Integrative bioinformatics in the age of massive throughput sequencing: from the transcriptome to the proteome in prostate cancer

by

Lee T. Sam

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2014

Doctoral Committee:

Professor Arul M. Chinnaiyan, Co-Chair Associate Professor Alexey I. Nesvizhskii, Co-Chair Assistant Professor Jun Z. Li Professor Gilbert S. Omenn Assistant Professor Maureen A. Sartor ©2014 Lee T. Sam

DEDICATION

This work is dedicated to my family.

ACKNOWLEDGEMENTS

This work would not have been possible without the guidance of my co-chairs Professors Chinnaiyan and Nesvizhskii, who have both contributed tremendous amounts of constructive advice, criticism, and context. My other committee members, Professors Jun Li, Gil Omenn, and Maureen Sartor were also critical in guiding and supporting this research. A number of people from the Chinnaiyan and Nesvizhskii labs and the Michigan Center for Translational Pathology have contributed to this work. Prof. Chandan Kumar, Dr. Anastasia Youcum, Dr. Christopher Maher, and Dr. Damian Fermin lent their substantial statistical, experimental, laboratory, and bioinformatics expertise in developing and evaluating the data and methods in this work. Prof. Dan Robinson, Xuhong Cao, Bob Lonigro, and Shanker Kalyana-Sundaram also contributed substantial advice guidance, and constructive criticism to my work. The faculty of the Department of Computational Medicine and Bioinformatics, including Professors George Michailidis, Brian Athey, Margit Burmeister, and Dan Burns, contributed an incredible amount of guidance and support. Many of my fellow bioinformatics staff and students also shared their specialized experience and support in addressing some of the challenges in this research; this includes Dr. Jeffrey DeWet, Douglas Jacobsen, Chee Lee, Avinash Shanmugam, and Dattatreya Mellacheruvu. The support of the advising and administrative staff across the departments and labs was substantial; Julia Eussen, Christine Betts, Karen Giles, Jyoti Athanikar, and Alex Terzian were central in managing and reviewing the progression of this work.

Table of Contents:

DEDICATION ii
ACKNOWLEDGEMENTS iii
LIST OF TABLES vii
LIST OF FIGURESix
LIST OF APPENDICESxvii
ABSTRACTxviii
Chapter 1: Introduction1
NGS and RNA-seq for interrogating the transcriptome2
Disease and the dysregulation of biological networks3
The transcriptome, proteome, and the challenges of data integration
The transcript-protein relationship and its role in disease and cancer
Application of methods to other studies14
List of contributions to publications15
Chapter 2: A Comparison of Single Molecule and Amplification Based Sequencing of Cancer Transcriptomes
Introduction
Results
Assessment of SMS RNA-Seq through transcript profiling18
Global properties of AS and SMS results19
Coverage bias in amplification-based sequencing20
Increased SMS sensitivity results from high coverage of low-abundance transcripts
Uniquely detected genes in SMS22
Consistent over-representation of high-expression genes in amplification-based sequencing24
Impact of duplicated reads in amplification-based sequencing27

Gene Ontology analysis of the set of 393 recurrently over-expressed genes	. 30
Re-discovery of known gene fusions using single-molecule sequencing	.31
Discussion	. 32
Methods	.36
Chapter 3: A Framework for integrating transcriptome and proteome data	.43
Introduction	.43
Background	.43
Results and Discussion	.45
RNA-seq and Proteomics Results	.45
Calculating FDR in transcriptome and proteome data	. 49
Analyzing the impact of data processing methodology on correlation	. 50
Conclusion	. 55
Materials and Methods	. 55
RNA-seq expression data	. 57
Comparison of RNA-seq data with spectral counts	. 59
Chapter 4: The transcript-protein relationship in human prostate cancer	. 62
Introduction	. 62
Results and discussion	.63
Transcript and Protein abundance in each of the cell line models	. 63
Comparison of VCaP and RWPE cell lines	. 69
Conclusion	77
Methods	. 79
Chapter 5: Conclusion	.81
APPENDICES	.85
APPENDIX A: Chapter 1 Supplementary Methods, Figures, and Tables	.86
Methods	.86

APPENDIX B: Chapter 2 Supplementary Figures and Tables	104
APPENDIX C: Chapter 3 and 4 Supplementary Figures and Tables	122
References:	238

LIST OF TABLES

Table 1: Unsupervised k-means clustering illustrates the poor separability of the data, with	
1631 (55.4%) instances incorrectly clustered	6
Table 2: Classification of CD, SGD, and GO classes using all variables. While the complex	
disease (CD) subnetworks and derived from the Gene Ontology (GO) demonstrated relatively	
good classification performance, the subnetworks associated with single gene dieases (SGD)	
were very poorly separable.	8

Table S 1: Complete results of unsupervised k-means clustering of the data
Table S 2: Classification results from each of nine classification attempts using complete GO
set
Table S 3: Ranked Features By Parameter Type. A. Biological Parameters Only B. Topological
Parameters Only C. Combined Parameterization 103
Table S 4: Sample statistics in A. amplification-based and B. single-molecule sequencing
technologies
Table S 5: Recurrently over-represented genes in amplification-based sequencing in ten or
more samples. Of the 393 genes are recurrently within the top 500 over-represented genes by
total read count in five (40%) or more samples, these 59 are seen most often, occurring in at
least 10 samples
Table 5.6.5. Sum of normalized expression values per guartile by sample in AS and SMS. Mo

Table S 7: Gene-level read coverage of observed transcripts. A. and B. illustrate the number
of genes with coverage values at various depths in single molecule and amplification-based
sequencing, respectively
Table S 8: Primers used for validating transcripts seen only by SMS. All experiments were
performed in duplicate using two primer pairs per candidate gene when possible
Table S 9: Sum of reads and spectra for top and bottom 50 in RWPE and VCaP by Gene
Ontology class, ordered by VCaP relative enrichment
Table S 10: Sum of reads and spectra for top and bottom 50 in RWPE and VCaP by Gene
Ontology class with ribosomal genes removed, ordered by VCaP relative enrichment
Table S 11: Top 150 Highest Transcript-protein correlation by Gene Otology class in VCaP
Table S 12: Top 150 Highest Transcript-protein correlation by Gene Otology class in RWPE
Table S 13: DAVID GO clustering analysis results in VCaP
Table S 14: Discordance-based LRPath Gene Ontology and pathway analysis results with FDR
<= 0.05
Table S 15: Concordance-based LRPath Gene Ontology and pathway analysis results with
FDR <= 0.05

LIST OF FIGURES

Figure 1: Derivation of an example subnetwork composed of five annotated genes and	
three intermediate genes	5
Figure 2: Variables ranked by importance in classification based on Gini coefficient. The	
most informative variables in classification were a mix of both biological and topological	
parameters	7

Figure 4: High-concentration transcript bias leads to differences in gene coverage in amplification-based sequencing. Coverage maps from amplification-based and single molecule sequencing demonstrate significantly greater coverage of A. RPLPO, B. RPL31, and C. SPINT2. Removal of reads with the same start positions, strictly suppressing amplification of specific mRNA fragments, significantly reduces the "spikiness" seen in these cases. D. Duplicate reads, defined as reads in excess of one per start locus and read length, are relatively evenly distributed along the length of all observed transcripts across all samples in our evaluation set.

Figure 9: Analysis of transcript and protein datasets. A. The distribution of real and decoy gene values. The mean abundance of all decoy genes is 22.52 RPKM while decoys have a mean abundance of 0.46 RPKM. B and C. True positive detections across FDR values in protein and transcript data. D. Spearman correlation coefficient values for each alignment method and protein data reduction step in extended dataset. E. Protein detection at increasing transcript abundance levels. F. Distribution of RNA-seq reads and tandem MS spectra across all genes

Х

Figure 11: Detecting Dysregulation of transcript-protein relationships in prostate cancer. A. z-transformed fold changes of transcript and protein observed between VCaP and RWPE and major Gene Ontology class clusters in red and orange classes, corresponding to enrichment in protein and transcript abundance, respectively. Representative GO classes for each annotation cluster were chosen by examining overlap between DAVID clusters and LRPath results with FDR ≤ 0.05, in order of observed genes B. Number of GO classes resulting from LRPath analysis before and after removal of genes overlapping between concordance and discordance classes.

Figure 13: Insights from joint transcriptome-proteome analysis. Heatmap of log-odds ratios for KEGG and Biocarta pathways with p-values ≤ 0.05 in each of four categories – results derived from protein only, transcript only, discordance index, and concordance index data. ... 74

Figure S 4: Read alignment with Bowtie and IndexDP. Bowtie was used for amplificationbased sequencing read alignment and IndexDP for single molecule read alignment. While

Figure S 10: Unique gene detection in AS and SMS across threshold values, by transcript length. The pattern of increased sensitivity in SMS is uniform as the baseline noise level is

Figure S 13: Quantile-quantile plot of AS and SMS reads with duplicates removed. Reads in excess of a single read per aligned locus were removed from both AS and SMS data sets. The result of this procedure was inconsistent across the data set; some samples saw reduced representation of high expressing genes while the high-concentration bias remained in others

Figure S 15: Gene Fusion Discovery Using SMS Reads. All possible reads were aligned against the transcriptome and genome using IndexDP. The set of non-mapping reads (some of which harbor chimeras) were subsequently aligned against the transcriptome, returning reads that had a partial alignment of at least 18 nucleotides. All reads having the same partial alignments, suggesting a common breakpoint, were clustered. All clusters were then compared to determine if the non-aligning "overhang" portion of the read from one breakpoint region had

Figure S 17: Reproducibility between replicates. A. RWPE RNA-seq, B. VCaP RNA-seq, C. RWPE tandem MS, and D. VCaP tandem MS. Data are derived from the extended dataset. ... 122

Figure S 21: RNA-seq False Discovery Rate estimation methodology. We used a methodology similar to that of Ramskold, et al. to estimate FDR in our RNA-seq data. Corresponding decoy sequences were sampled without replacement from the intergenic

LIST OF APPENDICES

APPENDIX A: Chapter 1 Supplementary Methods, Figures, and Tables	86
APPENDIX B: Chapter 2 Supplementary Figures and Tables	. 104
APPENDIX C: Chapter 3 and 4 Supplementary Figures and Tables	. 122

ABSTRACT

The proliferation of massively parallel nucleotide sequencing and increases in the throughput of mass spectrometry has produced an unprecedented volume of highly specific, highly accurate data elucidating the transcriptome and proteome. This data explosion has facilitated a tremendous number of novel discoveries in both disease and basic biology. It has also presented a number of challenges due to the characteristics of these cutting-edge technologies. Across these studies, we focus on the context of human cancer where these technologies are increasingly being used to characterize and target molecular aberrations for treatment tailored to individuals' cancer biology.

First, we evaluate the emerging technology of single-molecule sequencing (SMS), which may provide a clearer picture of the biological activity in the cell by avoiding the sample amplification steps that may introduce biases in the data. We compare transcriptome data from both SMS and a method employing amplification, noting the effects that the differences in sample preparation may have on the resulting data in terms of dynamic range and coverage bias. In particular, we find that SMS has greater dynamic range, providing more resolution for low abundance transcripts while avoiding coverage peaks which may result from the amplification process.

We then turn to the challenge of integrating NGS-derived transcriptome data with tandem mass spectrometry data quantifying the proteome. The relationship between the transcriptome and the proteome is broadly defined by the central dogma of molecular biology. However, previous attempts at integrating data from the transcriptome and the proteome have seen large variation in the correlation between transcript and protein. To address this, we developed

xviii

a framework for integrating data from these two realms using a novel common reference employing corresponding transcript and protein sequences. We apply this framework to integrate data derived from the RWPE and VCaP prostate cell lines and show how a number of methodological factors and sources of error can impact the correlation between transcript and protein.

Finally, we analyze the results of our data integration pipeline with a focus on the transcript-protein relationship. We classify the genes in our dataset into broad categories, and show how their biological roles as well as experimental characteristics impact the relationship we observe between transcript and protein. To compare the cell lines in terms of their genes' transcript-protein relationship with the goal of uncovering the uncoupling of this relationship in prostate cancer, we apply a novel concordance and discordance index to the genes in the dataset. Using these indices, we show how variations in protein abundance drive many of the differences between the cell lines and how stability has substantial impacts on the transcript-protein relationship.

The results and methods derived from this work can be used by researchers in the future to better understand the characteristics of emerging NGS technologies and integrate this data across scales of biology to better understand the molecular underpinnings of disease.

xix

Chapter 1: Introduction

The advent of massively parallel "next-generation" sequencing (NGS) technologies has made for an unprecedented explosion in both the volume and depth of data derived from biological experiments. While opening new avenues of research and enabling the most precise view of the cell's molecular machinery to date, the massive volume and characteristics of NGS has created many new questions in the analysis, interpretation, and integration of the experimental results. This research focuses on its impact in characterizing the transcriptome, the most frequently assessed metric of molecular activity in cells, and extending those results by coupling them with results from tandem mass spectrometry to gain a multi-scale picture of cellular activity in a cancer context. First, we characterize one of the emerging single-molecule sequencing technologies. Without using an amplification step in sample preparation, we assess the advantages and disadvantages of these methods in assessing the abundance distribution and aberrations in the transcriptome. This is contextualized by our study of the biological characteristics and topological structure of biological networks, subsets of which are often seen dysregulated in human disease. Then, we turn our attention to the proteome, and the particular technical challenge of integrating the rapidly increasing yield of tandem mass spectrometry experiments with the tremendous output of massively parallel mRNA sequencing, or RNA-Seq. Finally, we focus on the results from our computational framework to analyze the transcript-protein relationship and how it is dysregulated in our VCaP prostate cancer model. We pay particular attention to the effect these derangements have on important pathways and networks which may confer growth, survival, and apoptotic escape advantages in our cancer model.

NGS and RNA-seq for interrogating the transcriptome

Next generation sequencing is typically used to describe the massively parallel methods for sequencing nucleic acids that do not employ the Sanger sequencing chemistry that the first generation of sequencing machinery relied upon. The 454 pyrosequencing methodology was the first of the NGS technologies, making its debut in 2005 [1]. Unlike the Sanger chemistry-based sequencing method which produces reads up to 800bp in length, most of the NGS approaches produce short reads of ranging from 50-150bp.

The chemistry underlying each of the methods is highly varied; most methods use a sequencing-by-synthesis approach, such as those from Illumina [2], Ion Torrent [3], and Pacific Biosciences [4, 5], although more exotic approaches, such as the ABI SOLiD sequencing-by-ligation approach exist. Most methods generally involve the construction of a library involving the attachment of adapter molecules to the ends of sheared DNA or RNA and an amplification step [6]. A subset of these sequencing methods are considered "single-molecule" approaches, which do not involve amplification steps that may affect sensitivity and bias sequencing results, ultimately producing a clearer picture of the experimental sample.

In this work, I focus on the use of NGS methods to sequence mRNA, an application commonly called RNA-seq. This is an application where DNA microarrays had previously been the standard for global transcriptome characterization, followed by more exotic methods such as the Serial Analysis of Gene Expression (SAGE) [7] and Massively Parallel Signature Sequencing (MPSS) [8], which were much more rarely used. RNA-seq offered a number of clear advantages over microarrays; not requiring *a priori* knowledge of the transcripts under study (observing only the transcripts for which there is a probe), the production of sequence information about the transcripts under study (due to the direct sequencing of the transcripts in the sample), a much lower background signal, and much higher potential dynamic range [9-11]. Compared to SAGE and MPSS, it has the advantage of higher sensitivity as a result of higher throughput.

The characteristics and possible advantages of the single-molecule approach (in comparison to competitive approaches utilizing an amplification step) had not been well characterized in a transcriptome context, and are the first topic of study. The characteristics of single-molecule

based methods are discussed in **Chapter 2** using data from the Helicos Heliscope. While the technology had been proven in sequencing the human genome [12], its application to sequence the transcriptome had not yet been explored in depth.

To date, NGS technology has yielded an unprecedented amount of data – never has so much data been produced. The simultaneous factors of constantly plummeting costs, improving quality, and increases in experimental yield guarantee that these technologies will become widespread in the future, thus making the characterization of experimental results and development of methods to leverage their data invaluable.

Disease and the dysregulation of biological networks

High-throughput techniques for determining molecular interactions have opened the door to genome scale evaluation of the molecular interactome of many species due to the quickly growing pool of data. A number of databases have been developed in order to integrate protein interaction data from high throughput experiments such as DIP, BIND, HPRD, and several others. Studies looking at this data across a number of organisms have indicated that these networks are organized into functional biomodules that function at multiple scales [13-15].

Analysis of disease gene knowledge coupled with data from large-scale protein interaction networks to form a phenome-interactome network have revealed that a significant portion of disease-associated genes form small sub-networks. The networks formed by the interactions of known disease genes have been used to relate phenotypically similar inherited diseases together [16]. Similarly, subnetworks that represent protein complexes have been used to relate diseases with similar phenotypes and provide novel disease gene candidates when melded to association data [17]. The disease-associated genes themselves also seem to possess a number of characteristics within the interactome. Compared to the mean degree values of all proteins, many disease related proteins display relatively elevated degree and tend to interact with other disease-related proteins [18, 19]. This property has been used to propose likely candidate genes for disease association [20]. Taken together, it suggests that the intermediate nodes in the interactome play a contributory factor. In addition to the importance of highly interconnected "hub" proteins [21, 22], certain topological features were found to be

associated with essentiality/lethality [23]. Additional research has suggested that genes expressing proteins of similar importance also share topological characteristics in the interaction network [24]. These topological characteristics have been used to explain variable disease outcome [25], making an argument for their role in the progression of disease.

To study this phenome-interactome network in human disease, we integrated data from several protein interaction networks with gene-disease relationships to create a set of subnetworks that form functional biomodules for over 4,300 diseases in single-gene disease (SGD) and complex disease (CD) categories, as well as over 6,600 functional sub-networks derived from Gene Ontology (GO) classes. The diseases in the SGD category were primarily caused by aberrations in one of several individual genes in the derived sub-network, in contrast to those in the CD category where several genes in the derived sub-network often influenced the resultant disease phenotype.

The subnetworks associated to human diseases and biological processes were built by the determination of all shortest pairs paths between all distinct associated genes found in the protein interaction network for each disease or biological process. Shortest paths in the interaction subnetwork are determined using Dijkstra's shortest paths algorithm [26]. For example, **Figure 1** illustrates a hypothetical disease of interest associated to UMLS concept 'UMLS:000000', associated with genes A, B, C, D, and E. The shortest path between pairs {A,B}, {A,C}, {A,D}, {A,E}, {B,C}, {B,D}, {B,E}, {C, D}, {C, E}, and {D, E} would be analyzed, noting the identities of the original nodes, the original node also found in the protein interaction network (as many nodes are not represented within the network), the intermediate connecting nodes, and the respective counts of each class. This process discovers intermediate nodes X, Y, and Z in the process of deriving the subnetwork and associates these nodes.

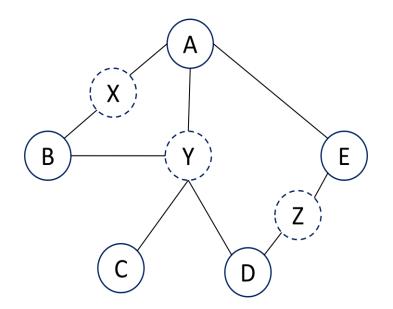


Figure 1: Derivation of an example subnetwork composed of five annotated genes and three intermediate genes

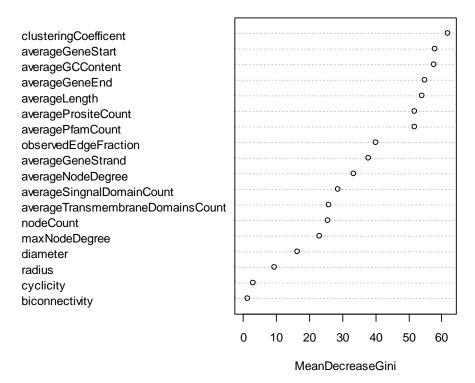
We analyzed the structure and characteristics of these functional and disease networks using network analysis tools and unsupervised machine learning techniques described in detail in .

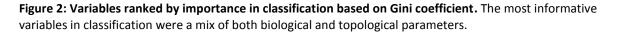
Subnetwork Characteristics

As expected, the OMIM-derived SGD set demonstrated a smaller range in size in terms of total gene count from 3 to 32 genes with a median of five genes, while the complex disease set was composed of networks of much more varied size, ranging from 3 to 127 genes, with a median of eight genes. The Gene Ontology derived background set had the largest range from 3 to 968 genes. As shown in **Figure S 2a-c**, most subnetworks tended to remain small, generally involving between three and nine genes. The GO background set exhibits a long-tailed distribution with most networks remaining under seventeen genes in size.

Classification accuracy

Unsupervised Principal Components Analysis and k-means clustering methods were first attempted in order to assess the separability of the three classes of subnetworks. As shown in **Table 1** and **Figure S 1a and b**, clustering mirrored the results of the PCA with high misclassification levels (misclassifying ~55% of the data), further demonstrating the poor separability of the data.


		Assigned to Cluster				
		GO	SGD	CD		
	GO	59	4	16		
Source	SGD	1220	435	932		
	CD	158	31	89		


 Table 1: Unsupervised k-means clustering illustrates the poor separability of the data, with 1631 (55.4%)

 instances incorrectly clustered

As a result, machine learning techniques must be applied to derive the subtle differences between the CD, SGD, and GO sets. As shown in Table S 2a-i, the overall misclassification error rate remains relatively low across several subsets of the subnetwork parameter data, never exceeding 5%. Other measures – precision, recall, f-measure- exhibit very satisfactory performance. However, a close inspection of the results for the three class problems (SGD, GO, CD) reveals that the results for the SGD class are not satisfactory. Confusion matrices from these analyses show the classifier tends to assign those subnetworks to the GO class, an issue likely due to the single-point driver nature of single-gene disease. Further analysis of the data by breaking down the features into biological and topological characteristics further revealed the similarities between the SGD and GO set, further detailed in APPENDIX A. The separability of the SGD and CD sets as shown in Table S 2j demonstrates the differences in subnetwork characteristics between those primary involved with single-gene disorders and those associated with multigenic, complex disorders. A reclassification of all the study data was also done using a GO dataset that included only the "Biological Process" entries, with similar results. The complete results of the classifications as well as additional methods and analyses are available in APPENDIX A.

Combined 3-Class Variable Importance

The most important variables in the classification of subnetworks to their individual classes is illustrated in **Figure 2** as derived using the reduction in Gini index, a measure of the reduction in misclassification when a particular variable is used.

Lessons from the analysis of disease- and function- associated subnetworks

The relative paucity of data describing disease-associated subnetworks continues to present a serious challenge in the analysis of the functional biomodules underlying human disease. While the classification of complex disease-associated subnetworks appears to achieve reasonable results, the underlying heterogeneity of human disease, as evidenced by the SGD set in **Table 2**, will always present a problem in classification.

Correctly Classified Instances		2795		94.94 %		
Incorrectly Cla	rrectly Classified Instances		ctly Classified Instances 149		5.06%	
TP Rate	FP Rate	Precision	Recall	f-Measure	class	
0.101	0.003	0.5	0.101	0.168	SGD	
0.997	0.387	0.949	0.997	0.972	GO	
0.752	0.001	0.986	0.752	0.853	CD	

Table 2: Classification of CD, SGD, and GO classes using all variables. While the complex disease (CD) subnetworks and derived from the Gene Ontology (GO) demonstrated relatively good classification performance, the subnetworks associated with single gene dieases (SGD) were very poorly separable.

It is notable that the variables with the highest influence are a mix of both topological and biological factors, confirming previous findings that characteristics from both categories play an important role in the susceptibility to biological disruption and resulting disease. The relative importance of clustering coefficients confirms recent results examining the differences between disease-associated genes and essential genes [27]. The inclusion of mean gene start locus and GC content confirm the relative importance of genomic localization and transcriptional propensity [28]. While the examination of individual factors increases confidence in the findings through recapitualation of established study results, the random forest is able to capture the interaction between these variables. These inter-variable interactions are a prime target for continued study.

It is not completely surprising that the SGD subnetworks appear to bear a strong resemblance to the GO background considering the pathogenesis of diseases that arise from anomalies in a single gene. In many cases, the GO-derived subnetworks can be considered functional biomodules of the interactome. The disruption of certain genes in these functional biomodules is likely to manifest in the form of disease phenotypes if they are not serious enough to result in lethality. This can result in failures of protein complex assembly and complementation such as in Xeroderma Pigmentosum, a single gene disease that can arise from any one of the seven known genes in the XPA-XPG complementation group associated with nucleotide excision repair [29]. As such, these two classes are relatively poorly separable even in a supervised machine learning context.

As we expected, the differences between the networks formed by sets of genes associated with biological processes and those associated with human disease are subtle and not easily derived as they are, by definition, intimately linked. The similarity between the single gene disease-associated subnetworks and those derived from the Gene Ontology demonstrates the multiscale behavior of a single disruption in a functional biomodule, and its ability to cause debilitating effects. The need for additional data and high specificity data is made abundantly clear in this study, as demonstrated by the propensity for misclassification of complex diseaseassociated subnetworks as well as the limited number of subnetworks derived from the data due to lack of representation in the interaction network. The limited availability of interaction propensity or data quality measures associated with individual interactions in the particular version of the interaction database we employed led us to treat all interactions as equally probable and equally correct. This may be a source of error in the process that may be ameliorated in the future with additional data and quantitative measures associated with the interactions. As more gene-disease association data becomes available, the effectiveness of this method should be re-evaluated.

The transcriptome, proteome, and the challenges of data integration

The transcriptome is a common metric for assessing the biological activity in cells, used with the implicit assumption that the activity of the proteome follows. The relationship between mRNA transcripts and proteins is described by the central dogma of molecular biology; the information in DNA is transcribed into mRNA, which is subsequently translated into protein products [30]. However, this transfer of information from DNA to protein is mediated by a large number of intermediary factors such as ribosome stalling during translation [31], nonsensemediated decay of transcripts [32], transcript degradation by small [33] and other noncoding RNAs, protein decay, and a large number of post-translational modifications [34].

Understanding the role each of these distinct regulatory mechanisms plays in affecting the resulting abundance of protein is a central motivator for studying the transcript-protein abundance relationship.

The task of correlating the transcriptome to the proteome has historically been subject to a number of challenges. In the past, the most restrictive of these has been the limited ability to sample both the proteome and the transcriptome. For example, early studies investigating this relationship often employed gel-based methods, which limited them to small subsets of genes due to these experimental limitations [35, 36]. As a consequence, many of their results were inconclusive and were difficult to generalize to the broader set of genes.

While not matching the beyond-exponential growth rate of nucleotide sequencing, the throughput of proteome profiling techniques has grown significantly. A number of methods have been applied for the quantitative profiling of proteins using both radio-labeled and label-free methods, reviewed in [37-39]. While monitoring post-transcriptional modifications remain a challenge, these advances have enabled the profiling of nearly the entire proteome, estimated at 10-12,000 proteins [40].

These capacity increases from the development of mass spectrometry (MS) methods and the advent of DNA microarrays enabled large increases in the number of genes that could be studied simultaneously. These technologies were the first to enable the comparison of complex transcriptomes to equally complex proteomes. However, experimental results remained highly variable. For example, a study of transcript and protein levels across 98 genes in 78 lung adenocarcinomas using microarrays and a MALDI-MS method found highly varying correlation levels between r = -0.4 and 0.4 for each gene in their set, and a global correlation of r = -0.025[41]. A slightly larger study by Cox, et al using microarray and LC-MS measured a correlation of r= 0.63 in approximately 900 genes in developing mouse lung tissue [42]. A more recent study by Gry, et al. utilizing microarrays looking at 1066 genes across 23 cell lines found a correlation of r= 0.52 [43]. A similar study across the NCI-60 set of cell lines by Shankavaram, et al. observed correlations ranging from r = 0.48 to r = 0.58 in a set of 162 feature set of assayed proteins,

across four related microarray platforms [44]. An analysis looking at protein and transcript levels by Ghazalpour, et al. in 97 strains of mice found a correlation of only r = 0.27 [45].

The application of RNA-seq to this task, with its much greater dynamic range and specificity, refined the biological picture. A study combining previously published SILAC-labeled protein abundance with separate RNA sequencing data in three cancer cell lines, A431, U251MG, and U2OS found transcript-protein relationships correlated at levels from r = 0.55-0.61 [46]. A similar study focusing on deeply profiling both the transcriptome and proteome in the HeLa cell line found a correlation of r = 0.6 [40].

These studies used a diverse set of techniques for data integration – though all attempt to address two fundamental challenges in this process, noted in [47-49]; First, how to match transcripts to proteins to ensure that the same entities were being compared. Different gene annotation, definition, and naming schemes must be harmonized in order to ensure a fair comparison, a process complicated by the multiplicity of transcript isoforms and incomplete transcript and protein databases. The second major challenge is that of comparing the transcript and protein abundance values. Derived from two different technologies, the transcript and protein abundance values have very different ranges of sensitivity, distributions, and error profiles. The very computation of these abundance values is an important factor, but is beyond the scope of this research and is reviewed in [50-52] and [53, 54] for RNA-seq and label-free proteomics, respectively. RNA-seq is often quantified using the TopHat and Cufflinks suite of tools [55] using related sources of annotation. Quantification of protein abundance from MS experiments is more varied and largely dictated by the choice of experimental procedure and processing pipelines.

The issue of integrating transcriptome data from RNA-seq and protein data from tandem mass spectrometry methods is an active area of research, and the focus of **Chapter 3**. While a number of studies have focused on examining the relationship between transcript abundance and the resulting protein products, methodologies and resultant correlation relationships vary significantly. In particular, few studies analyze the impact of their abundance measurement and data integration methods on the resulting relationship. Consequently, it is unclear how these

differences in bioinformatics methodology affect the final correlation. To address the issues of data integration, we construct a common reference database from the RefSeq database composed of corresponding transcript and protein sequences against which we applied the Trans-Proteomic Pipeline [56] and Abacus [57] for protein abundance quantification and an inhouse pipeline for RNA-seq quantification. This unique approach allowed for a one-to-one comparison of transcripts and protein products. Using this method to ensure proper comparison of genes, we normalize the abundance values derived from each of the experiments in the transcriptome and proteome.With the data derived with this methodology, we explored how technical factors, namely identification and counting methods in both transcriptome and proteome data, contribute to uncertainty in correlating transcript and protein abundances. In particular, we show how read mapping for transcriptome data and multiple assignment of MS spectra lead to variation in the correlation coefficient of abundance.

The transcript-protein relationship and its role in disease and cancer

One of the primary motivations for studying the transcript-protein abundance relationship and the factors that affect it is the desire to dissect the regulatory mechanisms of the cell [58]. To address this question, several studies have examined the influence of a number of regulatory factors on the correlation observed between protein and transcript abundance. For example, Vogel, et al. examine the role of sequence features that may affect transcription, degradation, or translation, such as 5' and 3' UTR lengths, local secondary structure, and the number of miRNA target sites on the transcript in the Daoy medulloblastoma cell line [59]. In a similar study, Schwanhäusser, et al. derive a quantitative model of protein abundance, noting that both transcript and protein half life have significant impacts on the transcript-protein abundance relationship [60]. In both of these studies, the authors note that sequence features play a role in the abundance of protein products in addition to transcript abundance, although a significant amount of this variability is still not accounted for. The biological role of the transcripts and proteins play a part in this – for example, several studies have observed that highly stable structural proteins have higher correlation with their cognate transcripts [43].

Although the dysregulation of the transcript-protein relationship can play a role in disease, it has not been well studied. While a number of the studies analyzing the transcript-protein relationship are focused on cancer, most of these studies used microarray or older techniques, and suffer from the issues of small gene sets and limited dynamic range discussed earlier. On the other hand, the studies that were aimed at a thorough analysis of both the transcriptome and the proteome generally did so outside of a disease context.

In the landmark "Hallmarks Of Cancer," Hanahan and Weinberg broadly classify the set of biological characteristics commonly acquired by cancers into a set of six traits. These acquired traits, enabled by genome instability, are self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, the evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis [61]. To these, the subsequent "next generation" of cancer hallmarks added the deregulation of cellular energetics and avoidance of immune destruction. In addition, it recognized the role of inflammation in promoting tumorgenesis and progression [62].

Changes in the transcript protein relationship can have important functional consequences due to alterations in the regulatory structure of the cell, giving rise to the hallmark characteristics of cancer. In breast cancer, it has been observed that the stabilization of DNA Methyltransferase 1 (*DNMT1*) causes its dysregulation leading to aberrant genomic hypermethylation [63]. This is primarily seen as an increase in protein levels without an increase in the cognate transcript. There is also significant evidence that stabilization of transcription factors that regulate transcript abundance is a common mechanism of gene regulation, with several examples in human cancers. *HIF-1a* is a commonly studied transcription factors due to its widespread effects on cell survival and angiogenesis as well as its activation under the hypoxic stress often seen in tumors [64]. It has been shown to be stabilized by interaction with another transcription factor, YY1, itself implicated in tumorgenesis [65]. This stabilization was also noted as a change in protein abundance without an effect on mRNA level [66]. Another example is observed in the interaction of the *LMO2* and *SCL* transcription factors, both of which have been implicated in hematopoietic cancers [67, 68]. The protein product of

the *LMO2* gene, a central component of several transcription factor complexes, has been shown to be stabilized by interaction with *SCL*, which prevents its degradation allowing for more widespread transcription factor complex assembly [69].

To address this paucity of cancer-focused research encompassing a comprehensive set of genes from the transcriptome and proteome, the work in **Chapter 4** focuses on the characterization of the transcript-protein relationship in the RWPE prostate epithelial cell line and the VCaP prostate cancer cell line and compares the two. We focus on the transcript-protein relationship within various biological functional classes, and how that relationship is altered in a cancer context. In particular, we use a novel transcript-protein discordance index to assess the level of transcript-protein dysregulation in VCaP when compared to RWPE.

Application of methods to other studies

The methods and knowledge developed in the course of these studies for profiling the landscape of the cellular transcriptome using RNA-seq were also applied to a number of other studies. The derived expression measurements were often used in tandem with other types of profiling to analyze multiple facets of biological activity. In Maher, et al. [70], an early version of the quantification methodology was used to contextualize the abundance of known and novel gene fusion transcripts in prostate cell lines in terms of the broader transcriptome. This was one of the first studies to utilize RNA-seq data to infer gene expression values from read mapping counts, and showed the relative abundance of several gene fusion transcripts such as the well-characterized *TMPRSS2-ERG* and the novel *USP10-ZDHHC7* fusion transcripts compared to some of the most highly expressed genes in the transcriptome. This expression calculation technique was applied in Kim, et al. [71], where transcriptome sequencing derived expression values were integrated with microarray and NGS-derived DNA promoter methylation data to analyze the impact of differential methylation patterns in prostate cancers.

The lessons in read mapping, detection, and dynamic range were also applied in contributions to studies using other sequencing-based methods to profile the genome and exome. Accurate read mapping and artifact filtering techniques derived from the development

of the RNA-seq quantification methodology were applied to an evaluation of variants in the transcribed portion of the genome, or exome, in Grasso CS, et al. [72] focused on castration-resistant prostate cancer. These efforts led to increased detection of rare single-nucleotide variants and short insertions and deletions in the exome.

Similarly, methods to filter out artifacts resulting from ambiguously mapping reads and aberrant characteristics of the sequencing process were applied to develop a pipeline for characterizing the structure of the cancer genome in a personalized oncology context in Roychowdhury S, et al. [73]. This method derived both copy number and aberrant mapping data across the sampled genomes and integrated them to increase confidence in the derived candidates. Consequently, this methodology was able to recover genome-scale rearrangements from low-depth genomic sequencing of a cancer sample, in absence of a corresponding normal sample, in a subset of the total four patients with advanced or refractory cancer enrolled in the study. These genomic rearrangements demonstrated the genomic basis for the RNA fusion transcripts observed in this study and several subsequent patients enrolled in the MI-ONCOSEQ personalized oncology program.

List of contributions to publications

 Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, <u>Sam L</u>, Anstett M, Mehra R, Prensner JR, Palanisamy N, Ryslik GA, Vandin F, Raphael BJ, Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA. The mutational landscape of lethal castration-resistant prostate cancer. *Nature*. 2012 Jul 12;487(7406):239-43.

In this study, I developed a pipeline using the BWA short read aligner and samtools suite to discover single-nucleotide polymorphisms and short insertions and deletions (indels) specific to cancer across samples in our cohort.

 Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, Kalyana-Sundaram S, <u>Sam L</u>, Balbin OA, Quist MJ, Barrette T, Everett J, Siddiqui J, Kunju LP, Navone N, Araujo JC, Troncoso P, Logothetis CJ, Innis JW, Smith DC, Lao CD, Kim SY, Roberts JS, Gruber SB, Pienta KJ, Talpaz M, Chinnaiyan AM. Personalized oncology through integrative high-throughput sequencing: a pilot study. *Sci Transl Med*. 2011 Nov 30;3(111):111ra121.

In this study, I contributed structural variation and copy number results derived from a single channel of low-depth genomic sequencing of the cancer sample without a matched normal using the Breakdancer and ReadDepth tools. These results were derived from a comprehensive profiling pipeline I developed for the characterization of large scale variation in the genome.

3. Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-Sundaram S, Huang C, Shankar S, Jing X, Iyer M, Hu M, <u>Sam L</u>, Grasso C, Maher CA, Palanisamy N, Mehra R, Kominsky HD, Siddiqui J, Yu J, Qin ZS, Chinnaiyan AM. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. *Genome Res*. 2011 Jul;21(7):1028-41.

I contributed gene expression profiling for RNA-seq data, used in conjunction with methylome (Methyl-seq) profiling data, to survey the effects of dysregulated methylation in prostate cancer. I also contributed assistance in optimizing the alignment of Methyl-seq derived reads.

 Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, <u>Sam L</u>, Barrette T, Palanisamy N, Chinnaiyan AM. Transcriptome sequencing to detect gene fusions in cancer. *Nature*. 2009 Mar 5;458(7234):97-101.

Using an early version of the transcriptome quantitative profiling pipeline I developed, I contributed RNA-seq based gene expression to this study. This provided context for the relative abundance of aberrant gene fusion products to the rest of the transcriptome.

Chapter 2: A Comparison of Single Molecule and Amplification Based Sequencing of Cancer Transcriptomes

Introduction

Sequencing samples at single-molecule resolution is seen as the next step in the evolution of Next Generation Sequencing (NGS). These technologies have already produced unprecedented amounts of data at nucleotide-level resolution, and are transforming our ability to observe biological systems. NGS technology has had a particular impact in the study of transcriptomes through mRNA sequencing, or RNA-Seq. Offering a wide dynamic range and truly global view, this NGS application is quickly supplanting existing approaches for monitoring complex transcriptomes where both transcript lengths and concentrations are highly heterogeneous. The multi-faceted nature of RNA-Seq has enabled in-depth analysis of transcript abundance [9, 74, 75], alternative splicing [76-79], novel transcript detection [80], biomarker discovery [81-83], pathogen detection and characterization [84-86], and gene fusion discovery [70, 87, 88].

The first wave of 'next generation' sequencing platforms such as those from Applied Biosystems, Illumina, Ion Torrent, and Roche/454, utilize PCR based amplification steps in sample preparation and sequencing and are thus categorized as amplification based sequencing (AS) methods. A second set of platforms, described as 'single molecule sequencing' (SMS) [89] by Helicos and Pacific Biosciences, eliminate the amplification steps involved in the sample preparation and sequencing process and thus profess to provide a more accurate view of the transcriptome.

AS techniques typically involve two amplification steps; the first amplification occurs during the creation of the double-stranded cDNA library from the fragmented mRNA. The cDNAs are ligated to a pair of adapter molecules, and PCR amplified. A second amplification step is carried out with the adapter-ligated single cDNA strands hybridized to primers bound to a glass or silicon substrate to produce local clusters of identical molecules using isothermal amplification or emulsion PCR. Taken together, these two steps have the potential to selectively introduce over-represented segments and genes into AS data. It has been observed that this

bias exists [90-93], however its effect on transcript coverage and quantification has not been thoroughly explored in complex samples with transcripts at variable concentration. The Helicos SMS protocol involves creation of single-stranded cDNA templates directly from mRNA and hybridization of these poly-adenylated templates to complementary oligomers bound to a glass slide for sequencing (**Figure S 3**).

Results

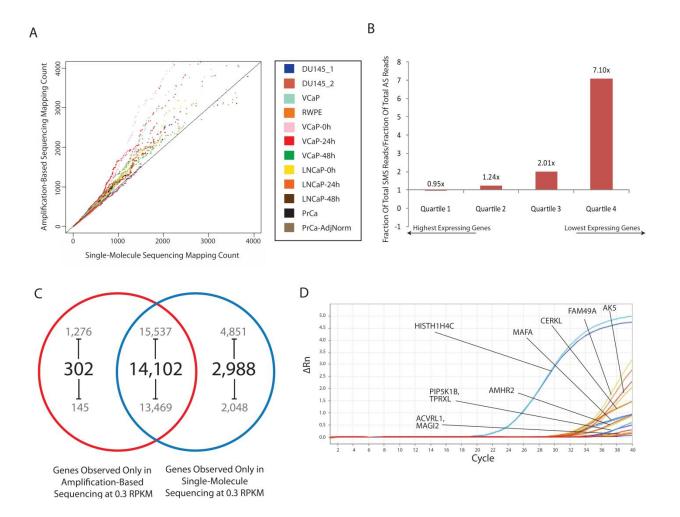
Assessment of SMS RNA-Seq through transcript profiling

To systematically assess the differences between the two sequencing technologies, we analyzed RNA-Seq results from amplification-based sequencing (AS) and single-molecule sequencing (SMS) across a set of twelve cancer cell lines and tissue samples. In particular, our approach attempted to discover recurrent biases that may be introduced by the amplification steps implicit in AS. Our initial dataset used to evaluate quantification performance is comprised of samples from the prostate cancer cell lines DU145, RWPE, VCaP, and LnCaP, and one prostate cancer tumor tissue with a matched adjacent normal sample. Out of our set, three samples each of VCaP and LnCaP were structured as a time course study with 0h, 24h, and 48h time points.

In our analysis of the two technologies, we chose to use the preferred alignment tool for each technology in a "best vs. best" approach. AS reads were aligned with the Bowtie aligner [94] while SMS reads were aligned with IndexDP [95] (**Figure S 4**). Reads aligning to known biological contaminants such as mitochondrial DNA, ribosomal RNA, and technology-specific contaminants such as adapter sequences and long oligomers, were filtered out of the data set prior to analysis.

To assess the variation between SMS and AS technologies, we adopted a simple read counting procedure similar to other RNA-Seq quantification methodologies [9, 74]. Reads from single lanes of AS and SMS technologies run in parallel, were aligned to 56,722 University of California Santa Cruz (UCSC) transcripts (version hg18). We then enumerated reads pertranscript and normalized based on the number of high quality, non-contaminant reads per

sample to obtain values in reads per million (RPM). To avoid uncertainty associated with multimappings to gene isoforms, only single-best mapping methods were used to quantify the genes for comparison. Single best mappings were derived from AS reads by setting Bowtie to report only the single highest quality alignment per read. Single best alignments were derived from SMS reads by accepting alignments with the highest quality scores. Values from all gene transcript isoforms, as defined by UCSC, were summed to yield values in terms of alignments per million reads for each of the 29,416 genes. Coverage values in reads per kilobase per million (RPKM) were computed by summing RPKM values of the isoforms of each gene. Through a head to head comparison between AS and SMS reads of identical samples run in parallel on the two platforms, we observed a systematic over-representation of high expressing transcripts in AS as compared to SMS. This bias resulted in reduced coverage of mid- and lower-level expression genes leading to overall lower transcript detection sensitivity in AS. Reprocessing a subset of AS samples using IndexDP and repeating the analysis ruled out technical differences in read assignment as the cause of this representation bias. As the sequencing technologies and chemistries continue to advance, we expect AS platforms will overcome the limitation of low expressed transcript detection by enhanced throughput.


Global properties of AS and SMS results

Transcriptome sequencing was carried out in parallel on AS and SMS platforms for 12 samples including 10 prostate cancer cell lines and 2 prostate cancer tissues. Overall, we generated 2.8 to 19.7 million raw AS and SMS reads in each of the 12 samples. Approximately 30-60% of these reads passed initial filtering steps and aligned to our transcriptome reference. SMS reads were produced in two separate machine runs while AS reads were produced across 6 independent machine runs. This procedure resulted in 2.1 – 15 million and 2.8 – 8 million reads for SMS and AS, respectively, which aligned to our transcriptome reference. In 10 out of the 12 samples used in the evaluation, SMS produced more alignable reads in absolute terms, with a median of 1.39x across all 12 samples. SMS results contained more reads aligning to known contaminants, ranging from 12% to 51% of total reads, with a median of 22%. The fraction of reads aligning to contaminants in AS ranged from 2.6% to 14% with a median of 4.2%. SMS read length was variable and a filtering step restricted usable reads to a length range

between 24bp and 57bp in the first run, and 25bp and 64bp in our second run, yielding a read count-weighted mean length of approximately 33bp in each of the twelve samples (Table S1). A median of 97% of all SMS reads had lengths between 25bp and 47bp across all 12 samples (Figure S 5). AS reads were generated at a minimum length of 36bp in each sample, although the first and last several bases were ignored to produce high quality reads at least 34bp in length. All AS reads were considered to have a maximum of 36bp length. Reproducibility between technical replicates of the DU145 cell line was high for both AS and SMS methods, with a Pearson correlation of r=.98 for both technologies (Figure S 6). Reads from both AS and SMS were also aligned allowing for 25 maximum mappings to assess the distribution between uniquely- and multiply- mapped reads at the gene level, although only single-best mappings were used for quantification and comparison purposes. Both technologies achieved very similar unique mapping rates of 72% and 75% in AS and SMS, respectively. From this raw aligned data, we examined the relative distribution of reads across genes observed in our samples by comparing their normalized read counts. As expected, we observed broad agreement in terms of gene expression values between the technologies (Figure S 7). However, we observed a recurrent pattern of over-representation of high-abundance transcripts by the AS methodology as compared to SMS.

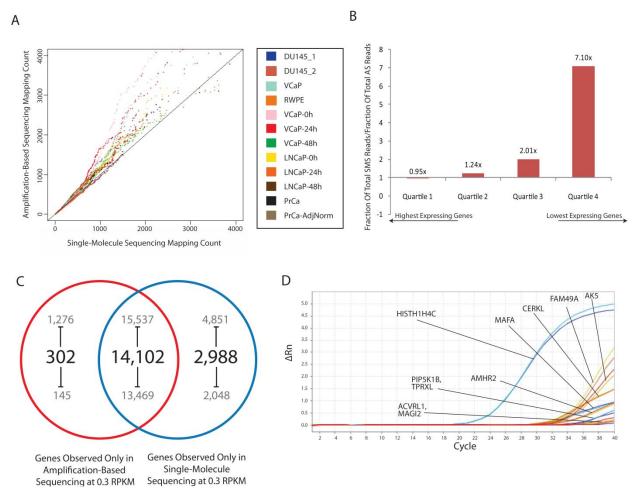
Coverage bias in amplification-based sequencing

Comparison of transcriptome reads of the same samples quantified in parallel from AS and SMS platforms reveals a distinct bias in AS results towards a slight overrepresentation of highly expressed genes as compared to SMS, as shown in **Figure 3A**. This difference was qualitatively assessed by dividing the genes into quartiles of equal number, ordered by observed values in AS, with the first quartile representing the highest expressing genes, the second quartile representing mid-level expression genes, and the third and fourth quartile defining the genes with the lowest levels of transcripts (**Figure 3B**). Highly expressed transcripts tended to have more read coverage in AS, whereas SMS tended to cover the lower expressed transcripts more effectively. This additional coverage of high-concentration transcripts consistently appeared to be at the expense of lower-expressed transcripts, which tended to be more thoroughly sequenced using SMS (**Table S 6**).

Figure 3: Observed bias in amplification-based sequencing. A. Single-best mapping method-based quantile-quantile plot demonstrates evidence of over-representation of highly expressed transcripts in amplification-based sequencing compared to single-molecule methods. **B**. Distribution of reads across genes by transcript concentration shows decreased SMS coverage of the most highly expressed genes, with those reads going to mid- and low-level expressors. **C**. Differences in the distribution of reads lead to increased sensitivity of low-expressing transcripts. **D**. Nine of the candidate genes seen above the 0.3 RPKM noise level demonstrated any amplification by RT-PCR, although only HIST1H4C showed high abundance.

In order to ensure that these biases were not the result of using a different aligner for each technology, AS reads were re-aligned using the IndexDP aligner used for SMS reads for a subset of the samples, composed of the VCaP-24h, VCaP-48h, LnCaP-24h, LnCaP-48h, and DU145_1 samples (**Figure S 8**). Very high correlation of gene-level values comparing Bowtie and IndexDP alignments for the set of AS reads ruled out differences between alignment tools as the source of the observed biases. For example, correlation of gene-level values in the LnCaP-24h sample was high between alignment methods at r = 0.97. Similarly high correlation levels above r = 0.95 were observed in the remaining samples. Similar patterns of high-expressor over-representation in AS were observed using IndexDP alignments of AS reads in place of

standard alignments using Bowtie as shown in **Figure S 9**. With methodological differences essentially ruled out, we attempted to observe the effects of this high-concentration coverage bias by examining the detection of transcripts at low levels.


Increased SMS sensitivity results from high coverage of low-abundance transcripts

To evaluate the effects of increased coverage in mid- to low- level transcripts in SMS, we calculated the number of genes observed above a noise threshold in only one of the two technologies. Using the 0.3 RPKM noise level cutoff based on Ramskold, et al. [96], the number of genes detected in only a single technology varied between a high of 4,851 and a low of 2,048 and a high of 1,276 and a low of 145 in SMS and AS (Figure 3C), respectively, across the set of samples. A log-fold difference between the numbers of genes detected in only one of the SMS vs. AS technology was observed as we varied the cutoff value between 0.1 RPKM and 3.0 RPKM (Figure S 10) in 0.1 RPKM increments. These limits were chosen to examine the sensitivity of the two methods across a range of values starting from a near-zero noise level to an order of magnitude larger than previously reported. Stratification of the genes observed in a single technology into length classes of 0-300bp, 300-3000bp, and 3000+bp demonstrated that this was not due to differences in technology-specific sample preparation, as the AS protocol specifies a ~300bp size selection step that the SMS procedure does not require. This class shows relatively low representation across noise thresholds in both AS and SMS. We then took this evaluation one step further and examined the results from both SMS and AS techniques attempting to find genes detectable only in one technology.

Uniquely detected genes in SMS

In order to substantiate potential representation biases in the two platforms and the suggested additional sensitivity of SMS, we next queried for genes which were detected above a noise threshold by SMS, but were below that threshold in AS. We chose to analyze the DU145 sample as it was the most thoroughly sequenced sample with two replicates run using each technology. Using a 0.3 RPKM threshold, we chose to test the expression of 23 genes in our DU145 samples using RT-PCR, ten of which demonstrated detectable amplification.

Additionally, we sequenced the DU145 cell line much more thoroughly in order to ensure that our detections were not due to technical factors in a single machine run. As shown in **Figure S 11**, this set of genes had better sequencing coverage in SMS as compared to AS across the total 94,427,789 reads generated in our second set of runs. This list was generated by examining the distribution of reads and coverage maps of the top 50 genes whose RPKM coverage showed the largest difference between AS and SMS techniques and had official HUGO names [97]. Candidates were chosen for the presence of long (>36bp) mapping reads and well-distributed read alignments across the length of the transcripts. Of the validated genes detected only by SMS, only *HISTH1H4C* was found to be present in the DU145 sample with high confidence, as shown in

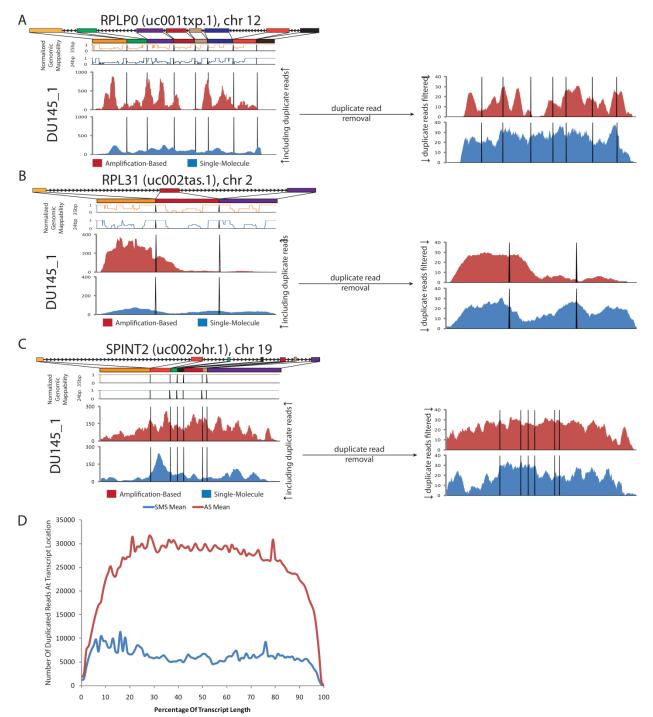
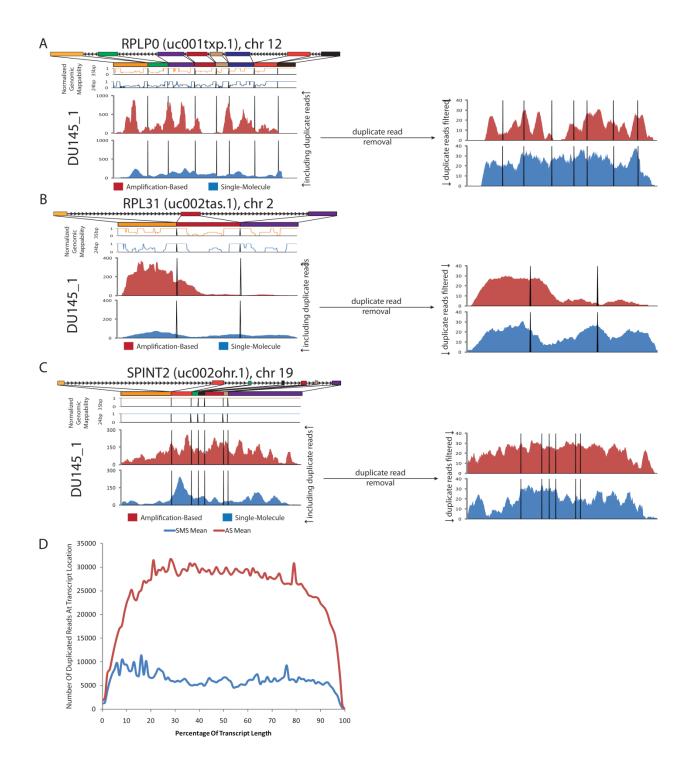


Figure 3**D**. Nine other candidate genes *AK5*, *ACVRL1*, *AMHR2*, *CERKL*, *MAFA*, *MAGI2*, *PIP5K1B*, *FAM49A*, and *TPRXL* showed weak amplification. In this set of genes, amplification

was only seen beyond cycle 30 making it difficult to confirm their presence. This weak amplification makes it difficult to determine if their detection in SMS is due only to increased sensitivity, or are an artifact of ambiguous mapping. We next sought to examine the overrepresented genes that may contribute to the reduction of sensitivity using amplification-based sequencing techniques.


Consistent over-representation of high-expression genes in amplification-based sequencing

Overall, 393 genes were found to be consistently within the set of the top 500 overrepresented genes according to normalized read mapping count in at least 40% of our samples (**Table S 5**). Of these 393 genes, ten genes were found to be over-represented by normalized read mapping count across all 12 of the samples considered in the study. The coverage maps of *RPLPO* and *RPL31*, over-represented in all 12 samples, and *SPINT2*, over-represented in 11

samples, demonstrate this coverage bias in these three high expressing transcripts (

Figure 4**A-C)**. We then examined the composition and distribution of reads in some of these highly over-represented transcripts.

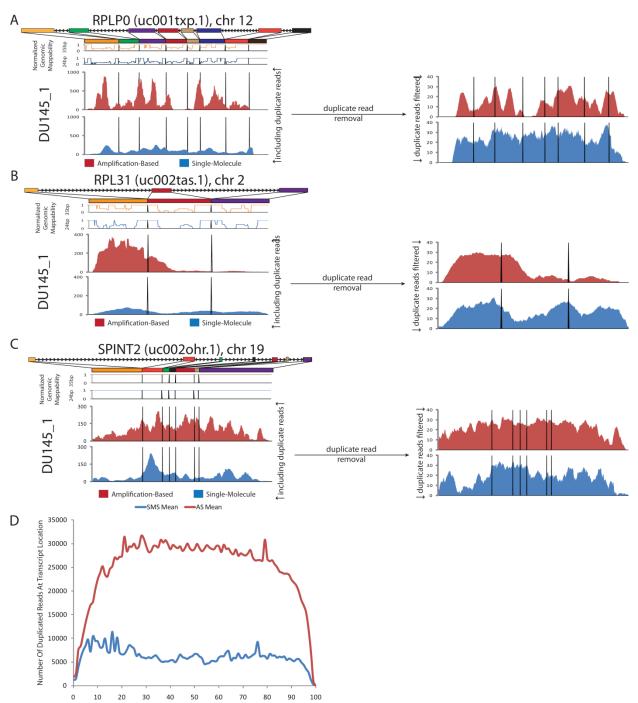
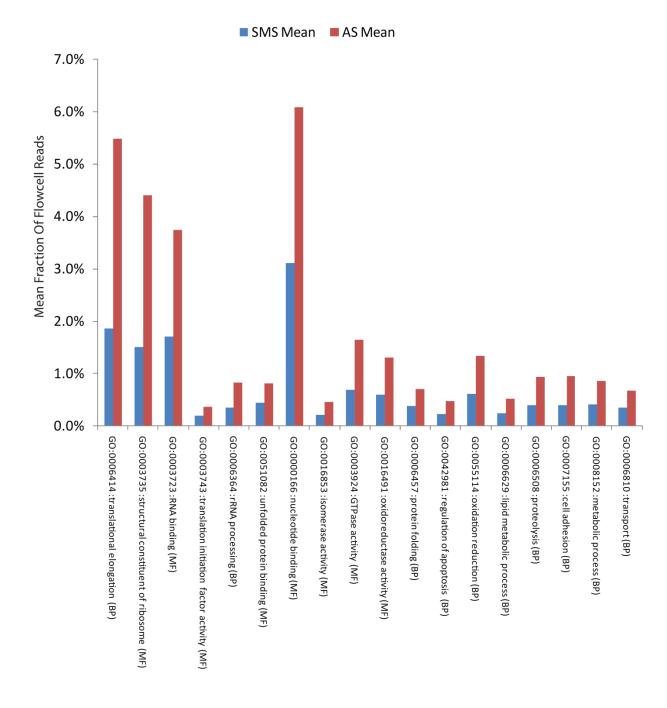


Figure 4: High-concentration transcript bias leads to differences in gene coverage in amplification-based sequencing. Coverage maps from amplification-based and single molecule sequencing demonstrate significantly greater coverage of **A.** RPLPO, **B.** RPL31, and **C.** SPINT2. Removal of reads with the same start positions, strictly suppressing amplification of specific mRNA fragments, significantly reduces the "spikiness" seen in these cases. **D.** Duplicate reads, defined as reads in excess of one per start locus and read length, are relatively evenly distributed along the length of all observed transcripts across all samples in our evaluation set.

Impact of duplicated reads in amplification-based sequencing

The gene *RPLPO* had much greater total mapping coverage in AS across all twelve samples (**Figure S 12**). To aggressively mitigate the effect of amplification in the coverage of this gene, duplicate reads were removed (allowing only 1 read per unique start location) for both technologies as done in previous studies [92, 93]. This resulted in suppression of many of the observed peaks in AS. In contrast, SMS coverage of the gene appeared to be relatively consistent across the length of the *RPLPO* transcript before and after this procedure. This substantial difference in behavior between pre- and post- duplicate read removal for AS in comparison to SMS suggests that amplification is a significant contributory factor in the observed bias. Similar behavior is observed in the *RPL31* and *SPINT2* genes as well.

We considered both alignment locus and read length in our definition of read duplication, allowing one read at each locus with a unique read length. Looking across the transcriptome using this definition of read duplication, we observed a roughly normal distribution along the length of all transcripts captured. A 3-fold difference in the median number of duplicate reads between AS and SMS across all transcripts observed in all samples was maintained across the



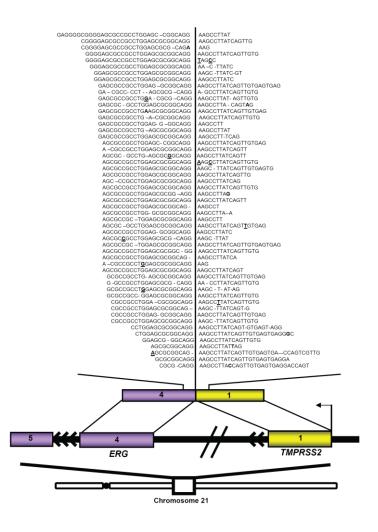
majority of the transcript length (

Figure 4**D**). This pattern of read duplication is similar to that observed in the literature between standard amplification-dependent and amplification-free sequencing methodologies [98]. Removal of duplicate reads, allowing only one read per locus, yielded inconsistent results

Percentage Of Transcript Length

across the sample set (Figure S 13). In some cases, the procedure reduced the overrepresentation in the highest expressing genes, however the bias appeared to remain in other samples. The procedure also drastically reduced the number of total usable reads in each sample by a median of 47% across the 12 sample dataset (Figure S 14). While this naïve methodology of duplicate read removal had some positive effect in reducing the discrepancies between AS and SMS in terms of transcript quantification, the drastic effects it has on the number of usable reads in AS suggests a different approach may be desirable. With this understanding of the impact of duplicated reads, we analyzed the set of recurrently overrepresented genes to see if they sequenced biologically interesting categories of genes.

Figure 5: Global representation of Gene Ontology classes in Amplification-based sequencing. GO analysis of the 392 most over-represented genes found using our recurrence analysis in the Molecular Function (MF) and Biological Process (BP) subtrees demonstrates that translational processes and components of the ribosome are over-represented across samples in amplification-based sequencing.


Gene Ontology analysis of the set of 393 recurrently over-expressed genes

Across the samples, genes associated with the cell's replicative machinery comprised the largest portion of over-represented transcripts by total normalized number of mapping reads in

most samples. Gene Ontology analysis of the set of 393 consistently over-represented genes shows that they are components of the cell's translational machinery (**Figure 5**), a class generally found at high levels in all twelve samples used in this evaluation. This again suggests that the amplification procedure implicit in AS library preparation exaggerates a particular bias towards these already-abundant transcripts. The total number of reads falling into each of the classes observed to be over-represented in AS was a mean of 2.23x higher as compared to SMS, although genes overlap between the classes. With less of a focus on high-concentration translational machinery and housekeeping genes, we then attempted to apply SMS in finding gene fusions in the transcriptome.

