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Abstract 
Gas embolotherapy is a twist on traditional catheter based embolotherapy 

approaches.  Rather than using a solid or semi-solid embolizing agent to restrict blood flow, 

localized gas bubbles are used instead.  These gas bubbles are formed by the controlled 

vaporization of intravenously injected liquid microdroplets using focused ultrasound.  This 

vaporization process is often referred to as acoustic droplet vaporization (ADV).  A greater 

understanding of the ADV process, bubble transport, and acoustic-bubble interactions are 

essential to devising a safe and effective therapy.   

This dissertation delves into the dynamics at various time-scales throughout the 

ADV process from the initial conversion process up to the bubble transport in vessels.  The 

following work has been divided into five time-scale events that may occur throughout the 

ADV process.  First, ultra-high speed imaging investigating the initial gas nucleus formation 

within liquid microdroplets is compared against a numerical model of the acoustic field 

within the droplet to determine the mechanism behind ADV.  After the droplet is converted 

into a high-pressure bubble, the effect of pulse length and acoustic power are correlated with 

the likelihood of collapsing the newly formed bubble possibly resulting in vessel damage.  

Next, influences from channel resistance on the bubble expansion rates are investigated by 

comparing the ADV bubble evolution process in free-field conditions versus in a 

constrained microchannel.  Once a bubble is formed, transport phenomena and possible 

additional acoustic pulses may influence bubble dynamics and the efficacy of the treatment.  
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The scenario of a finite-sized bubble attached to a vessel wall approaching a bifurcation 

point is modeled using the boundary element method in order to understand the influences 

of sticking conditions and bifurcation geometry on bubble lodging or dislodging.  Finally, an 

instability resulting from short acoustic pulses impinging on a bubble attached to a solid 

boundary resulting in droplet atomization of the bulk liquid in the bubble is characterized.   

The implications from all of these dynamics are discussed in the context of gas 

embolotherapy as well as other bubble or ADV based therapies.  It is concluded that 

potential sources of damage include bubble torus formation, rapid expansion of relatively 

large droplets in small vessels, and contact line motion of the bubble.  However, it is 

revealed that the possible sources of vessel damage can be addressed through careful 

modulation of acoustic parameters, choice of droplet size distribution, and conditions that 

promote bubble lodging.  Furthermore, a mechanism under controlled acoustic conditions 

may result in bioeffects allowing for enhanced drug transport across the vessel wall is 

presented. 
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CHAPTER I:  INTRODUCTION  

Background and Motivation 

Embolotherapy is the occlusion of blood vessels using foreign bodies for therapeutic 

applications.  Often performed by interventional radiologists, embolotherapy requires careful 

and strategic transcatheter delivery of solids or semi-solid usually in the forms of gel-foams, 

polymer beads, balloons, and wire coils to selective feeder vessels to cause blood occlusion[1].  

Embolotherapy has been extensively used in the mitigation of uncontrolled bleeding in the 

gastrointestinal regions due to ulcerative diseases, pancreatitis, diverticular disease, 

angiodysplasia, and etc. as well as controlling traumatic hemorrhages in kidneys, liver, and 

spleen[2].  It has also been proven to be efficacious and used extensively in the treatment 

uterine fibroids and is has been proposed as a method of treating various forms of 

vascularized cancers, such as hepatocellular carcinoma (HCC) and renal carcinoma[3,4]. 

HCC is the most common form of liver cancer accounting for 85-90% of all forms 

of liver cancer[5].  It is found in 30 per 100,000 males every year, and it responsible for 1.25 

million deaths every year.    The difficulty with treating HCC is that 70-85% of patients with 

HCC also have liver cirrhosis, rendering most patients ineligible for traditional methods of 

treatment such as tumor resection[6].  On top of that, chemotherapy treatments alone have 

also been found ineffective in treating HCC[6].  However, case studies have shown that HCC 

can be successfully treated using embolotherapy techniques to cause tumor necrosis[7,8]. 
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The concept of restricting blood supply to “starve” cancerous tumors was first 

successfully demonstrated by Boehm et al. in 1997[9].  The embolizing agent is typically 

delivered by navigation of a catheter through the vasculature down to specific feeder vessels.  

Laccourreye et al. 1993 was able to demonstrate that if administered a sufficiently high 

density of solid particles locally in a blood vessel, this will result in occlusion of the vessel, 

diversion of blood flow to neighboring vessels, and resulting in permanent tissue damage at 

the site of embolization[10].  Case studies have shown that of HCC have been treated 

effectively using transarterial embolotherapy (TAE).  Further studies have suggested that 

embolotherapy can be further enhanced through the coupled delivery of chemotherapeutics, 

also known as transarterial chemoembolization (TACE).  However, recent reports have 

shown that the outcomes using TACE or TAE for HCC treating show no statistical 

difference[6, 8].  Although curative measures, such as liver transplant or tumor resection, are 

preferred for early stage tumors, only 30-40% of patients are suitable for such treatments.  

Therefore majority of patients are presented with locoregional or palliative alternatives 

therapies with TAE or TACE as the primary therapeutic approaches.  Several additional 

challenges associated with catheterization have created barriers in favor against using 

traditional embolotherapy techniques as a cancer therapy.  Traditional embolotherapy 

techniques are time intensive procedures often requiring catheterization to strategic blood 

vessels for emboli delivery to minimize collateral tissue damage.  Embolotherapy treatments 

quickly become too labor and time intensive when several feeder vessels must be occluded 

for successful treatment.  Interventional radiologists are often limited to catherizing and 

occluding at most a handful of vessels.  Additionally, catheter based embolization treatments 

require fluoroscopy and these complex, extended procedures can easily lead to prolonged 

2 



 

fluoroscopic radiation exposure to the skin thus increasing risk to forms of melanoma[2].  

With embolotherapy, the most lethal complication is inadvertent embolization of major 

vessels, thus embolotherapeutic treatment of tumors has typically been used as a last resort[2]. 

Gas embolotherapy is a novel departure from the traditional catheter based methods 

of embolotherapy, which may be well suited as an ultrasound based cancer therapy aimed at 

treating highly vascularized tumors such as HCC[4, 11, 12].  This gas embolotherapy approach 

was first described, and later patented, by Apfel 1998[13].  Rather than using the 

aforementioned solid or semi-solid embolizing agents, liquid pefluorocarbon (PFC) 

microdroplets are introduced into the vascular network and selectively activated using 

focused ultrasound transducer to form gas bubbles 125 times larger than the initial droplet 

volumetrically[14].  The droplets are formulated such that its mean diameter is on the order, if 

not smaller, than erythrocytes found in the blood stream.  Therefore the liquid PFC 

microdroplets are allowed to freely circulate through the vasculature and do not disrupt the 

microcirculation.  Only when the droplets are selectively activated using ultrasound do they 

form a larger gas bubble that can lodge in the vasculature, diverting blood supply, and 

eventually causing tumor necrosis[14].   

The activation process of the microdroplets to form the gas phase emboli relies on a 

mechanism referred to as acoustic droplet vaporization (ADV).  The ADV process is a 

threshold based phenomena when a sufficiently high intensity pulse of acoustic energy, 

normally in the form of focused high frequency ultrasound, is directed at the droplets 

causing the droplets to vaporize forming gas bubbles.  The formulations of the droplets are 

critical in both stability and activation of the droplets.  In biomedical application, the droplet 

material chosen must have a bulk boiling point lower than body temperature (37˚C) and is 
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normally various of chemical derivatives of PFCs.  Because the droplets are packaged in 

droplet form, the Laplace pressure from interfacial tension is able to suppress spontaneous 

vaporization due to droplet boiling by raising the boiling point within the droplet[15].  The 

microdroplets used for gas embolotherapy are on the size order of 3 microns in diameter[14].  

Typically, the microdroplets used in biomedical applications use feature a 

dodecafluoropentane (DDFP, CAS No. 678–26–2) with a bulk material boiling point of 

29˚C at atmospheric pressure and are encapsulated with a lipid or albumin based shell.  

Although the bulk fluid boiling point of DDFP is lower than body temperature and the level 

of boiling point reduction from the Laplace pressure is variable.  Stability studies on albumin 

encapsulated DDFP microdroplets have been shown to be stable up to 65°C[14].  In recent 

years further investigation has gone towards using other PFCs including perfluoropropane 

(CAS No. 76-19-7), perfluorobutane (CAS No. 355-25-9), perfluorohexane (CAS No. 355-

42-0), and perfluorooctane (CAS No. 307-34-6) in an effort to augment acoustic thresholds 

or droplet stability[16-21].   

The envisioned gas embolotherapy treatment would begin with intravenous bolus 

injections of microdroplet suspensions.  The microdroplets would then circulate throughout 

the blood stream in an inert state.  At the tumor site, focused ultrasound can be applied 

which then vaporizes the droplets (Figure 1.1).  The resulting bubbles could then occlude the 

tumor vasculature on the time scales of 30 minutes to 2 hours[4].  Multiple treatments could 

be performed until sufficient tumor occlusion is observed.  The treatment is meant to be 

minimally invasive and have high spatial selectivity.  Although gas embolotherapy is currently 

catered towards the treatment of HCC, the treatment can be extended to other forms of 

cancer such as renal carcinoma, small cell lung cancer, etc.  Gas embolotherapy has been 
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proposed as a method of enhancing chemotherapy as well radiofrequency ablation by 

reducing convection of chemotherapeutics or heat away from the targeted site due to blood 

flow[22]. 

Interest in the ADV process goes beyond gas embolotherapy in the field of medicine 

as ADV processes are currently being applied towards drug delivery vehicles and more stable 

forms of contrast agents, also referred to as phase change contrast agents (PCCA)[20, 21].  

More sophisticated dual phase PFC microdroplets featuring a PFC layer encapsulating a 

water core with dissolved drug has been shown to be a successful platform in preventing 

inadvertent drug leakage prior to vaporization[17, 18].  In the PCCA front, allowing contrast 

agents to circulate in its liquid state and locally vaporizing them to create gaseous resonating 

bubbles has been shown to extend the lifetime of contrast agents per dose[20].  As additional 

interest in using ADV in medicine increases it is important to gain a better understanding 

into the mechanics of the ADV process to mitigate unwanted bioeffects such as cell or tissue 

damage.  Alternatively, the ability to control the level of stresses induced may illicit bioeffects 

such as the enhancement of drug delivery[23-25]. 

The ADV process can be broken up into 3 phases (Figure 1.2):  gas nucleation site 

formation, expansion phase of the bubble, and diffusion or dissolution into the bulk media.  

The gas nucleation site formation phase is the first event in the process where isolated gas 

bubbles are formed within the liquid PFC droplet.  These gas nuclei serve as sources for the 

liquid PFC to convert to its gas phase.  Hypotheses behind the actual mechanics driving the 

ADV are still debated, but what is known is that the phase change process lasts on the order 

of 1 microsecond and during the phase change process there is little bubble expansion 

observed[19, 26-28].  Once the droplet has changed phase in the first microsecond, a high-
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pressure bubble is generated and begins to undergo a rapid expansion in order to reach its 

equilibrium diameter (approximately 125 volumetric or 5 time diametric expansion).  This 

process lasts less than 100 microseconds and can achieve interfacial velocities of up to 2 

m/s[29, 30].  Theoretical models and limited experimental data suggest that during the rapid 

expansion when the bubble nears the equilibrium size the bubble can either slowly approach 

the equilibrium diameter or overshoot and relax to the equilibrium diameter.  Several 

numerical models have been developed over the years in an effort to better estimate the 

expansion rates and extrapolate approximate stresses experienced.  These models range from 

1D model to 2D models from the most basic condition of simple expansion with rigid 

boundaries to the inclusion of flexible walls or the gas conversion process[30-33]. Currently 

limited experimental data exists resolving the expansion rates of droplets in bulk fluid let 

alone in small vessel like conditions[29, 34].  Once the PFC bubble has formed transport 

phenomena and gas diffusion processes can take over until the bubbles finally completely 

dissolves into the blood stream.  During this period bubbles may persist in the vasculature 

for minutes to hours or even days.  Once the stable bubble has been formed dynamics of the 

bubble are more ubiquitous to ultrasound-bubble based applications.  As a result questions 

with regards to cavitation[25, 28, 35], bubble jets[36-38], sonoporation[25, 39], bubble lodging and 

transport[40-43], etc. and possibly coupling such dynamics for drug delivery[15, 24, 44, 45] or 

ultrasound therapy[46-48] are of great interest. 

The following work explores the dynamics behind the ADV process at various time 

scales, from the initial nucleation site formation up to longer time scale transport 

phenomena of bubbles through vessels as well as possible acoustic-bubble phenomena.  This 
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work has been organized into the following chapters progressing through the phases 

throughout the lifetime of an ADV droplet: 

• Chapter II (Initial nucleation site formation due to acoustic droplet vaporization) – 

The initial formation of the gas nucleus is observed within micrometer sized PFC 

droplets are directly imaged using ultra-high speed imaging.  A numerical acoustic 

model was developed to predict where the initial gas nucleus would form within the 

droplet.  The numerical model was used to verify a hypothesized acoustic 

mechanism initiating ADV. 

• Chapter III (Formation of toroidal bubbles during acoustic droplet vaporization) – 

The dynamics immediately after the initial phase change is observed for varying 

pressures and pulse lengths from the transducer.  The possible implications on vessel 

damage are also discussed. 

• Chapter IV (The bubble evolution from acoustic droplet vaporization in 

microchannels) – The expansion process on the order of hundreds of microseconds 

are explored.  Experiments were carried out for both free-field conditions as well as 

in microchannels representing idealized vessels.  Effects from constraining the 

droplets to a channel are compared. 

• Chapter V (A boundary element model of  microbubble sliding through a 

bifurcation) – A numerical model using the boundary element method is 

development to probe the dynamics of bubbles attached to a vessel wall approaching 

a bifurcation to gain insight on finite sized bubbles traveling through a vessel. 

• Chapter VI (Acoustic atomization process within bubbles attached to a solid 

boundary) – Once the bubble is formed classic problems beyond the context of gas 
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embolotherapy can take place with acoustic bubble interactions. A previously 

unobserved phenomenon of atomization events within bubbles attached to a solid 

boundary is discussed in detail in this chapter. 

• Chapter VII (Conclusions and future directions) – Overall results are summarized 

and their impacts on gas embolotherapy as an ultrasound cancer therapy are 

discussed.  Future directions and questions raised are also presented. 
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Chapter I:  Figures 

 

Figure 1. 1:   Concept art of the gas embolotherpay.  Gas emebolotherapy begins 
with the introduction of PFC microdroplets via intravenous injection.  At the feeder vessel 
of the tumor, an ultrasound source is focused to vaporize the droplets.  The subsequent 
bubbles that are formed can then lodge and occlude blood flow to the tumor, thus 
“starving” the tumor.   Illustration by Carolyn Smith. 
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Figure 1. 2:  Illustration showing the typical dynamics throughout the ADV timeline 
over the first 200 μs.  An initial droplet is present and at time zero an ultrasound wave 
initiates a small gas nucleus to form within the droplet.  On some occasions a second 
nucleation site forms on the opposing end of the droplet shortly after the first.  The gas 
nuclei expand as liquid PFC is converted into its gas phase forming a high press bubble.  
Once the high-pressure bubble is formed a rapid expansion process occurs over a 50 μs 
period and eventually reaches an equilibrium size (on the order of 200 μs).  Finally, the 
bubble can serve as a gas embolus until diffusion processes take over and the bubble 
dissolves into the bulk fluid.  
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CHAPTER II: INITIAL NUCLEATION SITE 
FORMATION DUE TO ACOUSTIC DROPLET 
VAPORIZATION 

Introduction 

Acoustic droplet vaporization (ADV) is a process in which liquid microdroplets are 

selectively vaporized using ultrasound to form larger gas bubbles.  The ADV process has 

been proposed as the primary mechanism behind a potential ultrasound-based cancer 

therapy called gas embolotherapy[1-3].  In gas embolotherapy, liquid perfluorocarbon (PFC) 

microdroplets are intravenously injected into the bloodstream to freely circulate throughout 

the circulatory system.  The PFCs chosen for droplet formulation have a bulk material 

boiling point below body temperature (i.e. < 37˚C), such as docedafluoropentane (DDFP), 

and include a lipid or albumin shell stabilizing the droplet.  Because of surface tension effects 

the boiling point of smaller droplets can be suppressed due to the Laplace pressure.  

However, the larger PFC microdroplets may not have a sufficiently high Laplace pressure to 

completely suppress spontaneous boiling and even a state of liquid superheat.  Regardless, 

the degree of superheat of the larger PFC microdroplets is below the critical limit of super 

heat (TC,DDFP=148˚C)[4], minimizing the possibility of spontaneous explosive boiling from 

occurring.  Furthermore, previous studies have shown that PFC microdroplets remain stable 

beyond 65°C[1, 5].  Studies have shown that ADV can offer sufficient occlusion in a supply 

vessel showing promise for gas embolotherapy[6, 7].  In addition to gas embolotherapy, the 

16 



 

ADV process has been proposed as a platform for localized drug delivery[8-10], high-intensity 

ultrasound (HIFU) tumor ablation[11], and phase-change contrast agents[12,13].   

Few studies have examined the dynamics of the ADV process of PFC microdroplets.  

Earlier work paralleling the dynamics of ADV began with shock-induced explosive boiling 

by Frost in 1989[14].  Frost observed that the shock-induced vaporization process of liquid 

isopentane droplets differed from spontaneous explosive boiling.  One of Frost’s 

observations was that during shock-induced vaporization two consecutive gas nucleation 

sites developed in line with the propagation direction of the shockwave.  The first nucleation 

site consistently appeared further from the shockwave source near the droplet interface, but 

never in the hemisphere proximal to the acoustic source.  In the context of ADV of PFC 

microdroplets, Kripfgans et al. 2004 investigated the mechanism leading to nucleation[2] and 

Wong et al. 2011 focused on the expansion rates of PFC microbubbles following ADV[15].  

Both Kripfgans et al. 2004 and Wong et al. 2011 shared similar observations with Frost that 

when two gas nucleation sites were formed, they were both on axis with the ultrasound.  

Kripfgans et al. 2004 hypothesized that the threshold for ADV of PFC droplets was directly 

linked to the amplitude in which the ultrasound was able to translate the droplet in an 

oscillatory fashion[2].  Giesecke and Hynynen 2003 recorded acoustic cavitation noise from 

ADV and hypothesized that nucleation originated outside the droplet interface as a 

cavitation bubble impinging on the droplet, penetrating the albumin shell, and initiating 

vaporization[5].  The proposed mechanism contradicted results suggesting that onset of ADV 

originates within the droplet and is cavitation independent[2, 16, 17]. More recently, Shpak et al. 

