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ABSTRACT

Competition and Optimization in Electricity Systems

by

Majid Al-Gwaiz

Chair: Xiuli Chao

Electricity prices are characterized by high volatility and severe price spikes. At

the root of these phenomena is the strategic behavior of market participants. A

good understanding of the market competition is key to making better regulation,

contract, and investment decisions. The goal of this thesis is to study the following

market competition problems: (1) the competition between flexible generators with

fast ramping rates and inflexible generators with constant production rates, (2) the

effect of the renewable generation penetration and production based subsidies on

the competition and operating efficiency, (3) generation competition in transmission

constrained networks, and (4) competition in the capacity expansion of electricity

networks.

We first consider a centralized electricity model and find that reducing the produc-

tion based subsidies to renewable plants dampens their intermittency effect through

controlled curtailment, cuts operational cost, and improves the system’s balance. We

then consider an oligopoly in which generators submit supply function bids and ana-

lyze a Supply Function Equilibrium (SFE) model with generators that have different

xi



ramping rates. We find that the controlled curtailment of renewables has an addi-

tional benefit in oligopolistic markets as it can reduce generator market power, which

has favorable operational efficiency and electricity price ramifications. We also find

that the classical SFE model is inadequate for modeling renewables and inflexible

generators, and can grossly overestimate the competition intensity. We modify the

SFE model to account for these issues. Afterwards, a Bertrand model is used to

study the duopoly competition in a transmission constrained network. We find that

adding transmission constraints in this model does not change the bidding policy,

instead it changes the critical demand levels at which firms revise their position from

competitive to aggressive bidding. We also solve the symmetric mixed strategy Nash

equilibrium problem for multiple generators in a Bertrand electricity auction. Fi-

nally, we study several transmission expansion schemes and devise two investment

mechanisms that achieve near social optimality.
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CHAPTER I

Introduction

Four decades ago, electricity markets around the globe were either government

owned and operated or operated as a regulated monopoly. After the oil crisis of the

70’s, many governments saw the need to shift to a decentralized competitive electricity

market structure. The earliest market decentralization took place in Chile in the

1980s, followed by Argentina and other Latin American countries. It was not until the

early 1990’s that the UK and other commonwealth countries started the deregulation

process, followed by other European countries. Some US states started decentralizing

their electricity markets in the late 1990’s, but others had reservations especially

after the California electricity crisis in the turn of the century. The decentralization

mechanisms varied by region and were influenced by many factors such as the market

and the power grid structures.

An electricity system consists of generators that consume energy and incur other

costs to produce electricity, and a network that transmits the electrical power to the

end users. In a centralized electricity system, the government operates or heavily

regulates the network and generation sectors. In such a setting, a single entity has

complete control over all generation and network assets, and operates the system

to maximize the overall benefit to society. In a decentralized electricity market,

multiple profit maximizing firms own the electricity generators. However, the power

1



transmission and distribution network is recognized as a natural monopoly (Hogan

(1992)) and continues to be managed by a single independent agent. This is partly

due to the nature of power networks, where hard network constraints must hold for

the effective and healthy operation of the system.

It is the responsibility of an Independent System Operator (ISO) to coordinate

electricity dispatch while satisfying the network’s constraints as well as maintaining

other reliability measures. Network constraints entail achieving electricity balance

and abiding by capacity limits while accounting for power losses in the network. ISOs

are also responsible for satisfying the random demand fluctuation and are required

to sustain excess electricity reserves for reliable operations. In centralized electricity

systems, the ISO is also responsible for the efficient dispatch of electricity from gen-

erators to users. Schweppe et al. (1988) classify the different economic factors that

affect electricity dispatch and derive spot prices for electricity at every node in the

network that satisfy necessary and sufficient conditions for electric dispatch optimal-

ity. The spot prices are determined by generator marginal costs, network congestions,

and transmission power losses.

With the decentralization of electricity systems, markets need to adopt electricity

contracts and reflect accurate locational prices. The loop flow phenomenon, electric-

ity flows through the paths of least resistance in the network, makes it impossible

to specify a contract path between two nodes in a complex network. To resolve

this issue, Hogan (1992) uses the spot pricing idea to introduce contract networks

and transmission rights. Chao and Peck (1996) extends the concept of transmission

rights to account for network externalities in electricity contracts. Variants of these

decentralization mechanisms have been widely implemented. Today, most of the elec-

tricity trades in decentralized markets either take place over contract agreements or

through the electricity spot market.

Private generating firms participating in the electricity market submit supply

2



function bids to the ISO. These supply functions convey the electricity rate the firms

are willing to produce for every market price. The ISO essentially treats these bids

as generator cost functions and sets electricity dispatch schedules with the minimum

costs to customers. To maximize their profits, generating firms typically submit bids

that exceed their true marginal operating costs. Generating firms may also collude

or exercise market power to raise electricity prices.

To protect customers from high and volatile prices, the ISO may exercise a variety

of regulatory actions such as price ceilings and other bidding restrictions. Large

customers, electricity retailers, and generating firms can also purchase a portfolio

of electricity contracts and options to hedge against the highly volatile electricity

prices. Although high prices can be attributed to a variety of sources, such as large

capital investments and expensive fuel costs, the high price volatility and price spikes

are often caused by generators exercising market power when strategic opportunities

arise, such as demand peaks, supply shortages, or network congestion. To make better

regulation and contract decisions, regulators and other entities need to have a good

understanding of the market competition.

Most of the generating firms’ strategic behavior models fall under three categories:

Cournot competition, Bertrand competition, and SFE. Generating firms are assumed

to bid production quantity offers in a Cournot model, price bid offers in a Bertrand

model, and production-price pair offers in a SFE model. The Cournot model is

typically the easiest to solve among the three, but can be inaccurate, while the SFE

model is the most difficult to handle but the most representative among the three. In

this thesis, the Bertrand and the SFE models will be used to study the competition

in the electricity market.

The goal of this thesis is to study the following market competition problems: (1)

the competition between flexible generators with fast ramping rates and inflexible

generators with constant production rates, (2) the effect of the renewable genera-

3



tion penetration and production based subsidies on the competition and operating

efficiency, (3) generation competition in transmission constrained networks, and (4)

competition in the capacity expansion of electricity networks.

The impact of the renewable generation on centralized electricity systems is stud-

ied in Chapter II, and their combined impact along with generation inflexibility on the

market competition is then studied in Chapter III using a SFE model. In this chap-

ter, a Nash equilibrium for the competition is found using a linear SFE model. This

problem is studied again in Chapter IV but with a focus on the high demand daytime

market. Under such a scenario, the set of differential equations that characterize the

SFE become easier to solve, and a more general solution can be attained.

In Chapter V, a Bertrand model is used to study the duopoly competition in

a transmission constrained network. A symmetric Mixed Strategy Nash Equilib-

rium (MSNE) for the multiple generator problem is then solved using the Bertrand

competition model. Afterwards, network transmission investment models are studied

in Chapter VI. In this chapter, several transmission expansion schemes are considered

in which profit maximizing firms expand the network to gain transmission rent. Two

mechanisms that achieve social optimality and near social optimality are presented in

this chapter. Finally, Chapter VII concludes this thesis followed by Appendices with

supporting material.

For convenience, the following operators will be used throughout the chapters:

a+ = max{a, 0}, a ∧ b = min{a, b}, a ∨ b = max{a, b}, and the indicator function

1{A} = 1 if event A is true and 0 if A is false. In addition, the convention
∑b

i=a xi = 0

for integers a > b is used.
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CHAPTER II

Using Controlled Curtailment for Integrating

Intermittent Renewable Generation in Electricity

Systems

2.1 Introduction

The rapidly expanding renewable technology capacity in electricity systems is

motivated by environmental, sustainability, and independence considerations. About

20% of the world’s electricity production in 2011 came from renewable energy sources,

and about 5% of which from non-hydroelectric plants1. According to Renewable

Energy Policy Network for the 21st Century (REN21) (2013), wind, solar photovoltaic

(PV), and concentrating solar thermal power (CSP) generation are the fastest growing

renewable technologies with capacity growth rates averaging 26%, 58%, and 37% from

2006 through 2011 to reach a total of 310 GW by the end of 2011. In the United

State, non-hydroelectric renewable generation has increased by 110% from 1999 to

2010, with an installed capacity expansion from about 16 GW to about 54 GW in

the same period (EIA, 2010). In fact, in the 2012 renewable electricity futures study,

Hand et al. (2012) concluded that 80% of the United State’s electricity demand can be

supplied by renewable generation by 2050. Many other countries have set ambitious

1Renewable Energy Policy Network for the 21st Century (REN21) (2013).

5



renewable portfolio targets according to REN21 (2013). The report predicts that

renewables would make 50-80% of the global electricity generation by 2050.

To meet these targets and promote their technological development, many coun-

tries have introduced various forms of governmental subsidies and tax incentives, such

as direct grants, production tax credits (PTC) that entitle renewable plants to reduced

federal income taxes based on their production rates, investment tax credits (ITC)

that entitle renewable plants to reduced federal income taxes based on their capi-

tal investments, Feed-In-Tariffs (FIT) that guarantee electricity purchase from the

renewable plants at fixed prices, Renewable Portfolio Standards (RPS) that require

customers to purchase a portion of their electricity demand from renewable plants,

and carbon cap-and-trade that prompts customers to purchase electricity from clean

sources because of emission allowances. There have been numerous studies compar-

ing the effectiveness of the renewable subsidy schemes (Fischer and Newell (2008);

Menanteau et al. (2003); Neuhoff (2005); Palmer and Burtraw (2005)). Despite the

renewable generation virtues and governmental promotional efforts, there have been

some obstacles to their widespread. The main impediment to the renewable inte-

gration initiative is the intermittent nature of some renewable technologies, such as

wind, solar, and ocean tidal power. To distinguish between these technologies and

other non-intermittent renewable technologies, such as hydroelectric and biomass, we

refer to the intermittent technologies as variable generation (VG) technologies.

Intermittent generation can cause scheduling and balancing problems in electricity

networks. Scheduling of electricity generation is made over varying time durations.

Unit commitment schedules are set a day or more in advance and account for seasonal

trends, while economic dispatch and load following schedules are done on the day of

operation and occur between 10 minutes to a few hours in advance to account for

the daily consumption trends. Because electricity networks have very little tolerance

to system imbalance, sufficient capacity must be ensured to account for uncertainty.
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This safety capacity is categorized into contingency and operating reserves. Contin-

gency reserves, in the form of spinning and non-spinning reserves, are used to counter

discrete imbalance events such as generation outages, while operating reserves are

used for continuous imbalances to correct forecast mismatches and to fine tune the

electricity supply and demand balance. The types of generators used for the different

dispatch schedules and contingency categories vary based on their operating costs

(including fuel costs, emissions, wear and tare, maintenance, etc.), ramp rates (how

fast they can change their production levels), and how fast they can be shut down

and turned on. The inflexible generators (IG) with slow ramp rates and long up and

down times usually have narrow operating ranges throughout the day that are set in

the unit commitment phase, while flexible generators (FG) that have fast ramp rates

and short up and down times may have a more varying production schedule to follow

the demand forecast and balance the network.

The growing VG penetration trend can increase the forecast variance and make

balancing the network more costly. Several studies have confirmed the additional

operating reserve requirements as VG installations continue to increase. This may

even result in more fossil fuel consumption, increased environmental harm, higher

electricity prices for consumers, and substantial investments in FG plants. While

most studies conclude that VGs do not affect the network contingency requirements,

there have been mixed findings on the impact of VGs on load following requirements.

Ela et al. (2011) summarize the findings of several renewable integration studies.

Renewable integration has received considerable attention over the past decade,

and there have been a variety of technology and market based solution proposals

for achieving high VG penetration levels. In fact, renewable enabling technologies

have been the subject of numerous smart grid applications, and several approaches

have been considered to counter the renewable intermittency. One such approach is

the Demand Response (DR), which shifts some of the balancing burden to end users

7



that willingly curtail their load to help balance the network (Albadi and El-Saadany ,

2007). Load curtailments can either be contracted in advance with customers or may

be prompted using real time price signals that incent some of the flexible electricity

consumers to adjust their consumption. Another approach is to use storage buffers to

reduce the intermittency Denholm et al. (2010). Even with the recent advancements

in energy storage technologies, their relatively low efficiencies and high costs limit

their wide spread implementation for the time being. One of the operational modifi-

cations that can be used to lower balancing costs is to use controlled curtailment of

renewables (Wu and Kapuscinski (2013)). In this approach, the electricity generation

from renewable plants is voluntarily cutback in order to maintain less variable output

from renewable plants. This in turn reduces the forecast variance and the balancing

load. In fact, VG curtailment can be part of the solution to reduce the variability

caused by the customer demand (Kirby et al., 2010; Miller et al., 2011). We will

focus in this chapter on the controlled curtailment approach as a means to integrate

variable renewable generation.

The main impediment to implementing controlled curtailment in many of the

existing markets is ironically the very incentive used to promote their widespread.

Mechanisms that subsidize renewable generation through operational rewards, such as

the PTC and FIT schemes, encourage VGs to maximize their production regardless of

the operational consequences, which makes VGs resist their curtailment. In fact, some

system operators are contractually obligated to accept all production from renewable

plants with few exceptions. Although such incentive schemes have helped spread

renewable technologies, giving VGs production priority over other generators may

discard some of the technically feasible and economically superior operating strategies.

We show in this chapter that the reduction in the overall generation efficiency due to

VG priority can become significant when VGs make up a substantial part of the power

supply portfolio, which implies that operational policies that give VGs production
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priority may not be sustainable in systems with high VG penetration levels.

Some renewable integration initiatives redefine the role VGs can play in the net-

work. Conventionally, gas turbine and some combined cycle plants are used for op-

erating reserves because of their fast ramp rates and wide operating ranges, while

VGs are merely used as energy providers. However, under certain control schemes

some renewable plants can produce similar ramp rates and operating range require-

ments for regulation reserves. In fact, some recent studies identify renewable plants

as candidates for regulation reserves. Erlich and Wilch (2010) give wind generator

control concepts that can be used in the grid’s frequency control. Rivier Abbad (2010)

conjectures that conventional ancillary service providers may fail to provide sufficient

operational reserves in high VG penetration scenarios, and suggests that VGs pro-

vide such services. Liang, Grijalva, and Harley (2011) consider a market where wind

generators can bid in both the energy and the regulation markets. Ela et al. (2011)

discuss the possible restructuring of ancillary services markets to allow for higher VG

penetration, including the option of VG supplied ancillary services.

In this chapter, we build on the idea of using VGs as energy suppliers as well

as regulation reserves to balance the network. Having the controlled curtailment

of renewables as a viable option to the system operator is central to this operating

policy. We consider in this chapter a simplified electricity system with three types of

generators; IG, FG, and VG. We first study the electricity system balancing problem

in §2.2 and characterize the optimal operational policy in §2.3. In §2.4 we consider a

variant of the model in which the system could not tolerate any supply and demand

discrepancy. We also compare in §2.5 the option of giving VGs priority over other

generators and the option of curtailing VGs for economic gain under different VG

penetration levels. The concepts introduced in this chapter are illustrated using a

numerical example in §2.6 and a brief conclusion is given in §2.7.
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2.2 The Electricity System Model

In this section, we consider a centralized electrical network balancing problem

where an ISO sets generation schedules to balance customer demand at the lowest

possible cost. We first describe our model for the generators in the electricity system

and then formulate the system operator’s problem. The length of the operating

horizon is T , which can be several hours to one day.

2.2.1 Generator Types and Costs

To approximate a fleet of power generators, we assume that the system consists of

three types of generators: inflexible, flexible, and variable generators. We assume that

each firm owns one generator, thus we use “firm” and “generator” interchangeably

throughout the chapter.

Inflexible generators (IG), indexed by i ∈ GI , cannot adjust their output rates

during [0, T ]. The output rate of generator i ∈ GI , denoted as qi ≥ 0, is determined

by the system operator prior to t = 0 and stays constant over [0, T ]. Let Ci(qi) denote

generator i’s operating cost per unit of time.

Flexible generators (FG), indexed by j ∈ GF , can adjust their output rates instan-

taneously. Let qjt ≥ 0 denote the output rate of generator j ∈ GF at time t ∈ [0, T ],

and let Cj(qjt) denote its operating cost rate at time t.

The output rates, qi and qjt, are implicitly within generators’ capacities. For the

purpose of the analysis in this chapter, we assume IGs and FGs’ capacities are not

binding constraints.

Variable generators (VG) have time-varying potential outputs, which depend on

factors such as wind speed or solar radiation. Let K denote the total installed VG

capacity, and Wt ∈ [0, K] denote the potential output of VGs at time t ∈ [0, T ], which

is the maximum possible total VG production level in time t. VGs may adjust their

actual output below Wt, which is known as curtailment. Curtailment is achieved, for
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example, by pitching the blades of wind power generators or rotating solar panels to

reduce power output.

The costs of the generators satisfy the following assumption.

Assumption II.1. (i) For any generator k ∈ GI ∪GF , the cost rate function Ck(q)

is convex, strictly increasing, and continuously differentiable in q, and Ck(0) = 0;

(ii) VGs produce energy at negligible operating cost and receive a subsidy of r ≥ 0

per unit of output that is not curtailed; (iii) FGs and VGs output can be adjusted

instantaneously at negligible cost.

The convexity and monotonicity assumption in part (i) matches with the real-

ity. Part (ii) states that VGs receive production-based subsidy and implies that the

marginal cost of VGs is −r. Although there can be multiple VGs in the system, the

identical production cost assumption for VGs allows us, without loss of generality, to

aggregate all VGs into a single VG plant. Part (iii) assumes that FGs have fast ramp

rates and ramping is costless. We refer the reader to Wu and Kapuscinski (2013) for

a model that includes ramping speed and cost.

2.2.2 Problem Description

Let Lt ∈ [L,L] denote the price-insensitive load2 at time t ∈ [0, T ], where L >

L ≥ 0. The load Lt must be satisfied instantaneously for all t ∈ [0, T ]. The load Lt

and the VG potential output Wt are the two sources of uncertainties in our model and

they can be correlated. We consider two ways to balance the load in real time: (1)

vary the production of FG plants, and (2) the curtailment of VG plants. Although

the production of IG plants must be fixed before Lt and Wt are realized, the choice

of total IG production is critical to the operational cost as it sets a tradeoff between

VG curtailment and FG production. While increasing the total IG production level

replaces the expensive FG production it may also offset some of the free VG capacity.

2Load is the term often used for the customer demand in electricity systems.
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This tradeoff is illustrated in Figure 2.1 for a given electricity load and VG capacity

realization. In Figure 2.1(a) the system operator uses a low IG production level,

in which case the FG production is high, but very little VG is curtailed. The IG

production is increased in Figure 2.1(b) and the total required FG generation is

reduced, but a larger portion of the free VG production capacity is lost.
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(a) System operation under low IG production
allocation.
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(b) System opearation under high IG produc-
tion allocation.

Figure 2.1: Production levels of each generator for a given load and VG capacity
sample path.

VG Production Subsidies

As discussed in the introduction, the VG producers are often promoted by pro-

duction based subsidies (PBS) in the form of production tax credits and renewable

credits. These subsidies are an additional stream of revenue to renewable plants that

may give incentives for VGs to produce even at a loss, and hence directly affect the

production schedule. To model the PBS effect on the system we denote r as the

monetary value paid to VGs for producing 1 MWh of electricity. In other words, a

VG is paid the market price in addition to r for every MWh of electricity it produces.

The value of r essentially sets a VG priority level over other generators. VGs would

find it economical to produce as long as the market price is above −r. This alters the

tradeoff between the VG curtailment and the FG production which in turn biases the
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operating policy towards less IG production as we will see later in this chapter.

Oversupply Penalty

Although electrical networks have little tolerance for violating the supply and

demand balance in real time, they do have a narrow imbalance allowance. A mismatch

between power supply and load causes the electricity’s frequency to diverge from

its nominal value, which may harm some of the equipment and appliances if the

frequency offset becomes significant. Some generators are unwilling to reduce their

production levels even at a zero electricity market price, which is typical for baseload

plans because of their inflexible nature, as well as renewable plants that are given

production based subsidies. This may cause electricity prices to become negative,

which results in a situations where generators are charged for producing electricity

and customers are paid for their consumption (Fink et al., 2009).

In Figure 2.1b, the total IG production is close to the minimum load. If the total

IG production were a little higher it could have exceeded the minimum load. Although

a small mismatch between supply and demand can be tolerated for short durations,

the system operator is required to take action to avoid prolonged or significant supply

and demand mismatches. Such actions include:

• Invoking responsive loads to consume extra electricity: Such loads may require

monetary incentives to deviate from their preferred consumption patterns.

• Shutting down IGs: This may not be an option for all IG plants as some can

take several hours or even days to shutdown. Even if an imbalance could be an-

ticipated early enough to schedule IG shutdowns, the shutdown and start up of

these plants incurs extra fuel and significant wear-and-tear costs. Consequently,

the system wide operating costs could increase over the start up and shut down

durations of these IGs.
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• Operating generators at emergency minimum level: Generators typically operate

within best efficiency ranges. Some generators can run below their nominal

operating ranges, but at a severe drop in efficiency and possible wear-and-tear

costs.

• Curtailing VGs: Because of the PBS, VGs are often willing to pay the network

for their production. In order to curtail VGs the system operator may have to

set the electricity price below −r.

• Storing the excess supply: For systems that have available storage capacity

(such as batteries, pumped hydro, and compressed air storage) some of the

excess electricity may be stored. This storage comes at a cost due to the energy

charging, discharging, and decay losses.

We do not intend to accurately model the system operator action when the supply

exceeds the demand. Instead, we model the extra costs for handling oversupply

situations using a penalty function h(e), which represents the extra cost rate when

the excess supply rate (total output minus the load) is e ≥ 0. A similar approach is

used in practice. For example, in the Texas electricity system, a penalty for violating

the power balance constraint is included in the objective function of the security-

constrained economic dispatch problem (ERCOT 2012, p. 24).

Assumption II.2. The oversupply penalty rate function h(e) is strictly convex, strictly

increasing, and continuously differentiable in e for e ≥ 0, and h(0) = 0.

Our model does not involve undersupply, because FGs are flexible enough to

ensure all demand is met. With the introduction of h the tradeoffs between low cost

production using IGs, the tolerance for excess supply, and the curtailment of VGs

become clear. The system has the following cost components:

• The generation costs for IGs and FGs.
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• The VG production subsidy. This cost term is given by −rq when the total VG

production is q

• The oversupply penalty. This cost is only incurred when the supply exceeds the

demand.

The system operator selects the production level for each generator to minimize the

sum of these three cost components over the time horizon. Although Lt and Wt

are treated as random variables, the model studied in this chapter extends to the

deterministic case when Lt and Wt represent the (known) variable load and capacity

duration correspondences over the time horizon.

2.2.3 The System Operator’s Problem

Let qi and qjt respectively denote the production levels of generator i ∈ GI ,

j ∈ GF , and qVt denote the total VG production at time t. Note that qi is time-

invariant because once an IG’s production level is set, it cannot be changed throughout

the planning horizon [0, T ]. The system operator’s problem is to decide qi prior to

t = 0 and decide qjt and qVt in real time in response to the load and wind power

realizations, with the objective of minimizing the total expected cost of serving the

demand over [0, T ].

The system operator’s problem can be formulated as first deciding the aggregate

production level for each type of generators and then allocate the aggregate produc-

tion to individual generators. Let qI and qFt denote the aggregate production at time

t for IGs and FGs, respectively. The cost-minimizing allocations of qI and qFt are

determined by solving the following problems:

CI(qI)
def
= min

qi≥0

{ ∑
i∈GI

Ci(qi) :
∑
i∈GI

qi = qI
}
, (2.1)

CF (qFt )
def
= min

qjt≥0

{ ∑
j∈GF

Cj(qjt) :
∑
j∈GF

qjt = qFt

}
. (2.2)
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The following lemma summarizes the properties of the aggregate production cost

functions.

Lemma II.3. The total IG and FG cost functions CI(q) and CF (q) are continuously

differentiable, convex, and strictly increasing in q.

Proof of this lemma and other results in this chapter can be found in Appendix

B.

Because the per-MWh subsidy r applies to all VGs, the total subsidies depend

only on the aggregate VG production qVt . The allocation for qVt among VGs can be

arbitrary as long as it satisfies the capacity constraint for each VG. With the optimal

allocation of the aggregate production in (2.1)-(2.2), the system operator’s problem

can be written as

min
{qI , qFt , qVt }

TCI(qI) + E

[ T∫
0

(
CF (qFt )− r qVt + h(et)

)
dt

]
(2.3)

s.to et ≡ qI + qFt + qVt − Lt ≥ 0, ∀ t ∈ [0, T ], (2.4)

qVt ≤ Wt, ∀ t ∈ [0, T ], (2.5)

qI , qFt , q
V
t ≥ 0, ∀ t ∈ [0, T ]. (2.6)

This problem contains two stochastic processes: the electric load {Lt : 0 ≤ t ≤ T}

and the maximum wind power generation {Wt : 0 ≤ t ≤ T}. The two processes can

be correlated and we assume that their (joint) probability distributions are known

to all players. The expectation is taken with respect to these two processes. The

inequality in (2.4) ensures sufficient supply to meet the load, whereas excess supply

(if et > 0) is penalized in the objective (2.3).
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2.3 Optimal Dispatch

To solve the system optimization problem in (2.3)-(2.6), we first fix IGs’ output

rate qI and solve for the optimal qFt and qVt in response to the realizations of Lt and

Wt. Then we decide the optimal qI prior to t = 0. These two steps are analyzed in

§2.3.1 and §2.3.2, respectively.

2.3.1 Optimal Flexible and Variable Generation Under Given qI

Suppose IG output rate qI ≥ 0 is given. At time t, knowing the realized load

Lt and VG potential output Wt, we decide the optimal FG and VG output by the

following convex program:

C̃(qI , Lt,Wt)
def
= min
{qFt , qVt }

CF (qFt )− r qVt + h(et) (2.7)

s.t. et ≡ qI + qFt + qVt − Lt ≥ 0, (2.8)

qVt ≤ Wt, qFt , q
V
t ≥ 0. (2.9)

Recall the marginal penalty h′(e) strictly increases in e with minimum value

h′(0) ≥ 0. We define

µ(r)
def
=

 (h′)−1(r), if r ≥ h′(0),

0, if r < h′(0).
(2.10)

When r ≥ h′(0), µ(r) gives the oversupply level at which the marginal oversupply

penalty equals r. The following theorem provides an explicit solution to the problem

in (2.7)-(2.9).

Theorem II.4. For a given IG production level qI ≥ 0, under the realized VG po-

tential output Wt and the load Lt, the optimal FG and VG production rates at time t
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are

qF∗t = (Lt − qI −Wt)
+ and qV ∗t = min

{
Wt, (Lt − qI + µ(r))+

}
. (2.11)

Furthermore, the real-time cost rate C̃(qI , Lt,Wt) in (2.7) is jointly convex in (qI , Lt,Wt).

The solutions in (2.11) under various realized values of Lt and Wt are illustrated

in Figure 2.2. If the load Lt drops below the IG output qI to such an extent that the

marginal oversupply penalty exceeds the subsidy, h′(qI − Lt) > r (or qI − Lt ≥ µ(r),

i.e., event A1), then the VG output does not bring net benefit to the system and

is completely curtailed. However, if the subsidy r exceeds the marginal oversupply

penalty h′(qI−Lt), then some or all of the VG potential output is used, corresponding

to the next three cases.

Wt

0
Lt

qI − µ(r) qI

A1

No use

qV ∗ = 0

qF∗ = 0

pt =

−h′(qI − Lt)

A2

Partial use

qV ∗ = Lt − qI

+µ(r)

qF∗ = 0

pt = −r

A3

Full use

qV ∗ = Wt

qF∗ = 0

pt =

−h′(qI +Wt − Lt)

A4

Full use

qV ∗ = Wt

qF∗ = Lt − qI −Wt

pt = (CF )′(Lt − qI −Wt)

A1 : Lt − qI ≤ −µ(r) A3 : Lt − qI ∈ [Wt − µ(r), Wt]

A2 : Lt − qI ∈ (−µ(r), Wt − µ(r)) A4 : Lt − qI > Wt

Figure 2.2: Real-Time Operating Policy and Price.

In event A2, VGs are partially curtailed and the VG output is such that the

per-unit subsidy equals the marginal oversupply penalty, r = h′(et) or µ(r) = et =

qI + qV ∗t − Lt. In event A3, the per-unit subsidy outweighs the marginal oversupply
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penalty when all the VG potential output is used, r ≥ h′(qI +Wt−Lt), and thus, no

curtailment occurs. In event A4, IGs and VGs cannot meet the entire load, and FGs

serve the remaining load.

The four events together imply that FGs produce if and only if the load cannot be

satisfied by IGs and VGs. In other words, FGs only produce to make up the supply

shortage. The above discussions lead to a complementary property of the optimal

operating policy:

qF∗t
(
qV ∗t −Wt

)
= 0. (2.12)

That is, when FGs produce, VGs’ potential output is fully used. When VG curtail-

ment occurs, FGs do not produce.

Figure 2.2 also describes the real-time price, pt, which equals the system marginal

cost of serving the load at time t. When the load exceeds the combined output of IGs

and VGs (event A4), FGs must produce and the real-time price is pt = (CF )
′
(Lt −

Wt−qI) > 0. When the load can be met by IGs and VGs, the real-time price becomes

zero or negative:

a) The real-time price is zero when VG output is partially curtailed (event A2

occurs) and no subsidy is provided (r = 0). A small incremental load can be

served by VG at zero cost.

b) The real-time price is negative when additional load lowers the total revealed

cost by either reducing the oversupply penalty or increasing VG output (when

r > 0). In event A1, all VG output is curtailed, oversupply is qI−Lt, and price

is pt = −h′(qI −Lt) < −r. In event A2, VG is partially curtailed and pt = −r.

In event A3, pt = −h′(qI +Wt − Lt) ∈ (−r, 0).

Summarizing the above discussion, we can express the real-time price pt as a

function of qI , Lt, and Wt as in (2.13) below. In this expression, the dependence on
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FG cost function CF (·) is also emphasized.

P (qI , Lt,Wt, C
F )

def
=(CF )

′
(Lt−Wt− qI)1A4 − h′(qI+Wt− Lt)1A3

− r1A2 − h′(qI− Lt)1A1 ,

(2.13)

where 1{·} is the indicator function taking value 1 if statement in {·} is true and 0

otherwise.

Using (2.13), the time-average of the expected real-time price can be written as

P (qI , CF )
def
=

1

T

T∫
0

E
[
P (qI , Lt,Wt, C

F )
]
dt, (2.14)

where the expectation is taken prior to t = 0. The function P (qI , CF ) relates the

average price to the IG output qI under a given aggregate FG cost function, thus

P (qI , CF ) is the IGs’ inverse residual demand function. Note that P (qI , CF ) decreases

in qI , because P (qI , Lt,Wt, C
F ) decreases in qI due to the monotonicity of CF (·) and

h′(·).

2.3.2 Optimal Inflexible Generation

With the real-time problem solved in (2.7)-(2.9), the problem in (2.3)-(2.6) can

be written as

min
qI≥0

TCI(qI) + E

[ T∫
0

C̃(qI , Lt,Wt) dt

]
. (2.15)

The convexity of CI(qI) and C̃(qI , Lt,Wt) in Theorem II.4 implies that the objective

in (2.15) is convex in qI . This property allows us to characterize the optimal IG

production qI∗. For most of the realistic situations, inflexible generators do produce

energy, and thus for the rest of this chapter, we will focus our attention to qI∗ > 0.

The optimal IG production is given by the following theorem.
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Theorem II.5. The optimal IG output qI∗ is the unique solution to

(CI)′(qI∗) = P (qI∗, CF ). (2.16)

This Theorem states that at the optimal IG production level, the marginal pro-

duction cost of IGs equals the time-average expected system marginal cost over the

planning horizon. As qI increases from zero, the marginal production cost of IGs in-

creases while the time-average system marginal cost decreases; the optimal qI∗ is the

unique intersection of these two curves. The system marginal cost can be interpreted

as the the spot price under perfect competition. Thus, Theorem II.5 implies that

under perfect competition, IGs equate their marginal cost with the time-average spot

price, so that their expected marginal profit is zero.

2.4 Robust Balancing Requirement

We consider in this section the policy when the system is required to be balanced at

all times. The problem (2.3)-(2.6) can be modified to accommodate this requirement

by dropping the overproduction penalty term h(·) from (2.3) and changing the “≥” in

(2.4) to “=”. When there is no overproduction penalty the real-time operating policy

becomes trivial: maximize the generation from VGs as long as it does not exceed

Lt − qI and make up the balance using FGs. The optimal VG production becomes

qV ∗t = min{Wt, Lt − qI}

and the total FG production has the same solution as in (2.11). The real-time cost

function becomes

C̃(qI , Lt,Wt) = CF ((Lt − qI −Wt)
+)− rmin{Wt, Lt − qI},
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which is clearly jointly convex in (qI , Lt,Wt). This cost function shows that FGs

are the marginal generators when Lt − qI > Wt and VGs become marginal when

Lt − qI ≤ Wt. When FGs set the system’s marginal cost, the spot price becomes

pt = CF ′(Lt − qI − Wt), and when VGs are marginal the spot price is pt = −r.

Therefore, the average price over the time horizon is

P (qI , CF ) =
1

T

T∫
0

E
[
CF ′(Lt − qI −Wt)1{Lt−qI>Wt} − r1{Lt−qI≤Wt}

]
dt

=
1

T

T∫
0

(
E
[
CF ′(Lt − qI −Wt)1{qI<Lt−Wt}

]
− rP{Lt ≤ Wt + qI}

)
dt.

The optimal IG production problem can be solved using the same approach as in

§2.3.2 with the additional requirement that the total IG production not exceed the

total demand to prevent excess supply, which is given by the constraint qI ≤ L. If

we use the dual variable ν ≥ 0 for this constraint then, from (2.16), qI ’s first order

optimality condition becomes

CI ′(qI) =
1

T

T∫
0

(
E
[
CF ′(Lt − qI −Wt)1{qI<Lt−Wt}

]
− rP{Lt ≤ Wt + qI}

)
dt− ν.

