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Notation

We employ notation that is now widely employed in information theory literature supplemented by the following.
e N, Z, Q, R denote the set of natural numbers, integers, rational numbers and real numbers respectively.

o Calligraphic letters such as &', Y are employed exclusively to denote finite sets. F,; denotes the finite field of
cardinality q. For any set A C R¥, cl(A),cocl(A) denote closure of A and closure of the convex hull of A
respectively. If A is a finite set, |A| denotes cardinality of A.

e For positive integers ¢ < j, [i: j]:= {¢,i+1,---,j}. Welet [j] : = [1:j].

e We denote (i) random variables using upper case letters, (ii) specific realization of random variables and elements
of a set using lower case letters. For example, U is a random variable taking values in # and u € U represents
a realization of U. Vectors are distinguished from scalars using a superscript that indicates the length of the

vector. For example, U" is an n—length random vector taking values in U” : = U X --- x U and u"™ € U"
—_———

n times
denotes a realization of U™.

e For a,3€[0,1], a*5:=(1—a)B+ a(l — 3) denotes binary convolution.

e While + denotes addition in R, we let & denote addition in a finite field. The particular finite field, which is
uniquely determined (up to an isomorphism) by it’s cardinality, is clear from context. When ambiguous, or to
enhance clarity, we specify addition in F, using . For a,b € F;, a©b: = a® (—b), where (—b) is the additive

inverse of b.
e If f:U — X is a map, the n-letter extension of f denoted f™ : U™ — X™ is defined f" (u™) := (f (u;) : ¢ € [n]).

e We employ standard notation for probability mass functions (pmf). For example, if pyxsy is a pm on U x X X
S x Y, then pyy is the corresponding marginal on U x V. pi}y is the pm on U™ x V™ obtained as an n—fold
product of pyy ie., phy (u™,y") = [Ti_; puy (wis y:)- pyju(ylu), defined whenever py(u) # 0, is conditional
probability of observing y € ) given u € U is observed. We write U ~ py if py is the pmf of U.
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The log and exp functions are taken with respect to the same base. For concreteness, the base may be assumed
to be 2, in which case units for information theoretic quantities such as entropy and mutual information would

be bits/symbol.
Let hy : [0,1] — [0, 1] defined as hy(z) : = —xlogz — (1 — z)log(1 — z) denote binary entropy function.

We employ standard notation for information theoretic quantities such as entropy and mutual information. For
example, H{UY) : = — Z(u,y)euxypUY(“7i‘/) log puy (u,y) denotes entropy of pyy, HU|Y) : = H(U,Y) —
H(Y),I(U;Y):=H{U)—-HWU|Y) and I(U;Y|S) : = I(U;YS) — I(U; S).

The probability of an event A is denoted P(A), and whenever B is an event with non-zero probability, P(A|B)

denotes conditional probability of event A given event B.

We write U — (X,5) - Y if U, (X, S) and Y forms a Markov chain, i.e., U and Y are conditionally independent
given (X, 5).

Forany r e R, [r] := min{k € Z:k>r}and |r] : = max{k € Z: k <r}.
For a € N, 7t(a) : = min{k € N: k > a,k is a prime power}.

For a pmf pyxgy defined on U x X' x S x Y, let
R(puxsy,U):= {u €U : there exists (z,s,y) € ¥ xS x Y : puxsy(u,z,s,y) > 0}

denote essential range of U. When clear from context, we omit the underlying pmf and let R(U) denote

R(puxsy,U).
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Abstract

We consider the problem of developing coding techniques and characterizing information-theoretic achievable rate
regions for the following three multi-terminal communication channels. Firstly, we study an interference channel
with three transmitter receiver pairs (3-IC). Secondly, we consider a broadcast channel with three receivers (3-BC),
wherein three independent information streams are to be communicated to the three receivers. Thirdly, we consider a
two user multiple access channel (MAC) with channel state information distributed at the transmitters (MAC-DSTXx).
The above channels are assumed discrete, memoryless and used without feedback.

The current known coding technique for a general instance of these channels are based on independent unstruc-
tured codes. Recognizing the need for codes endowed with algebraic closure properties, we identify three ensembles
of coset codes. We propose coding techniques based on these ensembles that exploit their algebraic closure property.
We develop tools to characterize the information-theoretic performance of the proposed coding techniques. These
enable us derive achievable rate regions for a general instance of the above channels. The current known achievable
rate regions can be enlarged by gluing together current known coding techniques and the ones proposed herein.
Moreover, such an enlargement, as indicated below, is proven to be strict for certain instances.

We identify additive and non-additive instances of 3-IC for which the derived achievable rate region is analytically
proven to be strictly larger than current known largest. Moreover, for these channels, the proposed coding techniques
based on coset codes are optimal, i.e., capacity achieving. We also identify a vector additive 3-BC for which the
achievable rate region derived herein is analytically proven to be strictly larger than the current known largest.
This vector additive 3-BC is the first known broadcast channel, for which superposition and binning of unstructured
independent codes, proposed over three decades ago, can be strictly improved upon. We also identify non-additive and
non-symmetric instances of MAC-DSTx for which the proposed coding technique is verified, through computation,
to yield strictly larger achievable rate regions.

Finally, we develop a coding technique based on nested coset codes to characterize a weaker set of sufficient

conditions for the problem of computing sum of sources over a discrete memoryless MAC.

xvi



Chapter 1

Introduction

In his magnum opus [1], Shannon developed an elegant mathematical theory to model the problem of communication.
He formalized the notion of reliable communication over a noisy channel and precisely quantified the object of interest
- capacity region - as the set of rates at which information can be reliably communicated from a transmitter (Tx) to
a receiver (Rx). For the particular scenario of communicating an information source from a single Tx to a single Rx,
henceforth referred to as a PTP, Shannon provided a comprehensive solution, i.e., a single-letter characterization® of
the capacity region.

Following the publication of [1], it was recognized, that the characterization of the capacity region of a com-
munication system was fundamental to our understanding of it’s performance limits. This led to the information
theoretic study? of multi-terminal systems. In spite of some comprehensive solutions ([3], [4], [5], [6], [7] among
others) and ingenious techniques such as [5], [8], [9], among several others, the problem of characterizing the capacity
region of several multi-terminal systems, such as interference and broadcast channels, remain open. In this thesis, we
address this problem of four multi-terminal systems which are described in the following. Throughout, we assume

the multi-terminal systems are discrete, memoryless and used without feedback.3

(i) Three user interference channel (3—IC): Consider an interference channel (IC) with three transmitter-
receiver (Tx-Rx) pairs as depicted in figure 1.1. The symbol input on the channel by each Tx influences
the symbols observed by every Rx and this is modeled through the joint channel transition probabilities

Wy, vavs|x1 X2 x5- Each Tx wishes to communicate a specific information stream? to it’s corresponding Rx.

n simple terms, a characterization of a set is said to be single-letter if it is obtained through the result of an optimization over a
finite number of parameters. For a detailed description, please refer to [2, Chapter 13].

2The mathematical theory proposed by Shannon which seeks, among others, a characterization of capacity region of communication
systems is referred to as information theory.

3These assumptions are well established in information theory and the reader is referred to [10, Section 4.1] for a lucid description of
the same in the context of a PTP. These assumptions in the context of the four multi-terminal systems will be precisely stated in the
corresponding chapters.

4The information streams being specific to corresponding Tx-Rx pairs, are assumed to be mutually statistically independent.
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(i)

(iii)

Three user broadcast channel (3—BC): As depicted in figure 1.2, a 3—BC consists of a single Tx and three
Rxs. Each Rx demands a specific information stream and it is assumed that the three information streams are
mutually statistically independent. The objective is therefore to multiplex three information streams through

a single input terminal.

Multiple access channel with distributed states (MAC-DSTx): Consider a two user multiple access
channel (MAC) depicted in figure 1.3. The channel transition probabilities Wy |x, 5, x,s, of the MAC depend
on a random parameter S = (57, 53) called state. The evolution of the state is independent and identically
distributed across time. Tx j is provided with the entire realization of component S; even before communication
begins and the Rx is oblivious to the evolution of the state. As in a MAC, the Txs wish to communicate a pair

of independent messages to the Rx.

Computation of sum of sources over an arbitrary multiple access channel (MIAC): Consider a MAC
with two Txs as depicted in figure 1.4. Each encoder observes one component of a pair of sources that take
values over a common finite field. The Rx is interested in reconstructing the sum of sources. The problem of
interest is to characterize the maximum number of digits of the sum that can reliably be reconstructed at the

Rx per channel use.
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In this thesis, we focus attention on characterizing inner bounds to the capacity region, i.e., achievable rate
regions, for the above multi-terminal systems. Our main contribution is a characterization of new achievable rate
regions that are strictly larger than current known largest. In the following two sections, we lead the reader to the

motivating principles that have shaped this thesis.

1.1 The technique of random coding

The most common technique of proving achievability of rate regions in information theory is random coding®. As
against to identifying a particular code, a random code of a particular rate R is defined for each block length n. The
reliability of this random code, i.e, the probability of incorrect decoding, is evaluated, as a function of block length
n € N. The rate R is characterized as achievable, if this function decays to zero with increasing block length.

Conventionally, the letters of the random code are independently and identically distributed (iid) according to a
particular single-letter distribution. What is the effect of choosing the distribution of the random code to be iid in
characterizing an achievable rate region? Since we are interested in the limiting performance of the random code,
as a function of the block length n, we may employ ideas from typicality to answer this question.® For large block
lengths n, an iid distribution places an exponentially larger weight on a particular sub-collection of codebooks whose
codewords have an empirical distribution close to the single-letter distribution, and moreover, every such codebook
is weighed almost equally. In fact, it can be shown that average probability of incorrect decoding of the above sub-
collection of codebooks,” is equal, at least in the exponent, to the probability of incorrect decoding of the random
codebook. Therefore, choosing the distribution of the random code to be iid according to a particular single-letter
distribution has the effect of characterizing the reliability of a typical codebook whose codewords have an empirical
distribution close to the single-letter distribution.

Let us now consider the case of a multi-terminal system. Since communication over multi-terminal systems
employs a multi-terminal code consisting of several constituent codes, defining a random multi-terminal code requires
one to specify joint distribution of the constituent codes. Conventionally, the constituent random codes are chosen to
be independent.® Moreover, as before, the letters of each constituent random code are iid according to a particular
single-letter distribution. Let us study the effect of choosing this distribution for the random multi-terminal code
in characterizing an achievable rate region. The rate regions proved achievable for a multi-terminal system via this
approach is essentially that achievable using a typical multi-terminal code wherein the codewords of each constituent

code has an empirical distribution close to a particular single-letter distribution. We emphasize that the constituent

5The other known techniques are based on Feinstein’s lemma [11] and graph decomposition [12].

6The subject of chapter 2 is typicality and covers all the material required to provide the kind of answers we are seeking. A reader
not familiar with typicality is encouraged to read through the following without getting bogged down by the technicalities.

Taveraged with respect to a uniform distribution on this sub-collection

8The informed reader might point to the technique of superposition, wherein the satellite and cloud center codebooks are not inde-
pendent. However, we point out that the same rate region can be proved achievable using independent codes as done in [13].



Figure 1.5: A binary 3—IC.

codes of such a typical multi-terminal code do not possess any joint relationship. In particular, (i) individually,
the constituent codes do not possess any properties other than the empirical properties mentioned above and (ii)
jointly do not possess any particular relationship. We will henceforth refer to such a collection of constituent codes
that make a multi-terminal code as independent unstructured codes. In the sequel, we illustrate through a simple
example, how constituent codebooks (i) possessing additional properties, and (ii) jointly related facilitate efficient

communication over multi-terminal systems.

1.2 Interaction of codes in a multi-terminal system

Consider a three user binary interference channel as depicted in figure 1.5.° Three distributed Txs wish to com-
municate specific information to corresponding Rxs over a shared communication medium. Each Tx can input
symbols in {0,1}. If X; denotes symbol input by Tx j and Y; denotes the symbol observed by Rx j, we have
V1=X1® (Xo® X3)® Np,Ys = Xo ® Ny and Y3 = X35 @ N3, where (i) N1, N3 and N3 are independent Bernoulli
processes with P(N; = 1) = 6, and P(N; = 1) =6 for j = 2,3, and (ii) ® is any particular binary operation such as
binary addition & or logical OR V. Observe that users 2 and 3 enjoy interference free PTPs and can therefore commu-
nicate at their respective capacities simultaneously. If C5 and C3 denote codebooks employed by users 2 and 3 respec-
tively, then note that user 1 has to deal with the interference patterns in Co ® C3 : = {zy ® 23 : 27 € C; : j = 2,3}
Clearly, smaller the cardinality of Cy ® C3, larger the rate at which user 1 can communicate. If Cy and C3 were
arbitrary capacity achieving codes possessing no joint relationship, |Cs ® C3| could be large, thereby severely limiting
user 1’s rate. On the contrary, Cs and C5 could be carefully chosen capacity achieving codes such that cardinality of
C5 ® Cf is limited, thus facilitating higher rate of communication for user 1. For example, suppose ® is binary addi-

tion @, then users 2 and 3 can achieve capacity by employing cosets of a common linear code.!® Thereby, Co @ Cs is

9 As mentioned earlier, we assume the channel is memoryless and used without feedback
10There exists cosets of a linear code that achieve capacity of a binary symmetric channel. This has been proved in [14, Section 6.2].



another coset of the same linear code, and therefore of the same rate. In contrast, if users 2 and 3 employed arbitrary
codes of rate R, then Cy @ C3 could potentially be of rate min{1, 2R}!!!

We highlight the key elements observed in the above example. Firstly, codes of users 2 and 3 interact through
the binary operation ®. Secondly, in order to enable higher rates for user 1, their codes must be jointly designed
to keep the number of interference patterns low. Thirdly, in addition to be being jointly designed, the codes must
individually possess algebraic closure properties.!! These elements, observed in the context of a particular multi-
terminal system, being the motivating principles for the theory developed in this thesis, are restated for the
sake of emphasis. Constituent codes when employed in a multi-terminal system interact. Constituent
codes (i) individually possessing certain algebraic closure properties, and (ii) jointly designed enable

favorable interaction, and thereby efficient communication.

1.3 What do we seek and what do we accomplish?

In contrast to independent unstructured codes, a multi-terminal code whose constituent codes possessing the above
properties are henceforth referred to as structured codes. In this thesis, our aim is to leverage illustrative examples,
such as the one above, to develop coding techniques based on structured codes for arbitrary instances of the four
multi-terminal systems (figures 1.3-1.4) that can exploit properties of the code to enable efficient communication.
Thus far, linear and nested linear codes have been employed to develop coding techniques for particular additive and
symmetric instances of certain multi-terminal systems, as in [15], [16], [17] etc, that exploit the (algebraic closure)
property of the code to yield strictly larger achievable rate regions than that achievable using coding techniques
based on independent unstructured codes. However, these coding techniques do not generalize to arbitrary instances
of the multi-terminal systems studied therein. This raises, among others, the following three questions.

Firstly, are linear and nested linear codes applicable only for additive and symmetric multi-terminal systems, and
if not, how does one go about developing coding techniques based on these examples that is applicable in a wider
context? Secondly, if such coding techniques exist, would they provide strict improvement in achievable rate regions
even for non-additive scenarios? Thirdly, for multi-terminal systems such as broadcast channel (BC), we are unaware
of any example, including additive instances, for which structured codes yield strictly larger achievable rate regions
than that based on independent unstructured codes. Can we develop new coding techniques based on structured
codes for such multi-terminal systems, in particular the BC, and derive strictly larger achievable rate regions than

current known largest, and thereby enable us inch closer to solutions for these long standing open problems?!2

1 For example, when the binary operation ® is addition @, individually codes of users 2 and 3 must be cosets, which are algebraically
closed. The notion of algebraically closed will be explained in due course.

12 An achievable rate region was derived by Marton [9] in the context of a discrete two user BC three decades ago. The current known
largest achievable rate region for any BC, including the larger class of BC’s with any number of Rxs and arbitrary alphabet sets, is
obtained by ‘appropriate stitching together’ the coding techniques proposed in [9]. We are unaware whether this is the capacity region
even for the discrete two user BC.



The central theme of this thesis is codes endowed with algebraic closure properties, such as linear and
nested linear codes, enable efficient communication over multi-terminals in general, not just particular
additive and symmetric instances. This motivates us to develop a framework based on codes possessing algebraic
closure properties for communication over arbitrary instances of the four multi-terminal systems. We illustrate the
central theme and prove the utility of this framework by identifying non-additive and non-symmetric instances for
which the proposed framework yields strictly more efficient communication over current known techniques. We
develop a new coding technique based on codes possessing algebraic closure property for communicating over a
3—DBC that enables us derive a strictly larger achievable rate region than current known largest. A significant
element of our findings is an identification of the first BC for which precoding and superposition coding using
independent unstructured codes can be strictly improved upon. It maybe noted that even within the wider class of

discrete or continuous valued BCs with any number of Rxs we have been unaware of any such example since 1980.

1.4 Characterizing achievable rate regions using coset codes

The motivating principles recognized in section 1.2 lead us to step beyond independent unstructured codes. In this
thesis, we study the use of coset codes built over finite fields in characterizing new achievable rate regions for the four
multi-terminal systems depicted in figures 1.3 - 1.4. Coset codes over finite fields are simply cosets of a linear code.
Coset codes are algebraically closed'®. Any two cosets'® of a linear code when added, result in another coset of the
same linear code. As against to adding two arbitrary collections of codewords (over the finite field), the addition of
two cosets of a common linear code, results in a collection of codewords'® of the same size.'® This property of coset
codes motivates their choice and will play a central role throughout this thesis. We exploit this property of coset
codes by proposing new coding techniques.!” It is the analysis of these proposed coding techniques coupled with the
use of coset codes that yield new achievable rate regions for the four multi-terminal communication systems studied
herein. In the following, we describe the key challenges in characterizing achievable rate regions using coset codes.
The theory and techniques developed to overcome these challenges are some of the key contributions of this thesis.

Quite naturally, we employ the technique of random coding to analyze the performance of proposed coding

13Consider a linear code over a finite field. The sum of any two codewords is another codeword in the same linear code. This property
of the linear code is usually referred to as algebraic closure. In this thesis, we employ a slightly generalized version of this property. Note
that any two codewords in a particular coset of a linear code, when added, result in a codeword in another coset. Here, we refer to this
property as algebraic closure.

14We will use the words coset and coset code interchangeably. In this context, coset is preferred to a coset code since we wish to address
coset shifts of the same linear code.

15Indeed, this collection is another coset of the same linear code.

16Consider the scenario depicted in figure 1.5 with the binary operation ® being the binary addition @. In this case, codes of users 2
and 3 interact through binary addition @. Since the sum of user 2 and 3’s codebooks is the collection of interference patterns Rx 1 has
to put up with, we favor a reduction in the size of the interference patterns. Choosing user 2 and 3 codes to be cosets of the same linear
code accomplishes this.

17For the 3—IC depicted in figure 1.5, having employed coset codes to restrict the number of interference patterns, Rx 1 can potentially
decode the same. This suggests that we enhance the current decoding technique to exploit the property of coset code and decode the
sum interference pattern.



techniques based on coset codes. Since a coset code is completely characterized by a generator matrix and a vector
that specifies the coset shift, a random coset code can be defined by specifying the distribution of the generator
matrix and the vector. Let the generator matrix and the vector be independent and uniformly distributed. This
defines a random coset code. The first challenge lies in characterizing the information theoretic performance of the
proposed coding technique using this random coset code over an arbitrary instance of the multi-terminal system

studied herein.®

In this thesis, we develop a mathematical framework based on joint typicality encoding and decoding to analyze
the performance of random coset codes. This framework enables us characterize achievable rate regions for arbitrary
instances of the four multi-terminal systems studied herein. Developing this framework has involved several new
elements. Note that codewords in the above defined random coset code are statistically correlated. Moreover, our
coding techniques rely on employing jointly correlated random coset codes.?® An informed reader will note that the
analysis of joint typicality encoding and decoding of statistically correlated coset codes will involve several new proof

elements. The reader is encouraged to peruse the proofs which are detailed in the appendices.

It can be proved that the codewords of a random coset code, as defined earlier, are uniformly distributed. In
contrast to the conventional technique?!, wherein the codewords, of the constituent code, can be chosen to possess
any empirical distribution,?? the codewords of the above random coset code possess only the uniform empirical
distribution. A random coset code will therefore enable us achieve rates corresponding to a uniform distribution.
How do we achieve rates corresponding to non-uniform distributions??® Since constituent codes employed over an
arbitrary multi-terminal system must achieve rates corresponding to non-uniform distributions, the second challenge

is therefore to find a technique that enables us induce the same using coset codes.

We overcome the second challenge via the technique of binning which is best illustrated in the context of a
PTP. Consider a finite field input alphabet & and suppose the capacity achieving distribution px is non-uniform.
Consider a random coset code of block length n and rate % whose generator matrix and coset shifts are uniform and
independently distributed. Since we seek codewords of this random coset code whose empirical distribution is close
to px, we ask the following question. What is the expected number of codewords of this random coset code whose
empirical distribution is close to px? A reader familiar with the notions of typicality will be able to ascertain this to

be close to |X[FHnH(px)=n — |y nli—(1=H@Ex)) where the entropy H(px) of the distribution px is evaluated with

18 Currently, random coset codes have been employed to derive achievable rate regions only for additive and symmetric instances
of multi-terminal communication systems ([18], [15], [16], [19]'?). These works rely on analyzing syndrome decoding which does not
generalize for an arbitrary problem instance.

20For example, we equip users 2 and 3 of 3—IC depicted in figure 1.5 are equipped with cosets of the same linear code.

21By conventional technique, we mean random independent unstructured codes wherein codewords of each constituent code is picked
letter by letter iid with respect to a particular single-letter distribution.

22This is done by choosing the appropriate single letter distribution of the random iid codebook.

23The import of this question can be understood by studying the earlier case of a PTP with a finite field input alphabet. Employing
a random coset code, we can prove achievability of mutual information corresponding to a uniform input distribution. This would be
strictly sub-optimal if the capacity achieving distribution were non-uniform.



respect to base |X'|. One can prove?* that for large n the probability of the actual number deviating significantly from
this expected value is very small. In other words, with high probability, a random coset code of rate % >1—H(px)
contains |X |"[%*(1*H (»x))] codewords whose empirical distribution is close to px. By using only these codewords
over the channel, one can induce a distribution px on the channel. In the sequel, we provide an alternate view of
this technique which motivates the term binning.

Suppose we partition the random coset code of rate % > 1— H(px) by throwing each codeword uniformly and
independently into ||l ~(A=H@Ex)] bins. It can be proved that a uniformly chosen bin with high probability
contains (i) |X|*(*=H#¥x)) codewords and moreover (ii) at least one codeword whose empirical distribution is close
to px. If we were to use the message®® to index a bin, then with high probability, we can choose a codeword within
this bin whose empirical distribution is close to px.2® The informed reader will recognize that this is akin to the
technique of binning proposed by Gel’fand and Pinsker [7].

Coset codes, joint typical encoding and decoding, and the technique of binning are the building blocks for the
theory developed in this thesis. Via binning, we are able to induce non-uniform distribution over the input and
auxiliary input alphabets. Joint typical encoding and decoding will enable us analyze performance over arbitrary
instances of the multi-terminal systems studied herein. Coset codes will enable us shrink the range of the sum when
applied on codebooks. These building blocks will enable us characterize new achievable rate regions. Before we
describe our contributions in particular to each of the four multi-terminal systems, let us formally state the modeling

assumptions applicable throughout this thesis.

1.5 Modeling assumptions

Throughout, we are concerned with communication channels and information sources that evolve over discrete time.
The sources and channels are assumed to be discrete, i.e., the sources take values over finite sets and the channels
provide finite input and output alphabet sets. Sources are assumed memoryless, i.e., their distribution across time
is assumed to be independent and identical. We assume the channels are (i) memoryless, i.e., conditioned on the
input at time n, the output at time 7 is independent of past inputs, past outputs, (ii) time-invariant i.e., the channel
transition probabilities do not vary with time, and (iii) used without feedback, i.e., the inputs have no information of

the symbols received at the output. Please refer to the specific chapters for a precise statement of these assumptions

24This can be established using the second moment method that employs Cheybyshev inequality. The pairwise independence of
codewords aids evaluating the second moment.

25Recall that we wish to communicate over a PTP and need to assign codewords to messages.

26 An informed reader might go the next step and question whether this will enable us achieve capacity over this PTP. Indeed,
to achieve capacity using this technique, we need % - (1 = H(px)) = I(px;Wy|x), where Wy | x denotes the channel transition
probabilities and I(px; WY\X) is the mutual information of the joint distribution px Wy-|x. This implies the rate of the complete code

k_ I(px; WY\X) +1— H(px) is in general larger than the mutual information I(px; Wy|X). Owing to the sparsity of codewords in the

n
code, whose empirical distribution is close to px, we can achieve capacity. This is proven in chapter 3 which forms an important element

of the theory developed in this thesis.



in the particular context.

1.6 Contributions of this thesis

In the following, we briefly list our contributions particular to the four multi-terminal systems.

1.6.1 Three user interference channel (3—IC)

(i)

Recognizing that interference over a 3—IC is, in general, a bivariate function of the two interfering signals, we
develop a framework based on a specific ensemble of coset codes - partitioned coset codes (PCC) (definition 3.4.2
- to enable efficient decoding of the relevant bivariate interfering component. A key element of this framework
- new encoding and decoding rules based on joint typicality - lends it applicable to a general 3—IC. The other
key element - binning of coset codes into PCC - enables us achieve rates corresponding to arbitrary single-letter

distributions.

Analyzing the performance of this framework, we derive a new achievable rate region for a general 3—IC that

subsumes the current known largest and is strictly enlarges the same for particular instances.

We identify additive and non-additive instance of 3—IC for which the derived achievable rate region is analyti-
cally proven to be (i) capacity achieving and (ii) strictly larger than the current known largest. The non-additive

example (example 4.6.7) illustrates the utility of this framework and validates the central theme of this thesis.

1.6.2 Three user broadcast channel(3—BC)

(i)

(iii)

One of the techniques for communicating over a BC involves decoding the interfering signal, or a part thereof.
Moreover, the other technique - precoding - being, in general, less efficient,?” motivates decoding as large a
part of the interfering signal as possible. The interfering signal over a 3—DBC being a pair of signals, we
propose a framework based on PCC to decode the bivariate interfering component efficiently. This framework

is analogous to the one developed for communicating over a 3—IC with certain new elements.

As in the case of a 3—IC, we analyze the performance of the proposed framework to derive a new achievable
rate region for 3—DBC that subsumes the current known largest, and moreover, strictly enlarges the same for

particular instances.

We identify a vector additive 3—DBC and analytically prove that the derived achievable rate region is strictly

larger than the current known largest.

27This is due to the presence of a rate loss. In other words, if there is a choice between decoding and precoding, the former is generally
preferred, as it yields higher rates of communication. However, it must be noted that decoding the interfering signal constrains the rate
of the interfering signal, which is in general undesirable.



1.6.3 Multiple access channel with distributed states (MAC-DSTx)

(i)

(i)

(iii)

The current known coding technique for communicating over a MAC-DSTx is a natural generalization of
Gel’fand and Pinsker’s technique of precoding via binning [7], proposed in the context of a single Tx. In
particular, for the MAC-DSTx, the two codes are independently and uniformly partitioned into bins, and the
pair of chosen codewords is decoded via a joint typicality decoder. Following Philosof and Zamir [15], we develop
a framework based on nested coset codes (NCC) (section 3.4.1) and union coset codes (UCC) (section 3.4.3)
that facilitates favorable interaction of the bins of two codes, and thereby develop a new coding technique. In
contrast to [15], this framework enables (i) exploit the structure of the coset codes for communicating over an
arbitrary MAC-DSTx, and (ii) achieve rates corresponding to arbitrary single-letter distributions. Furthermore,
the framework incorporates UCC built over groups (group UCC) to enable more efficient communication over

a larger class of MAC-DSTx.

We analyze the performance of the proposed framework to derive a new achievable rate region for MAC-DSTx

that subsumes the current known largest, and strictly enlarges the same for particular instances.

We identify several non-additive and non-symmetric instances of MAC-DSTx for which the proposed framework
yields strictly larger achievable rate regions.?® The utility of incorporating group UCC is indicated through an

example.

1.6.4 Computation of sum of sources over an arbitrary MAC

(i)

Following [16], we develop an interface, based on NCC, between the source coding module and channel coding
module that enables the Rx decode the sum of sources by decoding the sum of transmitted codewords. The
proposed interface, in conjunction with separation based strategy, yields a more efficient coding technique to
compute the sum of sources at the Rx of a MAC. In contrast to the findings presented in [16], the interface

developed herein enables computing the sum of sources over an arbitrary MAC.

Analyzing the performance of the proposed coding technique, we derive a new set of sufficient conditions for
computing the sum of sources reliably over an arbitrary MAC, that are weaker than current known conditions.

The utility of this framework is demonstrated through examples involving non-additive MAC.

1.7 Significance of our contribution

This thesis presents new achievable rate regions for multi-terminal systems, including the broadcast and interference

channels. Since the characterization of capacity regions plays a fundamental role in our understanding of performance

28The examples being non-additive, it is significantly harder to provide analytical comparisons, and hence we resort to direct compu-
tation of rate regions achievable using current and proposed coding techniques.
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limits, the contributions of this thesis cannot be overemphasized. Secondly, we propose new coding techniques for
communicating over these multi-terminal systems. With ever increasing processing power and information theoretic
techniques finding their way into practice, these coding techniques can better harness available degrees of freedom
and enable efficient utilization of resources.

As observed in the past, characterizing new achievable rate regions involves a balance of new examples and
new theory, with the former preceding the latter for some problems. For example, in the case of degraded and
general broadcast channels, ingenious coding techniques [20], [8] for particular examples, preceded the theory [21],
[9]. While for the lossless distributed source coding problem, examples and theory were concurrently revealed in [5].
Notwithstanding the order, the significance of either cannot be undervalued. While the examples have shone the
light in the right direction, generalizing these ingenious coding techniques have resulted in fundamentally new ideas.
For example, in his quest to generalize Cover’s superposition technique for the binary additive broadcast channel,
Bergmans [21] developed the fundamental technique of characterizing achievable rate regions using an auxiliary
random variable.

This thesis contributes a good balance of examples and theory. For the broadcast channel, we identify the first
example for which linear codes yield strictly larger achievable rate region than that using current known techniques
based on superposition and binning of independent unstructured codes.?? We build on this to develop a coding
framework for communication over an arbitrary discrete three user broadcast channel. For the interference chan-
nel, while lattices [19] and interference alignment techniques [17] have been employed for continuous valued additive
channels, we identify the first discrete 3—IC and analytically prove that linear codes strictly outperform independent
unstructured code based superposition coding [13].3° Of particular significance is the identification of non-additive
interference channels, such as example 4.6.7, for which linear codes built over suitably larger fields strictly outper-
form>! current known techniques based on independent unstructured codes.?? We leverage these examples to derive
a new achievable rate region for an arbitrary 3—IC involving all valid test channels. For the other two problems,
MAC with state and computation over MAC, we build on novel coding techniques proposed for particular additive
examples in [15] and [16] respectively. While their techniques are applicable only to symmetric and additive scenar-
ios, we generalize the same using the machinery developed herein to derive new achievable rate regions for arbitrary
problem instances. As described in section 1.4, this has involved several new elements. We validate our generalization

by identifying non-additive and non-symmetric examples (sections 6.2.3 and examples 7.2.4 - 7.2.7) for which the

29Superposition coding as proposed by Bergmans [21] involves a conditional coded satellite codebook. However, this coding technique,
and the corresponding achievable rate region can be realized using independent unstructured codebooks via the technique of Han and
Kobayashi [13]. We are therefore justified in saying that conventional coding techniques for arbitrary problem instances are based on
independent unstructured codes.

30Moreover, we note that [19], [17] prove strict sub-optimality of only Gaussian test channels.

31'We provide an analytical proof of this statement in section 4.6.1.

32This example demonstrates the underlying theme of this thesis - codes endowed with algebraic closure properties yields strictly larger
achievable rate regions even for non-additive problem instances - and thereby validates all the machinery - characterizing and analyzing
performance of coset codes over arbitrary problem instances using binning and joint typicality encoding, decoding - developed in this
thesis.

11



proposed generalization is strictly more efficient.

In the case of 3—BC and 3—IC, we have provided analytical proofs of strict sub-optimality of current known
techniques based on independent unstructured codes. It maybe noted that description of the current known achiev-
able rate regions for these problems involve more than 7 auxiliary random variables with loose cardinality bounds.
Moreover, even a tractable characterization of these regions not involving parameters other than the three rates are
not available, thus lending our task considerable difficulty.3® We leverage (i) the structure of the identified instances
and (ii) alternate converse proof techniques (sections 5.10 and 4.5, 4.6.1) to provide analytical proofs. Indeed, the
examples are carefully chosen to amplify the interaction of codes that we are after, and yet simple enough, to enable
us prove strict sub-optimality of current known technique. We highlight the analytical proof of strict suboptimality
of independent unstructured codes based techniques for non-additive instances presented in section 4.6.1.34

The theory developed herein relies on characterizing performance of random multi-terminal codes whose con-
stituent codes are statistically correlated coset codes. This builds in statistical dependence between (i) codewords of
the same code, and (i) different constituent codebooks. Traditionally, analyzing performance of joint typicality based
coding techniques crucially relies on statistical independence of these elements. To accommodate statistical correla-
tion among constituent codebooks, we develop several new proof techniques to characterize the average performance

of the proposed coding technique.?®

1.8 The role of coset codes in multi-terminal information theory

We conclude this chapter by mentioning relevant prior work. The use of coset codes in deriving achievable rate regions
began with Kérner and Marton’s [18] ingenious coding technique proposed for the particular problem of computing
modulo—2 sum of distributed binary sources. Studied in the context of a source coding problem, they proposed
partitioning the two quantizers using cosets of a common linear code. This was in contrast to the conventional
technique of uniformly and independently partitioning the quantizers. Exploiting the coset structure of the partitions,
Koérner and Marton proposed a coding technique that outperformed all techniques based on unstructured codes.
Korner and Marton’s technique [18], in spite of yielding strictly better performance, was not pursued upon.
For over twenty five years following their work, it was unaware how to generalize their techniques to an arbitrary
instance of the problem studied therein. Moreover, it was generally believed that Korner and Marton’s technique
was only applicable for particular symmetric and additive instances. Naturally, there were much fewer attempts at

characterizing performance of other multi-terminal communication systems using coset codes.

33We note that proof of strict sub-optimality of independent unstructured codes for continuous valued channels restrict attention to
Gaussian test channels.

340n a similar note, we commend Philosof and Zamir’s [15] proof of strict sub-optimality of independent unstructured binning for
the problem studied therein. Our attempt to generalize their proof to derive an upper bound for the mod—4 additive MAC with state
(section 6.4) has been unsuccessful and we are forced to resort computation based technique.

35Since we employ new code ensembles, we have detailed all the proof elements. Please refer to the appropriate appendices for the
same.
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Recently, there has been renewed interest in the use of coset codes for characterizing performance limits of multi-
terminal communication systems. Philosof and Zamir [15] propose a technique of structured precoding via correlated
binning at the inputs of a particular symmetric additive binary doubly dirty MAC, followed by a new decoding
technique that outperforms all earlier known techniques based on unstructured codes. Sridharan et. al. [19] employ
the ensemble of lattice codes to effect interference alignment and exploit this to derive strictly better performance
over a three user Gaussian IC. Nazer and Gastpar [16] employ linear codes to develop a new interface between source
and channel coding modules that enable very efficient decoding of sum of sources over an additive MAC. Bresler,
Parekh and Tse [22] prove achievability of strictly larger degrees of freedom over a three user Gaussian interference
channel using lattice codes. For all of the above problems, we are unaware of any technique that replicate the same
performance using unstructured codes.3¢

While the above works demonstrate the utility of algebraic properties in codes, their study is limited to particular
symmetric additive instance of the problem studied therein. For example, the technique proposed in [15] is not
applicable for a arbitrary instance of a MAC with distributed states. Similarly, Nazer and Gastpar’s technique [16]
heavily relies on a structural match between the sources and the channel. These, and other works, therefore do not
address the reason for the long period of skepticism that followed [18], and the question whether coset codes are
applicable only for particular additive and symmetric problem instances, or have a more fundamental role to play in
multi-terminal information theory has remained.

More than three decades following the publication of [18], Krithivasan and Pradhan [23] develop a framework
for generalizing the ingenious coding technique of Kérner Marton to an arbitrary instance of the distributed source
coding (DSC) problem. In particular, they propose an ensemble of codes possessing algebraic closure properties and
a coding technique that exploits these properties to derive an achievable rate region for an arbitrary instance of the
DSC problem. [23] demonstrates that coset codes have a role to play in a general instance of the DSC problem, not
just an additive and symmetric case as that studied in [18].

Krithivasan and Pradhan [23] provided the first leads in unravelling the role of coset codes in multi-terminal infor-
mation theory. DSC being just one multi-terminal communication problem, it is natural to ask whether coset codes
aid more efficient communication over other multi-terminal scenarios such as broadcast and interference channels.
Motivated by these questions, this thesis continues the pursuit to unravel the role of coset codes in multi-terminal

information theory.

36Moreover, for certain problems, such as [15], the authors therein prove strict sub-optimality of all known coding techniques based on
unstructured codes.
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Chapter 2

Typicality

In this chapter we compile together results from typicality that form the basis for most proofs in this thesis. We adopt
the notion of typicality as proposed by Sundaresan in [24]. This notion of typicality is based on robust typicality
proposed by Orlitsky and Roche [25] and subsequently adopted in [26]. Though slightly different from that adopted
in [2], it is functionally equivalent. In the sequel, we provide definitions and state the results in their simplest form.
Since the following results have been well documented in books such as [2], [26], [27] among others, we omit proofs,

and allude to one of the above references for the same. Where appropriate, we supplement with additional references.

2.1 Definitions

Let X;, X> be finite sets and X : = (X1, X5), a pair of random variables taking values in X : = X} x Xy with
pmf px : = px,x,. Let X" : = (X7, X¥) be n independent and identically distributed copies of X. For a pair
a = (a1,a2) € X, and an n—tuple 2" : = (27, x%) € X", let N(alz") = 37" | 1{4,—q} be the number of occurrences
of a in z". Lastly, for j € {1,2}, let 4 € {1,2} \ {j} denote the element in it’s complement. We are now set to define
typical set. For any § > 0, let

N " é
jv5 - e X" M _pX(a) < pX(a) foralla e X
n log | X|

be the typical set on X with respect to pmf px and parameter 6 > 0. For j = 1,2, the projection

T5(X;): = {2} € &' : there exists 2} € X]" such that (z7, %) € T5}
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is the typical set on X; with respect to pmf px and parameter 6 > 0. For j = 1,2 and any z} € A,
T5(X;lz}) : = {2} € X} such that («7,2%) € Ts}

is the typical set on X; conditioned on zZ with respect to distribution px and parameter 6 > 0. Before we state the

basic results, the following remarks are worth noting.

2.2 Simple consequences

Remark 2.2.1 If for any a € X, px(a) =0, and z™ € Ts, then N(a|z™) = 0.

6pX7‘ ((‘LJ)

- Px, (aj)’ < ToaTal - Since 1 € T5(X;), there exists 7 € X' such

Remark 2.2.2 If 2} € T5(X;), then ’w

that (:cj ,:rj-) € Ts, and for this x3, we have

Najlz})

n

N(aj,as|x?, z2 N(aj,az|x™, z2)
|3 Mot 5 g < M)

—px;(a;)| =
a; €EX5 a; €X; az€X;

- pXjX_—f(ajv as)

n

Z 5PX X5 ag,ay) _ 5pxj (aj)
- log | X log |X]

a;E€X;
Lemma 2.2.3 If 2™ € Ty, then for every n € N, we have
(i) |5 logpxn(z") + H(X)| < 6,
(i) \%logpxjn(x?) + H(X;)| <0 for j € [2] and therefore

Proof: Observe that

Z %10&7){(&) +H(X)|.

acX

1 1 &
HIOgPX”(xn)JFH(X)‘ = ‘nZIngX(xi)JFH(X)‘

=1

Substituting upper and lower bounds py (a) — 2@ < Nl ) () 4 dexl(a) o

N(al|z™)
log |X| — n = log | X| n
definition of H(X), we have

and employing the

1 1) a)lo a
o) 4 H()| < 3 PXDRER) <
aceX

where the last inequality follows from H(X) < log|X|. This proves (i). In order to prove (ii), it suffices to prove

N(aJ\:v ’ opx;(aj)

- Togl X[ X for each a; € X;. We may then employ a sequence of steps analogous to the one
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above. This has been established in remark 2.2.2. We are left to argue statement (iii). Statement (iii) is a simple
consequence of %1ngx;|x;z (z]x}) = Llogpx (a™) — %logpr(x;f), the bounds in statements (i) and (ii) and the

triangular inequality. [ ]

2.3 Typical sets are large and highly probable

Lemma 2.3.1 For everye >0, § > 0, there exists N(e,d) € N, such that for everyn > N(e,0), P(X™ € Ts) > 1—¢,
and therefore, P(X}' € T5(X;)) > 1 — ¢, for each j € [2]. Moreover,

2
P(X™ ¢ Ts) < 2exp {—n’6*A} where A = min {W :px(a) >0,a € X} (2.1)

Proof: Note that (2.1) reiterates the first statement of the lemma with a tighter bound. While the first statement
can be proved using Cheybyshev inequality, the second statement, due to Hoeffding [28], Sanov [29], requires a finer
analysis. We begin with the proof of the first statement.

Note that N(a|X™) is a binomial random variable with P(N(a|X™) = k) = () px (a)*(1 — px(a))"~*. For every
a € X such that px(a) =0, we have

P (’N(anX) —pX(a)’ > ffgg‘;f) = P(N(a|X™)>0)=0

As a consequence of this, union bound and the Cheybyshev inequality, we have

P[P o> 20 < 5 (M 220 (2

acX:
Var {&} (log | X|)?

px (a)>0
acX: 52pX( ) acX:
px (a)>0 px (a)>0

PX" ¢ 1T5)

npx(a)(l = px(a))(log|X])?
-y px (a)( p())§g| )

n262px(a)

IN

_ (log|X])? Z (1 —px(a) | _ 0]X]|(log |X])?

. 1-— a
ng? px(a) - nd2 , Where § = min {(px()) :px(a) > O} .

a€EX: px(a)

px(a)>0

Given € > 0 and ¢ > 0, choose N(e,d) = %[Glxl(lg)izgwww and note that for all n > N(e, §), P(X™ ¢ T5) < e. By
definition, 2" € T implies 27 € T5(X;) for each j = 1,2. Therefore, for n > N(e,d), we have 1 —e < P(X,, € Tj) <
P(X} € Ts5(X;)) for each j = 1,2.
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We now provide a sketch of the argument that proves the tighter upper bound stated in (2.1). The argument is
based on the following lemma found in [2, Problem 3.18(b), page 44].

Lemma 2.3.2 If Z1,Z5,--- are independent and identically distributed Bernoulli random variables taking values in

{0,1} with P(Z; = 1) = p, then

P ( > Zi—np >n> < 2e” 2
i=1
1
Substituting Z; = 1{x,—q},1 = Tﬁi’;“)ﬁ)7 we recognize Y . Z; = N(a|X"), and therefore lemma 2.3.2 implies
N(a|X™) dpx(a) 2n36%p3% (a) loge
Pl|l——— — > <2 —_—— . 2.3
(I - vto] > 2 ) <200 { -2 23
Substituting (2.3) in (2.2), we have
2n36%p? 1
P(X" ¢ Ts) < Z 2exp{ W} < 2exp {—n’6°A} where ) is as defined in (2.1). (2.4)
acX:
px(ea)>0
|
Lemma 2.3.3 For every 6 > 0, there exists N1(0), Na(6) € N, such that,
(i) for every n > N1(9), exp{n(H(X) —20)} < |Ts| < exp{n(H(X) +24)}, and
(i) for every n > N2(0), exp{n(H(X;) —20)} < |T5(X;)| < exp{n(H(X;)+20)}.
1

Proof: From lemma 2.2.3(i), we have pxn(z™) > exp {—n (H(X) + 0)} for every ™ € Ts. We therefore have

1> P(X"eTs) = Z pxn(z™) > Z exp{—-n(H(X)+ )} > |Ts|exp{—n (H(X) +9)}
an€Ts @n€Ts

which gives us the upper bound on |Ts|. We employ the lower bound on the probability of the typical set derived in

lemma 2.3.1 for establishing the lower bound on |Ts|. For n > N(4,0), we have

1< P(X"eTy) = 3 pxale™) < Y exp{-n(H(X) - 8)} < [Ts| exp {—n (H(X) - 6)}

" €Ty " E€Ts

which implies |T5| > (1 — 6) exp {n (H(X) — §)}. For n > max{N(4,6), [} log 151}, we have |T5| > exp{n(H(X) —

24)}. Statement (ii) can be proved following an analogous sequence of steps. ]
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2.4 And so are conditional typical sets

Lemma 2.4.1 For every € > 0, 6 > 0, there exists N(¢,6) € N, such that for every n > N(e,0), zi € T5(X5),

implies P(XT € Tos(X;|22)| X} = 23) > 1 — € and therefore P (X; € Ts(X;), X" ¢ Tas) < €. O
Proof: We prove the statement in the lemma for j = 2, i.e, 4 = 1. We begin with an alternate characterization of
X3\ Tos(XZ|2Y), i.e., the complement of Tos (X% |2T). Note that if 2 € X\ Tos (X% |2T), then for some a € X, we

have w —px(a)| > 22x) " Algo note that if N(ay|z}) = 0, then px, (a1) < 611);;1&'1).1 For any as € Xy, we

log | X| ’ =
have
opx, (a1)px,|x, (azla1)  dpx(a)
frng < frd
px(a) le(al)pX2|X1(a2|a1)_ log | X| log | A|
and therefore
N (a|z™) dpx (a)
—— f— _— = < .
\ W~ px(@)| = [px(@) = px(a) < T

In characterizing X3" \ Tas(X3|27), we only need to consider B(aF) : = {a; € Xy : N(a1|z}) > 0}. For a; € P(z}),

we have
N(alz™ N(ay|z? N(alz™ N(aq|z?
% —px(a)| = ‘ ( ;L‘ ) ( (( |m?)) —pX2|X1(az|a1)> + P, x, (az]ar) ((;'1) —PX1(01)>’
(ay|z} alr N(ai|zt
1| 1 ‘N | )) _pX2|X1(a’2|al) +pX2|X1(a’2|a’1) M _pxl(al)
a1|x1 (a]z™) B opx(a)
‘N ) Pxs)x, (az]ar)| + log | |

This implies that if 2§ € X'\ Tos(XZ|2z}), then for some a; € P(27), we have NN((aalllzi;)) — DX, | X, (a2|a1)‘ >

ndpx (a)

W. This enables us conclude

nopx (a)

~ N(aﬂx?)log?fl} U

n n|,.n n G,|(E)
X3\ Tas (X3|2T) C U U {1’2 €Ay : ‘N ) — Px,|x, (az]a1)
a1 €R(x) azEXs:
Px,y|x, (a2]a1)>0

U U {z§ € X3 : N(a|z") > 0}
a1 EP(x] azEXo:
s 1)PX2\xl2(a2|2‘11):0

With an intent of employing the union bound, we provide upper bounds on the probability of each set in the above

union. We begin with the following observation. Conditioned on X7 = 27, note that N(a|z}, X¥) is a binomial

! This follows from z7 € T5(X1).
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random variable with parameters N(a1|z7), px,|x, (az]a1), i.e.,

P(N(ala?, X3) = kX7 = 27) = (V@ID)p e+ (asla)*(1 = pxy x, (azfar)) N @)=+,

For a; € P(x7) and ay € Ay such that px, x, (az|la1) = 0, we have P(N(al|z}, X3) > 0|XT = 27) = 0. For any

ar € P(x7) and az € Xy such that px,|x, (azla1) > 0, we have

N(al|z?, X2) 1 1
< [ S e PR
wo) < { (Vo) el 3

where the intended value for « is Wm. It maybe verified that

N(a|x?, XY
P(‘le) _pX2|X1(a2|a1)

N(ar|zy)

N(alz?, X3) wla *| _ pralxa (a2]a1) (1 — pay x, (a2far))
E{( Naipny | Pramaaion) } N(ailep) |

and therefore,

p (|l )
Narla)

. ndpx(a) ) < Pxspxa(azfan) (1 — px, x, (az]ar)) (N(aa|o]) log | X))
N(az|z})log|X|) — N(ay|x?) n?6%p(a) 7
1 —px,|x, (az]ar) (log|X|)?

02px,|x, (az]a1) n

—pxg\xl(a2|a1)

Substituting this in the probability of the desired event, we have

1 —p* (log|X|)?
02p* n

P(X3 ¢ Tos(Xo|at)| X1 = 2) < |X| ;
where p* = min{px,,, (a2la1) : px,(a1) > 0,px,|a (a2la1) > 0}. Given € > 0 and § > 0, choose N(e,0) =
%HXH;Z;’: (log |X[)?] and note that for n > N(e,d), we have P(X2 ¢ Tos(Xo|z?)| X = 27) < € whenever 27
Tg(Xl). |

m

Lemma 2.4.2 For every 6 > 0, there exists N(6) € N, such that, for every n > N(J), Ty € T5(X;) we have

exp {n(H(X;|X;) —46)} < |Tos(X;|2)| < exp {n(H (X;]X;) + 40)}. |
Proof: Quite naturally, the proof mimics that of lemma 2.3.3. We have

1> P(X3 € Tos(Xo|2})|XT =af) = Y P(X§=ap|X] =af)
xp €To5(Xa2|2})

> ) ew{—n(H(X2|X1) +30)} = |Tas(X5]at)| {—n(H(X2]X1) +30)} .

xy €To5(X2|zT)
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which gives us the upper bound. For n > N (4, ), we have

1 -0 < P(X3 € Tos(Xo|2))| X7 = 27) = P(X3 = 3| X7 = a7)
2l €Tos(X2|2T)
< > exp{—n(H(X2|X1) = 38)} = |Tas(X5|27)| {—n(H(X2| X1) — 36)} .

a3 €Tys (X2|2])

For n > max{N (4, 6)} log 25}, we have |Ths(XZ|27)| > exp {n(H(X2|X1) — 49)}.
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Chapter 3

Coset codes achieve capacity of general

point-to-point channels

The three objectives of this chapter are the following. Firstly, we intend to describe the three ensembles of coset
codes that will be employed for deriving new achievable rate regions in this thesis. Secondly, we wish to characterize
the performance of these ensembles for communicating in the presence of noise. Thirdly, we desire to present the
two other building blocks - joint typicality encoding, decoding and binning - in a simple, yet non-trivial setting,
that enables the reader absorb the underlying idea and study the proofs without getting bogged down by too many
technicalities. An interested reader is therefore strongly encouraged to read through this chapter carefully.

We can satisfy our second objective by characterizing the performance of coset codes in communicating over a
general PTP. However, communicating over multi-terminal systems necessitates codes to possess covering properties,
in addition to packing properties.! We therefore characterize the performance of coset codes in communicating over
a general point-to-point channel with knowledge of channel state at transmitter (PTP-STx). PTP-STx being the
simplest communication channel that employs a code possessing both packing and covering properties, motivates our
choice.

As depicted in figure 3.1, a PTP-STx is a PTP whose channel transition probabilities depend on a random
parameter S called state. The evolution of the state is assumed to be iid across time with respect to distribution
Wyg, and moreover, the encoder is provided the entire realization of the state sequence before communication begins.
The channel is assumed discrete, memoryless, time-invariant and used without feedback.? The objective is to design
an optimal strategy that enables the encoder utilize the state information to efficiently communicate an information

stream to the decoder and thereby characterize the capacity region of PTP-STx.

1The packing properties of a code determine it’s ability to communicate in the presence of noise.
2These will be precisely defined in section 3.2.
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Figure 3.1: A point-to-point channel with knowledge of channel state at transmitter (PTP-STx).

In a celebrated result [7], Gel’fand and Pinsker derived a single-letter characterization for the capacity of PTP-
STx. Their proof of achievability employs a code possessing both packing and covering properties and a coding
technique that exploits the same. In order to achieve capacity, the code must simultaneously possess optimal packing
and covering properties. Gel’fand and Pinsker prove existence of such a code via the random coding technique
wherein the letters of random code is iid according to a single letter distribution. Clearly, the capacity achieving
code is not guaranteed to possess any additional properties, such as algebraic closure that is of interest herein.

In this chapter, our goal is to characterize the performance of the three ensembles of codes for communicating
over a PTP-STx. In particular, we would like to know whether the three ensembles of coset codes possess optimal
covering and packing properties that enable them achieve capacity of PTP-STx? If not, what rates are achievable
over an arbitrary PTP-STx by restricting to these coset codes?

We prove the three ensembles of coset codes achieve capacity of an arbitrary PTP-STx.? In other words, the
property of algebraic closure and optimal packing, covering properties are not mutually exclusive. We wish to
note that these three ensembles of coset codes are currently the only ensemble of codes possessing an algebraic
structure that has been proven to achieve capacity of an arbitrary PTP-STx. This assumes significance in the light
of Ahlswede’s finding [30] that linear codes do not achieve capacity of an arbitrary PTP.

This chapter is organized as follows. Sections 3.1, 3.2 and 3.3 state the preliminaries - notation, definitions and
a single-letter characterization of capacity of PTP-STx. In section 3.4.1, we describe the three ensembles of coset

codes. We prove that these ensembles achieve capacity of PTP-STx in section 3.5.

3.1 Notation

We employ notation that is now widely employed in information theory literature supplemented by the following.

e We let N, R denote the set of natural numbers and real numbers respectively. Calligraphic letters such as X,

Y are employed exclusively to denote finite sets. F, denotes the finite field of cardinality ¢g. For any set A,

3Since PTP-STx is a generalization of a PTP, this also proves the three ensembles of coset codes achieve capacity of an arbitrary PTP.
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cl(A),cocl (A) denote closure of A and closure of the convex hull of A respectively. If A is a finite set, |A|

denotes cardinality of A.
For positive integers ¢ < j, [¢: j] : = {3, +1,---,j}. Welet [j] : = [1:j].

While + denotes addition in R, we let @& denote addition in a finite field. The particular finite field, which is
uniquely determined (up to an isomorphism) by it’s cardinality, is clear from context. When ambiguous, or to
enhance clarity, we specify addition in F, using @,. For a,b € Fy, a©b: = a® (—b), where (—b) is the additive

inverse of b.
If f: U — X is a map, the n-letter extension of f denoted f™ : U™ — X™ is defined f™ (u") := (f (w;) : @ € [n]).

We employ the standard notation for probability mass functions (pmf). For example, if pyxsy is a pmf on
Ux X xS xY, then pyy is the corresponding marginal on U x Y. pi}y is the pmf on U™ x Y™ obtained as an

n—fold product of pyy i.e., pfhy (u™, y™) = 1, puy (ui, y;). We write U ~ py if py is the pmf of U.

The log and exp functions are taken with respect to the same base. For concreteness, the base may be assumed
to be 2, in which case units for information theoretic quantities such as entropy and mutual information would

be bits/symbol.
For a € N, 7(a) : = min{k € N: k > a,k is a prime power}.
For a pmf pyxgy defined on U x X' x S x Y, let

Rpuxsy,U) := {uel:3(z,s,y) € ¥ xS x Y :puxsy(u,z,s,y) > 0}

denote the essential range of U. When clear from context, we omit the underlying pmf and let R(U) denote

R(puxsy,U).

3.2 Definitions - PTP-STx, achievability and capacity

Consider a point-to-point channel with knowledge of channel state at transmitter (PTP-STx) studied by Gel'fand

and Pinsker [7]. Let X and ) denote finite input and output alphabet sets respectively. Transition probabilities

depend on a random parameter, called state, that takes values in a finite set S. The discrete time channel is (i)

time invariant, i.e., pmf of Y;, the output at time ¢, conditioned on (X;, S;), the input and state at time 4, is

invariant with 4, (ii) memoryless, i.e., ¥; is conditionally independent of (X, S:) : 1 <t < i given (X;,.S;), and (iii)

used without feedback, i.e., encoder has no knowledge of outputs observed by decoder. Let Wy xg(y|z,s) be the

probability of observing y € ) at the output given x € X is input to PTP-STx in state s € S. The state at time

i, S; is (i) independent of (Xy, St,Y;) : 1 <t < 4, and (ii) identically distributed for all i. Let Wg(s) be probability
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of PTP-STx being in state s € S. We assume the sequence of states is non-causally available at the encoder. The
input is constrained with respect to a cost function k : X x § — [0,00). We assume that the cost is time-invariant
and additive i.e., cost of input X" to the channel in state S™ is K"(X",5") : = 2 3" | (X, S;). We refer to this
channel as PTP-STx (S, Ws, X, k, Y, Wy |xs).

Definition 3.2.1 A PTP-STx code (n,.# ,e,d) consists of (i) an index set M of messages, of cardinality 4, (i)

an encoder map e : M x 8™ — X™, and (iii) a decoder map d : Y™ — M.

Assuming a uniform pmf on the set of messages, we define the average error probability and the cost of a PTP-STx

code.

Definition 3.2.2 The error probability of PTP-STx code (n, # ,e,d) conditioned on message m € M is

Eedm):= Y Y Wen(s")Wynxn s (y"|e(m, ™), s").
STMES™ ymid(y™)

The average error probability of PTP-STx code (n, #,e,d) is &(e,d) : = Zle if(e,cﬂm). The average cost of

transmitting message m € M is T(elm) : = Y Wen (s™)R™(e(m, s™), s™) and the average cost of PTP-STz code

(n, M e,d) is () : = L 7 r(elm).

snesSn

Definition 3.2.3 A rate cost pair (R, 7) € [0,00)? is achievable if for every n > 0, there exists N(n) € N such that
for allmn > N(n), there exists a PTP-STx code (n, #™,e™ d™) such that (i) % > R—n, (ii) £(e™,d™) <,
and (iii) average cost T(e\™) < 7 41n. The capacity region is C(1) : = cl{ R > 0: (R, T) is achievable}.

In a celebrated result, Gel’fand and Pinsker [7] derived a single letter characterization of C(7). In the next section,

we state this characterization.

3.3 Capacity of PTP-STx

Definition 3.3.1 Let D(7) be the collection of pmfs puxsy on U x X x 8 x Y such that (i) U is a finite set,

(ii) ps = Ws, (i) py|xsu = py|xs = Wy|xs, (iv) px|su(z]s,u) € {0,1} for all (u,z,s) € U x X x S and (v)
E{x(X,S)} <7. Let

D(7) = {prxsy € D) : Ripxsy, V)] < min{ (X 1)), (%] + 18]+ 1]~ 2) - 1] - S]}}

For any pmf puxsy defined onU x X x S x Y, let a(puxsy) : = [0, I(U;Y) — I(U; S)], and

a(r) : = cocl U alpuxsy) | ,a(r) : = cocl U a(puxsy)
puxsy €D() puxsy €D(T)
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Theorem 3.3.2 C(7) = a(r) = a(r). [
Gel'fand and Pinsker [7] proved theorem 3.3.2 for channels without a cost constraint. While the central elements of
their proof can be adopted for cost constrained channels, the sufficiency of restricting to test channels pygxy satisfying
condition (iv) in definition 3.3.1 is established in [31, Lemma 2|, which is attributed to Cohen. A cardinality bound
on |U| can be established using Fenchel-Eggleston strengthening of Carathéodory’s theorem [26, Appendix C] as done
in [32, Lemma 9]. In particular, one can first prove the upper bound min {|X| - |S], |X| + |S| + | Y| — 2} on |U| for test
channels pysxy that do not satisfy condition (iv) in definition 3.3.1. Any such test channel pysxy can be mapped

to a test channel py ¢y that satisfies condition (iv) in definition 3.3.1 without compromising on the achievable rate

for which [U| < |X|-[S] - |U|.

3.4 Nested, partitioned and union coset PTP-STx codes

Gel’fand and Pinsker prove achievability of C(7) by averaging error probability over an ensemble of PTP-STx codes.
A code in this ensemble is specified by a corresponding auxiliary code Ao built over an auxiliary set and a mapping.
An ingenious technique of partitioning (binning) Ao into M bins, one for each message m € M, is the key feature of
the coding technique. In the following, we consider PTP-STx codes which are endowed with a coset code structure.
Note that if the auxiliary set is a finite field, then one can visualize Ao and/or A\; possessing certain algebraic closure
properties. For example, Ao could be coset of a linear code, or the bins of Ap could be cosets of sub-linear code A;.

In the sequel, we characterize PTP-STx codes possessing these algebraic closure properties.

3.4.1 Nested coset PTP-STx codes

We begin with a brief review of coset and nested coset codes. An (n, k) coset code is a collection of vectors in F'
obtained by adding a bias vector to a k—dimensional subspace of F'. If Ao € F;' and A\; C Ao are (n,k +1) and
(n, k) coset codes respectively, then ¢' cosets A\o/A; that partition Ao is a nested coset code. We refer to this as
nested coset code (n,k, 1, gr,90,/1,b™) where b™ is the bias vector, g; € .7:;”" and g} = {g? 98/1} € fékH)X’L are
generator matrices of \; and Ao respectively.

