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3.3.5 Stearic acid effects on Cav1.2 protein  

Our investigations on atrial cell electrophysiology show that the major 

effect of SA was on ICa-L density. We therefore used a combination of 

biochemical and optical techniques to examine SA-induced changes on Cav1.2 

protein, the molecular correlate of the underlying channel. Labeling of Cav1.2 

and α-actinin Figure 3.3.5 (A-C) shows that SA did not alter Cav1.2 protein 

localization, i.e., relative to the sarcomeric α-actinin pattern, and was distribution 

of the Cav1.2 protein was similar to what has been previously described.304,305 

Cav1.2 remains in close proximity to the Z-lines, and the spacing of the Cav1.2 

intensity peaks (and of α-actinin) were similar and unchanged by SA treatment 

(Figure 5C; n = 12, 12). Furthermore, atrial cell Cav1.2 protein levels were not 

significantly affected by incubation in SA (Figure 3.3.5D; N= 3). These data 

suggest that alterations in cellular Cav1.2 protein levels is not the mechanism 

driving the SA-induced changes in ICa-L. Channel phosphorylation or nitrosylation 

are well described post-translational mechanisms for ICa-L regulation.306,307 In 

another set of experiments (see Online Supplement), we investigated the 

potential roles of these mechanisms. Immunocytochemistry and western blot 

were carried out using Cav1.2-phospho antibody (Supplemental Figure 3), or 

Cav1.2-S-nitrocysteine antibody (Supplemental Figure 4). Results from these 

experiments showed no differences between control and SA treated cells.  

 

3.3.6 Fatty acid effects on t-tubular structure 
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The membranes of transverse (t)-tubules are well-recognized microdomains for 

the cellular localization of L-type calcium channels, and their disruptions have 

been reported to result in a reduction of ICa-L.
84,263,308 We hypothesized that free 

fatty acid induced changes in t-tubular architecture or structural integrity could 

provide an explanation for the reduction in ICa-L. To examine this possibility, atrial 

cells were treated with vehicle control media or were incubated in free fatty acids 

(PA or SA) for 24 hrs, stained with Di-8-ANEPPS and then visualized under 

confocal microscopy. Control experiments showed that t-tubule structure in atrial 

cells was not significantly affected by 24 hr cell culture. Additional control 

experiments (Supplemental Figure 5) established our imaging technique could 

resolve the previously reported differences between atrial and ventricular t-

tubular architectures.82 In Figure 3.3.6A, images were taken soon after cell 

isolation (t = 0; panels a & b) and 24 hrs in control media (CTL; panels c & d). 

Insets at the top of Figure 3.3.6A are schematics representing the planes of view 

for the left (a, c, e, & g) and right (b, d, f, & h) panels. T-tubule pixel intensity was 

quantified, summed and normalized to total cellular intensity (see method details 

in methods section) and plotted in Figure 3.3.6B. The imaging results show that 

cells incubated in PA had a slight but insignificant reduction of t-tubular staining 

with Di-8-ANEPPS (Figure 3.3.6A; e & f, Figure 3.3.6B). In contrast, SA caused a 

dramatic reduction in the t-tubule network (Figure 3.3.6A; g & h, Figure 3.3.6B). 

Compared to control cells, SA caused a ~4-fold decrease in the intensity of t-

tubular staining (0.58 ± 0.04 versus 0.16 ± 0.02; ***p<0.0001).  It is generally 

acknowledged that t-tubule membranes account for 15-50% of the capacitance of 
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cardiac ventricular myocytes.82-84 Consistent with this reduction of t-tubular 

staining in SA treated cells, we had observed a >15% decrease in whole cell 

capacitance (see Table 1, Figure 3.3.6C). Importantly, note that our image 

analysis of 2D cell surface area shows no SA-induced changes in the surface 

area of atrial cells (Figure 3.3.6D). These data show that the reduction in t-

tubular membranes is a possible mechanism for the reduction of ICa-L observed 

with incubation of cells in SA. 
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Figure 1 
Figure 3.3.1: Epicardial fat tissue distribution on the ovine heart: Panel A: 
Normal adult sheep heart (Langendorff retrograde perfusion), showing 
epicardial (atrial and ventricular) fat deposits. (LAA; left atrial appendage LV; 
left ventricle EF; epicardial fat on atrial and ventricular surfaces). Green scale 
(in cm) is shown close to the posterior wall, adjacent to the openings of the 
pulmonary veins. Yellow box is 2 x 3 cm. Panel A1: (inset from Panel A) oval 
and rounded rectangles represent regions of dense atrial epicardial fat depots. 
Panel B: LAA tissue section: Note significant epicardial fat layer with extensive 
adipocyte infiltration of the left atrium. Scale bar: 1mm. Panel B1: Tissue 
section from yellow inset in panel B showing myocytes (MYCTS), isles of 
adipocytes, and collagen (CLG) stained with Picoserius. Scale bar: 50 µm. 
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Figure 3.3.2: Saturated free fatty acids, but not a mono-unsaturated fatty acid, shorten action potential 
duration in atrial cells: Panels A, C, E; Atrial myocyte action potential recordings in control solution 
(black) and following incubation in solution containing 10 µm palmitic acid (PA, blue), stearic acid (SA, 
red) or oleic acid (OA, green). Average APD30, 50, & 80 measurements in control (CTL) and following 
incubation in PA (Panel B, n = 9, 12; *p<0.05), SA (Panel D, n = 22, 24; ***p<0.001) and OA (Panel F, n 
= 6, 5). Scale bars: 100 msec and 20 mV. 
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Figure 3.3.3: Voltage-gated ionic currents are differentially affected by stearic acid. Panel A: Representative 
traces of sodium currents (INa) in control (CTL, black) and in SA (10 µm; red) treated cells. Inset: voltage-
clamp protocol for current activation. Plots of current density (Panel B), and of voltage-dependence of 
current activation (squares) and inactivation (circles) (Panel C), n = 5, 7). Panel D: Representative traces 
(selected) of calcium current (ICa, L) in CTL and in SA (10 µm; red) treated cells. Inset: voltage-clamp protocol 
for current activation. Plots of current density (Panel E), and of voltage-dependence of current activation 
(squares) and inactivation (circles) (Panel F). Incubation of myocytes in SA caused a significant reduction of 
ICa, L density (n = 24, 22; *p<0.05). Panel G: Transient outward potassium currents (ITO) in CTL and in SA 
treated cells. Inset: voltage-clamp protocol. Panel H: Current-density measurements showing effects of SA 
on peak ITO, but not on the steady state current (ISS) (Panel I) (n = 8, 8; *p<0.05). 
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Figure 3.3.4: Human atrial action potential model simulation of stearic acid effects on 
ionic currents in isolated atrial cells. Panel A: Model generated action potential under 
control conditions (left) and following SA-induced changes in ionic currents (see text for 
details) (right). Panel B: Measurements of APD30, 50 & 80 from ten consecutive action 
potential simulations under control (CTL, black) and with SA treatment (white).  
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Figure 3.3.5: Cav1.2 Localization and whole cell protein content is not affected by stearic acid. Transmitted 
light image of an atrial myocyte (top), Cav1.2 protein staining (green), α-actinin staining (red) and a merged 
image of Cav1.2, α-actinin and DAPI staining (bottom) under control (CTL; Panel A) and following incubation 
in stearic acid (SA; Panel B). Inset: 20 µm section of the merged image and corresponding intensity profile 
of Cav1.2 and α-actinin. Scale bars 20 µm. Panel C: Quantification of the intensity profiles shows SA did not 
alter the mean distance between intensity peaks for Cav1.2 (left) or α-actinin (right; n = 12, 12). Mean 
distance between Cav1.2 and α-actinin peaks were similar in both groups and unchanged from CTL to SA.  
Panel D: (left) Western blot for Cav1.2, with GAPDH as a control. Pane D: (right) normalized densitometry 
plot of Cav1.2 protein levels in CTL and SA treated cell lysates (n = 3). 
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Figure 3.3.6: Stearic Acid disrupts t-tubules in atrial myocytes. Panel A (top): Coordinate axes for reference 
and schematic diagrams illustrating the fields of view. Panel A: subpanels (a, c, e & g) are XY planar views 
and (b, d, f & h) are 40 µm ZY cross-sectional views of the same cell. (a & b) Di-8-ANEPPS staining of t-
tubules in freshly dissociated (t = 0) atrial myocytes (n = 19). After 24 hrs in culture, Control (CTL) cells 
shown in (c) and (d) retain t-tubule structures (n = 20). (e) and (f) T-tubular structure after chronic incubation 
of myocytes in PA (n = 19). (g) and (h) reduction in t-tubules after 24 hr incubation of myocytes in SA (n = 
25). Arrows indicate the lateral membrane and arrowheads highlight an individual t-tubule in both views. (*) 
identifies the nuclear region. Scale bars: 20 µm (XY) and 5 µm (ZY). Panel B: Quantification of t-tubules in 
using the ratio of the t-tubule region and total cell fluorescence. SA reduced the presence of t-tubule 
structures in LA myocytes (CTL vs. SA; ***p<0.0001 (n = 25), CTL vs. PA; p=ns (n = 19)). Panel C:  SA 
reduced the capacitance of atrial myocytes following incubation in SA (Panel C (n = 83 *p<0.05), but did not 
alter 2D surface area of myocytes (n = 68).  
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Table 3.3.1: Electrophysiological properties of atrial myocytes incubated in palmitic 
(PA), stearic (SA) and oleic (OA) acids. Acquisition of Resting Membrane Potential 
(RMP), Action Potential (AP) Amplitude, Action Potential Overshoot, dv/dt max, and Cell 
Capacitance by patch clamp is presented with animal matched controls (CTL). 
(*p<0.05; **p<0.01).  
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3.4 Discussion 

In this study, we have investigated the changes in electrical and structural 

properties of sheep atrial myocytes following incubation of the cells in each of the 

three epicardial free fatty acids; palmitic, stearic and oleic acids. Whereas the 

monounsaturated fatty acid, oleic acid, had no measurable effects, the fully 

saturated acids caused significant changes in myocyte electrophysiological and 

structural properties, with stearic acid effects being more detrimental than 

palmitic acid effects. Furthermore, the remodeling effects required chronic 

application of the fatty acids. The results from our study are important in 

understanding changes in atrial electrophysiology linked to an overload of these 

epicardial metabolic biofactors, in the setting of obesity.  

 

Adiposity of atrial myocardium 

It is generally known that the pulmonary vein regions have extensive 

adiposity. It has been suggested that the fat deposits may contribute, by 

mechanisms yet to be defined, to the aberrant electrical impulses emanating 

from this region232,234,238,248,261,309. Our histological analysis in this study (Figure 

1) shows extensive fatty infiltration of the left atrial appendage. As has been 

suggested, obesity associated increases in atrial epicardial 

adiposity237,238,240,249,261,298,310 and any associated increases in the release of 

biofactors potentially could modify myocardial function by direct or paracrine, 

and/or by ‘vasocrine’ mechanisms.235 The results of our study in the ovine 
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suggest a potential role of elevated atrial adipocyte biofactors in the structural 

and electrical remodeling of the atrial myocyte. 

