are denoted as x1(k) through x5(k).

The masses, mi, are connected via discrete springs and viscous dampers with spring

constants, ki, and damping coefficients, ci, respectively. An external force, ui(k), is

applied to each mass. The model parameters used in (Li et al., 2007) are adopted

in this study. Each mass is set to be 1kg with each spring constant set to 10kN/m.

Similarly, each viscous damper has its damping coefficient set to 10.5Nsec/m. The

natural frequencies of the dynamical system are: 4.52, 13.22, 20.84, 26.78, and

31



u1(k)
x1(k)

m1

k1

c1

u2(k)
x2(k)

m2

k2

c2

u3(k)
x3(k)

m3

k3

c3

u4(k)
x4(k)

m4

k4

c4

x5(k)
u5(k)

k5

c5

m5

Figure 3.2: Five degree-of-freedom (DOF) spring-mass-damper system for methodol-
ogy validation

30.54Hz. Each mode of vibration response is under-damped with damping ratios

of 1.5%, 4.4%, 6.8%, 8.8%, and 10.1% for mode 1 (4.53Hz) through 5 (30.54Hz),

respectively. The system is observed using either displacement sensors (i.e., yi = xi)

or accelerometers (i.e., yi = ẍi) at each degree-of-freedom. The system is excited

by three sources of excitation. For the first excitation, a harmonic load is applied

identically to each degree-of-freedom defined by a single frequency (w̄: uniformly

distributed between 10 and 40 rad/sec) and with a random amplitude (|Umax|: uni-

formly distributed between 10 and 13N) and offset. For the second excitation, the

external load is again harmonic but with two major frequencies (w̄1: uniformly dis-

tributed between 10 and 40 rad/sec and w̄2: uniformly distributed between 100 and

150 rad/sec). The amplitude associated with both tones is also random (|Umax|:

uniformly distributed between 10 and 13N). The third excitation is a white noise

source with a variance of 100N identically applied to each degree-of-freedom. Table

3.1 summarizes the excitations used; all three are used for training ARX models and

for spike fault detection validation. For each single simulation, the parameters of

the excitation are randomly chosen and fixed through out that simulation. It should

be noted that the excitation, even of the same type, are different (i.e., generated

separately) for training and testing simulations.

For the training of the ARX pair-wise time series models, all three excitation types

are utilized with a unique ARX model found for each excitation and measurement

type. A validation analysis is done to determine the optimal number of coefficients

(Bishop, 2006). Here, the model order is set to 25 ai coefficients and 25 bi coefficients.
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As previously mentioned, the coefficient a0 is set to 1.

In the simulations, the system is excited by the external excitation and the system

response is measured at each degree-of-freedom, yi. Random Gaussian noise is added

to all measured responses to simulate a low level of sensor measurement noise. To

emulate sensor spike faults, spikes are introduced to the measurements of degree-of-

freedom one and two with random sign and magnitude. For example, consider the

fault free sensor response at m1 and m2 under the two-tone excitation as shown in

Fig. 3.3(a). An example of the two time histories with simulated spike faults with the

actual spikes denoted is shown in Fig. 3.3(b). Each time history in Fig. 3.3 has 4%

noise (with respect to the signal variance) introduced. To determine the accuracy of

the proposed sensor fault detection algorithm, the detection rate is used as a metric.

Detection rate is the percentage of spikes to be correctly identified by the algorithm.

This is equivalent to the percentage of true-positives; related metric would be the

percentage of false-positives.

For illustrative purposes, consider the measured displacement of mass m1 and

mass m2 denoted in Fig. 3.3(b). Using the ARX pair-wise model between y1 and y2,

the output at m1 is predicted by the output at m2. The difference in the predicted

and measured output, e12, is plotted in Fig. 3.4(a). As can be seen, the spike

faults in both outputs is creating non-trivial elevations in e12 in the vicinity of the

actual faults. However, which sensor in the pair is experiencing the faults cannot be

determined by the cross-error function alone. Rather, the use of the matched filters

is needed to determine which sensor has the fault and where in time the faults are

located. Use of (3.3) and (3.4) are used to determine ea12 and eb12 in Fig. 3.4(b)

and Fig. 3.4(c), respectively. As can be seen, the convolved error function reveals

when the spike faults occur. To identify the spikes, a threshold level is defined. Any

disturbance that is larger than the threshold will be declared as a spike error of the

corresponding sensor. For example, ea12 exceeding a defined threshold corresponds to
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Figure 3.3: Response of m1 and m2 under a two tone harmonic excitation: (a) fault
free displacement time history; (b) same displacement time histories with
spike faults (40% of the maximum response amplitude) randomly intro-
duced.

faults in y1 while exceedance of a threshold in eb12 corresponds to faults in y2. For all

the simulations presented, the threshold is determined by the following steps. First,

the cross-error function, eij, is calculated by the trained ARX model for a pair of

normal (fault-free) sensors. The cross-error function is not expected to be equal to

zero because there exists observation noise in the sensors and the ARX model will

also have some prediction error. Afterward, the cross-error function is passed through

the two matched filter and the variance of the eaij and ebij calculated. The threshold

is set to be 6 times the standard deviation of the convoluted error function of the

fault-free sensors such that the false alarm rate caused by the sensor measurement

noise is almost zero.

34



0 200 400 600 800 1000
−5

0

5

e 12
(t

).

Error function and convoluted error functions

Time (s)

0 200 400 600 800 1000

−4

−2

0

2
ea

12
(t

).

Time (s)

0 200 400 600 800 1000

−4

−2

0

2

eb
12

(t
).

Time (s)

(a)

(c)

(b)

Figure 3.4: (a) Cross-error function between sensor 1 and 2 corresponding to outputs
presented in Fig. 3.3(b); (b) error function convoluted with coefficients
a; (c) error function convoluted with coefficients b.

3.3.2 Simulation Results under Various Scenarios

Simulations are carried out to evaluate the detection rate of spike errors versus

different spike error amplitudes when measuring the acceleration and displacement

response of the spring-mass-damper structure. These simulations considered the three

different combinations of system excitations for both training and testing (validation).

The legends of the different excitation combinations for Fig. 3.5 to 3.9 are summa-

rized in Table 3.1. For example, if the system response to the single-tone sinusoidal

excitation is used during training and white Gaussian noise excitation is used during

performance testing, a red solid curve with triangle markers is used for the detection

curve. In the simulations, the sensor noise is set to 10% of the sensor output variance.

As can be seen for both displacement (Fig. 3.5) and acceleration (Fig. 3.6) outputs,

the detection accuracy of the proposed method increases with the amplitude of the
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Figure 3.5: Detection rate of spike faults versus different spike amplitudes when mea-
suring displacement.

spikes. This is an obvious finding because smaller amplitude spike faults are more

likely to be obscured by the sensor noise and thus more difficult to identify. Fig. 3.5

Excitation Training Testing
Single-tone harmonic Solid line (Red) Square
w̄ = [10 40]rad/sec
|Umax| = [10 13]N

Double-tone harmonic Dotted line (Blue) Star
w̄1 = [10 40]rad/sec
w̄2 = [100 150]rad/sec
|Umax| = [10 13]N

White Gaussian signal Dash-dot line (Black) Triangle
variance(σ2) = 100N

Table 3.1: Simulation excitations

presents the detection rate when the sensors measure the displacement of the masses

in the spring-mass-damper system. The results show that the detection algorithm

performed well in all system input combinations. For large spike faults such as those

whose amplitudes were 60% or greater than the signal amplitude, the sensor fault

detection rate of the algorithm was high (> 90%) regardless of the excitation used

to train ARX models or when determining the sensor faults. However, for smaller

36



0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

spike amplitude to signal amplitude ratio

de
te

ct
io

n 
ra

te

detection of spike with different amplitude of spikes (acceleration)

Figure 3.6: Detection rate of spike faults versus different spike amplitudes when mea-
suring acceleration.

spike amplitudes, the method accuracy exhibits some dependency on the nature of

the excitation used to train the ARX models. In general, ARX models trained from

white noise excitations provided the best baseline models. Especially when used to

determine sensor spikes from similarly broadband excited time-history outputs, even

small spikes (e.g., spikes white amplitudes only 25% of the signal amplitude) can be

detected with detection rates in exceedance of 98%. Even for systems excited by har-

monic loads, sensor faults with spike to signal amplitudes of 0.3 have detection rates

of 90% or greater. In the absence of white noise excitations, the more broadband an

excitation is, the better suited it is for the training of the ARX relationships between

sensor pairs. For example, Fig. 3.5 shows that the ARX models created using the

response of the system to the double tone harmonic excitation were more effective

compared to those created using the single tone harmonic response.

When measuring displacement, the ARX models fall into Case 1 as discussed in

Section 3.2 (i.e., a 6= cb for all c ∈ R). In contrast, when measuring acceleration

of the system, the system outputs are more correlated. This fact is confirmed when
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Figure 3.7: Detection rate of spike faults versus different spike amplitudes when mea-
suring acceleration. The viscous damping constant is decreased from 10.5
to 0.6Nsec/m.

investigating the ARX model coefficients of relationships trained between various

system outputs. With a ≈ cb, the detection accuracy of the method decreases.

For example, Fig. 3.6 presents the detection rate when the sensors measure the

acceleration of the system. The performance of the sensor fault detection method in

this setting is similar to the one measuring displacement except that the combinations

in which Gaussian white noise is used as a training signal appear to perform worse

with detection rates significantly lower than the other input combinations. When

the system is excited by Gaussian white noise, its acceleration response exhibits the

greatest correlation resulting in the lowest detection accuracy. While the detection

algorithm is able to detect that faults exist in the sensor pairs, it is not able to classify

which sensor the fault belongs to resulting in low detection rates.

To verify the deteriorated performance presented in Fig. 3.6 is due to strong

correlation in the measured system response, the viscous damping coefficient of the

spring-mass-damper system is reduced from ci = 10.5Nsec/m to ci = 0.6Nsec/m.

All the other model parameters remain the same (i.e., mi = 1kg and ki = 10kN/m).
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Figure 3.8: Detection rate of spike faults versus different levels of sensor observa-
tion noise when measuring displacement. Spike are fixed at 30% of the
maximum peak-to-peak amplitude of the sensor measurement.

ARX models fitted to the new acceleration data shows a 6= cb resulting in a Case

1 system. The detection rate results are shown in Fig. 3.7, with the detection rate

similar to that when using displacement outputs (Fig. 3.5).

Next, the accuracy of the sensor fault detection algorithm is quantified for noisy

sensor measurements. Here, the original system is used (i.e., ci = 10.5Nsec/m).

Fig. 3.8 shows the detection rate of spike errors versus different levels of sensor

observation noise while measuring the displacements of the system degrees-of-freedom.

The magnitude of the spike errors are fixed at 30% of the maximum peak-to-peak

amplitude of the sensor outputs. As can be seen, the detection accuracy deteriorates

when the sensor noise exceeds 20% in all cases. When noise increases, the response of

the spike error in the matched filter output will be increasingly dominated by noise.

As a result, it is harder to set a good threshold for detection since the threshold must

rise to be above the noise level.

Finally, the performance of the fault detection algorithm is investigated under

scenarios of sensor faults occurring at the same time on both sensors in a pair. During
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Figure 3.9: Detection rate of spike faults versus different percentage of coincide spike
error on both sensors.

this simulation, system displacements are measured with sensor noise fixed at 10%

of the sensor output variance. Fig. 3.9 investigates the situation when spike faults

happen at the same time on both sensors. The sign and magnitude of spikes are

random in this simulation. The plot shows the detection rate as a function of the

percentage of spike errors that happen at the same time on both sensors. Although

the spike errors of different sensors have different characteristic waveforms and match

to different matched filters, the coincident occurrence of spike errors still affects the

detection performance. Due to faults occurring at the same time, the characteristic

waveform on the cross-error function can be partially canceled out by the other spike

with appropriate sign. As a result, the detection accuracy decreases (slowly) with the

rate of coincidence. However, it should be noted that the overall performance of the

algorithm is still high (> 0.8 detection rate for most cases).

In all of the simulations presented, the threshold level is set to prevent false

alarms. Hence, most of the errors in the detection algorithm are misses. In fact,

higher detection rates can be achieved if false alarms can be tolerated by changing
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Figure 3.10: The trade off between the sensor fault detection method’s detection rate
and false alarm rate with different threshold levels.

the threshold level. Fig. 3.10 illustrates the trade off between the detection rate and

false alarm rate with different thresholds. The magnitude of the spike errors are fixed

at 30% of the maximum peak-to-peak amplitude of the sensor outputs and the sensor

noise is set to 10% of the sensor output variance. The rest of the simulation settings

are the same as the simulation shown in Fig. 3.5. The threshold level is the multiplier

of the variance of the convoluted error function of the fault-free sensors. As can be

seen, lowering the threshold level can increase the detection rate while the false alarm

rate also increases rapidly.

3.3.3 Performance on Real Spike Corrupted Sensor Data

The rest of this section shows the performance of the proposed method on sensor

data from a field-deployed WSN. A previous study was conducted focused on reducing

the cost and installation complexity of monitoring systems on ships; wireless sensors

were proposed by Swartz, et al. (Swartz et al., 2012) as an alternative to traditional

wired sensors. A monitoring system consisting of 20 wireless sensors were installed on

a U.S. Navy ship in 2008. Moreover, a traditional wired hull monitoring system was

installed in the ship alongside the WSN. During sea trails, some of the wireless sensors
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suffered from spike errors and excessive noise. Consider two wired sensors measuring

hull strain shown in Fig. 3.11; these sensors were from the wired monitoring system

and are generally fault-free (i.e., no spikes, etc.) Two wireless sensors in the WSN

were collocated with these wired sensors and had spike errors and noise. These faulty

sensors are used to illustrate the sensor fault detection algorithm in this study. An

ARX model of order ν = 30 is trained using 60 seconds (6000 points) of the spike

free signals from the two wired sensors. With the trained ARX coefficients, 270

seconds (27000 points) of strain signals from the wireless sensors with spike errors

are examined by the proposed method. Part of the signals (3000 points) of the two

wireless sensors are shown in Fig.3.12(a) (sensor s1) and (c) (sensor s2). The spikes

detected by naked eye are marked by squares in Fig.3.12(a) and (c). The output of

the matched filters is shown in Fig.3.12(b) and (d), and the automatically detected

spikes are marked in stars. As can be seen, 21 out of 25 (84%) spikes were detected

with 2 false alarms. For the examination of 27000 data points, 83.3% of spikes were

detected (194 out of 233) and the false alarm rate is 0.04%. This level of accuracy is

regarded as impressively high for actual field deployed wireless sensors with moderate

amounts of noise.

3.4 Summary

This chapter proposed a Matched filter based algorithm for detecting and identi-

fying spike faults without a priori establishment of reference sensors. In the simula-

tions conducted, the detection accuracy exhibited dependency on the magnitude of

the spikes, the sensor observation noise, the ARX coefficients and the threshold set

for spike detection after the matched filter. The algorithm gives good performance;

it only loses part of its effectiveness under situations where a pair of sensors is highly

correlated. However, such situations are either unlikely in practice or can be avoided

when pairing sensors for execution of the proposed method. Moreover, since the de-
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Figure 3.11: Strain signals from wired sensors.
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Figure 3.12: Strain signals form wireless sensors with spike errors ((a) and (c)) and
the corresponding output of the matched error function ((b) and (d))

tection is done on a pairwise basis, it is well suited for WSNs in which power and

communication resources are limited.
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CHAPTER IV

Detection and Identification of Non-linearity

Faults

This chapter presents an algorithm which detects and identifies non-linearity

faults based on the distributed model-based framework introduced in Chapter II.

This chapter first introduces the characteristics of non-linearity faults. Two different

non-linearity fault models are introduced for algorithm evaluations. The detection

of sensor nonlinearities is shown to be equivalent to solving the largest empty rect-

angle (LER) problem given a set of features extracted from the cross-error function.

