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ABSTRACT 

 

Cytochrome P450s (CYPs) are a superfamily of monooxygenases catalyzing the 

metabolism of various endogenous and exogenous compounds. CYP2J2 is highly 

expressed in the cardiovascular system and catalyzes the metabolism of arachidonic acid 

to give four vasoactive epoxyeicosatrienoic acids (EETs). Similar to the endogenous 

cannabinoid system, CYP2J2 is also expressed in the gastrointestinal tract, liver, kidney, 

and the brain. Therefore, we investigated the ability of CYP2J2 to metabolize 

anandamide (AEA), an endogenous cannabinoid, and JWH-018, a synthetic cannabinoid, 

thereby contributing to the regulation of the ECS. 

 We determined that purified CYP2J2 metabolizes AEA to give the 5,6-, 8,9-, 

11,12-, and 14,15-epoxyeicosatrienoic acid-ethanolamides (EET-EAs) and 20-

hydroxyeicosatrienoic acid-ethanolamide (HETE-EA) and characterized the metabolism 

in detail. Since AEA plays a role in energy balance, we investigated AEA metabolism by 

rat liver microsomes from rats bred to be susceptible or resistant to diet-induced obesity 

and determined that both diet and obesity have significant effects on AEA metabolism. 

Approaches for increasing the stability of the EET-EAs may aid in understanding their 

biological actions in vivo. Therefore, we tested several inhibitors of soluble epoxide 

hydrolase (sEH), the enzyme primarily responsible for EET hydrolysis, as inhibitors of 

the hydrolysis of EET-EAs. Our results indicate that the compounds tested were not 



 

x 
 

efficacious and that new inhibitors specific for the EET-EAs’ epoxide hydrolases need to 

be developed. 

Finally, we determined that JWH-018 is a substrate for CYP2J2 and characterized 

its metabolism in detail. JWH-018 is a drug of abuse that causes several adverse 

cardiovascular side effects, but relatively little is known about the metabolism or the 

pharmacology of this compound. Utilizing an animal model, we determined that JWH-

018 causes a significant increase in blood pressure that appears to be only partially 

mediated by activation of the cannabinoid 1 receptor. Additional studies are required to 

fully understand the involvement of CYP2J2 in the ECS; however, because CYP2J2 

regulates the metabolic fates of at least two ligands for the ECS, it is possible that 

CYP2J2 may play an important role in the ECS. 
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CHAPTER I 

 

Introduction 

Cytochrome P450s. Cytochrome P450s (P450s or CYPs) are members of a class 

of heme proteins that catalyze oxidation-reduction reactions. CYPs are distinct from all 

other members of this group because when the heme iron is reduced, it can bind to carbon 

monoxide and form a Soret peak with the wavelength for its maximum absorbance near 

450, hence the name P450 (pigment absorbing at 450 nm). These P450s form their own 

superfamily of hemeprotein monooxygenases that are responsible for the metabolism of 

many exogenous and endogenous compounds. Individual CYPs are named based on their 

relative sequence homologies. P450s with at least 40% sequence homology are grouped 

into families and that family is given an Arabic numeral (1, 2, 3, etc.). CYPs with a 

sequence homology of 55% or greater are assigned to the same subfamily and are 

differentiated using a letter of the alphabet (A, B, C, etc.). Each member of the subfamily 

is then given an Arabic numeral corresponding to its sequence in discovery, i.e. CYP1A2. 

This name also corresponds to the gene, which is written in italics. 

P450s can either activate or inactivate compounds and the ultimate outcome of 

P450-catalyzed metabolism is usually to make a compound more water soluble to aid 

with excretion from the body. CYPs have the ability to insert one oxygen atom from 

molecular oxygen (O2) into a substrate while concurrently reducing the other oxygen 

atom by two electrons to form water (Ortiz de Montellano, 1995). Using this general 
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mechanism, P450 enzymes are known to catalyze hydroxylations, epoxidations, N-

oxidations, dehalogenations, N-, S-, and O-dealkylations, sulfoxidations, and numerous  

other types of reactions (Ortiz de Montellano, 1995). 

When a substrate binds in a substrate binding site of the active site of the P450, it 

induces a conformation change of the active site that may cause a water molecule to be 

displaced from the distal axial position of the heme iron (Meunier et al., 2004). This may 

then cause the heme iron to change from a low spin state to a high spin state which favors 

the transfer of an electron from nicotinamide adenine dinucleotide phosphate (NADPH) 

to the heme iron of the P450 by cytochrome P450 reductase (Poulos et al., 1987; Sligar et 

al., 1979). The electron transfer reduces the ferric heme iron of the resting P450 to the 

ferrous state allowing molecular oxygen to covalently bind to the distal axial position of 

the heme iron forming a ferrous P450-dioxygen complex (Ortiz de Montellano, 1995). 

The environment surrounding the oxygen atom allows the oxygen to be activated to a 

greater extent than in many other heme proteins which thus facilitates the transfer of a 

second electron from either cytochrome P450 reductase or cytochrome b5 to form a 

peroxoiron(III) complex (Ortiz de Montellano, 1995). At rates too fast to be observed, the 

negatively charged peroxo group is rapidly protonated, the oxygen-oxygen bond is 

cleaved, the distal oxygen atom is incorporated into a water molecule, and a reactive iron-

oxo complex is formed (Ortiz de Montellano, 1995). The oxygen atom is transferred from 

this iron-oxo species to the bound substrate followed by the dissociation of the product 

(Ortiz de Montellano, 1995). After the product is released from the active site, the CYP 

returns to its original state with a water molecule occupying a position close to the distal 

position of the heme iron (Guengerich, 2007). 
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CYPs have been identified in all domains of life, including animals, plants, fungi, 

and bacteria (Nelson, 2009). There are over 13,000 known P450s, and the genes for 57 

have been identified in humans by the Human Genome Project (Nelson, 2009). CYPs are 

expressed in almost all tissues in the body, but the liver is the tissue with the highest 

expression levels of P450s. As a result of their high expression and critical roles on drug 

metabolism, P450s expressed in the liver have been well studied. P450s are also 

expressed in almost all extrahepatic tissues, including, but not limited to, the lungs, 

gastrointestinal tract, kidney, heart, and nasal tissue (Chaudhary et al., 2009; Pavek and 

Dvorak, 2008; Wu et al., 1996). CYP2J2 is one P450 that is mostly expressed in 

extrahepatic tissues. CYP2J2 is one of the main P450s responsible for the 

biotransformation of arachidonic acid (AA) to its four regioisomeric epoxyeicosatrienoic 

acids (5,6-, 8,9-, 11,12-, and 14,15-EET). Because of the importance of the biological 

actions of the EETs in the body, it is important to study CYP2J2 catalyzed reactions and 

how other substrates interact with fatty acid metabolism. 

Cytochrome P450 2J2. Although this P450 was originally cloned from a cDNA 

library of the human liver, cytochrome P50 2J2 (CYP2J2) levels are relatively low in the 

liver compared to other P450s. On the other hand, CYP2J2 is highly expressed in the 

heart and in the cardiovascular system (Delozier et al., 2007; Wu et al., 1996). CYP2J2 is 

expressed in large and small coronary arteries, coronary artery smooth muscle cells, the 

aorta, vascular endothelial cells, and varicose veins (Bertrand-Thiebault et al., 2004; 

Delozier et al., 2007; Node et al., 1999; Wu et al., 1996). In addition to vascular tissues, 

CYP2J2 is expressed in the lung, kidney, liver, skeletal muscles, gastrointestinal tract, 

brain, monocytes, macrophages, and cancer cells and tissues (Bystrom et al., 2011; Chen 
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et al., 2011; Enayetallah et al., 2004; Jiang et al., 2005; Wu et al., 1996; Zeldin et al., 

1997; Zeldin et al., 1996). 

 Substrates. In addition to arachidonic acid, CYP2J2 metabolizes several other 

polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA), 

docosahexaenoic acid (DHA), and linoleic acid (LA). CYP2J2 metabolizes EPA to 

17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and DHA to 19,20-

epoxydocosapentaenoic acid (19,20-EDP)(Arnold et al., 2010). It was reported that at 

nanomolar concentrations, 17,18-EEQ and 19,20-EDP act as antiarrhythmic agents by 

inhibiting the Ca
2+

-induced increased rate of spontaneous beating cardiomyocytes from 

neonatal rats (Arnold et al., 2010). CYP2J2 metabolizes linoleic acid (LA) to 9,10- and 

12,13-epoxyoctadecenoic acids (EOAs) (Moran et al., 2000). These LA metabolites can 

reach millimolar concentrations in the serum of patients with significant burns (Kosaka et 

al., 1994). The presence of these compounds is associated with increased mortality in 

severely burned patients, as well as in patients suffering from systemic shock or adult 

respiratory distress syndrome (Kosaka et al., 1994; Moran et al., 2000; Ozawa et al., 

1986). Moran and coworkers reported that linoleic acid and its monoepoxides induce 

mitochondrial dysfunction in a concentration dependent manner without causing 

oxidative stress prior to cell death (Moran et al., 2000). Our lab has investigated the 

ability of recombinant CYP2J2 to metabolize two other fatty acids, linolenic and dihomo-

γ-linoleic acid, but no metabolism was observed (unpublished data). 

In addition to PUFAs, CYP2J2 is known to catalyze the metabolism of the non-

sedating antihistamines terfenadine, ebastine, and astemizole. CYP2J2 catalyzes the 

hydroxylation of terfenadine and ebastine (Lafite et al., 2007; Lafite et al., 2006; Liu et 
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al., 2006), the carboxylation of hydroxyebastine (Liu et al., 2006), and the O-

demethylation of astemizole (Matsumoto et al., 2002). Several CYP3A4 substrates have 

been screened to see if they could serve as CYP2J2 substrates because of the similarities 

of the structures of the active sites of the two proteins. However, due to the relatively 

narrow channel available for the entry of potential CYP2J2 substrates into the active site, 

only seven new CYP2J2 substrates were identified from a total of 139 CYP3A4 

substrates assayed (Lee et al., 2012). Lee and coworkers determined that the CYP3A4 

substrates albendazole, amiodarone, cyclosporine A, danazol, mesoridazine, tamoxifen, 

and thioridazine were also substrates for CYP2J2 (Lee et al., 2012). More recently, Wu et 

al. (2013) reported the that CYP2J2 is a major contributor to the hydroxylation of 

albendazole and fenbendazole (Wu et al., 2013). Data suggest that CYP2J2 is also 

involved in the ω- and ω-1 hydroxylation of eperisone (Yoo et al., 2009). Similar to 

various other P450s, CYP2J2 is known to have its in vivo activity altered by a variety of 

inhibitors, inducers, and mutations. 

Inhibitors. Several inhibitors of CYP2J2 activity have been investigated, but the 

inhibition appears to be substrate specific. N-Methylsulphonyl-6-(2-proparglyloxy-

phenyl)hexanamide (MS-PPOH), 2-(2-propynyloxy)-benzenehexanoic acid (PPOH), and 

17-.octadecynoic acid (17-ODA) are routinely used to inhibit CYP2J2 epoxygenase 

activity in studies of arachidonic acid metabolism (Jiang et al., 2005; Ke et al., 2007; 

Zhao et al., 2012).  Ren and others have studied additional compounds for their ability to 

inhibit CYP2J2 activity and three were identified (Lee et al., 2012; Ren et al., 2013). Ren 

et al. (2013) determined that flunarizine is a competitive inhibitor of astemizole O-

demethylation with a Ki of 0.13 µM (Ren et al., 2013). Telmisartan was also identified 
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during the same study as a mixed-type inhibitor of astemizole O-demethylation with a Ki 

of 0.19 µM (Ren et al., 2013). Lee and coworkers reported that danazol competitively 

inhibited both the hydroxylation of terfenadine with an IC50 of 77 nM and astemizole O-

demethylation with a Ki of 20 nM (Lee et al., 2012). Because the development of a 

selective CYP2J2 inhibitor would be of great benefit in understanding the role of CYP2J2 

in cardiovascular homeostasis, Lafite and others synthesized a number of CYP2J2 

inhibitors structurally related to terfenadine and ebastine (Lafite et al., 2007; Lafite et al., 

2006). Three compounds were determined to be selective for CYP2J2 inhibition. 

Compound 4 was identified as a competitive inhibitor of CYP2J2 which exhibited a Ki 

value of 160 nM (Lafite et al., 2007; Lafite et al., 2006). The other two inhibitors, 

compounds 5 and 13, where classified as mechanism-based inactivators with kinact/Ki 

values of about 3000 Lmol
-1

s
-1

 (Lafite et al., 2007; Lafite et al., 2006). 

Inducers. Contrary to the major P450 epoxygenases in the CYP2C family that are 

induced by nifedifpine, cortisol, and statins (Bauersachs et al., 2002; Fisslthaler et al., 

2000; Fisslthaler et al., 2003), none of those compounds induce CYP2J2 mRNA or 

protein expression (Spiecker and Liao, 2005). However, EPA has been shown to induce 

CYP2J2 mRNA expression in a time- and dose-dependent manner (Wang et al., 2009). 

Moreover, EPA increased the cellular concentration of 11,12-EET significantly (Wang et 

al., 2009). These increases in CYP2J2 mRNA and 11,12-EET levels were significantly 

inhibited by the peroxisome proliferator-activated receptor γ (PPARγ) antagonist, 

GW9662, suggesting that PPARγ activity can alter CYP2J2 expression levels (Wang et 

al., 2009). One group reported that cocaine upregulated the expression of a P450 in the 

mouse heart that cross-reacted with a CYP2J2-specific antibody (Wang et al., 2002). 
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Although it was reported as CYP2J2, mice do not express CYP2J2, but they do express 

several of its homologues, including CYP2J5, CYP2J6, CYP2J8, CYP2J9, CYP2J11 and 

CYP2J12 that may have cross-reacted with the CYP2J2 antibody (Nelson, 2009). 

Polymorphisms. The CYP2J2 gene is located on chromosome 1 and is 

approximately 40.3 kb in length with nine exons and eight introns (Ma et al., 1998). A 

considerable number of single nucleotide polymorphisms (SNPs) have been identified for 

CYP2J2, some of which are nonsynonymous and cause a protein coding change. King 

and others reported that the CYP2J2 variants D342N (CYP2J2*5) and P351L exhibit 

catalytic activity similar to that of the wild-type protein (CYP2J2*1) for AA and LA 

metabolism and astemizole O-demethylation and ebastine hydroxylation, respectively 

(King et al., 2002; Lee et al., 2005). Whereas the I192N (CYP2J2*4) variant exhibits 

decreased metabolism for AA only, mutants T143A (CYP2J2*2), R158C (CYP2J2*3), 

and N404Y (CYP2J2*6) exhibit decreased activity for the metabolism of both AA and 

LA when compared to wild-type (King et al., 2002). Out of 93 Korean subjects, 1.6% 

expressed the G312R mutant which, compared to wild-type, showed minimal 

functionality for the catalysis of astemizole O-demethylation (Lee et al., 2005). The most 

functionally relevant mutant discovered so far in humans is thought to be CYP2J2*7. 

This mutant contains a SNP in the proximal promoter of the CYP2J2 gene where a 

guanidine is substituted for a thymidine at the -50 position. Carriers of this mutation 

experience a 50% loss in promotor activity because the Sp1 transcription factor binding 

site is absent (Spiecker et al., 2004). In a study to determine the effect of the CYP2J2*7 

variant, it was determined that subjects  expressing this mutation had a significantly 

higher chance of having a myocardial infarction (Borgel et al., 2008) and coronary artery 
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disease (Spiecker et al., 2004).  The overall importance and actual mechanisms by which 

these polymorphisms contribute to cardiovascular diseases such as hypertension and 

coronary artery disease remain to be elucidated; however, there is some evidence that the 

effects may be dependent on ethnicity (Dreisbach et al., 2005; Fava et al., 2010; Lee et 

al., 2007; Polonikov et al., 2008). 

Arachidonic Acid Metabolism. AA metabolism in the heart occurs in the 

myocardial, endothelial, and vascular smooth muscle cells. Most of the AA in the heart is 

esterfied to the sn-2 position of phosphotidylethanolamine or phosphotidylcholine. 

Activation of phospholipases of the A2 family (PLA2s) determines the rate of eicosanoid 

production because they catalyze the release of the arachidonic acid from cellular 

phospholipids (Jenkins et al., 2009). The three phospholipases that catalyze AA release 

from cellular membranes are iPLA2β, iPLA2γ, and cPLA2α. Although all three of these 

phospholipases are calcium independent, iPLA2β is catalytically inactive when associated 

with camodulin, which provides some calcium mediated control (Wolf and Gross, 1996). 

Once released from cellular phospholipids, the free AA can then be oxidized by 

cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (Figure 1.1). 

Metabolism of AA by Cylcooxygenase (COX). Prostaglandin synthase (PGS) or 

COX utilizes its cyclooxygenase activity to catalyze the addition of two oxygen atoms to 

AA to form prostaglandin G2 (PGG2). The enzyme’s peroxidase activity subsequently 

converts PGG2 to the prostanoid series-2 precursor prostaglandin H2 (PGH2). In the heart, 

PGH2 is converted to prostaglandin E2, prostaglandin F2α, and  prostaglandin I2 by their 

respective synthases (Jenkins et al., 2009). Both COX-1 and COX-2 are found in the 

human heart (Zidar et al., 2007). COX-1 is thought to be involved in the maintenance of 
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Figure 1.1. Arachidonic acid oxidation in the body. COX, cyclooxygenase; EET, 

epoxyeicosatrienoic acid; HETE, hydroxyeicosatrienoic acid; HpETE, 

hydroperoxyeicosatraenoic acid; P450, cytochrome P450; PG, prostaglandin; THETA, 

trihydroxyeicosatrienoic acid (adapted from Jenkins et al., 2009). 
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normal cardiovascular function since it is constitutively expressed (Zidar et al., 2007). 

Conversely, COX-2 is induced in several pathological states and depending on the extent 

of induction, the pathophysiological condition, and ability of specific cells to form the 

cardioprotective prostaglandins, PGE2 and PGI2, determines if COX-2 mediated 

inflammation is beneficial or detrimental (Pitt et al., 1983; Shinmura et al., 2000; Wong 

et al., 1998; Wu, 1998). 

Metabolism of AA by Lipoxygenase (LOX). Lipoxygenases produce hydroperoxy-

eicosatraenoic acids (HpETEs) by catalyzing the oxidation of olefin linkages in AA. 

Studies using rat hearts and cultured cardiomyocytes have shown that 12-LOX is 

responsible for most of the lipoxygenase activity, while 15-LOX only catalyzes a small 

portion of reactions (Breitbart et al., 1996). HpETEs are subsequently reduced to 

hydroxyeicosatetraenoic acids (HETEs) by several different enzymes, including 

phospholipid hydroperoxide glutathione peroxidase and cystolic glutathione peroxidase 

(Bhatia et al., 2012; Jakobsson et al., 1997; Sutherland et al., 2001). Although the 

importance of LOX and its metabolites in cardiac function and homeostasis remain 

relatively unknown, this pathway is believed to be involved in insulin sensitivity and in 

the development of cardiac fibrosis and hypertrophy (Dransfeld et al., 2002; Wen et al., 

2003). 

Cytochrome P450-catalyzed Metabolism of AA. Cytochrome P450s metabolize 

AA to epoxyeicosatrienoic acids (EETs) and HETEs. Due to the relative promiscuity of 

many of the CYPs, several P450 families are known to metabolize arachidonic acid. 

Members of the CYP4A, 4B, and 4F families are known to serve as ω-hydrolases and are 

also responsible for the hydroxylation of arachidonic acid to 17-, 18-, 19-, and 20-HETEs 
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(Chaudhary et al., 2009; Powell et al., 1998; Roman, 2002). In vascular smooth muscle 

(VSM) cells, 20-HETE is a potent vasoconstrictor that prevents the depolarization of 

VSM cells by inhibiting Ca
2+

-activated K
+
 (KCa) channels (Roman et al., 2000).The 

vasoconstriction mediated by 20-HETE normally occurs in small arteries and arterioles 

no larger than 100 µm in diameter (Roman, 2002). Structural analogs of 20-HETE such 

as 5-, 15-, and 19-HETE block its actions in certain vascular beds (Alonso-Galicia et al., 

1999). Although the exact mechanism that 20-HETE utilizes to block KCa channels has 

not yet been determined, studies using animal models have reported activation of protein 

kinase C (PKC), mitogen-activated protein (MAP) kinase signal transduction, 

extracellular signal-related kinase (ERK), and tyrosine kinase by 20-HETE, depending on 

the cell type (Lange et al., 1997; Sun et al., 2002). Activation of MAP kinases is the 

mechanism used by 20-HETE to induce VSM cell proliferation (Muthalif et al., 2001). In 

addition, 20-HETE is thought to play an influential role in the autoregulation of blood 

flow, as well as myogenic responses to changes in vascular pressure, and it is thought to 

act as an oxygen sensor in the microcirculation in certain tissues (Frisbee et al., 2001; 

Gebremedhin et al., 2000; Harder et al., 1996; Imig et al., 1999; Imig et al., 1994). 

