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ABSTRACT 

 

Bio-Inspired Compressive Sensing based on Auditory Neural Circuits for Real-time 

Monitoring and Control of Civil Structures using Resource Constrained Sensor 

Networks  
 
 

by 
 

Courtney Ann Peckens 

 

 

Chair: Jerome P. Lynch 

 

Recent natural hazard disasters including Hurricane Sandy (2012) and the Tohoku 

Earthquake (2011) have called public attention to the vulnerability of civil infrastructure 

systems.  To enhance the resiliency of urban communities, arrays of wireless sensors and 

actuators have been proposed to monitor and control infrastructure systems in order to 

limit damage, speed emergency response, and make post-disaster decisions more 

efficiently.  While great advances in the use of wireless sensor networks (WSNs) for the 

purposes of monitoring and control of civil infrastructure have been made, significant 

technological barriers have hindered their ability to be reliably used in the field for long 

durations.  Some of these limitations include: reliance on finite, portable power supplies, 

limited radio bandwidth for data communication, and limited computational capacity.  To 

resolve current bottlenecks, paradigm-altering approaches to the design of wireless 

monitoring and control systems are required. Through the process of evolution, biological 

central nervous systems (CNS) have evolved into highly adaptive and robust systems 

whose sensing and actuation capabilities far surpass the current capabilities of engineered 

(i.e., man-made) monitoring and control systems.  In this dissertation, the mechanisms 

employed by biological sensory systems serve as sources of inspiration for overcoming
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 the current challenges faced by wireless nodes for structural monitoring and control.  

The basic, yet elegant, methods of signal processing and data transmission used by the 

CNS are mimicked in this thesis to enable highly compressed communication with real-

time data processing for WSNs engaged in infrastructure monitoring.  Specifically, the 

parallelized time-frequency decomposition of the mammalian cochlea is studied, modeled, 

and recreated in an ultra-low power analog circuit.  In lieu of transmitting data, the 

cochlea-inspired wireless sensors emulate the neurons by encoding filtered outputs into 

binary electrical spike trains for highly efficient wireless transmission.    These 

transmitted spike train signals are processed for pattern classification of sensor data to 

identify structural damage and to perform feedback control in real-time.  A key 

contribution of this thesis is the development and experimental validation of a bio-

inspired wireless sensor node that exhibits large energy savings while employing real-

time processing techniques, thus overcoming many of the current challenges of 

traditional wireless sensor nodes.   

 

 

 



 

1 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1. Motivation for Smart Structure Technology: Health Monitoring and 

Feedback Control of Civil Infrastructure 

 Critical infrastructure systems (e.g., bridges, pipelines, roads, buildings) are vital 

to the economic success of modern society.  However, such structures are susceptible to 

degradation and deterioration due to aging effects, harsh environments, or extreme 

loading scenarios, such as earthquakes or high wind loads.  Additionally, due to extensive 

daily use over decades of service, the condition of many infrastructure systems in 

developed nations like the United States is poor.  In a bi-annual review of the United 

States' infrastructure, the American Society of Civil Engineers reported  an average grade 

of a D+ for all infrastructure (e.g., bridges, dams, drinking water) resulting in 

infrastructure being assigned to the "at risk" category (ASCE 2013).  In particular, it was 

reported that one in nine bridges are structurally deficient and the average age of bridges 

in the nation is 42 years old which is rapidly approaching the traditional design life of 50 

years for existing bridges (FHWA 2011).  Current federal law mandates that many 

infrastructure systems undergo visual inspections on a regular basis to ensure that they 

are safe for use.  For example, bridges are required to undergo bi-annual inspections at a 

minimum.  Unfortunately, visual inspections can be subjective in nature, time-consuming, 

costly, and insufficient as the majority of structural defects often lie beneath the surface 

of the structure (Moore et al. 2001).  Therefore, alternative methods of accurately 

assessing a structure's integrity, and in some cases controlling its response, are needed.  

In particular, structural health monitoring (SHM) has received attention because 
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it uses sensor data to autonomously and quantitatively track changes in a structure's 

inherent characteristics, thereby allowing for continuous assessment of structural integrity 

(Chang et al. 2003; Sohn et al. 2003; Farrar and Worden 2007; Farrar and Worden 2012).  

Structural control, on the other hand, involves modifying structural properties such as 

stiffness or damping through the application of passive or active forces (Housner et al. 

1997; Spencer and Nagarajaiah 2003), in order to mitigate the negative effects of large 

extraneous loads (e.g. earthquakes, typhoons).  Similar to SHM, structural control relies 

on sensors to measure structural behavior under loading.  However, structural control 

systems also utilize controllers and actuators to calculate and apply control forces.  Both 

SHM and control systems fundamentally rely upon sensing, computing, and actuation 

technologies to protect structures (and ultimately the public) from long-term deterioration 

and extreme loads.   

 

1.1.1. Structural Health Monitoring  

The majority of today's civil infrastructure relies on traditional structural 

assessment techniques, such as visual inspections or simple tool-based inspections (e.g., 

hammer tapping).  However, recent structural failures such as the roof collapse at the 

Charles de Gaulle airport (Reina 2004), the I-70 overpass collapse in Pennsylvania 

(Harries 2009), and the San Bruno pipeline explosion (NTSB 2010) have called public 

attention to the problem of deteriorating infrastructure systems.  These unfortunate events, 

and others like them, have served as motivation for the development of more refined 

SHM techniques.  To supplement traditional visual inspection methods, non-destructive 

testing (NDT) techniques and permanent structural monitoring systems have become 

increasingly popular as a means of generating quantitative data related to structural 

performance that can be used to detect damage earlier, especially well before structural 

failure or collapse.  Permanent monitoring systems entail the installation of 

accelerometers, strain gauges, potentiometers, etc. to record responses of the structural 

system.  More recently, NDT-based sensing techniques such as guided waves (Raghavan 

and Cesnik 2007) have been included in permanent monitoring systems.  Using both 

global and local responses, damage detection algorithms based on physical models 
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(Doebling et al. 1998) and statistical pattern recognition (Farrar and Worden 2012) are 

used.  While significant advancement has been made in this area, few commercial 

applications of automated damage detection can be found for civil engineering structures.   

Regardless of this fact, many civil infrastructure have begun to be equipped with 

permanent sensing systems that enable continual monitoring of the structure's response 

(Brownjohn 2007). Owners electing to install structural monitoring systems do so to 

better understand their structures or use monitoring data to make decisions about whether 

a structure can be safely used or not (e.g., long-span bridge owners track responses 

during strong wind events to decide if a bridge can remain open for use).  However, it is 

their long-term goal to also use the data collected to make more efficient decisions 

regarding maintenance over a structure's complete life cycle.  Due to their high 

importance to society, a particular emphasis has been placed on long-span bridges with 

several monitoring systems now installed on suspension and cable-stay bridges across the 

world (Fujino et al. 2000; Wong et al. 2000; Ko and Ni 2005; Park et al. 2010; Kurata et 

al. 2013).  This enables tracking of the response of the bridge during both normal daily 

operation, as well as during time-critical events such as earthquakes and typhoons.  

        

1.1.2. Structural Control 

While monitoring a system's structural response to extreme load events is 

beneficial there has been a heightened interest in designing systems that are capable of 

also mitigating undesired responses (Constantinou et al. 1998).  Traditionally, a designer 

mitigates a structure's response to such events by passively increasing its strength and 

ductility, thereby utilizing internal properties of the structure to build in more capacity 

(Symans and Constantinou 1999).  However, for buildings in particular it has been found 

that in order to ensure adequate comfort and safety levels for the occupants, alternative 

methods should be utilized to reduce the effects of large external loads.  Structural 

control was first introduced in the early 1960’s in the form of base isolation and later in 

the form of active and semi-active actuation; since this time, it has evolved into a mature 

field through decades of research and experience (Chu et al. 2005).  The overarching 

objective of structural control is to mitigate the destructive effects of external loads, such 
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as wind or seismic loads, by either applying counter-acting forces (as in the case of active 

control) or by developing internal reactionary forces through modification of structural 

conditions (as is the case in semi-active control).  To achieve this, the system relies on 

real-time feedback of the structure's response (e.g., displacement, velocity, acceleration), 

properly sized actuators, and controllers that calculate control actions in real-time for 

application by actuators.  The vast amount of research conducted in this area over the last 

several decades has resulted in the successful implementation of control systems in many 

real-world structures (Spencer and Sain 1997; Spencer and Nagarajaiah 2003).  The 

majority of these systems have been installed to enhance occupant comfort in buildings 

during strong wind events.  However, semi-active control systems have been more 

recently implemented to reduce damage during seismic events.  Of these successful 

implementations, however, relatively few include applications in the United States 

largely due to perceived issues surrounding the technology's cost effectiveness, reliability, 

and power requirements (Spencer et al. 1998). 

 

1.1.3. Limitations of Wired and Centralized Architectures  

The functionality of SHM and control systems both rely on the successful 

integration of information between sensors and/or controllers.  Such systems depend on a 

data acquisition (DAQ) system that collects and stores information from the sensors in a 

centralized location.  Traditionally, data is transmitted from these sensors through wired 

means (e.g., coaxial cables) as shown in Figure 1-1a  While extremely reliable in 

communication, wires require significant installation time and often cost several thousand 

dollars per sensing node channel to install (Celebi 2002) making installations of large 

networks of sensors unattractive.  As a result, tethered systems typically lack a high 

spatial density of sensors within their networks.  Low sensor densities are especially 

limiting for SHM at it becomes difficult to detect localized damage.  Furthermore, for 

control systems that are operating on a centralized server, data must be processed from all 

sensors prior to making a control decision.  While computing power is continuously 

improving, integration of many sensing channels to calculate control actions at a single 

controller remains challenging for real-time operation.    
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1.2. Wireless Structural Monitoring and Control 

To address the limitations of the traditional tethered DAQ system, the structural 

monitoring community has investigated alternative methods that could allow for a denser 

network of sensors with greater affordability.  Of particular interest is replacing 

traditional cables with wireless sensing technology in the monitoring system (Figure 1-

1b), thereby enabling an easier and quicker installation and leading to a reduction in 

Wireless Sensing Unit
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 (a) (b)  
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Figure 1-1. Configuration of structural monitoring systems: tethered (a) versus 

wireless (b)  (note:  similar configurations exist for control applications), and 

schematic of components contained within a wireless sensor unit (c).  
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overall system cost.  The utilization of wireless sensor networks (WSNs) for structural 

monitoring, and later structural control, has become increasingly popular for both 

commercial and academic use in a variety of applications (Straser and Kiremidjian 1998; 

Lynch 2002; Spencer et al. 2004; Lynch and Loh 2006).   

Wireless sensors can come in two forms.   In the first type, a traditional sensor is 

interfaced directly with a wireless radio, thus converting it into a "wireless" sensor.  In 

the second type, the wireless sensor is not a sensor per se, but rather a wireless data 

acquisition node which interfaces with external sensing transducers.  This second class of 

wireless sensor is sometimes also referred to as a wireless sensing unit (WSU).  Wireless 

sensing units act as individual data acquisition nodes, capable of collecting data from an 

external transducer and processing data locally.  Each wireless sensor node is typically 

comprised of a low power computing core, a sensor interface (i.e., analog-to-digital 

converter), and a wireless transceiver (Figure 1-1c).  This enables on-board data 

collection and processing, as well as stream-lined communication with either a base 

station unit or between other nodes in the network in a peer-to-peer fashion.  Typically, 

each wireless sensor node in the network costs less than several hundred dollars (Lynch 

and Loh 2006; Lynch 2007), making it now possible to deploy dense arrays of wireless 

sensors across the structure. 

With the advent of this new sensing paradigm came many successful structural 

monitoring deployments on a variety of civil infrastructure systems including bridges 

(Straser et al. 1998; Lynch et al. 2002; Pakzad et al. 2008; Jang et al. 2010; Kim et al. 

2010), wind turbines (Rolfes et al. 2007), ships (Paik et al. 2009; Swartz et al. 2012), and 

buildings (Kurata et al. 2003; Kim and Lynch 2012).  While all of these deployments 

have been successful and have highlighted the many benefits of the technology (e.g., ease 

of installation, localized data processing), they also illuminated many of the performance 

bottlenecks associated with wireless sensors in long-term field deployments. Some of 

these challenges include: 1) limited communication bandwidth which limits the network's 

ability to reliably transfer data to a centralized location in real-time; 2) the lack of reliable 

power sources; and 3) limited physical robustness of the sensing nodes in harsh 

environments.  Researchers have sought to overcome the limitations of available radio 

bandwidth, and hence communication contention between nodes, through novel 
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communication schemes such as pipelining (Kim et al. 2007) or by implementing 

multiple sub-networks of sensors on the same civil infrastructure system (Jang et al. 2010; 

Kurata et al. 2013).  While such methods have been successfully validated in the field, 

these techniques also require complex time synchronization schema (Pakzad et al. 2008; 

Feltrin et al. 2010; Kurata et al. 2013) and sometimes result in incomplete data 

acquisition due to radio interference or lost data packets (Pakzad et al. 2008).  

Researchers have also attempted to address the power constraints of WSNs by utilizing: 1) 

alternative energy sources (such as wind and solar) for power (Jang et al. 2010; Park et al. 

2010; Kurata et al. 2013), 2) minimizing power consumption by designing wireless 

sensors that use low-power components, and 3) integrating periodic sleep intervals into 

daily monitoring activities (Rice et al. 2010; Kurata et al. 2013).  Even with these 

promising advancements, power constraints still remain a major challenge for WSNs that 

inhibit long-term field deployments.  Alternative and previously unexplored approaches 

to wireless monitoring may resolve many of these bottlenecks.  

As an additional add-on feature, wireless sensor nodes can also be equipped with 

actuation interfaces (Lynch et al. 2008; Sun et al. 2012), thus enabling structural control 

(Figure 1-1c).  When considering this application with wireless telemetry, the new 

technology has been successful due to its localized, parallel processing capabilities, thus 

enabling more effective management of network resources through decentralized control 

(Wang et al. 2007; Swartz and Lynch 2009).  However, such applications are limited to 

reliance on a shared communication channel that can get congested during the operation 

of the control system, leading to lost data and a reduction in the performance of the 

control solution.  Additionally, while each wireless sensor node has on-board computing 

capabilities thus allowing it to act as a controller (i.e., determine control forces).  

However, these are limited by a computing core whose computational capacity is 

significantly lower than that of a centralized computer.  As such, complicated control 

algorithms require significantly more computational time when embedded on a single 

node which in turn can lead to delays between the taking of measurements and the 

application of control forces.  These delays generally degrade system performance.  Yet 

again, this trend toward computation inundation in wireless sensor nodes may be 
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overcome by exploring less traditional sources of inspiration for a new paradigm in 

sensing and actuation.    

While the integration of wireless telemetry into structural monitoring and control 

has greatly advanced both fields, certain limitations of the technology prevent full 

realization of its potential.  The challenges of guaranteeing reliable communication can 

inhibit real-time data processing due to lost packets and the need for recollecting data.  

Additionally, the limited computational capacity of each node can lead to computation 

inundation and also inhibit real-time data processing.  These limitations create 

performance bottlenecks that must be overcome if wireless sensing technology is to 

become more attractive for real-world use in operational structures.  To overcome grand 

engineering challenges such as these, in recent years engineers have turned to biology for 

sources of inspiration, thus giving rise to a new field called bio-inspired engineering.   

 

1.3. Bio-Inspired Engineering 

Engineering has long been tied to chemistry and physics within the hard sciences 

and many engineering feats are closely linked with a high level of understanding of these 

fields.  Physics offers laws of statics, dynamics, electricity, and magnetism that have 

largely affected the bounds on engineering since society first sought to problem solve.  

As an example, when considering the realm of sensors and actuators, the earliest 

accelerometers relied on the principles of the dynamic response of a single degree of 

freedom mass (Walter 2007).  For actuators, magnetorheological (MR)  dampers are 

based on the principles of magnetism to create variable control forces (Weiss et al. 1994).  

Chemistry, on the other hand, offers laws of molecular behavior from an atomistic 

viewpoint.  As the field of chemistry has advanced, so has its application toward 

engineering.  A particularly significant advancement was the invention of the transistor 

(Nelson 1962) which greatly revolutionized all electronics, including sensors and 

actuators, by enabling the miniaturization of a countless number of components.  While 

engineering has been largely tied to both physics and chemistry, the third natural science, 

biology, remained largely unattached to engineering until recent years.  Of course, 

engineers have been taking cues from biology in their design for centuries.  Many ideas 
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and inventions, such as Velcro and early attempts at human flight, were originally 

conceived from biological sources (Jenkins 2012).  However, with new technology 

advancements, such as higher precision microscopes, biologists are able to explore the 

world at new levels, thus enabling a deeper understanding of living forms.  From this 

exploration and observation, it is clear that in all areas of biology nature has engineered 

complex structures and systems whose capabilities far exceed many of the current 

engineering technologies and feats.  As such, biology is a logical source of inspiration for 

deriving solutions to today's complex engineering challenges and bottlenecks.  

Bio-inspired engineering has quickly gained footing in a wide variety of 

applications.  Robotics is a natural fit for bio-inspired engineering and many researchers 

have studied the locomotive techniques of biological specimens in order to improve the 

capabilities of their robots for numerous applications.  For example, based on the 

locomotion of the lobster, Ayers and Whitting (2007) created a bio-inspired robot that 

can traverse underwater terrains more easily.  Additionally, Chang-Siu et al. (2011) drew 

inspiration from the tail movement of a jumping lizard for stabilizing a land robot and 

Menon and Sitti (2006) developed a climbing robot based on the adhesive foot surface 

and gait of a gecko.  These are only a few examples; numerous other researchers have 

explored various biological systems for overcoming engineering constraints.  Another 

area that has been explored is the development of new materials based on properties 

found in biological systems.  Many researchers have explored the hierarchical 

nanostructure of materials such as teeth, bone, and nacre for the development new 

composite materials that exhibit the same strength and toughness of their biological 

counterparts (Ji and Gao 2004).  Others have considered the water-repellant 

characteristics of certain leaves, such as the lotus leaf, to develop similar traits in textiles 

or corrosion resistant metals (Yao et al. 2011). Again, these are only a few examples 

within the realm of bio-inspired materials and numerous other examples can be found 

within the literature.   

Artificial intelligence (AI) has long been tied to bio-inspired computing first 

through the development of specific bio-inspired algorithms and more recently through a 

concrete bio-mimicry of signal processing within the brain. The artificial neural network 

(ANN) (Yegnanarayana 2004) was the first attempt in machine learning to encapsulate 
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the functionality of biological signal processing but many other algorithms such as the 

genetic algorithm (Whitley 1994) and particle swarm optimization (Kennedy 2010) have 

since evolved based on biological principles.  For the ANN, in particular, researchers 

sought to leverage the parallel processing capabilities of the brain in order to potentially 

establish a new computing paradigm that was not based on the traditional von Neumann 

computer (Farrar and Worden 2012).  However, through years of development and 

iterations, this bio-inspired algorithm has strayed from its original source of inspiration 

and is largely unable to achieve its original design goals.  Recently, others have delved 

further into the processing capabilities of the brain with the ultimate quest of creating 

super-computing architectures based on the biological brain through cognitive computing 

(Modha et al. 2011).  To achieve this lofty goal, researchers have simulated the 

interconnectedness between processing units within the brain on integrated chips in order 

to capture the streamlined computing capabilities that are seen in biological sensory 

systems.  While this has been proven successful on small-scale (Ananthanarayanan et al. 

2009), there are still many challenges that must be overcome to fully encapsulate the 

functionality of the brain.    

Therefore, bio-inspired engineering has recently emerged as a field that seeks to 

overcome engineering challenges with solutions derived from biology.  Given its success 

in many different areas of engineering, this study seeks to leverage biological principles 

to overcome the aforementioned bottlenecks found in wireless sensor nodes when used 

for the purposes of structural monitoring and control.  In particular, this study focuses on 

the adaptation of the signal processing capabilities of biological sensory systems to 

wireless sensor nodes in order to create a new sensing and actuation paradigm.  To set 

precedence for this, however, the original bio-inspired algorithm, ANN, will be explored 

with an application to wireless sensor nodes in order to fully understand the limitations of 

this learning and computing algorithm.  Based on the findings from this study, a new 

sensing and actuation paradigm is sought that has stronger ties to biological sensory 

systems.     
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1.4. Signal Processing and Actuation in Biological Systems 

Through the process of evolution, biological sensory systems have advanced into 

highly adaptive and robust entities (Kandel 2000) with processing capabilities that far 

surpass current engineering technologies (Mead 1990).  As such, inspiration for a new 

sensing and actuation paradigm can be drawn from the biological sensory system, thus 

potentially addressing the deficiencies currently found in WSNs, both across the network 

and with individual nodes.  The processing mechanisms used in biological sensory 

systems are attractive to engineers and scientists due to the simplistic individual 

functional unit, the neuron, that inevitably forms complex architectures with other units 

to achieve computing objectives in real time (Modha et al. 2011).  The neuron, as first 

proposed by Nobel laureate Santiago Ramòn y Cajal in 1891, is the basic building block 

in the biological sensory system because it functions as the key information processing 

unit (Nicholls et al. 2001).  The neuron is comprised of three main components (Figure 1-

2.a): 1) tree-like structures called dendrites which receive information from surrounding 

neurons, 2) the soma which makes decisions based on the integration of these inputs, and 

3) the axon which transmits the decision of the soma to the synapse of surrounding 

neurons via the terminal buttons.          

Signal transmission within the neuron relies on the membrane potential, or the 

voltage difference between the interior and exterior walls, of the neuron.  Messages from 

external sources to the neuron change this potential by either inhibiting (closing) or 

activating (opening) ionic channels within the cell, thus causing the voltage difference 

across the cell to become more negative or positive.  If the membrane potential reaches a 

threshold voltage, however, the cell fires an electrical spike, called an action potential. 

An action potential (Figure 1-2.b) is considered to be all-or-nothing event because it only 

occurs when a specific threshold membrane voltage has been reached (Nicholls et al. 

2001); when it does occur, it has a constant amplitude and duration.  As a result, a single 

spike cannot encode significant information about the input stimulus and instead the 

firing rate between multiple spikes carries information about the input signal such as 

magnitude or amplitude (Bialek et al. 1991).  This resulting binary spike train is a highly 

compressed representation of the neuron's input stimulus, thus requiring minimal energy 
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for transmission to surrounding neurons.  The spike train is transmitted down the axon, 

where it must cross synapse which is the connection to the dendrite of another neuron cell 

(Figure 1-2c).  At the synapse, the electrical signal is converted to a chemical signal 

through the release of ionic compounds, called neurotransmitters, which convey the 

message to the receiving neuron.  These neurotransmitters will either enhance or inhibit 

the receiving neuron’s tendency to emit its own electrical pulses depending on the type of 

connection between the two neurons. Through these connections, a single neuron is able 

to convey its information to multiple neurons simultaneously, resulting in a complex 

interconnection of information flow. 

The primary function of the sensory system is to receive, integrate, and transmit 

binary spike train information such that a reaction is formulated by the organism in 

response to an environmental stimulus.  The neuron is the basic building block that 

allows for such mechanisms, but numerous research studies have determined that the 

response of an individual neuron contributes very little to the resulting response of the 
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Figure 1-2. Schematic of neuron (a), single action potential (b), and synapse (c). 
 



 

13 
 

organism (Georgopoulos et al. 1986; Lewis and Kristan 1997).  Instead, individual 

neurons must extensively collaborate to form networks with decision-making skills far 

superior to the capability of an individual neuron.  As such, sensory information is 

processed in relays, or layers, with each progressive relay within the network capable of 

more complex decisions (Kandel et al. 2000).  The architecture of these networks is not 

absolute, however, and connections between individual neurons are often reinforced or 

eliminated based on experience, thus allowing the organism to achieve its objective more 

efficiently with increased learning (Schultz et al. 1997; Song et al. 2000). Additionally, 

the sensory system processes information from multiple input sources simultaneously 

through parallel neural networks, thus allowing for higher processing efficiency.  This 

also includes an aggregation of data from multiple sensor types through sensor fusion, 

resulting in a deeper foundation of knowledge for decision making.  The precise 

methodologies that biological systems use to integrate information from multiple sources 

are largely unknown, although current theories trend toward a form of probabilistic 

pattern recognition (Bialek et al. 1991; Rieke et al. 1999; Dayan and Abbott 2005; 

Averbeck et al. 2006).  Regardless of the mechanism, networks of biological neurons are 

able to make extremely sophisticated decisions with reaction times in the millisecond 

range which is an attractive feature for engineering applications that require real-time 

decision making. 

The processing techniques offered by biological systems differ in many ways 

from the traditional methods used in engineering applications; it is these differences that 

make them attractive sources of inspiration (Table 1-1).  In contrast to the rigid 

architectures of engineering systems, the laws of natural selection have allowed 

biological systems to become extremely adaptable to environmental stimulus and to learn 

through experience.  This high level of adaptability is achieved through large, complex 

networks of neurons that modify their connections to process and aggregate information 

so that information-rich representations of input stimuli can be formulated.  Biological 

systems, however, have had the advantage of centuries of evolution, molding them into 

functional systems that are well-suited for their environment.  Biological systems are also 

able to process vast amounts of information very rapidly and with minimal energy 

consumption through very compressed communication mechanisms.  Current engineering 
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technologies (such as WSNs) are much more power intensive and may largely benefit 

from adapting the compressive techniques utilized by biological sensory systems.  Finally, 

biological systems operate through analog mechanisms, allowing for real-time processing.  

Modern engineered systems, on the other hand, must perform numerous conversions 

between the analog and digital domains which inhibit the computational speed of the 

overall network.  By drawing inspiration from biological systems, new methods of 

sensing and control can be formulated that address deficiencies in WSNs  (Figure 1-3.). 

 

1.5. Artificial Neural Networks 

The adaptive architectures and parallel processing capabilities offered by 

biological systems have long been attractive to mathematicians and engineers.  Artificial 

neural networks (ANNs) were first developed in the early 1950’s as an attempt to 

formulate mathematical representations of the information processing techniques found 

in biological systems (McCulloch and Pitts 1943; Minsky 1961; Rosenblatt 1962).  With 

this new algorithm it was hoped to achieve a new computing paradigm that leveraged the 

adaptive learning capabilities, fault tolerance, and nonlinear processing capabilities of 

biological neural networks (Haykins 1994).  Early efforts in this area focused on a basic 

building block termed the linear perceptron that accepted n number of inputs, xi 

(i=1,…, n), scaled the inputs by a weight, wi, and summed the resulting values, xiwi.  

Table 1-1. Summary of capabilities and deficiencies of biological sensing systems. 

