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2.4 Increase in the uncertainty in the dark energy equation-of-state pa-
rameters w0 (left) and wa (right) as a function of uncertainty in
photo-z parameters (∆z, σz). Figure taken from Ma, W. Hu, and
D. Huterer 2006. . . . . . . . . . . . . . . . . . . . . . . 43

2.5 The number of spectroscopic observations required to prevent photo-
z uncertainty from degrading the dark energy figure of merit by more
than a given fraction. For example, if a 100% degradation (d = 1)
is tolerated, then the number of training spectra can be reduced by
a factor of 10. The solid and dashed lines represent two different
photo-z prior templates. Figure taken from Ma, W. Hu, and D.
Huterer 2006. . . . . . . . . . . . . . . . . . . . . . . . 44

ix



3.1 An example of a very simple decision tree used to classify cars as
sports cars. In this example, engine power is the largest discrimina-
tor when determining if a car is a sports car, and so it becomes the
first split. The number of wheels on the car was the second (and
third) most important variable. Squares indicate branch nodes and
circles are used to designate leaf nodes. Green nodes indicate nodes
which would be classified as “signal” nodes (nodes in which most of
the training vectors are, indeed, sports cars); red nodes are “back-
ground” nodes. Since most vehicles are not sports cars, it isn’t sur-
prising that the root node is therefore red. On the other hand, most
vehicles do have four wheels, and so the other two branch nodes are
green. If this example tree continued with splits on color or number
of tail-lights, one could conclude that the tree was overtraining. . . 53

3.2 An example of training a decision tree on a simple sine function.
On the left we show a training set of 1000 points, defining “signal”
to be above the curve (blue points) and “background” to be below
the curve (red points). After training the decision tree, we can step
through the entire space, querying the tree for its best estimate of
the true classification at each point. The results are shown on the
right. We see that the decision tree performed excellently. In a
handful of places there wasn’t enough data in the training set for
the decision tree to emulate the function appropriately (e.g., at the
trough of the sine wave). We also note that since a decision makes
cuts on only one variable at a time, all cuts are orthogonal to the
axes, which is clearly visible. . . . . . . . . . . . . . . . . . 54

3.3 ArborZ is an ensemble of BDTs, each of which is assigned to rec-
ognize galaxies in its respective redshift bin. Each BDT, in turn,
consists of a “forest” of DTs; the BDT unites these weak DT clas-
sifiers into a single, strong classifier. After ArborZ is trained, it can
evaluated on new sets of observables, producing probability distri-
butions p(z) for each one. . . . . . . . . . . . . . . . . . . 61

x



3.4 Typical p(z) unnormalized probability distributions (probability per
redshift bin) produced by ArborZ. In the top four panels we see p(z)
distributions at several redshifts. The true redshift is marked by a
red line, the mean of the distribution is marked by a blue line,
the median is marked with a green line, and the 1σ error range
(enclosing half of the the central 68% distribution) is delimited with
gray, dashed lines. We see that ArborZ distributions typically have
their support over a relatively narrow region in redshift space. In
the bottom two panels we show examples of catastrophic failure,
where |zphot − zspec| > 3σz. In the bottom left is an example of
p(z) with low probability everywhere, which could be removed with
a cut on the maximum height ppeak of the distribution (discussed
later). In the bottom right we show an example of an incorrect
zphot estimate, but where the distribution has a secondary peak at
the true redshift, illustrating the strength of a p(z) algorithm, since
these secondary peaks will contribute to correctly estimating the
number distributions N(z) in each redshift bin. . . . . . . . . . 66

3.5 The distribution of fpdf , the fraction of area in p(z) below zspec. An
unbiased estimator will yield a flat distribution. The dashed line is
the mean of the distribution. . . . . . . . . . . . . . . . . . 67

3.6 The zphot and p(z) relationship with true redshift. In Figure 3.6a,
we see flattening at ztrue = zphot = 0.4 due to degeneracies, as
well as evidence of bias at the extremes of the redshift range. In
comparison, Figure 3.6b (for which a scatter plot cannot be drawn)
shows much improved fidelity, with bias nearly removed. . . . . . 68

3.7 The number distribution N(z) of galaxies in the catalog constructed
using two methods. The first plots the distribution of zphot, the best-
estimate photo-z. This does a reasonable job, but exhibits strong
symptoms of bias. On the other hand, the p(z) method does a much
better job reconstructing the underlying redshift distribution. . . . 69

3.8 Photo-z bias in ArborZ. The black, dashed line represents zero bias.
The blue line is the bias calculated using zphot, and the red line is
the bias calculated after a cut ppeak ≥ 0.99 is applied to the p(z)
distributions. The black contours are the bias contours calculated
using p(z). We see that the p(z) contours contain less biased infor-
mation than provided by only zphot. Figure 3.8a offers insight into
the performance of a photo-z estimation algorithm, but Figure 3.8b
encodes the calibration data needed to remove bias in real surveys. . 70

xi



3.9 Width of residuals in ArborZ. We show this width calculated in two
ways: the standard deviation and half of the width of the central
68% of the distribution. We also show both measures with and
without an additional cut on ppeak, the height of the largest peak in
the p(z) distribution. . . . . . . . . . . . . . . . . . . . . 72

3.10 The distribution of normalized errors from ArborZ, using both the
mean zphot and median zmed

phot to calculate best-estimate photo-z. If
the σz error estimates are honest estimates, then this distribution
should be Gaussian, with central mean and a width of unity. The
calculated errors are good error estimates on zphot, but overestimates
when applied to zmed

phot. . . . . . . . . . . . . . . . . . . . . 73

3.11 The relationship between ppeak and photo-z error σz. We see a clear
correlation between these quantities, allowing us to interpret cuts
on ppeak as equivalent cuts on photo-z uncertainty. . . . . . . . . 73

3.12 The uncertainty in ArborZ’s photo-z estimates in the mock catalog.
The points indicate the uncertainties. The solid red line marks the
10% degradation in the dark energy figure of merit. The dashed red
line marks the 50% degradation. In the upper plot, the DES science
requirement is the solid black line; in the lower plot, the DES science
requirement is the dashed red line, the same as the 50% mark.. . . 75

3.13 Decision tree misclassification error as a function of BDT forest size.
For nearly all training sets, the misclassification rate stabilizes near
40–50 trees for forest. . . . . . . . . . . . . . . . . . . . . 78

4.1 Color-color plots showing the distribution of colors in the SDSS
DR10 photometry. . . . . . . . . . . . . . . . . . . . . . 81

4.2 The redshift distribution of the SDSS spectroscopic training set.
In Figure 4.2a is the overall redshift distribution, including contri-
butions from all sixteen source catalogs. In Figure 4.2b, we stack
the cumulative distribution functions (CDFs) of the redshift distri-
butions from each catalog. In both plots, SDSS is shown on the
bottom of the stack, and AGES is shown on top. . . . . . . . . 85

4.3 The distributions of mmodel magnitudes in the SDSS DR10 imag-
ing and the spectroscopic training set. Magnitude cuts are placed
on both the extinction-corrected mmodel magnitudes as well as the
extinction-corrected mcmodel magnitudes. Both distributions are
normalized to more easily compare contributions at each magnitude. 86

xii



4.4 The redshift distributions of the training (non-SDSS) set galaxies
and target (SDSS) set galaxies for the unrepresentation test. . . . 87

4.5 The magnitude distributions of the training (non-SDSS) set galaxies
and target (SDSS) set galaxies for the unrepresentation test. The
magnitude distributions are sufficiently different as to be worth val-
idating ArborZ’s performance before blindly trusting its results. . . 88

4.6 ArborZ p(z) results plotted against ztrue, showing that p(z) is still
an accurate redshift measure in the case of unrepresentation. . . . 89

4.7 The constructed redshift distribution for the unrepresentation test.
p(z) shows a small overestimate near z = 0.3, but does an overall
excellent job of reconstructing the underlying redshift distribution,
even when the distribution of observables is different for the training
and target sets. . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 The uncertainty in ArborZ’s photo-z estimates in the SDSS unrep-
resentation test. The points indicate the uncertainties. The solid
red line marks the 1% degradation in the dark energy figure of merit.
The dashed red line marks the 10% degradation. In the upper plot,
the DES science requirement is the solid black line; in the lower plot,
the DES science requirement is above the range of the plot. . . . . 91

4.9 The photo-z results in the SDSS validation sample, calculated by
training on 100 000 random galaxies in the overall spectroscopic
training set, and evaluating on the remainder. Good agreement be-
tween ArborZ and the true redshift is seen across the entire redshift
range. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Bias and error plots for the SDSS validation sample, indicating good
photo-z results across the entire redshift range. The peaks in the
photo-z error in the ppeak > 0.99 sample near z = 0.6 and z = 0.72
are due to low statistics. . . . . . . . . . . . . . . . . . . . 93

4.11 The uncertainty in ArborZ’s photo-z estimates in the SDSS valida-
tion test. The points indicate the uncertainties. The solid red line
marks the 1% degradation in the dark energy figure of merit. The
dashed red line marks the 10% degradation. In the upper plot, the
DES science requirement is the solid black line; in the lower plot,
the DES science requirement is above the range of the plot. . . . . 94

4.12 The estimated redshift distribution N(z) in the SDSS DR10 imaging
catalog. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



4.13 Bias and error plots for the SDSS DR10 catalog. These are gener-
ated by summing p(z) distributions in bins of zphot. The resulting
contours and means are shown in Figure 4.13a, and the widths are
shown in Figure 4.13b.. . . . . . . . . . . . . . . . . . . . 96

4.14 Color-color plots showing the distribution of colors in the DES SV-
A1 catalog. . . . . . . . . . . . . . . . . . . . . . . . . 98

4.15 The redshift distribution of the DES spectroscopic training set. In
Figure 4.15a is the overall redshift distribution, including contribu-
tions from all ten source catalogs. In Figure 4.15b, we stack the
cumulative distribution functions (CDFs) of the redshift distribu-
tions from each catalog. In both plots, 2dFGRS is shown on the
bottom of the stack, and zCOSMOS is shown on top. . . . . . . 100

4.16 The distributions of mauto magnitudes in the DES SV-A1 photom-
etry and the spectroscopic training set. Both distributions are nor-
malized to more easily compare contributions at each magnitude.
101

4.17 The photo-z results in the DES validation sample, calculated by
training on a random one-third of galaxies in the overall spectro-
scopic training set, and evaluating on the remainder. Good agree-
ment between ArborZ p(z) and the true redshift is seen across the
entire redshift range. . . . . . . . . . . . . . . . . . . . . 103

4.18 Bias and error plots for the DES validation sample, indicating good
photo-z results across the entire redshift range. . . . . . . . . . 104

4.19 The estimated redshift distribution N(z) in the DES SV-A1 imaging
catalog. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.20 Bias and error plots for the DES SV-A1 imaging catalog. . . . . . 106

4.21 The uncertainty in ArborZ’s photo-z estimates in the DES valida-
tion test. The points indicate the uncertainties. The solid red line
marks the 1% degradation in the dark energy figure of merit. The
dashed red line marks the 10% degradation. In the upper plot, the
DES science requirement is the solid black line; in the lower plot,
the DES science requirement is above the range of the plot. . . . . 107

xiv



5.1 Data from Chandra is used to constrain cosmological parameters
using the cluster mass function. On the top we see good agree-
ment between the observed mass function (points) and the predicted
model (lines), indicating that the chosen cosmological parameters
(inset at top of plot) are a good fit to reality. On the bottom, the
dark energy contribution to the mass-energy of the universe is set
to ΩΛ = 0. The resulting disagreement between the observed and
predicted mass functions suggests that we do not live in a universe
without dark energy. Figures taken from Vikhlinin, Kravtsov, et al.
2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Six examples of the cluster red-sequence found in Abell clusters.
The color-magnitude relationship works well to find the red-sequence
(marked by the lines), since it makes bright, red cluster members
obvious. Figure taken from M. D. Gladders et al. 1998. . . . . . . 112

5.3 Examples of cluster pcluster(z)s constructed using the joint proba-
bility distribution of Equation 5.2. Data is taken from the DES
mock catalog. The member galaxies’ p(z)s are shown as a stacked
histogram and the cluster pcluster(z) distribution is overlaid in ma-
genta. The true cluster redshift is indicated with a red line, and
the best-estimate photo-z—defined as the median of pcluster(z)—is
indicated with a blue line. The red number inset in the upper-right
of each plot is the number of members stacked in the cluster. . . . 114

5.4 Relationship between the best-estimate photo-z obtained from the
pcluster(z) distribution and the median of the cluster photo-z estima-
tor p̂cluster(z). Data is taken from the DES mocks. . . . . . . . . 116

5.5 Cluster richness in the DES mocks after our member cuts are ap-
plied. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Cluster photo-z versus true redshift, using both the full pcluster(z)
distribution as well as its median, zcluster

phot . Using the full probability

distribution produces a less biased fit to the line zphot = ztrue. . . . 118

5.7 Reconstructed redshift distributions N(z) for the mock cluster cat-
alog. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8 Cluster photo-z error and bias in the DES mock galaxy catalogs. . 120

5.9 The distribution of cluster sizes in the DES-XCS cluster catalog.. . 122

xv



5.10 The redshift distribution of clusters in the DES-XCS cluster catalog
which have known redshifts. . . . . . . . . . . . . . . . . . 122

5.11 The initial DES-XCS photo-z results before applying any further
cuts to the cluster members. . . . . . . . . . . . . . . . . . 123

5.12 Scatter in photo-z residuals zphot−ztrue as a function of ppeak. When
we apply these cuts, we discard member galaxies, which in turn
could remove clusters from the catalog entirely. We show this effect
using colors and point sizes. Larger points are associated with a
greater number of clusters kept in the catalog. Redder colors are
associated with a greater number of member galaxies summed across
all clusters. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.13 The final DES-XCS photo-z results after applying a ppeak cut to the
cluster members. . . . . . . . . . . . . . . . . . . . . . . 125

5.14 The reconstructed redshift distributions N(z) for the entire DES-
XCS cluster catalog, including clusters for which we do not have
spectroscopic redshifts. . . . . . . . . . . . . . . . . . . . 125

5.15 The photo-z bias and error plots for the DES-XCS cluster photo-z
catalog. The bias and error are both lower than for the DES catalog
at large. The dashed red lines indicate the 0.02 level in bias or error,
as appropriate, which is typical of cluster redshift estimates (Rykoff
et al. 2013). . . . . . . . . . . . . . . . . . . . . . . . . 126

5.16 Relationship between red-sequence photo-z estimates (zred) and true
redshift for the DES-XCS catalog. . . . . . . . . . . . . . . . 127

5.17 The photo-z bias and error plots for the DES-XCS cluster photo-z
catalog, this time calculated from red-sequence estimates. The bias
and error are both lower than for the DES catalog at large. The
dashed red lines indicate the 0.02 level in bias or error, as appro-
priate, which approximates the desired performance for competitive
cluster redshift estimates. . . . . . . . . . . . . . . . . . . 128

5.18 Comparison of the photo-z residuals zphot−zspec calculated using the
stacked p(z) method (blue) and the traditional red-sequence method
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1 Solid model of the polar BCAMs used on DECam (top cover not
shown). The only difference between this model and the actual
BCAMs used on DECam is that the ethernet port is located on the
end opposite the laser/CCD. Image taken from Hashemi 2013a. . . 136

xvi
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Abstract

Upcoming large-scale sky surveys will obtain photometric data for over 108 galaxies.

The unprecedented size of such data sets make full spectroscopic followup impossible.

Therefore, placing precision constraints on cosmological parameters—such as dark

energy—will require accurate redshift estimates based on imaging data alone. In this

thesis, we describe a method for estimating photometric redshifts (photo-zs) using

boosted decision trees (BDTs), which we call ArborZ. We validate ArborZ and test

its performance using simulated galaxy catalogs. After showing that ArborZ is robust

with respect to variations between the training and evaluation sets, we apply it to

data from two major astrophysical surveys: the Sloan Digital Sky Survey (SDSS) and

the Dark Energy Survey (DES). We then develop a method for applying ArborZ to

estimate the redshifts of galaxy clusters. We test this in simulated data and then

apply it to real data from an XCS-DES cluster catalog.

xxi



Chapter I

The Development of Cosmology

For all of its existence, humankind has stared into the night sky and pondered its

origin. In an effort to address such existential questions as, “Where has the universe

come from?” and, “What is the fate of our universe?” people have developed the

branch of natural science known as cosmology. Cosmology deals with understanding

our universe on its very largest scales. The sheer magnitude of these scales has

encouraged the countless explanations and creation stories produced by nearly every

civilization. This fusion of existentialism, science, and anthropology makes cosmology

a unique and exciting field of study. In this chapter, we review this rich history and

development of cosmology, concluding with a summary of our current understanding

of our universe.

1.1 Early Cosmology

Even the earliest historical records are teeming with examples of humans trying to

understand their universe, or trying to use the universe to understand their envi-

ronment. Some of the earliest evidence is the Egyptian pyramids at Giza, erected

sometime in the middle of the third millennium BC (Spence 2000). These pyramids

are remarkable in many ways, perhaps the most astounding of which is the pyramids’
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meticulous alignment. By mapping out the circumpolar transit of two stars, the

Egyptians oriented the pyramids along true north to within three arcminutes. Over

the next millennium, the ancient druids constructed, and subsequently improved,

Stonehenge in England. Although the purpose of the site is not definitively under-

stood, a common hypothesis is that it was used for predicting astronomical eclipses

(Meadows 1978). Later, in the last millennium BC, the ancient Babylonians pro-

duced star catalogs which documented stars, constellations, and planetary motions

(Rogers 1998); these catalogs are likely the earliest records we have which evidence

a systematic organization of astronomical data. Another example of mankind using

the stars for guidance is the proverbial “Three Wise Men” of biblical fame, who,

guided by a star, sought out the predicted birth of Christ (The New American Bible,

Matt. 2.1–12). It wasn’t long after Biblical times that the Mayan civilization used

the orbit of Venus to develop its famous calendar, known for both its complexity and

its long-term accuracy (Thompson 1974). Clearly, even in these early and sometimes

prehistoric eras, mankind was ascribing importance to the regularity and precision of

the universe.

Most of these examples, however, illustrate various cultures’ attempts to under-

stand the cosmos for the purpose of answering astrological questions. The first sys-

tematic efforts to apply philosophical and mathematical rigor to the study of as-

tronomy and cosmology were effected by the ancient Greeks. Plato, driven by the

simplicity and purity of circles, posited that the orbits of planets must be fundamen-

tally circular and geocentric (Hetherington 2006). His students—such as Eudoxus

and Aristotle—tried to realize this by postulating a universe of concentric, rotating

spheres. Apollonius and Hipparchus modified this model by introducing epicycles

and eccentric orbits which further complicated the motions. These developments

were eventually compiled by Ptolemy in his opus Almagest, which explained many of

the observed planetary motions against a fixed background of stars using concentric
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circles and epicycles; this work dominated much of astronomical thinking until the

Renaissance (Pannekoek 1961).

One other Greek astronomer deserves notice: Aristarchus of Samos. His work,

as described by Archimedes, is the earliest record we have of the development of

a heliocentric universe, in sharp contrast to the geocentric view held by the rest of

ancient Greece. He estimated the ratio of the diameter of the Earth to the diameter of

the Sun and concluded that the Sun must be larger than previously thought; indeed,

the Sun would have to be much, much larger than Earth itself! He then proposed a

heliocentric universe, with the Earth orbiting around the Sun, with fixed background

stars orbiting the Sun as well, but at a tremendous (perhaps infinite) distance (Heath

1913). Aristarchus’ universe was much larger than that put forth by other Greek

astronomers and mathematicians. This, coupled with the counter-cultural concept

of a heliocentric universe, led the heliocentric theory to languish in comparison with

more popular geocentric models.

For over a thousand years, our understanding of the universe was in stasis. It

wasn’t until the Renaissance that Nicholas Copernicus, in 1543, proposed a heliocen-

tric universe (Copernicus 1543). This time, the theory took firm root in the minds of

scholars, partially due to the model’s success in accurately predicting religious holi-

days and improving stellar navigation (Erickson 2013; Kuhn 1957). This knowledge

proved to be a catalyst, driving the study of astronomy forward at an unprecedented

rate. Johannes Kepler, despite his love for the Greeks’ obsession with mathematical

beauty and the Platonic solids, was able to quantify the motions of planets in his three

rudimentary laws (Dreyer 1953). Shortly afterwards, building on Kepler’s laws, Isaac

Newton published his work on gravity (Newton 1687) and endowed further physical

meaning to the planetary motions. The French philosopher René Descartes broadened

the scope of the cosmic problem, proposing a universe composed of interlinking solar

systems (Descartes 1677). With such a burst of knowledge and interest, a scientific
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revolution had most certainly begun.

Perhaps the most revolutionary contributions to astronomy and cosmology prior

to the twentieth century were due to William Herschel, the self-taught, “amateur”

astronomer who became the “Father of Observational Astronomy” (Mullaney 2007).

A Knight of the Royal Guelphic Order and Fellow of the Royal Society, his life is a

fascinating apology of the value of the liberal arts. A talented musician, he not only

played oboe, harpsichord, and organ, but he also composed twenty-four symphonies

during his life. But more famous still are his astronomical discoveries made using his

hand-built telescopes. In 1781, Herschel discovered the planet Uranus, and six years

later he detected two of its major moons: Titania and Oberon. During his career,

he cataloged 2500 nebulae (extended objects) and 806 double stars (Clerke 1908).

His catalog was edited by John Dreyer, who supplemented it with other astronomical

observations and published it as the New General Catalogue (NGC), which is still in

common use today (Mullaney 2007). In addition, Herschel was responsible for the

discovery of infrared radiation (Herschel 1800). But for cosmologists, Herschel’s most

important contribution to science was his realization that stars cluster; he is the first

to conceptualize the modern notion of a galaxy (Holden 1881). With this discovery,

the groundwork for modern cosmology was complete.

1.2 Modern Cosmology

1.2.1 A Dynamic Universe

Given that the human understanding of cosmology had, at the dawn of the twentieth

century, taken thousands of years to progress to such rudimentary foundations, it

seems astonishing to consider that nearly all of modern cosmology was developed in

the course of about eighty years. The breakthroughs began with Einstein’s theory of

general relativity (Einstein 1916). Einstein realized that space-time and mass-energy

4



are fundamentally intertwined: as John Wheeler put it, “mass-energy tells space-time

how to curve, and curved space-time tells mass-energy how to move” (Ryden 2003).

Einstein summarized this succinctly in his eponymous field equations (Einstein 1915;

Einstein 1916):

Gµν =
8πG

c4
Tµν (1.1)

where Tµν is the stress-energy tensor and Gµν , called the Einstein tensor, is

Gµν ≡ Rµν −
1

2
Rgµν (1.2)

Here, Rµν is the Ricci tensor which encodes information about the curvature of space-

time, gµν is the metric tensor which describes the space-time interval, and R is the

Ricci scalar which is simply the trace of the Ricci tensor: R = gµνRµν .

However, there was a notable problem with this formalism as it has been written,

viz. that it described an unstable universe, an unusual concept at a time when a

steady-state model of the universe was held by most philosophers and scientists. To

prevent such a perceived affront to philosophy, Einstein inserted an additional term

into the equation, called the cosmological constant Λ, noting that its presence did

not violate any physical laws (Einstein 1917). The modified equation became:

Gµν + Λgµν =
8πG

c4
Tµν (1.3)

Einstein eventually recanted this modification, calling it “the biggest blunder of his

life” (Gamow 1970).

There were, on the other hand, several scientists who were not quite so hesitant

to challenge traditional preconceptions about the nature of the universe. One of the

first was Alexander Friedmann, a Russian physicist who began to investigate possible

solutions to Einstein’s equations for universes of different geometries, and suggested

that the universe may indeed have dynamical properties (Friedmann 1922; Friedmann
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1924). The startling up-shot of his work was that the geometry and evolution of the

universe depends on the energy densities of its constituents, which may themselves

evolve with time. This provided a framework in which many questions could finally be

scientifically discussed. Was the universe infinite or finite in extent? Would it exist

forever? Would it eventually collapse under its own gravity? It suddenly became

important to precisely measure the contents of the universe.

Another novel thinker of the time was Georges Lemâıtre, a Belgian priest and

professor, who took this idea of a evolving universe a step further. He realized that

any expansions or contractions of space-time would imprint an apparent Doppler

shift on propagating photons. In fact, he was the first to experimentally verify this

phenomenon (which became known as Hubble’s Law) and to discover an expanding

universe (Lemâıtre 1927). But this discovery brought with it a strange implication:

if the universe is currently expanding, then long ago it must have been in a smaller,

hotter state which he dubbed the “Primeval Atom” and which would eventually be

popularized as the Big Bang Theory of the universe (Lemâıtre 1931b). Unfortunately,

the journal in which Lemâıtre published his findings was not well-read outside of Bel-

gium. Although he eventually published a translation in English (Lemâıtre 1931a)

with the help of Sir Arthur Eddington, his discussion concerning Hubble’s Law was

inexplicably absent—perhaps because Eddington, though he found Lemâıtre’s work

a “brilliant solution” to Einstein’s unstable universe (Eddington 1930), was uncom-

fortable with the philosophical notion of a cosmic origin.

Thus it was that only two years after Lemâıtre’s foundational—but quiet—discovery,

another scientist stumbled across the same phenomenon. Edwin Hubble, who had re-

cently gained fame for his definitive discovery of galaxies beyond the Milky Way

(Hubble 1926), performed a very similar experiment to Lemâıtre’s. He plotted the

recession velocity v of galaxies against their distances r from Earth, as shown in Fig-

ure 1.1, using 46 galaxies (Hubble 1929). His result, like Lemâıtre’s, evidenced the
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Figure 1.1: The velocity-distance relationship which proved Hubble’s Law. The solid
points and line are Hubble’s fit treating all galaxies with known distances individually.
The open points and dashed line are Hubble’s fit grouping certain galaxies together.
The “+” symbol represents 22 galaxies whose distances could not be estimated indi-
vidually. Image taken from Hubble 1929.

relationship:

v = H0r (1.4)

where H0, now known as the Hubble constant, is currently measured to be 67.4 ±

1.4 km/s/Mpc (Ade et al. 2013).

1.2.2 The Discovery of Dark Matter

Another frontier of astrophysical inquiry also sprung up in the 1930s. In 1932, Jan

Oort was measuring the velocities of stars in our galaxy when he realized that the

mass required to keep them in orbit around the galaxy was larger than the observable

mass of galaxy (estimated from the luminosity of stars). He called this unobserved

mass “dark matter” and estimated that there had to be at least as much dark mat-

ter as regular (baryonic) matter (Oort 1932). The next year, Fritz Zwicky applied

the virial theorem to the galaxies in the Coma Cluster and found a similar result to

Oort’s: the observable mass in the cluster was not large enough to keep the members
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gravitationally bound to their cluster (Zwicky 1933). In Zwicky’s estimate, the total

mass of the system was over 400 times as much as the observable, luminous mass.

Zwicky also suggested a clever means of estimating the total mass of a cluster, both

observed and dark, by observing the distortion of light rays from background galax-

ies as they propagate past a massive cluster (Zwicky 1937), a technique known as

gravitational lensing.

Despite these findings, did “luminous mass” equal the “dynamical mass” of a

system; that is, was it actually possible that a galaxy or cluster have mass which

didn’t give off light? It would certainly be odd, since this would mean that this dark

matter did not interact electromagnetically, unlike most forms of matter known at

the time. It wasn’t until 1970 that the existence of dark matter was soundly proven

by Vera Rubin using rudimentary dynamics. By simply measuring the rotational

velocities of stars in a galaxy, once could infer the underlying mass profile M(r) of

the galaxy by equating centripetal force Fc and gravitational force Fg:

G
M(r)m

r2
= Fg = Fc = m

v2

r
(1.5)

v =

√
GM(r)

r
⇐⇒ M(r) =

v2r

G
(1.6)

where v is the velocity of a start at a distance r from the center of galaxy, M(r) is

the total mass of the galaxy within a radius r, and m is the mass of the star. Since

lim
r→∞

M(r) ≡Mgal is finite, the velocity distribution v should drop off once most of the

galaxy’s mass is enclosed in a certain radius r. However, instead of the expected drop

off, Rubin observed (Rubin and W. Kent Ford 1970) v to flatten out at a non-zero

velocity for moderately large values of r before finally dropping off to zero, far after

all observed mass was enclosed (see Figure 1.2). She estimated that the total mass

must be at least three times as large as that inferred from luminous matter alone

(Rubin, Burstein, et al. 1985). This was the strongest evidence for the existence of
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Figure 1.2: The distribution of rotational velocities of stars in galaxy M31 (An-
dromeda). Rather than quickly dropping off, the velocity profile extends outward,
demonstrating the existence of galactic matter even at large radii. Image taken from
Rubin and W. Kent Ford 1970.

dark matter yet discovered.

