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ABSTRACT 
 

The proliferation of massively parallel nucleotide sequencing and increases in the 

throughput of mass spectrometry has produced an unprecedented volume of highly specific, 

highly accurate data elucidating the transcriptome and proteome. This data explosion has 

facilitated a tremendous number of novel discoveries in both disease and basic biology. It has 

also presented a number of challenges due to the characteristics of these cutting-edge 

technologies.  Across these studies, we focus on the context of human cancer where these 

technologies are increasingly being used to characterize and target molecular aberrations for 

treatment tailored to individuals’ cancer biology. 

First, we evaluate the emerging technology of single-molecule sequencing (SMS), which 

may provide a clearer picture of the biological activity in the cell by avoiding the sample 

amplification steps that may introduce biases in the data. We compare transcriptome data from 

both SMS and a method employing amplification, noting the effects that the differences in 

sample preparation may have on the resulting data in terms of dynamic range and coverage 

bias. In particular, we find that SMS has greater dynamic range, providing more resolution for 

low abundance transcripts while avoiding coverage peaks which may result from the 

amplification process.  

We then turn to the challenge of integrating NGS-derived transcriptome data with tandem 

mass spectrometry data quantifying the proteome. The relationship between the transcriptome 

and the proteome is broadly defined by the central dogma of molecular biology. However, 

previous attempts at integrating data from the transcriptome and the proteome have seen 

large variation in the correlation between transcript and protein. To address this, we developed 



xix 
 

a framework for integrating data from these two realms using a novel common reference 

employing corresponding transcript and protein sequences. We apply this framework to 

integrate data derived from the RWPE and VCaP prostate cell lines and show how a number of 

methodological factors and sources of error can impact the correlation between transcript and 

protein.  

Finally, we analyze the results of our data integration pipeline with a focus on the 

transcript-protein relationship. We classify the genes in our dataset into broad categories, and 

show how their biological roles as well as experimental characteristics impact the relationship 

we observe between transcript and protein. To compare the cell lines in terms of their genes’ 

transcript-protein relationship with the goal of uncovering the uncoupling of this relationship in 

prostate cancer, we apply a novel concordance and discordance index to the genes in the 

dataset. Using these indices, we show how variations in protein abundance drive many of the 

differences between the cell lines and how stability has substantial impacts on the transcript-

protein relationship.  

The results and methods derived from this work can be used by researchers in the future to 

better understand the characteristics of emerging NGS technologies and integrate this data 

across scales of biology to better understand the molecular underpinnings of disease.  
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Chapter 1: Introduction 
 

The advent of massively parallel “next-generation” sequencing (NGS) technologies has 

made for an unprecedented explosion in both the volume and depth of data derived from 

biological experiments. While opening new avenues of research and enabling the most precise 

view of the cell’s molecular machinery to date, the massive volume and characteristics of NGS 

has created many new questions in the analysis, interpretation, and integration of the 

experimental results. This research focuses on its impact in characterizing the transcriptome, 

the most frequently assessed metric of molecular activity in cells, and extending those results 

by coupling them with results from tandem mass spectrometry to gain a multi-scale picture of 

cellular activity in a cancer context. First, we characterize one of the emerging single-molecule 

sequencing technologies. Without using an amplification step in sample preparation, we assess 

the advantages and disadvantages of these methods in assessing the abundance distribution 

and aberrations in the transcriptome. This is contextualized by our study of the biological 

characteristics and topological structure of biological networks, subsets of which are often seen 

dysregulated in human disease. Then, we turn our attention to the proteome, and the 

particular technical challenge of integrating the rapidly increasing yield of tandem mass 

spectrometry experiments with the tremendous output of massively parallel mRNA sequencing, 

or RNA-Seq. Finally, we focus on the results from our computational framework to analyze the 

transcript-protein relationship and how it is dysregulated in our VCaP prostate cancer model. 

We pay particular attention to the effect these derangements have on important pathways and 

networks which may confer growth, survival, and apoptotic escape advantages in our cancer 

model. 
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NGS and RNA-seq for interrogating the transcriptome 

Next generation sequencing is typically used to describe the massively parallel methods for 

sequencing nucleic acids that do not employ the Sanger sequencing chemistry that the first 

generation of sequencing machinery relied upon. The 454 pyrosequencing methodology was 

the first of the NGS technologies, making its debut in 2005 [1]. Unlike the Sanger chemistry-

based sequencing method which produces reads up to 800bp in length, most of the NGS 

approaches produce short reads of  ranging from 50-150bp.  

The chemistry underlying each of the methods is highly varied; most methods use a 

sequencing-by-synthesis approach, such as those from Illumina  [2], Ion Torrent [3], and Pacific 

Biosciences  [4, 5], although more exotic approaches, such as the ABI SOLiD sequencing-by-

ligation approach exist. Most methods generally involve the construction of a library involving 

the attachment of adapter molecules to the ends of sheared DNA or RNA and an amplification 

step [6]. A subset of these sequencing methods are considered “single-molecule” approaches, 

which do not involve amplification steps that may affect sensitivity and bias sequencing results, 

ultimately producing a clearer picture of the experimental sample.  

In this work, I focus on the use of NGS methods to sequence mRNA, an application 

commonly called RNA-seq. This is an application where DNA microarrays had previously been 

the standard for global transcriptome characterization, followed by more exotic methods such 

as the Serial Analysis of Gene Expression (SAGE) [7] and Massively Parallel Signature Sequencing 

(MPSS) [8], which were much more rarely used. RNA-seq offered a number of clear advantages 

over microarrays; not requiring a priori knowledge of the transcripts under study (observing 

only the transcripts for which there is a probe), the production of sequence information about 

the transcripts under study (due to the direct sequencing of the transcripts in the sample), a 

much lower background signal, and much higher potential dynamic range [9-11]. Compared to 

SAGE and MPSS, it has the advantage of higher sensitivity as a result of higher throughput. 

The characteristics and possible advantages of the single-molecule approach (in comparison 

to competitive approaches utilizing an amplification step) had not been well characterized in a 

transcriptome context, and are the first topic of study. The characteristics of single-molecule 
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based methods are discussed in Chapter 2 using data from the Helicos Heliscope. While the 

technology had been proven in sequencing the human genome [12], its application to sequence 

the transcriptome had not yet been explored in depth. 

To date, NGS technology has yielded an unprecedented amount of data – never has so 

much data been produced. The simultaneous factors of constantly plummeting costs, improving 

quality, and increases in experimental yield guarantee that these technologies will become 

widespread in the future, thus making the characterization of experimental results and 

development of methods to leverage their data invaluable.  

Disease and the dysregulation of biological networks 

High-throughput techniques for determining molecular interactions have opened the door 

to genome scale evaluation of the molecular interactome of many species due to the quickly 

growing pool of data. A number of databases have been developed in order to integrate protein 

interaction data from high throughput experiments such as DIP, BIND, HPRD, and several 

others. Studies looking at this data across a number of organisms have indicated that these 

networks are organized into functional biomodules that function at multiple scales [13-15]. 

Analysis of disease gene knowledge coupled with data from large-scale protein interaction 

networks to form a phenome-interactome network have revealed that a significant portion of 

disease-associated genes form small sub-networks. The networks formed by the interactions of 

known disease genes have been used to relate phenotypically similar inherited diseases 

together [16]. Similarly, subnetworks that represent protein complexes have been used to 

relate diseases with similar phenotypes and provide novel disease gene candidates when 

melded to association data [17]. The disease-associated genes themselves also seem to possess 

a number of characteristics within the interactome. Compared to the mean degree values of all 

proteins, many disease related proteins display relatively elevated degree and tend to interact 

with other disease-related proteins [18, 19]. This property has been used to propose likely 

candidate genes for disease association [20]. Taken together, it suggests that the intermediate 

nodes in the interactome play a contributory factor. In addition to the importance of highly 

interconnected “hub” proteins [21, 22], certain topological features were found to be 
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associated with essentiality/lethality [23]. Additional research has suggested that genes 

expressing proteins of similar importance also share topological characteristics in the 

interaction network [24]. These topological characteristics have been used to explain variable 

disease outcome [25], making an argument for their role in the progression of disease.  

To study this phenome-interactome network in human disease, we integrated data from 

several protein interaction networks with gene-disease relationships to create a set of sub-

networks that form functional biomodules for over 4,300 diseases in single-gene disease (SGD) 

and complex disease (CD) categories, as well as over 6,600 functional sub-networks derived 

from Gene Ontology (GO) classes. The diseases in the SGD category were primarily caused by 

aberrations in one of several individual genes in the derived sub-network, in contrast to those 

in the CD category where several genes in the derived sub-network often influenced the 

resultant disease phenotype.   

The subnetworks associated to human diseases and biological processes were built by the 

determination of all shortest pairs paths between all distinct associated genes found in the 

protein interaction network for each disease or biological process. Shortest paths in the 

interaction subnetwork are determined using Dijkstra’s shortest paths algorithm [26]. For 

example, Figure 1 illustrates a hypothetical disease of interest associated to UMLS concept 

‘UMLS:000000’, associated with genes A, B, C, D, and E. The shortest path between pairs {A,B}, 

{A,C}, {A,D}, {A,E}, {B,C}, {B,D}, {B,E}, {C, D}, {C, E}, and {D, E} would be analyzed, noting the 

identities of the original nodes, the original node also found in the protein interaction network 

(as many nodes are not represented within the network), the intermediate connecting nodes, 

and the respective counts of each class. This process discovers intermediate nodes X, Y, and Z in 

the process of deriving the subnetwork and associates these nodes. 
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Figure 1: Derivation of an example subnetwork composed of five annotated genes and three intermediate genes 

We analyzed the structure and characteristics of these functional and disease networks using 

network analysis tools and unsupervised machine learning techniques described in detail in . 

Subnetwork Characteristics 

As expected, the OMIM-derived SGD set demonstrated a smaller range in size in terms of 

total gene count from 3 to 32 genes with a median of five genes, while the complex disease set 

was composed of networks of much more varied size, ranging from 3 to 127 genes, with a 

median of eight genes. The Gene Ontology derived background set had the largest range from 3 

to 968 genes. As shown in Figure S 2a-c, most subnetworks tended to remain small, generally 

involving between three and nine genes. The GO background set exhibits a long-tailed 

distribution with most networks remaining under seventeen genes in size. 

Classification accuracy 

Unsupervised Principal Components Analysis and k-means clustering methods were first 

attempted in order to assess the separability of the three classes of subnetworks. As shown in 

Table 1 and Figure S 1a and b, clustering mirrored the results of the PCA with high 

misclassification levels (misclassifying ~55% of the data), further demonstrating the poor 

separability of the data. 
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Assigned to Cluster 

GO SGD CD 

So
u

rc
e 

GO 59 4 16 

SGD 1220 435 932 

CD 158 31 89 

Table 1: Unsupervised k-means clustering illustrates the poor separability of the data, with 1631 (55.4%)  
instances incorrectly clustered 

As a result, machine learning techniques must be applied to derive the subtle 

differences between the CD, SGD, and GO sets. As shown in Table S 2a-i, the overall 

misclassification error rate remains relatively low across several subsets of the subnetwork 

parameter data, never exceeding 5%. Other measures – precision, recall, f-measure- exhibit 

very satisfactory performance. However, a close inspection of the results for the three class 

problems (SGD, GO, CD) reveals that the results for the SGD class are not satisfactory. 

Confusion matrices from these analyses show the classifier tends to assign those subnetworks 

to the GO class, an issue likely due to the single-point driver nature of single-gene disease. 

Further analysis of the data by breaking down the features into biological and topological 

characteristics further revealed the similarities between the SGD and GO set, further detailed in 

APPENDIX A. The separability of the SGD and CD sets as shown in Table S 2j demonstrates the 

differences in subnetwork characteristics between those primary involved with single-gene 

disorders and those associated with multigenic, complex disorders. A reclassification of all the 

study data was also done using a GO dataset that included only the “Biological Process” entries, 

with similar results. The complete results of the classifications as well as additional methods 

and analyses are available in APPENDIX A. 
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Figure 2: Variables ranked by importance in classification based on Gini coefficient. The most informative 
variables in classification were a mix of both biological and topological parameters. 

The most important variables in the classification of subnetworks to their individual classes is 

illustrated in Figure 2 as derived using the reduction in Gini index, a measure of the reduction in 

misclassification when a particular variable is used. 

Lessons from the analysis of disease- and function- associated subnetworks 

The relative paucity of data describing disease-associated subnetworks continues to 

present a serious challenge in the analysis of the functional biomodules underlying human 

disease. While the classification of complex disease-associated subnetworks appears to achieve 

reasonable results, the underlying heterogeneity of human disease, as evidenced by the SGD 

set in Table 2, will always present a problem in classification.  
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Correctly Classified Instances 2795 94.94 % 

Incorrectly Classified Instances 149 5.06% 

TP Rate FP Rate Precision Recall f-Measure class 

0.101 0.003 0.5 0.101 0.168 SGD 

0.997 0.387 0.949 0.997 0.972 GO 

0.752 0.001 0.986 0.752 0.853 CD 

Table 2: Classification of CD, SGD, and GO classes using all variables. While the complex disease (CD) subnetworks 
and derived from the Gene Ontology (GO) demonstrated relatively good classification performance, the 
subnetworks associated with single gene dieases (SGD) were very poorly separable. 

It is notable that the variables with the highest influence are a mix of both topological 

and biological factors, confirming previous findings that characteristics from both categories 

play an important role in the susceptibility to biological disruption and resulting disease. The 

relative importance of clustering coefficients confirms recent results examining the differences 

between disease-associated genes and essential genes [27]. The inclusion of mean gene start 

locus and GC content confirm the relative importance of genomic localization and 

transcriptional propensity [28]. While the examination of individual factors increases 

confidence in the findings through recapitualation of established study results, the random 

forest is able to capture the interaction between these variables. These inter-variable 

interactions are a prime target for continued study. 

It is not completely surprising that the SGD subnetworks appear to bear a strong 

resemblance to the GO background considering the pathogenesis of diseases that arise from 

anomalies in a single gene. In many cases, the GO-derived subnetworks can be considered 

functional biomodules of the interactome. The disruption of certain genes in these functional 

biomodules is likely to manifest in the form of disease phenotypes if they are not serious 

enough to result in lethality. This can result in failures of protein complex assembly and 
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complementation such as in Xeroderma Pigmentosum, a single gene disease that can arise from 

any one of the seven known genes in the XPA-XPG complementation group associated with 

nucleotide excision repair [29]. As such, these two classes are relatively poorly separable even 

in a supervised machine learning context. 

As we expected, the differences between the networks formed by sets of genes 

associated with biological processes and those associated with human disease are subtle and 

not easily derived as they are, by definition, intimately linked. The similarity between the single 

gene disease-associated subnetworks and those derived from the Gene Ontology demonstrates 

the multiscale behavior of a single disruption in a functional biomodule, and its ability to cause 

debilitating effects. The need for additional data and high specificity data is made abundantly 

clear in this study, as demonstrated by the propensity for misclassification of complex disease-

associated subnetworks as well as the limited number of subnetworks derived from the data 

due to lack of representation in the interaction network. The limited availability of interaction 

propensity or data quality measures associated with individual interactions in the particular 

version of the interaction database we employed led us to treat all interactions as equally 

probable and equally correct. This may be a source of error in the process that may be 

ameliorated in the future with additional data and quantitative measures associated with the 

interactions. As more gene-disease association data becomes available, the effectiveness of this 

method should be re-evaluated. 

The transcriptome, proteome, and the challenges of data integration 

The transcriptome is a common metric for assessing the biological activity in cells, used with 

the implicit assumption that the activity of the proteome follows. The relationship between 

mRNA transcripts and proteins is described by the central dogma of molecular biology; the 

information in DNA is transcribed into mRNA, which is subsequently translated into protein 

products [30]. However, this transfer of information from DNA to protein is mediated by a large 

number of intermediary factors such as ribosome stalling during translation [31], nonsense-

mediated decay of transcripts [32], transcript degradation by small [33] and other noncoding 

RNAs, protein decay, and a large number of post-translational modifications [34]. 
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Understanding the role each of these distinct regulatory mechanisms plays in affecting the 

resulting abundance of protein is a central motivator for studying the transcript-protein 

abundance relationship.  

The task of correlating the transcriptome to the proteome has historically been subject to a 

number of challenges. In the past, the most restrictive of these has been the limited ability to 

sample both the proteome and the transcriptome. For example, early studies investigating this 

relationship often employed gel-based methods, which limited them to small subsets of genes 

due to these experimental limitations  [35, 36]. As a consequence, many of their results were 

inconclusive and were difficult to generalize to the broader set of genes.  

While not matching the beyond-exponential growth rate of nucleotide sequencing, the 

throughput of proteome profiling techniques has grown significantly. A number of methods 

have been applied for the quantitative profiling of proteins using both radio-labeled and label-

free methods, reviewed in [37-39]. While monitoring post-transcriptional modifications remain 

a challenge, these advances have enabled the profiling of nearly the entire proteome, 

estimated at 10-12,000 proteins [40]. 

These capacity increases from the development of mass spectrometry (MS) methods and 

the advent of DNA microarrays enabled large increases in the number of genes that could be 

studied simultaneously. These technologies were the first to enable the comparison of complex 

transcriptomes to equally complex proteomes. However, experimental results remained highly 

variable. For example, a study of transcript and protein levels across 98 genes in 78 lung 

adenocarcinomas using microarrays and a MALDI-MS method found highly varying correlation 

levels between r = -0.4 and 0.4 for each gene in their set, and a global correlation of r = -0.025 

[41]. A slightly larger study by Cox, et al using microarray and LC-MS measured a correlation of r 

= 0.63 in approximately 900 genes in developing mouse lung tissue [42]. A more recent study by 

Gry, et al. utilizing microarrays looking at 1066 genes across 23 cell lines found a correlation of r 

= 0.52 [43]. A similar study across the NCI-60 set of cell lines by Shankavaram, et al. observed 

correlations ranging from r = 0.48 to r = 0.58 in a set of 162 feature set of assayed proteins, 
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across four related microarray platforms [44]. An analysis looking at protein and transcript 

levels by Ghazalpour, et al. in 97 strains of mice found a correlation of only r = 0.27 [45]. 

The application of RNA-seq to this task, with its much greater dynamic range and specificity, 

refined the biological picture. A study combining  previously published SILAC-labeled protein 

abundance with separate RNA sequencing data in three cancer cell lines, A431, U251MG, and 

U2OS found transcript-protein relationships correlated at levels from r = 0.55-0.61 [46].  A 

similar study focusing on deeply profiling both the transcriptome and proteome in the HeLa cell 

line found a correlation of r = 0.6 [40].  

These studies used a diverse set of techniques for data integration – though all attempt to 

address two fundamental challenges in this process, noted in [47-49]; First, how to match 

transcripts to proteins to ensure that the same entities were being compared. Different gene 

annotation, definition, and naming schemes must be harmonized in order to ensure a fair 

comparison, a process complicated by the multiplicity of transcript isoforms and incomplete 

transcript and protein databases. The second major challenge is that of comparing the 

transcript and protein abundance values. Derived from two different technologies, the 

transcript and protein abundance values have very different ranges of sensitivity, distributions, 

and error profiles. The very computation of these abundance values is an important factor, but 

is beyond the scope of this research and is reviewed in [50-52] and [53, 54] for RNA-seq and 

label-free proteomics, respectively. RNA-seq is often quantified using the TopHat and Cufflinks 

suite of tools [55] using related sources of annotation. Quantification of protein abundance 

from MS experiments is more varied and largely dictated by the choice of experimental 

procedure and processing pipelines.  

The issue of integrating transcriptome data from RNA-seq and protein data from tandem 

mass spectrometry methods is an active area of research, and the focus of Chapter 3. While a 

number of studies have focused on examining the relationship between transcript abundance 

and the resulting protein products, methodologies and resultant correlation relationships vary 

significantly. In particular, few studies analyze the impact of their abundance measurement and 

data integration methods on the resulting relationship. Consequently, it is unclear how these 
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differences in bioinformatics methodology affect the final correlation. To address the issues of 

data integration, we construct a common reference database from the RefSeq database 

composed of corresponding transcript and protein sequences against which we applied the 

Trans-Proteomic Pipeline [56] and Abacus [57] for protein abundance quantification and an in-

house pipeline for RNA-seq quantification. This unique approach allowed for a one-to-one 

comparison of transcripts and protein products. Using this method to ensure proper 

comparison of genes, we normalize the abundance values derived from each of the 

experiments in the transcriptome and proteome.With the data derived with this methodology, 

we explored how technical factors, namely identification and counting methods in both 

transcriptome and proteome data, contribute to uncertainty in correlating transcript and 

protein abundances. In particular, we show how read mapping for transcriptome data and 

multiple assignment of MS spectra lead to variation in the correlation coefficient of abundance. 

The transcript-protein relationship and its role in disease and cancer 

One of the primary motivations for studying the transcript-protein abundance relationship 

and the factors that affect it is the desire to dissect the regulatory mechanisms of the cell [58]. 

To address this question, several studies have examined the influence of a number of 

regulatory factors on the correlation observed between protein and transcript abundance. For 

example, Vogel, et al. examine the role of sequence features that may affect transcription, 

degradation, or translation, such as 5’ and 3’ UTR lengths, local secondary structure, and the 

number of miRNA target sites on the transcript in the Daoy medulloblastoma cell line [59]. In a 

similar study, Schwanhäusser, et al. derive a quantitative model of protein abundance, noting 

that both transcript and protein half life have significant impacts on the transcript-protein 

abundance relationship [60]. In both of these studies, the authors note that sequence features 

play a role in the abundance of protein products in addition to transcript abundance, although a 

significant amount of this variability is still not accounted for. The biological role of the 

transcripts and proteins play a part in this – for example, several studies have observed that  

highly stable structural proteins have higher correlation with their cognate transcripts [43]. 
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Although the dysregulation of the transcript-protein relationship can play a role in disease, 

it has not been well studied. While a number of the studies analyzing the transcript-protein 

relationship are focused on cancer, most of these studies used microarray or older techniques, 

and suffer from the issues of small gene sets and limited dynamic range discussed earlier. On 

the other hand, the studies that were aimed at a thorough analysis of both the transcriptome 

and the proteome generally did so outside of a disease context.  

In the landmark “Hallmarks Of Cancer,” Hanahan and Weinberg broadly classify the set of 

biological characteristics commonly acquired by cancers into a set of six traits. These acquired 

traits, enabled by genome instability, are self-sufficiency in growth signals, insensitivity to 

growth-inhibitory signals, the evasion of apoptosis, limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis [61]. To these, the subsequent “next 

generation” of cancer hallmarks added the deregulation of cellular energetics and avoidance of 

immune destruction. In addition, it recognized the role of inflammation in promoting 

tumorgenesis and progression [62].  

Changes in the transcript protein relationship can have important functional consequences 

due to alterations in the regulatory structure of the cell, giving rise to the hallmark 

characteristics of cancer. In breast cancer, it has been observed that the stabilization of DNA 

Methyltransferase 1 (DNMT1) causes its dysregulation leading to aberrant genomic 

hypermethylation [63].  This is primarily seen as an increase in protein levels without an 

increase in the cognate transcript. There is also significant evidence that stabilization of 

transcription factors that regulate transcript abundance is a common mechanism of gene 

regulation, with several examples in human cancers. HIF-1a is a commonly studied transcription 

factors due to its widespread effects on cell survival and angiogenesis as well as its activation 

under the hypoxic stress often seen in tumors [64]. It has been shown to be stabilized by 

interaction with another transcription factor, YY1, itself implicated in tumorgenesis [65]. This 

stabilization was also noted as a change in protein abundance without an effect on mRNA level 

[66]. Another example is observed in the interaction of the LMO2 and SCL transcription factors, 

both of which have been implicated in hematopoietic cancers [67, 68]. The protein product of 
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the LMO2 gene, a central component of several transcription factor complexes, has been 

shown to be stabilized by interaction with SCL, which prevents its degradation allowing for 

more widespread transcription factor complex assembly [69].  

To address this paucity of cancer-focused research encompassing a comprehensive set of 

genes from the transcriptome and proteome, the work in Chapter 4 focuses on the 

characterization of the transcript-protein relationship in the RWPE prostate epithelial cell line 

and the VCaP prostate cancer cell line and compares the two. We focus on the transcript-

protein relationship within various biological functional classes, and how that relationship is 

altered in a cancer context. In particular, we use a novel transcript-protein discordance index to 

assess the level of transcript-protein dysregulation in VCaP when compared to RWPE. 

Application of methods to other studies 

The methods and knowledge developed in the course of these studies for profiling the 

landscape of the cellular transcriptome using RNA-seq were also applied to a number of other 

studies. The derived expression measurements were often used in tandem with other types of 

profiling to analyze multiple facets of biological activity. In Maher, et al. [70], an early version of 

the quantification methodology was used to contextualize the abundance of known and novel 

gene fusion transcripts in prostate cell lines in terms of the broader transcriptome. This was 

one of the first studies to utilize RNA-seq data to infer gene expression values from read 

mapping counts, and showed the relative abundance of several gene fusion transcripts such as 

the well-characterized TMPRSS2-ERG and the novel USP10-ZDHHC7 fusion transcripts 

compared to some of the most highly expressed genes in the transcriptome. This expression 

calculation technique was applied in Kim, et al. [71], where transcriptome sequencing derived 

expression values were integrated with microarray and NGS-derived DNA promoter 

methylation data to analyze the impact of differential methylation patterns in prostate cancers.  

The lessons in read mapping, detection, and dynamic range were also applied in 

contributions to studies using other sequencing-based methods to profile the genome and 

exome. Accurate read mapping and artifact filtering techniques derived from the development 
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of the RNA-seq quantification methodology were applied to an evaluation of variants in the 

transcribed portion of the genome, or exome, in Grasso CS, et al. [72] focused on castration-

resistant prostate cancer. These efforts led to increased detection of rare single-nucleotide 

variants and short insertions and deletions in the exome.  

Similarly, methods to filter out artifacts resulting from ambiguously mapping reads and 

aberrant characteristics of the sequencing process were applied to develop a pipeline for 

characterizing the structure of the cancer genome in a personalized oncology context in 

Roychowdhury S, et al. [73]. This method derived both copy number and aberrant mapping 

data across the sampled genomes and integrated them to increase confidence in the derived 

candidates. Consequently, this methodology was able to recover genome-scale rearrangements 

from low-depth genomic sequencing of a cancer sample, in absence of a corresponding normal 

sample, in a subset of the total four patients with advanced or refractory cancer enrolled in the 

study. These genomic rearrangements demonstrated the genomic basis for the RNA fusion 

transcripts observed in this study and several subsequent patients enrolled in the MI-ONCOSEQ 

personalized oncology program. 
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Chapter 2: A Comparison of Single Molecule and Amplification Based 

Sequencing of Cancer Transcriptomes 

Introduction 

Sequencing samples at single-molecule resolution is seen as the next step in the 

evolution of Next Generation Sequencing (NGS). These technologies have already produced 

unprecedented amounts of data at nucleotide-level resolution, and are transforming our ability 

to observe biological systems. NGS technology has had a particular impact in the study of 

transcriptomes through mRNA sequencing, or RNA-Seq. Offering a wide dynamic range and 

truly global view, this NGS application is quickly supplanting existing approaches for monitoring 

complex transcriptomes where both transcript lengths and concentrations are highly 

heterogeneous. The multi-faceted nature of RNA-Seq has enabled in-depth analysis of 

transcript abundance [9, 74, 75], alternative splicing [76-79], novel transcript detection [80], 

biomarker discovery [81-83], pathogen detection and characterization [84-86], and gene fusion 

discovery [70, 87, 88].  

The first wave of ‘next generation’ sequencing platforms such as those from Applied 

Biosystems, Illumina, Ion Torrent, and Roche/454, utilize PCR based amplification steps in 

sample preparation and sequencing and are thus categorized as amplification based sequencing 

(AS) methods. A second set of platforms, described as ‘single molecule sequencing’ (SMS) [89] 

by Helicos and Pacific Biosciences, eliminate the amplification steps involved in the sample 

preparation and sequencing process and thus profess to provide a more accurate view of the 

transcriptome. 

AS techniques typically involve two amplification steps; the first amplification occurs 

during the creation of the double-stranded cDNA library from the fragmented mRNA. The 

cDNAs are ligated to a pair of adapter molecules, and PCR amplified. A second amplification 

step is carried out with the adapter-ligated single cDNA strands hybridized to primers bound to 

a glass or silicon substrate to produce local clusters of identical molecules using isothermal 

amplification or emulsion PCR. Taken together, these two steps have the potential to selectively 

introduce over-represented segments and genes into AS data. It has been observed that this 



18 
 

bias exists [90-93], however its effect on transcript coverage and quantification has not been 

thoroughly explored in complex samples with transcripts at variable concentration. The Helicos 

SMS protocol involves creation of single-stranded cDNA templates directly from mRNA and 

hybridization of these poly-adenylated templates to complementary oligomers bound to a glass 

slide for sequencing (Figure S 3). 

Results 

Assessment of SMS RNA-Seq through transcript profiling 

To systematically assess the differences between the two sequencing technologies, we 

analyzed RNA-Seq results from amplification-based sequencing (AS) and single-molecule 

sequencing (SMS) across a set of twelve cancer cell lines and tissue samples. In particular, our 

approach attempted to discover recurrent biases that may be introduced by the amplification 

steps implicit in AS. Our initial dataset used to evaluate quantification performance is 

comprised of samples from the prostate cancer cell lines DU145, RWPE, VCaP, and LnCaP, and 

one prostate cancer tumor tissue with a matched adjacent normal sample. Out of our set, three 

samples each of VCaP and LnCaP were structured as a time course study with 0h, 24h, and 48h 

time points. 

In our analysis of the two technologies, we chose to use the preferred alignment tool for 

each technology in a “best vs. best” approach. AS reads were aligned with the Bowtie aligner 

[94] while SMS reads were aligned with IndexDP [95] (Figure S 4). Reads aligning to known 

biological contaminants such as mitochondrial DNA, ribosomal RNA, and technology-specific 

contaminants such as adapter sequences and long oligomers, were filtered out of the data set 

prior to analysis.  

To assess the variation between SMS and AS technologies, we adopted a simple read 

counting procedure similar to other RNA-Seq quantification methodologies [9, 74]. Reads from 

single lanes of AS and SMS technologies run in parallel, were aligned to 56,722 University of 

California Santa Cruz (UCSC) transcripts (version hg18). We then enumerated reads per-

transcript and normalized based on the number of high quality, non-contaminant reads per 
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sample to obtain values in reads per million (RPM). To avoid uncertainty associated with multi-

mappings to gene isoforms, only single-best mapping methods were used to quantify the genes 

for comparison. Single best mappings were derived from AS reads by setting Bowtie to report 

only the single highest quality alignment per read. Single best alignments were derived from 

SMS reads by accepting alignments with the highest quality scores. Values from all gene 

transcript isoforms, as defined by UCSC, were summed to yield values in terms of alignments 

per million reads for each of the 29,416 genes. Coverage values in reads per kilobase per million 

(RPKM) were computed by summing RPKM values of the isoforms of each gene. Through a 

head to head comparison between AS and SMS reads of identical samples run in parallel on the 

two platforms, we observed a systematic over-representation of high expressing transcripts in 

AS as compared to SMS. This bias resulted in reduced coverage of mid- and lower-level 

expression genes leading to overall lower transcript detection sensitivity in AS. Reprocessing a 

subset of AS samples using IndexDP and repeating the analysis ruled out technical differences in 

read assignment as the cause of this representation bias. As the sequencing technologies and 

chemistries continue to advance, we expect AS platforms will overcome the limitation of low 

expressed transcript detection by enhanced throughput. 

Global properties of AS and SMS results 

Transcriptome sequencing was carried out in parallel on AS and SMS platforms for 12 

samples including 10 prostate cancer cell lines and 2 prostate cancer tissues. Overall, we 

generated 2.8 to 19.7 million raw AS and SMS reads in each of the 12 samples. Approximately 

30-60% of these reads passed initial filtering steps and aligned to our transcriptome reference. 

SMS reads were produced in two separate machine runs while AS reads were produced across 

6 independent machine runs. This procedure resulted in 2.1 – 15 million and 2.8 – 8 million 

reads for SMS and AS, respectively, which aligned to our transcriptome reference. In 10 out of 

the 12 samples used in the evaluation, SMS produced more alignable reads in absolute terms, 

with a median of 1.39x across all 12 samples. SMS results contained more reads aligning to 

known contaminants, ranging from 12% to 51% of total reads, with a median of 22%. The 

fraction of reads aligning to contaminants in AS ranged from 2.6% to 14% with a median of 

4.2%. SMS read length was variable and a filtering step restricted usable reads to a length range 
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between 24bp and 57bp in the first run, and 25bp and 64bp in our second run, yielding a read 

count-weighted mean length of approximately 33bp in each of the twelve samples (Table S1). A 

median of 97% of all SMS reads had lengths between 25bp and 47bp across all 12 samples 

(Figure S 5). AS reads were generated at a minimum length of 36bp in each sample, although 

the first and last several bases were ignored to produce high quality reads at least 34bp in 

length. All AS reads were considered to have a maximum of 36bp length. Reproducibility 

between technical replicates of the DU145 cell line was high for both AS and SMS methods, 

with a Pearson correlation of r=.98 for both technologies (Figure S 6). Reads from both AS and 

SMS were also aligned allowing for 25 maximum mappings to assess the distribution between 

uniquely- and multiply- mapped reads at the gene level, although only single-best mappings 

were used for quantification and comparison purposes. Both technologies achieved very similar 

unique mapping rates of 72% and 75% in AS and SMS, respectively. From this raw aligned data, 

we examined the relative distribution of reads across genes observed in our samples by 

comparing their normalized read counts. As expected, we observed broad agreement in terms 

of gene expression values between the technologies (Figure S 7). However, we observed a 

recurrent pattern of over-representation of high-abundance transcripts by the AS methodology 

as compared to SMS.  

Coverage bias in amplification-based sequencing 

Comparison of transcriptome reads of the same samples quantified in parallel from AS and 

SMS platforms reveals a distinct bias in AS results towards a slight overrepresentation of  highly 

expressed genes as compared to SMS, as shown in Figure 3A. This difference was qualitatively 

assessed by dividing the genes into quartiles of equal number, ordered by observed values in 

AS, with the first quartile representing the highest expressing genes, the second quartile 

representing mid-level expression genes, and the third and fourth quartile defining the genes 

with the lowest levels of transcripts (Figure 3B). Highly expressed transcripts tended to have 

more read coverage in AS, whereas SMS tended to cover the lower expressed transcripts more 

effectively. This additional coverage of high-concentration transcripts consistently appeared to 

be at the expense of lower-expressed transcripts, which tended to be more thoroughly 

sequenced using SMS (Table S 6).  
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Figure 3: Observed bias in amplification-based sequencing.  A. Single-best mapping method-based quantile-quantile plot 
demonstrates evidence of over-representation of highly expressed transcripts in amplification-based sequencing compared to 
single-molecule methods. B. Distribution of reads across genes by transcript concentration shows decreased SMS coverage of 
the most highly expressed genes, with those reads going to mid- and low-level expressors. C. Differences in the distribution of 
reads lead to increased sensitivity of low-expressing transcripts. D. Nine of the candidate genes seen above the 0.3 RPKM noise 
level demonstrated any amplification by RT-PCR, although only HIST1H4C showed high abundance. 

In order to ensure that these biases were not the result of using a different aligner for 

each technology, AS reads were re-aligned using the IndexDP aligner used for SMS reads for a 

subset of the samples, composed of the VCaP-24h, VCaP-48h, LnCaP-24h, LnCaP-48h, and 

DU145_1 samples (Figure S 8). Very high correlation of gene-level values comparing Bowtie and 

IndexDP alignments for the set of AS reads ruled out differences between alignment tools as 

the source of the observed biases. For example, correlation of gene-level values in the LnCaP-

24h sample was high between alignment methods at r = 0.97. Similarly high correlation levels 

above r = 0.95 were observed in the remaining samples. Similar patterns of high-expressor 

over-representation in AS were observed using IndexDP alignments of AS reads in place of 



22 
 

standard alignments using Bowtie as shown in Figure S 9. With methodological differences 

essentially ruled out, we attempted to observe the effects of this high-concentration coverage 

bias by examining the detection of transcripts at low levels.  

Increased SMS sensitivity results from high coverage of low-abundance 

transcripts 

To evaluate the effects of increased coverage in mid- to low- level transcripts in SMS, we 

calculated the number of genes observed above a noise threshold in only one of the two 

technologies. Using the 0.3 RPKM noise level cutoff based on Ramskold, et al. [96], the number 

of genes detected in only a single technology varied between a high of 4,851 and a low of 2,048 

and a high of 1,276 and a low of 145 in SMS and AS (Figure 3C), respectively, across the set of 

samples. A log-fold difference between the numbers of genes detected in only one of the SMS 

vs. AS technology was observed as we varied the cutoff value between 0.1 RPKM and 3.0 RPKM 

(Figure S 10) in 0.1 RPKM increments. These limits were chosen to examine the sensitivity of 

the two methods across a range of values starting from a near-zero noise level to an order of 

magnitude larger than previously reported. Stratification of the genes observed in a single 

technology into length classes of 0-300bp, 300-3000bp, and 3000+bp demonstrated that this 

was not due to differences in technology-specific sample preparation, as the AS protocol 

specifies a ~300bp size selection step that the SMS procedure does not require. This class 

shows relatively low representation across noise thresholds in both AS and SMS. We then took 

this evaluation one step further and examined the results from both SMS and AS techniques 

attempting to find genes detectable only in one technology. 

Uniquely detected genes in SMS 

In order to substantiate potential representation biases in the two platforms and the 

suggested additional sensitivity of SMS, we next queried for genes which were detected above 

a noise threshold by SMS, but were below that threshold in AS. We chose to analyze the DU145 

sample as it was the most thoroughly sequenced sample with two replicates run using each 

technology. Using a 0.3 RPKM threshold, we chose to test the expression of 23 genes in our 

DU145 samples using RT-PCR, ten of which demonstrated detectable amplification. 
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Additionally, we sequenced the DU145 cell line much more thoroughly in order to ensure that 

our detections were not due to technical factors in a single machine run. As shown in Figure S 

11, this set of genes had better sequencing coverage in SMS as compared to AS across the total 

94,427,789 reads generated in our second set of runs. This list was generated by examining the 

distribution of reads and coverage maps of the top 50 genes whose RPKM coverage showed the 

largest difference between AS and SMS techniques and had official HUGO names [97]. 

Candidates were chosen for the presence of long (>36bp) mapping reads and well-distributed 

read alignments across the length of the transcripts. Of the validated genes detected only by 

SMS, only HISTH1H4C was found to be present in the DU145 sample with high confidence, as 

shown in 

 

Figure 3D. Nine other candidate genes AK5, ACVRL1, AMHR2, CERKL, MAFA, MAGI2, 

PIP5K1B, FAM49A, and TPRXL showed weak amplification. In this set of genes, amplification 
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was only seen beyond cycle 30 making it difficult to confirm their presence. This weak 

amplification makes it difficult to determine if their detection in SMS is due only to increased 

sensitivity, or are an artifact of ambiguous mapping. We next sought to examine the over-

represented genes that may contribute to the reduction of sensitivity using amplification-based 

sequencing techniques. 

Consistent over-representation of high-expression genes in amplification-based 

sequencing 

Overall, 393 genes were found to be consistently within the set of the top 500 over-

represented genes according to normalized read mapping count in at least 40% of our samples 

(Table S 5). Of these 393 genes, ten genes were found to be over-represented by normalized 

read mapping count across all 12 of the samples considered in the study. The coverage maps of 

RPLP0 and RPL31, over-represented in all 12 samples, and SPINT2, over-represented in 11 
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samples, demonstrate this coverage bias in these three high expressing transcripts (

 

Figure 4A-C). We then examined the composition and distribution of reads in some of these 

highly over-represented transcripts. 
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Figure 4: High-concentration transcript bias leads to differences in gene coverage in amplification-based 
sequencing.  Coverage maps from amplification-based and single molecule sequencing demonstrate significantly 
greater coverage of A. RPLP0, B. RPL31, and C. SPINT2. Removal of reads with the same start positions, strictly 
suppressing amplification of specific mRNA fragments, significantly reduces the “spikiness” seen in these cases. D. 
Duplicate reads, defined as reads in excess of one per start locus and read length, are relatively evenly distributed 
along the length of all observed transcripts across all samples in our evaluation set. 
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Impact of duplicated reads in amplification-based sequencing 

The gene RPLP0 had much greater total mapping coverage in AS across all twelve samples 

(Figure S 12). To aggressively mitigate the effect of amplification in the coverage of this gene, 

duplicate reads were removed (allowing only 1 read per unique start location) for both 

technologies as done in previous studies [92, 93]. This resulted in suppression of many of the 

observed peaks in AS. In contrast, SMS coverage of the gene appeared to be relatively 

consistent across the length of the RPLP0 transcript before and after this procedure. This 

substantial difference in behavior between pre- and post- duplicate read removal for AS in 

comparison to SMS suggests that amplification is a significant contributory factor in the 

observed bias. Similar behavior is observed in the RPL31 and SPINT2 genes as well.  

We considered both alignment locus and read length in our definition of read duplication, 

allowing one read at each locus with a unique read length. Looking across the transcriptome 

using this definition of read duplication, we observed a roughly normal distribution along the 

length of all transcripts captured. A 3-fold difference in the median number of duplicate reads 

between AS and SMS across all transcripts observed in all samples was maintained across the 
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majority of the transcript length (

 

Figure 4D). This pattern of read duplication is similar to that observed in the literature 

between standard amplification-dependent and amplification-free sequencing methodologies 

[98]. Removal of duplicate reads, allowing only one read per locus, yielded inconsistent results 
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across the sample set (Figure S 13). In some cases, the procedure reduced the over-

representation in the highest expressing genes, however the bias appeared to remain in other 

samples. The procedure also drastically reduced the number of total usable reads in each 

sample by a median of 47% across the 12 sample dataset (Figure S 14). While this naïve 

methodology of duplicate read removal had some positive effect in reducing the discrepancies 

between AS and SMS in terms of transcript quantification, the drastic effects it has on the 

number of usable reads in AS suggests a different approach may be desirable. With this 

understanding of the impact of duplicated reads, we analyzed the set of recurrently over-

represented genes to see if they sequenced biologically interesting categories of genes. 
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Figure 5: Global representation of Gene Ontology classes in Amplification-based sequencing. GO analysis of the 
392 most over-represented genes found using our recurrence analysis in the Molecular Function (MF) and 
Biological Process (BP) subtrees demonstrates that translational processes and components of the ribosome are 
over-represented across samples in amplification-based sequencing. 

Gene Ontology analysis of the set of 393 recurrently over-expressed genes 

Across the samples, genes associated with the cell’s replicative machinery comprised the 

largest portion of over-represented transcripts by total normalized number of mapping reads in 
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most samples. Gene Ontology analysis of the set of 393 consistently over-represented genes 

shows that they are components of the cell’s translational machinery (Figure 5), a class 

generally found at high levels in all twelve samples used in this evaluation. This again suggests 

that the amplification procedure implicit in AS library preparation exaggerates a particular bias 

towards these already-abundant transcripts. The total number of reads falling into each of the 

classes observed to be over-represented in AS was a mean of 2.23x higher as compared to SMS, 

although genes overlap between the classes. With less of a focus on high-concentration 

translational machinery and housekeeping genes, we then attempted to apply SMS in finding 

gene fusions in the transcriptome.  

Re-discovery of known gene fusions using single-molecule sequencing 

We evaluated the applicability of single read SMS in gene fusion discovery by 

attempting to re-discover known gene fusions in the VCaP cell line, known to harbor TMPRSS2-

ERG, in a de novo process. As shown in Figure S 15, we first aligned all possible reads against 

the transcriptome and genome using IndexDP. The non-mapping reads, which harbor chimeras, 

were subsequently aligned against the transcriptome returning those reads that had a partial 

alignment of at least 18 nucleotides. The portion of the read that fails to align is defined as the 

overhang. All reads having the same partial alignments, suggesting a common breakpoint, were 

clustered. All clusters were then compared to determine if the overhang from one breakpoint 

region had similarity to the overhang of an independent breakpoint thereby reconstructing the 

fusion junction. Lastly, all remaining non-mapping reads were aligned against the novel fusion 

junctions. 
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Figure 6: Single molecule sequencing “re-discovers” known gene fusions. Schematic of the intra-chromosomal 
rearrangement on chromosome 21 fusing TMPRSS2 (yellow) to ERG (purple). 

For this purpose, a sample of the VCaP cell line was sequenced more extensively in 2 

channels, generating 31,198,128 reads aligned to the transcriptome or genome. The VCaP 

sample was prepared with one channel each with and without fragmentation. The benchmark 

fusion between prostate-specific gene TMPRSS2 and ETS oncogenic family member, ERG [99], 

was found to be covered by 53 reads from generating 65 million reads in the VCaP cell line 

(Figure 6).  

Discussion 

This is the first study assessing the performance of RNA-Seq using single-molecule 

sequencing in comparison to existing amplification-based techniques. While the characteristics 
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of the SMS reads will vary depending on platform, we expect that the distribution of reads 

across varying transcript concentrations to remain relatively consistent. The SMS technique was 

able to generate more usable reads in ten of the twelve samples considered in the RNA-Seq 

quantification and coverage evaluation, producing a mean 78% more reads in these 10 samples. 

More importantly, these reads tended to be less concentrated at the very highest abundance 

transcripts as shown in Figure 3B, where fraction of total reads mapping to the highest 

abundance transcripts in SMS are 4% below that of AS. Because the AS technique amasses a 

large fraction of reads sequencing high- abundance transcripts, detection of lower abundance 

genes are reduced. The large differences between the highest and second-highest quartile of 

expressed transcripts suggests that this effect is non-linear as transcript abundance increases in 

the sample. The wide range of transcript expression in biological samples makes this skewed 

read distribution of coverage an important factor when profiling mRNAs at the nucleotide level, 

departing from models that may assume a linear correlation between transcript abundance and 

sequencing coverage.   

The number of duplicated reads observed in the samples across all transcripts was, not 

surprisingly, 3-fold higher in AS compared to SMS. The removal of duplicate reads is a well-

defined procedure in experiments involving DNA sequencing but is less clear-cut when 

sequencing the transcriptome where varying transcript concentrations naturally lead to reads 

of identical mRNA segments. This caveat is due to highly expressed transcripts contributing 

false positive duplicate reads due to random sampling of read start locations along the 

transcript, where high coverage naturally leads to repeated sequencing of identical segments. 

However, highly expressed transcripts in SMS would likely generate a large number of these 

aberrant false positives as well. As a result, this source of false positive duplicated reads is 

unlikely to be the major factor behind the large observed differences in the number of 

duplicates between AS and SMS. The removal of duplicated reads by filtering out all reads in 

excess of a single read for a single locus appears to be an incomplete solution that introduces 

several confounding factors when using single reads. First, the process of removing duplicates is 

inconsistent, affecting the biased representation of reads in only a subset of the 12 samples in 

the dataset. Second, the duplicate removal process also reduced the usable sequence yield 
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from each experimental run by nearly half, although this is an overestimation due to the naïve 

nature of the method. Finally, these duplicate removal methods impose a peak coverage limit 

for each transcript that is equivalent to the read length. The naïve process we applied for the 

elimination of duplicates is most certainly over-aggressive and the use of paired-end reads may 

be more effective, due to the production of additional mapping and sequence information that 

improves the process of duplicate identification and removal. However, the differences that 

result from the characteristics of these two methodologies can lead to disparities in the 

sequence coverage of genes along the spectrum of expression. 

Small differences in the distribution of reads at the highest quartile of expressed genes 

have a large effect on the coverage of the remaining expressed genes. For example, the lowest 

quartile of all genes seen in both technologies in the VCaP-24h sample composes 0.4% of the 

sum total of normalized reads seen in the highest expressed quartile by AS. A 1% reduction in 

the number of reads used to sequence the highest expressing genes in the forth quartile can be 

used to triple the coverage of the lowest expressing genes when reads are applied within the 

set. The result of shifting the read distribution to lower expressing genes is seen between the 

VCaP-0h and VCaP AS samples. Both samples yielded a relatively similar number of reads, with 

3,636,454 and 3,352,960 reads in VCaP-0h and VCaP, respectively. However, the VCaP-0h 

sample has more than twice the fraction of the total reads falling into the lowest 2 quartiles 

with 2.2% and 0.9%, in the respective VCaP-0h and VCaP samples. It comes as no surprise that 

in the VCaP-0h sample, we are able to observe 16,813 genes above the 0.3 RPKM noise 

threshold whereas in VCaP, we only observe 13,866 genes above this threshold. Similarly, the 

reduced high-abundance coverage bias across variable concentrations allows the SMS approach 

2- to 6-fold more coverage in the lower half of all expressed genes. The variable read length of 

the SMS reads contributes to quantification noise, compared to AS, due to the number of short 

reads which map ambiguously. These mis-mappings may contribute to the larger number of 

genes observed at the very lowest expression levels.  Examination of the reads mapping to 

genes only found in SMS shows the presence of more than 30% of long SMS reads (>36bp in 

length) in a median of 17% of the genes (approximating the read length distribution across all 

samples), leaving a 1.7-fold advantage in favor of SMS sensitivity if genes detected with only 
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short 24- to 35-mer reads are all considered detections due to noise. While a significant 

proportion of this noise is directly attributable to ambiguities in accurately mapping short 

reads, the presence of long (>36bp) aligned reads is not a guarantee of transcript presence. In a 

large number of the cases where detected genes have long reads aligned to them, false 

positives were attributable to these long reads mapping to repetitive elements or low 

complexity regions within the transcripts.  

Our PCR validation results suggest that using amplification to confirm transcripts 

exclusively detected by single-molecule sequencing (and missed by AS sequencing) is not ideal, 

since any sequence that is difficult to amplify will be hard to detect using AS RNA-Seq and hard 

to validate using an amplification-based system. Therefore, we cannot verify such transcripts 

unless an amplification-free technology is employed. Sample preparation differences may also 

contribute to differential representation of transcripts in the sequencing libraries, as AS 

involves a size selection step that SMS does not. In addition, the two protocols use differing 

fragmentation procedures which may affect the prevalence of detectable transcript fragments. 

This is one significant factor that may contribute to the detection of some genes above the 

noise threshold exclusively by AS. There may be other reasons for differences in the relative 

representation of transcripts in each technology. Some transcripts may be under-represented 

because they are hard to capture using SMS. Conversely, the amplification procedure may alter 

the apparent transcript abundance as some sequences may amplify highly leading to over-

representation in AS, which may increase their candidate transcript counts above the noise 

threshold. For some candidates seen in only one technology, increasing sequencing depth may 

be the most straightforward solution to the lack of resolution for low abundance transcripts. 

Some candidates may require modification of the library preparation protocol to ensure 

sufficient library complexity to capture these low-abundance transcripts. For example, the use 

of a normalized AS RNA-Seq library preparation protocol or the introduction of a greater 

amount of input RNA may increase the complexity of the library, possibly enabling higher 

sensitivity as a result. However, the paucity of published data addressing these topics at this 

time precludes a thorough examination of potential solutions. 
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However, while SMS confers the advantages of higher sensitivity and abrogation of 

issues stemming from read duplication, the technology has a number of confounding 

characteristics. First, SMS produces reads that are, on average, shorter than their AS 

counterparts, magnifying the issue of accurately mapping reads to their correct positions. While 

the inclusion of long 64bp reads confers an advantage, these are the minority of all reads 

produced. Approximately 60% of all SMS reads were 36bp or smaller across all samples. 

Second, the SMS methodology used in this evaluation produces reads that include randomly 

introduced gaps due to the incorporation of “dark bases” which do not produce photo-

detectable fluorescence. This characteristic requires the use of alignment algorithms that allow 

for the inclusion of insertions and deletions relative to the reference, and may complicate the 

detection of structural variation. We also observed a higher proportion of contaminant-

alignable reads in SMS compared to AS, although it is unclear whether this is a product of either 

the sample preparation procedure or a characteristic of the sequencing process. 

Altogether, these differences suggest that SMS has advantages in quantitative 

expression profiling and nucleotide-level assessment such as polymorphism detection in mid- to 

low- abundance transcripts although the lowest levels of detection are subject to noise due to 

mapping. However, the log-fold advantage SMS holds may be overcome as rapid advances in 

sequencing technology result in the production of increasing numbers of usable reads. 

