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Abstract 

 

Multipotent, self-renewing stem cells which are present throughout the developing nervous 

system remain in discrete regions of the adult brain. In the subventricular zone (SVZ) signaling 

molecules, including the bone morphogenetic proteins and their secreted inhibitor, Noggin 

appear to play a critical role in controlling neural stem cell (NSC) behavior. To examine the 

function of this signaling pathway in the intact nervous system, we have developed a transgenic 

mouse model in which Noggin expression can be induced specifically in NSC via a Nestin 

promoter-driven reverse tetracycline-controlled transactivator (rtTA).  In adult animals, 

induction of Noggin expression promotes proliferation of NSC in the SVZ, and shifts the 

differentiation of NSC from mature astrocytes to transit amplifying cells and oligodendrocyte 

precursor cells without depleting the NSC population.  

Interestingly, over-expression of Noggin in the adult SVZ neural stem cells also inhibits the 

expression of a novel microRNA-410 (miR-410). miR-410 is expressed in the developing 

nervous system, remaining in the germinal zones of the adult brain. Over-expression of miR-410 

in SVZ derived neurospheres consistently inhibited neuronal and oligodendrocyte differentiation 

while promoting the formation of astrocytes. Conversely, inhibition of miR-410 activity in NSC 

promoted neuronal and decreased astroglial differentiation. In addition, over-expression of miR-

410 rescued the increase in neuronal differentiation and the decrease in astroglial differentiation 

caused by Noggin over-expression. Using computer prediction algorithms and luciferase reporter 

assays, we identified multiple neurogenic genes including Elavl4 as one of the downstream 

targets of miR-410 via the canonical miRNA-3’UTR interaction. Over-expression of Elavl4 

transcripts without the endogenous 3’ UTR rescued the decrease in neuronal differentiation 

caused by miR-410 over-expression. Interestingly, we also observed that miR-410 affected 

neurite morphology. Over-expression of miR-410 resulted in the formation of short, unbranched 

neurites. These results demonstrate that miR-410 controls the crucial lineage choice of adult 
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neural stem cells between neurons and glial cells by controlling the expression of neurogenic 

genes, and suggest a method to regulate NSC differentiation following disease, injury or aging.
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Chapter One 

Introduction 

 

Neural Induction   

The formation of the nervous system is one of the most tightly regulated processes of early 

vertebrate development. Neurulation begins on embryonic day 7 (E7) in the mouse embryo, 

when the primitive node secretes bone morphogenetic protein (BMP) inhibitors such as Noggin, 

Chordin, and Follistatin (Smith and Harland, 1992; Lamb et al., 1993; Hemmati-Brivanlou et al., 

1994; Sasai et al., 1995). Antagonizing BMP signaling causes the ectodermal cells to begin to 

express neural gene transcripts to form the neural plate (Kiecker and Lumsden, 2012). The 

thickened neural plate later folds and fuses, forming a closed neural tube (Copp et al., 2003). At 

the same time, the extending axial mesoderm forms the notochord and acts as a ventral organizer.  

After signaling from the node establishes the neural plate, the anterior visceral endoderm (AVE) 

which secretes inhibitors of Wnt, BMP and Nodal signaling such as cerebrus, induces 

differentiation of the head (Levine and Brivanlou, 2007). 

Patterning 

Once established, the nervous system is patterned along its dorsal-ventral, anterior-posterior and 

radial axes. After neural tube closure, the non-neural epidermal ectoderm lies above/dorsal to the 
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neural tube, and continues to secrete BMPs. In addition, the roof plate of the neural tube also 

secretes Wnts (Roelink and Nusse, 1991). Ventrally, the notochord and the floor plate of the 

neural tube secrete Sonic hedgehog (Shh). This two pole gradient of morphogenic factors (dorsal: 

Wnt/BMP-high, Shh-low; ventral: Wnt/BMP-low, Shh-high) establishes the dorsoventral axis 

and neuronal subtype specification along the neural tube (Kiecker and Lumsden, 2012). 

Wnt and retinoic acid (RA) signaling play an important role in the establishment of the 

anteroposterior (AP) axis of the nervous system. Both Wnt and RA are secreted by the paraxial 

mesoderm underlying the neural plate, with a posterior-high/anterior-low gradient (Maden 2002, 

Nordstrom 2002).  This gradient is crucial for initial axial establishment which is then translated 

by the Hox gene code.  

Hox genes are a family of helix-turn-helix transcription factors. In most vertebrates there are 39 

members organized in four separate clusters on different chromosomes (Alexander et al., 2009).  

For example, during  vertebrate hindbrain development Hox genes are expressed in a nested 

fashion along the anterior-posterior axis, where the expression borders of each gene coincides 

with the boundaries of the segment-like rhombomeres (Wilkinson et al., 1989). Retinoic acid 

(RA), fibroblast growth factor (FGF), and Wnt signaling are crucial for initiating and define the 

expression of Hox genes (Reviewed in (Alexander et al., 2009). Between the rhombomeres Hox 

genes are expressed in two-segment periodicity. Together with other segmental cues such as 

Eph/Ephrin signaling Hox genes determine the identities of each segments and instruct the 

development of neuron types and neural circuitry in the hindbrain and neuraxis (Narita and Rijli, 

2009; Tumpel et al., 2009).   



 

3 
 

Secondary organizers are required for further programing the AP axis.  One such organizer is the 

anterior neural boundary (ANB) which is located between the most anterior end of the neural 

plate and adjacent non-neural epidermal ectoderm (Houart et al., 1998). After neural tube closure 

the ANB eventually forms the commissural plate (CP).  The ANB/CP secrets fibroblast growth 

factor (FGF)-8 which is crucial for forebrain patterning (Shimamura and Rubenstein, 1997). In 

addition, in zebra fish it was shown that the ANB secretes Wnt inhibitors to maintain and further 

enhance the Wnt gradient (Houart et al., 2002). 

Another important AP organizer is the midbrain-hindbrain boundary (MHB) or isthmus. 

Transplantation of the MHB to the posterior forebrain induces ectopic midbrain/hindbrain tissue 

in the chick embryo (Gardner and Barald, 1991; Bloch-Gallego et al., 1996). MHB asserts its 

organizer function by secreting FGF8 and Wnt1 (Kiecker and Lumsden, 2012) as shown by gene 

targeting in transgenic mice (Chi et al., 2003).  

Differentiation  

The newly formed neural tube is a long cylindrical structure composed of a pseudostratified 

neuroepithelium. With differentiation, the anterior part of the neural tube undergoes a series of 

expansions, constrictions and bends which become the future forebrain, midbrain, and the 

hindbrain, while the posterior part of the neural tube develops into the spinal cord. Multiple 

factors are crucial in these morphological changes, including cytoskeletal rearrangement 

(Hildebrand and Soriano, 1999; Lee et al., 2007; Roffers-Agarwal et al., 2008), regional cell 

growth (Xuan et al., 1995; Kahane and Kalcheim, 1998; Lowery and Sive, 2005), apoptosis 

(Keino et al., 1994; Kuida et al., 1996), and increased intraluminal pressure to form the brain 

vesicles (Desmond, 1982; Schoenwolf and Desmond, 1984). 
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The developing neuroepithelium undergoes a series of symmetrical and asymmetrical cell 

divisions which is controlled by the orientation of the mitotic spindle (Fish et al., 2006; Roszko 

et al., 2006; Morin et al., 2007). The initial newly formed neurons migrate radially toward the 

basement membrane of the neural tube by somal dislocation and later by glial-guided cell 

translocation (Nadarajah et al., 2001), and the developing neural tube becomes a stratified 

structure. The inner-most layer (near the lumen) of the developing forebrain is termed the 

ventricular zone (VZ). The radial glia cells residing in the VZ act as stem cells during neural 

development (Noctor et al., 2001). The cell bodies of RG cells reside in the VZ and have long 

ascending processes, the radial fibers, that reach the basement membrane located beneath the pia 

mater (Figure 1.1). 

Cortical neurons migrate from their birthplace near the ventricle via two distinct cell migration 

pathways. For the excitatory glutamatergic neurons, which originate in the pallium of the 

developing cortex, radial migration is the dominant pattern. The RG cells in the ventricular zone 

undergo interkinetic nuclear movement during cell cycle, and the nucleus migrates to the apical 

side (the luminal side) before entering the M phase. The RG cells then undergo a round of 

asymmetric cell division and produce two daughter cells: one inherits the radial fiber and the 

identity of stem cells, the other daughter cell becomes the immediate progenitor cell, which 

undergoes a second round of symmetric cell division in the subventricular zone (SVZ) before 

committing to the neuronal fate (LaMonica et al., 2012; Tabata et al., 2012). The newly formed 

neurons then migrate radially toward the pial surface along the radial fiber and populate the 

cortical plate of the developing neocortex. The radial fibers thus function as the scaffold for the 

migrating neurons. The outward migration of neurons occurs in a “inside-out” fashion, as the 

later-born neurons progressively migrate farther toward the pia passing earlier formed neurons 
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(Rakic, 1974). This method is proposed to be the main pattern building the layered 

cytoarchitecture of the cortex. 

Inhibitory gamma-aminobutyric acid (GABA) -ergic interneurons are born in the ventricular 

zone of the subpallium in the ventral forebrain (Marin and Rubenstein, 2003). Most of the 

cortical interneurons are born in the medial ganglion eminence (MGE) (Marin and Rubenstein, 

2003). Interneurons from the MGE follow two routes toward the pallium. At embryonic day 12 

(E12) the interneurons avoid the striatum and travel superficially through the cortex via the 

marginal zone or the subplate (Lavdas et al., 1999). At E13.5 and later stages, the majority of the 

interneurons migrate deeply through the lower intermediate zone and the subventricular zone of 

the striatum primordium/lateral ganglion eminence (LGE) (Del Rio et al., 1992; DeDiego et al., 

1994; Wichterle et al., 2001). It has been suggested these interneurons may use corticofugal 

axons as the guidance substrate toward the cortex (Denaxa et al., 2001), termed tangential 

migration. Expression of hepatocyte growth factor (HGF), brain derived neurotrophic factor 

(BDNF), and neurotrophin-4 in the subpallium have been shown to promote the interneuron 

migration while TrkB signaling is required for interneuron outward migration (Powell et al., 

2001; Polleux et al., 2002).  

The lateral ganglionic eminence (LGE) is the birthplace of the olfactory bulb interneurons 

(Marin and Rubenstein, 2003). Post-mitotic interneuron precursors originate in the dorsal part of 

the LGE and migrate rostrally via the rostral migratory stream (RMS) to integrate into the 

periglomerular and granular layers of the olfactory bulb (Wichterle et al., 2001). Generation of 

new interneurons persists throughout adulthood with interneuron precursors born in the 

subventricular zone along the lateral wall of the lateral ventricles (Lois and Alvarez-Buylla, 

1994). However, unlike their postnatal counterparts, during embryonic development migrating 
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neurons do not form chain like structures, but appear to rather travel individually (Kishi et al., 

1990). The composition of the extracellular matrix of the RMS is crucial during embryonic 

stages.   α1, β8 , and β1 integrins as well as α5 and γ5 chains of the laminin molecule are 

expressed in the RMS, suggesting that the migrating cells utilize the integrins to move on the 

laminin substrate (Murase and Horwitz, 2002). Chemotactic signals are also important in the 

embryonic RMS. The mitral cells in the olfactory bulb express Netrin1 whereas the migrating 

neurons express the netrin receptors Neogenin and Deleted in Colorectal Carcinoma (DCC) 

(Murase and Horwitz, 2002). Moreover, the chemorepulsive secreted proteins Slit-1 and Slit-2 

are also expressed in the septum and are proposed to direct interneuron migration toward the 

olfactory bulb (Hu, 1999; Wu et al., 1999). Progenitor cells from the neuroepithelium of the LGE 

and adjacent regions of the embryonic telencephalon, such as the medial ganglion eminence and 

the cerebral cortex, later form the adult subventricular zone (SVZ) along the lateral wall of the 

lateral ventricles (Young et al., 2007). There has been considerable debate regarding the cellular 

origin of the proliferating neural stem cells in the adult SVZ. Conventionally it was thought that 

the germinal ventricular zone (VZ) of the developing cortex disappears during the perinatal 

period and the remnants become the ependymal layer lining the adult lateral ventricles (1970). 

However, it has been argued that at least a subset of the radial glial cells become the GFAP-

positive astrocytes in the postnatal subventricular zone thus linking the germinal ventricular zone 

in the developing forebrain with the adult subventricular zone (Tramontin et al., 2003; Merkle et 

al., 2004).  

Gliogenesis in early development 

In general, gliogenesis follows neurogenesis in the developing mammalian CNS (Rowitch and 

Kriegstein, 2010). The switch from production of neurons to oligodendrocytes and astrocytes is 
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regulated at several levels. During early developmental stages the promoters of pro-glial genes 

such as GFAP are methylated and inactive toward extrinsic signals, but are demethylated later 

during gliogenesis (Takizawa et al., 2001). Other cell intrinsic factors are also involved. 

Homeobox proteins DLX1 and DLX2 have been shown to regulate the lineage switch between 

neurons and oligodendrocytes (Petryniak et al., 2007). In addition, epigenetic control is 

suggested to play an important role. For example, the polycomb group complex represses the 

promoter of the pro-neural activator Neurogenin-1 in a stage-dependent manner (Hirabayashi et 

al., 2009). The neuron-glial switch is also controlled by cell extrinsic factors. During 

neurogenesis the expression of Fgf2 and Neuregulin-1 have been shown to repress pro-glial gene 

expression (Hermanson et al., 2002; Sardi et al., 2006). Conversely, gliogenesis can be promoted 

by neuronal signals. It has been shown that the neuronal intermediate progenitors and newly 

formed neurons express Notch signaling ligands Dll1 and Dll3, which in turn activate gliogenesis 

and inhibit neurogenesis in the nearby neural stem cells (Campos et al., 2001; Namihira et al., 

2009). The differentiated neurons also express and secret pro-glial cytokines such as leukemia 

inhibitory factor (LIF), ciliary neurotrophic factor (CNTF) and Cardiotrophin 1 and thus promote 

gliogenesis (Bonni et al., 1997; Ochiai et al., 2001; Barnabe-Heider et al., 2005). In addition, 

astrocyte secreted platelet-derived growth factor (PDGF) signaling has been shown to be crucial 

for oligodendrocyte lineage specification, as PDGF promotes the  differentiation of 

oligodendrocytes-type-2-astrocyte (O-2A) progenitor cells (Richardson et al., 1988; Robinson 

and Miller, 1996; Marmur et al., 1998), and PDGFα knockout results in defective 

oligodendrocyte development and hypomyelination (Fruttiger et al., 1999). 

Post-natal/adult neurogenesis 
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Before the 1960s, neurogenesis, the generation of neural tissue, was believed to only occur 

during embryogenesis and perinatal stages in mammals. The adult CNS was thought to lack 

regenerative capability and no new neurons were thought to form in adulthood (Cajal, 1928; 

Rakic, 1974). However, in the late 1960s Joseph Altman and Shirley Bayer first demonstrated 

that cell proliferation continues in various regions in the post-natal rat brain including the 

hippocampus, the olfactory bulb, and the cortex using tritium-thymidine (
3
H-T) labeling (Altman, 

1962, 1963, 1969). In the late 1970s this novel idea of adult neurogenesis was further confirmed 

by Kaplan and colleagues. By using 
3
H-T-labeling and electron microscopy they showed the 

3
H-

T-labeled, newly formed cells indeed have neuronal identity in rodent brains (Kaplan and Hinds, 

1977; Kaplan and Bell, 1984). Around the same time adult neurogenesis was also confirmed in 

the avian hyperstriatum ventrale pars caudalis (HVc) in song birds (Goldman and Nottebohm, 

1983). Then in the early 1990s, the Weiss group first reported that cells isolated from the mouse 

striatum (later identified as the subventricular zone (SVZ) along the lateral wall of the lateral 

ventricles) could be expanded in suspension culture and could differentiate into neurons and 

astrocytes in vitro, indicating the presence of multipotent stem cells in the adult rodent brain 

(Reynolds and Weiss, 1992). Later a second regional source of neural stem cells was identified 

in the hippocampus, where neurons born in the dentate gyrus migrate and integrate into the 

granule cell layer (Stanfield and Trice, 1988) in response to learning and exercise.  The newly 

formed neurons in the subgranular zone (SGZ) migrate and integrate locally into the circuitry in 

the hippocampus, and are important for the functions of hippocampus such as memory formation 

and learning.  

The SVZ neural stem cell niche   
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In the adult SVZ, poly-ciliated ependymal cells line the wall along the lateral ventricles (Spassky 

et al., 2005). They form a unique pinwheel architecture surrounding the apical endings of 

reactive astrocytes on the ventricular surface (Mirzadeh et al., 2008). Although the ependymal 

cells, as well as the multi-potent stem cells, are derived from radial glial cells, ependymal cells 

remain quiescent in normal conditions. They apparently only enter cell cycle and generate 

neuroblasts that migrate to the olfactory bulb when responding to injury (Carlen et al., 2009). In 

addition to serving as a reservoir, ependymal cells has been shown to secrete Noggin and are 

important in promoting neurogenesis in the SVZ (Lim et al., 2000). Furthermore, the beating of 

motile cilia by ependymal cells generate cerebrospinal fluid flow, which in turn has been 

suggested to play a significant role in directing neuroblast migration (Sawamoto et al., 2006). 

Ependymal cells express CD24 (Mirzadeh et al., 2008; Pastrana et al., 2009), S100β (Raponi et 

al., 2007), and CD133/Prominin (Coskun et al., 2008), although none of these markers are 

exclusive to ependymal cells (Figure 1.2). 