(2.17)

By complimentary slackness, ν is 0 when qI < L but can be positive when qI = L.

Equivalently, to get the optimal qI the system operator can find q∗ that solves

CI ′(q∗) =
1

T

T∫
0

(
E
[
CF ′(Lt − q∗ −Wt)1{q∗<Lt−Wt}

]
− rP{Lt ≤ Wt + q∗}

)
dt

and then set qI∗ = min{q∗, L}. When ν > 0 the price IGs get for their electricity

becomes less than the average spot price over the time horizon in a decentralized

competitive market. Figure 2.3 illustrates this phenomenon.
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Price

qI

(CI)′(qI)

P (qI , CF )

qI∗ = q∗

p∗

L

(a) Small q∗ scenario: The robust model
gives the same solution as the original
model.

Price

qI

(CI)′(qI)

P (qI , CF )

q∗qI∗ = L

p∗

(CI)′(L)

P (L,CF )

ν

(b) Large q∗ scenario: The robust model gives a
lower qI∗ and a higher average spot price than
the original model.

Figure 2.3: IG production under the robust balancing model.

In Figure 2.3(a), the IG marginal cost and average price curves intersect at

qI∗ < L, which gives a solution that is similar to the original problem’s solution

shown in (2.16). However, when the two curves intersect in q∗ > L as shown in

Figure 2.3(b), then the system operator sets qI∗ to the maximum feasible production

level L. ν in in Figure 2.3(b) represents the difference between the average market

price and the marginal IG cost. This implies that the optimal solution may not be

implementable in a uniform price market mechanism and discriminatory pricing may

be more applicable, otherwise the higher market price may signal IGs to overproduce

and violate the network balance.

Another approach to solve the balanced system problem is to allow an imbalance

to occur but charge a large overproduction penalty that never makes it economical

to violate the system balance. Consider a penalty function h with an initial marginal

cost h′(0) > r, which implies that µ(r) = 0. Equation (2.16) becomes

CI ′(qI) =
1

T

T∫
0

(
E
[
CF ′(Lt − qI −Wt)1{qI<Lt−Wt} − h

′(qI − Lt)1{qI≥Lt}
]

−rP{qI < Lt ≤ qI +Wt}
)
dt.
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This confirms that if the optimal qI from Equation (2.16) does not exceed L then the

solution from (2.16) and (2.17) agree. However, if the optimal qI from (2.16) exceeds

L then it must solve

CI ′(qI) =
1

T

T∫
0

(
E
[
CF ′(Lt − qI −W t)1{qI<Lt−Wt}

]
− rP{qI < Lt ≤ qI +Wt}

−P{Lt ≤ qI}E[h′(qI − Lt)|Lt ≤ qI ]
)
dt.

(2.18)

Since the LHS is increasing and the RHS is decreasing in qI we get

CI ′(L) <
1

T

T∫
0

(
E
[
CF ′(Lt − L−Wt)1{L<Lt−Wt}

]
− h′(0)P{Lt ≤ qI}

)
dt

⇒
T∫

0

P{Lt ≤ qI} dt <

∫ T
0
E
[
CF ′(Lt − L−Wt)1{L<Lt−Wt}

]
dt− TCI ′(L)

h′(0)
,

and hence qI → L as h′(0) → ∞. The multiplication of h′(0) and
∫ T

0
P{Lt ≤ qI} dt

becomes indeterminate as h′(0)→∞, but we know that it must close the balance in

(2.18), and hence

lim
h′(0)→∞

h′(0)

T∫
0

P{Lt ≤ qI} =

T∫
0

(
E[CF ′(Lt − L−Wt)1{L<Lt−Wt}]− rP{Lt ≤ Wt + L}

)
dt− TCI ′(L),

which is precisely Tν from (2.17) when qI = L. Therefore, the optimal qI from (2.16)

converges to the same solution as the optimal qI from (2.17) when the initial marginal

penalty h′(0)→∞.

This shows that requiring the network to be balanced is a limiting case of the

original model with the overproduction penalty function. However, solving this prob-

lem using the infinite marginal penalty approach gives another explanation to the
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price discrimination based on generator flexibility. This approach shows that the IG

marginal cost is indeed equal to the average spot market price, but the average spot

market price becomes infinitely negative when Lt = qI which almost surely never

happens, but the product of this infinitely negative price and its infinitesimally short

duration amounts to a constant that equals this price difference. It just happens

that all other generators don’t produce during this infinitesimally short duration and

hence aren’t subject to this negative price. In fact, the average prices other generators

see may be different from the IG prices even when overproduction is allowed. For

example, when Lt ≤ qI − µ(r) the price becomes −h′(qI − Lt) < 0 and neither FGs

nor VGs produce in this case, and if this event occurs with positive probability then

the FGs and VGs would sell their products at larger average prices than IGs.

2.5 The Impact of VG Subsidy and Penetration

In this section, we study the effects of subsidy r and total VG capacity K on

system operations. In particular, we focus on their effects on the optimal inflexible

generation qI∗ and the system’s average operating cost excluding the subsidies:

Ca(r,K)
def
= TCI(qI∗) +

T∫
0

E
[
CF (qF∗t ) + h(e∗t )

]
dt,

where the optimal generation levels qI∗ and qF∗t and the excess supply e∗t are given

by Theorems II.4 and II.5.

To disaggregate the impact of the installed VG capacity K and the natural energy

sources that drive the VG units, such as the wind speed and solar illumination, we

define the VG capacity factor ρt = Wt/K and we assume that the distribution of ρt is

independent of K. The total realized VG capacity in time t, Wt = ρtK, is increasing

in both ρt and the total installed VG capacity K.
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Theorem II.6. The production based subsidy r and VG penetration K have the

following impacts on the solution:

(i) The optimal IG production qI∗ is decreasing in r and K.

(ii) The average production cost Ca is increasing in r.

(iii) If r = 0 then Ca decreases in K.

(iv) Ca may increase in K when r > 0.

The willingness to sell power in spite of the negative price signals gives priority to

VGs over other generators, and the value of r can be regarded as a priority level for

VGs over other generators or imbalance response actions. Specifically, a larger r gives

a larger VG priority over IGs, which in turn reduces qI as shown in Theorem II.6 (i).

Additionally, the subsidies skew the VG profits from their true values and raising r

increases the distortion in the optimal generation allocation problem, causing Ca to

increase as pointed out in Theorem II.6 (ii). K’s impact on the cost is more compli-

cated as it depends on two counteractive factors; the reduced cost due to free energy

from VG plants and the increased balancing costs that result from the VG priority. In

the special case r = 0 the subsidy term vanishes from the system operator’s problem,

and therefore increasing K necessarily improves the non-subsidized solution as indi-

cated in Theorem II.6 (iii). Furthermore, the VG dispatch priority that comes with

r raises the VG capacity utilization
∫ T

0
E[qVt /Wt|Wt > 0]P{Wt > 0} dt as evident by

Equation (2.11), making the VGs less susceptible to curtailment. In particular, when

r = 0 VGs lose their preferential treatment and the VG curtailment is at its high-

est. We refer to this maximal VG curtailment scenario when r = 0 as the economic

curtailment (EC) scenario.
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2.6 Numerical Example

To illustrate the impact of r and K on the system we will consider a simple

example of a system with truncated time invariant normally distributed L ∈ [80, 100]

MW and ρ ∈ [0, 1] with means 90 MW and 0.5, and standard deviations 10/3 MW and

1/6 respectively. We will consider a unity time horizon and the aggregate generation

cost functions CI(q) = 2q + 0.05q2 and CF (q) = 5q + q2, and the penalty function

h(q) = 10q + 2.5q2. qI and Ca are plotted against K ∈ [0, 120] MW for various r

values in figures 2.4 and 2.5. These figures illustrates the declining trend of qI with

respect to r and K and the increasing trend of Ca with respect to r. Figure 2.5 shows

that the inefficiency due to r is minuscule for low VG penetrations but can become

significant for systems with high VG penetration levels. Figure 2.5 also proves that

Ca can increase with K if r > 0. The relationship between the VG curtailment as

a fraction of the available capacity and r ∈ [0, 60] $/MWh is shown in Figure 2.6

for several K values. As expected, the VG curtailment percentage decreases with

r. Although the VG curtailment value in MW increases with K, this result cannot

be extended to the % of curtailed VG capacity as demonstrated by the intersections

and non-monotonicity of the W = 5, 10, 20, and 40 MW curves in Figure 2.6. The

non-monotonicity is caused by the rapid rate of change of qI with respect to K for

small values of K that can make d
dW

(qVt /Kρt) > 0.

2.7 Conclusion

We have developed in this chapter a simplified model to study the impact of of

the renewable penetration and production based subsidy on the power system, and

quantified the short term benefits of curtailing VG capacity. Our results show that

the subsidies increase production costs, and can make additional VG installations

harmful. The intuition for these results is that subsidies enable VGs to produce in
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Figure 2.4: The impact of r and K on the total IG production.
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Figure 2.5: The impact of r and K on the average non-subsidized cost.

otherwise uneconomical circumstances, which can cause inefficient generation alloca-

tion. On the other hand, the additional revenue from the PBS mechanism promotes

the renewable expansion and potentially speeds up technology advancements that

can improve the renewable generation efficiency and reduce its costs. We did not in-

tend in this chapter to find the best subsidies that give the optimal tradeoff between

VG expansion and operational efficiency, nor did we intend to compare the subsidies
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Figure 2.6: The impact of r and K on the VG curtailment.

with other renewable promotional mechanisms. Our aim was to study the short term

implication of the production based subsidies on the system’s operating policy and

production costs for various renewable penetration levels. As it turns out, the VG

subsidies and penetration can influence the generator competitive behavior as well.

We will consider the impact of these factors on the market competition in the next

chapter.
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CHAPTER III

Supply Function Competition in Electricity

Markets with Flexible, Inflexible, and Variable

Generation

3.1 Introduction

In this chapter we study the supply function competition between power-generation

firms with different levels of flexibility. Inflexible firms produce power at a constant

rate over an operating horizon, while flexible firms can adjust their output to meet

the fluctuations in electricity demand. Both types of firms compete in an electricity

market by submitting supply functions to a system operator, who solves an optimal

dispatch problem to determine the production level for each firm and the correspond-

ing market price. We study how firms’ (in)flexibility affects their equilibrium behavior

and the market price. We also analyze the impact of variable generation (such as wind

and solar power) on the equilibrium, with the focus on the effects of the amount of

variable generation, its priority in dispatch, and the production-based subsidies. We

find that the classical supply function equilibrium model tends to overestimate the

intensity of the market competition, and even more so as more variable generation is

introduced into the system. The policy of economically curtailing variable generation

intensifies the market competition, reduce price volatility, and improve the system’s
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overall efficiency. Moreover, we show that these benefits are most significant in the

absence of the production-based subsidies.

The special nature of the electricity industry (quick and random fluctuations of

demand, limited storage capability) requires production decisions to be automated

and coordinated instantaneously. Thus, in an electricity market, the instruments of

competition are supply functions, which specify the amount of electricity each firm is

willing to generate at every market price. Based on the submitted supply functions, a

system operator finds the most economical production schedule to meet the electricity

demand and determines the payment to each firm. A set of supply functions from

which no firm would benefit by unilaterally altering its supply function is known as

a supply function equilibrium (SFE).

Klemperer and Meyer (1989) pioneered the effort in analyzing the SFE in general

industrial contexts. Green and Newbery (1992) and Bolle (1992) are the first to em-

ploy the SFE framework to analyze electricity markets. These works and the following

stream of research provide important economic insights and policy recommendations,

which we will review in §3.2.

Most SFE models for electricity systems assume that all firms have the flexibility

to adjust their power output at different prices and do not explicitly consider ramping

constraints. This assumption can be justified in two situations. First, each firm owns

a portfolio of power generators and offers a supply curve representing the aggregate

output as a function of the market price. The portfolio is not dominated by inflexible

generators (e.g., nuclear and some coal-fired generators), and the aggregate output

can be adjusted in response to the price changes throughout the day. This situation

is studied by Green and Newbery (1992), Green (1996), Rudkevich (1999), Baldick,

Grant, and Kahn (2004), among others. Second, in the real-time market that runs

and clears every hour (or half-hour in some markets), firms with flexible generators

submit real-time supply offers to meet the energy imbalance (the energy that deviates
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from the day-ahead schedule). This situation is considered by, for example, Holmberg

(2007, 2008) and Sioshansi and Oren (2007). The theoretical framework of SFE

is applicable to both situations, as discussed in Anderson and Philpott (2002) and

Holmberg and Newbery (2010).

As industry deregulation continues, firms downsize their portfolios by selling off

parts of their generation assets, and independent power producers emerge and par-

ticipate in the power markets. In many of the current markets, firms exhibit different

levels of flexibility: Firms that own mainly inflexible generators cannot change their

power output in a short time, whereas firms owning flexible generators can quickly

ramp up or down their production. All firms engage in a supply function competition

in the day-ahead market and the system operator determines the production schedule

taking into account the firms’ different levels of flexibility.

Because firms’ flexibility directly affects their production and revenue, it is natural

to ask the following questions: How do firms with different levels of flexibility behave

in a supply function competition? How does the presence of inflexibility affect the equi-

librium market price? Answers to these questions will help policy makers understand

whether the classical SFE model may over- or underestimate the intensity of the

market competition. Understanding the effect of generation flexibility/inflexibility

on competition is also important in this era of generation technology evolution, with

coal-fired generation shifting toward more flexible generation fueled by natural gas.

An integral part of this technology evolution is the increasing variable generation

from renewable sources. According to the Renewable Energy Policy Network (2013),

globally the fastest growing renewable energy technologies from 2008 to 2012 are

solar photovoltaic, concentrating solar thermal power, and wind power, with average

annual capacity growth rates of 60%, 43%, and 25%, respectively. Variable generation

from renewable sources displaces conventional flexible and inflexible generation, and

thus changes the competition between them, but the classical SFE model does not
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address competitions involving inflexible firms. This raises another question: How

does variable generation impact the competition between flexible and inflexible firms?

The answer to this question depends on the priority of variable generation. Due to

its environmental and economic benefits, variable generation is often given the highest

priority in dispatch, i.e., it is curtailed only when the excessive energy from variable

generation threatens system reliability. However, curtailing variable generation may

also provide economic benefits, as shown by Ela (2009), Ela and Edelson (2012), and

Wu and Kapuscinski (2013). Hence, a relevant question is: How does the economic

curtailment policy affect the competition between flexible and inflexible firms? A

caveat is that even if economic curtailment policy is in effect, the production-based

subsidies for renewable energy may lead to partial economic curtailment. Therefore, in

addressing the last question, we also examine the case of partial economic curtailment.

This chapter aims to address the several questions raised above through theoret-

ical and computational analysis. Our model is not intended to be a comprehensive

depiction of the electricity industry, but to be a stylized model that captures the rele-

vant tradeoffs. We assume each firm’s generators are either fully flexible or inflexible.

Inflexible generators (IGs) produce power at a constant rate over an operating hori-

zon (e.g., several hours to one day), while flexible generators (FGs) can adjust their

output to meet the load fluctuations. We formulate the system operator’s optimal dis-

patch problem and derive the market clearing conditions. We then characterize and

compute the SFE with linear supply functions, which is commonly adopted both in

practice and in the research literature, assuming variable generators are price-takers.

The main insights from this chapter are summarized as follows. First, the classical

SFE model tends to overestimate the intensity of the supply function competition.

IGs do not compete with FGs in matching production with uncertain demand and,

in equilibrium, FGs offer significantly lower output at each price than predicted by

the classical SFE model. IGs compete with all other generators for market share and
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in equilibrium offer slightly less output than in the classical model. Our equilibrium

model with flexibility consideration also leads to a higher average price and a higher

price volatility than predicted by the classical SFE model.

Second, when variable generation receives absolute priority in dispatch, the ad-

ditional variability introduced into the system must be balanced by FGs, leading to

more market share for FGs, as well as less intense market competition. As more

variable generation displaces the conventional generation, the average market price

drops, but the price volatility increases significantly.

Third, economic curtailment of variable generation is a partial substitute for FGs

in balancing against variability. Thus, economic curtailment intensifies the market

competition: All IGs and FGs offer more competitive supply functions than under

priority dispatch, and IGs’ supply functions may be even more competitive than

predicted by the classical SFE model. Economic curtailment has little impact on the

average price, but substantially reduces the price volatility. The overall operating cost

of the system is also reduced by the economic curtailment, but the emission reduction

depends on the types of the generators in the electricity system.

Finally, production-based subsidies increase the priority of variable generation

and reduce the amount of VG curtailment. With the presence of the subsidies, the

economic curtailment policy does not achieve its full benefit to encourage competition

and improve the system’s efficiency.

3.2 Literature Review

In their original work, Klemperer and Meyer (1989) showed the existence of a

family of SFE for competing firms with identical cost functions and without capacity

constraints. They characterized the SFE by differential equations and show that,

given the support of the uncertainty, the equilibria are independent of the distribution

of the uncertainty. Since this seminal work, the SFE framework has been applied
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extensively to the research in electricity markets. Comprehensive reviews of this area

are provided by Ventosa et al. (2005), Holmberg and Newbery (2010), and Li, Shi,

and Qu (2011). Thus, we review below only the works most relevant to ours.

Green and Newbery (1992) consider the effect of capacity constraints on SFE and

calibrate the model for the British electricity industry. Their results suggest that the

market power had been seriously underestimated by the policy makers. Rudkevich,

Duckworth, and Rosen (1998) study symmetric SFE with inelastic demand, and find

that even with a relatively high number of competing firms, the market clearing

prices are still significantly higher than perfectly competitive prices. Anderson and

Philpott (2002) derive the conditions under which a supply function can represent a

firm’s optimal response to the offers of other firms and show that their model admits

symmetric SFE. Holmberg (2008) proves the SFE is unique when power shortage

occurs with positive probability and a price cap exists. All these studies focus on the

case of symmetric equilibria in which firms offer identical supply functions.

When firms differ in costs, the general asymmetric SFE is difficult to find and,

thus, linear supply functions are often used to simplify the analysis. Green (1996)

obtains the linear supply function equilibrium for the asymmetric case and studies

the effects of various policies that could increase the competition in the electricity

market. Rudkevich (1999) provides a more explicit solution to the SFE with linear

supply functions and further finds that this equilibrium could be reached by a learning

process.

Several studies analyze firms with identical cost but asymmetric capacities. Genc

and Reynolds (2011) consider SFE when some firms are pivotal, i.e., they can move the

market price to the price cap with positive probability. Holmberg (2007) establishes

the uniqueness of SFE in a real-time market under certain conditions.

It is also possible to consider asymmetries in both costs and capacities. Baldick,

Grant, and Kahn (2004) focus on SFE with piecewise linear supply functions and
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point out that linear supply functions are useful for practical applications. Ander-

son and Hu (2008) consider more general SFE and analyze situations when supply

functions may have jumps. They also develop numerical methods for calculating

asymmetric SFE. Anderson (2013) establishes the existence of an SFE under more

general conditions.

Incorporating physical constraints, especially the network transmission constraints,

into the SFE model is also an important research direction. Berry et al. (1999) find

that the strategic behaviors on networks may lead to results that differ from those

predicted by the traditional models. Wilson (2008) characterizes the necessary con-

ditions for an equilibrium when transmission capacity is uncertain and transmission

constraints may be binding. Holmberg and Philpott (2012) consider a situation where

demand shocks exist at all nodes and transmission capacities are known.

This chapter contributes to the literature by analyzing supply function competi-

tion between firms with different levels of flexibility. To the best of our knowledge, the

impact of flexibility on firms’ strategic interactions has not been analyzed, and this

chapter tries to begin filling this gap. The key feature of our model is that the system

operator takes into account the firms’ different levels of flexibility when determin-

ing the production schedule. The outputs of inflexible firms, once determined, stay

constant throughout the operating horizon. The optimality condition of the system

operator’s problem serves as a constraint in the firm-level profit-maximization prob-

lem. Our approach shares similar features with the bi-level optimization procedure

by Hobbs, Metzler, and Pang (2000).

Integration of variable generation into electricity systems has received substantial

research attention over the past decade. The National Renewable Energy Laboratory

recently completed two large variable generation integration studies: the Western

Wind and Solar Integration Study (WWSIS) (GE Energy , 2010) and the Eastern

Wind Integration and Transmission Study (EWITS) (EnerNex , 2011). Excellent
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reviews of these and earlier variable generation studies are provided by Smith et al.

(2007), Ela et al. (2009), and Hart et al. (2012). Most of these integration studies

focus on quantifying system cost reduction due to variable generation, as well as the

integration cost, i.e., the incremental cost in balancing against variable generation.

The impact of variable generation on the SFE in electricity markets has not

been considered until recently. Sioshansi (2011) recognizes the difficulty in modeling

simultaneous-move of wind and conventional generators and analyzes a Stackelberg

game with embedded supply function competition among conventional generators.

Assuming wind-power generators are price-takers and have priority in dispatch, Buygi,

Zareipour, and Rosehart (2012) analyze an SFE with linear supply functions and find

that although the intermittency of wind power tends to increase the market price,

the net impact of wind power is reduced market prices. In this chapter we also treat

variable generation as price-takers and study its impact on both average price and

price volatility. We further consider the impact of dispatch policies (priority dispatch

vs. economic curtailment) on SFE and market prices.

The role of economic curtailment policy has been investigated in several studies.

Ela (2009) explores the network effects of economic curtailment. Ela and Edelson

(2012) analyze the benefit of curtailment on relieving physical constraints of gen-

eration resources, thereby bringing substantial cost savings. Bentek Energy (2010)

points out that accommodating variable generation may lead to increased cycling

cost of conventional generators and increased emissions. Katzenstein and Apt (2009)

also find that, due to extra emissions from cycling, the emission reductions are likely

to be significantly less than those assumed by policy makers. Wu and Kapuscinski

(2013) analyze the impact of economic curtailment on cycling cost and peaking cost,

and find that curtailing wind power can be both economically and environmentally

beneficial under certain situations. This chapter complements the above body of work

by studying the impact of economic curtailment on market competition. We find an
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additional benefit of economic curtailment—economic curtailment intensifies market

competition.

3.3 The Model

In a decentralized electricity system, an ISO receives supply function offers from

electricity suppliers, then sets dispatch schedules to satisfy demand with the minimum

cost to consumers. Upon receiving the supply offers, the ISO can convert them into

revealed cost functions and use the centralized electricity system model studied in

Chapter II. We will go over the supply offers and show how they are converted into

revealed costs next.

3.3.1 Supply Offers and Revealed Costs

The supply offers from IGs and FGs are characterized by supply functions. Prior

to t = 0, FG j ∈ GF submits a supply function Sj(p), p ∈ <, which specifies the

output rate it is willing to produce when the real-time price is p. Also prior to t = 0,

IG i ∈ GI submits a supply function Si(p), p ∈ <, which specifies the fixed output rate

it is willing to set over [0, T ] if the average price over [0, T ] is p. We assume generators

are risk-neutral, so that IGs care only about the average price. The aggregate supply

functions are defined as

SI(p)
def
=
∑
i∈GI

Si(p) and SF (p)
def
=
∑
j∈GF

Sj(p). (3.1)

To fix ideas, we can set the operating time horizon T = 1 day and assume that

each generator submits a supply function for the entire day (i.e., the supply offer is

“long-lived”). In many markets, although generators are allowed to submit hourly

offers, most generators submit the same supply functions for the entire day. This

is because they do not anticipate status changes (e.g., maintenance) of their own or
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other generators, and thus, a single supply function describes the generators preferred

output at different prices during the day. Indeed, using the historical generator offer

data from Midcontinent Independent System Operator (MISO)1, we find that about

90% of the generators submit the same supply offers for the entire day.

The supply functions satisfy the following assumption.

Assumption III.1. For any k ∈ GI ∪ GF : (i) There exists pmin
k ≥ 0, such that

Sk(p) = 0 for p ≤ pmin
k ; (ii) Sk(p) strictly increases in p for p ≥ pmin

k ; (iii)

lim
p→0

Sk(p) = 0.

Assumption III.1(i) implies that no generator is willing to produce when the price

(or average price in the case of IGs) is negative. Part (ii) is consistent with practice2.

Part (iii) is automatically satisfied if pmin
k > 0 due to part (i); when pmin

k = 0, part

(iii) states that no generator is willing to produce when the price drops to nearly zero.

All these assumptions are mild. The commonly used affine supply function Sk(p) =

βk(p − pmin
k )+, where βk > 0 is a constant, satisfies Assumption III.1. (Throughout

the chapter, we use notation x+ = max{x, 0} for any real number x.)

The system operator computes generators’ revealed cost functions based on their

submitted supply functions. The revealed cost function of generator k is defined as

Ĉk(q)
def
=

q∫
0

S−1
k (x)dx, ∀ k ∈ GI ∪GF , (3.2)

where the inverse supply function is S−1
k (q)

def
= inf{p : Sk(p) > q}. If generator k

submits its inverse marginal cost function as its supply function, then the revealed

cost is its true cost function. Assumption III.1 ensures that the revealed costs have the

same properties of the true costs (increasing, convex, and continuously differentiable),

1Available at https://www.misoenergy.org/Library/ MarketReports.
2E.g. MISO’s Business Practice Manual states that the price-quantity pairs that form a supply

function must be increasing for price and strictly increasing for quantity (MISO, 2013, p. 92).
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and hence all the results based on these properties for the cost functions in Chapter II

hold.

Unlike IGs and FGs, VGs are unable to guarantee an output rate because of their

inherent intermittency. Therefore, we assume each VG submits a price offer for its

potential output. To focus on analyzing the strategic interactions between IGs and

FGs, we assume that VGs submit their marginal cost −r as the offer price, where r

is the subsidy per unit of output. This means that VGs produce Wt when the price

exceeds −r, completely curtail output when the price drops below −r, and are willing

to produce any amount in [0,Wt] when the price is −r.

3.3.2 System Operator’s Problem

The system operator’s problem can be divided into two parts. First, the ISO

chooses the aggregate production levels form the different generator types, and then

allocates the production from each type to the individual generator units. The second

problem is given in Chapter II by Equaitons (2.1) and (2.2). Since the revealed cost

is used in place of the true cost in the decentralized problem, we slightly modify these

equations to

CI(qI)
def
= min

qi≥0

{ ∑
i∈GI

Ĉi(qi) :
∑
i∈GI

qi = qI
}
, (3.3)

CF (qFt )
def
= min

qjt≥0

{ ∑
j∈GF

Ĉj(qjt) :
∑
j∈GF

qjt = qFt

}
. (3.4)

The fact that Ĉi and Ĉj have the same properties as the true costs implies that

Lemma II.3 holds. The following result shows the relation between the aggregate

supply functions and the aggregate revealed costs.

Lemma III.2. The aggregate revealed cost functions satisfy

(CI)
′
(q) = (SI)

−1
(q) and (CF )

′
(q) = (SF )

−1
(q). (3.5)
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Proof of this lemma and other results in this chapter are shown in Appendix C.

With this modification, the problem of determining the aggregate production lev-

els qI , qFt , and qVt is identical to the Problem (2.3)-(2.6). Consequently, Theorems

II.4 and II.5 hold, and the FG and FG real-time production levels are given by (2.11)

and the optimal IG production level solves (2.16).

To express the spot and average prices in terms of SF instead of CF , we will

modify the definitions of P and P from Equations (2.13) and (2.14) in Chapter II to

P (qI , Lt,Wt, S
F )

def
=(SF )

−1
(Lt−Wt− qI)1A4 − h′(qI+Wt− Lt)1A3

− r1A2 − h′(qI− Lt)1A1 ,

(3.6)

P (qI , SF )
def
=

1

T

T∫
0

E
[
P (qI , Lt,Wt, S

F )
]
dt. (3.7)

The events A1, A2, A3, and A4 are defined in Figure 2.2 in Chapter II. Note that for

a given qI , the real-time price does not depend on IGs’ supply function SI(·). Also

note that P (qI , Lt,Wt, S
F ) decreases in qI due to the monotonicity of SF (·) and h′(·),

and hence P (qI , SF ) also decreases in qI . The supply function form of Lemma III.2

also gives an alternative formula for the spot price as shown in the following result.

Corollary III.3. The real-time price function in (3.6) can be expressed as

P (qI , Lt,Wt;S
F ) = inf

{
p : SF (p) +Wt1{p≥−r} − µ(−p) ≥ Lt − qI

}
. (3.8)

This Corollary gives a supply function-based method for calculating the real-time

price. In (3.8), SF (p) is FGs’ supply function, Wt1{p≥−r} is VGs’ supply function

(VGs offer the entire potential output whenever the price is at least −r), and the

oversupply function µ(−p) gives the oversupply level when the real-time price is p < 0.

According to (3.8), the real-time price is the minimum price at which the supply minus

oversupply meets the demand.
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With the average price P (qI , SF ) computed in (3.7), the aggregate (constant)

output rate IGs are willing to set over [0, T ] is SI
(
P (qI , SF )

)
. The system operator

needs to ensure consistency between what IGs are asked to produce and what they are

willing to produce. Thus, qI must satisfy the constraint qI = SI
(
P (qI , SF )

)
. Imposing

this constraint, however, may prevent the system from achieving the optimal qI∗ that

minimizes the total system cost. A significant result in Theorem II.5 from Chapter II

is that the optimal qI∗ actually satisfies this constraint. Indeed, by using (3.5) and

the revised average price formula (3.7), the IG production level qI∗ from Equation

(2.16) becomes the solution to

qI∗ = SI
(
P
(
qI∗, SF

))
. (3.9)

Equation (3.9) confirms that imposing the constraint qI = SI
(
P (qI , SF )

)
does

not sacrifice system optimality. Equation (3.9) can also be written as (SI)
−1

(qI∗) =

P (qI∗, SF ), which means that qI∗ is the intersection of the IGs’ inverse supply func-

tion (SI)
−1

(qI) and the IGs’ inverse residual demand function P (qI , SF ). These two

functions are depicted as the solid curves in Figure 3.1.

Figure 3.1: Optimal IG Production qI∗

How does the optimal IG production qI∗ vary with the supply functions? When

IGs bid more competitively by increasing their supply function to ŜI(p) or decreasing
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their inverse supply function to (ŜI)
−1

(qI) shown as the dashed curve in Figure 3.1,

qI∗ rises to q̂I∗, i.e., IGs’ market share increases. When FGs bid more competitively

by increasing their supply function to S̃F (p), (3.8) implies that the real-time price

decreases, and the average price decreases to P (qI , S̃F ), as shown in Figure 3.1. Con-

sequently, qI∗ reduces to q̃I∗. In both cases, more competitive supply offers lead to a

lower average market price. These results are in line with our intuition.

3.3.3 The Market Mechanism

Theorems II.4 and II.5 in Chapter II solve the system operator’s problem of de-

ciding the optimal production for all generators to minimize the expected total cost

(implied by the generators’ supply offers). We now formally define the market mech-

anism based on the these results.

1) Prior to t = 0, IGs and FGs submit supply functions {Si(p) : i ∈ GI} and

{Sj(p) : j ∈ GF}, and VGs offer price −r (assumed in §3.3.1).

2) The system operator clears the market prior to t = 0 according to the following

steps:

(i) Find the aggregate IG and FG supply functions:

SI(p) =
∑
i∈GI

Si(p) and SF (p) =
∑
j∈GF

Sj(p).

(ii) Compute the real-time price as a function of the IG output qI , the load L,

and the VG potential output W :

P (qI , L,W, SF ) = inf
{
p : SF (p) +W1{p≥−r} − µ(−p) ≥ L− qI

}
, or

P (qI , L,W, SF ) = (SF )
−1

(L−W − qI)1A4 − h′(qI +W − L)1A3

− r1A2 − h′(qI − L)1A1 .
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(iii) Determine the IG output rate qI∗ by

(SI)
−1

(qI∗) = P (qI∗, SF ) ≡ 1

T

T∫
0

E
[
P (qI∗, Lt,Wt, S

F )
]
dt. (3.10)

3) Production and market settlement:

(i) IG i ∈ GI produces Si(P (qI∗, SF )) for all t ∈ [0, T ].

(ii) At any t ∈ [0, T ], the real-time price is pt ≡ P (qI∗, Lt,Wt), and FG j ∈ GF

produces Sj(pt).

(iii) VGs produce Wt if pt > −r, produce Lt − qI + µ(r) if pt = −r, and do not

produce if pt < −r.

(iv) All generators are paid pt per unit of output at time t.

The above mechanism is common knowledge to all generators. In the next section,

we will analyze the equilibrium behavior in a supply function competition.

3.4 Supply Function Competition

In the classical supply function equilibria (SFE) literature, each firm submits a

supply function such that for each demand realization, the firm behaves as a monop-

olist with respect to its residual demand. Hence, the mark-up percentage is inversely

proportional to the elasticity of the residual demand. Because this elasticity consists

of derivatives of competitors’ supply functions, a SFE satisfies a system of differential

equations (Klemperer and Meyer , 1989).

Unlike the supply function competitions analyzed in the literature where genera-

tors essentially are all FGs, in our model, generators have different levels of flexibility.

FGs in our model not only compete among themselves, but also compete with all IGs

for market share, manifested in the IG production qI∗ in Theorem II.5 and the dis-

cussion at the end of §3.3.2. Therefore, the residual demand facing an individual FG
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or IG depends on qI∗, which in turn depends on its own supply function. This is the

key difference between our model and the classical SFE model.

For our model, it is possible to derive a system of differential equations for the

equilibria; see Chapter IV for the detailed derivation and special solution to the sys-

tem of differential equations when the real-time price is always positive. Appendix C

also shows the derivation for the general problem. For the purpose of this chapter,

we are interested in all possible price scenarios, especially the situations involving VG

curtailment (see the four events illustrated in Figure 2.2). However, solving for the

general SFE for our model raises several challenges. First, the first-order conditions

are only necessary; the optimality of a generator’s response depends on other con-

ditions such as the shape of the supply functions and the probability distributions

of uncertainties. These conditions are much more difficult to analyze than in the

classical model (where the SFE does not depend on the probability distributions of

the uncertainties). Second, there is usually a continuum of equilibria for the classic

SFE model, thus a common approach in the literature is to focus on some special

class of supply function equilibria. For our model with different classes of generators,

the general theoretical analysis is even more difficult.