2013 observed the nucleation process in single and double emulsion PFC droplets where in 

the latter case consistent localization of vaporization was observed, originating at 0.4∙R away 
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from the center of the droplet along the axis of the ultrasound, where R is the droplet 

radius[18, 19].  The goal for this study is to directly visualize the nucleation site formation in 

liquid PFC microdroplets due to the ADV process and propose a potential mechanism 

initiating vaporization.  A greater understanding behind the mechanics of the ADV process 

will allow the design of safer and more effective biomedical applications. 

Methods 

A schematic of the experimental setup is shown in figure 2.1.  Individual PFC 

microdroplets were isolated in an acrylic tank containing degassed deionized (DI) water held 

at 37°C using a temperature controlled heating coil (HTP-1500, Adroit Medical Systems, 

Loudon, TN).  Droplets were vaporized using single pulses of 3-15 cycles at 2.2-5.1 MPa 

peak negative pressure (PNP) from a 7.5 MHz single element f/2 (D=1.9 cm or 0.75 in) 

focused transducer (Panametrics A321S, Olympus, Waltham, MA).  The transducer was 

fixed in place confocal to the optics at a 25˚ from the horizontal plane.  The acoustic signal 

was generated by an HP 3314A function generator amplified by a Ritec GA-2500-A 

amplifier and monitored using an oscilloscope (WaveSurfer 44MXs, Teledyne LeCroy, 

Chestnut Ridge, NY).   An Aligent 33120A function generator triggered the acoustic signal 

and gated the amplifier.  The microdroplets (N=68) featured a DDFP liquid core (CAS No. 

678–26–2) and an albumin shell.  Details on the formulation of the PFC microdroplets can 

be found in Kripfgans et al. 2000[1].  The ADV event was captured using an inverted 

microscope (Nikon Eclipse TE2000-S, Nikon, Melville, NY) paired with ultra-high speed 

camera (SIM802, Specialised Imaging Ltd, Hertfordshire, UK) with 8 discreet CCDs, which 

captured 16 images at a time.  The optical setup included a 4x, 10x, or 20x objective with 10x 

internal magnification from the microscope along with a 70-300mm Tamron f/4-5.6 macro 
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zoom lens with a reverse mounted 50 mm f/1.4 Nikkor lens on the camera providing an 

addition 1.4-6x magnification.  In order to provide sufficient light to image the ADV 

process, a 300 Joule flash lamp (Adaptec AD300, Adapt Electronics, Essex, UK) with a fiber 

optic bundle was used to redirect light to the field of view providing a 15 µs burst of light.   

Using COMSOL (COMSOL Inc., Burlington, MA) a finite element based model of 

the transient pressure acoustics module was used to simulate the acoustic field interacting 

with a static PFC microdroplet.  The linear acoustics wave equations were solved in a 

cylindrical coordinate system, given by: 

1
𝜌𝜌𝑐𝑐2

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2

+ ∇ �−
1
𝜌𝜌
∇𝑝𝑝� = 0 (1) 

Where 𝜌𝜌, 𝑐𝑐, 𝑝𝑝, and 𝑡𝑡 represent density, speed of sound, pressure, and time, 

respectively.  The density and speed of sound of water were assumed to be 993 kg/m3 and 

1523 m/s, respectively, while for DDFP the values were 1571 kg/m3 and 405 m/s, 

respectively[20].  The model included the curved f/2 transducer element, similar to the 

transducer used during experiments, driven for 3 cycles in a water domain and the outer 

boundaries of the domain were radiating conditions representing unbounded constraints 

(Figure 2.2).  Inside the domain a single PFC droplet was positioned at the spatial focal 

center of the transducer.  The frequencies used in the study included the carrier frequency 

(7.5 MHz), the first harmonic (15 MHz), and the linear combination of the carrier frequency 

and the next two harmonics, which were matched according to intensity from hydrophone 

measurements (Figure 2.3).  The time step selected was scaled according to the shortest 

harmonic wavelength in the DDFP domain versus the high frequency component imposed 

during simulations.  A forward Euler time stepping scheme was used with a CFL condition 
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of 0.05.  A time and grid convergence analysis was performed revealing convergence rates of 

1.43 and 1.45 respectively (Figure 2.4).  The convergence studies performed considered the 

case of a 3 cycle sine wave at 7.5 MHz interacting with a 70 μm diameter droplet.  An 

irregular grid of triangular elements with linear basis functions was used.  In the bulk fluid 

the element size was scaled according to the wavelength in water, and in the droplet the 

element sizes were scaled according to the wavelength in DDFP.  Starting at the droplet 

interface in the bulk fluid half of the domain, the grid transitioned from the smaller DDFP 

domain element size to the larger water domain element size at an element growth rate of 

1.06.  Uniform grid refinement was used during the grid convergence study.  For both grid 

and time convergence studies the change in pressure waveform in the droplet at a fixed 

point in time was used as the error metric for convergence.  It was determined that 30 

elements per wavelength for the bulk fluid domain and 30-50 elements per wavelength for 

the droplet provided sufficiently high accuracy solutions.  The higher mesh densities were 

required for the small droplets in order to resolve the curvature of the droplet. 

Results and Discussion 

Approximately 25 µs after the initial firing of ultrasound the ADV process began, 

which was expected considering the sound speed in degassed DI water and the focal length 

of the transducer.  The ADV process always began with a single gas nucleation site forming 

within the droplet (although the transducer was oriented at a shallow angle, it is recognized 

that this is single directional view and thus the localization of the nucleation site is limited by 

this projection).  Occasionally a second nucleation site would form along the axis of the 

ultrasound propagation, which is consistent with previous observations[2, 14], shortly after the 

initial nucleation site is formed.  After the nuclei were formed, the liquid PFC continued 
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converting into its gas phase causing the nuclei to grow in size.  Visually, conversion of the 

liquid PFC to gas PFC would complete in the first 1-2 µs. 

An in-house image edge detection script (in MATLAB) was used to identify and 

measure the distance between the centroid of the droplet and nucleus along the axis of 

acoustic propagation.  Smaller droplets (Ddroplet < 20 µm) had the initial nucleation site form 

in the hemisphere closer to the ultrasound source (Figure 2.5), versus initial nucleation in 

larger droplets (Ddroplet > 20 µm) formed further from the ultrasound transducer.  This 

differs from the conflicting observations from Frost[14]  and Shpak et al. 2013[19] who both 

saw initial nucleation form exclusively on opposing sides of the droplet.  However, in the 

limit where the PFC droplets are much larger than the wavelength (i.e. millimeter scale) the 

results match Frost’s in the sense that initial nucleation may appear exclusively further from 

the acoustic source near the boundary of the droplet.  As droplet size decreased, the 

wavelength begins to be of similar or longer than the droplet diameter and the initial nucleus 

traverses across the axis of acoustic propagation and forms proximal to the acoustic source 

(Figure 2.6) matching results and conditions from Shpak et al. 2013 who saw nucleation form 

at -0.4∙R[19]. 

Visually, simulation results indicating the region of lowest acoustic pressure during 

the propagation of the acoustic wave within the droplet matched well with the 

experimentally observed location of first nucleation site formed (Figure 2.6).  The simulated 

acoustic field shows a similar migration pattern of location of highest PNP to initial nucleus 

position as a function of wavelength to droplet diameter.  Simulation results suggest that for 

droplets smaller than the half wavelength in DDFP (λDDFP = 54 μm), the carrier frequency is 

unable to refocus in the droplet.  Because of reduced lensing effect from the carrier 

21 



 

wavelength being longer, the higher frequencies with shorter wavelengths are required to 

develop the high PNP regions in the droplet for ADV to occur.  Also, as the droplet size 

decreased there was increased interference from the oncoming wave transmitted through the 

droplet interacting with the reflected wave from the back of the droplet as the wave passed 

through the droplet.   

Because of the complex interactions that could occur within the droplet, inclusion of 

higher harmonics in the numerical model led to improvements in the model to describe the 

location of initial nucleation for small droplets (Figure 2.7).   The increased reliance on 

higher pressures for ADV of increasingly smaller droplets is a likely outcome from the 

greater dependence on the presence of higher harmonics in the acoustic wave.  Kripfgans et 

al. 2004, concluding that increasing transducer frequency lowers droplet vaporization 

threshold and also broadens the size range of droplets that can be easily vaporized[2].   

Although the simulations suggest that a combination of acoustic lensing from the 

droplet and the short wavelength of DDFP from the slower speed of sound (𝑐𝑐DDFP = 405 

m/s) determines where the largest PNP occurs within the droplet, ADV is a threshold-based 

process.  Therefore tracking the location of 80% of the maximum PNP would reveal 

sensitivity of where nucleation may occur.  Simulations confirm that if the acoustic output 

were beyond threshold, the PNP would cross threshold sooner causing nucleation to occur 

closer to the transducer as a whole.  Plotting the 80% threshold PNP data against the initial 

nucleation site locations (Figure 2.7) shows excellent agreement.  Furthermore the 80% 

threshold PNP acoustic fields still maintain good agreement with the shapes of the initial 

nucleus formed (Figure 2.6). 
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Mechanistically, acoustic lensing within the droplet may enhance the development of 

large local PNPs resulting in a cavitation-like event (i.e. nucleation site formation and onset 

of the ADV process).  Once formed, the nucleation site appears stable and serves as a source 

for conversion of liquid to gaseous PFC, generating a high pressure bubble quickly 

undergoing rapid expansion to its equilibrium diameter described by Wong et al. 2011[15].  

Conclusions 

The location and development of gas nucleation sites formed within liquid PFC 

microdroplets during the ADV process was imaged.  Simulation results and experimental 

results correlate well.  This suggests that due to for shorter wavelength in DDFP than in 

water, an acoustic refocusing may be the source of nucleation.  The range of wavelength to 

droplet diameters tested show the transition in initial nucleation site location Frost 1989[14] 

and Shpak et al. 2013[19] who observed initial nuclei form on opposing sides of the droplet.  

For the acoustic parameters used, the results indicate that the initial gas nucleus formed is 

always contained within the droplets.  Furthermore, the ADV mechanism directly observed 

is potentially a different mechanism suggested from longer pulse lengths previously 

proposed by Giesecke and Hynynen 2003[5, 16, 17].    
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Chapter II:  Figures 

 

Figure 2. 1:  Schematic of the experimental setup.  The transducer and light source 
were oriented confocal with the inverted microscope objective.  The ADV event was 
captured using an ultra-high speed camera through the side port of the microscope.  The 
acoustic pulse was generated using an N cycle pulse from a function generator that was 
amplified prior to reaching the transducer.   
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Figure 2. 2:  The simulation domain of the transient acoustic model.  A PFC droplet 
was placed the focal point of the transducer.  The mesh density shown above was reduced 
by a factor of 100 and the droplet size was exaggerated for illustrative purposes. 
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Figure 2. 3:  (A) Transient acoustic signal and the (B) frequency response of the 7.5 
MHz transducer at the focal point.  The power spectrum reveals significant contribution 
from higher harmonics at the focus.  The inset image shows the non-linear acoustic response 
from a 4 cycle sine input recorded from a fiber optic hydrophone at the focal spot. 
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Figure 2. 4:  (A) Time convergence and (B) grid convergence of the acoustic finite 
element model.  Both time and grid convergence error reduced at a slope of 1.4.   
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Figure 2. 5:  An 18 µm PFC liquid microdroplet undergoing the ADV process due to 
a single 7.5 MHz pulse of 8 cycles at 3.6 MPa PNP.  The “*” indicates the presence of the 
ultrasound pulse in the field of view and the arrow indicates the direction of the ultrasound 
wave.  Note that the diameter is smaller than the carrier frequency (λDDFP=54 µm).  The 
primary gas nucleus is formed in the second frame with secondary nucleation sites form in 
frames 3 and 5 (70 and 210 nanoseconds after the first nucleation side is formed). 
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Figure 2. 6:  Experimental results of the first nucleation site (top row) versus the 
simulated pressure field (middle and bottom row) at 7.5 MHz.  Image pairs (a-e) represent 
14.2, 20.2, 28.5, 41.5, and 60.1 µm diameter droplets and corresponding results.  The scale 
bars indicates 10 µm and the arrow indicates the direction of propagation for the ultrasound 
wave.  The middle row of images are simulation results plotted are when PNP are highest 
when the propagating acoustic wave travels through the droplet. Blues indicate locations of 
negative pressure and reds represent positive pressures.  The bottom row of images are 
when the PNP first achieve 80% the maximum PNP. 
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Figure 2. 7: The relative position of the first nucleation site in the microdroplet due 
to ADV versus simulated results of where the greatest PNP developed along the axis of 
acoustic propagation.  Negative percentages indicates that the center of the first nucleation 
site formed closer to the transducer while positive percentages indicate formation further 
from the transducer. 
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CHAPTER III:  FORMATION OF TOROIDAL 
BUBBLES DURING ACOUSTIC DROPLET 
VAPORIZATION 

Introduction 

Gas embolotherapy is a novel ultrasound based cancer therapy[1,2].  The proposed 

treatment begins with the introduction of encapsulated liquid perfluorocarbon (PFC) 

microdroplets via intravenous injection.  The PFC is chosen such that at body temperature 

(37°C) the microdroplets maintains varying degrees of liquid superheat depending on the 

droplet size and stabilizing surface tension from the shell.  Dodecafluoropetane (DDFP, 

C5H12) is a commonly used PFC for gas embolotherapy microdroplets with a bulk boiling 

point of 29°C.   DDFP microdroplets have been shown to remain in a stable liquid state 

even up to 65°C as they do not spontaneously vaporize until a focused ultrasound pulse is 

applied[3, 4].  After the liquid microdroplets are perturbed and vaporize, they undergo an 

expansion process to form stable gas bubbles that are approximately 125 times larger in 

volume than the initial droplets.  The resulting bubbles can then lodge in the vasculature, 

diverting blood flow, and potentially causing tissue damage[5, 6].  This method could be 

translated into a localized treatment of vascularized tumors.  The mechanism in which liquid 

droplets are vaporized to form gas bubbles using an acoustic pulse can be described as 

acoustic droplet vaporization (ADV).  ADV has also been proposed as a possible platform 
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for drug delivery, tumor high-intensity ultrasound (HIFU) ablation, and phase-change 

contrast agents[7-12]. 

A number of studies have looked at inertial cavitation thresholds for PFC micro- and 

nano-emulsions[13-15].  However, few studies have directly visualized the dynamics during the 

initial phase change phase or the initial rapid expansion process.  Kripfgans et al. 2004 

focused primarily on the dynamics initiating vaporization and characterized the threshold 

dependence between droplet size and acoustic parameters for ADV[3].  Wong et al. 2011 

experimentally measured the expansion rate of the expanding droplets after vaporization 

using ultra-high speed imaging[16].  Direct numerical studies related to ADV, carried out by 

Ye and Bull in 2004 and 2006, looked at the expansion process of bubbles in rigid and 

flexible channels[17, 18].  Qamar et al. 2010 derived a simplified model including the conversion 

process from liquid to gaseous DDFP in a numerical model, which matched well with 

experimental results[19].  Recently, Qamar et al. 2012 used the earlier simplified model as an 

initial condition for a full 2D simulation describing bubble expansion in a channel[20].  

However, all of the numerical simulations assume that an initial perfectly spherical single 

bubble nucleus or bubble is formed at the onset of ADV and the bubble remains spherical 

throughout the first few microseconds.  Experimental studies have focused on the events 

within the first microsecond with nucleation site formation or the expansion process 

(spanning 600 µs), which may have overlooked important dynamics during the rapid 

expansion period when stresses are the highest[3, 16, 21, 22].  In this investigation, the goal was to 

investigate the dynamics of the early time scale events (<5 µs) and observe the dynamics 

leading into the transition of a liquid PFC droplet to complete conversion to a gas PFC 

bubble. 
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Methods 

Individual PFC microdroplets (N=112, mean=9.1 μm, and STD =1.2 μm) were 

isolated at the bottom of an acrylic tank filled with degassed deionized (DI) water maintained 

at body temperature (37°C) using a heated recirculating pump (HTP-1500,  Adroit Medical 

Systems, Loudon, TN).  The PFC microdroplets featured a DDFP (C5F12, CAS #: 678–26–

2) liquid core and an albumin shell.  Details on the formulation of the DDFP microdroplets 

can be found in Kripfgans et al. 2000[1].   An inverted microscope (Nikon Eclipse TE2000-S, 

Nikon, Melville, NY) featuring a 20x objective with 10x internal magnification was used 

along with an ultra-high speed camera (SIM802, Specialised Imaging Ltd, Hertfordshire, UK) 

equipped with a 50 mm f/1.4 Nikkor lens reverse mounted to a 70-300 mm Tamron f/4-5.6 

macro, providing an addition 1.4x to 6x magnification, giving a field of view on the order of 

60x45 µm2.  The ultra-high speed camera was capable of acquiring 16 frames using 8 discreet 

onboard CCD sensors (1360x1024 pixels) with exposures as short as 5 ns and 5 ns between 

frames.  The ADV process was initiated using a single pulse from a 7.5 MHz single element 

focused (f/2) transducer (37.5 mm diameter Panametrics A321S, Olympus, Waltham, MA) 

driven by a function generator (HP 3314A) and a pulse amplifier (Ritec GA-2500-A) gated 

by a second function generator (Aligent 33120A).  In order to supply sufficient light to 

image the ADV process, the field of view was illuminated using a 300 Joule microsecond 

flash lamp (Adaptec AD300, Adapt Electronics, Essex, UK) providing 15 µs burst of light.  

A schematic of the experimental setup is shown in figure 3.1. 

Results and Discussion 

Approximately 25 µs after the initial triggering of the ultrasound the pressure wave 

arrived in the field of view initiating the subsequent ADV event (Figures 3.2, 3.3, and 3.4).  
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In Figures 3.2, 3.3, and 3.4 the first frame shows an 8 µm liquid droplet immediately before 

vaporization.  The ADV process begins with the formation of a single gas nucleation site 

(Figure 3.2, frame 2) followed by the occasional second nucleus (Figure 3.3, frame 2) along 

the axis of propagation for the ultrasound.  The generation of two gas nuclei on axis with the 

propagating ultrasound pulse is consistent with previous experimental observations[3, 16].  

After nucleation the liquid DDFP continues to convert from liquid to gas phase.  Visually, 

complete transition from liquid to gas for the measured droplet population (9.1 ± 1.2 µm) 

occurred in under 0.5 µs.  Throughout the study, there was no visual indication of external 

cavitation gas nuclei from the bulk fluid impinging on the microdroplet initiating the ADV 

process.  This suggests that the ADV process as observed here is initiated by dynamics 

independent from acoustic cavitation of the bulk fluid.   