The neural stem cells, or “B cells” in adult SVZ 

Proliferative cells in the adult SVZ can be divided into two subgroups: the slowly dividing, BrdU 

retaining neural stem cells (B cells) and the rapidly dividing transit amplifying cells (TAC, or C 

cells) (Doetsch et al., 1997; Doetsch et al., 1999b). B cells express glial fibrillary acidic protein 

(GFAP) and have an astrocyte morphology (Doetsch et al., 1999b). The B cells can be further 

categorized into two groups based on their location and morphology (Doetsch et al., 1997). The 

B1 cells locate near the ventricular surface and directly contact the ependymal cells. They extend 

cell processes toward the ventricular surface and have primary cilia extruding into the ventricle, 

which directly contact the CSF and have been suggested to play an essential role in cell signaling 

(Doetsch et al., 1999a; Mirzadeh et al., 2008). B2 cells, on the other hand, locate more deeply 
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and close to the underlying striatal parenchyma (Doetsch et al., 1997). B cells also form a glial 

sheath surrounding the migrating neuroblasts as they migrate anteriorly toward the OB (Lois and 

Alvarez-Buylla, 1994; Doetsch et al., 1999b). Moreover B cells extend long endfeet which 

directly contact blood vessels (Shen et al., 2008; Tavazoie et al., 2008). In addition to GFAP 

(Figure Two), B cells also express several astroglia or neural progenitor markers, such as brain-

lipid-binding protein (BLBP) (Platel et al., 2009), astrocyte-specific glutamate transporter 

(GLAST) (Pastrana et al., 2009), PDGFRα (Jackson et al., 2006), Vimentin (Doetsch et al., 

1999b), SSEA1 (Capela and Temple, 2002), Nestin (Doetsch et al., 1997), and CD133/Prominin 

(Coskun et al., 2008), although Nestin is also expressed at low levels in other cell types in the 

SVZ (Doetsch et al., 1997). In mice, the human glial fibrillary acidic protein promoter has been 

used extensively to target genes to B cells, since it is not expressed in other lineages. In addition, 

onset of hGFAP-Cre transgene expression starts in the forebrain by E13.5, so the hGFAP 

promoter is active in multi-potential neural stem cells (Zhuo et al., 2001). 

The transit amplifying cells, or “C cells” in adult SVZ. 

The transit amplifying cells (TAC), or C cells, are rapid proliferating, immediate progeny of B 

cells (Doetsch et al., 1999b). They have been shown to express EGFR (Pastrana et al., 2009). 

Indeed the C cells are proposed to be the major population that responds to EGF in the 

neurosphere assay in vitro (Doetsch et al., 2002; Pastrana et al., 2009). However, a small 

population of B cells also express EGFR, thus EGFR is not an exclusive C cell marker (Pastrana 

et al., 2009). C cells typically locate close to the vessels, suggesting signals from the vasculature 

play an important role in C cell regulation (Shen et al., 2008; Tavazoie et al., 2008). In addition 

to EGFR, commonly used markers expressed by transit amplifying C cells also include 

Mash1/Ascl1 and Dlx2. However, just as EGFR, both Mash1 and Dlx2 are not exclusive to C 
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cells. Mash1 is also expressed in a population of B cells (Kim et al., 2011a) while some 

doublecortin (Dcx) and polysialylated neural cell adhesion molecule (PSA-NCAM) positive 

neuroblasts also express Dlx2 (de Chevigny et al., 2012). 

The neuroblasts, or “A cells” in adult SVZ 

The C cells further differentiate to the neuroblasts, or A cells (Doetsch et al., 1999b). In the SVZ, 

neuroblasts migrate anteriorly and form a chain-like structure which is surrounded by B cells 

(Lois and Alvarez-Buylla, 1994). Their cell bodies are typically round or elongated, with a thin 

leading process tipped by a growth cone and occasionally with a trailing process (Doetsch et al., 

1999b). Neuroblasts ultimately join the rostral migratory stream (RMS) and enter the olfactory 

bulb (OB). After reaching the olfactory bulb, the neuroblasts differentiate and form interneurons 

which integrate into the periglomerular and granular layers (Lois and Alvarez-Buylla, 1994). 

This phenomenon is crucial for odor discrimination and learning, as reduced neurogenesis in 

mice impairs discrimination between discrete odors (Gheusi et al., 2000). The neuroblasts 

express a series of markers such as doublecortin (Dcx) (Yang et al., 2004), type-III-β-tubulin 

(Tuj1) (Doetsch et al., 1997), polysialylated-neural cell adhesion molecule (PSA-NCAM) (Seki 

and Arai, 1993), and low levels of CD24 (Pastrana et al., 2009). 

Gliogenesis in adult SVZ 

Gliogenesis in the adult SVZ is less well understood. It has been reported that both some B cells 

and a subpopulation of C cells express the oligodendrocyte progenitor cell (OPC) marker 

oligodendrocyte lineage transcription factor-2 (Olig-2). These cells originating from the adult 

SVZ migrate to the corpus callosum, striatum and fimbria fornix to differentiate to NG-2-

positive oligodendrocyte precursors and mature myelinating oligodendrocytes (Hack et al., 2005; 
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Menn et al., 2006). However, it has been controversial  whether the astroglial versus neuronal 

lineage decision happens at the B cell stage or C cell stage, and if all OPCs share the same origin 

as neuronal precursor cells as mutation of Mash-1, a proneuronal gene which is also highly 

expressed in C cells, leads to loss of both neuronal and oligodendrocytes lineages in a cell-

autonomous fashion. 

The extracellular matrix in adult SVZ 

The extracellular matrix (ECM) in the adult SVZ is rich in multiple components such as laminin, 

collagen, nidogen, perlecan, and proteoglycans (Gates et al., 1995; Kerever et al., 2007). N-

sulfate heparin sulfate proteoglycan (HSPG) in the adult SVZ can directly bind to FGF-2 and 

therefore modulate local mitogen availability  (Kerever et al., 2007). Another proteoglycan, 

Tenascin-C, which is highly expressed during embryonic neural development, is also highly 

expressed in the adult SVZ (Gates et al., 1995). Tenascin-C can directly bind to specific cell 

surface receptors and thus modulate cell behavior (Jones and Jones, 2000).  In perinatal mice, 

knockout of Tenascin-C results in fewer NSCs and altered NSC response toward growth factors 

(Garcion et al., 2004). It has also been shown that dermatan sulfate-dependent (DSD)-1-

proteoglycan, a chondrointin sulfate proteoglycan (CSPG), and apolipoprotein E (ApoE) 

promote NSC survival and proliferation while treatment of neurospheres with the enzyme 

chondroitinase ABC (ChABC) results in diminished cell proliferation and impaired neuronal 

differentiation (Gates et al., 1995; Sirko et al., 2007; Tham et al., 2010). 

Vasculature in adult SVZ 

The close proximity of blood vessels and the sites of adult neurogenesis in both adult SVZ and 

SGZ has suggested the importance of the vasculature in neurogenesis (Leventhal et al., 1999; 
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Palmer et al., 2000; Gotts and Chesselet, 2005). In the SGZ in the dente gyrus of the adult 

hippocampus, the majority of dividing neural precursors are closely associated with the 

vasculature and dividing endothelial cells, suggesting that neurogenesis occurs within an 

angiogenic niche (Palmer et al., 2000). In the adult SVZ, the BrdU retaining neural stem cells 

extend long endfeet and directly contact blood vessels (Shen et al., 2008; Tavazoie et al., 2008). 

In addition, proliferating transit amplifying cells also lie near blood vessels (Shen et al., 2008; 

Tavazoie et al., 2008). The laminin receptor α6β1 integrins are important in NSCs binding to 

endothelial cells (Shen et al., 2008). Furthermore, the blood-brain barrier (BBB) in the SVZ is 

altered so that the blood vessel walls are permissive to small molecular weight molecules 

(<400Da), which is not observed in other parts of the brain (Tavazoie et al., 2008). C-X-C ligand 

12 (CXCL12/SDF1), expressed by the endothelial cells, has been proposed to induce B cells 

activation and translocation from near the ependyma toward the blood vessels (Kokovay et al., 

2010). In addition, transplanted neural progenitors home to blood vessels, which is mediated by 

the interaction of CXCL12/SDF1 and its receptor CXCR4 expressed by the neuroblasts 

(Kokovay et al., 2010). Furthermore, pigmented epithelium derived factor (PEDF), which is 

secreted by both ependymal cells and endothelial cells, can enhance the activation of B cells 

(Ramirez-Castillejo et al., 2006). Finally, vascular endothelial growth factor (VEGF), which is 

expressed by the astrocytes in the adult SVZ and SGZ as well as the choroid plexus (Licht and 

Keshet, 2013), has been shown to play an important role in regulating NSCs. (Detailed below ) 

 

Many cytokine and growth factor signaling family members have been implicated in maintaining 

the integrity of the niche or alternatively to promote lineage differentiation (Faigle and Song, 

2013). 
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The BMP signaling pathway  

Bone Morphogenetic Proteins (BMPs) are a group of secreted glycoproteins that belong to the 

Transforming Growth Factor-beta (TGF-β) superfamily (Zimmerman et al., 1996).  To date, 15 

members of this subfamily have been identified. BMPs act by binding to the receptor tyrosine 

kinase BMP receptors type I and type II. After ligand binding, two type I and two type II 

receptors form a heterotetramer (Figure 1.3). The type II receptors then autophosphorylate and 

phosphorylate the type I receptors, thus creating binding sites for the downstream effector 

SMAD proteins. After activating phosphorylation by the BMPR two receptor-activated SMADs 

(R-SMADs, SMAD-1, 5, 8) form a trimer with an additional common-mediator SMAD (Co-

SMAD, SMAD-4). The trimerized SMADs then translocate into the nucleus and activate target 

gene transcription. The inhibitory SMADs (I-SMADs, SMAD-6, 7) can interfere with signaling 

by binding to SMAD-4 (Mueller and Nickel, 2012). In addition BMP signaling can be 

antagonized by binding of BMPs by extracellular proteins Noggin and Chordin (Piccolo et al., 

1996; Zimmerman et al., 1996). (Figure 1.3) 

BMP2, BMP4, and the BMPRs are expressed in the adult SVZ (Lim et al., 2000). BMPs are 

expressed by the GFAP+ astrocytes, while Noggin is expressed by the ependymal cells lining the 

ventricular wall (Lim et al., 2000). Transgenic over-expression of BMPs in the SVZ has been 

shown to promote glial differentiation (Lim et al., 2000; Bonaguidi et al., 2005); while either 

infusion of noggin protein into the SVZ or ectopic expression of Noggin in the adjacent striatum 

increases neuronal differentiation (Lim et al., 2000). In the SGZ of the dentate gyrus BMP 

signaling has been proposed to be important in NSC aging while Noggin expression is crucial for 
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the maintenance of NSC both in vitro and in vivo (Bonaguidi et al., 2008). Blockade of the BMP 

signaling by either Noggin infusion or SMAD-4 conditional knockout transiently increases, but 

later reduces the number of proliferating neural precursors and thus limits the production of 

mature neurons (Mira et al., 2010).   

The Notch signaling pathway  

The Notch receptors Notch1-4 are single pass transmembrane proteins. There are six ligands, 

which are also transmembrane proteins:  Jagged-1, 2 (Jag-1, 2) , Delta-like-1 through 4 (Dll-1, 2, 

3, 4) (Figure 1.4). The receptor and ligand are typically expressed by adjacent cells (Greenwald 

and Kovall, 2013). Upon ligand binding, the Notch protein undergoes two separate cleavage 

events. First the ADAM protease cuts at the base of the Notch extracellular domain. The second 

cleavage occurs at the base of the Notch intracellular domain by the γ-secretase complex thereby 

releasing the Notch intracellular domain (NICD). The NICD then migrates into the nucleus and 

forms a transcription regulating complex with two other proteins, Mastermind and CSL protein 

(CBF-1/RBP-Jk in vertebrates, Su(H) in flies, and LAG-1 in worms) to regulate target gene 

expression (Greenwald, 2012; Greenwald and Kovall, 2013) (Figure 1.4). 

In the adult SVZ, it has been shown that Notch signaling is required for the maintenance of the 

NSC pool. Conditional knockout of RBP-Jk in the adult SVZ leads to a transient increase in the 

number of type C cells and later depletion of the BrdU retaining stem cells (Imayoshi et al., 

2010). Similarly, conditional knockout of Notch-1 in the adult hippocampal SGZ results in the 

loss of GFAP+ type-1 cells and transit amplifying cells (Ables et al., 2010). It has also been 

shown that the NSC marker Sox2 is a direct downstream target of the Notch signaling and 
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deletion of the RBP-Jk in the SGZ leads to premature neuronal differentiation and subsequent 

depletion of Sox2+ cells (Ehm et al., 2010). 

The Sonic Hedgehog (Shh) signaling pathway 

Shh is a member of the Hedgehog secreted protein family, which also includes Desert and Indian 

Hedgehog. In the absence of Shh, the receptor Patched-1, a twelve-pass transmembrane protein, 

localized in the primary cilium of the cell inhibits Smoothened (Smo), a member of the seven-

pass G-protein coupled receptor family, by accumulation in the cilium (Figure 1.5). The Gli 

proteins are then phosphorylated by the protein kinase A (PKA) and targeted for proteasome-

mediated proteolysis. The cleaved, truncated form of Gli (GliR) then migrates into the nucleus 

and acts as transcriptional repressor. Upon binding of Shh, Patched-1 leaves the primary cilium 

allowing Smo to enter. The active Smo then inhibits PKA and the proteolysis of Gli.  Full-length 

Gli then enter the nucleus and promotes its target gene transcription (Rohatgi et al., 2007). 

Ectopic expression of Shh in the hippocampus results in an increase in the number of 

proliferating cells and newborn neurons (Lai et al., 2003). In addition, the Nestin::Cre-Smo
null/flox

 

conditional knockout animals have decreased numbers of BrdU retaining cells and increased 

apoptosis in both the postnatal SVZ and SGZ, suggesting Shh is required for stem cell 

maintenance (Machold et al., 2003; Balordi and Fishell, 2007). More interestingly, loss of Smo 

in the SVZ leads to abnormalities of A cell migration into the OB and accumulation of A cells in 

the SVZ, which is non-cell autonomous (Balordi and Fishell, 2007). 

The Wnt signaling pathway  

The Wnt signaling pathway is one of the most complex pathways, with 19 ligands and more than 

15 receptors/co-receptors identified to date (Niehrs, 2012).  In addition, there are multiple 
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pathways within the pathway.  A) The canonical Wnt signaling pathway: In the absence of Wnt 

ligand, glycogen synthase kinase-3 (GSK3) forms a destruction complex with casein kinase Iα 

(CKIα), Axin, and adenomatosis polyposis coli (APC) protein, phosphorylates β-catenin leading 

to its ubiquitination and degradation (Figure 1.6). When Wnt ligand binds the receptor, the 

Frizzled/Dishevelled/LRP-5/6 complex, the destruction complex is inhibited and relieves β-

catenin from degradation. β-catenin then translocates into the nucleus, binds to T-cell factors 

(TCF), and induces its target gene expression. B) The non-canonical, β-catenin independent Wnt 

signaling pathway: Wnt binding to the receptor can also activate small GTPases, which in turn 

activate RHO kinase (ROCK) and JUN-N-terminal kinase (JNK). This pathway, the PCP (planar 

cell polarity) pathway, is particularly important in regulating cell polarity and migration (Niehrs, 

2012). Wnt can also activate phospholipase C, which induces the increase of cytosolic Ca
2+

 

concentration. High Ca
2+

 concentration subsequently leads to the activation CAMKII, PKC and 

Calcineurin (Niehrs, 2012) (Figure 1.6). 

In the adult SVZ, it has been shown that induction of the Wnt signaling pathway by retrovirus-

mediated expression of β-catenin or GSK-3 inhibition by drugs promotes proliferation of Mash-

1+ type-C cells and subsequent increased numbers of newly integrated neurons in the OB 

(Adachi et al., 2007). Wnt-3a and Wnt-5a also promote neuronal differentiation of adult SVZ 

neural progenitor cells in vitro (Yu et al., 2006). Expression of a dominant-negative Wnt in the 

adult dente gyrus inhibits cell proliferation and newborn neuron formation in the SGZ (Lie et al., 

2005).  It has also been shown that Wnt-β-catenin signaling can directly activate NeuroD1 

transcription to promote neuronal differentiation (Gao et al., 2009; Hsieh et al., 2009). 

The Retinoic acid (RA) signaling pathway  
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Retinoic acid is a non-peptide, small lipophilic signaling molecule that is either synthesized from 

retinol (Vitamin A) from the diet or diffuses from the surrounding extracellular environment. 

Uptake of extracellular retinol, bound by retinol binding protein 4 (RBP4), is aided by a 

transmembrane protein STRA6. Once in the cytosol, retinol is bound by cellular retinol binding 

protein (CRBP) and oxidized by retinol dehydrogeneses (RDHs) becoming retinaldehyde.  

Retinaldehyde is further oxidized by retinaldehyde dehydrogenases (RALDHs) becoming 

retinoic acid (RA). Cytosolic RA is bound by cellular retinoic acid binding proteins (CRABPs) 

and transported to the nucleus. In the nucleus, the free RA binds to the heterodimers of the 

nuclear RA receptors RARs (RARα, RARβ, and RARγ) and the retinoid X receptors RXRs 

(RXRα, RXRβ, and RXRγ). The active nuclear receptors then bind to the retinoic acid-

responsive elements (RAREs) and regulate gene transcription. Cytosolic RA can also be 

exported to the extracellular environment and act in autocrine/paracrine fashions. (Reviewed in 

(Niederreither and Dolle, 2008; Rhinn and Dolle, 2012)) (Figure 1.7). 

In the adult SVZ, a subset of the slow dividing B cells respond to RA signaling (Haskell and 

LaMantia, 2005). RA exposure increases proliferation of postnatal SVZ neuroblasts and neuronal 

differentiation; while blocking RA signaling impairs the migration of the neuroblasts (Wang et 

al., 2005). In addition, RA application after stroke has been shown to promote neurogenesis and 

decrease infarct volume in the striatum (Plane et al., 2008). In the adult hippocampal SGZ, RA 

promotes neuronal differentiation by up-regulating NeuroD expression (Takahashi et al., 1999). 

Conversely, depletion of RA significantly decreases neuronal differentiation and cell survival 

while, interestingly, proliferation was not affected (Jacobs et al., 2006).  
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RTK Signaling: The Fibroblast growth factor (FGF), Platelet-derived growth factor 

(PDGF), Vascular-endothelial growth factor (VEGF), and Epidermal growth factor (EGF) 

signaling pathway  

Receptors for FGF, PDGF, VEGF, and EGF belong to the receptor tyrosine kinase (RTK) 

superfamily. Upon ligand binding, receptors dimerize and the intracellular tyrosine kinase 

domains activate and transphosphorylate each other (Figure 1.8). The phosphorylated tyrosine 

residues thus create binding sites for the adapter protein Grb2. This is followed by the activation 

of the small GTPase Ras, and subsequent activation of the Raf/MEK/ERK pathway. The 

activated RTKs can also activate phosphatidylinositol-4,5-bisphosphate-3 kinase (PI3K), which 

in turn activates its downstream Akt/mTor signaling pathway. Phospholipase C-γ also binds to 

the phosphotyrosine residues on RTKs and activates the downstream signaling pathways. 

(Reviewed in (Hausott et al., 2009; Pownall and Isaacs, 2010; Casaletto and McClatchey, 2012)). 