Enzymes from P450 families 1A, 2B, 2C, 2E, 2J, 3A, and 4A can catalyze the 

formation of arachidonic acid epoxide metabolites (Daikh et al., 1994; Laethem et al., 

1994; Mitra et al., 2011; Rifkind et al., 1995; Roman, 2002; Scarborough et al., 1999; 

Wang et al., 1996). There are four potential epoxides that can be formed as a result of 

P450-mediated AA metabolism; however, the efficiency and metabolite profile by which 

the various CYP isoforms produce these epoxides are different. The 2C and 2J families 

are the most efficient at catalyzing the AA epoxygenase pathway. In the liver and kidney, 
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the CYP2C isoforms are mostly responsible for EET synthesis; however, CYP2J2 is 

believed to play a major role in the metabolism of AA in the cardiovascular system due to 

its much higher expression levels relative to CYP2C8 and CYP2C9 in the heart (CYP2J2 

> CYP2C8) and in the vascular tissues (CYP2C9 > CYP2J2 > CYP2C8) (Askari et al., 

2013; Delozier et al., 2007; Spiecker and Liao, 2005; Wu et al., 1996; Zeldin et al., 

1995).  

Biological Functions of Epoxyeicosatrienoic Acids. The EETs and other P450-

catalyzed metabolites of AA are considered to be autocrine/paracrine mediators because 

these compounds act on the same cell or a neighboring cell of the cell from which they 

were secreted. The concentration of EETs is mostly regulated by their lipophilicity, 

protein binding, and rapid incorporation into the phospholipids of several cell types 

(Karara et al., 1991; VanRollins et al., 1996; Widstrom et al., 2001; Wu et al., 1996). 

Thus, these factors keep the tissue concentrations of these eicosanoids higher near their 

sites of formation than the levels found in plasma, urine, or interstitial fluid (Roman, 

2002). Lipid extracts from human tissues have shown that the levels of incorporation of 

the EETs into membranes may reach micromolar levels (Karara et al., 1991). Biological 

stimuli that activate phospholipases, such as vasoactive hormones, can trigger the release 

of the EETs from membrane-bound phospholipids. This evidence may be indicative of 

the biological fates of structurally similar compounds. Physiologically active EETs have 

several different effects on the body that include effects on cardiovascular tone, 

inflammation, thrombolytic activity, and angiogenesis. 

EETs regulate vascular tone by activating Ca
2+

-sensitive K
+
 (KCa) channels and 

causing vasodilation. They are believed to be the endothelial-derived hyperpolarizing 
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factors (EDHFs) in vascular smooth muscle cells (Campbell et al., 1996; Fleming, 2004; 

Harder et al., 1995). Likewise, EETs can directly and indirectly affect other ion channels 

including L-type Ca
2+

 channels, ATP-sensitive K
+
 channels (K(ATP)), and Na

+
 channels 

(Lee et al., 1999; Lu et al., 2001; Seubert et al., 2004; Xiao et al., 1998; Xiao et al., 

2004). Xiao and coworkers reported that the EETs increase cardiac L-type Ca
2+

 currents 

in ventricular myocytes utilizing a mechanism which involves cAMP-protein kinase A-

dependent phosphorylation of L-type Ca
2+

 channels (Xiao et al., 1998; Xiao et al., 2004). 

The 11,12- and 8,9-EET regioisomers are potent activators of (K(ATP)) and can reduce 

the sensitivity of the channels to ATP in rat cardiomyocytes (Lu et al., 2001). Moreover, 

the cardioprotection observed in transgenic mice with cardiomyocyte-specific 

overexpression of CYP2J2 involves the activation of mitochondrial (K(ATP)) channels 

and the p42/p44 MAPK pathway (Seubert et al., 2004). The EETs, especially 8,9-EET, 

act as potent Na
+
 channel inhibitors by decreasing the probability of the Na

+
 channel 

opening (Lee et al., 1999).  

EETs exhibit anti-inflammatory effects similar to those observed for members of 

the peroxisome proliferator-activated receptor (PPAR) family (Liu et al., 2005; Node et 

al., 1999). The EETs and PPARα inhibit NF-κB activation and vascular cell adhesion 

molecule-1 (VCAM-1) expression (Node et al., 1999; Rival et al., 2002). In addition to 

PPARγ activation, 14,15-, 11,12-, and 8,9-EET have been shown to inhibit 

cyclooxygenase activity (Fitzpatrick et al., 1986; Mendez and LaPointe, 2003). While 

11,12-EET is believed to activate PPARα directly, PPARγ is thought to be an effector of 

the EETs (Liu et al., 2005; Ng et al., 2007). EETs and their metabolites may, in fact, be 

the endogenous ligands for PPARα and PPARγ because activation of these receptors has 
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similar effects as EETs on the inhibition of cell migration and inflammation (Wray and 

Bishop-Bailey, 2008).  

Utilizing several different pathways, epoxyeicosatrienoic acids can modulate 

thrombolytic activity. At physiological concentrations, EETs, especially 11,12-EET, are 

known to increase tissue plasminogen activator expression and activity via Gαs 

activation, while having no effect on plasminogen activator inhibitor-1 expression (Node 

et al., 2001). Using a mechanism that has yet to be determined, all of the EETs inhibit 

platelet aggregation induced by AA (Fitzpatrick et al., 1986). EETs also inhibit platelet 

adhesion to endothelial cells through a calcium-activated potassium channel dependent 

mechanism (Krotz et al., 2004). Moreover, Zhang et al. (2008) reported that 11,12-

epoxyeicosatrienoic acid activates the L-arginine/nitric oxide pathway in human platelets 

(Zhang et al., 2008). 

EETs are known to inhibit apoptosis and promote cell proliferation and 

angiogenesis in several different models (Askari et al., 2013; Fleming, 2011; Panigrahy et 

al., 2011). EETs employ multiple mechanisms in order to cause these biological 

outcomes, including crosstalk with the epithelial growth factor receptor (EGFR), 

activation of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling 

pathways, SRC-activation of STAT-3, and increased endothelial nitric oxide synthase 

(eNOS) expression (Chen et al., 2001; Cheranov et al., 2008; Jiang et al., 2007; Michaelis 

et al., 2005; Node et al., 2001; Wang et al., 2003; Wang et al., 2005). Incidentally, these 

same mechanisms that promote cancer-like activities, i.e. cell proliferation and inhibition 

of apoptosis, allow the CYP epoxygenase CYP2J2 to be protective against cardiac stress, 

doxorubicin-induced cardiotoxicity, and after hypoxic or ischemic events (Katragadda et 
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al., 2009; Nithipatikom et al., 2006; Seubert et al., 2004; Yang et al., 2001; Zhang et al., 

2009). Only the expression of the cardiac-specific CYP2J2, not the expression of 

endothelial-specific CYP2J2, is thought to be beneficial in ischemic-reperfusion injury 

(Askari et al., 2013; Edin et al., 2011; Seubert et al., 2004). However, this benefit in 

ischemic-reperfusion injury is believed to be mediated only by CYP2J2, because 

CYP2C8 and CYP2C9 activities have been shown to be detrimental to cardiac recovery 

due to their production of reactive oxygen species (Edin et al., 2011; Khan et al., 2007). 

Secondary Metabolism of Epoxyeicosatrienoic Acids. In addition to causing 

important biological effects, free epoxyeicosatrienoic acids can undergo secondary 

reactions including: hydration by soluble epoxide hydrolase (sEH); oxidation by 

cyclooxygenase, lipoxygenase, and P450 ω-oxidase enzymes; partial β-oxidation; chain-

elongation; and glutathione conjugation (Figure 1.2). The epoxide metabolites of P450- 

catalyzed arachidonic acid metabolism are usually converted by soluble epoxide 

hydrolase to form dihydroxyeicosatrienoic acids (DHETs), which are generally believed 

to be less biologically active than the precursory epoxides (Imig et al., 1996; Roman, 

2002). However, DHETs are as potent as the EETs in the dilation of canine coronary 

arteries (Oltman et al., 1998). Moreover, 14,15-DHET can activate PPARα in a COS-7 

cell expression system (Fang et al., 2006). The substrate preference for the hydration of 

EETs by rabbit sEH is 14,15-EET > 11,12-EET > 8,9-EET (Zeldin et al., 1993). 

Oxidation. Although 5,6-EET is reported to be a poor substrate for sEH 

(Sisignano et al., 2012; Zeldin et al., 1993), it is readily oxidized by cyclooxygenase in 

the vasculature to 5-hydroxy-PGI1 and 5,6-epoxy-PGE1 (Carroll et al., 1993; Oliw, 1984). 
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  Figure 1.2. Secondary metabolism of epoxyeicosatrienoic acids (EETs). COX, 

cyclooxygenase; CYP, cytochrome P450; EET, epoxyeicosatrienoic acid; DHET, 

dihydroxyeicosatrienoic acid; PG, prostaglandin; sEH, soluble epoxide hydrolase 

(adapted from Spector et al., 2004). 
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Although 5-hydroxy-PGI1 lacks vasodilator activity, 5,6-epoxy-PGE1 is equal to 5,6-EET 

in its ability to stimulate cyclooxygenase-dependent vasodilation (Carroll et al., 1993; 

Carroll et al., 1992). Moreover, 8,9-EET can form 11- and 15-hydroxy-8,9-EET products 

catalyzed by cyclooxygenase (Zhang et al., 1992). The hydroxyepoxyeixosatrienoic acids 

formed from the 12-lipoxygenase metabolism of 11,12-EET are called hepoxilins and 

they can induce glucose-dependent insulin secretion in pancreatic islets (Pace-Asciak et 

al., 1983; Pace-Asciak and Martin, 1984). Likewise, 15-LOX catalyzes the formation of 

11-hydroxy-14,15-EET and 15-hydroxy-11,12-EET from 14,15- and 11,12-EET, 

respectively, and their trihydroxyeicosatrienoic acid derivatives (Pfister et al., 1998). 

Finally, all four EET isomers can undergo ω- and ω-1 hydroxylation catalyzed by 

CYP4A1 and CYP4A2 (Cowart et al., 2002). The 20-hydroxylation metabolites of 8,9-, 

11,12-, and 14,15-EET all activate PPARα (Cowart et al., 2002). With a Ki of 3 nM at 

PPARα, the 20-hydroxy-14,15-EET may be an endogenous ligand for this receptor 

(Cowart et al., 2002).  

Alternative Metabolism Routes. In human skin fibroblasts, instead of being 

metabolized to form DHETs, the 8,9-, 11,12- and 14,15-EETs primarily undergo 

peroxisomal β-oxidation which shortens the carbon chain of the epoxy fatty acids (Fang 

et al., 2000; Spector et al., 2004). The 14,15-EET forms the 10,11-epoxy-16:2 β-

oxidation product that can relax coronary microvessels that have been contracted with 

endothelin (Fang et al., 2002). In the presence of the sEH inhibitor N,N’-

dicyclohexylurea, porcine coronary endothelial cells produce a chain-elongation product 

of 14,15-EET, 16,17-epoxy-∆
7,10,13

-22:3 which is then incorporated into the lipids of the 

cells (Fang et al., 2001). Glutathione S-transferase prefers the 14,15-EET over the other 
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three epoxidated isomers for further conjugation with glutathione; however, the 

biological significance of this pathway has not been investigated (Spearman et al., 1985). 

Drug-Drug Interactions. A drug-drug interaction occurs when the efficacy or 

toxicity of one drug is altered by the administration of a second compound. There are two 

types of drug-drug interactions, pharmacokinetic and pharmacodynamic. 

Pharmacokinetic interactions occur when one drug alters the absorption, distribution, 

metabolism, or excretion of another drug whereas pharmacodynamic interactions occur 

when two drugs have more than additive or opposing effects on the efficacy of one or 

both of the administered drugs. CYPs normally are responsible for pharmacokinetic 

interactions because the metabolizing ability of the respective P450 for one of the two 

drugs is either induced or inhibited by the other drug. For example, grapefruit juice 

contains furanocoumarins that inhibit CYP3A4 activity (Lin et al., 2012). Co-

administration of grapefruit juice with any drug that is metabolized by CYP3A4 will 

result in an increase in the bioavailability of that drug due to the inhibition of CYP3A4-

catalyzed metabolism by the grapefruit juice. Because the EETs are deeply involved in 

the maintenance of normal cardiac function, a drug interaction that disrupts arachidonic 

acid metabolism may alter the bioavailability of these eicosanoids in the cardiovascular 

system and have the potential to cause adverse or to enhance beneficial effects.  

The Endogenous Cannabinoid System (ECS).  The ECS is a lipid signaling 

system which consists of specific receptors, ligands, and the enzymes required to regulate 

the degradation of those ligands (Mouslech and Valla, 2009). Two seven transmembrane 

G-protein coupled receptors have been designated as members of this system, 

cannabinoid 1receptor (CBR1) and the CB2R (Mackie, 2008). The ligands for these 
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receptors can be exogenous, plant-derived or synthetic, or endogenous (DiMarzo et al., 

2004). Moreover, several enzymes are known to participate in the synthesis and 

degradation of cannabinoid ligands (Di Marzo and Deutsch, 1998). Interestingly, the ECS 

and CYP2J2 are coexpressed in several organs including, but not limited to, the brain, 

liver, bladder, and the intestine (Mackie, 2008; Pacher et al., 2006). Because CYP2J2 can 

catalyze the oxidation of a variety of different compounds, its vicinity to ECS ligands 

such as anandamide may allow it to regulate the physiological fates of ECS ligands via 

oxidation. 

The research described in this thesis is primarily focused on the ability of CYP2J2 

to participate in the regulation of the endogenous cannabinoid system (ECS) by 

participating in the metabolic fates of some of its ligands. To complete this task, we 

investigated the metabolism of the endogenous cannabinoid anandamide (AEA) and the 

synthetic cannabinoid JWH-018 by purified CYP2J2 and microsomes prepared from drug 

metabolizing organs reported to express CYP2J2 or other members of the CYP2J family. 

The ECS, including AEA, is known to play a role in energy balance (Matias et al., 2006). 

Due to the connection between AEA and food intake, we have also investigated the effect 

of diet and obesity on the metabolism of AEA. Moreover, in order to better understand 

the possible importance of the epoxyeicosatrienoic acid ethanolamides (EET-EAs), the 

products formed from AEA metabolism by CYP2J2 and other P450s, we studied several 

soluble epoxide hydrolase inhibitors for their ability to prevent the hydrolysis of EET-

EAs. Likewise, we also investigated the cardiovascular effects of JWH-18 administration 

in rats and its metabolism in microsomes isolated from several rat and human organs in 
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order to identify metabolites that can potentially contribute to the adverse effects seen in 

vivo. 
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CHAPTER II 
 

Cytochrome P450 2J2-Catalyzed Metabolism of Anandamide and the Effects of 

Obesity and Diet on Anandamide Metabolism in the Liver 

 

Abstract 

One in three adults in America is obese. Obesity contributes to the development 

of several other medical conditions such as diabetes and atherosclerosis. Increased 

plasma concentrations of the endogenous cannabinoid anandamide (AEA) have been 

observed in obese individuals. Moreover, fatty acid amide hydrolase (FAAH), the 

enzyme responsible for the hydrolysis of AEA, exhibits decreased activity in obesity. As 

a result, the probability of AEA being metabolized by other drug metabolizing enzymes 

such as cytochrome P450s is increased. The role of AEA in energy balance involves the 

brain and the peripheral organs associated with energy intake including the intestine and 

the liver. Because of this, it is important to investigate AEA metabolism in these relevant 

drug metabolizing organs. CYP2J2 is involved in the metabolism of various 

antihistamines and other drugs in the intestines and may also contribute to intestinal 

metabolism of AEA. The studies reported here demonstrate that purified human CYP2J2 

metabolizes AEA to form the 20-hydroxyeicosatetraenoic acid ethanolamide (HETE-EA) 

and several epoxygenated products including the 5,6-, 8,9-, 11,12-, and 14,15-

epoxyeicosatrienoic acid ethanolamides (EET-EAs) in the reconstituted system. Kinetic 

studies suggest that the KM values for these products range from approximately 10-468 
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µM and that the kcat values range from 0.2-23.3 pmol/min/pmol of CYP450. The catalytic 

turnover was 7.12 pmol of total product formed/pmol of CYP450/min at 37°C. Human 

intestinal microsomes metabolize AEA to 20-HETE-EA, 5,6-, 8,9-, and 11,12-EET-EAs 

with apparent Km values of 141, 312, 495, and 1700 µM and Vmax values of 602, 4.4, 4.3, 

and 30 pmols/min/mg of protein, respectively; however, inhibition studies suggest that 

CYP2J2 is not a major contributor to intestinal AEA metabolism. In addition, studies 

using rat liver microsomes suggest that obesity and diet may have significant effects on 

AEA metabolism in the liver. 

 

Introduction 

 According to the Centers for Disease Control and Prevention, a little over 35% of 

the adults in the United States are obese. Moreover, it is estimated that 17% of children, 

aged 2-19 years, are obese. Obesity contributes to several health concerns including heart 

disease, type 2 diabetes, stroke, and some cancers. Obesity occurs when an imbalance 

between food intake and energy expenditure exists and this energy imbalance results in 

excessive fat accumulation in organs involved in metabolism (Ahima, 2008). Evidence 

suggests that modifications in the endocannabinoid system (ECS), consisting of the 

cannabinoid receptors, their endogenous ligands, and the enzymes that regulate the 

synthesis and degradation of those ligands, can be correlated with several pathological 

conditions, including a variety of immunological, cardiovascular, gastrointestinal, and 

metabolic disorders that exhibit altered tissue concentrations of anandamide (AEA) or 2-

arachidonoyl glycerol (2-AG), the two most prominent endocannabinoids (ECBs) (Alpini 
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and Demorrow, 2009; Ashton and Smith, 2007; Bifulco et al., 2007; Di Marzo, 2008; Di 

Marzo et al., 2004; Lambert, 2007; Storr and Sharkey, 2007). 

 AEA and other ECBs are signaling mediators that  increase appetite by activating 

the cannabinoid 1 receptor (CB1R) (Matias et al., 2006a). The ECS has been identified in 

the brain and peripheral tissues involved in energy balance including, but not limited to, 

the hypothalamus, skeletal muscles, myenteric neurons and epithelial cells of the 

intestine,  and the liver (Pertwee, 1999). In the hypothalamus, ECBs activate CB1Rs to 

inhibit excitatory and inhibitory neurotransmission in several areas of the brain including 

those associated with food consumption and leptin signaling (Cota et al., 2003b; Di 

Marzo et al., 2001; Schlicker and Kathmann, 2001). Activation of the ECS leads to 

increased body weight, lipogenesis, and defective glucose uptake into skeletal muscle 

(Cota et al., 2003a; Eckardt et al., 2009). Likewise, activation of presynaptic CB1Rs in 

neurons and nerve fibers of the stomach, small intestine, and colon decreases gastric acid 

secretion and intestinal motility and secretion through inhibition of acetylcholine release 

(Di Carlo and Izzo, 2003; Kulkarni-Narla and Brown, 2000, 2001; Mascolo et al., 2002; 

Pinto et al., 2002). Overactivation of the ECS in the liver increases liver fat and 

lipogenesis, in particular VLDL (very low density lipoprotein) which is consider to be 

“bad” cholesterol (Nesto and Mackie, 2008). 

Several studies have shown that overweight and obese individuals have higher 

levels of circulating endocannabinoids, e.g. AEA and 2-AG (Annuzzi et al., 2010; Engeli 

et al., 2005; Naughton et al., 2013). In general, the Western diet is considered to be a 

high-fat diet that is rich in linoleic acid (LA), the biosynthetic precursor to arachidonic 

acid (AA) (Nagai et al., 2005).  It has been shown that increased dietary intake of LA can 
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lead to elevated levels of endogenous endocannabinoids and induce weight gain and 

inflammation (Alvheim et al., 2012; Alvheim et al., 2013; Kim et al., 2013; Matias et al., 

2008). The elevated endogenous cannabinoid levels are believed to contribute to the 

overactivation of the ECS observed in obesity and to aggravate the severity of obesity-

related complications (Cote et al., 2007; Matias et al., 2006b). 

AEA normally undergoes hydrolysis by fatty acid amide hydrolase (FAAH) to 

form AA and ethanolamide. However, the elevated levels of AEA observed in obese 

subjects are correlated with a decrease in FAAH activity (Engeli et al., 2005). As a result, 

it is likely that other mechanisms of anandamide metabolism may be more important in 

obesity. AEA can also be oxidized by cyclooxygenases (COX) (Kozak et al., 2002; Yu et 

al., 1997), lipoxygenases (LOX) (Hampson et al., 1995; Ueda et al., 1995), and 

cytochrome P450s (CYP450s) (Snider et al., 2007; Snider et al., 2008; Sridar et al., 2011; 

Stark et al., 2008).  

