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Notation

We employ notation that is now widely employed in information theory literature supplemented by the following.

• N, Z, Q, R denote the set of natural numbers, integers, rational numbers and real numbers respectively.

• Calligraphic letters such as X , Y are employed exclusively to denote finite sets. Fq denotes the finite field of

cardinality q. For any set A ⊆ Rk, cl (A) , cocl (A) denote closure of A and closure of the convex hull of A

respectively. If A is a finite set, |A| denotes cardinality of A.

• For positive integers i ≤ j, [i : j] : = {i, i+ 1, · · · , j}. We let [j] : = [1 : j].

• We denote (i) random variables using upper case letters, (ii) specific realization of random variables and elements

of a set using lower case letters. For example, U is a random variable taking values in U and u ∈ U represents

a realization of U . Vectors are distinguished from scalars using a superscript that indicates the length of the

vector. For example, Un is an n−length random vector taking values in Un : = U × · · · × U︸ ︷︷ ︸
n times

and un ∈ Un

denotes a realization of Un.

• For α, β ∈ [0, 1], α ∗ β : = (1− α)β + α(1− β) denotes binary convolution.

• While + denotes addition in R, we let ⊕ denote addition in a finite field. The particular finite field, which is

uniquely determined (up to an isomorphism) by it’s cardinality, is clear from context. When ambiguous, or to

enhance clarity, we specify addition in Fq using ⊕q. For a, b ∈ Fq, a	 b : = a⊕ (−b), where (−b) is the additive

inverse of b.

• If f : U → X is a map, the n-letter extension of f denoted fn : Un → Xn is defined fn (un) := (f (ui) : i ∈ [n]).

• We employ standard notation for probability mass functions (pmf). For example, if pUXSY is a pm on U ×X ×

S × Y, then pUY is the corresponding marginal on U × Y. pnUY is the pm on Un × Yn obtained as an n−fold

product of pUY i.e., pnUY (un, yn) =
∏n
i=1 pUY (ui, yi). pY |U (y|u), defined whenever pU (u) 6= 0, is conditional

probability of observing y ∈ Y given u ∈ U is observed. We write U ∼ pU if pU is the pmf of U .
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• The log and exp functions are taken with respect to the same base. For concreteness, the base may be assumed

to be 2, in which case units for information theoretic quantities such as entropy and mutual information would

be bits/symbol.

• Let hb : [0, 1]→ [0, 1] defined as hb(x) : = − x log x− (1− x) log(1− x) denote binary entropy function.

• We employ standard notation for information theoretic quantities such as entropy and mutual information. For

example, H(UY ) : = −
∑

(u,y)∈U×Y pUY (u, y) log pUY (u, y) denotes entropy of pUY , H(U |Y ) : = H(U, Y ) −

H(Y ), I(U ;Y ) : = H(U)−H(U |Y ) and I(U ;Y |S) : = I(U ;Y S)− I(U ;S).

• The probability of an event A is denoted P (A), and whenever B is an event with non-zero probability, P (A|B)

denotes conditional probability of event A given event B.

• We write U − (X,S)−Y if U, (X,S) and Y forms a Markov chain, i.e., U and Y are conditionally independent

given (X,S).

• For any r ∈ R, dre : = min {k ∈ Z : k ≥ r} and brc : = max {k ∈ Z : k ≤ r}.

• For a ∈ N, π(a) : = min {k ∈ N : k ≥ a, k is a prime power}.

• For a pmf pUXSY defined on U × X × S × Y, let

R(pUXSY , U) : = {u ∈ U : there exists (x, s, y) ∈ X × S × Y : pUXSY (u, x, s, y) > 0}

denote essential range of U . When clear from context, we omit the underlying pmf and let R(U) denote

R(pUXSY , U).
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Abstract

We consider the problem of developing coding techniques and characterizing information-theoretic achievable rate

regions for the following three multi-terminal communication channels. Firstly, we study an interference channel

with three transmitter receiver pairs (3-IC). Secondly, we consider a broadcast channel with three receivers (3-BC),

wherein three independent information streams are to be communicated to the three receivers. Thirdly, we consider a

two user multiple access channel (MAC) with channel state information distributed at the transmitters (MAC-DSTx).

The above channels are assumed discrete, memoryless and used without feedback.

The current known coding technique for a general instance of these channels are based on independent unstruc-

tured codes. Recognizing the need for codes endowed with algebraic closure properties, we identify three ensembles

of coset codes. We propose coding techniques based on these ensembles that exploit their algebraic closure property.

We develop tools to characterize the information-theoretic performance of the proposed coding techniques. These

enable us derive achievable rate regions for a general instance of the above channels. The current known achievable

rate regions can be enlarged by gluing together current known coding techniques and the ones proposed herein.

Moreover, such an enlargement, as indicated below, is proven to be strict for certain instances.

We identify additive and non-additive instances of 3-IC for which the derived achievable rate region is analytically

proven to be strictly larger than current known largest. Moreover, for these channels, the proposed coding techniques

based on coset codes are optimal, i.e., capacity achieving. We also identify a vector additive 3-BC for which the

achievable rate region derived herein is analytically proven to be strictly larger than the current known largest.

This vector additive 3-BC is the first known broadcast channel, for which superposition and binning of unstructured

independent codes, proposed over three decades ago, can be strictly improved upon. We also identify non-additive and

non-symmetric instances of MAC-DSTx for which the proposed coding technique is verified, through computation,

to yield strictly larger achievable rate regions.

Finally, we develop a coding technique based on nested coset codes to characterize a weaker set of sufficient

conditions for the problem of computing sum of sources over a discrete memoryless MAC.
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Chapter 1

Introduction

In his magnum opus [1], Shannon developed an elegant mathematical theory to model the problem of communication.

He formalized the notion of reliable communication over a noisy channel and precisely quantified the object of interest

- capacity region - as the set of rates at which information can be reliably communicated from a transmitter (Tx) to

a receiver (Rx). For the particular scenario of communicating an information source from a single Tx to a single Rx,

henceforth referred to as a PTP, Shannon provided a comprehensive solution, i.e., a single-letter characterization1 of

the capacity region.

Following the publication of [1], it was recognized, that the characterization of the capacity region of a com-

munication system was fundamental to our understanding of it’s performance limits. This led to the information

theoretic study2 of multi-terminal systems. In spite of some comprehensive solutions ([3], [4], [5], [6], [7] among

others) and ingenious techniques such as [5], [8], [9], among several others, the problem of characterizing the capacity

region of several multi-terminal systems, such as interference and broadcast channels, remain open. In this thesis, we

address this problem of four multi-terminal systems which are described in the following. Throughout, we assume

the multi-terminal systems are discrete, memoryless and used without feedback.3

(i) Three user interference channel (3−IC): Consider an interference channel (IC) with three transmitter-

receiver (Tx-Rx) pairs as depicted in figure 1.1. The symbol input on the channel by each Tx influences

the symbols observed by every Rx and this is modeled through the joint channel transition probabilities

WY1Y2Y3|X1X2X3
. Each Tx wishes to communicate a specific information stream4 to it’s corresponding Rx.

1In simple terms, a characterization of a set is said to be single-letter if it is obtained through the result of an optimization over a
finite number of parameters. For a detailed description, please refer to [2, Chapter 13].

2The mathematical theory proposed by Shannon which seeks, among others, a characterization of capacity region of communication
systems is referred to as information theory.

3These assumptions are well established in information theory and the reader is referred to [10, Section 4.1] for a lucid description of
the same in the context of a PTP. These assumptions in the context of the four multi-terminal systems will be precisely stated in the
corresponding chapters.

4The information streams being specific to corresponding Tx-Rx pairs, are assumed to be mutually statistically independent.
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Figure 1.1: Three user interference channel (3−IC)
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Figure 1.2: Three user broadcast channel (3−BC)

(ii) Three user broadcast channel (3−BC): As depicted in figure 1.2, a 3−BC consists of a single Tx and three

Rxs. Each Rx demands a specific information stream and it is assumed that the three information streams are

mutually statistically independent. The objective is therefore to multiplex three information streams through

a single input terminal.

(iii) Multiple access channel with distributed states (MAC-DSTx): Consider a two user multiple access

channel (MAC) depicted in figure 1.3. The channel transition probabilities WY |X1S1X2S2
of the MAC depend

on a random parameter S = (S1, S2) called state. The evolution of the state is independent and identically

distributed across time. Tx j is provided with the entire realization of component Sj even before communication

begins and the Rx is oblivious to the evolution of the state. As in a MAC, the Txs wish to communicate a pair

of independent messages to the Rx.

(iv) Computation of sum of sources over an arbitrary multiple access channel (MAC): Consider a MAC

with two Txs as depicted in figure 1.4. Each encoder observes one component of a pair of sources that take

values over a common finite field. The Rx is interested in reconstructing the sum of sources. The problem of

interest is to characterize the maximum number of digits of the sum that can reliably be reconstructed at the

Rx per channel use.

WY|X1S1X2S2

S1S2 ~ WS1S2

Encoder 1

Encoder 2

S1

S2

M1

X1

X2

Y

M2

Decoder M1, M2

Figure 1.3: MAC with distributed states
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Encoder 2
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X1

X2

Y

S2

Decoder S1⊕S2

Figure 1.4: Computation sum of sources over a MAC
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In this thesis, we focus attention on characterizing inner bounds to the capacity region, i.e., achievable rate

regions, for the above multi-terminal systems. Our main contribution is a characterization of new achievable rate

regions that are strictly larger than current known largest. In the following two sections, we lead the reader to the

motivating principles that have shaped this thesis.

1.1 The technique of random coding

The most common technique of proving achievability of rate regions in information theory is random coding5. As

against to identifying a particular code, a random code of a particular rate R is defined for each block length n. The

reliability of this random code, i.e, the probability of incorrect decoding, is evaluated, as a function of block length

n ∈ N. The rate R is characterized as achievable, if this function decays to zero with increasing block length.

Conventionally, the letters of the random code are independently and identically distributed (iid) according to a

particular single-letter distribution. What is the effect of choosing the distribution of the random code to be iid in

characterizing an achievable rate region? Since we are interested in the limiting performance of the random code,

as a function of the block length n, we may employ ideas from typicality to answer this question.6 For large block

lengths n, an iid distribution places an exponentially larger weight on a particular sub-collection of codebooks whose

codewords have an empirical distribution close to the single-letter distribution, and moreover, every such codebook

is weighed almost equally. In fact, it can be shown that average probability of incorrect decoding of the above sub-

collection of codebooks,7 is equal, at least in the exponent, to the probability of incorrect decoding of the random

codebook. Therefore, choosing the distribution of the random code to be iid according to a particular single-letter

distribution has the effect of characterizing the reliability of a typical codebook whose codewords have an empirical

distribution close to the single-letter distribution.

Let us now consider the case of a multi-terminal system. Since communication over multi-terminal systems

employs a multi-terminal code consisting of several constituent codes, defining a random multi-terminal code requires

one to specify joint distribution of the constituent codes. Conventionally, the constituent random codes are chosen to

be independent.8 Moreover, as before, the letters of each constituent random code are iid according to a particular

single-letter distribution. Let us study the effect of choosing this distribution for the random multi-terminal code

in characterizing an achievable rate region. The rate regions proved achievable for a multi-terminal system via this

approach is essentially that achievable using a typical multi-terminal code wherein the codewords of each constituent

code has an empirical distribution close to a particular single-letter distribution. We emphasize that the constituent

5The other known techniques are based on Feinstein’s lemma [11] and graph decomposition [12].
6The subject of chapter 2 is typicality and covers all the material required to provide the kind of answers we are seeking. A reader

not familiar with typicality is encouraged to read through the following without getting bogged down by the technicalities.
7averaged with respect to a uniform distribution on this sub-collection
8The informed reader might point to the technique of superposition, wherein the satellite and cloud center codebooks are not inde-

pendent. However, we point out that the same rate region can be proved achievable using independent codes as done in [13].
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Figure 1.5: A binary 3−IC.

codes of such a typical multi-terminal code do not possess any joint relationship. In particular, (i) individually,

the constituent codes do not possess any properties other than the empirical properties mentioned above and (ii)

jointly do not possess any particular relationship. We will henceforth refer to such a collection of constituent codes

that make a multi-terminal code as independent unstructured codes. In the sequel, we illustrate through a simple

example, how constituent codebooks (i) possessing additional properties, and (ii) jointly related facilitate efficient

communication over multi-terminal systems.

1.2 Interaction of codes in a multi-terminal system

Consider a three user binary interference channel as depicted in figure 1.5.9 Three distributed Txs wish to com-

municate specific information to corresponding Rxs over a shared communication medium. Each Tx can input

symbols in {0, 1}. If Xj denotes symbol input by Tx j and Yj denotes the symbol observed by Rx j, we have

Y1 = X1 ⊕ (X2 ⊗X3) ⊕ N1, Y2 = X2 ⊕ N2 and Y3 = X3 ⊕ N3, where (i) N1, N2 and N3 are independent Bernoulli

processes with P (N1 = 1) = δ1 and P (Nj = 1) = δ for j = 2, 3, and (ii) ⊗ is any particular binary operation such as

binary addition ⊕ or logical OR ∨. Observe that users 2 and 3 enjoy interference free PTPs and can therefore commu-

nicate at their respective capacities simultaneously. If C2 and C3 denote codebooks employed by users 2 and 3 respec-

tively, then note that user 1 has to deal with the interference patterns in C2 ⊗C3 : = {xn2 ⊗ xn3 : xnj ∈ Cj : j = 2, 3}.

Clearly, smaller the cardinality of C2 ⊗ C3, larger the rate at which user 1 can communicate. If C2 and C3 were

arbitrary capacity achieving codes possessing no joint relationship, |C2⊗C3| could be large, thereby severely limiting

user 1’s rate. On the contrary, C2 and C3 could be carefully chosen capacity achieving codes such that cardinality of

C2⊗C3 is limited, thus facilitating higher rate of communication for user 1. For example, suppose ⊗ is binary addi-

tion ⊕, then users 2 and 3 can achieve capacity by employing cosets of a common linear code.10 Thereby, C2⊕C3 is

9As mentioned earlier, we assume the channel is memoryless and used without feedback
10There exists cosets of a linear code that achieve capacity of a binary symmetric channel. This has been proved in [14, Section 6.2].
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another coset of the same linear code, and therefore of the same rate. In contrast, if users 2 and 3 employed arbitrary

codes of rate R, then C2 ⊕ C3 could potentially be of rate min{1, 2R}!!!

We highlight the key elements observed in the above example. Firstly, codes of users 2 and 3 interact through

the binary operation ⊗. Secondly, in order to enable higher rates for user 1, their codes must be jointly designed

to keep the number of interference patterns low. Thirdly, in addition to be being jointly designed, the codes must

individually possess algebraic closure properties.11 These elements, observed in the context of a particular multi-

terminal system, being the motivating principles for the theory developed in this thesis, are restated for the

sake of emphasis. Constituent codes when employed in a multi-terminal system interact. Constituent

codes (i) individually possessing certain algebraic closure properties, and (ii) jointly designed enable

favorable interaction, and thereby efficient communication.

1.3 What do we seek and what do we accomplish?

In contrast to independent unstructured codes, a multi-terminal code whose constituent codes possessing the above

properties are henceforth referred to as structured codes. In this thesis, our aim is to leverage illustrative examples,

such as the one above, to develop coding techniques based on structured codes for arbitrary instances of the four

multi-terminal systems (figures 1.3-1.4) that can exploit properties of the code to enable efficient communication.

Thus far, linear and nested linear codes have been employed to develop coding techniques for particular additive and

symmetric instances of certain multi-terminal systems, as in [15], [16], [17] etc, that exploit the (algebraic closure)

property of the code to yield strictly larger achievable rate regions than that achievable using coding techniques

based on independent unstructured codes. However, these coding techniques do not generalize to arbitrary instances

of the multi-terminal systems studied therein. This raises, among others, the following three questions.

Firstly, are linear and nested linear codes applicable only for additive and symmetric multi-terminal systems, and

if not, how does one go about developing coding techniques based on these examples that is applicable in a wider

context? Secondly, if such coding techniques exist, would they provide strict improvement in achievable rate regions

even for non-additive scenarios? Thirdly, for multi-terminal systems such as broadcast channel (BC), we are unaware

of any example, including additive instances, for which structured codes yield strictly larger achievable rate regions

than that based on independent unstructured codes. Can we develop new coding techniques based on structured

codes for such multi-terminal systems, in particular the BC, and derive strictly larger achievable rate regions than

current known largest, and thereby enable us inch closer to solutions for these long standing open problems?12

11For example, when the binary operation ⊗ is addition ⊕, individually codes of users 2 and 3 must be cosets, which are algebraically
closed. The notion of algebraically closed will be explained in due course.

12An achievable rate region was derived by Marton [9] in the context of a discrete two user BC three decades ago. The current known
largest achievable rate region for any BC, including the larger class of BC’s with any number of Rxs and arbitrary alphabet sets, is
obtained by ‘appropriate stitching together’ the coding techniques proposed in [9]. We are unaware whether this is the capacity region
even for the discrete two user BC.
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The central theme of this thesis is codes endowed with algebraic closure properties, such as linear and

nested linear codes, enable efficient communication over multi-terminals in general, not just particular

additive and symmetric instances. This motivates us to develop a framework based on codes possessing algebraic

closure properties for communication over arbitrary instances of the four multi-terminal systems. We illustrate the

central theme and prove the utility of this framework by identifying non-additive and non-symmetric instances for

which the proposed framework yields strictly more efficient communication over current known techniques. We

develop a new coding technique based on codes possessing algebraic closure property for communicating over a

3−DBC that enables us derive a strictly larger achievable rate region than current known largest. A significant

element of our findings is an identification of the first BC for which precoding and superposition coding using

independent unstructured codes can be strictly improved upon. It maybe noted that even within the wider class of

discrete or continuous valued BCs with any number of Rxs we have been unaware of any such example since 1980.

1.4 Characterizing achievable rate regions using coset codes

The motivating principles recognized in section 1.2 lead us to step beyond independent unstructured codes. In this

thesis, we study the use of coset codes built over finite fields in characterizing new achievable rate regions for the four

multi-terminal systems depicted in figures 1.3 - 1.4. Coset codes over finite fields are simply cosets of a linear code.

Coset codes are algebraically closed13. Any two cosets14 of a linear code when added, result in another coset of the

same linear code. As against to adding two arbitrary collections of codewords (over the finite field), the addition of

two cosets of a common linear code, results in a collection of codewords15 of the same size.16 This property of coset

codes motivates their choice and will play a central role throughout this thesis. We exploit this property of coset

codes by proposing new coding techniques.17 It is the analysis of these proposed coding techniques coupled with the

use of coset codes that yield new achievable rate regions for the four multi-terminal communication systems studied

herein. In the following, we describe the key challenges in characterizing achievable rate regions using coset codes.

The theory and techniques developed to overcome these challenges are some of the key contributions of this thesis.

Quite naturally, we employ the technique of random coding to analyze the performance of proposed coding

13Consider a linear code over a finite field. The sum of any two codewords is another codeword in the same linear code. This property
of the linear code is usually referred to as algebraic closure. In this thesis, we employ a slightly generalized version of this property. Note
that any two codewords in a particular coset of a linear code, when added, result in a codeword in another coset. Here, we refer to this
property as algebraic closure.

14We will use the words coset and coset code interchangeably. In this context, coset is preferred to a coset code since we wish to address
coset shifts of the same linear code.

15Indeed, this collection is another coset of the same linear code.
16Consider the scenario depicted in figure 1.5 with the binary operation ⊗ being the binary addition ⊕. In this case, codes of users 2

and 3 interact through binary addition ⊕. Since the sum of user 2 and 3’s codebooks is the collection of interference patterns Rx 1 has
to put up with, we favor a reduction in the size of the interference patterns. Choosing user 2 and 3 codes to be cosets of the same linear
code accomplishes this.

17For the 3−IC depicted in figure 1.5, having employed coset codes to restrict the number of interference patterns, Rx 1 can potentially
decode the same. This suggests that we enhance the current decoding technique to exploit the property of coset code and decode the
sum interference pattern.
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techniques based on coset codes. Since a coset code is completely characterized by a generator matrix and a vector

that specifies the coset shift, a random coset code can be defined by specifying the distribution of the generator

matrix and the vector. Let the generator matrix and the vector be independent and uniformly distributed. This

defines a random coset code. The first challenge lies in characterizing the information theoretic performance of the

proposed coding technique using this random coset code over an arbitrary instance of the multi-terminal system

studied herein.18

In this thesis, we develop a mathematical framework based on joint typicality encoding and decoding to analyze

the performance of random coset codes. This framework enables us characterize achievable rate regions for arbitrary

instances of the four multi-terminal systems studied herein. Developing this framework has involved several new

elements. Note that codewords in the above defined random coset code are statistically correlated. Moreover, our

coding techniques rely on employing jointly correlated random coset codes.20 An informed reader will note that the

analysis of joint typicality encoding and decoding of statistically correlated coset codes will involve several new proof

elements. The reader is encouraged to peruse the proofs which are detailed in the appendices.

It can be proved that the codewords of a random coset code, as defined earlier, are uniformly distributed. In

contrast to the conventional technique21, wherein the codewords, of the constituent code, can be chosen to possess

any empirical distribution,22 the codewords of the above random coset code possess only the uniform empirical

distribution. A random coset code will therefore enable us achieve rates corresponding to a uniform distribution.

How do we achieve rates corresponding to non-uniform distributions?23 Since constituent codes employed over an

arbitrary multi-terminal system must achieve rates corresponding to non-uniform distributions, the second challenge

is therefore to find a technique that enables us induce the same using coset codes.

We overcome the second challenge via the technique of binning which is best illustrated in the context of a

PTP. Consider a finite field input alphabet X and suppose the capacity achieving distribution pX is non-uniform.

Consider a random coset code of block length n and rate k
n whose generator matrix and coset shifts are uniform and

independently distributed. Since we seek codewords of this random coset code whose empirical distribution is close

to pX , we ask the following question. What is the expected number of codewords of this random coset code whose

empirical distribution is close to pX? A reader familiar with the notions of typicality will be able to ascertain this to

be close to |X |k+nH(pX)−n = |X |n[ kn−(1−H(pX))], where the entropy H(pX) of the distribution pX is evaluated with

18Currently, random coset codes have been employed to derive achievable rate regions only for additive and symmetric instances
of multi-terminal communication systems ([18], [15], [16], [19]19). These works rely on analyzing syndrome decoding which does not
generalize for an arbitrary problem instance.

20For example, we equip users 2 and 3 of 3−IC depicted in figure 1.5 are equipped with cosets of the same linear code.
21By conventional technique, we mean random independent unstructured codes wherein codewords of each constituent code is picked

letter by letter iid with respect to a particular single-letter distribution.
22This is done by choosing the appropriate single letter distribution of the random iid codebook.
23The import of this question can be understood by studying the earlier case of a PTP with a finite field input alphabet. Employing

a random coset code, we can prove achievability of mutual information corresponding to a uniform input distribution. This would be
strictly sub-optimal if the capacity achieving distribution were non-uniform.
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respect to base |X |. One can prove24 that for large n the probability of the actual number deviating significantly from

this expected value is very small. In other words, with high probability, a random coset code of rate k
n > 1−H(pX)

contains |X |n[ kn−(1−H(pX))] codewords whose empirical distribution is close to pX . By using only these codewords

over the channel, one can induce a distribution pX on the channel. In the sequel, we provide an alternate view of

this technique which motivates the term binning.

Suppose we partition the random coset code of rate k
n > 1 −H(pX) by throwing each codeword uniformly and

independently into |X |n[ kn−(1−H(pX))] bins. It can be proved that a uniformly chosen bin with high probability

contains (i) |X |n(1−H(pX)) codewords and moreover (ii) at least one codeword whose empirical distribution is close

to pX . If we were to use the message25 to index a bin, then with high probability, we can choose a codeword within

this bin whose empirical distribution is close to pX .26 The informed reader will recognize that this is akin to the

technique of binning proposed by Gel’fand and Pinsker [7].

Coset codes, joint typical encoding and decoding, and the technique of binning are the building blocks for the

theory developed in this thesis. Via binning, we are able to induce non-uniform distribution over the input and

auxiliary input alphabets. Joint typical encoding and decoding will enable us analyze performance over arbitrary

instances of the multi-terminal systems studied herein. Coset codes will enable us shrink the range of the sum when

applied on codebooks. These building blocks will enable us characterize new achievable rate regions. Before we

describe our contributions in particular to each of the four multi-terminal systems, let us formally state the modeling

assumptions applicable throughout this thesis.

1.5 Modeling assumptions

Throughout, we are concerned with communication channels and information sources that evolve over discrete time.

The sources and channels are assumed to be discrete, i.e., the sources take values over finite sets and the channels

provide finite input and output alphabet sets. Sources are assumed memoryless, i.e., their distribution across time

is assumed to be independent and identical. We assume the channels are (i) memoryless, i.e., conditioned on the

input at time n, the output at time n is independent of past inputs, past outputs, (ii) time-invariant i.e., the channel

transition probabilities do not vary with time, and (iii) used without feedback, i.e., the inputs have no information of

the symbols received at the output. Please refer to the specific chapters for a precise statement of these assumptions

24This can be established using the second moment method that employs Cheybyshev inequality. The pairwise independence of
codewords aids evaluating the second moment.

25Recall that we wish to communicate over a PTP and need to assign codewords to messages.
26An informed reader might go the next step and question whether this will enable us achieve capacity over this PTP. Indeed,

to achieve capacity using this technique, we need k
n
− (1 − H(pX)) = I(pX ;WY |X), where WY |X denotes the channel transition

probabilities and I(pX ;WY |X) is the mutual information of the joint distribution pXWY |X . This implies the rate of the complete code
k
n

= I(pX ;WY |X) + 1−H(pX) is in general larger than the mutual information I(pX ;WY |X). Owing to the sparsity of codewords in the
code, whose empirical distribution is close to pX , we can achieve capacity. This is proven in chapter 3 which forms an important element
of the theory developed in this thesis.
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in the particular context.

1.6 Contributions of this thesis

In the following, we briefly list our contributions particular to the four multi-terminal systems.

1.6.1 Three user interference channel (3−IC)

(i) Recognizing that interference over a 3−IC is, in general, a bivariate function of the two interfering signals, we

develop a framework based on a specific ensemble of coset codes - partitioned coset codes (PCC) (definition 3.4.2

- to enable efficient decoding of the relevant bivariate interfering component. A key element of this framework

- new encoding and decoding rules based on joint typicality - lends it applicable to a general 3−IC. The other

key element - binning of coset codes into PCC - enables us achieve rates corresponding to arbitrary single-letter

distributions.

(ii) Analyzing the performance of this framework, we derive a new achievable rate region for a general 3−IC that

subsumes the current known largest and is strictly enlarges the same for particular instances.

(iii) We identify additive and non-additive instance of 3−IC for which the derived achievable rate region is analyti-

cally proven to be (i) capacity achieving and (ii) strictly larger than the current known largest. The non-additive

example (example 4.6.7) illustrates the utility of this framework and validates the central theme of this thesis.

1.6.2 Three user broadcast channel(3−BC)

(i) One of the techniques for communicating over a BC involves decoding the interfering signal, or a part thereof.

Moreover, the other technique - precoding - being, in general, less efficient,27 motivates decoding as large a

part of the interfering signal as possible. The interfering signal over a 3−DBC being a pair of signals, we

propose a framework based on PCC to decode the bivariate interfering component efficiently. This framework

is analogous to the one developed for communicating over a 3−IC with certain new elements.

(ii) As in the case of a 3−IC, we analyze the performance of the proposed framework to derive a new achievable

rate region for 3−DBC that subsumes the current known largest, and moreover, strictly enlarges the same for

particular instances.

(iii) We identify a vector additive 3−DBC and analytically prove that the derived achievable rate region is strictly

larger than the current known largest.

27This is due to the presence of a rate loss. In other words, if there is a choice between decoding and precoding, the former is generally
preferred, as it yields higher rates of communication. However, it must be noted that decoding the interfering signal constrains the rate
of the interfering signal, which is in general undesirable.
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1.6.3 Multiple access channel with distributed states (MAC-DSTx)

(i) The current known coding technique for communicating over a MAC-DSTx is a natural generalization of

Gel’fand and Pinsker’s technique of precoding via binning [7], proposed in the context of a single Tx. In

particular, for the MAC-DSTx, the two codes are independently and uniformly partitioned into bins, and the

pair of chosen codewords is decoded via a joint typicality decoder. Following Philosof and Zamir [15], we develop

a framework based on nested coset codes (NCC) (section 3.4.1) and union coset codes (UCC) (section 3.4.3)

that facilitates favorable interaction of the bins of two codes, and thereby develop a new coding technique. In

contrast to [15], this framework enables (i) exploit the structure of the coset codes for communicating over an

arbitrary MAC-DSTx, and (ii) achieve rates corresponding to arbitrary single-letter distributions. Furthermore,

the framework incorporates UCC built over groups (group UCC) to enable more efficient communication over

a larger class of MAC-DSTx.

(ii) We analyze the performance of the proposed framework to derive a new achievable rate region for MAC-DSTx

that subsumes the current known largest, and strictly enlarges the same for particular instances.

(iii) We identify several non-additive and non-symmetric instances of MAC-DSTx for which the proposed framework

yields strictly larger achievable rate regions.28 The utility of incorporating group UCC is indicated through an

example.

1.6.4 Computation of sum of sources over an arbitrary MAC

(i) Following [16], we develop an interface, based on NCC, between the source coding module and channel coding

module that enables the Rx decode the sum of sources by decoding the sum of transmitted codewords. The

proposed interface, in conjunction with separation based strategy, yields a more efficient coding technique to

compute the sum of sources at the Rx of a MAC. In contrast to the findings presented in [16], the interface

developed herein enables computing the sum of sources over an arbitrary MAC.

(ii) Analyzing the performance of the proposed coding technique, we derive a new set of sufficient conditions for

computing the sum of sources reliably over an arbitrary MAC, that are weaker than current known conditions.

The utility of this framework is demonstrated through examples involving non-additive MAC.

1.7 Significance of our contribution

This thesis presents new achievable rate regions for multi-terminal systems, including the broadcast and interference

channels. Since the characterization of capacity regions plays a fundamental role in our understanding of performance

28The examples being non-additive, it is significantly harder to provide analytical comparisons, and hence we resort to direct compu-
tation of rate regions achievable using current and proposed coding techniques.
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limits, the contributions of this thesis cannot be overemphasized. Secondly, we propose new coding techniques for

communicating over these multi-terminal systems. With ever increasing processing power and information theoretic

techniques finding their way into practice, these coding techniques can better harness available degrees of freedom

and enable efficient utilization of resources.

As observed in the past, characterizing new achievable rate regions involves a balance of new examples and

new theory, with the former preceding the latter for some problems. For example, in the case of degraded and

general broadcast channels, ingenious coding techniques [20], [8] for particular examples, preceded the theory [21],

[9]. While for the lossless distributed source coding problem, examples and theory were concurrently revealed in [5].

Notwithstanding the order, the significance of either cannot be undervalued. While the examples have shone the

light in the right direction, generalizing these ingenious coding techniques have resulted in fundamentally new ideas.

For example, in his quest to generalize Cover’s superposition technique for the binary additive broadcast channel,

Bergmans [21] developed the fundamental technique of characterizing achievable rate regions using an auxiliary

random variable.

This thesis contributes a good balance of examples and theory. For the broadcast channel, we identify the first

example for which linear codes yield strictly larger achievable rate region than that using current known techniques

based on superposition and binning of independent unstructured codes.29 We build on this to develop a coding

framework for communication over an arbitrary discrete three user broadcast channel. For the interference chan-

nel, while lattices [19] and interference alignment techniques [17] have been employed for continuous valued additive

channels, we identify the first discrete 3−IC and analytically prove that linear codes strictly outperform independent

unstructured code based superposition coding [13].30 Of particular significance is the identification of non-additive

interference channels, such as example 4.6.7, for which linear codes built over suitably larger fields strictly outper-

form31 current known techniques based on independent unstructured codes.32 We leverage these examples to derive

a new achievable rate region for an arbitrary 3−IC involving all valid test channels. For the other two problems,

MAC with state and computation over MAC, we build on novel coding techniques proposed for particular additive

examples in [15] and [16] respectively. While their techniques are applicable only to symmetric and additive scenar-

ios, we generalize the same using the machinery developed herein to derive new achievable rate regions for arbitrary

problem instances. As described in section 1.4, this has involved several new elements. We validate our generalization

by identifying non-additive and non-symmetric examples (sections 6.2.3 and examples 7.2.4 - 7.2.7) for which the

29Superposition coding as proposed by Bergmans [21] involves a conditional coded satellite codebook. However, this coding technique,
and the corresponding achievable rate region can be realized using independent unstructured codebooks via the technique of Han and
Kobayashi [13]. We are therefore justified in saying that conventional coding techniques for arbitrary problem instances are based on
independent unstructured codes.

30Moreover, we note that [19], [17] prove strict sub-optimality of only Gaussian test channels.
31We provide an analytical proof of this statement in section 4.6.1.
32This example demonstrates the underlying theme of this thesis - codes endowed with algebraic closure properties yields strictly larger

achievable rate regions even for non-additive problem instances - and thereby validates all the machinery - characterizing and analyzing
performance of coset codes over arbitrary problem instances using binning and joint typicality encoding, decoding - developed in this
thesis.
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proposed generalization is strictly more efficient.

In the case of 3−BC and 3−IC, we have provided analytical proofs of strict sub-optimality of current known

techniques based on independent unstructured codes. It maybe noted that description of the current known achiev-

able rate regions for these problems involve more than 7 auxiliary random variables with loose cardinality bounds.

Moreover, even a tractable characterization of these regions not involving parameters other than the three rates are

not available, thus lending our task considerable difficulty.33 We leverage (i) the structure of the identified instances

and (ii) alternate converse proof techniques (sections 5.10 and 4.5, 4.6.1) to provide analytical proofs. Indeed, the

examples are carefully chosen to amplify the interaction of codes that we are after, and yet simple enough, to enable

us prove strict sub-optimality of current known technique. We highlight the analytical proof of strict suboptimality

of independent unstructured codes based techniques for non-additive instances presented in section 4.6.1.34

The theory developed herein relies on characterizing performance of random multi-terminal codes whose con-

stituent codes are statistically correlated coset codes. This builds in statistical dependence between (i) codewords of

the same code, and (i) different constituent codebooks. Traditionally, analyzing performance of joint typicality based

coding techniques crucially relies on statistical independence of these elements. To accommodate statistical correla-

tion among constituent codebooks, we develop several new proof techniques to characterize the average performance

of the proposed coding technique.35

1.8 The role of coset codes in multi-terminal information theory

We conclude this chapter by mentioning relevant prior work. The use of coset codes in deriving achievable rate regions

began with Körner and Marton’s [18] ingenious coding technique proposed for the particular problem of computing

modulo−2 sum of distributed binary sources. Studied in the context of a source coding problem, they proposed

partitioning the two quantizers using cosets of a common linear code. This was in contrast to the conventional

technique of uniformly and independently partitioning the quantizers. Exploiting the coset structure of the partitions,

Körner and Marton proposed a coding technique that outperformed all techniques based on unstructured codes.

Körner and Marton’s technique [18], in spite of yielding strictly better performance, was not pursued upon.

For over twenty five years following their work, it was unaware how to generalize their techniques to an arbitrary

instance of the problem studied therein. Moreover, it was generally believed that Körner and Marton’s technique

was only applicable for particular symmetric and additive instances. Naturally, there were much fewer attempts at

characterizing performance of other multi-terminal communication systems using coset codes.

33We note that proof of strict sub-optimality of independent unstructured codes for continuous valued channels restrict attention to
Gaussian test channels.

34On a similar note, we commend Philosof and Zamir’s [15] proof of strict sub-optimality of independent unstructured binning for
the problem studied therein. Our attempt to generalize their proof to derive an upper bound for the mod−4 additive MAC with state
(section 6.4) has been unsuccessful and we are forced to resort computation based technique.

35Since we employ new code ensembles, we have detailed all the proof elements. Please refer to the appropriate appendices for the
same.
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Recently, there has been renewed interest in the use of coset codes for characterizing performance limits of multi-

terminal communication systems. Philosof and Zamir [15] propose a technique of structured precoding via correlated

binning at the inputs of a particular symmetric additive binary doubly dirty MAC, followed by a new decoding

technique that outperforms all earlier known techniques based on unstructured codes. Sridharan et. al. [19] employ

the ensemble of lattice codes to effect interference alignment and exploit this to derive strictly better performance

over a three user Gaussian IC. Nazer and Gastpar [16] employ linear codes to develop a new interface between source

and channel coding modules that enable very efficient decoding of sum of sources over an additive MAC. Bresler,

Parekh and Tse [22] prove achievability of strictly larger degrees of freedom over a three user Gaussian interference

channel using lattice codes. For all of the above problems, we are unaware of any technique that replicate the same

performance using unstructured codes.36

While the above works demonstrate the utility of algebraic properties in codes, their study is limited to particular

symmetric additive instance of the problem studied therein. For example, the technique proposed in [15] is not

applicable for a arbitrary instance of a MAC with distributed states. Similarly, Nazer and Gastpar’s technique [16]

heavily relies on a structural match between the sources and the channel. These, and other works, therefore do not

address the reason for the long period of skepticism that followed [18], and the question whether coset codes are

applicable only for particular additive and symmetric problem instances, or have a more fundamental role to play in

multi-terminal information theory has remained.

More than three decades following the publication of [18], Krithivasan and Pradhan [23] develop a framework

for generalizing the ingenious coding technique of Kórner Marton to an arbitrary instance of the distributed source

coding (DSC) problem. In particular, they propose an ensemble of codes possessing algebraic closure properties and

a coding technique that exploits these properties to derive an achievable rate region for an arbitrary instance of the

DSC problem. [23] demonstrates that coset codes have a role to play in a general instance of the DSC problem, not

just an additive and symmetric case as that studied in [18].

Krithivasan and Pradhan [23] provided the first leads in unravelling the role of coset codes in multi-terminal infor-

mation theory. DSC being just one multi-terminal communication problem, it is natural to ask whether coset codes

aid more efficient communication over other multi-terminal scenarios such as broadcast and interference channels.

Motivated by these questions, this thesis continues the pursuit to unravel the role of coset codes in multi-terminal

information theory.

36Moreover, for certain problems, such as [15], the authors therein prove strict sub-optimality of all known coding techniques based on
unstructured codes.
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Chapter 2

Typicality

In this chapter we compile together results from typicality that form the basis for most proofs in this thesis. We adopt

the notion of typicality as proposed by Sundaresan in [24]. This notion of typicality is based on robust typicality

proposed by Orlitsky and Roche [25] and subsequently adopted in [26]. Though slightly different from that adopted

in [2], it is functionally equivalent. In the sequel, we provide definitions and state the results in their simplest form.

Since the following results have been well documented in books such as [2], [26], [27] among others, we omit proofs,

and allude to one of the above references for the same. Where appropriate, we supplement with additional references.

2.1 Definitions

Let X1, X2 be finite sets and X : = (X1, X2), a pair of random variables taking values in X : = X1 × X2 with

pmf pX : = pX1X2
. Let Xn : = (Xn

1 , X
n
2 ) be n independent and identically distributed copies of X. For a pair

a = (a1, a2) ∈ X , and an n−tuple xn : = (xn1 , x
n
2 ) ∈ Xn, let N(a|xn) =

∑n
i=1 1{xi=a} be the number of occurrences

of a in xn. Lastly, for j ∈ {1, 2}, let j ∈ {1, 2} \ {j} denote the element in it’s complement. We are now set to define

typical set. For any δ > 0, let

Tδ : =

{
xn ∈ Xn :

∣∣∣∣∣N(a
∣∣xn)

n
− pX(a)

∣∣∣∣∣ ≤ δpX(a)

log |X |
for all a ∈ X

}

be the typical set on X with respect to pmf pX and parameter δ > 0. For j = 1, 2, the projection

Tδ(Xj) : =
{
xnj ∈ Xnj : there exists xnj ∈ Xnj such that (xn1 , x

n
2 ) ∈ Tδ

}
14



is the typical set on Xj with respect to pmf pX and parameter δ > 0. For j = 1, 2 and any xnj ∈ Xnj ,

Tδ(Xj |xnj ) : =
{
xnj ∈ Xnj such that (xn1 , x

n
2 ) ∈ Tδ

}
is the typical set on Xj conditioned on xnj with respect to distribution pX and parameter δ > 0. Before we state the

basic results, the following remarks are worth noting.

2.2 Simple consequences

Remark 2.2.1 If for any a ∈ X , pX(a) = 0, and xn ∈ Tδ, then N(a|xn) = 0.

Remark 2.2.2 If xnj ∈ Tδ(Xj), then
∣∣∣N(aj |xnj )

n − pXj (aj)
∣∣∣ ≤ δpXj (aj)

log |X | . Since xnj ∈ Tδ(Xj), there exists xnj ∈ Xnj such

that (xnj , x
n
j ) ∈ Tδ, and for this xnj , we have

∣∣∣∣N(aj |xnj )

n
− pXj (aj)

∣∣∣∣ =

∣∣∣∣∣∣
∑
aj∈Xj

N(aj , aj |xnj , xnj )

n
−
∑
aj∈Xj

pXjXj (aj , aj)

∣∣∣∣∣∣ ≤
∑
aj∈Xj

∣∣∣∣N(aj , aj |xnj , xnj )

n
− pXjXj (aj , aj)

∣∣∣∣
≤
∑
aj∈Xj

δpXjXj (aj , aj)

log |X |
=
δpXj (aj)

log |X |
.

Lemma 2.2.3 If xn ∈ Tδ, then for every n ∈ N, we have

(i) | 1n log pXn(xn) +H(X)| ≤ δ,

(ii) | 1n log pXnj (xnj ) +H(Xj)| ≤ δ for j ∈ [2] and therefore

(iii) | 1n log pXnj |Xnj (xnj |xnj ) +H(Xj |Xj)| ≤ 2δ.

Proof: Observe that∣∣∣∣ 1n log pXn(xn) +H(X)

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

log pX(xi) +H(X)

∣∣∣∣∣ =

∣∣∣∣∣∑
a∈X

N(a|xn)

n
log pX(a) +H(X)

∣∣∣∣∣ .
Substituting upper and lower bounds pX(a) − δpX(a)

log |X | ≤
N(a|xn)

n ≤ pX(a) + δpX(a)
log |X | on N(a|xn)

n and employing the

definition of H(X), we have ∣∣∣∣ 1n log pXn(xn) +H(X)

∣∣∣∣ ≤ ∑
a∈X

δpX(a) log pX(a)

log |X |
≤ δ,

where the last inequality follows from H(X) ≤ log |X |. This proves (i). In order to prove (ii), it suffices to prove∣∣∣N(aj |xnj )

n − pXj (aj)
∣∣∣ ≤ δpXj (aj)

log |Xj | for each aj ∈ Xj . We may then employ a sequence of steps analogous to the one
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above. This has been established in remark 2.2.2. We are left to argue statement (iii). Statement (iii) is a simple

consequence of 1
n log pXnj |Xnj (xnj |xnj ) = 1

n log pX(xn) − 1
n log pXj (x

n
j ), the bounds in statements (i) and (ii) and the

triangular inequality.

2.3 Typical sets are large and highly probable

Lemma 2.3.1 For every ε > 0, δ > 0, there exists N(ε, δ) ∈ N, such that for every n ≥ N(ε, δ), P (Xn ∈ Tδ) ≥ 1−ε,

and therefore, P (Xn
j ∈ Tδ(Xj)) ≥ 1− ε, for each j ∈ [2]. Moreover,

P (Xn /∈ Tδ) ≤ 2 exp
{
−n3δ2λ

}
where λ = min

{
2p2
X(a) log e

log |X |
: pX(a) > 0, a ∈ X

}
(2.1)

Proof: Note that (2.1) reiterates the first statement of the lemma with a tighter bound. While the first statement

can be proved using Cheybyshev inequality, the second statement, due to Hoeffding [28], Sanov [29], requires a finer

analysis. We begin with the proof of the first statement.

Note that N(a|Xn) is a binomial random variable with P (N(a|Xn) = k) = (nk) pX(a)k(1− pX(a))n−k. For every

a ∈ X such that pX(a) = 0, we have

P

(∣∣∣∣N(a|Xn)

n
− pX(a)

∣∣∣∣ > δpX(a)

log |X |

)
= P (N(a|Xn) > 0) = 0

As a consequence of this, union bound and the Cheybyshev inequality, we have

P (Xn /∈ Tδ) = P

(⋃
a∈X

{∣∣∣∣N(a|Xn)

n
− pX(a)

∣∣∣∣ > δpX(a)

log |X |

})
≤

∑
a∈X :

pX(a)>0

P

(∣∣∣∣N(a|Xn)

n
− pX(a)

∣∣∣∣ > δpX(a)

log |X |

)
(2.2)

≤
∑
a∈X :

pX(a)>0

Var
{
N(a|Xn)

n

}
(log |X |)2

δ2pX(a)2
=

∑
a∈X :

pX(a)>0

npX(a)(1− pX(a))(log |X |)2

n2δ2pX(a)2

=
(log |X |)2

nδ2

 ∑
a∈X :

pX(a)>0

(1− pX(a))

pX(a)

 ≤ θ|X |(log |X |)2

nδ2
, where θ = min

{
(1− pX(a))

pX(a)
: pX(a) > 0

}
.

Given ε > 0 and δ > 0, choose N(ε, δ) = 1
ε d
θ|X |(log |X |)2

δ2 e and note that for all n ≥ N(ε, δ), P (Xn /∈ Tδ) < ε. By

definition, xn ∈ Tδ implies xnj ∈ Tδ(Xj) for each j = 1, 2. Therefore, for n ≥ N(ε, δ), we have 1− ε ≤ P (Xn ∈ Tδ) ≤

P (Xn
j ∈ Tδ(Xj)) for each j = 1, 2.
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We now provide a sketch of the argument that proves the tighter upper bound stated in (2.1). The argument is

based on the following lemma found in [2, Problem 3.18(b), page 44].

Lemma 2.3.2 If Z1, Z2, · · · are independent and identically distributed Bernoulli random variables taking values in

{0, 1} with P (Zi = 1) = p, then

P

(∣∣∣∣∣
n∑
i=1

Zi − np

∣∣∣∣∣ > η

)
≤ 2e−2η2n

.

Substituting Zi = 1{Xi=a}, η = nδpX(a)
log |X | , we recognize

∑n
i=1 Zi = N(a|Xn), and therefore lemma 2.3.2 implies

P

(∣∣∣∣N(a|Xn)

n
− pX(a)

∣∣∣∣ > δpX(a)

log |X |

)
≤ 2 exp

{
−2n3δ2p2

X(a) log e

(log |X |2)

}
. (2.3)

Substituting (2.3) in (2.2), we have

P (Xn /∈ Tδ) ≤
∑
a∈X :

pX(a)>0

2 exp

{
−2n3δ2p2

X(a) log e

(log |X |2)

}
≤ 2 exp

{
−n3δ2λ

}
where λ is as defined in (2.1). (2.4)

Lemma 2.3.3 For every δ > 0, there exists N1(δ), N2(δ) ∈ N, such that,

(i) for every n ≥ N1(δ), exp {n(H(X)− 2δ)} ≤ |Tδ| ≤ exp {n(H(X) + 2δ)}, and

(ii) for every n ≥ N2(δ), exp {n(H(Xj)− 2δ)} ≤ |Tδ(Xj)| ≤ exp {n(H(Xj) + 2δ)}.

Proof: From lemma 2.2.3(i), we have pXn(xn) ≥ exp {−n (H(X) + δ)} for every xn ∈ Tδ. We therefore have

1 ≥ P (Xn ∈ Tδ) =
∑
xn∈Tδ

pXn(xn) ≥
∑
xn∈Tδ

exp {−n (H(X) + δ)} ≥ |Tδ| exp {−n (H(X) + δ)}

which gives us the upper bound on |Tδ|. We employ the lower bound on the probability of the typical set derived in

lemma 2.3.1 for establishing the lower bound on |Tδ|. For n ≥ N(δ, δ), we have

1− δ ≤ P (Xn ∈ Tδ) =
∑
xn∈Tδ

pXn(xn) ≤
∑
xn∈Tδ

exp {−n (H(X)− δ)} ≤ |Tδ| exp {−n (H(X)− δ)}

which implies |Tδ| ≥ (1− δ) exp {n (H(X)− δ)}. For n ≥ max{N(δ, δ), d 1
δ log 1

1−δ e}, we have |Tδ| ≥ exp{n(H(X)−

2δ)}. Statement (ii) can be proved following an analogous sequence of steps.
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2.4 And so are conditional typical sets

Lemma 2.4.1 For every ε > 0, δ > 0, there exists N(ε, δ) ∈ N, such that for every n ≥ N(ε, δ), xnj ∈ Tδ(Xj),

implies P (Xn
j ∈ T2δ(Xj |xnj )|Xn

j = xnj ) ≥ 1− ε and therefore P (Xj ∈ Tδ(Xj), X
n /∈ T2δ) ≤ ε.

Proof: We prove the statement in the lemma for j = 2, i.e, j = 1. We begin with an alternate characterization of

Xn2 \ T2δ(X
n
2 |xn1 ), i.e., the complement of T2δ(X

n
2 |xn1 ). Note that if xn2 ∈ Xn2 \ T2δ(X

n
2 |xn1 ), then for some a ∈ X , we

have
∣∣∣N(a|xn)

n − pX(a)
∣∣∣ > 2δpX(a)

log |X | . Also note that if N(a1|xn1 ) = 0, then pX1(a1) ≤ δpX1
(a1)

log |X | .1 For any a2 ∈ X2, we

have

pX(a) = pX1
(a1)pX2|X1

(a2|a1) ≤
δpX1

(a1)pX2|X1
(a2|a1)

log |X |
=
δpX(a)

log |X |

and therefore ∣∣∣∣N(a|xn)

n
− pX(a)

∣∣∣∣ = |−pX(a)| = pX(a) ≤ δpX(a)

log |X |
.

In characterizing Xn2 \ T2δ(X
n
2 |xn1 ), we only need to consider P(xn1 ) : = {a1 ∈ X1 : N(a1|xn1 ) > 0}. For a1 ∈ P(xn1 ),

we have∣∣∣∣N(a|xn)

n
− pX(a)

∣∣∣∣ =

∣∣∣∣N(a1|xn1 )

n

(
N(a|xn)

N(a1|xn1 )
− pX2|X1

(a2|a1)

)
+ pX2|X1

(a2|a1)

(
N(a1|xn1 )

n
− pX1(a1)

)∣∣∣∣
≤ N(a1|xn1 )

n

∣∣∣∣ N(a|xn)

N(a1|xn1 )
− pX2|X1

(a2|a1)

∣∣∣∣+ pX2|X1
(a2|a1)

∣∣∣∣N(a1|xn1 )

n
− pX1

(a1)

∣∣∣∣
≤ N(a1|xn1 )

n

∣∣∣∣ N(a|xn)

N(a1|xn1 )
− pX2|X1

(a2|a1)

∣∣∣∣+
δpX(a)

log |X |

This implies that if xn2 ∈ Xn2 \ T2δ(X
n
2 |xn1 ), then for some a1 ∈ P(xn1 ), we have

∣∣∣ N(a|xn)
N(a1|xn1 ) − pX2|X1

(a2|a1)
∣∣∣ >

nδpX(a)
N(a1|xn1 ) log |X | . This enables us conclude

Xn2 \ T2δ(X
n
2 |xn1 ) ⊆

 ⋃
a1∈P(xn1 )

⋃
a2∈X2:

pX2|X1
(a2|a1)>0

{
xn2 ∈ Xn2 :

∣∣∣∣ N(a|xn)

N(a1|xn1 )
− pX2|X1

(a2|a1)

∣∣∣∣ > nδpX(a)

N(a1|xn1 ) log |X |

}⋃
 ⋃
a1∈P(xn1 )

⋃
a2∈X2:

pX2|X1
(a2|a1)=0

{xn2 ∈ Xn2 : N(a|xn) > 0}

 .
With an intent of employing the union bound, we provide upper bounds on the probability of each set in the above

union. We begin with the following observation. Conditioned on Xn
1 = xn1 , note that N(a|xn1 , Xn

2 ) is a binomial

1This follows from xn1 ∈ Tδ(X1).
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random variable with parameters N(a1|xn1 ), pX2|X1
(a2|a1), i.e.,

P (N(a|xn1 , Xn
2 ) = k|Xn

1 = xn1 ) = (N(a1|xn1 )
k

)pX2|X1
(a2|a1)k(1− pX2|X1

(a2|a1))N(a1|xn1 )−k.

For a1 ∈ P(xn1 ) and a2 ∈ X2 such that pX2|X1
(a2|a1) = 0, we have P (N(a|xn1 , Xn

2 ) > 0|Xn
1 = xn1 ) = 0. For any

a1 ∈ P(xn1 ) and a2 ∈ X2 such that pX2|X1
(a2|a1) > 0, we have

P

(∣∣∣∣N(a|xn1 , Xn
2 )

N(a1|xn1 )
− pX2|X1

(a2|a1)

∣∣∣∣ > α

)
≤ E

{(
N(a|xn1 , Xn

2 )

N(a1|xn1 )
− pX2|X1

(a2|a1)

)2
}

1

α2
,

where the intended value for α is nδpX(a)
N(a1|xn1 ) log |X | . It maybe verified that

E

{(
N(a|xn1 , Xn

2 )

N(a1|xn1 )
− pX2|X1

(a2|a1)

)2
}

=
pX2|X1

(a2|a1)(1− pX2|X1
(a2|a1))

N(a1|xn1 )
,

and therefore,

P

(∣∣∣∣N(a|xn1 , Xn
2 )

N(a1|xn1 )
− pX2|X1

(a2|a1)

∣∣∣∣ > nδpX(a)

N(a1|xn1 ) log |X |

)
≤
pX2|X1

(a2|a1)(1− pX2|X1
(a2|a1))

N(a1|xn1 )

(N(a1|xn1 ) log |X |)2

n2δ2p2
X(a)

,

≤
1− pX2|X1

(a2|a1)

δ2pX2|X1
(a2|a1)

(log |X |)2

n
.

Substituting this in the probability of the desired event, we have

P (Xn
2 /∈ T2δ(X2|xn1 )|Xn

1 = xn1 ) ≤ |X |1− p
∗

δ2p∗
(log |X |)2

n
,

where p∗ = min{pX2|x1
(a2|a1) : pX1

(a1) > 0, pX2|x1
(a2|a1) > 0}. Given ε > 0 and δ > 0, choose N(ε, δ) =

1
ε d|X |

1−p∗
δ2p∗ (log |X |)2e and note that for n ≥ N(ε, δ), we have P (Xn

2 /∈ T2δ(X2|xn1 )|Xn
1 = xn1 ) ≤ ε whenever xn1 ∈

Tδ(X1).

Lemma 2.4.2 For every δ > 0, there exists N(δ) ∈ N, such that, for every n ≥ N(δ), xnj ∈ Tδ(Xj) we have

exp {n(H(Xj |Xj)− 4δ)} ≤
∣∣T2δ(Xj |xnj )

∣∣ ≤ exp {n(H(Xj |Xj) + 4δ)}.

Proof: Quite naturally, the proof mimics that of lemma 2.3.3. We have

1 ≥ P (Xn
2 ∈ T2δ(X2|xn1 )|Xn

1 = xn1 ) =
∑

xn2∈T2δ(X2|xn1 )

P (Xn
2 = xn2 |Xn

1 = xn1 )

≥
∑

xn2∈T2δ(X2|xn1 )

exp {−n(H(X2|X1) + 3δ)} = |T2δ(X
n
2 |xn1 )| {−n(H(X2|X1) + 3δ)} .
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which gives us the upper bound. For n ≥ N(δ, δ), we have

1− δ ≤ P (Xn
2 ∈ T2δ(X2|xn1 )|Xn

1 = xn1 ) =
∑

xn2∈T2δ(X2|xn1 )

P (Xn
2 = xn2 |Xn

1 = xn1 )

≤
∑

xn2∈T2δ(X2|xn1 )

exp {−n(H(X2|X1)− 3δ)} = |T2δ(X
n
2 |xn1 )| {−n(H(X2|X1)− 3δ)} .

For n ≥ max{N(δ, δ) 1
δ log 1

1−δ}, we have |T2δ(X
n
2 |xn1 )| ≥ exp {n(H(X2|X1)− 4δ)}.
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Chapter 3

Coset codes achieve capacity of general

point-to-point channels

The three objectives of this chapter are the following. Firstly, we intend to describe the three ensembles of coset

codes that will be employed for deriving new achievable rate regions in this thesis. Secondly, we wish to characterize

the performance of these ensembles for communicating in the presence of noise. Thirdly, we desire to present the

two other building blocks - joint typicality encoding, decoding and binning - in a simple, yet non-trivial setting,

that enables the reader absorb the underlying idea and study the proofs without getting bogged down by too many

technicalities. An interested reader is therefore strongly encouraged to read through this chapter carefully.

We can satisfy our second objective by characterizing the performance of coset codes in communicating over a

general PTP. However, communicating over multi-terminal systems necessitates codes to possess covering properties,

in addition to packing properties.1 We therefore characterize the performance of coset codes in communicating over

a general point-to-point channel with knowledge of channel state at transmitter (PTP-STx). PTP-STx being the

simplest communication channel that employs a code possessing both packing and covering properties, motivates our

choice.

As depicted in figure 3.1, a PTP-STx is a PTP whose channel transition probabilities depend on a random

parameter S called state. The evolution of the state is assumed to be iid across time with respect to distribution

WS , and moreover, the encoder is provided the entire realization of the state sequence before communication begins.

The channel is assumed discrete, memoryless, time-invariant and used without feedback.2 The objective is to design

an optimal strategy that enables the encoder utilize the state information to efficiently communicate an information

stream to the decoder and thereby characterize the capacity region of PTP-STx.

1The packing properties of a code determine it’s ability to communicate in the presence of noise.
2These will be precisely defined in section 3.2.
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Figure 3.1: A point-to-point channel with knowledge of channel state at transmitter (PTP-STx).

In a celebrated result [7], Gel’fand and Pinsker derived a single-letter characterization for the capacity of PTP-

STx. Their proof of achievability employs a code possessing both packing and covering properties and a coding

technique that exploits the same. In order to achieve capacity, the code must simultaneously possess optimal packing

and covering properties. Gel’fand and Pinsker prove existence of such a code via the random coding technique

wherein the letters of random code is iid according to a single letter distribution. Clearly, the capacity achieving

code is not guaranteed to possess any additional properties, such as algebraic closure that is of interest herein.

In this chapter, our goal is to characterize the performance of the three ensembles of codes for communicating

over a PTP-STx. In particular, we would like to know whether the three ensembles of coset codes possess optimal

covering and packing properties that enable them achieve capacity of PTP-STx? If not, what rates are achievable

over an arbitrary PTP-STx by restricting to these coset codes?

We prove the three ensembles of coset codes achieve capacity of an arbitrary PTP-STx.3 In other words, the

property of algebraic closure and optimal packing, covering properties are not mutually exclusive. We wish to

note that these three ensembles of coset codes are currently the only ensemble of codes possessing an algebraic

structure that has been proven to achieve capacity of an arbitrary PTP-STx. This assumes significance in the light

of Ahlswede’s finding [30] that linear codes do not achieve capacity of an arbitrary PTP.

This chapter is organized as follows. Sections 3.1, 3.2 and 3.3 state the preliminaries - notation, definitions and

a single-letter characterization of capacity of PTP-STx. In section 3.4.1, we describe the three ensembles of coset

codes. We prove that these ensembles achieve capacity of PTP-STx in section 3.5.

3.1 Notation

We employ notation that is now widely employed in information theory literature supplemented by the following.

• We let N,R denote the set of natural numbers and real numbers respectively. Calligraphic letters such as X ,

Y are employed exclusively to denote finite sets. Fq denotes the finite field of cardinality q. For any set A,

3Since PTP-STx is a generalization of a PTP, this also proves the three ensembles of coset codes achieve capacity of an arbitrary PTP.
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cl (A) , cocl (A) denote closure of A and closure of the convex hull of A respectively. If A is a finite set, |A|

denotes cardinality of A.

• For positive integers i ≤ j, [i : j] : = {i, i+ 1, · · · , j}. We let [j] : = [1 : j].

• While + denotes addition in R, we let ⊕ denote addition in a finite field. The particular finite field, which is

uniquely determined (up to an isomorphism) by it’s cardinality, is clear from context. When ambiguous, or to

enhance clarity, we specify addition in Fq using ⊕q. For a, b ∈ Fq, a	 b : = a⊕ (−b), where (−b) is the additive

inverse of b.

• If f : U → X is a map, the n-letter extension of f denoted fn : Un → Xn is defined fn (un) := (f (ui) : i ∈ [n]).

• We employ the standard notation for probability mass functions (pmf). For example, if pUXSY is a pmf on

U ×X ×S ×Y, then pUY is the corresponding marginal on U ×Y. pnUY is the pmf on Un ×Yn obtained as an

n−fold product of pUY i.e., pnUY (un, yn) =
∏n
i=1 pUY (ui, yi). We write U ∼ pU if pU is the pmf of U .

• The log and exp functions are taken with respect to the same base. For concreteness, the base may be assumed

to be 2, in which case units for information theoretic quantities such as entropy and mutual information would

be bits/symbol.

• For a ∈ N, π(a) : = min {k ∈ N : k ≥ a, k is a prime power}.

• For a pmf pUXSY defined on U × X × S × Y, let

R(pUXSY , U) : = {u ∈ U : ∃(x, s, y) ∈ X × S × Y : pUXSY (u, x, s, y) > 0}

denote the essential range of U . When clear from context, we omit the underlying pmf and let R(U) denote

R(pUXSY , U).

3.2 Definitions - PTP-STx, achievability and capacity

Consider a point-to-point channel with knowledge of channel state at transmitter (PTP-STx) studied by Gel’fand

and Pinsker [7]. Let X and Y denote finite input and output alphabet sets respectively. Transition probabilities

depend on a random parameter, called state, that takes values in a finite set S. The discrete time channel is (i)

time invariant, i.e., pmf of Yi, the output at time i, conditioned on (Xi, Si), the input and state at time i, is

invariant with i, (ii) memoryless, i.e., Yi is conditionally independent of (Xt, St) : 1 ≤ t < i given (Xi, Si), and (iii)

used without feedback, i.e., encoder has no knowledge of outputs observed by decoder. Let WY |XS(y|x, s) be the

probability of observing y ∈ Y at the output given x ∈ X is input to PTP-STx in state s ∈ S. The state at time

i, Si is (i) independent of (Xt, St, Yt) : 1 ≤ t < i, and (ii) identically distributed for all i. Let WS(s) be probability
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of PTP-STx being in state s ∈ S. We assume the sequence of states is non-causally available at the encoder. The

input is constrained with respect to a cost function κ : X × S → [0,∞). We assume that the cost is time-invariant

and additive i.e., cost of input Xn to the channel in state Sn is κ̄n(Xn, Sn) : = 1
n

∑n
i=1 κ(Xi, Si). We refer to this

channel as PTP-STx (S,WS ,X , κ,Y,WY |XS).

Definition 3.2.1 A PTP-STx code (n,M , e, d) consists of (i) an index set M of messages, of cardinality M , (ii)

an encoder map e :M×Sn → Xn, and (iii) a decoder map d : Yn →M.

Assuming a uniform pmf on the set of messages, we define the average error probability and the cost of a PTP-STx

code.

Definition 3.2.2 The error probability of PTP-STx code (n,M , e, d) conditioned on message m ∈M is

ξ(e, d|m) : =
∑
sn∈Sn

∑
yn:d(yn)

6=m

WSn(sn)WY n|Xn,Sn(yn|e(m, sn), sn).

The average error probability of PTP-STx code (n,M , e, d) is ξ̄(e, d) : =
∑M
m=1

1
M ξ(e, d|m). The average cost of

transmitting message m ∈M is τ(e|m) : =
∑
sn∈SnWSn(sn)κ̄n(e(m, sn), sn) and the average cost of PTP-STx code

(n,M , e, d) is τ(e) : = 1
M

∑M
m=1 τ(e|m).

Definition 3.2.3 A rate cost pair (R, τ) ∈ [0,∞)2 is achievable if for every η > 0, there exists N(η) ∈ N such that

for all n > N(η), there exists a PTP-STx code (n,M (n), e(n), d(n)) such that (i) log M (n)

n ≥ R−η, (ii) ξ̄(e(n), d(n)) ≤ η,

and (iii) average cost τ(e(n)) ≤ τ + η. The capacity region is C(τ) : = cl{R ≥ 0 : (R, τ) is achievable}.

In a celebrated result, Gel’fand and Pinsker [7] derived a single letter characterization of C(τ). In the next section,

we state this characterization.

3.3 Capacity of PTP-STx

Definition 3.3.1 Let D(τ) be the collection of pmfs pUXSY on U × X × S × Y such that (i) U is a finite set,

(ii) pS = WS, (iii) pY |XSU = pY |XS = WY |XS, (iv) pX|SU (x|s, u) ∈ {0, 1} for all (u, x, s) ∈ U × X × S and (v)

E {κ(X,S)} ≤ τ . Let

D(τ) =
{
pUXSY ∈ D(τ) : |R(pUXSY , U)| ≤ min{(|X | · |S|)2

, (|X |+ |S|+ |Y| − 2) · |X | · |S|}
}
.

For any pmf pUXSY defined on U × X × S × Y, let α(pUXSY ) : = [0, I(U ;Y )− I(U ;S)], and

α(τ) : = cocl

 ⋃
pUXSY ∈D(τ)

α(pUXSY )

 , α(τ) : = cocl

 ⋃
pUXSY ∈D(τ)

α(pUXSY )

 .
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Theorem 3.3.2 C(τ) = α(τ) = α(τ).

Gel’fand and Pinsker [7] proved theorem 3.3.2 for channels without a cost constraint. While the central elements of

their proof can be adopted for cost constrained channels, the sufficiency of restricting to test channels pUSXY satisfying

condition (iv) in definition 3.3.1 is established in [31, Lemma 2], which is attributed to Cohen. A cardinality bound

on |U| can be established using Fenchel-Eggleston strengthening of Carathéodory’s theorem [26, Appendix C] as done

in [32, Lemma 9]. In particular, one can first prove the upper bound min {|X | · |S|, |X |+ |S|+ |Y| − 2} on |U| for test

channels pUSXY that do not satisfy condition (iv) in definition 3.3.1. Any such test channel pUSXY can be mapped

to a test channel pŨSXY that satisfies condition (iv) in definition 3.3.1 without compromising on the achievable rate

for which |Ũ | ≤ |X | · |S| · |U|.

3.4 Nested, partitioned and union coset PTP-STx codes

Gel’fand and Pinsker prove achievability of C(τ) by averaging error probability over an ensemble of PTP-STx codes.

A code in this ensemble is specified by a corresponding auxiliary code λO built over an auxiliary set and a mapping.

An ingenious technique of partitioning (binning) λO intoM bins, one for each message m ∈M, is the key feature of

the coding technique. In the following, we consider PTP-STx codes which are endowed with a coset code structure.

Note that if the auxiliary set is a finite field, then one can visualize λO and/or λI possessing certain algebraic closure

properties. For example, λO could be coset of a linear code, or the bins of λO could be cosets of sub-linear code λI .

In the sequel, we characterize PTP-STx codes possessing these algebraic closure properties.

3.4.1 Nested coset PTP-STx codes

We begin with a brief review of coset and nested coset codes. An (n, k) coset code is a collection of vectors in Fnq
obtained by adding a bias vector to a k−dimensional subspace of Fnq . If λO ⊆ Fnq and λI ⊆ λO are (n, k + l) and

(n, k) coset codes respectively, then ql cosets λO/λI that partition λO is a nested coset code. We refer to this as

nested coset code (n, k, l, gI , gO/I , b
n) where bn is the bias vector, gI ∈ Fk×nq and gTO =

[
gTI gTO/I

]
∈ F (k+l)×n

q are

generator matrices of λI and λO respectively.

The structure of a nested coset PTP-STx code must now be apparent to an informed reader. The bins are cosets

of the smaller linear code λI . The entire collection of bins forms a coset of the larger linear code λO. The message to

be sent to the decoder indexes the bins. For this nested coset code, we let vn(ak,ml) : = akgI ⊕mlgO/I ⊕ bn denote

a generic codeword in coset c(ml) : =
{
vn(ak,ml) ∈ Fnq : ak ∈ Fkq

}
. We refer to c(ml) as the coset corresponding to

message ml. The following is therefore a natural characterization of a nested coset PTP-STx code.