The structure of a nested coset PTP-STx code must now be apparent to an informed reader. The bins are cosets
of the smaller linear code A;. The entire collection of bins forms a coset of the larger linear code Ap. The message to
be sent to the decoder indexes the bins. For this nested coset code, we let v"(a*, m!) : = a¥g; ® mlgo/l @ b"™ denote

a generic codeword in coset ¢(m!) : = {v"(a¥, m!) € F' : aF € F}'}. We refer to ¢(m') as the coset corresponding to

message m'. The following is therefore a natural characterization of a nested coset PTP-STx code.

Definition 3.4.1 A PTP-STx code (n, #,e,d) is a nested coset PTP-STx code over F, if there exists (i) a nested
coset code (n,k‘J,gI,go/I,b”) over Fq, ) map f: Fqg xS — X and, (i) a 1:1 onto map v : M — .7-'; such that
e(m, s™) € {f" (a"gr ® u(m)go,r ®b", s") : a* € .7-"5} for every m € M.
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3.4.2 Partitioned coset PTP-STx codes

Let us now describe partitioned coset codes and define partitioned coset PTP-STx codes. As mentioned earlier, an
(n, k) coset code A\p C JFy is a collection of vectors obtained by adding a bias vector to a k—dimensional subspace
of F;'. The coset code Ao is completely specified through it’s generator matrix g € ]:(fX" and bias vector b" € F .
Consider a partition of Ao into ¢' bins. Each codeword v™(a¥) : = a¥g & b is assigned an index i(a*) € FL. This
coset code Ao with it’s partitions is called a partitioned coset code and denoted (n, k, 1, g,b",4). For each m! € ]-'é,
let ¢(m') : = {a* € FF:i(a") =m'} denote the indices of codewords in the m! bin.

The structure of a partitioned coset code forms the essential building block for the coding techniques proposed

in chapters 4, 5. We therefore formalize the same through the following definition for easy reference.

Definition 3.4.2 Recall that a coset code A\ C FI is a coset of a linear code X\ C F*. The coset code is completely
specified by the generator matriz g € F**™ and a bias vector b} € Fr. Consider a partition of A into 7t bins.
Each codeword a*g ® b" is assigned an index i(a*) € [x!]. This coset code \ with it’s partitions is referred to
as partitioned coset code (PCC) (n,k,l,g,b",i) or succinctly as an (n,k,l) PCC. For each m € [r'], let c¢(m) :

= {a" € FE :i(a®) =m}.

The reader will now be able to visualize the structure of a partitioned coset PTP-STx code. The auxiliary code

is obtained by partitioning a coset code Ao € F' into q¢' bins. The following characterization makes this precise.

Definition 3.4.3 A PTP-STx code (n,.#,e,d) is a partitioned coset PTP-STx code over F, if there exists (i) a
partitioned coset code (n,k,l,g,b" 1) over Fg, i) a map f : Fy xS = X and, (i) a1l:1 onto map ¢ : M — ]:é
such that e(m, s™) € {f™ (a¥g ® b™, s™) :i(a®) = 1(m)} for every m € M.

3.4.3 Union coset PTP-STx codes

Consider a linear code A; C Fg with generator matrix g € ]:é””. For each m! € .7:(5, let b"(m!) € Fy. The
union of ¢! cosets of A\; corresponding to each of the shifts b™(m!) : m! € fé is termed a union coset code. Letting
b= (b"(mh) :ml € Fé), a union coset code is completely specified by the generator matrix g € .7-';”” and b". In
particular, the union coset code is the union of cosets (a*gr @ b"(m!) : a* € .7-'5) corresponding to each of the shifts
b". We refer to this as the (n,k,1,g,b") union coset code. Following is a natural characterization of a union coset

PTP-STx code.

Definition 3.4.4 A PTP-STx code (n, # ,e,d) is a union coset PTP-STx code over F, if there exists (i) a union
coset code (n,k,l,g,b") over Fy, i) a map f : Fqg xS — X and, (i) a1 : 1 onto map ¢ : M — ]-'é such that
e(m,s") € {f" (a"g ®b"((m)),s™) : a* € FF} for every m € M.

Before we conclude this section, we make a simple observation. Note that an (n,k,[, gr,go,1,b") nested coset

code is (i) a (n,k + 1,1, 90, b", i) partitioned coset code where i(a**!) = aji1ap12---apy; and (i) a (n, k,1,g1,b)
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union coset code where b™(m!) = m!gp s1 ©b". If we therefore prove nested coset PTP-STx codes achieve capacity
of an arbitrary PTP-STx, we can conclude that all the above ensembles of coset PTP-STx codes - nested, union and
partitioned - achieve capacity of an arbitrary PTP-STx. The following section is dedicated to proving nested coset

PTP-STx codes achieve capacity of an arbitrary PTP-STx.

3.5 Coset codes achieve capacity of arbitrary PTP-STx

We now state and prove our first main finding - nested coset PTP-STx codes achieve C(7).

Theorem 3.5.1 For a PTP-STx (S,Ws,X,k,Y,Wy|xs), if R € C(7), i.e., R is achicvable, then there exists
a sequence (n, #™, e d™) . n > 1 of nested coset PTP-STx codes over Fq that achieves (R, T), where ¢ =
w(min{(1X] - [S])?, (2] + 1] + V] — 2) - [ 2] - |S]}). =
Proof: Consider any pmf pyxsy € D(7) and n > 0. We prove the existence of a nested coset PTP-STx code
(n, ™ e d™) of rate % > I(V;Y) — I(V;8) — n, average cost 7(e™) < 7 4 n and average prob-
ability of error £(e(™,d™) < 7 for every n € N sufficiently large. The underlying finite field is of cardinality
m(min{(|X| - |S])*, (|X| + |S| + Y| — 2) - |X| - |S|}) referred to as 7 for short.

We prove the existence by averaging the error probability over a specific ensemble of nested coset PTP-STx codes.
We begin with a description of a generic code in this ensemble.

Consider a nested coset PTP-STx code (n, k,l, gr,90,1,0"), denoted Ao /A; with parameters

S

| = Ln<1H(V|Y) ! >Jk. (3.2)

log 7 8log

The reader is advised to bear in mind our notation is not reflective of k£ and [ being functions of n. This abuse of
notation reduces clutter. We specify encoding and decoding rules that map Ap/A; into a corresponding nested coset
PTP-STx code.

The encoder is provided with nested coset code Ao/A;. The message is used to index one among 7' cosets
of A\o/A;. For simplicity, we assume that the set of messages M is V!, and M' € V' to be the uniformly dis-
tributed random variable representing user’s message. The encoder observes the state sequence S™ and popu-

lates the list L(M!, S™) = {v(ak,Ml) s (v(a®, MY, 8" € Ts (V,S),a* € .7-"5} of codewords in the coset correspond-

; . fo ; i . . o 1o nlog(IV||X|[S]|Y])
ing to the message that are jointly typical with the state sequence, where § : = §m1n{4—"8, T},
Kmax @ = max{r(z,s): (z,s) € X x S}. If L(M! S") is empty, it picks a codeword uniformly at random from

coset ¢(M'). Otherwise, it picks a codeword uniformly at random from L(M!, S™). Let V(A¥, M') denote the picked
codeword in either case. The encoder computes X" (M!, S™) : = fr(V"(A* M), S™), where f : V x S — X is any
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map that satisfies px|vs(f(v, s)|v, s) =1 for all pairs (v,s) € V x . X"(M', S™) is fed as input to the channel.

The decoder observes the received vector Y™ and populates the list
D(Y"):= {m! e V': " (", m') such that (v"(a*,m'),Y™) € T5(V,Y)}.

If D(Y™) is a singleton, the decoder declares the content of D(Y™) as the decoded message pair. Otherwise, it

declares an error.

The above encoding and decoding rules map Ao/A; into a corresponding nested coset PTP-STx code

(n, 4™, ™ d™) of rate % = ”O%. Observe that, for n > Ny(n) : = [810%1, we have

S 1 ) [y S .1 U ) SR B I (3.3)
log ™ 8logm log 8logm
H(V]S) U
< 1- 4
- n( log 7 +410g7r ’ (34)
and similarly,
HV]Y) n H(V]Y) U
1— - >k+1 > 1-— — -1 .
n( logm 8logm ) — th= o log 8logm (3:5)
H(V|)Y
> n(l— V1Y) 1 ) (3.6)

log ™ B 4logm
Combining the upper bound for & in (3.4) and the lower bound for k + [ in (3.6), we get

Hoe™ ~ wv|s) - B(V|Y) - g =I(V;Y) - I(V;S) - g (3.7)

Since Ao/A; was a generic nested coset code satisfying (3.1), (3.2), we have characterized, through our encoding
and decoding maps, an ensemble of nested coset PTP-STx codes, one for each n € N, n > Nj(n) of rate at least
I(V;Y) — I(V;S) — 2. It suffices to prove existence of a PTP-STx code (n,.# ™, e(™ d(™) in this ensemble, one
for each n € N sufficiently large, with average probability of error £(e(™,d(™) < 5 and average cost constraint

7(e(™) < 7 +n. This is done by averaging &(e(™,d™) over the ensemble.

Consider a random nested coset code (n,k,l,G1,Go/r, B"), denoted Ap/Ar, with parameters n, k,[ satisfying
(3.1) and (3.2). Let G; € V""" Gg,; € V*" and bias vector B" € V" be mutually independent and uniformly
distributed on their respective range spaces. In the sequel, we study the average probability of error £(e(™, d™) of
the corresponding random nested coset PTP-STx code. Towards this end, we begin with a few remarks on notation.
Let V" (a®,m!) : = a"Gr ® m'!Go,r ® B" denote a generic codeword in coset C(m!) : = {V"(a*,m!): a* € V*}

corresponding to message m/'.
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In order to study £(e(™,d™), we need to characterize the error events associated with the random nested coset
PTP-STx code corresponding to Ap/A;. If g : = {S™ ¢ T%(S)}, € 1 = {gZ)%(S",Ml) = 0}, where d)g(s",ml) :
= D akeyk Livn(ak,mt),smeTy (VS)}> then the error event at the encoder is contained in €; U ey. The error event
at the decoder is contained i§n €5 U eq, where €3 : = Ugreypr {(V™(a®, M), Y™) € TH(V,Y)} and €4 : = Upizpp
Ugrepr { (V™ (a®, ml),Y™) € TP(V,Y)}. It suffices to derive an upper bound on P(e1) + P(€§ Nea) + P((e1 U e2)° N
€5) + P(e4). In the sequel, we derive an upper bound on each term of the above sum.

Lemma 2.3.1 guarantees the existence of Na(17) € N* such that Vn > Na(n), P(e1) < {%. In appendix A, we prove
the existence of N3(n) € N, such that ¥n > N3(n),

P(efﬂeg)gexp{—nlogﬂ'(i—(1—H(V|S)+ 30 ))} (3.9)

log 7 4logm

Substituting the lower bound in (3.3) for k in (3.8), for all n > max {N1(n), N3(n)}, we have

Pl Nes) < exp {—n (g - :15)} < exp {—n (ZZ) } , (3.9)

where the last inequality follows from the choice of §.
We now consider P((e; Uez)°Nes). An informed reader will recognize that an upper bound on this term can be
derived using a typical application of conditional frequency typicality lemma 2.4.1. For the sake of completeness we

state the arguments. The encoding rule ensures, (€; Ueg)® C {(V™(M!, S™),8") € T?(V,S)}, and thus
2

P(eUe)*NeS) < P ({(V”(MZ,S"),S") e TV, S)} n eé)

< ) P(VMM',SM),SM) = (0", sM)P (| (VM 57,8 = (v, 5™))
(v",s")ET’%‘(MS)

< > P((VMM',S™),S™) = (", sM)P (Y™ ¢ Ts(Y ", sM)|(VE(MY,S™), 8™) = (0", s™)) . (3.10)
(v",s")ET’%’(KS)

For any (v",s™) € T#(V, S), note that,
2

n

Y"=y", vr(M*',S™),s™ — e Vi Vo= G — .
P (X"(MI,S"):z"‘( (:(v",s")) )> o HP(XZ =z, Y = yilVi = v, Si = 51)

where the second equality follows from Markov chain V — (X, S) — Y. By lemma 2.4.1, there exists Ny(n) € N such
that for all n > Ny(n)

P((Y™, X™(M',S™) ¢ TH(X, Y |o", s™)|(V™ (M, S™), S™) = (v, s")) < (3.11)

|3

4Since § is a function of 7, the dependence of N2(n) on § is captured through 7.
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Substituting (3.11) in (3.10), we have P((e1 Uez)°Ne3) < ¢ for all n > Ny(n). It remains to provide an upper bound
on P(eys). In appendix B, we prove the existence of N5(n) € N such that Vn > Nx(n), P((e1 Uea Uer) Ney) <
exp {fnlogﬂ (1 - % — % — %) } For n > max {N1(n), N5(n)}, the upper bound for k+1 derived in (3.6)
is substituted to yield, P((e; Uez U€a)°Nes) < exp{—n (% — 375)} <exp{-n (%)}

We have therefore proved that for every n > max {N;(n) : i € [5]}, there exists at least one nested coset PTP-STx
code (n, 7!, e,d) over Fy for which {(e,d) < £ +exp {—ng—Z} + 4 +exp {—n%’} For n > max {N;(n) : i € [6]}, where
Ns(n) = [% log %1, &(e,d) < 7. Tt only remains to prove this code satisfies the average cost constraint. It can be
verified that 7(e) < Fhmax + (1 — 3)(7 + W). The choice of ¢ ensures that 7(e) < Zkmax + (7 + 7). Since
Kmax € R is bounded, this proves the existence of a sequence (n, mt(n) e(n) d(")) :n > 1 of nested coset PTP-STx
codes that achieve (R, ) for every R € C(r). ]

The codewords of Ap being uniformly distributed over F7? (c.f. Lemma A.0.1(i)), the probability of it being

jointly typical with a typical state sequence s™ is w = exp{n(H(U|S) —logm)}. This indicates that each coset

must contain roughly 7 ((1;|S)| = qnuf(;s» = ¢nlogm—H(UI%)) codewords. Indeed, it suffices to partition Ao with a
coset, of rate % >1-— Hlf)UIS). 1-— Hl(Uls) being in general larger than II(U;S), we conclude that the constraint of
g T og og T

linearity forces us to increase the rate of the binning code.
However, the sparsity of typical vectors in a random linear code comes to our rescue when we attempt to pack
cosets. The decoder looks for all vectors in the auxiliary code that are jointly typical with the received vector

Y™, In unstructured random coding, since each codeword is individually typical with high probability, the rate of

I(U;Y)

auxiliary code is bounded from above by Tog 7

. The typical vectors being sparse in random linear code, a similar

HU|Y)
log 7

argument as above enables us to enlarge the auxiliary code to a rate 1 — The rate of the code is thus

HU|Y H(U|S I(U;Y)—I(U;S
(1- AR — (- AR = Ao,

We have thus proved nested coset codes achieve the capacity of arbitrary PTP-STx. The interested reader is
referred to [33] wherein nested lattice codes are proved to achieve capacity of arbitrary continuous point to point
channels. In order to achieve capacity of arbitrary continuous PTP-STx, it is necessary to construct lattices which
result in non-uniform distribution of error when employed for source quantization.

The following corollaries are a direct consequence of nested coset PTP-STx codes being both partitioned coset

and union coset PTP-STx codes.

Corollary 3.5.2 For a PTP-STx (S,Ws,X,k, Y, Wy|xs), if R € C(1), i.e., R is achicvable, then there eists

a sequence (n, . #™ e d™) . n > 1 of partitioned coset PTP-STx codes over Fq that achieves (R,T), where
. 2

q = m(min{(|X] - [S))", (| X] + [S[+ [V] = 2) - |X] - [S]}).

Corollary 3.5.3 For a PTP-STx (S,Ws,X,k, Y, Wy|xs), if R € C(1), i.e., R is achievable, then there exists
a sequence (n, . #™ e d™) : n > 1 of union coset PTP-STx codes over Fy that achieves (R,T), where ¢ =
(min{(|X] - [S)?, (|X] + S|+ [V = 2) - |X] - |S]}).
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Chapter 4

Three user interference channel

We begin with a brief description of a three user interference channel (3—IC) and state the problem of interest. A
3—IC, depicted in figure 4.3, consists of three transmitter receiver (Tx-Rx) pairs that share a common communication
medium. Let X; denote the input alphabet available to transmitter j. Receiver j observes symbols in output alphabet
Y;. The symbol observed by receiver j depends on the input of the three transmitters. This is modelled through the
channel transition probabilities Wy, v,v;|x, x,x,- In particular, conditioned on w1, 2, z3 being the symbols input by
transmitters 1,2 and 3 respectively, the probability of receivers 1,2 and 3 observing symbols y1, y2, y3 respectively, is
Wy, vavs X1 X2 X5 (15 Y2, Y3l @1, T2, 23). As always, we assume the channel to be discrete, memoryless and used without

feedback.

Transmitter j wishes to reliably communicate a specific information stream to it’s corresponding receiver j. The
problem of interest is to characterize the capacity region of a 3—IC. Please refer to section 4.3 for a precise statement
of this problem. The main contributions of this chapter are (i) characterization of a new achievable rate region for a
general discrete 3—IC and (ii) identification of 3—ICs for which the proposed achievable rate region strictly enlarges
upon the current known largest. In the following, we provide a discussion of current known coding techniques and

the key elements of our contribution.

M, —»] Tx1 |—]X, Y, Rx 1 M,

M, Tx 2 X, Rx 2 M,
Wy vogix XX

My —| Tx3 | X, Y, Rx 3 M,

Figure 4.1: Three user interference channel (3—IC)
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Evidently, an interference channel (IC) is a model for communication between multiple transmitter receiver (Tx-
Rx) pairs that share a common communication medium. Since the Tx-Rx pairs share a common communication
medium, every user’s transmission causes interference to every other user. Communication over an IC is therefore

facilitated by a coding technique that manages interference efficiently, in addition to channel noise.

The quest for designing an efficient coding technique for managing interference was initiated in the context of an
IC with two Tx-Rx pairs [34] [35] [36], henceforth referred to as 2—IC. Over a 2—IC, the source of interference is the
transmission of the lone interfering transmitter. Based on his findings in [37], Carleial proposed the technique of each
receiver decoding a part of the interfering transmitter’s transmission. To enable this, Carleial employed superposition
coding [20] [21]. Each transmitter splits it’s message and transmission into two parts - public and private. Cloud
center and satellite codebooks encode the public and private parts of the message respectively. In addition to both
parts of the corresponding transmitter, each receiver decodes the public part, i.e., the cloud center codeword, of the

interfering transmitter.

In characterizing the performance of his coding technique via random coding, Carleial employed, quite naturally,
random unstructured codebooks for each pair of cloud center and satellite codebooks. Moreover the two pairs were
statistically independent. Subsequently, Han and Kobayashi [13] strictly enlarged Carleial’s achievable rate region
by (i) replacing the successive decoder he employed by a more powerful joint decoder, and (ii) incorporating a time

sharing random variable.

The above coding technique of message splitting via superposition coding and employing unstructured cloud and
satellite codebooks, henceforth referred to as CHK-technique, remains to be the best known coding technique for
communication over a 2—IC. The interfering transmitter’s transmission being the only source of interference, decoding
a part of the same amounts to decoding a part of the interference. This coding technique is in general more efficient
than either ignoring or decoding the entire interference. Moreover, superposition coding using unstructured codes
enables efficient decoding of a part of the interfering transmitter’s transmission [21]. Whether the rate region proved
achievable in [13], henceforth referred to as the CHK rate region, is the capacity region of a 2—IC has remained a
long standing open problem in information theory.

In this chapter, we consider the problem of communicating over a 3—IC. In a 3—IC, transmission by two trans-
mitters contribute to interference. The nature of interference over a 3—IC being richer, we develop a technique
based on coset codes for interference management. Coset codes built over finite fields, as introduced in section 1.4,
are algebraically closed. The sum of any two codewords of a coset lies in another coset. Moreover, two cosets of a
linear code, when added result in another coset. As against to adding two random codebooks whose codewords are
statistically independent, we emphasize that the sum of two random cosets of a random linear code yields a collection
of the same size. This property of coset codes behaving nicely under addition - a bivariate operation - is exploited
for managing interference, wherein, interference over a 3—IC is in general a compressive bivariate function of the

transmissions of the two interfering transmitters.
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The use of lattice codes [19], [22] and interference alignment techniques [17] have been proposed for efficient inter-
ference management over Gaussian IC’s with three or more Tx-Rx pairs. While these works are restricted to additive
IC’s, the key contribution herein is the development of a framework based on coset codes for efficient communication
over an arbitrary discrete 3—IC. The framework involves (i) a new ensemble of coset codes - partitioned coset codes
(PCC) - possessing algebraic and empirical properties, (coupled with) (ii) efficient joint typicality based encoding
and decoding rules that exploit algebraic properties of PCC and moreover, enable us achieve rates corresponding to
arbitrary single-letter distributions, (iii) mathematical tools and proof techniques to characterize the performance of
the proposed coding technique over arbitrary 3—ICs. This framework enables us characterize PCC rate region - a new
achievable rate region for an arbitrary discrete 3—IC. We demonstrate the utility of this framework by identifying

additive as well as non-additive 3—IC’s for which the proposed technique enables efficient communication.

Conventionally, the random codebooks employed in characterizing achievable rate regions are unstructured and
independent, i.e., codewords of each random codebook, and the random codebooks themselves, are statistically
independent. Since our findings are based on a fundamentally different philosophy - use of statistically correlated
codes possessing algebraic closure properties - it is natural to enquire the need for the same. Indeed, one can employ
unstructured codes for communication over an arbitrary 3—IC and optimally stitch together all current known
relevant coding techniques - message splitting, binning and superposition - to derive the current known largest
achievable rate region for communication over an arbitrary 3—IC. How does this rate region, henceforth referred to
as #SB—region, compare to the PCC rate region?

An important element of our findings is the strict sub-optimality of the ZSB—technique! for communicating over
3—IC’s, including non-additive instances. In particular, we identify (i) an additive 3—IC, and (ii) a non-additive
3—IC for which we analytically prove strict containment of the ZSB—region in it’s corresponding capacity region.
Moreover, for these 3—IC’s the PCC rate region is the capacity region. This justifies the need for the framework
developed herein. The reader will now wonder whether PCC rate region strictly subsumes ZSB—region for an
arbitrary 3—IC.2

In addition to efficiently decoding a bivariate function of the two interfering transmitters’ transmission, which the
proposed coding technique based on PCC accomplishes, it is necessary to enable receivers efficiently decode individual
parts of interfering transmitters’ transmissions. The coding technique based on statistically correlated PCC proposed
herein, is tuned to exploit the algebraic properties of coset codes in decoding a bivariate function - field addition

- of transmissions of the two interfering transmitters. Such a technique is strictly sub-optimal for the purpose of

1The above coding technique that employs unstructured codes and optimally stitches together all current known relevant coding
techniques - message splitting, binning and superposition is the current known best coding technique for communicating over an arbitrary
3—IC. We refer to this as the ZSB—technique. We state the ZSB—technique in section 4.4.2. This yields the current known largest
achievable rate region for a general 3—IC which is referred to herein as ZSB—region. We provide a characterization of the ZSB—region
for a sub-class of 3—IC’s in section 4.4.2.

2A little thought will convince an alert reader, that is this were true, the PCC rate region should particularize or enlarge the CHK
rate region for a 2—IC. Indeed, this is not true, as will be indicated in the sequel.
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decoding individual parts of interfering transmitters’ transmissions, when compared to traditional technique based
on unstructured independent codes. This leads us to enhance the PCC coding technique by incorporating the
% SB—technique. This enables us characterize a new achievable rate region for an arbitrary discrete 3—IC that

contains PCC rate region and strictly enlarges the ZSB—region.

4.1 Outline

We state the preliminaries - notation, definitions and the precise statement of the problem - in section 4.3. In section
4.4, we provide a characterization of the CHK rate region for a 2—IC. The first main finding of this chapter is the
strict sub-optimality of current known coding techniques based on unstructured codes for communication over 3—IC.
In order to present this finding, we characterize a sub-class of 3—IC’s called 3—to—1 IC (section 4.3), and derive,
in section 4.4.2, an achievable rate region for the same, called ZSB—region, that employs current known coding
techniques based on unstructured codes. In section 4.5, we identify an additive 3—to—1 IC and propose a strategy
based on correlated linear codes that is analytically proven to strictly outperform %SB—technique.

Our second main finding - a new achievable rate region for an arbitrary discrete 3—IC - is presented in section 4.6
in three pedagogical steps. In section 4.6.1, we define partitioned coset codes (PCC) and present the first step that
describes all the new elements of our framework in a simple setting. Here, we employ PCC to manage interference
seen by only one receiver. For this step, we furnish a complete and elaborate proof of achievability. In this section,
we also identify a non-additive 3—to—1 IC (Example 4.6.7) for which ZSB—technique is strictly sub-optimal and
moreover, the coding technique based on PCC is capacity achieving. This example illustrates the central theme of
this thesis - codes endowed with algebraic closure properties enable efficient communication over arbitrary general
multi-terminal systems, not just additive, symmetric instances - and thereby justifies the framework developed herein.
In the second step, presented in section 4.6.2, we employ PCC to manage interference seen by all three receivers.

Finally, in section 4.6.3, we indicate how to enlarge the ZSB—region by incorporating the framework based on PCC.

4.2 Prior work

An IC has been the subject of considerable interest since Shannon’s study [34] of the two way channel. Carleial
[38] made the key observation that the technique of superposition [20], [21] could be employed to split each user’s
transmission and thereby enable each receiver decode a part of the interfering transmitter’s transmission. While
Carleial derived a rate region by analyzing a sequential decoder, Han and Kobayashi [13] employed the joint decoder

to enlarge upon the rate region proved achievable in [38].> The technique developed by Carleial [38], and furthered

3Moreover, they included a time sharing random variable in it’s characterization and argue that a time sharing random variable
provides a strict enlargement over the then common practice of convex hull operation
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by Han and Kobayashi [13] is the only coding technique known to counter interference in a 2—IC. This coding
technique is optimal under strong interference [37], [39]. El Gamal and Costa [40] prove that CHK-technique is
optimal for a class of deterministic IC’s. Recently Etkin, Tse and Wang [41] prove the CHK-technique is within 1
bit of the optimal for the Gaussian IC. Following a period of reduced activity, there has been renewed interest in
developing strategies for managing interference in an IC setting. Cadambe and Jafar [17] propose the technique of
interference alignment for the Gaussian IC and thereby harness the available of degrees of freedom in an IC with
several Tx-Rx pairs more efficiently. Bresler, Parekh and Tse [22] employ lattice codes to align interference and
thereby characterize capacity of Gaussian ICs within a constant number of bits. While our findings appear similar
to the idea of interference alignment, we would like to reiterate the following key elements. Our work provides a
technique of aligning interference over arbitrary channels even while achieving rates corresponding to non-uniform

distributions.* Example 4.6.7 illustrates the utility of this technique.

4.3 Definitions: 3—IC, 3—to—1 IC, achievability, capacity region

A 3—IC consists of three finite input alphabet sets X7, Xs, X3 and three finite output alphabet sets V1, )2, V3. The
discrete time channel is (i) time invariant, i.e., the pmf of Y, : = (Y14, Yo, Y3:), the output at time ¢, conditioned
on X, : = (X1, Xot, X3¢), the input at time ¢, is invariant with ¢, (ii) memoryless, i.e., conditioned on present
input X,, the present output Y, is independent of past inputs X,,---, X, ;, past outputs Y,,---,Y,_; and (iii)
used without feedback, i.e., encoders have no information of the symbols received by decoders. Let Wy x(ylz) =
Wy, v, s X1 X2 X5 (15 Y2, Y3| 21, T2, 22) denote probability of observing symbol y; € V; at output j, given z; € X} is
input by encoder j. Inputs are constrained with respect to cost functions x; : X; — [0,00) : j € [3]. The cost
1

function is assumed additive, i.e., cost of transmitting vector « € X7 is &} («]) : = + Y 1L Kj(wj¢). We refer to this

3—-IC as (X, Y, Wy |x, K).

Definition 4.3.1 A 3—IC code (n,M,e,d) consist of (i) index sets My, Mo, M3 of messages, (ii) encoder maps
ej : My — X' 1 j € [3], and (iii) three decoder maps d;j : Y} — M : j € [3].

Definition 4.3.2 The error probability of a 3—IC code (n, M, e, d) conditioned on message triple (my, ma, mg) € M
18

fledm):=1— Y Wyx(y"lei(m), es(ma), e5(ma)).
yid(y™)=m

The average error probability of a 3—IC code (n, M, e,d) is £(e, d) : = ZmeM mf(g,cﬂm). Average cost
per symbol of transmitting message m € M is T(elm) : = (K} (e;(m;)) : j € [3]) and average cost per symbol of 3—IC

code (n, M, e,d) is 7(e) : = W ZmeMI(Q‘M)-

4We note that the technique of interference alignment proposed by Cadambe and Jafar is restricted to Gaussian channels and achieve
rates corresponding Gaussian input distributions.
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Definition 4.3.3 A rate-cost sextuple (R1, Ro, R3,71,72,73) € [0,00)¢ is achievable if for every n > 0, there evists

o A
N(n) € N such that for all n > N(n), there ezists a 3—IC code (n, M™, e™ d™Y) such that (i) L/:Jl >
Rj—n:je[3], (i) &e™,d™) < n, and (iii) average cost T(e™); < 7; +n. The capacity region is C(z) :

= {E ER3:(R,7) is achievable}.

We now introduce the class of 3—to—1 IC that enables us prove strict sub-optimality coding techniques based on
unstructured codes. A 3—to—1 IC is an 3—IC wherein two of the users enjoy interference free point-to-point links.
Formally, a 3—1C (X, Y, Wy x,7) is a 3—to—1 IC if (i) Wy, x(¥2[2) : = 32, 4y xys Wy x (yl2) is independent of
(z1,23) € X1 x Xy, and (i) Wiy (yslz) - = 22

collection of input output symbols (z,y) € X x ). For a 3—to—1 IC, the channel transition probabilities factorize as

Y1) EVL X Vs Wy |x (y|z) is independent of (x1,x2) € &1 x &, for every
Wy x (ylz) = Wy, 1x (W1]2) Wy, x, (Y2|72) Wy, x, (y3|23) for some conditional pmfs Wy, x, Wy, x, and Wy, x,. We
also note that X1 X35 — X5 — Y and X1 Xs — X3 — Y3 are Markov chains for any distribution px, px,px, WXK.E’

In the following section, we describe the coding technique of message splitting and superposition using unstruc-

tured codes, in the context of a 2—IC, and employ the same in deriving the ZSB—region for 3—to—1 IC.

4.4 Message splitting and superposition using unstructured codes

4.4.1 CHK-technique for 2—IC

The main impediment to communicating efficiently over a 2—IC is interference. As against to treating the interfering
transmitters’ transmission as noise, CHK-technique enables each decoder decode a part of the same to enhance it’s
capability to decode the desired signal. In order for encoder j to make available one part of it’s transmission to the
decoder #, it’s transmission is split into two parts - public and private. Decoder 4 decodes public part of encoder
4’s transmission, peels it off, and thereby enhance it’s capability to decode the intended signal - public and private
transmissions of encoder 4.

Encoder 5 builds codebooks over two layers - public and private. The public layer contains a cloud center codebook
built over W;. For each codeword in the cloud center codebook, a corresponding satellite codebook is built over
&X;. The satellite codebooks form the private layer. The user’s message is split into two parts - public and private.
The cloud center codeword is the codeword in the cloud center codebook indexed by the public part of the message.
In the satellite codebook corresponding to the cloud center codeword, the codeword indexed by the private part of
the message forms the satellite codeword. The satellite codeword is input on the channel. Decoder j decodes into
codebooks built over Wi, W» and X}, i.e., the two cloud center codebooks and it’s satellite codebook. A standard

information theoretic analysis of probability of error yields an achievable rate region referred to herein as CHK rate

5 Any interference channel wherein only one of the users is subjected to interference is a 3—to—1 IC by a suitable permutation of the
user indices.
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region for 2—IC.
Definition 4.4.1 and theorem 4.4.2 provide a characterization of rate pairs achievable using CHK-technique. We

omit restating the definitions analogous to definitions 4.3.1, 4.3.2, 4.3.3 for a 2—1IC.

Definition 4.4.1 Let Dy (1) denote the collection of pmfs pow, w, x, x,v1v, defined on Qx Wi xWa x X1 X Xo X Y1 X
Va2, where Q, Wi, Ws are finite sets of cardinality at most 7, |Xy|+4, | Xa|4-4 respectively, such that (i) py| xw = Wy|x,
(i) (W1, X1) is conditionally independent of (Wa, X2) given Q, (i11) E{x;(X;)} < 7;. For powxy € Duk (1), let
ank(powxy) denote the set of rate pairs (Ri, Rs) € [0,00]? that satisfy

R < min {I(X;;Y;1QW;), 1(X;; V;|QW) + I(W; X35 V;IQW;)} + j € [2]
2
Ri+Ry < min{ I(X; Y5 QW) + (W, X5 Y3Q) : j € 21,3 (W, X5 Y;1QW5)
j=1

2R + Ry < I(XjY;QW) + I(W; Xy Y3 QW5) + T(W5X55Y51Q) = j € [2]

and
apk(t)=c| |J auxlpowxy)
PQWXyY €
Da k (7)
Theorem 4.4.2 For 2—1C (X,Y, Wy |x, k), agx(T) is achievable, i.c., agx (1) C C(1). -

Remark 4.4.3 Recently, several efforts [42], [43], [44] have yielded simplified descriptions [45] of ank(r). The
description stated above involving fewer auxiliary random variables and tighter bounds on their cardinalities, is due

to Chong et. al. [42].

4.4.2 YSB—technique for 3—to—1 IC

Before we consider the case of a 3—to—1 IC, it is appropriate to state how does one optimally stitch together current
known coding techniques - message splitting, superposition coding and precoding via binning - for communicating
over 3—IC? Each encoder must make available parts of it’s transmission to each user it interferes with. Specifically,
encoder j splits it’s transmission into four parts - one public, two semi-private and one private. The corresponding
decoder j decodes all of these parts. The other two decoders, say i and k, for which encoder j’s transmission is
interference, decode the public part of user j’s transmission. The public part is decoded by all receivers, and is
therefore encoded using a cloud center codebook at the base layer. Moreover, each semi-private part of encoder
7’s transmission is decoded by exactly one among the decoders ¢ and k. The semi-private parts are encoded at
the intermediate level using one codebook each. These codebooks, referred to as semi-satellite codebooks, are

conditionally coded over the cloud center codebook. The semi-satellite codebooks are precoded for each other via
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binning. The private part is encoded at the top layer using a satellite codebook. The satellite codebook is conditionally
coded over the cloud center and semi-satellite codebooks. Each decoder decodes the seven parts using a joint typicality
decoder. Finally, the encoders and decoders share a time sharing sequence to enable them synchronize the choice of

codebooks at each symbol interval. We henceforth refer to the above coding technique as the ZSB—technique.

One can characterize ZSB—region - an achievable rate region corresponding to the above coding technique - via
random coding. Indeed, such a characterization is quite involved. Since our objective is to illustrate sub-optimality

of ZSB—technique, it suffices to obtain a characterization of ZSB—region for 3—to—1 ICs.

For the case of 3—to—1 IC, user 1’s transmission does not cause interference to users 2 and 3, and therefore will
not need it to split it’s message. This can be proved using Markov chains X; X3 — Xo — Y5 and X; X, — X3 — V3.
Moreover, transmission of user 2 does not interfere user 3’s reception and vice versa. Therefore, users 2 and 3 will
only need to split their messages into two parts - a private part and a semi-private part that is decoded by user 1.

We now describe this coding technique.

Since encoder 1’s transmission does not cause interference to any of the other users, it employs a simple PTP
encoder. Specifically, encoder 1 builds a single codebook (27 (my) : my € M) of rate Ty over X} and the codeword
indexed by the message is input on the channel. The operations of encoder 2 and 3 are identical and we only describe
the former. Moreover, since their transmissions cause interference only to user 1, their operations are identical to
that of a generic encoder of a 2—IC. In anticipation of a generalization to 3—IC , we employ an alternate notation

and therefore describe operation of encoder 2.

Encoder 2 splits it’s message My € My into two parts - semi-private and private. We let message (i) Mo € Mo
of rate Lo denote it’s semi-private part and (ii) Max € Moax of rate T denote it’s private part. A single semi-
private layer codebook (uf(mg1) : me; € Moy) is built over Us. For each message mo; € Moy, a codebook
(x2(me1,max) : Mmax € Max) is built over X5. The codebooks over Xy form the private layer. The codeword

x9(Ma1, Max) corresponding to message My = (May, Max ) is input on the channel.

Decoders 2 and 3 enjoying interference free reception perform simple point to point joint typical decoding into
the corresponding pair of semi-private and private codebooks. Decoder 1 looks for all messages m, € M for which
there exists a pair (u3(1ha1),u% (hs)) such that (zq (), uld (me21), ud (Ms1), Y7") is jointly typical, where Y* is the
vector received by decoder 1. If there is exactly, one such message m; € Mj, this is declared as decoded message of

user 1. Otherwise, an error is signaled.

A typical information theoretic analysis of probability of decoding error yields the ZSB—region for 3—to—1 IC.
For the sake of completeness, we provide the details. A well versed reader may skip over to the characterization
provided in definition 4.4.4 and theorem 4.4.5. Let @, taking values over the finite alphabet Q, denote the time
sharing random variable. Let pg be a pmf on Q and ¢" € Q" denote a sequence picked according to [[;—; po-

n

q" is revealed to the encoders and decoders. The distribution induced on the ensemble of codebooks is such that,
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conditioned on time sharing sequence being ¢, the three collections of codebooks, one corresponding to each user,®
are mutually independent. Let popx,|QPu,x,|QPUsxs1QWy|x be a pmf on Q X Uz x Uz x X x ). The codewords
in X —codebook are independent and identically distributed according to [T;-, Px,1Q(*|g:). The codewords in user
2’s semi-private codebook are independent and identically distributed according to []}_; Pu,(-|lg:). Conditioned
on the entire Us—codebook, codewords (xa(ma1,max) : max € Max) in the private codebook corresponding to
semi-private message m5 are independent and identically distributed according to [T;_; px,v.0(|(us (m¥))e, q¢).
The distribution induced on user 3’s codebook is analogous to that of user 2 and a description is therefore omitted.

We now average probability of decoding error over the ensemble of codebooks. The probability of either decoder

2 or 3 decoding erroneously decays exponentially if
L +T; <I(U;X;;Y;1Q) and T; <I(X;;Y;Q,Uj):j=2,3.
The probability of decoder 1 decoding erroneously decays exponentially if

T < I(X1;U:,U3, Y1|Q), Lo+Ti < I({UxX1;UsY1|Q), Lz+Th <I(UsXq1;U2Y1]Q), and

Ly +L3+Ty < I(UUsX1;Y1|Q).

Incorporating non-negativity constraints, 7; > 0 : j € [3],L; > 0 : j = 2,3, substituting R1, Ro, Rs for 11, Ly +
Ty, L3+ T3 respectively, and eliminating all variables except R; : j € [3] using the technique of Fourier-Motzkin yields

the following achievable rate region.

Definition 4.4.4 Let D, (1) denote the collection of pmfs pqu,u,xy defined on Q xUs xUs x X x Y, where Q,Us, Us
are finite sets, such that (i) py|xv,u,q = Wy|x, (i) the triplet X1, (U, X2) and (Us, X3) are conditionally mutually
independent given Q, (i) E{x;(X;)} < 1; : j € [3]. For pou,usxy € Du(7), let o (pou,usxy) denote the set of
rate triples (R1, Ro, R3) € [0,00)3 that satisfy

0< Ry <I(X1;Y1|Q7U2,U3), OSR]<I(UJXJ,}/;|Q)j:2,3 (41)
Rl + R2 < I(UQXl;Yl‘QUg) + I(XQ;YQ‘QUQ), Rl + R3 < I(UgXl;Y1|QU2) + I(Xg,Y3|QU3)

Ri+ Ry + R3 < I(U2Us X1; Y1|Q) + I(X2; Y2 |QUs) + I(X3; Y3|QUs), (4.2)
and
oy (7) = cl U  culouvxy)
PQUaU3XY €
Du(l)

6Here, the collection of user j’s codebooks refers to the entire collection of codebooks employed by encoder j.

39



Xl Yl
+
N,
X5 Y,
t
'N,
X3 Y3

+)
N,

Figure 4.2: A binary additive 3—to—1 IC described in example 4.5.1.

Theorem 4.4.5 For 3—to—1 IC (X,Y, Wy |x,k), ay(T) is achievable, i.e., a, (1) € C(1). -

The reader will also recognize that o, () is indeed achievable over an arbitrary 3—IC.” This is stated below.

Theorem 4.4.6 For 3—I1C (X, Y, Wy |x, k), au(T) is achievable, i.c., a, (1) € C(T). O

4.5 Strict sub-optimality of ZSB—region for 3—to—1 IC

This section contains our first main finding of this chapter - strict sub-optimality of ZSB—technique. In particular,
we identify a binary additive 3—to—1 IC for which we prove strict sub-optimality of ZSB—technique. We begin with
the description of the 3—to—1 IC.

Example 4.5.1 Consider a binary additive 3—to—1 IC illustrated in figure 4.2 with X; = Y; = {0,1} : j € [3] with
channel transition probabilities Wy | x (y|z) = BSCs, (y1]|x1®x2®x3) BSCs, (y2|22) BSCs, (y3|x3), where BSC,(0[1) =
BSC,(1|0) = 1 — BSC,(0/0) = 1 — BSC,(1|1) = n denotes the transition probabilities of a BSC with cross over
probability n € |0, %] Inputs of users 2 and 3 are not costed, i.e., k;(0) = k;(1) =0 for j = 2,3. User 1’s input is
constrained with respect to a Hamming cost function, i.e., k1(x) = z for x € {0,1} to an average cost of T € (0, %)

per symbol. Let C(7) denote the capacity region of this 3—to—1 IC.

Clearly, C(1) C B(r, 3, %,0), where
B(r,8) : = {(R1,Ra, R3) € [0,00)% : R; < hy(8; % 75) — ho(8;) 1 j = 1,2,3}. (4.3)

Let us focus on achievability. We begin with a few simple observations for the above channel. Let us begin with
the assumption § : = d5 = d3. As illustrated in figure 4.2, users 2 and 3 enjoy interference free unconstrained

binary symmetric channels (BSC) with cross over probability 6 = d; = d3. They can therefore communicate at their

"Unless the 3—1C (X, ), WX‘&,E) is a 3—to—1IC, ay (1) is not it’s #SB—region.
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respective capacities 1 — hy(d). Constrained to average Hamming weight of 7, user 1 cannot hope to achieve a rate
larger than hy(7 % 01) — hp(81).2 What is the maximum rate achievable by user 1 while users 2 and 3 communicate
at their respective capacities?

User 1 cannot hope to achieve rate hy(7 * 61) — hyp(d1) and decode the pair of codewords transmitted by user 2
and 3 if hy(7 % 81) — hp(d1) + 2(1 — hp(8)) > 1 — hp(01) or equivalently 1+ hy(7 % 1) > 2h4(0). Under this condition,
% SB—technique forces decoder 1 to be contented to decoding univariate components - represented through semi-
private random variables Us, Us - of user 2 and 3’s transmissions. We state that as long as the univariate components
leave residual uncertainty in the interfering signal, i.e., H(X2® X3|Us, Us) > 0, the rate achievable by user 1 is strictly
smaller than it’s maximum hy(7 % d;1) — hp(d1).Y This claim and the proof of strict sub-optimality of ZSB—technique
is proved in theorem 4.5.3.

We now describe a simple linear coding technique that enables user 1 achieve it’s maximum rate hy(7%01) — hy(91)
even under the condition 1 + hy(7 % §1) > 2hy(5)! Let us assume 7 x 3 < §. We choose a linear code, or a coset
thereof, that achieves capacity of a BSC with cross over probability §. We equip users 2 and 3 with the same code,
thereby constraining the sum of their transmitted codewords to this linear code, or a coset thereof, of rate 1 — h;(9).
Since 7% §; < §, decode 1 can first decode the interfering signal - sum of codewords transmitted by encoders 2 and 3
- treating the rest as noise, peel it off, and then decode the desired signal. User 1 can therefore achieve it’s maximum
rate hy(7 % 01) — hp(d1) if 7% 61 < 0.

Are the two conditions 1+ hy(7%d1) > 2hy(J) and 7+ 57 < § mutually exclusive? The two conditions are satisfied
if hp(7 % 01) < hp(0) < W. Ifr*d; < %, then hy(7 % 1) < W < 1 and 4 can be chosen appropriately
to ensure the two conditions are satisfied. For example, the choice §; = 0.01, 7 = % and ¢ € (0.1325,0.21) proves
these two conditions are indeed not mutually exclusive.

Let us now consider the general case with respect to do,d3 and assume without loss of generality do < d3. The
linear coding scheme generalizes naturally. We employ a capacity achieving linear code, or a coset thereof, that
achieves capacity of BSC of user 2. This code, or a coset thereof, is sub-sampled uniformly at random to build a
capacity achieving code for BSC of user 3. The sum of user 2 and user 3’s transmissions is contained within a coset
of user 2’s code and can therefore be decoded by user 1 as long as 7% d; < d2. The above arguments are summarized

in the following lemma.

Lemma 4.5.2 Consider the 3—to—1 IC in example 4.5.1. If 7 * 6; < min {dz,d3}, then C(1) = B(7, %, %,9), where
B(t,0) is given by (4.3). [

In theorem 4.5.3, we prove that if 1+ hy(51%7) > hy(d2) + hp(d3), then (hy(7%061) —hp(01),1—hp(d2), 1 —hp(d3)) ¢
oy, (7). We therefore conclude in corollary 4.5.5 that if 7,1, 02, 03 are such that 1+ hy(01 * 7) > hy(d2) + hp(d3) and

81f receiver 1 is provided with the codewords transmitted by users 2 and 3, the effective channel it sees is a BSC with cross over
probability d7.

9 An informed reader will be able to reason this by relating this situation to a point to point channel with partial state observed at the
receiver.
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min {62, 3} > §1 * 7, then ZSB—technique is strictly suboptimal for the 3—to—1 IC presented in example 4.5.1.

Theorem 4.5.3 Consider the 3—to—1 IC described in example 4.5.1. If hy(d2) + hp(d3) < 1+ hy(T % 61), then
(ho(T % 61) — hp(61),1 — hp(d2),1 — hp(d3)) & (). |

Proof: If H(X;|Q,U;) = 0for j = 2,3, then the upper bound in (4.2) reduces to R1+Ro+R3 < I(X2X3X1;Y1|Q) <
1 —hy(01). From the hypothesis, we have hy(7 % d1) — hp(61) + 1 — hp(d2) + 1 — hp(d3) > 1 — hp(d1) which violates the

above upper bound and hence the theorem statement is true.

Henceforth, we assume H(X;|Q,U;) > 0 for j = 2 or j = 3. Let us assume j,# are distinct elements in {2, 3} and
H(X;|Q,U;) > 0. Since (Uz, X2) and (Us, X3) are conditionally independent given (), we have

0< H(XJ‘Qa U]) = H(Xj‘Xj'va U23 U3) = H(XQ ¥ X3|X7'3Q,U27 US) S H(X2 2 X3|Q7 U2U3)~

The univariate components Us, Us leave residual uncertainty in the interfering signal and imply the existence of a
G = (¢*,ub,ul) € QO : = Q x Uy x Us for which H(X; @ X3|(Q,UxUs) = ¢*) > 0. Under this condition, we prove
that the upper bound (4.1) on Rj is strictly smaller than hy(7 * d1) — hy(d1). Towards that end, we prove a simple

observation based on strict concavity of binary entropy function.

Lemma 4.5.4 If Z; : j € [3] are binary random variables such that (i) H(Z1) > H(Z,), (i) Z3 is independent of
(Z1,Z2), then H(Z1) — H(Z2) > |H(Z1® Z3) — H(Zy® Z3)|. Moreover, if H(Zy) > H(Z2) and H(Z3) > 0, then the
inequality is strict, i.e., H(Z1) — H(Z2) > |H(Z1 ® Z3) — H(Zy & Z3)|. O

Proof: Note that, if either H(Z,) = H(Z3) or H(Z3) = 0, then H(Zy) — H(Z3) = H(Z, ® Z3) — H(Zy ® Z3).
We therefore assume H(Z;) > H(Z2) and H(Z3) > 0 and prove the case of strict inequality. For j € [3], let
{pz,(0),pz,(1)} = {6;,1—6;} with §; € [0,4], 3 > 0. Define f : [0,3] — [0,1] as f(t) = hy(61 *t) — hy(d2 * 1).
It suffices to prove f(0) > f(d3). By the Taylor series, f(d3) = f(0) + d3f'(¢) for some ¢ € [0, d3] and therefore it
suffices to prove f/(t) < 0 for ¢ € (0, 3].

It maybe verified that

51 52

f’(t):(1—261)log1gl —(1—252)10g1g2 , where §; = &§; +t(1—25;): j € [2].

Note that (i) 0 < (1 —28;) < (1 —28) < 1, (i) 6; < 6; + (1 — 26;) < i, (iii) since §; > 0 and ¢t < 3,

51 — 62 = (81 — 82)(1 — 2t) > 0. We therefore have 0 < 6o < §; < % and thus log % > log %. Combining this

with the first observation, we conclude (1 — 24s) log 15252 > (1—261)log 15151 which implies f'(t) <0fort € (0,1]. m
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We are now equipped to work with the upper bound (4.1) on R;. Denoting Q : = (Q, Us, Us) and a generic element
G:=(q, uz,u3) € Q: = Q x Uy x Us, we observe that

I[(X1;Y1]Q) = HY1|Q) — H(Y1|QX71)

- ZPQ() MlQ =9 - Zprl Gr)HY1X) =21,Q =)
q

1,9

ZPQ((DH(Xl SN B Xo®X3Q=q) - prlé(x1¢§)H(x1 DN & Xy ® X3 Xy =21,Q = §)
q

z1,g4

Y rg@HX 1@ N1 @ Xo @ Xs|Q=0) — > px, o1, HN1 & X5 @ X5|Q = §) (4.4)
q

z1,9

> po(@H (X1 & Ny & Xo & X5|Q =) — Zp@(d)H(J\G Xy ® X5|Q = q)
- :

< ZPQ(~)H(X1@N1|QZQ ZPQ N1|Q—q > po(@H(X1 & N1|Q =) — hy(d1) (4.5

ZPQ )hs(px,10(Llg)  61) — hb(51) < hy(Eq {px,1Q(1la) * 01 }) — hy(d1) < (7 # 61) — ho(61),  (4.6)

where (i) (4.4) follows from independence of (N1, X2, X3) and X; conditioned on realization of @, (ii) (4.5) follows
from existence of a ¢* € Q for which H(X,; @ X3/Q = ¢*) > 0 and substituting Pxyony o (1d") for pz,, py, 6 (1a")
for pz, and py, o Xle(-|q*) for pz, in lemma 4.5.4, (iii) the first inequality in (4.6) follows from Jensen’s inequality
and the second follows from the cost constraint that any test channel in 5. (7) must satisfy.

The first inequality in (4.6) is an equality if and only if pX1|Q(1|(j) = 7 for all § € Q For Q = §¢*, we have
Px,on6(1") > Py, 6(1]¢") and from lemma 4.5.4, we have I(X1;Y1|Q) < hy(7 % 61) — ho(01). ]

Corollary 4.5.5 Consider the 3—to—1 IC in example 4.5.1 with § = 02 = 3. If hy(7 % 01) < hp(6) < %M,
then (hp(T % 01) — hp(81), 1 — hp(8), 1 — hp(8)) & au(T) but (he(T % 61) — hp(81),1 — hp(8),1 — hy(8)) € C(7) and thus
oy (1) # C(7). In particular, if 61 = 0.01 and 6 € (0.1325,0.21), then ay(3) # C(3).

4.5.1 The non-trivial role played by structured codes

In this section, we emphasize the role of algebraic closure properties of coset codes. The observant reader would
have noted two new elements in the coding technique proposed for example 4.5.1. Firstly, we propose decoding a
bivariate function of the codewords input by users 2 and 3. Secondly, we employ an ensemble of structured codes,
linear codes in this case, to limit the number of interference patterns. An informed reader may note that the CHK-
technique is based on decoding univariate functions of the other user’s transmission. One might then claim that a
natural extension of CHK-technique for the three user case must involve users decoding bivariate components of the
interfering user’s transmissions. Such a technique may be further enhanced by recognizing bivariate and univariate

functions tend to ‘saturate’ and thereby enhancing the decoding rule. We refer the reader to Bandemer and El
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Gamal [46] that presents an achievable rate region that exploits decoding bivariate functions and it’s saturation.
Our technique goes further through the use of structured code ensembles. When the rates of users are such that the
number of interfering patterns does not saturate, then the structured codes play a non-trivial role in limiting the
same. Example 4.5.1 with the parameters as stated in corollary 4.5.5 demonstrates this. In particular, we prove that
for the choice of parameters as in corollary 4.5.5, the rate triple proved achievable using linear codes is not contained
within the rate region presented in [46].

We refer the reader to [46, Section I1.D] wherein the authors propose an achievable rate region for the three user
deterministic interference channel with noisy observations. To avoid conflict in notation, we restate example 4.5.1

with a notation consistent with that employed in [46].

Example 4.5.6 Consider a binary additive 3—to—1 IC illustrated in figure 4.2 with X; = Z; = {0,1} : j € [3] with
channel transition probabilities Wy x (z|z) = BSCs, (21|11 © 22 ®x3) BSCs, (22|22) BSCs, (23]|23), where BSC,(0|1) =
BSC,(1|0) = 1 — BSC,(0|0) = 1 — BSCy(1|1) = n denotes the transition probabilities of a BSC’s with cross over
probability n € [0, %} Inputs of users 2 and 3 are not costed, i.e., k;(0) = k;(1) = 0 for j = 2,3 and user 1’s input

is constrained by a Hamming cost function, i.e., k1(x) = x for x € {0,1}.

Let us describe the above example using the notation employed in [46]. It maybe verified that Xi2, X33, Xo3, X392,
Sy, 83 are trivial, X;1 = Xj for j = 1,2,3, Yo = Xog = Xo, Y3 = X33 = X3, 51 = Xo1 © X31, Y1 = X1 D 5y,
Zj =Y;®Nj for j =1,2,3. Ny, N, N3 are independent Bernoulli processes with P(N; =1) =6, and P(N; =1) =6
for j = 2,3. We now state the main elements in the argument that proves (hy,(701) —hp(d1), 1 —hp(d2), 1 —hp(d3)) ¢
Rip. Let (Q, X1, X2, X3) be such that (Ry,1— hy(d2),1 — hp(3)) € Ni_;Re(Q, X1, X2, X3). It can be proved that
px;10(0lq) = px,10(1lq) = % for every ¢ € Q and j = 2, 3 using standard information theoretic arguments'®. We now

employ the bound
Ry +min{Ry + H(X51|Q), Rs + H(X21|Q), Rz + Rs, H(5:1(Q)} < I(X1, 515 Z1|Q) (4.7)

present in the description of R (Q, X1, X2, X3). Clearly, the right hand side of (4.7) is 1 — hy(d1). We also know
Ro+Rs < min{Ro+H(X31|Q), Rs+H(X21|Q)}. T Ro+Rs < H(S1|Q) = H(X216X51|Q) = H(X28X35|Q) = 1, then
the above bound reduces to Ry +Ro+R3 < 1—hy(01). Therefore, if (2—2hy(5)) < 1, or equivalently hy () > 3, we have
Ri+Rs+ R3 < 1—hy(d61). Consider the choice §; = 0.01,7 = % and § = 0.15. We have hy(7xd1) < hp(d) < W
and therefore (2 — 2hy(8)) + (hp(61 % 7) — hp(61)) > (1 — hp(61 * 7)) + (hp (61 * 7) — hp(61)) = 1 — hyp(d1) and moreover
hy(8) = 0.6098 > 1. Therefore the rate triple (hy(7x61) — hp(01), 1 — hy(82), 1 — hs(d3)) ¢ Rip but is achievable using

linear codes.

10This can be proved by employing the bound R; < I(X,; Z;|S;, Q) involved in the description of R;(Q, X1, X2, X3) for j = 2,3 and
noting that S; if trivial for these j.
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4.6 Achievable rate region for an arbitrary 3—IC

In this section, we present our second main finding - a new achievable rate region for a general discrete 3—IC based on
partitioned coset codes (PCC). This rate region, referred to PCC rate region, in conjunction with the ZSB—region
strictly enlarges upon the latter, which is the current known largest for a general 3—IC. We derive PCC rate region
in two pedagogical steps. In the first step, presented in section 4.6.1, we employ PCC to manage interference seen
by only one of the receivers. This simplified setting aids the reader recognize and absorb all the key elements of the
framework proposed herein. For this step, we provide a complete and elaborate proof of achievability. In this section,
we also identify a non-additive 3—to—1 IC (Example 4.6.7) for which we analytically prove (i) strict sub-optimality
of #SB—technique and (ii) optimality of PCC rate region. This example indeed illustrates the central theme of
this thesis - codes endowed with algebraic closure properties enable efficient communication over arbitrary general
multi-terminal communication channels, not just additive, symmetric instances - and thereby justifies the framework
developed herein.

In the second step, presented in section 4.6.2, we employ PCC to manage interference seen by every receiver
and thereby provide a characterization of PCC rate region. In section 4.6.3, we indicate a coding technique that
incorporates PCC and unstructured independent codes for managing interference over a 3—IC. Any characterization

of the corresponding rate region being quite involved, we refrain from providing the same.

4.6.1 Step I : Decoding sum of codewords chosen from PCC over an arbitrary 3—1IC

The linear coding technique proposed for example 4.5.1 seems to hinge on the additive nature of the channel
therein. One of our main contributions is in being able to generalize this technique to arbitrary channels. In this
section, we present our generalization in a simple setting that elaborates on the structure of the codebooks and
captures all the key elements.

Definition 4.6.1 Let Df(1) denote the collection of distributions pou,uv,xy € Df(7) defined over QxUs xUsx X x Y,
where Uy = Us is a finite field. For pqu,u,xy € D}(7), let o} (pou,usxy) be defined as the set of rate triples
(R1, R, R3) € [0,00)3 that satisfy

Ry < min{0, H(U;|Q) — H(Us © U3|QY1) : j = 2,3} + [(X1; U2 @ Us, Y1]Q),
R; < I(U;, X;Y50Q) 1 j = 2,3,

and
o} (z) = cocl U o' ouavsxy)
PQUyU3 XY €
D¢ (z)
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Theorem 4.6.2 For 3—IC (X, Y, Wy|x, k), o} ' (z) is achievable, i.e., o} (1) C C(1). O
Before we provide a proof, we describe the coding technique in a simplified setting that highlights the new elements
and indicates achievability of promised rates. Towards that end, consider a pmf pou,v,xy € Df(r) with Q = ¢'!
and Uy = Us = F,. Except for key differences, the coding technique proposed herein is identical to ZSB—technique
for the 3—to—1 IC (section 4.4.2). Let us revisit the linear coding technique proposed for example 4.5.1 to identify
these key differences. Note that the structure and encoding rule of user 1 in example 4.5.1 and section 4.4.2 are
identical. We therefore employ the same code structure and encoding rules for user 1. In particular, encoder 1 builds
a single codebook C; = (a7 (my) : m; € M;) of rate Ry over X; and the codeword indexed by the message is input
on the channel.

The structure and encoding rules for users 2 and 3 are identical and we describe it using the generic index j € {2, 3}.
As in section 4.4.2, we employ a two layer - cloud center and satellite - code for user j and split it’s message M; € M;
into two parts. Let (i) M;; € M1 : = [r%] denote it’s semi-private part, and (ii) M;x € M;x : = [exp{nL;}] denote
it’s private part. While in section 4.4.2 user 1 decoded the pair of cloud center codewords, the first key difference
we propose is that user 1 decode the sum of user 2 and 3 cloud center codewords. Let coset A; C U} of linear code
Xj C U} denote user j’s cloud center codebook. In particular, let g; € Z/{jS i%™ denote generator matrix of Xj and coset
A;j correspond to shift b € U;'. The second key difference we propose is that cloud center codebooks of users’ 2 and
3 overlap, i.e., the larger of A, A3 contains the other. For example, if A; contains 7% codewords'? and s;, < s;,,
then le C X]—Q. We therefore let gj:'; = [g]:’; gj:';/jl}.

Since codewords of a uniformly distributed coset code are uniformly distributed, we need to partition the coset
code into bins to induce non-uniform distribution over the auxiliary alphabet f;. We therefore employ partitioned
coset codes (section 3.4.2). The third key difference is therefore a partition of \; into 7% bins to enable induce a
non-uniform distribution. For the benefit of a reader who has not studied through section 3.4.2, we describe and

define partitioned coset codes again. In particular, for each codeword u?(asf) t=a%g; DO?

. S5
. where a®7 € U;’, an

index i;(a%) € [x%] is defined that indexes the bin containing u} (a*). We let ¢j1(mj1) = {a® € U;” :ij(a®) = m;1}
denote the set containing indices corresponding to message m;;.
The structure of the cloud center codebook plays an important role in this chapter and we formalize the same

through the following definition.

Definition 4.6.3 Recall that a coset code A C FI is a coset of a linear code X\ C F*. The coset code is completely
specified by the generator matriz g € FX*™ and a bias vector bl € Fr. Consider a partition of A into 7! bins.
Each codeword a*g @ b" is assigned an index i(a*) € [x!]. This coset code \ with it’s partitions is referred to
as partitioned coset code (PCC) (n,k,l,g,b" i) or succinctly as an (n,k,l1) PCC. For each m € [r'], let c(m) :

= {a" € FE :i(a®) =m}.