 

Benefits of Biological Sensing Systems Deficiencies of Biological Sensing Systems 

 Extremely adaptable to 

environmental stimulus 

 Required thousands of years of 

evolution to achieve current system 

 High level of redundancy  Relies on thousands of  processing units 

 Capable of decentralized, real-time 

processing 

 Individual processing unit is 

"unreliable" 

 Operates solely in analog domain  

 Communicates through 

compressed format 
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This sum was then compared with a threshold value, , and an output y was produced 

that was one if the sum exceeded the threshold and zero otherwise,  

        

1  if (     )   
 

  1

0  if (     )   
 

  1

  (1.1) 

thus acting as a step activation function (Figure 1-4).  This simplistic design was termed 

the McCulloch-Pitts perceptron.  The intent of the design was to model the interactions of 

biological neural networks where the interconnectedness of the model represented axons 

and dendrites, the activation function symbolized processing in the soma, and the weights 

approximated the synaptic strength between neurons (Jain and Mao 1996).   While these 

early neural networks successfully captured the threshold activation nuance of biological 

systems, they lacked the capability of making sophisticated decisions like their biological 

counterparts and were limited to linear classification applications.  Additionally, early 

applications of neural networks lacked rigorous methods for autonomously determining 

the weights, or the synaptic strength, between connected nodes, making them difficult to 

implement (Jain and Mao 1996).  

With these limitations, neural networks did not gain popularity until the early 

1980’s when a novel training algorithm termed backpropagation was first proposed by 
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Figure 1-3. Utilization of biological processes for inspiration in addressing WSNs’ 

current limitations. 
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Werbos (1974) and then re-popularized through novel applications by Rumelhart et al. 

(1986).  Shortly following this reinvention, it was demonstrated that virtually any static 

function could be approximated by neural networks (Cybenko 1989; Hornik et al. 1989) 

and more specifically, a properly designed three layer network could be used to model 

any nonlinear function (Hecht-Nielsen 1989).  These significant findings led to an 

explosion of applications across all engineering fields, including pattern classification, 

categorization, function approximation (regression), prediction, optimization, and control 

(Jain and Mao 1996).  

While the original intent of ANNs was to relate to the processing mechanisms 

employed by biological systems, the architecture of the networks quickly evolved into 

increasingly complex representations whose methods of analyses largely deviated from 

the original source of inspiration.  For example, many training algorithms for ANN 

require that the activation function be continuously differentiable, thus making the 

simplistic step function a poor choice for an activation function.  Instead, more complex 

activation functions have been proven to be better suited for the training, such as 

sigmoidal functions or Gaussian functions, but these functions have weaker ties to the 

original biological inspiration of ANN.   As such, while ANNs attempt to encapsulate the 

complex flow of information within biological neuronal networks, these networks now 

largely deviate from their original source of inspiration. The training techniques and 

architectural design are hardly reminiscent of the techniques utilized by biological 

systems (Grossberg 1987); apart from their parallel processing capabilities and general 

neuronal architecture, ANNs lack the previously outlined benefits provided by biological 

systems.   In light of this, this thesis focuses on returning to the biological systems that 

provided inspiration for artificial neural networks in order to establish a new paradigm 
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Figure 1-4. McCulloch-Pitts perceptron. 
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for signal processing, sensing, and actuation that is more directly based on biological 

principles. 

1.6. Research Objectives and Dissertation Outline 

While early bio-inspired algorithms, such as artificial neural networks, attempted 

to encapsulate the processing capabilities of biological systems, they inevitably strayed 

from their source of inspiration and now miss out on the potential benefits associated 

with biological sensory systems.  As such, this dissertation seeks to return to the source 

of inspiration for artificial neural networks (i.e., biological sensory systems) to fully 

leverage the benefits of such systems and therefore address the current bottlenecks seen 

in wireless sensor nodes for the purpose of structural monitoring and control.  By 

adopting the compressive data transmission strategies, parallel processing, and analog 

computing techniques of biological sensory systems, a new paradigm in wireless sensing 

will be established that is alleviated from the current wireless sensor node constraints of 

limited radio bandwidth, large power consumption, and computational inundation.  Each 

successive chapter is founded on the signal processing techniques employed by biological 

sensory systems and progresses from theoretical principles to implementation and 

validation in hardware (Figure 1-5).  The objectives of this dissertation are to: 

 explore artificial neural networks, the traditionally bio-inspired algorithm, as 

they relate to wireless sensor nodes so as to define a baseline for the current 

bio-inspired signal processing method and to establish areas for improvement; 

 develop and implement a new sensing and signal processing paradigm based 

on the operational principles of the biological sensory system in order to 

address the current bottlenecks of wireless sensing and control; 

 develop and implement a new control paradigm based on actuation 

mechanisms employed by the biological sensory system.    

In Chapter 2: Distributed Neural Computations in Wireless Sensor Networks 

Using Artificial Neural Networks, artificial neural networks will be revisited in order to 

understand the true benefits and limitations of this traditional bio-inspired algorithm.  

While it has already been acknowledged that ANNs are only loosely based on biological 
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neural circuits, the algorithm is computationally efficient and may still provide some 

benefit for the purposes of structural monitoring and control.  This possibility will be 

further explored in this chapter.  Additionally, by implementing an ANN within a WSN, 

the limitations of the algorithm will also be highlighted, thus providing further motivation 

for re-aligning with the original biological source of inspiration.  Due to its streamlined 

architecture, the Volterra-Weiner neural network is adopted as the traditional bio-inspired 

algorithm in this study and it is decentralized across a network of wireless sensor nodes, 

thus enabling parallel processing.  These distributed computing techniques are evaluated 

by predicting the response of a six-story shear structure when subject to seismic ground 

motion.  It is demonstrated that only modest benefits are gained by decentralizing the 

algorithm across a network of sensor nodes. 

By recognizing the limitations and deficiencies of the commonly-utilized artificial 

neural network and also considering the known bottlenecks of wireless nodes for the 

purposes of structural monitoring and control, Chapter 3: Utilizing the Cochlea as a Bio-

inspired Compressive Sensing Technique seeks to return to the biological sensory system 

to establish a new paradigm for sensor networks.  In doing this, the benefits of the 
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processing mechanisms

CHAPTER 2

Bio-Inspired Compressive Sensing

Theoretical framework of cochlea-inspired 

sensing

CHAPTER 3

Structural Control Using Bio-

Inspired Sensing Node
Application of wireless sensing node to 

structural control application

CHAPTER 5

Structural Monitoring Using 

Bio-Inspired Sensing Node
Wireless sensing node design with 

structural monitoring application   

CHAPTER 4

Conclusions and Future 

Directions of Bio-Inspired 

Sensing and Control

CHAPTER 6

Bio-Inspired Signal 

Generation and  

Processing

Signal Integration: 

Sensing and 

Actuation

Key Findings

Motivation Introduction

CHAPTER 1

 

 

Figure 1-5. Schematic representing the major topics covered in this dissertation.  
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biological sensory system, such as compressive data transmission and real-time 

processing capabilities, will be leveraged so that the deficiencies of WSNs can be 

addressed.  From this study, it is found that the method by which biological sensory 

systems transmit data is highly compressive, thus resulting in large energy savings during 

signal processing of input stimuli.  Traditional ANNs do not leverage these compressive 

transmission techniques and therefore do not see these benefits.  The techniques used by 

biological sensory systems are analyzed from an engineering perspective and compared 

against other traditional data compression techniques.  It is found that while some 

traditional techniques result in lower reconstruction error after compression, the bio-

inspired method achieves similar compression rates while being the only one offering 

real-time processing.     

In Chapter 4: Resource Efficient Wireless Sensor Network Architecture based on 

Bio-Mimicry of the Mammalian Auditory System the new sensing paradigm is 

implemented in hardware in the form of a new wireless node.  By leveraging the benefits 

of the biological sensory system, this new sensing node is designed to address some of 

the challenges of traditional WSNs such as limited radio bandwidth and computation 

inundation.  First, this sensing node leverages the benefits seen in biological sensory 

systems through real-time pre-processing with analog circuitry.  Next, this processed data 

is compressed into single-byte wireless packets and transmitted to a centralized receiver.  

The performance of the proposed sensor is validated on a single degree-of-freedom 

structure that is excited by seismic ground motion signals.  The proposed sensor is 

optimized for monitoring both seismic signals and the response of a structure when 

subject to seismic excitation.  Overall, this chapter demonstrates its real-time monitoring 

capabilities of the new wireless node while maintaining high data compression rates and 

therefore, alleviating some challenges faced by WSNs.   

Once the new bio-inspired wireless sensor node has been successfully 

implemented in a structural monitoring application it is next used for the purposes of real-

time control in Chapter 5: Real-Time Control of Civil Infrastructure using Wireless 

Sensor Networks based on Bio-Mimicry of the Biological Sensory System.  While WSNs 

for the purposes of feedback control can become inundated with computations, thus 

reducing their real-time capabilities, biological systems are capable of streamlined 
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processing that result in reflexive, real-time actuation.  In this chapter, the mechanisms 

employed by biological sensory systems for actuation are explored and the wireless 

sensor node is applied to a bio-inspired control application, thus highlighting real-time 

capabilities during time-critical events.  The streamlined feedback system is validated on 

a four degree-of-freedom structure that is subject to seismic ground motions.   

Finally, in Chapter 6: Conclusions key findings from the thesis are provided.  The 

benefits of the new bio-inspired wireless sensor as they pertain to structural monitoring 

and control are highlighted.  Additionally, an outline for potential future work in the area 

of bio-inspired sensing and control for civil infrastructure is provided.        
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CHAPTER 2 

 

DISTRIBUTED NEURAL COMPUTATIONS IN WIRELESS SENSOR 

NETWORKS USING ARTIFICIAL NEURAL NETWORKS 

 

2.1.   Introduction 

Researchers have attempted to encapsulate the signal processing capabilities of 

biological sensory systems through complex networks of interconnected computing 

nodes, called artificial neural networks (ANNs).  While this field of study has had relative 

success over the last several decades (Haykins 1994), it has largely strayed from its 

original biological source of inspiration (Mehrotra et al. 2000).  To fully understand the 

benefits, as well as shortcomings of this foundational bio-inspired signal processing 

technique, a traditional ANN is explored as it relates to structural health monitoring 

(SHM) using wireless sensor networks (WSNs).  In doing this, it is hoped that some of 

the traditional deficiencies of WSNs (e.g., limited radio bandwidth, reliance on finite 

power sources) will be overcome and if not, areas in which biological sensory systems 

can better serve as a source of inspiration for wireless sensor nodes will be illuminated.   

In recent years, many researchers have focused on embedding various algorithms 

in WSNs.  These efforts leverage each node's computational capacity as well as the 

parallel processing capabilities across the network by manipulating data prior to 

transmission. By doing this, low bandwidths of processed data can be transmitted across 

the network as opposed to high bandwidths of raw data.  As communication is often the 

most power intensive component of a sensor node (Lynch et al. 2004), taking advantage 
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of these computing capabilities of the node to compress raw data prior to transmission 

results in higher energy savings and better use of radio bandwidth.  Initially, researchers 

focused  on embedding algorithms that required no communication between sensor nodes, 

such as the fast Fourier transform (FFT) and auto-regression (AR) models (Lynch et al. 

2003; Nitta et al. 2005), but this resulted in only localized information extraction and did 

not take advantage of the intra-network capabilities of the technology.  These limitations 

prompted researchers to utilize node-to-node communication techniques that would allow 

for global information (e.g., mode shapes, state space models) to be extracted from the 

data through collaborative efforts of the entire wireless sensor network (Chintalapudi et 

al. 2006; Zimmerman et al. 2008; Sim et al. 2010).  In addition to gaining system-wide 

spatial properties, the addition of node-to-node communication allows WSNs to perform 

more efficient parallel processing by reaping computational efficiency as memory 

intensive algorithms can now be decentralized across a network of sensors.  Zimmerman 

and Lynch (2009) first demonstrated the benefits of this parallel processing environment 

by distributing a parallelized version of simulated annealing across a network of sensors 

to solve combinatorial optimization (CO) problems.  The parallel architecture of 

decentralized algorithms reduces processing time and requires minimal communication, 

thereby reducing overall energy consumption. 

 The inherent parallel architecture of artificial neural networks lend themselves 

well for embedding in wireless sensor networks.  By distributing an ANN across a 

network of nodes, the parallel processing benefits of the algorithm can be realized and 

overall processing time can be reduced.  Similar to its biological source of inspiration, 

each node within the ANN employs very simple computations that can be quickly shared 

amongst all of the nodes to produce the desired algorithm output.  By distributing these 

computations across a WSN, the network should experience large energy savings through 

increased computational efficiency.  However, it is also anticipated that due to the 

interconnectedness of the ANN architecture, there will be an increase in communication 

costs which may overpower the benefits seen from the computational parallelization.  In 

this study, the benefits and limitations of this distributed algorithm will be explored as 

they relate to wireless sensor nodes.  In doing this, it is thought that the deficiencies of 
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the traditional bio-inspired algorithm will be more transparent, thus highlighting areas for 

improvement in terms of a new bio-inspired sensing paradigm.    

In this study, a decentralized parallel architecture will be developed for an 

artificial neural network.  The neural network of choice is the Volterra-Weiner neural 

network (VWNN), first developed by E.B. Kosmatopoulos et al. (2001) and further 

refined by Pei et al. (2004).  Its selection is due to its unique architecture that allows for 

intuitive decomposition across a WSN.  For validation of the embedded algorithm, 

acceleration data collected from a six-story shear structure is used to train and test the 

decentralized VWNN.  Additionally, the algorithm is first embedded on a single wireless 

sensor and then distributed across a network of sensors.  This decentralization is 

examined in a quantitative manner so as to better highlight the benefits and limitations of 

ANN. 

   

2.2.   Volterra-Weiner Neural Networks (VWNN) 

When properly designed, artificial neural networks are powerful tools that can 

efficiently model the nonlinear behavior of a system through regression.  As first 

demonstrated independently by Cybenko (1989) and Hornik et al. (1989), given an 

unlimited number of hidden nodes, a multilayer feedforward neural network can 

approximate virtually any static function of interest.  Other powerful neural networks that 

are capable of approximating more complex nonlinear functions have been reviewed in 

the literature (Haykins 1994; Bishop 2006).  This capability to model any behavior, and 

specifically non-linear hysteretic behavior, allows neural networks to be applied to a wide 

range of engineering applications across numerous disciplines.  In particular, artificial 

neural networks are highly adaptable tools that can be used for a variety of applications, 

such as non-linear system analysis or pattern recognition, making them a valuable 

resource for many different structural health monitoring applications.   

ANNs are typically considered to be powerful “black box” modeling tools whose 

inner workings are not easily understood due to the complex interconnectedness of the 

algorithm.  A traditional neural network has full connectedness between  the input layer 
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and its hidden layer(s), as well as between the hidden layer(s) and the output layer 

(Figure 2-1), thus enabling it to capture non-linear behaviors but also adding to the 

complexity of the mapping between input and output values.  This complex architecture 

presents several issues when attempting to design the appropriate neural network for a 

given application.  First, determining the appropriate number of hidden nodes, as well as 

hidden layers, is fairly ambiguous and while some guidelines have been established 

(Duda et al. 2001), developing these values often a trial and error process.  Additionally, 

throughout the evolution of the algorithm, several activation functions within the hidden 

nodes (e.g., sigmoidal functions, Gaussian functions) have arisen and choice of this 

function has an impact on the training speed of the algorithm, as well as on the overall 

effectiveness of the network.  In general, the convergence of the algorithm during 

training (i.e., determining inter-layer weighting values), as well as ability of the network 

to achieve its objectives, is highly dependent on the appropriate architecture which is 

dictated by the number of hidden nodes and activation functions.  As a result of these 

factors, designing an effective ANN is as much of an art as a science that requires an 

intimate knowledge of the field.    

The Volterra Weiner neural network, however, was designed to allow for greater 

transparency in its application.  First proposed by Kosmatopoulos (1998), the architecture 

was designed to predict output functions based on nonlinear relationships with input 

functions.  Kosmatopoulos (1998) originally used this network for control of nonlinear 

systems and later refined the network to predict restoring forces in nonlinear structures 
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Figure 2-1. Architecture of traditional neural network.  Note that multiple hidden 

layers can be used. 
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(Kosmatopoulos et al. 2001).  With the latter study, Kosmatopoulos et al. (2001) used the 

network to model the restoring forces of a multi-degree-of-freedom structure with each 

output node representing a single degree of freedom.  The inputs of the network were the 

acceleration of all of the degrees of freedom and also a control force vector, while the 

output was the restoring forces at each degree of freedom.  In a subsequent study 

conducted by Pei et al. (2004), the VWNN was further refined to increase the 

transparency of the VWNN by again modeling the non-linear hysteretic behavior of 

multi-degree of freedom structures.  In this study, the input nodes included displacement, 

velocity, acceleration, and the restoring force at the current time step as well as the 

anticipated restoring force at the next time step for each degree of freedom.  These inputs 

were used to predict the acceleration at the next time step.  In this study, Pei et al. (2004) 

further defined the architecture so as to give a near-parametric definition to the design 

and training of the network, thus resulting in near-transparent use of the network.  Due to 

the applicability of the neural network to multi-degree-of-freedom systems, as well as 

because of its intuitive design, the VWNN was chosen as the neural network architecture 

for this study on embedded ANNs in WSNs.     

Figure 2-2 presents the VWNN architecture as outlined by Kosmatopoulos et al. 

(2001) and adapted by Pei et al. (2004).  Within this architecture, the input layer consists 

of 5n input nodes, where n is the number of degrees of freedom of the system of interest.  

As previously seen with the VWNN (Pei et al. 2004), these inputs include displacement, 

velocity, acceleration, force at the current time step, and force at the next time step for 

each degree of freedom in the system.  Displacement and velocity are calculated from 

acceleration through a pre-processing step using the variable and therefore,  acts as a 

time-step integrator.  The five inputs to the network are generically denoted as p1 through 

p5n in Figure 2-2.  The input layer is singly connected to the hidden layer, where a single 

hidden node is denoted as hi, through a weight value,  The number of nodes within the 

hidden layer is formulated based on the known non-linearities of the system of interest.  

Hidden nodes are introduced in "blocks" with the addition of each block permitting 

increasing fidelity when modeling nonlinearities of the system.  First-order hidden nodes 

are formed based on a linear connection with the input nodes. All other higher-order 

nodes (e.g., second-order, third-order) are formed directly from the lower-order hidden 
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nodes.  For example, to form second-order hidden nodes from an arbitrary number of q 

first order hidden nodes, h1 to hq, the outer product is taken of the first-order hidden 

nodes producing q
2
 second-order nodes, 

 

  1          1        

 
 
 
 
   

 
 1    1  

      
      

    

           
 
 
 
 
 
 

  (2.1) 

From these new terms, all redundant terms are eliminated (bold terms in the lower half of 

the square matrix in Equation 2.1 represent the retained terms) to increase computational 

efficiency, resulting in 
 (  1)

 
 second-order nodes.  This entire set of second order nodes is 

then added to the neural network. With this addition, the network is better able to capture 

second-order nonlinearities.  If it is desirable to model higher order nonlinearities, then 

higher order terms are added to the network through the same method as the second-order 

terms. Finally, as typically seen in traditional ANNs, the output layer is fully connected 

to the hidden nodes and each output node, zi, represents an individual degree of freedom's 
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Figure 2-2. VWNN architecture (adapted from Pei et al. (2005)). 
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acceleration as predicted at the next time step.  As such, the number of output nodes 

equals the number of degrees of freedom of the system in this case z1 through zn.   

 The connections from the hidden layer to the output layer captures the nonlinear 

relationships in the system through a weighting matrix, W. Each j
th

 column of the 

weighting matrix, wj, is associated with the j
th

 output node and is updated during training 

through a normalized gradient adaptive law with a learning gain of 

        1                 (2.2) 

where  
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(2.3) 

 

such that f is the hidden node output vector, tk is the k
th

 time step, I is the square identity 

matrix with same dimensions as the length of f,     is the l2 norm, and M is a scalar 

design constant.  The scalar j(tk) is the estimation error, 

 
       

 
 
       (  )

1            
 (2.4) 

where gj(tk) is the desired value of the j
th

 output node and zj(tk) is the network output for 

the j
th

 node.    

 Based on this architecture, there are three parameters (, , ) which are crucial in 

the design of the VWNN. Pei et al. (2004) developed near-physical meanings for each of 

these model terms such that the design of the network has an intuitive mechanics basis. 
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The first parameter, , is considered to be the pre-processing design parameter and is 

utilized to approximate the velocity,   , at tk  

                1      (  )  (2.5) 

and then displacement,  , 

                1      (  ) (2.6) 

from the measured acceleration,   .  In this case, acceleration is the measured response of 

the structure and all other parameters are extrapolated from it.  An accelerometer is the 

prevalent sensor of choice for data collection when measuring the response of dynamic 

structures due to its low-costs and ease of installation.  Because of the derivation of 

displacement and velocity from acceleration,  is typically chosen to be equivalent to the 

time step of the system. This assumes that the time step t = tk - tk-1 is sufficiently small.  

The second parameter, , is the weight coefficient and determines the shape of the 

hyperbolic tangent function,  

   ( 
 
)     1 e-    

-1

 1,   i = 1,...,5n 

 

(2.7) 

where pi denotes the input to the i
th

 node and 5n denotes the number of model inputs (i.e., 

displacement, velocity, acceleration of each degree of freedom at the current time step, as 

well as the current and future restoring force value at each degree of freedom).  For a 

network using only first order nodes, small values of the weighting coefficient linearize 

the shape of the hyperbolic tangent function while large values saturate it.  In this case, 

however,  should be chosen such that a strong sigmoidal shape is given by the 

hyperbolic tangent function for the entire range of input values.  If higher-order terms are 

included, more consideration should be used when choosing a value for  and further 

details in this process can be found in Pei et al. (2004).  The final parameter, , which is 

the adaptive gain, governs the convergence of the weighting matrix W during training 

with a normalized gradient adaptive law.  If  is too small the convergence of the weights 

will be very slow, while too large the weights may become unstable. The proper range for 

 is often determined through an iterative process that seeks to minimizes the normalized 
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root mean square (RMS) error, eRMS, between a desired output of the i
th

 output node, gi, 

and its neural network approximation, zi,   

 

 
     

  
 
    

  
 
 

  
(2.8) 

where     is the is the l2 norm.  In this study, again zi is the predicted acceleration at the 

i
th

 degree-of-freedom at the next time step.  Even though guidance is provided for 

selecting initial values for  and , these too can be further refined by minimizing the 

RMS error of the system output.        

The VWNN offers a unique architecture that enables intuitive design of the 

network, something which is often lacking with traditional neural networks.  Because of 

this overall design transparency and associated streamlined architecture, the VWNN can 

be easily adapted to a decentralized neural network algorithm that can be embedded on a 

wireless sensor network.  In this way, the parallel processing capabilities of the network 

will be leveraged and ideally, power savings will be established by taking advantage of 

localized data processing.     

 

2.3.   Embedding the VWNN in a Wireless Sensor Network 

When considering embedment of an artificial neural network across a WSN, 

several factors must be considered.  First, during the training mode of the ANN, the 

weighting matrix of the network is updated numerous times, thus requiring thousands of 

computations. The processing speed of a single wireless sensor node is only a small 

fraction of that of an ordinary personal computer, making updating the weighting matrix 

in the embedded environment a potentially arduous task. The second limiting factor when 

considering embedment of an ANN on a WSN is the communication requirement 

between each sensor.  Theoretically, each interconnection between layers in the neural 

network would require communication in the WSN and if not properly considered, the 

WSN could rapidly become inundated with communication costs that far outweigh the 

computational efficiency of parallel computations.   
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Decentralizing the ANN requires that each wireless sensor node is 

computationally responsible for a portion of the neural network.  Due to its streamlined 

architecture, the VWNN presents itself well for decentralizing across a network of 

wireless sensors while minimizing communication costs (Figure 2-3).  The construction 

of the input layer provides the first minimization of the required embedded WSN.  Each 

degree of freedom in the system has five associated input nodes: 1) displacement,  (  ), 2) 

velocity,   (  ), 3) acceleration,   (  ), 4) force at the current time step,   (  ), and 5) 

anticipated force at the next time step,   (   1).  One wireless sensor node can contain one 

degree of freedom’s five neural network input nodes and perform all required pre-

processing steps.  Because each input node is singly connected to a hidden node, no 
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Figure 2-3. Distribution of a six degree-of-freedom system's Volterra-Weinter neural 

network onto six wireless sensor nodes.  Each floor utilizes a unique wireless sensor 

node termed WSU1 through 6 and dotted lines represent wireless communication.   
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communication is required between the input node and hidden node so the five associated 

hidden nodes for a specific degree of freedom are also embedded on the same wireless 

sensor node. As such, each wireless sensor node will apply the tangent hyperbolic 

sigmoidal function required at each hidden node. 

Due to the interconnection of the weighting matrix between the hidden layer and 

the output layer, all wireless sensor nodes must pass the output from their hidden nodes to 

all of the other nodes in the network.  To achieve this, a waterfall algorithm is 

implemented to efficiently wirelessly communicate this information while still ensuring 

that all nodes receive the information. In this algorithm, Wireless Sensor Unit (WSU) 1 

passes the output from its five hidden nodes to WSU 2. WSU 2 then passes its hidden 

nodes' outputs plus the information received from WSU 1 to WSU 3.  This process 

continues to the final WSU in the network who then has the information required from all 

other units.  This unit starts the same waterfall action by passing its information back 

down the chain of units and then continues with its calculations.  There are more energy 

efficient algorithms for transmitting data throughout a WSN (Zhao and Guibas 2004) but 

the waterfall algorithm was chosen because it ensures that every node receives 

information from all other nodes in the network in an organized manner.  Until all 

information has been received from all other processing units in the WSN, a single unit 

cannot continue its calculations.  Thus, the extra energy consumption for a less efficient 

communication algorithm is acceptable because it ensures the success of the neural 

network predictions.   

While the decentralized neural network algorithm can be embedded into any 

wireless sensor unit, the Narada wireless sensor node, developed at the University of 

Michigan (Swartz et al. 2005), was chosen as the data acquisition unit for this study due 

to its compact design, as well as having been tailored specifically for structural 

monitoring applications (Figure 2-4).  The Narada has also been successfully used to 

monitor a variety of civil infrastructure including bridges (Kim et al. 2010; Kurata et al. 

2013), wind turbines (Swartz et al. 2010), ships (Swartz et al. 2012), and buildings (Kim 

and Lynch 2012).  This sensor node utilizes Atmel's ATmega 128 microcontroller 

(powered at 5V, with an 8MHz clock speed) to enable on-board computing.  The unit 

includes an additional 128kB of external random access memory thus allowing data 
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storage and manipulation.  Its sensing interface includes four input channels (0-5V) 

which feed into an external 16-bit Texas Instrument ASD8341 analog-to-digital converter 

(ADC) that is capable of high resolution data acquisition with high sampling rates up.  A 

two channel actuation interface is also provided which is capable of outputting 0-4V 

signals.  The unit uses a Chipcon CC2420 wireless Zigbee transceiver that is compliant 

with the IEEE 802.15.4 wireless communication standard, thus enabling reliable 

communication between units and to a centralized server.  Two versions of the radio can 

be used: short-range and long-range.  The long-range radio has been designed using 

power amplifiers on the radio output, thus offering 700m line-of-sight communication 

ranges.  