A low-complexity algorithm that gives an approximate solution to this problem is

proposed so that it is feasible, it can be embedded in low-power wireless sensors. By

solving the LER problem, sensors corrupted by non-linearity faults can be isolated

and identified. Finally, extensive analysis is performed to evaluate the performance

of the proposed algorithm through simulations.

4.1 Non-linearity Faults

Non-linearity faults are a multiplicative measurement error which depend on the

sensor output. A non-linearity fault can be represented by a nonlinear transfer func-

tion between the true signal and the output of the sensor. The function (Fig. 4.1)
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has two regions: normal and abnormal. When the actual signal is within the normal

region, the measurement correctly reflects the actual signal. When the sensor signal

falls into the abnormal region, the sensor transfer function is altered leading to errors

in the measurement. In this study, two simplified non-linearity models are used. The

first one is the bilinear model of Fig. 4.1. Within the normal region, the measurement

is exactly equal to the true signal. Within the abnormal region(s), which is the com-

pliment of the normal region, the function between the measurement and true signal

follows another linear function with a different slope. The mathematical expression

of the bilinear model is:

y =


x if r2 < x < r1,

tan(θ1)(x− r1) + r1 if x ≥ r1,

tan(θ2)(x− r2) + r2 if x ≤ r2.

(4.1)

where x is the actual signal, y is the sensor measurement and r1 > 0, r2 < 0 define

the boundaries of the normal region. Moreover, the slopes θ1 and θ2 have the range

[0, π/2). The parameters of the bilinear model are the normal region boundaries, r1,

r2 and the slope of the linear profile in the abnormal region. A non-linear model

can have either one-sided or two-sided abnormal region(s). For example, if r1 < ∞

and r2 = −∞, we have a one-sided abnormal region. The measurement-true signal

transfer function of (4.1) as illustrated in Fig. 4.1 is used to model the measurement

of a sinusoidal signal with unit amplitude. The bilinear fault is assumed to be one-

sided with r1 = 0.6 and r2 = −∞; also, θ1 = 30◦. As shown in Fig. 4.2, the faulty

signal is evident in the positive amplitude with the amplitudes lower than the true

signal amplitude.

The second non-linear model uses exponential functions to model the sensor’s

abnormal region(s). Within the normal region, the measurement is equal to the

actual signal. Within the abnormal region, the function between the measurement
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Figure 4.1: Bilinear non-linear sensor fault model

and true signal follows an exponential profile as defined by:

y =



x if x < r1,

max{x− (e(ψ|x−r1|) − 1), 1
ψ

ln 1
ψ
− 1

ψ
+ r1 + 1} if x ≥ r1, Type I

max{x+ (e(ψ|x−r2|) − 1),− 1
ψ

ln 1
ψ

+ 1
ψ

+ r2 − 1} if x ≤ r2, Type I

x+ (e(ψ|x−r1|) − 1) if x ≥ r1, Type II

x− (e(ψ|x−r1|) − 1) if x ≤ r2, Type II

(4.2)

where α, β, r1 and r2 (with r1 > 0 and r2 < 0) are the parameters of the model.

Compared to the bilinear model, the function of the exponential model has a gradual

change from the normal region to the abnormal region. Fig. 4.3 shows the functions

of a one-sided exponential with varying model parameter α and with normal region

boundary set at r1 = 30. The output saturation problems of amplifier-based sensors,

where measurements are smaller than the actual signal, are best modeled by the ex-

ponential nonlinear fault model (Type I). On the other hand, excessive gain problems

(such as sensor resonance), where measurements are larger than the actual signal are

best model by Type II exponential functions.
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4.2 Non-linearity Fault Detection and Identification Method-

ology

Consider a N -sensor WSN where each sensor has the potential to suffer from non-

linearity faults but the network has no knowledge of which sensors are normal. The

WSN is partitioned into peer-to-peer sensor pairs as shown in Fig. 4.4 (e.g., y2 − y4,

y1−y3, y5−y6 and y6−y7). As mentioned in Chapter II, the relationship between any

pair of sensors can be captured by an ARX model trained using sensor outputs. The

model parameters can be learned from the historical data by a fast iterative algorithm

(Monden et al., 1982a) when the sensors are working normally. Fig. 4.5 provides an

overview of the detection method proposed to detect and identify non-linearity faults
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within a pair of sensors. There is no a priori knowledge of the health of sensor 1 or 2

in this approach (i.e., both could be faulty). First, sensor 1, S1, transmits it output,

ỹ1 to sensor 2, S2. S2, then uses its measured output, ỹ2, to predict S1’s output,

ŷ1, using a previously trained ARX model between the S1 − S2 pair. The difference

between the estimated signal, ŷ1, and measured signal, ỹ1, constitutes a cross-error

function, which represents the signal measurement accuracy of the sensor pair. As

will be described, this error function will be analyzed to extract feature points (say

PS1 and PS2) which are useful for fault detection and identification. Under the largest

empty rectangle (LER) identification process, the faulty sensor(s) within the sensor

pair can be isolated and the non-linear fault model parameters can be identified. This

fault diagnosis process can be carried out in parallel between each sensor pair and

thus the proposed fault diagnosis method is scalable as the size of a WSN grows. In

the rest of this section, each component of the fault diagnosis methodology will be

discussed in detail.

4.2.1 Feature Point Calculation

Before introducing the non-linearity identification method, the sensor output is

assumed to transgress into the abnormal region of the non-linearity fault model occa-
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Figure 4.5: Overview of detecting and identifying non-linearity faults within the S1−
S2 pair.

sionally. In other words, the normal region of the sensor covers a significant portion

of the signal range. This assumption is valid for most systems if appropriate sensors

(with large enough sensing dynamic range) are chosen for the monitoring task. Recall

the cross-error function, e12(k), is defined to be the difference between the observed

output and estimated output:

e12(k) =ỹ1(k)− ŷ1(k)

=
ν∑
i=0

aie1(k − i)−
ν∑
i=0

bie2(k − i)

The cross-error function utilizes past outputs of S1 and S2 over a time window

from time 0 to time −ν (relative to the time index, k, of the cross-error function

in (2.14)). The cross-error function is non-zero whenever a measurement error (i.e.,

where the abnormal range is entered) occurs within the ARX lag window on any

sensor. It should be noted that it is possible that errors between two sensors can

cancel each other out, but this is an extremely rare event. Therefore, when the

cross-error function is zero, it is almost certain that there is no fault within the time

window. However, when the cross-error function is non-zero, it is uncertain when and

which sensor the error occurred in unless it is the first time the cross-error function

output deviates from zero (or near zero). This is because the cross-error function

output can only be non-zero due to an error initiating at time k in one or both of

the sensors. The measurement value of the faulty sensor at the time the cross-error

function experiences its first non-zero value should fall in the abnormal region and
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thus have magnitude bigger than r1 or r2 if the sensor is corrupted by a non-linearity

fault. However, it is not clear which sensor(s) is (are) faulty as the normal region

boundaries (r1, r2) of the non-linearity model remain unknown. As a such, a feature

point, P, is defined as P = (PS1 , PS2). PS1 and PS2 are the measurement values

of both sensors (ỹ1 and ỹ2) at the time the cross-error function first deviates from

zero and exceeds a pre-defined threshold. Therefore, the total number of feature

points available is equal to the number of times the cross-error function exceeds the

threshold. Fig. 4.6 shows an example of the way the feature points are extracted. In

this example, S1 is faulty with a non-linearity fault and S2 is normal. Fig. 4.6(a)

and(b) are the true signals of sensor 1 and 2 (denoted as S1 and S2), respectively.

Fig. 4.6(c) is the (corrupted) signal measured by faulty sensor 1, ỹ1, and Fig. 4.6(d)

is the calculated cross-error function. As can be seen, four feature points are available

in this example.

After a set of feature points, ℘, are generated over a time history, they can be

plotted on a 2-dimension plane with the x-axis corresponding to S1 (PS1) and the

y-axis corresponding to S2 (PS2). The plot will have the patterns shown in Fig. 4.7

when the errors are caused by a non-linearity fault. In Fig. 4.7, the dotted lines

represent the boundaries of the normal region of a non-linearity model (if the sensor

is faulty). When S1 is corrupted by a non-linearity fault and S2 is normal, the x-

coordinates of the set of collected feature points fall in the abnormal region while the

y-coordinates of the feature points can have any value. Therefore, the feature points

only fall into the region highlighted in Fig. 4.7(a). Similarly, Fig. 4.7(b) shows the

regions the feature points should fall in when S1 is normal and S2 is corrupted by

a non-linearity fault. When both sensors are corrupted by a non-linearity fault, the

collected data should fall in the highlighted regions in Fig. 4.7(c).

Consequently, if the sensor pair under investigation can be classified into one of

the 3 different patterns in Fig.4.7, the faulty sensor(s) can be isolated even if there
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Figure 4.6: Abnormal signal detection and feature data point extraction: (a) true
signal of S1, y1, (b) true signal of S2, y2, (c) measured signal from sensor 1,
ỹ1, (d) the predicted sensor 1 output, ŷ1, and the (e) cross-error function,
e12 of the sensor pair.

are no reference sensors. Furthermore, as corrupted measurements should have values

outside the normal region, the normal region boundaries can also be detected from the

collected data. In fact, this classification problem can be modeled as a largest empty

rectangle problem (LER) with a query point (Kaplan and Sharir , 2011; Gutiérrez

and Paramá, 2012). Given a set of points and the boundaries in a 2-D space, the

largest empty rectangle problem is to find the largest rectangle (with sides parallel

to the axes) that does not contain any of the given points but contains the query

point. Moreover, this rectangle should locate within the boundaries which can be

set to be slightly larger than the maximum amplitudes of the given points. The

non-linearity fault isolation and identification problem is equivalent to identifying

the largest empty rectangle that contains the origin. The sides of the largest empty

rectangle which intercept with the x-axis (y-axis) illustrate the parameters (i.e., r1
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Figure 4.7: Location of extracted feature points when: a) S1 is faulty and S2 is
normal, b) S1 is normal and S2 is faulty and c) both S1 and S2 are faulty.
The dotted lines correspond to the boundaries between the normal and
abnormal regions.

and r2) of the non-linearity fault in sensor 1 (sensor 2). When a side is collocated

with the boundary, it means no fault is detected on that region given the collected

data; otherwise the coordinate of the side represents the range of the normal region

of the non-linearity model.

4.2.2 Largest Empty Rectangle (LER) Problem

Finding the largest empty rectangle is an important problem in many applications

including VLSI layout optimization (Nandy et al., 1990) and database management

(Gutiérrez and Paramá, 2012). Given its ubiquitous nature, many algorithms have

been developed to solve this problem. However, even one of the faster algorithm

(Kaplan and Sharir , 2011) requires O(Nφ(N) log4(N)) operations, where N is the

number of given points and φ(N) is the slowly increasing inverse Ackermann function

(Tarjan, 1975). This requirement is quite demanding for low power wireless sensors

when the size of the collected data is large. Therefore, a more efficient algorithm that

findd an approximate largest empty rectangle containing the origin is proposed. The

main concept of the algorithm is first to find a small rectangle that does not contain

any given points and then to enlarge the rectangle by expanding the sides separately.

The proposed method, which requires O(N) operations, is shown in Algorithm 1. In
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the algorithm, ℘ is the set of collected feature points, xmax, xmin, ymax and ymin define

the boundaries and vx (vy) represents the x-coordinate (y-coordinate) of a point v.)

Algorithm 1 Approximate largest empty rectangle algorithm

Require: ℘, xmax, xmin, ymax, ymin
Calculate the shortest distance d of the points in the set ℘ from the origin: d =

min{
√
P 2
S1

+ P 2
S2
|P ∈ ℘}

Construct an empty rectangle with sides: xpos = d, xneg = −d, ypos = d, yneg = −d
Subroutine 1:
Q = {v ∈ ℘|ypos ≥ vy ≥ yneg}
x1
pos = min{xmax, {vx ∈ Q|vx ≥ 0}}
x1
neg = max{xmin, {vx ∈ Q|vx < 0}}

Q = {v ∈ ℘|x1
pos ≥ vx ≥ x1

neg}
y1
pos = min{ymax, {vy ∈ Q|vy ≥ 0}}
y1
neg = max{ymin, {vy ∈ Q|vy < 0}}

A1 = (x1
pos − x1

neg)× (y1
pos − y1

neg)
Subroutine 2:
Q = {v ∈ ℘|xpos ≥ vx ≥ xneg}
y2
pos = min{ymax, {vy ∈ Q|vy ≥ 0}}
y2
neg = max{ymin, {vy ∈ Q|vy < 0}}

Q = {v ∈ ℘|y2
pos ≥ vy ≥ y2

neg}
x2
pos = min{xmax, {vx ∈ Q|vx ≥ 0}}
x2
neg = max{xmin, {vx ∈ Q|vx < 0}}

A2 = (x2
pos − x2

neg)× (y2
pos − y2

neg)
if A1 ≥ A2 then

Output the largest empty rectangle with sides:
{x1

pos, x
1
neg, y

1
pos, y

1
neg}

else
Output the largest empty rectangle with sides:
{x2

pos, x
2
neg, y

2
pos, y

2
neg}

end if

As can be easily verified, the rectangles calculated from subroutines 1 and 2 do

not contain any feature points but do contain the origin. Each side of the rectangle

either touches at least one data point or is collocated with one of the boundaries.

The difference between subroutines 1 and 2 is to which direction (x- or y-directions)

the rectangle expands first. The bigger rectangle is used for fault isolation and iden-

tification.

The assumption declared in the outset assumes that the normal region of the
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Figure 4.8: Illustration of the sub-optimal LER detection algorithm proposed to iden-
tify non-linear fault types in the two sensors.

faulty sensors covers a significant dynamic range of the signal. As a result, the area

of the discovered largest empty rectangle should be comparable to the product of

the maximum signal amplitudes of the two sensors (due to large r1 and r2). If the

corruption of measurement is not due to a non-linearity fault, errors can occur at any

signal amplitude and the largest empty rectangle found by the proposed algorithm

would have a small area if the number of collected data points is large enough. An

illustration of this property can be found in Section 4.3.3.

Fig. 4.8 shows an example of how the proposed largest empty rectangle algorithm

identifies non-linearity faults. The data shown in the figure is extracted from a sim-

ulation experiment; the details of the experiment can be found in Section 4.3. In

Fig. 4.8, the circular markers represent the set of feature points. The solid lines of

the outer rectangle represent the boundaries of the largest empty rectangle problem.

The dotted rectangle represents the final identified LER by Algorithm 1. As the top

and bottom sides of the rectangle are collocated with the outer rectangle boundaries,

there is no fault on S1. However, S2 is corrupted by non-linearity faults and the
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Figure 4.9: Five degree-of-freedom (DOF) spring-mass-damper system for validation
of the non-linearity fault diagnosis method.

normal region of the fault is defined by the y-coordinates of the left and right sides

of the rectangle.

4.3 Simulation and Results

In this section, the performance of the proposed algorithm is investigated includ-

ing validation of its ability to detect and isolate sensors with non-linearity faults. The

detection performance will be evaluated over different system excitations and under

different non-linearity models. The diagnosis algorithm performance using the opti-

mal LER and the proposed sub-optimal LER algorithm will be investigated. Also,

the relationship between the detection accuracy and the number of collected feature

points will be explored.