Methods 

Preparation and sequencing of samples 

Sequencing libraries for the RNA-Seq evaluation set were prepared from a DU145 cell 

line (ATCC; HTB-81), an RWPE cell line (ATCC; CRL-11609), an androgen-induced VCaP cell line 

time course at 0h, 24h, 48h, an identical time course in the LnCaP (ATCC; CRL-1740) cell line, 

and a tissue sample from a prostate tumor paired with an adjacent normal sample. Sample 

preparation of the entire 12-sample set included the RNA fragmentation step to ensure 

consistency. Two replicates of a normal untreated VCaP cell line were run for gene fusion 

discovery evaluation, one each of fragmented and un-fragmented RNA. The fragmented sample 
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was included in the 12-sample evaluation set. The VCaP cell line was derived from a vertebral 

metastasis from a patient with hormone-refractory metastatic prostate cancer, and was 

provided by Ken Pienta (University of Michigan, Ann Arbor, MI). LNCaP or VCaP [100] cells were 

starved in phenol red free media supplemented with charcoal-dextran filtered FBS and 5% 

penicillin/streptomycin for 48 h before the addition of 1 nM synthetic androgen (R1881) as 

indicated. RNA was then isolated using the miRNeasy kit (Qiagen) according to the 

manufacturer’s instructions. Prostate tumor tissue was obtained from the University of 

Michigan tissue core. Identical samples were submitted for SMS and AS sequencing in all cases 

with the exception of the VCaP and LnCaP time course samples. The DU145, VCaP, RWPE, as 

well as the VCaP and LNCaP AS-sequenced time course samples were treated with DNAse. The 

VCaP and LNCaP time course samples submitted for SMS, as well as the PrCa and PrCa-Adjacent 

normal samples, were not treated with DNAse during sample preparation. Poly-A containing 

mRNA for these samples was isolated by two rounds of binding to Sera-Mag Magnetic Oligo(dT) 

beads, wash and elution in 10mM Tris buffer pH 7.5, according to manufacturer's instructions 

(Thermo Scientific, Indianapolis). The purified mRNA was immediately processed for library 

preparation. The VCaP and LNCaP time course AS sample mRNA was selected with oligodT 

linked beads according to manufacturer's instructions (Invitrogen). 

Amplification-based sequencing was done in paired-end mode run to a minimum of 

36bp per read and trimmed to a minimum of 34bp to remove low quality bases. For 

amplification-based sequencing, messenger RNA (2 µg) was fragmented at 85° C for 5 min in a 

fragmentation buffer (Ambion) and converted to single stranded cDNA using SuperScript II 

reverse transcriptase (Invitrogen), followed by second-strand cDNA synthesis using Escherichia 

coli DNA polymerase I (Invitrogen). The double stranded cDNA was further processed by 

Illumina mRNA sequencing Prep kit. Briefly, double-stranded cDNA was end repaired by using 

T4 DNA polymerase and T4 polynucleotide kinase, monoadenylated using an exo minus Klenow 

DNA polymerase I (3’to 5’ exonucleotide activity), and ligated with adaptor oligo mix (Illumina) 

using T4 DNA ligase. The adaptor-ligated cDNA library was then fractioned on a 3% agarose gel, 

and fragments corresponding to 280-320 bp were excised, purified, and PCR amplified (15 

cycles) by Phusion polymerase (NEB). The PCR product was again size selected on a 3% agarose 
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gel by cutting out the fragments  in the 300 bp range. The library was then purified with the 

Qiaquick Minelute PCR Purification Kit (Qiagen) and quantified with the Agilent DNA 1000 kit on 

the Agilent 2100 Bioanalyzer following the manufacturer’s instructions. Library (5-8 pM) was 

used to prepare flowcells for analysis on the Illumina Genome Analyzer II.  

Single-molecule sequencing was done on a Helicos HeliScope in single-read mode, 

resulting in useful reads ranging between 24bp and 61bp for the first set and 25bp and 64bp in 

length in the second set. polyA+ RNA was purified on an RNeasy MinElute column (Qiagen).  

Then 100ng of RNA (on average, between 86ng – 130ng) was heat fragmented by incubation at 

95C for 10 minutes or left un-fragmented. First strand cDNA was then made using the 

SuperScript III reagent kit (Invitrogen, Carlsbad CA) as follows: 500ng random hexamers, 2ul of 

10mM dNTP, and DEPC water were added to the RNA up to a volume of 25ul. The mixture was 

then incubated at 65C for 5 min and placed directly on ice for 2 minutes. Next, 5ul 10X buffer, 

5ul 0.1M DTT, and 10ul 25mM MgCl were added to each sample, and the, now 45ul, sample 

was incubated at 15C for 30 minutes. After this incubation time 2.5ul of RNaseOut (100U), and 

2.5ul of SuperScript III (500U) were added to each sample and the samples were incubated at 

42C for 30 minutes, 55C for 50 minutes, and 85C for 5 minutes. After the reverse transcription 

reaction, 1ul RNase H and 1ul of RNase I were added to each sample, followed by a 30 minute 

incubation at 37C. 

Samples were twice purified on DyeEx columns (Qiagen). cDNA samples were then Poly-

A tailed using the Helicos DGE assay reagent kit (Helicos, Cambridge MA), and the terminal 

transferase kit (NEB, Ipswich MA) as follows: 5ul Helicos Tailing control Oligonucleotide A was 

added to 20ul of each cDNA and the volume was adjusted to 35.5ul with water.  This mixture 

was then denatured for 5 minutes at 95C and placed directly on ice for 2 minutes.  Then, 5ul 

2.5mM CoCl, 5ul 10X terminal transferase buffer, 2ul Helicos polyA tailing dATP, and 1.2ul 

terminal transferase (24U) were added to each samples, followed by incubation at 42C for 

1hour, and then 70C for 10 minutes.  After the tailing reaction the samples were 3’ blocked as 

follows:  samples were denatured for 5 minutes at 95C and placed directly on ice for 2 minutes, 

300 pmoles biotin-dideoxy ATP (Perkin Elmer, Waltham MA) and 1.2ul terminal transferase 
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(24U) were then added, followed by 1 hour incubation at 37C, and a final 10 minute heat 

inactivation step at 70C. 3’ biotinylation of samples was used to assess sample molarity to 

inform HeliScope sample-loading for the sequencing reaction (according to manufacturer’s 

instructions). 

Alignment of reads 

The first read of AS read pairs was used in this study to compare to the single reads 

derived from SMS. SMS reads were aligned with the IndexDP aligner, while amplification-based 

sequencing reads were aligned with both the Bowtie and IndexDP aligners as shown in Figure S 

4. IndexDP alignments were filtered by NScore, defined as (5*#_match-4*#_error)/read_length) 

with a minimum of score 4, reporting at most 25 alignments per read. Reads between 24bp and 

57bp and 25bp and 64bp in length were used for sets 1 and 2, respectively. Bowtie was set to 

report alignments with at most two mismatches within a 32-base seed region, reporting at 

most 25 multiple alignments per read. The first base of all AS reads was trimmed to maximize 

quality. Single-best quality alignments were derived using Bowtie by setting the –best and –k 1 

parameters to report only the single highest quality alignment per read. Reads were aligned to 

the set of UCSC transcripts defined in hg18, downloaded from the UCSC Genome Browser at 

http://genome.ucsc.edu. Known contaminants were also included in the set of references. 

Bowtie alignments included references for mitochondrial DNA, adapter sequence, and 

ribosomal RNA. IndexDP alignments included references for poly-A, poly-T, poly-C, and poly-G 

oligomers. Re-alignment of AS reads using IndexDP was done using the same parameters as 

SMS reads, using the full length of the read. Reads from the PrCa sample were trimmed to 50bp 

from 75bp to meet technical limitations of the alignment program.  Sequence reads from this 

study have been deposited into the NCBI Short Read Archive with accession number 

SRA028835.1. 

Duplicate read removal 

Duplicate reads were removed from the data by analyzing the alignments to each UCSC 

transcript in the transcriptome reference. One read was allowed to align at each start locus 

(with and without consideration of read length). Reads with alignments to locations along the 



40 
 

reference transcript in excess to those were marked as duplicates and removed from the data 

set.  

Relative quantification of genes and coverage calculation 

Reads aligning to each UCSC transcript were counted at transcript level resolution and 

then summarized at the gene level using transcript to gene symbol mappings from the kgXref 

table downloaded from the UCSC Genome Browser at http://genome.ucsc.edu. Reads aligning 

to the known contaminant references were marked and not considered in the analysis. Genes 

were quantified using only the single-best mapping methodology. Single-best mappings were 

derived from IndexDP alignments by choosing alignments with the highest NScore, or an 

alignment randomly picked from the set of highest scores when multiple alignments are 

present with the same NScore value. Gene-level RPM values were derived by summing the 

number of aligned reads from each gene’s constituent transcript isoforms and dividing by the 

total number of usable reads. Read sums were calculated using R Statistical Environment [101]. 

RPKM values were computed for each observed UCSC transcript and summed for all isoforms of 

a gene to derive a gene-level RPKM expression value. Coverage levels were calculated by 

summing the read lengths of all reads aligning to all isoforms of each gene and dividing by the 

mean isoform length. 

Detection of genes observed in a single technology 

We derived a list of genes observed in only SMS or AS for the DU145 samples in this 

study by comparing the mean gene-level RPKM expression values of each pair of samples run 

on AS and SMS. A list of candidates was nominated by then sorting the list of genes with 

expression values above the noise threshold in SMS and below the threshold in AS by the 

observed differences. These genes were evaluated for mis-mappings by examining secondary 

and alternate alignments of the reads aligning to each candidate as shown in Figure S 16. The 

list was filtered to remove genes detected only by short reads and the top 50 remaining genes 

manually evaluated to have well-defined HUGO names, diffuse read distribution along the 

transcript length, and  the presence of long (>36bp) reads in both SMS technical replicates.  

Validation of Detected Single-Technology Transcripts by PCR 



41 
 

RNA was extracted from the cells using Qiazol based on Qiagen’s miRNeasy Minikit 

following the manufacturer’s instructions (Qiagen).  1 μg of total RNA was reverse transcribed 

into cDNA using SuperScript III (Invitrogen) in the presence of oligo dT and random primers. 

Quantitative PCR was carried out by Taqman assay method using gene specific primers and 

probes from the Universal Probe Library (UPL), Human (Roche) as the internal oligonucleotide, 

according to manufacturer’s instructions. GAPDH was used as housekeeping control gene for 

UPL based Taqman assay (Roche), as per manufacturer’s instructions.  

All assays were performed in duplicate using the primer sequences in Table S 8. 

Gene Ontology analysis of reads 

Gene Ontology (GO) analysis of over-represented genes was done in order to assess the 

most highly represented GO classes and determine the relative abundance of reads attributable 

to each GO class. This analysis was done with GeneCoDis2 tool [102]. Single GO classes resulting 

from this process were evaluated for their representation in terms of fraction of total 

sequenced reads across the 12-sample set. Relative representation  of reads attributable to 

each GO class was done by summing the number of single-best mapping alignments for each 

gene in each GO class as defined in the GO annotations for Homo Sapiens, downloaded from 

http://www.geneontology.org and dividing the total by the total number of reads in each 

sample.  

Gene fusion discovery in single-molecule sequencing 

The VCaP cell line was sequenced in two additional channels to evaluate the suitability 

of single molecule sequencing for the task of gene fusion detection. This was done by mining 

the reads in an effort to re-discover known gene fusions. All possible reads were first aligned 

against the transcriptome and genome using IndexDP. Non-mapping reads, which harbor 

chimeras, were subsequently aligned against the transcriptome returning those reads that had 

a partial alignment of at least 18 nucleotides. All reads having the same partial alignments, 

suggesting a common breakpoint, were clustered. All clusters were then compared to see 

determine if the overhang (portion of the read that fails to align) from one breakpoint region 

had similarity to the overhang of an independent breakpoint, thereby reconstructing the fusion 
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junction. Finally, all remaining non-mapping reads were aligned against the novel fusion 

junctions. This de novo approach enabled the re-discovery of the TMPRSS2-ERG gene fusion 

across two channels of SMS reads. 
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Chapter 3: A Framework for integrating transcriptome and proteome data 
 

Introduction  

mRNA transcript levels are often used in research studies as a rapid and simple measure 

of biological activity in cells, a proxy for protein abundance and activity. However, this 

relationship is complex – complicated by numerous external factors such as RNA translation 

rates and decay, degradation through the microRNA pathway, non-coding RNAs, and numerous 

post-translational modifications of protein products [103, 104].  

In the study described in the next two chapters, we use the VCaP and RWPE human 

prostate cell lines to study the transcript-protein relationship and extended the analysis to 

examine how that relationship is dysregulated in a cancer context. VCaP is derived from a 

vertebral metastatic lesion of a patient with castrate-resistant prostate cancer and serves as a 

model of prostate carcinoma; it expresses a large quantity of Prostate Specific Androgen (PSA) 

and Androgen Receptor (AR) and is known to be androgen-responsive [100]. RWPE serves as a 

model of normal prostate epithelium; it is derived from non-neoplastic prostatic epithelial cells, 

and is known to possess the characteristics of normal tissue [105]. 

In this chapter, we focus on addressing the challenges of quantification and integration 

of data from transcriptomic and proteomic experiments carried out using mRNA sequencing 

(“RNA-Seq”) and tandem mass spectrometry (“MS/MS”), respectively, and describe a novel 

methodology using a common sequence reference database with which we quantify relative 

abundance of transcript and protein in the VCaP and RWPE cell lines and analyze their 

relationship. With this methodology, we demonstrate how differing short read alignment and 

spectral counting methods and filtering processes impact the measurement of the transcript-

protein relationship.  

Background 

The correlation of protein and transcript levels is confounded by varying methodologies 

for identification, quantification, and data integration. The process of integrating this data 
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effectively is itself a topic of study [42, 47, 48, 106].  Early work studying this relationship relied 

on gel electrophoresis or liquid chromatography coupled with mass spectrometry (LC-MS) and 

microarrays to quantify transcript and protein abundances. Due to technical constraints, these 

studies were limited by the dynamic range of assay methodology and a small sample set of 

assay genes. The small, pre-selected gene sample sets typically found in these studies resulted 

in highly variable correlation measurements. 

Recent research examining the relationship between transcript and protein abundances 

has leveraged advances in next-generation sequencing to profile the transcriptome and higher 

throughput methods for proteome assessment to observe a more complete landscape of the 

cellular transcriptome and proteome [40, 107]. These studies have observed correlation 

between mRNA and protein abundance ranging from r = 0.3 to r = 0.6, examining 12,000-16,000 

mRNAs and 7,000-9,000 proteins in each sample. Previous studies focusing on smaller subsets 

of genes and other methods have shown more varied correlation values [43, 44, 108, 109]. A 

study combining  previously published isotope-labeled protein abundance values with separate 

RNA sequencing data in three cancer cell lines, A431, U251MG, and U2OS found transcript-

protein relationships in nearly 5,500 genes correlated at levels from r = 0.55-0.61., G-protein 

coupled receptors demonstrated the most disagreement in a focused examination of U2OS, a 

characteristic which they attributed to their limited ability to assay the protein products of this 

class of genes due to detection limitations [46, 110].  A similar study focusing on deeply 

profiling both the transcriptome and proteome in the HeLa cell line assembled an integrated 

dataset of approximately 8,600 genes, from which a correlation of r = 0.6 between transcript 

and protein levels was observed [40]. From this data, the authors estimated that a complete 

proteome comprised 10-12,000 genes in total. Most recently, a study profiled the proteome of 

the NCI-60 set of cancer cell lines and compared these profiles to microarray-derived mRNA 

abundance levels finding similar correlation levels [111]. The inclusion of all 59 NCI60 cell lines 

resulted in the largest dataset, comprising 10,350 genes, with an observed global correlation of 

r = 0.76. However, the number of proteins profiled in individual cell lines was much lower, with 

only 6,003 protein products seen in at least 5 samples, and the correlation between transcript 

and protein was noted to be lower in cancers with higher cellular heterogenity. 
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Results and Discussion 

RNA-seq and Proteomics Results 

To profile the transcriptome and proteome on a genome-wide scale, we use next-

generation mRNA sequencing (RNA-seq) and label-free tandem mass spectrometry (MS/MS). 

Our study is based on three replicate profiles of mRNA and protein of the VCaP and RWPE cell 

lines that were independently processed before integration in a database. To do an “apples-to-

apples” comparison of transcript and protein abundances, we assembled a common reference 

database derived from RefSeq containing 34,728 transcripts and matching protein sequences. 

This database of transcripts and corresponding peptide sequences was used to align RNA-seq 

reads and quantify peptides and proteins from MS/MS data (Figure 7). All data was collapsed to 

gene level granularity using a single representative transcript and protein isoform for each 

gene. This representative isoform was chosen as the highest abundance isoform observed in 

the proteome data across both cell lines, with transcript abundance used to break ties.  

Transcript data was summarized as the sum of all isoform read counts as a Reads Per Kilobase 

Million (RPKM) measure. Protein spectral counts were normalized by the length of these 

representative isoforms to produce a Normalized Spectral Count (NSpC) value for each gene.  

The RNA sequencing of three technical replicates of the VCaP and RWPE cell lines 

yielded a total of 15,998,482 and 14,887,668 reads for each cell line, respectively. MS/MS of 

three replicates each of VCaP and RWPE yielded a total of 557,642 and 606,145 peptide 

matching spectra, respectively. Our RNA-seq quantification had high correlation between 

technical replicates with r ≈ 0.9 in each case. 
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Figure 7: Data Processing and Integration Pipeline. Three replicates of each sample were generated using MS/MS 
and RNA-seq and quantified against a common reference library of mRNA and protein sequences. Tandem mass 
spectrometry data were processed with the TPP and post-processed with Abacus to yield spectral count data. RNA-
seq reads were aligned to the common reference using Bowtie and post-processed with in-house Perl scripts to 
yield RPKM (reads per Kilobase million) quantification. 

Similarly, pair-wise correlations of spectral count between replicates in our MS/MS data 

show correlations of r = 0.97 in both the VCaP and RWPE replicates (Figure S 17). Quantification 

of protein abundance was performed using the Trans-Proteomic Pipeline (TPP) [112] and 

Abacus [57]. Quantification of RNA-seq data was computed using in-house Perl scripts (Figure 

7).  
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Figure 8: The data filtering and integration statistics producing the core and extended datasets. Data is merged 
to the gene level before filtering by FDR and integrated using 1% and 5% FDR thresholds resulting in the core and 
extended datasets, respectively. 

We used our False Discovery Rate (FDR) estimation procedure to threshold with which 

we filtered our data into two sets: a high-accuracy core dataset at 1% FDR to use for individual 

and set level analysis of genes, and a larger extended dataset at 5% FDR to use for correlation 

analysis (Figure 8). In our raw dataset, 13,130 and 14,741 genes were detected in either cell line 

at any level in the protein and transcript data, respectively. To achieve a 5% FDR in our 

extended dataset, we thresholded the minimum abundance to 1.8 and 3.6 RPKM for RNA-seq 
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data and minimum peptide probabilities to 0.9475 and 0.958 for protein data in VCaP and 

RWPE, respectively. Due to the high correlation between RWPE and VCaP in terms of both 

mRNA (r = 0.79, Spearman) and protein (r = 0.70, Spearman) abundance and common tissue of 

origin (

Figure S 18), we chose the extended dataset to include all genes which met the 5% FDR 

threshold in either cell line by either RNA-seq or MS/MS and was uniquely quantifiable by our 

proteomics approach. For our high-confidence 1% FDR core dataset, the abundance thresholds 

were set at 3.7 RPKM and 6.5 RPKM for RNA-seq data and minimum peptide probabilities of 

0.9855 and 0.9885 for VCaP and RWPE, respectively (Figure 9B and C,Figure S 19 and Figure S 
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20). To decrease noise in our fine-grained analysis, our core dataset also required detection of 

candidate genes at the 1% threshold in both the mRNA and protein data in either cell line. This 

process yielded a total of 10,938 unique genes in the 5% FDR extended dataset and 6,620 

unique genes in our 1% FDR core dataset. Overall, the large majority of genes were filtered out 

by lack of protein data passing our filtering thresholds and detection criteria. 

We used the extended dataset to examine the correlation between protein and 

transcript in both cell lines and observe how different alignment and counting methods for 

transcriptome and proteome data affect the relationship.  

Calculating FDR in transcriptome and proteome data 

To assess the false discovery rate (FDR) in our dataset, we followed a method similar to 

that of Ramskold, et al. [96] for the RNA-seq component of the study. Corresponding decoy 

intergenic sequences were sampled without replacement for each representative transcript in 

our database, for a total of 34,728 decoys. We aligned reads to the merged total set of these 

decoy and real mRNA transcripts. Abundance data was summarized at the gene level using the 

same transcript-gene mappings for both the real and decoy transcript set. FDR was calculated 

as the number of decoy genes detected divided by the number of non-decoy genes detected 

(Figure S 19). Across experiments in both cell lines, the decoy and real genes showed separated 

normal distributions, with decoys at a mean measured abundance of 0.46 RPKM and non-decoy 

genes at a mean abundance of 22.52 RPKM (Figure 9A). We did not find a bimodal distribution 

of transcriptome abundances as previously observed in other studies [113]. These studies have 

noted that a majority of the transcripts occupying the lower abundance peak are non-coding 

and small RNAs.  Hence we do not observe this due to our inclusion of only protein-coding 

genes in our common reference database. Using this methodology, we went on to examine 

how technical and methodological factors could be optimized in order to achieve the most 

accurate correlation betweenrelative transcript and protein abundances.  

We used the protein and peptide probability estimates provided by TPP and Abacus to 

control FDR in our protein data (Figure S 20). We used the peptide probability (independently 
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set according to our FDR thresholds) in combination with the protein probability (held at 0.9) to 

filter out noise in our proteome datasets (Figure 9B). Additionally, we marked and removed all 

keratin genes in an effort to reduce the number of known common contaminants in our data. 

Analyzing the impact of data processing methodology on correlation 

We used our extended dataset to characterize our experimental output in an effort to 

avoid including experimental noise in our analysis. In general, our RNA-seq data were more 

sensitive to low abundance elements than our protein dataset (Figure 9E). In both cell lines, of 

the transcripts detected at 4-8 RPKM in our extended dataset, we detect approximately 60% of 

the protein products from their cognate transcript. This number rises to 90% of the protein 

products for transcripts with relatively high abundance of more than 16 RPKM. Although both 

RNA-seq and MS/MS methods produce similar data with a similar distribution, this observation 

is expected, as our ability to observe the transcriptome at depth surpasses our ability to 

observe its corresponding proteome. Some of the detection characteristics are explained by the 

differing dynamic range of the MS/MS and RNA-seq methods and their efficiency at assessing 

the protein and transcripts in our sample, in particular at low abundances. 
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Figure 9: Analysis of transcript and protein datasets. A. The distribution of real and decoy gene values. The mean 
abundance of all decoy genes is 22.52 RPKM while decoys have a mean abundance of 0.46 RPKM. B and C. True 
positive detections across FDR values in protein and transcript data.  D. Spearman correlation coefficient values for 
each alignment method and protein data reduction step in extended dataset. E. Protein detection at increasing 
transcript abundance levels. F. Distribution of RNA-seq reads and tandem MS spectra across all genes detected in 
the extended dataset for VCaP and RWPE. G. Most over-represented (as a fraction of all reads) Gene Ontology 
classes in transcript and protein data. 
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The impact of alignment and quantification methodology in RNA-seq 

Called multireads, a fraction of all transcriptome reads map to multiple locations [9]. 

While most of these reads map to a small number of locations, a few have a muchgreater 

number of candidate mapping loci. We speculated that the presence of repetitive elements 

found in many transcripts may confound accurate quantification of transcript abundance from 

RNA-seq through the highly ambiguous alignment of this subset of reads. In an effort to reduce 

this effect, we removed reads coming from known repeat elements in the human genome. We 

removed all reads aligning to RepBase H. Sapiens and simple repeat elements and repeated the 

analysis for all genes. On average, this process removed a mean of 9.6% and 12.6% of all reads 

across replicates of VCaP and RWPE, respectively. 

We also examined how our alignment and quantification methodology affected our 

correlation. Three transcriptome read alignment methods were evaluated to determine which 

best captured the relationship between transcript-protein with the hypothesis that 

concordance correlates with the performance of each methodology. Each of these alignment 

and counting methods resulted in a different number of reads assigned to each transcript 

(Figure S 22). The “unique” alignment policy is the most restrictive; where reads are required to 

map uniquely to a single position in the reference database. The “single best” alignment policy 

assigns reads to the best quality alignment among all found alignments as determined by the 

Bowtie aligner. The “all” alignment policy assigns reads to the best alignments up to 255 

locations. In general, correlations between mRNA and protein were better in VCaP than in 

RWPE and are used for comparison. Correlations were computed from log2-tranformed values 

(Figure 9D). The Spearman correlation derived from the gene abundances determined using the 

unique method was the poorest at r = 0.32. While the “all” policy produced a reasonable 

correlation level of r = 0.48, the false discovery rate of the method was extremely high. The 

“single best” method we chose to use produced results yielding r = 0.55 and r = 0.46 for VCaP 

and RWPE, respectively. The high FDR of the “all” method led us to hypothesize that repetitive 

elements in the transcriptome confounded the abundance calculation by dispersing many non-

unique reads onto many transcripts. Removal of these elements from the underlying 

transcriptome data yielded a negligible increase in correlation. Recent studies have suggested 
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that UTR elements in the transcriptome also confound accurate quantification of mRNA 

transcript abundances [96]. With that consideration, we also evaluated the effect of removing 

UTR sequences and reads that align to these regions from our abundance calculations. Removal 

of UTR reads in addition to repeat elements led to a small increase in correlation in both VCaP 

and RWPE with increases to r = 0.59 and r = 0.48, respectively.  

Processing of the RNA-seq data using the TopHat and Cufflinks suite of tools [55] yielded 

somewhat lower correlation, with Spearman r = 0.57 and r = 0.48 for VCaP and RWPE, 

respectively. Further analysis was carried out using our in-house tools as it allowed for more 

fine grained measurement and control over read mapping and counting. 

Filtering out multiple assignment of spectra in proteomics data 

Proteome data was filtered in an attempt to exclude quantification artifacts due to 

proteins that were indistinguishable based on the observed peptides, which leads to the 

assignment of spectra to both candidates. We used our process to eliminate the double 

counting of spectra inherent in this type of quantification.  This was done by choosing the 

protein with the highest peptide probability between proteins which are otherwise 

indistinguishable. Ties were broken by choosing proteins with the highest mRNA abundance 

value. The same was done between indistinguishable isoforms of a given protein based on 

spectral count with ties broken by mRNA abundance. Removal of quantification artifacts 

between like proteins to create a non-redundant set increased the correlation to r = 0.59 and r 

= 0.49 in VCaP and RWPE, respectively. We then created a reduced non-redundant set through 

the removal of artifacts from isoform uncertainty, which further increased the Spearman 

correlation to r = 0.61 and r = 0.51 in VCaP and RWPE, respectively. This non-redundant set was 

used for further analysis. 

Distribution of reads and spectra in the VCaP and RWPE datasets 

In both the transcriptome and proteome, a relatively small number of genes encompass 

the large majority of transcripts and proteins in a cell. As a result, a majority of machine 

dynamic range is concentrated on this small number of genes. In both cases, this concentrated 

allocation of dynamic range also means that the majority of transcripts and proteins are poorly 
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covered by reads and peptides (Figure S 23, Figure S 24). However, there were distinct 

differences between the two cell lines in our study in both proteome and transcriptome data. 

The distribution of reads in the VCaP and RWPE transcriptome data show marked differences 

(Figure 9F, Figure S 25); the top 30 highest abundance genes in VCaP comprised 25% of the 

total read density. To reach the same approximate total read density, the RWPE transcriptome 

data comprises the 75 highest abundance genes. This difference is attributable to the over-

expression of a set of genes associated with the VCaP cell line’s cancer origin. In contrast, the 

protein data showed a more similar distribution of abundance between the two cell lines. The 

difference is smaller in the protein data; in both VCaP and RWPE, the top 25% of peptide 

density is attributable to the top 71 and 102 genes, respectively. This is partially attributable to 

the use of dynamic exclusion in our protein data set, used to increase proteome coverage at the 

cost of reducing measurement accuracy at the highest end of the quantitative dynamic range. 

To examine the impact of the highest abundance genes in the context of dynamic range, we 

removed the top 100 most abundant genes and examined the distribution of remaining reads 

and spectra across the genes. This removal process had a much larger effect in the 

transcriptome data, bringing the distribution of reads over the dataset genes for VCaP closer to 

that observed in RWPE. 

We then sought to examine how the relative makeup of the underlying proteome and 

transcriptome data may better explain these distributions. By ranking Gene Ontology classes in 

terms of relative read and spectral fraction without normalization, we observed a 

compositional divergence in the underlying data in our transcript and protein datasets (Figure 

9G, Table S 9). The set of classes where transcript reads composed the largest relative 

proportion of the underlying data was dominated by translation associated classes such as 

translational elongation (GO:0006414) and gene expression (GO:0010467). A large number of 

reads in our transcriptome data were ribosomal in origin, explaining the heavy representation 

of these classes in the ranked list. To see if these ribosomal genes explained a large proportion 

of the observed differences, we removed them and reassessed the distribution (Figure S 25, 

Table S 10).  
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Our proteome data shows the use of a whole-cell lysate, with the largest fraction of 

genes annotated to the cytoplasm. With a mean of 1,594 observed genes, the topmost seven 

classes found in the high relative protein representation list tend to be significantly larger than 

those found on the high relative transcript enrichment list (which have a mean observed size of 

only 164 genes). This is consistent with the observation that proteins in general have longer 

half-lives in the cell, and are therefore more likely to be observed [60].  

Conclusion 

In this work, we describe a methodology for integrating transcriptome and proteome 

data in a manner that matches the reference transcriptome to the reference proteome, 

resolving a fundamental data mismatch issue that affects a number of previous studies to date. 

This is among the first studies to analyze the impacts of methodological differences in the 

quantification and filtering of transcriptome and proteome data. We demonstrate some of the 

sources of uncertainty that may degrade the fidelity of the observed transcript-protein 

relationship. Focusing on transcriptome data, we show that the treatment of ambiguously 

mapping multireads has significant effects on the derived transcript abundances, and 

downstream protein correlation. Looking at protein data, we show how filtering out artifacts 

stemming from the multiple assignment of spectra leads to a modest increase in the transcript-

protein correlation.  

This study is limited by a small number of samples, and the lack of biological replicates 

with which we can better define the inter-sample variances in transcript and protein. Future 

investigation into optimizing the integration of transcriptome and proteome data can leverage 

the increasing availability of publically accessible RNA-seq and tandem mass spectrometry data 

for large cohorts of samples. This increased sample heterogeneity will allow for better 

assessment of aberrations that arise from the highly variable transcriptomic and proteomic 

landscapes ultimately leading to more optimal methodologies. 

Materials and Methods 

Cell Lines 
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The benign immortalized prostate cell line RWPE was obtained from the American Type 

Culture Collection (ATCC).  VCaP cell line was derived from a vertebral metastasis from a patient 

with hormone-refractory metastatic prostate cancer [114], and was provided by Ken Pienta 

(University of Michigan, Ann Arbor, MI).   

Protein sample preparation 

Collection of VCaP and RWPE whole cellular protein extract was done in RIPA complete 

buffer supplemented with HALT Protease and Phosphatase Inhibitor Cocktail (Peirce 

Biotechnology).  Total protein extract was quantified with bicinchoninic acid.  50 mg aliquots of 

total cellullar proteins were first separated by 1D SDS-PAGE (4-12 % Bis-Tris Novex-Invitrogen, 

Carlsbad, CA).  Forty equal sized gel bands were excised and subjected to in-gel digestion as 

previously described [115].  Extracted peptides were reconstituted with mobile phase A prior to 

on-line reverse phase nanoLC-MS/MS (LTQ-Velos with Proxeon nanoHPLC, ThermoFinnigan).   

Peptides were eluted on-line to the mass spectrometer with a reverse phase linear gradient 

from 97 % A (0.1 % Formic acid in water) to 45 % B (0.1 % formic acid in acetonitrille).   Peptides 

were detected and fragmented in the mass spectrometer in a data dependent manner sending 

the top 12 precursor ions, excluding singly charged ions, for collisional induced dissociation.  

Raw spectra files were converted into mzXML by an in-house version of ReAdW.   

Parsing of transcript and protein sequence data 

The Genbank formatted flat files for the Human transcripts and proteins of RefSeq 

release 47 were parsed into a MySQL relational database using in-house software. For this 

extraction, only entries that had both a transcript and a corresponding protein product were 

considered.  The data extracted included paired transcript and protein identifiers along with the 

gene symbol of each pair.  Sequence information for both transcripts and their protein products 

were also extracted.  

Mass spectrometry and subsequent proteomic analysis 

ThermoFisher RAW files for all replicates were converted to mzXML file using msconvert.exe 

from the Proteo-Wizard suite [116]. Protein searches were performed using X!Tandem with the 

K-score plugin [117, 118].  The data was searched against the proteins of Human RefSeq 47 
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along with common proteomics contaminant proteins.  Reversed protein sequences were also 

included as decoy entries.  The X!Tandem results were post-processed using PeptideProphet 

and ProteinProphet (version 4.4.1). [56, 119, 120].  

Bioinformatics analysis of proteomics data 

A summary ProteinProphet XML file was generated from all of the independent 

PeptideProphet results as described for Abacus [57].  All of the PeptideProphet and 

ProteinProphet XML files were subsequently parsed into a MySQL relational database using in-

house software. 

Abacus was used to obtain a gene-centric summary of the total spectral counts across all 

three replicates of each cell line.  The Abacus results were then imported into the MySQL 

database. Parameters used for Abacus were: iniProbTH >= 0.5, minCombinedFilePw >= 0 and 

maxIniProb >= 0.5. Gene Symbol mappings for each protein were obtained from the RefSeq flat 

files described above.  

Decoy protein matches were also imported into the database as "decoy-gene" entries. 

These entries were used to compute false discovery rates (FDR) of the gene-centric proteomics 

data.  

Three probabilities were examined to determine which one provided the best 

discriminatory power between real genes and decoys.  The FDR was computed using: 

bestMaxIniProb, bestMaxPw, and bestLocalPw.  bestMaxIniProb is the maximum maxIniProb 

value observed among the all of the replicates. bestMaxPw is the maximum group probability 

observed for the gene from among all of the replicates. The bestLocalPw is the maximum 

protein probability observed for the gene from among each replicate.  bestMaxIniProb was 

selected as the best discriminator at FDR cut offs of 0.05 and 0.01. 

RNA-seq expression data 

RNA-Seq library generation and sequencing 
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Messenger RNA (2 µg) was fragmented at 85°C for 5 min in a fragmentation buffer 

(Ambion) and converted to single stranded cDNA using SuperScript II reverse transcriptase 

(Invitrogen), followed by second-strand cDNA synthesis using Escherichia coli DNA polymerase I 

(Invitrogen). The double stranded cDNA was further processed by Illumina mRNA sequencing 

Prep kit. Briefly, double-stranded cDNA was end repaired by using T4 DNA polymerase and T4 

polynucleotide kinase, monoadenylated using an exo minus Klenow DNA polymerase I (3′to 5′ 

exonucleotide activity), and ligated with adaptor oligo mix (Illumina) using T4 DNA ligase. The 

adaptor-ligated cDNA library was then fractioned on a 3% agarose gel, and fragments 

corresponding to 280–320 bp were excised, purified, and PCR amplified (15 cycles) by Phusion 

polymerase (NEB). The PCR product was again size selected on a 3% agarose gel by cutting out 

the fragments in the 300 bp range. The library was then purified with the Qiaquick Minelute 

PCR Purification Kit (Qiagen) and quantified with the Agilent DNA 1000 kit on the Agilent 2100 

Bioanalyzer following the manufacturer's instructions. The resulting library (5–8 pM) was used 

to prepare flowcells. Sequencing was done on an Illumina Genome Analyzer to produce single 

reads of 36 to 40bp. 

Transcript quantification by RNA-Seq 

We constructed a reference database composed of representative RNA sequences from 

RefSeq v47, matching decoy sequences, and known contaminants. Reads were aligned to this 

reference database using Bowtie version 0.12.5 using three alignment parameter sets, all 

allowing for two mismatches within a 32 base pair seed region. The “unique” alignment policy is 

the most restrictive; we require reads to map uniquely to a single position in the reference 

database using the arguments "--best -k 1 -m 1." The “single best” alignment policy assigns 

reads to the best quality alignment among all found alignments as determined by Bowtie using 

the arguments "--best -k 1." The “all” alignment policy uses the arguments “--best -k 255” to 

yield alignments to the best 255 locations. 

Reads mapping to repeat regions were removed by alignment to the set of RepBase 

v16.05 Human and simple repeats with Bowtie 0.12.5 without allowing for alignment 



59 
 

mismatches within a 32bp seed region. This process yielded a set of FASTQ files with reads 

stringently mapping to these known repeats removed.  

Expression values in terms of Reads per Kilobase per Million reads (RPKM) were computed for 

each transcript including and excluding reads that mapped to 5’ and 3’ untranslated regions 

(UTRs) and adjusting for the presence and absence of these UTR regions in the total length of 

the transcript. Lengths for 5’ and 3’ UTRs were computed by counting UTR sequence lengths 

downloaded from the UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables) for each 

representative RefSeq transcript.  

Reads were mapped to the hg19 genome build using TopHat 1.4.0 using an annotation 

file containing all refSeq transcripts. FPKM measures were generated using Cufflinks 1.4.0 with 

multi-read correction enabled, using the same annotation as supplied to TopHat, masking out 

all genes on chrM as well as all rRNA and tRNA genes in the genome. Cufflinks was run using the 

“-G” option to limit quantification to genes in the annotation file. FPKM values for genes with 

the same name in the genes.fpkm_tracking file were summed to yield a gene-level list of 

abundance values. These results were merged with proteomics data on the basis of gene name 

or RefSeq isoform id. Abundance data were thresholded to exclude genes with FPKM values 

less than 0.3. 

Generation of Decoy Transcripts and Computation of False Discovery Rate 

Using a method similar to that of Ramskold, et al [96], a False Discovery Rate (FDR) was 

computed by aligning reads to transcripts and decoy sequences of matched lengths and 

computing the difference between the number of transcripts and decoys seen at varying RPKM 

expression thresholds. Decoy sequences were derived from sub-sampling intergenic regions of 

hg19 outside of gene annotations from RefSeq, UCSC, and Ensembl and outside known 

sequencing gaps.  

Comparison of RNA-seq data with spectral counts 

Consolidation of ambiguous transcriptional evidence 
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All transcripts had five expression values calculated for them: raw, reads-per-million, 

RPKM, RPKM excluding repeats, and RPKM excluding reads mapping to UTRs and repeat 

regions. Expression data for multiple transcripts sharing a common gene symbol were collapsed 

into a single gene entry.  Two different methods of collapsing the expression data were 

employed.  For the 'all' data category, the maximum observed value (for each expression 

calculation) was selected from all transcripts of a gene.  For the 'unique' or 'single best' data 

categories, the sum of the observed values for all shared transcripts was taken. 

Assignment of representative transcript and protein identifiers 

For each gene symbol with valid spectral count data, a representative protein identifier 

was selected. In cases where a gene symbol had multiple proteins associated with it, the 

protein with the largest number of unique spectral counts was selected. Ties were broken 

based upon the alphanumeric sorting of the remaining candidate protein identifiers and 

selecting the first one. The representative transcript for a gene symbol was taken to be the 

parent transcript of each representative corresponding protein.  

Selection of candidate genes common to transcript and proteomics data sets 

Two data sets were derived from unfiltered data at FDR levels of 1% and 5% using 

different metrics for quantification accuracy. The 5% FDR dataset was derived by filtering for 

genes with a bestLocalPw >= 0.9 and a bestMaxIniProb >= 0.9475 and 0.958 for protein data, or 

a minimum RNA-seq abundance of 1.8 and 3.6 RPKM, in VCaP and RWPE, respectively. 

Candidates in this data set had to match one of these 5% thresholds in either the protein or 

mRNA data to be included in the dataset.  The 1% FDR dataset was derived by requiring the 

gene to meet the 1% FDR criteria in both our RNA-seq and protein data in either cell line. A 

simple filter for keratins (a common artifact in tandem MS experiments) was applied by 

marking and removing genes with names matching “KRT” followed by a number.  

Correlation of transcript expression with spectral count data 

The final data sets used for analysis were derived from the repeat-removed sequence 

files, aligned using the single-best policy, and excluding UTR reads from quantification. For all 

candidate genes, the spectral counts were averaged together for each cell line using the mean.  
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The averaged spectral counts for each gene were then converted to NSpC values (normalized to 

the length of the representative protein identifier) using R [121]. Correlations were computed 

between log2-transformed RPKM and NSpC values, excluding values that were incomplete 

(where log transformation of either protein or transcript values resulted in an NA value) 
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Chapter 4: The transcript-protein relationship in human prostate cancer 
 

Introduction 

Prostate cancer is the most common cancer afflicting men, with a 1 in 6 lifetime risk of 

the disease in the United States [122]. Its prevalence has made prostate cancer a subject of 

extensive molecular profling at the genome, transcriptome, and proteome levels. However, few 

studies have investigated the transcript-protein relationship in prostate cancer. Previous 

research in various human cancers using lower-throughput methods have specifically noted 

discordance in relative mRNA and protein abundance [41], including numerous dysregulated 

pathways in prostate cancer with mRNA-protein correlation at varying levels up to r = 0.68 

[123]. These pathways include functionally important molecular networks and pathways such 

as nF-kB, which mediates immune response, apoptosis, and inflammation and insulin signaling. 

More focused studies on specific genes have noted discordance in transcript-protein 

relationships in a number of cancers;  endometrial carcinoma where urokinase and tissue 

plasminogen activators were noted to diverge [124], acute myeloid leukemia where the 

transcript and protein expression of the breast cancer resistance protein ABCG2 was observed 

to be uncorrelated [125], and colorectal cancers where the transcription factor AP-2 (TFAP2A) 

was observed at moderate abundance at the transcript level while showing no protein 

detection [126]. Altogether, these studies suggest that dysregulation of the transcript-protein 

relationship may be a marker for the establishment and/or progression of cancer. 

The majority of previous genome-scale studies examined the relationship between 

transcript and protein within the context of single cell lines. In general, there has been a paucity 

of research leveraging ultra-high throughput technologies to assess the relationship between 

mRNA and protein abundance in the context of human cancers.  

Here, we use the VCaP and RWPE prostate cell lines as models for cancer and normal 

prostate epithelium. Using the abundance values derived from the method described in 

Chapter 3, we classify genes into functionally discrete categories based on their relative 

transcript-protein relationships within each of these cell lines and examined the impact of 
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protein and transcript half-life on this relationship. We then compared the relative transcript-

protein relationships across our two cell lines. Through this process, we identified genes where 

this relationship becomes dysregulated in our cancer model using novel discordance and 

concordance index values. We coupled the results of this analysis with the human protein 

interaction network and demonstrate how several biological processes closely interlinked with 

the Akt signaling pathway show transcript-protein relationship dysregulation in our cancer 

model. Additionally, we demonstrate how the integrative analysis of both transcriptome and 

proteome leads to insights about the variance in the proteome and transcriptome, and how 

these changes lead to discordance in the transcript-protein relationship.  

Results and discussion 

Transcript and Protein abundance in each of the cell line models 

To determine some of the biological factors that affect the transcript-protein 

relationship, we chose to separate the genes into approximate subsets based on their relative 

transcript and protein abundance. In order to capture genes that are otherwise ignored due to 

measurements of zero, we added a small adjustment factor of 0.2 to the RPKM and NSpC 

values before log2 transformation in this analysis. We divided the genes in VCaP and RWPE into 

four broad subsets based on the relationship we observed between protein and mRNA 

abundance (Figure 10A, Figure S 26, Table S 13). This was done by choosing genes 1.5 standard 

deviations away from the best fit line (ignoring points that have values less than 0.3 RPKM or 

NSpC) between mRNA and protein, and sub-selecting sets of genes that also showed a log2 

normalized spectral count or RPKM values less than 0.3 RPKM or NSpC. These thresholds 

ensured that we selected for two conceptual classes of genes: those that had significant 

differences in transcript and protein abundance and those which were only detected by a single 

method. Genes in each of these broad subsets were analyzed with DAVID to examine their 

functional composition with GO. 

The first two of these four subsets consisted of genes with higher protein or mRNA 

abundance with both detected. The latter two subsets yielded genes with either high protein or 
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mRNA abundance but little or no observed abundance of the corresponding transcript or 

protein. While many of the genes segregating into each of these broad sets are driven by 

functional biology, a subset are mis-categorized due to technical factors; in particular our 

limited ability to capture, detect, and quantify some genes. For example, genes with relatively 

high protein but very low mRNA abundance tended to be contaminants such as keratin typical 

of MS experiments of this kind, usually introduced during the sample handling process common 

to MS experiments [127]. This is reflected by the presence of classes such as keratinocyte 

differentiation in this class, even despite our effort to filter out the effect of these contaminants 

from our dataset (see Methods). An additional example is the well-known bias against 

membrane proteins [128, 129] in MS/MS experiments due to their low solubility resulting in 

their under-representation in the data. Biological factors that underlie some of these observed 

differences include different rates of transcript and protein turnover, which affects our ability 

to measure these genes.  

Genes with high mRNA abundances and little or no observed proteins tended to fall into GO 

classes such as regulation of transcription, composed of genes with low relative abundance or 

short half-lives, such as transcription factors. This class is larger than the corresponding class of 

genes with high protein but almost no detectable transcript, likely due to our ability to probe 

the transcriptome more deeply than the corresponding proteome with our data.  

Genes with higher levels of mRNA than protein encompassed some of the same transcription-

associated classes, although this group also composes a large abundance of ribosomal genes 

commonly found in mRNA as well as transporters. This category shows some of the classes not 

elucidated by previous studies using array-based techniques for profiling the transcriptome, 

due to the limited dynamic range of those methods. Genes with high protein but more modest 

amounts of mRNA were largely contained genes associated with the cytoskeleton and 

microtubules – this is expected as these proteins tend to be highly stable. This association of 

metabolic and structural component class genes with higher relative protein to transcript levels 

(compared to the association of regulatory genes to the converse group), along with the 

observation that these proteins are more long-lived than their associated transcripts, is 
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consistent with the concept that this core functionality of the cell is less subject to variation 

than genes with regulatory function [110, 130].  

Transcript-protein relationships within biological classes 

The correlation between transcript and protein abundance in cells is affected by many 

intermediary factors involving transcript and protein structure [131], translational delay [132], 

stability, and degradation. Correlation was calculated using the 5% FDR extended dataset. From 

the baseline Spearman correlation of r = 0.61 and r = 0.51 in the VCaP and RWPE cell lines, 

respectively, we attempted to find biological classes which exhibit relatively high and low 

correlation between protein and mRNA abundance.  
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Figure 10: Analysis of the transcript-protein relationship in VCaP and RWPE. A. Division of genes by relative 
protein-transcript relationship with zero values. B.  Plot of cancer-related GO class genes of interest. C. 
Relationship between GO class size and transcript-protein Spearman correlation coefficient. D. Relationship 
between transcript and protein abundance per Gene Ontology class. E. Distribution of transcript stability used to 
segment extended dataset into high and low stability sets. F and G. Correlation of transcript and protein levels for 
low and high stability genes in VCaP. 
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We first examined the distribution of genes in several cancer-related classes of interest - in 

particular kinases (and subclasses thereof) which often act as drivers in cancer (Figure 10B, 

Table S 11, Table S 12). As mediators of the cell cycle, kinases are frequently altered in cancers 

and can drive oncogenic processes. As a result, they are the focus of many targeted cancer 

therapies [133]. We examined the correlation and distribution of this class of genes (defined as 

genes mapped to GO Class GO:0016301 “kinase activity”), and obtained a correlation of r = 0.61 

and r = 0.44 with observations of 87 and 88 genes (out of 581 total annotated to the GO class) 

in VCaP and RWPE, respectively. The difference in correlation between the cell lines is likely 

attributable to the greater mean abundance of protein products in VCaP, measured at 2.89 

NSpC compared to 1.78 NSpC in RWPE, leading to better quantification accuracy.  

We also examined the class of transcription factors that affect cell signaling and proliferation. 

Relatively few genes observed in our extended dataset are annotated in GO as transcription 

factors, with a total of only five genes annotated to protein binding transcription factor activity 

(GO:0000988). This is likely due to the relatively low abundance of both transcript and protein 

of many of the genes in this class, resulting in their exclusion from our datasets. This small 

number of observations therefore led to the class being excluded from our GO analysis. The 

genes in this class that we observed; PITX1, HMGA2, HEY1,SMAD4,and LHX2,  were expressed 

relatively higher in our RWPE cells compared to our VCaP cancer cells, with a mean of 27.14 and 

12.82 RPKM, respectively. At first glance, we might expect that the increased transcriptional 

activity in cancer cells would imply increased abundance of transcription factors. However, 

these results are consistent with the observations in a number of published studies; the gene 

PITX1 [134]  was noted to be lower in prostate cancer cells compared to normal, HEY1 is 

excluded from the nucleus in prostate cancer tissues [135], and SMAD4 acts as a barrier to the 

growth and progression of prostate cancers [136]. Since the mechanism of action of these 

genes implies that they act as transcriptional repressors, it is not surprising that their levels are 

down-regulated in cancers.  

We then conducted a more unbiased analysis of the dataset using all Gene Ontology classes 

with 10 genes or greater observed in our dataset and calculated the Spearman correlation, the 
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associated p-values, and the mean abundance of transcript and protein for the genes in each 

class. The correlation within these classes scales with class size approaching the mean dataset 

correlation coefficient of r = 0.61 (Figure 10C) in VCaP as class sizes become large. Much of the 

variation in the data is seen in GO classes containing 16 or fewer observed genes. Previous 

studies have noted that the proteome exhibits a larger number of significantly differential 

genes in cancer than the transcriptome [137]. To examine whether the large differences in 

correlation in small GO classes was driven by larger proportional membership of significantly 

differential genes, we compared the mean protein abundance and the protein-transcript 

correlation p-value. The large variation in transcript-protein correlation within each GO class 

appeared to be an effect of sample size, as the Pearson correlation between the two factors in 

each class was r = -0.03 in VCaP and r = -0.05 in RWPE. A similar observation was made that 

higher transcript-protein correlations are seen in gene subsets with higher abundance [138]. 

Pearson correlation between the mean protein and transcript abundance in each GO class and 

Spearman correlation value yielded r = 0.12 and r = 0.04 in VCaP and r = 0.07 and r = 0.07 in 

RWPE, respectively. 

To study the genes in our dataset on the basis of biological function and localization, we 

analyzed the values by the median abundance of protein and transcript within individual Gene 

Ontology categories (Figure 10D). The most obvious outliers are members of ribosomal small 

subunit biogenesis and cytosolic small ribosomal subunit classes, with a very high relative 

transcript/protein ratio that reflect the large abundance of ribosomal gene mRNAs in our 

transcript data.  

The impact of stability in the transcript-protein abundance relationship 

Protein and transcript stability have been noted in the literature to have a significant impact on 

the relationship between transcript and protein abundance levels, and the effect is clearly 

visible in our dataset (Figure 10E). Using transcript and protein stability data from 

Schwanhäusser B, et al. [60] derived from NIH 3T3 mouse fibroblast cells, we assigned 

transcript and protein stability to the genes in our dataset through orthology. We separated the 

genes in our dataset into high and low transcript and protein stability groups by selecting one 
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standard deviation tails of the z-normalized stability distribution in each of the two cell lines. 

The differences in transcript-protein correlation between the high and low stability groups on 

the basis of transcript stability are the most marked. In VCaP, the correlation for the low and 

high stability transcripts is r = 0.404 and r = 0.71, respectively (Figure 10F-H). The difference is 

similar in RWPE where the correlation is r = 0.288 and r = 0.543 for the low and high stability 

transcripts, respectively. When comparing low and high stability groups on the basis of protein 

stability in the two cell lines, the difference is smaller with r = 0.419 and r = 0.572 for RWPE and 

r = 0.441 and r = 0.799 for VCaP for low and high stability proteins, respectively (Figure S 27 and 

Figure S 28). 

Comparison of VCaP and RWPE cell lines 

To examine aberrations in the protein-mRNA abundance relationship specific to cancer, we 

compared the relative transcript - protein ratios between the VCaP and RWPE cell lines. We 

applied our core dataset to ensure accurate gene level quantification.  