SFE with linear supply functions are considered in the classical works by Klem-

perer and Meyer (1989); Green (1996); Rudkevich (1999), among others. One of the

goals of this chapter is to examine how firms’ (in)flexibility affects SFE (see the first

two questions raised in §3.1) and compare the results with the insights obtained from

those in the literature. To compare our model with the classical model, we focus on

SFE with linear supply functions. In fact, using the historical generator offer data

from MISO3, we find that more than 70% of the generators (excluding those who

submit only one price-quantity pair) actually submit affine supply functions.

3Available at https://www.misoenergy.org/Library/MarketReports
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3.4.1 Linear Supply Function Equilibrium

From this point onward, we consider the case where each generator’s production

cost rate is quadratic in its output rate (see, e.g., Green 1996):

Ck(q) =
1

2
ckq

2, k ∈ GI ∪ CF , ck > 0, q ≥ 0, (3.11)

which implies a linear marginal cost C ′k(q) = ckq. Hence, in a perfectly competitive

market, generator k would submit the inverse marginal cost as its supply function,

i.e., Sk(p) = c−1
k p+. In an imperfect competition, we assume generators submit linear

supply functions:

Sk(p) = βkp
+, k ∈ GI ∪ CF , βk > 0, p ∈ <. (3.12)

That is, when the real-time price (or average price over [0, T ]) is positive, the out-

put rate that generator j ∈ GF (or i ∈ GI) is willing to produce is linear in price.

Our market equilibrium analysis is confined within the linear supply function strate-

gies. The pure strategy set will be defined in §3.4.1 after we discuss the optimal IG

production in §3.4.1.

We assume the oversupply penalty function is

h(e) = ahe+
1

2
che

2, ah ≥ 0, ch > 0, e ≥ 0. (3.13)

Optimal Dispatch under Given Supply Functions

For given qI > 0, Theorem II.4 gives the optimal qF∗t = (Lt − qI − Wt)
+ and

qV ∗t = min
{
Wt, (Lt − qI + µ(r))+

}
, where µ(r) = (h′)−1(r) = (r − ah)+/ch based on

the penalty in (3.13).

The results on the optimal qI∗ in Theorem II.5 are specialized below. The aggre-
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gate IG and FG supply functions are

SI(p) = βIp+, and SF (p) = βFp+,

where βI
def
=
∑
i∈GI

βi and βF
def
=
∑
j∈GF

βj. Hereafter, we write the price P (qI , Lt,Wt, S
F )

in (2.13) as P (qI , Lt,Wt, β
F ), and the average price P (qI , SF ) in (4.2) as P (qI , βF ),

expressed as follows:

P (qI , Lt,Wt, β
F ) =

1

βF
(Lt −Wt − qI)1A4 −

[
ah + ch(q

I − Lt +Wt)
]
1A3

− r1A2 −
[
ah + ch(q

I − Lt)
]
1A1 ,

(3.14)

P (qI , βF ) =
1

T

T∫
0

E
[
P (qI , Lt,Wt, β

F )
]
dt. (3.15)

In most of the practical situations, the system operator instructs IGs to produce

a positive output and the average market price is also positive. Thus, we assume the

optimal qI∗ > 0. Equation (4.1) that determines qI∗ can be written as

qI = βIP (qI , βF ). (3.16)

There is a unique qI∗ satisfying (3.16). We denote this unique qI∗ as a function of βI

and βF :

qI∗ ≡ QI(βI , βF )
def
=
{
qI : qI = βIP (qI , βF )

}
. (3.17)

Lemma III.4. The total IG output rate QI(βI , βF ) strictly increases in βI and

strictly decreases in βF .

The monotonicity of QI(βI , βF ) is intuitively illustrated in Figure 3.1 and formally

proved in Lemma III.4 in Appendex C.
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Pure Strategy Set

In the linear supply function competition, the supply function slopes, βk, k ∈

GI ∪ CF , are strategic variables. This section establishes the bounds on βk. These

bounds form a compact and convex pure strategy set, which is needed to establish

the existence of the equilibrium in §3.4.2.

For generator k’s supply function Sk(p) = βkp
+, a larger βk implies a more com-

petitive supply offer. The discussion preceding (3.12) reveals that an upper bound for

βk is c−1
k <∞, which is what generator k would offer in face of perfect competition.

For FG j ∈ GF , a lower bound on βj can be found by solving a less competitive

game in which IGs do not exist; for IG i ∈ GI , a lower bound on βi can be obtained

by considering a less competitive game in which FGs do not exist and the demand

is constant over [0, T ], but its level is uncertain prior to t = 0. These games are

the same as the standard supply function game considered by Klemperer and Meyer

(1989). Rudkevich (1999) studies the linear SFE for such games and shows that the

slopes of the equilibrium supply functions are strictly positive and independent of the

demand distribution. Hence, βk is bounded from below by a strictly positive number,

denoted as βmin
k > 0, which is independent of the distribution of the uncertainties.

We define the pure strategy set of generator k as [βmin
k , c−1

k ]. The slopes of the

aggregate IG and FG supply functions are also bounded: βI ∈ [βI min, βI max] and

βF ∈ [βF min, βF max], where

βI min =
∑
i∈GI

βmin
i , βI max =

∑
i∈GI

c−1
i , βF min =

∑
j∈GF

βmin
j , βF max =

∑
j∈GF

c−1
j .

Using Lemma III.4, we can establish bounds on qI as

qI min = QI(βI min, βF max) and qI max = QI(βI max, βF min). (3.18)
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Furthermore, we assume P (0, βF max) > 0, i.e., when IGs do not exist and FGs reveal

their true marginal cost, the average price is positive, which is a mild assumption.

This assumption implies qI min > 0, because qI min is the unique solution to qI =

βI min P (qI , βF max).

Individual IG’s Problem

We now formulate how an individual IG i ∈ GI chooses βi in response to all other

generators’ supply functions. Given an average price P > 0, generator i will produce

at rate Si(P ) = βiP throughout [0, T ], and incurs a cost rate of 1
2
ci(βiP )2. Thus, the

profit rate is βiP
2− 1

2
ci(βiP )2 = βi

(
1− 1

2
ciβi
)
P

2
. Note that P depends on qI and βF

through (3.15), and qI is affected by βi through (3.16). Hence, IG i’s optimization

problem can be written as

max
βi

βi

(
1− 1

2
ciβi

)
P (qI , βF )2 (3.19)

s.t. (3.16) and βi ∈ [βmin
i , c−1

i ].

The system-level optimization yields (3.16), and the firm-level objective is given

by (3.19). Thus, this formulation is similar to the bi-level optimization procedure

described in Hobbs et al. (2000).

Using (3.16) and (3.17), we can write the price function as

P (qI , βF ) =
qI

βI
=

QI(βI , βF )

βI
.

We define β−i
def
= βI − βi and rewrite the objective in (3.19) as a function of the

strategic variables:

πi(βi; β−i, β
F )

def
=
βi
(
1− 1

2
ciβi
)

(βi + β−i)2

(
QI(βi + β−i, β

F )
)2
. (3.20)
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The best response of IG i to β−i and βF is determined by optimizing max
βi∈[βmin

i , c−1
i ]
πi(βi; β−i, β

F ).

Individual FG’s Problem

An individual FG j ∈ GF chooses βj in response to all other generator’s supply

functions. Observing price pt at time t, generator j produces at rate βjp
+
t and incurs

a cost rate of 1
2
cj(βjp

+
t )2. Thus, the profit rate is βj(p

+
t )2 − 1

2
cj
(
βjp

+
t

)2
= βj

(
1 −

1
2
cjβj

)
(p+
t )2. Note that pt = P (qI , Lt,Wt, β

F ) as defined in (3.14). Thus, generator

j’s problem is

max
βj

T∫
0

E
[
βj

(
1− 1

2
cjβj

)(
P (qI , Lt,Wt, β

F )+
)2
]
dt (3.21)

s.t. (3.16) and βj ∈ [βmin
j , c−1

j ].

Equations (3.14) and (3.17) lead to

P (qI , Lt,Wt; β
F )+ =

(Lt −Wt − qI)+

βF
=

(
Lt −Wt −QI(βI , βF )

)+

βF
.

We define β−j
def
= βF − βj and rewrite the objective in (3.21) as a function of the

strategic variables:

πj(βj; β−j, β
I)

def
=
βj
(
1− 1

2
cjβj

)
(βj + β−j)2

T∫
0

E
[((

Lt −Wt −QI(βI , βj + β−j)
)+)2

]
dt. (3.22)

Then, FG j’s best response to β−j and βI is determined by optimizing

max
βj∈[βmin

j , c−1
j ]
πj(βj; β−j, β

I).
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Interactions Between IGs and FGs

The total IG production function QI(βI , βF ) is the only component in the profit

functions (3.20) and (3.22) through which IGs and FGs interact. This implies that

the competition between the two types of generators is over the average market share.

The variabilities in load and VG potential output play no (direct) role in lGs’

profit function (3.20). Hence, IGs do not directly complete with FGs in meeting

the variable demand. The variabilities directly affect FGs’ profit in (3.22), and FGs

compete among themselves to serve the variable demand.

The interactions between IGs and FGs also render the equilibrium dependent on

the distributions of the uncertainties. If QI(βI , βF ) were constant in (3.22), then the

distributions of the load Lt and VG potential output Wt would not affect the strategic

choice of βj. In fact, without IG-FG interactions, the FGs’ problem reduces to that

in the classical SFE model. In our model, however, the distributions of uncertainties

affect the choice of βj in (3.22), which in turn affect the strategic decisions of all other

generators. This feature is in contrast with the classical SFE model. For example,

Klemperer and Meyer (1989), Green (1996), Holmberg (2007), and Anderson and Hu

(2008) demonstrate that supply function equilibria are independent of the demand

distribution.

3.4.2 Existence of SFE under Normally Distributed Load and VG Output

Because the SFE depends on the distribution of uncertainties, the existence of an

SFE is difficult to establish for general distribution of uncertainties. In this section,

we show the existence of an SFE in a special case when the load and VG potential

output are jointly normally distributed and the net demand variance is not too large.

As common with models using normal distributions as an approximation, we assume

that the probability of Lt or Wt being negative is sufficiently small such that it has a

negligible effect on the equilibrium.
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The fact that generators do not modify their decisions within the time horizon

and that all generators are risk neutral implies that we can collapse all sample paths

across time into a single probability distribution.

Denote the joint probability density function of Lt and Wt as fLt,Wt(x, y), (x, y) ∈

<2. Define

fL,W (x, y)
def
=

1

T

T∫
0

fLt,Wt(x, y) dt. (3.23)

It can be verified that fL,W (x, y) is also a probability density function. Let L and

W be the random variables that follow the distribution fL,W (x, y). Then, for any

real-valued function g(x, y), we have

1

T

T∫
0

E
[
g(Lt,Wt)

]
dt =

1

T

T∫
0

∞∫
−∞

∞∫
−∞

g(x, y)fLt,Wt(x, y) dx dy dt

=

∞∫
−∞

∞∫
−∞

g(x, y)

 1

T

T∫
0

fLt,Wt(x, y) dt

 dx dy = E
[
g(L,W )

]
.

That is, the time-average of the expected value of g(Lt,Wt) equals the expected value

of g(L,W ) under the time-invariant probability distribution fL,W (x, y).

In this section, we assume L and W follow a bivariate normal distribution: L ∼

N (µL, σ
2
L) and W ∼ N (µW , σ

2
W ) with a correlation coefficient ρ. We define the net

demand random variable D
def
= L − W ∼ N (µD, σ

2
D) where µD = µL − µW , and

σ2
D = σ2

L + σ2
W − 2σLσWρ.

According to Debreu (1952), a sufficient condition for the existence of a Nash

equilibrium of this game is that the IG and FG profit functions shown in (3.20) and

(3.22) are quasi-concave in their own strategic variables. Proving the quasi-concavity

under general conditions is difficult due to the complicated structure of the price

function in (2.13), which gives an average price that is neither convex nor concave (see
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illustration in Figure 3.1). However, having qI < D (in region A4) with a sufficiently

high probability makes the average price curve close to linear, which bounds the

average price’s second derivative and bestows some structure to the problem. The

following result gives a sufficient condition to establish such a bound on qI .

Lemma III.5. If σD ≤ σ∗D ≡
√

2π βF min

[
µD
βI max

+
min{r, ah}

2

]
, then qI max < µD.

Lemma III.5 shows that for a sufficiently small σD, the IG production is bounded

above by µD. Indeed, the IGs’ aggregate output does not exceed the average net

demand for most situations in practice. The condition given in Lemma III.5 is

not very stringent. For example, if min{r, ah} = 0 and βF min is one tenth of

βI max (which according to our numerical tests is on the conservative end), then

σ∗D =
√

2πµD β
F min/βI max ≈ 0.25µD. Thus, the Lemma’s condition holds if the

standard deviation of the net demand is within 25% of its mean, which is a mild

assumption in most practical situations. The importance of Lemma III.5 is that it

provides sufficient conditions for bounding qI , which ultimately leads to the following

equilibrium existence theorem.

Theorem III.6. When generators compete using linear supply functions and the

standard deviation of the net demand σD is sufficiently small, there exists a (pure

strategy) supply function equilibrium.

The result above establishes the existence of a linear supply function equilibrium

under certain sufficient conditions. Our numerical experiments, however, show that

the equilibrium exists for a wider range of demand variances and for other load and VG

output distributions. Indeed, a linear SFE is obtained in all our numerical examples.

The following section presents the results and insights from some of these numerical

experiments.
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3.5 Numerical Study

In this section, we compute the SFE based on the model analyzed in §§3.3-3.4. We

compare our results with the classical SFE model by Klemperer and Meyer (1989) and

Green (1996). We also analyze the effect of increasing VG penetration and its curtail-

ment on the SFE. Our analysis does not aim to predict the magnitude of these effects

in reality, but to derive qualitative insights and provide policy recommendations.

3.5.1 Setups and Computational Procedure

We focus on the linear SFE described in §3.4.1. We consider a system consisting

of four IGs indexed by i ∈ GI = {1, 2, 3, 4} and four FGs indexed by j ∈ GF =

{5, 6, 7, 8}. The production cost rates (in $/hour) of these generators are quadratic in

their power generation rates, as assumed in (3.11). That is, Ck(q) =
1

2
ckq

2, where q is

in MW, ck = 4 $/MWh/MW for k ∈ GI , and ck = 12 $/MWh/MW for k ∈ GF . The

cost functions are kept identical within each generator group to facilitate comparison

between IGs and FGs; our computational procedure allows for different cost functions.

We assume the system’s oversupply penalty for e MW of oversupply is h(e) = 2e2

$/hour. We set the operating time horizon T = 1 day, and assume that each generator

submits a single supply function for the entire operating day; see discussion in §3.3.1.

We next specify the time-invariant probability distribution fL,W (x, y) defined in

(3.23). We assume the load L and VG potential output W follow independent normal

distributions, with µL = 100, σL = 15, µW = 5, and σW = 1.75 in the base case. These

parameters are in MWh per 5 minutes. (Many electricity systems measure load and

VG output at 5-minute intervals, which can be used to estimate these parameters.)

The VG penetration level is µW/µL = 5% (close to the current VG penetration

in the U.S.). In addition to this base case, we also consider various VG penetration

levels. Following Wu and Kapuscinski (2013), when VG penetration increases by m

times (µW increases by m times), the standard deviation σW increases by m times if
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the existing and added VG outputs are perfectly correlated, or
√
m times if they are

independent. The realistic case is likely in between and we assume that σW increases

by m0.75 times. Specifically, we consider four additional VG penetration levels: 0%,

15%, 30%, and 50%. That is, m = 0, 3, 6, 10.

We consider the following VG curtailment policies: priority dispatch for VG (no

curtailment), economic curtailment for VG (when subsidy r = 0), partial economic

curtailment (when subsidy r = 20 or 40 $/MWh).

The generators submit linear supply functions Sk(p) = βkp
+, described in (3.12).

The following procedure is used to compute the generators’ equilibrium supply func-

tions:

Step 1. Start with iteration n = 0 and set the initial slopes βnk ≤ c−1
k , ∀ k ∈ GI∪GF .

Step 2. Let n := n + 1. For every generator k ∈ GI ∪ GF , find the optimal slope

βnk that maximizes generator k’s profit, assuming that none of the other

generators modify their slopes (i.e. use the βn−1
l slopes from the previous

iteration for generators l 6= k). The market equilibrium condition (3.16) is

used in this step to find qI and the spot price function.

Step 3. If max
k∈GI∪GF

{ ∣∣βnk − βn−1
k

∣∣ /βn−1
k

}
< ε, then terminate the procedure and the

equilibrium slopes are {βnk }, otherwise go to Step 2.

We use ε = 0.1% in the convergence criterion. The program typically takes 4 to 5

iterations to converge. We select multiple different starting points for our iteration,

and all of them lead to the same equilibrium in the numerical examples tested.

For the purpose of presenting the insights from our numerical experiments, it

is more intuitive to describe generators’ strategies using the slopes of their inverse

supply functions:

γk
def
= 1/βk.

We refer to γk as price offer slope. In a perfect competition, the price for generator
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k to produce q is equal to its marginal cost ckq. In an oligopolistic competition,

generator k offers price γkq, γk ≥ ck. The closer γk is to ck, the lower the markup

and the more competitive the price offer is.

3.5.2 FG-IG Equilibrium vs. Klemperer-Meyer Equilibrium

Our model extends the classical SFE model by Klemperer and Meyer (1989) to

include the asymmetries in both cost and flexibility. We first compare the equilibrium

in our model (referred to as FG-IG equilibrium) and the Klemperer-Meyer (KM)

equilibrium, focusing on the linear SFE. The KM equilibrium with linear supply

functions and asymmetric cost is solved by Green (1996) and Rudkevich (1999).

We compute the KM equilibrium under the assumption that generators 1-4 are

also flexible and have the same cost functions as described in §3.5.1. In the KM

equilibrium, generators 1-4 each offer price 5.0 q and generators 5-8 each offer price

10.9 q. Figure 3.2(a) shows these price offer slopes, as well as the price offer slopes in

the perfect competition (γk = ck) and the FG-IG equilibrium.
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Figure 3.2: Klemperer-Meyer Equilibrium vs. FG-IG Equilibrium without VG
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Using the procedure in §3.5.1, we compute the FG-IG equilibrium when there is

no VG in the system. The only difference in setup between our model and the KM

model is that generators 1-4 are IGs. Thus, one might expect IGs 1-4 to behave more

differently than FGs 5-8 compared to the KM equilibrium. However, Figure 3.2(a)

shows that IGs’ equilibrium price offer is slightly higher than in the KM model,

whereas FGs’ equilibrium price offer is significantly higher than in the KM model.

The reasons stem from the asymmetry in flexibility. First, IGs do not compete with

FGs in matching production with the uncertain load. Hence, the competition facing

an FG in our model is less intense than that in the KM model, allowing FGs to raise

their price offers. Second, FGs still compete with IGs for market share (i.e., IGs

produce qI∗ and FGs produce the rest, which are allocated by the system operator

according to (3.17)). Hence, the competition facing an IG in our model is similar

to that in the KM model. It is slightly less intense because FGs raise their price

offers as explained in the first reason. As a result, IGs slightly raise their price offers

above the KM equilibrium. The above finding suggests that the KM model tends to

underestimate generators’ price offers, more significantly so for FGs.

Figure 3.2(b) shows that the average and standard deviation of the real-time price

in the FG-IG equilibrium are higher than those in the KM equilibrium. Because

both IGs and FGs offer higher prices in the FG-IG equilibrium than in the KM

equilibrium, the average price is also higher. The price volatility increases for two

reasons. First, in the KM equilibrium, all generators adjust their outputs in response

to load fluctuations, whereas in the FG-IG equilibrium, only four FGs respond to

load fluctuations. Consequently, the price is more sensitive to load fluctuations in the

FG-IG equilibrium than in the KM equilibrium. The higher FG price offers seen in

Figure 3.2(a) further increase this sensitivity. Second, when the load drops below the

IGs’ production level, an oversupply situation occurs and the price becomes negative,

whereas the price in the KM model is always positive when there is no VG.
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In short, in view of both the generators’ price offers and the equilibrium price, the

KM model tends to overestimate the intensity of the competition in a market with

inflexible generators.
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Figure 3.3: Effects of VG on Equilibrium Price Offers.

3.5.3 Impact of Variable Generation (under Priority Dispatch) on SFE

The impact of VG penetration on the FG-IG equilibrium depends on the dispatch

policy for VG. In this section, we focus on the priority dispatch policy, i.e., the entire

VG potential output is absorbed into the system.

The KM equilibrium is known to be independent of the distribution of the un-

certainties (Klemperer and Meyer , 1989). Thus, the KM equilibrium price offers are

invariant to the VG penetration levels and shown as the flat dashed lines in Figure 3.3.

In the FG-IG equilibrium, FGs and IGs together serve the net demand (load

minus VG output). As VG penetration increases, if FGs and IGs keep their price

offers unchanged, the system operator will allocate a larger market share to FGs and

a smaller share to IGs to avoid significant oversupply penalty. To profit from this
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advantage, FGs raise their price offers as VG penetration increases, which is confirmed

in Figure 3.3(a); the top curve is for priority dispatch.

On the IGs’ side, as VG penetration increases, IGs face a price-quantity tradeoff:

They can either increase price offers to raise the equilibrium price but get a smaller

market share, or lower their price offers to gain more market share. Because under VG

priority dispatch the system operator tends to keep a low IG output to mitigate the

oversupply penalty, IGs’ strategy of lowering price offers may not lead to an output

increase sufficient to raise IGs’ profit. The strategy of raising price offers turns out

to be more profitable for IGs, partly because FGs also raise their price offers, seen in

Figure 3.3(a). The higher IG price offers are confirmed in Figure 3.3(b); the top curve

is for priority dispatch. Hence, under priority dispatch, as VG penetration increases,

both IGs and FGs raise their price offers in the FG-IG equilibrium.

Although increased price offers tend to raise the market price, increased VG pen-

etration also reduces the average net demand and exerts downward pressure on the

price. The equilibrium price is a result of the combination of these two effects. The

second effect dominates in determining the average equilibrium price, as shown in Fig-

ure 3.4(a), where the average equilibrium price declines as VG penetration increases.

However, the first effect is important in affecting the price volatility. At a high VG

penetration level, the VG output can still occasionally drop to a low level, requiring

the system to ramp up FGs production to meet the demand. In such situations, FGs’

increased price offers at high VG penetration levels lead to high equilibrium prices.

On the other hand, when VG output surges, the system has to take all VG output

because of the priority dispatch policy, resulting in an oversupply penalty and nega-

tive prices. Therefore, under priority dispatch, increasing VG penetration makes the

price more volatile, as revealed by the top curve in Figure 3.4(b).
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Figure 3.4: Effects of VG on Equilibrium Price.

3.5.4 Impact of the Economic Curtailment Policy on SFE

The analysis in §3.5.3 assumes priority dispatch for VG, which is used in some

electricity systems. Some other electricity systems allow curtailment of VG for eco-

nomic reasons, but as discussed in §3.1, the production-based subsidy reduces the

amount of VG curtailment, effectively increasing the priority for VG. In this section,

we consider three subsidy levels: r = 0, 20, and 40 $/MWh. We focus on discussing

the economic curtailment case with zero subsidy, and refer to the cases of r > 0 as

the partial economic curtailment cases.

The economic curtailment policy increases the competition among IGs and FGs

in two ways. First, economic curtailment provides the system operator with an ad-

ditional lever to manage uncertainty, and thus, the system operator allocates less

production to FGs than under the priority dispatch policy. As a result, FGs offer

more competitive prices to compete for market share. Second, economic curtail-

ment significantly reduces the oversupply penalty, thereby altering the price-quantity
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tradeoff facing IGs (this tradeoff is described in §3.5.3). Consequently, IGs’ strategy

of lowering price offers can yield a market share increase that is sufficient to increase

IGs’ profit. These two effects of economic curtailment reinforce each other in equi-

librium, because IGs reduce their price offers in response to FGs’ reduced price offers

and vice versa.

The combination of these effects yields the equilibrium price offers shown in Fig-

ure 3.3. The economic curtailment policy encourages both IGs and FGs to offer

more competitive prices. In Figure 3.3(b), IGs’ price offers may drop below the level

predicted by the KM model.

Figure 3.3 also shows the effect of subsidies. Because subsidies effectively grant

priority to VGs to some extent, a higher subsidy leads to less competitive price offers.

Thus, the curves for the partial economic curtailment cases lie in between the curves

for priority dispatch and economic curtailment.

Economic curtailment has little effect on the equilibrium average price, but the

impact on price volatility is significant. Figure 3.4(a) shows that when VG penetration

level is below 30%, average prices under various VG policies are indistinguishable. At

higher VG penetration levels, the average price under economic curtailment is slightly

higher because the curtailment reduces the severity of the negative prices. In contrast,

the price standard deviation drops considerably under economic curtailment, as shown

in Figure 3.4(b), because economic curtailment reduces extreme prices by making the

market more competitive when prices are high and reducing the oversupply penalty

when prices are negative.

3.5.5 Effects of Curtailment on Costs and Emissions

The economic curtailment policy also impacts the system operating cost, including

the actual (not revealed) production cost and the oversupply penalty. Table 3.1 shows

that, on average, one MWh of economic curtailment reduces the system operating cost
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by about $30. This cost reduction effect is consistent across all VG penetration levels.

This finding is also in line with the economic benefit of curtailment found in Wu and

Kapuscinski (2013).

Table 3.1 also shows the effect of production-based subsidies on curtailment and

the system operating cost. A higher subsidy reduces the amount of curtailment,

but increases the system operating cost. In theory, when the subsidy approaches to

infinity, no curtailment will occur, and the system operating cost equals that under

the priority dispatch.

Interestingly, a higher subsidy also increases the value of per-MWh curtailment.

For example, at 5% VG penetration with r = 20 $/MWh, one MWh of economic

curtailment reduces the system operating cost by $49; with r = 40 $/MWh, this

value increases to $67. This result is again consistent across all VG penetration

levels. The implication is that the benefit of economic curtailment may be very high

in countries and regions where VGs are heavily subsidized based on production.

An environmental benefit from increasing VG penetration is the reduced CO2

emissions due to the replacement of the conventional production by the clean VG

production. Table 3.1 confirms that the total CO2 emission significantly decreases as

VG penetration increases.

The impact of economic curtailment on CO2 emission, however, is not as obvious

and depends on the generators’ fuel types. Because economic curtailment allows for

more IG production and less FG production, if IGs have a higher/lower CO2 emis-

sion rate than FGs, economic curtailment may increase/decrease total CO2 emission.

Table 3.1 demonstrates that when IGs are coal-fired/nuclear-power generators and

FGs are natural gas combustion turbines, economic curtailment increases/decreases

emissions. Furthermore, when subsidies exist, the emissions lie in between economic

curtailment and priority dispatch cases.
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3.6 Conclusion

Electricity markets have been gradually evolving toward deregulated structures

that are meant to encourage competition and improve efficiency. The research in

deregulated electricity markets, especially the supply function competition, has pro-

vided considerable insights into generators’ bidding behavior and market power. This

chapter provides new results that address how the competition is affected by genera-

tors’ flexibility and variable generation. The two most important messages from this

chapter are that inflexibility contributes to the market power and that the economic

curtailment of variable generation increases the market competition and system effi-

ciency.

Inflexibility contributes to the market power in the following way. Inflexible gener-

ators do not compete with flexible generators in matching production with uncertain

demand, leading to increased market power for flexible generators, which in turn re-

sults in higher average price and price volatility than predicted by the classical SFE

model.

Variable generation, when given priority in dispatch, exacerbates the effect of in-

flexibility on market competition, but the economic curtailment policy can intensify

the market competition because economic curtailment serves as a partial substitute

for flexible generators to balance against variability. Furthermore, economic curtail-

ment improves system efficiency by reducing the oversupply penalty and using more

inflexible generation which is less costly than flexible generation.

The insights from this chapter also provide several recommendations for the reg-

ulators and policy makers. First, in assessing the competitiveness of the electricity

market, it is important to incorporate generators’ flexibility/inflexibility. Flexible

generators compete in balancing against variability and often set the market price.

Encouraging the development of more flexible generators (e.g., fueled by natural gas)

enhances the overall competitiveness of the electricity market. Second, in assess-
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ing the benefit of the economic curtailment policy, it is important to recognize that

economic curtailment helps increase market competition and reduce price volatility.

Policy makers need to revisit the policy of giving priority to variable generation from

renewable sources, and consider a full range of benefits of economic curtailment.

Other benefits of economic curtailment include reduced cycling cost and peaking cost

(Wu and Kapuscinski , 2013), and improved production allocation in a network (Ela,

2009). Third, policy makers need to reconsider the design of incentives aimed to

maximize the benefits of renewable energy. The design of subsidies should facilitate

economic curtailment and avoid unintended consequences. Investment in research

and development can push technology advancement that makes renewable energy

generation more competitive in the near future even without subsidies.

It remains an area of future research to study the competition among generators

with various ramping capabilities and the costs associated with ramping. A model

with ramping would more accurately reflects the composition of generators in prac-

tice and would provide a more accurate estimate for the magnitude of the effects of

inflexibility and economic curtailment. In this chapter, variable generators are as-

sumed to be price-takers. A more comprehensive market competition model would

include strategic behavior of variable generators as well. Furthermore, in some re-

gions, variable generators are also allowed to submit supply functions, and certain

market rules specify the actions to take when the realized output differs from what

they offer to supply. We leave the analysis of such behavior and resulting supply

function competition to future research.
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Table 3.1: Effects of Curtailment on Costs and Emissions

Metrics
VG dispatch

policy (or
subsidies)

VG penetration

5% 15% 30% 50%

VG penetration
(after curtailment)

r = 40 4.97% 14.91% 29.73% 49.10%

r = 20 4.93% 14.79% 29.42% 48.34%

Economic Curtailment 4.84% 14.53% 28.85% 46.99%

System operating
cost

(thousand $/day)

Priority Dispatch 1076.4 887.1 648.9 415.4

r = 40 1075.8 885.4 643.7 397.6

r = 20 1075.4 884.2 640.9 390.9

Economic Curtailment 1075.0 883.1 638.7 386.7

System cost savings
per MWh of
curtailment
($/MWh)

r = 40 67.1 65.0 66.8 69.3

r = 20 48.9 47.0 48.8 51.3

Economic Curtailment 30.1 29.3 30.8 33.1

Total CO2 emissions
with coal-fired IGs

(thousand tons/day)

Priority Dispatch 30.91 25.07 17.52 9.67

r = 40 30.92 25.10 17.60 9.87

r = 20 30.94 25.14 17.70 10.04

Economic Curtailment 30.97 25.24 17.89 10.38

Total CO2 emissions
with nuclear IGs

(thousand tons/day)

Priority Dispatch 4.12 3.51 2.79 2.09

r = 40 4.11 3.50 2.75 1.99

r = 20 4.10 3.48 2.71 1.90

Economic Curtailment 4.09 3.44 2.63 1.76

Emission rates: 215 lb. of CO2 per MBtu of coal, 117 lb. of CO2 per MBtu of natural
gas, no emission for nuclear power generators. Fuel price: $2.5 per MBtu of coal and
$5 per MBtu of natural gas.
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CHAPTER IV

Daytime Supply Function Equilibrium Model with

Generation Inflexibility

4.1 Introduction

The electricity system model we have considered thus far permits the total elec-

tricity supply to exceed the demand. We have found that such events produce non-

positive electricity prices. Excess electricity occurs when the electricity demand falls

below its nominal level in a system with either of the two following characteristics:

1. The system has substantial IG production that cannot promptly react to the

demand dips, or

2. The system has a large VG penetration with government subsidies that make

it profitable for VGs to continue to generate electricity even when the prices

become negative.

In practice, the electricity demand plummets during the night, while the daytime

demand, especially during peak time, requires a large fleet of generators, with FGs

supplying the marginal demand. This is precisely the A4 scenario shown in Figure 2.2

with FGs as price setters.
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In this chapter, we will consider the electricity system’s problem during the day-

time when flexible, inflexible, and variable generators all have positive production

rates throughout the time horizon. In such circumstances, we assume that the load

is large enough such that all the VG production is accepted (see Equation (2.11)).

Therefore, we will regard VGs as negative demand and only consider flexible and

inflexible generation in this chapter.

The main contribution in this chapter is that we derive the Oridinary Differential

Equations (ODE) system for the SFE when there system has a mix of flexible and

inflexible generators in §4.3. We then find an affine solution to the ODE system when

generators have quadratic costs in §4.4. We then conclude this chapter in §4.5 by

presenting some possible future research direction in this area.

4.2 The System Operator’s Problem

Consider an operating time horizon [0, T ] during the daytime (peak hours). A

system operator schedules production to satisfy a price inelastic demand Dt in time

t ∈ [0, T ] using two types of generators:

• Inflexible generators (IG), indexed by i ∈ GI , cannot adjust their output rates

during [0, T ]. The output rate of generators i ∈ GI , denoted as qi ≥ 0, is

determined by the system operator prior to time t = 0 and stays constant over

[0, T ]. We assume that i incurs an operating cost rate Ci(q) for producing q

MW.

• Flexible generators (FG), indexed by j ∈ GF , can adjust their output rates

instantaneously. We denote the output rate of generator j ∈ GF at time t ∈

[0, T ] by qjt, and use a cost rate function Cj(q).

We assume that every firm owns a single generator and we do not consider generator

capacity limits in this problem.
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Before time 0, every generator k ∈ GI ∪ GF submits a strictly increasing sup-

ply function Sk(p). After receiving these offers, the system operator computes the

revealed cost functions define as

Ĉk(q)
def
=

q∫
0

S−1
k (x)dx, ∀ k ∈ GI ∪GF ,

where the inverse supply function is S−1
k (q)

def
= inf{p : Sk(p) > q}. The objective of

the system operator is to minimize the total expected revealed cost of serving the

demand over [0, T ].