Re-discovery of known gene fusions using single-molecule sequencing

We evaluated the applicability of single read SMS in gene fusion discovery by attempting to re-discover known gene fusions in the VCaP cell line, known to harbor *TMPRSS2-ERG*, in a *de novo* process. As shown in **Figure S 15**, we first aligned all possible reads against the transcriptome and genome using IndexDP. The non-mapping reads, which harbor chimeras, were subsequently aligned against the transcriptome returning those reads that had a partial alignment of at least 18 nucleotides. The portion of the read that fails to align is defined as the overhang. All reads having the same partial alignments, suggesting a common breakpoint, were clustered. All clusters were then compared to determine if the overhang from one breakpoint region had similarity to the overhang of an independent breakpoint thereby reconstructing the fusion junction. Lastly, all remaining non-mapping reads were aligned against the novel fusion junctions.

Figure 6: Single molecule sequencing "re-discovers" known gene fusions. Schematic of the intra-chromosomal rearrangement on chromosome 21 fusing TMPRSS2 (yellow) to ERG (purple).

For this purpose, a sample of the VCaP cell line was sequenced more extensively in 2 channels, generating 31,198,128 reads aligned to the transcriptome or genome. The VCaP sample was prepared with one channel each with and without fragmentation. The benchmark fusion between prostate-specific gene *TMPRSS2* and ETS oncogenic family member, *ERG* [99], was found to be covered by 53 reads from generating 65 million reads in the VCaP cell line (**Figure 6**).

Discussion

This is the first study assessing the performance of RNA-Seq using single-molecule sequencing in comparison to existing amplification-based techniques. While the characteristics

of the SMS reads will vary depending on platform, we expect that the distribution of reads across varying transcript concentrations to remain relatively consistent. The SMS technique was able to generate more usable reads in ten of the twelve samples considered in the RNA-Seq quantification and coverage evaluation, producing a mean 78% more reads in these 10 samples. More importantly, these reads tended to be less concentrated at the very highest abundance transcripts as shown in **Figure 3B**, where fraction of total reads mapping to the highest abundance transcripts in SMS are 4% below that of AS. Because the AS technique amasses a large fraction of reads sequencing high- abundance transcripts, detection of lower abundance genes are reduced. The large differences between the highest and second-highest quartile of expressed transcripts suggests that this effect is non-linear as transcript abundance increases in the sample. The wide range of transcript expression in biological samples makes this skewed read distribution of coverage an important factor when profiling mRNAs at the nucleotide level, departing from models that may assume a linear correlation between transcript abundance and sequencing coverage.

The number of duplicated reads observed in the samples across all transcripts was, not surprisingly, 3-fold higher in AS compared to SMS. The removal of duplicate reads is a well-defined procedure in experiments involving DNA sequencing but is less clear-cut when sequencing the transcriptome where varying transcript concentrations naturally lead to reads of identical mRNA segments. This caveat is due to highly expressed transcripts contributing false positive duplicate reads due to random sampling of read start locations along the transcript, where high coverage naturally leads to repeated sequencing of identical segments. However, highly expressed transcripts in SMS would likely generate a large number of these aberrant false positives as well. As a result, this source of false positive duplicate reads is unlikely to be the major factor behind the large observed differences in the number of duplicates between AS and SMS. The removal of duplicated reads by filtering out all reads in excess of a single read for a single locus appears to be an incomplete solution that introduces several confounding factors when using single reads. First, the process of removing duplicates is inconsistent, affecting the biased representation of reads in only a subset of the 12 samples in the dataset. Second, the duplicate removal process also reduced the usable sequence yield

from each experimental run by nearly half, although this is an overestimation due to the naïve nature of the method. Finally, these duplicate removal methods impose a peak coverage limit for each transcript that is equivalent to the read length. The naïve process we applied for the elimination of duplicates is most certainly over-aggressive and the use of paired-end reads may be more effective, due to the production of additional mapping and sequence information that improves the process of duplicate identification and removal. However, the differences that result from the characteristics of these two methodologies can lead to disparities in the sequence coverage of genes along the spectrum of expression.

Small differences in the distribution of reads at the highest quartile of expressed genes have a large effect on the coverage of the remaining expressed genes. For example, the lowest quartile of all genes seen in both technologies in the VCaP-24h sample composes 0.4% of the sum total of normalized reads seen in the highest expressed quartile by AS. A 1% reduction in the number of reads used to sequence the highest expressing genes in the forth quartile can be used to triple the coverage of the lowest expressing genes when reads are applied within the set. The result of shifting the read distribution to lower expressing genes is seen between the VCaP-0h and VCaP AS samples. Both samples yielded a relatively similar number of reads, with 3,636,454 and 3,352,960 reads in VCaP-0h and VCaP, respectively. However, the VCaP-0h sample has more than twice the fraction of the total reads falling into the lowest 2 quartiles with 2.2% and 0.9%, in the respective VCaP-0h and VCaP samples. It comes as no surprise that in the VCaP-0h sample, we are able to observe 16,813 genes above the 0.3 RPKM noise threshold whereas in VCaP, we only observe 13,866 genes above this threshold. Similarly, the reduced high-abundance coverage bias across variable concentrations allows the SMS approach 2- to 6-fold more coverage in the lower half of all expressed genes. The variable read length of the SMS reads contributes to quantification noise, compared to AS, due to the number of short reads which map ambiguously. These mis-mappings may contribute to the larger number of genes observed at the very lowest expression levels. Examination of the reads mapping to genes only found in SMS shows the presence of more than 30% of long SMS reads (>36bp in length) in a median of 17% of the genes (approximating the read length distribution across all samples), leaving a 1.7-fold advantage in favor of SMS sensitivity if genes detected with only

short 24- to 35-mer reads are all considered detections due to noise. While a significant proportion of this noise is directly attributable to ambiguities in accurately mapping short reads, the presence of long (>36bp) aligned reads is not a guarantee of transcript presence. In a large number of the cases where detected genes have long reads aligned to them, false positives were attributable to these long reads mapping to repetitive elements or low complexity regions within the transcripts.

Our PCR validation results suggest that using amplification to confirm transcripts exclusively detected by single-molecule sequencing (and missed by AS sequencing) is not ideal, since any sequence that is difficult to amplify will be hard to detect using AS RNA-Seq and hard to validate using an amplification-based system. Therefore, we cannot verify such transcripts unless an amplification-free technology is employed. Sample preparation differences may also contribute to differential representation of transcripts in the sequencing libraries, as AS involves a size selection step that SMS does not. In addition, the two protocols use differing fragmentation procedures which may affect the prevalence of detectable transcript fragments. This is one significant factor that may contribute to the detection of some genes above the noise threshold exclusively by AS. There may be other reasons for differences in the relative representation of transcripts in each technology. Some transcripts may be under-represented because they are hard to capture using SMS. Conversely, the amplification procedure may alter the apparent transcript abundance as some sequences may amplify highly leading to overrepresentation in AS, which may increase their candidate transcript counts above the noise threshold. For some candidates seen in only one technology, increasing sequencing depth may be the most straightforward solution to the lack of resolution for low abundance transcripts. Some candidates may require modification of the library preparation protocol to ensure sufficient library complexity to capture these low-abundance transcripts. For example, the use of a normalized AS RNA-Seq library preparation protocol or the introduction of a greater amount of input RNA may increase the complexity of the library, possibly enabling higher sensitivity as a result. However, the paucity of published data addressing these topics at this time precludes a thorough examination of potential solutions.

However, while SMS confers the advantages of higher sensitivity and abrogation of issues stemming from read duplication, the technology has a number of confounding characteristics. First, SMS produces reads that are, on average, shorter than their AS counterparts, magnifying the issue of accurately mapping reads to their correct positions. While the inclusion of long 64bp reads confers an advantage, these are the minority of all reads produced. Approximately 60% of all SMS reads were 36bp or smaller across all samples. Second, the SMS methodology used in this evaluation produces reads that include randomly introduced gaps due to the incorporation of "dark bases" which do not produce photo-detectable fluorescence. This characteristic requires the use of alignment algorithms that allow for the inclusion of insertions and deletions relative to the reference, and may complicate the detection of structural variation. We also observed a higher proportion of contaminant-alignable reads in SMS compared to AS, although it is unclear whether this is a product of either the sample preparation procedure or a characteristic of the sequencing process.

Altogether, these differences suggest that SMS has advantages in quantitative expression profiling and nucleotide-level assessment such as polymorphism detection in mid- to low- abundance transcripts although the lowest levels of detection are subject to noise due to mapping. However, the log-fold advantage SMS holds may be overcome as rapid advances in sequencing technology result in the production of increasing numbers of usable reads.

Methods

Preparation and sequencing of samples

Sequencing libraries for the RNA-Seq evaluation set were prepared from a DU145 cell line (ATCC; HTB-81), an RWPE cell line (ATCC; CRL-11609), an androgen-induced VCaP cell line time course at 0h, 24h, 48h, an identical time course in the LnCaP (ATCC; CRL-1740) cell line, and a tissue sample from a prostate tumor paired with an adjacent normal sample. Sample preparation of the entire 12-sample set included the RNA fragmentation step to ensure consistency. Two replicates of a normal untreated VCaP cell line were run for gene fusion discovery evaluation, one each of fragmented and un-fragmented RNA. The fragmented sample

was included in the 12-sample evaluation set. The VCaP cell line was derived from a vertebral metastasis from a patient with hormone-refractory metastatic prostate cancer, and was provided by Ken Pienta (University of Michigan, Ann Arbor, MI). LNCaP or VCaP [100] cells were starved in phenol red free media supplemented with charcoal-dextran filtered FBS and 5% penicillin/streptomycin for 48 h before the addition of 1 nM synthetic androgen (R1881) as indicated. RNA was then isolated using the miRNeasy kit (Qiagen) according to the manufacturer's instructions. Prostate tumor tissue was obtained from the University of Michigan tissue core. Identical samples were submitted for SMS and AS sequencing in all cases with the exception of the VCaP and LnCaP time course samples. The DU145, VCaP, RWPE, as well as the VCaP and LNCaP AS-sequenced time course samples were treated with DNAse. The VCaP and LNCaP time course samples submitted for SMS, as well as the PrCa and PrCa-Adjacent normal samples, were not treated with DNAse during sample preparation. Poly-A containing mRNA for these samples was isolated by two rounds of binding to Sera-Mag Magnetic Oligo(dT) beads, wash and elution in 10mM Tris buffer pH 7.5, according to manufacturer's instructions (Thermo Scientific, Indianapolis). The purified mRNA was immediately processed for library preparation. The VCaP and LNCaP time course AS sample mRNA was selected with oligodT linked beads according to manufacturer's instructions (Invitrogen).

Amplification-based sequencing was done in paired-end mode run to a minimum of 36bp per read and trimmed to a minimum of 34bp to remove low quality bases. For amplification-based sequencing, messenger RNA (2 µg) was fragmented at 85° C for 5 min in a fragmentation buffer (Ambion) and converted to single stranded cDNA using SuperScript II reverse transcriptase (Invitrogen), followed by second-strand cDNA synthesis using *Escherichia coli* DNA polymerase I (Invitrogen). The double stranded cDNA was further processed by Illumina mRNA sequencing Prep kit. Briefly, double-stranded cDNA was end repaired by using T4 DNA polymerase and T4 polynucleotide kinase, monoadenylated using an exo minus Klenow DNA polymerase I (3'to 5' exonucleotide activity), and ligated with adaptor oligo mix (Illumina) using T4 DNA ligase. The adaptor-ligated cDNA library was then fractioned on a 3% agarose gel, and fragments corresponding to 280-320 bp were excised, purified, and PCR amplified (15 cycles) by Phusion polymerase (NEB). The PCR product was again size selected on a 3% agarose

gel by cutting out the fragments in the 300 bp range. The library was then purified with the Qiaquick Minelute PCR Purification Kit (Qiagen) and quantified with the Agilent DNA 1000 kit on the Agilent 2100 Bioanalyzer following the manufacturer's instructions. Library (5-8 pM) was used to prepare flowcells for analysis on the Illumina Genome Analyzer II.

Single-molecule sequencing was done on a Helicos HeliScope in single-read mode, resulting in useful reads ranging between 24bp and 61bp for the first set and 25bp and 64bp in length in the second set. polyA+ RNA was purified on an RNeasy MinElute column (Qiagen). Then 100ng of RNA (on average, between 86ng – 130ng) was heat fragmented by incubation at 95C for 10 minutes or left un-fragmented. First strand cDNA was then made using the SuperScript III reagent kit (Invitrogen, Carlsbad CA) as follows: 500ng random hexamers, 2ul of 10mM dNTP, and DEPC water were added to the RNA up to a volume of 25ul. The mixture was then incubated at 65C for 5 min and placed directly on ice for 2 minutes. Next, 5ul 10X buffer, 5ul 0.1M DTT, and 10ul 25mM MgCl were added to each sample, and the, now 45ul, sample was incubated at 15C for 30 minutes. After this incubation time 2.5ul of RNaseOut (100U), and 2.5ul of SuperScript III (500U) were added to each sample and the samples were incubated at 42C for 30 minutes, 55C for 50 minutes, and 85C for 5 minutes. After the reverse transcription reaction, 1ul RNase H and 1ul of RNase I were added to each sample, followed by a 30 minute incubation at 37C.

Samples were twice purified on DyeEx columns (Qiagen). cDNA samples were then Poly-A tailed using the Helicos DGE assay reagent kit (Helicos, Cambridge MA), and the terminal transferase kit (NEB, Ipswich MA) as follows: 5ul Helicos Tailing control Oligonucleotide A was added to 20ul of each cDNA and the volume was adjusted to 35.5ul with water. This mixture was then denatured for 5 minutes at 95C and placed directly on ice for 2 minutes. Then, 5ul 2.5mM CoCl, 5ul 10X terminal transferase buffer, 2ul Helicos polyA tailing dATP, and 1.2ul terminal transferase (24U) were added to each samples, followed by incubation at 42C for 1hour, and then 70C for 10 minutes. After the tailing reaction the samples were 3' blocked as follows: samples were denatured for 5 minutes at 95C and placed directly on ice for 2 minutes, 300 pmoles biotin-dideoxy ATP (Perkin Elmer, Waltham MA) and 1.2ul terminal transferase

(24U) were then added, followed by 1 hour incubation at 37C, and a final 10 minute heat inactivation step at 70C. 3' biotinylation of samples was used to assess sample molarity to inform HeliScope sample-loading for the sequencing reaction (according to manufacturer's instructions).

Alignment of reads

The first read of AS read pairs was used in this study to compare to the single reads derived from SMS. SMS reads were aligned with the IndexDP aligner, while amplification-based sequencing reads were aligned with both the Bowtie and IndexDP aligners as shown in Figure S 4. IndexDP alignments were filtered by NScore, defined as (5*# match-4*# error)/read length) with a minimum of score 4, reporting at most 25 alignments per read. Reads between 24bp and 57bp and 25bp and 64bp in length were used for sets 1 and 2, respectively. Bowtie was set to report alignments with at most two mismatches within a 32-base seed region, reporting at most 25 multiple alignments per read. The first base of all AS reads was trimmed to maximize quality. Single-best quality alignments were derived using Bowtie by setting the –best and -k1parameters to report only the single highest quality alignment per read. Reads were aligned to the set of UCSC transcripts defined in hg18, downloaded from the UCSC Genome Browser at http://genome.ucsc.edu. Known contaminants were also included in the set of references. Bowtie alignments included references for mitochondrial DNA, adapter sequence, and ribosomal RNA. IndexDP alignments included references for poly-A, poly-T, poly-C, and poly-G oligomers. Re-alignment of AS reads using IndexDP was done using the same parameters as SMS reads, using the full length of the read. Reads from the PrCa sample were trimmed to 50bp from 75bp to meet technical limitations of the alignment program. Sequence reads from this study have been deposited into the NCBI Short Read Archive with accession number SRA028835.1.

Duplicate read removal

Duplicate reads were removed from the data by analyzing the alignments to each UCSC transcript in the transcriptome reference. One read was allowed to align at each start locus (with and without consideration of read length). Reads with alignments to locations along the

reference transcript in excess to those were marked as duplicates and removed from the data set.

Relative quantification of genes and coverage calculation

Reads aligning to each UCSC transcript were counted at transcript level resolution and then summarized at the gene level using transcript to gene symbol mappings from the kgXref table downloaded from the UCSC Genome Browser at http://genome.ucsc.edu. Reads aligning to the known contaminant references were marked and not considered in the analysis. Genes were quantified using only the single-best mapping methodology. Single-best mappings were derived from IndexDP alignments by choosing alignments with the highest NScore, or an alignment randomly picked from the set of highest scores when multiple alignments are present with the same NScore value. Gene-level RPM values were derived by summing the number of aligned reads from each gene's constituent transcript isoforms and dividing by the total number of usable reads. Read sums were calculated using R Statistical Environment [101]. RPKM values were computed for each observed UCSC transcript and summed for all isoforms of a gene to derive a gene-level RPKM expression value. Coverage levels were calculated by summing the read lengths of all reads aligning to all isoforms of each gene and dividing by the mean isoform length.

Detection of genes observed in a single technology

We derived a list of genes observed in only SMS or AS for the DU145 samples in this study by comparing the mean gene-level RPKM expression values of each pair of samples run on AS and SMS. A list of candidates was nominated by then sorting the list of genes with expression values above the noise threshold in SMS and below the threshold in AS by the observed differences. These genes were evaluated for mis-mappings by examining secondary and alternate alignments of the reads aligning to each candidate as shown in **Figure S 16**. The list was filtered to remove genes detected only by short reads and the top 50 remaining genes manually evaluated to have well-defined HUGO names, diffuse read distribution along the transcript length, and the presence of long (>36bp) reads in both SMS technical replicates.

Validation of Detected Single-Technology Transcripts by PCR

RNA was extracted from the cells using Qiazol based on Qiagen's miRNeasy Minikit following the manufacturer's instructions (Qiagen). 1 μ g of total RNA was reverse transcribed into cDNA using SuperScript III (Invitrogen) in the presence of oligo dT and random primers. Quantitative PCR was carried out by Taqman assay method using gene specific primers and probes from the Universal Probe Library (UPL), Human (Roche) as the internal oligonucleotide, according to manufacturer's instructions. GAPDH was used as housekeeping control gene for UPL based Taqman assay (Roche), as per manufacturer's instructions.

All assays were performed in duplicate using the primer sequences in Table S 8.

Gene Ontology analysis of reads

Gene Ontology (GO) analysis of over-represented genes was done in order to assess the most highly represented GO classes and determine the relative abundance of reads attributable to each GO class. This analysis was done with GeneCoDis2 tool [102]. Single GO classes resulting from this process were evaluated for their representation in terms of fraction of total sequenced reads across the 12-sample set. Relative representation of reads attributable to each GO class was done by summing the number of single-best mapping alignments for each gene in each GO class as defined in the GO annotations for *Homo Sapiens*, downloaded from http://www.geneontology.org and dividing the total by the total number of reads in each sample.

Gene fusion discovery in single-molecule sequencing

The VCaP cell line was sequenced in two additional channels to evaluate the suitability of single molecule sequencing for the task of gene fusion detection. This was done by mining the reads in an effort to re-discover known gene fusions. All possible reads were first aligned against the transcriptome and genome using IndexDP. Non-mapping reads, which harbor chimeras, were subsequently aligned against the transcriptome returning those reads that had a partial alignment of at least 18 nucleotides. All reads having the same partial alignments, suggesting a common breakpoint, were clustered. All clusters were then compared to see determine if the overhang (portion of the read that fails to align) from one breakpoint region had similarity to the overhang of an independent breakpoint, thereby reconstructing the fusion

junction. Finally, all remaining non-mapping reads were aligned against the novel fusion junctions. This de novo approach enabled the re-discovery of the TMPRSS2-ERG gene fusion across two channels of SMS reads.

Chapter 3: A Framework for integrating transcriptome and proteome data

Introduction

mRNA transcript levels are often used in research studies as a rapid and simple measure of biological activity in cells, a proxy for protein abundance and activity. However, this relationship is complex – complicated by numerous external factors such as RNA translation rates and decay, degradation through the microRNA pathway, non-coding RNAs, and numerous post-translational modifications of protein products [103, 104].

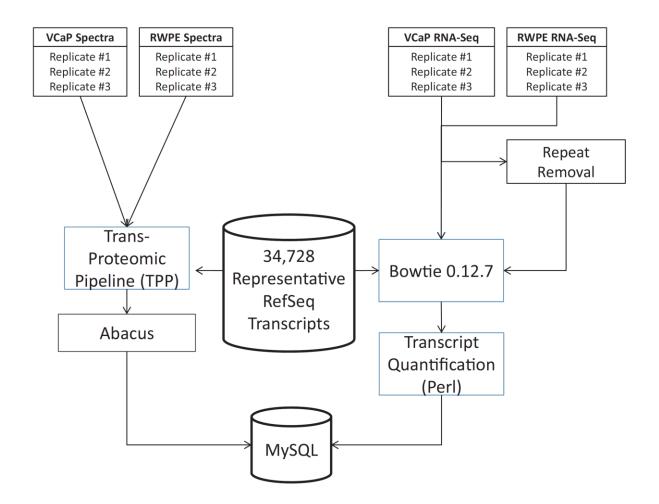
In the study described in the next two chapters, we use the VCaP and RWPE human prostate cell lines to study the transcript-protein relationship and extended the analysis to examine how that relationship is dysregulated in a cancer context. VCaP is derived from a vertebral metastatic lesion of a patient with castrate-resistant prostate cancer and serves as a model of prostate carcinoma; it expresses a large quantity of Prostate Specific Androgen (PSA) and Androgen Receptor (AR) and is known to be androgen-responsive [100]. RWPE serves as a model of normal prostate epithelium; it is derived from non-neoplastic prostatic epithelial cells, and is known to possess the characteristics of normal tissue [105].

In this chapter, we focus on addressing the challenges of quantification and integration of data from transcriptomic and proteomic experiments carried out using mRNA sequencing ("RNA-Seq") and tandem mass spectrometry ("MS/MS"), respectively, and describe a novel methodology using a common sequence reference database with which we quantify relative abundance of transcript and protein in the VCaP and RWPE cell lines and analyze their relationship. With this methodology, we demonstrate how differing short read alignment and spectral counting methods and filtering processes impact the measurement of the transcriptprotein relationship.

Background

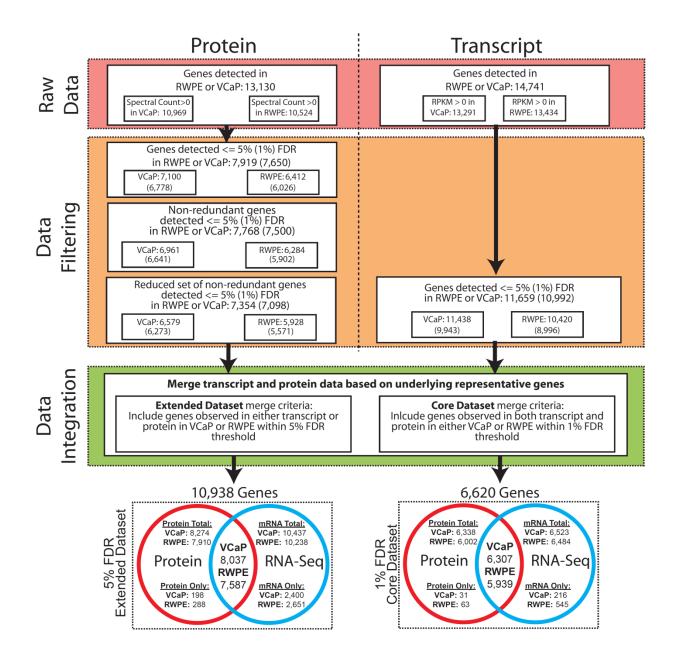
The correlation of protein and transcript levels is confounded by varying methodologies for identification, quantification, and data integration. The process of integrating this data

effectively is itself a topic of study [42, 47, 48, 106]. Early work studying this relationship relied on gel electrophoresis or liquid chromatography coupled with mass spectrometry (LC-MS) and microarrays to quantify transcript and protein abundances. Due to technical constraints, these studies were limited by the dynamic range of assay methodology and a small sample set of assay genes. The small, pre-selected gene sample sets typically found in these studies resulted in highly variable correlation measurements.

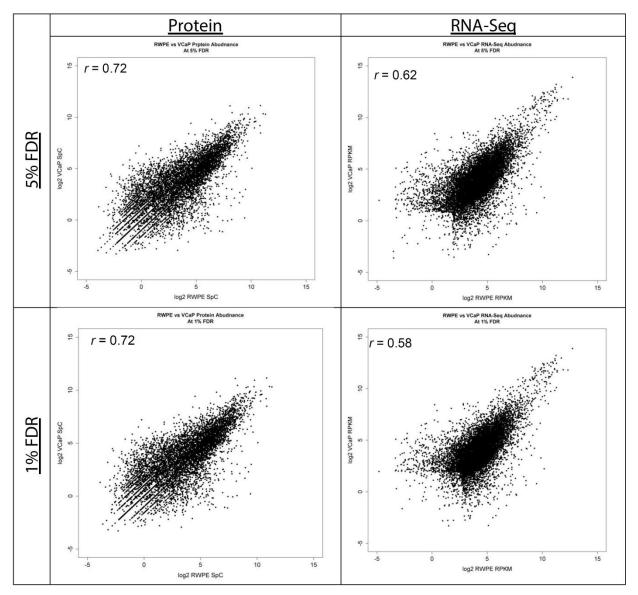

Recent research examining the relationship between transcript and protein abundances has leveraged advances in next-generation sequencing to profile the transcriptome and higher throughput methods for proteome assessment to observe a more complete landscape of the cellular transcriptome and proteome [40, 107]. These studies have observed correlation between mRNA and protein abundance ranging from r = 0.3 to r = 0.6, examining 12,000-16,000 mRNAs and 7,000-9,000 proteins in each sample. Previous studies focusing on smaller subsets of genes and other methods have shown more varied correlation values [43, 44, 108, 109]. A study combining previously published isotope-labeled protein abundance values with separate RNA sequencing data in three cancer cell lines, A431, U251MG, and U2OS found transcriptprotein relationships in nearly 5,500 genes correlated at levels from r = 0.55-0.61., G-protein coupled receptors demonstrated the most disagreement in a focused examination of U2OS, a characteristic which they attributed to their limited ability to assay the protein products of this class of genes due to detection limitations [46, 110]. A similar study focusing on deeply profiling both the transcriptome and proteome in the HeLa cell line assembled an integrated dataset of approximately 8,600 genes, from which a correlation of r = 0.6 between transcript and protein levels was observed [40]. From this data, the authors estimated that a complete proteome comprised 10-12,000 genes in total. Most recently, a study profiled the proteome of the NCI-60 set of cancer cell lines and compared these profiles to microarray-derived mRNA abundance levels finding similar correlation levels [111]. The inclusion of all 59 NCI60 cell lines resulted in the largest dataset, comprising 10,350 genes, with an observed global correlation of r = 0.76. However, the number of proteins profiled in individual cell lines was much lower, with only 6,003 protein products seen in at least 5 samples, and the correlation between transcript and protein was noted to be lower in cancers with higher cellular heterogenity.

Results and Discussion

RNA-seq and Proteomics Results


To profile the transcriptome and proteome on a genome-wide scale, we use nextgeneration mRNA sequencing (RNA-seq) and label-free tandem mass spectrometry (MS/MS). Our study is based on three replicate profiles of mRNA and protein of the VCaP and RWPE cell lines that were independently processed before integration in a database. To do an "apples-toapples" comparison of transcript and protein abundances, we assembled a common reference database derived from RefSeq containing 34,728 transcripts and matching protein sequences. This database of transcripts and corresponding peptide sequences was used to align RNA-seq reads and quantify peptides and proteins from MS/MS data (**Figure 7**). All data was collapsed to gene level granularity using a single representative transcript and protein isoform for each gene. This representative isoform was chosen as the highest abundance used to break ties. Transcript data was summarized as the sum of all isoform read counts as a Reads Per Kilobase Million (**RPKM**) measure. Protein spectral counts were normalized by the length of these representative isoforms to produce a Normalized Spectral Count (**NSpC**) value for each gene.

The RNA sequencing of three technical replicates of the VCaP and RWPE cell lines yielded a total of 15,998,482 and 14,887,668 reads for each cell line, respectively. MS/MS of three replicates each of VCaP and RWPE yielded a total of 557,642 and 606,145 peptide matching spectra, respectively. Our RNA-seq quantification had high correlation between technical replicates with $r \approx 0.9$ in each case.


Figure 7: Data Processing and Integration Pipeline. Three replicates of each sample were generated using MS/MS and RNA-seq and quantified against a common reference library of mRNA and protein sequences. Tandem mass spectrometry data were processed with the TPP and post-processed with Abacus to yield spectral count data. RNA-seq reads were aligned to the common reference using Bowtie and post-processed with in-house Perl scripts to yield RPKM (reads per Kilobase million) quantification.

Similarly, pair-wise correlations of spectral count between replicates in our MS/MS data show correlations of r = 0.97 in both the VCaP and RWPE replicates (**Figure S 17**). Quantification of protein abundance was performed using the Trans-Proteomic Pipeline (TPP) [112] and Abacus [57]. Quantification of RNA-seq data was computed using in-house Perl scripts (**Figure 7**).

Figure 8: The data filtering and integration statistics producing the core and extended datasets. Data is merged to the gene level before filtering by FDR and integrated using 1% and 5% FDR thresholds resulting in the core and extended datasets, respectively.

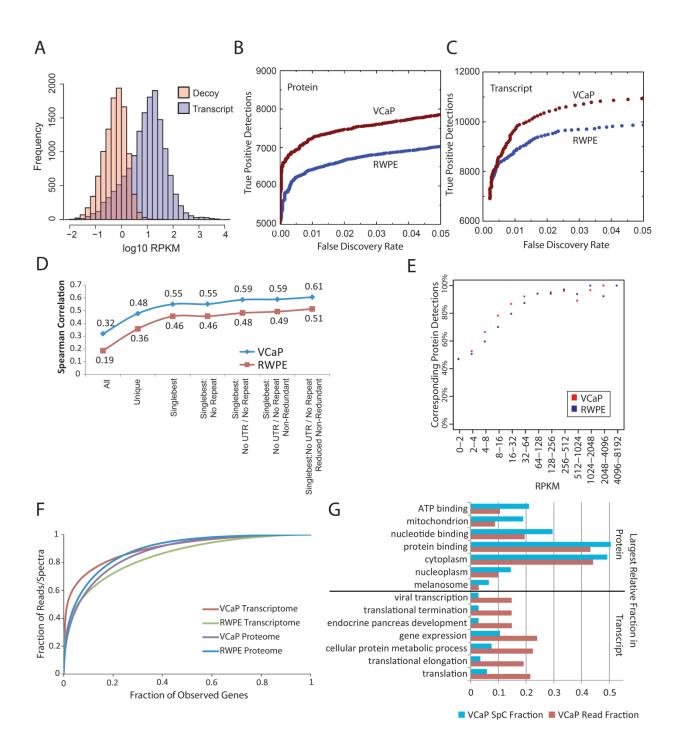
We used our False Discovery Rate (FDR) estimation procedure to threshold with which we filtered our data into two sets: a high-accuracy core dataset at 1% FDR to use for individual and set level analysis of genes, and a larger extended dataset at 5% FDR to use for correlation analysis (**Figure 8**). In our raw dataset, 13,130 and 14,741 genes were detected in either cell line at any level in the protein and transcript data, respectively. To achieve a 5% FDR in our extended dataset, we thresholded the minimum abundance to 1.8 and 3.6 RPKM for RNA-seq data and minimum peptide probabilities to 0.9475 and 0.958 for protein data in VCaP and RWPE, respectively. Due to the high correlation between RWPE and VCaP in terms of both mRNA (r = 0.79, Spearman) and protein (r = 0.70, Spearman) abundance and common tissue of origin (

Figure S 18), we chose the extended dataset to include all genes which met the 5% FDR threshold in either cell line by either RNA-seq or MS/MS and was uniquely quantifiable by our proteomics approach. For our high-confidence 1% FDR core dataset, the abundance thresholds were set at 3.7 RPKM and 6.5 RPKM for RNA-seq data and minimum peptide probabilities of 0.9855 and 0.9885 for VCaP and RWPE, respectively (**Figure 9B and C, Figure S 19** and **Figure S**

20). To decrease noise in our fine-grained analysis, our core dataset also required detection of candidate genes at the 1% threshold in both the mRNA and protein data in either cell line. This process yielded a total of 10,938 unique genes in the 5% FDR extended dataset and 6,620 unique genes in our 1% FDR core dataset. Overall, the large majority of genes were filtered out by lack of protein data passing our filtering thresholds and detection criteria.

We used the extended dataset to examine the correlation between protein and transcript in both cell lines and observe how different alignment and counting methods for transcriptome and proteome data affect the relationship.

Calculating FDR in transcriptome and proteome data


To assess the false discovery rate (FDR) in our dataset, we followed a method similar to that of Ramskold, et al. [96] for the RNA-seq component of the study. Corresponding decoy intergenic sequences were sampled without replacement for each representative transcript in our database, for a total of 34,728 decoys. We aligned reads to the merged total set of these decoy and real mRNA transcripts. Abundance data was summarized at the gene level using the same transcript-gene mappings for both the real and decoy transcript set. FDR was calculated as the number of decoy genes detected divided by the number of non-decoy genes detected (Figure S 19). Across experiments in both cell lines, the decoy and real genes showed separated normal distributions, with decoys at a mean measured abundance of 0.46 RPKM and non-decoy genes at a mean abundance of 22.52 RPKM (Figure 9A). We did not find a bimodal distribution of transcriptome abundances as previously observed in other studies [113]. These studies have noted that a majority of the transcripts occupying the lower abundance peak are non-coding and small RNAs. Hence we do not observe this due to our inclusion of only protein-coding genes in our common reference database. Using this methodology, we went on to examine how technical and methodological factors could be optimized in order to achieve the most accurate correlation between relative transcript and protein abundances.

We used the protein and peptide probability estimates provided by TPP and Abacus to control FDR in our protein data (**Figure S 20**). We used the peptide probability (independently

set according to our FDR thresholds) in combination with the protein probability (held at 0.9) to filter out noise in our proteome datasets (**Figure 9B**). Additionally, we marked and removed all keratin genes in an effort to reduce the number of known common contaminants in our data.

Analyzing the impact of data processing methodology on correlation

We used our extended dataset to characterize our experimental output in an effort to avoid including experimental noise in our analysis. In general, our RNA-seq data were more sensitive to low abundance elements than our protein dataset (**Figure 9E**). In both cell lines, of the transcripts detected at 4-8 RPKM in our extended dataset, we detect approximately 60% of the protein products from their cognate transcript. This number rises to 90% of the protein products for transcripts with relatively high abundance of more than 16 RPKM. Although both RNA-seq and MS/MS methods produce similar data with a similar distribution, this observation is expected, as our ability to observe the transcriptome at depth surpasses our ability to observe its corresponding proteome. Some of the detection characteristics are explained by the differing dynamic range of the MS/MS and RNA-seq methods and their efficiency at assessing the protein and transcripts in our sample, in particular at low abundances.

Figure 9: Analysis of transcript and protein datasets. A. The distribution of real and decoy gene values. The mean abundance of all decoy genes is 22.52 RPKM while decoys have a mean abundance of 0.46 RPKM. **B** and **C**. True positive detections across FDR values in protein and transcript data. **D.** Spearman correlation coefficient values for each alignment method and protein data reduction step in extended dataset. **E.** Protein detection at increasing transcript abundance levels. **F.** Distribution of RNA-seq reads and tandem MS spectra across all genes detected in the extended dataset for VCaP and RWPE. **G.** Most over-represented (as a fraction of all reads) Gene Ontology classes in transcript and protein data.

The impact of alignment and quantification methodology in RNA-seq

Called *multireads*, a fraction of all transcriptome reads map to multiple locations [9]. While most of these reads map to a small number of locations, a few have a muchgreater number of candidate mapping loci. We speculated that the presence of repetitive elements found in many transcripts may confound accurate quantification of transcript abundance from RNA-seq through the highly ambiguous alignment of this subset of reads. In an effort to reduce this effect, we removed reads coming from known repeat elements in the human genome. We removed all reads aligning to RepBase *H. Sapiens* and simple repeat elements and repeated the analysis for all genes. On average, this process removed a mean of 9.6% and 12.6% of all reads across replicates of VCaP and RWPE, respectively.

We also examined how our alignment and quantification methodology affected our correlation. Three transcriptome read alignment methods were evaluated to determine which best captured the relationship between transcript-protein with the hypothesis that concordance correlates with the performance of each methodology. Each of these alignment and counting methods resulted in a different number of reads assigned to each transcript (Figure S 22). The "unique" alignment policy is the most restrictive; where reads are required to map uniquely to a single position in the reference database. The "single best" alignment policy assigns reads to the best quality alignment among all found alignments as determined by the Bowtie aligner. The "all" alignment policy assigns reads to the best alignments up to 255 locations. In general, correlations between mRNA and protein were better in VCaP than in RWPE and are used for comparison. Correlations were computed from log2-tranformed values (Figure 9D). The Spearman correlation derived from the gene abundances determined using the unique method was the poorest at r = 0.32. While the "all" policy produced a reasonable correlation level of r = 0.48, the false discovery rate of the method was extremely high. The "single best" method we chose to use produced results yielding r = 0.55 and r = 0.46 for VCaP and RWPE, respectively. The high FDR of the "all" method led us to hypothesize that repetitive elements in the transcriptome confounded the abundance calculation by dispersing many nonunique reads onto many transcripts. Removal of these elements from the underlying transcriptome data yielded a negligible increase in correlation. Recent studies have suggested

that UTR elements in the transcriptome also confound accurate quantification of mRNA transcript abundances [96]. With that consideration, we also evaluated the effect of removing UTR sequences and reads that align to these regions from our abundance calculations. Removal of UTR reads in addition to repeat elements led to a small increase in correlation in both VCaP and RWPE with increases to r = 0.59 and r = 0.48, respectively.

Processing of the RNA-seq data using the TopHat and Cufflinks suite of tools [55] yielded somewhat lower correlation, with Spearman r = 0.57 and r = 0.48 for VCaP and RWPE, respectively. Further analysis was carried out using our in-house tools as it allowed for more fine grained measurement and control over read mapping and counting.

Filtering out multiple assignment of spectra in proteomics data

Proteome data was filtered in an attempt to exclude quantification artifacts due to proteins that were indistinguishable based on the observed peptides, which leads to the assignment of spectra to both candidates. We used our process to eliminate the double counting of spectra inherent in this type of quantification. This was done by choosing the protein with the highest peptide probability between proteins which are otherwise indistinguishable. Ties were broken by choosing proteins with the highest mRNA abundance value. The same was done between indistinguishable isoforms of a given protein based on spectral count with ties broken by mRNA abundance. Removal of quantification artifacts between like proteins to create a non-redundant set increased the correlation to r = 0.59 and r= 0.49 in VCaP and RWPE, respectively. We then created a reduced non-redundant set through the removal of artifacts from isoform uncertainty, which further increased the Spearman correlation to r = 0.61 and r = 0.51 in VCaP and RWPE, respectively. This non-redundant set was used for further analysis.

Distribution of reads and spectra in the VCaP and RWPE datasets

In both the transcriptome and proteome, a relatively small number of genes encompass the large majority of transcripts and proteins in a cell. As a result, a majority of machine dynamic range is concentrated on this small number of genes. In both cases, this concentrated allocation of dynamic range also means that the majority of transcripts and proteins are poorly

covered by reads and peptides (Figure S 23, Figure S 24). However, there were distinct differences between the two cell lines in our study in both proteome and transcriptome data. The distribution of reads in the VCaP and RWPE transcriptome data show marked differences (Figure 9F, Figure S 25); the top 30 highest abundance genes in VCaP comprised 25% of the total read density. To reach the same approximate total read density, the RWPE transcriptome data comprises the 75 highest abundance genes. This difference is attributable to the overexpression of a set of genes associated with the VCaP cell line's cancer origin. In contrast, the protein data showed a more similar distribution of abundance between the two cell lines. The difference is smaller in the protein data; in both VCaP and RWPE, the top 25% of peptide density is attributable to the top 71 and 102 genes, respectively. This is partially attributable to the use of dynamic exclusion in our protein data set, used to increase proteome coverage at the cost of reducing measurement accuracy at the highest end of the quantitative dynamic range. To examine the impact of the highest abundance genes in the context of dynamic range, we removed the top 100 most abundant genes and examined the distribution of remaining reads and spectra across the genes. This removal process had a much larger effect in the transcriptome data, bringing the distribution of reads over the dataset genes for VCaP closer to that observed in RWPE.

We then sought to examine how the relative makeup of the underlying proteome and transcriptome data may better explain these distributions. By ranking Gene Ontology classes in terms of relative read and spectral fraction without normalization, we observed a compositional divergence in the underlying data in our transcript and protein datasets (**Figure 9G, Table S 9**). The set of classes where transcript reads composed the largest relative proportion of the underlying data was dominated by translation associated classes such as translational elongation (GO:0006414) and gene expression (GO:0010467). A large number of reads in our transcriptome data were ribosomal in origin, explaining the heavy representation of these classes in the ranked list. To see if these ribosomal genes explained a large proportion of the observed differences, we removed them and reassessed the distribution (**Figure S 25**, **Table S 10**).

Our proteome data shows the use of a whole-cell lysate, with the largest fraction of genes annotated to the cytoplasm. With a mean of 1,594 observed genes, the topmost seven classes found in the high relative protein representation list tend to be significantly larger than those found on the high relative transcript enrichment list (which have a mean observed size of only 164 genes). This is consistent with the observation that proteins in general have longer half-lives in the cell, and are therefore more likely to be observed [60].

Conclusion

In this work, we describe a methodology for integrating transcriptome and proteome data in a manner that matches the reference transcriptome to the reference proteome, resolving a fundamental data mismatch issue that affects a number of previous studies to date. This is among the first studies to analyze the impacts of methodological differences in the quantification and filtering of transcriptome and proteome data. We demonstrate some of the sources of uncertainty that may degrade the fidelity of the observed transcript-protein relationship. Focusing on transcriptome data, we show that the treatment of ambiguously mapping multireads has significant effects on the derived transcript abundances, and downstream protein correlation. Looking at protein data, we show how filtering out artifacts stemming from the multiple assignment of spectra leads to a modest increase in the transcriptprotein correlation.

This study is limited by a small number of samples, and the lack of biological replicates with which we can better define the inter-sample variances in transcript and protein. Future investigation into optimizing the integration of transcriptome and proteome data can leverage the increasing availability of publically accessible RNA-seq and tandem mass spectrometry data for large cohorts of samples. This increased sample heterogeneity will allow for better assessment of aberrations that arise from the highly variable transcriptomic and proteomic landscapes ultimately leading to more optimal methodologies.

Materials and Methods

Cell Lines

The benign immortalized prostate cell line RWPE was obtained from the American Type Culture Collection (ATCC). VCaP cell line was derived from a vertebral metastasis from a patient with hormone-refractory metastatic prostate cancer [114], and was provided by Ken Pienta (University of Michigan, Ann Arbor, MI).

Protein sample preparation

Collection of VCaP and RWPE whole cellular protein extract was done in RIPA complete buffer supplemented with HALT Protease and Phosphatase Inhibitor Cocktail (Peirce Biotechnology). Total protein extract was quantified with bicinchoninic acid. 50 mg aliquots of total cellullar proteins were first separated by 1D SDS-PAGE (4-12 % Bis-Tris Novex-Invitrogen, Carlsbad, CA). Forty equal sized gel bands were excised and subjected to in-gel digestion as previously described **[115]**. Extracted peptides were reconstituted with mobile phase A prior to on-line reverse phase nanoLC-MS/MS (LTQ-Velos with Proxeon nanoHPLC, ThermoFinnigan). Peptides were eluted on-line to the mass spectrometer with a reverse phase linear gradient from 97 % A (0.1 % Formic acid in water) to 45 % B (0.1 % formic acid in acetonitrille). Peptides were detected and fragmented in the mass spectrometer in a data dependent manner sending the top 12 precursor ions, excluding singly charged ions, for collisional induced dissociation. Raw spectra files were converted into mzXML by an in-house version of ReAdW.

Parsing of transcript and protein sequence data

The Genbank formatted flat files for the Human transcripts and proteins of RefSeq release 47 were parsed into a MySQL relational database using in-house software. For this extraction, only entries that had both a transcript and a corresponding protein product were considered. The data extracted included paired transcript and protein identifiers along with the gene symbol of each pair. Sequence information for both transcripts and their protein products were also extracted.

Mass spectrometry and subsequent proteomic analysis

ThermoFisher RAW files for all replicates were converted to mzXML file using msconvert.exe from the Proteo-Wizard suite [116]. Protein searches were performed using X!Tandem with the K-score plugin [117, 118]. The data was searched against the proteins of Human RefSeq 47

along with common proteomics contaminant proteins. Reversed protein sequences were also included as decoy entries. The X!Tandem results were post-processed using PeptideProphet and ProteinProphet (version 4.4.1). [56, 119, 120].

Bioinformatics analysis of proteomics data

A summary ProteinProphet XML file was generated from all of the independent PeptideProphet results as described for Abacus [57]. All of the PeptideProphet and ProteinProphet XML files were subsequently parsed into a MySQL relational database using inhouse software.

Abacus was used to obtain a gene-centric summary of the total spectral counts across all three replicates of each cell line. The Abacus results were then imported into the MySQL database. Parameters used for Abacus were: iniProbTH >= 0.5, minCombinedFilePw >= 0 and maxIniProb >= 0.5. Gene Symbol mappings for each protein were obtained from the RefSeq flat files described above.

Decoy protein matches were also imported into the database as "decoy-gene" entries. These entries were used to compute false discovery rates (FDR) of the gene-centric proteomics data.

Three probabilities were examined to determine which one provided the best discriminatory power between real genes and decoys. The FDR was computed using: bestMaxIniProb, bestMaxPw, and bestLocalPw. bestMaxIniProb is the maximum maxIniProb value observed among the all of the replicates. bestMaxPw is the maximum group probability observed for the gene from among all of the replicates. The bestLocalPw is the maximum protein probability observed for the gene from among each replicate. bestMaxIniProb was selected as the best discriminator at FDR cut offs of 0.05 and 0.01.

RNA-seq expression data

RNA-Seq library generation and sequencing

Messenger RNA (2 µg) was fragmented at 85°C for 5 min in a fragmentation buffer (Ambion) and converted to single stranded cDNA using SuperScript II reverse transcriptase (Invitrogen), followed by second-strand cDNA synthesis using *Escherichia coli* DNA polymerase I (Invitrogen). The double stranded cDNA was further processed by Illumina mRNA sequencing Prep kit. Briefly, double-stranded cDNA was end repaired by using T4 DNA polymerase and T4 polynucleotide kinase, monoadenylated using an exo minus Klenow DNA polymerase I (3'to 5' exonucleotide activity), and ligated with adaptor oligo mix (Illumina) using T4 DNA ligase. The adaptor-ligated cDNA library was then fractioned on a 3% agarose gel, and fragments corresponding to 280–320 bp were excised, purified, and PCR amplified (15 cycles) by Phusion polymerase (NEB). The PCR product was again size selected on a 3% agarose gel by cutting out the fragments in the 300 bp range. The library was then purified with the Qiaquick Minelute PCR Purification Kit (Qiagen) and quantified with the Agilent DNA 1000 kit on the Agilent 2100 Bioanalyzer following the manufacturer's instructions. The resulting library (5–8 pM) was used to prepare flowcells. Sequencing was done on an Illumina Genome Analyzer to produce single reads of 36 to 40bp.

Transcript quantification by RNA-Seq

We constructed a reference database composed of representative RNA sequences from RefSeq v47, matching decoy sequences, and known contaminants. Reads were aligned to this reference database using Bowtie version 0.12.5 using three alignment parameter sets, all allowing for two mismatches within a 32 base pair seed region. The "unique" alignment policy is the most restrictive; we require reads to map uniquely to a single position in the reference database using the arguments "--best -k 1 -m 1." The "single best" alignment policy assigns reads to the best quality alignment among all found alignments as determined by Bowtie using the arguments "--best -k 1." The "all" alignment policy uses the arguments "--best -k 255" to yield alignments to the best 255 locations.

Reads mapping to repeat regions were removed by alignment to the set of RepBase v16.05 Human and simple repeats with Bowtie 0.12.5 without allowing for alignment

mismatches within a 32bp seed region. This process yielded a set of FASTQ files with reads stringently mapping to these known repeats removed.

Expression values in terms of Reads per Kilobase per Million reads (RPKM) were computed for each transcript including and excluding reads that mapped to 5' and 3' untranslated regions (UTRs) and adjusting for the presence and absence of these UTR regions in the total length of the transcript. Lengths for 5' and 3' UTRs were computed by counting UTR sequence lengths downloaded from the UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables) for each representative RefSeq transcript.

Reads were mapped to the hg19 genome build using TopHat 1.4.0 using an annotation file containing all refSeq transcripts. FPKM measures were generated using Cufflinks 1.4.0 with multi-read correction enabled, using the same annotation as supplied to TopHat, masking out all genes on chrM as well as all rRNA and tRNA genes in the genome. Cufflinks was run using the "-G" option to limit quantification to genes in the annotation file. FPKM values for genes with the same name in the genes.fpkm_tracking file were summed to yield a gene-level list of abundance values. These results were merged with proteomics data on the basis of gene name or RefSeq isoform id. Abundance data were thresholded to exclude genes with FPKM values less than 0.3.

Generation of Decoy Transcripts and Computation of False Discovery Rate

Using a method similar to that of Ramskold, et al [96], a False Discovery Rate (FDR) was computed by aligning reads to transcripts and decoy sequences of matched lengths and computing the difference between the number of transcripts and decoys seen at varying RPKM expression thresholds. Decoy sequences were derived from sub-sampling intergenic regions of hg19 outside of gene annotations from RefSeq, UCSC, and Ensembl and outside known sequencing gaps.

Comparison of RNA-seq data with spectral counts

Consolidation of ambiguous transcriptional evidence

All transcripts had five expression values calculated for them: raw, reads-per-million, RPKM, RPKM excluding repeats, and RPKM excluding reads mapping to UTRs and repeat regions. Expression data for multiple transcripts sharing a common gene symbol were collapsed into a single gene entry. Two different methods of collapsing the expression data were employed. For the 'all' data category, the maximum observed value (for each expression calculation) was selected from all transcripts of a gene. For the 'unique' or 'single best' data categories, the sum of the observed values for all shared transcripts was taken.

Assignment of representative transcript and protein identifiers

For each gene symbol with valid spectral count data, a representative protein identifier was selected. In cases where a gene symbol had multiple proteins associated with it, the protein with the largest number of unique spectral counts was selected. Ties were broken based upon the alphanumeric sorting of the remaining candidate protein identifiers and selecting the first one. The representative transcript for a gene symbol was taken to be the parent transcript of each representative corresponding protein.

Selection of candidate genes common to transcript and proteomics data sets

Two data sets were derived from unfiltered data at FDR levels of 1% and 5% using different metrics for quantification accuracy. The 5% FDR dataset was derived by filtering for genes with a bestLocalPw >= 0.9 and a bestMaxIniProb >= 0.9475 and 0.958 for protein data, or a minimum RNA-seq abundance of 1.8 and 3.6 RPKM, in VCaP and RWPE, respectively. Candidates in this data set had to match one of these 5% thresholds in either the protein or mRNA data to be included in the dataset. The 1% FDR dataset was derived by requiring the gene to meet the 1% FDR criteria in both our RNA-seq and protein data in either cell line. A simple filter for keratins (a common artifact in tandem MS experiments) was applied by marking and removing genes with names matching "KRT" followed by a number.

Correlation of transcript expression with spectral count data

The final data sets used for analysis were derived from the repeat-removed sequence files, aligned using the single-best policy, and excluding UTR reads from quantification. For all candidate genes, the spectral counts were averaged together for each cell line using the mean.

The averaged spectral counts for each gene were then converted to NSpC values (normalized to the length of the representative protein identifier) using R [121]. Correlations were computed between log2-transformed RPKM and NSpC values, excluding values that were incomplete (where log transformation of either protein or transcript values resulted in an NA value)

Chapter 4: The transcript-protein relationship in human prostate cancer

Introduction

Prostate cancer is the most common cancer afflicting men, with a 1 in 6 lifetime risk of the disease in the United States [122]. Its prevalence has made prostate cancer a subject of extensive molecular profling at the genome, transcriptome, and proteome levels. However, few studies have investigated the transcript-protein relationship in prostate cancer. Previous research in various human cancers using lower-throughput methods have specifically noted discordance in relative mRNA and protein abundance [41], including numerous dysregulated pathways in prostate cancer with mRNA-protein correlation at varying levels up to r = 0.68[123]. These pathways include functionally important molecular networks and pathways such as nF-kB, which mediates immune response, apoptosis, and inflammation and insulin signaling. More focused studies on specific genes have noted discordance in transcript-protein relationships in a number of cancers; endometrial carcinoma where urokinase and tissue plasminogen activators were noted to diverge [124], acute myeloid leukemia where the transcript and protein expression of the breast cancer resistance protein ABCG2 was observed to be uncorrelated [125], and colorectal cancers where the transcription factor AP-2 (*TFAP2A*) was observed at moderate abundance at the transcript level while showing no protein detection [126]. Altogether, these studies suggest that dysregulation of the transcript-protein relationship may be a marker for the establishment and/or progression of cancer.

The majority of previous genome-scale studies examined the relationship between transcript and protein within the context of single cell lines. In general, there has been a paucity of research leveraging ultra-high throughput technologies to assess the relationship between mRNA and protein abundance in the context of human cancers.

Here, we use the VCaP and RWPE prostate cell lines as models for cancer and normal prostate epithelium. Using the abundance values derived from the method described in **Chapter 3**, we classify genes into functionally discrete categories based on their relative transcript-protein relationships within each of these cell lines and examined the impact of

protein and transcript half-life on this relationship. We then compared the relative transcriptprotein relationships across our two cell lines. Through this process, we identified genes where this relationship becomes dysregulated in our cancer model using novel discordance and concordance index values. We coupled the results of this analysis with the human protein interaction network and demonstrate how several biological processes closely interlinked with the Akt signaling pathway show transcript-protein relationship dysregulation in our cancer model. Additionally, we demonstrate how the integrative analysis of both transcriptome and proteome leads to insights about the variance in the proteome and transcriptome, and how these changes lead to discordance in the transcript-protein relationship.

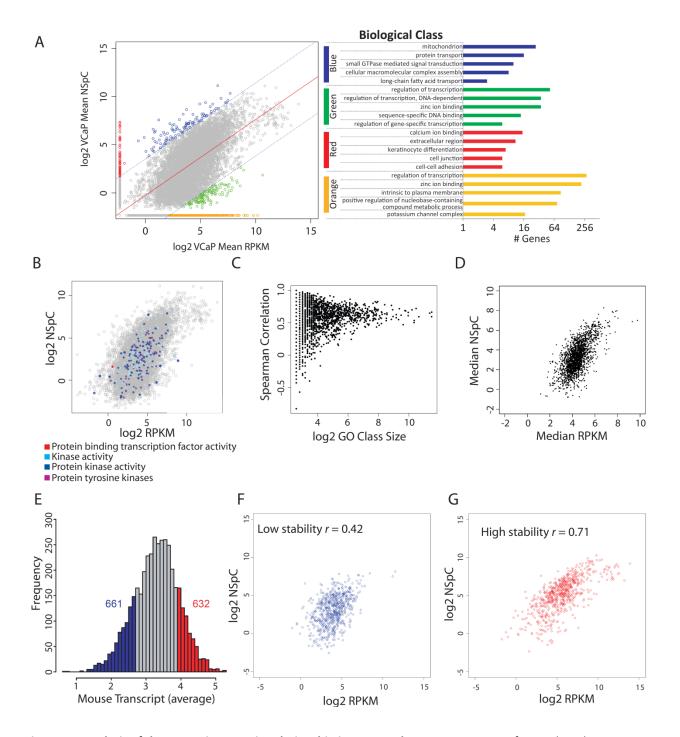
Results and discussion

Transcript and Protein abundance in each of the cell line models

To determine some of the biological factors that affect the transcript-protein relationship, we chose to separate the genes into approximate subsets based on their relative transcript and protein abundance. In order to capture genes that are otherwise ignored due to measurements of zero, we added a small adjustment factor of 0.2 to the RPKM and NSpC values before log2 transformation in this analysis. We divided the genes in VCaP and RWPE into four broad subsets based on the relationship we observed between protein and mRNA abundance (**Figure 10A, Figure S 26, Table S 13**). This was done by choosing genes 1.5 standard deviations away from the best fit line (ignoring points that have values less than 0.3 RPKM or NSpC) between mRNA and protein, and sub-selecting sets of genes that also showed a log2 normalized spectral count or RPKM values less than 0.3 RPKM or NSpC. These thresholds ensured that we selected for two conceptual classes of genes: those that had significant differences in transcript and protein abundance and those which were only detected by a single method. Genes in each of these broad subsets were analyzed with DAVID to examine their functional composition with GO.

The first two of these four subsets consisted of genes with higher protein or mRNA abundance with both detected. The latter two subsets yielded genes with either high protein or

mRNA abundance but little or no observed abundance of the corresponding transcript or protein. While many of the genes segregating into each of these broad sets are driven by functional biology, a subset are mis-categorized due to technical factors; in particular our limited ability to capture, detect, and quantify some genes. For example, genes with relatively high protein but very low mRNA abundance tended to be contaminants such as keratin typical of MS experiments of this kind, usually introduced during the sample handling process common to MS experiments [127]. This is reflected by the presence of classes such as keratinocyte differentiation in this class, even despite our effort to filter out the effect of these contaminants from our dataset (see **Methods**). An additional example is the well-known bias against membrane proteins [128, 129] in MS/MS experiments due to their low solubility resulting in their under-representation in the data. Biological factors that underlie some of these observed differences include different rates of transcript and protein turnover, which affects our ability to measure these genes.


Genes with high mRNA abundances and little or no observed proteins tended to fall into GO classes such as regulation of transcription, composed of genes with low relative abundance or short half-lives, such as transcription factors. This class is larger than the corresponding class of genes with high protein but almost no detectable transcript, likely due to our ability to probe the transcriptome more deeply than the corresponding proteome with our data.

Genes with higher levels of mRNA than protein encompassed some of the same transcriptionassociated classes, although this group also composes a large abundance of ribosomal genes commonly found in mRNA as well as transporters. This category shows some of the classes not elucidated by previous studies using array-based techniques for profiling the transcriptome, due to the limited dynamic range of those methods. Genes with high protein but more modest amounts of mRNA were largely contained genes associated with the cytoskeleton and microtubules – this is expected as these proteins tend to be highly stable. This association of metabolic and structural component class genes with higher relative protein to transcript levels (compared to the association of regulatory genes to the converse group), along with the observation that these proteins are more long-lived than their associated transcripts, is

consistent with the concept that this core functionality of the cell is less subject to variation than genes with regulatory function [110, 130].

Transcript-protein relationships within biological classes

The correlation between transcript and protein abundance in cells is affected by many intermediary factors involving transcript and protein structure [131], translational delay [132], stability, and degradation. Correlation was calculated using the 5% FDR extended dataset. From the baseline Spearman correlation of r = 0.61 and r = 0.51 in the VCaP and RWPE cell lines, respectively, we attempted to find biological classes which exhibit relatively high and low correlation between protein and mRNA abundance.

Figure 10: Analysis of the transcript-protein relationship in VCaP and RWPE. A. Division of genes by relative protein-transcript relationship with zero values. **B.** Plot of cancer-related GO class genes of interest. **C.** Relationship between GO class size and transcript-protein Spearman correlation coefficient. **D.** Relationship between transcript and protein abundance per Gene Ontology class. **E.** Distribution of transcript stability used to segment extended dataset into high and low stability sets. **F and G.** Correlation of transcript and protein levels for low and high stability genes in VCaP.

We first examined the distribution of genes in several cancer-related classes of interest - in particular kinases (and subclasses thereof) which often act as drivers in cancer (**Figure 10B**, **Table S 11**, **Table S 12**). As mediators of the cell cycle, kinases are frequently altered in cancers and can drive oncogenic processes. As a result, they are the focus of many targeted cancer therapies [133]. We examined the correlation and distribution of this class of genes (defined as genes mapped to GO Class GO:0016301 "kinase activity"), and obtained a correlation of *r* = 0.61 and *r* = 0.44 with observations of 87 and 88 genes (out of 581 total annotated to the GO class) in VCaP and RWPE, respectively. The difference in correlation between the cell lines is likely attributable to the greater mean abundance of protein products in VCaP, measured at 2.89 NSpC compared to 1.78 NSpC in RWPE, leading to better quantification accuracy.

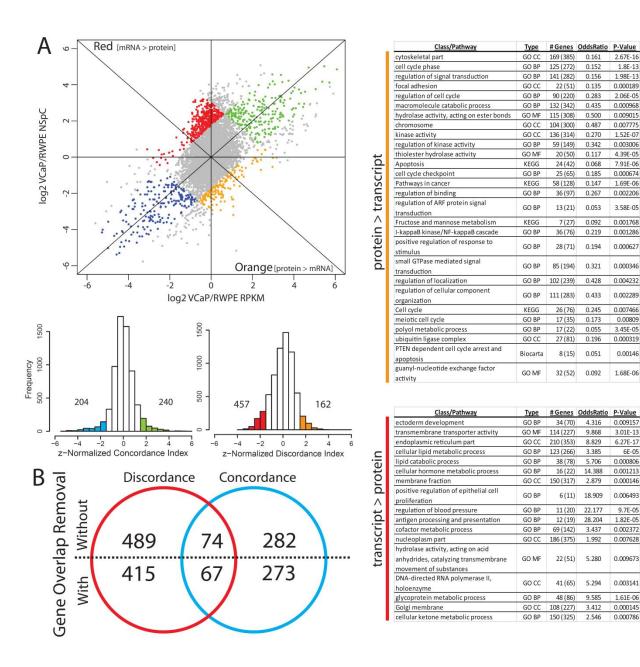
We also examined the class of transcription factors that affect cell signaling and proliferation. Relatively few genes observed in our extended dataset are annotated in GO as transcription factors, with a total of only five genes annotated to protein binding transcription factor activity (GO:0000988). This is likely due to the relatively low abundance of both transcript and protein of many of the genes in this class, resulting in their exclusion from our datasets. This small number of observations therefore led to the class being excluded from our GO analysis. The genes in this class that we observed; PITX1, HMGA2, HEY1, SMAD4, and LHX2, were expressed relatively higher in our RWPE cells compared to our VCaP cancer cells, with a mean of 27.14 and 12.82 RPKM, respectively. At first glance, we might expect that the increased transcriptional activity in cancer cells would imply increased abundance of transcription factors. However, these results are consistent with the observations in a number of published studies; the gene PITX1 [134] was noted to be lower in prostate cancer cells compared to normal, HEY1 is excluded from the nucleus in prostate cancer tissues [135], and SMAD4 acts as a barrier to the growth and progression of prostate cancers [136]. Since the mechanism of action of these genes implies that they act as transcriptional repressors, it is not surprising that their levels are down-regulated in cancers.

