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Abstract 

 The primary goal of this research is to develop circuits capable of cold start, boosting, 

rectifying and storing the harvested energy of mechanical vibration harvesters that have outputs 

that are low power, low voltage and non-periodic. The techniques developed to overcome the 

diode drops inherent in rectification are critical contribution of this research. New techniques for 

high efficiency low voltage functioning and sub-threshold start-up are introduced. Additionally, 

the circuits work with the up-conversion based harvester “The Parametric Frequency Increased 

Generator (PFIG)”, which is designed to harvest vibrations found on bridges or under bridge-like 

conditions tested in a lab setting. The goal of energy harvesting from bridges or other parts of the 

nation’s infrastructure is to power bridge health monitoring sensors that could be placed 

throughout the bridge in difficult to reach locations where battery replacement would be 

expensive or dangerous.  

This research investigated the feasibility, from the circuit side, of harvesting the low 

power, low voltage and non-periodic outputs of harvesters, which are actuated by vibrations 

from cars passing on a major suspension bridge or similar vibrations from other parts of the 

nation’s infrastructure (i.e. buildings). On a suspension bridge vibrations are non-periodic and 

range in frequency between approximately 2 Hz and 30 Hz and have accelerations that are 

regularly in the range of 10 mg and 100 mg. Typically, the PFIG up-converts these low bridge 

vibration frequencies (2 – 30 Hz) to near 110 Hz. This happens even if the PFIG is actuated over 

a wide range of frequencies. Higher PFIG voltages are seen if the PFIG is actuated with a higher 

bridge acceleration or frequency.   
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The contributions of this research are: 1) The development of innovative IC harvesting 

circuits for electromagnetic vibration harvesters capable of enabling active diode charge pumps 

to record high boosting, high power harvesting efficiency, low power functioning, and record 

low input voltage functioning in a boosting circuit; 2) The use of sub-threshold functioning to 

enable a boosting low voltage active diode cold start-up on an IC-based energy harvesting circuit 

utilizing the unique start-up properties of charge pumps; 3) The use and study of discrete passive 

circuit solutions for vibration harvesters with record low voltage and low power outputs; and 4) 

The testing of these circuits under bridge-like conditions or on a real suspension bridge. While 

there is a specific real world motivation for the development of these circuits, continued 

investigation into these circuits will advance the state-of-the-art in the design and understanding 

of vibration harvester circuits such as the charge pump, sub-threshold design in start-up circuits, 

the use of discrete circuits in energy harvesting, and the testing of a harvesting system in a harsh 

real world environment. The innovations and learning from this research will be applicable to 

many other areas of energy harvesting circuit research where an AC input or clock is harvested.  

 In this abstract, work is presented on discrete circuit solutions developed to boost, rectify 

and store the power generated from the PFIG, with actual bridge results from short-term tests and 

long-term tests including a year-long test of a harvesting system on a suspension bridge in 

California. Also, the results and novel architecture of fabricated IC-based charge pump systems 

with multiple innovations relating to a lowest voltage stage driven active diode charge pump are 

presented. These active diode charge pumps use the unique start-up behavior inherent to a charge 

pump with large capacitors that is both harvested and is clocked by its input to aid deep sub-

threshold active diode start-up. These fabricated IC systems allow for ~×6 or ~×16 boosting 

down to an ideal sinusoidal signal of ~110 mV under regular operation and can cold start-up with 
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a minimum ideal sinusoidal input of 220 mV. Both the minimum input voltage necessary for 

start-up and regular functioning operation represent records for an energy harvester circuit 

capable of boosting from a vibration harvester in the literature. The maximum power conversion 

efficiency of the circuit is near ~68% with sinusoidal operation, which is comparable to other 

state-of-the-art boosting circuits. Also, the IC is capable of start-up with PFIG based signals 

occurring at actuations of 4.5 Hz with an input peak of 415 mV (versus 220 mV with an ideal 

sine-wave) and has an estimated efficiency with a PFIG-like signal of near 50%.  

This thesis analyzes the discrete and IC-based charge pump harvester. It also 

demonstrates their unique functioning with low voltage and low power inputs, including the 

challenges and opportunities of using discrete components (passive charge pumps and 

transformers) to achieve ultra-high boosting or using active diode sub-threshold functioning to 

enable sub-threshold active diode start-up. Finally, potential improvements to these systems and 

future work building on the concepts in these systems are discussed.  
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Chapter I 

Introduction and Literature Review 

There are multiple energy sources that can be utilized on a bridge, including solar, 

thermal, radio frequency (RF), and mechanical energy. Each of these methods has benefits and 

drawbacks. Solar energy is presently being used to power Structural Health Monitoring (SHM) 

nodes on bridges, including the previously mentioned New Carquinez Bridge [1]. Solar panels 

produce sufficient power on sunny days for regular sensor data collection and transmission, but 

power is limited or non-existent during the night, cloudy periods, or when excessive dust 

accumulates on the solar panels. For SHM nodes at interior points or under the bridge deck, 

wiring must be routed from the solar panels on the bridge surface to the sensor locations, adding 

significantly to the system complexity and cost. Thermal harvesting from the temperature 

difference between the bridge surface and the outside air has been investigated and shows 

promise [2]; however, the available temperature difference varies and can be very small, making 

reliable harvesting a challenge. RF harvesting also has been investigated [3]; however, little RF 

power is typically available in the environment due to the rapid attenuation away from distant 

transmitters. Solutions using dedicated RF transmitters in close proximity to or on the bridge can 

supply considerably more power to the RF harvesters [2]; however, their installation may not 

always be feasible. While each of these harvesting methods has certain advantages, none of them 

alone supplies the continuous energy needed to power wireless sensors throughout the bridge. 

This motivates the need to investigate other sources of harvestable energy. 
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Vibration energy harvesting may be an effective way to power wireless SHM sensors by 

harvesting power during periods of high traffic and storing that power for later use. A resonant 

vibration harvester for powering a bridge SHM sensor [4] has been demonstrated, where the 

resonant frequency of the harvester was tuned to a modal frequency of the bridge at the specific 

sensor location to obtain optimal performance for one week. Studies show that bridge resonant 

frequencies can vary significantly from bridge to bridge or between positions on the bridge [2], 

so it may be difficult to broadly apply resonant harvesters. The non-resonant PFIG, introduced in 

the Abstract, is capable of working on a bridge with a range of frequencies without tuning; 

however, it produces a low-power, low voltage, decay sine-wave outputs that are actuated non-

periodically  

A harvester and interface circuit that harvests the vibrations on a large suspension bridge 

to supply bridge health monitoring sensors is an example of a system with a harvester that 

produces a low power, low voltage and non-periodic output signal that will often need to start 

from a capacitor at near 0 V (for example after a quiet night with little traffic) [1, 5]. The basic 

circuit solution to interface with the bridge vibration harvester is the classic passive half-wave 

charge pump [6]. Other better and more complex circuit solutions are possible and will advance 

the state-of-the-art, but they have not been investigated in the literature. Better circuit solutions 

will also allow complete testing of a vibration harvesting system on a bridge, including a long-

term test, because enough power can be generated to make a meaningful assessment of the 

efficacy of the system. A long-term test on an actual bridge could not have been completed 

without an improvement over the initial passive charge pump vibrational harvester circuit [6].   
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From the purely circuit side, transformers matched to the high output impedance (300 Ω - 

1500 kΩ) and low frequency signals (100 – 110 Hz), which output from a harvester based on the 

low acceleration actuations present on a bridge, have been used only by this author as part of an 

overall system [7]. Other energy harvesting literature only analyzes transformers matched to 

harvesters with an output impedance of (3 - 4 Ω) at low frequency outputs [8-10]. These 

transformer-based circuits matched to high output impedance warrant more investigation. 

However, the most interesting and potentially beneficial area of circuit research investigates the 

opportunities and obstacles of transitioning the classic Cockcroft-Walton charge pump [11] into 

an active diode IC based system. Little work has been done with active diode IC’s and this 

classic charge pump architecture other than purely discrete active diode charge pumps [12, 13] 

that rely on passive diodes for start-up. The classic charge pump’s start-up is unique because 

during the start-up the stages of the charge pump are charged at different rates. This concept is 

described in section 1.3.  In an IC-based system, advancement in the state-of-the-art can be made 

in the circuit’s sub-threshold functioning during start-up using the unique characteristics of this 

charge pump. Additionally, advancements can be made in the start-up operation and regular 

operation relating to high power conversion efficiency, low power operation, and mitigation of 

the effect of the loading on the charge pump’s start-up. 

1.1 Expected Thesis Contributions 

There are four main contributions in this thesis. First, there is the development of 

innovative IC harvesting circuits for electromagnetic vibration harvesters capable of enabling 

active diode charge pumps to record high boosting (10x – 16x), while maintaining high power 

harvesting efficiency (>50 %) , low power functioning (<1 µW) and record low input voltage 

functioning in a boosting circuit (<150 mV). Second, sub-threshold functioning will be used to 
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enable record cold-start-up on IC energy harvesting circuits that boosts based on ultra-low 

voltage inputs (<250 mV voltage for start-up). This start-up would enable boosting out of sub-

threshold and into regular operation without the use of passive diodes while relying on the 

unique characteristics of charge pump operation for sub-threshold active functioning. Third, 

there is the development, use and study of discrete passive circuit solutions that are capable of 

boosting, rectifying, and storing the harvested PFIG outputs or harvesters with record low 

voltage (<60 mV), high output impedance (~300 Ω) and low power outputs (<5µW) . These 

circuit limitations will be explained including the Schottky diodes turn-on voltage, voltage 

mismatch, the transformers ability to match to the harvester’s output impedance, and transformer 

efficiency. Finally, these circuits have been tested and will continue to be tested under bridge-

like conditions or on a real suspension bridge. This includes the installation and testing of short-

term and long-term systems on a suspension bridge with the PFIG and electronics. This long-

term test lasted over 1 year. The following thesis discusses these contributions and relevant 

background emphasizing their value and their advancement to the state-of-the-art. 

1.2 Up-conversion Based Harvesters  

Low frequency vibrations have been shown to be efficiently harvested by compact 

mechanical harvesters using the concept of up-conversion [14] introduced at the University of 

Michigan in a micro-vibration harvester. The original idea behind mechanical up-conversion is 

that low frequency vibrations can be up-converted to higher frequency vibrations, so there is 

better energy conversion efficiency when harvesting these lower frequencies. To accomplish 

this, a mechanical cantilever resonates when actuated by low frequency vibrations and a magnet 

and coil on the cantilever generates current, voltage and power. The voltage output of this coil 

takes the form of decaying sinusoids that occur based on low frequency vibration actuations [14].  
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This up-conversion idea can be generalized to a larger mechanical harvester that is more 

suitable for scavenging bridge vibrations. Previously, the Parametric Frequency Increased 

Generator (PFIG) has been introduced at the University of Michigan. Multiple versions of the 

PFIG have been published, including a bench-top version [15] and smaller self-contained 

piezoelectric and electromagnetic versions [16, 17]. In the last publication a PFIG for bridge 

SHM was introduced (PFIG-B1) [6]. It consists of a large inertial mass that snaps back and forth 

between two “Frequency Increased Generators (FIGs)”. Each FIG consists of a latching magnet 

glued to a spring on top of which is another power generation magnet. The latching magnetic of 

an individual FIG attaches and detaches from the inertial mass as bridge vibrations occur. The 

power generation magnets are surrounded by coils that have output impedance ranging between 

300  Ω [7] to 1.5 kΩ [6]. When the large inertial mass detaches from a FIG, the power generation 

spring vibrates at an up-converted frequency generating current and power in the coil 

surrounding the power generation magnet. Figure 1 shows the architecture of the PFIG and 

describes its functioning. The entire volume of the PFIG-B1 is minimized to be about the size of 

a “D” cell battery (<68 cm
3
). 
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The PFIG was tested on the New Carquinez (NC bridge) suspension bridge in California. 

The PFIG was attached to the bridge by first attaching it to a plastic plate that was then 

magnetized to the bottom of a suspension bridge as seen in Figure 2. The parameters of this first 

bridge based harvester presented a considerable challenge to the interface circuitry. These 

parameters included an output impedance of 1.5 kΩ and matched output voltages that regularly 

reached a peak of 200 to 300 mV based on bridge accelerations measured on the NC Bridge. 

Average power recorded on the NC bridge, with the PFIG alone, ranged between 0.47 µW and 

0.75 µW. Better results were seen in the lab under steady conditions, including 2.3 µW at 2 Hz 

and 0.54 m s
-2

 actuation and 57 µW at 10 Hz and 0.54 m s
-2 

[6]. There are two versions of the 

PFIG capable of bridge harvesting. The first version of the PFIG capable of bridge harvesting 

 
Figure 1. The diagram of the PFIG is shown in (a), while the functioning of the PFIG is shown in (b) where the 

inertial mass snaps back and forth between FIGs when actuated by a bridge vibration [6].  
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was just described [6]. From now on this first version will be referred to as PFIG-B1 and the 

second version, described in Chapter 2, will be described as PFIG-B2. 

1.3 The Classic Passive Cockcroft-Walton Multiplier as Harvesting Circuit 

1.3.1 Start-up Functioning in a Cockcroft-Walton Multiplier 

The start-up of the Cockcroft-Walton charge pump is unique in circuit design. For 

instance, an input signal clocks the charge pump while being harvested and boosted by this 

charge pump at the same time. The charge pump works by cascading a series of voltage doublers 

and using the diodes as switches to enable charge to flow from the capacitors nearest to the input 

to the capacitors farthest from the input raising the voltage at the output of the charge pump. The 

conventional way that the charge pump is drawn in the left diagram of Figure 3 is not intuitive in 

that it doesn’t clearly show how the diodes (switches) enable the cascaded voltage doublers. If 

the diodes (switches) all have same orientation and are lined up in the center of the charge pump, 

it is clear to see how the different paths are formed by periodically switching alternate diodes. 

These alternating paths are shown with solid and dashed ovals. From these diagrams in Figure 3 

it is clear that the initial stages of the charge pump (the stages closer to the supply) naturally 

Bridge bottom

Accelerometer

 
Figure 2. The PFIG is attached to a plastic plate which is magnetically attached to the bottom of the NC bridge. 

An accelerometer is included to measure the vibrations which actuate the PFIG.  
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charge first. This process can be described as follows. First, capacitor C1 charges as the diodes 

D1 and D2 act like switches. D1 is on and D2 is off with a positive sine-wave input to allow C1 

to charge from the input. Next, diode D1 is off and D2 is on. This allows for the capacitor C1 to 

no longer charge from the input and the charge on C1 to be split between capacitor C1 and C2. 

After the next switch, the charge in C2, which is approximately half of what was originally on 

the capacitor C1, is connected to C3 and the charge is split once again between C2 and C3. The 

charge pump start-up is illustrated in Figure 4. It shows how the charge initially flows in a charge 

pump. In the initial charging the first stages of the charge pump will charge more quickly first 

until the charge pump can move into a more steady stage operation.     

 
Figure 3. The left diagram shows the standard way the charge pump is drawn, while the middle and right diagrams 

show the switches (diodes) oriented the same in the center of the charge pump. The current paths for the charge part 

are now visible for a negative signal (center diagram) and positive signal (right diagram). 
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The two graphs in Figure 4 show LTspice simulations of an ideal four stage Cockcroft-

Walton half-wave rectifier charged over 1 second. In this simulation, the capacitors are all 100 

µF, the diodes are ideal, and are driven by a sine-wave modeling a harvester with a 300 Ω input 

impedance. On the bottom of Figure 4, a graph shows the total combined voltage at each stage as 

the charge pump charges. The bottom graph demonstrates that it takes until 0.2 V and 0.3 V for 

the top stages starts to separate from the rest of the stages; however, by the end of 1 second all of 

the stage’s voltages have separated and the top stage is nearly charged to 0.7 V. The top graph in 

Figure 4 shows the separate voltage across each stage in the charge pump. Initially, no charge is 

built up on the last stage, farthest from the input to the charge pump, while significant charge is 

built on the first stage closest to the charge pump. It takes nearly 0.1 seconds until the charge 

pump’s last stage starts to charge as seen on the top of Figure 4. In the time that it takes for the 

charge pump to reach 20 mV, the output of the charge can reach up to ~0.25 V. This uneven 

charging in a charge pump is an inherent quality of the charge pumps. 
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The fact that a charge pump that is both harvested and is clocked by its input unevenly 

charges its stages can be used to enable low voltage start-up in far more advanced circuits. In 

other words, the charge pump behavior during start-up is always changing. Initially, the stage 

farthest away from the input to the charge does not charge. Midway through start-up, the 

voltages farthest away from the input in the charge pump begins to charge pump while the stages 

closest to the charge pump input are well charged. Finally, as demonstrated in Figure 4, as the 

 
Figure 4. A Cockcroft-Walton start-up is shown with ideal diodes simulated in LTspice. The bottom graph shows 

the voltage on all the stage of the charge pump while the top graph shows the voltage across the stages on the charge 

pump. 
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charge becomes more fully charged, the charge across the stages becomes more nearly equal. 

However, for this author’s initial design as described in Figure 5 in the next section, all that 

mattered was that a charge pump could passively start-up and boost an input voltage. The 

intricacies of the charge pump functioning and start-up will be analyzed later and used to enable 

an IC-based active diode start-up.  

1.3.2 The Cockcroft-Walton Multiplier as a Harvesting Circuit 

 The classic Cockcroft-Walton multiplier [11] with passive diodes was the first solution 

this author used to boost, rectify, and store harvested power from a system containing the PFIG-

B1 [6]. A schematic of the discrete passive circuit used is shown in Figure 5. Each stage acts as a 

voltage doubler. This particular configuration cascades the multiplied outputs of both FIGs of the 

PFIG to increase the maximum boosted voltage from the circuit. The voltage multiplication from 

the original circuit is given in the equation below:  

                           ,2442_ peakPeakCWoutoriginalout VVnVV  
                               (1) 

 

 
Figure 5. Shows the original circuit used with the PFIG. Both outputs of the PFIG are fed into 6 stage Cockcroft-

Walton multipliers. The multipliers are cascaded [6]. 
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where n is the number of stages per multiplier, Vpeak is the unmatched input peak voltage, and 

Vout-CW is the output of a single Cockcroft-Walton charge pump. The factor of four comes from 

boosting the two serially cascaded Cockcroft-Walton multipliers. Six stages were chosen based 

on simulation, so that a PFIG output with a peak near 375 mV at 2 Hz would reach 2.4 V in 

approximately 60 seconds [6]. Simulated efficiency for this solution at an output of 2.4 V was 

given as 13% [6]. While this solution was functional in a lab setting, to harvest actual bridge 

based outputs, the low power of the non-periodic PFIG vibrations on the bridge along with the 

low efficiency of the circuit [6] meant that the initial circuit was unable to consistently work on 

the bridge. This motivated the author to develop other circuit solutions better able to overcome 

the diode drops.   

The PFIGs circuit interface inability to start-up and function at high efficiency is a main 

motivator behind this author’s research. As just mentioned, the diode drops of the charge pump 

limit the start-up and regular function. As indicated by the contributions of this thesis, either 

transformers or active diode functioning can be used to overcome the diode drops. Transformers 

can be matched to an improved PFIG with an input impedance far lower than 1.5 kΩ used in 

PFIG-B1 such as 300 Ω used in the PFIG-B2. While this matched transformer performance is 

still not ideal because the input impedance from the harvester is still very high, the study of the 

system using this transformer is valuable and gives useful preliminary data from a complete 

system functioning on a bridge. To use active diode function during start-up requires deep sub-

threshold functioning, which presents major problems in the works presented in literature [18-

20] so far and will be discussed in Section 1.4.1. Specifically, at such low voltages (0.2 – 0.3 V) 

on the supply and low power input from the PFIG (5 – 10 µW), sub-threshold functioning in an 

active diode system will cause considerable problems. Further, very limited opportunity is 
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available for active circuit manipulation or logic functioning to correct for the sub-threshold 

functioning issues that arise during functioning. As previously mentioned in the second expected 

thesis contribution (Section 1.1),  part of the focus of this thesis is to utilize the uneven charging 

and changes in the behavior of a charge pump that inherently occur in start-up to aid active 

functioning. A specific IC circuit architecture can be built to make use of this uneven charging in 

the different charge pump stages to enable active diode start-up in deep sub-threshold. 

1.4  Literature Review of Energy Harvesting Circuits  

1.4.1 Sub-threshold Functioning in Energy Harvesting   

 A major goal of this research is to enable sub-threshold active diode start-up in a 

Cockcroft-Walton multiplier for vibration harvesting circuits. Before going into a total overview 

of energy harvesting literature, it is useful to look at that few energy harvesting IC-based works 

that are designed to function in deep sub-threshold with vibration harvesters. These are rectifier 

circuits rather than LC boost or charge pump circuits. While the rectifier circuits are limited by 

not being able to boost, the lessons learned from these sub-threshold rectifiers for vibration 

harvesting are useful, as a boosting sub-threshold based active diode charge pump is designed 

that both is clocked by and harvests its input. 

Relevant work in sub-threshold circuit functioning and start-up in energy harvesting 

interface circuits using IC technology [18-20] shows that active deep sub-threshold behavior is 

possible with increasing challenges as lower and lower voltages supply the circuits. Because of 

these challenges, there has not been a system that can both start-up and function in deep sub-

threshold while at the same time producing high efficiency operation at a low input voltage low 

power input signal once the system has started. The basic problem is that in deep sub-threshold 
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only minimal functioning is possible even at the low frequencies (i.e. ~130 Hz) produced by the 

PFIG. The exponential equation representing sub-threshold operation is given below [21]: 

         (
 

 
)   

    

                               (2) 

From this equation, multiple reasons are seen to make sub-threshold operation far more difficult. 

First, the change in the current through an amplifier or comparator will create far less of a change 

in Vgs compared to when the device is functioning in saturation. Saturation is described using a 

square law below.  

     (
 

 
)  (       )

 
                                 (3) 

 

This means that for low sub-threshold current, both a larger change in the current and a faster 

change in the current are needed for functional sub-threshold operation. Simply put, far more 

margin is needed for the system to function in deep sub-threshold operation. Secondly, from this 

author’s experience it has been seen that models over process for deep sub-threshold often do not 

accurately reflect hardware results. Finally, mismatch in the system due to layout or processing 

variations can change current in a differential amplifier more readily because of the exponential 

relation to Vgs. This mismatch will potentially mean that sub-threshold operation is more likely 

to fail or have a large variation in functioning because of mismatch in differential comparator 

structures used in the system.  

Energy harvesting systems have been built that either work on the cusp of sub-threshold 

and saturation operation or deep in sub-threshold operation; however, additional circuit 

techniques, structures or system modifications are needed to enable these circuits to work. 

Additionally, no work has been done showing sub-threshold start-up ability in a circuit or system 

that can both boost and harvest a low power low voltage input while operating in deep sub-

threshold operation. 
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 There are several examples of sub-threshold operation allowing for start-up in literature, 

and understanding the techniques and limitations in these systems is critical. A negative voltage 

converter and half wave rectifier allow for an input signal with a peak of 380 mV to start-up and 

a regular input signal of 500 mV to function at high efficiency [20]. These voltages mean that 

this system works at the border of sub-threshold functioning in this technology (0.35µm). This is 

shown in Figure 6. The diode-based negative voltage converter is limited to functioning with an 

input voltage in between 340 - 380 mV. Similar to other works that use this same architecture 

[20, 22], initial active functioning is enabled as the positive voltage from the negative voltage 

converter overcomes the Vth of the PMOS portion of the active diode, even when the active 

diode is not functioning. As the minimum functioning of 380 mV is so close to the threshold of 

the system, an additional PMOS diode is installed labeled “MPBD” compared to other higher 

voltage applications of the same architecture. This helper diode “MPBD” effectively lowers the 

Vth that the input voltage from the negative voltage converter must overcome to function. Once 

this active system is enabled in active operation, it functions with high efficiency near 500 mV. 