Definition 3.4.1 A PTP-STx code (n,M , e, d) is a nested coset PTP-STx code over Fq if there exists (i) a nested

coset code
(
n, k, l, gI , gO/I , b

n
)

over Fq, ii) map f : Fq × S → X and, (iii) a 1 : 1 onto map ι : M→ F lq such that

e(m, sn) ∈
{
fn
(
akgI ⊕ ι(m)gO/I ⊕ bn, sn

)
: ak ∈ Fkq

}
for every m ∈M.
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3.4.2 Partitioned coset PTP-STx codes

Let us now describe partitioned coset codes and define partitioned coset PTP-STx codes. As mentioned earlier, an

(n, k) coset code λO ⊆ Fnq is a collection of vectors obtained by adding a bias vector to a k−dimensional subspace

of Fnq . The coset code λO is completely specified through it’s generator matrix g ∈ Fk×nq and bias vector bn ∈ Fnq .

Consider a partition of λO into ql bins. Each codeword vn(ak) : = akg ⊕ bn is assigned an index i(ak) ∈ F lq. This

coset code λO with it’s partitions is called a partitioned coset code and denoted (n, k, l, g, bn, i). For each ml ∈ F lq,

let c(ml) : =
{
ak ∈ Fkq : i(ak) = ml

}
denote the indices of codewords in the ml bin.

The structure of a partitioned coset code forms the essential building block for the coding techniques proposed

in chapters 4, 5. We therefore formalize the same through the following definition for easy reference.

Definition 3.4.2 Recall that a coset code λ ⊆ Fnπ is a coset of a linear code λ ⊆ Fnπ . The coset code is completely

specified by the generator matrix g ∈ Fk×nπ and a bias vector bnj ∈ Fnπ . Consider a partition of λ into πl bins.

Each codeword akg ⊕ bn is assigned an index i(ak) ∈ [πl]. This coset code λ with it’s partitions is referred to

as partitioned coset code (PCC) (n, k, l, g, bn, i) or succinctly as an (n, k, l) PCC. For each m ∈ [πl], let c(m) :

=
{
ak ∈ Fkπ : i(ak) = m

}
.

The reader will now be able to visualize the structure of a partitioned coset PTP-STx code. The auxiliary code

is obtained by partitioning a coset code λO ∈ Fnq into ql bins. The following characterization makes this precise.

Definition 3.4.3 A PTP-STx code (n,M , e, d) is a partitioned coset PTP-STx code over Fq if there exists (i) a

partitioned coset code (n, k, l, g, bn, i) over Fq, ii) a map f : Fq × S → X and, (iii) a 1 : 1 onto map ι : M → F lq
such that e(m, sn) ∈

{
fn
(
akg ⊕ bn, sn

)
: i(ak) = ι(m)

}
for every m ∈M.

3.4.3 Union coset PTP-STx codes

Consider a linear code λI ⊆ Fnq with generator matrix g ∈ Fk×nq . For each ml ∈ F lq, let bn(ml) ∈ Fnq . The

union of ql cosets of λI corresponding to each of the shifts bn(ml) : ml ∈ F lq is termed a union coset code. Letting

bn : = (bn(ml) : ml ∈ F lq), a union coset code is completely specified by the generator matrix g ∈ Fk×nq and bn. In

particular, the union coset code is the union of cosets (akgI ⊕ bn(ml) : ak ∈ Fkq ) corresponding to each of the shifts

bn. We refer to this as the (n, k, l, g, bn) union coset code. Following is a natural characterization of a union coset

PTP-STx code.

Definition 3.4.4 A PTP-STx code (n,M , e, d) is a union coset PTP-STx code over Fq if there exists (i) a union

coset code (n, k, l, g, bn) over Fq, ii) a map f : Fq × S → X and, (iii) a 1 : 1 onto map ι : M → F lq such that

e(m, sn) ∈
{
fn
(
akg ⊕ bn(ι(m)), sn

)
: ak ∈ Fkq

}
for every m ∈M.

Before we conclude this section, we make a simple observation. Note that an (n, k, l, gI , gO/I , b
n) nested coset

code is (i) a (n, k + l, l, gO, b
n, i) partitioned coset code where i(ak+l) = ak+1ak+2 · · · ak+l and (ii) a (n, k, l, gI , b)
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union coset code where bn(ml) = mlgO/I ⊕ bn. If we therefore prove nested coset PTP-STx codes achieve capacity

of an arbitrary PTP-STx, we can conclude that all the above ensembles of coset PTP-STx codes - nested, union and

partitioned - achieve capacity of an arbitrary PTP-STx. The following section is dedicated to proving nested coset

PTP-STx codes achieve capacity of an arbitrary PTP-STx.

3.5 Coset codes achieve capacity of arbitrary PTP-STx

We now state and prove our first main finding - nested coset PTP-STx codes achieve C(τ).

Theorem 3.5.1 For a PTP-STx (S,WS ,X , κ,Y,WY |XS), if R ∈ C(τ), i.e., R is achievable, then there exists

a sequence (n,M (n), e(n), d(n)) : n ≥ 1 of nested coset PTP-STx codes over Fq that achieves (R, τ), where q =

π(min{(|X | · |S|)2
, (|X |+ |S|+ |Y| − 2) · |X | · |S|}).

Proof: Consider any pmf pV XSY ∈ D(τ) and η > 0. We prove the existence of a nested coset PTP-STx code

(n,M (n), e(n), d(n)) of rate log M (n)

n ≥ I(V ;Y ) − I(V ;S) − η, average cost τ(e(n)) ≤ τ + η and average prob-

ability of error ξ(e(n), dn) ≤ η for every n ∈ N sufficiently large. The underlying finite field is of cardinality

π(min{(|X | · |S|)2
, (|X |+ |S|+ |Y| − 2) · |X | · |S|}) referred to as π for short.

We prove the existence by averaging the error probability over a specific ensemble of nested coset PTP-STx codes.

We begin with a description of a generic code in this ensemble.

Consider a nested coset PTP-STx code (n, k, l, gI , gO/I , b
n), denoted λO/λI with parameters

k : = dn
(

1− H(V |S)

log π
+

η

8 log π

)
e (3.1)

l : = bn
(

1− H(V |Y )

log π
− η

8 log π

)
c − k. (3.2)

The reader is advised to bear in mind our notation is not reflective of k and l being functions of n. This abuse of

notation reduces clutter. We specify encoding and decoding rules that map λO/λI into a corresponding nested coset

PTP-STx code.

The encoder is provided with nested coset code λO/λI . The message is used to index one among πl cosets

of λO/λI . For simplicity, we assume that the set of messages M is V l, and M l ∈ V l to be the uniformly dis-

tributed random variable representing user’s message. The encoder observes the state sequence Sn and popu-

lates the list L(M l, Sn) =
{
v(ak,M l) : (v(ak,M l), Sn) ∈ T δ

2
(V, S), ak ∈ Fkq

}
of codewords in the coset correspond-

ing to the message that are jointly typical with the state sequence, where δ : = 1
2 min

{
η
48 ,

η log(|V||X ||S||Y|)
κmax

}
,

κmax : = max {κ(x, s) : (x, s) ∈ X × S}. If L(M l, Sn) is empty, it picks a codeword uniformly at random from

coset c(M l). Otherwise, it picks a codeword uniformly at random from L(M l, Sn). Let V (Ak,M l) denote the picked

codeword in either case. The encoder computes Xn(M l, Sn) : = fn(V n(Ak,M l), Sn), where f : V × S → X is any
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map that satisfies pX|V S(f(v, s)|v, s) = 1 for all pairs (v, s) ∈ V × S. Xn(M l, Sn) is fed as input to the channel.

The decoder observes the received vector Y n and populates the list

D(Y n) : =
{
ml ∈ V l : ∃vn(ak,ml) such that (vn(ak,ml), Y n) ∈ Tδ(V, Y )

}
.

If D(Y n) is a singleton, the decoder declares the content of D(Y n) as the decoded message pair. Otherwise, it

declares an error.

The above encoding and decoding rules map λO/λI into a corresponding nested coset PTP-STx code

(n,M n, e(n), d(n)) of rate log M (n)

n = l log π
n . Observe that, for n ≥ N1(η) : = d 8 log π

η e, we have

n

(
1− H(V |S)

log π
+

η

8 log π

)
≤ k ≤ n

(
1− H(V |S)

log π
+

η

8 log π

)
+ 1 (3.3)

≤ n

(
1− H(V |S)

log π
+

η

4 log π

)
, (3.4)

and similarly,

n

(
1− H(V |Y )

log π
− η

8 log π

)
≥ k + l ≥ n

(
1− H(V |Y )

log π
− η

8 log π

)
− 1 (3.5)

≥ n

(
1− H(V |Y )

log π
− η

4 log π

)
. (3.6)

Combining the upper bound for k in (3.4) and the lower bound for k + l in (3.6), we get

l log π

n
≥ H(V |S)−H(V |Y )− η

2
= I(V ;Y )− I(V ;S)− η

2
. (3.7)

Since λO/λI was a generic nested coset code satisfying (3.1), (3.2), we have characterized, through our encoding

and decoding maps, an ensemble of nested coset PTP-STx codes, one for each n ∈ N, n ≥ N1(η) of rate at least

I(V ;Y ) − I(V ;S) − η
2 . It suffices to prove existence of a PTP-STx code (n,M (n), e(n), d(n)) in this ensemble, one

for each n ∈ N sufficiently large, with average probability of error ξ(e(n), d(n)) ≤ η and average cost constraint

τ(e(n)) ≤ τ + η. This is done by averaging ξ(e(n), d(n)) over the ensemble.

Consider a random nested coset code (n, k, l, GI , GO/I , B
n), denoted ΛO/ΛI , with parameters n, k, l satisfying

(3.1) and (3.2). Let GI ∈ Vk×n, GO/I ∈ V l×n and bias vector Bn ∈ Vn be mutually independent and uniformly

distributed on their respective range spaces. In the sequel, we study the average probability of error ξ(e(n), d(n)) of

the corresponding random nested coset PTP-STx code. Towards this end, we begin with a few remarks on notation.

Let V n(ak,ml) : = akGI ⊕ mlGO/I ⊕ Bn denote a generic codeword in coset C(ml) : =
{
V n(ak,ml) : ak ∈ Vk

}
corresponding to message ml.
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In order to study ξ(e(n), d(n)), we need to characterize the error events associated with the random nested coset

PTP-STx code corresponding to ΛO/ΛI . If ε1 : = {Sn /∈ T δ
4
(S)}, ε2 : = {φ δ

2
(Sn,M l) = 0}, where φ δ

2
(sn,ml) :

=
∑
ak∈Vk 1{(V n(ak,ml),sn)∈Tnδ

2

(V S)}, then the error event at the encoder is contained in ε1 ∪ ε2. The error event

at the decoder is contained in εc3 ∪ ε4, where ε3 : = ∪ak∈Vk {(V n(ak,M l), Y n) ∈ Tnδ (V, Y )} and ε4 : = ∪m̂l 6=M l

∪ak∈Vk
{(
V n(ak, m̂l), Y n

)
∈ Tnδ (V, Y )

}
. It suffices to derive an upper bound on P (ε1) + P (εc1 ∩ ε2) + P ((ε1 ∪ ε2)c ∩

εc3) + P (ε4). In the sequel, we derive an upper bound on each term of the above sum.

Lemma 2.3.1 guarantees the existence of N2(η) ∈ N4 such that ∀n ≥ N2(η), P (ε1) ≤ η
16 . In appendix A, we prove

the existence of N3(η) ∈ N, such that ∀n ≥ N3(η),

P (εc1 ∩ ε2) ≤ exp

{
−n log π

(
k

n
−
(

1− H (V |S)

log π
+

3δ

4 log π

))}
. (3.8)

Substituting the lower bound in (3.3) for k in (3.8), for all n ≥ max {N1(η), N3(η)}, we have

P (εc1 ∩ ε2) ≤ exp

{
−n
(
η

8
− 3δ

4

)}
≤ exp

{
−n
(

7η

64

)}
, (3.9)

where the last inequality follows from the choice of δ.

We now consider P ((ε1 ∪ ε2)c ∩ εc3). An informed reader will recognize that an upper bound on this term can be

derived using a typical application of conditional frequency typicality lemma 2.4.1. For the sake of completeness we

state the arguments. The encoding rule ensures, (ε1 ∪ ε2)
c ⊆ {(V n(M l, Sn), Sn) ∈ Tnδ

2

(V, S)}, and thus

P ((ε1 ∪ ε2)c ∩ εc3) ≤ P
({

(V n(M l, Sn), Sn) ∈ Tnδ
4

(V, S)
}
∩ εc3

)
≤

∑
(vn,sn)∈Tnδ

2

(V,S)

P ((V n(M l, Sn), Sn) = (vn, sn))P
(
εc3|(V n(M l, Sn), Sn) = (vn, sn)

)
≤

∑
(vn,sn)∈Tnδ

2

(V,S)

P ((V n(M l, Sn), Sn) = (vn, sn))P
(
Y n /∈ Tδ(Y |vn, sn)|(V n(M l, Sn), Sn) = (vn, sn)

)
. (3.10)

For any (vn, sn) ∈ Tnδ
2

(V, S), note that,

P
(

Y n=yn,

Xn(M l,Sn)=xn
|(V

n(M l,Sn),Sn)
=(vn,sn)

)
=

n∏
i=1

P (Xi = xi, Yi = yi|Vi = vi, Si = si)

where the second equality follows from Markov chain V − (X,S)− Y . By lemma 2.4.1, there exists N4(η) ∈ N such

that for all n ≥ N4(η)

P ((Y n, Xn(M l, Sn)) /∈ Tnδ (X,Y |vn, sn)|(V n(M l, Sn), Sn) = (vn, sn)) ≤ η

8
. (3.11)

4Since δ is a function of η, the dependence of N2(η) on δ is captured through η.
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Substituting (3.11) in (3.10), we have P ((ε1 ∪ ε2)c ∩ ε3) ≤ η
8 for all n ≥ N4(η). It remains to provide an upper bound

on P (ε4). In appendix B, we prove the existence of N5(η) ∈ N such that ∀n ≥ N5(η), P ((ε1 ∪ ε2 ∪ ε2)c ∩ ε4) ≤

exp
{
−n log π

(
1− H(V |Y )

log π − 3δ
2 log π −

k+l
n

)}
. For n ≥ max {N1(η), N5(η)}, the upper bound for k+ l derived in (3.6)

is substituted to yield, P ((ε1 ∪ ε2 ∪ ε2)c ∩ ε4) ≤ exp
{
−n
(
η
8 −

3δ
2

)}
≤ exp

{
−n
(

3η
32

)}
.

We have therefore proved that for every n ≥ max {Ni(η) : i ∈ [5]}, there exists at least one nested coset PTP-STx

code (n, πl, e, d) over Fπ for which ξ̄(e, d) ≤ η
8 +exp

{
−n 7η

64

}
+ η

8 +exp
{
−n 3η

32

}
. For n ≥ max {Ni(η) : i ∈ [6]}, where

N6(η) = d 32
3η log 8

η e, ξ̄(e, d) ≤ η
2 . It only remains to prove this code satisfies the average cost constraint. It can be

verified that τ(e) ≤ η
2κmax + (1 − η

2 )(τ + δκmax

2 log(|X ||S|) ). The choice of δ ensures that τ(e) ≤ η
2κmax + (τ + η

2 ). Since

κmax ∈ R is bounded, this proves the existence of a sequence (n, πl(n), e(n), d(n)) : n ≥ 1 of nested coset PTP-STx

codes that achieve (R, τ) for every R ∈ C(τ).

The codewords of ΛO being uniformly distributed over Fnπ (c.f. Lemma A.0.1(i)), the probability of it being

jointly typical with a typical state sequence sn is |Tδ(U |S)|
πn = exp{n(H(U |S)− log π)}. This indicates that each coset

must contain roughly qn

|Tδ(U |S)| = qn

qn(H(U|S)) = qn(log π−H(U |S)) codewords. Indeed, it suffices to partition ΛO with a

coset of rate k
n > 1 − H(U |S)

log π . 1 − H(U |S)
log π being in general larger than I(U ;S)

log π , we conclude that the constraint of

linearity forces us to increase the rate of the binning code.

However, the sparsity of typical vectors in a random linear code comes to our rescue when we attempt to pack

cosets. The decoder looks for all vectors in the auxiliary code that are jointly typical with the received vector

Y n. In unstructured random coding, since each codeword is individually typical with high probability, the rate of

auxiliary code is bounded from above by I(U ;Y )
log π . The typical vectors being sparse in random linear code, a similar

argument as above enables us to enlarge the auxiliary code to a rate 1 − H(U |Y )
log π . The rate of the code is thus

(1− H(U |Y )
log π )− (1− H(U |S)

log π ) = I(U ;Y )−I(U ;S)
log π .

We have thus proved nested coset codes achieve the capacity of arbitrary PTP-STx. The interested reader is

referred to [33] wherein nested lattice codes are proved to achieve capacity of arbitrary continuous point to point

channels. In order to achieve capacity of arbitrary continuous PTP-STx, it is necessary to construct lattices which

result in non-uniform distribution of error when employed for source quantization.

The following corollaries are a direct consequence of nested coset PTP-STx codes being both partitioned coset

and union coset PTP-STx codes.

Corollary 3.5.2 For a PTP-STx (S,WS ,X , κ,Y,WY |XS), if R ∈ C(τ), i.e., R is achievable, then there exists

a sequence (n,M (n), e(n), d(n)) : n ≥ 1 of partitioned coset PTP-STx codes over Fq that achieves (R, τ), where

q = π(min{(|X | · |S|)2
, (|X |+ |S|+ |Y| − 2) · |X | · |S|}).

Corollary 3.5.3 For a PTP-STx (S,WS ,X , κ,Y,WY |XS), if R ∈ C(τ), i.e., R is achievable, then there exists

a sequence (n,M (n), e(n), d(n)) : n ≥ 1 of union coset PTP-STx codes over Fq that achieves (R, τ), where q =

π(min{(|X | · |S|)2
, (|X |+ |S|+ |Y| − 2) · |X | · |S|}).
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Chapter 4

Three user interference channel

We begin with a brief description of a three user interference channel (3−IC) and state the problem of interest. A

3−IC, depicted in figure 4.3, consists of three transmitter receiver (Tx-Rx) pairs that share a common communication

medium. Let Xj denote the input alphabet available to transmitter j. Receiver j observes symbols in output alphabet

Yj . The symbol observed by receiver j depends on the input of the three transmitters. This is modelled through the

channel transition probabilities WY1Y2Y3|X1X2X3
. In particular, conditioned on x1, x2, x3 being the symbols input by

transmitters 1, 2 and 3 respectively, the probability of receivers 1, 2 and 3 observing symbols y1, y2, y3 respectively, is

WY1Y2Y3|X1X2X3
(y1, y2, y3|x1, x2, x3). As always, we assume the channel to be discrete, memoryless and used without

feedback.

Transmitter j wishes to reliably communicate a specific information stream to it’s corresponding receiver j. The

problem of interest is to characterize the capacity region of a 3−IC. Please refer to section 4.3 for a precise statement

of this problem. The main contributions of this chapter are (i) characterization of a new achievable rate region for a

general discrete 3−IC and (ii) identification of 3−ICs for which the proposed achievable rate region strictly enlarges

upon the current known largest. In the following, we provide a discussion of current known coding techniques and

the key elements of our contribution.

WY1Y2Y3|X1X2X3
Tx 2

Tx 3

Tx 1 X1

X2

X3

Rx 2

Rx 3

Rx 1Y1

Y2

Y3

M1

M2

M3

M1

M2

M3

Figure 4.1: Three user interference channel (3−IC)
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Evidently, an interference channel (IC) is a model for communication between multiple transmitter receiver (Tx-

Rx) pairs that share a common communication medium. Since the Tx-Rx pairs share a common communication

medium, every user’s transmission causes interference to every other user. Communication over an IC is therefore

facilitated by a coding technique that manages interference efficiently, in addition to channel noise.

The quest for designing an efficient coding technique for managing interference was initiated in the context of an

IC with two Tx-Rx pairs [34] [35] [36], henceforth referred to as 2−IC. Over a 2−IC, the source of interference is the

transmission of the lone interfering transmitter. Based on his findings in [37], Carleial proposed the technique of each

receiver decoding a part of the interfering transmitter’s transmission. To enable this, Carleial employed superposition

coding [20] [21]. Each transmitter splits it’s message and transmission into two parts - public and private. Cloud

center and satellite codebooks encode the public and private parts of the message respectively. In addition to both

parts of the corresponding transmitter, each receiver decodes the public part, i.e., the cloud center codeword, of the

interfering transmitter.

In characterizing the performance of his coding technique via random coding, Carleial employed, quite naturally,

random unstructured codebooks for each pair of cloud center and satellite codebooks. Moreover the two pairs were

statistically independent. Subsequently, Han and Kobayashi [13] strictly enlarged Carleial’s achievable rate region

by (i) replacing the successive decoder he employed by a more powerful joint decoder, and (ii) incorporating a time

sharing random variable.

The above coding technique of message splitting via superposition coding and employing unstructured cloud and

satellite codebooks, henceforth referred to as CHK-technique, remains to be the best known coding technique for

communication over a 2−IC. The interfering transmitter’s transmission being the only source of interference, decoding

a part of the same amounts to decoding a part of the interference. This coding technique is in general more efficient

than either ignoring or decoding the entire interference. Moreover, superposition coding using unstructured codes

enables efficient decoding of a part of the interfering transmitter’s transmission [21]. Whether the rate region proved

achievable in [13], henceforth referred to as the CHK rate region, is the capacity region of a 2−IC has remained a

long standing open problem in information theory.

In this chapter, we consider the problem of communicating over a 3−IC. In a 3−IC, transmission by two trans-

mitters contribute to interference. The nature of interference over a 3−IC being richer, we develop a technique

based on coset codes for interference management. Coset codes built over finite fields, as introduced in section 1.4,

are algebraically closed. The sum of any two codewords of a coset lies in another coset. Moreover, two cosets of a

linear code, when added result in another coset. As against to adding two random codebooks whose codewords are

statistically independent, we emphasize that the sum of two random cosets of a random linear code yields a collection

of the same size. This property of coset codes behaving nicely under addition - a bivariate operation - is exploited

for managing interference, wherein, interference over a 3−IC is in general a compressive bivariate function of the

transmissions of the two interfering transmitters.
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The use of lattice codes [19], [22] and interference alignment techniques [17] have been proposed for efficient inter-

ference management over Gaussian IC’s with three or more Tx-Rx pairs. While these works are restricted to additive

IC’s, the key contribution herein is the development of a framework based on coset codes for efficient communication

over an arbitrary discrete 3−IC. The framework involves (i) a new ensemble of coset codes - partitioned coset codes

(PCC) - possessing algebraic and empirical properties, (coupled with) (ii) efficient joint typicality based encoding

and decoding rules that exploit algebraic properties of PCC and moreover, enable us achieve rates corresponding to

arbitrary single-letter distributions, (iii) mathematical tools and proof techniques to characterize the performance of

the proposed coding technique over arbitrary 3−ICs. This framework enables us characterize PCC rate region - a new

achievable rate region for an arbitrary discrete 3−IC. We demonstrate the utility of this framework by identifying

additive as well as non-additive 3−IC’s for which the proposed technique enables efficient communication.

Conventionally, the random codebooks employed in characterizing achievable rate regions are unstructured and

independent, i.e., codewords of each random codebook, and the random codebooks themselves, are statistically

independent. Since our findings are based on a fundamentally different philosophy - use of statistically correlated

codes possessing algebraic closure properties - it is natural to enquire the need for the same. Indeed, one can employ

unstructured codes for communication over an arbitrary 3−IC and optimally stitch together all current known

relevant coding techniques - message splitting, binning and superposition - to derive the current known largest

achievable rate region for communication over an arbitrary 3−IC. How does this rate region, henceforth referred to

as USB−region, compare to the PCC rate region?

An important element of our findings is the strict sub-optimality of the USB−technique1 for communicating over

3−IC’s, including non-additive instances. In particular, we identify (i) an additive 3−IC, and (ii) a non-additive

3−IC for which we analytically prove strict containment of the USB−region in it’s corresponding capacity region.

Moreover, for these 3−IC’s the PCC rate region is the capacity region. This justifies the need for the framework

developed herein. The reader will now wonder whether PCC rate region strictly subsumes USB−region for an

arbitrary 3−IC.2

In addition to efficiently decoding a bivariate function of the two interfering transmitters’ transmission, which the

proposed coding technique based on PCC accomplishes, it is necessary to enable receivers efficiently decode individual

parts of interfering transmitters’ transmissions. The coding technique based on statistically correlated PCC proposed

herein, is tuned to exploit the algebraic properties of coset codes in decoding a bivariate function - field addition

- of transmissions of the two interfering transmitters. Such a technique is strictly sub-optimal for the purpose of

1The above coding technique that employs unstructured codes and optimally stitches together all current known relevant coding
techniques - message splitting, binning and superposition is the current known best coding technique for communicating over an arbitrary
3−IC. We refer to this as the USB−technique. We state the USB−technique in section 4.4.2. This yields the current known largest
achievable rate region for a general 3−IC which is referred to herein as USB−region. We provide a characterization of the USB−region
for a sub-class of 3−IC’s in section 4.4.2.

2A little thought will convince an alert reader, that is this were true, the PCC rate region should particularize or enlarge the CHK
rate region for a 2−IC. Indeed, this is not true, as will be indicated in the sequel.

33



decoding individual parts of interfering transmitters’ transmissions, when compared to traditional technique based

on unstructured independent codes. This leads us to enhance the PCC coding technique by incorporating the

USB−technique. This enables us characterize a new achievable rate region for an arbitrary discrete 3−IC that

contains PCC rate region and strictly enlarges the USB−region.

4.1 Outline

We state the preliminaries - notation, definitions and the precise statement of the problem - in section 4.3. In section

4.4, we provide a characterization of the CHK rate region for a 2−IC. The first main finding of this chapter is the

strict sub-optimality of current known coding techniques based on unstructured codes for communication over 3−IC.

In order to present this finding, we characterize a sub-class of 3−IC’s called 3−to−1 IC (section 4.3), and derive,

in section 4.4.2, an achievable rate region for the same, called USB−region, that employs current known coding

techniques based on unstructured codes. In section 4.5, we identify an additive 3−to−1 IC and propose a strategy

based on correlated linear codes that is analytically proven to strictly outperform USB−technique.

Our second main finding - a new achievable rate region for an arbitrary discrete 3−IC - is presented in section 4.6

in three pedagogical steps. In section 4.6.1, we define partitioned coset codes (PCC) and present the first step that

describes all the new elements of our framework in a simple setting. Here, we employ PCC to manage interference

seen by only one receiver. For this step, we furnish a complete and elaborate proof of achievability. In this section,

we also identify a non-additive 3−to−1 IC (Example 4.6.7) for which USB−technique is strictly sub-optimal and

moreover, the coding technique based on PCC is capacity achieving. This example illustrates the central theme of

this thesis - codes endowed with algebraic closure properties enable efficient communication over arbitrary general

multi-terminal systems, not just additive, symmetric instances - and thereby justifies the framework developed herein.

In the second step, presented in section 4.6.2, we employ PCC to manage interference seen by all three receivers.

Finally, in section 4.6.3, we indicate how to enlarge the USB−region by incorporating the framework based on PCC.

4.2 Prior work

An IC has been the subject of considerable interest since Shannon’s study [34] of the two way channel. Carleial

[38] made the key observation that the technique of superposition [20], [21] could be employed to split each user’s

transmission and thereby enable each receiver decode a part of the interfering transmitter’s transmission. While

Carleial derived a rate region by analyzing a sequential decoder, Han and Kobayashi [13] employed the joint decoder

to enlarge upon the rate region proved achievable in [38].3 The technique developed by Carleial [38], and furthered

3Moreover, they included a time sharing random variable in it’s characterization and argue that a time sharing random variable
provides a strict enlargement over the then common practice of convex hull operation
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by Han and Kobayashi [13] is the only coding technique known to counter interference in a 2−IC. This coding

technique is optimal under strong interference [37], [39]. El Gamal and Costa [40] prove that CHK-technique is

optimal for a class of deterministic IC’s. Recently Etkin, Tse and Wang [41] prove the CHK-technique is within 1

bit of the optimal for the Gaussian IC. Following a period of reduced activity, there has been renewed interest in

developing strategies for managing interference in an IC setting. Cadambe and Jafar [17] propose the technique of

interference alignment for the Gaussian IC and thereby harness the available of degrees of freedom in an IC with

several Tx-Rx pairs more efficiently. Bresler, Parekh and Tse [22] employ lattice codes to align interference and

thereby characterize capacity of Gaussian ICs within a constant number of bits. While our findings appear similar

to the idea of interference alignment, we would like to reiterate the following key elements. Our work provides a

technique of aligning interference over arbitrary channels even while achieving rates corresponding to non-uniform

distributions.4 Example 4.6.7 illustrates the utility of this technique.

4.3 Definitions: 3−IC, 3−to−1 IC, achievability, capacity region

A 3−IC consists of three finite input alphabet sets X1,X2,X3 and three finite output alphabet sets Y1,Y2,Y3. The

discrete time channel is (i) time invariant, i.e., the pmf of Y t : = (Y1t, Y2t, Y3t), the output at time t, conditioned

on Xt : = (X1t, X2t, X3t), the input at time t, is invariant with t, (ii) memoryless, i.e., conditioned on present

input Xt, the present output Y t is independent of past inputs X1, · · · , Xt−1, past outputs Y 1, · · · , Y t−1 and (iii)

used without feedback, i.e., encoders have no information of the symbols received by decoders. Let WY |X(y|x) =

WY1Y2Y3|X1X2X3
(y1, y2, y3|x1, x2, x2) denote probability of observing symbol yj ∈ Yj at output j, given xj ∈ Xj is

input by encoder j. Inputs are constrained with respect to cost functions κj : Xj → [0,∞) : j ∈ [3]. The cost

function is assumed additive, i.e., cost of transmitting vector xnj ∈ Xnj is κ̄nj (xnj ) : = 1
n

∑n
t=1 κj(xjt). We refer to this

3−IC as (X ,Y,WY |X , κ).

Definition 4.3.1 A 3−IC code (n,M, e, d) consist of (i) index sets M1,M2,M3 of messages, (ii) encoder maps

ej :Mj → Xnj : j ∈ [3], and (iii) three decoder maps dj : Ynj →Mj : j ∈ [3].

Definition 4.3.2 The error probability of a 3−IC code (n,M, e, d) conditioned on message triple (m1,m2,m3) ∈M

is

ξ(e, d|m) : = 1−
∑

yn:d(yn)=m

WY |X(yn|e1(m1), e2(m2), e3(m3)).

The average error probability of a 3−IC code (n,M, e, d) is ξ̄(e, d) : =
∑
m∈M

1
|M1||M2||M3|ξ(e, d|m). Average cost

per symbol of transmitting message m ∈M is τ(e|m) : =
(
κ̄nj (ej(mj)) : j ∈ [3]

)
and average cost per symbol of 3−IC

code (n,M, e, d) is τ(e) : = 1
|M1||M2||M3|

∑
m∈M τ(e|m).

4We note that the technique of interference alignment proposed by Cadambe and Jafar is restricted to Gaussian channels and achieve
rates corresponding Gaussian input distributions.
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Definition 4.3.3 A rate-cost sextuple (R1, R2, R3, τ1, τ2, τ3) ∈ [0,∞)6 is achievable if for every η > 0, there exists

N(η) ∈ N such that for all n > N(η), there exists a 3−IC code (n,M(n), e(n), d(n)) such that (i)
log |M(n)

j |
n ≥

Rj − η : j ∈ [3], (ii) ξ̄(e(n), d(n)) ≤ η, and (iii) average cost τ(e(n))j ≤ τj + η. The capacity region is C(τ) :

=
{
R ∈ R3 : (R, τ) is achievable

}
.

We now introduce the class of 3−to−1 IC that enables us prove strict sub-optimality coding techniques based on

unstructured codes. A 3−to−1 IC is an 3−IC wherein two of the users enjoy interference free point-to-point links.

Formally, a 3−IC (X ,Y,WY |X , τ) is a 3−to−1 IC if (i) WY2|X (y2|x) : =
∑

(y1,y3)∈Y1×Y3
WY |X(y|x) is independent of

(x1, x3) ∈ X1×X3, and (ii) WY3|X (y3|x) : =
∑

(y1,y2)∈Y1×Y2
WY |X(y|x) is independent of (x1, x2) ∈ X1×X2 for every

collection of input output symbols (x, y) ∈ X ×Y. For a 3−to−1 IC, the channel transition probabilities factorize as

WY |X(y|x) = WY1|X(y1|x)WY2|X2
(y2|x2)WY3|X3

(y3|x3) for some conditional pmfs WY1|X , WY2|X2
and WY3|X3

. We

also note that X1X3 −X2 − Y2 and X1X2 −X3 − Y3 are Markov chains for any distribution pX1pX2pX3WY |X .5

In the following section, we describe the coding technique of message splitting and superposition using unstruc-

tured codes, in the context of a 2−IC, and employ the same in deriving the USB−region for 3−to−1 IC.

4.4 Message splitting and superposition using unstructured codes

4.4.1 CHK-technique for 2−IC

The main impediment to communicating efficiently over a 2−IC is interference. As against to treating the interfering

transmitters’ transmission as noise, CHK-technique enables each decoder decode a part of the same to enhance it’s

capability to decode the desired signal. In order for encoder j to make available one part of it’s transmission to the

decoder j, it’s transmission is split into two parts - public and private. Decoder j decodes public part of encoder

j’s transmission, peels it off, and thereby enhance it’s capability to decode the intended signal - public and private

transmissions of encoder j.

Encoder j builds codebooks over two layers - public and private. The public layer contains a cloud center codebook

built over Wj . For each codeword in the cloud center codebook, a corresponding satellite codebook is built over

Xj . The satellite codebooks form the private layer. The user’s message is split into two parts - public and private.

The cloud center codeword is the codeword in the cloud center codebook indexed by the public part of the message.

In the satellite codebook corresponding to the cloud center codeword, the codeword indexed by the private part of

the message forms the satellite codeword. The satellite codeword is input on the channel. Decoder j decodes into

codebooks built over W1,W2 and Xj , i.e., the two cloud center codebooks and it’s satellite codebook. A standard

information theoretic analysis of probability of error yields an achievable rate region referred to herein as CHK rate

5Any interference channel wherein only one of the users is subjected to interference is a 3−to−1 IC by a suitable permutation of the
user indices.
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region for 2−IC.

Definition 4.4.1 and theorem 4.4.2 provide a characterization of rate pairs achievable using CHK-technique. We

omit restating the definitions analogous to definitions 4.3.1, 4.3.2, 4.3.3 for a 2−IC.

Definition 4.4.1 Let DHK(τ) denote the collection of pmfs pQW1W2X1X2Y1Y2
defined on Q×W1×W2×X1×X2×Y1×

Y2, where Q,W1,W2 are finite sets of cardinality at most 7, |X1|+4, |X2|+4 respectively, such that (i) pY |XW = WY |X ,

(ii) (W1, X1) is conditionally independent of (W2, X2) given Q, (iii) E {κj(Xj)} ≤ τj. For pQWXY ∈ DHK(τ), let

αHK(pQWXY ) denote the set of rate pairs (R1, R2) ∈ [0,∞]2 that satisfy

Rj < min {I(Xj ;Yj |QWj), I(Xj ;Yj |QW ) + I(WjXj ;Yj |QWj)} : j ∈ [2]

R1 +R2 < min

I(Xj ;Yj |QW ) + I(WjXj ;Yj |Q) : j ∈ [2],

2∑
j=1

I(WjXj ;Yj |QWj)


2Rj +Rj < I(Xj ;Yj |QW ) + I(WjXj ;Yj |QWj) + I(WjXj ;Yj |Q) : j ∈ [2]

and

αHK(τ) = cl

 ⋃
pQWXY ∈
DHK(τ)

αHK(pQWXY )

 .

Theorem 4.4.2 For 2−IC (X ,Y,WY |X , κ), αHK(τ) is achievable, i.e., αHK(τ) ⊆ C(τ).

Remark 4.4.3 Recently, several efforts [42], [43], [44] have yielded simplified descriptions [45] of αHK(τ). The

description stated above involving fewer auxiliary random variables and tighter bounds on their cardinalities, is due

to Chong et. al. [42].

4.4.2 USB−technique for 3−to−1 IC

Before we consider the case of a 3−to−1 IC, it is appropriate to state how does one optimally stitch together current

known coding techniques - message splitting, superposition coding and precoding via binning - for communicating

over 3−IC? Each encoder must make available parts of it’s transmission to each user it interferes with. Specifically,

encoder j splits it’s transmission into four parts - one public, two semi-private and one private. The corresponding

decoder j decodes all of these parts. The other two decoders, say i and k, for which encoder j’s transmission is

interference, decode the public part of user j’s transmission. The public part is decoded by all receivers, and is

therefore encoded using a cloud center codebook at the base layer. Moreover, each semi-private part of encoder

j’s transmission is decoded by exactly one among the decoders i and k. The semi-private parts are encoded at

the intermediate level using one codebook each. These codebooks, referred to as semi-satellite codebooks, are

conditionally coded over the cloud center codebook. The semi-satellite codebooks are precoded for each other via
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binning. The private part is encoded at the top layer using a satellite codebook. The satellite codebook is conditionally

coded over the cloud center and semi-satellite codebooks. Each decoder decodes the seven parts using a joint typicality

decoder. Finally, the encoders and decoders share a time sharing sequence to enable them synchronize the choice of

codebooks at each symbol interval. We henceforth refer to the above coding technique as the USB−technique.

One can characterize USB−region - an achievable rate region corresponding to the above coding technique - via

random coding. Indeed, such a characterization is quite involved. Since our objective is to illustrate sub-optimality

of USB−technique, it suffices to obtain a characterization of USB−region for 3−to−1 ICs.

For the case of 3−to−1 IC, user 1’s transmission does not cause interference to users 2 and 3, and therefore will

not need it to split it’s message. This can be proved using Markov chains X1X3 − X2 − Y2 and X1X2 − X3 − Y3.

Moreover, transmission of user 2 does not interfere user 3’s reception and vice versa. Therefore, users 2 and 3 will

only need to split their messages into two parts - a private part and a semi-private part that is decoded by user 1.

We now describe this coding technique.

Since encoder 1’s transmission does not cause interference to any of the other users, it employs a simple PTP

encoder. Specifically, encoder 1 builds a single codebook (xn1 (m1) : m1 ∈ M1) of rate T1 over X1 and the codeword

indexed by the message is input on the channel. The operations of encoder 2 and 3 are identical and we only describe

the former. Moreover, since their transmissions cause interference only to user 1, their operations are identical to

that of a generic encoder of a 2−IC. In anticipation of a generalization to 3−IC , we employ an alternate notation

and therefore describe operation of encoder 2.

Encoder 2 splits it’s message M2 ∈M2 into two parts - semi-private and private. We let message (i) M21 ∈M21

of rate L2 denote it’s semi-private part and (ii) M2X ∈ M2X of rate T2 denote it’s private part. A single semi-

private layer codebook (un2 (m21) : m21 ∈ M21) is built over U2. For each message m21 ∈ M21, a codebook

(x2(m21,m2X) : m2X ∈ M2X) is built over X2. The codebooks over X2 form the private layer. The codeword

x2(M21,M2X) corresponding to message M2 = (M21,M2X) is input on the channel.

Decoders 2 and 3 enjoying interference free reception perform simple point to point joint typical decoding into

the corresponding pair of semi-private and private codebooks. Decoder 1 looks for all messages m̂1 ∈ M1 for which

there exists a pair (un2 (m̂21), un3 (m̂3)) such that (x1(m̂1), un2 (m̂21), un3 (m̂31), Y n1 ) is jointly typical, where Y n1 is the

vector received by decoder 1. If there is exactly, one such message m̂1 ∈M1, this is declared as decoded message of

user 1. Otherwise, an error is signaled.

A typical information theoretic analysis of probability of decoding error yields the USB−region for 3−to−1 IC.

For the sake of completeness, we provide the details. A well versed reader may skip over to the characterization

provided in definition 4.4.4 and theorem 4.4.5. Let Q, taking values over the finite alphabet Q, denote the time

sharing random variable. Let pQ be a pmf on Q and qn ∈ Qn denote a sequence picked according to
∏n
t=1 pQ.

qn is revealed to the encoders and decoders. The distribution induced on the ensemble of codebooks is such that,
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conditioned on time sharing sequence being qn, the three collections of codebooks, one corresponding to each user,6

are mutually independent. Let pQpX1|QpU2X2|QpU3X3|QWY |X be a pmf on Q × U2 × U3 × X × Y. The codewords

in X1−codebook are independent and identically distributed according to
∏n
t=1 pX1|Q(·|qt). The codewords in user

2’s semi-private codebook are independent and identically distributed according to
∏n
t=1 pU2|Q(·|qt). Conditioned

on the entire U2−codebook, codewords (x2(m21,m2X) : m2X ∈ M2X) in the private codebook corresponding to

semi-private message mU
2 are independent and identically distributed according to

∏n
t=1 pX2|U2Q(·|(un2 (mU

2 ))t, qt).

The distribution induced on user 3’s codebook is analogous to that of user 2 and a description is therefore omitted.

We now average probability of decoding error over the ensemble of codebooks. The probability of either decoder

2 or 3 decoding erroneously decays exponentially if

Lj + Tj < I(UjXj ;Yj |Q) and Tj < I(Xj ;Yj |Q,Uj) : j = 2, 3.

The probability of decoder 1 decoding erroneously decays exponentially if

T1 < I(X1;U2, U3, Y1|Q), L2 + T1 < I(U2X1;U3Y1|Q), L3 + T1 < I(U3X1;U2Y1|Q), and

L2 + L3 + T1 < I(U2U3X1;Y1|Q).

Incorporating non-negativity constraints, Tj ≥ 0 : j ∈ [3], Lj ≥ 0 : j = 2, 3, substituting R1, R2, R3 for T1, L2 +

T2, L3 +T3 respectively, and eliminating all variables except Rj : j ∈ [3] using the technique of Fourier-Motzkin yields

the following achievable rate region.

Definition 4.4.4 Let Du(τ) denote the collection of pmfs pQU2U3XY defined on Q×U2×U3×X ×Y, where Q,U2,U3

are finite sets, such that (i) pY |XU2U3Q = WY |X , (ii) the triplet X1, (U2, X2) and (U3, X3) are conditionally mutually

independent given Q, (iii) E {κj(Xj)} ≤ τj : j ∈ [3]. For pQU2U3XY ∈ Du(τ), let αu(pQU2U3XY ) denote the set of

rate triples (R1, R2, R3) ∈ [0,∞)3 that satisfy

0 ≤ R1 < I(X1;Y1|Q,U2, U3), 0 ≤ Rj < I(UjXj ;Yj |Q) : j = 2, 3 (4.1)

R1 +R2 < I(U2X1;Y1|QU3) + I(X2;Y2|QU2), R1 +R3 < I(U3X1;Y1|QU2) + I(X3;Y3|QU3)

R1 +R2 +R3 < I(U2U3X1;Y1|Q) + I(X2;Y2|QU2) + I(X3;Y3|QU3), (4.2)

and

αu(τ) = cl

 ⋃
pQU2U3XY

∈
Du(τ)

αu(pQU2U3XY )

 .

6Here, the collection of user j’s codebooks refers to the entire collection of codebooks employed by encoder j.
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Figure 4.2: A binary additive 3−to−1 IC described in example 4.5.1.

Theorem 4.4.5 For 3−to−1 IC (X ,Y,WY |X , κ), αu(τ) is achievable, i.e., αu(τ) ⊆ C(τ).

The reader will also recognize that αu(τ) is indeed achievable over an arbitrary 3−IC.7 This is stated below.

Theorem 4.4.6 For 3−IC (X ,Y,WY |X , κ), αu(τ) is achievable, i.e., αu(τ) ⊆ C(τ).

4.5 Strict sub-optimality of USB−region for 3−to−1 IC

This section contains our first main finding of this chapter - strict sub-optimality of USB−technique. In particular,

we identify a binary additive 3−to−1 IC for which we prove strict sub-optimality of USB−technique. We begin with

the description of the 3−to−1 IC.

Example 4.5.1 Consider a binary additive 3−to−1 IC illustrated in figure 4.2 with Xj = Yj = {0, 1} : j ∈ [3] with

channel transition probabilities WY |X(y|x) = BSCδ1(y1|x1⊕x2⊕x3)BSCδ2(y2|x2)BSCδ3(y3|x3), where BSCη(0|1) =

BSCη(1|0) = 1 − BSCη(0|0) = 1 − BSCη(1|1) = η denotes the transition probabilities of a BSC with cross over

probability η ∈ [0, 1
2 ]. Inputs of users 2 and 3 are not costed, i.e., κj(0) = κj(1) = 0 for j = 2, 3. User 1’s input is

constrained with respect to a Hamming cost function, i.e., κ1(x) = x for x ∈ {0, 1} to an average cost of τ ∈ (0, 1
2 )

per symbol. Let C(τ) denote the capacity region of this 3−to−1 IC.

Clearly, C(τ) ⊆ β(τ, 1
2 ,

1
2 , δ), where

β(τ , δ) : =
{

(R1, R2, R3) ∈ [0,∞)3 : Rj ≤ hb(δj ∗ τj)− hb(δj) : j = 1, 2, 3
}
. (4.3)

Let us focus on achievability. We begin with a few simple observations for the above channel. Let us begin with

the assumption δ : = δ2 = δ3. As illustrated in figure 4.2, users 2 and 3 enjoy interference free unconstrained

binary symmetric channels (BSC) with cross over probability δ = δ2 = δ3. They can therefore communicate at their

7Unless the 3−IC (X ,Y,WY |X , κ) is a 3−to−1IC, αu(τ) is not it’s USB−region.
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respective capacities 1 − hb(δ). Constrained to average Hamming weight of τ , user 1 cannot hope to achieve a rate

larger than hb(τ ∗ δ1) − hb(δ1).8 What is the maximum rate achievable by user 1 while users 2 and 3 communicate

at their respective capacities?

User 1 cannot hope to achieve rate hb(τ ∗ δ1) − hb(δ1) and decode the pair of codewords transmitted by user 2

and 3 if hb(τ ∗ δ1)− hb(δ1) + 2(1− hb(δ)) > 1− hb(δ1) or equivalently 1 + hb(τ ∗ δ1) > 2hb(δ). Under this condition,

USB−technique forces decoder 1 to be contented to decoding univariate components - represented through semi-

private random variables U2, U3 - of user 2 and 3’s transmissions. We state that as long as the univariate components

leave residual uncertainty in the interfering signal, i.e., H(X2⊕X3|U2, U3) > 0, the rate achievable by user 1 is strictly

smaller than it’s maximum hb(τ ∗ δ1)−hb(δ1).9 This claim and the proof of strict sub-optimality of USB−technique

is proved in theorem 4.5.3.

We now describe a simple linear coding technique that enables user 1 achieve it’s maximum rate hb(τ ∗δ1)−hb(δ1)

even under the condition 1 + hb(τ ∗ δ1) > 2hb(δ)! Let us assume τ ∗ δ1 ≤ δ. We choose a linear code, or a coset

thereof, that achieves capacity of a BSC with cross over probability δ. We equip users 2 and 3 with the same code,

thereby constraining the sum of their transmitted codewords to this linear code, or a coset thereof, of rate 1− hb(δ).

Since τ ∗ δ1 ≤ δ, decode 1 can first decode the interfering signal - sum of codewords transmitted by encoders 2 and 3

- treating the rest as noise, peel it off, and then decode the desired signal. User 1 can therefore achieve it’s maximum

rate hb(τ ∗ δ1)− hb(δ1) if τ ∗ δ1 ≤ δ.

Are the two conditions 1 +hb(τ ∗ δ1) > 2hb(δ) and τ ∗ δ1 ≤ δ mutually exclusive? The two conditions are satisfied

if hb(τ ∗ δ1) ≤ hb(δ) <
1+hb(τ∗δ1)

2 . If τ ∗ δ1 < 1
2 , then hb(τ ∗ δ1) < 1+hb(τ∗δ1)

2 < 1 and δ can be chosen appropriately

to ensure the two conditions are satisfied. For example, the choice δ1 = 0.01, τ = 1
8 and δ ∈ (0.1325, 0.21) proves

these two conditions are indeed not mutually exclusive.

Let us now consider the general case with respect to δ2, δ3 and assume without loss of generality δ2 ≤ δ3. The

linear coding scheme generalizes naturally. We employ a capacity achieving linear code, or a coset thereof, that

achieves capacity of BSC of user 2. This code, or a coset thereof, is sub-sampled uniformly at random to build a

capacity achieving code for BSC of user 3. The sum of user 2 and user 3’s transmissions is contained within a coset

of user 2’s code and can therefore be decoded by user 1 as long as τ ∗ δ1 ≤ δ2. The above arguments are summarized

in the following lemma.

Lemma 4.5.2 Consider the 3−to−1 IC in example 4.5.1. If τ ∗ δ1 ≤ min {δ2, δ3}, then C(τ) = β(τ, 1
2 ,

1
2 , δ), where

β(τ , δ) is given by (4.3).

In theorem 4.5.3, we prove that if 1+hb(δ1 ∗τ) > hb(δ2)+hb(δ3), then (hb(τ ∗δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) /∈

αu(τ). We therefore conclude in corollary 4.5.5 that if τ, δ1, δ2, δ3 are such that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3) and

8If receiver 1 is provided with the codewords transmitted by users 2 and 3, the effective channel it sees is a BSC with cross over
probability δ1.

9An informed reader will be able to reason this by relating this situation to a point to point channel with partial state observed at the
receiver.
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min {δ2, δ3} ≥ δ1 ∗ τ , then USB−technique is strictly suboptimal for the 3−to−1 IC presented in example 4.5.1.

Theorem 4.5.3 Consider the 3−to−1 IC described in example 4.5.1. If hb(δ2) + hb(δ3) < 1 + hb(τ ∗ δ1), then

(hb(τ ∗ δ1)− hb(δ1), 1− hb(δ2), 1− hb(δ3)) /∈ αu(τ).

Proof: If H(Xj |Q,Uj) = 0 for j = 2, 3, then the upper bound in (4.2) reduces to R1+R2+R3 ≤ I(X2X3X1;Y1|Q) ≤

1− hb(δ1). From the hypothesis, we have hb(τ ∗ δ1)− hb(δ1) + 1− hb(δ2) + 1− hb(δ3) > 1− hb(δ1) which violates the

above upper bound and hence the theorem statement is true.

Henceforth, we assume H(Xj |Q,Uj) > 0 for j = 2 or j = 3. Let us assume j, j are distinct elements in {2, 3} and

H(Xj |Q,Uj) > 0. Since (U2, X2) and (U3, X3) are conditionally independent given Q, we have

0 < H(Xj |Q,Uj) = H(Xj |Xj , Q, U2, U3) = H(X2 ⊕X3|Xj , Q, U2, U3) ≤ H(X2 ⊕X3|Q,U2U3).

The univariate components U2, U3 leave residual uncertainty in the interfering signal and imply the existence of a

q̃∗ = (q∗, u∗2, u
∗
3) ∈ Q̃ : = Q × U2 × U3 for which H(X2 ⊕X3|(Q,U2U3) = q̃∗) > 0. Under this condition, we prove

that the upper bound (4.1) on R1 is strictly smaller than hb(τ ∗ δ1) − hb(δ1). Towards that end, we prove a simple

observation based on strict concavity of binary entropy function.

Lemma 4.5.4 If Zj : j ∈ [3] are binary random variables such that (i) H(Z1) ≥ H(Z2), (ii) Z3 is independent of

(Z1, Z2), then H(Z1)−H(Z2) ≥ |H(Z1⊕Z3)−H(Z2⊕Z3)|. Moreover, if H(Z1) > H(Z2) and H(Z3) > 0, then the

inequality is strict, i.e., H(Z1)−H(Z2) > |H(Z1 ⊕ Z3)−H(Z2 ⊕ Z3)|.

Proof: Note that, if either H(Z1) = H(Z2) or H(Z3) = 0, then H(Z1) − H(Z2) = H(Z1 ⊕ Z3) − H(Z2 ⊕ Z3).

We therefore assume H(Z1) > H(Z2) and H(Z3) > 0 and prove the case of strict inequality. For j ∈ [3], let{
pZj (0), pZj (1)

}
= {δj , 1− δj} with δj ∈ [0, 1

2 ], δ3 > 0. Define f : [0, 1
2 ] → [0, 1] as f(t) = hb(δ1 ∗ t) − hb(δ2 ∗ t).

It suffices to prove f(0) > f(δ3). By the Taylor series, f(δ3) = f(0) + δ3f
′(ζ) for some ζ ∈ [0, δ3] and therefore it

suffices to prove f ′(t) < 0 for t ∈ (0, 1
2 ].

It maybe verified that

f ′(t) = (1− 2δ1) log
1− δ̄1
δ̄1

− (1− 2δ2) log
1− δ̄2
δ̄2

, where δ̄j = δj + t(1− 2δj) : j ∈ [2].

Note that (i) 0 ≤ (1 − 2δ1) < (1 − 2δ2) ≤ 1, (ii) δ̄j ≤ δj + 1
2 (1 − 2δj) ≤ 1

2 , (iii) since δ1 > δ2 and t ≤ 1
2 ,

δ̄1 − δ̄2 = (δ1 − δ2)(1 − 2t) ≥ 0. We therefore have 0 ≤ δ̄2 ≤ δ̄1 ≤ 1
2 and thus log 1−δ̄2

δ̄2
≥ log 1−δ̄1

δ̄1
. Combining this

with the first observation, we conclude (1−2δ2) log 1−δ̄2
δ̄2

> (1−2δ1) log 1−δ̄1
δ̄1

which implies f ′(t) < 0 for t ∈ (0, 1
2 ].
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We are now equipped to work with the upper bound (4.1) on R1. Denoting Q̃ : = (Q,U2, U3) and a generic element

q̃ : = (q, u2, u3) ∈ Q̃ : = Q× U2 × U3, we observe that

I(X1;Y1|Q̃) = H(Y1|Q̃)−H(Y1|Q̃X1)

=
∑
q̃

pQ̃(q̃)H(Y1|Q̃ = q̃)−
∑
x1,q̃

pQ̃X1
(q̃, x1)H(Y1|X1 = x1, Q̃ = q̃)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕X2 ⊕X3|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(x1 ⊕N1 ⊕X2 ⊕X3|X1 = x1, Q̃ = q̃)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕X2 ⊕X3|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(N1 ⊕X2 ⊕X3|Q̃ = q̃) (4.4)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕X2 ⊕X3|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1 ⊕X2 ⊕X3|Q̃ = q̃)

≤
∑
q̃

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1|Q̃ = q̃) =
∑
q

pQ(q)H(X1 ⊕N1|Q = q)− hb(δ1) (4.5)

=
∑
q

pQ(q)hb(pX1|Q(1|q) ∗ δ1)− hb(δ1) ≤ hb(EQ
{
pX1|Q(1|q) ∗ δ1

}
)− hb(δ1) ≤ hb(τ ∗ δ1)− hb(δ1), (4.6)

where (i) (4.4) follows from independence of (N1, X2, X3) and X1 conditioned on realization of Q, (ii) (4.5) follows

from existence of a q̃∗ ∈ Q̃ for which H(X2 ⊕X3|Q̃ = q̃∗) > 0 and substituting pX1⊕N1|Q̃(·|q̃∗) for pZ1
, pN1|Q̃(·|q̃∗)

for pZ2 and pX2⊕X3|Q̃(·|q̃∗) for pZ3 in lemma 4.5.4, (iii) the first inequality in (4.6) follows from Jensen’s inequality

and the second follows from the cost constraint that any test channel in D3-1(τ) must satisfy.

The first inequality in (4.6) is an equality if and only if pX1|Q̃(1|q̃) = τ for all q̃ ∈ Q̃ For Q̃ = q̃∗, we have

pX1⊕N1|Q̃(1|q̃∗) > pN1|Q̃(1|q̃∗) and from lemma 4.5.4, we have I(X1;Y1|Q̃) < hb(τ ∗ δ1)− hb(δ1).

Corollary 4.5.5 Consider the 3−to−1 IC in example 4.5.1 with δ = δ2 = δ3. If hb(τ ∗ δ1) ≤ hb(δ) <
1+hb(δ1∗τ)

2 ,

then (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) /∈ αu(τ) but (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) ∈ C(τ) and thus

αu(τ) 6= C(τ). In particular, if δ1 = 0.01 and δ2 ∈ (0.1325, 0.21), then αu( 1
8 ) 6= C( 1

8 ).

4.5.1 The non-trivial role played by structured codes

In this section, we emphasize the role of algebraic closure properties of coset codes. The observant reader would

have noted two new elements in the coding technique proposed for example 4.5.1. Firstly, we propose decoding a

bivariate function of the codewords input by users 2 and 3. Secondly, we employ an ensemble of structured codes,

linear codes in this case, to limit the number of interference patterns. An informed reader may note that the CHK-

technique is based on decoding univariate functions of the other user’s transmission. One might then claim that a

natural extension of CHK-technique for the three user case must involve users decoding bivariate components of the

interfering user’s transmissions. Such a technique may be further enhanced by recognizing bivariate and univariate

functions tend to ‘saturate’ and thereby enhancing the decoding rule. We refer the reader to Bandemer and El
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Gamal [46] that presents an achievable rate region that exploits decoding bivariate functions and it’s saturation.

Our technique goes further through the use of structured code ensembles. When the rates of users are such that the

number of interfering patterns does not saturate, then the structured codes play a non-trivial role in limiting the

same. Example 4.5.1 with the parameters as stated in corollary 4.5.5 demonstrates this. In particular, we prove that

for the choice of parameters as in corollary 4.5.5, the rate triple proved achievable using linear codes is not contained

within the rate region presented in [46].

We refer the reader to [46, Section II.D] wherein the authors propose an achievable rate region for the three user

deterministic interference channel with noisy observations. To avoid conflict in notation, we restate example 4.5.1

with a notation consistent with that employed in [46].

Example 4.5.6 Consider a binary additive 3−to−1 IC illustrated in figure 4.2 with Xj = Zj = {0, 1} : j ∈ [3] with

channel transition probabilities WZ|X(z|x) = BSCδ1(z1|x1⊕x2⊕x3)BSCδ2(z2|x2)BSCδ3(z3|x3), where BSCη(0|1) =

BSCη(1|0) = 1 − BSCη(0|0) = 1 − BSCη(1|1) = η denotes the transition probabilities of a BSC’s with cross over

probability η ∈ [0, 1
2 ]. Inputs of users 2 and 3 are not costed, i.e., κj(0) = κj(1) = 0 for j = 2, 3 and user 1’s input

is constrained by a Hamming cost function, i.e., κ1(x) = x for x ∈ {0, 1}.

Let us describe the above example using the notation employed in [46]. It maybe verified that X12, X13, X23, X32,

S2, S3 are trivial, Xj1 = Xj for j = 1, 2, 3, Y2 = X22 = X2, Y3 = X33 = X3, S1 = X21 ⊕ X31, Y1 = X1 ⊕ S1,

Zj = Yj⊕Nj for j = 1, 2, 3. N1, N2, N3 are independent Bernoulli processes with P (N1 = 1) = δ1 and P (Nj = 1) = δ

for j = 2, 3. We now state the main elements in the argument that proves (hb(τ ∗δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) /∈

RID. Let (Q,X1, X2, X3) be such that (R1, 1 − hb(δ2), 1 − hb(δ3)) ∈ ∩3
k=1Rk(Q,X1, X2, X3). It can be proved that

pXj |Q(0|q) = pXj |Q(1|q) = 1
2 for every q ∈ Q and j = 2, 3 using standard information theoretic arguments10. We now

employ the bound

R1 + min {R2 +H(X31|Q), R3 +H(X21|Q), R2 +R3, H(S1|Q)} ≤ I(X1, S1;Z1|Q) (4.7)

present in the description of R1(Q,X1, X2, X3). Clearly, the right hand side of (4.7) is 1 − hb(δ1). We also know

R2+R3 ≤ min{R2+H(X31|Q), R3+H(X21|Q)}. If R2+R3 ≤ H(S1|Q) = H(X21⊕X31|Q) = H(X2⊕X3|Q) = 1, then

the above bound reduces to R1+R2+R3 ≤ 1−hb(δ1). Therefore, if (2−2hb(δ)) ≤ 1, or equivalently hb(δ) >
1
2 , we have

R1 +R2 +R3 ≤ 1−hb(δ1). Consider the choice δ1 = 0.01, τ = 1
8 and δ = 0.15. We have hb(τ ∗δ1) ≤ hb(δ) < 1+hb(δ1∗τ)

2

and therefore (2− 2hb(δ)) + (hb(δ1 ∗ τ)− hb(δ1)) > (1− hb(δ1 ∗ τ)) + (hb(δ1 ∗ τ)− hb(δ1)) = 1− hb(δ1) and moreover

hb(δ) = 0.6098 > 1
2 . Therefore the rate triple (hb(τ ∗ δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) /∈ RID but is achievable using

linear codes.

10This can be proved by employing the bound Rj < I(Xj ;Zj |Sj , Q) involved in the description of Rj(Q,X1, X2, X3) for j = 2, 3 and
noting that Sj if trivial for these j.

44



4.6 Achievable rate region for an arbitrary 3−IC

In this section, we present our second main finding - a new achievable rate region for a general discrete 3−IC based on

partitioned coset codes (PCC). This rate region, referred to PCC rate region, in conjunction with the USB−region

strictly enlarges upon the latter, which is the current known largest for a general 3−IC. We derive PCC rate region

in two pedagogical steps. In the first step, presented in section 4.6.1, we employ PCC to manage interference seen

by only one of the receivers. This simplified setting aids the reader recognize and absorb all the key elements of the

framework proposed herein. For this step, we provide a complete and elaborate proof of achievability. In this section,

we also identify a non-additive 3−to−1 IC (Example 4.6.7) for which we analytically prove (i) strict sub-optimality

of USB−technique and (ii) optimality of PCC rate region. This example indeed illustrates the central theme of

this thesis - codes endowed with algebraic closure properties enable efficient communication over arbitrary general

multi-terminal communication channels, not just additive, symmetric instances - and thereby justifies the framework

developed herein.

In the second step, presented in section 4.6.2, we employ PCC to manage interference seen by every receiver

and thereby provide a characterization of PCC rate region. In section 4.6.3, we indicate a coding technique that

incorporates PCC and unstructured independent codes for managing interference over a 3−IC. Any characterization

of the corresponding rate region being quite involved, we refrain from providing the same.

4.6.1 Step I : Decoding sum of codewords chosen from PCC over an arbitrary 3−IC

The linear coding technique proposed for example 4.5.1 seems to hinge on the additive nature of the channel

therein. One of our main contributions is in being able to generalize this technique to arbitrary channels. In this

section, we present our generalization in a simple setting that elaborates on the structure of the codebooks and

captures all the key elements.

Definition 4.6.1 Let Df (τ) denote the collection of distributions pQU2U3XY ∈ Df (τ) defined over Q×U2×U3×X×Y,

where U2 = U3 is a finite field. For pQU2U3XY ∈ D3-1
f (τ), let α3-1

f (pQU2U3XY ) be defined as the set of rate triples

(R1, R2, R3) ∈ [0,∞)3 that satisfy

R1 < min{0, H(Uj |Q)−H(U2 ⊕ U3|QY1) : j = 2, 3}+ I(X1;U2 ⊕ U3, Y1|Q),

Rj < I(Uj , Xj ;Yj |Q) : j = 2, 3,

R1 +Rj < I(Xj ;Yj |QUj) + I(X1;U2 ⊕ U3, Y1|Q) +H(Uj |Q)−H(U2 ⊕ U3|QY1) : j = 2, 3,

and

α3-1
f (τ) = cocl

 ⋃
pQU2U3XY

∈
Df (τ)

α3-1
f (pQU2U3XY )

 .
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Theorem 4.6.2 For 3−IC (X ,Y,WY |X , κ), α3-1
f (τ) is achievable, i.e., α3-1

f (τ) ⊆ C(τ).

Before we provide a proof, we describe the coding technique in a simplified setting that highlights the new elements

and indicates achievability of promised rates. Towards that end, consider a pmf pQU2U3XY ∈ Df (τ) with Q = φ11

and U2 = U3 = Fπ. Except for key differences, the coding technique proposed herein is identical to USB−technique

for the 3−to−1 IC (section 4.4.2). Let us revisit the linear coding technique proposed for example 4.5.1 to identify

these key differences. Note that the structure and encoding rule of user 1 in example 4.5.1 and section 4.4.2 are

identical. We therefore employ the same code structure and encoding rules for user 1. In particular, encoder 1 builds

a single codebook C1 = (xn1 (m1) : m1 ∈ M1) of rate R1 over X1 and the codeword indexed by the message is input

on the channel.

The structure and encoding rules for users 2 and 3 are identical and we describe it using the generic index j ∈ {2, 3}.

As in section 4.4.2, we employ a two layer - cloud center and satellite - code for user j and split it’s message Mj ∈Mj

into two parts. Let (i) Mj1 ∈Mj1 : = [πtj ] denote it’s semi-private part, and (ii) MjX ∈MjX : = [exp{nLj}] denote

it’s private part. While in section 4.4.2 user 1 decoded the pair of cloud center codewords, the first key difference

we propose is that user 1 decode the sum of user 2 and 3 cloud center codewords. Let coset λj ⊆ Unj of linear code

λj ⊆ Unj denote user j’s cloud center codebook. In particular, let gj ∈ U
sj×n
j denote generator matrix of λj and coset

λj correspond to shift bnj ∈ Unj . The second key difference we propose is that cloud center codebooks of users’ 2 and

3 overlap, i.e., the larger of λ2, λ3 contains the other. For example, if λj contains πsj codewords12 and sj1 ≤ sj2 ,

then λj1 ⊆ λj2 . We therefore let gTj2 =
[
gTj1 gTj2/j1

]
.

Since codewords of a uniformly distributed coset code are uniformly distributed, we need to partition the coset

code into bins to induce non-uniform distribution over the auxiliary alphabet Uj . We therefore employ partitioned

coset codes (section 3.4.2). The third key difference is therefore a partition of λj into πtj bins to enable induce a

non-uniform distribution. For the benefit of a reader who has not studied through section 3.4.2, we describe and

define partitioned coset codes again. In particular, for each codeword unj (asj ) : = asjgj ⊕ bnj , where asj ∈ Usjj , an

index ij(a
sj ) ∈ [πtj ] is defined that indexes the bin containing unj (asj ). We let cj1(mj1) = {asj ∈ Usjj : ij(a

sj ) = mj1}

denote the set containing indices corresponding to message mj1.

The structure of the cloud center codebook plays an important role in this chapter and we formalize the same

through the following definition.

Definition 4.6.3 Recall that a coset code λ ⊆ Fnπ is a coset of a linear code λ ⊆ Fnπ . The coset code is completely

specified by the generator matrix g ∈ Fk×nπ and a bias vector bnj ∈ Fnπ . Consider a partition of λ into πl bins.

Each codeword akg ⊕ bn is assigned an index i(ak) ∈ [πl]. This coset code λ with it’s partitions is referred to

as partitioned coset code (PCC) (n, k, l, g, bn, i) or succinctly as an (n, k, l) PCC. For each m ∈ [πl], let c(m) :

=
{
ak ∈ Fkπ : i(ak) = m

}
.

11Since the time sharing random variable Q is employed in a standard way, we choose to omit the same in this description.
12Recall |Uj | = π.
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User j’s satellite codebook, built over Xj , consists of exp{nLj} bins, one for each private message mjX ∈

MjX : = [exp{nLj}]. Let (xnj (mjX , bjX) ∈ Xnj : bjX ∈ cjX : = [exp{nKj}]) denote bin corresponding to message

mjX ∈MjX . Having received message Mj = (Mj1,MjX), the encoder identifies all pairs (unj (asj ), xnj (MjX , bjX)) of

jointly typical codewords with (asj , bjX) ∈ cj1(Mj1)× cjX . If it finds one or more such pairs, one of them is chosen

and the corresponding satellite codeword is fed as input on the channel. Otherwise, an error is declared.