HSince the time sharing random variable Q is employed in a standard way, we choose to omit the same in this description.
12Recall |U,;| = .
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User j’s satellite codebook, built over X}, consists of exp{nL;} bins, one for each private message m;x €
M;x : = [exp{nL;}]. Let (z}(m;x,bjx) € &' : bjx € ¢jx : = [exp{nk;}]) denote bin corresponding to message
mjx € M;x. Having received message M; = (M;1, M;x), the encoder identifies all pairs (u} (a®), 2z (M;x,bjx)) of
jointly typical codewords with (a%,b;x) € ¢j1(Mj1) x ¢;x. If it finds one or more such pairs, one of them is chosen

and the corresponding satellite codeword is fed as input on the channel. Otherwise, an error is declared.

We now describe the decoding rule. Predictably, the decoding rules of users 2 and 3 are identical and we describe
this through the generic index j € {2,3}. Except for a slight modification to handle the bins in the codebooks,
decoder j’s operation is identical in spirit to a point to point decoder described in section 4.4.2. Specifically, decoder
J identifies all (172;1,0,x) for which there exists (a,b;x) € cj1(12j1) X ¢;x such that (u}(a*?),z% (M;x,bjx), Y]")
is jointly typical with respect to p?]j PORZE If there is exactly one such pair (71,7, x), this is declared as user j

message. Otherwise an error is signaled.

Decoder 1 constructs the sum Ay @ A3 : = {uf @ uj : uj €Nj,7 =2, 3} of the cloud center codebooks. Having
received YY", it looks for all potential message 7i2; for which there exists a u3q3 € A2 @ A3 such that (ufqs3, 27 (1M1), Y1)
is jointly typical with respect to py, gu, x, v; - If it finds exactly one such message 1, it declares this as decoded

message of user 1. Otherwise, it declares an error.

As is typical in information theory, we derive an upper bound on the probability of error by averaging over the
ensemble of codebooks. Let C; = (X7 (m1) : m1 € Mj) denote random codebook of user 1. Let {j1,72} = {2,3},
be such that s;, < s;, and Aj,A;, denote the random coset codes of users ji; and j» respectively. Let matrices

t _ |t t
G, Gl = [Gjl [
For each j = 2,3,a% € U;”, let I;(a*) € [x'/] denote the random bin to which codeword U} (a*) : = a® G; & B} is

} and vectors B}, B}, denote the generator matrices and bias vectors of Aj,, A;, respectively.

assigned. For j = 2,3, let C; = (X7 (m;x,bjx) : (mjx,bjx) € Mjx Xcjx), where ¢jx : = [exp{nK;}] denote user j’s

random satellite codebook. We let C1,Cs,C3 G, , G,

i1 Gy /415 By, By and indices I;(a®) : a® € U;j,j = 2,3 be mutually

independent. Moreover, for j = 1,2,3, we let (i) the codewords in C; be mutually independent and identically

distributed according to [[;_, px; and (ii) generator matrices G;,,G%, = {G;l G

] and bias vectors B}LI,B;; be
uniformly distributed over their respective range spaces, and (iii) random indices I;(a%) : a% € Z,{;j, j = 2,3 be

uniformly distributed over their respective range spaces.

In the following proof we derive upper bounds on the parameters of the code and thereby characterize a?’[l(z).
Here, we only provide a sketch of the arguments and indicate the upper bounds. The codewords of A; are uniformly

distributed and pairwise independent (Lemma A.0.1). An informed reader can now recognize that if

)]
w + K >logm + H(X;) — H(X;,Uj) for j = 2,3, (4.8)

=t (a)
% " Y ogn > logm — H(U;) , K; >0,
n
then encoders 2 and 3 will find at least one pair of typical codewords in the indexed pair of bins. Decoders 2 and 3
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perform point-to-point decoding of their cloud center and satellite codebooks. If

() osn ®)
Kj+Lj < I(X;;Y;,U;) , 5955 4+ K+ L < logr + H(X;) — H(U;, X,|Y5),

18T g — H(U;|X;,Y;) (4.9)

n

then probability of error at decoder j decays exponentially with block length n.

s logm
n

Ao @ Ag is a codebook of rate max{ : j = 2,3} with codewords being uniformly distributed and pairwise

independent. An informed reader will be able to reason that if

(a) i1 (b)
Ry < I(X1;Y1,Us ®Us) and Ry + 8" Zlogm + H(Xy) — H(Xy1,Us @® Us|V3) for j = 2,3 (4.10)
n
then probability of decoding error at receiver 1 can be driven arbitrarily small by choosing a large enough block

length n.
Substituting R; = tjl% + L; for j = 2,3, incorporating non-negativity constraints for Ry,¢;,L; : j = 2,3 and

s;logm

eliminating =

, K j = 2,3 using the technique of Fourier Motzkin [26, Appendix D] yields the achievable rate
region mentioned in theorem 4.6.2. We formalize the above arguments through the following proof.
Proof: Let pou,u,xy € Df(1), R € a?{l(pQUQ%ﬂ) and 77 > 0. Let us assume Us = Us = F is the finite field of
size w. For each n € N sufficiently large, we prove existence of a 3—IC code (n,.#,e,d) for which % > R —n,
Te(er) < 7 + 7 for k € [3] and &(e, d) < 7.

Taking a cue from the above coding technique, we begin with an alternative characterization of 04?;'1(])@1]2 UsXY)

in terms of the parameters of the code.

Definition 4.6.4 Consider pou,u,xy € Df(7) and let Fr : = Uy = Us. Let d?'l(pQUQUsﬂ) be defined as the set of

rate triples (Ry, Ra, R3) € [0,00)% for which SUOSN'(E7 PQU,Us XY 0,0) is non-empty, where S(E, PQULUsXY 508, 0¢) s
S Xy Xy

defined as the collection of vectors (Sa, Ta, Ko, Lo, S3, T3, K3, L3) € [0,00)® that satisfy

R; =Tjlogm+ L;, K; >0, (S;—T;)logm > logm — H(U,|Q) + s,
(S; —T))logm+ K; >logm + H(X;|Q) — H(U;, X;|Q) + 6s
T >6c, L > 6c, K;+L; < I(X;:Y;,U;|Q) — 6c, S;logm < logm — H(U;|X;,Y;,Q) — dc,
Sjlogm+ K; + L; <logm+ H(X;|Q) — HU;, X;|Y;,Q) — 6c, Ri <I(X1;Y1,U28Us|Q) —dc

R +Sj log7r < log7r+H(X1\Q) — H(Xl,UQ @U3|Y1,Q) 750
forj=2,3.

Lemma 4.6.5 d:;-_l (pQU2U3ﬂ) = 04?--1 (pQUzUsﬂ)' [
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Proof: The proof follows by substituting R; = Tjlogm + L; in the bounds characterizing S(E, POUsUsxY 5 0,0)
and eliminating S;,7};, K;,L; : j = 2,3 via the technique of Fourier Motzkin. The resulting characterization will
be that of (3[3)’[1(11)QUQU3 xv). The presence of strict inequalities in the bounds characterizing 043”[1(1069[;2(;3 xv) and
S(R, pov,usxy,9,08) enables one prove §L>JOS(E7 DPQULUs XY 5 0,0) is non-empty for every R € ai’c'l(pQUQUSﬂ).lg’ ]
Lemma 4.6.5 provides us with the parameters of the code whose existence we seek to prove. Let us now describe this
code. For the rate triple R under consideration, Lemma 4.6.5 provides us with ¢ > 0 and (S}, 7}, K;,L;j,: j =2,3) €
S(R,pqu,usx.y,0). Define n = min{d, 77}, m = n2 = 55, where d € N will be specified in due course. Let ¢" € T, (Q)
denote the time sharing sequence. User 1’s code contains [exp{nR;}]| codewords (z(mq) € XJ* : my € My), where
M : = [[exp{nR1}]]. The structure of user 2 and 3’s codebooks are identical and we describe it using the generic
index j € {2,3}. User j’s cloud center codebook ); is the partitioned coset code (definition 4.6.3) (n, s;,t;, g;,07,1;)
built over U = F where s; : = [nS;] and t; : = [nT};]. We let uj(a®7) : = a® g; ® b} denote a generic codeword
in A; and ¢j1(mj1) : = {a% :4;(a%) =m;j1} denote the indices of codewords in bin corresponding to message
mj1 € Mj1. Moreover, the partitioned coset codes overlap, i.e., if s;, < s;,, then gjq; = [gJTl gjj;/jl]' Without loss
of generality, we assume sy < s3 and therefore g = [¢gT 937:/2] The satellite codebook C;, built over &, contains
[exp{nL;}] bins, one for each message m;x € M,x : = [[exp{nL;}]|]. Each bin contains |exp{nkK;}| codewords.
We let cjx : = [[exp{nk}|] denote the set of bin indices and thereby (27 (m;x,bjx) : bjx € cjx) denotes bin
corresponding to message m;x € M,x. The following remarks on the parameters of the codebooks are in order.

Define 13 = 54 and note that, for all n > Ny(n3) : = max { [1‘%21, [n%]}

nR; <log |M1| < n(R1 + 773)

S; <% <Sj4ms, nLy <log|Mjx| < n(Lj+ns) for j =2,3 (4.11)
Tjg%gTj +n3, n(K; —n3) <log|cjx| < nKj for j =2,3 (4.12)
(4.13)

We now specify encoding rules. Encoder 1 feeds codeword z7(M7) indexed by the message as input. For j = 2,3,

encoder j populates
Li(M;) = {(u}(a™), 2] (M;jx,bjx)) € Tan, (Uj, X;j1q") : (a°9,bjx) € cji(Mj1) X cjx}.

If £;(Mj) is non-empty, one of these pairs is chosen. Otherwise, one pair from A; x C; is chosen. Let (UJ'(A%),

X7 (Mjx,Bjx)) denote the chosen pair. X'(M;x,Bjx) is fed as input on the channel.

Decoder 1 constructs the sum Ay & A3 : = {uf ®uf : ui € Aj,j = 2,3} of the cloud center codebooks. Let

13Indeed, substituting S; = 2 T; = % : 7 = 2,3, one can identify the bounds in the definition of S(E, PQULU3XY > 0,0) with those in

n’

(4.8), (4.9) and (4.10). As indicated then, the proof follows from the technique of Fourier-Motzkin [26, Appendix D].
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u(a®?) : = a*3gs ® by ® by denote a generic codeword in Ay @ A3. Note that Ay ® A3 = {uf(a?) : a® € U3*}.1
Having received Y7?, it looks for all potential message 1, for which there exists a ufg3 € A2 @ Az such that
(g™, uBgs, 27 (1), Y") € Tup, (Q,Us @ Us, X1,Y1)™. If it finds exactly one such message 1, it declares this as
decoded message of user 1. Otherwise, it declares an error.

For j € {2,3}, decoder j identifies all (1i2;1,7,x) for which there exists (a%,b;x) € ¢j1(Mj1) X ¢jx such that
(q",u}(a®), 2} (jx,bix),Y]") € Tun, (Q,Uj, X;,Yj), where Y is the received vector. If there is exactly one such
pair (71,7, x ), this is declared as user j message. Otherwise an error is signaled.

The above encoding and decoding rules map every quintuple of codes (C1, A2, Az, C2,C3) into a corresponding 3—IC
code (n,#,e,d) of rate % > Ry, % > %logw +L; >Tjlogm+ L; = R; : j € {2,3}, thus characterizing
an ensemble of 3—IC codes, one for each n € N,. We average error probability over this ensemble of 3—IC codes by
letting (i) the codewords of C; : = (X{'(m1) : my € My), generator matrices G, G3/2', bias vectors BY', By, bin
indices (I;(a%) : a®% € U;”) : j = 2,3 and codewords of C; = (XJ'(m;x,bjx) : (m;x,bjx) € Mjx X ¢jx):j = 2,3 be
mutually independent, (ii) the codewords of C; : j = 1,2, 3 are identically distributed according to [];_; p x;1Q(1at),
(iii) generator matrices G, G}, ;,, bias vectors BY', By, bin indices (/;(a*) : a® € L{;j) : j = 2,3 be uniformly
distributed over their respective range spaces. We denote the random partitioned coset code (n, s;,t;, G5, BY. 1 ;) of
user j as Aj and let (i) Ul'(a®) : = a® G; @ B} denote a generic random codeword in A, (ii) Ug(a®) : = a* G35 @
B% & By denote a generic codeword in Ay @ Ag, and (iii) Cj1(m;1) = {a% € L{;j 4j(a®) = mj1} denote the random
collection of indices corresponding to message M.

We now proceed towards deriving an upper bound on the probability of error. Towards that end, we begin with

a characterization of error events. Let

€15 - = ﬂ {(¢",U;(a*), X;(M;x,bjx)) & Ton, (Q,Uj, X;)}, for j=2.3
(a®i,bjx)E
Cj1(Mj1)xejx

ein: = {(¢" X7'(M1)) ¢ Toy, (Q, X1)} , €31 := {(¢", X7'(M1),Y(") & T, (Q, X1, Y1)}

€351 = () {(@"Uj(a*), X;(Mjx, bx), V) ¢ Ton,(Q, U}, V5, Y5)}, for j =2,3
(a®i,bjx)€E

Cj1(Mj1)xejx
eni= U U {@U2@). X7 00),7") € T1y, (Q, Uz & Us, X1, 1)}

m1#Mi g3 €U?
w:= J U U {@"Uj@), X;(m;x,b;x),Y]") € Tuy, (Q,U;, V5, Y5)} for j =2,3.

1 #M; Cazj”e bix€cjx

j1\m;1

Here we have used the assumption sz < s3. In general, if 8j; < 8j,, we have Ao @ A3 = {u% (a®i2) : a®i2 € Z/l;j2 }, where ug (a®i2) :

= a2 gj, Dby D bg” denotes a generic codeword.
15The value of 14 is specified in due course.
16Recall, that we have assumed so < s3.
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3

Note that € : = |J (€1 Ues;j Ueq;) contains the error event. We derive an upper bound on the probability of this
j=1

event by partitioning it appropriately. The following events will aid us identify such a partition. Define ¢; : = ¢, Uey,,

where

= {¢](qn7M]) < ‘C](n)}? and ¢J(qn7MJ) = Z 1{((]"L7Uj(asj),X_j(ij,bjx))GTQnQ(Q,U]‘,Xj)}'
(asj ’bj )E
le(Mjl)XXCjX

L;(n) is half of the expected number of jointly typical pairs in the indexed pair of bins.!” Let

3
= U {(@", U2 (A%), X (M x, Byx)) ¢ Tons(@, Uy X5)} U A(@ XP(M0)) ¢ Tona (@, X0}, (4.14)
j=2
{ qn’U (ASQ) U??(A%)vX?(M1)7X£L(M2X732X)7X?T)L(M3X’B3X)) ¢ T7I4(Q7U2’U37X)} (415)

e3 = {(¢", Uy (A%), U3 (A%®), X7 (M), X5 (Max, Bax), X5 (Msx, Bsx),Y") & To, (Q, X1,U2,Us, X, Y)}. (4.16)

For sufficiently large n € N, we prove £;(n) > 2. For such ann, e;; C ¢, : j = 2,3. Since, we can choose n sufficiently

3

large, we will henceforth assume €1; C €, : j = 2,3. Therefore, the error event e C U (€11 U € Ues; Ueq;) where
j=1

€1 : = €1 U .18 From the encoding rule, we have (€17 U )¢ C €, and hence P((e17 U€)¢Ney) = 0. Moreover,

(&1Ue)N @163]- C (f1Ue)?Nes. It therefore suffices to derive upper bounds on P(e11), P(ey;) : j = 2,3, P(éf Nea),
P((&1 Ues)” Neg) and P((&1 Ues)® Nexs) 5 = 1,2,3.
Upper bound on P(e11) i~ By lemma 2.4.1, there exists Na(n2) € N, such that for all n > Na(n2), P(e11) < 5.
Upper bound on P(e,) :— Using a second moment method similar to that employed in [47, Appendix A], we derive

an upper bound on P(e;) in appendix C. In particular, we prove existence of N5(n) € N such that for all n > N5(n)

Ple) < 20 { - (5 10 £171)) )

In deriving the above upper bound, we employed, among others, the bounds

K;>6>0, (S;—Tj)logm —[logm — H(U;|Q)] > >0

(S; —T))logm+ K; — [logm + H(X;|Q) — H(U;, X;|Q)] > > 0.

Upper bounds on P(& Nea), P((€1 Uea)® Nes) :— These events are related to the following two events. (i)
The codewords chosen by the distributed encoders are not jointly typical, and (ii) the channel produces a triple of

outputs that is not jointly typical with the chosen and input codewords. In deriving an upper bound on P(€§ N e2),

17Since the precise value of L;(n) is necessary only in the derivation of the upper bound, it is provided in appendix C.
18The reader will note that we have included e; on the right hand side.
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P((€1 U €2)° Neg), we employ (i) conditional mutual independence of the triplet Xy, (U;, X;) : j = 2,3 given Q
and (ii) the Markov chain (U; : j = 2,3) — X — Y. For a technique based on unstructured and independent code,
the analysis of this event is quite standard. However, since our coding technique relies on codewords chosen from
statistically correlated codebooks, we present the steps in deriving an upper bound in appendix D. In particular, we

prove existence of Ng(n4), Ng(ns4) € N, such that for n > max{N1(n3), Ns(n4), Ns(n4)},

P(E M)+ P((& Uea)* Nea) < 2exp{—n (n?pf — 537 )} + 2L (4.18)

Upper bound on P((€1 Uea Uez)®Neqq) -~ In appendix E equation (E.9), we prove existence of N1g(n4) € N such
that for all n > max {N1(n3), No(n4), N10(n4)} we have

P((&,Uea Ues)® Negr) < dexp {n {5 — 28y — 77(13;109;”)} } . (4.19)

In deriving (4.19), we employed, among others, the bounds
10gﬂ' + H(X1|Q) — H(Xl, UQ D U3|Y1,Q) — (Rl + maX{Sg753}10g7T) > o> 0, I(Xh}/l, U2 S5, U3|Q) — R1 > 6> 0.

Upper bound on P((€1 Ue€3)®Neq;) - In appendix F equation (F.11), we prove existence of N(n) € N, such that for
all n > N(n)
- 9+logm
P((E1UeaUe€3)  Neyj) < 10exp {—n (6 - <77(2dg) + 16n4)> } . (4.20)

In deriving (4.20), we employed, among others, the bounds

(logm — H(U;|X;,Y;,Q)) — Sjlogm > 6 >0, (logm+ H(X;|Q) — H(Uj;, X;|Y;,Q)) — (Sjlogm + K;) > 6 > 0,
I(X1;;Y1, U0 UsQ) —R1 26 >0, (I(X;;U,Y5|Q)) — (K + Lj) =6 >0,
(logm+ H(X;|Q) — H(X;,U;1Y;,Q)) — (K; + Lj + Sjlogm) >6 >0

We now collect the derived upper bounds. From (4.17), (4.18), (4.19) and (4.20), we have

36 + log 7 18 4+ 2log
(€17 Uegj Uey)) < 3% —|—3exp{—n (5— 77[2d]>} —|—Qexp{—n (712#772 - 77(2(1)>} + %

+2exp{—n (5—30174 - W)}—l—fwxp{—n (5— <17(13+2310g7r) + 16774))}

36 + 2logm 18 + 2log
< 10exp {—n <(5 — (w + 30774))} + 2exp{—n (nQan - U(2dg)>}

P(

<7
| Ceo
—_

1+ N4

+32
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We also recall, that ny > 4n for (D.11), (4.19) and (4.20) to hold true. If we are able to find 7, that satisfies

1 n(36 + 2log ) n N

then we can choose n sufficiently large enough to drive down P( @1 (e1; Ues; Ueygj)). Recall that § = min{ds, ds} is
a function of the rate triple R and n = min{d, 7} are not aﬁ'ecté;l by the choice of d. Clearly, by choosing d large
enough, the upper bound in (4.21) can be made sufficiently close to 3% and the lower bound can be made sufficiently
close 0 permitting a range of values for 74. This completes derivation of an upper bound on the probability of error.

We only need to argue that the chosen input codewords satisfy the cost constraint. For sufficiently large n,
we have proved P(ez) < 5. Since ¢§ implies that chosen input codewords are jointly typical with respect to
PQUsUs XY, @ distribution that satisfies E{x;(X;)} < 7;. Using standard typicality arguments and finiteness of
max {kg(zr) 1 o € X+ k € [3]}, it is straight forward to show that the average cost of the codeword input by
encoder j is close to 77 per symbol. [ |

The coding technique proposed in the proof of theorem 4.6.2 is indeed a generalization of that proposed for example

4.5.1, and moreover capacity achieving for the same. We formalize this through the following corollary.

Corollary 4.6.6 For the 3—to—1 IC in example 4.5.1, if 7+ < min{ds, 03}, then oz?}_l(T, %, %) = C(7). Moreover,
if 6= 0y =03 and hy(r * 61) < hy(8) < LD ghen o, (1,4, 1) # C(r) and C(r) = o3} (r, 1, 1).

2 1272 272

It can be verified that B(r,1,3,0) = a?_l(pQUQUSﬂ) where P(U; = X; = 0) = P(U; = X; = 1) =
P(X; =1) =7 and Q = ¢, the empty set, where 8(z,0) is given in (4.3).

In the sequel, we illustrate through an example the central claim of this thesis that utility of codes endowed with
algebraic structure, and in particular coset codes, are not restricted to particular symmetric and additive problems.
Furthermore, this example establishes the need (i) to achieve rates corresponding to non-uniform distributions which

is accomplished via the technique of binning, (ii) to build coset codes over larger fields, and (iii) to analyze decoding

of sums of transmitted codewords over arbitrary channels which hinges on typical set decoding.

Example 4.6.7 Consider a binary 3—to—1 IC illustrated in figure 4.3 with X; = Y; = {0,1} : j € [3] with channel
transition probabilities Wy | x (y|lz) = BSCs, (y1|z1 © (z2 V 23))BSCs, (y2|22) BSCs, (ys|x3), where V denotes logical

OR and BSC,(0|]1) = BSC,(1|0) = 1 — BSC,(0|0) = 1 — BSC,(1|1) = n denotes the transition probabilities of a

binary symmetric channel (BSC) with cross over probability n € |0, %] Users’ inputs are constrained with respect to
a Hamming cost function, i.e., kj(x) =z for x € {0,1}. Assume user jth input is constrained to an average cost per

symbol of 7; € (0, 3).

We begin by stating the conditions for sub-optimality of ZSB—technique.
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Figure 4.3: A binary 3—to—1 IC described in example 4.6.7.

Lemma 4.6.8 Consider example 4.6.7 with § : = 63 =063 € (0,3) and 7: =71 =713 € (0,3). Let f: = (1—7)%6 +
(27 — 72)(1 — 61). The rate triple (hy(71 % 81) — ho(81), by (7 % 8) — hp(8), by (T % 8) — hp(0)) ¢ (1) if

ho(71 % 81) — ho(81) + 20k (7 % ) — hu(8)) > by (7 (1 = B) + (L = 71)B) — hy(31) (4.22)

In particular, if (4.22) is true, a, (1) € B(1,0), where 5(7,9) is defined in (4.3). O
Proof: = We prove this by contradiction. Suppose (hy(71 * d1) — hy(01), ho(7 * 8) — hp(9), he(T % 0) — hy(0)) €
o (pu,usxy) for some pou,u,xy € D3_1(71,7,7). Our first claim is that px,o(1lg) = px,jq(llg) = 7 for all
q € Q.

From (4.1) we have

R; < 1(U; X;;Y;1Q) = H(Y;|Q) — H(Y;|X;U;Q) = H(Y;|Q) — = > po(@H(Y;|Q = q) — h(9)
qeEQ
=Y pola)H(X; ® N;|Q = q) — hy(9) for j = 2,3. (4.23)
qeQ

If 7, : = px;|q(1lg), then independence of the pair N; and (Xj, Q) implies px, an,|@(1lg) = 74(1 —6) + (1 — 74)6 =
Tq(1 — 26) + §. Substituting the same in (4.23), we have

R; <Y po(a)hu(rg(1 = 28) +6) — ho(8) < (D pe(a)lrg(1 — 28) + 6]) — hu(8)
qeQ qeQ

— hy([px, (1)(1 — 20) + 8]) — hy(6)

from Jensen’s inequality. Since px, (1) < 7 < 3, we have px, (1)(1 =26) +6 < 7(1 —28) + 6 < 5(1 —26) + 6 = 3.1°

20

The term hy([px; (1)(1 —20) + 6]) is therefore strictly increasing in px; (1) and is at most hy(7 * §).>” Moreover, the

9Here we have used the positivity of (1 — 2§), or equivalently § being in the range (0, %)
20This is consequence of p x; (1) < 7.
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condition for equality in Jensen’s inequality implies R; = hy(7 * d) — hy(9) if and only if px|o(1]g) = 7 for all ¢ € Q
that satisfies pg(¢) > 0. We have therefore proved our first claim.

Our second claim is an analogous statement for px,|o(1|g). In particular, our second claim is that px,|o(1lq) = 71
for each ¢ € Q of positive probability. We begin with the upper bound on R; in (4.1). As in proof of theorem 4.5.3,
we let Q : = Qx Uy xUs, § = (q,uz,us) € Q denote a generic element and Q : = (Q, Uy, Us). The steps we employ in
proving the second claim borrows steps from proof of theorem 4.5.3 and the proof of the first claim presented above.

Note that

Ry < I(X1;Y1]Q) = HYA|Q) — H(V1|QX1)
- ZPQ() V1lQ =q) - ZPQXl G, 21)H(Y1|X1 =21,Q = q)
q

1,4
= Y P HX1 N & (X2V X3)[Q=0) — Y py,o@nd) H(z ® N @ (X2 V X3)| X1 = 21,Q = )
q z1,q
= D Po@HX1 0N & (XaVX3)|Q=7)— ) pyoerd H(N & (X2 V X3)[Q =) (4.24)
q 1,4

= ZPQ(Q)H(KH &N @ (X2 V X3) |Q_q ZPQ Nl@(X2\/X3)|Q=(j)
q

< ZPQ(@)H(Xl &MIQ =7 - ZPQ Nl\Q—q ZPQ(@)H(Xl®N1|Q:(j)*hb(51) (4.25)

> 0 (@he(rig * 61) = ho(61) < hy(Eg {71 * 613) — ho(61) = ho(px, (1)  61) — h (61), (4.26)

where (i) (4.24) follows from independence of (Ny, Xs, X3) and X, conditioned on realization of Q, (i) (4.25)

follows from substituting py gy, 5(1q) for pz,, Py, a(+1q) for pz, and py v, 5(7) for pz, in lemma 4.5.4, (iii)

the first inequality in (4.26) follows from Jensen’s inequality. Since px, (1) < 71 < %, we have px, (1) x 01 =

px, (1=61)+ (1 —px, (1))61 = px, (1)(1 = 261) + 61 < 71(1—261) +61 < 5(1—201)+01 = &. Therefore hy(px, (1) *d1)
is increasing?! in px, (1) and is bounded above by hy (7 * 01).22 Moreover, the condition for equality in Jensen’s
inequality implies Ry = hy(m1 % 01) — hp(d1) if and only if pXI‘Q(1|q~) =7, for all § € Q. We have therefore proved

our second claim.2?

Our third claim is that either H(X3|Q,Us) > 0 or H(X3|Q,Us) > 0. Suppose not, i.e., H(X3|Q,Us) =

21This also employs the positivity of 1 — 281, or equivalently §; being in the range (o, 2)

22This is consequence of px, (1) <710

23We have only proved px, |QUaU5 (1lg, u2, uz = 71) for all (g, u2,us3) € Q X Us X Us of positive probability. The claim now follows from
conditional independence of X7 and Uz, Us given Q.
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H(X3|Q,Us) = 0. In this case, the upper bound on R; + Ry + R3 in (4.2) is

Ri+Ry+ Ry < I(X2, X3, X1;Y1|Q) = HY1|Q) — HY1|Q, X1, X2, X3)
= H(X1©(X2VX3)® M[Q) - H(X1 @ (X2V X3) ® N1|Q, X1, X2, X3)
= hy(n(1=08)+ (1 —m71)B) = h(d1),

where the last equality follows from substituting px;|q : j = 1,2, 3 derived in the earlier two claims.?* The hypothesis
(4.22) therefore precludes (hy(71 % 01) — hp(01), hy (7% 8) — hp(8), hp(T%0) — hp(5)) € a?{l (Pouyusxy) if H(X2|Q,Uz) =
H(X3|Q,Us) = 0. This proves our third claim.

Our fourth claim is H(X2VX3|Q, Uz, Us) > 0. The proof of this claim rests on each of the earlier three claims. Note
that we have either H(X3|Q,Us) > 0 or H(X3|Q,Us) > 0. Without loss of generality, we assume H(X2|Q,Usz) > 0.
Note that

H(X,|QU;) = ZPQ Z PUo @ (u2|q) H(X2|Uz = uz,Q = q) > 0.
qeQ uz EUs
There exists ¢* € Q such that pg(¢*) > 0 and H(X2|U2,Q = ¢*) = Zu2€u2 pu,jo(u2|g* ) H (XU = u,Q =
q*) > 0. We therefore have a u3 € Us such that py,|o(u3|q*) > 0 and H(X2|Uz = u3,Q = ¢*) > 0. This implies
Px,|U.q(T2|us, ¢*) & {0,1} for each x5 € {0,1}.

Since pg(g*) > 0, from the first claim we have

0<1l—71 :st\Q(O|q*) = Z pX3U3|Q(O,U3‘q*).
uzEU3
This guarantees existence of u3 € Us such that px,u,|0(0,u3]¢*) > 0. We therefore have py,jo(u3l¢*) > 0 and
1 > px, v, (0[uz, ¢*) > 0.

We have therefore identified (¢*,u3,u3) € Q@ x Us x Uz such that pg(q¢*) > 0, pu,jo(uslq*) > 0, py,jo(usle*) >0,
Px, 50 (T2|us, ¢*) ¢ {0,1} for each x5 € {0,1} and 1 > px,|u,0(0lu3,¢*) > 0. By conditional independence of
the pairs (Xo,Us) and (X3,Us) given @, we also have px,u,v,q(®2|us,u3,q*) ¢ {0,1} for each z3 € {0,1} and
1 > px,|v,0,0(0lus, uz, ¢*) > 0. The reader may now verify px,vx,|v,v,0(z|us, u3, ¢*) ¢ {0,1} for each x € {0,1}.

Since pqu,u, (¢*, us, u3) = po(q*)pu,jo(u3|q" )pus @ (u3lg*) > 0, we have proved the fourth claim.

Our fifth and final claim is Ry < hy(71 * 61) — hp(d1). This follows from a sequence of steps employed in proof of

the second claim or in the proof of theorem. Denoting Q : = (Q,Us3,Us) and a generic element G : = (q, ug, u3) € Q:

248 = (1 —7)281 + (27 — 72)(1 — 61) is as defined in the statement of the lemma.
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= Q X Uy X Us, we observe that

Ry < I(X;;11]Q) = ZpQ HWIQ=3) =Y pox, (@) HY1|X1 = 21,Q = §)

z1,G
= Y pp@HX i@ N1 @ (XoV X3)|Q=4)— Y Py, d)H(z1 & N1 @ (Xo V X3)| X1 = 21,Q = §)
q z1,G
= > P @HX1@& N & (X2 V X3)|Q=7) — > px o1, HN1 & (X2 V X3)|Q = §) (4.27)
q 1,4

D po(DHX1 ® N @ (X2 V X3)|Q = §) — ZPQ H(Ny & (X2 V X3)|Q = q)
< QP @HXG &M@ =) - ZpQ Nl\Q—q > po@H (X1 @ Ni|Q =) — hy(d1)  (4.28)

= Zpg(q)hb(ﬁq #01) — hp(61) < hop(Eg {T1g % d1}) — ho(61) = ho(px, (1) * 61) — hp(61), (4.29)

where (i) (4.27) follows from independence of (N1, X2, X3) and X; conditioned on realization of @, (ii) (4.28) follows
from existence of a §* € Q for which H(XyV X3|Q = ¢*) > 0 and substituting leeaNl\Q('w*) for pz,, pN1|Q('|q*)
for pz, and py,, x,5("¢") for pz, in lemma 4.5.4, (iii) the first inequality in (4.29) follows from Jensen’s inequality.
Since px, (1) x 61 = px, (1 — 61) 4+ (1 — px, (1))61 = px, (1)(1 — 201) + 61 < 71(1 —261) + 61 < $(1 —261) + 61 = 5.
Therefore hy(px, (1) * 1) is increasing®® in px, (1) and is bounded above by hy(71 * 61). We therefore have R; <
hy(m1 % 61) — hy(1)- ]
We now derive conditions under which a?‘l(ﬁ, 7,7) = C(m,7,7). Clearly, C(r1,7,7) C B(7,d) where 7 = (71,7, 7)
and 0 = (01,6,0) and 5(z,9) is as given in (4.3). It therefore suffices to derive conditions under which (hy (7 * d1) —
h(61), ho (T % 8) — ho(8), hip (7 % 8) = hp(9)) € o (10,7, 7).

Lemma 4.6.9 Consider example 4.6.7 with § : = §3 = 63 € (0, %) and 7:= 19 =13 € (0, %) Let B:= (1—7)2%6; +
(27 —72)(1—=081). The rate triple (hy(T1%61) — hi(01), ho (7% 8) — hy (8), by (7% 6) — hyy(8)) € a‘;’c'l(ﬁ,T,T) i.e., achievable

using coset codes, if,
hp(T % 6) — hy(9) < 6, (4.30)

where 0 = hy(1) — hp((1 = 7)%) — (21 — 7))y (5= 72) hp(m1 % 61) + hp(m1(1 — B) + (1 — m1)B). We therefore have
a:jfl(ﬁ,T,T) = C(r1,7,7) if (4.50) holds. O
Proof: The proof only involves identifying the appropriate test channel pou,v,xy € Di’fl(ﬁ, 7,7). Let Q@ = ¢ be
empty, Us = Uz = {0,1,2}. Let px,(1) =1 — px,(0) = 7. Let py;x,(0,0) =1 —py,x,(1,1) = 1 — 7 and therefore
P(U; =2) = P(X; #U;) =0 for j = 2,3. It is easily verified that pou,v,xy € D?ﬁl(ﬁ,ﬂ 7), i.e, in particular

respects the cost constraints.

25This also employs the positivity of 1 — 281, or equivalently §; being in the range (0, %)
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The choice of this test channel, particularly the ternary fields, is motivated by H (X5 V X3|Us @3 Us) = 0. The
decoder 1 can reconstruct the interfering pattern after having decoded the ternary sum of the codewords. It maybe
verified that for this test channel pou,u,xv, a?‘l(ﬁ, 7,7) is defined as the set of rate triples (R, Ry, R3) € [0,00)3
that satisfy

Ry <min{0,60} + hy(11 % 61) — hp(61), R; < hp(7%0) —hp(0):j=2,3
R+ Rj < hb(Tl * 51) — hb(51) + 9, (431)

where 0 = hy(7) — hp((1 — 7)2) — (27 — Tz)hb(%) — hy(71 % 61) + hp(11(1 = B) + (1 — 71)B) is as defined in the
statement of the lemma. Clearly, (hy(71 % 61) — hy(61), h (T % 8) — h(8), ho (T % 8) — hp(8)) € aF H (Prvsxy) if (4.30)
is satisfied. |

Conditions (4.22) and (4.30) are not mutually exclusive. It maybe verified that the choice 4 = T = 0.15,

1
90°
01 = 0.01 and § = 0.067 satisfies both conditions thereby establishing the utility of structured codes for examples

well beyond particular additive ones.

4.6.2 Step II: The PCC rate region for a general discrete 3—IC

In this section, we employ PCC to manage interference seen by each receiver. In the sequel, we describe the coding
technique and provide a characterization of the corresponding achievable rate region. In the interest of brevity, we
omit the proof of achievability. All the non-trivial and new elements of such a proof have been detailed in the proof
of theorem 4.6.2.

User j splits it’s message M of rate R; = L;+1); + T} into three parts (Mﬁ, MJ%, MJV), where 1, j, k are distinct
indices in {1, 2,3}. Let Uj; = Fr,, U, = Fr, be finite fields and V; be an arbitrary finite set. Let Aj; C U7, denote an

(n, sji +tji,t5) PCC and Aji C Uy denote an (n, s;x +tjx, tjx) PCC. If welet Sj; : = S;L logm;, Tj; : = tjl log 7; and
Sjr 1 = ‘”T" log mi, Tji + = %‘ log 7y, then recall that recall that Aj;, \ji are coset codes of rates S;; + Tji, Sk + Tjk
partitioned into exp{nT};}, exp{nTj;} bins respectively.?8 Observe that cosets Aji and Ag; are built over the same
finite field F5,. To enable contain the range the sum of these cosets, the larger of Aj;, Ax; contains the other. A
codebook C; of rate K; + L; is built over V;. Codewords of C; are partitioned into exp {nL;} bins.

MU

i M ﬁc and MJV index bins in Aj;, Ajr and C; respectively. Encoder looks for a triplet of codewords from

the indexed bins that are jointly typical with respect to a pmf py,u,, v, defined on Uj; x Uj, x V;. Having
chosen one such jointly typical collection, say (Uj’g,Ufk,Vf), the encoder generates a vector X' according to
n

[17x;v,.0,.v, (1Ujit; Ujke, Vje) and inputs the same on the channel.

t=1

26The reader will note a change in our notation. In section 4.6.1, we let S log m denote rate of user j’s cloud center codebook. This was
partitioned into exp{nT} log 7} bins. In this section, we let the cloud center coset codes to be of rate S;; + Tj; and Sjj + T, partitioned
into exp{nTj;} and exp{nTj} bins respectively.
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n n
U,

Decoder j receives Y)* and looks for all triples (uj;, ufy, v}

v) of codewords in Aj; x Aj x C; for which there exists

auler: € (Aij ® Aky) such that (u, v}, Y]') are jointly typical with respect to pu,;eu,;,u;,,U;,v;.y;- If it

Yijekj J“ le J
finds all such triples in a unique triple of bins, the corresponding triple of bin indices is declared as decoded message
of user j. Otherwise, an error is declared.

In order to characterize an achievable rate region, we average the performance of the above coding technique via
random coding. The distribution induced on the ensemble of codebooks is a simple generalization of that employed in
proof of theorem 4.6.2. In particular, the codewords of C; are chosen independently according to H pv;1Q(: l¢*), where
g" is an appropriately chosen time sharing sequence. The three pairs (A2, As2), (A21, As1), (A3, A23) of random PCC
are mutually independent. Within each such pair, (i) the generator matrix of the smaller PCC is obtained by choosing
each of it’s rows uniformly and independently, and (ii) the generator matrix of the larger is obtained by appending the
generator matrix of the smaller with an appropriately chosen number mutually independent and uniformly distributed
rows. All the vectors specifying the coset shifts are chosen independently and uniformly. Moreover, partitioning of all
codes into their bins is effected uniformly and independently.?” Deriving an upper bound on the average probability
of error of this random collection of codebooks coupled with the above coding technique yields the following rate

region.

Definition 4.6.10 Let Dy(Wy|x,#,T) denote the collection of probability mass functions (pouvxy) defined on
OxUXYxXx)Y, where

(1) Q,V1,Va, V5 are arbitrary finite sets, ¥V : = Vi X Vo X Vs,
(Z’L) L{ij = J—_'Trj28 fOT’ each 1 < Z,j < 3, andg L= ulg X Z/[lg X Z/{Ql X Z/f23 X U31 X Z/{32,
(iii) V : = (V1,V2,V3) and U : = (Uy2, Ui, Ua1, Uaz, Uy, Usz),

such that (i) the three quadruples (Ui2, Uiz, V1, X1), (Uss, Us1, Va, X2) and (Us1, Use, V3, X3) are conditionally mutu-
ally independent given Q, (i) py|xvu = py|x = Wy x, (iii) E{x;(X;)} <15 for j =1,2,3.

For puvxy € Dy(Wy|x,k,7), let By(puvxy) be defined as the set of rate triples (Ri, Rz, R3) € [0, 0] for
which there exists nonnegative numbers S;; : ij € {12,13,21,23,31,32}, T : jk € {12,13,21,23,31,32} ,K, : j €
{1,2,3},L; : j € {1,2,3} that satisfy R1 = Tig + 113 + L1, Ry = To1 + Thg + Lo, Ry = T31 + T30 + L3 and

Sa,+K; > Y logla,| + H(V;IQ) — H(Ua,, V;1Q), (4.32)
aj€A;

Sa, > Y loglUa,| — H(Ua,|Q), (4.33)
aj€EA;

27The reader is encouraged to confirm that the distribution induced herein is a simple generalization of that employed in proof of
theorem 4.6.2.
28 Recall Fr; is the finite field of cardinality ;.
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Sa; +Ta; < Z log |Ua| — H(Ua,|Q,Uac, Uij @ Uy;, Vj,Yj)
aGA]‘

Sa; +Ta, +Sij+ Ty < D log|Us| +logm; — H(Ua,, Ui; @ Uyy|@Q, Uas,Vj,Yj)
ac€A;

SAj +TAJ‘ + Skj +Tkj < z log ‘u11| +10g7rj - H(UAjanj D Ukj|Q7UA§7‘/jan)

o (4.34)
Sa; +Ta, + Kj+ Ly < Y log|Ua| + H(V;) = H(Ua,, Vj|Q, Ua:, Usj & Uy;, Y;)
a€A;
SAj +TAJ. -‘r-Kj +Lj -‘r-Sij +Tij < Z log |Z/{a| +10g7rj +H(V]) —H(UA].,‘/}'7UZ']' @Ukj|Q, UAJL,YJ)
acA;
Sa, +Ta, + Kj+ L+ Sk + Toy < Y log[Ua| +logm; + H(V;) — H(Ua,, V;,Us; & Ugj|Q, Uac, Y;),
aEA]‘

for every A; C {ji, jk} with distinct indices 1,3,k in {1,2,3}, where Sa; : = ZajeAj Sa;;Ua; = (Ua, s aj € Aj). Let

Br(Wy|x, K, 7) = cocl U Bruvxy)

PUVXYE
Df(Wx‘i,li,T)

Theorem 4.6.11 For 3-1C(X,Y, Wy x,k), Bf(Wy|x, k,T) is achievable, i.e., By(Wyx,k,T7) C C(Wy|x, K, 7). [
Since all the non-trivial elements of this proof are captured in the proof of theorem 4.6.2, and is only more involved

in notation, we omit the same.

4.6.3 Enlarging the PCC rate region using unstructured codes

Let us describe a coding technique that incorporates both unstructured and partitioned coset codes. We follow the
approach of Ahlswede and Han [48]. Refer to figure 4.4 for an illustration of the random variables involved. Each
user splits it’s message into 5 parts. The W —random variable is decoded by all users. In addition, each user decodes
a univariate component of the other user messages. This is represented by the random variable T'. Furthermore, it
decodes a bivariate interference component denoted using U. Lastly, each decoder decodes all it’s parts. As indicated
by Han and Kobayashi [13], this achievable rate region could potentially be enlarged through the use of a time sharing
random variable. A description of the corresponding achievable rate region being sufficiently involved, we omit the
details. The reader may refer to section 7.3 unstructured and coset codes are glued together to derive an achievable

rate region for the computation over MAC problem.
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Wl T12 T13 U12 U13 Vl X1 Yl Wl W2 W3 T21 T31 U21®U31 T12 Tl3 U12 Ul3 Vl Xl
W2 T21 T23 U21 U23 V2 Xz ! WY1Y2Y3|X1X2X3 ! Y2 Wl W2 W3 T12 T32 UlZ@U32 T21 T23 U21 U23 V2 XZ

W3 T31 T32 U31 U32 V3 X3 Y3 Wl W2 W3 T13 T23 UlS@U23 T31 T32 U31 U32 V3 X3

Figure 4.4: Collection of random variables associated with coding technique that incorporates unstructured and

partitioned coset codes
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Chapter 5

Three user broadcast channel

We begin with a brief description of a three user discrete broadcast channel (3—DBC) and the problem statement.
A 3—DBC, as depicted in figure 5.1, consists of a single transmitter (Tx) and three receivers (Rx). The transmitter
wishes to communicate specific information streams, that are assumed statistically independent, to each of the three
receivers. The transmitter is provided with a finite input alphabet set X and receiver j observes symbols in a finite
output alphabet set ;. Let Wy, y,y,|x denote the channel transition probabilities. As always, we assume the channel
is memoryless, time invariant and used without feedback. The problem of interest is to characterize it’s capacity
region. Please refer to section 5.4 for a precise statement of this problem. In the following, we provide a discussion

of current coding techniques and our findings.

The problem of designing efficient coding techniques for communicating over a broadcast channel (BC) was
initiated [20] in the context of a BC with two receivers (2—BC). Over a 2—BC, the transmitter maps two information
bearing signals, meant for the two receivers, into one signal that can be input on the channel. The channel produces
an output signal at each receiver based on the input signal. From the perspective of each receiver, it’s signal

undergoes a transformation, in accordance with the other receiver’s signal. This transformation is akin to the effect

Y, Rx 1 M,

MMMy —ae{  Tx || X Wy v, Y, Rx 2 M,
17273

Y, Rx 3 M,

Figure 5.1: Three user broadcast channel (3—BC)
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of interference, and is therefore undesirable!. Since this transformation is inevitable, one technique to minimize it’s
effect is to make available to each receiver the information bearing signal of the other receiver, henceforth referred
to as interfering signal. Each receiver can therefore reconstruct, as best as possible, this transformation, or in other

words, peel the effect of the interfering signal, and thereby enhance it’s ability to decode the desired signal.

If one employs this technique, observe that each receiver’s rate is constrained, not just by it’s ability, but also by
the other receiver’s ability to decode it’s signal. This technique is therefore prohibitive, unless one of the receivers
is stronger, i.e., capable of decoding everything that the other receiver can.? In this case, one can fix a rate of
communication to the weaker receiver that it can support. Since the stronger receiver can decode it’s interfering
signal at this rate, and thereby peel it’s effect off, it can decode it’s signal at a rate that is limited only by the channel.
Not surprisingly, this technique, which has come to be known as superposition coding, came to light [20] [21] in the

context of a degraded 2—BC, which precisely models the above scenario.

For communicating over a general 2—BC, it is natural to consider a generalization of the superposition technique
to enable each receiver decode a part of the interfering signal. By choosing the parts carefully, one might be able
to better trade off the benefit of decoding the interfering signal and the constraint it imposes. Hajek and Pursley
[49] proved that this was indeed the case. This led to the technique of splitting the transmission into three parts.
The signal meant for each receiver is split into two parts - public and private. The two public parts are combined
together to form the base layer signal.® Each private part is identified with a signal in the satellite layer. The three
signals are mapped into a signal input on the channel. Each receiver decodes the base layer signal and the signal

corresponding to it’s private part.

By decoding the base layer signal, each receiver decodes the public part of the interfering signal. This enables
each receiver peel off the effect of the public part of it’s interfering signal. How does one accommodate the presence
of private parts? Following Gel’fand’s ingenious coding technique [8], devised for a particular two user discrete BC
(2—DBC), Marton proposed the technique of precoding via binning [9]. Instead of choosing the signals for the private
parts independently, precoding via binning enables the encoder jointly choose a compatible pair of signals. By jointly
choosing the pair of signals, the effect of each private part on the other receiver is minimized. In other words, the
transformation effected by the private part of the interfering signal is lent more benign by jointly choosing the pair
of signals. Precoding via binning turns out to be an efficient technique for multiplexing information bearing signals

meant for different receivers.

Splitting the transmission of each user into public and private parts, precoding the private parts via binning

and superposing the latter over a base layer comprising of public parts are the current known coding techniques for

1This transformation is the combined effect of (i) the map employed by the transmitter, and (ii) the channel. While the latter is
inevitable, the former is a necessary evil.

2This technique is also not prohibitive if each receiver can decode what the other can.

3The informed reader may associate this with the codeword chosen from the cloud center codebook.
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communicating over a BC with any number of receivers.* We will henceforth refer to this combination of the three
coding techniques in the context of a 2—BC as Marton’s coding technique [9]. Before we move onto a 3—DBC, let
us make note of one important finding that determines allocation between public and private parts. In general, the
knowledge of any part of the interfering signal can be better exploited at the receiver than via precoding. In other
words, precoding, in general, results in a rate loss, i.e., precoding for any component results in a lower rate when
compared to a scenario wherein the decoder is made available that component. It is therefore desirable to decode as
large a part of the interfering signal as possible, without constraining the rate of the other receiver, and precode for
the rest.’

Over a 2—BC, each receiver is plagued by the presence of a single interfering signal. The technique of superposition
coding using unstructured codes provides an efficient technique for decoding a suitably large part of the single
interfering signal. In this chapter, we study the problem of communicating over a 3—DBC. Over a three user BC
(3—BC), each receiver is plagued by two interfering signals. What are the current known coding techniques for
communicating over a 3—DBC and how they deal with two interfering signals?

The current known coding techniques for communicating over a 3—DBC are based on Marton’s coding technique.
We henceforth refer to this as ZM—technique. Each information bearing signal is split into four parts - one public,
two semi-private and one private part. The public part of every receiver is decoded by all receivers. In addition,
each of it’s semi-private part is decoded by exactly one other receiver.® The technique of superposition coding and
precoding via binning are appropriately combined to multiplex the twelve parts of the three signals.” Without going
into the details of this technique, we highlight one element that will play a key role herein. The Z M —technique
enables each receiver decode individual parts® of the interfering signals. The contributions of this chapter are based
on the following three questions. Firstly, does it suffice to decode individual parts of the interfering signal? If not,
what parts of the two interfering signals must a receiver decode? How does one enable a receiver decode these parts
efficiently?

In this chapter, we prove that in addition to individual parts of the interfering signal, it benefits for receivers
over a 3—DBC to decode bivariate parts of the same. Since the Z M —technique is based on unstructured codes, it is
suited for decoding individual parts of the interfering signals. It is therefore constrained to decode the arguments of
the bivariate function. If the bivariate function is sufficiently compressive, i.e., entropy of the function is significantly

lower than the joint entropy of the arguments, then decoding the arguments is an inefficient technique. These ideas

4These coding techniques achieve capacity for several interesting classes (20, 50, 21, 51, 52, 53, 54, 55, 56, 9, 57, 58, 59, 60, 49].

5Precoding for the Gaussian channel, referred to as dirty paper coding (DPC) is a popular instance of no rate loss. Indeed, over a
vector Gaussian BC, the transmitter can precode for all of the interfering signal, lending a trivial public part. This is closely linked to
the optimality of dirty paper coding for the Gaussian MIMO BC [61]. As the reader will later note, this is the reason why lattices are
superfluous for communicating over vector Gaussian broadcast channels with any number of receivers.

6Clearly, every receiver decodes all it’s parts too.

"In section 5.5.2 we provide an exposition of this coding technique.

81f V2 and V3 denote the interfering signals for receiver 1, we refer to univariate functions of these signals, say f2(V2) and f3(V3), as
individual parts of V2 and V3. In contrast, we refer to a bivariate function of the same, say g(V2, V3) as a bivariate part or a bivariate
interference component.
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lead us to identify a vector additive 3—DBC for which one of the receivers, say receiver 1, benefits by decoding
the sum - a bivariate part - of the interfering signals. If the pair of interfering signals have a high entropy, the
U M—technique cannot enable receiver 1 decode this pair. It is then forced to decode strictly smaller public parts of
the same and precode for the non-trivial private parts. In contrast to the Gaussian setting, this precoding results in
a rate loss, i.e., receiver 1 pays for it’s inability to reconstruct the sum of the interfering signals.

For this vector additive 3—DBC, we propose a linear coding technique wherein the interfering signals are encoded
using cosets of the same linear code. We exploit the algebraic closure property of these codes to enable receiver
1 efficiently reconstruct the sum of interfering signals without decoding the pair. This technique is therefore not
constrained by the high entropy of the pair of interfering signals. It is only constrained by the entropy of the function.
The function in this case, being a sum, is compressive and the linear coding technique can decode the sum while the
U M —technique is unable to decode the arguments. We therefore prove that the proposed linear coding technique

strictly outperforms %M —technique.”

5.1 Owur contributions

Our findings in the context of a 3—IC (chapter 4) illustrated a similar phenomenon. Therein, we observed coset
codes aid efficient communication even over non-additive scenarios, thus motivating the need to generalize the linear
coding technique for communicating over a general 3—DBC. This leads us to develop an analogous framework based
on partitioned coset codes (PCC) (definition 3.4.2) to communicate over an arbitrary 3—DBC. The following are
the central elements of this framework. Firstly, the PCC are carefully chosen with mutual relationship that aids
decoding the sum of chosen codewords. Secondly, in order to exploit algebraic closure property of PCC, we propose
new decoding rules. Thirdly, we resort joint typicality encoding and decoding that enables us communicate over
arbitrary 3—DBC and achieve rates corresponding to arbitrary single-letter distributions. This framework enables
us derive a new achievable rate region for a general 3—DBC. Since it generalizes the linear coding technique for
the vector 3—DBC, which in turn strictly outperforms ZM—technique, the derived achievable rate region is strictly
larger than Z M—region for the vector additive 3—DBC.

The natural question to ask is whether the derived achievable rate region subsumes Z M —region for a general
3—DBC. As we have mentioned, (i) coset codes enable efficient decoding of bivariate parts of the two interfering
signals and (ii) superposition coding using unstructured codes enable efficient decoding of individual parts of the

interfering signal. Over a general 3—DBC, it maybe necessary to decode all of these parts. We therefore conclude

9The current known coding techniques being optimal for vector Gaussian BC [61], an observant reader might wonder why the same
phenomenon cannot be exploited therein using lattice codes. The answer lies in the absence of a rate loss for the Gaussian case. Indeed,
all of the interfering signal is precoded for, resulting in no part of the same needing to be decoded. This also emphasizes (i) what governs
the choice of public and private parts and (ii) presence of rate loss in discrete channels leading to the phenomenon identified herein. Rate
loss being a general phenomenon and the absence of the same being particular to the Gaussian setting, the theory developed herein is
widely applicable.
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that the proposed framework based on PCCs in conjunction with the current known coding techniques based on
unstructured codes strictly enhances the latter. In other words, by incorporating the framework based on PCCs the
current known largest achievable rate region can be strictly enlarged. We indicate a technique for the same in this

chapter.

5.2 Significance of our contributions

The coding technique based on coset codes developed herein strictly outperforms the best known coding technique
for communicating over a 3—DBC. In fact, even within the larger class of BC’s with arbitrary input and output
alphabets, any number of receivers and any number of antennae, we have been unaware, for over three decades since
the findings of [9] came to light, of a BC for which the coding techniques of superposition coding and precoding via
binning can be strictly improved upon. This chapter presents the first such example which elegantly ties together
the two ideas of decoding bivariate components and rate loss in a novel setting.

Going beyond proposing a coding technique for a particular example, we develop a framework for communicating
over an arbitrary 3—DBC. Bringing together techniques studied in disparate contexts - joint typicality coding tech-
niques and codes endowed with algebraic closure properties - we derive a new achievable rate region for the general
3—DBC that includes rate regions corresponding to non-uniform distributions.!® The derived rate region strictly

enlarges upon the current known largest, that has remained so for over three decades now.

5.3 Content and organization

We begin with preliminaries in section 5.4. In section 5.5, we present the current known largest achievable rate
regions for 2—DBC and 3—DBC. In particular, we describe the current known coding techniques for communicating
over a BC, in the context of 2—DBC (section 5.5.1) and derive the corresponding achievable rate region. This is
henceforth referred to as Marton’s rate region in recognition of Marton, who derived the same in [9]. In section
5.5.2, appropriately stitch together all (relevant) current known coding techniques and derive an achievable rate
region for 3—DBC. These are henceforth referred to as ZM—technique and ZM—region respectively. Section 5.6
contains our first main finding - identification of a vector additive 3—DBC for which the Z M —technique is proved
to be strictly sub-optimal. The proof of strict sub-optimality is provided in section 5.10. Section 5.6 contains
our second main finding - a framework based on partitioned coset codes (PCC) to communicate over an arbitrary

3—DBC.!! To aid the reader, we present the same in three pedagogical steps. In section 5.8, we indicate how to glue

10Tt maybe noted that current works employing linear code based techniques such as [18], [15], [16], [17] restrict attention to additive
scenarios and the coding techniques proposed therein do not generalize and moreover only achieve rates corresponding to uniform
distributions.

1 This is a generalization of the linear coding technique proposed for the vector additive 3—DBC studied in section 5.6.
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together Z M —technique and the framework based on PCC and communicate efficiently over an arbitrary 3—DBC.
An analysis of such a technique yields a new achievable rate region for an arbitrary 3—DBC that strictly enlarges

upon ZM-—region. A characterization of this region is quite involved and the reader is spared of the same.

5.4 Preliminaries: Notation, definitions and problem statement

We begin with remarks on notation in section 5.4.1. In section 5.4.2, we state relevant definitions - code, achievability

and capacity - with respect to a 3—DBC and provide a precise statement of the problem of interest.

5.4.1 Notation

The empty sum has value 0, i.e, Ea€¢ = 0. If pyy is a distribution on U x V, we let pf}y, : = tﬁ[lpUV unless
otherwise specified. Similarly, if ¢" € Q" and pyv|g(+,-|q) : ¢ € Q is a collection of conditional probabilities, we let
ng\Q(" dg™) = tlrjlva‘Q(.’ ‘|g¢). In this chapter, we will need to define pairs and triples of objects of the same
type. In order to reduce clutter, we use an underline to denote aggregates of objects of similar type. For example,
(i) if Y1,V2, V5 denote (finite) sets, we let ) either denote the Cartesian product V4 x Y x Y5 or abbreviate the
collection (Y1, Ys,Ys) of sets, the particular reference being clear from context, (ii) if yp € Vi : k = 1,2,3, we let
y € ) abbreviate (y1,y2,y3) € Y, (iii) if dg : Y} — My, 1 k = 1,2, 3 denote (decoding) maps, then we let d(y") denote
(d1(y}), da(y%), ds(y%)), (iv) if Us, Us are random variables taking values in Us,Us respectively, we let U : = Us, Us

and similarly u : = (u2,u3) € U : = Uy x Us denote a generic element.

5.4.2 Definitions: Broadcast channel, code, achievability and capacity

A 3—DBC consists of a finite input alphabet set X and three finite output alphabet sets Vq, V>, V3. The discrete
time channel is (i) time invariant, i.e., the pmf of Y, = (Y14, Yo, Y3;), the output at time ¢, conditioned on X, the
input at time ¢, is invariant with ¢, (ii) memoryless, i.e., conditioned on present input X;, the present output Y,
is independent of past inputs Xy,---, X1, past outputs Y,,---,Y, ; and (iii) used without feedback, i.e., the
encoder has no information of the symbols received by the decoder. Let Wy |x (y|z) = Wy, v, vy x (Y1, Y2, y3|z) denote
probability of observing y € Y at the respective outputs conditioned on z € & being input. Input is constrained
with respect to a cost function & : X — [0,00). The cost function is assumed additive, i.e., cost of transmitting the
vector ™ € X™ is Y, k(). For each n € N, let £"(2™) : = £ 3" | k(a;) denote the average cost of transmitting
x", per symbol. We refer to this 3—DBC as (X, ), Wy x, k).

In general, a 3—DBC can be employed to communicate seven messages - one to each non-empty subset of receivers

(users). Throughout this chapter, we assume that none of the messages are to be shared among two or more receivers.

In other words, the transmitter has one distinct message to be communicated to each receiver. The focus of this
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chapter therefore is the (private message) capacity region of a 3—DBC, and in particular corresponding achievable

rate regions. The following definitions make the relevant notions precise.

Definition 5.4.1 A 3—DBC code (n, M, e,d) consist of (i) finite index sets My, Ma, M3 of messages, (i) encoder
map e : M — X", and (i) three decoder maps dy : Vi — My, : k=1,2,3.

Definition 5.4.2 The error probability of a 3—DBC code (n, M, e,d) conditioned on message triple (my,ma, m3) €
M is
fledm):=1— Y Wyx(y"le(m)).

ymid(y™)=m
The average error probability of a 3—DBC code (n, M, e,d) is (e, d) : = Y meM mf(e,cﬂm). Cost of
transmitting message m € M per symbol is T(elm) : = E"(e(m)) and average cost per symbol of 3—DBC code
(n,M,e,d) is T(e) : = W ZmeMT(e|m)'

Definition 5.4.3 A rate-cost quadruple (R, Ra, R3,7) € [0,00)* is achievable if for every n > 0, there emists

(n)
N(n) € N such that for all n > N(n), there exists a 3—DBC code (n, M™ e d™) such that (i) % >

Rip—n:k=1,2,3, (ii) é(e("),d(”)) < n, and (iii) average cost 7(e\™) < 74n. The capacity region is C(Wyx,k,T):
= cl{R € R®: (R,T) is achicvable}.

In this chapter, our objective is to characterize an inner bound to C(Wy|x, &, 7), i.e., an achievable rate region for
a general 3—DBC. In the following section, we provide a characterization of the currently known largest achievable

rate region for the same.

5.5 Current known largest achievable rate region a DBC

The currently known largest achievable rate region for 3—DBC is obtained via superposition and binning of un-
structured codes. We henceforth refer to this ZM—technique and the corresponding achievable rate region as
U M—region. We begin with a brief review of Marton’s rate region for the 2—DBC in section 5.5.1 and characterize

U M—region in section 5.5.2.