This means that the comparator in the system functions adequately in moderate sub-threshold 

operation where this supply of (500 mV) must at least allow proper function for two devices (a 

PMOS and a NMOS) in a comparator switching the active diode. 

 
Figure 6. On the left, the top level is shown with a negative voltage converter followed by a half wave rectifier. On 

the right, the active diode rectifier is shown with a helper diode (MPBD) [20]. 
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 Other sub-threshold harvesting circuits are built that are capable of functioning at as low 

as a 200 mV supply [18, 19]; however, external diode based structures are needed for start-up 

and in one case an additional input is needed to supply the source power through an external 

Schottky diode charge pump [19]. In either case no efficiency results are given at low input 

voltages (100 – 200 mV) that, at maximum, are supplied by ~200 mV, which has been harvested 

and stored on integrated capacitors. This is likely because of very low efficiencies and 

difficulties operating in deep in sub-threshold (i.e. the inability of the low sub-threshold current 

to quickly switch the comparators). In the case of a fully integrated solution seen in Figure 7 

reported active functioning with approximately ~200 - 250 mV across the comparators with a 

100 mV input voltage, an integrated passive diode structure labeled “AC/DC Doubler with 

Passive Diodes” is necessary to enable even basic start-up. Again, no efficiencies are reported at 

these deep sub-threshold voltages. In this case, the conference paper [18] lists the entire system 

as an “integrated solution” meaning that the capacitors storing charge are “on-chip”, so they are 

likely in the ~1 pf range. For a harvester producing several µW of average power, sub-threshold 

functioning alone through diodes (without active diode functioning) may be enough to charge 

~1 pf capacitor. While this structure start-ups with as low as a ~140 mV peak input, it is unclear 

if large capacitors (in the ~µF range) can be charged with this system. Conversely, it is unclear if 

the active diode functioning would even be necessary to charge the ~1 pf integrated capacitor in 

this system, so that it is unclear how well the active diode rectifier is working with peak inputs 

between 100 and 200  mV. 
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 Another major weakness of this architecture is its inability to boost. This is not a charge 

pump, so the only way that boosting is possible is by using an additional LC boost circuit. To 

effectively boost a DC voltage, a clock signal with adjustable duty cycle in the range of ~10 

MHz must be generated. This is generally not possible in deep sub-threshold, so a properly 

biased clocking system capable of duty cycle adjustment is needed to generate this signal 

clocking if the signal in the range of ~10 Mhz. This system combining this active diode doubler 

with an LC boost circuit was previously built using discrete components before publication of 

this doubler as a sub-threshold circuit. To understand the limitations of the sub-threshold doubler 

alone, the previously published work using this doubler structure[23] is reviewed in this 

Introduction. The doubler diode structure used in this sub-threshold rectifier [18] was nearly 

identical to the previously mentioned structure used to provide a DC voltage that could be 

boosted with a LC boost circuit [23]. This system is shown in Figure 8. In this diagram the same 

rectifier structure is used; however, instead of the comparators in the active diode voltage 

structure being supplied by the output of the doubling active rectifier, they are supplied by the 

 
Figure 7. Shows a doubler active diode circuit where start-up is enabled by passive doubler structure. All 

functioning is necessary in deep sub-threshold [18]. 
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output of the LC boost circuit that also powers the clock, with adjustable duty cycle. This circuit 

is unable to start-up without a high voltage near 1.25V. This start-up is enabled even without 

active functioning by the passive diodes in both the doubler structure and the LC boost circuit. 

This very high peak to peak input voltage is needed to enable a high DC output voltage on the 

output of the LC boost circuit that then can enable functioning in saturation of the clock with 

adjustable duty cycle that powers the LC boost circuit. Demonstrating these difficulties with 

start-up and boosting of this structure shows the limitations of LC boost circuit enabling start-up 

in deep sub-threshold functioning and the limitations of using just this doubling structure alone 

as a sub-threshold harvesting circuit [18]. 

 To summarize sub-threshold literature, sub-threshold harvesting is possible yet limited. 

Only marginally functional vibration harvesting circuit interfaces have been reported that 

actively function in deep sub-threshold. There have been no reported works capable of boosting 

 
Figure 8. Shows a voltage doubler combined with a LC boost circuit built from discrete components [23]. 
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using active sub-threshold operation from a vibration harvester output. Additionally, high 

efficiency operation charging to useful large capacitors has not been reported in sub-threshold 

operation with a vibration harvester input. As discussed previously in section 1.4.1 high margin 

is needed to enable sub-threshold functioning. Therefore, it is not surprising that only limited 

sub-threshold operation is possible for sub-threshold based active diode vibration harvesting 

circuits. A significant contribution presented in this thesis is the use of this limited sub-threshold 

functioning to allow for start-up in a harvesting system that can both enable an active boosting 

start-up with low voltage low power input voltages and high efficiency operation once the 

system has started. 

1.4.2 Overview of Vibration Energy Harvesting Circuit Literature   

Numerous energy harvester circuit solutions have been published, which are capable of 

bucking, rectifying, and boosting an AC input signal (Figure 9).  Bucking circuits are possible 

with either a transformer or a clocked inductor based circuit. Boosting circuits can be built using 

 
Figure 9. Shows the numerous circuits used to interface with vibration harvesters including the circuits that can 

boost, buck and rectify. 

 



20 
 

a transformer, clocked inductor based circuits, or charge pumps. A key requirement of circuits 

built for vibration harvesters on bridges is that they can cold-start and boost. Because of this 

requirement, this thesis focuses on boosting circuits capable of start-up as described in the 

Abstract and Introduction. Relevant vibration energy harvesting literature’s (either journals or 

conference papers) minimum functional input voltages vs. their maximum power conversion 

efficiency are summarized in Figure 9. Figures 10 and 12-14 show similar graphs with Journal or 

Conference papers either removed or further clarified after explanation. The goal of this 

literature review process as presented in Figures 9-10 and 12-14 is to determine where the state 

of the art can be advanced in vibration energy harvesting circuits. 

To simplify Figure 9, the functioning of circuits that only buck are identified and 

described, so that the next chart (Figure 10) will only focus on those circuits that are more 

relevant to the author’s research.  This focus on boosting and rectifying circuits will demonstrate 

where it is possible to advance the state-of-the-art and meet the system requirements (i.e. a 

 
Figure 10.  Shows the numerous circuits used to interface with vibration harvesters that can boost and rectify. 
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boosting system is needed capable of sub-threshold functioning). High quality LC bucking 

circuits have been designed, which can start-up with passive diodes in their system. They exhibit 

high efficiencies and overcome specific challenges pertinent to LC bucking circuits [24, 25], but 

a circuit that boosts is needed for this application. LC converters circuits are ideal for bucking 

through start-up. To maintain proper bucking, the duty cycle of switching in the LC bucking 

circuit must be controlled. A high enough input voltage through a rectifier can easily be used to 

start-up through a diode rectifier and achieve a high enough voltage far out of sub-threshold so 

that a high frequency signal with a correct duty cycle can be achieved. Start-up is generally not a 

challenge in bucking circuits, and therefore not a focus of this research. Rectifier circuits, charge 

pump circuits, and even LC boost circuits that start-up are relevant to this research.  

Figure 10 displays these remaining circuits excluding two bucking IC-based 

configurations (Hehn ’11 and Ramadass ’09). However, many published boosting circuits and 

rectification circuits are unable to start-up. The ability to start-up is a major requirement of this 

system. To further focus on where advancement in the state-of-the-art can be made, boosting and 

rectifying circuits that are unable to start-up are identified and discussed. Figure 12 only displays 

those circuits able to start-up and boost or rectify (as compared to those circuit that can and 

cannot start-up as presented in Figure 10).  

Purely inductor based circuits can be used, but they require a pre-charged battery [26, 27] 

(Kwon ‘10) not available on the bridge after long periods without PFIG actuation. Charge pumps 

completely fabricated in CMOS technology (including capacitors in ~pf range) have been built. 

These use higher frequency clocks to control boosting operation; however, they also require a 

pre-charged battery [28, 29] (Maurath ’08 and ’12). An active rectifier using a passive charge 

pump supply for start-up has been implemented (also described in Section 1.4.1) [19] (Rahimi 
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‘12), but it requires two separate harvester inputs for start-up. Remaining works are included in 

Figure 12 to further focus on works that can boost, rectify and start-up. 

Transformers can also be used for boosting and they allow start-up; that is, they can boost 

a signal to overcome diode drops of a rectifier. As mentioned in the Introduction, energy 

harvester work based on transformers has been published [8-10]; however, these transformers 

match to a harvester’s output impedance that is far less than the PFIG’s. For example, the PFIG 

output impedance is 300 Ω to 1.5 kΩ, but current literature shows transformers matching to 

impedances in the 3 Ω to 4 Ω range [8-10]. Figure 11 shows an example of how a transformer is 

used in boosting circuit capable of harvesting [10]. The output of a 1:15 step-up transformer is 

both sent through a charge pump and harvested through an active rectifier (powered by the high 

voltage charge pump output). It gives an efficiency of 35%. Additionally, a conference paper [9] 

reports an IC rectifier circuit that follows a transformer for an up-converted signal. It reports 

65% maximum power conversion efficiency. This work is not included in the list of energy 

harvester literature (Figures 9-10 & 12-14), because it does not mention the input signal voltage 

(without the transformer), and it is difficult to understand how efficiency and steady results were 

reached with the information in the conference paper, and there was no journal paper covering 

similar work. Investigation into circuits using transformers matched to higher impedances, like 

the output of the PFIG (300 Ω), would be of value and are not addressed in literature. 
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While transformers present one solution to interface with vibration energy harvesters 

worthy of further investigation, circuits that are required to store, boost, and/or rectify the 

harvested energy from a vibration energy harvester all face similar challenges (cold-start and 

enabling high power conversion efficiency). The main issue is how to overcome the passive 

diode drops required in any type of harvesting system. These diode drops limit the minimum 

voltage that will enable start-up and they decrease efficiency for all boosting/rectifying circuits 

(LC boost, rectifier, or charge pump). Figure 12 shows the remaining works that either boost or 

rectify and can start-up without a transformer to focus on how the diode drops of system are 

overcome with various non-transformer based circuit techniques. 

 
Figure 11.  Shows a transformer, charger pump (rectification and step up) and rectifier used in a harvesting circuit [10]. 
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Occasionally, there are significant differences in the reported start-up and the minimum 

reported functioning once started for a specific circuit. In the case of a discrete active diode 

charge pump (Cheng ’11) [12], the minimum reported start-up voltage is 500 mV while the 

minimum reported functioning is 350 mV. The difference between initial start-up and regular 

function is the fact that passive diodes are used for start-up, so the diode drop cannot be ignored 

lowering the maximum boosting capability of the system, while active functioning will enable 

much higher boosting functioning because the diode drop is limited. In an extreme example (also 

described in section 1.4.1), minimum functioning is listed as 5 mV, but minimum start-up is 

1.25 V[23] (also Cheng ‘11). At 5 mV the system only works with an external battery. 

Additionally, work has been described that is only capable of charging integrated capacitors in 

the ~pf (Ulusan ’13) (also described in section 1.4.1) [18]. While this work gives interesting 

results because it shows minimum sub-threshold functioning, reported efficiency charging a 

capacitor with useful storage (10 µF) is not available. To see a more useful diagram that reports 

either minimum start-up or a minimum voltage where efficiency is reported vs. efficiency these 

 
Figure 12.  Shows the numerous circuits used to interface with vibration harvesters that can boost, rectify and cold-

start. 
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three works are either moved to their minimum start-up value or lowest value where efficiency is 

reported. This new diagram is shown in Figure 13. 

Figure 13 still includes rectifiers. Innovations in rectifier circuits continue to be made. 

There are many examples, and some of them investigate sub-threshold functioning as previously 

described in Section 1.4.1. A high frequency rectifier can operate with multiple inputs at 

different resonance frequencies [30]. A “negative voltage converter” has been built from passive 

diodes, which converts the negative portion of an input AC signal positive so only a half-wave 

rectifier is necessary [20, 22, 31]. One of these works is described in Section 1.4.1 and operates 

in sub-threshold [20]. Also mentioned in Section 1.4.1, there has been one conference paper 

showing ultra-low voltage rectifiers that use both a connected passive diode start-up circuit and 

active diode rectifier circuit [18], using a nearly identical rectifier circuit architecture previously 

used [23]. This conference paper claimed operation at ~150 mV; however, no efficiency results 

are given at low input voltages, nor are the values of the capacitor being charged given. These 

 
Figure 13.   Shows the numerous circuits used to interface with vibration harvesters that can boost, rectify and cold-

start. Three works Cheng ’11 (LC boost), Cheng ’11 (charge pump), and Ulusan ’13 positions are adjusted. 
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circuits do not address the challenges of boosting operation including start-up, the use of 

appropriate storage element (capacitors or inductors), or the transition into regular boosting 

functioning from start-up functioning. 

 A figure without rectifiers is shown in Figure 14. It shows the general trade-offs and 

concerns when designing a boosting system that must cold start. A passive charge pump alone 

will be limited by the diode drops and minimum start-up may only be as low as 300 mV when 

using passive Schottky diodes (Galchev ’10). The problem with passive Schottky diodes at low 

input voltages is that the efficiency of the system is very poor as most the power is lost in the 

diode drops. If a charge pump is not used and an LC boost rectifier is used, virtually no boosting 

charge pump start-up is possible (Cheng ’11). Solutions that can both start-up at a reasonable 

input voltage and still produce a high efficiency use a passive charge pump combined with either 

an active charge pump (Cheng ’11 and Harrasi ’12) or active LC boost circuit Szarka ‘12. 

Basically, in the three cases with high efficiency and a reasonable minimum start-up a passive 

 
Figure 14.  Shows the few circuits used to interface with vibration harvesters that can boost and cold-start while 

boosting. 
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charge pump for start-up is used followed by an active system for regular functioning. These 

passive charge pumps are still limited by the turn-on voltage of the diode chosen diodes. A more 

in-depth look at these remaining works will further focus a major contribution of this thesis.  

The author’s previously cited work, made up of discrete passive Schottky diodes, 

produced an efficiency of 12% at an input voltage of 375 mV [6]. A multiple stage and a single 

stage discrete active diode charge pump have been built, and their operation is similar [12, 13]. 

Figure 15 shows the multiple stage active diode charge pump [12]. Each device is discrete, and 

the bulk connections from the individual transistors are used to create passive diodes that are 

used in start-up [12]. These bulk connections would not be available in some CMOS 

technologies including 180 nm that is used to design the work in this thesis. The discrete 

comparators only begin operation at near 2.1 V emphasizing this circuit’s need for the passive 

diodes [12]. Both discrete charge pumps use approximately ~6 µW of power [12, 13]. This also 

makes them unsuitable for harvesting the outputs of a bridge based energy harvester. On the 

positive side, this work can exhibit high efficiencies (> 80%) with a high power input signal 

from a vibration harvester. 

 
Figure 15.  Shows a multiple stage discrete active diode charge pump where the bulk connections from the 

individual transistors are used to create passive diodes seen besides the transistors in [12]. 
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Figure 16 also shows a work that uses both a discrete passive charge pump and an active 

LC boosting circuit [32]. This is a significant work for higher power and higher voltage 

applications, because it uses a maximum power tracking to control the LC boosting to create 

optimal power conversion efficiency. Its drawbacks are its higher power consumption (~21 µW) 

and the minimum voltage for operation of (500 mV); however, its start-up architecture has 

considerable value even though it still relies on passive diodes [32]. Its maximum efficiency is 

relatively high at 68% for very high power signals in the ~mW range. This LC based harvester 

circuit is shown in Figure 16. In this figure, a full-wave passive diode circuit starts up the circuit 

until a LC boosting circuit can take over. The “L” in the LC circuit comes from the inductance of 

the harvester. This is possible if the resistance of the coil is much smaller than the inductance 

(this is not the case with the PFIG with output impedances between 300 Ω and 1.5 kΩ). 

 

 
Figure 16.  Shows a start-up circuit for circuit interfaced with a vibration energy harvester. A passive diode based 

full-wave charge pump is used until a LC boosting circuit takes over. The inductance of the harvester coil is used 

as the “L” in the LC circuit [32]. 
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A main focus of this thesis is on alternative methods to overcome the diode drops that 

limit function in a charge pump by using sub-threshold active diode functioning for start-up 

while maintaining reasonably high efficiency for regular functioning using the same active 

diodes. The use of sub-threshold active diodes boosting in a charge pump has the potential to 

improve minimum functional start-up on Figure 14 far lower while maintaining comparable or 

greater efficiency. These two major works [12, 32] demonstrate the present limits of the state-of-

the-art and motivate multiple solutions that will be investigated, including transformers matched 

to a much higher vibration harvester output impedance (lower power vibrational harvester), the 

use of sub-threshold functioning immediately in the start-up of a charge pump to enable record 

low voltage turn-on for a boosting circuit, and the use of a unique full-wave active diode 

architectures to enable high power efficiency operation with low power and low voltage 

vibrational harvester outputs. 

 

1.4.3 Other Types of Start-up in Thermal Harvesting   

 There have been numerous studies and publications into thermal harvesting start-up 

techniques and challenges with low voltage thermal harvesters. Very similar techniques and 

challenges exist in the start-up of thermal harvesting circuits and vibration harvesting circuits 

even though thermal harvesters supply a DC supply and vibration harvesters supply an AC input 

signal. For example, similar to vibration harvester circuits, bulky transformers can be used to 

allow start-up at ultra-low DC input voltages; charge pumps are pushed at the edge of sub-

threshold functioning; and additional start-up architectures are built to manage start-up 

functioning. These works are important to review so that there can be understanding of the 

relevant parts of the thermal harvesting circuit literature relating to vibration harvesting circuits. 
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As before, transformers can and have been used for over a decade to enable low voltage 

start-up from thermal harvester’s DC voltage using a technique shown in Figure 17 [33]. This 

technique can enable start-up as low as a DC voltage of 20 mV [34]. The 1:45:65 transformer in 

the “starter circuit” on the bottom left hand corner enables start-up. In this circuit the JFET T1 is 

chosen to always be on creating negative feedback in the 1:45 portion of the transformer starting 

an oscillation that is then amplified in the 45:65 portion of the transformer and stored in 

capacitor C2 after being rectified by the diode D1. Just as transformers are used in vibration 

harvester circuits to enable start-up, they are also a main tool used to enable start-up in thermal 

harvester circuits. Transformers are bulky and expensive, motivating other start-up solutions that 

are used in thermal harvesting and also relevant to vibration harvesting circuits. 

 
Figure 17.  The starter circuit in the left bottom corner shows the main way transformers can be used in 

thermal harvesting start-up [33]. 
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 In an effort to find alternative solutions to thermal energy harvester start-up, research has 

been done using an externally actuated switch for start-up in a thermal harvesting circuit, and 

start-up as low as 35 mV has been demonstrated. The switch is part of an LC circuit seen in 

Figure 18 [34].  . This is also worth mentioning, because it shows an alternative use of a motion 

based switching source for use in harvesting start-up. Such a switch could be considered as part 

of the PFIG or multi-mode system functioning if necessary in a future design. The switch 

generates a signal that is boosted and is stored in the capacitor CDD (Figure 19) through the diode 

M1 (Figure 18). Figure 19 further shows the start-up functioning and start-up circuitry. This 

 
Figure 18.  Shows a start-up circuit using a motion activated switch in LC configuration [34]. 

 

 
Figure 19.  Shows the start-up functioning (left) and start-up architecture of system (right) where start-up is enabled 

with a motion activated switch [34]. 
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functioning immediately charges the VDD in figure 19. This then allows a storage block, VREF, 

and CHG_VDD signal of the DC-DC bucking circuit to begin to function. Once the start-up is 

enabled, this system switches to entirely different part of the circuit for regular functioning. This 

scheme shows the challenge of start-up and the additional design that is needed to appropriately 

enable start-up in LC boost circuits that do not use a charge pump in order to maintain high 

efficiency operation. 

 Start-up can also be enabled by a charge pump system. As mentioned before with LC 

boost circuits in vibration harvester circuits, the LC boost circuit must enable a clocking signal in 

the range of ~10 MHz with accurate duty cycle control. This well controlled high frequency 

signal is not possible in deep sub-threshold functioning (also discussed in an example in Section 

1.4.1). As with vibration harvester charge pump circuits, thermal harvesting charge pump circuits 

can be used and can actually allow for limited functioning in deep sub-threshold. An example of 

this is shown in Figure 20. In this case a 0.18 V DC signal and a 0.18 V clock are supplied to a 

fully integrated charge pump (with integrated capacitors in the ~pf range). The output of the 

charge pump is then sent to a separate higher voltage clock generator to enable a high frequency 

signal with a controlled duty cycle to enable a boost converter which also boosts the signal from 

 
Figure 20.  Show thermal harvesting start-up using an integrated charge pump followed by and LC Boost converter. 

A 0.18 V DC voltage and clock are needed for start-up [35]. 
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the output of the first charge pump (> 0.5 V).  An integrated charge pump is used that makes use 

of every available technique to enable adequate functioning in sub-threshold operation. A 65 nm 

CMOS technology is used with both a deep PWELL and NWELL allowing for the bulk 

connections to be connected where they optimize the charge pump functioning. Instead of 

connecting an NMOS to gnd and PMOS to supply, the Vth of the devices can be reduced by 

connecting the bulks to the nearest stage. Additionally, instead of just single NMOS or PMOS 

diode, CMOS active diodes are used comprising of both and NMOS and PMOS devices to 

increase boosting efficiency. CMOS 65 nm technology has Vth less than 400 mV, and this is less 

than the Vth in 180 nm which can be over 450 mV. It is difficult to directly compare start-up 

performance between technologies and between a clocked charge pump boosting a DC signal 

and an AC signal that alone is boosted by a charge pump. The low input voltage of 0.18 V 

requires sub-threshold functioning in the charge pump; however, the charge pump is only 

charging ~pf capacitors and then the system converts the charge pump output to high voltage DC 

output voltage. No efficiency results are reported here, and the output current is near 6 mA. In 

terms of input power this means that this circuit’s input is potentially ~1000 greater in power 

compared to what is regularly produced by the PFIG. This further casts doubt on whether a LC 

boost circuit or charge pump with capacitors in the ~pf range are suitable for very low power 

harvesting solutions.  

 Vibration harvesting circuits and thermal harvesting show similar challenges, solutions 

and opportunities to advance the state-of-the-art. Similar to vibration harvesting, transformers 

can be used for ultra-low voltage start-up. Switches can be used to enable start-up in an LC 

configuration; however, this requires both a DC signal and must be aggressively actuated using 

human body motion. Sub-threshold functioning can be used in a charge pump; however, both an 
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external DC signal and DC clock are necessary, and the charge pump system described [35] can 

only operate at very high input power (in the ~mW range). It is difficult to think of an instance 

where both a low voltage and very higher power thermal harvester are suitable for any 

application and somehow supply both a DC voltage and well defined clocks in the ~kHz range to 

trigger a charge pump. These continued challenges in start-up of both thermal harvesting and 

vibration harvesting motivate solutions that can work with both low power and low voltage 

harvesters. Solutions using charge pumps and sub-threshold design described in the contributions 

of this thesis may be easily used in thermal harvesting. 

1.5  Efficiency in Energy Harvesting Circuits 

The Figure of Merit used to measure the power conversion of any type of harvester 

circuit is efficiency. This is the same figure of merit for a rectifier, boosting or bucking circuit. 

There is significant controversy in how efficiency is reported, and likely some journals and 

conference papers have reported it incorrectly, leading this author to question the results in some 

publications. Below is how efficiency, η, should NOT be reported. 

   
            

           
       (4) 

The inherent problem with this definition of efficiency is that input impedance of interface 

circuit can change depending on the voltage level of the storage capacitor. If this definition is 

used, one could have the extreme situation where there is higher efficiency through an interface 

circuit, but lower power produced at the output of the circuit. A more widely, and in the author’s 

opinion, more correct definition of efficiency is using the “Maximum Input power” instead of 

“Input Power” as seen below. 