(Figure 1.8) 

NSCs from the dente gyrus of the adult hippocampus and SVZ respond to FGF-2, and these 

FGF-2 responsive cells can be isolated and maintained in vitro (Gage et al., 1995; Palmer et al., 

1995). FGFR1 and FGFR2 have been shown to be expressed in the adult rat SVZ (Frinchi et al., 

2008), and intracerebroventricular infusion of FGF-2 and EGF increase cell proliferation in both 

adult SVZ and SGZ (Wagner et al., 1999; Jin et al., 2003). Disruption of FGF-2 signaling by 

either injection of neutralizing antibody to FGF-2 or conditional knockout of FGFR1 inhibits cell 

proliferation and newborn neuron production in the adult DG (Tao et al., 1997; Zhao et al., 2007). 

In addition, FGF-2 expression is elevated after either chemical induced seizure or middle 

cerebral artery occlusion (MCAO), a condition that increases neurogenesis; while proliferation is 
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hindered in the hippocampus of FGF-2 knockout animals (Lin et al., 1997; Yoshimura et al., 

2001). 

PDGF signaling has been shown to be required for oligodendrocyte lineage specification during 

embryonic development (Fruttiger et al., 1999). In the adult SVZ a subset of the B cells express 

PDGFRα, and it is required for oligodendrogenesis but not neurogenesis (Jackson et al., 2006). 

In addition intraventricular infusion of PDGF is sufficient to induce B cell proliferation and the 

generation of hyperplasia, suggesting PDGF signaling is important for tumor formation (Jackson 

et al., 2006). 

In the adult rodent brain including SVZ and SGZ, VEGF is extensively expressed by astrocytes 

as well as in the choroid plexus (Licht and Keshet, 2013). In the SVZ both the GFAP+ B cells 

and Dcx+ neuroblasts express receptors for VEGF (Wittko et al., 2009). It has been shown 

VEGF promotes SVZ cell proliferation both in vitro and in vivo (Jin et al., 2002). In neonatal 

animals VEGF is crucial for forming the vascular scaffolding for RMS migration (Bozoyan et al., 

2012). However VEGF is not required for the RMS migration in adults (Licht et al., 2010), but is 

suggested to accelerate neuroblast migration through the RMS (Wittko et al., 2009). Detail 

functions of VEGF in the adult SGZ are less clear. VEGF loss of function does not impair basal 

neurogenesis (Cao et al., 2004; Licht et al., 2011), but it is required for the increased 

neurogenesis induced by exercise or enriched environment (Fabel et al., 2003; Cao et al., 2004). 

EGF has been shown to promote proliferation of neurosphere forming cells isolated from the 

adult SVZ (Reynolds and Weiss, 1992). It has been shown that EGFR is expressed by the C cells 

in the adult SVZ (Enwere et al., 2004; Pastrana et al., 2009), and infusion of EGF into the adult 

lateral ventricles promotes proliferation (Craig et al., 1996; Kuhn et al., 1997). Although EGF 
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expression is low in the SVZ and hippocampus (Fallon et al., 1984), the other endogenous EGFR 

ligand, TGFα, is highly expressed in both the striatum and the dente gyrus (Wilcox and Derynck, 

1988; Seroogy et al., 1993). TGFα knockout animals have reduced constitutively proliferating 

cells in the SVZ and decreased migration of neuroblasts to the OB, suggesting that the EGF 

signaling pathway is crucial for the transit amplifying C cells in the adult SVZ (Tropepe et al., 

1997).  

The Leukemia inhibitory factor (LIF)/ Ciliary neurotrophic factor (CNTF) signaling 

pathway   

Both LIF and CNTF are polypeptide cytokines belonging to the interleukin-6 family. LIF binds 

to a heterodimeric receptor complex consisting of one LIF receptor β (LIFRβ) and one co-

receptor gp130; while CNTF binds to a trimeric receptor complex consisting of one LIFR β, one 

gp130, and one additional CNTF receptor α (CNTFRα) (Bauer et al., 2007) (Figure 1.9). Upon 

ligand binding, the receptor associated Janus-activated kinase (JAK) autophosphorylates and also 

phosphorylates the tyrosine residues on the receptors, thus creating binding sites for the signal 

transducing and activator of transcription (STAT). JAK also phosphorylates receptor bound 

STATs. Phosphorylated STATs then dimerize and translocate into the nucleus and activate gene 

transcription (Figure 1.10). In addition, the phosphorylated tyrosine residues also create binding 

sites and activate the MAPK and PI3K signaling pathways. (Reviewed in (Bauer et al., 2007).) 

(Figure 1.9). 

LIF/CNTF signaling is required for astrocyte differentiation, as GFAP+ astrocyte formation is 

halted in LIFR null mice during embryonic development (Koblar et al., 1998). In addition, 

activation of the JAK-STAT signaling pathway by constitutive expression of STAT3 leads to 
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precocious differentiation of astrocytes from isolated neural progenitors (He et al., 2005). In 

adult animals, injection of CNTF in the forebrain increases the number of BrdU labeled cells in 

both SVZ and SGZ (Emsley and Hagg, 2003). It has further been shown that only a subset of B 

cells respond to CNTF signaling. Conditional knockout of CNTFRα using hGFAP:Cre increases 

neurogenesis and neuroblast number in the OB, while NSC maintenance is not affected (Lee et 

al., 2013). On the other hand, over-expression of LIF in the adult SVZ inhibits neurogenesis, 

promotes proliferation or formation of glial progenitors in the SVZ, while expands the NSC pool 

(Bauer and Patterson, 2006). 

Thus, many signaling pathways, extracellular matrix and cell types combine to play a critical role 

in maintaining/controlling adult neurogenesis. 

 

microRNA 

microRNAs (miRNAs) are 20 to 24 nucleotides long, single stranded non-coding RNAs (Lee et 

al., 1993). To date more than 2,500 and nearly 3,000 microRNAs have been identified in human 

and mice, respectively . microRNAs can be located within coding genes, either intronically or 

exonically, or between coding genes, and can be either transcribed by RNA polymerase II or 

polymerase III, (Lee et al., 2004; Borchert et al., 2006). The 150-200 nucleotide long primary 

transcripts of microRNA (pri-miRNAs) are processed, or “cropped”, in the nucleus by the 

microprocessor, which includes the nuclear RNase II enzyme Drosha and DiGeorge syndrome 

critical region gene 8 (DGCR8), to release the 60-100 nucleotides long hairpin-structured 

precursor-microRNAs (pre-miRNAs) (Lee et al., 2003). Alternatively, pre-miRNAs of 

microRNAs located within introns can be generated through the mRNA splicing step and bypass 
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the Drosha-mediated processing (Okamura et al., 2007; Ruby et al., 2007). Pre-miRNAs then are 

transported by exportin-5 out of the nucleus to the cytoplasm (Yi et al., 2003). In the cytoplasm, 

pre-miRNAs are then further cut, or “diced”, to release the 20-24 nucleotide long duplexes by 

Dicer (Bernstein et al., 2001; Grishok et al., 2001; Hutvagner et al., 2001; Ketting et al., 2001; 

Knight and Bass, 2001). Typically, one strand of the duplex is degraded while the other strand, 

the mature miRNA, survives (Khvorova et al., 2003; Schwarz et al., 2003). (miRNA biogenesis 

is reviewed in (Kim, 2005).) The mature miRNA then is incorporated into the miRNA loaded-

RNA induce silencing complex (miRISC), which also contains an Argonaute family member. 

miRISCs target the 3’ untranslated region (3’ UTR) of target gene transcripts by an imperfect 

match between the miRNA and the mRNA transcript. The “seed” sequence, position 2-8 from 

the 5’ end of the miRNA, has been shown to be crucial in the target recognition. (miRNA target 

recognition is reviewed in (Bartel, 2009).) Binding of miRISC to the 3’ UTR leads to 

translational repression, mRNA destabilization, and/or degradation, thus resulting in the down-

regulation of target gene expression. (Mechanisms of miRNA mediated post-transcriptional 

regulation are reviewed in (Filipowicz et al., 2008).) 

microRNAs play an important role in regulating neurogenesis. Complete knock-out of the RNase 

III Dicer1 results in embryonic lethality as early as E7.5 and the depletion of multi-potent stem 

cells (Bernstein et al., 2003). Conditional deletion of Dicer1 in the nervous system using 

Nestin:;Cre also leads to embryonic lethality (Kawase-Koga et al., 2009). Furthermore, 

conditional ablation of Dicer1 in different neural progenitor populations demonstrate that 

miRNAs are crucial for both neuronal and glial development (Davis et al., 2008; De Pietri 

Tonelli et al., 2008; Kawase-Koga et al., 2009; Huang et al., 2010). Each miRNA, has different 

functions in the CNS.  One of the most well-understood microRNAs is miR-124. miR-124 is one 
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of the most abundant miRNA in the brain (Lagos-Quintana et al., 2002). During embryonic 

neural development, miR-124 promotes neuronal differentiation by suppressing the small C-

terminal domain phosphatase 1 (SCP-1) and the repressor element-1 silencing transcription 

factor (REST) pathway (Visvanathan et al., 2007), in addition to the neural progenitor-specific 

BAF complex 53 kDa subunit (BAF53a) (Yoo et al., 2009). In the adult SVZ, miR-124 

expression level is low in B cells but is up-regulated during the C cell to A cell transition (Cheng 

et al., 2009). Functional inhibition of miR-124 maintains the neural progenitors as dividing 

precursor cells, while over-expression of miR-124 promotes precocious neuronal differentiation 

(Cheng et al., 2009; Akerblom et al., 2012). miR-124 asserts its function by repressing the SRY-

box transcription factor Sox-9 (Cheng et al., 2009) and Notch ligand Jagged-1 (Liu et al., 2011). 

In addition, miR-124 targets PTB/hnRNP I (PTBP1) mRNA, which encodes a global repressor 

of alternative pre-mRNA slicing in non-neuronal cells. Down-regulation of PTBP1 in turn leads 

to the accumulation of PTBP2 promoting neuronal differentiation (Makeyev et al., 2007).  

miR-9, another highly expressed miRNA in the brain, directly targets the orphan nuclear receptor 

TLX, inhibiting cell proliferation and promoting neuronal differentiation in adult SGZ NSCs. 

TLX itself represses expression of miR-9, forming a negative regulatory loop (Zhao et al., 2009). 

In addition, miR-9 also targets the REST pathway thereby promoting neuronal differentiation 

(Packer et al., 2008). The evolutionarily conserved let-7 family of miRNAs are also important in 

regulating neurogenesis. let-7b targets TLX, cyclin D1, and high mobility group-AT-hook 2 

(HMGA2). Overexpression of let-7b reduces NSC proliferation and increases neural 

differentiation, while antisense knockdown of let-7b leads to enhanced proliferation (Nishino et 

al., 2008; Zhao et al., 2010). miR-184, on the other hand, targets Numb-like (Numbl), promoting 

self-renewal and inhibiting differentiation in the adult SGZ NSCs. Expression of miR-184 itself 
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is then controlled by the methyl-CpG binding protein 1 (MBD1) (Liu et al., 2010). miR-137 also 

inhibits NSC proliferation and promotes neuronal differentiation in both the adult SGZ and 

embryonic NSCs by repressing histone lysine-specific demethylase 1 (LSD1) and Ezh2, a 

histone methyltransferase and Polycomb group protein (Szulwach et al., 2010; Sun et al., 2011). 

The miR-106b-25 cluster has also been reported to regulate adult NSCs. Ectopic expression of 

miR-25 promotes cell proliferation, while the expression of the cluster itself is regulated by 

FoxO3 (Brett et al., 2011). In addition, it has been shown that miR-34a promotes astrocyte 

differentiation of embryonic NSCs (Aranha et al., 2011). 

 

We have observed that the neurons derived from the miR-410 over-expressing neural stem cells 

have shorter and fewer numbers of neurites (Chapter 1). Neurons derived from adult 

subventricular neurogenesis typically takes 21 to 42 day to fully mature (Whitman and Greer, 

2009). Considering the early stage these neurons were at (in vitro differentiation day 7), the 

phenotype may possibly be attributed to the difference in neurite initiation and elongation. 

Neurite initiation and elongation are complex processes and several pathways have been reported 

to promote or inhibit the formation of neurites (reviewed in (Hall and Lalli, 2010; Polleux and 

Snider, 2010)).  

Small GTPases  

Small GTPase family proteins such as Ras and Rho have been shown to play a major role in 

regulation of neurite growth (reviewed in (Hall and Lalli, 2010)).  Small GTPases are activated 

by GEFs and inactivated by GAPs (Hall and Lalli, 2010). Ras has been shown to be present in 

the newly formed axon (Fivaz et al., 2008). Over-expression of constitutively active R-Ras in the 
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hippocampal neurons in vitro induced multiple axon formation while inactivation of the 

endogenous R-Ras by siRNA abolished normal axon formation (Oinuma et al., 2007). In 

addition, Oinuma et al also suggested the function of R-Ras on axon  outgrowth relays through 

PI3K. Furthermore, PI3K in turn activates Ras, thus forming a positive feedback loop, and 

another small GTPase Rap1B and its downstream effector Cdc42 (Schwamborn and Puschel, 

2004). Cdc42, yet another small GTPase, regulates the actin filament/microtubule structure and 

axon outgrowth through its downstream effector IQGAP3 (Wang et al., 2007), PAK4 (Qu et al., 

2003), and N-WASP(Banzai et al., 2000; Strasser et al., 2004). Additionally Cdc42 also acts 

through the Par6/aPKC-APC (adenomatous polyposis coli) and regulates microtubule assembly 

(Shi et al., 2004; Goldstein and Macara, 2007). In parallel another small GTPase Rac1 promotes 

neurite outgrowth by increasing  the phosphorylation and inactivation of the microtubule 

destabilizing protein Stathmin/Op18 (Watabe-Uchida et al., 2006). The Rho small GTPase 

functions antagonistically to Rac/Cdc42. Constitutively active Rho prevents neurite outgrowth 

(Schwamborn and Puschel, 2004). RhoA asserts its negative regulation by activating its 

downstream kinase ROCKII ROCK phosphorylates Profilin-IIa and thus destabilizes actin 

filaments (Da Silva et al., 2003). However, Rho is required in axon elongation induced by the 

chemokine Stromal cell-derived factor (SDF)-1α in cerebellar granule neurons through a distinct 

downstream effector mDia (Arakawa et al., 2003).  

PI3K-AKT-mTor and PTEN 

The phosphatidylinositol-3 kinases (PI3Ks) are kinases that phosphorylate inositol lipids at the 3’ 

position and are responsible for generating its downstream signaling transducer 

phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and can be directly activated by Ras (Leevers et 

al., 1999). Activation of the PI3K pathway promotes axon formation, as inhibition of PI3K by 
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small molecules such as LY294002 or Wortmannin impedes axon formation (Shi et al., 2003; 

Menager et al., 2004; Jiang et al., 2005; Yoshimura et al., 2006). Furthermore, constitutively 

activation of one of the PI3K downstream effector AKT/protein kinase B by myristoylation in 

neurons leads to multiple axon formation (Yoshimura et al., 2006). Likewise, inhibition of mTor, 

which is activated by AKT, by Rapamycin in hippocampal neurons severely inhibited neurite 

formation (Li et al., 2008).  

Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) directly antagonizes the 

function of PI3K by dephosphorylating PIP3 and thus turning off its downstream pathways. 

Consequently over-expression of PTEN in the hippocampal neurons results in the inhibition of 

axon formation (Shi et al., 2003; Jiang et al., 2005). In addition knock-down of PTEN by siRNA 

leads to multiple axon formation (Jiang et al., 2005). Interestingly, PTEN also represses injury-

induced axon regrowth by suppressing the Rapamycin sensitive mTor pathway (Park et al., 

2008).   

MAPK  

The classic MAPK pathway, the RAF-MEK-ERK cascade, is activated by the tyrosine receptor 

kinase and its downstream small GTPase Ras (Casaletto and McClatchey, 2012). More 

importantly over-expression of dominant negative RAF in the dorsal root ganglion neurons 

abolished the axon elongation induced by NGF while constitutively active RAF led to elongation 

and axon growth (Markus et al., 2002). Furthermore, it has been shown that inhibition of MEK 

by small molecule U0126 is sufficient to induce growth cone collapse in sympathetic axons 

(Atwal et al., 2003). In addition using of the ERK inhibitor PD98059 reduced nascent protein 
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synthesis in the growth cones, which may provide partial explanations for the underlying 

mechanism (Campbell and Holt, 2003). 

Another family of MAPK, the c-Jun N-terminal kinase (JNK), which can be activated by both 

the tyrosine receptor kinase pathway (Chiariello et al., 1998) and the Wnt pathway (Rosso et al., 

2005), has also been shown to play an important role in axon growth. JNK1 is involved in 

regulating microtubule assembly. In JNK1 knock-out animals, the anterior commissure tract 

formation is disrupted and both the axons and dendrites showed progressive loss of microtubules 

(Chang et al., 2003). In addition, activation of JNK has been shown to be required for 

dopaminergic neuron neurite outgrowth (Eom et al., 2005). Although ubiquitously present in the 

whole cell, the phosphorylated, activated form of JNK is enriched in the axon. And treatment of 

JNK specific inhibitor SP600125 prevented axon formation (Oliva et al., 2006). Furthermore 

JNK phosphorylates various cytoskeleton associated proteins such as SCG10 (Tararuk et al., 

2006) and Paxillin (Yamauchi et al., 2006) to regulate cytoskeleton assembly. 

GSK-3 

Glycogen synthase kinase-3 (GSK-3) family kinases are serine/threonine kinases that are 

regulated by several pathways including Wnt and RTK signaling. Unlike most kinases, GSK-3 

kinase activity is constitutively active at normal stage and turned off by phosphorylation from 

other kinases such as AKT and atypical kinase C (aPKC) (Etienne-Manneville and Hall, 2003). 

Transfection of constitutively active GSK-3β that cannot be phosphorylated and inhibited to 

hippocampal neurons prevents axon formation (Jiang et al., 2005). On the other hand, inhibition 

of the endogenous GSK-3 either by small molecule inhibitors SB216763 or SB415286 (Jiang et 

al., 2005) or siRNA (Yoshimura et al., 2005) led to multiple axon formation. One downstream 
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substrate and effector of GSK-3, Collapsin response mediator protein-2 (CRMP-2), is a 

microtubule binding protein and is phosphorylated and inhibited by GSK-3. Over-expression of 

nonphosphorylatable, constitutively active form of CRMP-2 also led to the formation of multiple 

axon in hippocampal neurons (Yoshimura et al., 2005). Moreover, several other GSK-3 substrate 

proteins such as APC, CLASP2, Map1B, and Tau are also microtubule associated proteins which 

are also located in the axons (Zhou and Snider, 2006). However, a more complete inhibition of 

GSK-3 led to a inhibition of axon inhibition (Kim et al., 2006), suggesting a fine balance of 

GSK-3 activities is required for proper axon growth (reviewed in (Kim et al., 2011b)). CLASP is 

proposed to mediate this suppression on axon growth upon severe GSK-3 inhibition as 

suppression of GSK-3 does not block axon growth in the absence of CLASP2 (Hur et al., 2011).  