For functional analysis, we selected the most concordant and discordant genes. In the large 

majority of cases, the relationship between transcript and protein abundance between the two 

cell lines is unchanged. For this purpose, the data were analyzed along two axes to measure the 

genes with the most concordant and most discordant transcript-protein relationships (Figure 

11A). The genes with the highest transcript-protein concordance were found by using an index 

value derived from adding the normalized RPKM transcript fold change value to the normalized 

protein fold change abundance value between VCaP and RWPE (as described in Methods). The 

most discordant genes were found by the derivation of a similar index value of the normalized 

protein abundance subtracted from the normalized RPKM transcript value. The index values 

where both z-transformed and p-values were computed using these scaled distributions of 

concordance and discordance for use with LRPath for Gene Ontology and pathway analysis.  
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Figure 11: Detecting Dysregulation of transcript-protein relationships in prostate cancer. A. z-transformed fold 
changes of transcript and protein observed between VCaP and RWPE and major Gene Ontology class clusters in 
red and orange classes, corresponding to enrichment in protein and transcript abundance, respectively. 
Representative GO classes for each annotation cluster were chosen by examining overlap between DAVID clusters 
and LRPath results with FDR ≤ 0.05, in order of observed genes B. Number of GO classes resulting from LRPath 
analysis before and after removal of genes overlapping between concordance and discordance classes. 
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Ontology and pathway analysis with concordance and discordance indices 

LRPath was used due to its ability to evaluate enrichment of classes and pathways in aggregate 

without requiring the use of cutoff values [139]. This is particularly important in our analysis of 

genes nominated by our index values as significance cutoff thresholds are not well defined. 

Although it relies on the use of cutoff values, we also applied DAVID [140, 141] to our dataset to 

leverage it’s clustering of resultant classes. For consistency with our previous analysis looking 

within each cell line, we selected genes using a 1.5 standard deviation cutoff from perfect 

concordance and discordance. 

Analysis using our discordance and concordance indices in LRPath produced 727 and 619 GO 

classes and 114 and 56 Biocarta and KEGG pathways with a p-value ≤ 0.05 in VCaP and RWPE, 

respectively (Table S 14, Table S 15). The selection of identical classes in both of these classes 

led us to evaluate the effects of this gene overlap between high correlation and high anti-

correlation due to our selection process. Genes typically considered significant (p <= 0.05) by 

the discordance index had their p-values adjusted to non-significant values when they were 

also in the significant tail distributions of the genes in the concordance index. The dataset with 

these modified p-values was re-analyzed with LRPath. Major themes from our primary analysis 

remained statistically significant, suggesting that the effect of genes in overlapping regions is 

relatively small. The majority of classes we observed to be significant in our initial analysis 

demonstrated increased statistical significance. With this subtraction of overlapping genes, the 

discordance and concordance indices produced a respective 619 and 599 GO classes as well as 

114 and 56 KEGG and Biocarta pathways with a p-value ≤ 0.05 . While the reduction of 

overlapping classes between the highly concordant and discordant class sets was relatively 

modest (Figure 11B), we chose to use this dataset for further analysis in an effort to minimize 

noise data in our analysis. 

DAVID clustering of the same GO classes and pathways from Biocarta and KEGG revealed that 

many of our resultant classes fall in a small number of biological themes. We used our DAVID 

results to guide our manual classification of discordance-derived LRPath results into broad 

biological categories. In the case of where protein levels are overabundant, we see broad 
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classes of protein metabolism and modification, cell cycle and structure, ion binding, and 

GTPase regulation. In the converse case, we see the broad clusters including classes associated 

with the cell membrane, mitochondria and energy metabolism, phosphorylation, and lipid 

metabolism.  

 

Figure 12: The dysregulated networks surrounding Akt. A. Network closely linked to Akt formed by genes 
constituting the GTPase regulator activity, polyol metabolic process, guanyl-nucleotide exchange factor activity, 
and regulation of immune response classes. B and C. Distribution of genes in the GTPase regulator activity and 
activation of immune response Gene Ontology classes highlighted in red in the context of all dataset genes. 
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The sets of discordant genes were of particular interest as they suggest a number of biological 

processes are dysregulated on a post-transcriptional level. Correlation analysis of fold changes 

by Gene Ontology class in this set of genes finds a number of processes in the two cases where 

the transcript-protein relationship is significantly dysregulated in VCaP compared to RWPE. 

Similar to our correlation analysis of transcript and protein abundance within each cell line, we 

observed a correlation between GO class size and Spearman correlation coefficient with higher 

variance coming from smaller classes. As expected, the set of correlation values has a roughly 

normal distribution centered on the correlation coefficient of r = 0.42 for the broader dataset. 

This pattern holds when we separate the resultant classes by GO tree as well. Because of the 

correlation between GO class size and the resultant observed correlation, we thresholded the 

classes to exclude those with less than 10 observed genes. The most concordant and discordant 

GO classes by tree  can often be explained by the differing stabilities of the protein and mRNA, 

such as the classes involving genes associated with cell spindle and microtubules which have 

very long half-lives. In these two examples, structural role of the protein yields higher stability 

leading to higher abundance than the comparatively shorter-lived complementary mRNA.  

Using this correlation data, we examined GO classes with below-mean correlation coefficients 

between cell lines and ranked them by the difference in correlation between VCaP and RWPE. 

This nominated candidate classes that showed large differences in correlation where the 

transcript-protein relationship was drastically altered. This set included a number of voltage-

gated ion channel classes and the smoothened signaling pathway.  The presence of the ion 

channel classes reflects the activity of voltage-gated potassium and sodium channels observed 

to play a role in the growth and metastasis of prostate cancer cells [142-144]. The genes in 

these classes go from highly correlated in RWPE, with Spearman correlation coefficients in the r 

= 0.8 range, to essentially uncorrelated (Spearman correlation falling to the r = 0.1 to 0 range) in 

VCaP. Similarly, correlation of the genes in the smoothened signaling pathway goes from r = 

0.77 in RWPE to r = -0.03 in VCaP. The Smoothened (SMO) gene itself is known to act as an 

oncogene, and this pathway is known to stimulate hedgehog signaling, which is noted to be 

activated in advanced and metastatic prostate cancer [145, 146] and is associated with 

aggressiveness [147].  
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Figure 13: Insights from joint transcriptome-proteome analysis. Heatmap of log-odds ratios for KEGG and Biocarta 
pathways with p-values ≤ 0.05 in each of four categories – results derived from protein only, transcript only, 
discordance index, and concordance index data. 
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Dysregulation of the transcript-protein relationship surrounding Akt 

A common thread we observe in our results is the association of a number of deranged 

pathways and processes upstream and adjacent to the PI3K/AKT signaling pathway, which plays 

a role in several biological processes central to the development of cancer including apoptosis, 

differentiation, and cellular metabolism. These adjoining and connected pathways and 

biological classes include members of the GTPase regulation and signaling classes, metabolism 

of the polyol substrate central to Akt signaling, immune response, and the set of guanyl 

nucleotide exchange factors. The genes that underlie these associated pathways and processes 

form a tightly interconnected network with the Akt pathway (Figure 12A).  

In many cases, the activation of the Akt pathway is owed to a number of factors, such as the 

deletion or inactivation of the PTEN gene, which acts as a phosphatase on the PIP3 substrate, or 

the activation of upstream kinases. While PTEN is not deleted in either VCaP or RWPE, we 

observe that a number of genes in the PI3K/Akt pathway, such as PIK3R1, a regulatory subunit 

of PI3K, and SOS1, an inositol phosphatase, show significant mRNA-protein discordance with 

observed within the top 4% most discordant genes in the core dataset (Figure S 29). 

The transcript-protein relationship for the genes in these four pathways and classes are not all 

uniformly dysregulated – in many cases, only a small subset of genes in the set show large 

changes in the relationship (Figure 12B,C). Because only genes meeting the p ≤ 0.05 significance 

threshold from LRPath analysis are included in the network, not all interactions are included. 

GTPase regulator activity, which includes 59 genes, although only 9 of these genes have 

discordance-based p ≤ 0.05. This class includes SMAP1, which has been implicated in 

oncogenesis, and is thought to act as a tumor suppressor in intestinal cells [148]. The Polyol 

metabolic process class is intrinsically associated with genes that mediate the processing of 

PIP2 to PIP3 substrate of the Akt pathway, a substrate that is central to Akt signaling. In this 

class is an example of the direct interactions to the Akt signaling pathway, specifically the 

activation of IKK by MALT1, which contributes to T-cell activation[149]. The immune response 

class relates Akt to the effect its activation has on immune resistance – providing tumors with 

immune resistance and apoptotic escape [150]. Upstream of Akt, the set of guanyl nucleotide 
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exchange factors are known to activate Ras though the removal of GDP [151]. This process then 

leads to Akt induction [152]. Not all of these networks dignal directly into the PI3K/Akt 

pathway; much of the connectivity of the GTPase regulator activity class is though 

intermediates, including notable genes such as ERBB2, PRC1, and YWHAG which are often 

aberrant in regulation or structure in cancers. The class of guanyl nucleotide exchange factors is 

a subset of genes with GTPase regulator activity, and is similarly attached to the network.  

Analysis of joint analysis results 

Our pathway and Gene Ontology analysis nominated a number of biological pathways 

which showed significant numbers of member genes with dysregulated transcript-protein 

relationships in our prostate cancer model that were brought to the forefront by joint analysis. 

To examine if this joint analysis provided insights that neither transcript- or protein-based 

analysis could alone, we compared our results against these isolated analyses.  

We took the mRNA and protein data individually and derived the set of significant GO 

classes to observe the significant classes from the viewpoint of mRNA and protein in isolation. 

This process yielded 684 and 814 total classes with p-values ≤ 0.05 in mRNA and protein, 

respectively. We then compared these classes to the ones derived using our discordance and 

concordance indices.  The joint analysis class sizes are comparable to those in the isolated 

analysis examples, but they are compositionally quite different. The joint analyses nominated 

265 and 96 categories that were exclusive to the discordance and concordance methods alone.  

In a more focused examination of these results, we examined the level of association 

between the biological processes we identified and the methodology we used looking at only 

the highest significance (p ≤ 0.01) KEGG and Biocarta pathways (Figure 13). Using the odds ratio 

as a metric for evaluating the association strength of these pathways with the variance in their 

underlying genes, we clustered these classes in an attempt to dissect the drivers of 

discordance. In the context of our discordance index, a negative log-odds indicates an 

association whereby the protein abundance is greater than the corresponding transcript in 

VCaP relative to RWPE. A positive log-odds value indicates the contrary; that the transcript 

abundance is enriched in RWPE compared to VCaP without a corresponding increase in protein 
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abundance. In a majority of cases, the discordance between protein and mRNA abundance is 

driven by differences at the protein level with little change at the transcript level. A smaller, 

corresponding set of pathways is nominated chiefly by changes in the transcriptome. These 

observations agree with previous observations that the proteome is more dynamic than the 

transcriptome [110]. More interestingly, there is a set of pathways whose association by the 

discordance index is driven by more subtle changes in both their transcript and protein 

abundances moving in opposite directions - we observe this because of the directionality of the 

LRPath enrichment test.  

This set of pathways is split into two broad categories – pathways where transcript levels are 

decreased in opposite of increasing protein abundance, and the converse where transcript 

levels are increased while protein abundances are decreased. In the first case where transcripts 

are observed to be higher in abundance while there is a decrease in protein abundance, is 

composed of ten pathways. These include pathways associated with neurodegenerative 

diseases and cellular metabolism. While the three neurodegenerative diseases included in this 

category might first appear to be noise, likely nominated together since they contain many of 

the same genes, recent observations linking an inverse relationship between the incidence of 

Alzheimer’s disease and cancer [153] as well as the application of cancer drugs to treat 

Alzheimer’s disease [154] suggests that they may share some common molecular dysfunction. 

The second instance is composed of eleven pathways, broadly covering cell cycle-related 

classes and pathways involved in specific cancers. The observation of cell cycle and cancer 

specific classes is expected, as the evasion of apoptosis and insensitivity to anti-growth signals 

is a major hallmark of cancers [61] with many cancers sharing similar molecular dysregulation. 

While the pathways in both of these classes are nominated as interesting candidates in both 

analyses, the use of joint analysis brought them to the forefront of our analysis.  

Conclusion 

In summary, we show that the transcript-protein relationship is affected by a number of 

biological factors. Our classification of genes by their relative transcript and protein abundance 

in VCaP and RWPE demonstrates that the relationship is subject to the stability and resulting 
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half-life of the constituent transcript and protein, with a large number of short-lived 

transcription factors picked up exclusively in transcriptome data. The effect of transcript and 

protein stability is reinforced by our integration of transcript and protein stability data from the 

literature and the observation that genes with above-average protein or transcript stability 

have higher abundance correlation between transcript and protein levels. Other studies have 

suggested that sequence features also contribute quite significantly to the transcript-protein 

relationship, and this is a clear path for further examination. 

We then examine the transcript-protein relationship to find both individual genes and biological 

classes of genes where this relationship is dysregulated in a cancer context by comparing VCaP 

to RWPE. To achieve this goal, we derive novel discordance and concordance index values for 

all candidate genes in our dataset. Focusing on the candidates nominated through GO class and 

pathway enrichment analysis based on our discordance index, we find that several biological 

pathways surrounding the PI3K/Akt signaling pathway exhibit significant discordance. Coupled 

with evidence in the literature that modifying the stability of genes serving a regulatory role, 

these results may suggest an alternate pathway for the induction of functional networks 

conferring growth, survival, and immune and apoptotic escape in cancer. Furthermore, analysis 

of the pathways uniquely nominated through our joint analysis, in particular cases where 

transcript and protein levels move in opposite directions, elucidated possible mechanisms that 

may underlie the inverse relationship observed between cancer and neurodegerative disease. 

Our study is limited by the small number of samples involved and the use of relatively 

immature RNA-seq technology. The inclusion of additional biological replicates and additional 

cancer types may lead to broader insights about the nature of the dysregulation of the 

transcript-protein relationship in cancer and its larger implications in the establishment and 

progression of the disease. The application of even higher throughput transcriptome 

sequencing techniques (optimally in concert with higher mass accuracy MS/MS profiling) will 

help improve the accuracy of transcript-level measurement, and increased transcript coverage 

will provide nucleotide level information that allows for the attribution of dysregulation to 

known sequence level aberrations such as disruptive single-nucleotide polymorphisms.  
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Methods 

Derivation of index values 

We computed several index values to quantify the transcript-protein abundance relationship in 

our two cell lines. Using the transcript and protein abundances, we computed the ratios of 

transcript and protein between the cell lines. We added a value of 0.2 to the values in our fold 

change calculations in order in order to avoid division by zero values. This value was chosen 

because it is below the threshold for a single spectra detected in many of the three replicates 

for each cell line as well as falling below the abundance cutoffs for transcriptome data, and 

should not significantly alter any results.  

                        
            

            
  

 
Equation 1 

 

                     
           

           
  

 
Equation 2 

 

These values were then z-transformed using the scale function in R to derive z_logratiotranscript 

and z_logratioprotein. Values for the concordance and discordance index for each gene were 

computed from these z-transformed transcript and protein log ratios 

                                                        Equation 3 

                                                        Equation 4 

 

The index values were then z-normalized. 

p-values were derived from these two log-ratio index values, based on a fit of the normal 

distribution. A correction was applied in an attempt to remove noise from genes that 

overlapped between highly concordance and high discordant genes. We used the commonly 

significant p ≤ 0.05 level as a basis cutoff value where these genes would have their p-values 

adjusted to non-significant values. 
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Gene Ontology analysis of correlation data 

Gene Ontology analysis was carried out using DAVID (http://david.abcc.ncifcrf.gov/) [140] and 

LRPath (http://lrpath.ncibi.org) [139] as well as the Gene Ontology (GO.db) and KEGG 

(KEGG.db) Bioconductor packages in R[155]. The entirety of the core and extended datasets 

were used as backgrounds in DAVID analysis when analyzing genes derived from those 

respective datasets. DAVID analysis of broad categories  in each cell line was done using GO FAT 

terms. Analysis of genes comparing the cell lines in DAVID was done using all GO terms as well 

as KEGG and Biocarta pathway entries. LRPath was used to analyze candidate genes in the 

comparison of VCaP and RWPE and between protein and mRNA levels in each cell line. Gene 

identifiers were converted from RefSeq to Entrez IDs using mappings in Bioconductor for 

submission to LRPath. LRPath parameters were left at their default values. 
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Chapter 5: Conclusion 
 

In this work, I have compared the strengths and weaknesses of emerging single-molecule NGS 

technology in contrast to an established method employing amplification in the context of a 

cancer gene expression study. From this, we note several broad conclusions; single-molecule 

methods appear to better sample the low-abundance genes in the transcriptome, and the 

experimental results may better represent the underlying distribution of abundances in the 

transcriptome. However, these advantages are quickly degraded by the rapid increase in 

sequencing capacity from competitive amplification based methods. Additionally, the Helicos 

methodology used remained at an average read length and yield disadvantage. It is not clear 

whether other single molecule methods may improve on these disadvantages. While we were 

able to clearly distinguish the TMPRSS2-ERG fusion prevalent in prostate cancers in the VCaP 

cell line, the longer read lengths of other methods are likely more advantageous in comparison. 

The broader impact of this research in gene expression estimation from mRNA sequencing is 

most apparent in the contributions of gene expression data to other studies, as noted in the 

introduction. While many methodologies exist for the derivation of expression levels from RNA-

seq data today [9, 156-160], this early methodology for RNA-seq data provided expression 

estimation before the majority of other methods had been made public. 

The constantly evolving nature of massively parallel sequencing, and continuing development 

of single molecule methods, makes the insights extensible to future sequencing methods. While 

the SMS method applied in our study had read length and read volume disadvantages, future 

methods may sidestep these issues while retaining a sampling methodology free of 

amplification. Although the specifics of future developments in sequencing remain to be tested 

in depth, we can infer that future single-molecule based methods may exhibit more even 

coverage of transcripts being sequenced in addition to less concentrated sequencing of the very 

highest abundance transcripts.  
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Employing the knowledge and techniques developed for transcriptome profiling, we then 

aimed to integrate parallel transcriptome and proteome data. Specifically, to construct a 

standardized framework and methodology for the integration of knowledge from these two 

scales of biology, ensuring like comparisons between transcript and protein levels, with 

measurable parameters. This work addresses the issue of highly varying methods for 

integrating transcriptome and proteome data, a significant source of ambiguity in many 

previous integrative studies of these scales of biology.  

The framework we developed utilizes a novel common reference of corresponding transcript 

and protein sequences such that enables the direct comparison of the transcript and protein 

abundances across thousands of genes while reducing the noise from isoform uncertainty. The 

development of a decoy transcript sequence based method for estimating false discovery rate 

in RNA-seq data as part of this effort enables direct management of noise levels from 

transcriptome data. By setting forth this standardized pipeline and methodology, we hope to 

increase comparability of these integrative experiments across multiple studies by reducing the 

cumulative effect of methodological variation. 

We apply this framework to characterize the transcript-protein relationship in the VCaP and 

RWPE human prostate cell lines often used in cancer research. This research demonstrated the 

significant impact of transcript and protein stability on the transcript-protein relationship, and 

showed how this relationship is dysregulated in a number of functionally significant biological 

networks in our VCaP cancer model compared to our RWPE model of normal prostate 

epithelium. Several of these networks closely interact with the PI3K/Akt signaling pathway 

commonly seen to be deranged in cancers, where it is known to confer survival and growth 

advantage. Coupled with emerging knowledge that stabilization of transcripts or proteins are a 

pathway by which cancer cells sidestep regulatory mechanisms, we suggest that dysregulation 

of the transcript-protein relationship constitutes a possible mechanism by which cancers attain 

some of the hallmarks of cancer enabled by factors not related to genome stability. 

While this work is a contribution to our understanding of the mechanisms that govern the 

transcriptome-proteome relationship and an examination of how well we interrogate the 
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transcriptome, it is only a small step in building a comprehensive understanding of the complex 

interactions underlying the changes we see in biology and disease, and many challenges remain 

to be solved. 

Assessment of the proteome still remains a challenge. While MS/MS technologies have made 

great strides in sensitivity, dynamic range, and capacity, they are still insufficient for the 

characterization of the proteome with its tremendous number of post-translational 

modifications. For example, our study (and other studies utilizing label-free MS/MS) do not 

measure phosphorylated versions of the proteins under study, despite phosporylation being a 

crucial component of molecular activation in cancers. 

The ultimate goal of much of integrative bioinformatics is the derivation of methods and 

knowledge that can be translated to patients to optimize and improve the treatment of disease. 

This is already being explored in the realm of personalized medicine. While patient care has 

always been to a great extent personalized to individuals, we are now beginning to leverage the 

tremendous knowledge brought on by high throughput technologies.  Next generation 

sequencing is seeing particular use in the cancer field, with an increasing focus on guiding 

patient therapy using insights from sequencing [73]. This is an result of the increasing 

application of multiple molecular “omic” technologies in cancer, referring to the genomic, 

transcriptomic, proteomic, and other methods of molecular characterization. The previous 

product of this trend was the development of prospective genomic signatures for cancer 

prognosis [161-164] seen in the past decade, a number of which have been commercialized and 

applied to patient care [165, 166].  

The massive throughput and plummeting costs of these new technologies has also sparked 

increased efforts to quantify individuals’ genetic backgrounds to profile disease risk. The most 

exhaustive of these is the iPOP, or Personal Omics Profiling effort, which fuses data from the 

transcriptome, genome, proteome, and metabolome [167].  Using data sampled over the 

course of 14 months from a single individual, the authors developed a disease risk profile based 

on observed variants in the patient’s genome which ultimately revealed a high susceptibility to 

Type 2 Diabetes. This is only one example of how data from the multiple scales of biology can 
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be fused to affect health outcomes positively, with the promise of improving the quality and 

lowering the cost of health care. 

As genomic and proteomic profiling increase in capacity and become cheaper and more 

reliable, such exhaustive profiling of individuals will become commonplace. The proliferation of 

these molecular profiling efforts underscores the need for the development of methods for 

integrating diverse data such as those from the genome, transcriptome, and proteome. With 

advances in both technology and methods, we can begin to fully leverage the power of this 

multi-scale, multi-“omics” data revolution.     
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APPENDIX A: Chapter 1 Supplementary Methods, Figures, and Tables 
 

Methods 

 

Data Extraction  

The disease and biological process associated subnetworks are built from two fundamental 

components. First, a protein interaction network is used to define the relationships and 

interactions between the proteins considered in the study. The second is a database of genes 

relating them to diseases and biological processes. 

Protein interaction data was retrieved from the Michigan Molecular Interaction Index (MiMi) 

[168], which integrates interaction and annotation data from BIND , the Gene Ontology, HPRD, 

DIP, the BioGRID, IntAct, InterPro, IPI, the Max-Delbrueck Center for Molecular Medicine 

protein interaction database, Pfam, ProtoNet, SwissProt, and RefSeq. This process yielded 

12,318 unique protein-protein interactions involving 6199 unique Entrez Gene identifiers. 

Gene-disease relationships were derived from two sources; the Online Mendelian Inheritance 

in Man (OMIM) [169] and the PhenoGO database [170]. Gene-Disease associations in PhenoGO 

not using Entrez Gene identifiers were translated using mappings from HUGO [171]. Diseases in 

these two resources were defined in terms of coded Medical Subject Heading (MeSH) [172] and 

Unified Medical Language System (UMLS) [173] identifiers. The unfiltered, translated data set 

resulted in 3469 Entrez identifiers associated to 2325 phenotype codes. OMIM mappings found 

in the mim2gene file supplied by NCBI already employ Entrez Gene identifiers and no 

translation was necessary for the OMIM data. Entries in the OMIM database were filtered to 

include only gene-disease references, resulting in 1846 distinct Entrez indentified genes 

annotated to OMIM-defined diseases. 708 of the identifiers found in the OMIM mappings are 

also present in the MiMi interaction data set. Gene Ontology [174] data and biological 

annotation was extracted from BioMart [175] using data from Ensembl version 47 built from 
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the NCBI36 release of the human genome. MeSH and UMLS term descriptors were retrieved 

directly from the NLM. 

Data was extracted from MiMi using SQL queries for human-specific interactions from the 

National Center for Integrative Biomedical Informatics SQL server using SQL Server 

Management Studio Express. 

Subnetwork Generation 

The generated results were split into three distinct classes. A “background” set was generated 

from a priori knowledge from the Gene Ontology, consisting of the subnetworks formed by the 

classes represented in the “Biological Process” and “Molecular Function” trees of the Gene 

Ontology. This process resulted in the generation of 6,606 GO-associated subnetworks. A 

“single gene disease” (SGD) subnetwork set was generated from the contents of OMIM, 

producing 2,079 subnetworks. A “complex disease” (CD) set was built from the PhenoGO 

annotations, composed of 2,317 subnetworks in total.  

We separate the OMIM and PhenoGO sets for two reasons. The primary factor for the 

separation is the drastically different underlying focus of both of these resources, although they 

do share some commonly annotated diseases. PhenoGO contains data describing both single 

gene and multi-gene complex disease, whereas OMIM is primary focused on single gene 

diseases. The secondary factor is curation; the OMIM data is manually curated while PhenoGO 

is a computationally derived data source. 

Derivation of the subnetworks was done using the Boost Library version 1.43.1 

(http://www.boost.org/) and version .9 of the Boost Graph Library bindings to Python 

(http://osl.iu.edu/~dgregor/bgl-python/) using ActiveState ActivePython version 2.4.3 

(http://www.activestate.com/). 

Subnetworks that resulted in errors in the software were removed from the set, as the memory 

requirements for processing a number of large, dense networks was beyond the memory 

capacity of our workstation. 
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Data Characterization and Filtering 

Resulting subnetworks in each of the three data sets was topologically characterized using a set 

of Perl scripts employing the Boost Graph Library interface. Subnetworks are topologically 

characterized based on node count, clustering coefficient, observed edge fraction, average 

degree, maximum degree, radius, diameter, cyclicity, and biconnectivity. Biological 

characteristics noted for each subgraph include mean gene start location, mean gene end 

location, mean length, strand, mean PFAM domain annotation count, mean ProSite annotation 

count, mean number of signal domains, mean number of transmembrane domains, and mean 

G-C content fraction. The networks are filtered for size, imposing a minimum of three nodes 

found in the interaction network. 79 and 278 subnetworks passed this filter from the SGD and 

CD sets, respectively. 2590 of the subnetworks generated from the Gene Ontology passed this 

filter. This final filtered set was used to train and test the classifier. 

Because the data in the PhenoGO resource spans drugs, cell types, and other biological 

contexts not directly associated with disease, the subnetworks formed by this resource were 

filtered using the UMLS metathesaurus. Therefore, only genes associated with MeSH and UMLS 

terms are used to create the subnetworks. To restrict the set, a list of UMLS and MeSH codes 

was derived using a Perl script containing a total of unique terms. Of the 423,550 terms in the 

UMLS and MeSH that met these rules, the UMLS composed 419,087 terms and MeSH 

composed 5,563 terms. This process of restricting the set yielded a dramatic reduction in the 

number of subnetworks in the disease set. 

The data from the biological and topological characterization for each of the classes was then 

filtered for size using a perl script, constraining the set to networks of size between 3 and 9999 

nodes. 79 and 278 subnetworks passed this filter from the OMIM and PhenoGO sets, 

respectively. 2590 of the subnetworks generated from the Gene Ontology passed this filter. 

Parameterization/Characterization of Subnetworks 

To characterize subnetworks structurally, we chose a number of well-defined metrics to 

measure their size, density, and connectivity. Subnetworks are characterized based on node 

count, clustering coefficient, average degree, maximum degree, radius, diameter, cyclicity, and 
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biconnectivity. Cyclicity and biconnectivity are handled as Boolean variables with values of 

either 1 (True) or 0 (false). To account for the biological characteristics of the constituent genes 

of these subnetworks, we use biological characteristics for the constituent genes extracted 

from BioMart. These factors accounted for positional and orientation effects, biological role of 

the protein product, and physical stability. Factors include mean gene start location, mean gene 

end location, mean length, strand, mean PFAM domain annotation count, mean ProSite 

annotation count, mean number of signal domains, mean number of transmembrane domains, 

and mean G-C content fraction.  

Parameterization of subnetworks was done using a series of Perl scripts using the Perl-Graph 

library version .84 (http://search.cpan.org/dist/Graph/) as well as the Boost Graph Library 

Bindings for Perl version 1.4 (http://search.cpan.org/~dburdick/Boost-Graph-1.4/). These 

libraries were used to determine the topological characteristics of each of the subnetworks. 

Factors include the average degree, maximum degree, node count, radius, and diameter for 

each subnetwork.  Each subnetwork was also tested for cyclicity and biconnectivity.  

During the parameterization process, a number of entries were removed from the set as the 

subnetworks they formed were not computable within the memory limits of our workstation. 

These classes are GO:0007218 : “neuropeptide signaling pathway”, GO:0045893: “positive 

regulation of transcription, DNA-dependent”, and  GO:0006937: “regulation of muscle 

contraction”. 

Machine Learning and Classification 

The Waikato Environment for Knowledge Analysis (Weka), version 3.4.12 [176] was used to 

train and test a random forest classifier with a stratified 10-fold cross validation methodology 

using the built-in weka.classifiers.trees.RandomForest component. In this case, the cross-

validation approach was chosen due to the relative paucity of data from the disease subsets. 

Each random forest was composed of 100 trees, each taking into account four random 

parameters from the data. In all, a total of nine classifications were done in an attempt to 

discretize the three sets of subnetworks using varying parameter sets and amalgamations of 

the two disease sets. Because the Weka random forest classifier did not provide variable 
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importance measures, the analysis was repeated using the randomForest package in R 2.7.1, 

which provided nearly identical results. Principal components analysis of the data was done 

using PAST [177]. 

The parameterized data was split into 3 sets for the biological and topological groups. The first 

set composed of all three data sources comprising three distinct classes. The second set 

assigned “normal” and “disease” flags to the subnetworks derived from the Gene Ontology, and 

OMIM and PhenoGO, respectively. The third subset was composed of only disease subnetworks 

derived from OMIM while maintaining the GO background set.  

The first classification was done on a set combining all SGD and CD subnetworks into a single 

larger disease class in comparison to the GO-derived background set. The second classification 

used only the SGD subset of the data in comparison to the GO data. The third classification used 

each subset of data in its own discrete class.  These subsets were further separated into three 

groups depending on the underlying parameters available to the classifier. These groups used 

parameters exclusively from the topological and biological parameter sets, as well as the 

combined parameterization. 

It can be seen that overall the biological characteristics prove more informative than the 

topological ones and achieve a lower misclassification error rate, ranging between 2.89 and 

3.70%. On the other hand, for the topological characteristics the misclassification error rate was 

around 10% for the three class problem. However, when the CD class was excluded, the 

topological characteristics matched the performance of the biological ones. Further, an 

inspection of Sup. Tables 2e and 2f suggests that the presence of the SGD class is the source of 

the significantly higher misclassification error rate with respect to the topological features. In 

most cases, the presence of the large number of representative GO subnetworks leads to a high 

classification accuracy. However, it is useful to examine the true positive (TP) rate of 

classification between the combined “disease” set, a combination of the SGD and CD sets, and 

the GO background. In the combined parameterization and biological parameter only cases, the 

TP rate of this combined set is relatively good, at 61% and 72%, respectively. Examination of the 

TP rates for classifying into the three distinct classes revels that the subnetworks in the SGD set 
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appear to be poorly distinguishable from the background GO set. However, the CD set appears 

to have predictive power setting it apart from the GO background. This similarity between the 

GO and SGD sets likely leads to the poor classification accuracy seen between the two sets as 

reflected in the poor TP values for the SGD set in Sup. Tables 2e, 2f, 2h, and 2i. 

Feature Analysis 

A factor analysis was done using the RandomForest package in R 2.7.1 in each of the biological 

parameter only, topological parameter only, and combined parameter groups to determine the 

relative influence of each of the parameters in determining class membership in each of the 

classification sets. The random forest was set to use 4 variables per tree and 100 total trees for 

the classification task. 
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Figures and Tables 

A. 

 

B. 

 
Figure S 1: Principal Components Analysis demonstrates the poor separability of the data. A principal 
components analysis of the combined sets using all the parameters, suggests that the difference between disease-
related subnetworks and the GO baseline subnetworks are subtle and not easily derived. When the PCA is done 
over just the CD and SGD sets, we see a similar pattern where there is no clear separation. However the non-
continuous nature of the features may be a confounding factor when applying the PCA approach. With that in 
mind, a simple k-means clustering approach was taken where k = 3 to represent the three source types. A. 
Principal components analysis of all sets using all parameters. 95% of data points fall within the ellipse. B. Principal 
components analysis of SGD and CD sets using all parameters. 95% of data points fall within the ellipse. 
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=== Run information ===  
 
Scheme:       weka.clusterers.SimpleKMeans -N 3 -S 10  
Relation:     combined_data  
Instances:    2944  
Attributes:   20  

average gene start  
average gene end  
average length  
average gene strand  
average pfam count  
average prosite count  
average # of singnal domains  
average # transmembrane domains  
average GC content  
observed edges/total possible edges  
average node degree  
max node degree  
radius  
diameter  
node count  
cyclicity  
biconnectivity  
clustering coefficent 

Ignored:  
             source  
             phenotype code  
Test mode:    Classes to clusters evaluation on training data  
=== Model and evaluation on training set ===  
 
kMeans  
======  
Number of iterations: 6  
Within cluster sum of squared errors: 1660.859140812153  
 
Cluster centroids:  

Variables Cluster 0 Cluster 1 Cluster 2 
Variable 

average gene start  

average gene end  

average length  

average gene strand  

average pfam count  

average prosite count  

average # of singnal domains  

average # transmembrane 
domains  
average GC content  

Mean/Mode Std Devs 

70562607 21895436 

70623972 21898365 

61364.07 39100.1 

0.2259 0.4311 

26.3999 48.5588 

26.3999 48.5588 

0.1312 0.1977 

0.1335 
 

0.2008 

43.1182 3.0456 

Mean/Mode Std Devs 

72069986 8353007 

72141696 8355198 

71710.6 34510.64 

0.0898 0.1649 

26.908 16.715 

26.908 16.715 

0.156 0.1162 

0.1715 
 

0.1121 

41.7223 1.2326 

Mean/Mode Std_Devs 

71199760 12743762 

71264921 12743801 

65160.52 32673.26 

0.1195 0.2538 

25.0051 20.9655 

25.0051 20.9655 

0.1235 0.1314 

0.1415 
 

0.1412 

42.2927 2.0194 
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observed edges/total 
possible edges  
average node degree  

max node degree  

radius  

diameter  

node count  

cyclicity  

biconnectivity  

clustering coefficent  
 

0.318 
 

0.1051 

2.173 0.6153 

4.2338 1.9778 

2 N/A 

3.199 0.8274 

5.6166 3.0982 

0.7564 0.4294 

0.0237 0.152 

0.0207 0.0386 
 

0.0559 
 

0.0477 

4.417 1.2629 

60.4362 70.3251 

4 N/A 

7.0021 1.1488 

151.7489 185.4197 

0.9936 0.0797 

0.0064 0.0797 

0.0204 0.0391 
 

0.1336 
 

0.0608 

3.3774 0.9891 

12.8042 13.2817 

3 N/A 

5.0434 0.724 

26.2334 29.3995 

0.9711 0.1677 

0.0222 0.1473 

0.0202 0.0387 
 

Clustered Instances 1437 ( 49%) 470 ( 16%) 1037 ( 35%) 

 
Class attribute: source  

 Assigned to Cluster 

Cluster 0 <-- GO Cluster 1 <-- OMIM Cluster 2 <-- PhenoGO 

So
u

rc
e SGD/OMIM 59 4 16 

GO 1220 435 932 

CD/PhenoGO 158 21 89 

 
Incorrectly clustered instances :    1631.0     55.4008 % 

Table S 1: Complete results of unsupervised k-means clustering of the data.  
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A.  
 

 
B.  

 
C. 
 

 
Figure S 2: A. Size Distribution of SGD Subnetworks  B. Size Distribution of CD Subnetworks  C. Size Distribution of 
GO Subnetworks 
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Table S 2: Classification results from each of nine classification attempts using complete GO set 

Biological Parameters Only 

A. Biological parameters only: dataset split into “disease” and “normal” classes 
 
Out of bag error: 0.0309 
 
Correctly Classified Instances 2836 96.2988 % 
Incorrectly Classified Instances 109 3.7012 % 
Kappa statistic 0.8064 
Mean absolute error 0.1287 
Root mean squared error 0.216 
Relative absolute error 60.339 % 
Root relative squared error 66.1667 % 
Total Number of Instances 2945 

TP Rate FP Rate Precision Recall f-Measure class 
0.995 0.272 0.964 0.995 0.979 GO 
0.728 0.005 0.956 0.728 0.827 Disease 

 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

2576 12 a = GO/Normal 
97 260 b = Disease 
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B. Biological parameters only: dataset split into CD, SGD, and GO classes 
 
Out of bag error: 0.0309 
 
Correctly Classified Instances 2832 96.163 % 
Incorrectly Classified Instances 113 3.837 % 
Kappa statistic 0.8008 
Mean absolute error 0.0893 
Root mean squared error 0.1801 
Relative absolute error 61.2569 % 
Root relative squared error 66.7931 % 
Total Number of Instances 2945 

TP Rate FP Rate Precision Recall f-Measure class 
0.165 0.003 0.565 0.165 0.255 SGD 
0.867 0.001 0.992 0.867 0.925 CD 
0.996 0.283 0.962 0.996 0.979 GO 

 
Confusion Matrix: 

Classified as:  
a b c Actual assignment 

2578 1 9 a = GO 
36 241 1 b = CD 
65 1 13 c  = SGD 

 

C. Biological parameters only: SGD and GO classes 
 
Out of bag error: 0.0274 
 
Correctly Classified Instances 2590 97.1129 % 
Incorrectly Classified Instances 77 2.8871 % 
Kappa statistic 0.1974 
Mean absolute error 0.0527 
Root mean squared error 0.1661 
Relative absolute error 91.1176 % 
Root relative squared error 97.9961 % 
Total Number of Instances 2667 

TP Rate FP Rate Precision Recall f-Measure class 
0.127 0.003 0.556 0.127 0.206 SGD 
0.997 0.873 0.974 0.997 0.985 GO 

 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

2580 8 a = GO 
69 10 b = SGD 

 

 

Topological Parameters Only 
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D. Topological Parameters Only: dataset split into “disease” and “normal” classes 
 
Out of bag error: 0.0853 
 
Correctly Classified Instances 2675 90.8628 % 
Incorrectly Classified Instances 269 9.1372 % 
Kappa statistic 0.4646 
Mean absolute error 0.1475 
Root mean squared error 0.2732 
Relative absolute error 69.1481 % 
Root relative squared error 83.7012 % 
Total Number of Instances 2944 

TP Rate FP Rate Precision Recall f-Measure class 
0.392 0.02 0.729 0.392 0.51 Disease 
0.98 0.608 0.921 0.98 0.95 GO 

 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

2535 52 a = GO/Normal 
217 140 b = Disease 

 

E. Topological Parameters Only: dataset split into CD, SGD, and GO classes 
 
Out of bag error: 0.0832 
 
Correctly Classified Instances 2688 91.30% 
Incorrectly Classified Instances 256 8.70% 
Kappa statistic 0.4863 
Mean absolute error 0.1016 
Root mean squared error 0.2241 
Relative absolute error 69.7015 % 
Root relative squared error 83.1102 % 
Total Number of Instances 2944 

TP Rate FP Rate Precision Recall f-Measure class 
0.038 0.004 0.214 0.038 0.065 SGD 
0.493 0.011 0.83 0.493 0.619 CD 
0.985 0.608 0.922 0.985 0.952 GO 

 
Confusion Matrix: 

Classified as:  
a b c Actual assignment 

2548 28 11 a = GO 
141 137 0 b = CD 
76 0 3 c  = SGD 
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F. Topological Parameters Only: SGD and GO classes 
 
Out of bag error: 0.0315 
 
Correctly Classified Instances 2581 96.81% 
Incorrectly Classified Instances 85 3.19% 
Kappa statistic 0.0586 
Mean absolute error 0.0543 
Root mean squared error 0.1716 
Relative absolute error 93.8315 % 
Root relative squared error 101.201 % 
Total Number of Instances 2666 

TP Rate FP Rate Precision Recall f-Measure class 
0.038 0.003 0.25 0.038 0.066 SGD 
0.997 0.962 0.971 0.997 0.984 GO 

 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

2578 9 a = GO 
76 3 b = SGD 
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Combined Parameterization 

G. All parameters: dataset split into “disease” and “normal” classes 
 
Out of bag error: 0.0452 
 
Correctly Classified Instances 2791 94.803 % 
Incorrectly Classified Instances 153 5.197 % 
Kappa statistic 0.7128 
Mean absolute error 0.1269 
Root mean squared error 0.2191 
Relative absolute error 59.5021 % 
Root relative squared error 67.1287 % 
Total Number of Instances 2944 

TP Rate FP Rate Precision Recall f-Measure class 
0.611 0.005 0.94 0.611 0.74 Disease 
0.995 0.389 0.949 0.995 0.971 GO 

 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

218 139 a = Disease  
14 2573 b = GO/Normal 

 

  



101 
 

H. All parameters: dataset split into CD, SGD, and GO classes 
 
Out of bag error: 0.0438 
 
Correctly Classified Instances 2795 94.9389 % 
Incorrectly Classified Instances 149 5.0611 % 
Kappa statistic 0.7225 
Mean absolute error 0.0886 
Root mean squared error 0.1815 
Relative absolute error 60.7398 % 
Root relative squared error 67.2984 % 
Total Number of Instances 2944 

TP Rate FP Rate Precision Recall f-Measure class 
0.101 0.003 0.5 0.101 0.168 SGD 
0.997 0.387 0.949 0.997 0.972 GO 
0.752 0.001 0.986 0.752 0.853 CD 

 
Confusion Matrix: 

Classified as:  
a b c Actual assignment 
8 70 1 a = SGD  
7 2578 2 b = GO 
1 68 209 c  = CD 

 

I. All parameters: SGD and GO classes 
 
Out of bag error: 0.0281 
 
Correctly Classified Instances 2591 97.1868 % 
Incorrectly Classified Instances 75 2.8132 % 
Kappa statistic 0.2332 
Mean absolute error 0.0498 
Root mean squared error 0.1594 
Relative absolute error 86.0831 % 
Root relative squared error 93.9883 % 
Total Number of Instances 2666 

TP Rate FP Rate Precision Recall f-Measure class 
0.152 0.003 0.6 0.152 0.242 SGD 
0.997 0.848 0.975 0.997 0.986 GO 

 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

12 67 a = SGD  
8 2579 b = GO 
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J. All parameters: SGD and CD classes 
=== Run information === 
Scheme:       weka.classifiers.trees.RandomForest -I 100 -K 4 -S 1 
Relation:     OMIM-PhenoGO-weka.filters.unsupervised.attribute.Remove-R2 
Instances:    357 
Attributes:   19 
              source 
              average gene start 
              average gene end 
              average length 
              average gene strand 
              average pfam count 
              average prosite count 
              average # of signal domains 
              average # transmembrane domains 
              average GC content 
              observed edges/total possible edges 
              average node degree 
              max node degree 
              radius 
              diameter 
              node count 
              cyclicity 
              biconnectivity 
              clustering coefficient 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
Random forest of 100 trees, each constructed while considering 4 random features. 
Out of bag error: 0.1232 

Correctly Classified Instances 315 88.2353 % 

Incorrectly Classified Instances 42 11.7647 % 
Kappa statistic 0.5965 
Mean absolute error 0.1785 
Root mean squared error 0.2972 
Relative absolute error 51.6603 % 

Root relative squared error 71.5991 % 
Total Number of Instances 357 

TP Rate FP Rate Precision Recall f-Measure class 
0.519 0.014 0.911 0.519 0.661 SGD 
0.986 0.481 0.878 0.986 0.929 CD 

 
 
Confusion Matrix: 

Classified as:  
a b  Actual assignment 

274 4 a = CD  
38 41 b = SGD 
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Table S 3: Ranked Features By Parameter Type. A. Biological Parameters Only B. Topological Parameters Only  C. 
Combined Parameterization 

A. 

                                        GO  SGD/OMIM CD/PhenoGO MeanDecreaseAccuracy MeanDecreaseGini 

averageGeneStart                 0.2783482 1.0280783 0.9059960            0.2757494         84.56684 

averageGeneEnd                   0.2768157 0.9394527 0.8925733            0.2747467         82.32455 

averageLength                    0.2644807 1.2301754 0.9510359            0.2876197         89.97404 

averageGeneStrand                0.1758904 0.1357294 0.9539724            0.2776031         63.51283 

averagePfamCount                 0.2730130 0.5254745 0.8856997            0.2717815         68.71366 

averagePrositeCount              0.2732054 0.7780531 0.8667791            0.2729219         71.44485 

averageSingnalDomainCount        0.2126032 1.1321489 0.9215645            0.2744301         46.04487 

averageTransmembraneDomainsCount 0.2369126 0.7511460 0.9107138            0.2746473         41.26618 

averageGCContent                 0.2527932 1.1863229 0.9633071            0.2872784         90.52120 

 

B. 

                             GO   SGD/OMIM  CD/PhenoGO MeanDecreaseAccuracy MeanDecreaseGini 

observedEdgeFraction 0.23001163  0.5940764 0.90312482           0.24675347        93.847995 

averageNodeDegree    0.18907358 -0.1896722 0.92494854           0.25118579        73.325193 

maxNodeDegree        0.23248537 -0.0195584 0.75146118           0.23964507        45.595834 

radius               0.14363009  0.3341730 0.73797260           0.17620126        10.558500 

diameter             0.16504637  0.3258433 0.89950612           0.21990106        24.283709 

nodeCount            0.24716779  0.1174077 0.62814917           0.24756213        47.349672 

cyclicity            0.07668406  0.1599157 0.05666838           0.08233893         2.229017 

biconnectivity       0.05281318  0.2182699 0.47637630           0.10961336         3.538654 

clusteringCoefficent 0.28966769  0.9925351 0.96101890           0.28810431        97.553541 

 

C. 

                                         GO  SGD/OMIM CD/PhenoGO MeanDecreaseAccuracy MeanDecreaseGini 

averageGeneStart                 0.25577147 0.6187922 0.8782965            0.2631096        58.025555 

averageGeneEnd                   0.24189366 0.8649050 0.8823725            0.2517155        54.866536 

averageLength                    0.21860181 1.0476172 0.9157395            0.2702029        53.928221 

averageGeneStrand                0.21222727 0.4779712 0.8899448            0.2613027        37.971447 

averagePfamCount                 0.24589871 0.7138733 0.8139401            0.2557329        51.837923 

averagePrositeCount              0.24653767 0.8026352 0.8288924            0.2553449        51.873560 

averageSingnalDomainCount        0.17608440 0.8725259 0.8494207            0.2504462        28.695867 

averageTransmembraneDomainsCount 0.17643006 0.8016404 0.8587388            0.2398903        25.758543 

averageGCContent                 0.20630777 1.0249891 0.9042456            0.2621500        57.568889 

observedEdgeFraction             0.22721854 0.9567640 0.8553682            0.2424491        39.992423 

averageNodeDegree                0.24357245 0.6044357 0.8350696            0.2586311        33.451690 

maxNodeDegree                    0.23311884 0.5687222 0.7704013            0.2418791        23.089282 

radius                           0.19372018 0.5507024 0.5725879            0.1942285         9.303571 

diameter                         0.22263432 0.7683270 0.7232573            0.2295851        16.473967 

nodeCount                        0.23954530 0.7925986 0.8041791            0.2430081        25.501844 

cyclicity                        0.11050759 0.2201386 0.5157050            0.1559355         3.013125 

biconnectivity                   0.07642597 0.1890160 0.2993280            0.1074229         1.420956 

clusteringCoefficent             0.26042896 1.4008805 0.8991804            0.2705517        61.914586 
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APPENDIX B: Chapter 2 Supplementary Figures and Tables 

 

Figure S 3: Single-molecule mRNA-sequencing. mRNAs are purified using poly-A selection and then fragmented. 1st-strand 
cDNA is synthesized from the fragmented mRNA, and then poly-A tailed using terminal transferase. Polyadenylated cDNA 
fragments are hybridized to poly-T oligomers bound to a glass substrate, excess A bases are “filled ,“ and then “locked” with an 
A, C, or G base attached to a virtual terminator. The sequencing process then occurs with repeated cycles of virtual terminator 
cleavage, bases addition, and image readout. 
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Figure S 4: Read alignment with Bowtie and IndexDP. Bowtie was used for amplification-based sequencing read alignment and 
IndexDP for single molecule read alignment. While different in their parameters, the effective alignments and specificity 
between the aligners are similar, although Bowtie has a slightly higher cutoff 

 

 

Figure S 5: Length distribution of aligned SMS reads. Aligned SMS read lengths varied between 24bp to 57bp in our first set of 
samples and 25bp to 63bp in our second set. The majority of reads are between 25bp and 45bp in length. 
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Figure S 6: Sample Profiling Reproducibility in SMS and AS. Bowtie was used for amplification-based sequencing read 
alignment and IndexDP for single molecule read alignment. Pearson correlation for log2-transformed, normalized tag counts is 
r=0.98 for both SMS and AS. 
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Figure S 7: Log2 correlation between amplification-based and single-molecule sequencing. Log2 correlation between single-
molecule and amplification-based RNA-Seq single-best read mappings in these samples show that in broad terms the two 
sequencing methods yield similar results, suggesting the observed bias is not due to sample differences. 
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Figure S 8: Correlation between IndexDP and Bowtie alignment of amplification-based sequencing reads. The correlation 
between Bowtie and IndexDP within the subset of samples was relatively high, with Pearson correlation values above r=0.95 in 
all samples. 
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Figure S 9: IndexDP realignment of amplification-based sequencing reads. Alignment of amplification-based sequencing reads 
using the IndexDP alignment tool used to align single-molecule reads shows persistence of the observed bias in amplification-
based technology. This provides evidence that the alignment method is not responsible for this bias towrds high-concentration 
transcripts. 
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Figure S 10: Unique gene detection in AS and SMS across threshold values, by transcript length. The pattern of increased 
sensitivity in SMS is uniform as the baseline noise level is varied from 0.1 to 3.0 RPKM. Low representation by short transcripts 
show that this effect is not due to the lack of a size-selection step in SMS. 
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Figure S 11: Expression values of validation candidate genes showing amplification.  Out of the set of genes chosen for RT-PCR 
validation for their detection over the 0.3 RPKM noise threshold by only SMS, diffuse read alignment pattern, and the presence 
of long reads aligned to their transcripts, these ten genes showed detectable amplification. 
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Figure S 12: RPLP0 coverage in other samples. Coverage plots of the over-represented gene RPLP0 in the LNCaP-24h, LNCaP-
48h, VCaP-24h, VCaP-48h, and PrCa-Met samples show that this gene is often more highly sequenced using the amplification-
based method. 
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Figure S 13: Quantile-quantile plot of AS and SMS reads with duplicates removed. Reads in excess of a single read per aligned 
locus were removed from both AS and SMS data sets. The result of this procedure was inconsistent across the data set; some 
samples saw reduced representation of high expressing genes while the high-concentration bias remained in others 
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A.

 

B. 

Coverage DU145_1 DU145_2 LNCaP-0h LNCaP-24h LNCaP-48h VCaP-0h VCaP-24h VCaP-48h PrCa PrCa-AdjNorm RWPE VCaP 

(0-1] 3,659 3,621 3,659 3,987 4,019 5,953 5,082 5,192 4,588 6,089 3,738 5,045 

(1-10] 3,806 3,826 3,802 3,206 3,120 2,066 2,418 2,235 2,986 1,199 3,681 2,137 

(10-100] 370 377 363 286 255 117 172 132 187 63 309 143 

 

Figure S 14: Effect of duplicate removal in AS. Reads in excess of a single read per aligned locus were removed from both AS 
and SMS data sets, resulting in (A) a median 47% drop in the number of usable reads across the 12 samples in the evaluation 
set and (B) the loss of dynamic range for genes in with high coverage levels. 