Depending on the acoustic power and the number of cycles, the bubbles 

immediately after phase change could deform into a bubble torus (Figures 3.2 and 3.4).  The 

toroidal bubble was unable to maintain its shape and quickly pinched off at one end of the 

torus forming a crescent shape (Figure 3.2, frame 4) and eventually returning to a spherical 

configuration.  A consistent pinch off of the bubble torus was observed along the upper 

right quadrant of the bubble.  This was likely due to the shallow angle of the ultrasound 

transducer in the tank (25˚ from horizontal) as well as the propagating direction of the 

ultrasound (from top to bottom in the images).  Typical lifetime of the bubble torus prior to 

pinch off is on the order of 1 to 1.5 µs with the initial formation of the torus at 1 µs after 

nucleation.  Formation of the torus did not always coincide with the presence of the 

ultrasound wave (Figure 3.2), suggesting that the dynamics are likely due to residual fluid 

inertia generated from ultrasound bubble interactions.  Similar dynamics have been 
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previously observed, which includes microjets from cavitation events near boundaries[23-26].  

However, unlike inertial cavitation, the bubble does not fully collapse and no rebound events 

were observed.  This could be due to the high internal pressure seen in the PFC gas bubble 

immediately after phase change resisting collapse from the acoustic pressure.  Using the ideal 

gas law and Laplace’s law, it can be estimated that a 9 µm diameter DDFP microdroplet will 

result in an approximately 45 µm diameter bubble.  For such a bubble the resonant 

frequency is on the order of 145 kHz, therefore it is unlikely that the formation of the torus 

is due to a bubble resonance[27].  However, the interaction of the field with the gas nuclei is 

closer to resonance size but with a correspondingly higher internal gas pressure. 

The likelihood of collapsing a bubble by creating an invagination to form a toroidal 

bubble can be modulated by reducing the number of cycles (thus reducing pulse duration) or 

the acoustic pressure (Figure 3.5).    By reducing the pulse duration to 4 cycles, the droplet 

was still able to undergo the ADV process and the possibility of forming the torus was 

completely avoided regardless of the pressures tested (2.2-5.1MPa peak negative pressure).  

Maintaining a low acoustic pressure and varying the pulse length was less effective at 

mitigating chances of collapsing the bubble.  At 2.2 MPa, 4 and 8 cycles were sufficient to 

vaporize the droplets while avoiding the collapse; however the incidence rate of collapse was 

greatly increased after 16 cycles.  The elevated chances of generating a bubble torus could be 

from the first several cycles inducing nucleation and phase change over the course of one 

microsecond (approximately 8 cycles at 7.5 MHz) and later cycles in the longer pulse lengths 

interacting with the gaseous bubble allowing for collapse. 

Recent experiments performed by Seda (2013) have also shown that modulation of 

acoustic pulse length or pressure can vary the level of cellular injury due to the ADV 
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process[28].  Experiments using a 7.5 MHz transducer directed at DDFP microdroplets in 

close proximity to endothelial cells have shown that ADV with increasing pulse length or 

increasing pressure can denude endothelial cells from the cultured substrate (Figure 3.6).  

The overall trends seen in the endothelial cell experiment results are consistent with the 

occurrence rate of bubble torus formation.  However a discrepancy between toroid 

occurrence rate (Figure 3.5) and relative area of cells denuded from the cultured surface 

(Figure 3.6) was be observed, especially when comparing results when the pulse length was 4 

cycles at 7.5 MHz.  The differences observed are likely from differences in droplet 

distribution used.  During the bubble toroid occurrence studies a narrow range of droplets 

diameters centered at 9 μm was used.   This is in contrast to the much smaller and broader 

droplet size distribution used for the cell experiments with a mean diameter on the order of 

1 μm.  It is possible that the smaller diameter and higher Laplace pressure difference allows 

for a lower threshold for fluid inertia to develop and eventually cause the bubble torus to 

form.  Depending on the droplet density spot size of the transducer it is likely that the 

resulting bubble cloud only covers a fraction of the field of view used to measure the lost 

cell percentage.  Because the bubble cloud area grows with increasing pulse length and 

acoustic pressure but does not exceed the field of view, the relative lost cell percentage in the 

field of view increases but never reaches 100%.   

Although the bubble toroid occurrence rate and percentage of cells lost exhibit 

similar trends, it remains unclear if the cell damage is due to stresses associated with the 

bubble torus or the expansion process from ADV.  With increasing pressure or pulse length, 

the bubble cloud size can increase in size causing a large of cells to experience high stresses 

38 



 

from bubble expansion.  However, the relative area of bubbles exposed to higher pressures 

or longer acoustic pulse pressures sufficient to develop the bubble toroid will grow as well. 

Conclusions 

The conditions necessary to vaporize DDFP microdroplets and collapse the bubble 

to create a temporary bubble torus at 7.5 MHz were observed.  Modulation of acoustic 

pressure and pulse length allowed for control over the formation of a transient bubble torus.  

Elevated pulse length or acoustic pressure would lead to eventual torus formation.  

Associated stresses from invagination of the bubble may lead to potential tissue damage 

similar to that seen in liquid microjets formed from HIFU bubble collapse[24, 26].  

Furthermore, the final pinch off of the bubble torus leading to the eventual reformation of a 

spherical bubble may also generate high stresses near the endothelium.  Such cellular damage 

has been observed in liquid plug ruptures in the lung airway models may result in sufficiently 

high stresses leading to epithelial lung damage[29].  However, sufficiently short pulse lengths 

eliminated the possibility of creating a transient bubble torus over the range of acoustic 

pressures tested.  Additionally it was confirmed that, for the appropriate conditions, single 

nucleation sites can be formed and the evolution of the expanding bubbles even within the 

first 10 µs remain largely spherical.  This suggests that previous assumptions in 

computational models are reasonable if acoustic pulses used are low intensity and sufficiently 

short.  The perturbation leading to the temporary formation of a bubble torus could be due 

to fluid inertia or from acoustic radiation force.  Although preliminary results have shown 

similar correlation between cell injury with increasing pulse length and pressure, it is unclear 

if this damage is a direct consequence strictly due to the torus formation.  Further ultra-high 
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speed camera ADV experiments must be performed in the proximity of endothelial elucidate 

when in the time series of events does cell injury occur. 
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Chapter III:  Figures 

 

Figure 3. 1:  A schematic of the experimental setup.  The transducer was held 
confocal to the microscope objective using a custom machined bracket.  Acoustic pulse 
length and power was modulated from a HP 3314A function generator.  Timing between the 
transducer, amplifier gate, ultra-high speed camera, and flash lamp was accomplished using a 
laptop equipped with an external controller running SIM Control (Specialised Imaging Ltd, 
Hertfordshire, UK) 
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Figure 3. 2:  The image sequence shows an 8.3 µm PFC liquid microdroplet 
undergoing the ADV process initiated by a single pulse of 8 cycles at 7.5 MHz and 3.6 MPa 
peak negative pressure.  The “*” demarcates the presence of the ultrasound pulse in the field 
of view and the arrow indicates the direction of the ultrasound wave.  Visually, perforation 
of the bubble occurs after the initial nucleation and after the ultrasound wave has passed at 
approximately one microsecond after the initial nucleus is seen. 
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Figure 3. 3: The image sequence shows an 8.3 µm PFC liquid microdroplet 
undergoing the ADV process initiated by a single pulse of 4 cycles at 7.5 MHz and 3.6 MPa 
PNP.  The “*” indicates the presence of the ultrasound pulse in the field of view and the 
arrow indicates the direction of the ultrasound wave.  The reduction in pulse length 
suppresses the creation of the bubble torus and the bubble remains largely spherical 
throughout the early stages of ADV.  
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Figure 3. 4: The image sequence shows an 8.5 µm DDFP liquid microdroplet 
undergoing the ADV process initiated by a single pulse of 16 cycles at 7.5 MHz and 3.6 MPa 
PNP.  The “*” demarcates the presence of the ultrasound pulse in the field of view and the 
arrow indicates the direction of the ultrasound wave.  Visually, perforation of the bubble 
resulting in a bubble torus is seen approximately one microsecond after the initial nucleation.  
A combination of elevated pulse length and acoustic pressure results in what appears to be a 
violent ADV process. 
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Figure 3. 5:  Rate of occurrence observed in bubble torus formation as a function of 
number of inputted cycles and PNP for droplets of 9.1 μm (STD=1.2 μm) droplets 
vaporized using single pulses from a 7.5 MHz transducer.   
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Figure 3. 6:  (A) A sample fluorescent image of remaining endothelial cells after 
ADV and (B) the relative number of cells remaining after ADV (courtesy of Robinson 
Seda[28]).  The blue fluorescence in (A) represent stained nuclei of cells remaining after ADV 
while the red and blue signify perforated nuclei.  The scale bar represents 200 µm.  Figure 
(B) shows that with increasing acoustic power or pulses length there is an increasing number 
of cells lost in the field of view due to the ADV process.   
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CHAPTER IV:  THE BUBBLE EVOLUTION 
FROM ACOUSTIC DROPLET 
VAPORIZATION IN MICROCHANNELS 

Introduction 

In recent years there has been increased interest in acoustically activated 

microdroplets in medicine.  The concept behind it is that liquid microdroplets with a bulk 

boiling temperature below body temperature can be encapsulated such that spontaneous 

vaporization of the droplets is suppressed through the stabilizing effects through surface 

tension and can be safely introduced into the bloodstream via intravenous injection into the 

bloodstream[1-3].  Using an external force such as ultrasound, the droplets can be selectively 

targeted for vaporization subsequently creating gas bubbles.  The process of selectively 

vaporizing super-heated liquid droplets to form gas bubbles using ultrasound is known as 

acoustic droplet vaporization (ADV).  In gas embolotherapy, the ADV process is applied to 

perfluorocarbon (PFC) microdroplets to create localized gas emboli near a tumor site in 

order to starve the tumor from nutrient supply leading to tumor necrosis[1-3].   

The ADV process begins with nucleation site formation, which has been suggested 

to initiate within the droplet as an independent occurrence from inertial cavitation[4-6].  

Kripfgans et al. 2004 was the first to directly image the ADV process in PFC microdroplets 

at the microscale, visualizing the nucleation site formation within the droplets and 

quantifying the relationship between vaporization threshold as a function of droplet size, 
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frequency, and acoustic power[4].  Wong et al. 2011 later looked at bubble evolution of the 

PFC microdroplets due to ADV carried out in micro-dialysis tubing (Dtube=200 µm)[7].  

Although the results collected matched well with later theoretical models developed by 

Qamar et al. 2010, the droplet to channel diameter ratios where small and bubbles were 

unable to make contact with the walls causing bubbles to expansion in a spherical manner[8].  

Earlier theoretical work by Ye and Bull in 2004 and 2006 explored bubble expansion in rigid 

and flexible tubes with bubbles that initially expand radially, but in later stages expand axially 

because of the confining walls[9, 10].  Without earlier experimental data the model parameters 

used by Ye and Bull’s let to expansion rates were later shown to be an underestimation of 

the experimentally observed expansion process collected by Wong et al. 2011[7]. However, the 

model still contains useful information behind behavior of ADV in highly confined 

conditions leading to bubble-wall contact.  The flexible wall model developed by Ye and Bull 

in 2006, predicted that depending on the level of vessel resistance, significant vessel 

deformation to the point of vessel rupture may occur. 

Samuel et al. 2012 was able to perform ADV and verify the bubble lodging patterns 

in rat cremaster vasculature[11].  These results were consistent with predicted lodging 

configurations initially proposed by Calderon et al. 2006[11].  Furthermore, Samuel et al. 2012 

provided case evidence of capillary damage in the form of RBC extravasation due to ADV 

exposure[11].  Based on the imaging evidence it was unclear to conclude if the damage was 

due to inertial cavitation or stresses related to bubble expansion[11].  In an effort to resolve 

expansion rates and gain insight on the potential sources of damage, this study focused on 

comparing the expansion rates from the ADV process in free field environments versus 

idealized polydimethylsiloxane (PDMS) microvessels. 
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Methods 

Two experimental conditions were tested:  vaporization of PFC microdroplets in 

free-field conditions and vaporization in idealized microvessels.  ADV events were recorded 

for 41 cases in free-field, 34 cases for 25 μm diameter, 36 cases for 50 μm diameter channels, 

and 28 cases in 100 μm diameter channels.  During both sets of experiments liquid PFC 

microdroplets featuring a dodecafluoropentane (DDFP, C5F12, CAS No. 678–26–2) core and 

an albumin shell were isolated and vaporized using focused ultrasound.  The DDFP droplets 

were constructed using an amalgamator and details on the procedure to produce the droplets 

can be found in Kripfgans et al. 2000[3].  In both experiments single pulses from a single 

element focused (f/2) transducer at 7.5 MHz (Diameter=37.5 mm, Panametrics A321S, 

Olympus, Waltham, MA) using 8-32 cycles at 2.2 to 5.6 MPa peak-negative pressure (PNP) 

were used to initiate vaporization.  All experiments were performed in a degassed deionized 

water bath held at body temperature (37˚C) using a recirculating temperature closed circuit 

water pump (HTP-1500, Adroit Medical Systems, Loudon, TN).  Driving the transducer was 

a pulse amplifier (Ritec GA-2500-A) gated by function generator function generator (Aligent 

33120A).  The sine wave input amplified by the pulse amplifier was produced using an 

arbitrary waveform generator (HP 3314A).  In order to capture the events of the rapidly 

expanding vapor bubbles an ultra-high speed camera (SIM802, Specialised Imaging Ltd, 

Hertfordshire, UK) attached to the side camera port of an inverted microscope (Nikon 

Eclipse TE2000-S, Nikon, Melville, NY) was used.  On the inverted microscope 4x, 10x, and 

20x objectives were used combined with a 10x internal magnification from the microscope.  

Paired with the ultra-high speed camera was a 50 mm f/1.4 Nikkor lens reverse mounted to 

a 70-300mm f/4.5-5.6 Tamron tele-macro zoom lens providing an addition 1.4-6x 
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magnification.  Because of the short exposures and high magnification, one of two flash 

lamps paired with a fiber optic bundle to redirect the light to the field of the view.  A 300 

Joule microsecond flash lamp (Adaptec AD300, Adapt Electronics, Essex, UK) was used for 

imaging sequences occurring within 15 µs whereas a 500 Joule millisecond flash lamp 

(Adaptec AD500, Adapt Electronics, Essex, UK) was used for vaporization events occurring 

within two milliseconds.  A schematic of the experiment setup can be seen in figure 4.1. 

The straight microchannels representing idealized 25, 50, or 100 µm microvessels 

with a channel length to width ratio of 50:1 were constructed out of molded PDMS (Sylgard 

186, Dow-Corning) mixed at a 10:1 elastomer to cross-linker ratio and plasma bonded to 

glass slides (Fisher Scientific) using oxygen and the RIE-2000 (South Bay Technology, Inc. 

San Clemente, CA, USA).  The PDMS molds were constructed using standard 

photolithographic techniques using SU-8 2015 for the 25 µm channels, SU-8 2025 for the 50 

µm, and SU-8 2075 for the 100 µm channels (MicroChem, Newton, MA, USA) on a silicon 

substrate (University Wafer, Boston, MA, USA)[13, 14].  The procedures used for mold 

manufacturing can be found in Appendix I.  In order to minimize attenuation from the 

PDMS layer of the channel, the PDMS was degassed, dispensed at 4 ml volumes, and spun 

(WS-400-6NPP, Laurell Technologies Corp., North Wales, PA, USA) onto the molds to give 

approximately 75 µm wall thicknesses.  Details on the procedures for obtaining specific wall 

PDMS wall thickness can be found in Appendix II.  A biopsy punch was used to create 

openings to introduce the droplets and droplets were introduced individually using a 1 ml 

syringe. 
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Results and Discussion 

In both free-field and channel confined conditions approximately 25 µs after initial 

triggering of the ultrasound, the ADV process began in the microdroplet by forming the first 

nucleation site (Figure 4.2).  The time delay was expected considering the focal length and 

speed of sound in water.  A negligible time difference was expected between the channel 

confined vaporization and the free-field case because the wall thickness was thin relative to 

the focal length creating little change to the time of flight for the acoustics.  The beginning 

of ADV always began with an initial gas nucleus forming within the droplet and on many 

occasions a second nucleation site forming within the droplet within 100 nanoseconds after 

the first nucleation sites formed.  When two nucleation sites are formed they consistently 

form in line with the axis of propagating acoustic wave, which is consistent with findings 

from previous studies[4, 7].  The presence of microchannel walls had no effect on the 

formation of the nucleation sites.  This observation did not come as a surprise because the 

channel dimensions were smaller than the wavelength in water and standing waves should 

not have been presence in influencing nucleation site formation.  After the first nucleation 

sites form the liquid DDFP continues to convert to its gas phase by feeding into the gas 

nucleation sites until a high-pressure gas bubble is formed, usually on the order of one 

microsecond after nucleation has occurred. 

The observed pattern of nucleation sites forming in line with the axis of acoustic 

propagation suggests that the ADV process is initiated by the acoustic wave interacting with 

the droplet.  Previous experimental observations investigating location of the primary 

nucleation site formed due to ADV is due to lensing effect of the acoustic wave within the 

droplet causing a high peak negative pressure to develop within the droplet[15].  A possible 
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explanation for the secondary gas nuclei formed can be borrowed from Frost 1989, looking 

at shock-induced explosive boiling, who concluded that a second pressure wave released 

from the first nucleation site is refocused on the opposing side of the droplet[16].  

Considering the sound speed in DDFP is 406 m/s[17], the time of flight for a pressure wave 

to propagate across the droplets 10-12 microns in diameter (Figure 4.2) should be 25-30 

nanoseconds. However, the first visible indication of the second nucleation site forming in 

figure 4.2 is 100 nanoseconds after formation of the second nucleation.  Although Frost’s 

explanation does not fit perfectly with the results shown, it does not rule out the possibility 

that additional acoustic interactions from the propagating ultrasound pulse could be 

augmenting the field within the bubble, interacting with possible pressure waves from the 

first nucleation site, and causing the second nucleation site to form. 

Once the high pressure gas bubble was formed, the bubble underwent a rapid 

expansion.  It was observed that in during the free-field cases the bubble takes on an 

irregular shape that is non-spherical (Figures 4.3 and 4.5).  Similar observations were made 

by Wong et al. 2011 when the vaporization took place in 200 µm diameter channels[7].  Once 

vaporization and expansion events were constrained to the microchannels, the bubbles 

remained much more spherical in shape, until wall contact (Figures 4.4 and 4.5).  Under 

extreme acoustic conditions, when either acoustic power or acoustic pulse length is increased 

bubble toroids have been shown to form regularly in free-field conditions[15].  However, 

ADV constrained by a channel prevent these toroid bubbles to form (Figure 4.5).  