CYP450s are a superfamily of mono-oxygenases that are involved in the 

metabolism of a wide variety of endogenous and exogenous compounds. The metabolism 

of AEA by human cytochrome P450s is known to give the following metabolites: 19- and 

20-hydroxyeicosatetraenoic acid ethanolamides (HETE-EAs) and 5,6-, 8,9-, 11,12-, and 

14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs) (Alberich Jorda et al., 2004; 

Pratt-Hyatt et al., 2010; Snider et al., 2007; Snider et al., 2009; Snider et al., 2008; Sridar 

et al., 2011; Stark et al., 2008). CYP2J2 is a CYP450 epoxygenase that is mainly 

expressed in the cardiovascular system (Wu et al., 1996), but it is also expressed in the 

intestines (Paine et al., 2006; Wu et al., 1996), lung (Zeldin et al., 1996), pancreas (Zeldin 

et al., 1997), kidney (Ma et al., 1999), liver (Nishimura et al., 2003; Wu et al., 1996), 
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brain (Dutheil et al., 2009), salivary ducts,  and stomach (Enayetallah et al., 2004). 

CYP2J2 metabolizes arachidonic acid (AA) to give 5,6-, 8,9-, 11,12-, 14,15-

epoxyeicosatrienoic acids (EETs) and several minor hydroxyeicosatetraenoic acids 

(HETEs) (Wu et al., 1996); however, its ability to metabolize AEA has not yet been 

investigated.  CYP2J2 is involved in the intestinal metabolism of the non-sedating 

antihistamines ebastine and astemizole and may contribute to AEA metabolism in the 

intestine (Hashizume et al., 2002; Matsumoto et al., 2002). This chapter provides 

information on the metabolism of AEA by purified CYP2J2 in the reconstituted system. 

Because our lab has previously investigated AEA metabolism by human liver 

microsomes, we investigated AEA metabolism by human intestine microsomes in order 

to study AEA metabolism in peripheral organs involved in energy balance (Snider et al., 

2007). In order to determine if obesity and diet affect AEA metabolism, we also 

compared AEA metabolism by liver microsomes derived from rats susceptible or 

resistant to diet-induced obesity. This rat model was developed by Dr. Barry E. Levin 

(Rutgers New Jersey Medical School, Newark, NJ) by selectively breeding rats for the 

propensity to gain weight when fed a moderately fatty diet (Levin et al., 1997). 

 

Methods and Materials 

Materials. AEA, AEA-d8, 5,6-EET-EA, 8,9-EET-EA, 11,12-EET-EA, 14,15-

EET-EA, 20-HETE-EA, and 12-(3-admantan-1-yl-ureido) dodecanoic acid (AUDA) 

were purchased from Cayman Chemical (Ann Arbor, MI). Danazol was purchased from 

Steraloids, Inc. (Newport, RI). Ketoconazole, sulfaphenazole, 1-aminobenzatriazole, and 
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diphenyliodonium chloride were purchased from Sigma (St. Louis, MO). All other 

reagents were of the highest quality and were obtained from commercial sources. 

Enzymes. The human CYP450 CYP2J2 cDNA was a gift from Dr. Rheem Totah 

(University of Washington, Seattle, WA). CYP2J2 and CYP450 reductase were 

expressed in Escherichia coli and purified as previously described (Hanna et al., 1998; 

Smith et al., 2008). Human intestinal microsomes were purchased from BD Biosciences 

(Woburn, MA). 

Preparation of Microsomes from Rat Livers. The rat livers were a gift from Dr. 

Carrie Ferrario (University of Michigan, Ann Arbor, MI). The diet resistant (DR) and 

diet-induced obese (DIO) rats from which these livers were collected were originally 

purchased from Taconic (Germantown, NY). The preparation of microsomes was 

performed as described previously (Lin et al., 1998). Briefly, rat livers were chopped and 

subsequently homogenized using a Tissue Tearor (Biospec Product Inc.) in 

homogenization buffer (100 mM potassium phosphate buffer, pH 7.4, 1 mM EDTA, and 

150 mM KCl). The homogenate was centrifuged at 10,000 g for 30 min and the 

supernatant was filtered through gauze to remove the fat. The supernatant was then 

ultracentrifuged at 100,000 g for 75 min. The resulting pellet was resuspended using a 

glass pestle in a Dounce homogenizer in pyrophosphate buffer (100 mM tetrasodium 

pyrophosphate, pH 7.4, and 1 mM EDTA) to remove hemoglobin. The homogenate was 

centrifuged again at 100,000 g for 75 min and the resulting pellet was resuspended in 

suspension buffer (100 mM potassium phosphate buffer, pH 7.4, 1 mM EDTA, and 20% 

glycerol). Bovine serum albumin was used as the standard for the BCA Protein Assay 

(Pierce, Rockford, IL) which was used to determine the protein concentration of the 
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microsomes and the reduced CO difference spectrum was used to determine the P450 

concentration (Omura and Sato, 1964). Briefly, microsomes (50 µL) were suspended in 

0.1 M phosphate buffer, pH 7.4, containing 20% glycerol to a total volume of 0.5 mL in a 

1 cm
2
 cell. The microsomes were reduced by the addition of a few milligrams of sodium 

dithionite and an absorbance baseline was measure using a Shimadzu UV-Vis recording 

spectrophotometer UV-2501PC. The solution was bubbled with CO for 30 s and the 

absorbance measured again. The Beer-Lambert Law (A = εbc) was used to calculate the 

concentration “c”, where “A” is the difference in absorbance between baseline and the 

peak that absorbed at 450 nm, and “b” and “ε” are known constants 1 cm and 90 mM
-

1
cm

-1
, respectively. 

AEA Metabolism Assays. CYP2J2 was reconstituted with reductase (1:2 ratio) in 

lipid (L-α-dilauroyl-phosphocholine) on ice for 60 min as described previously (Snider et 

al., 2007; von Weymarn et al., 2004). The metabolism of anandamide was determined 

using incubation mixtures (0.5 mL) containing 100 mM potassium phosphate buffer (pH 

7.4), catalase, anandamide (1.25-50 µM), and reconstituted CYP2J2 (50 pmols). For 

microsomal studies, 200 µg aliquots of microsomal protein were combined with 100 mM 

potassium phosphate buffer, pH 7.4, 3.3 mM MgCl2, and anandamide in the presence or 

absence of the P450 inhibitors, danazol (100 nM) for CYP2J2, ketoconazole (1 µM) for 

CYP3A4 and sulfaphenazole for CYP2C9 (10 µM), in a final volume of 0.25 mL. 

Reactions were initiated by the addition of 1 mM (recombinant) or 1.3 mM (microsomes) 

NADPH and allowed to continue with shaking for 25-30 min at 37°C. Control reactions 

were performed in the absence of NADPH. The reactions were terminated by the addition 

of 1-2 ml of cold ethyl acetate. After the addition of the internal standard, anandamide-d8, 



 

41 
 

the samples were vortexed for 2 min and centrifuged at full speed using a desktop 

centrifuge for 5 min. The organic layer was collected and dried down under a constant 

stream of nitrogen gas. The dried samples were resuspended in 100 µL of methanol and 

10 µL aliquots were subjected to electrospray ionization-liquid chromatography/mass 

spectrometry (ESI-LC/MS) analysis. The standard curves for the various metabolites that 

were used for the quantification and determination of the KM and kcat values were 

generated by subjecting various known amounts of authentic standards to the same 

sample workup and ESI-LC/MS analysis. 

ESI-LC/MS Analysis. Samples (10 µL) were injected onto a Hypersil ODS 

column (5 µm, 4.6 × 100 mm; Thermo Fisher Scientific, Waltham, MA) that had been 

equilibrated with 25% solvent A (0.1% acetic acid in water) and 75% solvent B (0.1% 

acetic acid in methanol). The metabolites were resolved using the following gradient: 0 to 

5 min, 75% B; 5 to 20 min, 75 to 100% B; 20 to 25 min, 100% B; 25 to 26 min, 100 to 

75% B; and 26 to 30 min, 75% B. The flow rate was 0.3 ml/min. The column effluent 

was directed into the LCQ mass analyzer (Thermo Fisher Scientific). The ESI conditions 

were as follows: sheath gas, 90 arbitrary units; auxiliary gas, 30 arbitrary units; capillary 

temperature, 200°C; and spray voltage, 4.5 V. Data were acquired in positive ion mode 

for anandamide and its metabolites using the Xcalibur software package (Thermo Fisher 

Scientific) with one full scan from 300 to 500 mass/charge ratio (m/z) followed by one 

data-dependent scan of the most intense ion.  

Data Analysis. Nonlinear regression analyses of the data were performed using 

GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA; http://www.graphpad.com). 
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Results 

Metabolism of Anandamide by Human Recombinant CYP2J2. Arachidonic 

acid (AA) is metabolized by recombinant CYP2J2 to form four regioisomeric EETs (Wu 

et al., 1996). As shown in Figure 2.1, AEA is very similar to AA in structure. AA is 

required for the biosynthesis of AEA. The AEA precursor, N-arachidonyl-

phosphatidylethanolamine (NAPE), is formed when the calcium-dependent enzyme, N-

acyltransferase, catalyzes the transfer of AA from the sn-1 position of a 

glycerophospholipid to the amino group of phosphatidylethanolamine (Snider et al., 

2010; Wang and Ueda, 2009).  The precursor can then be converted to AEA via several 

pathways that have been reviewed in the literature (Hansen et al., 2000; Jin et al., 2009; 

Schmid et al., 1990; Snider et al., 2010), but the most direct pathway is catalyzed by a 

NAPE-specific phospholipase D (Okamoto et al., 2009). Due to the similarities between 

the structures of AEA and AA, and the fact that AEA is a substrate for several other 

CYP450s including CYP2D6, CYP3A4, and CYP2B6 (Omura and Sato, 1964; Snider et 

al., 2007; Snider et al., 2008; Sridar et al., 2011), we investigated the possibility that 

anandamide could also be a substrate for CYP2J2. 

Figure 2.2 shows the extracted ion chromatograms for the metabolism of 

anandamide by purified human CYP2J2. Figure 2.2 (Top) is the extracted ion 

chromatogram at m/z 348 and it shows the positive ion formed by anandamide in the 

mass spectrometer which eluted at 23.6 min under the LC/MS conditions described in 

Materials and Methods. The bottom chromatogram shows the five mono-oxygenated 

products with m/z values of 364 that eluted at 15.2, 18.1, 19.1, 19.6, and 20.5 min (Fig.  



 

43 
 

  

Figure 2.1. Structures of arachidonic acid and anandamide. Arachidonic 

acid and anandamide are identical in structure with the exception that 

arachidonic acid has a hydroxyl group on carbon one while anandamide has 

an ethanolamine group on carbon one. 
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  Figure 2.2. AEA metabolism by CYP2J2. Purified CYP2J2 was reconstituted with reductase 

(1:2 ratio) in 10 µg of lipid (L-α-dilauroyl-phosphocholine) on ice for 30 min. The 

reconstituted enzyme (15 µL) was added to the incubation mixture (0.5 mL) containing 100 

mM potassium phosphate buffer (pH 7.4), anandamide (10 µM), and catalase. Reactions were 

initiated by the addition of 1 mM of NADPH and allowed to continue with shaking for 30 min 

at 37°C. The reactions were terminated, metabolites extracted, and products analyzed by ESI-

LC/MS as described in Materials and Methods. The extracted ion chromatogram observed at 

m/z 348, shows the parent ion, anandamide, eluting at 23 min (Top). The extracted ion 

chromatogram observed at m/z 364, shows the monooxygenated product peaks which elute at 

approximately 15.3, 18.2, 19.1, 19.7, and 20.6 min for 20-HETE-EA, 14,15-, 11,12-, 8,9-, and  

5,6-EET-EA, respectively (Bottom). Product identity was verified by comparing the retention 

times and fragmentation patterns of the products formed with their respective commercial 

standards. 
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2.2). Based on their retention times and fragmentation patterns when compared with 

authentic standards (data not shown), the metabolites were identified as 20-HETE-EA, 

14,15-, 11,12-, 8,9-, and 5,6-EET-EAs, respectively. Four di-oxygenated products  

were observed in the extracted ion chromatogram at m/z 380 (Figure 2.3) which eluted at 

approximately 8, 11, 13, 14, and 16 min; however, these products could not be 

unequivocally identified due the lack of commercially available di-oxygenated AEA 

metabolites. 

Kinetic Studies on the Metabolism of Anandamide by Human Recombinant 

CYP2J2. The reaction conditions used to determine the kinetic constants, KM and kcat, for  

the hydroxylation and epoxygenation of anandamide by purified CYP2J2 were shown to 

be linear with respect to protein concentration (up to 25 pmols) and time of incubation 

(up to 25 min) (data not shown). As shown in Figure 2.4, the metabolism of anandamide 

exhibited typical Michaelis-Menten kinetics for the formation of 20-HETE-EA and 5,6-, 

8,9-, 11,12-, and 14,15- EET-EAs. The observed KM values calculated from the data in 

Figure 2.4 using GraphPad Prism 6 software were 10, 468, 104, 101, and 103 µM and the 

kcat values were 0.2, 23.3, 3.6, 4.1, and 6.9 pmol/min/pmol of CYP450, respectively. The 

efficiency of the enzyme for the formation of all five metabolites, as measured by the 

kcat/KM values, was relatively the same for all products formed with values of 0.02, 0.05, 

0.03, 0.04, and 0.07 for the 5,6-, 8,9-, 11,12-, 14,15-EET-EAs, and 20-HETE-EA, 

respectively. 

 AEA Metabolism by Human Intestinal Microsomes. Because the intestine is 

one of the peripheral organs involved in energy balance, we investigated the ability of  
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  Figure 2.3. Formation of di-oxygenated metabolites of AEA by CYP2J2. Recombinant 

CYP2J2 was reconstituted with reductase (1:2 ratio) in lipid (L-α-dilauroyl-phosphocholine) 

on ice for 30 min. The enzyme source (15 µL) was added to the incubation mixture (0.5 mL) 

containing 100 mM potassium phosphate buffer (pH 7.4), anandamide (50 µM), and catalase. 

Reactions were initiated by the addition of 1 mM of NADPH and allowed to continue for 30 

min at 37°C. The metabolites were extracted and analyzed as described previously in 

Materials and Methods. The extracted ion chromatogram observed at m/z 380, shows that at 

least three di-oxygenated products are formed (A). The fragmentation patterns for the three 

unidentified metabolites M1 (B), M2 (C), and M3 (D) are shown. 
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Figure 2.4. Kinetic analysis of anandamide metabolism by purified CYP2J2. Varying 

concentrations of anandamide (1.25-50 µM) were metabolized by reconstituted CYP2J2 

(25 pmol) for 25 min at 37°C. The symbols for the metabolites are: 14,15-EET-EA (■), 

11,12-EET-EA (▲), 8,9-EET-EA (▼), 5,6-EET-EA (♦), and 20-HETE-EA (●). Standard 

curves were generated for each metabolite to determine the amount of product formed. 

Experiments were done in duplicate and repeated four times (n = 8). Error bars represent 

SEM values. 
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human intestinal microsomes (HIM) to metabolize AEA. Incubations containing 200 µg 

of HIM were used to metabolize AEA for 30 min at 37°C as described in Materials and 

Methods. Figure 2.5 shows all the metabolites formed from AEA metabolism by HIM. 

Figure 2.5 (Top) shows the extracted ion chromatogram at m/z 364 for the metabolites 

from this reaction with peaks eluting at 15.9, 18.4, 19.2, 19.8, and 20.7 min, which 

correspond to 20-HETE-EA,  14,15-, 11,12-, 8,9-, and 5,6-EET-EAs, respectively. 

Although no standard is commercially available for positive identification of this product, 

the product eluting at 17.3 min is thought to be 19-HETE-EA (Pratt-Hyatt et al., 2010; 

Snider et al., 2007; Snider et al., 2009). The peaks eluting at 11.6, 13.4, and 15.6 min 

observed at m/z 382 correspond to the diols formed when the epoxides (m/z 364) are 

hydrolyzed (Figure 2.5 (Bottom)). Evidence to support this can be seen with the increase 

of epoxide formation and the decrease in diol formation in the presence of AUDA (10 

µM), a soluble epoxide hydrolase inhibitor (dashed line) (Morisseau and Hammock, 

2013). 

Figure 2.6 shows the kinetic curves for the products formed by the metabolism of 

AEA by intestinal microsomes. Two different kinetic models were utilized to determine 

the Km and Vmax for 20-HETE-EA, 5,6-, 8,9-, and 11,12-EET-EAs. The levels of 14,15-

formation under these conditions were too low to calculate accurate values for the kinetic 

constants. Likewise, the kinetic information for 19-HETE-EA could not be calculated 

because there is no standard available for this metabolite. Double reciprocal plots were 

used to determine the kinetic constants for the EET-EAs and the formation of 20-HETE-

EA followed Michaelis-Menten kinetics. The Km values for 20-HETE-EA, 5,6-, 8,9-, and 

11,12-EET-EAs were 141, 312, 495, and 1700 µM, respectively. The Vmax values 
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Figure 2.5. AEA metabolism by HIM in the presence and absence of AUDA. Human 

intestinal microsomes (200 µg) were incubated with anandamide (25 µM) for 30 min at 37°C 

and the metabolites were extracted and analyzed as described in Materials and Methods. The 

extracted ion chromatograms for the mono-oxygenated products (m/z 364, Top) and the diols 

formed by the hydrolysis of the epoxides (m/z 382, Bottom) are shown. The dashed lines 

represent the chromatogram observed in the presence of 10 µM of AUDA, a soluble epoxide 

hydrolase inhibitor (sEHI), and the solid lines represent the products formed in the absence of 

the sEHI. 
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Figure 2.6. Kinetics for the metabolism of AEA by HIM. Human intestinal protein 

(0.8 mg/mL) was reacted with AEA (5-1400 µM) in 0.1 M potassium phosphate 

buffer containing MgCl2. The reaction was initiated with NADPH (1.3 mM) and 

incubated at 37°C for 30 min with agitation. The reaction was quenched with 1 mL of 

ice cold ethyl acetate and the metabolites were extracted and prepared for analysis as 

described in Materials and Methods. The double reciprocal plot was used to 

determine the kinetic parameters for 11,12-EET-EA (∎) (A), 8,9-EET-EA (▲) (B), 

and 5,6-EET-EA (▼) (C). A Michaelis-Menten kinetic plot was used to determine the 

kinetic parameters for 20-HETE-EA (●) (D). The data were plotted using the 

GraphPad Prism 6 software and each point represents the mean ± SEM (n = 6). 
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calculated were 602, 4.4, 4.3, and 30 pmols/min/mg of protein for 20-HETE-EA, 5,6-, 

8,9-, and 11,12-EET-EAs, respectively.  

Contribution of Individual P450s to the Metabolism of AEA by HIM. Several 

cytochrome P450s are expressed in the intestines at detectable levels including CYP3A4, 

CYP2C9, and CYP2J2 (Paine et al., 2006). Selective chemical inhibitors for CYP3A4 

(ketoconazole), CYP2C9 (sulphaphenazole), or CYP2J2 (danazol) (Lee et al., 2012) were 

used to determine the relative contribution of each P450 to AEA metabolism in the 

intestine. In the absence of AUDA, no detectable amount of 14,15-EET-EA was formed 

at the concentration of AEA used for this experiment; however, 11,12-, 8,9-, and 5,6-

EET-EAs were formed in addition to 19- and 20-HETE-EA. The bar graph in Figure 2.7 

displays the changes in the formation of various mono-oxygenated products in the 

presence of the selective P450 inhibitors, while Table 2.1 shows the numerical values.  

Based on the decrease in product formation after inhibition of selected P450 activity as 

compared to control, only CYP2C9 and CYP3A4 appear to contribute significantly to the 

formation of 11,12-EET-EA and 20-HETE-EA, respectively (Figure 2.7 and Table 2.1). 

 Changes in the Metabolism of AEA in Obese Rats. To determine if there is a 

difference in AEA metabolism as a result of obesity, liver microsomes were made from 

diet-induced obese (DIO) rats and diet-resistant (DR) rats as described in Materials and 

Methods. In addition, we studied the difference in AEA metabolism in rats fed a normal 

diet (ND) and rats fed a junk food diet (JFD). Interestingly, rat liver microsomes (RLM) 

do not form the traditional P450-mediated EET-EAs and HETE-EAs from AEA seen 

with human liver microsomes. The candidates selected for monitoring had to fit the 

following criteria: (1) their formation is dependent on the presence of NADPH, 
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  Figure 2.7. Contributions of individual P450s to AEA metabolism by HIM. The HIM 

(200 µg) were incubated with anandamide (100 µM) for 30 min at 37°C in the presence 

of vehicle, the selective CYP3A4 inhibitor ketoconazole (1 µM), the selective CYP2C9 

inhibitor sulfaphenazole (10 µM), or the selective CYPJ2 inhibitor danazol (100 nM). 