 

2.4.   Experimental Validation  

In order to validate the computational efficiency of the distributed neural network, 

the algorithm is applied to data collected from a partial-scale six-story steel structure 

Figure 3: Distribution of neural network onto wireless sensor nodes 
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Figure 2-4. Narada wireless sensor node with long-range radio board. 
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located at the National Center for Research in Earthquake Engineering (NCREE) at 

National Taiwan University in Taipei, Taiwan (Figure 2-5).  Each floor of the structure 

has a width of 1.0m, a length of 1.5m, and a height of 1.0m.  The columns are 15cm x 

2.5cm rectangular steel sections oriented on their weak axis. Steel wide flange 

H100x100x6x8 vertical braces are installed between every floor in order to resist lateral 

movement.  For each story, the connection from the brace to the floor is a plate that can 

be varied in thickness, and thus stiffness, to create nonlinearities in the structure. The 

structure sits on a 5m x 5m shake table that is capable of applying seismic motion parallel 

to the long dimension of the structure.  In this study, the structure is preliminarily subject 

to the El Centro earthquake with peak ground acceleration of 100gal (10m/s
2
).    

Floor 6

Floor 5

Floor 4

Floor 3

Floor 2

Floor 1

 

 (a) (b) 

 

Figure 2-5. Six-story shear structure (a) and model (b) used for validating the 

embedded Volterra-Weiner neural network. 
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Each degree of freedom (i.e., floor) on the structure has one Narada collecting 

data and executing its sub-section of the neural network, thus requiring six WSUs for the 

entire algorithm.  According to the architectural design of the VWNN, each degree of 

freedom has five input nodes, five hidden nodes and one output node, all embedded on a 

single Narada.  The weighting matrix (     6x 0), is distributed across the network of 

Naradas such that each sensor contains one row, or 30 elements (with 5 elements 

contributed from each degree of freedom).  For the VWNN, the three parameters, (, , ) 

are individually optimized by holding two parameters constant and then minimizing the 

average neural network approximation error, eAVG, (or normalized RMS error) for all six 

degrees of freedom,  

 

       
             

     
    1

 

  1

 
(2.9) 

where N is the number of degrees of freedom in the neural network approximation (in 

this case 6),    (t) is the structure's acceleration at the i
th

 degree of freedom,        (t) is the 

neural network's approximation of the structure's acceleration at the i
th

 degree of freedom, 

t is the sampling time of the two signals, and K is the number of samples that result 

from this sampling scheme over some defined time horizon.   

The pre-processing parameter, , is initially chosen to be 0.005 to match the 

sampling frequency of the system (200Hz).  During optimization of this parameter there 

is little variation in eAVG  (Figure 2-6a) and the final value is kept at 0.005.  Because all 

inputs to the hidden layer fall between -1 to 1, the weight coefficient, , is first 

approximated as 1, which produces a strong sigmoidal shape in the hyperbolic tangent 

function for this input range.  This value is fine-tuned through the optimization to a final 

value of 2.8 (Figure 2-6b).  Because the final parameter, , governs the speed of 

convergence during training, a conservative initial value is chosen as 1.0 which may lead 

to slow convergence but will always be stable.  This was then optimized to a final value 

of 1.8 (Figure 2-6c).      
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These chosen parameters define a neural network that minimizes the target output 

errors over the entire time interval of the El Centro earthquake (Figure 2-8).  When 

training is on and the weights are updated at each time step, the average normalized RMS 

error for all degrees of freedom is 0.1824 (Figure 2-7).  After the weights have been 

updated for the entire duration of the earthquake, the final weights are frozen and the 

neural network predicts the system output acceleration for each floor when subject to the 

El Centro earthquake. Because the weights are no longer being updated each time step, 

the neural network prediction is less accurate, with an average normalized RMS error of 

0.2712 (Figure 2-7).  To further validate the predictive capabilities of the ANN, each 

floor's acceleration response due to Kobe earthquake and Chi Chi earthquake were also 

predicted using the weights found through training from the El Centro earthquake.  The 

average normalized RMS error for these two earthquakes were 0.2672 and 0.2578, 

respectively, thus proving that the weights derived through training the El Centro 

earthquake were also applicable to other seismic signals.              

Therefore, the decentralized VWNN is able to successfully model each floor’s 

acceleration  both for the “training-on” and “training- off” cases. However  the true 

 
 (a) (b) (c) 

Figure 2-6. Parameter optimization based on RMS error for  (a),  (b), and  (c). 
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success of the decentralized algorithm is demonstrated by the overall time consumed 

during prediction of the entire acceleration profile.  When the entire algorithm is 

embedded onto a single Narada, the computations are slowed by the repetitive matrix 

computations and during “training-on” mode  a single iteration of the algorithm takes 

1.6  seconds.  When in “training-off” mode  there are no weighting matrix computations  

 

Figure 2-7.  Absolute difference between neural network prediction and measured 

acceleration for both the training-on case and the training-off case when subject to the 

El Centro ground motion. 

 

 
Figure 2-8. Response of six-story shear structure at each floor when subject to El 

Centro ground motion.  
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thus eliminating a majority of the calculations and reducing computational time to 0.32 

seconds per iteration (Table 2-1).   

Where the centralized algorithm (i.e., the entire VWNN is embedded in a single 

node) is inhibited by extensive matrix computations, the decentralized implementation 

attempts to parallelize these computations but at the expense of increased communication.  

The decentralized algorithm executes one iteration in only 0.178 seconds in “training-on” 

mode, which is an 89% reduction in computation time when compared to the centralized 

implementation. If the time consumption of each task is individually evaluated (Table 2-

2), it is clear that decentralizing the algorithm is computationally faster as the core tasks 

(i.e., pre-processing, threshold evaluation, update weight matrix) only require 0.102 

Table 2-1.  Centralized versus decentralized time consumption for one iteration of the 

algorithm. 

 
 Training Execution 

Network 

Time  

consumption 

(sec) 

Energy  

consumption 

(mJ) 

Time  

consumption 

(sec) 

Energy 

consumption 

(mJ) 

Centralized network 

 (one sensor) 
1.63 244.5 0.32 48.0 

Decentralized 

network (six sensors) 
0.18 328.0 0.16 312.8 

Percent difference 

(between centralized  

and decentralized) 
89% -34.2% 50% -551.7% 

 

Table 2-2. Breakdown of time consumption of decentralized VWNN tasks for one 

iteration during "Training-On" mode. 

Decentralized task 

Time consumption 

(μsec) 

Energy consumption (μJ) 

per sensing unit 

Pre-process data     1 117      168 

Threshold evaluation   83 923 12 588 

Communication*  151 464 39 381 

Output estimation             0          0 

Update weighted matrix    16 810   2 522 

Total 178 314 (0.178 sec) 54 659 (54.7 mJ) 

*Radio-on 
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seconds ( = 0.001 seconds + 0.084 seconds + 0.017 seconds) to complete. This 

achievement in reduced computational time is slightly diminished by the penalty of an 

increase in communication costs (using the waterfall communication scheme), which 

account for 85% of the total time for one iteration of the decentralized algorithm.  Even 

with this extra cost, however, there is still a significant decrease in training time so the 

decentralization of the algorithm is successful. In execution mode (i.e., “training-off”)  

the decentralized algorithm performs an iteration in 0.16 seconds, a 50% reduction in 

time consumption from the centralized algorithm.  The elimination of updates to the 

weighting matrix makes the centralized algorithm more computationally efficient and the 

communication costs of the decentralized algorithm almost outweigh the benefits gained 

from parallel computations.  Therefore, there is still some benefit in the decentralized 

algorithm during the "training-off" case but not as significant as the "training-on" case.   

In addition to time consumption, the energy consumed during one iteration of the 

network can be used as a metric for success.  The Narada is designed such that its power 

draw is 150mW (30mA at 5V) when the radio is off and 260mW (52mA at 5V) when the 

radio is on.  By default the Narada operates with its radio off and the radio is only 

activated for communication.  Thus when the neural network is centralized on one 

wireless sensing unit and in “training-on” mode  the radio is always off and therefore 

consumes 244.5mJ of energy (Table 2-1).  When the neural network is decentralized 

across a network of wireless sensor units, the majority of its tasks are executed with the 

radio off.  However, the communication task, which is the most time consuming task, 

requires the radio to be on.  Each wireless sensor unit, therefore, uses 54.7mJ of energy 

during a single iteration (Table 2-2). Because six sensors are employed for the VWNN 

computation, this results in a combined energy consumption of 328.0mJ, which is an 

increase in the energy consumption when compared to the centralized algorithm.  In the 

“training-off” mode  the decentralized algorithm must still include communication 

between all the units so its energy consumption is 52.1mJ for one iteration of one sensor, 

resulting in a total consumption of 312.8mJ across the entire network.  The centralized 

algorithm, on the other hand, uses only 48.0mJ of energy per iteration which is 

significantly less than the decentralized algorithm.  Thus, the decentralized algorithm is 

capable of faster completion of the computations of the neural network by leveraging 
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parallel processing.  However,  the decentralized network does see much higher energy 

consumption due to increased communication costs.  As such, if computational speed is a 

concern for the application of the ANN then decentralizing the algorithm across a 

network of sensors is the best option.  If energy consumption is the largest concern then 

embedding the algorithm on a single sensing node is optimal.  However, if both 

computational speed and energy consumption are of interest then a hybrid network of 

sensors should be established in which the training (i.e., updating of weights) is 

decentralized and the execution is centralized.     

   

2.5.   Chapter Summary 

This chapter considers the benefits of artificial neural networks as they apply to 

model prediction of dynamic structures on a wireless sensing network.  To achieve this, 

the VWNN algorithm is embedded onto a network of wireless sensors and is used to 

predict the accelerations of a six-story shear building subject to the El Centro earthquake, 

the Kobe earthquake and the Chi Chi earthquake. While significant computational 

benefits (namely, execution speed) are seen through decentralization of the algorithm, 

some of these gains are lost to communication costs as information about the neural 

network is shared across a network of sensors.  Additionally, the overall energy 

consumption of the network is greatly increased when the neural network is decentralized 

across a network of sensors due to this increase in communication costs.  Therefore, to 

effectively utilize this algorithm, careful consideration must be given to the overall 

architecture of the network and it must be decided if reduction in time consumption or 

energy consumption across the WSN is more desirable for the application of interest.  

To improve the overall performance of ANNs on WSNs, future work will 

consider pruning insignificant weighting connections between the hidden layer and the 

output layer.  Researchers have shown that certain weights within ANNs do not have a 

significant impact on the prediction capabilities of the network and therefore, can be 

eliminated from the network (Reed 1993).  As such, various techniques have been 

established such as the Optimal Brain Surgeon (Hassibi and Stork 1993) and the Optimal 
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Brain Damage (Le Cun et al. 1990) algorithms, that systematically highlight insignificant 

weights and remove them from the network.  When considering embedment of ANNs on 

WSNs, by eliminating these connections less information must be communicated across 

the WSN, which results in an overall reduction in energy consumption.  Therefore, future 

work will consider this as an avenue for increasing the attractiveness of ANNs for WSN 

applications.       

This study explored an ANN as it pertains to wireless sensor nodes.  While the 

ANN does take advantage of parallel processing, similar to its biological inspiration, few 

other benefits are seen when embedding the algorithm and the current limitations of 

WSNs nodes, such as  power consumption and radio bandwidth, are not adequately 

addressed.  In fact, this study highlighted the high energy costs associated with radio 

communication as well as the difficulties of optimally utilizing the parallel  processing 

capabilities of the network. As such, a new paradigm of sensing should be explored that 

deviates from the traditional ANN and is more strongly tied to biological sensory systems 

if these limitations are to be overcome.  The remainder of this thesis focuses on that goal 

by developing a new method of sensing and actuation that is not directly tied to ANNs 

but instead attempts to make a stronger tie to the principles employed by biological 

sensory systems. 
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CHAPTER 3 

  

 

UTILIZING THE COCHLEA AS A BIO-INSPIRED COMPRESSIVE SENSING 

TECHNIQUE 

 

3.1. Introduction 

Given that a traditional bio-inspired signal processing technique, artificial neural 

networks, did not adequately address the current limitations of wireless sensor nodes, the 

biological sensory system will be re-examined from an engineering perspective.  In doing 

so, a new sensing and actuation paradigm will be established for wireless sensor nodes 

that can address some of the deficiencies which are currently found in wireless sensor 

networks (WSNs).  When returning to the principles of biological sensory systems, it is 

evident that these systems, such as the central nervous system (CNS), are capable of 

compressing, integrating, and processing information in real-time, thereby enabling 

instantaneous decision making.  This is possible because the core processing unit, the 

neuron, communicates to other units through a highly compressive method by encoding a 

continuous input signal into a series of single bit electrical pulses (Rieke et al. 1999).  As 

a result, large networks of neurons are able to process information at extremely fast rates 

with minimal energy costs, a characteristic that is highly desirable in engineering sensing 

systems.  This chapter will draw inspiration from the data compression and information 

transmission techniques employed by biological systems in order to establish a new 

sensing paradigm for the purposes of structural monitoring and control.  In doing this, it 

is hoped that the new engineered system will be capable of extreme data compression and 

correspondingly large energy savings, while maintaining real-time processing capabilities.         
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Engineers have long been interested in data compression techniques for the 

purposes of energy conservation in WSNs and various methods have been widely 

explored.  Traditional engineering data compression techniques can be classified into two 

categories: lossless compression and lossy compression (Sayood 2006).  In lossless 

compression, no information is lost in the process of compression and the original signal 

can be perfectly reconstructed.  In lossy compression, some information about the 

original signal is lost through the compression process and exact reconstruction of the 

original signal is not achievable.  This error in reconstruction, however, is often offset 

through the achievement of higher compression rates than those associated with lossless 

compression.  For the purposes of structural monitoring, minimal signal distortion is 

allowable if it results in significant resource savings such as communication bandwidth 

and battery power; therefore, lossy compression techniques are acceptable.  Several 

researchers have explored the use of various traditional data rate compressive methods 

for vibratory signals, such as those typically found in structural monitoring applications.  

The use of wavelet transforms, both with lossless (Lynch et al. 2003) and lossy 

applications (Xu et al. 2004; Zhang and Li 2006) have been explored with relative 

success.  Other studies have focused on non-traditional sampling schemes (e.g., 

asynchronous, sub-Nyquist), such as those afforded by compressed sensing, to reduce the 

flow of sensor information (Bao et al. 2011; O'Connor et al. 2012).  Still other 

researchers have explored the use of transform coding schemes, such as the Discrete 

Fourier Transform or the Karhunum-Loeve Transform, to transmit large amounts of 

seismic data (Spanias et al. 1991).  While all of these compression methods result in high 

compression rates, they are often computationally expensive and require complex post-

processing steps, thus detracting from any real-time processing capabilities of the 

monitoring system.   

This chapter proposes a new sensing paradigm for structural monitoring 

applications that draws inspiration from the sensing and processing capabilities of the 

biological CNS, with a specific concentration on the compressive capabilities achieved in 

data transmission.  While these techniques can be found universally across the central 

nervous system, the mammalian auditory system is chosen as a system of interest in this 

study due to its unique signal processing techniques and real-time spectral decomposition 
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capabilities.  As such, a new approach to data collection and communication in structural 

monitoring systems is proposed based on the methods employed by the auditory system.  

Such applications of the auditory system were first proposed by Peckens and Lynch 

(2012; 2013) and also explored by Elliot and Shera (2012).  In this chapter, the properties 

of the CNS combined with the signal processing capabilities of the auditory system are 

interpreted from an engineering viewpoint and its functionality is applied to enhance the 

performance of wireless structural monitoring systems.  While the auditory system does 

exhibit impressive dynamic range compression (Yates et al. 1990), this study draws 

inspiration from the biological system's signal processing capabilities and highly 

compressed data transmission rates.   The first section of the chapter provides an 

overview of the mechanisms employed by the mammalian cochlea.  Next, a bio-inspired 

sensor is proposed that is based on the functionality of the auditory system and capable of 

real-time processing while exhibiting impressive data compression rates.  Finally, the 

compressive capabilities of the proposed sensor are compared to two mature compression 

techniques to quantify its performance.  First, a wavelet transform compression method is 

adapted as a traditional lossy compression method using Nyquist-sampled sensor data.  

Second, a compressive sensing strategy is also used because it exhibits many common 

characteristics as the cochlea-based compressive sensing strategy proposed herein 

including asynchronous signal sampling.  

 

3.2. Mechanisms of the Mammalian Cochlea 

 he auditory system’s ability for real-time spectral decomposition and high 

compressive capabilities render it an ideal subsystem of the biological sensory system to 

study for improving the performance and extending the functionality of structural 

monitoring systems.  Researchers have extensively studied the mammalian auditory 

system and through experimental observation have identified its operational principles.  

Sound (i.e., a pressure wave) is received in the auditory system at the outer ear, is passed 

to the middle ear through the ear drum, and is transmitted to the inner ear through 

induced vibrations at the oval window.  This vibration is directly transmitted to the 

cochlea, the main signal processing unit of the auditory system (Figure 3-1a).  The 
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cochlea is responsible for translating the perceived stimulus (i.e., sound) to higher levels 

within the auditory cortex.  The cochlea is a thin-walled membrane (approximately 

35mm in length) which tightly coils in on itself to form a shape similar to a snail or 

nautilus.  It is comprised of three fluid-filled cavities: the scala vestibuli, the scala media, 

and the scala tympani, which are separated by two elastic cochlear partitions: the 

Reissner’s membrane and the basilar membrane, respectively (Figure 3-1b). The 

vibration of the input signal at the oval window produces a pressure change in the scala 

vestibuli, which induces a deflection of the elastic cochlear partitions and an increased 

pressure on the scala tympani.  Because of this pressure, the scala tympani bows against 

its boundaries, resulting in an up-down movement of the fluid.  Such motion forces 

deflections in the basilar membrane, which are directly correlated to the external sound 

wave exciting the membrane and are characterized as (Zweig et al. 1976) 

                   , (3.1) 

where vBM(x) is the vertical velocity of the basilar membrane, BM, at location x, P(x) is 

the induced pressure from the fluid movement in the scala tympani and Y(x,) is the 

admittance of the basilar membrane which depends on its physical characteristics at 

location x and the angular frequency of the input signal, .  

Cochlea

to middle 

ear

Round Window

Oval Window

Vestibular System

  

Scala vestibuli

Scala tympani

Scala media

Organ of Corti

Cochlea nerve

Reissner’s 

Membrane

Basilar membrane

 
 

(a) (b) 
 

Figure 3-1. Diagram of the mammalian inner ear (a) and a cross-section of the cochlea 

(b). 
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The primary function of the basilar membrane is to encode its induced motion, 

and more specifically its vertical velocity, into electrical spikes which can then be 

transmitted to the central nervous system.  It does this by acting as a hydro-mechanical 

frequency analyzer, capable of decomposing a sound signal into its frequency 

components in a spatial manner.  Place theory hypothesizes that the auditory cortex maps 

the location of the basilar membrane response to given frequencies, thus enabling 

effective time-frequency management of information flow.  This is possible due to the 

unique properties of the basilar membrane.  To fully understand the mechanisms of the 

basilar membrane it will be considered in its passive state.  In its active state, the cochlea 

uses feedback mechanisms to achieve higher precision and sensitivity but these do not 

significantly change the overall function of the basilar membrane (Dallos 1992).  

Therefore, for the purposes of this study, it is acceptable to consider the functionality of 

the basilar membrane in its passive state.   

The motion of the basilar membrane in its passive state was first described as a 

traveling wave by von Békésy (1960) based on observations of a dead cochlea.  This 

theory of motion assumes that a sound wave starts at the base of the cochlea and moves 

toward the apex.  As it traverses the cochlea (Figure 3-2), the amplitude of the response 

of the membrane changes depending on its location along the basilar membrane and the 

exact location of largest amplitude depends on the frequency of the input stimulus 

(Dallos 1996). This theory also assumes that when the wave reaches the apex of the 

cochlea there is little energy remaining in the signal and therefore, there is no reflection 

of the sound wave back up the membrane.  This reduces the complexity of the model and 

can therefore be modeled as  

Basilar membrane

Cochlear duct 

20 kHz 7 kHz 4 kHz 2 kHz 1 kHz 600 Hz 200 Hz

to middle ear

Propagation of sound wave

BASE

APEX

 

Figure 3-2. Uncoiled cochlea indicating frequency response of the basilar membrane. 
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where M(x), R(x), and K(x) are the basilar membrane’s localized mass  damping and 

stiffness factors, respectively, and i is the imaginary unit. 

The mass term is relatively constant across the length of the basilar membrane 

and can be depicted as a constant value, M0.  It has been shown that the stiffness of the 

basilar membrane varies nonlinearly across its longitudinal length which results in the 

frequency dependency of the membrane (Olson and Mountain 1991; Emadi et al. 2004). 

In its simplest form the stiffness term is represented as a decaying exponential, 

  ( )   e
- , (3.3) 

where S0 is the stiffness of the membrane at the base and  is the constant controlling the 

rate of decay.  To achieve constant bandwidth in the frequency domain, the resistance of 

the membrane is often modeled as e-    , such that the damping ratio term can be 

represented as (De Boer 1996)  

          0 0e
-   , (3.4) 

where  is the damping constant.  Such properties of the basilar membrane lead to a 

unique response in which sub-sections of the membrane are tuned to specific frequencies 

that vibrate with large amplitude when presented with that frequency (Figure 3-2).  As 

such, the cochlea effectively creates a map for the auditory cortex in which the frequency 

content of a signal can be instantaneously determined based on the vibrating sections of 

the basilar membrane.  

The Organ of Corti lies on top of the basilar membrane and is responsible for 

encoding and transmitting information to the CNS (Figure 3-3).  While comprised of a 

variety of components, each with its own unique role within the auditory system, the 

inner hair cells (IHCs) play the largest role in transmitting information to auditory nerve 
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fibers (Figure 3-4a, b).  Within the human cochlea there are approximately 3,500 IHCs, 

each responsible for conveying specific information to the CNS.  Each hair cell is topped 

with a bundle of rigid sensory hairs, termed stereocilia, that are cantilevered from the 

IHC and arranged in a shallow U-shape configuration (Flock and Cheung 1977; Hudspeth 

1989).  The entire bundle is connected together by a series of fine extracellular filaments 

termed tip links (Fettiplace and Hackney 2006), thus ensuring uniform rotation of the 

bundle about its base.  Each of the stereocilia are equipped with a mechano-electrical 

transduction (MET) ion channel which plays a key role in the transmission of information 

to the CNS.  

The motion of the basilar membrane induces movement of ionic fluid that is 

trapped in the subtectorial space (i.e., the space between the reticular lamina and the 

tectorial membrane), resulting in deflection of the stereocilia on the IHCs.  With this 

movement, the MET ion channels are opened thus allowing the ionic fluid (comprised of 

potassium, K
+
, and calcium, Ca

2+
, ions) surrounding the hairs to flow into the cell.  With 

this influx of ions, the cell becomes depolarized and releases a chemical transmitter that 

initiates a graded potential at the base of the hair cell (Figure 3-4c).  As the motion of the 

basilar membrane subdues the MET ion channels close and the graded potential ends.  

Therefore, the duration of the graded potential corresponds to the amplitude of response 

of the basilar membrane.  The graded potential is transmitted a short distance down the 

afferent nerve fiber to the auditory nerve, where its amplitude is encoded into a series of 

Outer hair cell

Inner hair cell
Basilar membrane

Tectorial membrane

Nerve fibers

Stereocilia

Reticular lamina

 
Figure 3-3. Cross section of the Organ of Corti. 
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neural spikes whose firing rate is proportional to the velocity of the basilar membrane at 

the hair cell location (Figure 3-4d) (Yost 2007). 

In its most general form, the neural spike train is a series of electrical spikes that 

encode a perceived stimulus.  Each electrical spike is an all-or-nothing event in that the 

spike will only fire when a threshold stimulus value is reached.  Once the threshold is met, 

the resulting electrical spike has a constant amplitude and duration that is independent of 

the input stimulus.  As a result, the individual spike does not carry information about the 

stimulus but instead is part of a series of pulses that encode information (Bialek et al. 
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 (c) (d) 

Figure 3-4. Information transmission through inner hair cell; in a stationary state (a) 

no information is transmitted but when motion activated (b), ionic fluid flows into the 

cell and releases transmitters to the across the auditory synapse which triggers a 

graded potential (c) and eventually a series of action potentials (d). 
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1991).  The pulse trains are transmitted down the auditory nerve to the central nervous 

system where they can be further interpreted and manipulated.  Each IHC connects to a 

unique set of auditory nerve fibers resulting in a finely tuned map of the motion of the 

basilar membrane (Yost 2007).  As a result, the central nervous system is able to 

determine the frequency of the incoming sound wave based on the activated nerve and 

also the associated amplitude through the firing rate of the spike train.  Therefore, based 

on analog electro-mechanical transduction, the communication of information from the 

basilar membrane is more or less real-time (i.e., has near zero delay). 

Thus, the auditory system utilizes a unique method of real-time spectral 

decomposition along with place theory to attain an impressive auditory range while 

maintaining real-time processing capabilities.  It is able to achieve this by acting as a 

hydro-mechanical frequency analyzer, as well as using compressive techniques to 

efficiently transmit data.  These unique mechanisms can be used as inspiration in 

overcoming the deficiencies of information inundation and large computational 

requirements that currently limit existing structural monitoring technologies. 

 

3.3. Representation of the Cochlea as an Engineered System 

The unique method by which the auditory system processes and encodes 

incoming sound waves can serve as inspiration for engineering sensing technologies used 

in structural monitoring applications.  The auditory process is summarized through two 

main steps: 1) signal decomposition of the basilar membrane and 2) signal encoding of 

peak values by the inner hair cells.  These mechanisms can be translated into a cochlea-

inspired sensor system by first passing a vibratory signal through a bank of analog band-

pass filters, thus allowing for spectral decomposition of the signal, and then 

implementing a real-time peak picking algorithm with linear encoding, similar to the 

function of the IHC (Table 3-1). By employing these methods, the proposed sensor 

system will be capable of real-time signal compression through minimal processing, 

similar to that found in the biological CNS.   
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The inspiring functionality of the basilar membrane is its ability to perform real-

time spectral decomposition.  Activation of sub-sections of the basilar membrane results 

in sinusoidal vibrations of varying amplitude and phase, depending on the content of the 

input signal.  As such, the basilar membrane has often been compared to a bank of band-

pass filters (BPFs) that simultaneously decompose a convoluted signal into its frequency 

components (Lyon 1982).  Therefore, in the proposed sensor system a unique band-pass 

filter represents a finite sub-section of the basilar membrane (Equation 3.2), capable of 

extracting a specific frequency range from an input signal.  Each i
th

 filter has a 

characteristic frequency, i (rad s
-1

), at the center of its passband and a bandwidth of 

2ii, where i is the damping ratio of the filter.  When the filter is presented with a 

convoluted signal it will only pass signals within its passband and attenuate all others, 

thus creating a filtered signal with a defined frequency range.  Due to the overlap of 

filters in the filter bank, the engineered system typically does not achieve perfect signal 

reconstruction.  The signal can be better approximated through the addition of more 

filters in the systems but at the expense of increased information flow in the system.  