We then conducted a more unbiased analysis of the dataset using all Gene Ontology classes with 10 genes or greater observed in our dataset and calculated the Spearman correlation, the

associated p-values, and the mean abundance of transcript and protein for the genes in each class. The correlation within these classes scales with class size approaching the mean dataset correlation coefficient of r = 0.61 (**Figure 10C**) in VCaP as class sizes become large. Much of the variation in the data is seen in GO classes containing 16 or fewer observed genes. Previous studies have noted that the proteome exhibits a larger number of significantly differential genes in cancer than the transcriptome [137]. To examine whether the large differences in correlation in small GO classes was driven by larger proportional membership of significantly differential genes, we compared the mean protein abundance and the protein-transcript correlation p-value. The large variation in transcript-protein correlation within each GO class appeared to be an effect of sample size, as the Pearson correlation between the two factors in each class was r = -0.03 in VCaP and r = -0.05 in RWPE. A similar observation was made that higher transcript-protein correlations are seen in gene subsets with higher abundance [138]. Pearson correlation between the mean protein and transcript abundance in each GO class and Spearman correlation value yielded r = 0.12 and r = 0.04 in VCaP and r = 0.07 and r = 0.07 in RWPE, respectively.

To study the genes in our dataset on the basis of biological function and localization, we analyzed the values by the median abundance of protein and transcript within individual Gene Ontology categories (**Figure 10D**). The most obvious outliers are members of ribosomal small subunit biogenesis and cytosolic small ribosomal subunit classes, with a very high relative transcript/protein ratio that reflect the large abundance of ribosomal gene mRNAs in our transcript data.

The impact of stability in the transcript-protein abundance relationship


Protein and transcript stability have been noted in the literature to have a significant impact on the relationship between transcript and protein abundance levels, and the effect is clearly visible in our dataset (**Figure 10E**). Using transcript and protein stability data from Schwanhäusser B, et al. [60] derived from NIH 3T3 mouse fibroblast cells, we assigned transcript and protein stability to the genes in our dataset through orthology. We separated the genes in our dataset into high and low transcript and protein stability groups by selecting one

standard deviation tails of the z-normalized stability distribution in each of the two cell lines. The differences in transcript-protein correlation between the high and low stability groups on the basis of transcript stability are the most marked. In VCaP, the correlation for the low and high stability transcripts is r = 0.404 and r = 0.71, respectively (**Figure 10F-H**). The difference is similar in RWPE where the correlation is r = 0.288 and r = 0.543 for the low and high stability transcripts, respectively. When comparing low and high stability groups on the basis of protein stability in the two cell lines, the difference is smaller with r = 0.419 and r = 0.572 for RWPE and r = 0.441 and r = 0.799 for VCaP for low and high stability proteins, respectively (**Figure S 27 and Figure S 28**).

Comparison of VCaP and RWPE cell lines

To examine aberrations in the protein-mRNA abundance relationship specific to cancer, we compared the relative transcript - protein ratios between the VCaP and RWPE cell lines. We applied our core dataset to ensure accurate gene level quantification.

For functional analysis, we selected the most concordant and discordant genes. In the large majority of cases, the relationship between transcript and protein abundance between the two cell lines is unchanged. For this purpose, the data were analyzed along two axes to measure the genes with the most concordant and most discordant transcript-protein relationships (**Figure 11A**). The genes with the highest transcript-protein concordance were found by using an index value derived from adding the normalized RPKM transcript fold change value to the normalized protein fold change abundance value between VCaP and RWPE (as described in **Methods**). The most discordant genes were found by the derivation of a similar index value of the normalized protein abundance subtracted from the normalized RPKM transcript value. The index values where both z-transformed and p-values were computed using these scaled distributions of concordance and discordance for use with LRPath for Gene Ontology and pathway analysis.

0.161

0 152

0.156

0.135

0.283

0.435

0.500

0.487

0.270

0.342

0.117

0.068

0.185

0.147

0.267

0.053

0.092

0.219

0.194

0.321

0.428

0.433

0.245

0.173

0.055

0.196

0.051

0.092

4.316

9.868

8.829

3.385

5.706

14.388

2.879

18.909

22.177

28.204

3.437

1.992

5.280

5.294

9.585

3.412

2.546

2.67E-16

1.8E-13

1.98E-13

0.000189

2.06E-05

0.000968

0.009015

0.007775

1.52E-07

0.003006

4.39E-05

7.91E-06 0.000674

1.69E-06 0.002206

3.58E-05

0.001768

0.001286

0.000627

0.000346

0.004232

0.002289

0.007466

0.00809

3.45E-05

0.000319

0.00146

1.68E-06

0.009157

3.01E-13

6.27E-17

0.000806

0.001213

0.000146

0.006493

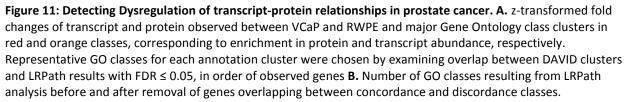
9.7E-05

1.82E-05

0.002372

0.007628

0.009673

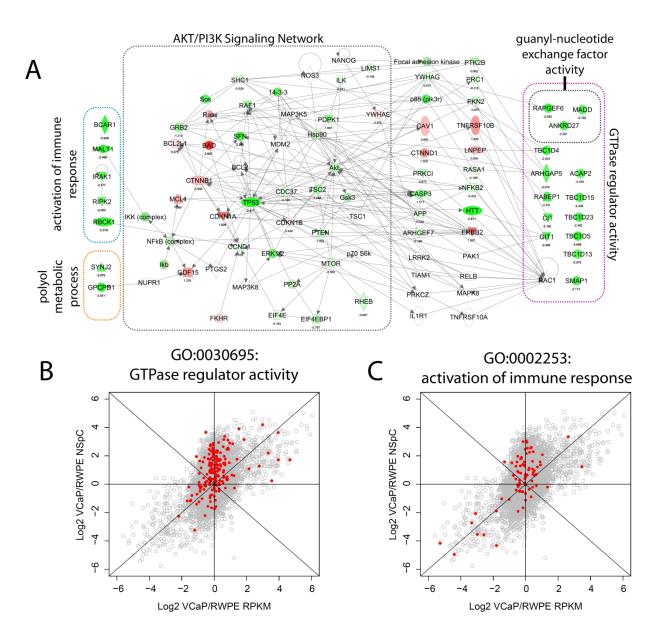

0.003141

1.61E-06

0.000145

0.000786

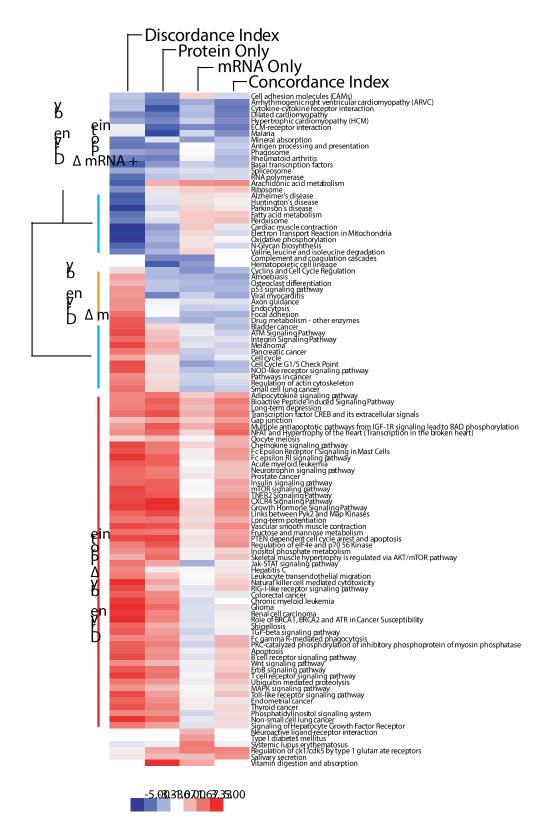
6E-05


Ontology and pathway analysis with concordance and discordance indices

LRPath was used due to its ability to evaluate enrichment of classes and pathways in aggregate without requiring the use of cutoff values [139]. This is particularly important in our analysis of genes nominated by our index values as significance cutoff thresholds are not well defined. Although it relies on the use of cutoff values, we also applied DAVID [140, 141] to our dataset to leverage it's clustering of resultant classes. For consistency with our previous analysis looking within each cell line, we selected genes using a 1.5 standard deviation cutoff from perfect concordance and discordance.

Analysis using our discordance and concordance indices in LRPath produced 727 and 619 GO classes and 114 and 56 Biocarta and KEGG pathways with a p-value \leq 0.05 in VCaP and RWPE, respectively (Table S 14, Table S 15). The selection of identical classes in both of these classes led us to evaluate the effects of this gene overlap between high correlation and high anticorrelation due to our selection process. Genes typically considered significant ($p \le 0.05$) by the discordance index had their p-values adjusted to non-significant values when they were also in the significant tail distributions of the genes in the concordance index. The dataset with these modified p-values was re-analyzed with LRPath. Major themes from our primary analysis remained statistically significant, suggesting that the effect of genes in overlapping regions is relatively small. The majority of classes we observed to be significant in our initial analysis demonstrated increased statistical significance. With this subtraction of overlapping genes, the discordance and concordance indices produced a respective 619 and 599 GO classes as well as 114 and 56 KEGG and Biocarta pathways with a p-value ≤ 0.05 . While the reduction of overlapping classes between the highly concordant and discordant class sets was relatively modest (Figure 11B), we chose to use this dataset for further analysis in an effort to minimize noise data in our analysis.

DAVID clustering of the same GO classes and pathways from Biocarta and KEGG revealed that many of our resultant classes fall in a small number of biological themes. We used our DAVID results to guide our manual classification of discordance-derived LRPath results into broad biological categories. In the case of where protein levels are overabundant, we see broad


classes of protein metabolism and modification, cell cycle and structure, ion binding, and GTPase regulation. In the converse case, we see the broad clusters including classes associated with the cell membrane, mitochondria and energy metabolism, phosphorylation, and lipid metabolism.

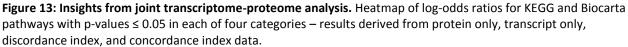


Figure 12: The dysregulated networks surrounding Akt. A. Network closely linked to Akt formed by genes constituting the GTPase regulator activity, polyol metabolic process, guanyl-nucleotide exchange factor activity, and regulation of immune response classes. B and C. Distribution of genes in the GTPase regulator activity and activation of immune response Gene Ontology classes highlighted in red in the context of all dataset genes.

The sets of discordant genes were of particular interest as they suggest a number of biological processes are dysregulated on a post-transcriptional level. Correlation analysis of fold changes by Gene Ontology class in this set of genes finds a number of processes in the two cases where the transcript-protein relationship is significantly dysregulated in VCaP compared to RWPE. Similar to our correlation analysis of transcript and protein abundance within each cell line, we observed a correlation between GO class size and Spearman correlation values has a roughly normal distribution centered on the correlation coefficient of r = 0.42 for the broader dataset. This pattern holds when we separate the resultant classes by GO tree as well. Because of the correlation between GO class size and the resultant observed correlation, we thresholded the classes to exclude those with less than 10 observed genes. The most concordant and discordant GO classes by tree can often be explained by the differing stabilities of the protein and mRNA, such as the classes involving genes associated with cell spindle and microtubules which have very long half-lives. In these two examples, structural role of the protein yields higher stability leading to higher abundance than the comparatively shorter-lived complementary mRNA.

Using this correlation data, we examined GO classes with below-mean correlation coefficients between cell lines and ranked them by the difference in correlation between VCaP and RWPE. This nominated candidate classes that showed large differences in correlation where the transcript-protein relationship was drastically altered. This set included a number of voltage-gated ion channel classes and the smoothened signaling pathway. The presence of the ion channel classes reflects the activity of voltage-gated potassium and sodium channels observed to play a role in the growth and metastasis of prostate cancer cells [142-144]. The genes in these classes go from highly correlated in RWPE, with Spearman correlation coefficients in the *r* = 0.8 range, to essentially uncorrelated (Spearman correlation falling to the r = 0.1 to 0 range) in VCaP. Similarly, correlation of the genes in the smoothened signaling pathway goes from *r* = 0.77 in RWPE to *r* = -0.03 in VCaP. The Smoothened (*SMO*) gene itself is known to act as an oncogene, and this pathway is known to stimulate hedgehog signaling, which is noted to be activated in advanced and metastatic prostate cancer [145, 146] and is associated with aggressiveness [147].

Dysregulation of the transcript-protein relationship surrounding Akt

A common thread we observe in our results is the association of a number of deranged pathways and processes upstream and adjacent to the PI3K/AKT signaling pathway, which plays a role in several biological processes central to the development of cancer including apoptosis, differentiation, and cellular metabolism. These adjoining and connected pathways and biological classes include members of the GTPase regulation and signaling classes, metabolism of the polyol substrate central to Akt signaling, immune response, and the set of guanyl nucleotide exchange factors. The genes that underlie these associated pathways and processes form a tightly interconnected network with the Akt pathway (**Figure 12A**).

In many cases, the activation of the Akt pathway is owed to a number of factors, such as the deletion or inactivation of the PTEN gene, which acts as a phosphatase on the PIP3 substrate, or the activation of upstream kinases. While PTEN is not deleted in either VCaP or RWPE, we observe that a number of genes in the PI3K/Akt pathway, such as PIK3R1, a regulatory subunit of PI3K, and SOS1, an inositol phosphatase, show significant mRNA-protein discordance with observed within the top 4% most discordant genes in the core dataset (**Figure S 29**).

The transcript-protein relationship for the genes in these four pathways and classes are not all uniformly dysregulated – in many cases, only a small subset of genes in the set show large changes in the relationship (**Figure 12B,C**). Because only genes meeting the $p \le 0.05$ significance threshold from LRPath analysis are included in the network, not all interactions are included. GTPase regulator activity, which includes 59 genes, although only 9 of these genes have discordance-based $p \le 0.05$. This class includes SMAP1, which has been implicated in oncogenesis, and is thought to act as a tumor suppressor in intestinal cells [148]. The Polyol metabolic process class is intrinsically associated with genes that mediate the processing of PIP2 to PIP3 substrate of the Akt pathway, a substrate that is central to Akt signaling. In this class is an example of the direct interactions to the Akt signaling pathway, specifically the activation of IKK by MALT1, which contributes to T-cell activation[149]. The immune response class relates Akt to the effect its activation has on immune resistance – providing tumors with immune resistance and apoptotic escape [150]. Upstream of Akt, the set of guanyl nucleotide

exchange factors are known to activate Ras though the removal of GDP [151]. This process then leads to Akt induction [152]. Not all of these networks dignal directly into the PI3K/Akt pathway; much of the connectivity of the GTPase regulator activity class is though intermediates, including notable genes such as ERBB2, PRC1, and YWHAG which are often aberrant in regulation or structure in cancers. The class of guanyl nucleotide exchange factors is a subset of genes with GTPase regulator activity, and is similarly attached to the network.

Analysis of joint analysis results

Our pathway and Gene Ontology analysis nominated a number of biological pathways which showed significant numbers of member genes with dysregulated transcript-protein relationships in our prostate cancer model that were brought to the forefront by joint analysis. To examine if this joint analysis provided insights that neither transcript- or protein-based analysis could alone, we compared our results against these isolated analyses.

We took the mRNA and protein data individually and derived the set of significant GO classes to observe the significant classes from the viewpoint of mRNA and protein in isolation. This process yielded 684 and 814 total classes with p-values ≤ 0.05 in mRNA and protein, respectively. We then compared these classes to the ones derived using our discordance and concordance indices. The joint analysis class sizes are comparable to those in the isolated analysis examples, but they are compositionally quite different. The joint analyses nominated 265 and 96 categories that were exclusive to the discordance and concordance methods alone.

In a more focused examination of these results, we examined the level of association between the biological processes we identified and the methodology we used looking at only the highest significance ($p \le 0.01$) KEGG and Biocarta pathways (**Figure 13**). Using the odds ratio as a metric for evaluating the association strength of these pathways with the variance in their underlying genes, we clustered these classes in an attempt to dissect the drivers of discordance. In the context of our discordance index, a negative log-odds indicates an association whereby the protein abundance is greater than the corresponding transcript in VCaP relative to RWPE. A positive log-odds value indicates the contrary; that the transcript abundance is enriched in RWPE compared to VCaP without a corresponding increase in protein

abundance. In a majority of cases, the discordance between protein and mRNA abundance is driven by differences at the protein level with little change at the transcript level. A smaller, corresponding set of pathways is nominated chiefly by changes in the transcriptome. These observations agree with previous observations that the proteome is more dynamic than the transcriptome [110]. More interestingly, there is a set of pathways whose association by the discordance index is driven by more subtle changes in both their transcript and protein abundances moving in opposite directions - we observe this because of the directionality of the LRPath enrichment test.

This set of pathways is split into two broad categories – pathways where transcript levels are decreased in opposite of increasing protein abundance, and the converse where transcript levels are increased while protein abundances are decreased. In the first case where transcripts are observed to be higher in abundance while there is a decrease in protein abundance, is composed of ten pathways. These include pathways associated with neurodegenerative diseases and cellular metabolism. While the three neurodegenerative diseases included in this category might first appear to be noise, likely nominated together since they contain many of the same genes, recent observations linking an inverse relationship between the incidence of Alzheimer's disease and cancer [153] as well as the application of cancer drugs to treat Alzheimer's disease [154] suggests that they may share some common molecular dysfunction. The second instance is composed of eleven pathways, broadly covering cell cycle-related classes and pathways involved in specific cancers. The observation of cell cycle and cancer specific classes is expected, as the evasion of apoptosis and insensitivity to anti-growth signals is a major hallmark of cancers [61] with many cancers sharing similar molecular dysregulation. While the pathways in both of these classes are nominated as interesting candidates in both analyses, the use of joint analysis brought them to the forefront of our analysis.

Conclusion

In summary, we show that the transcript-protein relationship is affected by a number of biological factors. Our classification of genes by their relative transcript and protein abundance in VCaP and RWPE demonstrates that the relationship is subject to the stability and resulting

half-life of the constituent transcript and protein, with a large number of short-lived transcription factors picked up exclusively in transcriptome data. The effect of transcript and protein stability is reinforced by our integration of transcript and protein stability data from the literature and the observation that genes with above-average protein or transcript stability have higher abundance correlation between transcript and protein levels. Other studies have suggested that sequence features also contribute quite significantly to the transcript-protein relationship, and this is a clear path for further examination.

We then examine the transcript-protein relationship to find both individual genes and biological classes of genes where this relationship is dysregulated in a cancer context by comparing VCaP to RWPE. To achieve this goal, we derive novel discordance and concordance index values for all candidate genes in our dataset. Focusing on the candidates nominated through GO class and pathway enrichment analysis based on our discordance index, we find that several biological pathways surrounding the PI3K/Akt signaling pathway exhibit significant discordance. Coupled with evidence in the literature that modifying the stability of genes serving a regulatory role, these results may suggest an alternate pathway for the induction of functional networks conferring growth, survival, and immune and apoptotic escape in cancer. Furthermore, analysis of the pathways uniquely nominated through our joint analysis, in particular cases where transcript and protein levels move in opposite directions, elucidated possible mechanisms that may underlie the inverse relationship observed between cancer and neurodegerative disease.

Our study is limited by the small number of samples involved and the use of relatively immature RNA-seq technology. The inclusion of additional biological replicates and additional cancer types may lead to broader insights about the nature of the dysregulation of the transcript-protein relationship in cancer and its larger implications in the establishment and progression of the disease. The application of even higher throughput transcriptome sequencing techniques (optimally in concert with higher mass accuracy MS/MS profiling) will help improve the accuracy of transcript-level measurement, and increased transcript coverage will provide nucleotide level information that allows for the attribution of dysregulation to known sequence level aberrations such as disruptive single-nucleotide polymorphisms.

Methods

Derivation of index values

We computed several index values to quantify the transcript-protein abundance relationship in our two cell lines. Using the transcript and protein abundances, we computed the ratios of transcript and protein between the cell lines. We added a value of 0.2 to the values in our fold change calculations in order in order to avoid division by zero values. This value was chosen because it is below the threshold for a single spectra detected in many of the three replicates for each cell line as well as falling below the abundance cutoffs for transcriptome data, and should not significantly alter any results.

$$logratio_{transcript} = log2\left(\frac{RPKM_{VCaP} + 0.2}{RPKM_{RWPE} + 0.2}\right)$$
 Equation 1

$$logratio_{protein} = log2\left(\frac{SpC_{VCaP} + 0.2}{SpC_{RWPE} + 0.2}\right)$$
Equation 2

These values were then z-transformed using the *scale* function in R to derive **z_logratio**_{transcript} and **z_logratio**_{protein}. Values for the concordance and discordance index for each gene were computed from these z-transformed transcript and protein log ratios

$$idx_{concordance} = z_logratio_{transcript} + z_logratio_{protein}$$

$$idx_{discordance} = z_logratio_{transcript} - z_logratio_{protein}$$
Equation 4

The index values were then z-normalized.

p-values were derived from these two log-ratio index values, based on a fit of the normal distribution. A correction was applied in an attempt to remove noise from genes that overlapped between highly concordance and high discordant genes. We used the commonly significant $p \le 0.05$ level as a basis cutoff value where these genes would have their p-values adjusted to non-significant values.

Gene Ontology analysis of correlation data

Gene Ontology analysis was carried out using DAVID (http://david.abcc.ncifcrf.gov/) [140] and LRPath (http://lrpath.ncibi.org) [139] as well as the Gene Ontology (GO.db) and KEGG (KEGG.db) Bioconductor packages in R[155]. The entirety of the core and extended datasets were used as backgrounds in DAVID analysis when analyzing genes derived from those respective datasets. DAVID analysis of broad categories in each cell line was done using GO FAT terms. Analysis of genes comparing the cell lines in DAVID was done using all GO terms as well as KEGG and Biocarta pathway entries. LRPath was used to analyze candidate genes in the comparison of VCaP and RWPE and between protein and mRNA levels in each cell line. Gene identifiers were converted from RefSeq to Entrez IDs using mappings in Bioconductor for submission to LRPath. LRPath parameters were left at their default values.

Chapter 5: Conclusion

In this work, I have compared the strengths and weaknesses of emerging single-molecule NGS technology in contrast to an established method employing amplification in the context of a cancer gene expression study. From this, we note several broad conclusions; single-molecule methods appear to better sample the low-abundance genes in the transcriptome, and the experimental results may better represent the underlying distribution of abundances in the transcriptome. However, these advantages are quickly degraded by the rapid increase in sequencing capacity from competitive amplification based methods. Additionally, the Helicos methodology used remained at an average read length and yield disadvantages. It is not clear whether other single molecule methods may improve on these disadvantages. While we were able to clearly distinguish the TMPRSS2-ERG fusion prevalent in prostate cancers in the VCaP cell line, the longer read lengths of other methods are likely more advantageous in comparison.

The broader impact of this research in gene expression estimation from mRNA sequencing is most apparent in the contributions of gene expression data to other studies, as noted in the introduction. While many methodologies exist for the derivation of expression levels from RNA-seq data today [9, 156-160], this early methodology for RNA-seq data provided expression estimation before the majority of other methods had been made public.

The constantly evolving nature of massively parallel sequencing, and continuing development of single molecule methods, makes the insights extensible to future sequencing methods. While the SMS method applied in our study had read length and read volume disadvantages, future methods may sidestep these issues while retaining a sampling methodology free of amplification. Although the specifics of future developments in sequencing remain to be tested in depth, we can infer that future single-molecule based methods may exhibit more even coverage of transcripts being sequenced in addition to less concentrated sequencing of the very highest abundance transcripts.

Employing the knowledge and techniques developed for transcriptome profiling, we then aimed to integrate parallel transcriptome and proteome data. Specifically, to construct a standardized framework and methodology for the integration of knowledge from these two scales of biology, ensuring like comparisons between transcript and protein levels, with measurable parameters. This work addresses the issue of highly varying methods for integrating transcriptome and proteome data, a significant source of ambiguity in many previous integrative studies of these scales of biology.

The framework we developed utilizes a novel common reference of corresponding transcript and protein sequences such that enables the direct comparison of the transcript and protein abundances across thousands of genes while reducing the noise from isoform uncertainty. The development of a decoy transcript sequence based method for estimating false discovery rate in RNA-seq data as part of this effort enables direct management of noise levels from transcriptome data. By setting forth this standardized pipeline and methodology, we hope to increase comparability of these integrative experiments across multiple studies by reducing the cumulative effect of methodological variation.

We apply this framework to characterize the transcript-protein relationship in the VCaP and RWPE human prostate cell lines often used in cancer research. This research demonstrated the significant impact of transcript and protein stability on the transcript-protein relationship, and showed how this relationship is dysregulated in a number of functionally significant biological networks in our VCaP cancer model compared to our RWPE model of normal prostate epithelium. Several of these networks closely interact with the PI3K/Akt signaling pathway commonly seen to be deranged in cancers, where it is known to confer survival and growth advantage. Coupled with emerging knowledge that stabilization of transcripts or proteins are a pathway by which cancer cells sidestep regulatory mechanisms, we suggest that dysregulation of the transcript-protein relationship constitutes a possible mechanism by which cancers attain some of the hallmarks of cancer enabled by factors not related to genome stability.

While this work is a contribution to our understanding of the mechanisms that govern the transcriptome-proteome relationship and an examination of how well we interrogate the

transcriptome, it is only a small step in building a comprehensive understanding of the complex interactions underlying the changes we see in biology and disease, and many challenges remain to be solved.

Assessment of the proteome still remains a challenge. While MS/MS technologies have made great strides in sensitivity, dynamic range, and capacity, they are still insufficient for the characterization of the proteome with its tremendous number of post-translational modifications. For example, our study (and other studies utilizing label-free MS/MS) do not measure phosphorylated versions of the proteins under study, despite phosporylation being a crucial component of molecular activation in cancers.

The ultimate goal of much of integrative bioinformatics is the derivation of methods and knowledge that can be translated to patients to optimize and improve the treatment of disease. This is already being explored in the realm of personalized medicine. While patient care has always been to a great extent personalized to individuals, we are now beginning to leverage the tremendous knowledge brought on by high throughput technologies. Next generation sequencing is seeing particular use in the cancer field, with an increasing focus on guiding patient therapy using insights from sequencing [73]. This is an result of the increasing application of multiple molecular "omic" technologies in cancer, referring to the genomic, transcriptomic, proteomic, and other methods of molecular characterization. The previous product of this trend was the development of prospective genomic signatures for cancer prognosis [161-164] seen in the past decade, a number of which have been commercialized and applied to patient care [165, 166].

The massive throughput and plummeting costs of these new technologies has also sparked increased efforts to quantify individuals' genetic backgrounds to profile disease risk. The most exhaustive of these is the iPOP, or Personal Omics Profiling effort, which fuses data from the transcriptome, genome, proteome, and metabolome [167]. Using data sampled over the course of 14 months from a single individual, the authors developed a disease risk profile based on observed variants in the patient's genome which ultimately revealed a high susceptibility to Type 2 Diabetes. This is only one example of how data from the multiple scales of biology can

be fused to affect health outcomes positively, with the promise of improving the quality and lowering the cost of health care.

As genomic and proteomic profiling increase in capacity and become cheaper and more reliable, such exhaustive profiling of individuals will become commonplace. The proliferation of these molecular profiling efforts underscores the need for the development of methods for integrating diverse data such as those from the genome, transcriptome, and proteome. With advances in both technology and methods, we can begin to fully leverage the power of this multi-scale, multi-"omics" data revolution. **APPENDICES**

APPENDIX A: Chapter 1 Supplementary Methods, Figures, and Tables

Methods

Data Extraction

The disease and biological process associated subnetworks are built from two fundamental components. First, a protein interaction network is used to define the relationships and interactions between the proteins considered in the study. The second is a database of genes relating them to diseases and biological processes.

Protein interaction data was retrieved from the Michigan Molecular Interaction Index (MiMi) [168], which integrates interaction and annotation data from BIND, the Gene Ontology, HPRD, DIP, the BioGRID, IntAct, InterPro, IPI, the Max-Delbrueck Center for Molecular Medicine protein interaction database, Pfam, ProtoNet, SwissProt, and RefSeq. This process yielded 12,318 unique protein-protein interactions involving 6199 unique Entrez Gene identifiers. Gene-disease relationships were derived from two sources; the Online Mendelian Inheritance in Man (OMIM) [169] and the PhenoGO database [170]. Gene-Disease associations in PhenoGO not using Entrez Gene identifiers were translated using mappings from HUGO [171]. Diseases in these two resources were defined in terms of coded Medical Subject Heading (MeSH) [172] and Unified Medical Language System (UMLS) [173] identifiers. The unfiltered, translated data set resulted in 3469 Entrez identifiers associated to 2325 phenotype codes. OMIM mappings found in the mim2gene file supplied by NCBI already employ Entrez Gene identifiers and no translation was necessary for the OMIM data. Entries in the OMIM database were filtered to include only gene-disease references, resulting in 1846 distinct Entrez indentified genes annotated to OMIM-defined diseases. 708 of the identifiers found in the OMIM mappings are also present in the MiMi interaction data set. Gene Ontology [174] data and biological annotation was extracted from BioMart [175] using data from Ensembl version 47 built from

the NCBI36 release of the human genome. MeSH and UMLS term descriptors were retrieved directly from the NLM.

Data was extracted from MiMi using SQL queries for human-specific interactions from the National Center for Integrative Biomedical Informatics SQL server using SQL Server Management Studio Express.

Subnetwork Generation

The generated results were split into three distinct classes. A "background" set was generated from *a priori* knowledge from the Gene Ontology, consisting of the subnetworks formed by the classes represented in the "Biological Process" and "Molecular Function" trees of the Gene Ontology. This process resulted in the generation of 6,606 GO-associated subnetworks. A "single gene disease" (**SGD**) subnetwork set was generated from the contents of OMIM, producing 2,079 subnetworks. A "complex disease" (**CD**) set was built from the PhenoGO annotations, composed of 2,317 subnetworks in total.

We separate the OMIM and PhenoGO sets for two reasons. The primary factor for the separation is the drastically different underlying focus of both of these resources, although they do share some commonly annotated diseases. PhenoGO contains data describing both single gene and multi-gene complex disease, whereas OMIM is primary focused on single gene diseases. The secondary factor is curation; the OMIM data is manually curated while PhenoGO is a computationally derived data source.

Derivation of the subnetworks was done using the Boost Library version 1.43.1 (http://www.boost.org/) and version .9 of the Boost Graph Library bindings to Python (http://osl.iu.edu/~dgregor/bgl-python/) using ActiveState ActivePython version 2.4.3 (http://www.activestate.com/).

Subnetworks that resulted in errors in the software were removed from the set, as the memory requirements for processing a number of large, dense networks was beyond the memory capacity of our workstation.

Data Characterization and Filtering

Resulting subnetworks in each of the three data sets was topologically characterized using a set of Perl scripts employing the Boost Graph Library interface. Subnetworks are topologically characterized based on node count, clustering coefficient, observed edge fraction, average degree, maximum degree, radius, diameter, cyclicity, and biconnectivity. Biological characteristics noted for each subgraph include mean gene start location, mean gene end location, mean length, strand, mean PFAM domain annotation count, mean ProSite annotation count, mean number of signal domains, mean number of transmembrane domains, and mean G-C content fraction. The networks are filtered for size, imposing a minimum of three nodes found in the interaction network. 79 and 278 subnetworks passed this filter from the SGD and CD sets, respectively. 2590 of the subnetworks generated from the Gene Ontology passed this filter. This final filtered set was used to train and test the classifier.

Because the data in the PhenoGO resource spans drugs, cell types, and other biological contexts not directly associated with disease, the subnetworks formed by this resource were filtered using the UMLS metathesaurus. Therefore, only genes associated with MeSH and UMLS terms are used to create the subnetworks. To restrict the set, a list of UMLS and MeSH codes was derived using a Perl script containing a total of unique terms. Of the 423,550 terms in the UMLS and MeSH that met these rules, the UMLS composed 419,087 terms and MeSH codes composed 5,563 terms. This process of restricting the set yielded a dramatic reduction in the number of subnetworks in the disease set.

The data from the biological and topological characterization for each of the classes was then filtered for size using a perl script, constraining the set to networks of size between 3 and 9999 nodes. 79 and 278 subnetworks passed this filter from the OMIM and PhenoGO sets, respectively. 2590 of the subnetworks generated from the Gene Ontology passed this filter.

Parameterization/Characterization of Subnetworks

To characterize subnetworks structurally, we chose a number of well-defined metrics to measure their size, density, and connectivity. Subnetworks are characterized based on node count, clustering coefficient, average degree, maximum degree, radius, diameter, cyclicity, and

biconnectivity. Cyclicity and biconnectivity are handled as Boolean variables with values of either 1 (True) or 0 (false). To account for the biological characteristics of the constituent genes of these subnetworks, we use biological characteristics for the constituent genes extracted from BioMart. These factors accounted for positional and orientation effects, biological role of the protein product, and physical stability. Factors include mean gene start location, mean gene end location, mean length, strand, mean PFAM domain annotation count, mean ProSite annotation count, mean number of signal domains, mean number of transmembrane domains, and mean G-C content fraction.

Parameterization of subnetworks was done using a series of Perl scripts using the Perl-Graph library version .84 (http://search.cpan.org/dist/Graph/) as well as the Boost Graph Library Bindings for Perl version 1.4 (http://search.cpan.org/~dburdick/Boost-Graph-1.4/). These libraries were used to determine the topological characteristics of each of the subnetworks. Factors include the average degree, maximum degree, node count, radius, and diameter for each subnetwork. Each subnetwork was also tested for cyclicity and biconnectivity.

During the parameterization process, a number of entries were removed from the set as the subnetworks they formed were not computable within the memory limits of our workstation. These classes are GO:0007218 : "neuropeptide signaling pathway", GO:0045893: "positive regulation of transcription, DNA-dependent", and GO:0006937: "regulation of muscle contraction".

Machine Learning and Classification

The Waikato Environment for Knowledge Analysis (Weka), version 3.4.12 [176] was used to train and test a random forest classifier with a stratified 10-fold cross validation methodology using the built-in weka.classifiers.trees.RandomForest component. In this case, the crossvalidation approach was chosen due to the relative paucity of data from the disease subsets. Each random forest was composed of 100 trees, each taking into account four random parameters from the data. In all, a total of nine classifications were done in an attempt to discretize the three sets of subnetworks using varying parameter sets and amalgamations of the two disease sets. Because the Weka random forest classifier did not provide variable

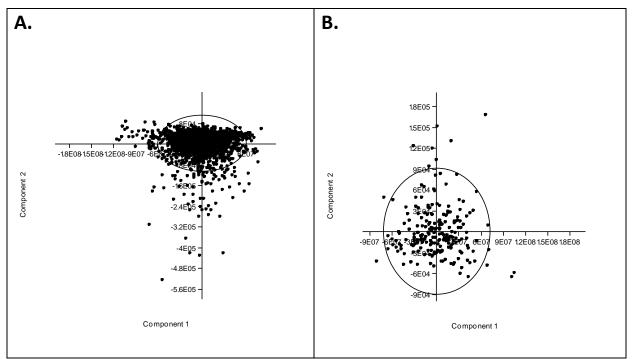
89

importance measures, the analysis was repeated using the randomForest package in R 2.7.1, which provided nearly identical results. Principal components analysis of the data was done using PAST [177].

The parameterized data was split into 3 sets for the biological and topological groups. The first set composed of all three data sources comprising three distinct classes. The second set assigned "normal" and "disease" flags to the subnetworks derived from the Gene Ontology, and OMIM and PhenoGO, respectively. The third subset was composed of only disease subnetworks derived from OMIM while maintaining the GO background set.

The first classification was done on a set combining all SGD and CD subnetworks into a single larger disease class in comparison to the GO-derived background set. The second classification used only the SGD subset of the data in comparison to the GO data. The third classification used each subset of data in its own discrete class. These subsets were further separated into three groups depending on the underlying parameters available to the classifier. These groups used parameters exclusively from the topological and biological parameter sets, as well as the combined parameterization.

It can be seen that overall the biological characteristics prove more informative than the topological ones and achieve a lower misclassification error rate, ranging between 2.89 and 3.70%. On the other hand, for the topological characteristics the misclassification error rate was around 10% for the three class problem. However, when the CD class was excluded, the topological characteristics matched the performance of the biological ones. Further, an inspection of **Sup. Tables 2e and 2f** suggests that the presence of the SGD class is the source of the significantly higher misclassification error rate with respect to the topological features. In most cases, the presence of the large number of representative GO subnetworks leads to a high classification between the combined "disease" set, a combination of the SGD and CD sets, and the GO background. In the combined parameterization and biological parameter only cases, the TP rate of this combined set is relatively good, at 61% and 72%, respectively. Examination of the SGD set


90

appear to be poorly distinguishable from the background GO set. However, the CD set appears to have predictive power setting it apart from the GO background. This similarity between the GO and SGD sets likely leads to the poor classification accuracy seen between the two sets as reflected in the poor TP values for the SGD set in **Sup. Tables 2e, 2f, 2h, and 2i**.

Feature Analysis

A factor analysis was done using the RandomForest package in R 2.7.1 in each of the biological parameter only, topological parameter only, and combined parameter groups to determine the relative influence of each of the parameters in determining class membership in each of the classification sets. The random forest was set to use 4 variables per tree and 100 total trees for the classification task.

Figures and Tables

Figure S 1: Principal Components Analysis demonstrates the poor separability of the data. A principal components analysis of the combined sets using all the parameters, suggests that the difference between disease-related subnetworks and the GO baseline subnetworks are subtle and not easily derived. When the PCA is done over just the CD and SGD sets, we see a similar pattern where there is no clear separation. However the non-continuous nature of the features may be a confounding factor when applying the PCA approach. With that in mind, a simple k-means clustering approach was taken where k = 3 to represent the three source types. **A.** Principal components analysis of all sets using all parameters. 95% of data points fall within the ellipse. **B.** Principal components analysis of SGD and CD sets using all parameters. 95% of data points fall within the ellipse.

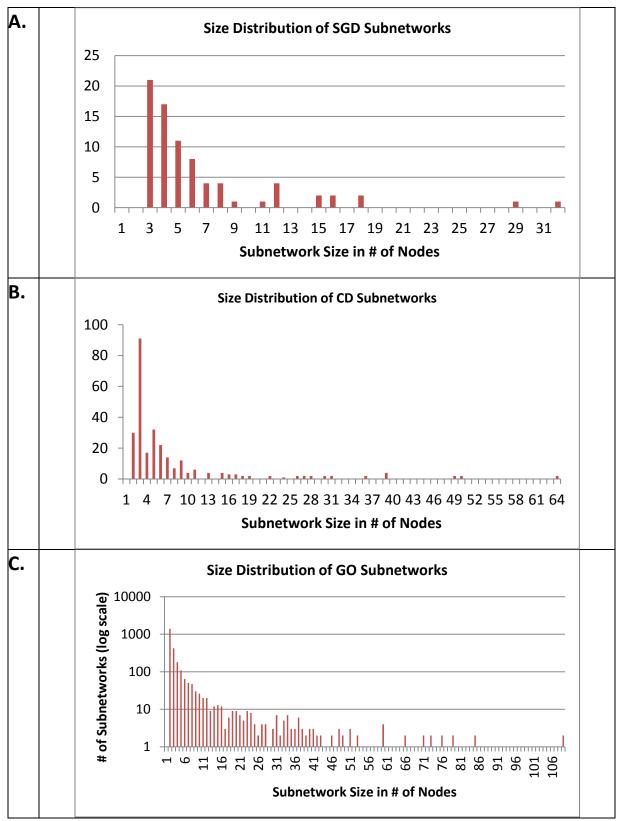
=== Run information === Scheme: weka.clusterers.SimpleKMeans -N 3 -S 10 Relation: combined data Instances: 2944 Attributes: 20 average gene start average gene end average length average gene strand average pfam count average prosite count average # of singnal domains average # transmembrane domains average GC content observed edges/total possible edges average node degree max node degree radius diameter node count cyclicity biconnectivity clustering coefficent Ignored: source phenotype code Test mode: Classes to clusters evaluation on training data === Model and evaluation on training set === kMeans ====== Number of iterations: 6

Within cluster sum of squared errors: 1660.859140812153

Cluster centroids:

<u>Variables</u>	Clust	er 0	<u>Cluste</u>	<u>er 1</u>		<u>Cluster 2</u>
Variable	Mean/Mode	Std Devs	Mean/Mode	Std Devs	Mean/Mode	Std_Devs
average gene start	70562607	21895436	72069986	8353007	71199760	12743762
average gene end	70623972	21898365	72141696	8355198	71264921	12743801
average length	61364.07	39100.1	71710.6	34510.64	65160.52	32673.26
average gene strand	0.2259	0.4311	0.0898	0.1649	0.1195	0.2538
average pfam count	26.3999	48.5588	26.908	16.715	25.0051	20.9655
average prosite count	26.3999	48.5588	26.908	16.715	25.0051	20.9655
average # of singnal domains	0.1312	0.1977	0.156	0.1162	0.1235	0.1314
average # transmembrane domains	0.1335	0.2008	0.1715	0.1121	0.1415	0.1412
average GC content	43.1182	3.0456	41.7223	1.2326	42.2927	2.0194

observed edges/total possible edges	0.318	0.1051	0.0559	0.0477	0.1336	0.0608
average node degree	2.173	0.6153	4.417	1.2629	3.3774	0.9891
max node degree	4.2338	1.9778	60.4362	70.3251	12.8042	13.2817
radius	2	N/A	4	N/A	3	N/A
diameter	3.199	0.8274	7.0021	1.1488	5.0434	0.724
node count	5.6166	3.0982	151.7489	185.4197	26.2334	29.3995
cyclicity	0.7564	0.4294	0.9936	0.0797	0.9711	0.1677
biconnectivity	0.0237	0.152	0.0064	0.0797	0.0222	0.1473
clustering coefficent	0.0207	0.0386	0.0204	0.0391	0.0202	0.0387
Clustered Instances	1437 (49%)		470 (16%)		1037 (35%)	


.....

Class attribute: source

		Assigned to Cluster			
		Cluster 0 < GO	Cluster 1 < OMIM	Cluster 2 < PhenoGO	
ce	SGD/OMIM	59	4	16	
ouro	GO	1220	435	932	
Ň	CD/PhenoGO	158	21	89	

Incorrectly clustered instances : 1631.0 55.4008 %

Table S 1: Complete results of unsupervised k-means clustering of the data.

Figure S 2: A. Size Distribution of SGD Subnetworks **B**. Size Distribution of CD Subnetworks **C**. Size Distribution of GO Subnetworks

Table S 2: Classification results from each of nine classification attempts using complete GO set

Biological Parameters Only

A. Biological parameters only: dataset split into "disease" and "normal" classes

Out of bag error: 0.0309

Correctly Class	ified Instances	283	6	96.298	8 %
Incorrectly Class	sified Instances	109)	3.7012	2 %
Kappa statistic		0.8064			
Mean absolute e	error	0.1287			
Root mean squa	Root mean squared error		0.216		
Relative absolut	te error	60.339 %			
Root relative squared error		66.1667 %			
Total Number of Instances			2	945	
TP Rate	FP Rate	Precision Recall f-Measure class			class
0.995	0.272	0.964	0.995	0.979	GO
0.728	0.005	0.956	0.728	0.827	Disease

Classif	ied as:	
а	b	Actual assignment
2576	12	a = GO/Normal
97	260	b = Disease

B. Biological parameters only: dataset split into CD, SGD, and GO classes

Out of bag error: 0.0309

Correctly Class	ified Instances	2832	2	96.163	%
Incorrectly Class	sified Instances			3.837 %	6
Kappa statistic		0.8008			
Mean absolute of	error	0.0893			
Root mean squa	ared error	0.1801			
Relative absolute error		61.2569 %			
Root relative squared error		66.7931 %			
Total Number of	Total Number of Instances		29-	45	
TP Rate	FP Rate	Precision	Recall	f-Measure	class
0.165	0.003	0.565	0.165	0.255	SGD
0.867	0.001	0.992	0.867	0.925	CD
0.996	0.283	0.962	0.996	0.979	GO

Confusion Matrix:

	Classified as:		
а	b	C	Actual assignment
2578	1	9	a = GO
36	241	1	b = CD
65	1	13	c = SGD

C. Biological parameters only: SGD and GO classes

Out of bag error: 0.0274

Correctly Classi	fied Instances	259	0	97.1129	%
Incorrectly Class	sified Instances	77		2.8871	%
Kappa statistic			0.19	974	
Mean absolute e	error	0.0527			
Root mean squa	Root mean squared error		0.1661		
Relative absolute error		91.1176 %			
Root relative sq	uared error	97.9961 %			
Total Number o	Total Number of Instances		26	67	
TP Rate	FP Rate	Precision	Recall	f-Measure	class
0.127	0.003	0.556	0.127	0.206	SGD
0.997	0.873	0.974	0.997	0.985	GO

Confusion Matrix:

Classified as:		
а	b	Actual assignment
2580	8	a = GO
69	10	b = SGD

Topological Parameters Only

D. Topological Parameters Only: dataset split into "disease" and "normal" classes

Out of bag error: 0.0853

Correctly Class	ified Instances	267:	5	90.862	8 %
Incorrectly Class	sified Instances	269)	9.1372	2 %
Kappa statistic		0.4646			
Mean absolute e	error	0.1475			
Root mean squa	Root mean squared error		0.2732		
Relative absolute error		69.1481 %			
Root relative sq	uared error	83.7012 %			
Total Number of Instances			2	944	
TP Rate	FP Rate	Precision	Recall	f-Measure	class
0.392	0.02	0.729	0.392	0.51	Disease
0.98	0.608	0.921	0.98	0.95	GO

Confusion Matrix:

Classified as:		
а	b	Actual assignment
2535	52	a = GO/Normal
217	140	b = Disease

E. Topological Parameters Only: dataset split into CD, SGD, and GO classes

Out of bag error: 0.0832

Correctly Class	ified Instances	268	8	91.30%	ó
Incorrectly Class	sified Instances	256)	8.70%	
Kappa statistic		0.4863			
Mean absolute e	error	0.1016			
Root mean squa	ared error	0.2241			
Relative absolute error		69.7015 %			
Root relative sq	uared error	83.1102 %			
Total Number o	of Instances	2944			
TP Rate	FP Rate	Precision	Recall	f-Measure	class
0.038	0.004	0.214	0.038	0.065	SGD
0.493	0.011	0.83	0.493	0.619	CD
0.985	0.608	0.922	0.985	0.952	GO

а	b	С	Actual assignment
2548	28	11	a = GO
141	137	0	b = CD
76	0	3	c = SGD

F. Topological Parameters Only: SGD and GO classes

Out of bag error: 0.0315

Correctly Class	258	1	96.81%	ó		
Incorrectly Class	sified Instances	85		3.19%		
Kappa statistic			0.05	586		
Mean absolute e	error		0.05	543		
Root mean squa	Root mean squared error		0.1716			
Relative absolut	Relative absolute error		93.8315 %			
Root relative sq	uared error	101.201 %				
Total Number o	f Instances	2666				
TP Rate	FP Rate	Precision Recall f-Measu			class	
0.038	038 0.003		0.038	0.066	SGD	
0.997	0.962	0.971	0.997	0.984	GO	

Classified as:		
а	b	Actual assignment
2578	9	a = GO
76	3	b = SGD

Combined Parameterization

G. All parameters: dataset split into "disease" and "normal" classes

Out of bag error: 0.0452

Correctly Class	279	94.803	3 %			
Incorrectly Class	sified Instances	153 5.197 %			%	
Kappa statistic			0.2	7128		
Mean absolute e	error		0.	1269		
Root mean squa	Root mean squared error		0.2191			
Relative absolut	Relative absolute error		59.5021 %			
Root relative sq	uared error	67.1287 %				
Total Number o	f Instances	2944				
TP Rate	FP Rate	Precision	Recall	f-Measure	class	
0.611	0.005	0.94	0.611	0.74	Disease	
0.995	0.389	0.949	0.995	0.971	GO	

Classif	Classified as:		
а	b	Actual assignment	
218	139	a = Disease	
14	2573	b = GO/Normal	

H. All parameters: dataset split into CD, SGD, and GO classes

Out of bag error: 0.0438

Correctly Class	279:	5	94.9389	%	
Incorrectly Class	sified Instances	149)	5.0611	%
Kappa statistic			0.72	225	
Mean absolute e	error		0.08	386	
Root mean squa		0.18	815		
Relative absolute error		60.7398 %			
Root relative sq	uared error	67.2984 %			
Total Number o	of Instances	2944			
TP Rate	FP Rate	Precision	Recall	f-Measure	class
0.101 0.003		0.5	0.101	0.168	SGD
0.997	0.387	0.949	0.997	0.972	GO
0.752	0.001	0.986	0.752	0.853	CD

Confusion Matrix:

	Classified as:				
а	b	С	Actual assignment		
8	70	1	a = SGD		
7	2578	2	b = GO		
1	68	209	c = CD		

I. All parameters: SGD and GO classes

Out of bag error: 0.0281

Correctly Classi	259	1	97.1868	%		
Incorrectly Clas	sified Instances	75		2.8132	%	
Kappa statistic			0.23	332		
Mean absolute e	error		0.04	498		
Root mean squa	Root mean squared error		0.1594			
Relative absolut	te error	86.0831 %				
Root relative sq	uared error	93.9883 %				
Total Number o	f Instances	2666				
TP Rate	FP Rate	Precision	f-Measure	class		
0.152	0.003	0.6	0.152	0.242	SGD	
0.997	0.848	0.975	0.997	0.986	GO	

Classif		
а	b	Actual assignment
12	67	a = SGD
8	2579	b = GO

•	rs: SGD and CD o	lasses					
=== Run informat							
	a.classifiers.trees.l						
Relation: OMIN	Л-PhenoGO-weka	filters.unsu	pervise	d.attribute.R	emove	-R2	
Instances: 357							
Attributes: 19							
source							
average g							
average g	*						
average l	ength						
	gene strand						
	ofam count						
	prosite count						
-	t of signal domain:						
-	transmembrane	domains					
-	GC content						
	edges/total possi	ble edges					
-	node degree						
max node	e degree						
radius							
diameter							
node cou	nt						
cyclicity							
biconnec							
	g coefficient						
Test mode: 10-1	fold cross-validation	on					
=== Classifier mo	del (full training se	et) ===					
	f 100 trees, each c	-	while co	onsidering 4 i	randor	n features.	
Out of bag error:				0			
Correctly Class		315	5	88.2353	%		
Incorrectly Clas	ssified Instances	42		11.7647	%		
Kappa statistic			0.5	965			
Mean absolute	error		0.1	785			
Root mean squa	ared error		0.2	972			
Relative absolu	te error		51.66	503 %			
Root relative sc	juared error	71.5991 %					
Total Number of	of Instances		3.	57			
TP Rate	FP Rate	Precision	Recall	f-Measure	class		
0.519	0.014	0.911 0.519 0.661 SGD					
0.986	0.481	0.878	0.986	0.929	CD		
	•		•		•		
Confusion Mat	rix:						

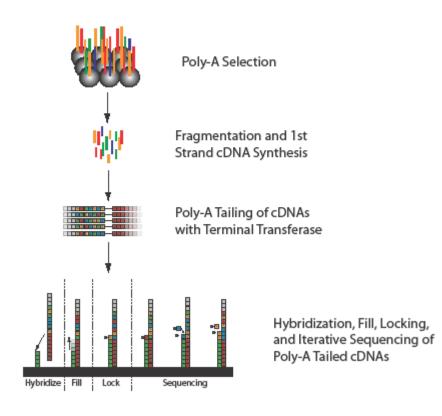
Classified as:		
a	b	Actual assignment
274	4	a = CD
38	41	b = SGD

 Table S 3: Ranked Features By Parameter Type. A. Biological Parameters Only B. Topological Parameters Only C.

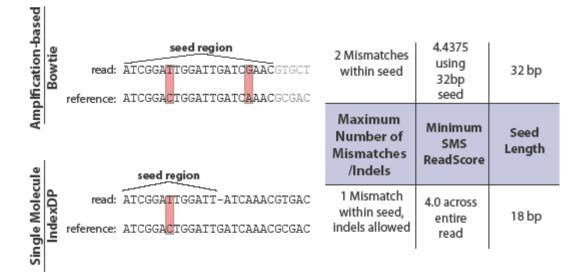
 Combined Parameterization

Α.

	GO	SGD/OMIM	CD/PhenoGO	MeanDecreaseAccuracy	MeanDecreaseGini
averageGeneStart	0.2783482	1.0280783	0.9059960	0.2757494	84.56684
averageGeneEnd	0.2768157	0.9394527	0.8925733	0.2747467	82.32455
averageLength	0.2644807	1.2301754	0.9510359	0.2876197	89.97404
averageGeneStrand	0.1758904	0.1357294	0.9539724	0.2776031	63.51283
averagePfamCount	0.2730130	0.5254745	0.8856997	0.2717815	68.71366
averagePrositeCount	0.2732054	0.7780531	0.8667791	0.2729219	71.44485
averageSingnalDomainCount	0.2126032	1.1321489	0.9215645	0.2744301	46.04487
averageTransmembraneDomainsCount	0.2369126	0.7511460	0.9107138	0.2746473	41.26618
averageGCContent	0.2527932	1.1863229	0.9633071	0.2872784	90.52120


В.

	GO	SGD/OMIM	CD/PhenoGO	MeanDecreaseAccuracy	MeanDecreaseGini
observedEdgeFraction	0.23001163	0.5940764	0.90312482	0.24675347	93.847995
averageNodeDegree	0.18907358	-0.1896722	0.92494854	0.25118579	73.325193
maxNodeDegree	0.23248537	-0.0195584	0.75146118	0.23964507	45.595834
radius	0.14363009	0.3341730	0.73797260	0.17620126	10.558500
diameter	0.16504637	0.3258433	0.89950612	0.21990106	24.283709
nodeCount	0.24716779	0.1174077	0.62814917	0.24756213	47.349672
cyclicity	0.07668406	0.1599157	0.05666838	0.08233893	2.229017
biconnectivity	0.05281318	0.2182699	0.47637630	0.10961336	3.538654
clusteringCoefficent	0.28966769	0.9925351	0.96101890	0.28810431	97.553541

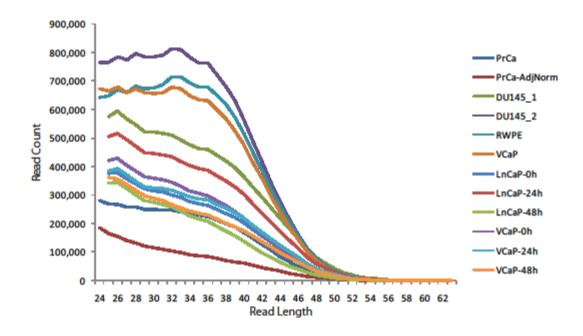
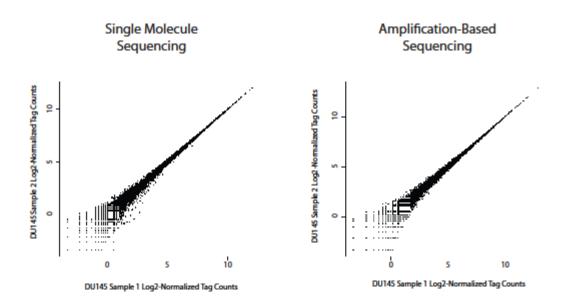
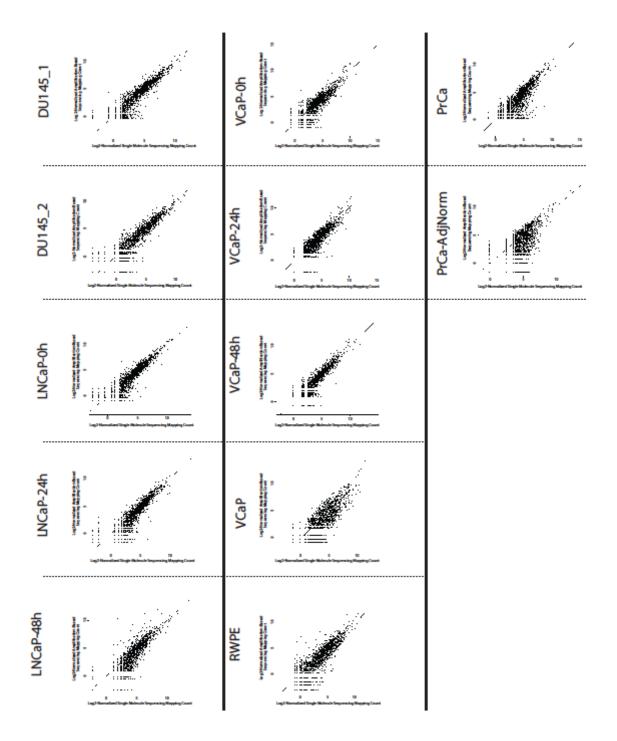

С.

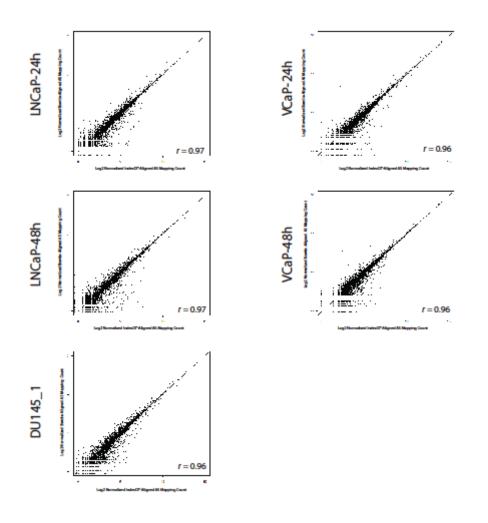
	GO	SGD/OMIM	CD/PhenoGO	MeanDecreaseAccuracy	MeanDecreaseGini
averageGeneStart	0.25577147	0.6187922	0.8782965	0.2631096	58.025555
averageGeneEnd	0.24189366	0.8649050	0.8823725	0.2517155	54.866536
averageLength	0.21860181	1.0476172	0.9157395	0.2702029	53.928221
averageGeneStrand	0.21222727	0.4779712	0.8899448	0.2613027	37.971447
averagePfamCount	0.24589871	0.7138733	0.8139401	0.2557329	51.837923
averagePrositeCount	0.24653767	0.8026352	0.8288924	0.2553449	51.873560
averageSingnalDomainCount	0.17608440	0.8725259	0.8494207	0.2504462	28.695867
averageTransmembraneDomainsCount	0.17643006	0.8016404	0.8587388	0.2398903	25.758543
averageGCContent	0.20630777	1.0249891	0.9042456	0.2621500	57.568889
observedEdgeFraction	0.22721854	0.9567640	0.8553682	0.2424491	39.992423
averageNodeDegree	0.24357245	0.6044357	0.8350696	0.2586311	33.451690
maxNodeDegree	0.23311884	0.5687222	0.7704013	0.2418791	23.089282
radius	0.19372018	0.5507024	0.5725879	0.1942285	9.303571
diameter	0.22263432	0.7683270	0.7232573	0.2295851	16.473967
nodeCount	0.23954530	0.7925986	0.8041791	0.2430081	25.501844
cyclicity	0.11050759	0.2201386	0.5157050	0.1559355	3.013125
biconnectivity	0.07642597	0.1890160	0.2993280	0.1074229	1.420956
clusteringCoefficent	0.26042896	1.4008805	0.8991804	0.2705517	61.914586

APPENDIX B: Chapter 2 Supplementary Figures and Tables

Figure S 3: Single-molecule mRNA-sequencing. mRNAs are purified using poly-A selection and then fragmented. 1st-strand cDNA is synthesized from the fragmented mRNA, and then poly-A tailed using terminal transferase. Polyadenylated cDNA fragments are hybridized to poly-T oligomers bound to a glass substrate, excess A bases are "filled," and then "locked" with an A, C, or G base attached to a virtual terminator. The sequencing process then occurs with repeated cycles of virtual terminator cleavage, bases addition, and image readout.

Figure S 4: Read alignment with Bowtie and IndexDP. Bowtie was used for amplification-based sequencing read alignment and IndexDP for single molecule read alignment. While different in their parameters, the effective alignments and specificity between the aligners are similar, although Bowtie has a slightly higher cutoff


Figure S 5: Length distribution of aligned SMS reads. Aligned SMS read lengths varied between 24bp to 57bp in our first set of samples and 25bp to 63bp in our second set. The majority of reads are between 25bp and 45bp in length.