In fact, dark matter very conveniently explained an outstanding problem in galaxy

formation. Ostriker and Peebles, while studying early simulations of galaxy evolu-

tion, noticed that galaxies seemed “grossly unstable to barlike modes” (Ostriker and

Peebles 1973). They showed that if the ratio of a galaxy’s total kinetic energy to its

total gravitational energy is too large, then mass over-densities will drive the stars

to collapse rapidly into a bar. The critical value for this ratio, called the Ostriker-

Peebles criterion, is approximately 0.15. If, however, this ratio can be reduced by

adding additional gravitational energy in the form of a halo, galaxy formation re-

mains stable. Dark matter provided the perfect candidate for this halo, solving the

problem of galaxy formation.

There have been several candidate explanations for dark matter. One theory is

Modified Newtonian Dynamics (MoND), which posits that Newton’s law of grav-

ity breaks down and requires modification at large scales (Milgrom 1983a; Milgrom

1983b). Another possibility is that the dark matter is simply neutrinos, a näıvely

plausible explanation, since neutrinos don’t interact electromagnetically. Such the-

ories are called “hot dark matter” theories, since neutrinos are so light as to be
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relativistic. However, this, in turn, prevents them from effectively collapsing into

halos and facilitating galaxy formation (M. Davis et al. 1992; S. D. M. White et al.

1993). The generally accepted explanation is called “cold dark matter,” which posits

that some weakly-interacting, massive particle (WIMP) is responsible, with candidate

particles often drawn from supersymmetric theories (Harper 2013).

1.2.3 The Cosmic Microwave Background

It was at a similar time in history that one of the most important discoveries in mod-

ern cosmology occurred quite serendipitously. Penzias and Wilson, two young radio

astronomers, were calibrating out noise sources on the 20ft horn antenna (Crawford,

D. C. Hogg, and Hunt 1961) at Bell Labs. However, they were met with an unex-

pected and irreducible noise source at a temperature of 3.5±1 K (Penzias and Wilson

1965), which they measured to be constant across the sky.

Meanwhile, a group of four physicists at nearby Princeton University were devel-

oping novel ways to test for the existence of Lemâıtre’s Big Bang. They reasoned

that the universe at its earliest epoch must have been extremely hot and in thermal

equilibrium characterized by a black-body spectrum. As the universe expanded and

cooled, this black-body radiation would necessarily cool as well and should still be

observable as a microwave background radiation. When news of Penzias and Wilson’s

discovery reached Princeton, it was hailed as the long-awaited evidence of a Big Bang

(Dicke et al. 1965), and now goes by the name of the cosmic microwave background

(CMB) radiation.

The CMB has been been re-measured many times since its initial discovery in

order to improve the spatial resolution of the temperature field. Probably the most

influential re-measurement was taken by the Cosmic Background Explorer (COBE),

launched in 1989. COBE tightened the measurement of the mean (monopole) tem-

perature to 2.728 K. This black-body spectrum, shown in Figure 1.3, is one of the

10



Figure 1.3: The CMB black-body spectrum, measured by COBE, with a temperature
of 2.728 K. It ranks among one of the greatest examples of agreement between theory
and experiment in the history of science: the errors are a small fraction of the line
width. Image taken from Fixsen et al. 1996.

best experimental fits to theory in the history of science! COBE, with its spatial res-

olution of 7◦, also detected a dipole term on the order of ∆T/T ≈ 10−3 corresponding

to our peculiar velocity through the CMB rest frame. More importantly, however,

COBE was able to detect quadrupole anisotropies in the CMB spectrum on the order

of ∆T/T ≈ 10−5 (Smoot et al. 1992). These fluctuations were evidence for primor-

dial density fluctuations, driven by quantum mechanics, in the dark matter power

spectrum (Bardeen, Steinhardt, and Turner 1983; Bond and Efstathiou 1987). As

the universe expanded, these fluctuations—called the baryon acoustic oscillations—

would grow, seeding the large-scale structure we see in our universe today. Thus, this

discovery was proof that our understanding of the Big Bang and growth of structure

was on the right track. It earned Smoot and Mather the Noble Prize in Physics in

2006, with the committee citing the discovery as “the inception of cosmology as a

precision science” (Nobel Media AB 2006).

The discovery of CMB anisotropies sparked a new front of experiments. One of
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these experiments is the Wilkinson Microwave Anisotropy Probe (WMAP), launched

in 2001 (Spergel et al. 2003). This satellite was critical in the development of our

modern concordance cosmology, called ΛCDM. It was 45 times more sensitive than

COBE and its 13′ resolution drastically improved our measurements of the CMB

anisotropies. The most recent space-based CMB experiment was Planck, which was

launched in 2009. Planck’s sensitivity was 10 times greater than WMAP and its angu-

lar resolution was 5′. It has provided some of the strongest experimental constraints

on the nature of our universe in the history of cosmology, improving our estimate of

the temperature of the CMB to 2.7255± 0.0006 K (Ade et al. 2013).

The discovery CMB also offered challenges to cosmologists. Particularly troubling

were the so-called horizon problem and flatness problem. The horizon problem asked:

how could the CMB be in thermal equilibrium if different parts of the sky were only

now coming into causal contact? The flatness problem was slightly more subtle:

Friedmann’s equations would suggest that a universe with a curved geometry would

quickly grow more curved. We therefore have a fine-tuning problem: in order for the

observable universe to be flat today—as suggested by CMB experiments—it must

have been flat to within one part in 10−60 in the past.

The solution to both problems was a period of phenomenally rapid expansion in

the early universe, called inflation, originally proposed by Guth (1981). The inflation-

ary era was driven by a particle, called the inflaton, which had a slow-rolling potential

(Linde 1982); that is, the inflaton scalar field moves only very slowly along its nearly

flat potential. This would cause an exponential expansion of the universe, driving

the universe rapidly toward a flat geometry, and removing causal contact between

regions previously in thermal equilibrium. The inflaton would then decay into known

Standard Model particles, ending the inflationary era.
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1.2.4 Dark Energy

The twentieth century witnessed the most incredible progress ever made in cosmol-

ogy, but there was still one more secret to be discovered. Already there were hints

of something more to the structure of the universe. Until the end of the 1990s,

the common belief was that our universe was dominated by matter. Moreover, our

universe appeared to have a flat geometry. According to Friedmann’s equations, a

matter-dominated, flat universe would be 9.3 Gyr old; however, globular clusters—

among the oldest objects in the universe—had already been discovered whose ages

were estimated at 12 Gyr (Hansen et al. 2002). A new understanding of, or discovery

in, cosmology was necessary to explain this contradiction.

A simple, yet elegant, mechanism for testing our understanding of cosmology was

already understood. Since light travels at a finite speed, observing more distant as-

tronomical objects is equivalently viewing the universe at an earlier epoch: telescopes

are time machines. Probing the physical properties of galaxies at different distances

from us is therefore tantamount to examining the evolution of the universe. Since, as

Friedmann discovered, the dynamical properties of the universe are intimately tied

to its contents, we can begin to understand the constitution and fate of the universe

by measuring distances.

As it turns out, however, and as we will discuss in greater detail later, estimating

the distances to astronomical objects is an extremely difficult and error-fraught field.

Distances have traditionally been extrapolated using the cosmic distance ladder, a

method of successive estimation techniques, each “rung” of which is calibrated using

previous methods on the ladder. Systematic errors are therefore propagated through

each rung of ladder, muddling the strength of the cosmological signal.

There was, however, an alternative method. It had been known since the 1960s

that type Ia supernovae (SNe Ia) were approximately standard candles; that is, SNe
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Ia all explode with the same intrinsic luminosity (Kowal 1968; Pskovskii 1967). This

implied that measurements of SNe Ia could yield accurate distance measurements,

constraining cosmological parameters and perhaps granting insight into the contents

and fate of the universe. Moreover, relative distances could be measured without ever

needing to determine the absolute luminosity of SNe Ia, reducing errors and nuisance

parameters. On the other hand, supernovae were notoriously hard to discover at the

time: there are, on average, only twenty SNe per millennium in our Galaxy, only four

of which are SNe Ia (Cappellaro et al. 1997; Türler 2006). Widening the search to

extragalactic SNe requires imaging the same area of the sky every few days to detect

the birth of these rare and elusive SNe.

Despite the challenges, two audacious, independent teams dared to attempt to

measure SNe Ia en masse: the High-Z Supernovae Search Team and the Supernovae

Cosmology Project. By careful scheduling of telescope time with follow-up imaging

and spectroscopy, each team was able to collate about forty SNe Ia. The results

were startling: the more distant SNe appeared dimmer than one would expect in

a matter-dominated universe (S. Perlmutter 2003; S. Perlmutter et al. 1999; Riess

et al. 1998). This could be explained if—contrary to popular belief at the time—

the universe were not, in fact, expanding and decelerating (due to the attracting

force of gravity). Rather, the universe’s expansion would have decelerated in the

past, but started accelerating in its most recent epoch. This accelerating expansion

would need to be driven by some form of energy with a negative equation of state

(a negative pressure), which Michael Turner nicknamed dark energy (D. Huterer and

Turner 1999).

To add to the surprising discovery of dark energy, the analyses of the two super-

novae teams supported a cosmology where dark energy composed an astonishing 75%

of the total mass-energy density of the universe. The simplest explanation for dark

energy would be Einstein’s cosmological constant. Physically, this would imbue space
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itself with a non-zero vacuum energy density, and so as the universe expanded from

the Big Bang, more space would appear, bringing with it more dark energy. The

dark energy, in turn, would continue to drive expansion. Other viable explanations

exist, however, such as quintessence (Zlatev, Wang, and Steinhardt 1999), though

most experimental constraints suggest the more mundane explanation.

1.3 Concordance Cosmology

Cosmologists have not had a lot of time to consider the new developments outlined in

the previous section, but the result of these deliberations is a concordance cosmology,

that is, the generally accepted understanding of the universe’s content and past evo-

lution. In order to give perspective to the discoveries of the past century, I present

a concise timeline of the known history of the universe. As in most discussions of

cosmology, there are two common alternative representations of time. The first is

called redshift, denoted z, and defined as the fractional shift in the wavelength of

light caused by cosmic expansion:

z =
∆λ

λ
=
λobserved − λemitted

λemitted

(1.7)

The other representation is the scale factor, a(t), which measures the relative size of

the universe, normalized to be 1 today.

1.3.1 Big Bang and Inflation

Approximately 13.7 Gyr ago, the universe and space-time as we know it were in a hot,

dense state. All particles were in thermal equilibrium and their density fields were

almost perfectly uniform. In these first instants of the universe’s existence, inflation

occurred, driving a tremendous, exponential expansion of the universe. At the end

of inflation (which lasted only microseconds), the expansion of the universe began to
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decelerate under the action of gravity.

1.3.2 Big Bang Nucleosynthesis

During the first three minutes after the inflation, the universe continued to expand

and cool. This cooling allowed the formation of ionized nuclei (in addition to hy-

drogen). The nuclear cascade of reactions was already understood by Alpher and

his student Gamow in the 1940s (Alpher, Bethe, and Gamow 1948). Nucleosynthesis

predicts the relative abundance of chemical elements with surprising precision1, with

1
1H constituting 75% of the mass abundance of baryonic matter; 4

2He constituting

most of the remaining 25%; 2
1H (deuterium) contributing 0.01%; and trace amounts

of lithium and beryllium.

1.3.3 Baryon Acoustic Oscillations

As we stated before, at this point in its existence the universe was remarkably smooth

and uniform. Quantum mechanical fluctuations, however, upset this uniformity, pro-

ducing small over- and under-densities in the matter power spectrum (Bond and

Efstathiou 1984; D. J. Eisenstein and W. Hu 1998; Weinberg et al. 2012). The evo-

lution of these density fluctuations depended strongly on the physical interactions of

each component in the perturbation.

Initially, the dark matter remains in the initial perturbation, since it will only

interact gravitationally and has little intrinsic kinetic energy. On the hand, neutrinos,

begin too hot and fast to be gravitationally bound to the perturbation, begin free-

streaming away. The baryonic gas is hot enough to be completely ionized, and thus

is strongly coupled to the photons. The resulting baryon-photon fluid will produce

a large overpressure and, in an attempt to equalize, begin expanding as a spherical

1Big bang nucleosynthesis only produces these lightest elements. All heavier elements in the
universe are created by stars.
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sound wave. Finally, since the perturbation itself is dense, it will slowly begin to

grow as additional dark matter falls into the perturbation under the influence of the

gravitational instability. See Figure 1.4a.

As the baryon-photon fluid contains to expand, the size of the density perturbation

will grow, widening the density profile of the dark matter (Figure 1.4b). As the fluid

expands, it cools, and eventually the baryons can capture electrons. This is the era

of recombination, approximately 240, 000 years after the Big Bang, at a redshift of

z ≈ 1370. Once the baryons become neutral, the photons free stream away (the last

scattering), producing the cosmic microwave background, which occurs at z ≈ 1100,

approximately 350, 000 years after the Big Bang (Figure 1.4c).

Meanwhile, without the baryon-photon fluid providing an overpressure, the sound

wave has stalled, leaving a shell of baryons at a characteristic distance from the

initial density perturbation (see Figure 1.4d). With time, the interaction between the

baryons and dark matter smooths out this discrepancy; however, the characteristic

baryonic and dark matter overdensities are never complete erased (Figures 1.4e and

1.4f).

These overdensities amplify the growth of large-scale structure, and continue to

be visible today in the form of a peak in the galaxy two-point correlation function,

the excess probability of two galaxies clustering as a function of separation. This

peak (Figure 1.5a) is called the baryon acoustic peak, and when viewed in Fourier

space (i.e., in the matter power spectrum) are seen as a series of peaks called the

baryon acoustic oscillations (BAO; see Figure 1.5b). By measuring the scale of this

characteristic separation, constraints can be placed on the expansion history of the

universe and, therefore, on the equation-of-state of dark energy. These perturbations

have been observed both in CMB (by the experiments described earlier) as well as in

the the statistical distribution of galaxies on the sky (D. J. Eisenstein, Zehavi, et al.

2005), and BAO measurements continue to be an active area of cosmology.
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(a) z = 6824 (b) z = 1440

(c) z = 848 (d) z = 478

(e) z = 79 (f) z = 10

Figure 1.4: Evolution of the baryon acoustic oscillations (BAO), from early times
(high redshift) to more recent times (low redshift). Plots taken from D. J. Eisenstein,
Seo, and M. White 2007.
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(a) Two-point correlation function (b) Matter power spectrum

Figure 1.5: The BAO peaks manifest themselves as a peak in the galaxy two-point
correlation function as well as a series of peaks in the matter power spectrum. Figure
1.5a is taken from D. J. Eisenstein, Zehavi, et al. 2005, and Figure 1.5b is taken from
Percival et al. 2007.

1.3.4 The Dark Ages

At this point in its history, the universe entered a “dark age” where it had little visible

structure, since stars and galaxies had not formed en masse. Inexorably, gravity drove

the gravitational collapse of hydrogen, and approximately 100–200 million years after

the Big Bang, the universe produced its first stars (Bromm and Larson 2004; Bromm

and Loeb 2006) and the dark ages ended.

1.3.5 A Dark Energy Dominated Universe

After the dark ages, the universe continued to be in a matter-dominated state, and

density perturbations grew linearly with the scale factor. The large-scale structure

formed and evolved, producing the exquisite, complex cosmic web (Bond, Kofman,

and Pogosyan 1996) that we observe today (see Figure 1.6).

Meanwhile, dark energy’s contribution to the mass-energy density of the universe

is increasing, seemingly due to the expansion of the universe. Since dark energy
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Figure 1.6: The cosmic web, tracing dark matter from an N-body simulation. The
cosmic web is the result of structure growth and evolution over billions of years, driven
by gravitational instabilities. Image taken from Springel 2004.

acts to drive an accelerating expansion, the universe eventually reached an inflection

point where it switched from decelerating (under gravity’s influence) to accelerating

(due to dark energy). This matter-dark energy equality occurred at z ≈ 0.44, five

billion years ago. We find ourselves, on cosmic scales, very close to the matter-

dark energy equality, a curious state called the “coincidence problem” (Carroll 2001).

Some attempt to answer this question by positing the anthropic principle: if the

universe were any other way, we would not be here to observe it. Regardless of one’s

philosophical bent, however, it appears that dark energy will continue to be an ever-

increasing component in the universe. Once it dominates the mass-energy of universe,

the growth of structure will shut off entirely.
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Chapter II

Cosmic Observables

All of science crucially hinges on the scientist’s ability to measure and observe the

environment. The concordance cosmology describes a complex universe; how can we

best quantify our observations? This chapter introduces redshift as one of the fun-

damental cosmic observables and highlights its importance in modern astrophysical

experiments.

2.1 Theoretical Underpinnings

In order to understand our universe, we need to probe its dynamic properties. As

we discussed in the previous chapter, one of the most elegant ways for doing this is

to realize that, since light travels a finite speed, observing more distant objects is

tantamount to probing physics at earlier epochs. Thus, regardless of the details of

exactly which phenomena one may want to probe (e.g., clusters, lensing, supernovae),

the dynamic properties of the universe can be extracted by measuring how a physical

quantity varies with distance. Then the only missing step is the conversion from

distance back into time.
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2.1.1 Einstein’s Field Equations

In order to bridge this gap, we start by turning to Einstein’s field equations for general

relativity:

Gµν + Λgµν =
8πG

c4
Tµν (2.1)

The first term we address in this equation is the metric tensor. When we look into

the night sky, we see that we live in an extraordinarily uniform universe; moreover,

there is no known asymmetry which should convince us otherwise. The fact that

the universe—on its largest scales—is both homogeneous and isotropic is often called

the cosmological principle. As a consequence, the universe must have some sort of

spherical geometry (the only geometry which preserves such a symmetry), and so the

metric tensor (in Cartesian coordinates) must be of the form1:

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.2)

with coordinates (t, x, y, z). This corresponds to the following four-dimensional space-

time interval (t, r, θ, φ) in spherical coordinates2:

ds2 = −c2dt2 + a2(t)
[
dr2 + Sκ(r)dΩ2

]
(2.3)

where

dΩ2 = dθ2 + sin2 θdφ2 (2.4)

is the differential solid angle contribution,

1Strictly speaking, an overall factor of −1 can be applied to the metric tensor without changing
any of the physics. The choice is merely a matter of convention.

2Following the convention of physicists, φ is the azimuthal angle (angle around ẑ) and θ is the
polar angle / co-latitude (angle from ẑ).
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Sκ(r) =


R sin(r/R) κ = +1 (positive curvature; spherical, closed universe)

r κ = 0 (zero curvature; flat universe)
R sinh(r/R) κ = −1 (negative curvature; hyperbolic, open universe)

(2.5)

is the circumferential radial coordinate3, R is the radius of curvature of the universe

(as measured today), and the scale factor a(t) is the ratio of the size of the universe

at time t to the size of the universe now (t = t0).

Note that some authors choose to write the space-time interval in terms of the

circumferential radial coordinate x ≡ Sκ(r). In this case, we have:

dx =


cos(r/R) κ = +1

1 κ = 0
cosh(r/R) κ = −1

 dr (2.6)

and

r =


R sin−1(x/R) κ = +1

x κ = 0
R sinh−1(x/R) κ = −1

 (2.7)

Therefore:

dx2 =


cos2

[
sin−1(x/R)

]
κ = +1

1 κ = 0
cosh2

[
sinh−1(x/R)

]
κ = −1

 dr2 =


1− (x/R)2 κ = +1

1 κ = 0
1 + (x/R)2 κ = −1

 dr2

(2.8)

This allows us to write:

dr2 =
dx2

1− κx2/R2
(2.9)

Thus, the FRW metric can be written as:

3r is called the geodesic radial coordinate. This distinction becomes necessary when generalizing
spherical coordinates into curved space, since the coordinate r corresponding to intuitive radial dis-
tance from the origin is not the same radius which would yield our intuitive measure of circumference
(Sκ(r)).
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ds2 = −c2dt2 + a2(t)

[
dx2

1− κx2/R2
+ x2dΩ2

]
(2.10)

Very often, often authors will define:

k = κ/R2 (2.11)

and write the metric as:

ds2 = −c2dt2 + a2(t)

[
dx2

1− kx2
+ x2dΩ2

]
(2.12)

Moreover, at this point some authors will choose to write r instead of x, so the reader

must be aware that such an r is what we are calling x = Sκ(r). Again, both are

valid radial coordinates, but they have very different physical meanings. Still other

authors will use the scaled circumferential radius ρ = x/R2 and explicitly use R2(t)

outside the brackets instead of a2(t). Caveat scientificus.

It is also worth clarifying some of our assumptions. First is the cosmological

principle: after all, it is obvious that, particularly on small scales, the universe is

neither homogeneous nor isotropic. However, on scales greater than approximately

100 Mpc, space-time is fairly uniform, as evidenced by experiments such as CMB

measurements.

Now that we have a handle on the metric tensor, we need to return our attention

to Einstein’s equations. A perfect fluid—one without shear stresses, viscosity, or heat

conduction—can be fully described using only its energy density4 ρ and isotropic

pressure p. If we model the large-scale universe as a perfect fluid, then the stress-

energy tensor (in Cartesian coordinates) is:

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (2.13)

4The mass density would simply be ρc2.
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What of the remaining terms in the Einstein equation? The Ricci tensor can be

written in terms of the Christoffel symbols Γσµν (the affine connection of metric):

Rµν = Rγ
µγν = ∂γΓ

γ
µν − ∂νΓγµγ + ΓγσγΓ

σ
µν − ΓγσνΓ

σ
µγ (2.14)

where the differential geometer may identify Rµ
ναβ as the Riemann tensor. Computing

the various components of the Ricci tensor is an exercise best for the reader, as

it leaves one with as distinct and uncomfortable a memory as Hercules must have

experienced for days after cleansing the Augean stables. Meanwhile, the Ricci scalar

is merely the trace of the Ricci tensor—R = gµνRµν—and is a stroll through the park

in comparison.

Suffice it to say that once these various quantities are fed back into the Einstein

equation and the metaphorical crank is turned, two independent equations drop out:

(
ȧ

a

)2

=
8πG

3c2
ρ+

1

3
Λc2 − c2κ

R2a2
(2.15)

ä

a
= −4πG

3c2
(ρ+ 3p) +

1

3
Λc2 (2.16)

where the over-dot (ȧ, ä) indicates a time derivative, R is the radius of curvature of

space (as measured today), and ρ is the energy density of the universe contained in

matter and radiation.

These are the two Friedmann equations5, and they govern the dynamics of the

universe on its largest scales. Immediately we see what Friedmann must have seen

back in the 1920s: the evolution of the universe is intimately related to what is in it.

In addition, we can link this back to Lemâıtre and Hubble’s work by identifying the

Hubble parameter as:

H =
ȧ

a
(2.17)

5The first equation is often referred to simply as the Friedmann equation, and the second equation
is sometimes called the Friedmann acceleration equation.
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The Hubble constant is then H0 = H(t = t0), which is simply the Hubble parameter

measured today, when the universe’s age is t0.

It is important to note that, although we have dragged the cosmological constant

Λ along through these equations, we are not yet certain if dark energy is, in fact,

caused by Λ. If we eventually learn that dark energy has dynamical properties not

captured by a vacuum energy, we may still be able to remove Λ and subsume dark

energy’s contribution to the energy density of the universe into ρ. However, for more

complicated theories, such as modified gravity (Milgrom 1983a), the solution may not

longer be so simple.

2.1.2 The Continuity Equation

In addition to the two Friedmann equations, there is a third, dependent equation

which can easily be derived. By differentiating Equation 2.15 and using it to eliminate

ä in Equation 2.16, one obtains the continuity equation:

ρ̇ = −3H(ρ+ p) (2.18)

We now introduce an equation-of-state which relates pressure to density via an

equation-of-state parameter w, which may be a function of time:

p = wρ (2.19)

To make this more convenient, we can change variables:

d

dt
−→ H

d

d ln a
(2.20)

Then, by combining Equations 2.18 and 2.19, we have:

d ln ρ

d ln a
= −3(1 + w) (2.21)

The straightforward solution is:
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ρ = ρ0a
−3(1+w) (2.22)

where ρ0 is the energy density measured today. This equation gives us the evolution

of a component’s energy density given its equation-of-state parameter, which we will

use in the next section.

2.1.3 Components of the Universe

We want to utilize the continuity equation in order to manipulate the Friedmann

equations into a more usable form. To do this, we begin by breaking the energy

density ρ in Equation 2.15 into its matter and radiation contributions:

H2 =
8πG

3c2
(ρM + ρR) +

1

3
Λc2 − c2κ

R2a2
(2.23)

Then, if we choose to treat the dark energy contribution and curvature terms merely

as additional energy densities, we have:

H2 =
8πG

3c2
[ρM + ρR + ρDE − ρK ] ≡ 8πG

3c2
[ρtotal − ρK ] (2.24)

where the energy density contributed by dark energy is6:

ρDE =
c4Λ

8πG
(2.25)

and the equivalent energy density that we can consider curvature contributing is:

ρK =
3c4κ

8πGR2a2
(2.26)

Clearly, there must exist an energy density which would require a flat geometry for

universe (that is, an energy density which corresponds to κ = 0). This density is

called the critical density, and can be read off the above equations:

6As we mentioned before, dark energy may not be compatible with a cosmological constant. If
this is the case, the previous arguments still hold: we can express the overall energy density explicitly
in terms of its constituent contributions, including a dark energy component ρDE .
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ρcrit =
3c2H2

8πG
(2.27)

Modern cosmology most frequently quotes densities in terms if the critical density,

since it defines a convenient scale for comparing densities and provides a unitless

quantity to work with. For example, the density parameter Ω(t) is the ratio of the

actual density of the universe to its critical density:

Ω(t) =
ρtotal(t)

ρcrit(t)
(2.28)

Similarly, density parameters can be defined for any component (i.e., matter, radia-

tion, dark energy, or curvature) in the universe:

Ωi(t) =
ρi(t)

ρcrit(t)
(2.29)

It is common to write these Ωi without the explicit functional format when referring

to quantities as measured today; thus, ΩM ≡ ΩM(t = t0), where t0 is the age of the

universe.

We can use the density parameters to quickly learn about the curvature of space-

time. First, we see that we can rewrite Equation 2.24 as:

ρcrit = ρtotal − ρK (2.30)

Therefore, we can use Equations 2.28 and 2.29 to write a remarkably simple version

of the Friedmann equation:

1 = Ω(t)− ΩK(t) = [ΩM(t) + ΩR(t) + ΩDE(t)]− ΩK(t) (2.31)

Using the definition of ΩK and evaluating the previous equation at t = t0 we can

therefore write:

1− Ω = − c2κ

H2
0R

2
(2.32)
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This equation allows us to calculate the geometry of space time (i.e., the sign of κ)

using only the energy density of space and Hubble’s constant.

However, since we are more interested in the dynamic properties of the universe,

we return to Equation 2.22 and discuss the time-evolution of each component. Each

component may have a different equation-of-state, and so we address each in turn.

• Matter. The matter density (both baryonic and dark) will scale in the intuitive

sense: ρM(t) ∝ a−3; that is, its density is proportional to the volume of space

it is in. The equation-of-state parameter for matter must therefore be w = 0,

corresponding to a pressureless gas.