Numerical studies performed by Ye and Bull 2004 and 2006[9, 10] as well as with Qamar et al. 

2010[8] investigating bubble expansion in channels all have concluded that channel diameter 

plays a significant role in damping bubble expansion due to viscous resistance from the 
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channel.  Therefore, it is likely that the inability to pull fluid into the domain to deform the 

bubble and create the depression leading to toroidal bubble configurations is likely from 

viscous resistance from small channel diameters.  The previous study’s observations of non-

spherical bubbles during the rapid expansion are likely due to the larger channel to droplet 

diameter ratio used.   

The interface and effective volume of the bubble could be tracked as the bubble 

expanded over time.  An image contrast threshold based method (using MATLAB) was used 

to identify and estimate the bubble dimensions in the ultra-high speed images.  An effective 

radius was calculated by measuring the visualized area of the bubble in the images, projecting 

it to an estimated spherical or cylindrical volume (depending on vaporization conditions), 

and back-calculating an equivalent spherical volume.  For bubble expansion in a channel, it 

was assumed that up until wall contact the expansion was in the radial direction and in later 

time points assumed to expand cylinder as a lengthening cylinder.  In figure 4.7, the effects 

of viscous resistance from the channel on bubble expansion are evident.  During free-field 

expansion between 17 and 25 μs the bubble is close to the equilibrium diameter (Figure 4.4).  

Looking at a similarly sized droplet (Figure 4.5) expanding in a channel, 25 μs after onset of 

ADV the bubble continues to expand and does not reach equilibrium until 75 μs after ADV 

first begins.  The vaporization events in channels can be separated into two conditions, 

bubbles that contact the wall and continue to expand in a cylindrical fashion and moderately 

sized bubbles that remain spherical throughout the vaporization process (Figure 4.7).  

Comparing the wall contact and no wall contact results to the free field ADV results, it can 

be concluded that as the relative diameter of the channel increases compared to the droplet 
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diameter, viscous resistance from the presence of the channel walls diminishes and the 

bubble expansion rates increase. 

The greatest expansion rates occurred during the initial microseconds of bubble 

expansion follow immediately after the initial phase change.  According to Wong et al. 2011 

the initial rapid expansion is driven by the high internal pressures of the newly converted gas 

bubble.  During the early stages of the expansion, up until the bubble reaches an expansion 

ratio of 1.5 or during the 1.5 μs, maximum expansion rates are achieved.  During that initial 

period, the maximum expansion rate is maintained at a constant rate and can be 

approximated through a linear model[7].  A linear model was used during to estimate the 

maximum expansion rates for the free-field condition over the course of the first 1.5 μs.  

Because of the much slower expansion rates observed during the channel constrained 

expansion the definition of linear expansion up until an expansion ratio of 1.5 was used to 

estimate the constant maximum expansion rates achieved during the expansion in 

constrained channels.  Subsequent time points for the free-field and channel constrained 

expansion deviated from the projected linear model and therefore were omitted from the 

linear model.  The two droplet populations observed had a mean diameter of 7.2 μm 

(STD=0.52 μm) for free-field vaporization and 8.0 μm (STD=0.58 μm) for the channel case.  

The resulting linear regressions revealed an estimated interface velocity of 7.96 m/s during 

free field conditions and 0.57 m/s during expansion in a channel.  Using conservation of 

mass and assuming that bubble remains spherical during free field expansion, the radial 

stress component given by: 

𝜎𝜎𝑟𝑟𝑟𝑟 = −
4𝜇𝜇𝑅𝑅𝑏𝑏2

𝑟𝑟3
 𝑉𝑉𝑏𝑏 

(1) 
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Where 𝜇𝜇 is viscosity, 𝑟𝑟 is radial position, 𝑅𝑅𝑏𝑏 is the bubble radius, and 𝑉𝑉𝑏𝑏 is the 

velocity of the bubble interface during expansion.  The stress component clearly decays to 

zero and damage would likely be limited to areas immediately next to the expanding bubble.  

Alternatively, if it is assumed that a bubble remains spherical in the early stages of expansion 

in a channel, a wall shear is experienced throughout the channel due to the displaced volume 

of fluid.  Depending on the bubble and vessel dimensions an estimate for the limit of wall 

shear experienced far from the bubble during the spherical expansion can be expressed by: 

𝜏𝜏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = −
8𝜇𝜇
𝑅𝑅𝑣𝑣

�
𝑅𝑅𝑏𝑏
𝑅𝑅𝑣𝑣
�
2

 𝑉𝑉𝑏𝑏 
(2) 

where 𝑅𝑅𝑣𝑣 the radius of the bubble.  In the limit that the bubble expands at the same 

interface velocity as the free-field case and the bubble radius matches the vessel radius, the 

entire vessel will experience a wall shear equal if not greater than the two times the stress 

normally experienced  at the gas/fluid interface of an equivalently sized bubble in free-field.  

The finite limit of stress that is observed in an entire vessel branch during ADV exposure 

could potentially explain the vessel damage and RBC extravasation observed by Samuel et al. 

2012[11].  Clinically, so long as the droplet populations are designed to be small compared to 

the intended ADV exposed vessel, the level of stresses imposed on the vessel can be 

suppressed. 

Conclusions 

The nucleation events in addition to bubble expansion events under both free-field 

and microchannels constrained ADV conditions were observed.  It was found that the 

pattern in nucleation site formation was in good agreement with previous studies.  The 

effects of the presence of channel walls were observed in two ways during the expansion 
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process.  First, the presence of the channel walls ensured the bubble remain spherical 

throughout the early stages of the expansion process.  Previous experimental results 

elucidating conditions that ensured bubble collapse creating toroidal bubbles in free-field 

conditions could not be reproduced when constrained in a microchannel[18].  Furthermore 

trends first predicted from numerical models suggesting that the presence of the channel 

would result in a dampening effect on bubble expansion were observed experimentally.  

Although the bubble expansion is slower, there is still a possibility that stresses developed 

stresses along the entirety of the vessel may result in possible vessel damage.  Fortunately the 

expected levels of wall shear diminish with decreasing droplet diameter versus vessel 

diameter during expansion.  By using select droplet populations that are smaller than the 

intended insonation vessel diameter, stresses from ADV expansion can be mitigated.  

Additional work quantifying cellular damage due to ADV in small vessels must be 

performed in the future in order to understand the safety limitations of gas embolotherapy 

applied to microcirculation.  
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Chapter IV:  Figures 

 

Figure 4. 1:  Vaporization events occurred in a degassed DI water bath held at body 
temperature using a recirculating water heater.  The vaporization event was activated 
through the triggering of a single element 7.5 MHz transducer driven by a pulsed amplifier 
fed by an N cycle sine wave from a function generator both gated by a second waveform 
generator.  A laptop was used to synchronize triggering of the acoustics along with an ultra-
high speed camera and flash lamp. 
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Figure 4. 2:  Nucleation process observed in free field conditions (top row) versus 
constrained in a channel (bottom row).  The arrows indicate the direction of propagation of 
ultrasound.  The scale bar represents 10 µm. 
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Figure 4. 3:  The expansion process in free field conditions for an 11.3 μm diameter 
microdroplet.   At time zero an isolated PFC microdroplet is seen prior to the ultrasound 
pulse arrives (8 cycles at 7.5 MHz and PNP = 3.9 MPa).  The ultrasound is present over the 
first microsecond and 0.5 μs into the ADV process it appears that all the DDFP liquid is 
converted to the gas phase.  Between times 1.0 to 4.0 μs bubble interface is non-spherical, 
but begins to returns to spherical shape 7 microseconds in.  By 25 μs most of the expansion 
is complete and the interface blurs because the bubble interface begins to leave the plan of 
focus. 
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Figure 4. 4:  The expansion process of an 8.4 micron diameter microdroplet within a 
25 μs diameter channel.  At time zero the droplet is just before initiation of the ADV 
process.  Immediately afterwards the ultrasound pulse arrives (8 cycles at 7.5 MHz and 
PNP= 4.3 MPa) and remains on through frame 3 (1 μs).  In frame 2 (0.5 μs) the DDFP 
liquid is converted to gas phase.  Throughout the earlier times of the expansion process, 
before contacting the walls, the bubble remains largely spherical.  However, once the 
bubbles contacts the walls the bubble continues growth axially in line with channel ad no 
wall deformation is apparent. 
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A 

 
B 

 
 

Figure 4. 5:  The vaporization process under acoustic conditions that result in 
toroidal bubbles during free-field expiation.  Figure (A) shows an 11.4 µm droplet 
undergoing expansion to form the toroidal bubble due to a 3.6 MPa PNP pulse at 8 cycles.  
Figure (B) shows a 13.9 µm droplet undergoing expansion in a 50 µm channel due to a 5.1 
MPa PNP pulse at 32 cycles.  The resulting bubble is unable to deform to form the toroidal 
bubble due to viscous resistance from the channel.  The scale bars represents 20 µm. 
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Figure 4. 6:  Normalized effective bubble radius expansion of PFC microdroplets 

due to ADV in free-field conditions versus confined in a microchannel.  Channel 
constrained droplet expiation were separated into bubbles that made wall contact versus 
those that did not.  Viscous effects from the presence of the channel walls severely damped 
bubble expansion. 

  

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

N
or

m
al

ize
d 

R E
ffe

ct
iv

e

Time (µs)

Free Field Channel - No Wall Contact Channel - Wall contact

65 



 

 

Figure 4. 7:  Expansion ratios early in the vaporization process when the bubbles 
double in size.  By using a linear fit to describe the data, the expansion velocities in free 
conditions over the first microsecond and confined conditions over the first 5.5 
microseconds were estimated.  Interface velocities of vaporized droplets with a mean 
diameter of 7.2 μm (STD=0.52 μm) expanded at an estimated peak interface velocity of 7.96 
m/s in free field conditions.  Droplets with a mean diameter of 8.0 μm (STD=0.58 μm) 
confined in 25 μm channels meanwhile expanded at a radial velocity of 0.57 m/s.  R-squared 
values of the linear regressions over the free field expansion and channel constrained 
expansions were 0.79 and 0.81 respectively. 
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CHAPTER V:  A BOUNDARY ELEMENT 
MODEL OF A MICROBUBBLE SLIDING 
THROUGH A BIFURCATION  

Introduction 

Gas embolotherapy is a novel variation on more traditional embolotherapy methods, 

which rely on strategic catheter based delivery of solid or semi-solid embolizing agents to 

serve as a vessel occlusion for therapeutic purposes[1-4].  In gas embolotherapy, intravenously 

injected liquid encapsulated microdroplets are strategically vaporized using focused 

ultrasound to form larger localized gas bubbles that can serve as embolizing agents to limit 

nutrient supply to a vascularized tumor[3, 4].  The liquid microdroplets feature a 

perfluorocarbon (PFC) core and are normally encapsulated using an albumin or lipid 

membrane[5].  The process of using acoustic energy to selectively vaporize gas bubbles can be 

referred to as acoustic droplet vaporization (ADV).  The use of these PFCs are ideal for gas 

embolotherapy not only because PFCs have been FDA approved for clinical use as contrast 

agents, but also because several chemical forms of PFCs have bulk boiling temperatures 

below body temperature (37˚C) allowing the resulting bubbles to remain stable in its gas 

phase and not recondensing after the initial vaporization[5].  The most common PFC chosen 

is dodecafluoropentane (DDFP, CAS No. 678–26–2) with a boiling point of 29˚C, but 

shorter carbon chain PFCs such as perfluorobutane (CAS No. 355-25-9) or 

perfluoropropane (CAS No. 76-19-7) with boiling points of -2˚C and -39˚C have also been 
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use[5-9].  Gas embolotherapy has been shown to be effective in reducing local blood perfusion 

in the vasculature during in vivo studies performed on canines[2, 10].   

In contrast to gas embolotherapy, air embolism in the vasculature has long since 

been known to result in undesired consequences, which are potentially fatal if untreated[11-13].  

In order to make the gas embolotherapy and other bubble based therapies more effective 

and safer in application, understanding the conditions that allow microbubbles to stick to 

vessel walls and lodge or dislodge in vessels will allow for more improved strategic 

approaches to reduce perfusion in a desired vessel of a given size and flow rate.  In previous 

work relevant to bubble transport through vessels bench top model experiments using 

idealized vessel bifurcations followed by reduced order theoretical models were carried out 

to investigate the conditions required for bubble splitting and lodging[14, 15].  Recently, 

Samuel, et al. 2012 carried out in vivo studies using rat models investigating bubble lodging 

patterns after ADV exposure in microvasculature.  The lodging patterns and conditions 

previously predicted and experimentally observed in microchannels from Calderon, et al. 

2006[16] and the in vivo results from Samuel et al. 2012 [17] were in good agreement. 

In the context of ADV and gas embolotherapy, the inability to extract details on 

bubble evolution, velocity fields, and wall stresses from the simplified models motivated the 

direct numerical simulations from Ye and Bull 2004 and 2006 investigating the velocities and 

stresses associated with the rapid bubble expansion from an ADV event in a rigid and 

flexible vessel environment[18, 19].  Following this work was development of boundary element 

models of finite sized bubbles attached to a vessel wall sliding through a vessel as well as a 

semi-infinite bubble approaching a bifurcation[20, 21].  From these numerical models, it was 
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concluded that endothelial damage could occur due to elevated wall shears due to the 

moving contact line. 

Although previous numerical models have investigated the dynamics and stresses 

incurred at the bifurcation due to bubble motion or the influences of bubble adhesion forces 

on bubble motion in straight channels, no simulations to date have investigated geometric 

influences of the bifurcation combined with contact line adhesion on bubble lodging.  This 

study focused on the transport of a small microbubble in contact with the wall initially near a 

bifurcating vessel exposed to a pressure gradient.  This circumstance is possible in a variety 

of situations after ADV exposure or introduction of micro-/nanobubbles in microvessels.  

For example, if a vaporization event occurs near a vessel wall and the expanding bubble may 

come into contact and adhere to the vessel wall.  Another possibility is a freely circulating 

bubble contacts and adheres to a vessel wall due to fluid momentum or acoustic radiation 

and the preexisting flow in the vessel pushes the bubble down the vascular tree.  

Additionally, differences in functionalized or uncoated bubbles and droplets will result in 

varying degrees of adhesion between the bubble interface and the vessel wall translating into 

to bubble sliding or sticking along the wall.  The Boundary Element Method (BEM) was 

implemented to model bulk fluid surrounding the bubble under 2D Stokes flow conditions 

and the bubble was considered as an ideal gas and described using the ideal gas law.  

Tanner’s law was used to describe the velocity the three-phase contact line between the 

bubble, vessel wall, and blood.  Furthermore, two scenarios were considered:  (1) 

proportional slip and (2) slip hysteresis where the bubble is allowed to stick. 
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Methods 

The model presented considers the transient motion of a finite sized bubble 

approaching a geometrically symmetric two-dimensional bifurcating channel (Figure 5.1).  

The model consisted of two liquids (1) the bulk fluid surrounding the bubble, which is 

modeled as an incompressible Newtonian fluid, and (2) the gas bubble phase, which was 

assumed to act as ideal gas.  For an incompressible Newtonian fluid mass and momentum 

must be conserved, and can be described using the following dimensionless equations: 

∇ ∙ 𝑢𝑢�⃗ = 0 (1) 

𝐶𝐶𝐶𝐶 ∙ 𝑅𝑅𝑅𝑅 �
𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝑡𝑡

+ 𝑢𝑢�⃗ (∇𝑢𝑢�⃗ )� − ∇𝑝𝑝 + 𝐶𝐶𝐶𝐶 ∙ ∇2𝑢𝑢�⃗  (2) 

These equations the represent the (1) continuity and (2) Navier-Stokes equations.  In 

the equations 𝑝𝑝 and 𝑢𝑢�⃗  represents the dimensionless pressure and velocity vector.    

Additionally, 𝐶𝐶𝐶𝐶 and 𝑅𝑅𝑅𝑅 represent the dimensionless quantities known as the capillary 

number and the Reynolds number, given by 𝐶𝐶𝐶𝐶 = 𝜇𝜇∗𝑈𝑈∗

𝜎𝜎∗
 and 𝑅𝑅𝑅𝑅 = 𝑈𝑈∗𝐿𝐿∗𝜌𝜌∗

𝜇𝜇∗
 where 𝑈𝑈∗, 𝑃𝑃∗, and 

𝐿𝐿∗ serve as our velocity, pressure, and length scales and 𝜇𝜇∗, 𝜎𝜎∗, and 𝜌𝜌∗ represent our the 

viscosity, surface tension and viscosity of the bulk fluid.    The velocity and pressure scales 

are given by 𝑈𝑈∗ = 𝜎𝜎∗

𝜇𝜇∗
 and 𝑃𝑃∗ = 𝜎𝜎∗

𝐿𝐿∗
. 

Anatomic studies have shown that small venules and arterioles with radii on the 

order 50 µm have peak velocities on the ranging from 0.5 to 3 cm/s giving a Reynolds 

number of on the order of 0.06 to 0.38 [22].  Because of the small vessel diameters and low 

flow rates observed in the microcirculation, the Reynolds number was considered low 
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(Re<1) and the bulk fluid motion was reduced to Stokes flow.  The updated dimensionless 

equations governing the bulk fluid are described by: 

−∇𝑝𝑝 + ∇2𝑢𝑢�⃗ = 0 (3) 

Because of the Stokes flow condition and utilizing the fact that the partial differential 

equation is linear, symmetric, and homogenous in 2D, the differential equation describing 

the bulk fluid can be rewritten in the following boundary integral form[23, 24]: 

𝑐𝑐𝑘𝑘𝑘𝑘𝑢𝑢𝑘𝑘(𝑥⃗𝑥0) =
−1

4𝜋𝜋Ca
� 𝑓𝑓𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥0)𝐺𝐺𝑖𝑖𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥0)𝑑𝑑𝑑𝑑(𝑥⃗𝑥)
𝐶𝐶

+ � 𝑢𝑢𝑖𝑖(𝑥⃗𝑥)𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖(𝑥⃗𝑥, 𝑥⃗𝑥0)𝑛𝑛𝑘𝑘(𝑥⃗𝑥)𝑑𝑑𝑑𝑑(𝑥⃗𝑥)
𝐶𝐶

 (4) 

The integrals are only required to be evaluated along the boundaries of the domain.  