   
            

                   
      (5) 
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In the case of an electromagnetic vibration harvester, a load attached to the energy harvester, 

which is the same as the energy harvester’s matched load, will give the optimal input power. 

Therefore, efficiency, η, is used to measure the performance of the circuit. Circuit efficiency is 

calculated in this case by comparing the average harvestable power that can be delivered to a 

matched resistive load (ideal case) to the power delivered by the power management circuit (1).  

       

 

     
∫                  
  
  
 

     
∫        
  
  

     (6) 

For a sine-wave, the input power from a harvester can be given below. Vpeak of a sine-wave is 

defined by the voltage between the peak of the sine-wave and the center of the sine-wave. For a 

PFIG input the same definition is used on the largest peak of the decaying sine-wave. In this 

thesis “rms” voltages are not used.  

             
     
 

                 
            (7) 

Average output power can be measured in steady-state by loading the output with a resistor to 

obtain current and voltage. In this case output power is simply given below. 

             
  

 
     (8) 

Alternately, average start-up output power can be obtained by measuring the energy in the 

storage capacitor divided by the storage period. This is given below and has been very useful in 

the long-term tests. 

             
 

 
   

      
     (9) 

These definitions will be used to calculate efficiency in the following chapters. 
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Chapter II  

A Transformer-Based Harvesting Solution and Long Term On-Site 

Bridge Test 
 

2.1 Bridge Testing Motivation 

Performing tests on an actual suspension bridge with the PFIG is critical to this research 

to give an accurate understanding of average power available on the bridge, the range of 

instantaneous power, and the frequency of lulls (periods of non-actuation). According to the US 

Department of Transportation, more than 10% of the nation’s bridges are structurally 

deficient [1]. Wireless sensor technology is a superior solution for monitoring this deteriorating 

infrastructure as it eliminates the need for expensive wiring and permits easy relocation of 

sensors nodes. As these Structural Health Monitoring sensors (SHM) must operate continuously 

for many years without human intervention, battery replacement is a significant concern since 

the sensors are typically located in hard-to-reach and dangerous locations. Various bridge 

locations can give different power results and the behavior of the PFIG. Therefore the charge 

pump’s reaction can be different and will affect the ability to recharge a capacitor or battery 

between locations. The New Carquinez Bridge (or NC Bridge) near Vallejo, California (also 

known as the Alfred Zampa Memorial Bridge) (Figure 21), where a present long-term study is 

ongoing, is an example of a large suspension bridge over water with heavy traffic containing 

many such inaccessible locations. To allow for the study of these locations, an improved 

harvester and electronics was necessary. The original electronics used with the PFIG-B1 
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consisting of two cascaded Schottky diode Cockcroft-Walton charge pumps and PFIG were not 

suitable for bridge operation on the NC bridge. A transformer-based solution allows a complete 

harvesting system (power management electronics and harvester) to be installed on the New 

Carquinez suspension bridge in California for the first time. The power management circuit is 

added to rectify and boost the low AC output of the harvester and convert it into a usable DC 

voltage that, at minimum, is 0.7 V.  
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Figure 21.   a) Short-term test setup with the PFIG and accelerometer. The PFIG is attached to a plastic plate 

attached magnetically to the bottom of the bridge. b) Long-term test setup is shown with system boxes attached 

magnetically to the bottom of the bridge. c) Approximate positions of installation locations the New Carquinez 

Bridge. Locations 1-4 were used for short term tests, while the location 1 was used for long term tests [2]. 
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Improvement in the PFIG was necessary before a transformer-based system could be 

built. For a transformer matched to 1.5 kΩ output impedance at 100 – 200 Hz, there is only a 

very limited chance of finding an efficient reasonably sized transformer that could be matched to 

this output impedance and low frequency; however, if a lower output impedance like 300 Ω is 

implemented in the PFIG, there are transformer solutions readily available commercially. The 

PFIG’s reduction in output impedance to 300 Ω also resulted improved performance and 

robustness. For example, during short-term on-bridge testing, the system is able to charge a 

10 µF capacitor to 2 V DC, and the average harvester output power ranges from 1.6 to 5.0 W, 

depending on the location on the bridge, a 10× improvement over previous results. The technical 

viability and in situ characterization of the PFIG-B1 (the first bridge based PFIG) was completed 

during a temporary installation on the New Carquinez Bridge (Figure 21a). The measured 

average output power was 0.5-0.75 µW over several minutes, when bridge accelerations ranged 

from 0.1- 0.5 m·s
-2

 at frequencies of 2-30 Hz [3].   

Because of the improvements in both the PFIG and use of the transformer in the system 

electronics, a long-term test of the harvesting system has been initiated, during which the 

performance of the system is monitored remotely using a wireless sensor network. The system 

improvements have enabled continuous operation in the harsh bridge environment for 13 months 

starting April 30, 2012 (ongoing) and constitute a major milestone in the development of 

miniaturized motion harvesters. This long-term test and system configuration allows for 

advancement in the state-of-the-art in the understanding of the range of non-periodic PFIG 

responses on a bridge as well as the response of a charge pump circuit to the PFIG’s non-

periodic actuation.  
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In addition to the electromechanical behavior of the harvester, power management and 

rectification is essential at the system design level. Essential elements in vibration harvesting 

typically involve AC to DC conversion, voltage boosting, and regulation. In the case of the 

PFIG-B1 harvester a number of challenges existed that made these power management tasks 

complicated. First the electrical outputs of the PFIG resemble decaying sinusoidal waveforms 

due to the nature of the up-conversion process. Second, the PFIG-B1 harvester has a high output 

impedance (1.5 kΩ). Lastly, the harvester produced a non-optimized low output voltage [3]. A 

preliminary attempt at power management was made by using two cascaded six-stage passive 

Schottky diode charge pumps to simultaneously rectify and boost the PFIG output signal [3]. 

However, this circuit exhibited a very low efficiency (13% with a decaying sine wave input of 

peak 375 mV), and ceased to work below 200 mV. The main problem was the low output 

voltage relative to the turn-on voltage of the Schottky diodes [3].  

A simple method to overcome very low voltage inputs, one that is particularly suited 

toward electromagnetic harvesters, is to utilize transformers. They offer a passive way to 

overcome diode turn-on voltages, and high efficiencies (65%) have been demonstrated in 

transformer based systems [4-6]. A necessity for these high efficiencies is that the output 

impedance of the harvester must be small (3 - 4 Ω), otherwise the size of the matched 

transformer would be impractical. Provided that the output impedance of the harvester is 

reduced, combining a passive charge pump with an input transformer can provide a simple and 

passive way of rectifying and boosting the output voltage of the PFIG.  

This chapter discusses the improved performance of the harvesting system electronics 

with the improved harvester PFIG-B2, including the adjustment of its technical characteristics 

with system level considerations in mind. With the new PFIG (PFIG-B2), a power management 
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circuit consisting of input transformers and two cascaded passive charge pumps are used to 

rectify and boost the output voltage of the harvester and store energy on a capacitor. These 

enhancements allowed a complete system to be installed on a suspension bridge where it has 

operated for 13 months (on going), and its performance has been remotely monitored and 

recorded since April 30, 2012 [2]. This complete system has given valuable data showing the 

performance of the PFIG with a charge pump and range of the PFIG power produced on the a 

major suspension bridge for over 1 year. Additionally, it showed the power that could be 

generated using a transformer based system and the PFIG-B2 with a 300 Ω output impedance. 

 

2.2 New PFIG Characteristics  

 

The 2
nd

 PFIG built for bridge harvesting had reduced output impedance from 1.5 kΩ to 

300 Ω, and this enabled a matched transformer solution for the PFIG. Frequency vs. power plots 

for various versions of the PFIG are shown in Figure 22. They are actuated at the minimum 

acceleration level needed for operation, which was designed to be different in each case in order 

to explore the limits of the harvester. The different acceleration levels in Figure 22 should be 

considered when comparing the three plots. This plot shows both the PFIG-B1 and two versions 

of the PFIG-B2. Both versions of the PFIG-B2 produce far more power than the PFIG-B1. The 

versions of the PFIG-B2 are with and without a double magnet structure to increase the power 

generated from the PFIG [2]. The PFIG-B2 on the NC bridge is capable of between 1.6 µW and 

5 µW of average power generated clear improvement from the PFIG-B1 which can only produce    

between 0.47 µW and 0.75 µW of power. 
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These plots in Figure 22 also show the challenges of harvesting from the PFIG including 

the range of power seen with different accelerations. For example, there will be periods of very 

little power actuated, even though there are vibrations from vehicles passing overhead present on 

a bridge. This is because the range of frequencies does not efficiently actuate the PFIG near its 

resonance (near 10 Hz) which is set by the Tungsten Carbide inertial mass and inertial mass 

springs. For example, at 2 Hz far less power will be produced by the PFIG compared to at 10 Hz. 

The reduction of the output impedance of the PFIG was actually able to improve the power 

generated by the PFIG for multiple versions of the PFIG-B2 [2] meaning the PFIG-B2 was more 

suitable for the power electronics both in the reduction in output impedance and the increased 

power.  

 
Figure 22. The graph of frequency vs. power is shown for multiple versions of the PFIG. The enhanced PFIG-B2 

with and without a double magnet structure show significantly improved power output as compared with the 

previous PFIG-B1. 
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2.3 Passive power management electronics for the PFIG-B2 

 

The PFIG-B1 used a cascade of two six-stage discrete charge pumps to boost and rectify 

the harvester output signal [3]. Schottky diodes (BAT54WS) were used in the charge pump. 

However, the diode drop losses significantly reduced both the efficiency and boosting ability of 

the previous circuit making it unsuitable for bridge operation. Therefore, any new interface has 

several requirements. First, the circuit must easily start-up based on the smallest expected 

harvester output. Next, the circuit should optimize power transfer to a load or storage capacitor at 

these very low harvester outputs. Finally, it should enable long-term installation of the bridge 

harvesting system (BHS), so that the limits of the system (PFIG and circuit) can be studied and 

characterized. To accomplish these goals and enable the rate at which the BHS storage capacitor 

voltage rises to serve as the basis for estimating power during the bridge installation, the circuit 

needed to start-up, and its output voltage needed to rapidly rise to a usable voltage from even the 

lowest PFIG output voltage signal (~60 mV). State-of-the-art ICs can regularly operate at 1.2–

1.8 V, and there are even sub-threshold microcontrollers that can operate below 0.7 V. Because 

of this, the PFIG should be able to efficiently charge a storage capacitor to at least 0.7 V.  

The addition of the transformers between the harvester and the charge pump immediately 

mitigates the effect of the diode turn-on voltage losses and even reduces the number of required 

multiplier stages while still significantly improving the circuit’s boosting ability. If a transformer 

is used in a boosting circuit interface, there will always be a trade-off between what harvester 

output impedance is best for matching with the transformer and what output impedance gives the 

best performance from the harvester. A transformer with a high turns ratio (i.e. 1:100 resulting in 

1:10 boosting) will be less efficient than a transformer with a lower turns ratio. The additional 

turns add DC resistance that reduces power, and each additional turn will add more DC 
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resistance than the previous turn. Also, with higher turns-ratio, the transformer is larger, adding 

additional inductive coupling losses. Additionally, the higher a harvester’s output impedance, the 

higher the transformer’s input impedance must be to achieve maximum power transfer. 

However, the large transformer input impedance will also increase the size of the transformer 

and therefore its dc resistance and inductive losses. 

Previously, for the circuit used with the PFIG-B1, without the addition of transformers 

and not taking into account the characteristic decay in the PFIG output waveform, the 

theoretically available maximum voltage of the cascaded charge pumps is        , where     is 

the maximum output of a single Cockcroft-Walton Multiplier: 

                              (10) 

Here n is the number of stages per multiplier, and       is the unmatched input peak voltage. 

The factor of four comes from boosting the two serially cascaded Cockcroft-Walton multipliers. 

For the two six-stage cascaded multipliers the max boosting is:  

                      (11) 

While this is significant boosting, the Schottky diode turn-on             needs to be accounted 

for, resulting in the following: 

              (                 )    (12) 

If the Schottky drop is near 180 mV, and the typical PFIG output maximum peak is 200 mV, 

most of the signal is wasted. This results in an output of 480 mV by using (4). Because the PFIG 

output decays, only the first few peaks will be useful and the rest of the output signal will be lost 

due to the diode drops. Ideally, the circuit would make use of as many of the decaying peaks as 

possible and be capable of operating from the low ~60 mV peaks.  

The new circuit presented and used with the PFIG-B2 (characteristics described in 
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Table 1) makes use of a transformer with a 1:10 multiplication factor to boost the low and 

decaying PFIG outputs. When the transformers are matched to the FIG output impedance, to 

obtain maximum power transfer, the voltage is reduced by a factor of two in essence resulting in 

a 5× gain in voltage. This gives the ideal maximum voltage for a circuit containing a Cockcroft-

Walton Multiplier preceded by a 1:10 matched transformer as         :   

                   (                   )   (13) 

Assuming n = 3 stages, a 180 mV diode turn-on voltage, and       of 60 mV, the boosted DC 

output is 1.44 V, which will yield ~0.72 V when optimally loaded. Therefore, the target 

requirements can be met with only 3 stages. The inter-stage capacitors were chosen to be 10 µF 

(see Table 1) based on the need to quickly charge capacitance while maintaining a reasonable 

efficiency.  

Table 1. Summary of (PFIG-B2 and circuit) performance and characteristics 

 

Performance Summary PFIG-B2 

Minimum Acceleration 0.34 m/s
2
 

Internal Volume 43 cm
3
 

Total Volume 68 cm
3 

Avg. Power (0.34 m/s
2
, 2 Hz) 12.5 µW 

Avg. Power on New Carquinez Bridge 1.6 W – 5.02 W 

Altered Mechanical Parameters From previous PFIG [3] 

Coil Turns, N 1200 

Coil Resistance 275 kΩ 

Spring Constant, ki 

(Both springs combined) 
535 N/m 

Circuit Characteristics 

Boosting Methods CW Charge Pump & Transformer 

Transformer Picoelectronics T-22940 

Transformer Volume 5.09 cm
3
 

Diode BAT54WS Surface Mount Schottky Diode 

Capacitors 10µF (Tantalum Surface Mount) 

Maximum Circuit Efficiency 27% 
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The schematic of the interface circuit is shown in Figure 23. The two transformers used 

in the system are Picoelectronics T-22490. Even at 200 - 300 Ω, the output impedance of each 

FIG still imposes stringent transformer characteristics. To maximize power transfer the 

transformer input impedance should match the impedance of the FIGs [7]. As discussed earlier, a 

transformer with a ratio of 1:10 was chosen. Higher ratios are possible; however, every 

additional turn added in a transformer increases its DC resistance. Producing a desired ratio and 

matched input impedance is a challenge. As part of the passive circuit design process, the 

efficiency of the matched T-22490 was measured to be ~63% with a 100 Hz signal and an input 

power of 6.4 µW. This ~63% alone is a significant drop in power efficiency. Figure 9 (see 

section 1.4) shows harvesting solutions whose entire circuit efficiency is better than ~63%. 

Picoelectronics transformers [8] are rated at 1 mW and have a frequency range of 20 Hz - 25 

kHz; however, at low frequency there seems to be significant reduction in the inductive coupling. 

Laboratory measurements show that maximum efficiency occurs near 500 Hz, which is much 

 
Figure 23. The circuit schematic shows two transformers that increase the harvester outputs and feed them into 

two cascaded 3-stage Cockcroft-Walton Multipliers. The storage capacitor and load are indicated along with other 

important nodes [2].  
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higher than the frequency output of the FIGs (~130 Hz). The PFIG’s 200 - 300 Ω impedance and 

the 1:10 multiplication factor result in a relatively large transformer. The diameter of the T-

22490 is ~1.8 cm and the height ~2 cm resulting in a total volume of 5.09 cm
3
, larger than the 

volume of each individual FIG. A photo of the realized circuit is shown in Figure 24. 

The maximum circuit efficiency is measured using a 130 Hz sine-wave from a function 

generator with 300 Ω series resistances. The efficiency is 27%. Efficiencies up to 65% have been 

reported by others regarding other up-conversion works containing transformers [4, 6]; however, 

these works have source impedances of 3 - 4 Ω, hinting that further optimization is needed 

within the PFIG in the future. Additionally, this author had difficulty fully understanding how 

efficiency was calculated in the conference paper reporting 65% efficiency [6]. It is possible 

 
Figure 24. The picture of the circuit used with two transformers and two cascaded Cockcroft-Walton 

multipliers. Capacitors, diodes and transformers are labeled C, d, and 1:10 respectively. 
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various incorrect definitions of efficiency may have been used in this and other works, so it may 

be difficult to get accurate performance comparisons between some systems presented in 

literature.  

Because the efficiency of a rectifier changes as it charges a capacitor, the output is held 

constant at 1.2 V by varying the impedance (resistors at the output), while the input voltage is 

varied. The results are shown in Figure 25. Here the two charge pumps are cascaded and show a 

maximum efficiency of 27%. A half-wave multiplier only harvests the positive part of the input 

waveform reducing efficiency. Other efficiency losses are due to the transformers, diode drops, 

and loading between the cascaded charge pumps. Figure 26 shows the efficiency of a single 

multiplier (including transformer). The maximum efficiency is 38%, which is higher than that 

obtained using cascading. Connecting the charge pumps together generates a higher output 

voltage, but charge coming from the bottom charge pump must again be boosted through the top 

pump where it will face losses from another set of diode drops and leakage, thereby further 

reducing the circuit’s overall efficiency. 
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Figure 25. Efficiency of the power management circuit using sinusoidal inputs at 130 Hz in place of FIGs (same 

output impedance). The output is held constant at 1.2 V by adjusting the output load. Both inputs are changed 

together to yield a maximum efficiency of 27%. 

 

 
Figure 26. Efficiency of a single Cockcroft-Walton 3-stage multiplier and transformer with a sinusoidal input at 

130 Hz in place of FIGs (same output impedance). The output is held constant at 1.2 V by adjusting the output 

load. The input is changed to yield a max efficiency of 38%. 
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To determine efficiency in a more realistic way, two function generators are used to 

approximate the PFIG outputs using two time-offset decaying sinusoids at 10 Hz. A very low 

input current op-amp (LMC6484, National Semiconductor) buffer is used to monitor the storage 

capacitor voltage. Holding the output constant at 1 V, by varying the output load, the efficiency 

was measured to be 14.4%. The measured efficiency of the circuit, charging a 10 µF capacitor 

from 0 to 0.7 V, is 5.5%. This efficiency is much lower than when the output is held constant. 

The reason for this is that the capacitors in the charge pump stages must be charged before 

optimal efficiency can occur at the output.  

Table 2 compares the BHS system to other efforts aimed at harvesting low-frequency 

non-resonant signals. The ability of the BHS system to generate energy in extremely challenging 

conditions (combination of very low accelerations and frequency) is unrivalled. While this 

version of power management circuit efficiency still needs to be improved, the challenges in this 

Table 2. Comparison of non-resonant low-frequency electromagnetic harvester systems 

 This Work [3] [4, 5] [4, 6] [9] 

Harvester 

Type 

PFIG PFIG Up-

Conversion 

Up-

Conversion 

Two Coils/ Free 

Magnet 

Minimum 

Acceleration 

0.34 m/s
2
 0.54 

m/s
2
 

-- -- 0.64 m/s
2
 

Operation 

Frequency 

2 Hz 2 Hz 10 Hz 10 Hz 6 Hz 

Output 

impedance 

275 Ω 1.5 kΩ 3-4 Ω 3-4 Ω 27.5 Ω/55 Ω 

Circuit 

Boosting 

Method 

Charge pump 

/Transformer 

Charge 

pump 

Charge pump 

/Transformer 

Transformer Charge pump 

supplies active 

rectifier 

 

Max Circuit 

Efficiency 

27%  (14.4%  

with decaying 

inputs) 

12% 

 

35% 65% 80% at 5 m/s
2
, 6 

Hz (Only one coil 

harvested out of 

two) 
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application are more stringent than those previously faced by other works [4-6, 9]. Clearly, 

further improving the harvester electromechanical transducers to produce higher voltage signals 

with a lower output impedance would greatly benefit the system efficiency. At the same time, 

active rectification without the use of transformers could be used to enhance the interface 

electronics because there such a significant decrease in efficiency with the use of transformers. 

However, this basic charge pump circuit did allow for extensive evaluation of the PFIG and 

harvesting interface electronics on the NC Bridge.  

 

2.4 Long-term and Short-term testing results and the range of PFIG bridge outputs 

 

The PFIG and harvesting interface were tested on the New Carquinez Suspension bridge 

in California. There were multiple goals in this implementation. First, understanding of the 

longevity of both the PFIG and circuit system could be gained in this long term test in a harsh 

real world environment. Second, an understanding of the range power produced by the PFIG 

outputs on the bridge could be achieved. Finally, the circuit’s response to the non-periodic 

outputs of the PFIG can be better understood.  

2.4.1 On-site short term bridge tests 

Two BHS units (containing the PFIG-B2 and passive electronics) were temporarily 

installed on the NCB for short-term tests. On-site testing allows for more detailed performance 

measurements to be made. An example of such an installation can be seen in Figure 21a, where 

the harvester and an accelerometer are magnetically attached under the bridge. Initially, the 

harvester is tested using a matched load, and the signal is recorded with LabView. Sample 

waveforms are shown in Figure 27a, where the average power produced is 3.24 µW. Small 

mismatches in the equilibrium positions of the two FIGs result in the asymmetric actuation. 
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Table 3 shows the average power generated on the bridge at different locations. Two different 

versions of the PFIG-B2 were tested (with and without the double magnet structure). The best 

result in Table 3 is from location 2 where Paverage = 5.02 µW was generated over a time period of 

125 seconds, and represents a 10× improvement over previously reported on-site testing results 

using the PFIG-B1 [3]. The double and single magnet structure gave similar results in the on-site 

bridge tests, while in the lab, the double magnet structure performed better. There are two 

possible reasons for this. First, vibrations on the bridge can vary significantly from minute to 

minute, and the two PFIG designs were not tested at the same time. Second, the short-term tests 

were performed before design changes allowed for the harvester to be shipped fully assembled. 

This means that the harvester was assembled and adjusted on the bridge, resulting in only a 

rough optimization (much less accurate than a laboratory setting). 

 

 

Table 3. Short-term results for double and single magnet PFIG designs at different bridge 

locations. 

Location 

(Figure 21) 

Average Power, PFIG  

(Double Magnet) 

Average Power, PFIG  

(Single Magnet) 

1 4.4 µW 3.24 µW 

2 3.13 µW 5.02 µW 

3 3.73 µW -- 

4 1.6 µW -- 
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 In a second set of experiments (Figure 27b), the full BHS system (PFIG-B2 and circuit) 

was tested, and a 10 µF storage capacitor’s voltage was repeatedly charged by the PFIG outputs 

and then manually discharged. The DC output could reach as high as 2 V within a reasonable 

time period (48 seconds); however, as seen in Figure 27b, the higher the voltage, the slower the 

 
Figure 27. (a) Short-term testing data showing acceleration, FIG1 and FIG2 outputs, and total instantaneous output 

power taken on the NCB; and (b) separately measured voltage on the storage capacitor taken at a different time 

than (a) [2]. 
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capacitor charges. At high output voltages, the lower voltage peaks of the decaying waveform 

are not harvested, while the highest peaks are harvested at a reduced efficiency. As the output 

voltage further increases, the peaks are no longer able to add any charge and so a maximum 

achievable voltage is reached. Additionally, there are parasitic leakage paths that limit the 

voltage, especially when the vibrations are sparse. The storage capacitor was continually 

discharged so an understanding of the rate at which the storage capacitor charges could be gained 

and used to optimize the system for the long-term installation discussed in the next section. 