• Radiation. Like matter, radiation density will also scale with volume. How-

ever, unlike matter, the wavelengths of light will stretch (redshift) as the scale

factor grows. Since the wavelength of light is inversely proportional to pho-

ton energy, redshifting introduces an additional factor in the radiation scaling:

ρR(t) ∝ a−4. This agrees with the equation-of-state parameter derived from

classical statistical mechanics: w = −1/3 (Reif 1965).

• Dark Energy. If dark energy is a cosmological constant, then it does not

evolve with time and w = −1; that is, a cosmological constant dark energy has

a negative pressure, causing space to expand. However, in order to parameter-

ize our ignorance, we usually leave the density-scaling of dark energy in terms

of its equation-of-state parameter: ρDE ∝ a−3(1+w). The equation-of-state pa-

rameter, in turn, has been parameterized in several ways. The most common

parameterization, proposed by Linder 2003, expands w as a function of a(t) to

first order:

w(a) = w0 + wa(1− a) (2.33)

In this parameterization, dark energy is described by three parameters: (ΩDE, w0, wa).
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• Curvature. The curvature contribution is only parameterized in terms of a

density for convenience, and there is no physical significance to be attached to

its evolution. Rather, we can just read off its evolution directly from Equation

2.27: ρK ∝ a−2.

We can then combine these equations with Equation 2.24:

H2 =
8πG

3c2

[
ρM,0a

−3 + ρR,0a
−4 + ρDE,0a

−3(1+w) − ρK,0a−2
]

(2.34)

Pulling out a factor of ρcrit,0 from inside the brackets and using Equation 2.29 allows

us to express our simplified Friedmann equation:

H2 = H2
0

[
ΩMa

−3 + ΩRa
−4 + ΩDEa

−3(1+w) − ΩKa
−2
]

(2.35)

In fact, by realizing that the expansion of space-time will cause a fractional shift in

the wavelength of light (λobs = (1 + z)λemit), we can relate the scale factor a(t) to the

redshift z of a distance object:

(1 + z) = a−1 (2.36)

This allows us to rewrite the Friedmann equation in terms of redshift, which is the

directly observable quantity:

H2 = H2
0

[
ΩM(1 + z)3 + ΩR(1 + z)4 + ΩDE(1 + z)3(1+w) − ΩK(1 + z)2

]
(2.37)

For simplicity, an auxiliary function is often defined

E(z) =
√

ΩM(1 + z)3 + ΩR(1 + z)4 + ΩDE(1 + z)3(1+w) − ΩK(1 + z)2 (2.38)

which then lets us express the Friedmann equation succinctly as:

H = H0E(z) (2.39)
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This equation is easily one of the most important equations in cosmology. Given a set

of cosmological parameters (H0,ΩM ,ΩR,ΩDE,ΩK), we can evaluate the Friedmann

equation at any redshift and begin to probe the expansion history of the universe

and calculate many physical quantities (e.g., distance, luminosity). Conversely, we

can use the Friedmann equation to constrain cosmological parameters if we have

measurements of cosmological quantities.

Experimental evidence, however, can simply the equation even further. All of our

modern cosmological measurements suggest that the dark energy equation-of-state

parameter is −1, in agreement with a cosmological constant. We also have strong

evidence for a flat universe, so ΩK = 0. And, as mentioned in Chapter 1, computer

simulations suggest than dark matter is “cold,” that is, non-relativistic at the time

of the matter-radiation equality, and probably consists of massive, weakly interactive

particles (M. Davis et al. 1992; S. D. M. White et al. 1993). This combined theory

is called the ΛCDM model of cosmology, and is the fiducial model used in cosmolog-

ical theory. Such a model reduces the number of free parameters in the Friedmann

equation from five to three. We mention such a simplification for completeness and,

where appropriate, will use it, but our theoretical discussion will continue to use the

more general parameter set.

When discussing dark energy constraints, a common metric for evaluating the

strength of experiment in constraining cosmology is the figure of merit (FoM). Defined

by the Dark Energy Task Force (Kolb et al. 2006), the figure of merit is equal to the

reciprocal of the area of the 95% confidence interval ellipse in the (w0, wa) plane. For

a survey like the Dark Energy Survey (T. Abbott et al. 2005), which will probe the

dark energy equation-of-state in several ways, the forecasted confidence intervals are

show in Figure 2.1. We will discuss this in more detail presently.

In all of this discussion, perhaps most insightful is the fact that the Friedmann

equation hinges on one cardinal observable: redshift. Redshift is truly one of the most
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Figure 2.1: 68% confidence intervals forecasted for the Dark Energy Survey (DES)
in the (w0, wa) plane, marginalizing over other parameters. The DES will probe
cosmology on multiple fronts: BAO (black), clusters (magenta), weak lensing (blue),
and SNe (green). Combined (red filled), these provide strong constraints on the dark
energy equation-of-state. Figure taken from The Dark Energy Survey 2007.
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fundamental observables in cosmology. Nearly every modern experiment requires a

redshift or redshift estimate to fully constrain cosmological parameters. Generally,

this is because the distances between astrophysical objects, or the ability to sort mea-

surements into distance bins (tomography), is crucial to a method’s ability to extract

cosmological signals. For example, type Ia supernovae, being standard candles, re-

quire accurate line-of-sight distances to the observer in order to infer the evolution of

the intervening space-time (S. Perlmutter et al. 1999; Riess et al. 1998). As another

example, weak gravitational lensing considers the redistribution of a source galaxy’s

surface brightness caused by the presence of a massive gravitational lens, and the

strength of the lensing signal depends on the distances between the lens and the

source and between the observer and the source (Hoekstra and Jain 2008).

Therefore, we briefly describe the theoretical methodology for measuring dis-

tances, and then, since so many techniques rely on accurate determinations of redshift

in order to constrain cosmology, we turn our attention to measuring and estimating

redshift.

2.2 Distance

There is a subtlety in computing distances in cosmology: since the universe may not

be flat, our intuitive notions of distance measure do not always apply. In fact, for

an FRW metric there are several different notions of distance. The correct distance

measure to use depends on the quantity being measured. The discussion follows the

exposition in D. W. Hogg 2000 and D. Huterer 2010.

2.2.1 Proper Distance

The proper distance is the physical distance between an observer and a distance object

along the line-of-sight, say at radius r. Consider a light ray emitted from the source.
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We need to integrate the metric (Equation 2.3) along the path of the ray, from source

to observer. Since light moves along a null geodesic, ds2 = 0, and since we are

integrating along the line-of-sight, dΩ2 = 0. Thus, the metric can be rearranged as:

c dt = a dr (2.40)

We need to integrate this equation along the line-of-sight, from some time temit until

now, when tobs = t0.

r∫
0

dr = c

t0∫
temit

dt

a(t)
(2.41)

We can change variables in the right-hand-side integral from t to a using:

t0∫
temit

dt

a(t)
=

t0∫
temit

dt

a(t)

da

da
=

1∫
aemit

da

ȧa
=

1∫
aemit

da

H(a)a2
(2.42)

And now we can switch from a to z via:

a−1 = 1 + z −→ −a−2da = dz (2.43)

Therefore:

r = c

z∫
0

dz

H(z)
(2.44)

Identifying r as the proper distance Dprop and using the Friedmann equation, we have:

Dprop =
c

H0

z∫
0

dz

E(z)
(2.45)

Since the quantity c/H0 appears frequently and has units of distance, it is sometimes

called the Hubble distance.
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2.2.2 Comoving Distance

The proper distance between two objects which are locked in the Hubble flow (i.e.,

having no peculiar velocity) changes with time as the universe expands. It is some-

times more convenient to imagine a cosmic ruler expanding at the same rate as the

universe. This would mean that two objects locked in the Hubble flow would be

measured as having a constant separation. This distance is called comoving distance

and is defined to be equal to proper distance evaluated today. Thus:

Dprop(t) = a(t) ·Dcomoving (2.46)

2.2.3 Angular Diameter Distance

In the previous example, we considered the line-of-sight separation between a source

and an observer. If, however, we want to know the distance between two objects at

the same redshift but separated by an angle ∆θ on the sky, we need to change our

approach.

Now, in Euclidean geometry, we have our familiar relation between the radius

r and arc length s of an arc which subtends an angle ∆θ: s = r∆θ. However,

when working in the generalized spherical coordinates of the FRW metric, this no

longer holds in its trivial form. The geometric reason is simple: we are using the

wrong radius. We now have at our disposal two radii to choose from: a geodesic

radial coordinate r and a circumferential radial coordinate Sκ(r). When performing

calculations along a line-of-sight, we must use the geodesic radius; however, when

performing calculations along a circumference (or the surface of a sphere, as the case

may be), we must use the circumferential radius in our calculations.

Thus, we define the transverse comoving distance D⊥ as the circumferential radius

at this redshift in comoving coordinates. So pulling from Equation 2.5 and inserting
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the geodesic radius r = Dcomoving gives us:

D⊥ =


c
H0

1√
ΩK

sin
(
Dcomoving · H0

c

√
ΩK

)
κ = +1

Dcomoving κ = 0
c
H0

1√
|ΩK |

sinh(Dcomoving · H0

c

√
|ΩK |) κ = −1

(2.47)

where we have substituted in ΩK in favor of R.

This is the comoving radius we need to use when calculating arc lengths. So the

comoving distance between two objects at the same redshift separated by a angle ∆θ

is D⊥ ·∆θ. The physical distance is therefore: a(t) ·D⊥ ·∆θ. Comparing this equation

for physical distance to the intuitive Euclidean version r ·∆θ, we define the angular

diameter distance:

DA = a(t) ·D⊥ (2.48)

If you have two objects at the same redshift separated by an angle ∆θ on the sky,

DA ·∆θ is the physical distance between them.

2.2.4 Luminosity Distance

The luminosity distance DL is the distance one would infer (in a Euclidean geometry)

by measuring a bolometric7 flux F emitted by a source with bolometric luminosity

L. The relationship between F and L depends on the area of the sphere over which

L is being distributed:

F =
L

A
(2.49)

Now, the surface area A of a sphere with centered on the observer is A = 4πD2
⊥,

where the “radius” we are using is again the transverse comoving radius, since we are

measuring perpendicular to the line-of-sight, and not along it. The flux we measure,

however, will be reduced by two factors of (1 + z): one factor due to time dilation

7A bolometric quantity is one integrated over all frequencies, as opposed to measured through a
bandpass filter.
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and a second factor because the photon energy will be redshifted to lower energy.

Therefore, our equation relating F to L is:

F =
L

4πD2
⊥(1 + z)2

(2.50)

and we can therefore identify the luminosity distance as:

DL = D⊥(1 + z) (2.51)

It is precisely this distance—and its dependence on redshift—that was used to discover

dark energy using SNe Ia.

Equations 2.47, 2.48, and 2.51 give us the following relationship:

DL = (1 + z)D⊥ = (1 + z)2DA (2.52)

If one could measure any two of these distances at a given redshift, then any dis-

crepancies in this relationship would imply a violation of the homogeneous, isotropic

universe described by the FRW metric.

2.3 Redshift

Redshift is a fundamental observable in cosmology. It is, in a sense, our time axis,

on which—via distance measurements—we can probe the expansion history of the

universe and constrain cosmology. With this in mind, we now turn toward the problem

of actually measuring or estimating redshift. Our focus will be on galaxies, as stars

are too dim to be seen at the cosmic distances that we are interested in.

2.3.1 Spectroscopic Redshifts

Fundamentally, redshift is observed as a shift in the wavelength of light as in prop-

agates through an expanding space-time. We can therefore determine an object’s
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(a) Typical E/S0 Galaxy near z = 0 (b) Typical Starburst Galaxy near z = 0

Figure 2.2: Typical galaxy spectra, as measured across optical wavelengths. The
various absorption and emission lines are apparent as local crests (or spikes) and
troughs in the otherwise relatively smooth continuum.

redshift by comparing the observed spectral lines to known spectral features, measur-

ing how far the spectral lines must have shifted. This requires an understanding of the

spectral energy distribution (SED) of the distant object, which can be obtained either

by understanding the elemental composition of stars, galaxies, etc., or by comparing

the SEDs of distant objects to the SEDs of nearby ones.

To drive the point home, we show the spectrum of a typical E/S0 galaxy in Figure

2.2a at z = 0.003. Approximately thirty spectral features can easily be detected from

the local crests and troughs in the otherwise smooth background. One of the most

important spectral features is called the 4000Å break (sometimes called the Ca II

break or the HK break). It is the distinct jump in the SED which occurs around

4000Å (in the galaxy’s rest frame). Easily identified by eye, its strength depends on

the age of the galaxy’s stellar population, and tends to be more evident for older,

redder galaxies. Of course, galaxies come in many different types. A younger, star-

forming galaxy tends to have a stellar population with strong emission lines, as seen

in Figure 2.2b. Features such as the 4000Å break become less obvious, and in some

cases (e.g., QSOs) are not exhibited at all.

Regardless of its type, the most straightforward experimental method for charac-

38



terizing a galaxy’s SED is to use a spectrograph. Light from the distant object passes

through the spectrograph and is spread into, perhaps, hundreds or thousands of in-

dependent resolution elements. With sufficiently long exposures, good signal-to-noise

spectra can be obtained and used to measure the redshift. Typical spectroscopic sur-

veys, such as the Sloan Digital Sky Survey (SDSS; York et al. 2000), obtain redshift

measurements with fractional errors ∆z ≈ 0.0002. Such measurements are sufficiently

accurate for virtually any cosmological application.

To date, only approximately 3–4 million redshifts have been spectroscopically

measured for galaxies. By far, most of these redshifts have been the product of

SDSS and the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013).

The limiting factors in obtaining spectroscopic redshifts is time and instrument lim-

itations. Spreading light into its constituent wavelengths is necessary for measuring

high-resolution spectra; however, this also reduces the signal-to-noise at any resolution

element, demanding long exposures for a sufficiently accurate redshift determination.

Moreover, each target must be assigned a fiber (to route light to the detector) and

there are a limited number of fibers. Each fiber must be manually attached to a plug-

plate, which is unique and must be custom drilled for each field to be measured8. As

a result, there simply aren’t enough spectrographs in existence to obtain redshifts at

a faster rate.

2.3.2 Photometric Redshifts

The limitation imposed by the relatively meager size of spectroscopic catalogs—and

the time constraints in trying to quickly grow existing catalogs—is an obstacle to

many modern astrophysical measurements which require large statistics in order to

perform precision cosmology. Many such studies could benefit from using substan-

8The newest spectrographs, such as those planned to be employed by MS-DESI (Levi et al. 2013;
Tarlè 2013), may have robotically positioned fibers which, although still requiring time to position
(and limited by the number of fibers), will speed up the throughput of spectral measurements.
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tially larger catalogs, even if this implies a degradation of redshift quality. An alter-

native to using a spectrograph is to use broadband imaging in several bandpasses. By

taking several exposures through different broadband filters, a crude approximation

of the SED can be produced. If a map from these integrated SED measurements

to redshift can be determined, then redshifts can be produced en masse. A redshift

estimated in such a way using imaging is called a photometric redshift, or photo-z for

short.

This idea was first tried by Baum, who used nine bandpasses to approximate

the SEDs of six galaxies in the Virgo Cluster (Baum 1957; Baum 1962). The first

attempts to apply this technique to galaxy evolution and redshift estimation were

limited by two factors: a lack of adequately calibrated photometry, and a shortage of

training statistics for determining the magnitude-redshift mapping (Koo 1981; Koo

1985; Loh and Spillar 1986a; Loh and Spillar 1986b). It wasn’t until the advent of

massive, well-calibrated, multi-band imaging surveys such as SDSS that photometric

redshift estimation became a practical and powerful technique (Cunha et al. 2009;

Lima, Cunha, et al. 2008; Oyaizu et al. 2008).

Photometric redshift estimation has several distinct advantages over spectroscopic

redshift measurements. First, since incoming light passes through only a handful of

broadband filters, exposure times can be drastically reduced while still producing the

same signal-to-noise ratios. Second, no manual work is needed; plug-plates and fiber

position is unnecessary when nothing more than a photograph is being taken. Finally,

instead of being limited to the number of fibers in the spectrograph, photometry can

be measured for all objects in the field at once. In short, photometric redshifts

estimates can be obtained much more efficiently than spectroscopic redshifts; in fact,

next generation, large-scale surveys like the Dark Energy Survey (DES; T. Abbott et

al. 2005) and the Large Synoptic Survey Telescope (LSST; Ivezić et al. 2008) depend

implicitly on photometric redshifts for obtaining their science goals.
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In order for photo-zs to be useful in constraining cosmology, the impact that red-

shift errors have on the uncertainty in cosmological parameters must be understood.

Typically, photo-z accuracy is described by two parameters, averaged in redshift bins

across the redshift range of interest. The first is the scatter σz. The second is the bias

∆z = zphot − ztrue, which is the mean offset between the photo-z estimate zphot and

the true redshift ztrue. By themselves, the mere presence of these statistical errors in

photo-z estimates do not contribute significantly to the figure of merit error budget

since they can be calibrated out (Amara and Réfrégier 2007; D. Huterer, Kim, et al.

2004; Lima and W. Hu 2007), as shown in Figure 2.3. Rather, it is the uncertainties

in these parameters which must be understood and minimized in order to prevent

considerable degradation in the dark energy figure of merit (D. Huterer, Takada, et

al. 2006; Ma, W. Hu, and D. Huterer 2006).

Figure 2.4 shows how the uncertainty in the dark energy equation-of-state param-

eters (w0, wa) are affected by uncertainty in photo-z parameters. In the absence of

any prior on photo-z uncertainty, the parameters in a (ΩDE, w0) dark energy param-

eterization are degraded by a factor of 2; for the (ΩDE, w0, wa) parameterization, this

becomes a factor of 10. More practically, if we instead demand that our uncertainty in

the photo-z priors (∆z, σz) do not degrade our measurements of dark energy by more

than 50%—assuming a (ΩDE, w0, wa) parameterization—then we must constrain our

photo-z priors to within 0.003 (Ma, W. Hu, and D. Huterer 2006). The Dark En-

ergy Survey’s science requirements are slightly more stringent: σ(σz) < 0.003 and

σ(∆z) < 0.001(1 + z) in redshift bins of width 0.1 (J. Annis et al. 2010). As long as

photo-z estimation techniques can achieve these limits, modern imaging surveys will

be able to competitively constrain cosmological parameters.

The degradation of the figure of merit also depends on the number Nspec of spec-

troscopic observations available, since any photo-z algorithm implicitly must use

these measurements to determine a mapping from photometric observables to red-
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Figure 2.3: Impact of average photo-z error (written here as δz rather than σz) on
the dark energy figure of merit. The black points are for a hypothetical space-based
survey with median redshift z ≈ 1.43, and the red points are for a hypothetical
shallower survey with z ≈ 0.9. Since actual photo-z errors are typically σz < 0.1, we
see that we can expect < 10% degradation in the figure of merit from photo-z errors
alone. Figure taken from Amara and Réfrégier 2007.
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Figure 2.4: Increase in the uncertainty in the dark energy equation-of-state param-
eters w0 (left) and wa (right) as a function of uncertainty in photo-z parameters
(∆z, σz). Figure taken from Ma, W. Hu, and D. Huterer 2006.

shift. With more spectroscopic observations (e.g., SED measurements or spectro-

scopic redshifts), one expects a decrease in the uncertainty of the photo-z priors,

and a corresponding increase in the figure of merit. It has been shown (Amara and

Réfrégier 2007; Ma, W. Hu, and D. Huterer 2006) that approximately 104–105 spectra

are necessary in order to prevent the figure of merit from degrading by more than

50% (for other figure of merit degradations, refer to Figure 2.5). As we will see in

Chapter 4, modern imaging surveys like the SDSS and the DES have these spectra

available.

Many different methods have been explored in order to map from observable space

to redshift. Broadly, however, they fall into two categories of algorithms: empirical

methods and template-based methods. Template-based methods attempt to estimate

redshift by comparing photometric observables to a set of known or theoretical SED

templates. Although such an approach can work well, the imager must be well-

characterized at all wavelengths to be observed, and a set of template SEDs must be

available which span the full range of wavelength and spectral types for the galaxies
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Figure 2.5: The number of spectroscopic observations required to prevent photo-z
uncertainty from degrading the dark energy figure of merit by more than a given
fraction. For example, if a 100% degradation (d = 1) is tolerated, then the number
of training spectra can be reduced by a factor of 10. The solid and dashed lines
represent two different photo-z prior templates. Figure taken from Ma, W. Hu, and
D. Huterer 2006.

being observed. Moreover, the mis-match between the template SEDs and the pho-

tometric observables dominates uncertainty measurements, and so errors from such

techniques are often underestimated. Nonetheless, template-based methods are likely

the only viable option for computing photo-zs in the redshift regime where template

SEDs are scare or unavailable and instead need to be synthesized from theories of

galaxy evolution. This has made template-based methods ideal for studies in the

Hubble Deep Field and Ultra-deep Field (Coe et al. 2006). Examples of successful

template-based approaches are: BPZ (Beńıtez 2000), LePhare (Arnouts et al. 1999;

Ilbert et al. 2006), ZEBRA (Feldmann et al. 2006), HyperZ (Bolzonella, Miralles, and

Pelló 2000), EAZY (Brammer, van Dokkum, and Coppi 2008), the Bayesian template

fitting method of Bender et al. 2001, and a method using linear combinations of SEDs

with a Monte Carlo uncertainty estimate developed in Rudnick, Franx, et al. 2001

and Rudnick, Rix, et al. 2003.

However, many of the next-generation, large-sky surveys are challenged not by a
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lack of spectroscopic redshifts across the range of interest, but by the sheer number of

objects for which photo-zs are required. In many cases, the second category of photo-

z estimators—empirical methods—prove to be superb algorithms. These methods

use a training set of galaxy observables for galaxies with known redshifts, and then

empirically determine the transformation from this multidimensional space to red-

shift. Such an undertaking is a classic problem in machine learning (Mitchell 1997).

The first attempts at empirical photo-z estimation used polynomial fitting to inter-

polate a smooth transformation between magnitude and redshift (Connolly, Csabai,

et al. 1995; Connolly, Szalay, et al. 1997). Although easy to conceptualize, such sim-

plified models can only perform moderately well in an artificially small parameter

space of observables. In order to harness greater flexibility and robust estimates,

more complex mappings are required. Several techniques have subsequently arisen,

such as artificial neural networks (Collister and O. Lahav 2004; Firth, O. Lahav, and

Somerville 2003), k-nearest neighbor estimators (Ball, R. J. Brunner, Myers, Strand,

Alberts, and Tcheng 2008; Ball, R. J. Brunner, Myers, Strand, Alberts, Tcheng, and

Llorà 2007; Cunha et al. 2009; Lima, Cunha, et al. 2008; Zhang et al. 2013), random

forests (Carliles et al. 2008), prediction trees (Kind and R. J. Brunner 2013), diffusion

maps (Freeman et al. 2009), Gaussian process regression (Way et al. 2009), support

vector machines (Wadadekar 2005), ensemble modeling (Way et al. 2009), and k-d

trees (Csabai et al. 2003). These methods are also attractive on account of their

flexibility in supporting training parameters beyond strict photometric observables

(e.g., galaxy shapes). In contrast with template-based approaches, however, empir-

ical methods are not well-suited for extrapolating beyond the parameter space they

were trained in.

Of the many possible approaches to photo-z estimation, the author is particularly

interested in ArborZ (D. W. Gerdes et al. 2010), which uses boosted decision trees

(BDTs) to estimate redshift. This technique not only produces redshift estimates
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whose quality is comparable to—and often better than—other algorithms, but also

has the distinct advantage of producing a full p(z) probability distribution for the

redshift of each galaxy. Although other algorithms exist which can produce p(z)

distributions (see, for example, Cunha et al. 2009; Kind and R. J. Brunner 2013;

Lima, Cunha, et al. 2008), ArborZ’s p(z) results often outperform other methods and

have been studied in depth by the author, who was on the team which developed

ArborZ.

Therefore, we turn our attention to understanding the intricacies of photo-z esti-

mation using ArborZ, and apply it to several real data sets. With such a tool in hand,

we have a strong position from which to constrain cosmology and better understand

our universe.
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Chapter III

ArborZ

ArborZ is a novel photometric redshift estimation algorithm which uses boosted de-

cision trees (Freund 1995; Schapire 1990) to empirically determine a mapping from

galaxy observables to redshift. The technique produces a p(z) probability distribution

for each galaxy it is evaluated against, bolstering the strength of the algorithm. Such

probability distributions are extremely valuable in many branches of cosmology, and

in some cases—such as determining the galaxy source distribution in weak lensing—

having an accurate p(z) measurement is as important as accurately determining the

redshift itself (Mandelbaum et al. 2008).

A boosted decision tree (BDT) is an algorithm for classifying a vector of observ-

ables into one of several disjoint subsets; in the simplest case of two subsets, we

could label them “signal” and “background.” When there is strong separation (in

observable space) between these classes, simple cuts are often sufficient for obtaining

a categorization which yields high completeness and high purity. In most realistic

situations, however, the relationship between observables and classes is more com-

plex and requires a more technical treatment than simple cuts. Machine learning

is ideal for solving such problems, and BDTs are one of most successful techniques

to emerge in recent years for solving the classification problem (Hastie, Tibshirani,

47



and J. Friedman 2009). BDTs have been effectively employed in fields as diverse as

handwriting recognition (Howe, Rath, and Manmatha 2005), spam filtering (Drucker,

Wu, and Vapnik 1999), and particle identification in high-energy physics (Roe et al.

2005).

Boosted decision trees work by constructing a series of binary cuts on the set of

training vectors which maximizes the separation between signal and background clas-

sifications. These cuts form a binary tree called a decision tree (DT). Mis-classified

vectors are reweighed, and the process of constructing DTs repeats iteratively un-

til some error threshold is reached. The overall output of a BDT is then a linear

combination of the outputs of the individual DTs, weighted by their misclassification

rate.

ArborZ uses BDTs to solve the photo-z estimation problem by dividing the train-

ing set into bins in redshift space, and then training one BDT per bin. Each BDT

is trained to recognize as “signal” all galaxies whose observables would put it into

the respective bin. Galaxies whose true redshifts fall sufficiently far away (so as to

prevent overtraining, as we discuss presently) from the BDT’s redshift bin are then

classified as “background.” When presented with a new observable vector, the output

of this ensemble can be collated into a p(z). Errors estimates can then be derived

from the width of p(z).

In this chapter, we discuss the ArborZ algorithm in detail, starting with the

theory behind decision tree construction and working through boosting until we can

explain ArborZ in full. We discuss the ideal parameters for constructing BDTs and

how ArborZ is applied to galaxy samples in practice. We will use simulated galaxy

catalogs to test its performance and show that p(z) distributions are indeed a powerful

statistical tool and deserve a standard place in any cosmologist’s toolbox.
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3.1 Decision Trees

At the core of any boosted decision tree—and therefore at the heart of ArborZ, as

well—are the individual decision trees which provide the backbone for classification.

We begin with some basic definitions to quantify our discussion. A training set X

is a set of n vectors ~x1, ~x2, . . . , ~xn (often called “events”) along with the respective

classifications y1, y2, . . . , yn, where yi = +1 for signal events and yi = −1 for back-

ground events. Each training vector also is assigned a weight wi, initially set to unity.

Finally, we define the step function:

[[x]] =

{
1 x > 0
0 otherwise

(3.1)

3.1.1 Growing the Tree

The process of constructing a decision tree begins with a root node which contains

the entire training set X. The total weight in the node is:

W =
n∑
i=1

wi (3.2)

This allows us to conveniently express the total weight in the node contributed by

signal events or background events as:

WS =
n∑
i=1

wi[[yi]] (3.3)

WB =
n∑
i=1

wi[[−yi]] (3.4)

The algorithm then searches the training vectors to find a cut on the one variable

which would provide the best separation between classes. To do this, a measure of

separation needs to be introduced. Then the optimal split is that which produces
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the largest increase in separation between classes in the parent node and its children

(which result from the split)1.

In order to choose a measure of separation, we first define wS, the fraction of

weight contributed by signal objects:

wS =
WS

WS +WB

(3.5)

where wB is defined similarly for background galaxies: wB = 1 − wS. Common

separation measures are:

• Gini index.