4.3.1 System for Validation

A 5-degree-of-freedom lumped mass dynamical system (Fig. 4.9) is adopted for

simulation experiments. A lumped mass dynamical system is able to model different

type of physical systems, such as bridges, vehicles, machines, among others (Li et al.,

2007). The masses, mi, are connected via discrete springs and viscous dampers with

spring constants, ki, and damping coefficients, ci, respectively. An external force,

ui(k), is applied to each mass. Each mass also has a translational degree-of-freedom,

xi. In this study, similar model parameters used in (Li et al., 2007) are adopted: each

mass is set to 1kg, and each spring constant and each damping coefficient are set to

10kN/m and 10.5Nsec/m respectively. Under these model parameters, the system
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has natural frequencies at: 4.52, 13.22, 20.84, 26.78, and 30.54 Hz. Each mode of

vibration is under-damped with damping ratios of 1.5%, 4.4%, 6.8%, 8.8%, and 10.1%

for mode 1 (4.53Hz) through 5 (30.54Hz), respectively. The vibration of the system is

recorded as the acceleration of each degree-of-freedom (yi = ẍi) with a sampling rate

of 200Hz. The excitation inputs on each degree-of-freedom are from a single source

u(k) but with different levels of magnification: u1 = 5u, u2 = 1u, u3 = 0.2u, u4 =

−1.5u, u5 = 12.2u,.

4.3.2 Simulation Methodology

In this experiment, two types of excitation are used. The first excitation is a

double-tone harmonic signal. The two frequencies of the signal are randomly chosen

between 2 and 8 Hz using a uniform distribution. In a similar fashion, the magnitude

of each tone is also randomly and uniformly chosen between 10 and 13N . The second

excitation is a white noise signal. When fitting ARX models between sensor pairs,

the order of the ARX model is set to ν20.

For each simulation, whether a sensor is faulty or not is decided with equal prob-

ability (p = 0.5). For each simulation, it is decided at the outset what non-linearity

fault model will be used (bilinear versus exponential). However, whether the non-

linearity is one-sided on the positive side, one-sided on the negative side, or both-sided

is determined randomly with equal probability assigned to each case. The ARX co-

efficients are trained by sensor outputs when independent white noise excitations

are applied. During performance evaluation, a pair of sensors are randomly chosen

and then the proposed algorithm for fault diagnosis is applied. A threshold on the

cross-error function is used to determine whether there are discrepancies between a

pair of sensors. In the following experiments, the threshold is set to the maximum

amplitude of the cross-error function output when both sensors are functioning nor-

mally (or during the training of the ARX model). The proposed sub-optimal LER
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algorithm is used for all the experiments except when evaluating the differences in

performance between the optimal and sub-optimal LER algorithms. For all the ex-

periments, unless another noise value is explicitly stated, a zero-mean Gaussian white

noise with variance of 0.5% of the maximum amplitude of the sensor measurements

is superimposed to simulate measurement noise.

4.3.3 Simulation Results

In the first experiment, the detection performance of the proposed algorithm is

evaluated over different parameters of the bilinear and exponential non-linearity mod-

els, respectively. Three performance criteria are evaluated. The first criterion is the

percentage of faulty sensors that are correctly detected to be faulty (i.e., detection

rate and denoted as “DR” in the legends of the figures). The second criterion is the

percentage of normal sensors falsely detected as faulty (i.e., false alarm and denoted

as “FA” in the legends of the figures). The third criterion is, among the correctly

detected faulty sensors, the accuracy of detecting the abnormal region(s) of the non-

linearity model. As the abnormal region can be one-sided or two-sided, we evaluate

each side separately. For example, if an abnormal region appear on the positive side

and the algorithm detects it correctly, a correct detection is recorded. This accuracy

measure is denoted as abnormal region detection rate (i.e., “Abn. region DR” in the

legend of the result figures).

Fig. 4.10(a) shows the performance when a bilinear non-linearity model is used.

The x-axis of the plot represents the degree θ of the slope in the abnormal region (note

that a normal slope is 45◦). As can be seen, the proposed algorithm achieved over a

90% detection rate and less than a 4% false alarm rate for most of the slope degrees

when a white-noise excitation signal is used to excite the system. When a double-

tone harmonic excitation is used, the detection rate is about 75% and the false alarm

rate is about 7%. The difference in performance is because the sensor measurements
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(b) Exponential model

Figure 4.10: Faulty sensor detection accuracy versus a) different slope degree θ (bi-
linear model) and b) variations in the exponential model parameter ψ.

of white-noise excited systems fall into the abnormal region rapidly. Consequently,

the algorithm yields a more sensitive cross-error function and has better diagnosis

accuracy. The detection rate decreases as the deviation is very close to the normal
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Figure 4.11: Normalized normal region boundary detection accuracy: a) White noise
excitation under bilinear model, b) harmonic excitation under bilinear
model, c) White noise excitation under exponential model and d) har-
monic excitation under exponential model

condition, (i.e., 45◦). This result is expected as the non-linearity error is also getting

smaller and thus more difficult to detect from the cross-error function. The detection

rate remains very high at greater than 85% when the slope deviates more than 10◦

from normal for white-noise excitations; this detection rate is greater than 65% for
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double-tone harmonic excitations. For detecting the abnormal type (i.e., one-sided

on the positive side, one-sided on the negative side or two-sided) of the non-linearity

model, the algorithm is able to achieve an accuracy of 90% for every deviation degree

and for both system excitations. (Notice for zero faulty sensor detection rate, the

abnormal type detection rate is simply set to 0).

The same experiment is repeated using the exponential non-linearity model with

the results shown in Fig. 4.10(b). Similar to the bilinear model, white-noise excita-

tions achieve better results than double tone harmonic excitations. When exciting

the system harmonically, detection rates of 95% or greater are found. However, the

double tone harmonic has a detection rate between 60 and 90% depending on ψ.

When white noise excited, the detection rate does not show a significant drop in

performance when the non-linearity model function is close to the normal function

(ψ6). However, when excited by the harmonic signal, the detection rate increases as

the exponential nonlinearity is more dominant. Note that the x-axis of Fig. 4.10(b)

represents various exponential model parameters ψ but the distance between them is

not related to the error magnitude.

Apart from detecting and isolating the faulty sensors, another important capabil-

ity of the proposed method is its ability to detect the boundary values of the normal

region. Fig. 4.11 shows the histogram of boundary estimation accuracy under the

bilinear non-linearity model with parameter θ = 30◦ and white-noise excitation. (Fig.

4.11(a) represents the white-noise excitation under the bilinear model, Fig. 4.11(b)

represents harmonic excitation under the bilinear model, Fig. 4.11(c) represents the

white-noise excitation under the exponential model and Fig. 4.11(d) represents the

harmonic excitation under the exponential model.) The estimation error is normalized

(i.e., the estimation error is divided by the actual boundary value). As can be seen,

95% of the estimations are within 2% of the actual boundary value for white-noise

excitations; and 80% of the estimations are within 3% of the actual boundary value
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Figure 4.12: Comparison of detection performance between using the optimal LER
method and the proposed low complexity LER method.

for double-tone excitations. Most of the boundary estimations (except the harmonic

excitation under bilinear model case) are higher than the actual boundary value be-

cause the magnitude of the faulty measurements (thus the corresponding value of the

selected feature points) are always larger than the true normal region boundary value.

Therefore, the boundary values detected by the LER method are usually larger than

the actual boundary values. This error can be reduced by using more feature points

and avoiding using unnecessarily large thresholds on the cross-error function. For the

harmonic excitation under the bilinear model (Fig. 4.11(c)), more than half of the

estimations are smaller than the actual boundary values. This is mainly because the

feature points collected from the less sensitive cross-error function have lower accu-

racy. As can be seen from the results, the proposed algorithm is able to achieve high

accuracy on the boundary value estimation, which is important in signal recovery or

for preventing the sensor from being used in the abnormal region in the future.

The proposed sub-optimal LER method is used in all of the previous experiments.

This method has much lower complexity than the optimal LER method but it does not

guarantee the largest empty rectangle. Therefore, a comparison is performed to reveal

61



differences in the accuracy of these two methods. The experiment is performed under

the bilinear non-linearity model with white-noise excitations. The results (Fig. 4.12)

show that the proposed low complexity LER method is able achieve similar detection

rates as the optimal LER method. Although the optimal method achieves a higher

level of accuracy when the non-linearity error is small (i.e., when θ is close to 45◦),

the optimal method generally has higher false alarm. Similar results are also observed

for the exponential non-linearity model. Therefore, for detecting non-linearity faults,

the proposed low complexity LER method is deemed sufficient.

The proposed algorithm diagnoses faulty sensors using the feature points extracted

from the sensor outputs based on the cross-error function crossing a defined thresh-

old. Only one such data point is collected every time the sensor output falls into an

abnormal region. For systems whose signal changes slowly, it may take a long time

to collect a large number of required data points. As a result, it is necessary to know

the relationship between the number of feature points available and the correspond-

ing detection accuracy, especially in identifying the fault pattern in Fig. 4.7 and

estimating the boundaries of the normal regime of a faulty sensor. Two simulation

are conducted using the bilinear fault model with θ set to 20◦ and the exponential

model with ψ set to 0.1. Both double-harmonic and white noise excitations are eval-

uated. As shown in Fig. 4.13 and as expected, the detection rate and fault region

detection rate increase when the number of available feature points increases. The

detection rates plateaus when the available feature points reach 10 for the bilinear

model and 6 for the exponential model. The result implies the proposed algorithm

is able to detect sensors with non-linear faults using only a small number of feature

points (e.g., 10 or more).

Next, we evaluate the algorithm performance when measurement noise exists in

the sensors. The simulation is conducted using the same bilinear fault model with θ

set to 30◦ and the same exponential model with ψ = 0.1. Random white Gaussian
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Figure 4.13: Detection accuracy versus number of available feature points when using
a) bilinear model and b) exponential model.

noise with different noise variance is superimposed to the sensor measurements. The

noise variance ratio in Fig. 4.14 is defined as the ratio of the noise variance to the

maximum magnitude of the sensor measurements. As can be seen in Fig. 4.14,
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Figure 4.14: Detection accuracy versus sensor measurement noise when using a) bi-
linear model and b) exponential model.

the detection rate decreases as the measurement noise variance increases in both non-

linear models. For white-noise excited systems using the bilinear non-linearity model,

the fault detection rate is 90% or greater when the noise variance is within 5% of the
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sensor measurement magnitude. Typical sensor noise is significantly less than 5% for

common sensors. Similarly, white-noise excited systems using the exponential model

achieved detection rates of 90% or greater under the same noise variance level. As

was observed in the previous experiments, the accuracy of the algorithm on double-

tone harmonic systems are slightly lower than that of white-noise excited systems.

The detection rate on double-tone harmonic excited systems drops to 60% when the

noise variance reaches 5% of the sensor measurement magnitude for bilinear models.

For exponential non-linear models, the same detection rate drops to under 60% when

the noise variance is larger than 15% of the sensor measurement magnitude. For the

abnormal region detection of the correctly detected faulty sensors, the detection rate

remains at about 90% of accuracy on different noise variances (for both excitation

types and for both non-linear models). This implies the abnormal region detection is

less affected by the measurement noise once the faulty sensor is correctly detected.

The influence of the maximum amplitude of the faulty signal relative to boundary,

r, is evaluated. Fig. 4.15 shows the detection rate and false alarm rate as a function of

the signal amplitude-normal region boundary (r) ratio for the bilinear and exponential

models. The x-axis value is defined as the mean of the maximum sensor output each

time the actual signal exceeds the normal region boundary divided by the normal

region boundary. As shown in the figure, the fault detection accuracy increases in

tandem with the average ratio reaches its maximum when the average ratio is 10%

or higher.

As mentioned in Section 4.2.2, the proposed fault detection algorithm is able to

distinguish non-linearity faults from other types of faults by examining the area of the

detected largest empty rectangle. This property is illustrated by applying the LER

algorithm to sensor data in which S1 is corrupted by spike faults, mean drift faults and

excessive noise faults, respectively. These faults are common in sensors. Spike faults

are sparse impulses superimposed on normal sensor measurements. Mean drift faults
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Figure 4.15: Detection accuracy versus abnormal signal amplitude when using: a)
bilinear model and b) exponential model.

preserve the output dynamics but not its mean value. This type of faults generates

outputs whose mean drifts away from the true mean of the signal slowly compared

to the output dynamics. Excessive noise refers to a large amount of Gaussian noise
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Figure 4.16: Illustration of the detected LER when one of the sensors is corrupted
by: a) spike faults, b) mean-drift faults, and c) excessive noise faults.

in the output of a sensor. The results of the LER algorithm on the sensor data

corrupted by these faults are shown in Fig. 4.16. All the detected LERs have very

small areas (compared to the maximum amplitude of the sensor data). This is because

the feature points caused by these faults do not always bigger than a fixed boundary.

These feature points can locate in anywhere in the 2-D plane and thus do not follow

any of the patterns in Fig. 4.7. As a result, non-linearity faults can be distinguished

from other types of faults by examining the area of the largest empty rectangle.
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4.4 Summary

In this Chapter, a model-based decentralized non-linearity fault detection and

identification algorithm is proposed. The algorithm is carried out locally within a

pair of sensors. Simulations show that the proposed method is able to identify non-

linearity accurately. The algorithm generally achieves 90% or greater of detection rate

on detection faulty sensors and obtains accurate values on detecting the boundaries

of the normal region of the non-linearity models. A low-complexity sub-optimal LER

algorithm is suggested and it has similar performance as the optimal LER algorithm

in non-linearity faults detection. The proposed algorithm is able to distinguish the

non-linearity faults from the other types of faults. Having the ability to identifying

fault types is important as it provides information to the system to find out the

fundamental cause of the sensor fault. Also, knowing the fault type helps to recover

the corrupted data and thus reduces the sensor replacement cost.
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CHAPTER V

Field Experiment on Grove Street Bridge

5.1 Introduction

In the previous chapters, distributed model-based fault detection and identifica-

tion algorithms are proposed. These proposed algorithms are verified and evaluated

through simulated and real data with faults. In this chapter, the performance of the

distributed model-based fault detection and identification method is further investi-

gated by a field study on the Grove Street Bridge located in Ypsilanti, Michigan. The

spike detection and identification algorithm is implemented on 16 vibration sensing

wireless sensors which are deployed on the bridge. Spike faults are generated on site

and superimposed onto the true vibration signals before being sensed. Compared to

the real spike corrupted data, this field experiment has true information on the spike

time stamps and magnitudes. In addition to accuracy evaluation, this study also

focuses on the relationship between the detection accuracy and the network partition

methods. Based on this relationship, communication energy saving partition methods

are presented. The main objectives of this study include: 1) evaluating the perfor-

mance of the algorithm under real world environment, 2) testing the computational

requirements of the suggested method on simple wireless sensors, 3) obtaining the

relationship between the detection accuracy and the network partition methods and

4) comparing the energy consumption between the proposed distributed method and
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Figure 5.1: The Grove Street Bridge

generic centralized methods.

5.2 Performance Evaluation on Grove Street Bridge

5.2.1 Deployment Details

The proposed spike fault detection method is evaluated by implementing the de-

tection algorithm on real vibration sensors and deploying them on the Grove Street

Bridge located in Ypsilanti, Michigan. Spike faults are generated on site and super-

imposed on to the true signal before being sensed by the sensors. The Grove Street

Bridge, as shown in Fig. 5.1, is a two-lane highway bridge over the interstate 94.

This steel girder-concrete deck-composite-structured bridge is 455-feet long and 52-

feet wide. Sixteen wireless sensors are deployed along the pedestrian walkways for

vibration signal measurement as shown in Fig. 5.1.

The wireless sensors used in this experiment were developed by the University

of Michigan. Each wireless sensor consists of a 8-bit low power controller (Atmel

ATmega128), a ZigBee wireless communication unit, 4 channel inputs and 2 channel

outputs. Each sensor is powered by 6 NiMH batteries. The vibration of the bridge

is sensed by an accelerometer (Silicon Design model 2220) and then amplified by 10

times using a signal conditioning circuit. Finally, the amplified signal is sampled by

a wireless sensor at 200Hz. For spike corrupted sensors, spikes are generated (by an

extra wireless sensor unit) and superimposed to the amplified vibration signal before
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being sensed by a wireless sensor (Fig. 5.2). The occurrence of the spikes follows

the Poisson Process. The time between two consecutive spikes (i.e., the inter-arrival

time) follows an exponential distribution and the inter-arrival times are independent

with each other. In this experiment, sensors S2, S4, S11 and S13 are designated to

be the spike corrupted sensors. Various inter-arrival times and spikes amplitudes are

used in the experiment.