2.4.2 Long-term bridge test implementation 

 

The goal was to install and monitor the BHS over a long period of time and to monitor 

the FIG outputs and the storage capacitor voltage, so that the BHS performance can be 

quantitatively assessed. For this goal a special-purpose Narada [4] wireless sensor node, already 

deployed on the NCB, is used. The Narada node samples the key BHS metrics once per hour for 

90 seconds at a sampling rate of 100 Hz. The results are wirelessly transmitted to a base station 

and are then available through remote access [10]. To facilitate the long-term evaluation of the 

BHS, the Narada node automatically discharges the storage capacitor when it reaches 0.7 V. 

This allows for the average power to be estimated by the number of discharges in the 90-second 

sampling period. Solar cells on top of the bridge are wired and power the Narada node allowing 

it to perform the described functions. The BHS is not used to power the Narada wireless sensor 

node. Figures 28a and 28b show the long-term test system. The PFIG, harvesting circuit, buffer 

and level shift circuits, transmission antenna, Narada node, and rechargeable batteries (powered 

by solar panels on top of the bridge) are contained inside a commercially available water-tight 

box. The batteries are used to power the Narada system, the buffers, and the level-shift circuits, 

which interface the BHS to the Narada node. The dimensions of the box are 30.5 x 20.3 x 
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13.2 cm. On April 30, 2012, two of these water tight boxes were installed under the bridge deck 

at location 1 (Figure 21b). 

 
Figure 28. The PFIG, passive harvesting circuit, Narada control, Narada antenna, buffer and level shift circuits 

used in the long-term test on the New Carquinez Bridge. a) The water tight box and b) a schematic of the long-term 

test system [2]. 
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2.4.3 Long Term Results 

A sample of recorded data is shown in Figure 29. The voltage on the storage capacitor 

rises faster and is discharged more frequently when the FIGs actuate more often and at higher 

amplitudes. The FIG outputs are under-sampled at 100 Hz (sample rate chosen to minimize 

Narada power consumption). Nonetheless, the basic functionality of the system can be discerned 

from the plots. The circuit in Figure 23 is used and while this circuit suffered from significant 

efficiency problems, it was well suited for a long-term test because it could quickly charge up the 

storage capacitor to between 0.7 V and 1 V. 

 Figure 30 summarizes one week of data. Harvested power is greater during daytime and 

weekdays. Each discharge occurring at 0.7 V on the 10 µF capacitor, recorded during a 90 

 
Figure 29. Data recorded on May 29, 2012 by the Narada wireless node [2]. 
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second period, corresponds to 27 nW of power delivered to a load. Once again, it should be 

noted that data recordings are only made once per hour and the number of discharges shown in 

Figure 30 is only during the several 90 second measurement windows. Lab measurements 

described earlier estimated the efficiency of the PFIG and circuit during start-up to be 5.5%. 

Therefore, each capacitor discharge corresponds to an unprocessed PFIG output power of 

~0.5 µW, and the results in Figure 30 indicate a nearly identical amount of power harvested 

during daytime (2-12 discharges or 1.0-6.0 µW) as was measured during the short-term tests of 

the PFIG (Table 1). Figure 31 further verifies these power levels. It shows a histogram of the 

number of discharges in a 90 second period from May 1
st
 to June 18

th
 in 2012. Figure 31 shows 

the histogram peak centers around 1 and 2 discharges, with 0 to 11 discharges being common. 

The mean and median of the data in Figure 31 is 3.29 discharges and 3 discharges. As each 

discharge represents approximately 0.5 µW produced by the PFIG, it can be concluded that for 

an optimally functioning PFIG, average power in the range of 1.5 µW to 2 µW is common, going 

up to 3 µW during daytime. 
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Figure 30. Circuit discharges for one week starting May 13, 2012. Each circuit discharges represents approximately 

0.5 µW in unprocessed PFIG output power. The shaded areas represent 8am to 8pm [2]. 

 

 

 
Figure 31. A histogram of the discharge counts per 90 second period. Data from May 1

st
 – June 18

th
 is shown. The 

median value is 3 while the mean value is 3.29. The specific discharge count occurance frequency is shown above 

the histogram bar. 
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The BHS has operated continuously on the NCB for 13 months starting April 30, 2012 

(Figure 32), and the experiment is still ongoing as of the writing of this thesis (January 2014). 

Starting in late May 2013, the wireless data collection system began to have outages. In many of 

these cases, measurements from the BHS were still received a few times a day. The root cause of 

this is the solar harvesting used to power the Narada. The raw output of both FIGs and storage 

capacitor are regularly checked to verify the Narada is transmitting successfully and the raw 

discharge count can be believed. Likely, either there is not enough light, debris and dust 

collected on the solar cells, or the rechargeable batteries that store the energy for the Narada have 

degraded. This highlights a potential weakness of solar energy harvesting in unmanned systems. 

During future retrieval of the harvester from the bridge, measurements will be made to verify if it 

is still functional. In the long-term test (Figure 32), the same weekly pattern seen in Figure 30 

 
 

Figure 32. Entire transmitted data set since installation on April 30, 2012. Each point represents the total number 

of discharges per day over 24 ninety-second recording periods. Grey areas represent periods where the Narada 

system was not functional due to solar panels not collecting power (i.e. June 2013).  
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continues to be observed, as well as sharp drops in harvested power on U.S. national holidays. 

Over the first six weeks the power output remained relatively consistent. The highest power was 

recorded the morning following Memorial Day on May 29
th

, 2012 and is estimated to be 10.9 

µW (22 discharges over 90 seconds, Figure 29). The data clearly demonstrates that the power 

harvested correlates directly to traffic and thus could be a sensed variable itself. The PFIG 

exhibited a reduction in power at the end of June, producing approximately half as much energy. 

The most probable mechanism for such a decrease will be discussed next.  

 

2.4.4 Long-term performance discussion 

The results in Figure 32 show a significant reduction in performance after around 

six weeks in mid-June. While the exact cause is not known because the experiment is still 

ongoing, the reduction in energy by half immediately raises the question whether both FIGs are 

working. For the ease of assembly the individual FIGs are held in place only by the friction of set 

screws along the side of the FIG casing as well as one on the bottom. This makes this assembly 

method susceptible to slipping. Additionally, since a wide range of frequencies and amplitudes 

are exhibited on the bridge, the response of the inertial mass-spring system can be unpredictable. 

It can be driven into resonance at its natural frequency around 10-12 Hz, and at high amplitudes 

it can begin to strike the top of the FIG casing, which also serves as a safety barrier to protect the 

internal mechanism. Experimental results in both the laboratory and during the short-term tests 

have shown that striking the end-stops can drive the inertial mass system into a non-linear 

regime that can even amplify the amplitude of the motion. In the laboratory, it was verified that 

repeated contact between the inertial mass and the FIG surface produces enough force to alter the 

FIG positions. The changed spacing and alignment of the components then leads to an increase 
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in the minimum acceleration needed for proper operation and the reduction in power seen in 

Figure 32.  

Before the long-term bridge test, all set-screws were well tightened and Silca Gel Packets 

were included in the water-tight box. However, temperature changes, the high humidity, and 

other environmental factors may have been enough to weaken the set-screw grip and allow ~10-

40 micrometers in slippage, which would be enough to disturb the optimal operation of the BHS. 

The set-screws were included to allow for different experiments to be carried out in the lab by 

varying the FIG positions, prior to PFIG-B2 installation on the bridge. In the future the set-

screws will be removed and other methods will be used to fix the FIG positions within the 

harvester mechanism. In the broad area of vibration harvesters and frequency up-converting 

harvesters such as the PFIG, analysis has been done on what environmental conditions can 

potentially cause harvester failure where functioning stops [11]. Usually this analysis focuses on 

damage that can be caused by a single shock to the system that can physically break the system. 

This long-term study shows that the damage can be gradual, and the harvester may still be 

functional even after damage has occurred. 

2.5 Conclusion 

This chapter discusses the development and long-term testing of a bridge harvesting 

system (BHS), including improvements in the vibration harvester and its power management 

circuitry with the goal of providing power for structural health monitoring. The short-term and 

long-term testing of the BHS on the New Carquinez suspension bridge shows a 10× 

improvement in unprocessed harvested power (PFIG-B2) [2] compared to a previous version 

(PFIG-B1) [3]. A new power management circuit is presented, which can “cold-start” without 

any pre-charged voltage and can boost the very low-voltage and decaying PFIG signal. By using 
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a transformer followed by a charge pump, a 10 µF capacitor can charge up to 2 V on the bridge. 

The average unprocessed PFIG power is between 1 µW and 6 µW, while the maximum observed 

power is estimated to be 10.9 µW. The output of the PFIG was estimated from the start-up 

efficiency mentioned earlier. This long-term test then could be used to specify the requirements 

for an active diode circuit which will be discussed in section 2.3, and these results show that 

there will be enough power during the day to regularly power an active diode IC. 

The long-term study showed a decrease in harvested power after approximately six 

weeks. A likely cause of this reduced power is slippage of the FIG position, which has been 

repeated in the lab and can be eliminated in future harvester designs. The circuit efficiency of 

14.4% allows for a 10 µF capacitor to quickly charge to a high voltage based on the low voltage 

PFIG inputs allowing for the circuit’s use in the long-term test. This circuit provides a proof-of-

concept design with efficiency that can readily be improved by using active circuits designed in a 

low-power IC technology and by eliminating the transformers. The most unique result is that the 

BHS system has been continuously functional and monitored for more than one year since April 

30
th

, 2012 (on going) on the New Carquinez Bridge in California. Energy harvesting applications 

derive their value from the ability to operate for many years and decades, and this is the first 

long-term study of a mechanical harvester and system. 
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Chapter III 

16x Active Diode Charge Pump Circuit Design and Innovations 

3.1 Design Description 

An IC-based architecture (Figure 33) was taped out in June 2013 with the goal of 

eliminating the transformers, producing low voltage low power start-up, and achieving high 

harvesting efficiency once the system was started. The goal of this structure was to enable active 

diode functioning very early on in the start-up of the system while in deep sub-threshold. This 

IC-based design (Figure 33) improves upon the discrete design by eliminating the inherent diode 

drops in both sub-threshold and regular functioning by using active functioning. These active 

diodes improve upon the discrete design by adding additional boosting ability. Also, an 

adjustable mode selector is included so that voltage at which the capacitive load charges can be 

 
Figure 33. An eight stage full wave Cockcroft-Walton active diode charge pump with the driving comparators on the 

lowest voltage stage next to ground are shown.  Four stages go in the negative and positive direction. 
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optimized. Finally, the use of the lowest voltage stage driving all comparators increases the 

ability of the IC-based system to start-up in deep sub-threshold functioning and operate in 

regular functioning with ultra-low power inputs. The lowest voltage stage comparators work in 

deep sub-threshold functioning based on the Cockcroft-Walton multipliers characteristics that 

charge the stages farthest from the input last.  

In this design, start-up can be achieved at an input voltage below the Vth (and passive 

diode turn-on voltage) in the given technology (CMOS 180 nm with a Vth ~0.42 V). The use of 

an IC also allows flexibility in choosing the PFIG output impedance. No longer would the output 

impedance need to be reduced to meet the transformer’s matching limitations as in Chapter 2. A 

charge pump, rather than an inductive based boosting circuit, is still necessary for this circuit to 

enable cold-start. While inductor based circuits can boost the output of a vibration harvester, they 

either require a pre-charged battery [1] or a charge pump circuit, which is used for start-up and 

then allows a LC boost circuit to turn on for regular functioning [2].  

Current state-of-the-art discrete active diode charge pumps show minimum cold start near 

500 mV and regular functioning near 350 mV [3]. They require passive diodes formed from the 

free bulk connections (not available in some integrated CMOS technologies) for cold start 

because the discrete comparators do not operate until they reach near 2 V. In fact, all of the 

circuits that can start-up are limited by their passive diode turn-on voltages. Solutions that can 

overcome this minimum passive diode-based turn-on would have considerable value to all types 

of energy harvesting circuits. Along with the passive diode limitation, these discrete active diode 

solutions consume near 6.4 µW of average power (greater than the power regularly produced by 

a PFIG on a bridge) [3]. In this discrete configuration large capacitors (47 µF or higher) give 

optimal power conversion efficiency [3]. Higher capacitances (not possible in an IC), will 
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continue to be necessary in this classic charge pump architecture when, and an IC with external 

pads can connect to these large capacitors. The use of IC technology to implement an active 

diode charge pump that advances the state-of-the-art in the areas of sub-threshold start-up 

without reliance on passive diodes, low voltage functioning, low power functioning, and high 

power conversion efficiency functioning is a major contribution of this thesis. 

This deep sub-threshold active diode functioning will enable dramatically improved start-

up ability for low power low voltage inputs that are well below the Vth of the CMOS technology. 

Once the system was started and stabilized, operation for optimized efficiency was enabled.  All 

of these characteristics were made possible using the characteristics of a full wave Cockcroft-

Walton charge pump multiplier that were described in Chapter 1.3. This full wave multiplier for 

this IC-based system consists of 8 stages. Four stages (stages 5 -8) harvest the positive part of the 

signal on top of the charge pump, while four stages (stages 1-4) harvest the negative part of the 

input signal on the bottom part of the charge pump in Figure 33. Each stage doubles the voltage, 

and with 8 stages, the maximum theoretical voltage is ~×16 the peak input voltage. This 

 
Figure 34. The off-chip and on-chip components of the system are specified. 
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architecture included a Schmitt trigger like circuit called a “mode selector” [4] to avoid loading 

during start-up. Also, two comparators drive the active diodes of the entire system through 

inverters on the lowest voltage stage using a common gate comparator. This lowest voltage 

driven architecture facilitates efficient low voltage functioning out of sub-threshold and start-up 

in deep sub-threshold.   

Figure 34 shows this architecture with on-chip and off-chip components of this system. 

Additionally, simulation of this circuit requires a low value bypass capacitor used to aid in the 

simulated start-up of the circuit to make sure that the signal initially reaches comparators to 

allow them to more easily work. In hardware, the bypass capacitor was never needed for optimal 

functioning, and the insertion of the bypass capacitor would decrease efficiency in actual 

hardware. All of the system comparators are driven by the decision on the lowest voltage stage to 

allow for high margin in sub-threshold operation. “Margin” in this situation can be thought of as 

an extra difference in the inputs into the comparator above what would normally be expected to 

switch the comparator. For example, if the comparator normally switches when and the inputs 

differ by 10 mV in regular functioning, a difference of 50-100 mV may be needed in in deep 

sub-threshold. The lowest voltage stage takes a significant amount of time to begin charging, 

even though the signal reaches the lowest voltage stage to allow functioning. This process will be 

explained in depth later in this chapter. To aid in evaluation and fix potential issues, the biasing 

lines are brought out to the pads. This could potentially be very helpful if the bias were to 

oscillate. For example, in a previous IC design, the bias oscillated, and it was able to be fixed 

with a large resistor (5 MΩ). This created a filter stopping the oscillation. Also, the clocks from 

the top and bottom comparators are buffered and brought out to the pads to enable understanding 

of their functioning.  
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This design uses a mode selector circuit that lets current pass when a specific and 

programmable voltage is reached. It is similar to the mode selector used in RF harvesting designs 

to allow the charge pump to connect to the final output at a given voltage [4]. This mode selector 

is adjustable to allow its output to turn on at various voltages. Seven control lines for this mode 

selector device are indicated in Figure 34. This allows charging into Vout at various voltages. The 

mode selector (Figure 35) contains large resistors that take up a significant amount of space in 

the actual circuit, making the circuit area larger. These large resistors are actually larger than the 

size of the active diodes and control circuitry. As seen in Figure 36, the circuit still occupies a 

small portion of the total chip area (this IC is 1.0 mm x 1.2 mm). The mode selector consists of a 

simple amplifier with two inputs controlled by diodes and large (5 MΩ) resistors. Depending on 

the characteristics of the diodes on the input stages, the mode selector turns on at different 

voltages indicated in the table in Figure 35. The diode characteristics can be changed by 

connecting the MS pins. The simulated values at which the mode selector turned on were very 

similar to what was seen in hardware. The bottom of Figure 35 shows the behavior during start-

 
Figure 35. The adjustable mode selector is shown similar to other circuits previously used in RF harvesting [5]. A 

table shows how the connections can adjust the turn on voltage functioning that is ideally drawn below the figure. 
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up. The voltage on the lowest voltage stage starts to rise more significantly once the charge 

pump starts to charge the capacitive load. Analysis of the effect of changing the turn on voltage 

on system performance will be described later in this chapter (Section 3.3). 

A differential common gate comparator is used on the lowest voltages stage of the full-

wave charge pump (Figure 33), and this first comparison drives the rest of the stages through 

buffers. This comparator and inverter/buffer chain are shown in Figure 37. This comparator and 

inverter structure is ideal for this architecture, and only the comparators on the lowest voltage 

stage need to function well for the system to be operational with low voltage input in deep sub-

threshold operation. Inverters will always be more likely to operate at some level in deep sub-

threshold because they inherently operate with significant margin. Rather than trying to discern 

between voltages of similar values like a comparator is trying to do, inverters must either 

recognize a “high” or “ground” input, and recognizing these signals is far easier in deep sub-

threshold for an inverter versus a comparator. 

 
Figure 36. The layout of the chip fabricated in 180 nm technology is shown. A rectangle surrounds the active diode 

charge pump area in the layout, and the 5 MΩ resistors are indicated. 
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The proper comparator choice also aides in harvesting low voltage inputs while working 

in the sub-threshold regime. First, the common gate comparator has inputs on its sources rather 

than the gates. This way the comparator needs to only recognize the difference between two low 

voltages at the sources of its inputs rather than at gates. Needing to have the inputs on the 

device’s gates forces the use of sub-threshold functioning in all circumstances. This sub-

threshold functioning is necessary because the low input voltages would need to overcome the 

Vth of the inputs when driving the gates of devices. Using the sources of the devices that are 

biased near ground means that the comparator is less likely to need to work in deep sub-threshold 

functioning. As long as Vstore is high enough to keep the comparator out of sub-threshold 

functioning, the use of this comparator will mean that sub-threshold functioning is never 

necessary. If the comparator’s Vstore is too low for regular operation, the bias voltage into the 

comparator will also be low, and the system must work in sub-threshold, this comparator still 

works as long as the first stage voltage of the charge pump also stays low. The input offset 

 
Figure 37. A differential common gate comparator regularly used in energy harvesting literature [6, 7] is shown. The 

(+) input is the output of the first stage of the charge pump. 
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voltage into the comparator ranges between 0 and 200 mV allowing for optimal functioning. The 

Cockcroft-Walton charge pump behaves in such a way as the lowest voltage stage charges last as 

described in Chapter 1.3. Similar comparator designs have been used in other energy harvesting 

applications [6, 7]; however, these applications do not make use of the comparator’s ability to 

function with low input voltages in and out of sub-threshold design. Finally, the bias 

generator [6] is used to allow the bias voltage to turn on when Vstore is at least at Vth. Once on, the 

bias generator maintains a voltage that is one Vth away from Vstore. Figure 38 shows the bias 

circuit which can produce two voltages. The higher voltage “VbiasP” is used in this design. 

 3.2 Simulation Results of the 16x Charge Pump Design 

 Solid simulation results were observed with this new ×16 charge pump design. Power 

conversion efficiency and minimum start-up results are seen in the Tables 4 to 6. The circuit is 

able to operate at high efficiencies that would have been impossible with lower boosting (for 

example, a 150mV input producing 70% efficiency at an output of 1.2 V would not be possible 

 
Figure 38. A bias generation circuit used in this system is shown [6]. 
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with only ×6 boosting). Data was taken for a range of sine-wave inputs and a PFIG like input. 

Also, a 335 mV minimum start-up is shown. This is a significant improvement over simulated IC 

results for a ×6 boosting system that will be discussed in Chapter 4 (version 1). This ×6 IC-based 

boosting system was only able to start-up with an input at ~700 mV in simulation. The present 

system was able to start-up down to 335mV with 100 µF capacitors following the mode selector. 

The simulated start-up is seen from Cadence in Figure 39 where both the output storage 

capacitor (10 µF), and the Vstore output are shown with a 340 mV input. It is seen that Vstore stays 

low for 2 seconds. In these 2 seconds the bias of the circuit is not on; however, the comparator is 

still functioning. Once the bias circuit begins to function, the circuit rapidly charges. This deep 

sub-threshold functioning, discussed later in this Chapter, was further verified in hardware.  

Table 4: This shows simulated sine-wave efficiency at different voltage levels with a 300 Ω input impedance 

AC Input Peak 

Voltage (mV) 
Input Power (µW) DC Output (V) Efficiency (%) 

150 9.38 1.2 70 

200 16.67 1.2 72 

250 26.04 1.2 74 

300 37.50 1.2 67 

400 66.67 1.2 60 

    
Table 5: This shows simulated efficiency with a PFIG like input with a 300 Ω input impedance 

AC Input Peak 

Voltage (mV) 

(extraction) 

Input Power 

(µW) 
DC Output (V) Efficiency (%) 

Decaying Sinusoid 

(450 top peak & 

100mV lowest peak) 

12.00 1.2 56 

    
Table 6: This shows minimum start-up performance of corners and compared to the first IC’s simulation 

Minimum Start-up (mV) IC Conditions 

335 typ 

370 ff 

350 ss 

700 Chapter 4 (version 1) 
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3.3 Start-up Hardware Analysis 

Start-up in this system begins when the system is off, and ideally every node is charged 

to zero volts. Initially, the input voltage from the harvester is boosted in the charge pump system 

via passive diode sub-threshold rectification using the NMOS and PMOS devices. All systems 

capable of start-up must use some type of passive rectification for start-up because a system 

cannot use active diode rectification with a 0 V power supply. In the case of this system, passive 

rectification is only needed until the system supply (Vstore) reaches ~150 – 200 mV and active 

rectification can begin. During initial start-up, the gates of the all active diodes are floating 

between 0 and Vstore. This means that the two top PMOS stages and the bottom four NMOS 

stages will initially act to some degree as sub-threshold passive rectifiers allowing for initial 

start-up. The top PMOS diodes allow for some conduction as the harvester input nears the value 

of the gate voltage floating between 0 and Vstore. For example, during the very initial start-up, the 

gate of PMOS is near 0 V, and the source is near 100 – 200 mV. In this case, either side of the 

 
Figure 39. Cadence simulation results showing cold start-up in the ×16 IC are shown. VStore is shown in blue and 

the VOut is shown in red. At ~1.0V the load capacitor on VOut begins to charge. 
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PMOS can act as the source, so the input acts as the source due to the symmetric nature of the 

devices in CMOS technology. While this is not enough to overcome the Vth of the system, 

enough current still flows (versus when the input on the PMOS source is negative) to allow for 

some charging and start-up to near 100-200 mV on the supply Vstore. 

Similarly, the bottom NMOS diodes allow for conduction of the negative portion of the 

harvester’s input when it is far below the gates (0 and Vstore) on the bottom NMOS devices. For 

example, during initial start-up, if the negative input at the source of the bottom NMOS devices 

is between -100 and -200 mV and the gate is positive (between 0 and Vstore), the NMOS devices 

conduct far more when the input is negative than when the input from the harvester is positive. 

This means the negative portion of the input is able to charge the voltage on the bottom portion 

(the portion that is entirely NMOS) of the charge pump raising the overall voltage Vstore on the 

top of the charge pump. 

The first two NMOS stages on the top charge pump were chosen as NMOS to optimize 

efficiency once the circuit was started, but if a future design needs to be optimized for minimum 

start-up; all devices on the top positive charge pump may need to be PMOS. At first these two 

NMOS stages of the top multiplier are unable to help start-up and may even prevent start-up; 

however, as the system quickly begins to turn-on, the deep sub-threshold functioning allows 

these two NMOS devices to quickly begin to function. This initial start-up is not the main 

limiting factor for start-up of this system. Initial start-up and active sub-threshold functioning can 

begin as low as 100 mV; however, sub-threshold active diode start-up failure (the active diodes 

no longer function) is likely to be when Vstore is near 300-400 mV. This will be described later in 

this chapter. Figure 40 shows this initial start-up without clocking. With a 350 mV input, Figure 

40 shows that Vstore quickly rises, and it takes until Vstore reaches 200 – 300 mV before the clocks 
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begin to function. Once the clocks begin to function, Vstore rises another ~200 mV to near 

500 mV before the voltages on the lowest voltage stages begins to rise.  