G = wSwB =
WSWB

(WS +WB)2
(3.6)

• Cross-entropy

E = −wS lnwS − wB lnwB (3.7)

• Misclassification Rate

M = 1−max(wS, wB) (3.8)

• Statistical Significance

S =
WS√

WS +WB

(3.9)

The optimal cut is the one which maximizes WparentSparent− (WleftSleft +WrightSright),

where S represents the chosen separation measure applied to the training vectors in

the “parent” tree and each of the two resulting sub-trees labeled “left” and “right”;

1Several authors refer to the optimal split as “maximizing the decrease in impurity,” where
impurity measures the degree of non-separation (mixing); however, this can lead to confusing a
notation when talking about impurity and purity, which would no longer be antonyms.
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separation measure is also multiplied by the total weight contained in the subtree

beginning at the respective node.

We generally see best results when using the Gini index, with similar or worse

results in other measures. We discourage the use of the “statistical significance” since

it is monotonically increasing with wS. This is undesirable, since a node can have

good separation for large wS (containing many signal events) or small wS (containing

many background events). We include it in this list because it has been suggested as

an option in the literature (Hoecker et al. 2007). The other separation metrics listed

here turn over at wS = 0.5 and approach zero at wS → 0 and wS → 1, which fairly

consider both signal and background weight.

The algorithm is then recursively applied to each child node. There are several

termination conditions for the recursion. First, if the current node contains all signal

or all background events (wS = 0 or wS = 1), then the decision tree has done its job of

separating classes, and so the recursion terminates. Second, if the number of entries

is smaller than some threshold number (which we call a “bucket size”), then we will

terminate recursion regardless of the class mixing in the node. The reason is two-

fold: we want to be able to characterize these terminal or “leaf” nodes statistically

(which cannot be done if we only have one event present), and we want to prevent

overtraining (that is, we want to prevent growing a tree around the random noise in

our training data). A typical bucket size is on the order of ten events.

Other termination conditions can also be applied to the the recursive algorithm.

The most common one is a depth cut. If the path length from the current node to the

root node exceeds a certain distance, then recursion stops. Similarly, some authors

(Roe et al. 2005) suggest that, of the two child nodes available at each recursive step,

only the most promising one (in terms of its separation measure) should be split. In

the case that many training events are presented to the DT, these stopping criteria

can drastically decrease the computational time and resources required to grow a
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tree. Additionally, these criteria can help to prevent overtraining. However, there

are two problems with these “premature termination” approaches. First—in the case

of the depth limit—there isn’t a natural relationship between the number of training

events and a maximum tree depth. Second, and more importantly, premature ter-

mination may cause the tree to perform sub-optimally, since apparently insignificant

cuts can eventually result in significant separation after several cuts. By stopping

training early, one prohibits the DT from possibly finding these difficult, but impor-

tant, opportunities for classification. For example, consider one or more small, pure

(all signal or all background) subspaces in an otherwise noisy observable space. It

may take many cuts before the subspaces are isolated and correctly classified. If one

stops training early, or only grows the most promising branch of the tree, then the

statistical signal in these subspaces will be lost. Therefore, we recommend never2

prematurely stopping the training algorithm.

3.1.2 Using the Tree

At this point, one has a fully trained decision tree (a pedagogical example is shown

in Figure 3.1). Each node in the tree is then assigned a classifier hi, which is defined

as +1 (a signal node) if wS > 0.5 for the weights in that node3, and −1 otherwise

(a background node). To use a tree to classify a new vector ~x, one starts at the root

node, traverses the tree (by following the cuts at each branch) until a leaf node is

reached, and then assigns the leaf’s classifier hi to ~x; that is, we approximate y for

the vector ~x as the classifier hi of the leaf node which would contain ~x. An example

is shown in Figure 3.2

2Of course, “never” is a strong word. In most astrophysical applications, this statement is
true. In other data mining fields, however, the sheer size of the data sets can be computationally
overwhelming. In such cases, it would be better to explore other ways to quicken training, such as
weight trimming (J. Friedman, Hastie, and Tibshirani 2000) or stochastic boosting (J. H. Friedman
2002).

3The threshold value 0.5 is chosen to be unbiased with respect to both signal or background
events. This is not always desired, as it may be more important to correctly classify signal events
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Figure 3.1: An example of a very simple decision tree used to classify cars as sports
cars. In this example, engine power is the largest discriminator when determining
if a car is a sports car, and so it becomes the first split. The number of wheels on
the car was the second (and third) most important variable. Squares indicate branch
nodes and circles are used to designate leaf nodes. Green nodes indicate nodes which
would be classified as “signal” nodes (nodes in which most of the training vectors are,
indeed, sports cars); red nodes are “background” nodes. Since most vehicles are not
sports cars, it isn’t surprising that the root node is therefore red. On the other hand,
most vehicles do have four wheels, and so the other two branch nodes are green. If
this example tree continued with splits on color or number of tail-lights, one could
conclude that the tree was overtraining.
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(a) Training Set (b) Evaluation

Figure 3.2: An example of training a decision tree on a simple sine function. On the
left we show a training set of 1000 points, defining “signal” to be above the curve
(blue points) and “background” to be below the curve (red points). After training
the decision tree, we can step through the entire space, querying the tree for its best
estimate of the true classification at each point. The results are shown on the right.
We see that the decision tree performed excellently. In a handful of places there
wasn’t enough data in the training set for the decision tree to emulate the function
appropriately (e.g., at the trough of the sine wave). We also note that since a decision
makes cuts on only one variable at a time, all cuts are orthogonal to the axes, which
is clearly visible.

With a fully grown tree and these definitions in hand, we can quantify a tree’s

performance. The purity p of a decision node is defined as the fraction of the weight

in a node N which is correctly classified with respect to the node’s classifier:

pN =
1

W

n∑
i=1

wi[[hiyi]] (3.10)

where we note that [[hiyi]] = 1 if event i is correctly classified and zero otherwise. The

resubstitution error R of a node N is then:

R(N) = 1− p =
1

W

n∑
i=1

wi[[1− hiyi]] (3.11)

A similar definition for R(TN) can be defined for the entire subtree TN beginning at

node N , where we use the weights wi and classifiers hi in each leaf node under TN

rather than the weights and classifiers of the events associated with node N . Gen-

than background events, etc.
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erally, R(N) and R(TN) will be smaller for better trained (that is, better separated)

nodes and trees, respectively. However, these quantities are computed with respect

to the training set, and so they are underestimates of typical errors seen when the

tree is applied to real data sets.

What R does enable is pruning, one of the most commonly performed operations

on a grown tree. Pruning attempts to remove the least significant subtrees from

the DT. Although it is faster to navigate a pruned tree (since it is smaller than its

unpruned version), the primary reason to apply pruning is to prevent overtraining

(Breiman et al. 1984). In order to identify the least important subtree, we define the

cost complexity ρ for a sub-tree TN beginning at node N as:

ρ(TN) =
R(N)−R(TN)

|TN | − 1
(3.12)

where |TN | is the number of leaves in subtree TN . ρ(TN) is, succinctly, the average

decrease in error caused by continuing to grow out the tree TN rather than simply

terminating growth at node N . By iteratively removing the subtree with the smallest

cost complexity until no subtrees exist with ρ < ρprune, we can optimally prune the

DT. The choice of pruning strength ρprune is usually determined empirically.

Despite the apparent advantages of pruning, it is not always appropriate. It is

not easy to determine when pruning is discarding useful information or preventing

overtraining. If one is using DTs as standalone classifiers (without boosting), prun-

ing may have advantages. More often, however, DTs are used in conjunction with

a boosting algorithm. In these cases, boosting will often outperform pruning, and

pruning will usually degrade the performance of a BDT. We will discuss the advan-

tages or power of boosting in the next section, but in summary, pruning should be

applied with caution.
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3.2 Boosted Decision Trees

3.2.1 Boosting

Figure 3.2 is deceiving: in most realistic, complex data sets, particularly higher-

dimensional ones, decision trees do not usually perform as well. In fact, DTs fall

into a category of learning algorithms called weak classifiers, a label given to learning

algorithms which are only required to be correct slightly better than 50% of the time

(Kearns and Valiant 1994). Thus, individually, DTs are not a viable method for

robust classification. However, Schapire 1990 developed a method for combining an

ensemble of weak classifiers into a single strong classifier, one which can be trained to

arbitrary precision. This mechanism is called boosting, and is at the heart of boosted

decision trees (BDTs).

To understand the principle behind boosting we consider the classic example given

in Freund and Schapire 1999. Imagine a gambler who, in an effort to improve his

success in horse racing, decides to ask all of his friends which horse they believe will

win. Each of his friends will have developed “rules of thumb” to help him make these

decisions; for example, one might bet on the horse with the best odds while another

always bets on the horse with the best track record. Although crude and often wrong,

these rules of thumb still work sufficiently well that they are not outright discarded.

By combining his friends’ rules of thumb, the gambler will be able to increase his odds

drastically. In this analogy, each friend and his rules of thumb are weak classifiers—

better than nothing but not that great (in our specific case, the DTs are our weak

classifiers). The process of intelligently combining these weak classifiers is called

“boosting,” and the gambler’s successful algorithm which he now uses to place his

bets is a strong classifier (in our case, the BDTs).

The original boosting algorithm was AdaBoost (Freund and Schapire 1997), and
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it still remains a dominant meta-algorithm for improving the performance of weak

classifiers. Other algorithms have also emerged, most of which are variations on the

AdaBoost algorithm. Examples are LogitBoost (J. Friedman, Hastie, and Tibshi-

rani 1998), gradient boosting (J. H. Friedman 1999; J. H. Friedman 2002), Brown-

Boost (Freund 2001), and RobustBoost (Freund 2009). All of these algorithms have

one thing in common: they iteratively construct DTs by adjusting (“boosting”) the

weights of mis-classified objects. When these previously misclassified events are pre-

sented to the next DT, their new weights raise the likelihood that the DT splits will

correctly classify them. Once the ensemble of DTs (called a “forest”) is constructed,

each tree is assigned a weight (to be defined presently) based on the purity of its clas-

sifications (i.e., how well it solves the classification problem). The linear combination

of trees constitutes the BDT. This BDT is the strong classifier used for rigorous classi-

fication, considered the “best off-the-shelf classifier in the world” (Hastie, Tibshirani,

and J. Friedman 2009).

3.2.2 Constructing Boosted Decision Trees

ArborZ applies AdaBoost to construct its BDTs. For a thorough derivation of Ad-

aBoost, with relevant proofs, see Freund and Schapire 1997. We recount the key

steps here to illustrate the procedure. Our equations are optimized for numerical

computing, and so differ slightly from the standard notation.

1. Grow the tth tree using the current set of weights {wi}. For t = 1, set wi = 1

for all i.

2. Calculate the tree’s misclassification rate ε of the entire tree T0, defined as the

resubstitution error of the tree: ε = R(T0).

3. Calculate the boost weight :
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α =
1

2
ln

[(
1− ε
ε

)β]
(3.13)

where β is the boost exponent (typically set to unity).

4. Compute updated weights:

wi =⇒ w′i = wi
bi
Z

(3.14)

where the boost factor is:

bi = e−α·hiyi (3.15)

and Z is a normalization factor:

Z =
1

W

N∑
i=1

wibi (3.16)

5. Return to the first step and grow a new tree using these new weights.

This iterative process continues until a termination condition is reached. The most

obvious termination condition is when the error rate is too low; this happens when

the particular set of weights allows a tree to grow perfectly (or as near to perfect as

the numerical limits of the computer allow, given that some weights may be extremely

small). If this condition is met quickly enough, a limit on the size of the forest is

usually imposed. This is sensible, since—due to noise in the data and a finite bucket

size—it may not be possible to perfectly classify every event. The error rate reaches

an asymptote within the first 30–40 trees, and so 50 trees is a reasonable limit. We

will illustrate this phenomenon presently, once the discussion of the ArborZ algorithm

has concluded.
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3.2.3 Using Boosted Decision Trees

Once the forest is assembled, the BDT classifier must be constructed. For an observ-

able vector ~x, the BDT classifier H(~x) is defined as:

H(~x) =
T∑
t=1

αtht(~x) (3.17)

where the sum runs over the entire forest, and αt and ht(~x) are the boost weight and

classifier, respectively, for each DT in the forest.

The output of a BDT classifier, sometimes called a “score,” differs from that of

a DT in that a BDT’s score is continuous, whereas a DT is discrete: +1 (signal) or

−1 (background). A BDT score has only relative—not absolute—meaning: a larger,

more positive score is indicative of a signal-like event, and a smaller, more negative

score suggests a background-like event. At first glance, this may seem frustrating,

since we now have a strong classifier but lack a scale by which to interpret its output,

but this is not so. Instead, we need to recast the scores in terms of probabilities.

Bayes’ Theorem gives us a natural vantage point from which to interpret these

BDT scores. Let D (for “data”) be a vector of observables and Mi some particular

model or hypothesis. Then Bayes’ Theorem states:

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
=

P (D|Mi)P (Mi)∑
i P (D|Mi)P (Mi)

(3.18)

where on the right-hand side we have applied the law of total probability and the sum

runs over all possible hypotheses. For those unfamiliar with Bayesian nomenclature,

P (Mi) is the prior, P (Mi|D) is the posterior, and P (D|Mi) is the likelihood. In

the particular case of BDTs, we are interested in the probability that an event is

signal given its BDT score. Denoting the hypothesis that the event is signal as S and

background as B, this is:
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P (S|H(~x)) =
P (H(~x)|S)P (S)

P (H(~x)|S)P (S) + P (H(~x)|B)P (B)
(3.19)

Now, the probabilities P (S) and P (B) can be fixed by the training set’s statistics

(just counting the frequency of signal and background events). The conditional prob-

abilities P (H(~x)|S) and P (H(~x)|B) can be calculated by estimating the distribution

of scores H(~x) for signal events as well as the distribution for background events.

However, we cannot simply use the training statistics for this; we would be choosing

highly biased events, since the BDT has already built its classifier around these ob-

jects. Instead, we need to reserve a second data set, called a validation set, which is

similar to the training set in all ways except that the BDT was not presented with

its elements for training.

In practice, this validation set is randomly extracted from the full training set

database before growing the BDT. The BDT is then presented with the remaining

samples for training. Once training is complete, the validation set is evaluated. Since

this sample is unbiased and since we know the yi “truth” values for each vector, we

can fairly evaluate Bayes’ Theorem, transforming BDT scores into true probabilities.

Validation sets are ideally chosen to be half the size of the data set used for training

(Breiman et al. 1984).

3.3 ArborZ

ArborZ is the machine learning formalism for applying BDTs to the problem of photo-

z estimation. Given a training set of galaxy observables along with their respective

spectroscopic redshift, ArborZ divides the training set into redshift bins. A BDT is

assigned to each redshift bin and is trained to classify galaxies as belonging to its bin

or not. This ensemble of BDTs constitutes ArborZ. When a new set of observables is

then presented to ArborZ, each BDT produces a probability that the galaxy belongs
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Figure 3.3: ArborZ is an ensemble of BDTs, each of which is assigned to recognize
galaxies in its respective redshift bin. Each BDT, in turn, consists of a “forest” of
DTs; the BDT unites these weak DT classifiers into a single, strong classifier. After
ArborZ is trained, it can evaluated on new sets of observables, producing probability
distributions p(z) for each one.

in its bin. The resulting probability distribution is p(z), and from there we can derive

other useful metrics (such as an error estimate). A simple schematic describing the

relationship between ArborZ, BDTs, and DTs is shown in Figure 3.3.

How many bins should we divide our training set into? Well, we want our bin

widths ∆z to be on the order of the expected photo-z error. We call this expected

error the photo-z resolution, denoted σres. Any larger and we begin to lose resolution;

any smaller, and we risk overtraining the BDTs. If zmax is the maximum redshift in

the training set, then the optimal number Nbins of bins should roughly be:

zmax = Nbins∆z ≈ Nbinsσres (3.20)

Good photo-z accuracy is approximately σres = 0.02, and poor performance is approx-

imately σres = 0.10. There is no reason, a priori, to assume that a photo-z algorithm

ought to perform particularly poorly, so typically we choose values of σres around
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0.01–0.05. For a redshift range of zmax = 1, this corresponds to a rough estimate

of Nbins = 20–50 bins. As long as sufficient training statistics are available, better

redshift number distributions are obtained by erring on the side of more bins, and so

Nbins = 50–80 for zmax = 1 are common. In the absence of a good prior for σres, one

can empirically calculate it by minimizing zphot error with respect to σres.

An alternative binning method would be one in which each BDT is presented

with the same training statistics; that is, the bin widths are permitted to vary in

order that each BDT is presented with the same number of events to train on. In

principle, this has the advantage of constant signal-to-noise across each BDT, since

in a fixed-bin setup, it isn’t uncommon to have only a handful (of order ten or so) of

training statistics in high-redshift bins. In practice, however, fixed-width bins seem

to perform marginally better, and since in many cosmological applications they are

easy to work with, we generally suggest using fixed-width bins.

Once the redshift range is divided into bins, we need to train each of our BDTs.

This requires that we put discrete labels—signal or background—on each training

observable presented to the BDT. We could label galaxies within the bin of interest

“signal” and all others “background,” but we run the risk of overtraining for galaxies

which lie near bin edges. For example, for a bin edges at z = 0.1, it is artificial to

give galaxies at z = 0.099 and z = 0.101 different classifications, and doing so would

cause BDTs to overtrain on this arbitrary cut-off and ultimately degrade performance.

ArborZ’s solution is to label galaxies within the bin of interest “signal” and galaxies

which fall more than 3σres away from the bin’s edges are labeled “background”; the

remaining galaxies are not presented to the respective BDT during training.

Once we have selected the signal and background samples, we perform a principal

component analysis (PCA; Hotelling 1933; Pearson 1901) on the training sample.

This helps to reduce correlations between observables, making the DT cuts more

efficient (a single cut may suffice where many “steps” would be required to separate
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correlated variables). The BDT is then trained on a random two-thirds of this sample;

once training is complete, the remaining third is used to determine the probability

transformation from BDT scores into probabilities. This process is repeated for each

BDT.

Once the training process has completed, we can now present ArborZ with new

galaxies. Each BDT outputs a probability that the galaxy belongs in its redshift bin.

The ensemble of probabilities forms p(z). Since each BDT outputs a true probability,

ranging from 0 to 1, this p(z) is not normalized. One could normalize the p(z),

but this has an unintentional side-effect. If no BDT was confident that the galaxy

belonged in its redshift bin (i.e., each BDT labeled the galaxy as “background”),

then p(z) could be nearly zero across its entire range. By normalizing, we discard

this interesting information and artificially boost the galaxy’s p(z) contribution. In

most applications, therefore, it is prudent to normalize (for convenience), but save

enough information to recover the original normalization factor. For each galaxy p(z),

we define the peak probability as the height of the maximum bin in p(z):

ppeak = max p(zi) (3.21)

Conveniently, ppeak also measures ArborZ’s confidence in its redshift measurement.

One can then place cuts on ppeak to select galaxy p(z)s which ArborZ believes are

well-estimated.

Regardless of the normalization, there are several quantities that can be derived

from a galaxy’s p(z). First is the “best-estimate” photo-z, zphot. Typically, this is

defined as the mean of the distribution:

zphot =

∫
p(z)z dz∫
p(z) dz

(3.22)

When a single number is desired to characterize the redshift, this is the value we
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suggest using. We do, however, caution against excessive use of zphot, since any

calculations using it are lacking the strong benefits of a full distribution and discarding

information in favor of simplicity. To estimate an error σz on zphot, define σz to be

half the width of the range containing the central 68% of the area of p(z).

Of course, it is fair to ask whether or not other zphot quantities would better

represent the distribution p(z) than its mean. The most obvious candidates are the

median and mean. The mode tends to perform poorer than either the mean or median,

since it is plagued by the discretized values which result from computing the mode

of a binned distribution. These manifest themselves as “spikes” when calculating the

redshift distribution N(z) of a sample. The median tends to perform slightly (less

than 10%) better than the mean; however, the errors are then overestimated by about

20%. If the error estimates are not needed in a particular application, we suggest using

the median; otherwise, the mean will give the best, all-around performance, and so

we cast most of our examples in terms of the mean. Unless otherwise specified, zphot

refers to the mean of p(z), and zmed
phot will indicate the median of p(z).

3.4 Characterizing ArborZ

Now that we have thoroughly discussed the underpinnings of the ArborZ algorithm,

we will test its performance in simulated (or “mock”) galaxy catalogs, where we

know the true redshifts for each galaxy. Since our ultimate science goal is produce

photo-z estimates for the SDSS and the DES (see Chapter 4), we will use the DES

v4.02 mock galaxy catalogs designed to model the color, magnitude, and spatial

distributions of galaxies in the DES. The procedure for generating these simulations

is described in Appendix A of D. W. Gerdes et al. 2010. The catalog covers 220 deg2

out to redshift z = 1.35, with magnitude limits of (26.0, 25.5, 24.8, 24.3, 22.5) in grizY

bands, respectively (based on the expected 5σ detection limit of DES). It contains
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approximately 2.3 × 107 galaxies in ten tiles. We extract 100 000 randomly chosen

galaxies from one tile for training, setting aside the remaining 519 116 galaxies in the

tile for evaluation.

We train ArborZ using the five g, r, i, z, and Y magnitudes from this training

set. We divide the training set into 100 evenly-spaced redshift bins in the range

z ∈ [0, 1.33] using a resolution of σres = 0.02. The training proceeds as discussed in

Section 3.3. Each BDT forest consisted of at most 50 DTs. Each DT had a bucket

size of 10 and used the Gini index for determining the optimal split.

Example p(z) distributions are shown in Figure 3.4. As we stated earlier, we can

use these p(z) to calculate various descriptive metrics, such as the “best-estimate”

photo-z zphot, defined as the mean of the distribution, and a photo-z error estimate

σz, defined as the width of the distribution. To test the bias of p(z), we can measure

the fraction fpdf of the area in p(z) which falls below the true redshift:

fpdf =

zspec∫
0

p(z) dz

∞∫
0

p(z) dz

(3.23)

If p(z) is an unbiased estimator of redshift, then the distribution of fpdf values should

be flat. We plot this distribution in Figure 3.5. We see that it is mostly flat every-

where, with a small excess in the center and and small absence at the edges.

Previous work has shown that ArborZ zphot estimates perform similarly or better

than competing algorithms (D. W. Gerdes et al. 2010), but the real power of ArborZ

is in its probability estimates p(z). To illustrate the strength of p(z), we first plot zphot

versus zspec, shown in Figure 3.6a. The first thing to notice is the flattening which

occurs near ztrue = zphot = 0.4. The next obvious artifact is the compressed range

of zphot: the distribution does not properly fill out the entire redshift range. Both

of these issues plague all photo-z estimation algorithms. The first artifact is caused
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Figure 3.4: Typical p(z) unnormalized probability distributions (probability per red-
shift bin) produced by ArborZ. In the top four panels we see p(z) distributions at
several redshifts. The true redshift is marked by a red line, the mean of the distri-
bution is marked by a blue line, the median is marked with a green line, and the
1σ error range (enclosing half of the the central 68% distribution) is delimited with
gray, dashed lines. We see that ArborZ distributions typically have their support
over a relatively narrow region in redshift space. In the bottom two panels we show
examples of catastrophic failure, where |zphot − zspec| > 3σz. In the bottom left is
an example of p(z) with low probability everywhere, which could be removed with a
cut on the maximum height ppeak of the distribution (discussed later). In the bottom
right we show an example of an incorrect zphot estimate, but where the distribution
has a secondary peak at the true redshift, illustrating the strength of a p(z) algo-
rithm, since these secondary peaks will contribute to correctly estimating the number
distributions N(z) in each redshift bin.
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Figure 3.5: The distribution of fpdf , the fraction of area in p(z) below zspec. An
unbiased estimator will yield a flat distribution. The dashed line is the mean of the
distribution.

by degeneracies in the galaxy magnitude-color relation; photometric observables, in

other words, do not exhibit a one-to-one correspondence with redshift. The second

phenomenon is known as bias. It is caused by an algorithm being incapable of assign-

ing redshift estimates beyond the domain of its training set. That is, near z = 0, it

can only overestimate redshift, since negative redshifts cannot be assigned; similarly,

at high redshift, it has never encountered redshifts beyond those in its training set,

and so it will necessarily underestimate the redshift at this extreme. As long as bias

is well-characterized, it can be calibrated out of any cosmological calculations.

We now compare to Figure 3.6b, where we plot zpdf (the sum of individual p(z)s)

versus true redshift, where zpdf is calculated by summing p(z) distributions of galaxies

whose true redshifts lie in the same redshift bin. We see a improved scenario: the

degeneracies are gone and bias is all but eliminated. This is because p(z) can properly

contribute probability at all statistically meaningful redshift ranges, unlike a best-

estimate p(z), which discards information and, being the mean of a distribution,

necessarily exhibits bias at the extremes of its range.

To further illustrate the performance of ArborZ, we can reconstruct the entire
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(a) zphot (b) p(z)

Figure 3.6: The zphot and p(z) relationship with true redshift. In Figure 3.6a, we see
flattening at ztrue = zphot = 0.4 due to degeneracies, as well as evidence of bias at the
extremes of the redshift range. In comparison, Figure 3.6b (for which a scatter plot
cannot be drawn) shows much improved fidelity, with bias nearly removed.

number distribution N(z) of galaxies in the sample. In Figure 3.7 we plot the distri-

bution of zphot as well as the sum of the p(z) distributions, zpdf . Although there is the

degeneracy peak at z = 0.4 and bias is evident at the extremes of the redshift range,

zphot still does a reasonably good job of reconstructing the true redshift distribution.

On the other hand, we see that p(z) presents an even better distribution estimate.

This allows it to be used for weak lensing or the galaxy-galaxy correlation in baryon

acoustic oscillations, both of which do not necessarily require accurate zphot estimates,

but rather reliable and unbiased N(z) distributions.

To quantify the fidelity of our estimates N set of the redshift number distribution,

we define a goodness-of-fit parameter χ2:

χ2 =

Nbins∑
i

(
N est
i −N true

i

N true
i

)2

(3.24)

where the sum runs over each redshift bin. For the N(z) distribution estimated with

zphot, we find χ2 = 25.5, and for zmed
phot we find χ2 = 13.4. For the p(z) estimate,
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Figure 3.7: The number distribution N(z) of galaxies in the catalog constructed
using two methods. The first plots the distribution of zphot, the best-estimate photo-
z. This does a reasonable job, but exhibits strong symptoms of bias. On the other
hand, the p(z) method does a much better job reconstructing the underlying redshift
distribution.

χ2 = 3.7, showing p(z) a better estimator of N(z).

Now that we’ve seen the effect bias has on photo-z estimates, let’s be more quan-

titative. As we mentioned earlier, a well-characterized bias measurement can be used

to calibrate out any effects it may have on cosmology. We estimate bias as a function

of redshift by calculating the mean of the residual zphot − zspec in each redshift bin.

When characterizing photo-z algorithms, it is useful to consider redshift bins in zspec;

when calibrating photo-z bias for cosmological application, redshift bins in zphot are

used, since zphot is the observable. In Figure 3.8 we show bias using both p(z) con-

tours and zphot, plotted against both ztrue and zphot. Additionally, we show the bias

calculated with zphot after applying a cut on the height ppeak of the largest peak in the

unnormalized p(z) distribution. We demanded that ppeak ≥ 0.99, keeping the objects

which the BDTs had the highest confidence in. This cut effectively selects objects

which were most important to the BDTs during the training process.