In addition to the wireless sensors, a laptop computer is located in the middle of a

pedestrian walkway and act as a base-station. This base-station is responsible for: 1)

partitioning the network into sensor pairs, 2) initiating the ARX model identification

task, 3) initiating the fault detection task and 4) collecting data and fault detection

results from the wireless sensors.

5.2.2 ARX Model Training Method

The coefficients of the ARX model between sensor p and q can be identified by

least square methods. Least square method requires the calculation of matrix multi-

plication and matrix inversion, the required computation complexity is O(ν3 + ν2M)

(where ν is the order of the ARX model and M is the length of the data used for

training) when Gauss-Jordan elimination method is used. This complexity is high for
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embedded deployment in wireless sensors.

The coefficients of the ARX model can be found by solving the following Yule-

Walker equation (Percival , 1993):

[a0, . . . , aν1 , b0, . . . , bν2 ]

Ryp,yp Ryp,yq

Ryq ,yp Ryq ,yq

 = [δ, 0, . . . , 0] (5.1)

where the 2 × 2 matrix is a bi-Toeplitz matrix, and the four blocks of Toeplitz sub-

matrices are the autocorrelation matrices or cross-correlation matrices of the outputs

of sensors p and q.

By exploiting the structure of the bi-Toeplitz matrix in Eq. (5.1), Monden et al.

(1982b); Pan and Levine (1990) propose fast coefficient identification methods for

ARX coefficients training. In this experiment, Monden’s method is adopted and

implemented in the wireless sensors for ARX model training. This method iteratively

calculates the ARX coefficients from order (1,0) to the desired order (ν, ν). The

computational complexity is O(ν2) and storage requirement is O(ν).

5.2.3 The Flow of the Experiments

The field experiments consist of two main processes: the model training process

and the spike detection process. The model training process involve three steps: first,

the base-station partitions the network into sensor pairs and requests the correspond-

ing sensor pairs to identify their ARX coefficients; second, a master sensor of each

sensor pair requests observation data from the slave sensor and starts the coefficient

identification process immediately after the data is received; and third, the master

sensor informs the completion of the identification process and send the ARX coef-

ficients back to the base-station. The spike detection process also consists of three

steps: first, the base-station requests a sensor pair to preform spike detection; sec-

ond, the master sensor requests observed data from the slave sensor and performs
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Table 5.1: The time requirements of different processes in fault detection on process-
ing 12000 data points.

ARX order Coefficient Cross-error Matched filter
(2n) training function function
12 45.32s 8.90s 15.42s
18 62.44s 11.23s 21.04s
24 81.21s 14.57s 31.78s
30 96.11s 16.44s 39.60s

spike identification using the two matched filter functions (3.3 and 3.4); and third,

the identification results are reported to the base-station. The second steps of both

processes dominate the time consumption. The time required, under different model

orders, for the coefficient training, cross-error function computation, and matched-

filter function computation are shown in Table 5.1. The time requirement for data

transmission is negligible when compared to the coefficient training process and fault

detection process. For example, the transmission of 6000 data point from the slave

sensor to the master sensor usually takes about 3 seconds. The transmission of ARX

coefficients and spike detection results consumes even shorter of time.

5.3 Results

This section presents the performance of the proposed fault detection algorithm

in the field experiment. The 16 sensors are deployed on the Grove Street Bridge for a

few days. After the sensors being confirmed to be working properly, the ARX model

of each sensor pairs are trained using 12000 data points (equivalent to 60s at 200Hz)

and 18 coefficients (both coefficients a and b have size 9). After the ARX model

training process is done, the spike fault detection performance is evaluated under

different spike faults (different spike amplitudes and inter-arrival times) and different

sensor pair combinations. The rest of this section first shows the method of detecting

spikes from the matched filter result. Then, we presents the relationship between the
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Figure 5.3: The observation of a normal sensor

performance of the algorithm and the similarity between coefficients a and b, and

its influence on network partition. Finally, a three network partition methods are

proposed, and the corresponding energy consumption is discussed.

5.3.1 Spike Detection using Matched Filters

The following shows the method used for detecting spikes from the sensor data.

Fig. 5.3 shows typical vibration data being observed by a normal sensor. Typical

spike corrupted data is shown in Fig. 5.4. If the coefficients of a ARX model have

similar energy, i.e., |a|2 ∼= |b|2, or the coefficients are highly uncorrelated, the spikes

can be easily identified by first setting a threshold and then declared any data that the

corresponding matched filter function output is larger than the pre-defined threshold

as a spike (as shown in Chapter III). This is because a spike at sensor p will cause

a high value in output of the matched filter a but a small value in output of the

matched filter b. When the difference of the two coefficients’ power is big, the higher

power filter (say Matched filter a) could give high output even it does not match with

the waveform (b) cause by a spike happened in the partner sensor (sensor q), and

consequently might lead to wrong results. Most of the identified ARX models in this

bridge experiment have imbalanced coefficient powers. As a result, the coefficients

are normalized to have unit power before calculating the cross-error function and
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matched filter output.

The new cross-error function, ėpq is calculated by using the normalized coefficients

ȧ = a
|a| and ḃ = b

|b| :

ėpq(k) = ep(k) +
n∑
i=1

ȧiep(k − i)−
n∑
i=0

ḃieq(k − i) (5.2)

and the corresponding matched filters are:

ėapq(k) = |
∞∑

i=−∞

ȧi−kėpq(i)| (5.3)

ėbpq(k) = |
∞∑

i=−∞

ḃi−kėpq(i)| (5.4)

The spikes are identified by the following criteria: when the value of a matched

filter at time k, say ėapq(k), exceeds a pre-defined threshold, a window (with length

equals to the length of a) of values that are next to time k is extracted from both

matched filters, i.e., {ėapq(k − 4), . . . , ėapq(k + 4)} and {ėbpq(k − 4), . . . , ėbpq(k + 4)}.

The maximum magnitudes of both extracted vectors are compared, if max{ėapq(k −

4), . . . , ėapq(k + 4)} > max{ėbpq(k − 4), . . . , ėapq(k + 4)}, the spike is regarded to be

occurred in sensor p, otherwise the spike is regarded to be occurred in sensor q. The

time k, where the highest value locates, indicates the time that the spike appeared in

the sensor.

Note that the new cross-error function (5.2) is no longer a good indicator of

whether a fault occurred within the sensor pairs. It is only for calculating the new

matched filter functions ((5.3) and (5.3)). In the following of this section, the new

cross-error function and matched filters are used.

Fig. 5.4 shows the data observed by two sensors (S4 and S13) within a sensor

pair. Both sensors are spike corrupted and the corresponding cross-error function and

matched filter functions are shown in Fig. 5.5. The spikes from both sensors appear in
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the cross-error function and become more apparent in the output of matched filters.

The spikes occurred in S4 have higher amplitude in the matched filter a than that

in the matched filter b. Therefore, spikes occurred in sensor 4 can be distinguished

from the spikes occurred in sensor 13. The detected sensor 4 spikes and sensor 13

spikes are indicated by square and star markers respectively in Fig. 5.4 and Fig. 5.5.

5.3.2 The Relationship between the Detection Accuracy and the Simi-

larity between the ARX Coefficients

Without model errors and measurement errors, the highest output magnitude in

the matched filter function, ėapq, which is caused by a spike with amplitude d in the

sensor p, is |a|2|d| = |d| (according to Eq. (5.2) and Eq. (5.3)). On the other hand,

the highest output magnitude in the matched filter function, ėbpq, which is caused by

the same spike occurred in the sensor q, is |a||b|Cm(ȧ, ḃ)|d| = Cm(ȧ, ḃ)|d|, where

Cm(ȧ, ḃ) is the highest cross-correlation measure between ȧ and ḃ, (i.e., the height

output when a waveform a passes through the matched filter b):

Cm(ȧ, ḃ) = max
−n≤k≤n

|
n−1∑
m=0

ȧ(m)ḃ(m− k)| (5.5)

Similarly, a spike with amplitude d occurred in sensor q has the highest output

magnitude, Cm(ȧ, ḃ)|d|, in the output of the matched filter function, ėapq, and has

the highest output magnitude |d| in the output of the matched filter function, ėbpq.

Thereby, as long as Cm(ȧ, ḃ) < 1, the proposed spike detection criteria is able to

identify which sensor contains the spike correctly. The measure Cm(ȧ, ḃ) equals to 1

only when ȧ = ḃ (i.e., a is proportional to b).

However, when the ARX model is not ideal and/or measurement noise exists,

Cm(ȧ, ḃ) needs to be smaller than 1 in order to achieve high detection accuracy

because the output of the matched filters are now corrupted. In order to explore the

relationship between the detection accuracy and the measure Cm(ȧ, ḃ), fault detection
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Figure 5.4: An example of spike corrupted data observed by sensor 4 and sensor 13
on the bridge. The detected sensor 4 spikes are indicated by rectangle
markers and The detected sensor 12 spikes are indicated by star markers.
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Figure 5.5: The output of cross-error function and matched filters. The detected
sensor 4 spikes are indicated by rectangle markers and The detected sensor
12 spikes are indicated by star markers.

is performed on all sensor pair combinations that at least one of the sensors in the

pair is faulty (i.e., S2, S4, S11 and S13). The detection rate (DR) and false alarm
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Figure 5.6: The relationship between detection rate and Cm(ȧ, ḃ).

rate (FA) of the spike detection within each pair of sensors and the corresponding

similarity measure, Cm(ȧ, ḃ), are plotted on Fig. 5.6. A spike is correctly detected if

the algorithm correctly determine the time and which sensor the spike was occurred.

The detection rate is the number of correctly detected spike errors divided by the

number of total spike errors. The false alarm rate is the number incorrect detection

of spike errors divided by the number of normal data points. Figure 5.6 shows that the

detection rate increases when the measure Cm(ȧ, ḃ) decreases. When Cm(ȧ, ḃ) < 0.8,

most of the sensor pairs is able to achieve more than 70% of detection rate. By fitting

the data with a order 1 polynomial, a linear relationship between the detection rate

and the similarity measure is obtained and shown in Fig. 5.6.

The similarity measure Cm(ȧ, ḃ) gives the highest cross-correlation between ȧ and

ḃ. As ȧ and ḃ are the coefficients of the transfer function between the pair of sensors,

Cm(ȧ, ḃ) is a measure of the similarity of the sensor observations. It is expected that

sensors in close proximity have similar observations and a higher similarity measure,

Cm(ȧ, ḃ), thus less desirable to be paired together. Figure 5.7 shows the similarity
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Figure 5.7: The measured Cm(ȧ, ḃ) between sensor 2 and the other sensors.

measures between sensor 2 and the other sensors. As can be seen, sensors that

are located close to sensor 2 or located directly opposite to sensor 2 have a higher

similarity measure. The similarity measure also depends on the structure of the

bridge. Sensor 16 is close to sensor 2 but their similarity measure is not as high as

other neighbor sensor pairs. This is because the surfaces that these two sensors are

located are not belonging to a single structure. There is a gap/buffer between the

two structures which allow expansion when the environmental temperature is high.

Although vibration can transfer from one structure to the other, the buffer reduces

the similarity measure, Cm(ȧ, ḃ).

Based on the relationship between the similarity measures and the correspond-

ing spike detection rates, three network partition methods are proposed. The first

method maximizes the detection rate without considering the communication energy.

The second method reduces the communication energy while maintaining a high de-

tection rate. This method first removes the communication links with high similarity

measures and then constructs a network partition that minimizes the communica-

tion energy. The third method further reduces the communication cost of the second

method by utilizing the broadcast of sensor data.

The first method partitions the network by choose the sensor pairs that have lowest

Cm(ȧ, ḃ). This method maximizes the detection rate if the relationship between the

similarity measures and the corresponding detection rates is assumed to be linear.
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Figure 5.8: A minimal edge cover based on the Cm(ȧ, ḃ) measure.
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Figure 5.9: A minimal weight edge cover based on the distance squares.
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Figure 5.10: A minimal weight set cover based on the distance squares.

This partition can obtained by calculating the minimal weight edge cover (Murty and

Perin, 1982) of the sensor network. An edge cover of a network is a set of edges that

every sensor is connected to at least one other sensor. A minimal weight edge cover

is an edge cover that the total weight of the edges is the smallest among all possible

edge covers. Consider a network that for any two sensors in the sensor network, a

link exist between them if they can communicate with each other directly. Also, the

weight of the link is equal to the similarity measure, Cm(ȧ, ḃ), of the two sensors.

Consequently, a minimal weight edge cover gives a good pair-wise partition of the
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network for the proposed sensor fault detection algorithm. A minimal weight edge

cover based on this method is shown in Fig. 5.8.

The advantage of the first partition method is the high detection accuracy. How-

ever, sensors tend to pair up with far away sensors and thus resulted in high com-

munication cost. To overcome this issue, the second partition method is introduced

to minimize the communication energy consumption while maintains the high de-

tection accuracy. First, the links that have high similarity measure are removed.

Second, change the weight of the link to the square distance between the correspond-

ing two sensors. Finally, calculate a minimal weight edge cover based on these new

weights. The distances between the sensor pairs {S9, S10} and {S15, S16} are 33

inches, the distances between the sensor pairs {S10, S11}, {S11, S12}, {S13, S14} and

{S14, S15} are 54 inches and the the distance between the sensor pairs {S12, S13} is

108 inches. Sensor 1 to sensor 8 has the same distance profile as Sensor 16 to sensor

9, as shown in Fig. 5.1. The vertical separation between the two lines of sensors is 52

inches and inclination of the bridge surface is 60◦. For example, if sensor 16 is defined

to be the origin (0,0), then sensor 1 is located at coordinate (30, 52). The weight

of the link is defined as the square distance between the two sensors because the

communication energy is inversely proportional to the distance square. For example,

when links with Cm(ȧ, ḃ) < 0.75 are removed and the minimal weight edge cover is

calculated based on the square distance, a different edge cover is obtained (Fig. 5.9).

Compared to the first partition (Fig. 5.8), the sensor pairs in Fig. 5.9 have shorter

separation in distance. To simplify the discussion, we assume communication energy

is solely depending on the communication distance. Assume 1mJ of energy is required

to transmit data for one second over a distance of 100 inches, then 4mJ of energy is

required to transmit data for one second over a distance of 200 inches, according to

the inverse square law of the propagation of EM waves. Based on these assumption,

The power consumption of the first partition method (Fig. 5.8) is 39.4mW while the
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Figure 5.11: The detection rate (DR) and false alarm (FA) versus the spike amplitude
of the three partition methods.

power consumption of the first partition method (Fig. 5.9) is 15.7mW, which is about

60% of saving.

Communication cost is further reduced if data is broadcasted from one sensor to

multiple sensors. The third partition method constructs a network partition which

minimizes the communication energy consumption when broadcasting is allowed.

Similar to the second method, communication links with high similarity measures

are first removed. Note that the broadcast range, or equivalently the number of sen-

sors covered under broadcasting, increases with the transmission energy. With all

possible broadcast ranges and the corresponding communication energy, the optimal

network partition, which minimizes the total communication energy, is the minimum

weight set cover (Fig. 5.10) of the network. As can be seen, only sensor 1, 2, 3, 4, and

7 transmit their data to other sensors. The total communication power consumption

is 11.2mW, which is about 71% of the second method. The third method requires

more sensors to perform the fault detection calculation. As a result, this method is

preferred when the computational cost is lower than the communication cost.
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Figure 5.12: The detection rate (DR) and false alarm (FA) versus the spike inter-
arrival time of the three partition methods.