Extracellular signaling molecules 

Research in C. elegans has identified several key genes that regulate axon formation. UNC-

6/Netrin binds to its receptor UNC-40/DCC were originally identified to regulate axon guidance. 

However recently it has been shown that Netrin-DCC also induce axon formation through the 

AGE-1/PI3K-DAF-18/PTEN pathway (Adler et al., 2006). In addition, Wnt protein and its 

receptor Frizzled have also been reported to determine neuron polarity and axon initiation in C. 

elegans mechanosensory neurons (Hilliard and Bargmann, 2006; Prasad and Clark, 2006). In 

mouse hippocampal neurons, BDNF has been shown to direct axon determination through 

cAMP-dependent kinase (PKA) (Shelly et al., 2007). On the other hand, the class 3 secreted 

Semaphorin (Sema3A) is able to repulse the axon initiation in cortical neurons (Polleux et al., 

1998). Another group of extracellular signaling molecules, the Neurotrohphins (NGF, NT3, 

BDNF) , promote axon growth and elongation through their receptors, the Trk receptor tyrosine 

receptor family proteins, and the downstream MAPK/PI3K/phospholipase C (PLC) pathways. 
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Another Neurotrophin receptor is the p75 neurotrophin receptor (p75NTR) which activates the 

nuclear factor κB (NF-κB) pathway (Reichardt, 2006). In addition, insulin-like growth factor-1 

(IGF-1) has been shown to promote mouse corticospinal motor neuron axon (CSMN) elongation 

via the IGF-1R and its downstream signaling pathway as inhibition of IGF-1R with neutralizing 

antibodies abolished the axon elongation in these CSMN neurons (Ozdinler and Macklis, 2006). 

 

Since the discovery of adult neurogenesis four decades ago, remarkable progress has been made 

in understanding the molecular signaling mechanisms and regulation of adult neural stem cell 

self-renewal and differentiation. In addition, it has been suggested more than 60% of total human 

genes are regulated by microRNAs (Friedman et al., 2009). However, much of the interplay 

between the extracellular signaling pathways and the intracellular regulation of neural stem cells 

remains elusive. Further understanding of the interactions that control the proliferation or 

differentiation of neural stem cells may help us to decode the regulation of the cancer stem cells 

and cancer biology, and to improvise cell-based therapy toward brain/spinal cord injury.  
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Figure 1.1  The development from neural epithelium to cortex (Kriegstein and Alvarez-

Buylla, 2009).  

The developing neuroepithelium undergoes a series of symmetrical and asymmetrical cell 

divisions which is controlled by the orientation of the mitotic spindle (Fish et al., 2006; Roszko 

et al., 2006; Morin et al., 2007). The initial newly formed neurons migrate radially toward the 

basement membrane of the neural tube by somal dislocation and later by glial-guided cell 

translocation (Nadarajah et al., 2001), and the developing neural tube becomes a stratified 

structure. The inner-most layer (near the lumen) of the developing forebrain is termed the 

ventricular zone (VZ). The radial glia cells residing in the VZ act as stem cells during neural 

development (Noctor et al., 2001). The cell bodies of RG cells reside in the VZ and have long 

ascending processes, the radial fibers, that reach the basement membrane located beneath the pia 

mater. 
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Figure 1.2  Markers expressed by different cell types in adult SVZ. 
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Figure 1.3  BMP signaling pathway (Mueller and Nickel, 2012).  

Bone Morphogenetic Proteins (BMPs) are a group of secreted glycoproteins that belong to the 

Transforming Growth Factor-beta (TGF-β) superfamily.  To date, 15 members of this subfamily 

have been identified. BMPs act by binding to the receptor tyrosine kinase BMP receptors type I 

and type II. After ligand binding, two type I and two type II receptors form a heterotetramer. The 

type II receptors then autophosphorylate and phosphorylate the type I receptors, thus creating 

binding sites for the downstream effector SMAD proteins. After activating phosphorylation by 

the BMPR two receptor-activated SMADs (R-SMADs, SMAD-1, 5, 8) form a trimer with an 

additional common-mediator SMAD (Co-SMAD, SMAD-4). The trimerized SMADs then 

translocate into the nucleus and activate target gene transcription. The inhibitory SMADs (I-

SMADs, SMAD-6, 7) can interfere with signaling by binding to SMAD-4 (Mueller and Nickel, 

2012). In addition BMP signaling can be antagonized by binding of BMPs by extracellular 

proteins Noggin and Chordin.  
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Figure 1.4  Notch signaling pathway (Giniger, 2012).  

The Notch receptors Notch1-4 are single pass transmembrane proteins. There are six ligands, 

which are also transmembrane proteins:  Jagged-1, 2 (Jag-1, 2) , Delta-like-1 through 4 (Dll-1, 2, 

3, 4). The receptor and ligand are typically expressed by adjacent cells. Upon ligand binding, the 

Notch protein undergoes two separate cleavage events. First the ADAM protease cuts at the base 

of the Notch extracellular domain. The second cleavage occurs at the base of the Notch 

intracellular domain by the γ-secretase complex thereby releasing the Notch intracellular domain 

(NICD). The NICD then migrates into the nucleus and forms a transcription regulating complex 

with two other proteins, Mastermind and CSL protein (CBF-1/RBP-Jk in vertebrates, Su(H) in 

flies, and LAG-1 in worms) to regulate target gene expression. 
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Figure 1.5  Sonic Hedgehog signaling pathway (Ribes and Briscoe, 2009).  

Sonic Hedgehog (Shh) is a member of the Hedgehog secreted protein family, which also 

includes Desert and Indian Hedgehog. In the absence of Shh, the receptor Patched-1, a twelve-

pass transmembrane protein, localized in the primary cilium of the cell inhibits Smoothened 

(Smo), a member of the seven-pass G-protein coupled receptor family, by accumulation in the 

cilium. The Gli proteins are then phosphorylated by the protein kinase A (PKA) and targeted for 

proteasome-mediated proteolysis. The cleaved, truncated form of Gli (GliR) then migrates into 

the nucleus and acts as transcriptional repressor. Upon binding of Shh, Patched-1 leaves the 

primary cilium allowing Smo to enter. The active Smo then inhibits PKA and the proteolysis of 

Gli.  Full-length Gli then enter the nucleus and promotes its target gene transcription. 
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Figure 1.6  Wnt signaling pathway (Niehrs, 2012).  

The canonical Wnt signaling pathway: In the absence of Wnt ligand, glycogen synthase kinase-3 

(GSK3) forms a destruction complex with casein kinase Iα (CKIα), Axin, and adenomatosis 

polyposis coli (APC) protein, phosphorylates β-catenin leading to its ubiquitination and 

degradation. When Wnt ligand binds the receptor, the Frizzled/Dishevelled/LRP-5/6 complex, 

the destruction complex is inhibited and relieves β-catenin from degradation. β-catenin then 

translocates into the nucleus, binds to T-cell factors (TCF), and induces its target gene expression. 

B) The non-canonical, β-catenin independent Wnt signaling pathway: Wnt binding to the 

receptor can also activate small GTPases, which in turn activate RHO kinase (ROCK) and JUN-

N-terminal kinase (JNK). This pathway, the PCP (planar cell polarity) pathway, is particularly 

important in regulating cell polarity and migration. Wnt can also activate phospholipase C, 
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which induces the increase of cytosolic Ca
2+

 concentration. High Ca
2+

 concentration 

subsequently leads to the activation CAMKII, PKC and Calcineurin. 
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Figure 1.7  Retinoic acid signaling pathway (Niederreither and Dolle, 2008).  

Retinoic acid is a non-peptide, small lipophilic signaling molecule that is either synthesized from 

retinol (Vitamin A) from the diet or diffuses from the surrounding extracellular environment. 

Uptake of extracellular retinol, bound by retinol binding protein 4 (RBP4), is aided by a 

transmembrane protein STRA6. Once in the cytosol, retinol is bound by cellular retinol binding 

protein (CRBP) and oxidized by retinol dehydrogeneses (RDHs) becoming retinaldehyde.  

Retinaldehyde is further oxidized by retinaldehyde dehydrogenases (RALDHs) becoming 

retinoic acid (RA). Cytosolic RA is bound by cellular retinoic acid binding proteins (CRABPs) 

and transported to the nucleus. In the nucleus, the free RA binds to the heterodimers of the 

nuclear RA receptors RARs (RARα, RARβ, and RARγ) and the retinoid X receptors RXRs 

(RXRα, RXRβ, and RXRγ). The active nuclear receptors then bind to the retinoic acid-

responsive elements (RAREs) and regulate gene transcription. Cytosolic RA can also be 

exported to the extracellular environment and act in autocrine/paracrine fashions. 
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Figure 1.8  Receptor tyrosine kinase (RTK) signaling pathway (Pownall and Isaacs, 2010).  

Receptors for FGF, PDGF, VEGF, and EGF belong to the receptor tyrosine kinase (RTK) 

superfamily. Upon ligand binding, receptors dimerize and the intracellular tyrosine kinase 

domains activate and transphosphorylate each other. The phosphorylated tyrosine residues thus 

create binding sites for the adapter protein Grb2. This is followed by the activation of the small 

GTPase Ras, and subsequent activation of the Raf/MEK/ERK pathway. The activated RTKs can 

also activate phosphatidylinositol-4,5-bisphosphate-3 kinase (PI3K), which in turn activates its 

downstream Akt/mTor signaling pathway. Phospholipase C-γ also binds to the phosphotyrosine 

residues on RTKs and activates the downstream signaling pathways. 
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Figure 1.9  LIF/CNTF signaling pathway (Bauer et al., 2007).  

Both LIF and CNTF are polypeptide cytokines belonging to the interleukin-6 family. LIF binds 

to a heterodimeric receptor complex consisting of one LIF receptor β (LIFRβ) and one co-

receptor gp130; while CNTF binds to a trimeric receptor complex consisting of one LIFR β, one 

gp130, and one additional CNTF receptor α (CNTFRα). Upon ligand binding, the receptor 

associated Janus-activated kinase (JAK) autophosphorylates and also phosphorylates the tyrosine 

residues on the receptors, thus creating binding sites for the signal transducing and activator of 

transcription (STAT). JAK also phosphorylates receptor bound STATs. Phosphorylated STATs 

then dimerize and translocate into the nucleus and activate gene transcription. In addition, the 

phosphorylated tyrosine residues also create binding sites and activate the MAPK and PI3K 

signaling pathways. 
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Figure 1.10  JAK-STAT signaling pathway (Arbouzova and Zeidler, 2006).  

Upon ligand binding, the receptor associated Janus-activated kinase (JAK) autophosphorylates 

and also phosphorylates the tyrosine residues on the receptors, thus creating binding sites for the 

signal transducing and activator of transcription (STAT). JAK also phosphorylates receptor 

bound STATs. Phosphorylated STATs then dimerize and translocate into the nucleus and 

activate gene transcription. In addition, the phosphorylated tyrosine residues also create binding 

sites and activate the MAPK and PI3K signaling pathways. 
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Chapter Two 

miR-410 Controls Adult Neurogenesis by Targeting Neurogenic Genes 

 

Introduction 

Both intracellular and extracellular mechanisms have been shown to maintain the neurogenic 

niches in the adult brain (review, (Ming and Song, 2011)). In fact, considerable work has 

demonstrated that dynamic interactions between these compartments regulate cell behaviors 

within the niche and ultimately its neuronal vs glial output.  In addition to transcriptional 

regulators, intracellular modulators including non-coding microRNAs have been shown to 

control proliferation, self-renewal and cell fate choice in the nervous system via their ability to 

bind and inhibit translation (or to promote degradation) of critical target genes (Yao #13). 

Cell type-specific microRNAs (He et al., 2012; Jovicic et al., 2013), which bind and suppress 

lineage specifying genes or groups of genes, are thought to play a critical role in maintaining the 

niche and controlling its response to injury.  For example, one of the most abundant microRNAs 

in the CNS, miR-124, is up-regulated at the transition from subventricular zone (SVZ) transit 

amplifying C cells to neuroblasts (A cells), thereby promoting neurogenesis (Bian and Sun, 2011; 

Bian et al., 2013b; Bian et al., 2013a). Regulatory networks are beginning to be identified—i.e., 

miR-25 can promote proliferation of neural stem cells (NSC) via its ability to regulate the IGF 

signaling pathway (Brett et al., 2011), while Sox2 regulates miR-137, which in turn targets Ezh2 
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to inhibit differentiation and promote NSC proliferation (Szulwach et al., 2010).  Although many 

genes and epigenetic mechanisms that regulate miRNAs have been identified (Ji et al., 2013), 

extracellular regulation of miRNAs, particularly within the CNS, has been less well studied. 

Despite the potential importance of microRNAs in understanding CNS development (Lang and 

Shi, 2012), disease (Eacker et al., 2009), in identifying molecular markers (Di Leva and Croce, 

2013), and potentially in therapeutic approaches (Pers and Jorgensen, 2013), the critical link 

between the extracellular compartment and microRNA expression and function is poorly 

understood (Bian et al., 2013a). In the companion paper (Morell et al., 2013), we describe a 

transgenic mouse in which expression of the BMP signaling pathway inhibitor, noggin, in SVZ 

NSC promotes neuronal and oligodendroglial differentiation, while decreasing astrocyte 

differentiation both in vivo and in vitro.  Microarray analysis of RNAs from noggin over-

expressing and control SVZs identified a novel microRNA, miR-410, which was up-regulated 

with BMP pathway inhibition.  We have determined that miR-410 is expressed in the SVZ NSC 

niche, and in mESC as they differentiate into neurons, where it inhibits neuronal differentiation 

and reverses the increase in neuronal differentiation produced by noggin expression.  Predicted 

targets of miR-410:  Elavl4, Sox1, Smad7, Tcf4 and Fgf7 were validated in luciferase assays, and 

expression of Elavl4 rescued the inhibitory effects of miR-410 on neuronal differentiation. 

 

Materials and Methods 

Animals: Noggin inducible transgenic mice were generated as described in(Morell et al., 2013). 

All animals were handled according to protocols approved by University of Michigan UCUCA. 



 

64 
 

Cell culture: the mouse embryonic cell line D3 was cultured in 10% FBS/DMEM containing 

4.5mM HEPES, 1.5mM L-Glutamine, and 0.00038% (v/v) -mercaptoethanol. The cells were 

grown on 0.1% gelatin coated tissue culture flasks and passaged one to three every other day. For 

neural differentiation, 1 x 10
5
 cells per well were plated on gelatin coated 6-well plates in 80% 

N2 medium: 20% B27 medium with 1M retinoic acid. The medium was change every other day. 

After 6 days of differentiation, the cells were fixed for immunocytochemistry or RNA extraction 

For mouse neurosphere culture: 8 to 10 week old mice were euthanized by cervical dislocation 

(n>5 per group).  The subventricular zone was then microdissected, tissue pooled and dissociated 

in 0.133% (w/v) trypsin, 0.067% (w/v) hyaluronidase and 0.69mM kynurenic acid in artificial 

cerebral spinal fluid (ACSF) (124mM NaCl, 5mM KCl, 3.2mM MgCl, 26.2mM NaHCO3, 

10mM glucose, and 0.098 mM CaCl2) at 37℃ for 30 minutes. Trypsin was stopped by adding 

1:1 trypsin inhibitor solution (0.022% (w/v) trypsin inhibitor and 0.001% (w/v) DNaseI in N2 

medium). The cell clumps were broken to single cells by trituration using fire-polished glass 

pipets.  Cells were then cultured in N2 medium supplemented with 10 ng/ml FGF2, 20 ng/ml 

EGF, and 2 g/ml heparin. Medium was changed twice each week.  

Plasmid transfection: two weeks after isolation, neurospheres were disaggregated by pipetting 

with fire-polished Pasteur glass pipettes, transfected with the miR-410 over-expression, miR-410 

sponge, with Elavl4 over-expression, or control plasmids using Lipofectamine 2000 (Invitrogen) 

following the manufacturer’s protocol.  They were grown in N2 medium supplemented with 

FGF2, EGF, and heparin for an additional week.   For differentiation, neurospheres were 

disaggregated by trypsinization in 0.25% trypsin / 1mM EDTA at 37℃ for 90 seconds followed 

by addition of trypsin inhibitor solution and trituration. Cell number was determined and 

1.5x10
4
cells per well plated in N2 medium supplemented with 1% FBS. 48-well tissue culture 
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plates were pre-coated with 6.67g/ml poly-ornithine/water solution for 2 hours at room 

temperature, then rinsed once in water.  Medium was changed on day 4 and cells were fixed on 

day 7 for further analysis. To generate miR-410 over-expressing mES cell lines, D3 cells were 

transfected with pPUS2-miR-410, as described below. Selection in 10 M puromycin was 

started 24 hours after transfection. 4 days after transfection the cells were passaged 1:10 and 

single colonies picked and expanded. 

For lentiviral transduction:  7 days after isolation, primary neurospheres were pooled and 

dissociated by repeated pipetting,then transduced with 1 x 10
6 

moi lentiviral particles per group.  

3 days post-transduction the neurospheres were plated for differentiation as described above.  

For luciferase assays: HEK293T cells were cultured in 10% FBS/DMEM and passaged 1:5 every 

other day. 0.4 g of either miR-410 over-expression or control vector and 0.4 g of either 

pmirGLO-wt-3’UTR or pmirGLO-mutated-3’UTR were transfected into 5x 10
4
 HEK293 cells in 

one well of a 24-well-plate. Cell lysates were harvested 48 hours after transfection for further 

analysis. 

DNA constructs:  the miRNA expression vector pPUS2C was made by inserting the mCherry 

coding sequence (R.Y. Tsien, UCSD) into the pUS2 plasmid (D. Turner, University of Michigan) 

between the BamHI and EcoRI sites. A separate puromycin resistance cassette was cloned into 

the second multiple cloning site. To make the miR-410 over-expression vector, 360 bp of mouse 

genomic sequence containing the full pre-miR-410 was cloned by PCR (FW: 

TAGAATTCGTGCTGCCTGTGTCAACCCTACTC; REV: 

TATCTAGAATCTGGCCAATGCTTCGTG) into pPUS2C between the EcoRI and XbaI sites. 