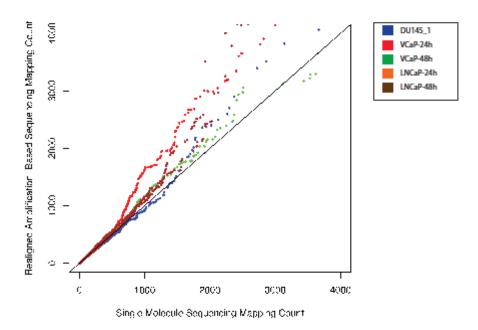
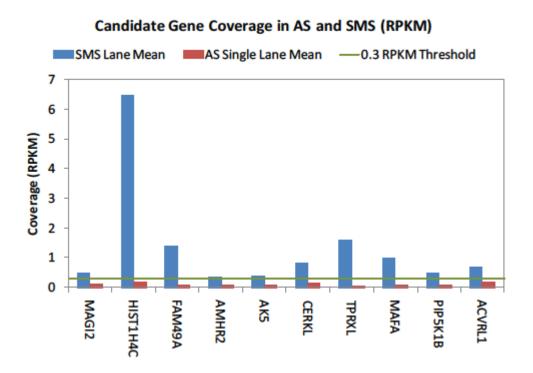
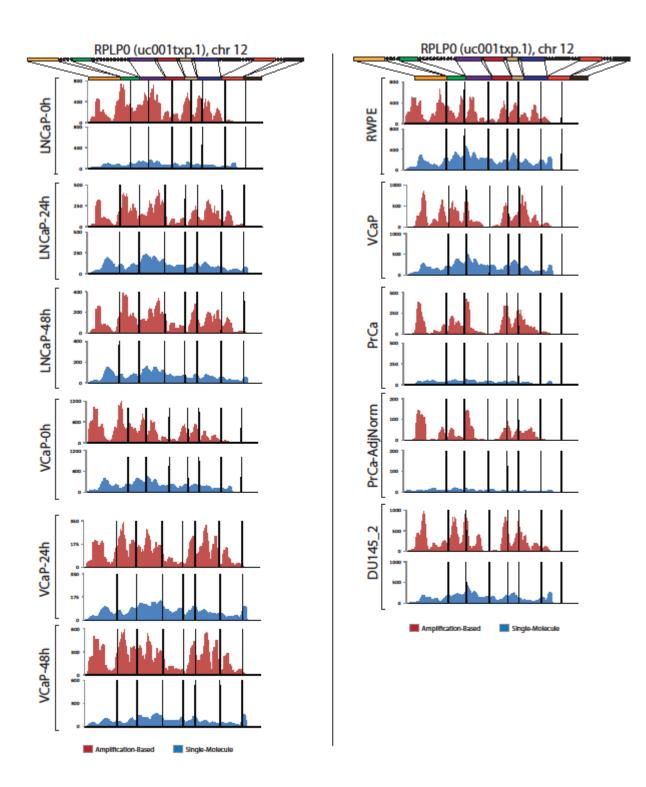
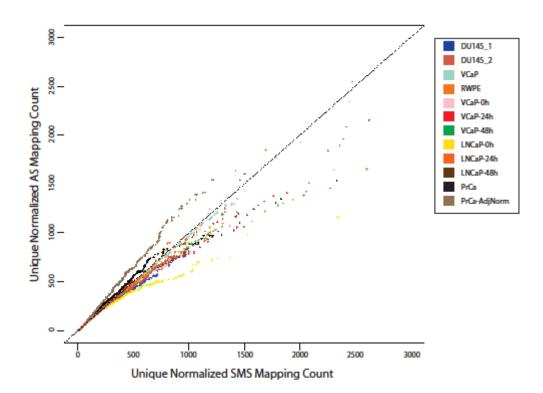

Figure S 6: Sample Profiling Reproducibility in SMS and AS. Bowtie was used for amplification-based sequencing read alignment and IndexDP for single molecule read alignment. Pearson correlation for log2-transformed, normalized tag counts is r=0.98 for both SMS and AS.

Figure S 7: Log2 correlation between amplification-based and single-molecule sequencing. Log2 correlation between single-molecule and amplification-based RNA-Seq single-best read mappings in these samples show that in broad terms the two sequencing methods yield similar results, suggesting the observed bias is not due to sample differences.


Figure S 8: Correlation between IndexDP and Bowtie alignment of amplification-based sequencing reads. The correlation between Bowtie and IndexDP within the subset of samples was relatively high, with Pearson correlation values above r=0.95 in all samples.


Figure S 9: IndexDP realignment of amplification-based sequencing reads. Alignment of amplification-based sequencing reads using the IndexDP alignment tool used to align single-molecule reads shows persistence of the observed bias in amplification-based technology. This provides evidence that the alignment method is not responsible for this bias towrds high-concentration transcripts.


Figure S 10: Unique gene detection in AS and SMS across threshold values, by transcript length. The pattern of increased sensitivity in SMS is uniform as the baseline noise level is varied from 0.1 to 3.0 RPKM. Low representation by short transcripts show that this effect is not due to the lack of a size-selection step in SMS.

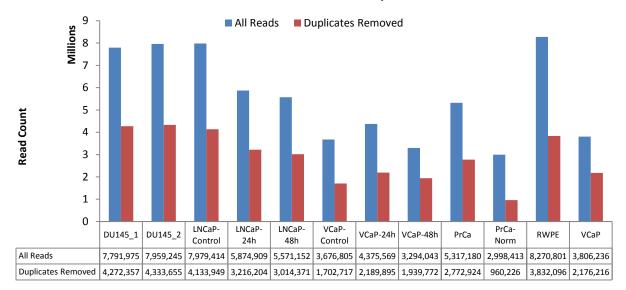
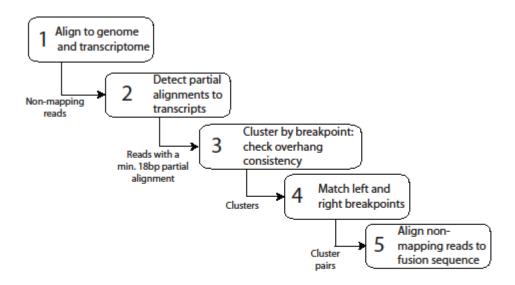
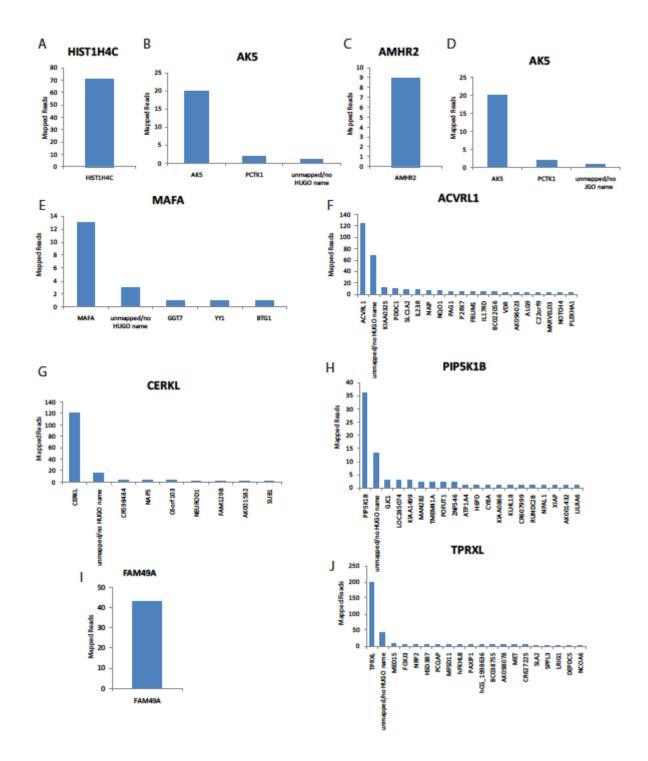

Figure S 11: Expression values of validation candidate genes showing amplification. Out of the set of genes chosen for RT-PCR validation for their detection over the 0.3 RPKM noise threshold by only SMS, diffuse read alignment pattern, and the presence of long reads aligned to their transcripts, these ten genes showed detectable amplification.

Figure S 12: RPLP0 coverage in other samples. Coverage plots of the over-represented gene RPLP0 in the LNCaP-24h, LNCaP-48h, VCaP-24h, VCaP-24h, and PrCa-Met samples show that this gene is often more highly sequenced using the amplification-based method.

Figure S 13: Quantile-quantile plot of AS and SMS reads with duplicates removed. Reads in excess of a single read per aligned locus were removed from both AS and SMS data sets. The result of this procedure was inconsistent across the data set; some samples saw reduced representation of high expressing genes while the high-concentration bias remained in others



Total Usable AS Reads Before/After Duplicate Removal


В.

Coverage	<u>DU145 1</u>	<u>DU145 2</u>	<u>LNCaP-0h</u>	LNCaP-24h	LNCaP-48h	<u>VCaP-0h</u>	<u>VCaP-24h</u>	VCaP-48h	<u>PrCa</u>	PrCa-AdjNorm	<u>RWPE</u>	<u>VCaP</u>
(0-1]	3,659	3,621	3,659	3,987	4,019	5,953	5,082	5,192	4,588	6,089	3,738	5,045
(1-10]	3,806	3,826	3,802	3,206	3,120	2,066	2,418	2,235	2,986	1,199	3,681	2,137
(10-100]	370	377	363	286	255	117	172	132	187	63	309	143

Figure S 14: Effect of duplicate removal in AS. Reads in excess of a single read per aligned locus were removed from both AS and SMS data sets, resulting in (A) a median 47% drop in the number of usable reads across the 12 samples in the evaluation set and (B) the loss of dynamic range for genes in with high coverage levels.

Figure S 15: Gene Fusion Discovery Using SMS Reads. All possible reads were aligned against the transcriptome and genome using IndexDP. The set of non-mapping reads (some of which harbor chimeras) were subsequently aligned against the transcriptome, returning reads that had a partial alignment of at least 18 nucleotides. All reads having the same partial alignments, suggesting a common breakpoint, were clustered. All clusters were then compared to determine if the non-aligning "overhang" portion of the read from one breakpoint region had similarity to the overhang of an independent breakpoint, thereby reconstructing the fusion junction. Finally, all remaining non-mapping reads were aligned against the candidate novel fusion junctions.

Figure S 16: Alternate mappings for genes detected by SMS only in DU145. We analyzed alternate mappings for the reads attributable to each of the nine genes we observed to be detectable only by SMS in DU145 using reads from both replicates. In all nine cases, reads mapped most strongly to the genes of interest, suggesting that the detection of these genes is not an artifact of mis-mapping. The top 20 alternate mappings, ordered by mapping read count, are shown in the graph.

A.		Amplification-Based Sequencing										
Sample Name	DU145_1	DU145_2	LnCaP-0h	<u>LNCaP-</u> 24h	<u>LNCaP-</u> <u>48h</u>	VCaP-0h	<u>VCaP-</u> <u>24h</u>	VCaP-48h	<u>PrCa</u>	<u>PrCa-</u> AdjNorm	RWPE	VCaP
Total Reads	8,042,864	8,218,352	8,230,250	6,020,775	5,662,644	3,769,409	4,528,584	3,361,076	8,085,146	3,340,699	8,935,465	3,466,908
Non- Contaminant Reads:	7,709,472	7,875,168	7,820,929	5,790,207	5,513,448	3,636,454	4,297,981	3,272,200	7,748,986	2,871,802	8,038,501	3,352,960
Contaminant Reads:	333,392	343,184	409,321	230,568	149,196	132,955	230,603	88,876	336,160	468,897	896,964	113,948
Unique Mapping Reads:	5,818,322	5,942,613	5,530,586	4,126,612	3,959,711	2,281,328	2,931,544	2,325,189	5,849,652	2,303,763	5,590,474	2,477,323
Percent Unique	75.5%	75.5%	70.7%	71.3%	71.8%	62.7%	68.2%	71.1%	75.5%	80.2%	69.5%	73.9%
Multi-Mapping Reads:	1,891,150	1,932,555	2,290,343	1,663,595	1,553,737	1,355,126	1,366,437	947,011	1,899,334	568,039	2,448,027	875,637
Percent Multimapping	24.5%	24.5%	29.3%	28.7%	28.2%	37.3%	31.8%	28.9%	24.5%	19.8%	30.5%	26.1%
Total Mappings:	50,647,727	51,736,429	58,619,091	41,011,335	36,987,487	33,344,839	34,593,079	23,253,763	50,903,051	21,075,169	69,586,35 5	21,769,26 5
Max Read Mength:	36	36	36	36	36	36	36	36	36	36	36	36
Mean Read Length:	36	36	36	36	36	36	36	36	36	36	36	36
Min Read Length:	36	36	36	36	36	36	36	36	36	36	36	36

В.		Single-Molecule Sequencing											
Sample Name	<u>DU145_1</u>	<u>DU145_2</u>	<u>LnCaP-0h</u>	<u>LNCaP-</u> <u>24h</u>	LNCaP- <u>48h</u>	<u>VCaP-0h</u>	VCaP-24h	VCaP-48h	<u>PrCa</u>	<u>PrCa-</u> AdjNorm	<u>RWPE</u>	<u>VCaP</u>	
Total Reads	12,605,568	19,741,065	7,257,338	9,917,739	5,700,598	7,399,104	6,959,550	5,760,821	9,630,377	2,848,185	18,628,241	16,254,121	
Non- Contaminant Reads:	9,665,231	15,012,289	5,633,863	8,120,878	4,489,176	6,266,115	5,957,786	5,067,698	4,709,102	2,130,950	13,294,348	12,713,722	
Contaminant Reads:	2,940,337	4,728,776	1,623,475	1,796,861	1,211,422	1,132,989	1,001,764	693,123	4,921,275	717,235	5,333,893	3,540,399	
Unique Mapping Reads:	7,543,462	11,719,852	4,263,248	6,232,105	3,377,187	4,663,004	4,564,718	3,862,102	3,085,428	1,542,533	10,214,631	9,737,305	
Percent Unique	78.0%	78.1%	75.7%	76.7%	75.2%	74.4%	76.6%	76.2%	65.5%	72.4%	76.8%	76.6%	
Multi-Mapping Reads:	2,121,769	3,292,437	1,370,615	1,888,773	1,111,989	1,603,111	1,393,068	1,205,596	1,623,674	588,417	3,079,717	2,976,417	
Percent Multimapping	22.0%	21.9%	24.3%	23.3%	24.8%	25.6%	23.4%	23.8%	34.5%	27.6%	23.2%	23.4%	
Total Mappings:	35,091,411	54,881,579	20,016,203	26,912,318	15,869,700	20,525,342	18,151,466	15,215,471	32,088,861	7,702,501	51,058,659	44,504,047	
Max Read Mength:	63	57	63	63	63	63	63	63	57	57	57	57	
Mean Read Length:	34.23	33.5	33.7	33.98	32.83	33.54	33.89	33.55	33.18	32.13	33.73	33.5	
Min Read Length:	25	24	25	25	25	25	25	25	24	24	24	24	

 Table S 4: Sample statistics in A. amplification-based and B. single-molecule sequencing technologies

Gene	# Samples Overrepresented	DU145_1	DU145_2	VCaP_0h	VCaP_24h	VCaP_48h	LnCaP_0h	LnCaP_24h	LnCaP_48h	PrCa	PrCa-AdjNorm	RWPE	VCaP
RPS18	12												
GNAS	12								· .				
RPLPO	12							•					
RPL8	12												
RPL31	12												
RPS8	12												
			· ·	<u> </u>		· :		· :					
CYC1 GNB2	12												· ·
	12												· ·
rpl10a	12	•	•	•	•	•	•	•	•		•	•	
OK/SW-cl.12	12	•	•	•	•	•	•	•	•	•	•	•	•
RPS14	12	•	•	•	•	•	•	•	•	•	•	•	•
SLC25A3	11	•	•	•	•	•	•	•	•	•	•	•	
UBB	11	•	•	•	•	•	•	•	•	•	•	•	
RPS5	11	•	•	•	•	•	•	•	•	•	•	•	
RPL7A	11	•	•	•	•	•	•	•	•	•	•	•	
EIF1	11	•	•	•	•	•	•	•	•	•	•	•	
UQCRC1	11	•	•	•	•	•	•	•	•	•	•	•	
PFKL	11	•	•	•	•		•			•	•	•	
RPS10	11		•										
RPL18A	11												
RPL3	11												
ENO1	11						•						
RPL37A	11												
EIF3I	11			•				•					
						-					-		
RPL29	11	•	•	•	•	•	•	•	•		•	•	
EEF2	11	•	•	•	•	•	•	•	•	•	•	•	
PSAP	11	•	•	•	•	•	•	•	•	•	•	•	
PPP2R1A	11	•	•	•	•	•	•	•	•	•	•	•	
GNB2L1	11	•	•	•	•	•	•	•	•	•	•	•	
RPL13A	11	•	•	•	•	•	•	•	•	•	•	•	
SPINT2	11	•	•	•	•	•	•	•	•	•	•	•	
SHISA5	11	•	•	•	•	•	•	•	•	•	•	•	
RPS11	10	•	•	•	•	•	•	•	•	•	•		
BTF3	10			•	•		•			•	•		
GPX4	10		•										
ATP5A1	10		•										
KRT18	10			•	•						•		
KIAA0088	10			•							•		
ACTG1	10												
RPS9	10												
RPL10A	10												-
RPLIUA RPL12	10		· ·										+
	10											-	+
ATP5B												-	+
RPS3	10	•	•	•	•		•		•	•			-
RPSA	10	•	•	•	•	•	•	•	•	•	•		
MTCH1	10	•	•	•	•	•	•	•	•	•	•		
PYCR1	10	•	•	•	•	•	•	•	•	•	•		
LRP10	10	•	•	•	•	•	•	•	•	•	•		
ALDOA	10	•	•	•	•	•	•	•	•	•	•		-
EEF1A1	10	•	•	•	•	•	•	•	•	•	•		-
NME2	10	•	•	•	•	•	•	•	•	•	•		
RPS20	10	•	•	•	•	•	•	•		•	•		
C19orf48	10	•	•	•	•	•	•		•	•	•		
RPL18	10	•	•	•	•		•			•	•		
RPL13	10	•	•	•		•	•	•	•	•	•		
P4HB	10						•						1
OAZ1	10												-
EEF1G	10												
UBC				•		•	•			•	•		

Table S 5: Recurrently over-represented genes in amplification-based sequencing in ten or more samples. Of the 393 genes are recurrently within the top 500 over-represented genes by total read count in five (40%) or more samples, these 59 are seen most often, occurring in at least 10 samples.

Δ	
<i>–</i>	

Single-Molecule									
	Q1	Q2	Q3	Q4					
DU145_1	678,716.20	82,650.17	15,312.21	1,756.09					
DU145_2	682,755.30	80,340.18	13,794.63	1,455.81					
VCaP-0h	679,511.10	83,560.23	20,066.82	2,400.37					
VCaP-24h	681,607.20	77,752.04	18,903.67	2,624.63					
VCaP-48h	688,925.40	75,791.22	18,493.60	2,544.35					
LnCaP-0h	658,971.00	97,176.66	21,592.82	2,512.66					
LnCaP-24h	678,955.60	86,868.69	17,595.02	2,044.48					
LnCaP-48h	653,867.40	100,158.20	24,825.49	3,424.91					
PrCa	610,787.00	107,986.40	33,056.41	4,683.91					
PrCa-AdjNorm	581,561.70	121,731.20	41,077.92	7,530.44					
RWPE	688,043.60	83,353.84	16,642.86	1,740.82					
VCaP	674,367.00	83,563.10	19,041.08	2,192.36					

Β.

Amplification-Based									
	Q1	Q2	Q3	Q4					
DU145_1	673,250.40	86,579.46	11,608.48	299.67					
DU145_2	676,079.70	84,926.77	10,734.94	233.56					
VCaP-0h	724,435.80	67,473.25	15,836.85	1,688.69					
VCaP-24h	731,422.10	63,380.33	10,563.88	519.48					
VCaP-48h	713,318.90	68,976.03	11,508.96	602.30					
LnCaP-0h	683,466.00	83,738.35	11,073.12	440.38					
LnCaP-24h	703,435.10	70,455.56	8,175.45	192.68					
LnCaP-48h	705,382.50	70,566.91	7,889.93	170.70					
PrCa	610,253.20	70,574.82	9,521.59	293.01					
PrCa-AdjNorm	592,366.00	64,313.02	12,772.42	278.15					
RWPE	680,671.10	71,476.63	10,868.36	245.32					
VCaP	711,504.06	52,559.02	6,843.76	0.00					

Table S 6: Sum of normalized expression values per quartile by sample in AS and SMS. We observe that the number of reads aligning to transcripts seen in the third and fourth quartiles is consistently greater in A. SMS than B. AS across the sample set.

		Single-Molecule Sequencing										
Coverage	DU145_1	DU145_2	<u>LnCaP-0h</u>	LNCaP-24h	LNCaP-48h	VCaP-0h	VCaP-24h	VCaP-48h	<u>PrCa</u>	PrCa-AdjNorm	RWPE	<u>VCaP</u>
(0 -1]	3,875	3,420	4,459	4,109	5,008	4,691	4,920	5,169	4,971	6,841	3,432	3,513
(1 - 10]	3,871	3,917	3,638	3,765	3,270	3,579	3,321	2,937	3,514	1,745	4,314	4,316
(10 -100]	922	1,410	432	752	331	401	423	365	289	110	1,054	992
(100 - 1000]	66	105	35	59	27	49	31	31	23	3	80	83
(1000 - 10000]	0	1	0	0	0	1	0	0	0	0	4	2

Β.

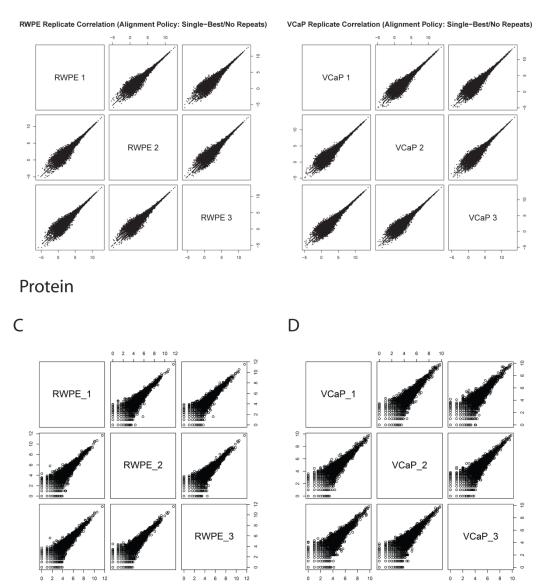
		Amplification-Based Sequencing											
Coverage	DU145_1	DU145_2	LnCaP-0h	LNCaP-24h	LNCaP-48h	<u>VCaP-0h</u>	VCaP-24h	VCaP-48h	<u>PrCa</u>	PrCa-AdjNorm	<u>RWPE</u>	<u>VCaP</u>	
(0 -1]	3,299	3,261	3,421	3,767	3,804	5,656	4,776	4,964	4,300	5,033	3,433	4,879	
(1 - 10]	3,721	3,731	3,537	3,069	2,982	2,213	2,508	2,288	3,033	2,077	3,525	2,290	
(10 -100]	752	769	790	598	561	208	332	272	395	221	695	282	
(100 - 1000]	63	63	73	45	47	56	54	35	33	19	72	40	
(1000 - 10000]	0	0	3	0	0	3	2	0	0	1	3	0	

Table S 7: Gene-level read coverage of observed transcripts. A. and B. illustrate the number of genes with coverage values at various depths in single molecule and amplification-based sequencing, respectively.

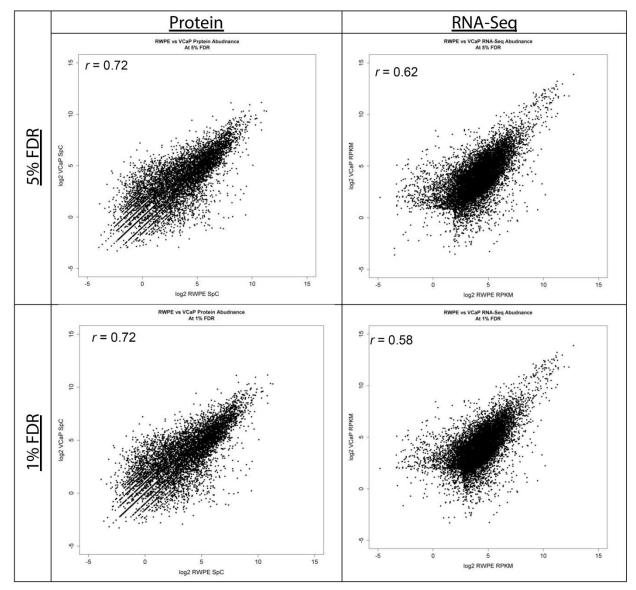
120

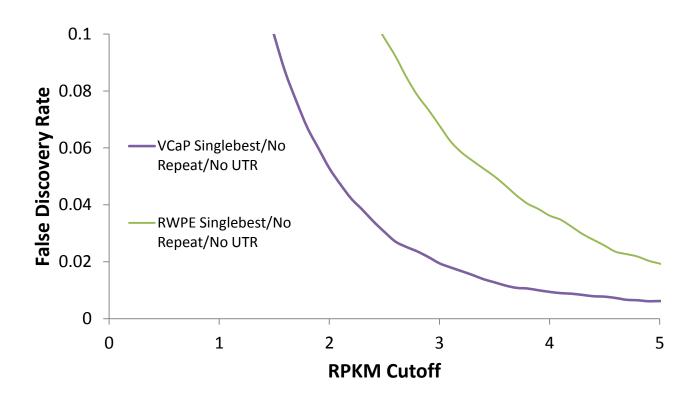
6	
Sequence	UPL Probe #
agacccccaccatcccta	71
cgcatcatctgagctaggc	
cgcaatgtgctggtcaag	76
gttgccgatgtccaggtaat	
tgttattgatggatttccaagaga	61
ccaaatcgggggtacagatt	
ctgattatgaagatcagggtgatg	55
tctcaaatcttccatgaaacctc	
ccctacatcccatccacct	30
ggtctgcatcccaacagtct	
ctatgggccttggcagtg	55
gagctccctcagcccatc	
acccattccggattatgga	62
ttgcttgcacagacctttga	
ttttcatgggtggcctct	71
tgccaatgatgttactcagacc	, -
gcatgcaaacgttagaacca	22
	22
ggctacttcgctagcagatcc	60
gaagttgcatcagaggtccat	69
aaacaattacatgttactttggaatca	- 7
ctgcaagacatccaagatcg	57
aacctgagggcatttagcag	
ctgcaagacatccaagatcg	68
aacctgagggcatttagcag	
aagaggtggcaacaacctaca	17
gatgcaataattgtctttagtgtcct	
aagaggtggcaacaacctaca	75
gatgcaataattgtctttagtgtcct	
ttctacaagcgcagcaagg	58
cagggtccagtaattgccttt	
cgtaaggtgctccgggata	37
gagccaaacggcgaatag	
ctatacggagcacgccaag	76
cctgacgttttagggcatatactac	
tactggccttggctgtgc	71
cacagggttttcaccaacct	
agcgagaagtgccaactcc	39
ttgtacaggtcccgctcttt	
gcagaagatggaccagcaat	88
tgtgctttccccattgattt	00
gggacaggtcccagaatatg	70
gcctacttccggcagacc	70
	15
tcctagctgaatgctataacctctg	15
ggcatccttcagggtcttc	0
gtcattgaaaatccccagtacttt	9
aattattatcaggcggtcttgg	50
gcttctgtgcttgacgtctattt	53
ggataattctggtgcggaga	
agcagccttgatgaagaagc	38
gaagaagatgaaattgtggttgc	
tgggctcaaacaatccttct	13
atcctgggtcctgctctgta	
tgggctcaaacaatccttct	16
atcctgggtcctgctctgta	
and the second and the base of the	

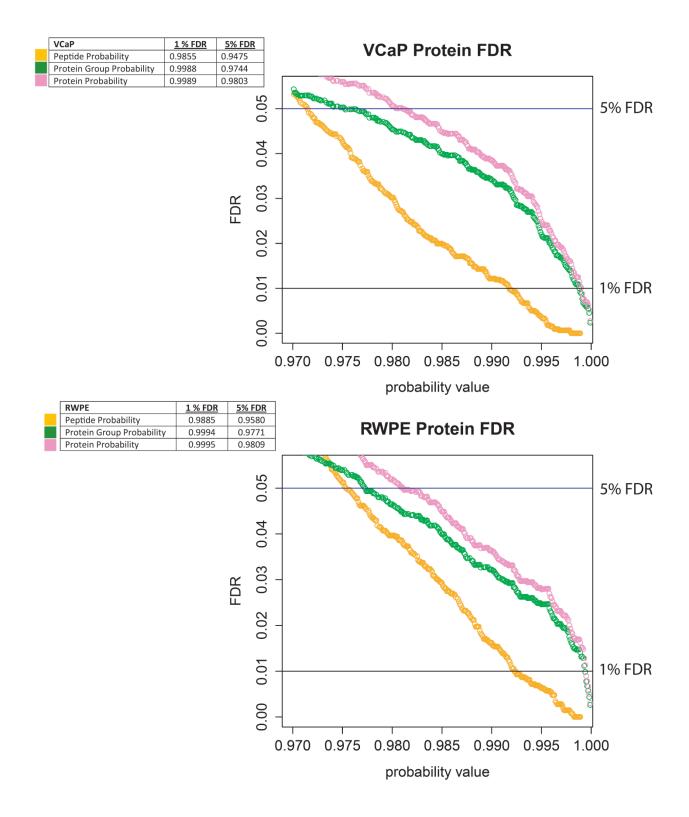
 Table S 8: Primers used for validating transcripts seen only by SMS.
 All experiments were performed in duplicate using two


 primer pairs per candidate gene when possible.
 Image: second secon

APPENDIX C: Chapter 3 and 4 Supplementary Figures and Tables


mRNA


В


Figure S 17: Reproducibility between replicates. A. RWPE RNA-seq, B. VCaP RNA-seq, C. RWPE tandem MS, and D. VCaP tandem MS. Data are derived from the extended dataset.

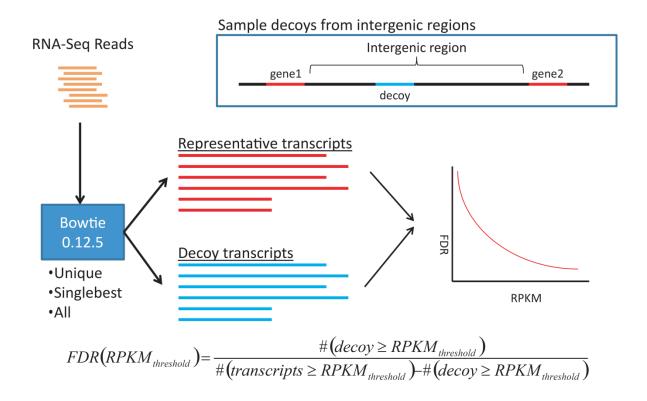

Figure S 18: Correlation between VCaP and RWPE by RNA-seq and tandem MS. Within both the transcriptome and proteome data, both cell lines showed relatively high similarity in abundance profile. This is expected, owing to their common prostate tissue origin.

Figure S 19: False Discovery Rate estimation in RNA-seq data. We measured the FDR at increasing RPKM cutoffs to determine the 1% and 5% FDR levels in each cell line in our RNA-seq data

Figure S 20: False Discovery Rate estimation in protein data. We used the output of TPP and Abacus to determine appropriate parameter values for controlling FDR in our protein data. Three parameters were considered to control FDR at 1% and 5% FDR levels; peptide probability, protein group probability, and protein probability.

Figure S 21: RNA-seq False Discovery Rate estimation methodology. We used a methodology similar to that of Ramskold, et al. to estimate FDR in our RNA-seq data. Corresponding decoy sequences were sampled without replacement from the intergenic regions in hg19 for each representative transcript in our database, for a total of 34,728 decoys. These decoy sequences were of equal length as the real transcripts. We aligned reads to the merged total set of these decoy and real mRNA transcripts. Abundance data was summarized at the gene level using the same transcript-gene mappings for both the real and decoy transcript set. FDR was calculated as the number of decoy genes detected divided by the number of non-decoy genes detected at each threshold value.

д Туре: 🗕	unique —	optimal multi	read	— suboptimal multiread]
5' UTR	Shared Exon			Unique Exon	3' UTR
2	0	0		12	4
3/2	7/8	1/1	16	9/2	3/2
	Unique Single Best		Read Count 18 41 40		
	5' UTR 2	5' UTR Shared Exon 2 0 3/2 7/8 Mapping I Unique Single Best - No Repeat F	5' UTR Shared Exon Reper Reg 2 0 0 3/2 7/8 1/1 <u>Mapping Policy</u> Unique Single Best - No Repeat Reads	5' UTR Shared Exon Repetitive Region 2 0 0 3/2 7/8 1/16 Mapping Policy Read Count Unique 18 Single Best 41	5' UTR Shared Exon Repetitive Region Unique Exon 2 0 0 12 3/2 7/8 1/16 9/2 Mapping Policy Read Count Unique 18 Single Best 41 - No Repeat Reads 40

Figure S 22: Comparison of mapping methodologies. The number of reads assigned to this hypothetical gene, reflecting its abundance, is highly variable based on both the mapping and counting parameters can constraints.

34

71

No Repeat or UTR Reads

All

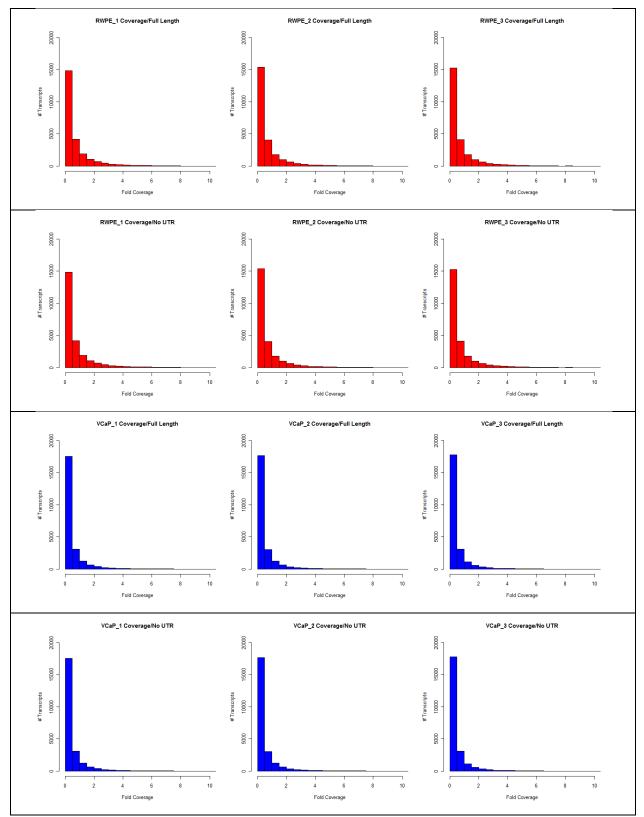
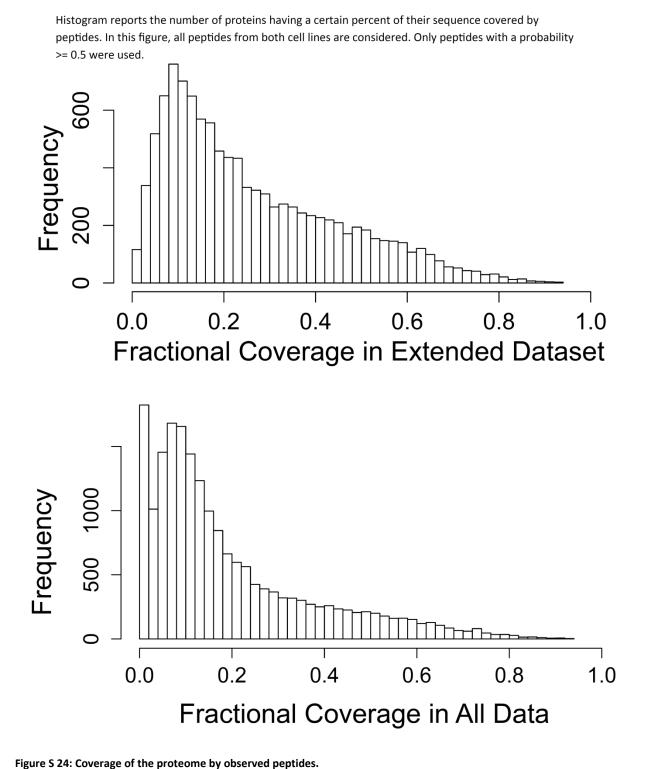
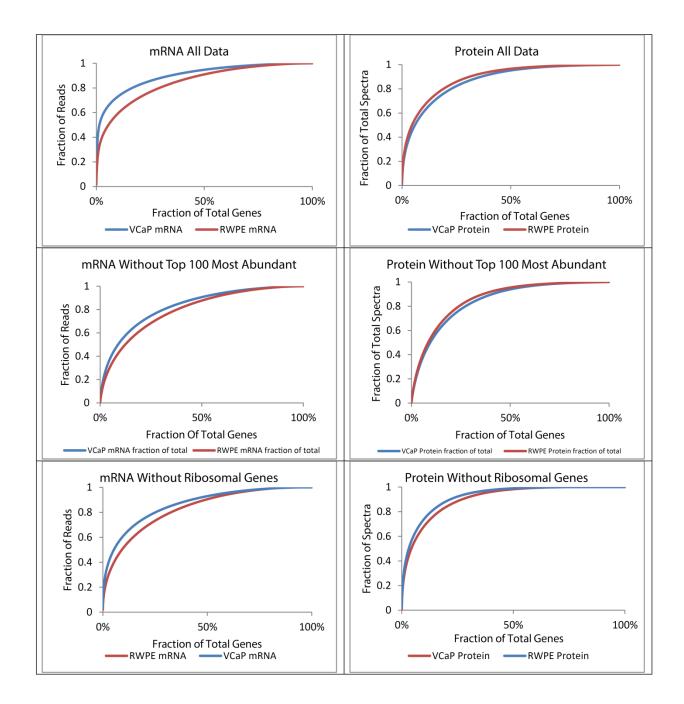
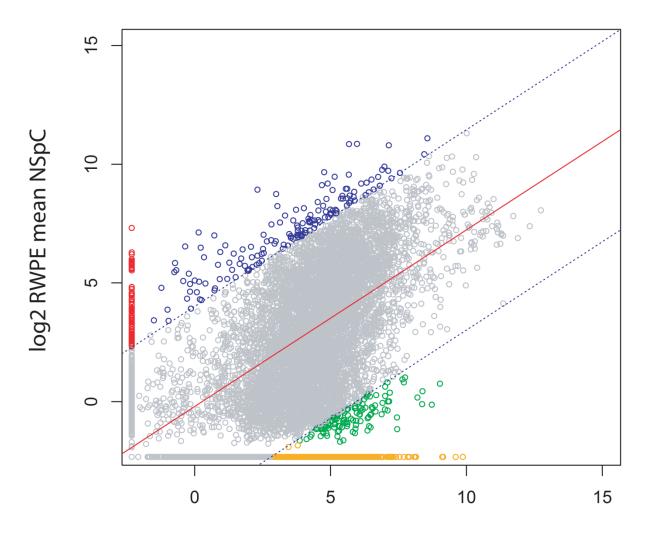





Figure S 23: Coverage of the transcriptome by observed RNA-seq reads.

Figure S 25: Distribution of reads and spectra among observed genes in VCaP and RWPE. A and B. Distribution of reads and spectra, respectively, across extended dataset. **C and D**. Distribution of reads and spectra, respectively, across extended dataset after removal of top 100 most abundantly observed genes. **E and F.** Distribution of reads and spectra, respectively, across extended dataset after removal of ribosome-associated genes.

log2 RWPE mean RPKM

Figure S 26: Segregation of RWPE genes into broad categories by transcript-protein relationship

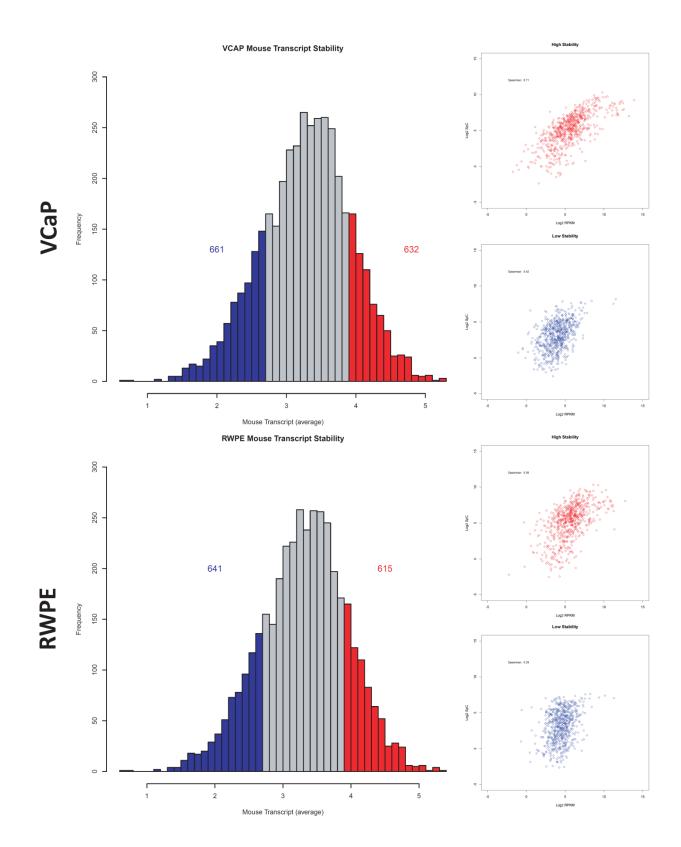
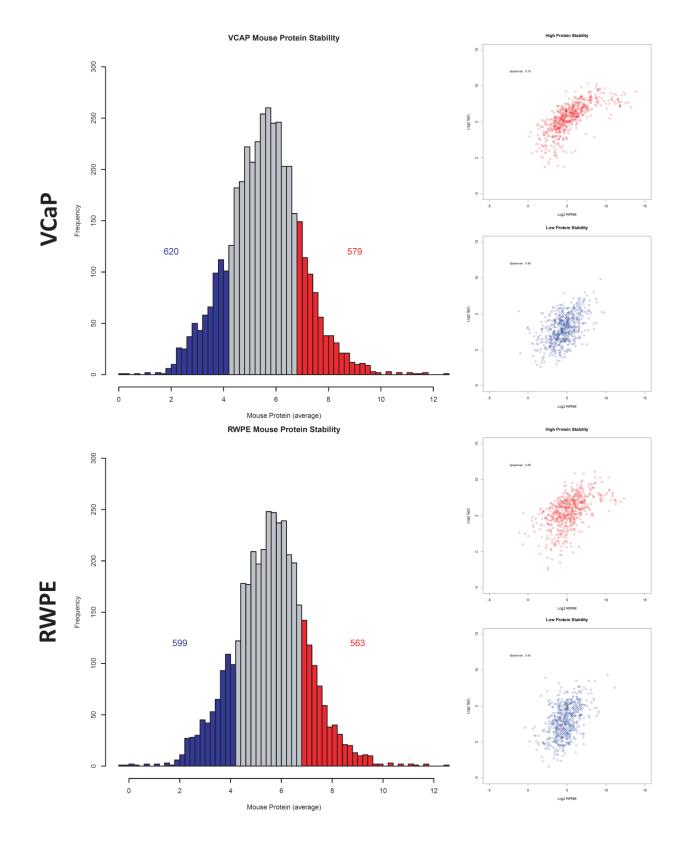
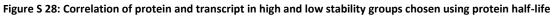
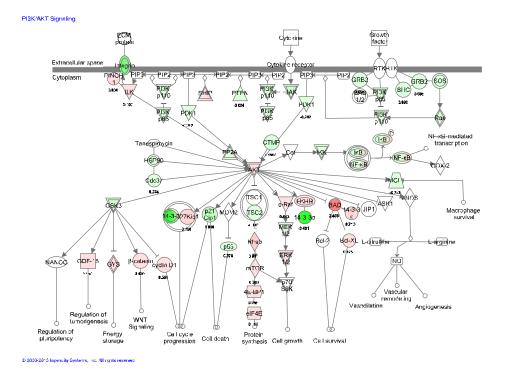
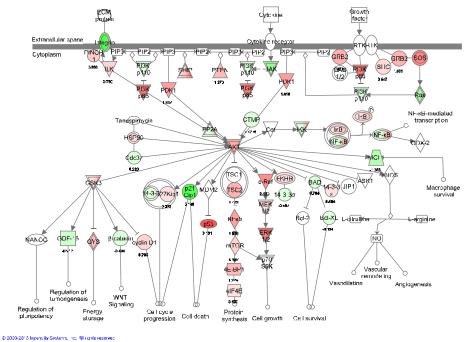
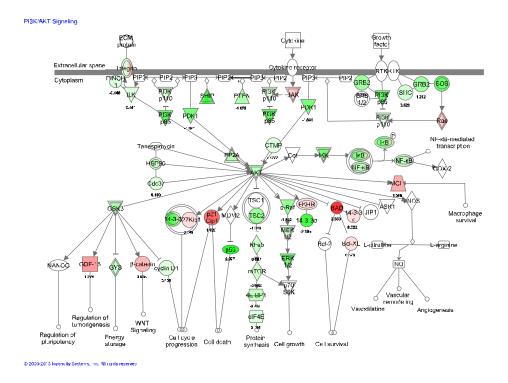





Figure S 27: Correlation of protein and transcript in high and low stability groups chosen using transcript half-life




A. PI3K/Akt Pathway colored by transcript fold change

B. PI3K/Akt Pathway colored by protein fold change

C. PI3K/Akt Pathway colored by discordance index

D. PI3K/Akt Pathway colored by concordance index

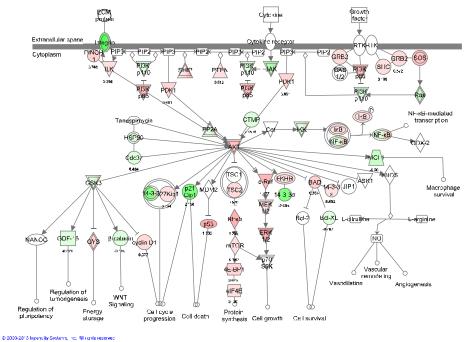


Figure S 29: PI3K/Akt Signaling Pathway colored by VCaP/RWPE transcript fold change, protein fold change, discordance index, and concrodance index data.

go_id	Observed	Total # Genes	vcap_readfr	vcap_rpkmf	rwpe_readfrac	rwpe_rpkmfr	vcap_spcfracti	vcap_pnorm_fr	rwpe_spcfra	rwpe_pnorm	Term	go_tree
	genes	in Class	action	raction	tion	action	on	ас	с	_frac		
GO:0005739	1109	4669	0.087974	0.095673	0.07436	0.092678	0.189368	0.239181	0.220921	0.283798	mitochondrion	СС
GO:0000166	1371	7290	0.194515	0.126364	0.190091	0.148335	0.295258	0.226834	0.287902	0.230131	nucleotide binding	MF
GO:0016020	2213	12613	0.153828	0.12507	0.143564	0.1261	0.176585	0.191634	0.207733	0.238873	membrane	СС
GO:0005524	1037	5332	0.105549	0.062988	0.120108	0.083077	0.210816	0.128989	0.199519	0.127243	ATP binding	MF
GO:0005515	3215	17433	0.43172	0.38374	0.453007	0.400261	0.505604	0.44195	0.530704	0.452411	protein binding	MF
GO:0005743	251	980	0.026316	0.036553	0.016199	0.026615	0.060533	0.08263	0.086684	0.119398	mitochondrial inner membrane	СС
GO:0005634	3676	19673	0.391271	0.342794	0.437047	0.391448	0.423686	0.383929	0.442599	0.379974	nucleus	СС
GO:0006810	361	2081	0.033341	0.030051	0.036993	0.034407	0.061443	0.06892	0.065442	0.074691	transport	BP
GO:0005654	744	3572	0.099669	0.09049	0.109085	0.106917	0.144546	0.128082	0.165531	0.140452	nucleoplasm	СС
GO:0005783	702	3602	0.067749	0.049968	0.06281	0.051301	0.090773	0.08754	0.106616	0.111975	endoplasmic reticulum	СС
GO:0005737	3603	19916	0.441512	0.423029	0.451041	0.438006	0.492567	0.460282	0.409522	0.388043	cytoplasm	СС
GO:0005886	1462	12903	0.138727	0.097976	0.175349	0.125197	0.166759	0.135185	0.195319	0.158953	plasma membrane	СС
GO:0015031	340	1395	0.027568	0.019526	0.031146	0.02519	0.054205	0.056471	0.047257	0.047685	protein transport	BP
GO:0005759	175	707	0.015747	0.014125	0.011658	0.013385	0.048689	0.049274	0.063661	0.065725	mitochondrial matrix	СС
GO:0008380	241	928	0.040935	0.029537	0.045753	0.041021	0.066799	0.063403	0.088998	0.082265	RNA splicing	BP
GO:0007264	214	1077	0.016956	0.011659	0.016244	0.012738	0.025088	0.04462	0.017212	0.033747	small GTPase mediated signal transduction	BP
GO:0000398	157	540	0.032946	0.024053	0.03559	0.032637	0.05655	0.055835	0.07599		nuclear mRNA splicing, via spliceosome	BP
GO:0016787	690	3423	0.047288	0.030796	0.052173	0.040299	0.079969	0.061638	0.078641	0.058643	hydrolase activity	MF
GO:0005625	242	1442	0.033228	0.025399	0.032718	0.030957	0.058825	0.056057	0.042506	0.046765	soluble fraction	СС
GO:0007596	250	1917	0.029639	0.021224	0.047444	0.035119	0.047667	0.051767	0.055077	0.053919	blood coagulation	BP
GO:0042470	77	349	0.029361	0.021334	0.02447	0.021969	0.065558	0.050236	0.065648	0.059203	melanosome	СС
GO:0006457	144	531	0.033489	0.028962	0.024752	0.025576	0.061372	0.057592	0.057928	0.053851	protein folding	BP
GO:0005794	648	3435	0.061752	0.039819	0.061565	0.04393	0.078185	0.067553	0.050552	0.057415	Golgi apparatus	СС
GO:0006915	438	2403	0.042704	0.032036	0.058945	0.047421	0.061623	0.059639	0.080756	0.064667	apoptosis	BP
GO:0016491	299	1501	0.02977	0.030428	0.02361	0.025715	0.05671	0.057085	0.046014	0.051143	oxidoreductase activity	MF
GO:0006184	102	550	0.010289	0.00823	0.010677	0.010086	0.020955	0.034412	0.017564	0.029229	GTP catabolic process	BP
GO:0051082	98	344	0.024217	0.020695	0.01991	0.020996	0.052397	0.046814	0.051097		unfolded protein binding	MF
GO:0005525	231	1254	0.060679	0.039976	0.038858	0.031914	0.052462	0.063898	0.039386	0.050232	GTP binding	MF

GO:0005975	200	1020	0.024052	0.021633	0.017535	0.016672	0.050279	0.043944	0.046034	0.035814	carbohydrate metabolic process	BP
GO:0005789	444	2314	0.041613	0.029469	0.039817	0.031186	0.056872	0.051719	0.071712	0.07196	endoplasmic reticulum membrane	сс
GO:0016021	1943	13912	0.12101	0.087015	0.131349	0.102517	0.113958	0.107536	0.157464	0.162976	integral to membrane	СС
GO:0016887	98	452	0.012205	0.009056	0.017111	0.012567	0.040621	0.028672	0.040845	0.031311	ATPase activity	MF
GO:0055085	356	2525	0.026425	0.018163	0.035169	0.026055	0.044846	0.037765	0.073076	0.064187	transmembrane transport	BP
GO:0030168	118	1016	0.018543	0.014129	0.025386	0.0188	0.03097	0.033428	0.026838		platelet activation	BP
GO:0006200	57	250	0.010276	0.008265	0.01488	0.011231	0.037708	0.027206	0.037888	0.029462	ATP catabolic process	BP
GO:0071013	76	253	0.020642	0.013563	0.020474	0.01616	0.035179	0.032437	0.049203		catalytic step 2 spliceosome	СС
GO:0005488	444	2312	0.036697	0.025843	0.043748	0.033315	0.063443	0.044471	0.050021	0.040373	binding	MF
GO:0016192	140	650	0.015684	0.011262	0.012281	0.010297	0.029401	0.02962	0.020429	0.021862	vesicle-mediated transport	BP
GO:0007411	187	1316	0.026703	0.017955	0.033987	0.02185	0.047809	0.036	0.03761		axon guidance	BP
GO:0006006	67	398	0.014176	0.0149	0.00765	0.008658	0.032216	0.032131	0.018375	0.019913	glucose metabolic process	BP
GO:0016740	443	2029	0.035523	0.028693	0.036035	0.031104	0.053771	0.045869	0.044094	0.044486	transferase activity	MF
GO:0003779	198	1222	0.02335	0.014653	0.041177	0.026135	0.051253	0.031213	0.052974	0.018345	actin binding	MF
GO:0022904	78	282	0.010255	0.020979	0.005435	0.015013	0.020438	0.0374	0.023662		respiratory electron transport chain	BP
GO:0005856	606	3308	0.058544	0.049213	0.068653	0.059094	0.075452	0.065535	0.058636	0.057366	cytoskeleton	сс
GO:0019904	115	612	0.016441	0.010636	0.018995	0.014849	0.024966	0.026482	0.025474	0.025061	protein domain specific binding	MF
GO:0003924	141	752	0.051805	0.033419	0.031734	0.026263	0.037428	0.048955	0.029556	0.040638	GTPase activity	MF
GO:0006096	29	178	0.012121	0.013327	0.005838	0.007203	0.028142	0.028531	0.01505	0.015198	glycolysis	BP
GO:0007165	628	4542	0.055654	0.035406	0.060299	0.047832	0.057791	0.050545	0.052423	0.057563	signal transduction	BP
GO:0030971	11	114	0.008649	0.013232	0.00639	0.007568	0.002349	0.002947	0.002149		receptor tyrosine kinase binding	MF
GO:0005102	104	961	0.019482	0.025224	0.011788	0.015031	0.013495	0.014749	0.012046	0.013139	receptor binding	MF
GO:0030335	52	409	0.012279	0.014638	0.008741	0.00927	0.004928	0.003818	0.004085		positive regulation of cell migration	BP
GO:0043204	17	147	0.007913	0.013147	0.003291	0.006161	0.001894	0.00223	0.001287		perikaryon	сс
GO:0032436	22	111	0.010396	0.014827	0.004345	0.0073	0.004213	0.003417	0.002667		positive regulation of proteasomal ubiquitin- dependent protein catabolic process	BP
GO:0043547	37	254	0.010056	0.013974	0.005959	0.007288	0.003666	0.002546	0.003122	0.002163	positive regulation of	BP

											GTPase activity	
GO:0008284	169	1279	0.024954	0.027856	0.022127	0.020966	0.013436	0.016408	0.013145	0.014832	positive regulation of cell proliferation	BP
GO:0042593	31	234	0.008001	0.013105	0.004395	0.008346	0.001536	0.001405	0.000556	0.000758	glucose homeostasis	BP
GO:0042169	20	156	0.009194	0.013515	0.00502	0.00719	0.001926	0.001807	0.001364	0.001288	SH2 domain binding	MF
GO:0030425	90	621	0.014277	0.016652	0.009139	0.009908	0.006296	0.004904	0.004103	0.00385	dendrite	сс
GO:0030178	15	91	0.008028	0.012949	0.003788	0.006333	0.001007	0.001104	0.000798	0.000806	negative regulation of Wnt receptor signaling pathway	BP
GO:0048511	10	50	0.007609	0.01282	0.002664	0.005756	0.000733	0.000941	0.000422	0.000589	rhythmic process	BP
GO:0051726	41	220	0.010682	0.014616	0.007175	0.008948	0.004053	0.002682	0.003899	0.002658	regulation of cell cycle	BP
GO:0017148	17	103	0.012083	0.017088	0.004837	0.007757	0.004038	0.005022	0.00348	0.004328	negative regulation of translation	BP
GO:0040008	49	250	0.012202	0.016526	0.006266	0.009479	0.004183	0.004333	0.003603	0.004451	regulation of growth	BP
GO:0001934	42	278	0.010414	0.014067	0.006491	0.007706	0.001911	0.001579	0.001418	0.001399	positive regulation of protein phosphorylation	BP
GO:0008270	1143	7162	0.08386	0.056167	0.097387	0.071519	0.063901	0.03945	0.052274	0.036237	zinc ion binding	MF
GO:0043065	111	646	0.023501	0.031212	0.017939	0.022638	0.017138	0.014452	0.023832	0.019535	positive regulation of apoptosis	BP
GO:0015934	10	38	0.01072	0.020035	0.003991	0.009229	0.001625	0.003015	0.0019	0.003331	large ribosomal subunit	СС
GO:0003674	386	2105	0.032772	0.041671	0.029448	0.037419	0.024899	0.024256	0.01994	0.021453	molecular_function	MF
GO:0003729	41	211	0.018466	0.03554	0.010563	0.020871	0.011923	0.015733	0.012499	0.0158	mRNA binding	MF
GO:0006413	40	130	0.02094	0.034275	0.015848	0.022013	0.01182	0.014019	0.008007	0.009614	translational initiation	BP
GO:0042273	10	27	0.00958	0.025192	0.008277	0.029077	0.002437	0.004166	0.002072	0.003698	ribosomal large subunit biogenesis	BP
GO:0042254	28	85	0.012562	0.027733	0.006095	0.015637	0.003273	0.004885	0.003691	0.005367	ribosome biogenesis	BP
GO:0003746	17	79	0.045285	0.031812	0.019935	0.017412	0.009052	0.008462	0.00547	0.005422	translation elongation factor activity	MF
GO:0007275	443	3388	0.041516	0.038392	0.045535	0.037053	0.022771	0.01477	0.023387	0.014736	multicellular organismal development	BP
GO:0042274	11	34	0.01533	0.044131	0.00912	0.034037	0.003152	0.007661	0.002373	0.00585	ribosomal small subunit biogenesis	BP
GO:0019843	21	58	0.019626	0.05317	0.007958	0.028844	0.003456	0.007446	0.003089	0.007005	rRNA binding	MF
GO:0005730	429	1900	0.075173	0.114545	0.077831	0.109151	0.06936	0.06276	0.087932	0.077141	nucleolus	СС
GO:0006364	84	236	0.029006	0.073513	0.023985	0.070573	0.014488	0.019575	0.017418	0.021468	rRNA processing	BP
GO:0015935	16	62	0.028931	0.075786	0.013817	0.049943	0.005064	0.011855	0.003696	0.008872	small ribosomal subunit	сс

GO:0030529	95	416	0.083171	0.118695	0.050943	0.080217	0.053682	0.051568	0.062281	0.061747	ribonucleoprotein complex	СС
GO:0022625	34	109	0.056064	0.125895	0.02712	0.086786	0.010801	0.025034	0.007495	0.01728	cytosolic large ribosomal subunit	сс
GO:0003723	504	2292	0.15269	0.240052	0.12157	0.191674	0.119267	0.127315	0.135635	0.138667	RNA binding	MF
GO:0022627	32	100	0.061937	0.173238	0.026142	0.097605	0.013409	0.031887	0.008975	0.022414	cytosolic small ribosomal subunit	СС
GO:0005840	143	469	0.10628	0.26614	0.047984	0.156328	0.032801	0.071278	0.027883	0.060417	ribosome	СС
GO:0005829	1634	8692	0.369316	0.532487	0.280537	0.403723	0.328059	0.332868	0.253661	0.257336	cytosol	СС
GO:0005622	1180	6697	0.21673	0.365107	0.157222	0.266877	0.11459	0.14503	0.092671	0.113584	intracellular	СС
GO:0016032	268	1111	0.16874	0.38648	0.085608	0.241387	0.068255	0.111621	0.064276	0.091472	viral reproduction	BP
GO:0003735	144	479	0.148243	0.363859	0.067451	0.223718	0.034281	0.082215	0.028148		structural constituent of ribosome	MF
GO:0016070	238	871	0.177833	0.390017	0.092348	0.245842	0.062642	0.107733	0.049697	0.08822	RNA metabolic process	BP
GO:0016071	203	746	0.174226	0.386783	0.08873	0.242156	0.058775	0.100212	0.045669	0.080137	mRNA metabolic process	BP
GO:0010467	361	1446	0.239667	0.432129	0.13933	0.28462	0.105771	0.139605	0.109123	0.129832	gene expression	BP
GO:0019058	83	284	0.152063	0.37148	0.06692	0.221226	0.033965	0.074026	0.023085	0.051966	viral infectious cycle	BP
GO:0006415	77	273	0.147869	0.366752	0.064603	0.218601	0.028355	0.068282	0.019052	0.047151	translational termination	BP
GO:0019083	74	259	0.14759	0.366594	0.06421	0.218302	0.028125	0.068055	0.018949	0.047024	viral transcription	BP
GO:0031018	92	374	0.148621	0.367162	0.065323	0.219685	0.02855	0.068491	0.020632	0.049269	endocrine pancreas development	BP
GO:0044267	240	929	0.224395	0.423099	0.111249	0.262106	0.075603	0.111339	0.065452	0.089585	cellular protein metabolic process	BP
GO:0006412	220	775	0.215326	0.418099	0.10781	0.260924	0.058624	0.10269	0.044418	0.081367	translation	BP
GO:0006414	85	309	0.190688	0.39615	0.083582	0.235132	0.035123	0.074307	0.023796	0.051742	translational elongation	BP

Table S 9: Sum of reads and spectra for top and bottom 50 in RWPE and VCaP by Gene Ontology class, ordered by VCaP relative enrichment

go_id	obs_genes	totalgene	vcap_readfrac	vcap_rpkmfra	rwpe_readf	rwpe_rpkmfr	vcap_spcfrac	vcap_pnorm_fra	rwpe_spcfrac	rwpe_pnor	Term	go_tree
		s		С	rac	ac		с		m_frac		
GO:0005739	1032	4669	0.09926	0.142869	0.076408	0.111656	0.188687	0.243711	0.216344	0.280198	mitochondrion	СС
GO:0000166	1356	7290	0.224941	0.188664	0.200768	0.180257	0.305077	0.246353	0.295978	0.246213	nucleotide binding	MF
GO:0005524	1027	5332	0.123656	0.099365	0.128403	0.106872	0.218386	0.140819	0.205702	0.137004	ATP binding	MF
GO:0005743	250	980	0.03097	0.058022	0.017356	0.034335	0.062727	0.090161	0.089242	0.12816	mitochondrial inner membrane	СС
GO:0005737	3565	19916	0.445929	0.438844	0.454505	0.45111	0.496185	0.470572	0.412106	0.39499	cytoplasm	СС