The performance of the proposed method under the three network partition meth-

ods are evaluated with various spike amplitudes and average inter-arrival times. The

results, which are presented in Fig. 5.11 and Fig. 5.12, are obtained from 2-3 sets of

vibration data. Each set of data consists of 8-9 sensor pairs (depends on the partition

method) and each sensor pair inspects 12000 data points for spike detection. Fig. 5.11

shows the result of the detection rate and false alarm versus the average spike ampli-

tudes. The x-axis of the figure is the ratio of the spike amplitude to the maximum

peak-to-peak amplitude of the observation signal. The average inter-arrival time of

the spikes is set to 0.5 second. When the spike amplitude ratio is higher than 0.2,

the first partition method achieves around 90% of detection rate, the second and the

third partition methods achieves similar accuracy at around 85%. When the spike

amplitude ratio smaller than 0.2, the detection rate starts to be affected by the ob-

servation noise and the error caused by the inaccurate ARX model. When the ratio

is 0.1, the detection rate of the three partition methods drop 10%− 15% in detection

rate. The false alarm rate is maintained at about 1% for the three partition methods
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under different spike amplitudes.

Fig. 5.12 shows the detection rate and false alarm rate versus different average

inter-arrival times of the spike faults. The average amplitude ratio of the spike faults

is set to 0.2. When the average inter-arrival time is larger than or equal to 0.05

second, which is equivalent to 10 data points, the detection rates of the three partition

methods seem not being affected by changes of the inter-arrival times. When the

average inter-arrival time is smaller than 0.05 second, the identification of a spike

fault could be affected by the another nearby spike fault. This is because the proposed

spike detection method (mentioned in Chapter 5.3.1) considers a window of outputs

from both matched filter functions to determine which sensor contains the spike. As

the low quality sensor pairs (high Cm(ȧ, ḃ)) are eliminated, the performances of the

proposed fault detection method using the second and third partition methods are

only slightly lower than that using the first partition method (as shown in Fig. 5.11

and Fig. 5.12).

One may be interested to know how many energy is required if centralized fault

detection method is used, i.e., all the sensor observations are sent back to the base-

station and then perform fault detection by the base-station. For example, in out

experiment, we put the base-station in the center of the bridge, which is beneficial to

communication energy saving, has a power consumption of 34.5mW. In this example,

the energy consumption is similar to the first partition method but 120% more than

the second partition method, and about 200% more than the third partition method.

The second and third partition methods are recommended because energy is usually

scarce in wireless sensor network and their detection rates are only slightly lower than

the cross-correlation based partition method.

To summarize, the accuracy of the proposed method depends on the similarity

measures of the ARX coefficients. Sensors with low similarity should be paired to-

gether. Three network partition methods are introduced and evaluated. Results show
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that the communication energy can be reduced without sacrificing too much of the

detection accuracy.

5.4 Summary

A field experiment is conducted on the Grove Street Bridge located in Michigan.

This field experiment, together with the simulations presented in Chapter III, pro-

vided a throughout evaluation of the performance of the spike detection and identifi-

cation algorithm. With the Yule-Walker equation based fast iterative ARX coefficient

training method, the ARX training process can be done in a reasonable time by a 8-bit

micro-controller (Atmel ATmega128) running at 8MHz. The accuracy of the algo-

rithm is greatly depending on the similarity measure of the ARX model coefficients,

especially for simple and regular structures such as bridges. When the similarity

measure is low, the accuracy of the field experiment is similar ( 5% lower) to the sim-

ulation results presented in Chapter III. Network partition methods are suggested

to reduce communication energy for fault detection and identification. This study

also investigated the recovery of the true signal from the detected spike information.

The recovery based on the ARX coefficients trained by the wireless sensors does not

always give correct results. This is because the sensors only support single precision

calculation and the trained ARX coefficients do not have enough high accuracy as

required by the recovery process. The recovery is accurate if the ARX coefficients

are trained under double precision calculation. This limitation, however, will soon be

eliminated by the continuous advancement of micro-controllers.
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CHAPTER VI

Efficient Sensor Fault Detection Using

Combinatorial Group Testing

6.1 Introduction

The previous chapters, efficient distributed sensor fault detection and identifi-

cation methods are proposed. These algorithms reduces communication energy by

carrying out the algorithm locally. In this chapter, efficient sensor fault detection

algorithms that use fewer number of tests are introduced.

Most of the existing sensor fault detection methods, including the distributed

model-based sensor fault detection algorithm proposed in Chapter II, require the

number of tests at least on the order of the size of the network, i.e., O(N) tests are

required, where N is the number of sensors in the network. Some methods even need

O(mN) (where m is the number of neighbors of a sensor) or O(N2) tests. A summary

of the detection complexity is given in Table 6.1. For applications using an extremely

large number of sensors (Cho and Chandrakasan, 2001), running a fault detection

algorithm can involve a large amount of resources and cause significant delay.

We observe that while certain regional effects or catastrophic failure may result

in a large number of faulty sensors at the same time, in the absence of such systemic

problems and during normal operation faults occur randomly and sporadically. In
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Method type Complexity Condition needed
Model-based:
Kobayashi and Simon (2003) O(N) At most one faulty sensor
Da and Lin (1995) O(N) At most one faulty sensor
Li et al. (2007) O(N) Reference sensor
Ricquebourg et al. (1991) O(N)
Xu et al. (1999) O(N)
Model-less:
Ding et al. (2005) O(mN) m = # of neighbors
Chen et al. (2006) O(mN) m = # of neighbors
Koushanfar et al. (2003) O(N2)
Blough et al. (1989) O(N logN)

Table 6.1: Summary of existing methods

this case, the effort used for performing the traditional lengthy sensor fault detection

seems not proportional to the number of faulty sensors to be found. This motivates

us to seek lower complexity fault detection methods when faults may be rare and

sparse.

Toward this end, we introduce a novel use of group testing techniques combined

with Kalman filtering in detecting faulty sensors in a network. Assuming that the

underlying system being monitored may be represented in a linear dynamical system

framework and that sensor faults are relatively rare, our goal is to reduce the num-

ber of required tests given requirements on detection and false positive probabilities.

There have been a few studies on using group testing to detect malfunctioning sen-

sors; they generally differ in the testing/detection methods. For instance, Goodrich

and Hirschberg (2006) propose a group testing based algorithm for detecting failure

(dead) sensors. This algorithm evaluates a group of sensors by counting the number

of responses from the group to a broadcast query (thus only applicable to sensor

failure detection rather than fault detection). Tosic and Frossard (2012) propose

a distributive sensor fault detection algorithm that measures a smooth phenomena

(which implies neighboring sensors have similar measurements), where a group test

is preformed by an unspecified dissimilarity comparison of neighboring sensors’ mea-
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surements. Our work differs from the former in that we focus on detecting faulty

sensors which are still responsive to queries, and differs from the latter in that we do

not assume that sensors are highly correlated or that neighboring sensors have similar

measurements.

Our approach consists of the following two components: the selection of a test

group (also referred to as a test pool), and a Kalman filtering based testing/detection

procedure over this group of sensors, which determines whether there exists at least

one faulty sensor in this group. These two steps are repeated till desired performance

criteria have been achieved. There are in general two ways of selecting the test groups.

The first is open-loop, whereby the entire set of test groups are selected prior to per-

forming any tests (this is done randomly in our study); this will be referred to as

the combinatorial group testing (CGT) method. The second is closed-loop, whereby

each test group is selected adaptively based on outcomes of previous tests (this adap-

tive section is done using standard criteria like uncertainty reduction maximization

in our study); this will be referred to as the Bayesian group testing (BGT) method.

The CGT method is presented in this chapter and the BGT method is presented

in the next chapter. The next chapter also further consider the detection perfor-

mance of Kalman filtering, and use such understanding in determining the selection

of test groups under the Bayesian group testing method; this will be referred to as

the Kalman filtering-enhanced Bayesian group testing method (KF-BGT). It should

be emphasized that under all these methods the group tests (the second component)

themselves are performed via Kalman filtering; they simply differ in how the test

groups are selected (the first component).

The remainder of this chapter is organized as follows: first, the main concepts

used in the group testing-based fault detection algorithm is reviewed. Second, the

detailed methodology of the detection algorithm based on CGT is explained. Third,

the experimental set up and the nature of a set of bridge vibration data we use for
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numerical evaluation are described. Finally, The performance of the CGT methods

on the bridge vibration data is presented.

6.2 Preliminaries

In this section we review two main concepts used in our fault detection algorithm.

The first is group testing, the goal of which is to identify sparse faulty items with a

number of tests less than the total number of items. The second concept is Kalman

filtering, which is able to produce optimal state estimation for a linear dynamical

system.

6.2.1 Group Testing

Consider a large number of items of which a few are defective, and we wish to

identify them. If each item is tested individually, the cost can be high (linear in the

total number of items). However, if it is possible to determine the existence of any

defective item in a group of items via a single group test, then performing a sequence

of group tests over different subsets of these items can potentially lead to much fewer

number of tests and thus much lower cost. This is the main idea of group testing; it

was first proposed by Dorfman (Dorfman, 1943) during World War II for detecting

syphilis amongst soldiers.

Consider a length N signal S which is d sparse: this means S has at most d non-

zero entries that correspond to the defective items and d� N . As the “true” signal

dimension (i.e., d) is smaller than N , it is conceivable that signal S can be acquired

with M < N measurements. In group testing paradigm, signal S is measured M times

in the form of W = ΦS, where Φ is the measurement matrix of size M × N . The

arithmetic is boolean, meaning that the multiplication is logical AND and addition

logical OR. If these operations are noisy, then the group test results are given by Z

rather than W , with P (Zi = 1|Wi = 0) = α and P (Zi = 0|Wi = 1) = β, ∀i, denoting
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the two types of errors. The goal of group testing is to design Φ such that S can

be reconstructed from Z (i.e., we can find the d defective items) with sufficiently low

error probabilities.

We now describe this in the context of a network of N sensors, of which at most

d are faulty. Let vector S represent the true fault state of the sensors in the network,

where Si = 0 if sensor i is normal and Si = 1 if sensor i is faulty. Each row of the

matrix Φ, which has {0, 1} entries, represents the set of sensors involved in a test. A

row of Φ is called a test group/pool and the number of rows equals the number of

tests. Finally, the vector Z represents the result of the group tests. Below is a toy

example of ΦS = Z:

Example VI.1.


0 1 0 0 1 1

0 0 1 1 0 1

1 0 0 1 1 0





0

1

0

0

0

0


=


1

0

1



In this example, there are 6 sensors; sensor 2 is faulty. A total of 3 group tests

are performed: sensors {2, 5, 6} are included in the first test (first row of Φ), and so

on. The test result shows correctly that the first group contains at least one faulty

sensor and the second group has none, but declares incorrectly that the third group

contains a faulty sensor. In a fault detection setting, S is unknown while Φ is known

by design and Z is known by observing the test results. S and Z are then used to

reconstruct S. As mentioned in the introduction, group-testing a set of sensors in our

context is far more complicated than a simple boolean operator, noise-free or noisy.

To use this group testing framework in practice, we must specify what a “group test”

entails, and how to actually obtain values in the Z vector. This is addressed by a
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novel use of Kalman filtering detailed next.

6.2.2 Kalman Filter Based Group Test

The Kalman filter (Maybeck , 1979) is an algorithm which takes a series of noisy

inputs and iteratively calculates a statistically optimal estimate of the state of an

underlying linear dynamical system. More specifically, consider a linear dynamical

system given by the following state-space model (Maybeck , 1979):

X(k + 1) = AX(k) + BU(k) + G(k) (6.1)

Y(k) = CX(k) + V(k) . (6.2)

where the first equation represents the dynamics of the system while the second

represents the (sensor) observation model. Here X(k) ∈ Rn is the state vector of

the system, U(k) ∈ Rl the input (or control) vector, and Y(k) ∈ RN the output

vector of sensors. Matrices A, B and C are determined by the physics of the system

as well as the sensors. G and V are Gaussian white noise with zero mean and

covariance matrices RG and RV, respectively. X(0), G(k) and V(k) are assumed

to be independent. Assume the noises, G and V, are small, the next system state,

X(k+1), is mainly depends on the current system state, X(k), and the current input

U(k). Also, the current output of the sensors, Y(k), is mainly depends on the current

system state X(k).

The Kalman filter state estimation can be separated into two steps, a prediction

step and an update step. In the prediction step, the predicted state (of time k based

on the value at time k − 1), X̂(k|k − 1) and the corresponding uncertainty measure
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of the prediction, P(k|k − 1) are calculated:

X̂(k|k − 1) = AX̂(k − 1|k − 1) + BU(k) (6.3)

P(k|k − 1) = AP(k − 1|k − 1)AT + RW , (6.4)

Upon observing a measurement Y(k), the estimated state and uncertainty measure

are updated as follows:

K(k) = P(k|k − 1)CT(CP(k|k − 1)CT + R)−1 (6.5)

X̂(k|k) = X̂(k|k − 1) + K(k)(Y(k)−CX̂(k|k − 1)) (6.6)

P(k|k) = (I−K(k)C)P(k|k − 1) . (6.7)

where the updated state, X̂(k|k), is a weighted sum of the estimated state and the

innovation (Y(k) −CX̂(k|k − 1)). The weight depends on the uncertainty measure

P(k|k − 1): the more uncertain the estimated state is, the more weight is placed on

the new observation.

The group testing method requires the fault detection method to identify whether

an arbitrary group of sensors contains any faulty member. The idea of using Kalman

filtering for group testing lies in its ability to estimate the state of the underlying

system from the observations of almost arbitrary group of sensors. For example, if

one wants to estimate the system state by using the outputs from sensors 1,3 and 4,

the observation model (Eq. (6.2)) can be changed to Y′(k) = C′X(k) + V′(k), where

Y′(k) contains only the 1st and 3rd components of Y(k), C′ contains the 1st and 3rd

rows of C and V′(k) contains the 1st and 3rd components of V(k). The dynamic

equation of the system (Eq. (6.1)) remains the same. Specifically, after selecting an

arbitrary group of sensors φ, we will further split this set into two subgroups A and

B, and use the observations from each subset to estimate the state of the underlying
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Figure 6.1: State diagram of the proposed sensor fault detection method.

system (thus it is required that a group contain at least two sensors). If the estimated

states do not agree with each other, the group is regarded as containing at least one

faulty sensor and the corresponding entry of Z is set to 1.

Denote the estimated states of the system, computed from observations of the

subgroups A and B, as X̂
A

(k|k − 1) and X̂
B

(k|k − 1), respectively. The difference

between the two estimated states is given by:

e(k) = X̂
A

(k|k − 1)− X̂
B

(k|k − 1) . (6.8)

As all states estimated from the Kalman filter are unbiased (i.e., E[X̂(k|k − 1)] =

X(k)) (Maybeck , 1979), the expected differenceE[e(k)] = E[X̂
A

(k|k−1)]−E[X̂
B

(k|k−

1)] = 0 if neither A nor B contains any faulty sensor (i.e., the corresponding com-

ponents in E(k) are zero). Otherwise this expectation is non-zero. Therefore, a

threshold can be used to decide whether a group of sensors, φ, contain any faulty

sensors. If ‖E[e(k)]‖ is larger than this threshold, the group, φ, will be regarded as

having at least one faulty sensor and the corresponding entry of Z will be set to 1.

Otherwise, the corresponding entry of Z will be set to 0. Fig. 6.1 gives an overview

of this approach. In all the algorithm performs M group tests.

After the group test results Z are calculated, the sensor fault state is recovered

by a straightforward maximum likelihood (ML) decoding. The recovery algorithm

evaluates all
(
N
d

)
possible fault states and chooses the one such that the group testing
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result Z is most likely, i.e., choose ν? if

P (Z|L?ν) > P (Z|Lν) ∀ν 6= ν? (6.9)

where Lν denotes any possible fault state and ν ∈ {1, 2, . . . ,
∑d

0

(
N
d

)
}. In some cases,

and in particular in the experiments shown in the next section, the probability mea-

sure in Eq. (6.9) is difficult to obtain and depends on the threshold used in group

testing. This study simply assumes each group test has the same false positive and

false negative probability and use minimum distance decoding. For each possible

fault state Lν , the recovery algorithm calculates the Hamming distance, defined as

the number of distinct entries, between the predicted output ΦLν and the detection

outcome Z. Fault states with smaller Hamming distance is preferred. Among fault

states having the same Hamming distance from Z, states with a smaller support are

preferred as the probability of a sensor being faulty is < 1/2. If this still results in a

tie, then the recovery algorithm will choose randomly.