The reactions were quenched with ice cold ethyl acetate and the metabolites were 

extracted and analyzed as described in Materials and Methods. (A) Epoxide formation 

in pmols/min/pmols of P450, (B) hydroxylated products formed in pmols/min/pmols of 

P450. Statistical significance determined by GraphPad Prism 6 Program using the 

Holm-Sidak method, *, P < 0.05; ***, P < 0.001. Each bar represents the mean ± SEM 

for one experiment completed in duplicate. 
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Table 2.1. Numerical values for product formation by P450s in the presence of specific 

inhibitors. The control column shows the amount of each product formed in the presence 

of vehicle. The CYP2C9, CYP3A4, and CYP2J2 columns show the amount of product 

formed in the presence of the selective inhibitors sulfaphenazole (10 µM), ketoconazole 

(1 µM), and danazol (100 nM), respectively. The compounds and concentrations used 

were previously shown to be effective at inhibiting the respective P450 (Hashizume et 

al., 2002; Lee et al., 2012). The values are taken directly from the bar graphs in Figure 

2.7 and represent the mean ± SEM in pmols/min/mg of protein. 
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(2) the presence of selective inhibitors for COX and LOX did not inhibit formation, and 

(3) the presence of an inhibitor of the NADPH-cytochrome P450 reductase decreases its 

formation. Figure 2.8 shows a bar graph for the three P450-mediated products, M7, M8, 

and M9, that were selected to be monitored to compare differences in P450 activity in 

obese vs. lean animals and animals on a normal diet vs. a junk food diet. Two of the 

metabolites are observed at m/z 356 and elute at 16.6 (M7) and 17.5 min (M8). The third 

product is observed at m/z 380 and elutes at 22 min (M9). 

The rats used for this experiment were 65 days old upon arrival and both DR and 

DIO rats were fed a ND. At 120 days of age, some DR rats were fed a JFD while another 

group of DR rats continued on the ND. Likewise, some DIO rats continued on a ND 

while others started the JFD. Rats continued on the ND or the JFD for an additional 40 

days until they were sacrificed and the livers were harvested. All rats had free access to 

either the ND, standard lab chow (Purina Lab Diet 5001: 4.5% fat, 23% protein, 6.2% 

sugar; 4 kcal/g), or the JFD, a mashed mixture of 40 g of potato chips, 130 g of peanut 

butter, 40 g of chocolate chip cookies, 130 g of Nesquik powdered chocolate flavoring, 

and 200 g of standard lab chow (19.6% fat, 14% protein, 25.7% sugar; 4.5 kcal/g). The 

average weight of the rat model on the different diets is as follows: DIO rats fed JFD > 

DIO rats fed ND > DR rats fed JFD > DR rats fed ND. In addition to the differences in 

weight, DIO rats fed the JFD also exhibited glucose intolerance and relative insulin 

resistance (Levin et al., 1997). 

Rat liver microsomes derived from DR rats fed a ND, DR rats fed a JFD, and DIO 

rats fed a ND were incubated with AEA (100 µM) for 30 min at 37°C. Figure 2.9A shows  
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Figure 2.8. Determination of P450-mediated metabolites formed by rat liver 

microsomes. Anandamide (100 µM) was incubated with RLM (200 µg) in the 

presence of vehicle or 10 µM of indomethacin, a COX inhibitor (data not shown), 

nordihydroguaiaretic acid, a LOX inhibitor (data not shown), 1-

aminobenzotriazole, a P450 inhibitor (data not shown), or diphenyliodonium 

chloride (DIC), a P450 reductase inhibitor. The reactions were incubated for 30 

min at 37°C and the products were extracted and analyzed by ESI-LC/MS as 

described in Materials and Methods for products observed at (A) m/z 356 and (B) 

m/z 380. The bar graph represents the peak area ratio (product peak area: AEA-d8 

peak area) for the amount of product formed as the mean ± SEM from two 

separate experiments.*, P < 0.05. 
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Figure 2.9. Effect of obesity and diet on P450-catalyzed metabolism of AEA by RLM. 

Liver microsomes were prepared from Levin rats selectively bred to be susceptible or 

resistant to diet induced obesity on junk food (JFD) and/or normal diet (ND). Rat liver 

microsomal protein (200 µg) was incubated with AEA (100 µM) for 30 min at 37°C and 

product formation was determined as previously described. (A) The extracted ion 

chromatogram of M7 (m/z 356), M8 (m/z 356), and M9 (m/z 380), representative of the 

microsomes made from DR rat on a normal diet (solid line), DR rat on a junk food diet 

(dotted line), or DIO rat on a normal diet (dashed line). The corresponding bar graph 

shows the relative amounts of the monitored P450 products as measured by the peak area 

ratio at m/z 356 (B) and m/z 380 (C). The amount of product formed is the mean ± SEM 

from two separate experiments performed in duplicate. Statistical significance was 

determined using the Holm-Sidak method in the GraphPad Prism 6 Program, *, P < 0.05; 

**, P < 0.01; ***, P < 0.001. 
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the extracted ion chromatograms for each of the samples monitoring the three 

aforementioned P450-mediated products at m/z 356 and 380. Figure 2.9B shows bar 

graphs quantifying the information. For products M7 and M8, there was a significant 

increase in product formation by liver microsomes from the DIO rats on a ND when 

compared to the DR rat on either the ND or JFD. On the other hand, there was a 

significant decrease in the formation of M9 by the livers of DR rats fed a JFD and DIO 

rats fed a ND when compared to DR rats fed a ND. 

 

Discussion 

Normally, AEA is hydrolyzed by FAAH to give arachidonic acid and 

ethanolamine; however, AEA can also be oxidized by COX-2, LOX, and CYP450 

enzymes. COX-2 catalyzes the oxidation of AEA to prostaglandin ethanolamides or 

prostamides (Kozak et al., 2002; Ritter et al., 2012; Yang et al., 2005; Yu et al., 1997). 

Prostamide F2α and its analog bimatoprost act at the prostamide receptor to increase hair 

growth, reduce fat disposition, and mediate nociception (Woodward et al., 2013). 

Lipoxygenase converts AEA into several hydroxyanandamides (Hampson et al., 1995). 

12-Hydroxyanandamide, a brain metabolite, has an affinity for the for the CB1 receptor in 

the nanomolar range and can inhibit forskolin-stimulated cAMP production suggesting a 

possible physiological role as well (Hampson et al., 1995). Likewise, cytochrome P450s 

can epoxygenate AEA to give the 5,6-, 8,9-, 11,12-, and 14,15-EET-EAs and hydroxylate 

it to give 20- and 19-HETE-EA (Snider et al., 2007; Snider et al., 2008; Sridar et al., 

2011; Stark et al., 2008). 
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To date, the CYP450s known to metabolize AEA are found primarily in the liver, 

kidney, and brain (Snider et al., 2007; Snider et al., 2008; Sridar et al., 2011). CYP2J2 is 

the most abundantly expressed CYP450 in the cardiovascular system (Wu et al., 1996), 

but it is also known to participate in the intestinal metabolism of a couple of non-sedating 

antihistamines (Hashizume et al., 2002; Matsumoto et al., 2002). CYP2J2 metabolizes 

AA, which is structurally similar to AEA, to give four EETs which have a plethora of 

biological actions in the body. Because CYP2J2 plays an important role in the 

metabolism of AA, it is possible that CYP2J2 might play an important role in the 

metabolism of AEA as well. This study was performed to investigate CYP2J2 

metabolism of AEA and its involvement in the intestinal metabolism of AEA. Moreover, 

we also investigated the effects of obesity and a junk food diet on AEA metabolism in the 

rat liver. 

We are the first to report that human recombinant CYP2J2 metabolizes AEA to 

give five mono-oxygenated products: the 5,6-, 8,9-, 11,12-, 14,15-EET-EAs and 20-

HETE-EA. This metabolite profile is similar to that reported by other labs for the 

metabolism of AA by recombinant CYP2J2 that yielded the four epoxides, 14,15-, 11,12-

, 8,9-,  and 5,6-EETs, in addition to the several HETEs (King et al., 2002; Wu et al., 

1996). Although CYP2J2 is thought to function primarily as an epoxygenase, it does 

hydroxylate some substrates including AA, terfenadine, and ebastine (Hashizume et al., 

2002; King et al., 2002; Lafite et al., 2006; Wu et al., 1996). Our studies determined the 

kinetic constants, KM and kcat, for each of the five metabolites formed. A caveat for the 

kinetic parameters reported for the EET-EAs is that the formation of these products never 
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reached saturation even up to 1 mM of AEA (data not shown). As a result, the calculated 

kinetic constants are extrapolated and can only serve as estimated values. 

Although the EET-EAs had different values for their kinetic parameters, similar 

deviations in these kinetic values have been seen for the metabolism of AEA by other 

CYP450s and for the different regioisomers formed during CYP450-mediated 

metabolism of AA (Daikh et al., 1994; Kiss et al., 2000; Pratt-Hyatt et al., 2010; Snider et 

al., 2008; Sridar et al., 2011). Although the metabolism of AEA by CYP2J2 is not as 

efficient, estimated by calculating kcat/KM, as that observed for some of the other P450s 

such as CYP2D6 or CYP2B6, these kinetic parameters are comparable to those reported 

for CYP3A4 (Pratt-Hyatt et al., 2010; Snider et al., 2008; Sridar et al., 2011). In the 

presence of 50 µM AEA, the total catalytic turnover rate for recombinant CYP2J2 was 

calculated to be about 7 nmol of total product formed/nmol of CYP2J2/min. For 

comparison, in the presence of 100 µM AA, two separate labs have determined the 

turnover to be 0.065 and 0.165 nmol of total product formed/nmol of CYP2J2/min (King 

et al., 2002; Wu et al., 1996). Although plasma levels of AA are significantly higher than 

AEA (3-4 mM vs. 300-400 nM), the actual concentrations of AEA in subcellular 

compartments, such as the plasma membrane, are most likely significantly higher (Brash, 

2001; Fernandez-Rodriquez et al., 2004; Shinde et al., 2012). This suggests that AEA 

may be a substrate for CYP2J2 in vivo. 

Several di-oxygenated products were observed at m/z 380 in the extracted ion 

chromatograms of the metabolites formed by recombinant CYP2J2 (Figure 2.3). These 

were minor products compared to the EET-EAs. Because di-oxygenated AEA metabolite 

standards are not commercially available, we were unable to conclusively identify the 
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products formed. CYP2D6 is known to di-oxygenate AEA to form several 

hydroxyepoxyeicosatrienoic acid ethanolamides (HEET-EAs) (Snider et al., 2008). It is 

possible that these CYP2J2-catalyzed products observed at m/z 380 are structurally 

similar. 

The ECS activity in the intestine plays a crucial role in energy balance; therefore, 

it is important to know the identities and relative amounts of the AEA metabolites formed 

in the intestine. The metabolite profile for HIM is similar to that of HLM with the 

formation of 20- and 19-HETE-EAs and 11,12-, 8,9-, and 5,6-EET-EAs (Snider et al., 

2007). However, the formation of the 14,15-EET-EA was only observed using 

concentrations of AEA above 100 µM or in the presence of a soluble epoxide hydrolase 

inhibitor. The efficiencies or Vmax/Km values for the formation of 20-HETE-EA, 5,6-, 

8,9-, and 11,12-EET-EAs were 4, 0.01, 0.009, and 0.02 µL/min/mg of protein. Because 

the presence of AUDA increased the formation of the EET-EAs, this suggests the 

presence of epoxide hydrolase (EH) in HIM preparations. Although it is expected that 

microsomes may contain microsomal EH, AUDA is a soluble EH inhibitor and should 

not inhibit microsomal EH activity (Morisseau and Hammock, 2013). It is likely that the 

inhibition of EET-EAs formation in the presence of AUDA is a substrate competition 

effect and not inhibition of microsomal EH activity; however, it is not impossible for 

some soluble EH activity to be present. Because the EET-EAs are constantly being 

hydrolyzed by EHs, the kinetic constants calculated for HIM may not be entirely reliable. 

The 20-HETE-EA metabolite is the major product of P450-catalyzed AEA metabolism in 

HLM and HIM (Snider et al., 2007). In relation to the epoxides, the 8,9-EET-EA was the 

preferred product formed by HLM, but the 5,6-EET-EA seems to be the preferred 
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product formed by HIM although the efficiency for its formation is the same as 11,12-

EET-EA. Although CYP2J2 is present in the intestine, it does not appear to be a 

significant contributor to AEA metabolism in the intestine in comparison with other 

P450s. On the other hand, CYP3A4 and CYP2C9 are responsible for about 50% of the 

20-HETE-EA and 11,12-EET-EA produced in the intestine, respectively. Other P450s 

such as CYP2C19 and CYP2D6, both of which are known to be expressed at appreciable 

levels in the intestine, probably contribute significantly to AEA metabolism in the 

intestine as well (Paine et al., 2006; Snider et al., 2008). A caveat to this study is that no 

test was completed to determine the presence of the P450s; however, the product 

description provided by BD Biosciences reported activity for CYP3A4, CYP2C9, and 

CYP2J2. 

 Plasma AEA levels are positively associated with body mass index. As a result, 

obese individuals exhibit higher concentrations of AEA when compared to lean controls 

(Engeli et al., 2005; Quercioli et al., 2011). An important aspect of obesity is the chronic 

low level inflammation (Kim et al., 2013).The affinity of AEA for the CB1R is four times 

that of its affinity for the CB2 receptor (Felder et al., 1995). CB1 receptor activation is 

believed to be pro-inflammatory, while CB2 receptor activation is thought to be anti-

inflammatory (Han et al., 2009; Rajesh et al., 2008). Thus, the AEA tone may contribute 

to the chronic inflammation associated with obesity. The CB2R is also important in 

intestinal motility, especially during inflammation. Immune cells in the mucosal regions 

of the gastrointestinal tract express CB2 receptors which downregulate leukocyte 

infiltration and inflammation via inhibition of adhesion and migration, apoptosis of 

activated immune cells, and cytokine and chemokine production (Cabral and Staab, 2005; 
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Klein, 2005; Lunn et al., 2006). The migration of dendritic cells to various inflammatory 

sites is necessary to initiate immune responses and activation of the CB2 receptor can 

inhibit this process. Activation of the CB2 receptor causes a decrease in cAMP levels, 

and as a result, ERK activation decreases causing a decrease in the expression of matrix 

metalloproteinase (MMP-9) which facilitates the migration of inflammatory cells 

(Adhikary et al., 2012). As a result, CB2 receptor activation may be an endogenous 

mechanism  to combat inflammation (Wright et al., 2008). 

Previous studies from our lab have suggested a physiological importance for the 

5,6-EET-EA metabolite of AEA since it has a nanomolar affinity for the CB2 receptor 

and it can decrease intracellular cAMP accumulation in Chinese hamster ovary cells 

expressing the CB2 receptor (Snider et al., 2009). Moreover, this metabolite is more 

biologically stable than the parent AEA with an estimated half-life of 32 min (Snider et 

al., 2009). This half-life is four times longer than the half-life reported for the structurally 

similar 5,6-EET metabolite formed by the metabolism of AA (Fulton et al., 1998). Since 

the 5,6-EET-EA is the major AEA metabolite formed in the intestine, it may play an 

important anti-inflammatory role in the intestine. 

Microsomes prepared from the livers of rats selectively bred to be susceptible or 

resistant to diet-induced obesity were used to determine if obesity and/or diet had any 

effect on AEA metabolism in the liver. The RLM did not form the expected metabolites 

of AEA, the EET-EAs and the HETE-EAs. This may be because rat and human P450s 

are not identical and the liver P450 isomer content may differ as well. One group 

investigated AEA metabolism by mouse brain and liver microsomes (Broheim et al., 

1995). The liver formed at least 20 different metabolites, but none of those metabolites 



 

63 
 

were positively identified. Conversely, the mouse brain formed only two metabolites with 

a positive ion mass of 365. So, it is not unlikely that RLM would form different 

metabolites than HLM. Because RLM did not form the epoxides and hydroxides of AEA 

formed by human P450s, three other P450-mediated metabolites were identified and 

observed for changes in their formation with regard to weight and diet.  

Using the P450 reductase inhibitor DIC, three alternative P450-catalyzed 

metabolites were identified having m/z values at 356 and 380. All P450s require 

reductase as an electron donor in order for metabolism to occur. Although DIC did not 

eliminate all product formation, this can be explained by the use of only one 

concentration of DIC. It is possible that if higher concentrations were used, there would 

be a complete inhibition of product formation. Even though the identities of M7(m/z 

356), M8 (m/z 356), and M9 (m/z 380) were not determined, previous studies suggest that 

AEA metabolites that ionize at m/z 380 are secondary EET-EA products that are 

dioxygenated (Snider et al., 2008).  For the M7 and M8 products, obesity seems to be the 

more important determinant when investigating AEA metabolism than diet. Conversely, 

for the M9 metabolite, the junk food diet seems to have more effect on its formation than 

obesity. 

Increased anandamide levels in overweight people exhibit a correspondence with 

decreased FAAH activity which increases the likelihood of anandamide being 

metabolized via alternative pathways such as by cyclooxygenases, lipoxygenases, and 

P450s (Engeli et al., 2005; Ligresti et al., 2013). However, the expression levels of these 

enzymes are sometimes altered due to inflammation and obesity. Evidence suggests that 

COX and LOX mRNA levels and activities are increased during obesity (Ahren et al., 
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2000; Xu et al., 2005). Since COX metabolizes AA to proinflammatory prostaglandins 

and thromboxanes (PGE2 and TXA2)) which induce the production of inflammatory 

cytokines, such as IL-1β, IL-6, and TNF-α from macrophages, the increase in COX 

activity may promote the inflammatory state observed in obesity (Tilley et al., 2001). 

Likewise, research suggests that LOX activity may be pro-inflammatory as well (Li et al., 

2013; Neels, 2013).  

Conversely, several P450s exhibit decreased expression in animal models of 

obesity and inflammation (Morgan, 1997; Renton, 2001; Wamberg et al., 2013; Zhao et 

al., 2006). Studies utilizing animal models of obesity suggest a decrease in P450 

epoxygenase activity with a concomitant increase in epoxide hydrolase activity, but no 

effect on P450 ω-hydrolase activity (Laffer et al., 2004; Theken et al., 2012a; Zhao et al., 

2005). Moreover, obese individuals have been reported to have a decrease in CYP2J2 

expression in subcutaneous adipose tissue and significantly lower plasma EET levels 

when compared to control subjects (Theken et al., 2012b; Wamberg et al., 2013). 

Because P450s produce pro-inflammatory ω-hydroxylated fatty acids and anti-

inflammatory epoxygenated fatty acids, the decrease in the anti-inflammatory mediators 

may contribute to the inflammation observed in obesity. The impact of a junk food diet 

rich in ω-6 fatty acids on epoxide formation is evident by the altered formation of M9. 

Since RLM did not form the EET-EAs or the HETE-EAs, they are probably not the best 

model to study obesity. However, the important point is that in obesity AEA is increased, 

but P450 activity is likely decreased. This would likely cause a decrease in the anti-

inflammatory epoxygenated fatty acids, such as the EET-EAs, and subsequently increase 

inflammation.  
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CHAPTER III 
 

Inhibition of the Hydrolysis of Epoxyeicostrienoic Acid Ethanolamides Using the 

Soluble Epoxide Hydrolase Inhibitors AUDA, APAU, and TPPU 

 

Abstract 

 The endocannabinoid anandamide is metabolized by several P450s to give four 

epoxyeicosatrienoic acid ethanolamides (EET-EAs). The biological functions of these 

metabolites have yet to be determined. Much progress has been made in understanding 

the purpose of the structurally related metabolites of arachidonic acid, the 

epoxyeicosatrienoic acids (EETs), as a result of the development of soluble epoxide 

hydrolase inhibitors (sEHIs). Soluble epoxide hydrolase (sEH) is the main enzyme 

responsible for the hydrolysis of the epoxide-containing EETs to the less chemically 

reactive dihydroxyeicosatrienoic acids (DHETs). Since it is likely that sEH is also 

responsible for the hydrolysis of EET-EAs to DHET-EAs, it is possible that the same 

sEHIs can be used to inhibit the hydrolysis of the EET-EAs. As a result, the sEHIs 

AUDA, APAU, and TPPU were investigated for their ability to inhibit the hydrolysis of 

the EET-EAs by sEH. The 5,6-, 8,9-, 11,12-, and 14,15-EET-EAs are formed as a result 

of human liver S9 metabolism of AEA. Preliminary kinetic assays determined that for 19- 

and 20-HETE-EAs, the Km values were 199 and 63 µM, respectively, and the Vmax values 

were determined to be 137 and 503 pmols/min/mg of protein, respectively.  Since the 

kinetic assays for the formation of the epoxides were performed in the absence of sEHIs, 
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the rates of formation of the EET-EAs could not be accurately measured since the 

epoxides were also being hydrolyzed rapidly. As a result, the kinetic parameters could 

not be determined. Subsequent studies demonstrated that AUDA had an EC50 value of 5.6 

µM for inhibiting the hydrolysis of 14,15-EET-EA and APAU exhibited EC50 values of 

4.7 and 10.4 µM for inhibiting the hydrolysis of 11,12- and 14,15-EET-EAs, 

respectively. TPPU did not significantly inhibit the hydrolysis of any of the EET-EAs. 

Future studies leading to the design of more specific and potent inhibitors of the epoxide 

hydrolases responsible for EET-EA hydrolysis may be of great value in elucidating the 

biological roles of the EET-EAs.  