𝑓𝑓𝑖𝑖 represents the Cartesian stress components, 𝑛𝑛 is the unit normal pointing into the domain, 

𝑐𝑐𝑘𝑘𝑘𝑘 represents a constant that is equal to 
𝛿𝛿𝑘𝑘𝑘𝑘
2

 for smooth boundaries.  Additionally, 𝐺𝐺𝑖𝑖𝑖𝑖 and 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 represent the Green’s functions commonly referred to as the Stokeslet and the Stresslet, 

which are defined as: 

𝐺𝐺𝑖𝑖𝑖𝑖 = −𝛿𝛿𝑖𝑖𝑖𝑖 ln|𝑥⃗𝑥 − 𝑥⃗𝑥0| +
(𝑥𝑥𝑖𝑖 − 𝑥𝑥0𝑖𝑖)�𝑥𝑥𝑗𝑗 − 𝑥𝑥0𝑗𝑗�

(𝑥⃗𝑥 − 𝑥⃗𝑥0)2  (5) 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = −4
(𝑥𝑥𝑖𝑖 − 𝑥𝑥0𝑖𝑖)�𝑥𝑥𝑗𝑗 − 𝑥𝑥0𝑗𝑗�(𝑥𝑥𝑘𝑘 − 𝑥𝑥0𝑘𝑘)

(𝑥⃗𝑥 − 𝑥⃗𝑥0)4  (6) 

This formulation can be solved discretely using the numerical method known as the 

BEM[23, 24].  The boundary of the domain along with the bubble is discretized into quadratic 

elements to solve the integral in equation (4) numerically.  An example of the discretized 

boundary domain is shown in figure 5.1.  𝑥⃗𝑥0 is a point where the singularity exists and 𝑥⃗𝑥 is 

any point of interested away from the singular point.  Gaussian quadrature was used to 
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evaluate the discrete boundary integrals along each boundary element.  For elements where 

the singular functions 𝐺𝐺𝑖𝑖𝑖𝑖 or 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 existed outside the element on integration a traditional 10 

point Gauss-Legendre quadrature method was used.  However if the singular point was 

along the element of integration, a logarithmic form of the 10 point Gaussian quadrature was 

used instead[23].  By moving the singular point, 𝑥⃗𝑥0, from node to node, a system of equations 

with mixed boundary conditions are generated that can be solved using Gauss elimination 

with partial pivoting to obtain the unknown velocities or stresses along the boundaries.   

The simulations all began with a circular profiled bubble attached to the lower wall 

of the parent channel upstream of the bifurcation point.  The bubble was offset such that 

the initial contact angles were at the equilibrium static contact angle of 70°.  The starting 

position of the bubble was set to 1.5 times the channel diameter upstream of the carina of 

the bifurcation.  The bifurcation was a symmetric splitting angle of 78° with a daughter to 

parent channel diameter ratio of 0.78.  An initial pressure of 1, 2, 4, or 8 was specified inside 

the bubble. A constant pressure condition was set with the parent channel set to P=3 and 

the daughter channel P=1.  The remaining walls had a zero velocity no slip boundary 

conditions imposed.  At the two contact lines present, where the bubble attaches to the wall, 

contact line velocities are imposed using Tanner’s law[20, 21, 25-27].  Tanner’s law defines the 

leading contact line (the trailing edge only differs in sign) by:  

𝑢𝑢𝑐𝑐𝑐𝑐 = −𝑘𝑘(𝜃𝜃𝐷𝐷 − 𝜃𝜃𝑆𝑆) (7) 

Where 𝜃𝜃𝐷𝐷 is the dynamic contact angle and 𝜃𝜃𝑆𝑆 is the static contact angle (the 

equilibrium contact angle for a stationary bubble).  Tanner’s law states that the speed the 

contact line is linearly proportional by a constant 𝑘𝑘 to the deviation in the contact angle 
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when it is stationary.  A sticking condition can be included through the addition of a contact 

hysteresis described by the following modified form of Tanner’s law[20]: 

𝑢𝑢𝑐𝑐𝑐𝑐 = −𝑘𝑘(𝜃𝜃𝐷𝐷 − 𝜃𝜃𝐴𝐴) for 𝜃𝜃𝐷𝐷 < 𝜃𝜃𝐴𝐴 (8) 

𝑢𝑢𝑐𝑐𝑐𝑐 = −𝑘𝑘(𝜃𝜃𝐷𝐷 − 𝜃𝜃𝑅𝑅) for 𝜃𝜃𝐷𝐷 > 𝜃𝜃𝑅𝑅 (9) 

𝑢𝑢𝑐𝑐𝑐𝑐 = 0 for 𝜃𝜃𝐴𝐴 < 𝜃𝜃𝐷𝐷 < 𝜃𝜃𝑅𝑅 (10) 

Where 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝑅𝑅 represent the advancing and receding contact angles.  In the 

numerical simulations presented, the parameters used were 𝑘𝑘 = 2, 𝜃𝜃𝑆𝑆 = 70, 𝜃𝜃𝐴𝐴 = 50°, and 

𝜃𝜃𝑅𝑅 = 70°, which was shown to representative of conditions found in polydimethylsiloxane 

microchannels[16].  A discontinuity in boundary conditions is present where the contact line 

velocities are imposed.  At these locations the contact line is expected to move according to 

Tanner’s law, however adjacent to the contact line we have the no slip condition which 

contradicts such motion from occurring.   In order to prevent singularities from occurring 

and maintaining stable solutions the contact line velocity was to decay linearly to no slip over 

a short distance away from two contact lines, which was held constant at 5% the length of 

the parent channel diameter[20, 21, 26, 27]. 

The internal pressure of the bubble was translated into a stress boundary condition 

through the jump boundary condition which in non-dimensional form is given by: 

Δ𝑓𝑓 = 𝜅𝜅 ∙ 𝑛𝑛�⃗  (11) 

Where Δ𝑓𝑓 is the difference in stress across the bubble interface, 𝜅𝜅 is the local 

curvature over the element, and 𝑛𝑛�⃗  is the unit normal.  The local curvature is computed 

through the cubic spline interpolant.  Using the ideal gas law and integrating the volume of 
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the bubble, the bubble pressure at any given time can be calculated given the bubble 

pressure the stresses just within the bulk liquid domain using equation (11). 

Although the Stokes flow equation (11) suggests that the fluid domain has no time 

dependency, quasi-steady motion can be enforced at the bubble interface [20, 21].  Once the 

flow field has been obtained from the boundary integral equation, the interface can be 

advanced in time through the following kinematic boundary condition along the bubble 

interface through a simple Euler integration: 

𝜕𝜕𝑌𝑌�⃗
𝜕𝜕𝜕𝜕

∙ 𝑛𝑛�⃗ = 𝑢𝑢�⃗ ∙ 𝑛𝑛�⃗  (12) 

This suggests that the motion of a given point along the bubble interface,𝑌𝑌�⃗ , must 

move according to the local velocity, 𝑢𝑢�⃗ .  Once the interface has been advanced in time the 

volume of the bubble can be recomputed and the bubble pressure is updated through the 

use of the ideal gas law.  Next, the newly updated bubble pressure is translated to a stress 

condition through the jump boundary condition.  Additionally, the contact angles must be 

recomputed and translated to contact line velocities through the use of Tanner’s law.  The 

flow field is then solved through the boundary integral equations, where once again the 

velocities at the bubble interface can be extracted to advance the nodes along the interface 

and the process is repeated in time.  Over time there is a tendency for the nodes in front of 

the bubble to compress and elements behind the bubble to elongate.  Furthermore, elements 

along the bubble interface also prone to compressing and stretching over time.  For that 

reason, at each time step nodes along the bubble interface are redistributed to maintain equal 

spacing and elements along the channel interface are eliminated in front of the bubble and 

added behind the bubble as the bubble slides along the channel in an effort to maintain 
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equal node spacing over time.  Time and grid convergence revealed that a time step of 0.05 

and 600-800 quadratic grid elements provided ample solution accuracy (Figure 5.2).  

Convergence rates for time stepping and grid convergence were 1.39 and 2.33 respectively. 

Results and Discussion 

In all simulations the initial response for the bubble was to rapidly change size to 

maintain an equilibrium pressure with the surrounding pressure.  Bubbles with initial 

pressure of 1 and 2 had initially exerted a pressure much lower than the local bulk fluid 

pressure, causing the bubble to initially decrease in size (Figure 5.3).  Conversely, the bubbles 

with initial pressures of 4 and 8 had internal pressures higher than the local bulk fluid 

pressures, causing the bubbles to initially expand (Figure 5.3).  Inversely proportional to the 

bubble volume was the bubble pressure over time (Figure 5.4).  As expected, all the bubble 

pressures increased or decreased in an effort equilibrate with the local fluid pressure minus 

the difference in Laplace pressure.  Because of the viscous pressure drop across the channel 

as the bubbles slowly moved downstream the bubbles would slowly expand regardless of 

initial bubble pressure.  As a consequence of this, bubbles as they move across the 

microcirculation from the arteriole end to the venous end would experience a decreasing 

local pressure imposed on the bubbles.  This would allow bubbles to increase in size as it 

moves downstream and thus assistance in bubbles lodging in the vasculature downstream 

from the initial vaporization site (Figure 5.4).  However, once the bubble entered the 

daughter channel there was a slightly reduction in pressure and little change in bubble 

volume.  Comparing the sticking condition to the slip scenarios, the rate of volumetric 

increase over time appeared to decrease due to a reduced bubble sliding velocity. 
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The left and right contacting points of the contact line are referred to as the trailing 

and leading contact lines.  Because of the background flow imposed through the ambient 

pressure gradient of the bifurcation, the bubble naturally travels downstream resulting in an 

overall positive contact line velocity (Figures 5.5 and 5.6).  However during the initial change 

in bubble volume to equilibrate bubble pressures, contact line velocities can be temporarily 

negative.  For the low bubble pressures (Pinitial=1 or 2) in the slip cases the leading contact 

line recedes as the bubble volume decreases (Figure 5.5).  This is in contrast to the 

equivalent sticking cases whose leading edges are stuck with a zero velocity until the bubble 

has reached a near pressure equilibrium and deformed sufficiently to advance towards the 

bifurcation.  The trailing edge of the high pressure bubbles, Pinitial=8, for both slip and 

sticking cases and only the slip case of Pinitial=4 have a trailing contact line that moves 

backwards towards the parent channel (Figure 5.6).   

Once the bubbles make contact with turn leading into the lower daughter channel 

the bubble leading edge velocities immediate reduce (Figure 5.5).  This is likely due to 

augmenting rolling angular velocity of the bubble.  The moment of inertia for bubble as it 

travels in a linear fashion is near the center of the bubble.  However, when the bubble is 

expected to rotated and enter the lower channel, the center of rotation is likely shifted closer 

to the plane of bubble wall contact.  Another way of justifying the sudden decrease in 

contact line velocity is if the velocities along the outer periphery of the bubble are similar 

when traveling through a straight versus a curved section, the points closer to the wall and 

including the contact points must travel slower to maintain angular velocity.  If not, the 

bubble would subsequently elongate and potentially detach.  After the leading contact line 

passes over the curved section and enters the lower daughter channel, the leading contact 
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line immediately begins to accelerate.  For sufficiently small bubbles (Pinitial=1) under sticking 

conditions, the bubble is unable to advance past the turn and the bubble remains pinned at 

the turn of the bifurcation (Figure 5.10). 

Effects on the trailing edge velocities due to a reduced leading edge velocity from the 

curved segment are not always apparently (Figure 5.6).  The reduction in trailing edge 

velocity is most evident for small bubbles (Pinitial=1) and is less apparent as bubble volume 

increases.  Once the bubble leading edge cleared the curved section of the domain, trailing 

edge velocities increased to match leading edge velocities until the trailing edge contacted the 

curved portion of the lower wall.  Once the trailing edge traverses over the curved section of 

the channel, a similar reduction in trailing edge velocity is seen as previously with the leading 

edge (Figure 5.5 and 5.6).  After the bubble has completely cleared the turn and enters the 

daughter channel, the trailing edge velocities accelerates to match the leading edge velocity 

and the bubble slowly moves through the daughter channel at a constant velocity. 

The relative change in forward motion of the bubble can be quantified through the 

overall torque acting on the bubble due to the stresses imparted on the bubble (Figure 5.7), 

where torque is defined as: 

𝑇𝑇�⃗ = −𝐹⃗𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (12) 

Where 𝑇𝑇�⃗  is the torque, 𝐹⃗𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the force acting along the bubble interface, and 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is 

the lever arm.  The negative sign in equation 12 was to define the sign convention of 

clockwise rotation of the bubble as positive and the counterclockwise rotation as negative.  

The lever arm vector used was defined as the vector length from the leading edge of the 

bubble to the node along the bubble interface.  As expected for most of the bubbles the 
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torque acting on the bubble is positive, suggesting that the bubble is normally in forward 

motion.  Looking at the torque during the sticking Pinitial=1 scenario where the bubble is 

adhered to the bifurcation point in the channel (Figure 5.10), it can be seen that the torque 

remains non-zero even though the bubble contact line velocities are zero.  It can be 

concluded that the torque acting on the bubble is unable to overcome the adhesion forces 

resulting from the sticking conditions originating from the contact line velocity hysteresis 

imposed through equations 8, 9, and 10.  Furthermore, decreases in torque should be used as 

an indicator of likelihood of the bubble lodging.  It can be seen that all bubbles appear to 

have a reduction in overall torque at the bifurcation point, suggesting increased probability 

of lodging.  Once the bubble has completely cleared the bifurcation torque remains constant, 

suggesting that the bubble is moving forward at a constant velocity, which can be verified 

with the contact line velocities (Figures 5.5 and 5.6).  Curiously, three cases investigated have 

torques that are negative in value, corresponding to Pinitial=8 for both sticking and slip 

scenarios and for the sticking scenario of Pinitial=4.  Looking at the bubble evolution (Figures 

5.14, 5.15, and 5.16) these bubble all elongate and come into close contact with the carina of 

the bifurcation.  As a result of this, two forces may be causing this reversal in sign of torque.  

First, the physical interaction between the bubble and the carina of the bifurcation provides 

a physical obstruction to the forward momentum of the bubble.  If the surface of the bubble 

has a tendency to roll in a tank treading motion downstream, this would provide a clockwise 

motion.  This is in contrast to the scenario where the periphery of the bubble is pinned to 

the carina of the bubble but the contact line continues to move downstream.  This 

interaction would result in an overall reversal in torque and a counterclockwise motion of 

the bubble even though the bubble continues to move downstream in bifurcation.  The 
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second factor limiting the forward momentum of the bubble and contributing to the 

negative torques observed is due to the different in the Laplace pressure in the parent and 

daughter channel facing halves of the bubble.  Because of the reduction in channel diameters 

of the daughter channels relative to the parent channel, the bubble must deform to fit into 

the bifurcation.  As a consequence of this, curvature of the section of bubble in the daughter 

channel is greater than that in the parent channel, thus the Laplace pressure jump is higher 

on the daughter channel facing portion of the bubble than the parent channel facing half.  In 

the model, the possibly development of addition contact points for the bubble was 

neglected, allowing these bubbles to continue deforming and eventually entering the 

daughter channel.  However, physically it is most likely that the bubble would contact the 

wall at the carina and adhesion forces from wall contact would be greater for the larger 

bubbles (i.e. Pinitial=4 and 8) than observed, promoting bubble lodging. 

Looking at flow rates entering and exiting the domain through the parent and two 

daughter channels, positive flow rates were defined as mass exiting the domain while 

negative values suggested mass entering the domain.  As expected, once the bubble volume 

and pressure equilibrate flow entering the channel through the parent channel was balanced 

with the flow exiting the domain through the two daughter channels (Figure 5.8).  In the 

earlier time scales, the expansion from the high pressure bubbles (Pinitial=4 and 8) resulted in 

overall fluid mass being pushed out of the domain, while the shrinking of the low pressure 

bubbles (Pinitial=1 and 2) caused initial flow to enter the domain from all channels.  Curiously, 

there was a slight decrease in flow exiting the upper daughter channel at approximately 

T=100 for the high pressure bubbles (Pinitial=4 and 8) that is not observed in the lower 

channel.  This is likely a result of the combined elongated profile of the bubble in the 
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bifurcation area and the bubble contact lines moving downward and entering the lower 

daughter.  The combination of these two effects may result in overall tension on the fluid 

that would enter the upper daughter channel and drag more fluid along with the bubble into 

the lower channel. 

Wall stresses along the lower wall, upper wall, and the bifurcation wall was 

monitored as a function of bubble location.  Figures 5.9 through 5.16 plot the initial bubble 

geometry along with five additional time points during the transport process.  The wall shear 

stresses plotted were superimposed over the corresponding geometry of the domain and 

bubble and plotted as a function of spatial X-position for the top and bottom walls or Y-

position for the bifurcation wall.  Overall, stress profiles between equivalent initial bubble 

pressures for sticking versus slip scenarios had little difference in magnitude or location.  

The largest difference observed between the slip and sticking cases was bubble position over 

time, which was determined by the slip velocities from Tanner’s law.  For all cases, with 

exception for Pinitial=4, the greatest shear stresses observed were during the initial expansion 

or compression of the bubble.  The increase in shear stress can be seen in along all 

boundaries, with the parent channel walls typically experiences the highest shear stresses.  

The parent channel likely experiences the highest shear due to having a lower cross-sectional 

area than the combined daughter channels.  Therefore the relative flow that is displaced 

from the respective daughter channels is likely lower than that in the parent channel, thus 

the higher stresses seen.  The Pinitial=4 condition (Figures 5.13 and 5.14) initially experiences 

the lower shear stress in the parent channel because the flow that would typically enter the 

parent channel is negated by the expansion of the bubble.  This can be confirmed by the low 

initial mass transfer from the parent channel shown in figure 5.8.  The wall stress far from 
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the bubble is also relatively constant as expected from fully developed Poiseuille flow.  

During the bubble transport process, there were four locations that appeared to have locally 

high wall shears:  contact lines, the carina, the turn prior to entering the upper daughter 

channel, and wall sections opposing the upper boundary of the bubble where a fluid film can 

exist.  Elevated stresses along the upper boundary as well at the contact lines has been 

previously documented in contact line bubble transport problems.  At the carina, a 

stagnation point exists which may explain the sign change in observed sign changes at Y=0.  

The carina and the turn along the upper wall likely experience these locally high stresses due 

to geometric divergences in the flow.  Additionally, the fluid at the carina as the bubble 

approaches the bifurcation may develop a thin film as the bubble comes into near contact 

with the boundary (Figures 5.13 through 5.16).  As the fluid is squeezed out of the film a 

high velocity gradient is developed between the non-moving wall and the bubble interface.  