The system operator’s problem can be formulated as first deciding the aggregate

output rate for each type of generators and then allocating the aggregate output to

individual generators. Let qI =
∑

i∈GI qi and qFt =
∑

j∈GF qjt be the aggregate IG

and FG output rates, respectively. The allocations of qI and qFt to individual IGs and

FGs are determined by minimizing the total revealed cost for each generator type:

CI(qI)
def
= min

{ ∑
i∈GI

Ĉi(qi) : qi ≥ 0,
∑
i∈GI

qi = qI
}
,

CF (qFt )
def
= min

{ ∑
j∈GF

Ĉj(qj) : qj ≥ 0,
∑
j∈GF

qj = qFt

}
.

We can show that CI and CF are continuously differentiable, convex, and strictly

increasing in q, and that (CI)′(q) = (SI)−1(q) and (CF )′(q) = (SF )−1(q), where SI

and SF are aggregate supply functions defined as

SI(p)
def
=
∑
i∈GI

Si(p) and SF (p)
def
=
∑
j∈GF

Sj(p).

Let Dmin > 0 be the minimum possible demand over [0, T ]. Assume that no

oversupply or shortage is allowed. Hence, the system operator must set qI ≤ Dmin

and qFt = Dt−qI at time t. Then, the FGs’ revealed cost rate at time t is CF (Dt−qI),
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and IGs’ revealed cost rate is CI(qI) at all times. The system operator determines qI

prior to time 0 by solving the following problem:

min
qI∈[0,Dmin]

TCI(qI) + E

[ T∫
0

CF (Dt − qI) dt
]
.

By the convexity of the cost functions, we can use the first order condition to solve

for the optimal qI . Assume that the optimal solution, qI∗, is an interior solution:

qI∗ ∈ (0, Dmin), which is a typical case for the day time. The first order condition for

qI gives the following optimality condition

qI∗ = SI
(
P (qI∗, SF )

)
, (4.1)

where

P (qI , SF )
def
=

1

T

T∫
0

E
[
(SF )−1(Dt − qI)

]
dt, (4.2)

P (qI , SF ) is the average market price when the total IG production is qI and the

aggregate FG supply function is SF . Note that P is decreasing in qI and increasing

in SF (in the sense of SF (p) increasing uniformly).

4.3 Generators’ Best Response Problem

4.3.1 IG Problem

In its best response problem, an individual IG i ∈ GI knows all other generator

supply functions S−i(p)
def
=
∑

k∈GI\i Sk(p) and SF (p). The function P (qI , SF ) is es-

sentially an inverse demand function facing IGs, and generator i can use the average

price p as a decision variable given the residual demand function QI(p) − S−i(p),
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where

QI(p)
def
= inf{q : P (q, SF ) ≥ p}. (4.3)

Notice that the total IG supply must match QI in equilibrium, which gives the relation

QI(p) = SI(p). This equation is an alternative expression to (4.1). Thus, generator

i’s problem becomes:

max
p

(
QI(p)− S−i(p)

)
p− Ci

(
QI(p)− S−i(p)

)
.

The first order condition for this problem is

QI(p)− S−i(p) +
(
QI ′(p)− S ′−i(p)

)[
p− C ′i

(
QI(p)− S−i(p)

)]
= 0.

By substituting Si(p) for QI(p)− S−i(p) the above condition can be written as

S ′−i(p) =
Si(p)

p− C ′i(Si(p))
+QI ′(p), ∀ i ∈ GI . (4.4)

This resembles the classical equilibrium condition derived by Klemperer and Meyer

(1989). The difference is that the demand function in our setting shown in (4.3) is

implied by FGs’ supply functions. Hence, the last term in (C.12) captures how FGs’

decisions affect IGs’ supply functions.

The second derivative of the IG’s objective is

2
(
QI ′(p)− S ′−i(p)

)
−
(
QI ′(p)− S ′−i(p)

)2

C ′′i (Si(p))

+
(
QI ′′(p)− S ′′−i(p)

)
[p− C ′i(Si(p))] .

(4.5)
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From (4.3), we can express the first and second derivatives of QI as

QI ′(p) =
1

∂
∂qI
P (qI , SF )|qI=SI(p)

and QI ′′(p) = −
∂2

∂qI2
P (qI , SF )|qI=SI(p)[

∂
∂qI
P (qI , SF )|qI=SI(p)

]3 .

Notice that P shown in (4.2) is decreasing in qI , and since all supply functions are

increasing then QI is decreasing in p and QI ′(p) ≤ 0. Furthermore, if P is concave

with respect to qI then QI would be concave in p and QI ′′(p) ≤ 0. Therefore, the

first term in (4.5) is negative because QI is decreasing and S−i is increasing in p and

the second term is negative because Ci is convex. If QI were concave and Si(p) were

convex then the last term would become negative since p − C ′i(Si(p)) ≥ 0. Hence,

the second order condition holds and (C.12) becomes sufficient if the following two

conditions hold:

• The IG supply functions Si(p) are convex ∀ i ∈ GI .

• The average price function P (qI , SF ) is concave with respect to qI .

4.3.2 FG Problem

An individual FG j ∈ GF offers a supply function Sj(p), knowing that Sj(p)

has two effects on the outcome of the game. The first effect is that Sj(p) directly

influences real-time prices (SF )−1(Dt − qI). This effect captures the fact that FG j

directly competes with other FGs in satisfying the balance of the demand. This first

effect also changes the average price in (4.2), which affects the market-clearing IG

output rate qI∗ in (4.1). This second effect captures the fact that FGs and IGs are

also competing with each other. These two effects are intertwined because the IG

output qI∗ influences real-time price as well. Recognizing these effects, FG j decides

its supply function Sj(p). We first consider FG j choosing among all feasible supply

functions that support a given qI as the market-clearing IG output. Once a desired
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supply function is found to support each qI , FG j will then optimize over qI .

When the demand is Dt, generator j produces Dt − qI − S−j(pt) at a price pt,

which corresponds to a point on its supply function. Hence, we can equivalently use

pt as j’s decision variable, under the constraint that the price should support qI as

the market-clearing IG output. From (4.1), this condition can be written as

(SI)−1(qI) =
1

T

T∫
0

E[pt] dt.

Taking one step further, FG j chooses qI and pt jointly as long as they satisfy this

constraint. Hence FG j’s best response problem is

max
pt, qI

T∫
0

E
[(
Dt − qI − S−j(pt)

)
pt − Cj

(
(Dt − qI − S−j(pt)

)]
dt

s.t.

T∫
0

E[pt] dt = T (SI)−1(qI) ⊥ ηj.

If we denote by ηj the Lagrange multiplier of the constraint, then the Lagrangian of

this problem becomes:

T∫
0

E
[(
Dt − qI − S−j(pt)− ηj

)
pt − Cj

(
Dt − qI − S−j(pt)

)]
dt+ ηj T (SI)−1(qI).

The first-order condition for pt is

(
Dt − qI − S−j(pt)− ηj

)
− S ′−j(pt)

[
pt − C ′j(Dt − qI − S−j(pt))

]
= 0.

Substituting Dt − qI − S−j(pt) by Si(pt), the above condition can be written as

S ′−j(p) =
Sj(p)− ηj

p− C ′j(Sj(p))
∀ j ∈ GF . (4.6)
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The second derivative of the Lagrangian with respect to pt is

−2S ′−j(pt)− (S ′−j(pt))
2C ′′j (Sj(pt))− S ′′−j(pt)

[
pt − C ′j(Sj(pt))

]
.

The first term is negative since S−j is increasing, the second term is negative because

Cj is convex, and the third term is negative if S−j is convex since pt ≥ C ′j(Sj(pt)).

Therefore, the second-order condition holds for pt and (C.17) becomes sufficient if all

the FG supply functions are convex.

The first-order condition with respect to qI is

−
T∫

0

E[pt − C ′j(Sj(pt))] dt+ T
ηj

SI ′((SI)−1(qI))
= 0.

By substituting (SI)−1(qI) = 1
T

∫ T
0
E[pt] dt = P (qI , SF ), the dual variable ηj becomes

ηj = SI
′
(P (qI , SF ))

1

T

T∫
0

E[pt − C ′j(Sj(pt))] dt ∀ j ∈ GF . (4.7)

Since the spot price pt depends on qI and SF , then ηj depends on all generator bids.

The second derivative of the Lagrangian with respect to qI is

−
T∫

0

C ′′j (Sj(pt)) dt− Tηj
SI
′′
((SI)−1(qI))

SI ′((SI)−1(qI))3
.

Note that the second-order condition holds and (4.7) becomes sufficient if SI is a

linear function.
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4.3.3 ODE Summary

The following is a summary of the ODE system that characterizes the first order

conditions for the SFE.

S ′−i(p) =
Si(p)

p− C ′i(Si(p))
+QI ′(p), ∀ i ∈ GI ,

S ′−j(p) =
Sj(p)− ηj

p− C ′j(Sj(p))
∀ j ∈ GF ,

ηj = SI
′
(P (qI , SF ))

1

T

T∫
0

E[pt − C ′j(Sj(pt))] dt ∀ j ∈ GF ,

where

P (qI , SF )
def
=

1

T

T∫
0

E
[
(SF )−1(Dt − qI)

]
dt,

QI(p)
def
= inf{q : P (q, SF ) ≥ p},

pt = (SF )−1(Dt − qI),

qI = SI
(
P (qI , SF )

)
.

It turns out that this system admits an affine supply function solution when the costs

are quadratic as we will show next.

4.4 Affine SFE

We assume in this section that the production cost for generator k ∈ GI ∪GF is

Ck(q) = akq +
1

2
ckq

2,
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and the supply functions take the form

Sk(p) = βk(p− αk).

We will often refer to βk as the slope bid and αk as the intercept bid of generator k.

For this linear supply function form to be valid we need to ensure that the average

price exceeds αi for i ∈ GI and the minimum price exceeds αj for j ∈ GF , otherwise

generators may have negative production values. Furthermore, the average price

must not fall below ai for i ∈ GI and the minimum price must not fall below aj for

j ∈ GF because a rational generator would benefit from setting its supply bid to 0

for all prices below its initial marginal cost, rendering the linear supply function form

invalid.

If we denote minimum demand by Dmin and the average and minimum prices by

P and pmin, then the following list summarizes our assumptions about the problem:

(1) 0 < qI < Dmin. (2) ai < P for i ∈ GI . (3) αi < P for i ∈ GI .

(4) aj < pmin for j ∈ GF . (5) αj < pmin for j ∈ GF .

We will show in §4.4.5 conditions under which our assumption about these properties

is valid. Note that the second order conditions for the SFE ODE system are satisfied

for affine supply functions. Therefore, if we can find slopes βk and intercepts αk for

all generators k ∈ GI ∪GF that solve the ODE system (C.12), (C.17), and (4.7) then

this solution would give a valid SFE.

4.4.1 The System Operator’s Problem

Given the generator supply bids, the system operator sets the IG production level

qI such that (4.1) is satisfied. We will find in this subsection the equilibrium qI , the

average spot price, and the spot price as a function of the realized demand for given

IG and FG slopes and intercepts βk and αk.

Define βI =
∑

i βi, γ
I =

∑
i βiαi, β

F =
∑

j βj, and γF =
∑

j βjαj. The aggregate
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IG and FG supply functions are

SI(p) = βIp− γI and SF (p) = βFp− γF ,

and the aggregate inverse supply functions for IGs and FGs are

(SI)−1(q) =
q + γI

βI
and (SF )−1(q) =

q + γF

βF
.

The average price and its derivative with respect to its first argument are

P (qI , SF ) =
1

T

T∫
0

E
[
(SF )−1(Dt − qI)

]
dt = E

[
1
T

∫ T
0
Dt dt− qI + γF

βF

]
=
D − qI + γF

βF
,

∂

∂qI
P (qI , SF ) = − 1

βF
.

where D is the average demand in the operational time horizon. The IG production

function QI(p) shown in (4.3) and its derivative are

QI(p) =βF (D + γF − p),

QI ′(p) =− βF .

From the equilibrium condition (4.1) we can get the following

qI∗ =
1

βI + βF
[
βI(D + γF )− γIβF

]
, (4.8)

P (qI∗, SF ) = (SI)−1(qI∗) =
D + γI + γF

βI + βF
. (4.9)
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Furthermore, we can calculate the spot price when the demand is Dt as

P (Dt) =(SF )−1(Dt − qI∗) =
Dt − qI∗ + γF

βF

=
1

βI + βF

[
γI + γF − βI

βF
D

]
+
Dt

βF
= P +

1

βF
(
Dt −D

)
. (4.10)

4.4.2 The IG Problem

The IG ODE for generator i is given by

S ′−i(p) =
Si(p)

p− C ′i(Si(p))
+QI ′(p)

⇒β−i =
βi(p− αi)

p− (ai + ciβi(p− αi))
− βF

⇒β−i + βF =
βip− βiαi

p(1− ciβi)− (ai − ciβiαi)
.

For the slope and intercept bids to be independent of p, the solution must satisfy

β−i + βF =
βi

1− ciβi
, and (4.11)

βi
1− ciβi

=
βiαi

ai − ciβiαi
.

If we solve for the αi values in the last equation we get

αi = ai, (4.12)

which is the well known incentive compatibility result by Rudkevich (1999). This also

shows that the βi values are determined from the competition only among IGs, but

with a price elastic demand with the FG slope bids setting the demand derivative.

Therefore, we need to know βF in order to determine the equilibrium IG slope bids.
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4.4.3 The FG Problem

The FG ODE for generator j is given by

S ′−j(p) =
Sj(p)− ηj

p− C ′j(Sj(p))

⇒β−j =
βj(p− αj)− ηj

p− (aj + cjβj(p− αj))
=

βjp− (βjαj + ηj)

p(1− cjβj)− (aj − cjβjαj)
.

To make βj and αj independent of p the solution needs to satisfy

β−j =
βj

1− cjβj
, and (4.13)

βj
1− cjβj

=
βjαj + ηj
aj − cjβjαj

.

This gives two results. First, FGs can determine their slopes independently from IG

bids or their own intercept bids by solving a linear SFE competition with only FG

participants and with inelastic demand. Second, Rudkevich’s incentive compatibility

result for the intercepts does not hold for FGs in general, and their intercept bids can

be determined by

αj = aj − ηj
(

1

βj
− cj

)
. (4.14)

An FG’s intercept bid equals its linear price coefficient if and only if its ηj value is

zero. By substituting (SI)′(p) = βI and (4.9) into (4.7), the dual variable ηj can be

determined by

ηj = βI
[
D + γI + γF

βI + βF
(1− cjβj)− aj + cjβjαj

]
. (4.15)

This equation shows that ηj depends on the slope and intercept bids of all generators

as well as the average demand, and hence even if βj is known, Equation (4.14) alone
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is not sufficient to determine αj. Instead, αj and ηj can be found simultaneously by

solving the system of linear equations (4.14) and (4.15) after determining βj ∀ j ∈ GF

and βI .

The dual variable ηj can be interpreted as generator j’s reaction to qI . A large ηj

is indicative of j’s resistant to IGs increasing their production quantity, while a small

negative ηj suggests that j benefits from IGs raising their production. By substituting

the average price P in (4.9) into (4.15), and rearranging the terms we get

ηj =
1− cjβj

1
βI

+ cj(1− cjβj)
(P − aj).

Since we only consider cases where the price exceeds the generator initial marginal

costs, this formula shows that ηj is always positive for our problem, implying that

FGs benefit from lowering qI . This observation has an important implication: FGs

submit lower bid intercepts than their cost function intercepts. This can be easily

verified by substituting a positive ηj into (4.14) to get αj < aj. This, however, does

not imply that FGs produce at a loss because the price is assumed to never fall below

aj during the daytime.

4.4.4 Calculation Method

Given the problem parameters ck and ak for k ∈ GI ∪GF and D, we will develop

in this section an algorithm to find the βk and αk bids for k ∈ GI ∪GF .

From §4.4.2 and §4.4.3, αi = ai and βj can be determined independently from

other bids, and hence the first step of the algorithm is to solve for βj using (4.13).

Given βj, the IG slope bids can be found from (4.11), which is the second step of our

algorithm. Finally, given all other bids, we can simultaneously find all the αj and

ηj values by solving the system of linear equations given by (4.14) and (4.15). An

outline of this algorithm is shown below.
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Algorithm IV.1.

Step 0: Set αi = ai for i ∈ GI .

Step 1: Find βj for j ∈ GF by solving β−j =
βj

1−cjβj . Set βF =
∑

j βj.

Step 2: Find βi for i ∈ GI by solving β−i + βF = βi
1−ciβi . Set βI =

∑
i βi and

γI =
∑

i βiαi.

Step 3: Find αj and ηj for j ∈ GF by solving the linear system

αj +

(
1

βj
− cj

)
ηj = aj

− 1− cjβj
βI + βF

∑
k∈GF

βkαk − cjβjαj +
1

βI
ηj =

D + γI

βI + βF
(1− cjβj)− aj.

Steps 1 and 2 of the algorithm can be solved using the method by Rudkevich

(1999) shown in Appendix D.1, which gives βk ∈ (0, 1
ck

).

4.4.5 Parameter Ranges

To ensure that the linear SFE solution is valid we have to ensure that the 5

conditions listed in the beginning of this section hold. Note that conditions (2) and

(3) are the same since IGs submit the same intercept bids as their initial marginal

costs, and condition (4) implies (5) because FGs bid smaller intercepts than their

initial marginal costs.

According to (4.10), the minimum price occurs at the minimum demand Dmin,

and hence the fourth condition is given by

aFmax < P (Dmin) =
1

βI + βF

[
γI + γF − βI

βF
D

]
+
Dmin

βF
, (4.16)

where aFmax ≡ max{aj : j ∈ GF}. Note that aFmax ≥
∑
j βjaj∑
j βj

= γF

βF
. Accordingly, if
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(4.16) holds then

γF

βF
<

1

βI + βF

[
γI + γF − βI

βF
D

]
+
Dmin

βF

⇒Dmin > γF +
1

βI + βF
[
βID − βF (γI + γF )

]
=

1

βI + βF
[
βI(D + γF )− γIβF

]
= qI .

Therefore, if the minimum spot price exceeds all FG linear cost coefficients then the

total IG production would never reach the minimum demand. The second condition

is given by

aImax < P =
D + γI + γF

βI + βF

⇒D > aImax(βF + βI)− (γI + γF ), (4.17)

where aImax ≡ max{ai : i ∈ GI}. Similarly, we could write aImax ≥
∑
i βiai
βi

= γI

βI
and

combine this condition with (4.17) to get

D >
βF

βI
γI − γF ,

and from (4.8) we get

qI >
1

βI + βF

[
βI
((

βF

βI
γI − γF

)
+ γF

)
− γIβF

]
= 0.

This implies that the first assumption is guaranteed whenever the second and fourth

assumptions are satisfied. Ultimately, the five necessary assumptions about our model

are valid for any set of parameters ak, ck, D, and Dmin for which the two inequalities

(4.16) and (4.17) hold.
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4.4.6 Analysis

In this subsection, we will analyze the SFE solution (from sections 4.4.2 and 4.4.3)

and obtain some insights on the problem. We will then show the effect of disregarding

the generation flexibility by comparing the SFE model studied in this chapter with

the conventional SFE models in which all generators are assumed to be flexible.

Solution Interpretation

We have shown in §4.4.3 that IGs have no effect on the FG slope bids, but can

influence the FG intercept bids. The more competitive IG bids are the higher their

aggregate slope βI becomes, which raises ηj and causes αj to fall. This implies that

increasing the IG competition causes FGs to lower their intercept bids, and hence

makes FGs more competitive1. The IG intercept bids, on the other hand, are not

affected by any bid, but their slope bids depend on the FG competition as shown in

4.4.2. When the FGs bid more competitively the sum of their slope bids βF increases,

causing the demand derivative for the IG competition to rise and intensifying the IG

competition.

This outcome can be explained by two types of competition:

• Market share competition in which all generators participate to increase their

average production rates, and

• Competition to balance the variable demand, in which only FGs participate2.

IGs chose their slope bids based on the market share competition, while FGs base

their slope bids on the variable demand competition and their intercept bids on the

market share competition. The IG market share is given by (4.8) and the average FG

1FGs become more competitive because they would offer more production quantity at the same
price when they have lower αj bids.

2The absence of IG dependent terms in Equation (4.13) signifies their exclusion from competing
over the variable demand.
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market share is

qF = D − qI =
1

βI + βF
[
βF
(
D + γI

)
− βIγF

]
. (4.18)

An intensive market share competition is characterized by high IG slope bids and

low FG intercept bids, while an intensive variable demand competition causes FGs

to raise their slope bids.

The demand distribution plays no role in determining the supply function bids

in the conventional KM model. Although the slope bids can be determined indepen-

dently from demand for all generators, the FG intercept bids depend on the demand.

According to (4.15), the αj values decrease with the average demand, signifying ag-

gressive participation in the market share competition. When the average demand

increases the average market price also increases at a rate 1
βF

. At the higher average

market prices, FGs find it beneficial to lower their price intercepts in order to increase

their average market share, even if the average market price slightly drops.

Comparison With the All FG Model

We will consider two problems in this subsection:

• Problem AF (All Flexible): All generators in GF and GI are flexible in this

problem, and

• Problem FI (Flexible/Inflexible): Generators in GF are flexible while generators

in GI are inflexible in this problem.

We will use the same variables for these two problems but with an AF and FI

superscripts. For a set of generators G and a scalar b ≥ 0 define the bid solution to
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a linear SFE as

B(G, b) = {βk, k ∈ G :
∑
l∈G\k

βl + b =
βk

1− ckβk
∀k ∈ G}. (4.19)

B gives the linear supply function solution to the set of generators G with demand

derivative b. Using this notation, the slope bids for the AF problem is B(GF ∪GI , 0)

and the solution to the FI problem is B(GF , 0) for generators in GF and B(GI , βF )

for generators in GI . In order to compare the bid solutions from the two problems,

we show in the following Lemma that the generator slope bids are increasing in b.

Lemma IV.2. The bids βk for k ∈ G given by B(G, b) are increasing in b.

Proof of this lemma and other results in this chapter can be found in Appendix D.

If we think of b as the demand derivative, then this Lemma can be restated as

follows: The generator competition in a linear SFE intensifies when the demand curve

becomes steeper. Using Lemma IV.2, we can get the following result.

Theorem IV.3. βAFk > βFIk ∀ k ∈ GF ∪GI .

Theorem IV.3 shows that generators submit more competitive price bids in the

AF problem compared to the same generator bids under the FI problem. The in-

tuition behind this result is that the exclusion of IGs from the demand balancing

competition gives FGs the opportunity to markdown their βj values in the FI prob-

lem. Consequently, IGs lower their slope bids in the market share competition in

response to the aggressive FG bids. One thing to note is that the set of generators in

GI are only slightly less competitive in the FI problem (compared to the generators

in GF ) because their βi markdowns are not caused by the exclusion of competitors,

but are rather in response to the lower bids of the generators in GF .

The significance of Theorem IV.3 is that it confirms that failing to account for

generator inflexibility overestimates the slope bids for all generators. If an all flexible
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generator model were used to study the competition in a system with flexible and

inflexible generators then only FGs may come out as irrational because IGs would

appear to submit rational best response bids to the seemingly irrational FGs. Not

accounting for generator inflexibility can also have a profound impact on the electricity

spot price as the following result shows.

Theorem IV.4. P
FI
> P

AF
and V ar(P FI(D)) > V ar(PAF (D)).

In addition to overestimating the competition intensity, Theorem IV.4 shows that

not accounting for generation inflexibility underestimates the average spot price and

the price variance. Figure 4.1 illustrates the difference in bid between the AF and

FI problems for a FG (Figure 4.1a) and an IG (Figure 4.1b) and Figure 4.2 shows

the aggregate price curves for the two problems.

P

Q

aj

AF Bid

αj

FI Bid

(a) FG bids

P

Q

ai

AF Bid

FI Bid

(b) IG bids

Figure 4.1: Generator bidding under the the AF and FI problems.

4.5 Future Work

We developed in this chapter an ODE system for finding the SFE when there

are flexible and inflexible generators. We then found the unique affine SFE when

all generators have quadratic cost functions. There are several potential extensions

to this work. First, studying the general non-linear equilibrium solution can give

a theoretical contribution to the SFE literature. In the original supply function
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Figure 4.2: Aggregate supply curves for the AF and FI problems.

literature, ownership of multiple generators by a single firm does not complicate the

problem since all generator’s can be lumped into a single generator. However, in our

model, if the firm’s generation portfolio consists of flexible and inflexible generators,

then the problem becomes significantly more complicated. Studying the impact of

multiple firm ownership is another modification to the problem that we intend to

consider.

Electricity contracts have been studied for the traditional SFE with all flexible

generators. Flexible generators may have additional incentives to enter into long term

contracts to protect themselves against low prices. Incorporating contract positions

for generators could be an interesting third research direction. Lastly, integrating

variable generation into the model and studying its impact is also a relevant research

direction given the recent interest in renewable energy.
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CHAPTER V

Price Bidding in Electricity Markets

5.1 Introduction

We study in this chapter two electricity auction models where generators submit

price bids for their generation capacity to an ISO, who dispatches generators to

satisfy demand in a uniform price auction. In the first model, we study the effect

of transmission capacity constraints on the competition when there are only two

generators. We find that the addition of these constraints does not change the bidding

policy of generators, instead it changes the critical demand levels at which generators

revise their bids. We then consider a problem with multiple symmetric generators

and a random demand. We consider a symmetric mixed strategy Nash equilibrium

and give the ODE condition for the equilibrium, then solve for closed form solutions

for the duopoly case and the multiple generator case with uniform demand.

5.2 Background

The literature on price bidding in electricity auctions was first introduced by

von der Fehr and Harbor (1993) to study the electricity market in the United King-

dom. In their model, firms that owned generators with constant marginal costs sub-

mitted price bids to the system operator that indicate the prices at which they would
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offer the entire capacities of their generators. Although their model considered the

competition between multiple firms, where each firm can own several generation units

with different production costs and capacities, their analysis only focused on Pure

Strategy Nash Equilibrium (PSNE) solutions for two firms, each with a single gener-

ator.

Supatgiat et al. (2001) consider PSNE solutions for a problem with multiple firms,

where each firm owns a single generator, and with discrete bid increments. They

characterize properties of the equilibria and develop an algorithm that finds the most

aggressive PSNE. Brunekreeft (2001) studied a multiple firm problem in which every

firm owns multiple units. The paper uses a very specific generation unit order and

demand pattern and does not fully characterize the equilibrium, but rather provides

bidding bounds. Garcıa-Dıaz and Marın (2003) studied a more general multi-unit

multiple firm auction for a fixed deterministic demand. Crawford et al. (2007) focused

on asymmetric equilibria for multi-unit auction duopoly with complete information.

5.2.1 Model Description

A set of generators i = 1 · · · , n bid selling prices b = (bi)
n
i=1 (in $ per power

unit) for their electricity production to satisfy a demand D ∈ [D,D]. In this chapter,

we assume that the demand is not affected by the electricity prices. The cost of

producing q power units from generator i is ciq ($ per time unit), where ci is generator

i’s marginal production cost (in $ per power unit). We will assume that generators

are indexed based on non-decreasing marginal costs, so ci ≤ cj if i < j. Generators

also have production capacity limits ki (energy per unit time). We will denote the

aggregate capacity for generators 1 through i by Ki =
∑i

j=1 kj, and we will assume

that Kn ≥ D to ensure sufficient capacity for all demand realizations. We will also

assume that the system has a maximum price bid p ($ per power unit). This implies

that a rational generator i bids in the range bi ∈ [ci, p]. We will assume that all
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generators are rational and have perfect information about all the generation costs,

production capacities, and the customer demand.

An ISO that minimizes the production cost to consumers can use any portion of

any generator’s capacity as long as generators are paid at least their bids for every

energy unit. We consider a uniform price auction in which all generators are paid the

same price for every unit sold. The uniform market clearing price is the lowest price

at which the demand can be satisfied, defined as

p(b, D)
def
= min

{
x ∈ R :

n∑
i=1

ki1{bi≤x} ≥ D

}
. (5.1)

Recall that 1 is the indicator function where 1{A} = 1 if event A is true and 0 if

A is false. All generators with bids strictly below p are completely utilized while

generators with bids above p are not used. Generators with bids exactly equal to p

may be partially loaded. If multiple generators bid p then the generators with the least

index i will be given priority in satisfying the marginal demand D−
∑n

i=1 1{bi<p}ki
1.

Therefore, generator i gets the following production allocation,

qi(b, D) = 1{bi<p(D,b)}ki + 1{bi=p(D,b)}

(
D −

n∑
j=1

1{bj<p(D,f)}kj −
i−1∑
j=1

1{bj=p(D,b)}kj

)+

,

(5.2)

and makes a profit of

πi(b, D) = qi(b, D)(p(b, D)− ci). (5.3)

Finding an equilibrium for this problem is not trivial, even for the duopoly case.

von der Fehr and Harbor (1993) showed that this problem may have multiple PSNE

1Others, including von der Fehr and Harbor (1993) and Garcıa-Dıaz and Marın (2003), have
made a similar assumption. Ideally, more sophisticated tie breakers that gives equal priority to all
generators should be used, but such allocation rules would complicate the model without adding
insights.
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when the demand is deterministic, and there may not exist a PSNE when the demand

is stochastic.

5.2.2 Model Applications

The United Kingdom’s switch from uniform price to discriminatory price auctions

in the early 2000’s triggered an abundance of studies comparing the two price mech-

anisms. California considered switching to discriminatory pricing shortly after the

UK experience, which resulted in numerous studies both for and against the switch.

For example, Kahn et al. (2001) argue agains the shift while Rassenti et al. (2003)

conclude that discriminatory pricing can improve the market performance by sub-

stantially lowering the price volatility. The explicit price decision in the generator’s

objective makes the price auction a popular model for comparing the two market

mechanisms. For example, Federico and Rahman (2003) use a price auction model

to characterize the different trade-offs between these mechanisms. Fabra et al. (2006)

study the uniform and discriminatory auction cases for a duopoly problem with a

known demand, using both PSNE and MSNE. They also consider several extensions

to the problem such as price-elastic demand and stochastic demand.

Unlike the SFE models, the price bidding models are commonly used to construct

increasing step function supply offers, which is required by most system operators. To

construct such offers, generator price curves are first linearized. Each linear segment

of the cost is then treated as an independent generator with its own marginal cost

and capacity, and a supply offer curve is constructed by optimizing the price bid over

the demand range.

Price auction models with deterministic demand are also applicable in markets

with short-lived auctions in which firms regularly update their bids. Their appli-

cability under such settings is due to two factors: (1) When the duration between

bids is short the demand variability becomes small, and hence the demand can be
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approximated by a constant value between bid durations, and (2) generators operate

within a tight production range in the short duration between bids, and hence their

marginal costs can be approximated by a constant value. Moreover, under the short-

lived auction setting the price bidding model can be used to predict renewable plant

bids since their available capacity can be accurately predicted over short durations.

5.3 Duopoly in a Transmission Constrained Network

In a duopoly model with c1 < c2, the cheap generator can undercut the expensive

generator by bidding b1 = c2 when the demand is low, while both generators must

produce to satisfy a demand that exceeds k1. To maximize their profits, one of the

generators would have an incentive to bid p in high demand scenarios. von der Fehr

and Harbor (1993) showed that only one generator bids p in a PSNE. However,

they showed that there may be multiple pure strategy equilibria with different price

setters. Fabra et al. (2006) showed that the cheap generator may break the monopoly

and bid p even if the demand is below its capacity. This occurs when the cheap

generator’s capacity is large enough compared to the expensive generator’s capacity,

and the price ceiling is high enough such that the cheap generator would be willing to

loose market share in order to increase its selling price. They show that the critical

demand at which the clearing price jumps from c2 to p and generators change their

bidding behavior is D∗ = k1 ∧
(
p−c1
p−c2k2

)
. Notice that we use the notation ∧ and ∨ for

the min and max operators, respectively, throughout this chapter.

In this section, we extend this problem to include the transmission network. The

introduction of transmission network constraints change the ISO’s problem. Instead

of setting a clearing price according to (5.1) and allocating production according

to (5.2), the ISO solves a transmission constrained optimal dispatch problem after

getting the generator bids. Consequently, the two generators anticipate the auction’s

new structure and bid accordingly. We find that the solution structure of the auction
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with network constraints is similar to the original problem, but with a lower critical

demand level D∗ that depends on the network topology and line capacities. Appendix

A shows some background and derivation of the DC optimal dispatch problem that

is used in this section.

5.3.1 Production Allocation

We consider a general network topology with a set of nodes N and a set of trans-

mission lines L, where each transmission line l ∈ L has capacity f̄l. The transmission

lines are assumed to be directed arcs in this model, with the the same capacity in

either direction. We will assume that every transmission line is represented twice in

L to model flows in both directions. That is, if line (i, j) ∈ L the we assume that line

(j, i) ∈ L with f̄(i,j) = f̄(j,i). Each node i ∈ N has a fixed demand di ≥ 0. Genera-

tors 1 and 2 are located in two arbitrary nodes in the network, which we denote by

nodes 1 and 2. We will assume without loss of generality that these two nodes are

different2. We will denote the total demand by D
def
=
∑

i∈N di and the demand vector

by d = (di)i∈N . Also, let D ⊂ R|N |+ be the set of feasible demand vectors (i.e. the

combinations of demands in the network that can be satisfied by the two generators),

which we will determine later in this section. We will denote by d̄i the maximum

demand in node i.

Upon receiving the generator bids b1 and b2, the ISO uses these bids to construct

the generator revealed cost functions Ci(q) = biq for i ∈ N . Because the demand is

fixed in this problem, the decision values qi = −di are known and the revealed costs

Ci(qi) = 0 for all nodes i ∈ N \ {1, 2} in the problem (A.5)-(A.8). Nodes 1 and 2

have nodal injections q1−d1 and q2−d2 and revealed costs b1q1 and b2q2, respecitvely,

where q1 and q2 are the only unknown variables in the ISO’s problem. According to

(A.5), the ISO’s objective in this problem is to minimize b1q1 + b2q2.