5.5.1 Marton’s rate region

Marton’s coding incorporates two fundamental coding techniques - superposition and precoding. Superposition
involves each user decode a part of the signal carrying the other user’s information and thereby enhance it’s ability to
decode the intended signals. The technique of jointly choosing each user’s message bearing signal to contain mutual
interference is precoding. Superposition coding is accomplished using a two layer coding scheme. First layer, which

is public, contains a codebook over W. Second layer is private and contains two codebooks one each on V; and Vs.
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Precoding is accomplished by setting aside a bin of codewords for each private message, thus enabling the encoder
to choose a compatible pair of codewords in the indexed bins. User jth message is split into two parts - public and
private. The public parts together index a codeword in WW—codebook and the private part of user jth message index
a codeword in Vj—codebook. Both users decode from the public codebook and their respective private codebooks.
Definition 5.5.1 and theorem 5.5.2 provide a characterization of rate pairs achievable using Marton’s coding

technique. We omit restating the definitions analogous to definitions 5.4.1, 5.4.2, 5.4.3 for a 2-BC.

Definition 5.5.1 Let Dy (Wy|x, K, T) denote the collection of distributions powvivaxy v, defined on @ x W x Vi x
Vo X X X Y1 X Vo, where (1) Q, W, V1 and Vz are finite sets of cardinality at most |X|+4, |X|+4, |X|+1 and | X|+1
respectively, (ii) py|xvwq = Py|x = Wy x, (41) E{x(X)} < 1. Forpowvxy € Dy(Wy|x,k,7), let an(powyxy)
denote the set of (R1, R2) € [0,00)? that satisfy

R, < I(WVuYilQ): k=12,

Ri+ Ry < min{I(W;1|Q), I(W;Y2|Q)} + I(Vi; Va[QW) + I(Va; Y2[W, Q) — I(V1; V2|W, Q)

and

CKM(WXDQFC,T) = cocl U CY]\/[(pszxx)
PQWV XY
GD]W(WX‘X,I{,T)

Theorem 5.5.2 For 2—DBC (X, Y, Wy |x, k), a«(Wy|x, k,T) is achievable, i.e., a(Wy|x,k,7) € C(Wy|x,K,7). [
Remark 5.5.3 The bounds on cardinality of W,V and Vo were derived by Gohari and Anantharam in [62].

We refer the reader to [9] for a proof of achievability. El Gamal and Meulen [59] provide a simplified proof using the

method of second moment.

5.5.2 ZM—region : Current known largest achievable rate region for 3—DBC

The Z M —technique is a 3 layer coding technique. For simplicity, we describe the coding technique without referring
to the time sharing random variable and employ the same in characterizing ZM—region. User jth message M; is
split into four parts - two semi-private parts, and one, private and public parts each. We let message (i) M JW € M}/V
of rate K; denote it’s public part (i) M € M, MJ € MY, of rates Lij, Kji respectively, denote it’s semi-private
parts, where (i, j, k) is an appropriate triple in {(1,2,3),(2,3,1),(3,1,2)}, and (iii) MJV € /\/ly of rate T; denote it’s
private part.

The first layer is public with a single codebook (w"(m") : m" € MW) of rate K1 + Ko + K3 over W. MW -

= (M, M}V, M}V) indexes a codeword in W—codebook and each user decodes from W—codebook.
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Each codeword in W—codebook is linked to a triple of codebooks - one each on U;; : (i, j) € {(1,2),(2,3),(3,1)}-
in the second layer. The second layer is semi-private. FEach of the three semi-private codebooks is composed of
bins, wherein each bin comprises a collection of codewords. For each pair (i,j) € {(1,2),(2,3),(3,1)} the follow-

ing hold. MiU- and Mg together index a bin in U;;—codebook. Each bin in U;;—codebook is of rate S;;. Let

(ufy(m"', m%;, mY

U._( U U
450 11 ligo

mij == (mg;, m; ) in

sij) t 8ij € [exp{nS;;}]) denote bin corresponding to semi-private messages m i s

the U;;—codebook linked to public message m". Users i, j decode from U;;—codebook and it maybe verified that
U;j—codebook is of rate K;; + Li; + Sij.

Let (4, ) and (4, k) be distinct pairs in {(1, 2),(2,3),(3,1)}. Every pair of codewords in U;; — and U;;, —codebooks
is linked to a codebook on V;. The codebooks over V; : j = 1,2,3 comprise the third layer which is private.
M]V indexes a bin in V;—codebook, each of which is of rate S;, and thus Vj—codebook is of rate T; + S;. Let
(U;L(mw,m%,sij,m%c,sjk,m}/,sj) . s; € lexp{nsS;}]) denote bin corresponding to private message m) in the
Vj—code@{ linkgco codeword pair (u J(mW mg, Sij), U ]k(mW méjk, sjk)). User j decodes from the private code-
book over V;.

How does the encoder map messages to a codeword? Let pyyvx be a distribution on W x U x ¥ x X such that
E{x(X)} < 7. The encoder looks for (s12, $23, S31, $1, S2, $3) such that the septuple

w™ (MY uly (MY M si5):(i.5)=(1,2),(2.3),(3,1),
OF (MW M 805, M5, 850, M) 55):(6,5,k)=(1,2,3),(2,3,1),(3,1,2)

1_775”7 Mk

of codewords is jointly typical with respect to pyyyv. If such a septuple is found, this is mapped to a codeword on
X™ which is input to the channel. If it does not find any such septuple, an error is declared.

Decoder j looks for all quadruples (mw, mijU, mij, m]V) such that
n(a W WU LW AU WU U n
(wr ™), iy (™ 1l sig), wi i i i), 0 (™ s, m s 5,7

is jointly typical with respect to pwuvxy : = pwuvx Wy x, where (i) (4, j, k) is the appropriate triple in

{(1,2,3),(2,3,1),(3,1,2)} and (ii) Y}* is the received vector. If there is a unique such quadruple, it declares 77; :

= (Y il il Y )

i3 T, as user jth message. Otherwise, i.e., none or more than one such quadruple is found, it

declares an error.

As is typical in information theory, we average error probability over the entire ensemble of codebooks and upper
bound the same. Moreover, we incorporate the time sharing random variable in the above coding technique using the
standard approach. Let @), taking values over the finite alphabet Q, denote the time sharing random variable. Let pg
be a pmf on Q and ¢" € Q™ denote a sequence picked according to pgy. ¢" is revealed to the encoder and all decoders.
The codewords in WW—codebook are identically and independently distributed according to p"j[,| Q(~|q”). Conditioned
W) :

on entire public codebook (W"(m") = w"(m m" € M") and the time sharing sequence ¢", each of the

w

codewords U/} (m mg, Sij) (mlUj, si7) € My;Y x [exp{nS;;}] are independent and identically distributed according
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to pgijle(-|w”(mW),q”). Conditioned on a realization of the entire collection of public and semi-private code-
books, the private codewords (V} (m", m%, sij,mg-]k, sjk,m}/, sj) : s; € [exp{nS;}]) are independent and identically

distributed according to

n w

prxl/j\U1,jUjkWQ ('lwn(mw)auij(m ,mifj, Sij)vu?k(mwam%casjk)aqn> .

We now average error probability over the ensemble of codebooks. An upper bound on the error event at the
encoder is derived using the method of second moment [59]. The probability of the error event at the encoder decays

exponentially with n if for each triple (4,7, k) € {(1,2,3),(2,3,1),(3,1,2)}

S; >0 (5.1)
Sij + Sk > 1(Usj; Ui W Q) (5.2)
Sis+ Sik + Ski > I(Usys Upes Upi [ WQ) (5.3)
Si + Sij + Sir + Sk > I(Uij; Uji; Upsl WQ) + 1(Vi; U [Usj, Ui, WQ) (5.4)
Si+ 85+ Sij + Sjk + Ski > I(Vi; Uik |Uij, Uki, WQ) + I(V;; Upi|Usj, Ujie, WQ)
+I(Usj; Uji; U W Q) + 1(Vi; V;|Ujk, Usj, Uri, WQ) (5.5)

S1+ 82 + S5+ Si2+ Saz + S31 > I(Vi; Uss|Ur2, Us1, WQ) + I(Va; Usy |Uia, Uas, WQ) + 1(V1; Va; V3|QWU)

+1(Ui2; Uas; Ui [WQ) + I(V3; Ur2|Ua2z, Usi, WQ). (5.6)

The probability of decoder error event decays exponentially if for each triple (4,7, k) € {(1,2,3),(2,3,1),(3,1,2)}

I(Vi; YilQWU;Uyi) > Ti + S; (5.7)
I(Ui;Vi; Vil QWUy;) + I(Uij; Ui | QW) > Ky + Lij + Sij + Ty + S; (5.8)
Uk Vi; Yi|QWUs) + I(Usj; Ui |QW) > Ky + L + Sk + T3 + S; (5.9)
I(UsUniVis Yi| QW) + I(Usj; Ui | QW) > Ky + Lij + Sij + Kpi + Lgi + Ski + T; + S (5.10)
IWU;jUriVi; Vil Q) + I(Uij; Ui |QW) > K + Kj + Ky + Kij 4 Lij + Sij + Kii + Ly + See + T; +S; - (5.11)

For each pmf powuvx Wy |x defined on Q@ x W xU x YV x X x Y, let ay (powuvxy) denote the set of all triples
(R1, R2, R3) € [0,00)* such that (i) there exists non-negative real numbers K;;, L;j, Sij, K;,T;,S; that satisfies
(5.1)-(5.11) for each pair (¢,7) € {(1,2),(2,3),(3,1)} and (ii) R; = Tj + K, + L;; + K; for each triple (i,5,k) €

12For three random variables, A, B, C,I(A; B;C) = I(A; B) + I(AB; C).
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{(1,2,3),(2,3,1),(3,1,2)}. The ZM—region is

aaf/(WX\Xaﬁ7T) = cocl U Qo (pQWﬂXZ) )
PQWUVXY
€Dy (Wy | x,k,T)

where Dy, (Wy | x, k, 7) denote the collection of distributions powyvxy defined on @ x W x U x ¥V x X' x ), where
(l) Q, W,ZA,Z are finite sets, (11) pX|XﬂWQ = pX‘X = WX|X7 (lll) E{H(X)} S T.

5.6 A vector additive 3—DBC and a linear coding technique

In this section, we lay the groundwork for our first main finding - strict sub-optimality of Z M —technique. In
particular, we identify a vector additive 3—DBC (example Ex:3-BCExample) and propose a linear coding technique
for the same. In section 5.10, we prove strict sub-optimality of Z M —technique for this vector additive 3—DBC. We
remark that even within the larger class of BC’s that include continuous valued alphabets, any number of receivers
and multiple antennae, we have been unaware, for over three decades, of any BC for which the coding techniques
of superposition coding and precoding with binning can be strictly improved upon. The vector additive 3—DBC

presented herein is indeed a significant finding.

Example 5.6.1 Consider the 3—DBC depicted in figure 5.2. Let the input alphabet X = X} X Xy X X3 be a triple
Cartesian product of the binary field X1 = Xo = X3 = Fy and the output alphabets Yy = Yo = V3 = Fy be binary fields.
If X = X1 X2X3 denote the three binary digits input to the channel, then the outputs are Y1 = X7 & X5 @& X3 & Ny,
Yo = Xo ® Ny and Y3 = X3 & N3, where (i) N1, No, N3 are independent binary random wvariables with P(N; =
1) = 6; € (0,%) and (ii) (N1, Na, N3) is independent of the input X. The binary digit X is constrained to an
average Hamming weight of T € (0,%). In other words, r(x17223) = lgz,—13 and the average cost of input is
constrained to T € (0, %) For the sake of clarity, we provide a formal description of this channel in terms of section
5.4.2. This 3—DBC maybe referred to as (X,Y, Wy |x, k) where X : = {0,1} x {0,1} x {0,1} , V1 = Vo = V3 =
{0,1}, Wy x (y1, y2, ys|z1@2w3) = BSCs, (y1|x1 ® 2 ® 23) BSCj, (y2|22) BSCs, (ys|x3), where §; € (0,3) :j =1,2,3,
BSC,(1]0) = BSC,(0[1) = 1—BSC,(0|0) = 1—BSC,(1]1) = n for anyn € (0,3) and the cost function r(z1z223) =

1{w1:1} .

We begin with some observations for the above channel. Users 2 and 3 see interference free point to point links from
the input. It is therefore possible to communicate to them simultaneously at their point to point capacities using any
point to point channel codes achieving their respective capacities. For the purpose of this discussion, let us assume
§ : = 63 = 63. This enables us employ the same capacity achieving code of rate 1 — hy(8) for both users 2 and 3.

What about user 1?7 Three observations are in order. Firstly, if users 2 and 3 are being fed at their respective point
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Figure 5.2: A 3—DBC with octonary input and binary outputs described in example 5.6.1.

to point capacities, then information can be pumped to user 1 only through the first binary digit, henceforth referred
to as X;. In this case, we recognize that the sum of user 2 and 3’s transmissions interferes at receiver 1. Thirdly, the
first binary digit X; is costed, and therefore cannot cancel the interference caused by users 2 and 3.

Since average Hamming weight of X is restricted to 7, X; @ N; is restricted to an average Hamming weight of
7% d1. If the rates of users 2 and 3 are sufficiently small, receiver 1 can attempt to decode codewords transmitted to
users 2 and 3, cancel the interference and decode the desired codeword. This will require 2 — 2h4(8) < 1 — hp(d1 * 7)
or equivalently w < hy(d). What if this were not the case?

In the case w > hy(9), we are left with two choices. The first choice is to enable decoder 1 decode as
large a part of the interference as possible and precode for the rest of the uncertainty.'® The second choice is to
attempt decoding the sum of user 2 and 3’s codewords, instead of the pair. In the sequel, we pursue the second
choice using linear codes. In section 5.10, we prove Z M —technique is forced to take the first choice which results in
it’s sub-optimality.

Since linear codes achieve capacity of binary symmetric channels, there exists a single linear code, or a coset
thereof, of rate 1 — hy(d) that achieves capacity of both user 2 and 3 channels. Let us employ this linear code for
communicating to users 2 and 3. The code being linear or affine, the collection of sums of all possible pairs of
codewords is restricted to a coset of rate 1 — hyp(d). This suggests that decoder 1 decode the sum of user 2 and 3
codewords. Indeed, if 1 —hy(d) < 1—hy(7%671), or equivalently 7+6; < §, then user 1 can first decode the interference,
peel it off, and then go on to decode the desired signal. Under this case, a rate hy(7 * d1) — hp(d1) is achievable for
user 1 even while communicating independent information at rate 1 — hy(§) for both users 2 and 3. We have therefore
proposed a coding technique based on linear codes that achieves the rate triple (hp(7%81) —hp(1), 1 —hp(), 1 —hp(6))
if 7401 <§=0d9 =3.

13Since X7 is costed, precoding results in a rate loss, i.e., in terms of rate achieved, the technique of precoding is in general inferior to
the technique of decoding interference. This motivates a preference for decoding the interference as against to precoding. However, for
the Gaussian case, precoding suffers no rate loss. This is the precise reason for dirty paper coding being optimal for vector Gaussian BCs
[61].
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Let us now consider the general case with respect to do,d3. Without loss of generality we may assume do < J3.
We employ a capacity achieving linear code to communicate to user 2. This code is sub sampled (uniformly and
randomly) to yield a capacity achieving code for user 3. This construction ensures the sum of all pairs of user 2 and
3 codewords to lie within user 2’s linear code, or a coset thereof, of rate 1 — hy(d2). If 1 — hy(d2) < 1 — hy(7 % d1), or
equivalently 7 % §; < d2, then decoder 1 can decode the sum of user 2 and 3’s codewords, i.e., the interfering signal,
peel it off and decode the desired message at rate hy(7 * §1) — hy(01). If 03 < do, then user 2’s code is obtained
by sub-sampling a capacity achieving linear code provided to user 3. In this case, user 1 can be fed at rate of
hp(T%01) — hp(01) if 1 — hyp(d3) < 1— hp(7 % d1), or equivalently 7+ d; < 3 The above arguments are summarized in

the following lemma.

Lemma 5.6.2 Consider the 3—DBC in example 5.6.1. If 761 < min {02, 03}, then (hp(T%01) —hp(d1),1—hp(d2),1—
hy(d3)) € C(7). -

In section 5.10, we prove that if 1+ hy(d1 % 7) > hp(d2) + hp(d3), then (hy(T% 1) — hp(01),1 — hp(d2),1 — hy(d3)) ¢
agy (T). We therefore conclude in corollary 5.10.5 that if 7,1, 2,03 are such that 1 + hy(d1 * 7) > hyp(d2) + hp(J3)
and min {0z, 3} > 1 * 7, then ZM—technique is strictly suboptimal for the 3—DBC presented in example 5.6.1.
In particular, if 7,01,0 = d» = 03 are such that % > hp(d) > hp(dy * 7), then ZM—technique is strictly
suboptimal for the 3—DBC presented in example 5.6.1. While the proof of this statement is long, the curious reader

may sample our conclusion in theorem 5.10.4 and corollary 5.10.5.

5.7 Achievable rate regions for 3—DBC using partitioned coset codes

In this section we present our second main finding - a new framework based on partitioned coset codes (PCC) for
communicating over an arbitrary 3—DBC - that enables us derive a new achievable rate region for the same. We
present our framework in three pedagogical steps. Step I, presented in section 5.7.1, describes all the new elements
of our framework in a simple setting. In particular, we employ PCC to manage interference seen by one receiver,
and derive a corresponding achievable rate region. For this step, we also provide a complete and elaborate proof of
achievability. Step IT (section 5.7.2) builds on step I by incorporating private codebooks. Finally in step III (section

5.7.3), we employ PCC to manage interference seen by all receivers.

5.7.1 Step I: Using PCC to manage interference seen by a single receiver

Since this section describes the key elements of our findings in a simplified setting, the reader is strongly encouraged
to study through the same carefully. We begin with a simple description of the coding technique. Subsequently, we

formalize the same through a proof of achievability.
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Description of the coding technique

The coding technique proposed herein is a very simple generalization of the linear coding technique proposed for
example 5.6.1. The reader may find it useful to review the same. The two elements put forth in this step are (i)
binning the linear codes into PCC to enable achieve rates corresponding to non-uniform distributions,'* (ii) decoding
the sum of user 2 and 3 codewords via the technique of joint typicality to enable analyze the performance of this
decoding technique over arbitrary 3—DBC. We now state the coding technique.

Consider auxiliary alphabet sets Vi,Us,Us where Us = Us = F, is the finite field of cardinality m and let
Pviv,Usxy be a pmf on Vi x Uy x Us x & x Y. Consider a random codebook C; C V' of rate K; + R; whose
codewords are independently chosen according to py, . Codewords of C; are independently and uniformly partitioned
into exp {nR1 } bins. For j = 2,3, consider random partitioned coset codes (PCC) (n,nS;,nT};, Gy, B}, I;) (definition
3.4.2) denoted A;. The corresponding linear codes are nested, i.e., if S;, < 5}, then G§‘2 = {G.th G;Q/jl

n(S;,—S5,)xn ns

n n nSjy .
Giajr € Fr : Gj17Gj2/jlvBlaB2’(Ij(aj ) a;

] where
I e ]:;sz) 1 j = 2,3 are mutually independent and
uniformly distributed over their respective range spaces. Moreover, random codebook C; is independent of the pair
Ao, As. We have thus specified the distribution of the triplet Ci, Ao, A5 of random codebooks. Messages of users
1,2,3 at rates Ry, T»logm, T5log w are used to index bins, one each in Ci, Ao, Az respectively.'® The encoder looks
for a jointly typical triple, with respect to pv,r,u,, of codewords in the indexed triple of bins. Following a second
moment method similar to that employed in [63], it can be proved that the encoder finds at least one jointly typical

triple if for j = 2,3

Ky >0, (S;—1T;)logm >logm — H(Uj;), (S;—1Tj)logm+ K1 >logm — H(Uj;)+ I(U;; V1), (5.12)
3
> (S; —Tj)logm > 2logm — H(Us) — H(Us) + I(Usz; Us) (5.13)
j=2

K, + max{Ss, S3}logm > logm — H({Uy ® Us) + I(V1;Us @ Us), max{Ss, Ss}logm > logm — H(Us ® Us)5.14)

3 3
(Sj — Tj)logﬂ—i—Kl > 210g7’l’ — EH(U]) +I(U2;U3;Vi). (515)
j=2 j=2

Having chosen one such jointly typical triple, say Vi*, U3, U3, it generates a vector X™ according to

p?{\VlUQU:;('H/lnv U;a Uél) = HpX|V1U2U3('|‘/1t7 U2t7 U3t)
t=1
and feeds the same as input, on the channel.
Decoders 2 and 3 perform a standard PTP decoding. For example, decoder 2 receives Y3' and looks for all

codewords in Ay that are jointly typical with Y3'. If it finds all such codewords in a unique bin it declares the

14 This is akin to binning for channels with state information, wherein exp {nI(U;S)} codewords, each picked according to [[}" ; pu,
are chosen for each message in order to find a codeword in T5(U|s™) jointly typical with state sequence s™.

15For j = 2,3, user j’s codebook of block length n must provide exp{nTjlogn} = 7"7T5 bins. Indeed A contains w15

bins.
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corresponding bin index as the decoded message. It can be proved by following the technique similar to [63, Proof
of Theorem 1] that if
S; <logm — H(U;|Y;) for j =2,3 (5.16)

then probability of decoding error at decoders 2 and 3 can be made arbitrarily small for sufficiently large n.
Having received Y7, decoder 1 looks for all codewords v{ € C; for which there exists a codeword ujq; € Ay @ Ag

such that (v}, ubqs, Y]") are jointly typical with respect to pv, v,eus,y; . Here
Ay @ As:= {Uy@UF:Ul e A} :j=23}.

If all such codewords in C; belong to a unique bin, the corresponding bin index is declared as the decoded message.

Again following the technique similar to [63, Proof of Theorem 1], it can be proved, that if, for j = 2,3
Ki+Rq <H(‘/1)—H(V1|U2 & Us, 1/1), Ki +R1+(Sj+Tj) logﬂ < logﬂ + H(Vl)—H(Vl, Us & U3|Y1), (517)

then probability of decoding error at decoder 1 falls exponentially with n. In the sequel, we provide a formal proof
of achievability. We begin with a characterization of the rate region proved achievable herein. For completeness, we

include a random variable for time sharing in it’s description.

Proof of achievability

Definition 5.7.1 Let D{(pro k,T) denote the collection of pmfs pov,u,usxy defined on QX Vi XUy XUz X X X Y,
where (i) @, V1 are finite sets, Uy = Us is a finite field, (ii) py|xviu = py|x = Wy|x, Y and (iii) E{x(X)} < 7.

Definition 5.7.2 Consider pgv,uxy € D{(WXU(,H,T) and let m: = |Us| = [Us|. Let f1(powviuxy) be defined as
the set of rate triples R : = (Ry, Ra, R3) € [0,00)3 for which S(R, pov,uxy,0) is non-empty, where, for any § > 0,
S(R,poviuxy,0) is defined as the set of vectors (K1, Ry, Sa,T5, S3,T3) € [0,00)° that satisfy R; =T} log,

Ky >46, (S;—Tj)logm >logm — H(U;|Q) + 0, (5.18)

3
K1+ (S; —Tj)logm > logm — H(U,|Q, V1) + 0, l;(S’l —T)logm > 2logm — H{U|Q) + 6, (5.19)

3
K1+ > (S —T)logm > 2logm — H{U|Q, V1) + 3, max{Ss,Ss}logm >logm — H(Uz & Us|Q) + 6, (5.20)
=2

(@)
K1+ max{S, S3}logm > logm — H(Uz ® Us|Q, V1) + 0, K1+ R <I(V1;Y1,U2 @ Us|Q) — 6, (5:21)
K1 + Ry 4 max {Sy, Sz} log 7 < logm + H(V1|Q) — H(V1,Uz @ U3|Q, Y1) — &
Sjlogm <logm — H(U;|Q,Y;) — 6,

16 In this subsection, U denotes the pair Us,Us. Similarly, the other objects such as U,u denote corresponding pairs.
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for j =2,3. Furthermore, let

Br(Wy|x, k,T) : = cocl U  Bilpevioxy)

PQVIUXY €
D{ (Wy | x ,%,7)

Theorem 5.7.3 For a 3—DBC (X, Y, Wy|x, k), b1(Wy|x,k,T) is achicvable, i.e., B1(Wy|x,r,7) € C(Wy |x, K, T).
[

Proof:  Given pov,uxy € D{(WXD(,H,T), R € Bi(poviuxy),7 > 0, our task is to identify a 3—DBC code
(n,M,e,d) of rate % > R; —1:j=1,2,3, average error probability (e, d) < 7, and average cost T(e) < T + 7.
For the given rate triple R € B1(powviuxy), we have 61 > 0 and (K4, Ry, S2,Ts, S5,13) € S(R,pov,uxy,01)-
Set n : = min{7,6;}. Consider a codebook C; = (v} (mq,b1) : my € My,by € By) built over V; consisting of
| M| bins, each consisting of |Bi| codewords. We let My = [lexp {n(Ry — 2)}]] and By = [[exp {n(K1 + £)}].
C; is employed to encode user 1’s message. Codebooks employed to encode user 2 and 3’s messages are partitioned
coset codes (definitions 3.4.2) which are described in the sequel. Henceforth, we let 7 : = |Us| = |Us| and therefore
Fr = Uy = Uz. Consider a linear code X C F" with generator matrix g € F5*" and let A\ C F” denote the
coset of \ with respect to shift " € F?. Clearly, the codewords of A are given by u(a®) : = a®g ® b" : a® € F2.

Consider a partition of A into 7* bins. Each codeword wu(a®) is assigned a bin index i(a®) € FL. For every m! € FL,

e(m?) : = {a®:i(a®) = m'} denotes the set of indices whose codewords are assigned to bin mt. The coset code A
with it’s partitions is called a partitioned coset code and denoted (n,s,t,g,b", i).17

For j = 2,3, user j is provided the partitioned coset code (n, sj,t;,g;,b},i;), where s; = [nS;|,t; : = [n(T}
Tiog7) |- Let u;l(a;j) D= a;jgj @ b} denote a generic codeword in \; and cj(mzj) D= {aj-j :ij(a;') ;J} de-

note the indices of codewords in bin corresponding to message mz-j . These codes are such that if s;, < s;,, then
g§»2 = {g?l g§.2 / j1:|. In other words, the linear code corresponding to the larger coset code contains the linear code
corresponding to the smaller coset code. Without loss of generality, we henceforth assume s; < s3 and therefore
gh = [gé g% /2}. It is now appropriate to derive some relationships between the code parameters that would be of

use at a later time. There exists Ny(n) € N such that for all n > Ny(n)

nS; —1 < s; <nS; and therefore S; — ﬁ <S5 —-i<icg,, (5.22)

L
K (Tj - 41;7g7r) Stjsn (TJ 4log7r> + 1 and therefore T — ogw s =T~ 81;]%”’ (5.23)
R1—US%SR1—%andKl—FgSlOgiLBllSKl—&—%. (524)

We now describe the encoding and decoding rules. A vector ¢" € T}, (Q) is chosen to be the time sharing vector, where

I7A careful and diligent reader who has studied through definitions 3.4.2 and 4.6.3 will note a minor difference between those and the
one stated here. In definitions 3.4.2 and 4.6.3, the set indexing the partitions was chosen to be [r]. Here the corresponding set is FL.
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12 will be specified in due course. Without loss of generality, we assume the message sets are M; : = F¥ for 71=2,3
and as stated before M : = [[exp {n(R; — 1) }]]. Let (M, M3?, Ms*) € M denote the uniformly distributed triple of
message random variables to be communicated to the respective users. Having received (M, M2752 , M§3), the encoder
looks for a triple of codewords in the indexed bin of codewords that are jointly typical. Formally, the encoder looks
for a triplet (b1,a3?,a3?) € By x ca(Ms?) x c3(M5?) such that (v (My,by),ud(a3?), ul(a3®)) € Ton, (Va, Uz, Us|g™).1®
If it finds at least one such triple, one of them is chosen according to a predefined rule. Otherwise, i.e, if it finds
no triple of codewords in the indexed triple of bins that is jointly typical, it chooses a fixed triple of codewords in
C1 X A2 X Ag. In either case, let (v} (M, B1), uy (A3?), us(A3%)) denote the chosen triple of codewords. In the former
case, the encoder maps the triple to a vector in Ty, (X v} (M, By),us(A3?),u3(A5*)) and feeds the same as input
on the channel. In the latter case, it picks a fixed vector in X™ and feeds the same as input on the channel. In either

case, let ™ (M, M2t2, M§3) denote the vector input on the channel.

The operations of decoders 2 and 3 are identical and we describe the same through the generic index j. Having
received vector Y, it looks for all messages m;j € M; such that for some a}’ € cj(m;j), uj(ay’) € Tay, (Ujlg™, Y]").
If it finds exactly one such message, this is declared as the decoded message. Otherwise, an error is declared.

Decoder 1 is provided with the codebook Ao @ As : = {uf(a3?) ®uf(a5?) : a;’ € Fy' :j =2,3}. Note that
Ao @ A3 = {ug(a3®) : = a3®gs © by @ bY : a3® € Fi2}. Having received Y7", decoder 1 looks for all messages 1y € M;
such that (v{(11,b1), ug(as®)) € Tan, (Vi,Us @ Us|q™, Y7*) for some (b1, a3*) € By x F23. If it finds exactly one such
m1 € My, this is declared as the decoded message. Otherwise, an error is declared.

The above encoding and decoding rules map a triplet C;, Ao, A3 of codebooks into a 3—DBC code'®. Moreover,
(5.23) and (5.24) imply that the rates of the corresponding 3—DBC code satisfy % > Ry —n, tjl% > R; — g
for 7 = 2,3. Since every triple C1, A2, A3 of codebooks, and a choice for the predefined rules map to a corresponding
3—DBC code, we have characterized an ensemble of 3—DBC codes, one for each n € N. We now induce a distribution

over this ensemble of 3—DBC codes.

Consider a random triple C1, Ag, Ag of codebooks, where C; = (V{*(m1,b1) : (m1,b1) € My x By) and A; is the
random partitioned coset code (n, s;,t;, G, B}, I;). Note that the joint distribution of Vi*(my,b1) : (m1,b1) € My X
Bi,Go, G320, By, BY, I5(a3?) = ay® € Fi2,13(a3®) @ a3® € F7? uniquely characterizes the distribution of Cy, Az, As.
We let Vi*(my,b1) : (m1,b1) € My x B1,Ga,G3o, By, BY, I5(a3?) : a3* € F3?,13(as’) : a3® € F2# be mutually
independent. For every (my,b1) € My x By, v € VP, let P(V{*(m1) = v}) = [[;_; pvijo(vi¢l@). The rest of
the random objects Go,G3/2, By, BY, I>(a3*) @ ay* € F32,13(a3®) : a3® € F;* are uniformly distributed over their
respective range spaces. We have therefore specified the distribution of the random triple Cy, Ao, A3 of codebooks.

For j = 2,3, we let U]”(as

J

; )= a‘;j G; @ B denote a generic random codeword in the random codebook A;. Likewise,

18Here, the typicality is with respect to PQVUXY -
19This map also relies on a ‘predefined’ rule to choose among many jointly typical triples within an indexed pair of bins and furthermore,
a rule to decide among many input sequences that is conditionally typical with this chosen triple of codewords.
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we let UZ(a3®) = a3*Gs @ By @ By denote a generic codeword in Ay @ Ag. Let (Vi*(My, By1),Us'(A3?), U3 (A3?))
denote the triple of codewords chosen by the encoder and X" (M, M;z , M§3) denote the vector input on the channel.

While the above specifies the distribution of the random triple of Cy, A, A3 of codebooks, the predefined rules
that map it to a 3—DBC code is yet unspecified. In other words, the distribution of (Vi*(Mji, B1), U3 (A5?), U (A3?))
and X" (M, MSQ,M??) needs to be specified. All the 3—DBC codes that a particular triplet of codebooks Cq, Ag, A3

map to, are uniformly distributed. Alternatively, the encoder picks a triple in
{(V"(My,b1), Ua(a3?), Us(a3?®)) € Tay, (V1,Ulg") : (b1, 057, a5%) € By x Ca(Mg?) x C3(Mg*)}

uniformly at random and independent of other choices. Denoting this random triple as (Vi*(My, By), UF(A5?),
U3 (A35?%)), the encoder picks an input sequence in Ts,,, (X |(V{* (M1, B1), U3 (A5?), U (A5?))) uniformly at random and
independent of other choices. We have therefore specified the distribution induced on the corresponding ensemble of
3—DBC codes. In the sequel, we characterize error events associated with this random 3—DBC code.

If

€ 1= N {(Vi(My,b1),Uz(a5?), Us(a3?)) ¢ Toy, (V1, Uz, Uslg™)}
(b1,a52,a5%)

B1xCa(ML2)x Cs(M53)

€31 1= m {(Vi(My,01), U (a5?), YT") & Tsy, (Vi, U2 @ Us, Y1[g™) }

(bl,agg)
eBy X]'-:s

€j 1= N {WUa).Y)) & Tsy (U, Yila™) }
ayl €C; (M)
€1 = U U {00, b)), UZ(a5),Y7") € T, (Vi, Yalg™) }

(b1,a33) MuF#M;
€eByxF:3

€15 1= U {Wia),y]") € T, (U;, Y5g™) }
a) €Ci(m})

t; s
2t J
" ;ﬁMj

then e : =

fce

(e1 U €3; U €4j) contains the error event. Our next task is to derive an upper bound on P(e).
J

Let

to t3 .
¢my, my’, my’) Z 1{(V1"<m1,bl>,U2<a52),Us(ass»ennz(vl,Uz,U3\q"),1<an>=ij =23}
(b1,0°2,a%3)€
Bi X F2xF:3

1
e = {o(My, M3 M) < L(n)}, where L(n): = E {o(My, M2, M)}
Clearly P(e) < P(e¢;) + P(ef Ne), and it therefore suffices to derive upper bounds on each of these terms.
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Upper bound on P(e;):- Substituting for £(n), we have

E {o(M, Mz*, My®)} | _ 4Var {$(My, My?, My?) }
2 " (B{o(n, M M)}’

P(a) < P(l¢(My, My?*, Mg*) — E{¢(My, My*, Mg*) } | >

from the Cheybyshev inequality. In appendix J, we evaluate the variance and expectation of ¢(M, M§2,M§3) and

derive an upper bound on P(e¢;). In particular, we prove for n > max{Ny(n), Na(n2)},
P(e1) < (28 + 8m) exp {—n (61 - g - 48772)} . (5.25)

In deriving the above, we have employed lower bounds (5.18), (5.19), (5.20) and (5.21)(a).

Now consider €/ Ne;. Note that Pe;) = P(¢(My, My, M) = 0), and hence € Ne; = ¢, the empty set, if
L(n) > 1. At the end of appendix J, we prove £(n) > 1 for sufficiently large n. We are left to derive an upper bound
on P(ef mj@l (e3; U ea)).

Since L(n) > 1, f C €f, it suffices to derive an upper bound on the terms P(ef N (€31 Uega Uesz)), P(ef N
(€31 Ue€sa Uess) Neqj):j=1,2,3.

Upper bound on P(e§ N (€31 U €32 U €33)):- Consider P(e§ N ez), where
€21 = {(Vi(My, B1),U2(A3?), Us(A3?), X™) ¢ Tup, (V1, U, X1q")} -
By the encoding rule P(e§ Nez) = 0. Since the encoding rule also ensures €§ N (€31 U €32 U €33) C €§ N ez, where
es 1 = {(V["(My, B), U (A3), Ug (A3*), X" (Ma, My?, M), Y7) ¢ T, (V1, U, X, Y)

it suffices to derive an upper bound on P((e; U€g) Nez). This follows from conditional frequency typicality (lemma
2.4.1) and py|xv,vQ = Py|x = Wy |x (statement (ii) of definition 5.7.1). We conclude the existence of N3(n2) such
that for all n > Ny(n2), P((e1 Ue2)*Nes) < 5.

Upper bound on P((e;UeaUes)®Neyr) : We refer the reader to appendix K for the derivation of an upper bound
on P((e; Ueza Ues)®Neyr). Therein, we prove existence of Ny(n2) € N such that for all n > max {N1(n), Na(n2)}, we

have

P(( Ues Ues)Neay) < dexp {—n (51 n g - 56772)} . (5.26)

Upper bound on P((e; U e Uez)® Neq;) @ For j = 2,3, decoder j performs a simple point-to-point decoding and
therefore the reader might expect the analysis here to be quite standard. The partitioned coset code structure of user

j’s codebook that involves correlated codewords and bins lends some technical complexities. We flesh out the details
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in appendix L. In particular, we prove (L.5) existence of Nj5(n2) € N such that for all n > max{N;(n), N5(n2)}
P((e1UeaUes) Negj) < 2exp{—n (01 —32m2)}. (5.27)

Let us now compile the upper bounds derived in (5.25), (5.26) and (5.27). For n > max{Ny(n), N2(n2)N3(n2), Na(n2),
Ns(n2)}, we have

PlegUeaUezUegg Uega) < % + (34 + 8m) exp {—n (51 - g - 56772)} . (5.28)

we have §; — ¢ — ¢ > %’7 and we can drive the

Recall that 7 is chosen to be min {7, d;}. By choosing 7y = .

Ul
56x8?

probability of error below 7 by choosing n sufficiently large.

NS

The only element left to argue is the random code satisfies the cost constraint. Since P(e; U €z) is lesser than
for sufficiently large n, the encoder inputs a vector on the channel that is typical with respect px with probability
— g Since E{x(X)} < 7, a standard argument proves that the expected cost of the input vector can be made
arbitrarily close to 7 by choosing n sufficiently large and 7 sufficiently small. We leave the details to the reader. ®
The coding technique that yields achievability of 31 (Wy x,#,7) is a simple generalization of the linear coding
technique proposed for example 5.6.1. Therefore, it can be verified that, if 7% d; < min{d2, d3}, then (hp(7 * 1) —
hp(61),1 — hp(2),1 — hp(d3)) € Bl(WX|X,/€,T). We leave it to the reader to verify that if 7% é; < min {ds, 03},
then (hy(7%61) — hy(01), 1 — hp(d2), 1 — hy(03)) € Bi(puvi xy ), Where puv, x = pv, Pr,PUs L{x, =i} L{xXo=0s} 1 {X5=Us}>

pU2(1) = pUs(l) = % and le(l) =T.

5.7.2 Step II: Incorporating private codebooks

We revisit the coding technique proposed in section 5.7.1. Observe that (i) user 1 decodes a sum of the entire
codewords/signals transmitted to users 2 and 3 and (ii) users 2 and 3 decode only their respective codewords. This
technique may be enhanced in the following way. User 1 can decode the sum of one component of user 2 and 3 signals
each. In other words, we may include private codebooks for users 2 and 3.

We begin with a description of the coding technique. In addition to the codebooks Cy, As, A3 described in section
5.7.1, we incorporate private layer codebooks for users 2 and 3. Specifically, in addition to auxiliary alphabet
sets Vi,Us,Us introduced in section 5.7.1, let Vs, Vs denote arbitrary finite sets and py,u,v,v,v, denote a pmf on
Uy x Uz x V1 X Vo x V3. For j = 2,3, consider a random codebook C; C Vi of rate K; + L; whose codewords
are independently chosen according to p"}J Codewords of C; are independently and uniformly partitioned into
exp {nL;} bins. The distribution induced on Ci, As, Az is identical to that in section 5.7.1. Moreover, the triplet
C2,Cs3,(C1, Ao, A3) are mutually independent.?Y Having specified the distribution of codewords of Cj:j7 =23, we

20Here (C1, A2, A3) is treated as a single random object.
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have thus specified the distribution of quintuple of random codebooks. Messages of users’ 2 and 3 are split into two
parts each. One part of user 2’s (3’s) message, of rate T log m (T3 log7), index a bin in As (A3), and the other part,
of rate La (L3), index a bin in C3 (C3). The sole part of user 1’s message indexes a bin in C;. The encoder looks for
a quintuple of jointly typical codewords with respect to pyy, in the quintuple of indexed bins. Following a second

moment method similar to that employed in [63], it can be proved that the encoder finds at least one jointly typical

triple if
Salogm+Kp > |Allogom+ Y H(Vy) — H(Ua,Vp)*! (5.29)
beB
max{Sy + 15,53 + T3} logm + Kg > logm+ Z H(Vy) — min  H(U; @ 0Us, Vp) (5.30)
ben 0eF-\{0}

for all A C {2,3},B C {1,2,3}, where Sa =345, Kp =3 1 cp Ko, Us=(U;:j € A)and Vg = (V, : b € B).22
Having chosen one such jointly typical quintuple, say (U3, UZ, V"), the encoder generates a vector X™ according to
Pxvo,u, [V Us', Ug') and inputs the same on the channel.

The operations of decoders 2 and 3 are identical and we describe one of them. Decoder 3 receives Y3* and looks
for all pairs of codewords in the Cartesian product As x Cs that are jointly typical with Y3 with respect to pu,vsy;-
If all such pairs belong to a unique pair of bins, the corresponding pair of bin indices is declared as the decoded

message of user 3. Else an error is declared. It can be proved that if

(S; + T))logm <logym — HU,|V,.Y)), K+ Ly < H(V;) — H(V; Y, U) (5.31)

(S;+Ti)logm+ K; +L; < logym+ H(V;)— H(V;,U,;|Y;) (5.32)

for 7 = 2,3, then probability of users 2 or 3 decoding into an incorrect message falls exponentially with n.
Operation of decoder 1 is identical to that described in section 5.7.1. If (5.17) holds, then probability of error

at decoder 1 falls exponentially with n. Substituting Ry = K7, Ry = Tylogm + Lo, R3 = T3lognm + L3 and elim-

inating Sslogm, S3logm, K1, Ko, K3 in (5.17)-(5.32) yields an achievable rate region. We provide a mathematical

characterization of this achievable rate region.

Definition 5.7.4 Let Dg(WHX, K, T) denote the collection of pmfs pou,u,vivavsxy defined on Q X Us X Us X Vy X
Vo x V3 x X x Y, where (i) Us = Us = F is the finite field of cardinality w, Q,V1,Va, Vs are finite sets, (ii)
Py|xvuQ = Py|x = Wy|x, and (iii) E{x(X)} < 7. For pquvxy € Dg(WﬂXm,T), let Bg(pQﬂxx) be defined as
the set of triples (R1, R2, R3) € [0,00) for which there exists nonnegative numbers So, T2, S5, T3, K, Lj 1 j = 1,2,3

21'We remind the reader that the empty sum has value 0, i.e, Za€¢ =0
22Recall that Fr = Us = Us.
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such that Ry = Ky, Ro = Tslogm + Lo, R3 = T3logm + Lg,

Salogm + Kp > |Allogy 7+ g H(V1|Q) — H(Ua,V5|Q),%
max{Ss + 15,53 + Tz} logm + Kp > logm + 3, . g H(V3|Q) — minge £\ {0y H (U2 © 0Us3, Vi|Q),
Ki+Ri<IV;Us U3, Y11Q), Ki+Ri+(S;+T;)logm <logm+ H(VA|Q)—H(V1,U & Us|Q, Y1) : j = 2,3,
(S5 +T;)logm <logym — H(U;|Q,V;,Y;) : j = 2,3, K; + L <H(V;|Q) — H(V;|Q,Y;,U;j) : j = 2,3

(S;+Tj)logm+ K; + L; <logym+ H(V;|Q) — HV;,U;|Q.Y;) : 5 =2,3

for all A C {2,3},B C {1,2,3}, where Sy :ZjeASj7 Kp=3 1cp Ko, Ur=(U;:j€ A)and Vg = (Vy : b € B).
Let

ﬁg(WX\X, K, 7') = cocl U 5£(pQﬂxx)

PQUVXY
€D (Wy | x ,k,7)
Theorem 5.7.5 For a 3—DBC (X, Y, Wy |x, k), ﬂQf(prg,H,T) is achievable, i.e., ﬂQf(WXP(',I{,T) C C(Wy|x,k,T).
[
The proof is similar to that of theorem 5.7.3. The only differences being (i) the encoder looks for a quintuple of
codewords instead of a triple, and (ii) decoders 2 and 3 decode from a pair of codebooks. From theorem 3.5.1,
the informed reader can see why the second difference can be easily handled. Indeed, in theorem 3.5.1, we prove
nested coset codes, and therefore partitioned coset codes, achieve capacity of arbitrary point-to-point channels.
This indicates that for j = 2,3, U;—codebook can be used to communicate at rate I(U;;Y;) and the private layer
V;—codebook can be used to communicate at rate I(U; : Y;|U;), thereby satisfying user j’s rate. This leaves us to
argue only the first difference pointed above. Using a second moment method similar to that employed in appendix
J,24 it can be shown that probability of encoder not finding a jointly typical quintuple decays exponentially if (5.29)
holds.

5.7.3 Step III: Using PCC to manage interference over a 3—DBC

Here we employ PCC to manage/decode interference seen by each receiver. In the sequel, we propose a simple
extension of the technique presented in section 5.7.2 to enable each user decode a bivariate interference component.
Throughout the following discussion i, j, k denote distinct indices in {1,2,3}. Let U;; = Fr,,Ujx, = Fr, be finite

fields and V; be an arbitrary finite set. User j splits it’s message M; into three parts (Mjg,M j%,MJV) of rates

23 We remind the reader that the empty sum has value 0, i.e, Za@b =0
24 A diligent reader would have noted the same second moment method has been employed in appendices A and C.
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T};log m;, Ty log my,, L; respectively. User j’s message indexes three codebooks - Cj;, Aj;, Aj, - whose structure is

Jiy
described in the following. Consider a random codebook C; C VI of rate K; + L; whose codewords are independently
chosen according to p(}j. Codewords of C; are independently and uniformly partitioned into exp {nL;} bins. Consider

random partitioned coset codes (PCC) (n,nS;;, nTj;, Gji, B}, 1;;) and (n, nSjk, n'Tjk, Gk, B L) (definition 3.4.2)

i
denoted Aj; and Aji respectively. Observe that PCC Aj; and Ay; are built over the same finite field F5,. The
corresponding linear codes are nested, i.e., if Sj; < Sy;, then G%, = {Gﬁl G};i/ji} where Gy j; € ]:;L(Sji—ski)xn7 and
vice versa. We have thus specified the structure of 9 random codebooks. We now specify the distribution of these
random codebooks.

The random PCCs are independent of C; : j = 1,2,3. Cy1,Cs,C3 are mutually independent. We now specify the
distribution of the PCCs. The triplet (A2, As2), (A21,As1), (Aas, A13) are mutually independent. All of the bias
vectors are mutually independent and uniformly distributed. The collection of generator matrices is independent of
the collection of bias vectors. We only need to specify the distribution of the generator matrices. The rows of the
larger of the two generator matrices Gj; and Gy; are uniformly and independently distributed. This specifies the

distribution of the 9 random codebooks.

MU Mﬁc and M]V index bins in A

i) Aji, and C; respectively. The encoder looks for a collection of 9 codewords

iy
from the indexed bins that are jointly typical with respect to a pmf pyv defined on U x V.2° 'We now state the bounds
that ensure the probability of encoder not finding a jointly typical collection of codewords from the indexed bins. We
introduce some notation to aid reduce clutter. Throughout the following, in every instance i, j, k will denote distinct
indices in {1,2,3}. For every A C {12,13,21,23,31,32}, B C {1,2,3},C C {1,2,3}, let S4 = ijeA Sik, Mp :
= > jepmax{Sy + Tj;, Skj + Tij}, Ko = 3 .cc Ke. For every B C {1,2,3}, let A(B) = Ujep{ji,jk}. Following
a second moment method similar to that employed in appendix J, it can be proved that the encoder finds at least
one jointly typical collection if (5.33) is satisfied for all A C {12,13,21,23,31,32},B C {1,2,3},C C {1,2,3}, that
satisfy AN A(B) = ¢, where Uy = (Ujy, : jk € A) and Vo = (V. : ¢ € C'). Having chosen one such jointly typical
collection, say (U", V™), the encoder generates a vector X™ according to p}lﬂﬂg ", V™) and feeds the same as

input on the channel.

n

Decoder j receives Y] and looks for all triples (u;, u7y, v}') of codewords in Aj; x Aj x C; such that there exists

J

a u’

tior; € (Nij © Agj) such that (uffqy,,ul;, uly, vi, Y[") are jointly typical with respect to pu,;eu,;,us,U..v;,Y;-

i
If it finds all such triples in a unique triple of bins, the corresponding triple of bin indices is declared as decoded
message of user j. Else an error is declared. The probability of error at decoder j can be made arbitrarily small for
sufficiently large block length if (5.34) holds for every A; C {ji, jk} with distinct indices 7, j, k in {1,2, 3}, where S4; :
= ZaeAj Sa;Ta; 1= ZaeA,- Ta,Un; = (Uqg i a € Aj). . Recognize that user j’s rate R; = Tj; log 7; +Tjy, log mp + L.

We are now equipped to state an achievable rate region for a general 3—DBC using partitioned coset codes.

25U abbreviates U12U13U21Uz3Us1Uss.
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Definition 5.7.6 Let ]D)f(WX‘X, k,T) denote the collection of probability mass functions pouv xy defined on Q XU x
Y x X x Y, where (i) Q,Vi,Va, Vs are arbitrary finite sets, ¥ : = Vi X Vo X Vs, (i) Uy; = Fr,?° for each 1 < i,j < 3,
and U : = Ups X Upz X Us1 X Uss X Uzt X Usz, (i) V : = (Vi,Va,Va) and U : = (U2, Urs, Usy, Uss, Usy, Uss), such
that (i) py|xvu = py|x = Wy x, (i) E{s(X)} <7.

For pyvxy € Df(WX‘X,Ii7T), let B/ (puvxy) be defined as the set of rate triples (Ry, R, R3) € [0,00)% for
which there exists nonnegative numbers S;;,T;; : ij € {12,13,21,23,31,32} ,K;,L; : j € {1,2,3} such that Ry =
Tialogma + Tizlogms + L1, Ra = To1log m1 + Tz logmz + Lo, Ry = 131 logmy + T3z logma + L3 and

Sa+ Mg+ Ke > O(A, B,C) where,

O(A,B,C) : = o jeglgxn . {Z log [Ua| + Y logm; + > H(V.|Q) — H({Ua,Uji ® 0;Uj : j € B,VelQ)}
7 jeB ceC

(5.33)

forall A C {12,13,21,23,31,32} , B C {1,2,3},C C {1,2,3}, that satisfy ANA(B) = ¢, where A(B) = Ujep{ji, jk},
Uy = (Ujk ]/45 S A), Ve = (VC 1c€E O), Sa = Z]’keASjk”MB = ZjeBmaX{Sij—F 1],Sk] —|—Tkj} Ko = ZCECKC7

and

Sa;+Ta; <Y loglUa| = H(UA,|Q, Une, Uiy & Uy, V5, Y5)
a€A;
Sa; + T, + Sij + T Z log |Us| +logmj — H(Ua,, Ui; ® Uy;|Q, Uas, V5, Yj)
aCA;

Sa; +Ta; + Skj + Tij < Z log |[Ua| +logmj — H(Ua,, Uij ® Uy,|Q, Uaz, V;,Yj)

acA;
) (5.34)

Sa;+Ta; + K+ Ly < Y logUa| + H(V;) = HUa,, Vj|Q, Uac, Uij & Uyj, Y)
GE.Aj

SAJ. +TA.7. +Kj JrLj +Sij JrTij < Z 10g|ua| JrlOg?Tj JrH(VJ) *H(UAJ,,VJ‘,UM @UkﬂQ,UA;,Yj)

aEAj

Sa; +Ta, + Kj+Lj+ Sk +Thy < Y log Ua| +logm; + H(V;) — H(Ua,, Vs, Uij © Uij|Q, Uas, Y5),
GEA]'

for every A; C {ji, jk} with distinct indices i, j,k in {1,2,3}, where Sa; : = ZaeAJ_ Sa, Ty, = zaeA]- T,,Un; =
(Ug:a€ Aj). Let

B Wy x,k,7) = cocl U B! (pouv xy)
PQUVXYE
Df(Wx‘X,K:,T)

26 Recall Fr; is the finite field of cardinality ;.
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Theorem 5.7.7 For 3—DBC (X,Y, Wy |x, k), Bf(WXD(,FL, T) 14s achievable, i.e., ﬂf(prg,li,T) C C(Wy x,k,T).
[
All the non-trivial elements of this proof being illustrated in considerable detail in the context of proof of theorem

5.7.3, we omit a proof of theorem 5.7.7.

5.8 Enlarging Marton’s rate region using partitioned coset codes

The natural question that arises is whether the achievable rate region using partitioned coset codes 37 Wy x,k,T)
contains ag (Wy|x,k, 7). It is our belief that coding techniques based on structured codes do not substitute their
counterparts based on traditional unstructured independent codes, but enhance the same. Indeed, the technique
proposed by Korner and Marton [18] is strictly suboptimal to that studied by Berger and Tung [64] if the function is
not sufficiently compressive, i.e., entropy of the sum is larger than one half of the joint entropy of the sources.?” The
penalty paid in terms of the binning rate for endowing structure is not sufficiently compensated for by the function.
This was (recognized)/(hinted at) by Ahlswede and Han [48, Section VI] for the problem studied by Koérner and
Marton.

We follow the approach of Ahlswede and Han [48, Section VI] to enlarge ag (Wy x,k,7) by gluing together
% M—technique and the coding technique based on PCC. The resulting rate region will contain aq (Wy|x, s, 7) U
,Bf(WHX, k,7) and will strictly enlarge gy (Wy|x,#,7). Indeed, a description of the resulting rate region is quite
involved and we spare the reader of these details. The resulting coding technique will involve each user split it’s
message into six parts - one public and private part each, two semi-private and bivariate parts each. This can be
understood by splitting the message as proposed in sections 5.5.2 and 5.7.3 and identifying the private parts. In
essence each user decodes a univariate component of every other user’s transmission particularly set apart for it, and

furthermore decodes a bivariate component of the other two user’s transmissions.?8

5.9 Concluding remarks : Common parts of random variables and the
need for structure

Let us revisit Marton’s coding technique for 2-BC. Define the pair V; : = (W,V;) : j = 1,2 of random variables
decoded by the two users and let V; : = W x V; : j = 1,2. Let us stack the collection of compatible codewords over
V1" x V5. The encoder can work with this stack, being oblivious to the distinction between W and V; : j = 1,2. In

other words, it does not recognize that a symbol over W is indeed a pair of symbols. A few key observations of this

27If X and Y are the distributed binary sources whose modulo—2 sum is to be reconstructed at the decoder, then Kérner and Marton
technique is strictly suboptimal if H(X & Y) > w

28 An informed and inquisitive reader may begin to see a relationship emerge between the several layers of coding and common parts of
a collection of random variables. Please refer to section 6.5 for a discussion.

86



stack of codewords is in order. Recognize that many pairs of compatible codewords agree in their ‘YW —coordinate’.
In other words, they share the same codeword on the YW—codebook. W is a common part [65] of the pair (V7, Vz).
Being a common part, it can be realized through univariate functions. Let us say W = f1(Vi) = f2(Va). This
indicates, W—codebook is built such that, the range of these univariate functions when applied on the collection of
codewords in this stack, is contained.

How did Marton accomplish this containment? Marton proposed building the W—codebook first, followed by
conditional codebooks over Vi, V5. Conditional coding with a careful choice of order therefore contained the range
under the action of univariate function. How is all of this related to the need for containing bivariate functions
of a pair of random variables. The fundamental underlying thread is the notion of common part [65]. What are
the common parts of a triple of random variables? Clearly, one can simply extend the notion of common part
defined for a pair of random variables. This yields four common parts - one part that is simultaneously to common
to all three random variables and one common part each, corresponding to each pair in the triple. Indeed, if
Vi = (W,Uy2,Us31, V1), Vo = (W, Uya, Uss, Vo), V3 = (W, Us3, Uz, V3), then W is the part simultaneously to common
to V1, Vo, V3 and Ui; : ij € {12,23,31} are the pairwise common parts. A simple extension of Marton’s coding
suggests a way to handle these common parts.

This does not yet answer the need for containment under bivariate function. We envision a fundamentally
richer notion of common part for a triple of random variables. Indeed, three nontrivial binary random variables
XY, Z = X &Y have no common parts as defined earlier, since each pair has no common part and the triple does
not admit a simultaneous common part. Yet, the degeneracy in the joint probability matrix hints at a common
part. Indeed, they possess a conferencing common part. For example, the pair (X,Y"), Z have a common part. In
other words, there exists a bivariate function of X,Y and a univariate function of Z that agree with probability
1. Containment of this bivariate function brings in the need for structured codes. Indeed, the resemblance to the
problem studied by Koérner and Marton [18] is striking. We therefore believe the need for structured codes for three
(multi) user communication problems is closely linked to the notion of common parts of a triple (collection) of random
variables. Analogous to conditional coding that contained univariate functions, endowing codebooks with structure

is an inherent need to carefully handle additional degrees of freedom prevalent in larger dimensions.

5.10 Strict sub-optimality of M —technique

In this section, we prove strict sub-optimality of ZM—technique for the 3—DBC presented in example 5.6.1. In
particular, we prove that if parameters 7,91, 02,03 are such that 1 4+ hy(d1 * 7) > hp(d2) + hp(d3) and (R, 1 —
hy(92),1 — hy(93)) € agy (1), then Ry < hy(7 % 1) — hp(d1).

Why is Z M—technique suboptimal for the case described above. As mentioned in section 5.6, in this case,

receiver 1 is unable to decode the pair of codewords transmitted to users 2 and 3. Furthermore, based on unstructured
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independent coding, it does not attempt to decode a function of transmitted codewords - in this case the modulo—2
sum. This forces decoder 1 to be content by decoding only individual components of user 2 and 3’s transmissions,
leaving residual uncertainty in the interference. The encoder helps out by precoding for this residual uncertainty.
However, as a consequence of the cost constraint on X7, it is forced to live with a rate loss.

Since our proof traces through the above arguments in three stages, it is instructive. In the first stage, we
characterize all test channels powyv xy for which (Rq,1 — hy(d2),1 — hy(d3)) € aw (powuv xy ). This stage enables
us identify ‘active’ codebooks, their corresponding rates and characterize two upper bounds on R;. One of these
contains the rate loss due to precoding. In the second stage, we therefore characterize the condition under which
there is no rate loss. As expected, it turns out that there is no rate loss only if decoder 1 has decoded codewords
of users 2 and 3. This gets us to the third stage, where we conclude that 1 + hy(61 * 7) > hp(d2) + he(d3) precludes
this possibility. The first stage is presented in lemma 5.10.1, second stage is stated in lemma G.0.13 and proved in
appendices G, H. Third stage can be found in arguments following lemma G.0.13.

We begin with a characterization of a test channel powyv xy for which (Ri1, 1—hy(d2), 1—hs(d3)) € e (powuvxy)-
Since independent information needs to be communicated to users 2 and 3 at their respective point to point capacities,
it is expected that their codebooks are not precoded for each other’s signal, and moreover none of users 2 and 3 decode
a part of the other users’ signal. The following lemma establishes this. We remind the reader that X; Xo X3 = X
denote the three binary digits at the input, where Y5, the output at receiver 2 is obtained by passing X» through
a BSC with cross over probability 2, Y3, the output at receiver 3 is obtained by passing X3 through a BSC with
cross over probability d3 and Y7 is obtained by passing X1 & X5 ® X3 through a BSC with cross over probability d;.
Moreover, the binary symmetric channels (BSC’s) are independent. Input symbol X7 is constrained with respect to
a Hamming cost function and the constraint on the average cost per symbol is 7. Formally, x(z17273) = 1(;,—1} is

the cost function and the average cost per symbol is not to exceed 7.

Lemma 5.10.1 If there exists a test channel powuvxy € Do (7) and nonnegative numbers K;, S;;, K;j, Lij, Si, T;
that satisfy (5.1)-(5.11) for each triple (i,5,k) € {(1,2,3),(2,3,1),(3,1,2)} such that Ry = Ko + Kag + L1s + 1o =
1—hy(62), Rs = K3 + K31 + Loz + T3 = 1 — hy(d3), then

(i) K1 = Koy = K3 = Kog = Loz = K12 = L31 = S = S5 =0 and I(Us V1 V3; Y| QW U3U12V2) = 0,
(11) Ss31 = I(Us1;Ua3|QW), Si2 = I(Ur2; Uas|QW), Sag = I(Ui2; Us1 |QWUas) = 0,

(’LZZ) I(‘/éUlg; ‘/3U31|QWU23) = 0, I(WUgg,YHQ) =0 ] = 2,3,I(V2U12;}/2|QWU23) =1- hb(52) and
I(V3U31; Y3|QWUs3) = 1 — hy(d3),

() (Va, X3, Vi,Us1) — (QWUsU12V2) — (X2,Y2) and (Va, X2, V1,Ur2) — (QWU23Us1V3) — (X3,Y3) are Markov

chains,

(v) Xo — QWU12Us3U31 — X3 is a Markov chain,
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(vi) Ura — QWUs3Us31 — X3 and Usy — QW U23U 12 — X5 are Markov chains.