We now describe the decoding rule. Predictably, the decoding rules of users 2 and 3 are identical and we describe

this through the generic index j ∈ {2, 3}. Except for a slight modification to handle the bins in the codebooks,

decoder j’s operation is identical in spirit to a point to point decoder described in section 4.4.2. Specifically, decoder

j identifies all (m̂j1, m̂jX) for which there exists (asj , bjX) ∈ cj1(m̂j1) × cjX such that (unj (asj ), xnj (m̂jX , bjX), Y nj )

is jointly typical with respect to pnUjXj ,Yj . If there is exactly one such pair (m̂j1, m̂jX), this is declared as user j

message. Otherwise an error is signaled.

Decoder 1 constructs the sum λ2 ⊕ λ3 : =
{
un2 ⊕ un3 : unj ∈ λj , j = 2, 3

}
of the cloud center codebooks. Having

received Y n1 , it looks for all potential message m̂1 for which there exists a un2⊕3 ∈ λ2⊕λ3 such that (un2⊕3, x
n
1 (m̂1), Y n1 )

is jointly typical with respect to pnU2⊕U3,X1,Y1
. If it finds exactly one such message m̂1, it declares this as decoded

message of user 1. Otherwise, it declares an error.

As is typical in information theory, we derive an upper bound on the probability of error by averaging over the

ensemble of codebooks. Let C1 = (Xn
1 (m1) : m1 ∈ M1) denote random codebook of user 1. Let {j1, j2} = {2, 3},

be such that sj1 ≤ sj2 and Λj1 ,Λj2 denote the random coset codes of users j1 and j2 respectively. Let matrices

Gj1 , G
t
j2

=
[
Gtj1 Gtj2/j1

]
and vectors Bnj1 , B

n
j2

denote the generator matrices and bias vectors of Λj1 ,Λj2 respectively.

For each j = 2, 3, asj ∈ Usjj , let Ij(a
sj ) ∈ [πtj ] denote the random bin to which codeword Unj (asj ) : = asjGj ⊕Bnj is

assigned. For j = 2, 3, let Cj = (Xn
j (mjX , bjX) : (mjX , bjX) ∈MjX×cjX), where cjX : = [exp{nKj}] denote user j’s

random satellite codebook. We let C1, C2, C3 Gj1 , Gj2/j1 , Bn2 , Bn3 and indices Ij(a
sj ) : asj ∈ Usjj , j = 2, 3 be mutually

independent. Moreover, for j = 1, 2, 3, we let (i) the codewords in Cj be mutually independent and identically

distributed according to
∏n
t=1 pXj and (ii) generator matrices Gj1 , G

t
j2

=
[
Gtj1 Gtj2/j1

]
and bias vectors Bnj1 , B

n
j2

be

uniformly distributed over their respective range spaces, and (iii) random indices Ij(a
sj ) : asj ∈ Usjj , j = 2, 3 be

uniformly distributed over their respective range spaces.

In the following proof we derive upper bounds on the parameters of the code and thereby characterize α3-1
f (τ).

Here, we only provide a sketch of the arguments and indicate the upper bounds. The codewords of Λj are uniformly

distributed and pairwise independent (Lemma A.0.1). An informed reader can now recognize that if

sj − tj
n

log π
(a)
> log π −H(Uj) , Kj > 0 ,

(sj − tj) log π

n
+Kj > log π +H(Xj)−H(Xj , Uj) for j = 2, 3, (4.8)

then encoders 2 and 3 will find at least one pair of typical codewords in the indexed pair of bins. Decoders 2 and 3
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perform point-to-point decoding of their cloud center and satellite codebooks. If

Kj + Lj
(a)
< I(Xj ;Yj , Uj) ,

sj log π
n +Kj + Lj

(b)
< log π +H(Xj)−H(Uj , Xj |Yj),

sj log π
n < log π −H(Uj |Xj , Yj) (4.9)

then probability of error at decoder j decays exponentially with block length n.

Λ2 ⊕ Λ3 is a codebook of rate max{ sj log π
n : j = 2, 3} with codewords being uniformly distributed and pairwise

independent. An informed reader will be able to reason that if

R1

(a)
< I(X1;Y1, U2 ⊕ U3) and R1 +

sj log π

n

(b)
< log π +H(X1)−H(X1, U2 ⊕ U3|Y1) for j = 2, 3 (4.10)

then probability of decoding error at receiver 1 can be driven arbitrarily small by choosing a large enough block

length n.

Substituting Rj =
tj log π
n + Lj for j = 2, 3, incorporating non-negativity constraints for R1, tj , Lj : j = 2, 3 and

eliminating
sj log π
n ,Kj : j = 2, 3 using the technique of Fourier Motzkin [26, Appendix D] yields the achievable rate

region mentioned in theorem 4.6.2. We formalize the above arguments through the following proof.

Proof: Let pQU2U3XY ∈ Df (τ), R ∈ α3-1
f (pQU2U3XY ) and η̃ > 0. Let us assume U2 = U3 = Fπ is the finite field of

size π. For each n ∈ N sufficiently large, we prove existence of a 3−IC code (n,M , e, d) for which log Mk

n ≥ Rk − η̃,

τk(ek) ≤ τk + η̃ for k ∈ [3] and ξ(e, d) ≤ η̃.

Taking a cue from the above coding technique, we begin with an alternative characterization of α3-1
f (pQU2U3XY )

in terms of the parameters of the code.

Definition 4.6.4 Consider pQU2U3XY ∈ Df (τ) and let Fπ : = U2 = U3. Let α̃3-1
f (pQU2U3XY ) be defined as the set of

rate triples (R1, R2, R3) ∈ [0,∞)3 for which ∪
δ>0
S̃(R, pQU2U3XY , δ, δ) is non-empty, where S̃(R, pQU2U3XY , δS , δC) is

defined as the collection of vectors (S2, T2,K2, L2, S3, T3,K3, L3) ∈ [0,∞)8 that satisfy

Rj = Tj log π + Lj , Kj > δS , (Sj − Tj) log π > log π −H(Uj |Q) + δS ,

(Sj − Tj) log π +Kj > log π +H(Xj |Q)−H(Uj , Xj |Q) + δS

Tj > δC , Lj > δC , Kj + Lj < I(Xj ;Yj , Uj |Q)− δC , Sj log π < log π −H(Uj |Xj , Yj , Q)− δC ,

Sj log π +Kj + Lj < log π +H(Xj |Q)−H(Uj , Xj |Yj , Q)− δC , R1 < I(X1;Y1, U2 ⊕ U3|Q)− δC

R1 + Sj log π < log π +H(X1|Q)−H(X1, U2 ⊕ U3|Y1, Q)− δC

for j = 2, 3.

Lemma 4.6.5 α̃3-1
f (pQU2U3XY ) = α3-1

f (pQU2U3XY ).
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Proof: The proof follows by substituting Rj = Tj log π + Lj in the bounds characterizing S̃(R, pQU2U3XY , 0, 0)

and eliminating Sj , Tj ,Kj , Lj : j = 2, 3 via the technique of Fourier Motzkin. The resulting characterization will

be that of α3-1
f (pQU2U3XY ). The presence of strict inequalities in the bounds characterizing α3-1

f (pQU2U3XY ) and

S̃(R, pQU2U3XY , δ, δ) enables one prove ∪
δ>0
S̃(R, pQU2U3XY , δ, δ) is non-empty for every R ∈ α3-1

f (pQU2U3XY ).13

Lemma 4.6.5 provides us with the parameters of the code whose existence we seek to prove. Let us now describe this

code. For the rate triple R under consideration, Lemma 4.6.5 provides us with δ > 0 and (Sj , Tj ,Kj , Lj , : j = 2, 3) ∈

S(R, pQU2U3X,Y , δ). Define η = min{δ, η̃}, η1 = η2 = η
2d

, where d ∈ N will be specified in due course. Let qn ∈ Tη2
(Q)

denote the time sharing sequence. User 1’s code contains dexp{nR1}e codewords (xn1 (m1) ∈ Xn1 : m1 ∈ M1), where

M1 : = [dexp{nR1}e]. The structure of user 2 and 3’s codebooks are identical and we describe it using the generic

index j ∈ {2, 3}. User j’s cloud center codebook λj is the partitioned coset code (definition 4.6.3) (n, sj , tj , gj , b
n
j , ij)

built over Unj = Fnπ where sj : = dnSje and tj : = dnTje. We let unj (asj ) : = asjgj ⊕ bnj denote a generic codeword

in λj and cj1(mj1) : = {asj : ij(a
sj ) = mj1} denote the indices of codewords in bin corresponding to message

mj1 ∈ Mj1. Moreover, the partitioned coset codes overlap, i.e., if sj1 ≤ sj2 , then gTj2 = [gTj1 gTj2/j1 ]. Without loss

of generality, we assume s2 ≤ s3 and therefore gT3 = [gT2 gT3/2] The satellite codebook Cj , built over Xj , contains

dexp{nLj}e bins, one for each message mjX ∈ MjX : = [dexp{nLj}e]. Each bin contains bexp{nKj}c codewords.

We let cjX : = [bexp{nKj}c] denote the set of bin indices and thereby (xnj (mjX , bjX) : bjX ∈ cjX) denotes bin

corresponding to message mjX ∈ MjX . The following remarks on the parameters of the codebooks are in order.

Define η3 = η
2d

and note that, for all n ≥ N1(η3) : = max
{
d log 2
η3
e, d 1

η3
e
}

nR1 ≤ log |M1| ≤ n(R1 + η3)

Sj ≤ sj
n ≤ Sj + η3, nLj ≤ log |MjX | ≤ n(Lj + η3) for j = 2, 3 (4.11)

Tj ≤ tj
n ≤ Tj + η3, n(Kj − η3) ≤ log |cjX | ≤ nKj for j = 2, 3 (4.12)

(4.13)

We now specify encoding rules. Encoder 1 feeds codeword xn1 (M1) indexed by the message as input. For j = 2, 3,

encoder j populates

Lj(Mj) : = {(unj (asj ), xnj (MjX , bjX)) ∈ T2η2
(Uj , Xj |qn) : (asj , bjX) ∈ cj1(Mj1)× cjX}.

If Lj(Mj) is non-empty, one of these pairs is chosen. Otherwise, one pair from λj × Cj is chosen. Let (Unj (Asj ),

Xn
j (MjX , BjX)) denote the chosen pair. Xn

j (MjX , BjX) is fed as input on the channel.

Decoder 1 constructs the sum λ2 ⊕ λ3 : =
{
un2 ⊕ un3 : unj ∈ λj , j = 2, 3

}
of the cloud center codebooks. Let

13Indeed, substituting Sj =
sj
n
, Tj =

tj
n

: j = 2, 3, one can identify the bounds in the definition of S̃(R, pQU2U3XY , 0, 0) with those in

(4.8), (4.9) and (4.10). As indicated then, the proof follows from the technique of Fourier-Motzkin [26, Appendix D].
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un⊕(as3) : = as3g3 ⊕ bn2 ⊕ bn3 denote a generic codeword in λ2 ⊕ λ3. Note that λ2 ⊕ λ3 =
{
un⊕(as3) : as3 ∈ Us33

}
.14

Having received Y n1 , it looks for all potential message m̂1 for which there exists a un2⊕3 ∈ λ2 ⊕ λ3 such that

(qn, un2⊕3, x
n
1 (m̂1), Y n1 ) ∈ T4η4(Q,U2 ⊕ U3, X1, Y1)15. If it finds exactly one such message m̂1, it declares this as

decoded message of user 1. Otherwise, it declares an error.

For j ∈ {2, 3}, decoder j identifies all (m̂j1, m̂jX) for which there exists (asj , bjX) ∈ cj1(m̂j1) × cjX such that

(qn, unj (asj ), xnj (m̂jX , bjX), Y nj ) ∈ T4η4(Q,Uj , Xj , Yj), where Y nj is the received vector. If there is exactly one such

pair (m̂j1, m̂jX), this is declared as user j message. Otherwise an error is signaled.

The above encoding and decoding rules map every quintuple of codes (C1, λ2, λ3, C2, C3) into a corresponding 3−IC

code (n,M , e, d) of rate log M1

n ≥ R1,
log Mj

n ≥ tj
n log π + Lj ≥ Tj log π + Lj = Rj : j ∈ {2, 3}, thus characterizing

an ensemble of 3−IC codes, one for each n ∈ N,. We average error probability over this ensemble of 3−IC codes by

letting (i) the codewords of C1 : = (Xn
1 (m1) : m1 ∈ M1), generator matrices G2, G3/2

16, bias vectors Bn1 , B
n
2 , bin

indices (Ij(a
sj ) : asj ∈ Usjj ) : j = 2, 3 and codewords of Cj = (Xn

j (mjX , bjX) : (mjX , bjX) ∈MjX × cjX) : j = 2, 3 be

mutually independent, (ii) the codewords of Cj : j = 1, 2, 3 are identically distributed according to
∏n
t=1 pXj |Q(·|qt),

(iii) generator matrices Gj1 , Gj2/j1 , bias vectors Bn1 , B
n
2 , bin indices (Ij(a

sj ) : asj ∈ Usjj ) : j = 2, 3 be uniformly

distributed over their respective range spaces. We denote the random partitioned coset code (n, sj , tj , Gj , B
n
j , Ij) of

user j as Λj and let (i) Unj (asj ) : = asjGj ⊕ Bnj denote a generic random codeword in Λj , (ii) Un⊕(as3) : = as3G3 ⊕

Bn2 ⊕Bn3 denote a generic codeword in Λ2⊕Λ3, and (iii) Cj1(mj1) = {asj ∈ Usjj : ij(a
sj ) = mj1} denote the random

collection of indices corresponding to message Mj1.

We now proceed towards deriving an upper bound on the probability of error. Towards that end, we begin with

a characterization of error events. Let

ε1j : =
⋂

(asj ,bjX)∈
Cj1(Mj1)×cjX

{(qn, Uj(asj ), Xj(MjX , bjX)) /∈ T2η2
(Q,Uj , Xj)} , for j = 2, 3

ε11 : = {(qn, Xn
1 (M1)) /∈ T2η2(Q,X1)} , ε31 : = {(qn, Xn

1 (M1), Y n1 ) /∈ T2η4(Q,X1, Y1)}

ε3j : =
⋂

(asj ,bjX)∈
Cj1(Mj1)×cjX

{
(qn, Uj(a

sj ), Xj(MjX , bjX), Y nj ) /∈ T2η4
(Q,Uj , Vj , Yj)

}
, for j = 2, 3

ε41 : =
⋃

m̂1 6=M1

⋃
as3∈Us33

{
(qn, Un⊕(as3), Xn

1 (m̂1), Y n1 ) ∈ T4η4(Q,U2 ⊕ U3, X1, Y1)
}

ε4j : =
⋃

m̂j 6=Mj

⋃
asj∈

Cj1(m̂j1)

⋃
bjX∈cjX

{
(qn, Uj(a

sj ), Xj(m̂jX , bjX), Y nj ) ∈ T4η4
(Q,Uj , Vj , Yj)

}
for j = 2, 3.

14Here we have used the assumption s2 ≤ s3. In general, if sj1 ≤ sj2 , we have λ2 ⊕ λ3 =
{
un⊕(asj2 ) : asj2 ∈ U

sj2
j2

}
, where un⊕(asj2 ) :

= asj2 gj2 ⊕ bn2 ⊕ bn3 denotes a generic codeword.
15The value of η4 is specified in due course.
16Recall, that we have assumed s2 ≤ s3.
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Note that ε : =
3⋃
j=1

(ε1j ∪ ε3j ∪ ε4j) contains the error event. We derive an upper bound on the probability of this

event by partitioning it appropriately. The following events will aid us identify such a partition. Define εl : = εl2 ∪εl3 ,

where

εlj : = {φj(qn,Mj) < Lj(n)} , and φj(q
n,Mj) : =

∑
(asj ,bjX)∈

Cj1(Mj1)×cjX

1{(qn,Uj(asj ),Xj(MjX ,bjX))∈T2η2
(Q,Uj ,Xj)}.

Lj(n) is half of the expected number of jointly typical pairs in the indexed pair of bins.17 Let

ε1 : =

3⋃
j=2

{
(qn, Unj (Asj ), Xn

j (MjX , BjX)) /∈ T2η2
(Q,Uj , Xj)

}⋃
{(qn, Xn

1 (M1)) /∈ T2η2
(Q,X1)} , (4.14)

ε2 : = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X)) /∈ Tη4

(Q,U2, U3, X)} (4.15)

ε3 : = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X), Y n) /∈ T2η4

(Q,X1, U2, U3, X, Y )} . (4.16)

For sufficiently large n ∈ N, we prove Lj(n) > 2. For such an n, ε1j ⊆ εlj : j = 2, 3. Since, we can choose n sufficiently

large, we will henceforth assume ε1j ⊆ εlj : j = 2, 3. Therefore, the error event ε ⊆
3⋃
j=1

(ε11 ∪ ε̃1 ∪ ε3j ∪ ε4j) where

ε̃1 : = ε1 ∪ εl.18 From the encoding rule, we have (ε11 ∪ εl)c ⊆ εc1, and hence P ((ε11 ∪ εl)c ∩ ε1) = 0. Moreover,

(ε̃1 ∪ ε2)c ∩
3
∪
j=1

ε3j ⊆ (ε̃1 ∪ ε2)c ∩ ε3. It therefore suffices to derive upper bounds on P (ε11), P (εlj ) : j = 2, 3, P (ε̃c1 ∩ ε2),

P ((ε̃1 ∪ ε2)c ∩ ε3) and P ((ε̃1 ∪ ε3)c ∩ ε4j) : j = 1, 2, 3.

Upper bound on P (ε11) :– By lemma 2.4.1, there exists N2(η2) ∈ N, such that for all n ≥ N2(η2), P (ε11) ≤ η
32 .

Upper bound on P (εlj ) :– Using a second moment method similar to that employed in [47, Appendix A], we derive

an upper bound on P (εlj ) in appendix C. In particular, we prove existence of N5(η) ∈ N such that for all n ≥ N5(η)

P (ε1j ) ≤ 12 exp

{
−n
(
δ − η [36 + log π]

2d

)}
. (4.17)

In deriving the above upper bound, we employed, among others, the bounds

Kj ≥ δ > 0, (Sj − Tj) log π − [log π −H(Uj |Q)] ≥ δ > 0

(Sj − Tj) log π +Kj − [log π +H(Xj |Q)−H(Uj , Xj |Q)] ≥ δ > 0.

Upper bounds on P (ε̃c1 ∩ ε2), P ((ε̃1 ∪ ε2)c ∩ ε3) :– These events are related to the following two events. (i)

The codewords chosen by the distributed encoders are not jointly typical, and (ii) the channel produces a triple of

outputs that is not jointly typical with the chosen and input codewords. In deriving an upper bound on P (ε̃c1 ∩ ε2),

17Since the precise value of Lj(n) is necessary only in the derivation of the upper bound, it is provided in appendix C.
18The reader will note that we have included ε1 on the right hand side.
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P ((ε̃1 ∪ ε2)c ∩ ε3), we employ (i) conditional mutual independence of the triplet X1, (Uj , Xj) : j = 2, 3 given Q

and (ii) the Markov chain (Uj : j = 2, 3) − X − Y . For a technique based on unstructured and independent code,

the analysis of this event is quite standard. However, since our coding technique relies on codewords chosen from

statistically correlated codebooks, we present the steps in deriving an upper bound in appendix D. In particular, we

prove existence of N6(η4), N8(η4) ∈ N, such that for n ≥ max{N1(η3), N6(η4), N8(η4)},

P (ε̃c1 ∩ ε2) + P ((ε̃1 ∪ ε2)c ∩ ε3) ≤ 2 exp{−n
(
n2µη2

4 −
η

2d−5

)
}+

η

32
(4.18)

Upper bound on P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) :– In appendix E equation (E.9), we prove existence of N10(η4) ∈ N such

that for all n ≥ max {N1(η3), N9(η4), N10(η4)} we have

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp

{
−n
[
δ − 28η4 −

η(13 + log π)

2d

]}
. (4.19)

In deriving (4.19), we employed, among others, the bounds

log π +H(X1|Q)−H(X1, U2 ⊕ U3|Y1, Q)− (R1 + max{S2, S3} log π) ≥ δ > 0, I(X1;Y1, U2 ⊕ U3|Q)−R1 ≥ δ > 0.

Upper bound on P ((ε̃1 ∪ ε3)c ∩ ε4j) :– In appendix F equation (F.11), we prove existence of N(η) ∈ N, such that for

all n ≥ N(η)

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε4j) ≤ 10 exp

{
−n
(
δ −

(
η(9 + log π)

2d
+ 16η4

))}
. (4.20)

In deriving (4.20), we employed, among others, the bounds

(log π −H(Uj |Xj , Yj , Q))− Sj log π ≥ δ > 0, (log π +H(Xj |Q)−H(Uj , Xj |Yj , Q))− (Sj log π +Kj) ≥ δ > 0,

I(X1;Y1, U2 ⊕ U3|Q)−R1 ≥ δ > 0, (I(Xj ;Uj , Yj |Q))− (Kj + Lj) ≥ δ > 0,

(log π +H(Xj |Q)−H(Xj , Uj |Yj , Q))− (Kj + Lj + Sj log π) ≥ δ > 0

We now collect the derived upper bounds. From (4.17), (4.18), (4.19) and (4.20), we have

P (
3
∪
j=1

(ε1j ∪ ε3j ∪ ε4j)) ≤
η

32
+ 3 exp

{
−n
(
δ − η [36 + log π]

2d

)}
+ 2 exp

{
−n
(
n2µη2

4 −
η(18 + 2 log π)

2d

)}
+
η4

32

+2 exp

{
−n
(
δ − 30η4 −

η(1 + log π)

2d−1

)}
+ 5 exp

{
−n
(
δ −

(
η(13 + 2 log π)

2d
+ 16η4

))}
≤ 10 exp

{
−n
(
δ −

(
η(36 + 2 log π)

2d
+ 30η4

))}
+ 2 exp{−n

(
n2µη2

4 −
η(18 + 2 log π)

2d

)
}

+
η + η4

32
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We also recall, that η4 ≥ 4η2 for (D.11), (4.19) and (4.20) to hold true. If we are able to find η4 that satisfies

1

30

[
δ − η(36 + 2 log π)

2d

]
> η4 > max

{
4η2 =

η

2d−2
,

√
η

µ2d
(36 + 2 log π)

}
, (4.21)

then we can choose n sufficiently large enough to drive down P (
3
∪
j=1

(ε1j ∪ ε3j ∪ ε4j)). Recall that δ = min{δ2, δ3} is

a function of the rate triple R and η = min{δ, η̃} are not affected by the choice of d. Clearly, by choosing d large

enough, the upper bound in (4.21) can be made sufficiently close to δ
30 and the lower bound can be made sufficiently

close 0 permitting a range of values for η4. This completes derivation of an upper bound on the probability of error.

We only need to argue that the chosen input codewords satisfy the cost constraint. For sufficiently large n,

we have proved P (ε2) ≤ η
16 . Since εc2 implies that chosen input codewords are jointly typical with respect to

pQU2U3XY , a distribution that satisfies E {κj(Xj)} ≤ τj . Using standard typicality arguments and finiteness of

max {κk(xk) : xk ∈ Xk : k ∈ [3]}, it is straight forward to show that the average cost of the codeword input by

encoder j is close to τ j per symbol.

The coding technique proposed in the proof of theorem 4.6.2 is indeed a generalization of that proposed for example

4.5.1, and moreover capacity achieving for the same. We formalize this through the following corollary.

Corollary 4.6.6 For the 3−to−1 IC in example 4.5.1, if τ ∗ δ1 < min{δ2, δ3}, then α3−1
f (τ, 1

2 ,
1
2 ) = C(τ). Moreover,

if δ : = δ2 = δ3 and hb(τ ∗ δ1) ≤ hb(δ) < 1+hb(δ1∗τ)
2 , then αu(τ, 1

2 ,
1
2 ) 6= C(τ) and C(τ) = α3−1

f (τ, 1
2 ,

1
2 ).

It can be verified that β(τ, 1
2 ,

1
2 , δ) = α3−1

f (pQU2U3XY ) where P (Uj = Xj = 0) = P (Uj = Xj = 1) = 1
2 ,

P (X1 = 1) = τ and Q = φ, the empty set, where β(τ , δ) is given in (4.3).

In the sequel, we illustrate through an example the central claim of this thesis that utility of codes endowed with

algebraic structure, and in particular coset codes, are not restricted to particular symmetric and additive problems.

Furthermore, this example establishes the need (i) to achieve rates corresponding to non-uniform distributions which

is accomplished via the technique of binning, (ii) to build coset codes over larger fields, and (iii) to analyze decoding

of sums of transmitted codewords over arbitrary channels which hinges on typical set decoding.

Example 4.6.7 Consider a binary 3−to−1 IC illustrated in figure 4.3 with Xj = Yj = {0, 1} : j ∈ [3] with channel

transition probabilities WY |X(y|x) = BSCδ1(y1|x1 ⊕ (x2 ∨ x3))BSCδ2(y2|x2)BSCδ3(y3|x3), where ∨ denotes logical

OR and BSCη(0|1) = BSCη(1|0) = 1 − BSCη(0|0) = 1 − BSCη(1|1) = η denotes the transition probabilities of a

binary symmetric channel (BSC) with cross over probability η ∈ [0, 1
2 ]. Users’ inputs are constrained with respect to

a Hamming cost function, i.e., κj(x) = x for x ∈ {0, 1}. Assume user jth input is constrained to an average cost per

symbol of τj ∈ (0, 1
2 ).

We begin by stating the conditions for sub-optimality of USB−technique.
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Figure 4.3: A binary 3−to−1 IC described in example 4.6.7.

Lemma 4.6.8 Consider example 4.6.7 with δ : = δ2 = δ3 ∈ (0, 1
2 ) and τ : = τ2 = τ3 ∈ (0, 1

2 ). Let β : = (1− τ)2δ1 +

(2τ − τ2)(1− δ1). The rate triple (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) /∈ αu(τ) if

hb(τ1 ∗ δ1)− hb(δ1) + 2(hb(τ ∗ δ)− hb(δ)) > hb(τ1(1− β) + (1− τ1)β)− hb(δ1) (4.22)

In particular, if (4.22) is true, αu(τ) ( β(τ , δ), where β(τ , δ) is defined in (4.3).

Proof: We prove this by contradiction. Suppose (hb(τ1 ∗ δ1) − hb(δ1), hb(τ ∗ δ) − hb(δ), hb(τ ∗ δ) − hb(δ)) ∈

α3-1
f (pQU2U3XY ) for some pQU2U3XY ∈ D3−1(τ1, τ, τ). Our first claim is that pX2|Q(1|q) = pX3|Q(1|q) = τ for all

q ∈ Q.

From (4.1) we have

Rj ≤ I(UjXj ;Yj |Q) = H(Yj |Q)−H(Yj |XjUjQ) = H(Yj |Q)− hb(δ) =
∑
q∈Q

pQ(q)H(Yj |Q = q)− hb(δ)

=
∑
q∈Q

pQ(q)H(Xj ⊕Nj |Q = q)− hb(δ) for j = 2, 3. (4.23)

If τq : = pXj |Q(1|q), then independence of the pair Nj and (Xj , Q) implies pXj⊕Nj |Q(1|q) = τq(1− δ) + (1− τq)δ =

τq(1− 2δ) + δ. Substituting the same in (4.23), we have

Rj ≤
∑
q∈Q

pQ(q)hb(τq(1− 2δ) + δ)− hb(δ) ≤ hb(
∑
q∈Q

pQ(q)[τq(1− 2δ) + δ])− hb(δ)

= hb([pXj (1)(1− 2δ) + δ])− hb(δ)

from Jensen’s inequality. Since pXj (1) ≤ τ < 1
2 , we have pXj (1)(1− 2δ) + δ ≤ τ(1− 2δ) + δ < 1

2 (1− 2δ) + δ = 1
2 .19

The term hb([pXj (1)(1− 2δ) + δ]) is therefore strictly increasing in pXj (1) and is at most hb(τ ∗ δ).20 Moreover, the

19Here we have used the positivity of (1− 2δ), or equivalently δ being in the range (0, 1
2

).
20This is consequence of pXj (1) ≤ τ .
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condition for equality in Jensen’s inequality implies Rj = hb(τ ∗ δ)− hb(δ) if and only if pXj |Q(1|q) = τ for all q ∈ Q

that satisfies pQ(q) > 0. We have therefore proved our first claim.

Our second claim is an analogous statement for pX1|Q(1|q). In particular, our second claim is that pX1|Q(1|q) = τ1

for each q ∈ Q of positive probability. We begin with the upper bound on R1 in (4.1). As in proof of theorem 4.5.3,

we let Q̃ : = Q×U2×U3, q̃ = (q, u2, u3) ∈ Q̃ denote a generic element and Q̃ : = (Q,U2, U3). The steps we employ in

proving the second claim borrows steps from proof of theorem 4.5.3 and the proof of the first claim presented above.

Note that

R1 ≤ I(X1;Y1|Q̃) = H(Y1|Q̃)−H(Y1|Q̃X1)

=
∑
q̃

pQ̃(q̃)H(Y1|Q̃ = q̃)−
∑
x1,q̃

pQ̃X1
(q̃, x1)H(Y1|X1 = x1, Q̃ = q̃)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(x1 ⊕N1 ⊕ (X2 ∨X3)|X1 = x1, Q̃ = q̃)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃) (4.24)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃)

≤
∑
q̃

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1|Q̃ = q̃) =
∑
q

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)− hb(δ1) (4.25)

=
∑
q̃

pQ̃(q̃)hb(τ1q̃ ∗ δ1)− hb(δ1) ≤ hb(EQ̃ {τ1q̃ ∗ δ1})− hb(δ1) = hb(pX1(1) ∗ δ1)− hb(δ1), (4.26)

where (i) (4.24) follows from independence of (N1, X2, X3) and X1 conditioned on realization of Q̃, (ii) (4.25)

follows from substituting pX1⊕N1|Q̃(·|q̃) for pZ1 , pN1|Q̃(·|q̃) for pZ2 and pX2∨X3|Q̃(·|q̃) for pZ3 in lemma 4.5.4, (iii)

the first inequality in (4.26) follows from Jensen’s inequality. Since pX1
(1) ≤ τ1 < 1

2 , we have pX1
(1) ∗ δ1 =

pX1
(1−δ1)+(1−pX1

(1))δ1 = pX1
(1)(1−2δ1)+δ1 ≤ τ1(1−2δ1)+δ1 ≤ 1

2 (1−2δ1)+δ1 = 1
2 . Therefore hb(pX1

(1)∗δ1)

is increasing21 in pX1(1) and is bounded above by hb(τ1 ∗ δ1).22 Moreover, the condition for equality in Jensen’s

inequality implies R1 = hb(τ1 ∗ δ1) − hb(δ1) if and only if pX1|Q̃(1|q̃) = τ1 for all q̃ ∈ Q̃. We have therefore proved

our second claim.23

Our third claim is that either H(X2|Q,U2) > 0 or H(X3|Q,U3) > 0. Suppose not, i.e., H(X2|Q,U2) =

21This also employs the positivity of 1− 2δ1, or equivalently δ1 being in the range (0, 1
2

).
22This is consequence of pX1

(1) ≤ τ1.
23We have only proved pX1|QU2U3

(1|q, u2, u3 = τ1) for all (q, u2, u3) ∈ Q×U2×U3 of positive probability. The claim now follows from

conditional independence of X1 and U2, U3 given Q.
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H(X3|Q,U3) = 0. In this case, the upper bound on R1 +R2 +R3 in (4.2) is

R1 +R2 +R3 ≤ I(X2, X3, X1;Y1|Q) = H(Y1|Q)−H(Y1|Q,X1, X2, X3)

= H(X1 ⊕ (X2 ∨X3)⊕N1|Q)−H(X1 ⊕ (X2 ∨X3)⊕N1|Q,X1, X2, X3)

= hb(τ1(1− β) + (1− τ1)β)− hb(δ1),

where the last equality follows from substituting pXj |Q : j = 1, 2, 3 derived in the earlier two claims.24 The hypothesis

(4.22) therefore precludes (hb(τ1 ∗δ1)−hb(δ1), hb(τ ∗δ)−hb(δ), hb(τ ∗δ)−hb(δ)) ∈ α3-1
f (pQU2U3XY ) if H(X2|Q,U2) =

H(X3|Q,U3) = 0. This proves our third claim.

Our fourth claim isH(X2∨X3|Q,U2, U3) > 0. The proof of this claim rests on each of the earlier three claims. Note

that we have either H(X2|Q,U2) > 0 or H(X3|Q,U3) > 0. Without loss of generality, we assume H(X2|Q,U2) > 0.

Note that

H(X2|QU2) =
∑
q∈Q

pQ(q)
∑
u2∈U2

pU2|Q(u2|q)H(X2|U2 = u2, Q = q) > 0.

There exists q∗ ∈ Q such that pQ(q∗) > 0 and H(X2|U2, Q = q∗) =
∑
u2∈U2

pU2|Q(u2|q∗)H(X2|U2 = u2, Q =

q∗) > 0. We therefore have a u∗2 ∈ U2 such that pU2|Q(u∗2|q∗) > 0 and H(X2|U2 = u∗2, Q = q∗) > 0. This implies

pX2|U2Q(x2|u∗2, q∗) /∈ {0, 1} for each x2 ∈ {0, 1}.

Since pQ(q∗) > 0, from the first claim we have

0 < 1− τ = pX3|Q(0|q∗) =
∑
u3∈U3

pX3U3|Q(0, u3|q∗).

This guarantees existence of u∗3 ∈ U3 such that pX3U3|Q(0, u∗3|q∗) > 0. We therefore have pU3|Q(u∗3|q∗) > 0 and

1 ≥ pX3|U3Q(0|u∗3, q∗) > 0.

We have therefore identified (q∗, u∗2, u
∗
3) ∈ Q×U2 ×U3 such that pQ(q∗) > 0, pU2|Q(u∗2|q∗) > 0, pU3|Q(u∗3|q∗) > 0,

pX2|U2Q(x2|u∗2, q∗) /∈ {0, 1} for each x2 ∈ {0, 1} and 1 ≥ pX3|U3Q(0|u∗3, q∗) > 0. By conditional independence of

the pairs (X2, U2) and (X3, U3) given Q, we also have pX2|U2U3Q(x2|u∗2, u∗3, q∗) /∈ {0, 1} for each x2 ∈ {0, 1} and

1 ≥ pX3|U2U3Q(0|u∗2, u∗3, q∗) > 0. The reader may now verify pX2∨X3|U2U3Q(x|u∗2, u∗3, q∗) /∈ {0, 1} for each x ∈ {0, 1}.

Since pQU2U3(q∗, u∗2, u
∗
3) = pQ(q∗)pU2|Q(u∗2|q∗)pU3|Q(u∗3|q∗) > 0, we have proved the fourth claim.

Our fifth and final claim is R1 < hb(τ1 ∗ δ1)− hb(δ1). This follows from a sequence of steps employed in proof of

the second claim or in the proof of theorem. Denoting Q̃ : = (Q,U2, U3) and a generic element q̃ : = (q, u2, u3) ∈ Q̃ :

24β : = (1− τ)2δ1 + (2τ − τ2)(1− δ1) is as defined in the statement of the lemma.
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= Q× U2 × U3, we observe that

R1 ≤ I(X1;Y1|Q̃) =
∑
q̃

pQ̃(q̃)H(Y1|Q̃ = q̃)−
∑
x1,q̃

pQ̃X1
(q̃, x1)H(Y1|X1 = x1, Q̃ = q̃)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(x1 ⊕N1 ⊕ (X2 ∨X3)|X1 = x1, Q̃ = q̃)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃) (4.27)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃)

<
∑
q̃

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1|Q̃ = q̃) =
∑
q

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)− hb(δ1) (4.28)

=
∑
q̃

pQ̃(q̃)hb(τ1q̃ ∗ δ1)− hb(δ1) ≤ hb(EQ̃ {τ1q̃ ∗ δ1})− hb(δ1) = hb(pX1(1) ∗ δ1)− hb(δ1), (4.29)

where (i) (4.27) follows from independence of (N1, X2, X3) and X1 conditioned on realization of Q̃, (ii) (4.28) follows

from existence of a q̃∗ ∈ Q̃ for which H(X2 ∨X3|Q̃ = q̃∗) > 0 and substituting pX1⊕N1|Q̃(·|q̃∗) for pZ1 , pN1|Q̃(·|q̃∗)

for pZ2
and pX2∨X3|Q̃(·|q̃∗) for pZ3

in lemma 4.5.4, (iii) the first inequality in (4.29) follows from Jensen’s inequality.

Since pX1
(1) ∗ δ1 = pX1

(1 − δ1) + (1 − pX1
(1))δ1 = pX1

(1)(1 − 2δ1) + δ1 ≤ τ1(1 − 2δ1) + δ1 ≤ 1
2 (1 − 2δ1) + δ1 = 1

2 .

Therefore hb(pX1
(1) ∗ δ1) is increasing25 in pX1

(1) and is bounded above by hb(τ1 ∗ δ1). We therefore have R1 <

hb(τ1 ∗ δ1)− hb(δ1).

We now derive conditions under which α3−1
f (τ1, τ, τ) = C(τ1, τ, τ). Clearly, C(τ1, τ, τ) ⊆ β(τ , δ) where τ = (τ1, τ, τ)

and δ = (δ1, δ, δ) and β(τ , δ) is as given in (4.3). It therefore suffices to derive conditions under which (hb(τ1 ∗ δ1)−

hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) ∈ α3-1
f (τ1, τ, τ).

Lemma 4.6.9 Consider example 4.6.7 with δ : = δ2 = δ3 ∈ (0, 1
2 ) and τ : = τ2 = τ3 ∈ (0, 1

2 ). Let β : = (1− τ)2δ1 +

(2τ−τ2)(1−δ1). The rate triple (hb(τ1 ∗δ1)−hb(δ1), hb(τ ∗δ)−hb(δ), hb(τ ∗δ)−hb(δ)) ∈ α3-1
f (τ1, τ, τ) i.e., achievable

using coset codes, if,

hb(τ ∗ δ)− hb(δ) ≤ θ, (4.30)

where θ = hb(τ) − hb((1 − τ)2) − (2τ − τ2)hb(
τ2

2τ−τ2 ) − hb(τ1 ∗ δ1) + hb(τ1(1 − β) + (1 − τ1)β). We therefore have

α3−1
f (τ1, τ, τ) = C(τ1, τ, τ) if (4.30) holds.

Proof: The proof only involves identifying the appropriate test channel pQU2U3XY ∈ D3−1
f (τ1, τ, τ). Let Q = φ be

empty, U2 = U3 = {0, 1, 2}. Let pX1(1) = 1 − pX1(0) = τ1. Let pUjXj (0, 0) = 1 − pUjXj (1, 1) = 1 − τ and therefore

P (Uj = 2) = P (Xj 6= Uj) = 0 for j = 2, 3. It is easily verified that pQU2U3XY ∈ D3−1
f (τ1, τ, τ), i.e, in particular

respects the cost constraints.

25This also employs the positivity of 1− 2δ1, or equivalently δ1 being in the range (0, 1
2

).
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The choice of this test channel, particularly the ternary fields, is motivated by H(X2 ∨X3|U2 ⊕3 U3) = 0. The

decoder 1 can reconstruct the interfering pattern after having decoded the ternary sum of the codewords. It maybe

verified that for this test channel pQU2U3XY , α3-1
f (τ1, τ, τ) is defined as the set of rate triples (R1, R2, R3) ∈ [0,∞)3

that satisfy

R1 < min {0, θ}+ hb(τ1 ∗ δ1)− hb(δ1), Rj < hb(τ ∗ δ)− hb(δ) : j = 2, 3

R1 +Rj < hb(τ1 ∗ δ1)− hb(δ1) + θ, (4.31)

where θ = hb(τ) − hb((1 − τ)2) − (2τ − τ2)hb(
τ2

2τ−τ2 ) − hb(τ1 ∗ δ1) + hb(τ1(1 − β) + (1 − τ1)β) is as defined in the

statement of the lemma. Clearly, (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) ∈ α3-1
f (pU2U3XY ) if (4.30)

is satisfied.

Conditions (4.22) and (4.30) are not mutually exclusive. It maybe verified that the choice τ1 = 1
90 , τ = 0.15,

δ1 = 0.01 and δ = 0.067 satisfies both conditions thereby establishing the utility of structured codes for examples

well beyond particular additive ones.

4.6.2 Step II: The PCC rate region for a general discrete 3−IC

In this section, we employ PCC to manage interference seen by each receiver. In the sequel, we describe the coding

technique and provide a characterization of the corresponding achievable rate region. In the interest of brevity, we

omit the proof of achievability. All the non-trivial and new elements of such a proof have been detailed in the proof

of theorem 4.6.2.

User j splits it’s message Mj of rate Rj = Lj+Tji+Tjk into three parts (MU
ji ,M

U
jk,M

V
j ), where i, j, k are distinct

indices in {1, 2, 3}. Let Uji = Fπi ,Ujk = Fπk be finite fields and Vj be an arbitrary finite set. Let λji ⊆ Unji denote an

(n, sji + tji, tji) PCC and λjk ⊆ Unjk denote an (n, sjk + tjk, tjk) PCC. If we let Sji : =
sji
n log πi, Tji : =

tji
n log πi and

Sjk : =
sjk
n log πk, Tjk : =

tjk
n log πk then recall that recall that λji, λjk are coset codes of rates Sji + Tji, Sjk + Tjk

partitioned into exp{nTji}, exp{nTjk} bins respectively.26 Observe that cosets λji and λki are built over the same

finite field Fπi . To enable contain the range the sum of these cosets, the larger of λji, λki contains the other. A

codebook Cj of rate Kj + Lj is built over Vj . Codewords of Cj are partitioned into exp {nLj} bins.

MU
ji ,M

U
jk and MV

j index bins in λji, λjk and Cj respectively. Encoder looks for a triplet of codewords from

the indexed bins that are jointly typical with respect to a pmf pUjiUjkVj defined on Uji × Ujk × Vj . Having

chosen one such jointly typical collection, say (Unji, U
n
jk, V

n
j ), the encoder generates a vector Xn

j according to
n∏
t=1

pXj |UjiUjkVj (·|Ujit, Ujkt, Vjt) and inputs the same on the channel.

26The reader will note a change in our notation. In section 4.6.1, we let Sj log π denote rate of user j’s cloud center codebook. This was
partitioned into exp{nTj log π} bins. In this section, we let the cloud center coset codes to be of rate Sji + Tji and Sjk + Tjk partitioned
into exp{nTji} and exp{nTjk} bins respectively.
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Decoder j receives Y nj and looks for all triples (unji, u
n
jk, v

n
j ) of codewords in λji × λjk × Cj for which there exists

a unij⊕kj ∈ (λij ⊕λkj) such that (unij⊕kj , u
n
ji, u

n
jk, v

n
j , Y

n
j ) are jointly typical with respect to pUij⊕Ukj ,Uji,Ujk,Vj ,Yj . If it

finds all such triples in a unique triple of bins, the corresponding triple of bin indices is declared as decoded message

of user j. Otherwise, an error is declared.

In order to characterize an achievable rate region, we average the performance of the above coding technique via

random coding. The distribution induced on the ensemble of codebooks is a simple generalization of that employed in

proof of theorem 4.6.2. In particular, the codewords of Cj are chosen independently according to
n∏
t=1

pVj |Q(·|qt), where

qn is an appropriately chosen time sharing sequence. The three pairs (Λ12,Λ32), (Λ21,Λ31), (Λ13,Λ23) of random PCC

are mutually independent. Within each such pair, (i) the generator matrix of the smaller PCC is obtained by choosing

each of it’s rows uniformly and independently, and (ii) the generator matrix of the larger is obtained by appending the

generator matrix of the smaller with an appropriately chosen number mutually independent and uniformly distributed

rows. All the vectors specifying the coset shifts are chosen independently and uniformly. Moreover, partitioning of all

codes into their bins is effected uniformly and independently.27 Deriving an upper bound on the average probability

of error of this random collection of codebooks coupled with the above coding technique yields the following rate

region.

Definition 4.6.10 Let Df (WY |X , κ, τ) denote the collection of probability mass functions (pQUVXY ) defined on

Q× U × V × X × Y, where

(i) Q,V1,V2,V3 are arbitrary finite sets, V : = V1 × V2 × V3,

(ii) Uij = Fπj 28 for each 1 ≤ i, j ≤ 3, and U : = U12 × U13 × U21 × U23 × U31 × U32,

(iii) V : = (V1, V2, V3) and U : = (U12, U13, U21, U23, U31, U32),

such that (i) the three quadruples (U12, U13, V1, X1), (U23, U21, V2, X2) and (U31, U32, V3, X3) are conditionally mutu-

ally independent given Q, (ii) pY |XV U = pY |X = WY |X , (iii) E {κj(Xj)} ≤ τj for j = 1, 2, 3.

For pUVXY ∈ Df (WY |X , κ, τ), let βf (pUVXY ) be defined as the set of rate triples (R1, R2, R3) ∈ [0,∞]3 for

which there exists nonnegative numbers Sij : ij ∈ {12, 13, 21, 23, 31, 32} , Tjk : jk ∈ {12, 13, 21, 23, 31, 32} ,Kj : j ∈

{1, 2, 3} , Lj : j ∈ {1, 2, 3} that satisfy R1 = T12 + T13 + L1, R2 = T21 + T23 + L2, R3 = T31 + T32 + L3 and

SAj +Kj >
∑
aj∈Aj

log |Uaj |+H(Vj |Q)−H(UAj , Vj |Q), (4.32)

SAj >
∑
aj∈Aj

log |Uaj | −H(UAj |Q), (4.33)

27The reader is encouraged to confirm that the distribution induced herein is a simple generalization of that employed in proof of
theorem 4.6.2.

28Recall Fπj is the finite field of cardinality πj .
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SAj + TAj <
∑
a∈Aj

log |Ua| −H(UAj |Q,UAcj , Uij ⊕ Ukj , Vj , Yj)

SAj + TAj + Sij + Tij <
∑
a∈Aj

log |Ua|+ log πj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Vj , Yj)

SAj + TAj + Skj + Tkj <
∑
a∈Aj

log |Ua|+ log πj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Vj , Yj)

SAj + TAj +Kj + Lj <
∑
a∈Aj

log |Ua|+H(Vj)−H(UAj , Vj |Q,UAcj , Uij ⊕ Ukj , Yj)

SAj + TAj +Kj + Lj + Sij + Tij <
∑
a∈Aj

log |Ua|+ log πj +H(Vj)−H(UAj , Vj , Uij ⊕ Ukj |Q,UAcj , Yj)

SAj + TAj +Kj + Lj + Skj + Tkj <
∑
a∈Aj

log |Ua|+ log πj +H(Vj)−H(UAj , Vj , Uij ⊕ Ukj |Q,UAcj , Yj),

(4.34)

for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3}, where SAj : =
∑
aj∈Aj Saj , UAj = (Uaj : aj ∈ Aj). Let

βf (WY |X , κ, τ) = cocl

 ⋃
pUVXY ∈

Df (WY |X ,κ,τ)

βf (pUVXY )

 .

Theorem 4.6.11 For 3-IC (X ,Y,WY |X , κ), βf (WY |X , κ, τ) is achievable, i.e., βf (WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

Since all the non-trivial elements of this proof are captured in the proof of theorem 4.6.2, and is only more involved

in notation, we omit the same.

4.6.3 Enlarging the PCC rate region using unstructured codes

Let us describe a coding technique that incorporates both unstructured and partitioned coset codes. We follow the

approach of Ahlswede and Han [48]. Refer to figure 4.4 for an illustration of the random variables involved. Each

user splits it’s message into 5 parts. The W−random variable is decoded by all users. In addition, each user decodes

a univariate component of the other user messages. This is represented by the random variable T . Furthermore, it

decodes a bivariate interference component denoted using U . Lastly, each decoder decodes all it’s parts. As indicated

by Han and Kobayashi [13], this achievable rate region could potentially be enlarged through the use of a time sharing

random variable. A description of the corresponding achievable rate region being sufficiently involved, we omit the

details. The reader may refer to section 7.3 unstructured and coset codes are glued together to derive an achievable

rate region for the computation over MAC problem.
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WY1Y2Y3|X1X2X3

W1 T12 T13 U12 U13 V1    X1

W2 T21 T23 U21 U23 V2    X2

W3 T31 T32 U31 U32 V3    X3

Y1   W1 W2 W3 T21 T31 U21U31 T12 T13 U12 U13 V1 X1

Y2   W1 W2 W3 T12 T32 U12U32 T21 T23 U21 U23 V2 X2

Y3   W1 W2 W3 T13 T23 U13U23 T31 T32 U31 U32 V3 X3

Figure 4.4: Collection of random variables associated with coding technique that incorporates unstructured and

partitioned coset codes
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Chapter 5

Three user broadcast channel

We begin with a brief description of a three user discrete broadcast channel (3−DBC) and the problem statement.

A 3−DBC, as depicted in figure 5.1, consists of a single transmitter (Tx) and three receivers (Rx). The transmitter

wishes to communicate specific information streams, that are assumed statistically independent, to each of the three

receivers. The transmitter is provided with a finite input alphabet set X and receiver j observes symbols in a finite

output alphabet set Yj . Let WY1Y2Y3|X denote the channel transition probabilities. As always, we assume the channel

is memoryless, time invariant and used without feedback. The problem of interest is to characterize it’s capacity

region. Please refer to section 5.4 for a precise statement of this problem. In the following, we provide a discussion

of current coding techniques and our findings.

The problem of designing efficient coding techniques for communicating over a broadcast channel (BC) was

initiated [20] in the context of a BC with two receivers (2−BC). Over a 2−BC, the transmitter maps two information

bearing signals, meant for the two receivers, into one signal that can be input on the channel. The channel produces

an output signal at each receiver based on the input signal. From the perspective of each receiver, it’s signal

undergoes a transformation, in accordance with the other receiver’s signal. This transformation is akin to the effect

WY1Y2Y3|X
Tx X Rx 2

Rx 3

Rx 1Y1

Y2

Y3

M1,M2,M3

M1

M2

M3

Figure 5.1: Three user broadcast channel (3−BC)
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of interference, and is therefore undesirable1. Since this transformation is inevitable, one technique to minimize it’s

effect is to make available to each receiver the information bearing signal of the other receiver, henceforth referred

to as interfering signal. Each receiver can therefore reconstruct, as best as possible, this transformation, or in other

words, peel the effect of the interfering signal, and thereby enhance it’s ability to decode the desired signal.

If one employs this technique, observe that each receiver’s rate is constrained, not just by it’s ability, but also by

the other receiver’s ability to decode it’s signal. This technique is therefore prohibitive, unless one of the receivers

is stronger, i.e., capable of decoding everything that the other receiver can.2 In this case, one can fix a rate of

communication to the weaker receiver that it can support. Since the stronger receiver can decode it’s interfering

signal at this rate, and thereby peel it’s effect off, it can decode it’s signal at a rate that is limited only by the channel.

Not surprisingly, this technique, which has come to be known as superposition coding, came to light [20] [21] in the

context of a degraded 2−BC, which precisely models the above scenario.

For communicating over a general 2−BC, it is natural to consider a generalization of the superposition technique

to enable each receiver decode a part of the interfering signal. By choosing the parts carefully, one might be able

to better trade off the benefit of decoding the interfering signal and the constraint it imposes. Hajek and Pursley

[49] proved that this was indeed the case. This led to the technique of splitting the transmission into three parts.

The signal meant for each receiver is split into two parts - public and private. The two public parts are combined

together to form the base layer signal.3 Each private part is identified with a signal in the satellite layer. The three

signals are mapped into a signal input on the channel. Each receiver decodes the base layer signal and the signal

corresponding to it’s private part.

By decoding the base layer signal, each receiver decodes the public part of the interfering signal. This enables

each receiver peel off the effect of the public part of it’s interfering signal. How does one accommodate the presence

of private parts? Following Gel’fand’s ingenious coding technique [8], devised for a particular two user discrete BC

(2−DBC), Marton proposed the technique of precoding via binning [9]. Instead of choosing the signals for the private

parts independently, precoding via binning enables the encoder jointly choose a compatible pair of signals. By jointly

choosing the pair of signals, the effect of each private part on the other receiver is minimized. In other words, the

transformation effected by the private part of the interfering signal is lent more benign by jointly choosing the pair

of signals. Precoding via binning turns out to be an efficient technique for multiplexing information bearing signals

meant for different receivers.

Splitting the transmission of each user into public and private parts, precoding the private parts via binning

and superposing the latter over a base layer comprising of public parts are the current known coding techniques for

1This transformation is the combined effect of (i) the map employed by the transmitter, and (ii) the channel. While the latter is
inevitable, the former is a necessary evil.

2This technique is also not prohibitive if each receiver can decode what the other can.
3The informed reader may associate this with the codeword chosen from the cloud center codebook.
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communicating over a BC with any number of receivers.4 We will henceforth refer to this combination of the three

coding techniques in the context of a 2−BC as Marton’s coding technique [9]. Before we move onto a 3−DBC, let

us make note of one important finding that determines allocation between public and private parts. In general, the

knowledge of any part of the interfering signal can be better exploited at the receiver than via precoding. In other

words, precoding, in general, results in a rate loss, i.e., precoding for any component results in a lower rate when

compared to a scenario wherein the decoder is made available that component. It is therefore desirable to decode as

large a part of the interfering signal as possible, without constraining the rate of the other receiver, and precode for

the rest.5

Over a 2−BC, each receiver is plagued by the presence of a single interfering signal. The technique of superposition

coding using unstructured codes provides an efficient technique for decoding a suitably large part of the single

interfering signal. In this chapter, we study the problem of communicating over a 3−DBC. Over a three user BC

(3−BC), each receiver is plagued by two interfering signals. What are the current known coding techniques for

communicating over a 3−DBC and how they deal with two interfering signals?

The current known coding techniques for communicating over a 3−DBC are based on Marton’s coding technique.

We henceforth refer to this as UM−technique. Each information bearing signal is split into four parts - one public,

two semi-private and one private part. The public part of every receiver is decoded by all receivers. In addition,

each of it’s semi-private part is decoded by exactly one other receiver.6 The technique of superposition coding and

precoding via binning are appropriately combined to multiplex the twelve parts of the three signals.7 Without going

into the details of this technique, we highlight one element that will play a key role herein. The UM−technique

enables each receiver decode individual parts8 of the interfering signals. The contributions of this chapter are based

on the following three questions. Firstly, does it suffice to decode individual parts of the interfering signal? If not,

what parts of the two interfering signals must a receiver decode? How does one enable a receiver decode these parts

efficiently?

In this chapter, we prove that in addition to individual parts of the interfering signal, it benefits for receivers

over a 3−DBC to decode bivariate parts of the same. Since the UM−technique is based on unstructured codes, it is

suited for decoding individual parts of the interfering signals. It is therefore constrained to decode the arguments of

the bivariate function. If the bivariate function is sufficiently compressive, i.e., entropy of the function is significantly

lower than the joint entropy of the arguments, then decoding the arguments is an inefficient technique. These ideas

4These coding techniques achieve capacity for several interesting classes [20, 50, 21, 51, 52, 53, 54, 55, 56, 9, 57, 58, 59, 60, 49].
5Precoding for the Gaussian channel, referred to as dirty paper coding (DPC) is a popular instance of no rate loss. Indeed, over a

vector Gaussian BC, the transmitter can precode for all of the interfering signal, lending a trivial public part. This is closely linked to
the optimality of dirty paper coding for the Gaussian MIMO BC [61]. As the reader will later note, this is the reason why lattices are
superfluous for communicating over vector Gaussian broadcast channels with any number of receivers.

6Clearly, every receiver decodes all it’s parts too.
7In section 5.5.2 we provide an exposition of this coding technique.
8If V2 and V3 denote the interfering signals for receiver 1, we refer to univariate functions of these signals, say f2(V2) and f3(V3), as

individual parts of V2 and V3. In contrast, we refer to a bivariate function of the same, say g(V2, V3) as a bivariate part or a bivariate
interference component.
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lead us to identify a vector additive 3−DBC for which one of the receivers, say receiver 1, benefits by decoding

the sum - a bivariate part - of the interfering signals. If the pair of interfering signals have a high entropy, the

UM−technique cannot enable receiver 1 decode this pair. It is then forced to decode strictly smaller public parts of

the same and precode for the non-trivial private parts. In contrast to the Gaussian setting, this precoding results in

a rate loss, i.e., receiver 1 pays for it’s inability to reconstruct the sum of the interfering signals.

For this vector additive 3−DBC, we propose a linear coding technique wherein the interfering signals are encoded

using cosets of the same linear code. We exploit the algebraic closure property of these codes to enable receiver

1 efficiently reconstruct the sum of interfering signals without decoding the pair. This technique is therefore not

constrained by the high entropy of the pair of interfering signals. It is only constrained by the entropy of the function.

The function in this case, being a sum, is compressive and the linear coding technique can decode the sum while the

UM−technique is unable to decode the arguments. We therefore prove that the proposed linear coding technique

strictly outperforms UM−technique.9

5.1 Our contributions

Our findings in the context of a 3−IC (chapter 4) illustrated a similar phenomenon. Therein, we observed coset

codes aid efficient communication even over non-additive scenarios, thus motivating the need to generalize the linear

coding technique for communicating over a general 3−DBC. This leads us to develop an analogous framework based

on partitioned coset codes (PCC) (definition 3.4.2) to communicate over an arbitrary 3−DBC. The following are

the central elements of this framework. Firstly, the PCC are carefully chosen with mutual relationship that aids

decoding the sum of chosen codewords. Secondly, in order to exploit algebraic closure property of PCC, we propose

new decoding rules. Thirdly, we resort joint typicality encoding and decoding that enables us communicate over

arbitrary 3−DBC and achieve rates corresponding to arbitrary single-letter distributions. This framework enables

us derive a new achievable rate region for a general 3−DBC. Since it generalizes the linear coding technique for

the vector 3−DBC, which in turn strictly outperforms UM−technique, the derived achievable rate region is strictly

larger than UM−region for the vector additive 3−DBC.

The natural question to ask is whether the derived achievable rate region subsumes UM−region for a general

3−DBC. As we have mentioned, (i) coset codes enable efficient decoding of bivariate parts of the two interfering

signals and (ii) superposition coding using unstructured codes enable efficient decoding of individual parts of the

interfering signal. Over a general 3−DBC, it maybe necessary to decode all of these parts. We therefore conclude

9The current known coding techniques being optimal for vector Gaussian BC [61], an observant reader might wonder why the same
phenomenon cannot be exploited therein using lattice codes. The answer lies in the absence of a rate loss for the Gaussian case. Indeed,
all of the interfering signal is precoded for, resulting in no part of the same needing to be decoded. This also emphasizes (i) what governs
the choice of public and private parts and (ii) presence of rate loss in discrete channels leading to the phenomenon identified herein. Rate
loss being a general phenomenon and the absence of the same being particular to the Gaussian setting, the theory developed herein is
widely applicable.
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that the proposed framework based on PCCs in conjunction with the current known coding techniques based on

unstructured codes strictly enhances the latter. In other words, by incorporating the framework based on PCCs the

current known largest achievable rate region can be strictly enlarged. We indicate a technique for the same in this

chapter.

5.2 Significance of our contributions

The coding technique based on coset codes developed herein strictly outperforms the best known coding technique

for communicating over a 3−DBC. In fact, even within the larger class of BC’s with arbitrary input and output

alphabets, any number of receivers and any number of antennae, we have been unaware, for over three decades since

the findings of [9] came to light, of a BC for which the coding techniques of superposition coding and precoding via

binning can be strictly improved upon. This chapter presents the first such example which elegantly ties together

the two ideas of decoding bivariate components and rate loss in a novel setting.

Going beyond proposing a coding technique for a particular example, we develop a framework for communicating

over an arbitrary 3−DBC. Bringing together techniques studied in disparate contexts - joint typicality coding tech-

niques and codes endowed with algebraic closure properties - we derive a new achievable rate region for the general

3−DBC that includes rate regions corresponding to non-uniform distributions.10 The derived rate region strictly

enlarges upon the current known largest, that has remained so for over three decades now.

5.3 Content and organization

We begin with preliminaries in section 5.4. In section 5.5, we present the current known largest achievable rate

regions for 2−DBC and 3−DBC. In particular, we describe the current known coding techniques for communicating

over a BC, in the context of 2−DBC (section 5.5.1) and derive the corresponding achievable rate region. This is

henceforth referred to as Marton’s rate region in recognition of Marton, who derived the same in [9]. In section

5.5.2, appropriately stitch together all (relevant) current known coding techniques and derive an achievable rate

region for 3−DBC. These are henceforth referred to as UM−technique and UM−region respectively. Section 5.6

contains our first main finding - identification of a vector additive 3−DBC for which the UM−technique is proved

to be strictly sub-optimal. The proof of strict sub-optimality is provided in section 5.10. Section 5.6 contains

our second main finding - a framework based on partitioned coset codes (PCC) to communicate over an arbitrary

3−DBC.11 To aid the reader, we present the same in three pedagogical steps. In section 5.8, we indicate how to glue

10It maybe noted that current works employing linear code based techniques such as [18], [15], [16], [17] restrict attention to additive
scenarios and the coding techniques proposed therein do not generalize and moreover only achieve rates corresponding to uniform
distributions.

11This is a generalization of the linear coding technique proposed for the vector additive 3−DBC studied in section 5.6.
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together UM−technique and the framework based on PCC and communicate efficiently over an arbitrary 3−DBC.

An analysis of such a technique yields a new achievable rate region for an arbitrary 3−DBC that strictly enlarges

upon UM−region. A characterization of this region is quite involved and the reader is spared of the same.

5.4 Preliminaries: Notation, definitions and problem statement

We begin with remarks on notation in section 5.4.1. In section 5.4.2, we state relevant definitions - code, achievability

and capacity - with respect to a 3−DBC and provide a precise statement of the problem of interest.

5.4.1 Notation

The empty sum has value 0, i.e,
∑
a∈φ = 0. If pUV is a distribution on U × V, we let pnUV : =

n∏
t=1

pUV unless

otherwise specified. Similarly, if qn ∈ Qn and pUV |Q(·, ·|q) : q ∈ Q is a collection of conditional probabilities, we let

pnUV |Q(·, ·|qn) : =
n∏
t=1

pUV |Q(·, ·|qt). In this chapter, we will need to define pairs and triples of objects of the same

type. In order to reduce clutter, we use an underline to denote aggregates of objects of similar type. For example,

(i) if Y1,Y2,Y3 denote (finite) sets, we let Y either denote the Cartesian product Y1 × Y2 × Y3 or abbreviate the

collection (Y1,Y2,Y3) of sets, the particular reference being clear from context, (ii) if yk ∈ Yk : k = 1, 2, 3, we let

y ∈ Y abbreviate (y1, y2, y3) ∈ Y, (iii) if dk : Ynk →Mk : k = 1, 2, 3 denote (decoding) maps, then we let d(yn) denote

(d1(yn1 ), d2(yn2 ), d3(yn3 )), (iv) if U2, U3 are random variables taking values in U2,U3 respectively, we let U : = U2, U3

and similarly u : = (u2, u3) ∈ U : = U2 × U3 denote a generic element.

5.4.2 Definitions: Broadcast channel, code, achievability and capacity

A 3−DBC consists of a finite input alphabet set X and three finite output alphabet sets Y1,Y2,Y3. The discrete

time channel is (i) time invariant, i.e., the pmf of Y t = (Y1t, Y2t, Y3t), the output at time t, conditioned on Xt, the

input at time t, is invariant with t, (ii) memoryless, i.e., conditioned on present input Xt, the present output Y t

is independent of past inputs X1, · · · , Xt−1, past outputs Y 1, · · · , Y t−1 and (iii) used without feedback, i.e., the

encoder has no information of the symbols received by the decoder. Let WY |X(y|x) = WY1Y2Y3|X(y1, y2, y3|x) denote

probability of observing y ∈ Y at the respective outputs conditioned on x ∈ X being input. Input is constrained

with respect to a cost function κ : X → [0,∞). The cost function is assumed additive, i.e., cost of transmitting the

vector xn ∈ Xn is
∑n
t=1 κ(xt). For each n ∈ N, let κ̄n(xn) : = 1

n

∑n
t=1 κ(xt) denote the average cost of transmitting

xn, per symbol. We refer to this 3−DBC as (X ,Y,WY |X , κ).

In general, a 3−DBC can be employed to communicate seven messages - one to each non-empty subset of receivers

(users). Throughout this chapter, we assume that none of the messages are to be shared among two or more receivers.

In other words, the transmitter has one distinct message to be communicated to each receiver. The focus of this
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chapter therefore is the (private message) capacity region of a 3−DBC, and in particular corresponding achievable

rate regions. The following definitions make the relevant notions precise.

Definition 5.4.1 A 3−DBC code (n,M, e, d) consist of (i) finite index sets M1,M2,M3 of messages, (ii) encoder

map e :M→ Xn, and (iii) three decoder maps dk : Ynk →Mk : k = 1, 2, 3.

Definition 5.4.2 The error probability of a 3−DBC code (n,M, e, d) conditioned on message triple (m1,m2,m3) ∈

M is

ξ(e, d|m) : = 1−
∑

yn:d(yn)=m

WY |X(yn|e(m)).

The average error probability of a 3−DBC code (n,M, e, d) is ξ̄(e, d) : =
∑
m∈M

1
|M1||M2||M3|ξ(e, d|m). Cost of

transmitting message m ∈ M per symbol is τ(e|m) : = κ̄n(e(m)) and average cost per symbol of 3−DBC code

(n,M, e, d) is τ(e) : = 1
|M1||M2||M3|

∑
m∈M τ(e|m).

Definition 5.4.3 A rate-cost quadruple (R1, R2, R3, τ) ∈ [0,∞)4 is achievable if for every η > 0, there exists

N(η) ∈ N such that for all n > N(η), there exists a 3−DBC code (n,M(n), e(n), d(n)) such that (i)
log |M(n)

k |
n ≥

Rk−η : k = 1, 2, 3, (ii) ξ̄(e(n), d(n)) ≤ η, and (iii) average cost τ(e(n)) ≤ τ+η. The capacity region is C(WY |X , κ, τ) :

= cl
{
R ∈ R3 : (R, τ) is achievable

}
.

In this chapter, our objective is to characterize an inner bound to C(WY |X , κ, τ), i.e., an achievable rate region for

a general 3−DBC. In the following section, we provide a characterization of the currently known largest achievable

rate region for the same.

5.5 Current known largest achievable rate region a DBC

The currently known largest achievable rate region for 3−DBC is obtained via superposition and binning of un-

structured codes. We henceforth refer to this UM−technique and the corresponding achievable rate region as

UM−region. We begin with a brief review of Marton’s rate region for the 2−DBC in section 5.5.1 and characterize

UM−region in section 5.5.2.

5.5.1 Marton’s rate region

Marton’s coding incorporates two fundamental coding techniques - superposition and precoding. Superposition

involves each user decode a part of the signal carrying the other user’s information and thereby enhance it’s ability to

decode the intended signals. The technique of jointly choosing each user’s message bearing signal to contain mutual

interference is precoding. Superposition coding is accomplished using a two layer coding scheme. First layer, which

is public, contains a codebook over W. Second layer is private and contains two codebooks one each on V1 and V2.
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Precoding is accomplished by setting aside a bin of codewords for each private message, thus enabling the encoder

to choose a compatible pair of codewords in the indexed bins. User jth message is split into two parts - public and

private. The public parts together index a codeword in W−codebook and the private part of user jth message index

a codeword in Vj−codebook. Both users decode from the public codebook and their respective private codebooks.

Definition 5.5.1 and theorem 5.5.2 provide a characterization of rate pairs achievable using Marton’s coding

technique. We omit restating the definitions analogous to definitions 5.4.1, 5.4.2, 5.4.3 for a 2-BC.

Definition 5.5.1 Let DM (WY |X , κ, τ) denote the collection of distributions pQWV1V2XY1Y2
defined on Q×W×V1×

V2×X ×Y1×Y2, where (i) Q, W, V1 and V2 are finite sets of cardinality at most |X |+4, |X |+4, |X |+1 and |X |+1

respectively, (ii) pY |XVWQ = pY |X = WY |X , (iii) E {κ(X)} ≤ τ . For pQWVXY ∈ DM (WY |X , κ, τ), let αM (pQWVXY )

denote the set of (R1, R2) ∈ [0,∞)2 that satisfy

Rk < I(WVk;Yk|Q) : k = 1, 2,

R1 +R2 < min {I(W ;Y1|Q), I(W ;Y2|Q)}+ I(V1;Y1|QW ) + I(V2;Y2|W,Q)− I(V1;V2|W,Q)

and

αM (WY |X , κ, τ) = cocl

 ⋃
pQWVXY

∈DM (WY |X ,κ,τ)

αM (pQWVXY )


Theorem 5.5.2 For 2−DBC (X ,Y,WY |X , κ), α(WY |X , κ, τ) is achievable, i.e., α(WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

Remark 5.5.3 The bounds on cardinality of W,V1 and V2 were derived by Gohari and Anantharam in [62].