Similarly, rather than exploring the mean of the residual distribution, we can look

at its width. We can calculate the width in two ways: a traditional standard deviation
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(a) Bias versus ztrue

(b) Bias versus zphot

Figure 3.8: Photo-z bias in ArborZ. The black, dashed line represents zero bias. The
blue line is the bias calculated using zphot, and the red line is the bias calculated
after a cut ppeak ≥ 0.99 is applied to the p(z) distributions. The black contours
are the bias contours calculated using p(z). We see that the p(z) contours contain
less biased information than provided by only zphot. Figure 3.8a offers insight into
the performance of a photo-z estimation algorithm, but Figure 3.8b encodes the
calibration data needed to remove bias in real surveys.
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(which will be more sensitive to outliers) or as half of the width of the central 68%

of the distribution (which will give us a more accurate estimate of the error for the

majority of our sample). We do this in Figure 3.9. Again, we see marked improvement

in the error measure when we apply a cut on ppeak.

As we discussed earlier, ArborZ can also produce error estimates σz for each zphot

photo-z estimate. If these errors are honest, normally distributed errors, then the

normalized errors

σnorm
z =

zphot − zspec

σz
(3.25)

should be normally distributed with a mean of zero and a width of one. We show this

normalized error distribution in Figure 3.10. With a mean µ = −0.04 and a width of

σ = 1.02, we conclude that these error estimates are, indeed, good estimates of the

redshift uncertainty.

As one may expect, there is a relationship between the peak ppeak of a galaxy’s

p(z) probability distribution and its photo-z error σz. The cause of this relationship

is intuitive: if ArborZ p(z)s are correctly representing the probability distribution of

the galaxy, then a galaxy which is poorly estimated by all BDTs (i.e., has a low ppeak)

should likewise have a greater uncertainty in its distribution (i.e., a greater width in

p(z)). This relationship is easy to verify. In Figure 3.11 we plot these two quantities,

and see a strong, and relatively tight, relationship. Therefore, we can interpret cuts

on ppeak as equivalent to cuts on the photo-z error, and so samples with large ppeak

indeed represent better measured photometric redshifts.

It is important to keep in mind that this discussion is not meant to declare zphot

anathema. On the contrary, ArborZ’s zphot performs as well or better than many other

photo-z algorithms and still is a reasonable estimate of the true redshift, particularly

if one calibrates out (or simply avoids) the areas of strong bias at the extremes of

the redshift range. Rather, we hope to impress the virtues of p(z) which cannot be
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(a) Error versus ztrue

(b) Error versus zphot

Figure 3.9: Width of residuals in ArborZ. We show this width calculated in two ways:
the standard deviation and half of the width of the central 68% of the distribution.
We also show both measures with and without an additional cut on ppeak, the height
of the largest peak in the p(z) distribution.
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Figure 3.10: The distribution of normalized errors from ArborZ, using both the mean
zphot and median zmed

phot to calculate best-estimate photo-z. If the σz error estimates
are honest estimates, then this distribution should be Gaussian, with central mean
and a width of unity. The calculated errors are good error estimates on zphot, but
overestimates when applied to zmed

phot.

Figure 3.11: The relationship between ppeak and photo-z error σz. We see a clear cor-
relation between these quantities, allowing us to interpret cuts on ppeak as equivalent
cuts on photo-z uncertainty.
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replicated or emulated by a simple, single-number redshift estimator. Using complete

probability distributions reduces bias and provides a cleaner, clearer signal for doing

cosmology. Whenever possible one should keep the full distribution or estimate a

redshift-dependent quantity f(z) of interest by integrating against p(z):

〈f(z)〉 =

∫∞
0
f(z)p(z)dz∫∞
0
p(z)dz

(3.26)

We can now quantify the uncertainties in ArborZ’s redshift estimates to see how

they will impact the dark energy figure of merit. In Figure 3.12, we plot these

uncertainties and compare them to the the DES science requirements and other figure

of merit degradation limits. We see that the photo-z estimates are within the DES

requirements, and nearly every point is within the 10% degradation limit. This gives

us confidence that ArborZ will be able to produce quality photo-zs for constraining

cosmology.

In the examples we’ve discussed so far, we have only used photometric magnitudes

to train ArborZ. There is no requirement on using only magnitudes, let alone magni-

tudes at all. Another option would be to use colors (differences in magnitudes). The

benefit of colors is that, for faint galaxies in the photometric target set, the distribu-

tion of colors may be more representative of the distribution of colors in the training

set. On the other hand, the errors in the magnitude measurements will propagate

into the colors, which, being differences of magnitudes, will become relatively large.

In practice, training on colors (alone or in addition to magnitudes) yields very similar

results, but with slightly larger photo-z errors.

What of the myriad other variables in a galaxy catalog? Certainly we expect

position-based correlations, since clustered galaxies are more likely to be at the same

redshift than randomly chosen galaxies. On the other hand, sample variance will

dominate these correlations in all realistic training sets. Careful thought would need

to go into integrating positions into any photometric redshift algorithm. We have also
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(a) Uncertainty in the photo-z bias

(b) Uncertainty in the photo-z error

Figure 3.12: The uncertainty in ArborZ’s photo-z estimates in the mock catalog. The
points indicate the uncertainties. The solid red line marks the 10% degradation in
the dark energy figure of merit. The dashed red line marks the 50% degradation. In
the upper plot, the DES science requirement is the solid black line; in the lower plot,
the DES science requirement is the dashed red line, the same as the 50% mark.
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tried adding ellipticity and magnitude errors to the mix of input variables without

substantial improvement. Rather, we caution against using too many variables, since

one will fall immediately into the trap of overtraining. A few, well-chosen variables

with known correlations to redshift (e.g., magnitudes or colors) will go further than

any haphazard amalgamation.

3.5 Optimization

Having discussed the general performance of ArborZ in a simulated galaxy catalog, we

now turn our discussion toward subtleties in the algorithm. There are many different

tuning knobs we can tweak, parameters in the training algorithm. Some of these

can impact results, whereas others are negligible. In some cases, we can increase the

speed of the algorithm without impacting results. Our test machine was a 2.7 GHz

quad-core (eight virtual cores) i7 processor with 16 GB of RAM.

We begin by discussing timing—how long it takes ArborZ to perform its calcu-

lations. The training algorithm itself has two natural places to “parallelize,” that

is, divide computational time across multiple processing cores. The first is at the

DT growing level. Whenever a split is made, the DT continues to grow left and

right branches, containing disjoint datasets. Therefore, new threads (independently

managed sets of processor instructions) can be spawned to grow either side of the

tree. The second opportunity for parallelizing is at the ArborZ level: each BDT can

be constructed in its own thread. In practice, scheduling more threads than cores

will not lead to increased performance (indeed, moving shared resources and the time

spent scheduling many threads generally degrades performance). Our test machine,

therefore, should spawn Nthreads = 8 threads to be maximally efficient. Of the two

parallelizing options, it is best to capitalize on the latter, since the former will exhibit

diminishing returns as we delves deeper into the DT; moreover, spawning threads will
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take time, and so they should be spawned at the highest levels of the program. Since

each BDT will be constructing many DTs, it is better to spawn threads to manage

BDTs rather than having many short-lived threads at the DT level. When we are

evaluating, rather than training, we can simply divide the target observables among

Nthreads different tasks.

For the datasets described in Section 3.4, training 100 BDTs on 100 000 galaxies

required 1087 seconds of wall time (actually time as measured by a watch) and 7 934

seconds of CPU time (the sum of the wall times each CPU spent, but only when

scheduled on this task). Evaluation on the 519 116 galaxies in the target sample took

421 seconds of wall time and 3 124 seconds of CPU time. Thus, ArborZ can run

quite quickly on any modern computer, even when working with the large catalogs

produced by modern surveys.

There is another, non-threaded possibility for improving ArborZ’s training speed.

When training individual DTs, the optimal cuts are found by stepping across the

entire range of each variable. Training vectors will similar values for a particular

variable will result in similar cut qualities. Therefore, instead of stepping across each

possible cut, we could make larger jumps at the cost of small changes in cut quality.

We expect this trade-off to be corrected by the BDT boosting algorithm; if we choose

a suboptimal cut, boosting will not only alter the weights to correct for it, but also

assign that particular tree a lower weight in the evaluation process.

To test this, we performed the same training and evaluation described previously,

but only checked at most 20 different split positions at each branch. Training required

994 seconds of wall time (7 408 seconds of CPU time), an improvement of approxi-

mately 8%. We so no decrease in photo-z quality, and so this mechanism provides a

simple way to reduce training time slightly.

We now turn our attention away from timing optimizations to result-driven opti-

mizations. There are many parameters we can change would could potentially impact
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Figure 3.13: Decision tree misclassification error as a function of BDT forest size. For
nearly all training sets, the misclassification rate stabilizes near 40–50 trees for forest.

performance. One such example is the initial BDT weights. Typically, they are set

to unity for the first DT in the forest. However, some photo-z estimation methods

calculate weights for the galaxies in training set depending on how important they are

in covering the observable space of the evaluation sample (Cunha et al. 2009; Lima,

Cunha, et al. 2008). Similar priors could be applied to the ArborZ training set in the

form of initial weights. However, when we calculate and apply such weights, we find

no difference in the results; the BDT re-weighting algorithm drives the weights to the

same optimal values anyway, making additional priors unnecessary.

Other parameters which affect the training process are the DT bucket size, the DT

separation measure, and the signal threshold (usually set to 0.5 as discussed in Section

3.1.2). However, we see little or no difference in the photo-z results when modifying

these parameters. Typically, we use 50 DTs per BDT forest. We determine this value

empirically; DT misclassification rate is a rapidly decreasing function of forest size

(see Figure 3.13), and performance results stabilize with forests of around 50 trees.
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Chapter IV

Applications of ArborZ

We have seen that ArborZ produces excellent estimates of a galaxy’s redshift; more-

over, the p(z) distributions constructed by ArborZ enable better constraints on cos-

mology through their more faithful representation of redshift and uncertainty. In this

chapter, we apply ArborZ to two major surveys—the Sloan Digital Sky Survey and

the Dark Energy Survey—and present photometric redshift catalogs for each, paving

the way for many cosmological probes.

4.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS; York et al. 2000) is one of the largest—and cer-

tainly one of the most influential—optical imaging surveys ever undertaken. Taking

data from 1998 to present, the SDSS has imaged over 14 000 deg2 of the northern sky,

yielded measurements in ugriz bands for over 2×108 galaxies. Nearly two million op-

tical galaxy spectra have been measured since its inception, producing in the largest

spectroscopic redshift catalog ever obtained (Blanton, H. Lin, et al. 2003; Dawson et

al. 2013). The most recent public data release of the SDSS is data release 10 (DR10;

Ahn et al. 2013), which is the catalog we use here.
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4.1.1 Selecting a Clean Galaxy Sample

We select a clean galaxy sample from DR10 by imposing a number of cuts on the

data. There are three different magnitude measurements we use in making these

cuts: mpsf , derived from a best-fitting PSF model; mmodel, which is the better of an

exponential profile and a de Vaucouleurs’ profile; and mcmodel, which is a combination

of an exponential and a de Vaucouleurs’ profile. Our cuts follow the standard cuts

recommended by the SDSS team for selecting a clean galaxy sample, as well as cuts

recommended in Sheldon et al. 2012. We summarize these cuts below1.

• We perform star-galaxy separation by looking at the concentration c of each

object:

c = mpsf −mmodel (4.1)

For stars, c = 0 within errors. Following the SDSS pipeline, we define galaxies

as having c > 0.145 (with c derived from the summed fluxes in all bandpasses).

• We select unique, resolved objects by checking the RESOLVE PRIMARY status

flag: RESOLVE PRIMARY & SURVEY PRIMARY 6= 0.

• We require detections in both r and i bands:

FLAGS [RI] & (BINNED 1 | BINNED 2 | BINNED 4) 6= 0

• We reject objects which are flagged for any of the following: SATURATED,

BRIGHT, DEBLEND TOO MANY PEAKS, PEAKCENTER, NOTCHECKED,

NOPROFILE.

• We reject blended objects (BLENDED 6= 0) which were not successfully de-

blended (NODEBLEND 6= 0).

1We adopt the computer science notation where ”&” indicates the bit-wise AND operator and
“|” indicates the bit-wise OR operator.
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(a) g − r vs r − i (b) r− vs i− z

Figure 4.1: Color-color plots showing the distribution of colors in the SDSS DR10
photometry.

• To reduce noise, we place magnitude cuts 21, 22, 22, 20.5, and 20.1 on the

extinction-corrected (D. J. Schlegel, D. P. Finkbeiner, and M. Davis 1998)

mmodel magnitudes in ugriz bands, respectively.

• We require that the extinction-corrected r-band mmodel magnitudes be between

15 and 29. Similarly, we require that the extinction-corrected r-band mcmodel

magnitudes be between 15 and 21.8.

• In two runs, the u-band amplifier was experiencing problems. We therefore re-

move objects from runs 2190 and 2189 which were flagged with NOTCHECKED CENTER

or LOCAL EDGE.

After applying these cuts, we obtain a imaging catalog of 80 882 179 galaxies. The

g− r versus r− i and r− i versus i− z color-color plots are shown in Figure 4.1. The

magnitude distributions are shown in Figure 4.3.
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4.1.2 Training Catalog

In order to evaluate photo-zs for the galaxies in the imaging catalog, we need to as-

semble a training set of galaxies with known redshifts. Using the adaptive matching

technique described in Appendix B, we can combine redshifts from multiple spectro-

scopic sources, matching these redshifts to the optically-imaged galaxies in DR10.

These redshift sources are described as follows.

• SDSS: The vast majority of redshifts were obtained as part of the SDSS survey

itself. The catalog consists of three samples: a magnitude-limited (rPetro <

17.77) legacy “main” sample from SDSS-I/II with a median redshift of z ≈ 0.10

(Strauss et al. 2002), a luminous red galaxy (LRG) sample which is volume-

limited to z ≈ 0.38 but extends out to z ≈ 0.55 (D. J. Eisenstein, J. Annis, et

al. 2001), and the BOSS sample of approximately 9×105 redshifts with median

redshift z ≈ 0.51 (Dawson et al. 2013). After applying quality cuts, 1 284 330

redshifts were kept.

• 2dFGRS: 31 962 redshifts from the 2dF Galaxy Redshift Survey (Colless et al.

2001).

• 2SLAQ: 5 548 redshifts from the 2dF-SDSS LRG and QSO Survey (Cannon

et al. 2006).

• AGES: 1 502 redshifts from the AGN and Galaxy Evolution Survey (Kochanek

et al. 2012).

• CFRS: 178 redshifts from the Canada-France Redshift Survey (Le Fèvre, Cramp-

ton, et al. 1995; Lilly, Le Fèvre, Crampton, et al. 1995).

• CNOC2: 882 redshifts from the Canadian Network for Observational Cosmol-

ogy Field Galaxy Survey (H. K. C. Yee et al. 2000).
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• DEEP2 / DEEP3: 1 729 redshifts from the DEEP Extragalactic Evolutionary

Probe 2 (M. Davis et al. 2003; Newman et al. 2012) and Probe 3 (Cooper, Aird,

et al. 2011).

• GAMA: 44 552 redshifts from the Galaxy and Mass Assembly survey (Driver

et al. 2011).

• MGCz: 1 741 redshifts from the Millennium Galaxy Catalogue redshift survey

(Allen et al. 2006).

• OzDES: 13 746 redshifts obtained on the Anglo-Australian Telescope as part of

the OzDES program, the primary spectroscopic followup program for the Dark

Energy Survey (DES).

• PRIMUS: 17 347 redshifts from the Prism Multi-Object Survey (Coil et al.

2011).

• TKRS: 190 redshifts from the Team Keck Redshift Survey (Wirth et al. 2004).

• VIPERS: 5 923 redshifts from the VIMOS Public Extragalactic Redshift Sur-

vey (Guzzo et al. 2013).

• VVDS: 3 488 redshifts from the VIRMOS-VLT Deep Survey (Le Fèvre, Vet-

tolani, et al. 2005).

• WiggleZ: 34 135 redshifts from the WiggleZ Dark Energy Survey (Drinkwater

et al. 2010).

• zCOSMOS: 1 004 redshifts from the Cosmological Evolution Survey (COS-

MOS) field (Lilly, Le Brun, et al. 2009; Lilly, Le Fèvre, Renzini, et al. 2007).

In total, our training set of spectroscopic redshifts matched to DR10 imaging contains

1 448 257 galaxy redshifts. The overall redshift distribution, as well as cumulative
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distributions for each source catalog, is shown in Figure 4.2. The entire redshift range

is well-represented out to z ≈ 0.8, with a tail extended to z ≈ 1.0. The magnitude

distributions of this spectroscopic training set is shown in Figure 4.3.

4.1.3 Testing Unrepresentation

When we considering Figure 4.3, we see that the training set has only limited coverage

(under-representation) at faint magnitudes, and excess coverage (over-representation)

at bright magnitudes. Before attempting to produce a photo-z catalog for the SDSS,

it is worth considering the question of observable unrepresentation: can ArborZ pro-

duce accurate redshift estimates if the distributions of training set observables differ

significantly from the same observables’ distributions in the target imaging catalog?

The author has investigated this problem in the past using the SDSS and GAMA

surveys as examples, and found that ArborZ still produces good results (Sypniewski

and D. W. Gerdes 2011). We briefly discuss the case of unrepresentation in the SDSS

DR10 data set here. To clarify, we use the term “unrepresentation” to refer to different

observables distributions in the training and target samples, typically where one or

more instances of under- or over-representation are present, but where the training

set still covers the same range of observable space as the target set. In the case of

“non-representation,” the target set would contain a region in observable space where

no similar observables are present in the training. No empirical algorithm can hope

to reliably extrapolate to these regions, and in such cases a template-based approach

to photo-z estimation may be preferred.

To test ArborZ’s performance, we split the spectroscopic training set discussed

in Section 4.1.2 into two disjoint subsets: one containing redshifts from the SDSS

survey only, and the second containing the remaining galaxies from the non-SDSS

surveys. The redshift distributions of these two samples are shown in Figure 4.4, and

the magnitude distributions are shown in Figure 4.5.
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(a) Overall redshift distribution (stacked)

(b) Cumulative distribution functions (stacked)

Figure 4.2: The redshift distribution of the SDSS spectroscopic training set. In Figure
4.2a is the overall redshift distribution, including contributions from all sixteen source
catalogs. In Figure 4.2b, we stack the cumulative distribution functions (CDFs) of
the redshift distributions from each catalog. In both plots, SDSS is shown on the
bottom of the stack, and AGES is shown on top.
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Figure 4.3: The distributions ofmmodel magnitudes in the SDSS DR10 imaging and the
spectroscopic training set. Magnitude cuts are placed on both the extinction-corrected
mmodel magnitudes as well as the extinction-corrected mcmodel magnitudes. Both
distributions are normalized to more easily compare contributions at each magnitude.
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Figure 4.4: The redshift distributions of the training (non-SDSS) set galaxies and
target (SDSS) set galaxies for the unrepresentation test.

We train ArborZ on the non-SDSS galaxy sample using 60 bins with σres = 0.03.

Figure 4.6 shows the stacked p(z) measurements versus the spectroscopic redshift, and

Figure 4.7 shows the reconstructed redshift distribution N(z). In both cases, we see

that the BDTs can properly weight the training set galaxies, preventing significantly

degraded photo-z results when faced with different observable distributions in the

training and target samples. As shown in Figure 4.8, even with unrepresentation, the

uncertainty in the photo-z bias and error are still well-understood.

4.1.4 SDSS Photometric Redshift Catalog

Before presenting the final catalog, we perform a validation run, using the SDSS

spectroscopic training set assembled in Section 4.1.2. We train ArborZ on 100 000

randomly selected galaxies from the large training set, and then evaluate it on the re-

maining galaxies. This gives us the best opportunity available for testing our training

parameters. We used 80 equal-width bins out to redshift 0.8, with photo-z resolution

σres = 0.02.

In Figure 4.9a we show the reconstructed redshift distribution N(z). Although the
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Figure 4.5: The magnitude distributions of the training (non-SDSS) set galaxies and
target (SDSS) set galaxies for the unrepresentation test. The magnitude distributions
are sufficiently different as to be worth validating ArborZ’s performance before blindly
trusting its results.
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Figure 4.6: ArborZ p(z) results plotted against ztrue, showing that p(z) is still an
accurate redshift measure in the case of unrepresentation.
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Figure 4.7: The constructed redshift distribution for the unrepresentation test. p(z)
shows a small overestimate near z = 0.3, but does an overall excellent job of recon-
structing the underlying redshift distribution, even when the distribution of observ-
ables is different for the training and target sets.

best-estimate photo-z zphot performs well, we see that p(z) displays excellent fidelity

with respect to the true redshift distribution. The χ2 metric defined in Equation

3.24 is 22.3 for zphot, 19.2 for zmed
phot, and 3.1 for zpdf , demonstrating that p(z) does

an excellent job of recovering the true redshift distribution. We show the p(z) versus

ztrue contours in Figure 4.9b.

Figure 4.10a shows the bias of ArborZ across the redshift range. Bias calculated

using both p(z) and zphot shows low bias across the entire redshift range. We also note

that cuts on the maximum height max p(z) of the unnormalized p(z) distribution can

yield lower bias. The width of the residual distribution is shown in Figure 4.10b. This

average photo-z error over the entire redshift range, calculated as the width of the

central 68% of the area of the residual distribution, is approximately 0.038. When we

compare the photo-z uncertainties to dark energy figure of merit degradation limits,

we find that we are well within the limits expected from photo-z estimates (see Figure

4.11).
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(a) Uncertainty in the photo-z bias

(b) Uncertainty in the photo-z error

Figure 4.8: The uncertainty in ArborZ’s photo-z estimates in the SDSS unrepresen-
tation test. The points indicate the uncertainties. The solid red line marks the 1%
degradation in the dark energy figure of merit. The dashed red line marks the 10%
degradation. In the upper plot, the DES science requirement is the solid black line;
in the lower plot, the DES science requirement is above the range of the plot.
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(a) Reconstructed redshift distribution

(b) p(z) vs. ztrue contours

Figure 4.9: The photo-z results in the SDSS validation sample, calculated by training
on 100 000 random galaxies in the overall spectroscopic training set, and evaluating
on the remainder. Good agreement between ArborZ and the true redshift is seen
across the entire redshift range.
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(a) Photo-z bias

(b) Photo-z error

Figure 4.10: Bias and error plots for the SDSS validation sample, indicating good
photo-z results across the entire redshift range. The peaks in the photo-z error in the
ppeak > 0.99 sample near z = 0.6 and z = 0.72 are due to low statistics.
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(a) Uncertainty in the photo-z bias

(b) Uncertainty in the photo-z error

Figure 4.11: The uncertainty in ArborZ’s photo-z estimates in the SDSS valida-
tion test. The points indicate the uncertainties. The solid red line marks the 1%
degradation in the dark energy figure of merit. The dashed red line marks the 10%
degradation. In the upper plot, the DES science requirement is the solid black line;
in the lower plot, the DES science requirement is above the range of the plot.
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Figure 4.12: The estimated redshift distribution N(z) in the SDSS DR10 imaging
catalog.

With the promising results of the validation and unrepresentation tests in hand,

we now proceed to produce a photo-z catalog for the SDSS DR10 catalog of Section

4.1.1. We use the same parameters as in the validation test. The redshift distribution

N(z) is shown in Figure 4.12. In Figures 4.13a and 4.13b we show, respectively, the

bias versus zphot and the error versus zphot. These plots are generated by binning p(z)

in bins of zphot and then plotting the probability contours (along with means and

widths) of the summed p(z)s in each bin.

The mean bias is exceptionally low across the entire redshift range, despite the

increased uncertainty near z ≈ 0.52. In the reconstructed redshift distribution, we

see a probable overshoot in the zphot distribution, similar to the validation sample.

We expect, therefore, that the zpdf distribution is a more accurate representation of

the underlying redshift distribution. This photo-z catalog is an important tool for

tackling cosmology using data from the largest sky survey ever undertaken.
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(a) Photo-z bias

(b) Photo-z error

Figure 4.13: Bias and error plots for the SDSS DR10 catalog. These are generated
by summing p(z) distributions in bins of zphot. The resulting contours and means are
shown in Figure 4.13a, and the widths are shown in Figure 4.13b.
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4.2 The Dark Energy Survey

The Dark Energy Survey (DES; T. Abbott et al. 2005) is a large-scale galaxy survey

which will collect optical imaging data in grizY bands for approximately 3 × 108

galaxies spread over 5 000 deg2 of the southern sky. These data will be collected over

the course of 525 nights over five years, beginning officially on August 31, 2013. The

DES’s instrument of choice is the Dark Energy Camera (DECam; DePoy et al. 2008).

Installed on the 4m Blanco telescope at CTIO and sporting a 570 megapixel camera

with a 2.2 deg field-of-view, DECam is the largest, most powerful instrument of its

type ever built2. Once finished, the DES will be the largest imaging survey ever

completed, surpassing even the SDSS.

As part of its commissioning and science verification, a great deal of science data

was taken using DECam during the year preceding the start of the DES. This data

was processed through the official DES data management (DESDM; Mohr et al.

2012) pipeline, and a coadded catalog—called SV-A1—was constructed. This data is

the perfect playground for photometric redshift estimation, and although not much

cosmology is expected from the SV-A1 data release, it will help pave the way for

many DES science working groups to constrain cosmology over the next five years.

4.2.1 The SV-A1 Imaging Catalog

We begin processing the SV-A1 catalog by selecting all objects in the co-added catalog

that were not flagged as bad in i-band and which had SPREAD MODEL > 0.002 (to

exclude stars). Extinction corrections were applied on an object-by-object basis using

the D. J. Schlegel, D. P. Finkbeiner, and M. Davis 1998 dust maps with the Schlafly

and D. P. Finkbeiner 2011 recalibration. We then apply the photometric calibrations

of H. Lin 2013. These are generated on a tile-by-tile basis by first selecting galaxies

2See Appendix A for a more detailed hardware description.
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(a) g − r vs r − i (b) r− vs i− z

Figure 4.14: Color-color plots showing the distribution of colors in the DES SV-A1
catalog.

with 18 < r < 22. The r-band “MAG DETMODEL” zero-point is then shifted to

match the median r-band MAG DETMODEL − MAG AUTO value in the VVDS

Deep 02hr field (Le Fèvre, Vettolani, et al. 2005). Finally, the gizY -band zero-points

are shifted such that the g − r, r − i, z − r, and Y − r colors match their respective

medians in the VVDS Deep 02hr field. If applying this procedure to a tile results in

a shift of more than 0.2 magnitudes in any band, the tile is discarded.

After applying these cuts, we keep 17 097 383 galaxies. We show the g − r versus

r − i and r − i versus i − z color-color plots in Figure 4.14, and the magnitude

distributions are shown in Figure 4.16.

4.2.2 DES Spectroscopic Training Set

Having selected a sample from the SV-A1 catalog, we can follow the same prescription

in Section 4.1.1 as we did for SDSS to match redshifts from a variety of spectroscopic

surveys to DES imaging. The redshifts sources used are listed below.

• 2dFGRS: 2 120 redshifts from the 2dF Galaxy Redshift Survey (Colless et al.

2001).
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• ACES: 3 117 redshifts from the Arizona CDFS Environment Survey (Cooper,

Yan, et al. 2012).

• GOODS: 854 redshifts from the Great Observatories Origins Deeps Survey

(Balestra et al. 2010).

• K20: 80 redshifts from the K20 survey (Mignoli et al. 2005).

• OzDES: 14 218 redshifts obtained on the Anglo-Australian Telescope as part of

the OzDES program, the primary spectroscopic followup program for the Dark

Energy Survey (DES).

• PRIMUS: 47 997 redshifts from the Prism Multi-Object Survey (Coil et al.

2011).

• SDSS: 1 100 redshifts from the Sloan Digital Sky Survey (Dawson et al. 2013).

• VIPERS: 6 423 redshifts from the VIMOS Public Extragalactic Redshift Sur-

vey (Guzzo et al. 2013).

• VVDS: 1 822 redshifts from the VIRMOS-VLT Deep Survey (Le Fèvre, Vet-

tolani, et al. 2005).

• zCOSMOS: 3 692 redshifts from from the Cosmological Evolution Survey (COS-

MOS) field (Lilly, Le Fèvre, Renzini, et al. 2007).

In total, the DES spectroscopic training set contains 81 423 redshifts matched to

SV-A1 imaging. The redshift range is well-represented out to z ≈ 1.2 with a tail

extending out to z ≈ 1.5. This distribution is shown in Figure 4.15, and the magnitude

distributions are shown in Figure 4.16.