The miRNA sponge targeting miR-410 was made as described previously (Ebert et al., 2007) and 
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inserted into the pPUS2C plasmid between the EcoRI and XbaI sties. The efficacy of the miR-

410 over-expression vector, pPUS2C-miR410, and the miR-410 sponge vector, pPUS2C-410SP, 

was tested in the mouse ES cell line D3. The fulllength mouse Elavl4 coding region without the 

3’UTR was cloned by PCR and inserted into the pCIG plasmid (Ben Allen, University of 

Michigan).  

Lentivirus: miR-410 over-expression, miR-410 sponge, or scrambled control sequence were 

cloned into the pLentilox-eGFP backbone vector (UofM Vector Core). Functional virus particles 

were packaged in 293FT cells (Invitrogen) by co-transfecting the expression vectors with 

packaging plasmid pMD2.G and psPAX2 (Addgene) as previously described (Barde et al., 2010). 

For luciferase assays:the fulllength or truncated 3’UTR of miR-410 target candidate genes was 

amplified by PCR and cloned into the pmirGLO plasmid (Promega, WI) between NheI and SalI 

sites according to the manufacturer’s protocol. For genes with a 3’UTR shorter than 800 bp, the 

full length 3’UTR was cloned into the vector. For genes with a 3’UTR longer than 800 bp, a 

region at least 800 bp long containing the miR-410 site in the center was cloned. Vectors 

containing a 3’UTR with a mutated miR-410 site (TTAATTAA) were made by PCR based site-

directed mutagenesis.  Luciferase activity was analyzed using the Dual-Luciferase Reporter 

Assay System (Promega) following the manufacturer’s protocol and using a Lumat LB 9507 

luminometer (Berthold Technologies). 

In situ hybridization and immunocytochemistry: For in situ hybridization, anti-sense RNA probe 

against the mature form miR-410 was synthesized (Invitrogen, CA). Eight week old wildtype 

animals were anesthetized using Ketamine and Xylazine and perfused with PBS followed by 4% 

PFA. Brains were then dissected and embedded in OCT followed by cryosectioning at 10 µm. In 
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situ hybridization was performed as described previously (Deo et al., 2006). For 

immunohistochemistry, cells were fixed in 2% PFA at room temperature for 15 minutes, 

permeabilized in 0.1% Triton X-100/0.1% sodium citrate in PBS for 10 minutes, blocked with 

10% normal donkey serum / 0.5% Triton X-100/0.1% sodium azide in PBS. The cells were then 

incubated with primary antibodies at 4C overnight. The next day the cells were washed in PBS 

and incubated with secondary antibodies for 30 minutes at room temperature. Nuclear staining 

was done by incubating the cells in 1 M Hoechst 22358 at room temperature for 5 min.  

Antibodies included:  III tubulin (Tuj1 antibody; 1:1000, Covance); GFAP (1:500, Santa Cruz); 

and Olig2 (1:1000, Millipore).  Secondary antibodies were obtained from Jackson labs and used 

at 1:400-1:1000.  

Protein extraction and western blotting:  Total cell lysates were collected in RIPA buffer from 

neurospheres 7 days post transfection with either control or miR-410 over-expression plasmids 

as described (Sambrook et al.). After electrophoresis, β-actin (1:1000, Sigma) and Elavl4 (1:200, 

Millipore) were blotted with antibodies respectively. 

RNA extraction and RT-PCR: Total RNA was extracted from microdissected SVZ or cells in 

culture using Trizol (Invitrogen) following the manufacturer’s protocol.  1 g of DNase-treated 

RNA was used for RT-PCR either using miScript Reverse Transcription kit (Qiagen) for miR-

410 or Verso cDNA kit (Thermo Scientific) for other genes. 

Quantitative PCR and primer design: Quantification of miR-410 expression was done using the 

miScript quantification PCR system (Qiagen) following the manufacturer’s protocol. For qPCR 

on other genes, primers were designed using Lasergene software (DNASTAR) and verified by 

the NCBI primer-BLAST program (http://blast.ncbi.nlm.nih.gov). qPCR was done in triplicate 

http://blast.ncbi.nlm.nih.gov/
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using the Abgene SYBR system (Thermo Scientific) on Bio-rad iCycler qPCR system (Bio-rad). 

Data were then analyzed by the ΔΔCt method. Primers on request. 

Quantification: To assess the number of neurons and astrocytes present following neurosphere 

and ESC differentiation, photomicrographs (20X) were taken along two perpendicular lines 

bisecting the culture dish: from 0 to 180 and along a second line from 90 to 270.  Numbers of 

neurons, astrocytes and total cell numbers were counted from at least three wells each from three 

independent experiments (n>9 wells) and analyzed using Students t-test. The nuclear expression 

of oligodendrocyte precursor maker Olig2 was measured and quantified using a custom written 

MATLAB (MathWorks Inc., MA) script. Images of Hoechst stained cells were loaded and a 

binary image of nuclear regions was created employing a threshold found by Otsu’s method 

(Otsu, 1979). The binary image was cleaned up by morphological image operations creating a 

mask image. The average intensity of Olig2 fluorescence was measured over each nuclear 

mask.Total numbers of Olig2-positive oligodendrocyte precursors were counted from at least 

two wells each from three independent experiments (n>6) and the percentage of Olig2+ nuclei 

were analyzed as described. To assess neurite differentiation, processes stained using β-III 

tubulin were scored as:  lacking a neurite, having a neurite less than the length of the cell body, 

having a neurite twice or greater in length than the cell body.  At least 50 neurons were counted 

from three replicate wells with three biological replicates (i.e., 450 cells per experimental group:  

miR-410 over-expression, Scrambled control, GFAP control, microRNA sponge). 

Computational analysis: Potential miR-410 targets were identified by searching four databases: 

TargetScan (http://www.targetscan.org), ElMMo (http://www.mirz.unibas.ch/ElMMo2), PicTar 

(http://pictar.mdc-berlin.de)  and MicroCosm (http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5).  

http://www.targetscan.org/
http://www.mirz.unibas.ch/ElMMo2
http://pictar.mdc-berlin.de/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5
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Results 

Noggin controls miR-410 expression. We previously identified this previously uncharacterized 

microRNA, miR-410, in RNAs from the SVZ NSC zone of a transgenic mouse in which Noggin 

expression can be inducibly driven in Nestin positive NSCs (Morell et al., 2013).  Over-

expression of Noggin in NSC increased neuronal and oligodendrocyte differentiation while 

down-regulated the expression of miR-410. miR-410 is a 21 nt microRNA embedded in the 

miRNA-encoding gene Mirg.  miR-410 was originally described as restricted to the developing 

central nervous system (Wheeler et al., 2006; Han et al., 2012), suggesting it may have important 

roles in neurogenesis. To examine expression of miR-410 in the adult SVZ we carried out in situ 

hybridization using an antisense probe against the mature miR-410 on sections of 8-week mouse 

SVZ. miR-410 was highly expressed in the SVZ, with low expression in scattered cells in the 

parenchyma of the septum (Figure 2.1.A).  We also compared the expression levels of miR-410 

in Noggin induced and un-induced control adult SVZ using quantitative-PCR against the mature 

form of miR-410. MiR-410 was down-regulated 16-fold in the Noggin induced SVZ, suggesting 

miR-410 expression may be  regulated by BMP signaling, and validating our microarray 

analyses.  

Over-expression of mir410 reduces neuronal differentiation and the number of Olig2 

positive cells in neurosphere differentiation assays.  To test the function of miR-410 in 

neuronal and glial differentiation, we over-expressed and inhibited 410 function in primary 

neurospheres obtained from adult NSC.  We generated lentivirus expressing miR-410 and eGFP, 

a miR-410 sponge also expressing eGFP, a scrambled miRNA control with eGFP, or eGFP alone. 
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To obtain neurospheres, the SVZ was micro-dissected from 8 to 12 week old FVB/N wildtype 

mice, dissociated, pooled and cultured in N2 medium in the presence of FGF-2, EGF, and 

heparin. We cultured primary neurospheres from SVZ and on day 7, the neurospheres were 

transduced with lentivirus described above; 72 hrs later more than 90% of the cells expressed 

eGFP (not shown). Transduced neurospheres were differentiated and stained for GFAP or -III 

tubulin antibody (Tuj1, Figure 2.2.A). Neurospheres transduced with lentivirus carrying either 

eGFP alone or miR-Scrambled did not show significant differences in neuronal differentiation 

(23.6 ± 3.5% vs 21.5 ± 1.1%, respectively, p <0.24), and were combined as a single control 

group. Control neurospheres yielded 22.5 ± 2.8% neurons, and over-expression (OE) of miR-410 

significantly reduced that percentage to 14.9 ± 1.3% (p ≤ 7.5 x 10
-4

, Control vs OE).  Exposure 

to the miR-410 sponge significantly increased the number of Tuj1+ neurons to 33.8 ± 1.8% (p ≤ 

4.9 x 10
-5

compared to the control group).  As expected, the majority of the cells formed in the 

neurosphere differentiation assay in control conditions were astrocytes (77.5 ± 3.5%; eGFP alone: 

76.4 ± 3.5%; scramble: 78.5 ± 1.1%). Over-expression of miR-410 significantly increased the 

percentage of astrocytes to 85.1 ± 1.3%(p ≤ 7.5 x 10
-4

 compared to the control group), while 

expression of the miR-410 sponge decreased the percentage of astrocytes to 66.2 ± 1.8% (p ≤ 4.9 

x 10
-5

 compared to the control group) (Figure 2.2.B). 

We also examined the function of miR-410 in oligodendrocyte differentiation. Over-expression 

of miR-410 in NSC significantly reduced the Olig2-positive cell number from 7.7 ± 1.1% in the 

control group to 4.9 ± 2.5% (p < 0.023). However, miR-410 loss of function via lentiviral miR-

410 sponge vectors did not significantly affect OPC commitment (7.7 ± 1.1% vs 6.0 ± 2.0%, p < 

0.08) (Figure 2.2.D), suggesting that regulation of oligodendrocyte differentiation by miR-410 

may be asserted through another mechanism or with different kinetics.  
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Over-expression of miR-410 inhibits neural differention of mESC.  To examine the function 

of miR-410 in neural differentiation in a pluripotent stem cell model, we generated two 

additional mouse embryonic stem cell lines (#20 and #24) over-expressing miR-410. The miR-

410 over-expressing cells and the parental D3 cells were plated and differentiated in defined 

neural induction media for 6 days before fixation and staining for β-III-Tubulin (Tuj1). Over-

expression of miR-410 inhibited the differentiation of neurons (β-III-Tubulin/Tuj1 positive after 

6 days of neural differentiation compared with the control cell line D3 (Figure 2.3.A). To obtain 

additional quantitative data, neuronal numbers were quantified using q-RT-PCR. Over-

expression of miR-410 reduced the expression of the early neuron marker, β-III-Tubulin, 4.3 fold 

and the neural progenitor cell marker, Sox3, 15.3 fold compared to the parental cell line D3, 

while the expression of the astroglial marker GFAP was increased 2.5 fold in the miR-410 over-

expressing line. The two cell lines showed no difference in the expression of markers of 

pluripotency (Oct4), endoderm (FoxA2), mesoderm (Brachyury),   (Figure 2.3.B) while the 

trophectoderm marker Cdx2 was not detected in either cell lines.  

miR-410 acts downstream of Noggin/BMP.  To determine the relationship of miR-410 to 

Noggin expression in BMP signaling, we transfected mouse primary neurospheres with miR-410 

expression vectors while Noggin protein was added to the culture media (Figure 2.4). As 

expected(Morell et al., 2013)Noggin alone promoted neuronal differentiation (from 27.3 ± 1.5% 

to 37.5 ± 1.1%, p <3.3 x 10
-4

), while co-overexpression of miR-410 with Noggin treatment 

partially reduced the increase in Tuj1+ neurons observed in Noggin alone group (29.6 ± 0.9%, p 

<2.9 x 10
-4

) (Figure 2.4.A). Similarly, Noggin treatment alone decreased astrocyte number (from 

72.6 ± 1.6% to 62.5 ±1.1%, p <4.3 x 10
-4

), while over-expression of miR-410 partially reversed 

the decrease in astrocyte cell number (to 70.3 ± 1.0%, p < 3.7 x 10
-4

). These results suggest that 
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miR-410 functions downstream of the BMP signaling pathway. However since over-expression 

of miR-410 only partially rescues the phenotypes caused by Noggin, other factors, or timing, 

may play a role in the ability of Noggin to promote neuronal differentiation. 

mir410 down-regulates  Elavl4 expression.  To examine the mechanism(s) underlying the 

ability of miR-410 to affect NSC lineage differentiation, we analyzed potential target candidates 

of miR-410 using four databases: TargetScan (http://targetscan.org), ElMMo 

(http://www.mirz.unibas.ch/ElMMo), Miranda (http://www.microrna.org), and Pictar 

(http://pictar.mdc-berlin.de). Of the predicted candidates, we selected seven genes known to 

function in neurogenesis or in self-renewal to test in luciferase assays.  The full length 3’UTR of 

the candidate targets was cloned after a luciferase coding region into a test plasmid. As an 

unbiased control, the predicted seed-binding regions of the 3’UTRs were mutated to a PacI 

restriction enzyme site. The luciferase test plasmids were then co-transfected with a miR-410 

expression vector into HEK293T cells, which do not express miR-410 (unpublished data). Over-

expressed miR-410 should target the wildtype 3’UTR and down-regulate luciferase expression, 

sparing the mutated 3’UTR. The efficiency of miR-410 induced gene down-regulation was 

quantified by luciferase activity. Among the genes tested, 3’UTR of Zfx was not targeted by 

miR-410, the 3’UTR of Musashi-2 actually up-regulated luciferase expression, while miR-410 

down-regulated luciferase expression from Elavl4, Sox1, Tcf4, Fgf7, and Smad7 (Figure 2.5.A).  

mi-410 controls neuronal differentiation via Elavl4. Given its striking role in Drosophila 

neurogenesis, and our luciferase results, we chose to determine if Elavl4 was functionally 

targeted by miR-410 in neurosphere assays.  In western blot, Elavl4 protein expression level was 

decreased approximately 45% in neurospheres over-expressing miR-410 compared to control 

neurospheres (Figure 2.5.B).  To determine if miR-410 affects NSC lineage decision by 

http://pictar.mdc-berlin.de/
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regulating Elavl4 expression, we co-transfected neurospheres with the miR-410 expression 

vectors and Elavl4 vectors which contain the Elavl4 coding sequence without the wildtype 

3’UTR. The transfected neurospheres were then differentiated as described above and stained to 

identify βIII-tubulin+ neurons (Figure 2.6.A). Neurospheres transfected with control vectors 

generated 25.2 ± 1.6% neurons. Over-expression of miR-410 decreased the percentage of 

neurons to 20.0 ± 1.1% (p ≤ 4.1 x 10
-3

), over-expression of both miR-410 and Elavl4 restored 

neuronal differentiation to control levels (27.6 ± 1.4%; p ≤ 0.1). Over-expression of Elavl4 alone 

increased the percentage of neurons to 39.7 ± 1.7% (Figure 2.6.B).These data suggest that miR-

410 inhibits neuronal fate by down-regulating the expression of a crucial neuronal gene Elavl4, 

as over-expression of a miR-410-resistent Elavl4 rescued the reduction in neuronal fate produced 

by miR-410. 

miR-410 alters neuronal morphology .   Neurons differentiated from adult neurospheres 

typically have multiple long, highly branched cell processes (Figure 2.7.A, lower right), while 

many neurons exposed to miR-410 often had very short, unbranched processes.  To quantify 

these observations, we grouped the neurons into three categories:  neurons with processes longer 

than the soma (Group 1), those with a second neurite that was shorter than the cell body (Group 

2), and cells lacking a second process (Group 3). Quantified in Figure 2.7.B, over-expression of 

miR-410 led to a significant increase in the number of neurons without obvious neurites 

compared with pooled GFP/scrambled controls (Type 3, 50.8 + 11.3% vs 10.3 + 0.7%, p < 3.8 x 

10
-4

) and a decrease in the number of neurons with neurites longer than the length of the cell 

body (Type 1, 29.8 + 8.3% vs 75.8 + 2.0%, p < 3.7 x 10
-5

).  There was no significant differences 

between control and sponge groups (Type 1, 75.8 + 2.0 vs 81.0 + 4.0, p < 0.06; Type 3, 10.3 + 
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0.7% vs 6.9 + 4.5%, p < 0.2), and no significant differences in the number of neurons with short 

processes (Group 2).   

 

Discussion 

We have identified and begun to characterize a novel miRNA, miR-410, which on inhibition of 

BMP signaling by Noggin, is down-regulated in the adult SVZ. Over-expression of miR-410 in 

SVZ neurospheres inhibited neuronal differentiation and increased the number of astrocytes 

produced. Loss of function of miR-410 had the opposite effect – promoting neuronal 

differentiation at the expense of astrocyte formation. While co-expression of miR-410 with 

Noggin rescued the increase in neuronal differentiation caused by Noggin, suggesting that miR-

410 functions downstream of BMP signaling. To understand the mechanisms underlying these 

effects, we tested multiple candidate targets of miR-410: Elavl4, Sox1, Smad7, Tcf4, and Fgf7 

were down-regulated by miR-410.  In fact, co-expression of Elavl4 (lacking the 3’UTR) also 

reversed the decrease in neuronal differentiation caused by miR-410.  Surprisingly, we also 

observed that over-expression of miR-410 had an impact on neuronal morphology, with miR-410 

over-expressing neurons characterized by processes that were shorter and less branched, possibly 

via its ability to affect Pumilio proteins (Fiore et al., 2009).  

Although the functions of miRNAs in neurogenesis have been widely studied (De Pietri Tonelli 

et al., 2008; Cheng et al., 2009; Zhao et al., 2009; Szulwach et al., 2010), there is little 

information regarding crosstalk between exogenous growth factors and miRNA function (Terao 

et al., 2011; Wang et al., 2012; Kao et al., 2013).  Here we demonstrate that the BMP signaling 

pathway plays a role in NSC lineage decision via regulation of miR-410 and its target genes. 
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miR-410 is encoded in the miRNA containing gene Mirg, a member of the maternally imprinted 

Dlk2-Gtl2 gene cluster, which is enriched in the brain (Tierling et al., 2006; Han et al., 2012).  