We refer the reader to [9] for a proof of achievability. El Gamal and Meulen [59] provide a simplified proof using the

method of second moment.

5.5.2 UM−region : Current known largest achievable rate region for 3−DBC

The UM−technique is a 3 layer coding technique. For simplicity, we describe the coding technique without referring

to the time sharing random variable and employ the same in characterizing UM−region. User jth message Mj is

split into four parts - two semi-private parts, and one, private and public parts each. We let message (i) MW
j ∈MW

j

of rate Kj denote it’s public part (ii) MU
ij ∈MU

ij ,M
U
jk ∈MU

jk of rates Lij ,Kjk respectively, denote it’s semi-private

parts, where (i, j, k) is an appropriate triple in {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, and (iii) MV
j ∈MV

j of rate Tj denote it’s

private part.

The first layer is public with a single codebook (wn(mW ) : mW ∈ MW ) of rate K1 + K2 + K3 over W. MW :

= (MW
1 ,MW

2 ,MW
3 ) indexes a codeword in W−codebook and each user decodes from W−codebook.
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Each codeword in W−codebook is linked to a triple of codebooks - one each on Uij : (i, j) ∈ {(1, 2), (2, 3), (3, 1)}-

in the second layer. The second layer is semi-private. Each of the three semi-private codebooks is composed of

bins, wherein each bin comprises a collection of codewords. For each pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} the follow-

ing hold. MU
ij and MU

ij together index a bin in Uij−codebook. Each bin in Uij−codebook is of rate Sij . Let

(unij(m
W ,mU

ij ,m
U
ij , sij) : sij ∈ [exp{nSij}]) denote bin corresponding to semi-private messages mU

ij : = (mU
ij ,m

U
ij) in

the Uij−codebook linked to public message mW . Users i, j decode from Uij−codebook and it maybe verified that

Uij−codebook is of rate Kij + Lij + Sij .

Let (i, j) and (j, k) be distinct pairs in {(1, 2), (2, 3), (3, 1)}. Every pair of codewords in Uij− and Ujk−codebooks

is linked to a codebook on Vj . The codebooks over Vj : j = 1, 2, 3 comprise the third layer which is private.

MV
j indexes a bin in Vj−codebook, each of which is of rate Sj , and thus Vj−codebook is of rate Tj + Sj . Let

(vnj (mW ,mU
ij , sij ,m

U
jk, sjk,m

V
j , sj) : sj ∈ [exp{nSj}]) denote bin corresponding to private message mV

j in the

Vj−codebook linked to codeword pair (unij(m
W ,mU

ij , sij), u
n
jk(mW ,mU

jk, sjk)). User j decodes from the private code-

book over Vj .

How does the encoder map messages to a codeword? Let pWUVX be a distribution on W ×U ×V ×X such that

E {κ(X)} ≤ τ . The encoder looks for (s12, s23, s31, s1, s2, s3) such that the septuple

(
wn(MW ),unij(M

W ,MU
ij ,sij):(i,j)=(1,2),(2,3),(3,1),

vnj (MW ,MU
ij ,sij ,M

U
jk,sjk,M

V
j ,sj):(i,j,k)=(1,2,3),(2,3,1),(3,1,2)

)

of codewords is jointly typical with respect to pWUV . If such a septuple is found, this is mapped to a codeword on

Xn which is input to the channel. If it does not find any such septuple, an error is declared.

Decoder j looks for all quadruples (m̂W , m̂ij
U , m̂jk

U , m̂V
j ) such that

(
wn(m̂W ), unij(m̂

W , m̂U
ij , sij), u

n
jk(m̂W , m̂U

jk, sjk), vnj (mW ,mU
ij , sij ,m

U
jk, sjk,m

V
j , sj), Y

n
j

)
is jointly typical with respect to pWUVXY : = pWUVXWY |X , where (i) (i, j, k) is the appropriate triple in

{(1, 2, 3), (2, 3, 1), (3, 1, 2)} and (ii) Y nj is the received vector. If there is a unique such quadruple, it declares m̂j :

= (m̂W
j , m̂

U
ij , m̂

U
jk, m̂

V
j ) as user jth message. Otherwise, i.e., none or more than one such quadruple is found, it

declares an error.

As is typical in information theory, we average error probability over the entire ensemble of codebooks and upper

bound the same. Moreover, we incorporate the time sharing random variable in the above coding technique using the

standard approach. Let Q, taking values over the finite alphabet Q, denote the time sharing random variable. Let pQ

be a pmf on Q and qn ∈ Qn denote a sequence picked according to pnQ. qn is revealed to the encoder and all decoders.

The codewords in W−codebook are identically and independently distributed according to pnW |Q(·|qn). Conditioned

on entire public codebook (Wn(mW ) = wn(mW ) : mW ∈ MW ) and the time sharing sequence qn, each of the

codewords Unij(m
W ,mU

ij , sij) : (mU
ij , sij) ∈Mij

U × [exp{nSij}] are independent and identically distributed according
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to pnUij |WQ(·|wn(mW ), qn). Conditioned on a realization of the entire collection of public and semi-private code-

books, the private codewords (V nj (mW ,mU
ij , sij ,m

U
jk, sjk,m

V
j , sj) : sj ∈ [exp{nSj}]) are independent and identically

distributed according to

pnVj |UijUjkWQ

(
·|wn(mW ), unij(m

W ,mU
ij , sij), u

n
jk(mW ,mU

jk, sjk), qn
)
.

We now average error probability over the ensemble of codebooks. An upper bound on the error event at the

encoder is derived using the method of second moment [59]. The probability of the error event at the encoder decays

exponentially with n if for each triple (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Si > 0 (5.1)

Sij + Sjk > I(Uij ;Ujk|WQ) (5.2)

Sij + Sjk + Ski > I(Uij ;Ujk;Uki|WQ)12 (5.3)

Si + Sij + Sjk + Ski > I(Uij ;Ujk;Uki|WQ) + I(Vi;Ujk|Uij , Uki,WQ) (5.4)

Si + Sj + Sij + Sjk + Ski > I(Vi;Ujk|Uij , Uki,WQ) + I(Vj ;Uki|Uij , Ujk,WQ)

+I(Uij ;Ujk;Uki|WQ) + I(Vi;Vj |Ujk, Uij , Uki,WQ) (5.5)

S1 + S2 + S3 + S12 + S23 + S31 > I(V1;U23|U12, U31,WQ) + I(V2;U31|U12, U23,WQ) + I(V1;V2;V3|QWU)

+I(U12;U23;U31|WQ) + I(V3;U12|U23, U31,WQ). (5.6)

The probability of decoder error event decays exponentially if for each triple (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

I(Vi;Yi|QWUijUki) > Ti + Si (5.7)

I(UijVi;Yi|QWUki) + I(Uij ;Uki|QW ) > Kij + Lij + Sij + Ti + Si (5.8)

I(UkiVi;Yi|QWUij) + I(Uij ;Uki|QW ) > Kki + Lki + Ski + Ti + Si (5.9)

I(UijUkiVi;Yi|QW ) + I(Uij ;Uki|QW ) > Kij + Lij + Sij +Kki + Lki + Ski + Ti + Si (5.10)

I(WUijUkiVi;Yi|Q) + I(Uij ;Uki|QW ) > Ki +Kj +Kk +Kij + Lij + Sij +Kki + Lki + Ski + Ti + Si (5.11)

For each pmf pQWUVXWY |X defined on Q×W ×U ×V ×X ×Y, let αU (pQWUVXY ) denote the set of all triples

(R1, R2, R3) ∈ [0,∞)4 such that (i) there exists non-negative real numbers Kij , Lij , Sij ,Kj , Tj , Sj that satisfies

(5.1)-(5.11) for each pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} and (ii) Rj = Tj + Kjk + Lij + Kj for each triple (i, j, k) ∈

12For three random variables, A,B,C, I(A;B;C) = I(A;B) + I(AB;C).
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{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The UM−region is

αU (WY |X , κ, τ) = cocl

 ⋃
pQWUVXY

∈DU (WY |X ,κ,τ)

αU (pQWUVXY )

 ,

where DU (WY |X , κ, τ) denote the collection of distributions pQWUVXY defined on Q×W × U × V × X × Y, where

(i) Q,W,U ,V are finite sets, (ii) pY |XV UWQ = pY |X = WY |X , (iii) E {κ(X)} ≤ τ .

5.6 A vector additive 3−DBC and a linear coding technique

In this section, we lay the groundwork for our first main finding - strict sub-optimality of UM−technique. In

particular, we identify a vector additive 3−DBC (example Ex:3-BCExample) and propose a linear coding technique

for the same. In section 5.10, we prove strict sub-optimality of UM−technique for this vector additive 3−DBC. We

remark that even within the larger class of BC’s that include continuous valued alphabets, any number of receivers

and multiple antennae, we have been unaware, for over three decades, of any BC for which the coding techniques

of superposition coding and precoding with binning can be strictly improved upon. The vector additive 3−DBC

presented herein is indeed a significant finding.

Example 5.6.1 Consider the 3−DBC depicted in figure 5.2. Let the input alphabet X = X1 × X2 × X3 be a triple

Cartesian product of the binary field X1 = X2 = X3 = F2 and the output alphabets Y1 = Y2 = Y3 = F2 be binary fields.

If X = X1X2X3 denote the three binary digits input to the channel, then the outputs are Y1 = X1 ⊕X2 ⊕X3 ⊕N1,

Y2 = X2 ⊕ N2 and Y3 = X3 ⊕ N3, where (i) N1, N2, N3 are independent binary random variables with P (Nj =

1) = δj ∈ (0, 1
2 ) and (ii) (N1, N2, N3) is independent of the input X. The binary digit X1 is constrained to an

average Hamming weight of τ ∈ (0, 1
2 ). In other words, κ(x1x2x3) = 1{x1=1} and the average cost of input is

constrained to τ ∈ (0, 1
2 ). For the sake of clarity, we provide a formal description of this channel in terms of section

5.4.2. This 3−DBC maybe referred to as (X ,Y,WY |X , κ) where X : = {0, 1} × {0, 1} × {0, 1} ,Y1 = Y2 = Y3 =

{0, 1} ,WY |X(y1, y2, y3|x1x2x3) = BSCδ1(y1|x1 ⊕ x2 ⊕ x3)BSCδ2(y2|x2)BSCδ3(y3|x3), where δj ∈ (0, 1
2 ) : j = 1, 2, 3,

BSCη(1|0) = BSCη(0|1) = 1−BSCη(0|0) = 1−BSCη(1|1) = η for any η ∈ (0, 1
2 ) and the cost function κ(x1x2x3) =

1{x1=1}.

We begin with some observations for the above channel. Users 2 and 3 see interference free point to point links from

the input. It is therefore possible to communicate to them simultaneously at their point to point capacities using any

point to point channel codes achieving their respective capacities. For the purpose of this discussion, let us assume

δ : = δ2 = δ3. This enables us employ the same capacity achieving code of rate 1 − hb(δ) for both users 2 and 3.

What about user 1? Three observations are in order. Firstly, if users 2 and 3 are being fed at their respective point
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Figure 5.2: A 3−DBC with octonary input and binary outputs described in example 5.6.1.

to point capacities, then information can be pumped to user 1 only through the first binary digit, henceforth referred

to as X1. In this case, we recognize that the sum of user 2 and 3’s transmissions interferes at receiver 1. Thirdly, the

first binary digit X1 is costed, and therefore cannot cancel the interference caused by users 2 and 3.

Since average Hamming weight of X1 is restricted to τ , X1 ⊕N1 is restricted to an average Hamming weight of

τ ∗ δ1. If the rates of users 2 and 3 are sufficiently small, receiver 1 can attempt to decode codewords transmitted to

users 2 and 3, cancel the interference and decode the desired codeword. This will require 2− 2hb(δ) ≤ 1− hb(δ1 ∗ τ)

or equivalently 1+hb(δ1∗τ)
2 ≤ hb(δ). What if this were not the case?

In the case 1+hb(δ1∗τ)
2 > hb(δ), we are left with two choices. The first choice is to enable decoder 1 decode as

large a part of the interference as possible and precode for the rest of the uncertainty.13 The second choice is to

attempt decoding the sum of user 2 and 3’s codewords, instead of the pair. In the sequel, we pursue the second

choice using linear codes. In section 5.10, we prove UM−technique is forced to take the first choice which results in

it’s sub-optimality.

Since linear codes achieve capacity of binary symmetric channels, there exists a single linear code, or a coset

thereof, of rate 1 − hb(δ) that achieves capacity of both user 2 and 3 channels. Let us employ this linear code for

communicating to users 2 and 3. The code being linear or affine, the collection of sums of all possible pairs of

codewords is restricted to a coset of rate 1 − hb(δ). This suggests that decoder 1 decode the sum of user 2 and 3

codewords. Indeed, if 1−hb(δ) ≤ 1−hb(τ ∗δ1), or equivalently τ ∗δ1 ≤ δ, then user 1 can first decode the interference,

peel it off, and then go on to decode the desired signal. Under this case, a rate hb(τ ∗ δ1) − hb(δ1) is achievable for

user 1 even while communicating independent information at rate 1−hb(δ) for both users 2 and 3. We have therefore

proposed a coding technique based on linear codes that achieves the rate triple (hb(τ ∗δ1)−hb(δ1), 1−hb(δ), 1−hb(δ))

if τ ∗ δ1 ≤ δ = δ2 = δ3.

13Since X1 is costed, precoding results in a rate loss, i.e., in terms of rate achieved, the technique of precoding is in general inferior to
the technique of decoding interference. This motivates a preference for decoding the interference as against to precoding. However, for
the Gaussian case, precoding suffers no rate loss. This is the precise reason for dirty paper coding being optimal for vector Gaussian BCs
[61].
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Let us now consider the general case with respect to δ2, δ3. Without loss of generality we may assume δ2 ≤ δ3.

We employ a capacity achieving linear code to communicate to user 2. This code is sub sampled (uniformly and

randomly) to yield a capacity achieving code for user 3. This construction ensures the sum of all pairs of user 2 and

3 codewords to lie within user 2’s linear code, or a coset thereof, of rate 1− hb(δ2). If 1− hb(δ2) ≤ 1− hb(τ ∗ δ1), or

equivalently τ ∗ δ1 ≤ δ2, then decoder 1 can decode the sum of user 2 and 3’s codewords, i.e., the interfering signal,

peel it off and decode the desired message at rate hb(τ ∗ δ1) − hb(δ1). If δ3 ≤ δ2, then user 2’s code is obtained

by sub-sampling a capacity achieving linear code provided to user 3. In this case, user 1 can be fed at rate of

hb(τ ∗ δ1)− hb(δ1) if 1− hb(δ3) ≤ 1− hb(τ ∗ δ1), or equivalently τ ∗ δ1 ≤ δ3 The above arguments are summarized in

the following lemma.

Lemma 5.6.2 Consider the 3−DBC in example 5.6.1. If τ ∗δ1 ≤ min {δ2, δ3}, then (hb(τ ∗δ1)−hb(δ1), 1−hb(δ2), 1−

hb(δ3)) ∈ C(τ).

In section 5.10, we prove that if 1 +hb(δ1 ∗ τ) > hb(δ2) +hb(δ3), then (hb(τ ∗ δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) /∈

αU (τ). We therefore conclude in corollary 5.10.5 that if τ, δ1, δ2, δ3 are such that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3)

and min {δ2, δ3} ≥ δ1 ∗ τ , then UM−technique is strictly suboptimal for the 3−DBC presented in example 5.6.1.

In particular, if τ, δ1, δ = δ2 = δ3 are such that 1+hb(δ1∗τ)
2 > hb(δ) ≥ hb(δ1 ∗ τ), then UM−technique is strictly

suboptimal for the 3−DBC presented in example 5.6.1. While the proof of this statement is long, the curious reader

may sample our conclusion in theorem 5.10.4 and corollary 5.10.5.

5.7 Achievable rate regions for 3−DBC using partitioned coset codes

In this section we present our second main finding - a new framework based on partitioned coset codes (PCC) for

communicating over an arbitrary 3−DBC - that enables us derive a new achievable rate region for the same. We

present our framework in three pedagogical steps. Step I, presented in section 5.7.1, describes all the new elements

of our framework in a simple setting. In particular, we employ PCC to manage interference seen by one receiver,

and derive a corresponding achievable rate region. For this step, we also provide a complete and elaborate proof of

achievability. Step II (section 5.7.2) builds on step I by incorporating private codebooks. Finally in step III (section

5.7.3), we employ PCC to manage interference seen by all receivers.

5.7.1 Step I: Using PCC to manage interference seen by a single receiver

Since this section describes the key elements of our findings in a simplified setting, the reader is strongly encouraged

to study through the same carefully. We begin with a simple description of the coding technique. Subsequently, we

formalize the same through a proof of achievability.
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Description of the coding technique

The coding technique proposed herein is a very simple generalization of the linear coding technique proposed for

example 5.6.1. The reader may find it useful to review the same. The two elements put forth in this step are (i)

binning the linear codes into PCC to enable achieve rates corresponding to non-uniform distributions,14 (ii) decoding

the sum of user 2 and 3 codewords via the technique of joint typicality to enable analyze the performance of this

decoding technique over arbitrary 3−DBC. We now state the coding technique.

Consider auxiliary alphabet sets V1,U2,U3 where U2 = U3 = Fπ is the finite field of cardinality π and let

pV1U2U3XY be a pmf on V1 × U2 × U3 × X × Y. Consider a random codebook C1 ⊆ Vn1 of rate K1 + R1 whose

codewords are independently chosen according to pnV1
. Codewords of C1 are independently and uniformly partitioned

into exp {nR1} bins. For j = 2, 3, consider random partitioned coset codes (PCC) (n, nSj , nTj , Gj , B
n
j , Ij) (definition

3.4.2) denoted Λj . The corresponding linear codes are nested, i.e., if Sj1 ≤ Sj2 , then Gtj2 =
[
Gtj1 G

t
j2/j1

]
where

Gj2/j1 ∈ F
n(Sj2−Sj1 )×n
π . Gj1 , Gj2/j1 , B

n
1 , B

n
2 , (Ij(a

nSj
j ) : a

nSj
j ∈ FnSjπ ) : j = 2, 3 are mutually independent and

uniformly distributed over their respective range spaces. Moreover, random codebook C1 is independent of the pair

Λ2,Λ3. We have thus specified the distribution of the triplet C1,Λ2,Λ3 of random codebooks. Messages of users

1, 2, 3 at rates R1, T2 log π, T3 log π are used to index bins, one each in C1,Λ2,Λ3 respectively.15 The encoder looks

for a jointly typical triple, with respect to pV1U2U3
, of codewords in the indexed triple of bins. Following a second

moment method similar to that employed in [63], it can be proved that the encoder finds at least one jointly typical

triple if for j = 2, 3

K1 > 0, (Sj − Tj) log π > log π −H(Uj), (Sj − Tj) log π +K1 > log π −H(Uj) + I(Uj ;V1), (5.12)
3∑
j=2

(Sj − Tj) log π > 2 log π −H(U2)−H(U3) + I(U2;U3) (5.13)

K1 + max{S2, S3} log π > log π −H(U2 ⊕ U3) + I(V1;U2 ⊕ U3), max{S2, S3} log π ≥ log π −H(U2 ⊕ U3)(5.14)
3∑
j=2

(Sj − Tj) log π +K1 > 2 log π −
3∑
j=2

H(Uj) + I(U2;U3;V1). (5.15)

Having chosen one such jointly typical triple, say V n1 , U
n
2 , U

n
3 , it generates a vector Xn according to

pnX|V1U2U3
(·|V n1 , Un2 , Un3 ) =

n∏
t=1

pX|V1U2U3
(·|V1t, U2t, U3t)

and feeds the same as input, on the channel.

Decoders 2 and 3 perform a standard PTP decoding. For example, decoder 2 receives Y n2 and looks for all

codewords in Λ2 that are jointly typical with Y n2 . If it finds all such codewords in a unique bin it declares the

14This is akin to binning for channels with state information, wherein exp {nI(U ;S)} codewords, each picked according to
∏n
t=1 pU ,

are chosen for each message in order to find a codeword in Tδ(U |sn) jointly typical with state sequence sn.
15For j = 2, 3, user j’s codebook of block length n must provide exp{nTj log π} = πnTj bins. Indeed Λj contains πnTj bins.
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corresponding bin index as the decoded message. It can be proved by following the technique similar to [63, Proof

of Theorem 1] that if

Sj < log π −H(Uj |Yj) for j = 2, 3 (5.16)

then probability of decoding error at decoders 2 and 3 can be made arbitrarily small for sufficiently large n.

Having received Y n1 , decoder 1 looks for all codewords vn1 ∈ C1 for which there exists a codeword un2⊕3 ∈ Λ2 ⊕Λ3

such that (vn1 , u
n
2⊕3, Y

n
1 ) are jointly typical with respect to pV1,U2⊕U3,Y1

. Here

Λ2 ⊕ Λ3 : =
{
Un2 ⊕ Un3 : Unj ∈ Λnj : j = 2, 3

}
.

If all such codewords in C1 belong to a unique bin, the corresponding bin index is declared as the decoded message.

Again following the technique similar to [63, Proof of Theorem 1], it can be proved, that if, for j = 2, 3

K1+R1<H(V1)−H(V1|U2 ⊕ U3, Y1), K1+R1+(Sj+Tj) log π < log π +H(V1)−H(V1, U2 ⊕ U3|Y1), (5.17)

then probability of decoding error at decoder 1 falls exponentially with n. In the sequel, we provide a formal proof

of achievability. We begin with a characterization of the rate region proved achievable herein. For completeness, we

include a random variable for time sharing in it’s description.

Proof of achievability

Definition 5.7.1 Let Df1 (WY |X , κ, τ) denote the collection of pmfs pQV1U2U3XY defined on Q×V1×U2×U3×X ×Y,

where (i) Q,V1 are finite sets, U2 = U3 is a finite field, (ii) pY |XV1U = pY |X = WY |X , 16and (iii) E {κ(X)} ≤ τ .

Definition 5.7.2 Consider pQV1UXY ∈ Df1 (WY |X , κ, τ) and let π : = |U2| = |U3|. Let β1(pQV1UXY ) be defined as

the set of rate triples R : = (R1, R2, R3) ∈ [0,∞)3 for which S(R, pQV1UXY , 0) is non-empty, where, for any δ > 0,

S(R, pQV1UXY , δ) is defined as the set of vectors (K1, R1, S2, T2, S3, T3) ∈ [0,∞)6 that satisfy Rj = Tj log π,

K1 > δ, (Sj − Tj) log π > log π −H(Uj |Q) + δ, (5.18)

K1 + (Sj − Tj) log π > log π −H(Uj |Q,V1) + δ,
3∑
l=2

(Sl − Tl) log π > 2 log π −H(U |Q) + δ, (5.19)

K1 +
3∑
l=2

(Sl − Tl) log π > 2 log π −H(U |Q,V1) + δ, max{S2, S3} log π > log π −H(U2 ⊕ U3|Q) + δ, (5.20)

K1 + max{S2, S3} log π
(a)
> log π −H(U2 ⊕ U3|Q,V1) + δ, K1 +R1 < I(V1;Y1, U2 ⊕ U3|Q)− δ, (5.21)

K1 +R1 + max {S2, S3} log π < log π +H(V1|Q)−H(V1, U2 ⊕ U3|Q,Y1)− δ

Sj log π < log π −H(Uj |Q,Yj)− δ,

16In this subsection, U denotes the pair U2, U3. Similarly, the other objects such as U , u denote corresponding pairs.
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for j = 2, 3. Furthermore, let

β1(WY |X , κ, τ) : = cocl

 ⋃
pQV1UXY

∈
Df1 (WY |X ,κ,τ)

β1(pQV1UXY )

 .

Theorem 5.7.3 For a 3−DBC (X ,Y,WY |X , κ), β1(WY |X , κ, τ) is achievable, i.e., β1(WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

Proof: Given pQV1UXY ∈ Df1 (WY |X , κ, τ), R ∈ β1(pQV1UXY ), η̃ > 0, our task is to identify a 3−DBC code

(n,M, e, d) of rate
logMj

n ≥ Rj − η̃ : j = 1, 2, 3, average error probability ξ(e, d) ≤ η̃, and average cost τ(e) ≤ τ + η̃.

For the given rate triple R ∈ β1(pQV1UXY ), we have δ1 > 0 and (K1, R1, S2, T2, S3, T3) ∈ S(R, pQV1UXY , δ1).

Set η : = min {η̃, δ1}. Consider a codebook C1 = (vn1 (m1, b1) : m1 ∈ M1, b1 ∈ B1) built over V1 consisting of

|M1| bins, each consisting of |B1| codewords. We let M1 = [bexp
{
n(R1 − η

2 )
}
c] and B1 = [dexp

{
n(K1 + η

8 )
}
e].

C1 is employed to encode user 1’s message. Codebooks employed to encode user 2 and 3’s messages are partitioned

coset codes (definitions 3.4.2) which are described in the sequel. Henceforth, we let π : = |U2| = |U3| and therefore

Fπ = U2 = U3. Consider a linear code λ ⊆ Fnπ with generator matrix g ∈ Fs×nπ and let λ ⊆ Fnπ denote the

coset of λ with respect to shift bn ∈ Fnπ . Clearly, the codewords of λ are given by u(as) : = asg ⊕ bn : as ∈ Fsπ.

Consider a partition of λ into πt bins. Each codeword u(as) is assigned a bin index i(as) ∈ F tπ. For every mt ∈ F tπ,

c(mt) : = {as : i(as) = mt} denotes the set of indices whose codewords are assigned to bin mt. The coset code λ

with it’s partitions is called a partitioned coset code and denoted (n, s, t, g, bn, i).17

For j = 2, 3, user j is provided the partitioned coset code (n, sj , tj , gj , b
n
j , ij), where sj = bnSjc, tj : = dn(Tj −

η
4 log π )e. Let unj (a

sj
j ) : = a

sj
j gj ⊕ bnj denote a generic codeword in λj and cj(m

tj
j ) : =

{
a
sj
j : ij(a

sj
j ) = m

tj
j

}
de-

note the indices of codewords in bin corresponding to message m
tj
j . These codes are such that if sj1 ≤ sj2 , then

gtj2 =
[
gtj1 gtj2/j1

]
. In other words, the linear code corresponding to the larger coset code contains the linear code

corresponding to the smaller coset code. Without loss of generality, we henceforth assume s2 ≤ s3 and therefore

gt3 =
[
gt2 gt3/2

]
. It is now appropriate to derive some relationships between the code parameters that would be of

use at a later time. There exists N1(η) ∈ N such that for all n ≥ N1(η)

nSj − 1 ≤ sj ≤ nSj and therefore Sj − η
8 log π ≤ Sj −

1
n ≤

sj
n ≤ Sj , (5.22)

n
(
Tj − η

4 log π

)
≤ tj ≤ n

(
Tj − η

4 log π

)
+ 1 and therefore Tj − η

4 log π ≤
tj
n ≤ Tj −

η
8 log π , (5.23)

R1 − η ≤ log |M1|
n ≤ R1 − η

2 and K1 + η
8 ≤

log |B1|
n ≤ K1 + η

4 . (5.24)

We now describe the encoding and decoding rules. A vector qn ∈ Tη2(Q) is chosen to be the time sharing vector, where

17A careful and diligent reader who has studied through definitions 3.4.2 and 4.6.3 will note a minor difference between those and the
one stated here. In definitions 3.4.2 and 4.6.3, the set indexing the partitions was chosen to be [πt]. Here the corresponding set is Ftπ .
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η2 will be specified in due course. Without loss of generality, we assume the message sets areMj : = F tjπ for j = 2, 3

and as stated beforeM1 : = [bexp
{
n(R1 − η

2 )
}
c]. Let (M1,M

t2
2 ,M

t3
3 ) ∈M denote the uniformly distributed triple of

message random variables to be communicated to the respective users. Having received (M1,M
t2
2 ,M

t3
3 ), the encoder

looks for a triple of codewords in the indexed bin of codewords that are jointly typical. Formally, the encoder looks

for a triplet (b1, a
s2
2 , a

s3
3 ) ∈ B1 × c2(M t2

2 ) × c3(M t3
3 ) such that (vn1 (M1, b1), un2 (as22 ), un3 (as33 )) ∈ T2η2

(V1, U2, U3|qn).18

If it finds at least one such triple, one of them is chosen according to a predefined rule. Otherwise, i.e, if it finds

no triple of codewords in the indexed triple of bins that is jointly typical, it chooses a fixed triple of codewords in

C1 × λ2 × λ3. In either case, let (vn1 (M1, B1), un2 (As22 ), u3(As33 )) denote the chosen triple of codewords. In the former

case, the encoder maps the triple to a vector in T4η2
(X|vn1 (M1, B1), un2 (As22 ), u3(As33 )) and feeds the same as input

on the channel. In the latter case, it picks a fixed vector in Xn and feeds the same as input on the channel. In either

case, let xn(M1,M
t2
2 ,M

t3
3 ) denote the vector input on the channel.

The operations of decoders 2 and 3 are identical and we describe the same through the generic index j. Having

received vector Y nj , it looks for all messages m̂
tj
j ∈ Mj such that for some a

sj
j ∈ cj(m̂

tj
j ), uj(a

sj
j ) ∈ T8η2(Uj |qn, Y nj ).

If it finds exactly one such message, this is declared as the decoded message. Otherwise, an error is declared.

Decoder 1 is provided with the codebook λ2 ⊕ λ3 : =
{
un2 (as22 )⊕ un3 (as33 ) : a

sj
j ∈ F

sj
π : j = 2, 3

}
. Note that

λ2⊕λ3 = {u⊕(as33 ) : = as33 g3 ⊕ bn2 ⊕ bn3 : as33 ∈ Fs3π }. Having received Y n1 , decoder 1 looks for all messages m̂1 ∈M1

such that (vn1 (m̂1, b1), u⊕(as33 )) ∈ T8η2
(V1, U2 ⊕ U3|qn, Y n1 ) for some (b1, a

s3
3 ) ∈ B1 ×Fs3π . If it finds exactly one such

m̂1 ∈M1, this is declared as the decoded message. Otherwise, an error is declared.

The above encoding and decoding rules map a triplet C1, λ2, λ3 of codebooks into a 3−DBC code19. Moreover,

(5.23) and (5.24) imply that the rates of the corresponding 3−DBC code satisfy logM1

n ≥ R1 − η,
tj log π
n ≥ Rj − η̃

4

for j = 2, 3. Since every triple C1, λ2, λ3 of codebooks, and a choice for the predefined rules map to a corresponding

3−DBC code, we have characterized an ensemble of 3−DBC codes, one for each n ∈ N. We now induce a distribution

over this ensemble of 3−DBC codes.

Consider a random triple C1,Λ2,Λ3 of codebooks, where C1 = (V n1 (m1, b1) : (m1, b1) ∈M1 × B1) and Λj is the

random partitioned coset code (n, sj , tj , Gj , B
n
j , Ij). Note that the joint distribution of V n1 (m1, b1) : (m1, b1) ∈M1×

B1, G2, G3/2, B
n
2 , B

n
3 , I2(as22 ) : as22 ∈ Fs2π , I3(as33 ) : as33 ∈ Fs3π uniquely characterizes the distribution of C1,Λ2,Λ3.

We let V n1 (m1, b1) : (m1, b1) ∈ M1 × B1, G2, G3/2, B
n
2 , B

n
3 , I2(as22 ) : as22 ∈ Fs2π , I3(as33 ) : as33 ∈ Fs3π be mutually

independent. For every (m1, b1) ∈ M1 × B1, vn1 ∈ Vn1 , let P (V n1 (m1) = vn1 ) =
∏n
t=1 pV1|Q(v1t|qt). The rest of

the random objects G2, G3/2, B
n
2 , B

n
3 , I2(as22 ) : as22 ∈ Fs2π , I3(as33 ) : as33 ∈ Fs3π are uniformly distributed over their

respective range spaces. We have therefore specified the distribution of the random triple C1,Λ2,Λ3 of codebooks.

For j = 2, 3, we let Unj (a
sj
j ) = a

sj
j Gj ⊕Bnj denote a generic random codeword in the random codebook Λj . Likewise,

18Here, the typicality is with respect to pQV1UXY .
19This map also relies on a ‘predefined’ rule to choose among many jointly typical triples within an indexed pair of bins and furthermore,

a rule to decide among many input sequences that is conditionally typical with this chosen triple of codewords.
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we let Un⊕(as33 ) = as33 G3 ⊕ Bn2 ⊕ Bn3 denote a generic codeword in Λ2 ⊕ Λ3. Let (V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ))

denote the triple of codewords chosen by the encoder and Xn(M1,M
t2
2 ,M

t3
3 ) denote the vector input on the channel.

While the above specifies the distribution of the random triple of C1,Λ2,Λ3 of codebooks, the predefined rules

that map it to a 3−DBC code is yet unspecified. In other words, the distribution of (V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ))

and Xn(M1,M
t2
2 ,M

t3
3 ) needs to be specified. All the 3−DBC codes that a particular triplet of codebooks C1, λ2, λ3

map to, are uniformly distributed. Alternatively, the encoder picks a triple in

{
(V n1 (M1, b1), U2(as22 ), U3(as33 )) ∈ T2η2(V1, U |qn) : (b1, a

s2
2 , a

s3
3 ) ∈ B1 × C2(M t2

2 )× C3(M t3
3 )
}

uniformly at random and independent of other choices. Denoting this random triple as (V n1 (M1, B1), Un2 (As22 ),

Un3 (As33 )), the encoder picks an input sequence in T2η2
(X|(V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ))) uniformly at random and

independent of other choices. We have therefore specified the distribution induced on the corresponding ensemble of

3−DBC codes. In the sequel, we characterize error events associated with this random 3−DBC code.

If

ε1 : =
⋂

(b1,a
s2
2 ,a

s3
3 )

B1×C2(M
t2
2 )×C3(M

t3
3 )

{(V1(M1, b1), U2(as22 ), U3(as33 )) /∈ T2η2
(V1, U2, U3|qn)}

ε31 : =
⋂

(b1,a
s3
3 )

∈B1×Fs3π

{
(V1(M1, b1), Un⊕(as33 ), Y n1 ) /∈ T8η2(V1, U2 ⊕ U3, Y1|qn)

}
,

ε3j : =
⋂

a
sj
j ∈Cj(M

tj
j )

{
(Uj(a

sj
j ), Y nj ) /∈ T8η2

(Uj , Yj |qn)
}

ε41 : =
⋃

(b1,a
s3
3 )

∈B1×Fs3π

⋃
m̂1 6=M1

{
(V1(m̂1, b1), Un⊕(as33 ), Y n1 ) ∈ T8η2

(V1, Y1|qn)
}
,

ε4j : =
⋃

a
sj
j ∈Cj(m̂

tj
j )

m̂
tj
j 6=M

tj
j

{
(Uj(a

sj
j ), Y nj ) ∈ T8η2

(Uj , Yj |qn)
}
,

then ε : =
3
∪
j=1

(ε1 ∪ ε3j ∪ ε4j) contains the error event. Our next task is to derive an upper bound on P (ε).

Let

φ(m1,m
t2
2 ,m

t3
3 ) : =

∑
(b1,a

s2 ,as3 )∈
B1×Fs2π ×F

s3
π

1{(V n1 (m1,b1),U2(as2 ),U3(as3 ))∈T2η2 (V1,U2,U3|qn),I(asj )=m
sj
j :j=2,3},

εl : =
{
φ(M1,M

t2
2 ,M

t3
3 ) < L(n)

}
, where L(n) : =

1

2
E
{
φ(M1,M

t2
2 ,M

t3
3 )
}
.

Clearly P (ε) ≤ P (εl) + P (εcl ∩ ε), and it therefore suffices to derive upper bounds on each of these terms.
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Upper bound on P (εl):- Substituting for L(n), we have

P (εl) ≤ P (|φ(M1,M
t2
2 ,M

t3
3 )− E

{
φ(M1,M

t2
2 ,M

t3
3 )
}
| ≥

E
{
φ(M1,M

t2
2 ,M

t3
3 )
}

2
). ≤

4Var
{
φ(M1,M

t2
2 ,M

t3
3 )
}(

E
{
φ(M1,M

t2
2 ,M

t3
3 )
})2

from the Cheybyshev inequality. In appendix J, we evaluate the variance and expectation of φ(M1,M
t2
2 ,M

t3
3 ) and

derive an upper bound on P (εl). In particular, we prove for n ≥ max{N1(η), N2(η2)},

P (ε1) ≤ (28 + 8π) exp
{
−n
(
δ1 −

η

8
− 48η2

)}
. (5.25)

In deriving the above, we have employed lower bounds (5.18), (5.19), (5.20) and (5.21)(a).

Now consider εcl ∩ ε1. Note that P (ε1) = P (φ(M1,M
t2
2 ,M

t3
3 ) = 0), and hence εcl ∩ ε1 = φ, the empty set, if

L(n) > 1. At the end of appendix J, we prove L(n) > 1 for sufficiently large n. We are left to derive an upper bound

on P (εcl ∩
3
∪
j=1

(ε3j ∪ ε4j)).

Since L(n) > 1, εcl ⊆ εc1, it suffices to derive an upper bound on the terms P (εc1 ∩ (ε31 ∪ ε32 ∪ ε33)), P (εcl ∩

(ε31 ∪ ε32 ∪ ε33)
c ∩ ε4j) : j = 1, 2, 3.

Upper bound on P (εc1 ∩ (ε31 ∪ ε32 ∪ ε33)):- Consider P (εc1 ∩ ε2), where

ε2 : = {(V1(M1, B1), U2(As22 ), U3(As33 ), Xn) /∈ T4η2
(V1, U,X|qn)} .

By the encoding rule P (εc1 ∩ ε2) = 0. Since the encoding rule also ensures εc1 ∩ (ε31 ∪ ε32 ∪ ε33) ⊆ εc1 ∩ ε3, where

ε3 : =
{

(V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ), Xn(M1,M
t2
2 ,M

t3
3 ), Y n) /∈ T8η2(V1, U,X, Y )

}
,

it suffices to derive an upper bound on P ((ε1 ∪ ε2)c ∩ ε3). This follows from conditional frequency typicality (lemma

2.4.1) and pY |XV1UQ = pY |X = WY |X (statement (ii) of definition 5.7.1). We conclude the existence of N3(η2) such

that for all n ≥ N4(η2), P ((ε1 ∪ ε2)c ∩ ε3) ≤ η
32 .

Upper bound on P ((εl ∪ ε2 ∪ ε3)c ∩ ε41) : We refer the reader to appendix K for the derivation of an upper bound

on P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε41). Therein, we prove existence of N4(η2) ∈ N such that for all n ≥ max {N1(η), N4(η2)}, we

have

P ((εl ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp
{
−n
(
δ1 +

η

4
− 56η2

)}
. (5.26)

Upper bound on P ((εl ∪ ε2 ∪ ε3)c ∩ ε4j) : For j = 2, 3, decoder j performs a simple point-to-point decoding and

therefore the reader might expect the analysis here to be quite standard. The partitioned coset code structure of user

j’s codebook that involves correlated codewords and bins lends some technical complexities. We flesh out the details
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in appendix L. In particular, we prove (L.5) existence of N5(η2) ∈ N such that for all n ≥ max{N1(η), N5(η2)}

P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4j) ≤ 2 exp {−n (δ1 − 32η2)} . (5.27)

Let us now compile the upper bounds derived in (5.25), (5.26) and (5.27). For n ≥ max{N1(η), N2(η2)N3(η2), N4(η2),

N5(η2)}, we have

P (ε1 ∪ ε2 ∪ ε3 ∪ ε41 ∪ ε42) ≤ η

32
+ (34 + 8π) exp

{
−n
(
δ1 −

η

8
− 56η2

)}
. (5.28)

Recall that η is chosen to be min {η̃, δ1}. By choosing η2 = η
56×8 , we have δ1 − η

8 −
η
8 > 3η

4 and we can drive the

probability of error below η̃ by choosing n sufficiently large.

The only element left to argue is the random code satisfies the cost constraint. Since P (ε1 ∪ ε2) is lesser than η̃
2

for sufficiently large n, the encoder inputs a vector on the channel that is typical with respect pX with probability

1 − η̃
2 . Since E {κ(X)} ≤ τ , a standard argument proves that the expected cost of the input vector can be made

arbitrarily close to τ by choosing n sufficiently large and η2 sufficiently small. We leave the details to the reader.

The coding technique that yields achievability of β1(WY |X , κ, τ) is a simple generalization of the linear coding

technique proposed for example 5.6.1. Therefore, it can be verified that, if τ ∗ δ1 ≤ min {δ2, δ3}, then (hb(τ ∗ δ1) −

hb(δ1), 1 − hb(δ2), 1 − hb(δ3)) ∈ β̃1(WY |X , κ, τ). We leave it to the reader to verify that if τ ∗ δ1 ≤ min {δ2, δ3},

then (hb(τ ∗ δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) ∈ β1(pUV1XY ), where pUV1X = pV1pU2pU31{X1=V1}1{X2=U2}1{X3=U3},

pU2(1) = pU3(1) = 1
2 and pV1(1) = τ .

5.7.2 Step II: Incorporating private codebooks

We revisit the coding technique proposed in section 5.7.1. Observe that (i) user 1 decodes a sum of the entire

codewords/signals transmitted to users 2 and 3 and (ii) users 2 and 3 decode only their respective codewords. This

technique may be enhanced in the following way. User 1 can decode the sum of one component of user 2 and 3 signals

each. In other words, we may include private codebooks for users 2 and 3.

We begin with a description of the coding technique. In addition to the codebooks C1,Λ2,Λ3 described in section

5.7.1, we incorporate private layer codebooks for users 2 and 3. Specifically, in addition to auxiliary alphabet

sets V1,U2,U3 introduced in section 5.7.1, let V2,V3 denote arbitrary finite sets and pU2U3V1V2V3
denote a pmf on

U2 × U3 × V1 × V2 × V3. For j = 2, 3, consider a random codebook Cj ⊆ Vnj of rate Kj + Lj whose codewords

are independently chosen according to pnVj . Codewords of Cj are independently and uniformly partitioned into

exp {nLj} bins. The distribution induced on C1,Λ2,Λ3 is identical to that in section 5.7.1. Moreover, the triplet

C2, C3, (C1,Λ2,Λ3) are mutually independent.20 Having specified the distribution of codewords of Cj : j = 2, 3, we

20Here (C1,Λ2,Λ3) is treated as a single random object.
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have thus specified the distribution of quintuple of random codebooks. Messages of users’ 2 and 3 are split into two

parts each. One part of user 2’s (3’s) message, of rate T2 log π (T3 log π), index a bin in Λ2 (Λ3), and the other part,

of rate L2 (L3), index a bin in C2 (C3). The sole part of user 1’s message indexes a bin in C1. The encoder looks for

a quintuple of jointly typical codewords with respect to pUV , in the quintuple of indexed bins. Following a second

moment method similar to that employed in [63], it can be proved that the encoder finds at least one jointly typical

triple if

SA log π +KB > |A| log2 π +
∑
b∈B

H(Vb)−H(UA, VB)21 (5.29)

max{S2 + T2, S3 + T3} log π +KB > log π +
∑
b∈B

H(Vb)− min
θ∈Fπ\{0}

H(U2 ⊕ θU3, VB) (5.30)

for all A ⊆ {2, 3} , B ⊆ {1, 2, 3}, where SA =
∑
j∈A Sj , KB =

∑
b∈BKb, UA = (Uj : j ∈ A) and VB = (Vb : b ∈ B).22

Having chosen one such jointly typical quintuple, say (Un2 , U
n
3 , V

n), the encoder generates a vector Xn according to

pnX|V U2U3
(·|V n, Un2 , Un3 ) and inputs the same on the channel.

The operations of decoders 2 and 3 are identical and we describe one of them. Decoder 3 receives Y n3 and looks

for all pairs of codewords in the Cartesian product Λ3 × C3 that are jointly typical with Y n3 with respect to pU3V3Y3 .

If all such pairs belong to a unique pair of bins, the corresponding pair of bin indices is declared as the decoded

message of user 3. Else an error is declared. It can be proved that if

(Sj + Tj) log π < log2 π −H(Uj |Vj , Yj), Kj + Lj < H(Vj)−H(Vj |Yj , Uj) (5.31)

(Sj + Tj) log π +Kj + Lj < log2 π +H(Vj)−H(Vj , Uj |Yj) (5.32)

for j = 2, 3, then probability of users 2 or 3 decoding into an incorrect message falls exponentially with n.

Operation of decoder 1 is identical to that described in section 5.7.1. If (5.17) holds, then probability of error

at decoder 1 falls exponentially with n. Substituting R1 = K1, R2 = T2 log π + L2, R3 = T3 log π + L3 and elim-

inating S2 log π, S3 log π,K1,K2,K3 in (5.17)-(5.32) yields an achievable rate region. We provide a mathematical

characterization of this achievable rate region.

Definition 5.7.4 Let Df2 (WY |X , κ, τ) denote the collection of pmfs pQU2U3V1V2V3XY defined on Q× U2 × U3 × V1 ×

V2 × V3 × X × Y, where (i) U2 = U3 = Fπ is the finite field of cardinality π, Q,V1,V2,V3 are finite sets, (ii)

pY |XV UQ = pY |X = WY |X , and (iii) E {κ(X)} ≤ τ . For pQUVXY ∈ Df2 (WY |X , κ, τ), let βf2 (pQUVXY ) be defined as

the set of triples (R1, R2, R3) ∈ [0,∞)3 for which there exists nonnegative numbers S2, T2, S3, T3,Kj , Lj : j = 1, 2, 3

21We remind the reader that the empty sum has value 0, i.e,
∑
a∈φ = 0

22Recall that Fπ = U2 = U3.
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such that R1 = K1, R2 = T2 log π + L2, R3 = T3 log π + L3,

SA log π +KB > |A| log2 π +
∑
b∈B H(Vb|Q)−H(UA, VB |Q), 23

max{S2 + T2, S3 + T3} log π +KB > log π +
∑
b∈B H(Vb|Q)−minθ∈Fπ\{0}H(U2 ⊕ θU3, VB |Q),

K1+R1<I(V1;U2 ⊕ U3, Y1|Q), K1+R1+(Sj+Tj) log π < log π +H(V1|Q)−H(V1, U2 ⊕ U3|Q,Y1) : j = 2, 3,

(Sj + Tj) log π < log2 π −H(Uj |Q,Vj , Yj) : j = 2, 3, Kj + Lj < H(Vj |Q)−H(Vj |Q,Yj , Uj) : j = 2, 3

(Sj + Tj) log π +Kj + Lj < log2 π +H(Vj |Q)−H(Vj , Uj |Q,Yj) : j = 2, 3

for all A ⊆ {2, 3} , B ⊆ {1, 2, 3}, where SA =
∑
j∈A Sj, KB =

∑
b∈BKb, UA = (Uj : j ∈ A) and VB = (Vb : b ∈ B).

Let

βf2 (WY |X , κ, τ) = cocl

 ⋃
pQUVXY

∈Df2 (WY |X ,κ,τ)

βf2 (pQUVXY )

 .

Theorem 5.7.5 For a 3−DBC (X ,Y,WY |X , κ), βf2 (WY |X , κ, τ) is achievable, i.e., βf2 (WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

The proof is similar to that of theorem 5.7.3. The only differences being (i) the encoder looks for a quintuple of

codewords instead of a triple, and (ii) decoders 2 and 3 decode from a pair of codebooks. From theorem 3.5.1,

the informed reader can see why the second difference can be easily handled. Indeed, in theorem 3.5.1, we prove

nested coset codes, and therefore partitioned coset codes, achieve capacity of arbitrary point-to-point channels.

This indicates that for j = 2, 3, Uj−codebook can be used to communicate at rate I(Uj ;Yj) and the private layer

Vj−codebook can be used to communicate at rate I(Uj : Yj |Uj), thereby satisfying user j’s rate. This leaves us to

argue only the first difference pointed above. Using a second moment method similar to that employed in appendix

J,24 it can be shown that probability of encoder not finding a jointly typical quintuple decays exponentially if (5.29)

holds.

5.7.3 Step III: Using PCC to manage interference over a 3−DBC

Here we employ PCC to manage/decode interference seen by each receiver. In the sequel, we propose a simple

extension of the technique presented in section 5.7.2 to enable each user decode a bivariate interference component.

Throughout the following discussion i, j, k denote distinct indices in {1, 2, 3}. Let Uji = Fπi ,Ujk = Fπk be finite

fields and Vj be an arbitrary finite set. User j splits it’s message Mj into three parts (MU
ji ,M

U
jk,M

V
j ) of rates

23We remind the reader that the empty sum has value 0, i.e,
∑
a∈φ = 0

24A diligent reader would have noted the same second moment method has been employed in appendices A and C.

83



Tji log πi, Tjk log πk, Lj respectively. User j’s message indexes three codebooks - Cj ,Λji,Λjk - whose structure is

described in the following. Consider a random codebook Cj ⊆ Vnj of rate Kj +Lj whose codewords are independently

chosen according to pnVj . Codewords of Cj are independently and uniformly partitioned into exp {nLj} bins. Consider

random partitioned coset codes (PCC) (n, nSji, nTji, Gji, B
n
ji, Iji) and (n, nSjk, nTjk, Gjk, B

n
jk, Ijk) (definition 3.4.2)

denoted Λji and Λjk respectively. Observe that PCC Λji and Λki are built over the same finite field Fπi . The

corresponding linear codes are nested, i.e., if Sji ≤ Ski, then Gtki =
[
Gtji G

t
ki/ji

]
where Gki/ji ∈ F

n(Sji−Ski)×n
π , and

vice versa. We have thus specified the structure of 9 random codebooks. We now specify the distribution of these

random codebooks.

The random PCCs are independent of Cj : j = 1, 2, 3. C1, C2, C3 are mutually independent. We now specify the

distribution of the PCCs. The triplet (Λ12,Λ32), (Λ21,Λ31), (Λ23,Λ13) are mutually independent. All of the bias

vectors are mutually independent and uniformly distributed. The collection of generator matrices is independent of

the collection of bias vectors. We only need to specify the distribution of the generator matrices. The rows of the

larger of the two generator matrices Gji and Gki are uniformly and independently distributed. This specifies the

distribution of the 9 random codebooks.

MU
ji ,M

U
jk and MV

j index bins in Λji, Λjk and Cj respectively. The encoder looks for a collection of 9 codewords

from the indexed bins that are jointly typical with respect to a pmf pUV defined on U×V.25 We now state the bounds

that ensure the probability of encoder not finding a jointly typical collection of codewords from the indexed bins. We

introduce some notation to aid reduce clutter. Throughout the following, in every instance i, j, k will denote distinct

indices in {1, 2, 3}. For every A ⊆ {12, 13, 21, 23, 31, 32}, B ⊆ {1, 2, 3}, C ⊆ {1, 2, 3}, let SA =
∑
jk∈A Sjk,MB :

=
∑
j∈B max{Sij + Tij , Skj + Tkj},KC =

∑
c∈C Kc. For every B ⊆ {1, 2, 3}, let A(B) = ∪j∈B{ji, jk}. Following

a second moment method similar to that employed in appendix J, it can be proved that the encoder finds at least

one jointly typical collection if (5.33) is satisfied for all A ⊆ {12, 13, 21, 23, 31, 32} , B ⊆ {1, 2, 3} , C ⊆ {1, 2, 3}, that

satisfy A ∩ A(B) = φ, where UA = (Ujk : jk ∈ A) and VC = (Vc : c ∈ C). Having chosen one such jointly typical

collection, say (Un, V n), the encoder generates a vector Xn according to pnX|UV (·|Un, V n) and feeds the same as

input on the channel.

Decoder j receives Y nj and looks for all triples (unji, u
n
jk, v

n
j ) of codewords in λji × λjk × Cj such that there exists

a unij⊕kj ∈ (λij ⊕ λkj) such that (unij⊕kj , u
n
ji, u

n
jk, v

n
j , Y

n
j ) are jointly typical with respect to pUij⊕Ukj ,Uji,Ujk,Vj ,Yj .

If it finds all such triples in a unique triple of bins, the corresponding triple of bin indices is declared as decoded

message of user j. Else an error is declared. The probability of error at decoder j can be made arbitrarily small for

sufficiently large block length if (5.34) holds for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3}, where SAj :

=
∑
a∈Aj Sa, TAj : =

∑
a∈Aj Ta, UAj = (Ua : a ∈ Aj). . Recognize that user j’s rate Rj = Tji log πi+Tjk log πk+Lj .

We are now equipped to state an achievable rate region for a general 3−DBC using partitioned coset codes.

25U abbreviates U12U13U21U23U31U32.
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Definition 5.7.6 Let Df (WY |X , κ, τ) denote the collection of probability mass functions pQUVXY defined on Q×U×

V ×X ×Y, where (i) Q,V1,V2,V3 are arbitrary finite sets, V : = V1×V2×V3, (ii) Uij = Fπj 26 for each 1 ≤ i, j ≤ 3,

and U : = U12 × U13 × U21 × U23 × U31 × U32, (iii) V : = (V1, V2, V3) and U : = (U12, U13, U21, U23, U31, U32), such

that (i) pY |XV U = pY |X = WY |X , (ii) E {κ(X)} ≤ τ .

For pUVXY ∈ Df (WY |X , κ, τ), let βf (pUVXY ) be defined as the set of rate triples (R1, R2, R3) ∈ [0,∞)3 for

which there exists nonnegative numbers Sij , Tij : ij ∈ {12, 13, 21, 23, 31, 32} ,Kj , Lj : j ∈ {1, 2, 3} such that R1 =

T12 log π2 + T13 log π3 + L1, R2 = T21 log π1 + T23 log π3 + L2, R3 = T31 log π1 + T32 log π2 + L3 and

SA +MB +KC > Θ(A,B,C) where,

Θ(A,B,C) : = max
(θj :j∈B)∈

∏
j∈B
Fπj
{
∑
a∈A

log |Ua|+
∑
j∈B

log πj +
∑
c∈C

H(Vc|Q)−H(UA, Uji ⊕ θjUjk : j ∈ B, VC |Q)} (5.33)

for all A ⊆ {12, 13, 21, 23, 31, 32} , B ⊆ {1, 2, 3} , C ⊆ {1, 2, 3}, that satisfy A∩A(B) = φ, where A(B) = ∪j∈B{ji, jk},

UA = (Ujk : jk ∈ A), VC = (Vc : c ∈ C), SA =
∑
jk∈A Sjk,MB : =

∑
j∈B max{Sij +Tij , Skj +Tkj},KC =

∑
c∈C Kc,

and

SAj + TAj ≤
∑
a∈Aj

log |Ua| −H(UAj |Q,UAcj , Uij ⊕ Ukj , Vj , Yj)

SAj + TAj + Sij + Tij
∑
a∈Aj

log |Ua|+ log πj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Vj , Yj)

SAj + TAj + Skj + Tkj ≤
∑
a∈Aj

log |Ua|+ log πj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Vj , Yj)

SAj + TAj +Kj + Lj ≤
∑
a∈Aj

log |Ua|+H(Vj)−H(UAj , Vj |Q,UAcj , Uij ⊕ Ukj , Yj)

SAj + TAj +Kj + Lj + Sij + Tij ≤
∑
a∈Aj

log |Ua|+ log πj +H(Vj)−H(UAj , Vj , Uij ⊕ Ukj |Q,UAcj , Yj)

SAj + TAj +Kj + Lj + Skj + Tkj ≤
∑
a∈Aj

log |Ua|+ log πj +H(Vj)−H(UAj , Vj , Uij ⊕ Ukj |Q,UAcj , Yj),

(5.34)

for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3}, where SAj : =
∑
a∈Aj Sa, TAj : =

∑
a∈Aj Ta, UAj =

(Ua : a ∈ Aj). Let

βf (WY |X , κ, τ) = cocl

 ⋃
pQUVXY ∈

Df (WY |X ,κ,τ)

βf (pQUVXY )

 .

26Recall Fπj is the finite field of cardinality πj .
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Theorem 5.7.7 For 3−DBC (X ,Y,WY |X , κ), βf (WY |X , κ, τ) is achievable, i.e., βf (WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

All the non-trivial elements of this proof being illustrated in considerable detail in the context of proof of theorem

5.7.3, we omit a proof of theorem 5.7.7.

5.8 Enlarging Marton’s rate region using partitioned coset codes

The natural question that arises is whether the achievable rate region using partitioned coset codes βf (WY |X , κ, τ)

contains αU (WY |X , κ, τ). It is our belief that coding techniques based on structured codes do not substitute their

counterparts based on traditional unstructured independent codes, but enhance the same. Indeed, the technique

proposed by Körner and Marton [18] is strictly suboptimal to that studied by Berger and Tung [64] if the function is

not sufficiently compressive, i.e., entropy of the sum is larger than one half of the joint entropy of the sources.27 The

penalty paid in terms of the binning rate for endowing structure is not sufficiently compensated for by the function.

This was (recognized)/(hinted at) by Ahlswede and Han [48, Section VI] for the problem studied by Körner and

Marton.

We follow the approach of Ahlswede and Han [48, Section VI] to enlarge αU (WY |X , κ, τ) by gluing together

UM−technique and the coding technique based on PCC. The resulting rate region will contain αU (WY |X , κ, τ) ∪

βf (WY |X , κ, τ) and will strictly enlarge αU (WY |X , κ, τ). Indeed, a description of the resulting rate region is quite

involved and we spare the reader of these details. The resulting coding technique will involve each user split it’s

message into six parts - one public and private part each, two semi-private and bivariate parts each. This can be

understood by splitting the message as proposed in sections 5.5.2 and 5.7.3 and identifying the private parts. In

essence each user decodes a univariate component of every other user’s transmission particularly set apart for it, and

furthermore decodes a bivariate component of the other two user’s transmissions.28

5.9 Concluding remarks : Common parts of random variables and the

need for structure

Let us revisit Marton’s coding technique for 2-BC. Define the pair Vj : = (W,Vj) : j = 1, 2 of random variables

decoded by the two users and let Vj : = W ×Vj : j = 1, 2. Let us stack the collection of compatible codewords over

V1
n ×V2

n
. The encoder can work with this stack, being oblivious to the distinction between W and Vj : j = 1, 2. In

other words, it does not recognize that a symbol over Vj is indeed a pair of symbols. A few key observations of this

27If X and Y are the distributed binary sources whose modulo−2 sum is to be reconstructed at the decoder, then Körner and Marton

technique is strictly suboptimal if H(X ⊕ Y ) >
H(X,Y )

2
.

28An informed and inquisitive reader may begin to see a relationship emerge between the several layers of coding and common parts of
a collection of random variables. Please refer to section 6.5 for a discussion.
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stack of codewords is in order. Recognize that many pairs of compatible codewords agree in their ‘W−coordinate’.

In other words, they share the same codeword on the W−codebook. W is a common part [65] of the pair (V1, V2).

Being a common part, it can be realized through univariate functions. Let us say W = f1(V1) = f2(V2). This

indicates, W−codebook is built such that, the range of these univariate functions when applied on the collection of

codewords in this stack, is contained.

How did Marton accomplish this containment? Marton proposed building the W−codebook first, followed by

conditional codebooks over V1, V2. Conditional coding with a careful choice of order therefore contained the range

under the action of univariate function. How is all of this related to the need for containing bivariate functions

of a pair of random variables. The fundamental underlying thread is the notion of common part [65]. What are

the common parts of a triple of random variables? Clearly, one can simply extend the notion of common part

defined for a pair of random variables. This yields four common parts - one part that is simultaneously to common

to all three random variables and one common part each, corresponding to each pair in the triple. Indeed, if

V1 = (W,U12, U31, V1), V2 = (W,U12, U23, V2), V3 = (W,U23, U31, V3), then W is the part simultaneously to common

to V1, V2, V3 and Uij : ij ∈ {12, 23, 31} are the pairwise common parts. A simple extension of Marton’s coding

suggests a way to handle these common parts.

This does not yet answer the need for containment under bivariate function. We envision a fundamentally

richer notion of common part for a triple of random variables. Indeed, three nontrivial binary random variables

X,Y, Z = X ⊕ Y have no common parts as defined earlier, since each pair has no common part and the triple does

not admit a simultaneous common part. Yet, the degeneracy in the joint probability matrix hints at a common

part. Indeed, they possess a conferencing common part. For example, the pair (X,Y ), Z have a common part. In

other words, there exists a bivariate function of X,Y and a univariate function of Z that agree with probability

1. Containment of this bivariate function brings in the need for structured codes. Indeed, the resemblance to the

problem studied by Körner and Marton [18] is striking. We therefore believe the need for structured codes for three

(multi) user communication problems is closely linked to the notion of common parts of a triple (collection) of random

variables. Analogous to conditional coding that contained univariate functions, endowing codebooks with structure

is an inherent need to carefully handle additional degrees of freedom prevalent in larger dimensions.

5.10 Strict sub-optimality of UM−technique

In this section, we prove strict sub-optimality of UM−technique for the 3−DBC presented in example 5.6.1. In

particular, we prove that if parameters τ, δ1, δ2, δ3 are such that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3) and (R1, 1 −

hb(δ2), 1− hb(δ3)) ∈ αU (τ), then R1 < hb(τ ∗ δ1)− hb(δ1).

Why is UM−technique suboptimal for the case described above. As mentioned in section 5.6, in this case,

receiver 1 is unable to decode the pair of codewords transmitted to users 2 and 3. Furthermore, based on unstructured

87



independent coding, it does not attempt to decode a function of transmitted codewords - in this case the modulo−2

sum. This forces decoder 1 to be content by decoding only individual components of user 2 and 3’s transmissions,

leaving residual uncertainty in the interference. The encoder helps out by precoding for this residual uncertainty.

However, as a consequence of the cost constraint on X1, it is forced to live with a rate loss.

Since our proof traces through the above arguments in three stages, it is instructive. In the first stage, we

characterize all test channels pQWUVXY for which (R1, 1− hb(δ2), 1− hb(δ3)) ∈ αU (pQWUVXY ). This stage enables

us identify ‘active’ codebooks, their corresponding rates and characterize two upper bounds on R1. One of these

contains the rate loss due to precoding. In the second stage, we therefore characterize the condition under which

there is no rate loss. As expected, it turns out that there is no rate loss only if decoder 1 has decoded codewords

of users 2 and 3. This gets us to the third stage, where we conclude that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3) precludes

this possibility. The first stage is presented in lemma 5.10.1, second stage is stated in lemma G.0.13 and proved in

appendices G, H. Third stage can be found in arguments following lemma G.0.13.

We begin with a characterization of a test channel pQWUVXY for which (R1, 1−hb(δ2), 1−hb(δ3)) ∈ αU (pQWUVXY ).

Since independent information needs to be communicated to users 2 and 3 at their respective point to point capacities,

it is expected that their codebooks are not precoded for each other’s signal, and moreover none of users 2 and 3 decode

a part of the other users’ signal. The following lemma establishes this. We remind the reader that X1X2X3 = X

denote the three binary digits at the input, where Y2, the output at receiver 2 is obtained by passing X2 through

a BSC with cross over probability δ2, Y3, the output at receiver 3 is obtained by passing X3 through a BSC with

cross over probability δ3 and Y1 is obtained by passing X1 ⊕X2 ⊕X3 through a BSC with cross over probability δ1.

Moreover, the binary symmetric channels (BSC’s) are independent. Input symbol X1 is constrained with respect to

a Hamming cost function and the constraint on the average cost per symbol is τ . Formally, κ(x1x2x3) = 1{x1=1} is

the cost function and the average cost per symbol is not to exceed τ .

Lemma 5.10.1 If there exists a test channel pQWUVXY ∈ DU (τ) and nonnegative numbers Ki, Sij ,Kij , Lij , Si, Ti

that satisfy (5.1)-(5.11) for each triple (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} such that R2 = K2 + K23 + L12 + T2 =

1− hb(δ2), R3 = K3 +K31 + L23 + T3 = 1− hb(δ3), then

(i) K1 = K2 = K3 = K23 = L23 = K12 = L31 = S2 = S3 = 0 and I(U31V1V3;Y2|QWU23U12V2) = 0,

(ii) S31 = I(U31;U23|QW ), S12 = I(U12;U23|QW ), S23 = I(U12;U31|QWU23) = 0,

(iii) I(V2U12;V3U31|QWU23) = 0, I(WU23;Yj |Q) = 0 : j = 2, 3, I(V2U12;Y2|QWU23) = 1− hb(δ2) and

I(V3U31;Y3|QWU23) = 1− hb(δ3),

(iv) (V3, X3, V1, U31) − (QWU23U12V2) − (X2, Y2) and (V2, X2, V1, U12) − (QWU23U31V3) − (X3, Y3) are Markov

chains,

(v) X2 −QWU12U23U31 −X3 is a Markov chain,
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(vi) U12 −QWU23U31 −X3 and U31 −QWU23U12 −X2 are Markov chains.

Proof: Substituting (i) (2, 3, 1) for (i, j, k) in (5.11), (ii) (1, 2, 3) for (i, j, k) in (5.2) and combining the resulting

bounds yields

I(WU23U12V2;Y2|Q) ≥ R2 +K3 +K1 + L23 +K12 + S2 ≥ R2 = 1− hb(δ2), (5.35)

where the second inequality follows from non-negativity of K3,K1, L23,K12, S2. Moreover,

1− hb(δ2) ≥ I(X2;Y2) = I(QWUVX1Y1X3Y3X2;Y2) ≥ I(WU23U12V2;Y2|Q) (5.36)

≥ R2+K3+K1+L23+K12+S2 ≥ R2 = 1− hb(δ2), (5.37)

where (i) equality in (5.36) follows from Markov chain QWUVX1Y1X3Y3−X2−Y2, and (ii) (5.37) follows from sub-

stituting (5.35). Since all the terms involved are non-negative, equality holds through the above chain of inequalities

to yield

S12 + S23 = I(U12;U23|QW ),K1 =K3 =L23 =K12 =S2 =I(Q;Y2)=0 (5.38)

I(U31V1X1Y1V3X3Y3X2;Y2|QWU12U23V2)=0 (5.39)

and therefore (V1, V3, X3, U31)− (QWU12U23V2)− Y2 is a Markov chain (5.40)

where the first equality in (5.38) follows from condition for equality in the first inequality of (5.35). The above

sequence of steps are repeated by substituting (i) (3, 1, 2) for (i, j, k) in (5.11), (ii) (2, 3, 1) for (i, j, k) in (5.2). It can

be verified that

S31 + S23 = I(U31;U23|QW ),K1 =K2 =L31 =K23 =S3 =I(Q;Y3)=0, (5.41)

I(U12V1X1Y1V2X2Y2X3;Y3|QWU23U31V3)=0 (5.42)

and therefore (V1, V2, X2, U12)− (QWU23U31V3)− Y3 is a Markov chain. (5.43)

The second set of equalities in (5.38), (5.41) lets us conclude

R1 = T1, R2 = L12 + T2 and R3 = K31 + T3. (5.44)

From I(U12;U23|QW )+I(U31;U23|QW ) = S12+S23+S31+S23, and (5.3), we have I(U12;U23|QW )+I(U31;U23|QW ) ≥

I(U12;U23;U31|QW )+S23. The non-negativity of S23 (5.1) implies S23 = 0 and I(U31;U12|QWU23) = 0. We therefore
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conclude

S12 = I(U12;U23|QW ), S31 = I(U31;U23|QW ), S23 = 0, I(U31;U12|QWU23) = 0 (5.45)

Substituting (5.38), (5.41), (5.45) in (5.4) for (i, j, k) = (2, 3, 1) and (i, j, k) = (3, 1, 2) and (5.5) for (i, j, k) = (2, 3, 1),

we obtain

I(V2;U31|QWU12U23) = I(V3;U12|QWU23U31) = I(V2;V3|QWU12U23U31) = 0. (5.46)

(5.46) and last equality in (5.45) yield

I(V2U12;V3U31|QWU23) = 0. (5.47)

Substituting (5.44), (5.45) in (5.8) with (i, j, k) = (2, 3, 1) yields the upper bound R2 ≤ I(U12V2;Y2|QWU23). Since

1− hb(δ2)=R2≤I(U12V2;Y2|QWU23)≤I(WU12U23V2;Y2|Q) ≤ 1− hb(δ2),

where the last inequality follows from (5.36), equality holds in all of the above inequalities to yield I(WU23;Y2|Q) = 0

and I(U12V2;Y2|QWU23) = 1 − hb(δ2). A similar argument proves I(WU23;Y3|Q) = 0 and I(U31V3;Y3|QWU23) =

1− hb(δ3).