Therefore, a balance must be found between maximizing the number of filters in the bank 

so as to minimize the reconstruction error, while minimizing the information flow so as 

to minimize energy consumption in the system. 

When passing a signal through a bank of band-pass filters it is desired for the sum 

of the output of all of the band-pass filters to be a close approximation of the original 

input signal, thus resulting in minimal distortion upon reconstruction,   

Table 3-1. Comparison between biological sensory system and engineered sensor 

system. 

Process Biological System Sensor System 

Frequency extraction from 

convoluted input signals 
Section of basilar membrane Band-pass filter 

Encode magnitude of peak 

values of filtered signal 

Organ of Corti and inner hair 

cells 

Peak-picking algorithm 

with linear encoding 
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where u(t) is the input signal, y(t) is the reconstructed signal, yi(t) is the output of the i
th

 

filter and N is the number of filters in the filter bank.  The output of the i
th

 filter can be 

found by convolving the input signal, u(t), with the impulse response of the i
th

 filter, hi(t), 

where 
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Three variables can be optimized across the filter bank to result in more accurate 

signal reconstruction: the number of filters, the bandwidth of each filter, and the spacing 

of each filter.  While the mammalian auditory system can perceive signals in the 

frequency range of 20 to 20kHz (Robles and Ruggero 2001), this range is not needed in 

many monitoring systems, especially those used to monitor large-scale civil infrastructure 

systems.  The input signals for the proposed cochlea-inspired sensor system will be low-

frequency vibratory signals (< 20Hz) such as those associated with earthquakes or 

structural vibrations;  the filter bank is designed, therefore, for optimal reconstruction of 

such signals in this desired frequency range.  

Prior to designing the filter bank for vibratory signals, the second step of the 

auditory system, which includes encoding the stimulus into electrical spikes, must be 

considered in order to assess the compressibility of information flow across the system.  

In the auditory system, Avissar et al. (2007) showed that action potentials are phase 

locked with the input signal, which results in neurons firing with a higher probability and 

at a higher rate on the peaks of a sinusoidal input signal, or sound wave.  Similarly, the 
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cochlea-inspired sensor system will only encode the peak values of the incoming signal, 

resulting in a large reduction in the overall amount of transmitted data.  While the 

biological auditory system relies primarily on chemical processes to activate spike trains, 

the cochlea-inspired sensor system will instead utilize a real-time peak-picking algorithm 

to invoke data transmission.  Once a local peak is detected, the magnitude of this peak is 

linearly encoded into an electrical spike train (i.e., multiple spikes adjacent in time).  

When a peak value is detected the cochlea-inspired sensor system emits four spikes with 

the magnitude of the detected peak encoded in the delay between successive spikes.  In 

turn, a centralized repository receives and decodes the pulse trains into peak values by 

using the timing between successive spikes.  Four spikes are used to allow for 

redundancy in the event that a spike is lost during transmission. Due to the mechanisms 

involved in the process, the biological system typically fires a spike train at a maximum 

rate of 1000Hz, or one spike every 1msec (Nicholls et al. 2001).  Therefore, the upper 

limit of the firing frequency of the cochlea-inspired sensor system is chosen as 1000Hz.  

To eliminate large delays at the receiving station, the minimum firing frequency is chosen 

to be 500Hz resulting in a maximum delay of 6msec for any peak value when waiting to 

receive four spikes.  Ideally, peaks are detected by the cochlea-inspired sensor system at 

approximately twice the characteristic frequency of any filter.  As such, to prevent 

overlap between two consecutive 4-pulse trains, the maximum allowable characteristic 

frequency of the filter bank is limited to 80Hz, resulting in detected peaks every 6.3msec.  

If higher filter frequencies are required then the minimum firing rate can be increased.  

Additionally, should larger amplitude dynamics be recorded, these firing rates can be 

elevated to higher levels.    

The encoded spike trains are transmitted to a centralized receiving station where 

the original input signal can be reconstructed through a decoding process.  The entire 

process is demonstrated in Figure 3-5 where the cochlea-inspired sensor system 

decomposes and encodes the input signal and a less resource constrained centralized 

repository reconstructs the signal.  The success of the decomposition and encoding 

process are determined through two measurements: the reconstruction error, e,  
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where      is the l2-norm and r(t) is the reconstructed signal after encoding and decoding, 

and the compression ratio, CR,   

 

     1 
   

   

  (3.10) 

where NBC is the number of bits (spikes) used to represent the signal in its compressed 

state and NBS is the number of bits used to represent the original input signal via 

traditional analog-to-digital converter based data acquisition at Nyquist rates.  A 

compression ratio close to 1 indicates that the cochlea-inspired sensor system achieves 

high compression while a value close to zero indicates poor compressive performance of 

the proposed method.  These two performance metrics (i.e., e and CR) compete against 

each other because as the number of filters in the system increases the reconstruction 
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Figure 3-5.  Schematic of cochlea-inspired sensor system. 
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error decreases but more information is transmitted and therefore the compression ratio 

also decreases. Conversely, using too few filters will result in a large compression ratio 

but also a large reconstruction error.  Therefore, a balance must be found between 

allowable information loss and acceptable (desired) compression rates.    

3.3.1. Customization of the Cochlea-Inspired Sensor System for Infrastructure 

Monitoring   

The reconstruction capabilities of the band-pass filter bank are extremely 

dependent on the input signal and therefore, must be tuned according to the constraints of 

the application.  Because this study is focused on structural monitoring and control 

applications, the filter bank will be tuned to common signals found in these applications: 

pure seismic excitations and structure response to such seismic events.  Three common 

earthquake signals will be used as ideal signals during the optimization (1940 El Centro 

(SE), 1995 Kobe (JMA, NS), and 1994 Northridge (Sylmar County Hospital, NS) 

earthquakes) all normalized to ±1g peak ground accelerations (PGAs) (Figure 3-6).  

These earthquakes were chosen because they are fairly representative of large seismic 

events of potential concern in structural monitoring applications.   

 

Figure 3-6. Input signals used in time domain filter bank optimization. 
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As previously mentioned, the design of the filter bank relies on three variables: 

the number of filters in the filter bank, the bandwidth of the filters (which is assumed to 

be constant for all filters) and the spacing of the filters (which is assumed to be constant 

across the entire bank).  Increasing the number of filters will always decrease the 

reconstruction error but also decrease the compression rate.  Therefore, this variable was 

held constant and multiple optimizations (with variations in bandwidth and filter spacing) 

were conducted.  Because the reconstruction is signal dependent and the desired input 

signals are seismic events that cannot be easily represented in analytical form, a greedy 

search algorithm (Black 2005) was used to determine the optimal filter bank 

configuration based on minimizing the objective function, J, for the parameters filter 

bandwidth and filter spacing.  The objective function is defined as the minimal 

reconstruction error ratio of all three earthquakes, 
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(3.11) 

where uX is the original signal, rX is the cochlea-inspired sensor process, and the subscript 

index X corresponds to the El Centro (EC), Kobe (K), and Northridge (NR) earthquakes.  

Once the minimum reconstruction error for all three earthquakes, J, was determined for a 

variety of number of filters then the optimal configuration was then chosen based on 

achieving a balance between reconstruction error and the resulting compressibility 

averaged across all three earthquakes, CRAVG,   

 

 
        

                

 
  (3.12) 

It should be noted that when implementing the peak picking algorithm, minimum 

detected peak values were limited to values of ±0.005g to decrease compression ratios 

without significantly inhibiting reconstruction capabilities.    

 For the greedy search algorithm, the optimization variables are bandwidth 

(bounded between 0.01 and 1.0Hz, in 0.01Hz increments) and filter spacing (bounded 
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between 0.1 and 1.0Hz, in 0.05Hz increments), thereby creating 1,900 possible solutions.  

The algorithm was initialized with random initial conditions for both bandwidth and filter 

spacing and the total reconstruction error, J, for all three earthquakes at this point was 

calculated.  Next, the reconstructed errors of the 48 nearest neighbors of the point 

(including diagonals) were considered and the neighbor with the smallest reconstruction 

error was chosen as the point of interest for the next iteration.  This continued until a 

minimum value was found.  This optimization was run twice for a defined number of 

filters using two distinct initial conditions to ensure convergence to the optimal solution 

from various starting locations.  As can be seen by the optimization plane of 11 filters 

(Figure 3-7), there is a global minimum within the boundaries of the optimization.  

However, small localized minima (within 1% of optimal solution) do occur near the 

optimal solution, which can prematurely end the greedy search algorithm.  By increasing 

the number of neighbors within the search algorithm, a larger footprint is considered and 

these localized minima can be bypassed. 

 The greedy search algorithm was applied over an incremented number of total 

filters in the filter bank (Figure 3-8).  From this analysis it can be seen that there is a large 

drop in reconstruction error when increasing from 13 to 14 filters but only a minimal 

drop when increasing from 14 to 15 filters.  Therefore, 14 filters is chosen as the optimal 

number of filters, with a bandwidth of 0.53Hz and a uniform filter spacing of 0.7Hz 

(Figure 3-8b, Figure 3-9).  This resulted in a compression ratio, CRAVG, averaged across 

the three input signals of 0.8788 (or 12.12% of the original content was transmitted) and 

a cumulative reconstruction error ratio of 0.4174.   

To demonstrate the behavior of the band-pass filter bank, consider the El Centro 

earthquake as an example input signal.  The signal is passed through the filter bank and 

each filter decomposes the signal according to its characteristic frequency (Figure 3-10).  

As the signal is passed through the filter bank, the output of each filter is read by two 

different processing units: one that only considers positive values of the filter output and 

one that uses only negative values of the filter output.  Two processing units are used to 

analyze peaks to achieve higher resolution in the encoding process.  Each processing core 

detects peak values in real-time and once detected, linearly encodes the value into a spike 

train which is transmitted to a centralized location (Figure 3-11); all filters follow this 
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protocol.  For the El Centro record, this results in 6,815 detected peak values, or 28,048 

transmitted bits of information (= 7,012 peaks x 4 spikes/peak x 1 bit/spike) (Table 3-2). 

If the original signal was sampled at the traditional 200Hz and transmitted as integer 

values output by a traditional 16-bit ADC, 13,001 2-byte (16 bits) values would be sent, 

or 208,016 bits.  Thus, by encoding the information into binary spike trains, the amount 

 

(a) 

 
 

 (b) (c) 
  
 

  

Figure 3-7. Optimization plane (using total reconstruction error, J) for a filter bank 

with 11 filters (a), cross-section of plane at filter spacing equal to 0.7Hz (b), and cross-

section of plane at filter bandwidth equal to 0.53Hz (c). 
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(a) 

 

(b) 

 

Figure 3-8. Optimization of number of filters based on reconstruction error and 

compression ratios (a) with associated optimal bandwidth (Hz) and filter spacing (Hz) 

(b). 

 
 

Figure 3-9. Frequency response of optimal filter bank (14 filters with 0.53Hz 

bandwidth and 0.7Hz uniform spacing). 
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of data flow was reduced to a ratio of 0.866 (or 13.4% of original content was transmitted) 

with a reconstruction error of 0.486 (Figure 3-12a, b).  This process can be repeated for a 

variety of vibratory signals (including Kobe and Northridge earthquakes, Figure 3-12c-f), 

resulting in high compression rates without significant signal degradation.    

 
Figure 3-10. Frequency decomposition of El Centro earthquake using filter bank (14 

filters with 0.53Hz bandwidth and 0.7Hz uniform spacing). 

 

Table 3-2. Reconstruction error and compression rates for the optimal number of 

filters, 14 filters. 

Input Signal 

# of bits for 

input signal, 

NBS 

# of bits for 

encoded filter 

bank, NBC 

Compression 

ratio, CR 

Reconstruction 

error, e 

El Centro 

EQ 
208 016 28 048 0.134 0.4860 

Kobe EQ 128 016 12 808 0.100 0.3585 

Northridge 

EQ 
128 016 16 480 0.129 0.4078 
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3.4. Alternative Data Compression Techniques 

Several other techniques have been used for data compression in structural 

monitoring applications.  These have included, but are not limited to, wavelet transforms 

and compressed sensing.  Both methods have had success in such applications but are 

computationally expensive and can generally not be implemented in real-time. To fully 

assess the success of the cochlea-inspired sensor system, its performance is compared 

against the performance of the wavelet transform and compressed sensing methods which 

have been previously used for lossy compression of vibratory signals.  Two vibratory 

signals will be used in the comparison of the three compression techniques, thus 

highlighting the performance of the cochlea-inspired sensor system.  These signals 
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Figure 3-11. Cochlea-inspired data compression: peak picking (a), linear encoding (b) 

and data transmission at spike trains (c). 
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include an earthquake signal (chosen as the El Centro earthquake) and the response of a 

single degree-of-freedom structure (with natural frequency of 4Hz and damping ratio of 

5%) subject to the earthquake signal (Figure 3-13).  Note that both signals have a 

duration of 65 seconds and therefore, would result in 13,001 2-byte values if acquired 

using traditional Nyquist sampling (at 200Hz sampling frequency).     

 
  

  

 

 (a) (b) 

 

 
 (c) (d) 

 

 
 (e) (f) 

 

Figure 3-12. Signal reconstruction after passing through cochlea-inspired system for 

the El Centro earthquake, shown on a full time scale (a) and a sub-section of time (b), 

the Kobe earthquake, shown on a full time scale (c) and a sub-section of time (d), and 

the Northridge earthquake, shown on a full time scale (e) and a sub-section of time (f). 
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3.4.1. Wavelet  Compression 

The construction of the wavelet transform lends itself well to high data 

compression in vibratory signals.  All wavelet transforms are based on a single parent 

wavelet that serves as a basis function, with all other generations of wavelets derived 

from this parent through translation or scaling (Daubechies 1992).  This creates a multi-

resolution (in time and frequency) basis from which the input signal can be characterized.  

Through this representation, the resulting wavelet coefficients quantify the strength of a 

wavelet at a specific location and scale.  As a result, small valued coefficients can 

typically be removed from the analysis without losing significant information about the 

original signal, thus enabling compression of the original signal.   

In this study, the discrete wavelet transform (DWT) is used.  The DWT is based 

on a pyramidal algorithm that decomposes a signal using successive steps of low- and 

high-pass filtering and down-sampling, thus resulting in multi-resolution of both time and 

frequency (Mallat 1989).  At the first step of the algorithm, the signal is decomposed into 

two sub-bands through convolution with the scaling function (or low-pass filter), [n], 

and the orthogonal wavelet function (the scaling function’s conjugate filter)  [n].  For 

each level of decomposition, j, both functions are dilated by a factor of 2 from the 

subsequent level
, 
resulting in an orthonormal basis of family functions.  Therefore, when 

an input signal is convolved with the dilated filters  the signal’s resolution is 

downsampled by 2 from the previous decomposition.  This step ensures that extra data is 

 
 

Figure 3-13. Vibratory input signals used in compression analysis. 
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not created through the decomposition.  The discrete approximation coefficients at the j
th

 

decomposition level, or the low frequency components, of an input signal, u(t), are found 

through convolution with the dilated and scaled scaling function and are represented as, 

aj[n], 

              
 
     

 

  0

 (3.13) 

where K is the length of u(t) when sampled at an interval t.  Conversely, the signal 

detail coefficients at the j
th

 decomposition level, or the high frequency components, of an 

input signal are found through convolution with the dilated and scaled wavelet function 

and are represented as, dj[n], 

               
 
     

 

  0

 (3.14) 

For all subsequent steps, the newly constructed sub-band containing the approximate 

coefficients, aj[n], is further decomposed into the next level of approximate and detail 

coefficients.  This continues until a desired resolution in the frequency domain has been 

met or until computational resources have been exhausted.  At this point, if J iterations of 

the decomposition have occurred then the signal is decomposed into J sub-bands of detail 

coefficients (d1[n   …  dJ[n]) and one sub-band of approximate coefficients, aJ[n].  The 

algorithm is typically implemented as a post-processing technique on a signal that is 

acquired through Nyquist uniform sampling.  A more in-depth overview of the method 

can be found in Mallat (1989; 2008).      

To compress the original signal, small valued wavelet coefficients (both detail and 

approximate) can be removed without losing significant information and as such, all 

coefficients below a specific threshold are considered to be zero terms and are removed 

from the decomposed signal.  However, in order to reconstruct the signal, it is imperative 

to know the index of the zeroed coefficients and therefore, an encoding map similar to 

one proposed by Shapiro (1993) must also be included in the transmission.  The map is a 

binary representation of the wavelet coefficients with a one indicating that the coefficient 

was above the threshold and zero representing a zeroed coefficient.  As such, the total 
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achieved compression of the wavelet transform must include the non-zero wavelet 

coefficients plus the encoding map.   

To best capture the non-linearities of the input signal, while maintaining an 

orthogonal wavelet family, a high-order Daubechies wavelet transform was used.  The 

transform was chosen as Daubechies-24 (D24), yielding 24 non-zero coefficients, 

because it is able to represent high-order polynomials with reasonable accuracy and 

therefore, can capture the rapid fluctuations of the earthquake signals.  The scaling 

function for the Daubechies wavelet transform in its general form  is 

 

 
 
          

      

  1

  0

 (3.15) 

where M is the specified number of nonzero coefficients for the chosen Daubechies 

transform and ck are the associated coefficients.  Further details on the wavelet and the 

derivation of the coefficients can be found in Daubechies (1988).  The wavelet function is 

given by 

 
 
                   
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 (3.16) 

Using this wavelet transform, the two input signals were analyzed for compressibility and 

reconstruction capabilities.  The wavelet transform can be compressed to large extremes 

with minimal reconstruction error but at the expense of computational time.   

 For comparison, the compression of the D24 was limited to the compression 

achieved by the cochlea-inspired sensor system.  The threshold value of the wavelet 

transform was set to retain only 7.25% of the wavelet coefficients (or 0.9275 

compression ratio), therefore leaving 1,040 two-byte values (of the original 13,001 two-

bytes values), or 16,640 bits of data.  In addition to these coefficients, the reconstruction 

also requires an encoding map which consists of 13,001 one-bit values.  As a result, 

28,082 bits of data are transmitted which is 13.5% of the original 208,016 bit information 

flow, or a compression ratio of 86.5%.  For the structure response, however, the 

compression ratio achieved by the cochlea-inspired sensor system cannot be maintained 
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by the wavelet transform because of the inclusion of the encoding map which requires a 

minimum of 13,001 bits or 6.25% of the uncompressed data signal.  Therefore, the 

reconstruction error of the wavelet transform was designed to match the reconstruction 

error (within 1%) of the cochlea inspired sensor system by varying the compression ratio.  

This resulted in a total compression ratio of 0.9007. 

 

3.4.2. Compressive Sensing using Fourier Basis Functions 

A second form of compressive data transmission that has been explored for 

structural monitoring applications is compressive sensing (CS), which relies on 

asynchronous sampling techniques to remove redundant or insignificant data (Donoho 

2006).  CS proposes a new paradigm in data collection that strays from the traditional 

uniform Nyquist sampling rate by instead collecting data at random intervals so as to 

better utilize available resources and reduce the amount of data flow.  It is this 

combination of front-end, non-traditional sampling paired with compression techniques 

that shares strong similarity to the proposed cochlea-inspired sensor system.  Recently, 

researchers have shown that if a signal is sparse, or compressible, with respect to a 

specific basis it is possible to represent the signal through an incomplete representation of 

that basis with minimal reconstruction error (Candès and Tao 2005; Candès et al. 2006; 

Donoho 2006).  This study only touches on the derivation and application of CS; a more 

thorough overview is provided by Candès and Wakin (2008).   

Suppose there is an unknown signal,       , that is k-sparse (i.e., it has k << n 

nonzero entries) with respect to a specific basis.  The signal can be approximated through 

a small number, m (where k < m << n), of linear measurements,       , such that 

   
 
      f

 
        1 …     (3.17) 

or 

         (3.18) 

where       x  is the measurement matrix with the i
th

 row of the matrix represented by 

the linear basis vector  
 
     .  Because the number of measurements is smaller than the 

number of samples in the original signal, solving for the unknown signal becomes an ill-
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posed problem with infinite solutions.  If, however, x is sparse within a known basis then 

an exact or approximate recovery is possible by solving a l1-norm convex optimization 

problem.  For a signal with noise,  (i.e.,          ), the solution to    

 min 
       

      subject to           (3.19) 

reconstructs x, where    is the approximation of the original signal,  is a bound on the 

amount of noise in the signal measurement,       is the l1-norm and      is the l2-norm.   

A necessary condition to achieve a good approximation of x is when   meets the 

restricted isometry property (RIP) (Candès and Tao 2005). A matrix obeys the RIP of 

order s when the isometry constant,  s, is the smallest value that satisfies    

 (1   )   
            (1   )   

  (3.20) 

for all (s/2)-sparse       .  Thus, to acquire k-sparse signals, a small restricted isometry 

constant  2k is sought with as few samples as possible, where s = 2k in Equation 3.20.  

Random Gaussian matrices, random Bernoulli matrices, and partial Fourier transform 

matrices have been shown to satisfy RIP conditions with high probability (Candès and 

Wakin 2008) on the condition that an appropriate number, m, of linear measurements are 

obtained.  The number of required measurements is dependent on the basis used for the 

measurement matrix.  For this study, the Fourier coefficients of an unknown signal are 

approximated through asynchronous random sampling of an input acceleration signal.  As 

such, the measurement matrix is comprised of entries of the partial inverse Fourier 

transform and the number of measurements, m, should exceed (Needell and Tropp 2009)  

 

          log
5    log(   1)     (3.21) 

where C is a positive universal constant and      .   

The CoSaMP algorithm, as proposed by Needell and Tropp (2009), is used for 

signal reconstruction.  This algorithm is based on an iterative greedy pursuit of a near-

optimal solution.  In the CoSaMP algorithm the desired compression rate, or assumed 

sparsity level, is an input to the algorithm and therefore, is always fixed.  As such, the 
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compression rate was assigned based on the rates achieved by the cochlea-inspired sensor 

system.  The chosen input signals, however, may only have modest sparsity in the 

frequency domain and therefore, when using CoSaMP, better approximations of the input 

signals may be achieved if the compression constraint is relaxed.  The earthquake signal 

is considered as an example which as previously mentioned is described by 13,001 two-

byte values (or 208,016 bits) in its uncompressed state.  When considering CS, however, 

compression rates are clearly defined by a sub-Nyquist random sampling scheme and 

therefore, a compression ratio of 0.865 is achieved by sampling 1,820 2-byte values (of 

the original 13,001 two-byte values), or 28,082 bits of data.  Again, when considering 

compression for the structural response, the CS algorithm is unable to achieve the high 

compression ratios seen in the cochlea-inspired sensor system and therefore, the 

normalized reconstruction error is matched, while varying the compression ratio, 

resulting in a compression ratio of 0.880.  

3.5. Results 

The reconstruction capabilities and the compressibility of the two established 

compression techniques are compared to the cochlea-inspired sensor strategy (Table 3-3).  

When considering a convoluted signal, such as the earthquake signal, the cochlea-

inspired sensor is able to achieve high compression ratios but it incurs more error 

Table 3-3.  Comparison of cochlea-inspired sensor system to traditional compressive 

techniques. 

 

Input 

Signal Performance Metric 

Cochlea-

Inspired 

Sensor 

System  

‘Daubechies’ 

Wavelet 

Transform 

(D24) 

Compressed 

Sensing 

(CS) 

Earthquake 

Signal 

Normalized Reconstruction 

Error, J 
0.504

 
0.239

 
0.756 

Compression Ratio, CRAVG 0.865 0.865 0.865 

Structure 

Response 

Normalized Reconstruction 

Error, J 
0.299

 
0.300

 
0.307 

Compression Ratio, CRAVG 0.988 0.901 0.880 
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(approximately two times) during the reconstruction process as compared to the wavelet 

transform.  The time history difference, d, and Fourier difference, df, between the two 

signals are shown in Figure 3-14 and Figure 3-15, where      ( )-  ( ) given that rC(t) is 

the reconstructed signal and the subscript C corresponds to the compressive technique 

(wavelet transform, compressed sensing, or cochlea-inspired sensor system).  

Additionally,     (   )-  (   ) given that U( f ) is the Fourier transform of the input signal,  

RC( f ) is Fourier transform of the reconstructed signal, and f is frequency (Hz).  The 

seismic ground motion is not completely sparse in the frequency domain and the CS 

algorithm is unable to approximate the input signal for the desired compression rates, 

resulting in poor reconstruction capabilities.  When considering narrowband signals, such 

 

 (a) 

 

 (b) 
 

Figure 3-14.  Absolute difference between the input signal, El Centro earthquake, and 

each reconstructed signal in the full time domain (a) and a sub-section of the time 

domain (b).  
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as the structural response, however, the cochlea-inspired sensor outperforms the wavelet 

transform by achieving extremely high compression ratios (0.988) with acceptable 

reconstruction error (Figure 3-16, Figure 3-17).  Because the structural response signal is 

sparser in the frequency domain, the CS algorithm is able to better compress the signal, 

as compared to the seismic signal, while still capturing important characteristics of the 

signal.  However, both alternative compression techniques are unable to achieve the high 

compression ratios that were established by the cochlea-inspired sensor node and only 

achieved similar reconstruction errors when decreasing their compression ratios eight to 

ten times less than the cochlea-inspired sensor system's compression ratio. 

The improved reconstruction capabilities of the cochlea-inspired technique for 

structural response data can be attributed to the filter bank design.  The filter bank 

 

 (a) 

 

 (b) 

 

Figure 3-15.  Absolute difference between the input signal, El Centro earthquake, and 

each reconstructed signal in the full frequency domain (a) and a sub-section of the 

frequency domain (b).  
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includes one filter with a characteristic frequency of 3.5Hz and one filter with a 

characteristic frequency at 4.2Hz, both near the natural frequency of the structure (4.0Hz).  