2If the two generators happen to connect to the same node we can split this node into two nodes
with an infinite capacity line in between.
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By selecting node 2 as the slack node we can set β2
l = 0 for all lines and (A.7) can

be expressed without q2
3. We can also write

∑
i∈N β

i
lqi as β1

l q1−β>l d. By substituting

q2 = D − q1 the objective becomes minq1(b1 − b2)q1 + b2D, where D =
∑

i∈N di as

before. Notice that b2D can be dropped from the objective since it is constant in the

ISO’s problem. The constraint that q2 ∈ [0, k2] can be written as q1 ∈ [D − k2, D],

and when combined with generator 1’s constraint q1 ∈ [0, k1] we get the condition

(D − k2)+ ≤ q1 ≤ D ∧ k1. We can express the problem as

max
q1

(b2 − b1)q1

s.t. β1
l q1 ≤ f l + β>l d ∀ l ∈ L

(D − k2)+ ≤ q1 ≤ D ∧ k1.

To ensure the existence of a feasible solution, we assume the following:

(1) No generation capacity limitation:
∑

i∈N d̄i ∈ (0, k1 + k2].

(2) No transmission line limitation: f̄l ≥ 0 is large enough such that ∃ q1 ∈ [(D −

k2)+, D ∧ k1] that satisfies f̄l ≥ β1
l q1 − β>l d ∀ d ∈ D and l ∈ L.

Condition (2) ensures the existence of a pair of generator injections q1 ≥ 0 and q2 ≥ 0

that can satisfy demand without violating any line capacity. If β1
l = 0 for some line

l, then condition (2) cannot be binding and q1 is not restricted by line l’s capacity.

Let

L1 = {l ∈ L : β1
l > 0}, L2 = {l ∈ L : β1

l < 0}.

3Refer to Appendix A for the definition of the slack node and the power transfer distribution
factors (PTDF) βk

l , which can be interpreted as the portion of the flow from node k’s power injection
passing through line l on its way to the slack node. We also use βl as the column vector of PTDFs
for line l and β>l for its transpose (row) vector.
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To satisfy the line capacity constraints, q1 must be chosen such that

f̄l2 + β>l2d

β1
l2

≤ q1 ≤
f̄l1 + β>l1d

β1
l1

∀ l1 ∈ L1 and l2 ∈ L2.

Note that the left most term in the inequality decreases to −∞ as f̄l2 → ∞ and

the right most term increases to ∞ as f̄l1 → ∞. In other words, condition (2) is

always feasible for sufficiently large f̄l values. Define the critical ratio for a line as

rl(d) =
f̄l + β>l d

β1
l

∀ l ∈ L1 ∪ L2.

rl(d) is the maximum (minimum) injection q1 for which the flow in line l ∈ L1 (L2) is

feasible when the demand vector is d. We will also define l∗(d) ∈ argminl∈L1 {rl(d)},

which is the set of first lines in the network that get congested when increasing

a feasible q1, and l∗(d) ∈ argmaxl∈L2 {rl(d)} as the set of first lines that become

congested when decreasing q1 from a feasible level. Denote these lines’ critical ratios

by

r∗(d) = min
l∈L1
{rl(d)}, r∗(d) = max

l∈L2
{rl(d)}.

r∗(d) and r∗(d) are the maximum and minimum levels for which q1 is feasible, and

thus q1 ∈ [r∗(d), r∗(d)]. By convention, r∗(d) = ∞ if L1 = φ and r∗(d) = −∞ if

L2 = φ. If we now combine all constraints we get

max{D − k2, r∗(d), 0} ≤ q1 ≤ min{D, k1, r
∗(d)}. (5.4)

By the same argument as before (when f̄l → ∞), we can find f̄l values for which

max{(D − k2)+, r∗(d)} ≤ min{D, k1, r
∗(d)}, which is a necessary condition for the

existence of a feasible solution4. Using (5.4), the quantity allocation problem becomes

4max{D − k2, 0} ≤ min{D, k1} follows from the range of D ∈ (0, k1 + k2].
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trivial; set q1 to min{D, k1, r
∗(d)} if b1 ≤ b2 and to max{(D− k2)+, r∗(d)} if b1 > b2.

Therefore, we can write a closed form solution for the quantity allocations.

q1(b,d) =1{b1≤b2}min{D, k1, r
∗(d)}+ 1{b1>b2}max{(D − k2)+, r∗(d)}, (5.5)

q2(b,d) =1{b1≤b2}max{(D − k1)+, D − r∗(d)}+ 1{b1>b2}min{D, k2, D − r∗(d)}.

(5.6)

Notice that Equation (5.6) is attained by subtracting q1(d,b) from D.

We can solve a similar problem for generator 2, where generator 1 is used as the

slack node and q1 is replaced by D − q2. To distinguish between the two problems,

we will use β̃, l̃∗, l̃∗, r̃
∗, and r̃∗ in place of β, l∗, l∗, r

∗, and r∗. By solving the same

problem when q2 is the decision variable we get

q2(b,d) =1{b1>b2}min{D, k2, r̃
∗(d)}+ 1{b1≤b2}max{(D − k1)+, r̃∗(d)}, (5.7)

q1(b,d) =1{b1>b2}max{(D − k2)+, D − r̃∗(d)}+ 1{b1≤b2}min{D, k1, D − r̃∗(d)}.

(5.8)

Define the effective capacities for generators 1 and 2 as k̃1(d) = k1 ∧ r∗(d) and

k̃2(d) = k2 ∧ r̃∗(d). We interpret the effective capacity as the limit of a generator’s

production, which is determined by the generator’s capacity or the transmission line

bottleneck, whichever is lower. We can therefore write the first term in (5.5) as

1{b1≤b2}(D ∧ k̃1(d)) and the first term in (5.7) as 1{b1>b2}(D ∧ k̃2(d)). The first term

in (5.6) can be written as

1{b1≤b2}max{D − k1, D − r∗(d), 0} =1{b1≤b2} (max{D − k1, D − r∗(d)})+

=1{b1≤b2}

(
D − k̃1(d)

)+

.
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Likewise, the first term in (5.8) can be simplified to

1{b1>b2}max{D − k2, D − r̃∗(d), 0} =1{b1>b2}

(
D − d̃2(d)

)+

.

Using these results, we can write q1 and q2 as

q1(b,d) =1{b1≤b2}

(
D ∧ k̃1(d)

)
+ 1{b1>b2}

(
D − k̃2(d)

)+

, (5.9)

q2(b,d) =1{b1>b2}

(
D ∧ k̃2(d)

)
+ 1{b1≤b2}

(
D − k̃1(d)

)+

. (5.10)

Equations (5.9) and (5.10) have an intuitive interpretation: a generator with the

lower bid satisfies the entire demand if possible, otherwise it produces at the level

where it reaches its effective capacity, and if it has a higher bid then it generates the

portion of the demand the other generator could not satisfy.

5.3.2 Clearing Prices

The basic rule in a uniform price auction is that all generators are paid the same

clearing price for their production. When network constraints are introduced, gen-

erators can exercise locational convenience to raise their prices. This causes price

discrimination between nodes whenever a transmission line becomes congested. In

such a scenario, no single uniform price can be used in all locations to clear the mar-

ket, instead each node must have its own uniform price that is used for all agents

connected to the node, which can be calculated from (A.9). The node-dependent

price is known as the locational marginal price (LMP).

When a generator is marginal (i.e. supplies the additional unit of demand in the

node) and produces at partial capacity then, according to (A.9)5, the generator is

paid its own bid. From (5.9), this scenario occurs for generator 1 when it has a larger

5The capacity constraint is not binding for a generator operating at partial capacity, and hence
the dual variable γi = 0. This gives a price pi = C ′i(qi) = bi.
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bid and the total demand exceeds the second generator’s effective capacity (b1 > b2

and D > k̃2(d)), or if generator 1’s bid does not exceed the other generator’s bid but

the total demand is less than its effective capacity (b1 ≤ b2 and D < k̃1(d)). From

(5.10), the same scenario occurs for generator 2 if it submits at least as large a bid as

b1 and there is sufficient demand (b1 ≤ b2 and D > k̃1(d)), or if generator 2 submits

a smaller bid and the total demand is smaller than its effective capacity (b1 > b2 and

D < k̃2(d)).

A generator’s price may depend on the other generator’s bid when the generator

is non-marginal, which can either happen because (1) the generator’s bid is high and

the demand is low, or (2) the generator’s bid is low and the demand is high. We

need not consider the first case because a generator does not produce when its bid is

high and the other generator can satisfy the entire demand on its own. In the second

case, the low bidding generator i produces k̃i(d). If the generator is operating at

partial capacity (k̃i(d) < ki) then using the first part of (A.9) its LMP must equal its

own bid. If, on the other hand, generator i is operating at full capacity (k̃i(d) = ki)

then γi > 0 and using the second part of (A.9) the generator is paid λ −
∑

l β
i
lµl

where λ is the other generator’s bid and µl are the dual variables for the line capacity

constraints. However, the fact that generator i reaches its full capacity implies that

the network is not congested, and hence µl = 0 for all lines. Therefore, generator i is

paid the other generator’s bid in this case.

By combining the scenarios from the previous discussion, we can write the nodal

prices for generators 1 and 2 as

p1(b,d) =
[
1{b1>b2}1{D>k̃2(d)} + 1{b1≤b2}1{D≤k̃1(d)}

]
b1

+ 1{b1≤b2}1{D>k̃1(d)}(1{k̃1(d)<k1}b1 + 1{k̃1(d)=k1}b2),

(5.11)

p2(b,d) =
[
1{b1≤b2}1{D≥k̃1(d)} + 1{b1>b2}1{D≤k̃2(d)}

]
b2

+ 1{b1>b2}1{D>k̃2(d)}(1{k̃2(d)<k2}b2 + 1{k̃2(d)=k2}b1).

(5.12)
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Notice that the case when b1 > b2 and D ≤ k̃2(d) was not considered for p1 because

generator 1 is not allocated any production in this case. Similarly, the scenario b1 ≤ b2

and D < k̃1(d) does not appear in p2 because generator 2 is not active in this case.

Now that we have characterized the ISO generation allocation decision and clearing

prices as functions of generator bids and demand realizations, we will consider the

generator bidding problem next.

5.3.3 The Generator Problem

A generator’s profit function in this problem has the form shown in Equation

(5.3) but with a location dependent nodal price instead of the uniform price. By

substituting the quantities and prices rom Equations (5.9), (5.10), (5.11), and (5.12),

we can write the two generator profit functions as

π1(b,d) =1{b1≤b2}

[
1{D≤k̃1(d)}(b1 − c1)D

+ 1{D>k̃1(d)}(1{k̃1(d)=k1}b2 + 1{k̃1(d)<k1}b1 − c1)k̃1(d)
]

+ 1{b1>b2}(b1 − c1)(D − k̃2(d))+,

(5.13)

π2(b,d) =1{b1>b2}

[
1{D≤k̃2(d)}(b2 − c2)D

+ 1{D>k̃2(d)}(1{k̃2(d)=k2}b1 + 1{k̃2(d)<k2}b2 − c2)k̃2(d)
]

+ 1{b1≤b2}(b2 − c2)(D − k̃1(d))+.

(5.14)

In a best response problem, a generator determines the bid that maximizes its own

profit in response to the other generator’s (known) bid. Our goal in this subsection

is to characterize the best response bids to find bidding equilibria.

In generator 1’s best response problem, we assume that it knows the other gen-

erator’s bid b2, the demand in every node d, and finds b1 that maximizes its own

profit. Generator 1’s profit function depends on whether it bids below or above b2.

If generator 1 bids b1 ≤ b2 then according to (5.13), it is a weakly dominant strategy
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to bid b2, and if it bids above b2 then bidding p is a dominant strategy. Generator 2

has a similar strategy, but with bidding b1 − ε6 as a weakly dominant strategy when

b2 < b1 and p as a dominant strategy when b2 ≥ b1. Because of their rationality,

generator i bids bi ∈ [ci, p], i = 1, 2, otherwise a generator could make a negative

profit when bi < ci. Since generator 2 never bids below c2 then it is weakly dominant

for generator 1 to never bid below c2. We will consider the weekly dominant strategy

in which both generators bid in [c2, p].

If it is more profitable for generator 1 to bid higher than generator 2 then, from

(5.13), it is always optimal to bid p. Therefore, generator 1 only bids below p to

undercut the second generator. Consequently, a bid b1 ∈ (c2, p) can only be optimal

if b1 ≤ b2. This solution can be an equilibrium if it is profitable for the second

generator to bid higher, in which case it bids p according to (5.14). However, if

generator 2 finds it profitable to bid low then it can undercut b1. This results in

a Bertrand competition in which generators undercut one another, which has an

equilibrium with both generators bidding c2. As a result, there can only be two

possible equilibrium nodal prices in pure strategy; c2 and p. In fact, this result has

the same structure of the original auction problem with no transmission constraints

(see for example Fabra et al. (2006)). Nevertheless, it turns out that transmission

constraints change the generator preferences on whether to bid high or low as we will

see next.

5.3.4 Comparison with the Original Problem

The transmission line capacities affect the solution only when they constrain a

generator’s production. For large enough line capacities the critical ratios r∗(d) > k1

and r̃∗(d) > k2, which makes k̃i(d) = ki for i = 1, 2. When this happens, the

6ε is a small positive number used to break the tie with generator 1.
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production allocation in Equations (5.9) and (5.10) become

q1(b, D) =1{b1≤b2} (D ∧ k1) + 1{b1>b2} (D − k2)+ ,

q2(b, D) =1{b1>b2} (D ∧ k2) + 1{b1≤b2} (D − k1))+ ,

the prices in (5.11) and (5.12) become

p1(b, D) =
[
1{b1>b2}1{D>k2} + 1{b1≤b2}1{D≤k1}

]
b1 + 1{b1≤b2}1{D>k1}b2,

p2(b, D) =
[
1{b1≤b2}1{D≥k1} + 1{b1>b2}1{D≤k2}

]
b2 + 1{b1>b2}1{D>k2}b1,

and the profits in (5.13) and (5.14) become

π1(b, D) =1{b1≤b2}

[
1{D≤k1}(b1 − c1)D + 1{D>k1}(b2 − c1)k1

]
+ 1{b1>b2}(b1 − c1)(D − k2)+,

π2(b, D) =1{b1>b2}

[
1{D≤k2}(b2 − c2)D + 1{D>k2}(b1 − c2)k2

]
+ 1{b1≤b2}(b2 − c2)(D − k1)+.

In this problem, the first generator bids c2 when the demand is low, but when

it rises above k1 then the equilibrium price is p (either generator may be marginal).

However, when k1 > k2 there may be a demand below k1 but above k2 at which

generator 1 prefers to change its policy and raise its bid to p at some production

loss to the second generator, which would be compensated by the high clearing price.

This critical demand value is the point at which generator 1 is indifferent between

bidding high and bidding low, which satisfies the equation

(c2 − c1)D = (p− c1)(D − k2).

This gives the indifference demand level D = p−c1
p−c2k2. Therefore, the price rises from
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c2 to p when the demand either exceeds this level or exceeds k1, whichever occurs

first. Hence, as D increases, the price starts at c2 for low demands, jumps to p at

D∗ = k1 ∧
(
p−c1
p−c2k2

)
, and remains at p for high demand values.

To compare the transmission constrained problem with the original problem, we

will assume that the demand increases uniformly in every node as D increases. That

is, if D0 > 0 with a demand vector d0, then d1 = D1

D0 d
0 for the demand level D1 with

the demand vector d1. For a sufficiently small demand, the transmission network is

not capacitated and the cheaper generator can satisfy the entire demand by bidding

c2, which gives a price of c2 in all nodes. As the demand is increased the price in node

1 would jump to p at some point. If k̃1(d) = k1 for some d then the transmission

constraint does not limit generator 1’s production and the same analysis for the

unconstrained case holds. However, if k̃1(d) < k1 for demand vector d, then generator

1 is constrained not by its own capacity, but by the network. Under this scenario,

node 1’s price is high if the demand exceeds either k1 or p−c1
p−c2 k̃2(d) as before, but we

also need to considers the case when k̃1(d) < D < k1. In such a scenario, according

to (5.13), generator 1 always gets its price when it bids low, but also gets to sell its

maximum potential k̃1(d). The indifference demand level between bidding c2 and p

when k̃1(d) < D < k1 satisfies

(c2 − c1)k̃1(d) = (p− c1)(D − k̃2(d))

⇒D =
c2 − c1

p− c1

k̃1(d) + k̃2(d).

Consequently, node 1’s price will be high if D exceeds both this level and k̃1(d).

Therefore, the critical demand level at which prices jump from c2 to p in node 1 is

D∗ = min

{
k1,

p− c1

p− c2

k̃2(d∗),max

{
k̃1(d∗),

c2 − c1

p− c1

k̃1(d∗) + k̃2(d∗)

}}
. (5.15)

Indeed, this formula is a generalization of the duopoly problem when network
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constraints are considered. To derive the non-constrained network solution with a

critical demand D∗ = k1 ∧
(
p−c1
p−c2k2

)
from (5.15) we can take all line capacities f l,

l ∈ L, to be sufficiently large, which makes k̃i(d) = ki, i = 1, 2, for every feasible

d. The max term in (5.15) becomes max{k1,
c2−c1
p−c1 k1 + k2}. If k1 ≥ c2−c1

p−c1 k1 + k2

then this max term becomes k1, which makes D∗ = k1 ∧
(
p−c1
p−c2k2

)
. On the other

hand, if k1 <
c2−c1
p−c1 k1 + k2 then this max term becomes c2−c1

p−c1 k1 + k2, which can be

disregarded because it is obviously larger than the first term in the min operator in

(5.15). Therefore, in either case the price jumps from c2 to p at the critical demand

level D∗ = k1∧
(
p−c1
p−c2k2

)
when the network is not congested, which is identical to the

solution when there are no network constraints. By taking k̃i(d) = ki, i = 1, 2, it can

also be verified that the system has the same uniform price and all generators would

behave as in the non-network constrained problem.

We have shown in this subsection that including network congestion in our two

stage market mechanism starting with an auction then moving to a network economic

dispatch problem requires some work in calculating power transfer distribution fac-

tors and effective capacities under different demand realizations, but the equilibrium

structure remains unchanged. The main insight in this section is that accounting for

transmission capacity constraints in the Bertrand duopoly model does not change the

solution structure nor does it significantly complicate the calculations. This result

holds because setting a slack generator reduces the number of decision variables in

the ISO problem (A.5)-(A.8) to one, and the allocation to this generator can be ex-

pressed in terms of the relative values of the two generator bids. Unfortunately, we

could not use a a similar approach when the network has more than two generators

because (A.5)-(A.8) becomes a multivariable linear program.
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5.4 Symmetric Mixed Strategy Nash Equilibrium for Multi-

ple Generators with Stochastic Demand

The price bidding equilibrium model becomes more difficult when the demand

is modeled as a stochastic process. PSNE may not even exists in this stochastic

demand case7. Fabra et al. (2006) derive the MSNE for the two generator game.

When there are multiple generators all the different bid orders have to be accounted

for when solving for a mixed strategy equilibrium. This problem becomes increasingly

more complicated as the number of generator’s increase because accounting for all

scenarios becomes a combinatorial problem. Even if brute force enumeration is used

to attain all possible scenarios, getting the mixed strategies requires solving an ODE

system, one ODE for every generator, with all these combinatorial terms. Solving

this system could be numerically achievable for small problems, but may not provide

useful insights.

To study the competitive behaviour of multiple firms we assume in this section that

all firms have identical costs and capacities, and we focus on the class of symmetric

equilibria. These assumptions make the model much more tractable and can lead to

closed form solutions for many special cases. We will go over the problem’s model in

§5.4.1 and derive an ODE that can be used to attain the mixed strategy equilibria.

We will then present a duopoly example in §5.4.2 and an oligopoly example with a

uniform demand in §5.4.3. Our main goal from this section is to find the generator

equilibrium strategies in order to understand how the number of generators, their

costs, the market price ceiling, and the demand distribution affect the competition

and the market prices.

7See for example Proposition 4 in von der Fehr and Harbor (1993).
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5.4.1 The Model

Our problem has n generators each with a capacity k and a fixed marginal cost

c. Let D be the random variable representing the stochastic consumer demand. Let

b = (b1, · · · , bn) be the generator bid vector. Let b(i) be the ith smallest bid, so

b(1) ≤ b(2) ≤ · · · ≤ b(n). We will partition the demand range into n left continuous

equilength intervals, where the jth interval is Ij = ((j − 1)k, jk]. Generator i’s payoff

from bidding bi where the remaining bids are b−i is given by

πi(bi, b−i) =
n∑
j=1

1{D∈Ij}

[
1{bi=b(j)}(D − (j − 1)k)(bi − c) + 1{b(j)>bi}k(b(j) − c)

]
.

Now consider the case when generator i chooses its bid when the other generators

randomize their bids. Let B be the random variable of the other generator bids with

distribution FB, density fB, FB(x) = 1−FB(x), and support [b, p]. We will denote the

ith order statistic (ith smallest) random variable among the n− 1 generators by B(i).

We will denote the probability of the demand being in interval Ij by PDj
def
= P{D ∈

Ij} and the expected excess demand in interval Ij by EDj
def
= E[D|D ∈ Ij]− (j− 1)k.

If generator i bids bi and the remaining n− 1 generators bid according to the mixed

strategy then generator i’s expected payoff is

E[πi(bi)] =
n∑
j=1

PDj

[
P{B(j−1) ≤ bi < B(j)}EDj(bi − c)

+ P{B(j−1) > bi}k(E[B(j−1)|B(j−1) > bi]− c)
]
.

(5.16)

Notice that this expectation is taken with respect to the demand D and the n − 1

generator bids that are drawn from FB, while bi in this formula is an input variable.

We use the convention B(0) < c and B(n) > p in (5.16). The following theorem gives

the ODE that characterizes the symmetric MSNE for this game.

Theorem V.1. The symmetric mixed strategy bid distribution is the solution to the
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ODE

n∑
j=1

PEDj
(n− 1)!

(j − 1)!(n− j)!
FB(x)j−1FB(x)n−j

+ (x− c)fB(x)
n−1∑
j=1

(∆PEDj − kPDj+1)
(n− 1)!

(j − 1)!(n− j − 1)!
FB(x)j−1FB(x)n−j−1 = 0.

(5.17)

The proof of this theorem can be found in Appendix E.

We will go over two examples next where the solution to (5.17) can be expressed

in closed form.

5.4.2 Duopoly Model Example

In a duopoly model with two symmetric generators, the demand has support

(0, 2k]. If D never exceeds k then a trivial pure strategy equilibrium exists where

at least one generator bids c and satisfies the entire demand. We will therefore

assume that D has a a continuous distribution FD with FD(k) = 1 − FD(k) > 08.

We can write the problem parameters as PD1 = FD(k), PD2 = FD(k), PED1 =

FD(k)E[D|D ≤ k], PED2 = FD(k)(E[D|D > k] − k), and ∆PED1 = PED2 −

PED1 = E
[
D
(
1{D>k} − 1{D≤k}

)]
− kFD(k). We can substitute n = 2 in (5.17) to

get the following differential equation for the symmetric duopoly model.

PED1FB(x) + PED2FB(x) + (∆PED1 − kFD(k))(x− c)fB(x) = 0

⇒PED1 + ∆PED1FB(x) + (∆PED1 − kPD2)(x− c)fB(x) = 0.

8If FD(k) = 1 then the problem becomes trivial and both generators bid c with probability 1.
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This differential equation has the solution

FB(x) =

 K1(x− c)α − PED1

∆PED1
; if ∆PED1 6= 0,

PDE1

kFD(k)
ln(x− c) +K2; if ∆PED1 = 0,

where K1 and K2 are constants determined by the boundary conditions and

α = − ∆PED1

∆PED1 − kFD(k)
.

Notice that ∆PED1 < kFD(k) because otherwise

E
[
D
(
1{D>k} − 1{D≤k}

)]
≥ 2kFD(k)

⇒FD(k) (2k − E[D|D > k]) ≤ −FD(k)E[D|D ≤ k].

If FD(k) > 0 and FD is continuous on (0, 2k], then the LHS of this inequality would

be positive and the RHS would be non-positive, which is a contradiction. Therefore,

α = 0 if ∆PED1 = 0 and α > 0 when ∆PED1 6= 0.

Using the the boundary condition FB(p) = 1 we get the following integration

constants

K1 =

(
1 +

PED1

∆PED1

)
(p− c)−α,

K2 =1− PDE1

kFD(k)
ln(p− c).

By substituting these constants the distribution becomes

FB(x) =


PED2

∆PED1

(
x−c
p−c

)α
− PED1

∆PED1
; if ∆PED1 6= 0,

1− PDE1

kFD(k)
ln
(
p−c
x−c

)
; if ∆PED1 = 0.

(5.18)
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The lower bid bound b can be calculated by setting FB(p) = 0, which gives

b =

 c+ (p− c)
(
PED1

PED2

)1/α

; if ∆PED1 6= 0,

c+ (p− c)e−
kFD(k)

PDE1 ; if ∆PED1 = 0.
(5.19)

The lower bidding bound is greater than c, with b ↓ c when FD(k) ↓ 0. This confirms

that (5.17) gives the symmetric version of the stochastic model by Fabra et al. (2006)

when n = 2.

5.4.3 Uniform Demand Model Example

We consider in this subsection the case when the demand is uniformly distributed

in (0, nk]. The problem parameters become PDj = 1
n
, EDj = k

2
, PEDj = k

2n
, and

∆PEDj = 0 ∀ j, and the differential equation (5.17) simplifies to

k

2n
− k

n
xf(x)(n− 1) = 0.

Therefore,

fB(x) =
1

2(n− 1)(x− c)
. (5.20)

The cdf of the mixed strategy has the form

FB(x) =
1

2(n− 1)
ln(x− c) +K,

where K is an integration constant. By using the boundary condition FB(p) = 1 then

K = 1− 1

2(n− 1)
ln(p− c).
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Therefore, the mixed strategy cdf is

FB(x) = 1− 1

2(n− 1)
ln

(
p− c
x− c

)
. (5.21)

The minimum bid that satisfies FB(b) = 0 is

b = c+ (p− c)e−2(n−1). (5.22)

The expected generator bid is

E[B] =

p∫
b

xfB(x) dx =
1

2(n− 1)
[c ln(x− c) + x]pb

=
1

2(n− 1)

[
c ln(p− c) + p− c ln

(
(p− c)e−2(n−1)

)
− c− (p− c)e−2(n−1)

]
=

1

2(n− 1)

[
p+ 2(n− 1)c− c− (p− c)e−2(n−1)

]
= c+

p− c
2(n− 1)

[
1− e−2(n−1)

]
.

The expected value of the jth largest bid is

E[B(j)] =

p∫
b

xfB(j)
(x) dx =

n!

(j − 1)!(n− j)!

p∫
b

xf(x)FB(x)j−1FB(x)n−j dx.

Notice that the distribution of this order statistic is different from the one used in

the derivation of Equation (5.17) because all n generators are accounted for in this

ordering, while only n − 1 generators were used in Equation (5.17)’s derivation. We
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can use this expectation to calculate the expected spot price

E[P ] =
n∑
j=1

PDjE[B(j)] =
1

n

n∑
j=1

E[B(j)]

=

p∫
b

xfB(x)

[
n∑
j=1

(n− 1)!

(j − 1)!(n− j)!
FB(x)j−1FB(x)n−j

]
dx =

p∫
b

xfB(x) dx = E[B]

=c+
p− c

2(n− 1)

[
1− e−2(n−1)

]
.

This result shows that the average price increases linearly with the price ceiling p

and the generator marginal cost c, but decreases nonlinearly with the number of

generators n.
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CHAPTER VI

Incentive Design for Optimal Electricity Network

Transmission Expansion

6.1 Introduction

The sustainable development of electric power networks is a pressing issue in many

regions, and according to Hogan (2008) there is currently very little incentives for in-

vestors. The electricity network is recognized as a natural monopoly (Hogan (1992)),

and most of the transmission expansions in electricity networks are traditionally car-

ried out by a central planner, such as the government or a regulated transmission

company. The central planner chooses the transmission line paths and determines

their capacities to maximizes the collective social welfare. This problem can be for-

mulated as a mixed integer programming problem (Binato et al. (2001), Alguacil et al.

(2003), and de la Torre et al. (2008)). Congestion-driven methods, such as Shrestha

and Fonseka (2004), are also commonly used to make investment decisions. There is

an abundance of transmission expansion planning models in the literature. Latorre

et al. (2003) classifies some of these publications.

One distinct feature of electric networks is the loop flow phenomenon, which entails

that an electricity injection in a node flows in every transmission line in the network

according to Kirchhoff’s laws. This causes free riding and public goods sharing issues
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and can deter network investments. Nevertheless, several mechanisms have been

proposed to attract investors. Among the most popular mechanisms are the coalition

investment and the merchant investment models. We will consider these two models

in this chapter.

In the coalition investment model, generation companies and electricity retailers

invest in transmission lines to access distant markets. This model became popular

after its successful implementation in Argentina in the mid 1990’s as depicted in

Littlechild and Skerk (2008). Cooperative game theory is commonly used to study

the investor coalition formation. For example, Contreras and Wu (1999) studies the

coalition formation and the investment cost allocation using Shapely values, while

Contreras and Wu (2000) considers kernel-stable coalitions. The benefits from a

transmission expansion are unevenly realized by the network agents. In fact, some

generators and customers may even be harmed by transmission expansions. Subse-

quently, coalitions are formed among agents that benefit from the investment, and

an agent’s investment share often depends on the agent’s benefit from the transmis-

sion expansion. The physical network usage can also form a basis for allocating the

investment costs as proposed by Conejo et al. (2007). Although some non-investors

may also benefit from the expansion, the investors usually share most of the benefits.

In the merchant investment model, an independent investor seeks monetary gains

from the transmission rent. This gains come in the form of financial transmission

rights (FTR) that specify nodal injections in the network that the investor is entitled

to. The investor ultimately benefits from collecting the monetary value of these

nodal injections. The FTR concept has been adopted in many networks, and their

benefits can also be realized by coalition investors. Several variants and hybrids of the

merchant investment model have been considered, such as the merchant-regulatory

mechanism proposed by Hogan et al. (2010). New transmission capacity often changes

the topology of the network and affects the profits of generators, consumers, as well
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as transmission line owners. In fact, many of the ongoing transmission market design

efforts aim at encouraging investments and protecting market participants from future

network modifications.

Building new transmission lines relieves congestion in the network, which can

affect the revenue of existing transmission line owners. Hogan (2011) uses a simple

two node example to illustrate this phenomenon. To limit this effect, some have

proposed mechanisms that reward existing FTR owners whenever a transmission

expansion is made. For example, Kristiansen and Rosellón (2013) propose a method

for awarding incremental FTRs that maintains revenue adequacy for existing FTR

holders. We will not address this effect in this chapter and leave it as a possible

future research direction. Another approach proposed by Contreras et al. (2009) is to

use Shapley values to allocate the total rewards from the investments to the different

investors based on the value added by each transmission line.

Transmission capacity expansions can also influence the generation competition.

Borenstein et al. (2000) study the capacity of a transmission line connecting two

nodes with symmetric generating firms and customers. They show that increasing

the transmission line capacity can substantially improve competition. Sauma and

Oren (2009) reach the same conclusion from studying a similar two node problem

but with asymmetric generators and consumers between the two nodes. They also

conclude that the cheaper generator has the correct capacity investment incentive.

In this chapter, we analyze the incentives of the coalition and merchant investment

models for a general network topology. Although certain transmission expansions may

reduce the operating efficiency and/or network capacity, we only consider expansions

that are overall beneficial. We assume that the expansion paths are determined and

study the capacity increment under each investment model. We first present the so-

cially optimal expansion increments in §6.3.1, then consider the merchant investment

model in §6.3.2 and the coalition investment model in §6.3.3. We show that neither
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of these models achieves the socially optimal capacity increment. We then consider

in §6.3.4 and §6.3.5 two investment setups that are based on the merchant investor

mechanism. We show that these two models yield near optimal investment levels. We

then compare the different mechanisms using the IEEE 14 bus test system in 6.4 and

conclude this chapter with some future research considerations in 6.5.

6.2 Background

We will use in this chapter the DC power network model shown in Appendix

A. Specifically, we will use the optimal dispatch problem but without generator

capacities, which is given by the subset of the problem (A.5)-(A.7) rather than the

complete problem (A.5)-(A.8).

6.2.1 Problem Description

Consider an electricity network with a set of nodes N and directed transmission

line arcs L. Without loss of generality, assume that each node i ∈ N has at most a

single generator and a single customer. A generator / load located in node i is indexed

by i. Generator i incurs a cost rate Ci(q) (in $ per unit time) from generating q electric

power units, and load i has a benefit rate Bi(q) (in $ per unit time) from consuming q

power units. The functions Ci are increasing convex functions and Bi are increasing

concave functions ∀ i ∈ N . Starting with a line capacity K0, the network operator

wants to make capacity increments to each line according to the increment vector

∆. Such an investment relieves congestion and improves the social welfare, but costs

I(K0,∆), where I is a jointly increasing and concave function in ∆.
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6.2.2 Optimal Dispatch Problem

Consider a network with the set of line capacities K. The ISO allocates production

and consumption levels, qs and qd, to maximize the social welfare defined as

SW (K)
def
=
∑
i

(
Bi(q

d
i (K)− Ci(qsi (K)

)
.

The ISO must ensure the feasibility of nodal injections by constraining them to the

set

Q(K) =
{

(qs,qd) ∈ RN
+ × RN

+ : −K ≤ H(qs − qd) ≤ K
}
.

This ISO’s allocation problem, known as the optimal dispatch problem, is given by

OD(K) = max
(qs,qd)∈Q(K)

{∑
i

[Bi(q
d
i )− Ci(qsi )]

}
.

We can consider this formulation as special case of problem (A.5)-(A.7) when the

injection into node i is qi = qsi −qdi and the generation cost in node i is Ci(q
s
i )−Bi(q

d
i ).