DU145_1 DU145_2 
LNCaP-
Control 

LNCaP-
24h 

LNCaP-
48h 

VCaP-
Control 

VCaP-24h VCaP-48h PrCa 
PrCa-
Norm 

RWPE VCaP 

All Reads 7,791,975 7,959,245 7,979,414 5,874,909 5,571,152 3,676,805 4,375,569 3,294,043 5,317,180 2,998,413 8,270,801 3,806,236 

Duplicates Removed 4,272,357 4,333,655 4,133,949 3,216,204 3,014,371 1,702,717 2,189,895 1,939,772 2,772,924 960,226 3,832,096 2,176,216 
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Figure S 15: Gene Fusion Discovery Using SMS Reads. All possible reads were aligned against the transcriptome and genome 
using IndexDP. The set of non-mapping reads (some of which harbor chimeras) were subsequently aligned against the 
transcriptome, returning reads that had a partial alignment of at least 18 nucleotides. All reads having the same partial 
alignments, suggesting a common breakpoint, were clustered. All clusters were then compared to determine if the non-aligning 
“overhang” portion of the read from one breakpoint region had similarity to the overhang of an independent breakpoint, 
thereby reconstructing the fusion junction. Finally, all remaining non-mapping reads were aligned against the candidate novel 
fusion junctions. 
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Figure S 16: Alternate mappings for genes detected by SMS only in DU145. We analyzed alternate mappings for 
the reads attributable to each of the nine genes we observed to be detectable only by SMS in DU145 using reads 
from both replicates. In all nine cases, reads mapped most strongly to the genes of interest, suggesting that the 
detection of these genes is not an artifact of mis-mapping. The top 20 alternate mappings, ordered by mapping 
read count, are shown in the graph. 
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A. Amplification-Based Sequencing 

Sample Name 
DU145_1 DU145_2 LnCaP-0h 

LNCaP-
24h 

LNCaP-
48h VCaP-0h 

VCaP-
24h VCaP-48h PrCa 

PrCa-
AdjNorm RWPE VCaP 

Total Reads 8,042,864 8,218,352 8,230,250 6,020,775 5,662,644 3,769,409 4,528,584 3,361,076 8,085,146 3,340,699 8,935,465 3,466,908 

Non-
Contaminant 
Reads: 

7,709,472 7,875,168 7,820,929 5,790,207 5,513,448 3,636,454 4,297,981 3,272,200 7,748,986 2,871,802 8,038,501 3,352,960 

Contaminant 
Reads: 

333,392 343,184 409,321 230,568 149,196 132,955 230,603 88,876 336,160 468,897 896,964 113,948 

Unique 
Mapping 
Reads: 

5,818,322 5,942,613 5,530,586 4,126,612 3,959,711 2,281,328 2,931,544 2,325,189 5,849,652 2,303,763 5,590,474 2,477,323 

Percent Unique 75.5% 75.5% 70.7% 71.3% 71.8% 62.7% 68.2% 71.1% 75.5% 80.2% 69.5% 73.9% 

Multi-Mapping 
Reads: 

1,891,150 1,932,555 2,290,343 1,663,595 1,553,737 1,355,126 1,366,437 947,011 1,899,334 568,039 2,448,027 875,637 

Percent 
Multimapping 

24.5% 24.5% 29.3% 28.7% 28.2% 37.3% 31.8% 28.9% 24.5% 19.8% 30.5% 26.1% 

Total 
Mappings: 

50,647,727 51,736,429 58,619,091 41,011,335 36,987,487 33,344,839 34,593,079 23,253,763 50,903,051 21,075,169 
69,586,35

5 
21,769,26

5 

Max Read 
Mength: 

36 36 36 36 36 36 36 36 36 36 36 36 

Mean Read 
Length: 

36 36 36 36 36 36 36 36 36 36 36 36 

Min Read 
Length: 

36 36 36 36 36 36 36 36 36 36 36 36 

 

B. Single-Molecule Sequencing 

Sample Name DU145_1 DU145_2 LnCaP-0h 
LNCaP-

24h 
LNCaP-

48h 
VCaP-0h VCaP-24h VCaP-48h PrCa 

PrCa-
AdjNorm 

RWPE VCaP 

Total Reads 12,605,568 19,741,065 7,257,338 9,917,739 5,700,598 7,399,104 6,959,550 5,760,821 9,630,377 2,848,185 18,628,241 16,254,121 

Non-
Contaminant 
Reads: 

9,665,231 15,012,289 5,633,863 8,120,878 4,489,176 6,266,115 5,957,786 5,067,698 4,709,102 2,130,950 13,294,348 12,713,722 

Contaminant 
Reads: 

2,940,337 4,728,776 1,623,475 1,796,861 1,211,422 1,132,989 1,001,764 693,123 4,921,275 717,235 5,333,893 3,540,399 

Unique Mapping 
Reads: 

7,543,462 11,719,852 4,263,248 6,232,105 3,377,187 4,663,004 4,564,718 3,862,102 3,085,428 1,542,533 10,214,631 9,737,305 

Percent Unique 78.0% 78.1% 75.7% 76.7% 75.2% 74.4% 76.6% 76.2% 65.5% 72.4% 76.8% 76.6% 

Multi-Mapping 
Reads: 

2,121,769 3,292,437 1,370,615 1,888,773 1,111,989 1,603,111 1,393,068 1,205,596 1,623,674 588,417 3,079,717 2,976,417 

Percent 
Multimapping 

22.0% 21.9% 24.3% 23.3% 24.8% 25.6% 23.4% 23.8% 34.5% 27.6% 23.2% 23.4% 

Total Mappings: 35,091,411 54,881,579 20,016,203 26,912,318 15,869,700 20,525,342 18,151,466 15,215,471 32,088,861 7,702,501 51,058,659 44,504,047 

Max Read 
Mength: 

63 57 63 63 63 63 63 63 57 57 57 57 

Mean Read 
Length: 

34.23 33.5 33.7 33.98 32.83 33.54 33.89 33.55 33.18 32.13 33.73 33.5 

Min Read 
Length: 

25 24 25 25 25 25 25 25 24 24 24 24 

Table S 4: Sample statistics in A. amplification-based and B. single-molecule sequencing technologies 
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Gene 

# Samples 

Overrepresented 

D
U

14
5_

1
 

D
U

14
5_

2
 

V
C

aP
_0

h
 

V
C

aP
_2

4h
 

V
C

aP
_4

8h
 

Ln
C

aP
_0

h
 

Ln
C

aP
_2

4h
 

Ln
C

aP
_4

8h
 

P
rC

a
 

P
rC

a
-A

d
jN

o
rm

 

R
W

P
E 

V
C

aP
 

RPS18 12 · · · · · · · · · · · · 

GNAS 12 · · · · · · · · · · · · 

RPLP0 12 · · · · · · · · · · · · 

RPL8 12 · · · · · · · · · · · · 

RPL31 12 · · · · · · · · · · · · 

RPS8 12 · · · · · · · · · · · · 

CYC1 12 · · · · · · · · · · · · 

GNB2 12 · · · · · · · · · · · · 

rpl10a 12 · · · · · · · · · · · · 

OK/SW-cl.12 12 · · · · · · · · · · · · 

RPS14 12 · · · · · · · · · · · · 

SLC25A3 11 · · · · · · · · · · · 
 

UBB 11 · · · · · · · · · · · 
 

RPS5 11 · · · · · · · · · · · 
 

RPL7A 11 · · · · · · · · · · · 
 

EIF1 11 · · · · · · · · · · · 
 

UQCRC1 11 · · · · · · · · · · · 
 

PFKL 11 · · · · · · · · · · · 
 

RPS10 11 · · · · · · · · · · · 
 

RPL18A 11 · · · · · · · · · · · 
 

RPL3 11 · · · · · · · · · · · 
 

ENO1 11 · · · · · · · · · · · 
 

RPL37A 11 · · · · · · · · · · · 
 

EIF3I 11 · · · · · · · · · · · 
 

RPL29 11 · · · · · · · · · · · 
 

EEF2 11 · · · · · · · · · · · 
 

PSAP 11 · · · · · · · · · · · 
 

PPP2R1A 11 · · · · · · · · · · · 
 

GNB2L1 11 · · · · · · · · · · · 
 

RPL13A 11 · · · · · · · · · · · 
 

SPINT2 11 · · · · · · · · · · · 
 

SHISA5 11 · · · · · · · · · · · 
 

RPS11 10 · · · · · · · · · · 
  

BTF3 10 · · · · · · · · · · 
  

GPX4 10 · · · · · · · · · · 
  

ATP5A1 10 · · · · · · · · · · 
  

KRT18 10 · · · · · · · · · · 
  

KIAA0088 10 · · · · · · · · · · 
  

ACTG1 10 · · · · · · · · · · 
  

RPS9 10 · · · · · · · · · · 
  

RPL10A 10 · · · · · · · · · · 
  

RPL12 10 · · · · · · · · · · 
  

ATP5B 10 · · · · · · · · · · 
  

RPS3 10 · · · · · · · · · · 
  

RPSA 10 · · · · · · · · · · 
  

MTCH1 10 · · · · · · · · · · 
  

PYCR1 10 · · · · · · · · · · 
  

LRP10 10 · · · · · · · · · · 
  

ALDOA 10 · · · · · · · · · · 
  

EEF1A1 10 · · · · · · · · · ·     

NME2 10 · · · · · · · · · ·     

RPS20 10 · · · · · · · · · ·     

C19orf48 10 · · · · · · · · · ·     

RPL18 10 · · · · · · · · · ·     

RPL13 10 · · · · · · · · · ·     

P4HB 10 · · · · · · · · · ·     

OAZ1 10 · · · · · · · · · ·     

EEF1G 10 · · · · · · · · · ·     

UBC 10 · · · · · · · · · ·     

 

Table S 5: Recurrently over-represented genes in amplification-based sequencing in ten or more samples.  Of the 
393 genes are recurrently within the top 500 over-represented genes by total read count in five (40%) or more 
samples, these 59 are seen most often, occurring in at least 10 samples. 
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A. 

Single-Molecule 

 Q1 Q2 Q3 Q4 

DU145_1 678,716.20 82,650.17 15,312.21 1,756.09 

DU145_2 682,755.30 80,340.18 13,794.63 1,455.81 

VCaP-0h 679,511.10 83,560.23 20,066.82 2,400.37 

VCaP-24h 681,607.20 77,752.04 18,903.67 2,624.63 

VCaP-48h 688,925.40 75,791.22 18,493.60 2,544.35 

LnCaP-0h 658,971.00 97,176.66 21,592.82 2,512.66 

LnCaP-24h 678,955.60 86,868.69 17,595.02 2,044.48 

LnCaP-48h 653,867.40 100,158.20 24,825.49 3,424.91 

PrCa 610,787.00 107,986.40 33,056.41 4,683.91 

PrCa-AdjNorm 581,561.70 121,731.20 41,077.92 7,530.44 

RWPE 688,043.60 83,353.84 16,642.86 1,740.82 

VCaP 674,367.00 83,563.10 19,041.08 2,192.36 

 

B. 

Amplification-Based 

 Q1 Q2 Q3 Q4 

DU145_1 673,250.40 86,579.46 11,608.48 299.67 

DU145_2 676,079.70 84,926.77 10,734.94 233.56 

VCaP-0h 724,435.80 67,473.25 15,836.85 1,688.69 

VCaP-24h 731,422.10 63,380.33 10,563.88 519.48 

VCaP-48h 713,318.90 68,976.03 11,508.96 602.30 

LnCaP-0h 683,466.00 83,738.35 11,073.12 440.38 

LnCaP-24h 703,435.10 70,455.56 8,175.45 192.68 

LnCaP-48h 705,382.50 70,566.91 7,889.93 170.70 

PrCa 610,253.20 70,574.82 9,521.59 293.01 

PrCa-AdjNorm 592,366.00 64,313.02 12,772.42 278.15 

RWPE 680,671.10 71,476.63 10,868.36 245.32 

VCaP 711,504.06 52,559.02 6,843.76 0.00 

 

Table S 6: Sum of normalized expression values per quartile by sample in AS and SMS. We observe that the 
number of reads aligning to transcripts seen in the third and fourth quartiles is consistently greater in A. SMS than 
B. AS across the sample set. 
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A. 

 

Single-Molecule Sequencing 

Coverage DU145_1 DU145_2 LnCaP-0h LNCaP-24h LNCaP-48h VCaP-0h VCaP-24h VCaP-48h PrCa PrCa-AdjNorm RWPE VCaP 

(0 -1] 3,875 3,420 4,459 4,109 5,008 4,691 4,920 5,169 4,971 6,841 3,432 3,513 

(1 - 10] 3,871 3,917 3,638 3,765 3,270 3,579 3,321 2,937 3,514 1,745 4,314 4,316 

(10 -100] 922 1,410 432 752 331 401 423 365 289 110 1,054 992 

(100 - 1000] 66 105 35 59 27 49 31 31 23 3 80 83 

(1000 - 10000] 0 1 0 0 0 1 0 0 0 0 4 2 

 

B. 

 

Amplification-Based Sequencing 

Coverage DU145_1 DU145_2 LnCaP-0h LNCaP-24h LNCaP-48h VCaP-0h VCaP-24h VCaP-48h PrCa PrCa-AdjNorm RWPE VCaP 

(0 -1] 3,299 3,261 3,421 3,767 3,804 5,656 4,776 4,964 4,300 5,033 3,433 4,879 

(1 - 10] 3,721 3,731 3,537 3,069 2,982 2,213 2,508 2,288 3,033 2,077 3,525 2,290 

(10 -100] 752 769 790 598 561 208 332 272 395 221 695 282 

(100 - 1000] 63 63 73 45 47 56 54 35 33 19 72 40 

(1000 - 
10000] 

0 0 3 0 0 3 2 0 0 1 3 0 

 

Table S 7: Gene-level read coverage of observed transcripts. A. and B. illustrate the number of genes with 
coverage values at various depths in single molecule and amplification-based sequencing, respectively. 

 

  



121 
 

Sequence UPL Probe # 
agacccccaccatcccta 71 
cgcatcatctgagctaggc 

 cgcaatgtgctggtcaag 76 
gttgccgatgtccaggtaat 

 tgttattgatggatttccaagaga 61 
ccaaatcgggggtacagatt 

 ctgattatgaagatcagggtgatg 55 
tctcaaatcttccatgaaacctc 

 ccctacatcccatccacct 30 
ggtctgcatcccaacagtct 

 ctatgggccttggcagtg 55 
gagctccctcagcccatc 

 acccattccggattatgga 62 
ttgcttgcacagacctttga 

 ttttcatgggtggcctct 71 
tgccaatgatgttactcagacc 

 gcatgcaaacgttagaacca 22 
ggctacttcgctagcagatcc 

 gaagttgcatcagaggtccat 69 
aaacaattacatgttactttggaatca 

 ctgcaagacatccaagatcg 57 
aacctgagggcatttagcag 

 ctgcaagacatccaagatcg 68 
aacctgagggcatttagcag 

 aagaggtggcaacaacctaca 17 
gatgcaataattgtctttagtgtcct 

 aagaggtggcaacaacctaca 75 
gatgcaataattgtctttagtgtcct 

 ttctacaagcgcagcaagg 58 
cagggtccagtaattgccttt 

 cgtaaggtgctccgggata 37 
gagccaaacggcgaatag 

 ctatacggagcacgccaag 76 
cctgacgttttagggcatatactac 

 tactggccttggctgtgc 71 
cacagggttttcaccaacct 

 agcgagaagtgccaactcc 39 
ttgtacaggtcccgctcttt 

 gcagaagatggaccagcaat 88 
tgtgctttccccattgattt 

 gggacaggtcccagaatatg 70 
gcctacttccggcagacc 

 tcctagctgaatgctataacctctg 15 
ggcatccttcagggtcttc 

 gtcattgaaaatccccagtacttt 9 
aattattatcaggcggtcttgg 

 gcttctgtgcttgacgtctattt 53 
ggataattctggtgcggaga 

 agcagccttgatgaagaagc 38 
gaagaagatgaaattgtggttgc 

 tgggctcaaacaatccttct 13 
atcctgggtcctgctctgta 

 tgggctcaaacaatccttct 16 
atcctgggtcctgctctgta 

 Table S 8: Primers used for validating transcripts seen only by SMS. All experiments were performed in duplicate using two 
primer pairs per candidate gene when possible. 
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APPENDIX C: Chapter 3 and 4 Supplementary Figures and Tables  

 
Figure S 17: Reproducibility between replicates. A. RWPE RNA-seq, B. VCaP RNA-seq, C. RWPE tandem MS, and D. 
VCaP tandem MS. Data are derived from the extended dataset. 
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Figure S 18: Correlation between VCaP and RWPE by RNA-seq and tandem MS. Within both the transcriptome 
and proteome data, both cell lines showed relatively high similarity in abundance profile. This is expected, owing 
to their common prostate tissue origin. 
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Figure S 19: False Discovery Rate estimation in RNA-seq data. We measured the FDR at increasing RPKM cutoffs 
to determine the 1% and 5% FDR levels in each cell line in our RNA-seq data 
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Figure S 20: False Discovery Rate estimation in protein data. We used the output of TPP and Abacus to determine 
appropriate parameter values for controlling FDR in our protein data. Three parameters were considered to 
control FDR at 1% and 5% FDR levels; peptide probability, protein group probability, and protein probability. 
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Figure S 21: RNA-seq False Discovery Rate estimation methodology. We used a methodology similar to that of 
Ramskold, et al. to estimate FDR in our RNA-seq data. Corresponding decoy sequences were sampled without 
replacement from the intergenic regions in hg19 for each representative transcript in our database, for a total of 
34,728 decoys. These decoy sequences were of equal length as the real transcripts. We aligned reads to the 
merged total set of these decoy and real mRNA transcripts. Abundance data was summarized at the gene level 
using the same transcript-gene mappings for both the real and decoy transcript set. FDR was calculated as the 
number of decoy genes detected divided by the number of non-decoy genes detected at each threshold value. 
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Figure S 22: Comparison of mapping methodologies. The number of reads assigned to this hypothetical gene, 
reflecting its abundance, is highly variable based on both the mapping and counting parameters can constraints. 
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Figure S 23: Coverage of the transcriptome by observed RNA-seq reads. 
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Figure S 24: Coverage of the proteome by observed peptides. 
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Figure S 25: Distribution of reads and spectra among observed genes in VCaP and RWPE. A and B. Distribution of reads and 
spectra, respectively, across extended dataset. C and D. Distribution of reads and spectra, respectively, across extended dataset 
after removal of top 100 most abundantly observed genes. E and F. Distribution of reads and spectra, respectively, across 
extended dataset after removal of ribosome-associated genes. 
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Figure S 26: Segregation of RWPE genes into broad categories by transcript-protein relationship 
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Figure S 27: Correlation of protein and transcript in high and low stability groups chosen using transcript half-life 
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Figure S 28: Correlation of protein and transcript in high and low stability groups chosen using protein half-life 
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A. PI3K/Akt Pathway colored by transcript fold change 

 

B. PI3K/Akt Pathway colored by protein fold change 
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C. PI3K/Akt Pathway colored by discordance index 

 

D. PI3K/Akt Pathway colored by concordance index 
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Figure S 29: PI3K/Akt Signaling Pathway colored by VCaP/RWPE transcript fold change, protein fold change, discordance 

index, and concrodance index data. 
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go_id Observed 
genes 

Total # Genes 
in Class 

vcap_readfr
action 

vcap_rpkmf
raction 

rwpe_readfrac
tion 

rwpe_rpkmfr
action 

vcap_spcfracti
on 

vcap_pnorm_fr
ac 

rwpe_spcfra
c 

rwpe_pnorm
_frac 

Term go_tree 

GO:0005739 1109 4669 0.087974 0.095673 0.07436 0.092678 0.189368 0.239181 0.220921 0.283798 mitochondrion CC 

GO:0000166 1371 7290 0.194515 0.126364 0.190091 0.148335 0.295258 0.226834 0.287902 0.230131 nucleotide binding MF 

GO:0016020 2213 12613 0.153828 0.12507 0.143564 0.1261 0.176585 0.191634 0.207733 0.238873 membrane CC 

GO:0005524 1037 5332 0.105549 0.062988 0.120108 0.083077 0.210816 0.128989 0.199519 0.127243 ATP binding MF 

GO:0005515 3215 17433 0.43172 0.38374 0.453007 0.400261 0.505604 0.44195 0.530704 0.452411 protein binding MF 

GO:0005743 251 980 0.026316 0.036553 0.016199 0.026615 0.060533 0.08263 0.086684 0.119398 mitochondrial inner 
membrane 

CC 

GO:0005634 3676 19673 0.391271 0.342794 0.437047 0.391448 0.423686 0.383929 0.442599 0.379974 nucleus CC 

GO:0006810 361 2081 0.033341 0.030051 0.036993 0.034407 0.061443 0.06892 0.065442 0.074691 transport BP 

GO:0005654 744 3572 0.099669 0.09049 0.109085 0.106917 0.144546 0.128082 0.165531 0.140452 nucleoplasm CC 

GO:0005783 702 3602 0.067749 0.049968 0.06281 0.051301 0.090773 0.08754 0.106616 0.111975 endoplasmic reticulum CC 

GO:0005737 3603 19916 0.441512 0.423029 0.451041 0.438006 0.492567 0.460282 0.409522 0.388043 cytoplasm CC 

GO:0005886 1462 12903 0.138727 0.097976 0.175349 0.125197 0.166759 0.135185 0.195319 0.158953 plasma membrane CC 

GO:0015031 340 1395 0.027568 0.019526 0.031146 0.02519 0.054205 0.056471 0.047257 0.047685 protein transport BP 

GO:0005759 175 707 0.015747 0.014125 0.011658 0.013385 0.048689 0.049274 0.063661 0.065725 mitochondrial matrix CC 

GO:0008380 241 928 0.040935 0.029537 0.045753 0.041021 0.066799 0.063403 0.088998 0.082265 RNA splicing BP 

GO:0007264 214 1077 0.016956 0.011659 0.016244 0.012738 0.025088 0.04462 0.017212 0.033747 small GTPase mediated 
signal transduction 

BP 

GO:0000398 157 540 0.032946 0.024053 0.03559 0.032637 0.05655 0.055835 0.07599 0.07214 nuclear mRNA splicing, 
via spliceosome 

BP 

GO:0016787 690 3423 0.047288 0.030796 0.052173 0.040299 0.079969 0.061638 0.078641 0.058643 hydrolase activity MF 

GO:0005625 242 1442 0.033228 0.025399 0.032718 0.030957 0.058825 0.056057 0.042506 0.046765 soluble fraction CC 

GO:0007596 250 1917 0.029639 0.021224 0.047444 0.035119 0.047667 0.051767 0.055077 0.053919 blood coagulation BP 

GO:0042470 77 349 0.029361 0.021334 0.02447 0.021969 0.065558 0.050236 0.065648 0.059203 melanosome CC 

GO:0006457 144 531 0.033489 0.028962 0.024752 0.025576 0.061372 0.057592 0.057928 0.053851 protein folding BP 

GO:0005794 648 3435 0.061752 0.039819 0.061565 0.04393 0.078185 0.067553 0.050552 0.057415 Golgi apparatus CC 

GO:0006915 438 2403 0.042704 0.032036 0.058945 0.047421 0.061623 0.059639 0.080756 0.064667 apoptosis BP 

GO:0016491 299 1501 0.02977 0.030428 0.02361 0.025715 0.05671 0.057085 0.046014 0.051143 oxidoreductase activity MF 

GO:0006184 102 550 0.010289 0.00823 0.010677 0.010086 0.020955 0.034412 0.017564 0.029229 GTP catabolic process BP 

GO:0051082 98 344 0.024217 0.020695 0.01991 0.020996 0.052397 0.046814 0.051097 0.045701 unfolded protein 
binding 

MF 

GO:0005525 231 1254 0.060679 0.039976 0.038858 0.031914 0.052462 0.063898 0.039386 0.050232 GTP binding MF 
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GO:0005975 200 1020 0.024052 0.021633 0.017535 0.016672 0.050279 0.043944 0.046034 0.035814 carbohydrate metabolic 
process 

BP 

GO:0005789 444 2314 0.041613 0.029469 0.039817 0.031186 0.056872 0.051719 0.071712 0.07196 endoplasmic reticulum 
membrane 

CC 

GO:0016021 1943 13912 0.12101 0.087015 0.131349 0.102517 0.113958 0.107536 0.157464 0.162976 integral to membrane CC 

GO:0016887 98 452 0.012205 0.009056 0.017111 0.012567 0.040621 0.028672 0.040845 0.031311 ATPase activity MF 

GO:0055085 356 2525 0.026425 0.018163 0.035169 0.026055 0.044846 0.037765 0.073076 0.064187 transmembrane 
transport 

BP 

GO:0030168 118 1016 0.018543 0.014129 0.025386 0.0188 0.03097 0.033428 0.026838 0.021531 platelet activation BP 

GO:0006200 57 250 0.010276 0.008265 0.01488 0.011231 0.037708 0.027206 0.037888 0.029462 ATP catabolic process BP 

GO:0071013 76 253 0.020642 0.013563 0.020474 0.01616 0.035179 0.032437 0.049203 0.044187 catalytic step 2 
spliceosome 

CC 

GO:0005488 444 2312 0.036697 0.025843 0.043748 0.033315 0.063443 0.044471 0.050021 0.040373 binding MF 

GO:0016192 140 650 0.015684 0.011262 0.012281 0.010297 0.029401 0.02962 0.020429 0.021862 vesicle-mediated 
transport 

BP 

GO:0007411 187 1316 0.026703 0.017955 0.033987 0.02185 0.047809 0.036 0.03761 0.026808 axon guidance BP 

GO:0006006 67 398 0.014176 0.0149 0.00765 0.008658 0.032216 0.032131 0.018375 0.019913 glucose metabolic 
process 

BP 

GO:0016740 443 2029 0.035523 0.028693 0.036035 0.031104 0.053771 0.045869 0.044094 0.044486 transferase activity MF 

GO:0003779 198 1222 0.02335 0.014653 0.041177 0.026135 0.051253 0.031213 0.052974 0.018345 actin binding MF 

GO:0022904 78 282 0.010255 0.020979 0.005435 0.015013 0.020438 0.0374 0.023662 0.042602 respiratory electron 
transport chain 

BP 

GO:0005856 606 3308 0.058544 0.049213 0.068653 0.059094 0.075452 0.065535 0.058636 0.057366 cytoskeleton CC 

GO:0019904 115 612 0.016441 0.010636 0.018995 0.014849 0.024966 0.026482 0.025474 0.025061 protein domain specific 
binding 

MF 

GO:0003924 141 752 0.051805 0.033419 0.031734 0.026263 0.037428 0.048955 0.029556 0.040638 GTPase activity MF 

GO:0006096 29 178 0.012121 0.013327 0.005838 0.007203 0.028142 0.028531 0.01505 0.015198 glycolysis BP 

GO:0007165 628 4542 0.055654 0.035406 0.060299 0.047832 0.057791 0.050545 0.052423 0.057563 signal transduction BP 

GO:0030971 11 114 0.008649 0.013232 0.00639 0.007568 0.002349 0.002947 0.002149 0.002198 receptor tyrosine 
kinase binding 

MF 

GO:0005102 104 961 0.019482 0.025224 0.011788 0.015031 0.013495 0.014749 0.012046 0.013139 receptor binding MF 

GO:0030335 52 409 0.012279 0.014638 0.008741 0.00927 0.004928 0.003818 0.004085 0.003286 positive regulation of 
cell migration 

BP 

GO:0043204 17 147 0.007913 0.013147 0.003291 0.006161 0.001894 0.00223 0.001287 0.001591 perikaryon CC 

GO:0032436 22 111 0.010396 0.014827 0.004345 0.0073 0.004213 0.003417 0.002667 0.002262 positive regulation of 
proteasomal ubiquitin-
dependent protein 
catabolic process 

BP 

GO:0043547 37 254 0.010056 0.013974 0.005959 0.007288 0.003666 0.002546 0.003122 0.002163 positive regulation of BP 
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GTPase activity 

GO:0008284 169 1279 0.024954 0.027856 0.022127 0.020966 0.013436 0.016408 0.013145 0.014832 positive regulation of 
cell proliferation 

BP 

GO:0042593 31 234 0.008001 0.013105 0.004395 0.008346 0.001536 0.001405 0.000556 0.000758 glucose homeostasis BP 

GO:0042169 20 156 0.009194 0.013515 0.00502 0.00719 0.001926 0.001807 0.001364 0.001288 SH2 domain binding MF 

GO:0030425 90 621 0.014277 0.016652 0.009139 0.009908 0.006296 0.004904 0.004103 0.00385 dendrite CC 

GO:0030178 15 91 0.008028 0.012949 0.003788 0.006333 0.001007 0.001104 0.000798 0.000806 negative regulation of 
Wnt receptor signaling 
pathway 

BP 

GO:0048511 10 50 0.007609 0.01282 0.002664 0.005756 0.000733 0.000941 0.000422 0.000589 rhythmic process BP 

GO:0051726 41 220 0.010682 0.014616 0.007175 0.008948 0.004053 0.002682 0.003899 0.002658 regulation of cell cycle BP 

GO:0017148 17 103 0.012083 0.017088 0.004837 0.007757 0.004038 0.005022 0.00348 0.004328 negative regulation of 
translation 

BP 

GO:0040008 49 250 0.012202 0.016526 0.006266 0.009479 0.004183 0.004333 0.003603 0.004451 regulation of growth BP 

GO:0001934 42 278 0.010414 0.014067 0.006491 0.007706 0.001911 0.001579 0.001418 0.001399 positive regulation of 
protein 
phosphorylation 

BP 

GO:0008270 1143 7162 0.08386 0.056167 0.097387 0.071519 0.063901 0.03945 0.052274 0.036237 zinc ion binding MF 

GO:0043065 111 646 0.023501 0.031212 0.017939 0.022638 0.017138 0.014452 0.023832 0.019535 positive regulation of 
apoptosis 

BP 

GO:0015934 10 38 0.01072 0.020035 0.003991 0.009229 0.001625 0.003015 0.0019 0.003331 large ribosomal subunit CC 

GO:0003674 386 2105 0.032772 0.041671 0.029448 0.037419 0.024899 0.024256 0.01994 0.021453 molecular_function MF 

GO:0003729 41 211 0.018466 0.03554 0.010563 0.020871 0.011923 0.015733 0.012499 0.0158 mRNA binding MF 

GO:0006413 40 130 0.02094 0.034275 0.015848 0.022013 0.01182 0.014019 0.008007 0.009614 translational initiation BP 

GO:0042273 10 27 0.00958 0.025192 0.008277 0.029077 0.002437 0.004166 0.002072 0.003698 ribosomal large subunit 
biogenesis 

BP 

GO:0042254 28 85 0.012562 0.027733 0.006095 0.015637 0.003273 0.004885 0.003691 0.005367 ribosome biogenesis BP 

GO:0003746 17 79 0.045285 0.031812 0.019935 0.017412 0.009052 0.008462 0.00547 0.005422 translation elongation 
factor activity 

MF 

GO:0007275 443 3388 0.041516 0.038392 0.045535 0.037053 0.022771 0.01477 0.023387 0.014736 multicellular 
organismal 
development 

BP 

GO:0042274 11 34 0.01533 0.044131 0.00912 0.034037 0.003152 0.007661 0.002373 0.00585 ribosomal small subunit 
biogenesis 

BP 

GO:0019843 21 58 0.019626 0.05317 0.007958 0.028844 0.003456 0.007446 0.003089 0.007005 rRNA binding MF 

GO:0005730 429 1900 0.075173 0.114545 0.077831 0.109151 0.06936 0.06276 0.087932 0.077141 nucleolus CC 

GO:0006364 84 236 0.029006 0.073513 0.023985 0.070573 0.014488 0.019575 0.017418 0.021468 rRNA processing BP 

GO:0015935 16 62 0.028931 0.075786 0.013817 0.049943 0.005064 0.011855 0.003696 0.008872 small ribosomal subunit CC 
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GO:0030529 95 416 0.083171 0.118695 0.050943 0.080217 0.053682 0.051568 0.062281 0.061747 ribonucleoprotein 
complex 

CC 

GO:0022625 34 109 0.056064 0.125895 0.02712 0.086786 0.010801 0.025034 0.007495 0.01728 cytosolic large 
ribosomal subunit 

CC 

GO:0003723 504 2292 0.15269 0.240052 0.12157 0.191674 0.119267 0.127315 0.135635 0.138667 RNA binding MF 

GO:0022627 32 100 0.061937 0.173238 0.026142 0.097605 0.013409 0.031887 0.008975 0.022414 cytosolic small 
ribosomal subunit 

CC 

GO:0005840 143 469 0.10628 0.26614 0.047984 0.156328 0.032801 0.071278 0.027883 0.060417 ribosome CC 

GO:0005829 1634 8692 0.369316 0.532487 0.280537 0.403723 0.328059 0.332868 0.253661 0.257336 cytosol CC 

GO:0005622 1180 6697 0.21673 0.365107 0.157222 0.266877 0.11459 0.14503 0.092671 0.113584 intracellular CC 

GO:0016032 268 1111 0.16874 0.38648 0.085608 0.241387 0.068255 0.111621 0.064276 0.091472 viral reproduction BP 

GO:0003735 144 479 0.148243 0.363859 0.067451 0.223718 0.034281 0.082215 0.028148 0.067506 structural constituent 
of ribosome 

MF 

GO:0016070 238 871 0.177833 0.390017 0.092348 0.245842 0.062642 0.107733 0.049697 0.08822 RNA metabolic process BP 

GO:0016071 203 746 0.174226 0.386783 0.08873 0.242156 0.058775 0.100212 0.045669 0.080137 mRNA metabolic 
process 

BP 

GO:0010467 361 1446 0.239667 0.432129 0.13933 0.28462 0.105771 0.139605 0.109123 0.129832 gene expression BP 

GO:0019058 83 284 0.152063 0.37148 0.06692 0.221226 0.033965 0.074026 0.023085 0.051966 viral infectious cycle BP 

GO:0006415 77 273 0.147869 0.366752 0.064603 0.218601 0.028355 0.068282 0.019052 0.047151 translational 
termination 

BP 

GO:0019083 74 259 0.14759 0.366594 0.06421 0.218302 0.028125 0.068055 0.018949 0.047024 viral transcription BP 

GO:0031018 92 374 0.148621 0.367162 0.065323 0.219685 0.02855 0.068491 0.020632 0.049269 endocrine pancreas 
development 

BP 

GO:0044267 240 929 0.224395 0.423099 0.111249 0.262106 0.075603 0.111339 0.065452 0.089585 cellular protein 
metabolic process 

BP 

GO:0006412 220 775 0.215326 0.418099 0.10781 0.260924 0.058624 0.10269 0.044418 0.081367 translation BP 

GO:0006414 85 309 0.190688 0.39615 0.083582 0.235132 0.035123 0.074307 0.023796 0.051742 translational elongation BP 

Table S 9: Sum of reads and spectra for top and bottom 50 in RWPE and VCaP by Gene Ontology class, ordered by VCaP relative enrichment 

go_id obs_genes totalgene
s 

vcap_readfrac vcap_rpkmfra
c 

rwpe_readf
rac 

rwpe_rpkmfr
ac 

vcap_spcfrac vcap_pnorm_fra
c 

rwpe_spcfrac rwpe_pnor
m_frac 

Term go_tree 

GO:0005739 1032 4669 0.09926 0.142869 0.076408 0.111656 0.188687 0.243711 0.216344 0.280198 mitochondrion CC 

GO:0000166 1356 7290 0.224941 0.188664 0.200768 0.180257 0.305077 0.246353 0.295978 0.246213 nucleotide binding MF 

GO:0005524 1027 5332 0.123656 0.099365 0.128403 0.106872 0.218386 0.140819 0.205702 0.137004 ATP binding MF 

GO:0005743 250 980 0.03097 0.058022 0.017356 0.034335 0.062727 0.090161 0.089242 0.12816 mitochondrial inner 
membrane 

CC 

GO:0005737 3565 19916 0.445929 0.438844 0.454505 0.45111 0.496185 0.470572 0.412106 0.39499 cytoplasm CC 
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GO:0005759 175 707 0.018556 0.022439 0.012511 0.017287 0.050565 0.053971 0.065701 0.07087 mitochondrial matrix CC 

GO:0015031 340 1395 0.032485 0.031017 0.033424 0.032532 0.056293 0.061854 0.048772 0.051418 protein transport BP 

GO:0007264 214 1077 0.019981 0.01852 0.017432 0.016451 0.026054 0.048872 0.017763 0.036389 small GTPase mediated 
signal transduction 

BP 

GO:0006810 360 2081 0.039265 0.047674 0.039643 0.044258 0.063702 0.075229 0.067415 0.080216 transport BP 

GO:0005515 3178 17433 0.448299 0.433091 0.462981 0.43902 0.513955 0.459592 0.539346 0.468704 protein binding MF 

GO:0005654 735 3572 0.106254 0.109415 0.112952 0.124094 0.147627 0.134567 0.169323 0.147688 nucleoplasm CC 

GO:0006184 102 550 0.012124 0.013074 0.011458 0.013026 0.021762 0.037691 0.018127 0.031517 GTP catabolic process BP 

GO:0007596 250 1917 0.034926 0.033716 0.050915 0.045355 0.049503 0.056701 0.056842 0.05814 blood coagulation BP 

GO:0000398 157 540 0.038823 0.038209 0.038194 0.04215 0.058729 0.061156 0.078425 0.077788 nuclear mRNA splicing, via 
spliceosome 

BP 

GO:0008380 241 928 0.048237 0.046921 0.0491 0.052977 0.069372 0.069446 0.091851 0.088705 RNA splicing BP 

GO:0005829 1557 8692 0.262183 0.26837 0.232019 0.240008 0.311367 0.290212 0.242185 0.226858 cytosol CC 

GO:0005625 240 1442 0.038842 0.039951 0.034975 0.039852 0.061067 0.06138 0.043863 0.050421 soluble fraction CC 

GO:0003723 452 2292 0.08184 0.076481 0.089095 0.090659 0.106192 0.097684 0.126881 0.118968 RNA binding MF 

GO:0042470 77 349 0.034599 0.03389 0.02626 0.028373 0.068084 0.055024 0.067752 0.063837 melanosome CC 

GO:0016787 688 3423 0.055667 0.048812 0.055952 0.051953 0.082878 0.067271 0.080744 0.062608 hydrolase activity MF 

GO:0005783 701 3602 0.077613 0.076899 0.066882 0.065562 0.093984 0.095303 0.109859 0.120361 endoplasmic reticulum CC 

GO:0051082 98 344 0.028536 0.032875 0.021367 0.027116 0.054415 0.051275 0.052735 0.049279 unfolded protein binding MF 

GO:0006457 144 531 0.039462 0.046008 0.026563 0.033031 0.063736 0.063081 0.059785 0.058066 protein folding BP 

GO:0016887 98 452 0.014382 0.014386 0.018363 0.01623 0.042186 0.031404 0.042155 0.033762 ATPase activity MF 

GO:0006200 57 250 0.012109 0.01313 0.015968 0.014505 0.039161 0.029799 0.039102 0.031769 ATP catabolic process BP 

GO:0016192 140 650 0.018482 0.01789 0.013179 0.013299 0.030534 0.032442 0.021084 0.023574 vesicle-mediated transport BP 

GO:0016491 299 1501 0.03508 0.048337 0.025337 0.03321 0.058895 0.062526 0.047489 0.055147 oxidoreductase activity MF 

GO:0030168 118 1016 0.021851 0.022445 0.027243 0.02428 0.032163 0.036614 0.027698 0.023216 platelet activation BP 

GO:0071013 76 253 0.024324 0.021545 0.021972 0.020871 0.036535 0.035529 0.05078 0.047646 catalytic step 2 
spliceosome 

CC 

GO:0005975 200 1020 0.028343 0.034365 0.018818 0.021531 0.052216 0.048132 0.04751 0.038618 carbohydrate metabolic 
process 

BP 

GO:0042645 34 112 0.006444 0.006803 0.00621 0.007291 0.022262 0.02055 0.036773 0.038771 mitochondrial nucleoid CC 

GO:0000278 272 1081 0.028805 0.029037 0.031756 0.033226 0.051933 0.041821 0.038406 0.03328 mitotic cell cycle BP 

GO:0055085 356 2525 0.031139 0.028854 0.037742 0.033649 0.046573 0.041364 0.075418 0.069212 transmembrane transport BP 

GO:0002576 45 357 0.011946 0.014557 0.016129 0.015933 0.021802 0.02656 0.015792 0.013425 platelet degranulation BP 
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GO:0005741 84 462 0.008351 0.008846 0.008403 0.008253 0.016479 0.020752 0.02238 0.0317 mitochondrial outer 
membrane 

CC 

GO:0006915 435 2403 0.049705 0.049205 0.062406 0.058532 0.062395 0.060944 0.082184 0.06648 apoptosis BP 

GO:0019904 113 612 0.019319 0.016825 0.020337 0.019094 0.025661 0.028521 0.02573 0.026039 protein domain specific 
binding 

MF 

GO:0006006 67 398 0.016705 0.023669 0.00821 0.011182 0.033457 0.035193 0.018964 0.021472 glucose metabolic process BP 

GO:0016032 195 1111 0.026019 0.036531 0.023095 0.030517 0.041766 0.048009 0.046819 0.048067 viral reproduction BP 

GO:0016020 2211 12613 0.181184 0.198637 0.153947 0.162782 0.183354 0.209874 0.214391 0.257573 membrane CC 

GO:0005634 3648 19673 0.409774 0.388218 0.448025 0.431147 0.42985 0.399201 0.449588 0.394075 nucleus CC 

GO:0007411 182 1316 0.031131 0.028281 0.03622 0.02803 0.049295 0.039214 0.038685 0.028824 axon guidance BP 

GO:0003779 198 1222 0.027515 0.023277 0.04419 0.033753 0.053228 0.034188 0.054672 0.019781 actin binding MF 

GO:0005681 70 268 0.012993 0.013471 0.011549 0.013466 0.022802 0.024298 0.029582 0.031289 spliceosomal complex CC 

GO:0003697 51 172 0.00989 0.01 0.011558 0.014558 0.021256 0.020783 0.025645 0.023001 single-stranded DNA 
binding 

MF 

GO:0005794 648 3435 0.072767 0.063254 0.066069 0.056734 0.081197 0.073992 0.052172 0.06191 Golgi apparatus CC 

GO:0005694 184 874 0.021503 0.017247 0.023532 0.018393 0.03011 0.027744 0.027563 0.023922 chromosome CC 

GO:0005198 103 749 0.016371 0.012043 0.024662 0.0176 0.038161 0.022215 0.043212 0.031903 structural molecule activity MF 

GO:0006397 160 770 0.023358 0.020199 0.025587 0.02499 0.034313 0.030336 0.045759 0.040588 mRNA processing BP 

GO:0006096 29 178 0.014283 0.021171 0.006265 0.009302 0.029227 0.03125 0.015532 0.016388 glycolysis BP 

GO:0048471 277 1631 0.053092 0.065101 0.04363 0.048169 0.055118 0.054442 0.049994 0.047978 perinuclear region of 
cytoplasm 

CC 

GO:0009615 84 497 0.018879 0.032182 0.013248 0.024227 0.014377 0.021446 0.013418 0.018223 response to virus BP 

GO:0006874 22 218 0.008425 0.015768 0.005154 0.011775 0.003491 0.00339 0.003735 0.004583 cellular calcium ion 
homeostasis 

BP 

GO:0030496 59 305 0.017821 0.027685 0.012322 0.016528 0.016963 0.014623 0.01982 0.017406 midbody CC 

GO:0008134 178 1054 0.027869 0.028639 0.030417 0.031061 0.026542 0.015191 0.030668 0.013764 transcription factor binding MF 

GO:0043565 248 2052 0.023547 0.020015 0.021701 0.020183 0.00921 0.006563 0.009088 0.007237 sequence-specific DNA 
binding 

MF 

GO:0003674 375 2105 0.032016 0.035818 0.027151 0.027919 0.02398 0.021681 0.01864 0.018491 molecular_function MF 

GO:0042995 98 638 0.018776 0.030108 0.013554 0.016287 0.010364 0.015822 0.004928 0.006366 cell projection CC 

GO:0006351 338 2278 0.038969 0.036239 0.038198 0.038142 0.022869 0.0219 0.017758 0.016409 transcription, DNA-
dependent 

BP 

GO:0030308 67 445 0.014944 0.026705 0.008565 0.013658 0.010609 0.011599 0.008288 0.010009 negative regulation of cell 
growth 

BP 

GO:0043065 110 646 0.022072 0.031978 0.016832 0.020268 0.01747 0.015256 0.024327 0.020565 positive regulation of 
apoptosis 

BP 

GO:0003700 489 3558 0.047693 0.039547 0.050307 0.047403 0.024664 0.022753 0.020303 0.018451 sequence-specific DNA MF 
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binding transcription factor 
activity 

GO:0019903 33 216 0.01557 0.025841 0.00907 0.012494 0.013619 0.008153 0.014578 0.00833 protein phosphatase 
binding 

MF 

GO:0030971 11 114 0.010192 0.02102 0.006858 0.009774 0.002439 0.003228 0.002218 0.00237 receptor tyrosine kinase 
binding 

MF 

GO:0005080 26 170 0.013196 0.023987 0.007296 0.012311 0.006216 0.006098 0.004532 0.005658 protein kinase C binding MF 

GO:0043025 106 723 0.019945 0.030821 0.015667 0.015833 0.01164 0.012804 0.007669 0.006857 neuronal cell body CC 

GO:0032880 17 114 0.010869 0.021926 0.004917 0.009165 0.002589 0.003901 0.001982 0.002928 regulation of protein 
localization 

BP 

GO:0043204 17 147 0.009325 0.020885 0.003532 0.007956 0.001967 0.002443 0.001328 0.001716 perikaryon CC 

GO:0030335 52 409 0.01447 0.023254 0.00938 0.011973 0.005118 0.004182 0.004216 0.003544 positive regulation of cell 
migration 

BP 

GO:0048511 10 50 0.008967 0.020365 0.002859 0.007434 0.000761 0.001031 0.000436 0.000635 rhythmic process BP 

GO:0030178 15 91 0.00946 0.020571 0.004065 0.00818 0.001046 0.001209 0.000823 0.000869 negative regulation of Wnt 
receptor signaling pathway 

BP 

GO:0043547 37 254 0.01185 0.022199 0.006395 0.009413 0.003807 0.002789 0.003222 0.002332 positive regulation of 
GTPase activity 

BP 

GO:0042169 20 156 0.010834 0.021469 0.005387 0.009285 0.002 0.001979 0.001408 0.001388 SH2 domain binding MF 

GO:0032436 22 111 0.012251 0.023554 0.004663 0.009427 0.004375 0.003743 0.002752 0.002439 positive regulation of 
proteasomal ubiquitin-
dependent protein 
catabolic process 

BP 

GO:0051726 41 220 0.012588 0.023218 0.0077 0.011557 0.004209 0.002938 0.004024 0.002866 regulation of cell cycle BP 

GO:0005622 1074 6697 0.113946 0.107319 0.109151 0.099066 0.0908 0.086897 0.073798 0.067046 intracellular CC 

GO:0016021 1943 13912 0.142596 0.138229 0.140959 0.132399 0.118348 0.117785 0.162512 0.175735 integral to membrane CC 

GO:0001934 42 278 0.012272 0.022345 0.006966 0.009953 0.001985 0.001729 0.001464 0.001509 positive regulation of 
protein phosphorylation 

BP 

GO:0030425 90 621 0.016824 0.026453 0.009808 0.012796 0.006538 0.005371 0.004234 0.004152 dendrite CC 

GO:0046872 1775 10580 0.140818 0.112463 0.147036 0.126006 0.111399 0.091297 0.100019 0.084938 metal ion binding MF 

GO:0040008 49 250 0.014378 0.026252 0.006724 0.012242 0.004344 0.004746 0.003719 0.0048 regulation of growth BP 

GO:0017148 17 103 0.014239 0.027146 0.005191 0.010018 0.004194 0.0055 0.003591 0.004666 negative regulation of 
translation 

BP 

GO:0005102 104 961 0.022957 0.040069 0.01265 0.019413 0.014015 0.016154 0.012432 0.014168 receptor binding MF 

GO:0006355 931 5999 0.09235 0.077149 0.10105 0.090573 0.060527 0.051787 0.062389 0.052149 regulation of transcription, 
DNA-dependent 

BP 

GO:0008270 1140 7162 0.096292 0.070918 0.103422 0.083522 0.066123 0.041933 0.053771 0.038123 zinc ion binding MF 

GO:0010467 288 1446 0.109598 0.109048 0.080747 0.086352 0.080727 0.07866 0.093105 0.08943 gene expression BP 

GO:0007275 442 3388 0.045729 0.052317 0.048106 0.045414 0.023155 0.01536 0.023711 0.015141 multicellular organismal BP 
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development 

GO:0003746 17 79 0.053363 0.050535 0.021394 0.022488 0.009401 0.009269 0.005645 0.005846 translation elongation 
factor activity 

MF 

GO:0006414 12 309 0.051882 0.051894 0.02092 0.02244 0.007357 0.007139 0.005042 0.005226 translational elongation BP 

GO:0044267 167 929 0.091601 0.094704 0.050612 0.057277 0.049396 0.0477 0.048033 0.046032 cellular protein metabolic 
process 

BP 

GO:0006412 80 775 0.076759 0.077957 0.043805 0.04771 0.025011 0.021246 0.017179 0.014978 translation BP 

Table S 10: Sum of reads and spectra for top and bottom 50 in RWPE and VCaP by Gene Ontology class with ribosomal genes removed, ordered by VCaP relative enrichment 
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GO:0000155 6 56 -0.14516 0.783795 0.028571 1 1.706637 4.125767 2.85886 4.322668 0.810463 1 two-component sensor 
activity 

MF 

GO:0005123 7 68 -0.13188 0.778058 0 1 1.885487 3.284669 2.069755 2.950255 0.805816 1 death receptor binding MF 

GO:0006264 6 34 0.274419 0.598705 -0.02857 1 2.968612 3.337416 2.914576 3.463296 0.640528 1 mitochondrial DNA 
replication 

BP 

GO:0006809 6 54 0.533425 0.275753 -0.02857 1 4.49339 3.884449 5.127782 4.151512 0.321354 1 nitric oxide biosynthetic 
process 

BP 

GO:0006978 6 105 0.077446 0.884063 -0.02857 1 1.58638 4.46804 0.96182 4.910636 0.897912 1 DNA damage response, 
signal transduction by p53 
class mediator resulting in 
transcription of p21 class 
mediator 

BP 

GO:0007096 7 23 0.126086 0.787647 0 1 2.919312 4.08101 2.94712 4.026579 0.814014 1 regulation of exit from 
mitosis 

BP 

GO:0030217 7 83 -0.10794 0.817813 0 1 1.06325 3.954415 1.741783 3.563928 0.840723 1 T cell differentiation BP 

GO:0032402 6 32 -0.35827 0.48559 0.028571 1 1.943608 2.525552 1.977075 2.876346 0.531068 1 melanosome transport BP 

GO:0043240 6 33 0.776588 0.069294 0.028571 1 0.312925 2.929093 0.033833 2.449059 0.099714 1 Fanconi anaemia nuclear 
complex 

CC 

GO:0051974 6 55 0.035615 0.9466 0.028571 1 2.91232 3.448586 2.944651 3.483562 0.954255 1 negative regulation of 
telomerase activity 

BP 
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GO:0030897 12 40 0.383211 0.218846 0.006993 0.99123 2.950357 3.619346 2.904523 3.716765 0.262104 0.996
353 

HOPS complex CC 

GO:0045022 9 34 -0.15323 0.693881 -0.01667 0.98157 2.466359 3.382254 2.745233 3.604485 0.728725 0.987
153 

early endosome to late 
endosome transport 

BP 

GO:0009953 8 106 0.080765 0.849222 -0.02381 0.97678
6 

-0.23555 1.660737 -0.66064 1.640695 0.868421 0.982
85 

dorsal/ventral pattern 
formation 

BP 

GO:0022857 11 127 0.058339 0.864713 -0.01818 0.96757
6 

7.787493 7.93148 7.96804 7.943038 0.881019 0.974
087 

transmembrane transporter 
activity 

MF 

GO:0042776 11 56 0.058339 0.864713 -0.01818 0.96757
6 

7.787493 7.93148 7.96804 7.943038 0.881019 0.974
087 

mitochondrial ATP synthesis 
coupled proton transport 

BP 

GO:0000780 7 52 -0.03206 0.945605 -0.03571 0.96349
2 

1.087055 3.712705 1.251539 3.794842 0.954255 0.970
98 

condensed nuclear 
chromosome, centromeric 
region 

CC 

GO:0014047 7 112 -0.03184 0.945977 -0.03571 0.96349
2 

3.744536 4.540525 4.603214 5.134869 0.954255 0.970
98 

glutamate secretion BP 

GO:0034361 7 57 0.348357 0.443831 0.035714 0.96349
2 

3.101188 3.933392 2.979942 3.871388 0.490484 0.970
98 

very-low-density lipoprotein 
particle 

CC 

GO:0001947 12 112 0.112892 0.726846 0.020979 0.95616
9 

0.781019 3.707599 0.205568 3.844372 0.757618 0.965
101 

heart looping BP 

GO:0021510 9 48 -0.01271 0.97411 -0.03333 0.94839
1 

2.1024 4.196527 1.798366 4.22595 0.977507 0.957
747 

spinal cord development BP 

GO:0005665 10 30 -0.19658 0.586209 0.030303 0.94571 4.88888 6.077029 5.301099 5.665269 0.628196 0.955
812 

DNA-directed RNA 
polymerase II, core complex 

CC 

GO:0007076 11 56 0.744044 0.008648 0.027273 0.94598
4 

3.336622 4.020329 3.72547 4.004515 0.017781 0.955
812 

mitotic chromosome 
condensation 

BP 

GO:0007224 10 98 -0.01976 0.956792 -0.0303 0.94571 0.423537 2.937403 0.099753 2.827569 0.962732 0.955
812 

smoothened signaling 
pathway 

BP 

GO:0001578 8 66 0.199837 0.635162 0.047619 0.93487
1 

2.471787 3.858481 2.194879 3.995346 0.674339 0.946
058 

microtubule bundle 
formation 

BP 

GO:0005885 6 24 0.060362 0.909568 0.085714 0.91944
4 

5.862062 6.215573 5.845399 6.01438 0.922372 0.930
932 

Arp2/3 protein complex CC 

GO:0006402 6 42 0.154606 0.769939 -0.08571 0.91944
4 

3.600288 3.537144 3.18834 3.402525 0.798258 0.930
932 

mRNA catabolic process BP 

GO:0008430 6 46 0.331697 0.520702 0.085714 0.91944
4 

5.001446 5.287518 5.188867 5.312317 0.567057 0.930
932 

selenium binding MF 

GO:0019370 6 82 0.178169 0.735575 0.085714 0.91944
4 

4.720371 5.335455 4.712433 5.367478 0.765076 0.930
932 

leukotriene biosynthetic 
process 

BP 

GO:0019509 6 14 0.329718 0.523346 0.085714 0.91944
4 

4.536792 4.931061 5.370887 4.85833 0.569618 0.930
932 

L-methionine salvage from 
methylthioadenosine 

BP 

GO:0032012 6 51 -0.12423 0.814612 -0.08571 0.91944
4 

2.946582 4.808346 4.049818 4.762404 0.838318 0.930
932 

regulation of ARF protein 
signal transduction 

BP 
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GO:0042719 6 15 0.214519 0.683157 0.085714 0.91944
4 