In a similar manner the fluid film separating large bubbles from the boundary appear to 

develop a high shear near the front of the bubble along the upper wall (Figure 5.15 and 

5.16).  This is likely due to increased velocities from the acceleration of the fluid from the 

nose of the bubble to the body of the bubble as the cross section area for the fluid to pass 

through narrows.  These locations are sites where the endothelium may receive damage.  

Damage to the endothelium at the bifurcation may not necessarily be a bad bioeffect in the 

context of ultrasound therapies, such as gas embolotherapy.  If the damage is limited to near 

the insonation area where occlusion is wanted, clotting cascades may enhance bubble 

occlusion, thereby enhancing therapeutic efficacy for gas embolotherapy.  Additionally, 

damage from the bubble motion could also result in a compromised endothelial lining 

promoting enhancing vessel permeability and improving drug delivery across the vessel wall. 
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Conclusions 

The results presented were derived from a boundary element model of a bubble 

sliding along a wall due to a pressure gradient in a 2D bifurcating channel under Stokes flow 

conditions.  The quasi-steady model developed is a reasonable model of idealized conditions 

found in small microvessels where the small bubble may originate from bubble based 

ultrasound therapy, such as gas embolotherapy, or from other sources that may result in gas 

emboli.  Two forms of Tanner’s law was employed to compare a bubbly slipping condition 

to sticking conditions, modeling through a contact like hysteresis condition.  Results show 

that due to the adhesion forces, bubble sliding velocities were lower but wall shear stresses 

observed were similar for equal pressure bubbles.  Sticking scenarios were concluded to 

promote bubble lodging of small bubbles at bifurcation points as well promoting bubble 

interaction with the bubble and the carina for larger bubbles.  Because the bubbles were not 

allowed to make additional contact points with the wall, the largest bubbles (Pinitial=8) 

simulations were ended before completely entering the daughter channel due to colliding 

boundary points of the bubble to carina.  Conceivably, theses bubbles along with the Pinitial=4 

bubbles may actual rupture the thin film separating the bubble and the carina promoting 

greater adhesion forces enhancing bubble lodging.  The results presented in this model 

appear suggest that because of the geometry of the bifurcation, bubble lodging is enhanced 

at bifurcation points, which falls in line with experimental observations carried out in bench 

top microchannel experiments as well as in in vivo experiments[16, 17]. 
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Chapter V: Figures 

 

Figure 5. 1:  Above is a representative image of both the boundary elements nodes as 
well as the interior nodes.  In order to evolve the bubble over time, only information 
regarding stress and velocity are needed along the interface walls.  Solving for fluid velocities 
and stresses in the interior of the fluid domain is only necessary for plotting purposing.  The 
bubble was initialized as a circular bubble with contact angles at the static contact angle.  A 
small pressure gradient was imposed forcing the bubble to travel through the vessel.  
Because of the discontinuity in boundary conditions at the vessel wall and along the bubble 
interface, a short slip region was imposed before and after the bubble.  In the slip velocity of 
the bubble was allowed to linearly decay to zero over the slip region. 
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Figure 5. 2:  Time and convergence analysis reveals convergence rates of 1.39 and 
2.33 respectively.  Time step sizes of Δt = 0.05 and approximately 600 to 800 quadratic 
boundary elements were considered to provide sufficient solution accuracy. 
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Figure 5. 3:  Pressure over time as the bubble travels through the bifurcation.  (A) 
Presents the longer time scale results excluding the initial pressure of P=8, while (B) presents 
the shorter time scale results.  The bubbles initially increase (Pinitial= 1 or 2) or decrease 
(Pinitial= 4 or 8) to reach an equilibrium with the local fluid pressure.  As the bubble travels 
through the channel bubble pressure decreases due to the decreasing local pressure from 
viscous pressure losses.  Rate of pressure change is lower for the sticking cases due to a 
slower bubble sliding velocity 
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Figure 5. 4:  Relative volume of the bubble over time as the bubble travels through 
the bifurcation.  (A) Presents the longer time scale results excluding the initial pressure of 
P=8, while (B) presents the shorter time scale results.  There is an initial rapid change in 
pressure resulting in a change in volume of the bubble.  Naturally, low initial pressure 
bubbles (Pinitial=1 or 2) decrease in size while large bubble increase in size (Pinitial=4 or 8) 
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Figure 5. 5:  Leading edge velocity of the bubble over time.  (A) Presents the longer 
time scale results excluding the initial pressure of P=8, while (B) shows the shorter time scale 
results.  Leading edge velocities for the low bubble pressure are initially negative due to the 
decrease in bubble size.  The initial exponential decay in leading edge velocities correspond 
to when the leading edge of the bubble contacts the turn before entering the daughter 
channel.  Once the leading edge passes the turn the leading edge accelerates.  Overall, leading 
edge velocities for sticking bubble cases are lower than the slip condition counterparts. 
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Figure 5. 6:  Trailing edge velocity of the bubble over time.  (A) Presents the longer 
time scale results excluding the initial pressure of P=8, while (B) shows the shorter time scale 
results.  Trailing edge velocities for the highest bubbles pressure are initially negative due to 
the increase in bubble size.  As the trailing edge of the bubble passes over the turn, the 
trailing edge velocities decrease until it completes the turn.  For small bubbles (Pinitial=1 or 2) 
there is a noticeable increase in trailing edge velocity corresponding to the acceleration of the 
leading edge once it passes the turn prior to entering the lower daughter channel.  Overall, 
trailing edge velocities for sticking bubble cases are lower than the slip condition 
counterparts.  
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Figure 5. 7: Torque acting on the bubble over time.  (A) Presents the longer time 
scale results excluding the initial pressure of P=8, while (B) shows the shorter time scale 
results.  Bubble torque is positive due to the forward rolling motion of the bubble.  If the 
bubble is sufficiently large, the torque on the bubble near the bifurcation point can be 
negative.  The negative torque is due to the bubble possibly reversing in direction or 
momentarily lifting off of the channel wall. 
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Figure 5. 8:  Flow in the three respective channels: (A) the lower daughter channel, 

(B) the upper daughter channel, and (C) the parent channel.  Positive flow rates for 
represents flow exiting the domain while negative values represent flow entering the domain. 
For sufficiently large bubbles (Pinitial= 4 or 8) there is a temporary decrease in flow in the 
upper daughter channel that is not observed in the lower channel.  This temporary decrease 
in flow corresponds to the bubble expanding or lifting from the attached wall and obscuring 
flow to the upper channel.  However, due to the moving contact line the bubble is dragged 
into the lower channel resulting in little change to the flow rate in the lower channel.  
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Figure 5. 9:  Corresponding bubble positions and wall shears at times T1=0, T2=2.5, 
T3=5, T4=50, T5=200, and T6=400 for the Pinitial=1 slip scenario. Wall shears are highest as 
the bubble contracts.  Locally high shears are also observed near the carina of the bifurcation 
as well as the turn on the upper wall as the bubble passes the two locations.  1 dimensionless 
unit of stress equates to 1.4 kPa. 

 

  

T1 T2 T3 T4 T5 T6 Domain

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

-9 -6 -3 0 3 6 9

W
al

l S
tr

es
s

X Position

-0.2
0

0.2
0.4
0.6

-9 -6 -3 0 3 6 9

W
al

l S
tr

es
s

X Position

-4

-3

-2

-1

0

1

2

3

4

-0.2 -0.1 0 0.1 0.2

Y 
Po

si
tio

n

Wall Stress

93 



 

 
Boundary:  

Bifurcation Wall Stress:  
Lower Wall Stress:  
Upper Wall Stress:  

Figure 5. 10:  Corresponding bubble positions and wall shears at times T1=0, 
T2=2.5, T3=5, T4=50, T5=200, and T6=400 for the Pinitial=1 sticking scenario.  Wall shears 
are highest as the bubble contracts.  Because of the sticking, the bubble does not advance 
past the bifurcation.  1 dimensionless unit of stress equates to 1.4 kPa. 
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Figure 5. 11: Corresponding bubble positions and wall shears at times T1=0, T2=5, 
T3=30, T4=60, T5=100, and T6=150 for the Pinitial=2 slip scenario. Wall shears are highest 
as the bubble contracts.  Locally high shears are also observed near the carina of the 
bifurcation as well as the turn on the upper wall as the bubble passes the two locations.  1 
dimensionless unit of stress equates to 1.4 kPa. 
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Figure 5. 12: Corresponding bubble positions and wall shears at times T1=0, T2=5, 
T3=30, T4=60, T5=100, and T6=150 for the Pinitial=2 sticking scenario.  Wall shears are 
highest as the bubble contracts.  Locally high shears are also observed near the carina of the 
bifurcation as well as the turn on the upper wall as the bubble passes the two locations.  1 
dimensionless unit of stress equates to 1.4 kPa. 
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Figure 5. 13: Corresponding bubble positions and wall shears at times T1=0, T2=15, 
T3=30, T4=50, T5=70, and T6=100 for the Pinitial=4 slip scenario. The highest local wall 
shears also observed near the carina of the bifurcation as well as the turn on the upper wall 
as the bubble passes the two locations.  Because the bubble is expanding, it counters the 
pressure from the parent channel and limits the flow entering the domain.  This results in 
the near zero shear observed along the parent channel walls, with exception of the region 
near the bubble.  1 dimensionless unit of stress equates to 1.4 kPa. 
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Figure 5. 14:  Corresponding bubble positions and wall shears at times T1=0, 
T2=15, T3=30, T4=50, T5=70, and T6=100 for the Pinitial=4 sticking scenario.  The highest 
local wall shears also observed near the carina of the bifurcation as well as the turn on the 
upper wall as the bubble passes the two locations.  Because the bubble is expanding, it 
counters the pressure from the parent channel and limits the flow entering the domain.  This 
results in the near zero shear observed along the parent channel walls, with exception of the 
region near the bubble.  1 dimensionless unit of stress equates to 1.4 kPa. 
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Figure 5. 15:  Corresponding bubble positions and wall shears at times T1=0, T2=5, 
T3=12.5, T4=25, T5=50, and T6=75 for the Pinitial=8 slip scenario. Wall shears are highest as 
the bubble expands, forcing fluid out of the parent and daughter channels.  Locally high 
shears are also observed near the carina of the bifurcation as well as the turn on the upper 
wall as the bubble passes the two locations. 1 dimensionless unit of stress equates to 1.4 kPa. 

  

T1 T2 T3 T4 T5 T6 Domain

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

-2
-1
0
1
2

-9 -6 -3 0 3 6 9

W
al

l S
tr

es
s

X Position

-1
-0.5

0
0.5

1

-9 -6 -3 0 3 6 9

W
al

l S
tr

es
s

X Position

-4

-3

-2

-1

0

1

2

3

4

-0.5 0 0.5 1

Y 
Po

si
tio

n

Wall Stress

99 



 

 
Boundary:  

Bifurcation Wall Stress:  
Lower Wall Stress:  
Upper Wall Stress:  

Figure 5. 16:  Corresponding bubble positions and wall shears at times T1=0, T2=5, 
T3=12.5, T4=25, T5=50, and T6=75 for the Pinitial=8 sticking scenario. Wall shears are 
highest as the bubble expands, forcing fluid out of the parent and daughter channels.  
Locally high shears are also observed near the carina of the bifurcation as well as the turn on 
the upper wall as the bubble passes the two locations. 1 dimensionless unit of stress equates 
to 1.4 kPa. 
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CHAPTER VI:  ACOUSTIC ATOMIZATION 
PROCESS WITHIN BUBBLES ATTACHED TO 
A SOLID BOUNDARY 

Introduction 

The coupling of ultrasound and micro/nano-emulsions is a growing area of interest 

in biomedical applications.  Examples of ultrasound and micro/nano-bubbles applied to 

biomedical applications currently include histotripsy, lithotripsy, contrast agents, drug 

delivery, and gas embolotherapy[1-9].  In all of these applications control over acoustic 

parameters to elicit or limit a specific bubble response is integral to controlling bioeffects 

and designing an effective treatment.  The complex behavior of bubble dynamics due to an 

acoustic field includes bubble oscillation, resonance, jet formation, inertial cavitation, and 

etc. all of which have direct impact on the safety and efficacy of treatments[10-14].  

Furthermore, processes occurring at fluid interfaces that are excited by acoustic energy may 

help probe phenomena such as sonoporation, which is when the permeability of the cell is 

transiently increased through the use of ultrasound often times enhanced using contrast 

agents[5, 15, 16]. 

The study of free-surfaces responding to an oscillating pressure field has a rich 

history dating back to Faraday 1831[17] and Rayleigh 1896[18].  These early studies focused on 

surface wave patterns formed and prediction of wavelength to oscillating frequency.  Lang in 

1962 was the first to experimentally observe that at sufficient oscillation amplitudes the 
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cresting formed by such waves resulted in droplet atomization[19].  Empirically, Lang 1962 

was able to find that the droplet diameter, D, ejected scaled according to  

𝐷𝐷 = 0.34 �
8𝜋𝜋𝜋𝜋
𝜌𝜌𝑓𝑓2�

1/3

 (1) 

where 𝜌𝜌 is the density, 𝜎𝜎 is surface tension, and 𝑓𝑓 is the driving frequency[19].  Since Lang’s 

work several other studies have expanded on the topic of droplet atomization and several 

theoretical analyses have also been carried out[20-23].   Typically investigations of these 

atomization processes are limited to liquid films or large droplets on a vibrating plate.  More 

recent work by Simon et al. 2012 have shown that similarly to Faraday waves, the generation 

of capillary waves along an air/tissue interface from the shock scattering of acoustic waves 

may serve as the mechanical driving force behind tissue fractionation observed in 

histotripsy[24].  Simon et al. 2012 was able to show in planar conditions comparing an 

air/tissue versus an air/water interface the atomization processes shared similar 

characteristics[24].  Furthermore, the tissue atomization process was found to be not 

geometrically limited and can be reproduced when a tissue cavity (simulating the curved 

interface from a bubble in tissue) is present[24].  Limited experimental data exists on 

conditions required to initiate the atomization event within a bubble in a liquid environment.  

The purpose of this investigation was to study a secondary instability that results in an 

atomization of the bulk fluid within a bubble initiated by single acoustic pulses.  This 

instability occurs at lower acoustic pressure than the pressure threshold necessary to cause 

jet formations and inertial cavitation.  Understanding the dynamics of this atomization 

process may provide further insight into the driving mechanism behind histrotripsy or other 

bioeffects related to ultrasound with micro-/nanobubble therapies. 
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Methods 

Experimental Setup 

Isolated bubbles were carefully placed on the base of an acrylic tank containing 

degassed bulk fluid.  The tank was mounted on an inverted microscope stage (Nikon Eclipse 

TE2000-S, Nikon, Melville, NY) to provide a bottom up view looking through the bubble.  

The single element focused transducers used were mounted confocal to the microscope 

objected and held at a 40° from the horizontal plane using a custom machined micro-

positioning system fixed to the microscope.  A Photometrics camera (Roper Scientific, 

Tuscon, AZ, USA) was used in combination with 2x, 4x, 10x, 20x, and 40x objectives with 

an additional 10x internal microscope magnification to record images.  

High Speed Camera Setup 

A side view was used for many of the high-speed camera experiments of the spray 

forming (Figure 6.1).  A bubble was carefully placed on a side mounted sheet of acrylic 

(evergreen scale models, Woodinville, WA, USA).  The ultrasound transducer was positioned 

using micro-positioners and held at a 40° from the horizontal plane, which provided the 

same arrangement as the aforementioned setup.  The Photometrics microscope camera was 

replaced by a Phantom v210 high speed camera (Vision Research Inc., Wayne, NJ, USA) 

which provided frame rates up to 128,000 FPS using a cropped field of view.  The 

ultrasound trigger was synced with the high-speed camera in order to resolve events relative 

to the firing of the transducer.  In order to provide sufficient light for high speed imaging, an 

arc lamp (MB01, Techniquip Corp., Pleasanton, CA, USA) coupled to a fiber optic bundle 

was used to illuminate the field of view. 
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Acoustics 

Two geometrically similar transducers were used throughout the experiments to help 

characterize the effects of frequency on the dynamics of the system.  Both transducers used 

were f/2, 0.75 in (19 mm) diameter single element transducers with.  The driving frequencies 

of the two respective transducers were 3.5 MHz (Panametrics A381S) and 7.5 MHz 

(Panametrics A321S, Olympus, Waltham, MA, USA).  Unless otherwise specified, single 

pulses of 15 cycles were used to cause the atomization event.  The transducers were driven 

using a function generator (HP 3314A, Hewlett-Packard, Palo Alto, CA, USA) producing a 

N-cycle sine wave pulse amplified by a Ritec GA-2500-A amplifier (RITEC Inc., Warwick, 

RI, USA) and monitored using a WaveSurfer 44MXs oscilloscope (Teledyne LeCroy, 

Chestnut Ridge, NY, USA). An Aligent 33120A (Agilent Technologies, Santa Clara, CA, 

USA) was used as a gate for the amplifier and trigger for the HP 3314A function generator 

and oscilloscope.  A schematic of the electronics can be seen in figure 6.1. 

Both single element transducers were calibrated to obtain acoustic pressure data at 

the focal point using a fiber optic hydrophone designed according to Parsons et al. 2006[25] 

on an optical isolating table.  Hydrophone measurements indicated noticeable elevated peak 

positive pressure (PPP) relative to (PNP).  The asymmetry in the acoustic output is due to 

the non-linear acoustic behavior from the f/2 geometry and relatively high pressure 

amplitudes.  As a result of this non-linear output, high order harmonics are present at the 

focal spot and are most concentrated along the centerline of the focal spot.  In order to 

better understand the contributing acoustic factors to the atomization process, acoustic 

filters were added to see the effects of augmenting the acoustic field.  Single sheets of 25 μm 

thick aluminum (McMaster-Carr Co., Elmhurst, Illinois) and 75 μm thick brass rolled sheets 
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(McMaster-Carr Co., Elmhurst, Illinois) were placed 5 mm away from the focal spot on a 

custom holder attached to the transducer.  This approach has been used to reduce peak 

positive pressures (PPP) by filtering higher harmonics and maintaining peak negative 

pressures (PNP) by Maxwell et al. 2011 during the investigation of contributions of PPP 

relative to PNP during the initiation of bubble cloud formation during histotripsy[4].  

Hydrophone measurements confirmed that the use of the holder with no filter in place had 

no effect on acoustic field. 