6.3 A Combinatorial Group Testing Based Fault Detection

Method

In this section, a Combinatorial Group testing (CGT) based fault detection method

is presented. This section focuses on the design of the measurement matrix, φ. The

group test is preformed by the Kalman filter based method which is mentioned in

Section 6.2.2. Consider a network of N sensors monitoring an underlying physical

system that can be modeled as a linear dynamical system. Assume any sensor in the

network can be faulty and that at most d of them are faulty at any given time. The

dynamic evolution of the underlying system as well as observations by the sensors
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can be expressed similarly as in (6.2):

Y(k) = CX(k) + V(k) + E(k) , (6.10)

where the additional vector E(k) is an unknown error vector induced by sensor faults:

its ith component is zero if sensor i is not faulty.

6.3.1 Group Selection and Number of Group Tests

Recall the fault detection problem represented as Z = ΦS, where S represents

the fault state of sensors (“1” means faulty). As the detection performance largely

depends on Φ, our primary task is in determining the entries of Φ, i.e., which sensors

include in each test. In this sub-section we focus on the non-adaptive CGT method,

whereby Φ is designed prior to the tests.

A common way of selecting test groups, which we adopt in this study, is to design

a disjunct measurement matrix. A d-disjunct matrix has the property that for any

d + 1 columns, there is always a row with entry 1 in a column and zeros in all the

other d columns. For instance, the measurement matrix in Example VI.1 is 1-disjunct

(since any two columns differ in at least one row) but is not 2-disjunct. The reason a

d-disjunct matrix is desirable, especially in the case when group tests are error-free,

is because its output vector Z is distinct for different d-sparse vectors S (a vector is

d-sparse if it has at most d non-zero entries), which means that the exact recovery of

a d-sparse fault state vector S is guaranteed with a d-disjunct Φ. One simple method

to generate a d-disjunct measurement matrix Φ with high probability is to generate

each entry randomly such that Φ(i, j) = 1 has probability 1/2.

The quality of a measurement matrix is reflected in the number of tests needed

(the number of rows in Φ) to gain enough information in order to correctly recover the

fault state S. If the group tests are error free and the faulty sensors are distributed
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uniformly at random, then the necessary and sufficient number of rows in Φ are

O(d log(N/d)) and Ω(d log(N)), respectively (Gilbert et al., 2012). Under the worse-

case distribution of faults (i.e., adversarial fault model), the necessary and sufficient

number of rows in Φ are O(d
2 log(N)
log(d)

) and Ω(d2 log(N)), respectively (Gilbert et al.,

2012).

The group tests in our problem is not error-free since detection using Kalman

filtering is inherently noisy. Noisy group testing problems are relatively less studied

than their noise-free counterpart. A recent study (Atia and Saligrama, 2012) has

been conducted to evaluate the number of tests required for two noisy group testing

scenarios: 1) Additive model: the group result, 0, may change to 1 with probability

α; and 2) Dilution model: a faulty sensor may act like a normal sensor (diluted)

with probability β in a group test. The sufficient number of tests for the additive

model and dilution model, under worst case distribution of faults, are O(d
2 log(N)

1−α ) and

O(d
2 log(N)
(1−β)2

), respectively. However, for group tests that can have both false alarm and

miss detection, as in our algorithm, the requirement on the number of tests is still an

open question.

6.3.2 Practical Implementation

The method outlined above can be implemented in two ways. The first is as a

post processing of data already collected at a cluster head or central location, to

which parallel computing techniques can be applied. The second is a form of real-

time sequential detection process, where a control center solicits input from a single

group of sensors at a time. A single group test is then performed over this group

of input. This is followed by soliciting input from the next group, and so on. Note

that as long as the fault state of the underlying system remains unchanged, the fault

state estimate can be done over different segments of observations over time. In

other words, the data provided by each group need not be synchronized and can be
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generated on demand.

6.4 Experimental Setup

The proposed BGT and CGT fault detection algorithms are evaluated using a

set of real bridge vibration sensing data collected from the New Carquinez Bridge

in California. In this section, we first present the nature of our sensing data. We

then introduce a list common sensor fault types that used in controlled experiments

and a set of corrupted data collected on the New Carquinez Bridge that used in fault

detection analysis.

6.4.1 Sensor Fault Types

We consider four different fault types: spike, non-linear transduction, mean drift

and excessive noise in the controlled experiments. These are illustrated in Fig. 6.2

on a sinusoidal signal. More specifically, a spike fault is an impulse superimposed

on normal sensor measurements. They are assumed to occur randomly in time with

constant or varying magnitudes (consistent with a random signal model). Moreover,

the occurrence of these spikes is assumed sparse. A non-linearity fault represents

an abnormal discrepancy between the sensor input and output. This fault usually

happens when the measurement falls outside a certain dynamic range. In this study, a

simple non-linear fault model is used as shown in Fig. 6.2(e): when the measurement

is within the normal region, the sensor output reflects the measurement; otherwise

the output follows the slope Sf . A mean drift fault preserves the output dynamics

but not its mean value. This type of fault generates outputs whose mean drifts away

from the true mean of the signal slowly compared to the output dynamics. Finally,

excessive noise refers to a large amount of Gaussian noise in the output of a sensor.

Compare to regular measurement noise, this fault has much higher amplitude such

that the output signal is highly corrupted. Note that only the non-linearity fault is a
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Figure 6.2: Illustration of different faults on a sinusoidal signal: (a) Spike, (b) Non-
linearity, (c) mean-drift, (d) Excessive noise and (e) non-linear fault model

function of the measured signal while the other fault types are not.

6.4.2 Bridge Vibration Data and State Estimation

We evaluate our detection method using bridge vibration data collected by a

network of 18 vibration sensors deployed on the New Carquinez Bridge in California.

This is a 1056-meter long suspension bridge which connects Crockett and Vallejo.

The locations of these 18 sensors are shown in Fig. 6.3. They monitor the bridge

vibration in the direction perpendicular to the bridge surface. Fig. 6.4 shows an

example of the output of a sensor when vehicles pass through. We took 18 data

traces at the beginning of the deployment and performed manual inspection. Each

data trace consists of 50 seconds of data sampled at 200Hz. All tests, including

spectrum analysis and mode-shape calculation on the data suggest that the data

traces are correct.

Our first task is to use the collected data to train the linear dynamical model

needed in the group testing algorithms. For this we adopt a commonly used approach,

the subspace method (Katayama, 2005) which utilizes measured output (and input,

if available) to calculate model parameters such as matrices A, (B if input data is
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Figure 6.3: Plan map of the deployed sensors.
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Figure 6.4: Vibration measurement of a sensor

available) and C in the state-space model (6.10). Notice that the excitation/input

to the bridge is in general unavailable. While input is not necessary for learning the

system model by the subspace method, prior study suggests the input can be assumed

to be Gaussian for large structures with complex excitations, and that this leads to a

better learned system model in terms of output prediction (Tong and Perreau, 1998).

For our study, we use half of of the vibration data from each of the 18 traces for

training of the bridge dynamical model, and the other half for evaluating the group

testing method. The order of the dynamical model is set to 162 (An earlier study

of the bridge, (Kurata et al., 2012), indicates that a 162-order state space model is

sufficient to capture the bridge dynamics), i.e., the length of the state vector is 162.

The excitation inputs are assumed to be 18 degree-of-freedom Gaussian signals and

each degree-of-freedom input has zero mean and variance equal to the variance of the

output of the sensors.

Two experiments are then conducted to evaluate the performance of the proposed

algorithms. The first is a control experiment, whereby different fault types are ar-

tificially created and superimposed over a random subset of the data traces. The
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resulting data are then used for evaluation purposes. Specifically, we add different

types of faults to the bridge data by randomly selecting up to two sensors (a number

ς is first chosen uniformly from {0, 1, 2}, and then ς number of intended faulty sensors

are chosen uniformly among the 18 sensors). We set the maximum number of faulty

sensor to be 2 (d = 2) so as to keep the percentage of faulty sensors around 10%. A

total of 100 random runs are conducted (over the choice of the number and identity

of the faulty sensors, as well as over the random injection of faults and the generation

of the Φ matrix) for experiments.

In addition to the control experiment, we also evaluated the CGT algorithm per-

formance on real sensor faults. Several weeks after deployment, sensor 11 appears

to start having errors (this is done by manual and visual inspection of its data). As

shown in Fig. 6.9, the output of sensor 11 has obvious spikes beyond normal fluctua-

tion, and possibly has a shift on the mean amplitude and a small mean-drift error as

well. It should be noted that this observation is not the absolute “ground truth” but

is the closest we can possible get under the circumstances (the alternative is to take

the sensor off the bridge and calibrate it in a lab; even if we could do so the result is

only valid if the same type of faults persists in the lab setting).

6.5 Performance of the Combinatorial Group Testing (CGT)

Method

In this section we evaluate the performance of the CGT algorithm. The perfor-

mance in detecting different fault types is evaluated by control experiments. The

algorithm is then evaluated on detecting the real faulty sensor shown in Fig. 6.9.

Finally, we compare the CGT algorithm to non-group testing methods, in terms of

accuracy and efficiency.

We first examine the performance of the CGT algorithm as a function of the
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Figure 6.5: Detection and false alarm rate on detecting spike fault.
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Figure 6.6: Detection and false alarm rate on detecting Non-linearity fault.

detection threshold used in each group test and the number of tests performed. Fig.

6.5 shows the detection rate (the number of detected faulty sensors over the total

number of faulty sensors) and false alarm in detecting spike fault under different
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number of tests and threshold levels. The spike fault was set to appear at 5% of the

samples and have mean amplitude equal to the variance of the sensor output, which

is common among spike fault in sensors. As can be seen, when the number of tests

increases, the detection rate increases while false alarm decreases. When 14 tests are

used, the detection rate is above 85% and false alarm is below 1%, with a threshold

of 2× 10−5. Similarly, when 16 tests are used, the accuracy is over 93% and remains

above 80% with a threshold less than 2× 10−4.

In all cases we see a fairly wide region of threshold values within which the method

enjoys high detection rate (> 80%) and low false alarm (< 2%). This is clearly a

desired operating regime for the detection method. In addition, the detection rate

first increases with the threshold and then drops slowly with further increase in the

threshold. When the threshold increases beyond a certain value (e.g., 3× 10−4), the

detection rate quickly drops and eventually reaches zero. The false alarm moves in

the opposite direction though to a lesser degree. To explain this phenomenon we

note there are two sources of error at play, one due to Kalman filtering and the other

due to the recovery algorithm. When the threshold is very low, measurement noise

or inaccuracy in the model could easily result in false positive in the the group test.

These incorrect group testing results cause the recovery algorithm to err, thus lead

to both high false alarm and low detection rate. As the threshold increases the error

from recovery decreases, which more than compensates for the decreased sensitivity in

the group testing, achieving an overall better tradeoff. When the threshold increases

beyond a certain level, the group test becomes insensitive to faults and eventually

declares all groups normal, resulting in reducing detection rate and false alarm.

The same evaluation is done for the other fault types; these are shown in Figs.

6.6 and 6.7. In Fig. 6.6, results of detecting non-linearity fault are shown. The

normal dynamic range is set to 80% of the output maximum, with a slope in the

abnormal region of 0.3. The result for mean-drift error is presented in Fig. 6.7. The
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mean-drift has a maximum frequency of 5Hz and a magnitude of 50% of the sensor

output variance. All these results show similar behavior to those observed in the spike

fault case. Within the preferred threshold range, the detection rate generally exceeds

80% in accuracy while false alarm remains low. Furthermore, the preferred threshold

range is smaller when the fault is less pronounced. Finally, the detection performance

of the proposed method is tested when the sensor is corrupted by excessive Gaussian

noise with zero mean and variance equal to 50% of the variance of sensor output. The

result presented in Fig. 6.8 shows that the proposed method is not recommended for

detecting this type of fault. The poor detection performance in this case is due to

the fact that Kalman filtering, in computing statistically optimal estimates of the

system state, tends to eliminate noise variance existing in the sensor measurement.

Consequently, zero-mean excessive noise is sufficiently suppressed in the estimate and

does not get reflected in the residual of a group test.

For detecting the faulty sensor 11 shown in Fig. 6.9, we used our algorithm on the

18 sensors with 6 and 8 tests respectively. Under the same preferred threshold range

(between 3× 10−3 and 1× 10−4) shown in the control experiment, our algorithm was

able to identify the faults in sensor 11, with a detection rate > 78% (> 92%) and

false alarm < 1.8% (< 0.7%) when using 6 (resp. 8) tests.

Next, the proposed combinatorial group-testing based detection method is com-

pared to two existing Kalman-filter based methods, which are Kobayashi et al. (Kobayashi

and Simon, 2003) and Da et al. (Da and Lin, 1995)., both in terms of their com-

plexity and accuracy. Both Kobayashi and Da are based on a bank of Kalman filters.

Specifically, with N sensors in the network, N fault detection tests (N Kalman filters)

are required to evaluate all sensors in the network. In each test, all sensors but one

are involved, i.e., test i uses N − 1 sensors and exclude sensor i. A key assumption

in this method is that there is only one faulty sensor in the network, thus the test

which does not contain the faulty sensor will have different characteristics than the
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Figure 6.7: Detection and false alarm rate on detecting mean-drift fault.
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Figure 6.8: Detection and false alarm rate on detecting excessive-noise fault.

other N − 1 tests, and thus the single faulty sensor can be identified.

The difference between these two methods lies in how to compare the test outcomes

to determine the different characteristics with and without the faulty sensor. Under

the method by Kobayashi, the estimated sensor output from the Kalman filter is
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Figure 6.9: Abnormal vibration measurement of sensor 11.

compared to the corresponding observed sensor output. The test which does not

contain the faulty sensor will have higher consistency result than the other tests.

Under the method by Da, a reference system state estimate is generated by using all

N sensor inputs, to which each test compares the estimated system state (from N−1

sensors). The test that does not contain the faulty sensor is supposed to have lower

consistency result because the reference system contains faulty sensor but the test

does not.

Fig. 6.10 shows the detection rate of the three methods under different types of

faults, different measurement noises, and with a single faulty sensor, using the same

set of bridge data as in the previous section. As we can see, Kobayashi and Da’s

method achieve similar performance as our proposed method when 8 to 10 tests are

used. This result is to be expected when the assumption of no more than one faulty

sensor holds, since all methods are based on Kalman filter. As shown in Section 6.2,

the the complexity of Kalman filtering largely depends on the size of the system state

s, rather than the number of sensors used in state estimation. One detection test

of Da’s and Kobayashi’s algorithms has similar complexity as one group detection

test of the proposed group-testing based detection method if the sensor network size

remains the same. Therefore, our proposed method is able to achieve similar, and

sometimes better, accuracy when around 8 to 10 tests are used, which is about half

of the complexity of Kobayashi’s and Da’s method (18 tests). The results in Fig.

6.10 also suggested that Kalman filter based fault detection systems are insensitive
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Figure 6.10: Detection rate under different measurement noises and fault types with
non-adaptive threshold.
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Figure 6.11: Detection rate under different measurement noises and fault types with
two faulty sensors.

to Gaussian measurement noise, which is consistent with result in detecting excessive

Gaussian noise faults. No significant degradation in the detection rate and false alarm

is observed when the variance of the measurement noise increases from 0% of output

variance to 30% of output variance.

When the system has two faulty sensors, the performance of Kobayashi and Da’s

method deteriorates sharply as all the reference system are contaminated by faulty

sensor observations. If the false alarm rate is restricted to a reasonable level (5%), the

accuracy of Da’s method dropped to about 55% and Kobayashi’s method dropped to

about 50% for non-linearity fault and to about 20% for spike and mean drift fault

(Fig. 6.11). At the same time, the proposed algorithm maintains over 85% of accuracy

for all fault types. Therefore, compared to other model-based methods, the proposed
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CGT method has fewer assumptions on the underlying system and the nature of the

faults. It achieves high accuracy with much lower complexity than existing methods,

which is particularly relevant for very large sensor networks. Furthermore, the above

comparison shows that the proposed method is insensitive to measurement noise.