We have proved the Markov chains in (5.40), (5.43). In order to prove Markov chains in item 4, we prove the

following lemma.

Lemma 5.10.2 If A,B,X, Y are discrete random variables such that (i) X,Y take values in {0, 1} with P (Y =

0|X = 1) = P (Y = 1|X = 0) = η ∈ (0, 1
2 ), (ii) A− B − Y and AB −X − Y are Markov chains, then A− B −XY

is also a Markov chain.

Please refer to appendix I for a proof. Markov chains in (5.40), (5.43) in conjunction with lemma 5.10.2 establishes

Markov chains in item 4.

(5.47) and (5.39) imply I(U31V3;U12V2Y2|QWU23) = 0. This in conjunction with (5.42) implies

I(U31V3Y3;U12V2Y2|QWU23) = 0 and thus U31V3Y3 −QWU23 − U12V2Y2 is a Markov chain. (5.48)

(5.48) implies U31Y3 − QWU23 − U12Y2 is a Markov chain, and therefore Y3 − QWU12U23U31 − Y2 is a Markov

chain. Employing lemma 5.10.2 twice we observe Y3X3 −WU12U23U31 −X2Y2 is a Markov chain and furthermore

X3 −QWU12U23U31 −X2 is a Markov chain, thus proving item 5.

Finally, we prove Markov chains in item 6. From Markov chain (V3, X3, V1, U31) − (QWU23U12V2) − (X2, Y2)

proved in item 4, we have I(X2;U31|QWU23U12V2) = 0. From (5.47), we have I(V2;U31|QWU23U12) = 0. Summing

these two, we have I(X2V2;U31|QWU23U12) = 0 and therefore I(X2;U31|QWU23U12) = 0 implying the Markov
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chain X2 − QWU23U12 − U31. Similarly, Markov chain (V2, X2, V1, U12) − (QWU23U31V3) − (X3, Y3) proved in

item 4 implies I(X3;U12|WU23U31V3Q) = 0. From (5.47), we have I(V3;U12|QWU23U31) = 0. Summing these

two, we have I(X3V3;U12|QWU23U31) = 0 and therefore I(X3;U12|QWU23U31) = 0 implying the Markov chain

X3 −QWU23U31 − U12.

Lemma 5.10.1 enables us simplify the bounds (5.1)-(5.11) for the particular test channel under consideration. Substi-

tuting (5.38)-(5.46) in (5.1)-(5.11) and employing statements of lemma 5.10.1, we conclude that if (R1, 1−hb(δ2), 1−

hb(δ3)) ∈ αU (pQWUVXY ), then there exists nonnegative numbers S1, T1, L12,K31 that satisfy R1 = T1, R2 =

L12 + T2 = 1− hb(δ2), R3 = K31 + T3 = 1− hb(δ3),

S1 ≥ I(V1;U23V2V3|QWU12U31), T1 + S1 ≤ I(V1;Y1|QWU12U31) (5.49)

L12 +K31 + T1 + S1 ≤ I(U12;U31|QW )− I(U23;U12|QW ) + I(V1U12U31;Y1|QW )− I(U23;U31|QW ) (5.50)

0 ≤ T2 ≤ I(V2;Y2|QWU12U23), 1− hb(δ2) = T2 + L12 = I(U12V2;Y2|QWU23) (5.51)

0 ≤ T3 ≤ I(V3;Y3|QWU31U23), 1− hb(δ3) = T3 +K31 = I(U31V3;Y3|QWU23). (5.52)

(5.51), (5.52) imply

L12 ≥ I(U12;Y2|QWU23), K31 ≥ I(U31;Y3|QWU23), (5.53)

(5.49) implies

T1 = R1 ≤ I(V1;Y1|QWU12U31)− I(V1;U23V2V3|QWU12U31),

≤ I(V1;Y1U23|QWU12U31)− I(V1;U23V2V3|QWU12U31) = I(V1;Y1|QWU)− I(V1;V2V3|QWU), (5.54)

and (5.50) in conjunction with (5.53), and lower bound on S1 in (5.49) imply

R1 ≤ I(U12U31V1;Y1|QW )− I(V1;U23V2V3|QWU12U31)− I(U12;Y2|QWU23)− I(U31;Y3|QWU23)

+I(U12;U31|QW )− I(U23;U12|QW )− I(U23;U31|QW )

≤ I(U12U31V1;Y1U23|QW )− I(V1;U23V2V3|QWU12U31)− I(U12;Y2|QWU23)− I(U31;Y3|QWU23)

+I(U12;U31|QW )− I(U23;U12|QW )− I(U23;U31|QW )

= I(V1;Y1|QWU)−I(V1;V2V3|QWU)+I(U12U31;Y1|QWU23)−I(U12;Y2|QWU23)−I(U31;Y3|QWU23),(5.55)

where (5.55) follows from the last equality in (5.45). We have thus obtained (5.54) and (5.55), two upper bounds

on R1 we were seeking, and this concludes the first stage of our proof. In the sequel, we prove the minimum of the

above upper bounds on R1 is strictly lesser than hb(τ ∗δ1)−hb(δ1). Towards, that end, note that upper bound (5.54)

contains the rate loss due to precoding. In the second stage, we work on (5.54) and derive conditions under which

91



there is no rate loss.

Markov chains of lemma 5.10.1 item 4 imply V1 − QWUV2V3 − X2 and V1 − QWUV2V3X2 − X3 are Markov

chains. Therefore, I(V1;X2|QWUV2V3) = 0 and I(V1;X3|QWUV2V3X2) = 0. Summing these, we have

I(V1;X2X3|QWUV2V3) = 0. Employing this in (5.54), we note

R1 ≤ I(V1;Y1|QWU)− I(V1;V2V3|QWU) = I(V1;Y1|QWU)− I(V1;V2V3X2X3|QWU) (5.56)

≤ I(V1;Y1|QWU)− I(V1;X2, X3|QWU) ≤ I(V1;Y1|QWU)− I(V1;X2 ⊕X3|QWU) (5.57)

=
∑

(q,w,u)∈
Q×W×U

pQWU (q, w, u) [I(V1;Y1|(Q,W,U) = (q, w, u))−I(V1;X2 ⊕X3|(Q,W,U) = (q, w, u))] (5.58)

≤
∑

(q,w,u)∈
Q×W×U

pQWU (q, w, u)I(X1X2X3V1;Y1|(Q,W,U) = (q, w, u))

≤
∑

(q,w,u)∈
Q×W×U

pQWU (q, w, u) [H(Y1|(Q,W,U) = (q, w, u))−H(Y1|X1X2X3V1, (Q,W,U) = (q, w, u))]

=
∑

(q,w,u)∈
Q×W×U

pQWU (q, w, u) [H(X1 ⊕N1|(Q,W,U) = (q, w, u))− hb(δ1)]

=
∑

(q,w,u)∈
Q×W×U

pQWU (q, w, u)hb(τq,w,u ∗ δ1)− hb(δ1), where τq,w,u = pX1|QWU (1|q, w, u) (5.59)

= EQWU

{
hb(τq,w,u ∗ δ1)

}
− hb(δ1) ≤ hb(EQWU

{
τq,w,u ∗ δ1

}
)− hb(δ1) ≤ hb(τ ∗ δ1)− hb(δ1) (5.60)

where (5.60) follows from application of Jensen’s inequality to the strictly concave function hb(·), and second inequality

in (5.60) follows from δ ∈ (0, 1
2 ). We conclude that R1 = hb(τ ∗ δ1)− hb(δ1) if and only if equality holds in the above

chain of inequalities, and in particular, equality holds in (5.60), which by the condition for equality in Jensen’s

inequality implies τq,w,u = τ for every (q, w, u) ∈ Q ×W × U that satisfies pQWU (q, w, u) > 0. This in conjunction

with

I(V1;Y1|(Q,W,U) = (q, w, u))−I(V1;X2 ⊕X3|(Q,W,U) = (q, w, u)) ≤ hb(τq,w,u ∗ δ1)− hb(δ1)

which follows from the chain of inequalities from (5.58) through (5.59) implies

I(V1;Y1|QWU)− I(V1;V2V3|QWU) ≤ hb(τ ∗ δ1)− hb(δ1) (5.61)

with equality if and only if

for every (q, w, u) ∈ Q×W × U that satisfies pQWU (q, w, u) > 0, pX1|QWU (1|q, w, u) = τq,w,u = τ, (5.62)

and I(V1;Y1|(Q,W,U) = (q, w, u))−I(V1;X2 ⊕X3|(Q,W,U) = (q, w, u)) = hb(τq,w,u ∗ δ1)− hb(δ1). (5.63)
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An informed reader, by now must have made the connection to capacity of the point to point channel with

non-causal state [7]. We develop this connection in appendix G. For now, we provide a characterization for (5.63) to

hold. This will require us to define a few mathematical objects that may initially seem unrelated to a reader unaware

of findings in [7]. Very soon, we argue the relevance. An informed reader will find the following development natural.

Let DT (τ, δ, ε) denote the collection of all probability mass functions pṼ S̃X̃Ỹ defined on Ṽ ×{0, 1}×{0, 1}×{0, 1},

where Ṽ is an arbitrary finite set such that (i) pỸ |X̃S̃Ṽ (x ⊕ s|x, s, v) = pỸ |X̃S̃(x ⊕ s|x, s) = 1 − δ, where δ ∈ (0, 1
2 ),

(ii) pS̃(1) = ε ∈ [0, 1], and (iii) pX̃(1) ≤ τ ∈ (0, 1
2 ). For pṼ S̃X̃Ỹ ∈ DT (τ, δ, ε), let αT (pṼ S̃X̃Ỹ ) = I(Ṽ ; Ỹ )− I(Ṽ ; S̃) and

αT (τ, δ, ε) = suppṼ S̃X̃Ỹ ∈DT (τ,δ,ε) αT (pṼ S̃X̃Ỹ ).

For every (q, w, u) ∈ Q×W×U that satisfies pQWU (q, w, u) > 0, we note pY1|X1,X2⊕X3V1QWU (x1⊕x2⊕x3|x1, x2⊕

x3, v1, q, w, u) = pY1|X1,X2⊕X3QWU (x1⊕x2⊕x3|x1, x2⊕x3, q, w, u) = 1−δ1. In other words, conditioned on the event

{(Q,W,U) = (q, w, u)}, V1 − X1, X2 ⊕ X3 − Y1 is a Markov chain. We conclude pV1X2⊕X3X1Y1|QWU (· · · |q, w, u) ∈

DT (τq,w,u, δ1, εq,w,u), where εq,w,u = pX2⊕X3|QWU (1|q, w, u), and hence

I(V1;Y1|(Q,W,U) = (q, w, u))−I(V1;X2 ⊕X3|(Q,W,U) = (q, w, u)) ≤ αT (τq,w,u, δ1, εq,w,u).

Therefore, (5.63) holds only if αT (τq,w,u, δ1, εq,w,u) = hb(τq,w,u ∗δ1)−hb(δ1), where τq,w,u = τ ∈ (0, 1
2 ). The following

lemma characterizes conditions under which this is the case. Please refer to appendices G,H for a proof.

Lemma 5.10.3 If τ, δ ∈ (0, 1
2 ) and ε ∈ (0, 1), then αT (τ, δ, ε) < hb(τ ∗ δ)− hb(δ). Alternatively, if τ, δ ∈ (0, 1

2 ) and

ε ∈ [0, 1], then either αT (τ, δ, ε) < hb(τ ∗ δ)− hb(δ) or ε ∈ {0, 1}.

Recall that arguments in relation to (5.63) imply that if for any (q, w, u) ∈ Q×W × U that satisfies P ((Q,W,U) =

(q, w, u)) > 0, I(V1;Y1|(Q,W,U) = (q, w, u))− I(V1;X2 ⊕ X3|(Q,W,U) = (q, w, u)) < hb(τq,w,u ∗ δ1) − hb(δ1)

where τq,w,u = pX1|Q,W,U (1|q, w, u), then R1 < hb(τ ∗ δ1) − hb(δ1) and we have proved strict sub-optimality of

UM−technique. We therefore assume (5.62), (5.63) hold for every (q, w, u) ∈ Q×W×U that satisfies P ((Q,W,U) =

(q, w, u)) > 0. From lemma 5.10.3, we conclude for every such (q, w, u) ∈ Q×W×U , εq,w,u = pX2⊕X3|QWU (1|q, w, u) ∈

{0, 1}. We therefore assume

I(V1;Y1|QWU)− I(V1;X2 ⊕X3|QWU) = hb(τ ∗ δ1)− hb(δ1) and H(X2 ⊕X3|QWU) = 0. (5.64)

This has got us to the third and final stage. Here we argue (5.64) implies RHS of (5.55) is strictly smaller than

hb(τ ∗ δ1) − hb(δ1). Towards that end, note that Markov chain X2 − QWU23U12U31 − X3 proved in lemma 5.10.1

item 5 and (5.64) imply H(X2|QWU) = H(X3|QWU) = 0.29 Furthermore, Markov chains U12 −WU23U31 − X3

29Indeed, for any (q, w, u) ∈ Q ×W × U that satisfies P ((Q,W,U) = (q, w, u)) > 0, if P (Xj = 1|(Q,W,U) = (q, w, u)) = αj : j = 2, 3,
then 0 = H(X2 ⊕X3|(Q,W,U) = (q, w, u)) = hb(α2 ∗ α3) ≥ α2hb(α3) + (1− α2)hb(1− α3) = α2hb(α3) + (1− α2)hb(α3) = hb(α3) ≥ 0,
where the first inequality follows from concavity of binary entropy function, and similarly, interchanging the roles of α2, α3, we obtain
0 = H(X2 ⊕X3|(Q,W,U) = (q, w, u)) ≥ hb(α2) geq0.
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and U31 −WU23U12 −X2 proved in lemma 5.10.1 item 6 imply

H(X2|WU23U12) = H(X3|WU23U31) = 0. (5.65)

Observe that

hb(τ ∗ δ1)− hb(δ1) = I(V1;Y1|WU)− I(V1;X2 ⊕X3WU) = I(V1;Y1|WU) = I(V1;Y1|WU,X2, X3) (5.66)

= H(Y1|WUX2X3)−H(Y1|WUV1X2X3) ≤ H(Y1|WUX2X3)−H(Y1|WUV1X1X2X3)

= H(Y1|WU,X2, X3)− hb(δ1) (5.67)

where the first two equalities in (5.66) follows from (5.64) and the last equality follows from (5.65). (5.67) and first

equality in (5.66) enables us conclude

H(Y1|WU,X2, X3) ≥ hb(τ ∗ δ1) (5.68)

We now upper bound RHS of (5.55). Note that it suffices to prove I(U12U31;Y1|WU23) − I(U12;Y2|WU23) −

I(U31;Y3|WU23) is negative. Observe that

I(U12U31;Y1|WU23)− I(U12;Y2|WU23)− I(U31;Y3|WU23)

= H(Y1|WU23)−H(Y1|WU)−H(Y2|WU23) +H(Y2|WU23U12)−H(Y3|WU23) +H(Y3|WU23U31)

= H(Y1|WU23)−H(Y1|WU)−H(Y2) +H(Y2|WU23U12)−H(Y3) +H(Y3|WU23U31)

= H(Y1|WU23)−H(Y1|WX2X3U)−H(Y2) +H(Y2|WU23U12X2)−H(Y3) +H(Y3|WU23U31X3) (5.69)

= H(Y1|WU23)−H(Y1|WX2X3U)− 2 + hb(δ2) + hb(δ3)

≤ 1−H(Y1|WX2X3U)− 2 + hb(δ2) + hb(δ3) ≤ hb(δ2) + hb(δ3)− hb(δ1 ∗ τ)− 1 (5.70)

where (5.69) follows from (5.64) and (5.65), second inequality in (5.70) follows from (5.68). If τ, δ1, δ2, δ3 are such

that hb(δ2) + hb(δ3) < 1 + hb(δ1 ∗ τ), then R1 < hb(τ ∗ δ1) − hb(δ1) and RHS of (5.70) is negative. We summarize

our findings in the following theorem and corollary.

Theorem 5.10.4 Consider the 3−DBC in example 5.6.1. If hb(δ2) + hb(δ3) < 1 + hb(δ1 ∗ τ), then (hb(τ ∗ δ1) −

hb(δ1), 1− hb(δ2), 1− hb(δ3)) /∈ αU (τ).

Corollary 5.10.5 Consider the 3−DBC in example 5.6.1 with δ = δ2 = δ3. If hb(τ ∗ δ1) ≤ hb(δ) <
1+hb(δ1∗τ)

2 ,

then (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) /∈ αU (τ) but (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) ∈ C(τ) and thus

αU (τ) 6= C(τ). In particular, if δ1 = 0.01 and δ2 ∈ (0.1325, 0.21), then αU ( 1
8 ) 6= C( 1

8 ).
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Chapter 6

Multiple access channel with distributed

states

Consider a multiple access channel with distributed states (MAC-DSTx) depicted in figure 6.1. This is a simple MAC

analogue of the PTP-STx studied in chapter 3. It should be evident to an informed reader that a natural extension

of the Gel’fand Pinsker technique of binning followed by joint decoding yields an achievable rate region for the MAC-

DSTx.1 As a matter of fact, this is the currently known largest achievable rate region for an arbitrary MAC-DSTx.

Gel’fand and Pinsker’s technique of binning being optimal for PTP-STx, it is natural to ask the question whether

it’s extension to MAC-DSTx is optimal.

1In particular, each of encoders build codes over an auxiliary alphabet and partition the same into bins. From the bin indexed by the
message, they choose codewords jointly typical with the state sequence and a function of this chosen codeword and the state sequence,
evaluated letter-wise, is input on the channel. The decoder employs joint typical decoding to disambiguate the pair of codewords chosen
by the encoder and thereby decodes the pair of messages.

WY|X1S1X2S2

S1S2 ~ WS1S2

Encoder 1

Encoder 2

S1

S2

M1

X1

X2

Y

M2

Decoder M1, M2

Figure 6.1: Multiple access channel with distributed states
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Philosof and Zamir [15] propose an alternate technique for communicating over a particular symmetric additive

binary doubly dirty MAC (BDD-MAC). As against to Gel’fand Pinsker’s technique of partitioning the channel codes

uniformly and independently into bins, they propose a partition of the two channel codes using cosets of a common

linear code, thereby building dependency across the two codebooks and their codewords. Crucially exploiting the

property of closure under addition, of bins in the two codebooks, they propose a coding technique, henceforth referred

to as PZ-technique that achieves capacity of BDD-MAC. Furthermore, they prove strict sub-optimality of natural

extension of Gel’fand Pinsker’s technique of independent and unstructured binning.

Nevertheless ingenious, PZ-technique [15] is very specific to the additive and symmetric nature of the BDD-

MAC studied therein. This technique being strictly more efficient than the currently known best strategy based on

independent unstructured codes raises the following question. Is there a general coding framework for communicating

over an arbitrary discrete MAC-DSTx, that reduces to the PZ-technique for the BDD-MAC, and that would yield

an achievable rate region strictly larger than the best known achievable rate region using unstructured independent

codes even for non-additive and non-symmetric MAC-DSTx?

In this chapter, we propose an algebraic framework based on nested coset codes for communication over an

arbitrary MAC-DSTx and thereby answer the above questions in the affirmative. We present our framework in three

pedagogical stages. We begin by identifying two key elements of PZ-technique 1) decoding mod−2 sum, instead of

the pair of codewords chosen by the two transmitters and 2) choosing the bins of each user’s code to be cosets of a

common linear code to enable containment of the range of this mod−2 sum. The first stage, presented in section

6.2.2, captures all of the nontrivial elements of our framework in it’s simplest setting. In this stage we employ nested

coset codes built on finite fields, to decode the sum of codewords. The analysis of this technique enables us to derive a

new achievable rate region for MAC-DSTx. The key elements of the first stage are (i) the use of nested coset codes to

induce non-uniform input distributions, (ii) the use of joint typical encoding and decoding that enables us to analyze

the probability of error over an arbitrary MAC-DSTx that is not constrained to be additive or symmetric, and (iii) an

analysis of decoding of the sum of the pair of transmitted codewords chosen from two dependent codebooks. Indeed,

the analysis of joint typical encoding and decoding of correlated codebooks with statistically dependent codewords

involves several new elements. The reader is encouraged to peruse these in the proof of theorem 6.2.2.

The significance of the rate region proved achievable in the first stage is illustrated through examples in section

6.2.3.2 In particular, we provide a simple modification of the BDD-MAC for which it is necessary to induce non-

uniform input distributions and is more efficient to decode the sum of transmitted codewords. We also randomly

2The coding technique proposed in the first stage reduces to that proposed in [15] for BDD-MAC and moreover Philosof and Zamir
have proved strict sub-optimality of unstructured independent coding for BDD-MAC. This in itself establishes significance of theorem
6.2.2. Notwithstanding this, it is easy to argue significance of our generalization by appealing to continuity. An additive channel can be
perturbed slightly to result in a non-additive channel for which the technique proposed in [15] may not be applicable as is. By continuity
of the rate regions as a function of the channel parameters, one can see why the proposed coding scheme must perform strictly better
than unstructured independent coding. Example 6.2.5 presented in section 6.2.3 corroborates this.
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perturb the BDD-MAC and demonstrate that coding framework proposed herein can outperform unstructured in-

dependent codes. The channels being non-additive, it is significantly harder to provide analytical comparisons, and

hence we resort to direct computation of rate regions achievable using unstructured independent and nested coset

codes. These examples illustrate that structured code based strategies do not hinge on the channel being additive

but would benefit as long as the optimizing test channel from the auxiliary inputs to the channel output is not far

from additive.

Does the rate region proved achievable using nested coset codes subsume the largest known achievable rate region

using unstructured independent codes? It is our belief that strategies based on structured codes are not in lieu

of their counterparts based on unstructured codes. In most cases, structured codes enable efficient decoding of a

‘compressive’3 function of the two codewords. However, for decoding both the codewords, it turns out the strategy

of using a common linear code to effect partition of the two codebooks is not optimal, instead one has to employ

two independent linear codes. The rate region achieved using the latter strategy is equivalent to that achieved using

unstructured independent codes.4. This leads us to the second stage of our coding scheme which is presented in section

6.3. Following the approach of Ahlswede and Han [48, Section VI], we glue together structured and unstructured

coding techniques to derive the largest known achievable rate region for communicating over a MAC-DSTx that

combines structured and unstructured coding techniques. We present another simple modification of BDD-MAC to

illustrate how the gluing of unstructured and structured coding techniques can yield a rate region larger than either

one, and their union. We remark that in spite of our inability to compute the achievable rate region proposed in

section 6.3, we are able to demonstrate the significance of the same through an example.

If the channel is far from additive, it may not be efficient to decode the sum, with respect to a finite field, of

codewords. For example, if the MAC-DSTx is doubly dirty with field addition replaced by addition of an Abelian

group, referred to as group addition or group sum, then it is natural to decode group sum of codewords. In other

words, the technique of decoding sum of codewords must be generalized to decoding any arbitrary bivariate function

of the auxiliary inputs. In the third stage of our coding scheme, presented in section 6.4, we consider decoding the

group sum of the codewords. Specifically, codebooks are built over Abelian group alphabets and each encoder is

provided with codebooks that possess a certain group structure. Analogous to the first stage, we propose joint typical

encoding and decoding of group codes. Though essential elements of this analysis are similar to that of decoding

sum of codewords chosen from nested coset codes over an arbitrary MAC-DSTx, the algebraic structure of a Abelian

group being looser, leads to several new elements.

The importance of (i) decoding an appropriate bivariate function of codewords, and (ii) endowing codebooks with

3f(U1, U2) is ‘compressive’ if H(f(U1, U2)) is significantly lower than H(U1, U2).
4Indeed, for the problem of distributed reconstruction of modulo−2 sum of binary sources, Körner Marton strategy [18] based on

common linear codes is outperformed by Slepian-Wolf [5] strategy (or equivalently the strategy of Csiszár based on independent linear
codes [66].) for the class of source distributions for which the modulo−2 sum is not sufficiently compressive. More precisely, if H(X⊕Y ) >
H(X,Y )

2
, then it is better to reconstruct X ⊕ Y using the technique of Slepian-Wolf or Csiszár.
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the appropriate algebraic structure is illustrated through an example discussed in section 6.4. Specifically, we indicate

using numerical computation that for a quaternary doubly dirty MAC-DSTx (QDD-MAC) wherein the operation is

mod−4 addition, decoding mod−4 sum, which is the group operation in the quaternary alphabet, of the codewords

strictly outperforms both independent unstructured and nested coset codes based strategies. In fact, significant gains

for this problem are achievable using Abelian group codes. The reader is encouraged to peruse details in section 6.4.

Several findings in the context of multi-terminal communication problems point to efficient strategies based on

structured codes. Nazer and Gastpar [16] propose a strategy based on linear codes for computing the sum of sources

over additive multiple access channels that outperforms earlier known strategies. Building on this technique, we

develop a framework for computing sum of sources over an arbitrary multiple access channel in [67]. Sridharan

et. al. [19] propose a coding technique based on lattices for communicating over a K−user Gaussian interference

channel (K ≥ 3) that outperforms a natural extension of Han-Kobayashi technique [13] under the Gaussian input

distribution. We propose an analogous coding technique based on nested linear codes [68] for the general discrete

3−user interference channel and identify an example for which the proposed technique outperforms the natural

extension of Han-Kobayashi technique [13]. Krithivasan and Pradhan [23] propose a framework based on structured

codes for the distributed source coding problem that outperforms the best known strategy based on unstructured

independent codes due to Berger and Tung [64]. The reader is also referred to [69], wherein lattices are employed to

efficiently reconstruct linear functions of Gaussian sources.

6.1 MAC-DSTx: Definitions, largest known achievable rate region

In this section, we lay the necessary groundwork. In particular, we describe MAC-DSTx and precisely state relevant

notions such as code, achievability in section 6.1.1. In section 6.1.2, we provide a characterization of the currently

known largest achievable rate region. We illustrate this rate region for BDD-MAC in section 6.1.3 and highlight the

reasons for it’s suboptimality. This will set the stage for it’s enlargement in subsequent sections.

6.1.1 Definitions : MAC-DSTx, code and achievability

Consider the two user multiple access analogue of PTP-STx [7]. Let X1 and X2 denote finite input alphabet sets and

Y, the output alphabet set. Transition probabilities depend on a random vector parameter S : = (S1, S2), called

state, that takes values in a finite set S : = S1×S2. The discrete time channel is (i) time invariant, i.e., pmf of Yi, the

output at time i, conditioned on inputs Xi : = (X1i, X2i) and state Si : = (S1i, S2i) at time i, is invariant with i, (ii)

memoryless, i.e., Yi is conditionally independent of (Xt,St) : 1 ≤ t < i given Xi,Si, and (iii) used without feedback.

Let WY |XS(y|x, s) be the probability of observing y ∈ Y at the output given x : = (x1, x2) ∈ X : = X1×X2 is input

to the channel in state s : = (s1, s2) ∈ S. The state at time i, Si is (i) independent of (St,Xt, Yt) : 1 ≤ t < i, and

(ii) identically distributed for all i. Let WS(s) be the probability of MAC-DSTx being in state s ∈ S. We assume Snj
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is non-causally known to encoder j. Input Xj is constrained with respect to a cost function κj : Xj × Sj → [0,∞).

We assume that the cost is time-invariant and additive i.e., cost of input Xn
j at input j to the channel in state Sn

is κ̄nj (Xn
j , S

n
j ) : = 1

n

∑n
i=1 κj(Xji, Sji). We refer to this channel as MAC-DSTx (S,WS ,X , κ,Y,WY |X,S). Towards

characterizing a new inner bound for the capacity region of a MAC-DSTx, we begin with definitions of relevant

notions such as achievability and capacity.

Definition 6.1.1 A MAC-DSTx code (n,M1,M2, e1, e2, d) consists of (i) index sets Mj of messages, of cardinality

Mj for j = 1, 2 (ii) encoder maps ej :Mj × Snj → Xnj for j = 1, 2, and (iii) a decoder map d : Yn →M1 ×M2.

We let M : = (M1,M2), e : = (e1, e2) and refer to above as MAC-DSTx code (n,M , e, d). Assuming the pair of

messages to be uniformly distributed, we define the average error probability and the cost of a MAC-DSTx code as

follows.

Definition 6.1.2 The average error probability of MAC-DSTx code (n,M , e, d) conditioned on message m : = (m1,

m2) ∈M : = M1 ×M2 is

ξ(e, d|m) : =
∑
sn∈Sn

WSn(sn)
∑

yn:d(yn)6=m

WY n|Xn,Sn(yn|e1(m1, s
n
1 ), e2(m2, s

n
2 ), sn).

The average error probability is ξ̄(e, d) : =
∑

m∈M
1

M1M2
ξ(e, d|m). The average cost of transmitting message pair

m is τ(e|m) : = (τ1(e1|m1), τ2(e2|m2)), where

τj(ej |mj) : =
∑
snj ∈Snj

WSnj
(snj )κ̄nj (ej(mj , s

n
j ), snj ).

The average cost of the code is τ(e) : =
∑

m∈M
1

M1M2
τ(e|m), where τ(e) = (τ(e1), τ(e2)).

Definition 6.1.3 A rate cost quadruple (R, τ ) ∈ [0,∞)4 is achievable if for every η > 0, there exists N(η) ∈ N

such that for all n > N(η), there exists a MAC-DSTx code (n,M(n), e(n), d(n)) such that (i)
logM(n)

j

n ≥ Rj −

η for j = 1, 2, (ii) ξ̄(e(n), d(n)) ≤ η, and (iii) τj(e
(n)
j ) ≤ τj + η, for j = 1, 2. The capacity region C(τ ) :

= cocl
({

R ∈ [0,∞)2 : (R, τ ) is achievable
})

.

The coding technique that achieves capacity of PTP-STx [7] can be generalized to obtain an achievable rate region for

MAC-DSTx. For a general MAC-DSTx this is the largest known inner bound to C(τ ). We provide a characterization

of the same in the following section.

6.1.2 Largest known achievable rate region using unstructured codes

Definition 6.1.4 Let D(τ ) be collection of pmfs pUXSY on U2 × X × S × Y, where U denotes U1, U2 and U2 is a

two fold Cartesian product of a finite set U , such that (i) pS = WS, (ii) pY |XSU = pY |XS = WY |XS, (iii) pUj |SUj =
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pUj |S = pUj |Sj and pXj |SUXj = pXj |SU = pXj |SjUj for any distinct elements j, j ∈ {1, 2}, (iv) pXj |SjUj (xj |sj , uj) ∈

{0, 1} for all (uj , sj , xj), j = 1, 2 and (v) E {κj(Xj , Sj)} ≤ τj for j = 1, 2. For pUXSY ∈ D(τ ), let α(pUXSY ) be

defined as the set (R1, R2) ∈ [0,∞)2 : R1 ≤ I(U1;Y U2)− I(U1;S1), R2 ≤ I(U2;Y U1)− I(U2;S2),

R1 +R2 ≤ I(U;Y ) + I(U1;U2)−
∑2
j=1 I(Uj ;Sj)


and

α(τ) : = cocl

 ⋃
pUXSY ∈D(τ)

α(pUXSY )

 .

Theorem 6.1.5 α(τ) ⊆ C(τ ).

Achievability of α(pUXSY ) can be proved by employing the encoding technique proposed by Gel’fand and Pinsker

[7] at each encoder and joint decoding proposed by Ahlswede [3], Liao [4]. In the sequel, we provide an illustration

of this coding technique for BDD-MAC.

6.1.3 Rate region achievable using unstructured codes for BDD-MAC

Philosof and Zamir characterize C(τ ) for BDD-MAC using PZ-technique and prove α(τ ) ( C(τ ) for the same. In

order to identify the key elements of PZ-technique, we briefly analyze unstructured coding (this section), PZ-technique

(section 6.2.1) and set the stage for a new coding scheme.

BDD-MAC is a MAC-DSTx with binary alphabets Sj = Xj = Y = {0, 1}, j = 1, 2. The state sequences are

independent Bernoulli- 1
2 processes, i.e., WS(s) = 1

4 for all s ∈ S. The channel transition is described by the relation

Y = X1 ⊕2 S1 ⊕2 X2 ⊕2 S2. An additive Hamming cost is assumed on the input, i.e., κj(1, sj) = 1 and κj(0, sj) = 0

for any sj ∈ Sj , j = 1, 2 and the input is subject to a symmetric cost constraint τ = (τ, τ).

We describe the test channel pUSXY ∈ D(τ ) that achieves α(τ ). For each user j, consider the test channel

that achieves the Gel’fand-Pinsker capacity treating the other user as noise i.e., pUjSjXj (0, 1, 1) = pUjSjXk(1, 0, 1) =

τ
2 , pUjSjXj (0, 0, 0) = pUjSjXj (1, 1, 0) = 1−τ

2 . Philosof and Zamir prove pUSX = pU1S1X1pU2S2X2 achieves α(τ ) =

{R : R1 +R2 ≤ |2hb(τ)− 1|+}, where | · |+ denotes upper convex envelope.

Let us take a closer look at achievability of the vertex (2hb(τ)− 1, 0) using the above test channel. Since user 2

has no message to transmit, it picks a single bin with roughly 2nI(U2;S2) = 2n(1−hb(τ)) codewords independently and

uniformly from the entire space of binary vectors. User 1 picks 2nR1 bins each with roughly 2nI(U1;S1) = 2n(1−hb(τ))

independently and uniformly distributed binary vectors. Encoder 2 observes Sn2 and chooses a codeword, say Un2 ,

that is within a Hamming distance of roughly nτ from Sn2 and transmits Xn
2 = Un2 ⊕2 S

n
2 . Encoder 1 performs a

similar encoding, except that it restricts the choice of Un1 to the bin indexed by user 1’s message, and transmits

Xn
1 = Un1 ⊕2 S

n
1 .
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What is the maximum rate R1 at which user 1 can transmit it’s message? Decoder receives Y n = Un1 ⊕2 U
n
2 and

looks for all pairs of codewords that are jointly typical with Y n. Since any pair of binary n−length vectors are jointly

typical (U1 and U2 are independent and uniform), the decoding rule reduces to finding all pairs of binary n−length

vectors in the pair of codebooks that sum to the received vector Y n. All bins chosen independently without structure

imply that any bin of user 1’s codebook when added to the user 2’s codebook (a single bin) results in roughly

2n(2−2hb(τ)) distinct vectors. Therefore, we cannot hope to pack more than roughly 2n

2n(2−2hb(q))
= 2n(2hb(q)−1) bins

in user 1’s codebook. We remark that an explosion in the range of sum of transmitted codewords severely limits

achievable rate.

We make a few observations. Effectively, communication occurs over the (U1, U2)−Y channel and the test channel

induces the Markov chain (U1, U2)−U1 ⊕2 U2 − Y . It would therefore be more efficient to communicate information

over the U1 ⊕2 U2 − Y channel which suggests an efficient utilization of U1 ⊕2 U2−space. Having chosen codewords

in each bin independently and moreover the two users’ bins independently, each message pair utilizes 2n(2−2hb(τ))

vectors in the U1 ⊕2 U2−space. In section 6.2.1, we summarize PZ-technique, wherein the algebraic structure in the

codebooks is exploited for more efficient utilization of U1 ⊕2 U2−space.

6.2 An achievable rate region using nested coset codes

6.2.1 Nested linear codes for BDD-MAC

We present PZ-technique proposed for BDD-MAC. The encoding and decoding techniques are similar to that stated

in 6.1.3 except for one key difference. The bins of user 1 and 2’s codebooks are cosets of a common linear code. In

particular, let λI denote a linear code of rate roughly equal to 1 − hb(τ) that can quantize a uniform source, state

Snj in our case, within an average Hamming distortion of τ . Since user 2 has no message to transmit, it employs λI

as it’s only bin. Encoder 1 employs 2nR1 cosets of λI within a larger linear code, called λO, as it’s bins. Note that

rate of λO is roughly R1 + 1− hb(τ). Encoding rule is as described in section 6.1.3.

The codebook of user 2 when added to any bin of user 1’s code results in a coset of λI , and therefore contains

approximately at most 2n(1−hb(τ)) codewords. Moreover, since Un1 lies in λI , user 2’s codeword Un2 and the received

vector Y n = Un1 ⊕2 U
n
2 lie in the same coset.5 Since the channel is noiseless, user 1 may employ all cosets of λI and

therefore communicate at rate hb(τ) which is larger than 2hb(τ)− 1 for all τ ∈ (0, 1
2 ).

Let us identify key elements of PZ-technique. Each message pair corresponds to roughly 2n(1−hb(τ)) vectors in

U1 ⊕2 U2−space, resulting in a more efficient utilization of this space. This indeed is the difference in the sum

rate achievable using independent unstructured codes and PZ-technique. We also note the decoder does not attempt

to disambiguate the pair (Un1 , U
n
2 ) and restricts to decoding Un1 ⊕2 U

n
2 . This is motivated by the Markov chain

5This is also because the channel is noiseless.
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(U1, U2)− U1 ⊕2 U2 − Y induced by the test channel and the use of structured codebooks that contain the sum.

It is instructive to investigate the efficacy of this technique if users 1 and 2 employ distinct linear codes λI1, λI2

of rate 1 − hb(τ) instead of a common linear code λI . In this case, each message of user 1 can result in 22−2hb(τ)

received vectors which restricts user 1’s rate to 2hb(q)−1 and provides no improvement over the unstructured coding

technique. We conclude that if the bins of the MAC channel code are nontrivial, as in this case due to the presence

of a state, then it maybe beneficial to endow the bins with an algebraic structure that restricts the range of a bivariate

function, and enable the decoder decode this function of chosen codewords.

6.2.2 Stage I : An achievable rate region for MAC-DSTx using nested coset codes

In this section, we present the first stage of our coding scheme that uses joint typical encoding and decoding and

nested coset codes over an arbitrary MAC-DSTx. The technique proposed by Philosof and Zamir is specific to the

binary doubly dirty MAC - Hamming cost constraint that induces additive test channels between the auxiliary and

state random variables, and additive and symmetric nature of the channel. Moreover, linear codes only achieve

the symmetric capacity, and therefore if the output were obtained by passing (Xn
1 ⊕2 S

n
1 , X

n
2 ⊕2 S

n
2 ) through an

asymmetric MAC, linear codes though applicable, might not be optimal.

We begin with a characterization of test channels followed by achievability.

Definition 6.2.1 Let Df (τ ) ⊆ D(τ ) be the collection of distributions pV SXY on V2×S ×X ×Y where V is a finite

field. For pV XSY ∈ Df (τ ), let βf (pV XSY ) be defined as the set

{
(R1, R2) ∈ [0,∞)2 :R1+R2≤min {H(V1|S1), H(V2|S2)}−H(V1 ⊕ V2|Y )

}
. (6.1)

Let

βf (τ ) : = cocl

 ⋃
pV XSY ∈Df (τ )

βf (pV XSY )



Theorem 6.2.2 βf (τ ) ⊆ C(τ ).

Before we provide a proof, we state the coding technique and indicate achievability of promised rates. As stated in

section 6.2.1, the key aspect is to employ cosets of a common linear as a bin for quantizing the state. We employ

three nested coset codes -one each for the two encoders and the decoder- that share a common inner (sparser) code.

We begin by describing the encoding rule. The nested coset code provided to encoder j is described through a pair

of generator matrices gI ∈ Vk×n and gOj/I ∈ V lj×n where (i) gI and gTOj : =
[
gTI gTOj/I

]
are generator matrices of
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inner (sparser) and complete (denser) codes respectively, (ii)

k

n
> 1− min {H(V1|S1), H(V2|S2)}

log π
(6.2)

k + l1 + l2
n

< 1− H(V1 ⊕ V2|Y )

log π
. (6.3)

with π : = |V| and (iii) bias vector bnj . Let λI and λOj denote linear codes corresponding to generator matrices gI

and gOj respectively. User j’s message M
lj
j ∈ V lj indexes the coset (akgI ⊕M

lj
j gOj/I ⊕ bnj : ak ∈ Vk). Encoder

j observes state Snj and looks for a codeword in the coset indexed by the message that is jointly typical with the

state sequence Snj according to pSjVj . If it finds one such codeword, say V nj , a vector Xn
j is generated according∏n

t=1 pXj |SjVj (·|SjtVjt) and Xn
j is fed as input to the channel. Otherwise, it declares an error.

Now to the decoding rule. Let λO denote the complete code provided to the decoder, i.e., the coset code whose (i)

generator matrix is gTO : =
[
gTI gTO/I

]
, where gTO/I : =

[
gTO1/I gTO2/I

]
and (ii) bias vector bn1 ⊕ bn2 . Having received

Y n, it lists all codewords in λO that are jointly typical with Y n with respect to pV1⊕V2,Y . If all such codewords

belong to a unique coset (of λI in λO) say (akgI ⊕ml1
1 gO1/I ⊕ml2

2 gO2/I : ak ∈ Vk), it declares (ml1
1 ,m

l2
2 ) as the pair

of decoded messages. Otherwise, it declares an error.

We pick entries of each of the constituent generator matrices gI , gO1/I , gO2/I independently and uniformly from

V. Lower bound (7.1) enable us to drive down the probability of encoder not finding a jointly typical codeword

in the indexed coset. This bound can be interpreted easily. If we picked codewords according to
∏n
t=1 pV , then

we need the bin to be of rate roughly H(V1) − H(V1|S1). Since we average uniformly over the ensemble of coset

codes, each codeword of a linear code is uniformly distributed over Vn. Hence the bin must of rate at least log π −

H(V1|S1). The decoder makes an error with arbitrarily small probability if (6.3) is satisfied. This bound can also

be interpreted intuitively. If the codewords were picked according to pV1⊕V2 , the upper bound would have been

H(V1 ⊕ V2) − H(V1 ⊕ V2|Y ). In this case, the codewords in the sum of nested linear codes are also uniformly

distributed over Vn, and this explains the bound in (6.3). From (7.1), (6.3) it can be verified that R1 +R2 = l1+l2
n ≤

min {H(V1|S1), H(V2|S2)−H(V1 ⊕ V2|Y )} is achievable.

We emphasize that joint typical encoding and decoding enables us to decode the sum over an arbitrary MAC-

DSTx. The informed reader will recognize the need to prove statistical independence of a codeword in a competing

sum coset and the pair of cosets indexed by the messages. The dependence built across the codewords and cosets

as a consequence of the algebraic structure exemplifies the interplay of algebra and probability. The following proof

details these elements.

Proof: Let pmf pV XSY ∈ Df (τ ), rate pair R ∈ βf (pV XSY ) and η > 0. We prove existence of a MAC-DSTx code

(n,M , e, d) whose rate
log Mj

n ≥ Rj − η, average error probability ξ(e, d) ≤ η, and average cost τ(ej) ≤ τj + η for

j = 1, 2.

We begin with a description of the structure of the MAC-DSTx code whose existence we seek to prove. Let
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π : = |V| and we assume H(V1|S1) ≥ H(V2|S2) without loss of generality. Consider a pair of nested coset codes

(n, kj , lj , gIj , gOj/Ij , b
n
j ) : j = 1, 2 built over V, denoted λOj/λIj : j = 1, 2 with parameters

k1 : = dn
(

1− H(V1|S1)

log π
+
η1(η)

log π

)
e, (6.4)

k2 = k1 + k+, where k+ : = dn
(

1− H(V2|S2)

log π
+
η1(η)

log π

)
e − k1, (6.5)

l1 : = bn
(
R1

log π
− η2(η)

log π

)
c (6.6)

l2 : = bn
(

1 +
R2

log π
− H(V2|S2)

log π
− η3(η)

log π

)
c − k2, and, (6.7)

the first k1 rows of gI1 and gI2 are identical i.e., gI1,t = gI2,t for t ∈ [k1]. (6.8)

A few remarks on the structure of λOj/λIj : j = 1, 2 and the relationship between their parameters are in order. For

n ≥ N1(η) : = max
{

log π
η1(η) ,

log π
η2(η) ,

log π
η3(η)

}
, we have

n

log π
(log π −H(Vj |Sj) + η1(η)) ≤ kj ≤ n

log π
(log π −H(Vj |Sj) + 2η1(η)) (6.9)

n

log π
(R1 − 2η2(η)) ≤ l1 ≤ n

log π
(R1 − η2(η)) (6.10)

n

log π
(R2 + log π −H(V2|S2)− 2η3(η)) ≤ k2 + l2 ≤ n

log π
(R2 + log π −H(V2|S2)− η3(η)) (6.11)

Combining the lower bound in (6.11) and the upper bound for k2 in (6.9), we have

l2 log π

n
≥ R2 − 2η3(η)− 2η1(η) (6.12)

and similarly, combining the upper bound for k2 + l2 in (6.11) and the upper bound for l1 in (6.10), we have

k2 + l1 + l2 ≤ n

log π
(R1 +R2 + log π −H(V2|S2)− η3(η)− η2(η))

≤ n

log π
(log π −H(V1 ⊕ V2|Y )− η3(η)− η2(η)) , (6.13)

where (6.13) follows from R ∈ βf (pV XSY ).

We now specify encoding and decoding rules that map this pair λOj/λIj : j = 1, 2 of nested coset codes

into a MAC-DSTx code. User j is provided with the nested coset code λOj/λIj . User j’s message is used to

index one among πlj cosets of λOj/λIj . We assume that the set of messages Mj : = V lj , and M
lj
j ∈ V lj to

be the uniformly distributed random variable representing user j’s message. We let vnj (a
kj
j ,m

lj
j ) : = a

kj
j gIj ⊕

m
lj
j gOj/Ij ⊕ bnj denote a generic codeword in λOj/λIj and cj(m

lj
j ) : = (vnj (a

kj
j ,m

lj
j ) : a

kj
j ∈ Vkj ) denote the coset

corresponding to message m
lj
j . Encoder j observes the state sequence Snj and populates the list Lj(M

lj
j , S

n
j ) =
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{
vj(a

kj
j ,M

lj
j ) : (Snj , vj(a

kj
j ,M

lj
j )) ∈ Tη4(η)(Sj , Vj)

}
of codewords in the coset corresponding to the message that are

jointly typical with the state sequence. If Lj(M
lj
j , S

n
j ) is empty, it picks a codeword uniformly at random from coset

cj(M
lj
j ). Otherwise, it picks a codeword uniformly at random from Lj(M

lj
j , S

n
j ). Let Vj(A

kj
j ,M

lj
j ) denote the picked

codeword in either case. The encoder computes Xn
j (M

lj
j , S

n
j ) : = fnj (V nj (A

kj
j ,M

lj
j ), Snj ), where fj : Vj × Sj → Xj is

any map that satisfies pXj |VjSj (fj(vj , sj)|vj , sj) = 1 for all pairs (vj , sj) ∈ Vj × Sj . Xn
j (M

lj
j , S

n
j ) is fed as input to

the channel.

We now specify the decoding rule. The decoder is provided with nested coset code (n, k, l, gI , gO/I , b
n) de-

noted λO/λI where k = k2, l = l1 + l2, gI = gI2 , gTO/I : =
[
gTO1/I1

gTO2/I2

]
and bn : = bn1 ⊕ bn2 . With a

slight abuse of notation, we let ml : = (ml1
1 ,m

l2
2 ) ∈ V l : = V l1 × V l2 represent a pair of messages and analo-

gously random variable M l : = (M l1
1 ,M

l2
2 ) denote the pair of user messages. For ak ∈ Vk and ml ∈ V l, let

vn(ak,ml) : = akgI ⊕mlgO/I ⊕ bn and c(ml) : = (vn(ak,ml) : ak ∈ Vk) denote a generic codeword in λO/λI and the

coset corresponding to the message pair ml respectively. The decoder observes the received vector Y n and populates

D(Y n) : =
{
ml ∈ V l : ∃vn(ak,ml) such that (vn(ak,ml), Y n) ∈ Tη5(η)(V1 ⊕ V2, Y )

}
. If D(Y n) is a singleton, the

decoder declares the content of D(Y n) as the decoded message pair. Otherwise, it declares an error.

The above encoding and decoding rules map every pair λOj/λIj : j = 1, 2 of nested coset codes that satisfy

(6.4)-(6.8) into a corresponding MAC-DSTx code (n,M (n), e(n), d(n)) of rate
log M

(n)
j

n ≥ Rj − 2η1(η) − 2η2(η), thus

characterizing an ensemble, one for each n, of MAC-DSTx codes. We average the error probability over this ensemble

of MAC-DSTx codes by letting the bias vectors Bnj : j = 1, 2 and generator matrices GI2 , GOj/Ij : j = 1, 2 mutually

independent and uniformly distributed over their respective range spaces. Let ΛOj/ΛIj : j = 1, 2 and ΛO/ΛI denote

the random nested coset codes (n, kj , lj , GIj , GOj/Ij , B
n
j ) : j = 1, 2 and (n, k, l, GI , GO/I , B

n) respectively. For

a
kj
j ∈ Vkj , m

lj
j ∈ V lj , ak ∈ Vk, ml ∈ V l, let V nj (a

kj
j ,m

lj
j ) : = a

kj
j GIj ⊕ m

lj
j GOj/Ij ⊕ Bnj : j = 1, 2, V n(ak,ml) :

= akGI ⊕ mlGO/I ⊕ Bn denote corresponding random codewords in ΛOj/ΛIj : j = 1, 2 and ΛO/ΛI respectively.

Let Cj(m
lj
j ) : = (V nj (a

kj
j ,m

lj
j ) : a

kj
j ∈ Vkj ) and C(ml) : = (V n(ak,ml) : ak ∈ Vk) denote random cosets in

ΛOj/ΛIj : j = 1, 2 and ΛO/ΛI corresponding to message m
lj
j : j = 1, 2 and ml respectively.

Our next goal is to derive an upper bound on the probability of error. Towards this end, we begin with a

characterization of related events. Let

ε1j : = {Snj /∈ T η4(η)
2

(Sj)}, ε1 : =
{
Sn /∈ T η4(η)

2

(S)
}

ε2j : = {φj(Snj ,M
lj
j ) = 0}, where φj(s

n
j ,m

lj
j ) : =

∑
a
kj
j ∈V

kj

1{(
V nj (a

kj
j ,m

lj
j ),snj

)
∈Tη4(η)(Vj ,Sj)

}

ε4 : =
⋃

ak∈Vk

{
(V n(ak,M l), Y n) ∈ Tη5(η)(V1 ⊕ V2, Y )

}
ε5 : =

⋃
m̂l 6=M l

⋃
ak∈Vk

{(
V n(ak, m̂l), Y n

)
∈ Tη5(η)(pV1⊕V2,Y )

}
.
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Note that ε1 ∪ ε21 ∪ ε22 ∪ εc4 ∪ ε5 contains the error event and hence P (ε1) +P (εc11 ∩ ε21) +P (εc12 ∩ ε22) +P ((ε1 ∪ ε21 ∪

ε22)c ∩ εc4) + P (ε5) is an upper bound on the probability of error. In the sequel, we provide an upper bound on each

of the above terms.

Lemma 2.3.1 guarantees the existence of N2(η) ∈ N such that P (ε1) ≤ η
8 for all n ≥ N1(η). Lemma A.0.2(3) in

appendix A implies the existence of N3(η) ∈ N such that for all n ≥ N3(η)

P (εc1j ∩ ε2j) ≤ exp

{
−n log π

(
kj
n
−
(

1− H(Vj |Sj)
log π

+
3η4(η)

2 log π

))}
.

Substituting the lower bound in (6.9) for
kj
n , we obtain

P (εc1j ∩ ε2j) ≤ exp

{
−n
(
η1(η)− 3η4(η)

2

)}
. (6.14)

for all n ≥ max {N1(η), N3(η)}. We now derive an upper bound on P ((ε1 ∪ ε21 ∪ ε22)c ∩ εc4). The encoding rule

ensures (ε1 ∪ ε21 ∪ ε22)c ⊆ (ε1 ∪ ε2)c, where

ε2 =

2⋃
j=1

{(
Snj , V

n
j (A

kj
j ,M

lj
j )
)
/∈ Tη4(η)(Sj , Vj)

}
,

and V nj (A
kj
j ,M

lj
j ) denotes codeword in Lj(M

lj
j , S

n
j ) chosen by encoder j. Our first step is to provide an upper bound

on P ((ε1 ∪ ε2)c ∩ ε3) for sufficiently large n, where

ε3 =
{(
Snj , V

n
j (A

kj
j ,M

lj
j ) : j = 1, 2

)
/∈ T η5(η)

2

(S1, V1, S2, V2)
}
.

In the second step, we employ the result of conditional frequency typicality to provide an upper bound on P ((ε1 ∪

ε2 ∪ ε3)c ∩ εc4).

As an astute reader might have guessed, the proof of first step will employ the Markov chain V1 − S1 − S2 − V2.

The proof is non-trivial because of statistical dependence of the codebooks. We begin with the definition

Θ(sn) : =
{
vn ∈ Vn : (snj , v

n
j ) ∈ Tη4(η)(Sj , Vj) : j = 1, 2, (sn,vn) /∈ T η5(η)

2

(S,V )
}
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for any sn ∈ Sn. Observe that,

P ((ε1 ∪ ε2)c ∩ ε3) =
∑

sn∈T η4(η)
2

(S)

∑
vn∈Θ(sn)

P (Sn = sn, V nj (A
kj
j ,M

lj
j ) = vnj : j = 1, 2)

=
∑

sn∈T η4(η)
2

(S)

∑
vn∈Θ(sn)

P

 ⋃
a
k1
1 ∈V

k1
1

⋃
a
k2
2 ∈V

k2
2

{
Sn = sn,

V nj (A
kj
j ,M

lj
j )=vnj :j=1,2,

V nj (a
kj
j ,M

lj
j )=vnj :j=1,2

}
≤

∑
sn∈T η4(η)

2

(S)

∑
vn∈Θ(sn)

∑
a
k1
1 ∈V

k1
1

∑
a
k2
2 ∈V

k2
2

P

({
Sn = sn,

V n1 (a
k1
1 ,M

l1
1 )=vn1 ,

V n2 (a
k2
2 ,M

l2
2 )=vn2

})

=
∑

sn∈T η4(η)
2

(S)

∑
vn∈Θ(sn)

∑
a
k1
1 ∈V

k1
1

∑
a
k2
2 ∈V

k2
2

P (Sn = sn)P

(
V n1 (a

k1
1 ,M

l1
1 )=vn1 ,

V n2 (a
k2
2 ,M

l2
2 )=vn2

)
(6.15)

=
∑

sn∈T η4(η)
2

(S)

∑
vn∈Θ(sn)

P (Sn = sn)
1

πn−k1

1

πn−k2
(6.16)

where V nj (A
kj
j ,M

lj
j ) is defined as the random codeword chosen by the encoder, (6.15) follows from independence of

random variables (M l, GI , GO/I , B
n
1 , B

n
2 ) that characterize V nj (a

kj
j ,M

lj
j ) and Sn. We now employ the upper bound

on kj in (6.9) to substitute for 1

πn−kj
. For n ≥ N1(η), we have kj ≤ n− H(Vj |Sj)

log π + 2η1(η)
log π and hence

1

πn−kj
≤ exp {−n (H(Vj |Sj)− 2η1(η))} . (6.17)

Furthermore, by Lemma 2.2.3, for every sn ∈ T η4(η)
2

(S) and vn ∈ Θ(sn),

exp {−n (H(Vj |Sj)− 2η4(η))} ≤ pV nj |Snj (vnj |snj ) = pV nj |Sn(vnj |sn) = pV nj |SnV nj (vnj |sn, vnj ), (6.18)

where the last equalities is a consequence of Markov chain V1−S1−S2−V2. Substituting the upper bounds in (6.17)

and (6.18) for 1

πn−kj
in (6.16), we obtain

P ((ε1 ∪ ε2)c ∩ ε3) ≤ exp {n(4η1(η) + 4η4(η))} ·
∑

sn∈T η4(η)
2

(S)

∑
vn∈Θ(sn)

pSnV n(sn,vn)

≤ exp {n(4η1(η) + 4η4(η))} ·
∑

(sn,vn)/∈Tη5(η)(S,V )

pSnV n(sn,vn) (6.19)

for all n ≥ N1(η). We now employ the exponential upper bound provided in Lemma 2.3.1. In particular, Lemma
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2.3.1 guarantees the existence of N4(η) ∈ N such that for every n ≥ N4(η),

∑
(sn,vn)∈

Tη5(η)(S,V )

pSnV n(sn,vn) ≤ exp
{
−nλη2

5(η)
}

, where λ : =
min(s,v)∈S×V

{
p2
SV (s,v) : pSV (s,v) > 0

}
(log |S||V|)2 . (6.20)

Substituting (6.20) in (6.19), we conclude

P ((ε1 ∪ ε2)c ∩ ε3) ≤ exp
{
−n
(
λη2

5(η)− 4η1(η)− 4η4(η)
)}

(6.21)

for every n ≥ max {N1(η), N4(η)}. This gets us to the second step. We begin with two observations. Firstly, note that

V (ak1
1 0k+ ⊕ ak2

2 ,m
l1
1 m

l2
2 ) = V1(ak1

1 ,m
l1
1 ) ⊕ V2(ak2

2 ,m
l2
2 ). This follows from the definition of the codewords involved.

Secondly,

P

(
V (A

k1
1 0k+⊕Ak2

2 ,M
l1
1 M

l2
2 )=vn,

Xnj (M
lj
j ,S

n
j )=xnj :j=1,2,Y n=yn

∣∣∣∣V nj (A
kj
j ,M

lj
j )=vnj ,

:j=1,2,Sn=sn

)
= P

(
V1(A

k1
1 ,M

l1
1 )⊕V2(A

k2
2 ,M

l2
2 )=vn,

Xnj (M
lj
j ,S

n
j )=xnj :j=1,2,Y n=yn

∣∣∣∣V nj (A
kj
j ,M

lj
j )=vnj ,

:j=1,2,Sn=sn

)

=

n∏
t=1

pV1⊕V2|V1V2
(vt|v1t, v2t)

 2∏
j=1

pXj |VjSj (xjt|vjt, sjt)

WY |XS(yt|xt, st)

 (6.22)

=

n∏
t=1

P (V1 ⊕ V2 = vt,X = xt, Yt = yt|St = st,V t = vt), (6.23)

where we have employed 1) encoding rule and Markov chains U− (X,S)−Y in arriving at (6.22) and 2) the identity

pXj |SUXj = pXj |SU = pXj |SjUj for any distinct elements j, j ∈ {1, 2} in arriving at (6.23). Since

P ((ε1 ∪ ε2 ∪ ε3)c ∩ εc4) ≤ P
(

(ε1 ∪ ε2 ∪ ε3)c ∩
{

(V (
A
k1
1 0k+

⊕Ak2
2

,M l1
1 M

l2
2 ), Y n) /∈ Tη5(η)(V1 ⊕ V2, Y )

})
≤ P

(
(Snj , V

n
j (A

kj
j ,M

lj
j ) : j = 1, 2) ∈ T η5(η)

2

(S,V ), (V (
A
k1
1 0k+

⊕Ak2
2

,M l1
1 M

l2
2 ), Y n) /∈ Tη5(η)(V1 ⊕ V2, Y )

)
,

and the above two observations imply that (V (Ak1
1 0k+⊕Ak2

2 ,M
l1
1 M

l2
2 ),Xn, Y n) is distributed according to

∏n
t=1 P (V1⊕

V2 = vt,X = xt, Yt = yt|St = st,V t = vt). Lemma 2.4.1 guarantees the existence of N5(η) ∈ N, such that for all

n ≥ N5(η), the term on the right hand side of (6.24) is bounded from above by η
8 . Therefore, for all n ≥ N5(η)

P ((ε1 ∪ ε2 ∪ ε3)c ∩ εc4) ≤ η

8
. (6.24)

It remains to provide an upper bound on P ((ε1 ∪ ε21 ∪ ε22 ∪ εc4)c ∩ ε5). In appendix M, we prove the existence

of N6(η) ∈ N such that P (ε5) ≤ exp {−n (3η5(η)− η2(η)− η3(η))} for all n ≥ max {N1(η), N6(η)}. The informed

reader will recognize that deriving an upper bound on P (ε5) will involve proving statistical independence of the

pair (Cj(M
lj
j ) : j = 1, 2) of cosets corresponding to the legitimate message pair M l

j and any codeword V n(âk, m̂l)
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corresponding to a competing message pair m̂l 6= M l. This is considerably simple for a coding technique based

on classical unstructured codes wherein codebooks and codewords in every codebook are independent. The coding

technique proposed herein involves correlated codebooks - the first k1 rows of GIj : j = 1, 2 are identical6 - and

codewords in each codebook are correlated.

To conclude, we put together the upper bounds derived on the probability of events that comprise the error

event. For n ≥ N2(η), P (ε1) ≤ η
8 . In (6.14), we proved P (εc1j ∩ ε2j) ≤ exp

{
−n
(
η1(η)− 3η4(η)

2

)}
for all n ≥ N3(η).

Combining (6.21) and (6.24), we have

P ((ε1 ∪ ε2)c ∩ εc4) ≤ exp
{
−n
(
λη2

5(η)− 4η1(η)− 4η4(η)
)}

+
η

8

for all n ≥ max {N1(η), N4(η), N5(η)}. And finally P (ε5) ≤ exp {−n (η2(η) + η3(η)− 3η5(η))} for all n ≥ max{N1(η),

N6(η)} follows from (M.10). By choosing

η2(η) = η3(η) =
η

16
, η5(η) =

η

48
, η1(η) = min

{
η

16
,
λη2

5(η)

10

}
and η4(η) =

η1(η)

4
(6.25)

it can be verified that for n ≥ N(η) : = max {Ni(η) : i ∈ [6]},

• 2η1(η) + 2η3(η) < η
2 and thus l2 log π

n ≥ R2 − η
2 from (6.12),

• η2(η) < η
2 and thus l1 log π

n > R1 − η
2 from (6.10),

• η1(η)− 3η4(η)
2 = 5η1(η)

8 and thus P (εc1j ∩ ε2j) ≤ exp
{
−n
(

5η1(η)
8

)}
,

• λη2
5(η)− 4η1(η)− 4η4(η) ≥ λη2

5(η)
2 and thus P ((ε1 ∪ ε2)c ∩ εc4) ≤ exp

{
−n
(
λη2

5(η)
2

)}
+ η

8 , and

• η2(η) + η3(η)− 3η5(η) = η
16 and therefore P (ε5) ≤ exp

{
−n
(
η
16

)}
.

For n ≥ N(η), P (ε1) + P (εc11 ∩ ε21) + P (εc12 ∩ ε22) + P ((ε1 ∪ ε21 ∪ ε22)c ∩ εc4) + P (ε5) ≤ η
4 + 3 exp

{
−n( 5η1

8 )
}

. Thus

for n ≥ N(η) : = max
{
N(η), 1

η1(η) logd 4
η e
}

, the error event has probability at most η.

We conclude this section with two remarks.

Remark 6.2.3 For BDD-MAC described in section 6.2.2, βf (τ ) = C(τ ). Indeed, the test channel pV SXY ∈ Df (τ )

defined as pV SX =
∏2
j=1 pVjSjXj where Vj takes values over Vj = {0, 1} with

pVj ,Xj |Sj (xj ⊕2 sj , xj |sj) =

 1− τ if xj = 0

τ otherwise

for each j = 1, 2 and sj ∈ {0, 1} achieves C(τ ) = {(R1, R2) : R1 +R2 ≤ hb(τ)}.

6If H(V1|S1) = H(V2|S2), users 1 and 2 share the same generator matrix GI . Indeed, channel codes of users’ 1 and 2 are partitioned
into cosets of the same linear code.
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We have thus presented a coding technique based on decoding the sum of codewords chosen by the encoders

and analyzed the same to derive an achievable rate region for an arbitrary MAC-DSTx. One might attempt a

generalization of PZ-technique along the lines of modulo lattice transformation proposed by Haim, Kochman and

Erez [70]. The rate region proposed herein subsumes that achievable using modulo-lattice transformation using test

channels identified through the virtual channel in a natural way.

6.2.3 Examples

A key element of the coding framework proposed herein lies in characterizing achievable rate regions for arbitrary

test channels, i.e., test channels that are not restricted to be uniform or additive in nature using structured codes.

Our first example (example 6.2.4) illustrates that such test channels indeed optimize the achievable rate region for

certain MAC-DSTx. Through a simple modification of BDD-MAC, we illustrate the same.

In several practical scenarios, the channel7 is not perfectly additive but nearly so. We therefore randomly perturb

BDD-MAC and study the efficacy of linear codes for such a channel in example 6.2.5. We do not expect the resulting

test channel to be either additive or uniform. Yet, our results indicate that by employing nested coset codes and

exploiting the algebraic structure yields larger achievable rate regions. In [47], we have presented results for a few

more channels that have been obtained by a random perturbation of the BDD-MAC.

A few remarks on our study of the following examples are in order. The examples needing to be non-additive lends

it considerably hard to provide analytical upper bounds for the rate region achievable using unstructured codes.8 We

therefore resort to computation. It can be noted that the problem of computing the sum rate bound achievable using

unstructured codes is a non-convex optimization problem. The only approach is direct enumeration, i.e., sampling the

probability matrix of the auxiliary random variables.9 Sampling the probability matrix with any reasonable step size

beyond the auxiliary alphabets of size 2 is infeasible with currently available computation resources. The sum rate

bound for the unstructured coding technique projected below is therefore obtained through computation involving

binary auxiliary alphabet sets followed by convexification (timesharing between different cost). The resulting space

of probability distributions that respect the cost constraints was sampled with a step size of 0.015 in each dimension.

The resulting bound on the sum rate achievable using unstructured codes (without time sharing) is marked with blue

crosses (denoted α in the legend) in the plots. The resulting upper bound is obtained as an upper convex envelope.

Similarly, sum rate achievable using nested coset codes is marked with red circles (denoted β in the legend) in the

plots.

For examples 6.2.4 and 6.2.5, we assume the alphabet sets to be binary Sj = Xj = {0, 1}, j = 1, 2, (ii) uniform

and independent states, i.e., WS(s) = 1
4 for all s ∈ S, (iii) a Hamming cost function κj(1, sj) = 1 and κj(0, sj) = 0

7Usually the channel is tracked through pilot or training waveforms and the presence feedback link.
8We recognize that the analytical upper bound derived in [15] is a key element of the findings therein.
9This holds even for the case of multiple access without states for which a computable characterization of the capacity region is known.
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Figure 6.2: Bounds on sum rate for example 6.2.4

for any sj ∈ Sj , j = 1, 2. We compute the sum rate achievable using unstructured codes and sum rate achievable

using nested coset codes. These are plotted in figures 6.2 and 6.3.

Example 6.2.4 Let Y = (X1 ∨ S1) ⊕ (X2 ∨ S2), where ∨ denotes logical OR operator. Having studied the BDD-

MAC it is natural to conjecture that the test channel that optimizes the sum rate achievable using linear codes to be

pUjXj |Sj (0, 0|0) = 1 − 2τ, pUjXj |Sj (1, 1|0) = 2τ, pUjXj |Sj (1, 0|1) = 1, for j = 1, 2 when the cost constraint τ ∈ [0, 1
4 ].

Indeed, our numerical computation asserts this. In other words, the sum rate achievable using linear codes for a cost

τ ∈ (0, 1
4 ) is hb(2τ)

2 and 0.5 for τ ∈ [0.25, 0.5]. We highlight significant gains achievable using nested coset codes.

A preliminary look at this channel may lead the reader to conclude that PZ-technique appropriately modified can

achieve the same sum rate as that achievable using nested coset codes, since the above test channel is additive, i.e.,

Uj = Sj ⊕ Xj for j = 1, 2 and Y = U1 ⊕ U2. However, a careful analysis will reveal the significance of the coding

framework proposed herein. The induced pmf on Uj, pUj (1) = 1
2 + 2τ for τ ∈ (0, 1

4 ) is not uniform, and the PZ-

technique of choosing a codeword in the indexed bin with an average Hamming distance of τ does not yield the sum

rate guaranteed by nested coset codes. Nesting of codes enables achieving non-uniform distributions that are necessary

as exemplified herein.