GO:0005759	175	707	0.018556	0.022439	0.012511	0.017287	0.050565	0.053971	0.065701	0.07087	mitochondrial matrix	СС
GO:0015031	340	1395	0.032485	0.031017	0.033424	0.032532	0.056293	0.061854	0.048772	0.051418	protein transport	BP
GO:0007264	214	1077	0.019981	0.01852	0.017432	0.016451	0.026054	0.048872	0.017763		small GTPase mediated signal transduction	BP
GO:0006810	360	2081	0.039265	0.047674	0.039643	0.044258	0.063702	0.075229	0.067415	0.080216	transport	BP
GO:0005515	3178	17433	0.448299	0.433091	0.462981	0.43902	0.513955	0.459592	0.539346	0.468704	protein binding	MF
GO:0005654	735	3572	0.106254	0.109415	0.112952	0.124094	0.147627	0.134567	0.169323	0.147688	nucleoplasm	СС
GO:0006184	102	550	0.012124	0.013074	0.011458	0.013026	0.021762	0.037691	0.018127	0.031517	GTP catabolic process	BP
GO:0007596	250	1917	0.034926	0.033716	0.050915	0.045355	0.049503	0.056701	0.056842	0.05814	blood coagulation	BP
GO:0000398	157	540	0.038823	0.038209	0.038194	0.04215	0.058729	0.061156	0.078425	0.077788	nuclear mRNA splicing, via spliceosome	BP
GO:0008380	241	928	0.048237	0.046921	0.0491	0.052977	0.069372	0.069446	0.091851		RNA splicing	BP
GO:0005829	1557	8692	0.262183	0.26837	0.232019	0.240008	0.311367	0.290212	0.242185	0.226858		сс
GO:0005625	240	1442	0.038842	0.039951	0.034975	0.039852	0.061067	0.06138	0.043863	0.050421	soluble fraction	СС
GO:0003723	452	2292	0.08184	0.076481	0.089095	0.090659	0.106192	0.097684	0.126881	0.118968	RNA binding	MF
GO:0042470	77	349	0.034599	0.03389	0.02626	0.028373	0.068084	0.055024	0.067752	0.063837	melanosome	СС
GO:0016787	688	3423	0.055667	0.048812	0.055952	0.051953	0.082878	0.067271	0.080744	0.062608	hydrolase activity	MF
GO:0005783	701	3602	0.077613	0.076899	0.066882	0.065562	0.093984	0.095303	0.109859	0.120361	endoplasmic reticulum	СС
GO:0051082	98	344	0.028536	0.032875	0.021367	0.027116	0.054415	0.051275	0.052735	0.049279	unfolded protein binding	MF
GO:0006457	144	531	0.039462	0.046008	0.026563	0.033031	0.063736	0.063081	0.059785	0.058066	protein folding	BP
GO:0016887	98	452	0.014382	0.014386	0.018363	0.01623	0.042186	0.031404	0.042155	0.033762	ATPase activity	MF
GO:0006200	57	250	0.012109	0.01313	0.015968	0.014505	0.039161	0.029799	0.039102	0.031769	ATP catabolic process	BP
GO:0016192	140	650	0.018482	0.01789	0.013179	0.013299	0.030534	0.032442	0.021084	0.023574	vesicle-mediated transport	BP
GO:0016491	299	1501	0.03508	0.048337	0.025337	0.03321	0.058895	0.062526	0.047489	0.055147	oxidoreductase activity	MF
GO:0030168	118	1016	0.021851	0.022445	0.027243	0.02428	0.032163	0.036614	0.027698	0.023216	platelet activation	BP
GO:0071013	76	253	0.024324	0.021545	0.021972	0.020871	0.036535	0.035529	0.05078	0.047646	catalytic step 2 spliceosome	СС
GO:0005975	200	1020	0.028343	0.034365	0.018818	0.021531	0.052216	0.048132	0.04751		carbohydrate metabolic process	BP
GO:0042645	34	112	0.006444	0.006803	0.00621	0.007291	0.022262	0.02055	0.036773	0.038771	mitochondrial nucleoid	СС
GO:0000278	272	1081	0.028805	0.029037	0.031756	0.033226	0.051933	0.041821	0.038406	0.03328	mitotic cell cycle	BP
GO:0055085	356	2525	0.031139	0.028854	0.037742	0.033649	0.046573	0.041364	0.075418	0.069212	transmembrane transport	BP
GO:0002576	45	357	0.011946	0.014557	0.016129	0.015933	0.021802	0.02656	0.015792	0.013425	platelet degranulation	BP

GO:0005741	84	462	0.008351	0.008846	0.008403	0.008253	0.016479	0.020752	0.02238	0.0317	mitochondrial outer membrane	СС
GO:0006915	435	2403	0.049705	0.049205	0.062406	0.058532	0.062395	0.060944	0.082184	0.06648	apoptosis	BP
GO:0019904	113	612	0.019319	0.016825	0.020337	0.019094	0.025661	0.028521	0.02573	0.026039	protein domain specific binding	MF
GO:0006006	67	398	0.016705	0.023669	0.00821	0.011182	0.033457	0.035193	0.018964	0.021472	glucose metabolic process	BP
GO:0016032	195	1111	0.026019	0.036531	0.023095	0.030517	0.041766	0.048009	0.046819	0.048067	viral reproduction	BP
GO:0016020	2211	12613	0.181184	0.198637	0.153947	0.162782	0.183354	0.209874	0.214391	0.257573	membrane	СС
GO:0005634	3648	19673	0.409774	0.388218	0.448025	0.431147	0.42985	0.399201	0.449588	0.394075	nucleus	СС
GO:0007411	182	1316	0.031131	0.028281	0.03622	0.02803	0.049295	0.039214	0.038685	0.028824	axon guidance	BP
GO:0003779	198	1222	0.027515	0.023277	0.04419	0.033753	0.053228	0.034188	0.054672	0.019781	actin binding	MF
GO:0005681	70	268	0.012993	0.013471	0.011549	0.013466	0.022802	0.024298	0.029582	0.031289	spliceosomal complex	СС
GO:0003697	51	172	0.00989	0.01	0.011558	0.014558	0.021256	0.020783	0.025645	0.023001	single-stranded DNA binding	MF
GO:0005794	648	3435	0.072767	0.063254	0.066069	0.056734	0.081197	0.073992	0.052172	0.06191	Golgi apparatus	СС
GO:0005694	184	874	0.021503	0.017247	0.023532	0.018393	0.03011	0.027744	0.027563	0.023922	chromosome	СС
GO:0005198	103	749	0.016371	0.012043	0.024662	0.0176	0.038161	0.022215	0.043212	0.031903	structural molecule activity	MF
GO:0006397	160	770	0.023358	0.020199	0.025587	0.02499	0.034313	0.030336	0.045759	0.040588	mRNA processing	BP
GO:0006096	29	178	0.014283	0.021171	0.006265	0.009302	0.029227	0.03125	0.015532	0.016388	glycolysis	BP
GO:0048471	277	1631	0.053092	0.065101	0.04363	0.048169	0.055118	0.054442	0.049994	0.047978	perinuclear region of cytoplasm	СС
GO:0009615	84	497	0.018879	0.032182	0.013248	0.024227	0.014377	0.021446	0.013418	0.018223	response to virus	BP
GO:0006874	22	218	0.008425	0.015768	0.005154	0.011775	0.003491	0.00339	0.003735	0.004583	cellular calcium ion homeostasis	BP
GO:0030496	59	305	0.017821	0.027685	0.012322	0.016528	0.016963	0.014623	0.01982	0.017406	midbody	сс
GO:0008134	178	1054	0.027869	0.028639	0.030417	0.031061	0.026542	0.015191	0.030668	0.013764	transcription factor binding	MF
GO:0043565	248	2052	0.023547	0.020015	0.021701	0.020183	0.00921	0.006563	0.009088	0.007237	sequence-specific DNA binding	MF
GO:0003674	375	2105	0.032016	0.035818	0.027151	0.027919	0.02398	0.021681	0.01864	0.018491	molecular_function	MF
GO:0042995	98	638	0.018776	0.030108	0.013554	0.016287	0.010364	0.015822	0.004928	0.006366	cell projection	СС
GO:0006351	338	2278	0.038969	0.036239	0.038198	0.038142	0.022869	0.0219	0.017758	0.016409	transcription, DNA- dependent	BP
GO:0030308	67	445	0.014944	0.026705	0.008565	0.013658	0.010609	0.011599	0.008288	0.010009	negative regulation of cell growth	BP
GO:0043065	110	646	0.022072	0.031978	0.016832	0.020268	0.01747	0.015256	0.024327	0.020565	positive regulation of apoptosis	BP
GO:0003700	489	3558	0.047693	0.039547	0.050307	0.047403	0.024664	0.022753	0.020303	0.018451	sequence-specific DNA	MF

											binding transcription factor activity	
GO:0019903	33	216	0.01557	0.025841	0.00907	0.012494	0.013619	0.008153	0.014578	0.00833		MF
GO:0030971	11	114	0.010192	0.02102	0.006858	0.009774	0.002439	0.003228	0.002218	0.00237	receptor tyrosine kinase binding	MF
GO:0005080	26	170	0.013196	0.023987	0.007296	0.012311	0.006216	0.006098	0.004532	0.005658	protein kinase C binding	MF
GO:0043025	106	723	0.019945	0.030821	0.015667	0.015833	0.01164	0.012804	0.007669	0.006857	neuronal cell body	СС
GO:0032880	17	114	0.010869	0.021926	0.004917	0.009165	0.002589	0.003901	0.001982		regulation of protein localization	BP
GO:0043204	17	147	0.009325	0.020885	0.003532	0.007956	0.001967	0.002443	0.001328	0.001716	perikaryon	СС
GO:0030335	52	409	0.01447	0.023254	0.00938	0.011973	0.005118	0.004182	0.004216		positive regulation of cell migration	BP
GO:0048511	10	50	0.008967	0.020365	0.002859	0.007434	0.000761	0.001031	0.000436	0.000635	rhythmic process	BP
GO:0030178	15	91	0.00946	0.020571	0.004065	0.00818	0.001046	0.001209	0.000823	0.000869	negative regulation of Wnt receptor signaling pathway	BP
GO:0043547	37	254	0.01185	0.022199	0.006395	0.009413	0.003807	0.002789	0.003222	0.002332	positive regulation of GTPase activity	BP
GO:0042169	20	156	0.010834	0.021469	0.005387	0.009285	0.002	0.001979	0.001408	0.001388	SH2 domain binding	MF
GO:0032436	22	111	0.012251	0.023554	0.004663	0.009427	0.004375	0.003743	0.002752	0.002439	positive regulation of proteasomal ubiquitin- dependent protein catabolic process	BP
GO:0051726	41	220	0.012588	0.023218	0.0077	0.011557	0.004209	0.002938	0.004024	0.002866	regulation of cell cycle	BP
GO:0005622	1074	6697	0.113946	0.107319	0.109151	0.099066	0.0908	0.086897	0.073798	0.067046	intracellular	СС
GO:0016021	1943	13912	0.142596	0.138229	0.140959	0.132399	0.118348	0.117785	0.162512	0.175735	integral to membrane	СС
GO:0001934	42	278	0.012272	0.022345	0.006966	0.009953	0.001985	0.001729	0.001464	0.001509	positive regulation of protein phosphorylation	BP
GO:0030425	90	621	0.016824	0.026453	0.009808	0.012796	0.006538	0.005371	0.004234	0.004152	dendrite	СС
GO:0046872	1775	10580	0.140818	0.112463	0.147036	0.126006	0.111399	0.091297	0.100019	0.084938	metal ion binding	MF
GO:0040008	49	250	0.014378	0.026252	0.006724	0.012242	0.004344	0.004746	0.003719	0.0048	regulation of growth	BP
GO:0017148	17	103	0.014239	0.027146	0.005191	0.010018	0.004194	0.0055	0.003591	0.004666	negative regulation of translation	BP
GO:0005102	104	961	0.022957	0.040069	0.01265	0.019413	0.014015	0.016154	0.012432	0.014168	receptor binding	MF
GO:0006355	931	5999	0.09235	0.077149	0.10105	0.090573	0.060527	0.051787	0.062389	0.052149	DNA-dependent	BP
GO:0008270	1140	7162	0.096292	0.070918	0.103422	0.083522	0.066123	0.041933	0.053771		zinc ion binding	MF
GO:0010467	288	1446	0.109598	0.109048	0.080747	0.086352	0.080727	0.07866	0.093105	0.08943	gene expression	BP
GO:0007275	442	3388	0.045729	0.052317	0.048106	0.045414	0.023155	0.01536	0.023711	0.015141	multicellular organismal	BP

											development	
GO:0003746	17	79	0.053363	0.050535	0.021394	0.022488	0.009401	0.009269	0.005645		translation elongation factor activity	MF
GO:0006414	12	309	0.051882	0.051894	0.02092	0.02244	0.007357	0.007139	0.005042	0.005226	translational elongation	BP
GO:0044267	167	929	0.091601	0.094704	0.050612	0.057277	0.049396	0.0477	0.048033		cellular protein metabolic process	BP
GO:0006412	80	775	0.076759	0.077957	0.043805	0.04771	0.025011	0.021246	0.017179	0.014978	translation	BP

Table S 10: Sum of reads and spectra for top and bottom 50 in RWPE and VCaP by Gene Ontology class with ribosomal genes removed, ordered by VCaP relative enrichment

go_id	num_genes_obs	num_genes_class	pearson_cor	pearson_p	spearman_cor	spearman_p	prot_mean	tx_mean	prot_median	tx_median	cor_pearson_bh	cor_spearman_bh		go_tree Term
GO:0000155	6	56	-0.14516	0.783795	0.028571	1	1.706637	4.125767	2.85886	4.322668	0.810463	1	two-component sensor activity	MF
GO:0005123	7	68	-0.13188	0.778058	0	1	1.885487	3.284669	2.069755	2.950255	0.805816	1	death receptor binding	MF
GO:0006264	6	34	0.274419	0.598705	-0.02857	1	2.968612	3.337416	2.914576	3.463296	0.640528	1	mitochondrial DNA replication	BP
GO:0006809	6	54	0.533425	0.275753	-0.02857	1	4.49339	3.884449	5.127782	4.151512	0.321354	1	nitric oxide biosynthetic process	BP
GO:0006978	6	105	0.077446	0.884063	-0.02857	1	1.58638	4.46804	0.96182	4.910636	0.897912	1	DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator	BP
GO:0007096	7	23	0.126086	0.787647	0	1	2.919312	4.08101	2.94712	4.026579	0.814014	1	regulation of exit from mitosis	BP
GO:0030217	7	83	-0.10794	0.817813	0	1	1.06325	3.954415	1.741783	3.563928	0.840723	1	T cell differentiation	BP
GO:0032402	6	32	-0.35827	0.48559	0.028571	1	1.943608	2.525552	1.977075	2.876346	0.531068	1	melanosome transport	BP
GO:0043240	6	33	0.776588	0.069294	0.028571	1	0.312925	2.929093	0.033833	2.449059	0.099714	1	Fanconi anaemia nuclear complex	СС
GO:0051974	6	55	0.035615	0.9466	0.028571	1	2.91232	3.448586	2.944651	3.483562	0.954255	1	negative regulation of telomerase activity	BP

GO:0030897	12	40	0.383211	0.218846	0.006993	0.99123	2.950357	3.619346	2.904523	3.716765	0.262104	0.996 353	HOPS complex	CC
GO:0045022	9	34	-0.15323	0.693881	-0.01667	0.98157	2.466359	3.382254	2.745233	3.604485	0.728725	0.987	early endosome to late endosome transport	BP
GO:0009953	8	106	0.080765	0.849222	-0.02381	0.97678 6	-0.23555	1.660737	-0.66064	1.640695	0.868421		dorsal/ventral pattern formation	BP
GO:0022857	11	127	0.058339	0.864713	-0.01818	6	7.787493	7.93148	7.96804	7.943038	0.881019		transmembrane transporter activity	MF
GO:0042776	11	56	0.058339	0.864713	-0.01818	0.96757 6	7.787493	7.93148	7.96804	7.943038	0.881019		mitochondrial ATP synthesis coupled proton transport	BP
GO:0000780	7	52	-0.03206	0.945605	-0.03571	0.96349 2	1.087055	3.712705	1.251539	3.794842	0.954255		condensed nuclear chromosome, centromeric region	СС
GO:0014047	7	112	-0.03184	0.945977	-0.03571	0.96349 2	3.744536	4.540525	4.603214	5.134869	0.954255	0.970 98	glutamate secretion	BP
GO:0034361	7	57	0.348357	0.443831	0.035714	0.96349 2	3.101188	3.933392	2.979942	3.871388	0.490484		very-low-density lipoprotein particle	СС
GO:0001947	12	112	0.112892	0.726846	0.020979	0.95616 9	0.781019	3.707599	0.205568	3.844372	0.757618	0.965 101	heart looping	BP
GO:0021510	9	48	-0.01271	0.97411	-0.03333	0.94839 1	2.1024	4.196527	1.798366	4.22595	0.977507	0.957 747	spinal cord development	BP
GO:0005665	10	30	-0.19658	0.586209	0.030303	0.94571	4.88888	6.077029	5.301099	5.665269	0.628196		DNA-directed RNA polymerase II, core complex	СС
GO:0007076	11	56	0.744044	0.008648	0.027273	0.94598 4	3.336622	4.020329	3.72547	4.004515	0.017781		mitotic chromosome condensation	BP
GO:0007224	10	98	-0.01976	0.956792	-0.0303	0.94571	0.423537	2.937403	0.099753	2.827569	0.962732		smoothened signaling pathway	BP
GO:0001578	8	66	0.199837	0.635162	0.047619	0.93487 1	2.471787	3.858481	2.194879	3.995346	0.674339		microtubule bundle formation	BP
GO:0005885	6	24	0.060362	0.909568	0.085714	0.91944 4	5.862062	6.215573	5.845399	6.01438	0.922372	0.930 932	Arp2/3 protein complex	СС
GO:0006402	6	42	0.154606	0.769939	-0.08571	0.91944 4	3.600288	3.537144	3.18834	3.402525	0.798258	0.930 932	mRNA catabolic process	BP
GO:0008430	6	46	0.331697	0.520702	0.085714	0.91944 4	5.001446	5.287518	5.188867	5.312317	0.567057	0.930 932	selenium binding	MF
GO:0019370	6	82	0.178169	0.735575	0.085714	0.91944 4	4.720371	5.335455	4.712433	5.367478	0.765076		leukotriene biosynthetic process	BP
GO:0019509	6	14	0.329718	0.523346	0.085714	0.91944 4	4.536792	4.931061	5.370887	4.85833	0.569618	0.930	L-methionine salvage from methylthioadenosine	BP
GO:0032012	6	51	-0.12423	0.814612	-0.08571	0.91944 4	2.946582	4.808346	4.049818	4.762404	0.838318	0.930	regulation of ARF protein signal transduction	BP

GO:0042719	6	15	0.214519	0.683157	0.085714	0.91944	6.258884	5.022933	6.200121	4.800543	0.718193	0.930	mitochondrial	CC
						4						932	intermembrane space	
													protein transporter complex	
GO:0050873	6	63	0.254166	0.626961	0.085714	0.91944	3.766627	4.328653	3.900917	3.734092	0.667089	0.930	brown fat cell	BP
						4						932	differentiation	
GO:0051775	6	33	0.260688	0.617826	-0.08571	0.91944	3.57828	3.666702	2.98081	4.502902	0.658089	0.930	response to redox state	BP
						4						932		
GO:0005249	13	204	-0.0197	0.949074	0.038462	0.90620	0.897892	3.154025	0.655172	3.0916	0.955954	0.921	voltage-gated potassium	MF
						2						992	channel activity	
GO:0005852	14	36	0.000727	0.998031	0.037363	0.90351	5.654854	7.128447	5.656926	7.336547	0.998031	0.921	eukaryotic translation	CC
						5						992	initiation factor 3 complex	
GO:0017016	7	70	0.216712	0.640676	0.071429	0.90634	3.34035	4.908538	2.823527	5.431044	0.679081	0.921	Ras GTPase binding	MF
						9						992		
GO:0042994	7	28	0.086827	0.853152	-0.07143	0.90634	1.593033	4.282385	0.807175	4.045346	0.871982	0.921	cytoplasmic sequestering of	BP
						9						992	transcription factor	
GO:0046902	7	42	-0.02229	0.962174	0.071429	0.90634	4.105835	5.641096	4.102837	5.547346	0.967147	0.921	regulation of mitochondrial	BP
						9						992	membrane permeability	
GO:0060170	7	51	-0.37459	0.407732	0.071429	0.90634	0.520899	2.96779	-0.10098	3.868971	0.453943	0.921	cilium membrane	CC
						9						992		
GO:0070776	7	20	0.62817	0.130868	0.071429	0.90634	1.316469	4.098003	0.953359	3.789622	0.171095	0.921	MOZ/MORF histone	CC
						9						992	acetyltransferase complex	
GO:0006595	10	41	0.056151	0.877556	0.054545	0.89163	4.255821	5.781861	5.265638	6.148583	0.892235	0.910	polyamine metabolic	BP
						9						361	process	
GO:0005838	8	25	-0.04318	0.919138	-0.07143	0.88199	5.325698	5.717427	5.488394	5.702749	0.930621	0.900	proteasome regulatory	CC
						4						987	particle	
GO:0030216	14	143	0.053804	0.855052	-0.05055	0.86759	4.11148	3.986381	4.967306	4.158697	0.873349	0.886	keratinocyte differentiation	BP
						6						745		
GO:0004540	10	49	0.0664	0.855388	0.066667	0.86475	3.044213	3.402404	3.177262	3.300741	0.873349	0.884	ribonuclease activity	MF
						4						304		
GO:0035035	10	65	0.056663	0.876447	0.066667	0.86475	1.114761	4.349615	1.192009	4.341432	0.891574	0.884	histone acetyltransferase	MF
						4						304	binding	
GO:0005762	12	53	-0.10149	0.753637	-0.06294	0.85168	5.99713	5.341713	5.797267	5.602616	0.782608	0.871	mitochondrial large	CC
						2						853	ribosomal subunit	
GO:000060	8	48	0.295673	0.477076	0.095238	0.84012	3.499068	5.574924	3.960934	5.353057	0.522493	0.860	protein import into nucleus,	BP
						9						48	translocation	
GO:0004180	8	64	0.172182	0.683483	0.095238	0.84012	4.566439	4.856274	4.754083	4.633416	0.718193	0.860	carboxypeptidase activity	MF
						9						48		
GO:0004708	7	56	-0.16974	0.71598	-0.10714	0.83968	2.976688	4.748909	4.189957	4.67014	0.748141	0.860	MAP kinase kinase activity	MF
						3						48		
GO:0004812	8	18	0.045462	0.914876	-0.09524	0.84012	3.988127	4.759914	4.225371	4.81864	0.926788	0.860	aminoacyl-tRNA ligase	MF
						9						48	activity	

GO:0007613	7	125	0.208374	0.653882	0.107143	0.83968 3	1.379606	3.500382	1.184834	3.592548	0.690446	0.860 48	memory	BP
GO:0007616	8	56	-0.08513	0.841159	-0.09524	0.84012	0.666376	3.591943	0.709482	3.530432	0.861081	0.860	long-term memory	BP
GO:0016574	7	16	-0.04364	0.925981	-0.10714	0.83968	4.264455	5.277682	4.573467	5.030299	0.937062		histone ubiquitination	BP
GO:0034045	7	40	-0.17632	0.705304	-0.10714	0.83968 3	0.840781	3.935966	1.327348	3.780694	0.739524	0.860 48	pre-autophagosomal structure membrane	СС
GO:0051298	7	24	0.403053	0.369952	0.107143	0.83968 3	0.509864	2.244409	0.101317	2.542946	0.418104	0.860 48	centrosome duplication	BP
GO:0070652	7	25	-0.07939	0.865641	0.107143	0.83968 3	1.726521	2.996759	1.876996	3.306382	0.881042	0.860 48	HAUS complex	СС
GO:0005763	18	51	0.004591	0.985576	0.05676	0.82419 7	5.749246	5.460994	5.526888	5.648383	0.987607		mitochondrial small ribosomal subunit	СС
GO:0016758	10	76	0.219678	0.541981	0.090909	0.81141 7	1.127205	3.601567	0.914634	3.885428	0.586619		transferase activity, transferring hexosyl groups	MF
GO:0031080	10	32	0.344109	0.33024	0.090909	0.81141 7	4.472784	4.096785	4.450308	4.133036	0.377168		Nup107-160 complex	CC
GO:0000127	6	18	-0.14164	0.788964	0.142857	0.80277 8	3.802158	5.203798	4.033205	5.121666	0.814077	0.827 891	transcription factor TFIIIC complex	СС
GO:0005869	6	14	0.146653	0.781598	0.142857	0.80277 8	3.93185	5.354414	3.658466	5.329118	0.808622	0.827 891	dynactin complex	СС
GO:0006970	6	60	0.146807	0.781372	0.142857	0.80277 8	3.959046	4.787542	4.124674	4.797692	0.808622	0.827 891	response to osmotic stress	BP
GO:0008045	6	55	0.525475	0.284335	0.142857	0.80277 8	1.054204	3.8056	0.963417	3.690749	0.330761	0.827 891	motor axon guidance	BP
GO:0009967	6	40	0.150969	0.775266	0.142857	0.80277 8	1.979504	3.022653	2.059615	3.072051	0.803353	0.827 891	positive regulation of signal transduction	BP
GO:0016597	6	69	0.758267	0.08059	0.142857	0.80277 8	5.681765	5.033042	5.265131	4.799985	0.113175	0.827 891	amino acid binding	MF
GO:0032040	6	18	0.643882	0.167649	-0.14286	0.80277 8	5.125832	4.970863	4.949758	4.303314	0.209292	0.827 891	small-subunit processome	СС
GO:0033197	6	24	0.036412	0.945407	-0.14286	0.80277 8	3.727987	5.07015	4.210584	4.861769	0.954255	0.827 891	response to vitamin E	BP
GO:0035329	6	40	0.192038	0.715484	0.142857	0.80277 8	1.335753	3.886391	0.906091	3.938212	0.748141	0.827 891	hippo signaling cascade	BP
GO:0042791	6	18	-0.14164	0.788964	0.142857	0.80277 8	3.802158	5.203798	4.033205	5.121666	0.814077		5S class rRNA transcription from RNA polymerase III type 1 promoter	BP
GO:0042797	6	18	-0.14164	0.788964	0.142857	0.80277 8	3.802158	5.203798	4.033205	5.121666	0.814077	0.827 891	tRNA transcription from RNA polymerase III	BP

													promoter	
GO:0045821	6	46	0.109416	0.836531	0.142857	0.80277 8	1.622886	3.225132	0.953598	3.465567	0.857246		positive regulation of glycolysis	BP
GO:0050872	6	32	0.305533	0.555962	0.142857	0.80277 8	3.470047	4.050053	4.327572	3.433872	0.600414	0.827 891	white fat cell differentiation	BP
GO:0051787	6	17	0.704671	0.11795	0.142857	0.80277 8	3.480283	4.52336	3.558056	3.518262	0.155957	0.827 891	misfolded protein binding	MF
GO:0072321	6	23	0.311223	0.548238	0.142857	0.80277 8	5.890992	5.273052	5.519437	5.168467	0.59306		chaperone-mediated protein transport	BP
GO:0004860	8	83	-0.37973	0.353493	-0.11905	0.79300 6	2.451951	4.469697	1.94218	4.225808	0.401837	0.824	protein kinase inhibitor activity	MF
GO:0015450	8	32	-0.01361	0.974492	0.119048	0.79300 6	4.864972	5.559191	4.84356	5.573749	0.977507		P-P-bond-hydrolysis-driven protein transmembrane transporter activity	MF
GO:0005385	7	63	-0.26329	0.568351	-0.14286	0.78254	1.906459	3.302833	1.979942	3.121176	0.61108		zinc ion transmembrane transporter activity	MF
GO:0045039	7	17	0.291589	0.525756	0.142857	0.78254	5.904888	4.894105	5.6878	4.427176	0.571922		protein import into mitochondrial inner membrane	BP
GO:0048010	7	143	0.224831	0.627888	0.142857	0.78254	2.036957	4.292898	2.629081	4.548084	0.66771		vascular endothelial growth factor receptor signaling pathway	BP
GO:0009303	9	48	-0.06875	0.860493	0.116667	0.77562 8	3.037248	4.014229	3.778786	4.467472	0.8781	0.808 466	rRNA transcription	BP
GO:0009434	9	84	-0.21274	0.582624	-0.11667	0.77562 8	1.939946	2.586505	1.744197	2.760648	0.625388		microtubule-based flagellum	CC
GO:0080008	9	49	0.279484	0.466411	0.116667	0.77562 8	1.868996	4.498818	1.576045	4.807762	0.512814	0.808	CUL4 RING ubiquitin ligase	СС
GO:0005753	12	72	0.170314	0.596662	0.097902	0.76628 8	7.632982	7.860837	7.926093	7.830071	0.638694	0.800 017	mitochondrial proton- transporting ATP synthase complex	СС
GO:0008076	13	303	-0.02124	0.945086	0.093407	0.76458 2	1.0571	3.513766	0.986053	3.273362	0.954255	0.798 663	voltage-gated potassium channel complex	сс
GO:0007093	11	57	0.042351	0.901603	0.118182	0.73425 2	2.617307	3.788773	2.445362	3.9771	0.914772	0.767 394	mitotic cell cycle checkpoint	BP
GO:0001078	6	47	0.107315	0.839645	-0.2	0.71388 9	1.42974	1.48496	1.239537	1.787778	0.859984	0.746	RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription	MF

GO:0005786	6	24	0.379296	0.45834	0.2	0.71388 9	6.498161	6.241037	6.452568	6.019001	0.505083		signal recognition particle, endoplasmic reticulum targeting	CC
GO:0006699	7	80	0.222599	0.631397	0.178571	0.71309 5	4.865813	4.340004	4.890856	4.431447	0.671075	0.746 513	bile acid biosynthetic process	BP
GO:0016601	6	43	-0.0092	0.986205	0.2	0.71388 9	3.823909	5.341234	2.615023	5.908155	0.987728		Rac protein signal transduction	BP
GO:0016705	6	125	-0.02907	0.956404	0.2	0.71388 9	2.737547	4.24624	3.438236	4.468448	0.962732		oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen	MF
GO:0030132	6	34	-0.18242	0.72941	-0.2	0.71388 9	5.888782	5.723061	5.45786	6.291793	0.759477	0.746 513	clathrin coat of coated pit	СС
GO:0030658	6	67	0.293838	0.571927	0.2	0.71388 9	3.852178	3.319619	3.693018	3.616373	0.614585	0.746 513	transport vesicle membrane	CC
GO:0032886	7	36	0.668333	0.100772	0.178571	0.71309 5	2.572378	3.988237	3.836501	4.165429	0.137064		regulation of microtubule- based process	BP
GO:0033189	6	44	-0.30745	0.553355	-0.2	0.71388 9	1.901814	2.491207	1.735519	2.491306	0.597931	0.746 513	response to vitamin A	BP
GO:0042220	6	66	-0.30999	0.549914	-0.2	0.71388 9	2.830842	3.892832	2.878781	3.800731	0.594543	0.746 513	response to cocaine	BP
GO:0045749	6	54	0.574724	0.232832	0.2	0.71388 9	2.353655	3.885501	2.84048	4.155438	0.277317		negative regulation of S phase of mitotic cell cycle	BP
GO:0045861	7	56	0.068475	0.884025	-0.17857	0.71309 5	2.594123	3.461883	4.22095	3.205879	0.897912		negative regulation of proteolysis	BP
GO:0046856	7	28	0.060771	0.897023	-0.17857	0.71309 5	2.309937	3.756066	2.372793	4.228631	0.9106		phosphatidylinositol dephosphorylation	BP
GO:0046965	6	68	0.136091	0.797124	0.2	0.71388 9	2.123397	4.430161	1.397027	4.530316	0.822061	0.746 513	retinoid X receptor binding	MF
GO:0048844	6	104	0.410202	0.419208	0.2	0.71388 9	1.891024	4.184359	1.873121	4.363168	0.465122	0.746 513	artery morphogenesis	BP
GO:0070628	7	39	0.84539	0.01658	0.178571	0.71309 5	3.722316	4.27441	4.7994	4.802679	0.030309	0.746 513	proteasome binding	MF
GO:0004857	10	116	0.138793	0.702171	0.139394	0.70720 4	3.694002	4.469526	4.465802	3.632776	0.737034	0.745 939	enzyme inhibitor activity	MF
GO:0005086	8	55	-0.01779	0.966656	0.166667	0.70332 3	2.834204	4.452866	3.694324	4.648291	0.97115		ARF guanyl-nucleotide exchange factor activity	MF
GO:0010039	8	61	0.24615	0.556773	0.166667	0.70332 3	2.685636	4.22205	2.714877	4.076957	0.600956		response to iron ion	BP
GO:0033205	8	24	0.301171	0.468522	0.166667	0.70332	2.466489	4.175228	2.313894	4.512244	0.514554	0.742	cell cycle cytokinesis	BP

						3						249		Τ
GO:0035176	8	88	-0.10291	0.808409	-0.16667	0.70332 3	0.730298	2.763651	0.380696	2.011826	0.832815	0.742 249	social behavior	BP
GO:0048589	11	86	0.129165	0.705057	0.136364	0.69351 1	2.094279	4.349534	2.037414	4.482276	0.739524	0.733 485	developmental growth	BP
GO:0005798	9	40	0.177061	0.648585	0.166667	0.67774 5	4.270202	4.745904	4.11933	4.555844	0.686716	0.717 2	Golgi-associated vesicle	СС
GO:0010388	9	32	-0.19562	0.613976	-0.16667	0.67774 5	5.212592	5.454356	5.152003	5.185979	0.654347	0.717 2	cullin deneddylation	BP
GO:0043015	9	44	0.267954	0.485743	0.166667	0.67774 5	0.765909	2.905093	0.397828	3.16564	0.531068	0.717 2	gamma-tubulin binding	MF
GO:0071479	13	82	-0.06873	0.823468	0.131868	0.66926 9	3.754099	4.544498	4.154754	4.667042	0.845642		cellular response to ionizing radiation	BP
GO:0006342	8	45	-0.09394	0.824903	0.190476	0.66458 3	1.68228	3.320104	1.711693	3.321277	0.846668	0.704 806	chromatin silencing	BP
GO:0034968	8	40	-0.09873	0.816088	0.190476	0.66458 3	1.758078	5.185802	2.559593	5.425431	0.839393	0.704 806	histone lysine methylation	BP
GO:000028	6	18	0.86197	0.027264	0.257143	0.65833 3	7.336446	10.69022	7.633733	11.44902	0.045911		ribosomal small subunit assembly	BP
GO:0002089	7	42	0.619982	0.137499	0.214286	0.66150 8	1.564496	2.79103	0.873027	3.265312	0.177817		lens morphogenesis in camera-type eye	BP
GO:0004497	7	176	0.324888	0.477094	0.214286	0.66150 8	3.120909	4.353972	3.347399	4.186589	0.522493		·· ·	MF
GO:0004691	6	57	0.56001	0.247798	0.257143	0.65833 3	3.366666	4.509872	3.361766	4.371856	0.292278		cAMP-dependent protein kinase activity	MF
GO:0005655	7	27	0.023671	0.959826	0.214286	0.66150 8	3.927042	3.736024	3.354022	3.411782	0.965285	0.702	nucleolar ribonuclease P complex	СС
GO:0005675	10	30	0.279228	0.434625	0.163636	0.65672 1	2.172685	3.92879	2.099752	3.981999	0.481131	0.702 311	holo TFIIH complex	СС
GO:0006002	6	25	0.337619	0.512814	0.257143	0.65833 3	6.450405	5.89908	6.466776	6.070004	0.559093		fructose 6-phosphate metabolic process	BP
GO:0006024	6	34	0.561501	0.246264	0.257143	0.65833 3	2.90425	4.301344	2.332168	4.247647	0.290822		glycosaminoglycan biosynthetic process	BP
GO:0006613	7	26	0.171048	0.713848	-0.21429	0.66150 8	5.610698	5.650862	5.775539	5.71471	0.746872	0.702	cotranslational protein targeting to membrane	BP
GO:0006614	6	26	0.371912	0.467853	0.257143	0.65833 3	6.229818	6.227187	6.452568	5.977454	0.51411	0.702	SRP-dependent cotranslational protein targeting to membrane	BP
GO:0006777	6	30	0.418393	0.409031	0.257143	0.65833 3	3.517156	3.667566	3.661834	3.39619	0.454608		Mo-molybdopterin cofactor biosynthetic process	BP

GO:0007628	7	80	-0.54028	0.210579	-0.21429	0.66150	3.071974	3.646511	3.541618	3.650579	0.253451		adult walking behavior	BP
GO:0008053	7	37	0.327517	0.473325	0.214286	8 0.66150	4.502082	4.585344	4.371054	4.256274	0.519243	311 0.702	mitochondrial fusion	BP
						8						311		
GO:0008121	6	18	-0.03542	0.946896	-0.25714	0.65833 3	7.287192	8.099733	7.22068	8.042117	0.954255		ubiquinol-cytochrome-c reductase activity	MF
GO:0008198	7	63	-0.21721	0.639893	-0.21429	0.66150	3.244306	3.849059	2.836501	4.195741	0.678621	0.702	ferrous iron binding	MF
GO:0008312	6	24	0.405308	0.425329	0.257143	0.65833 3	6.376076	6.212075	6.452568	5.932117	0.471645	0.702 311	7S RNA binding	MF
GO:0008378	7	73	0.380211	0.400158	0.214286	0.66150 8	1.148832	3.113289	1.50226	3.333375	0.447303		galactosyltransferase activity	MF
GO:0008535	7	28	-0.09189	0.844654	-0.21429	0.66150 8	2.624227	3.580697	2.586406	3.741468	0.864204		respiratory chain complex IV assembly	BP
GO:0016303	6	24	-0.02094	0.968588	0.257143	0.65833 3	1.165125	2.800004	0.830173	2.610031	0.972588		1-phosphatidylinositol-3- kinase activity	MF
GO:0030127	7	38	0.209832	0.651568	0.214286	0.66150 8	4.498504	4.467927	5.09278	4.947864	0.688604	0.702 311	COPII vesicle coat	СС
GO:0033327	7	74	0.239356	0.605195	0.214286	0.66150 8	4.698243	5.465353	3.816037	5.664749	0.646406	0.702 311	Leydig cell differentiation	BP
GO:0045494	6	107	-0.37973	0.45778	-0.25714	0.65833 3	1.330218	3.134156	1.267936	3.306436	0.504752		photoreceptor cell maintenance	BP
GO:0046934	6	30	0.246694	0.637466	0.257143	0.65833 3	0.138123	3.440317	-0.11229	3.855756	0.676417		phosphatidylinositol-4,5- bisphosphate 3-kinase activity	MF
GO:0048193	6	20	0.325252	0.529327	0.257143	0.65833 3	3.883264	4.755331	3.755475	4.632732	0.57452	0.702 311	Golgi vesicle transport	BP
GO:0048469	6	124	0.284398	0.584904	0.257143	0.65833 3	2.831301	4.241518	2.286359	3.198199	0.627143	0.702 311	cell maturation	BP
GO:0048813	7	90	0.444746	0.317376	0.214286	0.66150 8	2.479469	4.166878	2.249371	4.403025	0.364746	0.702 311	dendrite morphogenesis	BP
GO:0048839	6	81	0.26652	0.609685	0.257143	0.65833 3	2.449564	3.753587	2.459437	3.848262	0.650131	0.702 311	inner ear development	BP
GO:0070330	6	78	0.059672	0.910598	0.257143	0.65833 3	1.419744	3.911336	1.422053	3.624144	0.922935	0.702 311	aromatase activity	MF
GO:0071577	6	49	-0.18976	0.718783	0.257143	0.65833 3	1.452174	4.650851	0.223212	4.561511	0.75042		zinc ion transmembrane transport	BP
GO:0008138	15	116	0.253647	0.361668	0.132143	0.63893	2.08685	3.869725	1.556393	3.840429	0.409694	0.689		MF
GO:0005774	8	33	0.343713	0.404496	0.214286	0.61909	2.44747	4.7893	2.630444	4.506983	0.450866	0.668	vacuolar membrane	СС

						7						226		
GO:0006939	8	59	0.424742	0.294207	0.214286	0.61909	1.502986	3.867751	1.7486	3.566193	0.340818	0.668	smooth muscle contraction	BP
						7						226		
GO:000080	14	93	0.183091	0.530971	0.147415	0.61502	2.646912	4.406066	2.435286	3.871792	0.575662	0.664	G1 phase of mitotic cell	BP
						6						569	cycle	
GO:0005978	9	55	0.205222	0.596322	0.2	0.61340	4.007587	3.366678	4.440263	3.550875	0.638682	0.663	glycogen biosynthetic	BP
						4						185	process	
GO:0046326	9	108	0.124223	0.750167	0.2	0.61340	2.486307	4.07297	2.629081	4.018281	0.779421	0.663	positive regulation of	BP
						4						185	glucose import	
GO:0090263	12	174	0.198823	0.535598	0.167832	0.60372	1.870801	4.63801	1.375893	4.575197	0.580032	0.653	positive regulation of	BP
						8						45	canonical Wnt receptor	
													signaling pathway	

Table S 11: Top 150 Highest Transcript-protein correlation by Gene Otology class in VCaP

go_id	num_genes_obs	num_genes_class	pearson_cor	pearson_p	spearman_cor	spearman_p	prot_mean	tx_mean	prot_median	tx_median	cor_pearson_bh	cor_spearman_bh	Term	go_tree
GO:000083	11	79	0.578206	0.062422	-0.00909	0.98919	0.943491	4.405098	0.690824	3.859411	0.106015	1	regulation of transcription involved in G1/S phase of mitotic cell cycle	BP
GO:0000780	6	52	0.069057	0.89658	0.028571	1	1.092294	3.490959	1.534296	2.941705	0.908358	1	condensed nuclear chromosome, centromeric region	СС
GO:0001932	6	90	-0.09384	0.859648	0.028571	1	4.081225	5.319534	4.233211	4.877704	0.878866	1	regulation of protein phosphorylation	BP
GO:0005484	16	63	0.04252	0.875754	-0.00294	0.991368	4.082291	4.527798	4.394332	4.368086	0.892412	1	SNAP receptor activity	MF
GO:0005885	6	24	-0.30081	0.562395	-0.02857	1	5.977803	6.504942	6.106591	6.536278	0.612719	1	Arp2/3 protein complex	СС
GO:0006402	6	42	-0.07763	0.883792	0.028571	1	3.857025	5.245389	4.625575	4.830376	0.899137	1	mRNA catabolic process	BP
GO:0006744	8	22	0.073752	0.862215	0	1	4.552738	3.912085	4.497401	3.833662	0.88101	1	ubiquinone	BP

												biosynthetic process	
GO:0006836	6	123	0.310487	0.549236	-0.02857	1	1.159222	4.647837	0.969639	5.019907	0.601954	1 neurotransmitter transport	BP
GO:0008378	9	73	0.3119	0.413885	0	1	1.505785	3.813266	0.780909	3.818202	0.479033	1 galactosyltransfera se activity	
GO:0015813	7	39	0.06358	0.892282	0	1	5.923861	4.097933	6.052496	4.273186	0.904829	transport	BP
GO:0017015	6	72	0.045808	0.931336	-0.02857	1	0.847658	4.771944	0.46429	4.715752	0.938846	1 regulation of transforming growth factor beta receptor signaling pathway	BP
GO:0033205	8	24	-0.14781	0.726859	0	1	0.992269	3.63886	0.776114	3.478839	0.763936	1 cell cycle cytokinesis	BP
GO:0043097	6	34	0.22016	0.675096	-0.02857	1	2.959259	4.683752	2.985357	3.950088	0.71717	1 pyrimidine nucleoside salvage	BP
GO:0043406	7	161	0.153797	0.741984	0	1	3.516117	5.343588	4.165809	5.619048	0.776784	1 positive regulation of MAP kinase activity	BP
GO:0045600	9	56	0.038286	0.922099	0	1	1.015886	4.173472	1.058894	4.467799	0.931539	1 positive regulation of fat cell differentiation	BP
GO:0048193	6	20	0.007624	0.988565	-0.02857	1	3.94513	5.331832	4.714244	5.026644	0.989621	1 Golgi vesicle transport	BP
GO:0048255	7	80	0.133501	0.775376	0	1	5.958022	6.59122	6.614494	6.359974	0.806786	1 mRNA stabilization	BP
GO:0048706	8	70	0.083914	0.843399	0	1	0.691883	3.490251	-0.00106	3.168178	0.866333	1 embryonic skeletal system development	BP
GO:0048839	6	81	0.074912	0.887842	0.028571	1	1.630889	4.80235	1.160322	4.55511	0.902005	1 inner ear development	BP
GO:0051457	9	42	0.130211	0.738455	0	1	2.470677	4.417102	2.272297	4.370446	0.773521	1 maintenance of protein location in nucleus	BP
GO:0071479	12	82	0.260734	0.413066	0	1	3.169443	4.710873	3.157797	4.255418	0.478381	1 cellular response to ionizing radiation	BP
GO:0090200	7	72	0.077148	0.869419	0	1	4.369794	3.527011	3.888969	3.58635	0.887403	of release of cytochrome c from mitochondria	
GO:0001578	9	66	-0.08575	0.826376	0.016667	0.98157	0.210464	3.905076	-0.08095	3.943825	0.851349	0.99322 microtubule bundle	e BP

												3	formation	
GO:0001707	9	87	0.228075	0.555042	-0.01667	0.98157	1.193942	3.977355	0.910502	3.942787	0.606471		mesoderm formation	BP
GO:0032784	9	36	0.134074	0.730926	0.016667	0.98157	3.326442	4.824548	3.344051	4.212112	0.76762	0.99322 3	regulation of transcription elongation, DNA- dependent	BP
GO:0045860	10	108	0.196375	0.586616	-0.01818	0.972841	1.774997	4.939309	1.263712	4.85641	0.634794	0.98598 8	positive regulation of protein kinase activity	BP
GO:0048589	11	86	0.025755	0.940084	-0.01818	0.967576	0.51194	3.952207	-0.02006	4.019218	0.947156	0.98118 2	developmental growth	BP
GO:0006071	7	53	-0.17168	0.712829	-0.03571	0.963492	2.22236	2.754802	2.439611	2.751458	0.750874	0.97756 9	glycerol metabolic process	BP
GO:0006613	7	26	0.138917	0.766436	0.035714	0.963492	5.735365	6.214166	5.831593	6.338304	0.798471		cotranslational protein targeting to membrane	BP
GO:0016574	7	16	-0.19176	0.680403	0.035714	0.963492	3.677796	5.129518	3.988504	5.250958	0.721582		histone ubiquitination	BP
GO:0019773	7	37	0.435758	0.328421	-0.03571	0.963492	7.000844	6.04337	7.028403	5.956266	0.395244	0.97756 9	proteasome core complex, alpha- subunit complex	сс
GO:0070403	7	46	0.087757	0.851593	-0.03571	0.963492	3.847249	3.860134	3.910502	3.657623	0.872534	0.97756 9	NAD+ binding	MF
GO:0003950	12	78	0.129216	0.688982	0.020979	0.956169	2.218197	3.820041	1.739887	3.959964	0.729442		NAD+ ADP- ribosyltransferase activity	MF
GO:0031572	12	103	0.189909	0.554402	0.020979	0.956169	1.978818	3.735724	2.090401	3.877485	0.606125		G2/M transition DNA damage checkpoint	BP
GO:0051865	12	129	0.042062	0.896731	0.020979	0.956169	2.116269	4.038644	1.880118	4.409363	0.908358		protein autoubiquitination	BP
GO:0006695	24	125	0.148698	0.488026	0.013043	0.952979	4.701021	5.095515	5.17854	5.425903	0.547933	0.97110 6		BP
GO:0043473	9	94	0.292413	0.44513	0.033333	0.948391	0.359067	2.735137	-0.76001	2.880714	0.508112	0.96695 6	pigmentation	BP
GO:0045022	9	34	0.065087	0.867873	-0.03333	0.948391	0.648975	3.778828	-0.06212	4.268493	0.886308	0.96695 6	early endosome to late endosome transport	BP
GO:0002053	8	153	0.361239	0.379294	0.047619	0.934871	1.299036	5.49012	0.182053	5.098177	0.445321	0.95421	positive regulation	BP

													of mesenchymal cell proliferation	
GO:0004812	8	18	0.371342	0.365094	0.047619	0.934871	4.479887	5.742679	5.565166	5.409695	0.431034		ligase activity	MF
GO:0006829	8	59	0.282455	0.497891	0.047619	0.934871	2.552103	3.831671	2.91061	4.125763	0.556344	0.95421	zinc ion transport	BP
GO:0007062	8	44	0.016412	0.969233	0.047619	0.934871	3.445465	5.338565	5.112441	5.491767	0.972344	0.95421	sister chromatid cohesion	BP
GO:0007093	8	57	0.110806	0.793933	0.047619	0.934871	2.567786	4.205014	2.867301	4.076333	0.822899	0.95421	mitotic cell cycle checkpoint	BP
GO:0015450	8	32	0.271531	0.51535	-0.04762	0.934871	6.144671	5.874437	6.010794	6.22926	0.571088	0.95421	P-P-bond- hydrolysis-driven protein transmembrane transporter activity	MF
GO:0021510	8	48	0.245037	0.558616	-0.04762	0.934871	3.034725	5.017556	3.432397	5.04351	0.60931	0.95421	spinal cord development	BP
GO:0030374	30	137	0.163573	0.387756	0.01624	0.93261	2.738105	5.082293	3.07926	5.130238	0.452986	0.95421	ligand-dependent nuclear receptor transcription coactivator activity	MF
GO:0051898	8	64	0.219962	0.600681	-0.04762	0.934871	2.080266	5.208602	1.796763	5.176546	0.648777	0.95421	negative regulation of protein kinase B signaling cascade	BP
GO:0005742	6	22	0.116444	0.826123	-0.08571	0.919444	6.772297	6.046374	7.165902	5.926692	0.851349	0.94308 4	mitochondrial	сс
GO:0007043	6	44	-0.10802	0.838605	0.085714	0.919444	2.772256	3.389679	2.965327	3.858168	0.862053		cell-cell junction assembly	BP
GO:0014065	6	52	0.325617	0.528836	0.085714	0.919444	1.174255	4.615857	1.638061	4.913686	0.582932	0.94308	phosphatidylinosit ol 3-kinase cascade	BP
GO:0017091	6	42	-0.2186	0.677319	-0.08571	0.919444	4.094554	5.236286	5.517274	4.980946	0.718717		AU-rich element binding	MF
GO:0030325	6	120	0.028232	0.957663	-0.08571	0.919444	3.387157	4.542376	3.683162	4.250216	0.962798	0.94308	adrenal gland development	BP
GO:0030330	6	30	0.072879	0.890875	0.085714	0.919444	2.735388	4.593422	2.814179	4.405801	0.903891	0.94308 4	DNA damage response, signal transduction by p53 class mediator	BP
GO:0031016	6	106	0.711467	0.112866	-0.08571	0.919444	1.243299	4.21182	-0.06199	3.996898	0.167424		pancreas development	BP

GO:0032040	6	18	0.633561	0.176814	0.085714	0.919444	5.518951	5.730261	5.576771	4.830694	0.236438	0.94308	small-subunit processome	CC
GO:0043195	6	138	0.428252	0.396892	0.085714	0.919444	1.186655	3.506194	0.670776	4.022345	0.462507	0.94308	terminal button	СС
GO:0045070	6	36	-0.12585	0.812226	0.085714	0.919444	3.864616	4.619701	4.435874	5.360881	0.838614		of viral genome replication	BP
GO:0046676	6	100	-0.20063	0.703098	0.085714	0.919444	3.295659	4.841598	4.003979	5.289861	0.741874	4	negative regulation of insulin secretion	
GO:0046873	6	59	0.252408	0.629428	-0.08571	0.919444	2.184069	3.566752	3.042768	3.427148	0.675546	0.94308 4	metal ion transmembrane transporter activity	MF
GO:0048854	6	34	0.441677	0.380566	0.085714	0.919444	1.811785	3.699449	1.817569	3.359042	0.446534	0.94308 4	brain morphogenesis	BP
GO:0050431	6	53	-0.09596	0.856506	0.085714	0.919444	1.863702	4.532962	1.571686	4.524894	0.87661	0.94308 4	transforming growth factor beta binding	MF
GO:0055088	6	78	-0.02256	0.966166	0.085714	0.919444	1.789608	4.553299	2.087711	4.304533	0.969787	0.94308 4	lipid homeostasis	BP
GO:0060135	6	70	0.383073	0.453497	-0.08571	0.919444	2.758274	4.889684	2.411515	4.980563	0.5162		maternal process involved in female pregnancy	BP
GO:0060170	6	51	-0.18695	0.722835	0.085714	0.919444	1.162056	2.751843	1.350045	2.636462	0.760559	0.94308 4	cilium membrane	СС
GO:0071203	6	28	0.570887	0.236699	0.085714	0.919444	3.838014	5.654391	2.70468	5.767017	0.301297	0.94308 4	WASH complex	CC
GO:0071565	6	56	0.48133	0.333762	-0.08571	0.919444	5.245563	6.062814	5.4654	6.051746	0.400376	0.94308 4	nBAF complex	CC
GO:0004012	7	38	0.140815	0.763309	0.071429	0.906349	0.736742	3.318844	0.484792	2.80118	0.796884		phospholipid- translocating ATPase activity	MF
GO:0004707	7	74	0.01469	0.975063	-0.07143	0.906349	1.839266	4.376119	2.680382	4.813743	0.977671	0.93941 7	MAP kinase activity	MF
GO:0043235	7	99	0.277375	0.547017	-0.07143	0.906349	0.485463	3.480122	0.047219	4.303502	0.600502	0.93941 7	receptor complex	СС
GO:0046326	7	108	-0.33657	0.460433	0.071429	0.906349	1.548996	4.143807	1.058894	4.34284	0.52227		positive regulation of glucose import	BP
GO:0009165	8	46	-0.11582	0.78477	0.071429	0.881994	2.717129	4.526742	2.97321	4.088512	0.815204	0.91619 9	nucleotide biosynthetic process	BP
GO:0001947	9	112	-0.01805	0.963229	-0.06667	0.880093	0.803134	4.005524	0.406407	3.754132	0.967875	0.91473	heart looping	BP

GO:0008299	11	49	-0.10488	0.758924	-0.06364	0.860104	3.307927	4.780084	4.073393	5.415896	0.792748	0.89445	isoprenoid biosynthetic process	BP
GO:0045766	17	233	0.083013	0.751435	0.04902	0.853696	2.157506	4.099277	1.818579	4.665889	0.785801		of angiogenesis	BP
GO:0006783	12	71	-0.2553	0.423212	-0.06294	0.851682	3.521683	3.926829	3.905855	4.172798	0.487421	6	process	BP
GO:0005763	18	51	0.232281	0.353661	0.048504	0.849928	6.48675	5.341391	6.488628	5.420436		1	mitochondrial small ribosomal subunit	СС
GO:0001938	17	202	0.038874	0.882241	-0.05147	0.846278	1.327589	4.295024	1.553511	4.234063	0.898047	0.88203	positive regulation of endothelial cell proliferation	BP
GO:0035019	9	68	-0.07151	0.854944	0.083333	0.843182	0.839581	4.531917	0.697827	4.770163	0.875489	0.87929 2	somatic stem cell maintenance	BP
GO:0060612	10	40	0.0752	0.836428	-0.07295	0.841271	2.690375	4.176714	2.098271	4.203965	0.860286		adipose tissue development	BP
GO:0006013	7	18	0.029391	0.950126	-0.10714	0.839683	1.086868	3.995405	0.213404	4.088025	0.956246		mannose metabolic process	BP
GO:0008324	11	66	0.161768	0.634645	0.072727	0.838825	4.242159	3.75972	4.297832	3.586884	0.680755	0.87661 7	cation transmembrane transporter activity	MF
GO:0033327	7	74	-0.04484	0.923949	0.107143	0.839683	4.694676	6.025466	5.80093	6.084058	0.932905		Leydig cell differentiation	BP
GO:0034968	7	40	-0.12998	0.7812	0.107143	0.839683	0.538306	4.694806	-0.13488	4.902703	0.811945		histone lysine methylation	BP
GO:0060716	7	37	-0.2336	0.614159	-0.10714	0.839683	2.55081	4.907479	1.325539	4.951885		7	labyrinthine layer blood vessel development	BP
GO:0070402	7	28	0.764417	0.045361	0.107143	0.839683	5.358128	2.465531	5.411195	3.045436	0.082494	0.87661 7	NADPH binding	MF
GO:0005761	22	75	-0.10212	0.651124	-0.04687	0.836419	6.164567	5.04572	6.386758	5.134603	0.694092		mitochondrial ribosome	СС
GO:0070979	17	124	0.03779	0.885504	0.056373	0.83148	3.188915	4.949748	3.366466	5.308277	0.900391		protein K11-linked ubiquitination	BP
GO:0005100	12	78	0.202693	0.52752	0.076923	0.817283	0.659569	3.934222	0.703818	4.289986	0.581823	0.85705	Rho GTPase activator activity	MF
GO:000045	10	74	-0.00285	0.993775	-0.09091	0.811417	1.919718	4.576696	1.88459	5.014932	0.994305		autophagic vacuole assembly	BP
GO:0001756	9	117	-0.05034	0.897675	0.1	0.809981	2.798997	4.278881	3.171368	4.761205	0.908823	0.85034 4	somitogenesis	BP

GO:0004177	23	96	0.247571	0.254729	-0.05435	0.805563	3.877978	4.07705	4.240732	4.739203	0.319689	0.84618	aminopeptidase activity	MF
GO:0005666	6	18	0.310437	0.549303	0.142857	0.802778	3.440333	4.227183	3.560238	4.314305	0.601954	7	DNA-directed RNA polymerase III complex	СС
GO:0006241	6	34	0.346719	0.500762	0.142857	0.802778	3.541807	4.021962	3.662615	3.955451	0.558886	0.84372 7	CTP biosynthetic process	BP
GO:0006777	6	30	0.10283	0.846298	0.142857	0.802778	3.057003	3.81395	4.572423	3.746419	0.868091	0.84372 7	Mo-molybdopterin cofactor biosynthetic process	BP
GO:0007193	6	90	0.304023	0.558016	0.142857	0.802778	1.169721	2.890221	0.192976	3.460683	0.609011	0.84372 7	inhibition of adenylate cyclase activity by G- protein signaling pathway	BP
GO:0031648	6	46	0.537803	0.271071	0.142857	0.802778	3.352394	4.089137	3.324809	4.302306	0.335556	0.84372 7	protein destabilization	BP
GO:0034199	6	72	0.142421	0.787813	0.142857	0.802778	1.448272	4.059546	1.21921	4.357716	0.817913		activation of protein kinase A activity	BP
GO:0042476	6	110	0.445107	0.376432	0.142857	0.802778	3.016215	4.404291	3.426106	4.292532	0.442514	0.84372 7	odontogenesis	BP
GO:0042640	6	36	-0.15693	0.766532	-0.14286	0.802778	2.500372	4.934465	3.117595	5.013499	0.798471	0.84372 7	anagen	BP
GO:0045749	6	54	0.440765	0.381667	0.142857	0.802778	0.672611	4.45561	0.025096	4.427356	0.447546		negative regulation of S phase of mitotic cell cycle	BP
GO:0060444	6	54	0.181194	0.731183	0.142857	0.802778	3.603143	4.985588	4.803961	5.02928	0.76762	0.84372 7	branching involved in mammary gland duct morphogenesis	BP
GO:0006694	11	101	0.120571	0.723996	0.090909	0.796592	4.898655	4.704746	5.168903	4.415017	0.761353	0.84200 9		BP
GO:0019894	11	64	0.758699	0.006788	-0.09091	0.796592	2.056325	4.893443	1.350706	4.413659	0.01858	0.84200 9	kinesin binding	MF
GO:0031418	16	84	0.069019	0.799509	0.070588	0.796653	2.76192	3.908979	2.546638	4.132171	0.827307	0.84200 9	L-ascorbic acid binding	MF
GO:0046965	8	68	0.564747	0.144707	0.119048	0.793006	1.37829	5.350354	0.686975	5.122601	0.201803		retinoid X receptor binding	MF

GO:0000178	13	37	0.076387	0.804115	0.082418	0.792486	5.892467	5.002799	5.967425	4.811056	0.831613	0.83949 7	exosome (RNase complex)	СС
GO:0004602	7	46	0.204037	0.66078	0.142857	0.78254	6.029682	5.16464	6.107803	5.286291	0.702759	0.82943	glutathione peroxidase activity	MF
GO:0006390	7	26	0.194444	0.676106	0.142857	0.78254	4.216183	4.006701	4.643856	4.02589	0.717836		transcription from mitochondrial promoter	BP
GO:0006476	7	41	0.30824	0.501216	0.142857	0.78254	3.139741	4.304743	2.961283	4.418351	0.55906	0.82943	protein deacetylation	BP
GO:0031293	7	47	-0.1856	0.690312	-0.14286	0.78254	2.911152	4.32924	2.432455	4.580642	0.730142	0.82943	membrane protein intracellular domain proteolysis	BP
GO:0042581	7	36	-0.03235	0.945117	-0.14286	0.78254	4.650235	4.587922	4.926256	4.426996	0.951715	0.82943	specific granule	CC
GO:0030520	9	93	0.116779	0.764787	0.116667	0.775628	3.468871	5.644236	3.451662	5.542371	0.797539		estrogen receptor signaling pathway	BP
GO:0046329	9	92	-0.08187	0.834137	-0.11667	0.775628	1.597016	5.051806	1.532199	5.420283	0.858401	0.82443 5	0 0	BP
GO:0048286	9	172	0.059568	0.879008	0.116667	0.775628	0.587715	3.206761	1.114035	2.525999	0.895241		lung alveolus development	BP
GO:0007219	25	204	0.308103	0.134037	0.060769	0.772611	2.307316	4.787016	2.432455	4.935555	0.189675	0.82262 6	Notch signaling pathway	BP
GO:0022857	13	127	0.404651	0.170216	0.093407	0.764582	6.726652	6.253938	7.528755	6.669332	0.228785	0.81454	transmembrane transporter activity	MF
GO:0030518	13	35	0.166633	0.586377	-0.09341	0.764582	3.429866	4.350746	3.592326	4.21898	0.634794	0.81454	steroid hormone receptor signaling pathway	BP
GO:0008206	10	130	0.295908	0.406463	0.115152	0.758833	3.711967	3.706616	3.544795	4.078894	0.4719	0.80933 6		BP
GO:0046966	24	104	-0.09586	0.65591	-0.06696	0.755543	2.847296	4.651241	3.125091	4.6705	0.697975		thyroid hormone receptor binding	MF
GO:0004143	8	88	0.018499	0.965322	-0.14286	0.752034	1.01886	3.688501	0.46234	3.838619	0.969459		diacylglycerol kinase activity	MF
GO:0048661	8	195	0.273265	0.512565	0.142857	0.752034	1.522418	4.689901	1.454915	5.017571	0.568337	7	positive regulation of smooth muscle cell proliferation	BP
GO:0050662	13	67	-0.00087	0.997755	-0.0989	0.75073	3.977718	4.184956	4.224317	4.558348	0.997755	0.80252	coenzyme binding	MF
GO:0006521	41	166	0.242658	0.126347	0.051916	0.746487	6.033826	5.555102	6.346333	5.801958	0.182001		regulation of cellular amino acid metabolic process	BP
GO:0007220	9	51	-0.27669	0.47106	-0.13333	0.743541	2.659795	5.097063	3.273907	5.121863	0.532713	0.79574 1	Notch receptor processing	BP