[

Proof: Substituting (i) (2,3,1) for (i,7,k) in (5.11), (ii) (1,2,3) for (i,4,k) in (5.2) and combining the resulting
bounds yields

I(WU3U12Va: Ya|Q) > Ry + K3 + Ky + Lag + K1 + S5 > Ry = 1 — hy(52), (5.35)

where the second inequality follows from non-negativity of K3, Ki, Log, K12, S3. Moreover,

v

1 — hp(d2) I(X2:Ys) = I(QWUV X1 Y1 X3Y3X0;Ys) > I(WU3U12Va; Y| Q) (5.36)

V

Ro+ K3+ K+ Log+Ki9+S9> Ry =1 — hb(ag), (5.37)

where (i) equality in (5.36) follows from Markov chain QW UV X;Y; X3Y3 — X5 — Y5, and (ii) (5.37) follows from sub-

stituting (5.35). Since all the terms involved are non-negative, equality holds through the above chain of inequalities

to yield
S12 4 So3 = I(U12; Uas|QW), K1 =K3=Lo3=K12=5=1(Q;Y2)=0 (5.38)
I(U31 Vi X Y1V X3Y3X0; Ya| QWU 12Ua3V2) =0 (5.39)
and therefore (V1, V3, X3,Us1) — (QWU12Ua3V2) — Ya is a Markov chain (5.40)

where the first equality in (5.38) follows from condition for equality in the first inequality of (5.35). The above
sequence of steps are repeated by substituting (i) (3,1,2) for (4,7, k) in (5.11), (ii) (2,3,1) for (i,4, k) in (5.2). It can
be verified that

S31 4 Sa3 = 1(Us1; Ups|QW), Ky = Ko =L3; = Kp3=S3=1(Q; Y3) =0, (5.41)
I(U1oVi X1 Y1V XY X35 Y3 | QW Up3Us31 V) =0 (5.42)
and therefore (V1, Vs, Xo,U12) — (QWU23Us1V3) — Y3 is a Markov chain. (5.43)

The second set of equalities in (5.38), (5.41) lets us conclude

R1=T1,Ry = L1s +T» and R3 = K31 + T5. (5.44)

From I(U12; U23|QW)+I(U31; U23|QW) = S12+853+531+553, and (5.3), we have I(Ulg; U23|QW)+I(U31; U23|QW) >
I(Uy2; Uss; Us1|QW)+Sa3. The non-negativity of Sas (5.1) implies So3 = 0 and I(Usy; U12|QWUas) = 0. We therefore
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conclude
S12 = I(U12; Uas|QW), S31 = I(Usy; U2z |QW), Sa3 = 0, 1(Us1; U12|QWUs3) = 0 (5.45)

Substituting (5.38), (5.41), (5.45) in (5.4) for (i,7,k) = (2,3,1) and (4, j, k) = (3,1,2) and (5.5) for (¢,5,k) = (2,3,1),

we obtain
I(Vo; U3t |QW U 19Us3) = I(Va; Ur2|QWU23Us1) = I(Va; Va|QWU12U23U31) = 0. (5.46)

(5.46) and last equality in (5.45) yield
I(VoUs2; V3U31 |QW Usz) = 0. (5.47)

Substituting (5.44), (5.45) in (5.8) with (7,7, k) = (2, 3,1) yields the upper bound Ry < I(U12Va; Y2|QW Uss). Since
1 — hp(02) =Ro <I(Ur2V2; Y2| QW Uz3) < I(WU12U23V2; Y2|Q) < 1 — hy(62),

where the last inequality follows from (5.36), equality holds in all of the above inequalities to yield I(WUasz; Y2|Q) =0
and I(UqaVa; Yo|QWUss) = 1 — hy(d2). A similar argument proves I(WUas; Y3|Q) = 0 and I(Us1 Vs; Y3 |QWUas) =
1 — hp(d3).

We have proved the Markov chains in (5.40), (5.43). In order to prove Markov chains in item 4, we prove the

following lemma.

Lemma 5.10.2 If A, B, X,Y are discrete random variables such that (i) X,Y take values in {0,1} with P(Y =
00X =1)=PY =1X=0)=n€(0,3), (i) A—B—Y and AB— X —Y are Markov chains, then A— B — XY
1s also a Markov chain. [
Please refer to appendix I for a proof. Markov chains in (5.40), (5.43) in conjunction with lemma 5.10.2 establishes
Markov chains in item 4.

(5.47) and (5.39) imply I(Us1V3; U12VaY2|QW Uss) = 0. This in conjunction with (5.42) implies
1(Us1V3Ys5; U2 VaYa|QWUas) = 0 and thus Us1 VaYs — QW Uas — U2V Ys is a Markov chain. (5.48)

(5.48) implies Us1Ys — QWUas — U12Ys is a Markov chain, and therefore Y35 — QWU12Us3Us1 — Y is a Markov
chain. Employing lemma 5.10.2 twice we observe Y3 X35 — WU 5Us3U3; — X2Y5 is a Markov chain and furthermore
X35 — QWU12U23U31 — Xo is a Markov chain, thus proving item 5.

Finally, we prove Markov chains in item 6. From Markov chain (V3, X35,V1,Us1) — (QWUa3U12Va) — (X3, Y3)
proved in item 4, we have I(Xo; Us1|QWUa3U12Va) = 0. From (5.47), we have I(Va; Us1|QW Us3U12) = 0. Summing
these two, we have I(X3Va;Usz1|QWU23U12) = 0 and therefore I(Xa;Us1|QWUa3U12) = 0 implying the Markov
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chain Xy — QWUs3U12 — Usy. Similarly, Markov chain (Va, X2, Vi, Ur2) — (QWU33U31V3) — (X3,Y3) proved in
item 4 implies I(X3;U12|WUa3U31V3Q) = 0. From (5.47), we have I(V5;U12|QWUa3U31) = 0. Summing these
two, we have I(X3V5;U12|QWU23Us1) = 0 and therefore I(Xs;Uya|QWUa3Us1) = 0 implying the Markov chain
X3 — QWUz3Us1 — Una. [ ]

Lemma 5.10.1 enables us simplify the bounds (5.1)-(5.11) for the particular test channel under consideration. Substi-
tuting (5.38)-(5.46) in (5.1)-(5.11) and employing statements of lemma 5.10.1, we conclude that if (Ry,1—hp(d2),1—
hy(03)) € ae (powuvxy), then there exists nonnegative numbers Si,T4, L12, K31 that satisfy Ry = T1,Ry =
Lo+ Ty =1—hy(62), R3 = K31 + T3 =1 — hy(3),

Sy > I(V1; UssVa V3 |QWU12Us1), T+ 51 < I(V1; Y1|QWU12U3:) (5.49)
Lia + K1 + 11 + S1 < [(Ui2; Ui [QW) — 1(Uaz; Ur2| QW) + I(ViU12U31; Y1|QW) — I(Uzs; Us1 |[QW) - (5.50)
0< Ty < I(Vo; Y2|QWU12U23), 1 —hy(62) =T + Lig = I(Ur2V2; Y| QW Ua3) (5.51)
0 <T3 <I(Vs;Y3|QWU31Us3), 1—hp(d3) =T5+ K1 = 1(Us1V3;Y3|QWUas). (5.52)
(5.51), (5.52) imply
Lo > I(Ui2; Yo | QW Uas), K31 > I(Us1; Y3|QWUas), (5.53)

(5.49) implies

Ty = Ry < I(Vi; Y1|QW U 19Us1 ) — 1(Vi; Uas Vo Vs |QW U 12Usy ),

< I(Vi;YaUss|QWU12Us1) — I(Vi; UasVaVs| QW U12Us1 ) = I(Vi; YA|QWU) — I(Vi; VoV|QWU),  (5.54)

and (5.50) in conjunction with (5.53), and lower bound on S; in (5.49) imply

Ry < I(U12Us1 Vi3 Y1 QW) — I(Vy; UasVaVs|QW U 12Us1 ) — I(Ura; Ya|QW Uss) — I(Usy; Y| QW Uss)
+1(Ur2; Us1 [QW) — I(Uaz; Ur2| QW) — I(Uzs; Us1 [QW)
< I(U12Us1Vi; Y1Uss|QW) — I(Vi; UasVa Vs |QWU12Us1 ) — I(Un2; Y2| QW Uss) — 1(Usa; Y3|QWUzs)
+1(U2; Us1 |QW) — 1(Uzs; Ur2|QW) — I(Uz2s; Us1 | QW)

= I(Vi;Y1|QWU) = 1(Vi; VaVa|QWU ) +-1(U12U31; Y1|QW Us3) —1(Usa; Ya|QW Usaz) —I(Usy; Y3 |QW U3 )5.55)

where (5.55) follows from the last equality in (5.45). We have thus obtained (5.54) and (5.55), two upper bounds
on R; we were seeking, and this concludes the first stage of our proof. In the sequel, we prove the minimum of the
above upper bounds on R; is strictly lesser than hy(7%01) — hy(d1). Towards, that end, note that upper bound (5.54)

contains the rate loss due to precoding. In the second stage, we work on (5.54) and derive conditions under which
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there is no rate loss.

Markov chains of lemma 5.10.1 item 4 imply Vi — QWUVLV3; — X and V; — QWUVLV3Xs — X3 are Markov
chains. Therefore, I(Vy; Xo|QWUV2V3) = 0 and I(Vy; X5|QWUVLV3X5) = 0. Summing these, we have
I(Vy; X9 X3|QWUV,V3) = 0. Employing this in (5.54), we note

Ry

IN A

IN

IN

I(Vi; Y1|QWU) — I(Vi; VaV3|QWU) = I(Vi; V1| QWU) — I(Vy; VaVa X X3|QWU) (5.56)
IV |QWU) — 1(Vi; Xo, X3|QWU) < I(V; Y1 |QWU) — I(Vi; Xo @ X3|QWU) (5.57)

> powu (g, w,u) [(Vi; Yi|(Q, W, U) = (¢, w,w))—1(Vi; X2 © X3/(Q, W,U) = (¢, w,u))]  (5.58)

(g,w,u)€
OXWxXU

Z pQWQ(qv w, H)I(XIXZXSVM Y1|(Q7 Wa Q) = (qa wvﬂ))

(gw,u)e
OXWxU

Z pQWQ(q,w,ﬂ) [H(Y1|(Qa VV?Q) = (qawa@)) - H(H‘XlXQX?)Vl’ (Qa W7Q) = (Q7w7g))}

(g:w,u)€
AXWXU

> powu (g, w,u) [H(X1 & Ni|(Q, W,U) = (¢,w,u)) — hy(61)]

(gw,u)e
OXWxU

Z Powu (¢, w, w)hy(Tgwu * 01) — hy(01), where 7gwu = Px,jQwu (1]g, w, ) (5.59)

(gw,u)e
OXWxU

EQWQ {hb(Tq,w,g * 51)} — hb(él) S hb(EQWQ {Tq,w& * 51}) — hb(él) S hb(T * (51) — hb(él) (560)

where (5.60) follows from application of Jensen’s inequality to the strictly concave function hy(-), and second inequality

in (5.60) follows from 6 € (0, 3). We conclude that Ry = hy(7 % d1) — hy(61) if and only if equality holds in the above

chain of inequalities, and in particular, equality holds in (5.60), which by the condition for equality in Jensen’s

inequality implies 74 ., = 7 for every (¢, w,u) € Q@ x W x U that satisfies powy (¢, w,u) > 0. This in conjunction

with

1(1/17Y1|(Q7W7Q) = (Qaw7ﬂ))_I(V15X2 S X3|(Q7 WQ) = (Q7wa@)) S hb(Tq7u,7H * 51) - hb(61)

which follows from the chain of inequalities from (5.58) through (5.59) implies

IV |QWU) — I(Vi; VaVa|QWU) < hy(7 % 61) — hy(61) (5.61)

with equality if and only if

for every (q,w,u) € Q@ x W x U that satisfies pqwu (¢, w,u) > 0, px,jowu (1|g, w,u) = Tgwu =T, (5.62)

and I(Vi; V1[(Q, W, U) = (¢, w,u)) —1(V1; X2 ® X3/(Q, W,U) = (¢, w,u)) = ho(Tgwu * 61) — hp(d1).  (5.63)
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An informed reader, by now must have made the connection to capacity of the point to point channel with
non-causal state [7]. We develop this connection in appendix G. For now, we provide a characterization for (5.63) to
hold. This will require us to define a few mathematical objects that may initially seem unrelated to a reader unaware
of findings in [7]. Very soon, we argue the relevance. An informed reader will find the following development natural.

Let D7 (7, d, €) denote the collection of all probability mass functions py 5 ¢y defined on Y x {0,1} x{0,1} x {0, 1},
where V is an arbitrary finite set such that (i) Py x5v (T @ slz, s,0) = py xg(z @ s|z,s) =1 — 0, where § € (0, 1),
(ii) pg(1) = € € [0,1], and (iii) pg(1) <7 € (0,1). For ppsxy € Dr(7,6,€), let ar(ppgxy) = I(V;Y)—I(V;S) and
ar(7,0,€) =sup,_ . enp(rs0 OT(Pysxy)-

For every (g, w,u) € @ xW x U that satisfies powu (¢, w, u) > 0, we note py, | x, x,ex,viQwu (21D T2 Dx3]|T1, 2@
3,01, ¢, W, U) = Py, |X,, X206 X;WU (T1 D T2 D x3|21, T2 D23, ¢, w,u) = 1—01. In other words, conditioned on the event
{QWU) = (q,w,u)}, Vi — X1, X2 ® X3 — Y1 is a Markov chain. We conclude py, x,¢x,x,vijowu (- - |¢, w,u) €

D7 (Tg,w,u: 01, €g,,u), Where €04 = pX2€BX3|QWQ(1|q>w7E)a and hence
I(‘/h Y1|<Qa Wv Q) = (qa ’LU,@)) _I(Vl; X2 5% X3|(Qa VVvQ) = (Q7 w, @)) < aT(Tq,w,g; (51, 6q,w,g>-

Therefore, (5.63) holds only if a7 (7q,w,u, 01, €guw,u) = P (Tqw,u*61) — hy(81), where 74,4 = 7 € (0, 3). The following

lemma characterizes conditions under which this is the case. Please refer to appendices G,H for a proof.

Lemma 5.10.3 If 7,6 € (0,3) and € € (0,1), then ar(7,6,€) < hy(1 % 6) — hy(0). Alternatively, if 7,6 € (0, 3) and
€ € [0,1], then either ag(T,0,€) < hp(T %) — hy(0) or e € {0,1}. O
Recall that arguments in relation to (5.63) imply that if for any (¢, w,u) € Q x W x U that satisfies P((Q, W,U) =
(g,w,u)) > 0, I(Vi;Y1|(Q, W, U) = (q,w,u)) —I(V1; X2 & X3[(Q, W, U) = (q,w,u)) < hp(Tqwu * 01) — hp(d1)
where 754 = Px,|Qwu(llg, w,u), then Ry < hy(T % 61) — hp(1) and we have proved strict sub-optimality of
UM —technique. We therefore assume (5.62), (5.63) hold for every (g, w,u) € Q x W xU that satisfies P((Q, W,U) =
(g, w,u)) > 0. From lemma 5.10.3, we conclude for every such (¢, w,u) € QxWxU, €q.wu = Px,0x;s/owu(1lg, w,u) €

{0,1}. We therefore assume
IV |QWU) — I(Vi; Xo @ X3|QWU) = hy(7 % 01) — hy(61) and H(X; @ X5|QWU) = 0. (5.64)

This has got us to the third and final stage. Here we argue (5.64) implies RHS of (5.55) is strictly smaller than
hy(7 % 81) — hp(61). Towards that end, note that Markov chain Xo — QWUy3U12Us; — X3 proved in lemma 5.10.1
item 5 and (5.64) imply H(X|QWU) = H(X3|QWU) = 0.2° Furthermore, Markov chains Uz — WUy3Us; — X3

29Indeed, for any (g, w,u) € @ x W x U that satisfies P((Q, W,U) = (q,w,u)) > 0, if P(X; = 1|(Q, W,U) = (q,w,u)) = o : j = 2,3,
then 0 = H(X2 ® X3|/(Q, W,U) = (g, w,u)) = hp(az * a3z) > azhp(as) + (1 — a2)he(1 — a3) = azhp(as) + (1 — az2)hs(as) = hp(az) > 0,
where the first inequality follows from concavity of binary entropy function, and similarly, interchanging the roles of a2, a3, we obtain
0= H(X2 ® X3/(Q, W,U) = (¢, w,u)) > hy(az) geqO.
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and Us; — WUo3U13 — X9 proved in lemma 5.10.1 item 6 imply
H(X3|WUy3Uyz) = H(X3|WU23U3z1) = 0. (5.65)
Observe that

ho(7 % 61) — hy(81) = I(Vi; Yi|WU) — I(Vi; Xo ® XaWU) = I(Vi; i |[WU) = [(Vi; i |WU, X2, X3)  (5.66)
— HW|WUX2Xs) — HYA|WUVIX2X3) < HYA[WUX2X3) — H(Y1[WUVI X1 X2X5)
= HMW[WU, X5, X3) — hy(61) (5.67)

where the first two equalities in (5.66) follows from (5.64) and the last equality follows from (5.65). (5.67) and first

equality in (5.66) enables us conclude
H(Y\|WU, X, X3) > hy(7 % 61) (5.68)

We now upper bound RHS of (5.55). Note that it suffices to prove I(U1aUsy;Y1|WUas) — I(Uia; Ya|WUaz) —
I1(Usy; Y3|WUss) is negative. Observe that

I(U12Us1; Y1|WUa3) — I(Uno; Ya|WUas) — I(Usy; Y3|WUss)

= H(Y1|WUys) — HY1|[WU) — H(Y2|WUs3z) + H(Y2|WU23U12) — H(Y3|WUss) + H(Y3|WUz3Us1)

H(Y,|W XX

) _
) —H(
Y1|[WUps) — HYAWU) — H(Yz) + H(Ya|WUa3Uyz) — H(Y3) + H(Y3|WUa3Us;)
) — H( — H(Ys) 4+ H(Ya|WUysU12X5) — H(Y3) + H(Ys|WU3Us; X3)  (5.69)
(

= H(Y1|WUays U)
= H(Y1|WU23) — H Y1|WX2X3Q) —2 + hb(52) + hb(ég)

<1l- H(Y1|WX2X3Q) -2+ hb(ag) + hb(53) < hb(ag) + hb(53) — hb(51 * T) —1 (570)

where (5.69) follows from (5.64) and (5.65), second inequality in (5.70) follows from (5.68). If 7,41, d2,d3 are such
that hp(d2) + hp(d3) < 1+ hy(d1 * 7), then Ry < hyp(7 % 61) — hy(01) and RHS of (5.70) is negative. We summarize

our findings in the following theorem and corollary.

Theorem 5.10.4 Consider the 3—DBC in example 5.6.1. If hy(d2) + hp(d3) < 1+ hy(01 x 7), then (hy(T * 61) —
hp(61),1 — hyp(62),1 — hyp(03)) ¢ aa (7). [

Corollary 5.10.5 Consider the 3—DBC in example 5.6.1 with § = d3 = 3. If hp(T x §1) < hp(d) < M,
then (hy(T % 81) — hp(01),1 — hp(8), 1 — hp(0)) & gy (7) but (he(T % 61) — hp(d1),1 — hp(d),1 — hp(0)) € C(7) and thus
ag (1) # C(1). In particular, if 61 = 0.01 and 63 € (0.1325,0.21), then ay (1) # C(%).
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Chapter 6

Multiple access channel with distributed

states

Consider a multiple access channel with distributed states (MAC-DSTx) depicted in figure 6.1. This is a simple MAC
analogue of the PTP-STx studied in chapter 3. It should be evident to an informed reader that a natural extension
of the Gel’fand Pinsker technique of binning followed by joint decoding yields an achievable rate region for the MAC-
DSTx.! As a matter of fact, this is the currently known largest achievable rate region for an arbitrary MAC-DSTXx.
Gel’fand and Pinsker’s technique of binning being optimal for PTP-STx, it is natural to ask the question whether
it’s extension to MAC-DSTx is optimal.

n particular, each of encoders build codes over an auxiliary alphabet and partition the same into bins. From the bin indexed by the
message, they choose codewords jointly typical with the state sequence and a function of this chosen codeword and the state sequence,
evaluated letter-wise, is input on the channel. The decoder employs joint typical decoding to disambiguate the pair of codewords chosen
by the encoder and thereby decodes the pair of messages.

Tl
, [

Xy

Y
Wopss, L Y Toccoer |+ M,
S:S;~ W5152

x2
o ~{era/
SZ

Figure 6.1: Multiple access channel with distributed states
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Philosof and Zamir [15] propose an alternate technique for communicating over a particular symmetric additive
binary doubly dirty MAC (BDD-MAC). As against to Gel’fand Pinsker’s technique of partitioning the channel codes
uniformly and independently into bins, they propose a partition of the two channel codes using cosets of a common
linear code, thereby building dependency across the two codebooks and their codewords. Crucially exploiting the
property of closure under addition, of bins in the two codebooks, they propose a coding technique, henceforth referred
to as PZ-technique that achieves capacity of BDD-MAC. Furthermore, they prove strict sub-optimality of natural

extension of Gel’fand Pinsker’s technique of independent and unstructured binning.

Nevertheless ingenious, PZ-technique [15] is very specific to the additive and symmetric nature of the BDD-
MAC studied therein. This technique being strictly more efficient than the currently known best strategy based on
independent unstructured codes raises the following question. Is there a general coding framework for communicating
over an arbitrary discrete MAC-DSTx, that reduces to the PZ-technique for the BDD-MAC, and that would yield
an achievable rate region strictly larger than the best known achievable rate region using unstructured independent

codes even for non-additive and non-symmetric MAC-DSTx?

In this chapter, we propose an algebraic framework based on nested coset codes for communication over an
arbitrary MAC-DSTx and thereby answer the above questions in the affirmative. We present our framework in three
pedagogical stages. We begin by identifying two key elements of PZ-technique 1) decoding mod—2 sum, instead of
the pair of codewords chosen by the two transmitters and 2) choosing the bins of each user’s code to be cosets of a
common linear code to enable containment of the range of this mod—2 sum. The first stage, presented in section
6.2.2, captures all of the nontrivial elements of our framework in it’s simplest setting. In this stage we employ nested
coset codes built on finite fields, to decode the sum of codewords. The analysis of this technique enables us to derive a
new achievable rate region for MAC-DSTx. The key elements of the first stage are (i) the use of nested coset codes to
induce non-uniform input distributions, (ii) the use of joint typical encoding and decoding that enables us to analyze
the probability of error over an arbitrary MAC-DSTx that is not constrained to be additive or symmetric, and (iii) an
analysis of decoding of the sum of the pair of transmitted codewords chosen from two dependent codebooks. Indeed,
the analysis of joint typical encoding and decoding of correlated codebooks with statistically dependent codewords

involves several new elements. The reader is encouraged to peruse these in the proof of theorem 6.2.2.

The significance of the rate region proved achievable in the first stage is illustrated through examples in section
6.2.3.2 In particular, we provide a simple modification of the BDD-MAC for which it is necessary to induce non-

uniform input distributions and is more efficient to decode the sum of transmitted codewords. We also randomly

2The coding technique proposed in the first stage reduces to that proposed in [15] for BDD-MAC and moreover Philosof and Zamir
have proved strict sub-optimality of unstructured independent coding for BDD-MAC. This in itself establishes significance of theorem
6.2.2. Notwithstanding this, it is easy to argue significance of our generalization by appealing to continuity. An additive channel can be
perturbed slightly to result in a non-additive channel for which the technique proposed in [15] may not be applicable as is. By continuity
of the rate regions as a function of the channel parameters, one can see why the proposed coding scheme must perform strictly better
than unstructured independent coding. Example 6.2.5 presented in section 6.2.3 corroborates this.
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perturb the BDD-MAC and demonstrate that coding framework proposed herein can outperform unstructured in-
dependent codes. The channels being non-additive, it is significantly harder to provide analytical comparisons, and
hence we resort to direct computation of rate regions achievable using unstructured independent and nested coset
codes. These examples illustrate that structured code based strategies do not hinge on the channel being additive
but would benefit as long as the optimizing test channel from the auxiliary inputs to the channel output is not far
from additive.

Does the rate region proved achievable using nested coset codes subsume the largest known achievable rate region
using unstructured independent codes? It is our belief that strategies based on structured codes are not in lieu
of their counterparts based on unstructured codes. In most cases, structured codes enable efficient decoding of a
‘compressive’® function of the two codewords. However, for decoding both the codewords, it turns out the strategy
of using a common linear code to effect partition of the two codebooks is not optimal, instead one has to employ
two independent linear codes. The rate region achieved using the latter strategy is equivalent to that achieved using
unstructured independent codes.*. This leads us to the second stage of our coding scheme which is presented in section
6.3. Following the approach of Ahlswede and Han [48, Section VI|, we glue together structured and unstructured
coding techniques to derive the largest known achievable rate region for communicating over a MAC-DSTx that
combines structured and unstructured coding techniques. We present another simple modification of BDD-MAC to
illustrate how the gluing of unstructured and structured coding techniques can yield a rate region larger than either
one, and their union. We remark that in spite of our inability to compute the achievable rate region proposed in
section 6.3, we are able to demonstrate the significance of the same through an example.

If the channel is far from additive, it may not be efficient to decode the sum, with respect to a finite field, of
codewords. For example, if the MAC-DSTx is doubly dirty with field addition replaced by addition of an Abelian
group, referred to as group addition or group sum, then it is natural to decode group sum of codewords. In other
words, the technique of decoding sum of codewords must be generalized to decoding any arbitrary bivariate function
of the auxiliary inputs. In the third stage of our coding scheme, presented in section 6.4, we consider decoding the
group sum of the codewords. Specifically, codebooks are built over Abelian group alphabets and each encoder is
provided with codebooks that possess a certain group structure. Analogous to the first stage, we propose joint typical
encoding and decoding of group codes. Though essential elements of this analysis are similar to that of decoding
sum of codewords chosen from nested coset codes over an arbitrary MAC-DSTx, the algebraic structure of a Abelian
group being looser, leads to several new elements.

The importance of (i) decoding an appropriate bivariate function of codewords, and (ii) endowing codebooks with

3f(U1,Uz) is ‘compressive’ if H(f(U1,Uz)) is significantly lower than H (U1, Uz).

4Indeed, for the problem of distributed reconstruction of modulo—2 sum of binary sources, Kérner Marton strategy [18] based on
common linear codes is outperformed by Slepian-Wolf [5] strategy (or equivalently the strategy of Csiszdr based on independent linear
codes [66].) for the class of source distributions for which the modulo—2 sum is not sufficiently compressive. More precisely, if H(X®Y) >

%, then it is better to reconstruct X @ Y using the technique of Slepian-Wolf or Csiszar.
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the appropriate algebraic structure is illustrated through an example discussed in section 6.4. Specifically, we indicate
using numerical computation that for a quaternary doubly dirty MAC-DSTx (QDD-MAC) wherein the operation is
mod—4 addition, decoding mod—4 sum, which is the group operation in the quaternary alphabet, of the codewords
strictly outperforms both independent unstructured and nested coset codes based strategies. In fact, significant gains
for this problem are achievable using Abelian group codes. The reader is encouraged to peruse details in section 6.4.

Several findings in the context of multi-terminal communication problems point to efficient strategies based on
structured codes. Nazer and Gastpar [16] propose a strategy based on linear codes for computing the sum of sources
over additive multiple access channels that outperforms earlier known strategies. Building on this technique, we
develop a framework for computing sum of sources over an arbitrary multiple access channel in [67]. Sridharan
et. al. [19] propose a coding technique based on lattices for communicating over a K —user Gaussian interference
channel (K > 3) that outperforms a natural extension of Han-Kobayashi technique [13] under the Gaussian input
distribution. We propose an analogous coding technique based on nested linear codes [68] for the general discrete
3—user interference channel and identify an example for which the proposed technique outperforms the natural
extension of Han-Kobayashi technique [13]. Krithivasan and Pradhan [23] propose a framework based on structured
codes for the distributed source coding problem that outperforms the best known strategy based on unstructured
independent codes due to Berger and Tung [64]. The reader is also referred to [69], wherein lattices are employed to

efficiently reconstruct linear functions of Gaussian sources.

6.1 MAC-DSTx: Definitions, largest known achievable rate region

In this section, we lay the necessary groundwork. In particular, we describe MAC-DSTx and precisely state relevant
notions such as code, achievability in section 6.1.1. In section 6.1.2, we provide a characterization of the currently
known largest achievable rate region. We illustrate this rate region for BDD-MAC in section 6.1.3 and highlight the

reasons for it’s suboptimality. This will set the stage for it’s enlargement in subsequent sections.

6.1.1 Definitions : MAC-DSTx, code and achievability

Consider the two user multiple access analogue of PTP-STx [7]. Let A} and X» denote finite input alphabet sets and
YV, the output alphabet set. Transition probabilities depend on a random vector parameter S : = (S7,.53), called
state, that takes values in a finite set S : = &1 X Sa. The discrete time channel is (i) time invariant, i.e., pmf of Y;, the
output at time 4, conditioned on inputs X; : = (X1, Xo;) and state S; : = (S14, 52;) at time 4, is invariant with ¢, (ii)
memoryless, i.e., Y; is conditionally independent of (X4, St) : 1 < ¢ < i given X, .S;, and (iii) used without feedback.
Let Wy | xs(y|z, s) be the probability of observing y € Y at the output given = : = (x1,22) € X : = A x &, is input
to the channel in state s : = (s1,52) € S. The state at time 4, S; is (i) independent of (S¢, X¢,Y:) : 1 <t <4, and
(ii) identically distributed for all 4. Let Wg(s) be the probability of MAC-DSTx being in state s € S. We assume S7'
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is non-causally known to encoder j. Input X; is constrained with respect to a cost function k; : X; x S; — [0, 00).
We assume that the cost is time-invariant and additive i.e., cost of input X" at input j to the channel in state Ss"
is R} (X}, 87) = LS ki(Xji, Sji). We refer to this channel as MAC-DSTx (S, Ws, X, k, Y, Wy | x 5). Towards
characterizing a new inner bound for the capacity region of a MAC-DSTx, we begin with definitions of relevant

notions such as achievability and capacity.

Definition 6.1.1 A MAC-DSTx code (n, #:, #>,e1,e2,d) consists of (i) index sets M; of messages, of cardinality
My for j=1,2 (ii) encoder maps e; : M x S — X' for j = 1,2, and (iii) a decoder map d : Y™ — My x M.

We let A : = (M1, M5), e : = (e1,e2) and refer to above as MAC-DSTx code (n,.#,e,d). Assuming the pair of
messages to be uniformly distributed, we define the average error probability and the cost of a MAC-DSTx code as

follows.

Definition 6.1.2 The average error probability of MAC-DSTx code (n, # ,e,d) conditioned on message m : = (my,
mg)GMZ:MlxMQ 18

fle,dm):= Y Wen(s") D Wynxnsn(y"ler(ma, s]), ea(ma, s5),s™).
snesn ym:d(y™)#m
The average error probability is (e, d) : = Y meM mﬁ(e,(ﬂm). The average cost of transmitting message pair
m is 7(elm) : = (11 (e1|m1), 72(ea|ms)), where
eJ|mJ Z WS" ej(mj7sj)78?)'
sTeST
The average cost of the code is T(e) : = Y\ MT(G‘HI), where T(e) = (1(e1), 7(e2))-

Definition 6.1.3 A rate cost quadruple (R, 7) € [0,00)* is achievable if for every n > 0, there exists N(n) € N
o M)

such that for all n > N(n), there exists a MAC-DSTz code (n, M e™ d™) such that (i) ﬂ > R;

n for j = 1,2, (i) £(e™,d™) < n, and (iii) Tj(egn)) < 7 +mn, for j = 1,2. The capacity region C(T)

= cocl ({R € [0,00)% : (R, T) is achievable}).

The coding technique that achieves capacity of PTP-STx [7] can be generalized to obtain an achievable rate region for
MAC-DSTx. For a general MAC-DSTx this is the largest known inner bound to C(7). We provide a characterization

of the same in the following section.

6.1.2 Largest known achievable rate region using unstructured codes

Definition 6.1.4 Let D(7) be collection of pmfs puxsy onU? x X x S x Y, where U denotes Uy, Uy and U? is a
two fold Cartesian product of a finite set U, such that (i) ps = Ws, (ii) py|xsu = py|xs = Wy|xs, (#i) pu,|su, =
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pu,is = Puyls; and px,|sux, = Px,|SU = Px,|s,u,; for any distinct elements j,5 € {1,2}, (w) px,|s,v,(z;|s;,u;) €
{0,1} for all (uj,sj,x;),7 = 1,2 and (v) E{x;(X;,S;)} < 7; for j =1,2. For puxsy € D(7), let a(puxsy) be
defined as the set

(Rl,Rz) S [0,00)2 . R1 S I(Ul,YUQ) — I(U1;51)7R2 S I(UQ,YUl) — I(UQ;SQ),

R+ Ry <I(U;Y) + I(Uy; Up) — 35, 1(U; S5)

and

a(T) : = cocl U a(puxsy)
Puxsy €D(T)
Theorem 6.1.5 a(r) C C(T). J
Achievability of a(puxsy) can be proved by employing the encoding technique proposed by Gel’fand and Pinsker
[7] at each encoder and joint decoding proposed by Ahlswede [3], Liao [4]. In the sequel, we provide an illustration

of this coding technique for BDD-MAC.

6.1.3 Rate region achievable using unstructured codes for BDD-MAC

Philosof and Zamir characterize C(1) for BDD-MAC using PZ-technique and prove a(7) C C(7) for the same. In
order to identify the key elements of PZ-technique, we briefly analyze unstructured coding (this section), PZ-technique
(section 6.2.1) and set the stage for a new coding scheme.

BDD-MAC is a MAC-DSTx with binary alphabets S; = X; = Y = {0,1}, j = 1,2. The state sequences are
independent Bernoulli—% processes, i.e., Wg(s) = i for all s € S. The channel transition is described by the relation
Y = X1 $2 51 B2 X2 $2S2. An additive Hamming cost is assumed on the input, i.e., £;(1,s;) = 1 and x,(0,s;) =0
for any s; € S;, j = 1,2 and the input is subject to a symmetric cost constraint T = (7, 7).

We describe the test channel pusxy € D(7) that achieves a(7). For each user j, consider the test channel
that achieves the Gel'fand-Pinsker capacity treating the other user as noise i.e., py;s;x,(0,1,1) = py,s,x, (1,0,1) =
Z, pu;s,x,(0,0,0) = py,s,x,(1,1,0) = 15T, Philosof and Zamir prove pusx = pu,s,x,PUss:x, achieves a(r) =
{R: Ry + Ry < |2hy(7) — 1|7}, where | - |7 denotes upper convex envelope.

Let us take a closer look at achievability of the vertex (2hy(7) — 1,0) using the above test channel. Since user 2

1= (7)) codewords independently and

has no message to transmit, it picks a single bin with roughly 27/(U2i52) — gn(
uniformly from the entire space of binary vectors. User 1 picks 271 bins each with roughly 27/(U1:51) = gn(1=hs(7)
independently and uniformly distributed binary vectors. Encoder 2 observes S and chooses a codeword, say UJ,
that is within a Hamming distance of roughly n7 from S3 and transmits X3 = U3 @2 S3. Encoder 1 performs a

similar encoding, except that it restricts the choice of Uj* to the bin indexed by user 1’s message, and transmits

Xp = U @, 57

100



What is the maximum rate R; at which user 1 can transmit it’s message? Decoder receives Y™ = Uj" @9 U3 and
looks for all pairs of codewords that are jointly typical with Y. Since any pair of binary n—length vectors are jointly
typical (U; and U, are independent and uniform), the decoding rule reduces to finding all pairs of binary n—length
vectors in the pair of codebooks that sum to the received vector Y. All bins chosen independently without structure
imply that any bin of user 1’s codebook when added to the user 2’s codebook (a single bin) results in roughly
2n(2=2he (7)) distinet vectors. Therefore, we cannot hope to pack more than roughly W%Tq,bm = 272 (9)=1) g
in user 1’s codebook. We remark that an explosion in the range of sum of transmitted codewords severely limits
achievable rate.

We make a few observations. Effectively, communication occurs over the (U, Uz) —Y channel and the test channel
induces the Markov chain (U1, Us) — Uy @9 Us — Y. It would therefore be more efficient to communicate information
over the U; @2 Us — Y channel which suggests an efficient utilization of U; @9 Us—space. Having chosen codewords
in each bin independently and moreover the two users’ bins independently, each message pair utilizes 27(2=2+(7)
vectors in the U; @2 Us—space. In section 6.2.1, we summarize PZ-technique, wherein the algebraic structure in the

codebooks is exploited for more efficient utilization of Uy &9 Us—space.

6.2 An achievable rate region using nested coset codes

6.2.1 Nested linear codes for BDD-MAC

We present PZ-technique proposed for BDD-MAC. The encoding and decoding techniques are similar to that stated
in 6.1.3 except for one key difference. The bins of user 1 and 2’s codebooks are cosets of a common linear code. In
particular, let A\; denote a linear code of rate roughly equal to 1 — hy(7) that can quantize a uniform source, state
S} in our case, within an average Hamming distortion of 7. Since user 2 has no message to transmit, it employs A;
as it’s only bin. Encoder 1 employs 277t cosets of A\; within a larger linear code, called Ao, as it’s bins. Note that
rate of Ao is roughly R; + 1 — hy(7). Encoding rule is as described in section 6.1.3.

The codebook of user 2 when added to any bin of user 1’s code results in a coset of A;, and therefore contains
approximately at most 27(1="+(7)) codewords. Moreover, since UT lies in Az, user 2’s codeword U3 and the received
vector Y™ = UP" ®y U lie in the same coset.® Since the channel is noiseless, user 1 may employ all cosets of A; and
therefore communicate at rate hy(7) which is larger than 2k, (1) — 1 for all 7 € (0, 3).

1=ho(7)) vectors in

Let us identify key elements of PZ-technique. Each message pair corresponds to roughly 27(
Uy @2 Us—space, resulting in a more efficient utilization of this space. This indeed is the difference in the sum
rate achievable using independent unstructured codes and PZ-technique. We also note the decoder does not attempt

to disambiguate the pair (U7, U}) and restricts to decoding U @2 UY. This is motivated by the Markov chain

5This is also because the channel is noiseless.
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(U1,U3) — Uy @2 Uy — Y induced by the test channel and the use of structured codebooks that contain the sum.

It is instructive to investigate the efficacy of this technique if users 1 and 2 employ distinct linear codes Aj1, Ao
of rate 1 — hy(7) instead of a common linear code ;. In this case, each message of user 1 can result in 22~2hs(7)
received vectors which restricts user 1’s rate to 2h;(g) — 1 and provides no improvement over the unstructured coding
technique. We conclude that if the bins of the MAC channel code are nontrivial, as in this case due to the presence
of a state, then it maybe beneficial to endow the bins with an algebraic structure that restricts the range of a bivariate

function, and enable the decoder decode this function of chosen codewords.

6.2.2 Stage I : An achievable rate region for MAC-DSTx using nested coset codes

In this section, we present the first stage of our coding scheme that uses joint typical encoding and decoding and
nested coset codes over an arbitrary MAC-DSTx. The technique proposed by Philosof and Zamir is specific to the
binary doubly dirty MAC - Hamming cost constraint that induces additive test channels between the auxiliary and
state random variables, and additive and symmetric nature of the channel. Moreover, linear codes only achieve
the symmetric capacity, and therefore if the output were obtained by passing (X}* @2 ST, X5 @2 S%) through an
asymmetric MAC, linear codes though applicable, might not be optimal.

We begin with a characterization of test channels followed by achievability.

Definition 6.2.1 Let Dy(7) C D(7) be the collection of distributions pvsxy on V2 xS x X x Y where V is a finite
field. For pyxsy € Dy(7), let Br(pvxsy) be defined as the set

{(Rl, Rz) S [0, 00)2 :R1+ Ry <min {H(V1|Sl), H(V2|S2)}* H(Vl D V2|Y) } . (61)
Let
By(T) 2 = cocl U Bi(pvxsy)
pvxsy €D (T)
Theorem 6.2.2 (1) C C(T). O

Before we provide a proof, we state the coding technique and indicate achievability of promised rates. As stated in
section 6.2.1, the key aspect is to employ cosets of a common linear as a bin for quantizing the state. We employ
three nested coset codes -one each for the two encoders and the decoder- that share a common inner (sparser) code.
We begin by describing the encoding rule. The nested coset code provided to encoder j is described through a pair

of generator matrices gr € V¥*™ and go;/; € V*" where (i) gr and gf); : = {QIT ggj / I] are generator matrices of
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inner (sparser) and complete (denser) codes respectively, (ii)

in {H H
n log
k+1+1 HVio WY
Fthtiz < 1-— M (6.3)
n log 7
with 7 : = V| and (iii) bias vector b7. Let A\; and Ao, denote linear codes corresponding to generator matrices g;

and go; respectively. User j’s message M;’ € Vi indexes the coset (a¥g; @ Mjl-jgoj/l ® 0} : a*® € V¥). Encoder
J observes state S7' and looks for a codeword in the coset indexed by the message that is jointly typical with the
state sequence S} according to pg;v;. If it finds one such codeword, say V", a vector X' is generated according
[1i=1 Px,1s,v; (1S:Vje) and X7 is fed as input to the channel. Otherwise, it declares an error.

Now to the decoding rule. Let Ao denote the complete code provided to the decoder, i.e., the coset code whose (i)
generator matrix is g} : = [gIT gg/l], where gg/l D= 951/1 952/1 and (ii) bias vector b} @ by. Having received
Y™, it lists all codewords in Ao that are jointly typical with Y™ with respect to py,qv,,y. If all such codewords
belong to a unique coset (of A7 in A\o) say (a*gr ® mﬁlgm/l ® ml22902/1 :a® € V¥), it declares (mlll,ml;’) as the pair
of decoded messages. Otherwise, it declares an error.

We pick entries of each of the constituent generator matrices gr, go1,r, 9o2,r independently and uniformly from
V. Lower bound (7.1) enable us to drive down the probability of encoder not finding a jointly typical codeword
in the indexed coset. This bound can be interpreted easily. If we picked codewords according to H?Zl pv, then
we need the bin to be of rate roughly H(Vy) — H(V;1]S1). Since we average uniformly over the ensemble of coset
codes, each codeword of a linear code is uniformly distributed over V™. Hence the bin must of rate at least logm —
H(V1|S1). The decoder makes an error with arbitrarily small probability if (6.3) is satisfied. This bound can also
be interpreted intuitively. If the codewords were picked according to pv,gv,, the upper bound would have been
HVi @ Vo) — H(Vy @ V»]Y). In this case, the codewords in the sum of nested linear codes are also uniformly
distributed over V", and this explains the bound in (6.3). From (7.1), (6.3) it can be verified that Ry + Ry = 112 <
min {H (V1|S1), H(V2|S2) — H(V1 @ V5|Y)} is achievable.

We emphasize that joint typical encoding and decoding enables us to decode the sum over an arbitrary MAC-
DSTx. The informed reader will recognize the need to prove statistical independence of a codeword in a competing
sum coset and the pair of cosets indexed by the messages. The dependence built across the codewords and cosets
as a consequence of the algebraic structure exemplifies the interplay of algebra and probability. The following proof
details these elements.

Proof: Let pmf py xgy € Dy(7), rate pair R € B;(py xgy) and n > 0. We prove existence of a MAC-DSTx code
(n, # ,e,d) whose rate % > R; — 1, average error probability (e, d) < n, and average cost 7(e;) < 7; + 1 for
ji=12

We begin with a description of the structure of the MAC-DSTx code whose existence we seek to prove. Let

103



7w+ = |V| and we assume H(V1|S1) > H(V2|S2) without loss of generality. Consider a pair of nested coset codes

n, ki, i, 91,5 9o, /1;,07) + 5 = 1,2 built over V, denoted Ao, /Ar, : j = 1,2 with parameters

H(WA|S1) | m(n)
D= 1-— 4
h M( log 7 + log 7 £ (6:4)
H(Va|S2) | m(n)
= h = 1— — .
ko = k1 + ki, where k [n ( Tog + log 11—k, (6.5)
R na(n)
L= - .
! [ (logw logm J (6.6)
b= o142 HWIS) mW)y g g (6.7)
log log logm
the first k1 rows of gr, and gy, are identical i.e., g7, + = g1, ¢ for t € [k1]. (6.8)

A few remarks on the structure of Ao, /As; : j = 1,2 and the relationship between their parameters are in order. For

R logm logm logmw
nzNn):= max{mm)wg(n)’m}’ we have

n

n
g rlogm — HAIS) +m) < ky < o —(logm = H(V;|S) + 20 (n) (6.9)
n
— < < — .
1og7r(R1 212(n)) < I < logﬂ'(Rl n2(n)) (6.10)
—— (R +logm — H(Va|S) = 2m(n) < ks +ls < ——(Ry+logm— H(ValS2) —ma(m))  (6:11)
ogm log 7

Combining the lower bound in (6.11) and the upper bound for k3 in (6.9), we have

lologm

== Ry - 2n3(n) — 2m(n) (6.12)

and similarly, combining the upper bound for ks + I3 in (6.11) and the upper bound for I; in (6.10), we have

n
ko +1li+1 < Tog 7 (R + Rz +logm — H(V2|S2) — n3(n) — n2(n))
S ogr logm = H(VI @ ValY) = ns(n) = ma(n)) (6.13)
ogT
where (6.13) follows from R € B¢(pvxsy)-
We now specify encoding and decoding rules that map this pair Ao, /Ar; : j = 1,2 of nested coset codes

into a MAC-DSTx code. User j is provided with the nested coset code Ao,/Ar;. User j’s message is used to

index one among m' cosets of Ao, /Ar,. We assume that the set of messages M; : = V%, and M;j € Vi to
be the uniformly distributed random variable representing user j’s message. We let v?(afj,mi-j) D= a?j g1; ©
méj go,/1, © b} denote a generic codeword in Ao, /A7, and cj(m;j) D= (v?(a?j ,méj) : a?j € Vi) denote the coset

corresponding to message mgj . Encoder j observes the state sequence S} and populates the list Lj(MJl-j ,S;”) =
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{vj(afj, 7) (ST, v5(a k',M ) € Ty (S;, 'V )} of codewords in the coset corresponding to the message that are
jointly typical with the state sequence. If L; (M p 7S;L) is empty, it picks a codeword uniformly at random from coset
c;i(M Jl’ ). Otherwise, it picks a codeword uniformly at random from L;(M JlJ ,S7). Let ‘/j(A.I;j , M Jlj) denote the picked
3 3 n ny . _—_ fn n kj lj n . 3
codeword in either case. The encoder computes X7 (M] ,S7) 1= (VY AY, M), ST), where f; : V; x §; — X is
any map that satisfies px,|v, s, (f;(vj,s5)|vs,55) = 1 for all pairs (vj,s;) € V; x ;. X}‘(Mjl-'j,S]'-’) is fed as input to

the channel.

We now specify the decoding rule. The decoder is provided with nested coset code (n,k,l,g1,90/1,b") de-
noted A\o/A; where k = ko, | = l1 + 12, g1 = g1, gg/l D= ggl/h 952/12 and 0" : = b} & by. With a
slight abuse of notation, we let m! : = (mlll,ml;’) € V' . = Vi x V2 represent a pair of messages and analo-
gously random variable M'! : = (M}*, ML) denote the pair of user messages. For a¥ € V¥ and m! € V!, let
v™(ak,m') 1 = a¥gr &mlgo,r & b™ and c¢(m!) : = (v"(a*, m') : ¥ € V*) denote a generic codeword in Ao /A; and the
coset corresponding to the message pair m! respectively. The decoder observes the received vector Y™ and populates
D(Y™) : = {m! e V': 3" (a*, m') such that (v"(a*,m'),Y") € T,y Vi ® V2,Y)}. If D(Y™) is a singleton, the

decoder declares the content of D(Y™) as the decoded message pair. Otherwise, it declares an error.

The above encoding and decoding rules map every pair Ao, /A;; : j = 1,2 of nested coset codes that satisfy
(6.4)-(6.8) into a corresponding MAC-DSTx code (n,.# ™ e d™) of rate % > Rj —2n1(n) — 2n2(n), thus
characterizing an ensemble, one for each n, of MAC-DSTx codes. We average the error probability over this ensemble
of MAC-DSTx codes by letting the bias vectors B :j = 1,2 and generator matrices Gr,,Go,r1; : j = 1,2 mutually
independent and uniformly distributed over their respective range spaces. Let Ao, /Ar; : j = 1,2 and Ap/Ar denote
the random nested coset codes (n,kj,lj,waGoj/Ij,B?) : 7 = 1,2 and (n k,l,GI,GO/hB") respectively. For

a¥ e VEi mb e Vi, gk € VP ml € V, let Vj"(afj,méj) D= a JGI @m 'Go, /1, ® B} = 1,2, V*(a*,ml) :

J J
=d"Gr @ mlGo/I @© B" denote corresponding random codewords in Ao, /Ar; : j = 1,2 and AO/AI respectively.

Let Cj(ml?') D= (V”(alfj mé’) : a?j € VFi) and C(m!) : = (V™(a*,m!) : a* € V¥) denote random cosets in

Ao, /A5, - j=1,2and Ap/A; corresponding to message ml :j =1,2 and m! respectively.

Our next goal is to derive an upper bound on the probability of error. Towards this end, we begin with a

characterization of related events. Let

€15 = {Sjn ¢ T774(n) (S)}a €1: = {Sn ¢ TMT(")(S)}
€2 = {¢J( ) = 0}, where ¢J( ?) T Z 1{(‘/1‘”(“? *m;j)’S;)GT”4(")(‘/j’Sj)}
a:j eVki
€4 = U {(Vn(akle)aYn) GTns(Tl)(Vl@VQ’Y)}
akeVk
€5 = U U { Vn m ) € Tys(m) (Pri@ve, )}
ml£ Mgk cVk
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Note that €3 Uea; Ueaa Ue§ Ues contains the error event and hence P(ey) + P(€§; Near) + P(efo Neaa) + P((e1 Ueag U
€22)°N€5) + P(es) is an upper bound on the probability of error. In the sequel, we provide an upper bound on each

of the above terms.

Lemma 2.3.1 guarantees the existence of Na(n) € N such that P(e;) < ¢ for all n > Ny(n). Lemma A.0.2(3) in

appendix A implies the existence of N3(n) € N such that for all n > N3(n)

ks H(V;|S;) | 3na(n)
¢ N < B g o J1~7 .
P(eljﬁq])exp{ nlOgﬂ—<n (1 logﬂ' +210g71'

Substituting the lower bound in (6.9) for %, we obtain

P(ef; Ney;) < exp {—n <771(77) - 31742(77)) } : (6.14)

for all n > max {N1(n), N3(n)}. We now derive an upper bound on P((e; U €21 U €22)° N€§). The encoding rule

ensures (€7 U eag Ue€a)® C (€1 U €)¢, where
2 k l
e = {(s7 VAl M) ¢ 70 (55}
j=1

and Vj"(A?j , M JZ»" ) denotes codeword in L; (M ]l»j ,57') chosen by encoder j. Our first step is to provide an upper bound

on P((e1 Uea)®Neg) for sufficiently large n, where
5 = {(s;?,xg"(Ajf,Mf) j= 1,2) ¢ Tw(sl,vl,sz,vz)}.

In the second step, we employ the result of conditional frequency typicality to provide an upper bound on P((e; U

ea Uez)® Neg).

As an astute reader might have guessed, the proof of first step will employ the Markov chain V; — S; — S5 — Va.

The proof is non-trivial because of statistical dependence of the codebooks. We begin with the definition
O(s") i = {0 € V" (s, 07) € Ty (83, V3) 15 = 1,2, (8", 0") ¢ Tos (S, V) |
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for any s™ € §™. Observe that,

P((e1Ue) Neg) = > ST P(ST =" VALY M) =0t =1,2)
37L€T774(n) (S)vne@(sn)

2

[
V(A7 M7 )=vl:5=1,2,
= 2. 2 P U U (8= kb
n n n k k1 k k Vi (et My )=viij=1,2
s eTn42(n) (S)vned(s) afleVviigszepl?

i m )

s"€Ty, (n) (S)v"e@(s")a’fl Evfl (LI;Q €V§2
2

= n__ .n V”(a’fl,Mll)zv"7
= > > > > P("=s )P<‘}2n(a§27M22)=U2L> (6.15)

STLETW42(77) (S)v"e@(s")a’fl Evfla’;Q EV;CQ

= > > Pt =s" ﬁﬁ (6.16)

SMET,, () (S)v"EO(s™)
2

IN

where Vj"(AfJ M Jl-j ) is defined as the random codeword chosen by the encoder, (6.15) follows from independence of

random variables (M!, G, Goy1, B, By) that characterize V" (afj , MJI7) and S". We now employ the upper bound

on k; in (6.9) to substitute for ﬂ,,ikj . For n > Ni(n), we have k; <n — % + %(Z) and hence
iy < exp {—n (H(VjS)) = 2m(n)} - (6.17)
Furthermore, by Lemma 2.2.3, for every s" € TMT(") (S) and v™ € O(s"),
exp{—n (H(V;|S;) = 2na(n)} < pvpisp (v7[s]) = pypisn (V7 [s") = pypsnvp (0f ™, 03), (6.18)

where the last equalities is a consequence of Markov chain V; — 57 —S2 — V5. Substituting the upper bounds in (6.17)
and (6.18) for — L — in (6.16), we obtain

n—k;

P((aUe)Nes) < exp{n(dmn) +4m(n)}- > > psrvn(s",v")
s'"GTw (S)vreO(s™)
< exp{n(4m(n) +4ni(n))} - > psrvn(s”,v") (6.19)

(sn 7vn)¢Tn5 (m) (va)

for all n > Ni(n). We now employ the exponential upper bound provided in Lemma 2.3.1. In particular, Lemma
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2.3.1 guarantees the existence of Ny(n) € N such that for every n > Ny(n),

ming, )esxy {Pey (5,v) : psv (s, v) > 0}

psryn (8™, v™) < exp{—nini(n)}, where X : = (6.20)
i (g |5V
Tg (n) (S, V)
Substituting (6.20) in (6.19), we conclude
P((e1 U e2)" Nes) < exp {—n (A5 (n) — 4 (n) — 4na(m)) } (6.21)

for every n > max {N1(n), N4(n)}. This gets us to the second step. We begin with two observations. Firstly, note that
V(ah 0k @ ab2, mbimb2) = Vi(ak,mb) @ Va(ak?, mk?). This follows from the definition of the codewords involved.

Secondly,

V(Aklo’“r @AR2 M vly=ym
j=1,2,8"=g"

J mny__ n__
XJ (MJ ,SJ) ZEJ :7=1,2,Y"=y"

k; 15 ’»1 31 ko la
Vj"(AjJ,M%J)_:;ﬂ) -p (Vl( ]M n)@Vz(A M2 )=0"
:j=1,2,8"=s X7 (M] WSi)=atj=1,2,Y"=y"

k. 1
vl M )_v;,)

n 2

= H Pvi@ve|va v (Ve|v1e, vat) prj\vjsj (wjelvje, s5¢) | Wy xs(yelee, s¢) (6.22)
t=1 j=1

:HP(Vl@VQ:Ut7XZwta)/t:yt|St:Styvt:'vt); (6.23)

o~
Il
_

where we have employed 1) encoding rule and Markov chains U — (X, S) —Y in arriving at (6.22) and 2) the identity

Px;|SUX; = Px,|SU = Px,|s,u, for any distinct elements j,4 € {1,2} in arriving at (6.23). Since

k1 nk
P((e,UeaUeg)*Nes) < P ((61 Uey Ues)N {(V(AéAOkQ*,M{IMgz) Y"™) ¢ Ty (Vi @ Vi, )})

P (577 (A2 M) 55 = 1,2) € Tuga (S, V), (VS0 M ME)LY™) ¢ Ty (0.7

and the above two observations imply that (V (A 05+@ A% Mb Ml2) X™ v™) is distributed according to [}, P(Vi&®
Vo =v, X = x4, Yy = y¢|St = 8¢, Vi = vy). Lemma 2.4.1 guarantees the existence of N5(n) € N, such that for all
n > Ns(n), the term on the right hand side of (6.24) is bounded from above by 2. Therefore, for all n > N5(n)

P((egUeaUez)Ney) < g (6.24)

It remains to provide an upper bound on P((e; U €1 U €aa U €§)° Nes). In appendix M, we prove the existence
of Ng(n) € N such that P(es) < exp{—n (3n5(n) —n2(n) —ns(n))} for all n > max {N1(n), Ns(n)}. The informed
reader will recognize that deriving an upper bound on P(e5;) will involve proving statistical independence of the

pair (Cj(Ml ) : j = 1,2) of cosets corresponding to the legitimate message pair Ml and any codeword V™ (a* m!)
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corresponding to a competing message pair 7! # M!. This is considerably simple for a coding technique based
on classical unstructured codes wherein codebooks and codewords in every codebook are independent. The coding
technique proposed herein involves correlated codebooks - the first k1 rows of Gy, : j = 1,2 are identical® - and
codewords in each codebook are correlated.

To conclude, we put together the upper bounds derived on the probability of events that comprise the error
event. For n > Na(n), P(e1) < ¢. In (6.14), we proved P(ef; Ne2;) < exp {—n (171(77) - 37747(71))} for all n > N3(n).
Combining (6.21) and (6.24), we have

P((e1 Uer) Neg) <exp{—n (M3(n) —4m(n) —4m(n)} + g

for all n > max {N1(n), Na(n), N5(n)}. And finally P(es) < exp {—n (n2(n) + n3(n) — 315(n)) } for all n > max{N;(n),
Ng(n)} follows from (M.10). By choosing

n2(n) =n3(n) = 1%#75(7]) = %7771 (1) = min {1776, )\nfén)} and 74(n) = 77157) (6.25)

it can be verified that for n > N(n) : = max {N;(n) : i € [6]},
o 201 (n) + 2n3(n) < ¥ and thus 21%6T > R, — 7 from (6.12),
e 72(n) < 4 and thus lll% > Ry — 7 from (6.10),

o i (n) — 73’742(’7) = 75”18(") and thus P(e‘fj Negj) < exp {—n (757718(")) }7

o \n2(n) — 4n1(n) — 4na(n) > ’\"?‘2(") and thus P((e1 Ueg)°Neg) < exp {—n (@)} + 4, and

e 1n2(n) +n3(n) — 3ns(n) = % and therefore P(e5) < exp {—n (1"—6)}

For n > N(n), P(e1) + P(e5; Neéar) + P(e§y Nean) + P((e1 U€ar U €n)® Ne§) + Ples) < 2 + 3exp {—n(Z2)}. Thus
for n > N(n) : = max {N(n), ﬁw log[%] }, the error event has probability at most 7. ]

We conclude this section with two remarks.

Remark 6.2.3 For BDD-MAC described in section 6.2.2, B;(T) = C(7). Indeed, the test channel pysxy € Dy(T)

defined as pysx = H?:1 pv;s;x; where V; takes values over V; = {0, 1} with

1—71 Zf .’Ej = 0
Pv;.x;18; (@5 B2 85, 3;]85) = ,
T otherwise

for each j =1,2 and s; € {0,1} achieves C(T) = {(R1,R2) : R1 + Ra < hy(7)}.

81f H(V1|S1) = H(V2|S2), users 1 and 2 share the same generator matrix Gy. Indeed, channel codes of users’ 1 and 2 are partitioned
into cosets of the same linear code.
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We have thus presented a coding technique based on decoding the sum of codewords chosen by the encoders
and analyzed the same to derive an achievable rate region for an arbitrary MAC-DSTx. One might attempt a
generalization of PZ-technique along the lines of modulo lattice transformation proposed by Haim, Kochman and
Erez [70]. The rate region proposed herein subsumes that achievable using modulo-lattice transformation using test

channels identified through the virtual channel in a natural way.

6.2.3 Examples

A key element of the coding framework proposed herein lies in characterizing achievable rate regions for arbitrary
test channels, i.e., test channels that are not restricted to be uniform or additive in nature using structured codes.
Our first example (example 6.2.4) illustrates that such test channels indeed optimize the achievable rate region for
certain MAC-DSTx. Through a simple modification of BDD-MAC, we illustrate the same.

In several practical scenarios, the channel” is not perfectly additive but nearly so. We therefore randomly perturb
BDD-MAC and study the efficacy of linear codes for such a channel in example 6.2.5. We do not expect the resulting
test channel to be either additive or uniform. Yet, our results indicate that by employing nested coset codes and
exploiting the algebraic structure yields larger achievable rate regions. In [47], we have presented results for a few
more channels that have been obtained by a random perturbation of the BDD-MAC.

A few remarks on our study of the following examples are in order. The examples needing to be non-additive lends
it considerably hard to provide analytical upper bounds for the rate region achievable using unstructured codes.® We
therefore resort to computation. It can be noted that the problem of computing the sum rate bound achievable using
unstructured codes is a non-convex optimization problem. The only approach is direct enumeration, i.e., sampling the
probability matrix of the auxiliary random variables.® Sampling the probability matrix with any reasonable step size
beyond the auxiliary alphabets of size 2 is infeasible with currently available computation resources. The sum rate
bound for the unstructured coding technique projected below is therefore obtained through computation involving
binary auxiliary alphabet sets followed by convexification (timesharing between different cost). The resulting space
of probability distributions that respect the cost constraints was sampled with a step size of 0.015 in each dimension.
The resulting bound on the sum rate achievable using unstructured codes (without time sharing) is marked with blue
crosses (denoted « in the legend) in the plots. The resulting upper bound is obtained as an upper convex envelope.
Similarly, sum rate achievable using nested coset codes is marked with red circles (denoted S in the legend) in the
plots.