Example 6.2.5 The channel transition matrix is given in table 6.1. 1) An upper bound on sum rate achievable using

unstructured codes and 2) sum rate achievable using structured are plotted in figure 6.3. This channel is obtained

by randomly perturbing the BDD-MAC. In the space of channel transition probability matrices, this channel is in a

neighborhood of the BDD-MAC. Since the rate regions are continuous functions over this space of channels, the coding

technique proposed herein outperforms unstructured coding technique in this neighborhood. This example validates

the same. As in the previous example, we note that the optimizing distribution of the auxiliary random variables is

non-uniform for certain cost values. Furthermore, note that βf (τ ) does not contain α(τ ) and therefore it helps to

incorporate both unstructured and structured coding techniques as will be studied in the following section.
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Figure 6.3: Bounds on sum rate for example 6.2.5

S2X2S1X1 WY |SX (0|·) S2X2S1X1 WY |SX (0|·) S2X2S1X1 WY |SX (0|·) S2X2S1X1 WY |SX (0|·)

0000 0.92 1000 0.07 0100 0.10 1100 0.88

0001 0.08 1001 0.92 0101 0.92 1101 0.08

0010 0.06 1010 0.96 0110 0.95 1110 0.11

0011 0.94 1011 0.10 0111 0.06 1111 0.91

Table 6.1: Channel transition matrix Example 6.2.5

112



U1S1X1 pU1S1X1
U1S1X1 pU1S1X1

U2S2X2 pU2S2X2
U2S2X2 pU2S2X2

000 0.1472 101 0.3528 000 0.1472 101 0.3528

011 0.50 011 0.50

Table 6.2: Test channel for example 6.2.6 for which nested coset code over F3 performs better than unstructured

code

Example 6.2.6 Consider the channel Y = (S1 ⊕ X1) ∨ (S2 ⊕ X2). Observe that the information available at the

encoders is fused through a logical OR operation by the channel. Moreover, U1, U2 −U1 ⊕3 U2 −U1 ∨U2 is a Markov

chain and hence, although channel input, state and output alphabets are binary, we expect that for certain choice of

auxiliary distributions, the sum rate achievable using codes over F3 is larger than that achievable using unstructured

codes. Through an exhaustive search, we have identified such distributions, an example of which is given in table 6.2.

For the above distribution, the rate achievable using nested coset codes over F3 is 0.0017, while that achievable

using unstructured code is negative. For an appropriate choice of cost function, the above might be the optimizing

distribution for the unstructured coding scheme thus resulting in larger sum rate using nested coset codes over F3.

We do not as of yet have a precise analytical characterization of such a cost function10 and we are in pursuit of the

same. Nevertheless, the above lends credence to the use of nested coset codes for arbitrary channels.

6.3 Stage II: Combining unstructured and structured coding techniques

In this section, we put together the techniques of unstructured and structured random coding to derive a larger

achievable rate region for a general MAC-DSTx. Our approach is similar to that proposed by Ahlswede and Han

[48, Section VI] for the problem of reconstructing mod−2 sum of distributed binary sources. We begin with a

characterization of valid test channels.

Definition 6.3.1 Let Dsf (τ ) ⊆ D(τ ) be the collection of distributions pUV SXY on (U × V)2 × S × X × Y where U

is a finite set and V is a finite field. For pUV SXY ∈ Dsf (τ ), let R(pUV XSY ) be defined as



(R1, R2) : 0 ≤ R1 ≤ I(U1;U2Y )− I(U1;S1) + min
{
H(V1|U1,S1),
H(V2|U2,S2)

}
−H(V1 ⊕ V2|U1, U2, Y )

0 ≤ R2 ≤ I(U2;U1Y )− I(U2;S2) + min
{
H(V1|U1,S1),
H(V2|U2,S2)

}
−H(V1 ⊕ V2|U1, U2, Y )

R1 +R2 ≤ I(U1U2;Y ) + I(U1;U2)−
∑2
j=1 I(Uj ;Sj) + min

{
H(V1|U1,S1),
H(V2|U2,S2)

}
−H(V1 ⊕ V2|U1, U2, Y )


,

10Such a characterization of cost function is available for point-to-point channels with state available at both encoder and decoder [2],
[71], [72].
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where ⊕ is addition in V. Let

R(τ ) : = cocl

 ⋃
pUV XSY ∈Dsf (τ )

R(pUV XSY )

 (6.26)

Theorem 6.3.2 R(τ ) ⊆ C(τ ).

Remark 6.3.3 α(τ ) ⊆ R(τ ) and moreover R(τ ) is the largest known achievable rate region for the general MAC-

DSTx.

Before we provide an outline of the proof, we briefly state the coding technique. Each user builds an unstructured

code over U and a nested coset code over V. The nested linear codes share a common inner (sparser) code. The

unstructured code is partitioned into bins (Gel’fand-Pinsker binning). Each user’s message is split into two parts - one

indexing a bin in the unstructured code and one indexing a coset in the nested linear code. Encoder j picks a pair of

codewords, say (Unj , V
n
j ) jointly typical with the observed state sequence from the indexed pair of bins and transmits

an input vector generated according to pXj |VjUjSj . Having received Y n, decoder looks for all triples (Un1 , U
n
2 , V

n
1 ⊕V n2 )

of codewords in the corresponding codebooks that is jointly typical with Y n according to pU,V1⊕V2,Y and declares

the quadruple of bin indices as the decoded message. Achievability is proved by providing an upper bound on the

probability of error by averaging over the ensemble of codes. We now provide an outline of the proof.

Proof: Achievability of R(τ ) is proved by gluing together unstructured and structured coding techniques. Each

encoder splits it’s message Mj into two parts Mj,1 and M
lj
j . Mj,1 is communicated to the decoder using an unstruc-

tured random code built over Un. M
lj
j is communicated to the decoder using a nested coset code identical to that

proposed in proof of theorem 6.2.2. With regard to nested coset codes, we employ the notation proposed in the proof

of theorem 6.2.2 and do not restate the same.

Encoder j is provided a codebook built over Un that contains 2nR̄j bins each with 2nBj codewords. For 1 ≤

bj ≤ 2nBj , let uj(rj , bj) denote a generic codeword in bin rj (1 ≤ rj ≤ 2nR̄j ). Encoder j is also provided with the

nested coset code λOj/I . Without loss of generality, we assume M
lj
j ∈ V lj . Encoder j observes state sequence Snj and

declares error if Snj /∈ T δ
8
(WSj ). Otherwise it looks for a pair (unj (Mj,1, bj), v

n(ak,M
lj
j )) ∈ T δ

4
(pUjVj |Snj |S

n
j ). If it finds

at least one such pair, one of them say, (unj (Mj,1, bj), v
n(ak,M

lj
j )) is chosen uniformly at random and enj (Mj , S

n
j ) is

transmitted, where enj (Mj , S
n
j ) is a function of unj (Mj,1, bj), v

n(ak,M
lj
j ), Snj that is determined upfront. Otherwise,

an error is declared.

We now specify the decoding rule. The decoder receives Y n and declares error if Y n /∈ T δ
2
(pY ). Otherwise,

decoding is performed in two stages. In the first stage it lists all codewords (unj (mj,1, bj) : j = 1, 2) ∈ Tnδ (pU1,U2|Y |yn).

If it finds exactly one such pair, say (unj (mj,1, bj) : j = 1, 2), then the decoding proceeds to the next stage. Otherwise,

an error is declared and decoding halts. In the second stage, the decoder looks for all codewords vn(ak,ml) ∈ λO
such that (unj (mj,1, bj) : j = 1, 2, vn(ak,ml), Y n) ∈ Tnδ (pU,V1⊕V2,Y ). If it finds all such codewords in a unique bin,

say corresponding to ml, then it declares mj,1,m
lj
j : j = 1, 2 as the decoded pair of messages. Otherwise, an error
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is declared. We derive an upper bound on probability of error by averaging the error probability over the ensemble

codes. A pmf is induced over the ensemble of codes by letting Unj (rj , bj) : 1 ≤ r
j≤2nR̄j

, 1 ≤ bj ≤ 2nBj , j = 1, 2

be mutually independent and distributed according to
∏n
t=1 pUj . The pmf induced on the ensemble of nested coset

codes is identical to that in proof of theorem 6.2.2. Moreover, (GI , GOj/I , B
n
j : j = 1, 2) is independent of the

unstructured random code on Un. Analyzing the error events, we obtain the following sufficient conditions for the

average probability of error to decay exponentially.

B1 ≥ I(U1;S1) B2 ≥ I(U2;S2)

R̄1 +B1 ≤ I(U1;U2Y ) R̄2 +B2 ≤ I(U2;U1Y )

k

n
≥ 1−H(V1|U1S1) k

n ≥ 1−H(V2|U2S2)

2∑
j=1

R̄j +Bj ≤ I(U;Y ) + I(U1;U2) l1+l2
n ≤ 1−H(V1 + V2|UY ).

For each j = 1, 2, substituting Rj − lj
n for R̄j in the above bounds and eliminating Bj ,

k
n ,

lj
n : j = 1, 2 using the

technique of Fourier-Motzkin [26, Appendix D], R(τ ) is proved achievable.

Remark 6.3.4 The above rate region is obtained by analyzing sequential typicality encoding and decoding, i.e.,

encoding and decoding of unstructured codes precedes that of structured codes. The informed reader will recognize that

performing joint typicality encoding and decoding of unstructured and structured codes might enlarge the achievable

rate region. While this might be true, Fourier-Motzkin elimination of the resulting bounds does not yield a compact

description of the resulting achievable rate region. We therefore chose to present the above rate region.

We conclude with an illustrative example.

Example 6.3.5 For j = 1, 2, let Sj = Xj = Y = {0, 1}. The channel transition is described as WY |XS(y|x, s) =

W ∗Y |g(X,S)(y|g(x, s)), where g(x, s) = [(s2 ∧ x̄2) ∧ (s̄1 ∨ x1)] ∨ [(s1 ∧ x̄1) ∧ (s̄2 ∨ x2)] and W ∗Y |g(X,S)(1|0) = 0.02,

W ∗Y |g(X,S)(0|1) = 0.04. The function g(·, ·) can be alternatively described as g(X,S) = [S1 ∧ (S1⊕X1)]⊕ [S2 ∧ (S2⊕

X2)].

This channel is inspired by Blackwell’s broadcast channel and in particular the coding technique proposed by

Gel’fand [8].11 The bounds on the sum rate achievable with unstructured and nested coset codes are plotted in figure

6.4. The above plots unequivocally indicate R(τ ) to be strictly larger than α(τ ) ∪ βf (τ ) and in particular either one

of α(τ ), βf (τ ). It is therefore desirable to compute R(τ ), however the presence of two additional auxiliary random

variables lends computation infeasible with current computational resources. We remark that the structure of this

example enables us to argue the strict containment α(τ )∪ βf (τ ) ( R(τ ) in spite of not being able to compute R(τ ).

11Analogous to the defect masking the written bits, here the states mask the corresponding channel.
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Figure 6.4: Bounds on sum rate for example 6.3.5

6.4 Stage III: Achievable rate region using codes over Abelian groups

Consider a quaternary doubly dirty MAC-DSTx (QDD-MAC), with Sj = Xj = Y = {0, 1, 2, 3}, j = 1, 2. The state

sequences are independent and uniformly distributed, i.e., WS(s) = 1
16 for all s ∈ S. The channel transition is

described by the relation Y = X1 +� S1 +� X2 +� S2, where +� denotes addition mod−4. All nonzero symbols have

equal cost, i.e., κj(x, sj) = 1 for all x ∈ {1, 2, 3} and κj(0, sj) = 0 for all sj ∈ Sj , j = 1, 2 and the input is subject to

a symmetric cost constraint τ = (τ, τ).

What would be the achievable rate region for QDD-MAC using unstructured codes? It is natural to guess the

optimizing test channel to be

pXjUj |Sj (xj , xj +� sj |sj) =

1− τ for xj = 0

τ
3 otherwise.

(6.27)

In appendix D of [47], with the aid of numerical computation, we argue that this is indeed the case. The sum rate

achievable using unstructured codes can be evaluated to be the upper convex envelope of the function α : [0, 3
4 ] →

[0,∞) defined as α(τ) = max
{
−2τ log( τ3 )− 2(1− τ) log(1− τ))− 2, 0

}
. Since 4 is a prime power, there exists a

unique field F4 of cardinality 4. Do nested coset codes built over F4 achieve a larger sum rate?

We are unable to characterize the sum rate achievable using nested coset codes and the dimensionality of the

space of probability distributions lends computation infeasible. We conjecture that the above test channel optimizes

the sum rate achievable using nested coset codes. In any case, computing the sum rate achievable using nested

coset codes for the above test channel is instructive. It can be verified that the sum rate achievable using the above

test channel with nested coset codes is the upper convex envelope of the function βf : [0, 3
4 ] → [0,∞) defined as

βf (τ) = max
{
−τ log( τ3 )− (1− τ) log(1− τ))− 1

2 , 0
}

.

The sum rate achievable for the above test channel using unstructured and nested coset codes are plotted in figure

6.5. It is no surprise that nested coset codes perform poorly. The channel operation is not the field addition ⊕4 in
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Figure 6.5: Sum rate achievable using unstructured, nested coset and Abelian group codes for test channel (6.27)

F4. Instead, +� is the group addition12 in the Abelian group Z4. This suggests that we build codes over Abelian

groups that are closed under group addition and decode the group sum +� of codewords.

Linear codes are kernels of field homomorphisms. This lends them the property of closure under field addition.

We build Abelian group codes that are kernels of group homomorphisms. Abelian group codes are closed under group

addition. As was proposed with nested coset codes, we employ bins of each user’s code to be cosets of a common

Abelian group code. The encoder chooses a codeword from the bin indexed by the message and the decoder attempts

to localize the group sum of chosen codewords. The bins of each users’ codebook is chosen such that the decoder can

decode the pair of messages by identifying the group sum of transmitted codewords.

In the interest of brevity, we only describe the results and omit proofs. Recall that any Abelian group U can be

decomposed as sum of Zpr−cyclic groups, i.e.,

U =

I⊕
i=1

Zprii , (6.28)

where pi is a prime and ri is a positive integer for each i = 1, · · · , I. We therefore state our findings in two stages.

The first stage, described in section 6.4.1 describes the coding technique and achievable rate region for a Zpr− group.

This is extended to an arbitrary Abelian group in section 6.4.2

6.4.1 Achievable rate region for MAC-DSTx using group codes : The Zpr-case

In the discussion following proof of theorem 3.5.1, we noted that if the auxiliary alphabet U is a field and the bins are

constrained to be closed under field addition then with respect to a test channel pU |S , the bins need to be of rate at

least log |U|−H(U |S). This enlargement of the bins was compensated by the ability to pack more bins. In particular,

the rate of the composite code could be as large as log |U| −H(U |Y ) with respect to the induced distribution pU |Y ,

and this enabled us to achieve the capacity of PTP-STx.

12We refer to group operation of an Abelian group as group addition.

117



If the auxiliary alphabet U = Zpr is an Abelian group of order pr, and the bins are restricted to be closed under

group addition, then with respect to a test channel pU |S , using the results of [73], the bins have to be of rate at least

I
U
s.c(U ;S) =

r
max
θ=1

[
r log p− r

θ
H([U ]θ|S)

]
=

r
max
θ=1

r

θ
I([U ]θ;S), (6.29)

where Hθ is the sub-group pθZpr and [U ]θ : = U +� Hθ is the random variable taking values from cosets of subgroup

Hθ of U , denoted Hθ � U . We note that I
U
s.c(U ;S) ≥ log q − H(U |S) ≥ I(U ;S). The natural question to ask is

whether we can pack sufficient number of bins to achieve capacity of PTP-STx. It turns out that if we constrain the

composite code, i.e., the union of bins, to be a coset of a group code, then the rate of this union can be at most

I
U
c.c(U ;Y ) =

r−1
min
θ=0

[
r log p− r

r − θ
H(U |Y [U ]θ)

]
=

r−1
min
θ=0

r

r − θ
I(U ;Y |[U ]θ).

with respect to the induced distribution pU |Y . Since log |U| −H(U |Y ) corresponds to θ = 0 in the above expression,

I
U
c.c(U ;Y ) is in general smaller than log |U|−H(U |Y ). Therefore, I

U
c.c(U ;Y )− IUs.c(U ;S) is in general strictly smaller

than the capacity of PTP-STx, implying the constraint of closure under group addition results in a rate penalty.

This indicates that the use of group codes will in general result in rate penalties for multi-terminal communication

problems.13

With the objective of increasing I
U
c.c(U ;Y ) and therefore minimizing the rate penalty, we take a closer look at the

coding technique proposed in section 6.2.2. While we exploited the property of bins being closed under field addition,

we did not need the union of bins to be a coset. We therefore relax this and only require the bins to have an algebraic

structure, i.e., a coset of a group code, but the composite code of each user is not required to be a coset of a group

code. In other words, we employ union coset codes (UCC) (section 3.4.3) built over groups. While this relaxation

does not yield gains in achievable rate for the field case, we do obtain larger achievable rates while coding over groups.

In particular, the rate of the composite code, or the union of bins can be as large as log |U| − H(U |Y ) which is in

general larger than I
U
c.c(U ;Y ). Therefore, if we were to communicate over a PTP-STx (S,WS ,X , κ,Y,WY |XS) using

codes over an Abelian Zpr−group U = Zpr and we constrained the bins to be closed under group addition, then the

test channel pUSXY ∈ D(τ) yields an achievable rate log |U| −H(U |Y )− (I
U
s.c(U ;S)) = H

U
s.c(U |S)−H(U |Y ), where

H
U
s.c(U |S) = log |U| − IUs.c(U ;S), (6.30)

is defined as source coding group entropy of group U = Zpr and H
U
s.c(U) = H

U
s.c(U |0).

The diligent reader will now be able to characterize an achievable rate region for a MAC-DSTx based on UCC

built over groups (group UCC). As mentioned earlier, the encoding and decoding techniques are identical to that

13The interested reader is referred to [74], [75], [30] for early work on rates achievable using group codes for point-to-point channels.
[76] provides bounds on rates achievable using Abelian group codes for point-to-point source and channel coding problems.
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proposed in section 6.2.2 except for group addition replacing field addition. Consider a distribution pUSXY ∈ D(τ)

defined over U2 × S ×X × Y where U is an Abelian group of order pr. Cosets of a common group code is employed

as bins of each user’s code. Following an analysis similar to that performed in proof of theorem 6.2.2, one can prove

the probability of the encoders not finding a codeword jointly typical with the state sequence decays exponentially

with block length if the bins are of rate at least max
{

log |U| −HUs.c(Uj |Sj) : j = 1, 2
}

. The decoder decodes the

group sum of chosen codewords from the group sum of the two users’ codebooks. The codebooks of the two users

are chosen to be union of arbitrary cosets of a common group code and therefore the the group sum of the two

users codebooks will also be a union of arbitrary cosets of this group code. The probability of error at the decoders

decays exponentially if the rate of the group sum of the two users’ codebooks is at most log |U| − H(U1 +� U2|Y ).

We conclude that a rate pair (R1, R2) is achievable if R1 +R2 ≤ min
{
H
U
s.c(Uj |Sj) : j = 1, 2

}
−H(U1 +� U2|Y ). The

following is a formal characterization of achievable rate region for MAC-DSTx using group codes over a Zpr−group.

Definition 6.4.1 Let DG(τ ) ⊆ D(τ ) be the collection of distributions pUSXY on U2 × S × X × Y where U is an

Abelian group of order pr, where p is a prime. For pUSXY ∈ DG(τ ), let βg(pUSXY ) be defined as the set

{
(R1, R2) ∈ [0,∞)2 : R1 +R2 ≤ min

{
H
U
s.c(U1|S1), H

U
s.c(U2|S2)

}
−H(U1 +� U2|Y )

}
(6.31)

where +� denotes group addition in group U = Zpr , and

βg(τ ) : = cocl

 ⋃
pUSXY ∈DG(τ )

βg(pUSXY )

 . (6.32)

Theorem 6.4.2 βg(τ ) ∈ C(τ ).

Example 6.4.3 Let us now compute achievable rate region using group UCC for QDD-MAC. U = {0, 1, 2, 3} has

two sub-groups - the group itself and {0, 2}. It can be verified that

I
U
s.c(U ;S) = max

{
log2 4− 2hb(

2τ

3
), log 4 + τ log(

τ

3
) + (1− τ) log(1− τ)

}

yielding βG(τ ) =
{

(R1, R2) ∈ [0,∞)2 : R1 +R2 ≤ |βg(τ)|+
}

, where

βg(τ) = max

{
min

{
−τ log(

τ

3
)− (1− τ) log(1− τ), 2hb(

2τ

3
)

}
, 0

}
.

In figure 6.5, the sum rate achievable using group UCC for the above test channel is plotted. We highlight significant

gains achievable using group UCC for QDD-MAC thus emphasizing the need to build codes with appropriate algebraic

structure that matches the channel.
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6.4.2 Achievable rate region for MAC-DSTx using group UCC : The general Abelian

group

We now let the auxiliary alphabet U be a general Abelian group and build group UCC over U to enable the decoder

to reconstruct the group sum of chosen codewords. The discussion in section 6.4.1 indicates that we only need to

characterize the minimum rate of a bin in the code with respect to a generic test channel pU |S under the constraint

that the bin has to be a coset of a group code. Essentially, this will involve characterizing fundamental group

information theoretic quantity I
U
s.c(U ;S) and the related source coding group entropy H

U
s.c(U |S) in the context of a

general Abelian group U .

Let U be the Abelian group in (6.28). Let θ = (θ1, · · · , θr) be such that 0 ≤ θi ≤ ri for i = 1, 2, · · · , I and let Hθ
be a subgroup of U defined as

Hθ =

I⊕
i=1

pθiZprii ,

and random variable [U ]θ taking values from cosets of Hθ in U as [U ]θ = U +� Hθ. If the state has a pmf pS and the

bins over U are constrained to be cosets of a group code, then for a test channel pU |S , the rate of a bin has to be at

least

I
U
s.c(U ;S) : = min

w1,··· ,wI
w1+···+wI=1

max
H�U
H6=U

1

1− wθ
I([U ]θ;S) (6.33)

where

wθ =

I∑
i=1

ri − θi
ri

wi.

Alternatively, one might express the minimum rate of the bin as log |U| −HUs.c(U |S), where, as before

H
U
s.c(U |S) = log |U| − IUs.c(U ;S), (6.34)

is defined as the source coding group entropy of an Abelian group U andH
U
s.c(U) = H

U
s.c(U |0). We note that definitions

(6.33) and (6.34) defined for an arbitrary Abelian group reduces to that in (6.29) and (6.30) for a Zpr−group. This

enables us to characterize an achievable rate region for MAC-DSTx based on Abelian group codes using βg(τ ).

Definition 6.4.4 Let DG(τ ) ⊆ D(τ ) be the collection of distributions pUSXY on U2 × S × X × Y where U is an

Abelian group. For pUSXY ∈ DG(τ ), let βg(pUSXY ) be defined as the set in (6.31) and βg(τ ) as in (6.32).

We conclude by stating that βg(τ ) is indeed achievable.

Theorem 6.4.5 βg(τ ) ∈ C(τ ).
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Remark 6.4.6 The persistent reader will recognize that the achievable rate region based on group UCC hinges on

the characterization of the minimum rate of a bin that is closed under group addition with respect to a test channel

pU |S. For the general Abelian group we stated this to be (6.33). Recent pursuit has resulted in further reduction of

this quantity and is available in [76].

Remark 6.4.7 The results in this section, though preliminary, point to a rich theory of strategies for multi-terminal

communication systems based on structured code ensembles. Gains crucially rely on the compressive nature of the

bivariate function and the ability to build efficient codes with rich algebraic structure. It is therefore no surprise

that all of earlier findings were based on exploiting modulo−2 sum - the simplest compressive function with binary

arguments - using linear codes - an ensemble that has been studied at length from different perspectives.

6.5 Concluding Remarks

We have provided a single letter characterization of a new achievable rate region for the general MAC-DSTx. The

reader will recognize that our findings are aimed at developing a new framework for enlarging achievable rate region

for multi-terminal communication problems based on algebraic tools. We proposed achievable rate regions for an

arbitrary MAC-DSTx based on two algebraic structures - fields and groups. It should now be clear to a persistent

reader that a general rate region will involve a closure over all algebraic structures of which fields and groups are just

two of them. Furthermore, this rate region will also incorporate the unstructured coding as indicated in section 6.3.

Indeed, a description of this will be involved, and is justified by the presence of additional degrees of freedom in the

multi-terminal communication settings.
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Chapter 7

Computation over multiple access

channel

Consider a scenario wherein a centralized receiver is interested in evaluating a multi-variate function, the arguments

of which are available to spatially distributed transmitters. Traditionally, the technique of computing functions at

a centralized receiver is based on it’s decoding of the arguments in it’s entirety. Solutions based on this technique

have been proven optimal for particular instances of distributed source coding. Moreover, this technique lends itself

naturally for communication based on separation. Buoyed by this partial success and ease of implementation, the

de facto framework for computing at a centralized receiver is by enabling the decoder decode the arguments of the

function in it’s entirety.

The problem of computing mod-2 sum of distributed binary sources has proved to be an exception. Studied in the

context of a source coding problem, Körner and Marton [18] propose an ingenious technique based on linear codes,

that circumvent the need to communicate sources to the decoder, and thereby perform strictly better for a class of

source distributions. In fact, as proposed in [18], the decoder needs only sum of message indices put out by the source

encoder. This fact has been further exploited by Nazer and Gastpar [16] in developing a channel coding technique for

a linear MAC, henceforth referred to as linear computation coding (LCC), that enables the decoder reconstruct the

sum of the message indices input to the channel encoder. Since the decoder does not need to disambiguate individual

message indices, this technique, when applicable, outperforms earlier known techniques.

LCC [16] is built around employing the same linear code as a channel code at both encoders. The message indices

output by the Körner-Marton (KM) source code is linearly mapped into channel codewords. Since a linear MAC

first computes a sum of the transmitted codewords, it is as if the codeword corresponding to the sum of messages

was input to the ensuing channel. The first question that comes to mind is the following. If the MAC is not linear,

would it be possible to decode sum of message indices without having to decode the individual codewords? In other
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words, what would be the generalization of LCC for an arbitrary MAC?1 If there exist such a generalization, how

efficient would it be?

In this chapter, we answer the above question in the affirmative. Firstly, we recognize that in order to decode

the sum of transmitted codewords, it is most efficient to employ channel codes that are closed under addition, of

which a linear code employed in LCC is the simplest example. Closure under addition contains the range of the

sum of transmitted codewords and thereby support a larger range for individual messages. Secondly, typical set

decoding circumvents need for the MAC to be linear. Since nested coset codes have been proven to achieve capacity

of arbitrary point-to-point channels [63] and are closed under addition, we employ this ensemble for generalizing the

technique of LCC. As illustrated by examples 7.2.4,7.2.5 in section 7.2, the generalization we propose (i) outperforms

separation based technique for an arbitrary MAC and moreover (ii) outperforms LCC even for examples with a

structural match.2 We remark that analysis of typical set decoding of a function of transmitted codewords with

nested coset codes that contain statistically dependent codewords contains new elements and are detailed in proof of

theorem 7.2.2.

Even in the case of a structural match, separation based schemes could outperform LCC [16, Example 4]. This

raises the following question. What then would be a unified scheme for computing over an arbitrary MAC? Is

there such a scheme that reduces to (i) separation when the desired function and MAC are not matched and (ii)

LCC when appropriately matched? We recognize that KM technique is indeed suboptimal for a class of source

distributions. For such sources, it is more efficient to transmit the sources as is. We therefore take the approach

of Ahlswede and Han [48, Section VI], where in a two layer source code accomplishes distributed compression. The

first layer generates message indices of those parts that are best reconstructed as is, and the second part employs

a KM technique. In section 7.3, we propose a two layer channel code for MAC that is compatible with the above

two layer source code. The first layer of the MAC channel code communicates the message indices as is, while the

second layer enables the decoder decode the sum of second layer message indices. We therefore develop a unifying

strategy that subsumes separation and LCC. Since Ahlswede and Han [48, Example 4] have proved the existence of

source pairs for which their scheme outperforms both separation based and KM strategy their findings carry over

to the problem studied herein. We highlight the significance of our contribution. Firstly, we propose a strategy

based on nested coset codes and derive a set of sufficient conditions for the problem of computing sum of sources

over an arbitrary MAC. The proposed strategy subsumes all current known strategies and performs strictly better

for certain examples (section 7.2). Secondly, our findings highlight the utility of nested coset codes [63] as a generic

ensemble of structured codes for communicating over arbitrary multi-terminal communication problems. Thirdly, and

perhaps more importantly, our findings hint at a general theory of structured codes. Linear and nested linear codes

1The technique of systematic computation coding (SCC) [16] may not be considered as a generalization of LCC. Indeed SCC does not
reduce to LCC for a linear MAC.

2This is expected since linear codes achieve only symmetric capacity and nested coset codes can achieve capacity of arbitrary point-
to-point channels.
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have been employed to derive communication strategies for particular symmetric additive source and channel coding

problems that outperform all classical unstructured-code based techniques. However the question remains whether

these structured code based techniques can be generalized to arbitrary multi-terminal communication problems. Our

findings indicate that strategies based on structured codes can be employed to analyze more intelligent encoding and

decoding techniques for an arbitrary multi-terminal communication problem.

This chapter is organized as follows. We begin with preliminaries and a brief description of LCC in section

7.1. Section 7.2 contains the main findings of this chapter - a generalization of LCC for an arbitrary MAC using

the ensemble of nested coset codes. Theorem 7.2.2 is a statement of this characterization and examples 7.2.4-7.2.5

highlight the significance of theorem 7.2.2. In section 7.3, we propose a unified strategy for computing sum of sources

over an arbitrary MAC that subsumes separation and LCC based techniques.

7.1 Preliminaries and Problem statement

Following remarks on notation (7.1.1) and problem statement (7.1.2), we briefly describe LCC for a linear MAC

(7.1.3) and set the stage for it’s generalization.

7.1.1 Notation

We employ notation that is now widely adopted in the information theory literature supplemented by the following.

We let Fq denote a finite field of cardinality q. While + denotes addition in R, we let ⊕ denote addition in a finite

field. The particular finite field, which is uniquely determined (up to an isomorphism) by it’s cardinality, is clear

from context. When ambiguous, or to enhance clarity, we specify addition in Fq using ⊕q. For elements a, b, in a

finite field, a 	 b : = a ⊕ (−b), where (−b) is the additive inverse of b. The log and exp functions are taken with

respect to the same base. For concreteness, the base may be assumed to be 2, in which case, units for information

theoretic quantities such as entropy and mutual information would be bits. If f : U → X is a map, the n-letter

extension of f denoted fn : Un → Xn is defined fn (un) := (f (ui) : i = 1, 2, · · · , n). In this chapter, we repeatedly

refer to pairs of objects of similar type. To reduce clutter in notation, we use an underline to refer to aggregates of

similar type. For example, (i) S abbreviates (S1, S2), (ii) if X1,X2 are finite alphabet sets, we let X either denote

the Cartesian product X1 × X2 or abbreviate the pair X1,X2 of sets. More non trivially, if ej : Sn → Xnj : j = 1, 2

are a pair of maps, we let e(sn) abbreviate (e1(sn1 ), e2(sn2 )).

7.1.2 Problem statement

Consider a pair (S1, S2) of information sources each taking values over a finite field S of cardinality q. We assume

outcome (S1,t, S2,t) of the sources at time t ∈ N, is independent and identically distributed across time, with

distribution WS . We let (S,WS) denote this pair of sources. Sj is observed by encoder j that has access to input
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j of a two user discrete memoryless multiple access channel (MAC) that is used without feedback. Let X1, X2 be

the finite input alphabet sets and Y the finite output alphabet set of MAC. Let WY |X1X2
(y|x1, x2) denote MAC

transition probabilities. We refer to this as MAC (X ,Y,WY |X). The objective of the decoder is to compute S1⊕S2.

In this chapter, we provide a characterization of a sufficient condition for computing S1 ⊕ S2 with arbitrary small

probability of error. The relevant notions are made precise in the following definitions.

Definition 7.1.1 A computation code (n, e, d) for computing sum of sources (S,WS) over the MAC (X ,Y,WY |X)

consists of (i) two encoder maps ej : Sn → Xnj : j = 1, 2 and (ii) a decoder map d : Yn → Sn.

Definition 7.1.2 The average error probability ξ̄(e, d) of a computation code (n, e, d) is

∑
s∈Sn

∑
yn:d(yn)6=
sn1⊕s

n
2

WY n|Xn(yn|e(sn))WSn(sn).

Definition 7.1.3 The sum of sources (S,WS) is computable over MAC (X ,Y,WY |X) if for all η > 0, there exists

an N(η) ∈ N such that for all n > N(η), there exists an (n, e(n), d(n)) computation code such that ξ̄(e(n), d(n)) ≤ η.

The main objective in this chapter is to provide a sufficient condition for computability of sum of sources over a

MAC.

7.1.3 Linear Computation Coding

We describe the technique of LCC in a simple setting and highlight the key aspects. Consider binary sources and a

binary additive MAC, i.e., S = X1 = X2 = {0, 1} and Y = X1 ⊕X2 ⊕N , where N is independent of the inputs and

P (N = 1) = q. Furthermore assume sources are symmetric, uniform, i.e., P (S = (0, 0)) = 1−p
2 = P (S = (1, 1)) and

P (S = (0, 1)) = P (S = (1, 0)) = p
2 such that hb(p) < 1− hb(q).

By employing a KM source code, the two message indices at rate hb(p) can be employed to decode S1 ⊕ S2.

Let h ∈ Sk×n denote a parity check matrix for the KM source code, with k
n arbitrarily close to hb(p). Nazer and

Gastpar observe that the decoder only requires the sum h(Sn1 ⊕Sn2 ) = h(Sn1 )⊕ h(Sn2 ) of message indices. If the map

from message indices to channel code is linear, then the decoder can infer h(Sn1 )⊕ h(Sn2 ) by decoding the codeword

corresponding to sum of transmitted codewords. Since sum of transmitted codewords passes through a BSC(q), they

employ a capacity achieving linear code of rate arbitrarily close to 1− hb(q) with generator matrix g ∈ X l×n1 . Each

encoder employs the same linear code and transmits xnj : = h(Snj )g. The decoder receives Y n and decodes as if the

channel is a BSC(q). It ends up decoding message corresponding to xn1 ⊕xn2 which was precisely what it was looking

for.

We note that a separation based scheme will require the sum capacity of the MAC to be greater than 2hb(p)

and hence LCC is more efficient. What are key aspects of LCC? Note that (i) the channel code is designed for the
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X1⊕X2 to Y channel, i.e., the BSC(q) and (ii) both encoders employ the same linear channel code, thereby ensuring

their codes are closed under addition. This contains range of the sum of transmitted codewords to a rate 1− hb(q).

It is instructive to analyze the case when the two users are provided two linear codes of rates R1 and R2 spanning

disjoint subspaces. Since the range of sum of transmitted codewords is R1 +R2, the same decoding rule will impose

the constraint R1 + R2 < 1 − hb(q) resulting in the constraint 2hb(p) ≤ 1 − hb(q) which is strictly suboptimal. We

conclude that the two users’ channel codes being closed under addition is crucial to the optimality of LCC for this

problem. Furthermore, the coupling of (i) a linear map of KM message indices to the channel code at the encoder

and (ii) decoding of the sum of transmitted codewords, is central to LCC.

In the following section, we make use of the above observations to propose a generalization of LCC for computing

sum of sources over an arbitrary MAC.

7.2 Nested coset codes for computing sum of sources over a MAC

In this section, we propose a technique for computing S1 ⊕ S2 over an arbitrary MAC using the ensemble of nested

coset codes [63], and derive a set of sufficient conditions under which, sum of sources (S,WS) can be computed over

a MAC (X ,Y,WY |X). Definitions 7.2.1 and theorem 7.2.2 state these sufficient conditions. For certain examples

such as example 7.2.5, the technique proposed in theorem 7.2.2 outperforms all known earlier techniques. Indeed,

as illustrated by examples 7.2.4, 7.2.5, even in the case of a structural match, the above sufficient conditions are

weaker than that imposed by LCC. Nevertheless, we further relax the same in section 7.3, or in other words enrich

our technique, by incorporating separation.

Definition 7.2.1 Let D(WY |X) be collection of distributions pV1V2X1X2Y defined over S2 × X × Y such that (i)

pV1X1V2X2
= pV1X1

pV2X2
, (ii) pY |XV = pY |X = WY |X . For pV XY ∈ D(WY |X), let α(pV XY ) be defined as

{R ≥ 0 : R ≤ min{H(V1), H(V2)} −H(V1 ⊕ V2|Y )} , and α(WY |X) : = sup
⋃

pVXY ∈
D(WY |X)

α(pV XY ).

Theorem 7.2.2 The sum of sources (S,WS)is computable over a MAC (X ,Y,WY |X) if H(S1 ⊕ S2) ≤ α(WY |X).

Before we provide a proof, we briefly discuss the coding strategy and indicate how we attain the rates promised

above. The reader is referred to [77] for a complete proof of theorem 7.2.2.

We begin with a description of the encoding rule. Encoder j employs a KM source code to compress the observed

source. Let M l
j : = hSnj denote corresponding message index, where h ∈ Sl×n is a KM parity check matrix of rate

l
n ≈

H(S1⊕S2)
log |S| . Each encoder is provided with a common nested linear code taking values over S. The nested linear

code is described through a pair of generator matrices gI ∈ Sk×n and gO/I ∈ Sl×n, where gI and

 gI

gO/I

 are the
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generator matrices of the inner (sparser) code and complete (finer) codes respectively, where

k log |S|
n

(a)

≥ log |S| −min {H(V1), H(V2)} ,
(k + l) log |S|

n

(b)

≤ log |S| −H(V1 ⊕ V2). (7.1)

Encoder j picks a codeword in coset
(
akgI ⊕M l

jgO/I : ak ∈ Sk
)

indexed by M l
j that is typical with respect to pVj .

Based on this chosen codeword Xn is generated according to pXj |Vj and transmitted.

The decoder is provided with the same nested linear code. Having received Y n it lists all codewords that are

jointly typical with Y n with respect to distribution pV1⊕V2,Y . If it finds all such codewords in a unique coset, say(
akgI ⊕mlgO/I : ak ∈ Sk

)
, then it declares ml to be the sum of KM message indices and employs KM decoder to

decode the sum of sources. Otherwise, it declares an error.

As is typical in information theory, we derive an upper bound on probability of error by averaging the error

probability over the ensemble of nested linear codes. For the purpose of proof, we consider user codebooks to be

cosets of nested linear codes.3 We average uniformly over the entire ensemble of nested coset codes. Lower bound

(7.1(a)) ensures the encoders find a typical codeword in the particular coset. Upper bound (7.1(b)) enables us derive

an upper bound on the probability of decoding error. From (7.1), it can be verified that if H(S1 ⊕ S2) ≈ l log |S|
n ≤

min{H(V1), H(V2)} − H(V1 ⊕ V2|Y ) then the decoder can reconstruct the sum of sources with arbitrarily small

probability of error.

Since the ensemble of codebooks contain statistically dependent codewords and moreover user codebooks are

closely related, deriving an upper bound on the probability of error involves new elements. The informed reader will

recognize that in particular, deriving an upper bound on the probability of decoding error will involve proving statis-

tical independence of the pair of cosets indexed by KM indices (M l
1,M

l
2) and any codeword in a coset corresponding

to m̂l 6= M l
1 ⊕M l

2. The statistical dependence of the codebooks results in new elements to the proof.

Proof: Given η > 0, our goal is to identify a computation code (n, e, d) such that P (d(Y n) 6= Sn1 ⊕ Sn2 ) ≤ η for

all sufficiently large n ∈ N. The source sequences are mapped to channel input codewords in two stages. In the first

stage, a distributed source code proposed by Körner and Marton [18] is employed to map n-length source sequences

to message indices that takes values over Sl. The second stage maps these indices to channel input codewords. We

begin by stating the main findings of [18] on which our first stage relies.

Lemma 7.2.3 Given a pair of (S,WS) of information sources and η > 0, there exists an N(η) ∈ N such that for

every n ∈ N, there exists a parity check matrix h ∈ Sl(n)×n and a map r : Sl(n) → Sn such that (i) l(n)
n ≤

H(S1⊕S2)
log |S| + η

2 ,

and (ii) P (r(hSn1 ⊕ hSn2 ) 6= Sn1 ⊕ Sn2 ) ≤ η
2 .

Given η > 0, let h ∈ Sl×n be a parity check matrix that satisfies (i) and (ii) in lemma 7.2.3. Let M l
j : = hSnj : j =

1, 2 be the message indices output by the source encoder. In the second stage, we identify maps µj : Sl → Xnj : j = 1, 2

that maps these message indices to channel input codewords. The encoder ej : Sn → Xnj of the computation code is

3This is analogous to the use of cosets of a linear code to prove achievability of symmetric capacity over point to point channels.
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therefore defined as ej(S
n
j ) : = µj(hS

n
j ). The second stage of the encoding is based on nested coset codes. We begin

with a brief review of nested coset codes.

An (n, k) coset is a collection of vectors in Fnq obtained by adding a constant bias vector to a k−dimensional

subspace of Fnq . If λO ⊆ Fnq and λI ⊆ λO are (n, k+ l) and (n, k) coset codes respectively, then ql cosets λO/λI that

partition λO is a nested coset code.

A couple of remarks are in order. An (n, k) coset code is specified by a bias vector bn ∈ Fnq and generator matrices

g ∈ Fk×nq . If λO ⊆ Fnq and λI ⊆ λO are (n, k + l) and (n, k) coset codes respectively, then there exists a bias vector

bn ∈ Fnq and generator matrices gI ∈ Fk×nq and gO =

 gI

gO/I

 ∈ F (k+l)×n
q , such that bn, gI specify λI and bn,

gO specify λO. Therefore, a nested coset code is specified by a bias vector bn and any two of the three generator

matrices gI , gO/I and gO. We refer to this as nested coset code (n, k, l, gI , gO/I , b
n).

We now specify the encoding rule. Encoder j is provided a nested coset code (n, k, l, gI , gO/I , b
n
j ) denoted λOj/λI

taking values over the finite field S. Let vnj (ak,ml
j) : = akgI ⊕ml

jgO/I ⊕ bnj denote a generic codeword in λOj/λI and

cj(m
l
j) : = (vnj (ak,ml

j) : ak ∈ Sk) denote coset corresponding to message ml
j . The message index M l

j = hSnj put out

by the source encoder is used to index coset cj(M
l
j). Encoder j looks for a codeword in coset c(M l

j) that is typical

according to pVj . If it finds at least one such codeword, one of them, say vnj (ak,M l
j) is chosen uniformly at ran-

dom. µj(M
l
j) is generated according pXn|V n(·|vnj (ak,M l

j)) =
∏n
t=1 pXj |Vj (·|(vnj (ak,M l

j))t) and µj(M
l
j) is transmitted.

Otherwise, an error is declared.

We now specify the decoding rule. The decoder is provided with the nested coset code (n, k, l, gI , gO/I , b
n)

denoted λO/λI , where bn = bn1 ⊕ bn2 . We employ notation similar to that specified for the encoder. In particular, let

vn(ak,ml) : = akgI ⊕mlgO/I ⊕ bn denote a generic codeword and c(ml) : = (vn(ak,ml) : ak ∈ Sk) denote a generic

coset in λO/λI respectively. Decoder receives Y n and declares error if Y n /∈ T η1
2

(pY ). Else, it lists all codewords

vn(ak,ml) ∈ λO such that (vn(ak,ml), Y n) ∈ Tnη1
(pV1⊕V2,Y ). If it finds all such codewords in a unique coset say

c(ml) of λO/λI , then it declares r(m̂l) to be the decoded sum of sources, where r : Sl → Sn is as specified in lemma

7.2.3. Otherwise, it declares an error.

As is typical in information theory, we derive an upper bound on probability of error by averaging the error

probability over the ensemble of nested coset codes. We average over the ensemble of nested coset codes by letting

the bias vectors Bnj : j = 1, 2 and generator matrices GI , GO/I mutually independent and uniformly distributed

over their respective range spaces. Let ΛOj/ΛI : j = 1, 2 and ΛO/ΛI denote the random nested coset codes

(n, k, l, GI , GO/I , B
n
j ) : j = 1, 2 and (n, k, l, GI , GO/I , B

n) respectively, where Bn = Bn1 ⊕Bn2 . For ak ∈ Sk, ml ∈ Sl,

let V nj (ak,ml
j) : j = 1, 2, V n(ak,ml) denote corresponding random codewords in ΛOj/ΛI : j = 1, 2 and ΛO/ΛI

respectively. Let Cj(m
l
j) : = (V nj (ak,ml

j) : ak ∈ Sk) and C(ml) : = (V n(ak,ml) : ak ∈ Sk) denote random cosets

in ΛOj/ΛI : j = 1, 2 and ΛO/ΛI corresponding to message ml
j : j = 1, 2 and ml respectively. We now analyze error

events and upper bound probability of error.
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We begin by characterizing error events at encoder. If φ(ml
j) : =

∑
ak∈Sk 1{(V nj (ak,mlj))∈Tnη2

(pVj )} and εj1 :

= {φ(hSnj ) = 0}, then εj1 is the error event at encoder j. An upper bound on P (εj1) can be derived by following the

arguments in [Proof of Theorem 1][63]. Findings in [63] imply existence of Nj2 ∈ N such that ∀n ≥ Nj2, P (εj1) ≤ η
8

if k
n > 1−H(Vj).

The error event at the decoder is ε2 ∪ ε3, where ε2 : = {Y n /∈ Tnη1
2

(pY )} and

ε3 : =
⋃
ml 6=

hSn1 ⊕hS
n
2

⋃
ak∈Sk

{(V n(ak,ml),Y n)∈Tnη1
(pV1⊕V2,Y

)} .

In order to upper bound P (ε2) by conditional frequency typicality, it suffices to upper bound P ((e(Sn)) /∈ T η1
4

(pX)).

Note that (i) independence of (Vj , Xj) : j = 1, 2 implies the Markov chain X1 − V1 − V2 −X2, and (ii) the chosen

codeword V nj (ak,M l
j) and the transmitted vector ej(S

n
j ) = µj(M

l
j) are jointly typical with high probability as a

consequence of conditional generation of the latter. By the Markov lemma, it suffices to prove V nj (ak,M l
j) : j = 1, 2

are jointly typical. If the codewords were chosen independently at random according to
∏n
t=1 pVj , this would fall out

as a consequence of uniformly sampling from the typical set [26, ]. However, the generation of nested coset code is

different, and the proof of this involves an alternate route. An analogous proof of the Markov lemma is provided in

proof of theorem 6.2.2 and omitted here in the interest of brevity.

It remains to upper bound P ((ε11∪ ε21∪ ε2)c∩ ε3). In appendix N, we prove that if (k+l) log |S|
n < log |S|−H(V1⊕

V2|Y ), there exists N4(η) ∈ N such that ∀n ≥ N4, P (ε3) ≤ η
8 . Combining the bounds k log |S|

n > log |S| −H(Vj) and

(k+l) log |S|
n < log |S| −H(V1 ⊕ V2|Y ), we note that l log |S|

n < min {H(V1), H(V2)} −H(V1 ⊕ V2|Y ), then the sum of

message indices h(Sn1 ⊕ Sn2 ) can be reconstructed at the decoder. This concludes proof of achievability.

The informed reader will recognize that deriving an upper bound on P (ε3) will involve proving statistical inde-

pendence of the pair (Cj(hS
n
j ) : j = 1, 2) of cosets and any codeword V n(âk, m̂l) corresponding to a competing sum

of messages m̂l 6= h(Sn1 ⊕ Sn2 ). This is considerably simple for a coding technique based on classical unstructured

codes wherein codebooks and codewords in every codebook are independent. The coding technique proposed herein

involves correlated codebooks and codewords resulting in new elements to the proof. The reader is encouraged to

peruse details of this element presented in appendix N.

It can be verified that theorem 7.2.2 subsumes LCC. In particular the rate region presented in theorem 7.2.2

subsumes the rate region presented in [16, Theorem 1, Corollary 2]. This follows by substituting a uniform distribution

for V1, V2. Therefore examples presented in [16] carry over as examples of rates achievable using nested coset codes.

We now present a sample of examples to illustrate significance of theorem 7.2.2. The reader is referred to [77] for

additional examples that illustrate utility of the coding technique proposed herein. As was noted in [16, Example 4]

a uniform distribution induced by a linear code maybe suboptimal even for computing functions over a MAC with

a structural match. The following example, closely related to the former, demonstrates the ability of nested coset
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codes to achieve a nonuniform distribution and thus exploit the structural match better.

Example 7.2.4 Let S1 and S2 be a pair of independent and uniformly distributed sources taking values over the

field F5 of five elements. The decoder wishes to reconstruct S1 ⊕5 S2. The two user MAC channel input alphabets

X1 = X2 = F5 and output alphabet Y = {0, 2, 4}. The output Y is obtained by passing W = X1 ⊕5 X2 through

an asymmetric channel whose transition probabilities are given by pY |W (y|1) = pY |W (y|3) = 1
3 for each y ∈ Y and

pY |W (0|0) = pY |W (2|2) = pY |W (4|4) = 1. Let the number of source digits output per channel use be λ. We wish

to compute the range of values of λ for which the decoder can reconstruct the sum of sources. This is termed as

computation rate in [16].

It can be verified that the decoder can reconstruct S1 ⊕5 S2 using the technique of LCC if λ ≤ 3
5

log2(3)
log2 5 = 0.4096.

A separation based scheme enables the decoder reconstruct the sum if λ ≤ 1
2

log2(3)
log2(5) = 0.3413. We now explore the use

of nested coset codes. It maybe verified that pmf

pV XY (v, x, x1 ⊕5 x2) =


1
4

if v1=x1,v2=x2

and v1,v2∈{0,2}

0 otherwise .

(7.2)

defined on F5 ×F5 satisfies (i),(ii) of definition 7.2.1 and moreover α(pV XY ) = {R ≥ 0 : R ≤ 1}. Thus nested coset

codes enable reconstructing S1 ⊕5 S2 at the decoder if λ ≤ 1
log2 5 = .43067.

The above example illustrates the need for nesting codes in order to achieve nonuniform distributions. However,

for the above example, a suitable modification of LCC is optimal. Instead of building codes over F5, let each user

employ the linear code of rate 14 built on F2. The map F2 → Xj : j = 1, 2 defined as 0 → 0 and 1 → 2 induces a

code over F5 and it can be verified that LCC achieves the rate achievable using nested coset codes. However, the

following example precludes such a modification of LCC.

Example 7.2.5 The source is assumed to be the same as in example 7.2.4. The two user MAC input and out-

put alphabets are also assumed the same, i.e., X1 = X2 = F5 and output alphabet Y = {0, 2, 4}. The output

Y is obtained by passing W = X1 ⊕5 X2 through an asymmetric channel whose transition probabilities are given

by pY |W (y|1) = pY |W (y|3) = 1
3 for each y ∈ Y and pY |W (0|0) = pY |W (2|2) = pY |W (4|4) = 0.90, pY |W (2|0) =

pY |W (4|0) = pY |W (0|2) = pY |W (4|2) = pY |W (0|4) = pY |W (2|4) = 0.05.

The technique of LCC builds a linear code over F5. It can be verified that the symmetric capacity for the X1 ⊕5

X2(= W ) − Y channel is 0.6096 and therefore LCC enables decoder reconstruct the sum if λ ≤ 0.6096
log2 5 = 0.2625. A

separation based scheme necessitates communicating each of the sources to the decoder and this can be done only if

λ ≤ 1
2

log2 3
log2 5 = 0.3413. The achievable rate region of the test channel in (7.2) is α(pV XY ) = {R ≥ 0 : R ≤ 0.91168}

and therefore nested coset codes enable decoder reconstruct the sum if λ ≤ 0.91168
log2 5 = 0.3926.

4This would be the set of all binary n−length vectors
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Example 7.2.6 Let S1 and S2 be independent sources distributed uniformly over {0, 1, 2}. The input alphabets

X1 = X2 = F3 is the ternary field and the output alphabet Y = F2 is the binary field. Let W = 1{X1 6=X2} and

output Y is obtained by passing W through a BSC with crossover probability 0.1. The decoder is interested in

reconstructing W . As noted in [16, Example 8], W is 0 if an only if S1 ⊕3 2S2 = 0. Therefore, it suffices for the

decoder to reconstruct S1 ⊕3 2S2. Following the arguments in proof of theorem 7.2.2 it can be proved that S1 ⊕3 2S2

can be reconstructed using nested coset codes if there exists a pmf pV XY ∈ D(WY |X) such that H(S1 ⊕3 2S2) ≤

min{H(V1), H(V2)} − H(V1 ⊕3 2V2|Y ). It can be verified that for pmf pV XY wherein V1, V2 are independently and

uniformly distributed over F3, X1 = V1, X2 = V2, the achievable rate region is α(pV XY ) = {R : R ≤ 0.4790}. The

computation rate achievable using SCC and separation technique are 0.194 and 0.168 respectively. The computation

rate achievable using nested coset codes is 0.4790
log2 3 = 0.3022.

Example 7.2.7 Let S1 and S2 be independent and uniformly distributed binary sources and the decoder is interested

in reconstructing the binary sum. The MAC is binary, i.e. X1 = X2 = Y = F2 with transition probabilities

P (Y = 0|X1 = x1, X2 = x2) = 0.1 if x1 6= x2, P (Y = 0|X1 = X2 = 0) = 0.8 and P (Y = 0|X1 = X2 = 1) = 0.9. It

can be easily verified that the channel is not linear, i.e., X −X1 ⊕X2 − Y is NOT a Markov chain. This restricts

current known techniques to either separation based coding or SCC [16, Section V]. SCC yields a computation rate

of 0.3291. The achievable rate region for the test channel pV XY where in V1 and V2 are independent and uniformly

distributed binary sources, X1 = V1, X2 = V2 is given by {R : R ≤ 0.4648}.

We conclude by recognizing that example 7.2.7 is indeed a family of examples. As long as the MAC is close to

additive but not additive, lending LCC inapplicable, we can expect nested coset codes to outperform separation and

SCC. [77] presents more such examples.

7.3 General technique for computing sum of sources over a MAC

In this section, we propose a general technique for computing sum of sources over a MAC that subsumes separation

and computation. The architecture of the code we propose is built on the principle that techniques based on structured

coding are not in lieu of their counterparts based on unstructured coding. Indeed, the KM technique is outperformed

by the Berger-Tung [64] strategy for a class of source distributions. A general strategy must therefore incorporate

both.

We take the approach of Ahlswede and Han [48, Section VI], where in a two layer source code is proposed. Each

source encoder j generates two message indices Mj1,Mj2. Mj1 is an index to a Berger-Tung source code and Mj2

is an index to a KM source code. The source decoder therefore needs M11,M21 and M12 ⊕M22 to reconstruct the

quantizations and thus the sum of sources. We propose a two layer MAC channel code that is compatible with

the above source code. The first layer of this code is a standard MAC channel code based on unstructured codes
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[3, 4]. The messages input to this layer are communicated as is to the decoder. The second layer employs nested

coset codes and is identical to the one proposed in theorem 7.2.2. A function of the codewords selected from each

layer is input to the channel. The decoder decodes a triple - the pair of codewords selected from the first layer and

a sum of codewords selected from the second layer - and thus reconstructs the required messages. The following

characterization specifies rates of layers 1 and 2 separately and therefore differs slightly from [48, Theorem 10].

Definition 7.3.1 Let DAH(WS) be collection of distributions pT1T1S1S2
defined over T1×T2×S2 such that (a) T1, T2

are finite sets, (b) pS1S2
= WS, (c) T1 − S1 − S2 − T2 is a Markov chain. For pTS ∈ DAH(WS), let

βS(pTS) : =
{

(R11, R12, R2) ∈ R3 : R11 ≥ I(T1;S1|T2), R12 ≥ I(T2;S2|T1), R2 ≥ H(S1 ⊕ S2|T ), R11 +R12 ≥ I(T ;S)
}
.

Let βS(WS) denote convex closure of the union βS(pTS) over pTS ∈ DAH(WS)

We now characterize achievable rate region for communicating these indices over a MAC. We begin with a definition

of test channels and the corresponding rate region.

Definition 7.3.2 Let DG be collection of distributions pU1U2V1V2X1X2Y defined on U1 × U2 × S × S × X1 × X2 × Y

such that (i) pUVX = pU1V1X1
pU2V2X2

, (ii) pY |XUV = pY |X = WY |X . For pUVXY ∈ DG, let βC(pUVXY ) be defined

as the set

(R11, R12, R2) ∈ R3 : 0 ≤ R11 ≤ I(U1;Y, U2, V1 ⊕ V2), 0 ≤ R12 ≤ I(U2;Y, U1, V1 ⊕ V2),

R11 +R12 ≤ I(U ;Y, V1 ⊕ V2), R11 +R2 ≤Hmin(V |U) +H(U1)−H(V1 ⊕ V2, U1|Y,U2)

R2 ≤Hmin(V |U)−H(V1 ⊕ V2|Y, U), R12 +R2 ≤Hmin(V |U) +H(U2)−H(V1 ⊕ V2, U2|Y,U1)

R11 +R12 +R2 ≤Hmin(V |U) +H(U1) +H(U2)−H(V1 ⊕ V2, U |Y )


.

where Hmin(V |U) : = min{H(V1|U1), H(V2|U2)} and

βC(WY |X)cocl

 ⋃
pUVXY

∈DG(WY |X)

βC(pUVXY )

 .

Theorem 7.3.3 The sum of sources (S,WS) is computable over MAC (X ,Y,WY |X) if βS(WS) ∩ βC(WY |X) 6= φ.

Remark 7.3.4 It is immediate that the general strategy subsumes separation and computation based techniques.

Indeed, substituting T ,U to be degenerate yields the conditions provided in theorem 7.2.2. Substituting V to be

degenerate yields separation based technique.
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7.4 Concluding Remarks

Having decoded the sum of sources, we ask whether it would be possible to decode an arbitrary (non-additive)

function of the sources using the above techniques? The answer is yes and the technique involves ‘embedding’.

Example 7.2.6 illustrates embedding and a framework is proposed in [77]. This leads us to the following fundamental

question. The central element of the technique presented above was to decode the sum of transmitted codewords

and use that to decode sum of KM message indices. If the MAC is ‘far from additive’, is it possible to decode a

different bivariate function of transmitted codewords and use that to decode the desired function of the sources? The

answer to the first question is yes Indeed, the elegance of joint typical encoding and decoding enables us reconstruct

other ‘well behaved’ functions of transmitted codewords. We recognize that if codebooks take values over a finite

field and were closed under addition, it was natural and more efficient to decode the sum. On the other hand, if

the codebooks were taking values over an algebraic object, for example a group, and were closed with respect to

group multiplication, it would be natural and efficient to decode the product of transmitted codewords. Since, we

did not require the MAC to be linear in order to compute the sum of transmitted codewords, we will not require it

to multiply in order for us to decode the product of transmitted codewords. We elaborate on this in [77].
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Appendix A

An upper bound on P (εc1 ∩ ε2)

Through out this appendix π denotes π(min{(|X | · |S|)2
, (|X |+ |S|+ |Y| − 2) · |X | · |S|}) and V : = Fπ. We begin

with a simple lemma. The following lemma holds for any Fq and we state it in this generality.

Lemma A.0.1 Let Fq be the finite field of cardinality q. If generator matrices GI ∈ Fk×nq , GO/I ∈ F l×nq and

bias vector Bn ∈ Fnq of the random nested coset code (n, k, l, GI , GO/I , B
n) are mutually independent and uniformly

distributed on their respective range spaces, then codewords V n(ak,ml) : = akGI ⊕mlGO/I ⊕ Bn are (i) uniformly

distributed, and (ii) pairwise independent.

The proof follows form a simple counting argument and is omitted for the sake of brevity. The proof for the case

q = 2 is provided in [14, Theorem 6.2.1] and the same argument holds for any field Fq.

We derive an upper bound on P (εc1 ∩ ε2) using a second moment method similar to that employed in [59].

P (εc1 ∩ ε2) =
∑

sn∈T δ
4

(pS)

∑
ml∈Vl

P

(
Sn=sn,M l=ml

φ δ
2

(sn,ml)=0

)
=

∑
sn∈T δ

4
(S)

∑
ml∈Vl

P
(
Sn=sn,

M l=ml

)
P (φ δ

2
(sn,ml) = 0) (A.1)

≤
∑

sn∈T δ
4

(S)

∑
ml∈Vl

P (Sn = sn,M l = ml)P (|φ δ
2
(sn,ml)− Eφ δ

2
(sn,ml)| ≥ Eφ δ

2
(sn,ml))

≤
∑

sn∈T δ
4

(S)

∑
ml∈Vl

P
(
Sn = sn,M l = ml

) Var
{
φ δ

2
(sn,ml)

}
{
E
{
φ δ

2
(sn,ml)

}}2 , (A.2)

where (A.1) is true since φ δ
2
(sn,ml) is a function of random objects GI , GO/I and Bn that are mutually independent

of Sn,M l, and (A.2) follows from Cheybyshev inequality.
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We now evaluate first and second moments of φ δ
2
(sn,ml). The expectation of φ δ

2
(sn,ml) is

Eφ δ
2
(sn,ml) =

∑
vn∈Tnδ

2

(V |sn)

∑
ak∈Vk

P
(
V n(ak,M l) = vn

)
=
|Tnδ

2

(V |sn) |

πn−k
,

where the last equality follows from Lemma A.0.1(i). The second moment is

Eφ2
δ
2
(sn,ml) =

∑
vn,ṽn∈Tnδ

2

(V |sn)

∑
ak,ãk∈Vk

P
(
V n(ak,M l) = vn, V n(ãk,M l) = ṽn

)
=

∑
vn∈

Tnδ
2

(V |sn)

∑
ak∈Vk

P
(
V n(ak,M l) = vn

)
+

∑
vn,ṽn∈
Tnδ

2

(V |sn)

∑
ak,ãk∈
Vk,ak 6=ãk

P
(
V n(ak,M l) = vn, V n(ãk,M l) = ṽn

)

=
πk
∣∣∣Tnδ

4

(V |sn)
∣∣∣

πn
+

∣∣∣Tnδ
2

(V |sn)
∣∣∣2 πk (πk − 1

)
π2n

, (A.3)

where second term in (A.3) follows from Lemma A.0.1(ii). Substituting for first and second moments of φ δ
2
(sn,ml),

we have

Var
{
φ δ

2
(sn,ml)

}
=
πk
∣∣∣Tnδ

2

(V |sn)
∣∣∣

πn

1−

∣∣∣Tnδ
2

(V |sn)
∣∣∣

πn

 , thus
Var

{
φ δ

2
(sn,ml)

}
E
{
φ δ

2
(sn,ml)

}2 ≤
πn−k

|Tnδ
2

(V |sn) |
. (A.4)

For sn ∈ T δ
4
(S) lemma 2.4.2, guarantees existence of N3(η) ∈ N, such that for all n ≥ N3(η), |T δ

2
(V |sn)| ≥

exp {n (H(V |S)− δ)}. Substituting this lower bound in (A.4), we note,

Var
{
φ δ

2
(sn,ml)

}
E
{
φ δ

2
(sn,ml)

}2 ≤
πn−k

|Tnδ
2

(V |sn) |
≤ exp

{
−n log π

(
k

n
−
(

1− H (V |S)

log π
+

δ

log π

))}
.

Substituting (A.5) in (A.2), we obtain

P (εc1 ∩ ε2) ≤ exp

{
−n log π

(
k

n
−
(

1− H (V |S)

log π
+

δ

log π

))}
. (A.5)

From (3.3), we have

k

n
−
(

1− H (V |S)

log π
+

δ

log π

)
≥

η
8 − δ
log π

≥ 11η

96 log π
(A.6)

where the last inequality follows from choice of δ. Combining (A.5) and (A.6), we have P (εc1∩ε2) ≤ exp
{
− 11nη

96

}
≤ η

16

for all n ≥ N4(η).
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By choosing δ > 0 sufficiently small, k
n can be made arbitrarily close to 1 − H(V |S)

log π and probability of encoding

error can be made arbitrarily small by choosing a sufficiently large block length. The above findings are summarized

in the following lemma.

Lemma A.0.2 Let S be a finite set, V = Fq a finite field and pSV , a pmf on S × V. Consider a random nested

coset code (n, k, l, GI , GO/I , B
n) denoted ΛO/ΛI , with bias vector Bn ∈ Vn, generator matrices GI ∈ Vk×n and

GO/I ∈ V l×n mutually independent and uniformly distributed on their respective range spaces. Let V n(ak,ml) :

= akGI ⊕ mlGO/I ⊕ Bn denote generic codeword in ΛO/ΛI . For sn ∈ Sn, ml ∈ V l and δ > 0, let φδ(s
n,ml) :

=
∑
ak∈Vk 1{(sn,V n(ak,ml))∈Tδ(S,V )}. The following are true.

(i) The codewords V n(ak,ml) : ak ∈ Vk are uniformly distributed and pairwise independent.

(ii) For any δ > 0, sn ∈ T δ
2
(S), ml ∈ V l, there exists N(δ) ∈ N such that for all n ≥ N(δ),

P (φδ(s
n,ml) = 0) ≤ exp

{
−n log q

(
k

n
−
(

1− H(V |S)

log q
− 3δ

2 log q

))}
.

(iii) If (Sn,M l) ∈ Sn × V l are independent of (GI , GO/I , B
n), then for all n ≥ N(δ),

P (Sn ∈ T δ
2
(S), φδ(S

n,M l) = 0) ≤ exp

{
−n log q

(
k

n
−
(

1− H(V |S)

log q
− 3δ

2 log q

))}
.
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Appendix B

An upper bound on P ((ε1 ∪ ε2 ∪ εc3)
c ∩ ε4)

As is typical, our achievability proof hinges on independence of transmitted codeword (and hence received vector)

and the contending codewords that are not transmitted. Towards this end, we begin with the following.

Lemma B.0.3 Let V be the finite field of cardinality q. If generator matrices GI ∈ Fk×nq , GO/I ∈ V l×n and bias

vector Bn ∈ Fnq of the random (n, k, l, GI , GO/I , B
n) nested coset code are mutually independent and uniformly

distributed on their respective range spaces, then any coset is independent of any codeword in a different coset., i.e.,

the collection of codewords (V n(ak,ml) : ak ∈ Fkq ) and V n(âk, m̂l) are independent if ml 6= m̂l.

Proof: Let vnak ∈ F
n
q for each ak ∈ Fkq , and v̂n ∈ Fnq . We need to prove

P (V n(ak,ml) = vnak :ak ∈ Fkq , V n(âk,ml)= v̂n) = P (V n(ak,ml) = vnak :ak ∈ Fkq )P (V n(âk,ml) = v̂n).

If (vnak+âk − v
n
0k) 6= (vnak − v

n
0k) + (vnâk − v

n
0k) for some pair ak, âk ∈ Fkq , the LHS and first term of RHS are zero and

equality holds. Else,

P (V n(ak,ml) = vnak : ak ∈ Fkq , V n(âk,ml) = v̂n)

= P (akGI = vnak − v
n
0k : ak ∈ Fkq , V n(0k,ml) = vn0k , V

n(0k, m̂l) = v̂n − vnâk)

= P (akGI = vnak − v
n
0k : ak ∈ Fkq )P (V n(0k,ml) = vn0k , V

n(0k, m̂l) = v̂n − vnâk) (B.1)

= P (akGI = vnak − v
n
0k : ak ∈ Fkq )P (V n(0k,ml) = vn0k)P (V n(0k, m̂l) = v̂n − vnâk) (B.2)

= P (akGI = vnak − v
n
0k : ak ∈ Fkq , V n(0k,ml) = vn0k)P (m̂lGO/I +Bn = v̂n − vnâk) (B.3)

= P (V n(ak,ml) = vnak : ak ∈ Fkq )P (V n(âk,ml) = v̂n, )

where (B.1) and (B.3) follow from independence of GO/I , B
n and GI (B.2) follows from Lemma A.0.1(ii), and the

last equality follows from invariance of the pmf of V n(ak,ml) with respect to ak and ml.
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We emphasize the consequence of Lemma B.0.3 in the following remark.