 

Remodeling of membrane ionic currents  

Stearic acid is the major saturated free fatty acid in ovine as well as 

human epicardial adipose tissue, and studies have shown increases in the 

circulating levels with obesity.246,257,258,260 However, to date few studies have 

investigated the consequences of elevated levels of saturated free fatty acids 

(palmitic and stearic acids) on atrial myocytes isolated from a large mammal. In 

one comprehensive study, the effects of palmitate on murine ventricular myocyte 

excitability properties were investigated under acute exposure of the fatty acid.256  

It was reported that palmitate shortened APD, an abbreviation that was the result 

of an ~20% increase in the voltage-gated potassium currents, consisting of Ito,f, 

IK,slow and Iss.256 The investigators reported that no effects on the inward rectifier 

current or the voltage-gated calcium current were observed. It was noted that 

further experiments would require chronic application of the fatty acid challenge 

on myocytes isolated from a large animal model.  Here, we report that chronic 

application of saturated free fatty acids on ovine atrial cells significantly 

abbreviated APD. The results show that compared to palmitic acid (30% 

reduction of APD30), there was a more profound effect on APD abbreviation with 

stearic acid (60%), an effect that was observed at all phases of the repolarization 

process. In contrast to these saturated free fatty acids, the mono-unsaturated 

oleic acid had no effect on APD under similar conditions.  
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Furthermore, we report that the fatty acids had no effects on the resting 

membrane potential (and presumably, would have no significant effects on the 

inward rectifier current), and did not alter properties of the fast voltage-gated 

sodium currents.  Consistent with this, incubation of the cells in stearic acid did 

not significantly alter upstroke velocity. However, there was a significant 

reduction in ICa,L and ITO. The fatty acid effects we report here are different from 

those previously described 256, presumably reflecting differences in animal 

models (murine versus ovine), cell types (ventricular versus atrial), and nature of 

the fatty acid challenge (acute versus chronic).  

The cell electrophysiology results, in combination with the simulations 

using the human atrial cell model, suggest that the selective effects of stearic 

acid on membrane currents are responsible for the observed changes in atrial 

cell action potential properties. Thus, the ionic mechanisms underlying APD 

abbreviation are mediated by fatty acid induced remodeling of the channels 

underlying ICa,L and ITO, with a predominant effect on the former. It is interesting 

that qualitatively similar parallel reductions in the two currents have been 

reported in AF induced remodeling.5 The peak ITO density, which is primarily 

composed of ITO, fast and ITO, slow was affected by the fatty acid challenge, however 

we did not observe a change in steady state current (ISS), suggestive of 

differential stearic acid effects on these voltage-gated potassium channels in this 

animal model. In theory, a number of different molecular mechanisms can be 

responsible for the stearic acid induced changes on ICa,L and ITO, including ion 

channels remodeling resulting from changes in channel protein expression, post 
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translational modifications i.e., including channel phosphorylation or 

nitrosylation.5 However, results of the biochemical analysis involving confocal 

microscopy and western blot showed no alterations by such mechanisms with 

steric acid challenge on Cav1.2. Furthermore, there were no changes in Cav1.2 

protein levels in cell lysates following stearic acid treatment. However, presently, 

we cannot completely rule out such regulatory effects of saturated free fatty acids 

on these or other channels.  

 

Remodeling of t-tubular architecture  

Overall, the biochemical analysis in this study shows that with fatty acid 

incubation, the amount of Cav1.2 protein remains intact, and is predominantly 

localized to the t-tubules. It is generally accepted that atrial t-tubular network is 

fairly prominent in large mammals, and has profound effects on spatio-temporal 

properties of systolic Ca2 + transients.89,262 Importantly, t-tubules have been 

implicated in a number of pathological conditions affecting the heart,205,308,311 

probably the result of high susceptibility to remodeling. Given predominant 

localization of calcium channels in the network, it was suggested that reduced 

coupling between influx of Ca2+ and the release of sarcoplasmic reticulum (SR) 

Ca2+ played a role in the arrhythmogenesis in the ovine AF model.308  In our 

experiments, the Di-8-ANEPPS staining with incubation in saturated fatty acids 

showed a significant reduction of the atrial t-tubule network,308 with stearic 

acid>palmitic acid effects. Furthermore, there was a significant reduction in 

capacitance of myocytes incubated with stearic acid without changes in cellular 
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morphometry. Confocal microscopic analysis also showed no apparent changes 

in Cav1.2 localization or α-actinin periodicity. Taken together, these data suggest 

fatty acid induced modification to the t-tubule invaginations near the lateral 

membrane, such as by ‘pinching off’ or physically occluding the pore, thereby 

preventing access of Di-8-ANEPPS to the network of tubules. Such alterations of 

the t-tubule structure may also be expected to compromise calcium handling 

mechanisms. The differential fatty acid effects on ion channels may be attributed 

to mechanisms associated with channel sub-cellular localization, and/or to fatty 

acid induced effects on channel molecular properties. Moreover, the effects of 

the different fatty acids may be dependent on their physio-chemical properties, 

including chain lengths (16; palmitic versus 18; stearic), as well as on their 

degree of saturation; fully saturated (stearic; 18: 0) versus the mono-unsaturated 

(oleic; 18: 1) nature of the fatty acids. In the latter case, elaidic acid, which is the 

trans isomer of oleic acid, could be used to test such a hypothesis.  

 

Limitations 

In the present study, we have focused our experiments in evaluating one 

group of biofactors, the saturated free fatty acids present in the epicardial 

adipose tissue of the ovine atrial myocardium.  The major limitation of this study 

is the in vitro nature of our experiments. In vivo, biofactors produced by 

adipocytes therein may regulate the atrial myocardium by mechanisms involving 

additive effects of these (and other) fatty acids. It has been shown that specific 

combinations of fatty acids found in blood serum under normal conditions can 
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have physiologically beneficial effects to cardiac structure and function312. 

Nevertheless, this first set of experiments was conducted to begin a systematic 

evaluation of the individual saturated fatty acids present in obese sheep. The 

combinatory effects of these fatty acids do warrant investigation in the future. 

Also, it is expected that the response of cardiac myocytes to the incubation in the 

fatty acids may be different if the contractile machinery were fully activated during 

cardiac muscle contraction. These limitations notwithstanding, our results show 

for the first time, that elevated levels of a main metabolic biofactor of epicardial 

adiposity (saturated free fatty acids) remodels the T-tubular architecture of atrial 

cells in this large animal model, plays a key role in ion channel remodeling, and 

in arrhythmogenicity associated with obesity.  

 

Conclusions 

Chronic application of saturated free fatty acids leads to the remodeling of 

the normal architecture of t-tubules and the properties of membrane ionic 

currents in atrial cells. Chronic application of stearic acid modifies the t-tubular 

network, primarily affecting functional properties of ICaL, with potential implications 

in abnormal atrial electrical excitation. 

 

3.5 Methods 

The University Committee on the Use and Care of Animals (UCUCA) at the 

University of Michigan (protocol 10552-2) approved all experiments.  Briefly, 

atrial cell were isolated using the standard Langendorff retrograde perfusion 
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methods293. Current- and voltage-clamp experiments, including solutions for all 

experiments, biochemical and optical techniques have been previously 

published1,304,  

 

Isolation of Adult Ovine Myocytes: 

Sheep atrial myocytes were isolated using the Langendorff retrograde perfusion 

method as previously described1,293,304. The protocol followed conforms of the 

Guide for Care and Use of Laboratory Animals published by the United States 

National Institutes of Health (NIH) Publication No. 85-23, revised 1996. Briefly, 

male sheep (25-30 kg) were anesthetized with sodium pentobarbital (30 mg/kg 

I.V.). Following thoracotomy, the heart was immediately removed, transported 

from the necropsy room in ice-cold cardioplegic solution containing (in mmol/L): 

Glucose 280, KCl 13.44, NaHCO3 12.6, Mannitol 34. The aorta was cannulated 

and retrogradely perfused (180 mL/min) with Tyrode’s solution containing (in 

mmol/L): NaCl 148, KCl 5.4, MgCl2 1.0, CaCl2 1.8, NaH2PO4 0.4, Glucose 5.5, 

HEPES 15; pH 7.4 (NaOH) at 37oC until the effluent was clear of blood. 

Subsequently, a Ca2+ free solution containing (in mmol/L): NaCl 148, KCl 5.4, 

MgCl2 1.0, NaH2PO4 0.4, Glucose 5.5, HEPES 15; pH 7.4 (NaOH) was perfused 

for at least 10 minutes or until all contractions ceased. Collagenase (160 

units/mL; Worthington Type II) was added to the Ca2+ free solution and perfused 

for 40 minutes. After cells were properly digested, a 1.5 cm x 1.5 cm region of the 

free wall bordering the posterior section of the left atrial chamber was collected 

for dissociation. Sectioned tissue was then placed in KB solution containing (in 
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mmol/mL): KCl 80, MgSO4 5, KH2PO4 30, Glucose 20, EGTA 0.25, Creatine 5, β-

Hydroxybutyric acid 5, Taurine 20, Pyruvic acid 5, ATP 5; pH 7.4 (KOH). Left 

atrial cells were isolated by gentle teasing and mechanical agitation. The isolated 

cells were kept at room temperature in KB solution for another 30 minutes before 

Ca2+ reintroduction293. Cells were centrifuged and resuspended in a normal 

Tyrode solution at room temperature until use in acute (t = 0) experiments. In all 

other experiments, cells were centrifuged, plated and cultured in M199 medium 

with 3% penicillin/streptomycin, as previously described273.  

 

Preparation of Free Fatty Acids Solutions: 

All solutions were prepared fresh for each experiment similar to previously 

described313. We dissolved palmitic (Sigma), stearic (Sigma) or oleic acid 

(Sigma) in 1 mL dimethyl sulfoxide (DMSO). Separately, we dissolved “fatty acid 

free” bovine serum albumin (Sigma) in 19 mL of DiH2O. The FFA/DMSO solution 

was added stepwise (to prevent precipitation) to 19 mL of DiH2O/BSA to create a 

3 mM FA stock at 37oC. This stock was added directly to either M199+ culture 

media (chronic experiments) or to normal Tyrode’s (acute experiments) to create 

a 10 µM working solution. We chose a 10 µM concentration based oon the 

findings of Padmanabhan et al and Veiga-Lopez et al 258,314 in measuring the 

serum free fatty acid concentrations of lean and obese sheep. Discrepancies in 

exact fatty acid concentration vary from study to study based on analysis 

methodology but the percentage increase in lean vs. obese is quantitatively 

similar 315. In order to directly compare the effects of each FA, our experiments 
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tested each FA at one concentration. Our experimental concentration (10 µM) is 

the physiologically observed concentration in obese sheep serum for stearic acid 

alone. Palmitic acid and oleic acid are significantly less abundant in lean and 

obese sheep serum258.  

 

Single Cell Preparation for Experiments: 

All experiments, unless otherwise stated, were conducted at 24 hours. Due to the 

high experimental variability in the outbred ovine model system, we have 

presented all experimental data with animal matched controls similar to Musa et 

al304. Furthermore, the analysis was conducted in this manner due to the inability 

to acquire all data sets within the experimental time frame.  

 

Single Cell Electrophysiology 

The external solution, pipette filling solution, and protocols used for recording 

individual currents are described below in detail.  

 

Action Potential Recordings: 

Borosilicate glass electrodes were pulled using a Brown-Flaming puller (model P-

97), yielding a tip resistance of 3-5 mΩ when filled with pipette solution. Action 

potentials were recorded on a 700B Multiclamp amplifier at 37oC (Molecular 

Probes) in normal HEPES Tyrode solution as previously described 1. Briefly, cells 

were stimulated using a DS8000 Stimulator (World Precision Instruments) with 3-

5 msec current pulses. Pulse trains of 20 stimuli were elicited at 1 Hz. Action 
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potential duration values (APD30, 50, 80) were determined as the repolarization 

percent from the peak to baseline using custom software. All statistics (two tailed 

Student t tests) were carried out using Prism 6 (GraphPad). 

External solution (mmol/L): NaCl 148, NaH2PO4 0.4, MgCl2 1, Glucose 5.5, KCl 5.4, 

CaCl2 1.0, HEPES 15; pH 7.4 (NaOH).  