We will denote the solution to the optimal dispatch problem when the line capacities

are K as qs(K) and qd(K) with individual nodal injection into node i as qsi (K) and

extraction (i.e. negative injection) from node i as qdi (K). To satisfy the first order

conditions, a solution to the optimal dispatch problem must satisfy1

B
′

i(q
d
i (K)) = C

′

i(q
s
i (K)) ∀ i.

In other words, in an optimal solution the marginal benefit from consumption in a

node equals the marginal cost of producing electricity from the node. This marginal

cost / benefit equals the electricity LMP pi(K), which is the uniform price customers

1This is equivalent to the first order condition in Equation (A.9), but since the generation capacity
constraint is not accounted for we can assume that γi is zero for all nodes.
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in node i pay for their entire consumption and suppliers in node i receive for their

entire production. Therefore, the surpluses of suppliers and customers in node i are

πsi (K) = pi(K)qsi (K)− Ci(qsi (K)), πdi (K) = Bi(q
d
i (K))− pi(K)qdi (K).

Because different nodes may have different prices and supply may not equal the

demand at a node, the consumer payments to the system may exceed the amount

collected by the generators. This difference given by

TR(K)
def
=
∑
i

pi(K)(qdi (K)− qsi (K))

is known as the transmission rent, and is paid to the transmission line owners. This

formula can be written in vector format as p(K)>T (K) where

T (K)
def
= qd(K)− qs(K).

The total producer and consumer surplus is

Π(K)
def
=
∑
i

(
πsi (q

s
i (K)) + πdi (q

d
i (K))

)
=
∑
i

[
pi(K)

(
qsi (K)− qdi (K)

)
+Bi(q

d
i (K))− Ci(qsi (K))

]
,

and the social welfare can be expressed as

SW (K) =Π(K) + TR(K).

In other words, the social welfare of the system is given by the total benefits of the

producers, consumers, as well as the transmission line owners. The difference in

nodal prices in our model is caused by transmission line congestion2, which implies

2Transmission losses may also play a role in the difference in nodal prices, but we do not consider
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that owners of congested transmission lines get larger transmission rent allocations.

The most common allocation method is based on point to point FTRs.

6.2.3 Financial Transmission Rights

The owners of a transmission network are collectively paid the transmission rent

TR(K) = p(K)>T (K). Correspondingly, the owners of the transmission network

have the right to collect the profits on the injection vector T (K) given the price

vector p(K). The vector T (K) is known as the aggregate node to node FTR. If there

are multiple transmission line owners, each owner is assigned a FTR vetor τ , and all

FTRs sum to T (K).

Definition VI.1 (Financial Transmission Rights (FTR)). A point to point financial

transmission right is a non-zero vector τ ∈ RN , where a positive entry signifies power

injection at a node and a negative entry signifies power generation at the node.

A transmission owner k with FTR τ k is obligated to collect or make payments

that match the generated and consumed generation values according to τ k at the

spot prices. The value of a transmission right τ k is
∑

i piτ
k
i , where pi is the spot

price at node i. The total FTRs in a network T =
∑

k τ
k is simultaneously feasible if

−T ∈ Q(K). A necessary condition for financial feasibility is revenue adequacy, which

requires that the surplus the ISO collects be at least as large as the required FTR

paymens. It can be shown that a simultaneously feasible FTR satisfies the revenue

adequacy condition3:

∑
i

pi(K)(qdi (K)− qsi (K)) ≥
∑
i

pi(K)(qdi − qsi ) ∀ (qs,qd) ∈ Q(K).

This result obviously applies to an FTR T (K) since −T (K) ∈ Q(K). If the sum of

FTRs in a network with line capacities K0 is T (K0), then an investor that raises the

their effect in this chapter.
3See for example Hogan (2002).
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line capacity to K1 is assigned the incremental FTR

τ(K1, T (K0)) = T (K1)− T (K0) =
(
qd(K1)− qd(K0)

)
− (qs(K1)− qs(K0)) .

(6.1)

Naturally, no rational agent would make the capacity investment unless

p(K1)>τ(K1, T (K0)) ≥ 0.

6.3 Transmission Investment Models

6.3.1 Centralized Transmission Investment Problem

In this problem a social welfare maximizing entity, such as the government or a

regulated transmission company, expands the transmission line capacities to relieve

congestion and improve the aggregate profit of producers and consumers. Starting

with the transmission line capacity vector K0, expanding the transmission lines by

the capacity vector ∆ gives a social welfare improvement

SW (K0,∆)
def
=OD(K0 + ∆)−

∑
l

Il(Kl,∆l)

=
∑
i

[
Bi(q

d
i (K0 + ∆))− Ci(qsi (K0 + ∆))

]
−
∑
l

Il(Kl,∆l).

To get the optimal investment, the central planner chooses ∆ that maximizes

SW ∗(K0)
def
= max

∆≥0
{SW (K0,∆)} .

We will focus on the investment in a single line l throughout this chapter. Let the

incremental capacity vector ∆l be the vector of zeros for all entries k 6= l and ∆l for
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line l’s entry. The first order optimality condition for ∆l is

∂I

∂∆l

(K0,∆l) =
∑
i

[
B
′

i(q
d
i (K0 + ∆l))

∂qdi (K0 + ∆l)

∂∆l

− C ′i(qsi (K0 + ∆l))
∂qsi (K0 + ∆l)

∂∆l

]
=
∑
i

pi(K0 + ∆l)

(
∂qdi (K0 + ∆l)

∂∆l

− ∂qsi (K0 + ∆l)

∂∆l

)
. (6.2)

Therefore, the central planner should invest in increasing the capacity of line l so

that the marginal benefits from the capacity expansion equals the marginal cost of

the investment.

6.3.2 Merchant Investment Model

A merchant investor is a transmission line investor that neither supplies or con-

sumes power nor owns existing FTRs in the network. If the transmission capacity

vector is initially K0 with total FTRs T (K0) allocated to existing network owners,

the merchant would gain the FTR

τ(K0 + ∆, T (K0)) = qd(K0 + ∆)− qs(K0 + ∆)− T (K0)

from an investment in capacity ∆, but would also incur the investment costs I(K0,∆).

If we consider the problem of investing in a single line l, then the merchant’s surplus

from adding capacity ∆l to line l would be

π(K0,∆l) = p(K0 + ∆l)
T τ(K0 + ∆l, T (K0))− I(K0,∆l). (6.3)

The optimal merchant investment ∆l makes the marginal benefits from incre-

mental FTRs equal to the marginal investment as the following first order condition
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indicates.

∂I

∂∆
(K0,∆l) =

∑
i

pi(K0 + ∆l)

(
∂qdi (K0 + ∆l)

∂∆l

− ∂qsi (K0 + ∆l)

∂∆l

)
+
∑
i

∂pi
∂∆l

(K0 + ∆l)(q
d
i (K0 + ∆l)− qsi (K0 + ∆l)− Ti(K0)).

(6.4)

The last term in this formula is generally negative, which gives merchants an incentive

to underinvest when compared to the socially optimal investment in (6.2). The in-

tuition for this underinvestment is that a merchant benefits from congestion because

it causes large price discrepancies between nodes, and hence the merchant would be

willing to lower the magnitude of the FTR injections to raise electricity prices. If the

expansion does not cause significant price changes in the network, then the second

line in (6.4) becomes small and the transmission expansion would be close to the

social optimal. Although the merchant investor model may seem as an attractive

alternative to the centralized transmission approach, this model also has its fair share

of criticism. Joskow and Tirole (2005), for example, point out that many challenges

of the electricity markets that are not accounted for in the merchant investor model

can cause significant inefficiencies.

6.3.3 Coalition Investment Model

In this model, a coalition of agents P make a transmission investment of capacity

∆. A coalition may include both suppliers and consumers. We denote the set of

nodes with suppliers and consumers in P as P s and P d respectively. The coalition’s

gain has 2 parts: (1) the incremental FTRs from the transmission expansion, and (2)

the increased surplus due to the nodal price and quantity changes. If the coalition

invests in increasing the line capacities from K0 by ∆ with existing aggregate FTR
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T (K0), then the coalition’s FTR gain is

∑
i

pi(K0 + ∆)
[
qdi (K0 + ∆)− qsi (K0 + ∆)− Ti(K0)

]
,

and its surplus gain is

∑
i∈P s

[pi(K0 + ∆)qsi (K0 + ∆)− pi(K0)qsi (K0)− Ci(qsi (K0 + ∆)) + Ci(q
s
i (K0))]

+
∑
i∈P d

[
Bi(q

d
i (K0 + ∆))−Bi(q

d
i (K0))− pi(K0 + ∆)qdi (K0 + ∆) + pi(K0)qdi (K0)

]
.

By combining the different cost and revenue terms, we can write coalition P ’s profit

function as

πP (K0,∆) =
∑
i∈P s

(qsi (K0) (pi(K0 + ∆)− p(K0)) + Ci(q
s
i (K0))− Ci(qsi (K0 + ∆)))

+
∑
i∈P d

(
Bi(q

d
i (K0 + ∆)−Bi(q

d
i (K0)) + qdi (K0) (pi(K0)− pi(K0 + ∆))

)
+
∑
i/∈P s

pi(K0 + ∆) (qsi (K0)− qsi (K0 + ∆))

+
∑
i/∈P d

pi(K0 + ∆)
(
qdi (K0 + ∆)− qdi (K0)

)
− I(K0,∆).

This model, in general, does not give the socially optimal investment that satisfies

(6.2). Coalitions with expensive generators and customers with access to cheap gen-

eration tend to have an incentive to underinvest in order to limit competition, while

coalitions with cheap generators and expensive customers tend have an incentive to

over-invest in order to reach other customers or access to cheap generation. Clearly,

the central planner’s problem and the merchant model are special cases of this model

with P = N and P = φ respectively.
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6.3.4 Competitive Merchant Investment Model

We consider in this model the problem where M identical merchant investors

expand the network simultaneously. A merchant investor j makes a decision to expand

the line l by ∆j
l (expansion vector is ∆j

l with ∆j
l as line l’s entry and 0 everywhere

else) according to equation (6.4), but with an initial transmission line capacity Kj
0 =

K0 +
∑

k 6=j ∆k
l and an initial FTR allocation T j = T (K0) +

∑
k 6=j τ(Kk

0, T
k). Hence,

merchant j’s expansion satisfies

∂I

∂∆l

(Kj
0,∆

j
l ) =

∑
i

pi(K
j
0 + ∆j

l )

(
∂qdi
∂∆l

− ∂qsi
∂∆l

)
(Kj

0 + ∆j
l )

+
∑
i

∂pi
∂∆l

(Kj
0 + ∆j

l )(q
d
i (K

j
0 + ∆j

l )− q
s
i (K

j
0 + ∆j

l )− T
j
i ).

(6.5)

By symmetry, ∆j
l = ∆k

l = ∆l and T j = T k = T̂ ∀ j and k. Therefore, Kj
0 =

K0 + (M − 1)∆j and T̂ = T (K0) + (M − 1)τ(K0 + (M − 1)∆l, T̂ ). We can further

expand T̂ as

T̂ =T + (M − 1)
(
qd(K0 + (M − 1)∆l)− qs(K0 + (M − 1)∆l)− T̂

)
=
T

M
+
M − 1

M

(
qd(K0 + (M − 1)∆l)− qs(K0 + (M − 1)∆l)

)
.
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This result can be used to calculate a single merchant’s FTR as

τ(K0 +M∆, T̂ ) =qd(K0 +M∆l)− qs(K0 +M∆l)− T̂

=

[
qd(K0 +M∆l)−

M − 1

M
qd(K0 + (M − 1)∆l)

]
−
[
qs(K0 +M∆l)−

M − 1

M
qs(K0 + (M − 1)∆l)

]
− T

M

=
[
qd(K0 +M∆l)− qd(K0 + (M − 1)∆l)

]
− [qs(K0 +M∆l)− qs(K0 + (M − 1)∆l)]

+
1

M

[
qd(K0 + (M − 1)∆l)− qs(K0 + (M − 1)∆l)− T

]
.

Under the assumptions that qsi and qdi are smooth, bounded, and monotone with

respect to ∆l, then τ(K0 + M∆l, T̂ ) goes to 0 as M → ∞. We can substitute this

result back into (6.5) to get

∂I

∂∆l

(Kj
0,∆

j
l ) =

∑
i

pi(K0 +M∆l)

(
∂qdi
∂∆l

− ∂qsi
∂∆l

)
(K0 +M∆l)

+
∑
i

∂pi
∂∆l

(K0 +M∆l)
[
qdi (K0 +M∆l)− qdi (K0 + (M − 1)∆l)

]
−
∑
i

∂pi
∂∆l

(K0 +M∆l) [qsi (K0 +M∆l)− qsi (K0 + (M − 1)∆l)]

+
1

M

∑
i

∂pi
∂∆l

(K0 +M∆l)
[
qdi (K0 + (M − 1)∆l)− qsi (K0 + (M − 1)∆l)− T

]
.

We will let M →∞ to reflect a perfectly competitive market. If there exists a solution

∆̃l = limM→∞M∆l <∞ then all the terms except for the first sum cancel as M →∞
4. The increment in this case would be ∆̃l

5 and the competitive equilibrium would

4Under the assumptions that qsi and qdi are smooth, bounded, and monotone and that ∂pi

∂∆
l
′

is

bounded.
5∆̃l is a vector of zeros for lines k 6= l and ∆̃l for line l.
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satisfy

∂I

∂∆l

(K0, ∆̃l) =
∑
i

pi(K0 + ∆̃l)

(
∂qdi
∂∆̃l

− ∂qsi
∂∆̃l

)
(K0 + ∆̃l). (6.6)

If we further assume that investment costs are not path dependent6, then (6.6) and

(6.2) become equivalent, and the competitive equilibrium coincides with the socially

optimal solution.

6.3.5 Capacity Bidding Model

In this model, a public auction is conducted in which transmission investment

companies compete for building a transmission line l in a network with initial trans-

mission capacity K0. Investment companies bid for the capacity they are willing to

add to line l, and the bidder with the largest capacity increment bid wins the

auction, builds the line with the proposed increment, and collects a FTR according

to (6.1). In case of a tie, the winner is chosen randomly from the maximum capacity

bidders with equal winning probability for each player. We assume in this model that

all bidders are merchant investors with profit functions given by (6.3) for the winning

bidder. We will denote the optimal merchant investment that solves (6.4) by ∆∗l , and

the capacity at which an agent is indifferent between investing and not investing by

∆l. This indifference capacity is the solution to the following equation.

I(K0,∆l) =
∑
i

pi(K0 + ∆l)
(
qdi (K0 + ∆l)− qsi (K0 + ∆l)− Ti

)
.

Consider agent k’s best response problem to a set of generators −k with a maxi-

mum capacity bid ∆−kl . Agent k’s preferred scenario is to win the auction with a bid

6An investment in a transmission line is not path dependent if expanding a line’s capacity from A
to A+B then from A+B to A+B+C is the same as expanding it from A to A+C and then from A+C
to A+B+C. In terms of I this can be expressed as I(A+B,A+B+C) = I(A+C,A+B+C). This
assumption in transmission investment is also made by Vogelsang (2001). An investment function
with a constant marginal cost falls under this category.
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∆∗l . Therefore, agent k always bids ∆∗l when ∆−kl < ∆∗l . If the highest bid from other

generators equals or exceeds ∆∗l then agent k would want to win if his winning bid

does not exceed ∆l. Therefore, as long as ∆−kl < ∆l then k would rather win the bid.

Since agent k’s profit is decreasing in ∆k
l in the region [∆∗l ,∆l], then k minimizes his

bid in this region. Bidding exactly ∆−kl would create a tie, in which case agent k’s

expected profit would be divided by the number of agents bidding ∆−kl , and hence

agent k bids slightly over ∆−kl to secure a win. If ∆−kl = ∆l then agent k makes a

negative profit if he bids over ∆l and makes a zero profit if he ties the bid or looses the

auction. Therefore, agent k is indifferent between tying the largest bid and loosing

the auction and bids ∆k
l ≤ ∆l. Finally, if ∆−kl exceeds ∆l agent k cannot profitably

win the auction, and would bid ∆k
l < ∆−kl . Agent k’s bid ∆k

l is summarized in the

following best response correspondence.

BRk(∆
−k
l ) =



∆∗l , if ∆−kl < ∆∗l ;

∆−kl + ε, if ∆−kl ∈ [∆∗l ,∆l);

≤ ∆l, if ∆−kl = ∆l;

< ∆−kl , if ∆−kl > ∆l.

ε in this expression is a small positive increment that agent k makes to win the

auction. Figure 6.1 illustrates the best response bids for a two agent problem. Agent

1’s bid in this Figure when ∆2
l ∈ [∆∗l , Dl) is slightly below the dashed line, while

agent 2’s bid when ∆1
l ∈ [∆∗l , Dl) is slightly above the dashed line. The two best

response correspondences only intersect in (∆l,∆l). Therefore, this problem has a

unique PSNE in which every agent bids ∆l.
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Figure 6.1: Best responses plot for 2 investors in the capacity bidding model.

Linear Investment Model

We consider in this subsection a linear investment cost model

I(K0,∆l) = Il∆l.

We assume that Il is a constant marginal expansion cost for all agents. Since the

only equilibrium winning bid in this problem is ∆l, the investment expansion would

satisfy

Il∆l =
∑
i

pi(K0 + ∆l)
(
qdi (K0 + ∆l)− qsi (K0 + ∆l)− Ti

)
⇒Il =

∑
i

pi(K0 + ∆l)

(
qdi (K0 + ∆l)

∆l

− qsi (K0 + ∆l)

∆l

− Ti

∆l

)
.

By substituting T = qd(K0)− qs(K0), then

Il =
∑
i

pi(K0 + ∆l)

(
qdi (K0 + ∆l)− qdi (K0)

∆l

− qsi (K0 + ∆l)− qsi (K0)

∆l

)
.

If ∆̄ is small compared to the existing transmission line capacity in the network

and if the change in supply and demand quantities due to this change is relatively
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small, then we can approximate

qdn(K0 + ∆l)− qdn(K0)

∆l

≈ ∂qdn
∂∆l

(K0 + ∆l) and
qsn(K0 + ∆l)− qsn(K0)

∆l

≈ ∂qsn
∂∆l

(K0 + ∆l).

Hence,

Il′ ≈
∑
n

pn(K0 + ∆̄)

(
∂qdn
∂∆l′

(K0 + ∆̄)− ∂qsn
∂∆l′

(K0 + ∆̄)

)
.

By comparing this to (6.2) we can conclude that this mechanism gives an approximate

socially optimal solution when the investment cost is linear and the increment is not

very large compared to the existing network. We will compare the solutions from the

different mechanisms next.

6.4 Numerical Example

6.4.1 Problem Setup

We conduct in this section a numerical assessment of five transmission investment

scenarios on the IEEE 14 bus transmission network used in Freris and Sasson (1968).

The network has 5 generators, which we assume to be identical with production cost

rate q + 1
2
q2 for producing q power units. The network has 10 customer loads, which

we also assume to be identical with a benefit function 5q − 6q2. Each generator and

load is located in one of 14 nodes in a network that consists of 20 transmission lines.

Figure 6.2 shows a schematic of this network and Table 6.1 shows the line resistance

R and conductance X information. Note that the per-unit (pu) system is used for all

quantities throughout this example7.

Initially, we assume that all generators and transmission lines have large enough

capacities and never reach their limits in an optimal dispatch. We call this case the

7The per-unit system is a standard normalization convention in power systems that is used to
compared actual quantities to base values. For example, refer to Glover et al. (2011) for more details.
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Figure 6.2: IEEE 14 bus transmission network. The busses are shown as the nodes
indexed by 1-14 inside the circles and the transmission lines are shown as the directed
arcs between the nodes with indices given in boxes. Generators (Loads) are indexed
by G (L) and are connected to their respective nodes in this drawing.
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infinite capacity case. We then downgrade line 15 alone and assume it has a zero

capacity, but without removing the line from the network. This causes line 15 to

bind the network operation and limit the rest of the line power flows and the nodal

injections in the network. We refer to this second case as the zero capacity case.

After finding the optimal dispatch solution under line 15’s two extreme cases, we

allow investors to expand this line and collect the incremental FTRs from this expan-

sions and incur a constant marginal cost of 1 $ per capacity unit for their investment.

We consider 5 investment scenarios: the social welfare solution (SW) shown in §6.3.1,

the merchant investment model (MI) from §6.3.2, the capacity auction model (CA)

from §6.3.5, and two coalition examples (P1) and (P2) from the coalition investment

model presented in §6.3.3. We let the P1 coalition consist of the generators and

customers that benefit from the line congestion and the P2 coalition be the set of

generators and customers that are hurt by the congestion.

6.4.2 Limiting Cases

In the infinite capacity case, the generators and loads are free to exchange elec-

tricity as if all agents were at the same location. As a result, the LMPs are identical

($ 2 per power unit) for all nodes as shown in Table 6.2. Because of the generator

and load cost symmetry, all generators produce 0.5 power units and make a profit of

$0.25 per time unit as shown in Table 6.3, while every load consumes 0.25 power units

and makes a profit of $0.875 per time unit as shown in Table 6.4. Line 15 has a flow

magnitude of 0.6404 power units, which is the largest among all transmission lines as

shown in 6.1. Note that negative flows in this Table indicate power flow opposite to

the predefined flow direction.

Reducing the capacity of line 15 to 0 affects the entire network because it changes

the feasible set Q, which can have a profound impact on the optimal dispatch solu-

tion. Indeed, as Table 6.1 shows, all line flows change when line 15’s capacity drops
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Table 6.1: Transmission line information for the IEEE 14 bus system.

Line

Bus
R X Infinite Capacity Zero Capacity

From To Power Flow µ Power Flow µ
pu pu pu $/pu pu $/pu

1 1 2 0.01938 0.05917 0.2239 0 0.1727 0
2 1 5 0.05403 0.22304 0.2761 0 0.0604 0
3 2 3 0.04699 0.19797 -0.0132 0 0.0624 0
4 2 4 0.05811 0.17632 0.2248 0 0.0209 0
5 2 5 0.05695 0.17388 0.2624 0 0.0153 0
6 3 4 0.06701 0.17103 0.2368 0 -0.0455 0
7 4 5 0.01335 0.04211 0.1417 0 -0.0245 0
8 4 7 0 0.20912 0.1404 0 0 0
9 4 9 0 0.55618 0.1794 0 0 0
10 5 6 0 0.25202 0.4302 0 -0.2367 0
11 6 11 0.09498 0.1989 0.1582 0 0.1743 0
12 6 12 0.12291 0.25581 0.213 0 0.1453 0
13 6 13 0.06615 0.13027 0.309 0 0.23 0
14 7 8 0 0.17615 -0.5 0 0 0
15 7 9 0 0.11001 0.6404 0 0 -7.2238
16 9 10 0.03181 0.0845 0.3418 0 -0.0267 0
17 9 14 0.12711 0.27038 0.228 0 0.0113 0
18 10 11 0.08205 0.19207 0.0918 0 -0.0689 0
19 12 13 0.22092 0.19988 -0.037 0 -0.0182 0
20 13 14 0.17093 0.34802 0.022 0 0.0622 0
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to zero, with some flows increasing in magnitude, some decreasing in magnitude, and

some flows changing direction. The µ values in this table are the dual variables of the

flow capacity constraint. µ is zero when the line capacity constraint is not biding and

non-zero when it is. Because line 15 is congested in this problem, incremental capacity

to this line would have a marginal benefit of $7.22 per power unit, which is attributed

to the increase in both agent surpluses and transmission rent. Although the gain in

transmission rent may be initially attractive, the capacity increments have reducing

marginal gains that give independent merchants an incentive to under-invest. Exist-

ing agents and transmission line owners investing in the network may have different

capacity increment incentives when accounting for the additional surpluses to their

existing generator, load, and FTR portfolios. Naturally, no investor would exceed a

capacity increment of 0.6404 power units since it relieves line 15 of its congestion,

and exceeding this level would incur additional investment costs without impacting

the optimal dispatch solution.

The drop in line 15’s capacity restricts the trade between generators and loads that

would otherwise have access to the entire market. As a result, generators and loads

at different loctions in the network have varying injections and marginal costs and

benefits, causing locational price discrimination. Although the average nodal price

increases by about %12, half of the nodes see a reduction in prices as shown in Table

6.2. The prices at node 7 and 8 even become negative, indicating that additional

consumption in these busses can relieve congestion in the network and allow more

efficient trades to take place in another part of the network. Consequently, generator

5 located in node 8 refrains from production when line 15 has a zero capacity.

This limited market access reduces the electricity trade from 2.5 to 1.608 power

units and causes a social welfare drop of about 36%. Nevertheless, some agents can

benefit from the reduced competition. For example, generator 4 can reach customers

that would have been served by other generators had there been sufficient network
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capapcity. As a result, generator 4’s production increases by almost %92 and its

profits increase by over 3.5 fold. Similarly, the isolation of other customers gives

loads 1, 2, and 3 greater access to cheap generation. This causes these loads to

consume %18 more electricity and to raise their gains by %39 when the network is

congested.

Table 6.2: Node information for the IEEE 14 bus system.

Node
Infinite Capacity Zero Capacity

LMP Angle, θ LMP Angle, θ
$/pu degrees $/pu degrees

1 2 0 1.4663 0
2 2 -0.0147 1.4445 -0.0113
3 2 -0.0119 1.3865 -0.0244
4 2 -0.0586 1.3317 -0.0154
5 2 -0.0652 1.5449 -0.0143
6 2 -0.1736 2.9194 0.0454
7 2 -0.088 -1.1188 -0.0154
8 2 0.0001 -1.1188 -0.0154
9 2 -0.1584 4.8159 -0.0154
10 2 -0.1914 4.4937 -0.0128
11 2 -0.2122 3.7352 0.0028
12 2 -0.2407 3.0377 -0.0004
13 2 -0.2242 3.2044 0.0077
14 2 -0.2337 4.1178 -0.0192

Table 6.3: Generator information for the IEEE 14 bus system.

Generator Node
Infinite Capacity Zero Capacity

Prod Rev Cost Profit Prod Rev Cost Profit
pu $/pu $/pu $/pu pu $/pu $/pu $/pu

1 1 0.5 1 0.75 0.25 0.2331 0.3419 0.2875 0.0544
2 2 0.5 1 0.75 0.25 0.2222 0.321 0.2716 0.0494
3 3 0.5 1 0.75 0.25 0.1932 0.2679 0.2306 0.0373
4 6 0.5 1 0.75 0.25 0.9597 2.8018 1.8808 0.9211
5 8 0.5 1 0.75 0.25 0 0 0 0

Total 2.5 5 3.75 1.25 1.6082 3.7326 2.6705 1.0622
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Table 6.4: Load information for the IEEE 14 bus system.

Load Node
Infinite Capacity Zero Capacity

Cons Benefit Cost Surplus Cons Benefit Cost Surplus
$/pu $/pu $/pu $/pu $/pu $/pu $/pu $/pu

1 2 0.25 0.875 0.5 0.375 0.2963 0.9547 0.428 0.5267
2 3 0.25 0.875 0.5 0.375 0.3011 0.9616 0.4175 0.5441
3 5 0.25 0.875 0.5 0.375 0.2879 0.9422 0.4448 0.4974
4 6 0.25 0.875 0.5 0.375 0.1734 0.6865 0.5062 0.1804
5 9 0.25 0.875 0.5 0.375 0.0153 0.0753 0.0739 0.0014
6 10 0.25 0.875 0.5 0.375 0.0422 0.2003 0.1896 0.0107
7 11 0.25 0.875 0.5 0.375 0.1054 0.4604 0.3937 0.0667
8 12 0.25 0.875 0.5 0.375 0.1635 0.6572 0.4967 0.1604
9 13 0.25 0.875 0.5 0.375 0.1496 0.6138 0.4795 0.1343
10 14 0.25 0.875 0.5 0.375 0.0735 0.3352 0.3027 0.0324

Total 2.5 8.75 5 3.75 1.6082 5.8872 3.7326 2.1545

6.4.3 Investment Scenarios

§6.4.2 shows the optimal dispatch outcomes for the two extreme cases with line

15 having zero and infinite capacity. In this section, we consider the problem in

which an investor builds a line, incurs the investment cost, and gains the incremental

transmission rent. As we have seen throughout this chapter, an investor’s optimal

capacity expansion decision depends on the model’s incentives. The socially optimal

investment from the centralized model is used as a benchmark in this section. We

refer to the socially optimal solution as SW. Using the coalition investment model in

§6.3.3, we consider two coalition options: P1 is the set of agents that benefit form the

congestion of line 15, and P2 are the agents that are harmed by the congestion. We

also use two merchant investment models: MI is the model with a single merchant

that chooses the optimal solution as shown in 6.3.2, and CA is the capacity auction

model discussed in §6.3.5. When considering the optimal investment we limit our

search to capacities no greater than 0.6404 power units for all models as discussed in

§6.4.2.

132



The outcomes of the five investment scenarios are shown in Figure 6.3. The

horizontal axis in this Figure is the capacity investment level and the vertical axis

is the investor surplus. Each of the 4 plots shows a utility curve for a scenario

with the best investment marked on the curve. The merchant investor curve has

two investment outcomes; the utility maximizing solution for the single merchant

investor ∆MI
l and the zero surplus solution for the capacity auction model ∆CA

l .

The centralized optimal investment level for which the marginal welfare improvement

equals the marginal investment cost is 0.495 pu. Figure 6.3 shows that agents in

coalition P1 would under invest by about %82 if given the opportunity, while agents

in coalition P2 would over-invest by about %23. These deviations from the socially

optimal levels are caused by the non-FTR related surplus losses (gains) agents in P1

(P2) realize. On the other hand, the optimal investment capacity for a merchant is

%64 lower than the socially optimal value, but if multiple merchants are asked to bid

for the line’s capacity as in §6.3.5 then the winning bidder would build the socially

optimal capacity.
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Figure 6.3: Capacity expansions under different investors for the IEEE 14 bus trans-
mission network for the linear investment cost function I(K) = K.
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The same model is tested for two other investment cost functions. Figures 6.4 and

6.5 show the solutions under the four investment options for a concave and a convex

investment cost function, respectively. Although the capacity auction solution is not

socially optimal when the investment cost is either concave or convex, the result is

very close to the social optimal and gives a substantial improvement over all other

investment models.
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Figure 6.4: Capacity expansions under different investors for the IEEE 14 bus trans-
mission network for the concave investment cost function I(K) = K − 0.5K2.

6.5 Conclusion and Future Work

We have studied in this chapter several transmission network expansion mecha-

nisms and used a network example to compare their performance to the central plan-

ner’s solution. The analysis in §6.3.5 shows that the transmission expansion from

the merchant investor capacity auction mechanism can approximate the social opti-

mal, and the numerical experiment confirms it. Our analysis assumes that merchant

investors do not already own network assets and do not account for risk or future ex-
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Figure 6.5: Capacity expansions under different investors for the IEEE 14 bus trans-
mission network for the convex investment cost function I(K) = K + 0.5K2.

pansions. One possible area of future work is to include investors with existing FTRs.

In such a model, FTRs of existing transmission line owners would lose value due to

the reduction in price discrepancy, which can cause them to underinvest. Although

most of the analysis conducted in this section pertains to single line investments,

many of these results can be extended to the multiple line investment problem. Nev-

ertheless, having investors choose both the lines and the capacity expansions could

be an interesting research direction.

The transmission expansion benefit usually discussed in the literature are based

on operational efficiency improvements. However, as discussed by Hogan et al. (2010),

a lot of the transmission expansions are prompted by the system’s reliability stan-

dards rather than congestion relief. They argue that the current network reliability

standards cannot be justified economically and express the importance of resolving

this issue. Finding mechanisms that give investors the correct incentives for reliabil-

ity investments could be an important step in closing the reliability standards and

economic benefits gap.
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After a network expansion is made, strategic generators can change their bidding

behavior to capture some of the transmission rent as shown in Oren (1997). In

fact, Joskow and Tirole (2000) show that more ownership of transmission rights by

generating firms can influence their market power. Such a research direction would

be in the merit of this dissertation because it integrates the competitive behavior of

agents studied in the previous chapters with the investment incentives in this chapter.
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CHAPTER VII

Conclusion

The evolution of electricity systems and the emergence of new technologies can

have profound consequences on the market structure and competition. In fact, this

thesis was partly inspired by the recent interest in renewable energy technologies, and

especially by their impact on the electricity market. As it turns out, the penetration

and subsidies to renewables could indeed change the strategic behavior of generat-

ing firms as shown in Chapter III. The widespread of renewables could also require

substantial transmission investments if they are located in remote areas, as is com-

mon with many wind plants, which can be regarded as another form of government

subsidy. Developing incentive mechanisms for connecting these remote plants to the

grid could be integral to the promotion of renewable technologies and an interesting

future research topic.

With the adoption of the smart grid technologies, the market competition issues

can become very different. For example, the widespread of cheap energy storage tech-

nologies would reduce the negative impact of intermittency, reduce the reliance on

flexible generation, and downgrade the market power caused by fast ramping capabil-

ities. Competition can also be intensified by increased consumer market participation

and the popularity of smart appliances that can adjust their operating levels in re-

sponse to real-time spot prices.
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Some of the new technologies can alter the physical network constraints. Trans-

mission switching technologies, as in Hedman et al. (2011), would regularly alter the

transmission network topology, which may require the development of new FTR cal-

culation methods and new reward systems for transmission line owners and network

investors. Moreover, the strategic response of generating firms would influence the

optimal transmission switching scheme. The special structure of electricity markets

and the ongoing technology changes continuously invoke research interest and the

need for market restructuring.
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APPENDIX A

Electrical Power Network Background

Electric power flow can be modeled with varying degrees of complexity. The more

detailed models are usually used for operational purposes, while simpler models are

used for market design and economic analysis. We use the DC representation of power

networks in this study, which is consistent with the market design problems in the

literature.

Consider a connected network with a set of nodes N and a set of directed arcs

L ⊆ {(i, j) : i, j ∈ N}. A node can represent a generator or a consumer, while an

arc represents a transmission or a distribution line. We use directed arcs rather than

non-directed edges to represent power lines because the flow in one direction of a line

does not necessarily have the same magnitude as the flow in the opposite direction

due to transmission losses. Note that if (i, j) ∈ L then we required that (j, i) ∈ L.