Remark B.0.4 If transmitted message M l 6= m̂l, then Y n is independent of V n(âk, m̂l). Indeed

P (V n(âk, m̂l) = v̂n, Y n = yn)=
∑

(vn
ak
∈Vn:ak∈Vk)

∑
xn∈Xn

P
(

C(M l)=(vn
ak
∈Vn:ak∈Vk),

V n(âk,m̂l)=v̂n,E(Sn,M l)=xn,Y n=yn

)

=
∑

(vn
ak
∈Vn:ak∈Vk)

∑
xn∈Xn

P

 C(M l) = (vnak ∈ V
n : ak ∈ Vk),

E(Sn,M l) = xn, Y n = yn

P (V n(âk, m̂l) = v̂n) (B.4)

= P (V n(âk, m̂l) = v̂n)P (Y n = yn) =
P (Y n = yn)

qn
. (B.5)

We have used (1) independence of V n(âk, m̂l) and C(M l) (lemma B.0.3), (2) E(Sn,M l) being a function of

C(M l) and Sn is conditionally independent of V n(âk, m̂l) given C(M l), and (3) Y n is conditionally independent

of V n(âk, m̂l) given E(Sn,M l) in arriving at (B.4), and lemma A.0.1(i) in arriving at the last equality in (B.5).

We now provide an upper bound on P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4). Observe that

P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4) ≤ P
(
∪

âk∈Vk
∪

m̂l 6=M l
{(V n(âk, m̂l), Y n) ∈ Tδ(pV Y )}

)
≤

∑
m̂l∈Vl
m̂l 6=M l

∑
âk∈Vk

∑
yn

∈T δ
2

∑
vn∈

Tδ(V |yn)

P (V n(âk, m̂l) = vn, Y n = yn)

=
∑
m̂l∈Vl
m̂l 6=M l

∑
âk∈Vk

∑
yn

∈T δ
2

∑
vn∈

Tδ(V |yn)

P (V n(âk, m̂l) = vn)P (Y n = yn) =
∑
m̂l∈Vl
m̂l 6=M l

∑
âk∈Vk

∑
yn

∈T δ
2

∑
vn∈

Tδ(V |yn)

P (Y n = yn)

πn
(B.6)

≤
∑

yn∈T δ
2

πk+l|Tδ(pV |Y |yn)|P (Y n = yn)

πn
, (B.7)

where, the two equalities in (B.6) follow from (B.5). Lemma 2.4.2 guarantees existence of N5(η) ∈ N such that for

all n ≥ N5(η) and yn ∈ T δ
2
(pY ), |Tδ(V |yn)| ≤ exp{n(H(V |Y ) + 3δ

2 )}. Substituting this upper bound in (B.7), we

conclude

P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4) ≤ exp

{
−n log π

(
1− H(V |Y )

log π
− 3δ

2 log π
− k + l

n

)}
(B.8)

for all n ≥ N5(η).
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Appendix C

Upper bound on P (εlj)

Recall

φj(q
n,Mj) : =

∑
asj∈Usj

∑
bjX∈cjX

1{I(asj )=Mj1,(qn,Unj (asj ),Xnj (MjX ,bjX))∈T2η2
(Q,Uj ,Xj)}, Lj(n) : =

1

2
E {φj(qn,Mj)}

and εlj = {φj(qn,Mj) < Lj(n)}. Employing Cheybyshev’s inequality, we have

P (εlj ) = P (φj(q
n,Mj) < Lj(n)) ≤ P (|φj(qn,Mj)− E{φj(qn,Mj)}| ≥

1

2
E{φj(qn,Mj)}) ≤

4Var{φj(qn,Mj)}
(E{φj(qn,Mj)})2 .

Note that Var {φj(qn,Mj)} = T0 + T1 + T2 + T3 −T 2
0 , where

T0 =
∑

asj∈Usj

∑
bjX∈cjX

∑
(unj ,x

n
j )∈

T2η2 (Uj ,Xj |qn)

P
(
I(asj )=Mj1,Uj(a

sj )=unj
Xnj (MjX ,bjX)=xnj

)
= E{φj(qn,Mj)}, (C.1)

T1 =
∑

asj∈Usj

∑
bjX ,b̃jX∈cjX
bjX 6=b̃jX

∑
(unj ,x

n
j ),(unj ,x̃

n
j )∈

T2η2
(Uj ,Xj |qn)

P
(
I(asj )=Mj1,Xj(MjX ,bjX)=xnj ,

Uj(a
sj )=unj ,Xj(MjX ,b̃jX)=x̃nj

)
,

T2 =
∑

asj ,ãsj∈Usj
asj 6=ãsj

∑
bjX∈cjX

∑
(unj ,x

n
j ),(ũnj ,x

n
j )∈

T2η2
(Uj ,Xj |qn)

P
(
I(asj )=Mj1,I(ã

sj )=Mj1,Uj(a
sj )=unj ,

Xj(MjX ,bjX)=xnj ,Uj(ã
sj )=ũnj

)
,

T3 =
∑

asj ,ãsj∈Usj
asj 6=ãsj

∑
bjX ,b̃jX∈cjX
bjX 6=b̃jX

∑
(unj ,x

n
j ),(ũnj ,x̃

n
j )∈

T2η2 (Uj ,Xj |qn)

P
(
I(asj )=Mj1,Xj(MjX ,bjX)=xnj ,Uj(a

sj )=unj ,

I(ãsj )=Mj1,Xj(MjX ,b̃jX)=x̃nj ,Uj(ã
sj )=ũnj

)
.

Since

P
(
I(asj )=Mj1,Xj(MjX ,bjX)=xnj ,Uj(a

sj )=unj ,

I(ãsj )=Mj1,Xj(MjX ,b̃jX)=x̃nj ,Uj(ã
sj )=ũnj

)
= P

(
I(asj )=Mj1,Uj(a

sj )=unj
Xj(MjX ,bjX)=xnj

)
P
(
I(ãsj )=Mj1,Uj(ã

sj )=ũnj ,

Xj(MjX ,b̃jX)=x̃nj

)
,
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we have T3 ≤ T 2
0 , and therefore, we have P (ε1j) ≤ 4T0+T1+T2

T 2
0

. Upper bound on conditional probability of jointly

typical sequences (Lemma 2.2.3(iii)) and the number of conditionally typical sequences (Lemma 2.4.2), imply existence

of N3(η2) ∈ N, such that for all n ≥ N3(η2)

T0 ≥ exp {−nH(Xj |Q) + 4nη2} |cjX ||T2η2(Uj , Xj |qn)|
πtj+n−sj

(C.2)

T1 ≤ exp {−2nH(Xj |Q) + 8nη2 + nH(Xj |Uj , Q) + 8nη2} |cjX |(|cjX | − 1)|T2η2
(Uj , Xj |qn)|

πtj+n−sj

T2 ≤ exp {−nH(Xj |Q) + 4nη2 + nH(Uj |XjQ) + 8nη2} |cjX ||T2η2
(Uj , Xj |qn)|

π2(tj+n−sj)
.

Substituting upper and lower bounds for |T2η2(Uj , Xj |qn)| (lemma 2.4.2) guarantees existence of N4(η2) ∈ N such

that for all n ≥ N4(η2), we have

P (ε1j) ≤ 4 exp

{
−n log π

[
sj
n
− tj
n

+
log |cjX |
n log π

−
(

1 +
H(Xj |Q)

log π
− H(Uj , Xj |Q)

log π
+

8η2

log π

)]}
+

4 exp

{
−n log π

[
sj
n
− tj
n
−
(

1− H(Uj |Q)

log π
+

35η2

log π

)]}
+ 4 exp

{
−n
[

log |cjX |
n

− 32η2

]}
.

Employing bounds on
sj
n ,

tj
n ,

log |CjX |
n in (4.11), (4.12) and the definition of δ, we have

P (ε1j) ≤ 4 exp {−n [δ − η3 (1 + log π)− 8η2]}+ 4 exp {−n [δ − 36η2]}+ 4 exp {−n [δ − η3 − 32η2]}

≤ 12 exp

{
−n
(
δ − η [36 + log π]

2d

)}
(C.3)

for n ≥ N5(η) : = max {N3(η2), N4(η2)}. Before, we conclude this appendix, let us confirm Lj(n) grows exponentially

with n. This would imply ε1j ⊆ εlj and therefore ε1j ∩ εclj = φ, the empty set. From (C.1), (C.2), we have

Lj(n) =
1

2
E {φj(qn,Mj)} =

T0

2
≥ exp {−nH(Xj |Q) + 4nη2} |cjX ||T2η2

(Uj , Xj |qn)|
2πtj+n−sj

≥ 1

2
exp

{
n log π

[
sj
n
− tj
n

+
log |cjX |
n log π

−
(

1 +
H(Xj |Q)

log π
− H(Uj , Xj |Q)

log π

)]}
≥ 1

2
exp

{
n log π

[
Sj − Tj − η3 +

Kj − η3

n log π
−
(

1 +
H(Xj |Q)

log π
− H(Uj , Xj |Q)

log π

)]}
(C.4)

≥ 1

2
exp {n [δ − η3(1 + log π)]} , (C.5)

where (C.4) follows from (4.11), (4.12) and the choice of (Sj , Tj ,Kj , Lj : j = 2, 3). With η3 = η
2d
≤ δ

2d
, Lj(n) grows

exponentially with n if 2d > 1 + log π.
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Appendix D

Upper bound on P (ε̃c1 ∩ ε3)

In the first step, we derive an upper bound on P (ε̃c1 ∩ ε2), where ε̃1 = ε1 ∪ εl, and

ε2 = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X)) /∈ Tη4(Q,U2, U3, X)} . (D.1)

was defined in (4.15). In the second step, we employ the result of conditional frequency typicality to provide an

upper bound on P ((ε1 ∪ εl2 ∪ εl3 ∪ ε2)c ∩ (ε31 ∪ ε32 ∪ ε33)).

As an astute reader might have guessed, the proof of first step will employ conditional independence of the triple

X1, (U2, X2), (U3, X3) given Q. The proof is non-trivial because of statistical dependence of the codebooks. We begin

with the definition

Θ(qn) : =

 (un2 , u
n
3 , x

n) ∈ Un2 × Un3 ×X
n : (qn, unj , x

n
j ) ∈ T2η2

(Q,Uj , Xj) : j = 2, 3

(qn, xn1 ) ∈ T2η2(Q,X1), (qn, un2 , u
n
3 , x

n) /∈ Tη4
(Q,U2, U3, X))

 .

Observe that

P (ε̃c1 ∩ ε2) =
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

P
(
Ij(A

sj )=Mj1,U
n
j (Asj )=unj ,X

n
j (MjX ,BjX)=xnj

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)}:j=2,3,Xn1 (M1)=xn1

)

=
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

P

 ⋃
as2∈Us22

⋃
as3∈Us33

⋃
b2X∈
c2X

⋃
b3X∈
c3X

{
Ij(a

sj )=Mj1,U
n
j (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,A

sj=asj

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)},BjX=bjX :j=2,3,Xn1 (M1)=xn1

}
≤

∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

∑
as2∈
Us22

∑
as3∈
Us33

∑
b2X∈
c2X

∑
b3X∈
c3X

P

(
Ij(a

sj )=Mj1,U
n
j (asj )=unj

Xnj (MjX ,bjX)=xnj ,2φj(q
n,Mj)≥

E{φj(qn,Mj)}:j=2,3,Xn1 (M1)=xn1

)
P

(
Asj=asj
BjX=bjX

:j=2,3

∣∣∣∣ Ij(a
sj )=Mj1,U

n
j (asj )=unj

Xnj (MjX ,bjX)=xnj ,2φj(q
n,Mj)≥

E{φj(qn,Mj)}:j=2,3,Xn1 (M1)=xn1

)
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≤
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

∑
as2∈
Us22

∑
as3∈
Us33

∑
b2X∈
c2X

∑
b3X∈
c3X

P

(
Ij(a

sj )=Mj1,U
n
j (asj )=unj

Xnj (MjX ,bjX)=xnj ,:j=2,3

Xn1 (M1)=xn1

) 3∏
j=2

P
(
Asj=asj
BjX=bjX

∣∣∣ Ij(a
sj )=Mj1

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)}

)
. (D.2)

Let us now evaluate a generic term in the above sum (D.2). Since the codebooks C1, C2, C3,Λ2,Λ2 are mutually

independent, the probability of the event in question factors as

P
(
Unj (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,

Ij(a
sj )=Mj1:j=2,3,Xn1 (M1)=xn1

)
= P (Xn

1 (M1) = xn1 )P
(
Unj (asj )=unj ,

Ij(a
sj )=Mj1

: j = 2, 3
) 3∏
j=2

P (Xn
j (MjX , bjX) = xnj )

Furthermore, (i) mutual independence of Ij(a
sj ) : asj ∈ Usjj : j = 2, 3, G3, B

n
2 , B

n
3 , (ii) uniform distribution of the

indices Ij(a
sj ) : asj ∈ Usjj : j = 2, 3 and (iii) distribution of codewords in Cj : j = 1, 2, 3 imply

P
(
Unj (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,

Ij(a
sj )=Mj1:j=2,3,Xn1 (M1)=xn1

)
= P (Unj (asj ) = unj : j = 2, 3)

∏3
j=1

∏n
t=1 pXj |Q(xjt|qt)
πt2+t3

(D.3)

The following simple lemma enables us characterize P (Unj (asj ) = unj : j = 2, 3).

Lemma D.0.5 Let s2, s3, n ∈ N be such that s2 ≤ s3. Let GT3 : = [GT2 GT3/2] ∈ Fs3×nπ be a random matrix such

that G2 ∈ Fs2×nπ and Bn2 , B
n
3 ∈ Fnπ be random vectors such that G3, B

n
2 , B

n
3 be mutually independent and uniformly

distributed over their respective range spaces. For j = 2, 3 and any asj ∈ Fsjπ , let U(asj ) : = asjGj⊕Bnj be a random

vector in the corresponding coset. Then P (Unj (asj ) = unj : j = 2, 3) = 1
π2n .

Proof: The proof follows from a simple counting argument. It maybe verified that for every g3 ∈ Fs3×nπ , there

exists a unique pair of vectors bn2 , b
n
3 ∈ Fnπ such that asjgj ⊕ bnj = unj for j = 2, 3. Therefore

|
{

(g3, b
n
2 , b

n
3 ) ∈ Fs3×nπ ×Fnπ ×Fnπ : asjgj ⊕ bnj = unj for j = 2, 3

}
| = πns3 .

Now employing the mutually independence and uniformly distribution of G3, B
n
2 , B

n
3 , we have the probability of the

event in question to be

|
{

(g3, b
n
2 , b

n
3 ) ∈ Fs3×nπ ×Fnπ ×Fnπ : asjgj ⊕ bnj = unj for j = 2, 3

}
|

|
{

(g3, bn2 , b
n
3 ) ∈ Fs3×nπ ×Fnπ ×Fnπ

}
|

=
πns3

πns3+2n
=

1

π2n
.

We therefore have

P
(
Unj (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,

Ij(a
sj )=Mj1:j=2,3,Xn1 (M1)=xn1

)
=

∏3
j=1

∏n
t=1 pXj |Q(xjt|qt)
π2n+t2+t3

≤
∏n
t=1 pX1|Q(x1t|qt) exp {−nH(X2|Q)}

exp {−8nη2 + nH(X3|Q)}π2n+t2+t3
(D.4)
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Encoders 2 and 3 choose one among the jointly typical pairs uniformly at random. Hence,

3∏
j=2

P
(
Asj=asj
BjX=bjX

∣∣∣ Ij(a
sj )=Mj1

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)}

)
=

4

E {φ2(qn,M2)}E {φ3(qn,M3)}
. (D.5)

It maybe verified from (C.1) that

2Lj(n) = E {φj(qn,Mj)} ≥ πsj−tj−n|cjX | exp {−n(H(Xj |Q) + 4η2)} |T2η2
(Uj , Xj |qn)|. (D.6)

Substituting (D.6), (D.5) and (D.4) in (D.2), we have

P (ε̃c1 ∩ ε2) ≤
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

exp{n8η2}
∏n
t=1 pX1|Q(x1t|qt)

|T2η2(U2, X2|qn)||T2η2(U3, X3|qn)|

≤
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1|Q(x1t|qt)
exp {16nη2 − nH(U3, X3|Q)}

exp {nH(U2, X2|Q)}
(D.7)

where the last inequality follows from lower bound on size of the conditional typical set (lemma 2.4.2). We now

employ the lower bound for conditional probability of jointly typical vectors. In particular,

exp {−nH(Uj , Xj |Q)− 4nη2} ≤
n∏
t=1

pUj ,Xj |Q(ujt, xjt|qt) ≤ exp {−nH(Uj , Xj |Q) + 4nη2} (D.8)

for any (un2 , u
n
3 , x

n) ∈ Θ(qn). Substituting lower bound (D.8) in (D.7), for n ≥ N1(η3), we have

P (ε̃c1 ∩ ε2) ≤

 ∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1|Q(x1t|qt)
3∏
j=2

n∏
t=1

pUjXj |Q(ujtxjt|qt)

 exp {24nη2}

≤

 ∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1U2X2U3X3|Q(x1t, u2t, x2t, u3t, x3t|qt)

 exp {24nη2} , (D.9)

where (D.9) follows from conditional mutual independence of the triple X1, (U2, X2) and (U3, X3) given Q. We now

employ the exponential upper bound claimed in (2.1) of lemma 2.3.1.1 Under the condition η4 ≥ 4η2, a ‘conditional

1In reality, we need a ‘conditional version’ of (2.1) of lemma 2.3.1. Establishing this only involves substituting the exponential upper
bound stated in lemma 2.3.2 in place of the Cheybyshev inequality in lemma 2.4.1.
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version’ of lemma 2.3.1 guarantees existence of N6(η4) ∈ N and µ > 0, such that for all n ≥ N6(η4),

∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1U2X2U3X3|Q(x1t, u2t, x2t, u3t, x3t|qt) ≤ 2 exp{−n3µη2
4} (D.10)

to enable us conclude

P (ε̃c1 ∩ ε2) ≤ 2 exp{−n(n2µη2
4 − 2η1 − 2η3 log π − 16η2)} = 2 exp{−n

(
n2µη2

4 −
η

2d−5

)
} (D.11)

for all n ≥ N7(η) : = max{N6(η4), N1(η3)}.

This gets us to the second step where we seek an upper bound on P ((ε̃1 ∪ ε2)c ∩ ε3), where

ε3 = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X), Y n) /∈ T2η4

(Q,X1, U2, U3, X, Y )} (D.12)

was defined in (4.16). Deriving an upper bound on P ((ε̃1 ∪ ε2)c ∩ ε3) employs conditional frequency typicality and

the Markov chain (Q,U2, U3)−X−Y . In the sequel, we prove existence of N12(η4) ∈ N such that for all n ≥ N8(η4),

P (εc2 ∩ ε3) ≤ η4

32 .

If

Θ(qn) : =

 (un2 , u
n
3 , x

n, yn) ∈ Un2 × Un3 ×X
n × Yn : (un2 , u

n
3 , x

n) ∈ Tη4
(U2, U3, X|qn),

(un2 , u
n
3 , x

n, yn) /∈ T2η4(U2, U3, X, Y |qn)

 ,

then

P (εc2 ∩ ε3) =
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj ) = unj , X

n
j (MjX , BjX) = xnj : j = 2, 3, Xn

1 (M1) = xn1 , Y
n = yn

)

=
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

)
P
(
Y n = yn

∣∣∣Unj (Asj )=unj ,X
n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

)

=
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

) n∏
t=1

WY |X(y
t
|xt)

=
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

) n∏
t=1

pY |XU2U3
(y
t
|xt, u2t, u3t) (D.13)

≤
∑

(un2 ,u
n
3 ,x

n)∈
Tη4 (U2,U3,X|qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

) ∑
yn:yn /∈

T2η4
(Y |un2 ,u

n
3 ,x

n)

n∏
t=1

pY |XU2U3
(y
t
|xt, u2t, u3t), (D.14)
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where (D.13) follows from the Markov chain (Q,U2, U3) −X − Y . Once again, the lower bound on the probability

of conditional typical set (lemma 2.4.1) enables us conclude the existence N8(η4) ∈ N such that for all n ≥ N8(η4),

∑
yn∈

T2η4(Y |un2 ,u
n
3 ,x

n)

n∏
t=1

pY |XU2U3
(y
t
|xt, u2t, u3t) ≤

η4

32

and therefore P (εc2 ∩ ε3) ≤ η4

32 .
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Appendix E

Upper bound on P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41)

In this appendix, our objective is to derive an upper bound on P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41). Recall that ε̃1 = ε1 ∪ εl,

(ε1 ∪ ε2 ∪ ε3)c ∩ ε41 =
⋃

as3∈Us33

⋃
m̂1 6=M1

{(
Unj (Asj ):j=2,3,Xn1 (M1),

Xnj (MjX ,BjX),:j=2,3,Y n1

)
∈T̂ (qn),

(
Un⊕(as3 ),Y n1
Xn1 (m̂1)

)
∈T4η4

(U2⊕U3,Y1,X1|qn)

}
.

where

T̂ (qn) : =
{

(un2 ,u
n
3 ,x

n,yn1 )∈
Un2 ×U

n
3 ×X

n×Yn1
:

(un2 ,u
n
3 ,x

n,yn1 )∈T2η4 (U2,U3,X,Y1|qn),(un2 ,u
n
3 ,x

n)∈Tη4 (U2,U3,X|qn)

(unj ,x
n
j )∈T2η2

(Uj ,Xj |qn):j=2,3,xn1∈T2η2
(X1|qn)

}
.

Employing the union bound, we have

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤
∑
âs3∈
Us33

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

∑
(ûn,x̂n1 )∈

T4η4
(U2⊕U3,X1|yn1 ,q

n)

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

I(Asj )=Mj1,X
n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
.(E.1)

We evaluate a generic term in the above sum. Defining S (âs3) : = {(as2 , as3) ∈ Us22 × U
s3
3 : as20s+ ⊕ as3 6= âs3},

where s+ : = s3 − s2, S c(âs3) : = (Us22 × U
s3
3 ) \S (âs3), and

E : =

{
Xnj (mjX ,bjX)=xnj ,U

n
j (asj )=unj ,Mj=mj

I(asj )=mj1X
n
1 (m1)=xn1 ,U⊕(âs3 )=ûn,

Xn1 (m̂1)=x̂n1 ,M1=m1:j=2,3,

}
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we have

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

I(Asj )=Mj1,X
n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
=
∑
m2,m3

∑
b2X ,b3X

∑
(as2 ,as3 )
∈S (âs3 )

P
(
E ∩ εcl ∩

{
Y n1 =yn1 ,A

sj=asj

BjX=bjX :j=2,3

})

+
∑
m2,m3

∑
b2X ,b3X

∑
(as2 ,as3 )
∈S c(âs3 )

P
(
E ∩ εcl ∩

{
Y n1 =yn1 ,A

sj=asj

BjX=bjX :j=2,3

})
(E.2)

Note that

P
(
Y n1 = yn1

∣∣∣E ∩ εcl ∩ { Asj=asj
BjX=bjX :j=2,3

})
= Wn

Y1|X(yn1 |xn), (E.3)

P
(
E ∩ εcl ∩

{
Asj=asj

BjX=bjX :j=2,3

})
= P (E)P

(
Asj=asj

BjX=bjX :j=2,3

∣∣∣E ∩ εcl) = P (E) 1
L2(n)L3(n) (E.4)

Moreover, for (un2 , u
n
3 , x

n
1 , x

n
2 , x

n
3 , y

n
1 ) ∈ T̂ (qn), (ûn, x̂n1 ) ∈ T4η4

(U2 ⊕ U3, X1|yn1 , qn), we have

P (E) ≤


P (Mj=mj :j=2,3,M1=m1)

π3n+t2+t3 exp{n(H(X1|Q)+
∑3
j=1 H(Xj |Q)−20η4)} if (as2 , as3) ∈ S (âs3),

P (MjX=mjX :j=2,3,M1=m1)Wn
Y1|X

(yn1 |x
n)1{ûn=un2⊕u

n
3 }

π2n+t2+t3 exp{n(H(X1|Q)+
∑3
j=1 H(Xj |Q)−20η4)} if (as2 , as3) ∈ S c(âs3)

(E.5)

In deriving the above upper bounds, we have used the upper bound on conditional probability of jointly typical

sequences proved in lemma 2.2.3(iii). We have also employed independence of (triple in the former and pair in the

latter) codewords in the coset code. Substituting (E.3), (E.4) and (E.5), in (E.2), we have

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

I(Asj )=Mj1,X
n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
≤

πs2−t2P (M1=m1)Wn
Y1|X

(yn1 |x
n)|c2X ||c3X |

π2n+t3 exp{n(H(X1|Q)+
∑3
j=1 H(Xj |Q)−20η4)}

[
πs3

πn + 1{ûn=un2⊕un3 }
]

L2(n)L3(n)
.(E.6)

Our next step is to substitute (E.6) in (E.1). Let us restate (E.1) below as (E.7) for ease of reference.

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤
∑
âs3∈
Us33

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

∑
(ûn,x̂n1 )∈

T4η4
(U2⊕U3,X1|yn1 ,q

n)

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

I(Asj )=Mj1,X
n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
.(E.7)

We do some spade work before we substitute (E.6) in (E.7). (E.6) is a sum of two terms. The first term is not

dependent on the arguments of the outermost summation in (E.7). Moreover, lemma 2.4.2 guarantees existence of

N9(η4) ∈ N such that for all n ≥ N9(η4), we have |T4η4
(U2⊕U3, X1|yn1 , qn)| ≤ exp {n(H(U2 ⊕ U3, X1|Y1, Q)) + 8η4}.

Substituting this upper bound, the summation in (E.7) corresponding to the first term in (E.6) is upper bounded by

T1 : =
∑
âs3

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

Wn
Y1|X(yn1 |xn)

L2(n)L3(n)

πs2+s3 |c2X ||c3X |P (M1 = m1) exp{n(H(U2 ⊕ U3, X1|Y1, Q))}

π3n+t2+t3 exp
{
n(H(X1|Q) +

∑3
j=1H(Xj |Q)− 28η4)

} .
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The indicator in the second term of (E.6) restricts the outermost summation in (E.7) to x̂n1 ∈ T4η4
(X1|un2⊕un3 , yn1 , qn).

As earlier, note that the second term is independent of x̂n1 . Once again, employing the lemma 2.4.2, there exists

N10(η4) ∈ N, such that for all n ≥ N10(η4), |T4η4(X1|un2 ⊕ un3 , y
n
1 , q

n)| ≤ exp {n(H(X1|U2 ⊕ U3, Y1, Q) + 8η4)}.

Substituting this upper bound, the summation in (E.7) corresponding to the second term in (E.6) is upper bounded

by

T2 : =
∑
âs3

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

Wn
Y1|X(yn1 |xn)

L2(n)L3(n)

πs2 |c2X ||c3X |P (M1 = m1) exp{n(H(X1|U2 ⊕ U3, Y1, Q))}

π2n+t2+t3 exp
{
n(H(X1|Q) +

∑3
j=1H(Xj |Q)− 28η4)

} .

It can be verified that

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

Wn
Y1|X(yn1 |xn) ≤ min{|T2η2

(U2, X2|qn)||T2η2
(U2, X2|qn)||T2η2

(X1|qn)|, |Tη4
(U2, U3, X|qn)|}. (E.8)

Using (E.8) and lower bounds Lj(n) : j = 2, 3 from (D.6), we have

T1 ≤ 2
πs3 exp{−n(2H(X1|Q)− 8η2 −R1 − η3)}|T2η2

(X1|qn)|
πn exp{−n(H(U2 ⊕ U3, X1|Y1, Q) + 28η4)}

≤ 2
πs3 exp{−n(H(X1|Q)− 12η2 −R1 − η3)}
πn exp{−n(H(U2 ⊕ U3, X1|Y1, Q) + 28η4)}

,

where the last inequality above follows from upper bound on |T2η2
(X1|qn)| (Lemma 2.4.2). An identical sequence of

steps yields

T2 ≤ 2
exp{−n(H(X1|Q)− 28η4 −R1 − η3)}

exp{−n(H(X1|U2 ⊕ U3, Y1, Q) + 12η2)}
.

for sufficiently large n. Employing the upper bound s3
n ≤ S3 + η3, and the choice η1 = η3 = η

2d
, for sufficiently large

n, we have

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 2 exp{n(28η4 + (13 + log π)η3 + S3 log π +R1 − log π −H(X1|Q) +H(X1, U2 ⊕ U3|Y1, Q))}

+2 exp{n(28η4 + (13 + log π)η3 +R1 − I(X1;U2 ⊕ U3, Y1|Q))}.

Employing the definition of δ and η3 = η
2d

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp

{
−n
[
δ − 28η4 −

η(13 + log π)

2d

]}
.

for all n ≥ max {N1(η3), N9(η4), N10(η4)}.
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Appendix F

Upper bound on P ((ε̃1 ∪ ε3)c ∩ ε4j)

While it seems that analysis of this event is similar to the error event over a point-to-point channel, and is therefore

straight forward, the structure of the code lends this considerable complexity. A few remarks are in order. Firstly, the

distribution induced on the codebooks does not lend the bins Cj1(mj1) : mj1 ∈Mj1 to be statistically independent.

Secondly, since the cloud center and satellite codebooks are binned, the error event needs to be carefully partitioned

and analyzed separately.

In this appendix, we seek an upper bound on P ((ε̃1 ∪ ε3)c ∩ ε4j) for j = 2, 3. Let (ε1 ∪ ε3)c ∩ ε4j = ε14j ∪ ε24j ∪ ε34j ,

where

ε14j : =
⋃

m̂j1 6=Mj1

⋃
âsj∈U

sj
j

⋃
b̂jX∈cjX

{
(qn,Uj(â

sj ),Xj(MjX ,b̂jX),Y nj )∈T4η4 (Q,Uj ,Vj ,Yj), (qn,Uj(A
sj ),Xnj (MjX ,BjX))∈

T2η2
(Q,Uj ,Xj), Ij(â

sj )=m̂j1, (qn,Unj (Asj ),Xnj (MjX ,BjX),Y nj )∈T2η4
(Q,Uj ,Xj ,Yj)

}
,

ε24j : =
⋃

m̂jX 6=MjX

⋃
asj∈U

sj
j

⋃
bjX∈cjX

{
(qn,Uj(a

sj ),Xj(m̂jX ,bjX),Y nj )∈T4η4
(Q,Uj ,Vj ,Yj), (qn,Uj(A

sj ),Xnj (MjX ,BjX))∈
T2η2

(Q,Uj ,Xj),Ij(a
sj )=Mj1, (qn,Unj (Asj ),Xnj (MjX ,BjX),Y nj )∈T2η4

(Q,Uj ,Xj ,Yj)

}
,

ε34j : =
⋃
m̂j1 6=
Mj1

⋃
m̂jX 6=
MjX

⋃
asj∈U

sj
j

⋃
bjX∈cjX

{
(qn,Uj(a

sj ),Xj(m̂jX ,bjX),Y nj )∈T4η4
(Q,Uj ,Vj ,Yj), (qn,Uj(A

sj ),Xnj (MjX ,BjX))∈
T2η2

(Q,Uj ,Xj), Ij(a
sj )=m̂j1, (qn,Unj (Asj ),Xnj (MjX ,BjX),Y nj )∈T2η4

(Q,Uj ,Xj ,Yj)

}
.

The event of interest is εcl ∩ (ε14j ∪ ε24j ∪ ε34j). Since εclj ∩ (ε14j ∪ ε24j ∪ ε34j) contains the above error event, it suffices to
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derive upper bounds on P (εclj ∩ ε
1
4j), P (εclj ∩ ε

2
4j), P (εclj ∩ ε

3
4j). We begin by studying P (εclj ∩ ε

1
4j). Defining,

T̃ (qn) : =
{

(unj , x
n
j , y

n
j ) ∈ T2η4

(Uj , Xj , Yj |qn) : (unj , x
n
j ) ∈ T2η2

(Uj , Xj |qn)
}
, we have (F.1)

P (εclj ∩ ε
1
4j) = P

 ⋃
mj1,m̂j1∈Mj1

mj1 6=m̂j1

⋃
âsj

∈ U
sj
j

⋃
b̂jX
∈ cjX

⋃
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

⋃
(ûnj ,x̂

n
j )∈

T4η4
(Uj ,Xj |ynj ,q

n)

{
Uj(A

sj )=unj ,Uj(â
sj )=ûnj ,Mj1=mj1

Ij(A
sj )=mj1,Y

n
j =ynj ,Ij(â

sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

}
∩ εclj


≤

∑
mj1,m̂j1∈Mj1

mj1 6=m̂j1

∑
âsj

∈ U
sj
j

∑
b̂jX
∈ cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

∑
(ûnj ,x̂

n
j )∈

T4η4 (Uj ,Xj |ynj ,q
n)

P

({
Uj(A

sj )=unj ,Uj(â
sj )=ûnj ,Mj1=mj1

Ij(A
sj )=mj1,Y

n
j =ynj ,Ij(â

sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

}
∩ εclj

)
. (F.2)

We now consider two factors of generic term in the above summation. Since Xn
1 (M1), Xn

j (MjX , BjX) is independent

of the collection Uj(A
sj ), Uj(â

sj ),Mj1, Ij(A
sj ), Ij(â

sj ), Xn
j (MjX , BjX), Xn

j (MjX , b̂jX) for any (âsj , b̂jX), and Y n1 −

(Xn
1 (M1), Xn

j (MjX , BjX) : j = 2, 3)− (Uj(A
sj ), Uj(â

sj ),Mj1, Ij(A
sj ), Ij(â

sj ), Xn
j (MjX , b̂jX)) is a Markov chain, we

have

P

(
Y nj = ynj

∣∣∣∣∣ Uj(A
sj )=unj ,Uj(â

sj )=ûnj ,Mj1=mj1
φj(q

n,Mj)≥Lj(n),Ij(A
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

)
= P

(
Y nj = ynj |Xn

j (MjX , BjX) = xnj
)

=: θ̂
(
ynj |xnj

)
.

By the law of total probability, we have

P

(
Uj(A

sj )=unj ,Uj(â
sj )=ûnj ,Mj1=mj1

φj(q
n,Mj)≥Lj(n),Ij(A

sj )=mj1,Ij(â
sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

)
=
∑

mjX∈MjX

∑
asj∈U

sj
j

P

({
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj ,BjX=b̂jX

Asj=asj ,Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,b̂jX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
∩ εclj

)
+

+
∑

mjX∈MjX

∑
asj∈U

sj
j

∑
bjX∈cjX
bjX 6=b̂jX

P

({
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj ,BjX=bjX

Asj=asj ,Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
∩ εclj

)
.

Now recognize that a generic term of the sum in (F.2) is a product of the left hand sides of the above two identities.

Before we substitute the right hand sides of the above two identities in (F.2), we simplify the terms involved in the

second identity (involving the two sums). Denoting

E1 : =

{
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj

Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
, we have,

P

({
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj ,BjX=bjX

Asj=asj ,Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
∩ εclj

)
≤ P

(
E1
)
P
(
Asj=asj

BjX=bjX

∣∣∣E1 ∩ εclj
)

where,

P (E1) = P
(
Mj=mj ,Ij(a

sj )=mj1,Ij(â
sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂n

)
P
(
Unj (âsj )=ûnj
Uj(a

sj )=unj

)
, P

(
Asj=asj

BjX=bjX

∣∣∣E1 ∩ εclj
)

= 1
Lj(n) = 2

E{φj(qn,Mj)}(F.3)
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Let us work with P (E1). If m̂j1 6= mj1 and âsj 6= asj , then lemma 2.2.3(iii) guarantees

P
(
Mj=mj ,Ij(a

sj )=mj1,Ij(â
sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂n

)
P
(
Unj (âsj )=ûnj
Uj(a

sj )=unj

)
≤


P (Mj=mj) exp{−n(2H(Xj |Q))}
π2n+2tj exp{−n4η2−n8η4}

if b̂jX 6= bjX

P (Mj=mj) exp{−n(H(Xj |Q))}
π2n+2tj exp{−n4η2}

otherwise.
(F.4)

Substituting the above observations in (F.2), we have

P (εclj ∩ ε
1
4j) ≤

∑
mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX ,b̂jX
b̂jX 6=bjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
(ûnj ,x̂

n
j )∈

T4η4
(Uj ,Xj |ynj ,q

n)

P (Mj = mj) exp {−2nH(Xj |Q)}
π2n+2tj exp{−n4η2 − n8η4}Lj(n)

+

+
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX∈cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
ûnj ∈

T4η4
(Uj |xnj ,y

n
j ,q

n)

P (Mj = mj) exp {−nH(Xj |Q)}
π2n+2tj exp{−n4η2}Lj(n)

.

We now employ the upper bound on cardinality of the conditional frequency typical sets T4η4(Uj , Xj |ynj , qn) and

T4η4
(Uj |xnj , ynj , qn). There exists N11(η4) ∈ N such that for every n ≥ N11(η4),

|T4η4
(Uj , Xj |ynj , qn)| ≤ exp {n(H(Uj , Xj |Yj , Q) + 8η4)} , |T4η4

(Uj |xnj , ynj , qn)| ≤ exp {n(H(Uj |Xj , Yj , Q) + 8η4)} ,

for any (xnj , y
n
j , q

n) ∈ T2η4(Xj , Yj , Q). Therefore, for n ≥ N11(η4), we have

P (εclj ∩ ε
1
4j) ≤

∑
mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX ,b̂jX
b̂jX 6=bjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) P (Mj = mj) exp {−2nH(Xj |Q) + n16η4}
π2n+2tj exp{−n4η2 − nH(Uj , Xj |Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX∈cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) P (Mj = mj) exp {−nH(Xj |Q) + 8nη4}
π2n+2tj exp{−n4η2 − nH(Uj |Xj , Yj , Q)}Lj(n)

≤
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX ,b̂jX
b̂jX 6=bjX

∑
(unj ,x

n
j )∈

T2η2
(Uj ,Xj |qn)

P (Mj = mj) exp {−2nH(Xj |Q) + n16η4}
π2n+2tj exp{−n4η2 − nH(Uj , Xj |Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX∈cjX

∑
(unj ,x

n
j )∈

T2η2
(Uj ,Xj |qn)

P (Mj = mj) exp {−nH(Xj |Q) + 8nη4}
π2n+2tj exp{−n4η2 − nH(Uj |Xj , Yj , Q)}Lj(n)

.

Substituting the lower bound for Lj(n) from (D.6) and noting that the terms in the summation do not depend on

the arguments of the sum, for n ≥ N11(η4), it can be verified that

P (εclj ∩ ε
1
4j) ≤ 2

πsj exp {−nH(Xj |Q) + 8nη4 + 4nη2}
πn exp{−nH(Uj |Xj , Yj , Q)}

(
exp{−nH(Xj |Q) + 8nη4}

exp{−nH(Xj |Yj , Q)− nKj}
+ 1

)
.
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Finally, substituting the upper bound on
sj
n in (4.11), δ and the choice η1 = η2 = η3 = η

2d
, we have

P (εclj ∩ ε
1
4j) ≤ 2 exp{−n [(log π −H(Uj |Xj , Yj , Q))− Sj log π − (η3 log π + 8η4 + 4η2)]}+

+ 2 exp{−n [(log π +H(Xj |Q)−H(Uj , Xj |Yj , Q))− (Sj log π +Kj)− (η3 log π + 16η4 + 4η2)]}

≤ 4 exp{−n [δ − (η3 log π + 16η4 + 8η2)]} ≤ 4 exp

{
−n
(
δ −

(
η(8 + log π)

2d
+ 16η4

))}
(F.5)

for n ≥ N11(η4).

We follow a similar sequence of steps to derive an upper bound on P (ε24j). Defining T̃ (qn) as in (F.1), we have

P (εclj ∩ ε
2
4j) = P

 ⋃
mjX ,m̂jX∈MjX

m̂jX 6=mjX

⋃
âsj

∈U
sj
j

⋃
b̂jX
∈cjX

⋃
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

⋃
(ûnj ,x̂

n
j )∈

T4η4
(Uj ,Xj |ynj ,q

n)

{
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,Y
n
j =ynj

Ij(A
sj )=Ij(â

sj )=Mj1,MjX=mjX ,
Xnj (MjX ,BjX)=xnj ,Uj(A

sj )=unj

}
∩ εclj


≤

∑
mjX ,m̂jX∈MjX

m̂jX 6=mjX

∑
âsj

∈U
sj
j

∑
b̂jX
∈cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

∑
(ûnj ,x̂

n
j )∈

T4η4 (Uj ,Xj |ynj ,q
n)

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,Y
n
j =ynj

Ij(A
sj )=Ij(â

sj )=Mj1,MjX=mjX ,
Xnj (MjX ,BjX)=xnj ,Uj(A

sj )=unj

}
∩ εclj

)
(F.6)

We now consider two factors of a generic term in the above sum. Since Xn
1 (M1), Xn

j (MjX , BjX) is independent of the

collection Xn
j (m̂jX , b̂jX), Uj(â

sj ), Ij(A
sj ), Ij(â

sj ),MjX , X
n
j (MjX , BjX), Uj(A

sj ) for any (âsj , b̂jX) as long as m̂jX 6=

MjX , and Y n1 −(Xn
1 (M1), Xn

j (MjX , BjX) : j = 2, 3)−(Xn
j (m̂jX , b̂jX), Uj(â

sj ), Ij(A
sj ), Ij(â

sj ),MjX , X
n
j (MjX , BjX),

Uj(A
sj )) is a Markov chain, we have

P

(
Y nj = ynj

∣∣∣∣∣
{

Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â
sj )=ûnj

Ij(A
sj )=Ij(â

sj )=Mj1,MjX=mjX ,
Xnj (MjX ,BjX)=xnj ,Uj(A

sj )=unj

}
∩ εclj

)
= P

(
Y nj = ynj |Xn

j (MjX , BjX) = xnj
)

=: θ̂
(
ynj |xnj

)
.

By the law of total probability, we have

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj
Ij(A

sj )=Ij(â
sj )=Mj1,MjX=mjX ,

Xnj (MjX ,BjX)=xnj ,Uj(A
sj )=unj

}
∩ εclj

)
=

∑
mj1∈Mj1

∑
bjX∈cjX

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,A
sj=âsj

Ij(â
sj )=Mj1,Mj=mj ,BjX=bjX

Xnj (mjX ,bjX)=xnj ,Uj(â
sj )=unj

}
∩ εclj

)

+
∑

mj1∈Mj1

∑
bjX∈cjX

∑
asj∈U

sj
j

asj 6=âsj

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,A
sj=asj

Ij(a
sj )=Ij(â

sj )=Mj1,Mj=mj ,BjX=bjX
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

}
∩ εclj

)
.

Now recognize that a generic term of the sum in (F.6) is a product of the left hand sides of the above two identities.

Before we substitute the right hand sides of the above two identities in (F.6), we simplify the terms involved in the
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second identity (involving the two sums). Denoting

E2 : =

{
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,

Ij(a
sj )=Ij(â

sj )=mj1,Mj=mj
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

}
, we have,

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,A
sj=asj

Ij(a
sj )=Ij(â

sj )=mj1,Mj=mj ,BjX=bjX
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

}
∩ εclj

)
≤ P (E2)P

(
Asj=asj

BjX=bjX

∣∣∣E2 ∩ εclj
)
,

where P
(
Asj = asj , BjX = bjX |E2 ∩ εclj

)
= 1
Lj(n) . Let us now evaluate P (E2). For m̂jX 6= mjX , lemma 2.2.3(iii)

guarantees

P

(
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,

Ij(a
sj )=Ij(â

sj )=mj1,Mj=mj
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

)
= P (Mj = mj)P

(
Xnj (m̂jX ,b̂jX)=x̂nj
Xnj (mjX ,bjX)=xnj

)
P
(
Uj(a

sj )=unj
Uj(â

sj )=ûnj

)
P
(
Ij(a

sj )=mj1
Ij(â

sj )=mj1

)

=


P (Mj=mj) exp{−2nH(Xj |Q)}
πn+tj exp{−4nη2−8nη4}

if asj = âsj , unj = ûnj
P (Mj=mj) exp{−2nH(Xj |Q)}
π2n+2tj exp{−4nη2−8nη4}

if asj 6= âsj
.

Substituting the above observations in (F.6), we have

P (εclj ∩ ε
2
4j) ≤

∑
mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
x̂nj ∈

T4η4
(Xj |unj ,y

n
j ,q

n)

P (Mj = mj) exp {−2nH(Xj |Q)}
πn+tj exp{−n4η2 − n8η4}Lj(n)

+

+
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
(ûnj ,x̂

n
j )∈

T4η4
(Uj ,Xj |ynj ,q

n)

P (Mj = mj) exp {−2nH(Xj |Q)}
π2n+2tj exp{−n4η2 − n8η4}Lj(n)

.

We now employ the upper bounds on |T4η4(Xj |unj , ynj , qn)| and |T4η4(Uj , Xj |ynj , qn)|. There exists N15(η4) ∈ N

such that for all n ≥ N15(η4), |T4η4
(Xj |unj , ynj , qn)| ≤ exp {n(H(Xj |Uj , Yj , Q) + 8η4)} and |T4η4

(Uj , Xj |ynj , qn)| ≤

exp {n(H(Uj , Xj |Yj , Q) + 8η4)} for all (unj , y
n
j , q

n) ∈ T2η4
(Uj , Yj , Q). For n ≥ N15(η4), we have

P (εclj ∩ ε
2
4j) ≤

∑
mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) π−n−tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η2 − n16η4 − nH(Xj |Uj , Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) π−2n−2tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η2 − n16η4 − nH(Xj , Uj |Yj , Q)}Lj(n)

≤
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

∑
(unj ,x

n
j )∈

T2η2 (Uj ,Xj |qn)

π−n−tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η2 − n16η4 − nH(Xj |Uj , Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

∑
(unj ,x

n
j )∈

T2η2
(Uj ,Xj |qn)

π−2n−2tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η2 − n16η4 − nH(Xj , Uj |Yj , Q)}Lj(n)

.

154



Substituting the lower bound for Lj(n) from (D.6), we have

P (εclj ∩ ε
2
4j) ≤ 2

∑
mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

P (Mj = mj) exp {−nH(Xj |Q) + n16η4}
πsj exp{−n8η2 − nH(Xj |Uj , Yj , Q)}|cjX |

+

+2
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

P (Mj = mj)π
−sj exp {−nH(Xj |Q) + n16η4}

πn+tj exp{−n8η2 − nH(Xj , Uj |Yj , Q)}|cjX |

≤ 2
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

P (Mj = mj) exp {−nH(Xj |Q) + n16η4}
exp{−n8η2 − nH(Xj |Uj , Yj , Q)}|cjX |

+

+2
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

P (Mj = mj)π
sj exp {−nH(Xj |Q) + n16η4}

πn+tj exp{−n8η2 − nH(Xj , Uj |Yj , Q)}|cjX |

≤ 2
∑

mj∈Mj

∑
m̂jX 6=mjX

P (Mj = mj) exp {−nH(Xj |Q) + n16η4}
exp{−n8η2 − nH(Xj |Uj , Yj , Q)− nKj}

+

+2
∑

mj∈Mj

∑
m̂jX 6=mjX

P (Mj = mj)π
sj exp {−nH(Xj |Q) + n16η4}

πn+tj exp{−n8η2 − nH(Xj , Uj |Yj , Q)− nKj}

≤ 2
exp {−nH(Xj |Q) + nLj + nη3 + n16η4}
exp{−n8η2 − nH(Xj |Uj , Yj , Q)− nKj}

[
1 +

exp{nH(Uj |Yj , Q)}
πn+tj−sj

]

For n ≥ N16(η) : = max{N15(η4), N12(η2), N1(η3)}, substituting (i) the upper bound on
sj
n in (4.11), (ii) δ, and the

choice η2 = η3 = η
2d

, we have

P (εclj ∩ ε
2
4j) ≤ 2 exp {−n(I(Xj ;Uj , Yj |Q)−Kj − Lj − [9η3 + 16η4])}

+2 exp
{
−n
[(

log π+H(Xj |Q)−
H(Xj ,Uj |Yj ,Q)

)
−
(

Kj+Lj+
(Sj−Tj) log π

)
− [(9 + log π)η3 + 16η4]

]}
≤ 4 exp

{
−n
(
δ −

(
η(9 + log π)

2d
+ 16η4

))}
. (F.7)

We are left to study P (ε34j). Defining T̃ (qn) as in (F.1), and

E3 : =

{
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj
Ij(a

sj )=mj1,Ij(â
sj )=m̂j1

Xnj (mjX ,bjX)=xnj ,Uj(a
sj )=unj ,Mj=mj

}
(F.8)

the union bound yields

P (εclj ∩ ε
3
4j) ≤

∑
mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

∑
asj ,âsj

âsj 6=asj

∑
bjX ,b̂jX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

∑
(ûnj ,x̂

n
j )∈

T4η4
(Uj ,Xj |ynj ,q

n)

P
({

Asj=asj
Y nj =ynj ,BjX=bjX

}
∩ E3 ∩ εclj

)
(F.9)
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As earlier, we consider a generic term in the above sum and simplify the same. Observe that

P
(
Y nj = ynj

∣∣∣{Asj=asj
BjX=bjX

}
∩ E3 ∩ εclj

)
= P

(
Y nj = ynj |Xn

j (MjX , BjX) = xnj
)

=: θ̂
(
ynj |xnj

)
,

P
({

Asj=asj
BjX=bjX

}
∩ E3 ∩ εclj

)
≤ P (E3)P

({
Asj=asj
BjX=bjX

}∣∣∣E3 ∩ εclj
)

≤ P (Mj = mj) exp{−2nH(Xj |Q)}
π2n+2tj exp{−4nη2 − 8nη4}

1

Lj(n)
.

Substituting the above observations in (F.9), we have

P (εclj ∩ ε
3
4j) ≤

∑
mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

∑
asj ,âsj

âsj 6=asj

∑
bjX ,b̂jX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
(ûnj ,x̂

n
j )∈

T4η4
(Uj ,Xj |ynj ,q

n)

P (Mj = mj) exp{−2nH(Xj |Q)}
π2n+2tj exp{−4nη2 − 8nη4}Lj(n)

.

There exists N15(η4) ∈ N such that for all n ≥ max {N12(η2), N15(η4)}, we have

|T4η4(Uj , Xj |ynj , qn)| ≤ exp {n(H(Uj , Xj |Yj , Q) + 8η4)} for all (ynj , q
n) ∈ T2η4(Yj , Q)

and hence

P (εclj ∩ ε
3
4j) ≤

∑
mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

∑
asj ,âsj

âsj 6=asj

∑
bjX ,b̂jX

∑
(unj ,x

n
j )∈

T2η2
(Uj ,Xj |qn)

π−2n−2tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η2 − n16η4 − nH(Xj , Uj |Yj , Q)}Lj(n)

≤ 2
∑

mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

πsjP (Mj = mj) exp {−nH(Xj |Q) + n16η4}
πn+tj exp{−n8η2 − nH(Xj , Uj |Yj , Q)− nKj}

≤ 2
πsjP (Mj = mj) exp {−nH(Xj |Q) + n16η4 + nLj}
πn exp{−n8η2 − nH(Xj , Uj |Yj , Q)− nKj − nη3}

≤ 2 exp
{
−n
[(

log π+H(Xj |Q)−
H(Xj ,Uj |Yj ,Q)

)
−
(
Kj+Lj+
Sj log π

)
−
(

9η3+16η4
+ log πη3

)]}
≤ 2 exp

{
−n
(
δ −

(
η(9 + log π)

2d
+ 16η4

))}
. (F.10)

We now collect all the upper bounds derived in (F.5), (F.7) and (F.10). For n ≥ max {N14(η), N16(η)}, we have

P ((ε̃1 ∪ ε3)c ∩ ε4j) ≤ 10 exp

{
−n
(
δ −

(
η(9 + log π)

2d
+ 16η4

))}
(F.11)
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Appendix G

Characterization for no rate loss in

PTP-STx

We now develop the connection between upper bound (5.54) and the capacity of a point to point channel with

non-causal state [7]. We only describe the relevant additive channel herein and refer the interested reader to either

to [7] or [26, Chapter 7] for a detailed study. The notation employed in this section and appendix H is specific to

these sections.

Consider a point to point channel with binary input and output alphabets X = Y = {0, 1}. The channel transition

probabilities depend on a random parameter, called state that takes values in the binary alphabet S = {0, 1}. The

discrete time channel is time-invariant, memoryless and used without feedback. The channel is additive, i.e., if S,X

and Y denote channel state, input and output respectively, then P (Y = x ⊕ s|X = x, S = s) = 1 − δ, where ⊕

denotes addition in binary field and δ ∈ (0, 1
2 ). The state is independent and identically distributed across time with

P (S = 1) = ε ∈ (0, 1).1 The input is constrained by an additive Hamming cost, i.e., the cost of transmitting xn ∈ Xn

is
∑n
t=1 1{xt=1} and average cost of input per symbol is constrained to be τ ∈ (0, 1

2 ).

The quantities of interest - left and right hand sides of (5.63) - are related to two scenarios with regard to

knowledge of state for the above channel. In the first scenario we assume the state sequence is available to the

encoder non-causally and the decoder has no knowledge of the same. In the second scenario, we assume knowledge

of state is available to both the encoder and decoder non-causally. Let CT (τ, δ, ε), CTR(τ, δ, ε) denote the capacity of

the channel in the first and second scenarios respectively. It turns out, the left hand side of (5.63) is upper bounded

by C(τ, δ, ε) and the right hand side of (5.63) is CTR(τ, δ, ε). A necessary condition for (5.63) to hold, is therefore

CT (τ, δ, ε) = CTR(τ, δ, ε). For the point to point channel with non-causal state, this equality is popularly referred to

1Through appendices G,H we prove if δ, τ ∈ (0, 1
2

) and ε ∈ (0, 1), then αT (τ, η, ε) < hb(τ ∗η)−hb(η). This implies statement of lemma

G.0.13.
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as no rate loss. We therefore seek the condition for no rate loss.

The objective of this section and appendix H is to study the condition under which CT (τ, δ, ε) = CTR(τ, δ, ε).

In this section, we characterize each of these quantities, in the standard information theoretic way, in terms of a

maximization of an objective function over a particular collection of probability mass functions.

We begin with a characterization of CT (τ, δ, ε) and CTR(τ, δ, ε).

Definition G.0.6 Let DT (τ, δ, ε) denote the set of all probability mass functions pUSXY defined on U × S × X × Y

that satisfy (i) pS(1) = ε, (ii) pY |XSU (x ⊕ s|x, s, u) = pY |XS(x ⊕ s|x, s) = 1 − δ, (iii) P (X = 1) ≤ τ . For

pUSXY ∈ DT (τ, δ, ε), let αT (pUSXY ) = I(U ;Y )− I(U ;S) and αT (τ, δ, ε) = sup
pUSXY ∈DT (τ,δ,ε)

αT (pUSXY ).

Theorem G.0.7 CT (τ, δ, ε) = αT (τ, δ, ε)

This is a well known result in information theory and we refer the reader to [7] or [26, Section 7.6, Theorem 7.3] for

a proof.

Definition G.0.8 Let DTR(τ, δ, ε) denote the set of all probability mass functions pSXY defined on S × X × Y

that satisfy (i) pS(1) = ε, (ii) pY |XS(x ⊕ s|x, s) = 1 − δ, (iii) P (X = 1) ≤ τ . For pSXY ∈ DTR(τ, δ, ε), let

αTR(pSXY ) = I(X;Y |S) and αTR(τ, δ, ε) = sup
pSXY ∈DTR(τ,δ,ε)

αTR(pSXY ).

Theorem G.0.9 CTR(τ, δ, ε) = αTR(τ, δ, ε)

This can be argued using Shannon’s characterization of point to point channel capacity [1] and we refer the reader

to [26, Section 7.4.1] for a proof.

Remark G.0.10 From the definition of CT (τ, δ, ε) and CTR(τ, δ, ε), it is obvious that CT (τ, δ, ε) ≤ CTR(τ, δ, ε), we

provide an alternative argument based on theorems G.0.7, G.0.9. For any pUSXY ∈ DT (τ, δ, ε), it is easy to verify the

corresponding marginal pSXY ∈ DTR(τ, δ, ε) and moreover αT (pUSXY ) = I(U ;Y )− I(U ;S) ≤ I(U ;Y S)− I(U ;S) =

I(U ;Y |S) = H(Y |S) − H(Y |US) ≤ H(Y |S) − H(Y |USX)
(a)
= H(Y |S) − H(Y |SX) = I(X;Y |S) = αTR(pSXY ) ≤

CTR(τ, δ, ε), where (a) follows from Markov chain U − (S,X)− Y ((ii) of definition G.0.6). Since this this true for

every pUSXY ∈ DT (τ, δ, ε), we have CT (τ, δ, ε) ≤ CTR(τ, δ, ε).

We provide an alternate characterization for CTR(τ, δ, ε).

Lemma G.0.11 For pUSXY ∈ DT (τ, δ, ε), let βTR(pUSXY ) = I(U ;Y |S) and βTR(τ, δ, ε) = sup
pUSXY ∈DT (τ,δ,ε)

βTR(pUSXY ).

Then βTR(τ, δ, ε) = αTR(τ, δ, ε) = CTR(τ, δ, ε).

Proof: We first prove βTR(τ, δ, ε) ≤ αTR(τ, δ, ε). Note that for any pUSXY ∈ DT (τ, δ, ε), the corresponding marginal

pSXY ∈ DTR(τ, δ, ε). Moreover, βTR(pUSXY ) = I(U ;Y |S) = H(Y |S) − H(Y |US) ≤ H(Y |S) − H(Y |USX)
(a)
=

H(Y |S) − H(Y |SX) = I(X;Y |S) = αTR(pSXY ), where (a) follows from Markov chain U − (S,X) − Y ((ii) of

definition G.0.6). Therefore, βTR(τ, δ, ε) ≤ αTR(τ, δ, ε). Conversely, given pSXY ∈ DTR(τ, δ, ε), define U = {0, 1}

and a probability mass function qUSXY defined on U × S × X × Y as qUSXY (u, s, x, y) = pSXY (s, x, y)1{u=x}.
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Clearly qSXY = pSXY and hence (i) and (iii) of definition G.0.6 are satisfied. Note that qUSX(x, s, x) = pSX(s, x),

and hence qY |XSU (y|x, s, x) = pY |XS(y|x, s) = WY |XS(y|x, s). Hence qUSXY ∈ DTR(τ, δ, ε). It is easy to verify

βTR(qUSXY ) = αTR(pSXY ) and therefore βTR(τ, δ, ε) ≥ αTR(τ, δ, ε).

We now derive a characterization of the condition under which CTR(τ, δ, ε) = CT (τ, δ, ε). Towards that end, we first

prove uniqueness of the pmf that achieves CTR(τ, δ, ε).

Lemma G.0.12 Suppose pSXY , qSXY ∈ DTR(τ, δ, ε) are such that αTR(pSXY ) = αTR(qSXY ) = CTR(τ, δ, ε), then

pSXY = qSXY . Moreover, if αTR(pSXY ) = CTR(τ, δ, ε), then pSX = pSpX , i.e., S and X are independent.

Proof: Clearly, if qSXY ∈ DTR(τ, δ, ε) satisfies qSX = qSqX with qX(1) = τ , then αTR(qSXY ) = hb(τ ∗ δ) − hb(δ)

and since CTR(τ, δ, ε) ≤ hb(τ ∗ δ) − hb(δ),2 we have CTR(τ, δ, ε) = hb(τ ∗ δ) − hb(δ). Let pSXY ∈ DTR(τ, δ, ε) be

another pmf for which αTR(pSXY ) = hb(τ ∗ δ) − hb(δ). Let χ0 : = pX|S(1|0) and χ1 : = pX|S(1|1). αTR(pSXY ) =

I(X;Y |S) = H(Y |S)−H(Y |X,S) = H(X ⊕ S ⊕N |S)− hb(δ). We focus on the first term

H(X ⊕ S ⊕N |S) = (1− ε)H(X ⊕ 0⊕N |S = 0) + εH(X ⊕ 1⊕N |S = 1)

= (1− ε)hb(χ0(1− δ) + (1− χ0)δ) + εhb(χ1(1− δ) + (1− χ1)δ)

≤ hb((1− ε)χ0(1− δ) + (1− ε)(1− χ0)δ + εχ1(1− δ) + ε(1− χ1)δ) (G.1)

= hb(pX(1)(1− δ) + (1− pX(1))δ) = hb(δ + pX(1)(1− 2δ)) ≤ hb(δ + τ(1− 2δ)) = hb(τ ∗ δ) (G.2)

where (G.1) follows from concavity of binary entropy function hb(·) and inequality in (G.2) follows from δ ∈ (0, 1
2 ).

We therefore have αTR(pSXY ) = hb(τ ∗ δ) − hb(δ) if and only if equality holds in (G.1), (G.2). hb(·) being strictly

concave, equality holds in (G.1) if and only if ε ∈ {0, 1} or χ0 = χ1. The range of ε precludes the former and

therefore χ0 = χ1. This proves pSX = pSpX and pX(1) = τ . Given pSXY ∈ DTR(τ, δ, ε), these constrains completely

determine pSXY and we have pSXY = qSXY .

Following is the main result of this section.

Lemma G.0.13 CTR(τ, δ, ε) = CT (τ, δ, ε) if and only if there exists a pmf pUSXY ∈ DT (τ, δ, ε) such that

(i) the corresponding marginal achieves CTR(τ, δ, ε), i.e., αTR(pSXY ) = CTR(τ, δ, ε),

(ii) S − Y − U is a Markov chain.

(iii) X − (U, S)− Y is a Markov chain.

Proof: We first prove the reverse implication, i.e., the if statement. Note that CTR(τ, δ, ε) = αTR(pSXY ) =

I(X;Y |S) = H(Y |S) − H(Y |XS)
(a)
= H(Y |S) − H(Y |XSU)

(b)
= H(Y |S) − H(Y |US) = I(U ;Y |S) = I(U ;Y S) −

2This can be easily verified using standard information theoretic arguments.
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I(U ;S)
(c)
= I(U ;Y )− I(U ;S) ≤ CT (τ, δ, ε), where (a) follows from (ii) of definition G.0.6, (b) follows from hypothesis

3) and (c) follows from hypothesis 2). We therefore have CTR(τ, δ, ε) ≤ CT (τ, δ, ε), and the reverse inequality follows

from remark G.0.10.

Conversely, let pUSXY ∈ DT (τ, δ, ε) achieve CT (τ, δ, ε), i.e., αT (pUSXY ) = CT (τ, δ, ε). We have CT (τ, δ, ε) =

αT (pUSXY ) = I(U ;Y )−I(U ;S)
(b)

≤ I(U ;Y S)−I(U ;S) = I(U ;Y |S) = H(Y |S)−H(Y |US)
(c)

≤ H(Y |S)−H(Y |USX)
(a)
=

H(Y |S)−H(Y |SX) = I(X;Y |S) = αTR(pSXY ) ≤ CTR(τ, δ, ε), where (a) follows from Markov chain U − (S,X)− Y

((ii) of definition G.0.6). Equality of CTR(τ, δ, ε), CT (τ, δ, ε) implies equality in (b), (c) and thus I(U ;S|Y ) = 0 and

H(Y |US) = H(Y |USX) and moreover αTR(pSXY ) = CTR(τ, δ, ε).

For the particular binary additive point to point channel with state, we strengthen the condition for no rate loss

in the following lemma.

Lemma G.0.14 If pUSXY ∈ DT (τ, δ, ε) satisfies

(i) S − Y − U is a Markov chain.

(ii) X − (U, S)− Y is a Markov chain.

then H(X|U, S) = 0, or in other words, there exists a function f : U × S → X such that P (X = f(U, S)) = 1.

Proof: We prove this by contradiction. In particular, we prove H(X|U, S) > 0 violates Markov chain X−(U, S)−Y .

If H(X|U, S) > 0, then H(X ⊕ S|U, S) > 0. Indeed, 0 < H(X|U, S) ≤ H(X,S|U, S) = H(X ⊕ S, S|U, S) =

H(S|U, S)+H(X⊕S|U, S) = H(X⊕S|U, S). Since (U, S,X) is independent of X⊕S⊕Y and in particular, (U, S, S⊕

X) is independent of X⊕S⊕Y , we have H((X⊕S)⊕(X⊕S⊕Y )|U, S) > H(X⊕S⊕Y |U, S) = hb(δ) = H(Y |U, S,X),

where the first inequality follows from concavity of binary entropy function. But (X ⊕ S) ⊕ (X ⊕ S ⊕ Y ) = Y and

we have therefore proved H(Y |U, S) > H(Y |U, S,X) contradicting Markov chain X − (U, S)− Y .

We summarize the conditions for no rate loss below.

Theorem G.0.15 CTR(τ, δ, ε) = CT (τ, δ, ε) if and only if there exists a pmf pUSXY ∈ DT (τ, δ, ε) such that

(i) the corresponding marginal achieves CTR(τ, δ, ε), i.e., αTR(pSXY ) = CTR(τ, δ, ε), and in particular S and X are

independent,

(ii) S − Y − U is a Markov chain.

(iii) X − (U, S)− Y is a Markov chain,

(iv) H(X|U, S) = 0, or in other words, there exists a function f : U × S → X such that P (X = f(U, S)) = 1.
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Appendix H

The binary additive dirty PTP-STx

suffers a rate loss

This section is dedicated to proving proposition 1. We begin with an upper bound on cardinality of auxiliary set

involved in characterization of CT (τ, δ, ε).

Lemma H.0.16 Consider a point to point channel with state information available at transmitter. Let S,X and

Y denote state, input and output alphabets respectively. Let WS ,WY |XS denote pmf of state, channel transition

probabilities respectively. The input is constrained with respect to a cost function κ : X × S → [0,∞). Let DT (τ)

denote the collection of all probability mass functions pUXSY defined on U ×X ×S ×Y, where U is an arbitrary set,

such that (i) pS = WS, (ii) pY |XSU = pY |XS = WY |XS and (iii) E {κ(X,S)} ≤ τ . Moreover, let

DT (τ) =
{
pUXSY ∈ DT (τ) : |U| ≤ min

{
|X |·|S|,

|X |+|S|+|Y|−2

}}
.

For pUXSY ∈ DT (τ), let α(pUXSY ) = I(U ;Y )− I(U ;S). Let

αT (τ) = sup
pUXSY ∈DT (τ)

α(pUXSY ), αT (τ) = sup
pUXSY ∈DT (τ)

α(pUXSY ).

Then αT (τ) = αT (τ).

Proof: The proof is based on Fenchel-Eggleston-Carathéodory [78], [26, Appendix C] theorem which is stated here

for ease of reference.

Lemma H.0.17 let A be a finite set and Q be an arbitrary set. Let P be a connected compact subset of pmfs on

A and pA|Q(·|q) ∈ P for each q ∈ Q. For j = 1, 2, · · · , d let gj : P → R be continuous functions. Then for every

Q ∼ FQ defined on Q, there exist a random variable Q ∼ pQ with |Q| ≤ d and a collection of pmfs pA|Q(·|q) ∈ P,

161



one for each q ∈ Q, such that

∫
Q
gj(pA|Q(a|q))dFQ(q) =

∑
q∈Q

gj(pA|Q(a|q))pQ(q).

The proof involves identifying gj : j = 1, 2 · · · , d such that rate achievable and cost expended are preserved. We first

prove the bound |U| ≤ |X | · |S|.

Set Q = U and A = X × S and P denote the connected compact subset of pmfs on X × S. Without loss

of generality, let X = {1, 2, · · · , |X |} and S = {1, 2, · · · , |S|}. For i = 1, 2, · · · , |X | and k = 1, 2, · · · , |S| − 1, let

gi,k(πX,S) = πX,S(i, k) and gl,|S|(πX,S) = πX,S(l, |S|) for l = 1, 2, · · · , |X | − 1. Let g|X |·|S|(πX,S) = H(S)−H(Y ). It

can be verified that

g|X |·|S|(πX,S) =−
∑
s∈S

(
∑
x∈X

πX,S(x, s)) log2(
∑
x∈X

πX,S(x, s)) +
∑
y∈Y

θ(y) log2(θ(y)), where

θ(y) =
∑

(x,s)∈X×S

πX,S(x, s)WY |XS(y|x, s) (H.1)

where, is continuous. An application of lemma H.0.17 using the above set of functions, the upper bound |X | · |S| on

|U| can be verified.