Therefore, the majority of the response of the structure is captured by these two filters 

and surrounding filters contribute little additional information.  The filter bank for the 

cochlea-inspired sensor system was designed such that it could be applied to a variety of 

input signals, including structures with natural frequencies falling within the range of 

common earthquake signals.  Therefore, it is important to understand the reconstruction 

capabilities of the sensor system when the natural frequency of the structure does not 

occur at a characteristic frequency of a specific filter but instead falls between two filters, 

as shown with the previous example.   o consider the impact of the structure’s natural 

 

 (a) 

 

 (b) 
   

Figure 3-16. Absolute difference between the input signal, a single degree of freedom 

structure subject to El Centro earthquake, and each reconstructed signal in the full 

time domain (a) and a sub-section of the time domain (b). 
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frequency, the reconstruction errors, e (Equation 3.9), of the response of a single degree-

of-freedom structure with varying natural frequencies (ranging from 0.02 to 10.50Hz) 

subject to the El Centro earthquake are calculated.  It is expected that reconstruction 

errors would be minimized at the characteristic frequencies of the filters and maximized 

at midpoints between two filters.  However, when considering the optimal filter bank 

(14 filters with a bandwidth of 0.53Hz and spaced at 0.7Hz), this pattern is observed at 

very low frequency filters (Filters 2 through 4) and is non-existent for higher frequency 

filters (Figure 3-18a).  In Figure 3-18a, the reconstruction errors are shown as they relate 

to the ratio between the natural frequency of the filter bank's input signal (i.e., structural 

response) and each filter's characteristic frequency.  For example, when considering Filter 

 

 (a) 

 

 

 (b) 
 

Figure 3-17.  Absolute difference between the input signal, a single degree of freedom 

structure subject to El Centro earthquake, and each reconstructed signal in the full 

frequency domain (c) and a sub-section of the frequency domain (d). 
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2 which has a characteristic frequency of 1.4Hz, the reconstruction error is shown for 

input signals ranging from 0.7 to 2.1Hz in 0.02Hz increments.    Typically, little variation 

in reconstruction error is seen as the structure’s natural frequency shifted plus or minus 

one filter spacing from the filter’s characteristic frequency.  Thus, because the filter bank 

is designed for optimal reconstruction, it is able to still accurately represent signals that 

do not fall directly on top of a filter’s characteristic frequency.  This point is further 

exemplified by decreasing the bandwidth of each filter in the filter bank to 0.2Hz, which 

yields a sub-optimal filter bank with less overlap between filters.  In this case, a more 

defined trend of minimum error at filter locations and maximum error midway between 

filters is observed.  In both cases, it should be noted that Filter 1 (at 0.7Hz) is excluded 

from the analysis due to its high variability in reconstruction at frequencies less than 

 

 (a) (b) 

Figure 3-18. The reconstruction capabilities of the filter bank, shown with respect to 

the filter i (characteristic frequency = i) for an optimal filter bank (0.53Hz 

bandwidth, = 0.7Hz) (a) and a sub-optimal filter bank (0.20Hz bandwidth, = 

0.7Hz) (b).  The input signals include a sweep of various structural responses (natural 

frequency = n) when subject to El Centro earthquake ground motion, where n 

varied from 0 to 10.5Hz in 0.02Hz increments.     
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0.7Hz where these frequencies are only captured by one filter.  Some of this variability is 

seen in the reconstruction response of Filter 2.  

Therefore, when considering convoluted signals, such as seismic ground motions, 

the proposed cochlea-inspired sensor system is not able to reconstruct with the same 

accuracy as the wavelet transform but it can achieve signal reconstruction with acceptable 

distortion while maintaining real-time processing capabilities for such signals.  

Additionally, when considering narrowband signals, such as the structure response, the 

proposed sensor system’s compression capabilities and therefore  reconstruction 

capabilities far surpass both traditional compression techniques and without significant 

dependency on the natural frequency of the structure. As such, the proposed sensor can 

be deemed as a new form of data acquisition that is highly attractive for structural 

monitoring and control applications. 

 

 

3.6. Chapter Summary 

In this study, the mechanisms employed by the auditory system were explored in 

the context of signal processing for structural monitoring applications.  A cochlea-

inspired sensor system was proposed that draws inspiration from the functionality of two 

methods of the auditory system: the frequency decomposition of the basilar membrane 

and the encoding process for data transmission.  In doing this, the cochlea-inspired sensor 

was capable of large compression, thus increasing efficiency in data transmission.  The 

functionality of the cochlea-inspired sensor was compared against two compressive 

techniques, wavelet transforms and compressed sensing, that have been successfully 

demonstrated on structural monitoring applications.  While the wavelet transform 

performed better than the other two methods, it has significantly larger computational 

requirements than the cochlea-inspired sensor and is not capable of real-time processing.  

Therefore, the cochlea-inspired sensor should be considered as a new sensing paradigm 

that when properly utilized can demonstrate large compressive capabilities through real-

time processing.  

This chapter proposed the theoretical framework for a new sensing paradigm for 

structural monitoring.  The following chapters will seek to further validate this bio-

  
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inspired mechanism through adaptation to wireless telemetry and implementation in 

analog circuitry, thus enabling real-time processing with low-cost and low-power 

components.  With the development of this sensor in hardware a specific emphasis will 

be placed on control applications as this technology enables real-time control through 

simplistic control laws.  
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CHAPTER 4 

 

 

RESOURCE EFFICIENT WIRELESS SENSOR NETWORK ARCHITECTURE 

BASED ON BIO-MIMICRY OF SIGNAL PROCESSING IN THE CENTRAL 

NERVOUS SYSTEM 

 

4.1. Introduction 

This chapter further draws upon the mechanisms employed by the biological 

central nervous system (CNS) to fundamentally address the deficiencies currently found 

in wireless sensor networks (WSNs) in the form of an entirely new wireless sensing 

paradigm.  In this chapter, the novel signal processing and data compression techniques 

employed by the mammalian auditory system and described in Chapter 3 are utilized as a 

source of inspiration for a new wireless sensor node.  It should be noted that the central 

nervous system, in general, serves as a source of inspiration as all neurons utilize similar 

compressive methods of data aggregation and transmission which are attractive for 

wireless sensing and control.  However, the unique pre-processing capabilities of the 

auditory system offer an interesting perspective for engineering systems.  As such, the 

new wireless sensor node will follow a three step process that is similar to the process 

demonstrated by the mammalian auditory system.  For the biological system, these steps 

are: 1) spectral decomposition of a convoluted sound signal by the basilar membrane, 2) 

simultaneous peaking picking and linear encoding by individual neurons associated with 

sub-sections of the basilar membrane, and 3) compressed data transmission to the 

auditory cortex along unique nerve fibers.  A complete overview of the mammalian 

auditory system can be found in Chapter 3.   This new sensor node will address many of 

the challenges faced by traditional WSNs in both monitoring and control applications.
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This chapter will focus primarily on a monitoring application and Chapter 5 will consider 

a control application.   

By adopting this methodology of signal processing it is forecasted that the current 

engineering bottlenecks in WNSs (e.g., limited radio bandwidth, high energy 

consumption, etc.) will be minimized or overcome.  In particular, by embracing the 

analog-domain approaches that are employed by the central nervous system, the new 

wireless sensor will be capable of complex signal processing in real-time which will 

ultimately lead to reductions in computational time and energy consumption.  

Additionally, by employing the data acquisition techniques of the auditory system, the 

proposed sensing system will adopt asynchronous sampling schemes thus reducing 

energy consumption from digitizing data.  Finally, by decomposing a complex signal into 

its frequency components and subsequently compressing this information flow into 

binary spike trains, the amount of transmitted data will be reduced, thereby reducing the 

energy consumption and wireless bandwidth requirements of a wireless sensor.  In this 

chapter, the theory and hardware design of a new wireless sensor node, based on the 

mechanisms employed by the CNS, is provided.  The sensor is validated on a single 

degree-of-freedom structure subject to three common earthquake signals and the benefits 

of the new sensing node, including reduction in power consumption and radio bandwidth, 

are experimentally demonstrated.   

   

4.2. Sensor Design 

With existing wireless sensors limited by fixed communication bandwidth and 

hampered by a lack of viable long-term power solutions, functional mimicry of the 

auditory system can potentially resolve these two bottlenecks.  As outlined in Chapter 3, 

data processing in the mammalian auditory system can be described through a three step 

process: 1) spectral decomposition by the basilar membrane, 2) linear encoding and data 

compression by the inner hair cells, and 3) data transmission by the nerve fibers.  The 

proposed wireless sensor performs similar processing as the cochlea by: 1) decomposing 

a convoluted signal into frequency components through the use of a band-pass filter bank, 

2) data compression of each filtered signal by individual microcontrollers, and 3) wireless 
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transmission to a centralized repository (Figure 4-1).  This wireless sensing architecture 

inspired by these operational principles of the mammalian auditory system will be ultra-

low power, capable of performing time-frequency analysis in real-time through analog-

domain signal processing, and capable of communicating sensor measurements in a 

compressive manner for network scalability.  Similar to the functionality of neurons, the 

proposed wireless sensor will exhibit a high degree of modularity in its hardware design, 

thus allowing it to be adapted according to the constraints of any given monitoring 

application.  As such, each cochlea-inspired wireless sensor node is to be comprised of 

multiple "neurons" in the form of neuron boards that each represent one narrow-band 

channel in an analog filter bank, much like the hair-cell neurons at a specific location 

along the length of the basilar membrane.  Stacks of modular neuron boards can be 

assembled to form the complete analog filter bank similar to the basilar membrane. All 

neuron boards within a stack share system resources (e.g., power, digital clock signal, and 

access to a wireless transceiver) through a bussing system (Figure 4-2).  Additional 

considerations for the  sensor design will include overall power consumption and device 

cost, both of which will be quantified herein. 
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Figure 4-1. Simplified schematic of the mammalian auditory process (a) compared 

with the process of the proposed wireless sensor system which utilizes a band-pass 

filter (BPF) bank and microcontrollers to emulate the function of the cochlea's basilar 

membrane and neurons, respectively (b).  
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 Figure 4-2. Cochlea-inspired wireless sensor node with a radio board, multiple neuron 

boards, and base board (a), schematic of complete sensing node with "n" neuron boards 

(b) and functional schematic of a typical neuron board (c). 
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4.2.1. Base Board 

To decrease the overall power consumption of the modular sensing node, each 

neuron board is designed to be ultra low-power. To achieve this goal, certain node 

resources and signals are shared amongst all of the neuron boards through a bussing 

system (Table 4-1), thus reducing the number of hardware components on each neuron 

board and the overall power consumption of the system.  These signals are generated on a 

base board (Figure 4-3a) and bussed through shared connection lines (pins B1 through 

B17) to all of the neuron boards (Table 4-1).  The base board connects to an external 

sensor and routes the analog sensor signal, a 1MHz digital clock signal (using Linear 

Technologies LTC6930CMS8-8.00#PBF scaled to 1MHz output) and a stable 1.8V 

power supply delivered from a Torex Semiconductor Limited voltage regulator 

(XC6221B182MR-G) to the stack of neuron boards.  The bussing system also contains 

lines for radio communication which will be discussed in further detail with the radio 

board.   This base board is designed as a four-layer printed circuit board (PCB) with a 

footprint that is roughly 2.5cm x 2.5cm.  The fully assembled base board consumes 

approximately 700W of power (0.39mA at 1.8V) and costs approximately $20.  By 

limiting these resources to a single board, rather than requiring all sensor boards to 

maintain independent clocking and power, the overall power consumption and cost of the 

sensing node is significantly reduced.   

Table 4-1. Signals transmitted through bus connections. 

Symbol Signal Symbol Signal 

B1 Analog Signal (direct from sensor) B10 Supply Voltage (1.8V) 

B2 Ground Signal B11 Half Supply Voltage (0.9V) 

B3 SPI Clock B12 Reset 

B4 Microcontroller Programming Pin B13 SPI Chip Select 

B5 SPI Output B14 Digital Clock (1 MHz) 

B6 Microcontroller Programming Pin B15 Contention Pin 

B7 SPI Input B16 Radio GPIO 

B8 Microcontroller Programming Pin B17 Radio GPIO 

B9 Enable Radio   
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Figure 4-3. Circuit prototype of baseboard (a), neuron board (b), Texas Instruments' 

CC2520 radio board on radio interface board (c), and radio interface board (d). 

 



 

81 

 

4.2.2. Neuron Board 

To achieve the advantages of the mammalian auditory system, each neuron board 

(Figure 4-2b, c) follows a similar three step process to that found in the biological system: 

1) real-time frequency decomposition by the basilar membrane, 2) peak value encoding 

by the inner hair cells, and 3) efficient data transmission through nerve fibers.  In the 

proposed neuron board, these three steps are encapsulated through signal decomposition 

using a bank of analog band-pass filters, peak picking using a low-power computing core, 

and information transmission to a wireless transceiver.  In the proposed sensor, the real-

time spectral decomposition of the basilar membrane is replicated through a band-pass 

filter bank where each channel in the bank represents a sub-section of the basilar 

membrane, thus enabling parallel processing in real-time. To allow versatility, the filter 

bank is designed in a modular manner such that users can easily reconfigure the analog 

filter bank characteristics (such as filter spacing, filter bandwidth, etc.) simply by 

assembling different neuron boards together.   

When choosing the parameters for the filter bank (e.g., filter spacing, filter 

bandwidth, number of filters) it is important to maximize the reconstruction capabilities 

of the filter bank by minimizing the signal distortion incurred through the filtering 

process.  In other words, it is desired that when reconstructing a signal that has been 

decomposed by the filter bank that   ( )       , where u(t) is the input signal and y(t) is the 

reconstructed signal determined by 

           
 
    

 

  1

 (4.1) 

such that yi(t) is the output of the i
th

 band-pass filter and N is the number of filters in the 

filter bank.  The characteristics of each i
th

 filter are controlled by two parameters: a 

central frequency, fi (Hz), and the Q-factor (where           
-1

 and i is the damping ratio 

of the filter).  To simplify the design in this study, all filters are assumed to be equally 

spaced (f = fi - fi-1) and to have a constant bandwidth.  The output of each filter is found 

through convolution of the original input signal with the filter's impulse response 

function, hi(t), as follows: 
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where        

                 1   
  

 1

e      sin      1   
    tan 1    

 1 1   
    (4.3) 

and i = fi/2.  By varying the three parameters N, f, and i, the reconstruction 

capabilities of the filter bank can be optimized according to the constraints dictated by the 

desired application for the sensor.   

Each neuron board contains one unique filter from the filter bank, thus allowing 

the wireless sensor node to be easily modified by inserting or removing new boards or 

modifying the characteristics of the filters.  The Fliege filter topology (Figure 4-4) is 

chosen for the analog band-pass filter due to its stability at high Q values and its constant 

gain value of 2 (Carter 2000).  With this topology, a constant capacitor value, C, is 

chosen by the designer which then dictates the resistor and capacitor values that are used 

in hardware.  To maintain capacitors in the micro-Farad range and resistors in the kilo-

Ohm range, C is chosen as 10F and Resistors 1, 2, and 3 are designed based on this 

constraint to achieve the desired characteristic frequencies and bandwidths of the filters.  
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Figure 4-4. Fliege band-pass filter topology.   
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Resistors 4 and 5 are non-critical components whose only design constraint is that they 

are equal in value and therefore, they are chosen to be 10k to maintain the same 

magnitude as the other three resistors.  With the Fliege topology, the bandwidth and 

characteristic frequency of a filter can easily be changed by modifying resistors R1, R2, 

and R3.     

The filter output is fed to a low-power microprocessor whose function is similar 

to the inner hair cells on the cochlea in that it encodes the filtered signal into a 

compressed "neural" signal.  The computing core for the neuron board is chosen as 

Atmel's ATtiny84a due to its low power consumption (210A in active mode at 1.8V and 

1MHz clock speed).  The filtered signal is sampled at 200Hz by the microprocessor's 

internal 10-bit analog-to-digital converter (ADC).  With each sample, the microprocessor 

runs a real-time peak picking algorithm.  In this algorithm, the microprocessor 

continually stores the current sampled value as well as the two previously sampled values.  

With these three data points, the microprocessor calculates the slope between concurrent 

sampled values and uses these to predict the slope of the next sampled value.  If the 

predicted slope value has a different sign than the previous slope then a peak value is 

detected.  Otherwise, the microprocessor continues sampling while refreshing its buffer 

of the past two samples.  Due to the low resolution of the ADC, peak values on gradually 

sloping signals may go undetected using this algorithm.  As such, a secondary peak 

picking algorithm is implemented that checks if the second sampled value is greater than 

(or less than) both the first and third sampled values. If this occurs then the second 

sample is detected as a peak value.  This secondary check only occurs if a peak was not 

found during the previous iteration of sampling.  This entire peak picking algorithm 

occurs in less than 5msec, thus ensuring that the sampling time is greater than the 

computational time of the algorithm and therefore, there is no opportunity to miss peak 

values.      

Once a peak is detected, the microprocessor further compresses the data by 

linearly encoding the detected peak value into a one-byte value.  However, rather than 

further degrade the resolution of the sampled value, the full 1,024 bit output range of the 

10-bit ADC is instead supervised by four "neurons", each monitoring a unique set of 256 

bits (e.g., neuron zero is activated if a peak falls within the 0 to 255 bits of the ADC, 
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neuron one within 256 to 511, etc.).  Therefore, once the microprocessor has detected a 

peak value, P, that is in the ADC's integer form, it calculates which neuron, Ne, to 

activate:     

 
       

 

 56
  (4.4) 

where     is the floor function that rounds the quotient down to the nearest integer.  Based 

on the activated neuron, the peak value is encoded into a one-byte value, Pe, where 

      - 56   .  In addition to this one byte of data, the neuron board also transmits a 

"neural code" such that the previously encoded peak value can be properly decoded at the 

centralized location.  The "neural code", NC, encapsulates information about the 

activated neuron as well as the neuron board's unique identification number, ID, that is 

used when decoding the received data at a centralized location,               .  As an 

example of this process, consider the output of a 1Hz filter (with an identification number, 

ID, of 1) when filtering an arbitrary sine wave (Figure 4-5).  Neuron 3 on this board 

detects a peak value of 829 at 1.27 seconds.  The microcontroller linearly encodes this 

value into a one-byte value of 61 and computes the "neural code" as 7 (NC = 4 1+3).  

These two bytes of data are packaged by the microcontroller for transmission through the 

wireless transceiver.    

The wireless transceiver uses IEEE 802.15.4 communication standards and as 

such, these two bytes of data are transmitted using the IEEE 802.15.4 Frame Format 

(Texas Instruments 2007).  This format includes a 9-byte media access control (MAC) 

header that includes the Frame Control Field, the Data Sequence Number, and the 
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Address Information (Figure 4-6).  All fields within this header are initialized upon 

power-up of the sensing node, except for the source address.  The two bytes designated 

for the source address are filled with the neural code, NC, as established by the neuron 

board that is sending the data.  Each packet also includes one byte of data (i.e., the 

encoded peak value) that is transmitted as the payload when the wireless transceiver 

communicates this packet over the wireless sensor network.  Once the microcontroller 

has assembled the packet it communicates its information to the wireless transceiver 

using a shared Serial Peripheral Interface (SPI) bus (B3, B5, B7, and B13 from Table 4-1).  

This process will be further discussed when considering the design of the radio board.     

Each neuron board is designed on a two-layer PCB that is roughly 3.18cm x 

3.18cm (Figure 4-3b).  The two vertical header pins shown on both the left side (B1 

through B9) and right side (B10 through B17) of the neuron board correspond to the same 

pins shown in Figure 4-3a.  Because each neuron board does not have to support an 

internal clock or other peripherals, it consumes approximately 1.1mW of power (0.6mA 

at 1.8V and 1MHz) when active and costs approximately $10 (per board).  As each 

neuron board represents a small sub-set of the entire filter bank, multiple units can be 

stacked together through the bussing lines to capture the full frequency spectrum of the 

input signal.  While adding more neuron boards in the assembly of a wireless sensor node 

linearly increases cost and power for the entire sensing node, the complete sensing node 

still remains extremely low power and low cost.  This enables feasible scale up to large 

filter banks consisting of 10's of neuron boards.        
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Figure 4-6.  Packet structure used in wireless data transmission. 
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4.2.3. Radio Board 

The neuron boards interface with a single Texas Instruments CC2520 radio 

(Figure 4-3c) that operates using the IEEE 802.15.4 communication standard (Texas 

Instruments 2007).  A radio interface board (Figure 4-3d) provides a connection 

transition to the CC2520EM radio board obtained from Texas Instruments (2009).  

Information is sent independently from each neuron board using a shared Serial 

Peripheral Interface (SPI) bus (B3, B5, B7, and B13 from Table 4-1).  However, because 

each neuron board is sharing (and therefore competing for) the radio, an additional 

communication line (B15) is included to prohibit communication contention between 

boards.  If a board intends to send information to the radio it must first check the 

contention line.  If the contention line is free (i.e., high) then no other boards are 

accessing the radio and the microcontroller on that board can transmit its information by 

first pulling the contention line low and then connecting with the radio.  Once the board 

has completed the transmission it releases the contention line (pulling it high), thus 

allowing other boards to access the radio.  This entire process completes in approximately 

1.67msec if no contention is encountered.  However, if a board checks the contention pin 

and it is low indicating that the radio is in-use, then the board backs off for a random time 

period before re-checking the line.  If the contention line does not become free within a 

specified amount of time (2.5msec which is half of the sampling period) then the unit 

abandons its transmission and continues with its peak-peaking.  While that peak is lost, 

this strategy is necessary to limit the amount of delay in the overall system and to prevent 

system grid-locks.  The random back-off is created by generating a random integer 

through the microcontroller's built-in random number generator.  This integer is used to 

create a single random delay that ranges from 20 to 90sec.  After this delay the 

microcontroller rechecks the contention pin.  Because all of the neuron boards operate on 

the same digital clock and power source, each of the filter boards is initialized to the 

same default seed for the random number function generator.  Therefore, in order to 

reduce the likelihood of two boards simultaneously detecting peak values and re-

attempting to access the contention pin at the same time, upon initialization the random 

number generator on each unique board is seeded based on the neuron board's unique 

identification number.   
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The radio interface board is a 2-layer PCB that is roughly 3.94cm x 3.18cm 

(Figure 4-3d).  The two vertical header pins shown on both the left side (B1 through B9) 

and right side (B10 through B17) of the interface board correspond to the same pins 

shown in Figure 4-3a and b.  The two 20-pin horizontal headers interface with the Texas 

Instrument's CC2520EM radio board and map to specific pins on the vertical headers 

(Table 4-1) to enable direct access to the wireless transceiver.  In its transmitting state the 

radio board consumes 46.4mW of power (26mA of power at 1.8V) but less than 2W of 

power (1.1W of power at 1.8V) in power down mode per the manufacturer’s 

specifications.  To reduce power consumption, the transceiver is kept powered down and 

only made active when a neuron board transmits data.     

 

4.2.4. Summary of Hardware Design 

The new wireless sensor node is designed such that it can easily be adapted to 

new applications by modifying both the number of neuron boards as well as the 

characteristics of filters on board the neuron boards.  A complete sensing node is created 

by combining a single base board with a variable number of neuron boards and a wireless 

transceiver (Figure 4-2a).  With this modularity comes a variable height for the sensing 

node that is linearly related to the number of neuron boards.  The base board and each 

neuron board have a height of 0.044cm.  Additionally, the power consumption of the 

sensing node increases on a linear scale (Table 4-2).  For example, 10 boards consume 

58.1mW of power at 1.8V and cost $170 while 20 boards consume 67.1mW of power at 

1.8V and cost $270.  It should be noted that this is an academic prototype and in 

Table 4-2. Power consumption and cost of each board. X is an arbitrary number of 

Neuron Boards that linearly scales the total cost and power consumption.  

Board Power Consumption (mW) Cost 

Base Board  0.7 $20 

Neuron Board  1.1 $10 

Radio Board 46.4 $50 

Base +  X  Neuron + Radio 47.1 + 1.1X $70 + $10X 
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commercial applications the sensing node could be made significantly more cost-

effective and smaller.   

 

4.3. Laboratory Study on Effects of Stochastic Communication 

Due to the random back-off and possibility of contention between neural boards, 

the communication from each wireless sensor node is a stochastic process that has strong 

relation to the input signal.  This variability is assessed in a controlled environment for 

three different input signals that are related to the intended application of monitoring civil 

infrastructure: 1) a broadband-white signal (0.4g root mean square (RMS) random noise), 

a wideband-seismic signal (1940 0.4g El Centro earthquake NS), and a narrowband-

seismic signal (band-pass filtered El Centro earthquake at 2.75Hz with bandwidth of 

approximately 1Hz) (Figure 4-7).  These signals are created on a function generator and 

fed into the sensor to ensure repeatability of the input signal.  The filters on the neuron 

boards are arbitrarily chosen to be spaced every 0.5Hz with 0.35Hz bandwidth.  The 

characteristic frequency of the first filter board starts at 0.5Hz and each new board's 

frequency is 0.5Hz greater than the previous, thus widening the total bandwidth of the 

 
 (a) (b)  

Figure 4-7.  Three input signals used to determine characteristics of stochastic 

communication in time (a) and frequency (b) domains. 
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filter bank with each new board.  Each signal is input to the cochlea-inspired wireless 

sensor node 100 times for a varying number of filter boards (from 5 to 25 neuron boards).  

Specifically, the broadband-white and wideband-seismic signals are tested using 5, 10, 15, 

20, and 25 boards while the narrowband-seismic signal is tested using 5, 10, 15, and 20 

boards.  The narrowband-seismic signal is not tested with 25 boards because higher 

frequency boards have little response when using 20 filters and therefore it is deemed 

unnecessary to add additional boards.  During these tests, packets are sent from the 

wireless sensor node to a nearby (<5m) centralized repository and the number of skipped 

packets due to radio contention is monitored for each test.  Due to the controlled 

environment it is assumed that the wireless channel is 100% reliable in this set of tests 

and therefore packets are lost only due to radio contention.  The input signal is 

reconstructed at the centralized repository using the received peak values from the 

wireless node.  To assess the reconstruction capabilities of the wireless sensor node, a 

reconstruction error based on the root mean square error, ERMS, is used:         

                           
 

 

  1

    1   max          1 (4.5) 

where K is the length of u(t) when sampled at an interval t.  Similarly, the 

reconstruction error in the frequency domain is defined as, FRMS, 
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   max    
 
   

 1
 (4.6) 

where U(f ) and Y(f ) are the discrete Fourier transforms of u(t) and y(t), respectively.  

The probability density functions for the percentage of skipped packets for all 

three signals are approximately described by Gaussian distributions (Figure 4-8).  For the 

wideband-seismic and broadband-white signals, when a small number of neuron boards 

are used (i.e., 5 filters), the filter bank does not capture the frequency spectrum of the 

signal well and a minimal number of packets are sent, resulting in little-to-no radio 
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contention.  Both the wideband and broadband signals' average percentage of skipped 

packets increases exponentially as the number of boards are increased linearly (Figure 4-

9a).  The average percentage of skipped packets for the narrowband-seismic signal, on 

the other hand, remains linear with a minimal slope as the number of boards increases.  

Because the energy of the signal is primarily contained in the spectrum below 5Hz, 

adding boards whose frequency extends beyond this range has little effect and few 

additional packets are sent.  When considering the wideband-seismic signal, however, 

while its energy content is concentrated below 7Hz, higher frequencies are still present in 

the signal.  Therefore, the addition of higher frequency boards results in attempted 

communication from these boards, thus resulting in a higher percentage of skipped 

packets from increased contention.  Similarly, because the broadband-white signal has 

 

 

 

 

 

 (a) (b) (c) 

Figure 4-8.  Probability density function (PDF) of percentage of skipped packets for 

wideband-seismic (a), narrowband-seismic (b), and broadband-white (c) signals.  
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higher amplitude frequencies across a wider frequency spectrum, it experiences this same 

radio contention but at higher percentages and with fewer boards.  Therefore, it can be 

concluded that as the bandwidth of the input signal increases, the contention in the node 

also increases but with fewer neuron boards.   