 

Introduction 

The endogenous cannabinoid arachidonoyl ethanolamine or anandamide (AEA)  

is oxidized by cytochrome P450s (P450s) to give several different metabolites, including 

the four regioisomeric epoxides 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid 

ethanolamides (EET-EAs) (Snider et al., 2007; Snider et al., 2008; Snider et al., 2010; 

Sridar et al., 2011; Stark et al., 2008). Data suggest that these epoxides are readily 

hydrolyzed by epoxide hydrolases (EHs) to give the 1,2-diols thereby forming the 

corresponding dihydroxyeicosatrienoic acid ethanolamides (DHET-EAs) (Morisseau and 

Hammock, 2005; Snider et al., 2007). As a result of the transitory nature of the epoxides, 

it may be difficult to ascertain their biological functions in the body experimentally. 

Humans have several EHs which are members of the α/β-hydrolase fold family 

and utilize a two-step mechanism to open epoxides and add a water molecule (Morisseau 

and Hammock, 2005). EPHX1 and EPHX2 are the genes that encode for the two most 
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notable EH family members, microsomal epoxide hydrolase (mEH) and soluble epoxide 

hydrolase (sEH), respectively (Decker et al., 2009; Morisseau and Hammock, 2005). The 

names of the enzymes correspond to their cellular localization. While mEH is found in 

the smooth endoplasmic reticulum or microsomes, sEH is found in the cytosol and 

peroxisomes (Enayetallah et al., 2006; Hosagrahara et al., 2004). Although mEH is 

primarily known for its ability to catalyze the hydrolysis of epoxides of xenobiotics and 

toxins, it can also hydrolyze fatty acid epoxides such as the EETs; however, sEH is far 

more efficient at catalyzing the hydrolysis of fatty acid epoxides (Marowsky et al., 2009; 

Morisseau et al., 2010; Oesch, 1973). Because of this, it is likely that sEH may be the 

primary enzyme responsible for the hydrolysis of the EET-EAs in vivo. 

 The EET-EAs are structurally similar to the P450-catalyzed arachidonic acid 

(AA) epoxide metabolites, the epoxyeicosatrienoic acids (EETs). These compounds only 

differ by the functional group attached to the α-carbon. While EETs have a hydroxyl 

group attached to the first carbon, EET-EAs have an ethanolamine group attached to the 

corresponding carbon. Experiments utilizing sEH isolated from rabbits determined that 

the EETs are subject to hydrolysis by sEH, but this enzyme prefers the epoxide to be 14-

16 carbons away from the carboxylic acid (Morisseau and Hammock, 2005; Zeldin et al., 

1993). As a result, the 14,15-EET isomer is the preferred substrate, whereas the 5,6-EET 

is an unlikely substrate (Zeldin et al., 1993). Although the EETs are quite labile in vivo 

due to their sEH-mediated hydrolysis to DHETs, a wealth of information is known about 

their biological functions and this can be attributed to commercially available standards, 

reliable quantification methods, and perhaps more importantly, the development of 

soluble epoxide hydrolase inhibitors (sEHI) (Morisseau and Hammock, 2005, 2013). 



 

77 
 

Here we describe the first investigation of the abilities of three potent sEHIs for EET 

hydrolysis to prevent the conversion of the EET-EAs to DHET-EAs in human liver S9 

fractions. 

 

Methods and Materials 

Materials. Anandamide, anandamide-d8, 5,6-EET-EA, 8,9-EET-EA, 11,12-EET-

EA, 14,15-EET-EA, and 20-HETE-EA were purchased from Cayman Chemical (Ann 

Arbor, MI). 1-(1-acetypiperidin-4-yl)-3-adamantanylurea (APAU), 12-(3-admantan-1-yl-

ureido) dodecanoic acid (AUDA), and 1-trifluoromethoxyphenyl-3-(1-

propionylpiperidin-4-yl) urea (TPPU) were gifts from Dr. Bruce Hammock (University 

of California-Davis, Davis, CA). Pooled human liver S9 fractions were purchased from 

BioreclamationIVT (Baltimore, MD). All other reagents were of the highest quality and 

were obtained from commercial sources. 

Anandamide Metabolism Assays. The metabolism of anandamide was 

determined using incubation mixtures (0.25 mL) containing human liver S9 fractions (0.8 

mg/mL), 100 mM potassium phosphate buffer (pH 7.4), 3.3 mM MgCl2, and anandamide. 

Varying amounts of APAU, AUDA, and TPPU were added to the reactions as indicated 

in the figure legends. Reactions were initiated by the addition of 1.3 mM NADPH and 

allowed to continue for 20-30 min at 37°C. Control reactions were performed in the 

absence of NADPH. The reactions were terminated by the addition of 1 ml of cold ethyl 

acetate. After the addition of the internal standard, anandamide-d8, the samples were 

vortexed for 2 min and centrifuged at full speed using a desktop centrifuge for 5 min. 

This extraction procedure was performed a total of two times. The organic layers were 
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dried down under a constant stream of nitrogen gas. The dried samples were resuspended 

in 100 µL of methanol and 10 µL aliquots were subjected to electrospray ionization-

liquid chromatography/mass spectrometry (ESI-LC/MS) analysis. The standard curves 

for the various metabolites that were used for the quantification and determination of the 

KM and Vmaz values were generated by subjecting various known amounts of authentic 

standards to ESI-LC/MS analysis. 

ESI-LC/MS Analysis. Samples (10 µL) were injected onto a Hypersil ODS 

column (5 µm, 4.6 × 100 mm; Thermo Fisher Scientific, Waltham, MA) that was 

equilibrated with 25% solvent A (0.1% acetic acid in water) and 75% solvent B (0.1% 

acetic acid in methanol). The metabolites were resolved using the following gradient: 0 to 

5 min, 75% B; 5 to 20 min, 75 to 100% B; 20 to 25 min, 100% B; 25 to 26 min, 100 to 

75% B; and 26 to 30 min, 75% B. The flow rate was 0.3 ml/min. The column effluent 

was directed into the LCQ mass analyzer (Thermo Fisher Scientific). The ESI conditions 

were as follows: sheath gas, 90 arbitrary units; auxiliary gas, 30 arbitrary units; capillary 

temperature, 200°C; and spray voltage, 4.5 V. Data were acquired in positive ion mode 

for anandamide and its metabolites using the Xcalibur software package (Thermo Fisher 

Scientific) with one full scan from 300 to 500 mass/charge ratio (m/z) followed by one 

data-dependent scan of the most intense ion.  

Data Analysis. Nonlinear regression analyses of the data were performed using 

GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA; http://www.graphpad.com). 
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Results 

Human Liver S9 Metabolism of Anandamide. Before we could determine the efficacy 

of the selected sEHIs for inhibiting the hydrolysis of the EET-EAs, we had to investigate 

the metabolism of AEA by human liver S9 fractions. S9 fraction preparation was first 

described by Garner and coworkers (Garner et al., 1972). Basically, the tissue, liver in 

this situation, is homogenized and centrifuged for 10 min at 9000 g. The supernatant is 

the S9 fraction. The total ion chromatogram (TIC) and extracted ion chromatograms for 

the metabolites formed having m/z values of 364 and 382 can be seen in Figure 3.1. Six 

mono-oxygenated metabolites were detected. Two of the metabolites were hydroxylated, 

19- and 20-HETE-EA, and four were epoxygenated, 5,6-, 8,9-, 11,12-, and 14,15-EET-

EA. These were identified from their retention times and MS/MS spectra by comparison 

with authentic standards, except for 19-HETE-EA, for which an authentic standard is not 

yet available. In order to determine the kinetic data, we used assay conditions where 

product formation was linear with respect to the protein concentration and the selected 

incubation time. The kinetic data for substrate concentration vs. product formation were 

plotted for 14,15-, 11,12-, 8,9-, and 5,6-EET-EA, see Figure 3.2. Because we were unable 

to reach saturation at the concentrations of AEA used, the kinetic parameters for these 

metabolites could not be determined. The formation of 19- and 20-HETE-EAs by human 

liver S9 exhibited simple Michaelis-Menten kinetics and nonlinear regression was used to 

calculate the apparent Km and Vmax values. The Km values calculated for the formation of 

19- and 20-HETE-EA were 199 and 63 µM, respectively, and the Vmax values were 137 

and 503 pmol/min/mg of protein, respectively, for 19- and 20-HETE-EA formation 

(Figure 3.2). 
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  Figure 3.1. AEA metabolism by human liver S9. Liver S9 protein (0.8 mg/mL) was 

incubated with AEA (100 µM) in 100 mM potassium phosphate buffer, pH 7.4, 

containing 3.3 mM MgCl2. The reaction was started by the addition of 1.3 mM of 

NADPH and the samples were incubated at 37°C with shaking. The reaction was stopped 

with ice cold ethyl acetate after 20 min. The metabolites were extracted from the reaction 

mixture as described in Materials and Methods. The TIC shows all the ions detected by 

the LC/MS (Top). The ions observed at m/z 364 represent the mono-oxygenated 

metabolites, the HETE-EAs and the EET-EAs (Middle).The peaks observed at m/z 382 

are the DHET-EAs that result from the hydrolysis of the EET-EAs by epoxide hydrolase 

(Bottom). 
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  Figure 3.2. Kinetic data for the metabolism of AEA by human liver S9. Reaction 

mixtures containing human liver S9 (200 µg) and AEA (2.5-1000 µM) were incubated 

for 10 and 20 (20-HETE-EA only) min in 0.1 M phosphate buffer, pH 7.4, at 37°C with 

shaking. The reactions were quenched and the samples were extracted as described in 

Materials and Methods. The amount of metabolites formed was calculated based on a 

standard curve obtained for each metabolite. Since an authentic standard for 19-HETE-

EA is not available, its formation is based on the standard curve for 20-HETE-EA. The 

rate data were fitted to the Michaelis-Menten enzyme kinetic model using the Graphpad 

Prism 6 software. 
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The Effect of AUDA on EET-EA Levels Measured in Liver S9 Incubations. 

AUDA is a potent sEHI that is commonly used to inhibit sEH-mediated hydrolysis of  

EETs in several in vitro and in vivo models (Inceoglu et al., 2006; Olearczyk et al., 2006; 

Xu et al., 2006). Due to the structural similarities between the EETs and the EET-EAs, 

we tested AUDA for its ability to inhibit the hydrolysis of the EET-EAs. Figure 3.3 

shows the extracted ion chromatograms at m/z 364 and 382 from which the relative levels 

of EET-EAs and DHET-EAs present can be determined, respectively. For the epoxide 

metabolites, increasing the concentration of AUDA generally caused the expected 

increase in the area of the respective peaks. Similarly, the peaks representative of the 

DHET-EAs decreased in area as the amount of AUDA added to the incubations 

increased. Because we were unable to accurately quantify the amount of DHET-EAs 

formed, we were unable to determine if the increase in EET-EA formation was indirectly 

proportional to the decrease in DHET-EA formation.  Interestingly, at the highest 

concentration of AUDA tested (100 µM), the peak areas decreased for all of the epoxides 

except for the 14,15-EET-EA. Since AUDA also caused a significant decrease in the 

amount of 20-HETE-EA formed, this decrease in product formation may be due to 

inhibition of P450-catalyzed metabolism of AEA to form the epoxides. 

 

Determination of the EC50 Values for AUDA, APAU, and TPPU. Because 

AUDA was able to increase the total amounts of the EET-EAs measured following liver 

S9 metabolism, we also investigated the effects on the two other sEHIs, APAU and 

TPPU on epoxide levels formed by human liver S9 using a similar approach. From these 

assays, the EC50 values for the inhibition of the hydrolysis of each of the AEA epoxide  
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  Figure 3.3. Formation of EET-EAs and DHET-EAs by human liver S9 in the presence of 

AUDA. Human liver S9 protein (0.8 mg/mL) was incubated with AEA (100 µM) and 

varying concentrations of AUDA in 0.1 M phosphate buffer containing MgCl2 for 30 min 

at 37°C with shaking. The reaction was stopped and the metabolites extracted as 

previously described in Materials and Methods. The color traces represent the following 

concentrations of AUDA added: vehicle only (black), 0.1 µM (red), 1 µM (blue), 10 µM 

(green), and 100 µM (purple). 
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metabolites were investigated for AUDA, APAU, and TPPU, all of which are potent 

inhibitors of sEH and thus EET hydrolysis. All of the sEHIs used exhibited IC50 values at 

nanomolar levels for the inhibition of sEH activity (Jones et al., 2006; Morisseau et al., 

2002; Rose et al., 2010). A wide range of concentrations was initially tried for each of the 

sEHIs to determine the correct range of inhibitor concentration to perform the EC50 

evaluations for the inhibition of EET-EA hydrolysis.  

AUDA slightly increased 11,12-EET-EA levels, had no effect of 8,9-EET-EA 

levels, and decreased 5,6-EET-EA levels in a dose dependent manner (Figure 3.4A and  

B). AUDA significantly increased the formation of 14,15-EET-EA and its EC50 value 

was calculated as 5.6 ± 0.002 µM (Figure 3.4C). Although the presence of APAU 

significantly increased the formation of all four of the EET-EAs as compared to control 

(Figure 3.5A and B), EC50 values could only be calculated for 11,12- and 14,15-EET-EAs 

which were 4.7 ± 0.002 µM and 10.4 ± 0.003 µM, respectively (Figure 3.5C and D). 

Figure 3.6 shows the amount of product formed in response to increasing concentrations 

of TPPU. Although the addition of TPPU did significantly increase formation of 14,15- 

and 11,12-EET-EAs, this did not occur in a dose dependent manner. In addition, TPPU 

had no effect on the formation of 8,9- and 5,6-EET-EAs. As a result, no EC50 values 

could be obtained from the TPPU data. 

 

Discussion 

Anandamide is an endogenous cannabinoid that elicits several beneficial effects in 

the body mediated by cannabinoid receptor dependent and independent pathways  
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Figure 3.4. EC50 determination for AUDA. Human liver S9 (200 µg) was incubated with 

AUDA (0.1 nM-400 µM) in the reaction buffer as described in Materials and Methods. 

NADPH (1.3 mM) was added to start the reactions which were incubated for 30 min 

37°C. The reactions were stopped with 1mL of ethyl acetate and extracted twice. Sample 

preparation was performed as described in Materials and Methods. The bars in (A) and 

(B) represent the mean ± SEM from one experiment performed in duplicate. Statistical 

significance was determined using the Holm-Sidak method in the Graphpad Prism 6 

program. The points plotted in (C) for 14,15-EET-EA were obtained by subtracting the 

control amount from the total amount measured. Data points without error bars represent 

individual measurements. Data points with error bars represent the mean ± SEM for one 

experiment performed in duplicate. *, P < 0.05; **, P < 0.01. 
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  Figure 3.5. EC50 determination for APAU. Human liver S9 (0.8 mg/mL) was incubated 

with APAU (1 nM-1 mM) in the reaction buffer as described in Materials and Methods. 

NADPH (1.3 mM) was added to initiate the reactions which were continued for 30 min 

37°C. The reactions were stopped and samples extracted as previously described in 

Materials and Methods. The bars in (A) and (B) represent the mean ± SEM from one 

experiment performed in duplicate. Statistical significance was determined using the 

Holm-Sidak method in the Graphpad Prism 6 program. The points plotted in (C) for 

14,15-EET-EA and (D) for 11,12-EET-EA represent the increase in product formation 

above control levels. Data points represent the mean ± SEM for one experiment 

performed in duplicate. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 3.6. Effect of TPPU on EET-EA levels. Human liver S9 fraction (200 µg) was 

incubated with TPPU (1 nM-250 µM) in 100 mM potassium phosphate buffer, pH 7.4. 

The reactions were initiated by the addition of NADPH (1.3 mM) and samples were 

incubated for 30 min 37°C with shaking. The reactions were quenched with 1mL of ethyl 

acetate and extracted twice. Sample preparation was performed as described in Materials 

and Methods. Although there were several treatment groups that varied significantly from 

control, these variations did not occur in a dose dependent manner and therefore the EC50 

values could not be calculated. The bars represent the mean ± SEM from one experiment 

performed in duplicate. Statistical significance was determined using the Holm-Sidak 

method in GraphPad Prism 6 program. *, P < 0.05; **, P < 0.01; ***, P < 0.001.   
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(Snider et al., 2010). Several P450s are known to metabolize AEA to give the 19- and 20- 

HETE-EAs and the 5,6-, 8,9-, 11,12- and 14,15-EET-EAs (Pratt-Hyatt et al., 2010; 

Snider et al., 2007; Snider et al., 2008; Sridar et al., 2011; Stark et al., 2008). The 

structure of AEA is closely related to that of AA. AA is metabolized by P450s to give 

several HETEs and 5,6-, 8,9-, 11,12- and 14,15-EET (Roman, 2002) . Soluble epoxide 

hydrolase inhibitors have been used to inhibit EET hydrolysis and study their biological 

functions in vivo (Morisseau and Hammock, 2013). As a result, we investigated the 

ability of three potent sEHIs to inhibit the hydrolysis of the EET-EAs in an effort to 

determine their usefulness in studying the biological of the EET-EAs in vivo. We chose 

to use the human liver S9 preparation as an enzyme source because it should exhibit 

higher sEH activity than microsomal preparations which should not include the cytosolic 

fraction. 

We first investigated the metabolism of AEA by human liver S9 fractions. Figure 

3.1 showed the LC/MS chromatogram of the products formed. The metabolites were the 

same as those known to be formed by human liver microsomes (HLM) (Snider et al., 

2007); however, the product profile was slightly different. With HLM, 8,9-EET-EA was 

the major product observed; however, with human liver S9, the 5,6-EET-EA was 

determined to be the major product (Snider et al., 2007). Whether this difference is due to 

the differences in the pools of the livers used for the preparation of the S9 and the 

microsomes or an intrinsic difference between S9 and microsomal metabolism is not 

clear. The S9 fraction contains microsomal and cytosolic proteins. Investigations 

completed by Slaughter and coworkers determined that microsomal incubations and 

cytosolic incubation were able to oxidize and reduce the COX-2 inhibitor rofecoxib, 
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respectively (Slaughter et al., 2003). Therefore, the presence of the cytosol in the enzyme 

source from this work as compared to previous studies may account for the observed 

differences. Moreover, the presence of multiple isoforms of epoxide hydrolases, such as 

microsomal, soluble, and potentially others, makes it difficult to definitively determine 

the kinetic parameters of these labile compounds suggesting that microsomes are a better 

enzyme source to study kinetics; however, the reaction conditions reported here are 

probably more similar to in vivo conditions than the microsomal studies with regard to 

enzymatic activity.  

It is possible that both mEH and sEH are present in the human liver S9 fraction. 

This may explain why at the concentrations of AEA used, we were unable reach 

saturation for the formation of the EET-EAs and determine Km and Vmax values. The Km 

we reported for liver S9 formation of 20-HETE-EA is about 25 times higher than the Km 

reported in HLM (Snider et al., 2007). On the other hand, our reported Vmax value was 

two times greater than that reported for HLM (Snider et al., 2007). The kinetics for 19-

HETE-EA were not reported in the previous study, so there is no comparison to be made; 

however, the liver S9 is more efficient at 20-HETE-EA formation than 19-HETE-EA 

formation based on Vmax/Km values of 8 and 0.7 pmols/min/mg of protein, respectively.  

Only the IC50 values for sEH  activity as measured using the radioactive substrate 

[
3
H]-tDPPO or the fluorescent substrate α-cyanocarbonate have been reported in the 

literature for the three sEHIs studied (Jones et al., 2006; Morisseau et al., 2002; Rose et 

al., 2010). However, one lab has reported an EC50 value for AUDA of 2 µM for 

inhibition of 14,15-EET-induced vasorelaxation of precontracted bovine coronary arteries 

(Falck et al., 2009).  This value is comparable to the EC50 value of 5 µM reported here for 
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AUDA inhibition of 14,15-EET-EA hydrolysis. We observed that AUDA inhibited the 

hydrolysis of the 14,15- and 11,12-EET-EAs at low micromolar levels leading to 

increased levels of epoxides, but decreases in the yields of the epoxides were observed at 

higher levels for 5,6-, 8,9-, and 11,12-EET-EAs. Increasing the AUDA concentration 

caused a continuous decrease in 5,6-EET-EA formation at all concentrations used. 

AUDA also inhibited 20-HETE-EA formation in a dose-dependent manner, but had little 

to no effect on the formation of 19-HETE-EA (Figure 3.3). AUDA is rapidly metabolized 

in vivo, and its adamantine group is sensitive to P450-catalyzed oxidation (Morisseau and 

Hammock, 2013). Thus, the decreases in the EET-EA levels and 20-HETE-EA formation 

at higher concentrations of AUDA may be due to competitive inhibition of the P450s 

responsible for their formation by AUDA. It is unlikely that either APAU or TPPU are 

inhibitors of P450 activity since their presence did not significantly affect 20-HETE-EA 

formation (data not shown). 

APAU caused an increase in the levels of all of the EET-EAs, but EC50 values 

could only be calculated for the 14,15- and 11,12-EET-EAs. TPPU caused significant 

increases in the epoxide levels at the highest concentration tested for 11,12- and 14,15-

EET-EA, but the  inhibition data were not consistent enough to calculate an EC50 value. 