GO:0032456	9	24	0.182973	0.637493	0.133333	0.743541	2.300023	4.180317	1.895395	3.682134	0.683028	0.79574 1	endocytic recycling	BP
GO:0006206	14	81	0.148233	0.613042	0.098901	0.738503	3.762449	4.379912	3.553859	4.178707	0.660226		pyrimidine base metabolic process	BP
GO:0008277	11	180	0.205644	0.544101	0.118182	0.734252	1.267662	3.853783	-0.49876	3.818152		8	protein coupled receptor protein signaling pathway	BP
GO:0003678	12	48	0.245667	0.44151	0.111888	0.732775	2.188292	4.52689	1.616492	4.658547	0.504775	0.78613 4		MF
GO:0004540	10	49	-0.04265	0.906883	-0.12727	0.732887	4.030075	3.566497	4.084876	3.563018	0.917155		ribonuclease activity	MF
GO:0030414	17	285	-0.06094	0.816269	-0.09314	0.722578	4.263963	4.40822	4.267328	4.939667	0.841861		peptidase inhibitor activity	MF
GO:0004867	21	304	0.104816	0.651151	0.085714	0.711371	4.513812	4.762634	5.28396	5.28103	0.694092		serine-type endopeptidase inhibitor activity	MF
GO:0005663	6	28	0.509142	0.302278	0.2	0.713889	5.947455	5.695225	5.939335	5.559639	0.368751	0.76707 3		СС
GO:0005721	6	18	0.35377	0.491483	0.2	0.713889	4.49101	4.995532	4.477097	4.785633	0.551155	0.76707 3	centromeric heterochromatin	СС
GO:0006734	7	27	0.489475	0.264897	0.178571	0.713095	6.78558	5.404291	6.803334	5.68167	0.329505		NADH metabolic process	BP
GO:0007588	6	149	0.100109	0.850338	0.2	0.713889	2.40698	4.08734	2.655976	4.020161	0.871725	0.76707 3	excretion	BP
GO:0035257	6	58	0.454506	0.365186	0.2	0.713889	0.944933	4.914667	-0.11489	5.072559	0.431034		nuclear hormone receptor binding	MF
GO:0045165	7	102	0.137289	0.769122	0.178571	0.713095	1.713083	3.820347	1.081614	3.919793	0.800724	0.76707 3	cell fate commitment	BP
GO:0070087	6	28	0.433538	0.390435	0.2	0.713889	4.561388	5.348476	3.953923	4.928984	0.455832		chromo shadow domain binding	MF
GO:0070776	6	20	-0.13576	0.797611	-0.2	0.713889	0.355135	4.411923	0.604881	4.495243	0.826255	0.76707	MOZ/MORF histone acetyltransferase complex	СС
GO:0010388	9	32	-0.07711	0.843693	0.15	0.708069	4.678702	5.204871	4.782562	5.088497	0.866333		cullin deneddylation	BP
GO:0010390	9	31	-0.28665	0.454569	0.15	0.708069	3.893637	5.335653	4.479685	5.445761	0.516555	0.76476 3		BP
GO:0001702	10	56	0.289063	0.417915	-0.13939	0.707204	1.42503	4.457764	0.836045	3.948033	0.482506	0.76471	gastrulation with	BP

													mouth forming second	
GO:0050661	14	130	-0.13122	0.65478	-0.11209	0.704285	4.261224	4.216618	4.542605	4.258537	0.697168	0.76199 4	NADP binding	MF
GO:0008630	13	125	0.406205	0.168424	0.120879	0.696085	2.788878	4.263779	2.55828	4.655165	0.226865		DNA damage response, signal transduction resulting in induction of apoptosis	BP
GO:0007257	15	101	-0.0244	0.931206	-0.11071	0.695276	1.268355	4.48884	1.350706	4.622339	0.938846		activation of JUN kinase activity	BP
GO:0015934	10	38	0.391117	0.263735	0.151515	0.681808	6.458516	7.04497	6.659613	6.21791	0.328792		large ribosomal subunit	СС
GO:0019216	9	66	0.576222	0.104388	0.166667	0.677745	2.097659	3.832253	1.314733	2.720074	0.157338		regulation of lipid metabolic process	BP
GO:0032007	9	40	0.175422	0.65167	0.166667	0.677745	0.71269	4.147382	1.19347	4.263584	0.694251		negative regulation of TOR signaling cascade	BP
GO:0030914	13	42	0.213272	0.484179	0.131868	0.669269	2.734504	4.513679	2.500626	4.699925	0.54492	0.72662 4	STAGA complex	СС
GO:0006506	12	80	0.339022	0.281026	0.13986	0.667151	2.535495	3.841226	2.380258	3.881264	0.346432		GPI anchor biosynthetic process	BP

Table S 12: Top 150 Highest Transcript-protein correlation by Gene Otology class in RWPE

				Orang	<u>e</u>						
Annotation	Enrichment Score:										
Cluster 1	12.496483810424145										
								Fold			
		Coun			List	Рор	Рор	Enrichme		Benjami	
Category	Term	t	%	PValue	Total	Hits	Total	nt	Bonferroni	ni	FDR
GOTERM_BP_	GO:0045449~regulation		20.0573			148				1.19E-	7.54E-
FAT	of transcription	280	1	4.21E-17	936	5	7682	1.547498	1.19E-13	13	14
GOTERM_MF_	GO:0003677~DNA		17.6934			130				3.71E-	6.56E-
FAT	binding	247	1	4.20E-15	892	2	7328	1.558499	3.71E-12	12	12
GOTERM_MF_	GO:0003700~transcripti		8.52435							4.90E-	1.73E-
FAT	on factor activity	119	5	1.11E-13	892	500	7328	1.955229	9.81E-11	11	10

GOTERM_BP_	GO:0006350~transcripti		16.4040			121				3.50E-	4.42E-
FAT	on	229	1	2.47E-13	936	6	7682	1.545612	7.00E-10	10	10
	GO:0006355~regulation										
GOTERM_BP_	of transcription, DNA-		13.2521							4.09E-	7.74E-
FAT	dependent	185	5	4.33E-13	936	925	7682	1.641453	1.23E-09	10	10
	GO:0051252~regulation										
GOTERM_BP_	of RNA metabolic		13.3954							1.58E-	4.00E-
FAT	process	187	2	2.23E-12	936	954	7682	1.608762	6.33E-09	09	09
GOTERM_MF_	GO:0030528~transcripti		11.5329							2.08E-	1.10E-
FAT	on regulator activity	161	5	7.09E-08	892	896	7328	1.476177	6.24E-05	05	04
Annotation	Enrichment Score:										
Cluster 2	4.737597178670993										
								Fold			
		Coun			List	Рор	Рор	Enrichme		Benjami	
Category	Term	t	%	PValue	Total	Hits	Total	nt	Bonferroni	ni	FDR
GOTERM MF	GO:0008270~zinc ion		15.9025			136				1.09E-	7.68E-
FAT	binding	222	8	4.94E-07	892	2	7328	1.339049	4.35E-04	04	04
GOTERM MF	GO:0046914~transition		18.4097			165				4.70E-	0.0041
FAT	metal ion binding	257	4	2.67E-06	892	3	7328	1.277265	0.002348	04	52
GOTERM_MF_	GO:0046872~metal ion		24.2836			236				0.00693	0.1351
FAT	binding	339	7	8.70E-05	892	7	7328	1.176582	0.07373	9	78
GOTERM_MF_	GO:0043169~cation		24.4269			239				0.00851	0.1810
FAT	binding	341	3	1.17E-04	892	1	7328	1.171643	0.09753	5	78
GOTERM_MF_	GO:0043167~ion					241				0.01030	0.2376
FAT	binding	343	24.5702	1.53E-04	892	4	7328	1.167286	0.126019	8	12
Annotation	Enrichment Score:										
Cluster 3	3.480997610903036										
								Fold			
		Coun			List	Рор	Рор	Enrichme		Benjami	
Category	Term	t	%	PValue	Total	Hits	Total	nt	Bonferroni	ni	FDR
GOTERM CC	GO:0031226~intrinsic	86	6.16045	1.33E-06	796	456	7021	1.663487	4.94E-04	1.65E-	0.0018

FAT	to plasma membrane		8							04	35
GOTERM_CC_	GO:0005887~integral to		5.80229							6.18E-	0.0160
FAT	plasma membrane	81	2	1.16E-05	796	445	7021	1.605502	0.004319	04	54
GOTERM_CC_	GO:0005886~plasma		14.9713	0.00378		156				0.12025	5.0939
FAT	membrane	209	5	1	796	8	7021	1.175672	0.755686	1	82
GOTERM_CC_	GO:0044459~plasma		9.09742	0.20369		104				0.96156	95.686
FAT	membrane part	127	1	5	796	1	7021	1.076066	1	9	49
Annotation	Enrichment Score:										
Cluster 4	3.3569652578172073										
		6						Fold			
	_	Coun	~	D) (List	Рор	Рор	Enrichme		Benjami	
Category	Term	t	%	PValue	Total	Hits	Total	nt	Bonferroni	ni	FDR
GOTERM_CC_	GO:0034705~potassium		1.21776							2.65E-	0.0039
FAT	channel complex	17	5	2.85E-06	796	40	7021	3.748649	0.001061	04	37
	GO:0008076~voltage-										
GOTERM_CC_	gated potassium		1.21776							2.65E-	0.0039
FAT	channel complex	17	5	2.85E-06	796	40	7021	3.748649	0.001061	04	37
GOTERM_MF_	GO:0005267~potassium		1.50429							4.58E-	0.0048
FAT	channel activity	21	8	3.12E-06	892	55	7328	3.136731	0.002744	04	52
	GO:0005249~voltage-										
GOTERM_MF_	gated potassium		1.28939							3.93E-	0.0048
FAT	channel activity	18	8	3.12E-06	892	42	7328	3.52082	0.002746	04	57
	GO:0022843~voltage-										
GOTERM_MF_	gated cation channel		1.43266							3.99E-	0.0056
FAT	activity	20	5	3.62E-06	892	51	7328	3.221665	0.003184	04	32
GOTERM_CC_	GO:0034703~cation		1.36103							6.58E-	0.0146
FAT	channel complex	19	2	1.06E-05	796	53	7021	3.162013	0.003943	04	55
GOTERM_MF_	GO:0022832~voltage-		1.57593							0.00731	0.1296
FAT	gated channel activity	22	1	8.35E-05	892	72	7328	2.510214	0.070814	8	34
	GO:0005244~voltage-										
GOTERM_MF_	gated ion channel		1.57593							0.00731	0.1296
FAT	activity	22	1	8.35E-05	892	72	7328	2.510214	0.070814	8	34

GOTERM_BP_	GO:0006813~potassium		1.50429							0.02786	0.1961
FAT	ion transport	21	8	1.10E-04	936	68	7682	2.534597	0.267176	3	86
GOTERM_CC_	GO:0034702~ion		1.50429							0.00533	0.1982
FAT	channel complex	21	8	1.44E-04	796	74	7021	2.503073	0.052093	6	76
GOTERM_MF_	GO:0005261~cation		1.86246							0.02077	0.5176
FAT	channel activity	26	4	3.34E-04	892	101	7328	2.114816	0.254618	1	55
GOTERM_MF_	GO:0022836~gated		1.86246								1.3000
FAT	channel activity	26	4	8.42E-04	892	107	7328	1.996228	0.523313	0.04525	12
	GO:0015672~monovale										
GOTERM_BP_	nt inorganic cation		2.29226							0.10830	1.7230
FAT	transport	32	4	9.71E-04	936	144	7682	1.823837	0.936146	5	26
	GO:0046873~metal ion										
GOTERM_MF_	transmembrane		2.14899							0.04662	1.5063
FAT	transporter activity	30	7	9.76E-04	892	132	7328	1.867102	0.576576	2	42
GOTERM_MF_	GO:0022838~substrate		2.14899	0.00141						0.06354	2.1790
FAT	specific channel activity	30	7	7	892	135	7328	1.82561	0.712753	5	38
	GO:0022803~passive										
GOTERM_MF_	transmembrane			0.00175						0.07426	2.6890
FAT	transporter activity	31	2.22063	2	892	143	7328	1.780928	0.786341	6	26
GOTERM_MF_	GO:0015267~channel			0.00175						0.07426	2.6890
FAT	activity	31	2.22063	2	892	143	7328	1.780928	0.786341	6	26
GOTERM_MF_	GO:0005216~ion		2.07736	0.00261						0.10376	3.9819
FAT	channel activity	29	4	1	892	134	7328	1.777927	0.899811	9	44
GOTERM_BP_	GO:0030001~metal ion		2.72206	0.00844						0.47753	14.079
FAT	transport	38	3	6	936	205	7682	1.521347	1	8	67
GOTERM_MF_	GO:0030955~potassium		0.93123	0.01460							20.435
FAT	ion binding	13	2	1	892	50	7328	2.135964	0.999998	0.41685	5
GOTERM_BP_	GO:0006812~cation		3.15186								27.296
FAT	transport	44	2	0.01766	936	257	7682	1.405135	1	0.67416	86
GOTERM_MF_	GO:0031420~alkali		1.28939	0.03432							41.893
FAT	metal ion binding	18	8	7	892	88	7328	1.680391	1	0.64107	7
GOTERM_BP_	GO:0006811~ion		3.72492							0.93042	72.188
FAT	transport	52	8	0.06903	936	342	7682	1.247888	1	6	47
GOTERM_BP_	GO:0055085~transmem	39	2.79369	0.51671	936	311	7682	1.029207	1	0.99913	99.999

FAT	brane transport		6	2						5	78
Annotation	Enrichment Score:										
Cluster 5	3.298323733971374										
Category	Term	Coun t	%	PValue	List Total	Pop Hits	Pop Total	Fold Enrichme nt	Bonferroni	Benjami ni	FDR
GOTERM_BP_ FAT	GO:0045935~positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	73	5.22922	3.05E-05	936	372	7682	1.610565	0.082805	0.01227	0.0545
GOTERM_BP_ FAT	GO:0051173~positive regulation of nitrogen compound metabolic process	74	5.30086	5.44E-05	936	385	7682	1.5775	0.142669	0.01905	0.0971 99
GOTERM_BP_ FAT	GO:0010557~positive regulation of macromolecule biosynthetic process	71	5.08596	9.07E-05	936	371	7682	1.570663	0.226453	0.02535	0.1620 83
GOTERM_BP_ FAT	GO:0009891~positive regulation of biosynthetic process	73	5.22922 6	1.36E-04	936	389	7682	1.540181	0.319436	0.03156	0.2428 23
GOTERM_BP_ FAT	GO:0031328~positive regulation of cellular biosynthetic process	72	5.15759 3	1.69E-04	936	385	7682	1.534865	0.379852	0.03608 6	0.3013 93
GOTERM_BP_ FAT	GO:0045941~positive regulation of transcription	63	4.51289 4	3.05E-04	936	332	7682	1.557403	0.578856	0.05602	0.5448 36
GOTERM_BP_ FAT	GO:0010628~positive regulation of gene expression	63	4.51289 4	5.01E-04	936	338	7682	1.529756	0.758348	0.07587	0.8932 33
GOTERM_BP_ FAT	GO:0045893~positive regulation of	53	3.79656 2	0.00134 7	936	283	7682	1.53705	0.978035	0.13658 3	2.3833 5

	transcription, DNA- dependent										
GOTERM_BP_ FAT	GO:0051254~positive regulation of RNA metabolic process	53	3.79656 2	0.00185	936	287	7682	1.515627	0.994771	0.16569 3	3.2643 96
GOTERM_BP_ FAT	GO:0006357~regulation of transcription from RNA polymerase II promoter	78	5.58739	0.00194	936	461	7682	1.388648	0.995971	0.16790	3.4236 64
	GO:0045944~positive regulation of	78			550	401	7082	1.566048	0.555571		04
GOTERM_BP_ FAT	transcription from RNA polymerase II promoter	39	2.79369 6	0.00489 5	936	205	7682	1.561382	0.999999	0.34370 1	8.4054 13
GOTERM_BP_	GO:0010604~positive regulation of macromolecule		5.73065	0.02096						0.70613	31.551
FAT	metabolic process	80	9	6	936	522	7682	1.257818	1	4	88

				Red							
Annotation	Enrichment Score:										
Cluster 1	4.9524705825017845										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue		Hits	1	nt	oni	ni	FDR
GOTERM_BP_	GO:0030216~keratinocyte			5.20E-			768		2.61E-	2.61E-	7.49E-
FAT	differentiation	7	10	08	54	31	2	32.12306	05	05	05
GOTERM_BP_	GO:0009913~epidermal cell			1.12E-			768		5.63E-	2.81E-	1.62E-
FAT	differentiation	7	10	07	54	35	2	28.45185	05	05	04
GOTERM_BP_	GO:0008544~epidermis			1.37E-			768		6.85E-	2.28E-	1.97E-
FAT	development	9	12.85714	07	54	89	2	14.38577	05	05	04
GOTERM_BP_	GO:0007398~ectoderm			3.14E-			768		1.57E-	3.94E-	4.53E-
FAT	development	9	12.85714	07	54	99	2	12.93266	04	05	04

GOTERM_CC_	GO:0001533~cornified			9.21E-			702		1.23E-	1.23E-	0.0010
FAT	envelope	5	7.142857	07	45	13	1	60.00855	04	04	78
GOTERM_BP_				1.92E-			768		9.62E-	1.92E-	0.0027
FAT	GO:0031424~keratinization	5	7.142857	06	54	14	2	50.80688	04	04	67
GOTERM_BP_	GO:0030855~epithelial cell			8.90E-			768		0.00444	7.43E-	0.0128
FAT	differentiation	7	10	06	54	72	2	13.83076	7	04	14
GOTERM_BP_	GO:0018149~peptide cross-			1.33E-			768		0.06450		0.1915
FAT	linking	4	5.714286	04	54	15	2	37.9358	5	0.00948	3
GOTERM_BP_	GO:0060429~epithelium			1.93E-			768		0.09236	0.01204	0.2782
FAT	development	7	10	04	54	124	2	8.030765	3	1	45
GOTERM_CC_	GO:0070161~anchoring			0.0421			702		0.99687	0.61767	39.592
FAT	junction	4	5.714286	38	45	124	1	5.032975	7	1	42
GOTERM_CC_				0.0778			702		0.99998	0.62727	61.269
FAT	GO:0005856~cytoskeleton	10	14.28571	2	45	851	1	1.833399	1	4	8
Annotation	Enrichment Score:										
Cluster 2	2.5683496481022687										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
GOTERM_BP_	GO:0016337~cell-cell			6.77E-			768		0.28771	0.03699	0.9707
FAT	adhesion	6	8.571429	04	54	103	2	8.286947	8	6	4
GOTERM_BP_				0.0012			768		0.45630	0.05911	1.7367
FAT	GO:0007155~cell adhesion	9	12.85714	16	54	312	2	4.103632	5	7	56
GOTERM_BP_	GO:0022610~biological			0.0012			768		0.46316	0.05498	1.7726
FAT	adhesion	9	12.85714	41	54	313	2	4.090522	2	2	09
GOTERM_CC_	GO:0044459~plasma			0.0521		104	702		0.99923	0.54974	46.606
FAT	membrane part	12	17.14286	83	45	1	1	1.798527	9	7	83
Annotation	Enrichment Score:										
Cluster 3	1.9048898836370938										
		Coun			List	Рор	Рор	Fold	Bonferr	Benjami	
Category	Term	t	%	PValue	Tota	Hits	Tota	Enrichme	oni	ni	FDR

								nt			
GOTERM_CC_	GO:0005576~extracellular			0.0036			702		0.38728	0.21724	4.1898
FAT	region	11	15.71429	49	45	608	1	2.82277	9	1	8
GOTERM_CC_	GO:0005615~extracellular			0.0111			702		0.77821	0.31374	12.330
FAT	space	6	8.571429	76	45	218	1	4.29419	6	9	11
GOTERM_CC_	GO:0044421~extracellular						702		0.99848	0.55586	43.296
FAT	region part	6	8.571429	0.0473	45	318	1	2.943816	6	2	02
Annotation	Enrichment Score:										
Cluster 4	1.6428548903232476										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
GOTERM_BP_	GO:0016337~cell-cell			6.77E-			768		0.28771	0.03699	0.9707
FAT	adhesion	6	8.571429	04	54	103	2	8.286947	8	6	4
GOTERM_CC_				0.0346			702			0.61176	33.856
FAT	GO:0030054~cell junction	6	8.571429	88	45	292	1	3.205936	0.99118	3	71
GOTERM_CC_	GO:0005911~cell-cell			0.0447			702		0.99782	0.58346	41.471
FAT	junction	4	5.714286	19	45	127	1	4.914086	4	2	09
GOTERM_CC_	GO:0043296~apical junction			0.0744			702		0.99996	0.64545	59.586
FAT	complex	3	4.285714	64	45	72	1	6.500926	9	4	71
GOTERM_CC_	GO:0016327~apicolateral			7.81E-			702		0.99998	0.59659	61.397
FAT	plasma membrane	3	4.285714	02	45	74	1	6.325225	1	4	19
Annotation	Enrichment Score:										
Cluster 5	1.6078873006578052										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue		Hits	1	nt	oni	ni	FDR
GOTERM_MF_	GO:0005509~calcium ion			3.64E-			732		5.13E-	5.13E-	0.0042
FAT	binding	15	21.42857	06	57	440	8	4.382775	04	04	97
GOTERM_MF_	GO:0046872~metal ion			0.4465		236	732			0.99615	99.907
FAT	binding	20	28.57143	27	57	7	8	1.086281	1	3	74

GOTERM_MF_				0.4674		239	732			0.99612	99.941
FAT	GO:0043169~cation binding	20	28.57143	3 99	57	1	8	1.075378	1	6	54
GOTERM_MF_				0.4876		241	732			0.99609	99.962
FAT	GO:0043167~ion binding	20	28.57143	3 14	57	4	8	1.065132	1	7	91
	•				•						
				Green							
Annotation	Enrichment Score:										
Cluster 1	4.39077234939865										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
GOTERM_CC_			28.712				702		4.99E-	4.99E-	2.84E-
FAT	GO:0005739~mitochondrion	29	87	2.23E-07	81	892	1	2.81804	05	05	04
GOTERM_CC_	GO:0044429~mitochondrial		18.811				702		0.00163	8.18E-	0.0093
FAT	part	19	88	7.31E-06	81	492	1	3.34736	6	04	29
GOTERM_CC_	GO:0005740~mitochondrial		14.851				702		0.00448	0.00149	
FAT	envelope	15	49	2.01E-05	81	334	1	3.89277	2	6	0.0256
GOTERM_CC_	GO:0031967~organelle		17.821				702		0.00666		0.0380
FAT	envelope	18	78	2.98E-05	81	493	1	3.164751	2	0.00167	89
GOTERM_CC_			17.821				702		0.00683	0.00137	0.0390
FAT	GO:0031975~envelope	18	78	3.06E-05	81	494	1	3.158345	7	1	95
GOTERM_CC_	GO:0031090~organelle		21.782				702		0.03481	0.00588	0.2017
FAT	membrane	22	18	1.58E-04	81	796	1	2.395651	6	9	55
GOTERM_CC_	GO:0019866~organelle		11.881				702		0.04088	0.00594	0.2376
FAT	inner membrane	12	19	1.86E-04	81	265	1	3.925087	2	5	12
GOTERM_CC_	GO:0031966~mitochondrial		12.871				702		0.04174	0.00531	0.2427
FAT	membrane	13	29	1.90E-04	81	312	1	3.611626	7	6	41
GOTERM_CC_	GO:0005743~mitochondrial		9.9009				702		0.33457		2.2947
FAT	inner membrane	10	9	0.001817	81	246	1	3.523537	8	0.04425	51
Annotation	Enrichment Score:										
Cluster 2	1.9562013451606715										

					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
GOTERM_BP_	GO:0015031~protein		15.841				768		0.91617		3.9528
FAT	transport	16	58	0.00256	86	610	2	2.342966	2	0.71047	27
GOTERM_BP_	GO:0045184~establishment		15.841				768		0.92570	0.57961	4.1413
FAT	of protein localization	16	58	0.002685	86	613	2	2.3315	7	3	25
GOTERM_BP_	GO:0008104~protein		15.841				768		0.99983	0.71113	13.187
FAT	localization	16	58	0.008949	86	698	2	2.047578	2	1	35
GOTERM_BP_	GO:0046907~intracellular		8.9108				768				98.755
FAT	transport	9	91	0.243341	86	538	2	1.494294	1	0.98797	95
Annotation	Enrichment Score:										
Cluster 3	1.4804953884813314										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	I	Hits	I	nt	oni	ni	FDR
GOTERM_BP_	GO:0015909~long-chain		2.9702				768		0.99314	0.63088	7.7873
FAT	fatty acid transport	3	97	0.00514	86	10	2	26.79767	8	6	17
GOTERM_BP_	GO:0015908~fatty acid		2.9702				768		0.99999	0.79761	18.773
FAT	transport	3	97	0.01313	86	16	2	16.74855	7	2	37
GOTERM_BP_	GO:0015718~monocarboxyli	_	2.9702				768			0.84122	43.382
FAT	c acid transport	3	97	0.035513	86	27	2	9.925065	1	7	39
GOTERM_BP_	GO:0046942~carboxylic acid		3.9603				768			0.88788	58.934
FAT	transport	4	96	0.055001	86	78	2	4.580799	1	1	21
GOTERM_BP_	GO:0015849~organic acid		3.9603	0.055004		70	768	4 500700		0.88788	58.934
FAT	transport	4	96	0.055001	86	78	2	4.580799	1	1	21
GOTERM_BP_			3.9603	0.074.40	00	07	768	4 400000		0.90107	68.862
FAT	GO:0006869~lipid transport	4	96	0.07148	86	87	2	4.106923	1	8	21
GOTERM_BP_	GO:0010876~lipid		3.9603	0.000550	00	02	768	2.04100	4	0.0164	74.659
FAT	localization	4	96	0.083559	86	93	2	3.84196	1	0.9164	09
Annotation	Enrichment Score:										

Cluster 4	1.4152039870860111										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
	GO:0034622~cellular										
GOTERM_BP_	macromolecular complex		7.9207				768		0.99964	0.73433	12.136
FAT	assembly	8	92	0.008191	86	209	2	3.419161	8	8	91
GOTERM_BP_	GO:0065003~macromolecul		11.881				768			0.81819	22.090
FAT	ar complex assembly	12	19	0.015742	86	478	2	2.242483	1	8	65
	GO:0034621~cellular										
GOTERM_BP_	macromolecular complex		7.9207				768			0.81559	24.046
FAT	subunit organization	8	92	1.73E-02	86	242	2	2.952912	1	5	4
	GO:0043933~macromolecul										
GOTERM_BP_	ar complex subunit		11.881				768			0.80840	31.363
FAT	organization	12	19	0.023639	86	508	2	2.110053	1	3	95
GOTERM_BP_	GO:0070271~protein		6.9306				768				98.850
FAT	complex biogenesis	7	93	0.247154	86	382	2	1.636856	1	0.98806	99
GOTERM_BP_	GO:0006461~protein		6.9306				768				98.850
FAT	complex assembly	7	93	0.247154	86	382	2	1.636856	1	0.98806	99
Annotation	Enrichment Score:										
Cluster 5	1.396074843606603										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
	GO:0007264~small GTPase										
GOTERM_BP_	mediated signal		9.9009				768		0.39732	0.39732	0.8204
FAT	transduction	10	9	5.24E-04	86	212	2	4.213471	8	8	48
GOTERM_MF_	GO:0003924~GTPase		7.9207				732		0.12637	0.12637	0.7557
FAT	activity	8	92	5.92E-04	83	130	8	5.433179	6	6	63
GOTERM_MF_	GO:0019001~guanyl		9.9009				732		0.17859	0.09368	1.0986
FAT	nucleotide binding	10	9	8.63E-04	83	225	8	3.923963	4	6	34

GOTERM MF			9.9009				732		0.17859	0.09368	1.0986
FAT	GO:0005525~GTP binding	10	9	8.63E-04	83	225	8	3.923963	4	6	34
GOTERM_MF_	GO:0032561~guanyl		9.9009				732		0.17859	0.09368	1.0986
FAT	ribonucleotide binding	10	9	8.63E-04	83	225	8	3.923963	4	6	34
GOTERM_MF_	GO:0000166~nucleotide		26.732			152	732		0.95116	0.52989	15.594
FAT	binding	27	67	0.013155	83	4	8	1.564178	1	9	23
GOTERM_BP_	GO:0006986~response to		3.9603				768			0.81787	34.005
FAT	unfolded protein	4	96	0.026072	86	58	2	6.160385	1	1	69
GOTERM_BP_	GO:0007242~intracellular		14.851				768			0.84039	44.959
FAT	signaling cascade	15	49	0.037243	86	757	2	1.769992	1	7	13
GOTERM_BP_	GO:0051789~response to		3.9603				768				63.511
FAT	protein stimulus	4	96	0.062074	86	82	2	4.357345	1	0.89065	9
GOTERM_MF_	GO:0017076~purine		19.801			127	732			0.89356	77.897
FAT	nucleotide binding	20	98	0.11122	83	7	8	1.382759	1	4	88
GOTERM_BP_	GO:0010033~response to		8.9108				768			0.95272	85.576
FAT	organic substance	9	91	0.115808	86	443	2	1.814741	1	5	65
GOTERM_MF_	GO:0032553~ribonucleotide		18.811			122	732			0.89086	82.471
FAT	binding	19	88	0.127172	83	0	8	1.374995	1	1	85
GOTERM_MF_	GO:0032555~purine		18.811			122	732			0.89086	82.471
FAT	ribonucleotide binding	19	88	0.127172	83	0	8	1.374995	1	1	85
GOTERM_CC_	GO:0009898~internal side		4.9504				702			0.92317	96.539
FAT	of plasma membrane	5	95	0.231637	81	216	1	2.006459	1	3	77
GOTERM_MF_	GO:0001882~nucleoside		11.881			109	732				99.999
FAT	binding	12	19	0.700862	83	7	8	0.965788	1	0.99999	98
GOTERM_MF_	GO:0001883~purine		10.891			108	732			0.99999	
FAT	nucleoside binding	11	09	0.796195	83	9	8	0.89181	1	8	100
GOTERM_MF_	GO:0030554~adenyl		9.9009			107	732				
FAT	nucleotide binding	10	9	0.869946	83	7	8	0.819769	1	1	100
GOTERM_MF_			8.9108			101	732				
FAT	GO:0005524~ATP binding	9	91	0.894991	83	1	8	0.785957	1	1	100
GOTERM_MF_	GO:0032559~adenyl		8.9108			102	732				
FAT	ribonucleotide binding	9	91	0.901677	83	2	8	0.777497	1	1	100

				<u>Blue</u>							
Annotation Cluster 1	Enrichment Score: 6.548729456634398										
Category	Term	Coun t	%	PValue	List Tota I	Pop Hits	Pop Tota I	Fold Enrichme nt	Bonferr oni	Benjami ni	FDR
GOTERM_BP_ FAT	GO:0045449~regulation of transcription	53	38.1295	1.46E- 12	105	148 5	768 2	2.611166	1.29E- 09	1.29E- 09	2.27E- 09
GOTERM_BP_ FAT	GO:0006350~transcription	44	31.65468	3.29E- 10	105	121 6	768 2	2.647306	2.92E- 07	1.46E- 07	5.12E- 07
GOTERM_BP_ FAT	GO:0006355~regulation of transcription, DNA- dependent	35	25.17986	2.09E- 08	105	925	768 2	2.768288	1.85E- 05	6.18E- 06	3.25E- 05
GOTERM_BP_ FAT	GO:0051252~regulation of RNA metabolic process	35	25.17986	4.56E- 08	105	954	768 2	2.684137	4.04E- 05	1.01E- 05	7.09E- 05
GOTERM_MF_ FAT	GO:0030528~transcription regulator activity	33	23.74101	3.75E- 07	105	896	732	2.570408	7.72E- 05	7.72E- 05	4.72E- 04
GOTERM_MF_ FAT	GO:0043565~sequence- specific DNA binding	14	10.07194	2.29E- 04	105	292	732	3.346119	0.04615 7	0.02335	0.2885
GOTERM_MF_ FAT GOTERM_MF_	GO:0003700~transcription factor activity	18	12.94964	6.08E- 04 0.0017	105	500 130	732 8 732	2.512457	0.11768	0.02472 9 0.05692	0.7625 43 2.1271
FAT	GO:0003677~DNA binding	32	23.02158	0.0017	105	2	8	1.715281	0.29649	9	92
Annotation Cluster 2	Enrichment Score: 3.9081490277452935										
Category	Term	Coun t	%	PValue	List Tota I	Pop Hits	Pop Tota I	Fold Enrichme nt	Bonferr oni	Benjami ni	FDR
GOTERM_BP_ FAT	GO:0006355~regulation of transcription, DNA- dependent	35	25.17986	2.09E- 08	105	925	768	2.768288	1.85E- 05	6.18E- 06	3.25E- 05

GOTERM_BP_	GO:0051252~regulation of			4.56E-			768		4.04E-	1.01E-	7.09E-
FAT	RNA metabolic process	35	25.17986	08	105	954	2	2.684137	05	05	05
GOTERM_MF_	GO:0030528~transcription			3.75E-			732		7.72E-	7.72E-	4.72E-
FAT	regulator activity	33	23.74101	07	105	896	8	2.570408	05	05	04
	GO:0006357~regulation of										
GOTERM_BP_	transcription from RNA			3.94E-			768		0.03432	0.00696	0.0613
FAT	polymerase II promoter	19	13.66906	05	105	461	2	3.01535	6	1	07
	GO:0045893~positive										
GOTERM_BP_	regulation of transcription,			1.06E-			768		0.08930		0.1641
FAT	DNA-dependent	14	10.07194	04	105	283	2	3.619317	5	0.01547	11
	GO:0051254~positive										
GOTERM_BP_	regulation of RNA metabolic			1.22E-			768		0.10216	0.01527	0.1890
FAT	process	14	10.07194	04	105	287	2	3.568873	3	7	33
GOTERM_BP_	GO:0045941~positive			1.40E-			768		0.11698	0.01543	
FAT	regulation of transcription	15	10.79137	04	105	332	2	3.305508	6	1	0.2182
	GO:0010628~positive										
GOTERM_BP_	regulation of gene			1.70E-			768		0.13947	0.01655	0.2633
FAT	expression	15	10.79137	04	105	338	2	3.24683	4	2	84
	GO:0010557~positive										
	regulation of										
GOTERM_BP_	macromolecule biosynthetic			4.42E-			768		0.32404	0.03840	0.6852
FAT	process	15	10.79137	04	105	371	2	2.958028	1	5	31
	GO:0045935~positive										
	regulation of nucleobase,										
	nucleoside, nucleotide and										
GOTERM_BP_	nucleic acid metabolic	45	40 70407	4.54E-	4.05		768		0.33128	0.00500	0.7040
FAT	process	15	10.79137	04	105	372	2	2.950077	2	0.03592	08
COTEDIA DD	GO:0031328~positive			C 405			700			0.04646	0.0000
GOTERM_BP_	regulation of cellular	4 5	10 704 27	6.40E-	105	205	768	2 050464	0 4220	0.04616	0.9909
FAT	biosynthetic process	15	10.79137	04	105	385	2	2.850464	0.4329	9	49
	GO:0051173~positive										
	regulation of nitrogen			6 405			769			0.04616	0.0000
GOTERM_BP_	compound metabolic	1 Г	10 701 27	6.40E-	105	205	768	2 950464	0 4220	0.04616	0.9909
FAT	process	15	10.79137	04	105	385	2	2.850464	0.4329	9	49

	GO:0009891~positive										
GOTERM_BP_	regulation of biosynthetic			7.09E-			768		0.46649	0.04718	1.0970
FAT	process	15	10.79137	04	105	389	2	2.821153	5	1	49
	GO:0010604~positive										
	regulation of										
GOTERM_BP_	macromolecule metabolic			0.0016			768			0.09804	2.5044
FAT	process	17	12.23022	29	105	522	2	2.382667	0.76416	1	55
	GO:0045944~positive										
	regulation of transcription										
GOTERM_BP_	from RNA polymerase II			0.0017			768		0.79153	0.09925	2.7153
FAT	promoter	10	7.194245	68	105	205	2	3.568873	1	3	98
GOTERM_MF_	GO:0008134~transcription			0.0118			732		0.91372	0.26382	13.912
FAT	factor binding	13	9.352518	24	105	405	8	2.240188	8	1	48
GOTERM_MF_	GO:0016563~transcription			0.0426			732		0.99987	0.45027	42.231
FAT	activator activity	9	6.47482	33	105	277	8	2.267561	3	9	77
Annotation	Enrichment Score:										
Cluster 3	2.2605131805355603										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	-	nt	oni	ni	FDR
GOTERM_MF_	GO:0043565~sequence-			2.29E-			732		0.04615	0.02335	0.2885
FAT	specific DNA binding	14	10.07194	04	105	292	8	3.346119	7	1	04
	GO:0003702~RNA										
GOTERM_MF_	polymerase II transcription			5.75E-			732		0.11175	0.02919	0.7219
FAT	factor activity	10	7.194245	04	105	167	8	4.17907	3	2	11
GOTERM_MF_	GO:0003700~transcription			6.08E-			732			0.02472	0.7625
FAT	factor activity	18	12.94964	04	105	500	8	2.512457	0.11768	9	43
	GO:0045944~positive										
	regulation of transcription										
GOTERM_BP_	from RNA polymerase II			0.0017			768		0.79153	0.09925	2.7153
FAT	promoter	10	7.194245	68	105	205	2	3.568873	1	3	98
GOTERM_MF_	GO:0046983~protein			0.0212			732			0.35748	23.697
FAT	dimerization activity	11	7.913669	45	105	338	8	2.271288	0.98801	7	07

GOTERM_MF_	GO:0042803~protein			0.1705			732			0.72311	90.514
FAT	homodimerization activity	6	4.316547	68	105	207	8	2.022912	1	7	1
GOTERM_MF_	GO:0042802~identical			0.2923			732			0.86930	98.715
FAT	protein binding	9	6.47482	02	105	443	8	1.417865	1	8	03
Annotation	Enrichment Score:										
Cluster 4	2.161855715020018										
					List		Рор	Fold			
		Coun			Tota	Рор	Tota	Enrichme	Bonferr	Benjami	
Category	Term	t	%	PValue	1	Hits	1	nt	oni	ni	FDR
GOTERM_MF_	GO:0008270~zinc ion			3.78E-		136	732		0.07483	0.02559	0.4744
FAT	binding	35	25.17986	04	105	2	8	1.793441	8	5	48
GOTERM_MF_	GO:0046914~transition			0.0031		165	732		0.48190	0.08966	3.9407
FAT	metal ion binding	37	26.61871	87	105	3	8	1.562158	6	5	34
GOTERM_MF_	GO:0046872~metal ion			0.0197		236	732		0.98355	0.36646	22.210
FAT	binding	45	32.3741	44	105	7	8	1.326815	9	8	13
GOTERM_MF_				0.0235		239	732		0.99261	0.35996	25.925
FAT	GO:0043169~cation binding	45	32.3741	46	105	1	8	1.313497	7	4	82
GOTERM_MF_				0.0277		241	732		0.99695	0.38295	29.828
FAT	GO:0043167~ion binding	45	32.3741	34	105	4	8	1.300982	4	8	49

Table S 13: DAVID GO clustering analysis results in VCaP

Name	ConceptType	#Genes	Coeff	OddsRatio	P-Value	FDR	Direction
mitochondrial part	GO Cellular Component	459	0.477479055	19.44024111	1.55E-34	5.03E-32	up
			0.477475055	13.44024111	1.552 54	5.05L 52	up
mitochondrial membrane	GO Cellular Component	292	0.483099941	20.13131986	5.13E-27	8.31E-25	up
mitochondrial envelope	GO Cellular Component	309	0.462403553	17.70163243	7.79E-26	8.41E-24	up
organelle inner membrane	GO Cellular Component	236	0.494350298	21.58920383	9.29E-25	7.52E-23	up

	GO Cellular						
mitochondrial inner membrane	Component	215	0.505933338	23.20058325	2.01E-24	1.30E-22	up
	GO Cellular						
organelle envelope	Component	458	0.386747746	11.06166663	5.23E-24	2.82E-22	up
	GO Cellular						
envelope	Component	460	0.385486555	10.97530627	6.17E-24	2.86E-22	up
	GO Cellular		-				
microtubule cytoskeleton	Component	292	0.349829787	0.113715561	3.83E-19	1.55E-17	down
	GO Cellular						
endoplasmic reticulum part	Component	353	0.350464048	8.828602302	6.27E-17	2.22E-15	ир
	GO Cellular						
subsynaptic reticulum	Component	363	0.346436222	8.610353299	6.84E-17	2.22E-15	up
	GO Cellular	205	-	0.161063936	2 675 16		davua
cytoskeletal part	Component GO Cellular	385	0.293816416	0.161063936	2.67E-16	7.85E-15	down
respiratory chain	Component	61	0.595390491	40.45210038	1.49E-15	4.02E-14	up
nuclear membrane-endoplasmic	GO Cellular						
reticulum network	Component	320	0.345020918	8.534952503	2.26E-15	5.64E-14	up
	GO Cellular						
mitochondrial lumen	Component	189	0.415265891	13.20657444	2.73E-15	5.78E-14	up
	GO Cellular						
mitochondrial matrix	Component	189	0.415265891	13.20657444	2.73E-15	5.78E-14	ир
	GO Cellular						
endoplasmic reticulum membrane	Component	313	0.346637401	8.621125111	2.85E-15	5.78E-14	up
mitochondrial membrane part	GO Cellular	103	0.489332535	20.92636677	3.02E-14	5.75E-13	up

	Component						
	GO Cellular		-				
microtubule	Component	129	0.403025137	0.081704739	3.26E-14	5.86E-13	down
Oxidative phosphorylation	KEGG Pathway	90	0.602292584	42.22499604	1.05E-14	1.75E-12	ир
	GO Molecular		-				
GTPase regulator activity	Function	169	0.372373458	0.098849666	7.20E-15	2.98E-12	down
nucleoside-triphosphatase	GO Molecular		-				
regulator activity	Function	174	0.362892132	0.104849176	2.25E-14	4.64E-12	down
	GO Molecular						
oxidoreductase activity	Function	366	0.317626291	7.198861712	4.21E-14	5.80E-12	ир
mitochondrial respiratory chain	GO Cellular	56	0.563677263	33.21605306	5.01E-13	8.54E-12	
mitochondrial respiratory chain	Component	50	0.503077203	33.21005300	5.01E-13	8.54E-12	up
GTPase activator activity	GO Molecular Function	95	- 0.436687419	0.066281718	1.13E-13	9.36E-12	down
	GO Molecular	55	0.430007413	0.000201710	1.152 15	J.JUL 12	down
small GTPase regulator activity	Function	123	0.399892894	0.083310756	1.13E-13	9.36E-12	down
	GO Biological					0.001 11	
GTP catabolic process	Process	59	-0.52379397	0.038574099	2.74E-14	1.59E-11	down
ľ	GO Biological						
regulation of GTP catabolic process	Process	59	-0.52379397	0.038574099	2.74E-14	1.59E-11	down
	GO Biological						
regulation of GTPase activity	Process	59	-0.52379397	0.038574099	2.74E-14	1.59E-11	down
	GO Molecular						
transmembrane transporter activity	Function	227	0.368367218	9.867612143	3.01E-13	1.97E-11	up
	GO Molecular		-				
enzyme regulator activity	Function	344	0.273181859	0.183100848	3.34E-13	1.97E-11	down

regulation of small GTPase	GO Biological		-				
mediated signal transduction	Process	102	0.429668498	0.0692369	9.09E-14	3.24E-11	down
	GO Biological		-				
regulation of signaling process	Process	286	0.297871525	0.157055695	1.68E-13	3.24E-11	down
regulation of nucleotide catabolic	GO Biological		-				
process	Process	61	0.505452116	0.04323146	1.69E-13	3.24E-11	down
regulation of purine nucleotide	GO Biological		-				
catabolic process	Process	61	0.505452116	0.04323146	1.69E-13	3.24E-11	down
	GO Biological		-				
regulation of Ras GTPase activity	Process	53	0.529230312	0.037292652	1.74E-13	3.24E-11	down
	GO Biological		-				
cell cycle phase	Process	272	0.302901267	0.1522224	1.80E-13	3.24E-11	down
	GO Biological		-				
regulation of signal transduction	Process	282	0.298581529	0.15636423	1.98E-13	3.24E-11	down
nucleoside triphosphate catabolic	GO Biological		-				
process	Process	67	0.488350952	0.048079	2.16E-13	3.24E-11	down
purine ribonucleoside triphosphate	GO Biological		-				
catabolic process	Process	64	0.495003951	0.046131671	2.42E-13	3.24E-11	down
ribonucleoside triphosphate	GO Biological		-				
catabolic process	Process	64	0.495003951	0.046131671	2.42E-13	3.24E-11	down
	GO Biological		-				
GTP metabolic process	Process	64	0.489600194	0.047707182	5.21E-13	6.24E-11	down
purine nucleoside triphosphate	GO Biological		-				
catabolic process	Process	66	0.484413545	0.049269978	5.38E-13	6.24E-11	down

purine ribonucleotide catabolic process	GO Biological Process	67	- 0.477711696	0.051365375	9.89E-13	1.08E-10	down
ligase activity, forming carbon- nitrogen bonds	GO Molecular Function	147	0.358528029	0.107731723	2.48E-12	1.28E-10	down
hydrogen ion transmembrane transporter activity	GO Molecular Function	51	0.576402535	35.94952463	3.29E-12	1.43E-10	up
acid-amino acid ligase activity	GO Molecular Function	125	۔ 0.377453275	0.095777817	3.45E-12	1.43E-10	down
ribonucleotide catabolic process	GO Biological Process	68	- 0.472818853	0.052951236	1.42E-12	1.45E-10	down
Parkinson's disease	KEGG Pathway	89	0.541592459	28.95621559	2.74E-12	2.29E-10	ир
protein amino acid phosphorylation	GO Biological Process	271	- 0.288307935	0.166673107	3.69E-12	3.57E-10	down
regulation of nucleotide metabolic process	GO Biological Process	74	- 0.451761696	0.060354372	4.38E-12	4.01E-10	down
enzyme activator activity	GO Molecular Function	141	- 0.354127785	0.110718382	1.24E-11	4.64E-10	down
M phase	GO Biological Process	221	- 0.308028648	0.14744835	5.52E-12	4.81E-10	down
regulation of Ras protein signal transduction	GO Biological Process	91	- 0.419266346	0.073860579	5.98E-12	4.96E-10	down
oxidative phosphorylation	GO Biological Process	72	0.511959016	24.08585285	6.96E-12	5.51E-10	ир

	GO Biological		-				
cell cycle process	Process	358	0.253583389	0.206816907	1.60E-11	1.21E-09	down
	GO Biological		-				
microtubule-based process	Process	137	0.357812537	0.108211819	1.69E-11	1.23E-09	down
protein serine/threonine kinase	GO Molecular		-				
activity	Function	169	0.325062384	0.132637515	3.96E-11	1.36E-09	down
	GO Biological						
cellular respiration	Process	78	0.489921163	21.00305761	2.19E-11	1.53E-09	up
	GO Molecular		-				
Rab GTPase activator activity	Function	20	0.670649118	0.01548596	5.10E-11	1.62E-09	down
	GO Biological						
oxidation reduction	Process	348	0.285605888	5.899860264	3.58E-11	2.25E-09	up
	GO Biological		_				
purine nucleotide catabolic process	Process	72	0.440325131	0.0648001	3.65E-11	2.25E-09	down
	GO Biological	72	-	0.0010001	51052 11	2.232 03	
regulation of Rab GTPase activity	Process	20	0.675894483	0.01498929	3.75E-11	2.25E-09	down
regulation of Rab protein signal	GO Biological	_					
transduction	Process	20	0.675894483	0.01498929	3.75E-11	2.25E-09	down
	GO Molecular	20		0.01458525	5.75L-11	2.23L-05	uown
Ras GTPase activator activity	Function	44	0.510410866	0.041919528	8.12E-11	2.39E-09	down
generation of precursor metabolites	GO Biological		0.010110000	0.0.1313020	0.120 11	2.352 05	30111
and energy	Process	204	0.349053446	8.751546	4.51E-11	2.62E-09	un
		204	0.343033440	0.731340	4.310-11	2.02E-09	ир
	GO Biological	100	-	0.405766070	4 005 44	3 755 00	al a
regulation of catabolic process	Process	126	0.361490638	0.105766373	4.90E-11	2.75E-09	down
microtubule cytoskeleton	GO Biological		-				
organization	Process	100	0.391007041	0.088040748	5.42E-11	2.89E-09	down
electron transport chain	GO Biological	88	0.464098929	17.88912456	5.48E-11	2.89E-09	ир

	Process						
small conjugating protein ligase activity	GO Molecular Function	111	۔ 0.369719088	0.100493801	1.22E-10	3.36E-09	down
inorganic cation transmembrane transporter activity	GO Molecular Function	79	0.469958332	18.55254277	2.12E-10	5.47E-09	up
Cardiac muscle contraction	KEGG Pathway	26	0.714765181	84.94342799	1.29E-10	7.18E-09	up
ubiquitin-protein ligase activity	GO Molecular Function	97	- 0.379607509	0.094504115	3.64E-10	8.84E-09	down
structural constituent of ribosome	GO Molecular Function	139	0.382435647	10.76917267	4.51E-10	1.03E-08	up
respiratory electron transport chain	GO Biological Process	52	0.528599666	26.71004638	2.74E-10	1.40E-08	up
ATP synthesis coupled electron transport	GO Biological Process	45	0.550088025	30.52608282	3.04E-10	1.47E-08	up
mitochondrial ATP synthesis coupled electron transport	GO Biological Process	45	0.550088025	30.52608282	3.04E-10	1.47E-08	up
cation transmembrane transporter activity	GO Molecular Function	122	0.396251033	11.7346368	7.39E-10	1.61E-08	up
nucleotide catabolic process	GO Biological Process	83	- 0.401009218	0.082734786	4.36E-10	2.05E-08	down
monovalent inorganic cation transmembrane transporter activity	GO Molecular Function	64	0.486460732	20.55620427	1.05E-09	2.07E-08	up
cytochrome-c oxidase activity	GO Molecular Function	15	0.728307806	92.40190465	1.20E-09	2.07E-08	ир
heme-copper terminal oxidase activity	GO Molecular Function	15	0.728307806	92.40190465	1.20E-09	2.07E-08	up
oxidoreductase activity, acting on heme group of donors	GO Molecular Function	15	0.728307806	92.40190465	1.20E-09	2.07E-08	up
oxidoreductase activity, acting on heme group of donors, oxygen as acceptor	GO Molecular Function	15	0.728307806	92.40190465	1.20E-09	2.07E-08	up

regulation of cellular catabolic	GO Biological		_				
process	Process	109	0.363829352	0.104240261	4.98E-10	2.28E-08	down
nucleobase, nucleoside and	GO Biological	105	0.00002002	01101210201		21202 00	
nucleotide catabolic process	Process	85	- 0.395882137	0.085413396	5.54E-10	2.41E-08	down
· · · · ·		65	0.333882137	0.085415550	5.541-10	2.411-08	uown
nucleobase, nucleoside, nucleotide	GO Biological	0.5	-	0.005440000		2 445 00	
and nucleic acid catabolic process	Process	85	0.395882137	0.085413396	5.54E-10	2.41E-08	down
	GO Cellular		0.440700005	16 25 20 60 67	4 775 00	2 075 00	
intrinsic to organelle membrane	Component	75	0.448708225	16.25736067	1.77E-09	2.87E-08	ир
ion transmembrane transporter	GO Molecular						
activity	Function	160	0.349481587	8.774862524	2.43E-09	4.02E-08	ир
	GO Biological		-				
cytoskeleton organization	Process	243	0.266571986	0.190778841	1.30E-09	5.53E-08	down
	GO Cellular						
ribosome	Component	173	0.330800272	7.813039332	3.61E-09	5.57E-08	up
	GO Biological						
mitosis	Process	173	0.300278462	0.154723912	1.72E-09	6.96E-08	down
	FIDCESS	1/3	0.300278402	0.134723912	1.72L-05	0.901-08	uown
	GO Biological		-				
nuclear division	Process	173	0.300278462	0.154723912	1.72E-09	6.96E-08	down
Huntington's disease	KEGG Pathway	126	0.411594744	12.90868102	2.61E-09	1.09E-07	ир
	GO Cellular		-				
microtubule organizing center	Component	134	0.318728933	0.137962219	8.04E-09	1.18E-07	down
	GO Cellular						
integral to organelle membrane	Component	68	0.44592569	15.97864914	9.98E-09	1.41E-07	up
Alzheimer's disease	KEGG Pathway	106	0.427681417	14.2659046	5.12E-09	1.71E-07	up
					0.222 00		
	GO Biological	100	-	0 105770047		1 0 4 5 0 7	davus
M phase of mitotic cell cycle	Process	180	0.289175575	0.165776817	4.65E-09	1.84E-07	down

Chemokine signaling pathway	KEGG Pathway	56	-0.48185232	0.050060484	7.39E-09	1.95E-07	down
Glioma	KEGG Pathway	25	۔ 0.628358948	0.020140862	8.17E-09	1.95E-07	down
phosphotransferase activity, alcohol	GO Molecular						
group as acceptor	Function	285	-0.23531019	0.231688701	1.28E-08	2.04E-07	down
organelle fission	GO Biological Process	181	-0.28460635	0.170551678	8.22E-09	3.18E-07	down
substrate-specific transporter	GO Molecular						
activity	Function	278	0.261541996	5.080354329	3.30E-08	5.05E-07	up
heterocycle catabolic process	GO Biological Process	88	۔ 0.364598728	0.10374304	1.44E-08	5.45E-07	down
•		00	0.304398728	0.10374304	1.44L-08	J.45L-07	uown
cellular nitrogen compound catabolic process	GO Biological Process	90	- 0.357092693	0.108696994	2.45E-08	9.09E-07	down
	GO Cellular		-				_
microtubule associated complex	Component	53	0.415907096	0.075418731	1.02E-07	1.38E-06	down
Chronic myeloid leukemia	KEGG Pathway	40	- 0.509927007	0.042045769	6.87E-08	1.44E-06	down
	GO Biological						
RNA processing	Process	455	0.212295057	3.740916286	3.96E-08	1.44E-06	up
	GO Biological		-				
mitotic cell cycle	Process	296	0.224680625	0.247510559	5.34E-08	1.90E-06	down
T cell receptor signaling pathway	KEGG Pathway	38	- 0.511077754	0.041746154	1.20E-07	2.23E-06	down

	GO Molecular		-				
kinase activity	Function	314	0.210972892	0.269519687	1.52E-07	2.23E-06	down
			-				
Focal adhesion	KEGG Pathway	82	0.391785229	0.087615999	1.43E-07	2.39E-06	down
	GO Cellular		-				
condensed chromosome	Component	92	0.336172546	0.123788523	2.03E-07	2.64E-06	down
	GO Biological		-				
cell division	Process	202	0.257183514	0.202241096	7.79E-08	2.71E-06	down
	GO Molecular		-				
ubiquitin thiolesterase activity	Function	38	0.454385848	0.05937809	2.11E-07	3.00E-06	down
Natural killer cell mediated			-				
cytotoxicity	KEGG Pathway	29	0.549119959	0.032956547	2.34E-07	3.55E-06	down
	GO Cellular	_					
ribonucleoprotein complex	Component	428	0.199459193	3.454095793	3.42E-07	4.27E-06	up
	GO Cellular						
ribosomal subunit	Component	110	0.344368105	8.500396537	3.71E-07	4.45E-06	up
	GO Biological						
transmembrane transport	Process	282	0.249219641	4.70583111	1.36E-07	4.63E-06	up
	GO Molecular						
structural molecule activity	Function	264	0.2474829	4.655313402	3.41E-07	4.69E-06	ир
			-	0.044000500	2 725 07		
Renal cell carcinoma	KEGG Pathway	34	0.513899017	0.041020596	3.73E-07	5.08E-06	down
Ubiquitin mediated proteolysis	KEGG Pathway	88	- 0.370610161	0.099938837	3.96E-07	5.08E-06	down
antigen processing and			0.0,0010101		0.002 07	0.002.00	
presentation of peptide antigen via	GO Biological						
MHC class I	Process	11	0.699498506	77.25480223	2.34E-07	7.83E-06	up

	GO Molecular						
RNA binding	Function	515	0.180583101	3.071767718	6.87E-07	9.15E-06	up
	GO Molecular		-				
ligase activity	Function	240	0.221787667	0.252000695	8.08E-07	1.04E-05	down
	GO Biological						
glycoprotein biosynthetic process	Process	67	0.415930914	13.26126826	3.36E-07	1.09E-05	up
antigen processing and	GO Biological						
presentation of peptide antigen	Process	12	0.677755597	67.49040381	3.38E-07	1.09E-05	up
NADH dehydrogenase (quinone)	GO Molecular						
activity	Function	37	0.486434934	20.55290878	1.16E-06	1.37E-05	up
NADH dehydrogenase (ubiquinone)	GO Molecular						
activity	Function	37	0.486434934	20.55290878	1.16E-06	1.37E-05	up
	GO Molecular						
NADH dehydrogenase activity	Function	37	0.486434934	20.55290878	1.16E-06	1.37E-05	up
			-				
Neurotrophin signaling pathway	KEGG Pathway	62	0.404310752	0.081054552	1.18E-06	1.40E-05	down
mitochondrial respiratory chain	GO Cellular						
complex I	Component	39	0.465952811	18.09641975	1.56E-06	1.68E-05	ир
	GO Cellular						
NADH dehydrogenase complex	Component	39	0.465952811	18.09641975	1.56E-06	1.68E-05	ир
recoiratory chain complay l	GO Cellular	20	0 465052911	19.00641075			
respiratory chain complex I	Component	39	0.465952811	18.09641975	1.56E-06	1.68E-05	ир
Pathways in cancer	KEGG Pathway	128	- 0.308548938	0.146972361	1.69E-06	1.88E-05	down
		120	0.308348938	0.140972301	1.092-00	1.886-05	uown
guanyl-nucleotide exchange factor	GO Molecular	52	-	0.001020005	1 695 06		down
activity	Function GO Molecular	52	0.384242314	0.091820895	1.68E-06	1.92E-05	down
electron carrier activity	Function	70	0.39119475	11.37163462	1.77E-06	1.97E-05	up
		,0		11.57 105402	1.772.00	1.572 05	44
Insulin signaling pathway	KEGG Pathway	61	0.398605701	0.083979864	2.12E-06	2.21E-05	down
protein K48-linked ubiquitination	GO Biological	14	-	0.02278734	9.73E-07	3.08E-05	down

	Process		0.608493748				
oxidoreductase activity, acting on NADH or NADPH, quinone or similar	GO Molecular	42	0 455004405	10 07120145			
compound as acceptor	Function	42	0.455624435	16.97136145	2.84E-06	3.09E-05	ир
mitochondrial electron transport, NADH to ubiquinone	GO Biological Process	36	0.488526668	20.82182654	1.07E-06	3.32E-05	up
Non-small cell lung cancer	KEGG Pathway	25	- 0.531450936	0.036781536	3.46E-06	3.40E-05	down
Regulation of actin cytoskeleton	KEGG Pathway	83	-0.34846926	0.114681118	4.26E-06	3.95E-05	down
regulation of hydrolase activity	GO Biological Process	141	۔ 0.268804465	0.188150255	1.46E-06	4.45E-05	down
glycoprotein metabolic process	GO Biological Process	86	0.363685679	9.584660569	1.61E-06	4.85E-05	ир
Vascular smooth muscle contraction	KEGG Pathway	32	- 0.476484247	0.051758694	7.27E-06	6.39E-05	down
Apoptosis	KEGG Pathway	42	- 0.432748095	0.06792441	7.91E-06	6.61E-05	down
early endosome	GO Cellular Component	80	۔ 0.315628786	0.140645997	6.90E-06	7.21E-05	down
spindle	GO Cellular Component	107	۔ 0.281277446	0.174116774	8.02E-06	8.12E-05	down
Ras protein signal transduction	GO Biological Process	102	۔ 0.296168644	0.1587266	3.00E-06	8.85E-05	down
cysteine-type peptidase activity	GO Molecular Function	67	- 0.331873174	0.1271406	8.39E-06	8.89E-05	down
ErbB signaling pathway	KEGG Pathway	37	- 0.445484903	0.062755184	1.17E-05	9.27E-05	down
Toll-like receptor signaling pathway	KEGG Pathway	31	۔ 0.472146465	0.053172962	1.24E-05	9.43E-05	down
intrinsic to endoplasmic reticulum membrane	GO Cellular Component	38	0.442570275	15.64890296	1.03E-05	1.01E-04	up

energy derivation by oxidation of organic compounds	GO Biological Process	101	0.332166114	7.879640035	3.96E-06	1.15E-04	up
microtubule organizing center organization	GO Biological Process	24	۔ 0.486575198	0.04861252	4.35E-06	1.24E-04	down
T cell receptor signaling pathway	GO Biological Process	16	- 0.556086564	0.031560149	4.42E-06	1.24E-04	down
centrosome organization	GO Biological Process	23	-0.49298288	0.046714746	4.50E-06	1.24E-04	down
regulation of catalytic activity	GO Biological Process	366	- 0.176721333	0.333452841	4.71E-06	1.28E-04	down
RIG-I-like receptor signaling pathway	KEGG Pathway	29	۔ 0.475282523	0.052146687	1.88E-05	1.37E-04	down
endoplasmic reticulum lumen	GO Cellular Component	47	0.406296713	12.49058101	1.69E-05	1.61E-04	ир
Fc epsilon RI signaling pathway	KEGG Pathway	21	- 0.523926298	0.03854239	2.54E-05	1.77E-04	down
oxidoreductase activity, acting on NADH or NADPH	GO Molecular Function	60	0.379870293	10.59884465	1.75E-05	1.80E-04	up
purine ribonucleotide metabolic process	GO Biological Process	132	۔ 0.260378127	0.198265543	6.80E-06	1.82E-04	down
B cell receptor signaling pathway	KEGG Pathway	28	- 0.473128364	0.052849482	2.84E-05	1.89E-04	down
intracellular protein kinase cascade	GO Biological Process	201	۔ 0.220243159	0.254431173	7.32E-06	1.90E-04	down
signal transmission via phosphorylation event	GO Biological Process	201	۔ 0.220243159	0.254431173	7.32E-06	1.90E-04	down

transferase activity, transferring	GO Molecular	411	-	0 270200020		2 175 04	davua
phosphorus-containing groups	Function	411	0.155962248	0.379369638	2.16E-05	2.17E-04	down
	GO Biological	100	-	0.000100017		2 275 04	
ribonucleotide metabolic process	Process	139	0.252526087	0.208180317	8.86E-06	2.27E-04	down
activation of immuno response	GO Biological	25		0.054590265		2 265 04	down
activation of immune response	Process	25	0.467916556	0.054589265	9.35E-06	2.36E-04	down
integral to endoplasmic reticulum	GO Cellular						
membrane	Component	34	0.442417737	15.63407543	2.74E-05	2.54E-04	ир
DNIA colicing	GO Biological	252	0.219993949	2 024252624		2 615 04	
RNA splicing	Process	252	0.219993949	3.924253634	1.05E-05	2.61E-04	ир
	GO Cellular	1.40	-	0.00000000	2 0 2 5 0 5	2 625 04	
soluble fraction	Component	148	0.234466879	0.232906134	2.93E-05	2.63E-04	down
Endocytosis	KEGG Pathway	111	- 0.282876124	0.172395461	4.41E-05	2.83E-04	down
antigen receptor-mediated	GO Biological		_				
signaling pathway	Process	18	0.516058714	0.04047371	1.29E-05	3.08E-04	down
immune response-activating cell	GO Biological		_				
surface receptor signaling pathway	Process	18	0.516058714	0.04047371	1.29E-05	3.08E-04	down
immune response-regulating cell	GO Biological					0.001 0 .	0.0111
surface receptor signaling pathway	Process	18	0.516058714	0.04047371	1.29E-05	3.08E-04	down
		10	0.510050714	0.04047371	1.252 05	5.002 04	down
immune response-activating signal transduction	GO Biological Process	23	- 0.474059045	0.052544693	1.43E-05	3.31E-04	down
		23	0.474033043	0.032344033	1.452-05	5.51L-04	uown
immune response-regulating	GO Biological	22	-	0.052544602	1 425 05		down
signaling pathway	Process	23	0.474059045	0.052544693	1.43E-05	3.31E-04	down
Shigellosis	KEGG Pathway	39	-0.41021859	0.07813261	5.43E-05	3.36E-04	down
protein modification by small	GO Biological		-	• • • • • • • • • • • • • • •			
protein conjugation or removal	Process	220	0.205942626	0.278078255	1.50E-05	3.44E-04	down
ubiquitin-dependent protein	GO Biological		-				
catabolic process	Process	190	0.217855725	0.258234303	1.58E-05	3.57E-04	down