 A separate system start-up is shown in Figure 41 with a 250 mV peak input (a lower 

voltage than Figure 40). Figure 41 shows the very initial start-up in stages 7, 6, 5, and 4 and 

shows this very initial start-up as Vstore rises to 0.14 V over 1.6 seconds. In this portion of the 

start-up, the clocks controlling the active diodes are not working, so the voltage rises due to the 

passive nature of the devices in the top and bottom charge pumps. Even though the clocks 

controlling the active diodes are not working, the voltage on the active diodes is positive between 

Vstore and ground. This means that the PMOS stages on the top stage will act as sub-threshold 

active diodes as just described in the last paragraph. In other words, more charge will flow in the 

PMOS when the input is positive because the input signal is at a higher voltage than the gates 

than if the input is negative. Similarly, on the negative charge pump on the bottom of the system, 

charge flows when the input is farthest away from positive voltage on the gate versus when the 

input is positive. Analyzing and describing the NMOS and PMOS stages on the top charge pump 

of the system during start-up will illustrate this concept.  

 
Figure 40. Measured results with an input sine-wave show Vstore, the two clocks and the lowest voltage stage. 

Initially the clocks do not work, and the rectification is due the passive nature of the devices used as diodes. The 

voltage on the lowest voltage stage rises after the system has worked for 0.4 sec. 
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Because there are NMOS stages on the top positive charge pump and the clocks are not 

functioning, there will be limitations in charging these stages as expected. The two NMOS stages 

on the bottom of the top charge pump do not function well during the initial start-up. Figure 41 

shows this problematical functioning in the NMOS stages. In this figure, the voltage on stage 7 

(Bottom PMOS Stage), the 2nd PMOS stage rises as expected. Also, the voltage on stage 4 

(Bottom NMOS Stage Top Charge Pump) rises as expected. Figure 41 shows that the voltages on 

the two NMOS stages on the top charge pump (5 (2
nd

 NMOS Stage Top Charge Pump), and 6 

(Top NMOS Stage Bottom Charge Pump)) rise no higher than the NMOS stage 4. Likely, the 

NMOS stages do not decrease because of leakage from the top stages. Further improvement in 

start-up should occur using all PMOS stages on the top charge pump. Two NMOS stages were 

chosen to maximize efficiency once the system was started. 

 Once the charge pump becomes active, all stages begin to charge. A Cockcroft-Walton 

charge pump that both harvests and is clocked by its own input does not charge all stages at 

once. Instead, it works as series of cascaded voltage doublers as described in the Introduction 

 
Figure 41.  Measured results with an input sine-wave show the start-up voltages on stages 7 (Bottom PMOS Stage), 

6 (2
nd

 NMOS Stage Top Charge Pump), 4 (Top NMOS Stage Bottom Charge Pump), and 5 (Bottom NMOS Stage 

Top Charge Pump). Stage 7 shows a PMOS based stage that effectively charges well above stage 6. Stages 6 and 5 

(NMOS based stages on the top charge pump) barely rise above stage 4 (NMOS based stages on the lowest charge 

pump).  
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(Chapter 1.3). In this situation, the first stage charges, and this allows current to flow into the 

next stage and so forth. If all stages have similarly functioning diodes, it means that the stage 

closest to the input charges first, while the stage farthest away from the input charges last. As 

expected, this pattern holds true for the initial active diode sub-threshold start-up on the bottom 

negative charge pump. The lowest voltage stage charges last. Figure 42 shows Vstore, and the 

output of the bottom 3 stages. Stages 3 (3
rd

 lowest NMOS stages), 2 (2
nd

 lowest NMOS stage), 

and 1 (lowest voltage stage) are shown. Stages 3 and 2 initially charge soon after Vstore rises. The 

output of stage 1 (lowest voltage stage) stays low for nearly 0.7 seconds as voltage builds on the 

stages before the voltage on the lowest voltage stage begins to finally rise. As this begins, the 

voltage on the stages closest to the lowest voltage stage dip slightly. This is also observed in 

simulation. This dip occurs when the clocks begin to minimally function and charge in the 3
rd

 

and 2
nd

 lowest voltage stage flows to the lowest voltage stage. In this start-up, it is shown that the 

comparator decision is based off of the lowest voltage stage that stays close to ground the entire 

time enabling high margin for sub-threshold functioning.  

 
Figure 42.  Measured results with an input sine-wave show Vstore, and the voltage output on the bottom three 

lowest voltage stages on Figure 33. It is seen that the very lowest voltage stage charges last and stays near 

ground for a considerable period of time. 
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  As described in the Introduction, initially, active sub-threshold functioning is barely 

effective. As described in Chapter 1.4.1, this is because of issues in sub-threshold mismatch and 

the slow speed of sub-threshold functioning. Specifically, the clocks do not switch close to where 

an ideal diode should turn on with the input; however some of the stage’s voltages begin to rise 

due to the limited active diode functioning. As the voltage of the system starts to rise out of sub-

threshold, the clocks become more accurate. The higher voltage on VStore which is supplies the 

active diodes allows for faster turn-on of these active diodes because the comparators and 

inverters driving the active diodes are farther out of sub-threshold. Eventually, the voltage on the 

lowest voltage stage begins to rise, but for optimal start-up this will not occur until the system is 

out of sub-threshold. The low voltage on the inputs into the comparators on the lowest voltage 

stage allow high margin for initial start-up. Figure 43 shows Vstore, the lowest voltage stage and 

input into the lowest voltage stage harvesting a sine-wave input from a harvester with a 350 mV 

peak value.  

  As seen in Figure 43, initially, for the first 1.3 seconds very little of the input signal is 

 
Figure 43.  Measured results with an input sine-wave show Vstore, the voltage on the lowest voltage stage and the 

input into the lowest voltage stage. Only once voltage on the lowest voltage stage rises, does the input at the lowest 

voltage stage lower, responding to the rising voltage on the lowest voltage stage. 
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harvested, so the input into the lowest voltage stage stays close to the original unloaded value. 

The nature of the charge pump allows the input signal to be transferred through the capacitors 

into the lowest voltage stage. As the clocks begin to function and Vstore begins to rise, the input 

into the lowest voltage stage starts to decrease as more of the input signal is harvested. 

Essentially, as the charge pump’s voltage starts to rise, the input impedance of the interface 

circuit decreases, and, correspondingly, the input signal also decreases. To understand this better, 

the harvester and interface circuit can be thought of as acting like a voltage divider as shown in 

Figure 44, where the input voltage seen by the harvester is given below. 

               
             

                         
                                 (14) 

Initially, REffective-IC is high as the charge pump begins to charge. As the charge pump continues to 

charge, REffective-IC continues to drop. This, in turn, lowers the VPeak-IC into the interface circuit. 

Any harvester interface circuit will load its harvester. This loading is unavoidable. During sub-

threshold operation this architecture limits this loading because the active diodes are not fully 

functional. This in turn limits the interface circuit loading during initial start-up. The output of 

the charge pump rises until the system is out of sub-threshold, and the DC voltage on the lowest 

voltage stage begins to rise. At this point, far more of the input into the lowest voltage stage is 

 
Figure 44. This shows harvester and interface circuit as a voltage divider to help better understand circuit 

characteristics. 
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harvested, and input on the lowest stage peak is the same value as the lowest voltage stage. Also, 

the input impedance of the harvesting interface circuit is lowered until the voltages are across the 

stages on the charge pump are similar.  

 Figure 45 shows the full start-up with Vstore, Vbias, Vstore, and the lowest voltage stage 

(labeled Vstage1). In this particular figure, a PFIG input with a 450 mV peak is harvested. As 

described earlier, Vstore initially rises because the NMOS and PMOS devices act as diodes. After 

the comparators begin to work, the diodes become active near Vstore=0.2 V. When Vstore reaches 

0.4 V, Vbias begins to rise. Vbias maintains a voltage one Vth below Vstore. Also, at Vstore≈ 0.4 V the 

voltage on the lowest voltage stage begins to rise. When Vstore reaches 1.5 V, the voltage on the 

large 100 µF capacitor at Vout begins to rise as the Mode Selector is enabled. The mode selector 

[5] is necessary to prevent loading into a large storage capacitor or ultra-capacitor. A single 

capacitor is far more difficult to charge to a large voltage compared to a series of capacitors 

staked in series. This is seen in Figure 45 where the time it takes to charge a single capacitor 

 
Figure 45.  Measured results with an input PFIG show the start-up of the system with the lowest voltage stage 

(Vstage1), Vbias, Vstore, and Vout.  Vbias begins to rise once Vstore is over ~400 mV. This figure shows that the 

large storage capacitor on Vout charges once Vstore reaches 1.5 V. 
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(Vout) to 1.5 V is several times longer than charging a series of 100 µF capacitors (Vstore). This is 

because the stacked capacitors add in parallel when stacked in series reducing the overall 

capacitance the charge pump needs to charge to reach 1.5 V compared to a single large output 

capacitor.  

  It is important that the charge pump is loaded as little as possible during start-up to take 

full advantage of the reduction in capacitance due to the capacitors stacked in series (adding in 

parallel to reduce the total capacitance) in the negative and positive direction in the charge pump. 

Even the slightest loading on the output of the charge pump considerably increases the charge 

time. The goal is to charge the main charge pump quickly, so that the output (Vstore which 

supplies the active system) charges as quickly as possible compared to the voltage increase on 

the lowest voltage stage.  

With the mode selector preventing the significant loading on Vstore from a large capacitor, 

Vstore rises far more quickly than without the large capacitor directly attached. Without the mode 

selector the voltage on the lowest voltage stage rises before enough margin can be enabled to 

allow for sub-threshold functioning. In other words, Vstore does not rise fast enough before the 

voltage on the lowest voltage stage begins to rise to bring the system out of sub-threshold where 

no additional margin is needed for functioning. Figure 46 shows a description of this behavior 

with a large 100 µF capacitor at Vstore. Initially Vstore rises; however, the voltage on the lowest 

voltage stage begins to immediately rise to about 50 mV after about 30 seconds. Even though 

this is a small change in voltage on the lowest voltage stage, it is enough to limit the margin in 

the active diodes. At this time, Vstore starts to rise far more slowly compared to the initial start-up 

from 15 to 20 seconds and the voltage on the lowest voltage stage decreases slightly. At ~60 

seconds, the voltage on the lowest voltage has decreased enough, so that Vstore rises quickly 
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again. Just like at ~30 seconds, the voltage on the lowest voltage stage then increases. Finally, 

this prevents the system from charging, Vstore levels off, and the system can no longer increase in 

voltage. It is important to note that it is difficult to compare this start-up time with the charge 

pump circuit seen on the bridge because this charges 100 µF capacitors, while the bridge based 

harvester is charging 10 µF. 

The mode selector prevents loading from either a capacitor or resistor, so that the only 

loading on the system when charging is the low ~10-50 nA current needed to supply the mode 

selector at these low sub-threshold voltages. As described earlier in Section 1.3, the mode 

selector is adjustable to be able to allow the turn-on in a range of 0.8 - 1.5 V. This ability to 

change the turn-on level is of significant interest to understand sub-threshold functioning.  

For example, if the mode selector turns-on around 0.8 V, the system still remains in sub-

threshold. However, if the system turns-on near 1.5 V, it is far out of sub-threshold. Figure 47 

shows the problems that occur if the mode selector turns on near 0.8 V. The voltage at the output 

on the large capacitor Vout rises to approximately 0.26 V, and at this point the voltage on the 

lowest voltage stage has risen to nearly 0.1 V. This decreases the margin in the lowest voltage 

 
Figure 46. Measured results with an input sine-wave show the lowest voltage stage and Vstore during a failed start-up. 
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stage, and the system fails to function. When the failure happens, Vstore decreases as the voltage 

supply is used to supply clocks that are barely working but whose operation consumes power.  

Figure 48 shows the zoomed-in view of a start-up failure when the mode selector turns on 

at 0.8 V. This figure shows the behavior of the system just as Vstore peaks near 0.8 V and the 

system begins to fail when the active diodes no longer function. In this close up the Vout only 

rises for about 1/20 of a second until Vout and Vstore slowly begin to fall once the voltage on the 

lowest voltage stage begins to rise. At this zoomed-in portion of the start-up, the voltage on the 

lowest voltage stage also begins to rise, but this leads to less margin for the comparators driving 

the active diode clocks because Vstore remains at 0.8 V and then slightly decreases. As the voltage 

on the lowest voltage stage rises, the comparators on the lowest voltage stage are given less 

margin to function and produce clocking outputs unsuitable to drive the active diodes. At the 

transition, Vout stops charging near about 260 mV. As this continues the clocks switching the 

active diodes become narrower and narrower and therefore less and less effective. At this point 

the harvested power is less than the power that the circuit consumes, so Vstore begins to decrease. 

Vstore then starts to decrease far more rapidly at this point as the voltage at the lowest voltage 

 
Figure 47.  Measured results with an input sine-wave show start-up failure when the mode selector turns on at 

approximately 0.8 V. Vstore rises to 0.8 V and the voltage on the lowest voltage stage (labeled “bottom stage”) 

rises to ~0.1 V; however, at 0.8 V Vout rises as Vstore remains constant. Vstore stops charging as the voltage on the 

lowest voltage stage goes too high too quickly. 
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stage rises and the system goes deeper and deeper into sub-threshold. This further puts pressure 

on the comparators at the lowest voltage stage that have less and less margin to function. Before 

Vstore reaches 0.8 V, the active diode switching signal is wide enough for the active diode to turn 

on and allow a significant portion of the harvester’s input signal to be harvested. However, once 

the voltage on the lowest voltage stage begins to rise, less margin is seen on the lowest voltage 

stage and the active diode pulses are far narrower. This means that very little power is harvested.  

 

This analysis demonstrates that the weakest point during start-up is not the very initial 

start-up that can begin at ~110 mV rather; it is between 350 mV to 800 mV on Vstore. The 

comparator is able to initially start-up around ~250 mV (the initial start-up is due to passive 

functioning). Near 350 mV to 800 mV the comparator can fail to function. As demonstrated in 

the figures 46 to 48 in this chapter, this is the point where the voltage on the lowest voltage stage 

begins to rise, limiting the margin for the comparators to function in sub-threshold. Figures 49 

and 50 demonstrate how close the system is to active diode failure near 350 – 400 mV. Figure 49 

shows the results of a failed start-up of the charge pump. Here, Vstore is near 0.35 V and the 

 
Figure 48.  Measured results with an input sine-wave show that the clock pulses become much smaller once 

Vstore reaches 0.8 V because the voltage on the lowest voltage stage (labeled “bottom stage”) rises while Vstore 

stays constant as it begins to charge Vout. This leads to a failure in the charging of Vstore. 
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voltage on the lowest voltage stage is 50 mV. At this point, the clocks driving the active diodes 

barely function. They resemble more triangle waves that do not reach as high as Vstore. These 

clocks are unable to drive the active diodes causing the voltage supply to decrease. This means 

that the power harvested is less than the power used by the active functioning of the circuit. In 

this situation, as Vstore decreases, the clock functioning driving the active diode charge pump 

looks less and less like a clock and more low voltage triangle wave. Figure 50 shows a situation 

with a very similar voltage on Vstore and the lowest voltage stage. Vstore is slightly higher 

compared to Figure 49 (0.38 V vs. 0.35 V) and the lowest voltage stage is slightly lower 

compared to the situation in Figure 49 (0.035 vs. 0.045V). While not very much of a difference, 

these differences are enough to generate significantly improved signals clocking the active 

diodes that look more like square waves because enough margin is available at the lowest 

voltage stage and the voltage on Vstore is high enough. These two pictures were generated by 

putting in different input voltage into the system for start-up (for example, 200 versus 350 mV 

peak start-up). In the case of 200 mV, Vstore just does not rise fast enough before the voltage on 

the lowest voltage begins to rise. 

 
Figure 49.  Measured results with an input sine-wave show the lowest voltage stage and Vstore during a failed start-up 

that is zoomed in on a period where the clocking shows failed active diode sub-threshold operation.  
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Improvement in this mid-charging level between 350 mV to 800 mV could occur in 

several ways. First, PMOS devices could be used on the entire top positive charge pump to 

optimize passive diode operation. Part of the voltage increase is due to the diodes again acting 

like passive diodes during start-up, as described earlier in the section and chapter, so it will 

always be wise to optimize this passive functioning, even though it is not the main source of 

charging once the system is active. Second, sub-threshold biasing techniques to supply a bias that 

turns on before Vth could be used. Figure 45 shows that the bias voltage does not rise until the 

Vstore reaches near 0.4 V. A bias voltage that could rise before Vth could potentially enable better 

sub-threshold functioning on the lowest voltage stage comparators. Third, keeping the lowest 

voltage stage low for a longer time by adding additional stages or using other methods might be 

a viable way to improve sub-threshold functioning by enabling high margin sub-threshold 

operation for longer time during start-up. 

3.4 Steady State Hardware Analysis 

Ideally, the voltage across all eight stages would be evenly distributed; however, this 

does not necessarily happen in steady stage operation. This is because the instance at which the 

 
Figure 50.  Measured results with an input sine-wave show the lowest voltage stage and Vstore during a successful 

start-up that is zoomed in on a period, where the clocking shows successful sub-threshold operation. 
 



90 
 

lowest voltage stage switches is close to ideal, but it is not necessarily the perfectly ideal time 

that the rest of the stages should switch. The switching is optimized for the lowest voltage stage, 

so as the system reaches steady-state, voltage tends to build up on this lowest voltage stage. 

In steady state, the lowest voltage stage architecture does not optimize efficiency unless 

the system harvests very low power and the reduction in comparators of the system reduces 

enough active power. At higher harvester input power, driving all stages by the decision on the 

lowest voltage stage does not optimize the system though. This optimization will not occur 

because the system efficiency will always be best if charge is evenly distributed across the 

stages, and driving from the lowest voltage stage will not evenly distribute the charge across 

stages. One option is to put a single comparator on every active diode [3]. Other options are 

possible and these options will be explained and evaluated in the following paragraphs. 

To initially illustrate uneven charging in the system, Figure 51 shows a steady state 

operation with the input near a 350 mV peak voltage. This steady state operation gives an 

 
Figure 51.  Measured results with an input sine-wave show the output (Vstore=Vout), Vstage, and the bottom and 

top of the input. The input is 350 mV and the output is unloaded. 
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example of a situation where the charge distribution is not optimized across the stages. Shown in 

Figure 51, the lowest voltage stage, Vstore, the top (Vinput-AC) and bottom (Vinput-AC) of the input 

into the charge pump. On the top and bottom of the input into the charge pump, the side of the 

harvester input that is referenced to ground through capacitors is nearly a DC value labeled 

“Vinput-DC”, while the other side of the charge pump represents an AC input that is loaded by the 

charge pump interface circuit labeled “Vinput-AC”. In Figure 51 the output is unloaded at ~3 V and 

the output of the lowest voltage stage is at ~0.6 V. In this example, the voltages are not 

optimized. The voltage on the lowest voltage stage should be multiplied by ×8 (since 8 stages), 

so the output should be near 4.8V. Also, the input voltage is not even raised to half of 3 V. Vinput-

DC is near 1.3 V. Ideally, the input voltage should be between ground and the Vstore (near ~1.5 V).  

It is shown that to better optimization of the charge pump occurs by slightly lowering the 

voltage on the lowest voltage stage with a resistor. In the specific case of Figure 52, a 5 kΩ 

resistor was used. Some power is lost with this loading resistor; however, improved optimization 

occurs and far outweighs the loss of power through the resistor on the lowest voltage stage. 

 
Figure 52.  Measured results with an input sine-wave show the output (Vstore=Vout), Vstage, and the bottom and 

top of the input. The input is 350 mV. The lowest voltage stage is loaded with a 5 kΩ resistor, so that the system 

is better optimized resulting in Vstore rising to ~3.6 V from 3 V. 
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Figure 52 again shows the voltage on the lowest voltage stage, the voltage at the top and bottom 

of the input, and the output on Vstore. In this case the voltage on the lowest voltage stage is 450 

mV and the output voltage on is Vstore ~3.6 V, which is approximately ×8 the lowest voltage 

stage value of 450 mV. Also, the top and bottom voltage of the input are centered near ~1.75V, 

which is approximately half of Vstore. The system continues to remain optimized if the output of 

the charge pump is loaded. In Figure 53, the output of the charge pump is reduced by loading to 

the value of 2.8 V. As expected the voltage on the lowest voltage stage reduces to ~0.35 V, 

which is approximately one eighth of Vstore. This is expected for an optimized system. Also, the 

input voltage is centered on ~1.5 V, which is closer to half of 2.8 V. 

The AC signals, as shown in Figure 53, into the interface circuit look like square wave or 

a sine-wave with top “chopped”. This behavior is expected and can be explained by again 

thinking of the interface between the harvester and the charge pump as a voltage divider like is 

seen Figure 54. When the active diodes are off, the interface circuit has a high input impedance, 

whereas when the active diodes are on, the interface circuit has a lower input impedance. This 

describes how the input signal seen by the interface signals changes or appears to be “chopped” 

 
Figure 53.  Measured results with an input sine-wave show the output (Vstore=Vout), Vstage1, and the bottom and 

top of the input. The input is 350 mV. The lowest voltage stage is loaded with a 5 kΩ resistor and loaded at 

Vstore. The voltage on the lowest voltage stage lowers to 0.325 V and the Vstore is lowered to 2.8 V.  
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at a certain point in its functioning. This concept is further elaborated on in Figure 54 below. The 

point at which the voltage flattens out is the point at which the active diodes turn on, lowering 

the impedance seen by the harvester.   

 

3.5 The IC with a PFIG input 

The IC’s functioning with a PFIG input is very similar to the functioning with an input 

sine-wave. As described in Chapter 2, a PFIG input into a harvester produces less efficient 

harvesting because the lower peaks of the harvester are not harvested as efficiently. An example 

of the PFIG signal used here is shown in Figure 55 below. In this picture the PFIG input is 

unloaded and the maximum peak has a value of 450 mV. The PFIG decays until the other FIG in 

the PFIG takes over abruptly ending the first FIG output signal. 

 
Figure 54. This shows the harvester and interface circuit as a voltage divider to help better understand circuit 

characteristics. 

 



94 
 

The PFIG based start-up is shown in Figure 56. Similar to the start-up with a sine-wave, 

the lowest voltage stays low while Vstore rises. Both the input (Vinput) and the input into the lowest 

voltage stage (Vinput_lowest voltage stage) tend to look like each other following the general shape and 

amplitude of the PFIG input. This makes sense as the input into the charge pump is really just the 

same signal transferred to the different stages of the charge pump with varying offsets 

corresponding to different voltages on the different stages of the charge pump. As the charging 

progresses Vinput and Vinput_lowest voltage stage move apart as the charge becomes distributed across 

the stages in the charge pump. Eventually, Vinput moves to nearly the center between Vstore and 

 
Figure 55. This shows the measured PFIG input used for these examples. 

 

 
Figure 56. The measured PFIG input, AC input into the lowest voltage stage, the voltage on the lowest voltage 

stage and Vstore are shown for a successful PFIG start-up. During the first 3 – 4 seconds, the voltage on Vinput and 

Vinput_lowest_voltage_stage are nearly the same. 
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ground similar to when a sine-wave is charging the system. Figure 57 shows a close up of the 

system stabilizing where Vinput and Vinput_lowest voltage stage move apart. 

Because of the decaying nature of the PFIG (Figure 55), the charge pump circuit system 

will respond differently to each peak in the decaying sine-wave. This is also seen in Figure 56. 