6.258884 5.022933 6.200121 4.800543 0.718193 0.930
932 

mitochondrial 
intermembrane space 
protein transporter complex 

CC 

GO:0050873 6 63 0.254166 0.626961 0.085714 0.91944
4 

3.766627 4.328653 3.900917 3.734092 0.667089 0.930
932 

brown fat cell 
differentiation 

BP 

GO:0051775 6 33 0.260688 0.617826 -0.08571 0.91944
4 

3.57828 3.666702 2.98081 4.502902 0.658089 0.930
932 

response to redox state BP 

GO:0005249 13 204 -0.0197 0.949074 0.038462 0.90620
2 

0.897892 3.154025 0.655172 3.0916 0.955954 0.921
992 

voltage-gated potassium 
channel activity 

MF 

GO:0005852 14 36 0.000727 0.998031 0.037363 0.90351
5 

5.654854 7.128447 5.656926 7.336547 0.998031 0.921
992 

eukaryotic translation 
initiation factor 3 complex 

CC 

GO:0017016 7 70 0.216712 0.640676 0.071429 0.90634
9 

3.34035 4.908538 2.823527 5.431044 0.679081 0.921
992 

Ras GTPase binding MF 

GO:0042994 7 28 0.086827 0.853152 -0.07143 0.90634
9 

1.593033 4.282385 0.807175 4.045346 0.871982 0.921
992 

cytoplasmic sequestering of 
transcription factor 

BP 

GO:0046902 7 42 -0.02229 0.962174 0.071429 0.90634
9 

4.105835 5.641096 4.102837 5.547346 0.967147 0.921
992 

regulation of mitochondrial 
membrane permeability 

BP 

GO:0060170 7 51 -0.37459 0.407732 0.071429 0.90634
9 

0.520899 2.96779 -0.10098 3.868971 0.453943 0.921
992 

cilium membrane CC 

GO:0070776 7 20 0.62817 0.130868 0.071429 0.90634
9 

1.316469 4.098003 0.953359 3.789622 0.171095 0.921
992 

MOZ/MORF histone 
acetyltransferase complex 

CC 

GO:0006595 10 41 0.056151 0.877556 0.054545 0.89163
9 

4.255821 5.781861 5.265638 6.148583 0.892235 0.910
361 

polyamine metabolic 
process 

BP 

GO:0005838 8 25 -0.04318 0.919138 -0.07143 0.88199
4 

5.325698 5.717427 5.488394 5.702749 0.930621 0.900
987 

proteasome regulatory 
particle 

CC 

GO:0030216 14 143 0.053804 0.855052 -0.05055 0.86759
6 

4.11148 3.986381 4.967306 4.158697 0.873349 0.886
745 

keratinocyte differentiation BP 

GO:0004540 10 49 0.0664 0.855388 0.066667 0.86475
4 

3.044213 3.402404 3.177262 3.300741 0.873349 0.884
304 

ribonuclease activity MF 

GO:0035035 10 65 0.056663 0.876447 0.066667 0.86475
4 

1.114761 4.349615 1.192009 4.341432 0.891574 0.884
304 

histone acetyltransferase 
binding 

MF 

GO:0005762 12 53 -0.10149 0.753637 -0.06294 0.85168
2 

5.99713 5.341713 5.797267 5.602616 0.782608 0.871
853 

mitochondrial large 
ribosomal subunit 

CC 

GO:0000060 8 48 0.295673 0.477076 0.095238 0.84012
9 

3.499068 5.574924 3.960934 5.353057 0.522493 0.860
48 

protein import into nucleus, 
translocation 

BP 

GO:0004180 8 64 0.172182 0.683483 0.095238 0.84012
9 

4.566439 4.856274 4.754083 4.633416 0.718193 0.860
48 

carboxypeptidase activity MF 

GO:0004708 7 56 -0.16974 0.71598 -0.10714 0.83968
3 

2.976688 4.748909 4.189957 4.67014 0.748141 0.860
48 

MAP kinase kinase activity MF 

GO:0004812 8 18 0.045462 0.914876 -0.09524 0.84012
9 

3.988127 4.759914 4.225371 4.81864 0.926788 0.860
48 

aminoacyl-tRNA ligase 
activity 

MF 
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GO:0007613 7 125 0.208374 0.653882 0.107143 0.83968
3 

1.379606 3.500382 1.184834 3.592548 0.690446 0.860
48 

memory BP 

GO:0007616 8 56 -0.08513 0.841159 -0.09524 0.84012
9 

0.666376 3.591943 0.709482 3.530432 0.861081 0.860
48 

long-term memory BP 

GO:0016574 7 16 -0.04364 0.925981 -0.10714 0.83968
3 

4.264455 5.277682 4.573467 5.030299 0.937062 0.860
48 

histone ubiquitination BP 

GO:0034045 7 40 -0.17632 0.705304 -0.10714 0.83968
3 

0.840781 3.935966 1.327348 3.780694 0.739524 0.860
48 

pre-autophagosomal 
structure membrane 

CC 

GO:0051298 7 24 0.403053 0.369952 0.107143 0.83968
3 

0.509864 2.244409 0.101317 2.542946 0.418104 0.860
48 

centrosome duplication BP 

GO:0070652 7 25 -0.07939 0.865641 0.107143 0.83968
3 

1.726521 2.996759 1.876996 3.306382 0.881042 0.860
48 

HAUS complex CC 

GO:0005763 18 51 0.004591 0.985576 0.05676 0.82419
7 

5.749246 5.460994 5.526888 5.648383 0.987607 0.848
63 

mitochondrial small 
ribosomal subunit 

CC 

GO:0016758 10 76 0.219678 0.541981 0.090909 0.81141
7 

1.127205 3.601567 0.914634 3.885428 0.586619 0.835
914 

transferase activity, 
transferring hexosyl groups 

MF 

GO:0031080 10 32 0.344109 0.33024 0.090909 0.81141
7 

4.472784 4.096785 4.450308 4.133036 0.377168 0.835
914 

Nup107-160 complex CC 

GO:0000127 6 18 -0.14164 0.788964 0.142857 0.80277
8 

3.802158 5.203798 4.033205 5.121666 0.814077 0.827
891 

transcription factor TFIIIC 
complex 

CC 

GO:0005869 6 14 0.146653 0.781598 0.142857 0.80277
8 

3.93185 5.354414 3.658466 5.329118 0.808622 0.827
891 

dynactin complex CC 

GO:0006970 6 60 0.146807 0.781372 0.142857 0.80277
8 

3.959046 4.787542 4.124674 4.797692 0.808622 0.827
891 

response to osmotic stress BP 

GO:0008045 6 55 0.525475 0.284335 0.142857 0.80277
8 

1.054204 3.8056 0.963417 3.690749 0.330761 0.827
891 

motor axon guidance BP 

GO:0009967 6 40 0.150969 0.775266 0.142857 0.80277
8 

1.979504 3.022653 2.059615 3.072051 0.803353 0.827
891 

positive regulation of signal 
transduction 

BP 

GO:0016597 6 69 0.758267 0.08059 0.142857 0.80277
8 

5.681765 5.033042 5.265131 4.799985 0.113175 0.827
891 

amino acid binding MF 

GO:0032040 6 18 0.643882 0.167649 -0.14286 0.80277
8 

5.125832 4.970863 4.949758 4.303314 0.209292 0.827
891 

small-subunit processome CC 

GO:0033197 6 24 0.036412 0.945407 -0.14286 0.80277
8 

3.727987 5.07015 4.210584 4.861769 0.954255 0.827
891 

response to vitamin E BP 

GO:0035329 6 40 0.192038 0.715484 0.142857 0.80277
8 

1.335753 3.886391 0.906091 3.938212 0.748141 0.827
891 

hippo signaling cascade BP 

GO:0042791 6 18 -0.14164 0.788964 0.142857 0.80277
8 

3.802158 5.203798 4.033205 5.121666 0.814077 0.827
891 

5S class rRNA transcription 
from RNA polymerase III 
type 1 promoter 

BP 

GO:0042797 6 18 -0.14164 0.788964 0.142857 0.80277
8 

3.802158 5.203798 4.033205 5.121666 0.814077 0.827
891 

tRNA transcription from 
RNA polymerase III 

BP 
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promoter 

GO:0045821 6 46 0.109416 0.836531 0.142857 0.80277
8 

1.622886 3.225132 0.953598 3.465567 0.857246 0.827
891 

positive regulation of 
glycolysis 

BP 

GO:0050872 6 32 0.305533 0.555962 0.142857 0.80277
8 

3.470047 4.050053 4.327572 3.433872 0.600414 0.827
891 

white fat cell differentiation BP 

GO:0051787 6 17 0.704671 0.11795 0.142857 0.80277
8 

3.480283 4.52336 3.558056 3.518262 0.155957 0.827
891 

misfolded protein binding MF 

GO:0072321 6 23 0.311223 0.548238 0.142857 0.80277
8 

5.890992 5.273052 5.519437 5.168467 0.59306 0.827
891 

chaperone-mediated 
protein transport 

BP 

GO:0004860 8 83 -0.37973 0.353493 -0.11905 0.79300
6 

2.451951 4.469697 1.94218 4.225808 0.401837 0.824
37 

protein kinase inhibitor 
activity 

MF 

GO:0015450 8 32 -0.01361 0.974492 0.119048 0.79300
6 

4.864972 5.559191 4.84356 5.573749 0.977507 0.824
37 

P-P-bond-hydrolysis-driven 
protein transmembrane 
transporter activity 

MF 

GO:0005385 7 63 -0.26329 0.568351 -0.14286 0.78254 1.906459 3.302833 1.979942 3.121176 0.61108 0.814
36 

zinc ion transmembrane 
transporter activity 

MF 

GO:0045039 7 17 0.291589 0.525756 0.142857 0.78254 5.904888 4.894105 5.6878 4.427176 0.571922 0.814
36 

protein import into 
mitochondrial inner 
membrane 

BP 

GO:0048010 7 143 0.224831 0.627888 0.142857 0.78254 2.036957 4.292898 2.629081 4.548084 0.66771 0.814
36 

vascular endothelial growth 
factor receptor signaling 
pathway 

BP 

GO:0009303 9 48 -0.06875 0.860493 0.116667 0.77562
8 

3.037248 4.014229 3.778786 4.467472 0.8781 0.808
466 

rRNA transcription BP 

GO:0009434 9 84 -0.21274 0.582624 -0.11667 0.77562
8 

1.939946 2.586505 1.744197 2.760648 0.625388 0.808
466 

microtubule-based 
flagellum 

CC 

GO:0080008 9 49 0.279484 0.466411 0.116667 0.77562
8 

1.868996 4.498818 1.576045 4.807762 0.512814 0.808
466 

CUL4 RING ubiquitin ligase 
complex 

CC 

GO:0005753 12 72 0.170314 0.596662 0.097902 0.76628
8 

7.632982 7.860837 7.926093 7.830071 0.638694 0.800
017 

mitochondrial proton-
transporting ATP synthase 
complex 

CC 

GO:0008076 13 303 -0.02124 0.945086 0.093407 0.76458
2 

1.0571 3.513766 0.986053 3.273362 0.954255 0.798
663 

voltage-gated potassium 
channel complex 

CC 

GO:0007093 11 57 0.042351 0.901603 0.118182 0.73425
2 

2.617307 3.788773 2.445362 3.9771 0.914772 0.767
394 

mitotic cell cycle checkpoint BP 

GO:0001078 6 47 0.107315 0.839645 -0.2 0.71388
9 

1.42974 1.48496 1.239537 1.787778 0.859984 0.746
513 

RNA polymerase II core 
promoter proximal region 
sequence-specific DNA 
binding transcription factor 
activity involved in negative 
regulation of transcription 

MF 
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GO:0005786 6 24 0.379296 0.45834 0.2 0.71388
9 

6.498161 6.241037 6.452568 6.019001 0.505083 0.746
513 

signal recognition particle, 
endoplasmic reticulum 
targeting 

CC 

GO:0006699 7 80 0.222599 0.631397 0.178571 0.71309
5 

4.865813 4.340004 4.890856 4.431447 0.671075 0.746
513 

bile acid biosynthetic 
process 

BP 

GO:0016601 6 43 -0.0092 0.986205 0.2 0.71388
9 

3.823909 5.341234 2.615023 5.908155 0.987728 0.746
513 

Rac protein signal 
transduction 

BP 

GO:0016705 6 125 -0.02907 0.956404 0.2 0.71388
9 

2.737547 4.24624 3.438236 4.468448 0.962732 0.746
513 

oxidoreductase activity, 
acting on paired donors, 
with incorporation or 
reduction of molecular 
oxygen 

MF 

GO:0030132 6 34 -0.18242 0.72941 -0.2 0.71388
9 

5.888782 5.723061 5.45786 6.291793 0.759477 0.746
513 

clathrin coat of coated pit CC 

GO:0030658 6 67 0.293838 0.571927 0.2 0.71388
9 

3.852178 3.319619 3.693018 3.616373 0.614585 0.746
513 

transport vesicle membrane CC 

GO:0032886 7 36 0.668333 0.100772 0.178571 0.71309
5 

2.572378 3.988237 3.836501 4.165429 0.137064 0.746
513 

regulation of microtubule-
based process 

BP 

GO:0033189 6 44 -0.30745 0.553355 -0.2 0.71388
9 

1.901814 2.491207 1.735519 2.491306 0.597931 0.746
513 

response to vitamin A BP 

GO:0042220 6 66 -0.30999 0.549914 -0.2 0.71388
9 

2.830842 3.892832 2.878781 3.800731 0.594543 0.746
513 

response to cocaine BP 

GO:0045749 6 54 0.574724 0.232832 0.2 0.71388
9 

2.353655 3.885501 2.84048 4.155438 0.277317 0.746
513 

negative regulation of S 
phase of mitotic cell cycle 

BP 

GO:0045861 7 56 0.068475 0.884025 -0.17857 0.71309
5 

2.594123 3.461883 4.22095 3.205879 0.897912 0.746
513 

negative regulation of 
proteolysis 

BP 

GO:0046856 7 28 0.060771 0.897023 -0.17857 0.71309
5 

2.309937 3.756066 2.372793 4.228631 0.9106 0.746
513 

phosphatidylinositol 
dephosphorylation 

BP 

GO:0046965 6 68 0.136091 0.797124 0.2 0.71388
9 

2.123397 4.430161 1.397027 4.530316 0.822061 0.746
513 

retinoid X receptor binding MF 

GO:0048844 6 104 0.410202 0.419208 0.2 0.71388
9 

1.891024 4.184359 1.873121 4.363168 0.465122 0.746
513 

artery morphogenesis BP 

GO:0070628 7 39 0.84539 0.01658 0.178571 0.71309
5 

3.722316 4.27441 4.7994 4.802679 0.030309 0.746
513 

proteasome binding MF 

GO:0004857 10 116 0.138793 0.702171 0.139394 0.70720
4 

3.694002 4.469526 4.465802 3.632776 0.737034 0.745
939 

enzyme inhibitor activity MF 

GO:0005086 8 55 -0.01779 0.966656 0.166667 0.70332
3 

2.834204 4.452866 3.694324 4.648291 0.97115 0.742
249 

ARF guanyl-nucleotide 
exchange factor activity 

MF 

GO:0010039 8 61 0.24615 0.556773 0.166667 0.70332
3 

2.685636 4.22205 2.714877 4.076957 0.600956 0.742
249 

response to iron ion BP 

GO:0033205 8 24 0.301171 0.468522 0.166667 0.70332 2.466489 4.175228 2.313894 4.512244 0.514554 0.742 cell cycle cytokinesis BP 
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3 249 

GO:0035176 8 88 -0.10291 0.808409 -0.16667 0.70332
3 

0.730298 2.763651 0.380696 2.011826 0.832815 0.742
249 

social behavior BP 

GO:0048589 11 86 0.129165 0.705057 0.136364 0.69351
1 

2.094279 4.349534 2.037414 4.482276 0.739524 0.733
485 

developmental growth BP 

GO:0005798 9 40 0.177061 0.648585 0.166667 0.67774
5 

4.270202 4.745904 4.11933 4.555844 0.686716 0.717
2 

Golgi-associated vesicle CC 

GO:0010388 9 32 -0.19562 0.613976 -0.16667 0.67774
5 

5.212592 5.454356 5.152003 5.185979 0.654347 0.717
2 

cullin deneddylation BP 

GO:0043015 9 44 0.267954 0.485743 0.166667 0.67774
5 

0.765909 2.905093 0.397828 3.16564 0.531068 0.717
2 

gamma-tubulin binding MF 

GO:0071479 13 82 -0.06873 0.823468 0.131868 0.66926
9 

3.754099 4.544498 4.154754 4.667042 0.845642 0.709
389 

cellular response to ionizing 
radiation 

BP 

GO:0006342 8 45 -0.09394 0.824903 0.190476 0.66458
3 

1.68228 3.320104 1.711693 3.321277 0.846668 0.704
806 

chromatin silencing BP 

GO:0034968 8 40 -0.09873 0.816088 0.190476 0.66458
3 

1.758078 5.185802 2.559593 5.425431 0.839393 0.704
806 

histone lysine methylation BP 

GO:0000028 6 18 0.86197 0.027264 0.257143 0.65833
3 

7.336446 10.69022 7.633733 11.44902 0.045911 0.702
311 

ribosomal small subunit 
assembly 

BP 

GO:0002089 7 42 0.619982 0.137499 0.214286 0.66150
8 

1.564496 2.79103 0.873027 3.265312 0.177817 0.702
311 

lens morphogenesis in 
camera-type eye 

BP 

GO:0004497 7 176 0.324888 0.477094 0.214286 0.66150
8 

3.120909 4.353972 3.347399 4.186589 0.522493 0.702
311 

monooxygenase activity MF 

GO:0004691 6 57 0.56001 0.247798 0.257143 0.65833
3 

3.366666 4.509872 3.361766 4.371856 0.292278 0.702
311 

cAMP-dependent protein 
kinase activity 

MF 

GO:0005655 7 27 0.023671 0.959826 0.214286 0.66150
8 

3.927042 3.736024 3.354022 3.411782 0.965285 0.702
311 

nucleolar ribonuclease P 
complex 

CC 

GO:0005675 10 30 0.279228 0.434625 0.163636 0.65672
1 

2.172685 3.92879 2.099752 3.981999 0.481131 0.702
311 

holo TFIIH complex CC 

GO:0006002 6 25 0.337619 0.512814 0.257143 0.65833
3 

6.450405 5.89908 6.466776 6.070004 0.559093 0.702
311 

fructose 6-phosphate 
metabolic process 

BP 

GO:0006024 6 34 0.561501 0.246264 0.257143 0.65833
3 

2.90425 4.301344 2.332168 4.247647 0.290822 0.702
311 

glycosaminoglycan 
biosynthetic process 

BP 

GO:0006613 7 26 0.171048 0.713848 -0.21429 0.66150
8 

5.610698 5.650862 5.775539 5.71471 0.746872 0.702
311 

cotranslational protein 
targeting to membrane 

BP 

GO:0006614 6 26 0.371912 0.467853 0.257143 0.65833
3 

6.229818 6.227187 6.452568 5.977454 0.51411 0.702
311 

SRP-dependent 
cotranslational protein 
targeting to membrane 

BP 

GO:0006777 6 30 0.418393 0.409031 0.257143 0.65833
3 

3.517156 3.667566 3.661834 3.39619 0.454608 0.702
311 

Mo-molybdopterin cofactor 
biosynthetic process 

BP 
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GO:0007628 7 80 -0.54028 0.210579 -0.21429 0.66150
8 

3.071974 3.646511 3.541618 3.650579 0.253451 0.702
311 

adult walking behavior BP 

GO:0008053 7 37 0.327517 0.473325 0.214286 0.66150
8 

4.502082 4.585344 4.371054 4.256274 0.519243 0.702
311 

mitochondrial fusion BP 

GO:0008121 6 18 -0.03542 0.946896 -0.25714 0.65833
3 

7.287192 8.099733 7.22068 8.042117 0.954255 0.702
311 

ubiquinol-cytochrome-c 
reductase activity 

MF 

GO:0008198 7 63 -0.21721 0.639893 -0.21429 0.66150
8 

3.244306 3.849059 2.836501 4.195741 0.678621 0.702
311 

ferrous iron binding MF 

GO:0008312 6 24 0.405308 0.425329 0.257143 0.65833
3 

6.376076 6.212075 6.452568 5.932117 0.471645 0.702
311 

7S RNA binding MF 

GO:0008378 7 73 0.380211 0.400158 0.214286 0.66150
8 

1.148832 3.113289 1.50226 3.333375 0.447303 0.702
311 

galactosyltransferase 
activity 

MF 

GO:0008535 7 28 -0.09189 0.844654 -0.21429 0.66150
8 

2.624227 3.580697 2.586406 3.741468 0.864204 0.702
311 

respiratory chain complex IV 
assembly 

BP 

GO:0016303 6 24 -0.02094 0.968588 0.257143 0.65833
3 

1.165125 2.800004 0.830173 2.610031 0.972588 0.702
311 

1-phosphatidylinositol-3-
kinase activity 

MF 

GO:0030127 7 38 0.209832 0.651568 0.214286 0.66150
8 

4.498504 4.467927 5.09278 4.947864 0.688604 0.702
311 

COPII vesicle coat CC 

GO:0033327 7 74 0.239356 0.605195 0.214286 0.66150
8 

4.698243 5.465353 3.816037 5.664749 0.646406 0.702
311 

Leydig cell differentiation BP 

GO:0045494 6 107 -0.37973 0.45778 -0.25714 0.65833
3 

1.330218 3.134156 1.267936 3.306436 0.504752 0.702
311 

photoreceptor cell 
maintenance 

BP 

GO:0046934 6 30 0.246694 0.637466 0.257143 0.65833
3 

0.138123 3.440317 -0.11229 3.855756 0.676417 0.702
311 

phosphatidylinositol-4,5-
bisphosphate 3-kinase 
activity 

MF 

GO:0048193 6 20 0.325252 0.529327 0.257143 0.65833
3 

3.883264 4.755331 3.755475 4.632732 0.57452 0.702
311 

Golgi vesicle transport BP 

GO:0048469 6 124 0.284398 0.584904 0.257143 0.65833
3 

2.831301 4.241518 2.286359 3.198199 0.627143 0.702
311 

cell maturation BP 

GO:0048813 7 90 0.444746 0.317376 0.214286 0.66150
8 

2.479469 4.166878 2.249371 4.403025 0.364746 0.702
311 

dendrite morphogenesis BP 

GO:0048839 6 81 0.26652 0.609685 0.257143 0.65833
3 

2.449564 3.753587 2.459437 3.848262 0.650131 0.702
311 

inner ear development BP 

GO:0070330 6 78 0.059672 0.910598 0.257143 0.65833
3 

1.419744 3.911336 1.422053 3.624144 0.922935 0.702
311 

aromatase activity MF 

GO:0071577 6 49 -0.18976 0.718783 0.257143 0.65833
3 

1.452174 4.650851 0.223212 4.561511 0.75042 0.702
311 

zinc ion transmembrane 
transport 

BP 

GO:0008138 15 116 0.253647 0.361668 0.132143 0.63893
3 

2.08685 3.869725 1.556393 3.840429 0.409694 0.689
254 

protein 
tyrosine/serine/threonine 
phosphatase activity 

MF 

GO:0005774 8 33 0.343713 0.404496 0.214286 0.61909 2.44747 4.7893 2.630444 4.506983 0.450866 0.668 vacuolar membrane CC 
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7 226 

GO:0006939 8 59 0.424742 0.294207 0.214286 0.61909
7 

1.502986 3.867751 1.7486 3.566193 0.340818 0.668
226 

smooth muscle contraction BP 

GO:0000080 14 93 0.183091 0.530971 0.147415 0.61502
6 

2.646912 4.406066 2.435286 3.871792 0.575662 0.664
569 

G1 phase of mitotic cell 
cycle 

BP 

GO:0005978 9 55 0.205222 0.596322 0.2 0.61340
4 

4.007587 3.366678 4.440263 3.550875 0.638682 0.663
185 

glycogen biosynthetic 
process 

BP 

GO:0046326 9 108 0.124223 0.750167 0.2 0.61340
4 

2.486307 4.07297 2.629081 4.018281 0.779421 0.663
185 

positive regulation of 
glucose import 

BP 

GO:0090263 12 174 0.198823 0.535598 0.167832 0.60372
8 

1.870801 4.63801 1.375893 4.575197 0.580032 0.653
45 

positive regulation of 
canonical Wnt receptor 
signaling pathway 

BP 

Table S 11: Top 150 Highest Transcript-protein correlation by Gene Otology class in VCaP 
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GO:0000083 11 79 0.578206 0.062422 -0.00909 0.98919 0.943491 4.405098 0.690824 3.859411 0.106015 1 regulation of 
transcription 
involved in G1/S 
phase of mitotic 
cell cycle 

BP 

GO:0000780 6 52 0.069057 0.89658 0.028571 1 1.092294 3.490959 1.534296 2.941705 0.908358 1 condensed nuclear 
chromosome, 
centromeric region 

CC 

GO:0001932 6 90 -0.09384 0.859648 0.028571 1 4.081225 5.319534 4.233211 4.877704 0.878866 1 regulation of 
protein 
phosphorylation 

BP 

GO:0005484 16 63 0.04252 0.875754 -0.00294 0.991368 4.082291 4.527798 4.394332 4.368086 0.892412 1 SNAP receptor 
activity 

MF 

GO:0005885 6 24 -0.30081 0.562395 -0.02857 1 5.977803 6.504942 6.106591 6.536278 0.612719 1 Arp2/3 protein 
complex 

CC 

GO:0006402 6 42 -0.07763 0.883792 0.028571 1 3.857025 5.245389 4.625575 4.830376 0.899137 1 mRNA catabolic 
process 

BP 

GO:0006744 8 22 0.073752 0.862215 0 1 4.552738 3.912085 4.497401 3.833662 0.88101 1 ubiquinone BP 
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biosynthetic 
process 

GO:0006836 6 123 0.310487 0.549236 -0.02857 1 1.159222 4.647837 0.969639 5.019907 0.601954 1 neurotransmitter 
transport 

BP 

GO:0008378 9 73 0.3119 0.413885 0 1 1.505785 3.813266 0.780909 3.818202 0.479033 1 galactosyltransfera
se activity 

MF 

GO:0015813 7 39 0.06358 0.892282 0 1 5.923861 4.097933 6.052496 4.273186 0.904829 1 L-glutamate 
transport 

BP 

GO:0017015 6 72 0.045808 0.931336 -0.02857 1 0.847658 4.771944 0.46429 4.715752 0.938846 1 regulation of 
transforming 
growth factor beta 
receptor signaling 
pathway 

BP 

GO:0033205 8 24 -0.14781 0.726859 0 1 0.992269 3.63886 0.776114 3.478839 0.763936 1 cell cycle 
cytokinesis 

BP 

GO:0043097 6 34 0.22016 0.675096 -0.02857 1 2.959259 4.683752 2.985357 3.950088 0.71717 1 pyrimidine 
nucleoside salvage 

BP 

GO:0043406 7 161 0.153797 0.741984 0 1 3.516117 5.343588 4.165809 5.619048 0.776784 1 positive regulation 
of MAP kinase 
activity 

BP 

GO:0045600 9 56 0.038286 0.922099 0 1 1.015886 4.173472 1.058894 4.467799 0.931539 1 positive regulation 
of fat cell 
differentiation 

BP 

GO:0048193 6 20 0.007624 0.988565 -0.02857 1 3.94513 5.331832 4.714244 5.026644 0.989621 1 Golgi vesicle 
transport 

BP 

GO:0048255 7 80 0.133501 0.775376 0 1 5.958022 6.59122 6.614494 6.359974 0.806786 1 mRNA stabilization BP 

GO:0048706 8 70 0.083914 0.843399 0 1 0.691883 3.490251 -0.00106 3.168178 0.866333 1 embryonic skeletal 
system 
development 

BP 

GO:0048839 6 81 0.074912 0.887842 0.028571 1 1.630889 4.80235 1.160322 4.55511 0.902005 1 inner ear 
development 

BP 

GO:0051457 9 42 0.130211 0.738455 0 1 2.470677 4.417102 2.272297 4.370446 0.773521 1 maintenance of 
protein location in 
nucleus 

BP 

GO:0071479 12 82 0.260734 0.413066 0 1 3.169443 4.710873 3.157797 4.255418 0.478381 1 cellular response to 
ionizing radiation 

BP 

GO:0090200 7 72 0.077148 0.869419 0 1 4.369794 3.527011 3.888969 3.58635 0.887403 1 positive regulation 
of release of 
cytochrome c from 
mitochondria 

BP 

GO:0001578 9 66 -0.08575 0.826376 0.016667 0.98157 0.210464 3.905076 -0.08095 3.943825 0.851349 0.99322 microtubule bundle BP 
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3 formation 

GO:0001707 9 87 0.228075 0.555042 -0.01667 0.98157 1.193942 3.977355 0.910502 3.942787 0.606471 0.99322
3 

mesoderm 
formation 

BP 

GO:0032784 9 36 0.134074 0.730926 0.016667 0.98157 3.326442 4.824548 3.344051 4.212112 0.76762 0.99322
3 

regulation of 
transcription 
elongation, DNA-
dependent 

BP 

GO:0045860 10 108 0.196375 0.586616 -0.01818 0.972841 1.774997 4.939309 1.263712 4.85641 0.634794 0.98598
8 

positive regulation 
of protein kinase 
activity 

BP 

GO:0048589 11 86 0.025755 0.940084 -0.01818 0.967576 0.51194 3.952207 -0.02006 4.019218 0.947156 0.98118
2 

developmental 
growth 

BP 

GO:0006071 7 53 -0.17168 0.712829 -0.03571 0.963492 2.22236 2.754802 2.439611 2.751458 0.750874 0.97756
9 

glycerol metabolic 
process 

BP 

GO:0006613 7 26 0.138917 0.766436 0.035714 0.963492 5.735365 6.214166 5.831593 6.338304 0.798471 0.97756
9 

cotranslational 
protein targeting to 
membrane 

BP 

GO:0016574 7 16 -0.19176 0.680403 0.035714 0.963492 3.677796 5.129518 3.988504 5.250958 0.721582 0.97756
9 

histone 
ubiquitination 

BP 

GO:0019773 7 37 0.435758 0.328421 -0.03571 0.963492 7.000844 6.04337 7.028403 5.956266 0.395244 0.97756
9 

proteasome core 
complex, alpha-
subunit complex 

CC 

GO:0070403 7 46 0.087757 0.851593 -0.03571 0.963492 3.847249 3.860134 3.910502 3.657623 0.872534 0.97756
9 

NAD+ binding MF 

GO:0003950 12 78 0.129216 0.688982 0.020979 0.956169 2.218197 3.820041 1.739887 3.959964 0.729442 0.97277
1 

NAD+ ADP-
ribosyltransferase 
activity 

MF 

GO:0031572 12 103 0.189909 0.554402 0.020979 0.956169 1.978818 3.735724 2.090401 3.877485 0.606125 0.97277
1 

G2/M transition 
DNA damage 
checkpoint 

BP 

GO:0051865 12 129 0.042062 0.896731 0.020979 0.956169 2.116269 4.038644 1.880118 4.409363 0.908358 0.97277
1 

protein 
autoubiquitination 

BP 

GO:0006695 24 125 0.148698 0.488026 0.013043 0.952979 4.701021 5.095515 5.17854 5.425903 0.547933 0.97110
6 

cholesterol 
biosynthetic 
process 

BP 

GO:0043473 9 94 0.292413 0.44513 0.033333 0.948391 0.359067 2.735137 -0.76001 2.880714 0.508112 0.96695
6 

pigmentation BP 

GO:0045022 9 34 0.065087 0.867873 -0.03333 0.948391 0.648975 3.778828 -0.06212 4.268493 0.886308 0.96695
6 

early endosome to 
late endosome 
transport 

BP 

GO:0002053 8 153 0.361239 0.379294 0.047619 0.934871 1.299036 5.49012 0.182053 5.098177 0.445321 0.95421 positive regulation BP 
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of mesenchymal 
cell proliferation 

GO:0004812 8 18 0.371342 0.365094 0.047619 0.934871 4.479887 5.742679 5.565166 5.409695 0.431034 0.95421 aminoacyl-tRNA 
ligase activity 

MF 

GO:0006829 8 59 0.282455 0.497891 0.047619 0.934871 2.552103 3.831671 2.91061 4.125763 0.556344 0.95421 zinc ion transport BP 

GO:0007062 8 44 0.016412 0.969233 0.047619 0.934871 3.445465 5.338565 5.112441 5.491767 0.972344 0.95421 sister chromatid 
cohesion 

BP 

GO:0007093 8 57 0.110806 0.793933 0.047619 0.934871 2.567786 4.205014 2.867301 4.076333 0.822899 0.95421 mitotic cell cycle 
checkpoint 

BP 

GO:0015450 8 32 0.271531 0.51535 -0.04762 0.934871 6.144671 5.874437 6.010794 6.22926 0.571088 0.95421 P-P-bond-
hydrolysis-driven 
protein 
transmembrane 
transporter activity 

MF 

GO:0021510 8 48 0.245037 0.558616 -0.04762 0.934871 3.034725 5.017556 3.432397 5.04351 0.60931 0.95421 spinal cord 
development 

BP 

GO:0030374 30 137 0.163573 0.387756 0.01624 0.93261 2.738105 5.082293 3.07926 5.130238 0.452986 0.95421 ligand-dependent 
nuclear receptor 
transcription 
coactivator activity 

MF 

GO:0051898 8 64 0.219962 0.600681 -0.04762 0.934871 2.080266 5.208602 1.796763 5.176546 0.648777 0.95421 negative regulation 
of protein kinase B 
signaling cascade 

BP 

GO:0005742 6 22 0.116444 0.826123 -0.08571 0.919444 6.772297 6.046374 7.165902 5.926692 0.851349 0.94308
4 

mitochondrial 
outer membrane 
translocase 
complex 

CC 

GO:0007043 6 44 -0.10802 0.838605 0.085714 0.919444 2.772256 3.389679 2.965327 3.858168 0.862053 0.94308
4 

cell-cell junction 
assembly 

BP 

GO:0014065 6 52 0.325617 0.528836 0.085714 0.919444 1.174255 4.615857 1.638061 4.913686 0.582932 0.94308
4 

phosphatidylinosit
ol 3-kinase cascade 

BP 

GO:0017091 6 42 -0.2186 0.677319 -0.08571 0.919444 4.094554 5.236286 5.517274 4.980946 0.718717 0.94308
4 

AU-rich element 
binding 

MF 

GO:0030325 6 120 0.028232 0.957663 -0.08571 0.919444 3.387157 4.542376 3.683162 4.250216 0.962798 0.94308
4 

adrenal gland 
development 

BP 

GO:0030330 6 30 0.072879 0.890875 0.085714 0.919444 2.735388 4.593422 2.814179 4.405801 0.903891 0.94308
4 

DNA damage 
response, signal 
transduction by 
p53 class mediator 

BP 

GO:0031016 6 106 0.711467 0.112866 -0.08571 0.919444 1.243299 4.21182 -0.06199 3.996898 0.167424 0.94308
4 

pancreas 
development 

BP 
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GO:0032040 6 18 0.633561 0.176814 0.085714 0.919444 5.518951 5.730261 5.576771 4.830694 0.236438 0.94308
4 

small-subunit 
processome 

CC 

GO:0043195 6 138 0.428252 0.396892 0.085714 0.919444 1.186655 3.506194 0.670776 4.022345 0.462507 0.94308
4 

terminal button CC 

GO:0045070 6 36 -0.12585 0.812226 0.085714 0.919444 3.864616 4.619701 4.435874 5.360881 0.838614 0.94308
4 

positive regulation 
of viral genome 
replication 

BP 

GO:0046676 6 100 -0.20063 0.703098 0.085714 0.919444 3.295659 4.841598 4.003979 5.289861 0.741874 0.94308
4 

negative regulation 
of insulin secretion 

BP 

GO:0046873 6 59 0.252408 0.629428 -0.08571 0.919444 2.184069 3.566752 3.042768 3.427148 0.675546 0.94308
4 

metal ion 
transmembrane 
transporter activity 

MF 

GO:0048854 6 34 0.441677 0.380566 0.085714 0.919444 1.811785 3.699449 1.817569 3.359042 0.446534 0.94308
4 

brain 
morphogenesis 

BP 

GO:0050431 6 53 -0.09596 0.856506 0.085714 0.919444 1.863702 4.532962 1.571686 4.524894 0.87661 0.94308
4 

transforming 
growth factor beta 
binding 

MF 

GO:0055088 6 78 -0.02256 0.966166 0.085714 0.919444 1.789608 4.553299 2.087711 4.304533 0.969787 0.94308
4 

lipid homeostasis BP 

GO:0060135 6 70 0.383073 0.453497 -0.08571 0.919444 2.758274 4.889684 2.411515 4.980563 0.5162 0.94308
4 

maternal process 
involved in female 
pregnancy 

BP 

GO:0060170 6 51 -0.18695 0.722835 0.085714 0.919444 1.162056 2.751843 1.350045 2.636462 0.760559 0.94308
4 

cilium membrane CC 

GO:0071203 6 28 0.570887 0.236699 0.085714 0.919444 3.838014 5.654391 2.70468 5.767017 0.301297 0.94308
4 

WASH complex CC 

GO:0071565 6 56 0.48133 0.333762 -0.08571 0.919444 5.245563 6.062814 5.4654 6.051746 0.400376 0.94308
4 

nBAF complex CC 

GO:0004012 7 38 0.140815 0.763309 0.071429 0.906349 0.736742 3.318844 0.484792 2.80118 0.796884 0.93941
7 

phospholipid-
translocating 
ATPase activity 

MF 

GO:0004707 7 74 0.01469 0.975063 -0.07143 0.906349 1.839266 4.376119 2.680382 4.813743 0.977671 0.93941
7 

MAP kinase activity MF 

GO:0043235 7 99 0.277375 0.547017 -0.07143 0.906349 0.485463 3.480122 0.047219 4.303502 0.600502 0.93941
7 

receptor complex CC 

GO:0046326 7 108 -0.33657 0.460433 0.071429 0.906349 1.548996 4.143807 1.058894 4.34284 0.52227 0.93941
7 

positive regulation 
of glucose import 

BP 

GO:0009165 8 46 -0.11582 0.78477 0.071429 0.881994 2.717129 4.526742 2.97321 4.088512 0.815204 0.91619
9 

nucleotide 
biosynthetic 
process 

BP 

GO:0001947 9 112 -0.01805 0.963229 -0.06667 0.880093 0.803134 4.005524 0.406407 3.754132 0.967875 0.91473 heart looping BP 
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GO:0008299 11 49 -0.10488 0.758924 -0.06364 0.860104 3.307927 4.780084 4.073393 5.415896 0.792748 0.89445 isoprenoid 
biosynthetic 
process 

BP 

GO:0045766 17 233 0.083013 0.751435 0.04902 0.853696 2.157506 4.099277 1.818579 4.665889 0.785801 0.88828 positive regulation 
of angiogenesis 

BP 

GO:0006783 12 71 -0.2553 0.423212 -0.06294 0.851682 3.521683 3.926829 3.905855 4.172798 0.487421 0.88667
6 

heme biosynthetic 
process 

BP 

GO:0005763 18 51 0.232281 0.353661 0.048504 0.849928 6.48675 5.341391 6.488628 5.420436 0.421025 0.88534
1 

mitochondrial 
small ribosomal 
subunit 

CC 

GO:0001938 17 202 0.038874 0.882241 -0.05147 0.846278 1.327589 4.295024 1.553511 4.234063 0.898047 0.88203 positive regulation 
of endothelial cell 
proliferation 

BP 

GO:0035019 9 68 -0.07151 0.854944 0.083333 0.843182 0.839581 4.531917 0.697827 4.770163 0.875489 0.87929
2 

somatic stem cell 
maintenance 

BP 

GO:0060612 10 40 0.0752 0.836428 -0.07295 0.841271 2.690375 4.176714 2.098271 4.203965 0.860286 0.87778
7 

adipose tissue 
development 

BP 

GO:0006013 7 18 0.029391 0.950126 -0.10714 0.839683 1.086868 3.995405 0.213404 4.088025 0.956246 0.87661
7 

mannose metabolic 
process 

BP 

GO:0008324 11 66 0.161768 0.634645 0.072727 0.838825 4.242159 3.75972 4.297832 3.586884 0.680755 0.87661
7 

cation 
transmembrane 
transporter activity 

MF 

GO:0033327 7 74 -0.04484 0.923949 0.107143 0.839683 4.694676 6.025466 5.80093 6.084058 0.932905 0.87661
7 

Leydig cell 
differentiation 

BP 

GO:0034968 7 40 -0.12998 0.7812 0.107143 0.839683 0.538306 4.694806 -0.13488 4.902703 0.811945 0.87661
7 

histone lysine 
methylation 

BP 

GO:0060716 7 37 -0.2336 0.614159 -0.10714 0.839683 2.55081 4.907479 1.325539 4.951885 0.660671 0.87661
7 

labyrinthine layer 
blood vessel 
development 

BP 

GO:0070402 7 28 0.764417 0.045361 0.107143 0.839683 5.358128 2.465531 5.411195 3.045436 0.082494 0.87661
7 

NADPH binding MF 

GO:0005761 22 75 -0.10212 0.651124 -0.04687 0.836419 6.164567 5.04572 6.386758 5.134603 0.694092 0.87613
7 

mitochondrial 
ribosome 

CC 

GO:0070979 17 124 0.03779 0.885504 0.056373 0.83148 3.188915 4.949748 3.366466 5.308277 0.900391 0.87145
1 

protein K11-linked 
ubiquitination 

BP 

GO:0005100 12 78 0.202693 0.52752 0.076923 0.817283 0.659569 3.934222 0.703818 4.289986 0.581823 0.85705 Rho GTPase 
activator activity 

MF 

GO:0000045 10 74 -0.00285 0.993775 -0.09091 0.811417 1.919718 4.576696 1.88459 5.014932 0.994305 0.85137
5 

autophagic vacuole 
assembly 

BP 

GO:0001756 9 117 -0.05034 0.897675 0.1 0.809981 2.798997 4.278881 3.171368 4.761205 0.908823 0.85034
4 

somitogenesis BP 
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GO:0004177 23 96 0.247571 0.254729 -0.05435 0.805563 3.877978 4.07705 4.240732 4.739203 0.319689 0.84618 aminopeptidase 
activity 

MF 

GO:0005666 6 18 0.310437 0.549303 0.142857 0.802778 3.440333 4.227183 3.560238 4.314305 0.601954 0.84372
7 

DNA-directed RNA 
polymerase III 
complex 

CC 

GO:0006241 6 34 0.346719 0.500762 0.142857 0.802778 3.541807 4.021962 3.662615 3.955451 0.558886 0.84372
7 

CTP biosynthetic 
process 

BP 

GO:0006777 6 30 0.10283 0.846298 0.142857 0.802778 3.057003 3.81395 4.572423 3.746419 0.868091 0.84372
7 

Mo-molybdopterin 
cofactor 
biosynthetic 
process 

BP 

GO:0007193 6 90 0.304023 0.558016 0.142857 0.802778 1.169721 2.890221 0.192976 3.460683 0.609011 0.84372
7 

inhibition of 
adenylate cyclase 
activity by G-
protein signaling 
pathway 

BP 

GO:0031648 6 46 0.537803 0.271071 0.142857 0.802778 3.352394 4.089137 3.324809 4.302306 0.335556 0.84372
7 

protein 
destabilization 

BP 

GO:0034199 6 72 0.142421 0.787813 0.142857 0.802778 1.448272 4.059546 1.21921 4.357716 0.817913 0.84372
7 

activation of 
protein kinase A 
activity 

BP 

GO:0042476 6 110 0.445107 0.376432 0.142857 0.802778 3.016215 4.404291 3.426106 4.292532 0.442514 0.84372
7 

odontogenesis BP 

GO:0042640 6 36 -0.15693 0.766532 -0.14286 0.802778 2.500372 4.934465 3.117595 5.013499 0.798471 0.84372
7 

anagen BP 

GO:0045749 6 54 0.440765 0.381667 0.142857 0.802778 0.672611 4.45561 0.025096 4.427356 0.447546 0.84372
7 

negative regulation 
of S phase of 
mitotic cell cycle 

BP 

GO:0060444 6 54 0.181194 0.731183 0.142857 0.802778 3.603143 4.985588 4.803961 5.02928 0.76762 0.84372
7 

branching involved 
in mammary gland 
duct 
morphogenesis 

BP 

GO:0006694 11 101 0.120571 0.723996 0.090909 0.796592 4.898655 4.704746 5.168903 4.415017 0.761353 0.84200
9 

steroid 
biosynthetic 
process 

BP 

GO:0019894 11 64 0.758699 0.006788 -0.09091 0.796592 2.056325 4.893443 1.350706 4.413659 0.01858 0.84200
9 

kinesin binding MF 

GO:0031418 16 84 0.069019 0.799509 0.070588 0.796653 2.76192 3.908979 2.546638 4.132171 0.827307 0.84200
9 

L-ascorbic acid 
binding 

MF 

GO:0046965 8 68 0.564747 0.144707 0.119048 0.793006 1.37829 5.350354 0.686975 5.122601 0.201803 0.83957
4 

retinoid X receptor 
binding 

MF 
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GO:0000178 13 37 0.076387 0.804115 0.082418 0.792486 5.892467 5.002799 5.967425 4.811056 0.831613 0.83949
7 

exosome (RNase 
complex) 

CC 

GO:0004602 7 46 0.204037 0.66078 0.142857 0.78254 6.029682 5.16464 6.107803 5.286291 0.702759 0.82943 glutathione 
peroxidase activity 

MF 

GO:0006390 7 26 0.194444 0.676106 0.142857 0.78254 4.216183 4.006701 4.643856 4.02589 0.717836 0.82943 transcription from 
mitochondrial 
promoter 

BP 

GO:0006476 7 41 0.30824 0.501216 0.142857 0.78254 3.139741 4.304743 2.961283 4.418351 0.55906 0.82943 protein 
deacetylation 

BP 

GO:0031293 7 47 -0.1856 0.690312 -0.14286 0.78254 2.911152 4.32924 2.432455 4.580642 0.730142 0.82943 membrane protein 
intracellular 
domain proteolysis 

BP 

GO:0042581 7 36 -0.03235 0.945117 -0.14286 0.78254 4.650235 4.587922 4.926256 4.426996 0.951715 0.82943 specific granule CC 

GO:0030520 9 93 0.116779 0.764787 0.116667 0.775628 3.468871 5.644236 3.451662 5.542371 0.797539 0.82443
5 

estrogen receptor 
signaling pathway 

BP 

GO:0046329 9 92 -0.08187 0.834137 -0.11667 0.775628 1.597016 5.051806 1.532199 5.420283 0.858401 0.82443
5 

negative regulation 
of JNK cascade 

BP 

GO:0048286 9 172 0.059568 0.879008 0.116667 0.775628 0.587715 3.206761 1.114035 2.525999 0.895241 0.82443
5 

lung alveolus 
development 

BP 

GO:0007219 25 204 0.308103 0.134037 0.060769 0.772611 2.307316 4.787016 2.432455 4.935555 0.189675 0.82262
6 

Notch signaling 
pathway 

BP 

GO:0022857 13 127 0.404651 0.170216 0.093407 0.764582 6.726652 6.253938 7.528755 6.669332 0.228785 0.81454 transmembrane 
transporter activity 

MF 

GO:0030518 13 35 0.166633 0.586377 -0.09341 0.764582 3.429866 4.350746 3.592326 4.21898 0.634794 0.81454 steroid hormone 
receptor signaling 
pathway 

BP 

GO:0008206 10 130 0.295908 0.406463 0.115152 0.758833 3.711967 3.706616 3.544795 4.078894 0.4719 0.80933
6 

bile acid metabolic 
process 

BP 

GO:0046966 24 104 -0.09586 0.65591 -0.06696 0.755543 2.847296 4.651241 3.125091 4.6705 0.697975 0.80628
5 

thyroid hormone 
receptor binding 

MF 

GO:0004143 8 88 0.018499 0.965322 -0.14286 0.752034 1.01886 3.688501 0.46234 3.838619 0.969459 0.80299
7 

diacylglycerol 
kinase activity 

MF 

GO:0048661 8 195 0.273265 0.512565 0.142857 0.752034 1.522418 4.689901 1.454915 5.017571 0.568337 0.80299
7 

positive regulation 
of smooth muscle 
cell proliferation 

BP 

GO:0050662 13 67 -0.00087 0.997755 -0.0989 0.75073 3.977718 4.184956 4.224317 4.558348 0.997755 0.80252 coenzyme binding MF 

GO:0006521 41 166 0.242658 0.126347 0.051916 0.746487 6.033826 5.555102 6.346333 5.801958 0.182001 0.79843
9 

regulation of 
cellular amino acid 
metabolic process 

BP 

GO:0007220 9 51 -0.27669 0.47106 -0.13333 0.743541 2.659795 5.097063 3.273907 5.121863 0.532713 0.79574
1 

Notch receptor 
processing 

BP 
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GO:0032456 9 24 0.182973 0.637493 0.133333 0.743541 2.300023 4.180317 1.895395 3.682134 0.683028 0.79574
1 

endocytic recycling BP 

GO:0006206 14 81 0.148233 0.613042 0.098901 0.738503 3.762449 4.379912 3.553859 4.178707 0.660226 0.79125
3 

pyrimidine base 
metabolic process 

BP 

GO:0008277 11 180 0.205644 0.544101 0.118182 0.734252 1.267662 3.853783 -0.49876 3.818152 0.598351 0.78714
8 

regulation of G-
protein coupled 
receptor protein 
signaling pathway 

BP 

GO:0003678 12 48 0.245667 0.44151 0.111888 0.732775 2.188292 4.52689 1.616492 4.658547 0.504775 0.78613
4 

DNA helicase 
activity 

MF 

GO:0004540 10 49 -0.04265 0.906883 -0.12727 0.732887 4.030075 3.566497 4.084876 3.563018 0.917155 0.78613
4 

ribonuclease 
activity 

MF 

GO:0030414 17 285 -0.06094 0.816269 -0.09314 0.722578 4.263963 4.40822 4.267328 4.939667 0.841861 0.77596
5 

peptidase inhibitor 
activity 

MF 

GO:0004867 21 304 0.104816 0.651151 0.085714 0.711371 4.513812 4.762634 5.28396 5.28103 0.694092 0.76707
3 

serine-type 
endopeptidase 
inhibitor activity 

MF 

GO:0005663 6 28 0.509142 0.302278 0.2 0.713889 5.947455 5.695225 5.939335 5.559639 0.368751 0.76707
3 

DNA replication 
factor C complex 

CC 

GO:0005721 6 18 0.35377 0.491483 0.2 0.713889 4.49101 4.995532 4.477097 4.785633 0.551155 0.76707
3 

centromeric 
heterochromatin 

CC 

GO:0006734 7 27 0.489475 0.264897 0.178571 0.713095 6.78558 5.404291 6.803334 5.68167 0.329505 0.76707
3 

NADH metabolic 
process 

BP 

GO:0007588 6 149 0.100109 0.850338 0.2 0.713889 2.40698 4.08734 2.655976 4.020161 0.871725 0.76707
3 

excretion BP 

GO:0035257 6 58 0.454506 0.365186 0.2 0.713889 0.944933 4.914667 -0.11489 5.072559 0.431034 0.76707
3 

nuclear hormone 
receptor binding 

MF 

GO:0045165 7 102 0.137289 0.769122 0.178571 0.713095 1.713083 3.820347 1.081614 3.919793 0.800724 0.76707
3 

cell fate 
commitment 

BP 

GO:0070087 6 28 0.433538 0.390435 0.2 0.713889 4.561388 5.348476 3.953923 4.928984 0.455832 0.76707
3 

chromo shadow 
domain binding 

MF 

GO:0070776 6 20 -0.13576 0.797611 -0.2 0.713889 0.355135 4.411923 0.604881 4.495243 0.826255 0.76707
3 

MOZ/MORF 
histone 
acetyltransferase 
complex 

CC 

GO:0010388 9 32 -0.07711 0.843693 0.15 0.708069 4.678702 5.204871 4.782562 5.088497 0.866333 0.76476
3 

cullin 
deneddylation 

BP 

GO:0010390 9 31 -0.28665 0.454569 0.15 0.708069 3.893637 5.335653 4.479685 5.445761 0.516555 0.76476
3 

histone 
monoubiquitinatio
n 

BP 

GO:0001702 10 56 0.289063 0.417915 -0.13939 0.707204 1.42503 4.457764 0.836045 3.948033 0.482506 0.76471 gastrulation with BP 
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mouth forming 
second 