TPPU had a relatively minor effect on 8,9-EET-EA levels and no effect on 5,6-EET-EA 

hydrolysis. The various degrees of inhibition exhibited by the sEHIs for the hydrolysis of 

each of the EET-EAs suggest that the substrate preference of sEH for these metabolites 

may be similar to that for the EETs with 14,15-EET-EA being the preferred substrate, 

followed by 11,12-, 8,9-, and with 5,6-EET-EA being the least preferred. 
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In conclusion, humans have several different EHs (Decker et al., 2009; Morisseau 

and Hammock, 2013), and it is likely that at least two of the major forms, mEH and sEH, 

are present in the liver S9 fraction used as an enzyme source for these studies. It is known 

that potent inhibitors of sEH such as AUDA, APAU, and TPPU do not inhibit mEH 

activity and vice versa, inhibitors of mEH do not inhibit sEH (Morisseau et al., 2008; 

Shen and Hammock, 2012).  The presence of at least two isoforms of EHs in the S9 

fraction and the use of inhibitors specific for only one isoform may be responsible for the 

differences observed in the inhibition, or lack thereof for the four different EET-EAs. 

There may be differences in selectivity for each of the EET-EAs when observing mEH 

activity vs. sEH activity. Future studies investigating the specific EHs (soluble or 

microsomal) responsible for the hydrolysis of each of the EET-EAs and the development 

of compounds more specific and potent for the inhibition of the EHs responsible for the 

hydrolysis of the EET-EAs will be required in order to have a better chance of 

elucidating the effects of EET-EAs in vivo. 
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CHAPTER IV 
 

Metabolism of the Synthetic Cannabinoid JWH-018 and Its Effect on Heart Rate 

and Blood Pressure in Rats 

 

Abstract 

The marijuana substitute, “Spice” or “K2”, is a significant drug of abuse in the 

United States and abroad. The side effects observed from using this product range from 

mild to deadly. JWH-018 is one of the main synthetic cannabinoids (SCs) that acts as the 

active ingredient in Spice products. It is important to understand the metabolism of this 

drug in the body to determine if the parent and/or an active metabolite cause the observed 

toxicities. This information may aid in the discovery of a treatment for toxicity due to this 

and similar compounds. Although several cytochrome P450s have been investigated for 

their ability to metabolize JWH-018, CYP2J2, a P450 primarily expressed in the heart 

which is a critical target organ for JWH-018 toxicity, has not been studied in detail. In the 

reconstituted system, CYP2J2 metabolizes JWH-018 mostly to give the JWH-018 ω-1-

OH metabolite with an observed KM of 10 µM and a kcat value of 0.2 pmol/min/pmol of 

P450. These kinetic parameters are comparable to those for CYP2C9, which is believed 

to contribute significantly to JWH-018 metabolism in the liver; however, CYP2J2 is not 

as efficient as CYP2C9 at the metabolism of JWH-018. In addition, the metabolism of 

JWH-018 was studied in human intestinal and liver microsomes and in an animal model. 

Although several different metabolites were formed, the major product was a reduced 
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dihydroxydiol metabolite which could not be identified unequivocally. This product was 

formed by all of the human and rat organ tissues examined. Animal studies suggest that 

JWH-018 does not affect heart rate, but it does cause a significant increase in blood 

pressure. Future studies are needed to determine the efficacy of the major metabolic 

products of JWH-018 in vivo, especially the dihydroxydiol product, since several JWH-

018 metabolites are known to retain biological activity. 

 

Introduction 

Cannabis or marijuana has been used medically and recreationally for thousands 

of years (Mechoulam and Hanus, 2000; Robson, 2005). Generally, SCs are based on the 

structure of the major psychoactive compound in marijuana, ∆
9
-tetrahydrocannabinol 

(∆
9
-THC). The therapeutic potential of cannabinoid-based compounds did not become 

evident until after the cloning of the two cannabinoid receptors (Matsuda et al., 1990; 

Munro et al., 1993). Both receptors are primarily associated with G-proteins of the Gαi 

and Gαo families, and as a result, their activation leads to inhibition of cAMP 

accumulation in cells (Howlett, 2005; Pertwee, 2005); however, coupling of the receptors 

to other G-proteins has been reported as well (Glass and Felder, 1997; Lauckner et al., 

2005). Cannabinoid 1 receptors (CB1Rs) are abundantly expressed in the brain, but are 

also present in peripheral tissues such as the heart and lungs at much lower levels 

(Galiegue et al., 1995). The cannabinoid 2 receptor (CB2R) is mostly expressed in the 

immune system (Galiegue et al., 1995).  In order to study the cannabinoid system, Dr. 

John W. Huffman created the JWH family of SCs. One of these compounds, JWH-018 
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(see Figure 4.1), is found in almost all of the K2 products currently available (Atwood et 

al., 2010; Huffman et al., 1994; Wiley et al., 1998). 

Since 2004, K2 products have been marketed legally as natural herbal incense at 

convenience stores, gas stations, and via the Internet. As a result, many users believe that 

the products are “safe” because of easy availability and lack of government regulation 

(Every-Palmer, 2011).  However, in 2011, the Drug Enforcement Administration placed 

five SCs, including JWH-018,  into Schedule I of the Controlled Substances Act (Pant et 

al., 2012). K2 products usually contain non-psychoactive plant matter which has been 

altered by the addition of various SCs (Atwood et al., 2010; Hudson et al., 2010; 

Uchiyama et al., 2010; Zuba et al., 2011). These products are believed to be popular, 

especially among teenagers and young adults, due to their potent psychoactivity, 

availability, and lack of detection in commonly used drug tests (Every-Palmer, 2011). 

Unlike SC-containing products such as K2, marijuana contains over 60 

cannabinoids that modulate the effects of ∆
9
-THC (Pertwee, 2008). The synthetic 

cannabinoids present in K2 products have a higher affinity and greater efficacy at CB1Rs 

than ∆
9
-THC, which increases the chance of toxicity (Gunderson et al., 2012). Moreover, 

metabolites of synthetic cannabinoids are known to bind to and activate the CB1R, more 

so than ∆
9
-THC, which makes toxicity more likely after K2 usage (Brents et al., 2011; 

Chimalakonda et al., 2012). Moreover, studies utilizing monkeys revealed that SCs such 

as JWH-018 have a short duration of action which may lead to more frequent usage 

(Ginsburg et al., 2012). The relatively short duration time for their effects combined with 

increased potency at CB1Rs could lead to a greater risk for dependence (Ginsburg et al., 

2012). Due to its five carbon side chain, JWH-018 is also an optimum ligand for the  



 

98 
 

  Figure 4.1. Structure of JWH-018. 



 

99 
 

CB2R with a Ki of 2.9 nM which is comparable to its affinity at the CB1R (Aung et al., 

2000). Since little is known about the pharmacology and toxicity of JWH-018 and its 

metabolites in humans, research is needed to investigate the metabolism of JWH-018 and 

the effects of it and its pharmacologically active metabolites in the body.  

JWH-018 undergoes extensive cytochrome P450-mediated phase I metabolism 

and redistribution into body fat (Poklis et al., 2012). Cytochrome P450s or CYPs are a 

superfamily of mono-oxygenases involved in the metabolism of a wide variety of 

endogenous and exogenous compounds (Ortiz de Montellano, 2005). Oxidized CYP 

metabolites can be subsequently glucuronidated by UDP-glucuronosyltransferases (Seely 

et al., 2012), as a result, the majority of JWH-018 metabolites are excreted as 

glucuronides in human urine (Chimalakonda et al., 2011a; Chimalakonda et al., 2011b), 

including the three major  metabolites of JWH-018: the ω-OH, ω-1-OH, and ω-COOH 

(Chimalakonda et al., 2011b; ElSohly et al., 2011; Lapoint et al., 2011; Moran et al., 

2011). 

 Using human liver microsomes, Chimalakonda and coworkers determined that 

CYP2C9 is responsible for the formation of the ω-OH and ω-1-OH metabolites of JWH-

018, whereas CYP1A2 is responsible for the formation of the carboxylated metabolite 

(Chimalakonda et al., 2012). CYP2J2 is a P450 epoxygenase mainly expressed in the 

cardiovascular system, but it is also expressed in the intestines, lung, kidney, liver, brain, 

salivary ducts, stomach, and vascular smooth muscle cells (Enayetallah et al., 2004). Due 

to the cardiovascular side effects observed after exposure to JWH-018 in K2 products, the 

ability of the major cardiovascular P450, CYP2J2, to metabolize JWH-018 was 

investigated. Moreover, in vitro and in vivo animal studies utilizing rats were completed 
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to observe the metabolism of JWH-018 and its effects on heart rate and blood pressure. 

JWH-018 is normally administered via inhalation so that the lungs and heart are the first 

two organs to be exposed to the compound; however, there are some reports describing 

JWH-018 ingestion. In this situation, JWH-018 undergoes first pass metabolism by the 

intestine and liver. JWH-018 can be metabolized in the intestine and the metabolites and 

the remaining JWH-018 are absorbed into the portal vein and travel to the liver where 

additional metabolism occurs. After the remaining JWH-018 and its metabolites leave the 

liver, these compounds enter systemic circulation and can potentially cause several 

physiological effects, including those related to the cardiovascular system. As a result, 

the metabolism of JWH-018 by human intestine and liver microsomes was also 

investigated to determine the metabolite profiles.  

 

Materials and Methods 

Materials. AM251, ω-OH and ω-1-OH JWH-018 were purchased from Cayman 

Chemical (Ann Arbor, MI). JWH-018 was purchased from Ark Pharm, Inc. (Libertyville, 

IL). Rat hearts and livers were gifts from the lab of Dr. Margaret Gnegy (University of 

Michigan, Ann Arbor, MI). All other reagents were of the highest quality and were 

obtained from commercial sources. 

Enzymes. The human CYP450 CYP2J2 cDNA was a gift from Dr. Rheem Totah 

(University of Washington, Seattle, WA). CYP2J2 and CYP450 reductase were 

expressed in Escherichia coli and purified as previously described (Hanna et al., 1998; 

Smith et al., 2008). Human intestine (Lot #s: 3077535; 05866) and liver (Lot #: 88114) 

microsomes were purchased from BD Biosciences (Woburn, MA). 
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Preparation of Microsomes from Rat Hearts and Livers. The preparation of 

microsomes was performed as described previously (Lin et al., 1998). Briefly, the hearts 

or livers of three Sprague Dawley rats were pooled, chopped, and subsequently 

homogenized using a Tissue Tearor (Biospec Product Inc.) in homogenization buffer 

(100 mM potassium phosphate buffer, pH 7.4, 1 mM EDTA, and 150 mM KCl). The 

homogenate was centrifuged at 10,000 g for 30 min and the supernatant was filtered 

through gauze to remove the fat. The supernatant was ultracentrifuged at 100,000 g for 75 

min. The resulting pellet was resuspended using a glass pestle in a Dounce homogenizer 

in pyrophosphate buffer (100 mM tetrasodium pyrophosphate, pH 7.4 and 1 mM EDTA) 

to remove hemoglobin. The homogenate was centrifuged again at 100,000 g for 75 min 

and the resulting pellet was resuspended in suspension buffer (100 mM potassium 

phosphate buffer, pH 7.4, 1 mM EDTA, and 20% glycerol). Bovine serum albumin was 

used as the standard for the BCA Protein Assay (Pierce, Rockford, IL) which was used to 

determine the protein concentrations of the microsomes. 

JWH-018 Metabolism Assays. Recombinant Protein. CYP2J2 was reconstituted 

with reductase (1:2) and L-α-dilauroyl-phosphocholine (DLPC) lipid on ice for 60 min as 

described previously (Snider et al., 2007; von Weymarn et al., 2004). The metabolism of 

JWH-018 was determined using incubation mixtures (0.25 mL) containing 100 mM 

potassium phosphate buffer (pH 7.4), catalase (22 µg), JWH-018 (5-50 µM), and 

reconstituted CYP2J2. The reactions were initiated by the addition of 1.2 mM of NADPH 

and allowed to continue for 15 min at 37°C.  

Microsomal JWH-018 Metabolism Studies. Human intestinal microsomes (HIM), 

human liver microsomes (HLM), rat heart microsomes (RHM), or rat liver microsomes 
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(RLM) (0.8 mg/mL) were combined with 100 mM potassium phosphate buffer, pH 7.4, 

3.3 mM MgCl2 and 100 µM JWH-018 in a final volume of 250 µL. The reactions were 

initiated by the addition of 1.3 mM NADPH and allowed to continue for 20 (RLM), 30 

(HIM and HLM), and 45 (RHM) min. Control reactions were performed in the absence of 

NADPH. Product formation was linear with respect to time and protein concentration 

under these conditions. 

All reactions were terminated by the addition of 1 ml of ice cold ethyl acetate. 

After the addition of the internal standard, JWH-018-d9, the samples were vortexed 

briefly and centrifuged at full speed using a desktop Eppendorf centrifuge for 15 min. 

The organic layer was dried down under a constant stream of nitrogen gas. The dried 

samples were resuspended in 100 µL of 50% acetonitrile and subjected to electrospray 

ionization-liquid chromatography/mass spectrometry (ESI-LC/MS) analysis. The 

standard curves for the metabolites used for the quantification and the determination of 

the KM and kcat values were determined by injecting various known amounts of authentic 

standards into the ESI-LC/MS for analysis. 

ESI-LC/MS Analysis. Samples (10 µL) were injected onto a ZORBAX Eclipse 

XDB-C18 column (3.5 µm, 3 × 150 mm; Agilent Technologies, Santa Clara, CA) that 

was equilibrated with 50% solvent A (0.1% formic acid in water) and 50% solvent B 

(0.1% formic acid in acetonitrile). The metabolites were resolved using the following 

gradient: 0 to 20 min, 50% B; 20 to 21 min, 50 to 95% B; 21 to 35 min, 95% B. The flow 

rate was 0.3 ml/min. The column effluent was directed into the LCQ mass analyzer 

(Thermo Fisher Scientific). The ESI conditions were as follows: sheath gas, 90 arbitrary 

units; auxiliary gas, 30 arbitrary units; capillary temperature, 250°C; and spray voltage, 
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4.5 V. Data were acquired in positive ion mode for JWH-018 and its metabolites using 

the Xcalibur software package (Thermo Fisher Scientific) with one full scan from 300 to 

500 mass/charge ratio (m/z) followed by one data-dependent scan of the most intense ion.  

Animal Studies. Animals. Sprague-Dawley rats purchased from Harlan, Inc. 

(Indianapolis, IN) were housed in groups with a continuous availability of food and 

water. Housing and experimental rooms functioned on a 12 hr light/dark cycle at 21°C. 

The protocols used were approved by the University of Michigan University Committee 

on the Use and Care of Animals and satisfied the guidelines set forth by the NIH Guide 

for the Use of Laboratory Animals. 

Surgical Procedures. The rats were fitted with telemetric transmitters (TA11PA-

C40 or TL11M2-C50-PXT, Data Sciences International, Transoma Medical Inc., St. Paul, 

MN) using the anesthetics ketamine (90 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.) in 

order to measure heart rate (HR) and mean arterial pressure (MAP) as previously 

described (Jutkiewicz et al., 2013). Briefly, the monitoring system consisted of implanted 

battery-operated transmitters, Physiotel receivers, the DSI Data Exchange Matrix, and the 

Dataquest A.R.T. system. The data collected by the receiver were stored on a computer. 

The transmitter was placed in a subcutaneous pocket between the skin and muscle on the 

abdominal side. A suture secured the subcutaneous catheter that extended from the base 

of the transmitter into the femoral artery 2-3 cm. The rats were allowed to recover at least 

seven days prior to experimentation. 

Experimental Design. The caged rats were placed on top of the receivers and 

baseline data were recorded for at least one hour prior to the experiment to allow heart 

rate and mean arterial pressure to return to resting levels. To control for the responses to 
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the intraperitoneal (i.p.) injections and handling procedures used for these experiments, 

all rats were given a saline injection at least 30 min prior to the start of the experiment. 

All doses were administered i.p. in a volume of 1 mL/kg. 

Data Analysis. The heart rate and blood pressure data were calculated using the 

Dataquest A.R.T. Gold Analysis 3.01 software. This program averaged the heart rate 

(HR) and mean arterial pressure (MAP) values for every 10 s. Those values were 

subsequently averaged for every minute. Individual rat data were then calculated as the 

percent change from resting HR or MAP. Nonlinear regression, two-way ANOVA, and 

unpaired t test with Welch’s correction of the data were performed using GraphPad Prism 

6 (GraphPad Software Inc., San Diego, CA; http://www.graphpad.com). 

 

Results 

Metabolism of JWH-018 by Human Recombinant CYP2J2. JWH-018 

undergoes an extensive cytochrome P450-mediated phase I metabolism and redistribution 

into body fat (Poklis et al., 2012). Utilizing recombinant human proteins and human liver 

microsomes, Chimalakonda and others determined that CYP2C9 is primarily responsible 

for the formation of the ω-OH JWH-018 and ω-1-OH JWH-018 metabolite whereas, 

CYP1A2 is responsible for the formation of the carboxylated metabolite (Chimalakonda 

et al., 2012). CYP2J2 is a P450 epoxygenase mainly expressed in the cardiovascular 

system, but it is also expressed in the intestines, lung, kidney, liver, brain, salivary ducts, 

stomach, and vascular smooth muscle cells (Enayetallah et al., 2004). Due to the very 

significant cardiovascular side effects observed after exposure to JWH-018 in various K2 
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products, we investigated the ability of the major cardiovascular P450, CYP2J2, to 

metabolize JWH-018. 

Figure 4.2 shows the ESI-LC/MS chromatogram for the metabolism of JWH-018 

by purified human CYP2J2. The extracted ion chromatogram at m/z 358 at the bottom of 

the figure shows the two mono-oxygenated metabolites formed during JWH-018 

metabolism by CYP2J2. Although several different mass-to-charge ratios were monitored 

including m/z 358, 374, and 390, only the two mono-oxygenated products were observed. 

At m/z 358, the N-(5-hydroxypentyl) (ω-OH) and the N-(4-hydroxypentyl) (ω-1-OH)  

metabolites of JWH-018 eluted after approximately 23 and 24 min, respectively. These 

were the only products observed for CYP2J2-catalyzed oxidation of JWH-018. The 

identities of the products were confirmed based on retention times and fragmentation 

patterns of commercially available standards (data not shown). Of the two products 

formed, the JWH-018 ω-1-OH metabolite was the major product formed. 

Kinetic Studies on the Metabolism of JWH-018 by Human Recombinant 

CYP2J2. Although the metabolism of JWH-018 was previously shown by the lab of Dr. 

Jeffrey Moran (poster), this is the first investigation regarding the kinetics of this 

reaction. To determine the ability of CYP2J2 to metabolize JWH-018, the kinetic 

parameters, KM and kcat, were determined for the two hydroxylated products. The 

CYP2J2-catalyzed formation of the ω-OH and ω-1-OH products was linear with both the 

protein concentration and time used to determine the kinetic constants (data not shown). 

As shown in Figure 4.3, the formation of the JWH-018 ω-OH and ω-1-OH metabolites 

exhibited typical Michaelis-Menten kinetics with observed KM values of 11 and 10 µM 

and kcat values of 0.03 and 0.2 pmol/min/pmol of P450, respectively. The efficiency of  



 

106 
 

  Figure 4.2. JWH-018 metabolism by recombinant CYP2J2. Purified CYP2J2 was 

reconstituted with reductase (1:2 ratio) in lipid (L-α-dilauroyl-phosphocholine) on ice for 

at least 60 min. This enzyme source (9 µL) was added to the incubation mixture (0.25 

mL) containing 100 mM potassium phosphate buffer (pH 7.4), JWH-018 (50 µM), and 

catalase. Reactions were initiated by the addition of 1.2 mM NADPH and allowed to 

continue for 15 min at 37°C. The total ion chromatogram (TIC) shows the all the ions 

captured by the LC/MS (Top). The middle chromatogram shows the positive ion formed 

by the parent compound, JWH-018, at m/z 342 which eluted after 29.8 min. The extracted 

ion chromatogram observed at m/z 358, shows the monooxygenated product peaks which 

elute at approximately 23.2 and 24.4 min for JWH-018 ω-OH and JWH-018 ω-1-OH, 

respectively. The product identities were verified by comparing the retention times and 

fragmentation patterns of the products formed with their respective commercial 

standards. 
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 Figure 4.3. Kinetics for JWH-018 metabolism by purified CYP2J2. Several 

concentrations of JWH-018 (5-50 µM) were metabolized by purified CYP2J2 for 

15 min at 37°C, as described in Materials and Methods. To determine the amount 

of product formed, a standard curve was constructed for the metabolites using 

commercially available standards. The two mono-oxygenated products formed 

were ω-1-OH (●) and ω-OH JWH-018 (∎). The data are the average of three 

separate experiments performed in triplicate. Error bars represent SEM values. 
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CYP2J2 to convert JWH-018 to the ω-OH and ω-1-OH metabolites is 0.003 and 0.02 

µM
-1

min
-1

, respectively. 