	GO Biological						
mRNA processing	Process	251	0.21574066	3.821884593	1.63E-05	3.63E-04	up
Prostate cancer	KEGG Pathway	42	- 0.397381798	0.084621057	6.14E-05	3.66E-04	down
antigen processing and	GO Biological		0.557501750	0.001021037	0.112.05	5.002 01	aown
presentation	Process	19	0.53735829	28.20420779	1.82E-05	4.02E-04	up
•	GO Molecular		-				
thiolester hydrolase activity	Function	50	0.345418133	0.116876399	4.39E-05	4.32E-04	down
mTOR signaling pathway	KEGG Pathway	24	- 0.477774822	0.051345228	7.67E-05	4.42E-04	down
regulation of cell cycle	GO Biological Process	220	۔ 0.202995188	0.283218799	2.06E-05	4.47E-04	down
nucleoside triphosphate metabolic	GO Biological		-				
process	Process	127	0.251983937	0.208882912	2.12E-05	4.57E-04	down
regulation of protein metabolic process	GO Biological Process	326	- 0.171939241	0.343511392	2.39E-05	5.08E-04	down
regulation of cell cycle process	GO Biological Process	77	- 0.303109262	0.152025764	2.46E-05	5.16E-04	down
ribonucleoside triphosphate metabolic process	GO Biological Process	118	- 0.257458887	0.201895289	2.49E-05	5.16E-04	down
glycosylation	GO Biological Process	50	0.396026329	11.71826147	2.60E-05	5.20E-04	up
macromolecule glycosylation	GO Biological Process	50	0.396026329	11.71826147	2.60E-05	5.20E-04	ир
protein amino acid glycosylation	GO Biological Process	50	0.396026329	11.71826147	2.60E-05	5.20E-04	ир
nucleobase, nucleoside and nucleotide metabolic process	GO Biological Process	248	- 0.191151173	0.304851767	2.64E-05	5.22E-04	down
Basal transcription factors	KEGG Pathway	36	0.423595329	13.90820513	9.39E-05	5.23E-04	up
Small cell lung cancer	KEGG Pathway	42	-	0.089627512	1.00E-04	5.41E-04	down

			0.388132754				
purine ribonucleoside triphosphate	GO Biological		-				
metabolic process	Process	117	0.256644727	0.202919405	2.87E-05	5.62E-04	down
	GO Biological		-				
regulation of glucose import	Process	11	0.588596264	0.025786734	3.02E-05	5.84E-04	down
NOD-like receptor signaling			-				
pathway	KEGG Pathway	26	0.456553889	0.058583424	1.13E-04	5.90E-04	down
	GO Biological		-				
polyol metabolic process	Process	22	0.465531634	0.055404378	3.45E-05	6.60E-04	down
regulation of ARF protein signal	GO Biological		-				
transduction	Process	21	0.472179768	0.053161958	3.58E-05	6.75E-04	down
transcription initiation from RNA	GO Biological						
polymerase II promoter	Process	54	0.38064986	10.65031748	3.60E-05	6.75E-04	up
			-				
Colorectal cancer	KEGG Pathway	30	0.430536986	0.068864213	1.36E-04	6.89E-04	down
	GO Cellular						
small ribosomal subunit	Component	55	0.360991984	9.425546435	7.97E-05	6.98E-04	up
	GO Biological		-				
protein autoubiquitination	Process	11	0.583037222	0.026693162	3.86E-05	7.16E-04	down
protein amino acid N-linked	GO Biological						
glycosylation	Process	26	0.477670924	19.46343535	4.13E-05	7.57E-04	up
			-				
Melanoma	KEGG Pathway	21	0.483442306	0.049568265	1.58E-04	7.74E-04	down
	GO Biological		-				
meiosis I	Process	15	0.522881225	0.038793526	4.58E-05	8.22E-04	down
purine nucleoside triphosphate	GO Biological		-				
metabolic process	Process	122	0.247046969	0.215391044	4.58E-05	8.22E-04	down
	GO Cellular		-				
spindle pole	Component	37	0.373231004	0.098324267	1.03E-04	8.60E-04	down
	GO Cellular		-				
endosome	Component	203	0.193209793	0.300976483	1.05E-04	8.60E-04	down

condensed chromosome	GO Cellular		-				
kinetochore	Component	55	0.322745349	0.134561241	1.06E-04	8.60E-04	down
regulation of microtubule	GO Biological		-				
cytoskeleton organization	Process	26	0.433621415	0.067556759	4.96E-05	8.65E-04	down
regulation of phosphate metabolic	GO Biological		_				
process	Process	199	0.202459318	0.284163553	4.97E-05	8.65E-04	down
regulation of phosphorus metabolic	GO Biological	100					
process	Process	199	0.202459318	0.284163553	4.97E-05	8.65E-04	down
process	GO Biological	155	0.202433318	0.204103333	4.571-05	0.05L-04	uowii
organic alcohol transport	Process	11	0.599380332	41.46766076	5.23E-05	9.01E-04	up
	GO Biological				0.202.00	0.011 0.	
transcription initiation	Process	66	0.347908657	8.68950486	5.56E-05	9.48E-04	up
hydrogen ion transporting ATP							
synthase activity, rotational	GO Molecular						
mechanism	Function	10	0.604292786	42.75314852	1.02E-04	9.80E-04	up
	GO Biological		-			0.001.01	
spindle organization	Process	42	0.364330347	0.103916215	5.85E-05	9.89E-04	down
	GO Biological						
cellular lipid metabolic process	Process	266	0.19621317	3.385115262	6.00E-05	0.001004985	up
	GO Biological		-				
glucose import	Process	12	0.555928564	0.031591153	6.21E-05	0.00102842	down
	GO Biological						
translational elongation	Process	90	0.308007338	6.781137762	6.26E-05	0.00102842	ир
	GO Cellular						
integral to peroxisomal membrane	Component	10	0.587162719	38.43567978	1.42E-04	0.001073986	ир
	GO Cellular	10	0 5074 60740	20 425 57070	4 425 04	0.001070006	
intrinsic to peroxisomal membrane	Component	10	0.587162719	38.43567978	1.42E-04	0.001073986	ир
Calgi mombrana	GO Cellular	227	0.19750164	2 412220010	1.45E-04	0.001073986	un
Golgi membrane	Component	227	0.19750104	3.412329818	1.45E-04	0.0010/3986	up
	GO Cellular	24-	0.470406404	2 070670242		0.004070000	
membrane fraction	Component	317	0.170136491	2.878679312	1.46E-04	0.001073986	up
MAPK signaling pathway	KEGG Pathway	83	-	0.166166711	2.29E-04	0.001093514	down

			0.288797569				
	GO Molecular						
SH3 domain binding	Function	57	-0.3144631	0.141668575	1.17E-04	0.001097754	down
purine nucleotide metabolic	GO Biological		-				
process	Process	154	0.220906555	0.253384378	6.77E-05	0.001102235	down
	GO Biological		-				
regulation of glucose transport	Process	12	0.553282118	0.032115017	6.97E-05	0.001124189	down
	GO Biological		-				
regulation of organelle organization	Process	120	0.243086252	0.220758533	7.24E-05	0.001156323	down
	GO Molecular		-				
enzyme binding	Function	350	0.151399344	0.390281272	1.26E-04	0.001156949	down
	GO Biological		-				
protein catabolic process	Process	245	0.181944549	0.322802672	7.58E-05	0.001194557	down
RNA elongation from RNA	GO Biological						
polymerase II promoter	Process	41	0.40434698	12.34014805	7.62E-05	0.001194557	up
protein modification by small	GO Biological		_				
protein conjugation	Process	188	0.202229208	0.28457021	7.88E-05	0.001225363	down
	GO Biological		-				
protein K63-linked ubiquitination	Process	10	0.584288973	0.026486318	7.97E-05	0.001228372	down
regulation of microtubule-based	GO Biological		-				
process	Process	28	0.413580938	0.076516916	8.29E-05	0.001258504	down
nucleoside phosphate metabolic	GO Biological		-				
process	Process	232	0.185018666	0.316694245	8.39E-05	0.001258504	down
	GO Biological		-				
nucleotide metabolic process	Process	232	0.185018666	0.316694245	8.39E-05	0.001258504	down
	GO Biological		-				
mitotic cell cycle checkpoint	Process	31	0.398567649	0.083999726	8.62E-05	0.001282051	down
	GO Cellular		-				
focal adhesion	Component	51	0.322365766	0.134879041	1.89E-04	0.001361519	down

	GO Biological						
proteoglycan metabolic process	Process	14	0.551244629	30.74629	9.24E-05	0.001363458	up
			-				
Hepatitis C	KEGG Pathway	59	0.323030956	0.134322615	3.03E-04	0.001407154	down
	GO Biological						
regulation of blood pressure	Process	20	0.498669574	22.17656223	9.70E-05	0.001418696	up
	GO Cellular						
mitochondrial ribosome	Component	48	0.360878701	9.418913091	2.13E-04	0.001447391	up
	GO Cellular						
organellar ribosome	Component	48	0.360878701	9.418913091	2.13E-04	0.001447391	up
	GO Cellular						
microbody	Component	69	0.315623055	7.109796314	2.19E-04	0.001447391	up
	GO Cellular						
peroxisome	Component	69	0.315623055	7.109796314	2.19E-04	0.001447391	up
condensed chromosome,	GO Cellular						
centromeric region	Component	58	-0.30446684	0.150748546	2.24E-04	0.001452739	down
	GO Biological		-				
protein polyubiquitination	Process	21	0.452150039	0.060208888	1.02E-04	0.00147309	down
Acute myeloid leukemia	KEGG Pathway	25	-0.43738848	0.065993568	3.41E-04	0.001504817	down
N-Glycan biosynthesis	KEGG Pathway	34	0.403365275	12.26509109	3.42E-04	0.001504817	up
	GO Biological						
DNA integrity checkpoint	Process	35	-0.37703747	0.096025633	1.14E-04	0.001644407	down
	GO Cellular						
holo TFIIH complex	Component	10	0.573352975	35.27463126	2.60E-04	0.001650439	up
	GO Biological		-				
S phase	Process	16	0.491643952	0.047105077	1.20E-04	0.001709661	down
	GO Biological		-				
regulation of mitotic cell cycle	Process	85	0.270814396	0.1858147	1.21E-04	0.001714299	down
- /	GO Cellular		-				
HOPS complex	Component	12	0.521954797	0.03901752	2.77E-04	0.00172688	down
•	GO Cellular						
neuron projection	Component	133	-0.21628796	0.260762588	2.95E-04	0.001799696	down

	GO Cellular						
perinuclear region of cytoplasm	Component	170	0.195337121	0.297023609	3.00E-04	0.001799696	down
	GO Cellular	170	0.155557121	0.237023003	3.00L-04	0.001755050	uowii
ubiquitin ligase complex	Component	81	0.262494752	0.195674637	3.19E-04	0.0018767	down
	GO Molecular	01	0.202494792	0.199074097	3.131-04	0.0018707	uowii
microtubule binding	Function	45	0.332662543	0.126518425	2.16E-04	0.001938799	down
	GO Cellular	+5	-	0.120510425	2.101 04	0.001550755	down
cell-substrate adherens junction	Component	52	0.310095004	0.145566984	3.37E-04	0.001951241	down
	GO Molecular		-				
ubiquitin-specific protease activity	Function	25	0.409532701	0.078466363	2.26E-04	0.001954432	down
	GO Molecular						
UDP-glycosyltransferase activity	Function	37	0.399721935	11.99050606	2.27E-04	0.001954432	up
			-				
Endometrial cancer	KEGG Pathway	27	0.418371624	0.074272413	4.65E-04	0.001989047	down
	GO Molecular		-				
ARF GTPase activator activity	Function	17	0.465651006	0.055363292	2.43E-04	0.002046694	down
Leukocyte transendothelial			-				
migration	KEGG Pathway	41	0.358356585	0.107846567	5.05E-04	0.002107272	down
transferase activity, transferring	GO Molecular						
hexosyl groups	Function	66	0.322802853	7.434216735	2.55E-04	0.002109285	up
modification-dependent	GO Biological		-				
macromolecule catabolic process	Process	195	0.191984623	0.30327685	1.53E-04	0.00212976	down
modification-dependent protein	GO Biological		-				
catabolic process	Process	195	0.191984623	0.30327685	1.53E-04	0.00212976	down
	GO Biological						
response to retinoic acid	Process	16	0.520226531	25.35571148	1.60E-04	0.002214663	up
	GO Biological		-				
DNA damage checkpoint	Process	34	0.372805274	0.098584752	1.79E-04	0.002447738	down
	GO Molecular		-				
tubulin binding	Function	65	0.283981433	0.171215323	3.09E-04	0.002503695	down
	GO Molecular		-				
motor activity	Function	52	0.308556106	0.146965814	3.19E-04	0.002535659	down
microsome	GO Cellular	105	0.255175521	4.88327381	4.62E-04	0.002623334	up

	Component						
	GO Molecular						
serine hydrolase activity	Function	45	0.365157801	9.672749735	3.50E-04	0.002726686	up
	GO Biological		-				
protein ubiquitination	Process	171	0.198174934	0.291831251	2.21E-04	0.003006955	down
	GO Biological						
RNA elongation	Process	45	0.372118008	10.10032483	2.25E-04	0.003030346	up
	GO Biological						
fatty acid metabolic process	Process	111	0.263667661	5.147911941	2.29E-04	0.003066249	ир
	GO Cellular		-				
cell-substrate junction	Component	57	0.290866992	0.164043381	5.51E-04	0.003080693	down
TGF-beta signaling pathway	KEGG Pathway	22	- 0.436646404	0.066298614	7.57E-04	0.00308307	down
monocarboxylic acid metabolic	GO Biological						
process	Process	160	0.224953078	4.047078335	2.44E-04	0.003224476	up
	GO Biological						
lipid metabolic process	Process	381	0.152907983	2.586390286	2.44E-04	0.003224476	up
transferase activity, transferring	GO Molecular						
glycosyl groups	Function	97	0.267989742	5.288058781	4.32E-04	0.00330557	up
	GO Biological		-				
regulation of S phase	Process	12	0.522227102	0.038951548	2.55E-04	0.003339529	down
	GO Biological						
ribosome biogenesis	Process	116	0.257003079	4.939052034	2.58E-04	0.003346249	ир
	GO Cellular						
large ribosomal subunit	Component	57	0.318413905	7.234184448	6.34E-04	0.003483706	ир
Peroxisome	KEGG Pathway	57	0.320330477	7.320864168	8.77E-04	0.003486558	ир
Pancreatic cancer	KEGG Pathway	33	- 0.373696291	0.098040365	9.06E-04	0.003517184	down
	GO Cellular						-
kinetochore	Component	72	0.262596663	0.195550749	6.63E-04	0.003579866	down
Ribosome	KEGG Pathway	78	0.281863061	5.764212025	0.001045216	0.003967069	up
Rho protein signal transduction	GO Biological	47	-	0.135159603	3.10E-04	0.004002945	down

	Process		0.322031401				
negative regulation of microtubule	GO Biological						
depolymerization	Process	12	-0.51630267	0.040412394	3.22E-04	0.004093776	down
regulation of microtubule	GO Biological						
depolymerization	Process	12	-0.51630267	0.040412394	3.22E-04	0.004093776	down
unsaturated fatty acid metabolic	GO Biological						
process	Process	17	0.495801905	21.78484483	3.29E-04	0.004151514	up
	GO Biological		-				
regulation of ARF GTPase activity	Process	16	0.468466404	0.054403047	3.33E-04	0.004165179	down
Bladder cancer	KEGG Pathway	19	-0.44829168	0.061670036	0.00112336	0.004168915	down
small GTPase mediated signal	GO Biological		-				
transduction	Process	194	0.182930403	0.320831003	3.46E-04	0.004274106	down
regulation of cytoskeleton	GO Biological		-				
organization	Process	66	0.281620006	0.173746495	3.46E-04	0.004274106	down
	GO Molecular		-				
kinase regulator activity	Function	43	0.319566322	0.137246122	5.90E-04	0.0044297	down
	GO Biological		-				
cellular protein catabolic process	Process	219	0.173365994	0.340479041	3.64E-04	0.004442442	down
	GO Biological		-				
heterocycle metabolic process	Process	238	0.167453273	0.353222727	3.65E-04	0.004442442	down
	GO Biological						
aerobic respiration	Process	29	0.419527321	13.56099808	3.74E-04	0.004522376	up
proteolysis involved in cellular	GO Biological		-				
protein catabolic process	Process	218	0.172576208	0.34215429	4.01E-04	0.004815538	down
	GO Biological						
protein processing	Process	31	0.408733347	12.68116179	4.08E-04	0.004870251	up
positive regulation of NF-kappaB	GO Biological		-				
transcription factor activity	Process	21	0.421611108	0.072792103	4.28E-04	0.005069808	down
cytoskeleton-dependent	GO Biological		-				
intracellular transport	Process	25	0.395126664	0.085815352	4.65E-04	0.00545265	down
ncRNA metabolic process	GO Biological	188	0.200462272	3.475695004	4.67E-04	0.00545265	ир

	Process						
positive regulation of immune	GO Biological		-				
response	Process	34	0.353184995	0.111368993	4.91E-04	0.005696691	down
	GO Molecular						
carboxylesterase activity	Function	36	0.376955309	10.40857009	7.78E-04	0.005736629	up
	GO Biological						
lipid biosynthetic process	Process	185	0.20068286	3.480462979	5.07E-04	0.005842725	up
	GO Biological		-				
protein oligomerization	Process	98	0.234980613	0.23216373	5.28E-04	0.006049633	down
ribonucleoprotein complex	GO Biological						
biogenesis	Process	171	0.206606597	3.610979367	5.48E-04	0.006233614	up
	GO Biological						
ion transport	Process	191	0.196592892	3.393112955	5.52E-04	0.006244182	up
	GO Biological		-				
microtubule-based movement	Process	42	0.324568025	0.133045637	5.56E-04	0.006246603	down
	GO Cellular						
organelle outer membrane	Component	80	0.266556533	5.241168065	0.001203952	0.006394764	up
Exustance and mannance metabolism	KECC Dathway	27	-	0 002110742	0.001767722	0.006417629	down
Fructose and mannose metabolism	KEGG Pathway	27	0.383721197	0.092118742	0.001767733	0.006417638	down
	GO Biological		-				
regulation of phosphorylation	Process	184	0.180407767	0.325900365	5.85E-04	0.006532278	down
	GO Cellular						
cell surface	Component	95	0.247362741	4.651838389	0.001260348	0.006586336	ир
protein maturation by peptide bond	GO Biological						
cleavage	Process	21	0.45274342	16.67020382	5.96E-04	0.00661227	up
positive regulation of response to	GO Biological		-				
stimulus	Process	71	0.263907662	0.193964002	6.27E-04	0.006906491	down
regulation of microtubule	GO Biological		_				
polymerization or depolymerization	Process	18	0.434909507	0.067018127	6.35E-04	0.006951232	down
	GO Cellular	10	0.101000007	0.007010127	0.001 04	0.000001202	
outer membrane	Component	81	0.262095058	5.097845849	0.001403039	0.007130644	up
endosomal part	GO Cellular	120	-	0.284860904	0.00143053	0.007130644	down

	Component		0.202064918				
	GO Cellular		-				
endosome membrane	Component	120	0.202064918	0.284860904	0.00143053	0.007130644	down
	GO Cellular						
mitochondrial outer membrane	Component	69	0.278659624	5.650592218	0.001474548	0.007238688	up
	GO Biological		-				
cell cycle checkpoint	Process	65	0.271830542	0.184644987	6.74E-04	0.007334121	down
negative regulation of microtubule	GO Biological		-				
polymerization or depolymerization	Process	14	0.470050263	0.053870182	7.22E-04	0.007804757	down
Role of BRCA1, BRCA2 and ATR in			-				
Cancer Susceptibility	Biocarta Pathway	13	0.610444766	0.022512716	8.01E-05	0.00784613	down
negative regulation of organelle	GO Biological		-				
organization	Process	53	0.292250986	0.162638498	7.38E-04	0.007932008	down
	GO Biological		-				
endosome transport	Process	54	0.289868087	0.165064898	7.50E-04	0.008014594	down
unsaturated fatty acid biosynthetic	GO Biological						
process	Process	11	0.537399543	28.21143959	7.64E-04	0.008096048	up
	GO Biological						
coenzyme metabolic process	Process	109	0.244917423	4.581680253	7.67E-04	0.008096048	ир
	GO Biological						
cellular ketone metabolic process	Process	325	0.15038785	2.546198729	7.86E-04	0.008244956	up
	GO Biological		-				
MAPKKK cascade	Process	88	0.238478429	0.227171515	8.03E-04	0.008353961	down
	GO Biological						
lipid catabolic process	Process	78	0.280223946	5.70579317	8.06E-04	0.008353961	ир
	GO Cellular						
mitochondrial nucleoid	Component	27	0.388249952	11.16541771	0.001782086	0.008491117	ир
	GO Cellular						
nucleoid	Component	27	0.388249952	11.16541771	0.001782086	0.008491117	ир
Drug metabolism - other enzymes	KEGG Pathway	17	- 0.441657775	0.064265651	0.002448132	0.008678625	down
Wnt signaling pathway	KEGG Pathway	49	0.141037773	0.155749532	0.002494455	0.008678625	down
with signaling pathway	KEGG Patriway	49	-	0.133/49332	0.002494455	0.000078025	uown

			0.299215348				
	GO Biological						
protein maturation	Process	38	0.366128023	9.731248242	8.44E-04	0.008689925	ир
proton-transporting ATP synthase	GO Cellular						
complex	Component	13	0.484948921	20.36397665	0.001891073	0.008879822	up
			-				
Fc gamma R-mediated phagocytosis	KEGG Pathway	40	0.321931081	0.135243895	0.002622952	0.008939447	down
proton-transporting ATPase activity,	GO Molecular						
rotational mechanism	Function	13	0.504438736	22.98608545	0.001249499	0.009053385	ир
	GO Cellular						
insoluble fraction	Component	332	0.13581346	2.325714789	0.002004879	0.009279724	up
	GO Molecular						
Rho GTPase binding	Function	17	-0.42356	0.071915792	0.001336237	0.009458331	down
	GO Molecular		-				
GTPase binding	Function	60	0.266185703	0.191237374	0.00135119	0.009458331	down
	GO Biological		-				
interphase	Process	71	0.256964419	0.202516653	9.32E-04	0.009541961	down
a de la companya de l	GO Cellular	4.25	0.040606577	2 702557440	0.000000000	0.000553463	
spliceosomal complex	Component	125	0.210636577	3.702557418	0.002093221	0.009552162	ир
regulation of stress-activated	GO Biological		-				
protein kinase signaling cascade	Process	32	0.346833219	0.11585307	9.51E-04	0.009679938	down
	GO Biological		-				
macromolecule catabolic process	Process	342	0.133954001	0.434972869	9.68E-04	0.009796853	down
Spliceosome	KEGG Pathway	117	0.219744625	3.918177908	0.002947315	0.009844032	up
	GO Biological		-				
centrosome cycle	Process	14	0.461565953	0.056786792	9.89E-04	0.009953848	down
	GO Cellular						
replication fork	Component	29	-0.33982061	0.121013651	0.002314731	0.010408615	down
	GO Cellular		-	0.001054610	0.000045454	0.040400617	
dynein complex	Component	13	0.449905508	0.061054619	0.002345151	0.010408615	down
ATP synthesis coupled proton	GO Biological	23	0.426500498	14.16159116	0.001059718	0.010542677	ир

transport	Process						
energy coupled proton transport,	GO Biological						
down electrochemical gradient	Process	23	0.426500498	14.16159116	0.001059718	0.010542677	up
	GO Biological		-				
microtubule depolymerization	Process	14	0.458542665	0.05786382	0.001103867	0.010919502	down
negative regulation of cell cycle	GO Biological		-				
process	Process	21	0.398817868	0.083869207	0.001116215	0.010979267	down
	GO Biological						
mRNA metabolic process	Process	294	0.152696053	2.582986083	0.00112734	0.011026402	up
	GO Biological						
transition metal ion transport	Process	35	0.369625026	9.945047421	0.00114007	0.011088617	up
	GO Biological		-				
dephosphorylation	Process	79	0.242661597	0.221341897	0.001150814	0.011130926	down
	GO Molecular						
serine-type peptidase activity	Function	44	0.333611657	7.950745538	0.001641662	0.011300105	up
	GO Biological						
rRNA processing	Process	86	0.261760256	5.087249995	0.001183127	0.011380243	up
	GO Biological						
cellular hormone metabolic process	Process	22	0.429053915	14.38810664	0.001213383	0.011607138	up
	GO Biological		-				
I-kappaB kinase/NF-kappaB cascade	Process	76	0.244419896	0.21893643	0.001286291	0.012226158	down
	GO Biological						
rRNA metabolic process	Process	87	0.258730818	4.992369453	0.001292138	0.012226158	up
			-				
Thyroid cancer	KEGG Pathway	14	0.456608017	0.05856372	0.003839757	0.012573321	down
inositol or phosphatidylinositol	GO Molecular		-				
phosphatase activity	Function	17	0.414335558	0.076158916	0.001868558	0.012651054	down
			-				
Jak-STAT signaling pathway	KEGG Pathway	25	0.370201011	0.100193276	0.003994383	0.012828114	down
oxidoreduction coenzyme	GO Biological						
metabolic process	Process	38	0.354849912	9.072547856	0.001365291	0.012848495	up
Phosphatidylinositol signaling			-				
system	KEGG Pathway	35	0.325968099	0.13189304	0.00409926	0.012916536	down

P-P-bond-hydrolysis-driven	GO Molecular						
transmembrane transporter activity	Function	58	0.29547339	6.272978752	0.001992053	0.013059015	ир
primary active transmembrane	GO Molecular						
transporter activity	Function	58	0.29547339	6.272978752	0.001992053	0.013059015	up
DNA-directed RNA polymerase II,	GO Cellular						
holoenzyme	Component	65	0.268169087	5.293955945	0.00314129	0.013753756	up
	GO Molecular		0.20020000	0.200000010	0.0001.110		
channel activity	Function	47	0.318506338	7.238341236	0.002175918	0.01382545	up
passive transmembrane transporter	GO Molecular						- 1-
activity	Function	47	0.318506338	7.238341236	0.002175918	0.01382545	up
	GO Biological	-77		7.230341230	0.002173510	0.01302343	up
microtubule-based transport	Process	17	0.421233514	0.072963117	0.001491855	0.013914077	down
	GO Biological	1,	01121200011	01072303117	01001101000	0.010011077	uomi
fatty acid catabolic process	Process	31	0.378597254	10.51532338	0.001494504	0.013914077	up
microtubule polymerization or	GO Biological		_				
depolymerization	Process	20	0.397298932	0.084664647	0.001542426	0.01424858	down
stress-activated protein kinase	GO Biological						
signaling cascade	Process	40	0.309094871	0.146474564	0.001546802	0.01424858	down
Fatty acid metabolism	KEGG Pathway	27	0.36431364	9.622138114	0.004609852	0.014256395	
/	·	27	0.30431304	9.022130114	0.004009852	0.014250595	up
regulation of epithelial cell	GO Biological						
differentiation	Process	11	0.517993334	25.00624442	0.001559743	0.014292171	ир
		20	-	0 107002001	0.004730003	0.01.4250665	
Long-term potentiation	KEGG Pathway	26	0.359618964	0.107003801	0.004728902	0.014358665	down
Axon guidance	KEGG Pathway	43	-0.29617918	0.158716208	0.004947719	0.014754804	down
	GO Cellular	4.00	0.040600467		0.000445660	0.044755605	
vesicular fraction	Component	109	0.213698137	3.773678184	0.003415668	0.014755687	ир
fat-soluble vitamin metabolic	GO Biological	4.0	0 5 2 70 40 2 2 2	26 60220720	0.001767632	0.01.000.400	
process	Process	10	0.527949233	26.60229739	0.001767632	0.016099492	ир
	GO Biological	10	-	0.071010400	0.00170207	0.010000403	
glucose transport	Process	16	0.424915763	0.071312408	0.00179397	0.016099492	down
have a two ways at	GO Biological	10	-	0.071010400	0.00170207	0.010000403	
hexose transport	Process	16	0.424915763	0.071312408	0.00179397	0.016099492	down

	GO Biological		-				
monosaccharide transport	Process	16	0.424915763	0.071312408	0.00179397	0.016099492	down
	GO Biological		-				
spindle assembly	Process	13	0.455549796	0.05895013	0.001821114	0.016259279	down
	GO Cellular						
cytosolic ribosome	Component	66	0.261452589	5.077532304	0.003873385	0.016375724	ир
	GO Cellular		-				
cell projection	Component	264	0.131950943	0.44042135	0.003891762	0.016375724	down
active transmembrane transporter	GO Molecular						
activity	Function	106	0.223831373	4.018964417	0.002634631	0.016486405	ир
RNA polymerase	KEGG Pathway	25	0.36609578	9.729298538	0.005841034	0.017113206	up
cellular response to	GO Biological		-				
lipopolysaccharide	Process	10	0.495050031	0.046118462	0.001953311	0.017262509	down
cellular response to molecule of	GO Biological		-				
bacterial origin	Process	10	0.495050031	0.046118462	0.001953311	0.017262509	down
DNA damage response, signal	GO Biological		-				
transduction	Process	62	0.256436937	0.203181611	0.001971602	0.017336157	down
small conjugating protein-specific	GO Molecular		-				
protease activity	Function	28	0.336364694	0.123640793	0.002834207	0.017470562	down
Antigen processing and							
presentation	KEGG Pathway	28	0.35139719	8.879949099	0.00608908	0.017532351	ир
	GO Molecular						
small GTPase binding	Function	54	-0.26031903	0.198338373	0.003037775	0.018450014	down
	GO Biological						
cofactor catabolic process	Process	24	0.402720988	12.21607996	0.002126701	0.018605958	ир
	GO Biological		-				
regulation of binding	Process	97	0.212252835	0.267384338	0.002205817	0.019201635	down
Valine, leucine and isoleucine							
degradation	KEGG Pathway	36	0.319059015	7.26324531	0.006790926	0.019221774	up
	GO Biological		-				
JNK cascade	Process	34	0.319613073	0.137206253	0.00224224	0.01942159	down

G-protein coupled receptor protein	GO Biological		-				
signaling pathway	Process	67	0.245777362	0.217097225	0.002283204	0.019628127	down
regulation of cellular component	GO Biological		_				
organization	Process	283	0.134809712	0.432665863	0.002288633	0.019628127	down
positive regulation of stress-		205	0.13 1003 / 12	0.132003003	0.002200033	0.013020127	aowii
activated protein kinase signaling	GO Biological		-				
cascade	Process	10	0.489516496	0.047732003	0.00231344	0.019743621	down
	GO Biological						
response to oxidative stress	Process	96	0.236010616	4.334964774	0.002357593	0.019948728	up
	GO Biological						
cellular lipid catabolic process	Process	50	0.30781881	6.77319742	0.00236639	0.019948728	up
	GO Biological						
cofactor metabolic process	Process	142	0.198661235	3.437009363	0.002371848	0.019948728	up
	GO Molecular		-				
amino acid binding	Function	20	0.375130163	0.097170613	0.003347502	0.0200365	down
	GO Biological						
translation	Process	327	0.135576797	2.322296719	0.002401492	0.020100947	ир
	GO Biological		-				
negative regulation of translation	Process	23	0.366296562	0.102654163	0.002437267	0.020302786	down
			-				
Cell cycle	KEGG Pathway	76	0.226453002	0.244799282	0.007465867	0.020779997	down
RNA polymerase II transcription	GO Molecular						
factor activity	Function	117	0.208033064	3.643132765	0.003566588	0.021042867	ир
	GO Cellular						
transport vesicle membrane	Component	24	-0.34161728	0.119669977	0.005142626	0.021361678	down
	GO Molecular		-				
amine binding	Function	24	0.348643494	0.114557009	0.003678974	0.021400227	down
	GO Biological		-				
vesicle-mediated transport	Process	387	0.116597091	0.484515806	0.002605804	0.021540581	down

negative regulation of cytoskeleton	GO Biological		-				
organization	Process	31	0.326939586	0.131099147	0.002610605	0.021540581	down
RNA splicing, via transesterification	GO Biological						
reactions	Process	94	0.235856193	4.330806614	0.00262446	0.021552762	up
	GO Biological						
icosanoid metabolic process	Process	14	0.469066363	18.44998618	0.002639013	0.021570528	up
	GO Biological						
regulation of JNK cascade	Process	27	-0.3423452	0.119129845	0.002774551	0.022507001	down
	GO Biological						
cation transport	Process	143	0.195065396	3.361055261	0.00277944	0.022507001	up
	GO Biological		-				
double-strand break repair	Process	41	0.291993924	0.162898527	0.00289029	0.023296272	down
	GO Biological		-				
vacuolar transport	Process	25	0.350654191	0.113134447	0.002922587	0.02344804	down
	GO Biological		-				
regulation of kinase activity	Process	149	0.172703732	0.341883237	0.003006405	0.024009868	down
RNA polymerase II carboxy-terminal	GO Molecular						
domain kinase activity	Function	10	0.505089111	23.07917919	0.004196079	0.024069177	up
Adipocytokine signaling pathway	KEGG Pathway	30	-0.32115875	0.13589459	0.008796593	0.024082477	down
	GO Molecular		_				
protein domain specific binding	Function	196	0.147225308	0.400537617	0.004351933	0.024621207	down
	GO Molecular	150	0.147223500	0.400337017	0.00+331333	0.024021207	uowii
cation-transporting ATPase activity	Function	17	0.429670482	14.44334361	0.004464289	0.024915557	up
	GO Biological		-	1111001001	0.001101203	0.02 13 13 33 37	~P
interphase of mitotic cell cycle	Process	67	0.239287576	0.226032042	0.003136774	0.024936639	down
	GO Cellular						
nucleolus	Component	510	0.099078228	1.851011706	0.00608092	0.024939469	up
proton-transporting two-sector	GO Cellular						
ATPase complex	Component	26	0.356634204	9.173710237	0.006396231	0.025592245	up
	GO Cellular	20	21000001204		0.000000201	0.020002270	~~
Golgi apparatus part	Component	280	0.129608262	2.237735807	0.0064628	0.025592245	up
coated membrane	GO Cellular	51	-	0.211127866	0.006556038	0.025592245	down

	Component		0.250263782				
	GO Cellular		-				
membrane coat	Component	51	0.250263782	0.211127866	0.006556038	0.025592245	down
clathrin coat of trans-Golgi network	GO Cellular		-				
vesicle	Component	10	0.451843839	0.06032357	0.007072613	0.026423775	down
trans-Golgi network transport	GO Cellular		-				
vesicle membrane	Component	10	0.451843839	0.06032357	0.007072613	0.026423775	down
	GO Cellular						
external side of plasma membrane	Component	31	0.331423925	7.843379556	0.007140297	0.026423775	up
mitochondrial small ribosomal	GO Cellular						
subunit	Component	18	0.39995633	12.007985	0.007176828	0.026423775	ир
	GO Cellular						
organellar small ribosomal subunit	Component	18	0.39995633	12.007985	0.007176828	0.026423775	up
	GO Biological		-				
regulation of MAPKKK cascade	Process	53	0.260696904	0.197873154	0.00341371	0.02701486	down
	GO Biological						
positive regulation of kinase activity	Process	83	-0.21745818	0.258873082	0.003469348	0.027289124	down
nuclear mRNA splicing, via	GO Biological						
spliceosome	Process	85	0.239736569	4.436513525	0.00349539	0.027289124	up
RNA splicing, via transesterification							
reactions with bulged adenosine as	GO Biological						
nucleophile	Process	85	0.239736569	4.436513525	0.00349539	0.027289124	up
•	GO Biological						
response to tumor necrosis factor	Process	10	-0.47516848	0.052183659	0.003531451	0.02737711	down
· · ·	GO Biological						
ncRNA processing	Process	153	0.184708215	3.151533535	0.00353811	0.02737711	up
	GO Cellular						
nucleoplasm part	Component	375	0.110890819	1.992007619	0.007628221	0.027770154	up
	GO Cellular		-				
chromosome	Component	300	0.115616078	0.487478732	0.007774671	0.027988817	down
Arachidonic acid metabolism	KEGG Pathway	14	0.416236386	13.28646723	0.01043069	0.028095568	up

Integrin Signaling Pathway	Biocarta Pathway	26	- 0.402630857	0.081905185	0.001089562	0.028665447	down
Growth Hormone Signaling Pathway	Biocarta Pathway	13	۔ 0.503574009	0.043739001	0.001420145	0.028665447	down
PTEN dependent cell cycle arrest							
and apoptosis	Biocarta Pathway	15	-0.47758933	0.051404451	0.001459957	0.028665447	down
CXCR4 Signaling Pathway	Biocarta Pathway	15	-0.47752301	0.051425642	0.001462523	0.028665447	down
Citrate cycle (TCA cycle)	KEGG Pathway	26	0.339765932	8.260722967	0.011188265	0.029657782	up
	GO Cellular						
microbody part	Component	40	0.295792381	6.285426653	0.008489582	0.029898093	ир
	GO Cellular						
peroxisomal part	Component	40	0.295792381	6.285426653	0.008489582	0.029898093	ир
	GO Molecular						
cofactor binding	Function	154	0.175498018	2.976212155	0.005431735	0.029910754	ир
	GO Cellular						
cytosolic small ribosomal subunit	Component	32	0.321498657	7.374205447	0.008645429	0.030119559	ир
Glycosaminoglycan biosynthesis -							
chondroitin sulfate	KEGG Pathway	11	0.439445571	15.34795142	0.012386826	0.031171105	up
Chagas disease (American			_				
trypanosomiasis)	KEGG Pathway	35	0.291231739	0.163671956	0.012466934	0.031171105	down
			-				
Toxoplasmosis	KEGG Pathway	48	0.256969647	0.202510073	0.01249133	0.031171105	down
Tryptophan metabolism	KEGG Pathway	18	0.378952841	10.53858615	0.012505773	0.031171105	up
	GO Cellular						
lysosomal membrane	Component	44	0.282905222	5.801665812	0.009066186	0.031249407	up
	GO Molecular		-				
magnesium ion binding	Function	74	0.216088865	0.261085429	0.005758851	0.031294808	down
-	GO Biological		-				
sulfur amino acid metabolic process	Process	15	0.409274195	0.078592522	0.004105485	0.031626766	down
macromolecule transmembrane	GO Molecular						
transporter activity	Function	11	0.479188288	19.64784009	0.006051723	0.032043098	up

protein transmembrane transporter	GO Molecular						
activity	Function	11	0.479188288	19.64784009	0.006051723	0.032043098	up
mitochondrial proton-transporting	GO Cellular						
ATP synthase complex	Component	11	0.455626283	16.97155639	0.00947075	0.032300241	up
	GO Cellular		-				
chromosomal part	Component	247	0.122686222	0.466523544	0.009605474	0.032418474	down
· ·							
	GO Biological		_				
regulation of localization	Process	239	0.136507831	0.428123887	0.004232109	0.032458602	down
negative regulation of cellular	GO Biological			0			
component organization	Process	86	0.210123888	0.270945491	0.004288517	0.032746964	down
	GO Molecular	00		0.270343431	0.004200517	0.032740304	down
calmodulin binding	Function	56	0.239958194	0.225091986	0.00628525	0.032858331	down
	GO Cellular		-				
dendrite	Component	60	0.224148743	0.248330044	0.009951436	0.033239847	down
	GO Biological		-				
M phase of meiotic cell cycle	Process	34	0.302602039	0.152505734	0.004406419	0.033354675	down
	GO Biological		-				
meiosis	Process	34	0.302602039	0.152505734	0.004406419	0.033354675	down
	GO Biological		-				
regulation of transferase activity	Process	156	0.163102499	0.362903576	0.004436979	0.03344061	down
	GO Molecular		-				
phosphoric ester hydrolase activity	Function	142	0.161941842	0.365530673	0.006558939	0.033501766	down
	GO Molecular		-				
ubiquitin protein ligase binding	Function	43	0.265414207	0.192156472	0.006570564	0.033501766	down
	GO Cellular		-				
chromosome, centromeric region	Component	99	0.181114569	0.32447199	0.010255117	0.033904671	down
	GO Biological						
copper ion transport	Process	11	0.48535155	20.41499487	0.004527686	0.033977159	up
	GO Biological						
ion transmembrane transport	Process	38	0.323069046	7.446525235	0.00459049	0.034300612	ир

	GO Biological						
organic acid metabolic process	Process	316	0.128494483	2.222300354	0.004620277	0.034373715	up
	GO Biological		-				
regulation of protein kinase activity	Process	141	0.169503861	0.348749957	0.00463976	0.034373715	down
	GO Cellular						
nuclear membrane	Component	83	0.212576059	3.74745484	0.010659411	0.034885346	up
	GO Cellular						
microbody membrane	Component	33	0.310085251	6.869273231	0.010942802	0.035103644	up
	GO Cellular						
peroxisomal membrane	Component	33	0.310085251	6.869273231	0.010942802	0.035103644	ир
	GO Molecular						
lipoprotein binding	Function	13	0.451142423	16.50516486	0.006971909	0.035114616	ир
		45	-	0.056400460	0.000474406	0.005460074	
Cell Cycle: G1/S Check Point	Biocarta Pathway	15	0.462385899	0.056498163	0.002171196	0.035462874	down
	GO Biological	20	0 40200071	12 21150461	0.004921424	0.025642062	
aminoglycan metabolic process	Process	20	0.40266071	12.21150461	0.004831434	0.035642062	ир
rDNA binding	GO Molecular Function	21	0.385679996	10.98850832	0.007213898	0.035895661	
rRNA binding	Function	21	0.385079990	10.98850832	0.007213898	0.035895001	up
Long-term depression	KEGG Pathway	23	0.335806092	0.124070756	0.014625504	0.035918518	down
regulation of cellular response to	GO Biological		-				
stress	Process	59	0.241769711	0.22257214	0.004906243	0.03604122	down
	GO Molecular						
substrate-specific channel activity	Function	41	0.301195927	6.500081067	0.007368167	0.036226821	up
	GO Biological						
acetyl-CoA metabolic process	Process	32	0.341556632	8.353165837	0.00500899	0.036641396	up
cellular macromolecule catabolic	GO Biological		-				
process	Process	304	0.120738193	0.472205715	0.00507753	0.036987363	down

establishment of protein	GO Biological		-				
localization	Process	552	0.093559123	0.55909645	0.005182427	0.037594189	down
regulation of cellular protein	GO Biological		-				
metabolic process	Process	286	0.123544418	0.464042034	0.005232892	0.037802759	down
	GO Biological		-				
cellular glucan metabolic process	Process	18	0.375936845	0.096684695	0.005312857	0.037908539	down
	GO Biological		-				
glucan metabolic process	Process	18	0.375936845	0.096684695	0.005312857	0.037908539	down
	GO Biological		-				
glycogen metabolic process	Process	18	0.375936845	0.096684695	0.005312857	0.037908539	down
	GO Biological		-				
regulation of translation	Process	95	0.197061386	0.293857806	0.005413883	0.038471713	down
oxidoreductase activity, acting on	GO Molecular						
peroxide as acceptor	Function	17	0.409594724	12.74922761	0.008094494	0.038872397	up
· · ·	GO Molecular						
peroxidase activity	Function	17	0.409594724	12.74922761	0.008094494	0.038872397	up
	GO Cellular						
nuclear envelope	Component	153	0.158103788	2.6712675	0.012283717	0.039018866	up
	GO Biological						
carboxylic acid metabolic process	Process	313	0.126388399	2.193403329	0.005539605	0.039036971	ир
	GO Biological						
oxoacid metabolic process	Process	313	0.126388399	2.193403329	0.005539605	0.039036971	ир
	GO Biological		-				
cellular response to biotic stimulus	Process	32	0.303264841	0.151878847	0.005560694	0.039036971	down
	GO Molecular		-				
protein kinase regulator activity	Function	39	0.269170229	0.187723061	0.008359777	0.03968492	down
	GO Biological		-				
glutamine metabolic process	Process	14	0.407963926	0.079235098	0.005736832	0.040066687	down
regulation of transcription factor	GO Biological		-				
activity	Process	57	0.241303916	0.223217361	0.005776415	0.040066687	down

regulation of transcription regulator	GO Biological		_				
activity	Process	57	0.241303916	0.223217361	0.005776415	0.040066687	down
	GO Biological						
oligosaccharide metabolic process	Process	17	0.418081618	13.43970529	0.005816909	0.040187457	up
negative regulation of translational	GO Biological						
initiation	Process	12	-0.4289135	0.069562524	0.005949484	0.040940919	down
	GO Biological		-				
embryonic epithelial tube formation	Process	17	0.379469005	0.094585494	0.006034577	0.041200777	down
	GO Biological		-				
neural tube formation	Process	17	0.379469005	0.094585494	0.006034577	0.041200777	down
	GO Biological		-				
endosome organization	Process	14	0.405640664	0.080387406	0.006137286	0.041738342	down
hydrolase activity, acting on ester	GO Molecular		-				
bonds	Function	308	0.111451733	0.500259238	0.009014588	0.042307102	down
	GO Biological						
hydrogen transport	Process	29	0.346772131	8.62834654	0.006297979	0.042499153	up
	GO Biological						
proton transport	Process	29	0.346772131	8.62834654	0.006297979	0.042499153	up
	GO Biological		-				
actin filament-based process	Process	132	0.168762053	0.350361422	0.006324978	0.042516554	down
	GO Biological						
viral genome expression	Process	10	0.486698853	20.58664637	0.006391588	0.042598867	ир
	GO Biological						
viral transcription	Process	10	0.486698853	20.58664637	0.006391588	0.042598867	up
	GO Biological	1.1	-	0.005004007	0.000420040	0.043500007	
plasma membrane organization	Process	11	0.439026987	0.065324987	0.006420649	0.042598867	down
mitochondrial ATP synthesis	GO Biological						
coupled proton transport	Process	10	0.48645779	20.55582841	0.006435096	0.042598867	ир
positive regulation of epithelial cell	GO Biological						
proliferation	Process	11	0.473024323	18.90943092	0.006492884	0.042818601	up
recycling endosome	GO Cellular	19	-0.33836552	0.122112918	0.013735672	0.043207357	down

	Component						
ER-Golgi intermediate	GO Cellular						
compartment	Component	45	0.266852623	5.250821149	0.013912689	0.043343377	up
	GO Cellular		-				
centrosome	Component	81	0.189573926	0.307854609	0.014132105	0.043607637	down
	GO Molecular		-				
channel regulator activity	Function	17	0.363164326	0.104671965	0.009521572	0.043899691	down
ATPase activity, coupled to							
transmembrane movement of	GO Molecular						
substances	Function	51	0.267752332	5.280262498	0.009672813	0.043899691	up
hydrolase activity, acting on acid							
anhydrides, catalyzing							
transmembrane movement of	GO Molecular						
substances	Function	51	0.267752332	5.280262498	0.009672813	0.043899691	up
	GO Cellular						
pore complex	Component	64	0.229041291	4.151218325	0.014438723	0.044133456	ир
	GO Molecular						
metal cluster binding	Function	41	0.291823389	6.132288415	0.009919243	0.044528774	ир
	GO Biological		-				
positive regulation of binding	Process	52	0.246244772	0.216467522	0.006813838	0.044765633	down
regulation of mitotic	GO Biological		-				
metaphase/anaphase transition	Process	16	0.383357566	0.09232715	0.006862175	0.044913713	down
	GO Molecular						
glutathione transferase activity	Function	10	0.473052033	18.91268749	0.010193074	0.045253335	ир
calmodulin-dependent protein	GO Molecular		-				
kinase activity	Function	10	0.434315739	0.067265883	0.01029979	0.045253335	down
	GO Biological						
mammary gland morphogenesis	Process	12	0.458784574	17.30795685	0.006942186	0.045267215	up
			-				
Bacterial invasion of epithelial cells	KEGG Pathway	40	0.262493442	0.195676231	0.018787613	0.045471469	down
negative regulation of neuron	GO Biological		-				
apoptosis	Process	26	0.320781968	0.136213167	0.007028641	0.045659942	down

	GO Biological		-				
protein deubiquitination	Process	33	0.293097196	0.161785449	0.007056155	0.045668274	down
	GO Molecular						
coenzyme binding	Function	124	0.179005414	3.041797111	0.010517375	0.045722902	ир
p53 signaling pathway	KEGG Pathway	34	-0.27923113	0.176345165	0.019189143	0.045779813	down
morphogenesis of embryonic	GO Biological		-				
epithelium	Process	26	0.320281826	0.136637201	0.0071456	0.046075888	down
Links between Pyk2 and Map			-				
Kinases	Biocarta Pathway	18	0.417519256	0.074666888	0.003319565	0.046473911	down
positive regulation of transcription	GO Biological		-				
factor activity	Process	34	0.288851834	0.166110683	0.00728896	0.046654704	down
positive regulation of transcription	GO Biological		-				
regulator activity	Process	34	0.288851834	0.166110683	0.00728896	0.046654704	down
ATPase activity, coupled to	GO Molecular						
movement of substances	Function	52	0.261750067	5.086927854	0.010961311	0.047156475	up
			-				
Inositol phosphate metabolism	KEGG Pathway	31	0.287628928	0.167377914	0.020190085	0.047489356	down
mitochondrial large ribosomal	GO Cellular						
subunit	Component	17	0.378101774	10.48299425	0.015911035	0.047733104	ир
	GO Cellular	47	0 0 0 0 0 0 0 0 7 7 4	40 40000 405	0.045044005	0.047700404	
organellar large ribosomal subunit	Component	17	0.378101774	10.48299425	0.015911035	0.047733104	ир
ATM Signaling Pathway	Biocarta Pathway	12	- 0.467581848	0.054702934	0.004670063	0.047753208	down
Signaling of Hepatocyte Growth			-				
Factor Receptor	Biocarta Pathway	24	0.364264299	0.103958878	0.004698167	0.047753208	down
PKC-catalyzed phosphorylation of							
inhibitory phosphoprotein of myosin phosphatase	Biocarta Pathway	15	- 0.427820448	0.070036663	0.005115393	0.047753208	down
Fc Epsilon Receptor I Signaling in Mast Cells	Diocorto Dothuco:	10	-	0.056945744	0.005260054	0.047752209	down
Iviast Cells	Biocarta Pathway	12	0.461399003	0.056845741	0.005360054	0.047753208	down

oxidoreductase activity, acting on paired donors, with incorporation	GO Molecular						
or reduction of molecular oxygen	Function	53	0.258591261	4.988041498	0.011348081	0.047927597	up
Ras GTPase binding	GO Molecular Function	50	- 0.235698966	0.231129597	0.01137265	0.047927597	down
negative regulation of protein complex disassembly	GO Biological Process	25	۔ 0.323343119	0.134062286	0.007536747	0.048026735	down
positive regulation of transferase activity	GO Biological Process	87	۔ 0.197372231	0.293290684	0.007558487	0.048026735	down
ER-Golgi intermediate compartment membrane	GO Cellular Component	18	0.37018306	9.97959633	0.016163327	0.04804512	up
regulation of neuron apoptosis	GO Biological Process	38	۔ 0.274560032	0.181539322	0.007882094	0.04990082	down

Table S 14: Discordance-based LRPath Gene Ontology and pathway analysis results with FDR <= 0.05

Name	ConceptType	#Genes	Coeff	OddsRatio	P-Value	FDR	Direction
ectoderm development	GO Biological Process	70	-0.29244408	0.162443448	1.63E-15	1.61E-12	down
epidermis development	GO Biological Process	65	۔ 0.296634434	0.158267798	1.85E-15	1.61E-12	down
extracellular matrix	GO Cellular Component	58	۔ 0.294481258	0.160399835	6.26E-14	2.03E-11	down
cell adhesion	GO Biological Process	220	۔ 0.211939819	0.26790498	5.75E-13	3.34E-10	down

			-				
biological adhesion	GO Biological Process	221	0.210783743	0.269836689	7.72E-13	3.36E-10	down
	<u> </u>						
			0 20254542	0 170702021	4 535 43	F 20F 40	
wound healing	GO Biological Process	57	-0.28251543	0.172782331	1.52E-12	5.29E-10	down
	GO Cellular		-				
cell surface	Component	95	0.247915139	0.214232066	9.28E-12	1.50E-09	down
tion of the second		242	-	0 200207004			
tissue development	GO Biological Process	243	0.195736299	0.296287684	1.91E-11	5.54E-09	down
serine-type endopeptidase inhibitor	GO Molecular						
activity	Function	15	-0.37131091	0.099504562	2.35E-11	6.16E-09	down
	GO Molecular		-				
peptidase regulator activity	Function	53	0.278352324	0.177310897	2.98E-11	6.16E-09	down
			-				
response to wounding	GO Biological Process	135	0.223254447	0.24971403	2.99E-11	7.43E-09	down
	GO Cellular		-				
basal plasma membrane	Component	11	0.391509148	0.087766454	1.59E-10	1.72E-08	down
	GO Cellular		-				
extracellular matrix part	Component	25	0.320368741	0.136563418	2.41E-10	1.95E-08	down
	GO Cellular		-				
basal part of cell	Component	12	0.375101077	0.097188179	6.24E-10	3.52E-08	down

	GO Cellular		-				
extracellular region part	Component	156	0.205784902	0.27835096	6.53E-10	3.52E-08	down
			-				
keratinocyte differentiation	GO Biological Process	25	0.315359679	0.140881409	3.64E-10	7.91E-08	down
DNA damage response, signal			-				
transduction by p53 class mediator	GO Biological Process	25	0.312278924	0.143604666	7.13E-10	1.33E-07	down
			-				
epidermal cell differentiation	GO Biological Process	29	0.301697976	0.153364983	7.62E-10	1.33E-07	down
-			_				
blood vessel morphogenesis	GO Biological Process	81	0.237879632	0.22801846	9.41E-10	1.49E-07	down
bioda vesser morphogenesis		01	0.237075052	0.22001040	J.41L 10	1.452.07	uown
ECM-receptor interaction	KEGG Pathway	26	0.343438742	0.118322991	2.59E-09	4.32E-07	down
	GO Cellular	20	-	0.110322331	2.352 05	1.322 07	down
basement membrane	Component	20	0.318250885	0.138372697	1.07E-08	4.94E-07	down
			0.010100000				
blood voscol dovelonment	GO Biological Process	97	- 0.221791577	0.251994572	4.35E-09	6.31E-07	down
blood vessel development	GO BIOlOgical Process	97	0.221/915//	0.251994572	4.35E-09	0.31E-07	down
			-				
vasculature development	GO Biological Process	99	0.215963913	0.261288248	1.33E-08	1.79E-06	down
regulation of epithelial cell			-				
differentiation	GO Biological Process	11	0.358507654	0.107745365	1.96E-08	2.44E-06	down
			-				
cell-substrate junction assembly	GO Biological Process	24	0.295608502	0.1592801	3.72E-08	4.15E-06	down
			-				
cell junction assembly	GO Biological Process	37	0.267516448	0.189662352	3.82E-08	4.15E-06	down
			-				
angiogenesis	GO Biological Process	67	0.232053253	0.236425998	4.26E-08	4.36E-06	down

Arrhythmogenic right ventricular		22	-	0.420075050	7 505 00	6.245.06	
cardiomyopathy (ARVC)	KEGG Pathway	23	0.328449091	0.129875058	7.59E-08	6.34E-06	down
	GO Cellular		-				
proteinaceous extracellular matrix	Component	46	0.249836113	0.211689748	1.59E-07	6.43E-06	down
negative regulation of cell adhesion	GO Biological Process	24	- 0.291911263	0.162982231	7.43E-08	6.60E-06	down
chemotaxis	GO Biological Process	33	- 0.271174514	0.185399313	7.58E-08	6.60E-06	down
taxis	GO Biological Process	33	- 0.271174514	0.185399313	7.58E-08	6.60E-06	down
	GO Cellular		-				
caveola	Component	25	0.286440078	0.168619121	2.18E-07	7.85E-06	down
cell junction organization	GO Biological Process	45	- 0.250747094	0.210494676	1.02E-07	8.46E-06	down
	GO Cellular		-				
receptor complex	Component	24	0.285495831	0.169611508	4.11E-07	1.33E-05	down
Dilated cardiomyopathy	KEGG Pathway	19	۔ 0.332625915	0.126547227	2.67E-07	1.49E-05	down
basolateral plasma membrane	GO Cellular Component	104	- 0.195700138	0.296354276	8.43E-07	2.48E-05	down
•							
cell-substrate adhesion	GO Biological Process	56	-0.22824575	0.242087056	6.79E-07	5.20E-05	down
regulation of chemotaxis	GO Biological Process	11	-0.33468572	0.124937635	6.87E-07	5.20E-05	down
positive regulation of multicellular			-				
organismal process	GO Biological Process	60	0.223701605	0.24902106	7.71E-07	5.59E-05	down
tissue regeneration	GO Biological Process	12	- 0.323258922	0.134132453	1.33E-06	9.27E-05	down
regeneration	GO Biological Process	29	-0.26273504	0.195382656	1.45E-06	9.70E-05	down
regulation of behavior	GO Biological Process	12	- 0.321363379	0.135721884	1.73E-06	1.12E-04	down

response to biotic stimulus	GO Biological Process	152	- 0.170901273	0.345734398	1.94E-06	1.21E-04	down
reconnects other organism	GO Biological Process	102	- 0.187192077	0.312445447	3.56E-06	2.13E-04	down
response to other organism Cytokine-cytokine receptor	GO DIOIOgical Process	102	0.18/1920//	0.512445447	5.30E-00	2.13E-04	uown
interaction	KEGG Pathway	11	- 0.347073593	0.115680134	6.07E-06	2.54E-04	down
endothelial cell proliferation	GO Biological Process	18	-0.28620369	0.168867014	4.37E-06	2.54E-04	down
Vascular smooth muscle							
contraction	KEGG Pathway	32	0.322811683	7.434624688	8.95E-06	2.99E-04	up
regulation of blood coagulation	GO Biological Process	12	۔ 0.312526508	0.14338388	5.69E-06	3.09E-04	down
regulation of wound healing	GO Biological Process	12	- 0.312526508	0.14338388	5.69E-06	3.09E-04	down
lipid catabolic process	GO Biological Process	78	0.209742252	3.682036133	8.74E-06	4.61E-04	up
insulin-like growth factor receptor							
signaling pathway	GO Biological Process	11	0.308974893	6.822035414	1.12E-05	5.75E-04	up
ossification	GO Biological Process	41	۔ 0.227791574	0.242771317	1.38E-05	5.91E-04	down
			_				
regulation of apoptosis	GO Biological Process	370	0.122280002	0.46770277	1.39E-05	5.91E-04	down
regulation of programmed cell			-				.
death	GO Biological Process	371	0.122096346	0.468236889	1.41E-05	5.91E-04	down
regulation of cell death	GO Biological Process	375	0.121630342	0.469594882	1.42E-05	5.91E-04	down
cytokine-mediated signaling			-				
pathway	GO Biological Process	28	0.249952931	0.211536121	1.43E-05	5.91E-04	down
initiation of signal transduction	GO Biological Process	28	۔ 0.249952931	0.211536121	1.43E-05	5.91E-04	down

signal initiation by diffusible			-				
mediator	GO Biological Process	28	0.249952931	0.211536121	1.43E-05	5.91E-04	down
signal initiation by protein/peptide mediator	GO Biological Process	28	- 0.249952931	0.211536121	1.43E-05	5.91E-04	down
response to external stimulus	GO Biological Process	171	- 0.154074793	0.383845766	1.53E-05	6.21E-04	down
Hypertrophic cardiomyopathy (HCM)	KEGG Pathway	20	- 0.291193426	0.16371093	2.37E-05	6.61E-04	down
amine transmembrane transporter activity	GO Molecular Function	19	- 0.281705811	0.17365387	7.28E-06	6.82E-04	down
amino acid transmembrane transporter activity	GO Molecular Function	17	۔ 0.287002779	0.168030496	9.69E-06	6.82E-04	down
carboxylic acid transmembrane transporter activity	GO Molecular Function	23	- 0.267218941	0.19001334	9.90E-06	6.82E-04	down
organic acid transmembrane transporter activity	GO Molecular Function	23	- 0.267218941	0.19001334	9.90E-06	6.82E-04	down
regulation of response to external stimulus	GO Biological Process	39	- 0.229046077	0.240885972	1.75E-05	6.94E-04	down
regulation of steroid hormone receptor signaling pathway	GO Biological Process	14	0.291146016	6.106528144	1.96E-05	7.60E-04	ир
nucleolus	GO Cellular Component	510	- 0.107006742	0.514270976	2.84E-05	7.66E-04	down
regulation of coagulation	GO Biological Process	15	۔ 0.286795228	0.168247369	2.09E-05	7.90E-04	down
epithelium development	GO Biological Process	120	۔ 0.167490521	0.353140973	2.57E-05	9.52E-04	down
synaptic vesicle	GO Cellular Component	21	0.283182191	5.811660546	4.04E-05	0.001005769	up

small molecule catabolic process	GO Biological Process	202	0.155892047	2.634801838	2.82E-05	0.001023778	up
epithelial cell differentiation	GO Biological Process	62	۔ 0.199703165	0.289072746	3.06E-05	0.001087322	down
digestive tract development	GO Biological Process	13	- 0.292960953	0.161922491	3.22E-05	0.001121726	down
positive regulation of response to external stimulus	GO Biological Process	15	- 0.283062869	0.172195504	3.32E-05	0.001121726	down
DNA damage response, signal transduction resulting in induction of apoptosis	GO Biological Process	20	-0.26436069	0.193418685	3.35E-05	0.001121726	down
cellular component movement	GO Biological Process	207	۔ 0.140701293	0.417110795	3.53E-05	0.001143973	down
response to insulin stimulus	GO Biological Process	58	0.213854624	3.777349886	3.61E-05	0.001143973	up
DNA damage response, signal transduction	GO Biological Process	62	۔ 0.198563134	0.291128054	3.61E-05	0.001143973	down
odontogenesis	GO Biological Process	19	- 0.266709467	0.190615911	3.75E-05	0.00116622	down
regulation of leukocyte migration	GO Biological Process	10	- 0.309724692	0.14590237	3.94E-05	0.00120277	down
integrin-mediated signaling pathway	GO Biological Process	22	- 0.256809824	0.202711314	4.11E-05	0.001227622	down
response to abiotic stimulus	GO Biological Process	150	۔ 0.153998574	0.384027625	4.16E-05	0.001227622	down
endopeptidase inhibitor activity	GO Molecular Function	39	۔ 0.228793316	0.241264654	2.53E-05	0.001307481	down
peptidase inhibitor activity	GO Molecular Function	39	۔ 0.228793316	0.241264654	2.53E-05	0.001307481	down