Pipette filling solution (mmol/L): KCl 148, MgCl2 1, EGTA 0, HEPES 5, Creatine 2, K2-

ATP 5, Phosphocreatine 5; pH 7.2 (KOH). 

 

Voltage Clamp Experiments: 

Whole-cell recordings from isolated sheep atrial myocytes were done using 

standard methods293. All recordings were conducted at room temperature, and 

were performed using an Axopatch-200B Amplifier and/or 700B Multiclamp 

amplifier (Molecular Devices Sunnyvale, CA) and data acquisition and analysis 

were performed utilizing pClamp10.2 software (Molecular Devices Sunnyvale, 

CA). Pipette resistances ranged from 2-3 MΩ. Access resistance was 

compensated to 1-2 MΩ. Input resistance was 500 MΩ to 1 GΩ.  

 

Sodium Current 

External Solutions (mmol/L): NaCl 5, MgCl2 1, CaCl2 1.0, CdCl2 0.1, HEPES 20, 

Glucose 11, CsCl 132.5 (pH = 7.35 with CsOH). 

Pipette filling solution (mmol/L): NaCl 5, CsF 135, EGTA 10, MgATP 5, HEPES 5 

(pH = 7.2 with CsOH). 

Protocol: In order to record sodium currents cells were held at -160 mV followed 

by depolarizing steps from -80 to +10 mV in 5 mV increments. The duration of 
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the voltage steps were 300 msec with a 5 second interval between successive 

voltage steps. Voltage-dependence of inactivation was assessed by holding at 

−160 to −40 mV followed by a 30-ms test pulse to −40 mV to elicit INa. 

Analysis: Voltage-dependent activation of INa was assessed by generating 

conductance voltage relationships (m-infinity curves) and fitting the data with a 

standard Boltzman function (Origin 8.1). 

 

L Type Calcium currents 

External solutions (mmol/L): NaCl 137, CsCl  5.4, MgCl2 1, CaCl2 1.2, HEPES 10, 

Glucose 10, 4-Aminopyridine (4-AP)  2, (pH 7.35 with NaOH)294. 

Pipette filling solution (mmol/L): CsCl 120, TEA-Cl 20, MgCl21, MgATP 5, 

Na2GTP 0.2, HEPES 10, and EGTA 10 (pH 7.2 with CsOH)294.  

Voltage dependence of peak ICa,L  was measured by holding at -70mV; 300-msec 

voltage steps were applied from -50 to +60 mV in 5 mV increments. The interval 

between voltage steps was 3 sec. Voltage-dependence of inactivation was 

assessed by holding at -70 to +10 mV followed by a 30 msec test pulse to 

+10mV to elicit ICa (Origin 8.1). 

 

Depolarization-activated potassium currents 

External solutions (mmol/L): NaCl 148, NaH2PO4 0.4, MgCl2 1, Glucose 5.5, KCl 5.4, 

CaCl2 1.0, HEPES 15 (pH 7.4 with NaOH). To block sodium channels and calcium 

channels 30 µmol/L TTX (Tetrodotoxin) and 5 µmol/L Nifedipine was added to the 

external solution. 
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Pipette filling solutuion (mmol/L): KCl 138, EGTA 10, HEPES 10, MgCl2 1, glucose 5 (pH 

7.4 with KOH). 

Protocol: Potassium currents were recorded using 5-second depolarizing pulses to 

potentials between -40 mV and +60 mV from a holding of -70 mV. Voltage steps were in 

steps of 10 mV at 15 sec intervals43. 

 

Antibodies: 

Primary antibodies used were: Rabbit polyclonal anti-Cav1.2 (Alomone Labs), 

Phospho Serine-1928 (Badrilla) and Rabbit polyclonal anti-S-nitrocysteine 

(Abcam), Mouse monoclonal sarcomeric α-actinin (Sigma).  Secondary 

antibodies used were: Donkey anti-mouse Dylight 549, Donkey anti-rabbit Dylight 

488 (Jackson ImmunoResearch), rabbit GAPDH antibody (Sigma-Aldrich).  

 

Immunofluorescence:   

Immunofluorescence analysis was carried out on myocytes plated on 22 mm 

glass coverslips. Cells were fixed with 3% paraformaldehyde in PBS, and then 

blocked with 10% Normal Donkey Serum in 0.1% Triton-X100 in PBS (NDS) for 1 

h at room temperature. Incubation with primary antibodies was done in 5% NDS, 

overnight at 4°C. The next day coverslips were washed with 0.1% Triton-X100 in 

PBS (PBS-T, 3 x 10 min) and incubated for 90 minutes at room temperature with 

secondary antibodies diluted in 5% NDS. Coverslips were then washed with 

PBS-T (3 x 10 min) and PBS (1 x 10 min). Samples were treated with with 4',6-

Diamidino-2-Phenylindole, Dihydrochloride (DAPI), a nucleus marker, (Molecular 

Probes) and then mounted onto slides using FluoromountG (SouthernBiothech). 
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Immunostained preparations were analyzed by confocal microscopy (Nikon A1R) 

to determine protein localization in relation to cell morphology. Line scanning 

analysis of 20 µm sections was conducted similar to Musa et al304. 

 

SDS-PAGE and Immunoblotting: 

Control and treated cardiac myocytes were washed in cold PBS, lysed directly in 

the modified loading buffer (Tris•HCl, 25 mmol/l; NaCl, 150 mmol/l; EDTA, 1 

mmol/l; NaF, 4 mmol/l; Sodium ortho-vanadate, 2 mmol/l; 1% Triton X-100, 

protease inhibitor, 5% glycerol, 1%SDS, 0.05%bromophenol blue, 5% β 

mercaptoethanol) and sonicated. Lysates (20 µL) were separated by gel 

electrophoresis in one-dimensional 4-20% sodium dodecyl sulfate 

polyacrylamide gel (Invitrogen) in Tris-Glycine buffer (Fisher). Separated proteins 

were transferred to nitrocellulose (Bio-Rad, 0.45 µm pore size) in a Hoeffer 

transfer apparatus. Nonspecific binding sites were blocked by incubation with 5% 

nonfat dry milk (NFM) in PBS with 0.05% Tween-20 (PBS-T). Membranes were 

then incubated with specific primary antibodies (0.5-1 ug/ml) diluted in 5% NFM 

overnight at 4oC. Following four ~5 minute washes in PBS-T, membranes were 

incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies 

(Jackson Immunorersearch) for roughly one hour. Antigen complexes were 

visualized using enhanced chemiluminescence (Pierce). Protein bands (top 

bands, were doublets are present) were quantified by digital densitometry with a 

BioRad Fluor-S imager and Quantity One software (Bio-Rad). Precision Plus 
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Protein All Blue Standards (Bio-Rad) was used to determine molecular weight of 

all blots. GAPDH was used as a control in all experiments.  

 

Transverse Tubule Imaging: 

Protocol:  1 mg of voltage-sensitive dye di-8-ANEPPS (Life Technologies, Carlsbad, CA) 

was dissolved in 1 mL of DMSO and used as a stock (stored at 4oC). Working solution 

was prepared as a 50:50 v/v mix of di-8-ANEPPS stock and 20% pluronic acid as 

previously described82. 15 uL of stock solution was used per 1 mL 300 µM Ca2+ Tyrode 

solution. Myocytes were allowed to incubate for 10 min before imaging.  

Imaging: Imaging of t-tubules was done on a confocal microscope (Nikon A1R) using a 

60x oil immersion objective. Three-dimensional rendering of atrial and ventricular 

myocytes was constructed by stacking 15-25 XY planar images. Images were acquired 

with 0.5 µm spacing. Confocal images were visualized and analyzed with the NIS-

Elements program (Nikon).  

Analysis: To determine the extent of t-tubular network within a given cell, we manually 

created a region of interest (R1) inside the periphery of the cell (excluding the lateral 

membrane and intercalated disk). A second region of interest was created just outside 

the border of the lateral membrane and the intercalated disk and encapsulated the entire 

cell (R2). These regions were quantified by pixel intensity summation in NIS-Elements 

(Nikon, Japan). A third region of interest was created in either the nuclear region or a 

region lacking t-tubules (R3). The area of R3 was extrapolated to the surface areas of 

R1 and R2 and was used to correct the data for background fluorescence. After 

correction, we took the ratio of R1/R2 as a measure of t-tubular content in a given cell. 

This analysis was repeated individually for each cell and a mean ratio ± SEM was 

calculated for each group.  
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External solution (mmol/L): NaCl 148, NaH2PO4 0.4, MgCl2 1, Glucose 5.5, KCl 5.4, 

CaCl2 0.3, HEPES 15; pH 7.4 (NaOH).  

 

Preparation of Adipocyte-Conditioned Media 

Epicardial adipose tissue was removed from regions detailed in Figure 1. Cells 

were isolated as previously described.316 Minced adipocyte factions were 

digested using Type I Collagenase (Worthington Labs) for 45-60 min @ 37oC 

with continuous shaking. Cells were spun at 500g for 5 min to separate 

adipocytes from stromovascular cells. Purified adipocytes were sterile filtered 

(100 µm filter). 100 µL of digested and filtered adipocytes was cultured for 24 hrs 

prior to application to left atrial myocytes. At 24 hours, adipocytes were removed 

from the culture media (adipocyte conditioned media) and applied to myocytes 

for an additional 24 hrs. We used media from myocytes incubated for 24 hrs as a 

control. Experiments were conducted at a total of 48 hours in culture (24 hrs in 

control media or ACM).  

 

Statistical Analyses: 

Data are presented as the mean ± SEM. CaV1.2 and alpha actinin periodicity was 

determined by linear regression fits o f the data. APD analyses, voltage clamp 

experiments and calcium transient data and alpha smooth muscle actin western 

data used a two tailed unpaired Student t-tests and were carried out using Prism 

5 (GraphPad) or Excel (Microsoft). Significance was defined by p-values ≤0.05 
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Chapter 4 

Thesis Discussion and Future Directions 

 

 

4.1 Major Interpretations 

 Repolarization, the major determinant of action potential duration (APD), 

refers to the return of transmembrane voltage after peak depolarization, towards 

hyperpolarized (resting) potentials. In the heart, a variety of ion channels and 

transporters work in a voltage- and time-dependent synchrony to initiate and 

terminate contraction during systole and diastole. The studies presented in this 

dissertation serve to further our understanding, through comprehensive 

electrophysiological and biochemical techniques, the major ionic mechanisms 

associated with the heterogeneous morphology of the cardiac action potential. 

Furthermore, the individual studies highlight the well-established diversity of ionic 

currents and action potential morphology across multiple regions of the heart and 

the species dependent differences therein. Investigations of the mechanisms 

determining APD are crucial to our understanding of the causes of reentrant 

activity: the major driver of arrhythmogenicity in the heart. The focus of this 

dissertation on Purkinje and atrial cells share a unique commonality in that they 

are designed to favor electrical conduction over mechanical force generation. 

However, it was the finding of this dissertation that ICa, the essential current in 
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excitation-contraction coupling, plays a major role in shaping AP morphology. 

Specifically, the studies presented here detail the instrumental role of ICa in 

determining differential repolarization of APs obtained from septal, apical, 

Purkinje and atrial myocytes. Both studies demonstrate the important 

contributions of each form of ICa (ICaT and ICaL) in generating the unique 

morphology found in mouse Purkinje cells and ovine atrial myocytes. 

Furthermore, these studies highlight the functional role of myocyte structure and 

ion channel microdomains in determining electrophysiological behavior. In its 

entirety, the results presented in this dissertation focuses on the diverse 

expression, localization and density of ion channels and the currents they 

produce, in the myocardium under physiological and pathophysiological 

conditions. 