A line (i, j) has four attributes: susceptance Bij ≥ 0, conductance Gij ≥ 0, flow

fji, and capacity f̄ij > 0. Flow through a line is a function while the other attributes

are transmission line properties, where Bij = Bji, Gij = Gji, and f̄ij = f̄ji. fij

represents the flow leaving node i towards node j, which may be different from the

flow entering node j coming from node i on the other end of the line. Generally

fij 6= −fji unless we ignore the line losses. A node i has three attributes: voltage Vi,
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phase angle θi, and injection qi. We wil use the notation θij = θi−θj and Vij = Vi−Vj

for the phase angle and voltage difference between two nodes. Vi and θi are variables

that depend on the state of the network while qi is a decision variable that represents

the exogenous power generation or consumption. In contrast to some other network

problems, power flow through lines is not a decision variable, it is determined by the

state of the network. We will derive the power flow equations next.

A.1 The AC Power Flow Equations

The susceptance and conductance of a line (i, k) can be calculated from the lines

resistance Rik and reactance Xik, both measured in Ohms (Ω). The impedance of a

line is defined as Zik
def
= Rik + jXik, where j =

√
−1, and its admittance is given by

Yik
def
= 1/Zik = 1

Rik+jXik
= Rik−jXik

R2
ik+X2

ik
. The line’s conductance is defined asGik

def
= Rik

R2
ik+X2

ik

and its susceptance as Bik
def
= Xik

R2
ik+X2

ik
⇒ Yik = Gik− jBik. If the current flow through

the line is Iik, then the voltage drop across the line is Vik = Vi − Vk = IikZik and

Iik = VikYik. The power loss in the line is Sik = VikI
∗
ik, where a superscript ∗ denotes

the complex conjugate. S, measured in volt-ampere (VA), is called the complex power

and consists of a real or active power flow component P measures in watts (W), and

a reactive power flow component Q measured in volt-ampere reactive (var). The

relationship between these power components is given by S = P + jQ. Note that

we use Si, Pi, and Qi for power injections into node i and Sik, Pik, and Qik for the

power flow through line (i, k). Due to line losses, the flow in one end of a line may

be different from the flow at the other end of the line. As a convention, we define the

flows Sik, Pik, and Qik at node i’s end of the line.

If Si is injected into node i then using Pi =Re(Si) and Qi =Im(Si) we can calculate
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the real and a reactive power components as

Pi =
∑
k∈N

ViVk (Gik cos θik +Bik sin θik) ,

Qi =
∑
k∈N

ViVk (Gik sin θik −Bik cos θik) .

For two different busses i and k (i 6= k), the power flow equations are:

∂Pi
∂θk

=ViVk (Gik sin θik −Bik cos θik) ,

∂Pi
∂Vk

=Vi (Gik cos θik +Bik sin θik) ,

∂Qi

∂θk
=− ViVk (Gik cos θik +Bik sin θik) ,

∂Qi

∂Vk
=Vi (Gik sin θik −Bik cos θik) .

If i = k then

∂Pi
∂θi

= −BiiV
2
i −Qi,

∂Pi
∂Vi

= GiiVi +
Pi
Vi
,

∂Qi

∂θi
= −GiiV

2
i + Pi,

∂Qi

∂Vi
= −BiiVi +

Qi

Vi
.

We can therefore write

∂Pi =Vi
∑

k:(i,k)∈L

[Vk (Gik sin θik −Bik cos θik) ∂θk + (Gik cos θik +Bik sin θik) ∂Vk] ,

∂Qi =Vi
∑

k:(i,k)∈L

[−Vk (Gik cos θik +Bik sin θik) ∂θk + (Gik sin θik −Bik cos θik) ∂Vk] .

Shunt capacitors are often connected in parallel to transmission lines to reduce current

losses due to electromagnetizm. If line (i, k) has a shunt capacitance Cs
ik (in Ω), then
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the real and reactive power flows along line (i, k) can be calculated as

Pik =Gik

[
V 2
i − ViVj cos(θik)

]
+BikViVj sin θik

Qik =Bik

[
V 2
i − ViVj cos(θik)

]
−GikViVj sin θik − V 2

i C
s
ik.

A.2 The DC Power Flow Model

The AC power flow model gives a non-linear set of equations with a non-convex

solution space. Solving large power flow problems using the AC power flow model can

be challenging, which is why the simpler DC linear model is often used to approximate

the solution. The DC power flow model is commonly used in problems that do not

directly affect the network’s physical operation. In particular, the DC models is

widely used in modeling electricity markets and in resolving financial transactions.

Starting from the general AC model, we will derive the DC power flow model using

the necessary approximations next.

The focus in the DC power flow is on the real power Pij. Therefore, we will

set fij
def
= Pij in the DC power flow model. From the power flow equations, the

flow on line (i, j) can be calculated as fij(θij, Vi, Vj) = GijV
2
i − GijViVj cos(θij) +

BijViVj sin(θij) ∀ (i, j) ∈ L. Power network analysis is usually simplified by adopting

a “per unit” system in which voltages are normalized to 1 without loss of generality

(i.e. Vi = 1 ∀ i ∈ N ). Consequently, we can simplify the line flow expression to

fij(θij) = Gij − Gij cos(θij) + Bij sin(θij). Furthermore, the phase angles are usually

small under normal operating conditions, and it is typical to adopt the second order

Taylor approximations for the sin and cos functions (sin(θ) ≈ θ and cos(θ) ≈ 1− θ2

2
).

Thus, the power flow equations can be approximated by fij(θij) = Bijθij +
Gij
2
θ2
ij for

(i, j) ∈ L. Although transmission capacities are not hard constraints, meaning that

they could be violated for short durations as proposed by Hedman et al. (2011), we

will restrict power flow to rated line capacities in our model, so the ISO must ensure
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that fij(θij) ≤ f̄ij ∀ (i, j) ∈ L. Note that there is no need to specify a lower bound

on the flow through line (i, j) since it is guaranteed by the constraint on the flow

through line (j, i).

Nodes have two sets of constraints in the DC model; nodal balance and in-

jection capacities. To get a balanced model, nodal injections must satisfy qi =∑
j∈N :(i,j)∈L fij(θij) ∀ i ∈ N . Because of the network structure of the problem, one

nodal balance constraint becomes redundant. Therefore, we will disregard the nodal

balance equation for one of the nodes, which we refer to as the reference or slack node

and denote it node 0. Let N ′ = N \{0} and set the reference phase angle θ0 = 0. In-

jection capacity constraints represent generation and consumption limits at nodes. If

we denote kmin
i and kmax

i as the capacity limits, then the capacity constraints at node

i become qi ∈ [kmin
i , kmax

i ]. Denote Ci(q) as the a convex differentiable cost function

for injections at node i. Ci(q) represents an increasing convex generation cost rate

for producing q > 0 in node i and −Ci(q) is an increasing concave benefit rate for

consuming −q > 0 in node i. Now that we have defined the electrical power network,

we will next consider a market setting for this problem starting with a centralized

market and then move to a decentralized market.

An ISO seeks to find feasible nodal injections that minimizes the total system

cost. The ISO problem can be formulated as follows:

min
qi,θj ;i∈N ,j∈N ′

∑
i∈N

C(qi) (A.1)

Subject to qi =
∑

j∈N :(i,j)∈L

fij(θij) ∀ i ∈ N ′ (A.2)

fij(θij) ≤ f̄ij ∀ (i, j) ∈ L (A.3)

kmin
i ≤ qi ≤ kmax

i ∀ i ∈ N . (A.4)

This problem is also called the network’s optimal dispatch problem. The non-
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linearity of the constraints makes problem (A.1)-(A.4) difficult to solve because the

solution space is in general non-convex. Chao and Peck (1996) show that for small

θij values the flows remain in a locally convex region under normal operating condi-

tions. However, even with convexity assumptions, the nonlinearity of the constraints

complicates the problem. The source of the nonlinearity are the Gij variables, which

are the loss coefficients. In fact, the total loss in the line connecting nodes i and j

is fij + fji = Gijθ
2
ij. To resolve this issue, losses are usually not directly account for.

Instead, it is typical to initially assume that Gij = 0 ∀ (i, j) ∈ L so that the system

becomes lossless. The losses are then made up by some generator(s); the slack gener-

ator is usually used if it is not at its capacity. The discrepancy in the model is then

calculated and included in the linear system, which is solved again. This process is

repeated until an ε-solution is obtained, where the total discrepancy is no more than

a small ε value. For example, Chao and Peck (1996) and Wu and Varaiya (1999)

assume linear systems then extend their market mechanisms for non-linear systems

using this approach. In the DC model, we assume that electric networks are lossless

and set Gij = 0 ∀ (i, j) ∈ L.

The zero conductance assumption simplifies the line flow formula to fij(θij) =

−fji(θji) = Bijθij. By substituting this into (A.2) we get

qi =
∑

j∈N :(i,j)∈L

Bij(θi − θj) ∀ i ∈ N ′.

This equation gives a the linear system q = Aθ, where q is a column vector of the

nodal injections without the reference injection, θ is a column vector of phase angles

without the reference angle, and A is an N ×N vector with entries aij given by

aij =

 −Bij; if i 6= j,∑n
k=1 Bik; if i = j.
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Alternatively, we can calculate θ = A−1q and write θi as the linear combination

θi =
∑

j∈N ′ αijqj where αij are the entries of the A−1 matrix. The flow through line

fij is thus given by

fij(q) = Bij(θi(q)− θj(q)) = Bij

∑
k∈N ′

(αik − αjk)qk =
∑
k∈N ′

βkijqk ∀ (i, j) ∈ N ,

where βkij = Bij(αik−αjk) are the PTDF. βkij can be interpreted as the portion of flow

from node k’s injection ending up in the reference node that flows through line (i, j).

We will use the convention β0
ij = 0 for the reference node. We can therefore drop the

θ variables from (A.1)-(A.4) for lossless systems and reformulate the problem as

min
qi,i∈N

∑
i∈N

Ci(qi) (A.5)

subject to
∑
i∈N

qi = 0 ⊥ λ (A.6)

∑
i∈N

βilqi ≤ f̄l ∀ l ∈ L ⊥ µl (A.7)

kmin
i ≤ qi ≤ kmax

i ∀ i ∈ N ⊥ γ−i , γ
+
i . (A.8)

Problem (A.5)-(A.8) is much simpler to solve than (A.1)-(A.4) because it has a convex

objective function and linear constraints.

Let λ be the dual variable to the constraint (A.6), µl as the dual variable to (A.7),

γ−i as the dual variable to the lower bound inequality for qi and γ+
i as the dual variable

146



for the upper bound inequality in (A.8). The Lagrangian of this problem is

L(q, λ, µ, γ−, γ+) =
∑
i∈N

[
Ci(qi)− λqi − γ−i (qi − kmin

i )− γ+
i (kmax

i − qi)
]

−
∑
l∈L

µl

(
f l −

∑
i∈N

βilqi

)

=
∑
i∈N

[
Ci(qi)− qi

(
λ+ γ−i − γ+

i −
∑
l∈L

βilµl

)
+ kmin

i γ−i − kmax
i γ+

i

]

−
∑
l∈L

µlf l.

The Karush-Kuhn-Tucker (KKT) condition for qi gives the LMP at every node.

pi = C ′i(qi) + γi = λ−
∑
l∈L

βilµl, (A.9)

where γi = γ+
i − γ−i . A positive µl implies that line l is operating at its capacity (in

the predefined direction), a γ−i > 0 implies that the nodal injection is at its minimum

value1, and a γ+
i > 0 occurs when a nodal injection reaches its maximum capacity2.

Notice that the LMP at the slack node is λ.

1This occurs when the maximum demand level is reached and additional electricity usage does
not improve the consumer surplus.

2This happens when generators in node i reach their production rate capacity limits.
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APPENDIX B

Chapter II Appendix

B.1 Chapter II Proofs

Proof of Lemma II.3.

Proof. Consider the optimal allocation problem in (2.2), rewritten below

CF (q) = min
{ ∑
j∈GF

Cj(qj) : qj ≥ 0,
∑
j∈GF

qj = q
}
. (B.1)

For any q > 0, the objective in (B.1) is convex on a closed convex set
{

(q, qj, j ∈

GF ) : q ∈ [0, q], qj ∈ [0, q],
∑
j∈GF

qj = q
}

. Hence, the theorem on convexity preservation

under minimization (Heyman and Sobel , 1984, p. 525) implies that CF (q) is convex

in q.

For a given q > 0, let {q∗j} be the minimizer for (B.1). We show {q∗j} has two

properties:

1) If q∗j , q
∗
k > 0, then C ′j(q

∗
j ) = C ′k(q

∗
k). To see this, note that if C ′j(q

∗
j ) < C ′k(q

∗
k),

we can strictly reduce the objective by increasing q∗j by ε and reducing q∗k by ε,

where ε > 0 is small.
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2) If q∗j = 0 and q∗k > 0, then C ′j(0) ≥ C ′k(q
∗
k). To see this, if C ′j(0) < C ′k(q

∗
k), we

can strictly reduce the objective by setting q∗j = ε and reducing q∗k by ε, where

ε > 0 is small.

Denote p ≡ C ′j(q
∗
j ) for q∗j > 0. Note that p > 0 because Cj(qj) is convex and

strictly increasing in qj for qj ≥ 0. Define GF
+ =

{
j ∈ GF : C ′j(q

∗
j ) = p

}
. Then,

CF (q) =
∑
j∈GF+

Cj(q
∗
j ). For j 6∈ GF

+, we have q∗j = 0 and Ĉ ′j(0) > p. Then, for

sufficiently small ε > 0, we have

CF (q + ε) =
∑
j∈GF+

Cj(q
∗
j + εj), (B.2)

for some εj ≥ 0 and
∑
j∈GF+

εj = ε. Using Taylor series, (B.2) can be written as

CF (q + ε) =
∑
j∈GF+

[
Cj(q

∗
j ) + εjC

′
j(q
∗
j ) +O(ε2

j)
]

= CF (q) + εp+O(ε2).

Similarly, we can show that CF (q) − CF (q − ε) = εp + O(ε2). Hence, CF (q) is

differentiable with derivative (CF )
′
(q) = p > 0.

Similar results can be shown for IGs’ problem in (2.1), which completes the proof.

Proof of Theorem II.4

Proof. We first prove that (2.11) is optimal in the case of Lt − qI −Wt ≥ 0. In this

case, constraints (2.8)-(2.9) imply that qFt ≥ Lt − qI −Wt ≥ 0. If we set qFt at the

lower bound Lt − qI − Wt, then qVt = Wt and et = 0, which clearly minimize the

objective in (2.7).

When Lt − qI − Wt < 0, we have qF∗t = 0 because: (i) if qFt > 0 and et > 0,

then a lower qFt reduces the objective in (2.7); (ii) if qFt > 0 and et = 0, then

qVt = Lt− qI − qFt < Wt, and we can reduce qFt and increase qVt to lower the objective
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in (2.7). Hence, qF∗t = 0. We determine qV ∗t by

min
{
− r qVt + h(qI + qVt − Lt) : 0 ≤ qVt ≤ Wt

}
,

where we set h(e) = 0 for e < 0. An interior optimal solution satisfies h′(qI + qV ∗t −

Lt) = r, or qV ∗t = Lt − qI + µ(r), which is indeed optimal if 0 < Lt − qI + µ(r) < Wt.

If Lt − qI + µ(r) ≥ Wt, then qV ∗t = Wt. If Lt − qI + µ(r) < 0, then qV ∗t = 0. This

proves that (2.11) is optimal.

For any q > L, the objective function in (2.7) is convex on a closed convex set

{(qI , Lt,Wt, q
F
t , q

V
t ) : qI ∈ [0, q], Lt ∈ [L,L], Wt ∈ [0, K], qFt ∈ [0, q], (2.8), and (2.9)}.

By the theorem on convexity preservation under minimization (Heyman and Sobel ,

1984, p. 525), we conclude that C̃(qI , Lt,Wt) is jointly convex in (qI , Lt,Wt).

Proof of Theorem II.5

Proof. We first derive an expression for E
[
C̃(qI , Lt,Wt)

]
, which is useful for deriving

the first-order condition for (2.15). Using Theorem II.4, we can write

C̃(qI , Lt,Wt) = CF (qF∗t )− r qV ∗t + h(qI + qF∗t + qV ∗t − Lt),

where qF∗t and qV ∗t are given in Figure 2.2 under the four events. The indicators of

these events can be written as

1A1 = 1{Lt≤qI−µ(r)},

1A2 = −1{Lt≤qI−µ(r)} + 1{Lt<qI+Wt−µ(r)},

1A3 = −1{Lt<qI+Wt−µ(r)} + 1{Lt≤qI+Wt},

1A4 = 1{Lt>qI+Wt}.

(B.3)
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We denote C̃Ai(·, ·, ·) = C̃(·, ·, ·) when Ai occurs. Then, using the optimal policy in

Figure 2.2, we have

C̃A1(q
I , Lt,Wt) = h(qI − Lt),

C̃A2(q
I , Lt,Wt) = −r (Lt − qI+ µ(r)) + h(µ(r)),

C̃A3(q
I , Lt,Wt) = −rWt + h(qI+Wt − Lt),

C̃A4(q
I , Lt,Wt) = CF (Lt − qI−Wt)− rWt.

(B.4)

Using the equations in (B.3), we can write the expected real-time cost as

E
[
C̃(qI , Lt,Wt)

]
=

4∑
i=1

E
[
C̃Ai(q

I , Lt,Wt)1Ai
]

= E
[(
C̃A1(q

I , Lt,Wt)− C̃A2(q
I , Lt,Wt)

)
1{Lt≤qI−µ(r)}

]
+ E
[(
C̃A2(q

I , Lt,Wt)− C̃A3(q
I , Lt,Wt)

)
1{Lt<qI+Wt−µ(r)}

]
+ E
[
C̃A3(q

I , Lt,Wt)1{Lt≤qI+Wt}

]
− E
[
C̃A4(q

I , Lt,Wt)1{Lt>qI+Wt}

]
.

(B.5)

It can be verified that C̃(qI , Lt,Wt) is differentiable in qI except at qI = Lt −Wt,

where the left derivative is −CF ′(0) and the right derivative is h′(0). Because Lt and

Wt have continuous distributions, E
[
C̃(qI , Lt,Wt)

]
is differentiable in qI everywhere.

Next, we compute its derivative.

The first three expectations in (B.5) all have the form E
[
g(qI , Lt,Wt)1{Lt≤b(qI ,Wt)}

]
,

for some functions g(qI , Lt,Wt) and b(qI ,Wt). Let the joint probability density func-

tion of Lt and Wt be ft(l, w), l ∈ [L,L], w ∈ [0, K], and let “∨ ” and “∧ ” denote the

151



max and min operations. We have

d

dqI
E
[
g(qI , Lt,Wt)1{Lt≤b(qI ,Wt)}

]
=

d

dqI

[ K∫
0

L∨b(qI ,w)∧L∫
L

g(qI , l, w)ft(l, w) dl dw

]

=E

[
∂g(qI, Lt,Wt)

∂qI
1{Lt≤b(qI,Wt)}

]

+

K∫
0

g
(
qI, b(qI, w), w

)
ft
(
b(qI, w), w

)∂b(qI, w)

∂qI
1{b(qI,w)∈[L,L]} dw.

(B.6)

The last expectation in (B.5) is in the form of E
[
g(qI , Lt,Wt)1{Lt>b(qI ,Wt)}

]
and its

derivative is

d

dqI
E
[
g(qI , Lt,Wt)1{Lt>b(qI ,Wt)}

]
=

d

dqI

[ K∫
0

L∫
L∨b(qI ,w)∧L

g(qI , l, w)ft(l, w) dl dw

]

=E

[
∂g(qI, Lt,Wt)

∂qI
1{Lt>b(qI,Wt)}

]

−
K∫

0

g
(
qI, b(qI, w), w

)
ft
(
b(qI, w), w

)∂b(qI, w)

∂qI
1{b(qI,w)∈[L,L]} dw.

(B.7)

Now, applying (B.6)-(B.7) to the derivatives of the expectations in (B.5), we find

that the integral term g
(
qI, b(qI , w), w

)
in (B.6)-(B.7) becomes

(
C̃A1(q

I , l, w)− C̃A2(q
I , l, w)

)∣∣
l=qI−µ(r)

= 0,(
C̃A2(q

I , l, w)− C̃A3(q
I , l, w)

)∣∣
l=qI+w−µ(r)

= 0,

C̃A3(q
I , l, w)

∣∣
l=qI+w

= −r w,

C̃A4(q
I , l, w)

∣∣
l=qI+w

= −r w,
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where we used the value of C̃Ai(·, ·, ·) given by (B.4). This leads to

d

dqI
E
[
C̃(qI , Lt,Wt)

]
=

4∑
i=1

E

[
∂C̃Ai(q

I , Lt,Wt)

∂qI
1Ai

]
= E

[
−(CF )

′
(Lt−Wt− qI)1A4 + h′(qI+Wt− Lt)1A3

+ r1A2 + h′(qI− Lt)1A1

]
= E

[
− P (qI , Lt,Wt, C

F )
]
,

where the last equality follows from the definition in (2.13).

Now, consider the optimization problem in (2.15). If qI∗ > 0, then it must satisfy

T (CI)
′
(qI∗) +

T∫
0

d

dqI
E
[
C̃(qI∗, Lt,Wt)

]
dt = T (CI)

′
(qI∗)−

T∫
0

E
[
P (qI∗, Lt,Wt, C

F )
]
dt

= 0,

which is equivalent to (CI)
′
(qI∗) = P (qI∗, CF ), completing the proof.

Proof of Theorem II.6

Proof. We can rewrite (4.1) as

CI ′(qI) =
1

T

T∫
0

E
[
CF ′(Lt −Kρt − qI)1{qI<Lt−Kρt} − r1{Lt+µ(r)−Kρt≤qI<Lt+µ(r)}

−h′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt} − h
′(qI − Lt)1{qI≥Lt+µ(r)}

]
dt.

(B.8)
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By differentiating this equation we get

dqI
[
TCI ′′(qI) +

T∫
0

E
[
CF ′′(Lt −Kρt − qI)1{qI<Lt−Kρt}

+ h′′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt} + h′′(qI − Lt)1{qI≥Lt+µ(r)}
]
dt

]

+ dW

T∫
0

E
[
ρt
(
CF ′′(Lt −Kρt − qI)1{qI<Lt−Kρt}

+ h′′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt}
)]
dt

+ dr

T∫
0

P{Lt + µ(r)−Kρt ≤ qI < Lt + µ(r)} dt = 0.

The partial derivative of qI with respect to r is ∂qI

∂r
= −Ar

B
, and with respect to K is

∂qI

∂K
= −AK

B
, where

Ar =

T∫
0

P{Lt + µ(r)−Kρt ≤ qI < Lt + µ(r)} dt,

AK =

T∫
0

E
[
ρt
(
CF ′′(Lt −Kρt − qI)1{qI<Lt−Kρt}

+ h′′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt},

B = TCI ′′(qI) +

T∫
0

E
[
CF ′′(Lt −Kρt − qI)1{qI<Lt−Kρt}

+ h′′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt} + h′′(qI − Lt)1{qI≥Lt+µ(r)}
]
dt.

The fact that both partial derivatives of qI are non-positive implies that qI is decreas-

ing in both r and K.

To determine the impact of r and K on Ca we will consider the two cases when
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µ(r) = 0 and when µ(r) > 0. The average production cost when µ(r) = 0 is

Ca(r,K) = TCI(qI) +

T∫
0

E
[
CF ((Lt − qI −Kρt)+) + h(qI − Lt)1{qI≥Lt}

+ h(0)1{Lt−Kρt≤qI<Lt}
]
dt.

The derivative of Ca with respect to r is

∂Ca

∂r
=
∂qI

∂r

[
TCI ′(qI)

+

T∫
0

E
[
−CF ′(Lt − qI −Kρt)1{qI<Lt−Kρt} + h′(qI − Lt)1{qI≥Lt}

]
dt

]
.

We can use (B.8) when µ(r) = 0 to get

∂Ca

∂r
= −r∂q

I

∂r

T∫
0

P{qI < Lt ≤ qI +Kρt} dt.

This expression is clearly nonnegative, which makes Ca increasing in r. The derivative

of Ca with respect to K is

∂Ca

∂K
=− r ∂q

I

∂K

T∫
0

P{qI < Lt ≤ qI +Kρt} dt

−
T∫

0

E
[
ρtC

F ′(Lt − qI −Kρt)1{qI<Lt−Kρt}
]
dt.

The first term is nonnegative and the second term is non-positive. If r = 0 the first

term is zero, making Ca a decreasing function of K. This result does not hold for

general r as the first term can outweigh the second term for r > 0.
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The average production cost when µ(r) > 0 is

Ca(r,K) = TCI(qI) +

T∫
0

E
[
CF ((Lt − qI −Kρt)+) + h(qI − Lt)1{qI≥Lt+µ(r)}

h(µ(r))1{Lt−Kρt+µ(r)≤qI<Lt+µ(r)}

+ h(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt}
]
dt.

The derivative of Ca with respect to r is

∂Ca

∂r
=
∂qI

∂r

[
TCI ′(qI) +

T∫
0

E
[
− CF ′(Lt − qI −Kρt)1{qI<Lt−Kρt}

+ h′(qI − Lt)1{qI≥Lt+µ(r)} + h′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt}
]
dt

]

+ µ′(r)h′(µ(r))

T∫
0

P{qI − µ(r) < Lt ≤ qI +Kρt − µ(r)} dt.

Notice that µ′(r) = 1/h′′(µ(r)) > 0 and h′(µ(r)) = r for µ(r) > 0. We can also use

(B.8) to get

∂Ca

∂r
=

(
µ′(r)h′(µ(r))− r∂q

I

∂r

) T∫
0

P{qI − µ(r) < Lt ≤ qI +Kρt − µ(r)} dt > 0.

Therefore, Ca is increasing in r.
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Finally, the derivative of Ca with respect to K when µ(r) > 0 is

∂Ca

∂K
=
∂qI

∂K

[
TCI ′(qI) +

T∫
0

E
[
− CF ′(Lt − qI −Kρt)1{qI<Lt−Kρt}

+ h′(qI − Lt)1{qI≥Lt+µ(r)} + h′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt}
]
dt

]

+

T∫
0

E
[
ρt

(
− CF ′(Lt − qI −Kρt)1{qI<Lt−Kρt}

+ h′(qI +Kρt − Lt)1{Lt−Kρt≤qI<Lt+µ(r)−Kρt}

)]
dt

=− r ∂q
I

∂K

T∫
0

P{qI − µ(r) < Lt ≤ qI +Kρt − µ(r)} dt

+

T∫
0

E
[
ρt

(
− CF ′(Lt − qI −Kρt)1{Lt>qI+Kρt}

+ h′(qI +Kρt − Lt)1{qI+Kρt−µ(r)<Lt≤qI+Kρt}

)]
dt.

The first and last terms in this formula are positive while the second term is negative,

which implies that Ca in general is not monotone with respect to K. However, if

r = 0 then the first and last terms becomes 0 and Ca becomes negative. Hence, Ca

decreases with K when r = 0.
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APPENDIX C

Chapter III Appendix

C.1 Chapter III Proofs

Proof of Lemma III.2

Proof. For a given q > 0, let p ≡ (CF )′(q) and {q∗j} be the optimal FG allocation,

and define GF
+ =

{
j ∈ GF : Ĉ ′j(q

∗
j ) = p

}
. We want to show that p = (SF )−1(q).

From Lemma II.3, p = Ĉ ′j(q
∗
j ) = S−1

j (q∗j ) or Sj(p) = q∗j for j ∈ GF
+. For j /∈ GF

+,

then from Lemma II.3 we have Ĉ ′j(0) > p, which implies that S−1
j (0) = pmin

j > p

and in turn leads to Sj(p) = 0 = q∗j due to Assumption III.1(i). Hence, SF (p) =∑
j∈GF

Sj(p) =
∑
j∈GF

q∗j = q, which leads to p = (SF )
−1

(q). Because SF (p) also satisfies

Assumption III.1, (SF )
−1

(q) is continuous in q. Therefore, (CF )
′
(q) = (SF )

−1
(q).

Proof of Corollary III.3

Proof. We will verify that P (qI , Lt,Wt, S
F ) has the alternative expression in (3.8) by

considering the disjoint regions A1-A4 in Figure 2.2. The inequality in (3.8) is

SF (p) +Wt1{p≥−r} − µ(−p) ≥ Lt − qI . (C.1)
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In region A1, Lt − qI ≤ −µ(r), and (C.1) clearly holds if p = po ≡ −h′(qI − Lt).

Note that po ≤ −r. Thus, for any other price p1 < po, the left side of (C.1) becomes

−µ(−p1), which is strictly less than Lt−qI . Hence, po is the minimum price for (C.1)

to hold.

In region A2, Lt − qI ∈ (−µ(r), Wt − µ(r)). If p = −r, then (C.1) holds because

Wt−µ(r) > Lt− qI . For any other p1 < −r, (C.1) does not hold because −µ(−p1) <

−µ(r) < Lt − qI .

In region A3, Lt − qI ∈ [Wt − µ(r), Wt]. If p = −h′(qI +Wt − Lt) ∈ [−r, 0], then

(C.1) holds with equality: Wt − (qI +Wt − Lt) = Lt − qI .

Lastly, in region A4, Lt − qI > Wt. If p = (CF )
′
(Lt −Wt − qI) > (CF )

′
(0), then

(C.1) also holds with equality: (Lt −Wt − qI) +Wt = Lt − qI .

Hence, the minimum price p for (C.1) to hold is exactly P (qI , Lt,Wt, S
F ).

Proof of Lemma III.4

Proof. Recall that the average price P (qI , βF ) decreases in qI , as we discussed after

the definition in (3.7). Furthermore, because Lt and Wt have continuous distributions,

P (qI , βF ) is differentiable in qI everywhere. Denote P 1 ≡ ∂P/∂qI . We have P 1 ≤ 0.

Equation (3.16), qI − βIP (qI , βF ) = 0, implicitly determines qI as a function of

βk, k ∈ GI ∪ GF . Thus, the lemma’s results can be seen from the following partial

derivatives:

∂qI

∂βi
=

P

1− βIP 1

=
qI

βI(1− βIP 1)
> 0, i ∈ GI , (C.2)

∂qI

∂βj
=

βIP 2

1− βIP 1

< 0, j ∈ GF ,

where P 2 ≡ ∂P/∂βF < 0 is established below.

We will express P (qI , βF ) and derive P 2. To simplify notations, let random vari-

ables L and W follow the probability distribution fL,W (x, y) defined in (3.23). Let
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D = L−W denote the net demand.

For a continuous random variable X, we use fX(x) and FX(x) to denote the

probability density and cumulative distribution functions, and we let FX(x) = 1 −

FX(x).

Then, we can write the average price function in (3.15) as

P (qI , βF ) =
1

βF
E
[
(D − qI)+

]
− ch

qI∫
qI−µ(r)

(qI − x)fD(x) dx− ch

qI−µ(r)∫
−∞

(qI − x)fL(x) dx

− ahFD(qI) + (ah − r)FD(qI − µ(r)) + (r − ah)FL(qI − µ(r)). (C.3)

Thus,

P 2 ≡
∂P

∂βF
= − 1

(βF )2E
[
(D − qI)+

]
< 0,

∂qI

∂βj
=

βIP 2

1− βIP 1

= −
βIE

[
(D − qI)+

]
(βF )2 (1− βIP 1)

< 0, j ∈ GF . (C.4)

This completes the proof.

Proof of Lemma III.5

Proof. We first bound the average price in (C.3). Note that

qI∫
qI−µ(r)

(qI − x)fD(x) dx ≥ 0, and

qI−µ(r)∫
−∞

(qI − x)fL(x) dx > µ(r)FL(qI − µ(r))

=
(r − ah)+

ch
FL(qI − µ(r)) ≥ (r − ah)

ch
FL(qI − µ(r)).
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Using these inequalities, the average price in (C.3) is bounded above by

P (qI , βF ) <
1

βF
E
[
(D − qI)+

]
− ahFD(qI) + (ah − r)FD(qI − µ(r)). (C.5)

If ah ≥ r, then µ(r) = 0 and (C.5) becomes P (qI , βF ) < 1
βF

E
[
(D − qI)+

]
− rFD(qI).

If ah < r, then (C.5) implies P (qI , βF ) < 1
βF

E
[
(D − qI)+

]
− ahFD(qI). Combining

these two cases, we obtain

P (qI , βF ) <
1

βF
E
[
(D − qI)+

]
−min{r, ah}FD(qI). (C.6)

We can express and bound E
[
(D − qI)+

]
as follows:

E
[
(D − qI)+

]
=

∞∫
qI

(x− µD + µD − qI)fD(x) dx

=

∞∫
qI

x− µD√
2πσD

exp

(
−(x− µD)2

2σ2
D

)
dx+

∞∫
qI

(µD − qI)fD(x) dx

=
σD√
2π

∞∫
qI−µD
σD

y exp
(
−y2/2

)
dy + (µD − qI)FD(qI)

≤ σD√
2π

+ (µD − qI)FD(qI). (C.7)

The inequalities (C.6) and (C.7) lead to

P (qI , βF ) <
σD√
2πβF

+
(µD − qI)FD(qI)

βF
−min{r, ah}FD(qI). (C.8)
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Using (3.16), (3.18), and (C.8), we have

qI max = βI maxP (qI max, βF min)

< βI max

[
σD√

2πβF min
+

(µD − qI max)FD(qI max)

βF min
−min{r, ah}FD(qI max)

]
.

(C.9)

We now prove qI max < µD. If the opposite is true, qI max ≥ µD, then FD(qI max) ≥ 1
2

and (C.9) implies

qI max < βI max

[
σD√

2πβF min
− min{r, ah}

2

]
≤ βI max

[
σ∗D√

2πβF min
− min{r, ah}

2

]
= µD,

where σ∗D ≡
√

2π βF min

[
µD
βI max

+
min{r, ah}

2

]
. This contradicts qI max ≥ µD. There-

fore, we conclude that qI max < µD when σD ≤ σ∗D.