To identify binding sites that might control its expression, we analyzed the 1.2 kb enhancer 

region encompassing from 1000 bp upstream to 200 bp downstream of the Mirg transcription 

start site (Figure 2.8.A). We identified three GG-C/A-GCC GC-rich BMP-specific Smad binding 

elements (Morikawa et al., 2011), in addition to 10 Smad consensus binding motifs 

GTCT/AGAC (Massague et al., 2005). Current investigations are in progress to determine if 

BMP-specific Smad 1/5/8 signaling directly regulates the expression of Mirg in luciferase 

reporter assays. 

Although the astrocyte has been assumed to be the predominant cell fate of adult SVZ 

neurospheres (Li et al., 2010), few miRNAs have been shown to regulate astrocyte 

differentiation (Zhang et al., 2013), unlike the many miRNAs that appear to regulate neuronal 

cell fate (Cheng et al., 2009; Aranha et al., 2011).  BMP signaling also plays an important role in 

oligodendrocyte differentiation, as interfering with Smad signal transduction (Colak et al., 2008) 

or application of another BMP inhibitor, Chordin, can redirect neuronal progenitors to an 

oligodendrocyte fate (Jablonska et al., 2010).We have observed that miR-410 over-expression 

leads to a reduction in OPC numbers. However miR-410 loss of function did not alter OPC 

differentiation. This suggests that miR-410 may inhibit oligodendrocyte lineage commitment 

through a second mechanism, and/or there are additional controls on OPC differentiation, since 

removing miR-410 alone was not sufficient to promote oligodendrocyte differentiation.  

miR-410 expression was down-regulated in the adult SVZ after Noggin over-expression in our 

Noggin inducible transgenic animals (Morell et al., 2013). Noggin was initially characterized by 

its ability to rescue the phenotype of UV light-dorsalized embryos (Smith and Harland, 1992; 
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Lamb et al., 1993; Hemmati-Brivanlou et al., 1994; Sasai et al., 1995). In the adult SVZ, Noggin 

has previously been reported to be expressed in ependymal cells where it has been suggested to 

act as a “brake” on neurogenesis (Lim et al., 2000; Colak et al., 2008), and to control lineage 

progression during development (Smith and Harland, 1992; Lamb et al., 1993), following injury 

(Cate et al., 2010), and in aging (Bonaguidi et al., 2008). In addition, inactivation of BMP 

signaling by small molecule inhibitors such as SB-431542, LY-364947, and Dorsomorphin are 

widely used in the generation of neural progenitor cells from ESCs and hiPS cells (Vogt et al., 

2011; Mak et al., 2012). It is likely that one mechanism involved in the ability of Noggin to 

regulate lineage differentiation may be via its ability to control miR-410 expression. 

Elavl4/HuD is a member of the Elav-like RNA binding protein family. Elav, or embryonic lethal 

abnormal vision, was originally identified in Drosophila. Of the four mammalian Elav homologs, 

Elavl1, or HuA/R, is ubiquitously expressed and has been proposed to play a role in mRNA 

stability (Brennan and Steitz, 2001). The other three family members, Elavl2 (HuB/Hel-N1), 

Elavl3 (HuC), and Elavl4 (HuD) are restricted in their expression to neurons (Okano and Darnell, 

1997), and Elavl4 is expressed in NSC isolated from adult SVZ (Figure 2.5.B). Recently the 

neuron-specific Elav-like proteins have been shown to recognize and bind GU and AU rich 

sequences in the 3’UTR and intronic regions of target mRNA transcripts (Ince-Dunn et al., 2012). 

These proteins are also crucial in regulation of mRNA stability and alternative splicing.  AU-rich 

sequences are common in the 3’UTR; 10% of total cellular mRNAs are estimated to have AU-

rich elements in the 3’UTR (Halees et al., 2008). Elavl4 has been reported to stabilize several 

genes crucial in proliferation and neuronal differentiation including: p21 (Joseph et al., 1998), N-

Myc (Manohar et al., 2002), Musashi1 (Ratti et al., 2006), NGF, Neurotrophin 3, and BDNF 

(Lim and Alkon, 2012).  Several groups have employed CLIP/microarray approaches to identify 
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other downstream targets of Elavl4 (Bolognani et al., 2010; Perrone-Bizzozero et al., 2011; Ince-

Dunn et al., 2012). Interestingly, in addition to transcripts involved in neural development, 

Elavl4 regulates a wide range of genes that control RNA processing, cell signaling, vesicle 

transport and neurotransmitter biosynthesis, suggesting that miR-410 may be involved in many 

other crucial cellular functions.  A preliminary FACS sort of hGFAP-EGFP+ cells from 

uninduced SVZ determined that miR-410 expression was highest in hGFAP+ (B cells) 

(unpublished data); understanding the miR-410 expression kinetics in different cell types of the 

SVZ will inform in vivo approaches and may suggest novel therapeutic strategies.. 

In addition to Elavl4, Sox1, Smad7, Tcf4, and Fgf7 were also identified as targets of miR-410. 

All have been implicated in neurogenesis.  We have previously reported that inhibition of Tcf4 

prevents the terminal differentiation of mESC to β-III tubulin+ neurons (Slawny and O'Shea, 

2011), suggesting miR-410 may also control a NSC lineage decision through the Wnt signaling 

pathway. The fibroblast growth factor family has long been known to regulate adult neurogenesis 

(Gage et al., 1995; Palmer et al., 1995; Tao et al., 1997; Jin et al., 2003). Although Fgf7-null 

mice are viable, Fgf7 is essential for proper inhibitory synapse formation in hippocampal CA3 

neurons (Terauchi et al., 2010), and Fgf7- null animals exhibit increased dentate neurogenesis 

(Lee et al., 2012). Smad7 is one of the two inhibitory Smad proteins (Massague et al., 2005). 

Consistent with our results, NSC isolated from adult Smad7-null animals exhibited decreased 

neuronal differentiation (Krampert et al., 2010). Sox1, a member of the SoxB1 family of HMG-

box DNA binding proteins, is one of the earliest markers of the neural ectoderm (Pevny et al., 

1998). NPCs isolated from Sox1-null mice form neurospheres, but are deficient in neuronal 

differentiation (Kan et al., 2007), while over-expression of Sox1 in E17 neurospheres promotes 

neuronal differentiation (Kan et al., 2004). These findings suggest that miR-410 may also control 
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NSC neuronal fate through the regulation of Sox1 or other critical gene transcripts. The detailed 

interaction of these factors with miR-410 will require further clarification. 

We propose that in the adult SVZ, in the absence or low levels of Noggin, BMP proteins 

expressed by astrocytes and NSC bind and activate the BMPR, presumably BMPR-1A, 

activating its downstream SMAD proteins. Activated SMADs up-regulate the expression of the 

miRNA coding gene Mirg which encodes miR-410. Higher levels of miR-410 then bind the 

transcripts of its targets Elavl4, Sox1, Tcf4, Fgf7 and Smad7 to decrease their expression levels. 

Attenuated expression of Elavl4, and likely Sox1, directly inhibits neuronal lineage 

differentiation. In addition, down-regulation of Smad7 may further enhance Smad signal 

transduction, forming a positive feedback loop and strengthening lineage choice.  Noggin, 

produced by the ependymal cells in the SVZ, binds BMP proteins and inhibits downstream 

signaling, reducing expression of miR-410. The reduction in miR-410 de-represses expression of 

its target genes, increases levels of Elavl4, which promotes neuronal differentiation of NSC. At 

the same time higher levels of Smad7 further tunes down BMP signaling through a positive 

feedback loop enhancing/reinforcing the neuronal fate decision (Figure 2.8.B). 

miR-410 has recently been suggested to be a prognostic marker in neuroblastoma (Gattolliat et 

al., 2011); patients with high miR-410 expression levels having higher survival rates. miR-410 

also targets the hepatocyte growth factor receptor MET to regulate proliferation and invasion of 

glioma cells (Chen et al., 2012). We have observed that primary human glioblastoma cells 

express low levels of miR-410 (YCT, XF, KM, SO, unpublished data), implying that miR-410, 

in addition to regulating lineage commitment, may also control proliferation and cancer stem cell 

behavior.  Thus miR-410 may provide a new mechanism involved in the essential choice by NSC 
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between self-renewal and differentiation. Finally, further elucidation of miR-410 function may 

identify novel approaches to CNS injury and cancers. 
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Figure 2.1  miR-410 expression. 

A. In situ hybridization localization of miR-410 in transverse sections from the SVZ of an 8-wk 

old mouse. miR-410 is expressed diffusely in the anterior SVZ and in scattered cells in the 

parenchyma of the striatum.  Control = no probe.  LV = lateral ventricle, cc = corpus 

callosum. 

B. miR-410 expression was down-regulated 16-fold following in vivo induction of noggin 

expression. After 8 days of Noggin transgene induction, the SVZ was microsurgically 
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dissected from 5 induced animals and 5 un-induced mice, then total RNA extracted for q-

RT-PCR.  
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Figure 2.2.Effects of miR 410 over-expression and inhibition on neuron, astrocyte and 

oligodendrocyte differentiation. 

A. Primary neurospheres isolated from 8 week old mice were transduced with vectors carrying 

either eGFP alone, a scrambled miRNA control, miR-410, or the miR-410 sponge. After 72h, 

the neurospheres were dissociated and plated for7 days of differentiation.  Cells were fixed 

and immunohistochemical localization of -III tubulin (Tuj1 antibody, neurons) and GFAP 

(astrocytes) carried out. There was widespread differentiation of GFAP positive astrocytes 

in all culture conditions (A,C,E), and differentiation of Tuj1 + neurons in control cultures (B) 

and in the presence of the microRNA sponge (F), but few neurons differentiated when miR-

410 was over-expressed (D). 

B,C,D. Quantitative analysis indicated that over-expression of miR-410 significantly inhibited 

neuronal differentiation (Figure 2.2.B), promoted astrocyte differentiation (Figure 2.2.C), 

and reduced the number of Olig2-positive cells (Figure 2.2.D). Conversely,miR-410 loss of 

function via the miR-410 sponge increased neuronal differentiation  (Figure 2.2.B) and 

reduced astrocyte differentiation (Figure 2.2.C), but did not affect OPC commitment (Figure 

2.2.D).  Percentages of positive cells are expressed as mean + SD, * = p < 0.01 
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Figure 2.3  Effects of miR-410 over-expression on mouse ESC differentiation. 

A.   Two mouse embryonic cell lines (#20 and #24) that over-express miR-410 (20- and 6-fold 

respectively) were generated. The miR-410 over-expressing cells and the parental D3 cells 

were plated and differentiated in defined neural media for 6 days before fixation and 

localization of Sox3 or β-III-Tubulin (Tuj1 antibody). Over-expression of miR-410 inhibited 

Lineage Markers

beta-III
-Tubulin

Sox3
Oct4

FoxA2

Brachyury
GFAP

F
o

ld

0.01

0.1

1

10

D3 

line #20 



 

85 
 

the differentiation of Sox3+ neural precursors and neurons (Tuj1/β-III-Tubulin positive) 

after 6 days of neural differentiation compared with the control cell line D3. 

B.  The reduction in neural differentiation in line #20 compare to the parental line D3 was 

quantified by q-RT-PCR. Over-expression of miR-410 reduced the expression of the early 

neuron marker, β-III-Tubulin 4.3 fold compared to the parental cell line D3. There was no 

significant difference in the expression of the pluripotency marker Oct4, the endoderm 

marker FoxA2, or the mesoderm marker Brachyury while the astroglial marker GFAP was 

increased 2.5 fold in line 20. The trophoblast marker Cdx2 was not detected in either cell 

line. 
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Figure 2.4  Effects of exogenous noggin protein on neuronal differentiation of miR-410 

over-expressing NSC. 

Neurospheres were transfected with miR-410 over-expression vectors + Noggin protein and 

grown in suspension for 7 days.  The neurospheres were then dissociated and plated for 7 days of 

differentiation, then fixed and stained for -III tubulin (Tuj1 antibody, neurons) and GFAP 

(astrocytes) and cell numbers counted.  Percentages of positive cells are expressed as mean + SD, 

* = p < 0.01. 

A. Noggin treatment strongly promoted neuronal differentiation. However miR-410 over-

expression partially rescued the increase in Tuj1-positive neurons caused by Noggin, 

suggesting miR-410 functions downstream of BMP signaling. 

B. Noggin treatment alone inhibited astrocyte differentiation. miR-410 over-expression partially 

rescued the decrease in GFAP-positive astrocytes caused by Noggin. 
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Figure 2.5  Target validation.   

A. Computer predicted miR-410 target candidates were examined using luciferase reporter 

assays. The 3’UTR of the candidate genes was cloned and inserted after the luciferase 

reporter. The predicted seed sequence region in the 3’UTR was mutated to create the mutant 

control. Among the genes tested, Elavl4, Sox1, Tcf4, Fgf7, and Smad7 were verified as 

targets of miR-410, while Zfx and Msi2 were not.  Values are expressed as mean + SD, ** = 

p < 0.01. 

B.  Neurospheres over-expressing miR-410 or a control vector were lysed and the whole cell 

lysate was blotted against Elavl4. Elavl4 protein expression was down-regulated 

approximately 45% compared to the control, confirming that Elavl4 is a downstream target 

of miR-410. 
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A 

B 

Figure 2.6  Elavl4 rescues the neuronal phenotype caused by miR-410 over-expression. 

Neurospheres were transfected with miR-410 over-expression and Elavl4∆3’UTR vectors. After 

7 days, the neurospheres were dissociated and plated for differentiation, then after 7 additional 

days in culture the cells were fixed and localization of-III tubulin (Tuj1 antibody, neurons) 

carried out and positive cells counted. 

A, B. Compared to controls, over-expression of miR-410 alone reduced the numbers of neurons 

formed, while over-expression of Elavl4 without the endogenous 3’UTR with miR-410 

rescued the decrease in the number of Tuj1 + neurons caused by miR-410.  Over-expression 

of Elavl4 alone strongly promoted neuronal differentiation.  There was no significant 
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difference between the empty control vector and the miR-scrambled vector.  Data are 

expressed as mean percentage + SD.  * = p< 0.01.  
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Figure 2.7  miR-410 over-expression produces alterations in neurite morphology. 

A. Neurospheres were transduced with lentivectors carrying miR-410 and control vectors. After 

72 hours the neurospheres were dissociated and plated for differentiation. After 7 days of 

differentiation the cells were fixed and immunohistochemical localization of -III tubulin 

(Tuj1 antibody, neurons) carried out.  Neurons over-expressing miR-410, compared to the 

control neurons, were characterized by shorter, unbranched neurites. A-H. Neurons over-

expressing miR-410. I. Control neurons. 

B. Neurites from each group were characterized and counted from at least 100 neurons per well, 

3 wells per group. Type I: neurons with no processes. Type II: cells with neurites shorter 

than the length of the soma. Type III: neurons with processes longer than the cell body.  

Data are presented as mean + SD, ** p < 0.01.   
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CATCACCTTTGGGTCTCTGCCTGTGGAGCCAGCTTGGCACAGAGGCCGAGGCGCCTTTCAACATTCTGTTTCCTCTGCCTGA

GAAGCGGGGATTTTTTTTTTTTTTTTTGTCTTGTAATCTGTTTCAGATGAGCCAAGCAGCAAGCCTGGTCCTTCCCGGAACT

CAGTCCTTCTTTGGTATTTAAAAGGTGGATATTCCTTCTATGGTTACGTGCTTCCTGGATAATCATAGAGGAACATCCACTT

TTTCAGTATCAAATGTCGCTCTGGAACTATTTCTGGAAGATTCTGTAGGGTCTGGGGCTGGGGGGGAAGATCATGTAATAAT

GAGTGGGGCGTGGCCAGAAATGGCCTTAAGAAGCCAACTGAGTGTTAGTCTGATCTGGGTCTGATATACCGCCTCTTTGGGC

AGCCTGCTCACTCTGCCCAGTGGACTTCCATTTCTGTCGACACAAGCACAAGCTCACAGCATCCTGGATCGAGTTGTTCTTT

GATATTTAAAAGGTAGATTCTCCTTCTATGAGTACAATATTAATGACTAATCGTAGAGGAAAATCCACGTTTTCAGTATCAA

ATGCTGCTTGGGAAACCACCGAGGACATGACATCTTCACCGAAGAAAGCGTGCTATCCGTCGTCTTCCTGGGCTTGGCGGGG

ATAGATAGATTTGTGACTTGTGTGATGTGTGCCTATATGCCAGCCTCTCCCAGTGATGTGTTCTGAGACCACTGTGTTCTTT

ATATCCCTTCTCTGACCTCAAATGAAGTTGTTTCTCTGTGTGCTCACCATGTGTATGTTTTCTGGAGTCGGCTTCTTTTTTC

TGTAGCGATATGTCTTGGAGAGCTCCTGGGTGGGCCATCATTTTGGGTAAGGGCGCCTTGGGTAACCCTTTGGGGGGTGTGC

GGAGAAGGGGGGGCATGTGAATCATCTGGAAGTGTAACCTCCAAATGTGCCCCCTCAGGCTCACATCCGGACCGTCATCGCA

TCTGTCATCGCACCGGACCAGCTCTCCCCAGCGCTCCTTATCGTTTGCTACTTGAAGAGAGGTTATCCTTTGTGTGTTTGCT

TTACGCGAAATGAATATGCAAGGGCAAGCTCTCTTCGAGGAGCAAATGCTGCCTGGAAGCATGGCTGGCGGCGGCCTGGGCC

TAGCAGAAGGGTGTGGTCTCTCCAGGGTAAGTAAATGCATGGTGGGCCACCGAGCTTGAGCTCCTTCTTCGTCTGACCCTAC

AGATCTCACACATGCTTCTGAGAACTTTCTAGAAAAAAATGCTGATCCTAAGGGCTGTTCTTGGTAGAG 
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Figure 2.8  Modeling 410 behavior 

A. The Mirg promoter (-1000 to +299bp from the transcription start site) was analyzed to 

identify possible Smad binding sites. Three GG-C/A-GCC GC-rich BMP specific Smad 

binding elements (highlighted bold) in addition to 10 Smad consensus binding motifs 

GTCT/AGAC (underlined bold) were identified in the region. 