	GO Molecular		-				
calcium ion binding	Function	173	0.151123984	0.390949714	2.86E-05	0.001311718	down
	GO Molecular						
endopeptidase regulator activity	Function	42	-0.22223254	0.251304949	3.51E-05	0.001449737	down
			-				
muscle tissue development	GO Biological Process	54	0.203123103	0.282993747	5.37E-05	0.001559506	down
myeloid leukocyte differentiation	GO Biological Process	23	-0.25145429	0.209571592	5.72E-05	0.001632447	down
ligase activity, forming carbon-	GO Molecular						
sulfur bonds	Function	15	0.277862369	5.622664874	4.62E-05	0.001654697	ир
	GO Molecular						
GTPase regulator activity	Function	169	0.15729416	2.657860718	4.81E-05	0.001654697	ир
	GO Molecular		-				
cytokine receptor binding	Function	30	0.238433926	0.227234352	5.42E-05	0.001721341	down
positive regulation of immune			-				
system process	GO Biological Process	65	0.192335809	0.302615676	6.16E-05	0.001728755	down
	GO Molecular						
serine-type endopeptidase activity	Function	30	0.239390463	4.426981223	6.17E-05	0.001820832	ир
locomotion	GO Biological Process	174	-0.14375074	0.409280511	7.27E-05	0.002010322	down
			-				
response to glucocorticoid stimulus	GO Biological Process	30	0.232485534	0.235791701	8.48E-05	0.002306027	down
			-				
cell-cell adhesion	GO Biological Process	69	0.186692991	0.313416039	8.75E-05	0.002344295	down
	GO Cellular		-				
membrane raft	Component	57	0.197707637	0.292679981	1.03E-04	0.002379765	down
			-				
response to mechanical stimulus	GO Biological Process	26	0.239653314	0.225518874	9.85E-05	0.002566604	down

defense response	CO Riological Process	138	- 0.152128305	0.388517217	9.88E-05	0.002566604	down
defense response	GO Biological Process	120	0.152126505	0.566517217	9.002-05	0.002300004	uowii
cell-matrix adhesion	CO Riological Process	47	- 0.205802014	0.27832136	1.02E-04	0.002615411	down
	GO Biological Process	47	0.203802014	0.27852150	1.022-04	0.002013411	uowii
blood coagulation	GO Biological Process	30	0.230855721	0.238192089	1.04E-04	0.002615411	down
negative regulation of			-				
developmental process	GO Biological Process	73	0.182385385	0.321919524	1.06E-04	0.002641753	down
			-				
RNA processing	GO Biological Process	455	0.103244797	0.526435769	1.13E-04	0.002772715	down
regulation of immune system			-				
process	GO Biological Process	113	0.160335848	0.369197163	1.16E-04	0.002774582	down
			-				
inflammatory response	GO Biological Process	65	0.187648003	0.311561416	1.16E-04	0.002774582	down
response to corticosteroid stimulus	GO Biological Process	32	۔ 0.225994567	0.245497709	1.19E-04	0.002804658	down
	do biological i locess	52		0.243457705	1.156-04	0.002804038	uowii
skin development	GO Biological Process	14	0.276225418	0.17967013	1.23E-04	0.002825307	down
·			-				
regulation of cell adhesion	GO Biological Process	60	0.191335208	0.304503307	1.24E-04	0.002825307	down
			-				
digestive system development	GO Biological Process	15	0.271577554	0.184935518	1.25E-04	0.002825307	down
nucleoside-triphosphatase	GO Molecular						
regulator activity	Function	174	0.15041931	2.546696583	1.04E-04	0.002873394	ир
negative regulation of cell			-				
differentiation	GO Biological Process	62	0.189245266	0.308484043	1.30E-04	0.00290213	down
			-				
coagulation	GO Biological Process	32	0.224010223	0.248543911	1.51E-04	0.003335753	down

			-				
regulation of cell proliferation	GO Biological Process	268	0.120567254		1.61E-04	0.003467759	down
cell fate specification	GO Biological Process	10	0.290446389	6.080035175	1.61E-04	0.003467759	ир
regulation of small GTPase							
mediated signal transduction	GO Biological Process	102	0.173443575	2.938454747	1.86E-04	0.00392772	ир
regulation of cellular catabolic							
process	GO Biological Process	109	0.170243293	2.880590618	1.87E-04	0.00392772	ир
	GO Cellular						
anchoring junction	Component	92	-0.16850933	0.350912124	1.85E-04	0.003993539	down
			-				
gland morphogenesis	GO Biological Process	30	0.225274655	0.246598519	2.01E-04	0.004164271	down
			-				
locomotory behavior	GO Biological Process	59	0.188210772	0.310473668	2.06E-04	0.004188142	down
			-				
multi-organism process	GO Biological Process	332	0.110778619	0.502356274	2.07E-04	0.004188142	down
			_				
Focal adhesion	KEGG Pathway	82	0.190324191	0.306422547	1.93E-04	0.004262825	down
Long-term depression	KEGG Pathway	23	0.308261348	6.791850705	2.04E-04	0.004262825	up
			0.000201010	01/91000/00	21012 01	0.001202020	<u>ар</u>
	CO Callular						
extracellular space	GO Cellular Component	117	- 0.155485338	0.380495686	2.22E-04	0.004486302	down
GTP metabolic process	GO Biological Process	64	0.194051775	3.339949648	2.25E-04	0.00449432	up
protein maturation by peptide			-				
bond cleavage	GO Biological Process	21	0.244764412	0.218468181	2.36E-04	0.004561255	down
purine ribonucleotide metabolic							
process	GO Biological Process	132	0.159348988	2.692019117	2.37E-04	0.004561255	ир
			-				
response to drug	GO Biological Process	93	0.164217179	0.360398321	2.40E-04	0.004561255	down

leukocyte differentiation	GO Biological Process	58	- 0.187826432	0.311216126	2.40E-04	0.004561255	down
hemostasis	GO Biological Process	32	۔ 0.220011486	0.254797756	2.41E-04	0.004561255	down
	GO Cellular						
melanosome	Component	72	-0.1783283	0.330139332	2.54E-04	0.004578307	down
	GO Cellular						
pigment granule	Component	72	-0.1783283	0.330139332	2.54E-04	0.004578307	down
negative regulation of cell death	GO Biological Process	179	-0.13400212	0.434842813	2.54E-04	0.004755984	down
			-				
regulation of ion homeostasis	GO Biological Process	11	0.284610128	0.170547674	2.68E-04	0.004891163	down
GTP catabolic process	GO Biological Process	59	0.196263537	3.386175012	2.73E-04	0.004891163	up
regulation of GTP catabolic process	GO Biological Process	59	0.196263537	3.386175012	2.73E-04	0.004891163	up
regulation of GTPase activity	GO Biological Process	59	0.196263537	3.386175012	2.73E-04	0.004891163	up
Insulin signaling pathway	KEGG Pathway	61	0.23908232	4.41851171	2.80E-04	0.005190971	up
			-				
Notch signaling pathway	GO Biological Process	22	0.239761341	0.225367524	2.99E-04	0.005320454	down
purine ribonucleoside triphosphate							
catabolic process	GO Biological Process	64	0.191144351	3.280143701	3.12E-04	0.005426972	up
ribonucleoside triphosphate	Ŭ						
catabolic process	GO Biological Process	64	0.191144351	3.280143701	3.12E-04	0.005426972	up
positive regulation of cytokine							- 1-
production	GO Biological Process	28	0.225183969	0.246737535	3.16E-04	0.005443982	down
purine ribonucleotide catabolic		20		10,0,000	0.102 01		
process	GO Biological Process	67	0.188589806	3.228480961	3.24E-04	0.005536562	up
		07	0.100303000	5.220400901	5.241-04	0.005550502	up
negative regulation of apoptosis	GO Biological Process	175	۔ 0.133106628	0.437269518	3.28E-04	0.005545708	down
negative regulation of programmed							
cell death	GO Biological Process	176	-0.13266593	0.438468738	3.37E-04	0.005642173	down

nucleoside triphosphate catabolic							
process	GO Biological Process	67	0.188038907	3.217446762	3.45E-04	0.005716934	ир
Amoebiasis	KEGG Pathway	33	- 0.233609039	0.234151105	3.47E-04	0.005800083	down
	KEGG Patriway	55	0.255009059	0.234131105	5.47E-04	0.005800085	uowii
regulation of nucleotide catabolic		61	0 102107504	2 201 4 70 1		0.005920017	
process	GO Biological Process	61	0.192187594	3.3014791	3.58E-04	0.005830017	ир
regulation of purine nucleotide							
catabolic process	GO Biological Process	61	0.192187594	3.3014791	3.58E-04	0.005830017	ир
purine ribonucleoside triphosphate							
metabolic process	GO Biological Process	117	0.161163599	2.722549085	3.69E-04	0.005941629	ир
ribonucleoside triphosphate							
metabolic process	GO Biological Process	118	0.16062216	2.713403575	3.75E-04	0.005987296	up
	GO Cellular		-				
desmosome	Component	15	0.264810595	0.192878645	3.59E-04	0.0061145	down
			-				
striated muscle tissue development	GO Biological Process	50	0.191102022	0.3049449	4.06E-04	0.006387462	down
purine nucleoside triphosphate							
catabolic process	GO Biological Process	66	0.187239846	3.20150901	4.07E-04	0.006387462	up
response to organic cyclic			-				
substance	GO Biological Process	53	0.187846717	0.311176896	4.16E-04	0.006465618	down
ribonucleotide catabolic process	GO Biological Process	68	0.185490701	3.166896265	4.22E-04	0.006498914	up
ribonucleotide metabolic process	GO Biological Process	139	0.151798327	2.568615696	4.35E-04	0.006648819	up
	GO Cellular						
COPI-coated vesicle	Component	14	0.285507605	5.89625776	4.28E-04	0.006926958	up
	GO Cellular						
coated vesicle	Component	94	0.176494276	2.994696106	4.59E-04	0.007079173	up
	GO Molecular						
small GTPase regulator activity	Function	123	0.15871416	2.681419465	2.75E-04	0.007092422	up
			-				
response to bacterium	GO Biological Process	43	0.197664387	0.292758659	4.76E-04	0.007208594	down
regulation of developmental							
growth	GO Biological Process	17	0.25218934	4.793485997	4.83E-04	0.007244663	up

	GO Molecular						
carboxypeptidase activity	Function	10	0.282350899	5.781714038	3.14E-04	0.007267494	up
	GO Molecular						
GTPase activator activity	Function	95	0.16952289	2.867722972	3.17E-04	0.007267494	up
			-				
muscle organ development	GO Biological Process	69	0.172533253	0.34224564	5.16E-04	0.007618296	down
tissue remodeling	GO Biological Process	18	۔ 0.246465886	0.216170271	5.16E-04	0.007618296	down
	-		-				
muscle structure development	GO Biological Process	85	0.162089478	0.365195452	5.30E-04	0.007756459	down
positive regulation of protein							
transport	GO Biological Process	23	-0.23115602	0.237747981	5.55E-04	0.008052488	down
response to steroid hormone			-				
stimulus	GO Biological Process	70	0.170902867	0.345730972	5.73E-04	0.00818727	down
			-				
behavior	GO Biological Process	99	0.154182708	0.383588426	5.74E-04	0.00818727	down
purine nucleoside triphosphate							
metabolic process	GO Biological Process	122	0.155208975	2.623640759	5.79E-04	0.008197591	up
leukocyte chemotaxis	GO Biological Process	10	-0.28236786	0.172940861	5.94E-04	0.008336561	down
			-				
response to inorganic substance	GO Biological Process	113	0.147521786	0.399800309	6.12E-04	0.008364431	down
purine nucleotide catabolic process	GO Biological Process	72	0.179262513	3.046661086	6.14E-04	0.008364431	up
estrogen receptor signaling							
pathway	GO Biological Process	12	0.267488972	5.271627465	6.14E-04	0.008364431	up
nucleoside triphosphate metabolic							
process	GO Biological Process	127	0.152828879	2.585119126	6.15E-04	0.008364431	up
	GO Molecular						
lipid transporter activity	Function	26	0.23074997	4.195534028	3.87E-04	0.008409404	ир
anatomical structure formation			-				
involved in morphogenesis	GO Biological Process	143	0.136763949	0.427442994	6.31E-04	0.008514637	down
regulation of calcium ion transport	GO Biological Process	16	-	0.209992437	6.57E-04	0.008798721	down

			0.251131485				
regulation of Ras protein signal							
transduction	GO Biological Process	91	0.167454938	2.831104212	6.67E-04	0.008866121	up
induction of apoptosis by			-				
intracellular signals	GO Biological Process	34	0.207138359	0.276019511	6.72E-04	0.008866121	down
			-				
protein processing	GO Biological Process	31	0.211916542	0.267943737	6.95E-04	0.009096946	down
regulation of peptidase activity	GO Biological Process	51	- 0.184989955	0.316750756	7.10E-04	0.009226172	down
di-, tri-valent inorganic cation							
transport	GO Biological Process	55	-0.1806911	0.325327025	7.42E-04	0.009573316	down
negative regulation of							
transmembrane receptor protein							
serine/threonine kinase signaling pathway	GO Biological Process	14	- 0.257784735	0.201486861	7.63E-04	0.009765055	down
pathway	Ŭ	14	0.237784733	0.201480801	7.03E-04	0.009703033	uown
phosphoric ester hydrolase activity	GO Molecular Function	142	0.14749272	2.500796935	4.82E-04	0.009951015	
heterocycle catabolic process	GO Biological Process	88	0.14749272	2.831038048	4.82E-04 7.87E-04	0.010000106	up
carboxylic acid catabolic process		65	0.187431178	3.084193989	8.26E-04	0.010350354	up
· · ·	GO Biological Process	65					up
organic acid catabolic process	GO Biological Process	05	0.181232724	3.084193989	8.26E-04	0.010350354	ир
female sex differentiation	GO Biological Process	26	0.219894603	0.254982904	8.39E-04	0.010383843	down
		140	0 10001075	0 407777646	0 445 04	0.010202042	
cell migration	GO Biological Process GO Molecular	148	-0.13291975	0.437777646	8.41E-04	0.010383843	down
phospholipase activity	Function	25	0.22953199	4.163896782	5.40E-04	0.010579832	up
	GO Molecular	25		T.103030702	5.+0∟-04	0.010373032	чÞ
extracellular matrix binding	Function	11	0.279372493	0.17619031	5.64E-04	0.010579832	down
negative regulation of cell growth	GO Biological Process	32	۔ 0.207894907	0.27472481	8.71E-04	0.01067961	down
regulation of catabolic process	GO Biological Process	126	0.149540341	2.532823318	9.11E-04	0.011091051	up
organelle fusion	GO Biological Process	120		0.20964806	9.21E-04	0.011136855	down

			0.251395588				
generation of a signal involved in							
cell-cell signaling	GO Biological Process	40	0.203099588	3.533130635	9.49E-04	0.011312938	up
signal release	GO Biological Process	40	0.203099588	3.533130635	9.49E-04	0.011312938	up
hormone secretion	GO Biological Process	24	0.227770765	4.118570102	9.74E-04	0.011530315	up
ion transport	GO Biological Process	191	- 0.120788702	0.472057517	0.001008941	0.011868685	down
response to lipopolysaccharide	GO Biological Process	32	- 0.205452504	0.27892655	0.001104318	0.012854296	down
growth	GO Biological Process	188	- 0.120632341	0.472516447	0.001112017	0.012854296	down
hair cycle process	GO Biological Process	13	- 0.257936278	0.201297194	0.001129642	0.012854296	down
hair follicle development	GO Biological Process	13	۔ 0.257936278	0.201297194	0.001129642	0.012854296	down
molting cycle process	GO Biological Process	13	- 0.257936278	0.201297194	0.001129642	0.012854296	down
alcohol metabolic process	GO Biological Process	208	0.125067508	2.175471777	0.001190351	0.013431032	up
regulation of endothelial cell proliferation	GO Biological Process	15	-0.24841073	0.213573267	0.001195755	0.013431032	down
regulation of nitric oxide biosynthetic process	GO Biological Process	10	۔ 0.273398843	0.182854109	0.001261061	0.01407376	down
skeletal system development	GO Biological Process	58	۔ 0.172735782	0.341815148	0.001283446	0.014232348	down
hormone transport	GO Biological Process	25	0.222625204	3.988951428	0.001304397	0.014373135	up
regulation of cell activation	GO Biological Process	48	- 0.181878497	0.322935205	0.001344249	0.014553961	down
hair cycle	GO Biological Process	14	- 0.251257539	0.209827998	0.001345886	0.014553961	down
molting cycle	GO Biological Process	14	۔ 0.251257539	0.209827998	0.001345886	0.014553961	down

				1		1	1
renal system development	GO Biological Process	29	۔ 0.208409785	0.273847161	0.001390925	0.0148361	down
cell motility	GO Biological Process	152	۔ 0.127455467	0.452899162	0.001397542	0.0148361	down
localization of cell	GO Biological Process	152	۔ 0.127455467	0.452899162	0.001397542	0.0148361	down
response to molecule of bacterial origin	GO Biological Process	34	۔ 0.199526379	0.289390512	0.001415648	0.01493723	down
microtubule	GO Cellular Component	129	0.152174671	2.574630275	0.00106478	0.015681301	up
negative regulation of epithelial cell proliferation	GO Biological Process	10	0.267032585	5.256696922	0.001497269	0.015703281	up
response to radiation	GO Biological Process	85	۔ 0.152452939	0.387734182	0.001534944	0.016002026	down
acid-thiol ligase activity	GO Molecular Function	10	0.271317325	5.398552411	9.07E-04	0.01629198	up
Salivary secretion	KEGG Pathway	23	0.284590194	5.862736799	0.001073633	0.016299695	up
purine nucleotide metabolic process	GO Biological Process	154	0.135076234	2.315083735	0.001615919	0.016745923	up
positive regulation of intracellular protein transport	GO Biological Process	15	۔ 0.244756346	0.218479134	0.00162774	0.016768617	down
regulation of cytokine-mediated signaling pathway	GO Biological Process	10	- 0.269967521	0.18679522	0.001653697	0.016935806	down
regulation of cytokine production	GO Biological Process	46	- 0.181722141	0.323249151	0.001684987	0.017155331	down
protein binding, bridging	GO Molecular Function	39	۔ 0.197357559	0.293317427	0.001054561	0.018147243	down
positive regulation of lymphocyte activation	GO Biological Process	28	۔ 0.207041807	0.276185182	0.001871676	0.018945283	down
cholesterol transport	GO Biological Process	14	- 0.247048603	0.215388856	0.001901266	0.01902359	down
sterol transport	GO Biological Process	14	-	0.215388856	0.001901266	0.01902359	down

			0.247048603				
			-				
receptor metabolic process	GO Biological Process	27	0.208721052	0.273317941	0.001926667	0.019167582	down
	GO Cellular		-				
envelope	Component	460	0.087280621	0.581342697	0.001373952	0.019354801	down
regulation of fatty acid oxidation	GO Biological Process	15	0.243297235	4.535779569	0.001963146	0.019419533	ир
fructose metabolic process	GO Biological Process	13	0.250414741	4.740911784	0.001974654	0.019423012	ир
positive regulation of cell			-				
communication	GO Biological Process	134	0.129526735	0.447106751	0.002005435	0.019614952	down
			-				
mesenchymal cell development	GO Biological Process	13	0.250632568	0.210644544	0.002051702	0.019844517	down
mesenchymal cell differentiation	GO Biological Process	13	- 0.250632568	0.210644544	0.002051702	0.019844517	down
		15	-	0.210044344	0.002031702	0.015044517	down
nitric oxide biosynthetic process	GO Biological Process	14	0.245884106	0.216953257	0.002086134	0.019955822	down
· · ·			-				
nitric oxide metabolic process	GO Biological Process	14	0.245884106	0.216953257	0.002086134	0.019955822	down
Arachidonic acid metabolism	KEGG Pathway	14	0.314441683	7.057789017	0.001441625	0.020062617	up
regulation of Ras GTPase activity	GO Biological Process	53	0.180864552	3.077145275	0.002153499	0.020487662	up
actin filament bundle assembly	GO Biological Process	19	0.230340501	4.184871277	0.002176892	0.020597657	up
long-chain fatty acid transport	GO Biological Process	12	0.252983484	4.817201736	0.002233125	0.021015514	ир
			-				
homophilic cell adhesion	GO Biological Process	18	0.229582545	0.24008421	0.002317868	0.021695741	down
positive regulation of intracellular			-				
transport	GO Biological Process	17	0.232827874	0.235290586	0.002337932	0.021766522	down
Chemokine signaling pathway	KEGG Pathway	56	0.219585713	3.914310323	0.001715845	0.022042015	ир
		40	-	0.040.000	0.000.440000	0.000000000	
cholesterol homeostasis	GO Biological Process	13	0.248538785	0.213403371	0.002413839	0.022207997	down
sterol homeostasis	GO Biological Process	13	- 0.248538785	0.213403371	0.002413839	0.022207997	down
	0		-				
anti-apoptosis	GO Biological Process	107	0.137486204	0.425528702	0.002423618	0.022207997	down

							1
regulation of hormone levels	GO Biological Process	57	0.175819119	2.982157163	0.002485668	0.022620983	up
			-				
response to organic substance	GO Biological Process	337	0.092488427	0.562829056	0.002494675	0.022620983	down
regulation of nucleotide metabolic							
process	GO Biological Process	74	0.163481589	2.762052347	0.002519233	0.022725309	up
	GO Molecular						
ligase activity	Function	240	0.115915133	2.055187584	0.001378775	0.022777363	up
cytokine production	GO Biological Process	56	۔ 0.167246651	0.353676583	0.00257132	0.02307561	down
		20	-	0 000 407 457	0.000507000	0.000445	
response to calcium ion	GO Biological Process	30	0.199466925	0.289497457	0.002597399	0.023190115	down
leukocyte migration	GO Biological Process	21	0.218966367	0.256458055	0.002664192	0.02366509	down
response to oxidative stress	GO Biological Process	96	۔ 0.141286551	0.415596457	0.002689527	0.023768867	down
	GO Molecular						
lipase activity	Function	31	0.208376195	3.650909782	0.001510264	0.023989965	up
elevation of cytosolic calcium ion			-				
concentration	GO Biological Process	14	0.242254678	0.221902345	0.002764687	0.024309701	down
regulation of cell-cell adhesion	GO Biological Process	14	۔ 0.241906454	0.222383078	0.00283871	0.024835149	down
			-				
endothelial cell migration	GO Biological Process	19	0.223466535	0.249385114	0.002937875	0.025574199	down
	GO Cellular		-				
organelle envelope	Component	458	0.085068372	0.589390342	0.001907457	0.025750675	down
cytosolic calcium ion homeostasis	GO Biological Process	16	۔ 0.233127709	0.234852564	0.003019634	0.026155142	down
ligase activity, forming carbon-	GO Molecular						
nitrogen bonds	Function	147	0.134451104	2.306107229	0.001715634	0.026242844	up

Malaria	KEGG Pathway	10	۔ 0.284673177	0.170480862	0.002213367	0.026402305	down
di-, tri-valent inorganic cation			-				
homeostasis	GO Biological Process	62	0.160316073	0.369242539	0.003069952	0.026459342	down
			-				
iron ion transport	GO Biological Process	16	0.232727693	0.235437121	0.003113109	0.026699126	down
peptide hormone secretion	GO Biological Process	21	0.220958091	3.947837422	0.003155455	0.026836121	up
			-				
skeletal muscle tissue development	GO Biological Process	32	0.193650676	0.300152962	0.003159911	0.026836121	down
· · ·	GO Molecular						
double-stranded DNA binding	Function	55	-0.17312878	0.340981342	0.001921888	0.027372498	down
transmembrane receptor protein	GO Molecular		_				
kinase activity	Function	17	0.237201127	0.228981963	0.002012815	0.027372498	down
Killase activity	GO Molecular	17	0.237201127	0.228981905	0.002012815	0.027372438	uowii
acid-amino acid ligase activity	Function	125	0.139734002	2.383075935	0.002059718	0.027372498	up
acid-aritino acid ligase activity	GO Molecular	125	0.139734002	2.363073933	0.002039718	0.027372498	ир
corina tuna pontidaca activity	Function	44	0.188009308	3.216854989	0.002061547	0.027372498	
serine-type peptidase activity		44	0.100009500	5.210654969	0.002001547	0.027572496	ир
	GO Molecular		-				
enzyme inhibitor activity	Function	95	0.145442514	0.404999995	0.002160473	0.027372498	down
	GO Molecular		-				
structure-specific DNA binding	Function	86	0.149955367	0.39379932	0.002187149	0.027372498	down
Gap junction	KEGG Pathway	27	0.260466941	5.046525375	0.002485372	0.027670475	up
cell chemotaxis	GO Biological Process	12	-0.24918138	0.212552849	0.00331875	0.028048268	down
	Ŭ		-				
fat cell differentiation	GO Biological Process	30	0.196297256	0.295256587	0.003377264	0.028404911	down
regulation of metal ion transport	GO Biological Process	20	-0.2184978	0.257205939	0.003440627	0.028798711	down
		20	0.2104570	0.237203535	0.003440027	0.020750711	down
response to gamma radiation	GO Biological Process	10	0.259482419	0.199372261	0.003577765	0.029803295	down
	GO Molecular						
serine hydrolase activity	Function	45	0.184940349	3.156083285	0.002466671	0.029962792	up
positive regulation of cellular							
	CO Riological Process	16	-	0.341137017	0.003659367	0.030337892	down
component movement	GO Biological Process	46	0.173055333	0.34113/01/	0.003039367	0.030337892	down

positive regulation of anti-			-				
apoptosis	GO Biological Process	16	0.230271993	0.239057733	0.003742316	0.030740412	down
			-				
positive regulation of cell migration	GO Biological Process	41	0.178635464	0.329509728	0.003743232	0.030740412	down
			-				
response to DNA damage stimulus	GO Biological Process	239	0.100717813	0.534768287	0.003837123	0.031363529	down
myoblast differentiation	GO Biological Process	10	۔ 0.257718861	0.201569363	0.004040665	0.03287289	down
regulation of homeostatic process	GO Biological Process	29	- 0.195714911	0.296327069	0.004091968	0.032880685	down
positive regulation of cell activation	GO Biological Process	31	- 0.192127763	0.303007189	0.004098282	0.032880685	down
positive regulation of leukocyte	_		-				
activation	GO Biological Process	31	0.192127763	0.303007189	0.004098282	0.032880685	down
	GO Cellular		-				
lipid particle	Component	13	0.251064316	0.210080113	0.00256098	0.033190298	down
regulation of canonical Wnt			-				
receptor signaling pathway	GO Biological Process	12	0.245973845	0.216832297	0.00416906	0.033295106	down
peptide secretion	GO Biological Process	22	0.215110076	3.806936582	0.004196337	0.033338881	ир
regulation of cellular component			-				
movement	GO Biological Process	80	0.144773426	0.406687538	0.00421284	0.033338881	down
extracellular matrix organization	GO Biological Process	30	۔ 0.193452547	0.300522767	0.004237396	0.033381475	down
small molecule biosynthetic process	GO Biological Process	232	0.107946409	1.955888621	0.004366662	0.034224402	up
monocarboxylic acid metabolic							
process	GO Biological Process	160	0.123028707	2.148081669	0.004383711	0.034224402	up
response to peptide hormone							
stimulus	GO Biological Process	82	0.152223879	2.57541774	0.004441274	0.034519007	ир
	GO Cellular	202	0 1055 4350 4	1.02000722	0.00270201	0.024600550	
microtubule cytoskeleton	Component	292	0.105542594	1.92688722	0.00278381	0.034690558	up
regulation of membrane potential	GO Biological Process	41	-	0.334181259	0.004505507	0.034862608	down

			0.176370211				
			-				
negative regulation of cell size	GO Biological Process	36	0.182986511	0.320719153	0.004533912	0.034927169	down
vesicle localization	GO Biological Process	25	0.207840872	3.638784023	0.004558708	0.034963481	up
appendage morphogenesis	GO Biological Process	29	- 0.194082482	0.299348579	0.0046449	0.035313411	down
limb morphogenesis	GO Biological Process	29	- 0.194082482	0.299348579	0.0046449	0.035313411	down
regulation of T cell proliferation	GO Biological Process	19	- 0.217313977	0.25910518	0.004678078	0.035411013	down
cellular membrane fusion	GO Biological Process	33	- 0.186606389	0.313584763	0.004874391	0.036737295	down
metal ion transport	GO Biological Process	104	-0.13127505	0.442275191	0.004948066	0.037131825	down
nucleobase, nucleoside and nucleotide metabolic process	GO Biological Process	248	0.103944965	1.907850516	0.005000387	0.037363405	up
regulation of blood pressure	GO Biological Process	20	0.217027807	3.852578896	0.005172007	0.038480613	up
gliogenesis	GO Biological Process GO Cellular	26	- 0.198472261	0.291292511	0.005199928	0.03852372	down
cell-substrate junction	Component	57	0.165586493	0.357344434	0.003301974	0.03856594	down
synapse part	GO Cellular Component	63	0.17617752	2.988806797	0.003332859	0.03856594	up
response to oxygen levels	GO Biological Process	59	- 0.156428734	0.378271428	0.00527663	0.038926329	down
regulation of anti-apoptosis	GO Biological Process	22	-0.20722594	0.275869319	0.005355827	0.03934386	down
regulation of leukocyte proliferation	GO Biological Process	23	- 0.204440563	0.280686194	0.005485694	0.039572681	down
regulation of lymphocyte proliferation	GO Biological Process	23	- 0.204440563	0.280686194	0.005485694	0.039572681	down
regulation of mononuclear cell proliferation	GO Biological Process	23	- 0.204440563	0.280686194	0.005485694	0.039572681	down

regulation of ARF protein signal							
transduction	GO Biological Process	21	0.213860958	3.777498591	0.0054882	0.039572681	up
			-				
ncRNA metabolic process	GO Biological Process	188	0.106124374	0.517098762	0.005500625	0.039572681	down
			-				
mesenchyme development	GO Biological Process	15	0.228278809	0.242037323	0.005641974	0.040422539	down
			-				
cellular response to stress	GO Biological Process	361	0.083273175	0.596002659	0.00576057	0.041103082	down
protein maturation	GO Biological Process	38	-0.17693479	0.333010792	0.005845726	0.041540443	down
nucleoside phosphate metabolic							
process	GO Biological Process	232	0.104697547	1.916794425	0.005932026	0.041812375	up
nucleotide metabolic process	GO Biological Process	232	0.104697547	1.916794425	0.005932026	0.041812375	up
			-				
ureteric bud development	GO Biological Process	13	0.235588165	0.231288803	0.006088609	0.042743014	down
Adipocytokine signaling pathway	KEGG Pathway	30	0.245044885	4.585310975	0.004096861	0.042760989	up
response to vitamin	GO Biological Process	33	-0.18357227	0.319553774	0.006137749	0.042914944	down
	GO Cellular		-				
extrinsic to plasma membrane	Component	22	0.214320436	0.263970608	0.00389503	0.043297889	down
	GO Cellular		-				
apical part of cell	Component	66	0.155863809	0.379601793	0.004110883	0.043297889	down
	GO Cellular						
coated vesicle membrane	Component	55	0.180577211	3.071655288	0.004142699	0.043297889	ир
fatty acid metabolic process	GO Biological Process	111	0.134514823	2.307020596	0.006284535	0.043661646	ир
		20	-	0.225042646	0.000007400	0.042664646	
negative regulation of growth	GO Biological Process	38	0.175955513	0.335043616	0.006297196	0.043661646	down
amine catabolic process	GO Biological Process	36	0.186074829	3.1784134	0.006319779	0.043661646	ир
activation of corpore activity	CO Riological Process	25	-	0 202642907	0.006400542	0.044106769	down
activation of caspase activity	GO Biological Process	25	0.197727526	0.292643807	0.006409542	0.044106768	down
regulation of ossification	GO Biological Process	20	- 0.209894139	0.271332624	0.006456167	0.044219874	down
nucleotide catabolic process	GO Biological Process	83	0.147031129	2.493633404	0.006476777	0.044219874	up

nucleobase, nucleoside and							
nucleotide catabolic process	GO Biological Process	85	0.145681413	2.472804391	0.006621545	0.044856456	up
nucleobase, nucleoside, nucleotide	Ŭ						
and nucleic acid catabolic process	GO Biological Process	85	0.145681413	2.472804391	0.006621545	0.044856456	up
· · ·	GO Molecular						
hormone binding	Function	10	0.253621001	4.836324963	0.00399207	0.045170486	up
	GO Molecular		-				
protein complex binding	Function	103	0.135214414	0.431579048	0.004055189	0.045170486	down
	GO Molecular						
kinase activity	Function	314	0.095596095	1.811385945	0.004142546	0.045170486	up
	GO Molecular						
microtubule motor activity	Function	27	0.203409882	3.539950336	0.004156122	0.045170486	ир
response to estrogen stimulus	GO Biological Process	37	- 0.176226852	0.33447912	0.006832184	0.046104	down
regulation of lymphocyte activation	GO Biological Process	41	-0.17092953	0.34567369	0.00688017	0.046248554	down
	OO DIOIOgical FIOCESS	41	-0.17092955	0.34307303	0.00088017	0.040248554	uown
regulation of ion transport	GO Biological Process	24	0.198461931	0.291311213	0.007114239	0.047474742	down
cellular response to insulin stimulus	GO Biological Process	45	0.173954952	2.947808031	0.007117121	0.047474742	up
			-				
regulation of T cell activation	GO Biological Process	37	0.175603679	0.335776995	0.007153968	0.047538389	down
			-				
peptidyl-serine phosphorylation	GO Biological Process	21	0.205599799	0.278671343	0.007200673	0.047564109	down
development of primary female			-				
sexual characteristics	GO Biological Process	22	0.202972895	0.28325804	0.007232602	0.047564109	down
peptide transport	GO Biological Process	25	0.20156463	3.499587773	0.0072834	0.047564109	ир
			-				
mRNA processing	GO Biological Process	251	0.092907929	0.561363647	0.007303132	0.047564109	down
appendage development	GO Biological Process	30	- 0.186139204	0.314496539	0.007321758	0.047564109	down
appendage development			0.100139204	0.314490339	0.007321738	0.047304103	uown
limb development	GO Biological Process	30	0.186139204	0.314496539	0.007321758	0.047564109	down

positive regulation of signaling	GO Biological Process	125	-0.11900698	0.477313514	0.007402823	0.047911953	down
heterocycle metabolic process	GO Biological Process	238	0.101201214	1.875594895		0.048140816	up
regulation of protein kinase B		47	-	0.20022440	0.007620706	0.040000757	
signaling cascade	GO Biological Process	1/	0.216558714	0.26032419	0.007639796	0.049080757	down

 Table S 15: Concordance-based LRPath Gene Ontology and pathway analysis results with FDR <= 0.05</th>

References:

- 1. Margulies, M., et al., *Genome sequencing in microfabricated high-density picolitre reactors.* Nature, 2005. **437**(7057): p. 376-80.
- 2. Bentley, D.R., et al., Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008. **456**(7218): p. 53-9.
- 3. Rothberg, J.M., et al., *An integrated semiconductor device enabling non-optical genome sequencing*. Nature, 2011. **475**(7356): p. 348-52.
- 4. Levene, M.J., et al., *Zero-mode waveguides for single-molecule analysis at high concentrations.* Science, 2003. **299**(5607): p. 682-6.
- 5. Korlach, J., et al., *Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures.* Proc Natl Acad Sci U S A, 2008. **105**(4): p. 1176-81.
- 6. Parkinson, N.J., et al., *Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA*. Genome Res, 2012. **22**(1): p. 125-33.
- 7. Yamamoto, M., et al., *Use of serial analysis of gene expression (SAGE) technology.* J Immunol Methods, 2001. **250**(1-2): p. 45-66.
- 8. Brenner, S., et al., *Gene expression analysis by massively parallel signature sequencing* (MPSS) on microbead arrays. Nat Biotechnol, 2000. **18**(6): p. 630-4.
- 9. Mortazavi, A., et al., *Mapping and quantifying mammalian transcriptomes by RNA-Seq.* Nat Methods, 2008. **5**(7): p. 621-8.
- 10. Wang, Z., M. Gerstein, and M. Snyder, *RNA-Seq: a revolutionary tool for transcriptomics.* Nat Rev Genet, 2009. **10**(1): p. 57-63.
- 11. Xu, X., et al., Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC Bioinformatics, 2013. **14 Suppl 9**: p. S1.
- 12. Pushkarev, D., N.F. Neff, and S.R. Quake, *Single-molecule sequencing of an individual human genome.* Nat Biotechnol, 2009. **27**(9): p. 847-50.
- 13. Ideker, T., et al., *Integrated genomic and proteomic analyses of a systematically perturbed metabolic network*. Science, 2001. **292**(5518): p. 929-34.
- 14. Rives, A.W. and T. Galitski, *Modular organization of cellular networks*. Proc Natl Acad Sci U S A, 2003. **100**(3): p. 1128-33.
- 15. Petti, A.A. and G.M. Church, *A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae.* Genome Res, 2005. **15**(9): p. 1298-306.
- 16. Sam, L., et al., *Discovery of protein interaction networks shared by diseases*. Pac Symp Biocomput, 2007: p. 76-87.
- 17. Lage, K., et al., *A human phenome-interactome network of protein complexes implicated in genetic disorders.* Nat Biotechnol, 2007. **25**(3): p. 309-16.

- 18. Xu, J. and Y. Li, *Discovering disease-genes by topological features in human proteinprotein interaction network.* Bioinformatics, 2006. **22**(22): p. 2800-5.
- 19. Goh, K.I., et al., *The human disease network.* Proc Natl Acad Sci U S A, 2007. **104**(21): p. 8685-90.
- 20. Krauthammer, M., et al., *Molecular triangulation: bridging linkage and molecularnetwork information for identifying candidate genes in Alzheimer's disease.* Proc Natl Acad Sci U S A, 2004. **101**(42): p. 15148-53.
- 21. He, X. and J. Zhang, *Why do hubs tend to be essential in protein networks?* PLoS Genet, 2006. **2**(6): p. e88.
- 22. Jeong, H., et al., *Lethality and centrality in protein networks*. Nature, 2001. **411**(6833): p. 41-2.
- 23. Yu, H., et al., *The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics.* PLoS Comput Biol, 2007. **3**(4): p. e59.
- Said, M.R., et al., Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2004. 101(52): p. 18006-11.
- 25. Tuck, D.P., H.M. Kluger, and Y. Kluger, *Characterizing disease states from topological* properties of transcriptional regulatory networks. BMC Bioinformatics, 2006. **7**: p. 236.
- 26. Dijkstra, E.W., *A note on two problems in connection with graphs.* Numerische Mathematik, 1959(1): p. 83–89.
- 27. Feldman, I., A. Rzhetsky, and D. Vitkup, *Network properties of genes harboring inherited disease mutations.* Proc Natl Acad Sci U S A, 2008. **105**(11): p. 4323-8.
- 28. Semon, M., D. Mouchiroud, and L. Duret, *Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance.* Hum Mol Genet, 2005. **14**(3): p. 421-7.
- 29. Berneburg, M. and A.R. Lehmann, *Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription.* Adv Genet, 2001. **43**: p. 71-102.
- 30. Crick, F., *Central dogma of molecular biology*. Nature, 1970. **227**(5258): p. 561-3.
- 31. Sunohara, T., et al., *Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli*. J Biol Chem, 2004. **279**(15): p. 15368-75.
- 32. Baker, K.E. and R. Parker, *Nonsense-mediated mRNA decay: terminating erroneous gene expression.* Curr Opin Cell Biol, 2004. **16**(3): p. 293-9.
- 33. Zeng, Y., R. Yi, and B.R. Cullen, *MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms*. Proc Natl Acad Sci U S A, 2003. **100**(17): p. 9779-84.
- 34. Wilkinson, K.D., *Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome.* Semin Cell Dev Biol, 2000. **11**(3): p. 141-8.
- 35. Anderson, L. and J. Seilhamer, *A comparison of selected mRNA and protein abundances in human liver.* Electrophoresis, 1997. **18**(3-4): p. 533-7.
- 36. Lichtinghagen, R., et al., *Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue.* Eur Urol, 2002. **42**(4): p. 398-406.
- 37. Bruce, C., et al., *Proteomics and the analysis of proteomic data: 2013 overview of current protein-profiling technologies.* Curr Protoc Bioinformatics, 2013. **Chapter 13**: p. Unit 13 21.

- 38. Matthiesen, R. and A.S. Carvalho, *Methods and algorithms for quantitative proteomics by mass spectrometry.* Methods Mol Biol, 2013. **1007**: p. 183-217.
- 39. Mirza, S.P. and M. Olivier, *Methods and approaches for the comprehensive characterization and quantification of cellular proteomes using mass spectrometry.* Physiol Genomics, 2008. **33**(1): p. 3-11.
- 40. Nagaraj, N., et al., *Deep proteome and transcriptome mapping of a human cancer cell line.* Mol Syst Biol, 2011. **7**: p. 548.
- 41. Chen, G., et al., *Discordant protein and mRNA expression in lung adenocarcinomas.* Mol Cell Proteomics, 2002. **1**(4): p. 304-13.
- 42. Cox, B., T. Kislinger, and A. Emili, *Integrating gene and protein expression data: pattern analysis and profile mining.* Methods, 2005. **35**(3): p. 303-14.
- 43. Gry, M., et al., *Correlations between RNA and protein expression profiles in 23 human cell lines.* BMC Genomics, 2009. **10**: p. 365.
- 44. Shankavaram, U.T., et al., *Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study.* Mol Cancer Ther, 2007. **6**(3): p. 820-32.
- 45. Ghazalpour, A., et al., *Comparative analysis of proteome and transcriptome variation in mouse*. PLoS Genet, 2011. **7**(6): p. e1001393.
- 46. Akan, P., et al., *Comprehensive analysis of the genome transcriptome and proteome landscapes of three tumor cell lines.* Genome Med, 2012. **4**(11): p. 86.
- 47. Waters, K.M., J.G. Pounds, and B.D. Thrall, *Data merging for integrated microarray and proteomic analysis.* Brief Funct Genomic Proteomic, 2006. **5**(4): p. 261-72.
- 48. Nie, L., et al., *Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications.* Crit Rev Biotechnol, 2007. **27**(2): p. 63-75.
- 49. Hegde, P.S., I.R. White, and C. Debouck, *Interplay of transcriptomics and proteomics*. Curr Opin Biotechnol, 2003. **14**(6): p. 647-51.
- 50. Kvam, V.M., P. Liu, and Y. Si, *A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data.* Am J Bot, 2012. **99**(2): p. 248-56.
- 51. Garber, M., et al., *Computational methods for transcriptome annotation and quantification using RNA-seq.* Nat Methods, 2011. **8**(6): p. 469-77.
- 52. Dillies, M.A., et al., *A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.* Brief Bioinform, 2013. **14**(6): p. 671-83.
- 53. Nahnsen, S., et al., *Tools for label-free peptide quantification*. Mol Cell Proteomics, 2013. **12**(3): p. 549-56.
- 54. DeSouza, L.V. and K.W. Siu, *Mass spectrometry-based quantification*. Clin Biochem, 2013. **46**(6): p. 421-31.
- 55. Trapnell, C., et al., *Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks*. Nat Protoc, 2012. **7**(3): p. 562-78.
- 56. Pedrioli, P.G., *Trans-proteomic pipeline: a pipeline for proteomic analysis.* Methods Mol Biol, 2010. **604**: p. 213-38.
- 57. Fermin, D., et al., Abacus: a computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis. Proteomics, 2011.
 11(7): p. 1340-5.
- 58. Vogel, C. and E.M. Marcotte, *Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.* Nat Rev Genet, 2012. **13**(4): p. 227-32.

- 59. Vogel, C., et al., Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol, 2010. **6**: p. 400.
- 60. Schwanhausser, B., et al., *Global quantification of mammalian gene expression control.* Nature, 2011. **473**(7347): p. 337-42.
- 61. Hanahan, D. and R.A. Weinberg, *The hallmarks of cancer*. Cell, 2000. **100**(1): p. 57-70.
- 62. Hanahan, D. and R.A. Weinberg, *Hallmarks of cancer: the next generation.* Cell, 2011. **144**(5): p. 646-74.
- 63. Agoston, A.T., et al., *Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer.* J Biol Chem, 2005. **280**(18): p. 18302-10.
- 64. Lu, X. and Y. Kang, *Hypoxia and hypoxia-inducible factors: master regulators of metastasis.* Clin Cancer Res, 2010. **16**(24): p. 5928-35.
- 65. Wan, M., et al., *Yin Yang 1 plays an essential role in breast cancer and negatively regulates p27.* Am J Pathol, 2012. **180**(5): p. 2120-33.
- 66. Wu, S., et al., *Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1alpha in a p53-independent manner.* Cancer Res, 2013. **73**(6): p. 1787-99.
- 67. Curtis, D.J. and M.P. McCormack, *The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia.* Clin Cancer Res, 2010. **16**(23): p. 5618-23.
- 68. Aplan, P.D., et al., *Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia*. Blood, 1992. **79**(5): p. 1327-33.
- 69. Lecuyer, E., et al., *Protein stability and transcription factor complex assembly determined by the SCL-LMO2 interaction.* J Biol Chem, 2007. **282**(46): p. 33649-58.
- 70. Maher, C.A., et al., *Transcriptome sequencing to detect gene fusions in cancer*. Nature, 2009. **458**(7234): p. 97-101.
- 71. Kim, J.H., et al., *Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.* Genome Res, 2011. **21**(7): p. 1028-41.
- 72. Grasso, C.S., et al., *The mutational landscape of lethal castration-resistant prostate cancer.* Nature, 2012. **487**(7406): p. 239-43.
- 73. Roychowdhury, S., et al., *Personalized oncology through integrative high-throughput sequencing: a pilot study.* Sci Transl Med, 2011. **3**(111): p. 111ra121.
- 74. Sultan, M., et al., *A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome.* Science, 2008. **321**(5891): p. 956-60.
- 75. Li, H., et al., *Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model.* Proc Natl Acad Sci U S A, 2008. **105**(51): p. 20179-84.
- 76. Pan, Q., et al., *Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.* Nat Genet, 2008. **40**(12): p. 1413-5.
- 77. Trapnell, C., L. Pachter, and S.L. Salzberg, *TopHat: discovering splice junctions with RNA-Seq.* Bioinformatics, 2009. **25**(9): p. 1105-11.
- 78. Au, K.F., et al., *Detection of splice junctions from paired-end RNA-seq data by SpliceMap.* Nucleic Acids Res, 2010.
- 79. Bryant, D.W., Jr., et al., *Supersplat--spliced RNA-seq alignment*. Bioinformatics, 2010. **26**(12): p. 1500-5.
- 80. Morin, R., et al., *Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing.* Biotechniques, 2008. **45**(1): p. 81-94.

- 81. Shah, S.P., et al., *Mutation of FOXL2 in granulosa-cell tumors of the ovary.* N Engl J Med, 2009. **360**(26): p. 2719-29.
- 82. Berger, M.F., et al., Integrative analysis of the melanoma transcriptome. Genome Res.
- 83. Tuch, B.B., et al., *Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.* PLoS One. **5**(2): p. e9317.
- 84. Palacios, G., et al., *A new arenavirus in a cluster of fatal transplant-associated diseases.* N Engl J Med, 2008. **358**(10): p. 991-8.
- 85. Briese, T., et al., *Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa.* PLoS Pathog, 2009. **5**(5): p. e1000455.
- 86. Nakamura, S., et al., Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One, 2009.
 4(1): p. e4219.
- 87. Maher, C.A., et al., *Chimeric transcript discovery by paired-end transcriptome sequencing*. Proc Natl Acad Sci U S A, 2009. **106**(30): p. 12353-8.
- 88. Palanisamy, N., et al., *Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma.* Nat Med, 2010. **16**(7): p. 793-8.
- 89. Ozsolak, F., et al., *Direct RNA sequencing*. Nature, 2009. **461**(7265): p. 814-8.
- 90. Kozarewa, I., et al., *Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes.* Nat Methods, 2009. **6**(4): p. 291-5.
- 91. Dohm, J.C., et al., *Substantial biases in ultra-short read data sets from high-throughput DNA sequencing.* Nucleic Acids Res, 2008. **36**(16): p. e105.
- 92. Campbell, P.J., et al., *Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing.* Nat Genet, 2008. **40**(6): p. 722-9.
- 93. Ng, S.B., et al., *Targeted capture and massively parallel sequencing of 12 human exomes.* Nature, 2009. **461**(7261): p. 272-6.
- 94. Langmead, B., et al., *Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.* Genome Biol, 2009. **10**(3): p. R25.
- 95. Lipson, D., et al., *Quantification of the yeast transcriptome by single-molecule sequencing*. Nat Biotechnol, 2009. **27**(7): p. 652-8.
- 96. Ramskold, D., et al., *An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data.* PLoS Comput Biol, 2009. **5**(12): p. e1000598.
- 97. Bruford, E.A., et al., *The HGNC Database in 2008: a resource for the human genome.* Nucleic Acids Res, 2008. **36**(Database issue): p. D445-8.
- 98. Mamanova, L., et al., *FRT-seq: amplification-free, strand-specific transcriptome sequencing.* Nat Methods. **7**(2): p. 130-2.
- 99. Tomlins, S.A., et al., *Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.* Science, 2005. **310**(5748): p. 644-8.
- 100. Korenchuk, S., et al., *VCaP, a cell-based model system of human prostate cancer.* In Vivo, 2001. **15**(2): p. 163-8.
- 101. R Development Core Team, *R: A Language and Environment for Statistical Computing*. 2009, R Foundation for Statistical Computing: Vienna, Austria.

- 102. Carmona-Saez, P., et al., *GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists.* Genome Biol, 2007. **8**(1): p. R3.
- 103. Vogel, C. and E.M. Marcotte, *Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.* Nat Rev Genet. **13**(4): p. 227-32.
- 104. Maier, T., M. Guell, and L. Serrano, *Correlation of mRNA and protein in complex biological samples.* FEBS Lett, 2009. **583**(24): p. 3966-73.
- 105. Bello, D., et al., Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis, 1997. **18**(6): p. 1215-23.
- 106. Fagan, A., A.C. Culhane, and D.G. Higgins, *A multivariate analysis approach to the integration of proteomic and gene expression data*. Proteomics, 2007. **7**(13): p. 2162-71.
- 107. Greenbaum, D., et al., *Comparing protein abundance and mRNA expression levels on a genomic scale.* Genome Biol, 2003. **4**(9): p. 117.
- 108. Wu, L., et al., *Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling.* Mol Cell Proteomics, 2007. **6**(8): p. 1343-53.
- 109. Guo, Y., et al., How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai), 2008.
 40(5): p. 426-36.
- 110. Lundberg, E., et al., *Defining the transcriptome and proteome in three functionally different human cell lines.* Mol Syst Biol, 2010. **6**: p. 450.
- 111. Moghaddas Gholami, A., et al., *Global Proteome Analysis of the NCI-60 Cell Line Panel*. Cell Rep, 2013. **4**(3): p. 609-20.
- 112. Keller, A., et al., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol, 2005. **1**: p. 2005 0017.
- 113. Hebenstreit, D., et al., *RNA sequencing reveals two major classes of gene expression levels in metazoan cells.* Mol Syst Biol, 2011. **7**: p. 497.
- 114. Tomlins, S.A., et al., *Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.* Nature, 2007. **448**(7153): p. 595-9.
- 115. Yocum, A.K., et al., *Development of selected reaction monitoring-MS methodology to measure peptide biomarkers in prostate cancer.* Proteomics, 2010. **10**(19): p. 3506-14.
- 116. Kessner, D., et al., *ProteoWizard: open source software for rapid proteomics tools development.* Bioinformatics, 2008. **24**(21): p. 2534-6.
- 117. Keller, A., et al., *A uniform proteomics MS/MS analysis platform utilizing open XML file formats.* Molecular systems biology, 2005. **1**: p. 2005 0017.
- 118. Fenyo, D. and R.C. Beavis, A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem, 2003. **75**(4): p. 768-74.
- 119. Nesvizhskii, A.I., et al., *A statistical model for identifying proteins by tandem mass spectrometry.* Anal Chem, 2003. **75**(17): p. 4646-58.
- 120. Keller, A., et al., *Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search*. Anal Chem, 2002. **74**(20): p. 5383-92.
- 121. Zhang, Y., et al., *Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins.* Anal Chem, 2010. **82**(6): p. 2272-81.

- 122. Siegel, R., D. Naishadham, and A. Jemal, *Cancer statistics, 2012.* CA Cancer J Clin, 2012. **62**(1): p. 10-29.
- Pascal, L.E., et al., Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC Genomics, 2008. 9: p. 246.
- 124. Nordengren, J., et al., Discordant expression of mRNA and protein for urokinase and tissue plasminogen activators (u-PA, t-PA) in endometrial carcinoma. Int J Cancer, 1998.
 79(2): p. 195-201.
- 125. Suvannasankha, A., et al., *Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function.* Leukemia, 2004. **18**(7): p. 1252-7.
- 126. Ropponen, K.M., et al., *Expression of transcription factor AP-2 in colorectal adenomas and adenocarcinomas; comparison of immunohistochemistry and in situ hybridisation.* J Clin Pathol, 2001. **54**(7): p. 533-8.
- 127. Keller, A., et al., *Experimental protein mixture for validating tandem mass spectral analysis.* OMICS, 2002. **6**(2): p. 207-12.
- 128. Cordwell, S.J. and T.E. Thingholm, *Technologies for plasma membrane proteomics*. Proteomics, 2010. **10**(4): p. 611-27.
- 129. Vuckovic, D., et al., *Membrane proteomics by high performance liquid chromatographytandem mass spectrometry: Analytical approaches and challenges.* Proteomics, 2013. **13**(3-4): p. 404-23.
- 130. Beck, M., et al., *The quantitative proteome of a human cell line*. Mol Syst Biol, 2011. **7**: p. 549.
- 131. Gray, N.K. and M.W. Hentze, *Regulation of protein synthesis by mRNA structure*. Mol Biol Rep, 1994. **19**(3): p. 195-200.
- 132. Gedeon, T. and P. Bokes, *Delayed protein synthesis reduces the correlation between mRNA and protein fluctuations.* Biophys J, 2012. **103**(3): p. 377-85.
- 133. Lapenna, S. and A. Giordano, *Cell cycle kinases as therapeutic targets for cancer*. Nat Rev Drug Discov, 2009. **8**(7): p. 547-66.
- 134. Kolfschoten, I.G., et al., *A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity.* Cell, 2005. **121**(6): p. 849-58.
- 135. Belandia, B., et al., *Hey1, a mediator of notch signaling, is an androgen receptor corepressor.* Mol Cell Biol, 2005. **25**(4): p. 1425-36.
- 136. Ding, Z., et al., *SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression.* Nature, 2011. **470**(7333): p. 269-73.
- 137. Wisniewski, J.R., et al., *Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma.* Mol Syst Biol, 2012. **8**: p. 611.
- 138. Ostlund, G. and E.L. Sonnhammer, *Quality criteria for finding genes with high mRNAprotein expression correlation and coexpression correlation.* Gene, 2012. **497**(2): p. 228-36.
- 139. Sartor, M.A., G.D. Leikauf, and M. Medvedovic, *LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data*. Bioinformatics, 2009.
 25(2): p. 211-7.

- 140. Huang da, W., B.T. Sherman, and R.A. Lempicki, *Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources*. Nat Protoc, 2009. **4**(1): p. 44-57.
- 141. Huang da, W., B.T. Sherman, and R.A. Lempicki, *Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.* Nucleic Acids Res, 2009. **37**(1): p. 1-13.
- 142. Fraser, S.P., J.A. Grimes, and M.B. Djamgoz, *Effects of voltage-gated ion channel* modulators on rat prostatic cancer cell proliferation: comparison of strongly and weakly metastatic cell lines. Prostate, 2000. **44**(1): p. 61-76.
- 143. Abdul, M. and N. Hoosein, *Expression and activity of potassium ion channels in human prostate cancer*. Cancer Lett, 2002. **186**(1): p. 99-105.
- 144. Sikes, R.A., et al., *Therapeutic approaches targeting prostate cancer progression using novel voltage-gated ion channel blockers.* Clin Prostate Cancer, 2003. **2**(3): p. 181-7.
- 145. Sheng, T., et al., *Activation of the hedgehog pathway in advanced prostate cancer*. Mol Cancer, 2004. **3**: p. 29.
- 146. Karhadkar, S.S., et al., *Hedgehog signalling in prostate regeneration, neoplasia and metastasis.* Nature, 2004. **431**(7009): p. 707-12.
- 147. Karlou, M., et al., *Hedgehog signaling inhibition by the small molecule smoothened inhibitor GDC-0449 in the bone forming prostate cancer xenograft MDA PCa 118b.* Prostate, 2012. **72**(15): p. 1638-47.
- 148. Kon, S., et al., *Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia.* J Clin Invest, 2013. **123**(3): p. 1123-37.
- 149. Thome, M., *Multifunctional roles for MALT1 in T-cell activation*. Nat Rev Immunol, 2008. **8**(7): p. 495-500.
- 150. Noh, K.H., et al., *Activation of Akt as a mechanism for tumor immune evasion*. Mol Ther, 2009. **17**(3): p. 439-47.
- 151. Quilliam, L.A., J.F. Rebhun, and A.F. Castro, *A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases.* Prog Nucleic Acid Res Mol Biol, 2002. **71**: p. 391-444.
- 152. Aksamitiene, E., A. Kiyatkin, and B.N. Kholodenko, *Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance.* Biochem Soc Trans, 2012.
 40(1): p. 139-46.
- 153. Musicco, M., et al., *Inverse occurrence of cancer and Alzheimer disease: a populationbased incidence study*. Neurology, 2013. **81**(4): p. 322-8.
- 154. Hebron, M.L., I. Lonskaya, and C.E. Moussa, *Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models.* Hum Mol Genet, 2013. **22**(16): p. 3315-28.
- 155. Reimers, M. and V.J. Carey, *Bioconductor: an open source framework for bioinformatics and computational biology.* Methods Enzymol, 2006. **411**: p. 119-34.
- 156. Jiang, H. and W.H. Wong, *Statistical inferences for isoform expression in RNA-Seq.* Bioinformatics, 2009. **25**(8): p. 1026-32.
- 157. Wang, L., et al., *DEGseq: an R package for identifying differentially expressed genes from RNA-seq data.* Bioinformatics, 2010. **26**(1): p. 136-8.
- 158. Xia, Z., et al., *NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq.* BMC Bioinformatics, 2011. **12**: p. 162.

- 159. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, *edgeR: a Bioconductor package for differential expression analysis of digital gene expression data*. Bioinformatics, 2010.
 26(1): p. 139-40.
- 160. Li, B. and C.N. Dewey, *RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.* BMC Bioinformatics, 2011. **12**: p. 323.
- 161. van de Vijver, M.J., et al., *A gene-expression signature as a predictor of survival in breast cancer*. N Engl J Med, 2002. **347**(25): p. 1999-2009.
- 162. Chen, H.Y., et al., *A five-gene signature and clinical outcome in non-small-cell lung cancer*. N Engl J Med, 2007. **356**(1): p. 11-20.
- 163. Sotiriou, C. and L. Pusztai, *Gene-expression signatures in breast cancer*. N Engl J Med, 2009. **360**(8): p. 790-800.
- 164. van 't Veer, L.J., et al., *Gene expression profiling predicts clinical outcome of breast cancer.* Nature, 2002. **415**(6871): p. 530-6.
- 165. Carlson, J.J. and J.A. Roth, *The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis.* Breast Cancer Res Treat, 2013. **141**(1): p. 13-22.
- 166. Lee, U., et al., *A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients.* PLoS One, 2013. **8**(12): p. e82125.
- 167. Chen, R., et al., *Personal omics profiling reveals dynamic molecular and medical phenotypes.* Cell, 2012. **148**(6): p. 1293-307.
- 168. Jayapandian, M., et al., *Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together*. Nucleic Acids Res, 2007. **35**(Database issue): p. D566-71.
- 169. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res, 2002. **30**(1): p. 52-5.
- 170. Lussier, Y., et al., *PhenoGO: assigning phenotypic context to gene ontology annotations with natural language processing.* Pac Symp Biocomput, 2006: p. 64-75.
- 171. Eyre, T.A., et al., *The HUGO Gene Nomenclature Database, 2006 updates*. Nucleic Acids Res, 2006. **34**(Database issue): p. D319-21.
- 172. National Library of Medicine. *Medical Subject Headings (MeSH®) Fact Sheet*. 1999 27 May 2005; Available from: <u>http://www.nlm.nih.gov/pubs/factsheets/mesh.html</u>.
- 173. National Library of Medicine. *Unified Medical Language System® Fact Sheet*. 2006 23 March 2006; Available from: <u>http://www.nlm.nih.gov/pubs/factsheets/umls.html</u>.
- 174. Ashburner, M., et al., *Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.* Nat Genet, 2000. **25**(1): p. 25-9.
- 175. Kasprzyk, A., et al., *EnsMart: a generic system for fast and flexible access to biological data.* Genome Res, 2004. **14**(1): p. 160-9.
- 176. Witten, I.H. and E. Frank, *Data Mining: Practical machine learning tools and techniques*. 2nd ed. 2005, San Francisco: Morgan Kaufmann.
- 177. Hammer, Ø., D.A.T. Harper, and P.D. Ryan, *PAST: Paleontological Statistics Software Package for Education and Data Analysis.* Palaeontologia Electronica, 2001. **4**(1): p. 9.