GO:0050661 14 130 -0.13122 0.65478 -0.11209 0.704285 4.261224 4.216618 4.542605 4.258537 0.697168 0.76199
4 

NADP binding MF 

GO:0008630 13 125 0.406205 0.168424 0.120879 0.696085 2.788878 4.263779 2.55828 4.655165 0.226865 0.75355
6 

DNA damage 
response, signal 
transduction 
resulting in 
induction of 
apoptosis 

BP 

GO:0007257 15 101 -0.0244 0.931206 -0.11071 0.695276 1.268355 4.48884 1.350706 4.622339 0.938846 0.75311
5 

activation of JUN 
kinase activity 

BP 

GO:0015934 10 38 0.391117 0.263735 0.151515 0.681808 6.458516 7.04497 6.659613 6.21791 0.328792 0.73895
3 

large ribosomal 
subunit 

CC 

GO:0019216 9 66 0.576222 0.104388 0.166667 0.677745 2.097659 3.832253 1.314733 2.720074 0.157338 0.73497
5 

regulation of lipid 
metabolic process 

BP 

GO:0032007 9 40 0.175422 0.65167 0.166667 0.677745 0.71269 4.147382 1.19347 4.263584 0.694251 0.73497
5 

negative regulation 
of TOR signaling 
cascade 

BP 

GO:0030914 13 42 0.213272 0.484179 0.131868 0.669269 2.734504 4.513679 2.500626 4.699925 0.54492 0.72662
4 

STAGA complex CC 

GO:0006506 12 80 0.339022 0.281026 0.13986 0.667151 2.535495 3.841226 2.380258 3.881264 0.346432 0.72474
3 

GPI anchor 
biosynthetic 
process 

BP 

Table S 12: Top 150 Highest Transcript-protein correlation by Gene Otology class in RWPE 

Orange 
Annotation 
Cluster 1 

Enrichment Score: 
12.496483810424145                     

Category Term 
Coun
t % PValue 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt Bonferroni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0045449~regulation 
of transcription 280 

20.0573
1 4.21E-17 936 

148
5 7682 1.547498 1.19E-13 

1.19E-
13 

7.54E-
14 

GOTERM_MF_
FAT 

GO:0003677~DNA 
binding 247 

17.6934
1 4.20E-15 892 

130
2 7328 1.558499 3.71E-12 

3.71E-
12 

6.56E-
12 

GOTERM_MF_
FAT 

GO:0003700~transcripti
on factor activity 119 

8.52435
5 1.11E-13 892 500 7328 1.955229 9.81E-11 

4.90E-
11 

1.73E-
10 



162 
 

GOTERM_BP_
FAT 

GO:0006350~transcripti
on 229 

16.4040
1 2.47E-13 936 

121
6 7682 1.545612 7.00E-10 

3.50E-
10 

4.42E-
10 

GOTERM_BP_
FAT 

GO:0006355~regulation 
of transcription, DNA-
dependent 185 

13.2521
5 4.33E-13 936 925 7682 1.641453 1.23E-09 

4.09E-
10 

7.74E-
10 

GOTERM_BP_
FAT 

GO:0051252~regulation 
of RNA metabolic 
process 187 

13.3954
2 2.23E-12 936 954 7682 1.608762 6.33E-09 

1.58E-
09 

4.00E-
09 

GOTERM_MF_
FAT 

GO:0030528~transcripti
on regulator activity 161 

11.5329
5 7.09E-08 892 896 7328 1.476177 6.24E-05 

2.08E-
05 

1.10E-
04 

                        
Annotation 
Cluster 2 

Enrichment Score: 
4.737597178670993                     

Category Term 
Coun
t % PValue 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt Bonferroni 

Benjami
ni FDR 

GOTERM_MF_
FAT 

GO:0008270~zinc ion 
binding 222 

15.9025
8 4.94E-07 892 

136
2 7328 1.339049 4.35E-04 

1.09E-
04 

7.68E-
04 

GOTERM_MF_
FAT 

GO:0046914~transition 
metal ion binding 257 

18.4097
4 2.67E-06 892 

165
3 7328 1.277265 0.002348 

4.70E-
04 

0.0041
52 

GOTERM_MF_
FAT 

GO:0046872~metal ion 
binding 339 

24.2836
7 8.70E-05 892 

236
7 7328 1.176582 0.07373 

0.00693
9 

0.1351
78 

GOTERM_MF_
FAT 

GO:0043169~cation 
binding 341 

24.4269
3 1.17E-04 892 

239
1 7328 1.171643 0.09753 

0.00851
5 

0.1810
78 

GOTERM_MF_
FAT 

GO:0043167~ion 
binding 343 24.5702 1.53E-04 892 

241
4 7328 1.167286 0.126019 

0.01030
8 

0.2376
12 

                        
Annotation 
Cluster 3 

Enrichment Score: 
3.480997610903036                     

Category Term 
Coun
t % PValue 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt Bonferroni 

Benjami
ni FDR 

GOTERM_CC_ GO:0031226~intrinsic 86 6.16045 1.33E-06 796 456 7021 1.663487 4.94E-04 1.65E- 0.0018
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FAT to plasma membrane 8 04 35 

GOTERM_CC_
FAT 

GO:0005887~integral to 
plasma membrane 81 

5.80229
2 1.16E-05 796 445 7021 1.605502 0.004319 

6.18E-
04 

0.0160
54 

GOTERM_CC_
FAT 

GO:0005886~plasma 
membrane 209 

14.9713
5 

0.00378
1 796 

156
8 7021 1.175672 0.755686 

0.12025
1 

5.0939
82 

GOTERM_CC_
FAT 

GO:0044459~plasma 
membrane part 127 

9.09742
1 

0.20369
5 796 

104
1 7021 1.076066 1 

0.96156
9 

95.686
49 

                        
Annotation 
Cluster 4 

Enrichment Score: 
3.3569652578172073                     

Category Term 
Coun
t % PValue 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt Bonferroni 

Benjami
ni FDR 

GOTERM_CC_
FAT 

GO:0034705~potassium 
channel complex 17 

1.21776
5 2.85E-06 796 40 7021 3.748649 0.001061 

2.65E-
04 

0.0039
37 

GOTERM_CC_
FAT 

GO:0008076~voltage-
gated potassium 
channel complex 17 

1.21776
5 2.85E-06 796 40 7021 3.748649 0.001061 

2.65E-
04 

0.0039
37 

GOTERM_MF_
FAT 

GO:0005267~potassium 
channel activity 21 

1.50429
8 3.12E-06 892 55 7328 3.136731 0.002744 

4.58E-
04 

0.0048
52 

GOTERM_MF_
FAT 

GO:0005249~voltage-
gated potassium 
channel activity 18 

1.28939
8 3.12E-06 892 42 7328 3.52082 0.002746 

3.93E-
04 

0.0048
57 

GOTERM_MF_
FAT 

GO:0022843~voltage-
gated cation channel 
activity 20 

1.43266
5 3.62E-06 892 51 7328 3.221665 0.003184 

3.99E-
04 

0.0056
32 

GOTERM_CC_
FAT 

GO:0034703~cation 
channel complex 19 

1.36103
2 1.06E-05 796 53 7021 3.162013 0.003943 

6.58E-
04 

0.0146
55 

GOTERM_MF_
FAT 

GO:0022832~voltage-
gated channel activity 22 

1.57593
1 8.35E-05 892 72 7328 2.510214 0.070814 

0.00731
8 

0.1296
34 

GOTERM_MF_
FAT 

GO:0005244~voltage-
gated ion channel 
activity 22 

1.57593
1 8.35E-05 892 72 7328 2.510214 0.070814 

0.00731
8 

0.1296
34 
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GOTERM_BP_
FAT 

GO:0006813~potassium 
ion transport 21 

1.50429
8 1.10E-04 936 68 7682 2.534597 0.267176 

0.02786
3 

0.1961
86 

GOTERM_CC_
FAT 

GO:0034702~ion 
channel complex 21 

1.50429
8 1.44E-04 796 74 7021 2.503073 0.052093 

0.00533
6 

0.1982
76 

GOTERM_MF_
FAT 

GO:0005261~cation 
channel activity 26 

1.86246
4 3.34E-04 892 101 7328 2.114816 0.254618 

0.02077
1 

0.5176
55 

GOTERM_MF_
FAT 

GO:0022836~gated 
channel activity 26 

1.86246
4 8.42E-04 892 107 7328 1.996228 0.523313 0.04525 

1.3000
12 

GOTERM_BP_
FAT 

GO:0015672~monovale
nt inorganic cation 
transport 32 

2.29226
4 9.71E-04 936 144 7682 1.823837 0.936146 

0.10830
5 

1.7230
26 

GOTERM_MF_
FAT 

GO:0046873~metal ion 
transmembrane 
transporter activity 30 

2.14899
7 9.76E-04 892 132 7328 1.867102 0.576576 

0.04662
2 

1.5063
42 

GOTERM_MF_
FAT 

GO:0022838~substrate 
specific channel activity 30 

2.14899
7 

0.00141
7 892 135 7328 1.82561 0.712753 

0.06354
5 

2.1790
38 

GOTERM_MF_
FAT 

GO:0022803~passive 
transmembrane 
transporter activity 31 2.22063 

0.00175
2 892 143 7328 1.780928 0.786341 

0.07426
6 

2.6890
26 

GOTERM_MF_
FAT 

GO:0015267~channel 
activity 31 2.22063 

0.00175
2 892 143 7328 1.780928 0.786341 

0.07426
6 

2.6890
26 

GOTERM_MF_
FAT 

GO:0005216~ion 
channel activity 29 

2.07736
4 

0.00261
1 892 134 7328 1.777927 0.899811 

0.10376
9 

3.9819
44 

GOTERM_BP_
FAT 

GO:0030001~metal ion 
transport 38 

2.72206
3 

0.00844
6 936 205 7682 1.521347 1 

0.47753
8 

14.079
67 

GOTERM_MF_
FAT 

GO:0030955~potassium 
ion binding 13 

0.93123
2 

0.01460
1 892 50 7328 2.135964 0.999998 0.41685 

20.435
5 

GOTERM_BP_
FAT 

GO:0006812~cation 
transport 44 

3.15186
2 0.01766 936 257 7682 1.405135 1 0.67416 

27.296
86 

GOTERM_MF_
FAT 

GO:0031420~alkali 
metal ion binding 18 

1.28939
8 

0.03432
7 892 88 7328 1.680391 1 0.64107 

41.893
7 

GOTERM_BP_
FAT 

GO:0006811~ion 
transport 52 

3.72492
8 0.06903 936 342 7682 1.247888 1 

0.93042
6 

72.188
47 

GOTERM_BP_ GO:0055085~transmem 39 2.79369 0.51671 936 311 7682 1.029207 1 0.99913 99.999
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FAT brane transport 6 2 5 78 

                        
Annotation 
Cluster 5 

Enrichment Score: 
3.298323733971374                     

Category Term 
Coun
t % PValue 

List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt Bonferroni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0045935~positive 
regulation of 
nucleobase, nucleoside, 
nucleotide and nucleic 
acid metabolic process 73 

5.22922
6 3.05E-05 936 372 7682 1.610565 0.082805 

0.01227
2 

0.0545
9 

GOTERM_BP_
FAT 

GO:0051173~positive 
regulation of nitrogen 
compound metabolic 
process 74 5.30086 5.44E-05 936 385 7682 1.5775 0.142669 

0.01905
7 

0.0971
99 

GOTERM_BP_
FAT 

GO:0010557~positive 
regulation of 
macromolecule 
biosynthetic process 71 5.08596 9.07E-05 936 371 7682 1.570663 0.226453 0.02535 

0.1620
83 

GOTERM_BP_
FAT 

GO:0009891~positive 
regulation of 
biosynthetic process 73 

5.22922
6 1.36E-04 936 389 7682 1.540181 0.319436 

0.03156
1 

0.2428
23 

GOTERM_BP_
FAT 

GO:0031328~positive 
regulation of cellular 
biosynthetic process 72 

5.15759
3 1.69E-04 936 385 7682 1.534865 0.379852 

0.03608
6 

0.3013
93 

GOTERM_BP_
FAT 

GO:0045941~positive 
regulation of 
transcription 63 

4.51289
4 3.05E-04 936 332 7682 1.557403 0.578856 

0.05602
2 

0.5448
36 

GOTERM_BP_
FAT 

GO:0010628~positive 
regulation of gene 
expression 63 

4.51289
4 5.01E-04 936 338 7682 1.529756 0.758348 0.07587 

0.8932
33 

GOTERM_BP_
FAT 

GO:0045893~positive 
regulation of 53 

3.79656
2 

0.00134
7 936 283 7682 1.53705 0.978035 

0.13658
3 

2.3833
5 
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transcription, DNA-
dependent 

GOTERM_BP_
FAT 

GO:0051254~positive 
regulation of RNA 
metabolic process 53 

3.79656
2 

0.00185
3 936 287 7682 1.515627 0.994771 

0.16569
3 

3.2643
96 

GOTERM_BP_
FAT 

GO:0006357~regulation 
of transcription from 
RNA polymerase II 
promoter 78 

5.58739
3 

0.00194
5 936 461 7682 1.388648 0.995971 

0.16790
5 

3.4236
64 

GOTERM_BP_
FAT 

GO:0045944~positive 
regulation of 
transcription from RNA 
polymerase II promoter 39 

2.79369
6 

0.00489
5 936 205 7682 1.561382 0.999999 

0.34370
1 

8.4054
13 

GOTERM_BP_
FAT 

GO:0010604~positive 
regulation of 
macromolecule 
metabolic process 80 

5.73065
9 

0.02096
6 936 522 7682 1.257818 1 

0.70613
4 

31.551
88 

            
            Red 
Annotation 
Cluster 1 

Enrichment Score: 
4.9524705825017845                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0030216~keratinocyte 
differentiation 7 10 

5.20E-
08 54 31 

768
2 32.12306 

2.61E-
05 

2.61E-
05 

7.49E-
05 

GOTERM_BP_
FAT 

GO:0009913~epidermal cell 
differentiation 7 10 

1.12E-
07 54 35 

768
2 28.45185 

5.63E-
05 

2.81E-
05 

1.62E-
04 

GOTERM_BP_
FAT 

GO:0008544~epidermis 
development 9 12.85714 

1.37E-
07 54 89 

768
2 14.38577 

6.85E-
05 

2.28E-
05 

1.97E-
04 

GOTERM_BP_
FAT 

GO:0007398~ectoderm 
development 9 12.85714 

3.14E-
07 54 99 

768
2 12.93266 

1.57E-
04 

3.94E-
05 

4.53E-
04 
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GOTERM_CC_
FAT 

GO:0001533~cornified 
envelope 5 7.142857 

9.21E-
07 45 13 

702
1 60.00855 

1.23E-
04 

1.23E-
04 

0.0010
78 

GOTERM_BP_
FAT GO:0031424~keratinization 5 7.142857 

1.92E-
06 54 14 

768
2 50.80688 

9.62E-
04 

1.92E-
04 

0.0027
67 

GOTERM_BP_
FAT 

GO:0030855~epithelial cell 
differentiation 7 10 

8.90E-
06 54 72 

768
2 13.83076 

0.00444
7 

7.43E-
04 

0.0128
14 

GOTERM_BP_
FAT 

GO:0018149~peptide cross-
linking 4 5.714286 

1.33E-
04 54 15 

768
2 37.9358 

0.06450
5 0.00948 

0.1915
3 

GOTERM_BP_
FAT 

GO:0060429~epithelium 
development 7 10 

1.93E-
04 54 124 

768
2 8.030765 

0.09236
3 

0.01204
1 

0.2782
45 

GOTERM_CC_
FAT 

GO:0070161~anchoring 
junction 4 5.714286 

0.0421
38 45 124 

702
1 5.032975 

0.99687
7 

0.61767
1 

39.592
42 

GOTERM_CC_
FAT GO:0005856~cytoskeleton 10 14.28571 

0.0778
2 45 851 

702
1 1.833399 

0.99998
1 

0.62727
4 

61.269
8 

                        
Annotation 
Cluster 2 

Enrichment Score: 
2.5683496481022687                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0016337~cell-cell 
adhesion 6 8.571429 

6.77E-
04 54 103 

768
2 8.286947 

0.28771
8 

0.03699
6 

0.9707
4 

GOTERM_BP_
FAT GO:0007155~cell adhesion 9 12.85714 

0.0012
16 54 312 

768
2 4.103632 

0.45630
5 

0.05911
7 

1.7367
56 

GOTERM_BP_
FAT 

GO:0022610~biological 
adhesion 9 12.85714 

0.0012
41 54 313 

768
2 4.090522 

0.46316
2 

0.05498
2 

1.7726
09 

GOTERM_CC_
FAT 

GO:0044459~plasma 
membrane part 12 17.14286 

0.0521
83 45 

104
1 

702
1 1.798527 

0.99923
9 

0.54974
7 

46.606
83 

                        
Annotation 
Cluster 3 

Enrichment Score: 
1.9048898836370938                     

Category Term 
Coun
t % PValue 

List 
Tota

Pop 
Hits 

Pop 
Tota

Fold 
Enrichme

Bonferr
oni 

Benjami
ni FDR 
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l l nt 

GOTERM_CC_
FAT 

GO:0005576~extracellular 
region 11 15.71429 

0.0036
49 45 608 

702
1 2.82277 

0.38728
9 

0.21724
1 

4.1898
8 

GOTERM_CC_
FAT 

GO:0005615~extracellular 
space 6 8.571429 

0.0111
76 45 218 

702
1 4.29419 

0.77821
6 

0.31374
9 

12.330
11 

GOTERM_CC_
FAT 

GO:0044421~extracellular 
region part 6 8.571429 0.0473 45 318 

702
1 2.943816 

0.99848
6 

0.55586
2 

43.296
02 

                        
Annotation 
Cluster 4 

Enrichment Score: 
1.6428548903232476                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0016337~cell-cell 
adhesion 6 8.571429 

6.77E-
04 54 103 

768
2 8.286947 

0.28771
8 

0.03699
6 

0.9707
4 

GOTERM_CC_
FAT GO:0030054~cell junction 6 8.571429 

0.0346
88 45 292 

702
1 3.205936 0.99118 

0.61176
3 

33.856
71 

GOTERM_CC_
FAT 

GO:0005911~cell-cell 
junction 4 5.714286 

0.0447
19 45 127 

702
1 4.914086 

0.99782
4 

0.58346
2 

41.471
09 

GOTERM_CC_
FAT 

GO:0043296~apical junction 
complex 3 4.285714 

0.0744
64 45 72 

702
1 6.500926 

0.99996
9 

0.64545
4 

59.586
71 

GOTERM_CC_
FAT 

GO:0016327~apicolateral 
plasma membrane 3 4.285714 

7.81E-
02 45 74 

702
1 6.325225 

0.99998
1 

0.59659
4 

61.397
19 

                        
Annotation 
Cluster 5 

Enrichment Score: 
1.6078873006578052                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_MF_
FAT 

GO:0005509~calcium ion 
binding 15 21.42857 

3.64E-
06 57 440 

732
8 4.382775 

5.13E-
04 

5.13E-
04 

0.0042
97 

GOTERM_MF_
FAT 

GO:0046872~metal ion 
binding 20 28.57143 

0.4465
27 57 

236
7 

732
8 1.086281 1 

0.99615
3 

99.907
74 
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GOTERM_MF_
FAT GO:0043169~cation binding 20 28.57143 

0.4674
99 57 

239
1 

732
8 1.075378 1 

0.99612
6 

99.941
54 

GOTERM_MF_
FAT GO:0043167~ion binding 20 28.57143 

0.4876
14 57 

241
4 

732
8 1.065132 1 

0.99609
7 

99.962
91 

            
            Green 
Annotation 
Cluster 1 

Enrichment Score: 
4.39077234939865                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_CC_
FAT GO:0005739~mitochondrion 29 

28.712
87 2.23E-07 81 892 

702
1 2.81804 

4.99E-
05 

4.99E-
05 

2.84E-
04 

GOTERM_CC_
FAT 

GO:0044429~mitochondrial 
part 19 

18.811
88 7.31E-06 81 492 

702
1 3.34736 

0.00163
6 

8.18E-
04 

0.0093
29 

GOTERM_CC_
FAT 

GO:0005740~mitochondrial 
envelope 15 

14.851
49 2.01E-05 81 334 

702
1 3.89277 

0.00448
2 

0.00149
6 0.0256 

GOTERM_CC_
FAT 

GO:0031967~organelle 
envelope 18 

17.821
78 2.98E-05 81 493 

702
1 3.164751 

0.00666
2 0.00167 

0.0380
89 

GOTERM_CC_
FAT GO:0031975~envelope 18 

17.821
78 3.06E-05 81 494 

702
1 3.158345 

0.00683
7 

0.00137
1 

0.0390
95 

GOTERM_CC_
FAT 

GO:0031090~organelle 
membrane 22 

21.782
18 1.58E-04 81 796 

702
1 2.395651 

0.03481
6 

0.00588
9 

0.2017
55 

GOTERM_CC_
FAT 

GO:0019866~organelle 
inner membrane 12 

11.881
19 1.86E-04 81 265 

702
1 3.925087 

0.04088
2 

0.00594
5 

0.2376
12 

GOTERM_CC_
FAT 

GO:0031966~mitochondrial 
membrane 13 

12.871
29 1.90E-04 81 312 

702
1 3.611626 

0.04174
7 

0.00531
6 

0.2427
41 

GOTERM_CC_
FAT 

GO:0005743~mitochondrial 
inner membrane 10 

9.9009
9 0.001817 81 246 

702
1 3.523537 

0.33457
8 0.04425 

2.2947
51 

                        
Annotation 
Cluster 2 

Enrichment Score: 
1.9562013451606715                     
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Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0015031~protein 
transport 16 

15.841
58 0.00256 86 610 

768
2 2.342966 

0.91617
2 0.71047 

3.9528
27 

GOTERM_BP_
FAT 

GO:0045184~establishment 
of protein localization 16 

15.841
58 0.002685 86 613 

768
2 2.3315 

0.92570
7 

0.57961
3 

4.1413
25 

GOTERM_BP_
FAT 

GO:0008104~protein 
localization 16 

15.841
58 0.008949 86 698 

768
2 2.047578 

0.99983
2 

0.71113
1 

13.187
35 

GOTERM_BP_
FAT 

GO:0046907~intracellular 
transport 9 

8.9108
91 0.243341 86 538 

768
2 1.494294 1 0.98797 

98.755
95 

                        
Annotation 
Cluster 3 

Enrichment Score: 
1.4804953884813314                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0015909~long-chain 
fatty acid transport 3 

2.9702
97 0.00514 86 10 

768
2 26.79767 

0.99314
8 

0.63088
6 

7.7873
17 

GOTERM_BP_
FAT 

GO:0015908~fatty acid 
transport 3 

2.9702
97 0.01313 86 16 

768
2 16.74855 

0.99999
7 

0.79761
2 

18.773
37 

GOTERM_BP_
FAT 

GO:0015718~monocarboxyli
c acid transport 3 

2.9702
97 0.035513 86 27 

768
2 9.925065 1 

0.84122
7 

43.382
39 

GOTERM_BP_
FAT 

GO:0046942~carboxylic acid 
transport 4 

3.9603
96 0.055001 86 78 

768
2 4.580799 1 

0.88788
1 

58.934
21 

GOTERM_BP_
FAT 

GO:0015849~organic acid 
transport 4 

3.9603
96 0.055001 86 78 

768
2 4.580799 1 

0.88788
1 

58.934
21 

GOTERM_BP_
FAT GO:0006869~lipid transport 4 

3.9603
96 0.07148 86 87 

768
2 4.106923 1 

0.90107
8 

68.862
21 

GOTERM_BP_
FAT 

GO:0010876~lipid 
localization 4 

3.9603
96 0.083559 86 93 

768
2 3.84196 1 0.9164 

74.659
09 

                        

Annotation Enrichment Score:                     
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Cluster 4 1.4152039870860111 

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0034622~cellular 
macromolecular complex 
assembly 8 

7.9207
92 0.008191 86 209 

768
2 3.419161 

0.99964
8 

0.73433
8 

12.136
91 

GOTERM_BP_
FAT 

GO:0065003~macromolecul
ar complex assembly 12 

11.881
19 0.015742 86 478 

768
2 2.242483 1 

0.81819
8 

22.090
65 

GOTERM_BP_
FAT 

GO:0034621~cellular 
macromolecular complex 
subunit organization 8 

7.9207
92 1.73E-02 86 242 

768
2 2.952912 1 

0.81559
5 

24.046
4 

GOTERM_BP_
FAT 

GO:0043933~macromolecul
ar complex subunit 
organization 12 

11.881
19 0.023639 86 508 

768
2 2.110053 1 

0.80840
3 

31.363
95 

GOTERM_BP_
FAT 

GO:0070271~protein 
complex biogenesis 7 

6.9306
93 0.247154 86 382 

768
2 1.636856 1 0.98806 

98.850
99 

GOTERM_BP_
FAT 

GO:0006461~protein 
complex assembly 7 

6.9306
93 0.247154 86 382 

768
2 1.636856 1 0.98806 

98.850
99 

                        
Annotation 
Cluster 5 

Enrichment Score: 
1.396074843606603                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0007264~small GTPase 
mediated signal 
transduction 10 

9.9009
9 5.24E-04 86 212 

768
2 4.213471 

0.39732
8 

0.39732
8 

0.8204
48 

GOTERM_MF_
FAT 

GO:0003924~GTPase 
activity 8 

7.9207
92 5.92E-04 83 130 

732
8 5.433179 

0.12637
6 

0.12637
6 

0.7557
63 

GOTERM_MF_
FAT 

GO:0019001~guanyl 
nucleotide binding 10 

9.9009
9 8.63E-04 83 225 

732
8 3.923963 

0.17859
4 

0.09368
6 

1.0986
34 



172 
 

GOTERM_MF_
FAT GO:0005525~GTP binding 10 

9.9009
9 8.63E-04 83 225 

732
8 3.923963 

0.17859
4 

0.09368
6 

1.0986
34 

GOTERM_MF_
FAT 

GO:0032561~guanyl 
ribonucleotide binding 10 

9.9009
9 8.63E-04 83 225 

732
8 3.923963 

0.17859
4 

0.09368
6 

1.0986
34 

GOTERM_MF_
FAT 

GO:0000166~nucleotide 
binding 27 

26.732
67 0.013155 83 

152
4 

732
8 1.564178 

0.95116
1 

0.52989
9 

15.594
23 

GOTERM_BP_
FAT 

GO:0006986~response to 
unfolded protein 4 

3.9603
96 0.026072 86 58 

768
2 6.160385 1 

0.81787
1 

34.005
69 

GOTERM_BP_
FAT 

GO:0007242~intracellular 
signaling cascade 15 

14.851
49 0.037243 86 757 

768
2 1.769992 1 

0.84039
7 

44.959
13 

GOTERM_BP_
FAT 

GO:0051789~response to 
protein stimulus 4 

3.9603
96 0.062074 86 82 

768
2 4.357345 1 0.89065 

63.511
9 

GOTERM_MF_
FAT 

GO:0017076~purine 
nucleotide binding 20 

19.801
98 0.11122 83 

127
7 

732
8 1.382759 1 

0.89356
4 

77.897
88 

GOTERM_BP_
FAT 

GO:0010033~response to 
organic substance 9 

8.9108
91 0.115808 86 443 

768
2 1.814741 1 

0.95272
5 

85.576
65 

GOTERM_MF_
FAT 

GO:0032553~ribonucleotide 
binding 19 

18.811
88 0.127172 83 

122
0 

732
8 1.374995 1 

0.89086
1 

82.471
85 

GOTERM_MF_
FAT 

GO:0032555~purine 
ribonucleotide binding 19 

18.811
88 0.127172 83 

122
0 

732
8 1.374995 1 

0.89086
1 

82.471
85 

GOTERM_CC_
FAT 

GO:0009898~internal side 
of plasma membrane 5 

4.9504
95 0.231637 81 216 

702
1 2.006459 1 

0.92317
3 

96.539
77 

GOTERM_MF_
FAT 

GO:0001882~nucleoside 
binding 12 

11.881
19 0.700862 83 

109
7 

732
8 0.965788 1 0.99999 

99.999
98 

GOTERM_MF_
FAT 

GO:0001883~purine 
nucleoside binding 11 

10.891
09 0.796195 83 

108
9 

732
8 0.89181 1 

0.99999
8 100 

GOTERM_MF_
FAT 

GO:0030554~adenyl 
nucleotide binding 10 

9.9009
9 0.869946 83 

107
7 

732
8 0.819769 1 1 100 

GOTERM_MF_
FAT GO:0005524~ATP binding 9 

8.9108
91 0.894991 83 

101
1 

732
8 0.785957 1 1 100 

GOTERM_MF_
FAT 

GO:0032559~adenyl 
ribonucleotide binding 9 

8.9108
91 0.901677 83 

102
2 

732
8 0.777497 1 1 100 
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            Blue 
Annotation 
Cluster 1 

Enrichment Score: 
6.548729456634398                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0045449~regulation of 
transcription 53 38.1295 

1.46E-
12 105 

148
5 

768
2 2.611166 

1.29E-
09 

1.29E-
09 

2.27E-
09 

GOTERM_BP_
FAT GO:0006350~transcription 44 31.65468 

3.29E-
10 105 

121
6 

768
2 2.647306 

2.92E-
07 

1.46E-
07 

5.12E-
07 

GOTERM_BP_
FAT 

GO:0006355~regulation of 
transcription, DNA-
dependent 35 25.17986 

2.09E-
08 105 925 

768
2 2.768288 

1.85E-
05 

6.18E-
06 

3.25E-
05 

GOTERM_BP_
FAT 

GO:0051252~regulation of 
RNA metabolic process 35 25.17986 

4.56E-
08 105 954 

768
2 2.684137 

4.04E-
05 

1.01E-
05 

7.09E-
05 

GOTERM_MF_
FAT 

GO:0030528~transcription 
regulator activity 33 23.74101 

3.75E-
07 105 896 

732
8 2.570408 

7.72E-
05 

7.72E-
05 

4.72E-
04 

GOTERM_MF_
FAT 

GO:0043565~sequence-
specific DNA binding 14 10.07194 

2.29E-
04 105 292 

732
8 3.346119 

0.04615
7 

0.02335
1 

0.2885
04 

GOTERM_MF_
FAT 

GO:0003700~transcription 
factor activity 18 12.94964 

6.08E-
04 105 500 

732
8 2.512457 0.11768 

0.02472
9 

0.7625
43 

GOTERM_MF_
FAT GO:0003677~DNA binding 32 23.02158 

0.0017
06 105 

130
2 

732
8 1.715281 

0.29649
6 

0.05692
9 

2.1271
92 

                        
Annotation 
Cluster 2 

Enrichment Score: 
3.9081490277452935                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_BP_
FAT 

GO:0006355~regulation of 
transcription, DNA-
dependent 35 25.17986 

2.09E-
08 105 925 

768
2 2.768288 

1.85E-
05 

6.18E-
06 

3.25E-
05 
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GOTERM_BP_
FAT 

GO:0051252~regulation of 
RNA metabolic process 35 25.17986 

4.56E-
08 105 954 

768
2 2.684137 

4.04E-
05 

1.01E-
05 

7.09E-
05 

GOTERM_MF_
FAT 

GO:0030528~transcription 
regulator activity 33 23.74101 

3.75E-
07 105 896 

732
8 2.570408 

7.72E-
05 

7.72E-
05 

4.72E-
04 

GOTERM_BP_
FAT 

GO:0006357~regulation of 
transcription from RNA 
polymerase II promoter 19 13.66906 

3.94E-
05 105 461 

768
2 3.01535 

0.03432
6 

0.00696
1 

0.0613
07 

GOTERM_BP_
FAT 

GO:0045893~positive 
regulation of transcription, 
DNA-dependent 14 10.07194 

1.06E-
04 105 283 

768
2 3.619317 

0.08930
5 0.01547 

0.1641
11 

GOTERM_BP_
FAT 

GO:0051254~positive 
regulation of RNA metabolic 
process 14 10.07194 

1.22E-
04 105 287 

768
2 3.568873 

0.10216
3 

0.01527
7 

0.1890
33 

GOTERM_BP_
FAT 

GO:0045941~positive 
regulation of transcription 15 10.79137 

1.40E-
04 105 332 

768
2 3.305508 

0.11698
6 

0.01543
1 0.2182 

GOTERM_BP_
FAT 

GO:0010628~positive 
regulation of gene 
expression 15 10.79137 

1.70E-
04 105 338 

768
2 3.24683 

0.13947
4 

0.01655
2 

0.2633
84 

GOTERM_BP_
FAT 

GO:0010557~positive 
regulation of 
macromolecule biosynthetic 
process 15 10.79137 

4.42E-
04 105 371 

768
2 2.958028 

0.32404
1 

0.03840
5 

0.6852
31 

GOTERM_BP_
FAT 

GO:0045935~positive 
regulation of nucleobase, 
nucleoside, nucleotide and 
nucleic acid metabolic 
process 15 10.79137 

4.54E-
04 105 372 

768
2 2.950077 

0.33128
2 0.03592 

0.7040
08 

GOTERM_BP_
FAT 

GO:0031328~positive 
regulation of cellular 
biosynthetic process 15 10.79137 

6.40E-
04 105 385 

768
2 2.850464 0.4329 

0.04616
9 

0.9909
49 

GOTERM_BP_
FAT 

GO:0051173~positive 
regulation of nitrogen 
compound metabolic 
process 15 10.79137 

6.40E-
04 105 385 

768
2 2.850464 0.4329 

0.04616
9 

0.9909
49 
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GOTERM_BP_
FAT 

GO:0009891~positive 
regulation of biosynthetic 
process 15 10.79137 

7.09E-
04 105 389 

768
2 2.821153 

0.46649
5 

0.04718
1 

1.0970
49 

GOTERM_BP_
FAT 

GO:0010604~positive 
regulation of 
macromolecule metabolic 
process 17 12.23022 

0.0016
29 105 522 

768
2 2.382667 0.76416 

0.09804
1 

2.5044
55 

GOTERM_BP_
FAT 

GO:0045944~positive 
regulation of transcription 
from RNA polymerase II 
promoter 10 7.194245 

0.0017
68 105 205 

768
2 3.568873 

0.79153
1 

0.09925
3 

2.7153
98 

GOTERM_MF_
FAT 

GO:0008134~transcription 
factor binding 13 9.352518 

0.0118
24 105 405 

732
8 2.240188 

0.91372
8 

0.26382
1 

13.912
48 

GOTERM_MF_
FAT 

GO:0016563~transcription 
activator activity 9 6.47482 

0.0426
33 105 277 

732
8 2.267561 

0.99987
3 

0.45027
9 

42.231
77 

                        
Annotation 
Cluster 3 

Enrichment Score: 
2.2605131805355603                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_MF_
FAT 

GO:0043565~sequence-
specific DNA binding 14 10.07194 

2.29E-
04 105 292 

732
8 3.346119 

0.04615
7 

0.02335
1 

0.2885
04 

GOTERM_MF_
FAT 

GO:0003702~RNA 
polymerase II transcription 
factor activity 10 7.194245 

5.75E-
04 105 167 

732
8 4.17907 

0.11175
3 

0.02919
2 

0.7219
11 

GOTERM_MF_
FAT 

GO:0003700~transcription 
factor activity 18 12.94964 

6.08E-
04 105 500 

732
8 2.512457 0.11768 

0.02472
9 

0.7625
43 

GOTERM_BP_
FAT 

GO:0045944~positive 
regulation of transcription 
from RNA polymerase II 
promoter 10 7.194245 

0.0017
68 105 205 

768
2 3.568873 

0.79153
1 

0.09925
3 

2.7153
98 

GOTERM_MF_
FAT 

GO:0046983~protein 
dimerization activity 11 7.913669 

0.0212
45 105 338 

732
8 2.271288 0.98801 

0.35748
7 

23.697
07 
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GOTERM_MF_
FAT 

GO:0042803~protein 
homodimerization activity 6 4.316547 

0.1705
68 105 207 

732
8 2.022912 1 

0.72311
7 

90.514
1 

GOTERM_MF_
FAT 

GO:0042802~identical 
protein binding 9 6.47482 

0.2923
02 105 443 

732
8 1.417865 1 

0.86930
8 

98.715
03 

                        
Annotation 
Cluster 4 

Enrichment Score: 
2.161855715020018                     

Category Term 
Coun
t % PValue 

List 
Tota
l 

Pop 
Hits 

Pop 
Tota
l 

Fold 
Enrichme
nt 

Bonferr
oni 

Benjami
ni FDR 

GOTERM_MF_
FAT 

GO:0008270~zinc ion 
binding 35 25.17986 

3.78E-
04 105 

136
2 

732
8 1.793441 

0.07483
8 

0.02559
5 

0.4744
48 

GOTERM_MF_
FAT 

GO:0046914~transition 
metal ion binding 37 26.61871 

0.0031
87 105 

165
3 

732
8 1.562158 

0.48190
6 

0.08966
5 

3.9407
34 

GOTERM_MF_
FAT 

GO:0046872~metal ion 
binding 45 32.3741 

0.0197
44 105 

236
7 

732
8 1.326815 

0.98355
9 

0.36646
8 

22.210
13 

GOTERM_MF_
FAT GO:0043169~cation binding 45 32.3741 

0.0235
46 105 

239
1 

732
8 1.313497 

0.99261
7 

0.35996
4 

25.925
82 

GOTERM_MF_
FAT GO:0043167~ion binding 45 32.3741 

0.0277
34 105 

241
4 

732
8 1.300982 

0.99695
4 

0.38295
8 

29.828
49 

 

Table S 13: DAVID GO clustering analysis results in VCaP 

Name ConceptType #Genes Coeff OddsRatio P-Value FDR Direction 

mitochondrial part 
GO Cellular 
Component 459 0.477479055 19.44024111 1.55E-34 5.03E-32 up 

mitochondrial membrane 
GO Cellular 
Component 292 0.483099941 20.13131986 5.13E-27 8.31E-25 up 

mitochondrial envelope 
GO Cellular 
Component 309 0.462403553 17.70163243 7.79E-26 8.41E-24 up 

organelle inner membrane 
GO Cellular 
Component 236 0.494350298 21.58920383 9.29E-25 7.52E-23 up 
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mitochondrial inner membrane 
GO Cellular 
Component 215 0.505933338 23.20058325 2.01E-24 1.30E-22 up 

organelle envelope 
GO Cellular 
Component 458 0.386747746 11.06166663 5.23E-24 2.82E-22 up 

envelope 
GO Cellular 
Component 460 0.385486555 10.97530627 6.17E-24 2.86E-22 up 

microtubule cytoskeleton 
GO Cellular 
Component 292 

-
0.349829787 0.113715561 3.83E-19 1.55E-17 down 

endoplasmic reticulum part 
GO Cellular 
Component 353 0.350464048 8.828602302 6.27E-17 2.22E-15 up 

subsynaptic reticulum 
GO Cellular 
Component 363 0.346436222 8.610353299 6.84E-17 2.22E-15 up 

cytoskeletal part 
GO Cellular 
Component 385 

-
0.293816416 0.161063936 2.67E-16 7.85E-15 down 

respiratory chain 
GO Cellular 
Component 61 0.595390491 40.45210038 1.49E-15 4.02E-14 up 

nuclear membrane-endoplasmic 
reticulum network 

GO Cellular 
Component 320 0.345020918 8.534952503 2.26E-15 5.64E-14 up 

mitochondrial lumen 
GO Cellular 
Component 189 0.415265891 13.20657444 2.73E-15 5.78E-14 up 

mitochondrial matrix 
GO Cellular 
Component 189 0.415265891 13.20657444 2.73E-15 5.78E-14 up 

endoplasmic reticulum membrane 
GO Cellular 
Component 313 0.346637401 8.621125111 2.85E-15 5.78E-14 up 

mitochondrial membrane part GO Cellular 103 0.489332535 20.92636677 3.02E-14 5.75E-13 up 
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Component 

microtubule 
GO Cellular 
Component 129 

-
0.403025137 0.081704739 3.26E-14 5.86E-13 down 

Oxidative phosphorylation KEGG Pathway 90 0.602292584 42.22499604 1.05E-14 1.75E-12 up 

GTPase regulator activity 
GO Molecular 
Function 169 

-
0.372373458 0.098849666 7.20E-15 2.98E-12 down 

nucleoside-triphosphatase 
regulator activity 

GO Molecular 
Function 174 

-
0.362892132 0.104849176 2.25E-14 4.64E-12 down 

oxidoreductase activity 
GO Molecular 
Function 366 0.317626291 7.198861712 4.21E-14 5.80E-12 up 

mitochondrial respiratory chain 
GO Cellular 
Component 56 0.563677263 33.21605306 5.01E-13 8.54E-12 up 

GTPase activator activity 
GO Molecular 
Function 95 

-
0.436687419 0.066281718 1.13E-13 9.36E-12 down 

small GTPase regulator activity 
GO Molecular 
Function 123 

-
0.399892894 0.083310756 1.13E-13 9.36E-12 down 

GTP catabolic process 
GO Biological 
Process 59 -0.52379397 0.038574099 2.74E-14 1.59E-11 down 

regulation of GTP catabolic process 
GO Biological 
Process 59 -0.52379397 0.038574099 2.74E-14 1.59E-11 down 

regulation of GTPase activity 
GO Biological 
Process 59 -0.52379397 0.038574099 2.74E-14 1.59E-11 down 

transmembrane transporter activity 
GO Molecular 
Function 227 0.368367218 9.867612143 3.01E-13 1.97E-11 up 

enzyme regulator activity 
GO Molecular 
Function 344 

-
0.273181859 0.183100848 3.34E-13 1.97E-11 down 
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regulation of small GTPase 
mediated signal transduction 

GO Biological 
Process 102 

-
0.429668498 0.0692369 9.09E-14 3.24E-11 down 

regulation of signaling process 
GO Biological 
Process 286 

-
0.297871525 0.157055695 1.68E-13 3.24E-11 down 

regulation of nucleotide catabolic 
process 

GO Biological 
Process 61 

-
0.505452116 0.04323146 1.69E-13 3.24E-11 down 

regulation of purine nucleotide 
catabolic process 

GO Biological 
Process 61 

-
0.505452116 0.04323146 1.69E-13 3.24E-11 down 

regulation of Ras GTPase activity 
GO Biological 
Process 53 

-
0.529230312 0.037292652 1.74E-13 3.24E-11 down 

cell cycle phase 
GO Biological 
Process 272 

-
0.302901267 0.1522224 1.80E-13 3.24E-11 down 

regulation of signal transduction 
GO Biological 
Process 282 

-
0.298581529 0.15636423 1.98E-13 3.24E-11 down 

nucleoside triphosphate catabolic 
process 

GO Biological 
Process 67 

-
0.488350952 0.048079 2.16E-13 3.24E-11 down 

purine ribonucleoside triphosphate 
catabolic process 

GO Biological 
Process 64 

-
0.495003951 0.046131671 2.42E-13 3.24E-11 down 

ribonucleoside triphosphate 
catabolic process 

GO Biological 
Process 64 

-
0.495003951 0.046131671 2.42E-13 3.24E-11 down 

GTP metabolic process 
GO Biological 
Process 64 

-
0.489600194 0.047707182 5.21E-13 6.24E-11 down 

purine nucleoside triphosphate 
catabolic process 

GO Biological 
Process 66 

-
0.484413545 0.049269978 5.38E-13 6.24E-11 down 
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purine ribonucleotide catabolic 
process 

GO Biological 
Process 67 

-
0.477711696 0.051365375 9.89E-13 1.08E-10 down 

ligase activity, forming carbon-
nitrogen bonds 

GO Molecular 
Function 147 

-
0.358528029 0.107731723 2.48E-12 1.28E-10 down 

hydrogen ion transmembrane 
transporter activity 

GO Molecular 
Function 51 0.576402535 35.94952463 3.29E-12 1.43E-10 up 

acid-amino acid ligase activity 
GO Molecular 
Function 125 

-
0.377453275 0.095777817 3.45E-12 1.43E-10 down 

ribonucleotide catabolic process 
GO Biological 
Process 68 

-
0.472818853 0.052951236 1.42E-12 1.45E-10 down 

Parkinson's disease KEGG Pathway 89 0.541592459 28.95621559 2.74E-12 2.29E-10 up 

protein amino acid phosphorylation 
GO Biological 
Process 271 

-
0.288307935 0.166673107 3.69E-12 3.57E-10 down 

regulation of nucleotide metabolic 
process 

GO Biological 
Process 74 

-
0.451761696 0.060354372 4.38E-12 4.01E-10 down 

enzyme activator activity 
GO Molecular 
Function 141 

-
0.354127785 0.110718382 1.24E-11 4.64E-10 down 

M phase 
GO Biological 
Process 221 

-
0.308028648 0.14744835 5.52E-12 4.81E-10 down 

regulation of Ras protein signal 
transduction 

GO Biological 
Process 91 

-
0.419266346 0.073860579 5.98E-12 4.96E-10 down 

oxidative phosphorylation 
GO Biological 
Process 72 0.511959016 24.08585285 6.96E-12 5.51E-10 up 
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cell cycle process 
GO Biological 
Process 358 

-
0.253583389 0.206816907 1.60E-11 1.21E-09 down 

microtubule-based process 
GO Biological 
Process 137 

-
0.357812537 0.108211819 1.69E-11 1.23E-09 down 

protein serine/threonine kinase 
activity 

GO Molecular 
Function 169 

-
0.325062384 0.132637515 3.96E-11 1.36E-09 down 

cellular respiration 
GO Biological 
Process 78 0.489921163 21.00305761 2.19E-11 1.53E-09 up 

Rab GTPase activator activity 
GO Molecular 
Function 20 

-
0.670649118 0.01548596 5.10E-11 1.62E-09 down 

oxidation reduction 
GO Biological 
Process 348 0.285605888 5.899860264 3.58E-11 2.25E-09 up 

purine nucleotide catabolic process 
GO Biological 
Process 72 

-
0.440325131 0.0648001 3.65E-11 2.25E-09 down 

regulation of Rab GTPase activity 
GO Biological 
Process 20 

-
0.675894483 0.01498929 3.75E-11 2.25E-09 down 

regulation of Rab protein signal 
transduction 

GO Biological 
Process 20 

-
0.675894483 0.01498929 3.75E-11 2.25E-09 down 

Ras GTPase activator activity 
GO Molecular 
Function 44 

-
0.510410866 0.041919528 8.12E-11 2.39E-09 down 

generation of precursor metabolites 
and energy 

GO Biological 
Process 204 0.349053446 8.751546 4.51E-11 2.62E-09 up 

regulation of catabolic process 
GO Biological 
Process 126 

-
0.361490638 0.105766373 4.90E-11 2.75E-09 down 

microtubule cytoskeleton 
organization 

GO Biological 
Process 100 

-
0.391007041 0.088040748 5.42E-11 2.89E-09 down 

electron transport chain GO Biological 88 0.464098929 17.88912456 5.48E-11 2.89E-09 up 
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Process 

small conjugating protein ligase 
activity 

GO Molecular 
Function 111 

-
0.369719088 0.100493801 1.22E-10 3.36E-09 down 

inorganic cation transmembrane 
transporter activity 

GO Molecular 
Function 79 0.469958332 18.55254277 2.12E-10 5.47E-09 up 

Cardiac muscle contraction KEGG Pathway 26 0.714765181 84.94342799 1.29E-10 7.18E-09 up 

ubiquitin-protein ligase activity 
GO Molecular 
Function 97 

-
0.379607509 0.094504115 3.64E-10 8.84E-09 down 

structural constituent of ribosome 
GO Molecular 
Function 139 0.382435647 10.76917267 4.51E-10 1.03E-08 up 

respiratory electron transport chain 
GO Biological 
Process 52 0.528599666 26.71004638 2.74E-10 1.40E-08 up 

ATP synthesis coupled electron 
transport 

GO Biological 
Process 45 0.550088025 30.52608282 3.04E-10 1.47E-08 up 

mitochondrial ATP synthesis 
coupled electron transport 

GO Biological 
Process 45 0.550088025 30.52608282 3.04E-10 1.47E-08 up 

cation transmembrane transporter 
activity 

GO Molecular 
Function 122 0.396251033 11.7346368 7.39E-10 1.61E-08 up 

nucleotide catabolic process 
GO Biological 
Process 83 

-
0.401009218 0.082734786 4.36E-10 2.05E-08 down 

monovalent inorganic cation 
transmembrane transporter activity 

GO Molecular 
Function 64 0.486460732 20.55620427 1.05E-09 2.07E-08 up 

cytochrome-c oxidase activity 
GO Molecular 
Function 15 0.728307806 92.40190465 1.20E-09 2.07E-08 up 

heme-copper terminal oxidase 
activity 

GO Molecular 
Function 15 0.728307806 92.40190465 1.20E-09 2.07E-08 up 

oxidoreductase activity, acting on 
heme group of donors 

GO Molecular 
Function 15 0.728307806 92.40190465 1.20E-09 2.07E-08 up 

oxidoreductase activity, acting on 
heme group of donors, oxygen as 
acceptor 

GO Molecular 
Function 15 0.728307806 92.40190465 1.20E-09 2.07E-08 up 
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regulation of cellular catabolic 
process 

GO Biological 
Process 109 

-
0.363829352 0.104240261 4.98E-10 2.28E-08 down 

nucleobase, nucleoside and 
nucleotide catabolic process 

GO Biological 
Process 85 

-
0.395882137 0.085413396 5.54E-10 2.41E-08 down 

nucleobase, nucleoside, nucleotide 
and nucleic acid catabolic process 

GO Biological 
Process 85 

-
0.395882137 0.085413396 5.54E-10 2.41E-08 down 

intrinsic to organelle membrane 
GO Cellular 
Component 75 0.448708225 16.25736067 1.77E-09 2.87E-08 up 

ion transmembrane transporter 
activity 

GO Molecular 
Function 160 0.349481587 8.774862524 2.43E-09 4.02E-08 up 

cytoskeleton organization 
GO Biological 
Process 243 

-
0.266571986 0.190778841 1.30E-09 5.53E-08 down 

ribosome 
GO Cellular 
Component 173 0.330800272 7.813039332 3.61E-09 5.57E-08 up 

mitosis 
GO Biological 
Process 173 

-
0.300278462 0.154723912 1.72E-09 6.96E-08 down 

nuclear division 
GO Biological 
Process 173 

-
0.300278462 0.154723912 1.72E-09 6.96E-08 down 

Huntington's disease KEGG Pathway 126 0.411594744 12.90868102 2.61E-09 1.09E-07 up 

microtubule organizing center 
GO Cellular 
Component 134 

-
0.318728933 0.137962219 8.04E-09 1.18E-07 down 

integral to organelle membrane 
GO Cellular 
Component 68 0.44592569 15.97864914 9.98E-09 1.41E-07 up 

Alzheimer's disease KEGG Pathway 106 0.427681417 14.2659046 5.12E-09 1.71E-07 up 

M phase of mitotic cell cycle 
GO Biological 
Process 180 

-
0.289175575 0.165776817 4.65E-09 1.84E-07 down 
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Chemokine signaling pathway KEGG Pathway 56 -0.48185232 0.050060484 7.39E-09 1.95E-07 down 