For examples 6.2.4 and 6.2.5, we assume the alphabet sets to be binary S; = &; = {0,1}, j = 1,2, (ii) uniform

and independent states, i.e., Wg(s) = 1 for all s € S, (iii) a Hamming cost function x;(1,s;) = 1 and £;(0,s;) = 0

"Usually the channel is tracked through pilot or training waveforms and the presence feedback link.
8We recognize that the analytical upper bound derived in [15] is a key element of the findings therein.
9This holds even for the case of multiple access without states for which a computable characterization of the capacity region is known.
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Figure 6.2: Bounds on sum rate for example 6.2.4

for any s; € Sj, j = 1,2. We compute the sum rate achievable using unstructured codes and sum rate achievable

using nested coset codes. These are plotted in figures 6.2 and 6.3.

Example 6.2.4 Let Y = (X7 V S1) ® (X2 V S3), where V denotes logical OR operator. Having studied the BDD-
MAC it is natural to conjecture that the test channel that optimizes the sum rate achievable using linear codes to be
pU; x,1s;(0,000) = 1 — 27, pyy, x5, (1,1]0) = 27,py,; x5, (1,0[1) = 1, for j = 1,2 when the cost constraint T € [0, 1.
Indeed, our numerical computation asserts this. In other words, the sum rate achievable using linear codes for a cost
T€(0,4) is %27) and 0.5 for T € [0.25,0.5]. We highlight significant gains achievable using nested coset codes.

A preliminary look at this channel may lead the reader to conclude that PZ-technique appropriately modified can
achieve the same sum rate as that achievable using nested coset codes, since the above test channel is additive, i.e.,
Ui =8;®X; forj=1,2 and Y = Uy ® Us. However, a careful analysis will reveal the significance of the coding
framework proposed herein. The induced pmf on Uj, py,(1) = % + 27 for 7 € (0, i) is not uniform, and the PZ-
technique of choosing a codeword in the indexed bin with an average Hamming distance of T does not yield the sum
rate guaranteed by nested coset codes. Nesting of codes enables achieving non-uniform distributions that are necessary

as exemplified herein.

Example 6.2.5 The channel transition matriz is given in table 6.1. 1) An upper bound on sum rate achievable using
unstructured codes and 2) sum rate achievable using structured are plotted in figure 6.3. This channel is obtained
by randomly perturbing the BDD-MAC. In the space of channel transition probability matrices, this channel is in a
neighborhood of the BDD-MAC. Since the rate regions are continuous functions over this space of channels, the coding
technique proposed herein outperforms unstructured coding technique in this neighborhood. This example validates
the same. As in the previous example, we note that the optimizing distribution of the auziliary random variables is
non-uniform for certain cost values. Furthermore, note that B¢(T) does not contain o) and therefore it helps to

incorporate both unstructured and structured coding techniques as will be studied in the following section.
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Figure 6.3: Bounds on sum rate for example 6.2.5

S2X251X1 | Wy sx ) | S2X251X1 | Wy sx 0 | S2X281X1 | Wy sx ) | S2X281X1 | Wy gx (0l
0000 0.92 1000 0.07 0100 0.10 1100 0.88
0001 0.08 1001 0.92 0101 0.92 1101 0.08
0010 0.06 1010 0.96 0110 0.95 1110 0.11
0011 0.94 1011 0.10 0111 0.06 1111 0.91

Table 6.1: Channel transition matrix Example 6.2.5
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UrS1X1 | puys;x; | UrS1X1 | puysyx, | U2S82X2 | pussyexy | U252X2 | puys,xs

000 0.1472 101 0.3528 000 0.1472 101 0.3528
011 0.50 011 0.50

Table 6.2: Test channel for example 6.2.6 for which nested coset code over F3 performs better than unstructured

code

Example 6.2.6 Consider the channel Y = (S1 & X1) V (S2 @ X3). Observe that the information available at the
encoders is fused through a logical OR operation by the channel. Moreover, Uy, Us — Uy &3 Uy — Uy V Us is a Markov
chain and hence, although channel input, state and output alphabets are binary, we expect that for certain choice of
auxiliary distributions, the sum rate achievable using codes over Fs is larger than that achievable using unstructured

codes. Through an exhaustive search, we have identified such distributions, an example of which is given in table 6.2.

For the above distribution, the rate achievable using nested coset codes over F3 is 0.0017, while that achievable
using unstructured code is negative. For an appropriate choice of cost function, the above might be the optimizing
distribution for the unstructured coding scheme thus resulting in larger sum rate using nested coset codes over Fj3.
We do not as of yet have a precise analytical characterization of such a cost function'® and we are in pursuit of the

same. Nevertheless, the above lends credence to the use of nested coset codes for arbitrary channels.

6.3 Stage II: Combining unstructured and structured coding techniques

In this section, we put together the techniques of unstructured and structured random coding to derive a larger
achievable rate region for a general MAC-DSTx. Our approach is similar to that proposed by Ahlswede and Han
[48, Section VI] for the problem of reconstructing mod—2 sum of distributed binary sources. We begin with a

characterization of valid test channels.

Definition 6.3.1 Let Ds¢(7) C D(7) be the collection of distributions puvsxy on (U x V)? x 8 x X x Y where U

is a finite set and V is a finite field. For puvsxy € Dsy(7), let R(puvxsy) be defined as

(Ri,Rs): 0< Ry <I(Uy;UsY)— I(Uy;8)) + min {’,{,&VV{Z'@;’,@;))} — H(Vy @ V3|Uy, U, Y)
0 < Ry < I(Up; U1Y) — I(Us; S2) + min {g<(vvg‘g;gg)v} — H(Vy & V3|Uy,Us,Y)
Ri+ Ry < I(U1 U3 Y) + I(Uy; Us) — 25:1 I(Uj; Sj) + min {11{1((‘\/}2‘\%12’,?2))’}

—H(Vy @ V,|U1,Up,Y)

)

10Such a characterization of cost function is available for point-to-point channels with state available at both encoder and decoder [2],
[71], [72].
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where @ s addition in V. Let

R(T) : = cocl U R(puvxsy) (6.26)

puvxsy €EDsy(T)

Theorem 6.3.2 R(7) C C(7). [

Remark 6.3.3 a(r) C R(7) and moreover R(T) is the largest known achievable rate region for the general MAC-
DSTx.

Before we provide an outline of the proof, we briefly state the coding technique. Each user builds an unstructured

code over U and a nested coset code over V. The nested linear codes share a common inner (sparser) code. The
unstructured code is partitioned into bins (Gel’fand-Pinsker binning). Each user’s message is split into two parts - one
indexing a bin in the unstructured code and one indexing a coset in the nested linear code. Encoder j picks a pair of
codewords, say (U i Vj”) jointly typical with the observed state sequence from the indexed pair of bins and transmits
an input vector generated according to px,|v,u, s, Having received Y, decoder looks for all triples (U7, Uy, V" ®©V3")
of codewords in the corresponding codebooks that is jointly typical with Y™ according to pu,v;ev,,v and declares
the quadruple of bin indices as the decoded message. Achievability is proved by providing an upper bound on the
probability of error by averaging over the ensemble of codes. We now provide an outline of the proof.
Proof: Achievability of R(7) is proved by gluing together unstructured and structured coding techniques. Each
encoder splits it’s message M; into two parts M, 1 and M Jl»j . M; 1 is communicated to the decoder using an unstruc-
tured random code built over U™. M ;j is communicated to the decoder using a nested coset code identical to that
proposed in proof of theorem 6.2.2. With regard to nested coset codes, we employ the notation proposed in the proof
of theorem 6.2.2 and do not restate the same.

Encoder j is provided a codebook built over ™ that contains 2" bins each with 2757 codewords. For 1 <
b; < 253 let u;(r;,b;) denote a generic codeword in bin r; (1 < r; < 2"%s). Encoder j is also provided with the
nested coset code Ao, /7. Without loss of generality, we assume M. Jl-j € VU, Encoder j observes state sequence S7 and
declares error if S} ¢ Ts (Ws,). Otherwise it looks for a pair (uf (Mj 1,b;), v (a®, Mjl’)) €Ts (PUjvj\S]n |S7). If it finds
at least one such pair, one of them say, (u}(M;1,b;), o™ (ak, M]l])) is chosen uniformly at random and e} (M;, S7) is
transmitted, where e']’-L(Mj7 S’j”) is a function of u;?(Mj’h b;), v (a¥, Mjl-j)7 S7 that is determined upfront. Otherwise,
an error is declared.

We now specify the decoding rule. The decoder receives Y™ and declares error if Y ¢ Tg (py). Otherwise,
decoding is performed in two stages. In the first stage it lists all codewords (u} (m;1,b;) : j = 1,2) € T5*(pu, v,y [¥")-
If it finds exactly one such pair, say (u} (m;,1,b;) : j = 1,2), then the decoding proceeds to the next stage. Otherwise,
an error is declared and decoding halts. In the second stage, the decoder looks for all codewords v"(a*, m!) € Ao
such that (uj(myj1,b;) @ j = 1,2,0"(a*, m'),Y") € T (puvievs,y). If it finds all such codewords in a unique bin,

say corresponding to m!, then it declares mj71,m§-j :j = 1,2 as the decoded pair of messages. Otherwise, an error
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is declared. We derive an upper bound on probability of error by averaging the error probability over the ensemble

codes. A pmf is induced over the ensemble of codes by letting UJ(r;,b;) : 1 < r; 1<b <2nBij =12

<on T
be mutually independent and distributed according to H?zl pu,- The pmf induced on the ensemble of nested coset
codes is identical to that in proof of theorem 6.2.2. Moreover, (G1,Go, 1, B} : j = 1,2) is independent of the
unstructured random code on U™. Analyzing the error events, we obtain the following sufficient conditions for the

average probability of error to decay exponentially.

By ZI(Ul;Sl) Bs ZI(UZ;SZ)

Ry + By < I(Uy; UpY) Ry + By < I(Uy; ULY)

S >1- H(W|ULS) E>1-H(V|US,)

n

2
> Rj+B; <I(U;Y) + I(Uy;Up) B2 <1— H(W + 13[UY),
j=1

kYL
n

For each j = 1,2, substituting R; — % for Rj in the above bounds and eliminating B;, &, -2 : 7 = 1,2 using the

technique of Fourier-Motzkin [26, Appendix D], R(7) is proved achievable. [ |

Remark 6.3.4 The above rate region is obtained by analyzing sequential typicality encoding and decoding, i.e.,
encoding and decoding of unstructured codes precedes that of structured codes. The informed reader will recognize that
performing joint typicality encoding and decoding of unstructured and structured codes might enlarge the achievable
rate region. While this might be true, Fourier-Motzkin elimination of the resulting bounds does not yield a compact

description of the resulting achievable rate region. We therefore chose to present the above rate region.

We conclude with an illustrative example.

Example 6.3.5 For j = 1,2, let S; = X; = ) = {0,1}. The channel transition is described as Wy |x g(ylx,s) =
Wy 0x.8)Wlg(x, 8)), where g(x,s) = [(s2 A@2) A (51 V @1)] V [(s1 A@1) A(S2V @2)] and Wy« (1]0) = 0.02,
Wy 4(x,5)(0[1) = 0.04. The function g(-,-) can be alternatively described as g(X,S) = [S1 A (S1 @ X1)] @ [S2 A (S2®
X))

This channel is inspired by Blackwell’s broadcast channel and in particular the coding technique proposed by
Gel’fand [8].11 The bounds on the sum rate achievable with unstructured and nested coset codes are plotted in figure
6.4. The above plots unequivocally indicate R(T) to be strictly larger than a(7) U s (T) and in particular either one
of a(T), By(T). It is therefore desirable to compute R(T), however the presence of two additional auxiliary random
variables lends computation infeasible with current computational resources. We remark that the structure of this

example enables us to argue the strict containment a(T)U Br(T) € R(T) in spite of not being able to compute R(T).

1 Analogous to the defect masking the written bits, here the states mask the corresponding channel.
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Figure 6.4: Bounds on sum rate for example 6.3.5

6.4 Stage III: Achievable rate region using codes over Abelian groups

Consider a quaternary doubly dirty MAC-DSTx (QDD-MAC), with S; = X; =Y = {0,1,2,3}, j = 1,2. The state

sequences are independent and uniformly distributed, i.e., Wg(s) = for all s € §. The channel transition is

1%
described by the relation Y = X; ¢ S; ¢ X5 ¢ S5, where ¢ denotes addition mod—4. All nonzero symbols have
equal cost, i.e., k;(z,s;) = 1 for all € {1,2,3} and x;(0,s;) =0 for all s; € S}, j = 1,2 and the input is subject to
a symmetric cost constraint T = (7, 7).
What would be the achievable rate region for QDD-MAC using unstructured codes? It is natural to guess the
optimizing test channel to be
1—7 forz; =0
px;u;1s; (@5, 25 © s5]s5) = (6.27)
Z otherwise.

In appendix D of [47], with the aid of numerical computation, we argue that this is indeed the case. The sum rate

3
74

achievable using unstructured codes can be evaluated to be the upper convex envelope of the function « : [0, 2] —
[0,00) defined as a(7) = max {—27log(3) —2(1 — 7)log(1 — 7)) — 2,0}. Since 4 is a prime power, there exists a
unique field Fy of cardinality 4. Do nested coset codes built over Fy achieve a larger sum rate?

We are unable to characterize the sum rate achievable using nested coset codes and the dimensionality of the
space of probability distributions lends computation infeasible. We conjecture that the above test channel optimizes
the sum rate achievable using nested coset codes. In any case, computing the sum rate achievable using nested
coset codes for the above test channel is instructive. It can be verified that the sum rate achievable using the above
test channel with nested coset codes is the upper convex envelope of the function Gy : [0, %} — [0,00) defined as
By(r) = max{leog(g) —(1-=7)log(1—1)) — %,O}.

The sum rate achievable for the above test channel using unstructured and nested coset codes are plotted in figure

6.5. It is no surprise that nested coset codes perform poorly. The channel operation is not the field addition @, in
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Figure 6.5: Sum rate achievable using unstructured, nested coset and Abelian group codes for test channel (6.27)

Fi. Instead, ¢ is the group addition'? in the Abelian group Zs. This suggests that we build codes over Abelian
groups that are closed under group addition and decode the group sum 4 of codewords.

Linear codes are kernels of field homomorphisms. This lends them the property of closure under field addition.
We build Abelian group codes that are kernels of group homomorphisms. Abelian group codes are closed under group
addition. As was proposed with nested coset codes, we employ bins of each user’s code to be cosets of a common
Abelian group code. The encoder chooses a codeword from the bin indexed by the message and the decoder attempts
to localize the group sum of chosen codewords. The bins of each users’ codebook is chosen such that the decoder can
decode the pair of messages by identifying the group sum of transmitted codewords.

In the interest of brevity, we only describe the results and omit proofs. Recall that any Abelian group U can be

decomposed as sum of Z,-—cyclic groups, i.e.,
I
U=z, (6.28)
i=1

where p; is a prime and 7; is a positive integer for each ¢ = 1,--- ,I. We therefore state our findings in two stages.
The first stage, described in section 6.4.1 describes the coding technique and achievable rate region for a Z,-— group.

This is extended to an arbitrary Abelian group in section 6.4.2

6.4.1 Achievable rate region for MAC-DSTx using group codes : The Z,--case

In the discussion following proof of theorem 3.5.1, we noted that if the auxiliary alphabet U/ is a field and the bins are
constrained to be closed under field addition then with respect to a test channel py;|g, the bins need to be of rate at
least log [U|— H(U|S). This enlargement of the bins was compensated by the ability to pack more bins. In particular,
the rate of the composite code could be as large as log || — H(U|Y') with respect to the induced distribution pyy,
and this enabled us to achieve the capacity of PTP-STx.

12We refer to group operation of an Abelian group as group addition.
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If the auxiliary alphabet ¢ = Z,- is an Abelian group of order p”, and the bins are restricted to be closed under

group addition, then with respect to a test channel py|g, using the results of [73], the bins have to be of rate at least

1. (U:S) = wix [rlogp — S H([UJo|S) | = mix S1([U]as ), (6.29)
where Hy is the sub-group p’Z,- and [U]y : = U & Hy is the random variable taking values from cosets of subgroup

Hg of U, denoted Hy = U. We note that TZC(U; S) > logqg — H(U|S) > I(U;S). The natural question to ask is
whether we can pack sufficient number of bins to achieve capacity of PTP-STx. It turns out that if we constrain the

composite code, i.e., the union of bins, to be a coset of a group code, then the rate of this union can be at most
r—1

P (U:Y) = min |rlogp — —— H(U[Y[U]s)| = min
N e L o I

TSI Y[ULo):

with respect to the induced distribution py|y-. Since log [U| — H(U[Y) corresponds to # = 0 in the above expression,
TZ:_C(U; Y') is in general smaller than log || — H(U|Y'). Therefore, TZZC(U; Y) ff:_c(U; S) is in general strictly smaller
than the capacity of PTP-STx, implying the constraint of closure under group addition results in a rate penalty.
This indicates that the use of group codes will in general result in rate penalties for multi-terminal communication
problems.!3

With the objective of increasing TZC(U ;Y) and therefore minimizing the rate penalty, we take a closer look at the
coding technique proposed in section 6.2.2. While we exploited the property of bins being closed under field addition,
we did not need the union of bins to be a coset. We therefore relax this and only require the bins to have an algebraic
structure, i.e., a coset of a group code, but the composite code of each user is not required to be a coset of a group
code. In other words, we employ union coset codes (UCC) (section 3.4.3) built over groups. While this relaxation
does not yield gains in achievable rate for the field case, we do obtain larger achievable rates while coding over groups.
In particular, the rate of the composite code, or the union of bins can be as large as log || — H(U|Y") which is in
general larger than f:C(U; Y'). Therefore, if we were to communicate over a PTP-STx (S, Ws, X, k, Y, Wy | xg) using
codes over an Abelian Z,—group U = Z,~ and we constrained the bins to be closed under group addition, then the

test channel pysxy € D(7) yields an achievable rate log |U| — H(U|Y) — (f;C(U; S)) = FZ:C(U|S) — H(U|Y), where
H.(U)S) = log lu| = T.',(U:S). (6.30)

is defined as source coding group entropy of group U = Z,» and ﬁZC(U) = FZ_C(UK)).
The diligent reader will now be able to characterize an achievable rate region for a MAC-DSTx based on UCC

built over groups (group UCC). As mentioned earlier, the encoding and decoding techniques are identical to that

13The interested reader is referred to [74], [75], [30] for early work on rates achievable using group codes for point-to-point channels.
[76] provides bounds on rates achievable using Abelian group codes for point-to-point source and channel coding problems.
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proposed in section 6.2.2 except for group addition replacing field addition. Consider a distribution pysxy € D(7)
defined over U? x S x X x ) where U is an Abelian group of order p”. Cosets of a common group code is employed
as bins of each user’s code. Following an analysis similar to that performed in proof of theorem 6.2.2, one can prove
the probability of the encoders not finding a codeword jointly typical with the state sequence decays exponentially
with block length if the bins are of rate at least max {log || — FZC(UAS]») 1j=1, 2}. The decoder decodes the
group sum of chosen codewords from the group sum of the two users’ codebooks. The codebooks of the two users
are chosen to be union of arbitrary cosets of a common group code and therefore the the group sum of the two
users codebooks will also be a union of arbitrary cosets of this group code. The probability of error at the decoders
decays exponentially if the rate of the group sum of the two users’ codebooks is at most log [U| — H(Uy ¢ Us2|Y).
We conclude that a rate pair (Ry, Rz) is achievable if Ry + Ry < min {FZC(Uj\Sj) 1j=1, 2} —H(U; ¢ Us]Y). The

following is a formal characterization of achievable rate region for MAC-DSTx using group codes over a Zjy,r—group.

Definition 6.4.1 Let Dg(7) C D(7) be the collection of distributions pusxy on U? x S x X x Y where U is an

Abelian group of order p”, where p is a prime. For pusxy € Da(T), let By(pusxy) be defined as the set
(U —u
{(B1, o) € [0,00)% : Ry + Ry < min { T (U1]S1), HLo(U1S2) } = H(U1 & U]Y) } (6.31)

where & denotes group addition in group U = Z,r, and

By(T) : = cocl U Bolpusxy) |- (6.32)

pusxy €Dg(T)
Theorem 6.4.2 (1) € C(1). J
Example 6.4.3 Let us now compute achievable rate region using group UCC for QDD-MAC. U = {0,1,2,3} has

two sub-groups - the group itself and {0,2}. It can be verified that

2

TI;C(U; S) = max {10g2 4 —2hy 3 ),log4 + T].Og(%) + (1 —7)log(1l— T)}

yielding Bg(T) = {(R1, R2) € [0,00)% : Ry + Ro < |By(7)[*}, where

B,(7) = max {min {Tlog(;) —(1-7)log(1 —7), 2hb(237)} ,o} .

In figure 6.5, the sum rate achievable using group UCC for the above test channel is plotted. We highlight significant
gains achievable using group UCC for QDD-MAC thus emphasizing the need to build codes with appropriate algebraic

structure that matches the channel.
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6.4.2 Achievable rate region for MAC-DSTx using group UCC : The general Abelian
group

We now let the auxiliary alphabet U be a general Abelian group and build group UCC over U to enable the decoder
to reconstruct the group sum of chosen codewords. The discussion in section 6.4.1 indicates that we only need to
characterize the minimum rate of a bin in the code with respect to a generic test channel py g under the constraint
that the bin has to be a coset of a group code. Essentially, this will involve characterizing fundamental group
information theoretic quantity Tl:_ .(U; S) and the related source coding group entropy FZ: .(U]S) in the context of a
general Abelian group U.

Let U be the Abelian group in (6.28). Let § = (61,--- ,6,) be such that 0 < 8; <r; for i =1,2,--- , I and let Hy
be a subgroup of U defined as

I
Ho = @ pein:""
=1

and random variable [U]y taking values from cosets of Hg in U as [Ulp = U & Hy. If the state has a pmf pg and the

bins over U are constrained to be cosets of a group code, then for a test channel py|g, the rate of a bin has to be at

least
TM (U;8) = i L I([U]g; S) (6.33)
s.c\Y> T w1r7I-1-1-r71w1 %125 1 — wy v '
wit-twr=1 yZy
where

Alternatively, one might express the minimum rate of the bin as log [U| — FgC(U\S ), where, as before
HY (U]) = log U] - T..(U: ), (6.34)

is defined as the source coding group entropy of an Abelian group ¢ and FZ:_C(U) = FZ:C(U|O). We note that definitions
(6.33) and (6.34) defined for an arbitrary Abelian group reduces to that in (6.29) and (6.30) for a Z,r—group. This

enables us to characterize an achievable rate region for MAC-DSTx based on Abelian group codes using 8,(7).

Definition 6.4.4 Let Dg(7) C D(7) be the collection of distributions pusxy on U? x S x X x Y where U is an
Abelian group. For pusxy € Da(T), let Bg(pusxy) be defined as the set in (6.31) and By(T) as in (6.52).

We conclude by stating that S4(7) is indeed achievable.

Theorem 6.4.5 5,(1) € C(7). O
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Remark 6.4.6 The persistent reader will recognize that the achievable rate region based on group UCC hinges on
the characterization of the minimum rate of a bin that is closed under group addition with respect to a test channel
pujs- For the general Abelian group we stated this to be (6.33). Recent pursuit has resulted in further reduction of
this quantity and is available in [76].

Remark 6.4.7 The results in this section, though preliminary, point to a rich theory of strategies for multi-terminal
communication systems based on structured code ensembles. Gains crucially rely on the compressive nature of the
bivariate function and the ability to build efficient codes with Tich algebraic structure. It is therefore no surprise
that all of earlier findings were based on exploiting modulo—2 sum - the simplest compressive function with binary

arguments - using linear codes - an ensemble that has been studied at length from different perspectives.

6.5 Concluding Remarks

We have provided a single letter characterization of a new achievable rate region for the general MAC-DSTx. The
reader will recognize that our findings are aimed at developing a new framework for enlarging achievable rate region
for multi-terminal communication problems based on algebraic tools. We proposed achievable rate regions for an
arbitrary MAC-DSTx based on two algebraic structures - fields and groups. It should now be clear to a persistent
reader that a general rate region will involve a closure over all algebraic structures of which fields and groups are just
two of them. Furthermore, this rate region will also incorporate the unstructured coding as indicated in section 6.3.
Indeed, a description of this will be involved, and is justified by the presence of additional degrees of freedom in the

multi-terminal communication settings.
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Chapter 7

Computation over multiple access

channel

Consider a scenario wherein a centralized receiver is interested in evaluating a multi-variate function, the arguments
of which are available to spatially distributed transmitters. Traditionally, the technique of computing functions at
a centralized receiver is based on it’s decoding of the arguments in it’s entirety. Solutions based on this technique
have been proven optimal for particular instances of distributed source coding. Moreover, this technique lends itself
naturally for communication based on separation. Buoyed by this partial success and ease of implementation, the
de facto framework for computing at a centralized receiver is by enabling the decoder decode the arguments of the
function in it’s entirety.

The problem of computing mod-2 sum of distributed binary sources has proved to be an exception. Studied in the
context of a source coding problem, Korner and Marton [18] propose an ingenious technique based on linear codes,
that circumvent the need to communicate sources to the decoder, and thereby perform strictly better for a class of
source distributions. In fact, as proposed in [18], the decoder needs only sum of message indices put out by the source
encoder. This fact has been further exploited by Nazer and Gastpar [16] in developing a channel coding technique for
a linear MAC, henceforth referred to as linear computation coding (LCC), that enables the decoder reconstruct the
sum of the message indices input to the channel encoder. Since the decoder does not need to disambiguate individual
message indices, this technique, when applicable, outperforms earlier known techniques.

LCC [16] is built around employing the same linear code as a channel code at both encoders. The message indices
output by the Korner-Marton (KM) source code is linearly mapped into channel codewords. Since a linear MAC
first computes a sum of the transmitted codewords, it is as if the codeword corresponding to the sum of messages
was input to the ensuing channel. The first question that comes to mind is the following. If the MAC is not linear,

would it be possible to decode sum of message indices without having to decode the individual codewords? In other
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words, what would be the generalization of LCC for an arbitrary MAC?! If there exist such a generalization, how
efficient would it be?

In this chapter, we answer the above question in the affirmative. Firstly, we recognize that in order to decode
the sum of transmitted codewords, it is most efficient to employ channel codes that are closed under addition, of
which a linear code employed in LCC is the simplest example. Closure under addition contains the range of the
sum of transmitted codewords and thereby support a larger range for individual messages. Secondly, typical set
decoding circumvents need for the MAC to be linear. Since nested coset codes have been proven to achieve capacity
of arbitrary point-to-point channels [63] and are closed under addition, we employ this ensemble for generalizing the
technique of LCC. As illustrated by examples 7.2.4,7.2.5 in section 7.2, the generalization we propose (i) outperforms
separation based technique for an arbitrary MAC and moreover (ii) outperforms LCC even for examples with a
structural match.?2 We remark that analysis of typical set decoding of a function of transmitted codewords with
nested coset codes that contain statistically dependent codewords contains new elements and are detailed in proof of
theorem 7.2.2.

Even in the case of a structural match, separation based schemes could outperform LCC [16, Example 4]. This
raises the following question. What then would be a unified scheme for computing over an arbitrary MAC? Is
there such a scheme that reduces to (i) separation when the desired function and MAC are not matched and (ii)
LCC when appropriately matched? We recognize that KM technique is indeed suboptimal for a class of source
distributions. For such sources, it is more efficient to transmit the sources as is. We therefore take the approach
of Ahlswede and Han [48, Section VI], where in a two layer source code accomplishes distributed compression. The
first layer generates message indices of those parts that are best reconstructed as is, and the second part employs
a KM technique. In section 7.3, we propose a two layer channel code for MAC that is compatible with the above
two layer source code. The first layer of the MAC channel code communicates the message indices as is, while the
second layer enables the decoder decode the sum of second layer message indices. We therefore develop a unifying
strategy that subsumes separation and LCC. Since Ahlswede and Han [48, Example 4] have proved the existence of
source pairs for which their scheme outperforms both separation based and KM strategy their findings carry over
to the problem studied herein. We highlight the significance of our contribution. Firstly, we propose a strategy
based on nested coset codes and derive a set of sufficient conditions for the problem of computing sum of sources
over an arbitrary MAC. The proposed strategy subsumes all current known strategies and performs strictly better
for certain examples (section 7.2). Secondly, our findings highlight the utility of nested coset codes [63] as a generic
ensemble of structured codes for communicating over arbitrary multi-terminal communication problems. Thirdly, and

perhaps more importantly, our findings hint at a general theory of structured codes. Linear and nested linear codes

IThe technique of systematic computation coding (SCC) [16] may not be considered as a generalization of LCC. Indeed SCC does not
reduce to LCC for a linear MAC.

2This is expected since linear codes achieve only symmetric capacity and nested coset codes can achieve capacity of arbitrary point-
to-point channels.
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have been employed to derive communication strategies for particular symmetric additive source and channel coding
problems that outperform all classical unstructured-code based techniques. However the question remains whether
these structured code based techniques can be generalized to arbitrary multi-terminal communication problems. Our
findings indicate that strategies based on structured codes can be employed to analyze more intelligent encoding and
decoding techniques for an arbitrary multi-terminal communication problem.

This chapter is organized as follows. We begin with preliminaries and a brief description of LCC in section
7.1. Section 7.2 contains the main findings of this chapter - a generalization of LCC for an arbitrary MAC using
the ensemble of nested coset codes. Theorem 7.2.2 is a statement of this characterization and examples 7.2.4-7.2.5
highlight the significance of theorem 7.2.2. In section 7.3, we propose a unified strategy for computing sum of sources

over an arbitrary MAC that subsumes separation and LCC based techniques.

7.1 Preliminaries and Problem statement

Following remarks on notation (7.1.1) and problem statement (7.1.2), we briefly describe LCC for a linear MAC

(7.1.3) and set the stage for it’s generalization.

7.1.1 Notation

We employ notation that is now widely adopted in the information theory literature supplemented by the following.
We let F, denote a finite field of cardinality ¢. While + denotes addition in R, we let & denote addition in a finite
field. The particular finite field, which is uniquely determined (up to an isomorphism) by it’s cardinality, is clear
from context. When ambiguous, or to enhance clarity, we specify addition in F, using ®,. For elements a,b, in a
finite field, a © b : = a @ (—b), where (—b) is the additive inverse of b. The log and exp functions are taken with
respect to the same base. For concreteness, the base may be assumed to be 2, in which case, units for information
theoretic quantities such as entropy and mutual information would be bits. If f : U/ — X is a map, the n-letter
extension of f denoted f™ :U"™ — X" is defined f™ (u™) := (f (uw;) :4=1,2,--- ,n). In this chapter, we repeatedly
refer to pairs of objects of similar type. To reduce clutter in notation, we use an underline to refer to aggregates of
similar type. For example, (i) S abbreviates (S7,S2), (ii) if X}, Ao are finite alphabet sets, we let X either denote
the Cartesian product X1 X &> or abbreviate the pair X1, X5 of sets. More non trivially, if e; : 8" — A" : j = 1,2

are a pair of maps, we let e(s™) abbreviate (e1(s7), ea(s%)).

7.1.2 Problem statement

Consider a pair (S7,52) of information sources each taking values over a finite field S of cardinality q. We assume
outcome (574, S92,) of the sources at time ¢ € N, is independent and identically distributed across time, with

distribution Wg. We let (S, Wg) denote this pair of sources. S; is observed by encoder j that has access to input
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j of a two user discrete memoryless multiple access channel (MAC) that is used without feedback. Let X7, Xo be
the finite input alphabet sets and ) the finite output alphabet set of MAC. Let Wy x, x, (y|z1,72) denote MAC
transition probabilities. We refer to this as MAC (X, ), Wy |x). The objective of the decoder is to compute S; @ Ss.
In this chapter, we provide a characterization of a sufficient condition for computing S; @ S2 with arbitrary small

probability of error. The relevant notions are made precise in the following definitions.

Definition 7.1.1 A computation code (n,e,d) for computing sum of sources (S,Ws) over the MAC (X, Y, Wy |x)

consists of (i) two encoder maps e; : 8" — X' 1 j = 1,2 and (i) a decoder map d : Y™ — S™.

Definition 7.1.2 The average error probability &(e,d) of a computation code (n,e,d) is

DD Wy (5 els™) Wn (s"):
SES™ Y™ d(y™)#
57 @sy
Definition 7.1.3 The sum of sources (S, W) is computable over MAC (X,Y, Wy |x) if for all n > 0, there ewists
an N(n) € N such that for all n > N(n), there exists an (n,e™,d™) computation code such that £(e™, d™) <.

The main objective in this chapter is to provide a sufficient condition for computability of sum of sources over a

MAC.

7.1.3 Linear Computation Coding

We describe the technique of LCC in a simple setting and highlight the key aspects. Consider binary sources and a
binary additive MAC, ie., S=X; = X, ={0,1} and Y = X; & Xo & N, where N is independent of the inputs and
P(N = 1) = q. Furthermore assume sources are symmetric, uniform, i.e., P(S = (0,0)) = 52 = P(S = (1,1)) and
P(S=1(0,1)) = P(S = (1,0)) = & such that hy(p) <1 — hs(q).

By employing a KM source code, the two message indices at rate hy(p) can be employed to decode S; @ Ss.
Let h € S¥*™ denote a parity check matrix for the KM source code, with % arbitrarily close to hy(p). Nazer and
Gastpar observe that the decoder only requires the sum h(S7 @ S§) = h(S7) @ h(SH) of message indices. If the map
from message indices to channel code is linear, then the decoder can infer h(S7) @ h(S%) by decoding the codeword
corresponding to sum of transmitted codewords. Since sum of transmitted codewords passes through a BSC(q), they
employ a capacity achieving linear code of rate arbitrarily close to 1 — hy(q) with generator matrix g € Xllxn. Each
encoder employs the same linear code and transmits z} : = h(S7)g. The decoder receives Y™ and decodes as if the
channel is a BSC(g). It ends up decoding message corresponding to z¥ @ z¥ which was precisely what it was looking
for.

We note that a separation based scheme will require the sum capacity of the MAC to be greater than 2h;(p)
and hence LCC is more efficient. What are key aspects of LCC? Note that (i) the channel code is designed for the
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X1 ® Xs to Y channel, i.e., the BSC(g) and (ii) both encoders employ the same linear channel code, thereby ensuring
their codes are closed under addition. This contains range of the sum of transmitted codewords to a rate 1 — hy(q).
It is instructive to analyze the case when the two users are provided two linear codes of rates R; and Ry spanning
disjoint subspaces. Since the range of sum of transmitted codewords is R 4+ Rs, the same decoding rule will impose
the constraint Ry + Re < 1 — hy(q) resulting in the constraint 2hy(p) < 1 — hy(g) which is strictly suboptimal. We
conclude that the two users’ channel codes being closed under addition is crucial to the optimality of LCC for this
problem. Furthermore, the coupling of (i) a linear map of KM message indices to the channel code at the encoder
and (ii) decoding of the sum of transmitted codewords, is central to LCC.

In the following section, we make use of the above observations to propose a generalization of LCC for computing

sum of sources over an arbitrary MAC.

7.2 Nested coset codes for computing sum of sources over a MAC

In this section, we propose a technique for computing S7 @ So over an arbitrary MAC using the ensemble of nested
coset codes [63], and derive a set of sufficient conditions under which, sum of sources (S, Wg) can be computed over
a MAC (X, Y, Wy x). Definitions 7.2.1 and theorem 7.2.2 state these sufficient conditions. For certain examples
such as example 7.2.5, the technique proposed in theorem 7.2.2 outperforms all known earlier techniques. Indeed,
as illustrated by examples 7.2.4, 7.2.5, even in the case of a structural match, the above sufficient conditions are
weaker than that imposed by LCC. Nevertheless, we further relax the same in section 7.3, or in other words enrich

our technique, by incorporating separation.

Definition 7.2.1 Let D(Wy x) be collection of distributions py,v,x,x,y defined over 8§ x X x Y such that (i)

PViXiVoXs = PViX1PVoXoss (ZZ) py‘ﬂ :py‘z = Wy|X, For pﬂy S D(WY\K); let Oz(pﬂy) be deﬁned as

{R>0: R<min{H(V1),HV2)} —H(V1 @ V2|Y)}, and oWyx):=sup U alpvxy).
PVXY €
D(Wy x)

Theorem 7.2.2 The sum of sources (S,Ws)is computable over a MAC (X, Y, Wy |x) if H(S1 @ S2) < a(Wy|x).

[

Before we provide a proof, we briefly discuss the coding strategy and indicate how we attain the rates promised
above. The reader is referred to [77] for a complete proof of theorem 7.2.2.

We begin with a description of the encoding rule. Encoder j employs a KM source code to compress the observed

source. Let M Jl : = hS} denote corresponding message index, where h € S'™™ is a KM parity check matrix of rate

H(Sl®52)
log |S]

% = . Each encoder is provided with a common nested linear code taking values over §. The nested linear

1
code is described through a pair of generator matrices g; € S¥*™ and goj1 € S where g; and g are the
go/1
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generator matrices of the inner (sparser) code and complete (finer) codes respectively, where

> log|S| —min{H(V1),H(V2)}

1 (a)
k%l«?\ ¢ < log|S| — H(Vy & Va). (7.1)

(ke + 0 1ogls] @

n
Encoder j picks a codeword in coset (akgI @ M]l'gO/I cak e Sk) indexed by M]l that is typical with respect to py;.
Based on this chosen codeword X™ is generated according to px v, and transmitted.

The decoder is provided with the same nested linear code. Having received Y™ it lists all codewords that are
jointly typical with Y™ with respect to distribution pv,ev,,y. If it finds all such codewords in a unique coset, say
(akgf ® mlgo/I cak e Sk), then it declares m! to be the sum of KM message indices and employs KM decoder to
decode the sum of sources. Otherwise, it declares an error.

As is typical in information theory, we derive an upper bound on probability of error by averaging the error
probability over the ensemble of nested linear codes. For the purpose of proof, we consider user codebooks to be
cosets of nested linear codes.®> We average uniformly over the entire ensemble of nested coset codes. Lower bound

(7.1(a)) ensures the encoders find a typical codeword in the particular coset. Upper bound (7.1(b)) enables us derive

llog|S]|
— <

an upper bound on the probability of decoding error. From (7.1), it can be verified that if H(S; & S3) ~
min{H(V1),H(V2)} — H(V1 @ V»|Y) then the decoder can reconstruct the sum of sources with arbitrarily small
probability of error.

Since the ensemble of codebooks contain statistically dependent codewords and moreover user codebooks are
closely related, deriving an upper bound on the probability of error involves new elements. The informed reader will
recognize that in particular, deriving an upper bound on the probability of decoding error will involve proving statis-
tical independence of the pair of cosets indexed by KM indices (M}, M!) and any codeword in a coset corresponding
to m! # M! @ MJ. The statistical dependence of the codebooks results in new elements to the proof.

Proof: Given n > 0, our goal is to identify a computation code (n,e,d) such that P(d(Y™) # ST & S%) < n for
all sufficiently large n € N. The source sequences are mapped to channel input codewords in two stages. In the first
stage, a distributed source code proposed by Kérner and Marton [18] is employed to map n-length source sequences
to message indices that takes values over S!. The second stage maps these indices to channel input codewords. We
begin by stating the main findings of [18] on which our first stage relies.

Lemma 7.2.3 Given a pair of (S,Wg) of information sources and n > 0, there exists an N(n) € N such that for
everyn € N, there exists a parity check matriz h € S*™ and a map r : S'™ — S™ such that (i) @ < Iﬂféi%;lr")—i—g,
and (ii) P(r(hSY © hSy) # ST @ S3) < 3. [

Given 1 > 0, let h € S be a parity check matrix that satisfies (i) and (ii) in lemma 7.2.3. Let Mjl t=hS} i j=
1,2 be the message indices output by the source encoder. In the second stage, we identify maps p; : St X' ij=1,2

that maps these message indices to channel input codewords. The encoder ¢; : 8™ — X of the computation code is

3This is analogous to the use of cosets of a linear code to prove achievability of symmetric capacity over point to point channels.
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therefore defined as e;(S}') : = 1;(hS}). The second stage of the encoding is based on nested coset codes. We begin

with a brief review of nested coset codes.

An (n, k) coset is a collection of vectors in F' obtained by adding a constant bias vector to a k—dimensional
subspace of F'. If Ao C F7* and A\; C Ao are (n,k+1) and (n, k) coset codes respectively, then q' cosets A\o/A; that

partition Ao is a nested coset code.

A couple of remarks are in order. An (n, k) coset code is specified by a bias vector b" € J; and generator matrices

g€ ]-"é”". If \o € F and A\; C Ao are (n,k +1) and (n, k) coset codes respectively, then there exists a bias vector
T

b" € F' and generator matrices g;y € .7:;”” and go = g € fékﬂ)xn, such that b", g; specify A; and b",

q
go/1
go specify A\o. Therefore, a nested coset code is specified by a bias vector ™ and any two of the three generator

matrices g7, go,/r and go. We refer to this as nested coset code (n, k, l,91,90/1,b").

We now specify the encoding rule. Encoder j is provided a nested coset code (n, k,l, g1, go/r,b}) denoted Ao; /A1
taking values over the finite field S. Let v} (a*, mé) c=adbgr @ mégO/I @b} denote a generic codeword in Ao; /Ar and
cj(mh) - = (v} (a¥,m}) : a* € 8¥) denote coset corresponding to message m}. The message index M} = S} put out
by the source encoder is used to index coset Cj(Mjl- ). Encoder j looks for a codeword in coset ¢(M ]l) that is typical
according to py;. If it finds at least one such codeword, one of them, say U;L(ak,M]l») is chosen uniformly at ran-
dom. p;(M}) is generated according px |y« (-[0f(a®, M})) =TT}, px, v, (|(v} (a*, M}));) and p;(M}) is transmitted.
Otherwise, an error is declared.

We now specify the decoding rule. The decoder is provided with the nested coset code (n,k,l,g1,90/1,0")
denoted Ao /A, where b = b} @ by. We employ notation similar to that specified for the encoder. In particular, let

k

v™(ak,m') : = aFgr @ m'go,; ® b™ denote a generic codeword and c¢(m') : = (v™(ak

* ml) : a¥ € S¥) denote a generic
coset in Ao /A respectively. Decoder receives Y™ and declares error if Y ¢ T (py). Else, it lists all codewords
v™(a®,m') € Ao such that (v*(a®,m!),Y™) € Ty (pviav,,y)- If it finds all such codewords in a unique coset say
c(mt) of A\o/Ar, then it declares r(m') to be the decoded sum of sources, where r : S' — S™ is as specified in lemma

7.2.3. Otherwise, it declares an error.

As is typical in information theory, we derive an upper bound on probability of error by averaging the error
probability over the ensemble of nested coset codes. We average over the ensemble of nested coset codes by letting
the bias vectors B} : j = 1,2 and generator matrices Gr,Go,; mutually independent and uniformly distributed
over their respective range spaces. Let Ap;/Ar : j = 1,2 and Ap/A; denote the random nested coset codes
(n,k,1,Gr,Goy1,BY) : j = 1,2 and (n, k, 1, G1,Go 1, B") respectively, where B" = Bl © By. For ab e Sk, m! e S,
let V*(a*,m}) : j = 1,2, V*(a¥,m') denote corresponding random codewords in Ap;/A; : j = 1,2 and Ao/A;

respectively. Let Cj(mé») r= (Vj"(ak,mé) :af € §*) and C(m!) : = (V"(a*,m!) : a* € S*) denote random cosets
in Apj/Ar:j=1,2 and Ap/As corresponding to message mé» :j =1,2 and m! respectively. We now analyze error

events and upper bound probability of error.
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We begin by characterizing error events at encoder. If gb(mé) D= D akesk 1{(an(ak7m3))eT#2 (pv,)} and €1 :
= {#(hS}) = 0}, then ¢;; is the error event at encoder j. An upper bound on P(e;1) can be derived by following the
arguments in [Proof of Theorem 1][63]. Findings in [63] imply existence of Njo € N such that Vn > Njo, P(ej1) < ¢
if £ >1—H(V).

The error event at the decoder is e; U e3, where €5 : = {Y™ ¢ T% (py)} and

2

€3 = U {(Vn(ak,ml'),yn)GT;'l (PvlerQ,Y)} .
m!#  akeSk

hST ®hSY
In order to upper bound P(e2) by conditional frequency typicality, it suffices to upper bound P((e(5")) ¢ T (px))-
Note that (i) independence of (V}, X;) : j = 1,2 implies the Markov chain X; — V; — V5 — X5, and (ii) the chosen
codeword Vj"(ak,Mjl.) and the transmitted vector e;(S}) = /Lj(MJl») are jointly typical with high probability as a
consequence of conditional generation of the latter. By the Markov lemma, it suffices to prove V" (a*, M]l) 7 =1,2
are jointly typical. If the codewords were chosen independently at random according to [];, pv;, this would fall out
as a consequence of uniformly sampling from the typical set [26, |. However, the generation of nested coset code is
different, and the proof of this involves an alternate route. An analogous proof of the Markov lemma is provided in

proof of theorem 6.2.2 and omitted here in the interest of brevity.

It remains to upper bound P((e11 Uea; Uez)“Nes). In appendix N, we prove that if %logls‘ <log|S|—H(V1 &
Va|Y'), there exists Ny(n) € N such that ¥n > Ny, P(e3) < ¢. Combining the bounds M%‘SI > log |S| — H(V;) and
M < log|S| — H(V; & V2|Y), we note that % <min{H(WV}),H(Va)} — H(V}, @ V2]Y), then the sum of

message indices h(S7 & S¥) can be reconstructed at the decoder. This concludes proof of achievability.

The informed reader will recognize that deriving an upper bound on P(e3) will involve proving statistical inde-
pendence of the pair (C;(hS}) : j = 1,2) of cosets and any codeword V™ (ak, m!) corresponding to a competing sum
of messages ! # h(S?" @ S%). This is considerably simple for a coding technique based on classical unstructured
codes wherein codebooks and codewords in every codebook are independent. The coding technique proposed herein
involves correlated codebooks and codewords resulting in new elements to the proof. The reader is encouraged to

peruse details of this element presented in appendix N. [ ]

It can be verified that theorem 7.2.2 subsumes LCC. In particular the rate region presented in theorem 7.2.2
subsumes the rate region presented in [16, Theorem 1, Corollary 2]. This follows by substituting a uniform distribution

for V1, Va. Therefore examples presented in [16] carry over as examples of rates achievable using nested coset codes.

We now present a sample of examples to illustrate significance of theorem 7.2.2. The reader is referred to [77] for
additional examples that illustrate utility of the coding technique proposed herein. As was noted in [16, Example 4]
a uniform distribution induced by a linear code maybe suboptimal even for computing functions over a MAC with

a structural match. The following example, closely related to the former, demonstrates the ability of nested coset
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codes to achieve a nonuniform distribution and thus exploit the structural match better.

Example 7.2.4 Let S and Sy be a pair of independent and uniformly distributed sources taking values over the
field Fs of five elements. The decoder wishes to reconstruct Sy @5 Sa. The two user MAC channel input alphabets
X1 = Xy = F5 and oulput alphabet Y = {0,2,4}. The output Y is obtained by passing W = X1 @5 Xo through
an asymmetric channel whose transition probabilities are given by py\w (y|1) = pyw (y|3) = % for each y € Y and
py 1w (0[0) = py 1w (2]2) = pyyw(4|4) = 1. Let the number of source digits output per channel use be X\. We wish
to compute the range of values of A for which the decoder can reconstruct the sum of sources. This is termed as
computation rate in [16].

It can be verified that the decoder can reconstruct S1 ®s5 So using the technique of LCC if A < %% = 0.4096.

< 1 log, (3)

< 2 Tog 5 = 0-3413. We now explore the use

A separation based scheme enables the decoder reconstruct the sum if A
of nested coset codes. It maybe verified that pmf

1 Zf V1=T1,V2=T2

4 V1,V
pray (0,2, @1 Bsap) = { © AN (02} (7.2)

0 otherwise .

defined on Fs x Fs satisfies (i), (i) of definition 7.2.1 and moreover a(pvxy) = {R > 0: R < 1}. Thus nested coset

codes enable reconstructing S1 @5 So at the decoder if X < @ = .43067.

The above example illustrates the need for nesting codes in order to achieve nonuniform distributions. However,
for the above example, a suitable modification of LCC is optimal. Instead of building codes over F5, let each user
employ the linear code of rate 14 built on Fo. The map Fy — X; 7 =1,2 defined as 0 — 0 and 1 — 2 induces a
code over F5 and it can be verified that LCC achieves the rate achievable using nested coset codes. However, the

following example precludes such a modification of LCC.

Example 7.2.5 The source is assumed to be the same as in example 7.2.4. The two user MAC input and out-
put alphabets are also assumed the same, i.e., X1 = Xo = F5 and output alphabet Y = {0,2,4}. The output
Y is obtained by passing W = X1 @5 Xao through an asymmetric channel whose transition probabilities are given
by pyiw(ylL) = pyiw(¥l3) = 5 for each y € ¥ and py;w(0|0) = pyjw(2[2) = pyyw(44) = 0.90, pyw (2/0) =
Py w (4]0) = py 1w (0[2) = pyw (412) = pyw (014) = pyw (2]4) = 0.05.

The technique of LCC builds a linear code over Fs. It can be verified that the symmetric capacity for the X1 ®s
Xo(= W) =Y channel is 0.6096 and therefore LCC enables decoder reconstruct the sum if A < % =0.2625. A
separation based scheme mecessitates communicating each of the sources to the decoder and this can be done only if

A< %}Zizg = 0.3413. The achievable rate region of the test channel in (7.2) is a(pyxy) = {R>0: R <0.91168}

and therefore mested coset codes enable decoder reconstruct the sum if A < % = 0.3926.

4This would be the set of all binary n—length vectors
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Example 7.2.6 Let S1 and Sy be independent sources distributed uniformly over {0,1,2}. The input alphabets
X, = &y = F3 is the ternary field and the output alphabet Y = Fo is the binary field. Let W = ix,#x2} and
output Y is obtained by passing W through a BSC with crossover probability 0.1. The decoder is interested in
reconstructing W. As noted in [16, Example 8], W is 0 if an only if Sy &3 252 = 0. Therefore, it suffices for the
decoder to reconstruct S1 @3 2S5. Following the arguments in proof of theorem 7.2.2 it can be proved that S1 @3 2.5
can be reconstructed using nested coset codes if there exists a pmf pvxy € D(WYK) such that H(Sy @3 2S2) <
min{H(WV1),H(Va)} — H(V}, @3 2Ws|Y). It can be verified that for pmf pyxy wherein Vi,V are independently and
uniformly distributed over F3, X1 = Vi, Xo = Va, the achievable rate region is a(pvxy) = {R: R <0.4790}. The
computation rate achievable using SCC and separation technique are 0.194 and 0.168 respectively. The computation

rate achievable using nested coset codes is ?(')‘;7293? = 0.3022.

Example 7.2.7 Let Sy and Sy be independent and uniformly distributed binary sources and the decoder is interested
in reconstructing the binary sum. The MAC is binary, i.e. X1 = Xo = Y = Fy with transition probabilities
PY =0/X; =21,Xo=29) =01 4fxy 29, PV =0/X; =X3=0)=08 and P(Y =0|X; =Xo=1)=009. It
can be easily verified that the channel is not linear, i.e., X — X1 ® Xo — Y is NOT a Markov chain. This restricts
current known techniques to either separation based coding or SCC [16, Section V]. SCC yields a computation rate
of 0.3291. The achievable rate region for the test channel pvxy where in Vi and V, are independent and uniformly

distributed binary sources, X1 = Vi, Xo = V4 is given by {R : R < 0.4648}.

We conclude by recognizing that example 7.2.7 is indeed a family of examples. As long as the MAC is close to
additive but not additive, lending LCC inapplicable, we can expect nested coset codes to outperform separation and

SCC. [77] presents more such examples.

7.3 General technique for computing sum of sources over a MAC

In this section, we propose a general technique for computing sum of sources over a MAC that subsumes separation
and computation. The architecture of the code we propose is built on the principle that techniques based on structured
coding are not in lieu of their counterparts based on unstructured coding. Indeed, the KM technique is outperformed
by the Berger-Tung [64] strategy for a class of source distributions. A general strategy must therefore incorporate
both.

We take the approach of Ahlswede and Han [48, Section VI], where in a two layer source code is proposed. Each
source encoder j generates two message indices M1, Mjo. Mj; is an index to a Berger-Tung source code and Mjq
is an index to a KM source code. The source decoder therefore needs M1, M1 and Mis @ Mo to reconstruct the
quantizations and thus the sum of sources. We propose a two layer MAC channel code that is compatible with

the above source code. The first layer of this code is a standard MAC channel code based on unstructured codes

131



[3, 4]. The messages input to this layer are communicated as is to the decoder. The second layer employs nested
coset, codes and is identical to the one proposed in theorem 7.2.2. A function of the codewords selected from each
layer is input to the channel. The decoder decodes a triple - the pair of codewords selected from the first layer and
a sum of codewords selected from the second layer - and thus reconstructs the required messages. The following

characterization specifies rates of layers 1 and 2 separately and therefore differs slightly from [48, Theorem 10].

Definition 7.3.1 Let D,,(Ws) be collection of distributions pr,1,s,s, defined over Ty x Ta x 8% such that (a) T1, T2
are finite sets, (b) ps,s, = Ws, (¢) Th —S1 — S2 — Ty is a Markov chain. For prg € D,y(Ws), let

Bs(prs): = {(Ri1, Ri2, R2) € R® : Ryy > I(Ty;51|T»), Ri2 > I(T; S2|Th), Ry > H(S1 @ So|T), Ry + Ri2 > I(T35)}

Let Bs(Ws) denote convex closure of the union Bs(prs) over prs € Dyu(Ws)

We now characterize achievable rate region for communicating these indices over a MAC. We begin with a definition

of test channels and the corresponding rate region.

Definition 7.3.2 Let D, be collection of distributions pu,uv,v,v,x,x.v defined on Uy x Us X S X & X Xp X Xy x Y

such that (i) puvx = Pu,vix,PUVaXas (1) Pyixuv = Pyix = Wy|x- For pyvxy € Dg, let Bo(puvxy) be defined

as the set

(Ri1,R12,R2) € R3: 0 < Ryy < I(Uy; Y, U, Vi & Va), 0< Rip <I(Up;Y,Up, Vi @& Va),

Rii+ Rip < I(U;Y, Vi @ V), Rui+ Re < i (VI|U) + H(Ur) — H(Vi @ Va, Ur]Y, Uz)

Ry < i (VIU) = HVI @ V2|V, U), Riz + Ry < i (V|U) + H(Uz) — H(Vy @ Vo, Ua|Y, Uy)
Ri1 4+ Rig + Re < 70 (VU) + HUL) + H(Uz) — H(V, @ Vo, UJY)

where Hpin(V|U) : = min{H (V1|U1), H(V2|Us2)} and
Bc(Wy x ) cocl U Belruvxy)

PUVXY
EDG(WY‘&)

Theorem 7.3.3 The sum of sources (S,Ws) is computable over MAC (X, Y, Wy x) if Bs(Ws) N Bc(Wy|x) # ¢.
[

Remark 7.3.4 It is immediate that the general strategy subsumes separation and computation based techniques.
Indeed, substituting T,U to be degenerate yields the conditions provided in theorem 7.2.2. Substituting V. to be

degenerate yields separation based technique.
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7.4 Concluding Remarks

Having decoded the sum of sources, we ask whether it would be possible to decode an arbitrary (non-additive)
function of the sources using the above techniques? The answer is yes and the technique involves ‘embedding’.
Example 7.2.6 illustrates embedding and a framework is proposed in [77]. This leads us to the following fundamental
question. The central element of the technique presented above was to decode the sum of transmitted codewords
and use that to decode sum of KM message indices. If the MAC is ‘far from additive’, is it possible to decode a
different bivariate function of transmitted codewords and use that to decode the desired function of the sources? The
answer to the first question is yes Indeed, the elegance of joint typical encoding and decoding enables us reconstruct
other ‘well behaved’ functions of transmitted codewords. We recognize that if codebooks take values over a finite
field and were closed under addition, it was natural and more efficient to decode the sum. On the other hand, if
the codebooks were taking values over an algebraic object, for example a group, and were closed with respect to
group multiplication, it would be natural and efficient to decode the product of transmitted codewords. Since, we
did not require the MAC to be linear in order to compute the sum of transmitted codewords, we will not require it

to multiply in order for us to decode the product of transmitted codewords. We elaborate on this in [77].
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Appendix A

An upper bound on P(e{ Ne)

Through out this appendix 7 denotes 7(min{(|X| - [S|)*, (|X| + |S| + Y| = 2) - |X| - |S[}) and V : = Fr. We begin

with a simple lemma. The following lemma holds for any F, and we state it in this generality.

Lemma A.0.1 Let F, be the finite field of cardinality q. If generator matrices G; € ]-'(fx”, Goyr € ]-'éX” and
bias vector B"™ € F' of the random nested coset code (n, k,1,G1,Goyr, B") are mutually independent and uniformly
distributed on their respective range spaces, then codewords V™ (a¥,m!) : = a*G; @ mlGo/I @ B"™ are (i) uniformly

distributed, and (i) pairwise independent. O

The proof follows form a simple counting argument and is omitted for the sake of brevity. The proof for the case

g = 2 is provided in [14, Theorem 6.2.1] and the same argument holds for any field F,.

We derive an upper bound on P(e§ N e2) using a second moment method similar to that employed in [59].

Péna = X X p(TIE) = XX PG resa =0 @

s"€Ts (ps) mteVt sm€Ts (S) mteVt
1 1

< Y ) P ="M =m)P(|gs (5", m') —Eds (s",m')| > By (s",m'))
SW'ET% (S) mtevt
V. (bé n7 l
c TS p( ety ) (A2

2
s"ET%(S) mlepl {E{¢g(3”,ml)}}

where (A.1) is true since ¢% (s™,m!) is a function of random objects G7, Go,r and B™ that are mutually independent

of S, M!, and (A.2) follows from Cheybyshev inequality.
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We now evaluate first and second moments of ¢ g (s™,m!). The expectation of ¢ s (s™,ml) is

n l n( k l n |T§L (V|Sn)‘
Eps(s"m') = > ZP(V(%M):”)ZT»
v ETy (V]s™) akeVk
2
where the last equality follows from Lemma A.0.1(i). The second moment is
2 (.n Iy _ n( k Iy _ ,n n(~k I\ _ ~n
E¢ (s",m') = > > PV MY =0 vi@ak, MY = o)

V" TTETE (V]s™) ot gk evt
2

= Y P(Via", MYy =v")+ > Y P(V(aF, M) =" V@ M) = om)

= akeVk v, " e akﬁ,ke
T’é‘( |s™) TE(V\S") Ve ak;é&k
2 3 ]
2
7+ |1 (V]s7) ‘Tg (V]s")| 7% (zF = 1)
= 4 + 2 ) (A.3)

n 71-277,

where second term in (A.3) follows from Lemma A.0.1(ii). Substituting for first and second moments of ¢s (s™,mb),

we have

|y (vsm)
— 2

Var {qﬁg (s", ml)} (A.4)

T B T

Var{gé%(s",ml)} an—k
< -
b (sn7ml)}2 |T% (V]s™)|

For s" € T%(S) lemma 2.4.2, guarantees existence of N3(n) € N, such that for all n > N3(n), |Tg(V|s")| >
exp {n (H(V]S) — 0)}. Substituting this lower bound in (A.4), we note,

Var{¢g(5"7ml)}< ok )lgexp{—nlog”(:_<1_w+ 5 ))}

2 — n n
E{qﬁg(s”,ml)} |T% (Vs log 7 log

Substituting (A.5) in (A.2), we obtain

pedne < o ntr (5 (12010 5 s

log 7 log 7

From (3.3), we have

k_(l_H(VS)+ 5 )>g—5 117 (A6)

>
n log 7 logm ) = logm — 96logm

where the last inequality follows from choice of §. Combining (A.5) and (A.6), we have P(efNez) < exp {—%} < 1%
for all n > Ny(n).
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By choosing 6 > 0 sufficiently small, £ can be made arbitrarily close to 1 — BVIS) and probability of encoding

’n log 7

error can be made arbitrarily small by choosing a sufficiently large block length. The above findings are summarized

in the following lemma.

Lemma A.0.2 Let S be a finite set, V = F; a finite field and psy, a pmf on S x V. Consider a random nested
coset code (n,k,l,Gr,Go,r, B") denoted Ao/A;, with bias vector B™ € V", generator matrices G € VEX1 and
Goyr € VX1 mautually independent and uniformly distributed on their respective range spaces. Let V™(aF,m!) :
= a*G; ® mlGO/I @ B" denote generic codeword in Ao/A;. For s € 8", m! € V! and 6§ > 0, let ¢s(s™,m!) :

= Yakevk L{(smvr(akmi))ers(s,v)y- The following are true.
(i) The codewords V™ (a*,mt) : a* € V¥ are uniformly distributed and pairwise independent.