The Effect of JWH-018 on Heart Rate and Blood Pressure in Rats. When the 

heart rate (HR) and mean arterial pressure (MAP) returned to resting levels after a control 

saline injection, the rats were injected with either vehicle (1:1:3-ethanol:alkamuls-

EL620:sterile water) or the CB1R antagonist AM251 (10 mg/kg) as a pretreatment. After 

30 min, the rats in those two groups were then injected with the vehicle or JWH-018 (3 

mg/kg). The HRs and MAPs of these rats were monitored for three hours after the 

treatment dose. Figure 4.4 shows the data collected by telemetry in five minute intervals 

for the HR (Figure 4.4A) and the MAP (Figure 4.4B). Although JWH-018 seemed to 

have little to no effect on HR, it did cause a significant increase in the MAP. Pretreatment 

with AM251, the CB1R antagonist, partially blocked the increase in blood pressure 

caused by administration of JWH-018. However, about 20 min into the 30 min 

pretreatment, the HRs and MAPs of the rats returned to resting levels for the vehicle 

injected rats, but the HRs and MAPs for the rats pretreated with AM251 never decreased 

and were significantly different from vehicle-treated rats (data not shown). Inhibition of 

presynaptic CB1R in the cardiovascular system cause the release of neurotransmitters 

which subsequently increase heart rate and blood pressure. 

Substrate Competition Between JWH-018 and Arachidonic Acid. CYP2J2 

metabolizes arachidonic acid (AA) to yield four epoxides that have been shown to 

participate in the regulation of cardiovascular homeostasis (Roman, 2002). Since JWH-

018 is also a substrate for CYP2J2, it is possible that JWH-018 interferes with AA 

metabolism contributing to the observed effects in the cardiovascular system. Figure 4.5  



 

109 
 

  Figure 4.4. The effect of JWH-018 on heart rate and blood pressure in rats. Sprague-

Dawley rats were given an intraperitoneal (i.p.) pretreatment injection of either vehicle or 

the CB1R antagonist, AM251 (10 mg/kg). After 30 min, the rats were administered an 

i.p. injection of vehicle (vehicle + vehicle, ○, n= 6); or 3 mg/kg dose of JWH-018 

(vehicle + JWH-018, □, n= 6); or (AM251 + JWH-018, ∎, n= 5). The HRs (A) and 

MAPs (B) of the rats were monitored via an implanted telemetry device as described in 

Materials and Methods. The values plotted on the graph represent mean ± SEM for all of 

the rats in each of the indicated test groups. Statistical significance was determined using 

the Holm-Sidak method. *, vehicle + vehicle vs. vehicle + JWH-018; #, vehicle + vehicle 

vs. AM251 + JWH-018; †, vehicle + JWH-018 vs. AM251 + JWH-018. #, P < 0.05; ##, P 

< 0.01; ###, P <0.001; ####, P < 0.0001. 
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  Figure 4.5. Competition between JWH-018 and AA for metabolism by CYP2J2. 

Recombinant CYP2J2 was reconstituted with reductase (1:2 ratio) and DLPC for 60 

min on ice. AA (20 µM) was combined with JWH-018 (0, 10, 20, and 40 µM) for 30 

min at 37°C, as described in Materials and Methods. The metabolites formed are: 

14,15-EET (●); 11,12-EET (∎); 8,9-EET (▲); 5,6-EET (▼). The data are the 

average of two separate experiments done in duplicate and the error bars represent 

SEM values. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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shows the effect of JWH-018 on the metabolism of AA by CYP2J2. Surprisingly, rather 

than causing inhibition of the metabolism of AA, the presence of JWH-018 significantly 

increased the production of three of the four epoxide metabolites, the 14,15-, 11,12-, and 

8,9-EETs. It also caused a slight increase in the formation of 5,6-EET, but this increase 

only reached significant levels when there were equal amounts of JWH-018 and AA. The 

presence of AA had no effect on JWH-018 metabolism (data not shown). 

The Metabolism of JWH-018 by Rat Heart and Liver Microsomes. In order to 

better understand the in vivo effects of JWH-018, the metabolism of JWH-018 was 

investigated utilizing rat heart and liver microsomes. Pooled heart and liver microsomes 

were prepared as described in Materials and Methods and used for metabolism studies of 

JWH-018. Several different extracted ion chromatograms were used for the analysis, 

including those at m/z 358, 374, and 390 corresponding to the mono-, di-, and trihydroxy 

metabolites, respectively. The mass-to-charge ratio that corresponds to the terminal 

carboxylated metabolite, m/z 372, was monitored as well. Figure 4.6 shows the total ion 

chromatogram (TIC) and the three different extracted ion chromatograms (m/z 338, 358, 

and 376) for the products formed by rat heart microsomes (RHM). Figure 4.7 shows the 

TIC and the extracted ion chromatograms for the products peaks at m/z values of 358, 

372, 374, 376, and 392 formed by rat liver microsomes (RLM). RHM and RLM both 

formed products that were unique to their respective tissues, but some metabolites such as 

M4, M5, M6, M8, and M9 were formed by both heart and liver microsomes. The 

monohydroxylated metabolites were the major products formed by both RHM and RLM. 

The peak observed at m/z 338 (M3) was a major product formed by RHM; however, its 

formation by RLM was not NADPH-dependent (data not shown). The 1,2-diol products  
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  Figure 4.6. JWH-018 metabolism by rat heart microsomes. Rat heart microsomal protein 

(0.8 mg/mL) was combined with JWH-018 (100 µM) in 0.1 M phosphate buffer 

containing MgCl2. After the addition of NADPH (1.3 mM) the reaction was incubated for 

45 min at 37°C with shaking. The reaction was terminated and the samples were prepared 

as described in Materials and Methods. Based on previous studies, the metabolite M3 is 

probably a 1,2-diol formed by the addition of two hydroxyl groups with the loss of the 

carbon chain, see Figure 4.8 (Zhang et al., 2006). While the identity of M4 is unknown, 

M5-M7 probably corresponds to hydroxyl substitutions on the indole ring of JWH-018. 

M9 and M10 are most likely the diols of hydrolyzed epoxides on the naphthalene rings 

(Figure 4.8). 
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Figure 4.7. JWH-018 metabolism by rat liver microsomes. Rat liver microsomal protein 

(0.8 mg/mL) was incubated with JWH-018 (100 µM) for 20 min at 37°C under the 

standard reaction conditions stated previously in Materials and Methods. The reaction 

was performed and the metabolites were extracted as previously described in Materials 

and Methods. About 22 different metabolites of JWH-018 were formed by RLM. Three 

monohydroxylated (m/z 358) and nine dihydroxylated (m/z 374) products were formed. 

The products observed at m/z 376 are 1,2-diols and the peaks observed at m/z 392 are 1,2-

diols with an additional hydroxyl group on the indole ring or the carbon side chain 

(Wintermeyer et al., 2010). See Figure 4.8 for potential structures of JWH-018 

metabolites. 
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observed at m/z 376 (M9 and M10), were formed by both RHM and RLM. These 

metabolites were minor products with RHM whereas with RLM the amount of these 

products formed corresponded to a major portion of the total metabolites produced. 

Postulated structures for these unidentified products are shown in Figure 4.8.  

 JWH-018 Metabolism by Human Liver Microsomes and Human Intestine 

Microsomes. In order to better understand any possible correlations with respect to 

JWH-018 metabolism between rats and humans, human liver microsomes (HLM) were 

also used to compare the product profiles to those seen in RLM. Metabolites formed in 

the intestine can be absorbed by the intestinal wall and enter the systemic circulation via 

the portal vein (Gao et al., 2013). This may be why JWH-018 is known to cause severe 

toxicities after ingestion (Lapoint et al., 2011). As a result, JWH-018 metabolism by 

human intestinal microsomes (HIM) was investigated as well. Because of the large 

amount of diols formed by RHM and RLM, metabolites with m/z values at 376 were 

monitored for product peak formation. Figure 4.9 shows the chromatograms for the 

products formed by HLM metabolism of JWH-018 and Figure 4.10 shows the 

chromatograms for ESI-LC/MS analysis of the metabolism of JWH-018 by HIM. In 

addition, the product profiles for the HIM and the HLM were different, the intestinal 

microsomes catalyzed less product formation from JWH-018 when compared to the liver 

microsomes when normalized for the amount of the microsomal proteins used for the 

reactions, but this decrease in activity is in accordance with other reports (Chhabra et al. 

1974).  

Human Recombinant CYP2C9 Metabolism of JWH-018. Due to its expression 

levels in the liver and its efficiency for the metabolism of JWH-018, CYP2C9 was  
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  Figure 4.8. Postulated structures for the metabolites formed from JWH-018. The top row 

shows the structures of the parent compound JWH-018 along with potential sites for 

oxygenation. The M4 product is mono-oxygenated and could have a hydroxyl group at 

any of the suggested positions except for on the indole ring or at the ω and ω-1 positions 

of the carbon chain because these products have already been identified. The M11-M19 

products are di-oxygenated and can have hydroxyl groups at any combination of two 

hydroxylation sites. The middle row shows the mono-oxygenated metabolites with 

confirmed structural identities for ω-OH and ω-1-OH JWH-018 metabolites. The other 

confirmed structures are the 5-, 6-, and 7-OH indole JWH-018 metabolites corresponding 

to M6, M5, and M7, respectively. The bottom row shows the hypothesized structures and 

potential hydroxylation sites for the products containing 1,2-diols (M3, M8-M10, and 

M20-M28). Although there are four potential sites for epoxide formation and subsequent 

hydrolysis to diols, only three products were identified, M8, M9, and M10. The three 

likely positions for the 1,2-diols are shown in box. Diol formation at the fourth potential 

position is probably limited by steric effects (adapted from Wintermeyer et al., 2010; 

Zhang et al., 2006). 
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  Figure 4.9. JWH-018 metabolism by human liver microsomes. To determine the 

products formed by the metabolism of JWH-018 by the liver, HLM protein (80 µg) was 

incubated with JWH-018 (20 µM) in phosphate buffer, pH 7.4. After the addition of 

NADPH, the reaction was incubated with shaking for 30 min at 37°C. The reaction was 

stopped with ethyl acetate, extracted and prepared for LC/MS analysis as stated in 

Materials and Methods. The ω-OH and the ω-1-OH metabolite eluted after 17.4 and 18.6 

min, respectively at m/z 358. Other metabolites observed at m/z 358 are the unidentified 

M4 (25.3 min) and some unresolved peaks designated as M5 and M6 that eluted after 26 

min, most likely corresponding to the JWH-018 6- and 5-hydroxyindole metabolites, 

respectively, based on the elution times of commercial standards. At m/z 374, there were 

two peaks representative of a metabolite with two separate hydroxylation sites, M12 (6 

min) and M14 (8.4 min). The extracted ion chromatogram at m/z 376 contained the major 

diol metabolites, M8: (14.3 min) and M9 (17.8 min). See Figure 4.8 for metabolite 

structures. 
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Figure 4.10. JWH-018 metabolism by human intestine microsomes. To identify the 

metabolites formed byJWH-018 metabolism in the intestine, HIM protein (200 µg) was 

incubated with JWH-018 (100 µM) in 100 mM of phosphate buffer, pH 7.4. NADPH was 

added and the reaction was incubated for 30 min at 37°C with shaking. The samples were 

prepared for ESI-LC/MS as previously described in Materials and Methods. The 

extracted ion chromatogram for products with m/z 358 exhibited several metabolite 

peaks: the ω-OH metabolite (21 min), M4 (25 min), and a jagged mass of peaks M5 and 

M6 that are representative of 6- and 5-hydroxylation on the indole ring of JWH-018 (c. 

26 min), respectively. At m/z 376, M8 (17 min) and M9 (21 min), the 1,2-diols were the 

major metabolites formed. The metabolites M20 (3 min) and M28 (14 min) observed at 

m/z 392 correspond to hydroxylated diols. See Figure 4.8. 
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previously reported to be one of the major P450s involved in JWH-018 metabolism in the 

liver (Chimalakonda et al., 2012). As a result, its ability to catalyze the metabolism of 

JWH-018 was investigated and its efficiency was compared to that of CYP2J2. The ESI-

LC/MS chromatograms of the products formed (Figure 4.11) showed that CYP2C9-

mediated metabolism of JWH-018 produced four products. Three products are seen in the 

extracted ion chromatogram at m/z 358 representing the ω-OH and ω-1-OH metabolites 

of JWH-018 which eluted after approximately 23 and 24 min, respectively,  and a third 

peak eluting at about 27 min possibly corresponding to M4 or a hydroxylation on the 

indole ring. Different from CYP2J2 metabolism, the major product formed by CYP2C9-

catalyzed metabolism of JWH-018 was the ω-OH metabolite. Moreover, recombinant 

CYP2C9 also catalyzed the formation of M8 which has an m/z of 376 and eluted after 19 

min, but metabolites M9 and M10 were not formed. 

The Michaelis-Menton kinetic curves for the formation of the ω-OH and ω-1-OH 

metabolites of JWH-018 by CYP2C9 can be seen in Figure 4.12. The KM, kcat, and 

kcat/KM values for CYP2C9 metabolism of JWH-018 were calculated form these data and 

are presented in Table 4.1. The data for CYP2J2 are also provided for comparison. It can 

be seen that CYP2C9 is better at metabolizing JWH-018 than CYP2J2. 

 

Discussion 

The use of K2 has been linked to numerous deaths and emergency room visits in 

the United States alone (Lapoint et al., 2011; Pant et al., 2012; Simmons et al., 2011a; 

Simmons et al., 2011b). Due to increasing evidence that JWH-018 is becoming a major  
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  Figure 4.11. JWH-018 metabolism by recombinant CYP2C9. Purified CYP2C9 was 

reconstituted with reductase and cytochrome b5 (1:2:1 ratio) in lipid (L-α-dilauroyl-

phosphocholine) on ice for at least 30 min. This enzyme source (9 µL) was then added to 

the incubation mixture (0.25 mL) containing 100 mM potassium phosphate buffer (pH 

7.4), JWH-018 (25 µM), and catalase. The reaction was initiated by the addition of 1.2 

mM of NADPH and allowed to continue for 15 min at 37°C. The reaction was stopped 

and sample extraction performed as described in Materials and Methods. The second 

chromatogram shows the parent ion which eluted after 29.8 min at m/z 342. The extracted 

ion chromatogram observed at m/z 358 shows monooxygenated product peaks which 

elute at approximately 23.7, 24.9, and 27.4 min corresponding to JWH-018 ω-OH, JWH-

018 ω-1-OH, and an unknown metabolite, respectively. An additional unknown resolved 

diol metabolite (M8) eluted after 19.2 min with an m/z values of 376, see Figure 4.8 for 

potential structure. Product identity was verified by comparing the retention times and 

fragmentation patterns of the products formed with their respective commercial 

standards. 
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Figure 4.12. Kinetic analysis for the metabolism of JWH-018 by purified 

CYP2C9. Varying amounts of JWH-018 (1-25 µM) were added to the reaction 

mixtures containing rCYP2C9 (25 pmol) and the standard reagents required for 

the reconstitution mixture. After adding NADPH, the reaction mixture was 

incubated for 15 min at 37°C with shaking. The reaction conditions and sample 

preparation were performed as described in Materials and Methods. The graph 

shows the kinetic curves for the ω-1-OH (●) and ω-OH (∎) JWH-018 metabolites. 

The data points represent the mean ± SEM (n = 3). 
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Table 4.1. . Comparison of Kinetic Constants for CYP2J2 and CYP2C9. Kinetic parameters 

were calculated from the data in Figures 4.3 (CYP2J2) and 4.12 (CYP2C9). Numerical values 

represent the mean ± SEM (CYP2J2, n = 9; CYP2C9, n = 3). Data for CYP1A2, CYP2C19, 

and CYP2D6 adapted from Chimalakonda et al. (2012). 
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drug of abuse in the U.S. (Ginsburg et al., 2012; Gunderson et al., 2012; Seely et al., 

2011), it is important to study the metabolism of this drug in order to understand the 

metabolism and toxicology of this compound. Most reports indicate that inhalation of 

SCs produce side effects similar to marijuana including an alteration in mood, increased 

pulse rate, dry mouth and red eyes to name a few (Auwarter et al., 2009; Pant et al., 

2012). Some adverse side effects associated with SC usage that are atypical for marijuana 

usage include hypertension, nausea, vomiting, and hyperventilation (Auwarter et al., 

2009; Gunderson et al., 2012; Pant et al., 2012). Serious central nervous system effects 

include loss of consciousness, confusion, agitation, seizures, and psychosis (Every-

Palmer, 2011; Peglow et al., 2012; Simmons et al., 2011a; Simmons et al., 2011b). One 

suicide has been reported due to intolerable anxiety after K2 ingestion (Pant et al., 2012). 

Cardiovascular effects associated with synthetic cannabinoid toxicity include 

supraventricular tachycardia and myocardial infarction (Mir et al., 2011; Simmons et al., 

2011a). 

Several JWH-018 metabolites have been shown to retain their affinities and 

activities for the cannabinoid receptors in vitro and in vivo. (Brents et al., 2011; 

Chimalakonda et al., 2012; Rajasekaran et al., 2013). While the parent compound, JWH-

018, is an extremely potent agonist at the CB1R (Ki = 1.3 nM), its ω-OH and ω-1-OH 

metabolites also have good affinities at this receptor with Ki values of 35 nM and 15.4 

nM, respectively (Chimalakonda et al., 2012). In addition, all three compounds induce G-

protein activation with equal or greater efficacy than ∆
9
-THC (Brents et al., 2011; 

Chimalakonda et al., 2012). Rajasekaran and associates studied the affinity of 4-, 5-, and 

6-hydroxyindole JWH-018 metabolites, the JWH-018 N-pentanoic acid metabolite (ω-
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COOH), and the ω-OH and the ω-1-OH JWH-018 metabolites for the CB2R 

(Rajasekaran et al., 2013). They reported that all of the metabolites, with the exception of 

the carboxylic acid, bind to the CB2R with Ki values ranging from 20 to 115 nM 

(Rajasekaran et al., 2013). Moreover, these metabolites showed activities ranging from 

partial to full agonists for the CB2R because they activate associated G-proteins and 

inhibit adenylyl cyclase activity (Rajasekaran et al., 2013). Due to the organ specific 

expression of the cannabinoid receptors and the ability of the parent and its mono-

oxygenated metabolites to activate both cannabinoid receptors, it is important to 

investigate the metabolism of JWH-018 in tissues that exhibit high expression of a 

particular CYP compared to other P450s. CYP2J2 is the most abundant P450 in the 

human heart (Michaud et al., 2010; Wu et al., 1996). It is likely that the main route of 

JWH-018 administration is inhalation of smoke. As a result, it would not undergo 

traditional first pass metabolism in the intestine and liver, but would enter the circulation 

through the lungs and then circulate to the heart. Michaud et al. (2010) reported that 

cardiomyocytes can participate in drug metabolism and that cardiovascular CYPs are 

responsible for the clearance of drugs from the heart (Michaud et al., 2010). Since 

CYP2J2 is expressed in the human lung and is the most abundant P450 expressed in the 

human heart (Wu et al., 1996; Zeldin et al., 1996), it is important to investigate the ability 

of members of the CYP2J family to catalyze the metabolism of the SC of abuse, JWH-

018. 

In the reconstituted system, recombinant CYP2J2 metabolized JWH-018 

primarily to give the ω-1-OH metabolite with the concomitant formation of a small 

amount of the ω-OH product. Purified CYP2C9 metabolized JWH-018 to give the same 
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two metabolites as CYP2J2, but the metabolite profile was extremely different. The ratios 

of ω-OH to ω-1-OH for CYP2C9 and CYP2J2 were 2.5:1 and 1:5, respectively. Although 

the kcat values for the formation of the ω-1-OH metabolite of JWH-018 were the same for 

the CYP2J2 and CYP2C9 catalyzed reactions, CYP2C9 was approximately five times 

more efficient than CYP2J2 at catalyzing the formation of the ω-1-OH JWH-018 

metabolite and 83 times more efficient at forming the ω-OH JWH-018 metabolite based 

on the kcat/KM values. When discussing purified protein, the order of efficiency goes from 

CYP1A2 > CYP2C9 > CYP2C19 > CYP2J2 > CYP2D6. Interestingly, we found that the 

addition of JWH-018, rather than acting as a competitive inhibitor, significantly increased 

the CYP2J2-catalyzed metabolism of AA, its endogenous substrate, leading to the 

formation of all four EETs, especially at equimolar ratios. Although the ratios of JWH-

018 to AA will probably never reach equimolar ratios in vivo, a ratio of 0.5 to 1 still 

significantly increased the formation of 8,9-, 11,12-, and 14,15-EETs. It is unlikely that 

an increase in EET formation during exposure to JWH-018 will cause an increase in 

blood pressure, but a decrease in circulatory resistance caused by EET-induced 

vasodilation might possibly trigger baroreceptor activation.  