Glioma KEGG Pathway 25 
-

0.628358948 0.020140862 8.17E-09 1.95E-07 down 

phosphotransferase activity, alcohol 
group as acceptor 

GO Molecular 
Function 285 -0.23531019 0.231688701 1.28E-08 2.04E-07 down 

organelle fission 
GO Biological 
Process 181 -0.28460635 0.170551678 8.22E-09 3.18E-07 down 

substrate-specific transporter 
activity 

GO Molecular 
Function 278 0.261541996 5.080354329 3.30E-08 5.05E-07 up 

heterocycle catabolic process 
GO Biological 
Process 88 

-
0.364598728 0.10374304 1.44E-08 5.45E-07 down 

cellular nitrogen compound 
catabolic process 

GO Biological 
Process 90 

-
0.357092693 0.108696994 2.45E-08 9.09E-07 down 

microtubule associated complex 
GO Cellular 
Component 53 

-
0.415907096 0.075418731 1.02E-07 1.38E-06 down 

Chronic myeloid leukemia KEGG Pathway 40 
-

0.509927007 0.042045769 6.87E-08 1.44E-06 down 

RNA processing 
GO Biological 
Process 455 0.212295057 3.740916286 3.96E-08 1.44E-06 up 

mitotic cell cycle 
GO Biological 
Process 296 

-
0.224680625 0.247510559 5.34E-08 1.90E-06 down 

T cell receptor signaling pathway KEGG Pathway 38 
-

0.511077754 0.041746154 1.20E-07 2.23E-06 down 
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kinase activity 
GO Molecular 
Function 314 

-
0.210972892 0.269519687 1.52E-07 2.23E-06 down 

Focal adhesion KEGG Pathway 82 
-

0.391785229 0.087615999 1.43E-07 2.39E-06 down 

condensed chromosome 
GO Cellular 
Component 92 

-
0.336172546 0.123788523 2.03E-07 2.64E-06 down 

cell division 
GO Biological 
Process 202 

-
0.257183514 0.202241096 7.79E-08 2.71E-06 down 

ubiquitin thiolesterase activity 
GO Molecular 
Function 38 

-
0.454385848 0.05937809 2.11E-07 3.00E-06 down 

Natural killer cell mediated 
cytotoxicity KEGG Pathway 29 

-
0.549119959 0.032956547 2.34E-07 3.55E-06 down 

ribonucleoprotein complex 
GO Cellular 
Component 428 0.199459193 3.454095793 3.42E-07 4.27E-06 up 

ribosomal subunit 
GO Cellular 
Component 110 0.344368105 8.500396537 3.71E-07 4.45E-06 up 

transmembrane transport 
GO Biological 
Process 282 0.249219641 4.70583111 1.36E-07 4.63E-06 up 

structural molecule activity 
GO Molecular 
Function 264 0.2474829 4.655313402 3.41E-07 4.69E-06 up 

Renal cell carcinoma KEGG Pathway 34 
-

0.513899017 0.041020596 3.73E-07 5.08E-06 down 

Ubiquitin mediated proteolysis KEGG Pathway 88 
-

0.370610161 0.099938837 3.96E-07 5.08E-06 down 
antigen processing and 
presentation of peptide antigen via 
MHC class I 

GO Biological 
Process 11 0.699498506 77.25480223 2.34E-07 7.83E-06 up 
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RNA binding 
GO Molecular 
Function 515 0.180583101 3.071767718 6.87E-07 9.15E-06 up 

ligase activity 
GO Molecular 
Function 240 

-
0.221787667 0.252000695 8.08E-07 1.04E-05 down 

glycoprotein biosynthetic process 
GO Biological 
Process 67 0.415930914 13.26126826 3.36E-07 1.09E-05 up 

antigen processing and 
presentation of peptide antigen 

GO Biological 
Process 12 0.677755597 67.49040381 3.38E-07 1.09E-05 up 

NADH dehydrogenase (quinone) 
activity 

GO Molecular 
Function 37 0.486434934 20.55290878 1.16E-06 1.37E-05 up 

NADH dehydrogenase (ubiquinone) 
activity 

GO Molecular 
Function 37 0.486434934 20.55290878 1.16E-06 1.37E-05 up 

NADH dehydrogenase activity 
GO Molecular 
Function 37 0.486434934 20.55290878 1.16E-06 1.37E-05 up 

Neurotrophin signaling pathway KEGG Pathway 62 
-

0.404310752 0.081054552 1.18E-06 1.40E-05 down 

mitochondrial respiratory chain 
complex I 

GO Cellular 
Component 39 0.465952811 18.09641975 1.56E-06 1.68E-05 up 

NADH dehydrogenase complex 
GO Cellular 
Component 39 0.465952811 18.09641975 1.56E-06 1.68E-05 up 

respiratory chain complex I 
GO Cellular 
Component 39 0.465952811 18.09641975 1.56E-06 1.68E-05 up 

Pathways in cancer KEGG Pathway 128 
-

0.308548938 0.146972361 1.69E-06 1.88E-05 down 

guanyl-nucleotide exchange factor 
activity 

GO Molecular 
Function 52 

-
0.384242314 0.091820895 1.68E-06 1.92E-05 down 

electron carrier activity 
GO Molecular 
Function 70 0.39119475 11.37163462 1.77E-06 1.97E-05 up 

Insulin signaling pathway KEGG Pathway 61 
-

0.398605701 0.083979864 2.12E-06 2.21E-05 down 

protein K48-linked ubiquitination GO Biological 14 - 0.02278734 9.73E-07 3.08E-05 down 
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Process 0.608493748 

oxidoreductase activity, acting on 
NADH or NADPH, quinone or similar 
compound as acceptor 

GO Molecular 
Function 42 0.455624435 16.97136145 2.84E-06 3.09E-05 up 

mitochondrial electron transport, 
NADH to ubiquinone 

GO Biological 
Process 36 0.488526668 20.82182654 1.07E-06 3.32E-05 up 

Non-small cell lung cancer KEGG Pathway 25 
-

0.531450936 0.036781536 3.46E-06 3.40E-05 down 

Regulation of actin cytoskeleton KEGG Pathway 83 -0.34846926 0.114681118 4.26E-06 3.95E-05 down 

regulation of hydrolase activity 
GO Biological 
Process 141 

-
0.268804465 0.188150255 1.46E-06 4.45E-05 down 

glycoprotein metabolic process 
GO Biological 
Process 86 0.363685679 9.584660569 1.61E-06 4.85E-05 up 

Vascular smooth muscle 
contraction KEGG Pathway 32 

-
0.476484247 0.051758694 7.27E-06 6.39E-05 down 

Apoptosis KEGG Pathway 42 
-

0.432748095 0.06792441 7.91E-06 6.61E-05 down 

early endosome 
GO Cellular 
Component 80 

-
0.315628786 0.140645997 6.90E-06 7.21E-05 down 

spindle 
GO Cellular 
Component 107 

-
0.281277446 0.174116774 8.02E-06 8.12E-05 down 

Ras protein signal transduction 
GO Biological 
Process 102 

-
0.296168644 0.1587266 3.00E-06 8.85E-05 down 

cysteine-type peptidase activity 
GO Molecular 
Function 67 

-
0.331873174 0.1271406 8.39E-06 8.89E-05 down 

ErbB signaling pathway KEGG Pathway 37 
-

0.445484903 0.062755184 1.17E-05 9.27E-05 down 

Toll-like receptor signaling pathway KEGG Pathway 31 
-

0.472146465 0.053172962 1.24E-05 9.43E-05 down 

intrinsic to endoplasmic reticulum 
membrane 

GO Cellular 
Component 38 0.442570275 15.64890296 1.03E-05 1.01E-04 up 
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energy derivation by oxidation of 
organic compounds 

GO Biological 
Process 101 0.332166114 7.879640035 3.96E-06 1.15E-04 up 

microtubule organizing center 
organization 

GO Biological 
Process 24 

-
0.486575198 0.04861252 4.35E-06 1.24E-04 down 

T cell receptor signaling pathway 
GO Biological 
Process 16 

-
0.556086564 0.031560149 4.42E-06 1.24E-04 down 

centrosome organization 
GO Biological 
Process 23 -0.49298288 0.046714746 4.50E-06 1.24E-04 down 

regulation of catalytic activity 
GO Biological 
Process 366 

-
0.176721333 0.333452841 4.71E-06 1.28E-04 down 

RIG-I-like receptor signaling 
pathway KEGG Pathway 29 

-
0.475282523 0.052146687 1.88E-05 1.37E-04 down 

endoplasmic reticulum lumen 
GO Cellular 
Component 47 0.406296713 12.49058101 1.69E-05 1.61E-04 up 

Fc epsilon RI signaling pathway KEGG Pathway 21 
-

0.523926298 0.03854239 2.54E-05 1.77E-04 down 

oxidoreductase activity, acting on 
NADH or NADPH 

GO Molecular 
Function 60 0.379870293 10.59884465 1.75E-05 1.80E-04 up 

purine ribonucleotide metabolic 
process 

GO Biological 
Process 132 

-
0.260378127 0.198265543 6.80E-06 1.82E-04 down 

B cell receptor signaling pathway KEGG Pathway 28 
-

0.473128364 0.052849482 2.84E-05 1.89E-04 down 

intracellular protein kinase cascade 
GO Biological 
Process 201 

-
0.220243159 0.254431173 7.32E-06 1.90E-04 down 

signal transmission via 
phosphorylation event 

GO Biological 
Process 201 

-
0.220243159 0.254431173 7.32E-06 1.90E-04 down 
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transferase activity, transferring 
phosphorus-containing groups 

GO Molecular 
Function 411 

-
0.155962248 0.379369638 2.16E-05 2.17E-04 down 

ribonucleotide metabolic process 
GO Biological 
Process 139 

-
0.252526087 0.208180317 8.86E-06 2.27E-04 down 

activation of immune response 
GO Biological 
Process 25 

-
0.467916556 0.054589265 9.35E-06 2.36E-04 down 

integral to endoplasmic reticulum 
membrane 

GO Cellular 
Component 34 0.442417737 15.63407543 2.74E-05 2.54E-04 up 

RNA splicing 
GO Biological 
Process 252 0.219993949 3.924253634 1.05E-05 2.61E-04 up 

soluble fraction 
GO Cellular 
Component 148 

-
0.234466879 0.232906134 2.93E-05 2.63E-04 down 

Endocytosis KEGG Pathway 111 
-

0.282876124 0.172395461 4.41E-05 2.83E-04 down 

antigen receptor-mediated 
signaling pathway 

GO Biological 
Process 18 

-
0.516058714 0.04047371 1.29E-05 3.08E-04 down 

immune response-activating cell 
surface receptor signaling pathway 

GO Biological 
Process 18 

-
0.516058714 0.04047371 1.29E-05 3.08E-04 down 

immune response-regulating cell 
surface receptor signaling pathway 

GO Biological 
Process 18 

-
0.516058714 0.04047371 1.29E-05 3.08E-04 down 

immune response-activating signal 
transduction 

GO Biological 
Process 23 

-
0.474059045 0.052544693 1.43E-05 3.31E-04 down 

immune response-regulating 
signaling pathway 

GO Biological 
Process 23 

-
0.474059045 0.052544693 1.43E-05 3.31E-04 down 

Shigellosis KEGG Pathway 39 -0.41021859 0.07813261 5.43E-05 3.36E-04 down 

protein modification by small 
protein conjugation or removal 

GO Biological 
Process 220 

-
0.205942626 0.278078255 1.50E-05 3.44E-04 down 

ubiquitin-dependent protein 
catabolic process 

GO Biological 
Process 190 

-
0.217855725 0.258234303 1.58E-05 3.57E-04 down 
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mRNA processing 
GO Biological 
Process 251 0.21574066 3.821884593 1.63E-05 3.63E-04 up 

Prostate cancer KEGG Pathway 42 
-

0.397381798 0.084621057 6.14E-05 3.66E-04 down 
antigen processing and 
presentation 

GO Biological 
Process 19 0.53735829 28.20420779 1.82E-05 4.02E-04 up 

thiolester hydrolase activity 
GO Molecular 
Function 50 

-
0.345418133 0.116876399 4.39E-05 4.32E-04 down 

mTOR signaling pathway KEGG Pathway 24 
-

0.477774822 0.051345228 7.67E-05 4.42E-04 down 

regulation of cell cycle 
GO Biological 
Process 220 

-
0.202995188 0.283218799 2.06E-05 4.47E-04 down 

nucleoside triphosphate metabolic 
process 

GO Biological 
Process 127 

-
0.251983937 0.208882912 2.12E-05 4.57E-04 down 

regulation of protein metabolic 
process 

GO Biological 
Process 326 

-
0.171939241 0.343511392 2.39E-05 5.08E-04 down 

regulation of cell cycle process 
GO Biological 
Process 77 

-
0.303109262 0.152025764 2.46E-05 5.16E-04 down 

ribonucleoside triphosphate 
metabolic process 

GO Biological 
Process 118 

-
0.257458887 0.201895289 2.49E-05 5.16E-04 down 

glycosylation 
GO Biological 
Process 50 0.396026329 11.71826147 2.60E-05 5.20E-04 up 

macromolecule glycosylation 
GO Biological 
Process 50 0.396026329 11.71826147 2.60E-05 5.20E-04 up 

protein amino acid glycosylation 
GO Biological 
Process 50 0.396026329 11.71826147 2.60E-05 5.20E-04 up 

nucleobase, nucleoside and 
nucleotide metabolic process 

GO Biological 
Process 248 

-
0.191151173 0.304851767 2.64E-05 5.22E-04 down 

Basal transcription factors KEGG Pathway 36 0.423595329 13.90820513 9.39E-05 5.23E-04 up 

Small cell lung cancer KEGG Pathway 42 - 0.089627512 1.00E-04 5.41E-04 down 
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0.388132754 

purine ribonucleoside triphosphate 
metabolic process 

GO Biological 
Process 117 

-
0.256644727 0.202919405 2.87E-05 5.62E-04 down 

regulation of glucose import 
GO Biological 
Process 11 

-
0.588596264 0.025786734 3.02E-05 5.84E-04 down 

NOD-like receptor signaling 
pathway KEGG Pathway 26 

-
0.456553889 0.058583424 1.13E-04 5.90E-04 down 

polyol metabolic process 
GO Biological 
Process 22 

-
0.465531634 0.055404378 3.45E-05 6.60E-04 down 

regulation of ARF protein signal 
transduction 

GO Biological 
Process 21 

-
0.472179768 0.053161958 3.58E-05 6.75E-04 down 

transcription initiation from RNA 
polymerase II promoter 

GO Biological 
Process 54 0.38064986 10.65031748 3.60E-05 6.75E-04 up 

Colorectal cancer KEGG Pathway 30 
-

0.430536986 0.068864213 1.36E-04 6.89E-04 down 

small ribosomal subunit 
GO Cellular 
Component 55 0.360991984 9.425546435 7.97E-05 6.98E-04 up 

protein autoubiquitination 
GO Biological 
Process 11 

-
0.583037222 0.026693162 3.86E-05 7.16E-04 down 

protein amino acid N-linked 
glycosylation 

GO Biological 
Process 26 0.477670924 19.46343535 4.13E-05 7.57E-04 up 

Melanoma KEGG Pathway 21 
-

0.483442306 0.049568265 1.58E-04 7.74E-04 down 

meiosis I 
GO Biological 
Process 15 

-
0.522881225 0.038793526 4.58E-05 8.22E-04 down 

purine nucleoside triphosphate 
metabolic process 

GO Biological 
Process 122 

-
0.247046969 0.215391044 4.58E-05 8.22E-04 down 

spindle pole 
GO Cellular 
Component 37 

-
0.373231004 0.098324267 1.03E-04 8.60E-04 down 

endosome 
GO Cellular 
Component 203 

-
0.193209793 0.300976483 1.05E-04 8.60E-04 down 
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condensed chromosome 
kinetochore 

GO Cellular 
Component 55 

-
0.322745349 0.134561241 1.06E-04 8.60E-04 down 

regulation of microtubule 
cytoskeleton organization 

GO Biological 
Process 26 

-
0.433621415 0.067556759 4.96E-05 8.65E-04 down 

regulation of phosphate metabolic 
process 

GO Biological 
Process 199 

-
0.202459318 0.284163553 4.97E-05 8.65E-04 down 

regulation of phosphorus metabolic 
process 

GO Biological 
Process 199 

-
0.202459318 0.284163553 4.97E-05 8.65E-04 down 

organic alcohol transport 
GO Biological 
Process 11 0.599380332 41.46766076 5.23E-05 9.01E-04 up 

transcription initiation 
GO Biological 
Process 66 0.347908657 8.68950486 5.56E-05 9.48E-04 up 

hydrogen ion transporting ATP 
synthase activity, rotational 
mechanism 

GO Molecular 
Function 10 0.604292786 42.75314852 1.02E-04 9.80E-04 up 

spindle organization 
GO Biological 
Process 42 

-
0.364330347 0.103916215 5.85E-05 9.89E-04 down 

cellular lipid metabolic process 
GO Biological 
Process 266 0.19621317 3.385115262 6.00E-05 0.001004985 up 

glucose import 
GO Biological 
Process 12 

-
0.555928564 0.031591153 6.21E-05 0.00102842 down 

translational elongation 
GO Biological 
Process 90 0.308007338 6.781137762 6.26E-05 0.00102842 up 

integral to peroxisomal membrane 
GO Cellular 
Component 10 0.587162719 38.43567978 1.42E-04 0.001073986 up 

intrinsic to peroxisomal membrane 
GO Cellular 
Component 10 0.587162719 38.43567978 1.42E-04 0.001073986 up 

Golgi membrane 
GO Cellular 
Component 227 0.19750164 3.412329818 1.45E-04 0.001073986 up 

membrane fraction 
GO Cellular 
Component 317 0.170136491 2.878679312 1.46E-04 0.001073986 up 

MAPK signaling pathway KEGG Pathway 83 - 0.166166711 2.29E-04 0.001093514 down 
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0.288797569 

SH3 domain binding 
GO Molecular 
Function 57 -0.3144631 0.141668575 1.17E-04 0.001097754 down 

purine nucleotide metabolic 
process 

GO Biological 
Process 154 

-
0.220906555 0.253384378 6.77E-05 0.001102235 down 

regulation of glucose transport 
GO Biological 
Process 12 

-
0.553282118 0.032115017 6.97E-05 0.001124189 down 

regulation of organelle organization 
GO Biological 
Process 120 

-
0.243086252 0.220758533 7.24E-05 0.001156323 down 

enzyme binding 
GO Molecular 
Function 350 

-
0.151399344 0.390281272 1.26E-04 0.001156949 down 

protein catabolic process 
GO Biological 
Process 245 

-
0.181944549 0.322802672 7.58E-05 0.001194557 down 

RNA elongation from RNA 
polymerase II promoter 

GO Biological 
Process 41 0.40434698 12.34014805 7.62E-05 0.001194557 up 

protein modification by small 
protein conjugation 

GO Biological 
Process 188 

-
0.202229208 0.28457021 7.88E-05 0.001225363 down 

protein K63-linked ubiquitination 
GO Biological 
Process 10 

-
0.584288973 0.026486318 7.97E-05 0.001228372 down 

regulation of microtubule-based 
process 

GO Biological 
Process 28 

-
0.413580938 0.076516916 8.29E-05 0.001258504 down 

nucleoside phosphate metabolic 
process 

GO Biological 
Process 232 

-
0.185018666 0.316694245 8.39E-05 0.001258504 down 

nucleotide metabolic process 
GO Biological 
Process 232 

-
0.185018666 0.316694245 8.39E-05 0.001258504 down 

mitotic cell cycle checkpoint 
GO Biological 
Process 31 

-
0.398567649 0.083999726 8.62E-05 0.001282051 down 

focal adhesion 
GO Cellular 
Component 51 

-
0.322365766 0.134879041 1.89E-04 0.001361519 down 
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proteoglycan metabolic process 
GO Biological 
Process 14 0.551244629 30.74629 9.24E-05 0.001363458 up 

Hepatitis C KEGG Pathway 59 
-

0.323030956 0.134322615 3.03E-04 0.001407154 down 

regulation of blood pressure 
GO Biological 
Process 20 0.498669574 22.17656223 9.70E-05 0.001418696 up 

mitochondrial ribosome 
GO Cellular 
Component 48 0.360878701 9.418913091 2.13E-04 0.001447391 up 

organellar ribosome 
GO Cellular 
Component 48 0.360878701 9.418913091 2.13E-04 0.001447391 up 

microbody 
GO Cellular 
Component 69 0.315623055 7.109796314 2.19E-04 0.001447391 up 

peroxisome 
GO Cellular 
Component 69 0.315623055 7.109796314 2.19E-04 0.001447391 up 

condensed chromosome, 
centromeric region 

GO Cellular 
Component 58 -0.30446684 0.150748546 2.24E-04 0.001452739 down 

protein polyubiquitination 
GO Biological 
Process 21 

-
0.452150039 0.060208888 1.02E-04 0.00147309 down 

Acute myeloid leukemia KEGG Pathway 25 -0.43738848 0.065993568 3.41E-04 0.001504817 down 

N-Glycan biosynthesis KEGG Pathway 34 0.403365275 12.26509109 3.42E-04 0.001504817 up 

DNA integrity checkpoint 
GO Biological 
Process 35 -0.37703747 0.096025633 1.14E-04 0.001644407 down 

holo TFIIH complex 
GO Cellular 
Component 10 0.573352975 35.27463126 2.60E-04 0.001650439 up 

S phase 
GO Biological 
Process 16 

-
0.491643952 0.047105077 1.20E-04 0.001709661 down 

regulation of mitotic cell cycle 
GO Biological 
Process 85 

-
0.270814396 0.1858147 1.21E-04 0.001714299 down 

HOPS complex 
GO Cellular 
Component 12 

-
0.521954797 0.03901752 2.77E-04 0.00172688 down 

neuron projection 
GO Cellular 
Component 133 -0.21628796 0.260762588 2.95E-04 0.001799696 down 
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perinuclear region of cytoplasm 
GO Cellular 
Component 170 

-
0.195337121 0.297023609 3.00E-04 0.001799696 down 

ubiquitin ligase complex 
GO Cellular 
Component 81 

-
0.262494752 0.195674637 3.19E-04 0.0018767 down 

microtubule binding 
GO Molecular 
Function 45 

-
0.332662543 0.126518425 2.16E-04 0.001938799 down 

cell-substrate adherens junction 
GO Cellular 
Component 52 

-
0.310095004 0.145566984 3.37E-04 0.001951241 down 

ubiquitin-specific protease activity 
GO Molecular 
Function 25 

-
0.409532701 0.078466363 2.26E-04 0.001954432 down 

UDP-glycosyltransferase activity 
GO Molecular 
Function 37 0.399721935 11.99050606 2.27E-04 0.001954432 up 

Endometrial cancer KEGG Pathway 27 
-

0.418371624 0.074272413 4.65E-04 0.001989047 down 

ARF GTPase activator activity 
GO Molecular 
Function 17 

-
0.465651006 0.055363292 2.43E-04 0.002046694 down 

Leukocyte transendothelial 
migration KEGG Pathway 41 

-
0.358356585 0.107846567 5.05E-04 0.002107272 down 

transferase activity, transferring 
hexosyl groups 

GO Molecular 
Function 66 0.322802853 7.434216735 2.55E-04 0.002109285 up 

modification-dependent 
macromolecule catabolic process 

GO Biological 
Process 195 

-
0.191984623 0.30327685 1.53E-04 0.00212976 down 

modification-dependent protein 
catabolic process 

GO Biological 
Process 195 

-
0.191984623 0.30327685 1.53E-04 0.00212976 down 

response to retinoic acid 
GO Biological 
Process 16 0.520226531 25.35571148 1.60E-04 0.002214663 up 

DNA damage checkpoint 
GO Biological 
Process 34 

-
0.372805274 0.098584752 1.79E-04 0.002447738 down 

tubulin binding 
GO Molecular 
Function 65 

-
0.283981433 0.171215323 3.09E-04 0.002503695 down 

motor activity 
GO Molecular 
Function 52 

-
0.308556106 0.146965814 3.19E-04 0.002535659 down 

microsome GO Cellular 105 0.255175521 4.88327381 4.62E-04 0.002623334 up 
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Component 

serine hydrolase activity 
GO Molecular 
Function 45 0.365157801 9.672749735 3.50E-04 0.002726686 up 

protein ubiquitination 
GO Biological 
Process 171 

-
0.198174934 0.291831251 2.21E-04 0.003006955 down 

RNA elongation 
GO Biological 
Process 45 0.372118008 10.10032483 2.25E-04 0.003030346 up 

fatty acid metabolic process 
GO Biological 
Process 111 0.263667661 5.147911941 2.29E-04 0.003066249 up 

cell-substrate junction 
GO Cellular 
Component 57 

-
0.290866992 0.164043381 5.51E-04 0.003080693 down 

TGF-beta signaling pathway KEGG Pathway 22 
-

0.436646404 0.066298614 7.57E-04 0.00308307 down 
monocarboxylic acid metabolic 
process 

GO Biological 
Process 160 0.224953078 4.047078335 2.44E-04 0.003224476 up 

lipid metabolic process 
GO Biological 
Process 381 0.152907983 2.586390286 2.44E-04 0.003224476 up 

transferase activity, transferring 
glycosyl groups 

GO Molecular 
Function 97 0.267989742 5.288058781 4.32E-04 0.00330557 up 

regulation of S phase 
GO Biological 
Process 12 

-
0.522227102 0.038951548 2.55E-04 0.003339529 down 

ribosome biogenesis 
GO Biological 
Process 116 0.257003079 4.939052034 2.58E-04 0.003346249 up 

large ribosomal subunit 
GO Cellular 
Component 57 0.318413905 7.234184448 6.34E-04 0.003483706 up 

Peroxisome KEGG Pathway 57 0.320330477 7.320864168 8.77E-04 0.003486558 up 

Pancreatic cancer KEGG Pathway 33 
-

0.373696291 0.098040365 9.06E-04 0.003517184 down 

kinetochore 
GO Cellular 
Component 72 

-
0.262596663 0.195550749 6.63E-04 0.003579866 down 

Ribosome KEGG Pathway 78 0.281863061 5.764212025 0.001045216 0.003967069 up 

Rho protein signal transduction GO Biological 47 - 0.135159603 3.10E-04 0.004002945 down 



197 
 

Process 0.322031401 

negative regulation of microtubule 
depolymerization 

GO Biological 
Process 12 -0.51630267 0.040412394 3.22E-04 0.004093776 down 

regulation of microtubule 
depolymerization 

GO Biological 
Process 12 -0.51630267 0.040412394 3.22E-04 0.004093776 down 

unsaturated fatty acid metabolic 
process 

GO Biological 
Process 17 0.495801905 21.78484483 3.29E-04 0.004151514 up 

regulation of ARF GTPase activity 
GO Biological 
Process 16 

-
0.468466404 0.054403047 3.33E-04 0.004165179 down 

Bladder cancer KEGG Pathway 19 -0.44829168 0.061670036 0.00112336 0.004168915 down 

small GTPase mediated signal 
transduction 

GO Biological 
Process 194 

-
0.182930403 0.320831003 3.46E-04 0.004274106 down 

regulation of cytoskeleton 
organization 

GO Biological 
Process 66 

-
0.281620006 0.173746495 3.46E-04 0.004274106 down 

kinase regulator activity 
GO Molecular 
Function 43 

-
0.319566322 0.137246122 5.90E-04 0.0044297 down 

cellular protein catabolic process 
GO Biological 
Process 219 

-
0.173365994 0.340479041 3.64E-04 0.004442442 down 

heterocycle metabolic process 
GO Biological 
Process 238 

-
0.167453273 0.353222727 3.65E-04 0.004442442 down 

aerobic respiration 
GO Biological 
Process 29 0.419527321 13.56099808 3.74E-04 0.004522376 up 

proteolysis involved in cellular 
protein catabolic process 

GO Biological 
Process 218 

-
0.172576208 0.34215429 4.01E-04 0.004815538 down 

protein processing 
GO Biological 
Process 31 0.408733347 12.68116179 4.08E-04 0.004870251 up 

positive regulation of NF-kappaB 
transcription factor activity 

GO Biological 
Process 21 

-
0.421611108 0.072792103 4.28E-04 0.005069808 down 

cytoskeleton-dependent 
intracellular transport 

GO Biological 
Process 25 

-
0.395126664 0.085815352 4.65E-04 0.00545265 down 

ncRNA metabolic process GO Biological 188 0.200462272 3.475695004 4.67E-04 0.00545265 up 
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Process 

positive regulation of immune 
response 

GO Biological 
Process 34 

-
0.353184995 0.111368993 4.91E-04 0.005696691 down 

carboxylesterase activity 
GO Molecular 
Function 36 0.376955309 10.40857009 7.78E-04 0.005736629 up 

lipid biosynthetic process 
GO Biological 
Process 185 0.20068286 3.480462979 5.07E-04 0.005842725 up 

protein oligomerization 
GO Biological 
Process 98 

-
0.234980613 0.23216373 5.28E-04 0.006049633 down 

ribonucleoprotein complex 
biogenesis 

GO Biological 
Process 171 0.206606597 3.610979367 5.48E-04 0.006233614 up 

ion transport 
GO Biological 
Process 191 0.196592892 3.393112955 5.52E-04 0.006244182 up 

microtubule-based movement 
GO Biological 
Process 42 

-
0.324568025 0.133045637 5.56E-04 0.006246603 down 

organelle outer membrane 
GO Cellular 
Component 80 0.266556533 5.241168065 0.001203952 0.006394764 up 

Fructose and mannose metabolism KEGG Pathway 27 
-

0.383721197 0.092118742 0.001767733 0.006417638 down 

regulation of phosphorylation 
GO Biological 
Process 184 

-
0.180407767 0.325900365 5.85E-04 0.006532278 down 

cell surface 
GO Cellular 
Component 95 0.247362741 4.651838389 0.001260348 0.006586336 up 

protein maturation by peptide bond 
cleavage 

GO Biological 
Process 21 0.45274342 16.67020382 5.96E-04 0.00661227 up 

positive regulation of response to 
stimulus 

GO Biological 
Process 71 

-
0.263907662 0.193964002 6.27E-04 0.006906491 down 

regulation of microtubule 
polymerization or depolymerization 

GO Biological 
Process 18 

-
0.434909507 0.067018127 6.35E-04 0.006951232 down 

outer membrane 
GO Cellular 
Component 81 0.262095058 5.097845849 0.001403039 0.007130644 up 

endosomal part GO Cellular 120 - 0.284860904 0.00143053 0.007130644 down 
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Component 0.202064918 

endosome membrane 
GO Cellular 
Component 120 

-
0.202064918 0.284860904 0.00143053 0.007130644 down 

mitochondrial outer membrane 
GO Cellular 
Component 69 0.278659624 5.650592218 0.001474548 0.007238688 up 

cell cycle checkpoint 
GO Biological 
Process 65 

-
0.271830542 0.184644987 6.74E-04 0.007334121 down 

negative regulation of microtubule 
polymerization or depolymerization 

GO Biological 
Process 14 

-
0.470050263 0.053870182 7.22E-04 0.007804757 down 

Role of BRCA1, BRCA2 and ATR in 
Cancer Susceptibility Biocarta Pathway 13 

-
0.610444766 0.022512716 8.01E-05 0.00784613 down 

negative regulation of organelle 
organization 

GO Biological 
Process 53 

-
0.292250986 0.162638498 7.38E-04 0.007932008 down 

endosome transport 
GO Biological 
Process 54 

-
0.289868087 0.165064898 7.50E-04 0.008014594 down 

unsaturated fatty acid biosynthetic 
process 

GO Biological 
Process 11 0.537399543 28.21143959 7.64E-04 0.008096048 up 

coenzyme metabolic process 
GO Biological 
Process 109 0.244917423 4.581680253 7.67E-04 0.008096048 up 

cellular ketone metabolic process 
GO Biological 
Process 325 0.15038785 2.546198729 7.86E-04 0.008244956 up 

MAPKKK cascade 
GO Biological 
Process 88 

-
0.238478429 0.227171515 8.03E-04 0.008353961 down 

lipid catabolic process 
GO Biological 
Process 78 0.280223946 5.70579317 8.06E-04 0.008353961 up 

mitochondrial nucleoid 
GO Cellular 
Component 27 0.388249952 11.16541771 0.001782086 0.008491117 up 

nucleoid 
GO Cellular 
Component 27 0.388249952 11.16541771 0.001782086 0.008491117 up 

Drug metabolism - other enzymes KEGG Pathway 17 
-

0.441657775 0.064265651 0.002448132 0.008678625 down 

Wnt signaling pathway KEGG Pathway 49 - 0.155749532 0.002494455 0.008678625 down 
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0.299215348 

protein maturation 
GO Biological 
Process 38 0.366128023 9.731248242 8.44E-04 0.008689925 up 

proton-transporting ATP synthase 
complex 

GO Cellular 
Component 13 0.484948921 20.36397665 0.001891073 0.008879822 up 

Fc gamma R-mediated phagocytosis KEGG Pathway 40 
-

0.321931081 0.135243895 0.002622952 0.008939447 down 

proton-transporting ATPase activity, 
rotational mechanism 

GO Molecular 
Function 13 0.504438736 22.98608545 0.001249499 0.009053385 up 

insoluble fraction 
GO Cellular 
Component 332 0.13581346 2.325714789 0.002004879 0.009279724 up 

Rho GTPase binding 
GO Molecular 
Function 17 -0.42356 0.071915792 0.001336237 0.009458331 down 

GTPase binding 
GO Molecular 
Function 60 

-
0.266185703 0.191237374 0.00135119 0.009458331 down 

interphase 
GO Biological 
Process 71 

-
0.256964419 0.202516653 9.32E-04 0.009541961 down 

spliceosomal complex 
GO Cellular 
Component 125 0.210636577 3.702557418 0.002093221 0.009552162 up 

regulation of stress-activated 
protein kinase signaling cascade 

GO Biological 
Process 32 

-
0.346833219 0.11585307 9.51E-04 0.009679938 down 

macromolecule catabolic process 
GO Biological 
Process 342 

-
0.133954001 0.434972869 9.68E-04 0.009796853 down 

Spliceosome KEGG Pathway 117 0.219744625 3.918177908 0.002947315 0.009844032 up 

centrosome cycle 
GO Biological 
Process 14 

-
0.461565953 0.056786792 9.89E-04 0.009953848 down 

replication fork 
GO Cellular 
Component 29 -0.33982061 0.121013651 0.002314731 0.010408615 down 

dynein complex 
GO Cellular 
Component 13 

-
0.449905508 0.061054619 0.002345151 0.010408615 down 

ATP synthesis coupled proton GO Biological 23 0.426500498 14.16159116 0.001059718 0.010542677 up 
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transport Process 

energy coupled proton transport, 
down electrochemical gradient 

GO Biological 
Process 23 0.426500498 14.16159116 0.001059718 0.010542677 up 

microtubule depolymerization 
GO Biological 
Process 14 

-
0.458542665 0.05786382 0.001103867 0.010919502 down 

negative regulation of cell cycle 
process 

GO Biological 
Process 21 

-
0.398817868 0.083869207 0.001116215 0.010979267 down 

mRNA metabolic process 
GO Biological 
Process 294 0.152696053 2.582986083 0.00112734 0.011026402 up 

transition metal ion transport 
GO Biological 
Process 35 0.369625026 9.945047421 0.00114007 0.011088617 up 

dephosphorylation 
GO Biological 
Process 79 

-
0.242661597 0.221341897 0.001150814 0.011130926 down 

serine-type peptidase activity 
GO Molecular 
Function 44 0.333611657 7.950745538 0.001641662 0.011300105 up 

rRNA processing 
GO Biological 
Process 86 0.261760256 5.087249995 0.001183127 0.011380243 up 

cellular hormone metabolic process 
GO Biological 
Process 22 0.429053915 14.38810664 0.001213383 0.011607138 up 

I-kappaB kinase/NF-kappaB cascade 
GO Biological 
Process 76 

-
0.244419896 0.21893643 0.001286291 0.012226158 down 

rRNA metabolic process 
GO Biological 
Process 87 0.258730818 4.992369453 0.001292138 0.012226158 up 

Thyroid cancer KEGG Pathway 14 
-

0.456608017 0.05856372 0.003839757 0.012573321 down 

inositol or phosphatidylinositol 
phosphatase activity 

GO Molecular 
Function 17 

-
0.414335558 0.076158916 0.001868558 0.012651054 down 

Jak-STAT signaling pathway KEGG Pathway 25 
-

0.370201011 0.100193276 0.003994383 0.012828114 down 

oxidoreduction coenzyme 
metabolic process 

GO Biological 
Process 38 0.354849912 9.072547856 0.001365291 0.012848495 up 

Phosphatidylinositol signaling 
system KEGG Pathway 35 

-
0.325968099 0.13189304 0.00409926 0.012916536 down 
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P-P-bond-hydrolysis-driven 
transmembrane transporter activity 

GO Molecular 
Function 58 0.29547339 6.272978752 0.001992053 0.013059015 up 

primary active transmembrane 
transporter activity 

GO Molecular 
Function 58 0.29547339 6.272978752 0.001992053 0.013059015 up 

DNA-directed RNA polymerase II, 
holoenzyme 

GO Cellular 
Component 65 0.268169087 5.293955945 0.00314129 0.013753756 up 

channel activity 
GO Molecular 
Function 47 0.318506338 7.238341236 0.002175918 0.01382545 up 

passive transmembrane transporter 
activity 

GO Molecular 
Function 47 0.318506338 7.238341236 0.002175918 0.01382545 up 

microtubule-based transport 
GO Biological 
Process 17 

-
0.421233514 0.072963117 0.001491855 0.013914077 down 

fatty acid catabolic process 
GO Biological 
Process 31 0.378597254 10.51532338 0.001494504 0.013914077 up 

microtubule polymerization or 
depolymerization 

GO Biological 
Process 20 

-
0.397298932 0.084664647 0.001542426 0.01424858 down 

stress-activated protein kinase 
signaling cascade 

GO Biological 
Process 40 

-
0.309094871 0.146474564 0.001546802 0.01424858 down 

Fatty acid metabolism KEGG Pathway 27 0.36431364 9.622138114 0.004609852 0.014256395 up 

regulation of epithelial cell 
differentiation 

GO Biological 
Process 11 0.517993334 25.00624442 0.001559743 0.014292171 up 

Long-term potentiation KEGG Pathway 26 
-

0.359618964 0.107003801 0.004728902 0.014358665 down 

Axon guidance KEGG Pathway 43 -0.29617918 0.158716208 0.004947719 0.014754804 down 

vesicular fraction 
GO Cellular 
Component 109 0.213698137 3.773678184 0.003415668 0.014755687 up 

fat-soluble vitamin metabolic 
process 

GO Biological 
Process 10 0.527949233 26.60229739 0.001767632 0.016099492 up 

glucose transport 
GO Biological 
Process 16 

-
0.424915763 0.071312408 0.00179397 0.016099492 down 

hexose transport 
GO Biological 
Process 16 

-
0.424915763 0.071312408 0.00179397 0.016099492 down 



203 
 

monosaccharide transport 
GO Biological 
Process 16 

-
0.424915763 0.071312408 0.00179397 0.016099492 down 

spindle assembly 
GO Biological 
Process 13 

-
0.455549796 0.05895013 0.001821114 0.016259279 down 

cytosolic ribosome 
GO Cellular 
Component 66 0.261452589 5.077532304 0.003873385 0.016375724 up 

cell projection 
GO Cellular 
Component 264 

-
0.131950943 0.44042135 0.003891762 0.016375724 down 

active transmembrane transporter 
activity 

GO Molecular 
Function 106 0.223831373 4.018964417 0.002634631 0.016486405 up 

RNA polymerase KEGG Pathway 25 0.36609578 9.729298538 0.005841034 0.017113206 up 
cellular response to 
lipopolysaccharide 

GO Biological 
Process 10 

-
0.495050031 0.046118462 0.001953311 0.017262509 down 

cellular response to molecule of 
bacterial origin 

GO Biological 
Process 10 

-
0.495050031 0.046118462 0.001953311 0.017262509 down 

DNA damage response, signal 
transduction 

GO Biological 
Process 62 

-
0.256436937 0.203181611 0.001971602 0.017336157 down 

small conjugating protein-specific 
protease activity 

GO Molecular 
Function 28 

-
0.336364694 0.123640793 0.002834207 0.017470562 down 

Antigen processing and 
presentation KEGG Pathway 28 0.35139719 8.879949099 0.00608908 0.017532351 up 

small GTPase binding 
GO Molecular 
Function 54 -0.26031903 0.198338373 0.003037775 0.018450014 down 

cofactor catabolic process 
GO Biological 
Process 24 0.402720988 12.21607996 0.002126701 0.018605958 up 

regulation of binding 
GO Biological 
Process 97 

-
0.212252835 0.267384338 0.002205817 0.019201635 down 

Valine, leucine and isoleucine 
degradation KEGG Pathway 36 0.319059015 7.26324531 0.006790926 0.019221774 up 

JNK cascade 
GO Biological 
Process 34 

-
0.319613073 0.137206253 0.00224224 0.01942159 down 
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G-protein coupled receptor protein 
signaling pathway 

GO Biological 
Process 67 

-
0.245777362 0.217097225 0.002283204 0.019628127 down 

regulation of cellular component 
organization 

GO Biological 
Process 283 

-
0.134809712 0.432665863 0.002288633 0.019628127 down 

positive regulation of stress-
activated protein kinase signaling 
cascade 

GO Biological 
Process 10 

-
0.489516496 0.047732003 0.00231344 0.019743621 down 

response to oxidative stress 
GO Biological 
Process 96 0.236010616 4.334964774 0.002357593 0.019948728 up 

cellular lipid catabolic process 
GO Biological 
Process 50 0.30781881 6.77319742 0.00236639 0.019948728 up 

cofactor metabolic process 
GO Biological 
Process 142 0.198661235 3.437009363 0.002371848 0.019948728 up 

amino acid binding 
GO Molecular 
Function 20 

-
0.375130163 0.097170613 0.003347502 0.0200365 down 

translation 
GO Biological 
Process 327 0.135576797 2.322296719 0.002401492 0.020100947 up 

negative regulation of translation 
GO Biological 
Process 23 

-
0.366296562 0.102654163 0.002437267 0.020302786 down 

Cell cycle KEGG Pathway 76 
-

0.226453002 0.244799282 0.007465867 0.020779997 down 

RNA polymerase II transcription 
factor activity 

GO Molecular 
Function 117 0.208033064 3.643132765 0.003566588 0.021042867 up 

transport vesicle membrane 
GO Cellular 
Component 24 -0.34161728 0.119669977 0.005142626 0.021361678 down 

amine binding 
GO Molecular 
Function 24 

-
0.348643494 0.114557009 0.003678974 0.021400227 down 

vesicle-mediated transport 
GO Biological 
Process 387 

-
0.116597091 0.484515806 0.002605804 0.021540581 down 
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negative regulation of cytoskeleton 
organization 

GO Biological 
Process 31 

-
0.326939586 0.131099147 0.002610605 0.021540581 down 

RNA splicing, via transesterification 
reactions 

GO Biological 
Process 94 0.235856193 4.330806614 0.00262446 0.021552762 up 

icosanoid metabolic process 
GO Biological 
Process 14 0.469066363 18.44998618 0.002639013 0.021570528 up 

regulation of JNK cascade 
GO Biological 
Process 27 -0.3423452 0.119129845 0.002774551 0.022507001 down 

cation transport 
GO Biological 
Process 143 0.195065396 3.361055261 0.00277944 0.022507001 up 

double-strand break repair 
GO Biological 
Process 41 

-
0.291993924 0.162898527 0.00289029 0.023296272 down 

vacuolar transport 
GO Biological 
Process 25 

-
0.350654191 0.113134447 0.002922587 0.02344804 down 

regulation of kinase activity 
GO Biological 
Process 149 

-
0.172703732 0.341883237 0.003006405 0.024009868 down 

RNA polymerase II carboxy-terminal 
domain kinase activity 

GO Molecular 
Function 10 0.505089111 23.07917919 0.004196079 0.024069177 up 

Adipocytokine signaling pathway KEGG Pathway 30 -0.32115875 0.13589459 0.008796593 0.024082477 down 

protein domain specific binding 
GO Molecular 
Function 196 

-
0.147225308 0.400537617 0.004351933 0.024621207 down 

cation-transporting ATPase activity 
GO Molecular 
Function 17 0.429670482 14.44334361 0.004464289 0.024915557 up 

interphase of mitotic cell cycle 
GO Biological 
Process 67 

-
0.239287576 0.226032042 0.003136774 0.024936639 down 

nucleolus 
GO Cellular 
Component 510 0.099078228 1.851011706 0.00608092 0.024939469 up 

proton-transporting two-sector 
ATPase complex 

GO Cellular 
Component 26 0.356634204 9.173710237 0.006396231 0.025592245 up 

Golgi apparatus part 
GO Cellular 
Component 280 0.129608262 2.237735807 0.0064628 0.025592245 up 

coated membrane GO Cellular 51 - 0.211127866 0.006556038 0.025592245 down 
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Component 0.250263782 

membrane coat 
GO Cellular 
Component 51 

-
0.250263782 0.211127866 0.006556038 0.025592245 down 

clathrin coat of trans-Golgi network 
vesicle 

GO Cellular 
Component 10 

-
0.451843839 0.06032357 0.007072613 0.026423775 down 

trans-Golgi network transport 
vesicle membrane 

GO Cellular 
Component 10 

-
0.451843839 0.06032357 0.007072613 0.026423775 down 

external side of plasma membrane 
GO Cellular 
Component 31 0.331423925 7.843379556 0.007140297 0.026423775 up 

mitochondrial small ribosomal 
subunit 

GO Cellular 
Component 18 0.39995633 12.007985 0.007176828 0.026423775 up 

organellar small ribosomal subunit 
GO Cellular 
Component 18 0.39995633 12.007985 0.007176828 0.026423775 up 

regulation of MAPKKK cascade 
GO Biological 
Process 53 

-
0.260696904 0.197873154 0.00341371 0.02701486 down 

positive regulation of kinase activity 
GO Biological 
Process 83 -0.21745818 0.258873082 0.003469348 0.027289124 down 

nuclear mRNA splicing, via 
spliceosome 

GO Biological 
Process 85 0.239736569 4.436513525 0.00349539 0.027289124 up 

RNA splicing, via transesterification 
reactions with bulged adenosine as 
nucleophile 

GO Biological 
Process 85 0.239736569 4.436513525 0.00349539 0.027289124 up 

response to tumor necrosis factor 
GO Biological 
Process 10 -0.47516848 0.052183659 0.003531451 0.02737711 down 

ncRNA processing 
GO Biological 
Process 153 0.184708215 3.151533535 0.00353811 0.02737711 up 

nucleoplasm part 
GO Cellular 
Component 375 0.110890819 1.992007619 0.007628221 0.027770154 up 

chromosome 
GO Cellular 
Component 300 

-
0.115616078 0.487478732 0.007774671 0.027988817 down 

Arachidonic acid metabolism KEGG Pathway 14 0.416236386 13.28646723 0.01043069 0.028095568 up 
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Integrin Signaling Pathway Biocarta Pathway 26 
-

0.402630857 0.081905185 0.001089562 0.028665447 down 

Growth Hormone Signaling Pathway Biocarta Pathway 13 
-

0.503574009 0.043739001 0.001420145 0.028665447 down 

PTEN dependent cell cycle arrest 
and apoptosis Biocarta Pathway 15 -0.47758933 0.051404451 0.001459957 0.028665447 down 

CXCR4 Signaling Pathway Biocarta Pathway 15 -0.47752301 0.051425642 0.001462523 0.028665447 down 

Citrate cycle (TCA cycle) KEGG Pathway 26 0.339765932 8.260722967 0.011188265 0.029657782 up 

microbody part 
GO Cellular 
Component 40 0.295792381 6.285426653 0.008489582 0.029898093 up 

peroxisomal part 
GO Cellular 
Component 40 0.295792381 6.285426653 0.008489582 0.029898093 up 

cofactor binding 
GO Molecular 
Function 154 0.175498018 2.976212155 0.005431735 0.029910754 up 

cytosolic small ribosomal subunit 
GO Cellular 
Component 32 0.321498657 7.374205447 0.008645429 0.030119559 up 

Glycosaminoglycan biosynthesis - 
chondroitin sulfate KEGG Pathway 11 0.439445571 15.34795142 0.012386826 0.031171105 up 

Chagas disease (American 
trypanosomiasis) KEGG Pathway 35 

-
0.291231739 0.163671956 0.012466934 0.031171105 down 

Toxoplasmosis KEGG Pathway 48 
-

0.256969647 0.202510073 0.01249133 0.031171105 down 

Tryptophan metabolism KEGG Pathway 18 0.378952841 10.53858615 0.012505773 0.031171105 up 

lysosomal membrane 
GO Cellular 
Component 44 0.282905222 5.801665812 0.009066186 0.031249407 up 

magnesium ion binding 
GO Molecular 
Function 74 

-
0.216088865 0.261085429 0.005758851 0.031294808 down 

sulfur amino acid metabolic process 
GO Biological 
Process 15 

-
0.409274195 0.078592522 0.004105485 0.031626766 down 

macromolecule transmembrane 
transporter activity 

GO Molecular 
Function 11 0.479188288 19.64784009 0.006051723 0.032043098 up 
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protein transmembrane transporter 
activity 

GO Molecular 
Function 11 0.479188288 19.64784009 0.006051723 0.032043098 up 

mitochondrial proton-transporting 
ATP synthase complex 

GO Cellular 
Component 11 0.455626283 16.97155639 0.00947075 0.032300241 up 

chromosomal part 
GO Cellular 
Component 247 

-
0.122686222 0.466523544 0.009605474 0.032418474 down 

regulation of localization 
GO Biological 
Process 239 

-
0.136507831 0.428123887 0.004232109 0.032458602 down 

negative regulation of cellular 
component organization 

GO Biological 
Process 86 

-
0.210123888 0.270945491 0.004288517 0.032746964 down 

calmodulin binding 
GO Molecular 
Function 56 

-
0.239958194 0.225091986 0.00628525 0.032858331 down 

dendrite 
GO Cellular 
Component 60 

-
0.224148743 0.248330044 0.009951436 0.033239847 down 

M phase of meiotic cell cycle 
GO Biological 
Process 34 

-
0.302602039 0.152505734 0.004406419 0.033354675 down 

meiosis 
GO Biological 
Process 34 

-
0.302602039 0.152505734 0.004406419 0.033354675 down 

regulation of transferase activity 
GO Biological 
Process 156 

-
0.163102499 0.362903576 0.004436979 0.03344061 down 

phosphoric ester hydrolase activity 
GO Molecular 
Function 142 

-
0.161941842 0.365530673 0.006558939 0.033501766 down 

ubiquitin protein ligase binding 
GO Molecular 
Function 43 

-
0.265414207 0.192156472 0.006570564 0.033501766 down 

chromosome, centromeric region 
GO Cellular 
Component 99 

-
0.181114569 0.32447199 0.010255117 0.033904671 down 

copper ion transport 
GO Biological 
Process 11 0.48535155 20.41499487 0.004527686 0.033977159 up 

ion transmembrane transport 
GO Biological 
Process 38 0.323069046 7.446525235 0.00459049 0.034300612 up 
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organic acid metabolic process 
GO Biological 
Process 316 0.128494483 2.222300354 0.004620277 0.034373715 up 

regulation of protein kinase activity 
GO Biological 
Process 141 

-
0.169503861 0.348749957 0.00463976 0.034373715 down 

nuclear membrane 
GO Cellular 
Component 83 0.212576059 3.74745484 0.010659411 0.034885346 up 

microbody membrane 
GO Cellular 
Component 33 0.310085251 6.869273231 0.010942802 0.035103644 up 

peroxisomal membrane 
GO Cellular 
Component 33 0.310085251 6.869273231 0.010942802 0.035103644 up 

lipoprotein binding 
GO Molecular 
Function 13 0.451142423 16.50516486 0.006971909 0.035114616 up 

Cell Cycle: G1/S Check Point Biocarta Pathway 15 
-

0.462385899 0.056498163 0.002171196 0.035462874 down 

aminoglycan metabolic process 
GO Biological 
Process 20 0.40266071 12.21150461 0.004831434 0.035642062 up 

rRNA binding 
GO Molecular 
Function 21 0.385679996 10.98850832 0.007213898 0.035895661 up 

Long-term depression KEGG Pathway 23 
-

0.335806092 0.124070756 0.014625504 0.035918518 down 

regulation of cellular response to 
stress 

GO Biological 
Process 59 

-
0.241769711 0.22257214 0.004906243 0.03604122 down 

substrate-specific channel activity 
GO Molecular 
Function 41 0.301195927 6.500081067 0.007368167 0.036226821 up 

acetyl-CoA metabolic process 
GO Biological 
Process 32 0.341556632 8.353165837 0.00500899 0.036641396 up 

cellular macromolecule catabolic 
process 

GO Biological 
Process 304 

-
0.120738193 0.472205715 0.00507753 0.036987363 down 
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establishment of protein 
localization 