99



(a) Overall redshift distribution (stacked)

(b) Cumulative distribution functions (stacked)

Figure 4.15: The redshift distribution of the DES spectroscopic training set. In Figure
4.15a is the overall redshift distribution, including contributions from all ten source
catalogs. In Figure 4.15b, we stack the cumulative distribution functions (CDFs) of
the redshift distributions from each catalog. In both plots, 2dFGRS is shown on the
bottom of the stack, and zCOSMOS is shown on top.
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Figure 4.16: The distributions of mauto magnitudes in the DES SV-A1 photometry
and the spectroscopic training set. Both distributions are normalized to more easily
compare contributions at each magnitude.
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4.2.3 DES Photometric Redshift Catalog

In a similar spirit to Section 4.1.4, we first run a validation test on the DES data—

training on a subset of the spectroscopic catalog and evaluating on the remainder—to

test our training parameters and ensure that the algorithm is behaving appropriately.

We therefore train ArborZ on one-third of the spectroscopic catalog, 26 869 galaxies

in all, using all five magnitudes as training variables. We use 80 equal-width bins out

to redshift 1.2, with a photo-z resolution of 0.02.

Figure 4.17 shows the reconstructed redshift distribution N(z). The p(z) recon-

struction is particularly good in comparison to the other zphot measures, which exhibit

noticeable bias which manifests as a compressed distribution. The χ2 goodness-of-fit

metric of Equation 3.24 gives 24.9 for zphot, 14.4 for zmed
phot, and 1.7 for zpdf .

Figure 4.18a shows the photo-z bias as a function of redshift, and the photo-z error

versus redshift is shown in Figure 4.18b. Due to both the poorer data quality in the

SV-A1 catalog (photometric calibration, source finding, and deblending are still under

heavy development) and the less representative training set, we generally see larger

bias and error than in the SDSS catalog. That being said, ArborZ p(z) estimates

still work well, and a well-characterized bias can be calibrated out of cosmological

measurements.

Now we turn to the final SV-A1 catalog. We use the same parameters as in the

validation test. The redshift distribution N(z) is shown in Figure 4.19. In Figures

4.20a and 4.20b we show, respectively, the bias versus zphot and the error versus zphot,

generated in the same way as Figure 4.13.

We see good performance and low bias across the entire redshift range, especially

considering the relative immaturity of the SV-A1 catalog. In Figure 4.21 we compare

the photo-z uncertainties to the DES science requirements. Except for the high

redshift end, the uncertainty in the photo-z error is within the limits of the science
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(a) Reconstructed redshift distribution

(b) p(z) vs. ztrue contours

Figure 4.17: The photo-z results in the DES validation sample, calculated by training
on a random one-third of galaxies in the overall spectroscopic training set, and evalu-
ating on the remainder. Good agreement between ArborZ p(z) and the true redshift
is seen across the entire redshift range.
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(a) Photo-z bias

(b) Photo-z error

Figure 4.18: Bias and error plots for the DES validation sample, indicating good
photo-z results across the entire redshift range.
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Figure 4.19: The estimated redshift distribution N(z) in the DES SV-A1 imaging
catalog.

requirement. Within 0.2 < z < 0.8 the bias limits have met the requirements, but at

low and high redshifts the photo-z bias uncertainty still has room for improvement.

That being said, for z < 1.0 the photo-z uncertainties are within the 50% degradation

limit. This gives us confidence that the ArborZ photo-z estimates are ready to be

used for preliminary science. As the DES progresses and as further spectroscopic

followup occurs, we expect these uncertainties to shrink. With such a large catalog

available, many tests of cosmology can be performed, and the DES can begin to reveal

some of the universe’s secrets.
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(a) Photo-z bias

(b) Photo-z error

Figure 4.20: Bias and error plots for the DES SV-A1 imaging catalog.
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(a) Uncertainty in the photo-z bias

(b) Uncertainty in the photo-z error

Figure 4.21: The uncertainty in ArborZ’s photo-z estimates in the DES validation
test. The points indicate the uncertainties. The solid red line marks the 1% degra-
dation in the dark energy figure of merit. The dashed red line marks the 10% degra-
dation. In the upper plot, the DES science requirement is the solid black line; in the
lower plot, the DES science requirement is above the range of the plot.
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Chapter V

Constraining Cluster Redshifts

So far, we have shown that ArborZ provides an excellent methodology for estimating

galaxy redshifts, and we have argued that such estimates are necessary for doing

precision cosmology. In this chapter, we will address a particular example of ArborZ’s

application to cluster science, namely, using galaxy p(z)s to obtain cluster redshifts.

5.1 Cluster Cosmology

Clusters are an important probe of cosmology, as they are the largest gravitationally

bound structures in the universe. Quantum fluctuations seeded the initial density per-

turbations of the universe. Gravitational instabilities caused these overdense regions

to accrue additional dark matter, forming bound structures called dark matter halos.

Galaxy clusters form in these halos, and so clusters are tracers of the dark matter

distribution of the universe. The mass function dN(M, z)/dM (Jenkins et al. 2001;

Press and Schechter 1974; Tinker et al. 2008) of these halos is exponentially sensitive

to cosmological parameters (Evrard 1989; Frenk et al. 1990), making them excellent

probes of cosmology (Mana et al. 2013). Changes in cosmological parameters affect

not only the observed mass function (due to a different distance-redshift relation),

but also the predicted model (due to different predictions for the growth of struc-
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ture). An example of this is shown in Figure 5.1, where the mass function is used to

determine a best-fit cosmology using data from Chandra (Vikhlinin, Kravtsov, et al.

2009). The chief challenge associated with cluster cosmology is that cluster masses

is not directly observable. Instead, proxy measurements must be used which have

a known relationship with the cluster’s mass (Song et al. 2012; Vikhlinin, Burenin,

et al. 2009). Calibrating these proxies and controlling systematics is itself a difficult

task.

Regardless of how cluster mass is estimated, however, one must identify clusters

in the first place. How this is done depends strongly on the observed wavelength.

In the microwave, CMB photons can be inverse-Compton scattered as they pass

through the hot cluster gas, an effect called the Sunyaev-Zeldovich (SZ) effect (R. A.

Sunyaev and Y. B. Zeldovich 1972; Y. B. Zeldovich and R. A. Sunyaev 1969). The

hot cluster gas also emits high-energy photons which can be observed in the X-ray

(Gursky et al. 1971; Kellogg et al. 1971). In the optical, there are several techniques

which have emerged to address this task of cluster identification. Some of these

techniques search for local overdensities in color space (Miller et al. 2005). Others

(Hao et al. 2010; Koester 2006; Rykoff et al. 2013) take advantage of the cluster

red-sequence, also called the E/S0 ridgeline. The cluster red-sequence describes a

low-scatter, linear correlation in color-magnitude space associated with the bright,

passively-evolving elliptical galaxies which populate cluster cores (Bower, Lucey, and

Ellis 1992; M. D. Gladders and H. K. C. Yee 2000; López-Cruz, Barkhouse, and

H. K. Yee 2004; Sandage and Visvanathan 1978). This relationship is remarkably

homogeneous across galaxy clusters and has been observed for clusters at redshift

z > 1 (Hilton et al. 2009; Papovich et al. 2010). To measure the red-sequence,

candidate cluster members1 are plotted in a color-magnitude space, such as B −
1In practice, this is often done by projecting all galaxies onto the celestial sphere and measuring

the color-magnitude relationship for galaxies near the cluster’s center. The projection effect is not
particularly important, since foreground/background galaxies do not form a coherent red-sequence
(M. D. Gladders and H. K. C. Yee 2000).
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(a) Fiducial model

(b) No dark energy

Figure 5.1: Data from Chandra is used to constrain cosmological parameters using
the cluster mass function. On the top we see good agreement between the observed
mass function (points) and the predicted model (lines), indicating that the chosen
cosmological parameters (inset at top of plot) are a good fit to reality. On the bottom,
the dark energy contribution to the mass-energy of the universe is set to ΩΛ = 0. The
resulting disagreement between the observed and predicted mass functions suggests
that we do not live in a universe without dark energy. Figures taken from Vikhlinin,
Kravtsov, et al. 2009.
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R versus R, as shown in Figure 5.2, where the red-sequence becomes manifestly

apparent. The problem of measuring the slope of the red sequence is then reduced

to a relatively straightforward fitting problem (M. D. Gladders et al. 1998), although

more sophisticated weighting schemes can be used (M. D. Gladders and H. K. C.

Yee 2000). By measuring the slope of the red-sequence at different redshifts, redshift

estimates can be determined (Stott et al. 2009). Thus, the red-sequence can be used

not only for optical cluster detection, but also to estimate the photometric redshifts

of these clusters.

Cluster photo-zs estimated from the red-sequence typically have a scatter σz .

0.02 (Koester 2006; Rykoff et al. 2013), but there are other ways to estimate redshift.

For example, if a cluster-finding algorithm is capable of producing a list of probable

cluster members, then one could average the individual zphot estimates for each cluster

member. Since the error in the photo-z for the cluster would decrease with the number

Nmember of members in the cluster, one could expect reasonably accurate redshift

estimates even for small clusters with Nmembers & 5 (H. Lin et al. 2006). Since ArborZ

is capable of producing p(z) estimates for each cluster member, we are interested

in investigating the possibility of using members’ p(z) distributions to construct a

single cluster pcluster(z). This would presumably contain more information than a

single, best-estimate photo-z for the cluster, analogous to what we have observed for

galaxies in the previous chapter. Therefore, we now turn our attention to estimating

a cluster’s pcluster(z) distribution using the p(z)s of its members.

5.2 Cluster p(z)

5.2.1 Stacking Methods

There are several ways we can imagine combining (“stacking”) cluster members’ p(z)s.

The most obvious method would be to simply sum the member p(z)s:
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Figure 5.2: Six examples of the cluster red-sequence found in Abell clusters. The
color-magnitude relationship works well to find the red-sequence (marked by the
lines), since it makes bright, red cluster members obvious. Figure taken from M. D.
Gladders et al. 1998.
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pcluster(zi) =
N∑
j=1

pj(zi) (5.1)

where the sum runs over the N members of the cluster of interest. This is the same

as to calculating the redshift distribution N(z) for the cluster members. The best-

estimate cluster photo-z could then be defined as the mean or median of this pcluster(z)

distribution. This can work moderately well; however, unlike the redshift distributions

of entire samples—composed of thousands of p(z)s—the stacked cluster p(z) contains

relatively few contributions, and so it is susceptible to noise from individual galaxy

p(z)s. At zeroth order, this acts to flatten the cluster p(z), driving the median redshift

toward the center of the redshift range.

Another problem with this stacking method is that it ignores our prior knowledge

that all of these galaxies ought to lie at the same redshift. This suggests another

approach: the joint redshift distribution. Since all members of a cluster lie at the

same redshift, the probability that the cluster’s redshift is z0 is the probability that

each member is at z = z0 also. In other words, we consider the product of the member

p(z)s:

pcluster(zi) =
N∏
j=1

pj(zi) (5.2)

If each cluster member has a well-estimated p(z), this works well, and generally results

in a single, narrow peak at the cluster’s true redshift. We show an example of this

stacking method in Figure 5.3 using data from DES mocks (which we will discuss

presently).

5.2.2 Failure Modes

Although Equation 5.2 work well as a definition for the cluster pcluster(z), it is not

uncommon to find a situation where at least one member’s p(z) has no support
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(a)

(b)

Figure 5.3: Examples of cluster pcluster(z)s constructed using the joint probability
distribution of Equation 5.2. Data is taken from the DES mock catalog. The member
galaxies’ p(z)s are shown as a stacked histogram and the cluster pcluster(z) distribution
is overlaid in magenta. The true cluster redshift is indicated with a red line, and the
best-estimate photo-z—defined as the median of pcluster(z)—is indicated with a blue
line. The red number inset in the upper-right of each plot is the number of members
stacked in the cluster.
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near the cluster’s true redshift2. In these cases, that single “rogue” p(z) will cause

the cluster pcluster(z) to have zero area (or a statistically meaningless distribution,

in the event that one attempts to renormalize after being dominated by numerical

rounding error). When this occurs—which can be detected by checking if the resulting

distribution is compatible with a flat, zero-area distribution—one must discard this

cluster entirely or find an alternative way to include the rogue member (e.g., apply a

weighting scheme or use a different stacking method).

One can imagine several methods for handling this failure mode. We briefly discuss

a simple method here which constructs an estimator p̂cluster(z) for the cluster’s redshift

rather than a true probability distribution. This estimator avoids the failure mode

by treating the summed probability as a log-likelihood:

ln p̂cluster(zi) =
N∑
j=1

pj(zi) (5.3)

Because we are using the sum, we avoid the problem of a single galaxy p(z) from

destroying the information content of the cluster redshift estimator. The logarithm

will also retain the position of the most probable redshift for the stacked p(z); more-

over, the logarithm will give higher weight to more probable redshifts, helping to

reduce the noise from the sum. The choice of the logarithm is motivated only by the

analogy to log-likelihood analysis, and similar functions could be easily be used to

produce different estimators. The last remaining problem is that the minimum value

of our current estimator in any given bin is now 1. Rearranging the equation and

subtracting out the baseline value of 1, our final estimator becomes:

p̂cluster(zi) = exp

[
N∑
j=1

pj(zi)

]
− 1 =

[
N∏
j=1

epj(zi)

]
− 1 (5.4)

2Depending on the photo-z algorithm and its implementation, the value p(zi) of a particular
bin may either be exactly or approximately zero. By approximately zero we mean that the value
is so small as to be statistically indistinguishable from zero (particularly after accounting for any
numerical rounding errors on a computer).
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Figure 5.4: Relationship between the best-estimate photo-z obtained from the
pcluster(z) distribution and the median of the cluster photo-z estimator p̂cluster(z).
Data is taken from the DES mocks.

The median of this distribution then provides an estimate of the cluster’s redshift,

which is usually very similar the median of Equation 5.2, as we see in Figure 5.4.

The relationship is not perfect, but it provides a simple way to produce a meaningful

cluster photo-z without introducing more sophisticated weighting schemes.

5.3 Performance in Simulated Catalogs

Before we apply the stacking method of Equation 5.2 on real clusters, we first test it

on simulated galaxy catalogs. We turn again to the DES mocks discussed in Section

3.4. We can identify clusters using the simulation’s halo catalog, which stores the

halo properties which emerged from the N -body simulation. In order to make this

test more observationally plausible, we place a series of cuts on the halos and halo
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Figure 5.5: Cluster richness in the DES mocks after our member cuts are applied.

members. First, we only keep halos with mass M > 1.0 ·1013M�. We then select red-

sequence member galaxies that can identified using the g−r versus r color-magnitude

relationship, discarding members with i > 23. After applying these cuts, if a halo

has fewer than three members associated with it, we discard it. We are left with

12 507 halos containing a total of 102 697 member galaxies; the richness distribution

(number of members in a cluster) is shown in Figure 5.5.

We train ArborZ on the grizY magnitudes of 100 000 randomly chosen galaxies

from a tile of the DES mocks, using 100 evenly-spaced bins out to z = 1.33, with

σres = 0.02. We then evaluate ArborZ on the cluster members we identified. We stack

each cluster’s members’ p(z)s using Equation 5.2 to produce pcluster(z). The cluster’s

best-estimate photo-z zcluster
phot is defined to be the median of this distribution, and the

cluster’s error σcluster
z is defined as half of the width of the central 68% of the area of

distribution. In Figure 5.6a we plot pcluster(z) as a function of cluster redshift, and in

Figure 5.6b we plot the cluster photo-z versus ztrue. We see that pcluster(z)s perform

similarly to individual galaxy p(z)s in that keeping the full distribution preserves a

more accurate measure of the cluster’s redshift.

In Figure 5.7 we show the reconstructed redshift distribution of the clusters. Be-
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(a) Cluster pcluster(z) versus redshift

(b) Cluster zcluster
phot versus redshift

Figure 5.6: Cluster photo-z versus true redshift, using both the full pcluster(z) distri-
bution as well as its median, zcluster

phot . Using the full probability distribution produces
a less biased fit to the line zphot = ztrue.
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Figure 5.7: Reconstructed redshift distributions N(z) for the mock cluster catalog.

cause the tendency of Equation 5.2 is to drive the cluster’s pcluster(z) toward a delta

function, we smear the N(z) measurement calculated using the probability distri-

bution in order to smooth out high-frequency noise; in this case, we use a top-hat

distribution with width equal to three times the bin width. Without this convolution,

the stacked pcluster(z) distribution looks almost identical to the zcluster
phot histogram. In

Figures 5.8a and 5.8b we show the cluster photo-z bias and error, respectively, as a

function of redshift. We see low bias and error across the entire redshift range, lower

than we typically see in the photo-zs of individual galaxies (c.f. Section 3.4), which

we expect from stacking the statistical signal of multiple galaxies in the cluster. In

the range 0.3 < z < 1.1 we obtain bias and error values which approach the rough

constraint ∆z ≈ σz . 0.02 for using cluster photo-zs to constrain cosmology (D.

Huterer, Kim, et al. 2004; Ma, W. Hu, and D. Huterer 2006). With this in mind,

we optimistically continue our study of stacking p(z) in real data and compare it to

traditional red-sequence redshift estimates.
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(a) Cluster photo-z bias versus redshift

(b) Cluster photo-z error versus redshift

Figure 5.8: Cluster photo-z error and bias in the DES mock galaxy catalogs.
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5.4 The DES-XCS Cluster Catalog

As we mentioned earlier, clusters can be identified by their X-ray emissions using

space-based3 X-ray telescopes. The hot gas in clusters emits X-rays, and tracing X-

ray contours can trace the underlying baryonic matter distribution (Byram, Chubb,

and H. Friedman 1966; Cavaliere, Gursky, and Tucker 1971). The XMM Cluster

Survey (XCS; Mehrtens et al. 2012) uses archival data in the XMM-Newton science

archive to search for serendipitous X-ray galaxy clusters. Where possible, redshifts

were assigned to each cluster from a compilation (Miller et al. in prep) of previous

literature references and follow-up spectroscopic observations; cluster members were

identified using the red-sequence.

In order to apply our cluster photo-z technique to the XCS clusters, we first need

to assign imaging observables to the cluster members. We therefore match the XCS

clusters members to the DES SV-A1 imaging described in Chapter 4. In this way,

a total of 6 071 galaxies are matched to one of 127 clusters. The cluster richness

distribution is shown in Figure 5.9. Of these clusters, 74 have redshifts associated

with them, identified in Miller et al. in prep. This redshift distribution is shown in

Figure 5.10. In order to control noise, we apply a magnitude cut i < 21.5 on cluster

members, and we only keep clusters with at least three cluster members which pass

this cut. This reduces the catalog to 1 964 galaxies distributed among 73 clusters.

The next step in our analysis is producing photo-z estimates for each of the DES-

XCS cluster members. We apply the same ArborZ formalism discussed in Chapter

3 and which we used to estimate photo-zs for DES in Chapter 4. We use the DES

training set in the five grizY magnitudes in 50 equally-spaced bins out to z = 1.0

with σres = 0.02. We then evaluate on the six thousand galaxies in the DES-XCS

cluster catalog.

3The Earth’s atmosphere absorbs X-rays, requiring space-based missions to obtain precision X-
ray measurements.
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Figure 5.9: The distribution of cluster sizes in the DES-XCS cluster catalog.

Figure 5.10: The redshift distribution of clusters in the DES-XCS cluster catalog
which have known redshifts.
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Figure 5.11: The initial DES-XCS photo-z results before applying any further cuts
to the cluster members.

We can then use Equation 5.2 to construct cluster pcluster(z) redshift distributions.

However, when we plot the resulting zphot versus ztrue relation (Figure 5.11) we see

an unsatisfactory high-scatter, high-bias result. To combat this, we apply an addi-

tional cut to cluster members, demanding that an individual galaxy must pass a ppeak

threshold. Such a cut will only include galaxies with lower errors (since ppeak is corre-

lated with the error σz of a photo-z estimate). To determine the optimal cut, we plot

ppeak versus the RMS of zphot − ztrue of clusters after the cut is applied (keeping only

clusters with at least three members). As we see in Figure 5.12, we find a noticeable

minimum near ppeak = 0.75. This corresponds to keeping 52 clusters in the catalog.

We now return to estimating cluster photo-zs. The new scatter plot is shown in

Figure 5.13, where we observe a drastically improved situation. Although we have

thrown out about 20 clusters as a result, the remaining clusters photo-zs exhibit a
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Figure 5.12: Scatter in photo-z residuals zphot− ztrue as a function of ppeak. When we
apply these cuts, we discard member galaxies, which in turn could remove clusters
from the catalog entirely. We show this effect using colors and point sizes. Larger
points are associated with a greater number of clusters kept in the catalog. Redder
colors are associated with a greater number of member galaxies summed across all
clusters.

much tighter relationship with true redshift. Figure 5.14 shows the photo-z distri-

bution for the entire cluster catalog, including clusters for which we do not have

spectroscopic redshift estimates.

In Figure 5.15 we show the bias and error plots for this sample. We see that

the bias is hovering very close to zero over most of the redshift range. The error is

typically near σz ≈ 0.02–0.03 for the redshift regions with highest statistics. This

makes the stacked cluster photo-z estimates close to the outer limit of current cluster

redshift estimation techniques. To compare this performance to other methods on

the same data, we turn again to the XCS cluster catalog—the source of our cluster

list—which also contains cluster redshifts estimated from the red-sequence.

In Figure 5.16 we show the zphot versus zspec scatter plot using the cluster red-

sequence estimates from the XCS cluster catalog. By eye, the red-sequence results

look very similar to the stacked p(z) method, except that the red-sequence method

has included more high-redshift galaxies which were excluded by the ppeak cut from
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Figure 5.13: The final DES-XCS photo-z results after applying a ppeak cut to the
cluster members.

Figure 5.14: The reconstructed redshift distributions N(z) for the entire DES-XCS
cluster catalog, including clusters for which we do not have spectroscopic redshifts.
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(a) Photo-z bias in the DES-XCS cluster catalog

(b) Photo-z error in the DES-XCS cluster catalog

Figure 5.15: The photo-z bias and error plots for the DES-XCS cluster photo-z
catalog. The bias and error are both lower than for the DES catalog at large. The
dashed red lines indicate the 0.02 level in bias or error, as appropriate, which is typical
of cluster redshift estimates (Rykoff et al. 2013).
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Figure 5.16: Relationship between red-sequence photo-z estimates (zred) and true
redshift for the DES-XCS catalog.

the stacking method. The bias and error plots for the red-sequence measurements are

also qualitatively similar, as we see in Figure 5.17. Although the outliers in the cluster

red-sequence method make comparison difficult by eye (except in 0.1 < z < 0.5), the

bias in the red-sequence method is still compatible with that produced by the stacked

p(z) method.

To construct a more quantitative comparison, we plot the zphot − zspec residuals

in Figure 5.18. Both methods are peaked near zero, though the stacked p(z) method

computed using ArborZ seems to show marginally lower scatter. Excluding outliers

with ∆z > 0.2 and restricting our redshift range to z < 0.6, the RMS scatter in the

stacked p(z) method is 0.033 compared to the 0.036 RMS scatter for the red-sequence

method. Excluding outliers but without the restricted redshift range, the scatters be-

come 0.033 (ArborZ) and 0.039 (red-sequence). Including outliers and not restricting
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(a) Photo-z bias in the DES-XCS cluster catalog
using the red-sequence

(b) Photo-z error in the DES-XCS cluster catalog
using the red-sequence

Figure 5.17: The photo-z bias and error plots for the DES-XCS cluster photo-z
catalog, this time calculated from red-sequence estimates. The bias and error are
both lower than for the DES catalog at large. The dashed red lines indicate the 0.02
level in bias or error, as appropriate, which approximates the desired performance for
competitive cluster redshift estimates.

128



Figure 5.18: Comparison of the photo-z residuals zphot − zspec calculated using the
stacked p(z) method (blue) and the traditional red-sequence method (red).

the redshift range yields scatters of 0.092 (ArborZ) and 0.178 (red-sequence) Including

outliers and restricting the redshift range gives the largest difference: 0.053 (ArborZ)

and 0.178 (red-sequence). To summarize, the photo-zs produced by the red-sequence

and by the stacked p(z) method are remarkably comparable. The red-sequence is able

to extend out further in redshift without any cuts; on the other hand, ArborZ is able

to refine its cluster member selection using ppeak, which gives it a lower scatter.

Overall, the stacked p(z) method performs well, producing cluster redshift esti-

mates comparable to the commonly-used red-sequence method. ArborZ is capable

of refining the quality of its estimates by leveraging the additional information (e.g.,

ppeak) produced by full p(z) distributions. This suggests that using ArborZ to pro-

duce p(z) estimates, and stacking them as described here, will become a useful tool

in cluster cosmology, particularly as large optical surveys, such as DES, continue to

observe the universe.
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Chapter VI

Conclusion

Cosmology is a fascinating and quickly evolving field, probing the fundamental laws

of physics on its largest scales. With the birth of CCDs and the advent of powerful

computers, cosmology has truly become a data-driven science, enabling precision

cosmology with deep, large-area surveys. In particular, the DES and the SDSS have

put tremendous science potential at our fingertips, and given us more data than all

previous astrophysical experiments combined. We find ourselves at the golden age of

cosmology.

In this thesis, we argued that robust redshift estimates are necessary for achieving

many science goals. To this end, we have derived a novel method for estimating pho-

tometric redshifts (photo-zs), called ArborZ. We have demonstrated that it performs

well, even when the training set is under-represented, as is often the case for many

realistic training sets. Moreover, its p(z) distributions make it a particularly powerful

method for constraining cosmology.

We applied the ArborZ algorithm to data from the SDSS and the DES surveys,

producing photo-z catalogs—complete with p(z) estimates for each galaxy—for hun-

dreds of millions of galaxies. These catalogs open the floodgates to all sorts of cosmo-

logical probes. As a particular example, we show that using p(z)s can produce good
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cluster redshift estimates for joint DES-XCS data.

Despite these optimistic outlooks, photometric redshift estimation still has its

limitations. Their errors are several orders of magnitude larger than those for spec-

troscopic redshifts. Additionally, photo-z estimation algorithms require spectroscopic

training sets in order to accurately determine the mapping from photometric observ-

ables to redshift. An accurate mapping becomes more and more critical as large

sky surveys push our observations into high-redshift realms where few spectroscopic

redshift samples exist. This necessitates large-area spectroscopic surveys in order to

calibrate photo-z estimates. Experiments such as MS-DESI (Levi et al. 2013) will

allow photo-z algorithms to extend their application into high-redshift regimes.

That said, as DES—and future optical imaging surveys—continue to improve and

enlarge our galaxy imaging catalogs, so, too, can we expect photo-z techniques to

improve. Indeed, DES and other future surveys, such as the LSST, will rely critically

on quality photo-z estimates to obtain good science results. With such a tool in hand

as the methodology described here, we have bright hopes for the future of cosmology

and for our understanding of dark energy in the years to come.
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Appendix A

The BCAM Alignment System

A.1 Camera Alignment

The Dark Energy Survey (DES; T. Abbott et al. 2005) is a large-scale galaxy survey

which will obtain optical imaging for approximately 300 million galaxies during 525

nights of observation spread over five years. The heart of the experiment is the

Dark Energy Camera (DECam), which, on account of its 570 megapixel camera, 2.2◦

diameter field-of-view (3 deg2 per exposure), and 0.27′′ / pixel resolution, is one of the

most powerful digital cameras ever built (DePoy et al. 2008). It is installed on the

Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO)

near La Serena, Chile. Light from the sky reflects off of the Blanco’s primary mirror,

passes through DECam’s five corrector lenses and a broad-band optical filter, and

hits one of the seventy-four CCDs on the focal plane.1 The lenses, filter changer

mechanism, shutter, and CCD electronics are supported by a steel structure called

the barrel (Flaugher et al. 2012). The barrel is mechanically connected to the Blanco’s

prime focus cage through a hexapod, which can fine-tune DECam’s alignment.