When the system has three faulty sensors, the CGT method is able to achieve high

detection rate (90% or higher) by increasing the number of tests (25 tests for detecting

spike, 24 tests for detecting non-linearity and 27 tests to detect mean-drift). While

these exceed the size of the network (18 sensors), this method does not require the

existence of a reference system/sensor.

6.6 Summary

This chapter presents a non-adaptive Group Testing based sensor fault detection

method. Combining the Kalman filter based group test method and Combinatorial

Group Testing technique, experiment results show that the proposed algorithm is

able to reduce the number of tests significantly while achieving similar accuracy. The

maximum likelihood decoder allows the Kalman filter based group test method to

have small error rate. However, it has high complexity when the size of the network

is large. The next chapter presents a Bayesian based adaptive Group Testing method

which can further reduces the number of required tests and support noisy group

testing systems natively.
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CHAPTER VII

Efficient Sensor Fault Detection Using Bayesian

Group Testing

7.1 Introduction

This chapter presents an adaptive group testing sensor fault detection method

which is based on Bayesian inference. This Bayesian Group Testing (BGT) method

adopted the same Kalman filter based method as used in CGT method to evaluation

the binary state of a group of sensors. However, different from the non-adaptive CGT

method presented in Chapter VI, this adaptive method generate test pools iteratively

after the observation of each test results. This is because the test results contain useful

information for better test pool selection.

Existing adaptive group testing methods generally assumes error-free detection,

thus an entire group of sensors is removed from further consideration when the test

result is negative. Examples include Hwang’s generalized binary splitting algorithm

(Hwang , 1972), Allemann’s split-and-overlap algorithm (Allemann, 2003) and Du

et al.’s competitive GT algorithm (Du and Hwang , 1993). Test errors have been

considered in the literature of compressive sensing, (e.g., see (Malloy and Nowak ,

2012; Ji et al., 2008)), which is closely related to group testing. However, these

adaptive methods are not directly applicable to group testing as the latter is given
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by a Boolean operation whereas compressive sensing based test results are given by

a linear operation. Our study further differs from both because our test results are

given by a Kalman filtering based detection procedure (neither Boolean nor a linear

operation), which is noisy and depends on the design of the test and the detector.

This raises significant challenge that we will address in this paper.

This study further consider the detection performance of Kalman filtering, and

use such understanding in determining the selection of test groups under the Bayesian

group testing method; this will be referred to as the Kalman filtering-enhanced

Bayesian group testing method (KF-BGT). It should be emphasized that under all

these methods the group tests (the second component) themselves are performed via

Kalman filtering; they simply differ in how the test groups are selected (the first

component).

7.2 Bayesian Group Testing

In this section, we present a novel adaptive group testing method which is based

on the Bayesian inference model. The combinatorial group testing method presented

in the previous section designs the entire set of test pools (i.e., the entire Φ) before

carrying out any group test. The result of each group test, however, may provide

valuable information on the sensor state. For instance, for simple error-free group test

systems, a negative group test result implies all the items in the test pool are normal

and no further test is required for these items. If the design of a test pool takes the

previous test results in account (i.e., adapt to the group test results), the sensor state

can be identified with fewer number of tests compared to the combinatorial group

testing method. This idea was adopted in several adaptive group testing methods

(Hwang , 1972; Allemann, 2003; Du and Hwang , 1993). Although these methods are

effective in reducing the number of required tests, they are vulnerable to errors in

group test results.
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Our method maintains a probability measure on the sensor fault state vector,

which is updated following each group test using Bayesian inference. The updated

state estimate is then used to determine the next test pool. This process is repeated

until the change in the state estimates is sufficiently small. As we shall see, compared

to existing adaptive group testing methods, our algorithm is designed specifically for

noisy group tests so that errors do not propagate.

In the following presentation, subscript k is used to denote the kth component

(row) of a vector (matrix) and superscript k to denote the collection of a variable

from time 1 to k. Specifically, denote by Φk = {Φ1,Φ2, . . . ,Φk} the set of tests used

up to time k, where Φk is the kth row vector of Φ, and Zk = {Z1, Z2, . . . , Zk} the set

of test results up to time k. Let S be the collection of all possible sensor fault states

{S = (S1, S2, . . . , SN) : Si ∈ {0, 1}}). We define two probability measures. The first

is PS,k = P (S|Φk, Zk), the probability of the sensor state being S ∈ S after the kth

test; the second is Pi,k, the probability of sensor i being normal after the kth group

test. By definition, we have Pi,k =
∑

S∈S:Si=0 PS,k.

For the (k+1)th test Φk+1, it is desirable to select sensors such that the test result

Zk+1 provides the most information for the estimation of the true sensor state. Basic

information theory result (Cover and Thomas , 2012) tells us that maximizing the

information content is equivalent to maximizing the variance of Zk+1. This criterion

can be expressed as follows:

Φ∗k+1 = arg max
Φk+1

V AR[Zk+1|Φk+1, {PS,k}S∈S ] . (7.1)

Zk+1 conditioned on Φk+1, {PS,k}S∈S has a Bernoulli distribution. If we denote by Ωk

the probability that all sensors in test pool Φk+1 are normal given the estimate after

the kth observation, then the above variance is given as follows, noting that Zk+1 = 0

either when all sensors in Φk+1 are normal and the group test is correct or when at
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least one sensor in Φk+1 is abnormal and the group test is incorrect, i.e., Zk+1 = 0

with probability ((1 − α)Ωk + β(1 − Ωk)), and similarly Zk+1 = 1 with probability

(αΩk + (1− β)(1− Ωk)).

V AR[Zk+1|Φk+1, {PS,k}S∈S ]

= ((1− α)Ωk + β(1− Ωk))(αΩk + (1− β)(1− Ωk))

= β − β2 + (1− 2β)(1− α− β)Ωk − (1− α− β)2Ω2
k . (7.2)

The above computation, however, is generally intractable due to the large state space

S when the number of sensors is large. We thus adopt the following approximation

by assuming conditional independence between different sensors’ fault states, i.e.,

P (S1, S2, . . . , SN |{PS,k}S∈S) =
∏
i∈N

P (Si|{PS,k}S∈S) , ∀k . (7.3)

With this assumption we have Ωk =
∏

i∈Φk+1
Pi,k, where we have used i ∈ Φk+1 to

mean that the ith component of Φk+1 is 1.

While this assumption allows us to compute (7.2), finding the optimal solution to

(7.1) remains hard when the number of sensors is large. Toward this end we propose a

greedy algorithm for choosing a good Φk+1 efficiently, by observing from (7.2) that its

maximum is achieved when Ω∗k = (1−2β)/(2(1−α−β)). The greedy algorithm starts

with a random sensor and calculates Ωk; in each successive step it selects a sensor such

that the resulting new value of Ωk is as close to (1−2β)/(2(1−α−β)) as possible. This

is repeated until no additional sensor can bring Ωk closer to (1− 2β)/(2(1− α− β)).

As Ωk is monotonically decreasing in the inclusion of new sensors, the algorithm is

guaranteed to terminate with a new test pool.

Having designed Φk+1 and observed Zk+1, the probability PS,k+1 can be updated

111



from PS,k for all S ∈ S:

PS,k+1 = P (S|Φk+1, Zk+1) =
P (S,Φk+1, Zk+1)

P (Φk+1, Zk+1)

=
P (Zk+1|Zk, S,Φk+1)P (S|Φk, Zk)P (Φk+1, Zk)

P (Φk+1, Zk+1)

= P (Zk+1|Zk, S,Φk+1)PS,k/∆k , (7.4)

where ∆k is the normalizing factor P (Φk+1, Zk+1)/P (Φk+1, Zk), and is equal to∑
S P (Zk+1|Zk, S,Φk+1)PS,k.

Note that P (Zk+1|Zk, S,Φk+1) = P (Zk+1|Φk+1S) as Zk+1 only depends on the

error-free test result Φk+1S; recall the two type of errors are given by P (Zk+1 =

1|Φk+1S = 0) = α and P (Zk+1 = 0|Φk+1S = 1) = β.

To update the sensor state probabilities using (7.4) for each S ∈ S can be computa-

tionally prohibitive for large N (|S| = 2N). Below we show that using the conditional

independence assumption we can instead update Pi,k+1 directly without calculating

PS,k+1, thus reducing the complexities from O(2N) to O(N). We first calculate the

normalization constant, and then update Pi,k+1 accordingly.

Given a test pool Φk+1, we will refer to the set of sensor states {S : Φk+1S = 1}

as the positive set, and {S : Φk+1S = 0} as the negative set. Note that by definition,

we have
∑

S:Φk+1S=0 PS,k = Ωk and
∑

S:Φk+1S=1 PS,k = 1 − Ωk. By separating S into

these two sets, ∆k can be calculated as follows:

∆k =
∑
S

P (Zk+1|Φk+1S)PS,k

=
∑

S:Φk+1S=1

P (Zk+1|Φk+1S)PS,k +
∑

S:Φk+1S=0

P (Zk+1|Φk+1S)PS,k

=P (Zk+1|Φk+1S = 1)(1− Ωk)− P (Zk+1|Φk+1S = 0)Ωk (7.5)

Therefore, if the test result is positive, Zk+1 = 1, then ∆k = (1−β)(1−Ωk)−αΩk;
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if the test result is negative, Zk+1 = 0, then ∆k = (β)(1− Ωk)− (1− α)Ωk.

We next show how Pi,k+1 is updated. If sensor i ∈ Φk+1, then using (7.4) we have

Pi,k+1 =
∑
S:Si=0

PS,k+1 = 1−
∑
S:Si=1

PS,k+1

= 1−
∑
S:Si=1

PS,kP (Zk+1|Φk+1S = 1)/∆k

= 1− (1− Pi,k)P (Zk+1|Φk+1S = 1)/∆k

=


1− (1− Pi,k)(1− α)/∆k if Zk+1 = 1,

1− (1− Pi,k)(1− β)/∆k if Zk+1 = 0.

(7.6)

If sensor i 6∈ Φk+1, then using (7.5) we have:

Pi,k+1 =
∑
S:Si=0

PS,k+1 =
∑

S:Si=0,Φk+1S=1

PS,k+1 +
∑

S:Si=0,Φk+1S=0

PS,k+1

=
∑

S:Si=0,Φk+1S=1

PS,kP (Zk+1|Φk+1S)/∆k +
∑

S:Si=0,Φk+1S=0

PS,kP (Zk+1|Φk+1S)/∆k

=Pi,k(1− Ωk)P (Zk+1|Φk+1S = 1)/∆k + Pi,kΩkP (Zk+1|Φk+1S = 0))/∆k

=Pi,k∆k/∆k = Pi,k (7.7)

where the fourth equality is due to the independence assumption. As a result, when

i 6∈ Φk+1, the corresponding Pi,k+1 remains unchanged.

S1 S2 S3 S4 S5 S6 S7 S8

S1 0 0 0 0 1 1 1 1
S2 0 0 1 1 0 0 1 1
S3 0 1 0 1 0 1 0 1

Table 7.1: Possible sensor states

For example, if the network has 3 sensors, S1, S2 and S3, then there are 8 possible

states Si, i = 1, . . . , 8 as shown in Table 7.1. assume the initial prior PSi,0 = 1/8,∀i

(i.e., Pi,0 = 1/2, ∀i) and α = β = 0 (i.e., the group tests are noiseless). Suppose the

first test has only S1 and S2 participated in the test and the test result is positive
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(i.e., Φ1 = [1, 1, 0] and Z1 = 1). A straight forward method to calculate the sensor

state probability is update the state prior by Eq. (7.4). Therefore, PS∞,′, PS∈,′ are

first multiplied by P (Zk+1 = 1|Wk+1 = 0) = α = 0 and PS∞,′, . . . , PS∈,′ are first

multiplied by P (Zk+1 = 1|Wk+1 = 1) = 1 − β = 1. Therefore, {PS∞,′, . . . , PS∀,′}

becomes {0, 0, 1/8, . . . , 1/8}. Normalizing these values by ∆k = (1/8)× 6 = 3/4, we

get {PS∞,∞, . . . , PS∀,∞} = {0, 0, 1/6, . . . , 1/6}. As a result, Pi=1,1 = 1/3, Pi=2,1 = 1/3

and Pi=3,1 = 1/2.

First the normalization factor ∆0 = α(Pi=1,0Pi=2,0) − (1 − β)(1 − Pi=1,0Pi=2,0) =

(1 − 1/4) = 3/4. Second, for sensors involved in the test, the update of probability

Pi,1 is based on the state probabilities with Si = 1. Therefore, 1 − Pi=1,1 = (1 −

Pi=1,0)P (Z1 = 1|W1 = 1)/∆0 = 1/2 × 4/3 = 2/3, thus Pi=1,1 = 1/3. Similarly, we

get Pi=2,1 = 1/3. Third, for sensors not involved in the test, i.e., S3, the calculation

of Pi=3,1 involves of two sets of states: 1) the states with S3 = 0 and belong to the

positive set and 2) the states with S3 = 0 and belong to the negative set. The state

probabilities of the first set are multiplied by (1−Pi=1,0Pi=1,2)P (Zk+1|Wk+1 = 1)/∆0

and the second set are multiplied by (Pi=1,0Pi=1,2)p(Zk+1|Wk+1 = 0))/∆k. In this

example, Pi=3,1 = 0× (1− 1/4)× 1× 4/3 + 3× 1/8× 1× 4/3 = 1/2.

The above computational procedure is repeated after each test, starting from

some assumed initial prior Pi,0. After k tests and given Zk and Φk, the sensor fault

state S can be recovered in two ways: (1) use the maximum a posteriori probability

(MAP) estimator: arg maxS P (Zk|S,Φk)PS,k, or (2) declare the ith sensor faulty if

Pi,k < σ for some predefined threshold σ, and normal otherwise. While both are valid,

the second method is preferred as Pi,k is readily available from the above updating

procedure, whereas the MAP estimation is computationally much more complex. The

performance of these two methods is similar as we show in Section 7.3.
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7.3 Performance of the Bayesian Group Testing Method

The fault detection performance of the Bayesian group testing (BGT) method is

evaluated by two experiments. The first experiment evaluates the the performance

of the BGT method by using the same bridge sensor data that are used in the eval-

uation of the CGT method. Hence, the CGT and the BGT methods can be directly

compared. The experimental setup, sensor data collection and sensor faults details

can be found in Chapter 6.4. The second experiment evaluates the performance of

the BGT method under large scale systems (with 1000 sensors). The BGT method

will be compared to a well-known divide-and-conquer based adaptive group testing

method proposed by Hwang (Hwang , 1972). The influence of the initial prior, Pi,0,

on the fault detection performance is also addressed.

7.3.1 Performance of the BGT Method on the New Carquinez Bridge

Sensors

As mentioned in Section 7.2, the BGT method and the CGT method have the

same Kalman filter based group test method, therefore the BGT method adopts the

same group testing threshold levels as used in the CGT method. The two decoding

methods, MAP-based decoder and Pi,k-based decoder, introduced in Section 7.2 are

used and compared. Both decoding methods do not require the knowledge of d

(the maximum number of faulty sensors). This is a significant benefit compared

to the CGT method when the d is difficult to estimate. The CGT method is not

able to get correct result if d is underestimated, due to the d-disjunct measurement

matrix requirement. Consequently, d is usually larger than the true value in the CGT

methods when d is unknown and thus resources could be wasted.