GO Biological 
Process 552 

-
0.093559123 0.55909645 0.005182427 0.037594189 down 

regulation of cellular protein 
metabolic process 

GO Biological 
Process 286 

-
0.123544418 0.464042034 0.005232892 0.037802759 down 

cellular glucan metabolic process 
GO Biological 
Process 18 

-
0.375936845 0.096684695 0.005312857 0.037908539 down 

glucan metabolic process 
GO Biological 
Process 18 

-
0.375936845 0.096684695 0.005312857 0.037908539 down 

glycogen metabolic process 
GO Biological 
Process 18 

-
0.375936845 0.096684695 0.005312857 0.037908539 down 

regulation of translation 
GO Biological 
Process 95 

-
0.197061386 0.293857806 0.005413883 0.038471713 down 

oxidoreductase activity, acting on 
peroxide as acceptor 

GO Molecular 
Function 17 0.409594724 12.74922761 0.008094494 0.038872397 up 

peroxidase activity 
GO Molecular 
Function 17 0.409594724 12.74922761 0.008094494 0.038872397 up 

nuclear envelope 
GO Cellular 
Component 153 0.158103788 2.6712675 0.012283717 0.039018866 up 

carboxylic acid metabolic process 
GO Biological 
Process 313 0.126388399 2.193403329 0.005539605 0.039036971 up 

oxoacid metabolic process 
GO Biological 
Process 313 0.126388399 2.193403329 0.005539605 0.039036971 up 

cellular response to biotic stimulus 
GO Biological 
Process 32 

-
0.303264841 0.151878847 0.005560694 0.039036971 down 

protein kinase regulator activity 
GO Molecular 
Function 39 

-
0.269170229 0.187723061 0.008359777 0.03968492 down 

glutamine metabolic process 
GO Biological 
Process 14 

-
0.407963926 0.079235098 0.005736832 0.040066687 down 

regulation of transcription factor 
activity 

GO Biological 
Process 57 

-
0.241303916 0.223217361 0.005776415 0.040066687 down 
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regulation of transcription regulator 
activity 

GO Biological 
Process 57 

-
0.241303916 0.223217361 0.005776415 0.040066687 down 

oligosaccharide metabolic process 
GO Biological 
Process 17 0.418081618 13.43970529 0.005816909 0.040187457 up 

negative regulation of translational 
initiation 

GO Biological 
Process 12 -0.4289135 0.069562524 0.005949484 0.040940919 down 

embryonic epithelial tube formation 
GO Biological 
Process 17 

-
0.379469005 0.094585494 0.006034577 0.041200777 down 

neural tube formation 
GO Biological 
Process 17 

-
0.379469005 0.094585494 0.006034577 0.041200777 down 

endosome organization 
GO Biological 
Process 14 

-
0.405640664 0.080387406 0.006137286 0.041738342 down 

hydrolase activity, acting on ester 
bonds 

GO Molecular 
Function 308 

-
0.111451733 0.500259238 0.009014588 0.042307102 down 

hydrogen transport 
GO Biological 
Process 29 0.346772131 8.62834654 0.006297979 0.042499153 up 

proton transport 
GO Biological 
Process 29 0.346772131 8.62834654 0.006297979 0.042499153 up 

actin filament-based process 
GO Biological 
Process 132 

-
0.168762053 0.350361422 0.006324978 0.042516554 down 

viral genome expression 
GO Biological 
Process 10 0.486698853 20.58664637 0.006391588 0.042598867 up 

viral transcription 
GO Biological 
Process 10 0.486698853 20.58664637 0.006391588 0.042598867 up 

plasma membrane organization 
GO Biological 
Process 11 

-
0.439026987 0.065324987 0.006420649 0.042598867 down 

mitochondrial ATP synthesis 
coupled proton transport 

GO Biological 
Process 10 0.48645779 20.55582841 0.006435096 0.042598867 up 

positive regulation of epithelial cell 
proliferation 

GO Biological 
Process 11 0.473024323 18.90943092 0.006492884 0.042818601 up 

recycling endosome GO Cellular 19 -0.33836552 0.122112918 0.013735672 0.043207357 down 
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Component 

ER-Golgi intermediate 
compartment 

GO Cellular 
Component 45 0.266852623 5.250821149 0.013912689 0.043343377 up 

centrosome 
GO Cellular 
Component 81 

-
0.189573926 0.307854609 0.014132105 0.043607637 down 

channel regulator activity 
GO Molecular 
Function 17 

-
0.363164326 0.104671965 0.009521572 0.043899691 down 

ATPase activity, coupled to 
transmembrane movement of 
substances 

GO Molecular 
Function 51 0.267752332 5.280262498 0.009672813 0.043899691 up 

hydrolase activity, acting on acid 
anhydrides, catalyzing 
transmembrane movement of 
substances 

GO Molecular 
Function 51 0.267752332 5.280262498 0.009672813 0.043899691 up 

pore complex 
GO Cellular 
Component 64 0.229041291 4.151218325 0.014438723 0.044133456 up 

metal cluster binding 
GO Molecular 
Function 41 0.291823389 6.132288415 0.009919243 0.044528774 up 

positive regulation of binding 
GO Biological 
Process 52 

-
0.246244772 0.216467522 0.006813838 0.044765633 down 

regulation of mitotic 
metaphase/anaphase transition 

GO Biological 
Process 16 

-
0.383357566 0.09232715 0.006862175 0.044913713 down 

glutathione transferase activity 
GO Molecular 
Function 10 0.473052033 18.91268749 0.010193074 0.045253335 up 

calmodulin-dependent protein 
kinase activity 

GO Molecular 
Function 10 

-
0.434315739 0.067265883 0.01029979 0.045253335 down 

mammary gland morphogenesis 
GO Biological 
Process 12 0.458784574 17.30795685 0.006942186 0.045267215 up 

Bacterial invasion of epithelial cells KEGG Pathway 40 
-

0.262493442 0.195676231 0.018787613 0.045471469 down 

negative regulation of neuron 
apoptosis 

GO Biological 
Process 26 

-
0.320781968 0.136213167 0.007028641 0.045659942 down 
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protein deubiquitination 
GO Biological 
Process 33 

-
0.293097196 0.161785449 0.007056155 0.045668274 down 

coenzyme binding 
GO Molecular 
Function 124 0.179005414 3.041797111 0.010517375 0.045722902 up 

p53 signaling pathway KEGG Pathway 34 -0.27923113 0.176345165 0.019189143 0.045779813 down 

morphogenesis of embryonic 
epithelium 

GO Biological 
Process 26 

-
0.320281826 0.136637201 0.0071456 0.046075888 down 

Links between Pyk2 and Map 
Kinases Biocarta Pathway 18 

-
0.417519256 0.074666888 0.003319565 0.046473911 down 

positive regulation of transcription 
factor activity 

GO Biological 
Process 34 

-
0.288851834 0.166110683 0.00728896 0.046654704 down 

positive regulation of transcription 
regulator activity 

GO Biological 
Process 34 

-
0.288851834 0.166110683 0.00728896 0.046654704 down 

ATPase activity, coupled to 
movement of substances 

GO Molecular 
Function 52 0.261750067 5.086927854 0.010961311 0.047156475 up 

Inositol phosphate metabolism KEGG Pathway 31 
-

0.287628928 0.167377914 0.020190085 0.047489356 down 
mitochondrial large ribosomal 
subunit 

GO Cellular 
Component 17 0.378101774 10.48299425 0.015911035 0.047733104 up 

organellar large ribosomal subunit 
GO Cellular 
Component 17 0.378101774 10.48299425 0.015911035 0.047733104 up 

ATM Signaling Pathway Biocarta Pathway 12 
-

0.467581848 0.054702934 0.004670063 0.047753208 down 

Signaling of Hepatocyte Growth 
Factor Receptor Biocarta Pathway 24 

-
0.364264299 0.103958878 0.004698167 0.047753208 down 

PKC-catalyzed phosphorylation of 
inhibitory phosphoprotein of 
myosin phosphatase Biocarta Pathway 15 

-
0.427820448 0.070036663 0.005115393 0.047753208 down 

Fc Epsilon Receptor I Signaling in 
Mast Cells Biocarta Pathway 12 

-
0.461399003 0.056845741 0.005360054 0.047753208 down 
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oxidoreductase activity, acting on 
paired donors, with incorporation 
or reduction of molecular oxygen 

GO Molecular 
Function 53 0.258591261 4.988041498 0.011348081 0.047927597 up 

Ras GTPase binding 
GO Molecular 
Function 50 

-
0.235698966 0.231129597 0.01137265 0.047927597 down 

negative regulation of protein 
complex disassembly 

GO Biological 
Process 25 

-
0.323343119 0.134062286 0.007536747 0.048026735 down 

positive regulation of transferase 
activity 

GO Biological 
Process 87 

-
0.197372231 0.293290684 0.007558487 0.048026735 down 

ER-Golgi intermediate 
compartment membrane 

GO Cellular 
Component 18 0.37018306 9.97959633 0.016163327 0.04804512 up 

regulation of neuron apoptosis 
GO Biological 
Process 38 

-
0.274560032 0.181539322 0.007882094 0.04990082 down 

 

Table S 14: Discordance-based LRPath Gene Ontology and pathway analysis results with FDR <= 0.05 

Name ConceptType #Genes Coeff OddsRatio P-Value FDR Direction 

ectoderm development GO Biological Process 70 -0.29244408 0.162443448 1.63E-15 1.61E-12 down 

epidermis development GO Biological Process 65 
-

0.296634434 0.158267798 1.85E-15 1.61E-12 down 

extracellular matrix 
GO Cellular 
Component 58 

-
0.294481258 0.160399835 6.26E-14 2.03E-11 down 

cell adhesion GO Biological Process 220 
-

0.211939819 0.26790498 5.75E-13 3.34E-10 down 
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biological adhesion GO Biological Process 221 
-

0.210783743 0.269836689 7.72E-13 3.36E-10 down 

wound healing GO Biological Process 57 -0.28251543 0.172782331 1.52E-12 5.29E-10 down 

cell surface 
GO Cellular 
Component 95 

-
0.247915139 0.214232066 9.28E-12 1.50E-09 down 

tissue development GO Biological Process 243 
-

0.195736299 0.296287684 1.91E-11 5.54E-09 down 

serine-type endopeptidase inhibitor 
activity 

GO Molecular 
Function 15 -0.37131091 0.099504562 2.35E-11 6.16E-09 down 

peptidase regulator activity 
GO Molecular 
Function 53 

-
0.278352324 0.177310897 2.98E-11 6.16E-09 down 

response to wounding GO Biological Process 135 
-

0.223254447 0.24971403 2.99E-11 7.43E-09 down 

basal plasma membrane 
GO Cellular 
Component 11 

-
0.391509148 0.087766454 1.59E-10 1.72E-08 down 

extracellular matrix part 
GO Cellular 
Component 25 

-
0.320368741 0.136563418 2.41E-10 1.95E-08 down 

basal part of cell 
GO Cellular 
Component 12 

-
0.375101077 0.097188179 6.24E-10 3.52E-08 down 
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extracellular region part 
GO Cellular 
Component 156 

-
0.205784902 0.27835096 6.53E-10 3.52E-08 down 

keratinocyte differentiation GO Biological Process 25 
-

0.315359679 0.140881409 3.64E-10 7.91E-08 down 

DNA damage response, signal 
transduction by p53 class mediator GO Biological Process 25 

-
0.312278924 0.143604666 7.13E-10 1.33E-07 down 

epidermal cell differentiation GO Biological Process 29 
-

0.301697976 0.153364983 7.62E-10 1.33E-07 down 

blood vessel morphogenesis GO Biological Process 81 
-

0.237879632 0.22801846 9.41E-10 1.49E-07 down 

ECM-receptor interaction KEGG Pathway 26 
-

0.343438742 0.118322991 2.59E-09 4.32E-07 down 

basement membrane 
GO Cellular 
Component 20 

-
0.318250885 0.138372697 1.07E-08 4.94E-07 down 

blood vessel development GO Biological Process 97 
-

0.221791577 0.251994572 4.35E-09 6.31E-07 down 

vasculature development GO Biological Process 99 
-

0.215963913 0.261288248 1.33E-08 1.79E-06 down 

regulation of epithelial cell 
differentiation GO Biological Process 11 

-
0.358507654 0.107745365 1.96E-08 2.44E-06 down 

cell-substrate junction assembly GO Biological Process 24 
-

0.295608502 0.1592801 3.72E-08 4.15E-06 down 

cell junction assembly GO Biological Process 37 
-

0.267516448 0.189662352 3.82E-08 4.15E-06 down 

angiogenesis GO Biological Process 67 
-

0.232053253 0.236425998 4.26E-08 4.36E-06 down 
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Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) KEGG Pathway 23 

-
0.328449091 0.129875058 7.59E-08 6.34E-06 down 

proteinaceous extracellular matrix 
GO Cellular 
Component 46 

-
0.249836113 0.211689748 1.59E-07 6.43E-06 down 

negative regulation of cell adhesion GO Biological Process 24 
-

0.291911263 0.162982231 7.43E-08 6.60E-06 down 

chemotaxis GO Biological Process 33 
-

0.271174514 0.185399313 7.58E-08 6.60E-06 down 

taxis GO Biological Process 33 
-

0.271174514 0.185399313 7.58E-08 6.60E-06 down 

caveola 
GO Cellular 
Component 25 

-
0.286440078 0.168619121 2.18E-07 7.85E-06 down 

cell junction organization GO Biological Process 45 
-

0.250747094 0.210494676 1.02E-07 8.46E-06 down 

receptor complex 
GO Cellular 
Component 24 

-
0.285495831 0.169611508 4.11E-07 1.33E-05 down 

Dilated cardiomyopathy KEGG Pathway 19 
-

0.332625915 0.126547227 2.67E-07 1.49E-05 down 

basolateral plasma membrane 
GO Cellular 
Component 104 

-
0.195700138 0.296354276 8.43E-07 2.48E-05 down 

cell-substrate adhesion GO Biological Process 56 -0.22824575 0.242087056 6.79E-07 5.20E-05 down 

regulation of chemotaxis GO Biological Process 11 -0.33468572 0.124937635 6.87E-07 5.20E-05 down 

positive regulation of multicellular 
organismal process GO Biological Process 60 

-
0.223701605 0.24902106 7.71E-07 5.59E-05 down 

tissue regeneration GO Biological Process 12 
-

0.323258922 0.134132453 1.33E-06 9.27E-05 down 

regeneration GO Biological Process 29 -0.26273504 0.195382656 1.45E-06 9.70E-05 down 

regulation of behavior GO Biological Process 12 
-

0.321363379 0.135721884 1.73E-06 1.12E-04 down 
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response to biotic stimulus GO Biological Process 152 
-

0.170901273 0.345734398 1.94E-06 1.21E-04 down 

response to other organism GO Biological Process 102 
-

0.187192077 0.312445447 3.56E-06 2.13E-04 down 
Cytokine-cytokine receptor 
interaction KEGG Pathway 11 

-
0.347073593 0.115680134 6.07E-06 2.54E-04 down 

endothelial cell proliferation GO Biological Process 18 -0.28620369 0.168867014 4.37E-06 2.54E-04 down 
Vascular smooth muscle 
contraction KEGG Pathway 32 0.322811683 7.434624688 8.95E-06 2.99E-04 up 

regulation of blood coagulation GO Biological Process 12 
-

0.312526508 0.14338388 5.69E-06 3.09E-04 down 

regulation of wound healing GO Biological Process 12 
-

0.312526508 0.14338388 5.69E-06 3.09E-04 down 

lipid catabolic process GO Biological Process 78 0.209742252 3.682036133 8.74E-06 4.61E-04 up 

insulin-like growth factor receptor 
signaling pathway GO Biological Process 11 0.308974893 6.822035414 1.12E-05 5.75E-04 up 

ossification GO Biological Process 41 
-

0.227791574 0.242771317 1.38E-05 5.91E-04 down 

regulation of apoptosis GO Biological Process 370 
-

0.122280002 0.46770277 1.39E-05 5.91E-04 down 

regulation of programmed cell 
death GO Biological Process 371 

-
0.122096346 0.468236889 1.41E-05 5.91E-04 down 

regulation of cell death GO Biological Process 375 
-

0.121630342 0.469594882 1.42E-05 5.91E-04 down 
cytokine-mediated signaling 
pathway GO Biological Process 28 

-
0.249952931 0.211536121 1.43E-05 5.91E-04 down 

initiation of signal transduction GO Biological Process 28 
-

0.249952931 0.211536121 1.43E-05 5.91E-04 down 
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signal initiation by diffusible 
mediator GO Biological Process 28 

-
0.249952931 0.211536121 1.43E-05 5.91E-04 down 

signal initiation by protein/peptide 
mediator GO Biological Process 28 

-
0.249952931 0.211536121 1.43E-05 5.91E-04 down 

response to external stimulus GO Biological Process 171 
-

0.154074793 0.383845766 1.53E-05 6.21E-04 down 
Hypertrophic cardiomyopathy 
(HCM) KEGG Pathway 20 

-
0.291193426 0.16371093 2.37E-05 6.61E-04 down 

amine transmembrane transporter 
activity 

GO Molecular 
Function 19 

-
0.281705811 0.17365387 7.28E-06 6.82E-04 down 

amino acid transmembrane 
transporter activity 

GO Molecular 
Function 17 

-
0.287002779 0.168030496 9.69E-06 6.82E-04 down 

carboxylic acid transmembrane 
transporter activity 

GO Molecular 
Function 23 

-
0.267218941 0.19001334 9.90E-06 6.82E-04 down 

organic acid transmembrane 
transporter activity 

GO Molecular 
Function 23 

-
0.267218941 0.19001334 9.90E-06 6.82E-04 down 

regulation of response to external 
stimulus GO Biological Process 39 

-
0.229046077 0.240885972 1.75E-05 6.94E-04 down 

regulation of steroid hormone 
receptor signaling pathway GO Biological Process 14 0.291146016 6.106528144 1.96E-05 7.60E-04 up 

nucleolus 
GO Cellular 
Component 510 

-
0.107006742 0.514270976 2.84E-05 7.66E-04 down 

regulation of coagulation GO Biological Process 15 
-

0.286795228 0.168247369 2.09E-05 7.90E-04 down 

epithelium development GO Biological Process 120 
-

0.167490521 0.353140973 2.57E-05 9.52E-04 down 

synaptic vesicle 
GO Cellular 
Component 21 0.283182191 5.811660546 4.04E-05 0.001005769 up 
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small molecule catabolic process GO Biological Process 202 0.155892047 2.634801838 2.82E-05 0.001023778 up 

epithelial cell differentiation GO Biological Process 62 
-

0.199703165 0.289072746 3.06E-05 0.001087322 down 

digestive tract development GO Biological Process 13 
-

0.292960953 0.161922491 3.22E-05 0.001121726 down 

positive regulation of response to 
external stimulus GO Biological Process 15 

-
0.283062869 0.172195504 3.32E-05 0.001121726 down 

DNA damage response, signal 
transduction resulting in induction 
of apoptosis GO Biological Process 20 -0.26436069 0.193418685 3.35E-05 0.001121726 down 

cellular component movement GO Biological Process 207 
-

0.140701293 0.417110795 3.53E-05 0.001143973 down 

response to insulin stimulus GO Biological Process 58 0.213854624 3.777349886 3.61E-05 0.001143973 up 

DNA damage response, signal 
transduction GO Biological Process 62 

-
0.198563134 0.291128054 3.61E-05 0.001143973 down 

odontogenesis GO Biological Process 19 
-

0.266709467 0.190615911 3.75E-05 0.00116622 down 

regulation of leukocyte migration GO Biological Process 10 
-

0.309724692 0.14590237 3.94E-05 0.00120277 down 
integrin-mediated signaling 
pathway GO Biological Process 22 

-
0.256809824 0.202711314 4.11E-05 0.001227622 down 

response to abiotic stimulus GO Biological Process 150 
-

0.153998574 0.384027625 4.16E-05 0.001227622 down 

endopeptidase inhibitor activity 
GO Molecular 
Function 39 

-
0.228793316 0.241264654 2.53E-05 0.001307481 down 

peptidase inhibitor activity 
GO Molecular 
Function 39 

-
0.228793316 0.241264654 2.53E-05 0.001307481 down 
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calcium ion binding 
GO Molecular 
Function 173 

-
0.151123984 0.390949714 2.86E-05 0.001311718 down 

endopeptidase regulator activity 
GO Molecular 
Function 42 -0.22223254 0.251304949 3.51E-05 0.001449737 down 

muscle tissue development GO Biological Process 54 
-

0.203123103 0.282993747 5.37E-05 0.001559506 down 

myeloid leukocyte differentiation GO Biological Process 23 -0.25145429 0.209571592 5.72E-05 0.001632447 down 

ligase activity, forming carbon-
sulfur bonds 

GO Molecular 
Function 15 0.277862369 5.622664874 4.62E-05 0.001654697 up 

GTPase regulator activity 
GO Molecular 
Function 169 0.15729416 2.657860718 4.81E-05 0.001654697 up 

cytokine receptor binding 
GO Molecular 
Function 30 

-
0.238433926 0.227234352 5.42E-05 0.001721341 down 

positive regulation of immune 
system process GO Biological Process 65 

-
0.192335809 0.302615676 6.16E-05 0.001728755 down 

serine-type endopeptidase activity 
GO Molecular 
Function 30 0.239390463 4.426981223 6.17E-05 0.001820832 up 

locomotion GO Biological Process 174 -0.14375074 0.409280511 7.27E-05 0.002010322 down 

response to glucocorticoid stimulus GO Biological Process 30 
-

0.232485534 0.235791701 8.48E-05 0.002306027 down 

cell-cell adhesion GO Biological Process 69 
-

0.186692991 0.313416039 8.75E-05 0.002344295 down 

membrane raft 
GO Cellular 
Component 57 

-
0.197707637 0.292679981 1.03E-04 0.002379765 down 

response to mechanical stimulus GO Biological Process 26 
-

0.239653314 0.225518874 9.85E-05 0.002566604 down 
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defense response GO Biological Process 138 
-

0.152128305 0.388517217 9.88E-05 0.002566604 down 

cell-matrix adhesion GO Biological Process 47 
-

0.205802014 0.27832136 1.02E-04 0.002615411 down 

blood coagulation GO Biological Process 30 
-

0.230855721 0.238192089 1.04E-04 0.002615411 down 

negative regulation of 
developmental process GO Biological Process 73 

-
0.182385385 0.321919524 1.06E-04 0.002641753 down 

RNA processing GO Biological Process 455 
-

0.103244797 0.526435769 1.13E-04 0.002772715 down 

regulation of immune system 
process GO Biological Process 113 

-
0.160335848 0.369197163 1.16E-04 0.002774582 down 

inflammatory response GO Biological Process 65 
-

0.187648003 0.311561416 1.16E-04 0.002774582 down 

response to corticosteroid stimulus GO Biological Process 32 
-

0.225994567 0.245497709 1.19E-04 0.002804658 down 

skin development GO Biological Process 14 
-

0.276225418 0.17967013 1.23E-04 0.002825307 down 

regulation of cell adhesion GO Biological Process 60 
-

0.191335208 0.304503307 1.24E-04 0.002825307 down 

digestive system development GO Biological Process 15 
-

0.271577554 0.184935518 1.25E-04 0.002825307 down 

nucleoside-triphosphatase 
regulator activity 

GO Molecular 
Function 174 0.15041931 2.546696583 1.04E-04 0.002873394 up 

negative regulation of cell 
differentiation GO Biological Process 62 

-
0.189245266 0.308484043 1.30E-04 0.00290213 down 

coagulation GO Biological Process 32 
-

0.224010223 0.248543911 1.51E-04 0.003335753 down 
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regulation of cell proliferation GO Biological Process 268 
-

0.120567254 0.472707615 1.61E-04 0.003467759 down 

cell fate specification GO Biological Process 10 0.290446389 6.080035175 1.61E-04 0.003467759 up 

regulation of small GTPase 
mediated signal transduction GO Biological Process 102 0.173443575 2.938454747 1.86E-04 0.00392772 up 
regulation of cellular catabolic 
process GO Biological Process 109 0.170243293 2.880590618 1.87E-04 0.00392772 up 

anchoring junction 
GO Cellular 
Component 92 -0.16850933 0.350912124 1.85E-04 0.003993539 down 

gland morphogenesis GO Biological Process 30 
-

0.225274655 0.246598519 2.01E-04 0.004164271 down 

locomotory behavior GO Biological Process 59 
-

0.188210772 0.310473668 2.06E-04 0.004188142 down 

multi-organism process GO Biological Process 332 
-

0.110778619 0.502356274 2.07E-04 0.004188142 down 

Focal adhesion KEGG Pathway 82 
-

0.190324191 0.306422547 1.93E-04 0.004262825 down 

Long-term depression KEGG Pathway 23 0.308261348 6.791850705 2.04E-04 0.004262825 up 

extracellular space 
GO Cellular 
Component 117 

-
0.155485338 0.380495686 2.22E-04 0.004486302 down 

GTP metabolic process GO Biological Process 64 0.194051775 3.339949648 2.25E-04 0.00449432 up 

protein maturation by peptide 
bond cleavage GO Biological Process 21 

-
0.244764412 0.218468181 2.36E-04 0.004561255 down 

purine ribonucleotide metabolic 
process GO Biological Process 132 0.159348988 2.692019117 2.37E-04 0.004561255 up 

response to drug GO Biological Process 93 
-

0.164217179 0.360398321 2.40E-04 0.004561255 down 



224 
 

leukocyte differentiation GO Biological Process 58 
-

0.187826432 0.311216126 2.40E-04 0.004561255 down 

hemostasis GO Biological Process 32 
-

0.220011486 0.254797756 2.41E-04 0.004561255 down 

melanosome 
GO Cellular 
Component 72 -0.1783283 0.330139332 2.54E-04 0.004578307 down 

pigment granule 
GO Cellular 
Component 72 -0.1783283 0.330139332 2.54E-04 0.004578307 down 

negative regulation of cell death GO Biological Process 179 -0.13400212 0.434842813 2.54E-04 0.004755984 down 

regulation of ion homeostasis GO Biological Process 11 
-

0.284610128 0.170547674 2.68E-04 0.004891163 down 

GTP catabolic process GO Biological Process 59 0.196263537 3.386175012 2.73E-04 0.004891163 up 

regulation of GTP catabolic process GO Biological Process 59 0.196263537 3.386175012 2.73E-04 0.004891163 up 

regulation of GTPase activity GO Biological Process 59 0.196263537 3.386175012 2.73E-04 0.004891163 up 

Insulin signaling pathway KEGG Pathway 61 0.23908232 4.41851171 2.80E-04 0.005190971 up 

Notch signaling pathway GO Biological Process 22 
-

0.239761341 0.225367524 2.99E-04 0.005320454 down 

purine ribonucleoside triphosphate 
catabolic process GO Biological Process 64 0.191144351 3.280143701 3.12E-04 0.005426972 up 

ribonucleoside triphosphate 
catabolic process GO Biological Process 64 0.191144351 3.280143701 3.12E-04 0.005426972 up 

positive regulation of cytokine 
production GO Biological Process 28 

-
0.225183969 0.246737535 3.16E-04 0.005443982 down 

purine ribonucleotide catabolic 
process GO Biological Process 67 0.188589806 3.228480961 3.24E-04 0.005536562 up 

negative regulation of apoptosis GO Biological Process 175 
-

0.133106628 0.437269518 3.28E-04 0.005545708 down 

negative regulation of programmed 
cell death GO Biological Process 176 -0.13266593 0.438468738 3.37E-04 0.005642173 down 
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nucleoside triphosphate catabolic 
process GO Biological Process 67 0.188038907 3.217446762 3.45E-04 0.005716934 up 

Amoebiasis KEGG Pathway 33 
-

0.233609039 0.234151105 3.47E-04 0.005800083 down 

regulation of nucleotide catabolic 
process GO Biological Process 61 0.192187594 3.3014791 3.58E-04 0.005830017 up 

regulation of purine nucleotide 
catabolic process GO Biological Process 61 0.192187594 3.3014791 3.58E-04 0.005830017 up 

purine ribonucleoside triphosphate 
metabolic process GO Biological Process 117 0.161163599 2.722549085 3.69E-04 0.005941629 up 

ribonucleoside triphosphate 
metabolic process GO Biological Process 118 0.16062216 2.713403575 3.75E-04 0.005987296 up 

desmosome 
GO Cellular 
Component 15 

-
0.264810595 0.192878645 3.59E-04 0.0061145 down 

striated muscle tissue development GO Biological Process 50 
-

0.191102022 0.3049449 4.06E-04 0.006387462 down 

purine nucleoside triphosphate 
catabolic process GO Biological Process 66 0.187239846 3.20150901 4.07E-04 0.006387462 up 
response to organic cyclic 
substance GO Biological Process 53 

-
0.187846717 0.311176896 4.16E-04 0.006465618 down 

ribonucleotide catabolic process GO Biological Process 68 0.185490701 3.166896265 4.22E-04 0.006498914 up 

ribonucleotide metabolic process GO Biological Process 139 0.151798327 2.568615696 4.35E-04 0.006648819 up 

COPI-coated vesicle 
GO Cellular 
Component 14 0.285507605 5.89625776 4.28E-04 0.006926958 up 

coated vesicle 
GO Cellular 
Component 94 0.176494276 2.994696106 4.59E-04 0.007079173 up 

small GTPase regulator activity 
GO Molecular 
Function 123 0.15871416 2.681419465 2.75E-04 0.007092422 up 

response to bacterium GO Biological Process 43 
-

0.197664387 0.292758659 4.76E-04 0.007208594 down 
regulation of developmental 
growth GO Biological Process 17 0.25218934 4.793485997 4.83E-04 0.007244663 up 
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carboxypeptidase activity 
GO Molecular 
Function 10 0.282350899 5.781714038 3.14E-04 0.007267494 up 

GTPase activator activity 
GO Molecular 
Function 95 0.16952289 2.867722972 3.17E-04 0.007267494 up 

muscle organ development GO Biological Process 69 
-

0.172533253 0.34224564 5.16E-04 0.007618296 down 

tissue remodeling GO Biological Process 18 
-

0.246465886 0.216170271 5.16E-04 0.007618296 down 

muscle structure development GO Biological Process 85 
-

0.162089478 0.365195452 5.30E-04 0.007756459 down 
positive regulation of protein 
transport GO Biological Process 23 -0.23115602 0.237747981 5.55E-04 0.008052488 down 
response to steroid hormone 
stimulus GO Biological Process 70 

-
0.170902867 0.345730972 5.73E-04 0.00818727 down 

behavior GO Biological Process 99 
-

0.154182708 0.383588426 5.74E-04 0.00818727 down 

purine nucleoside triphosphate 
metabolic process GO Biological Process 122 0.155208975 2.623640759 5.79E-04 0.008197591 up 

leukocyte chemotaxis GO Biological Process 10 -0.28236786 0.172940861 5.94E-04 0.008336561 down 

response to inorganic substance GO Biological Process 113 
-

0.147521786 0.399800309 6.12E-04 0.008364431 down 

purine nucleotide catabolic process GO Biological Process 72 0.179262513 3.046661086 6.14E-04 0.008364431 up 
estrogen receptor signaling 
pathway GO Biological Process 12 0.267488972 5.271627465 6.14E-04 0.008364431 up 

nucleoside triphosphate metabolic 
process GO Biological Process 127 0.152828879 2.585119126 6.15E-04 0.008364431 up 

lipid transporter activity 
GO Molecular 
Function 26 0.23074997 4.195534028 3.87E-04 0.008409404 up 

anatomical structure formation 
involved in morphogenesis GO Biological Process 143 

-
0.136763949 0.427442994 6.31E-04 0.008514637 down 

regulation of calcium ion transport GO Biological Process 16 - 0.209992437 6.57E-04 0.008798721 down 
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regulation of Ras protein signal 
transduction GO Biological Process 91 0.167454938 2.831104212 6.67E-04 0.008866121 up 

induction of apoptosis by 
intracellular signals GO Biological Process 34 

-
0.207138359 0.276019511 6.72E-04 0.008866121 down 

protein processing GO Biological Process 31 
-

0.211916542 0.267943737 6.95E-04 0.009096946 down 

regulation of peptidase activity GO Biological Process 51 
-

0.184989955 0.316750756 7.10E-04 0.009226172 down 
di-, tri-valent inorganic cation 
transport GO Biological Process 55 -0.1806911 0.325327025 7.42E-04 0.009573316 down 
negative regulation of 
transmembrane receptor protein 
serine/threonine kinase signaling 
pathway GO Biological Process 14 

-
0.257784735 0.201486861 7.63E-04 0.009765055 down 

phosphoric ester hydrolase activity 
GO Molecular 
Function 142 0.14749272 2.500796935 4.82E-04 0.009951015 up 

heterocycle catabolic process GO Biological Process 88 0.167451178 2.831038048 7.87E-04 0.010000106 up 

carboxylic acid catabolic process GO Biological Process 65 0.181232724 3.084193989 8.26E-04 0.010350354 up 

organic acid catabolic process GO Biological Process 65 0.181232724 3.084193989 8.26E-04 0.010350354 up 

female sex differentiation GO Biological Process 26 
-

0.219894603 0.254982904 8.39E-04 0.010383843 down 

cell migration GO Biological Process 148 -0.13291975 0.437777646 8.41E-04 0.010383843 down 

phospholipase activity 
GO Molecular 
Function 25 0.22953199 4.163896782 5.40E-04 0.010579832 up 

extracellular matrix binding 
GO Molecular 
Function 11 

-
0.279372493 0.17619031 5.64E-04 0.010579832 down 

negative regulation of cell growth GO Biological Process 32 
-

0.207894907 0.27472481 8.71E-04 0.01067961 down 

regulation of catabolic process GO Biological Process 126 0.149540341 2.532823318 9.11E-04 0.011091051 up 

organelle fusion GO Biological Process 15 - 0.20964806 9.21E-04 0.011136855 down 
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0.251395588 

generation of a signal involved in 
cell-cell signaling GO Biological Process 40 0.203099588 3.533130635 9.49E-04 0.011312938 up 

signal release GO Biological Process 40 0.203099588 3.533130635 9.49E-04 0.011312938 up 

hormone secretion GO Biological Process 24 0.227770765 4.118570102 9.74E-04 0.011530315 up 

ion transport GO Biological Process 191 
-

0.120788702 0.472057517 0.001008941 0.011868685 down 

response to lipopolysaccharide GO Biological Process 32 
-

0.205452504 0.27892655 0.001104318 0.012854296 down 

growth GO Biological Process 188 
-

0.120632341 0.472516447 0.001112017 0.012854296 down 

hair cycle process GO Biological Process 13 
-

0.257936278 0.201297194 0.001129642 0.012854296 down 

hair follicle development GO Biological Process 13 
-

0.257936278 0.201297194 0.001129642 0.012854296 down 

molting cycle process GO Biological Process 13 
-

0.257936278 0.201297194 0.001129642 0.012854296 down 

alcohol metabolic process GO Biological Process 208 0.125067508 2.175471777 0.001190351 0.013431032 up 

regulation of endothelial cell 
proliferation GO Biological Process 15 -0.24841073 0.213573267 0.001195755 0.013431032 down 

regulation of nitric oxide 
biosynthetic process GO Biological Process 10 

-
0.273398843 0.182854109 0.001261061 0.01407376 down 

skeletal system development GO Biological Process 58 
-

0.172735782 0.341815148 0.001283446 0.014232348 down 

hormone transport GO Biological Process 25 0.222625204 3.988951428 0.001304397 0.014373135 up 

regulation of cell activation GO Biological Process 48 
-

0.181878497 0.322935205 0.001344249 0.014553961 down 

hair cycle GO Biological Process 14 
-

0.251257539 0.209827998 0.001345886 0.014553961 down 

molting cycle GO Biological Process 14 
-

0.251257539 0.209827998 0.001345886 0.014553961 down 
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renal system development GO Biological Process 29 
-

0.208409785 0.273847161 0.001390925 0.0148361 down 

cell motility GO Biological Process 152 
-

0.127455467 0.452899162 0.001397542 0.0148361 down 

localization of cell GO Biological Process 152 
-

0.127455467 0.452899162 0.001397542 0.0148361 down 

response to molecule of bacterial 
origin GO Biological Process 34 

-
0.199526379 0.289390512 0.001415648 0.01493723 down 

microtubule 
GO Cellular 
Component 129 0.152174671 2.574630275 0.00106478 0.015681301 up 

negative regulation of epithelial cell 
proliferation GO Biological Process 10 0.267032585 5.256696922 0.001497269 0.015703281 up 

response to radiation GO Biological Process 85 
-

0.152452939 0.387734182 0.001534944 0.016002026 down 

acid-thiol ligase activity 
GO Molecular 
Function 10 0.271317325 5.398552411 9.07E-04 0.01629198 up 

Salivary secretion KEGG Pathway 23 0.284590194 5.862736799 0.001073633 0.016299695 up 
purine nucleotide metabolic 
process GO Biological Process 154 0.135076234 2.315083735 0.001615919 0.016745923 up 

positive regulation of intracellular 
protein transport GO Biological Process 15 

-
0.244756346 0.218479134 0.00162774 0.016768617 down 

regulation of cytokine-mediated 
signaling pathway GO Biological Process 10 

-
0.269967521 0.18679522 0.001653697 0.016935806 down 

regulation of cytokine production GO Biological Process 46 
-

0.181722141 0.323249151 0.001684987 0.017155331 down 

protein binding, bridging 
GO Molecular 
Function 39 

-
0.197357559 0.293317427 0.001054561 0.018147243 down 

positive regulation of lymphocyte 
activation GO Biological Process 28 

-
0.207041807 0.276185182 0.001871676 0.018945283 down 

cholesterol transport GO Biological Process 14 
-

0.247048603 0.215388856 0.001901266 0.01902359 down 

sterol transport GO Biological Process 14 - 0.215388856 0.001901266 0.01902359 down 
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0.247048603 

receptor metabolic process GO Biological Process 27 
-

0.208721052 0.273317941 0.001926667 0.019167582 down 

envelope 
GO Cellular 
Component 460 

-
0.087280621 0.581342697 0.001373952 0.019354801 down 

regulation of fatty acid oxidation GO Biological Process 15 0.243297235 4.535779569 0.001963146 0.019419533 up 

fructose metabolic process GO Biological Process 13 0.250414741 4.740911784 0.001974654 0.019423012 up 

positive regulation of cell 
communication GO Biological Process 134 

-
0.129526735 0.447106751 0.002005435 0.019614952 down 

mesenchymal cell development GO Biological Process 13 
-

0.250632568 0.210644544 0.002051702 0.019844517 down 

mesenchymal cell differentiation GO Biological Process 13 
-

0.250632568 0.210644544 0.002051702 0.019844517 down 

nitric oxide biosynthetic process GO Biological Process 14 
-

0.245884106 0.216953257 0.002086134 0.019955822 down 

nitric oxide metabolic process GO Biological Process 14 
-

0.245884106 0.216953257 0.002086134 0.019955822 down 

Arachidonic acid metabolism KEGG Pathway 14 0.314441683 7.057789017 0.001441625 0.020062617 up 

regulation of Ras GTPase activity GO Biological Process 53 0.180864552 3.077145275 0.002153499 0.020487662 up 

actin filament bundle assembly GO Biological Process 19 0.230340501 4.184871277 0.002176892 0.020597657 up 

long-chain fatty acid transport GO Biological Process 12 0.252983484 4.817201736 0.002233125 0.021015514 up 

homophilic cell adhesion GO Biological Process 18 
-

0.229582545 0.24008421 0.002317868 0.021695741 down 

positive regulation of intracellular 
transport GO Biological Process 17 

-
0.232827874 0.235290586 0.002337932 0.021766522 down 

Chemokine signaling pathway KEGG Pathway 56 0.219585713 3.914310323 0.001715845 0.022042015 up 

cholesterol homeostasis GO Biological Process 13 
-

0.248538785 0.213403371 0.002413839 0.022207997 down 

sterol homeostasis GO Biological Process 13 
-

0.248538785 0.213403371 0.002413839 0.022207997 down 

anti-apoptosis GO Biological Process 107 
-

0.137486204 0.425528702 0.002423618 0.022207997 down 



231 
 

regulation of hormone levels GO Biological Process 57 0.175819119 2.982157163 0.002485668 0.022620983 up 

response to organic substance GO Biological Process 337 
-

0.092488427 0.562829056 0.002494675 0.022620983 down 

regulation of nucleotide metabolic 
process GO Biological Process 74 0.163481589 2.762052347 0.002519233 0.022725309 up 

ligase activity 
GO Molecular 
Function 240 0.115915133 2.055187584 0.001378775 0.022777363 up 

cytokine production GO Biological Process 56 
-

0.167246651 0.353676583 0.00257132 0.02307561 down 

response to calcium ion GO Biological Process 30 
-

0.199466925 0.289497457 0.002597399 0.023190115 down 

leukocyte migration GO Biological Process 21 
-

0.218966367 0.256458055 0.002664192 0.02366509 down 

response to oxidative stress GO Biological Process 96 
-

0.141286551 0.415596457 0.002689527 0.023768867 down 

lipase activity 
GO Molecular 
Function 31 0.208376195 3.650909782 0.001510264 0.023989965 up 

elevation of cytosolic calcium ion 
concentration GO Biological Process 14 

-
0.242254678 0.221902345 0.002764687 0.024309701 down 

regulation of cell-cell adhesion GO Biological Process 14 
-

0.241906454 0.222383078 0.00283871 0.024835149 down 

endothelial cell migration GO Biological Process 19 
-

0.223466535 0.249385114 0.002937875 0.025574199 down 

organelle envelope 
GO Cellular 
Component 458 

-
0.085068372 0.589390342 0.001907457 0.025750675 down 

cytosolic calcium ion homeostasis GO Biological Process 16 
-

0.233127709 0.234852564 0.003019634 0.026155142 down 

ligase activity, forming carbon-
nitrogen bonds 

GO Molecular 
Function 147 0.134451104 2.306107229 0.001715634 0.026242844 up 
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Malaria KEGG Pathway 10 
-

0.284673177 0.170480862 0.002213367 0.026402305 down 

di-, tri-valent inorganic cation 
homeostasis GO Biological Process 62 

-
0.160316073 0.369242539 0.003069952 0.026459342 down 

iron ion transport GO Biological Process 16 
-

0.232727693 0.235437121 0.003113109 0.026699126 down 

peptide hormone secretion GO Biological Process 21 0.220958091 3.947837422 0.003155455 0.026836121 up 

skeletal muscle tissue development GO Biological Process 32 
-

0.193650676 0.300152962 0.003159911 0.026836121 down 

double-stranded DNA binding 
GO Molecular 
Function 55 -0.17312878 0.340981342 0.001921888 0.027372498 down 

transmembrane receptor protein 
kinase activity 

GO Molecular 
Function 17 

-
0.237201127 0.228981963 0.002012815 0.027372498 down 

acid-amino acid ligase activity 
GO Molecular 
Function 125 0.139734002 2.383075935 0.002059718 0.027372498 up 

serine-type peptidase activity 
GO Molecular 
Function 44 0.188009308 3.216854989 0.002061547 0.027372498 up 

enzyme inhibitor activity 
GO Molecular 
Function 95 

-
0.145442514 0.404999995 0.002160473 0.027372498 down 

structure-specific DNA binding 
GO Molecular 
Function 86 

-
0.149955367 0.39379932 0.002187149 0.027372498 down 

Gap junction KEGG Pathway 27 0.260466941 5.046525375 0.002485372 0.027670475 up 

cell chemotaxis GO Biological Process 12 -0.24918138 0.212552849 0.00331875 0.028048268 down 

fat cell differentiation GO Biological Process 30 
-

0.196297256 0.295256587 0.003377264 0.028404911 down 

regulation of metal ion transport GO Biological Process 20 -0.2184978 0.257205939 0.003440627 0.028798711 down 

response to gamma radiation GO Biological Process 10 
-

0.259482419 0.199372261 0.003577765 0.029803295 down 

serine hydrolase activity 
GO Molecular 
Function 45 0.184940349 3.156083285 0.002466671 0.029962792 up 

positive regulation of cellular 
component movement GO Biological Process 46 

-
0.173055333 0.341137017 0.003659367 0.030337892 down 
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positive regulation of anti-
apoptosis GO Biological Process 16 

-
0.230271993 0.239057733 0.003742316 0.030740412 down 

positive regulation of cell migration GO Biological Process 41 
-

0.178635464 0.329509728 0.003743232 0.030740412 down 

response to DNA damage stimulus GO Biological Process 239 
-

0.100717813 0.534768287 0.003837123 0.031363529 down 

myoblast differentiation GO Biological Process 10 
-

0.257718861 0.201569363 0.004040665 0.03287289 down 

regulation of homeostatic process GO Biological Process 29 
-

0.195714911 0.296327069 0.004091968 0.032880685 down 

positive regulation of cell activation GO Biological Process 31 
-

0.192127763 0.303007189 0.004098282 0.032880685 down 

positive regulation of leukocyte 
activation GO Biological Process 31 

-
0.192127763 0.303007189 0.004098282 0.032880685 down 

lipid particle 
GO Cellular 
Component 13 

-
0.251064316 0.210080113 0.00256098 0.033190298 down 

regulation of canonical Wnt 
receptor signaling pathway GO Biological Process 12 

-
0.245973845 0.216832297 0.00416906 0.033295106 down 

peptide secretion GO Biological Process 22 0.215110076 3.806936582 0.004196337 0.033338881 up 

regulation of cellular component 
movement GO Biological Process 80 

-
0.144773426 0.406687538 0.00421284 0.033338881 down 

extracellular matrix organization GO Biological Process 30 
-

0.193452547 0.300522767 0.004237396 0.033381475 down 

small molecule biosynthetic process GO Biological Process 232 0.107946409 1.955888621 0.004366662 0.034224402 up 

monocarboxylic acid metabolic 
process GO Biological Process 160 0.123028707 2.148081669 0.004383711 0.034224402 up 
response to peptide hormone 
stimulus GO Biological Process 82 0.152223879 2.57541774 0.004441274 0.034519007 up 

microtubule cytoskeleton 
GO Cellular 
Component 292 0.105542594 1.92688722 0.00278381 0.034690558 up 

regulation of membrane potential GO Biological Process 41 - 0.334181259 0.004505507 0.034862608 down 
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0.176370211 

negative regulation of cell size GO Biological Process 36 
-

0.182986511 0.320719153 0.004533912 0.034927169 down 

vesicle localization GO Biological Process 25 0.207840872 3.638784023 0.004558708 0.034963481 up 

appendage morphogenesis GO Biological Process 29 
-

0.194082482 0.299348579 0.0046449 0.035313411 down 

limb morphogenesis GO Biological Process 29 
-

0.194082482 0.299348579 0.0046449 0.035313411 down 

regulation of T cell proliferation GO Biological Process 19 
-

0.217313977 0.25910518 0.004678078 0.035411013 down 

cellular membrane fusion GO Biological Process 33 
-

0.186606389 0.313584763 0.004874391 0.036737295 down 

metal ion transport GO Biological Process 104 -0.13127505 0.442275191 0.004948066 0.037131825 down 

nucleobase, nucleoside and 
nucleotide metabolic process GO Biological Process 248 0.103944965 1.907850516 0.005000387 0.037363405 up 

regulation of blood pressure GO Biological Process 20 0.217027807 3.852578896 0.005172007 0.038480613 up 

gliogenesis GO Biological Process 26 
-

0.198472261 0.291292511 0.005199928 0.03852372 down 

cell-substrate junction 
GO Cellular 
Component 57 

-
0.165586493 0.357344434 0.003301974 0.03856594 down 

synapse part 
GO Cellular 
Component 63 0.17617752 2.988806797 0.003332859 0.03856594 up 

response to oxygen levels GO Biological Process 59 
-

0.156428734 0.378271428 0.00527663 0.038926329 down 

regulation of anti-apoptosis GO Biological Process 22 -0.20722594 0.275869319 0.005355827 0.03934386 down 
regulation of leukocyte 
proliferation GO Biological Process 23 

-
0.204440563 0.280686194 0.005485694 0.039572681 down 

regulation of lymphocyte 
proliferation GO Biological Process 23 

-
0.204440563 0.280686194 0.005485694 0.039572681 down 

regulation of mononuclear cell 
proliferation GO Biological Process 23 

-
0.204440563 0.280686194 0.005485694 0.039572681 down 
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regulation of ARF protein signal 
transduction GO Biological Process 21 0.213860958 3.777498591 0.0054882 0.039572681 up 

ncRNA metabolic process GO Biological Process 188 
-

0.106124374 0.517098762 0.005500625 0.039572681 down 

mesenchyme development GO Biological Process 15 
-

0.228278809 0.242037323 0.005641974 0.040422539 down 

cellular response to stress GO Biological Process 361 
-

0.083273175 0.596002659 0.00576057 0.041103082 down 

protein maturation GO Biological Process 38 -0.17693479 0.333010792 0.005845726 0.041540443 down 

nucleoside phosphate metabolic 
process GO Biological Process 232 0.104697547 1.916794425 0.005932026 0.041812375 up 

nucleotide metabolic process GO Biological Process 232 0.104697547 1.916794425 0.005932026 0.041812375 up 

ureteric bud development GO Biological Process 13 
-

0.235588165 0.231288803 0.006088609 0.042743014 down 

Adipocytokine signaling pathway KEGG Pathway 30 0.245044885 4.585310975 0.004096861 0.042760989 up 

response to vitamin GO Biological Process 33 -0.18357227 0.319553774 0.006137749 0.042914944 down 

extrinsic to plasma membrane 
GO Cellular 
Component 22 

-
0.214320436 0.263970608 0.00389503 0.043297889 down 

apical part of cell 
GO Cellular 
Component 66 

-
0.155863809 0.379601793 0.004110883 0.043297889 down 

coated vesicle membrane 
GO Cellular 
Component 55 0.180577211 3.071655288 0.004142699 0.043297889 up 

fatty acid metabolic process GO Biological Process 111 0.134514823 2.307020596 0.006284535 0.043661646 up 

negative regulation of growth GO Biological Process 38 
-

0.175955513 0.335043616 0.006297196 0.043661646 down 

amine catabolic process GO Biological Process 36 0.186074829 3.1784134 0.006319779 0.043661646 up 

activation of caspase activity GO Biological Process 25 
-

0.197727526 0.292643807 0.006409542 0.044106768 down 

regulation of ossification GO Biological Process 20 
-

0.209894139 0.271332624 0.006456167 0.044219874 down 

nucleotide catabolic process GO Biological Process 83 0.147031129 2.493633404 0.006476777 0.044219874 up 
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nucleobase, nucleoside and 
nucleotide catabolic process GO Biological Process 85 0.145681413 2.472804391 0.006621545 0.044856456 up 

nucleobase, nucleoside, nucleotide 
and nucleic acid catabolic process GO Biological Process 85 0.145681413 2.472804391 0.006621545 0.044856456 up 

hormone binding 
GO Molecular 
Function 10 0.253621001 4.836324963 0.00399207 0.045170486 up 

protein complex binding 
GO Molecular 
Function 103 

-
0.135214414 0.431579048 0.004055189 0.045170486 down 

kinase activity 
GO Molecular 
Function 314 0.095596095 1.811385945 0.004142546 0.045170486 up 

microtubule motor activity 
GO Molecular 
Function 27 0.203409882 3.539950336 0.004156122 0.045170486 up 

response to estrogen stimulus GO Biological Process 37 
-

0.176226852 0.33447912 0.006832184 0.046104 down 

regulation of lymphocyte activation GO Biological Process 41 -0.17092953 0.34567369 0.00688017 0.046248554 down 

regulation of ion transport GO Biological Process 24 
-

0.198461931 0.291311213 0.007114239 0.047474742 down 

cellular response to insulin stimulus GO Biological Process 45 0.173954952 2.947808031 0.007117121 0.047474742 up 

regulation of T cell activation GO Biological Process 37 
-

0.175603679 0.335776995 0.007153968 0.047538389 down 

peptidyl-serine phosphorylation GO Biological Process 21 
-

0.205599799 0.278671343 0.007200673 0.047564109 down 

development of primary female 
sexual characteristics GO Biological Process 22 

-
0.202972895 0.28325804 0.007232602 0.047564109 down 

peptide transport GO Biological Process 25 0.20156463 3.499587773 0.0072834 0.047564109 up 

mRNA processing GO Biological Process 251 
-

0.092907929 0.561363647 0.007303132 0.047564109 down 

appendage development GO Biological Process 30 
-

0.186139204 0.314496539 0.007321758 0.047564109 down 

limb development GO Biological Process 30 
-

0.186139204 0.314496539 0.007321758 0.047564109 down 
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positive regulation of signaling 
pathway GO Biological Process 125 -0.11900698 0.477313514 0.007402823 0.047911953 down 

heterocycle metabolic process GO Biological Process 238 0.101201214 1.875594895 0.007465836 0.048140816 up 

regulation of protein kinase B 
signaling cascade GO Biological Process 17 

-
0.216558714 0.26032419 0.007639796 0.049080757 down 

 

Table S 15: Concordance-based LRPath Gene Ontology and pathway analysis results with FDR <= 0.05 
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