1Sixty-two CCDs are used for science imaging and are 2048 px× 4096 px. The remaining CCDs
are 2048 px × 2048 px, with four begin used for telescope guiding and eight being used for optical
focus and alignment.
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Aligning such an instrument is a difficult task, and there are countless tolerances

which constrain the alignment process. At the detector level, individual CCDs must

be flat to within 3µm. The entire focal plane must be flat to within 30µm (Cease

et al. 2008). Particularly difficult to align are the optical correctors, the largest of

which weighs 380 lb and yet has an installation tolerance of ±50µm in DECam’s

barrel (Doel, T. Abbott, et al. 2008; Doel, Brooks, et al. 2012). The prime focus cage

itself is installed in the telescope’s “spider” trusses to within 1.8 mm decenter and

9 mm focus (Muñoz et al. 2012).

In fact, the entire DECam assembly—including corrector lenses, filter changer

mechanism, shutter, hexapod, CCD electronics, prime focus cage, spider, and flip

rings—weighs approximately 8600 kg (Muñoz et al. 2012). The camera is held by a

Serrurier truss 8.5 m from the declination axis of the telescope (as measured along

the optical axis), or approximately 10 m from the surface of the primary mirror. As

the telescope moves to different pointings on the sky, this massive instrument applies

tremendous torques on the telescope system due to the changing gravity vector. These

shifting forces inevitably introduce misalignment of the optical and mechanical col-

limation. Although the Serrurier truss is designed to minimize misalignments of the

optical collimation as the telescope moves, it can only do so in a crude, course-grained

manner. Small scale misalignment—on the order of a few millimeters in displacement

and a hundred arcseconds in rotation—must be corrected using the fine-tuning abili-

ties of the hexapod.

The hexapod can fine-tune the collimation of DECam with respect to the primary

mirror in five degrees-of-freedom: displacement (x, y), focus (z), and tip / tilt (θx, θy).

In displacement, the hexapod has a range of ±32 mm (though the permissible range

decreases linearly as focus is increased). It can adjust focus by ±27 mm. Absolute

rotations must be < 100′′ (Diehl 2012). The hexapod coordinate system, as used here,

is a right-hand coordinate system in which x̂ is East, ŷ is North, and ẑ is zenith, all
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measured when the telescope is pointing toward zenith. Rotations are defined around

the respective x̂ and ŷ axes in the usual manner for a right-handed coordinate system,

and the origin around which rotations are performed is the center of the focal plane.

Although the hexapod is capable of precision alignment, it needs an independent

alignment system to provide information about the current misalignment. In essence,

a feedback system is necessary, one which can both measure and correct misalignment

effects. By measuring misalignments of the telescope between exposures—while the

DECam CCDs are being read-out—updated hexapod corrections can be applied in

preparation for the next exposure.

There are two independent systems integrated with DECam which can measure

misalignments: the BCAM system and the Donut system. The BCAM system reports

on the mechanical collimation of the telescope: how DECam is oriented and positioned

with respect to the primary mirror. Its counterpart, the Donut system, is designed to

estimate the optical collimation of the telescope: artifacts in DECam’s images which

can be accounted for by relative misalignments of the telescope’s optics (Roodman

2012). The author was responsible for researching and developing the BCAM system,

which is the focus of this appendix.

A.2 Overview of BCAMs

BCAMs (Brandeis CCD Angle Monitors) are small devices equipped with a CCD

and two red diode lasers (Hashemi and Bensinger 2000); see Figure A.1 for a solid

model of the BCAMs used on DECam. When a pair of BCAMs are pointed at each

other, they can each image the other’s lasers. With knowledge of the geometry of a

BCAM setup, the locations of the laser spot positions from BCAM pairs can be used

to determine static alignments. This has already been done with great success on the

ATLAS muon spectrometer at CERN (Amelung et al. 2008). Even without a perfect
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Figure A.1: Solid model of the polar BCAMs used on DECam (top cover not shown).
The only difference between this model and the actual BCAMs used on DECam is
that the ethernet port is located on the end opposite the laser/CCD. Image taken
from Hashemi 2013a.

knowledge of BCAM geometry, relative motions can be inferred by observing how the

spot positions shift over time.

The BCAMs installed on DECam were purchased from Brandeis University. They

use a TC225P image sensor from Texas Instruments; this CCD has an active area of

3.2 mm× 2.4 mm with 10µm square pixels. Since the CCD is positioned 75 mm from

the idealized focal plane of the BCAM lens, it has a 43 mrad× 32 mrad field-of-view.

The lens itself is plano-convex with a focal length of 72 mm and a 2 mm aperture.

The two lasers are LDP65001E lasers from Lumex with a power output of < 5 mW

which project a rectangular cone of light with internal angles approximately 40◦×14◦

(Hashemi 2013a). When a pair of BCAMs are aligned with each other, one can flash

its lasers while the other records the image on its CCD; a typical image is shown in

Figure A.2. Measuring these spot positions allows the relative positions of the pair

to be constrained to within 5µrad.

The BCAMs communicate with the outside world via a device called the Long

Wire Data Acquisition (LWDAQ) driver, which was also purchased from Brandeis
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Figure A.2: A typical image taken using a BCAM. The BCAM which flashed its
lasers in this image did so for 0.6 ms per laser, for a total exposure time of 1.2 ms.
The separation between the lasing and imaging BCAMs in this pair is approximately
10 m, as measured along the line-of-sight between them. The image contrast was
increased to show the spots more clearly.

University. This is a rather primitive, hub-like device to which all the BCAMs attach.

It has one ethernet port which is used to interface with modern computer networks

via TCP/IP. The remaining eight ports are used for attaching LWDAQ devices (such

as BCAMs), and although they accept standard 8P8C connectors2, they use a custom

protocol and offer a powered connection. The LWDAQ standard is so named because

when properly shielded cables are used, it offers reliable signal transmission up to

130 m without a repeater (Hashemi 2013b). In fact, for distance < 13 m, standard,

non-shielded CAT-5 cables are sufficient for reliable signal transmission.

An outline of the intended usage of BCAMs to align DECam is as follows. Four

pairs of BCAMs have been installed on the Blanco 4 m telescope: four BCAMs

mounted directly against the primary mirror (the “lower” BCAMs) and four BCAMs

attached to DECam (the “upper” BCAMs). These locations are discussed in detail in

28P8C is the correct name for the connector which is commonly used in ethernet and CAT-5
cables, though it is often called “RJ-45.”
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Section A.3. At the end of a DECam exposure, the CCDs are read-out, which takes

approximately 17 s. Simultaneously, the Observing Tactician (ObsTac) software be-

gins slewing the telescope in preparation for the subsequent exposure. Slewing is

expected to complete before the CCDs have been fully read-out. Once the slew is

complete, one expects, a priori, that the telescope may no longer be in mechanical

alignment. So at this point, each BCAM pair flashes its lasers and has its CCDs

read out. Shifts in laser spot positions on the BCAM CCDs can then be correlated

to the relative mechanical misalignment of DECam and—as we discuss in Section

A.8—corrections can be sent to the hexapod to restore alignment and improve image

quality. The next exposure begins, and this procedure repeats throughout the night.

The BCAMs supply the hexapod with displacement (x, y) and tip / tilt (θx,

θy) measurements. Although spin θz can, in principle, be measured, the hexapod is

not capable of motion in this degree-of-freedom, and so we neglect it. The BCAMs

can only estimate focus z crudely—to within a few centimeters—by measuring the

distance between the two laser spots, but this is too large an error to be of any use

in focusing DECam; instead, the Donut system needs to be used for focus.

A.3 Hardware Placement

Four pairs of BCAMs were installed at CTIO in order to align DECam. Although

one pair is sufficient to measure all four of the BCAM-sensitive degrees-of-freedom,

multiple pairs allow for redundancy as well as the opportunity to reduce errors on the

misalignment measurements by a factor of
√
Npairs. If two pairs are used, then they

should optimally be positioned so they are not directly across from each other with

respect to the optical axis (i.e., they should not lie on a common radial line through

the optical axis); this will ensure that misalignment measurements are, in principle,

sensitive to trivial deformations of the primary mirror which would otherwise be
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misinterpreted by one pair (or two co-radial pairs). The most natural number of

pairs which is not only radially symmetric, but which also ensures redundancy and

maximally sensitive measurements, is four.

A.3.1 Upper BCAM positions

One BCAM from each pair needs to be attached to DECam; we call these the “upper”

BCAMs, since they are further from the ground when the telescope is at zenith. These

BCAMs need to be attached to the barrel of DECam, and not the prime focus cage,

since it is the barrel position which houses the camera and which the hexapod can

move. The BCAMs also need to have a clear line-of-sight view of the primary mirror

so that they can reliable image the BCAMs attached to the primary mirror (the

“lower” BCAMs). Additionally, the upper BCAMs need to be attached to a sturdy

mounting location. The “ears” of the filter-changer mechanism (FCM) provide such

a natural mounting point. These ears are constructed of rigid aluminum, are 0.190 in

thick, and welded for additional stiffness. The mounting points are 35.20 in from the

optical axis, ±26.5◦ off the ±x̂ axis (East-West), which is the same direction that the

FCM extends from DECam (as seen when the telescope is at zenith). See Figure A.3

for an image of the mounting location.

A.3.2 Lower BCAM positions

Since we are interested in misalignments of DECam with respect to the primary

mirror, the optimal installation location for the lower BCAMs is directly on the

Blanco 4 m primary mirror. The primary mirror is attached to a structure called the

mirror cell (see Figure A.4a). It has a large, circular base with twenty-four H-shaped

radial supports evenly spaced around its perimeter. Each of these supports has four

mounting plates, one in each “corner” of the H, which bolt to the primary mirror.

The radial supports themselves serve two purposes beyond merely holding the mirror:
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(a) Solid model of DECam (b) Mounting location on DECam

Figure A.3: The upper BCAMs are mounted on the ears of the filter-changer mecha-
nism. Two of these locations are indicated in orange circles in each image; the other
two locations are reflected across the ŷ axis.

they have counter-weights attached to distribute the weight of the mirror, and they

also attach the primary mirror and mirror cell to the rest of the telescope system.

In the past, these radial supports on the Blanco have failed at a rate of one to two

per year (T. M. C. Abbott et al. 2012). They were replaced with twenty-four new

supports in 2009, though the old attachment points on the primary mirror were never

removed. Thus, there are a total of forty-eight sets of four mounting plates located

on the primary mirror, with every other one no longer being used. These mounting

plates offer an ideal attachment point for the lower BCAMs (see Figure A.4b).

With these mounting plates available for attaching BCAMs, the author needed

to determine the angular position (around the circumference of the mirror) to attach

the lower BCAMs. Ideally, we want the lower BCAMs placed at the same angular

positions as the upper BCAMs, since this will simplify the alignment process. Note

that these angular positions are the same positions which minimize the line-of-sight

distances between pairs of upper and lower BCAMs. Therefore, the lower BCAMs

were installed at angular positions of 24.0◦ above and below the East-West axis,

as indicated by the orange circles in Figure A.5. In terms of the “spaces” between

attachment points seen in Figure A.5, this corresponds to the second space above and

below the East-West axis. As we discuss in Section A.4, only two of the four mounting
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(a) Mirror cell for primary mirror (b) Mirror cell with primary mirror mounted

Figure A.4: The Blanco 4 m telescope primary mirror cell, with and with the mirror
in place. The H-shaped radial radial supports are clearly visible, as are the unused
mounting plates on the primary mirror from the old radial supports. Four pairs of
these unused mounting plates were used to attach the lower BCAMs.

Figure A.5: The Blanco 4 m telescope with its primary mirror removed. This image
was taken from underneath the telescope looking toward zenith. The twenty-four
attachment points for primary mirror cell are visible just within the red ring (they
are small, rectangular metal blocks). The lower BCAMs fit between these attachment
points (at the orange circles). Note that DECam is not visible in this image; the old
prime focus cage is still in place.
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plates at a given angular position on the primary mirror are used for mounting the

BCAMs; therefore, we chose the pair of mounting plates furthest from the East-West

axis, as this proves to be slightly closer to the optimal mounting point.

A.3.3 LWDAQ position

The LWDAQ driver has several constraints governing the choice of its location. First,

it must be within reach of the cables from each BCAM. Second, it requires a network

connection in order that the alignment software can communicate with it and the

BCAMs. Third, it needs a power supply. Finally, it should be located somewhere

which is relatively convenient to access, in case maintenance needs to be performed.

The natural location satisfying all of these conditions is the Cassegrain cage below

the primary mirror of the telescope.

A.4 Hardware Design

A.4.1 Lower mounting hardware

The lower BCAM mounts were designed in two parts: a large, invar bracket which

bolts to the primary mirror and extends up the side of the mirror; and a smaller,

kinematic angle mount which holds the BCAM and attaches to the bracket. Together,

these two pieces of hardware must secure the lower BCAMs to the primary mirror

and allow for some simple angular adjustment in order to align the BCAMs. In the

design of these parts, it is critical that the BCAM hardware touch only the mirror

and not the telescope; otherwise, the mirror would be mechanically coupled to the

telescope in a way that would not be adequately understood.

We first discuss the kinematic angle mounts. These mounts must hold the BCAMs

firmly in place and reliably retain their alignment in the event that a BCAM is
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Figure A.6: The kinematic angle mounts which provide angular adjustment for the
lower BCAMs. The two plates make an angle of 6.4 deg at the hinge. The three
kinematic mounting points are visible on the upper plate. The RS-40 stage is visible
between the hinged kinematic mount and the invar bracket.

removed and reattached. We can accommodate reliable and repeatable alignment

by use of a kinematic mount. This mount is machined from aluminum, and has

three cone-shaped groves in it. Quarter-inch steel ball bearings sit in these grooves

and provide precision contact points for the BCAMs. The BCAMs screw into the

kinematic mount with a M4× 50 mm screw.

This kinematic plate is then hinged to a second plate, also machined from alu-

minum. In order to prevent reflection during observing, both plates of the hinged

kinematic mount are anodized black (type II, class 2). See Figure A.6 for a detailed

image of this mount. The hinge between the two plates provides angular adjustment

in the radial direction (with respect to the primary mirror). The hinge itself has

three parts. First, there is a phosphor-bronze sheet spring which is screwed into both

plates, acting as a traditional hinge. Second, there are two, steel expansion springs

(Lee Spring, P/N: LE 022C 01 S) which help to close the hinge and guide the plates.

These springs were chosen so that their spring constant provided more than twice the

force needed to keep the hinge closed even with the BCAM attached and held upside

down. Finally, there is an adjustable limit screw which sets the angular adjustment.
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This screw is rotated and locked into place so that the two plates form an angle of

6.4◦, which is the radial alignment angle predicted by our telescope model.

The tangential angular degree-of-freedom is accommodated by an RS-40 rotation

stage from Newport, which provides 360◦ of course adjustment and 10◦ of fine adjust-

ment. The two hinged kinematic mount plates screw into the rotation stage, which

in turn is bolted to the large, invar bracket (described below). In principle, our tele-

scope model suggests that no tangential adjustment is necessary in order to align

the BCAMs; however, we decided to keep this degree-of-freedom available in case it

proved necessary to allow a wider range of alignments.

Now we discuss the large, invar brackets. These brackets need to bolt to the

primary mirror and extend up the side of the mirror (without contacting the tele-

scope), sticking out a few inches above the mirror in order to attach the BCAMs.

The dominant constraints to consider when designing the brackets are flexure due to

gravity and deformation due to thermal expansion. Since the BCAMs are precision

alignment devices, even small, micron-scale motions of the brackets will dominate the

BCAMs statistical error, unnecessarily reducing the accuracy of their misalignment

measurements. In fact, using simple trigonometry we can see that a 10µrad deflection

in the bracket will introduce a 100µm deflection of the BCAMs’ lasers as seen by the

upper BCAMs.

Several preliminary measures were taken to reduce these effects. First, each

bracket was milled from a solid block of invar. This removes shear forces which

would otherwise be present at any mechanical junctions. Second, the bracket bolts

to two of the mounting plates on the primary mirror, which minimizes both shear

on the mirror as well as flexure due to gravity. Finally, gussets were milled into the

brackets to distribute strain and minimize flexure.

The exact shape, material, and dimensions of the brackets were fixed using Euler-

Bernoulli beam theory to model the cantilever section of the bracket. This equation

144



relates a simple beam’s deflection to its load:

d2

dx2

(
EI

d2w

dx2

)
= q (A.1)

where w(x) is the deflection of the beam at a distance x from its fixed end, q is the

load (force per unit length), E is the elastic modulus of the material, and I is the

second moment of area of the beam’s cross-section. For the lower BCAM mounting

bracket, we consider a constant E (homogeneous material) and constant I (fixed

cross-section). We model the load as a uniform load due to the weight of the beam

itself (mass M and length L), plus a distributed load from position xa to xb due to

the added mass of the BCAM and mount which attach to the bracket (mass m and

length `). Mathematically, this is:

q(x) =
Mg

L
+
mg

`
〈x− xa〉0 〈xb − x〉0 (A.2)

where 〈x− a〉n are the singularity functions and g is the acceleration due to gravity.

The properties related to the small BCAM mounts (m, `, ∆x = xb − xa) are fixed

by our previous discussion, and we attach the BCAM mounts to the very end of the

bracket (so that xb = L). We chose invar as the material due to its extraordinarily

small coefficient of thermal expansion: ≈ 1–2µm/m/ ◦C (Shackelford 2001). This

choice of material sets the value of E and the density (which gives us M once we

choose a cross-section). The cross-section selected is an I-beam, as it proved to be

the stiffest cross-section we examined. We chose the precise dimensions of the bracket

cross-section by numerically minimizing the maximum deflection of the bracket. As

used here, “maximum” deflection is the maximum possible deflection induced by

gravity, which occurs when the brackets are oriented horizontally.

The final, machined brackets, shown in Figure A.7, each weigh approximately

12 lb. The maximum flexure predicted by the model for deflections in the radial di-

rection of the primary mirror (i.e., along the “strong” axis of the I-beam) is 1.8µm,

145



Figure A.7: Solid model of the large, invar mounting brackets used to attach the
lower BCAMs and their kinematic angle mounts to the primary mirror. The side
which bolts to both the primary mirror and the kinematic angle mount is facing out
of the page in the bottom view.

corresponding to an angle of 6.3µrad and an induced deflection of the BCAM lasers

of 63µm (as seen by the upper BCAMs). The maximum flexure along the tangential

(“weak”) direction is 3.4µm, corresponding to an induced deflection of the BCAM

lasers of 119µm. Of course, the telescope will never point horizontally, so the maxi-

mum deflection one expects during normal observing will be smaller than the numbers

quoted here. In practice, one expects the errors introduced by flexure to be of the

same order as the statistical accuracy of the BCAMs.

A fully assembled and aligned lower BCAM is shown in Figure A.8a.

A.4.2 Upper mounting hardware

Compared to the lower mounting hardware, the upper BCAM hardware is smaller

and lighter, since no large extension bracket is necessary. However, since a BCAM’s

field-of-view is an elliptical cone (rather than a circular cone), we can maximize the
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(a) Lower BCAM (b) Upper BCAM

Figure A.8: Fully assembled and aligned BCAMs on the Blanco 4 m telescope. The
lower BCAM is attached directly to the primary mirror, and extrudes minimally over
the mirror through a gap between the mirror surface and the baffle on the telescope
wall. The upper BCAM is attached to the ears of the FCM.

overlap of the field-of-views of paired BCAMs by making sure that, in addition to

simply “looking toward” one another, they are also aligned in the same way around

their line-of-sight. Since the lower BCAMs cannot rotate around their line-of-sight,

we build this last rotational degree-of-freedom into the upper mounts. This was

achieved with a M-RN-50 ball-and-socket stage from Newport which allows for a

full 360minimizes rotation along the line-of-sight and ±25minimizes of tip / tilt in

any direction. It also features a locking clutch to prevent further motion after being

aligned.

Like the lower BCAMs, the upper BCAMs are attached via a kinematic mount.

This kinematic mount is part of a right-angle mount which is bolted to the ball-and-

socket stage. The right-angle mount was machined from aluminum in three pieces,

all of which were anodized in the same way as the lower BCAM mounting hardware.

The ball-and-socket stage, now holding the right-angle mount and attached BCAM,

is mounted onto a thin piece of G10 using eight mounting bridles. The G10 was neces-

sary to ensure electrical isolation between the BCAM system and the rest of DECam.

This G10 plate was screwed onto the FCM from the inside (although the screw doesn’t

pass all the way through, so electrical isolation still holds). It was also glued in place
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Figure A.9: The right-angle mount, ball-and-socket stage, and G10 plate which con-
stitute the upper BCAM mounting hardware. The three ball bearings can be seen
sitting in place on the kinematic mount. The right-angle mount is reinforced with a
spine (not visible in this image) on the rear of the kinematic mount.

using DP-190 structural epoxy as an additional precaution against mount failure.

The assembled upper mount (sans BCAM) can be seen in Figure A.9, and a

completely assembled and aligned upper BCAM is shown in Figure A.8b.

A.4.3 Cabling

Each of the eight BCAMs requires a cable to connect it to the LWDAQ driver located

in Cassegrain cage. In the case of the lower BCAMs, which are mounted to the pri-

mary mirror, four 20 m cables were run from the LWDAQ driver, around the perimeter

of the primary mirror, and up to each of the four BCAMs. The upper BCAMs were

slightly more complicated: four 50 m cables were run from the Cassegrain cage; up

the cable wrap, which is attached to one of the legs of the Serrurier truss; through the

flip ring (which allows DECam to rotate 180 deg and reflect light back into a detector

in the Cassegrain cage, thereby allowing for a larger camera aperture); and finally

down the spider to the upper BCAMs.

The cables used for both the upper and lower BCAMs are longer than the non-
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shielded limit of 13 m; therefore, the author custom-made CAT-5e cables. The cable

was obtained from Four Star Wire & Cable, Inc., P/N F20682ST-20. This cable has

four twisted pairs of 24 AWG solid, copper conductors surrounded by a foil shield.

Standard CAT-5 modular plugs, strain reliefs, and boots were attached to the cables3.

These cables were tested before shipment to CTIO and no noticeable signal loss was

observed.

A.5 Alignment

As mentioned previously, our telescope models were a great aid in determining course

alignment for the BCAMs. In order to align a pair of BCAMs, we continuously flash

one of the BCAMs and keep its alignment fixed. We then read off the second BCAM’s

CCD while adjusting its alignment. This works well because the BCAM lasers act

like point sources, so adjusting the flashing BCAM only minimally changes its image

as seen by the second BCAM (in the limit of large distances).

Our alignment process for BCAMs on the Blanco 4 m telescope was performed

in three parts. First, we roughly aligned the lower BCAMs before installation using

the information from our telescope model. The purpose of this was to ensure that

the lower BCAMs’ lasers would be visible to the upper BCAMs. Then we installed

the lower BCAMs, followed by the upper BCAMs. While flashing the lower BCAMs,

we moved the upper BCAMs around until alignment was achieved. We then locked

the clutch on the upper BCAMs and epoxied the ball-and-socket joint to prevent

any long-term shifts in alignment. With the upper BCAMs now aligned, we finally

returned to the lower BCAMs and fine-tuned their alignment while flashing the upper

BCAMs.

3Digi-Key part numbers A9115-ND, A9130-ND, and H11478-ND, respectively
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A.6 Software Design

The minimal requirements for BCAM software are two-fold: it must be responsible

for communicating with the BCAMs via the LWDAQ driver, and it must interface

with the DES software architecture known as SISPI (Survey Image System Process

Integration; see Honscheid et al. 2008 for details). SISPI will be responsible for de-

termining when the BCAMs should be read out, it will store all acquired BCAM

data in the telemetry database, and it will (via the active optics system) feed back

BCAM measurements to the hexapod. However, since the BCAMs are flashed be-

tween DECam exposures, the BCAM software also must acquire and analyze BCAM

data quickly, lest precious survey time is unnecessarily lost.

Although Brandeis University provides software for communicating with the BCAMs

via the LWDAQ driver, the author developed in-house software to solve this problem.

There were several factors influencing this decision. First, SISPI uses Python for high-

level interfacing with the various software subsystems, whereas the provided LWDAQ

software is written in Pascal. By writing hardware drivers in Python, we can ensure

smoother software integration. Second, Pascal is itself an obsolete language; code

maintenance can become an avalanching nightmare if the software is not written in a

ubiquitously supported modern language. Finally, and perhaps most importantly, the

provided LWDAQ software is meant to solve the general problem of using BCAMs

for alignment, reading off the entire BCAM CCD after every exposure and processing

pairs of BCAMs serially. By writing custom software, we can drastically increase the

computational performance of the BCAM system.

Let us discuss this last issue in more detail. At 10 m separation, the BCAM spots

are small and close together, and the small motions induced by misalignment span

only a few pixels on the CCD. This means that we can read out small portions of

the CCD without losing any information. On some systems, this speed gain could be
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negligible; however, the LWDAQ driver has a relatively slow clock speed, and reading

off eight pairs of BCAMs would take nearly eight seconds. Therefore, the author’s

software determines the optimal CCD patch to read out, reducing readout time by a

factor of more than four. This heuristic is described below as part of the calibrate()

function.

Having decided that these advantages were worth the effort of developing custom

in-house software, the author implemented a BCAM class in Python which is responsible

for creating a network connection with the LWDAQ driver and managing communi-

cation with the BCAMs. It functionality is divided across several member functions:

• start(). This function takes the IP address of the LWDAQ driver (supplied

by SISPI) and initializes the network connection.

• expose(). This function clears the BCAM CCDs and flashes their lasers for

given exposure interval.

• readout(). This function reads out the BCAM CCDs (using the heuristic

determined by calibrate()). It then analyzes the signal / noise properties

of the resulting image and uses them search for laser spots. When it finds a

spot, it returns the position of the spot’s intensity-weighted centroid, which

has a resolution better than 0.5µm (5% of a pixel width) (Hashemi 2013a).

The function ultimately returns the two (x, y) spot positions from each of the

eight BCAMs (32 floating-point numbers total), reporting (−1,−1) for a spot

position if it failed to find that spot. All valid spot positions are quoted in units

of microns relative to the origin (upper-left corner) of the CCD.

• acquire(). This is essentially a convenience function which calls expose() and

readout() in succession.

• calibrate(). This function calibrates the BCAM system, and is designed to be

called once per night, preferably with the telescope at the same position. The

151



BCAMs on DECam are calibrated once a night during dome flats when the

telescope is pointing at the flat-field screen. The calibrate() function works

by disabling any heuristics and then calling acquire(). It records the current

spot positions, which are used to tare the BCAMs system later in the night

during calls to analyze(). If a calibration of this type were not performed, both

long- and short-term misalignments (say, due to nightly or seasonal temperature

fluctuations) would contaminate the BCAM signal. The calibrate() function

also uses these spot positions to determine a rectangular box on each BCAM’s

CCD where the spots are likely to be. This heuristic is then used (until the

next call to calibrate() to drastically increase the readout speed.

• analyze(). This function takes the spot positions found during acquire(),

subtracts out the calibration determined by calibrate(), and applies the for-

malism discussed in Section A.7.1 to transform spot positions into hexapod

corrections. The return value is a Python dictionary with keys: dx, dy, aX,

aY, aZ. The respective dictionary values are misalignment corrections in units

of microns (for displacements dx, dy) or arcseconds (for rotations aX, aY, aZ).

Thus, a dx value of 105.4 means that the BCAMs believe that the hexapod

should increase its x-position by 105.4µm. Note that although this dictionary

returns aZ, it is always set to zero, since we do not attempt to measure this

degree-of-freedom.

A.7 Measuring Alignment

Although reading spot positions off of each BCAM CCD is a straightforward task,

we still need to map these readings to useful information about misalignments. This

transformation is essentially determined by the geometry of the telescope and the po-

sitions of the BCAMs. We discuss the model we use, how we calibrate its parameters,
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and how we test the calibration in the following sections.