The initial study of this dissertation demonstrates for the first time, the 

electrophysiological characterization of wildtype mouse Purkinje cells, it 

developed a novel numerical simulation to further understand cytosolic calcium 

diffusion and the role of ICaT in generating a prolonged APD.  During our isolation 

process we successfully identified the unique morphological characteristics of 

mouse Purkinje cells compared to ventricular myocytes. Serendipitously, we also 

characterized a “transitional” myocyte that contains morphological properties 

similar to that of ventricular myocytes while maintaining electrophysiological 

properties that closely resemble Purkinje cells.  

The second study of this dissertation focused on the electrophysiological 

and structural properties of isolated atrial cells of the ovine model exposed to 



 114 

FAs. Increased adiposity has been suggested to be an active site for secretion of 

biofactors. FAs secreted from adipocytes have been suggested as potential 

mediators of altering cardiac myocyte function. Specifically, those FAs released 

from neighboring epicardial adipose tissue may act a paracrine regulator of 

myocyte function. We chose to investigate the electrophysiological 

consequences of acute, short-term (4-6 hrs) and chronic (24 hrs) incubation of 

the three major FAs found in ovine epicardial adipose tissue with atrial myocytes. 

Our data suggests that stearic and palmitic acid, which are saturated FAs, have 

the potential to affect the electrophysiological properties of atrial myocytes. Atrial 

myocyte APD was significantly reduced with reductions to both ICaL and ITO. 

These ionic currents play active roles in determining the APD of atrial cells. We 

utilized a previously published model of the human atrial AP and modified ICaL 

and ITO according to our experimental data. These ionic modifications 

recapitulated our observed APD truncation in ovine atrial cells. Interestingly, we 

observed a significant decrease in cell capacitance without a change in cell 

dimensions. Using confocal microscopy we determined that the t-tubule network 

in stearic acid treated cells was severely diminished compared to controls. Given 

the dependence of Cav1.2 function of the delivery of calcium ions to the distal t-

tubule adjacent to the junctional SR, any blockage or disruption of the t-tutuble 

system would compromise ICaL by effectively reducing the local concentration of 

calcium available for transport through the channel and potentially block the 

propagation of the electrical impulse to activate these channels. The exact 

mechanism by which stearic acid alters t-tubule membranes remains unknown 



 115 

but our data suggests a remodeling at the sarcolemmal membrane. This is due, 

in part to the preserved striated pattern of Cav1.2 in stearic acid treated cells.  

 

4.2 Heterogeneity in Ion Channel Expression Causes Regional Specialization  

 Proper function of the myocardium is dependent on the appropriate timing 

of contraction across all regions of the heart, which is controlled by time-

dependent depolarization and repolarization of cardiac myocytes. PCs are 

specialized to deliver rapid conduction of the electrical impulse from the atria to 

the ventricles and aid in the synchronous activation of the ventricular 

myocardium. Interestingly, a loss of synchrony in the His-Purkinje system may 

initiate fatal ventricular arrhythmias15-17,148,317. Our investigations into PCs support 

previous evidence that PCs are characterized by a specialized expression of 

ionic currents compared to ventricular myocytes.  In order to provide rapid 

conduction from the atria to the ventricles, PCs have been characterized by large 

amplitude INa and a higher dv/dtmax as compared to the surrounding ventricular 

myocytes318,319. Furthermore, It was previously shown that PCs have pacemaker 

activity allowing for ventricular contractions in the absence of atrial 

stimulation318,319. Our data confirm unique INa density and pacemaker activity in 

contributing to the role of the His-Purkinje system in the murine heart. These data 

support species dependent similarities in the functional role of the conduction 

system.  

 Most importantly, our data demonstrate a striking difference between the 

AP morphology of PCs and neighboring ventricular myocytes. This was due 
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primarily, from the presence of ICaT in PCs and reduced ITO density compared to 

ventricular myocytes. These differences are markedly different from the 

comparative studies of AP morphology in PCs in the ovine, where PC APD is 

similar to that of ventricular myocytes280. However, multiple studies278,320-322 in the 

canine and rabbit have reported similar observations to those observed here. In 

the murine, the role of a prolonged repolarization phase may function to limit the 

potential for reentrant arrhythmias. Specifically, the prolonged plateau phase of 

murine PCs may act as a safe guard to triggered activity under normal 

physiological conditions of the working myocardium. However, given the high 

heart rate (>600 bpm) of the mouse and that PCs are characterized across 

species by higher upstroke velocity, intercellular coupling, longer APD and 

spontaneous pacemaker activity, the role of PCs in generating reentrant activity 

remains controversial56,148,323-325. The PC/ventricular myocyte junction has been 

suggested to play a crucial role in the initiation and maintenance of ventricular 

arrhythmias. To date, the exact mechanism by which this occurs remains 

unknown but has been suggested to be the result of triggered activity (e.g. EADs 

& DADs) originating from PCs. The contribution of triggered activity has been 

suggested to arise from the altered state of calcium handling in these cells 

compared to ventricular myocytes268. These differences may be due to increased 

INa, lack of t-tubules and differing modes of calcium activation (in PC versus 

ventricular myocyte) 326-328. Therefore, it has become increasingly clear that PC 

contributions in generating reentrant activity may be a consequence of 

specialization of ionic currents and calcium handling in these cells.  
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4.3 Ion Channel Microdomains as Targets for Remodeling  

 Our observations of the specialized conduction system elicit specific 

details regarding the membrane ionic mechanisms governing action potential 

morphology. During the maturation of the second study of this dissertation, it 

became evident that simple membrane expression of ion channels was 

insufficient to explain the remodeling we observed by FAs. This added level of 

complexity revealed the importance of trafficking and membrane localization in 

physiological and pathophysiological remodeling of myocytes. Localization of 

Cav1.2 into t-tubular microdomains is a well-studied phenomenon and its 

importance in the maintenance and regulation of EC coupling cannot be 

understated7,54,77. Our data suggest that stearic acid (SA) preferentially remodels 

ICaL due to the high concentration of Cav1.2 in t-tubular microdomains. We 

supported this hypothesis from multiple perspectives during the progression of 

this study. First we investigated INa, which remains unaffected by SA treatment. It 

has been shown previously329,330 that Nav1.5, the major isoform underlying INa is 

highly concentrated at the intercalated disc with a minimal presence in the t-

tubular network. The separate populations of Cav1.2 and Nav1.5 allows for 

specificity in AP remodeling due to disparate ion channel microdomains in the 

atrial myocyte (e.g. intercalated disc vs. t-tubules). Furthermore, our imaging of 

the t-tubular membranes demonstrates significant structural remodeling through 

a currently unknown mechanism. Given our immunocytochemistry and western 

data, we believe Cav1.2 channel localization to t-tubular microdomains is not 
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disrupted. However, the apparent structural remodeling, potentially at the Z-

groove of the t-tubule invagination, causes ICaL to be preferentially affected during 

SA treatment. Remodeling of the t-tubular membrane, which as been 

demonstrated in multiple pathophysiological animal models (see Louch et al263 

for detailed review) suggests a precedent for the novel remodeling we observe 

with ICaL during SA treatment.  

 

4.4 Progression from the Murine to the Ovine Model 

The ovine model was used in the second study due to the epicardial fat 

distribution with concentrated depots near the posterior left atrium (LA) and left 

atrial appendage similar to the epicardial adipose depot in humans. Two 

saturated FAs (SFAs), palmitic acid (PA) and stearic acid (SA) and one mono-

unsaturated FA, oleic acid (OA) are the three major FAs in epicardial adipose of 

the ovine model, and comprise approximately 85% (25%, 35% & 25.5% 

respectively) of all free FAs found in blood serum257,258. Furthermore, compared 

to controls, changes in SFA levels in obese humans and in sheep are 

quantitatively similar258-261. The presence of increased epicardial adipose tissue 

has been suggested to elevate local FA concentrations in the atrial myocardium. 

In addition, fatty infiltration (adiposis cardiaca) from the epicardial surface has 

been suggested to increase arrhythmogenicity and usually increases with obesity 

and certain disease conditions of the heart, which is not present in the rodent 

model234,238,248. 
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Our transition to the ovine model in place of the murine was also 

supported by significant differences in activated metabolic pathways from the 

lean to obese state. Recently, a study by Li et al331 performed a rigorous 

functional genomics screen of lean and diet-induced obese rodents. Their gene-

expression profiles were compared to lean and obese human profiles from 

previously published studies. They concluded rodents to be an “adequate” model 

for studying adipogenesis but highlighted major differences in the metabolic 

responses to lipid metabolism, such as fatty acid oxidation. These discrepancies, 

coupled with the lack of measureable epicardial adipose tissue in the rodent 

model, suggests the presence and metabolic pathways associated with lipids in 

rodents differs significantly from large mammals. Analogous to epicardial adipose 

tissue, humans and other large mammals (e.g. dogs and sheep) share complex 

atrial t-tubule structure that is absent in rodent atrial myocytes84,262. Recently, it 

has been shown that the t-tubule network in the atria is remodeled during certain 

pathological conditions263. Use of the rodent model would have limited our ability 

to observe structure-function relationships of t-tubules in the atrial myocardium. 

In addition, the electrophysiological differences between the rodent and human 

further supports our use of a large animal model. The human and sheep heart 

beat at roughly 1-2 Hz with the rodent heart beating at a frequency closer to 10 

Hz. Due to these fundamental physiological differences, the underlying ionic 

composition of myocytes in rodents generates action potentials of vastly different 

morphology compared to those in humans. In order to avoid further complicating 

our electrophysiological interpretations after incubating myocytes with FAs, we 
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have chosen to use a model that better serves as a surrogate for human cardiac 

physiology.   

 

4.5 Future Directions: Study 1 

 

1. Elucidate gating mechanisms, unitary events and molecular identification of 

the major PC ion channels: Chapter 2 provides the first ionic profile of wildtype 

murine PCs. However, the biophysical characterization of ionic currents that 

underlie the PC AP is incomplete. To better profile the properties of these ion 

channels, generating activation and inactivation curves (fit to Boltzmann 

functions) are appropriate for the major ion channels studied here. These 

experiments would be identical in type, with minor technical differences (e.g. 

voltage-clamp parameters) to those presented in Chapter 3. These experiments 

would provide crucial information of the gating properties of each ion channel, 

which could be integrated into our model and potentially demonstrate further 

differences between PCs and ventricular myocytes. In the majority of ionic 

currents investigated in this study, we observed marked differences in whole cell 

current density. Whole cell current density is represented by the expression I = 

NiPo. Experimentally, differences in one or more of these parameters are defined 

as a: (1) change in unitary conductance properties (ϒ) (2) alteration in the open 

probability of the unitary conductance (Po) and (3) a change in the number of 

functional channels in the membrane (N). To date, we have not investigated the 

underlying mechanisms responsible for these differences in PCs compared to 
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VMs. To address these limitations we would probe protein content using western 

blot analysis of a membrane preparation. This technique allows for probing of 

protein content of an enriched plasma membrane fraction. The major pitfall of 

these experiments is the quantity of sample needed to probe on an SDS-Page 

gel. Purkinje fibers of the murine heart are especially low in number and are 

considerably frailer than their ventricular myocyte counterparts. Furthermore, 

efficient separation of PCs from ventricular myocytes may prove problematic and 

contaminate of our PC sample. Therefore, it may prove beneficial to probe 

membrane proteins via extracellular-loop specific antibodies and visualize with 

high-resolution confocal microscopy. The benefits of these experiments are two-

fold: (1) analysis of membrane proteins, while qualitative, provides useful 

information regarding the relative abundance of these ion channels across cell 

types and (2) visualization via confocal microscopy provides the molecular 

localization of these proteins (e.g. intercalated disc, sarcolemma, etc.) which has 

not yet been defined in the murine PC. Analysis of unitary conductance (ϒ) and 

open-probability (Po) would be achieved through rigorous single channel analysis 

similar to previously described273. Generation events conductance, open and 

closed time histograms of unitary events may provide useful information in 

determining differences between PC and VM ion channel current density. The 

molecular correlates that underlie the ionic currents in PCs have not been 

investigated in this dissertation. The use of single cell real-time PCR for 

comparative analysis between PCs and ventricular myocytes offers gene 

expression patterns on a variety of electrophysiological targets not limited to ion 
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channels (e.g. scaffolding proteins, signal transduction pathways etc.). As an 

example, the data from these experiments would provide useful information in 

characterizing the pacemaker current (If) in PCs, which to date has no known 

molecular correlate.  