As the Vstore and the voltage on the lowest voltage stage stabilize, many of the lower voltage 

peaks on the input (Vinput) and the input transferred into the lowest voltage stage (Vinput_lowest voltage 

stage) do not occur. These lower voltage peaks are not harvestable by the circuit as it becomes 

more fully charged. For these lower voltages of the PFIG, the charged system basically acts as a 

very low valued impedance. Again, using the voltage divider analogy, this means that as the 

system being driven by the PFIG stabilizes the input impedance of the harvester system 

decreases to a level where some peaks of the PFIG are not harvested if they are not high enough.

 This trend continues as the system reaches steady state. Figure 58 shows the Vstore, the 

voltage on the lowest voltage stage, the input into the lowest voltage stage, and the input. It is 

seen here that basically only 1 or 2 peaks are harvested and appear on the input into the lowest 

voltage stage. With this input of the PFIG, the voltage on the lowest voltage stage rises to 

 
Figure 57.  Measured results with an input PFIG show a zoomed in portion of the start-up showing the PFIG input, 

AC input into the lowest voltage stage, the voltage on the lowest voltage stage and Vstore for a successful PFIG 

start-up.   
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0.35 V; however, Vstore is only ~1.6 V. Since Vstore should be ×8 the lowest voltage stage, this 

system is not optimized. Even at this low input of 0.35 V, only 1 or 2 peaks from the PFIG that 

are over 0.4 V are harvested in this system as they overcome the voltage on the lowest voltage 

stage. The rest of the peaks are not visible because the interface circuit acts as a very small 

resistance for the peaks that are not observed. 

If the output of the system is loaded as in Figure 59, Vstore decreases as expected and most 

of the PFIG peaks appear because they are harvested in the system with a reduced supply voltage 

Vstore. In terms of the voltage divider analogy, a system with a reduced Vstore and voltage on the 

lowest voltage stage will cause the input impedance of the interface circuit to be higher for more 

of the PFIG’s peaks. With Vstore pushed down, this also decreases the voltage on the lowest 

voltage stage. In this case 0.29 V is on the lowest voltage stage while Vstore is 1.35 V, so this 

continues to not be optimized because the Vstore should be ×8 the voltage on the lowest stage if 

the voltages are correctly multiplied through the system. As mentioned before in Figures 52 and 

53, improvement can be done by loading the lowest voltage stage to slightly lower voltage so 

 
Figure 58.  Measured results with an input PFIG show the PFIG input, AC input into the lowest voltage stage, 

the voltage on the lowest voltage stage and Vstore for steady state operation. Only the highest peak from the PFIG 

is harvested by the system. 
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more peaks are harvested. Figure 60 shows the results when the lowest voltage stage is loaded. 

The voltage in this figure is actually improved to 1.4 V with a lowest voltage stage of 0.25 V. 

Loading the lowest voltage stage does not always help with the PFIG. Hypothetically, if the 

loading on the lowest voltage stage is too low, it will reduce the overall efficiency of the system 

as more power is drained. 

 
Figure 59.  Measured results with an input PFIG show the PFIG input, AC input into the lowest voltage stage, 

the voltage on the lowest voltage stage, and Vstore for steady state operation. The system is loaded so many of 

the PFIG peaks are harvested. 

 

 
Figure 60.  Measured results with an input PFIG show the PFIG input, AC input into the lowest voltage stage, 

the voltage on the lowest voltage stage, and Vstore for steady state operation. The system is loaded so many of 

the PFIG peaks are harvested. The lowest voltage stage is also loaded. The main difference between this 

Figure and Figure 59 is the higher Vstore. 
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  While the interface circuit behaves similarly with a sine-wave input or a PFIG input, 

there is always the following question: what are the additional challenges associated with the 

start-up and functioning of this circuit when driven by the PFIG. Aside from the problems 

associated with the different peaks of the PFIG that have different peak voltages behaving 

differently when harvested by the circuit, the system must also function when the PFIG does not 

actuate over periods of time. For example, the bridge vibrations may actuate at very low 

frequencies causing the PFIG’s decaying sinusoid to completely decay out, or the PFIG may not 

actuate at all for several seconds because there are no vehicles coming over the bridge.  

Figure 57, for instance, shows the middle of start-up with a PFIG. The major issue 

observed is that Vstore and other voltages slightly decrease during the periods with no PFIG 

actuation because power is consumed in the circuit and no power is harvested. Due to these 

periods without harvestable inputs, that a system charging with the PFIG will charge slower than 

if the input into the system is constant because power will still be consumed when the system is 

not harvesting PFIG inputs. In severe cases when the PFIG input is random as seen on a bridge 

or the PFIG is actuated at a very low frequency (i.e. 1Hz), a system that would start-up with a 

sine-wave may not be able to start-up with a PFIG when both cases have similar maximum peak 

voltages. 

 

3.6 Results Summary and Comparison of the 16x Charge Pump Design 

 The 2
nd

 IC arrived for evaluation at the end of August 2013. Initial evaluation was 

successful showing functioning with the PFIG similar to what was predicted in simulation. Start-

up with PFIG input with a 450 mV peak sinusoid occurring at 5 Hz is shown in Figure 45. The 

signals shown in this figure (45) are before and after the mode selector “VStore” and “VOut” 

respectively. Also, the voltage on the lowest voltage stage is shown along with the bias signal 
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VbiasP. All data was taken through low current input buffers consuming <10nA of current. Table 

7 includes the data for this 16x charge pump, demonstrating its ability to start-up while boosting 

with low input voltages, low power functioning, power consumption, and circuit efficiency. 

Table 7 shows a list of power harvester circuits and comparisons between this ×16 boosting 

harvester and other works. 

With the use of  active diodes being driven by the lowest voltage stage and the use of a 

mode selector to prevent loading during start-up, the system cold-starts with a minimum 

decaying sinusoid PFIG output with peak values of 415 mV occurring at 4.5 Hz with average 

power of ~9 µW.  For a similar decaying sinusoid with a peak of ~450 mV at 3 Hz with 7.6 µW 

PFIG output power, the circuit efficiency is ~50%. With an ideal sine-wave, the system is able to 

cold-start with an input with a peak of 220 mV at 110 Hz and power of ~30 µW. Under these 

Table 7. Shows the comparison of this ×16 charge pump versus other major works from literature. Peak voltages are 

reported as defined in Section 1.5. Values are assumed to be for a sine-wave unless indicated with a “PFIG”. 

Works 

capable of 

boosting 

from a 

harvester 

×6 Charge 

Pump 

Chapter 3 

IC 2012* 

×16 Charge 

Pump 

Chapter 4 

IC 2013* 

[8]  

McCullagh 

Chapter 2 

[9] 

Kwon 

[10] 

Arnold 

[3] 

Arnold 

[2] 

Szarka 

[11] 

Rahimi 

Technology 
180 nm 

& Discrete 

180 nm 

& Discrete 

Passive 

Discrete  

2μm 

BiCMOS 

& 

Discrete 

Active 

Discrete  

Active 

Discrete  

Active 

Discrete  

Active 

Discrete  

Max 

Boosting 
×6 ×16 ×60 ~×4 ×12 ×8 ×14 

×15 due to 

1:15 

transformer 

Boosting 

Method 

Charge 

Pump 

Charge 

Pump 

Transformer 

Charge/ 

Pump  

Inductor  
Rectifier 

/Inductor 

Charge 

Pump 

Inductor/ 

Charge 

Pump 

Transformer 

Charge/ 

Pump/ 

Rectifier 

Circuit 

Power 

Consumption 

~0.6 µW ~0.6 µW 0 µW 
estimate 

~0.25 µW 
Not given 6.4 µW ~21µW 

Estimate 

~1 µW 

Min Start-up 

Voltage 

 

280 mV 
220 mV 

415 PFIG 
60 mV 

Pre-

charge 

required 

1.25 V or 

Pre-charge 

for 5 mV  

500mV ~500mV 200 mV 

Min 

Functional 

Voltage 

138 mV 110 mV 60 mV 350 mV ~5mV 350 mV ~500mV 200 mV 

Max Circuit 

Efficiency 
69% SW 

66% 

50% PFIG 
27% 49.9% 84%  82% 76% 35% 

*Journal papers in preparation by McCullagh 
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conditions the circuit efficiency is 66% for a DC output of 1.7 V. The circuit remains functioning 

for decaying sinusoids at frequencies as low at 1 Hz. This ultra-low power operation is possible 

due to the use of two comparators.  The IC chip is fabricated in 180 nm CMOS on a 1.2 mm
2
 die.  

 

 

 

 

3.7 Model to Hardware Discrepancies 

 There are significant model to hardware discrepancies in the start-up for this design 

covered in Chapter 3. The main issue is that hardware’s minimum start-up was over 100 mV 

lower than simulated start-up that gave a minimum result of 335 mV. Hardware based start-up 

worked with peak inputs as low as 220 mV. Also, the group of different ICs tested in hardware 

produced a wide range of minimum peak start-up voltages with a sine-wave. Some devices 

minimum start-up was near 330 mV, which is very close to what is predicted by simulations; 

however, as just mentioned, some devices were able to start-up with an input signal as low as 

220 mV, while some devices needed an input signal greater than 400 mV for start-up. Extreme 

care was taken before testing the system’s start-up to make sure all nodes were at ground, and 

there was no charge left over in the capacitors. To accomplish this, every input point on the IC 

was discharged to ground, the voltages were checked on the circuit to make sure they remained 

at ground, and if any voltages were still not at ground, all points on the circuit were discharged to 

ground once more. 

 Another major concern encountered in simulation is that decreasing the output impedance 

of the harvester, which will increase the power generated by the harvester in simulation, has 
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virtually no effect on the minimum start-up. These points towards a sub-threshold modeling 

problem in the sense that more input power should have a greater likelihood of active 

functioning and a greater ability to start-up at lower voltages. Also, hardware results point to 

better start-up performance with a higher power harvester input. 

 

3.7.1 Start-up measurement methods 

 To test this circuit, a sine-wave was needed that was not referenced to ground. The output 

of a regular single ended function generator will always be referenced to ground. The voltage of 

the harvester input signal needs to rise, as is required by the nature of the interface circuit. 

Multiple ways exist to provide such a signal. The first and most obvious way is to test with a 

harvester, and this, of course, is done with the PFIG. However, often the circuit needs to be 

tested under more ideal circumstances in order to be compared to other energy harvesting circuits 

in literature. Also, an ideal input sine-wave will allow additional learning that a PFIG input, for 

example, might not allow. The effect of an ideal sine-wave input versus a PFIG input that will 

not regularly actuate is a specific example of what should be studied with an ideal sine-wave. 

Two ways exist to test with a differential input other than using an actual harvester. A 

differential sine-wave generator can be used, but these are expensive and were not available to 

the author. The method used by the author is a transformer attached to a function generator. As 

long as the input impedance is properly measured to obtain accurate input power into the 

interface, this is a viable method. There is a small possibility that charge might be trapped in the 

transformer; however, results have been repeated for specific devices. For instance, one IC as 

part of an IC based system will start-up at 220 mV regularly, while another IC will regularly 

start-up at 330 mV. 



102 
 

 

3.7.2 Simulated Mismatch and Process 

Investigations were needed to further understand and quantify the model-to-hardware 

differences. Monte Carlo simulations can be run in the Cadence schematic to assess how 

mismatch between devices in a design affect the design’s performance. For example, devices are 

designed to have specific parameters, but they may not because of edge effects, material 

imperfections, etc. Start-up was run in Monte Carlo to test how mismatch variation affected start-

up. The results are shown in Figure 61 over 10 runs at 330 mV. It is seen that only one of the 10 

cases started with an input at 330 mV, while start-up is always possible with an input at 335 mV. 

With inputs any lower than 330 mV, start-up is never possible in any type of simulation. This 

would seem to eliminate simulated mismatch as a possible reason for the extreme variation in 

measured performance. Process was also run including fastfast, slowslow, and typical process 

corners, and no improvement in minimum start-up was observed in simulation. 
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3.7.3 The Effect of ESD Diodes on Start-up 

 Limited electrostatic discharge protection (ESD) was added to the circuit (Figure 62) to 

minimize the effect of a possible ESD event. This consisted of a diode connected to the input 

 
Figure 61. Simulated start-up for Monte Carlo mismatch was done with a peak sine-wave input at 330 mV. Only one 

case out of ten can start-up. 

 

 
Figure 62. An ESD diode to ground is shown similar to what was used in this design is shown. 
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pads. These ESD diodes actually improve the performance of this circuit, because a small 

amount of the input signal actually goes through ground up through the diode to the various 

nodes of the design. Figure 63 shows the difference (from schematic) between performance with 

and without the ESD diodes. With ESD diodes minimum start-up is 335 mV; however, without 

ESD diodes minimum start-up is 350 mV. Figure 63 shows simulated results with and without 

the ESD diodes at an input voltage of 335 mV. This figure shows that ESD diodes are needed to 

obtain start-up in simulation at 335 mV (without ESD diodes, start-up is only possible at 

350 mV). Extracted start-up was run with the ESD diodes, and no difference was seen compared 

to simulated start-up that was simply run in schematic (with ESD diodes attached). This would 

indicate that ESD diodes can improve the performance of the system, but it again does not fully 

explain the model to hardware discrepancies. As just mentioned, some sub-threshold leakage 

through the ground path and ESD diodes of the system improves performance. Similar passive 

diode based improvements might be obtained by adding additional passive diodes to increase the 

sub-threshold current along the charge pump architecture itself instead of relying solely on the 

passive diode nature of the devices in the system. This idea has been used before in active diode 

sub-threshold designs [12]. 
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 Because simulation cannot resolve the low voltage discrepancies between model and 

hardware, it points to significant problems in the basic models of the system in deep sub-

threshold. This is further emphasized by the fact that simulated minimum start-up does not 

change with dramatically reduced or increased power. In extreme cases (such as milliWatt or 

Watt inputs), simulated start-up is the same for an input signal with microwatts of power versus 

high milliWatts of power. Likely, the simulated deep sub-threshold functioning of the devices is 

not modeled correctly or the effect of some type of mismatch property is not modeled effectively 

in deep sub-threshold. Because the average start-up between devices is reasonably close to what 

was predicted by simulation, a process or mismatch variation likely is not modeled fully for deep 

sub-threshold. To further narrow down possible causes of the modeling discrepancies, additional 

 
Figure 63. The difference between simulated start-up with and without ESD diodes with a peak input of 335 mV is 

shown. The system starts-up with the ESD diodes at this low input voltage but does not start-up without the ESD 

diodes. 
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measurements were taken over temperature as well measurements taken while externally 

controlling the circuit’s bias voltage. The goal of these measurements was to show extreme 

sensitivity to a characteristic (i.e. temperature or bias voltage) of the circuit. 

 This chapter describes a ×16 IC-based charge pump structure capable of sub-threshold 

active diode start-up and high efficiency operation with a harvester input. The PFIG harvester 

was used with this circuit design producing 50% efficiency with a low power signal (<10 µW). 

Additionally, a PFIG signal down to 415 mV was able to start-up the system. An ideal sine-wave 

generated by a transformer was able to show start-up down to 220 mV. The system uses a 

method relying on the comparator decision on the lowest voltage stage of the charge pump. The 

lowest voltage stage charges last due to the characteristics of a Cockcroft-Walton charge pump. 

Because the lowest voltage stage charges last, this enables additional margin in the sub-threshold 

active diode start-up. Other architectures and circuit mechanisms are possible where a 

comparator decision on the lowest voltage stage drives the decision on all stages of the charge 

pump to enable sub-threshold start-up. The next chapter describes such a mechanism where the 

choices of devices used in the full-wave active charge pump allow the lowest voltage stage to 

stay low.   
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Chapter IV 

A ×6 Boosting Active Diode Charge Pump IC-Based System and 

Related Comparator and Charge Pump Loading Methodologies 
 

 Other circuit methods are possible to allow an active diode charge pump to operate in 

deep sub-threshold using an architecture where all stages in the charge pump are driven by a 

comparator on one stage. As in Chapter 3, the goal is that this stage with a comparator is charged 

last, so that additional margin is available in deep sub-threshold functioning for the comparator 

operation. Chapter 3 shows an IC-based ×16 full-wave charge pump design that relies on the 

lowest voltage stage to give additional margin to aid in deep sub-threshold active diode start-up. 

In Chapter 3, the lowest voltage stage is charged last because it is farthest away from the 

harvester input into the charge pump. This chapter describes another lowest voltage stage driven 

active diode charge pump that is a ×6 boosting design; however, the method to hold the lowest 

voltage stage low is different in this design versus the design in chapter 3. The choice of the 

active diode device (either NMOS or PMOS) allows the lowest voltage to stay low and gives the 

comparator on the lowest voltage stage additional margin. This different ×6 IC-based full-wave 

charge pump design is explained in depth in the chapter. 
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4.1 IC-Based×6 Charge Pump Circuit  

4.1.1 Motivation for a ×6 Charge Pump Circuit Design  

The goals of these 180 nm CMOS IC-based systems are to achieve a cold-start and 

function with high power conversion efficiency in regular operation without the need for 

transformers. Chapter 3 described a system that uses “lowest voltage stage comparators” to 

enable active functioning for start-up in deep sub-threshold in a ×16 full wave active diode 

charge pump. This chapter (4) provides a similar design relying on the lowest voltage 

functioning using a ×6 full wave active diode charge pump. In Chapter 4 the method for 

maintaining a low voltage on the lowest voltage stage is different than in Chapter 3, and this 

difference related to the specific devices chosen in the charge pump stages is analyzed.  

 Both the ×16 and ×6 designs in Chapters 3 and 4 use an IC-based system where the 

lowest voltage stages charges last, so that high margin on the lowest voltage stage can be used to 

drive the rest of the stages through inverters based off of the lowest voltage stage’s comparison 

in deep sub-threshold. Also, in both designs, as the system reaches steady state, the lowest 

voltage stage finally charges and this optimizes the system for higher efficiency operation. In 

Chapter 3, a ×16 full wave rectifier design with two Cockcroft-Walton multipliers going in the 

positive and negative direction are used, and the lowest voltage stage is the last stage on the 

negative charge pump. In this chapter (4) a full-wave charge pump is used; however, it only 

charges in the positive direction using a string of six rectifiers where each stage only multiplies 

the voltage by ×1. This means that the maximum theoretical voltage boosting in this IC-based 

design is ×6 rather than ×16. While this is a decrease in performance, it is the method for holding 

the lowest voltage stage low during initial start-up and is different than the circuit described in 

Chapter 3. In Chapter 3, the lowest voltage stage charges last because it is farthest away from the 
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input, so the system in Chapter 3 uses the inherent properties of a Cockcroft-Walton charge 

pump to keep the lowest voltage stage low for as long as possible to enable high margin for 

active deep sub-threshold start-up. In this chapter (4), the charge pump only charges in the 

positive direction, so the voltage in the charge pump should have built up on the lowest voltage 

stage first. It doesn’t because of the type of devices used on the lower voltages stages (NMOS 

devices are used) versus the devices used on the higher voltage stages (PMOS devices are used) 

of this design.  

 

4.1.2 Charge Pump Circuit Design  

The ×6 full-wave architecture is shown in Figure 64. This IC-based harvester system 

contains 6 stages (3 NMOS and 3 PMOS) and is capable of ×6 boosting. PMOS stages are used 

on the top stages because the system is supplied by the output of the charge pump. For example, 

if NMOS devices were used on the top stages, they would not be able to turn-on since the gate 

would be no higher than the source. A bias circuit is attached to the charge pump output and is 

 
Figure 64. This shows the initial IC based harvester system containing 6 stages (3 NMOS and 3 PMOS), two 

comparators driving all stages, a bias circuit and a Schmitt trigger. 
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used for the comparators. The bias voltage turns on once the circuit achieves a specific voltage 

near the threshold level (Vth ~ 0.42 V) of a NMOS or PMOS device in this technology (180 nm). 

A Schmitt trigger is attached at the output of the charge pump. The goal of both discrete or IC 

based Schmitt triggers is to allow charge into a storage capacitor once the charge pump’s output 

exceeds a specific turn-on voltage. This active diode charge pump was taped out in 180 nm 

CMOS. The die size was about 1mm x 1mm; however, the actual size of the circuits is about 300 

× 150 µm. The die with the specific active diode structure highlighted is seen in Figure 65.  

As in the ×16 IC-based charge pump design, a differential common gate comparator is 

used on the first stage of the charge pump (Figure 66), and this first comparison drives the rest of 

the stages through buffers. This comparator is ideal because it can make low input amplitude 

comparisons without the need for sub-threshold operation as long as Vstore is high enough to keep 

 
Figure 65. This shows the initial charge pump design fabricated in 180nm CMOS technology. The active 

diode portion is surrounded by a rectangle. 
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the comparator out of sub-threshold functioning. If the comparator’s Vstore is too low for regular 

operation and the bias voltage into the comparator is also low, this comparator still works in sub-

threshold as long as the first stage voltage of the charge pump also stays close to ground. Similar 

comparator designs have been used in other energy harvesting applications [1, 2]; however, these 

applications do not make use of the comparator’s ability to function with low input voltages in 

and out of sub-threshold design. The Schmitt trigger was either made from an IC based design 

that turned on near 0.4 V (Figure 79) and was not adjustable or a discrete Schmitt trigger that 

could be designed to have a turn-on near 1.0 V (Figure 78). This Schmitt trigger (or Mode 

Selector from Chapter 3) is a critical component of this system. Preventing loading on the charge 

pump is essential for an optimal start-up. The various designs used for this Schmitt trigger will 

be discussed later in this chapter in Section 4.3. 

 

 

 
Figure 66. This shows a differential common gate comparator regularly used in energy harvesting literature [1, 2]. 

The (+) input is the output of the first stage of the charge pump. 
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4.1.3 Innovations in this charge pump design 

 There are multiple areas of innovation in this active diode charge pump that advance the 

state-of-the-art. 1) Unlike most other energy harvesting charge pump designs or rectifier designs 

[2-5], charging occurs without a capacitive or resistive load. Charging without loading improves 

start-up by improving the biasing of the lowest voltage stage comparators allowing their inputs to 

stay low (discussed later in Section 4.2). Unlike in Chapter 3 where the input of the lowest 

voltage stage stays low due to the inherent nature of the Cockcroft-Walton charging, the lowest 

voltage stage stays low here because of the choice of NMOS devices in the lowest voltage stage 

rather than PMOS devices. 2) A classic differential common gate comparator is used in a novel 

fashion to enable low voltage functioning in and out of sub-threshold in a multiple stage charge 

pump architecture. This comparator allows low voltage comparisons and operation making the 

need for passive diodes unnecessary for most of the charge pump’s start-up.  3) A lowest voltage 

stage driven charge pump structure is used to further aid start-up and create an ultra-low power 

design capable of actively working with the low power outputs of the PFIG on the New 

Carquinez Bridge. Driving from the lowest voltage stage means that all active diode decisions 

are made based on the output of the charge pump’s lowest voltage stage and then transferred to 

all other stages and diodes through buffers. This architecture has advantages. First, the lowest 

voltage stage comparators use the full range of available voltage. Second, the voltage on the 

lowest voltage stage can be controlled, so that the all actives diodes operate even during the 

initial charging, a period in which the charge pump stage’s voltages rise unevenly, limiting the 

appropriate biasing if there were a comparator for each stage. Fewer comparators mean less 

power required, and only the first stage comparator needs to be functional for all other stages to 

work.  
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4.2 Start-up for the 6x Active Diode Design 

4.2.1 Simulated Start-up for the 6x Active Diode Design 

 As expected, simulation results produced high power conversion efficiencies in regular 

operation once the charge pump IC-based system had started. These were measured by changing 

the resistive load on the output of the charge pump until the output was constant. The output 

power was then divided by the maximum harvestable power (with the harvester outputs 

matched) from the harvester. With a sine-wave, efficiencies between 60% and 70% were 

regularly reached in simulation. In simulation the charge pump consumed 0.5 µW. These results 

are verified in more detail in the next section. The unique start-up of this circuit is a significant 

contribution, and its simulation will be discussed in this next section in detail.  