A.7.1 The Alignment Model

The primary assumption in the BCAM alignment model is that the system behaves

approximately linearly; that is, shifts in the BCAM spot positions are proportional

to hexapod motions. A priori, we expect this assumption to hold, since the misalign-

ments we are measuring are extremely small. This assumptions greatly reduces the

complexity of the misalignment problem.

To understand the reasoning behind the alignment model we use, it is worth

considering what types of motion the hexapod induces in the BCAM spot positions.

If the hexapod translates in x or y, the upper and lower BCAMs will measure a

symmetric (equal magnitude) spot shift. A hexapod rotation in θx or θy, however,

will induce asymmetric motion. This is because the center of rotation for the hexapod

is the center of the focal plane, and the lever arm from the focal plane is much larger

for the lower BCAMs than for the upper BCAMs. Thus, one expects the upper

BCAMs to measure a larger spot shift than the lower BCAMs when a rotation is

performed.

This is the key to being able to separate the degeneracy between translation and

rotation. If all hexapod motions effect linear shifts of the BCAMs’ spots, then we can

separate translation from rotation with a single pair of BCAMs. By subtracting the

spot shift seen by the lower BCAMs from the spot shift seen by the upper BCAMs,

we are left with asymmetric motion which we can attribute to rotation. Similarly, we

can then determine what the symmetric motion due to translation is. Note that in

the formalism which follows, we average the positions of the two spots on the CCD

in order to get a more precise estimate of the spot position.

Since our fundamental BCAM observable is the shift in spot position relative to

the calibration zero-point, it will become useful to talk about “CCD coordinates,”

153



which are spot positions measured in microns on the BCAM CCDs relative to the

current calibration zero-point:

(
x
y

)
CCD

=

(
x
y

)
spot

−
(
x
y

)
calibration

(A.3)

and so forth for all BCAMs. Of course, each BCAM is rotated with respect to the

East-West axis; that is, a hexapod motion toward East (hexapod x̂) will be seen as

a motion in both x and y on the BCAM CCDs. Thus, our next step is to rotate the

CCD coordinates so that align with the hexapod coordinate system. We call these

rotated coordinates “BCAM coordinates.” The angle θ which rotates the coordinate

system is different for each BCAM. Thus, the conversion from CCD coordinates to

BCAM coordinates is:

Lower:

(
x
y

)
BCAM

=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
CCD

Upper:

(
x
y

)
BCAM

=

(
1 0
0 −1

)(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
CCD

(A.4)

where the reflection matrix converts the upper BCAM coordinate system into a right-

handed coordinate system. The additional reflection for the upper BCAMs is due to

the geometry of the BCAM CCD.

Now we need to relate these BCAM coordinates to “hexapod coordinates,” the

physical coordinates system of the hexapod. To do this, we must first realize that a

translation in −x̂ aliases a rotation θy around +ŷ, and a translation in +ŷ aliases a

rotation θx around −x̂. Proving this is simply of matter of visualization the telescope

system and imagining what pairs of BCAMs observe as the hexapod is moved. With

this in mind, we can use our assumption about linearity to write:

(
x
y

)
BCAM

= kt

(
x
y

)
hexapod

+ kr

(
0 −1
1 0

)(
θx
θy

)
hexapod

(A.5)
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Here, kt is the constant of proportionality for translations; it is the same for all

BCAMs. kr is the constant of proportionality for rotations; it has one value for

the lower BCAMs and a second value for the upper BCAMs, due to the nature of

the asymmetric spot motion caused by rotations. x, y, θx, θy are the four hexapod

coordinates. Multiplying these hexapod coordinates by −1 yields the values returned

by analyze().

Since we have four unknowns—the four hexapod coordinates—we can solve the

system exactly by choosing any pair of BCAMs: one lower and one upper. Note that

it is necessary to have one lower and one upper BCAM; otherwise, the degeneracy

between translations and rotations cannot be broken.

A.7.2 Determining Model Parameters

There are a total of 11 parameters in this alignment model: kt, the two values of

kr, and the eight possible rotation angles θ. To determine these parameters, we

performed a hexapod test after aligning the BCAMs. With the telescope at a fixed

location, we recorded the movement of the BCAM spots while moving the hexapod

in +x̂. This is sufficient to determine kt and all eight θ values. We then repeated

this test, but moved in θx instead of x̂. This determined the two values of kr. We

continued the test for the remaining degrees-of-freedom to ensure the consistency of

our model. We also moved in combinations of the degrees-of-freedom to guarantee

that the assumptions about linearity still held. We saw no noticeable deviations from

the model throughout these commissioning tests.

We found that k−1
t = 132µm/ µm, meaning that a hexapod translation of 132µm

induces a 1µm shift of the spot positions on the BCAMs’ CCDs. Since our spot anal-

ysis algorithm can determine the centroid of the spot positions to better that 0.5µm

on the CCDs, our expected statistical error for measuring translation is < 66µm.

Similarly, we found that k−1
r,upper = 2.54 arcsec/ µm and k−1

r,lower = 32.4 arcsec/ µm, val-
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idating our argument that the upper BCAMs are more sensitive to rotations. This

also caps our statistical error on measuring rotations to < 1.25′′. Both of these are in

agreement with the quoted BCAM resolution of 5µrad.

Of course, we can cross-check the sanity of these measurements by comparing

against our detailed telescope model. Since the upper BCAMs are aligned by hand,

it is difficult to accurately estimate the θ value a priori. However, the three most

important parameters—kt, kr,lower, and kr,upper—-can be predicted. The largest error

is for kr,lower, which we measured to be 0.66% larger than predicted, indicating that

the model parameters are behaving as expected.

In fact, since these model parameters encode information about the telescope

geometry, we can go a step further and attempt to extract geometric information

from them. For example, we know that the center of rotation for the hexapod is the

DECam focal plane. Therefore, we can numerically find the distance to the focal

plane which produces model predictions in agreement with our measured parameters.

We estimate the focal plane to be 25.23 in away from the upper BCAMs, in the +ẑ

direction. The DECam engineers tell us (Stefanik 2012) that the actual specification

is 25.45 in, an error of only 0.87%. Again, this gives us confidence that our model is

working as expected.

A.7.3 Commissioning Tests

After checking our model parameters, we performed a hexapod test to ensure that

the BCAMs were properly inferring misalignments. This was done with the telescope

stationary, pointing toward the flat-field screen. The hexapod was stepped slowly in

each of its degrees-of-freedom. Each degree-of-freedom was exercised independently,

and when it wasn’t being changed it was set to zero. Figure A.10a shows the position

of each hexapod degree-of-freedom. The transformation from BCAM spots to mis-

alignments was performed using the model parameters determined in Section A.7.2.
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The results of each of the four BCAM pairs were averaged together (to improve sta-

tistical precision). This final misalignment estimate should be equal to the current

hexapod position, up to a constant offset (due to the fact that BCAMs measure rel-

ative alignment), so in Figure A.10b we plot the difference and subtract the constant

factor, which should be consistent with zero. We also calculate the standard devia-

tions in each of the degrees-of-freedom, and find them to be 27.4µm, 16.5µm, 0.71′′,

and 0.8′′ for each of x, y, θx, and θy, respectively. After accounting for the improved

statistical precision gained by combining multiple BCAM readings, these errors are

consistent with the expected errors discussed earlier.

After satisfying ourselves that the BCAM model was working correctly, we used

this additional data to better constrain the BCAM model parameters. Re-analyzing

this data with the updated model improved the errors by approximately 15%.

A second test was done while the telescope was tracking at the sidereal rate over

the course of an hour. Not only was tracking performed (and images taken), the hexa-

pod settings were purposely changed between many of the exposures. We applied our

same BCAM model to the data, averaging over the four pairs to improve precision.

Figure A.11 shows the mean-subtracted residual between BCAM misalignment mea-

surements and the hexapod settings, which should be consistent with small flexures

due to tracking. This is exactly what is observed, with errors of 27µm, 12µm, 0.6′′,

and 0.7′′ on x, y, θx, and θy, respectively, around their best-fit lines.

A.8 Current Applications and Results

The BCAMs are part of the DECam active optics system (AOS). They are currently

flashed between every exposure and the misalignment measurements and fed into the

AOS, which uses BCAM and Donut data to produce a hexapod correction. This is

done using a pre-generated look-up table (LUT) which contains the expected correc-
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(a) Hexapod Position

(b) BCAM − Hexapod Residual

Figure A.10: Results of the commissioning test for the BCAMs. The upper figure
shows the current hexapod position at each exposure. Each degree-of-freedom was
exercised independently, and when a given degree-of-freedom wasn’t being tested, it
was set to zero. The lower figure shows the BCAM − hexapod residual, which—if
the BCAMs are working properly—should be consistent with zero (within errors).
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Figure A.11: Results of the BCAM-hexapod test performed while tracking with the
telescope at a fixed (RA, Dec) pointing. Shown is the residual between BCAM-
inferred misalignments and the actual hexapod settings. Since BCAM measurements
are relative, the mean was subtracted to make the residual easier to see. The slopes
in the plot are consistent with tracking.

tions for the current telescope pointing. The AOS then uses the current misalignment

readings to tweak the LUT values. This allows for crude AOS adjustments even in

the absence of BCAM or Donut data, or when data from either system is too noisy

to be useful. Moreover, having a LUT contributes greatly to a better understanding

of flexure in the DECam / telescope system.

The BCAMs generated their LUT by during an altitude-azimuth scan, which took

data at 25 different azimuth angles for each of five different altitudes. See Figure A.12

for plots of the results. We find that displaying these results as a vector field offers the

most intuitive insight into the measured misalignments. In words, DECam as a whole

sags away from zenith, but the bottom (mirror side) tips toward zenith. This LUT

indicates that the maximum absolute misalignments in x, y, θx, and θy are 2860µm,

3232µm, 157′′, and 149′′, respectively. These are large deviations in optical terms,

illustrating the importance of a precision alignment system.

In addition to produce a LUT for the AOS, additional benefits are reaped from

multiple altitude-azimuth scans. For example, by taking several scans in succession,
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(a) (x, y) Look-up Table

(b) (θx, θy) Look-up Table

Figure A.12: The BCAM look-up table (LUT). These tables were generated by mov-
ing the hexapod in circles in azimuth, and repeating at several altitudes. The results
are shown as a vector field zeroed at zenith. The centers of the arrows correspond
to the telescope pointing, the length of the arrows are proportional to the magnitude
of the misalignment, and the direction of the arrows is the BCAM measurement of
the current misalignment. An arrow pointing to the North-East indicates that the
hexapod is currently displaced—or angled, depending on the plot—too far toward the
North-East (as measured if the telescope were at zenith). For scale, the magnitude of
the largest arrow is quoted in the corner of each plot. The gray guide lines indicate
zenith.
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the effects of mechanical hysteresis in the telescope system can be measured. This was

done during DES science verification (SV) to help the telescope engineers understand

certain problems with the telescope system. Hysteresis was observed on the order

of 100µm–200µm in translation and ≈ 10′′ in rotation. Additionally, by repeating

altitude-azimuth several times over the course of an observing season, one can observe

any long-term shifts in the alignment. Qualitatively, misalignments behave the same

from month to month, but quantitively one observes offsets of order 400µm–500µm in

translation and ≈ 10′′ in rotation. Although some of this shift is due to hysteresis, this

may indicate that there are long-term shifts of DECam with respect to the primary

mirror.

The BCAMs also have potential for improving image quality. The Donut system

measures optical alignment directly, and so, in principle, their misalignment measure-

ments are more strongly correlated with image quality than the BCAMs’. However,

the Donut estimates are also much noisier than BCAM data. Thus, it is possible

that even though mechanical and optical collimation differ, the higher signal-to-noise

measurements produced by the BCAMs may be sufficient to improve image quality.

To study this effect, image quality data from over four months of DES data was

collated. During this period, the AOS used only Donut data to adjust the hexapod.

In Figure A.13 we show the BCAM misalignments in each degree-of-freedom plotted

against the PSF flux radius from DES images. There are clear correlations between

BCAM data and image quality. In fact, since the BCAMs were not used to determine

the hexapod position, this data necessarily includes noise from the Donut system.

If BCAM measurements were incorporated into the AOS, then we would expect the

correlation to strengthen and the noise decrease.

The only thing necessary for adapting the BCAMs for use in the AOS is that, since

the BCAMs measure relative misalignments, a reference point must be chosen. The

best choice, of course, can be read directly off of A.13, and is approximately 680µm,
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Figure A.13: Correlation of image quality with BCAM data for each of the BCAM
degrees-of-freedom. Error bars are standard errors on the mean. Clear trends are seen,
implying that the BCAMs could potentially be used for active hexapod corrections,
despite measuring mechanical—not optical—collimation.

−1520µm, 29′′, and 56′′ in each of x, y, θx, and θy, respectively. So to produce the

BCAMs’ estimate of the optimal optical alignment (relative to the current hexapod

position), one simply subtracts these values from the BCAM readings.

A.9 Conclusions

The BCAMs are precision alignment devices which use lasers to determine relative

motion. Four BCAMs have been installed on DECam and are paired with four respec-

tive BCAMs attached directly to the Blanco 4 m primary mirror. By measuring the

shifts of the laser spot positions on each BCAM’s CCD, the mechanical misalignment

of DECam with respect to the primary mirror can be estimated. Their measured ac-

curacy is < 30µm in translation and < 1′′ in rotation. These low noise measurements

provide intuitive insight into the mechanical deformation of the telescope system.
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Although optical and mechanical collimation are different, the BCAMs readings are

clearly correlated with image quality, suggested that improved image quality can be

obtained by further integration of the BCAMs into the AOS / hexapod feedback

system.
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Appendix B

Adaptive Catalog Matching

B.1 The Matching Problem

One of the major impediments to producing quality photometric redshift (photo-z)

catalogs is the lack of sufficient spectroscopic catalogs. Empirical photo-z estima-

tion algorithms require a training set of imaging observables paired with precision

(spectroscopic) redshifts. However, photometric and spectroscopic data are obtained

separately on different instruments, and often on different telescopes and at differ-

ent sites. Moreover, spectroscopic and imaging surveys have different science goals

and methodologies. Spectroscopic surveys usually focus on relatively small patches of

sky with specific targets designated for spectroscopy; imaging surveys, on the other

hand, generally cover a larger patch of sky and do not need to pre-select targets, since

everything in the instrument’s field-of-view is imaged. To further complicate the dis-

cussion, galaxy positions are subject to astrometry errors, and so the same galaxy will

be measured to have a slightly different position on the sky when measured multiple

times or by different instruments. This makes the problem of combining, or matching,

spectroscopic and imaging catalogs into a single training set a challenging problem.

An obvious and simple way to solve this problem is to project both catalogs
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onto the two-dimensional sky. Each spectroscopic entry is then matched—assigned

to a imaging counterpart—to the nearest object in the imaging catalog. As a sanity

check, a maximum matching distance (called the “cutoff” radius) is usually enforced.

For its simplicity, this method works quite well, and is the most commonly used

matching method is astronomy (Blanton, D. J. Schlegel, et al. 2005; Dahlen et al.

2010; Schneider et al. 2010).

This “nearest-neighbor” matching is simple, and as such overlooks several sub-

tleties. For example, the deeper the imaging catalog is—or, conversely, the shallower

the spectroscopic catalog—the more likely it is that you will produce an incorrect

match. In addition, different surveys have different astrometry errors, so although a

match may be correct if the astrometry is good in both the photometric and spec-

troscopic surveys, bad astrometry in one survey may lead to incorrect matches (or

an overly conservative cutoff radius, artificially reducing the number of matches).

To solve these shortcomings, additional complexity needs to be introduced into the

matching algorithm. To the author’s knowledge, the only alternative is a likelihood

ratio approach (Sutherland and Saunders 1992; Wang and Rowan-Robinson 2009;

Wolstencroft et al. 1986). This method is much improved over the crude, nearest-

neighbor approach, though it does require estimating several a priori distributions.

As an alternative, we introduce a new method for matching. It has the advantage

of being simple, with an elegant analytic result. Of particular interest is its ability

to estimate the purity of the matched catalog. This allows one to study the effects

of impure training sets—ones sprinkled with incorrect redshifts—on the quality of

photo-z estimates.
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B.2 Derivation

To motivate the derivation, consider again the nearest-neighbor method. This method

works well most of the time because modern astrometry errors are small compared

to the average nearest-neighbor distance between two galaxies on the sky. Of course,

error distributions have tails, and sometimes a galaxy’s true position must fall further

than average from its true position. Additionally, once a clean sample is selected in

the imaging catalog, there may no longer exist a true match to a given galaxy. These

problems introduce rogue matches which require a cutoff radius to curtail. This is not

a problem per se, but it begs the fundamental question: what cutoff radius should be

chosen so as to maximize the number of correct matches found while simultaneously

minimizing the number of incorrect matches?

To answer this, consider the problem of matching a particular spectroscopic entry

to exactly zero or one entries in an imaging catalog. We assume there is no systematic

offset in the position measurements of the two catalogs1. If the spectroscopic and

imaging surveys have normally-distributed statistical errors σs and σp, respectively,

then we can simplify the math by treating the astrometry in the spectroscopic catalog

as perfect and instead considering the astrometry in the imaging catalog to have an

error σ =
(
σ2
s + σ2

p

)1/2
. The second assumption that we make is to ignore clustering in

the imaging catalog; that is, we treat the spatial distribution of galaxies in the imaging

catalog as a Poisson distribution with expectation value λ. This is a simplifying

assumption: we know that galaxy-galaxy spatial correlations exist; however, these

correlations are small on the arcsecond scales that we are considering.

Now consider a single entry in the spectroscopic catalog. Let f be the probability

that the imaging catalog contains an entry describing the same physical object; we

1Although the formalism could be extended to include a systematic offset, it is typically easier to
simply use several bright stars to subtract out any systematic differences between the photometric
and spectroscopic catalog before matching.
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do not, a prioiri, know f , and the value of f is not affected by our ability or inability

to actually find the match in the imaging catalog. By hypothesis, astrometry errors

are Gaussian, so the probability pm(r) of the photometric match falling within a

distance r—as measured on the sky (in, for example, arcseconds)—is simply f times

the integrated two-dimensional Gaussian PDF:

Pm(r) = f

(
1√
2πσ

)2
r∫

r′=0

2π∫
θ=0

e−(r′)2/(2σ2)r′ dr′ dθ (B.1)

= f
(

1− e−r2/(2σ2)
)

(B.2)

Meanwhile, “background” galaxies may randomly fall within this radius r; these

are galaxies which are not associated with the spectroscopic object, but rather other

entries in the imaging catalog which introduce matching noise in the catalog. If these

are approximately Poisson distributed, then on average we will find λ = πr2ρ within

a radius r (where ρ is the average areal density of galaxies in the imaging catalog)

and the probability of finding exactly k background galaxies within radius r is:

PPois(k | λ(r) = πr2ρ) =
λke−λ

k!
(B.3)

Therefore, the probability of finding at least one background galaxy in radius r is one

minus the probability of not finding any galaxies in the area:

Pb(r) = PPois(k > 0 | λ(r)) (B.4)

= 1− PPois(k = 0 | λ(r)) (B.5)

= 1− e−πr2ρ (B.6)

The probability, therefore, that the distance rNN to the nearest neighbor of the

spectroscopic galaxy—whether or not it is a correct match at radius rm or a back-

ground galaxies at radius rb—falls within a radius r is:
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P (r) = Pr(rNN < r) = Pr(rb < r ∪ rm < r) (B.7)

= Pr(rb < r) + Pr(rm < r)− Pr(rb < r ∩ rm < r) (B.8)

= Pb(r) + Pm(r)− Pb(r)Pm(r) (B.9)

=
(

1− e−πr2ρ
)

+ f
(

1− e−r2/(2σ2)
)
− f

(
1− e−πr2ρ

)(
1− e−r2/(2σ2)

)
(B.10)

= f
(

1− e−r2/(2γ2)
)

+ (1− f)
(

1− e−πr2ρ
)

(B.11)

where the reduced density γ is defined by:

γ2 =
σ2

1 + 2πσ2ρ
(B.12)

With Equation B.11 in hand, we begin to derive all sorts of interesting quantities.

Particularly, we can calculate the purity of the matched sample; that is, the fraction

of matches which are correct. To do this, we first calculate the probability Pb,m(r)

that we encounter a background galaxy before the true match. First we write down

the PDF of Pm(r):

pm(r) =
d

dr
Pm(r) = −f

σ
re−r

2/(2σ2) (B.13)

Then we have2:

2If the first line of this derivation isn’t clear, consider two distributions A and B with PDFs pA(r)
and pB(r), respectively. The probability of drawing number from distribution B that is less than r
is:

r∫
−∞

pB(r′)dr′ (B.14)

The probability of drawing r from A and a number less than r from B is:

pA(r)dr

r∫
−∞

pB(r′)dr′ (B.15)

Therefore, the probability of drawing a number less than r from A but a yet smaller number from
B is:

r∫
r′=−∞

pA(r′)dr′
r′∫

r′′=−∞

pB(r′′)dr′′

 (B.16)

Recognizing the inner integral as the probability distribution PB(r) completes the proof.
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Pb,m(r) =

r∫
0

pm(r′)Pb(r
′)dr′ (B.17)

=

r∫
0

[
pm(r′)

(
1− e−πr′2ρ

)]
dr′ (B.18)

= Pm(r)− f γ
2

σ2

(
1− e−r2/(2γ2)

)
(B.19)

This, in turn, allows us to calculate the probability Pm,b(r) that, within radius r,

we encounter the true match (a correct match) before encountering a spurious back-

ground galaxy3.

Pm,b(r) = Pm(r)− Pb,m(r) = f
γ2

σ2

(
1− e−r2/(2γ2)

)
(B.20)

This equation is important because we can use it to find a natural cutoff radius

for matching. Let NS be the number of possible spectroscopic matches4. Once

d

dr
(NSPm,b) drops below one we are only contaminating our matched catalog by

increasing the matching radius. Thus, the natural cutoff radius r0 is the solution to:

NS
dPm,b
dr

∣∣∣∣
r=r0

= 1 (B.21)

This occurs when:

r0e
−r20/(2γ2) =

σ2

fNS

(B.22)

Unfortunately, this is a transcendental equation and must be solved numerically. Note

that this equation will generally have two solutions; we choose the larger possible value

3One might näıvely think that we could just calculate Pm,b(r) in a similar fashion, mutatis
mutandis, to how we calculated Pb,m(r). However, although there can only be one true match,
it is quite possible that we encounter many background galaxies in a radius r. The integrals in
the calculation of Pm,b(r) would become far more difficult (if even tractable), and so we elect the
roundabout, but much easier, calculation shown here.

4This could be calculated, for example, by assigning each spectroscopic entry its nearest imaging
entry and counting the number of unique imaging entries assigned.
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of r0. Using r0 as a cutoff radius will produce the largest matched catalog possible

which does not suffer from adding too many false positives.

We continue our derivation by defining the purity q(r) as the fraction of times we

find a correct match out of all matches assigned (whether correct or not).

q(r) =
Pm,b(r)

P (r)
=

γ2/σ2

1 +
1− f
f

(
1− e−πr2ρ

1− e−r2/(2γ2)

) (B.23)

This lets us quantify the success of our matching algorithm. Moreover, it also hands

us another method for determining a cutoff radius: instead of asking what the optimal

catalog size should be, we can also impose a purity limit. Inserting this purity limit

into Equation B.23 and solving for r, we can determine the cutoff radius needed to

satisfy our purity constraint. We also note that the purity is bounded from above

and below by values that we can calculate:

qmax = lim
r→0

q(r) =
f

f + 2πρσ2
(B.24)

qmin = lim
r→∞

q(r) =
f

1 + 2πρσ2
(B.25)

Intuitively, one can only obtain perfect q = 1 purity—even at r = 0—only if there

are no background galaxies or there is no uncertainty in the astrometry. Similarly, if

we disregard the cutoff radius and always match to the nearest neighbor, our chances

of finding the correct match decrease quickly as astrometry degrades or as our pho-

tometric catalog includes fainter galaxies (effectively increasing ρ).

Equations B.11, B.20, and B.23 are the primary results of this discussion. The first

allows us to predict the number of matches we’ll find by assigning nearest-neighbor

matches out to cutoff radius r. The second informs us of how many of these matches

are correct and gives a natural cutoff radius. The last is used to calculate the purity

derived from the cutoff radius, and can be used to impose a minimum purity on the
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matched catalog.

B.3 Performance

Our model contains three free parameters which need to be determined in order to

apply it to the matching problem: f , σ, and ρ. With so few parameters, most fitting

algorithms should perform well out-of-the-box. For the sake of completeness, however,

we note that there is an additional constraint that can be imposed on ρ. If one con-

siders our derivation of Pb(r), we realize that it is simply the cumulative distribution

function of nearest-neighbor distances in the photometric catalog. Thus, we can esti-

mate ρ in a straightforward manner by simply fitting a one-parameter function to the

photometric catalog’s nearest-neighbor CDF. Of course, at small separations matches

are dominated by astrometry errors, and so as long as the astrometry is good (. 0.5′′)

one can typically ignore ρ altogether (setting it to zero). However, some surveys—

particularly older ones or ones which experienced optics problems—have particularly

poor astrometry, and so the full formalism must be retained.

As an example of the model’s fit to real data, we consider a recent spectroscopic

survey, the Arizona CDFS Environment Survey (ACES; Cooper, Yan, et al. 2012),

which we match to the photometry of the Dark Energy Survey (DES; T. Abbott et al.

2005). ACES contains approximately 5 000 secure, unique redshifts out to z ≈ 1.4

and RAB = 24.1 in the 30′×30′ extended Chandra Deep Field–South (CDFS) region.

To match the catalog, we first need to fit P (r), the total number of nearest-

neighbor matches, to the data, fixing our three parameters. We find f = 93.7%,

σ = 0.18′′, and ρ = 6.4345× 10−3 arcsec−2. The results are shown in Figure B.1. Our

model fits the data wonderfully. Already we can determine the number of matches

which would be found by a näıve matching algorithm. With our fit in hand we can

calculate the purity, shown in Figure B.2. The maximum purity we can expect is
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Figure B.1: The results of fitting P (r)—the number of nearest-neighbor matches
within cutoff radius r—to ACES and DES. We plot NSP (r) to cast the numbers
into absolute terms. The small, inset plot is a close-up of the fit for small r. Across
the entire range we see excellent agreement with the model. The red line marks the
natural cutoff radius r0. The blue line corresponds to the size of the catalog at this
radius. The green line is the maximum possible number NS of matches. Holding
all other model parameters fixed, changing f will shift the position of the blue line,
changing σ shifts the red line (since astrometry errors dominate at small separation),
and shifting ρ changes how quickly the fit asymptotically approaches the green line
(since background galaxies dominate at larger separation). The position of the green
line is determined by the overlap between the two catalogs.

99.85%, and the minimum (if we disregard a cutoff radius) is 93.60%. The optimal

catalog size is obtained with r0 = 0.89′′, corresponding to 4 101 matches with purity

99.76%. Detailed statistics are given in Table B.1.
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Purity (%) Radius (arcsec) Matches Added Correct
99.85 0 0 — —
99.82 0.55 4052 4052 4044
99.80 0.68 4094 42 4086
99.76 0.89 4101 7 4091
99.6 1.41 4108 7 4091
99.4 1.89 4116 8 4091
99.2 2.28 4124 8 4091
99 2.63 4133 9 4091
98 4.06 4175 42 4091
97 5.36 4218 43 4091
96 6.74 4262 44 4091
95 8.46 4307 45 4091
94 11.53 4352 45 4091

93.60 ∞ 4371 19 4091

Table B.1: Detailed statistics for matching ACES to DES. The first and last lines
of the table correspond to maximum purity and minimum purity, respectively. The
red entries correspond to the optimal cutoff radius r0. Several intermediate values
are shown as well for comparison. The column labeled “Added” is the number of
additional matches found compared to the previous line. “Correct” is the number of
correct matches found at that cutoff radius (the number of matches found times the
purity).
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Figure B.2: The purity q(r) resulting from matching ACES galaxies to the nearest
DES neighbors with cutoff radius r. The maximum purity (at radius r = 0) is 99.85%.
The minimum purity is 93.60%. Detailed matching statistics are shown in Table B.1.
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