 

2. Investigations into “transitional” cells: For over 40 years, the scientific 

community has been aware of a unique cardiac cell type existing at the junction 

of Purkinje fibers and the ventricular myocardium332. These junctions, integral in 

Purkinje-myocyte coupling, have been implicated in the initiation and 

maintenance of ventricular arrhythmias333. Observations of this cell type in the 

Cx40GFP/+ mice demonstrate their presence in the murine model. To date, there is 

no information regarding the electrophysiological characteristics of this cell type 

in the murine model. Continuing, similar to the study presented in Chapter 2, with 

transitional cells and determining the underlying mechanisms of excitation are 

crucial in fully understanding Purkinje-myocyte coupling and the role transitional 

cells play in ventricular arrhythmias. The major limitations to investigating 

transitional cells are the limited quantity and near impossibility in differentiating 

these cells from normal ventricular myocytes in the wildtype murine heart. The 

use of the Cx40GFP/+
 is a viable alternative. However, the role of expressing GFP 

and Cx40 may have unintended homeostatic consequences, which is the 

underlying reason this model was not used in our study. Despite this limitation, 

use of this mouse would eliminate a major technical difficulty associated with 

successful identification of transitional cells.  
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3. Integration of transgenic Cx40GFP/+ mouse: Successful isolation and distinction 

of cardiac PCs proved to be the major limiting factor in our experiments. In future 

projects, the integration of the transgenic Cx40GFP/+ mouse, shown in our study, 

would eliminate the difficulty in distinguishing PCs from neighboring VMs. 

Furthermore, the mating of the Cx40GFP/+ mouse with mouse models of cardiac 

disease would allow investigators to study the contribution of PCs and 

“transitional” myocytes to various inherited arrhythmias. Furthermore, successful 

characterization of “transitional” myocyte ionic currents could be integrated into 

the VM numerical model in this dissertation.  

 

4.6 Future Directions: Study 2  

 

Future Directions 

 Throughout this dissertation, my doctoral studies have demonstrated the 

underlying mechanisms responsible for myocyte AP morphology and in this 

particular study, the ionic currents responsible for electrophysiological 

remodeling of atrial APD. Unlike the initial study in Purkinje cells, the 

mechanisms governing differing APDs in this study are the result of structural 

remodeling, which directly contributes to the functional ionic composition of our 

cells incubated with SA. There are a number of experiments in which to pursue 

these mechanisms, along with supportive experiments to gain additional insight 

into the role SA has on atrial myocyte electro-mechanical function.  
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Major Directions 

1. T-tubule remodeling mechanism: It has been suggested that during metabolic 

stress, t-tubule remodeling may be the consequence of mitochondrial 

enlargement, which causes the occlusion of the t-tubular lumen334. In cardiac 

myocytes, mitochondria are the site of FA oxidation and diets causing elevated 

serum FA levels lead to mitochondrial stress and enlargement (MtSE)335,336. It 

has been demonstrated previously that stearic and palmitic acid have differential 

metabolic pathways in human patients any may underlie the differences in t-

tubule remodeling demonstrated in this dissertation337. Therefore, it is my 

hypothesis that treatment with stearic acid causes MtSE, which blocks the t-

tubule lumen. To test this hypothesis, use of cyanide as a mitochondrial 

metabolic stressor, would be employed as previously described334 to 

demonstrate enlargement of mitochondria are sufficient to occlude the t-tubule 

lumen in ovine atrial myocytes. Next, the use of pharmacologic inhibitors of FA 

transport and oxidation would be used to elucidate the necessary steps involved 

in MtSE. To rule out SA integration into the membrane, which may alter ion 

channel function338 independent of t-tubule remodeling, the use of 

Arylpiperazines (inhibitors of FATP) during SA treatment is warranted. 

Arylpiperazine treatment allows for the determination of whether t-tubule 

remodeling is the sole contributor to the electrophysiological alterations observed 

in this dissertation or whether FAs have a more direct mechanism of action on 

ion channel function339. Given the lack of acute and short term (4-6 hour) 
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remodeling by stearic acid it is unlikely that the fatty acid transport protein (FATP), 

located on the sarcolemmal membrane, is a major contributor to the t-tubule 

remodeling. However, we cannot rule out that SA accumulation in the 

sarcolemmal and t-tubular membranes may have a time course greater than 6 

hours. Since, we cannot rule out FA entry into myocytes by transport proteins 

other than FATP we will attempt direct inhibition of mitochondrial FA transport 

proteins. Perhexiline inhibits transport of FAs by carnitine palmitoyl transferase 

(CPT-1), which is located on the outer mitochondrial membrane. Experiments 

involving Perhexiline during SA treatment aid in determining whether 

mitochondrial uptake and subsequent metabolism of SA are responsible for the 

remodeling observed in this dissertation. In order to understand whether the 

accumulation of Fatty Acyl-Carinitine (downstream metabolite of CPT-1) alone 

causes mitochondrial stress, or if β-oxidation of Fatty Acyl-CoA (downstream 

metabolite of Fatty Acyl-Carinitine) is responsible for MtSE, treatment with 

Ranolazine to block β-oxidation will be implemented. Ranolazine is a partial fatty 

acid oxidation (pFOX) inhibitor, which directly blocks β-oxidation, presumably by 

decreasing the ratios of NADH/NAD+ and acetyl-CoA/free CoA in the 

mitochondrial matrix340,341. To examine whether any of these pharmacologic 

treatments alter FA induced MtSE we will use either immunocytochemistry with 

readily available mitochondrial antibodies (Millipore, Abcam, Sigma-Aldrich etc.) 

and examine mitochondrial calcium retention capacity as previously described342 

to determine the health of mitochondria in SA treated cells. Separate treatments 

of atrial myocytes with Cyanide (without SA), Arylpiperazines, Perhexiline and 
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Ranolazine may offer mechanistic insight into the remodeling observed during 

SA incubation by defining whether (1) MtSE is sufficient to block t-tubules (2) 

whether membrane fluidity is altered by SA and whether this alters channel 

function (3) whether MtSE occurs due to accumulation of metabolites at the 

inner/outer mitochondrial membrane or (4) whether accumulation of Fatty Acyl-

CoA and its β-oxidation in the mitochondrial matrix are causes of MtSE. 

To further understand the remodeling of t-tubules, localization of t-tubule 

specific proteins via high-resolution confocal microscopy could be implemented 

to elucidate whether an alteration has occurred solely at the Z-groove and/or the 

structural integrity of t-tubules near the myocyte core are effected. BIN1 has 

been previously described92 in the initiation of t-tubule genesis and localizing 

Cav1.2 to the t-tubule space. Utilizing this protein as a marker for t-tubule 

integrity at sub-sarcolemma levels would provide insight to whether the t-tubule 

network remains intact after exposure to SA. Alternative t-tubule markers are 

described further in Kostin et al343 (e.g. Junctophilin-2, Caveolin-3, Telethonin 

(Tcap). We would accompany staining of t-tubule specific proteins with known 

non-t-tubule proteins (e.g. Nav1.5, Cx40, N-cadherin etc.), which are primarily 

localized to the intercalated disc, as a negative control.  

 

2. Direct observation of Remodeled t-tubule Structure: My doctoral thesis 

suggests that SA structurally remodels t-tubules causing a significant reduction of 

ICaL. Insight into the process by which SA causes these structural abnormalities 

would provide a direct mechanism of action to the remodeling process. It appears, 
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through morphometry measurements, that myocytes incubated with SA retain 

their size but have a reduced capacitance. Given these observations, we 

hypothesize SA causes a modification at the sarcolemma and fuses the t-tubule 

pore (invaginations) at the surface or along their length. A direct test of this 

unresolved question would invoke a scanning ion conductance microscope, 

which uses a scanning pipette to produce a topographic representation of the 

surface of a live atrial cell similar to Lyon et al205. Direct observation of Z-grooves, 

the opening of t-tubules, would produce detailed surface topography and provide 

insight to the structural integrity of t-tubules at the sarcolemma. To date, 

remodeling associated with t-tubules is poorly understood. Since we have 

introduced lipids into our test conditions and we hypothesize changes to the 

membrane at the sarcolemma, observations of the Z-groove will not provide 

biochemical data of t-tubule remodeling. Therefore, use of electron spin 

resonance (ESR) or nuclear magnetic resonance spectroscopy (NMR) to 

determine the membrane composition of atrial myocytes incubated with SA may 

aid in determining whether membrane fluidity is altered. It has been shown 

previously344 that altered membrane composition contributes to detubulation and 

reductions in ICaL in isolated fetal skeletal muscle cells after modulation of 

membrane lipids. The results from these experiments may offer a biochemical 

mechanism in determining the remodeling of the t-tubular network in atrial 

myocytes treated with SA.  
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2. Quantify t-tubules in an obese ovine model: The major limitation of this study is 

the in vitro nature of all experiments performed. While there is substantial 

evidence of t-tubule remodeling in vivo, we cannot rule out the observations of t-

tubule remodeling in this study is the artifact of myocytes being removed from the 

intact myocardium. To circumvent this limitation, visualization of the t-tubular 

networks in lean and obese sheep (age-matched) atrial myocytes similar to those 

generated in Abed et al298. The investigators of this study performed diagnostic 

observations and demonstrated significant structural (e.g. fibrosis) and electrical 

remodeling (e.g. conduction velocity), predisposing these animals to AF. 

However, no studies were conducted to determine the cellular mechanisms 

predisposing these animals to AF (e.g. EC coupling alterations). In addition, the 

implication of such results from obese sheep would be limited in their applicability 

to the study presented in this dissertation, as there are a number of other 

biofactors present (e.g TGFβ, PDGF, etc.) from the elevated levels of fibrosis in 

obese hearts. As an alternative, the grafting of obese epicardial adipose pads to 

the epicardium of lean sheep would provide a novel model to observe direct 

consequences of increased epicardial adipose tissue mass and secretion of 

associated biofactors on myocardial function. Intravenous injection of SA, PA 

and/or OA into a lean sheep may also elucidate the importance of each FA 

specifically, as outlined in this dissertation, and in combination to those levels 

found in obese sheep.   

 

Minor Directions 
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1. Field stimulation experiments: To better model our findings as a surrogate for 

in vivo conditions, the use of IonOptix C-Pace Stimulator would provide 

continuous (or interval) stimulation of atrial myocytes in culture. We have 

demonstrated that 24 hr culturing of atrial myocytes does not result in 

dedifferentiation of the t-tubular architecture, which as been shown to occur 

during long term culturing. However, we hypothesize that the t-tubular 

architecture remodeling may be influenced by a two-fold benefit to this system: 

(1) stimulation of the cell membrane, simulating in vivo conditions which 

continuously utilizes EC coupling machinery which is not present in our current 

conditions and (2) increased metabolic activity of atrial myocytes in culture which 

may influence FA uptake and utilization. Furthermore, there is no guarantee that 

field stimulation will cause a discernible difference in our culturing conditions and 

the results yielded from these experiments compared to the results presented in 

this dissertation.  