As mentioned in Section 4.1, this circuit’s start-up relies on deep sub-threshold 

functioning rather than passive diodes during start-up (Figures 67 to 71). This means that almost 

immediately, parts of the circuit allow for the charge pump to actively function. Figure 67 shows 

a close up of the last stage of the charge pump. Figure 67 will be closely analyzed in simulation 

to understand the initial start-up.  

 
Figure 67. A close-up of the last stage of the charge pump is shown. Sub-threshold current flows through the 

PMOS on the top right corner during initial start-up. 
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Figure 68 shows the beginning of the start-up process simulated in Cadence with an input 

of 700 mV. Initially, the input into the last stage of the charge pump goes to 0.6 V (Top 6). Even 

though the PMOS is not technically on, enough sub-threshold current flows through the PMOS 

on the last stage of the charge pump to start charging the parasitic capacitance and line of stacked 

capacitors which add in series at the output of the charge pump (the signal labeled “Store”). The 

clock output soon follows the signal “Store.” Eventually, this results in a peak of 1 µA flowing 

through the PMOS permanently storing charge on the capacitor chain of the charge pump. In the 

PMOS stages, far more charge flows when the signal is positive compared to when the signal is 

 
Figure 68. The first 4.2 mille-seconds of simulated start-up is shown. The top figure shows the input into the last 

PMOS when the system is off (Top6), the clock on this PMOS (Clk), and the output of this PMOS (Store). The 

bottom figure shows the current through the PMOS. 
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negative. This can be deduced from Figure 68. The “Clk” will always be at a voltage between 

Vstore and ground. Therefore, when the input at “Top6” is positive, the input into the “source” of 

the devices is more likely to be close to or above the gate voltage ‘Clk’ compared to when the 

input at the source is negative. This means far more current will flow when the input at the 

“source” is positive compared to when that input is negative in the PMOS devices. This will 

allow voltage and charge to build up on Vstore and the later PMOS stages. With a slightly higher 

output voltage built up on the charge pump in the process just described, the next input peak 

results in a functional clock, which goes low as seen in Figure 69 near 10 ms, resulting in a peak 

current near 10 µA.   
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Since the PMOS devices are able to charge during start-up, it would be expected that the 

NMOS devices would not passively charge. This is true, and it is the method by which this 

system keeps the lowest voltage stage (an NMOS stage) low during initial start-up. This process 

is seen in Figure 70. This simulation results show that the top 3 PMOS stages charge first, while 

the bottom NMOS stage remains low during initial start-up. When the clock controlling the 

active diodes turns on, the voltage on the bottom NMOS stage begins to rise. It can also be seen 

in this picture that the top PMOS stages charge unevenly. In this simulated picture, the top 

PMOS stage “VStore” charges more slowly than the lower PMOS stages 4 and 5. If there were a 

 
Figure 69. As before, the top figure shows the input into the last PMOS when the system is off (Top6), the 

clock on this PMOS (Clk), and the output of this PMOS (Store). The bottom figure shows the current through 

the PMOS. The first 12 seconds of simulated start-up is shown. 
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comparator for every stage, this would mean that there would be a different level of margin for 

the comparators to work on each stage in deep sub-threshold. These varying margin levels in the 

different stages would be challenging if a comparator were used on each stage of the charge 

pump in deep sub-threshold start-up.  

 Finally, Figure 71 shows the charging of this circuit over 0.5 seconds in Cadence. Near 

~0.4V to ~0.5 V, the Schmitt trigger circuit turns on, and this enables the output’s 10 µF storage 

capacitor to begin to charge. By initially enabling the charge pump to function without loading, 

the first stage of the charge pump is able to stay at a lower voltage. With the loading of a large 

capacitor on the output of the charge pump, it charges far more slowly because the charge pump 

is both charging the stacked capacitors (they add in parallel) and the large capacitor at the output. 

If there is a large capacitor at the output, the voltage on the lowest voltage stage will rise more 

quickly compared to the output at VStore. This will limit start-up margin in deep sub-threshold 

just like with the circuit described in Chapter 3. If the voltage on the lowest voltage stage rises 

and VStore remains basically constant the lowest voltage stage comparators will have less margin 

 
Figure 70.   The first 15 mille-seconds of simulated start-up is shown. The top three PMOS stages, lowest voltage 

NMOS stage, and clock are shown in Cadence simulation. 
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to operate with in deep sub-threshold and will more likely fail to function leading to the need for 

an unloaded start-up.   

Understanding the issue of “margin” explains the characteristics and potential problems 

seen in Figure 71. Figure 71 shows a simulation with the minimum turn on possible in this IC-

based circuit simulation (near 700 mV). The voltage on the lowest voltage stage in Figure 71 

begins to rise when the Schmitt trigger turns on and VOut and VStore are rising at nearly the same 

voltage after that. At voltages below this, the voltage on the lowest voltage stage rises enough, so 

that comparators will not function in simulation. For the comparators to optimally function, a 

comparison should be made between the input voltage and near 0 V at the output of the first 

stage of the charge pump. This comparison to near 0 V avoids sub-threshold modeling and 

differential matching problems by giving the comparators more “margin” to operate with until 

the “VStore” voltage is higher bringing the circuit out of sub-threshold. Once the charging of the 

large output capacitor begins to charge around 0.2 seconds, the voltage on the first stage begins 

 
Figure 71. Cadence plots of the circuit start-up are shown. The voltage on the storage capacitor output (after the 

Schmitt trigger), charge pump output, and the voltage on the first stage of the charge pump are shown. 
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to rise as the circuit charges itself into regular operation. Without the Schmitt trigger, a charge 

pump’s first stage voltage would rise first, even before later stages, meaning that some type of 

Schmitt trigger is necessary. Along with the necessity of the Schmitt trigger, best functioning 

occurs if the inverters are connected to the first stage comparator and all stages are driven based 

on the first stage comparison. This alleviates biasing issues because the voltages on the charge 

pump stages initially rise unevenly across the stages by making sure maximum margin is 

available by relying on the lowest voltage stage. 

These biasing issues would be present if every active diode had its own comparator 

similar to previous published work [3, 4] and likely explain why the minimum start-up in these 

works is only at 500 mV. Minimum start-up in the charge pumps discussed in Chapter 3 and this 

chapter (4) are below 300 mV. Lab results will be discussed in the next section (Section 4.2.1) 

and will show minimum cold start working down to 280 mV; however, simulation shows 

minimum start-up near 690 mV. This significant difference is explained more in the model to 

hardware Section 4.5. At 280 mV the start-up occurs with the comparators functioning without 

the bias circuit operating, and both the input and the output of the charge pump (the output of the 

charge pump supplies the power for the system) are operating below the threshold of the 

technology near Vth ~ 0.42 V. 
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4.2.2 Measured Start-up for the 6x Active Diode Design 

Many start-up characteristics and problems seen in simulation are also observable in 

hardware. Figure 72 shows the initial start-up observed in hardware with a 540 mV input. The 

top two PMOS stages are shown (specifically the outputs at VStore and the 5
th

 PMOS stage). Also 

shown is the clock output driving the top diodes and the lowest voltage stage. Just as before in 

simulation (Figure 70), the PMOS stages charge first due to sub-threshold leakage and the lowest 

voltage stays low until the clock begins to function. As the clock voltage is low, the lowest 

voltage stage finally begins to slowly charge. This diagram shows that one input peak is higher 

than the other during the initial charging. For example, in Figure 72 the first peak reaches up to 

0.4 V while the second peak is above 0.6 V. This is likely because the input harvester into the 

system is floating with neither side being connected to ground. At the initial start-up, the 

harvester may not be centered at exactly ground like in simulation, resulting in the non-uniform 

peaks on the PMOS stages when initially charging.  

 
Figure 72. The first 20 mille-seconds of start-up are shown from hardware. The top two PMOS stages, lowest 

voltage NMOS stage, and clock are shown. 
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Figure 73 shows the start-up of the PFIG over several seconds with an input sine-wave of 

700 mV. The clock nearly immediately functions once the input is on and the “Store” signal also 

immediately starts to rise. There are likely one or two cycles where the clock is not functioning 

as seen in Figures 70 or 72; however, these cycles are not going to be observed when looking at 

the start-up over several seconds. Once “Store” is high enough (~near 0.4 V), the 10 µF capacitor 

at the outputs starts to charge. There is a long lull of several seconds before the output voltage of 

the charge pump rises above 1 V. This is similar to problematical functioning of the circuit 

described in Chapter 3.3. The interface circuit initially acts as a high input resistor, so the loaded 

input of the signal is near to the maximum of 700 mV, but as the charge pump is loaded the 

interface circuit’s resistance decreases resulting in a lowered input into the harvester circuit. 

Hardware results show that the general trends of start-up that are observed in simulation 

are observed in hardware. The structure using 3 NMOS stages followed by 3 PMOS stages 

allows for a lowest voltage stage high margin start-up because the voltage at the lowest voltage 

stage initially stays near ground. This behavior is seen in both hardware and simulation results. 

 
Figure 73. This shows oscilloscope outputs with the Input, Clk, “Store” signal and “Out” signal. 
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There is a significant mismatch between minimum start-up in both simulation and hardware. 

Without a load, minimum hardware’s start-up is as low as 280 mV using a sine-wave generated 

by a transformer. In simulation minimum start-up is ~690 mV. This discrepancy of 410 mV is 

larger than what was seen with the IC-based system in Chapter 3, where hardware was only 

approximately ~100 mV better than what was predicted by simulation. This model to hardware 

discrepancy will be further analyzed Section 4.4 of this chapter. 

 

4.3 Loading Methodologies 

 As discussed in both Chapters 3 and 4, the effect of the loading on the charge pump 

functioning reduces the charge pump’s ability to start-up using designs that drive the active 

diodes of all stages with the comparator decision on the lowest voltage stage. To be able to 

power a bridge health monitoring sensor, the charge pump should be loaded with either a 

capacitor or resistor; however, for both IC-based designs in Chapter 3 and 4 the voltage on the 

lowest voltage stage will start to rise more quickly versus the harvester output if the system is 

unloaded. This will mean loss of margin for deep sub-threshold functioning. To avoid this type 

of loading problem, a low power circuit must be used to prevent current flow into a load until a 

high voltage can be achieved on the unloaded charge pump.  

The circuit in Figure 35 solves the problem of how to design a circuit that consumes low 

power in the ~nA range and also does not let substantial current flow (even in start-up) until a 

specific adjustable voltage. There were multiple challenges in this design of this circuit, and the 

author tested and reviewed many designs before arriving at Figure 35. Because of the importance 

of this circuit, this section focuses on the literature and understanding of this low power circuit 

that does not allow substantial current flow until a specific voltage is reached. Every conceivable 
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problem was observed when trying to design this circuit with the various designs. Examples of 

circuit failure mechanisms include the following: (1) the turn on voltage would be near 

impossible to correctly set; (2) current would flow to the load for ultra-low voltages < 0.3 V no 

matter what was designed; (3) too much power would be used (>1 µW); or (4) too much power 

was for low voltages ~.7 V to 1V. 

 After an extensive literature review this author concluded that using a comparator with 

two input lines called a mode selector seen in Figure 74 [6] is the most effective strategy for this 

switch. One input contains a diode at the bottom while the other line uses a resistive ladder. The 

behavior in the line with the diode is non-linear while the resistive line is linear. The point of 

crossing enables current to flow from the “VDD” of the system to the output. This same method 

has been used in other energy harvester rectifying circuits as seen in Figure 75 [2]. This “switch” 

in this rectifying harvester circuit uses a group of comparators to provide the initial start-up 

 
Figure 74. A previously designed mode selector circuit consists of a comparator and two input lines are shown. 

When the inputs into the comparator cross, the voltage from the supply is sent to the comparator’s output [6]. 
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decision to allow current to flow into a load. The initial turn-on is controlled by two inputs into 

comparators. One input is from a linear resistor ladder while another input is from a bias 

reference circuit (Figure 38). Figure 38 is referenced to be the same as is used in Figure 75. In 

this system (Figure 75) one output (the bias circuit output) is non-linear and controlled by a 

diode attached to ground just like in Figure 74, while the other output is linear based on resistor 

ladder just like in Figure 74. As in Figure 74, the output comparators of Figure 75 allow for 

initial turn-on when the linear and non-linear inputs lines cross into comparators. There are two 

drawbacks of these circuits. First, these utilize high power. While the specific current used in the 

mode selector (Figure 74) or comparator, bias circuitry and resistive line (Figure 75) are not 

specifically given. The system containing the mode selector consumes near 5 µW, while the 

rectifying circuit consumes up to 2 µW. Second, these designs do not provide a method to 

control the exact time when the system turns on into a load. 
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 The redesigned mode selector in Figure 35 provided an effective solution that is both 

adjustable and consumes low power (~100 – 150 nA); however, the author designed several 

circuits before deciding on a low power design similar to Figure 74. Multiple discrete solutions 

were designed. The first discrete solution by this author used the LTC 1540 comparator [7]. 

Figure 76 shows the discrete hysteresis switch used with an initial charge pump design. It is 

similar to the Figure 74 in that one input line is linear while the other input line contains some 

type of diode. This design using the LTC 1540 comparator [7] even worked well in LTspice 

simulations; however, in lab evaluations significant issues were encountered with the 

comparator’s start-up behavior. While the comparator regularly consumes near 1 µW of power at 

near 2 V, the power consumption during start-up was near 2 – 3 µW near 0.8 V. This 

 
Figure 75. This shows a rectifier circuit with cold start-up that allows start-up that turns on at a specific voltage 

using a method similar to Figure 74. This turn “switch” was part of a piezoelectric rectifying circuit [2]. 
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dramatically reduced start-up ability. Also, during low voltage start-up, the comparator had the 

tendency to inexplicably turn-on at low voltages under 0.4 V. This also dramatically reduced 

start-up ability. The turn-on voltage with hysteresis was eventually achieved that resulted in the 

comparators ability to discharge near 2 – 2.5 V (but not appropriately start-up). The storage 

signal is seen in Figure 77. In this figure, the hysteresis switch discharge near 2.5 V and stops 

discharging near 2 V. While this discharge pattern looks good, significant manipulation was 

needed to obtain these characteristics, and the comparator switch would not maintain the same 

characteristics when its design was transferred from a bread board to a PCB board because the 

resistors in the hysteresis switch needed to be so finely set. These various problems emphasized 

the limitations of discrete comparators. 

 

 

 
Figure 76.The author’s previously published work showing two cascaded six stage multipliers followed by a 

discrete hysteresis switch using a LTC 1540 comparator is shown [7].  
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 Other discrete methods were attempted to create a switch with and without hysteresis. 

Figure 78 shows another effort at a discrete switch. There is no hysteresis in this specific switch. 

It works because VStore both supplies the drain and the gate on NMOS1. In the ideal case when 

NMOS1 switches on, the input into the first inverter goes negative and a positive output from this 

inverter turns NMOS2 on. The output of NMOS2 then goes through a buffer so the voltage 

delivered to the load is at the same voltage level as VStore. Again, this switch worked in 

simulation and consumed about 200 – 300nW; however, significant problems were also observed 

in hardware. Many devices were used in the place of NMOS1 and NMOS2, and eventually the 

Advance Linear Devices ALD110904 with a Vth of 420 mV was used for NMOS1 and the 

Advanced Linear Devices ALD110914 with a Vth of 1.42 V was used for PMOS2. The inverters 

used were Fairchild NC7SP04. The inherent problem with most of the discrete NMOS devices is 

that they are not suitable for deep sub-threshold currents in the ~100 nA range and do not always 

function remotely close to expectations. This means that it is very difficult to have an adjustable 

 
Figure 77. The measured storage characteristics with the hysteresis switch are shown. The switch discharges near 

2.5 V and stops discharging near 2 V. 
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turn-on voltage while maintaining low current operation in this switch. In the ideal case, the Vth 

of NMOS1 controls when the switch turns on; however, this was not accurate in deep sub-

threshold. After much trial and error, turn on was achieved near approximately 1 V turn on. 

 While the IC design that was finally settled on consumed between 100 – 200 nW of 

power in Figure 35, another IC design of a switch with much lower power consumption was 

attempted with minimal success. One such attempt is shown in Figure 79. This IC design makes 

use of the level of a charging capacitor to create a low power switching circuit. If this design 

were working correctly, the capacitor’s voltage would rise. The diodes on top of the charging 

capacitor are used to offset the voltage from supply. When the voltage on the capacitor is high 

enough it would activate the inverters in the system to turn on the PMOS sending current to the 

output load. The additional diode that switches into the system would have been used to add 

hysteresis. This switch worked in simulation and only consumed near 30 nW. It even worked in 

hardware with a very steadily rising input; however, with a charge pump input being driven by 

either sine-wave or PFIG output and quickly rising and constantly changing, this switch does not 

respond quickly enough to be effective. This means that with the changing of the sine-wave or 

 
Figure 78. A discrete switch consisting of two PMOS devices and multiple inverters is shown. This switch turns 

on when VStore reaches approximately ~1 V. 
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PFIG input, the switch is constantly turning on and off, meaning it is doing more harm than 

good. The switch in Figure 79 was used in the simulations in this IC-based system. By attaching 

a very minimal capacitance, the inverters can basically immediately send a low voltage to the 

PMOS connecting to the large output capacitance in the system turning it on. Since only a small 

capacitor is used to charge, the switch is not turning off and on. With this setting using a small 

capacitance to charge, the “In” signal must be at least one Vth ~0.42 V for the overall switch to 

activate and allow current to flow through the PMOS switch to “Out”.  

 Because of these  minimally functioning designs of this switch, it was concluded that for 

a low power solution capable of adjustability, not only is an IC design necessary, but to maintain 

proper control over the turn-on voltage a comparator structure is needed similar to either Figure 

74 or Figure 35. A structure similar to Figure 78 might be tried in an IC; however there will still 

be limitations in the voltage thresholds of available devices to enable adjustability. This author 

concluded that a comparator structure similar to what was used in Figure 35 was the most 

effective strategy. 

 

 
Figure 79. This shows an IC-based switch using an off-chip capacitor. Hysteresis is added by additional switching 

in an additional diode. 

 



131 
 

 

4.4 Lab Results for 6x Active Diode Charge Pump  

Power conversion efficiency results for this IC, shown in Figure 80, are compared to the 

results of one three-stage discrete charge pump similar to what would be used in Chapter 2. The 

voltage is held constant by adjusting the load at the output of both the discrete and active diode 

IC based charge pump. Adjusting the load at the output of an energy harvester circuit is a 

common technique for measuring efficiency. Efficiency is the power measured at the output 

divided by the maximum power produced by a perfectly matched harvester as defined in Section 

1.5. Results were taken with a sine-wave generated by two transformers with output impedances 

of 1.2 kΩ and 300 Ω. In both cases the IC based charge pump produced high efficiencies (up to 

69%), which is significantly higher than the discrete passive diode charge pump. There is 

 
Figure 80. This shows the power conversion efficiency measured results for the first fabricated IC and one discrete 

charge pump (not cascaded) over range of input voltages with a sine-wave generated by transformers with output 

impedances of 1.2 kΩ and 300 Ω. 
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increased efficiency in the IC-based charge pump because the diode’s turn-on voltages are 

dramatically decreased by the active diode architecture. As expected, the circuit consumed 

between 0.5 µW and 0.6 µW tested at ~1.1 V. 

 Start-up also occurred with the PFIG, but a higher voltage was necessary because the 

PFIG signals produced so much less power than a sine-wave. For example, for a PFIG actuated 

at 6 Hz, start-up was possible with a PFIG output with peak near 700mV, while start-up was 

possible at higher frequency PFIG actuations with a lower voltage maximum peak. Without 

loading at the output, start-up was possible down to a 280 mV sine-wave, and with a 10 µF 

capacitor on the output (after the Schmitt trigger) start-up was possible with a 380mV input sine-

wave. As in simulation, the ×6 charge pump was able to start-up without loading in hardware; 

however, measured hardware start-up was much better than simulated start-up. Simulated start-

up occurred at a minimum of 690 mV with this design. These differences are discussed in the 

next chapter.  

 

 4.5 Model to Hardware Correlation in Sub-threshold Start-up  

Figure 81 shows the comparison between the minimum start-up of the simulation results 

and the lab results for the initial IC tested in the lab. In simulation and lab tests, better results 

were seen with the same voltage at lower output impedances. The smaller the output impedance, 

the more power generated from the vibration harvester at the same voltage, and more power is 

likely to enable active start-up. As described previously in Section 4.2.1, the loading on the 

charge pump affects the biasing of the first stage comparator, negating the beneficial effects of 

the lowest voltage stage driven active diode charge pump. This results in higher minimum start-

up with a capacitive loading. The Schmitt trigger for these specific hardware results turns on near 
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~0.4 V as just described in Section 4.3, which still causes loading problems. The IC in Chapter 3, 

uses a better Schmitt trigger (mode selector), which has a higher turn-on. This enables lower 

voltage start-up because the capacitive loading will occur at a higher voltage. The key feature of 

Figure 81 is the significant difference between the simulation and measured results. Without 

loading, hardware results show start-up possible at ~280 mV, which is less than half of the 

simulated minimum start-up (~near 690 mV). Initial simulation work leads to the conclusion that 

deep sub-threshold conduction is not modeled correctly (i.e. what current flows when the Vgs of a 

device is significantly below threshold).  

 

 

 
Figure 81. This shows the minimum voltage where start-up is possible for varying harvester input impedances and 

varying capacitive loads on the charge pump output. A very significant difference is seen between lab and simulated 

minimum start-up which shows that lab results are twice as good as simulated results for the “2012” IC. 
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 Also, the measured long-term transient behavior during start-up is significantly different 

than simulation results. As described previously, Figure 73 shows start-up measured in the lab. 

In this figure, the charge pump experiences a relatively long lull lasting several seconds, before 

quickly charging up to higher voltage levels. This behavior is not seen in simulation. Either the 

circuit quickly starts up in simulation with a minor lull of a fraction of a second as seen in Figure 

71, or the circuit does not start-up at all in simulation. These start-up differences between both 

simulation and hardware continue to point to an incorrect modeling in the sub-threshold 

characteristics of the devices.  

4.6 Applying Learning from the ×6 Charge Pump to an Improved ×16 Charge Pump 

This chapter presents a method where the voltage on the lowest voltage stage remains 

low during the passive part of the start-up. The choice of the device on the lowest voltage stage 

causes the lowest voltage stage to stay low. In the case of ×6 charge pump, the NMOS devices 

on the lowest voltage stage prevent passive charging. This allows the lowest voltage stage to stay 

near 0 V during passive start-up, which allows for high margin comparator operation once the 

sub-threshold active start-up in the charge pump begins. Once active functioning is enabled, all 

voltages on active diode stages begin to rise. This idea discussed in this chapter can be used to 

enable a more robust start-up in the ×16 charge pump discussed in the last chapter. Figure 82 

shows possible changes in the ×16 IC-based charge pump using the ideas discussed in this 

chapter. First and most importantly, the lowest voltage stage on the bottom of the negative 

charge pump would be changed to PMOS. This would prevent passive charging during initial 

start-up and enable lowest voltage active functioning at high margin once active diode 

rectification begins. Additionally, the two NMOS stages of the on the top charge pump would be 

changed to PMOS to further aid in passive start-up. In the present start-up of the ×16 charge 



135 
 

pump analyzed in Chapter 3, these two NMOS stages do not add to the passive start-up of the 

system. 