We now outline proof of upper bound |X | + |S| + |Y| − 2 on |U|. Without loss of generality, we assume X =

{1, · · · , |X |}, S = {1, · · · , |S|} and Y = {1, · · · , |Y|}. As earlier, setQ = U andA = X×S and P denote the connected

compact subset of pmfs on X×S. For j = 1, · · · , |S|−1, let gj(πX,S) =
∑
x∈X πX,S(x, j). For j = |S|, · · · , |S|+|Y|−2,

let gj(πX,S) =
∑

(x,s)∈X×S πX,S(x, s)WY |X,S(j − |S| + 1|x, s). For j = |S| + |Y| − 1, · · · , |S| + |Y| + |X | − 3, let

gj(πX,S) =
∑
s∈S πX,S(j − |S| − |Y|+ 2, s). Let gt(πX,S) = H(S)−H(Y ), i.e.,

gt(πX,S) = −
∑
s∈S

(
∑
x∈X

πX,S(x, s)) log2(
∑
x∈X

πX,S(x, s)) +
∑
y∈Y

θ(y) log2(θ(y)),

where t = |S|+ |Y|+ |X | − 2, and θ(y) as is in (H.1). The rest of the proof follows by simple verification.

Proposition 1 There exists no probability mass function pUXSY defined on U×S×X×Y where U = {0, 1, 2, 3} ,X =

S = Y = {0, 1}, such that

(i) X and S are independent with P (S = 1) = ε, P (X = 1) = τ , where ε ∈ (0, 1), τ ∈ (0, 1
2 ),

(ii) pY |X,S,U (x⊕ s|x, s, u) = pY |X,S(x⊕ s|x, s) = 1− δ for every (u, x, s, y) ∈ U × S × X × Y, where δ ∈ (0, 1
2 ),

(iii) U − Y − S and X − (U, S)− Y are Markov chains, and

(iv) pX|US(x|u, s) ∈ {0, 1} for each (u, s, x) ∈ U × S × X .
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USY pUSY USY pUSY

000 (1− ε)(1− θ)β0 200 (1− ε)(1− θ)β2

001 (1− ε)θγ0 201 (1− ε)θγ2

010 εθβ0 210 εθβ2

011 ε(1− θ)γ0 211 ε(1− θ)γ2

100 (1− ε)(1− θ)β1 300 (1− ε)(1− θ)β3

101 (1− ε)θγ1 301 (1− ε)θγ3

110 εθβ1 310 εθβ3

111 ε(1− θ)γ1 311 ε(1− θ)γ3

Table H.1: pUSY

pUSX(0, 0, 0) = pUS(0, 0)z0 pUSX(0, 1, 0) = pUS(0, 1)z4

pUSX(1, 0, 0) = pUS(1, 0)z1 pUSX(1, 1, 0) = pUS(1, 1)z5

pUSX(2, 0, 0) = pUS(2, 0)z2 pUSX(2, 1, 0) = pUS(2, 1)z6

pUSX(3, 0, 0) = pUS(3, 0)z3 pUSX(3, 1, 0) = pUS(3, 1)z7

Table H.2: pUSX

Proof: The proof is by contradiction. If there exists such a pmf pUSXY then conditions 1) and 2) completely specify

it’s marginal on S × X × Y and it maybe verified that pSY (0, 0) = (1 − ε)(1 − θ), pSY (0, 1) = (1 − ε)θ, pSY (1, 0) =

εθ, pSY (1, 1) = ε(1− θ), where θ : = δ(1− τ) + (1− δ)τ takes a value in (0, 1). Since ε ∈ (0, 1), pSY (s, y) ∈ (0, 1) for

each (s, y) ∈ S × Y. If we let βi : = pU |Y (i|0) : i = 0, 1, 2, 3 and γj : = pU |Y (j|1) : j = 0, 1, 2, 3, then Markov chain

U − Y − S implies pUSY is as in table H.1. Since X is a function of (U, S)1, there exist zi ∈ {0, 1} : i = 0, 1, · · · , 7

such that entries of table H.2 hold true. Moreover, condition 4) and Markov chain X − (U, S) − Y implies pUSXY

is completely determined in terms of entries of table H.1 and zi : i = 0, 1, · · · , 7. For example pUSXY (3, 0, 1, 1) =

pUSY (3, 0, 1)(1− z3). This enables us compute marginal pSXY in terms of entries of table H.1 and zi : i = 0, 1, · · · , 7.

This marginal must satisfy conditions 1) and 2) which implies/is equivalent to the last two columns of table H.3

1With probability 1
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being equal.

pSY X(0, 0, 0) = (1− ε)(1− θ) [β0z0 + β1z1 + β2z2 + β3z3] = (1− τ)(1− ε)(1− δ) (H.2)

pSY X(0, 0, 1) = (1− ε)(1− θ) [1− β0z0 − β1z1 − β2z2 − β3z3] = τ(1− ε)δ

pSY X(0, 1, 0) = (1− ε)θ [γ0z0 + γ1z1 + γ2z2 + γ3z3] = (1− τ)(1− ε)δ (H.3)

pSY X(0, 1, 1) = (1− ε)θ [1− γ0z0 − γ1z1 − γ2z2 − γ3z3] = τ(1− ε)(1− δ)

pSY X(1, 0, 0) = εθ [β0z4 + β1z5 + β2z6 + β3z7] = (1− τ)εδ (H.4)

pSY X(1, 0, 1) = εθ [1− β0z4 − β1z5 − β2z6 − β3z7] = τε(1− δ)

pSY X(1, 1, 0) = ε(1− θ) [γ0z4 + γ1z5 + γ2z6 + γ3z7] = (1− τ)ε(1− δ) (H.5)

pSY X(1, 1, 1) = ε(1− θ) [1− γ0z4 − γ1z5 − γ2z6 − γ3z7] = τεδ

Since ε /∈ {0, 1}, (H.2),(H.5) imply

(1− θ) [β0z0 + β1z1 + β2z2 + β3z3] = (1− θ) [γ0z4 + γ1z5 + γ2z6 + γ3z7]

which further implies

β0z0 + β1z1 + β2z2 + β3z3 = γ0z4 + γ1z5 + γ2z6 + γ3z7 =: ψ1

Similarly (H.3),(H.4) imply

γ0z0 + γ1z1 + γ2z2 + γ3z3 = β0z4 + β1z5 + β2z6 + β3z7 =: ψ2

We now argue there exists no choice of values for zi : i = 0, 1 · · · , 7. Towards that end, we make a couple of

observations. Firstly, we argue ψ1 6= ψ2. Since ε 6= 1 and θ ∈ (0, 1), we have ψ1 = (1−τ)(1−δ)
(1−θ) and ψ2 = (1−τ)δ

θ from

(H.2) and (H.3) respectively. Equating ψ1 and ψ2, we obtain either τ = 1 or τ = 0 or δ = 1
2 . Since none of the latter

conditions hold, we conclude ψ1 6= ψ2. Secondly, one can verify ψ1 +ψ2−1 = δ(1−δ)(1−2τ)
θ(1−θ) . Since δ ∈ (0, 1

2 ), θ ∈ (0, 1)

and τ ∈ (0, 1
2 ), ψ1 +ψ2 > 1. We now eliminate the possible choices for zi : i = 0, 1 · · · , 7 through the following cases.

let m : = |{i ∈ {0, 1, 2, 3} : zi = 1}| and l : = |{i ∈ {4, 5, 6, 7} : zi = 1}|.

Case 1: All of z0, z1, z2, z3 or all of z4, z5, z6, z7 are equal to 0, i.e., m = 0 or l = 0. This implies ψ1 = ψ2 = 0

contradicting ψ1 6= ψ2.

Case 2: All of z0, z1, z2, z3 or all of z4, z5, z6, z7 are equal to 1, i.e., m = 4 or l = 4. This implies ψ1 = ψ2 = 1

contradicting ψ1 6= ψ2.

Cases 1 and 2 imply m, l ∈ {1, 2, 3}.
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SYX pSY X

000 (1− ε)(1− θ) [β0z0 + β1z1 + β2z2 + β3z3] (1− τ)(1− ε)(1− δ)

001 (1− ε)(1− θ) [1− β0z0 − β1z1 − β2z2 − β3z3] τ(1− ε)δ

010 (1− ε)θ [γ0z0 + γ1z1 + γ2z2 + γ3z3] (1− τ)(1− ε)δ

011 (1− ε)θ [1− γ0z0 − γ1z1 − γ2z2 − γ3z3] τ(1− ε)(1− δ)

100 εθ [β0z4 + β1z5 + β2z6 + β3z7] (1− τ)εδ

101 εθ [1− β0z4 − β1z5 − β2z6 − β3z7] τε(1− δ)

110 ε(1− θ) [γ0z4 + γ1z5 + γ2z6 + γ3z7] (1− τ)ε(1− δ)

111 ε(1− θ) [1− γ0z4 − γ1z5 − γ2z6 − γ3z7] τεδ

Table H.3: Enforcing conditions 1) and 2) for pSXY

UXSY pUXSY UXSY pUXSY

0000 (1− ε)(1− θ)β0 2000 (1− ε)(1− θ)β2

0001 (1− ε)θβ3 2001 (1− ε)θγ2

0110 εθβ0 2010 εθβ2

0111 ε(1− θ)β3 2011 ε(1− θ)γ2

1000 (1− ε)(1− θ)β1 3100 (1− ε)(1− θ)β3

1001 (1− ε)θγ1 3101 (1− ε)θβ0

1010 εθβ1 3010 εθβ3

1011 ε(1− θ)γ1 3011 ε(1− θ)β0

Table H.4: pUXSY

Case 3: m = l = 3. If i1, i2, i3 are distinct indices in {0, 1, 2, 3} such that zi1 = zi2 = zi3 = 1, then one among

zi1+4, zi2+4, zi3+4 has to be 0. Else ψ1 = βi1 +βi2 +βi3 and ψ2 = βi1zi1+4 +βi2zi2+4 +βi3zi3+4 = βi1 +βi2 +βi3 = ψ1

contradicting ψ1 6= ψ2. Let us consider the case z0 = z1 = z2 = 1, z3 = z4 = 0 and z5 = z6 = z7 = 1. Table H.4

tabulates pUSXY for this case. We have ψ1 = β0 + β1 + β2 = γ1 + γ2 + γ3 or equivalently ψ1 = 1− β3 = 1− γ0 and

ψ2 = γ0 + γ1 + γ3 = β1 + β2 + β3 or equivalently ψ2 = 1− γ3 = 1− β0. These imply γ3 = β0, γ0 = β3 which further

imply γ1 + γ2 = β1 + β2 (since 1 = γ0 + γ1 + γ2 + γ3 = β0 + β1 + β2+β3). From table H.4, one can verify

pU |XSY (0|0, 0, 1) = β3(1−ε)θ
(1−ε)θ(β3+γ1+γ2) = β3

β1+β2+β3
,

pU |XS(0|0, 0) =
(1− θ)β0 + θβ3

(1− θ)(β0 + β1 + β2) + θ(β3 + γ1 + γ2)
.
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UXSY pUXSY UXSY pUXSY

0000 (1− ε)(1− θ)β0 2000 (1− ε)(1− θ)β2

0001 (1− ε)θγ0 2001 (1− ε)θβ2

0110 εθβ0 2010 εθβ2

0111 ε(1− θ)γ0 2011 ε(1− θ)β2

1000 (1− ε)(1− θ)β1 3100 (1− ε)(1− θ)β3

1001 (1− ε)θγ1 3101 (1− ε)θγ3

1110 εθβ1 3010 εθβ3

1111 ε(1− θ)γ1 3011 ε(1− θ)γ3

Table H.5: pUXSY

The Markov chain U − (X,S) − Y implies pU |XSY (0|0, 0, 1) = pU |XS(0|0, 0). Equating the right hand sides of the

above equations, we obtain (1 − θ)(β0 − β3)(β1 + β2) = 0. Since θ 6= 0, β1 + β2 = 0 or β0 = β3. If β0 = β3, then

1 − β3 = ψ1 = ψ2 = 1 − β0 thus contradicting ψ1 6= ψ2. If β1 + β2 = 0, then β0 + β3 = 1 implying ψ1 + ψ2 = 1

contradicting ψ1 + ψ2 > 1.

Case 4: m = 3, l = 2. Let us assume z0 = z1 = z2 = z6 = z7 = 1, z3 = z4 = z5 = 0. We then have ψ1 = β0 +β1 +β2 =

γ2 +γ3 and ψ2 = γ0 +γ1 +γ2 = β2 +β3. Since β0 +β1 +β2 = 1−β3 and γ0 +γ1 +γ2 = 1−γ3, we have γ2 +γ3 = 1−β3

and β2 + β3 = 1− γ3 and therefore γ2 = β2.Table H.5 tabulates pUSXY for this case. From table H.5, one can verify

pU |XSY (2|0, 0, 1) = β2(1−ε)θ
(1−ε)θ(β2+γ0+γ1) = β2

β2+γ0+γ1
,

pU |XS(2|0, 0) =
β2

(1− θ)(β0 + β1) + θ(γ0 + γ1) + β2
.

The Markov chain U−(X,S)−Y implies pU |XSY (2|0, 0, 1) = pU |XS(2|0, 0). Equating the RHS of the above equations,

we obtain β0 +β1 = γ0 +γ1. This implies β2 +β3 = γ2 +γ3. However ψ1 = β2 +β3 and ψ2 = γ2 +γ3, this contradicting

ψ 6= ψ2.

Let us assume z0 = z1 = z2 = z5 = z6 = 1 and z3 = z4 = z7 = 0. It can be verified that ψ1 = β0+β1+β2 = γ1+γ2

and ψ2 = γ0 + γ1 + γ2 = β1 + β2. This implies ψ1 − ψ2 = β0 = −γ0. Since β0 and γ0 are non-negative, β0 = γ0 = 0

implying ψ1 − ψ2 = 0, contradicting ψ1 6= ψ2.

Case 5: m = 3, l = 1. Assume z0 = z1 = z2 = z4 = 1, z3 = z5 = z6 = z7 = 0. It can be verified that

ψ1 = β0 + β1 + β2 = γ0 and ψ2 = γ0 + γ1 + γ2 = β0. Therefore ψ1 − ψ2 = β1 + β2 and ψ2 − ψ1 = γ1 + γ2. Since

βi, γi : i ∈ {0, 1, 2, 3} are non-negative, ψ1 − ψ2 ≥ 0 and ψ2 − ψ1 ≥ 0 contradicting ψ1 6= ψ2.

Assume z0 = z1 = z2 = z7 = 1 and z3 = z4 = z5 = z6 = 0. In this case, ψ1 = β0 + β1 + β2 = γ3,

ψ2 = γ0 + γ1 + γ2 = 1− γ3. We have ψ1 + ψ2 = 1 contradicting ψ1 + ψ2 > 1.
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UXSY pUXSY UXSY pUXSY

0000 (1− ε)(1− θ)β0 2100 (1− ε)(1− θ)β2

0001 (1− ε)θγ0 2101 (1− ε)θγ2

0110 εθβ0 2010 εθβ2

0111 ε(1− θ)γ0 2011 ε(1− θ)γ2

1000 (1− ε)(1− θ)β1 3100 (1− ε)(1− θ)β3

1001 (1− ε)θγ1 3101 (1− ε)θγ3

1010 εθβ1 3110 εθβ3

1011 ε(1− θ)γ1 3111 ε(1− θ)γ3

Table H.6: pUXSY

Case 6: m = 2, l = 2. Assume z0 = z1 = z4 = z5 = 1, z2 = z3 = z6 = z7 = 0. Note that ψ1 = β0 + β1 = γ0 = γ1,

ψ2 = γ0 + γ1 = β0 + β1 contradicting ψ1 6= ψ2.

Assume z0 = z1 = z6 = z7 = 1, z2 = z3 = z4 = z5 = 0. Note that ψ1 = β0 + β1 = γ2 + γ3, ψ2 = γ0 + γ1 = β2 + β3

contradicting ψ1 + ψ2 > 1.

Assume z0 = z1 = z5 = z6 = 1, z2 = z3 = z4 = z7 = 0. Note that ψ1 = β0 + β1 = γ1 + γ2, ψ2 = γ0 + γ1 = β1 + β2

and therefore β2 + β3 = γ0 + γ3 and β0 + β3 = γ2 + γ3. We observe

ψ1 − ψ2 = β0 − β2 = γ2 − γ0 (H.6)

PMF pUXSY is tabulated in H.6 for this case. Table H.6 enables us compute conditional pmf pU |XSY which is

tabulated in table H.7. Markov chain U − (X,S) − Y implies columns 2 and 4 of table H.7 are identical. This

implies

β0

γ0

(a)
=

β0 + β1

γ0 + γ1

(b)
=
β1

γ1
,
β2

γ2

(c)
=
β2 + β3

γ2 + γ3

(d)
=

β3

γ3
, and

β0

γ0

(e)
=
β0 + β3

γ0 + γ3

(f)
=

β3

γ3
, (H.7)

where (a),(b),(c),(d) in (H.7) is obtained by equating rows 1, 3, 5, 7 of columns 2 and 4 respectively and (e) and (f)

in (H.7) are obtained by equating rows 2 and 8 of columns 2 and 4 respectively. (H.7), enables us conclude

β0

γ0
=
β1

γ1
=
β2

γ2
=
β3

γ3
.

Since β0 + β1 + β2 + β3 = γ0 + γ1 + γ2 + γ3 = 1, we have βi = γi for each i ∈ {0, 1, 2, 3} which yields ψ1 = ψ2 in

(H.6) contradicting ψ1 6= ψ2.
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UXSY pU |XSY UXSY pU |XSY

0000 β0

β0+β1
0001 γ0

γ0+γ1

0110 β0

β0+β3
0111 γ0

γ0+γ3

1000 β1

β0+β1
1001 γ1

γ0+γ1

1010 β1

β1+β2
1011 γ1

γ1+γ2

2100 β2

β2+β3
2101 γ2

γ2+γ3

2010 β2

β1+β2
2011 γ2

γ1+γ2

3100 β3

β2+β3
3101 γ3

γ2+γ3

3110 β3

β0+β3
3111 γ3

γ0+γ3

Table H.7: pU |XSY

Case 7: m = 2, l = 1. Assume z0 = z1 = z4 = 1, z2 = z3 = z5 = z6 = z7 = 0. Note that ψ1 = β0 + β1 = γ0, ψ2 =

γ0 + γ1 = β0 and hence ψ1 − ψ2 = β1 and ψ2 − ψ1 = γ1. Since γ1 and β1 are non-negative, we have ψ1 = ψ2

contradicting ψ1 6= ψ2.

Assume z0 = z1 = z7 = 1, z2 = z3 = z4 = z5 = z6 = 0. Note that ψ1 = β0 +β1 = γ3, ψ2 = γ0 + γ1 = β3 and hence

ψ1 + ψ2 = β0 + β1 + β3 ≤ 1 contradicting ψ1 + ψ2 > 1.

Case 6: m = 1, l = 1. Assume z0 = z4 = 1, z1 = z2 = z3 = z5 = z6 = z7 = 0. Note that ψ1 = beta0 = γ0, ψ2 = γ0 =

β0, thus contradicting ψ1 6= ψ2.

Assume z0 = z5 = 1, z1 = z2 = z3 = z4 = z6 = z7 = 0. Note that ψ1 = β0 = γ1, ψ2 = γ0 = β1, and hence

ψ1 + ψ2 = β0 + β1 ≤ 1, thus contradicting ψ1 + ψ2 > 1.
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Appendix I

Proof of lemma 5.10.2

Since A − B − Y and AB − X − Y are Markov chains, to prove A − B − XY is a Markov chain, it suffices to

prove A−B−X is a Markov chain. We therefore need to prove pXA|B(xk, ai|bj) = pX|B(xk|bj)pA|B(ai|bj) for every

(xk, ai, bj) ∈ {0, 1} × A × B such that pB(bj) > 0. It suffices to prove pXA|B(0, ai|bj) = pX|B(0|bj)pA|B(ai|bj) for

every (ai, bj) ∈ A× B such that pB(bj) > 0.1

Fix a bj for which pB(bj) > 0. Let pA|B(ai|bj) = αi for each i ∈ N and pXA|B(0, ai|bj) = χi for each (i, j) ∈ N×N.

It can be verified pXYA|B(·, ·, ·|bj) is as in table I.1. From table I.1, we infer pAY |B(ai0|bj) = χi(1− η) + (αi−χi)η =

αiη+χi(1− 2η). From the Markov chain A−B−Y , we have pAY |B(ai0|bj) = pA|B(ai|bj)pY |B(0|bj) = αipY |B(0|bj).

Therefore, αipY |B(0|bj) = αiη+χi(1−2η). Since 1−2η 6= 0, we substitute for χi and αi in terms of their definitions

to conclude

pXA|B(0, ai|bj) = χi = αi ·
pY |B(0|bj)− η

1− 2η
= pA|B(ai|bj)

pY |B(0|bj)− η
1− 2η

.

Since
pY |B(0|bj)−η

1−2η is independent of i and bj was an arbitrary element in B that satisfies pB(bj) > 0, we have

established Markov chain A−B −X.

1Indeed, pXA|B(1, ai|bj) = pA|B(ai|bj)− pXA|B(0, ai|bj) = pA|B(ai|bj)(1− pX|B(0|bj)) = pA|B(ai|bj)pX|B(1|bj).

AXY pAXY |B(·, ·, ·|bj) AXY pAXY |B(·, ·, ·|bj) AXY pAXY |B(·, ·, ·|bj) AXY pAXY |B(·, ·, ·|bj)

ai00 χi(1− η) ai01 χiη ai10 (αi − χi)η ai11 (αi − χi)(1− η) =

Table I.1: pAXY |B(·, ·, ·|bj)
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Appendix J

Upper bound on P (εl)

From (5.25), it suffices to derive upper and lower bounds on Var
{
φ(M1,M

t2
2 ,M

t3
3 )
}

and E
{
φ(M1,M

t2
2 ,M

t3
3 )
}

respectively. Note that E
{
φ2(m1,m

t2
2 ,m

t3
3 )
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=
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l=0 Tl, where

T0 = E
{
φ(M1,M
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3 )
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=
∑
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s2
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ũn2∈

T2η2
(U2|qn,vn1 ,u

n
3 )

P

(
V n1 (m1,b1)=vn1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

Un2 (ã
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s3
3 6=a

s3
3

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2
(V1,U |qn)

∑
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s3
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n
3 )∈

T2η2 (V1,U |qn)

P

(
V n1 (m1,b1)=vn1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽn1 ,U
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We have
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We take a closer look at T7. For θ ∈ Fπ, let
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s3
3l = 0 for s2 + 1 ≤ l ≤ s3} ,

D(as22 , a
s3
3 ) : = ∪

θ∈Fπ
Dθ(a

s2
2 , a

s3
3 ) and I (as22 , a

s3
3 ) = Fs2π × Fs3π \ D(as22 , a

s3
3 ). The reader may verify that for
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if ũn3 − θũn2 = un3 − θun2

0 otherwise

For (ãs22 , ã
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which can be verified through a counting process similar to that employed in lemma M.0.18. We therefore have
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s3
3 )∈

B1×I (a
s2
2 ,a

s3
3 )

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2 (V1,U |qn)

∑
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n
j (ã
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Verify that T7I ≤ T 2
0 . We therefore have
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and it suffices to derive lower bound on T0 and upper bounds on Tl : l ∈ [6] and T7D.

Just as we split T7, we split T3 as T3 = T3I + T3D. We let the reader fill in the details and confirm the following
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bounds. From lemmas 2.2.3, 2.4.2, there exists N2(η2) ∈ N, such that for all n ≥ N2(η2),

T0 ≥ |B1|πs2+s3 exp {nH(V1, U |Q)− 4nη2}
π2n+t2+t3 exp {nH(V1|Q) + 4nη2}

T1 ≤ |B1|πs2+2s3 exp {nH(V1, U |Q) + 4nη2 + nH(U3|Q,V1, U2) + 8nη2}
π3n+t2+2t3 exp {nH(V1|Q)− 4nη2}

T2 ≤ |B1|π2s2+s3 exp {nH(V1, U |Q) + 4nη2 + nH(U2|Q,V1, U3) + 8nη2}
π3n+2t2+t3 exp {nH(V1|Q)− 4nη2}

T3I ≤ |B1|π2s2+2s3 exp {nH(V1, U |Q) + 4nη2 + nH(U2, U3|Q,V1) + 8nη2}
π4n+2t2+2t3 exp {nH(V1|Q)− 4nη2}

T3D ≤ π
|B1|π2s2+s3 exp {nH(V1, U |Q,U3 	 θU2) + 8nη2 + nH(U3 	 θU2|Q) + 4nη2}
π3n+2t2+2t3 exp {nH(V1|Q)− 4nη2 − nH(U |Q,V1, U3 	 θU2)− 16nη2}

T4 ≤ |B1|2πs2+s3 exp {nH(V1, U |Q) + 4nη2 + nH(V1|Q,U2, U3) + 8nη2}
π2n+t2+t3 exp {2nH(V1|Q)− 8nη2}

T5 ≤ |B1|2πs2+2s3 exp {nH(V1, U |Q) + 4nη2 + nH(V1, U3|Q,U2) + 8nη2}
π3n+t2+2t3 exp {2nH(V1|Q)− 8nη2}

T6 ≤ |B1|2π2s2+s3 exp {nH(V1, U |Q) + 4nη2 + nH(V1, U2|Q,U3) + 8nη2}
π3n+2t2+t3 exp {2nH(V1|Q)− 8nη2}

T7D ≤ |B1|2π2s2+s3 exp {2nH(V1, U |Q,U3 	 θU2) + 16nη2 + nH(U3 	 θU2|Q) + 4nη2}
π3n+2t2+2t3 exp {2nH(V1|Q)− 8nη2}

We now employ the bounds on the parameters of the code ((5.22) - (5.24)). It maybe verified that, for n ≥

max{N1(η), N2(η2)},

T0

T 2
0

≤ exp

{
−n

(
log |B1|
n

+

(
3∑
l=2

sl − tl
n

)
log π − [2 log π −H(U |Q,V1) + 16η2]

)}
≤ exp

{
−n
(
δ1+ η

8
−16η2

)}
(J.4)

T1

T 2
0

≤ exp

{
−n
(

log |B1|
n

+
s2 − t2
n

log π − [1−H(U2|Q,V1) + 32η2]

)}
≤ exp

{
−n
(
δ1 +

η

8
− 32η2

)}
T2

T 2
0

≤ exp

{
−n
(

log |B1|
n

+
s3 − t3
n

log π − [1−H(U3|Q,V1) + 32η2]

)}
≤ exp

{
−n
(
δ1 +

η

8
− 32η2

)}
T3I

T 2
0

≤ exp

{
−n
(

log |B1|
n

− 32η2

)}
≤ exp

{
−n
(
δ1 +

η

8
− 32η2

)}
T3D

T 2
0

≤ max
θ 6=0

π exp

{
−n
(

log |B1|
n

+
s3

n
log π − [1−H(U3 	 θU2|Q,V1) + 48η2]

)}
≤ π exp {−n (δ1 − 48η2)}

T4

T 2
0

≤ exp

{
−n

((
3∑
l=2

sl − tl
n

)
log π − [2−H(U |Q) + 36η2]

)}
≤ exp {−n (δ1 − 36η2)}

T5

T 2
0

≤ exp

{
−n
(
s2 − t2
n

log π − [1−H(U2|Q) + 36η2]

)}
≤ exp {−n (δ1 − 36η2)}

T6

T 2
0

≤ exp

{
−n
(
s3 − t3
n

log π − [1−H(U3|Q) + 36η2]

)}
≤ exp {−n (δ1 − 36η2)}

T7D

T 2
0

≤ max
θ 6=0

π exp
{
−n
(s3

n
log π − [1−H(U3 	 θU2|Q) + 48η2]

)}
≤ π exp

{
−n
(
δ1 −

η

8
− 48η2

)}
.
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Substituting, the above bounds in (J.3), we conclude P (εl) ≤ (28 + 8 log π) exp
{
−n
(
δ1 − η

8 − 48η2

)}
for n ≥

max{N1(η), N2(η2)}. In the sequel, we derive a lower bound on L(n) and prove that for large n, L(n) > 1, thereby

establishing ε1 ⊆ εl. From the definition of L(n), (J.1), we have

L(n) =
T0

2
≥ |B1|πs2+s3 |T2η2(V1, U |qn)|

2π2n+t2+t3 exp {nH(V1|Q) + 4nη2}
, (J.5)

for sufficiently large n. Moreover, from (J.4), we note that L(n) ≥ 1
2 exp

{
n
(
δ1 + η

8 − 16η2

)}
for n ≥ max{N1(η),

N2(η2)}. By our choice of η, η2, for sufficiently large n, we have L(n) > 1.
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Appendix K

Upper bound on P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε41)

We begin by introducing some compact notation. We let M t denote the pair (M t2
2 ,M

t3
3 ) of message random variables.

We let mt denote a generic element (mt2
2 ,m

t3
3 ) ∈ F tπ : = F t2π × F t3π , and similarly as denote (as22 , a

s3
3 ) ∈ Fsπ :

= Fs2π × Fs3π . We abbreviate T8η2(V1, U2 ⊕ U3|qn, yn1 ) as T8η2(V1,⊕|qn, yn1 ) and the vector Xn(M1,M
t2
2 ,M

t3
3 ) input

on the channel as Xn. Let

T̃η2
(qn) : = {(vn1 , un, xn, yn1 ) ∈ T8η2

(V1, U,X, Y1|qn) : (vn1 , u
n) ∈ T2η2

(V1, U |qn), (vn1 , u
n, xn) ∈ T4η2

(V1, U,X|qn)} ,

T̃η2(qn|vn1 , un) =
{

(xn, yn1 ) : (vn1 , u
n, xn, yn1 ) ∈ T̃η2(qn)

}
.

We begin by characterizing the event under question. Denoting ε̃41 = (εl ∪ ε2 ∪ ε3)c ∩ ε41, we have

P (ε̃41) ≤
∑
m1

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(vn1 ,u

n,xn,yn1 )

∈T̃η2 (qn)

∑
(v̂n1 ,û

n)∈
T8η2 (V1,⊕|qn,yn1 )

P

({
M1=m1,V

n
1 (m1,B1)=vn1 ,U

n
l (A

sl
l )=unl

Il(A
sl
l )=M

tl
l :l=2,3,Y n1 =yn1 ,X

n=xn

Un⊕(â
s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

}
∩ εcl

)
(K.1)

We consider a generic term in the above sum. Observe that

P
(
Y n1 =yn1
Xn=xn

∣∣∣{ M1=m1,V
n
1 (m1,B1)=vn1 ,U

n
l (A

sl
l )=unl

Il(A
sl
l )=M

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

}
∩ εcl

)
= P

(
Y n1 =yn1
Xn=xn

∣∣∣ V n1 (M1,B1)=vn1
Unl (A

sl
l )=unl :l=2,3

)
=: θ(yn1 , x

n|vn1 , un),(K.2)

P

({
M1=m1,V

n
1 (m1,B1)=vn1

Unl (A
sl
l )=unl ,Il(A

sl
l )=M

tl
l :l=2,3

Un⊕(â
s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

}
∩ εcl

)
=

∑
mt∈Ftπ

∑
(b1,a

s)∈
B1×Fsπ

P

({
M1=m1,V

n
1 (m1,b1)=vn1 ,U

n
l (a

sl
l )=unl

M
tl
l =m

tl
l ,A

sl
l =a

sl
l ,Il(a

sl
l )=m

tl
l :l=2,3

B1=b1,U
n
⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

}
∩ εcl

)
, (K.3)

and the product of left hand sides of (K.2) and (K.3) is a generic term in (K.1). We now consider a generic term on

the right hand side of (K.3). Note that

P (E ∩ {B1=b1,A
sl
l =a

sl
l } ∩ εcl ) ≤ P (E)P ({B1=b1,A

sl
l =a

sl
l } |E ∩ εcl ) =

P (E)

L(n)
,
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where E abbreviates the event {M1=m1,V
n
1 (m1,b1)=vn1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l ,Il(a

sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1 }. Sub-

stituting the above in (K.3), we have

P

({
M1=m1,V

n
1 (m1,B1)=vn1

Unl (A
sl
l )=unl ,Il(A

sl
l )=M

tl
l :l=2,3

Un⊕(â
s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

}
∩ εcl

)
≤ 1

L(n)

∑
mt∈Ftπ

∑
(b1,a

s)
∈B1×D(âs3 )

P

(
M1=m1,V

n
1 (m1,b1)=vn1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l

Il(a
sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

)

+
1

L(n)

∑
mt∈Ftπ

∑
(b1,a

s)
∈B1×I (âs3 )

P

(
M1=m1,V

n
1 (m1,b1)=vn1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l

Il(a
sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

)
.(K.4)

where D(âs3) : = {as : (as22 0s+)⊕ as33 = âs3}, s+ = s3 − s2 and I (âs3) : = Fs2π × Fs3π \ D(âs3). Let us evaluate a

generic term in the right hand side of (K.4). The collection M1,M
t2
2 ,M

t3
3 , V

n
1 (m1, b1), I2(as2), I3(as3), (Ul(a

sl
l ) : l =

2, 3, U⊕(âs33 )), V n1 (m̂1, b̂1) are mutually independent, where (Ul(a
sl
l ) : l = 2, 3, U⊕(âs33 )) is treated as a single random

object. If (as22 , a
s3
3 ) ∈ D(âs3), then

P (Ul(a
sl
l ) = unl : l = 2, 3, U⊕(âs33 ) = ûn) =

 1
π2n if un2 ⊕ un3 = ûn

0 otherwise.
.

Otherwise, i.e., (as22 , a
s3
3 ) ∈ I (âs3), a counting argument similar to that employed in appendix L proves P (Ul(a

sl
l ) =

unl : l = 2, 3, U⊕(âs33 ) = ûn) = 1
π3n . We therefore have

P

(
M1=m1,V

n
1 (m1,b1)=vn1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l

Il(a
sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂n1

)
=



P

(
M1=m1,V

n
1 (m1,b1)=vn1

Mt=mt,V n1 (m̂1,b̂1)=v̂n1

)
π2n+t2+t3

if (as22 , a
s3
3 ) ∈ D(âs3)

and un2 ⊕ un3 = ûn

P

(
M1=m1,V

n
1 (m1,b1)=vn1

Mt=mt,V n1 (m̂1,b̂1)=v̂n1

)
π3n+t2+t3

if (as22 , a
s3
3 ) ∈ I (âs3)

(K.5)

Substituting (K.5) in (K.4) and recognizing that product of right hand sides of (K.3), (K.2) is a generic term in the

sum (K.1), we have

P (ε̃41) ≤
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)
∈B1×D(âs3 )

∑
(vn1 ,u

n,xn,yn1 )

∈T̃η2 (qn)

θ(yn1 , x
n|vn1 , un)

∑
(v̂n1 ,u

n
2⊕u

n
3 )∈

T8η2
(V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=vn1

Mt=mt,V n1 (m̂1,b̂1)=v̂n1

)
π2n+t2+t3L(n)

+
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)
∈B1×I (âs3 )

∑
(vn1 ,u

n,xn,yn1 )

∈T̃η2
(qn)

θ(yn1 , x
n|vn1 , un)

∑
(v̂n1 ,û

n)∈
T8η2

(V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=vn1

Mt=mt,V n1 (m̂1,b̂1)=v̂n1

)
π3n+t2+t3L(n)
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The codewords over Vn are picked independently and identically with respect to pnV1|Q(·|qn) and hence by conditional

frequency typicality (lemma 2.2.3), we have

P
(
M1 = m1, V

n
1 (m1, b1) = vn1 ,M

t = mt, V n1 (m̂1, b̂1) = v̂n1

)
≤ exp {−n(2H(V1|Q)− 20η2)}P (M1 = m1,M

t = mt)

for the pairs (vn1 , v̂
n
1 ) in question. This upper bound being independent of the arguments in the summation, we

only need to compute the number of terms in the summations. For a fixed pair (un2 , u
n
3 ), lemma 2.4.2 guarantees

existence of N4(η2) ∈ N such that for all n ≥ N4(η2), we have | {vn1 : (vn1 , u2 ⊕ un3 ) ∈ T8η2
(V1, U2 ⊕ U3|qn, yn1 )} | ≤

exp {n(H(V1|Q,U2 ⊕ U3, Y1) + 32η2)} and |T8η2(V1, U2 ⊕ U3|qn, yn1 )| ≤ exp {n(H(V1, U2 ⊕ U3|Q,Y1) + 32η2)}. Sub-

stituting this upper bound, the inner most summation turns out to be

∑
(v̂n1 ,u

n
2⊕u

n
3 )∈

T8η2 (V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=vn1

Mt=mt,V n1 (m̂1,b̂1)=v̂n1

)
π2n+t2+t3

≤ exp
{
−n
(

2H(V1|Q)−52η2

−H(V1|Q,U2⊕U3,Y1)

)} P (M1 = m1,M
t = mt)

π2n+t2+t3L(n)
=: β1,

∑
(v̂n1 ,û

n)∈
T8η2

(V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=vn1

Mt=mt,V n1 (m̂1,b̂1)=v̂n1

)
π3n+t2+t3

≤ exp
{
−n
(

2H(V1|Q)−52η2

−H(V1,U2⊕U3|Q,Y1)

)} P (M1 = m1,M
t = mt)

π3n+t2+t3L(n)
=: β2

Substituting β1 and β2, we have

P (ε̃41) ≤
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1
âs3∈Fs3π

∑
(b1,a

s)∈
B1×D(âs3 )

∑
(vn1 ,u

n)∈
T2η2 (V1,U |qn)

∑
(xn,yn1 )∈

T̃η2
(qn|vn1 ,u

n)

θ(yn1 , x
n|vn1 , un)β1

+
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)∈
B1×I (âs3 )

∑
(vn1 ,u

n)∈
T2η2

(V1,U |qn)

∑
(xn,yn1 )∈

T̃η2
(qn|vn1 ,u

n)

θ(yn1 , x
n|vn1 , un)β2

≤
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1
âs3∈Fs3π

∑
(b1,a

s)∈
B1×D(âs3 )

∑
(vn1 ,u

n)∈
T2η2 (V1,U |qn)

β1 +
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)∈
B1×I (âs3 )

∑
(vn1 ,u

n)∈
T2η2 (V1,U |qn)

β2

The terms in the first and second summation are identical to β1 and β2 respectively. Multiplying each with the

corresponding number of terms, employing the lower bound for L(n) derived in (J.5), it maybe verified that P (ε̃41) ≤

T1 + T2, where

T1 = 2 exp

{
−n
(

[I(V1;U2 ⊕ U3, Y1|Q)− 56η2]−
[

log |B1|
n

+
log |M1|

n

])}
T2 = 2 exp

{
−n
(

[log π +H(V1|Q)−H(V1, U2 ⊕ U3|Q,Y1)− 56η2]−
[

log |B1|
n

+
log |M1|

n
+
s3 log π

n

])}
.

From bounds on the parameters of the code ((5.22) - (5.24)), it maybe verified that for n ≥ max{N1(η), Nj(η2) : j =

2, 3, 4}, P ((εl ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp
{
−n
(
δ1 + η

4 − 56η2

)}
.

176



Appendix L

Upper bound on P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4j) for

3−DBC

We begin by introducing some compact notation similar to that introduced in appendix K. We let M t denote the

pair (M t2
2 ,M

t3
3 ) of message random variables. We let mt denote a generic element (mt2

2 ,m
t3
3 ) ∈ F tπ : = F t2π × F t3π ,

and similarly as denote (as22 , a
s3
3 ) ∈ Fsπ : = Fs2π ×Fs3π . We let

T̂η2(qn) : =
{

(vn1 , u
n, xn, ynj ) ∈ T8η2(V1, U,X, Yj |qn) : (vn1 , u

n) ∈ T2η2(V1, U |qn), (vn1 , u
n, xn) ∈ T4η2(V1, U,X|qn)

}
,

T̂η2
(qn|vn1 , un) =

{
(xn, ynj ) : (vn1 , u

n, xn, ynj ) ∈ T̂η2
(qn)

}
We begin by characterizing the event under question. For j = 2, 3, denoting ε̃4j : = (εl ∪ ε2 ∪ ε3)c ∩ ε4j , we have

P (ε̃4j) ≤
∑

(m1,mt)

∑
m̂
tj
j 6=M

tj
j

∑
â
sj
j

∑
(vn1 ,u

n,xn,ynj )

∈T̂η2 (qn)

∑
û
sj
j ∈

T8η2
(Uj |qn,ynj )

P

({
M1=m1,M

t=mt,V n1 (m1,B1)=vn1
Unl (A

sl
l )=unl ,Il(A

sl )=m
tl
l :l=2,3,Y nj =ynj

Xn=xn,Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

}
∩ εcl

)
, (L.1)

where Xn abbreviates Xn(M1,M
t), the random vector input on the channel. We consider a generic term in the

above sum. Observe that

P

(
Y nj =ynj
Xn=xn

∣∣∣∣∣
{
M1=m1,M

t=mt,V n1 (m1,B1)=vn1
Unl (A

sl
l )=unl ,Il(A

sl )=m
tl
l :l=2,3

Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

}
∩ εcl

)
= P

(
Y nj =ynj
Xn=xn

∣∣∣ V n1 (M1,B1)=vn1
Unl (A

sl
l )=unl :l=2,3

)
=: θ(yn, xn|vn1 , un), (L.2)

P

({
M1=m1,M

t=mt,V n1 (m1,B1)=vn1
Unl (A

sl
l )=unl ,Il(A

sl )=m
tl
l :l=2,3

Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

}
∩ εcl

)
=

∑
(b1,a

s)
∈B1×Fsπ

P
(
E ∩

{
B1=b1
As=as

}
∩ εcl

)
≤

∑
(b1,a

s)
∈B1×Fsπ

P (E)P
({

B1=b1
As=as

}
|E ∩ εcl

)
, (L.3)

177



where E abbreviates the event
{
M1=m1, M

t=mt, V n1 (m1,b1)=vn1 , U
n
l (a

sl
l )=unl , Il(a

sl )=m
tl
l :l=2,3, Unj (â

sj
j )=ûnj , Ij(â

sj
j )=m̂

tj
j

}
. We

now focus on the terms on the right hand side of (L.3). By the encoding rule, P ({B1=b1, A
s =as} |E ∩ εcl ) =

1
L(n) . We are left to evaluate P (E). The collection M1,M

t2
2 ,M

t3
3 , V

n
1 (m1, b1), I2(as2), I3(as3), Ij(â

sj ), (Ul(a
sl
l ) :

l = 2, 3, Uj(â
sj
j )) are mutually independent, where (Ul(a

sl
l ) : l = 2, 3, Uj(â

sj
j )) is treated as a single random object.

The following counting argument proves the triplet Ul(a
sl
l ) : l = 2, 3, Uj(â

sj
j ) also to be mutually independent. Let

{j, j} = {2, 3}. For any unj , u
n
j and ûnj , let us study

∣∣{(g2, g3/2, b
n
2 , b

n
3 ) : a

sj
j gj ⊕ b

n
j = unj , a

sj
j gj ⊕ b

n
j = unj , (â

sj
j 	 a

sj
j )gj = ûnj − unj

}∣∣ .
There exists a t such that â

sj
jt 6= a

sj
jt . For any choice of rows 1, 2, · · · , t− 1, t+ 1, · · · , s3 of g3, one can choose the tth

row of gj and bn2 , b
n
3 such that the above conditions are satisfied. The cardinality of the above set is π(s3−1)n. The

uniform distribution and mutual independence guarantee P (Ul(a
sl
l ) = unl : l = 2, 3, Uj(â

sj
j ) = ûnj ) = 1

π3n .

We therefore have

P

(
M1=m1,M

t=mt,V n1 (m1,b1)=vn1 ,

Unl (a
sl
l )=unl ,Il(a

sl )=m
tl
l :l=2,3,

Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

)
=
P (M1 = m1,M

t = mt, V n1 (m1, b1) = vn1 )

π3n+t2+t3+tj
(L.4)

Substituting (L.4), (L.3) and (L.2) in (L.1), we have

P (ε̃4j) ≤
∑

(m1,mt)

∑
(b1,as)

∑
m̂
tj
j 6=m

tj
j

∑
â
sj
j

∑
(vn1 ,u

n,xn,ynj )

∈T̂η2 (qn)

θ(yn, xn|vn1 , un)
∑
ûnj ∈

T16η2
(Uj |qn,ynj )

P (M1 = m1,M
t = mt, V n1 (m1, b1) = vn1 )

π3n+t2+t3+tjL(n)
.

Note that terms in the innermost sum do not depend on the arguments of the sum. We now employ the bounds on

the cardinality of conditional typical sets (lemma 2.4.2). There exists N5(η2) ∈ N such that for all n ≥ N5(η2), we

have |T16η2(Uj |qn, ynj )| ≤ exp{n(H(Uj |Q,Yj) + 32η2)} for all (qn, ynj ) ∈ T8η2(Q,Yj). For n ≥ max{N1(η), N5(η2)},

we therefore have

P (ε̃4j) ≤
∑

(m1,mt)

∑
(b1,as)

∑
m̂
tj
j 6=m

tj
j

∑
â
sj
j

∑
(vn1 ,u

n)
∈T2η2

(V1,U |qn)

P
(
V1(m1,b1)=vn1 ,M1=m1

M
tl
l =m

tl
l :l=2,3

)
exp {n32η2}

π3n+t2+t3+tj exp {−nH(Uj |Q,Yj)}
∑

(xn,ynj )∈
T̂η2

(qn|vn1 ,u
n)

θ(yn, xn|vn1 , un)

L(n)

≤
∑

(m1,mt)

∑
(b1,as)

∑
m̂
tj
j 6=m

tj
j

∑
â
sj
j

∑
(vn1 ,u

n)
∈T2η2

(V1,U |qn)

P
(
V1(m1,b1)=vn1 ,M1=m1

M
tl
l =m

tl
l :l=2,3

)
exp {n32η2}

π3n+t2+t3+tj exp {−nH(Uj |Q,Yj)}
1

L(n)

≤ 2 exp {sj log π − n (log π −H(Uj |Q,Yj)− 32η2)} ≤ 2 exp {−n(δ1 − 32η2)} , (L.5)

where (L.5) follows from definition of L(n), (J.1) and the bounds on the parameters of the code derived in (5.22) -

(5.24).
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Appendix M

An upper bound on P (ε5)

In this appendix, we derive an upper bound on P (ε5). As is typical in proofs of channel coding theorems, this step

involves establishing statistical independence of cosets Cj(M
lj
j ) : j = 1, 2 corresponding to the message pair and

any codeword V n(âk, m̂l) in a competing coset. We establish this in lemma M.0.19. We begin with the necessary

spadework. Throughout this appendix, we employ the notation introduced in proof of theorem 6.2.2.

Lemma M.0.18 If ml 6= m̂l, then for any triple ν1, ν2, ν̂ ∈ Vn,

P

(
V nj (0kj ,m

lj
j )=νnj :j=1,2,

V n(0k,m̂l)=ν̂n

)
= P

(
V nj (0kj ,m

lj
j ) = νnj : j = 1, 2

)
P
(
V n(0k, m̂l) = ν̂n

)

Proof: By definition of Vj(0kj ,m
lj
j ) : j = 1, 2 and V (0k,ml),

P

(
V nj (0kj ,m

lj
j )=νnj :j=1,2,

V n(0k,m̂l)=ν̂n

)
= P

([
m
l1
1 0l2

]
GO/I⊕Bn1 =νn1 ,

[
0l1 m

l2
2

]
GO/I⊕Bn2 =νn2[

m̂
l1
1 m̂

l2
2

]
GO/I⊕Bn1⊕B

n
2 =ν̂n

)
= P

([
m
l1
1 0l2

]
GO/I⊕Bn1 =νn1 ,

[
0l1 m

l2
2

]
GO/I⊕Bn2 =νn2[

m̃
l1
1 m̃

l2
2

]
GO/I=ν̂n

)
(M.1)

where m̃
lj
j = m̂

lj
j −m

lj
j . We now prove, using a counting argument similar to that employed in proof of lemma A.0.1,

the term on right hand side of (M.1) is 1
π3n . Since m̂l 6= ml, there exists t ∈ [l] such that m̂t 6= mt. Given any (l− 1)

vectors gO/I,j ∈ Vn : j ∈ [l] \ {t}, there exists a unique triple of vectors (gO/I,t, b
n
1 , b

n
2 ) ∈ Vn × Vn × Vn such that[

ml1
1 0l2

]
gO/I ⊕ bn1 = νn1 ,

[
0l1 ml2

2

]
gO/I ⊕ bn2 = νn2 and

[
m̃l1

1 m̃l2
2

]
gO/I = ν̂n, where row j of gO/I is gO/I,j . Hence

∣∣∣∣{(gO/I , b
n
1 , b

n
2 ) ∈ Vk×n × Vn × Vn :

[
m
l1
1 0l2

]
gO/I⊕Bn1 =ν1,

[
0l1 m

l2
2

]
gO/I⊕Bn2 =ν2[

m̃
l1
1 m̃

l2
2

]
gO/I=ν̂n

}∣∣∣∣ = π(l−1)n.
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The mutual independence and uniform distribution of GO/I , B1, B
n
2 implies the term on RHS of (M.1) is indeed 1

π3n .

It remains to prove

P
(
V nj (0kj ,m

lj
j ) = νnj : j = 1, 2

)
P
(
V n(0k, m̂l) = ν̂n

)
=

1

π3n
.

It follows from lemma A.0.1 that P
(
V n(0k, m̂l) = ν̂n

)
= 1

πn . Using the definition of V n(0k, m̂l), we only need to

prove

P

([
m
l1
1 0l2

]
GO/I⊕Bn1 =ν1,[

0l1 m
l2
2

]
GO/I⊕Bn2 =ν2

)
=

1

π2n
.

This follows again from a counting argument. For every matrix gO/I ∈ V l×n, there exists a unique pair of vectors

bn1 , b
n
2 ∈ Vn such that

[
ml1

1 0l2
]
GO/I ⊕Bn1 = ν1, and

[
0l1 ml2

2

]
GO/I ⊕Bn2 = ν2 thus yielding

∣∣∣∣{(gO/I , b
n
1 , b

n
2 ) ∈ Vk×n × Vn × Vn :

[
m
l1
1 0l2

]
GO/I⊕Bn1 =ν1,[

0l1 m
l2
2

]
GO/I⊕Bn2 =ν2

}∣∣∣∣ = πln, (M.2)

and the proof is completed using the mutual independence and uniform distribution of GO/I , B
n
1 , B

n
2 .

Lemma M.0.19 For any m̂l 6= ml, and any âk ∈ Vk, the pair of cosets Cj(m
lj
j ) : j = 1, 2 is statistically independent

of V n(âk, m̂l).

Proof: For j = 1, 2, let νnj (a
kj
j ) ∈ Vn for each a

kj
j ∈ Vkj , and ν̂n ∈ Vn. We need to prove

P


Cn1 (ml1

1 ) = (ν1(ak1
1 ) : ak1

1 ∈ Vk1)

Cn2 (ml2
2 ) = (ν2(ak2

2 ) : ak2
2 ∈ Vk2)

V n(âk, m̂l) = ν̂n

 = P

 Cn1 (ml1
1 ) = (ν1(ak1

1 ) : ak1
1 ∈ Vk1)

Cn2 (ml2
2 ) = (ν2(ak2

2 ) : ak2
2 ∈ Vk2)

P (V
n(âk,m̂l)

=ν̂n
)

for every choice of νj(a
kj
j ) ∈ Vn : a

kj
j ∈ Vkj , j = 1, 2 and ν̂n ∈ Vn.

If (i) for some j = 1 or j = 2, (νj(a
kj
j ⊕ ã

kj
j ) − νj(0kj )) 6= (νj(a

kj
j ) − νj(0kj )) ⊕ (νj(ã

kj
j ) − νj(0kj )) for any pair

a
kj
j , ãj

kj ∈ Vkj , or (ii) ν1(ak1)− v1(0k1) 6= ν2(ak1
1 0k+)− v2(0k2) for some ak1

1 ∈ Vk1 , then LHS and first term of RHS

are zero and equality holds. Otherwise,

P
(
Cnj (m

lj
j )=(νj(a

kj
j ):a

kj
j ∈V

kj ):j=1,2,V n(âk,m̂l)=ν̂n
)

= P

(
a
k2
2 GI2=ν2(ak2 )−ν2(0k2 ):a

k2
2 ∈V

k2 ,V nj (0kj ,m
lj
j )=νj(0

kj ):j=1,2,

V n(0k,m̂l)=ν̂n−(ν2(âk)−ν2(0k2 ))

)
(M.3)

= P

(
a
k2
2 GI2=ν2(ak2 )−
ν2(0k2 ):a

k2
2 ∈V

k2

)
P

(
V nj (0kj ,m

lj
j )=νj(0

kj ):j=1,2,

V n(0k,m̂l)=ν̂n−(ν2(âk)−ν2(0k2 ))

)
(M.4)

= P

(
a
k2
2 GI2=ν2(ak2 )−
ν2(0k2 ):a

k2
2 ∈V

k2

)
P

([
m
l1
1 0l2

]
GO/I⊕Bn1 =ν1(0k1 ),[

0l1 m
l2
2

]
GO/I⊕Bn2 =ν2(0k2 )

)
P
(
V n(âk, m̂l) = ν̂n

)
(M.5)

= P

(
a
k2
2 GI2=ν2(ak2 )−ν2(0k2 ):a

k2
2 ∈V

k2[
m
l1
1 0l2

]
GO/I⊕Bn1 =ν1(0k1 ),

[
0l1 m

l2
2

]
GO/I⊕Bn2 =ν2(0k2 )

)
P
(
V n(âk, m̂l) = ν̂n

)
(M.6)

= P
(
Cnj (m

lj
j )=(νj(a

kj
j ):a

kj
j ∈V

kj ):j=1,2
)
P
(
V n(âk, m̂l) = ν̂n

)
(M.7)
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where i) (M.5) and (M.7) follow from definition of cosets Cj(m
lj
j ), (ii) (M.4) and (M.6) follow from independence of

GI2 and the collection (GO/I , B
n
1 , B

n
2 ) and (iii) (M.3) follows from lemma M.0.18.

We emphasize consequence of lemma M.0.19 in the following remark.

Remark M.0.20 If ml 6= m̂l, then conditioned on event
{
M l = ml

}
, received vector Y n is statistically independent

of V n(âk, m̂l) for any âk ∈ Vk. We establish truth of this statement in the sequel. Let Cj denote the set of all ordered

πkj -tuples of vectors in Vn. Observe that

P
(
M l=ml,Y n=yn,

V n(âk,m̂l)=ν̂n

)
=
∑
C1∈C1

∑
C2∈C2

∑
sn∈Sn

P

(
M l=ml,Cj(m

lj
j )=Cj :j=1,2,Sn=sn

V n(âk,m̂l)=v̂n,Y n=yn

)
=

∑
C1∈C1

∑
C2∈C2

∑
sn∈Sn

P
(
M l=ml

Sn=sn

)
P

(
C1(m

l1
1 )=C1

C2(m
l2
2 )=C2

)
P (V n(âk,m̂l)=v̂n)P

(
Y n = yn|Cj(m

lj
j )=Cj :j=1,2

Sn=sn,M l=ml

)
(M.8)

=
∑
C1∈C1

∑
C2∈C2

∑
sn∈Sn

P

(
M l=ml,Y n=yn,Sn=sn

Cj(m
lj
j )=Cj :j=1,2

)
P (V n(âk,m̂l)=v̂n)

= P
(
M l = ml, Y n = yn

)
P
(
V n(âk, m̂l) = ν̂n

)
where (N.5) follows from (i) independence of random objects that characterize codebook and (Sn,M l), (ii) lemma

M.0.19 and (iii) statistical independence of the inputs Xj(M
lj
j , S

n
j ) : j = 1, 2 to the channel and the codeword

V n(âk, m̂l) conditioned on the specific realization of cosets (Cj(M
lj
j ) : j = 1, 2) and the event

{
M l = ml

}
. Moreover,

since P (V n(âk, m̂l) = ν̂n) = 1
πn , we have P (M l = ml, Y n = yn, V n(âk, m̂l) = ν̂n) = 1

πnP (M l = ml, Y n = yn).

We are now equipped to derive an upper bound on P (ε5). Observe that

P (ε5) ≤ P

 ⋃
âk∈Vk

⋃
ml,m̂l

ml 6=m̂l

{
(V n(âk,m̂l),Y n)∈Tη5(η)(pV1⊕V2,Y

)

M l=ml

}
≤

∑
âk∈Vk

∑
ml,m̂l

ml 6=m̂l

∑
yn

∈Tη5(η)(Y )

∑
vn∈

Tη5(η)(V1⊕V2|yn)

P
(
V n(ak,m̂l)=vn

M l=ml,Y n=yn

)

≤
∑
âk∈Vk

∑
ml,m̂l

ml 6=m̂l

∑
yn

∈Tη5(η)(Y )

∑
vn∈

Tη5(η)(V1⊕V2|yn)

P
(
V n(ak, m̂l) = vn

)
P (M l = ml, Y n = yn)

≤
∑
âk∈Vk

∑
m̂l∈Vl

∑
yn

∈Tη5(η)(Y )

∑
vn∈

Tη5(η)(V1⊕V2|yn)

P (Y n = yn)

πn

≤
∑
yn

∈Tη5(η)(Y )

πk+l|T2η5(η)(V1 ⊕ V2|yn)|
πn

≤ exp

{
−n log π

(
1− H(V1 ⊕ V2|Y ) + 3η5(η)

log π
− k + l

n

)}
. (M.9)
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where (N.6) follows from the uniform bound of exp {n (H(V1 ⊕ V2|Y ) + 3η5(η))} on |T2η5(η)(V1 ⊕ V2|yn)| for any

yn ∈ Tη5(η)(Y ), n ≥ N6(η) provided by lemma 2.4.2 for n ≥ N6(η). Substituting the upper bound for k+l
n in (6.13),

we have

P (ε5) ≤ exp {−n (η2(η) + η3(η)− 3η5(η))} for all n ≥ max {N1(η), N6(η)} . (M.10)
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Appendix N

An upper bound on P (ε3)

In this appendix, we derive an upper bound on P (ε3). As is typical in proofs of channel coding theorems, this step

involves establishing statistical independence of Cj(hS
n
j ) : j = 1, 2 and any codeword V n(ak, m̂l) in a competing

coset m̂l 6= hSn1 ⊕ hSn2 . We establish this in lemma N.0.22. We begin with the necessary spadework. The following

lemmas holds for any Fq and we state it in this generality.

Lemma N.0.21 Let Fq be a finite field. Let GI ∈ Fk×nq , GO/I ∈ F l×nq , Bnj ∈ Fnq : j = 1, 2 be mutually independent

and uniformly distributed on their respective range spaces. Then the following hold.

(a) P (V n(ak,ml) = vn) = 1
qn for any ak ∈ Fkq , ml ∈ F lq and vn ∈ Fnq ,

(b) P (V nj (akj ,m
l
j) = vnj : j = 1, 2) = 1

q2n for any akj ∈ Fkq , ml
j ∈ F lq and vnj ∈ Fnq : j = 1, 2, and

(c) P

(
V nj (0k,mlj)=v

n

j,0k
:j=1,2,

V n(0k,m̂l)=vn

)
= 1

q3n for any m̂l 6= ml
1 ⊕ml

2 and vnj,0k : j = 1, 2, and vn.

Proof: The proof follows from a counting argument similar to that employed in [63, Remarks 1,2].

(i) For any gI ∈ Fk×nq , gO/I ∈ F l×nq , vn ∈ Fnq , there exists a unique bn ∈ Fnq such that akgI ⊕mlgO/I ⊕ bn = vn.

Since GI , GO/I and Bn are mutually independent and uniformly distributed P (V n(ak,ml) = vn) = qknqln

qknqlnqn
=

1
qn .

(ii) We first note P (V nj (akj ,m
l
j) = vnj : j = 1, 2) = P (akjGI ⊕ml

jGO/I ⊕ Bnj = vnj : j = 1, 2). For any choice of gI

and gO/I , there exists unique bnj : j = 1, 2 such that akj gI⊕ml
jgO/I⊕bnj = vnj : j = 1, 2. Since GI , GO/I and Bn

are mutually independent and uniformly distributed, the probability in question is therefore qknqln

qknqlnq2n = 1
q2n .

(iii) Note that

P

(
V nj (0k,mlj)=v

n

j,0k
:j=1,2,

V n(0k,m̂l)=vn

)
= P

(
mljGO/I⊕B

n
j =vn

j,0k
:

j=1,2,m̂lGO/I⊕Bn=vn

)
= P

(
mljGO/I⊕B

n
j =vn

j,0k
:j=1,2,

(m̂l	(ml1⊕m
l
2))GO/I=vn

)
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Since m̂l 6= ml
1 ⊕ ml

2, there exists an index t such that m̂t 6= m1t ⊕ m2t. Therefore, given any set of rows

g
O/I,1

· · · , g
O/I,t−1

, g
O/I,t+1

, · · · , g
O/I,l

, there exists a unique selection for row g
O/I,t

such that (m̂l 	 (ml
1 ⊕

ml
2))gO/I = vn. Having chosen this, choose bnj = vnj,0k	m

l
jgO/I . Since GI , GO/I and Bnj : j = 1, 2 are mutually

independent and uniformly distributed, the probability in question is therefore q(l−1)n

qlnq2n = 1
q3n .

Lemma N.0.22 If generator matrices GI ∈ Fk×nq , GO/I ∈ F l×nq and Bnj ∈ Fnq : j = 1, 2 are mutually independent

and uniformly distributed over their respective range spaces, then the pair of cosets Cj(m
l
j) : j = 1, 2 is independent

of V n(âk, m̂l) whenever m̂l 6= (ml
1 ⊕ml

2).

Proof: Let vnj,ak ∈ F
n
q for each ak ∈ Fkq , j = 1, 2 and v̂n ∈ Fnq . We need to prove

P (Cnj (ml
j) = (vnj,ak : ak ∈ Fkq ) : j = 1, 2, V n(âk, m̂l) = v̂n)

= P (Cnj (ml
j) = (vj,ak : ak ∈ Fkq ) : j = 1, 2)P (V n(âk, m̂l) = v̂n) (N.1)

for every choice of vj,ak ∈ Fnq : ak ∈ Fkq , j = 1, 2 and v̂n ∈ Fnq .

If (i) for some j = 1 or j = 2, (vnj,ak⊕ãk − v
n
j,0k) 6= (vnj,ak − v

n
j,0k)⊕ (vnj,ãk − v

n
j,0k) for any pair ak, ãk ∈ Fkq , or (ii)

vn1,ak − v
n
1,0k 6= vn2,ak − v

n
2,0k for some ak ∈ Fkq , then LHS and first term of RHS are zero and equality holds.

Otherwise, LHS of (N.1) is

P (Cnj (mlj)=(vn
j,ak

:ak∈Fkq ):j=1,2,V n(âk,m̂l)=v̂n) = P

(
akGI=vn

1,ak
−vn

1,0k
:ak∈Fkq ,V

n
j (0k,mlj)=v

n

j,0k
:j=1,2,

V n(0k,m̂l)=v̂n−(vn
1,âk
−vn

1,0k
)

)
= P

(
akGI=vn

1,ak
−

vn
1,0k

:ak∈Fkq

)
P

(
V nj (0k,mlj)=v

n

j,0k
:j=1,2,

V n(0k,m̂l)=v̂n−(vn
1,âk
−vn

1,0k
)

)
, (N.2)

where we have used independence of GI and (GO/I , B
n
1 , B

n
2 ) in arriving at (N.2). Similarly RHS of (N.1) is

P (Cnj (mlj)=(vn
j,ak

:ak∈Fkq ):j=1,2)P (V n(âk,m̂l)=v̂n) = P

(
akGI=vn

1,ak
−vn

1,0k
:ak∈Fkq ,

V nj (0k,mlj)=v
n

j,0k
:j=1,2

)
P
(
akGI⊕m̂lGO/I⊕Bn=

v̂n

)
= P

(
akGI=vn

1,ak
−

vn
1,0k

:ak∈Fkq

)
P
(
V nj (0k,mlj)=

vn
j,0k

:j=1,2

)
· 1

qn
(N.3)

= P

(
akGI=vn

1,ak
−

vn
1,0k

:ak∈Fkq

)
P
(
mljGO/I⊕B

n
j =

vn
j,0k

:j=1,2

)
· 1

qn

= P
(
akGI = vn1,ak − v

n
1,0k : ak ∈ Fkq

)
· 1

q3n
, (N.4)

where (N.3), (N.4) follows from lemma N.0.21(a) and (b) respectively. Comparing simplified forms of LHS in (N.2)

and RHS in (N.4), it suffices to prove

P

(
V nj (0k,mlj)=v

n

j,0k
:j=1,2,

V n(0k,m̂l)=v̂n−(vn
1,âk
−vn

1,0k
)

)
=

1

q3n
.

184



This follows from lemma N.0.21(c)

We emphasize consequence of lemma N.0.22 in the following.

Remark N.0.23 If m̂l 6= hsn1 ⊕ hsn2 , then conditioned on the event
{
Snj = snj : j = 1, 2

}
, received vector Y n is

statistically independent of V n(âk, m̂l) for any âk ∈ Sk. We establish truth of this statement in the sequel. Let C

denote the set of all ordered |S|k-tuples of vectors in Sn. Observe that,

P
(
sn=sn,Y n=yn,

V n(âk,m̂l)=v̂n

)
=
∑
C1∈C

∑
C2∈C

P
(
sn=sn,Cj(hs

n
j )=Cj :j=1,2,

V n(âk,m̂l)=v̂n,Y n=yn

)
=

∑
C1∈C1

∑
C2∈C2

P (sn=sn)P
(
C1(hsn1 )=C1

C2(hsn2 )=C2

)
P (V n(âk,m̂l)=v̂n) · P

(
Y n = yn|Cj(hs

n
j )=Cj :j=1,2

sn=sn

)
(N.5)

=
∑
C1∈C1

∑
C2∈C2

P
(

sn=sn,Y n=yn,
Cj(hs

n
j )=Cj :j=1,2

)
P (V n(âk,m̂l)=v̂n)

= P (sn = sn, Y n = yn)P
(
V n(âk, m̂l) = v̂n

)
We have used (a) independence of sn and random objects that characterize the codebook, (b) independence of

V n(âk, m̂l) and (Cj(hs
n
j ) : j = 1, 2) (lemma N.0.22), (c) (µ1(hsn1 ), µ2(hsn2 )) being a function of (C1(hsn1 ), C2(hsn2 )), is

conditionally independent of V n(âk, m̂l) given (C1(hsn1 ), C2(hsn2 )) in arriving at (N.5). Moreover, since P (V n(âk, m̂l) =

v̂n) = 1
|S|n , we have P

(
sn = sn, Y n = yn, V n(âk, m̂l) = v̂n

)
= 1
|S|nP (sn = sn, Y n = yn).

We are now equipped to derive an upper bound on P (ε3). Observe that

P (ε3) ≤ P

 ⋃
âk∈Sk

⋃
sn=sn

⋃
m̂l 6=

h(sn1⊕s
n
2 )

{
(V n(âk,m̂l),Y n)∈

Tη1 (pV1⊕V2,Y
),sn=sn

} ≤ ∑
âk∈Sk,
sn=sn

∑
m̂l 6=

h(sn1⊕s
n
2 )

∑
yn∈Tη1 (Y ),vn∈
Tη1

(V1⊕V2|yn)

P
(
V n(ak,m̂l)=vn

sn=sn,Y n=yn

)

≤
∑

âk∈Sk,
sn=sn

∑
m̂l 6=

h(sn1⊕s
n
2 )

∑
yn∈Tη1

(Y ),vn∈
Tη1 (V1⊕V2|yn)

P
(
V n(ak,m̂l)

=vn

)
P
(
sn=sn,
Y n=yn

)

≤
∑
âk∈Sk

∑
m̂l 6=

h(sn1⊕s
n
2 )

∑
yn

∈Tη1
(Y )

∑
vn∈

Tη1 (V1⊕V2|yn)

P (Y n = yn)

|S|n

≤
∑
yn

∈Tη1
(Y )

|S|k+l |Tη1
(V1 ⊕ V2|yn)|
|S|n

≤ exp
{
−n log |S|

(
1− H(V1⊕V2|Y )+3η1+k+l

log|S|

)}
. (N.6)

where (N.6) follows from the uniform bound of exp {n (H(V1 ⊕ V2|Y ) + 3η1)} on |Tη1
(V1⊕V2|yn)| for any yn ∈ Tη1

(Y ),

n ≥ N6(η) (Conditional frequency typicality) for n ≥ N6(η).
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