When considering the reconstruction error, adding more filter boards has varying 

effects (Figure 4-9b).  For the wideband-seismic signal, increasing the number of boards 

decreases the reconstruction error until 25 boards are reached.  At 20 boards, the filter 

bank can represent the frequency spectrum of the signal and there is a minimal number of 

skipped packets (< 1%).  However, adding 5 more boards increases the radio contention 

and potentially transmits peaks from low-priority high frequency filter boards that have 

low amplitude signals instead of high-priority low frequency filter boards with high 

amplitude signals, thus increasing the reconstruction error.  For the narrowband-seismic 

 

 (a) (b) 

Figure 4-9.  Average percentage of skipped points (a) and reconstruction error (b) as 

the number of filter boards increases in the wireless sensor node for a wideband-

seismic signal (El Centro earthquake), a narrowband-seismic signal (filtered El Centro 

earthquake), and a broadband-white signal (random noise).  
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signal, on the other hand, while adding more boards enables more frequencies to be 

represented, it is unnecessary because the energy content of the signal can be adequately 

captured by the 10 boards and extending the number of boards beyond 10 filters actually 

increases the reconstruction error. Higher frequencies are not extremely dominant in the 

narrowband signal and occasionally a higher frequency board will seek to transmit data 

which could prevent a lower frequency board from sending more significant data.   

Therefore, as demonstrated by this study on radio contention, as the number of 

filter boards increases in the cochlea-inspired wireless sensor node, the percentage of 

skipped packets also increases.  This percentage of skipped packets does have 

dependency on the signal with very wideband signals resulting in large contention and a 

loss of packets.  In general, the loss of packets does not significantly impact the 

reconstruction capabilities of the system with the reconstruction error not showing large 

dependency on the number of skipped packets for any of the signals.  The number of 

filter boards, however, does have an impact on the reconstruction capabilities of the 

system and the optimal number of filters is signal dependent based on the energy content 

of the signal.  As such, each wireless sensor node should be designed according to its 

application so as to minimize the potential for radio contention while also minimizing the 

reconstruction error.  This study also highlights an important limitation of the cochlea-

inspired wireless sensor node in that it is unable to adequately capture broadband signals, 

such as random noise.  For such signals, all neuron boards attempt to continuously 

communicate detected peak values, resulting in large contention across the radio, a large 

number of skipped packets, and an inability to adequately reconstruct the input signal.  

By decreasing the number of boards, less radio contention occurs but the node is unable 

to capture the wide frequency content.  Therefore, from this study it can also be 

concluded that the cochlea-inspired sensor node is not well-suited for extremely 

broadband  signals.  This finding is expected due to the finite radio bandwidth of the 

sensing node and wide frequency spectrum of the input signal.   
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4.4. Experimental Validation with Seismic Monitoring Application 

 The proposed cochlea-inspired wireless sensor is validated on a seismic 

monitoring application of a short-span bridge test-bed.  Civil infrastructure, and in 

particular bridges, are unavoidably exposed to time-critical events, such as earthquakes or 

typhoons.  This is particularly challenging in that the functionality of these structures is 

often imperative during such events and therefore it is important to have methods of 

assessing the bridge performance during and after the event.  In recent years, numerous 

bridges worldwide have been instrumented with monitoring systems, both wired and 

wireless, thus enabling periodic assessment of the structure subject to various loadings 

(i.e., ambient vibrations, seismic events, extreme wind loads) (Ko and Ni 2005).  Wired 

systems do not face the same power constraints as wireless systems and therefore are able 

to collect data more regularly and also use trigger systems to increase data collection 

during these time-critical events (Fujino et al. 2000; Wong et al. 2000).  Wireless 

systems, on the other hand, have higher power constraints and therefore rely on extreme 

power management, such as extensive sleep modes (Park et al. 2010) or schedule-based 

data collection (Kurata et al. 2013), to maintain continual operation.  Such techniques, 

however, come at the risk of missing events and therefore, ultra-low power wireless 

sensor nodes which require minimal sleep time are needed.  The proposed cochlea-

inspired wireless sensor is validated with this application in mind by monitoring the 

response of a short-span bridge subject to seismic ground motion.         

  The test-bed for validating the proposed sensor is a small-scale single span 

bridge (Figure 4-10) that sits on a 5m x 5m shake table at the Korea Construction 

Engineering Development (KOCED) Multi-Platform Seismic Simulation Center at Pusan 

University, Pusan, Korea.  The deck of the bridge is a reinforced concrete slab (1.8m x 

2.3m x 0.1m) and is affixed to two wide flange girders (depth of 0.294m and width of 

0.2m) evenly spaced 0.45m from the center line of the concrete.  These two girders sit on 

four wide flange posts (0.3m deep and 0.4m wide) that are reinforced with steel plates 

perpendicular to the web to prevent weak axis bending of the posts.  The entire mass of 

the bridge specimen is 1,282kg.  The bridge sits on four rubber bearings (horizontal 

stiffness of 167kN/m, vertical stiffness of 3,292kN/m) which simulate the behavior of 
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 (d) 

 
(e) 

Figure 4-10. Single span bridge used for validation of wireless sensor (a), cochlea-

inspired wireless sensor node on test-bed (b), side view schematic of bridge with 

instrumentation (c), front view schematic of bridge (d), and frequency response 

function of single-span bridge when subject to random excitation (e). 
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columns for the bridge.  The first modal frequency of the structure is identified through a 

random noise analysis as 3.6Hz (Figure 4-10e).  The structure and the shake table are 

instrumented with the cochlea-inspired wireless sensor, as well as a traditional wired 

laboratory data acquisition system to validate the results found from the new sensor.  The 

objectives of the experimental testing are to assess the reconstruction capabilities 

(Equation 4.5) versus achievable compression ratios (Equation 4.7) when: 1) increasing 

the number of neuron boards (and filters) in a single sensor node, 2) varying the 

frequency spacing between filters in a single sensor node, 3) varying the bandwidth in the 

filters in a single sensor node, and 4) varying the maximum amplitude of the input signal.   

The achievable compression ratio, CR, is defined in Equation 3.10 and restated 

here as, 

 
      1  

   

   

 (4.7) 

where NBC is the number of bits transmitted through the cochlea-inspired wireless sensor 

and NBS is the number of bits transmitted for a traditional Nyquist-sampled 16-bit data 

acquisition system.  Because the signals of interest in this study are typically concentrated 

at low frequencies (<10Hz), it is assumed that the Nyquist-sampled signal is sampled at 

20Hz by a traditional wireless sensor.  However, to enable real-time processing of the 

signal, it is assumed that once the traditionally sampled signal receives a new data point it 

immediately broadcasts the data across the network and to the network's base station.  As 

such, both the cochlea-inspired wireless sensor and the traditional wireless sensor have 

the same packet overhead for each data point and only the packet payloads are considered.  

Additionally, it is assumed that the traditionally sampled signal is sent as two-byte 

integers (based on a 16-bit analog-to-digital converter) while the cochlea-inspired sensor 

node sends one encoded byte of data.   

When designing the optimal filter bank, it is desirable to minimize the 

reconstruction error while maximizing the compression ratio.  Intuitively, however, these 

two metrics are competing in that adding more neuron boards to the sensing node should 

result in a better approximation of the input signal (to a certain point), thus reducing the 



 

96 

 

reconstruction error, but also increases the data flow and reduces the compression ratio.  

Therefore, a balance must be found between these two competing parameters. 

 

4.4.1. Monitoring Seismic Ground Motion 

A cochlea-inspired wireless sensor node is installed directly on the shake table to 

monitor the peak ground accelerations for each input signal.  Parameters of this sensing 

node are varied to determine the effect of these modifications on the reconstruction error 

and compression ratio.  Three signals (1940 El Centro earthquake - 0.4g peak ground 

acceleration (PGA), SE, 1995 Kobe earthquake - 0.25g PGA, JMA NS, and 1994 

Northridge earthquake - 0.25g PGA, Sylmar County Hospital NS) are input to the shake 

table test-bed to simulate seismic ground motion (Figure 4-11).  If these signals are 

acquired using traditional Nyquist-sampling at 20 Hz with a 16-bit ADC, this results in 

1,200 2-byte integers for the El Centro earthquake (60 seconds), 600 2-byte integers for 

the Kobe earthquake (30 seconds), and 600 2-byte integers for the Northridge earthquake 

(30 seconds).  These values are used when comparing against the number of bytes 

 
 (a) (b) 

Figure 4-11. Seismic signals used as input in optimization of wireless sensor node on 

test-bed in time (a) and frequency (b) domains. 
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transmitted for the cochlea-inspired wireless sensor node in order to determine the 

compression ratio.   

To determine the effect of the number of filter boards on the reconstruction error 

and compression ratio, the number of filter boards in the wireless sensor node are varied 

while maintaining a constant bandwidth and filter spacing of 0.35Hz and 0.5Hz, 

respectively.  The number of neuron boards (and therefore, the number of filters) is 

varied from 4 to 25 for each of the three input signals to determine the optimal number of 

filter boards for seismic monitoring.  Neuron boards are added in consecutive order, thus 

increasing the total bandwidth of the entire filter bank with each addition. When 

considering all three input signals, a parabolic relationship is seen between the number of 

boards and the reconstruction error, with having too few of boards or too many boards 

resulting in larger errors (Figure 4-12a).  As seen in the radio contention analysis, adding 

more boards at higher frequencies increases radio contention and risks transmitting low 

amplitude peaks over larger detected values from other boards.  Having too few of boards 

risks not capturing the full frequency spectrum of the input signal.   

This effect is exemplified by considering reconstruction error as a function of the 

earthquake's cumulative spectral energy density, Es(f), 
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 1

 (4.8) 

where U(f) is the discrete Fourier transform of u(t), N is length of u(t) when sampled at an 

interval t, and the frequency, f, indexes from 1 to N/2.  For each test, the spectral energy 

density of the earthquake is calculated at the center frequency of the highest frequency  

filter, Fmax, and compared with the corresponding reconstruction error (Figure 4-12b, 

Table 4-3).  For example, when using 8 boards the largest on-board center frequency of 

all the filters, Fmax, is 4Hz and the El Centro earthquake has a cumulative spectral density 

of 0.75 at this frequency.  From this comparison it is clear that adding boards beyond 

95% or having fewer boards than 85% of the earthquake's frequency content only has 

detrimental effects on the reconstruction capabilities.  
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Increasing the number of boards also has a detrimental effect on the overall 

compression ratio of the system as this results in more boards sending information to the 

centralized location (Figure 4-12c).  Therefore, designing the wireless sensor node such 

that its maximum frequency range falls within 85% to 95% of the input signals frequency 

content while limiting the compression ratio is optimal.  To comply with these two 

constraints, 12 boards are chosen as the optimal design, giving Fmax equal to 6Hz.  This 

 

  (a) 

 

  (b) 

 

(c) 

Figure 4-12. Effect of number of neuron boards on reconstruction error (a),  the 

relation of the reconstruction error to the energy density of the signal (b), and the 

compression ratio (c) when monitoring three seismic ground motions.  Results are 

based on neuron boards spaced at 0.5Hz with bandwidth of 0.35Hz. 
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does extend beyond this specified spectral range of the Kobe earthquake but this 

earthquake has a small frequency spectrum with 85% of its energy content below 3Hz.   

Next, the effect of varying the filter spacing when monitoring ground motions is 

explored while holding the filter bandwidth constant.  The filter spacing, f, is varied 

from 0.5Hz to 1.0Hz in 0.1Hz increments and the bandwidth of the filters, , is 

determined by multiplying the filter spacing by 0.707 and rounding to the nearest 0.05Hz 

increment, so as to provide overlap between the filters without extreme redundancy.  The 

number of filter boards, NB, is controlled by the previously determined Fmax, where 

 
        

    

 
  (4.9) 

and     is the ceiling function.  In general, varying the filter spacing between 0.5Hz and 

0.7Hz did not have a significant impact on the reconstruction error (Figure 4-13).  

However, for spacing above 0.7Hz, increasing the filter spacing decreases the number of 

filters and results in each neuron board representing a wider frequency band and giving a 

cruder signal approximation as shown by the increase in ERMS.  Additionally, due to the 

filter bank design, as the filter spacing increases the filter bank is unable to accurately 

represent frequencies below 0.7Hz and this increases the overall signal distortion, thus 

increasing the error.  As anticipated, however, increasing the filter spacing and therefore 

Table 4-3. Cumulative spectral energy density, Es(f), for variable number of filters and 

three earthquake signals: El Centro earthquake (EC), Kobe earthquake (K), and 

Northridge earthquake (NR). 

Number of Filters Fmax (Hz) Es(f) - EC Es(f) - K  Es(f), - NR 

4 2.0 0.503 0.531 0.302 

5 2.5 0.590 0.689 0.496 

6 3.0 0.640 0.877 0.626 

7 3.5 0.681 0.912 0.724 

8 4.0 0.750 0.940 0.755 

9 4.5 0.784 0.956 0.777 

10 5.0 0.818 0.965 0.815 

15 7.5 0.907 0.983 0.926 

20 10.0 0.943 0.990 0.959 

25 12.5 0.959 0.994 0.978 
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decreasing the number of boards does increase the compression ratio as less data is 

transmitted cumulatively from all the boards.  For the three seismic signals a filter 

spacing of 0.7Hz produces minimal reconstruction and an acceptable compression ratio 

and therefore, is used as the filter spacing for the remaining tests.         

Finally, using the results found from the two previous analyses (0.7Hz spacing 

with 9 boards spanning from 0.7 to 6.3Hz), the effect of varying the bandwidth is 

explored.  The bandwidth is varied from half of the filter spacing, 0.35Hz, to a full filter 

spacing, 0.7Hz, in 0.05Hz increments.  As the bandwidth is varied the reconstruction 

error varies with a parabolic relationship (Figure 4-14).  For small bandwidths the filters 

do not have high overlap and therefore, may miss some frequencies but large bandwidths 

result in large redundancy between filters.  This overlap in frequencies results in more 

transmitted information and therefore decreases the compression ratio of the wireless 

 

(a) 

 

(b) 

Figure 4-13. Effect of filter spacing on reconstruction error (a) and compression ratio 

(b) when monitoring three seismic ground motions.  Bandwidth varies as a scaled 

function of the filter spacing and the number of boards is varied to ensure that the 

maximum band-pass center frequency is approximately 6Hz.  
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sensor node.  Using 0.5Hz bandwidth, the filter design has optimal overlap and results in 

a cumulative minimum reconstruction error for all three input signals.  

The 0.4g El Centro earthquake is used as an example signal for illustrating the 

performance of the sensors when monitoring ground accelerations (Figure 4-15).  First, 

the compressive strategies employed by the cochlea-inspired sensor node are not lossless 

and therefore, perfect reconstruction of the signal is not achieved.  From this compression 

process, a normalized reconstruction error of 0.0865 for the earthquake signal is incurred 

in the time domain and 0.0135 in the frequency domain.  Additionally, for this signal, the 

9 filter sensor detected 1,867 peak values (or 1-byte encoded values).  If the signal had 

been sampled using traditional Nyquist sampling (at 20Hz) 1,200 two-byte integers 

would have been collected.  Therefore, the cochlea-inspired sensor achieves a 

compression ratio of 22.2% when comparing the number of transmitted bits.   

 

(a) 

 

(b) 

Figure 4-14.  Effect of filter bandwidth on reconstruction error (a) and compression 

ratio (b) when monitoring three seismic ground motions.  Filter spacing is held 

constant at 0.7Hz and number of filter boards is 9.  

.  
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Using the optimal filter bank (9 filters, 0.7Hz spacing, and 0.5Hz bandwidth), the 

effect of various peak ground accelerations (PGAs) is also explored for the three 

earthquake signals (El Centro earthquake: PGA of 0.4g and 0.28g, Kobe earthquake: 

PGA of 0.25g and 0.083g, and Northridge earthquake: PGA of 0.3g and 0.1g).  For these 

signals when an earthquake signal’s amplitude is increased the reconstruction error 

decreases and the compression rate decreases (Table 4-4).  This is because as the input 

signal's amplitude decreases more peak values go undetected due to rounding errors in 

the 10-bit ADC as well as limitations in the peak-picking algorithm. This results in an 

increase in reconstruction error by 10.4% for the El Centro earthquake, 115.7% for the 

Kobe earthquake, and 66.0% for the Northridge earthquake when considering the 

difference between the reconstruction error of the two signals over the reconstruction 

error of the maximum amplitude signal. Correspondingly, the compression ratio increases 

by 53.2%, 60.9%, and 331.5% when comparing the difference between the small 

amplitude signals and the large amplitude signals for all three signals.  While the 

improvement in compression ratios does result in some power savings due to a decrease 

in the number of sent packets it comes at the expense of reconstruction capabilities as less 

 

 (a) (b) 

 
  

 (c) (d) 

Figure 4-15. Signal reconstruction of El Centro ground acceleration using cochlea-

inspired sensor in the full time-domain (a), a sub-scale in the time-domain (b), a full-

scale in the frequency domain (c), and a sub-scale in the frequency domain (d).  
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information about the signal is transmitted.  To alleviate some of these challenges it is 

important to properly outfit the cochlea-inspired wireless sensor node with appropriate 

transducer technology, thus taking advantage of the full-range of the microprocessor's 10-

bit ADC.  Alternatively, the gain of the band-pass filter can be increased in order to 

amplify the input signal.       

Because both the traditional wireless sensor method and the new cochlea-inspired 

wireless sensor method use the same radio packet structure, the true power savings is 

considered through the number of packets sent.  As such, the power consumption of the 

cochlea-inspired sensor node is compared to two state-of-the-art wireless sensor nodes 

that have been successfully deployed on numerous civil infrastructure: Crossbow's 

iMote2 with peripherals developed by the University of Illinois-Champaign (Nagayama 

et al. 2007; Jang et al. 2010; Rice et al. 2010) and the Narada developed at the 

University of Michigan (Swartz et al. 2005; Kim and Lynch 2012; Kurata et al. 2013).  

The iMote2 with its SHM-A peripheral consumes 756mW of power at 4.5V when in 

transmitting mode (Rice et al. 2010), while the Narada consumes 375mW of power at 5V 

in transmitting mode (Kurata et al. 2013).  On the other hand, the cochlea-inspired sensor 

with 9 boards consumes 57.0mW of power at 1.8V in transmitting mode.  To compare the 

three sensor nodes, the amount of power consumed is considered only during data 

transmission when energy consumption is the largest and it is assumed that a packet can 

be sent from any of the three sensor nodes in 2msec.  As an example, if the 1,200 data 

points found from the El Centro earthquake are transmitted using traditional means, the 

iMote2 consumes 1.81J of energy (= 756mW x 2msec/packet x 1,200 packets) while the 

Narada consumes 0.86J of energy (= 356mW x 2msec/packet x 1,200 packets).  On the 

other hand, the cochlea-inspired sensor consumes 0.21J of energy (57.0mW x 

2msec/packet x 1,867 packets), thus using only 11.7% and 24.9% of the iMote2's and 

Narada's energy consumption, respectively. This trend can be seen for all six signals with 

the cochlea-inspired sensor node having large power savings as compared to the 

traditional modes of wireless data collection (Table 4-4).  Therefore, by choosing low-

power components the sensor node is still able to achieve significant power savings with 

real-time processing.   
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By directly monitoring seismic ground motions, the effect of varying the number 

of filters, the filter spacing, and the bandwidth was explored.  It was shown that the 

number of filter boards can be chosen by designing the filter bank on the wireless sensor 

node to encompass approximately 85% to 95% of the energy content of the signal.  

Additionally, the filter spacing and filter bandwidth can be chosen by maintaining 

optimal overlap of the filters in the frequency domain.  While these characteristics are 

signal dependent, slight variations in these values do not have a large impact on the 

reconstruction error or compression ratio and can be approximated according to a specific 

subset of input signals (e.g., seismic events with high energy concentrations below 10Hz). 

 

4.4.2. Monitoring Structural Response to Seismic Ground Motions 

To validate the cochlea-inspired sensor for a variety of input signals, the structural 

response of the single-span bridge excited by seismic ground motions is also monitored 

Table 4-4. Comparison of the effect of input signal amplitude when monitoring 

seismic ground motion.  Note that the power ratio is the power consumed by the 

cochlea-inspired sensing node divided by the power consumed by the respective 

traditional sensing node.  

 
Reconstruction 

Error, E 

Compression 

Ratio, CR 

Power Ratio 

compared to 

iMote2 

Power Ratio 

compared to 

Narada 

0.4g El Centro 

Earthquake 
0.0865 22.2% 12.4% 26.4% 

0.28g El Centro 

Earthquake 
0.0955 34.0% 10.5% 23.4% 

0.3g Kobe 

Earthquake 
0.0988 51.6% 7.7% 16.4% 

0.1g Kobe 

Earthquake 
0.2131 83.0% 2.7% 5.8% 

0.4g Northridge 

Earthquake 
0.0955 13.0% 13.9% 29.5% 

0.28g 

Northridge 

Earthquake 

0.1585 56.1% 7.0% 14.9% 
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by placing a cochlea-inspired wireless sensor node on the structure (Figure 4-10c, d).  

Similar trends for the filter bank parameter optimization that were seen when monitoring 

pure seismic ground motions are found when monitoring the structural response subject 

to seismic ground motion (Figure 4-16, Figure 4-17, Figure 4-18).  Because the signal is 

more narrowband than the pure seismic signals, fewer filter boards are necessary to 

capture the full frequency spectrum of the signal, resulting in initially 10 boards at 0.5Hz 

spacing being the optimal configuration when varying the number of filter boards (Figure 

4-16).  For the structural response, the relationship between the number of filter boards 

and input signals spectral energy content was not quantified due to the narrowband 

characteristics of all of the input signals.  As with the pure seismic signal, the number of 

filter boards affects the maximum filter bank bandwidth and using this parameter the 

filter spacing was varied, resulting in an optimal spacing of 0.7Hz when using 8 boards 

 

(a) 

 

(b) 

Figure 4-16. Effect of number of neuron boards on reconstruction error (a) and the 

compression ratio (c) when monitoring a structure's response to three seismic ground 

motions.  Results are based on neuron boards spaced at 0.5Hz with bandwidth of 

0.35Hz. 
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(Figure 4-17).  Finally, the filter bandwidth was optimized to 0.5Hz (Figure 4-18), 

making the optimal filter bank design 8 boards that are spaced at 0.7Hz with a bandwidth 

of 0.5Hz.  Using the 0.4g El Centro earthquake as an example signal (Figure 4-19), this 

wireless sensor node transmits 2,193 one-byte peak values, as compared to the 1,200 two-

byte integers that would have been collected using traditional Nyquist sampling (at 20Hz).  

Therefore, the cochlea-inspired sensor is able to achieve a compression ratio of 8.62%.  

However, the compressive strategies employed by the cochlea-inspired sensor node, are 

not lossless and therefore, perfect reconstruction of the signal is not achieved, with 

0.0578 and 0.0048 reconstruction error incurred in the time and frequency domains, 

respectively.   

Again, all six vibratory signals are used as input signals to the sensor (using 8 

filters, 0.7Hz spacing and 0.5Hz spacing) to determine the effects of signal amplitude on 

 

(a) 

 

(b) 

Figure 4-17. Effect of filter spacing on reconstruction error (a) and compression ratio 

(b) when monitoring a structure's response to three seismic ground motions.  

Bandwidth varies as a scaled function of the filter spacing and the number of boards is 

varied to ensure that the maximum band-pass center frequency is approximately 6Hz.  
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the reconstruction capabilities.  When considering the input signal's maximum amplitude, 

it was found that decreasing the amplitude increases the reconstruction error and 

decreases the compression rate (Table 4-5) as seen with the pure seismic ground motions.  

This reconstruction error increases by 12.1% for El Centro earthquake, 316% for the 

Kobe earthquake, and 78.9% for the Northridge earthquake.  For both the seismic signals 

and the structural response to seismic signals, the Kobe earthquake experiences extreme 

degradation when decreasing the amplitude of the signal because the resulting filtered 

signals have very low amplitudes, thus leaving many of the peak values undetected by the 

microcontroller.  As such, when configuring the wireless sensor node, some a priori 

knowledge of the approximate range of the input signal is desirable in order to fully 

utilize the capabilities of the node.  In general, the compression ratio significantly 

increases when decreasing the signal amplitude, as seen with the pure seismic signals.  

Additionally, in one case the compression ratio was negative indicating that the cochlea-

 

(a) 

 

(b) 

Figure 4-18. Effect of filter bandwidth on reconstruction error (a) and compression 

ratio (b) when monitoring a structure's response to three seismic ground motions.  

Filter spacing is held constant at 0.7Hz and number of filter boards is 9.  
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inspired sensor node transmitted more data than the Nyquist method.  This increase in 

transmitted data, however, is again offset by reductions in overall power consumption as 

compared to the traditional wireless sensor nodes (Table 4-5).  Using the El Centro 

earthquake as an example, when comparing the power consumption of the cochlea-

inspired sensor node during data transmission with the iMote2 and Narada, the proposed 

sensing node consumes 0.25mW per packets and therefore, uses only 13.5% and 28.7% 

of the traditional sensing nodes energy, respectively.  The other five signals saw similar 

power savings.          

 

4.5. Chapter Summary 

In this chapter a low-power, modular sensor node was developed based on the 

functionality and capabilities of the mammalian cochlea.  Using the mechanisms 

employed by the auditory system as inspiration, the sensor performs three steps in real-

time: 1) decompose the signal into frequency components, 2) condense the decomposed 

signal through linear encoding, and 3) transmit the data wirelessly to a centralized 

 

 (a) (b) 

 

 (c) (d) 

Figure 4-19. Signal reconstruction of El Centro ground acceleration using cochlea-

inspired wireless sensor in the full time-domain (a), a sub-scale in the time-domain 

(b), a full-scale in the frequency domain (c), and a sub-scale in the frequency domain 

(d).  
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location.  By employing these techniques, the sensor uses parallel processing to compress 

transmitted data in real-time with acceptable signal distortion in the time and frequency 

domains.  This new cochlea-inspired sensor was built in hardware and was used to 

monitor both seismic ground accelerations and the response of a single-span bridge when 

subject to such accelerations.  The number of filters, filter spacing, and filter bandwidth 

were systematically varied to determine their effect on the reconstruction error and 

compression ratio.  The wireless sensor node performs optimally when the number of 

filters is large enough to encompass 85% to 95% of the energy spectrum of the input 

signal and when the filters have enough overlap to capture the frequency content of the 

signal without transmitting large amounts of redundant data.  The versatility of the sensor 

was addressed by applying a variety of seismic signals with various amplitudes and 

overall the sensor was proved successful on the set of seismic signals.  In general, a high 

degree of compression was achieved for the seismic motions studied (ranging from 8% to 

Table 4-5. Comparison of the effect of input signal amplitude when monitoring 

structural response to seismic ground motion.  Note that the power ratio is the power 

consumed by the cochlea-inspired sensing node divided by the power consumed by 

the respective traditional sensing node.  