 

2. Incubate atrial myocytes with FAs in combination: It has been shown 

previously that the specific content of FAs in both in vivo and in vitro conditions 

has profound effects on myocyte function and is required for myocyte 

remodeling312. Our experiments tested the effects of FAs individually and at 

equal concentrations. Introduction of a FA media containing all major FAs in 

similar ratios to those observed in vivo could provide differing or conflicting 

results from those obtained here. We hypothesize a culturing media containing 

two SFAs would have compound effects on atrial myocyte remodeling. However, 
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we cannot discard the potential (neutral) effects of oleic acid and whether its 

presence will alter the remodeling observed by PA and SA.  

  

3. Triggered calcium release (EC coupling): Given our t-tubule imaging, we 

expect calcium induced calcium release to be severely effected by SA. However, 

we have not directly shown triggered calcium release through RyR2 channels to 

be detrimentally altered by t-tubule remodeling. Furthermore, use of a ratiometric 

calcium indicator (Fura-2AM) will provide measurements of basal cytosolic 

calcium concentrations. Therefore, IonOptix measurements using Fura-2AM and 

field stimulation could demonstrate potential SA induced effects on RyR2 leak 

(basal cytosolic concentration), RyR2 calcium release and SERCA2a/NCX 

reuptake and warrant further investigation.  
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Appendix 

 

Study 1: The ionic basis of the action potential in isolated mouse cardiac 

Purkinje cell 

 

Results 

Purkinje cell model: The Purkinje single cell model was paced at 1 Hz for 50 

sec to attain steady states before using for the computer simulations. Figure S9 

shows the action potential (AP) recorded in the experiments (reproduced from 

Figure 2 in the main manuscript) and the AP obtained by the computer model 

during 1 Hz pacing. We were able to reproduce the morphological AP features of 

the Purkinje cell in our model. Table 7 compares detailed AP characteristics from 

experiments and the model. 

 

Table 1.1. Action potential characteristics of Purkinje cells obtained 

experimentally and by using the PC model. 

Parameter Experiments Model 

Vrest -82 ± 1       mV -77.1   mV 

dV/dtmax 212 ± 15    mV/ms 237.1  mV/ms 

APD50 4.7 ± 0.3    ms 9.3      ms 
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APD70 14.4 ± 1.6  ms 22.4    ms 

APD90 68.6 ± 5     ms 67.1    ms 

 

 

 

Modified ventricular myocyte model: Similarly, we adjusted the Li et al.270 VM 

model parameters to reproduce the experimentally observed AP characteristics 

in VMs obtained from the apex region. Figure S10 shows sample APs recorded 

experimentally (left) and obtained by using the modified VM model (right). Table 

S8 lists the detailed comparison between experimental data and the model 

based on AP characteristics. 

 

Table 1.2. Action potential characteristics of Apex myocytes obtained 

experimentally and by using the modified VM model. 

Parameter Experiments Model 

Vrest -79 ± 0.3    mV -78.95 mV 

dV/dtmax 114 ± 12.9 mV/ms 170     mV/ms 

APD50 3.3 ± 0.6    ms 6.3      ms 

APD70 9.3 ± 2.2    ms 11.7    ms 

APD90 44.1 ±4.9   ms 30.2    ms 
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Mathematical Modeling  

A morphologically realistic numerical model of a PC was developed starting from 

a mouse ventricular myocyte model by Li et al.8 and adapted, based on our 

experimental data. The PC was assumed to be of cylindrical shape, based on 

experimental measurements, and consists of a simplistic cytosolic calcium 

diffusion process to obtain more realistic calcium dynamics. The detailed 

description of the model and the ionic formulations are provided in the following 

section. The contribution of ICaT was studied by blocking it in the PC model. The 

rise time of Ca2+ transients was varied by varying the diffusion coefficient (DCa) in 

the PC model to study the effects of slow Ca2+ transients. In addition, a PC 

model without cytosolic Ca2+ diffusion was implemented in order to study the 

contribution of the spatiotemporal Ca2+ diffusion on the APD characteristics of the 

PC. The PC model performance was compared with ventricular myocyte (VM) 

model by Li et al.270 also modified to fit our experimental data obtained from apex 

myocytes.  

 

Purkinje cell numerical model 

Our model is morphologically distinct than the myocyte model. Unlike ventricular 

myocytes, Purkinje cells are devoid of t-tubules326 which leads to a rather distinct 

calcium activation process in which calcium ions have to diffuse through the 

cytoplasm to reach the SR before they trigger calcium-induced-calcium-release 

(CICR).327 Therefore, we implemented a simplistic cytosolic calcium diffusion 

process to obtain more realistic calcium dynamics in our model. The Purkinje cell 
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was assumed to be regular cylindrical in shape with dimensions obtained from 

our experiments explained in the main manuscript (4 µm radius and 129 µm 

length) as shown in Appendix Figure 1. The SR was located at the center of the 

cell spanning the whole length as shown in the figure. The radius from the center 

of the cell to the surface of SR was set to 2 µm.  

 

Appendix Figure 1: Schematic diagram of the mouse Purkinje cell model with 

sarcolemmal currents and calcium fluxes. The model consists of spatiotemporal 

radial cytosolic diffusion process as depicted by the two-way arrows. 
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The SR consisted of two compartments, namely, the release compartment, 

called junctional SR (JSR), and the uptake compartment, called network SR 

(NSR) (not shown in the figure). Ionic flux to and from the SR is collected in a 

small compartment around the SR, called subSR compartment. Similarly, 

sarcolemmal currents are collected in the subSL compartment beneath the cell 

membrane. Diffusion of the cytosolic Ca2+ ions was modeled as a function of a 

space coordinate between subSL and subSR compartments in addition to a time 

coordinate (two-sided arrows in Figure 2.5.1). 

The following ionic current components were modified in order to reproduce the 

AP morphology and restitution properties recorded from the experiments 

performed in our laboratory. Other formulations in the Li model270 remain 

unchanged. 

 

Fast Na+ current (INa) 

The formulation for the fast Na+ current was based on a mammalian ventricular 

myocyte model (LRd 1999)345. The parameters of the following formulation were 

adapted to fit our experimentally obtained INa current density data. The 

experimental data was adjusted for temperature-dependent changes using Q10 

factor of 1.519,12 which resulted in a +5 mV shift towards depolarized potentials in 

the experimental curves (Figure 2.5.2). Current density at physiological 

temperature was calculated by the temperature dependence relation19:  

𝐼(!!!!) = 𝐼 !!!! .𝑄(!!!!!)/!" , where 𝑡1  = 22 °C, 𝑡2  = 37 °C and 𝑄 = 1.5 . An 

additional +10 mV shift was introduced to compensate for physiological [Na]o 
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concentration (134 mM).346 The maximum conductance of the current (GNa) was 

adjusted to obtain maximum dV/dt of 230 mV/ms. Thus, the fast Na+ current was 

modeled as: 

 

𝐼!" = 𝐺!"𝑚!ℎ𝑗(𝑉 − 𝐸!") 

𝜏! =
1

(𝛼! + 𝛽!)
 

where 𝑥 in the subscript can be m, h or j. 𝐸!" is the reversal potential for sodium. 

𝛼! = 0.32
𝑉 + 47.13

1− 𝑒!!.!(!!!".!")
 

𝛽! = 0.086𝑒!!/!! 

If 𝑉 < −40 mV, 

𝛼ℎ = 0.135𝑒(!"!!)/!!.! 

𝛽ℎ = 3.56𝑒!.!"#! + 310000𝑒!.!"! 

𝛼! = −127140𝑒!.!"""! − 0.00003474𝑒!!.!"#$%!
(𝑉 + 37.78)

(1+ 𝑒!.!""(!!!".!"))
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𝛽! =
!.!"!"!!!.!"!#$!

!!!!!.!"#$(!!!".!")
 

And if 𝑉 ≥ −40 mV, 

𝛼ℎ = 𝛼! = 0 

𝛽ℎ =
1

0.13(1+ 𝑒(!!!".!!)/!!.!)
 

𝛽! =
0.3𝑒!!.!!!!!!"#$#!

(1+ 𝑒!!.!(!!!"))
 

 

L-type calcium current (ICaL) 

The L-type Ca2+ channel (ICaL) Markovian formulation was modified from Li et 

al.270 The voltage-dependent inactivation gate (𝑦) in the original model was 

retained to capture the voltage inactivation kinetics of the channel. The Ca2+-

dependent transition from the closed state C to the inactivated state I was 

Appendix Figure 2: Fast sodium current density in the computer model ,based on the 

experimental data adjusted to physiological temperature (37°C) (Q10 = 1.5) and [Na]o 

concentration (data not shown). 
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modified to be a function of Ca2+ concentration in the subSL compartment 

( 𝐶𝑎!! !"#$%). Thus, the ICaL was formulated as follows:  

𝐼!"# = 𝐺!"#𝛿×𝑉×𝑂×𝑦
[𝐶𝑎!!]!𝑒!!" − [𝐶𝑎!!]!"#$%

1− 𝑒!!"
 

Where 𝐺!"# is the maximum conductance of the channel, 𝑂 is the channel open 

probability, and 𝛿 = 𝑧𝐹/𝑅𝑇, with 𝑧 being the valence of Ca2+.  

 

T-Type calcium current (ICaT) 

The T-type Ca2+ channel, also called the low-threshold Ca2+ channel, activates at 

potentials ranging from -50 mV to -30 mV and displays fast inactivation. T-type 

calcium current (ICaT) formulation was based on Puglisi-Bers model347 modified to 

fit our experimental data.  

𝐼!"# = 𝐺!"# . 𝑏.𝑔. (𝑉 − 𝐸!") 

Where 𝐺!"#  is the maximum channel conductance and 𝐸!"  is the reversal 

potential for calcium ions. The voltage-dependence of the activation gate (𝑏) and 

the inactivation gate (𝑔) is modified as follows: 

𝑏! =
1

1+ 𝑒!(!!!")/!.!
 

𝑏! = 0.1+
5.4

1+ 𝑒(!!!"")/!
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𝑔! = !
!!!(!!!!)/!.!

 

𝑔! = 0.1+
34

1+ 𝑒(!!!")/!"
 

Appendix Figure 3 shows the current density curves for ICaL and ICaT obtained by 

fitting our experimental data (adjusted to 37°C using Q10 factor of 1.7). 

 

Time-independent K+ current (IK1) 

The formulation for the time-independent K+ current (IK1) was modified in 

accordance to our experimental data as follows: 

𝐼!! = 𝐺!!×
[𝐾!]!

[𝐾!]! + 210
×

(𝑉 − 𝐸!)
1.9149+ 𝑒!.!""#(!!!!)

− 0.2142 

Appendix Figure 3: Current-voltage curves for L-type and T-type calcium 

currents in the PC model based on the experimental data adjusted to 



 140 

Where, 𝐸! is the reversal potential for K+ ions, and [𝐾!]! is the extracellular K+ 

concentration. The model IK1 density curve shown in Figure 2.5.4 was obtained 

by fitting to experimental data adjusted to 37°C using Q10 =1.5. 

 

Transient Outward Potassium current (Ito) 

The formulation of Ito was based on Li et al.1 which included the fast (Ito,f) and 

slow (Ito,s) components of the current. We chose to exclude Ito,s since it is not 

found in mouse Purkinje cells. The parameters of Ito,f formulation were  adapted 

as follows: 

𝐼!",! = 𝐺!_!"#×𝑎!"#! ×𝑖!"#(𝑉 − 𝐸!) 