B.  Proposed model of how Noggin, BMP, and miR-410 may regulate NSC differentiation. 

BMP signaling activates the expression of miR-410 (and other astroglial genes). miR-410 

down-regulates Smad7, in turn creating a positive feedback loop, and other pro-neuronal 

genes including Elavl4, Sox1, Tcf4, and Fgf7. When Noggin is present it directly binds and 

inhibits BMP proteins from binding BMPRs. Inactive BMP signaling leads to low level 

expression of miR-410 and astrocyte-restricted genes. The pro-neuronal genes are thus de-

repressed and promote neurogenesis. 
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Chapter Three 

Significance and Future directions 

 

Significance 

The goal of my initial research was to understand the function of BMP signaling in lineage 

decisions in adult SVZ neurogenesis.  BMP signaling is vital during early embryogenesis and 

neurogenesis (Jones et al., 1996). In addition, the BMP inhibitor, Noggin, is crucial in the 

induction of neuroectoderm from ectoderm (Smith and Harland, 1992; Lamb et al., 1993; Sasai 

et al., 1995; Zimmerman et al., 1996).  In the first part of the research, I describe the generation 

and validation of an inducible transgenic mouse in which Noggin can be inducibly expressed in 

the neural stem cell population of the adult SVZ.  In this animal, the CNS restricted enhancer in 

the Nestin promoter drives reverse tetracycline-controlled transactivator (rtTA) expression to 

neural stem cells. Using this animal as a model, we demonstrated that Noggin promoted neuronal 

differentiation of the neural stem cell population (B cells) toward transient amplifying C cells.  In 

addition we observed increased numbers of oligodendrocyte progenitor cells in the adult SVZ 

both in vivo and in vitro. Noggin also promoted proliferation of the NSC population, thus the 

prolonged stimulation by Noggin did not deplete the stem cell population. In a microarray to 

identify differences between the transcriptome of the Noggin over-expressing versus control 

SVZ, multiple differentially expressed genes were identified. Among the genes which were 
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down-regulated in the Noggin over-expressing cells is a microRNA (miRNA) encoding gene 

Mirg, which encodes multiple previously uncharacterized miRNAs, and which is located in the 

imprinted Dlk1-Gtl2 locus in mice (Tierling et al., 2006; Hagan et al., 2009). 

In the second part of the research, I followed up one of the miRNAs encoded by Mirg, miR-410, 

and its function in adult neurogenesis in the SVZ. miR-410 was previously reported to be 

expressed in the central nervous system during embryonic development (Wheeler et al., 2006), 

but our studies determined much of that “localization” was due to trapping within the lumen of 

the neural tube (not shown). The microarray result was verified by quantitative PCR, and the 

expression of miR-410 in the adult SVZ was confirmed by in situ hybridization. Over-expression 

of miR-410 via lentiviral vectors in neurospheres derived from the adult SVZ, as expected, led to 

a reduction in neuronal and oligodendroglial differentiation and increased astroglial 

differentiation. More importantly, over-expression of miR-410 partially rescued the 

differentiation phenotypes caused by Noggin, suggesting miR-410 functioned downstream of 

Noggin-BMP signaling. To further understand the molecular mechanism of miR-410 functions, 

computer algorithm predicted miR-410 target candidates were validated by luciferase reporter 

assays. Among the candidates tested, five genes were verified as true targets of miR-410: Elavl4, 

Sox1, Tcf4, Fgf7, and Smad7, while computer predicted genes such as Zfx and Msi2 were shown 

to be independent of miR-410 regulation. In addition, Elavl4 was down-regulated at the protein 

level in the miR-410 over-expressing neurospheres. Over-expression of miR-410 resistant Elavl4 

also rescued the decrease in neuronal differentiation induced by miR-410 over-expression, 

indicating that miR-410 inhibited neuronal differentiation by down-regulating pro-neuronal 

genes such as Elavl4. Unexpectedly, over-expression of miR-410 also led to a change in 
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neuronal morphology. Neurons over-expressing miR-410 typically had short, unbranched 

neurites compared to the long, highly branched neurites characteristic of the control groups. 

Active BMP signaling has previously been shown to promote astroglial differentiation while 

inhibiting both neuronal and oligodendroglial differentiation (Gross et al., 1996; Lim et al., 

2000). However the underlying molecular mechanisms are poorly understood. BMP signaling 

has been shown to activate the transcription of GFAP, which is an early and strong inducer of 

astroglial differentiation, via canonical Smad signaling and the PI3K pathway (Dore et al., 2009). 

In addition, BMP4 treatment has been shown to directly activate the inhibitor of differentiation 

(ID) family of helix-loop-helix factors, which in turn inhibit oligodendrocyte commitment 

(Samanta and Kessler, 2004). Here, I propose a novel mechanism by which the BMP signaling 

pathway may regulate the NSC lineage decision in adult SVZ neurogenesis. In the absence of the 

BMP inhibitor Noggin, BMP protein activates Smad signaling and directly promotes the 

expression of miR-410. miR-410 down-regulates neurogenic genes including Elavl4, Sox1, Tcf4, 

and Fgf7, which results in the suppression of neuronal differentiation. In addition miR-410 also 

down-regulates Smad7, an inhibitory Smad protein, forming a positive feedback loop to further 

strengthen the lineage commitment. Conversely, the presence of Noggin, which directly binds 

and inhibits BMP proteins from binding their receptors, would turn off this pathway. The 

neurogenic genes listed above are therefore de-repressed and promote neuronal differentiation.  

There have been few reports demonstrating a role of extrinsic signaling pathways in controlling 

miRNA expression or activation (Terao et al., 2011; Han et al., 2012; Wang et al., 2012; Kao et 

al., 2013; Park et al., 2013). In this research I proposed that one such pathway, BMP signaling, 

regulates the activation of a miRNA. Interestingly, among the other miRNAs also encoded by the 

Mirg gene, miR-382 (Milosevic et al., 2012) and miR-377 (Lan and Chung, 2011) have 
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previously been shown to be up-regulated by TGF-β signaling, suggesting that this pathway 

plays a central role in regulating the expression of this cluster of miRNAs. Indeed, by 

bioinformatics analysis, there are ten consensus Smad binding motifs identified in the promoter 

region of Mirg, which may explain the regulation of expression by both the TGF-β and the BMP 

signaling pathways. Furthermore, three additional BMP specific GC-rich Smad binding sites 

were also found in the promoter of Mirg. This implies that in addition to the TGF-β signaling, 

BMP may also regulate other miRNAs encoded by the Mirg gene. 

 

Future directions 

miR-410 expression kinetics in different cell types.  

Although we have shown that miR-410 is expressed in the adult SVZ, understanding its 

expression kinetics in different SVZ cell types could be very informative regarding the detailed 

control of lineage decision by miR-410. I have determined that the over-expression of miR-410 

inhibited oligodendroglial differentiation, but antagonizing its function by the miRNA sponge 

did not significantly affect the lineage commitment. A possible explanation is that since 

oligodendrocyte progenitor cells are derived from the transient amplifying C cells (Ming and 

Song, 2011), different expression levels of miR-410 in different cells may contribute to this 

result. Moverover, in preliminary data (Figure 3.1) the hGFAP:GFP-positive B cells in the 

neurospheres expressed higher levels of miR-410 compared to other cells. I hypothesize that the 

lower level of miR-410 in the C cells may de-repress oligodendroglial differentiation. Pastrana et 

al (Pastrana et al., 2009) have proposed a method to purify the different cell types residing in the 

SVZ by fluorescence activated cell sorting (FACS). The activated B cells can be isolated by 
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GFAP::GFP/EGFR-double positive, CD24-negative labeling. The transient amplifying C cells 

can then be purified as they are GFAP::GFP-, EGFR+, CD24-, while the neuroblasts (A cells) 

can be purified by their GFAP:GFP-, EGFR-, CD24
low

 labeling. Identifying cell-type specific 

miR-410 expression kinetics would answer this question. I would predict that B cells would have 

the highest expression level of miR-410 expression and it would be the lowest in A cells, as they 

are committed neuroblasts, while the transient amplifying C cells would have intermediate levels 

of miR-410. Alternatively, the identification of a cell-specific miR-410 expression pattern could 

also be achieved by locked nucleotide-fluorescence in situ hybridization (LNA-FISH) (Exiqon, 

MA) (Silahtaroglu, 2010) with cell markers (B cells: GFAP+BrdU+, C cells: Mash1+, A cells: 

Dcx+). 

in vivo function of miR-410 in adult SVZ.  

In the second part of my research, I demonstrated miR-410’s function in regulating adult NSC 

lineage in vitro. The next logical step would be to test the function of miR-410 in vivo in the 

adult SVZ. The lentiviral vector over-expressing either miR-410 with eGFP, the miR-410 sponge 

with eGFP, scrambled miRNA control sequence with eGFP, or eGFP alone, would be injected 

directly into the adult SVZ in either wildtype or our Nestin-driven Noggin inducible transgenic 

animals. Similar to the in vitro data, I expect miR-410 over-expression will inhibit both neuronal 

and oligodendroglial differentiation while the miR-410 sponge will promote neuronal, and 

possibly oligodendroglial, differentiation. Moreover, I also predict that miR-410 over-expression 

will rescue the increase in neuronal and oligodendroglial differentiation caused by Noggin in the 

Noggin inducible mouse. To study the long term effects of miR-410, a miR-410 flox/flox animal 

model would be ideal. Unlike other miRNAs, miR-410 is located in the 12
th

 exon of the Mirg 

gene. Handily, this exon only encodes miR-410, thus making it ideal and easy for targeting and 
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generation of knockout animals. In combination with specific promoter driven Cre recombinase 

animals such as the Nestin-Cre/ERT2 (Lagace et al., 2007), hGFAP-Cre (Zhuo et al., 2001), and 

Ascl1/Mash1-CreERT2 (Kim et al., 2011) the function of miR-410 in each specific cell types in 

the adult SVZ could be further studied.  

Study of miR-410 in neonatal SVZ neurogenesis would also be of great interest, since there are 

many more neurons formed at this stage compared to the adult (Wang et al., 2011). Thus, the 

expression pattern and the function of miR-410 in neonates may provide further information on 

how this neuron to astrocyte transition is regulated. The function of miR-410 in the SGZ of the 

hippocampus is also of considerable interest. In my preliminary experiments we determined that 

miR-410 is expressed in the SGZ, but was not regulated by Noggin/BMP signaling pathway. The 

actual function and regulation of miR-410 in SGZ remain to be elucidated. 

In vivo function of miR-410 in embryo development.  

miR-410 was originally identified in the developing CNS (Wheeler et al., 2006). In my 

preliminary experiments, miR410 was expressed in the hindbrain region and the rhombic lip 

(Figure 3.2) at embryonic day 11.5. Interestingly miR-410 is expressed in the Purkinje layer in 

the adult cerebellum (Pena et al., 2009), suggesting miR-410 may play an important role in 

cerebellum formation. However the detailed functions of miR-410 during cerebellum 

differentiation were never studied. The plasmid vector encoding miR-410 with eGFP, miR-410 

sponge, or control vectors could be delivered through tail vein injection at different time points 

(E10.5 to E15.5) to pregnant female mice (Gratsch et al., 2003), or injected via in utero surgical 

approaches. The formation of cerebellum of the pups then will be examined at different stages to 

test the function of miR-410 in cerebellum differentiation. Alternatively, the miR-410 floxed 
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animals described above can be crossed with Math1-CreERT2 (Machold and Fishell, 2005) to 

create an inducible knockout animal model to study the loss of function of miR-410 in 

cerebellum formation. 

miR-410 function in glioblastoma/neuroblastoma.  

Recently miR-410 was shown to target and down-regulate the hepatocyte growth factor receptor 

MET in glioma cells (Chen et al., 2012). Over-expression of miR-410 led to reduced 

proliferation and decreased invasive capability. Furthermore low expression of miR-410 was 

identified as a prognostic biomarker for high risk neuroblastoma (Gattolliat et al., 2011). 

Interestingly, I have also made similar observations in miR-410 over-expressing mES cells 

(Figure 3.3). mES cell lines over-expressing miR-410 (lines #20 and #24) have significantly 

slower proliferation rates compared to the parental D3 cell line. Moreover, in collaboration with 

Dr. Xin Fang (Neurosurgery, University of Michigan), I have observed that in all four samples of 

human glioblastoma (GBM) we tested, miR-410 expression levels were dramatically lower than 

the normal brain control tissue, although there was great variance among the tumor samples 

which might correlate with invasive phenotype (Figure 3.4). These data suggest that miR-410 is 

important in regulating tumor progression. However large scale screening would be required to 

establish the correlation between miR-410 expression level and the prognosis and invasiveness 

of GBM. Recently Aldaz et al (Aldaz et al., 2013) also have shown that over-expression of miR-

21 in the stem cell-like cells of glioblastoma, the GBM inducing cells (GIC), led to 

differentiation of these cells. Considering the preliminary data, the hypothesis would be that 

over-expression of miR-410 would be expected to lead to quiescence and differentiation toward 

an astroglial lineage in these GICs. To test this hypothesis, isolated GICs could be either 

transfected by plasmid vectors or transduced by lentiviral vectors carrying either miR-410, 
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scrambled miRNA control, or empty/eGFP control sequence. The cell proliferation rate, 

differentiation of the three lineages could then be measured and tested to learn more about miR-

410 function. In addition, cell migration assays such as transwell migration or scratch wound 

healing could be also used to study the invasion capability of the transfected/transduced cells. 

miR-410 in other stem cell populations.  

In addition to the developing CNS (Wheeler et al., 2006) and regions of adult neurogenesis, miR-

410 was also identified in the scalp dermal papilla where up-regulation of miR-410 was linked to 

male pattern baldness (Goodarzi et al., 2010). However, whether antagonizing miR-410 by miR-

410 sponge in the hair follicle stem cells may reverse this phenotype and the detailed underlying 

molecular mechanisms remain unclear. 

Signaling pathways regulating Mirg.  

In my research, I showed that miR-410 expression is regulated by Noggin/BMP signaling. In 

addition, multiple Smad binding sites were found in the promoter region of the miR-410 

encoding gene Mirg. To directly test whether Smad proteins bind to this region, I propose to do 

electrophoresis mobility shift assays (EMSA). Alternatively, chromatin immunoprecipitation 

(ChIP) would be a good approach. Antibodies against activated phosphorylated Smad-1/5/8 are 

commercially available and have been tested for this purpose (Cell Signaling, MA) (Wang et al., 

2013), indicating this experiment should be feasible. On the other hand, to further identify 

upstream regulation, the Mirg promoter region should be examined to identify additional 

transcription factor binding motifs. Online databases/algorithms such as TRED 

(http://rulai.cshl.edu/TRED) provide a platform to identify putative binding sites. However one 

major limitation of this approach is that the algorithm itself may not include all known protein-

http://rulai.cshl.edu/TRED
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DNA binding pairs. Results from multiple databases/algorithms should be pooled and analyzed 

to obtain a more broad coverage. The in silico prediction will then subjected to validation by 

either EMSA or ChIP. 

Other miRNAs encoded by Mirg.  

In addition to miR-410, Mirg encodes 13 additional miRNAs: miR-382, miR-134, miR-668, 

miR-485, miR-453, miR-154, miR-496, miR-377, miR-541, miR-409, miR-412, miR-369, and 

miR-3072. Most interestingly, among the 13 miRNAs, six miRNAs have been reported to either 

control cell cycle arrest (miR-377 (Maes et al., 2009)), directly inhibit proliferation in cancer 

cells (miR-668 (Shin et al., 2011), miR-134 (Niu et al., 2013; Yin et al., 2013), miR-154 (Xin et 

al., 2013)), induce apoptosis (miR-382 (Thayanithy et al., 2012)), or their expression level 

inversely correlated to bad prognosis (miR-485 (Costa et al., 2011)). One would hypothesize the 

cluster of miRNAs encoded by Mirg as a whole may be important in cell proliferation. I propose 

to test whether the 6 remaining miRNAs with unclear function also inhibit cell proliferation. 

Using mouse embryonic stem cells as a model, their ability to alter cell proliferation will be 

tested systematically by transfecting the cells with individual chemically synthesized miRNAs. 

In addition, since around half of the miRNAs in the cluster have been shown to act as tumor 

suppressors in cancer cells, one would expect that restoring these miRNAs in cancer cells would 

inhibit tumor progression. Using glioblastoma cells as an in vitro model, I propose to transfect 

the cells with a cocktail of chemically synthesized miRNAs with proliferation inhibitory function 

to test if they synergistically affect tumor cell growth. The next step would be to design a cell 

type specific delivery system, either promoter driven or via mechanical injection, to carry the 

cocktail in vivo and to test their therapeutic value in mouse models. 
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Fascinatingly, even though they are all encoded by the Mirg gene, different miRNAs in this 

cluster have different cell type expression patterns and are linked to different type of tumors 

(Maes et al., 2009; Costa et al., 2011; Shin et al., 2011; Thayanithy et al., 2012; Niu et al., 2013; 

Xin et al., 2013; Yin et al., 2013). This may suggest a novel regulation of miRNA biosynthesis. 

Among the 14 miRNAs encoded by Mirg, miR-134, miR-485, and miR-410 are located in exons 

while the rest are located on introns (MGI mouse genome build). I propose that the location and 

surrounding sequence may provide addition information about the expression pattern of each 

miRNA. To test this hypothesis, I propose to generate a bacteria artificial chromosome (BAC) 

carrying the 20kb region of chromosome 12 containing Mirg. The position of each miRNA then 

can be mutated and switched between different locations. Each mutated BAC then will be 

transfected to different cell types in vitro and the expression level of each miRNA then can be 

measured by q-RT-PCR. If the expression pattern of the miRNA is independent of the 

location/surrounding sequence, this cell type specific information then must be carried by the 

primary/pre-miRNA scaffold structure sequence. To test this, the mature miRNA sequence 

would then be cloned and switched between each primary miRNA scaffold. The mutated miRNA 

will then be transfected and the expression measured in different cell types. 

Noggin/miR-410 function in animal behavior.  

Alterations in adult SVZ neurogenesis have been shown to cause behavioral consequences (Pan 

et al., 2012). In my research, induced Noggin over-expression promoted neurogenesis and 

increased neuroblast formation in the SVZ, while over-expression of miR-410 had the opposite 

effect -- reducing neuronal differentiation. I would hypothesize the Noggin and miR-410 would 

affect olfactory-associated behaviors. The Noggin inducible animal and the miR-410 floxed 

animals described above would be subjected to the behavioral tests. I expect the both Noggin 
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induced and the miR-410 conditional knock out animals, with enhanced SVZ neurogenesis, 

would perform better in the olfactory short term memory test and odor-cued associative olfactory 

learning. 

Using miR-410 in bioengineering applications.  