 

 

4.7 IC-based ×6 Charge Pump Circuit Conclusions  

 This ×6 charge pump circuit provides a solution to start-up, boost, and rectify the ultra-

low power inputs from a vibration harvester that is either a sine-wave or a PFIG like decaying 

sine-wave input. The system is capable of active sub-threshold diode start-up using techniques 

that drive the charge pump system from the lowest voltage stage. The use of only NMOS devices 

on the lowest voltage stage causes the lowest voltage stage to remain low compared to the PMOS 

stages. Since the lowest voltage stages remain low, high margin sub-threshold functioning is 

possible on the lowest voltage stage, and the comparator decisions can be transferred to the rest 

 
Figure 82. Shows possible improvements to the ×16 IC-based charge pump based on the ideas in this Chapter 4. The 

lowest voltage stage would be changed to PMOS (from NMOS) and the bottom two NMOS stages of the top 

positive charge pump would be changed to PMOS. 
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of the stages through inverters. This system demonstrates a different method of sub-threshold 

start-up using the lowest voltage stage functioning compared to the ×16 design discussed 

Chapter 3. Table 8 shows the ×6 IC-based charge pump compared to other works and designs by 

this author and other authors. Other than transformer-based solutions and this author’s ×16 

design, this design shows minimum cold-start and minimum regular functioning that exhibits 

record low active functioning. Minimum cold-start is at 280 mV and minimum functioning is at 

138 mV. Efficiencies as high as 69% were measured using a sine-wave input. 

  

 

 

Table 8. Shows the comparison of this ×6 charge pump versus other major works from literature. Peak voltages are 

reported as defined in Section 1.5. Values are assumed to be for a sine-wave unless indicated with a “PFIG”. 

Works 

capable of 

boosting 

from a 

harvester 

×6 Charge 

Pump 

Chapter 3 

IC 2012* 

×16 Charge 

Pump 

Chapter 4 

IC 2013* 

[8]  

McCullagh 

Chapter 2 

[9] 

Kwon 

[5] 

Arnold 

[4] 

Arnold 

[10] 

Szarka 

[11] 

Rahimi 

Technology 
180 nm 

& Discrete 

180 nm 

& Discrete 

Passive 

Discrete  

2μm 

BiCMOS 

& 

Discrete 

Active 

Discrete  

Active 

Discrete  

Active 

Discrete  

Active 

Discrete  

Max 

Boosting 
×6 ×16 ×60 ~×4 ×12 ×8 ×14 

×15 due to 

1:15 

transformer 

Boosting 

Method 

Charge 

Pump 

Charge 

Pump 

Transformer 

Charge/ 

Pump  

Inductor  
Rectifier 

/Inductor 

Charge 

Pump 

Inductor/ 

Charge 

Pump 

Transformer 

Charge/ 

Pump/ 

Rectifier 

Circuit 

Power 

Consumption 

~0.6 µW ~0.6 µW 0 µW 
estimate 

~0.25 µW 
Not given 6.4 µW ~21µW 

Estimate 

~1 µW 

Min Start-up 

Voltage 

 

280 mV 
220 mV 

415 PFIG 
60 mV 

Pre-

charge 

required 

1.25 V or 

Pre-charge 

for 5 mV  

500mV ~500mV 200 mV 

Min 

Functional 

Voltage 

138 mV 110 mV 60 mV 350 mV ~5mV 350 mV ~500mV 200 mV 

Max Circuit 

Efficiency 
69% SW 

66% 

50% PFIG 
27% 49.9% 84%  82% 76% 35% 

*Journal papers in preparation by McCullagh 
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4.8 Comparator Improvement Analysis 

 
 In both Chapters 3 and 4, the IC-based system used the same common gate differential to 

single ended comparator. This comparator is the weak point of this design. In many cases, 

passive functioning will enable the output voltage to rise to 0.2 – 0.3 V. At this voltage the 

comparators begin to function. The weakest point for failure is between the voltages of 0.35 to 

0.8 V. The failure here is when the comparator stops functioning and the output of the charge 

pump (Vstore for both IC-based systems) stalls. This section gives continued analysis of this 

comparator failure and possible solutions to improve it in future designs. It begins with a section 

showing that a bias voltage the rises earlier than designed leads to improvement in the 

comparator functioning. Temperature variation of the ×16 design is then investigated. The third 

section shows the specific simulated failure that occurs near 0.35 to 0.8 V. Finally the model to 

hardware discrepancy is further discussed. 

 

 

4.8.1 Forcing the Bias on Earlier in the Start-up Process 

 Figures 83 – 88 show the effect a higher Vbias has on improving start-up. During start-up 

with an input that would regularly fail (270 mV for this particular IC), each time Vstore stalls and 

Vbias is external raised, Vstore immediately rises again due to the comparator becoming functional. 

In these cases where Vbias is externally raised, the clocks immediately begin to function allowing 

for Vstore to continue rising. Figure 83 shows a start-up with a 270 mV sine-wave input into an IC 

that can successfully start-up with a 300 mV input. When the Vstore levels off, Vbias is externally 

raised through the connection on the pad of the IC. Once Vbias is raised, Vstore rises for about 

1 second before leveling off again when the active diodes no longer again function. Figure 84 
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shows the Vstore, Vbias, and the clocks of the system. The point of this Figure 84 is to show that 

where the clocks begin to function. Similar to other diagrams, the clocks controlling the active 

diodes begin to function once Vstore reaches 0.2 – 0.3 V 

 

 

 

 

 

 

 

 
  

 

 
Figure 83. This shows measured Vstore on top and Vbias on the bottom. Every time Vbias is externally raised, Vstore 

quickly rises for about 1 second before leveling off again. 
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Figure 84. This shows measured Vstore and the active diode clocks as Vbias is externally raised. As expected the 

clocks turn on near 0.2 – 0.3 V. 
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Figures 85 – 88 show the close ups of the clocks as the bias is externally changed from 0 

to 0.1 V, 0.1 to 0.2 V, 0.2 to 0.3 V, and 0.3 to 0.4 V respectively. In every case both active diode 

clocks work far better immediately after the bias voltage into the circuit is externally increased. 

These diagrams show that a bias voltage that could actively function and turn on well below the 

Vth of the system would dramatically improve the comparator functioning in the active diode 

sub-threshold region of this circuit’s operation. 

 
Figure 85.  A measured close up of Vstore, active diode clocks and Vbias as the Vbias is external changed from 0 to 

0.1 V is shown. 

 
Figure 86.  A measured close up of Vstore, active diode clocks and Vbias as the Vbias is external changed from 0.1 to 

0.2 V is shown. 

 



141 
 

 

 

 

 

 

 

  

 
Figure 87.  A measured close up of Vstore, active diode clocks and Vbias as the Vbias is external changed from 0.2 to 

0.3 V is shown. 

 

 
Figure 88.  A measured close up of Vstore, active diode clocks and Vbias as the Vbias is external changed from 0.3 to 

0.4 V is shown. 
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4.8.2 Comparator Functioning Over Temperature 

 To better understand what characteristics this design is sensitive to, temperature data on 

start-up on the ×16 design was taken between 0 – 100 °F for a specific IC that regularly started at 

300 mV. Little variation (20 mV) was seen in minimum start-up over temperature. At 0 °F start-

up was 320 mV. Similar results were seen in simulation. These results verify that the 

temperature’s effect on start-up is not a major concern. In fact the minimum start-up over 

temperature is robust with a slightly higher minimum start-up measured at low temperatures. 

From this data, it is concluded that the comparators remain functional over temperature, and an 

extreme sensitivity to temperature does not explain the model to hardware discrepancy.  

 

 

 

 

 

 
Figure 89.  Measured data taken in a temperature chamber shows minimum start-up on an IC that regularly starts at 

300 mV taken from 0 to 100 °F. A 20 mV variation is seen over temperature. 
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4.8.3 Simulated Comparator Failure 

 The section explains what specifically happens when the differential to single ended 

common gate comparator stops functioning during start-up. In the examples from the Chapter 3, 

this usually happened between 0.35 and 0.8 V as indicated in Figures 46 – 49. Figure 90 shows 

the simulated comparator failure during start-up that occurs near 0.4 V. Also, for reference the 

comparator is included in Figure 90. Vstore, Vmid, Vcomp_out, Vlow_stage (the lowest voltage stage), 

and Vin are defined in both the simulation and comparator. This plot shows that up until near 

 
Figure 90.  This shows a simulated close up of the compactor failure that occurs between 0.595 and 0.6 seconds. 

Vstore, Vmid, Vcomp_out, Vlow_stage (the lowest voltage stage), and Vin are defined on the comparator and shown in the 

simulation. 
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0.595 seconds Vstore rises based off of the harvested input Vin. Around this time the lowest 

voltage stage Vlow_stage rises to between 30 – 40 mV. At this point Vcomp_out stops switching low 

meaning that the comparator has stopped functioning. It is interesting to note that that this failure 

occurs at a similar voltage as is seen in hardware from Figures 49 and 50 when the lowest 

voltage stage is between 30 and 40 mV. This failure where the comparator no longer functions 

occurs because the voltage Vmid that creates a Vgs across the device circled in Figure 90 can no 

longer overcome the sub-threshold turn-on requirements when Vlow_stage rises over 30 – 40 mV. 

4.8.4 Section Summary and Model to Hardware Discrepancy Discussion 

 This chapter shows where the comparator failure comes from as the input voltage into the 

comparator is unable to pull down the output of the comparator. For future designs, the first 

section has demonstrated that a bias that turns on earlier will certainly aid in the ability of the 

input into the comparator to pull down the comparators output and create a functional 

comparator at lower input voltages. A better biased comparator will allow the PMOS devices in 

Figure 90 to have a resistance that is better able to pull down the comparator output. This is 

easily demonstrated by externally biasing the comparator. Interestingly, the comparator 

functioning in the lab is very close to what is predicted in simulation. With a Vstore near ~0.4, the 

comparator failure occurs when the lowest voltage stage rises to between 30 to 40 mV in both 

simulation and hardware. To explain the large minimum start-up differences observed between 

the simulated and measured results, it is likely that the passive functioning of the devices is 

modeled incorrectly. Specifically, it is possible that this passive functioning is modeled 

incorrectly while the comparator functioning is generally modeled correctly. The comparators 

function in a region that could be considered a “mid sub-threshold” region of operation where 

the devices are functioning 100 to 250 mV below the threshold of a device, while much of the 
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passive turn-on of the initial system or when the comparator stalls is in a region that could be 

considered a “deep sub-threshold” region where the devices are allowing current flow in a region 

250 to 350 mV below the threshold of the devices. 
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Chapter V 

 Conclusion 

 The need to power wireless structural health monitoring sensors motivated the author to 

investigate harvesting sources other than solar energy. Specifically, thermal, Radio Frequency 

(RF), and vibration harvesting sources have been investigated. Interface circuits showing the 

viability of vibration harvesting has been the overriding focus of this thesis. The vibrations on a 

major suspension bridge due to vehicles passing overhead, such as the New Carquinez Bridge in 

California, are considerably lower (i.e. in the 50 mg acceleration range) than what was produced 

to actuate other reported vibration energy harvesters. Additionally, the vibrations on a bridge are 

non-periodic as vehicles pass over the bridge in random traffic patterns. These non-periodic low 

acceleration bridge conditions motivated the design of the Parametric Frequency Increased 

Generator (PFIG) at the University of Michigan by Professor Khalil Najafi, Dr. Haluk Kulah, 

and Dr. Tzeno Galchev [1, 2]. The PFIG responded to the low voltage non-periodic vibrations on 

the New Carquinez Bridge; however, the PFIG produced a low voltage and low power decaying 

sinusoid. This output from the PFIG was extremely challenging for an interface circuit that 

needed to boost, rectify, and store energy at a high power conversion efficiency. Initial charge 

pump circuit interface attempts showed considerable challenges boosting the input signal at high 

efficiency and low input voltage. Not only was minimal power harvested, but initial interface 

circuit designs did not allow for long-term evaluation about the PFIG in an actual bridge 

environment. 
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 After the initial discrete circuit attempts without transformers, harvesting interface 

circuits designs used a transformer-based system that investigated the limits of low voltage 

harvesting. Optimal efficiency with a sine-wave near 27% was observed with inputs as low as 

60 mV; however, the transformer used in this new interface circuit had very limited efficiency 

near 66%. This limited transformer efficiency motivated alternative solutions that did not use a 

transformer. On the positive side, it also allowed long-term testing of the PFIG and interface 

circuit on the New Carquinez Bridge within the constraints of the Narada system, which did not 

have the power to constantly monitor the PFIG outputs. This long-test allowed understanding of 

the PFIG performance over 1 year and identified areas of improvement within the PFIG. 

 Motivated by the limited results of initial circuits designed by the author, IC-based 

circuits were designed with the goal of eliminating the use of the transformers in the system. 

Two designs were built using a ×16 and ×6 IC-based active diode charge pump. These designs 

were capable of a sub-threshold boosting start-up that transitions into high efficiency operation 

once the systems are charged. Both designs used techniques that drove the active diodes in all the 

stages of the charge pump by a comparator decision on the lowest voltage stage. In both cases 

(the ×16 and ×6 boosting charge pump designs), sub-threshold functioning was enabled using 

techniques to hold the lowest voltage stage near ground for as long as possible during start-up. 

Holding the lowest voltage stage near ground for as long as possible gave the comparators on the 

lowest voltage optimal margin to allow sub-threshold functioning during active deep sub-

threshold start-up. The ×16 and ×6 designs use different full wave charge pump architectures that 

are both theoretically capable of 100% efficiency. In the ×16 and ×6 charge pump designs 

different techniques are used to hold the lowest voltage stage near ground for initial start-up. 

Both designs enable active boosting start-up with inputs <300 mV. In both designs efficiency 
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with an input sine-wave is over 60%, and in the ×16 circuit design efficiency can be as high as 

50% with a PFIG input. Both designs use less than 0.7 µW of active power with PFIG inputs that 

would typically be seen on a bridge.  

 These circuit designs used for power management of the ultra-low power low voltage 

inputs from the PFIG advance the state of the art in vibration harvester interface circuits. They 

investigate the limits of ultra-low power low voltage designs with PFIG inputs that might be seen 

on a bridge and also ideal sine-wave inputs. This research demonstrates that vibration harvesting 

on a major suspension bridge is a viable method to power wireless bridge health monitoring 

sensors. It motivates further research and study into both vibration harvesters and interface 

circuits capable of being used on a major suspension bridge.  

 

5.1 Thesis Contributions 

Literature related to energy harvesting IC interface circuits and long-term tests of energy 

harvesting systems were evaluated. This is summarized in the first two thesis contributions. 

1) The literature on circuits and systems capable of interfacing with vibration harvesters has 

been analyzed and reviewed to understand where the state-of-the art can be advanced.  

2) Based on the literature survey, areas that had not been investigated were identified that 

are important to the development of the field. These include active boosting solutions that 

can cold-start using deep sub-threshold active functioning and a system’s long-term 

performance for more than one week. 

Once the literature was analyzed, a discrete transformer-based circuit was designed investigating 

the limits of ultra-low voltage harvesting summarized in contribution 3.  
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3) The limits of boosting low power and ultra-low voltage (~60 mV) harvester outputs was 

investigated with a passive discrete transformer-based circuit. 

This transformer-based circuit that also used a discrete charge pump was able to significantly 

boost the ultra-low voltage PFIG outputs on the New Carquinez Bridge. This enabled short-term 

and long-term bridge system tests on the New Carquinez Bridge in California investigating 

reliability of this vibration harvesting system summarized in the following contributions. 

4) This discrete transformer-based circuit was tested on the New Carquinez Bridge for 

short-term and long-term testing yielding valuable information on the nature of a charge 

pump’s response to the PFIG actuated by bridge vibrations. 

5) This discrete circuit enabled study of the long-term PFIG performance under bridge-like 

conditions showing mechanical performance issues after about six weeks of testing. 

The electronics of the system enabled understanding of the long-term PFIG performance and 

identified a long-term failure.  Analysis of the PFIG failure identified on the New Carquinez 

Bridge resulted in a contribution to this thesis, namely the long-term bridge data was used to 

narrow down the cause of the mechanical failure.   

6) The long-term PFIG failure was related to the mechanism used to set the FIG position. 

Basically, the FIG positions slipped during operation. Fatigue lab testing showed that fatigue 

in the inertial mass springs is not possible in such a limited time frame leading to the final 

conclusion that the FIG positioning method was responsible for the decrease in power.  

The transformers and discrete diodes in the transformer-based system experienced significant 

power losses that reduced efficiency. The transformer-based power efficiency losses motivated 

deep sub-threshold active diode charge pumps that eliminated the need for low power efficiency 
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transformers. Several contributions relating to the IC-based charge pump systems are discussed 

below. 

7) An IC-based active diode system capable of ×6 boosting ability was designed and tested 

in hardware. It can produce 60% efficiency with a sine-wave, start-up with both the PFIG 

and sine-wave down to 280 mV, and function as low 110 mV. Advances in the state-of-the-

art were identified relating to driving the active diodes from the lowest voltage stage. These 

advances include the system’s cold start-up that uses sub-threshold functioning rather than 

relying on passive diodes. Also, the circuit is able to transition to regular high power 

conversion efficiency functioning once charged. 

8) Another IC was taped out in June 2013 capable of ×16 boosting that improved sub-

threshold start-up performance and low voltage operation with continued high power 

conversion efficiency. This design also drives the active diodes of all the stages from the 

lowest voltage stage; however, different circuit characteristics allow for a different 

mechanism to maintain optimal sub-threshold start-up performance compared to the ×6 

design. It can produce 60% efficiency with a sine-wave, 50% efficiency with a PFIG input, 

start-up with both the PFIG down to 415 mV peak and sine-wave down to 220 mV peak, and 

function as low 110 mV. 

9)  Both the ×6 and ×16 charge pump designs showed significant differences between 

simulated modeled results and actual hardware results. Extensive simulations were run in 

Monte Carlo and in extraction, but the same minimum input voltage start-up hardware results 

were still not observed in these simulations. The model to hardware correlation problems 

point to the actual model problems used in this 180 nm CMOS design. Specifically, the 

model’s behavior during deep sub-threshold functioning is likely incorrect. For example 
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minimum start-up in the ×16 design is 220 mV while simulation predicts a minimum of 

335 mV. Section 4.8 shows that the “mid sub-threshold” functioning of the comparator is 

likely modeled correctly. This result points to the passive functioning of the charge pump 

devices as being incorrectly modeled. The passive functioning of the devices uses deep sub-

threshold operation that is between 250 to 350 mV below the device thresholds.  

10) Both ICs were tested with the PFIG at frequencies and amplitudes similar to what would 

be produced by the PFIG under bridge-like conditions. 

To summarize the contributions from this work using the figures of merit of efficiency and 

minimum start-up voltage the chart, similar to Figure 14, is shown with the three works from this 

thesis included. This is seen in Figure 91 where the three works show lower voltage minimum 

start-up than the reported works from literature and comparable efficiency results. 

 

 

 
Figure 91. Building on Figure 14 this chart includes the two IC-based works and the two discrete works from this 

thesis. The works included here can both boost and cold-start. 
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5.2 Recommendations for Future Work 

 

 As discussed throughout Chapters 3 and 4, there could be continued improvement in the 

active diode IC-based charge pump circuits. Both Chapters 3 and 4 discussed methods to 

maintain high margin for sub-threshold operation in the lowest voltage stage of a charge pump. 

Chapter 3 discussed a lowest voltage stage driven charge pump that uses the inherent properties 

of a Cockcroft-Walton charge pump to allow for high margin sub-threshold start-up based on the 

comparator decision of the lowest voltage stage. Chapter 4 used the placement of the different 

types of devices, either NMOS or PMOS, to maintain a low voltage on the lowest voltage stage 

of a 6 stage charge pump to maintain high margin sub-threshold operation during start-up. These 

ideas presented in Chapters 3 and 4 could be combined to optimize a charge pump for minimum 

input voltage start-up operation in deep sub-threshold. The end of Chapter 4 explains this in 

detail.  

During initial start-up, the NMOS and PMOS devices of both IC-based systems act as 

passive diodes allowing for limited sub-threshold current flow for start-up; however, the gates of 

these devices are “floating” during start-up between Vstore and gnd. These floating gates do not 

optimize passive start-up. A solution that either keeps the gates close to gnd during start-up or 

adds helper diodes around the charge pump structure for start-up similar to Figure 6 [3] would 

improve this passive start-up and optimize the system in spite of “floating gates”. Additionally, 

improvements in the bias circuitry could improve sub-threshold operation of the comparator. The 

bias circuit turns on when the supply “VStore” in both designs is at least at one “Vth” of the given 

technology. Sub-threshold biasing techniques could be used to turn the bias on earlier, so that the 

comparator using the bias is better able to make a correct decision in deep sub-threshold.   
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Modeling of this technology was a constant problem during the design of both ICs. In 

both active diode designs, hardware results gave a minimum voltage start-up that was 

considerably lower than anything observed in simulation. In Chapter 4, a wide range of 

minimum start-up results (220 to 400 mV) were observed in hardware that were not observed in 

simulation. Monte Carlo and process variation simulations only predicted about a 5 mV variation 

in start-up. Improved modeling that accurately predicts operation and variation in deep sub-

threshold could potentially improve future designs. The end of Chapter 4 discusses how 

modeling is incorrectly observed in deep sub-threshold where devices are operating 250 – 

350 mV below the sub-threshold of the devices, while “mid sub-threshold functioning” that is 

100 to 250 mV below the threshold of the devices (i.e. used for the comparator operation) tends 

to be modeled correctly. 

The architectures in these active diode IC-based systems should be able to be used for 

other vibration harvesting sources including piezoelectric sources that need a boosting start-up. 

The main concern would be that there was enough power to provide the active diode start-up. If 

piezoelectric harvesters are used, care must be taken to optimize the system for the capacitive 

element in the piezoelectric harvesters. Some IC-based systems have gone to considerable 

lengths to optimize for the capacitive element and optimize efficiency [4, 5]. Similar methods 

may be needed to maximize start-up using this active diode architecture with piezoelectric 

harvesters. If the source frequency is higher, the general architectures could still be used; 

however, the comparators would need to be optimized for higher frequencies.   

These lowest voltage stage techniques in Chapters 3 and 4 could be used on thermal 

harvesting start-up. Without transformers or an external switch, minimum reported thermal 

harvesting cold start-up is greater than 300 mV as discussed and referenced in detail in Section 



154 
 

1.5 (a system the can start-up with just a DC input rather than a DC input and high speed clock). 

Sub-threshold techniques similar to what was described in Chapters 3 and 4 using external 

capacitors, an IC, and a very slow generated clock (likely generated by a sub-threshold ring 

oscillator) could potentially create considerably lower voltage thermal harvesting start-ups than 

what has been reported in literature. 

Finally, the long-term bridge test demonstrated problems in the performance of the PFIG. 

As discussed in Chapter 2, after about 6 weeks of testing, the performance of the PFIG 

decreased. This decrease is very likely due to a performance issue related to part of the 

mechanism which sets the FIG placement in the PFIG. An improved mechanical PFIG design 

that can better adjust the placement of the FIGs in the PFIG and would be able to tolerate a PFIG 

resonance condition would have the potential to last far longer in a long-term bridge-based test. 

In the future, an improved PFIG or PFIG like design should be retested in another long-term test 

on a suspension bridge to reevaluate its long-term performance.  

Bibliography Chapter 5 

[1] Kulah H and Najafi K, 2008 "Energy Scavenging from Low-Frequency Vibrations by 

Using Frequency up-Conversion for Wireless Sensor Applications," IEEE Sensors 

Journal,  8,  261-268. 

[2] Galchev T V, McCullagh J J, Peterson R L, and Najafi K, 2011 "Harvesting Traffic-

Induced Vibrations for Structrural Health Monitoring of Bridges," Journal of 

Micromechanics and Microengineering,  21,  1-13. 

[3] Peters C, Handwerker J, Maurath D, and Manoli Y, 2011 "A Sub-500 Mv Highly 

Efficient Active Rectifier for Energy Harvesting Applications," Circuits and Systems I: 

Regular Papers, IEEE Transactions on,  58,  1542-1550. 

[4] Dongwon K and Rincon-Mora G A, 2010 "A Single-Inductor Ac-Dc Piezoelectric 

Energy-Harvester/Battery-Charger Ic Converting ±(0.35 to 1.2v) to (2.7 to 4.5v)," in 

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE 

International, 494-495. 

[5] Ramadass Y K and Chandrakasan A P, 2010 "An Efficient Piezoelectric Energy 

Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," Solid-State 

Circuits, IEEE Journal of,  45,  189-204. 

 