(i) For any § >0, s™ € Tg(S), m! € V!, there exists N(8) € N such that for all n > N(§),

P(%(S”,ml)O)Sexp{nlogq<k (1H(V|S) ad ))}

no logg  2loggq

(iti) If (S™, M') € 8" x V! are independent of (Gr,Go,r, B™), then for alln > N(5),

k H g
P(S™ € Ts(S5), ¢5(S", M') = 0) < exp{nlogq (n - (1 B li‘;f) - 21ng>>}'
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Appendix B

An upper bound on P((e; Uey U €5)“ M ey)

As is typical, our achievability proof hinges on independence of transmitted codeword (and hence received vector)

and the contending codewords that are not transmitted. Towards this end, we begin with the following.

Lemma B.0.3 Let V be the finite field of cardinality q. If generator matrices Gy € .7:(;”", Goyr € VIXn and bias
vector B" € Fp' of the random (n,k,l,G1,Go/r, B") nested coset code are mutually independent and uniformly
distributed on their respective range spaces, then any coset is independent of any codeword in a different coset., i.e.,
the collection of codewords (V™ (a*,m') : aF € F}) and V"(a*, m') are independent if m' # . |
Proof: Let v”, € F7 for each aF € F}', and 0" € F}'. We need to prove

P(V™(a*,m") = v :a* € FY Vvi(aF,mh)=0") = P(V"(a",m') = vli :a" € FY)P(V™ (0", m') = o").

If (vgk+dk —u) # (Wl —vli) + (vl — v, for some pair ak, ak € ]—"(f, the LHS and first term of RHS are zero and

equality holds. Else,

PV (a*,m') = vl : a® € Fy, V@, m') = o)

= Pa"Gr=v" —vj :d" e .7:5, Vv (OF,mb) = o, V(08 ) = 0" — vlk)

= P(a"Gr=v" —vj 1 d" € }—f)P(V"(Ok,ml) = o, V(0% ) = 9" — vlh) (B.1)
= P(a*Gp =0l — v 1 a" € FNPV™(0F, m') = o) P(V™(0F,m)) = 0" — v}h) (B.2)
= P(a"Gr=v" — vl :d" € ]-',f, V(0F,ml) = v ) P(m'Goyr + B™ = 9" — vl) (B.3)
= PV™(a" mh) =vl:d" € F)PV"(@" m') =)

where (B.1) and (B.3) follow from independence of G ,/;, B™ and G (B.2) follows from Lemma A.0.1(ii), and the

last equality follows from invariance of the pmf of V" (a*, m!) with respect to a* and m!. [ ]
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We emphasize the consequence of Lemma B.0.3 in the following remark.

Remark B.0.4 If transmitted message M' # 1!, then Y™ is independent of V™ (a*,m'). Indeed

n k Al Anoyn o, my E E C(Ml):(U:kevn:akevk)7
(V ( ) v 7Y - y )_ P (V"(a,k,ml)z’f}”,E(S",Ml)zﬂyl,Yn:y"
(v, €VniakeVk) e X

C(M') = (v, € V™ : a* € VF),

= > P l P(V™(a* ml) = o™) (B.4)
(v EVMiakeVk)anex™ E(S", M) =a",Y" =y"
n_ ,mn
q

We have used (1) independence of V™ (a* m') and C(M') (lemma B.0.3), (2) E(S™ M') being a function of
C(MY) and S™ is conditionally independent of V™(a*,m') given C(M), and (3) Y™ is conditionally independent
of V(a*,m') given E(S™, M) in arriving at (B.4), and lemma A.0.1(i) in arriving at the last equality in (B.5).

We now provide an upper bound on P((€; Uez Ue€3)®Ney). Observe that

P((erUee Uea)* Nea) < P <Ak£w S (@Y € Ty ) )

S50 50 b Sl LTS U RN
mleyl akevk y"
T?LliMl €Ts Té(Vlyn)
2
=X X33 e =Pt =y = 3 ZZZ (B6)
m EVl akeyk yn EVZ akeyk n
Tl £ M ETg To(V|y") " 751\/[’ ET& TJ(V|ZJ”)
kel n n_ ,n
T, PY"™ =
< |Ts (pv v [y™) | P( Y )’ (B.7)
an
y”GT%

where, the two equalities in (B.6) follow from (B.5). Lemma 2.4.2 guarantees existence of N5(n) € N such that for
all n. > N5(n) and y" € Ts(py), [T5(V|y")| < exp{n(H(V|Y) + 30)}. Substituting this upper bound in (B.7), we

H(V|Y) 38 k+1
P ¢ < —nl 1-— — — B.
((e1Uea Ue€z)®Ney) _exp{ n 0g7r< log Slogn - )} (B.8)

conclude

for all n > N5(n).

139



Appendix C

Upper bound on P(elj)

Recall

n 1 n
#;(q", My) : = Z Z L{1(a%)=M;1, (g7, U (0% ), X3 (Mjx,b;x))ETany QU5 X} Li(n) 1= oF {0;(q", M;)}
a®i eU’T bjx Ecjx

and ¢, = {¢;(¢", M;) < L;(n)}. Employing Cheybyshev’s inequality, we have

AVar{¢;(¢", M)}
(E{s;(q", M;)})*

P(e;) = P(oj(q", M;) < L;j(n)) < P(|¢;(q", M) — E{#;(q", M;)}| > %E{qu(q”,Mj)}) <

Note that Var {¢,(¢", M;)} = %+ T + T + T3 — F, where

= I(a®)=M;1,U; (a0 )=u}\ _ n
T = Z Z E : P( X2 (Mjx bjx )=a" =E{¢;(¢", M;)}, (C.1)
a®ieU’i bjx Ecjx (u},z?)
Tan, (U;, X |¢1 )
E E } : I(a®)=M;1,X;(M;x bjx)=x",
T = P J= M1, 23 (M0 Y,
, . ~ Uj(a®7)=u},X;(M;x ,bjx)=Z]
a®i €U by bix Ecyx (U ay),(uy &7 )€
bix#bix  Tany (U; i X519™)
I(a®3)=M;1,1(a )=M;1,U;j(a®F)=u],
TAEEED DD DD DI J (it At B
X (Mjx,bjx)==z} U;(a% )=
a®i,a%i eU’s bjx €c;x (uj,x}), (ﬂ?,x?)e
a 775&&] T2n2(U X ‘ )
T = Z Z Z p (1007 =Mj0 X5 (Myx byx) =} Us (a”) =,
’ n 1(@%)=Mj1,X;(M;x b x )=} ,U; (@ )=aj ) °
a’i,a’i eU?®s bJXJ)JXepJX (u] \T ™), (u] V2 NS
a9 #a% bix#bjx Tznz(U X |‘1 )

Since

P I(a‘J) Mj1,X; (M]X b7x)—93 ,Uj (a J):u;’, _p I(a,’]) M;1,U; (a J): ;" P I(a J) M;1,U; ( ):ﬂ?,
(I(a *9)=M;1,X;(M;x bjx)=2],U; (a% )= ]") B ( Xj(Mjx,bjx)=a} ) ( X;(M;x bjx)=2] )’
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we have 753 < 77, and therefore, we have P(e;) < 4%. Upper bound on conditional probability of jointly
0
typical sequences (Lemma 2.2.3(iii)) and the number of conditionally typical sequences (Lemma 2.4.2), imply existence

of N3(n2) € N, such that for all n > N3(n2)

exp {—nH (X;|Q) + 4nna} |¢; x || Ton, (Uj, X;lq")]

T > s (C.2)
Tl J
7 exp { —2nH (X;|Q) 4 8nny + nH(X;|U;, Q) + 8nna} |ejx|(|ejx | — 1)|Ton, (Uj, X;1q™)]
- mtitn—s;
7 exp {—nH (X;|Q) + 4nne + nH (U;|X,;Q) + 8nma} ;x| Ty, (Us, X;19™)|

> m2(tj+n—s;)

Substituting upper and lower bounds for |T5,,(U;, X;|¢")| (lemma 2.4.2) guarantees existence of Ny(12) € N such
that for all n > Ny(n2), we have

ot logle H(X, H(U,;, X,
P(ey;) < 4€Xp{—n10gﬂ'ﬁj—tj+ og|c;x| _<1_|_ (X51Q) (U, J|Q)+ 812 )]}+

n nlogm log logm log
. , H(U: 1 4
dexp{ —nlogm 5k 1— (U51Q) + 3572 +4expq —n log lejx| _ 32n2| ¢ .
non log ™ log ™ n

Employing bounds on L log‘n#x‘ in (4.11), (4.12) and the definition of §, we have

S n Y

Per;) < dexp{—n[0—ns(1+logm)—8ne]} +4exp{—n[d — 36mn]} +4dexp{—n[d —ns — 32n.]}
< 12exp {—n (5 - W)} (C.3)

for n > N5(n) : = max {N3(n2), Na(n2)}. Before, we conclude this appendix, let us confirm £,;(n) grows exponentially
with n. This would imply €;; C €, and therefore €1; N €, = ¢, the empty set. From (C.1), (C.2), we have

1 n To _ exp{—nH(X;|Q) + 4nn2} |cix ||Ton, (Uj, X;|q"
L) = SE{g(en ) = 2 5 SR LHOGIO) ) e Tan, (0, Xola")

> }exp nlog ﬁiﬁJrlOg\Cj)d - 1+H(Xj|Q) _ H(U;, X5|Q)
2 n o n nlogm log 7 log 7
1 K, — H(X; HWU;, X;

> —expinlogm Sj—Tj—ﬁg—FM— 1+ (X;1Q) _ AU, X;1Q) (C.4)
2 nlogm log ™ log
1

> 2 exp{n[5—ms(1+log )]} (C.5)

where (C.4) follows from (4.11), (4.12) and the choice of (S, Ty, K;, L;j : j = 2,3). With n3 = g5 < 2%, L;(n) grows

exponentially with n if 2¢ > 1 + log .
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Appendix D

Upper bound on P(€] N e3)

In the first step, we derive an upper bound on P(€ Ne€3), where é; = ¢; U ¢, and
€2 = {(qn’ U;(Asz)v U;(ASS),X?(Ml),Xg(ng, BQX)’X?T)L(M3X5 B3X)) ¢ Tn4 (Q, U2a U37X)} . (Dl)

was defined in (4.15). In the second step, we employ the result of conditional frequency typicality to provide an

upper bound on P((e; U e, Ue, Uez)N (€31 Uega Uess)).

As an astute reader might have guessed, the proof of first step will employ conditional independence of the triple
X1, (Ua, X3), (Us, X3) given Q. The proof is non-trivial because of statistical dependence of the codebooks. We begin
with the definition

() = | (") EUS XU X (g7 0 w) € Ta (@) Uy Xj) 2 = 2,3

(qnax?) S Tan(Q7X1)a (qn7ugau37£ ) ¢ T’I’]4(Qa U27 U37X))

Observe that

. N I} (A% ) =M U7 (A7) =03 X (M x By x) =]
PENe)= P(mq My)> LE{6; (" M)} 22,3 X ] (My )= r’f)

(u} ul,z™)

€06(q")
Z P U U U U { I;(a%)=M;1,U} ("7 )=u} X[ (M;jx bjx)=a] A%  =a"7 }
65(q"™,M;)> E{¢;(¢" . M;)},Bjx =b;jx:j=2,3, X[ (M1)=zT
(usy,uf,z™) a2 €US? a®3 €U, bax € b3x €
E@(q") C2x C3X

X (MJX7bJX) w?,2¢j(q",]\/lj)2

I;(a%)=M;1,UT (a®F )=u? >
E{¢;(q M;)}:j=2,3, X" (M1)=a

I (a®i)= Mjl,U;L(aS-i)zu;L A% —a%i

< E E E E E P ; ]X7JX) z7,2¢;(q",M; )> P ( Bjx=b;x
(uf uf 2") a*2€ a®3 € bax € byx € oy (4310} 307 (1 o =23
€O(q") z,{“Z 1,153 C2x C3X
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I;(a%)=Mj1
¢J(qnvM;)Z%E{%](Q",Mj)}) - (D2

I;(a®)= JVI]1,U"(aJ) w3
< § E § § § P x7 (Mwax = 2.3 || (A])’(“g];
n
(u27u3 z")a’2€a®3cbax€Ebsx € X3 (M) Jj=2
o(q™) u*2 u*S C2Xx  C3Xx

Let us now evaluate a generic term in the above sum (D.2). Since the codebooks Cy,Ca,Cs, Ag, Ay are mutually

independent, the probability of the event in question factors as

3

Ui (a®)=u} , X7 (M;x bjx)=a7,\ _ _ Ui (a7)=uj, . _ ’ } ) — n
P (Ij(asj):Mjlij:2737;f(1\}/;1):m?) = P(XT(My) =a0)P (Ij(asj):Mjl =2 3) H P(X;L(MJX’ bix) = zj)

Jj=2

Furthermore, (i) mutual independence of I;(a%) : a® € L{;j 1 j =2,3,Gs, By, By, (ii) uniform distribution of the
indices I;(a®) : a® € Z/I;j :j = 2,3 and (iii) distribution of codewords in C; : j = 1,2, 3 imply

3
Hj:l [T px;1Q(;tlqr)

U (a®)=u} X7 (M;x bix)=z],\ _ N Si\ _ o1 .5
P (e s (i) = PO @) = uf :j = 2.3) St (D.3)
The following simple lemma enables us characterize P(Uj'(a*7) = u} : j = 2,3).
Lemma D.0.5 Let sq,83,n € N be such that sy < s3. Let G : = [GY GST/Q] € F23X" be a random matriz such

that Go € F22*" and By, By € F be random vectors such that Gs, By, BY be mutually independent and uniformly
distributed over their respective range spaces. For j = 2,3 and any a®i € Fp?, let U(a®) : = a® G; @ B} be a random

vector in the corresponding coset. Then P(U'(a®) = uj : j =2,3) = W% [

Proof: The proof follows from a simple counting argument. It maybe verified that for every g3 € F:3*", there

exists a unique pair of vectors by, by € F7' such that a® g; @ b} = u} for j = 2,3. Therefore
| {(gg,bg,bg) € F" M X R x F 1a®g; © b7 = uff for j = 2,3} | = 7%

Now employing the mutually independence and uniformly distribution of G, By, B%', we have the probability of the

event in question to be

[{(g5,08,65) € Fpo"" x Fp x Fca®g; @by = wff for j =23} ame 1
| {(g3,05,05) € Fa>" x Fp x Fp}| musatEn e
| ]
We therefore have
3 n
P(U"(a i)=ul X"(ij,bjx):w?,) _ i iz g (@gelar) Ht 1 Px,|Q(1e|gr) exp { —nH (X2|Q)} (D)
I;(a®i)= ]\/131 1j=2,3, X7 (My)=z7 m2ntta+ts — exp{ 87”72 + nH(Xg‘Q)} 2nttatts :
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Encoders 2 and 3 choose one among the jointly typical pairs uniformly at random. Hence,

3
ASi=q%i I;(a®)=Mj; . 4
jljzp <BjX:ij ¢j(q7l’Mj)Z%E{¢j(qn’Mj)}) - E{¢2(q", M)} E {¢3(¢", M3)}” (D5)
It maybe verified from (C.1) that

2L;(n) = E{¢;(¢", M;)} = 7~ "ejx | exp {—n(H (X;|Q) + 4n2)} [T, Uy, X;lq™)|- (D.6)

Substituting (D.6), (D.5) and (D.4) in (D.2), we have

P(ENe) < exp{n8n2} [ [;=1 px,1Q(1elq:)
up gy [ T2m2 (U2, X2|g™) || Ton, (Us, Xslq™)|
€o(q™)
N exp {16nns — nH (Us, X3|Q)}

< D.7
= 2 et =00 mm, Sion (00

(ug,ug,z™) t=1
€0(q"™)

where the last inequality follows from lower bound on size of the conditional typical set (lemma 2.4.2). We now

employ the lower bound for conditional probability of jointly typical vectors. In particular,

exp {—nH (U, X;|Q) — 4nnz} < [ [ pu,.x, 10 (wse: 2jela:) < exp{—nH (U}, X;|Q) + 4nnz} (D.8)
t=1

for any (uf,uf,2™) € ©(¢™). Substituting lower bound (D.8) in (D.7), for n > Ni(n3), we have

n 3 n
P(EfNe) < Z HPX1|Q(1‘1t|(It)HHPUJ-Xj\Q(thiL’MQt) exp {24nmn2 }
(up uf 2™) =1 j=2t=1
L €6(¢") i
n
< Z HleUngUng\Q(xltaUQt,$2t7u3tax3t|Qt) exp {24nna}, (D.9)
(ug,uz,z™) t=1
L €O(¢") i

where (D.9) follows from conditional mutual independence of the triple X1, (Us, X2) and (Us, X3) given ). We now

employ the exponential upper bound claimed in (2.1) of lemma 2.3.1.1 Under the condition 14 > 475, a ‘conditional

n reality, we need a ‘conditional version’ of (2.1) of lemma 2.3.1. Establishing this only involves substituting the exponential upper
bound stated in lemma 2.3.2 in place of the Cheybyshev inequality in lemma 2.4.1.
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version’ of lemma 2.3.1 guarantees existence of Ng(n4) € N and p > 0, such that for all n > Ng(ny),

n

Z HleUQXQUng\Q(xltaU2t,$2tvu3tax3t|qt) < QGXP{—nBWﬁ} (D.10)
(ugy ugy,z™) t=1
€06(q"™)
to enable us conclude
- Ui
P(& Ner) < 2exp{—n(n’unj — 2m — 2n3logm — 1612)} = 2exp{—n (nzlmi - Qd,s)} (D.11)

for all n > N7(n) : = max{Ng(n4), N1(n3)}.

This gets us to the second step where we seek an upper bound on P((é; U €2)¢ Ne3), where
€3 = {(qnvUQTL(AS2)’Ug(ASS)7X1n(M1)7X;(M2X7B2X) X3 (M3X7B3X) ) ¢T2174(Q X1,U2,Us, X, Y)} (D12)

was defined in (4.16). Deriving an upper bound on P((&; U €2)¢ Ne3) employs conditional frequency typicality and
the Markov chain (Q, Uz, Us) — X — Y. In the sequel, we prove existence of N12(n4) € N such that for all n > Ng(n4),

P(esNes) < 35

If
6((]”) o (u2au3a ’y ) € u2n X u?? X &n X Xn : (U5L7U§l’£n) € T174(U27U3ai‘qn)7
(ugaugaznvgn) ¢ T27I4 (UQ’ U37X7X|qn)
then
P(esnes)= > P(UMAY) =ul, X} (M;x, Bjx) =2} : j = 2,3, X}'(My) = 2], Y" = y")
(uy,ug,z™y")
€0(¢"™)

Uj(A%)=u} X1 (My)=27, n n
Z P(X”(M]X, Bjx)=al 1; 2§>P<X =Y

(uy,ug,z’ Y )
€6(q™)

n
U’{L(AS]‘ ):uv_L X"(Ml):l'"
— J j o1 1»
= E : P (X;”(ij,BjX):m;-‘:j:ZS, I | WXIK(QJ%)
' n pale

(ug,ug,z",y"™)

Uj (A%7)=u} XT"(M1)=z7,
X}L(ij,Bjx):I?:jZQ,?)}

€6(q")
(A%) = X (M) =) T
Un(A%)=u’ X" My)=s,
- Z P ( ]X:B =z}:j=2,3, ) H Y|XU2U3 |$t7U2t7U3t) (D,13)
(ug,ug,z™y") t=1
€0(q")
U/’(L(ASJ'):/U/’/!'L X7(My)=z7
§ J R 10 2 :
S P (X;(NIjX’Bjx):z;";j:Q’?,’ HpY|XU2U3 y |xtvu2t7u3t) (D14)
(uf g 2" =
Ty, (U2,U3,X|q™) T2n4(y|u2 Uz T )
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where (D.13) follows from the Markov chain (Q,Us,Us) — X — Y. Once again, the lower bound on the probability
of conditional typical set (lemma 2.4.1) enables us conclude the existence Ng(n4) € N such that for all n > Ng(ny),

4
Z prgUgUg (Y, |24s uat, ust) < 3

y"e t=1
T2774 (Y\ug' ,ug ,z™)

and therefore P(e§ Ne3) < 22.
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Appendix E

Upper bound on P((€; UeyUe€3)®Mey)

In this appendix, our objective is to derive an upper bound on P((€; Ues U €3)° Neyr). Recall that € = e; Ue,

Un(A J)j 23X"L(M )7 n U’n/ S Y’VL n
(e1UeaUez)Neyg = U U {( (M x By x ) sijm 23;1) T(q )< ale (h)) >€T4n4(U2€9U3,Y17X1\q )}-
a3 U3 1 #My

where

T( n) = (ufufa™yt)e | (uy,ug,z" y1)€Tan, (U2,Us, X, Y1|q"), (ug ,uz 2™ ) €Ty, (Uz2,Us, X|q"™)
T) = Uy xui xx < yp - (uj 2} ) €Tan, (Uj, X;1q"):j=2,3,27 €T2n, (X1]q") )

Employing the union bound, we have

X7 (Mjx,Bjx)=a} Ul (A% )= ;"
P((1UeaUe3)  Neqr) Z Z Z Z P <{I(A i)y=M;1,X] (JV[l)—rl Ug(a°3)= }ﬂef) (E.1)

X1 (ma)=27,Y"=y7 , Mi=my:j= 23

”26 my,m1 (uy ,u3 x" Yyl e (a™,z7)e
Uy® maFmy T(q™) Tan, (U20U3,X11y7,q™)
e evaluate a generic term in the above sum. Definin, a®®) . = {(a*?,a* : 3 a®20f a® a’s
W luat t the ab Defi S (a® 2 a%) € Uy? X Uz® : a®0° & a3 3

where s1 1 = s3 — s9, L°(6%%) : = (U2 xU3*) \ L (a), and

X7 (mjx bix)=x} Ul (a®F)=u} , Mj=m;

E.= { I(a®)=mj; X} (ml) a? Ug(a®3)=a", }
X1 (my)=a7,M1=m1:j=2,3,
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we have

XM (M;x,Bjx)=z" Ur(A%)=ul i i
J JAxT J>7g J Vg™ A% —a i
s5 n ~ 5 ~n c — c Y1 a
P ({I(*AnJ )A:Mjlfi(l (an)n:m?’U@(a v3):u N € - § : E : 2 : P (E N € N { BlszlijIjIQ,S })
X () =21,y =y, My=ma:j=2,3 m2,M3 byx ,b3x (a®2,a"3)
€S (a’3)

c Y[ =y, A% =a®i
LYY Y e(enanliTiren)) e

m2,m3 byx ,bsx (a®2,a°3)

€.7°(as)
Note that
P (Y1n =y N {BJX’£ZJ§%;;2,3}) Wy x Wilz"), (E.3)
P (E Nef N {Bjxgi_;a:;j:m}) =P(E)P (BjXA:lZ;a:;‘j:za‘E N 6?) = P(E) ot (E.4)

Moreover, for (u},u%,zy, x5, x5, y?) € T(q"), (@™, &}) € Tap, (Ua ® Us, X1|y?, q"), we have

P(Mj:mj:j:2)37M1:m1) 'f So S3 ~S3
P(E) < o en{nHCGIQ T HX1Q) 200} if (a%2,a%) € 7(a%), (£.5)
- P(MJ'X:"LJ'X:j:2a37M1:7”1)W)1/L1|£(y?‘£n)1{ﬁ":u§b€9u§“} if (a52 as3) c yc(d83) ’
B exp{n(H (X1 1)+, H(X;1Q)—2070)} !

In deriving the above upper bounds, we have used the upper bound on conditional probability of jointly typical
sequences proved in lemma 2.2.3(iii). We have also employed independence of (triple in the former and pair in the

latter) codewords in the coset code. Substituting (E.3), (E.4) and (E.5), in (E.2), we have

X7 (M;x,Bjx)=a] U (A% )=u] 72782 P(My=m1 )W | (y7|z™)|cax ||esx | # + lian—unaun
P ({I(Asj)Mjl,XT'(Ml)JxiL’UEB(&%)Jﬁ"} N Elc) < 2nttsy Y1‘£3 - [ e for=ug Sug }](E6>
XTI () =27, Y =y, My =m,:j=2,3 ™ exp{n(H(X1|Q)+Z_7»:1 H(XjIQ)72O7]4)} LQ(n)E3(n)

Our next step is to substitute (E.6) in (E.1). Let us restate (E.1) below as (E.7) for ease of reference.

_ X7 (Mjx,Bjx)=a},Uf (A% )=u} .
P((6Uea Ues)® Neyr) Z Z Z Z P ({I(AS y=M;1, X} (M1)= r{”,U@(&S?’)ﬂ"} N €z> (E.7)

4°3¢€ ma,m )€ (An An)e X”(ml)—ml 7Y1"—y? Mi=m;1:j=2,3

s ] 1 'lL ’U. I y u ’Il

U amy  Rgn) Tany (Ua@Us, X [y q™)
We do some spade work before we substitute (E.6) in (E.7). (E.6) is a sum of two terms. The first term is not
dependent on the arguments of the outermost summation in (E.7). Moreover, lemma 2.4.2 guarantees existence of
No(n4) € N such that for all n > Ngy(n4), we have |Ty,, (Us @ Us, X1|y7, ¢")| < exp{n(H Uz ® Us, X1|Y1,Q)) + 8na}.
Substituting this upper bound, the summation in (E.7) corresponding to the first term in (E.6) is upper bounded by

=2 > X Y1|X( Fla”) woa+5s ey ||esx [ P(My = ma) exp{n(H(Uz & Us, X1|Y1, Q))}
i (i e Lam)Laln)  ponstarts exp fn(H(X1]Q) + X5y H(X;1Q) — 28m) |
A ()
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The indicator in the second term of (E.6) restricts the outermost summation in (E.7) to &} € Ty, (X1 |uf ®uy, yT, ¢").
As earlier, note that the second term is independent of Z}'. Once again, employing the lemma 2.4.2, there exists
Nig(na) € N, such that for all n > Nig(na), |Tun, (X1|ud & uf,yf,¢")| < exp{n(H(X:1|Uz & Us,Y1,Q) + 8m)}.
Substituting this upper bound, the summation in (E.7) corresponding to the second term in (E.6) is upper bounded

by
Ty + = Z Z Z W3 x WT1Z") 792 eox ||esx | P(My = my) exp{n(H(X1|Us @ Us, Y1,Q))}
T e (gt La(n)L3(n)  ponttatts oxp {n(H(X1|Q) +Z§:1H(Xj|Q) — 28774)}

ﬁllgéml T(q")

It can be verified that

Yo Wx(ie") < min{|Tag, (Uz, Xalg™)|[Tas (Uz, Xolg™ )| Tan (X11g™)], [T (U, Us, X1g™)[}. - (E8)
(ug,ug 2" yy')€
T(q"™)

Using (E.8) and lower bounds £;(n) : j = 2,3 from (D.6), we have

m* exp{—n(2H (X1|Q) — 8112 — Ry —13) }[Toy, (Xa|q")| _ , 7°° exp{—n(H (X1|Q) — 1272 — Ry — m3)}

7 <2 )
b v exp{—n(H (U ® Us, X1|Y1,Q) + 2814)} ~ “mnrexp{—n(H (U ® Us, X1|Y1,Q) + 2814) }

where the last inequality above follows from upper bound on |T5,,(X1]¢")| (Lemma 2.4.2). An identical sequence of

steps yields

exp{—n(H(X1|Q) — 28ns — Ry —n3)}
exp{—n(H(X1|Uz ® U3, Y1,Q) + 1215)}

for sufficiently large n. Employing the upper bound %2 < S3 + 13, and the choice 71 = 73 = 3%, for sufficiently large

n, we have

P((E1UeaUe€3) Negr) < 2exp{n(28ns + (13 4+ log m)ns + Sslogm + Ry —logm — H(X1|Q) + H(X1,U> ® Us|Y1,Q))}

+2exp{n(28ns + (13 4+ logm)ns + Ry — I(X1; U2 © Us, Y11Q)) }.

Employing the definition of § and 73 = 2

) . 13 4+ log
P((1UeaUe3)’Neqr) < 4dexp {—n {6 — 2814 — n(gdg)} }

for all n > max {N1(n3), No(n4), N1o(n4) }.
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Appendix F

Upper bound on P((€ U €3)° Ney;)

While it seems that analysis of this event is similar to the error event over a point-to-point channel, and is therefore
straight forward, the structure of the code lends this considerable complexity. A few remarks are in order. Firstly, the
distribution induced on the codebooks does not lend the bins le(mjl) :mj1 € M1 to be statistically independent.
Secondly, since the cloud center and satellite codebooks are binned, the error event needs to be carefully partitioned

and analyzed separately.

In this appendix, we seek an upper bound on P((&; Ue3) Ney;) for j = 2,3. Let (€1 Uez)® Neqj = €5, Ueq; Uel,

where
el = U U U { 5(8°9),X;5(M;x,bjx), Y")ET4774(Q U; Vi, Ys), (@"U;(A%), X7 (M;x,Bjx))€ }
4 ’ T2712 (Q Uj, 1)7 ](a ]) mj1, ( Uﬂ (ASJ) X (MJX7 JX)’an)ETZmL (Q,Uj,xj,yj)

mij1#Mj1 g JGZ/{].] b]XEC,X
2 . U U U { (¢",U;(a®7),X;(jx,bjx),Y;")€Tan, (Q,U;,V;,Y;), (¢",U;(A%7), X} (M;x,Bjx))€ }

Caj -7 Tony (Q,U;,X;),1;(a®9)=M;j1, (¢",Uj (A%1), X (M;x,Bjx),Y;" )€T2n, (Q,U;,X;,Y;)
Mix#Mjix ¢%j euff bjx€cjx

e, = U U U U (a%7),X;("jx,0ix), Y ) €ET4ny (Q,U;,V5,Y5), (¢7,U;(A%), X7 (M;x,Bjx))€

4 T2772(Q Uj, X5), 15(a®)y=my1, (¢",UF (A7), X7 (M;x,Bjx),Y]" ) €Ty, (QU;,X;,Y5) f
'mfjl?é ’mJX?é a’i EL{ °j bJXEC]X

: (o eC 1 2 )3 : c 1 2 3 : :
The event of interest is ef M (€;; U eg; Uey;). Since €, N (€1; Ueq; Uey;) contains the above error event, it suffices to
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derive upper bounds on P(e] N €15)> P(ef N €1); P(ef N €1;). We begin by studying P(ef, N €1;)- Defining,

T(q"): = {(u?,x?,yj") € T, (Uj, X5, Y|q") (u?,x?) = Tgnz(Uj,Xj|q")}, we have (F.1)

U;(A%)=ul U, (8% )=a7 ,Mj1=m 1
P(ef Ney;) =P U U U U U 15 (A% Y=, Y] =y} 1 (@)=, Nef
n n
mj1,Mj1 €M1 aJ_ bix (u} ,x7 Y5 )E (4} ,27)€ X3 (Mjx,Bjx)=ai, X (Mjx b ’X) j
mpFig € U € Gx Fg)  Ting(Un X ly}.q™)

Uj (A% )=u} U;(a% )=a] , M1 =mj1
< E g E E g P I (A%)= m:l:Y 7y_] Paes N=mg, o Nep |- (F.2)
mj1,mj1 €M1 @, ; bix (u J,wJ Y5 )E (a},27)e X (Mjix,Bjx)=aj, X} (Mjx, JX):j?
mj1Fm € u € x T(q")  Tang (U %5105 q™)

We now consider two factors of generic term in the above summation. Since X{'(M1), X3'(Mjx, Bsx) is independent

of the collection Uj(ASJ),Uj(dsf),Mjl,Ij(ASJ'),Ij(dsﬂ'),X}‘(MjX,BjX),X]”(MjX7ij) for any (&Si,ij), and Y{* —
(X1 (Ml) X (ij,B ) 1] = 2,3) — (Uj(Asj),Uj(&sj),Mjl,lj(Asj),Ij(&sj),X]n(ij,i)jX)) is a Markov chain, we

have

P(Yj”:

By the law of total probability, we have

UJ(AbJ) u UJ(a J) M_]l =mj i1 U (ll ] —’lL U (a J)—’U. M m7,BjX:BjX
P <¢J( M) > L (n) I;(A° J)_m]lal (a%9) _m]1,> Z Z P ({ ASJ—a 7,15 (a®i)= mJl,I (a*® 7) mj1, }ﬁé?j) +

XM (Mjx ,Bjx)=2], X! (Mjx bjx)= X7 (mjx,bix)=al X (mjx ,bjx )=

Uj (A%7)=u},U; (@Syj )=y, Mj1=mj1 A
0" M) L0 L (A =iy L@ )=, | = P (V] = X3 (Myx, Byx) = ) = 6 (y71a7)
XM (M;x,Bjx)=z] X (M;x,bjx)=%

mix EM;x o5 eu,‘J

Uj(a®i)= u Uj(dsj):ﬁ?,Mj:mj,Bjx:bjx
+ Z Z Z P A% =a%i T3 (@) =mgy, T (6% )=, nes | .
X (mjx,bjx )= X (mjx,bjx)=2" /
mix EM;x g° Jeu, 55 bJXECJX J AR gy VIR0 7
bjx#bjx
Now recognize that a generic term of the sum in (F.2) is a product of the left hand sides of the above two identities.

Before we substitute the right hand sides of the above two identities in (F.2), we simplify the terms involved in the

second identity (involving the two sums). Denoting

Uj(asj ):’U,?,Uj(&sj):ﬁ?,Mj:mj
E':= 1j(a®3)=m;1,1;(a°3 ) =11, , we have,
X7 (myx,bjx)=z},XJ (mjx,bjx)=2}
Uj(a®)=u3 ,U; (a1 )=aj, Mj=m;,B;x=b;x A% —ai
P A%3 =% I;(a®F )=my1,1;(a"7 ) =rn;1, nes | <P (El) P(
X;L(mjx,bjx)ZJZ;L,X;L(ijﬁjx)::f? 7 BjX:ij

P = P (e e Y e (G ) P (T

X”(mJX7 jX) 37” Xn(mJX7 ]X) Uj(asj):u]L Bszbjx

E'N elc) where,
J

1 _ 1 _ 2 [
ETN egj) =5 = Eaa i S
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Let us work with P(E'). If j; # mj; and a% # a®, then lemma 2.2.3(iii) guarantees

P(Mj=m;) exp{—n(2H(X;|Q))} e q )
P ( Mj=m;,I;(a’i)=m;1,I; (asjﬁ):mﬂ, ) (U"(a 3 )= J) 2T exp{—ndns—nsna} if b]X 7& b]X
X7 (myx bix)=z], X (mjx,bjx)=&" Uj(a®i)=u} | = P(M;=m;) exp{—n(H(X;|Q))}

—Intor; otherwise.

J exp{—ndnz}

Substituting the above observations in (F.2), we have

P(M; = mj)ex 2nH(X;|Q
HCAEDED DD VDY Z > 0(yilas) > 25”2” eXp{) ni?{z —n877(4}£ ()}) i

m;EeM; mjiFEmy1 a®iLa J_ bix,bjx (uy JJ BSIS (u?,;r?)e
a%92a g TG Tan (U Xlypa®)
: P(M; = my) exp {—nH(X,|Q)}
n|,.n J J J
T Z Z Z Z Z 0 (vj127) Z 242 exp{—ndn YL, (n)
miEM; Mji1#Emi1 a®3,6° bjx€cix (uf @]y} )€ aje I
a®d £a% T(q") Tan, (U7 97 ,q")

We now employ the upper bound on cardinality of the conditional frequency typical sets Ty, (U;, X;|yj,¢") and
Ty, (Ujlz%, 4y}, ¢"). There exists Ni1(n4) € N such that for every n > Ni1(n4),

Tana (U5, X;lyj, a")| < exp{n(H(U;, X;[Y;, Q) +8n4)},  [Tan, (U]}, y5', q")| < exp{n(H(U;|X;,Y;,Q) + 8m4)},

for any (27,47, q") € Tay, (X;,Y;, Q). Therefore, for n > Ny (n4), we have

P(M; = my) exp {—2nH (X;]Q) + n16n,}
P(El N 643 Z Z Z Z Z yg \x 720420 exp{—ndiy — nH(U;, X;]Y;, Q)1 £, (n) +

mJEMJ Mj17#m;1 a 7,4 7_ bjx, X (uJ 7;5] Y5 )E
S5 i
a ;éa bjx#bjx T(q™)

P(M; = m;) exp{—nH(X;|Q) + 8nna}
22 2 2 2009 e ey
i s 0 s by (7 AT T i exp{—ndn, — nH(U;|X;,Y;,Q)}L;(n)
a%i#a’s T(q")

Z Z Z Z Z P(M; = m;) exp {—2nH (X;|Q) + n16n4} i
2n+2t]- _ _ . . . .
mJGM i R et s i exp{—ndny —nH(U;, X;|Y;,Q)}L;(n)
a J#a e ix#bix Tan, (Uj, X |q ")

DD DD DD > P(M; = mj) exp {—nH (X;|Q) + 8nna}
2n+2t; _ — i1Xi, Y5 (n)”
T s bt e T eXp{ n4772 nH(Uj|X]vY]vQ)}£J (n)
a®i #£a° Tany (Us,X51q™)

Substituting the lower bound for £;(n) from (D.6) and noting that the terms in the summation do not depend on

the arguments of the sum, for n > Ny1(n4), it can be verified that

P(ezcj 06411]’) < o7 i exp {—nH (X;|Q) 4 8nny + 4nnz} < exp{—nH (X;|Q) + 8nna} N 1)

mexp{—nH(U;X,,,, Q) \exp{-nH(X,]Y;.Q) —nK,}
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Finally, substituting the upper bound on %ﬂ in (4.11), 6 and the choice ny =y =13 = we have

2d7

P(ef, Neyy) < 2exp{—n[(logm — H(U;|X;,Y},Q)) — Sjlogm — (n3log 7 + 814 + 41)] }+
+  2exp{—n|(logm + H(X;|Q) — H(Uj;, X;[Y;,Q)) — (Sjlog 7 + K;) — (n3log 7 + 1614 + 412)]}

< dexp{-n[5 — (n3logm + 16n, + 8n2)]} < dexp {—n (5 - ("(8*‘2}10557” + 16774)> } (F.5)

for n > Ni1(n4).

We follow a similar sequence of steps to derive an upper bound on P(ej;). Defining T(¢") as in (F.1), we have

. 9 X7 (myx bix)=27,U; (a%)=a} Y] =y} .
P(ef, Ney;) =P U U U U U Li(A%)=1;(a"7) =M1, M;x=m;x, ¢ M€
' A on =n X" M;x, A%T)=
mix,mijxEM;x a 7_ bix (u]7x]7y] Ve (ar,a7)e (M;x,Bjx)=z},U;( )=u}
mix#Emix €U €cix  F(qr) Tang (U, X lya™)

X (fyx,bijx)=27,U;(a%)=a7,Y " =y?
SIS S P A = M, b€ | (F.6)
8. J
nihye XM (Mjx,Bjx)=a7,U; (A% )=u

mJX,mJXEMJx a1 bix (ujalyl)e (a3 ,&7

mix#Fmix €U, 7 ecix T(q )y Tang (U, X51y5.4")

We now consider two factors of a generic term in the above sum. Since X7'(M1), XJ'(M;x, B;x) is independent of the
collection X”(mjx,gjx),U (a%7), I;(A%), 1;(a*), Mjx, X7 (Mjx, Bjx),U;(A%) for any (a%,b;x) as long as m;x #
Mjx, and Y" — (X7 (M), X7 (M;x, Bjx) : § = 2,3) = (X] (hjx, bjx), Uj (%), 1;(A%), [;(a%), M;x, X} (M;x, Bjx),

U;(A?%)) is a Markov chain, we have

X;L(mjx,ajx):j;,Uj(a%):a; .
1 (A%)=1;(a")=M;y Myx=myx, o O | =P (Y] =i | X} (M;x, Bjx) = o) =0 (y] |2}) -

P Y'V]n - y;L n
X (MJX ng) T U (A J)_u

By the law of total probability, we have

X7 (m]X,JX) &7,U;(a% )=a} ™ (yx,bix )= &7,U; (6% )=a},A% =a®i
P | Q 1,(A%)=1,(a" ) =M1 M, x =m) x., Nef | = Z Z P 1;(@"9)=M ;1 My =m; By x =b;x Nef,
J

X"(MJX,BJX):a:;‘,Uj (A%)=u mjr €M1 byx €cix Xj (mjx,bjx)=z7,U;(a°)=u}

(g x by x ) =27 ,U; (0% )=a],A% =a®

+ I(aJ =1;(a%)=M;1,M;=m;,B;x =b;x Nef | .

” J VR 3 lj
m;1EM; 1 b]XEC]Xa]eMjJ X7 (mjx,bjx)=a} U;(a’)=u}

a®i #a%i

Now recognize that a generic term of the sum in (F.6) is a product of the left hand sides of the above two identities.

Before we substitute the right hand sides of the above two identities in (F.6), we simplify the terms involved in the
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second identity (involving the two sums). Denoting

I;(a®i)=1;(a"7)=m 1, Mj=m; , We have,
X (mjix,bix) wJ7UJ(a I)=u”

X;L(Tﬁ‘jx,l;jx)iiy,l]j(a\]):’LLj ,A'J:a'J 9 ASi—qai
P { 1(a%)=1;(a% )=mj1,M;=m; . B;x=b;x ¢ €] | < P(E )P(

n n E n Bjx=b;
X]» (mjx,bjx):wj ,U]-(a J):u]- §xX X

2 {Xf(mjxvl;jX)—f??vUj(ﬁsj)A

EQme;),
J

where P (ASJ' =a%,Bjx = bjx|E*N efj) = le(n). Let us now evaluate P(E?). For mj;x # mjx, lemma 2.2.3(iii)
guarantees

X7 (i by )= U (@°9) =0, " " (a%3)=u? (a3 )=m;
P I;(asj)=Ij(&5-7);m11,1\{1j=7nj]- P(M] — m])P (X (jx, bJX)—IiL) P (UJ(AS‘) AJ) P (I](? ‘)_m‘yl)
X7 (mjx bjx)=x3,U;(aF )=u} ’

X (mjx,bjx)=z U;(a°3)=a} I;(a%i)=mj1

P(Mj=m;)exp{—2nH(X;|Q)} _ 7

— 7" exp{—dnnz—8nns} B
POMy=my) exp{=20H(G1Q)} ¢ s, 4 as;

if a5i J

777 o {—dnns—8nna} a® #a

Substituting the above observations in (F.6), we have

P(M; = m;) exp{—2nH(X;|Q)}
P(ef. N 9
CREDENDY oo > D ) Z 7t exp{—ndns — n8ny }L;(n) "
IEM; Ty A3 by 47T € (] 25 0 )€ i
U S b

P(M; = mj)exp{—2nH(X;

2n-+2t; 4 —n8 E
T 7 EXP—N4n2 — NoTj4
mGEM; M x #FMX byx bix a®i aJeuJJ(uJ T 7y,)€ (uJ 27)€E {- } ( )
€cjx a J;éa J T(q”) T4774(UJ5X Iy] sq )

We now employ the upper bounds on |Tyy, (X;lu?,y},¢")| and |Tuy, (Uj, X;ly7, ¢")|. There exists Ni5(m) € N
such that for all n > Nis(ma), [Tan, (X;|uf,y},q")| < exp {n(H(X;|U;,Y;, Q) + 8na)} and |Tuy, (U, X;ly7, ¢")| <
exp {n(H (Uj, X;|Y}, Q) + 8na)} for all (uf,y7,q") € Ty, (U, Y}, Q). For n > Ni5(ns), we have

rind) < Y Y Y Y Y= mlen (0G0)

myEM; Ty x £mx bjxyb @ ]E (u;L7@7t yJ e eXP{—n4772 — n16774 — TLH(Xj|Uj7 }/jv Q)}L] (’I’L)
€cjx U T(q")
Y Y T Y S TR = m e A Q)
J J 4ne — nlbny — nH £
mEMijximJXbJXﬁgXaJaJGZ/{]( ;‘ ;‘JJ;‘)E eXP{ nang T 1074 n ( 7 ]‘ J’Q)} j(n)
€cix a®i #a°i T(q )
SDIED DS Z AP, =my)ep {(—2H(X;1Q)}
mJE/Vl mjx#mjx b,nyane (u} ¥ exp{ n4172—n16774—nH(Xj| Js J7Q)}‘Cj(n)

€Cix U Tay, (U, X |q )
n Z Z Z Z Z 7T72n72t7P(Mj = mj) exp{—?nH(XﬂQ)}

N - . — exp{—ndny —nlbn, —nH(X;,U;|Y;,Q)}L;(n)
My €M G XFMGX byxc byx a®i @i eu;]  (ufai)e { (X5, U515, Q)3 £5(n)
€eix  goiza®s Tann (U, X50")
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Substituting the lower bound for £;(n) from (D.6), we have

=m;) exp{—nH(X; |Q) + nl6ny}
P(e&f Nex) < 2 J +
’ ’ mg/l] 77LJ)§”]X b])(ZbX G,ZG ﬂ-SJ eXp{ n87]2 N nH(X | J’ J, Q)}‘C]X|
€cix U 29

Yy Yy Apmmir vew i, [0 nion
n+t; _ _ IV .

miEM M xFMiX bix bix a®i 4 i e, > o exp{ 82 nH(X], UJ|YV]7 Q)}|CJX|

€cjx

anéaJ
<2y ¥ ¥ —Tg;)expl{q ;H(X i|1Q) +n16na}
MM, XX by x g eXp{ n8ny —nH(X;|U;, Y, Q)}esx]
€cjx

49 Z z Z P(M; = mj)m® exp{—nH(X;|Q) + nl6n.}

+t; _ _ . Y. .
mjEM; Mmix#m;x p ™ JeXp{ n8n2 nH(XWUJlY],Q)}lCJX'

ixbix
€cjix

IN

5 Z Z P(M; =m;j)exp{—nH(X;|Q) + nl6n}
EM T ) eXp{ 7’L8’I]2—’I'LH(X| R ]7Q nKJ}
mj 3 MGX FMyx

49 Z Z P(M; = m;)m% exp{—nH(X;|Q) + nl6n.}
7 mtti exp{—n8ny — nH(X;,U;|Y;,Q) — nkK;}
my €My Ty xFmx

2exp{—nH(Xj|Q)+nLj+n773+n16774} 1 exp{nH (U;|Y;,Q)}
~ " exp{—n8n — nH(X;|U;,Y;,Q) — nK;} Tt —s;

For n > Nig(n) : = max{N15(n4), N12(n2), N1(n3)}, substituting (i) the upper bound on % in (4.11), (i) §, and the
choice g = n3 =

2—0,, we have

P(ef Neq;) < 2exp{-n(I(X;:U;,Y5|Q) — K; — Lj — [9n3 + 1614])}

log m+H (X K;+L;
+2exp {—n [(GRED) — (678 owr) — 10 +losmms + 161} |

< 4exp{—n<§—( (97;10”)“6 ))} (F.7)

We are left to study P(e; ;)- Defining T(¢") as in (F.1), and

myx,bjx )=z}, U;(a’F)=u} , M;=m;

X7 (hyx,bix)=a],U; (6% )y=a]
3 55 AN
E° .= I;(a®i)=mj1,1; (6% )=1n;1
X7
J

the union bound yields

P(ef N e P o A) = NE3Nes (F.9)
l; 4,] Yi'=y;,Bjx=bjx L '
ML My XX 63,65 by by (uf YT e (aj,27)€e
71;£m]1 m])(;ém7x a ]7£a, J T(qn) T4774(Uj,Xj|y;‘,q")
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As earlier, we consider a generic term in the above sum and simplify the same. Observe that

P (Yj” — {gj;&;} nE*N efj)

P (Y] =y} | X} (Myx, Bjx) = «}) =: 0 (y|a}) .
P({#znEng)

J
PP ({f2= ) n )
2n+2t; exp{—4n772 - 871774} ‘Cj (n) '

IA

Substituting the above observations in (F.9), we have

PNy X X X S i) ¥ g i, 9)

2n+2t; . ’
A ~ — - = s iexp{—4nns — 8nns}tL;i(n
my1,iy myxiyx o at1,a% by by (u]hEg Yl )€ (ay,27)e { K g } ]( )
mj1FEM1 myx FEix 6% #a’ 7(q™) Tany (U X197 0"

There exists N15(n4) € N such that for all n > max {N12(n2), N15(n4) }, we have

| Tany (Uj, X;1y5 . q")| < exp {n(H(Uj, X;1Y;, Q) + 8na)} for all (y7',q") € Toy, (Y5, Q)

and hence

722 P(M; = my) exp {—2nH(X;|Q)}
Pl N3 < j j J
(Elj 64J) - Z Z gzg Z Zn exp{—ndns — nlbns — nH(X;,U,;|Y;, Q)}L;(n)
MG MG XX att LAt by by (ufha)e
mj1#mM 1 mix #Mmix a’i #a%i Tan, (U, Xjlq™)
< 9 Z Z % P(M; = m;) exp{—nH(X,|Q) 4+ nl6ns}
a mj1,Mj1 Mjx,Mjx 7Tn+tj eXp{—n8n2 - TLH(X]-, UjD{jv Q) - nKJ}

mj1F#Mm 1 myx #M;ix

27rsjP(Mj =m;) exp{—nH(X,|Q) +nlbns +nL;}

<

— mrexp{—n8n — nH(X;,Uj|Y;, Q) — nK; —nns}
logm+H(X;|Q)— K;+L;+ 9n3+16

< 2€Xp{—n [(t}_%()z’U(A{/JI?Q)) ) - (SJJ log]7r> - (-ﬁf(;gﬂ;]:)}}

<

soss {5 (150 4 16,))). 0

We now collect all the upper bounds derived in (F.5), (F.7) and (F.10). For n > max {N14(n), N16(n)}, we have

P((& Ues)® Negy) < 10exp {n (a - (’7(9;0”) + 16n4>)} (F.11)
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Appendix G

Characterization for no rate loss in

PTP-STx

We now develop the connection between upper bound (5.54) and the capacity of a point to point channel with
non-causal state [7]. We only describe the relevant additive channel herein and refer the interested reader to either
to [7] or [26, Chapter 7] for a detailed study. The notation employed in this section and appendix H is specific to
these sections.

Consider a point to point channel with binary input and output alphabets X = ) = {0, 1}. The channel transition
probabilities depend on a random parameter, called state that takes values in the binary alphabet S = {0,1}. The
discrete time channel is time-invariant, memoryless and used without feedback. The channel is additive, i.e., if S, X
and Y denote channel state, input and output respectively, then P(Y = z @ s|X = 2,5 = s) = 1 — §, where @
denotes addition in binary field and ¢ € (0, %) The state is independent and identically distributed across time with
P(S=1)=¢€€(0,1).! The input is constrained by an additive Hamming cost, i.e., the cost of transmitting 2™ € X"
is >, l{z,—1y and average cost of input per symbol is constrained to be 7 € (0, %)

The quantities of interest - left and right hand sides of (5.63) - are related to two scenarios with regard to
knowledge of state for the above channel. In the first scenario we assume the state sequence is available to the
encoder non-causally and the decoder has no knowledge of the same. In the second scenario, we assume knowledge
of state is available to both the encoder and decoder non-causally. Let Cr(7,d,€),Crr(7, 0, €) denote the capacity of
the channel in the first and second scenarios respectively. It turns out, the left hand side of (5.63) is upper bounded
by C(7,0,¢) and the right hand side of (5.63) is Crr(7,d,€). A necessary condition for (5.63) to hold, is therefore

Cr(7,0,€) = Crg(T,d,€). For the point to point channel with non-causal state, this equality is popularly referred to

I Through appendices G,H we prove if 6,7 € (0, %) and € € (0,1), then ar(7,n,€) < hy(7*n) — hp(n). This implies statement of lemma
G.0.13.
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as no rate loss. We therefore seek the condition for no rate loss.

The objective of this section and appendix H is to study the condition under which Cr(7,d,¢) = Crr(7,9,¢€).
In this section, we characterize each of these quantities, in the standard information theoretic way, in terms of a
maximization of an objective function over a particular collection of probability mass functions.

We begin with a characterization of Cr (7,0, €) and Crg(7,d,€).

Definition G.0.6 Let Dr (7,9, ¢) denote the set of all probability mass functions pysxy defined onU X S x X x Y
that satisfy (i) ps(1) = €, (ii) py|xsu(r @ slx,s,u) = pyxs(x ® s|lr,s) = 1 -4, (ii) P(X = 1) < 7. For
PUSXY S DT(T7 (5, 6), l@t O[T(psty) = I(U, Y) — I(U, S) and OzT(T7 5, E) = sup OéT(psty).

pusxy €Dy (7,0,¢)
Theorem G.0.7 Cp(7,6,¢) = ar(r,d,€) -
This is a well known result in information theory and we refer the reader to [7] or [26, Section 7.6, Theorem 7.3] for

a proof.

Definition G.0.8 Let Drg(7,0,€) denote the set of all probability mass functions psxy defined on & x X x Y
that satisfy (i) ps(1) = €, (i) py|xs(z @ slx,s) = 1 =96, (i) P(X = 1) < 7. For psxy € Drgr(7,0,¢), let

arr(psxy) = I(X;Y|S) and arg(r,d,¢€) = sup arr(psxy)-
psxy €EDrr(7,0,€)

Theorem G.0.9 Crg(7,9,¢) = argr(T,d,¢€) [
This can be argued using Shannon’s characterization of point to point channel capacity [1] and we refer the reader

to [26, Section 7.4.1] for a proof.

Remark G.0.10 From the definition of Cr(t,0,€) and Crr(T,0d,€), it is obvious that Cr(r,6,€) < Crr(T,d,€), we
provide an alternative argument based on theorems G.0.7, G.0.9. For any pusxy € Dr(7,0,¢€), it is easy to verify the
corresponding marginal psxy € Drr(T,d,€) and moreover ar(pusxy) = I(U;Y) —I(U;S) < I(U;YS) - I(U;S) =
[(U;Y|S) = H(Y|S) - H(Y|US) < H(Y|S) - HY|USX) £ H(Y|S) — H(Y|SX) = I(X;Y|S) = arg(psxy) <
Crr(T,0,€), where (a) follows from Markov chain U — (S, X) =Y ((ii) of definition G.0.6). Since this this true for

every pusxy € Dr(7,d,€), we have Cr(7,d,€) < Crgr(T,d,€).
We provide an alternate characterization for Crg(r, 9, €).

Lemma G.0.11 Forpysxy € Dr(7,0,¢), let Brr(pusxy) = I(U;Y|S) and Brr(T,d,€) = sup  Brr(pusxy)-
pusxy €Dr(7,6,€)

Then BTR(T,(s,G) :CVTR(T,(57E) :CTR(T,(S,E), 1

Proof: We first prove Srg(7,0,€) < argr(T,d,€). Note that for any pysxy € Dr(7,6,€), the corresponding marginal

psxy € Drgr(7,6,¢). Moreover, Srr(pusxy) = [(U;Y|S) = HY|S) — HY|US) < HY|S) — HY|USX) @

H(Y|S) - HY|SX) = I(X;Y|S) = arr(psxy), where (a) follows from Markov chain U — (S, X) — Y ((ii) of

definition G.0.6). Therefore, Srr(7,d,€) < argr(r,d,€). Conversely, given psxy € Drg(7,d,€), define Y = {0,1}

and a probability mass function qusxy defined on U x & x & x Y as qusxy (u,s,2,y) = psxy (5 T,¥) 1 fu=a}-
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Clearly gsxy = psxy and hence (i) and (iii) of definition G.0.6 are satisfied. Note that qusx(z,s,z) = psx(s,x),
and hence gy|xsu(ylz,s,¥) = py|xs(ylr,s) = Wy|xs(y|z,s). Hence qusxy € Drr(7,d,¢). It is easy to verify
Brr(qusxy) = arr(psxy) and therefore Brr(T,d,€) > argr(r,d,€). [ ]
We now derive a characterization of the condition under which Crg(7,4d,€) = Cr(7,d,€). Towards that end, we first

prove uniqueness of the pmf that achieves Crr(7, 9, €).

Lemma G.0.12 Suppose psxy,qsxy € Drr(7,d,¢) are such that arr(psxy) = arr(gsxy) = Crr(T,d,¢), then
Psxy = qsxy. Moreover, if arr(psxy) = Crr(7,6,¢€), then psx = pspx, i.e., S and X are independent. [
Proof: Clearly, if gsxvy € Drg(7,0,€) satisfies gsx = qsqx with ¢x(1) = 7, then arr(gsxy) = ho(7 % 6) — hp(9)
and since Crr(T,0,€) < hy(T % 6) — hyp(5),2 we have Crr(T,0,€) = hy(T % ) — hy(5). Let psxy € Drr(7,d,¢) be
another pmf for which arr(psxy) = hy(7 * §) — hs(d). Let xo : = px|s(1]0) and x1 : = px|s(1]1). arr(psxy) =
I(X;Y|S)=HY|S)-H(Y|X,S)=H(X ®S®N|S) — hy(d). We focus on the first term

HX®S®&N|IS)=(1-aHX®0®BN|S=0)+eH(XB1aN|S=1)
= (1-=e)hp(xo(l —=98)+ (1 —x0)d) + ehp(x1(1 —9) + (1 — x1)d)
< hp((I—€)xo(1 —=6) + (1 —€)(1 —x0)d +exa(l —3d) +e(l —x1)d) (G.1)

= I(px(1)(1=0) + (1 =px(1))8) = he(0 +px (1)(1 = 20)) < hy (0 +7(1 = 20)) = hy(7 % 0)  (G.2)

where (G.1) follows from concavity of binary entropy function hy(-) and inequality in (G.2) follows from § € (0, ).
We therefore have argr(psxy) = hy(7 % §) — hy(0) if and only if equality holds in (G.1), (G.2). hy(-) being strictly
concave, equality holds in (G.1) if and only if € € {0,1} or xo = x1. The range of € precludes the former and
therefore xo = x1. This proves psx = pspx and px (1) = 7. Given psxy € Drg(7,d,€), these constrains completely
determine pgxy and we have psxy = qsxv. [ |

Following is the main result of this section.

Lemma G.0.13 Crg(7,d,€) = Cr(7,6,¢€) if and only if there exists a pmf pusxy € Dr(7,0,€) such that
(i) the corresponding marginal achieves Crr(T,0,€), i.e., arr(psxy) = Crr(7,0,€),
(ii)) S =Y —U is a Markov chain.

(iii) X — (U,S) =Y is a Markov chain.

[

Proof: =~ We first prove the reverse implication, i.e., the if statement. Note that Crr(7,0,€) = arr(psxy) =

I(X;Y]S) = H(Y|S) — H(Y|XS) Y H(Y|S) - H(Y|XxSU) 2 H(Y|S) - HY|US) = [(U;Y|S) = I(U;YS) —

2This can be easily verified using standard information theoretic arguments.
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I(U; S) © I(U;Y)—I(U;S) < Cp(r,9d,€), where (a) follows from (ii) of definition G.0.6, (b) follows from hypothesis
3) and (c) follows from hypothesis 2). We therefore have Crgr(7,d,€) < Cr(T,0,€), and the reverse inequality follows
from remark G.0.10.

Conversely, let pysxy € Dr(7,6,€) achieve Cr(7,6,¢), ie., ar(pvsxy) = Cr(7,d,¢). We have Cr(t,J,¢€)

—

ar(pusxy) = I(U;Y)—I(U; ) € I(U:YS)~I(Us S) = I{U Y|S) = H(Y|S)-HY|US) € H(¥|s)-H(¥|USX) £

HY|S)-H{Y|SX)=I1(X;Y|S) = arr(psxy) < Crr(7,9d,¢), where (a) follows from Markov chain U — (S, X) -V
((ii) of definition G.0.6). Equality of Crr(7,d,¢€),Cr(7,J,€) implies equality in (b), (¢) and thus I(U;S]Y) = 0 and
H(Y|US) = H(Y|USX) and moreover argr(psxy) = Crr(7,6,€). [ |

For the particular binary additive point to point channel with state, we strengthen the condition for no rate loss

in the following lemma.

Lemma G.0.14 If pysxy € Dr(7,d,€) satisfies
(i) S—Y —U is a Markov chain.
(ii)) X — (U,S) =Y is a Markov chain.

then H(X|U,S) =0, or in other words, there exists a function f:U x S — X such that P(X = f(U,S))=1. [
Proof: We prove this by contradiction. In particular, we prove H(X|U, S) > 0 violates Markov chain X — (U, S)-Y.

It H(X|U,S) > 0, then H(X @& S|U,S) > 0. Indeed, 0 < H(X|U,S) < H(X,S|U,S) = H(X & S,S|U,S) =
H(S|U,S)+H(X®S|U,S) = H(X®S|U,S). Since (U, S, X) is independent of X ®S®Y and in particular, (U, S, S®
X) is independent of X & S®Y, we have H((X®S)®(X@eSaeY)|U,S) > HXaSaY|U,S) = hy(6) = HY|U, S, X),
where the first inequality follows from concavity of binary entropy function. But (X @ S)® (X ®S@Y) =Y and
we have therefore proved H(Y|U,S) > H(Y|U, S, X) contradicting Markov chain X — (U, S) —Y. ]

We summarize the conditions for no rate loss below.
Theorem G.0.15 Crr(7,d,¢) = Cr(7,6,¢€) if and only if there exists a pmf pusxy € Dr(7,d,€) such that

(i) the corresponding marginal achieves Crr(T,0,€), i.e., arr(psxy) = Crr(T,d,€), and in particular S and X are

independent,
(ii)) S =Y — U is a Markov chain.
(i) X — (U, S) =Y is a Markov chain,

(iv) H(X|U,S) =0, or in other words, there exists a function f:U x S — X such that P(X = f(U,S)) = 1.

160



Appendix H

The binary additive dirty PTP-STx

suffers a rate loss

This section is dedicated to proving proposition 1. We begin with an upper bound on cardinality of auxiliary set

involved in characterization of Cp(7,d, ¢€).