 
Reconstruction 

Error, E 

Compression 

Ratio, CR 

Power Ratio 

compared to 

iMote2 

Power Ratio 

compared to 

Narada 

0.4g El Centro 

Earthquake 
0.0578 8.7% 13.5% 28.7% 

0.28g El Centro 

Earthquake 
0.0648 19.0% 12.0% 25.5% 

0.3g Kobe 

Earthquake 
0.0663 20.8% 11.7% 24.9% 

0.1g Kobe 

Earthquake 
0.2758 54.4% 6.7% 14.3% 

0.4g Northridge 

Earthquake 
0.0568 -5.5% 15.5% 33.1% 

0.28g 

Northridge 

Earthquake 

0.1016 29.6% 10.4% 22.1% 
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80%) but in one case, more data was transmitted than in a traditional Nyquist sampling 

approach, resulting in a negative compression rate.   

When considering power consumption, the cochlea-inspired wireless sensor 

demonstrated cumulative power savings over traditional wireless sensors.  In this way, 

the proposed cochlea-inspired sensor node addresses the power limitations of current 

wireless sensor nodes and would be able to function for longer periods without the use of 

sleep modes.  Of this power consumption, a considerable amount can be attributed to the 

digital radio, which for example, consumes 82.6% of the power on a 9-board sensing 

node. As such, future work will focus on interfacing the cochlea-inspired wireless sensor 

node with alternative non-digitized radio options in order to further reduce the power 

consumption of the node. By reducing this number, the proposed cochlea-inspired sensor 

will be more effective in the field and will be able to better address the energy concerns 

of wireless sensor networks.       
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CHAPTER 5 

 

 

REAL-TIME CONTROL OF CIVIL INFRASTRUCTURE USING WIRELESS 

SENSOR NETWORKS BASED ON BIO-MIMICRY OF THE BIOLOGICAL 

SENSORY SYSTEM 

 

5.1. Introduction 

In this chapter, the cochlea-inspired wireless sensor is applied to a control 

application, thus leveraging the spectral decomposition capabilities of the node and 

enabling real-time control.  Traditional control has been plagued by inherent delays 

within the algorithm implementation due to time requirements for data aggregation and 

computations.  Initially, control systems relied on centralized data processing to mitigate 

global vibrations.  For example, many researchers have explored the use of active mass 

dampers (AMDs) or hybrid mass dampers (HBDs) for the purposes of seismic or wind 

mitigation (Spencer et al. 1997) in buildings.  These systems, however, typically relied 

on a series of distributed sensors and a single controller, thus requiring all information to 

be aggregated at a centralized location prior to any control decision being made.  By 

relying on a single controller for the entire system, the overall control capability and 

effectiveness \is greatly reduced.  These systems were extended to include multiple 

controllers and actuators but without sufficient information sharing between the 

controllers they were still only capable of localized actuation and cannot make global 

decisions (Dyke et al. 2003).  Such initial control systems greatly advanced the 

application of structural control for civil infrastructure, but with their limited localized 

actuation and inherent delays due to data aggregation and processing at a centralized 

repository, alternative options for localized processing and actuation were necessary. 
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 To overcome these challenges, the structural control community explored the use 

of wireless telemetry as a means of enabling communication between nodes (i.e., the 

controller and the sensors) within a network, thus enabling global information sharing.  

As these new sensor nodes are typically lower cost than their tethered counterparts 

(Celebi 2002), a dense network of nodes could now easily be deployed, thus resulting in a 

rich overview of the structure's response to external and internal loads and enabling 

decentralized control.  Even with the addition of this technology, however, structural 

control was still inhibited by degradation of real-time control capabilities (as also seen 

with the tethered systems), risk of data loss due to unreliable communication, and sub-

optimal control laws due to the decentralization (Wang et al. 2007).  While these 

limitations have not been entirely addressed, wireless structural control has been 

validated on a variety of experimental test beds (Lynch et al. 2008; Swartz and Lynch 

2009; Wang et al. 2009).  All of these applications, however, have been largely 

performed within the confines of laboratories and few have extended to real-world 

structures or long-term deployments.  As such, in order to fully implement this 

technology it is imperative that the current limitations of the technology, in general, as 

well as its application to structural control be addressed.  To overcome the deficiencies 

found in traditional control of civil infrastructure, whether wired or wireless, inspiration 

will be drawn from biological sensory and actuation systems, thus resulting in a novel 

bio-inspired control paradigm. 

Sensing and actuation within biological systems are streamlined processes which 

have extremely fast reactive times.  Within biological systems, information is received 

about external stimulus through multiple receptors (Nicholls et al. 2001).  This 

information is both disseminated and aggregated across networks of neurons thus 

enabling rapid and sophisticated decision making through very basic techniques.  

Receptor neurons transmit their information to layers of processing neurons where the 

data is further integrated and manipulated until it reaches the motor neuron.  Motor 

neurons receive this information and activate their associated muscles.  Because neurons 

can only perform basic operations (addition, subtraction, multiplication, and some 

filtering (Herz et al. 2006)), based on its received information the motor neuron sends an 

amplified or attenuated command to the muscle thus enabling rapid actuation based on an 
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input signal.  In this chapter, inspiration is drawn from the processes utilized by 

biological sensory and actuation systems to overcome the limitations found in equivalent 

engineering systems. In particular, the previously established cochlea-inspired sensor 

node will be combined with the actuation techniques employed by motor neurons.             

5.2. Actuation in Biological Sensory Systems 

Within biological sensory systems, action against perceived stimulus occurs at 

reflexive speeds and largely outperforms the capabilities of engineering sensing and 

actuation systems.  This process of sensing and actuation starts when information is 

perceived by various receptors.  Each receptor is tuned to a specific response (e.g., 

frequency range, pressure) and is activated according to the content of the input stimulus 

(Nicholls et al. 2001).  Once activated, the receptor passes its received information in the 

form of electrical pulse trains to the next layer of neurons termed inter neurons.  These 

inter-neurons aggregate information from numerous sources based on the connection type 

(i.e., excitatory or inhibitory) between the transmitting neuron and the receiving neuron 

(Figure 5-1).  Excitatory connections further promote decisions while inhibitory 

connections work to inhibit decisions and with each layer of neurons, the information 

becomes further integrated based on these connection type (Nicholls et al. 2001).  

Layer(s) of inter neurons

Layer of receptor neurons

Layer of motor neurons

Stimulus boundary

Bundle of muscle fibers
 

Figure 5-1.  Complete sensing and actuation process in biological sensory systems. 
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Depending on the complexity of the decision making, this process continues through 

several layers of neurons until reaching the level of motor neurons.  For very basic 

organisms who have a minimal number of neurons, such as the leech or the C. Elegan 

worm, the hierarchy of neurons, including their inhibitory and excitatory connections, can 

be mapped out, thus demonstrating the overall sensing and actuation process (Gray et al. 

2004; Kristan et al. 2005).  As organisms become more advanced, however, this mapping 

becomes increasingly complex.   

Motor neurons convey information directly to muscles which are responsible for 

actuation in biological systems (Loeb and Ghez 2000).  Similar to connections between 

two neurons, the connection between the motor neuron and the muscle, called the end-

plate, is a chemical synapse.  The motor neuron excites the muscle by opening ionic 

channels at the end plate and initiating a very rapid action potential that runs along the 

length of the muscle fibers (Loeb and Ghez 2000).  Muscles are comprised of bundles of 

muscle fibers and a single motor neuron can control thousands of these fibers at one time.  

The connection type between the motor neuron and each muscle fiber, however, plays a 

strong role in the muscle response. For example, the leech moves by bending its body 

back and forth (Nicholls et al. 2001) and if the leech senses an external pressure on its 

body it bends away from the perceived stimulus.  It has been found that sensory cells in 

the leech not only transmit information to the excitatory motor neurons on the side of the 

leech that experiences the stimulus but to the inhibitory motor neurons on the 

contralateral side of the leech.  In doing this, the muscles closest to the stimulus contract 

while the muscles on the opposite side relax thus allowing a bending motion (Marin-

Burgin et al. 2008).  Without the excitatory and inhibitory motor neurons acting 

simultaneously, the movement of the leech would not be as effective.   

A motor neuron dictates the magnitude of the force to be exerted by using both 

rate coding and the size principle.  First, the motor neuron uses rate coding by sending a 

series of actions potentials with each successive spike increasing the intensity of the 

muscle actuation, up to a limit (Pette and Vrbova 1985).  Second, to increase the overall 

intensity of the muscle actuation, motor neurons are recruited in an orderly manner by the 

motor cortex depending on their physiological properties (Cope and Pinter 1995).  As 

such, the overall intensity of the actuation increases as the number of activated motor 
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neurons increases.   Once commands have been sent from motor neurons to the muscle 

fibers, the neuron uses feedback mechanisms to ensure that the overall desired response is 

achieved and to fine-tune the actuation based on this information (Wolpert and 

Ghahramani 2000).  This enables effective actuation for a variety of input stimulus.  

Therefore, all muscle actuation depends on both the commands from motor neurons as 

well as the connection type between the neuron and the fiber.  In this chapter, the 

simplistic basis by which organisms respond to external stimuli through muscle actuation 

will be mimicked.  In particular, the inhibitory and excitatory connections of these 

systems will be adapted to establish synaptic strength connections between the previously 

established cochlea-inspired sensor node and "motor neuron" sensor nodes.        

 

5.3. Bio-Inspired  Control of Civil Infrastructure using Cochlea-Inspired Sensor 

Node 

To further explore this bio-inspired actuation, the complete biological process of 

sensing to actuation will be mimicked in an engineered system.  To achieve this, multiple 

cochlea-inspired sensor nodes (see Chapter 4) act as receptor neurons and perform the 

initial pre-processing of information (Figure 5-2).  As discussed in Chapter 4, each 

cochlea-inspired sensor node contains multiple on-board neurons that process and 

transmit data simultaneously.  By focusing on information extraction at these low-power 

nodes through real-time analog pre-processing, the entire control algorithm  is highly 

N11 N12 N1n N21 N22 N2n Nn1 Nn2 Nnn

Cochlea-Inspired Sensor Node 1 Cochlea-Inspired Sensor Node 2 Cochlea-Inspired Sensor Node n

Motor Neuron 

Sensor Node 1

Motor Neuron 

Sensor Node 2

Motor Neuron 

Sensor Node m

Actuator 1 Actuator 2 Actuator m
 

 

Figure 5-2.  Complete sensing and actuation process in bio-inspired sensory system. 
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streamlined and can overcome the traditional computational inundation that plagues 

control in civil infrastructure.  The control system also benefits from the high energy 

savings seen by the cochlea-inspired wireless sensor node.  These receptor nodes transmit 

their decomposed information to centralized nodes, which receives this data based on the 

"synaptic" strength between the receptor unit and the transmitting nodes.  These receiving 

nodes serve as motor neurons within the network of sensors and directly control actuators 

based on the received information.  

 

5.3.1. Optimal Control Law for Bio-Inspired Control 

While this proposed bio-inspired sensing and actuation is appropriate for a variety 

of applications, this study focuses on controlling the response of lightly damped civil 

infrastructure, such as buildings and bridges.  Because these structures have small 

damping ratios, they exhibit high sensitivity to modal frequencies and the effect of 

externally applied loads such as wind or seismic can be extremely detrimental.  As such, 

it is desirable to execute control algorithms that focus on the frequency response of the 

structure in order to effectively mitigate undesirable excitations due to the applied loads.  

Numerous algorithms have been developed within the frequency domain that are 

optimized based on the frequency content of the input signal as well as characteristics of 

the structure itself. These algorithms include, but are not limited to, the H2 norm 

(Suhardjo et al. 1992) and the    norm (Spencer  et al. 1994).  Such algorithm have been 

applied to a variety of laboratory control applications (Spencer  et al. 1994; Yang et al. 

1996), as well as some real-world buildings (Spencer and Nagarajaiah 2003).  While 

these algorithms have proven successful in some environments, they are still largely 

inhibited by the previously outlined challenges for real-time control on civil 

infrastructure.  In this study, control within the frequency domain will be explored so as 

to mitigate the detrimental effects of modal excitations but a specific focus on adapting 

the actuation techniques employed by the biological sensory system to a new bio-inspired 

actuation system.     

To achieve a bio-inspired actuation system, the synaptic strength (i.e., 

amplification or attenuation factor) between the receptor neurons and the motor neurons 
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must be established.  In biological systems such connections are typically established 

through years of experiential learning.  Due to the rare occurrences of seismic events and 

their overall short durations using experiential learning to update the synaptic strength of 

the proposed bio-inspired actuation system would be impractical.  Instead, the bio-

inspired algorithm will make use of a well-established optimal control, the Linear 

Quadratic Regulator (LQR) (Kalman 1960), which establishes scaling factors between 

the input sensor data and the controller output, or actuator force.  These scaling factors 

can be used as the synaptic strengths in the bio-inspired control algorithm.  The LQR is a 

state-feedback controller that seeks to simultaneously minimize the response of the 

structure and the maximum control force.  The LQR solution determines an optimal 

control force, u, through minimizing the performance index, J,  

 

 
     (        

 

0

 )   (5.1) 

 

where Q and R are symmetric positive semi-definite weighting matrices and z is a  vector 

of the system states.  This optimization is dependent on the response of the structure 

which is assumed to be linear-time invariant and therefore can be modeled through the 

traditional state space model, 

 

               (5.2) 

   

             (5.3) 

 

where        is the state vector,        is the output vector,        is the input or control 

vector,          is the system matrix,          is the input matrix,          is the 

output matrix, and          is the feed-through matrix such that m is the number of 

states of the system, q is the number of outputs, and p is the number of inputs.  

Traditional LQR control relies on full-state feedback such that u = Kz, where K is the 

resulting constant feedback gain vector and Ki corresponds to the control value associated 

with the i
th

 state of the system.   However, when considering control of civil 
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infrastructure it is often difficult to monitor all of the states in the system (e.g., 

displacement, velocity, acceleration) without implementing computationally expensive 

observers such as the Kalman filter (Welch and Bishop 1995) and therefore, reducing the 

real-time capabilities of the system.  As such, the traditional LQR is adapted for optimal 

control using output-state feedback, u = Ky (Lewis and Syrmos 1995). 

To solve for the optimal constant feedback gains, it is assumed that there exists a 

positive semi-definite matrix, P, such that, 
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where Ac is the closed loop system matrix (Ac = A - BKC).  If K and Q are known then P 

can be solved for through the necessary conditions of constraints for the Hamiltonian 

equation, H,   
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where S is a symmetric matrix of Lagrange multipliers and X is the initial condition 

matrix of random variables (set to be the identity matrix).  Using these three equations, K 

can be found through a gradient-based routine, in which Equations 5.5 and 5.6 are solved 

using standard Lyapunov procedure and the solution from these two equations are used to 

compute the gradient of K.  K is continually updated in this manner until convergence is 

met.  Once the K vector is found then it is used as amplification or attenuation scaling 

factors that serve as the synaptic strength between the receptor nodes and the motor 

neuron nodes.  In this way, the architecture between the input nodes and the motor 

neuron nodes remains streamlined and real-time control is achievable.       
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5.4. Validation of Bio-Inspired  Control 

The proposed bio-inspired control is validated on an experimental test bed and by 

employing this method it is anticipated that real-time control will be achieved.  Because 

the structure response signal is pre-processed at the sensing node (i.e., the cochlea-

inspired wireless node) through analog circuitry, when information is received at the 

centralized node it can be easily applied to the actuator without additional processing.  As 

a result, minimal delays are incurred during the control process and overall, a more 

effective control is achieved.       

5.4.1. Experimental Test Bed 

The proposed cochlea-inspired sensor node for the purposes of control is verified 

on a small-scale four-story structure.  Each floor of the structure is comprised of a 

10.8cm x 30.5cm x 2.54cm plexiglass plate that is connected to adjacent floors by four 

T6061 aluminum columns of size 25.4cm x 3.8cm x 0.16cm (Figure 5-3a).  The structure 

is attached to a small-scale shake table that is subject to ground motion from an attached 

modal shaker (MB Dynamics model N1110).  Two active mass dampers (AMDs) on 

Floors 2 and 3 are used to dissipate the inter-story displacement of the structure that 

results from this ground motion.  Each AMD is an aluminum cart that is manufactured by 

Quanser and equipped with a high quality DC motor and a quadrature encoder, thus 

enabling high precision control (Quanser). The structure is outfitted with four 

magnetostrictive linear-position sensors (MTS sensors, C-series core sensor (MTS 

Sensors 2012)) that are used to measure the inter-story displacement of each floor as well 

as an accelerometer on the ground level (Figure 5-3b,c).  With the inclusion of the two 

cart masses, Floors 1, 2, 3, and 4 weigh 4.6295kg, 3.8897kg, 3.8897kg, and 2.7698kg, 

respectively, giving modal frequencies of 1.7Hz, 4.5Hz, 6.9Hz and 8.8Hz, respectively.  

These frequencies were found theoretically by assuming shear structure behavior but then 

were also verified experimentally through the frequency response function using an input 

sine sweep of ground motion (Figure 5-4).  The damping of the structure was estimated 

based on Rayleigh damping (Chopra 2000) by assuming 3.65% damping ratio.  This 

value was experimentally verified using the half-power bandwidth method (Chopra 2000). 
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The base-excited structural system is modeled in continuous time as a four 

degree-of-freedom linear time-invariant, lumped mass shear structure which includes the 

dynamics of the actuator. This can be generalized through the equation of motion for n 

degrees of freedom and a actuators as    

 

     ( )       ( )      ( )         ( )          (5.8) 

 

where M, Cd, and       
            are the mass, damping and stiffness matrices, 

respectively.  The displacement column vector,           , includes each degree of 

freedom's displacement relative the base of the structure (x1, ..., xn) as well as the 

displacement of the a actuators (x1, ..., xa).  The ground displacement is xg,      
      is 

the ground acceleration influence vector,        is the vector representing the actuator 

force that is supplied by the a actuators and       
            is the actuator location 

matrix.  By including the dynamics of the cart, the model encompasses controller-
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Figure 5-3. Four story test bed that is attached to shake table and MB dynamics modal 

shaker (a) and test structure schematic front view (b) and side view (c). 
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structure interaction which can have a significant impact on the control capabilities of the 

system (Dyke et al. 1995).  The full representation of Equation 5.8 as it pertains to the 

four degree-of-freedom system used in this study can be found in the Appendix.  This 

time-domain representation is reformulated in state space as 

 

                           (5.9) 

 

where           ,        
  

- -1
  - -1

  

    R             
  

             
              

 ,                       , ( )
  is the transpose function, 

and I is the identity matrix. 

The output vector is based on the sensors that are available to measure the 

response of the structure as they relate to the states, z, and is represented as a linear sum 

of the state of the system and the applied control forces,  

 

 
 

Figure 5-4. Frequency response functions (FRF) of four story structure where the 

input signal is frequency sweep ground motion and the output is the inter-story 

displacement of each floor.   
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                       ( ) (5.10) 

 

where               ,         , and       .  Due to the definition of the state space 

variables, both D and F are zero matrices for the four story structure.  Additionally, the  

output matrix, C, is manipulated such that the output variables, y(t) represent the inter-

story displacement between two successive floors. 

5.4.2. Integration with Cochlea-Inspired Sensor Node 

To fully exploit the real-time benefits of bio-inspired sensing and control, the test 

bed sensors (i.e., position sensors) interface with the cochlea-inspired sensor node, thus 

leveraging its real-time analog pre-processing benefits.  The displacement sensor on each 

floor is read by a unique cochlea-inspired sensor node (Figure 5-5) which then transmits 

its information to a sensing node that serves as the motor neuron.  The Martlet (Kane 

2013) (Figure 5-6a), developed at the University of Michigan, is chosen as the motor 

neuron due to its fast processing capabilities, thereby eliminating any further delays 

within the system.  Each motor neuron, or Martlet, receives information from all of the 

neuron boards, integrates that information together and makes an informed control 

decision.  Each Martlet directly interfaces with a DC motor controller (Figure 5-6b) such 

that it can convey the control decision to the AMD Quanser cart.       

 
 

Figure 5-5. Cochlea-inspired wireless sensor node on test bed.  
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To optimize the design of each cochlea-inspired sensor node, the bandwidth and 

frequency spacing of each board within an individual sensing node are designed based on 

the parametric optimization results of Chapter 4 and therefore are chosen to be 0.5Hz and 

0.7Hz, respectively.  The number of filter boards, nf, is determined based on a parametric 

study that is conducted in simulation in which the number of boards in each sensor node 

are varied from 5 to 15, resulting in bandwidths of the entire sensor node ranging from 

3.5Hz to 14Hz.  In this simulation, a single sensor node receives a unique floor's 

structural response signal when the structure is subject to the El Centro earthquake 

ground motion.  As outlined in Chapters 3 and 4, the sensing node decomposes the signal 

into its frequency components, implements a peak-picking algorithm, and transmits the 

resulting peak values in real-time.  The peak values from all four nodes are received at a 

centralized location and each unique signal is reconstructed.  The reconstruction error 

after peak-picking and data transmission for all of these filter bank configurations (e.g. 5 

filters, 6 filters, 7 filters, etc.) is observed in both the time domain, eT, and frequency, eF, 

for each individual floor (Figure 5-7), 

 

 
      

       ( ) 

  ( ) 
  (5.11) 

 
 (a) (b) 

Figure 5-6.  Martlet - wireless sensor node used as motor neuron in bio-inspired 

control (a) and DC motor controller interface board (b).   
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where     is the l2-norm and x(t) is the original floor displacement, r(t) is the 

reconstructed floor displacement after peak-picking, and X(f) and R(f) are the discrete 

Fourier transforms of x(t) and r(t), respectively.  From this analysis, 12 boards are chosen 

as the optimal number of boards for each floors as adding additional boards had little 

impact on the reconstruction error in both the time and frequency domains.   

Because the output of each filter board relies on the convolution in the time 

domain (see Chapter 3), it is more easily represented as a transfer function in the 

frequency domain, such that convolution becomes multiplication.  As such, the transfer 

function of each i
th

 filter board can be described through the equation, 
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 (5.13) 

 
Figure 5-7. Reconstruction error in time, eT, and frequency domains, eF, as a function 

of the number of filter boards in a single sensing node. 
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where the input to the transfer function is the signal that is to be decomposed by the filter 

(i.e., inter-story displacement), the output of the transfer function is the filtered 

component (by the i
th

 filter board) of the decomposed signal, i is the damping ratio of the 

i
th

 filter, and i is the natural frequency of the i
th

 filter.  The dynamics of the entire 

system including the structure, the actuators, and the sensor nodes can be represented by 

expanding the state space in Equation 5.9, to now include the states of the cochlea-

inspired sensor node,       

   

                                (5.14) 
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where           
        

   such that xcsi  is the state representing the output of 

the i
th

 filter board for i = 1,..., N, where N is the total number of filter boards across all 

sensor nodes, or n (the number of degrees of freedom) multiplied by nf (the number of 

filter boards in a single sensor node), and         is a vector containing the output of 

each filter board on each cochlea-inspired sensor  node.  With the addition of the cochlea-

inspired sensor nodes, the system matrix becomes   
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                       , 

 

where          is the output stiffness matrix,               is the input  damping 

matrix, and          is the output damping matrix.  The addition of the cochlea inspired 

sensor nodes does not impact the previously defined input matrices, B and E, and as such 

   and     are only expanded from B and E with the entries of these matrices that are 

associated with the states     and      filled with zeros.  The output matrix,   , is 

manipulated to make     the output variables and the matrices    and    remain zero 
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matrices.  The appendix shows this full state space representation with the inclusion of 

the cochlea-inspired sensor nodes. 

 

5.4.3. Simulation Results 

To demonstrate the proposed control method, a numerical simulation is performed 

in MATLAB (MathWorks 2011) using the model based on the four story test structure 

(Equations 5.14 and 5.15).  The cochlea-inspired sensor node serves as the sensor node 

on each of the floors.  These nodes transmit information to a centralized node, serving as 

the motor neuron, on the two floors that contain the actuators (Floor 2 and Floor 3).  

Based on the connection type and strength between the transmitting node and the motor 

neuron, the received information is correspondingly amplified or attenuated using the 

optimal control gains that are established through the LQR optimization.  This simulation 

is compared against a traditional control algorithm in which four traditional wireless 

sensor nodes collect data at each floor and transmit information to the centralized nodes 

on Floors 2 and Floor 3.   

To assess the controller performance, four cost functions, adapted from Ohtori et 

al. (2004) are used to determine the controller's ability to reduce seismic responses that 

are typically important to design: inter-story drift and floor acceleration.  Minimization of 

inter-story drift is important as it reduces the likelihood of damage during a seismic event, 

especially to nonstructural elements such as windows and partitions, while floor 

accelerations have a large impact on occupancy comfort during seismic events.  Both of 

these measurements are assessed by first determining the direct ratio between the 

maximum amplitude of the uncontrolled and controlled states for both the traditional 

LQR algorithm and the bio-inspired control algorithm (  1    
 ,        

 ),  

 
  1 

max   controlled  

max   uncontrolled  
 (5.16) 

where            is the inter-story displacement matrix, n is the number of degrees-of-

freedom in the structure, and Ns is the number of time steps in the input signal and 
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max   controlled  

max   uncontrolled  
 (5.17) 

where            is the inter-story acceleration matrix.  Additionally, these two 

measurements are also compared as a ratio of the norm of the uncontrolled and controlled 

states (       
 ,        

 ).  These metrics are represented through the equations  

 
    

             

               
 (5.18) 

and  

 
    

             

               
 (5.19) 

  

where     is the l2 norm. 

 Based on the design of the cochlea-inspired sensor node, each filter board within 

each node transmits peak values to a centralized location.  As such, there are several 

methods by which the actuating node can utilize the received information for the 

purposes of control.  The actuating node can hold the received peak value constant until 

the next peak value is received or it can potentially improve the control performance by 

interpolating the received peak value to an assumed next peak value (equal and opposite 

in value to the current detected peak value) based on the characteristic frequency of the 

transmitting board using Equation 5.20.   

 

         1       
 

 
      (5.20) 

where ui is the current control force contribution of the i
th

 filter board, pi is the detected 

peak value of the i
th

 filter board, i is the characteristic frequency of the i
th

 filter board, 

tc is the rate of control for the actuation nodes, and ki is the scaling factor associated 

with the i
th

 filter board.  With each control step the current peak value is interpolated to a 

projected peak value (Figure 5-8) until the next peak is detected.  When the next peak is 

detected, the actuating node abandons its interpolation and follows control trajectory of 
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the new peak value.  Additionally, the algorithm on each sensor node can be modified 

such that instead of transmitting only peak values, each filter board also detects and 

transmits zero crossings from each filtered signal.  Correspondingly, at the actuating node, 

the control law can be developed such that it maintains a constant value in between peaks 

and zero crossings or it can interpolate in between this received information based on the 

characteristic frequency of transmitting filter board.  As such, five possible scenarios 

arise for the bio-inspired control that can be tested in simulation to determine the optimal 

configuration for the cochlea-inspired sensor nodes: 

 Continuous filtered signals (BC) - assumes no peak-picking algorithm (not 

physically feasible but will be used as a baseline);  

 Peak picking (PP) - assumes that the control contribution from a filter board is 

held constant until the next peak value is received; 

 Peak picking + interpolation (PI) - assumes that the actuating node 

interpolates from the current peak value to the next peak value based on the 

characteristic frequency of filter board; 

 Peak picking + zero crossings (PZ) - assumes that the control contribution 

from a filter board is held constant until the next zero crossing or peak value is 

received; 

  Peak picking + zero crossings + interpolation (PZI) - assumes that the 

actuating node interpolates from the current peak value (or zero crossing) to 

the next peak value based on the characteristic frequency of the filter board. 