Test Fluids 

A combination resulting in three fluid conditions were used to elucidate the factors 

that influence the onset of atomization.   The primary condition tested was an air bubble in a 

degassed deionized (DI) water bath at room temperature.  The second condition used to 

investigate used dodecafluoropentane (DDFP, C5F12, CAS #: 678–26–2) gas bubbles in 

degassed DI water held at body temperature (37°C) and air bubbles in a DI water/Tween 20 

solution at room temperature.  DDFP bubbles were generated by using the ultrasound 

transducer to vaporizing liquid DDFP microdroplets to form DDFP bubbles.  The DDFP 

microdroplets were generated through high speed shaking liquid DDFP with a bovine serum 

albumin and saline solution using an amalgamator.  Details on the droplet formulation can 

be found in Kripfgans et al. 2000 [1].  The last combination used was air bubbles in the Tween 

20 (CAS No. 9005-64-5, Sigma-Aldrich, St. Louis, MO).  The solution was mixed at a 3.3 

mM to ensure that the concentration of Tween 20 at the free surface of the bubble was well 

beyond the saturation point[26, 27].  The Tween 20 and DI water solution was degassed by 

using a vacuum pump.  The surface tension at the gas liquid interface was assumed to be 72, 
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70, and 37 dynes/cm for air/water[26], PFC/water[28], and air/Tween 20 solution[26, 27]  

respectively. 

Results and Discussion 

Using single pulses from a 3.5 and 7.5 MHz transducer an atomization process was 

observed within bubbles attached to a solid boundary.  A common bubble response to a 

high intensity acoustic pulse is similar to what is shown in figure 6.2A, the bubble responses 

to the propagating wave by creating an invagination that impinges on the rigid surface.  

These liquid jets (Figure 6.2A, frames 4-8) have been known to travel at velocities on the 

order of meters per second causing pitting or erosion[6, 14].  If the acoustic pulse is reduced 

from 120 cycles (Figure 6.2A) to 15 cycles (Figure 6.2B) the formation of the jet can be 

suppressed.  In Figure 6.2B frames 3-8 a spray of small water microdroplets are visible.  The 

plume of droplets travels downward in the direction of the acoustic pulse.  The mist of 

droplets generated from the acoustic pulse continue to propagate in a narrow stream until it 

approaches near the boundary 218 microseconds (Figure 6.2B, frame 7) after the acoustics 

are activated at which the mist near the boundary begins to spread out and move outward 

radially and continues to do so until gravity forces the droplets to settle down.  In both short 

(15 cycle) and long (120 cycle) pulses, the deformation of the bubble is minimal and 

fragmentation of the bubble was never observed.  During the investigation a similar 

atomization process was brought to our attention and has been proposed as a mechanism 

behind the emulsification of tissue during HIFU ablation of soft tissue[24].  Simon et al. 2012 

concluded that formation of a drop chain in the gas phase was required prior to atomization 

from taking place[24].  Furthermore, the drop chain was on the order of 2 mm in length when 

atomization was observed.  However, because of the light distortion from the mismatch in 
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refractive index, it is unclear if a drop chain must be present for atomization to occur as 

documented by Simon et al. 2012[24].  Regardless, the atomization events observed in our gas 

bubble/liquid environment results in a narrow band of propagating droplets, as opposed to 

the explosive erosion events observed in tissue erosion.  Furthermore, the bubble diameters 

where atomization was observed covered a range from single micrometer bubbles up to 

millimeter sized bubbles.  These bubble were much smaller than Simon et al. 2012 proposed 

requirement of a millimeter scale acoustic fountain to form prior to atomization[24].  These 

differences in observations were likely due to the much shorter acoustics pulses used in this 

study lasting 2-4 microseconds versus millisecond long pulses used by Simon et al. 2012[24].   

The threshold for an array of bubble diameters for a single acoustic pressure of 15 

cycles at 3.5 MHz and 7.5MHz were determined by incrementally increasing input voltage to 

the transducer and using hydrophone data to estimate the equivalent pressure at the focal 

spot.  Results consistently show a trend that threshold pressures to generate the spray are 

relatively constant for larger bubbles and as bubble diameters decrease the threshold 

decreases in a logarithmic fashion (Figure 6.3A).  Using PNP as a metric for acoustic 

pressure required for threshold for atomization, it was observed that the threshold was lower 

using the 3.5 MHz transducer than the 7.5 MHz.  Furthermore, the ability to generate the 

spray was not limited to a condition for bulk fluid wavelength to bubble diameters.  

Indications of generation of the spray were observed over a wavelength in water to bubble 

diameter range covering 0.04-6 wavelengths.   

The logarithmic behavior in the threshold for smaller bubbles (Figure 6.3A) is likely 

due to curvature of the bubble and contributions from the Laplace pressure.  This is a logical 

conclusion considering that as bubble diameter increases, contributions from the Laplace 
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pressure diminishes with 1/R until the limit of an infinitely large bubble which would 

simulation a flat interface.  The diminishing effect from curvature would explain why for 

larger bubbles the threshold appears to approach a finite limit.  If one attempts to normalize 

the threshold to collapse the data by scaling the acoustic pressure threshold according to 

Laplace threshold and rescaling bubble diameter according to wavelength (Figure 6.3B) it is 

seen that the logarithmic behavior seen in the raw measurements is eliminated and the data is 

linearized, confirming that bubble curvature could be the primary contributing factor in the 

logarithmic behavior in the threshold in figure 6.3A.  However, the scaling fails to pull the 

data into a single predictable trend line.  Alternatively, if the data is scaled according to 

mechanical index, MI=PNP/𝑓𝑓0.5 where PNP is peak negative pressure and 𝑓𝑓 is the carrier 

frequency,  divided by curvature (κ) (Figure 6.3C) the data is linearized and collapses to a 

single line.  A linear regression of all the data can be plotted through the MI/κ scaled results 

providing slope of 0.4225, an R-squared of 0.99.  The scaling suggests that the actual values 

of surface tension used had minimal effect on the threshold of atomization. 

Due to the narrowness of the atomized spray (Figure 6.2B), a question arose of 

whether PPP and the presence of higher harmonics may have been the driving force behind 

the atomization versus PNP.  In order to help answer this question the acoustic field at the 

focus was augmented using a thin sheet of aluminum or brass.  Both materials had an effect 

on the higher harmonics and PPPs of the 3.5 MHz transducer which could be seen in both 

the transient signal and the FFT (Figure 6.4).  Although the use of brass had a substantial 

effect on PNP and the carrier frequency, increasing input power could easily compensated 

and a greater reduction of relative PPP and higher harmonics could be maintained at an 

equivalent PNP.  The results of the threshold for atomization in free field and acoustic 
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filtered conditions were plotted according to PPP and PNP as well as the normalized forms 

according to Laplace pressure (Figure 6.5).  Multiple linear regression was used in MATLAB 

(MathWorks, Natick, MA) to obtain pairwise comparison across the aluminum versus free 

field and brass versus free field results for both PNP and PPP.  The presences of the two 

respective filters were treated as categorical data for the statistical analysis.  The regression 

revealed that the use of aluminum or brass compared to free field measurements had no 

effect on the PNP threshold with P-values of 0.6422 and 0.7332.  However, significance was 

observed when comparing the PPP values for brass versus free field with a P-value of <2E-

16 but not for aluminum versus free field with a P-value of 0.1137.  The data in Figure 6.5 

show that although the PPP aluminum threshold is appears to be lower than the free field 

measurements the free-field PPP and aluminum PPP thresholds are still statistically similar.  

Because of the statistically equivalent PNP thresholds with and without the acoustic filters 

and the statistical difference between PPP threshold measurements under free-field and 

brass filtering, it was concluded that PNP amplitudes are the dominating force driving 

atomization.  Because the carrier frequency is the dominant frequency component and the 

higher harmonics have little influence on PNP amplitudes, it is likely that PNP is providing a 

lower limit for energy required to exciting capillary waves along the bubble/liquid interface. 

After isolating a large bubble on the order of 1 mm in diameter, sequences of images 

were taken at high magnification to image the droplets created from the atomization process 

using both the 3.5 and 7.5 MHz transducer.  Using MATLAB an image threshold based edge 

detect script was used to measure the size of the droplets generated from atomization.  

Threshold consistency was verified by manually measuring droplet diameters for a 

subpopulation of droplets in the images collected.  Plotting the resulting mean droplet 
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diameter versus acoustic power (Figure 6.6) indicates that the droplet diameter does not vary 

with acoustic power but rather with frequency.  Linear regressions of the data yield lines of 

essentially zero slope and R-square <1E-4 for both frequencies. The low R-squared is a 

result of the low correlation between acoustic power and resulting droplet diameter 

suggesting that atomized droplet diameters are constant for a given driving frequency.  The 

mean diameters generated from the 3.5 and 7.5 MHz transducers across the pressures tested 

were 2.06 μm (STD=0.63 μm) and 1.24 μm (STD=0.42 μm) respectively.  According to 

Lang’s empirically derived relationship, the mean population at 3.5 MHz should be 1.80 μm 

and 1.08 μm at 7.5 MHz[19].  The 13% discrepancy falls within one standard deviation of 

measured droplet diameters.  Considering the consistency between the mean diameters of 

droplets ejected using the two frequencies and Lang’s empirical results, it appears that the 

phenomena could be a result of Faraday waves forming along the gas-liquid interface.  A K-

S test for normality of the droplet distributions (Figure 6.7) measured from the atomization 

concluded that both transducers generate droplets can be considered a normal distribution.  

A T-test of the distribution of droplets produced from two transducer frequencies (Figure 

6.7) concluded that the two samples are independent.    The coefficients of variation of the 

two populations are 30.7% for the 3.5 MHz transducer and 33.7% for 7.5 MHz, therefore 

the resulting populations may not be considered monodisperse.   

Conclusions 

The threshold for atomization of bulk fluid into a gas bubble attached to a solid 

boundary due to short acoustic pulses was shown to occur linearly with bubble diameter 

after compensating for bubble curvature.  After measuring acoustic thresholds for the 

atomization after augmenting the acoustic field it was found that the event scales more 
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consistently using PNP rather than PPP.  The resulting droplets distributions do not vary 

with acoustic power, but rather fit reasonably against the empirical results from Lang 1962[19].  

This suggests that the phenomena may be a result of Faraday waves forming along the 

bubble interface causing droplets from the bulk fluid to pinch off and form the droplets seen 

within the bubble.  Although the environment is vastly different from histotripsy, the 

atomization process does share similarities to the tissue fraction results documented by 

Simon et al. 2012[24].  In lieu of Simon et al. 2012 results, it is conceivable that the oscillation 

or capillary waves along the bubble interface resulting in the observed atomization may play 

a role in the mechanism driving sonoporation.  Several groups have suggested that 

sonoporation is driven by the inertial cavitation of contrast agents[5, 15, 16].  From the high 

speed imaging results, the atomization event can be generated independent of the class 

bubble jet impinging on an interface.  If a microbubble is attached to a vessel one can 

imagine that one mechanism resulting in a temporary perforation of the vessel resulting in 

increased permeability could be due to a high intensity pulse generating a jet that perforates 

the vessel wall and drives material in the bulk fluid into the interstitium, which is similar to 

the mechanisms often described[5, 15, 16]. Alternatively, perhaps sonoporation can be driven by 

small amplitude oscillations of the bubble attached to the wall causing wall shear along the 

endothelium, allowing for increased vessel permeability, combined with the atomization 

process independent of the jet delivering smaller droplets of the bulk fluid which can then 

contact the transiently more permeable vessel wall.  
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Chapter VI: Figures 

 

Figure 6. 1:  Basic schematic of the experimental setup.  An N-cycle sine wave input 
was generated by a waveform generator and amplified using a pulse amplifier prior to 
transmission to the focused transducer.  Triggering of a high speed camera, waveform 
generator, and the pulse amplifier was controlled with a waveform generator.  An inverted 
microscope had a degassed water bath containing the attached bubble mounted on the 
viewing stage.  
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Figure 6. 2: A 1.2 mm diameter bubble in water is responding to a single acoustic 
pulse generated from a 7.5 MHz transducer at 4.4 MPa peak negative pressure with (A) 120 
cycles and (B) 15 cycles.  Frames 1 through 8 correspond to T=0, 36, 72, 108 144, 180, 216, 
and 288 µs after the acoustics have arrived to the bubble.  The scale bar in frame 1 
represents 500 µm.   (A) In frame 3 the spray is generated followed by a microjet, shown in 
frames 4-8. (B) In frame 3 a spray of small water microdroplets are visible.  The plume of 
droplets travels downward in the direction of the acoustic pulse. 
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Figure 6. 3:  Threshold to initiate atomization (A) PNP versus bubble diameter (B) 

non-dimensional pressure versus non-dimensional length and (C) MI/κ versus bubble 
diameter.  Acoustic pressure or MIs greater than the measured threshold for a given bubble 
diameter resulted in atomization.  Lower acoustic energies delivered resulted in oscillation of 
the bubble.  The data can be collapsed and linearized if the threshold is scaled according to 
MI/κ.  The linearly is likely due to the Laplace pressure.  However, the actual surface tension 
appears to have little influence on threshold.  

1

2

3

4

5

0 300 600 900 1200 1500 1800
PN

P 
(M

Pa
)

DBubble(µm)

0

1

2

3

4

5

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0

PN
P/

P La
pl

ac
e

x 104

DBubble/LWavelength

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0 0.5 1.0 1.5 2.0 2.5M
I/
κ

(M
Pa

∙m
/M

Hz
0.

5 )

Bubble Diameter (m)

x 10-3

x 10-3

7.5 MHz Air/Water 3.5 MHz Air/Water
7.5 MHz PFC/Water 3.5 MHz PFC/Water
7.5 MHz Air/Tween 20 3.5 MHz Air/Tween 20
Linear Fit (y = 0.4225x - 1E-5)

117 



 

A 

 
B 

 
 

Figure 6. 4:  (A) Frequency and (B) time response of the 3.5 MHz transducer in free 
field (FF) conditions as well as with a single sheet of Aluminum (Al) or Brass (Br) 5mm 
from the focal spot.  The addition of the aluminum or brass promoted reduction in the 
higher harmonics thus reducing the amplitude of the peak positive pressures. 
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Figure 6. 5:  Positive and negative acoustic pressures at threshold of atomization as a 
function of bubble diameter.  Threshold for atomization scales more consistently with 
negative pressures rather than positive pressures. 
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Figure 6. 6:  Atomized droplet distribution as a function of power using single pulses 
from the 3.5 and 7.5 MHz transducer as a function of PNP.  Both transducers show low 
correlation between acoustic power and droplet distribution created which can be confirmed 
through the low R-squared, both of which were <1E-4.   
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Figure 6. 7:  Representative distribution of droplets resulting from atomization 
process comparing droplet populations generated from the 3.5 MHz transducer and the 7.5 
MHz. 
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CHAPTER VII:  CONCLUSIONS AND 
FUTURE DIRECTIONS 

Conclusions 

The work presented and discussed in chapters two through six contributed to the 

understanding of the dynamics related to the acoustic droplet vaporization (ADV) process 

thus furthering the development of the gas embolotherapy in addition to other ADV and 

bubble based ultrasound therapies.  Although there is a substantial body of work on the 

dynamics of bubbles in acoustic fields[1, 2], limited literature exists on the fluid dynamics of 

the ADV process, let alone in the context therapeutic applications. 

The mechanism initiating the primary gas nucleus within the droplets due to ADV 

was investigated through the comparison of ultra-high speed imaging experiments to 

acoustic field simulations.  Experimental results revealed a droplet material 

(dodecafluoropentane, DDFP) wavelength to droplet dependency on location of the primary 

gas nucleus formed within the droplet.  Numerical simulations revealed that due to the short 

wavelength of the carrier frequency in DDFP, the acoustic field is refocused within large 

droplets (Ddroplet>20 μm).  The refocused acoustic field correlated well with the 

corresponding droplet sized primary gas nucleus found.  Moving to small droplets 

(Ddroplet<20 μm) acoustic field interactions from the oncoming wave and the reflected wave 

from the back of the droplet had a strong influence on the location where the highest PNP 

was developed.  Results also suggested that the vaporization of droplets much smaller than 
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the wavelength DDFP may be more influenced by sufficiently high pressure amplitudes of 

the higher harmonics present in the acoustic wave.  The conclusion was that the primary 

mechanism behind ADV is a cavitation-like event occurring within the droplets due to the 

acoustic field developed within the droplets.  This suggests that the hypothesis of a 

cavitation event occurring outside the droplet triggering vaporization, proposed by Giesecke 

and Hynynen 2006, is less likely to take place[3].  Because acoustic cavitation occurs 

independently from the onset of ADV, potential tissue damage incurred during ADV is 

unlikely to occur due to nucleation. 

With previous ADV ultra-high speed imaging experiments focusing on the sub-

microsecond time-scale events of nucleation or several hundred microsecond dynamics of 

bubble expansion, details on the intermediate time-scales were yet to be observed.   Ultra-

high-speed imaging of the first seven microseconds after nucleation revealed previously 

unseen dynamics of possible bubble collapse resulting in toroidal bubbles.  The presumed 

formation of a liquid jet perforating the bubble followed by the pinch off of a section of the 

bubble toroid was assumed to have potentially damaging consequences independent of 

acoustic cavitation.  However, modulation of acoustic pressure and pulse length can help 

reduce the likelihood of bubble torus formation and possible cell injury[4].  Tissue damage 

due to bubble torus formation is best avoided during ADV when pulse lengths are 

sufficiently short (i.e. less than one microsecond).  Although potentially damaging bubble 

dynamics can be avoided at longer pulse lengths by reducing acoustic pressures, it does not 

guarantee the elimination of bubble torus formation.  

   Previous attempts at experimentally visualizing ADV expansion have typically been 

performed using relatively large microchannels compared to the droplet.  Although damping 
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effects on bubble expansion has been observed, the resulting bubbles generated have never 

been shown to come into contact with the wall.  In an effort to replicate idealized conditions 

encountered during gas embolotherapy, ADV experiments monitoring bubble expansion in 

microchannels from 25 to 100 μm in diameter were carried out and compared to conditions 

where bubble expansion was unconstrained.  It was found that droplet diameter to channel 

diameter ratio played a great influence on the limiting the expansion rate of the droplet.  

Viscous resistance from the narrowness of the channel diameter caused severely damp the 

expansion rates observed in channels versus in free field.  However, geometric constraints of 

the channel meant that bubble expansion in cases where the bubble contacted the wall, 

would result in plug like expansion of the bubble in the channel generating a high velocity 

Poiseuille flow with a constant shear along the channel wall.  This is in contrast to the 

radially decaying velocity field from unconstrained bubbles which would be limited to 

damaging tissue near the expanding bubble vicinity.  However, it was concluded that 

depending on intended vessel insonation size droplet size distributions can likely be made in 

such a way to balance vessel occlusion and limit potential vessel damage and possibly avoid 

damage altogether. 