The voltage-dependence of the activation gate (𝑎!"#) was formulated as, 

𝛼! = 0.38×𝑒!.!""#(!!!".!!"#) 

Appendix Figure 4: Current-voltage curve for IK1 obtained by the PC model 

based on experimental data adjusted to 37°C (data not shown). 
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𝛽! = 0.3857×𝑒!!.!!"#(!!!".!!"#) 

Where, 𝛼! and  𝛽! are the voltage-dependent rate constants for activation. 

The inactivation gate 𝑖!"# was formulated as follows, 

𝑑
𝑑𝑡 𝑖!"# =

𝑖!"#,!! − 𝑖!"#
𝜏!"#$

 

The inactivation time constant, 𝜏!"#$, and proportion of inactivated channels at 

steady state, 𝑖!"#,!!, are given by, 

𝜏!"#$ = 9.6645+
10.9362

1+ 𝑒(!!!".!)/!.!
 

𝑖!"#,!! =
1

1+ 𝑒(!!!".!"#$)/!.!"!#
 

Appendix Figure 5 shows Ito current density obtained in the model based on the 

Appendix Figure 5: Current-voltage curve for Ito obtained from PC model 

based on the temperature-adjusted experimental data. 
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experimental data adjusted to physiological temperature (37°C)  (data not shown) 

using Q10=1.5. 

Sodium-Calcium Exchanger (INCX) 

Current through the NCX (INCX) was based on formulation used in Li et al.270 with 

one modification. The NCX in our model extrudes calcium ions from the subSR 

compartment and hence depends on 𝐶𝑎!! !"#$%, as follows: 

𝐼!"#

=
𝑉!"#!"#

1 + 𝐾!"##$
𝐶𝑎!! !"#$%

! .
[𝑁𝑎!]!

!. [𝐶𝑎!!]!. 𝑒!"#/!" − +[𝑁𝑎!]!! . [𝐶𝑎!!]!"#$% . 𝑒(!!!)!"/!"

𝐾!"#$. [𝑁𝑎!]!! + 𝐾!"#$! . [𝐶𝑎!!]!"#$% + 𝐾!"#$! . [𝐶𝑎!!]!. 1 +
𝐶𝑎!! !"#$%
𝐾!"#$

+𝐾!"#$ . [𝑁𝑎!]!! . 1 +
𝑁𝑎! !
𝐾!"#$

!
+ [𝑁𝑎!]!!. [𝐶𝑎!!]! + [𝑁𝑎!]!! . [𝐶𝑎!!]!"#$%

. 1 + 𝑘!"#𝑒(!!!)!"/!"

 

 

 

Where 𝑉!"#!"#  is the maximum voltage through NCX, 𝐾!"##$  is the affinity for 

allosteric 𝐶𝑎!! !"#$% , 𝜂  is the energy barrier position controlling the voltage 

dependence of INCX; 𝐾!"#$, 𝐾!"#$, 𝐾!"#$ and 𝐾!"#$ are the transport affinities 

for Ca2+ and Na+ outside and inside the cell. 

 

Hyperpolarization-Activated Current (If) 

Hyperpolarization-activated current, If, was based on the formulation used by 

Stewart et al.348 

 

𝐼!" = 𝐺!" .𝑦. (𝑉 − 𝐸!) 

𝐼!"# = 𝐺!"# .𝑦. (𝑉 − 𝐸!") 

𝐼! = 𝐼!" + 𝐼!"# 
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Where, 𝑦 is the channel activation gate. 𝐸! and 𝐸!" are the reversal potentials 

for potassium and sodium ions, respectively, and , 𝐺!" and 𝐺!"# are maximum 

current densities produced by potassium ions and sodium ions,. The parameters 

of voltage-dependence of the activation were adapted as follows: 

𝜏! =
!"""

(!!!!!)
 

𝛼! = 𝑒!!.!!!.!"#! 

𝛽! = 𝑒!.!!!.!!! 

𝑦! =
1

1+ 𝑒(!!!".!)/!.!
 

 

Appendix Figure 6: Current-voltage curve for If obtained in the PC model 

based on experimental data. 
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Appendix Figure 6 shows If current density obtained in the model which was 

based on the experimental data. 

 

Ca2+-activated Cl- current, ICl,Ca 

ICl,Ca was based on Bonderenko et al.349 formulation in which intracellular calcium 

concentration was replaced by [𝐶𝑎!!]!"#$% as follows: 

𝐼!",!" = 𝐺!",!" .𝑂!",!"
𝐶𝑎!! !!"#$

𝐶𝑎!! !"#$% + 𝐾!.!"
(𝑉 − 𝐸!") 

 Where 𝐺!",!"  is the maximum conductance, 𝑂!",!"   is the channel open 

probability, 𝐾!.!" is the half-saturation constant and 𝐸!" is the Cl- reversal potential. 

 

Cytosolic calcium transients 

The intracellular calcium formulation was based on the Deo-Hou neonatal rat 

model.350 The SR was modeled with two compartments, namely, the release 

compartment, also called junctional SR (JSR), and the uptake compartment, also 

called network SR (NSR). The Ca2+ is released from JSR compartment via 

ryanodine receptors (RyRs). The formulation of RyR2 flux was based on the 

modifications by Korhonen et al.351 as follows: 

𝐽!"! = 𝑘!"! .𝑃!"#$. ([𝐶𝑎!!]!"# − [𝐶𝑎!!]!"#$%) 

𝐾!,!"! =
3.51

1+ 𝑒( !"!! !"#!!"#)/!""
+ 0.25 

𝑑𝑃!"#$
𝑑𝑡 =

𝑃!"#$%&𝑘!"#$
1+ (𝐾!.!"!/[𝐶𝑎!!]!"#$%)!

− 𝑘!"#$%𝑃!"#$ 

𝑃!"#$%& = 1− 𝑃!"#$ 
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The Ca2+ flux between the NSR and subSR compartments was described by SR 

Ca2+ ATPase (SERCA). The SERCA equation was modified from Korhonen et 

al.351 formulation by adding a constant term, 𝑘!"#$%, as follows: 

 

𝐽!"#$% = 𝑘!"#$%×
𝑉!"#,!( 𝐶𝑎!! !"#$%/𝐾!")! − 𝑉!"#,!( 𝐶𝑎!! !"#/𝐾!")!

1+ ( 𝐶𝑎!! !"#$%/𝐾!")! + ( 𝐶𝑎!! !"#/𝐾!")!
 

 

Where 𝑉!"#,! and 𝐾!" are maximum SERCA flux and half-saturation for forward 

SERCA, respectively. Similarly, 𝑉!"#,!  and 𝐾!"  correspond to the reverse 

direction SERCA. 𝐻 is the Hill coefficient for SERCA and was set equal to 2. 

The Ca2+ accumulated in the subSL compartment is extruded by the NCX and 

the sarcolemmal Ca2+ pump (IpCa). The IpCa was formulated as follows: 

𝐼!"# = 𝐼!"#!"#×
( 𝐶𝑎!! !"#$%)!

𝐾!,!"#! + ( 𝐶𝑎!! !"#$%)!
 

Where 𝐼!"#!"#  is the maximum Ca2+ pump current and 𝐾!,!"#  is the Ca2+ half-

saturation constant. 

 

Cytosolic Calcium Diffusion 

Ca2+ enters the cell via L-type and T-type calcium channels which open into 

subSL compartment. These ions diffuse through the cytoplasm between subSL 

and subSR compartments via fire-diffusion-fire-propagation.352 Similarly, the 

calcium concentration in the subSR compartment ( 𝐶𝑎!! !"#$%) triggers the SR 

Ca2+ release through the RyR2 channels through the calcium-induced-calcium-
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release (CICR) mechanism. The sudden increase in 𝐶𝑎!! !"#$% may also give 

rise to diffusion waves in the cytoplasm. The Ca2+ diffusion process was 

implemented based on Korhonen et al.350 as follows: 

 

𝜕𝑐
𝜕𝑡 = 𝛽! . 𝐷!"∇!𝑐 + 𝐽!" , 

 

where,   𝑐 = [𝐶𝑎!!]! , 𝛽!  is the function determining Ca2+ buffering, 𝐷!"  is the 

diffusion coefficient, 𝐽!"  is the Ca2+ flux, and ∇!  is the Laplacian operator for 

spatial derivative. The 𝑐  in the above equation was implemented as a function of 

time and radial distance from the core (𝑟) as follows: 

 

𝜕𝑐(𝑟, 𝑡)
𝜕𝑡 = 𝛽!(𝑐 𝑟, 𝑡 ). 𝐷!"

𝜕!𝑐(𝑟, 𝑡)
𝜕𝑟! +

2𝐷!"
𝑟

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟 + 𝐽!"(𝑟, 𝑡) , 

 

In order to implement radial diffusion, the above equation was reduced to a 

system of ODEs by approximating into concentric cores with step size of ∇r = 0.1 

µm. Further details can be found in Korhonen et al.351 The diffusion coefficient, 

𝐷!", was fitted to 7 µm2/ms to obtain Ca2+ diffusion velocity of approximately 0.35 

µm/ms as observed in neonatal and atrial cells.17  

The 𝐽!" in the above equation is the SR Ca2+ flux (𝐽!"#$) when 𝑟 = 𝑟!", SL Ca2+ 

flux (𝐽!"#$) when 𝑟 = 𝑟!", and zero with other values. The 𝐽!"#$ and 𝐽!"#$ were 

calculated as follows: 
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𝐽!"#$ = 𝐽!"! − 𝐽!"#$% + 𝐽!"#$ 

𝐽!"#$ = (2𝐼!"# − 𝐼!"# − 𝐼!"# − 𝐼!"# − 𝐼!"#)×
𝐴!"#𝐶!
𝐹×10!! 

 

Appendix Figure 7 shows the diffusion of Ca2+ ions from subSL to subSR during 

1Hz pacing. The cytosolic Ca2+ wave was initiated at the subSL due to influx of 

Ca2+ ions through ICaL and ICaT channels and traveled towards subSR. Upon 

reaching subSR, it elevated the local Ca2+ concentration in the subSR 

compartment which triggered the SR Ca2+ release via RyR2 channels. Thus 

there existed a lag between the Ca2+ influx and Ca2+ release from the SR.  

Calcium transients in the cytosol were averaged and fitted to intracellular calcium 

parameters measured during calcium imaging experiments on GFP mice 

Purkinje cells (n=5). The time to peak (Tp) and decay time (Td) of the average 

[Ca]i trace, measured as shown in the top trace in Fig. S8, were adjusted to the 

Appendix Figure 7. Cytosolic diffusion of calcium from subSL compartment 

(blue) to subSR compartment (yellow) during 1 Hz pacing. 
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experimentally measured durations (listed in Table 2.5.1). Tp was measured 

between the onset and the peak of Ca2+ transient, whereas, Td was measured 

from the peak to its 95% decay. The peak amplitude (PA) of the calcium 

transients was adjusted to 0.9 µM. Table 2.5.1 lists the calcium transients 

parameters recorded in the experiments and obtained in the model. 

Table 1.3 Intracellular calcium transient parameters obtained in experiments and 

model. 

Parameter Experiments Model 

Peak Amplitude (PA) 31.193 ± 0.91 AU 0.9 µM 

Time to Peak (Tp) 18.8 ± 13.2 ms 12.5 ms 

Decay time (Td) 261 ± 69.18 ms 240.5 ms 
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Appendix Figure 1.8. Average cytosolic calcium transient (top) during an action 

potential (bottom) elicited by 1Hz stimulus in the PC model. PA: Peak Amplitude, 

Tp: Time to Peak, and Td: Decay time. 

 

Na+ Concentration 

𝑑 𝑁𝑎! !