Administration of JWH-018 to rats had little to no effect on HR; however, it did 

cause a significant increase in MAP compared to the vehicle control. Because the CB1R 

antagonist AM251 partially blocked the increase in blood pressure elicited by JWH-018 

administration, these studies suggest the involvement of the CB1 receptor in altering the 

MAP in response to JWH-018. Moreover, during the 30 min pretreatment with AM251 

there was a significant increase in HR and MAP when compared to the vehicle 

pretreatment. Activation of presynaptic CB1 receptors is known to inhibit noradrenaline 
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release resulting in a decrease in HR and MAP (Niederhoffer et al., 2003). This is in 

agreement with what we observed during pretreatment of the rats with AM251. However, 

our results also suggest that JWH-018 may cause some of the increase in MAP 

independent of CB1 receptor activation since pretreatment of the rats with AM251 only 

partially blocked the decrease in blood pressure. It is unlikely that JWH-018 is acting at 

the CB2 receptor because its activation is usually devoid of cardiovascular effects, but 

this area remains largely unexplored (Pacher and Mechoulam, 2011).  

Several reports describe an increase in blood pressure after smoking marijuana 

which can be attributed to centrally mediated effects of CB1 receptor activation (Rudz et 

al., 2012). This may explain the increase in MAP after JWH-018 administration since 

centrally mediated effects, which are opposite of the peripheral effects of cannabinoids, 

override the peripherally mediated effects (Rudz et al., 2012). Another possibility could 

be that JWH-018 or one of its metabolites act as antagonists at either PPARγ or PPARδ 

to increase blood pressure. It has been shown that agonists of either of these receptors can 

decrease blood pressure (Cheang et al., 2013; Walker et al., 1999; Zarzuelo et al., 2011). 

As such, it is important to understand the metabolism of JWH-018 in order to identify the 

compound responsible for the adverse cardiovascular effects. 

Several product peaks were observed at m/z 358 following metabolism by human 

and rat microsomes. The ω-OH and ω-1-OH JWH-018 metabolites were only observed in 

human intestine and liver microsomal samples; however, the ω-1-OH JWH-018 

metabolite was only observed from certain lots of HIM (data not shown). The HIM used 

in these experiments were purchased from BD Biosciences and two separate lots were 
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used. Microsomal protein from Lot # 05886 formed the ω-1-OH metabolite, while the 

HIM from Lot # 3077535 did not (data not shown).  

The M4, M5, and M6 metabolites were observed in all samples following 

metabolism by human and rat microsomes, whereas the M7 metabolite was only seen in 

RHM preparations. The product peaks M5, M6, and M7 are likely to correspond to 6-, 5-, 

and 7-hydroxyindole metabolites of JWH-018, respectively, based on the elution times of 

the commercially available standards. A reference standard compound was not 

commercially available for the M4 metabolite. This product could either have a hydroxyl 

group on the carbon side chain at a position other than the ω or the ω-1 carbon or it could 

be on the naphthyl group (Figure 4.8). 

The possible carboxylic acid metabolite, which would be observed at m/z 372, 

could not be detected in any of the preparations. Two peaks (M12 and M14) were 

identified at m/z 374 in the human liver microsomal samples, but nine separate peaks 

with m/z values of 374 were observed in RLM preparations corresponding to M11-M19. 

Because no standards are available, these metabolites could not be positively identified. 

Based on their molecular weights and potential substitution sites, these metabolites are 

probably dihydroxylated metabolites containing two hydroxyl groups on the indole ring, 

the naphthalene group, and/or the carbon side chain (Figure 4.8) (Wintermeyer et al., 

2010; Zhang et al., 2006).  

The peaks present in the extracted ion chromatograms with m/z values of 376 

suggest the formation of dihydroxylated products originating from epoxides. 

Recombinant CYP2C9 formed M8 only, while the microsomes showed the formation of 

three different diol structures (M8, M9 and M10). Two compounds fitting this description 
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have been extracted from urine samples of subjects who smoked JWH-018 (Sobolevsky 

et al., 2010). Likewise, phase I metabolism studies of JWH-018 by HLM conducted by 

Wintermeyer and coworkers demonstrated the formation of these two metabolites 

(Wintermeyer et al., 2010). Moreover, the metabolism of two other SCs, JWH-015 and 

WIN55212-2, showed the formation of only two reduced 1,2-diols even though there are 

four possibilities for the dihydroxylation of the naphthyl ring (Zhang et al., 2006; Zhang 

et al., 2002). These diols were then further hydroxylated to give several other metabolites 

which could be observed at m/z 392 (Wintermeyer et al., 2010). The ability of these 

products to form in vivo is likely since M20-M28 were formed in the HIM and/or the 

RLM. Likewise, the M3 metabolite isolated from RHM that was observed at m/z 338, 

probably originated from a 1,2-diol that lost its carbon side chain in a rearrangement and 

was subsequently dihydroxylated on the indole ring and/or the naphthalene group (Figure 

4.8).  

In conclusion, JWH-018 was metabolized by CYP2J2 to two metabolites that 

were hydroxylated on the side chain with the ω-1-hydroxylated compound as the major 

metabolite. In human intestine and liver microsomes, all products observed at m/z values 

of 358 and 376 were formed in large quantities and could be considered major products 

as opposed to the minor products observed at m/z 374 and 392 for the liver and intestinal 

microsomes, respectively. For incubations with RHM, the metabolites observed at m/z 

358 and 338 were formed in the highest amounts while the diol products at m/z 376 were 

formed to lesser extinct. However, in RLM the 1,2-diols (m/z 376) were a major product 

along with the mono-oxygenated metabolites observed at m/z 358. Although there was 

substantial formation of the metabolites having m/z values at 374 and 392, it was still 
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relatively less than the products observed at m/z 358 and 376. Because the rats 

experienced some of the same cardiovascular side effects as humans, these effects may be 

caused by the same compounds. It is possible that JWH-018 is responsible for these 

effects but major metabolites formed by RLM and HLM including the diols observed at 

m/z 376 in addition to M4, M5, and M6 can potentially be responsible as well. The 

potential targets and activities of the most of the mono-oxygenated products have been 

previously studied (Brents et al., 2011; Chimalakonda et al., 2012), but the receptor 

targets and the effects of the 1,2-diols (m/z 376), the other major metabolites, have not. It 

is important to determine whether these diols and their secondary metabolites (e.g. 

compounds with m/z values at 338 and 392) bind to the cannabinoid receptors or another 

receptor family with an appreciable affinity and efficacy. It is possible that the adverse 

effects associated with the use of SCs are mediated by the parent, one or more 

metabolites, or a synergistic interaction between the metabolites and the parent 

compound. Combining two or more SCs has been reported to result in synergistic effects 

(Brents et al., 2013). Moreover, although the one biologically active metabolite of ∆
9
-

THC exhibits less affinity for the CB1R (Kochanowski and Kala, 2005), this is not the 

case for synthetic cannabinoid metabolites which can contribute to the effects of the 

parent synthetic compounds (Brents et al., 2011; Chimalakonda et al., 2012; Rajasekaran 

et al., 2013). 
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CHAPTER V 

 

Conclusions and Future Directions 

Cytochrome P450 2J2 (CYP2J2) is believed to be the P450 most responsible for 

the metabolism of AA and other polyunsaturated fatty acids (Arnold et al., 2010; Moran 

et al., 2000; Wu et al., 1996). The highest expression levels of CYP2J2 are in the 

cardiovascular system, but it is also found at lower levels in other tissues including the 

liver, gastrointestinal tract, monocytes, macrophages, and brain (Bystrom et al., 2011; 

Chen et al., 2011; Jiang et al., 2005; Wu et al., 1996; Zeldin et al., 1997; Zeldin et al., 

1996)). Interestingly, all of these tissues also express some or all of the components of 

the endocannabinoid system (ECS) (Han et al., 2009; Pacher et al., 2006; Wright et al., 

2008). In order to try to investigate the possible functional relevance of the colocalization 

of CYP2J2 and the ECS, AEA, an endogenous cannabinoid, and JWH-018, a synthetic 

cannabinoid, were investigated as possible substrates for CYP2J2. 

The data presented in Chapter II characterized the metabolism of AEA by 

CYP2J2. When incorporated into the standard reconstituted system, recombinant CYP2J2 

metabolizes AEA to produce 20-HETE-EA and 5,6-, 8,9-, 11,12-, and 14,15-EET-EAs. 

Data on the metabolism of AEA by human intestinal microsomes (HIM) were also 

presented. The metabolites formed during the metabolism of AEA by HIM were the same 

as those formed by CYP2J2 in the reconstituted system with the additional formation of 

19-HETE-EA. The physiological relevance of CYP2J2 activity in the intestine has 
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previously been suggested by reports of its contribution to the intestinal metabolism of 

certain drugs (Hashizume et al., 2002; Matsumoto et al., 2002). However, our studies 

reported in Chapter II suggest that CYP2J2 does not contribute significantly to the 

intestinal metabolism of AEA. However, in Chapter IV we reported that different lots of 

commercially available HIM exhibited different product profiles for the metabolism of 

JWH-018. As a result, the lack of significant involvement of CYP2J2 in intestinal AEA 

metabolism reported here may not be entirely true and needs to be investigated further 

with additional lots of HIM. 

Our lab has previously studied the metabolism of AEA by human kidney and liver 

microsomes, HKM and HLM, respectively (Snider et al., 2007). HKM incubated with 

AEA only yield the 20-HETE-EA, whereas HLM and HIM incubations with AEA 

produce 19- and 20-HETE-EAs (Snider et al., 2007). Liver microsomes are 2 and 44 

times more efficient at catalyzing the formation of 20-HETE-EA than kidney and 

intestine microsomes, respectively, based on Vmax/Km values. HLM produced all four 

EET-EAs in the presence of AEA, but HIM failed to produce the 14,15-EET-EA, 

although the other three epoxides were formed. The absence of 14,15-EET-EA formation 

in HIM is reversed by the addition of an epoxide hydrolase inhibitor to reaction mixtures. 

Liver microsomes were several orders of a magnitude more efficient at catalyzing the 

formation of 5,6-, 8,9-, and 11,12-EET-EAs when compared to HIM (Snider et al., 2007). 

In HLM, the 8,9-EET-EA metabolite is the major epoxide formed in respect to quantity 

and efficiency, but this is not the case for HIM (Snider et al., 2007). The 5,6-EET-EA 

metabolite was the major product formed from AEA by HIM based on quantity and 

efficiency. This metabolite has been reported to activate the CB2 receptor in the 
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nanomolar range (Snider et al., 2009). As such, there may be some potential 

physiological relevance for this metabolite in the human gastrointestinal (GI) tract. 

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of 

all or part of the digestive tract. Crohn’s disease is an IBD typically confined to the lower 

end of the small intestine (Di Carlo and Izzo, 2003). Patients suffer intestinal cramps and 

spasms, severe diarrhea, rectal bleeding, nausea and vomiting, and loss of appetite and 

weight that can lead to malnutrition (Britton and Peppercorn, 1997). Some reports 

indicate that people suffering from Crohn’s disease get symptomatic relief by smoking 

marijuana (Di Carlo and Izzo, 2003). This effect has been attributed to the ability of 

marijuana to stimulate appetite, alleviate nausea, control spasms, and potentially reduce 

inflammation (Grinspoon and Bakalar, 1997; Nocerino et al., 2000). Some of these 

salutatory effects may result from activation of the CB2 receptor by ∆
9
-THC. If this is 

true, there may be a pathophysiological relevance for the 5,6-EET-EA in the inflamed 

gut. 

All of the components of the ECS have been detected in the GI system (Wright et 

al., 2008). The CB1 receptor is colocalized with choline acetyltransferase in neurons and 

nerve fibers of the stomach, small intestine, and colon (Kulkarni-Narla and Brown, 2000, 

2001). As a result,  activation of presynaptic CB1 receptors in myenteric nerves and the 

submucosal plexus neurons decreases intestinal motility as well as the secretion of gastric 

acid and intestinal fluids (Di Carlo and Izzo, 2003; Mascolo et al., 2002; Pinto et al., 

2002; Wilson and Nicoll, 2002).  It is widely known that CB2 receptors are expressed on 

immune cells and the gut has an abundant supply of immune cells (Cabral and Staab, 
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2005; Klein, 2005; Lunn et al., 2006). However, the physiological function of the CB2 

receptor in the gut has not been well studied. 

In inflammatory disorders the ECS becomes overstimulated in the small and large 

intestine (Di Marzo and Izzo, 2006). Evidence suggests that the levels of 

endocannabinoids (ECBs) and CB1 receptors are significantly increased during intestinal 

inflammation (D'Argenio et al., 2006; Izzo et al., 2001). It is believed that the ECBs 

activate the CB1 receptors to protect against both the epithelial damage and the increased 

motility observed with intestinal inflammation (Izzo et al., 2003; Massa et al., 2004). 

However, although intestinal motility is attributed to CB1 receptor activation, in an 

inflammatory state the CB2 receptor may predominate. In a rat model where the animals 

are exposed to lipopolysaccharide (LPS) to stimulate inflammation and cause an increase 

in GI transit, activation of the CB2 receptor exhibited a dose-dependent inhibition of the 

LPS-induced increase in GI transit to control levels; however, the  control of basal GI 

activity was attributed the to the CB1 receptor activity (Mathison et al., 2004). Moreover, 

activation of the CB2 receptor has been shown to inhibit the release of inflammatory 

mediators that are known to encourage intestinal peristalsis (Izzo, 2004; Mathison et al., 

2004). The activation of CB2 receptors expressed on human colonic epithelial cells has 

been found to inhibit the TNF-α-induced release of the inflammatory cytokine 

interleukin-8 (Ihenetu et al., 2003). Because we identified 5,6-EET-EA as the major AEA 

metabolite formed in intestinal microsomes and it can activate the CB2 receptor at 

nanomolar concentrations, these observations may indicate a physiological function for 

5,6-EET-EA in the  inflamed GI system. However, more studies are needed to confirm 

this hypothesis. 
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Data were also presented in Chapter II describing the effect of obesity and a junk 

food diet on the ability of rat liver microsomes (RLM) to metabolize AEA. Somewhat 

surprisingly, the RLM did not produce any of the traditional metabolites such as the EET-

EAs and HETE-EAs observed in studies of human liver metabolism. However, we were 

able to identify and monitor the formation of three new metabolites to observe for any 

influence of obesity and diet on AEA metabolism. Because the identity of these products 

is unknown, we were unable to quantify the amount of the products formed. To 

compensate, we used the peak area ratio (unknown metabolite peak area/internal standard 

peak area) to determine relative amounts of formation. The formation of the two products 

observed at m/z 356 was dramatically increased in the microsomes of livers from obese 

rats as compared to lean controls fed a normal diet. The junk food diet seemed to have no 

effect on the formation of these metabolites, but this conclusion will need to be 

confirmed using liver microsomes prepared from diet-induced obese rats on a junk food 

diet. On the other hand, the formation of the product monitored at m/z 380 was 

significantly decreased as a result of obesity and even more so as a result of the junk food 

diet. Completing studies to investigate AEA metabolism by liver microsomes prepared 

from diet-induced obese rats fed a junk food diet are needed to validate this conclusion. 

Identification of these products observed at m/z 356 and 380 and their biological actions 

would be the most important step to determine the physiological relevance of altered 

AEA metabolism in response to diet and obesity. 

Due to the opposing patterns of formation for the products observed at m/z 356 

with regard to the product observed at m/z 380, it will be of interest to determine the 

structures of these compounds, their stabilities in biological systems, and their 
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interactions with the CB1 and CB2 receptors in order to fully understand the possible 

physiological relevance of these data. If the compounds observed at m/z 356 contain 

terminal hydroxyl groups and the metabolite at m/z 380 contains an epoxide, it would 

strongly suggest that junk food diets and obesity increase inflammation by a mechanism 

involving the ECS because terminally hydroxylated fatty acids are believed to be 

proinflammatory and epoxygenated fatty acids are considered to be anti-inflammatory 

(Imig, 2012; Morisseau and Hammock, 2013; Spector, 2009; Williams et al., 2010).  

Thus, it would be necessary to complete similar metabolism studies using some of the 

essential ω-3 and ω-6 fatty acids such as EPA or AA especially because of their potential 

involvement in obesity-related inflammation (Kim et al., 2013; Tilley et al., 2001). 

The studies conducted in Chapter III investigated AEA metabolism by human 

liver S9 fractions. The liver S9 fractions formed the same metabolites as those previously 

reported to be produced by human liver microsomes (Snider et al., 2007). Because 

soluble epoxide hydrolase inhibitors (sEHIs) have proven to be extremely beneficial in 

determining the biological activities of the EETs in vivo, the potent sEHIs AUDA, 

APAU, and TPPU were tested for their ability to inhibit the hydrolysis of the EET-EAs 

by soluble epoxide hydrolases in the S9 preparations. AUDA inhibited the hydrolysis of 

14,15-EET-EA with an EC50 value of 5.6 µM. At nanomolar concentrations, AUDA 

increased the levels of 11,12-EET-EA, but at concentrations of 10 µM or higher, AUDA 

decreased the levels of 5,6-, 8,9-, and 11,12-EET-EA in a dose-dependent manner. APAU 

increased the levels of all of the EET-EAs; however, only 11,12- and 14,15-EET-EAs 

exhibited a sigmoidal trend with respect to metabolite levels vs. concentration and their 

respective EC50 values were calculated to be 4.7 and10.4 µM.  The significant increases 
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in the levels of 8,9-, 11,12-, and 14,15-EET-EAs induced by TPPU only occurred 

sporadically, as a result, the EC50 values could not be calculated for this sEHI. Our results 

suggest that it may be necessary to design sEHIs specific for the EET-EAs, since none of 

the three sEHIs investigated were able to inhibit sEH-mediated hydrolysis of the four 

EET-EAs equally. Using siRNA to knockdown sEH and mEH activity in hepatocytes in 

the presence of AEA would be a more efficient approach and would allow for 

observation of the biological actions of EET-EAs in a closed cell system. It is possible 

that this approach may be useful in vivo, but several other epoxides are likely to be 

effected as well making the results difficult to interpret. The development of sEHIs to 

increase the half-life of the EET-EAs will be extremely useful for determining their 

biological actions.  

The work described in Chapter IV demonstrated that purified human CYP2J2 

metabolizes the synthetic cannabinoid JWH-018 primarily to give the ω-1-OH JWH-018 

metabolite. Human intestine and liver microsomes were also investigated for their ability 

to metabolize JWH-018. The products formed by these systems included mono- and di-

oxygenated metabolites as well as two 1,2-diol products. It was determined that 

recombinant CYP2C9 catalyzed the formation of one of the diol products. The same 

products as well as several more were observed following metabolism by rat heart and 

liver microsomes. A total of 24 different metabolites were shown to be formed as a result 

of NADPH-dependent metabolism of JWH-018; however, most of those metabolites 

were observed in rat microsomes and are not applicable to human metabolism. Additional 

studies will be required to identify the major hydroxydiol metabolites and determine their 

affinity and potency at the cannabinoid receptors in order to gain further insights into 
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their potential relevance as products of this commonly abused substance with a wide 

array of adverse side effects. If the mechanisms behind these side effects can be 

elucidated, perhaps treatments to reverse the effects can be developed as well. 

Studies on the effects of JWH-018 in vivo indicated that although it did not have 

much of an effect on heart rate, it significantly increased blood pressure in rats. This 

increase in blood pressure was only partially blocked by pretreatment with the CB1 

receptor antagonist AM251. This was not surprising since centrally mediated effects of 

cannabinoids have previously been shown to dominate over peripheral effects (Rudz et 

al., 2012). Centrally administered cannabinoids cause an increase in blood pressure, but a 

decrease in heart rate (Niederhoffer and Szabo, 1999). Because JWH-018 binds to both 

CB1 and CB2 receptors (Aung et al., 2000), it is possible that the lack of effect on heart 

rate may have something to do with the CB2 receptor activation or the activation of a 

non-cannabinoid receptor. Future studies focused on the cardiovascular effects of JWH-

018 using a CB2 receptor antagonist may provide information as to the biological 

relevance of CB2 receptor expression in the cardiovascular system. In addition, a non-

selective cannabinoid receptor antagonist will be of interest to investigate the possible 

involvement of another receptor unrelated to the ECS. 

In conclusion, CYP2J2 catalyzes the metabolism of the endogenous cannabinoid 

AEA and the synthetic cannabinoid JWH-018 to give a variety of hydroxylated and 

epoxygenated products. It is known that cannabinoids, especially CB2 receptor agonists, 

can inhibit inflammation (Hanus et al., 1999). Studies investigating the effect of JWH-

018 on the metabolism of AA revealed that JWH-018 actually increased CYP2J2-

catalyzed formation of the anti-inflammatory EETs. If future studies investigating the 
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interaction between cannabinoid-based substrates of CYP2J2 and AA have similar effects 

as JWH-018, this may suggest an alternative mechanism for the anti-inflammatory 

actions of the ECS, especially since inhibition of CYP2J2 activates inflammatory 

responses in vivo (Deng et al., 2011). Due to the overlap in the expression and functions 

of CYP2J2 and the ECS, in conjunction with the ability of CYP2J2 to metabolize 

cannabinoids, there is a potential for CYP2J2 to play a critical role in the metabolic fates 

of some endogenous ligands of the CB1 and CB2 receptors and thereby modulate the 

physiological effects of the ECS.  
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