Proof of Theorem III.6. Because generator k’s pure strategy set is a finite interval

[βmin
k , c−1

k ], it suffices to show that, ∀ k ∈ GI ∪ GF , generator k’s profit function

is quasi-concave with respect to βk to prove the existence of a pure strategy Nash

equilibrium (Debreu, 1952).

The proof of the quasi-concavity will use the derivatives of P (qI , βF ). Differ-

entiating P (qI , βF ) in (C.3) with respect to qI and using µ(r) = (r − ah)
+/ch, we
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obtain

P 1(qI , βF ) ≡ ∂P

∂qI
= − 1

βF
FD(qI)− ch

[
FD(qI)− FD(qI − µ(r)) + FL(qI − µ(r))

]
− ahfD(qI) +

[
chµ(r) + (ah − r)

] [
fD(qI − µ(r))− fL(qI − µ(r))

]
= − 1

βF
FD(qI)− ch

[
FD(qI)− FD(qI − µ(r)) + FL(qI − µ(r))

]
− ahfD(qI) + (ah − r)+

[
fD(qI − µ(r))− fL(qI − µ(r))

]
,

(C.10)

P 11(qI , βF ) ≡ ∂2P

∂qI2 =
1

βF
fD(qI)− ch

[
fD(qI)− fD(qI − µ(r)) + fL(qI − µ(r))

]
− ahf ′D(qI) + (ah − r)+

[
f ′D(qI − µ(r))− f ′L(qI − µ(r))

]
.

(C.11)

By Lemma III.5, if σD ≤ σ∗D, we have qI max < µD. When qI < µD, and σD → 0,

all the distribution functions in (C.10)-(C.11) approach zero, except for FD(qI), which

approaches one. Therefore, when σD is small, P 1 is close to −1/βF and P 11 is close

to zero.

Quasi-concavity of IG’s profit function. The profit function of IG i ∈ GI is

expressed as πi(βi; β−i, β
F ) in (3.20). To prove its quasi-concavity in βi, we will show

that its derivative ∂πi/∂βi can cross the zero value from above at most once as βi

increases, while holding β−i and βF constant.

In (3.20), the function QI(βI , βF ) is used to emphasize the dependence of the ag-

gregate IG output qI on βI and βF . In what follows, we use qI to denote QI(βI , βF )

when no confusion will rise. Note that ∂qI/∂βi ≡ ∂QI/∂βi is given by (C.2). Differ-

entiating (3.20) with respect to βi, we obtain
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∂πi
∂βi

=
βi(2− ciβi)
(βi + β−i)2

qI
∂qI

∂βi
+
β−i(1− ciβi)− βi

(βi + β−i)3
(qI)

2

=
βi(2− ciβi)

(βI)2

(qI)
2

βI(1− βIP 1)
+
β−i(1− ciβi)− βi

(βI)3 (qI)
2

=
(qI)

2

(βI)3(1− βIP 1)

[
βi(2− ciβi) +

(
β−i(1− ciβi)− βi

)
(1− βIP 1)

]
=

(qI)
2

(βI)3(1− βIP 1)

[
βI(1− ciβi)−

(
β−i(1− ciβi)− βi

)
βIP 1

]
=

(qI)
2

(βI)2(1− βIP 1)
X(βi; β−i, β

F ),

where X(βi; β−i, β
F )

def
= 1 − ciβi +

(
βi(1 + ciβ−i) − β−i

)
P 1. To show ∂πi/∂βi can

cross zero value from above at most once, it suffices to show X decreases in βi.

Differentiating X with respect to βi,

∂X

∂βi
= −ci + (1 + ciβ−i)P 1 +

(
βi(1 + ciβ−i)− β−i

)
P 11

qI

βI(1− βIP 1)
,

where P 11 is derived in (C.11). Note that −ci+(1+ciβ−i)P 1 < 0. Thus, if P 11(qI , βF )

is sufficiently small, we can establish ∂X/∂βi ≤ 0. Based on the discussion after

(C.10) and (C.11), there exists σ̂D, such that when σD < σ̂D, we have ∂X/∂βi ≤ 0

and, therefore, πi is quasi-concave in βi.

Quasi-concavity of FG’s profit function. Using the probability distribution in

(3.23), and denote D = L−W and qI = QI(βI , βF ), we can write FG’s profit function

in (3.22) as

πj(βj; β−j, β
I) =

βj
(
1− 1

2
cjβj

)
(βj + β−j)2

E
[(

(D − qI)+
)2
]
.

We will show that ∂πj/∂βj can cross the zero value at most once from above when

βj increases.

Differentiating πj with respect to βj and using ∂qI/∂βj from (C.4) and the fol-
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lowing fact

∂

∂qI
E
[(

(D − qI)+
)2
]

=
∂

∂qI

∞∫
qI

(x− qI)2
fD(x)dx =

∞∫
qI

−2(x− qI)fD(x)dx

=− 2E
[
(D − qI)+

]
,

we obtain

∂πj
∂βj

=
β−j(1− cjβj)− βj

(βF )3
E
[(

(D − qI)+
)2
]

+
βj(2− cjβj)

(βF )2
E
[
(D − qI)+

] βIE [(D − qI)+
]

(βF )2 (1− βIP 1)

=
βjE
[
((D − qI)+)2

]
(βF )3 (1− βIP 1)

[
Y (βj, β−j, β

I) + βIZ(βj, β−j, β
I)
]
,

where

Y (βj, β−j, β
I)

def
=
(β−j
βj
− (1 + cjβ−j)

)
(1− βIP 1),

Z(βj, β−j, β
I)

def
=

2− cjβj
βj + β−j

ψ(qI),

ψ(qI)
def
=

(
E
[
(D − qI)+

])2

E [((D − qI)+)2]
.

It suffices to show that Y and Z decrease in βj. Differentiating Y with respect to βj,

∂Y

∂βj
= −β−j

β2
j

(1− βIP 1) +
(β−j
βj
− (1 + cjβ−j)

)
βIP 11

βIE
[
(D − qI)+

]
(βF )2 (1− βIP 1)

.

By the same argument used for the quasi-concavity of πi, we see that when σD is

sufficiently small, P 1 is close to −1/βF and P 11 is close to zero. Thus, there exists

σ̃D, such that when σD < σ̃D, we have ∂Y /∂βj ≤ 0.

Next, we show that Z decreases in βj. Note that ∂
∂qI

E
[
(D − qI)+

]
= −FD(qI)
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and

ψ′(qI) =−
2E
[
(D − qI)+

]
FD(qI)

E
[(

(D − qI)+
)2] +

2
(
E
[
(D − qI)+

])3(
E
[(

(D − qI)+
)2])2

=− 2ψ(qI)(FD(qI)− ψ(qI))

E[(D − qI)+]
.

Using this derivative and ∂qI/∂βj in (C.4), we have

∂Z

∂βj
=
−cjβF − (2− cjβj)

(βF )2 ψ(qI) +
2− cjβj
βF

ψ′(qI)
∂qI

∂βj

=
−cjβF − (2− cjβj)

(βF )2 ψ(qI) +
2− cjβj
βF

2ψ(qI)(FD(qI)− ψ(qI))βI

(βF )2 (1− βIP 1)

=
ψ(qI)

(βF )2

[
− cjβF − (2− cjβj)

(
1− 2(FD(qI)− ψ(qI))βI

βF (1− βIP 1)

)]
.

We will show that ψ(qI) is close to FD(qI) when σD is sufficiently small and qI < µD

to complete the proof.

For a normal random variable X ∼ N (µ, σ), we can show that E[X+] = µFX(0)+

σ2fX(0) and E
[
(X+)

2]
= (µ2 + σ2)FX(0) + µσ2fX(0). Then,

E
[
(D − qI)+

]
= (µD − qI)FD(qI) + σ2

DfD(qI),

E
[
((D − qI)+)2

]
= ((µD − qI)2 + σ2

D)FD(qI) + σ2
D(µD − qI)fD(qI),

ψ(qI) =

[
(µD − qI)FD(qI) + σ2

DfD(qI)
]2[

(µD − qI)2 + σ2
D

]
FD(qI) + σ2

D(µD − qI)fD(qI)
.

If σD ≤ σ∗D, we have qI max < µD (Lemma III.5). The above expression for ψ(qI)

implies that as σD → 0, we have FD(qI) → 1, fD(qI) → 0, and ψ(qI) → 1. Hence,

there exists σ†D, such that when σD < σ†D, we have ∂Z/∂βj ≤ 0.

To summarize, when σD < min{σ∗D, σ̂D, σ̃D, σ
†
D}, the profit function πj is quasi-

concave in βj. This establishes the existence of a pure strategy equilibrium, i.e., the

linear supply function equilibrium.
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C.2 SFE ODE Derivation for IG, FG, and VG model

We derive in this appendix the ODE that characterize the SFE for the problem

with the three generator types IG, FG, and VG. We first present the problem IGs and

FGs face and then find their equilibrium ODEs. The FG ODEs are found using two

different methods. The first method uses optimal control in which the optimal supply

function trajectory of every agent is chosen to satisfies the Euler-Lagrange condition.

The second method is the price control approach, which is widely used in the SFE

literature. Generators in the price approach method use the residual demand as their

supply functions and choose a price trajectory that maximizes their profit. We show

that these methods give the same SFE ODEs. We will assume that all IGs and FGs

have initial marginal costs C ′i(0) = aI and C ′j(0) = aF ). We also make the generator

rationality assume to ensure that the IG and FG supply functions produce nothing

when the price is below their initial marginal cost (i.e. Si(p) = 0 for p < aI and

Sj(p) = 0 for p < aF ).

To study their bidding strategies, we find the best response of every generator,

assuming all other generators’ supply functions are given. As a convention, we define

S−i(p)
def
= SI(p)− Si(p), and S−j(p)

def
= SF (p)− Sj(p).

C.2.1 IG Bidding Strategy

Knowing all FGs’ supply functions, generator i ∈ GI can compute the real-time

price P (qI , Lt,Wt, S
F ) in (3.6) and derive the average market price as a function of

aggregate IG production qI :

P (qI)
def
=

1

T

T∫
0

E
[
P (qI , Lt,Wt, S

F )
]
dt.
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Note that P (qI) decreases in qI . That is, the more IGs produce, the lower the average

real-time price, which also equals the price that IGs are paid because of the market-

clearing condition in (3.10). Hence, P (qI) is essentially an inverse demand function

facing IGs, and we can use the classical approach in Klemperer and Meyer (1989) to

find the equilibrium condition.

IG i can equivalently use the market-clearing price as a decision variable. If the

market-clearing price is p, then the total IG output is qI = P
−1

(p), and other IGs

supply S−i(p). Thus, IG i’s problem becomes:

max
p

(
P
−1

(p)− S−i(p)
)
p− Ci

(
P
−1

(p)− S−i(p)
)
.

The first order condition of this problem is

P
−1

(p)− S−i(p) +
(
P
−1′

(p)− S ′−i(p)
)[
p− C ′i

(
P
−1

(p)− S−i(p)
)]

= 0.

Substituting P
−1

(p) − S−i(p) by Si(p), and noting that P
−1′

(p) =
(
P
′
(qI)

)−1
, the

above condition can be written as

S ′−i(p) =
Si(p)

p− C ′i(Si(p))
+

1

P
′
(SI(p))

, ∀ i ∈ GI . (C.12)

This is the classical equilibrium condition derived by Klemperer and Meyer (1989).

The difference is that the demand function in our setting is implied by FGs’ supply

functions. Hence, the last term in (C.12) captures how FGs’ decisions affect IGs’

supply functions.

C.2.2 FG Bidding Strategy

An individual FG j ∈ GF offers supply function Sj(p), knowing that Sj(p) has two

effects on the outcomes of the game. The first effect is that Sj(p) directly influences
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real-time prices P (q, Lt,Wt, S
F ) in (3.8). This effect captures the fact that FG j

directly competes with other FGs in satisfying the balance of the demand. This first

effect also changes the average price on the right hand side of (3.10), which affects the

market-clearing IG output rate qI∗ in (3.10). This second effect captures the fact that

FGs and IGs are also competing with each other. These two effects are intertwined

because the IG output qI∗ influences real-time price through (3.8) as well.

Recognizing the above effects, FG j decides its supply function Sj(p). We first

consider FG j choosing among all feasible supply functions that support a given qI as

the market-clearing IG output. Once a desired supply function is found to support

each qI , FG j will then optimize over qI .

For notational convenience, we define net demand as load minus VG capacity,

Dt
def
= Lt − Wt. Let the cumulative distribution function of Dt be FDt , and its

complement be FDt = 1 − FDt . Whenever the net demand Dt > qI , FGs must

produce exactly the remaining demand, Dt − qI > 0, and the real-time price pt must

satisfy

SF (pt) = Dt − qI > 0.

The above equation suggests that if FG j desires a market price pt > 0 when the net

demand is Dt, it must produce Dt − qI − S−j(pt) at price pt, which corresponds to

a point on its supply function. Hence, we can equivalently use pt as FG j’s decision

variable. FG j decides price pt > 0 for each level of net demand Dt > qI , under the

constraint that the prices should support qI as the market-clearing IG output. That

is, the time-average real-time price should match SI
−1

(qI) as per (3.10):

TSI
−1

(qI) =

T∫
0

E
[
pt
]
dt. (C.13)
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Note that FG j makes price decision only when Dt > qI . When Dt ≤ qI , the

real-time price is zero or negative, which is independent of any supply function, for

given qI . The expected negative price averaged over [0, T ] is

P−(qI)
def
=

T∫
0

E
[

min
{

0, P (qI , Lt,Wt)
}]
dt

=

T∫
0

E
[
− h′(qI +Wt − Lt)1A3 − r1A2 − h′(qI − Lt)1A1

]
dt. (C.14)

Then, the constraint in (C.13) can be written as

T∫
0

E
[
pt
∣∣Dt > qI

]
FDt(q

I)dt = TSI
−1

(qI)− P−(qI) ≡ g(qI). (C.15)

Hence, FG j’s problem is choose pt > 0 for each level of Dt > qI so that the

expected positive price equals g(qI). This equality ensures that qI is indeed the

market-clearing IG output rate. Taking one step further, FG j chooses qI and pt

jointly as long as they satisfy the constraint (C.15). Hence, FG j’s problem can be

formulated as:

max
pt, qI

T∫
0

E
[(
Dt − qI − S−j(pt)

)
pt − Cj

(
(Dt − qI − S−j(pt)

)∣∣Dt > qI
]
FDt(q

I) dt

(C.16)

s.t.

T∫
0

E
[
pt
∣∣Dt > qI

]
FDt(q

I)dt = g(qI),

where pt is implicitly a function of Dt. An FG can find its optimal decision by

satisfying the first order conditions of (C.16), and the system’s equilibrium conditions

can be attained by solving the system of ODEs given by (C.12) and the optimality

conditions for each FG from (C.16).
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The Lagrangian of the problem in (C.16) is (ηj is the Lagrangian multiplier):

T∫
0

E
[(
Dt − qI − S−j(pt)− ηj

)
pt − Cj

(
Dt − qI − S−j(pt)

)∣∣Dt > qI
]
FDt(q

I) dt+ ηj g(qI).

The first-order condition for pt is

(
Dt − qI − S−j(pt)− ηj

)
− S ′−j(pt)

[
pt − C ′j(Dt − qI − S−j(pt))

]
= 0.

Substituting Dt − qI − S−j(pt) by Si(pt), the above condition can be written as

S ′−j(p) =
Sj(p)− ηj

p− C ′j(Sj(p))
, ∀ j ∈ GF . (C.17)

We can derive ηj from the first-order condition for qI to get

ηj =

∫∞
aF

(xSj(x)− Cj(Sj(x)))SF
′
(x)ψ(SF (x), qI) dx

g′(qI) +
∫∞
aF
xSF ′(x)ψ(SF (x), qI) dx

∀ j ∈ GF , (C.18)

where

ψ(SF (x), qI) =

T∫
0

[
fDt(S

F (x) + qI)fDt(q
I)− f ′Dt(S

F (x) + qI)FDt(q
I)
]
dt.

Two derivation of (C.18) are shown next; using the optimal control approach and

using the price control approach.

Optimal Control Approach

We can use the relation SF (pt) + qI = Dt to get pt’s distribution Fpt(x) =

FDt(S
F (x) + qI) when pt > aF . This makes fpt(x) = SF

′
(x)fDt(S

F (x) + qI) for

pt > aF and Dt > qI . Let b bet the price ceiling that corresponds to the maximum

demand. The probability that pt > aF is P{Dt > qI} = FDt(q
I). j’s best response
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problem becomes

max
Sj ,qI

b∫
aF

(xSj(x)− Cj(Sj(x)))SF
′
(x)

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt dx

s.to g(qI) =

b∫
aF

xSF
′
(x)

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt dx ⊥ ηj.

The Lagrangian of the optimal control problem is

L =(xSj(x)− Cj(Sj(x)))SF
′
(x)

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt

+ ηj

 g(qI)

b− aF
− xSF ′(x)

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt


=(x(Sj(x)− ηj)− Cj(Sj(x)))SF

′
(x)

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt

+
ηj

b− aF
g(qI).

The partial derivative of the Lagrangian with respect to Sj is

LSj =(x− C ′j(Sj(x)))SF
′
(x)

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt

+ (x(Sj(x)− ηj)− Cj(Sj(x)))SF
′
(x)

T∫
0

f ′Dt(S
F (x) + qI)FDt(q

I) dt,

and the partial derivative of the Lagrangian with respect to S ′j is

LS′j = (x(Sj(x)− ηj)− Cj(Sj(x)))

T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt.
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The derivative of this expression with respect to x is

d

dx
LS′j =

[
Sj(x)− ηj + S ′j(x)(x− C ′j(Sj(x)))

] T∫
0

fDt(S
F (x) + qI)FDt(q

I) dt

+ (x(Sj(x)− ηj)− Cj(Sj(x)))SF
′
(x)

T∫
0

f ′Dt(S
F (x) + qI)FDt(q

I) dt.

The Euler-Lagrange optimality condition LSj = d
dx
LS′j gives the differential equation

S ′−j(x) =
Sj(x)− ηj

x− C ′j(Sj(x))
.

ηj can be calculated from the first order condition of qI as

ηj =

∫ b
aF

(xSj(x)− Cj(Sj(x)))SF
′
(x)ψ(SF (x), qI) dx

g′(qI) +
∫ b
aF
xSF ′(x)ψ(SF (x), qI) dx

,

where

ψ(SF (x), qI) =

T∫
0

[
fDt(S

F (x) + qI)fDt(q
I)− f ′Dt(S

F (x) + qI)FDt(q
I)
]
dt.

Price Control Approach

In this approach, generator j sees a residual demand of Dt − qI − S−j(pt) in time

t, provided that Dt > qI , and chooses pt to maximize his gain. If we denote by D the

maximum demand, then generator j’s best response problem becomes

max
pj ,qI

T∫
0

E
[
pt(Dt − qI − S−j(pt))− Cj(Dt − qI − S−j(pt))|Dt > qI

]
FDt(q

I) dt

s.to g(qI) =

T∫
0

E
[
pt|Dt > qI

]
FDt(q

I) dt ⊥ ηj
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where the expectation is taken over the stochastic process Dt and pt is implicitly a

function of Dt. The Lagrangian of this problem is

T∫
0

E
[
pt(Dt − qI − S−j(pt)− ηj)− Cj(Dt − qI − S−j(pt))|Dt > qI

]
FDt(q

I) dt

+ηjg(qI).

The first order condition for pt is

Dt − qI − S−j(pt)− ηj − S ′−j(pt)
(
pt − C ′j(Dt − qI − S−j(pt))

)
= 0

or

S ′−j(p) =
Sj(p)− ηj

p− C ′j(Sj(p))
.

We can derive ηj from the first order condition for qI . The Lagrangian can be written

in integral form as

∞∫
qI

[
p(y − qI − S−j(p)− ηj)− Cj(y − qI − S−j(p))

] T∫
0

fDt(y)FDt(q
I) dt dy

+ηjg(qI)
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where p is an implicit function of y. The first order condition with respect to qI is

0 = (aFηj + Cj(0))

T∫
0

fDt(q
I)FDt(q

I) dt+ ηjg
′(qI)

−
∞∫
qI

(
p− C ′j(y − qI − S−j(p))

) T∫
0

fDt(y)FDt(q
I) dt dy

−
∞∫
qI

[
p(y − qI − S−j(p)− ηj)− Cj(y − qI − S−j(p))

] T∫
0

fDt(y)fDt(q
I) dt dy.

We used the relations p = aF when y = qI and S−j(a
F ) = 0 in deriving this equation.

We can rearrange terms to get

ηj

(
g′(qI) + aF

T∫
0

fDt(q
I)FDt(q

I) dt+

∞∫
qI

p

T∫
0

fDt(y)fDt(q
I) dt dy

)

=

∞∫
qI

[
p(y − qI − S−j(p))− Cj(y − qI − S−j(p))

] T∫
0

fDt(y)fDt(q
I) dt dy

+

∞∫
qI

(
p− C ′j(y − qI − S−j(p))

) T∫
0

fDt(y)FDt(q
I) dt dy

− Cj(0)

T∫
0

fDt(q
I)FDt(q

I) dt.
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We can now make a change of variables from y to p, where y = qI + SF (p) which

makes dy = SF
′
(p) dp.

ηj

(
g′(qI) + aF

T∫
0

fDt(q
I)FDt(q

I) dt+

∞∫
aF

pSF
′
(p)

T∫
0

fDt(S
F (p) + qI)fDt(q

I) dt dp

)
(C.19)

=

∞∫
aF

[
pSj(p)− Cj(Sj(p))

]
SF
′
(p)

T∫
0

fDt(S
F (p) + qI)fDt(q

I) dt dp

+

∞∫
aF

(
p− C ′j(Sj(p))

)
SF
′
(p)

T∫
0

fDt(S
F (p) + qI)FDt(q

I) dt dp

− Cj(0)

T∫
0

fDt(q
I)FDt(q

I) dt.

Consider the expression

∞∫
aF

[
pSj(p)− Cj(Sj(p))

]
SF
′
(p)

T∫
0

f ′Dt(S
F (p) + qI)FDt(q

I) dt dp.

We can integrate it by parts to get

Cj(0)

T∫
0

fDt(q
I)FDt(q

I) dt

−
∞∫

aF

(
Sj(p) + S ′j(p)(p− C ′j(Sj(p)))

) T∫
0

fDt(S
F (p) + qI)FDt(q

I) dt dp.

By substituting S ′j(p) = SF
′
(p)− S ′−j(p) we can write

Sj(p) + S ′j(p)(p− C ′j(Sj(p))) = Sj(p)− S ′−j(p)(p− C ′j(Sj(p))) + SF
′
(p)(p− C ′j(Sj(p)))

= ηj + (p− C ′j(Sj(p)))SF
′
(p).
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By substituting this into the original formula we get

∞∫
aF

[
pSj(p)− Cj(Sj(p))

]
SF
′
(p)

T∫
0

f ′Dt(S
F (p) + qI)FDt(q

I) dt dp

= Cj(0)

T∫
0

fDt(q
I)FDt(q

I) dt− ηj

∞∫
aF

T∫
0

fDt(S
F (p) + qI)FDt(q

I) dt dp

−
∞∫

aF

(p− C ′j(Sj(p)))SF
′
(p)

T∫
0

fDt(S
F (p) + qI)FDt(q

I) dt dp.

We can substitute this back into (C.19) to get

ηj

(
g′(qI) + aF

T∫
0

fDt(q
I)FDt(q

I) dt

+

∞∫
aF

pSF
′
(p)

T∫
0

fDt(S
F (p) + qI)fDt(q

I) dt dp+

∞∫
aF

T∫
0

fDt(S
F (p) + qI)FDt(q

I) dt dp

)

=

∞∫
aF

[
pSj(p)− Cj(Sj(p))

]
SF
′
(p)ψ(SF (p), qI) dt dp.

We can write

∞∫
aF

T∫
0

fDt(S
F (p) + qI)FDt(q

I) dt dp = −aF
T∫

0

fDt(q
I)FDt(q

I) dt

−
∞∫

aF

pSF
′
(p)

T∫
0

f ′Dt(S
F (p) + qI)FDt(q

I) dt dp,
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which makes

ηj

(
g′(qI) +

∞∫
aF

pSF
′
(p)ψ(SF (p), qI) dt dp

)

=

∞∫
aF

[
pSj(p)− Cj(Sj(p))

]
SF
′
(p)ψ(SF (p), qI) dt dp.
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APPENDIX D

Chapter IV Appendix

D.1 Solving Linear SFEs

We solve Green’s (1996) affine SFE problem using Rudkevich (1999). In this

problem, the demand is assumed to be price elastic with the form D(p) = θ − bp,

where θ is a random demand shock and b is the price elasticity of the demand.

Generators have quadratic cost functions of the form Ck(q) = ak + 1
2
ckq

2 and submit

linear supply functions of the form Sk(p) = βk(p− αk). Rudkevich gives a procedure

to solves for the βk coefficients in non-linear system

∑
i 6=k

βi =
βk

1− ckβk
− γ.

In this procedure, we first find U ∈ (0, 1) that satisfies

U = 1 + n
U + ε

2
−

n∑
k=1

√
s2
k +

(U + ε)2

4
,

where U is a market power index (market is competitive when U is close to 1 and

non-competitive when U is close to 0), n is the number of generators, cM = 1∑n
k=1 ck

,
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ε = bcM , and sk = cM
ck

. The βk bid of generator k can then be calculated from

βk =
1

cM

(
sk +

U + ε

2
−
√
s2
k +

(U + ε)2

4

)
. (D.1)

The Matlab function fsolve with a starting point of 1 can be used to solve for U .

D.2 Chapter IV Proofs

Proof of Lemma IV.2

Proof. The βk bids can be calculated using Equation (D.1) in Appendix D.1, where

ε = bcM . The derivative of βk with respect to ε is

∂βk
∂ε

=
1

cM

U ′ + 1

2
−

1
2
(U + ε)(U ′ + 1)

2
√
s2
k + (U+ε)2

4

 ,

where U ′ = ∂U
∂ε

. Since sk > 0 ∀ k ∈ G, the derivative can be bounded as follows

∂βk
∂ε

>
1

cM

U ′ + 1

2
−

1
2
(U + ε)(U ′ + 1)

2
√

(U+ε)2

4


=

1

2cM
(U ′ + 1)

(
1− U + ε

U + ε

)
= 0.

Therefore, βk is increasing in b ∀ k ∈ G.

Proof of Theorem IV.3

Proof. Using the bid solution function B defined in (4.19), we can find the slope bids

for the AF problem βAFk for k ∈ G by solving B(G, 0). In other words, the set of
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generator bids βAFk solve

∑
l∈G\k

βAFl =
βAFk

1− ckβAFk
∀k ∈ G.

We can rewrite this system as

∑
l∈GF \j

βAFl + (βI)AF =
βAFj

1− cjβAFj
∀ j ∈ GF ,

∑
l∈GI\i

βAFl + (βF )AF =
βAFi

1− ciβAFj
∀ i ∈ GI .

Therefore, bids βAFj for j ∈ GF are the solution to B(GF , (βI)AF ) and the bids βAFi

for i ∈ GI are the solution to B(GI , (βF )AF ).

For the FI problem, we can get βFIj for j ∈ GF by solving B(GF , 0). Since

(βI)AF > 0, we can use Lemma IV.2 to concluded that βAFj > βFIj for j ∈ GF . This

also implies that (βF )AF > (βF )FI .

After finding (βI)FI , we can calculate βFIi for i ∈ GI by solving B(GI , (βF )FI).

Since (βF )AF > (βF )FI , we can use Lemma IV.2 again to show that βAFi > βFIi for

i ∈ GI . This shows that βAFk > βFIk for all generators k ∈ G.
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APPENDIX E

Chapter V Appendix

E.1 Chapter V Proofs

Proof of Theorem V.1

We will use the following distributions to derive the different term in (5.16).

P{B(j−1) ≤ bi < B(j)} =
(n− 1)!

(j − 1)!(n− j)!
FB(bi)

j−1FB(bi)
n−j,

P{B(j) ≤ x} = FB(j)
(x) =

n−1∑
l=j

(n− 1)!

(l)!(n− l − 1)!
FB(x)lFB(x)n−l−1,

P{B(j−1) > bi} =

j−1∑
l=1

(n− 1)!

(l − 1)!(n− l)!
FB(bi)

l−1FB(bi)
n−l,

fB(j)
(x) =

(n− 1)!

(j − 1)!(n− j − 1)!
fB(x)FB(x)j−1FB(x)n−j−1,

E
[
B(j−1)1{B(j−1)>bi}

]
=

p∫
bi

xfB(j−1)
(x) dx

=
(n− 1)!

(j − 2)!(n− j)!

p∫
bi

fB(x)FB(x)j−2FB(x)n−j dx.
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We can write (5.16) as E[πi(bi)] = A1 + A2 − A3, where

A1 =
n∑
j=1

PDjP{B(j−1) ≤ bi < B(j)}EDj(bi − c),

A2 =
n∑
j=1

PDjkE[B(j−1)1{B(j−1)>bi}],

A3 =
n∑
j=1

PDjP{B(j−1) > bi}ck.

By using the order statistic distribution we get

A1 =
n∑
j=1

PDjEDj
(n− 1)!

(j − 1)!(n− j)!
FB(bi)

j−1FB(bi)
n−j(bi − c).

Notice that P{B(0) > bi} = 0, and hence we could start the sum in A2’s formula from

j = 2. We can also use the conditional expectation of the order statistic to get

A2 =k
n∑
j=2

PDj
(n− 1)!

(j − 2)!(n− j)!

p∫
bi

xfB(x)FB(x)j−2FB(x)n−j dx

=k
n−1∑
j=1

PDj+1
(n− 1)!

(j − 1)!(n− j − 1)!

p∫
bi

xfB(x)FB(x)j−1FB(x)n−j−1 dx.

A3 can also be expanded by using the order statistic distribution.

A3 =ck
n∑
j=2

PDj

j−1∑
l=1

F (bi)
l−1F (bi)

n−l (n− 1)!

(l − 1)!(n− l)!

=ck
n−1∑
l=1

n∑
j=l+1

PDjF (bi)
l−1F (bi)

n−l (n− 1)!

(l − 1)!(n− l)!

=ck
n−1∑
j=1

PDj
(n− 1)!

(j − 1)!(n− j)!
F (bi)

j−1F (bi)
n−j,

where PDj =
∑n

l=j+1 PDl. In a MSNE, generators other than i mix their strategies

such that i becomes indifferent in choosing bi, which is the same as having ∂E[πi(bi)]
∂bi

= 0.
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We will find the derivative of A1, A2, and A3 with respect to bi next and then combine

these terms to get the indifference condition.

∂A1

∂bi
=

n∑
j=1

PDjEDj
(n− 1)!

(j − 1)!(n− j)!
F (bi)

j−1F (bi)
n−j

+ f(bi)(bi − c)
n∑
j=2

PDjEDj
(n− 1)!

(j − 1)!(n− j)!
(j − 1)F (bi)

j−2F (bi)
n−j

− f(bi)(bi − c)
n−1∑
j=1

PDjEDj
(n− 1)!

(j − 1)!(n− j)!
(n− j)F (bi)

j−1F (bi)
n−j−1

=
n∑
j=1

PEDj
(n− 1)!

(j − 1)!(n− j)!
F (bi)

j−1F (bi)
n−j

+ f(bi)(bi − c)
n−1∑
j=1

∆PEDj
(n− 1)!

(j − 1)!(n− j − 1)!
F (bi)

j−1F (bi)
n−j−1

where PEDj = PDjEDj and ∆PEDj = PDj+1EDj+1 − PDjEDj.

∂A2

∂bi
=− kbif(bi)

n−1∑
j=1

PDj+1
(n− 1)!

(j − 1)!(n− j − 1)!
F (bi)

j−1F (bi)
n−j−1.
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∂A3

∂bi
=ckf(bi)

n−1∑
j=2

PDj
(n− 1)!

(j − 1)!(n− j)!
(j − 1)F (bi)

j−2F (bi)
n−j

− ckf(bi)
n−1∑
j=1

PDj
(n− 1)!

(j − 1)!(n− j)!
(n− j)F (bi)

j−1F (bi)
n−j−1

=− ckf(bi)(n− 1)PDn−1F (bi)
n−2

+ ckf(bi)
n−2∑
j=1

(PDj+1 − PDj)
(n− 1)!

(j − 1)!(n− j − 1)!
F (bi)

j−1F (bi)
n−j−1

=− ckf(bi)(n− 1)PDnF (bi)
n−2

− ckf(bi)
n−2∑
j=1

PDj+1
(n− 1)!

(j − 1)!(n− j − 1)!
F (bi)

j−1F (bi)
n−j−1

=− ckf(bi)
n−1∑
j=1

PDj+1
(n− 1)!

(j − 1)!(n− j − 1)!
F (bi)

j−1F (bi)
n−j−1.

We can combine these results to get

∂E[πi(x)]

∂x
=

n∑
j=1

PEDj
(n− 1)!

(j − 1)!(n− j)!
F (x)j−1F (x)n−j

+ (x− c)f(x)
n−1∑
j=1

∆PEDj
(n− 1)!

(j − 1)!(n− j − 1)!
F (x)j−1F (x)n−j−1

− kxf(x)
n−1∑
j=1

PDj+1
(n− 1)!

(j − 1)!(n− j − 1)!
F (x)j−1F (x)n−j−1

+ ckf(x)
n−1∑
j=1

PDj+1
(n− 1)!

(j − 1)!(n− j − 1)!
F (x)j−1F (x)n−j−1 = 0.

We can further simplify this expression to get the following ODE.

n∑
j=1

PEDj
(n− 1)!

(j − 1)!(n− j)!
F (x)j−1F (x)n−j

+ (x− c)fB(x)
n−1∑
j=1

(∆PEDj − kPDj+1)
(n− 1)!

(j − 1)!(n− j − 1)!
F (x)j−1F (x)n−j−1 = 0.
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