𝑑𝑡 = −(𝐼!" + 𝐼!"# + 3𝐼!"# + 3𝐼!"# + 𝐼!"#)×
𝐴!"#𝐶!
𝑉!"#𝐹

 

 

K+ Concentration 

𝑑 𝐾!
!

𝑑𝑡 = −(𝐼!"#$ + 𝐼!",! + 𝐼!! + 𝐼!" + 𝐼!" + 𝐼!"" + 𝐼!"# − 2𝐼!"# + 𝐼!")×
𝐴!"#𝐶!
𝑉!"#𝐹
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Table 1.4: lists the dimensions and environmental parameters of our Purkinje 

model. The modified parameters are given in Table 2.5.3. 

Table 1.4. Structural and environmental parameters 

Parameter Definition Value 

𝐿 Length of the cell 129 µm 

𝑟 Radius of the cell 4 µm 

𝐶! Specific membrane 

capacitance 

1 µF/cm2 

𝐴!"# Capacitive membrane area 7.99×10-5 cm2 

𝑉!"# Myoplasmic volume 3.89×10-6 µL 

𝑉!"# Junctional SR volume  0.0078 pL 

𝑉!"# Network SR volume 0.1556 pL 

𝑉!"#$% 	
   Volume of subSR 

compartment 

0.0828 pL 

𝑉!"#$%	
   Volume of subSL 

compartment 

0.2470 pL 

𝐹 Faraday constant 7.878 C/mmol 

𝑇 Absolute temperature 0.059 K 

𝑅	
   Ideal gas constant 0.0133 J/mol K 

[𝐶𝑎!!]!	
   Extracellular Ca2+ 

concentration 

1400 µM 

[𝑁𝑎!]!	
   Extracellular Na+ 5400 µM 
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concentration 

[𝐾!]!	
   Extracellular K+ concentration 134000 µM 

 

Table 1.5: Modified parameters in the Purkinje model 

Parameter Definition Value 

𝐺!" Maximum INa conductance 16        mS/µF 

𝐺!"# Maximum ICaL conductance 0.0775 mS/µF 

𝐺!"# Maximum ICaT conductance 0.02     mS/µF 

𝐺!! Maximum IK1 conductance  0.5930 mS/µF 

𝐺!_!",! Maximum Ito,f conductance 0.3429 mS/µF 

𝑉!"#!"# Maximum Na-Ca exchange 

rate 

7.878   pA/pF 

𝐼!"#!"#	
   Maximum Na-K pump current 2.51086 pA/pF     

𝐺!" Maximum IfK conductance 0.059   mS/µF 

𝐺!"#	
   Maximum IfNa conductance 0.0133 mS/µF 

𝑘!"! 	
   Scaling factor for JRyR 0.03     ms-1 

𝐺!"# 	
   Maximum IKur conductance 0.1474 mS/µF 

𝐺!""	
   Maximum IKss conductance 0.0482 mS/µF 

𝐼!"#!"#	
   Maximum Ca2+ pump current 0.0955 pA/pF 

𝑘!"#$%	
   SERCA constant 0.5 

 

Purkinje cell model without Ca2+ diffusion 



 152 

In order to study the individual contribution of diffusion process to the APD 

morphology, we also implemented the Purkinje cell model without spatial Ca2+ 

diffusion process. The subSL and subSR compartments in the model were 

connected through a transfer flux, 𝐽!"#$  ( 𝜏!"#$ = 0.63 ms). The resulting 

intracellular calcium formulation was as follows: 

 

𝐽!"#$ = ( 𝐶𝑎!! !"#$% − 𝐶𝑎!! !"#$%)/𝜏!"#$ 

𝑑 𝐶𝑎!! !"#$%

𝑑𝑡 = 𝛽! . (𝐽!!"# + 𝐽!"#$ − 𝐽!"#$% + (2𝐼!"# − 𝐼!"# − 𝐼!"#)×
𝐴!"#𝐶!
𝐹×10!!) 

𝑑 𝐶𝑎!! !"#$%

𝑑𝑡 = 𝛽! . (𝐽!"! − 𝐽!"#$ − (𝐼!"#)×
𝐴!"#𝐶!
𝐹×10!!) 

 

Ventricular Myocyte Model 

The ventricular myocyte model by Li et al.270 was modified in our study as 

follows: 1) the fast sodium current (INa) formulation in the model was replaced 

with that from the mammalian ventricular myocyte model (LRd 1999)345 for 

easiness in fitting to the experimental data without losing numerical stability. 2) 

The calcium dynamics in the model requires very small time steps in numerical 

integration. Therefore we solved the calcium dynamics at smaller time steps (0.1 

µs) whereas the rest of the ionic currents were updates every 10 µs. This allowed 

us to accelerate the computer simulations without significant loss of accuracy. 

The maximum conductance parameters of several ion currents in the model were 

modified to fit our experimental data in mice ventricular myocytes in the apical 

region. Following are the only changes made to the original model by Li.et al.270 
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Time-independent K+ current 

The formulation for the time-independent K+ current (IK1) was modified in 

accordance to our experimental data as follows: 

 

𝐼!! = 𝐺!!×
[𝐾!]!

[𝐾!]! + 210
×

(𝑉 − 𝐸!)
1.7+ 𝑒!.!"#$(!!!!)

 

 

Where, 𝐸! is the reversal potential for K+ ions, and [𝐾!]! is the extracellular K+ 

concentration. The maximum channel conductance, 𝐺!!, was set to 0.3150 in 

order to match experimental IK1 density. 

 

Table 1.6 Modified parameters in the ventricular myocyte model 

Parameter Definition Value 

𝐺!" Maximum INa conductance 9.6         mS/µF 

𝑃!"# Maximum ICaL conductance 3.0         mS/µF 

𝐺!! Maximum IK1 conductance  0.315     mS/µF 

𝐺!_!",! Maximum Ito,f conductance 0.42776 mS/µF 

𝑉!"#!"# Maximum Na-Ca exchange 

rate 

5.9085   pA/pF 

𝐼!"#!"#	
   Maximum Na-K pump current 1.51646 pA/pF     

𝐺!"# 	
   Maximum IKur conductance 0.225     mS/µF 

𝐺!""	
   Maximum IKss conductance 0.0595   mS/µF 
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Study 2: Saturated Fatty Acids Disrupt T-Tubules and Shorten Atrial Action 

Potential Duration  

 

Acute exposure of fatty acids does not affect action potential morphology  

Acute perfusion of PA on LA myocytes did not alter action potential morphology 

as shown in Appendix Figure 1.1A. Quantification of the data revealed no 

differences at all values measured shown in Appendix Figure 1.1B (APD30: CTL: 

44.32 ± 6.909 vs. PA: 42.34 ± 8.847; APD50: CTL: 76.33 ± 11.54 vs. PA: 73.83 ± 

10.20; APD80: CTL: 144.5 ± 15.61 vs. PA: 138.3 ± 13.89 msec (CTL: N=3, n=13; 

PA: N=3, n=15). We also acutely perfused SA and found it did not alter the 

electrophysiology of LA cells, as shown in Supplemental Figure 1C. 

Quantification of the data yielded no differences between CTL and acute SA 

treatment shown in Appendix Figure 1.1D (APD30: CTL: 38.31 ± 6.907 vs. SA: 

39.65 ± 5.099; APD50: CTL: 71.23 ± 11.71 vs. SA: 68.93 ± 7.627; APD80: CTL: 

140.2 ± 15.77 vs. SA: 132.4 ± 14.05 msec (CTL: N=3, n=13; SA: N=3, n=13). To 

determine whether SA had short-term effects on LA myocyte action potentials we 

incubated SA on cells for 4-6 hours. Appendix Figure 1.1E are representative 

action potential recordings from short-term cultured cells. Quantification of the 

data showed no differences between CTL and short-term SA incubated cells 

shown in Appendix Figure 1.1F (APD30: CTL: 40.71 ± 7.236 vs. SA: 43.24 ± 

6.892; APD50: CTL: 73.61 ± 10.49 vs. SA: 74.00 ± 9.692; APD80: CTL: 145.8 ± 

18.94 vs. SA: 151.9 ± 13.79 msec (CTL: N=2, n=7; SA: N=2, n=9). 
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Appendix Figure 2.1: Acute exposure to free fatty acids has no effect on atrial 
myocytes. Panel A: Representative action potential recordings under acute fatty acid 
application of control (CTL; black) and of PA (blue) solutions. Panel B: Quantification of 
APD30, 50 & 80 values (CTL: n = 13, PA: n = 15). Panel C: Representative action potential 
recordings under acute fatty acid application of control (CTL; black) and of SA (red) 
solutions. Panel D: Quantification of APD30, 50 & 80 values in CTL and SA treated cells (n 
= 13, 13). Panel E: Representative traces of cells incubated 4-6 hrs with CTL (black) and SA 
(red). Quantification of APD30, 50, 80 values showed no difference between both groups (n 
= 7, 9). Scale bars: 100 msec and 20 mV. 
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Appendix Figure 2.2: Adipocyte-Conditioned Media (ACM) shortens action potential duration in atrial 
myocytes. Panel A: Representative current clamp traces of left atria cells treated with myocyte media 
(Control, black) and ACM (grey). Panel B: ACM reduced APD at all three values measured (*p<0.01, 
**p<0.001; n = 11, 10). 
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Appendix Figure 2.3: Cav1.2 phosphorylation at serine 1928 is not affected by stearic acid. Panel A/B: 
Immunofluorescence images of transmitted light, Cav1.2 phosphorylation (Cav1.2P), α-actinin and a merged 
image under control (CTL) and stearic acid (SA) treatment (n = 24, 22). Scale bars: 20 µm. Panel C: 
Quantification of the intensity profiles shows SA did not alter the mean distance between intensity peaks for 
Cav1.2P (left) or α-actinin (right; n =12, 12). Mean distance between Cav1.2P and α-actinin peaks were 
similar in both groups and unchanged from CTL to SA.  Panel D: (left) Western blot for Cav1.2P with 
GAPDH as a control. Pane D: (right) normalized densitometry plot of Cav1.2P protein levels in CTL and SA 
treated cell lysates (N = 3).  
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Appendix Figure 2.4: Cav1.2 nitrosylation is not affected by stearic acid. Panel A/B: CTL and SA 
immunofluorescence images of transmitted light, Cav1.2 nitrosylation (Cav1.2N), α-actinin and a merged 
image (n = 23, 20) Scale bars: 20 µm. Panel C: Quantification of the intensity profiles shows SA did not alter 
the mean distance between intensity peaks for Cav1.2N (left) or α-actinin (right; n = 12, 12). Mean distance 
between Cav1.2N and α-actinin peaks were similar in both groups and unchanged from CTL to SA.  Panel 
D: (left) Western blotting for Cav1.2N with GAPDH as a control. Pane D: (right) normalized densitometry plot 
of Cav1.2N protein levels in CTL and SA treated cell lysates (N = 3).  
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Appendix Figure 2.5: Comparison of t-tubule structure in sheep atrial and ventricular myocytes. Panel A 
(top): Coordinate axis for reference and schematic diagrams illustrating the fields of view. Panel A: 
subpanels (a) and (c) are XY planar views and (b) and (d) are 40 µm ZY cross-sectional views of the same 
cell. (a) and (b) Di-8-ANEPPS stain of t-tubules in a freshly dissociated (t = 0) left ventricular myocyte (LVM) 
which contains an extensive t-tubule network. For comparisons, (c) and (d) show a freshly dissociated (t = 0) 
left atrial (LA) cell in control. Panel B: Quantification of t-tubules in LVM (n = 23) and LA myocytes (n = 19) 
using the ratio of the t-tubule region and total cell fluorescence. LA myocytes have less uniform t-tubule 
structures compared to LVM (***p<0.0001, n = 19). 
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