Moving from the nano- and microsecond details of nucleation and bubble dynamics 

questions of bubble transport and possibly secondary effects of additional acoustic waves 

interacting with the bubbles were considered in chapters five and six.  A boundary element 

model investigating a microbubble sliding along a vessel wall towards a bifurcation was 

simulated.  It was concluded that adhesion forces from bubble contact to the wall greatly 

influences transport velocity and potential of the bubble to lodge at bifurcation points.  The 

geometry of the bifurcation itself appeared to play a large role in small bubbles remained 
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stuck at the bifurcation and enhanced larger bubble to develop possible additional wall 

adhesion points, promoting possibly vessel lodging.  The results found are in support of 

bubble lodging patterns observed in microchannel bifurcation as well as those found during 

ADV in vitro experiments.  Furthermore, functionalized bubbles would be less likely to 

travel downstream if they attach to the vessel wall and approached tortuous vessels and 

bifurcation points. 

Although atomization events at planar gas/liquid interfaces have been investigated in 

great detail, atomization events in gas bubbles has never been characterized[5-12].  

Traditionally, bubble collapse in the form of developing high velocity jets are observed when 

bubbles are exposed to high intensity ultrasound pulses[13-15].  It was determined that 

although atomization events precedes liquid jet formation, the atomization event can occur 

independent of jet formation so long as the pulse length is sufficiently short.  Threshold for 

the atomization event not only occurs at low pressure thresholds than acoustic cavitation, 

but also is reduced as bubble diameter is reduced.  The threshold was found to scale linearly 

to MI/κ and was also statistically shown to be limited by PNP rather than peak positive 

pressures.  The droplets results from the atomization process, found in the bubble, had 

statistically no dependency on acoustic power.  The droplet distribution generated was 

statistically different between the 3.5 MHz and the 7.5 MHz transducers and were within 

reason of the empirically predicted values droplet diameter relationship found by Lang in 

1962[7].  It was concluded that the atomization process is likely from the development of 

capillary waves along the surface of the bubble, which at sufficient pressure amplitudes 

would result in droplet ejection.  These results not only mirror the possibly dynamics seen 
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during tissue fractionation from histotripsy[11], a potential new explanation to sonoporation 

or avenue to investigate drug delivery has been introduced. 

Summary of Scientific Contributions 

The dynamics from the ADV process span the nanosecond timescale processes up 

to the minute or hour timescale when bubble transport, mass transport, etc. can take place.  

A variety of bubble and droplet dynamics were explored throughout the dissertation 

beginning with the initial vaporization process, moving through the expansion process, 

followed by the subsequent bubble transport and possible atomization events occurring 

within the bubble.  A list of key contributions to the development of gas embolotherapy and 

the understanding of the ADV process are listed as follows: 

• The ADV process is initiated by a cavitation-like event within the bubble which has a 

wavelength to droplet diameter dependency. 

• The wavelength to droplet diameter dependency explains the transition in nucleation 

site location within the vaporized droplet and suggests that an increase in acoustic 

pressure to vaporize increasingly smaller droplets is likely a result of reliance on the 

higher harmonics in a shocked wave propagation. 

• Modulation of acoustic pressure and pulse length can mitigate likelihood to 

collapsing the bubble immediately after phase conversion, which was also a 

previously unseen dynamic phenomena. 

• Confinement of the droplet in a microchannel has no effect on geometric pattern 

seen in bubble nucleus formation within the droplet.  However, viscous effects from 

the walls do limit the ability of the bubble to collapse from the acoustic wave and 

limit growth rate of the bubble due to ADV expansion. 
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• A numerical model developed suggests that bubble lodging is enhanced by the 

geometry of the bifurcation.  Lodging is further enhanced by adhesion forces from 

the three phase contact line which is geometrically enhanced through turns in the 

vessel interfaces. 

• An atomization process may occur within the bubble when the bubble is hit by a 

sufficiently intense acoustic wave, which is the result of capillary wave formation 

along the interface of the bubble, and is threshold limited by acoustic peak negative 

pressure. 

Future Directions 

Having developed a well correlated model predicting nuclei formation and 

establishing a reasonable hypothesis behind the mechanism driving ADV, more refined 

models and parameter studies should be carried out to assist in maximizing vaporization 

efficiency.  Although the current simulation carried out was able to accurately estimated 

position of the primary nucleation site formed, the model was based on the assumption of 

linear acoustics.  By moving towards non-linear acoustic models the build of up non-linear 

wave interactions not only in the bulk fluid but also within the droplet can be more 

accurately captured.  Non-linear acoustic models should more accurately predict the 

pressures developed within the droplet as potentially help estimate acoustic pressure 

threshold for ADV.  Once pressure thresholds have been determined, parameter studies 

investigating the effects of acoustic frequency, transducer f-number, droplet distribution, and 

perfluorocarbon (PFC) fluid properties on acoustic pressures developed within the droplet 

will help guide development of transducer design and droplet construction to maximize 

vaporization efficiency.  Numerical models predicting location nucleation site formation 
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could be coupled to volume of fluid based methods of determining liquid to gas conversion 

of PFC.  Coupled with further ultra-high speed imaging experiments, the gas conversion rate 

could be better estimated, feeding into the development of more accurate models to describe 

the dynamic process of ADV and bubble expansion and predicting various stresses that 

could occur in vivo.  

Additional ultra-high speed imaging experiments visualizing the ADV process should 

be carried out to isolated cell damage resulting from ADV and possible bubble torus 

formation.  Observing isolated individual droplet vaporization in near the vicinity of a 

cultured monolayer of endothelial cells would allow the determination of when in the 

vaporization timeline and under what conditions result in cellular damage.  It remains 

unclear if vessel damage from ADV is limited by the bubble expansion process itself or if 

collapse events of the bubbles are driving cell death.  If bubble torus formation is indeed 

correlated with cell injury, then the balance of pulse length with acoustic power settings can 

be weighed for maximizing vaporization efficiency while minimizing (or controlling) cell 

injury. 

In vivo experiments have shown that vessel damage can be incurred from ADV 

exposure[16].  The results using the PDMS channels during the idealized vessel vaporization 

experiments described in chapter four showed no sign of wall distortion.  If similar channel 

confined vaporization experiments could be reproduced in softer gel based environments 

with known mechanical properties, wall deformation from ADV could be observed using 

high speed imaging.  Furthermore, if both the gel phantom along with the bulk fluid 

surrounding the vaporized droplet were doped with small tracer particles, particle imaging 

velocimetry techniques could be implemented to capture more accurate estimates of the flow 
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field and stress fields in the deforming solid domain could be reconstructed with the particle 

displacement field as boundary conditions for a finite element model[17-20].  Alternatively, 

boundary integral methods similar to that used in Chapter VI could be implemented if 

accurate measurements of the deforming boundary can be extracted. 

Preliminary results visualizing ADV events at channel bifurcations using ultra-high 

speed imaging have shown that the resulting bubbles have a tendency to expand at high 

velocities into the parent channel.  In many cases the bubble expansion carries fluid 

momentum propelling the droplet (Figure 7.1).  Relative to bubble expansion in straight 

channels, expansion at bifurcations may result in elevated stresses incurred at the carina of 

the bifurcation as well as increase wall shears incurred throughout the parent channel.  

Further analysis must be performed to quantify the stresses associated with bifurcation 

expansion events.  Because of the early stage contact with the vessel wall, possibly lower 

order one dimensional models using a modified Bernoulli’s equation could potentially be 

developed to describe the expanding bubble plug like motion[21,22].   

There is increasing interest in not just drug delivery to the systemic system but also 

into mechanisms to penetrate the blood brain barrier[23].  Although many groups have taken 

a sonoporation approach to locally delivering drugs, the process has been often associated 

with cavitation and potential tissue damage[24-26].  Although it is still debated whether stable 

cavitation or inertial cavitation is the driving force behind sonoporation, it is generally 

accepted that the stresses imposed from bubbles responding from the acoustic field are what 

is responsible for promoting increased membrane permeability[23, 27, 28].  Having observed an 

atomization of the bulk fluid within a bubble due to an acoustic pulse and hypothesizing that 

wall shears from the bubble oscillation could transiently open up tight junctions between the 
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endothelial cells, cell experiments must be carried out to test if atomization is a viable 

method of promoting tissue drug update. 

Although improvements in ADV efficiency and minimization of undesired bioeffects 

can be controlled through the ultrasound parameters, several advances can be done through 

the design of the droplet.  Because the droplet distribution is far from being monodisperse 

using the typical methods of high speed shaking or sonication, a substantial volume of the 

droplets are too large and may lodge in the microcirculation prior to arriving to the location 

of interest.  This is in contrast to the overwhelming number of droplets that are potentially 

too small to serve as an effective embolizing agent even after vaporization because the 

resulting diameter is far too small (Figure 2).  This motivates the development of a high-

throughput production method of monodisperse droplets specific to therapeutic 

application[29-34].  Although microfluidic devices have historically been shown to generate 

consistently monodisperse droplet populations, several physical barriers prevent immediate 

application to gas embolotherapy applications.  First, typical microfluidic applications 

producing droplets are aimed at droplet populations around tens if not hundreds of microns 

in diameter.  Scaling down to single micron or nanoscale droplets results in high pressure 

gradients and potential device failure from channel occlusion.  Furthermore, production 

rates for a single channel device normally are rate limited and production rates at on the 

order of one of five thousand droplets per second[29, 31, 33].  However, typical droplet counts 

from sonication or high speed shaking results in droplet counts on the order to 109 droplets.  

In order to achieve a similar droplet count, a single device would have to operate for several 

days to achieve one sample.  This motivated early investigation of parallel production of 

microdroplets.  By using cross junctions to with low channel heights relative to width, 
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relatively large diameter flat disk shaped droplet can be produced which later form sub-10 

micron spherical droplets in reservoirs.  Preliminary results have also shown that the 

production can successfully produce monodisperse droplets on a single five junction parallel 

device constructed from PDMS at rates close to 25,000 droplets/second.  These droplet 

production microfluidic devices would still need to be extended to massively parallel systems 

with hundreds of cross junctions operating in parallel to achieve ideal production rates of 

millions of droplets per second for clinical application.  Finally, microfluidic droplet 

production methods can be extended to precise manufacturing of multicomponent droplet 

designs that balance the volume of vaporizable PFC material and drug diffused material for 

localized drug delivery[34, 35]. 
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Chapter VII: Figures 

 

Figure 7. 1:  ADV expansion of an initially 10.5 μm PFC bubble at a bifurcation.  
The bifurcation has a parent channel diameter of 25 μm parent channel (right) and daughter 
channels (left) which are 78% the parent channel in diameter.  At 11 μs a portion of the 
bubble is in lower daughter channel and the remainder of the bubble is that the junction of 
the bifurcation.  Momentum transfer from the bubble against the bifurcation point at 75 μs 
into the expansion causes the bubble to expand into the parent channel.  Momentum from 
the bubble expanding into the parent channel likely causes the contact lines in the two 
daughter channels to recede (T=120 to 600 μs) closer to the parent channel. 
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A 

 

B 

 

Figure 7. 2:  Histograms of droplet distribution generator through sonication, high 
speed shaking and microfluidic methods are shown above in terms of (A) percent volume 
and (B) percent count.  High speed shaking methods result in a non-negligible number of 
large droplets that account for majority of the droplet volume.  Sonication provides an 
improved distribution, but the majority of droplets by count are closer to 1 μm in diameter.  
Microfluidic production of droplets has closely corresponding peaks for both volume and 
count, indicative of the monodisperse distribution of the droplets. 
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APPENDIX I:  Photolithography Procedure 

One of the challenges of microfabrication is surface adhesion between SU-8 and 

your substrate (e.g. glass or silicon).  Surface adhesion issues normally present themselves in 

the forms of delamination of SU-8 from the substrate from repeated castings or accidental 

removal of <25 micron features during rinsing steps during fabrication.  This document is an 

adaptation of MicroChem’s procedure on using SU-8 2000 series on how to microfabricate 

microfluidic molds[1, 2].  The purpose of the modified procedure is to ensure strong adhesion 

between mold features and the substrate, extend lifetime of the mold, and guarantee features 

down to single micron widths adhere to the substrate. 

Pretreatment 

The goal of the pretreatment is to add extra contact area between the features of 

interest and the substrate, which is normally silicon.   

1. Center silicon wafer (or substrate) on spin-coater and apply vacuum. 

2. Dispense 4 ml of SU-8 2002 (MicroChem) onto center of silicon wafer and spin at: 

a. 500 RPM for 5 seconds at acceleration of 100 RPM/second. 

b. Continue to 2500 RPM for additional 25 seconds (30 seconds total) at 

acceleration of 300 RPM/second. 

3. Edge bead removal – run a wipe or cotton swab along edge of the substrate to 

remove finger-like projections of SU-8. 

4. Soft bake – transfer coated substrate to hot plate and bake: 

a. Pre-bake at 60°C for 1 minute. 

b. Ramp to 95°C and bake for 2 minutes. 

c. Turn hot plate off and cool for 30-60 minutes. 
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5. UV exposure – transfer coated substrate for UV exposure.  Layer should be 2 

microns thick, requiring 80 mW/cm2 for correct UV exposure.  The mask aligner 

used output 17 mW/(cm2∙sec), therefore exposures should be 4.7 seconds. 

6. Post-Exposure Bake – transfer coated substrate to hot plate and bake: 

a. Pre-bake at 60°C for 1 minute. 

b. Ramp to 95°C and bake for 2 minutes. 

c. Turn hot plate off and cool for 30-60 minutes. 

Photolithography 

Masks were designed using SolidWorks and submitted to CAD/Art, Inc. emulsion 

up for high resolution prints.   

1. Center pre-treated silicon wafer on spin-coater and apply vacuum. 

2. Dispense 4 ml of SU-8 2000 series (MicroChem) onto center of silicon wafer and 

spin.  SU-8 formulations used and spin times used can be found in table A1.1.  See 

MicroChem datasheets on SU-8 2000 series for calibration charts on spin time and 

feature height[1, 2]. 

Ideal 

Height 

(µm) 

SU-8 
Spin 1 

(RPM) 

Accel. 

(RPM/sec) 

Time 

(sec) 

Spin 2 

(RPM) 

Accel. 

(RPM/sec) 

Time 

(sec) 

Measured 

Height 

(µm) 

10 SU-8 2007 500 100 5 1700 300 25 9.2 

25 SU-8 2015 500 100 5 1950 300 25 23.6 

50 SU-8 2025 500 100 5 1900 300 25 49.8 

100 SU-8 2075 500 100 5 2700 300 25 93.6 

Table A1. 1:  Spin times for varying channel heights used for idealized vessel 
models. 
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3. Edge bead removal – run a fiber-free wipe or cotton swab along edge of the 

substrate to remove finger-like projections of SU-8. 

4. Soft bake – transfer coated substrate to hot plate and bake.  Bake times used are 

shown in the table below in table A1.2.  Once bake steps are complete, turn off hot 

plate and allow to cool on plate for 30-60 min before proceeding. 

Ideal Height 

(µm) 
SU-8 

Prebake at 60°C 

(min) 

Bake at 95°C 

(min) 

10 SU-8 2007 1 3 

25 SU-8 2015 1 4 

50 SU-8 2025 3 6 

100 SU-8 2075 5 12 

Table A1. 2:  Soft-bake times for varying channel heights used for idealized 
vessel models. 

 
5. UV exposure – transfer coated substrate for UV exposure.  For the exposure doses 

used see the table below in table A1.3. 

Ideal Height 

(µm) 
SU-8 

Exposure Dose 

(mW/cm2) 

Exposure Time 

(sec) 

10 SU-8 2007 150 9 

25 SU-8 2015 170 9.8 

50 SU-8 2025 190 11.0 

100 SU-8 2075 260 15.0 

Table A1. 3:  Exposure times for varying channel heights used for idealized 
vessel models. 
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6. Post-Exposure Bake – transfer coated substrate to hot plate and bake.  See table 

A1.4 for bake times used.  Once bake steps are complete, turn off hot plate, and 

allow to cool on plate for 60 min before proceeding. 

Ideal Height 

(µm) 
SU-8 

Prebake at 60°C 

(min) 

Bake at 95°C 

(min) 

10 SU-8 2007 1 4 

25 SU-8 2015 1 5 

50 SU-8 2025 2 6 

100 SU-8 2075 5 10 

Table A1. 4:  Post-exposure bake times used for varying channel heights used 
for idealized vessel models. 

 
7. Development – Wafers should be transferred over to a bath of MicroChem’s SU-8 

Developer Solution.  Development time is based on channel height and should be 

sprayed with fresh development solution every minute to help expose features.  The 

development times used can be found in table A1.5. 

Ideal Height 

(µm) 
SU-8 

Development Time 

(min) 

10 SU-8 2007 4 

25 SU-8 2015 5 

50 SU-8 2025 7 

100 SU-8 2075 10 

Table A1. 5:  Development times used for varying channel heights used for 
idealized vessel models.  Every minute additional developer solution was used to 
spray the surface of the wafer molds to ensure removal of excess SU-8. 
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8. Rinse and dry – both sides of the wafer should be thoroughly rinses using isopropyl 

alcohol followed by DI water.  Repeat the process a minimum of 2 times.  Dry by 

blowing compressed air or, preferably, nitrogen across both sides of the wafer onto a 

clean fiber-free wipe. 

9. Hard bake – A final high temperature bake step is needed to annealing the SU-8 to 

the substrate.  Hard bake was performed by slowly raising the wafers from room 

temperature to 150-200°C and baked for 30-60 minutes on a hot plate.  The hot 

plate was turned off and the wafers were allowed to slowly return to room 

temperature over a 2 hour period. 
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APPENDIX II:  Spin Coating PDMS 

Spin coating PDMS allows for controlled PDMS thicknesses.   

1. Center silicon wafer mold on spin coater and apply vacuum.   

2. Dispense 4 ml of degassed PDMS mixed at a 10:1 ratio of elastomer to cross-linking 

agent onto center of wafer. 

3. Spin wafer at a 500 RPM accelerating at 110 RPM/second for desired thickness at 

times specified below in figure A2.1 

 

Figure A2. 1:  Spin time at 500 RPM and acceleration of 110 RPM/second 
for PDMS to control PDMS wall thickness.  A power law function was used to 
approximate PDMS thickness as a function of spin time. 

4. Using a fiber-free wipe clean off edge of wafer to remove excess PDMS. 

5. Transfer wafer to hot plate and bake at 65°C for 30 minutes minimum, 3 hours for 

full cure. 
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