Fig. 7.1 shows the performance comparison between BGT (with the Pi,k decoder)

and CGT. Fig. 7.2 compares the two decoders for BGT: the MAP and the Pi,k

decoder. Both comparisons are evaluated on the same New Carquinz Bridge data,
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Figure 7.1: The fault detection performance of the CGT method and the BGT
method.
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Figure 7.2: The fault detection performance of MAP decoder and the Pi,k based de-
coder.

where 2 out of 18 sensors are faulty. For BGT the initial prior Pi,0 is set to 2/18

for each sensor. The first test pool is randomly generated with each sensor having

probability 1/2 of being selected. The group test error α and β are set to 0.01. When
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the Pi,k decoder is used, sensor i is regarded as faulty when the corresponding Pi,k

is smaller than 0.2. The results are obtained from 50 random runs using the same

setup as in the CGT evaluation in Section 6.5.

As shown in Fig. 7.1, BGT with the Pi,k decoder outperforms CGT on detecting

all types of faults (when the number of tests > 6). BGT generally requires 3-4 fewer

tests than the non-adaptive CGT for 80% detection rate. Moreover, BGT uses 8

fewer tests to reach the saturation accuracy which is about 50% improvement over

CGT. The false alarm rates are similar (< 1%) for detecting different type of faults.

The improvement is primarily due to two sources: BGT uses previous test results to

design the next test, which leads to more effective tests; BGT is more conservative in

deciding the sensor state (normal vs. faulty) and thus more robust when the group

test is incorrect.

For detecting the faulty sensor 11 shown in Fig. 6.9, the initial prior Pi,0 is set

to 1/18 for all i. By selecting the first test pool Φ1 randomly, the BGT method is

able to achieve 56% detection rate (0% false alarm) when 5 tests are used and 100%

detection rate (0% false alarm) when 6 tests are used. The BGT algorithm saves 2

tests compared to the CGT algorithm for the same data set.

Fig. 7.2 compares the two state recover methods introduced in Section 6.3. On

average the MAP method is able to save one test for achieving the same accuracy

as the Pi,k-based method. However, the MAP method has higher false alarm when

the number of tests falls below 7. Also, the Pi,k-based method is preferred for large

scale networks due to its low complexity. Note that neither decoding method requires

the knowledge of d, the maximum number of faulty sensors. This is a significant

benefit over CGT if d is difficult to estimate. CGT is not able to get correct result

if d is underestimated, due to the d-disjunct matrix requirement. Consequently, if d

is unknown then an overestimate is recommended for CGT, which then leads to an

over-provisioning of the number of tests.
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7.3.2 Performance of BGT Method on Larger-Scale Systems

We next evaluate the performance of BGT in a large scale network (1000 sensors)

and examine how it varies with the number of faulty sensors and group test error

probabilities. A comparison between BGT and the divide-and-conquer adaptive group

testing method proposed in (Hwang , 1972) is presented. We note that Hwang’s

method is designed for noiseless group test systems so it is not expected to work

well with noisy group tests. Nevertheless, it is meaningful to compare the two and

quantify the difference under both noisy and noiseless conditions. We also address

the common prior initialization problem in Bayesian inference which also applies to

BGT.

For lack of real data on large networks, the experiments and results presented in

this section are simulation based. Out of the 1000 sensors, d are randomly chosen

and labeled as faulty. A group test result is first determined by whether the test pool

contains any faulty sensors and then randomized according to the error model α = β,

i.e., with probability α, the test result is flipped. In other words, we do not actually

perform Kalman filtering based detection in this set of experiments, but its effect is

simulated via this error model.

Hwang’s method is based on the well-known binary search (Hwang , 1972), whereby

the network is first divided into 2 groups of equal size, and each is subject to the same

group test process. If the result is negative, then all sensors in that group are declared

normal removed from further testing; if the result is positive, then the group is further

divided into two smaller groups of equal size and the same process repeats until all

faulty sensors have been identified. Hwang’s method has the following improvement

compared to the standard binary search. It assumes knowledge on the number of

faulty sensors d (or an upper bound on d), and uses d to determine the size of

a group. Specifically, when d is small compared to the total number of uncertain

sensors, a large test pool is used. The idea is that upon a negative result a large
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number of sensors may be declared normal, and a new test pool can be selected

from the remaining uncertain sensors; if the result is positive, the next test pool is

generated randomly from the entire set of uncertain sensors, including the pool just

tested positive. Finally, when the number of remaining faulty sensors (d minus the

number of detected faulty sensors) is larger than half of the number of remaining

uncertain sensors, the test is performed on an individual basis.

Clearly as mentioned, Hwang’s method is designed for error-free group tests, so it

does not handle errors well. In particular, if a positive group is mistakenly detected

as negative, this method will declare all faulty sensors in this group as normal and

no further tests will be performed on them. By contrast, BGT only decreases the

probability of each tested sensor being normal, and they may be tested again in the

future. The comparison study here thus mainly serves to quantify the improvement

we can achieve when taking test errors into account.

Figs. 7.3-7.5 show the performance of BGT and Hwang’s method (d = {4, 10, 50}

respectively) under various group test error rates (α). When group tests are error-free

(Fig. 7.3), Hwang’s method is able to achieve accurate results with fewer tests than

BGT. As expected, when group tests are noisy (α = 0.03 in Fig. 7.4 and α = 0.05 in

Fig. 7.5), BGT performs better while Hwang’s method deteriorates rapidly.

A common challenge to most Bayesian inference based methods is the selection

of the prior on the hypothesis. Under BGT, the prior probability Pi,0 is required

for designing a test pool. Fig. 7.6 shows the result of using different priors (Pi,0 =

{0.3, 0.5, 0.7, 0.9, 0.96},∀i) when d = 4 in a 1000-sensor network with α = 0. The

case Pi,0 = 0.96 represents the correct prior. The figure shows that the performance

is highly sensitive to the selection of the initial prior. However, this effect can be

alleviated by choosing the first set of test pools randomly. We see that when the first

25 test pools are randomly selected (each sensor has probability 1/2 to be selected),

the difference in performance between different initial priors are significantly reduced
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Figure 7.3: The comparison of the BGT and Hwang’s methods when group test error
α = 0.
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Figure 7.4: The comparison of the BGT and Hwang’s methods when group test error
α = 0.03.

(Fig. 7.7); when we increase this number to 50 tests (Fig. 7.7), this difference is

largely eliminated. Thus this random selection at the beginning serves as a very

simple yet effective way to counter possible bad priors. It may be seen as a form of
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Figure 7.5: The comparison of the BGT and Hwang’s methods when group test error
α = 0.05.
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Figure 7.6: The performance of the BGT method under different initial priors Pi,0
with the first test pool being selected randomly.

exploration (random sampling) prior to exploitation (adaptive selection).

To summarize, BGT is able to achieve the same performance as CGT with fewer

tests, and is well suited for noisy group tests. Furthermore, it does not require knowl-
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Figure 7.7: The performance of the BGT method under different initial priors Pi,0
with the first 25 test pools being selected randomly.
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Figure 7.8: The performance of the BGT method under different initial priors Pi,0
with the first 50 test pools being selected randomly.

edge ond when compared to CGT and Hwang’s method. However, the adaptive design

process prevents the use of parallel computing, which is viable for CGT. Therefore,

CGT may actually have shorter run time if parallel computing is used.
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7.4 The Design and Performance of KF-BGT Method

Standard group tests are modeled as boolean operations. While both CGT and

BGT work with noisy group tests by modeling it as boolean operations with an

error probability, they do not take into account other possible features of the group

tests. In our case, the group tests are given by the Kalman filtering based detection

procedure, whose accuracy depends on not only the system model but also the test

pools. This suggests that a better understanding of the relationship between the

detection procedure and the test pool design may allow us to further improve the

design of the test pools and in turn the accuracy of the method. This is the subject

of investigation in this section.

We note that the Kalman filter estimates the state of a system based on the system

model and the measurements from the sensors. As system identification method is

used to obtain the system model, the model accuracy depends on the model order (the

size of the system state, S) used. A higher order model generally gives better model

accuracy (before over-fitting occurs) but it also requires more computational resources

for the state estimation. The dependence of the state estimate accuracy on the size of

the test group is shown in Fig. 7.9. In this experiment, subgroups of different sizes are

used to estimates the system state. For each group size, the discrepancy |SA − SB|∞

is recorded between having no faulty sensors in the subgroups and having one faulty

sensor in one of the subgroups. When there are no faulty sensors, the discrepancy

|SA−SB|∞ is very close to zero. On the other hand, |SA−SB|∞ is significantly larger

with the presence of a single faulty sensor and increases with the group size. This

means that if a uniform detection threshold is used, then different group sizes will

result in significantly different detection error (i.e., group test error) probabilities.

This further suggests that it would be desirable to maintain the same group sizes for

the state estimate so as to keep the error probability constant and also to facilitate

the choice of an optimal detection threshold.
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Figure 7.9: The discrepancies of state estimates under different model orders with
one and no faulty sensors .
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Figure 7.10: The fault detection performance versus different system model orders.

Since only a binary result is required for each group test, a lower order system

model may be sufficient for the detection task. Therefore, the performance under

model with different model orders is analyzed. Fig. 7.10 shows the detection per-
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formance of the CGT method using different bridge model orders from order 18 to

order 162. 16 group tests are used in each experiment. The performance of the pro-

posed method deteriorates only slightly with the reduction on the model order. The

detection rate of drift faults and non-linearity faults remain at 70% when the model

order is 18. The high detection rates is mainly because group testing methods only

require binary results from the group tests. The proposed method is able to achieve

correct detection as long as a abnormal group leads to a higher discrepancy in state

estimate than a normal group. This suggests that the computational complexity can

be reduced without sacrificing the performance too much.

Table 7.2: State estimate discrepancy |SA − SB|∞ under various faulty sensor distri-
butions. (G: Number of good sensors, F: Number of faulty sensor)

8 sensors 10 sensors
Sensor distribution Discrepancy Sensor distribution Discrepancy
A:0G 4F B:4G 0F 8.29 A:0G 6F B:6G 0F 10.78
A:1G 3F B:3G 1F 23.88 A:1G 5F B:5G 1F 26.73
A:2G 2F B:2G 2F 41.10 A:2G 4F B:4G 2F 46.19

A:3G 3F B:3G 3F 67.01
A:4G 0F B:4G 0F 7E-4 A:6G 0F B:6G 0F 5E-4

We next examine the distribution of faulty sensors between two subgroups used in

the filtering detection. Table 7.2 shows the state estimate discrepancy under various

faulty sensor distribution in each subgroup. These results show that the discrepancy

is highest when faulty sensors are evenly distributed between the two groups, e.g.,

having a faulty sensor in each subgroup is better than allocating two sensors in one

subgroup as the larger discrepancy makes the detection more accurate.

Based on the above empirical observations, we propose the Kalman filtering (KF)-

enhanced group test (KF-BGT) that uses the following rule in addition to the opera-

tion of BGT: after a new test pool has been selected using BGT, divide it evenly into

two subgroups. If the there are fewer than 3 sensors in a subgroup, then sensors with

high probability of being normal outside the test pool are added to the subgroups
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before performing Kalman filtering.

The differences in performance with and without the added sensor distribution

step is illustrated in the following experiment. Fig. 7.11 shows the detection rate

and false alarm for non-linearity fault under BGT and KF-BGT. The performance

is evaluated under both order 162 and order 90 system models. The performance of

BGT declines significantly under a less accurate system model (smaller model order).

In contrast, the performance of KF-BGT only deteriorate slightly, thus it improves

upon BGT significantly when the system model is less accurate. This shows that the

sensor distribution makes the resulting method highly robust against the quality of

the system model.
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Figure 7.11: The performance of BGT and FK-BGT methods under different model
orders.

7.5 Summary

This chapter present a Bayesian based adaptive Group Testing method which is

suitable for noisy group test systems. Compared to the Combinatorial Group Testing
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(Chapter VI), this adaptive method designs each test pool based on the previous

group test result. A probabilistic measure is used to estimate the probability of

each sensor being faulty. These probabilities are updated based on the test pool

design and the corresponding group test result by Bayesian inference. Based on the

updated probabilities, a new test pool is selected such that the test result gives the

most information for revealing the faulty sensor(s) in the network. Efficient methods

are proposed to perform the probability update, test pool selection and sensor state

decoding when the size of the network is large. Results show that the Bayesian Group

Testing method uses 40%−50% fewer of tests than the Combinatorial Group Testing

method in achieving the same high detection rate (> 80%). Moreover, the Bayesian

Group Testing method is able to achieve high accuracy when the group test results

are noisy but the accuracy of other existing divide-and-conquer-based adaptive group

testing methods deteriorate significantly.
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CHAPTER VIII

Conclusions

This thesis studies efficient sensor fault diagnosis algorithms because wireless sen-

sor networks are energy scarce and contain a large number of sensors. This study

proposes two efficient sensor fault detection and identification frameworks. The first

framework is a distributed model-based framework which fills the existent gap be-

tween the centralized model-based design and the distributed model-free design. It

has benefits of low communication energy consumption, high accuracy and scalable.

Two algorithms are presented under this framework for detecting and identifying,

without reference sensors, spike and non-linearity faults. This study also conducts

a field study in which the spike faults detection and identification algorithm is im-

plemented on a real wireless sensors and deployed on a bridge. This field study not

only verifies the fault detection algorithm’s performance under real deployment en-

vironment, it also investigates related network issues such as power consumption,

computation time, and network partition methods. The second framework is a group

testing-based sensor fault detection method which is suitable for networks with rare

fault sensors, i.e., the number of faulty sensors is much fewer than the size of the

network. Two group testing-based algorithms, one non-adaptive the other adaptive,

are proposed under this framework for fast detection of faulty sensors.

The proposed distributed model-based framework partitions the sensor network
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into sensor pairs, and each pair of sensors is modeled by a linear ARX model. The

ARX model acts as a reference for fault detection. Any discrepancies between the

sensor measurements and this ARX model indicate the existence of sensor faults.

By showing that the discrepancies inherit the characteristics of sensor faults, specific

algorithms are constructed for identifying spike faults and non-linearity faults. The

spike faults are detected and identified by Match filters which are based on ARX

coefficients. The non-linearity faults detection and identification problem is solved

by converting it to the Largest Empty Rectangle problem.

The second framework, the proposed group testing framework, reduces the number

of tests by evaluating an entire group of sensors at a time. The proposed non-adaptive

method (CGT method) consists of a Combinatorial Group Testing method (which

designs the test pool) and a Kalman filter based group evaluation method (which

indicates whether a test pool contains any faulty sensors). This method is further

improved by iteratively designing the test pool based on the available test results.

The improved method calculates the probability of each sensor being faulty after

each group test by Bayesian inference, and thus is called the Bayesian Group Testing

(BGT) method. The BGT method requires fewer group tests when compared to the

CGT method and is more suitable for noisy group test systems. The BGT method

also assumes conditional independence on the Bayesian inference update to reduce

computation complexity

Experiments under simulated and real faulty sensor data show that algorithms

under the distributed model-based framework are able to obtain over 85% accuracy

under typical sensor fault conditions. These distributed methods, with the proposed

network partition method, are also shown to save more than 60% of communication

energy when compared to centralized methods. For the group testing-based methods,

experiment results show that both the CGT and BGT methods are able to achieve

similar and sometimes higher accuracy as other Kalman filter-based sensor fault de-
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tection methods while using fewer tests. The BGT method performs significantly

better under noisy group testing systems when compared to other adaptive group

testing methods.

For the distributed model-based framework, although the discrepancies between

the sensor measurements and the ARX model consist of the sensor fault characteris-

tics, different algorithms, which may be sophisticated, are needed for different types

of faults. Therefore, a further study is suggested to develop identification algorithms

for other fault types, such as drift faults. The group testing-based methods are semi-

distributed methods. An important future works would develop a fully distributed

version such that the communication energy requirement is reduced. This study as-

sumes the physical system under monitoring is functioning normally during the sensor

fault diagnosis process, therefore discrepancies are assumed to be caused by the faulty

sensors only. Hence, another future work would develop a fault detection algorithm

that is able to distinguish between system faults and sensor faults.
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