Lemma H.0.16 Consider a point to point channel with state information available at transmitter. Let S, X and
Y denote state, input and outpul alphabets respectively. Let Wg, Wy |xs denote pmf of state, channel transition
probabilities respectively. The input is constrained with respect to a cost function k : X x S — [0,00). Let Dp(1)
denote the collection of all probability mass functions pyxsy defined onU x X x S x Y, where U is an arbitrary set,
such that (i) ps = Ws, (i) py|xsu = py|xs = Wy|xs and (i) E{x(X,S)} < 7. Moreover, let

Dy (r) = {PUXSY €Dp(r) : |U| < min{\x|-|‘rfslil-s:9|‘ﬁz|—2}}'
For pyxsy € Dr(7), let a(puxsy) =1(U;Y) = I(U;S). Let

ar(r) = sup  a(puxsy), or(r)= sup  a(puxsy)-
puxsy €D (T) puxsy €Dr(r)
Then ar(t) =ar(T). -
Proof: The proof is based on Fenchel-Eggleston-Carathéodory [78], [26, Appendix C] theorem which is stated here

for ease of reference.

Lemma H.0.17 let A be a finite set and Q@ be an arbitrary set. Let P be a connected compact subset of pmfs on
A and pao(-lg) € P for each g € Q. For j = 1,2,--- ,d let g; : P — R be continuous functions. Then for every
Q ~ Fq defined on Q, there exist a random variable Q ~ o) with |Q| < d and a collection of pmfs pA@(-@ e P,
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one for each q € Q, such that

[ ssoaeal)iFola) = Y 0:(pag(@)rg@.
Q o)
[
The proof involves identifying g; : 5 = 1,2--- ,d such that rate achievable and cost expended are preserved. We first
prove the bound |U| < |X| - |S].
Set Q = U and A = X x S and P denote the connected compact subset of pmfs on X x §. Without loss
of generality, let X = {1,2,---,|X|} and S = {1,2,---,|S|}. Fori = 1,2,---,|X] and k = 1,2,---,|S| — 1, let
9ik(Tx,5) = mx,5(i, k) and g s|(7x,5) = 7x,5(l,[S]) for | = 1,2, [X] = 1. Let gy s|(7x,5) = H(S) — H(Y). It

can be verified that

gix)s)(mx,s5) = ZZWXst ) logs( wagxs —1—29 )log,(0(y)), where

SES zEX TEX yeY
a(y) = Z 7TX7S(£L’,S)Wy|Xs(y|I,S) (Hl)
(z,5)€EXXS

where, is continuous. An application of lemma H.0.17 using the above set of functions, the upper bound |X| - |S| on
|| can be verified.

We now outline proof of upper bound |X| + |S| 4+ |V| — 2 on |[U|. Without loss of generality, we assume X =
{1,---,1X|}, S={1,--- ,[S|}and Y = {1,--- ,|V|}. Asearlier, set Q = U and A = X' XS and P denote the connected
compact subset of pmfs on X' xS. For j =1,---,[S[—1,let gj(nmxs) = >, cr Tx,s(x,j). Forj=|S|,---,[S[+|V|-
let g;(mx,5) = X (1.5)exxs X8 )Wy |x,s(j — |S| + 1|z, s). For j = S|+ [V] = 1,--[S]+ [V] + [X]| = 3, let
9i(Tx,5) = > ses Tx,s(J = [S] = [ V| +2,5). Let gi(mx,5) = H(S) — H(Y), i.e.,

gi(mx.s) = Zzﬂxsxs log,( ZWXSCUS +Z ) log,(6(y)),

SES zeX zEX yey
where t = |S| 4+ || + |X| — 2, and 0(y) as is in (H.1). The rest of the proof follows by simple verification. |

Proposition 1 There exists no probability mass function pyxsy defined onU xSx X xY whereld = {0,1,2,3},X =
S§=Y=1{0,1}, such that

(i) X and S are independent with P(S =1) =€, P(X = 1) =7, where e € (0,1), 7 € (0, 3),
(ii) py|x,su(x ® s|z,s,u) = py|x,s(x @ s|z,s) =1 — 6 for every (u,z,s,y) EU x S x X x Y, where § € (0,3),
(ivi) U—-Y — S and X — (U,S) =Y are Markov chains, and

(iv) pxus(zlu,s) € {0,1} for each (u,s,x) €U x S x X.
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Usy PUSY USYy PUSY

000 | (1—€)(1-0)8 | 200 | (1-e)(1-0)8,
001 (1— )by 201 (1 =€)y,
010 €03 210 €052

011 e(1 —0)yo 211 e(1—0)y2
100 | (1—e)(1—0)81 | 300 | (1—€)(1—0)Bs
101 (1—€)on 301 (1—€)0ys
110 €03, 310 €03

111 e(1—0)7 311 e(1—60)vs

Table H.1: PUSY

pusx(0,0,0) = pys(0,0)z0 | prsx(0,1,0) = pys(0,1)24
pusx(1,0,0) =pus(1,0)z1 | pusx(1,1,0) = pus(1,1)2s
pusx(2,0,0) = prs(2,0)z2 | pusx(2,1,0) = pus(2,1)26
pusx(3,0,0) =pus(3,0)23 | prsx(3,1,0) = pus(3,1)z7

Table H.2: PUsx

Proof: The proof is by contradiction. If there exists such a pmf pygxy then conditions 1) and 2) completely specify
it’s marginal on § x X x ) and it maybe verified that psy (0,0) = (1 — €)(1 — 6),psy(0,1) = (1 — €)8, psy (1,0) =
€0, psy(1,1) = €(1 — 0), where 6 : = §(1 — 7) + (1 — &)7 takes a value in (0,1). Since € € (0,1), psy (s,y) € (0,1) for
each (s,y) € S x V. If we let B; : = py)y(i[0) : 1 = 0,1,2,3 and v; : = pyy(j[1) : j = 0,1,2,3, then Markov chain
U —Y — S implies pysy is as in table H.1. Since X is a function of (U, S)!, there exist z; € {0,1} : i =0,1,---,7
such that entries of table H.2 hold true. Moreover, condition 4) and Markov chain X — (U, S) — Y implies pysxy
is completely determined in terms of entries of table H.1 and z; : ¢ = 0,1,---,7. For example pysxvy(3,0,1,1) =
pusy (3,0,1)(1 —z3). This enables us compute marginal psxy in terms of entries of table H.1 and z; : ¢ = 0,1,--- | 7.

This marginal must satisfy conditions 1) and 2) which implies/is equivalent to the last two columns of table H.3

IWith probability 1
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being equal.

psyx(0,0,0) = (1—€)(1—0)[Bozo + Brz1 + Paza + Pazs] = (L —7)(1 —€)(1 —0) (H.2)
psyx(0,0,1) = (1—€)(1=0)[1 - Bozo — fr21 — Paz2 — B323] = 7(1 — €)0

psyx(0,1,0) = (1 —€)0[y0z0 + 721+ 7222 + 7323 = (1 = 7)(1 —€)d (H.3)
psyx(0,1,1) = (1—€¢)f[l -2 — 7121 — 7222 — y323] = 7(1 — €)(1 = 9)

psyx(1,0,0) = €0 [Boza + Przs + Paze + P3z7] = (1 — 7)ed (H.4)
psyx(1,0,1) = €0[1— Bozs — Przs — Baze — P3z7] = Te(1 —9)

psyx(1,1,0) = €(1=0) [0z + Mz + 7226 + 327] = (1 = 7)e(1 = 0) (H.5)
psyx(1,1,1) = e(1=0)[1—9024 — 7125 — V226 — Y327] = T€O

Since € ¢ {0,1}, (H.2),(H.5) imply
(1 —=6) [Bozo + Brz1 + Paza + P3z3] = (1 — 0) [y02a + Y125 + Y226 + V327)
which further implies
Bozo + Brz1 + P2z2 + Bszz = Y024 + 1125 + Y226 + Y327 =1 Y1
Similarly (H.3),(H.4) imply
Y020 + Y121 + Y222 + Y323 = Boza + Bi2zs + B2ze + B3zr =1 2

We now argue there exists no choice of values for z; : ¢ = 0,1---,7. Towards that end, we make a couple of
observations. Firstly, we argue 1 # 1. Since € # 1 and 6 € (0, 1), we have ¢ = % and 1y = O_TT)‘S from
(H.2) and (H.3) respectively. Equating 11 and 1, we obtain either 7 =1 or 7 =0or 6 = % Since none of the latter
conditions hold, we conclude 91 # 1. Secondly, one can verify ¥+ —1 = %. Since 6 € (0, %), 0 € (0,1)
and 7 € (0, %)7 11 + 12 > 1. We now eliminate the possible choices for z; : ¢ = 0,1--- , 7 through the following cases.
let m:= [{i€{0,1,2,3}: z; =1} and [ : = |{i € {4,5,6,7} : z; = 1}|.

Case 1: All of 2,21, 29,23 or all of z4, 25, 2, 27 are equal to 0, i.e., m = 0 or [ = 0. This implies ¥ = ¥ = 0

contradicting ¥1 # 1s.

4. This implies 1 = 1o = 1

Case 2: All of 2,21, 29,23 or all of z4, 25, 26, 27 are equal to 1, i.e., m = 4 or [

contradicting ¥1 # 1s.

Cases 1 and 2 imply m,l € {1,2,3}.
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SYX Dsyx

000 (1 —€)(1=0)[Bozo + Pr2z1 + Baz2 + B3z3] (1—7)1—¢)(1-0)
001 | (1—e)(1—0)[1— Bozo— B121 — Paze — B323] T(1—¢€)d

010 (1 —€)0[v020 + 7121 + Y222 + V323 (1—7)(1—€)d
011 (1 —=€)0[1 =720 — 1121 — Y222 — V323] T(1—€e)(1-6)
100 €0 [Boza + Przs + Paze + B327] (1—7)ed

101 €0 [1 — Bozg — P125 — Baze — B327] Te(1 —0)

110 €(1 = 0) [y0za + 7125 + Y226 + V327] (1—7)e(1-9)
111 e(1—0)[1 —v024 — 7125 — Y226 — Y327) T€d

Table H.3: Enforcing conditions 1) and 2) for psxy

UXSY PUXSY UXSY PUXSY
0000 | (1—€)(1—6)8 | 2000 | (1—e)(1—0)5
0001 (1—€)0Bs 2001 (1— )0y
0110 €03 2010 €65,

0111 e(1—6)8s 2011 (1 —0)y2
1000 | (1—e)(1—6)81 | 3100 | (1—e)(1—6)ps
1001 (1— e)om 3101 (1— )88,
1010 €0, 3010 €0Bs

1011 e(1— 0)m 3011 e(1—60)8,

Table H.4: PUuxsy

Case 8: m =1 = 3. If i1,49,13 are distinct indices in {0, 1,2,3} such that z;; = z;, = z;,; = 1, then one among
Ziy+4, Zig+4; Zig+4 has to be 0. Else ¢1 = B, + Bi, + Biy and o = By, ziy 44 + Biy 2ig+a + Bis Zig+a = Biy + Biy + Bis = 1
contradicting 17 # 1. Let us consider the case zg = 21 = 20 = 1, 23 = 24 = 0 and 25 = zg = 27y = 1. Table H4
tabulates pygxy for this case. We have ¢; = By + 61 + B2 = 71 + 72 + 3 or equivalently ¥y =1 — 83 =1 — g and
Yo =y + 71 + 73 = B1+ P2+ B3 or equivalently o =1 —v3 =1 — By. These imply v3 = Bo, 70 = s which further
imply v1 + 72 = 81 + B2 (since 1 =y +v1 +v2 + 73 = Bo + B1 + P2+ 83). From table H.4, one can verify

_ Bs(1—€)6 _ Bs
pU‘XSY(O‘O’O’ 1) B (1—6);(53+71+72) - 51+5;+53’

(1—-0)Bo+0p3
(1=0)(Bo+ Br+ B2) +0(Bs + 71 +72)

puixs(0[0,0) =
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UXSY PUXSY UXSY PUXSY
0000 | (1—e)(1—6)8o | 2000 | (1—e)(1—0)8s
0001 (1 —¢€)bv 2001 (1 —¢€)00B2
0110 €080 2010 €0y
0111 e(1— 0)70 2011 e(1—0)Bs
1000 | (1—e)(1—0)8; | 3100 | (1—e)(1—0)Bs
1001 (1—¢€)bn 3101 (1 —¢€)0s
1110 €031 3010 €03
1111 e(l—0)m 3011 €(1 —0)ys

Table H.5: PUXSY

The Markov chain U — (X, S) — Y implies pyjxsy (0[0,0,1) = pyx5(0]0,0). Equating the right hand sides of the
above equations, we obtain (1 — 6)(8p — f3)(81 + B2) = 0. Since § # 0, 51 + B2 = 0 or By = B3. If By = Ps, then
1— B3 =11 =y = 1 — [y thus contradicting 1 # 9. If B1 + B2 = 0, then [y 4+ B3 = 1 implying ¢ + 1o = 1
contradicting ¢y + 12 > 1.

Case 4: m = 3,1 = 2. Let us assume zg = 21 = 29 = 2 = 27 = 1,23 = 24 = z5 = 0. We then have ¢ = Bo+ 51+ 02 =
Yo +73 and ¢2 = Yo +71+72 = B2+ P3. Since fo+ 1+ P2 = 1— B3 and o+ +72 = 1 —73, we have y2+y3 =103
and B3 4+ B3 = 1 — 73 and therefore 5 = §5.Table H.5 tabulates pygxy for this case. From table H.5, one can verify

Bz2(1—¢€)6

_ _ B
pU|XSY(2|O7Oa 1) — 0=90(B2Fv0+71) B2+’Yi+"/1’

) B
Puixs(210.0) = G5B T8 + 00 + ) + B

The Markov chain U — (X, S)—Y implies py|x sy (2]0,0,1) = py|xs5(2/0,0). Equating the RHS of the above equations,
we obtain By+ 81 = 7yo+y1. This implies B2+ 83 = y2+y3. However 11 = 824 3 and ¥ = 243, this contradicting
Y F# tha.

Let us assume zg = 21 = 23 = 25 = 26 = 1 and 23 = 24 = 27 = 0. It can be verified that 1 = Bo+ 51+ 82 = 71 +72

and ¥y = y9 + 71 + 72 = f1 + P2. This implies 11 — 12 = By = —70. Since [y and 7y are non-negative, By =y =0
implying ¢ — 1> = 0, contradicting 11 # ¥s.
Case 5: m = 3,1 = 1. Assume zg = 21 = 29 = 24 = 1, 23 = 25 = 26 = 27y = 0. It can be verified that
Y1 = Bo + B+ P2 =0 and P2 = y9 + v1 + 2 = Bo. Therefore 11 — 12 = B1 + B2 and Yo — Y1 = 11 + 2. Since
Bi,vi + i € {0,1,2,3} are non-negative, ¢; — ¢ > 0 and ¢, — ¢y > 0 contradicting 1 # 1s.

Assume zg = 21 = 23 = 2z = l and z3 = 24 = 25 = 25 = 0. In this case, 1 = By + B1 + B2 = 73,

Yo =y + 71+ 72 =1—r3. We have 1 + 15 = 1 contradicting 11 + o > 1.
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UXSY PUXSY UXSY PUXSY
0000 | (1—€)(1—6)8y | 2100 | (1—e)(1—6)Bs
0001 (1—€)0v 2101 (1 - €)07
0110 €00 2010 €0,

0111 e(1— 0)70 2011 (1 - 0)7
1000 | (1—e)(1—0)8; | 3100 | (1—e)(1—0)Bs
1001 (1—¢€)bn 3101 (1 —¢€)0s
1010 €031 3110 €03

1011 e(l—0)m 3111 €(1 —0)ys

Table H.6: PUXSY

Case 6: m =2,1 =2. Assume zg = 21 = 24 = 25 = 1, 20 = 23 = zg = 27 = 0. Note that ¢y = Bo + 51 = v = 71,
o = Y0 + 71 = Bo + B1 contradicting 1)1 # s.

Assume zg = 21 = 26 = 27 =1, 29 = 23 = 24 = 25 = 0. Note that ¢y = 8o+ 51 =2 + 73, Y2 =0 +71 = B2+ O3
contradicting 1y + 1o > 1.

Assume 29 = 21 = 25 = 26 = 1, 22 = 23 = 24 = 27 = 0. Note that ¥y = Bo+ 81 =71 +72, Y2 =70 +71 = 1+ [
and therefore B2 4+ B3 = v9 + 3 and By + B3 = 12 + v3. We observe

Y1 =2 =P80 — 2= —"7 (H.6)

PMF pyxsy is tabulated in H.6 for this case. Table H.6 enables us compute conditional pmf py|xsy which is
tabulated in table H.7. Markov chain U — (X,S) — Y implies columns 2 and 4 of table H.7 are identical. This
implies

Bo (@) Po+B1 ) B B2 () B2+ B3 @@

and 20 © BotBs ) Bs
Yo Yo+ M 1 Y2 Y2+ 3 3 Yo Yo+ 3 Vs

(H.7)

where (a),(b),(c),(d) in (H.7) is obtained by equating rows 1, 3, 5, 7 of columns 2 and 4 respectively and (e) and (f)

in (H.7) are obtained by equating rows 2 and 8 of columns 2 and 4 respectively. (H.7), enables us conclude

bo _Bi_B_Bs
Yo B2t 72 73

Since Bg+ L1+ P2+ B3 =Y +71 + 72+ 73 = 1, we have 3; = ~; for each i € {0,1,2,3} which yields ¢, = 15 in
(H.6) contradicting 11 # 1)s.
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UXSY | pyixsy | UXSY | py|xsy
0000 | 8- | 0001 | 2o
0110 | 25 | 0111 | 20
1000 | 55 | 1001 | -
1010 | z85 | 1011 | -2
2100 | 225 | 2101 | 22
2010 | 2 | 2011 | 22
3100 | 2% | 3101 | 2
3110 | 285 | 3111 | 2

Table H.7: py|xsy

Case 7: m = 2,1 = 1. Assume zg = 21 = 24 = 1,20 = 23 = 25 = 26 = 27 = 0. Note that 1 = By + 1 = 70,92 =
Yo + 71 = Po and hence ¥; — ¥ = 1 and Y9 — 13 = 1. Since 7; and By are non-negative, we have ¥; = 19
contradicting ¥1 # 1s.

Assume zg = 21 = 27 = 1,20 = 23 = 24 = 25 = 26 = 0. Note that 11 = By + 51 = ¥3,%2 = Yo +~1 = B3 and hence
1 + o = Bo + B1 + B3 < 1 contradicting 1y + o > 1.
Case 6: m =1, =1. Assume zp = 24 = 1,21 = 20 = 23 = 25 = 26 = 27 = 0. Note that ¢1 = betag = Y9, %2 =70 =
Bo, thus contradicting 11 # 5.

Assume z) = 25 = 1,2) = 29 = 23 = 24 = 25 = 27 = 0. Note that ¥ = By = v1,%2 = 7 = 1, and hence

Y1 + Y2 = Po + B1 < 1, thus contradicting ¢1 + 1o > 1. u
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Appendix I

Proof of lemma 5.10.2

Since A— B —Y and AB — X — Y are Markov chains, to prove A — B — XY is a Markov chain, it suffices to
prove A — B — X is a Markov chain. We therefore need to prove px 4z(zx, ai|b;) = px|5(7x|b;)pa 5 (a;|b;) for every
(zr,a:,b;) € {0,1} x A x B such that pp(b;) > 0. It suffices to prove px 5(0,ai|b;) = px|5(0/b;)pa p(a:|b;) for
every (a;,b;) € A x B such that pg(b;) > 0.1

Fix a b; for which pp(b;) > 0. Let p4jp(ai|b;) = ; for each i € N and px 45(0, a;|b;) = x; for each (4,5) € NxN.
It can be verified pxy 4|5(,-,-|bj) is as in table L.1. From table 1.1, we infer pay|5(a;0[b;) = xi(1 —n) + (a; — xi)n =
;1 + xi(1 —2n). From the Markov chain A — B —Y, we have pay|5(ai0b;) = pajp(ailb;)py|5(0[b;) = aipy s(0[b;).
Therefore, a;py|(0|bj) = c;in+x:(1 —2n). Since 1 —2n # 0, we substitute for x; and a; in terms of their definitions

to conclude
Py 8(0b;) — 1
1—2n

pyB(0Jbj) —n

= paplailb) = — o

pxaB(0,a:]bj) = xi = a;

. Py 5(0lb;)—n
Since T—oy

is independent of ¢ and b; was an arbitrary element in B that satisfies pg(b;) > 0, we have

established Markov chain A — B — X.

'ndeed, px a|5(1,ailb;) = pajp(ailb;) — px a5 (0;ailbj) = pap(ailb;)(1 = px|(0lb;)) = pajB(ailbj)px|5(1]b)).

AXY | paxy(5105) | AXY | paxy (s o010;) | AXY | paxyis(55-|bj) | AXY | paxys(-[b))
a;00 xi(1—n) a;01 Xi7 a;10 (ai — xi)n a1l | (i —xi)(1—n) =

Table L1: paxys(- - [bj)
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Appendix J

Upper bound on P(¢;)

From (5.25), it suffices to derive upper and lower bounds on Var{¢(M1,M2t2,M§3)} and E{qﬁ(Ml,M;z,Mgg)}
respectively. Note that E {¢2(m1, m?,mg"‘)} = 217:0 7], where

1 t n n s n Er ti .
Ty = E{¢(My, My M)} = § § : P (V7 (ma,br) =0} Uy (0} )y=ul (0} )y=m? 1j=2.3) , (J.1)
(b1 ,a2 7‘133)6 (v ,ug,uy)€
By xF22xF3 T2n2(V1,U27U3\(1”)
N ) t;
_ Vi (ma )=} U (a, )=u}  I(a}? )=m :j=2,3,
- Y ¥ X > p(empe

(b1,a32,a38)€ az3eFs3 (vi,ub,uf)e a3 €
BixF2xF;3 g 375(153 Tany (V1,UIQ" )TzT,Q(Us\q T uy)

ER EF ti .
Ty = § § : 2 : 2 : P Vln(ml,bl):v?,Uj(aj]):u;L,I(aj])t:mj]:J:2,3,
n(~S ~n ~ 8
sg s _s ~ Uy (@5%)=15,1(ay”)=m,’
(b1,a5%,a33)€ ay? €F;2 (vi'ug,uz )€ ay €
By x F22 X F23 652052 Tany (V1,U|Q" )Tznz(Uz\q iug)

SIS I SID SINP SRI Gl h fo i

(blaaz ;033)6 (a2 ’0‘33)6.7"“2><.7:ga (vi',uy,uz )€ (ay a3 )€
BixF 2 xF;3 ~52;£a2 ,“53;£a53 Tany (V1,U[q"™) Tan, (Ulg™ v1)

% = Z Z Z Z P(V (m1,br)=vy".U; (a])—“ I(“ 9= m =23,V (m1,l~21):17?)

(b17a2 7@33)6 b16131 (Ul u27 ")G ine
Bi X F32 X F33 by £by Tony (V1,U|q" )Tznz(Vllq ™)

§ : j : 2 : P (Vln(ml,bl)—v{L,Uj(ajj)—u I(a )—m = 23)

Vi (ma,by) =07, UM (a33)=a2,1(a3)=m
(st i) (br.a23 By x P2 (o] g i) o ane 1(m1,b1)=07 U3 (a3®)=u3,1(a5®)=my?
BixFR2XF3  byotbyasd£as®  Tena(ViUlG" )T2n2(V17Us|q" uy)

55 55 tio.
2 : 2 : z : P Vln(ml,bl):v?7U,-(a .3)—u" (a Jy=m J'j—2 3,
R — Vi(ma,b1)= ﬁ;L,U"(aZZ) uzvl(az )= mz
(bl’az ,0«33)6 (b1 a 2)€Bl X F32 (v uy uz )€ 7',y €
Bix FR2xFi3  py#bras?#as?  Tena (ViUIG") Tang (V1,Uz]0" ug)

Z Z Z P(Vl (m1,b1)= vl,UJ(aJ) ul I(a])—m; :j=2,3,
t;

4 Vi(my,b1)= vl,U"( N= -,I(a. )= :j=2,3

(b1,a52,a5%)€ (By,a32,a53)€B1 x Fo2 x F33 (v ug ug)€ (o7 ,ag g€ A J

BixFR2XF3  b£by a2 #a5?,a3#a53  Tene (Vi,UIG") Tay,y (V1,UlG™)

%:

M

N
[
M

N
I
M
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We have

4Var {¢( Ml, ML Mt“‘)}_ (Zz 0 ) T
(E {6(M, Mz2, M) })* 7 |

We take a closer look at .7%. For 0 € F, let

~S3

Do(a5?,a5®) = {(a5?,a3®) : a3; — a3y = 0(a5; —as;) for 1 <1< sy and a3} — a3} =0 for s +1 <1< s3},

Z(a3*,a3) + = ) Lj__ Dy(a3?,a3?) and F(as?,a3?) = F22 x F3\ P(a3?,a3?). The reader may verify that for
€Fr

(a3%,a3°) € Zp(as’, az’)

; ie~n ~n o ,n n
P (V"(ml,bl) v, U (as])_u I(a J)_m] :j=2,3, T3nT2ip T2ty if Uz — 9“2 =uz — 9“2
t

t; PV} (ma,b1)=v]", Vi (ma,b1)=5T")
Vi(ma,b1)=07 U"(a’) a” I(a J=m; j= 23)

0 otherwise

For (a3?,as®) € #(a3?,a3®), we claim

p (V7 Omabo=0d U ()= Iay )= m =23\ _ p (Vitmib)= v (a)=u}") p (Valmubo= al,U“v‘“') AN
Va(ma bo)=57 U (a57)=a I (@) )=m 7 :j=2.3 I(a;?)=m} ;j=2.3 I(@;)=m; =23

In order to prove this claim, it suffices to prove

(Vl"(m1,b1)—vf,Uj(a;j)—u I(asj) =m

Vi (ma,by)=07 U (a7 )=a} 1(a;’ )=

] =23\ _ P(V"(my,b1) = vl,Vl(ml,bl) = vl)
- rédn+2ta+2t3

which can be verified through a counting process similar to that employed in lemma M.0.18. We therefore have

Iy = Frr + F7p, where

V7 (m,by )=} ,U (a;7)=u Vi(ma,by)=07,U7 (@, )=a}
T = Z Z Z Z P< I(a i j=2,3 J)P< 1@7)=m ) (J.2)

s 8 ~ ~T ~MN ~mNn ]) m j 2 3
(b1,a32,a52)€ (b1,ay%,a33)€  (vi,uy,ug)e (07,43,0; )f
BiXF32 X F33 By x.# (052 a53) Teng (V1,U|q™) Tany (V1,Ulq™)

V ,b1) =01,V by) =
=Y ¥ X > I e

(b1,05%,a3%)€ (a32,a3%)e (v uy,u™®buy )€ (07,05, u" By )€

Bix Fi2xF23 9(al?, ass)T%z(Ud@aU?'q ) Tany(Vi,Ulg™)  Tany (Vi,Ulg")

Verify that Z7; < 7. We therefore have

AVar {§(My, My, M)} (Zz 0 ) + 7
E{(b(MlaMQtzaMéS)} N %2 .

(J.3)
and it suffices to derive lower bound on 9 and upper bounds on 7} : [ € [6] and 7 p.

Just as we split F7, we split 3 as I3 = T31 + F3p. We let the reader fill in the details and confirm the following
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bounds. From lemmas 2.2.3, 2.4.2, there exists Na(n2) € N, such that for all n > Na(n2),

|By |5253 exp {nH (V1,U|Q) — 4nno }

72 T exp (nH(VAIQ) + )
7 < |By |72 +253 exp {nH (V1,U|Q) + 4nne + nH (Us|Q, V1, Us) + 8nns }
m3ntt2+2ts exp {n H(V1|Q) — 4nna }
T < |Bi|m?5223 exp {nH (V1,U|Q) + 4nnz + nH(Us|Q, V1, Us) + 8nng }
w2t exp {nH (V1|Q) — 4nna}
7 < |By 725271253 exp {4nH(V1,Q\Q) +4nne +nH (Us, Us|Q, V1) + 8nne }
w22t exp {nH(V1|Q) — 4nna}
Fip < 7w |By|725253 exp {nH (V1,U|Q, Uz © 0Us) + 8nnz + nH(Us © Us|Q) + 4nma }
3N t2t2+2ts exp {nH(V1|Q) — 4nne — nH(U|Q, V1, Us © 0U3) — 16112}
7 < |By |2ms2tss exp {nH (V1,U|Q) + 4nne + nH(V1|Q, Uz, Uz) + 8nnz }
m2nttatts exp {2nH (V1|Q) — 8nne }
7 < |B1[*m*2 425 exp {nH (1, U|Q) + 4nma + nH (Vi, Us|Q, Us) + 8nn}
- minttat2ts exp {2nH (V1|Q) — 8nna}
T < By [*m252 4% exp {nH (V1,U|Q) + 4nmy + nH (V1, Us|Q, Us) + 8nng}
- m3nt2tatts exp {2nH(V1|Q) — 8nna }
Zp < |By 225253 exp {2nH (V1, U|Q, Us © 0Us) + 16nne + nH (Us © 0U3|Q) + 4nna}

w32t t2ts exp {2nH (V1]Q) — 8nna}

We now employ the bounds on the parameters of the code ((5.22) - (5.24)). It maybe verified that, for n >

max{N1(n), N2(n2)},

T log | B1| S s —t
7 < exp {—n ( p + ; — logm — [2logm — H{U|Q, V1) + 1615] < exp {—n (
% IOg |Bl‘ SS9 — tQ n
?02 < exp{—n( - + " logm — [1 — H(U2|Q, V1) + 32n3] gexp{—n (51+§_32772>}
1 _
222 < exp{—n<0g|81 + 3 fa 10g7r—[1—H(U3Q,V1)+32172])} §exp{—n ((51+ﬂ
T n n 8
Tar log |Bi | n
702 < exp { < . 3215 < exp {fn (51 + 3 32772>}
T3D < log |Bi| | s3
—5 < maxmexp{ —n|———+ —logm — [1 - H(Uz © 0U3|Q, V1) + 4812] < mexp{—n(d —48n2)}
Ty 0£0 n n

IN

3
% exp {—n ( Sl;“) logm —[2 - H(U|Q) + 36772]) } < exp{—n (61 —36m2)}
0 1=2

I exp {_n (52 ; 2 logm — [1 — H(U3|Q) + 36772]) } < exp{—n (1 —36m2)}
(

<
Ty~
T 83 — t3
72 < expq-—n o logm — [1 — H(U3|Q) + 36mn32] <exp{—n(d; — 36m2)}
0
D 53 n
21D o (2 — 1= H(U- < - _ 1 .
7z S rgggcwexp{ n ( - logm — [1 — H(Us & 0U5|Q) + 48772])} < wexp{ n (51 3 48772)}
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Substituting, the above bounds in (J.3), we conclude P(¢) < (28 + 8logm)exp {—n (6; — % —48n2)} for n >
max{N1(n), Na2(n2)}. In the sequel, we derive a lower bound on £(n) and prove that for large n, £(n) > 1, thereby
establishing €; C ¢;. From the definition of £(n), (J.1), we have

% |81‘WS2+S3‘T2172 (Vlvg‘qn”
= — > .
,C(Tl) 9 = 9p2nttatts exp {’I’LH(V1|Q) i 47”72}’ (J 5)

for sufficiently large n. Moreover, from (J.4), we note that £(n) > §exp {n (61 + £ — 1612) } for n > max{Ni(n),

Ns(n2)}. By our choice of 1, g, for sufficiently large n, we have £(n) > 1.
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Appendix K

Upper bound on P((e; UeyUe€3)’Mey)

We begin by introducing some compact notation. We let M* denote the pair (Mé52 , M§3) of message random variables.
We let mt denote a generic element (m&,m) € Fr : = Fl2 x Fl3 and similarly a* denote (a3?,a3?) € Fi :
= F22 x F. We abbreviate Ty, (Vi, Uz @ Us|q™, y}) as Ty, (Vi, ®[¢", y}) and the vector X™(My, MY, M%) input

on the channel as X™. Let

Tnz(qn) L= {(1}17 y L 7y1) € T8772(V17U X Y1|q ) (Ulv ) € T2772(V17U‘q ) (’U?aﬂn?xn) € T4772(V17 X|q )}

Toaa ot um) = { (@, 00) 5 (o, 2", 00) € Toua™) }

We begin by characterizing the event under question. Denoting €47 = (€; U €2 U €3)° N €41, we have

My=m1,V]"(m1,B1)=v7,U;" (Asl)_u;"
P(€41) S Z Z Z Z E g P Il(Afl):ﬁ\;[,t’ = 23yn 211 Xnyfmn melc (Kl)
m1 maFEmM b ey ag® (vf/,gn,z",y{’) (d7,02™)€ Ug(az®)=1a",V|" (11,b1)=0]
€T, (¢")  Tony (V1,81q™ u1")

We consider a generic term in the above sum. Observe that

Si
Y’L_y M1 ml,Vl (ml,Bl) v17Ul (A ) ul _ Y" y V (M1 Bl) ’U1 . n n n n
P(X" n {IZ(A”) ML1=2,3,U% (253 ) ="V, (1h1,b1) = Nep) =P (_gh U"(Asl)_ul 1=23) = 0y, 2" o, u"),(K.2)

Mi=mq, V"(ml,Bl)—'U{L My=my, V" (mq,b1)=v],U" (al )=up
P Uit (A} )_u, J(AD)=M[" =23 & N €f E E M'=m! Ajl=a}! I} (a] l)—mll =23 Nej |, (K.3)
Ug(az®)=a" V)" (tha,b1) =07 mte L (b.a®)e Bi=b1, U@(Aba)_un Vi (g b1 ) =07

le]:s

and the product of left hand sides of (K.2) and (K.3) is a generic term in (K.1). We now consider a generic term on

the right hand side of (K.3). Note that

)i
=

P(EN{Bi=b.47 =i} N €) < P(E)P({Br=br. A7 =a'} |E N f) =

9

,Q
2
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where E abbreviates the event {My=m1,V{* (m1,b1)=v U (a;))=u]', M, =m;! I (a;!)=m} :1=2,3,U% (a53)=a" V" (1h1,b1)=07 }. Sub-
stituting the above in (K.3), we have
Mlzml,V{"(ml,Bl):v? 1 1 17 i
P {urai=up na=mt1=23 5 Nl | < —— § P(Ml‘,m S s WSO S )
UB (a57)=a" VI (1 b1)=07 L(n) 4 Ii(ay"y=my 1=2,3,U8 (33°) =" VY (1) =07
Z Z P Mi=mu VY (ma b=l UP (@) =uf' My =m)! (K.4)
Ii(a;")=m; :1=2,3,UZ (433 )=0" V" (1h1,b1 ) =07 ’

mteFE (b1,a%)
€EBy1x I (a®3)

where Z(a%%) : = {a®: (a3?0°+) D a3® = a%}, sy = s3 — 5o and F(a°8) : = F22 x F23 \ 2(a%). Let us evaluate a
generic term in the right hand side of (K.4). The collection My, Ma?, M3*, Vi*(m1,b1), Ia(a®?), I3(a®?), (Uy(a}') : 1 =
2,3,Ug(a3?)), V" (11, by) are mutually independent, where (Ui(a") : 1=2,3,Ug(a3?)) is treated as a single random
object. If (a3?,a3®) € 2(a%®), then

1 . ~
s lfug@ugzun

P(U(a)") = 1=2,3,Ug(a3®) =4a") =
0 otherwise.

Otherwise, i.e., (a3?,a3*) € #(a%), a counting argument similar to that employed in appendix L proves P(U;(a;") =
:1=2,3,Ug(a3?) = ") = = . We therefore have
Pt bt
MBI (a0 € 2(a)
and uf ®uf = 4" (K.5)

<Ml =ma,Vy" (ma,b1) =0} Up (o) )=up , M) =my )

Li(ay)=m] :1=2,3,U% (a53)=a" V" (1 ,b1)=07 |

1 l (&) 1 1 P(Mlzmlyvln(ml,bl):v?
Mt=mt Vi (1 ,b1)=07 (s s3 s

ﬂ.3n+1t2+t,3 L if (a2 , a3 ) € j(aéB)

Substituting (K.5) in (K.4) and recognizing that product of right hand sides of (K.3), (K.2) is a generic term in the

sum (K.1), we have

Mlzml,Vln(ml,bl):vT')

P( Ly )=
LCSED YD oD 35 D SIS DI R M

(mhmt) miFm heBy ag® (bua®)  (viuam ) (07 ;ug3 Bugz)€
EB1xP(a°3) €Tn2(qn) TS'WQ(V:l!@lq Y1)

IMl:ml,Vln(ml,bl):vT')

P( P )
FY Y TR YT ek Y o

(mamt) imAmi by ey ay (bra®) (0wt yp) (o7, am)e
eBle(aid) €Tn2(qn) TSTIQ(VL@lqn#y?)
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The codewords over V" are picked independently and identically with respect to pj, ‘Q(~|q”) and hence by conditional

frequency typicality (lemma 2.2.3), we have
P (M1 = mq, V{"(mq,by) = v}, Mt = mt, Vi (11, by) = 17?) < exp {—n(2H (V1|Q) — 20m2)} P(M;y = my, M* = mt)

for the pairs (v}, 9}) in question. This upper bound being independent of the arguments in the summation, we
only need to compute the number of terms in the summations. For a fixed pair (uf,u}), lemma 2.4.2 guarantees
existence of Ny(n2) € N such that for all n > Ny(n2), we have |{v]" : (v}, us ® uf) € Ts,, (V1, Uz @ Uslg™, y)}| <
exp {n(H(V1|Q,Us ® Us, Y1) + 32n2)} and |Tgy, (Vi,Us @ Uslq™, y7)| < exp {n(H(V1,Us ® Us|Q, Y1) + 3212)}. Sub-
stituting this upper bound, the inner most summation turns out to be

Ml:ml,vln(ml,bl):uf>

Z P (Ml:m%vln(ml,él):ﬂ?

< —
q2nttatts = oXp {

t
n( 2H (V1|Q)—52n2 )} P(My = my, M" = mf) =4
—H(V1|Q,U2&Us,Y1) 7T2n+t2+t3£(n) 1y
(07 ,uy @uy )€
Tsny (V1,810™,97)
P M1=m1,Vi'L(m17fj1)=1)1L
Z MEt=mt V" (r1,b1) =07

< —
p3nttatts = &P {

t

n ( 2H (V1]Q)—52ns )} P(My =my, M"=m") 8
—H(V1,U28U3|Q,Y1) m3nttatis £(n) 2
(o7,0m)€

Tsny (V1,019™,97)

Substituting £, and B3, we have

P(é4r) Z Z Z Z Z Z Oyt " |vf', u") Br

(mhm*)ml#ml b1eB; (b1,a®)€ (viu™)e  (a"uy)e
a*3 € F;3 Bix2(a®) Tan, (V1,Ulq™) T, (g™ |0 u™)

DD DD DD DD > S b u") B

(my1,mt) mi#m b, eB; a3° (b1,g§256 (v, u™)e (=™ y)e
B1 X I (a°3) Tan, (V1,Ulq" )Tnz (¢" ol u™)

DD YD DD DD DI T DI SED DI DEED DI SEN->

 memt) muAm e, (rade  (viat)e (m1.mb)inEma b e, ag®  (braf)e (v u")e
43 EFE3 ByX D(a°3) Tayy (Vi,Ulq") Bi x5 (a°%) Tan, (Vi,Ulq™)

The terms in the first and second summation are identical to 8, and Py respectively. Multiplying each with the
corresponding number of terms, employing the lower bound for £(n) derived in (J.5), it maybe verified that P(€,1) <

A + T5, where

log |B log | M
S = QGXP{_”([I(V1§U2@U3,Y1|Q)—56772]_ Og7|l 1|+ og | 1|})}

n

T

longﬂ N log M| L 88 10g7r]> }

2exp{—n <[10g7T+H(V1|Q)—H(Vl,UQ@U3|Q,Y1)—56772]— |: n n

From bounds on the parameters of the code ((5.22) - (5.24)), it maybe verified that for n > max{N(n), N;(n2) : j =
2,3,4}, P((gUea Ues)®Negr) < dexp {—n (61 + 4 - 56772)}.
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Appendix L

Upper bound on P((ej UeyUeg)®Mey;) for
3—DBC

We begin by introducing some compact notation similar to that introduced in appendix K. We let M?% denote the
pair (M%2, M%) of message random variables. We let mt denote a generic element (mb?,m%) € Fx : = Fl2 x Fls,

and similarly a® denote (a3?,a3®) € Fr: = F22 x Fi3. We let

T ( ):: {(Ulvu T 7y]) GTSTIQ(VDU X Y|q ) ( )GTQTIz(VhUm ) (U{lﬂﬁnvxn) €T4?72(V17Q7X‘qn)}7
T (" lo7, ") = { (a7, 97) + (0w, a7, 7)€ Tm<qn>}

We begin by characterizing the event under question. For j = 2,3, denoting €s; : = (¢ U €2 U €3)° N €45, we have

Mlzml,]\/[* m* Vl (’I‘I’Ll,Bl) ’Ul
P(&4) § E E E E P Lupash=up,nast)y=mi= 23V =yl b e |, (L.1)
(mmb) i apg ' ag? (o1 u”2" yg) i, e X" =a" Uy (a77)= 15 @57 )=
2(a")

™
€Ty Tsny (Ujla™,y3)

where X" abbreviates X™(M;, M%), the random vector input on the channel. We consider a generic term in the

above sum. Observe that
Mi=mq,Mt=m* V" (m1,B1)=
P )1?71:11]7.1’ U"(AS’) ul, Il(Aél) mtz = 23 ﬁE? - p (Y —y
=z
J

) X"=

U (a; )_u; @)=

Mlzm'l,]wt =m® V" (ml,Bl)

P(§ oreai=up aac=m i 23 Ve | = 3 P(En{fibng) < Y PEP({RZh}IENS), L3)
U (ay7 ) =) 1 ay" )= (b1,a%) (b1,2%)
eByxF2 EB1XFx

Vit (My,B1) -
U"I(A )1 ull'leé 3) = g(y”)lmlv?’gn)’ (LQ)
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where F abbreviates the event {Ml—ml Mt=mt, V{"(myb)=vy, U (a;)=up, I(a®t)=m,":1=2,3, Ul (a,’)=a], I_,»(a';j):m;if } We
now focus on the terms on the right hand side of (L.3). By the encoding rule, P ({Bi=bi, 4* =} |EN¢f) =
ﬁ. We are left to evaluate P(E). The collection My, M2, M3®, Vi*(mq,by), I2(a®2), I3(a®?), I;(a%), (Uy(a]") :
1=2,3,U;(a SJ)) are mutually independent, where (U;(a;") : | = 2,3,U; (AS7)) is treated as a single random object.
The following counting argument proves the triplet U(a;') : I = 2,3,U; (AS-J) also to be mutually independent. Let

{7,4} = {2,3}. For any u?,u? and 4}, let us study

|{(92a93/27b31b3) CL ngBb _u]a ﬁgj@b n( J@a )g]_a n}|

There exists a t such that a AS’ ;# ajt For any choice of rows 1,2,--- ,t —1,t4+1,--- ,s3 of g3, one can choose the tth
row of g; and by, b3 such that the above conditions are satisfied. The cardinality of the above set is 7(53=1)" The
uniform distribution and mutual independence guarantee P(U;(a;") = u} : 1 = 2,3,U; (“Qf]) =07) = .

We therefore have

My=my, M*=m"V{" (m1,by)=0v7, _ t_ .t 1n _.n
U (et 1oty s | _ LMy =mqy, M* =m* V" (my, by) = o)
P (e )=up Li(a®t)=m;':1=2,3, | = 5

un ASV—an 165 Lt T n+to+tz+t;

i (aj )_ujv j(aj )_"lj

Substituting (L.4), (L.3) and (L.2) in (L.1), we have

P(M; = 7M£:7£,Vn 7b — 2N
P(é4;) Z Z Z Z Zey 2"l u )Z (M m17r3n+t2+zl+tj2(:7;l 1) vl).

(m1,mt) (b1,a2) 5, J;,ém tj a]J (vl u™ 2™y S
“ n n
GT,,2(q”) T16ny (Ujla™,y})

Note that terms in the innermost sum do not depend on the arguments of the sum. We now employ the bounds on
the cardinality of conditional typical sets (lemma 2.4.2). There exists N5(n2) € N such that for all n > N5(n2), we
have [Ty, (Uslq", y7')| < exp{n(H(U;|Q,Y;) 4 32n2)} for all (¢",y}') € Tsp,(Q,Y). For n = max{Ni(n), N5(12)},

we therefore have

P (V1 (m1,by)=v],Mi=m;

Mt=m!t:1=2,3 )exp{n32772} O(y™, x™ v, u™)
M<Y Y OY Y Y ¥ i)

3ntia izt “nH(U: 0. Y,
(1) (b1.0%) s s a7 (pat) rexp{—nH(UQ. Y}
7 €Tan, (Vi,UIG"™) Ty (@7 |0, u™)

p (Vl(ml,bl):vl",Mlzml
<2 XX X

b ) exp {n32m2} 4
3nttatis+t; exp {—nH(Uj|Q7 Yj)} C(n)

(m17’m—) (b1,a%) 3, _‘I#m tj q%d (v} ,u™)
I ETQ,,Z(Vl,U|q ™)
< 2exp {s; log m — n (log 7 — H(U;|Q, Y;) — 3215)} < 2exp {—n(61 — 321)} (L.5)

where (L.5) follows from definition of £(n), (J.1) and the bounds on the parameters of the code derived in (5.22) -
(5.24).
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Appendix M

An upper bound on P(e5)

In this appendix, we derive an upper bound on P(e5). As is typical in proofs of channel coding theorems, this step
involves establishing statistical independence of cosets C;(M Jl]) : j = 1,2 corresponding to the message pair and
any codeword V" (a* m') in a competing coset. We establish this in lemma M.0.19. We begin with the necessary

spadework. Throughout this appendix, we employ the notation introduced in proof of theorem 6.2.2.

Lemma M.0.18 If m! # !, then for any triple vy, vy, 0 € V7,

n j Lj M= . j . ~ ~
P (VJ (07C ym; )= ey 1,27) —PpP (V]n(oky’m?) = 1) = 172) P (V"(Ok’ml) — yn)

V”(Ok,’lﬁl):f/n J

[

Proof: By definition of Vj(ij,méj) :j=1,2 and V(0*,ml),

- 1 l1 o n_.mn 15 lo n_.n
V"’(Ok,rhl):ﬁ" {7?)111 m?]Go/]@B;L@B;:ﬁn
_ P {mlll OZQ]GO/I???:"VZIL7[OLI leQ]Go/IEBBS:V; (M.l)
[mll mzz]Go/I:f/"

where m;j = méj - méj . We now prove, using a counting argument similar to that employed in proof of lemma A.0.1,
the term on right hand side of (M.1) is . Since 7! % m!, there exists ¢ € [I] such that i, # m. Given any (I —1)

vectors gosr; € V" 1 j € [I] \ {t}, there exists a unique triple of vectors (go,r+,b7,05) € V™ x V" x V" such that

[mlf 012} go;1 ® b} =T, [Oll mlz"‘} gos1 ® by = v3 and [ﬁllll ﬁllﬂ gosr = V", where row j of go,r is go,r,;. Hence

1y 012 B = Oll lo B =
n in kxn n n . ™ go/1®By=r1, my” |go 1BBy =v2 —1)n
H(go/f,bl,bz)év X VXV .[ ] | ] = g(t=1n,

2l =12 s
[ml my ]90/1:7/
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The mutual independence and uniform distribution of Go,r, By, By implies the term on RHS of (M.1) is indeed —

It remains to prove

P (Vi m)) = v =1,2) P (V' (08 )) = ") =

It follows from lemma A.0.1 that P (V"(0%, /') = ™) = L. Using the definition of V"(0%,m!), we only need to

P ([mlll Ol2}GO/I@B{‘_v1,> 1

[Oll mlgz]Gou@Bg:Vz m2n

prove

This follows again from a counting argument. For every matrix go,; € YIXn there exists a unique pair of vectors

b2, b2 € V™ such that [ml; 012} Goyr ® BY = vy, and [oh ml;] Goy1 ® By = v, thus yielding

L1 gl2 n_
n in kxn n n . [ml ]GO/I®B1 =v1, _ In
‘{(QO/bbl eV KV [Oll m ]Go/IEBBzL—uQ T (M.2)

and the proof is completed using the mutual independence and uniform distribution of Go,y, BY', By [ |

Lemma M.0.19 For any ! # m!, and any a* € V¥, the pair of cosets Ci(m ) 7 = 1,2 is statistically independent
of V™ (a*, mb). O

Proof: For j = 1,2, let v; ( ) € V" for each a 7€ Vki, and 0™ € V*. We need to prove

CP(mit) = (r(a) o €V) ) b sy
O3 (mi) = (va(a5?) : a5 € V*2) -
€ VFki j=1,2and o" € V.

If (i) for some j =1 or j =2, (vj(a j] @ d-]) —v;(0ki)) # (l/j(a?j) - Vj(ij)) & (l/j(d?j) — v;(0k3)) for any pair

afj, @;* e VFi | or (i) vy (aFr) — v (0%1) # e (ak? 0%+ ) — vg(0F2) for some a¥* € V¥ then LHS and first term of RHS

for every choice of v;(a; ) ey f
(v

are zero and equality holds. Otherwise,

P (C3(m9)=(;(a’? ):a}? €V49):j=1,2,V " (a* ") ="

- P ak? Gry=va(a*2)—v2(0%2):ab2 €VF2,V7 (0% ,m T )=, (0% ):j=1,2, (M.3)
V(08 it )= (v2(aF) —v2 (072)) '

_ ay? Gr,=va(a”2) P Vj"(OkJ ,m;j):Vj(ij):jzl,Z M.4

P <u2<ok2)ak26vk2> (vwo’“,m’>—o”—<u2<a’“)—u2<o’“2)) (M-4)
11 Ao n__ kq

o ay?Gr,=va(a k2y— [ml 0 }GO/I@Blf’/l(O )5 nisk A\ _ an

- <”2<0"2) ay?€V*2 ) r ([0“ m?| Go @By =v2(0%2) P (v (@t m’) = o) (M.5)

B 037 G1, =v2(a"2) —v2(02):a; V"2 niak 21y _ on

— <[m11 ol GO/I@anVl(Okl) [011 mt ]Gou@Bz VQ(OkQ)) P (V (a%,m")y =70 ) (M.6)

= P (crm?)=(v;(a"9)ali evhiyj=1,2) P (V"(aF,ml) = i) (M.7)
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where i) (M.5) and (M.7) follow from definition of cosets C; (mé? ), (ii) (M.4) and (M.6) follow from independence of

G, and the collection (G /1, BY', By) and (iii) (M.3) follows from lemma M.0.18. |

We emphasize consequence of lemma M.0.19 in the following remark.

Remark M.0.20 If m! # !, then conditioned on event {Ml = ml}, received vector Y™ is statistically independent
of V™ (ak,m') for any a* € V*. We establish truth of this statement in the sequel. Let C; denote the set of all ordered

¥ -tuples of vectors in V™. Observe that

) - 5 5 )

C1€Cy C2€Cy smES™

Ci(myh)=C niak A ly_an _ ,n|Cy m Cj:j=1,2
So> D P <Cx 1)(£>}WV’wth—v)})<Y" y" )Aﬂ] l ) (M.8)

C1€C1 Co€Ca smES™
M!'=m!,y"=y" 5" =s
S X S PN P
C1€C1 C2€C2 smES™
= P (M =mhY"=y")P(V"@a"m') ="

where (N.5) follows from (i) independence of random objects that characterize codebook and (S™, M), (ii) lemma
M.0.19 and (iii) statistical independence of the inputs Xj(M;j,S;‘) : 7 = 1,2 to the channel and the codeword
V™ (ak, mb) conditioned on the specific realization of cosets (Cj(MJl-j) :j =1,2) and the event {M' =m'}. Moreover,
since P(V"™(a*,m!) = ") = X, we have P(M' =m!, Y™ =y, V"(ak,ml) = 0") = L P(M' =m!, Y™ = y").

We are now equipped to derive an upper bound on P(e5). Observe that

P(65) S P U U { k I),Y"')ZET%ZM)(pvl@\/?,y)}

Gk eVE bl M=m
ml;aérhl
Vn'(ak,fnl):vn
SO YRD VI S (L0 =
Gk eVE b
m #ml GTns(m(Y) 5(77)(‘/159‘/2\9 )
< 22 Z Z P (V") = ") P(M! = m!, Y™ = y")
akevk
m ;:éml €T, 5<n>(Y) 5<n>(V1®V2\y”)
PY"™ =y")
sy Yy »ooy ew
akeVkmlep! y" e
ETns (V) T 5<n>(V1€BVz|y")
kT Vi® Vs HV; ®Va|Y) +3 k41
. T T ) (Vi @ Valy™)| Sexp{—nlogﬂ'(l— (Vi @ VolY) +3ns(n)  k+ )} )
- n log n
Y
eT?IS(n)(Y)
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where (N.6) follows from the uniform bound of exp {n (H(Vi ® V2|Y) 4 3n5(n))} on |Ts,, o (Vi @ Va|y™)| for any
y" € T, (Y), n > Ng(n) provided by lemma 2.4.2 for n > Ng(n). Substituting the upper bound for £t in (6.13),

we have

P(es) < exp{—n(n2(n) +n3(n) — 3ns(n))} for all n > max {N1(n), Ne(n)} . (M.10)
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Appendix N

An upper bound on P(e3)

In this appendix, we derive an upper bound on P(e3). As is typical in proofs of channel coding theorems, this step
involves establishing statistical independence of C;(hS}') : j = 1,2 and any codeword V™(ak,m!) in a competing
coset ! # hST @ hS§. We establish this in lemma N.0.22. We begin with the necessary spadework. The following

lemmas holds for any F, and we state it in this generality.

Lemma N.0.21 Let F, be a finite field. Let Gy € .7:;””, Goyr € ]ﬂgx”, B} € Fj 1 j = 1,2 be mutually independent

and uniformly distributed on their respective range spaces. Then the following hold.

N N k kool 1 n
(a) P(V"(a",m") = ") = = for any a® € Fj', m' € Fy and v" € F,

(b) P(Vj”(a;?,ml») =0l:j=12)= q% for any a? € FF

; y q,mée}'éandvye]:;‘:jzlﬂ,and

V(0P mb)=v™ , :j=1,2, . .
(c) P ( i (V""(g)z’ m{)(ij” = o for any ! #mi @ mb and v 1 j = 1,2, and v™.

Proof: The proof follows from a counting argument similar to that employed in [63, Remarks 1,2].

(i) For any g5 € ]-'é“”, Jdoyr € ]-'éX", v" € Fy, there exists a unique 0™ € F' such that afgr @ mlgo/l B b =",

Since G, Go,r and B" are mutually independent and uniformly distributed P(V"(a*, m') = v™) = % =
1
-’

(if) We first note P(Vj”(aé?,ml) =v:j=12)= P(a?Gl @méGO/I @ B} = v} : j =1,2). For any choice of gy

J
and go 7, there exists unique b7 : j = 1,2 such that a?gI@mggo/IEBb}L =} :j=1,2. Since G, Go,r and B"

kn In 1

are mutually independent and uniformly distributed, the probability in question is therefore W =z

(iii) Note that

nnk l n . l _ . l LT i
P v;* (o ,mj):vjﬁok.]flﬂ, —p m_jGo/1®B_?—U;0k- _p ijo/IEBB_;'_v;Ok.j_l,2,
nhy= j=1.2,m'Go,1®&B"=v" (m'e(miem}b))Go,r=v"
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Since 1! # mll @ mé7 there exists an index ¢ such that m; # mq; ® mo;. Therefore, given any set of rows

9o/11"" 9o/ 9o/ 9o there exists a unique selection for row 9o/1. such that (m! o (m} @
mé))go/f = v". Having chosen this, choose b} = ’UZO,C @mégo/j. Since G, Goyr and BY' : j = 1,2 are mutually
. . s e . (t-n

independent and uniformly distributed, the probability in question is therefore % = q31n.

Lemma N.0.22 If generator matrices Gy € ]-'kxn Goyr € ]-'ZX” and B} € Fi': j = 1,2 are mutually independent
and uniformly distributed over their respective range spaces, then the pair of cosets C;j(m ) j =1,2 is independent
of V™ (a¥, m') whenever m! # (m} @ mb). O

Proof: Let v?ak € F; for each ak e .7'-"c J=1,2and 0" € F;'. We need to prove

P(CF(m}) = (V] g 10" € Fi) 1 j = 1,2,V™(@F,ml) = o")
= P(C}(mh) = (vjor 1 a* € FY) 1 j =1,2)P(V"™(a", ) = ") (N.1)

for every choice of v; v € F7 : ak e ]-'k,j =1,2 and 0" € 7.
If (i) for some j =1 or j =2, (0] jeaar — Vjor) # (V] o — 07 00) @ (V] 50 — v} ) for any pair ak, a* e FF, or (i)
Ufak — vﬁok =+ v;ak — vé‘)ok for some a* € ]-'5, then LHS and first term of RHS are zero and equality holds.

Otherwise, LHS of (N.1) is

k n n k k nnk l n .
Gr=v" . —v" :a"eF] VI (0",m:)=v" :j=1,2,
O (ml)=(v" ,:adfeFF)j=12,v"@" mh)=") = La® 1,0 a7 1T 308
P( J( J) (],ak q)] ( ) ) P Vn(Ok’Thl):{)ni(vnA —o™ )
1,4k “1,0k

abGr=v" , — vﬂ(ok,m?):v" =12,
P n kl’akk P ok 1y 0: ) (N.2)
vl gkt €Fy V(¥ ,m')=0 7(1) ak 1 Tor)

where we have used independence of Gy and (Go,r, By, B) in arriving at (N.2). Similarly RHS of (N.1) is

n no. i noak A n akGr= v k —v} iaeFy, kG amla n_
P (G} (m}) =07 woa*eF})5=12) P (vr (@ m)=o") = P ( VO )= =12 )P (e Gormen=)
_ aGr=vy vk mh=\ 1
= (L) P () 3
— a”Gr=v m;Go,®B} = 1
- P( o ia” e]—‘k>P( i’J’.ﬁOk:szé >q7
1
k .k k
= P(a Gr=vy, — Vg @ Efq) = (N.4)

where (N.3), (N.4) follows from lemma N.0.21(a) and (b) respectively. Comparing simplified forms of LHS in (N.2)
and RHS in (N.4), it suffices to prove

P V(08 mf)=v 1:j=1,2, 1
VR (OF, mh)=0" — (v} =] k) PR
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This follows from lemma N.0.21(c) [ |

We emphasize consequence of lemma N.0.22 in the following.

Remark N.0.23 If m! # hs? @ hsY, then conditioned on the event {SJ” =siij= 1,2}, received vector Y™ is
statistically independent of V™ (a¥,m!) for any a* € Sk. We establish truth of this statement in the sequel. Let C
denote the set of all ordered \S|k-tuples of vectors in S™. Observe that,

P s"=s" Y”*y" Z Z s"=s",C;(hs})=C;:j=1,2,
vk mh=om V@l mh=omyr=y"
Ci1eC CreC

n_ oy p (Ci(hs?)=C N n | Cihsi)=Cj:j=1,2
S S Pl PG00 P (vt an=in) - P (v =y G0 ZG02) (N.5)
C1€Cy C2€C2

Z Z ( e % 7:1 2) P (v mhy=om)
C1€C1 C2€C2
— P(ﬁn:§n,yn:yn)P(Vn(dk,ml):ﬁn)

We have used (a) independence of s™ and random objects that characterize the codebook, (b) independence of
vr(ar, m') and (Cj(hsy) : j =1,2) (lemma N.0.22), (c) (u1(hs?), pa(hsy)) being a function of (Cy(hst), Ca(hsy)), is
conditionally independent of V™ (a*,m!) given (Cy(hst), Co(hsy)) in arriving at (N.5). Moreover, since P(V™(a*,m!)

") = \Sl|”7 we have P (g” =" Y" =y, Vr(ak,ml) = {)”) = ‘SllnP(gn =s"Y" =y").

We are now equipped to derive an upper bound on P(e3). Observe that

(V™ (@, ml),Y™)e V7 (ak il )=o™

Pleg) < P U { Ty (Pvy v,y ),s"=5" Z Z P st=s" Y =y"
akeSksn=s" iz a* S g ml;é y"EeTy (Y),v" e
h(sy®s3) s ®s3) Ty (V1 ®Valy™)

T k oAl n_gn
S (e r()
akest, mlg Y ET, (Y)v"eE
s"=s" h(sT®sy) Ty, (Vi®Va2ly™)

‘=g h(

M

PY™ =y")
S
akesk Al
h(s"@s;)é (Y)Tnl(V1EBV2|y ")
SI*HT,, (Vi @ Valy™
< ST | m|‘(5.|711 2"l <exp {fnlog S| (1 - H(vl@vzh\)lg/‘)‘;r‘?»nﬁk”)} ’ (N-6)

n

€Ty, (Y)

where (N.6) follows from the uniform bound of exp {n (H(Vi & V2|Y") + 3m1)} on |T,,, (Vi@ Va|y™)| for any y™ € T, (Y),
n > Ng(n) (Conditional frequency typicality) for n > Ng(n).
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