 

Figure 5-8. Interpolation between peak values for bio-inspired control for 1Hz filter 

board.  
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For a single neuron board from a single cochlea-inspired sensor node, these five cases 

can be seen in Figure 5-9.  As more filter boards are added in the effects of the different 

boards makes the signal more convoluted and it is more difficult to interpret; the trends, 

however, are the same as those seen when only observing a single board.   

 These five bio-inspired control options were compared against the traditional 

output feedback LQR algorithm in MATLAB using the El Centro earthquake (±0.5g, NS 

direction) and the Kobe earthquake (±0.4g) as input ground motions. The four cost 

functions from these simulations are shown in Figure 5-10 and Figure 5-11 for the El 

Centro and Kobe earthquakes, respectively.  Several conclusions can be made from this 

analysis.  First, when comparing the five bio-inspired control techniques, using a 

continuous time signal without peak picking (Option BC) produces the best results.  This 

is as expected as the other bio-inspired control algorithms have some error incurred 

through the peak picking process.  This bio-inspired option, however, it unattainable 

without resorting back to traditional Nyquist sampling and data transmission or relying 

on a tethered system.  In comparing the four remaining bio-inspired techniques, 

transmitting both peak values and zeros (PZ) results in the highest reduction of energy for 

all four cost functions and for both earthquakes.  As such, this bio-inspired control 

algorithm will be used for further analyses.    

 

Figure 5-9. Various control options for the bio-inspired control algorithm.  Note that 

BC is the continuous filtered case, PP is the peaking picking case, PI is the peak-

picking plus interpolation case, PZ is the peak-picking plus zero-crossing case and PZI 

is the peak-picking plus zero-crossing plus interpolation case.  
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From this analysis it is also observed that the traditional LQR does outperform the 

bio-inspired control algorithm for the majority of the cost functions.  To allow for better 

comparisons between the two techniques, each cost function  is averaged across the four 

floors for both the traditional LQR and the bio-inspired algorithms,   

 
            

 

   
    (5.21) 

where AX,j is the average j
th 

cost function, JCj, for the four floors using the X control 

method such that X equals T is the traditional LQR algorithm and X equals B is the bio-

inspired technique.  The percent difference, Dj,  

 

                     (5.22) 

 

 
Figure 5-10. Controlled to uncontrolled ratios for the El Centro earthquake (±0.5g) 

simulation results when considering maximum inter-story displacement (Jc1),  norm of 

inter-story displacement (Jc2), maximum acceleration (Jc3), and norm of acceleration 

(Jc4) for the traditional LQR controller and five bio-inspired control algorithms (BC, 

PP, PZ, PZI and PI).  
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demonstrates the difference in control capabilities between the two techniques for the j
th

 

cost function.  From this analysis it is shown that the bio-inspired control algorithm is 

able to achieve similar control capabilities (within 10%) as the traditional LQR algorithm 

for all four cost functions (Table 5-1).  

 For both control cases (i.e., LQR or bio-inspired), however, the controller is not 

able to significantly reduce the inter-story displacement, with the best reduction being 

only approximately 20% for any of the four cost functions for either seismic excitation.  

If the behavior of the actuator is observed, it is clear that the actuator is saturated at its 

actuation capacity for the majority of the control period and therefore, is unable to 

adequately minimize the structure response.  If the constraint on the actuator response is 

removed such that the controller is allowed to demand infinite control force from the 

actuator, then the overall control algorithm is more effective for both the LQR and bio-

inspired control laws with improvements ranging from 2% to 23% (Table 5-2). 

 
Figure 5-11. Controlled to uncontrolled ratios for the Kobe earthquake (±0.4g) 

simulation results when considering maximum inter-story displacement (Jc1),  norm of 

inter-story displacement (Jc2), maximum acceleration (Jc3), and norm of acceleration 

(Jc4) for the traditional LQR controller and five bio-inspired control algorithms (BC, 

PP, PZ, PZI and PI).  
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Table 5-1.  Comparison of the control capabilities when using the traditional LQR 

algorithm and the bio-inspired control algorithm for both the El Centro and Kobe 

earthquakes and a constrained actuator. 

 

 Cost 

Function 

Traditional LQR 

Average Ratio, AT 

Bio-Inspired 

Average Ratio, AB 

% Difference, 

D 

E
l 

C
en

tr
o
 

E
ar

th
q
u
ak

e 

Jc1 0.9405 0.9499 -1.00% 

Jc2 0.7699 0.8271 -7.43% 

Jc3 0.9578 0.9672 -0.98% 

Jc4 0.8076 0.8650 -7.11% 

K
o
b
e 

E
ar

th
q
u

ak
e Jc1 0.8130 0.8690 -6.89% 

Jc2 0.8255 0.8320 -0.79% 

Jc3 0.8667 0.8767 -1.15% 

Jc4 0.8428 0.8452 -0.28% 

 

Table 5-2.  Comparison of the control capabilities when using the traditional LQR 

algorithm and the bio-inspired control algorithm for both the El Centro and Kobe 

earthquakes and an unconstrained actuator. 

 

 Cost 

Function 

Traditional LQR 

Average Ratio, AT 

Bio-Inspired 

Average Ratio, AB 

% Difference, 

D 

E
l 

C
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tr
o
 

E
ar

th
q
u
ak

e 

Jc1 0.9023 0.9204 -2.00% 

Jc2 0.6966 0.7229 -3.78% 

Jc3 0.9025 0.9399 -4.14% 

Jc4 0.7438 0.7785 -4.67% 

K
o
b
e 

E
ar

th
q
u

ak
e Jc1 0.7916 0.7171 +9.41% 

Jc2 0.7288 0.6440 +11.64% 

Jc3 0.7565 0.7444 +1.60% 

Jc4 0.7243 0.6664 +7.99% 
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Additionally, when comparing the two control laws, the bio-inspired algorithm 

outperforms the traditional LQR algorithm when the structure is subject to the Kobe 

earthquake.  From this analysis it can be concluded that the experimental set-up of this 

test bed may be a limiting factor in that the two actuators do not have enough control 

capability to adequately achieve the desired reduction in displacements and accelerations.       

  

5.4.4. Energy Analysis 

 While a reduction in inter-story displacement is desirable, the overall energy 

consumption of the control system is also a concern.  For the  traditional LQR algorithm 

it is assumed that a state-of-the art wireless sensor node, the Narada (Swartz et al. 2005), 

is used as the sensor node.  As seen in Chapter 4, the Narada consumes 375mW of power 

at 5V.  If this unit collects data for the control algorithm at a rate of 50Hz then a total of 

3000 data packets are transmitted across the network from each sensing unit for the 60 

second El Centro earthquake signal. If each packet can be sent in 2msec, as assumed in 

Chapter 4, this data transmission consumes 9.0J of energy (= 4 nodes x 3000 packets x 

375mW x 2msec/packet).  For the bio-inspired algorithm, on the other, across all four 

sensing nodes, 61,096 packets of data are transmitted (including peak values and zero 

crossings).  If each 12-board neural sensing node consumes 60.3mW of power (per 

Chapter 4), then the entire transmission consumes 7.37J of energy ( = 61,096 packets x 

60.3mW x 2msec/packet) which is only 81.9% of the total energy transmitted by 

traditional sensor.  For the 40 second Kobe earthquake, the traditional sensing node 

consumes 6.0J of energy while the bio-inspired algorithm transmits 37,628 packets and 

therefore, consumes 4.5J of energy, or 75% of the total energy consumed by the 

traditional sensor.      

Furthermore, some of the synaptic strength values on the individual boards within 

each sensor node may not have a significant contribution to the overall control algorithm 

and therefore could potentially be pruned from the system without significantly 

impacting the controllability.  If these original values are considered (Figure 5-12), it is 

evident that there is a large range of synaptic strengths and some must have a larger role 

than others in the control results.  Therefore, synaptic strengths in the bio-inspired control 
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law are pruned from the system based on a simple threshold; if the absolute value of the 

synaptic strength is greater than a threshold value then it remains in the control algorithm, 

otherwise it is eliminated (i.e., becomes zero).  Because a single board communicates 

information to both actuators, a board is only removed from the system once the 

connection to both motor neurons is eliminated through this threshold technique. The 

pruning threshold value is incremented in gains of 50 from 0 to 650 and the impact of 

removing these weights is considered for both the El Centro earthquake and the Kobe 

earthquake (Figure 5-13, Figure 5-14).  For a small amount of pruning, there is no 

significant change in the control capabilities of the system for either earthquake record 

but the overall energy consumption of the system does decrease because less data is 

transmitted.  However, as the number of eliminated boards increases there is a threshold 

that has a large negative effect on the control capabilities of the system and all four cost 

functions increase.  With more pruning, though, the cost functions again decrease to 

acceptable levels.  While this behavior is unexpected, it is thought that the effect of 

certain weighting values across all the sensing boards are counterbalanced by other 

weighting values within the network.  As such, when some of these weights are 

 
Figure 5-12. Optimal synaptic strengths between each filter board on each floor and 

the centralized motor neuron unit which control actuator 1 and actuator 2. Note that 

'CIS X' depicts the filter boards associated with the cochlea-inspired sensing node that 

is located on the floor X.   
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eliminated, the remaining weights become unbalanced and there is a large decrease in the 

control capabilities.  The balance is restored by further pruning of the remaining weights.   

Therefore, the threshold value for the pruning analysis is set to 450, which results 

in the elimination of 42 boards across the four cochlea-inspired wireless sensor nodes.  

With this pruning the average cost functions AB,1, AB,2, AB,3, and AB,4 increased by 0.35%, 

 

Figure 5-13.  Effect of pruning synaptic connections between the cochlea-inspired 

sensing node and the motor neuron node for the El Centro earthquake. 

 
 

Figure 5-14.  Effect of pruning synaptic connections between the cochlea-inspired 

sensing node and the motor neuron node for the Kobe earthquake. 
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-1.2% (indicated a better performance with pruning), 0.47%, and -0.97%, respectively, 

for the El Centro earthquake and 0.37%, 0.34%, -0.78%, and 0.38%, respectively, for the 

Kobe earthquake.  With this pruning the overall energy consumption of the bio-inspired 

control law was reduced by 78.1% for the El Centro earthquake and 78.6% for the Kobe 

earthquake thereby resulting in further energy improvements as compared to the 

traditional control law.  .   

Therefore, the bio-inspired control algorithm was able to adequately control both 

the inter-story drift and the acceleration of the test bed in simulation while working 

within the limits of the actuator capabilities for both the El Centro earthquake and the 

Kobe earthquake.  These results were comparable in magnitude to the control achieved 

when using a traditional LQR algorithm with standard wireless sensor nodes.  The bio-

inspired algorithm, however, is able to consume less power throughout the entire control 

procedure, which is only heightened with additional pruning, thus making it a more 

attractive alternative than the traditional methods.    

5.5. Chapter Summary 

In this chapter, a bio-inspired control algorithm was proposed that derived 

inspiration from the mechanisms employed by biological sensory systems and the 

interactions between neurons and muscles.  In this algorithm, the information received 

from sensing nodes was amplified or attenuated based on the connection type and 

synaptic strength between the sending neuron and the receiving neuron and this resulting 

value was directly applied as a control force.  Because of this, the typical computational 

delays that are seen in wireless sensor control systems are eliminated. 

The proposed bio-inspired control algorithm was validated in simulation on a 

four-story shear structure.  The cochlea-inspired sensor node from Chapter 4 was used as 

the sensing node which transmitted data to receiving nodes  that either amplified or 

attenuated the received data and then applied the corresponding control force.  The bio-

inspired control algorithm was able to achieve similar control capabilities as a traditional 

control algorithm when considering both inter-story displacements and accelerations.  

Additionally, the bio-inspired algorithm saw large power savings as compared to the 

traditional wireless sensor node and this was only compounded upon when the cochlea-
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inspired sensor nodes were optimized for control of a four story shear structure by 

removing boards that were less significant for control.   

Therefore, this chapter addressed the challenges that the control community faces 

when employing traditional wireless sensor nodes for the purposes of control.  The bio-

inspired algorithm is a streamlined real-time algorithm that is able to minimize the inter-

story displacement of a structure thus addressing the typical computational inundation of 

wireless sensor nodes.  Additionally, the cochlea-inspired sensor nodes exhibits vast 

power savings as compared to traditional wireless sensor nodes and therefore alleviates 

some of the power constraints on the system.  As such, this proposed bio-inspired sensing 

and control algorithm is able to address many of the limitations currently found in 

wireless sensing and should be considered as a new paradigm for sensing and control.             
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CHAPTER 6 

 

 

CONCLUSIONS 

 

6.1. Summary of Results 

The main focus of this dissertation is to present the design and validation of a new 

bio-inspired sensor node for the purposes of wireless structural monitoring and control.  

While traditional wireless sensor nodes are beginning to see wide-spread use and 

deployments in both monitoring and control applications, they are inhibited by several 

performance bottlenecks which include power, computation, and communication 

constraints.  This dissertation draws upon the principles seen in biological sensory 

systems to overcome many of these deficiencies, thus establishing new sensing and 

control paradigms for the smart structure field.  While previous researchers have 

attempted to encapsulate the functionality of biological sensory systems within signal 

processing algorithms (e.g., artificial neural networks (ANNs)), these algorithms do not 

fully leverage many of the benefits of biological sensory systems.  Therefore, this 

dissertation takes a deeper look at biological sensory systems and directly draws from 

their unique signal processing and data transmission processes to inspire new sensing, 

computing, and communication techniques for wireless sensing and control systems.   

In Chapter 2, the well-established bio-inspired signal processing algorithm termed 

artificial neural networks was explored in an attempt to understand their benefits and 

limitations as they pertain to implementation in a wireless sensor environment.  For this 

study, a particular ANN architecture was chosen, the Volterra-Weiner Neural Network 

(VWNN) due to its limited connectivity between the input and hidden nodes, which
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 therefore has potential to alleviate some communication requirements across the wireless 

sensor network (WSN).  This ANN has also been proven to be an effective tool for  

model prediction which is critical for both structural monitoring and control applications.  

The VWNN was decentralized across a wireless sensing network, thus fusing the parallel 

processing capabilities of both ANNs and WSNs together.   Through this study, it was 

found that leveraging the parallel processing attributes inherent to ANNs does lead to 

more efficient power consumption across the WSN.  These gains in power efficiency, 

however, were largely offset by increased power requirements for inter-node 

communication which is necessary for implementation of an ANN on a WSN.  Therefore, 

while ANNs do more efficiently utilize the computational resources of WSNs, they 

generally cannot overcome the power constraints imposed by power-hungry radios and 

by the limited radio bandwidth which is available to a WSNs.  

 Based on the findings from Chapter 2, Chapter 3 took a deeper look at biological 

sensory systems in order to use them as a source of inspiration for establishing a new 

sensing paradigm for wireless sensors.  In this chapter, particular attention was given to 

the mammalian auditory system due to its unique signal processing mechanisms that are 

attractive for structural monitoring and control.  As such, a new sensing paradigm was 

proposed that: 1) performed real-time spectral decomposition of a convoluted input signal, 

2) implemented pick-picking of the resulting frequency components so as to achieve high 

data transmission efficiency, and 3) transmitted the resulting compressed form of signal 

information to the WSN for storage in a centralized location.   This new sensing 

technique achieved high data compression rates that were comparable to traditional 

compressive techniques (e.g., wavelet transforms, compressive sensing).   The high data 

compression achieved translates into large energy savings for wireless sensor nodes.  

Additionally, it was shown that this algorithm could be executed in real-time which is 

typically unattainable by other compression algorithms.  

 In Chapter 4, the proposed bio-inspired sensing paradigm from Chapter 3 was 

built in hardware and validated on a real-world seismic monitoring application.  The 

sensing node was comprised of multiple low-power modular building blocks each 

responsible for implementing a portion of the new sensing paradigm.  Each circuit unit 

filtered a convoluted sensor signal using a unique characteristic frequency, implemented 
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a real-time peak-picking algorithm (thus compressing the data), and transmitted its data 

wirelessly to the centralized WSN.  Each of these building block units by itself was only 

capable of implementing a small portion of the entire bio-inspired sensing framework; 

however, by combining multiple units together, the complete sensing paradigm was 

achieved.  This new sensor was used to monitor the response of a single degree-of-

freedom (SDOF) structure at the Korea Construction Engineering Development (KOCED) 

Multi-Platform Seismic Simulation Center at Pusan University, Pusan, Korea and during 

these tests the sensor node parameters (i.e., number of filter boards, filter bandwidth, 

filter spacing) were varied for optimization of the device design.  From these tests, 

typically large data compression was achieved (ranging from 8% to 80% less transmitted 

data) with minimal reconstruction error when monitoring both pure seismic signals as 

well as the seismic response of the SDOF structure.  The sensor node was also compared 

to traditional wireless sensor nodes and it was found that the new sensor node consumed 

significantly less energy (67% to 93%) than its state-of-the-art counterparts (i.e., iMote2, 

Narada).  Additionally, it was found that because there is some overlap between sensor 

units on the bio-inspired sensor node and due to the manner of deconstruction of the 

original signal, lost data is not as significant of a concern for the sensor node.  Therefore, 

the  new bio-inspired sensor node is able to address the typical power issues associated 

with wireless sensor nodes while maintaining an accurate representation of the original 

signal.         

In Chapter 5, a new bio-inspired control algorithm was proposed based on the 

interactions seen in biological systems, specifically sensory neurons, motor neurons, and 

muscles.  Information flow between these three components is either amplified or 

attenuated based on the connection type (i.e., excitatory or inhibitory) and the magnitude 

of this amplification or attenuation is based on the synaptic strength.  As such, a bio-

inspired control algorithm is proposed for wireless sensing and control that applies a 

variable gain to signal information as it flows from the sensors to the actuators.  The 

proposed bio-inspired algorithm is validated in simulation on a four-story shear structure.  

In the control algorithm, four cochlea-inspired sensor nodes transmitted the inter-story 

displacement from each of the floors to a centralized processing node, which served as 

the motor neuron.  This node then directly commanded the actuators through a control 
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force that was derived through amplification or attenuation of the received data from the 

sensing nodes in the WSN.  Based on the results, the bio-inspired control algorithm was 

able to reduce the inter-story displacement of the structure through real-time processing 

techniques.  Again, the cochlea-inspired sensor node exhibited extreme energy savings as 

compared to a traditional wireless sensor node.   

Therefore, in this thesis a new sensing paradigm was proposed that derived 

inspiration from the biological sensory system.   This new sensing paradigm was able to 

achieve high data compression while taking advantage of parallel processing for real-time 

execution.  The new bio-inspired sensor node was built in hardware and validated in both 

a monitoring application and a control application.  Through these applications, the new 

sensor node proved that it effectively addressed many of the limitations and bottlenecks 

that are inherent to traditional wireless sensor nodes for the purposes of monitoring and 

control of civil infrastructure.  

 

6.2. Contributions 

While the structural health monitoring and control communities have been 

making significant advancements in recent years, the field is still challenged by several 

bottlenecks which  prohibit easy and affordable deployments on real-world structures.  

Wireless sensor technology was one avenue by which to address these issues but this too 

came with its own set of technical challenges that further stymied the advancement of the 

field.  The main contribution of this dissertation is the illustration of a novel sensing 

paradigm that addresses the traditional limitations of current monitoring and control 

systems, with a particular emphasis on the challenges faced by the wireless community.  

Some of these challenges include tendency toward computation inundation, large power 

consumption during processing at the node or communication, and limited radio 

bandwidth thus opening a WSN to the risk of lost data during wireless transmissions. 

This dissertation sought a solution to these challenges found in wireless sensors 

through a novel sensing paradigm that drew inspiration from the mechanisms employed 

by biological sensory systems.  Biological sensory systems are exceptionally robust and 

adaptive systems whose parallel processing capabilities and rapid response times exceed 
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similarly functioning engineering systems.  An exceptionally important contribution that 

this thesis made was the creation of a low-power wireless sensor node that embodied the 

functional principles of the mammalian cochlea to compress sensor data for lower power 

operation.  The new sensor node leverages the capabilities of  multiple low-power, crude 

processing neuron units that rapidly transmit vast amounts of information.  While each of 

these pieces of information has some significance, due to the large amount of transmitted 

data, losing a single bit of data does not have a large impact on the reconstruction 

capability of WSN.  In this way, the sensing node overcomes the constraints of limited 

radio bandwidth by eliminating reliance on packing long time history records into a 

single packet of data that can be lost.  Additionally, through the use of multiple crude 

processing units, the sensing node leverages the parallel processing capabilities of 

biological systems, thus reducing computation inundation.  Therefore, the proposed 

wireless sensor node addresses many of the current bottlenecks seen in the wireless 

sensing community for civil infrastructure and is attractive for real-world deployments.  

As demonstrated in this dissertation, this new sensing paradigm has potential to 

revolutionize the structural monitoring and control communities by pairing the already 

recognized benefits of wireless sensor nodes (i.e., low-cost, easy to install) with the 

benefits of biological systems (i.e., real-time operation through parallel processing, 

exceptional system resiliency through large redundancy).  The application of this sensor 

node to several experimental test beds highlights the robustness of the sensor node 

outside of a controlled laboratory environment.  Additionally, while the applications in 

this dissertation were limited to civil infrastructure, the implications of this new sensing 

paradigm extend well beyond structural monitoring and control.  The techniques by 

which the sensing node decomposes signals into frequency components is attractive for a 

variety of different engineering disciplines and their associated problems.       

 

6.3. Future Work 

6.3.1. Short-Term Future Research 

In the near future, the proposed  bio-inspired sensing node should be validated on 

a full scale test structure exposed to seismic ground motion and controlled using common 
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actuations (e.g., MR dampers).  This will further demonstrate the real-time control 

capabilities but in a harsher environment than that afforded by the controlled laboratory 

experiments presented in this thesis.  The applicability of the proposed sensor node will 

be verified for both structural monitoring and control applications during such tests.   

While the cochlea-inspired sensor node has proved to be successful, these studies 

have also highlighted several areas for improvement upon which future research should 

be focused.  First, while the sensor node does achieve greater power savings than the 

state-of-the art wireless sensor node used for comparison in this thesis, the digital radio 

consumes over 80% of the entire sensor node's energy.  As such, future work should seek 

more energy efficient alternatives that deviate from traditional packetized approaches.   

In particular, the future radio should seek to  modulate information in binary spike trains, 

as seen with biological systems, thus eliminating unnecessary overhead that is incurred 

through the use of a packetized radio.  Second, the hardware architecture of the sensor 

node should be reformatted such that the filter boards within each sensor node are able to 

autonomously adapt according to the constraints of the application.  The current hardware 

design uses discrete circuit components (e.g., resistors and capacitors) to characterize 

each filter board and any changes to this characterization requires the components to be 

manually changed.  By allowing this process to become digitally autonomous, the sensor 

node will be able to "learn" its own characteristics based on input signals, similar to the 

processes seen in biological systems.            

6.3.2. Long-Term Research Objectives 

While the cochlea-inspired sensor node provides a strong foundation for bio-

inspired sensing and control, there is still significant inspiration that can be drawn from 

biology for the advancement of structural monitoring and control.  First, biological 

sensory systems are extremely adept at sensor fusion (i.e., integrating information from 

various types of sensors).  While this has been implemented before within monitoring and 

control systems, it often requires setting a fusion strategy at the outset of systems 

implementation that cannot autonomously adapt to the collected signals.  Therefore, one 

area of future work should focus on considering the mechanisms by which biological 

systems integrate information from various sources and mimicking these methods into 
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the current methods of data collection for structural monitoring systems.  Second, 

biological systems are able to rapidly react to information through pattern recognition 

within spike trains and therefore, do not need to complete a full decoding process, thus 

resulting in valuable time savings across the system.  Future work on bio-inspired sensing 

and control should focus on delving further into feature extraction using pattern 

recognition directly from spike trains so as to fully leverage the real-time capabilities of 

biological systems.  In this way, by achieving sensor fusion and leveraging real-time 

feature extraction, a bio-inspired network of sensor nodes could be established that is 

capable of real-time processing while also possessing the ability to adapt and react to 

input stimulus.  In this way, the human impact factor on the system would be removed 

and overall, the monitoring or control system would be more robust.                    
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APPENDIX 

 

The dynamic equation of motion for a four degree-of-freedom structure subject to 

the external forces of cart motion can be represented as  
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, 

 

xi  is the displacement of i
th

 degree of freedom (i = 1, ..., 4), 

xci  is the displacement of i
th

 cart (i = 1, 2), 

ui  is the motor voltage of the i
th

 cart (i = 1, 2), 

xg  is the ground motion, 

mi  is the mass of i
th

 degree of freedom (i = 1, ..., 4), 

ci  is the damping of i
th

 degree of freedom (i = 1, ..., 4), 

ki  is the stiffness of i
th

 degree of freedom (i = 1, ..., 4), 

I is the identity matrix, 

mci is the mass of i
th

 actuator cart (i = 1, 2), 

Beq is the equivalent vicious damping coefficient in the motor pinion, 

Jm is the rotor moment of inertia, 

Kg is the planetary box gear ratio, 

Kt is the motor torque constant, 

Km is the Back-Electromotive-Force (EMF) constant, 

rmp is the motor pinion radius, 

Rm is the motor armature resistance, 

g is the planetary gearbox efficiency, and 

m is the motor efficiency. 

 

This can be represented in state space and expanded to include the dynamics of 

the cochlea-inspired sensor nodes as  
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                              ( ) (A.3) 

 

where            
        

   such that the vector x includes the states 

representing the displacement of each degree-of-freedom as well as the displacement of 

each cart and  xcsi  is the state representing the output of the i
th

 filter board for i = 1 ,..., N, 

where N is the total number of filter boards for all sensor node and equals n (the number 

of degrees of freedom and in this case equal to 4) multiplied by nf (the number of filter 

boards per cochlea-inspired sensor node).  The output states, yy, are the outputs from 

each filter board on each cochlea-inspired sensor node.  The system matrix is   
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where M, Ks, Cd remain unchanged from their previous definition,  

 

      

 
 
 
 
 
 
 
    

 0 0 0 0 0

0  0 0 0 0

0 0      
 0 0 0

0 0 0      
 0 0

0 0 0 0  0

0 0 0 0 0      
 
 
 
 
 
 
 
 

             

 

 

i,j is the natural frequency of the j
th

 filter board within the cochlea-inspired 

sensor node at the i
th

 degree of freedom, 

i,j   is the damping ratio of the j
th

 filter board within the cochlea-inspired sensor 

node at the i
th

 degree of freedom, 
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The input matrices,    and    become 
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The output matrix,   , becomes  

 

                    
                  

             

 

while          x  and           are both zero matrices. 
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