In my research I have determined that miR-410 inhibits neuronal and oligodendroglial 

differentiation while promoting astroglial differentiation. This function may be useful in 

bioengineering approaches. Recent advances in induced pluripotent stem (iPS) cell 

differentiation (Takahashi and Yamanaka, 2006; Takahashi et al., 2007) has provided an 

approach for personalized cell based regeneration therapy in diseases such as stroke or spinal 

cord injury. However a major challenge is to generate neural progenitor cells, oligodendrocyte 

progenitor cells (OPC), or astroglial precursor cells with high efficiency for transplantation. The 

lineage controlling miR-410 could be manipulated during differentiation to acquire the lineage 

intended. If neural or OPC are intended, chemically synthesized miR-410 antagonists such as 

locked nucleotide (LNA) (Exiqon, MA) can be transfected into the differentiating iPS cell to 

suppress the function of miR-410. In contrast, to increase the yield of astroglial progenitor cells, 

synthesized mature miR-410 RNA could be delivered to the cells to promote astroglial 

differentiation. This application is protected under US patent pending number 133/213,848.  
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A           B 

 

Figure 3.1  

A. hGFAP:GFP-positive cells (B cells) purified by FACS from neurospheres derived from adult 

SVZ.  

B. miR-410 expression is higher in the hGFAP+ B cells compared to the rest of cells in the 

neurospheres. 
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Figure 3.2  

miR-410 is expressed in the midbrain and the rhombic lip on E11.5. Arrow: neuroepithelium at 

the rhombic lip.  (Lisa DeBoer Emmet). 
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Figure 3.3  

Proliferation curves of two mouse embryonic cell lines (Line #20 and #24) over-expressing miR-

410 and the parental line D3 grow in the absence of leukemia inhibitory factor (LIF). The two 

miR-410 over-expressing lines grow at significantly slower rate compare to D3. 
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Figure 3.4  

miR-410 expression in human glioblastoma (GBM). miR-410 was down-regulated in all four 

GBM samples tested compared to normal brain control tissue. 
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Appendix 

Inducible Expression of Noggin Selectively Expands Neural Progenitors  

in the Adult SVZ 

 

Introduction 

Understanding the normal function and homeostasis of the adult brain is one of the major 

challenges in biology, and is key in developing cell replacement strategies for a number 

of human neurodegenerative diseases. Neurogenesis is a multifactorial process that 

appears to be largely restricted to two main regions of the adult CNS: the subgranular 

zone (SGZ) of the dentate gyrus of the hippocampus (Gage, 2000) and the lateral wall of 

the lateral ventricles, the subventricular zone (SVZ) (Gage, 2000; Alvarez-Buylla and 

Lim, 2004).  

In the SVZ niche, the balance between quiescence, self-renewal and differentiation is 

thought to be determined by diffusible molecules, growth factors, neurotransmitters, cell-

to-cell contacts, and components of the extracellular matrix (Riquelme et al., 2008); 

which regulate expression of transcription factors that control neurogenesis (Ayoub et al., 

2011; Hsieh, 2012). BMPs, BMP receptors and the secreted BMP inhibitor, noggin are 

widely expressed during development, remaining in discrete locations in the adult SGZ, 

olfactory bulb and SVZ; sites of adult neurogenesis (Peretto et al., 2004).  BMP signaling 
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plays multiple key roles in CNS morphogenesis from neural induction to patterning of the 

nervous system, proliferation and lineage differentiation (Chen and Panchision, 2007).  

Since the effects of BMP signaling appear to depend on signal strength, inhibitors such as 

noggin may be critically required in modulating signaling by pathway members 

(Bonaguidi et al., 2008; Colak et al., 2008; Gajera et al., 2010; Mira et al., 2010).  In the 

adult SVZ, BMP signaling is active as indicated by the phosophorylation of SMAD1/5/8 

(Colak et al., 2008); transit amplifying cells (C cells, activated astrocytes (B cells), and 

endothelial cells (Mathieu et al., 2008) express BMPs, while noggin is produced by 

ependymal and B cells (Lim et al., 2000; Peretto et al., 2004). In fact, recent evidence 

suggests that BMP signaling is one of the earliest events that regulates quiescence vs 

lineage differentiation of SVZ NSC (Bonaguidi et al., 2008; Colak et al., 2008; Mira et al., 

2010), but the responsive cells and kinetics within the niche are largely unknown.  

To address the role of BMP signaling in the behavior of neural progenitors in the adult 

brain, we generated a transgenic mouse model in which noggin can be inducibly 

expressed in NSC populations. Even short bursts of noggin expression were sufficient to 

increase proliferation of progenitors and shift SVZ lineage progression from mature 

astrocytes to transit amplifying cells and oligodendrocyte precursors. In vitro, noggin did 

not affect self-renewal of neurospheres (NS), but promoted differentiation of both 

oligodendrocytes and neurons, which was inhibited by BMP4. Our results indicate that 

transient expression of noggin expands progenitor populations without depleting the NSC 

population, promotes neuronal and oligodendrocyte differentiation of adult NSCs in vivo 

and in vitro, and suggest that controlled expression of noggin may modulate stem cell 

fate within the niche. 
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Material and Methods 

Double transgenic mice:  construction and genotyping  

The FVB/N nestin-reverse transactivator (rtTA) mice have been described previously 

(Mitsuhashi et al., 2001), and were kindly provided by Dr. Steven Reeves.  A new 

transgenic animal was generated by the University of Michigan Transgenic Core by 

injecting linearized plasmid DNA pBi-Noggin-EGFP into fertilized oocytes from Nestin- 

rtTA female mice mated to FVB/N males. To generate the plasmid pBi-Noggin-EGFP, 

the coding region of the Enhanced Green Fluorescent Protein (EGFP, obtained from 

plasmid pEGFP-N1 (Clontech) was cloned into the Multiple Cloning Site (MCS) I of 

plasmid pBi (Clontech). Next, a mouse noggin cDNA (Gratsch and O'Shea, 2002) was 

cloned into MCSII of pBi to generate the plasmid pBi-Noggin-EGFP. A linear DNA 

fragment of approximately 5-kb was obtained upon Ase I restriction, purified, and 

injected into fertilized oocytes. After 5 independent injections (total of 12 recipient 

females) 11 different transgenic lines were obtained.  

The presence of the transgenes was determined in PCR using DNA isolated from tail 

biopsieswith primers and conditions as follows: rtTA Fw: 

AGAGCTGCTTAATGAGGTCG, rtTA Rev: GTCCAGATCGAAATCGTCTAG, GFP 

Fw: CGGCCACAAGTTCAGCGTGTC, GFP Rev: CGTCCTCGATGTTGTGGCGGA 

(Tm 54º C and 53º C). Double transgenic animals from crosses of nestin-rtTA mice with 

pBi-noggin-EGFP mice were tested to determine their response to doxycycline (Dox), 
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and three lines of mice in which the noggin transgene was reliably up-regulated by Dox 

administration with little background were selected for subsequent experiments.  

Transgene induction in vivo 

Transgene expression was induced in 8-10 week old animals for 2-16 days by 

administration of 2 mg/ml of doxycycline (Dox, Sigma) and 5% sucrose in the drinking 

water. Controls were double transgenic animals not exposed to Dox and nestin-rtTA 

single transgenic mice.   

Bromodeoxyuridine (BrdU) exposure 

5-Bromo-2’-deoxyuridine (Sigma) was dissolved at 10 mg/ml in 0.9% NaCl, and a single 

injection of 50 mg/kg administrated by intraperitoneal injection. Animals were injected 

on day four of an eight-day induction paradigm to label recently divided cells in the SVZ 

at a time of high noggin expression. In other experiments, two doses of BrdU were 

injected 24 hours apart, at the end of the induction period.   

Tissue preparation 

Adult transgenic mice were sacrificed by carbon dioxide overdose or cervical dislocation 

following guidelines provided by the Unit for Laboratory Animal Medicine (ULAM) and 

protocols previously approved by the University Committee on the Use and Care of 

Animals (UCUCA). Brains were removed and embedded in OCT (Sakura, Tissue-Teck), 

and ten micron coronal frozen sections were cut.  Alternatively, animals were 

anesthetized with phenobarbital and perfused transcardially with 20 ml of cold PBS pH 

7.4 followed by 30 ml of 4% paraformaldehyde (PFA). Brains were removed, fixed 

overnight in 4% PFA followed by equilibration in 30% sucrose and after extensive 
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washes were embedded in OCT.  Additional SVZ were fixed in 2% glutaraldehyde, post-

fixed in 1% OsO4, embedded in Araldite 812, then one micron sections cut and stained 

with toluidine blue for light microscopy.  

Neurosphere culture    

Neurosphere cultures were prepared as previously described (Gritti et al., 1996) with 

minor modifications (Wang et al., 2005).  After eight-day transgene induction with Dox, 

4-5 animals per group (8-10 w old females) were sacrificed, brains removed and a 2mm 

thick coronal block cut through the lateral ventricles. The lateral SVZ walls were 

microdissected from surrounding tissue and dissociated in trypsin. 2-4 x 10
4
 cells/well 

were plated in 6-well plates in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12, 

Invitrogen) containing 20 ng/ml EGF (Sigma), 10 ng/ml FGF2 (Sigma) and 2 µg/ml 

heparin (Sigma). Primary neurospheres (NS) were cultured for 7-9 days in vitro (DIV), 

mechanically dissociated with a fire-polished Pasteur pipette, and grown until they 

formed secondary NS or were plated for differentiation at 1.8 x 10
4 
cells/well in poly-

ornithine (Sigma) coated 48-well plates. For differentiation, NS were grown in 

DMEM/F12 (Invitrogen) supplemented with 1% fetal bovine serum (FBS, Atlanta 

Biologicals). To generate secondary NS, triplicate wells in 12-well plates were seeded 

with 3 x 10
3
 cells, and the number of secondary spheres was determined after 7 DIV. 

Media was partially replaced every 3 days. BMP4 (R&D) at 20 ng/ml or doxycycline 

(Sigma) at 2 µg/ml, were added as indicated. For clonal analyses, cells were plated at 20 

cells/well in 96-well plates in a final volume of 200 µl of medium. After 10 DIV, NS 

from wells containing a single sphere were expanded in media containing FGF and EGF. 

After additional growth in vitro (7-10 DIV) spheres were dissociated with a fire-polished 
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Pasteur pipette and seeded to 12-well plates to develop secondary neurospheres or to 48-

well polyornithine-coated plates for differentiation.  

Immunohistochemistry 

Fresh frozen sections were fixed in 4% paraformaldehyde (PFA) for 10 minutes, 

permeabilized with 0.2% Triton X-100 for 10 min, then non-specific binding blocked for 

1 hour in phosphate buffered saline (PBS) containing 0.2% Triton X-100 and 10% 

normal goat or donkey serum (PBST). Primary antibodies were diluted in PBST 

containing 1% serum and applied to sections overnight in a humidified chamber at 4°C. 

After three washes in PBS, sections were exposed to secondary antibodies diluted in 

PBST for 30 min at room temperature. Hoescht 33258 (Sigma) was employed to stain 

nuclear DNA. Primary antibodies and dilutions were: rabbit anti-EGFP (1/500, Molecular 

Probes), goat anti-noggin (1/200, Santa Cruz), rabbit anti-doublecortin (DCX; 1/200, Cell 

Signalling), mouse monoclonal anti-Mash1 (1/500, BD Bioscience), rabbit anti-caspase 3 

(1/250, Cell Signaling), rabbit anti-Dlx-2 for early neuroblasts (1/200, Chemicon), mouse 

monoclonal anti-nestin (1/200, Chemicon), guinea pig anti-glial fibrillary acidic protein 

(GFAP; 1/1000, Advance ImmunoChemical), rabbit anti-SOX3 (1/1000, generous gift 

from M. Klymkowsky, University of Colorado), rat anti-BrdU (1/100, Serotech), rabbit 

anti-Ki67 (1/500, Novocastra), and guinea pig anti-Olig2 (1/100, generous gift of B. 

Novitch, UCLA).  Secondary antibodies were conjugated to FITC, Cy3, Alexa 488, or 

Alexa 555, and used at a 1/200 dilution (FITC or Cy3 conjugated, from Jackson 

ImmunoResearch) and 1/1000 (Alexa conjugated antibodies, from Invitrogen). To 

determine the expression pattern of the rtTA transgene, detection of β-galactosidase was 

carried out using the X-gal substrate (Invitrogen). 
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For immunohistochemical localization of cell type restricted proteins following NS 

differentiation, cells were fixed for 15 min in 2% PFA, permeabilized with 0.2% Triton 

X-100 for 10 min, then treated as described above.  Primary antibodies were: rabbit anti-

β-III tubulin for neurons (Tuj1; 1/1000, Covance), guinea pig anti-glial fibrillary acidic 

protein for astrocytes (GFAP; 1/1000, Advance ImmunoChemical) and rat anti-myelin 

basic protein for oligodendrocytes (MBP; 1/1000, Chemicon). Secondary antibodies were 

purchased from Jackson ImmunoResearch and used at a 1/200 dilution.  

Quantitative-PCR  

The level of noggin transgene expression in the SVZ was determined using quantitative 

RT-PCR. After 2, 4, 8, and 16 days of Dox administration, SVZ from induced and control 

animals were micro-dissected, homogenized in Trizol (Invitrogen), and RNA extracted. 

Total RNA from control or induced animals was DNAsed (DNAse I, Sigma), pooled (n= 

4 mice/ per group 8 SVZ), and 1 µg was used in Reverse Transcription reactions using 

PowerScript reverse transcriptase (Clontech) following the manufacturer’s instructions. 

The resulting cDNAs were employed as templates in triplicate for real-time PCR 

reactions using primers and conditions available on request. We employed the SyBR 

Green system (ABgene) and a BioradiCyclerPCR machine. Samples were normalized to 

β-actin, and noggin fold change estimated using the ΔΔ ct value method (Pfaffl, 2001).  

Image analysis and quantification 

Images were acquired using a Leica CMIRB, Zeiss Axioplan, or Zeiss LSM510 and 

imported into Photoshop for analysis and to construct figures.  In coronal sections the 

number of cells expressing a cell type restricted protein (GFAP, MASH1, DCX, Dlx-2, 
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SOX3 or Olig2), co-labeled with BrdU (GFAP/BrdU, DCX/BrdU, SOX3/BrdU) or Ki67 

(Mash1/Ki67) were counted along the dorsolateral extent of the SVZ lateral wall, in 4 

animals per group (~8 SVZ/animal, n = 32).  Because of the considerable regional 

pattering of the SVZ, sections used in quantitative analysis were restricted to regions with 

coordinates 0.26-0.98 mm from Bregma. For the in vitro differentiation experiments, the 

percentage of positive cells was estimated by counting at least 200 nuclei per well (5 

random fields) in duplicate wells from at least three independent experiments (six wells 

per group).  Means were calculated and analyzed using unpaired Student t-test and 

additional statistical analyses carried out using SPSS and GraphPadPrism 5. 

MicroArray Analysis 

RNA was isolated from 8 SVZ microdissected from 4 uninduced and 4 noggin-transgenic 

mice exposed to doxycycline for 8 days using Trizol as described above.  The RNAs 

were analyzed in the UM Comprehensive Cancer Center Microarraying Core to assess 

quality control (perfect match; PM chip densities), and regarding mRNA degradation.  

The RNAs were hybridized to Affymetrix 2.0 arrays (Santa Clara CA, 

http://www.affymetric.com) microarrays, the signal intensity of each array was 

normalized using robust multiarray averaging (RMA), and an initial analysis of fold 

change carried out using Bioconductor.  Functional annotation cluster analysis (David) 

was then employed to identify significant clusters of transcripts associated with noggin 

over-expression. 
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Results 

Noggin can be inducibly expressed in nestin positive cells of the CNS 

Previous studies of the effects of noggin on SVZ NSC have employed local injection of 

recombinant protein with unknown activity or viral delivery to the ventricular system, 

with the attendant concerns of local injury, and cytokine release.  To determine the role 

of noggin in the adult NSC population in vivo absent these concerns, we developed mice 

in which the expression of noggin and EGFP is controlled by a bidirectional tetracycline-

responsive promoter. When crossed with existing mice in which expression of the reverse 

tetracycline transactivator (rtTA) fused to β-galactosidase is directed by the CNS-

restricted nestin promoter/enhancer in intron 2 (Mitsuhashi et al., 2001) transgenic 

noggin expression is driven exclusively to nestin positive cells of the CNS.   

The CNS specific intronic enhancer element has been widely employed to drive reporter 

genes or to target transgene expression to neural stem cells (Lardelli et al., 1996; 

Panchision et al., 2001; Magdaleno et al., 2002; McFarland et al., 2006; Mills et al., 2006; 

Walker et al., 2010). Expression of the tetracycline reverse transactivator (rtTA) was 

examined by X-gal staining and confirmed to be expressed in GFAP positive cells along 

the lateral wall of the ventricles (Figure A.1.A). Immunohistochemical localization of 

nestin and EGFP in sections of doxycycline-induced brain (Figure A.1.B) also showed 

complete overlap, indicating that transgenic noggin expression is restricted to nestin 

positive cells in the SVZ, hippocampus, the glomerular layer of the olfactory bulb, the 

Purkinje cell layer of the cerebellum, and scattered cells throughout the cortex (data not 

shown).  In the adult SVZ A, B, and C cells all have been reported to express nestin 

(Doetsch et al., 1997; Nakamura et al., 2003), and co-staining of nestin and cell type 
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restricted antigens, e.g., GFAP (B cells) or DCX (A cells) identified considerable overlap 

in B cells (Figure A.1.C a-e) and some double positive A cells (Figure A.1.C d-f) as 

previously reported. In sum, B, C and A cells will express noggin upon transgene 

induction.  

In adult, control animals (single transgenic or double transgenic mice exposed to water 

alone), endogenous noggin was expressed by ependymal cells lining the lateral ventricles, 

as previously reported (Lim et al., 2000; Peretto et al., 2002; Peretto et al., 2004; Colak et 

al., 2008).  Following eight days of doxycycline mediated transgene induction, a clear 

increase in noggin expression along the lateral ventricle was observed using 

immunohistochemistry (Figure A.2.A).  To quantify the increase in noggin expression, 

we carried out quantitative RT-PCR analysis on microdissected SVZ of animals induced 

for 0, 2, 4, 8 and 16 days (pooled, 4 animals per group).  We observed a 2, 3, 7 and 8 fold 

increase in noggin expression in the induced SVZ compared with controls (Figure A.2.B). 

Double transgenic animals exposed to water alone (not induced, NI) showed similar 

levels of noggin as single transgenic animals, indicating that the transgene was not over-

expressed in the absence of doxycycline, i.e., did not “leak”. These results indicate that 

noggin can be reliably induced in cells in the SVZ-NSC niche in a regulated and robust 

manner by doxycycline administration. 

To determine if transgene-driven noggin was active and inhibited BMP signal 

transduction, we carried out immunohistochemical localization of phospho-Smad1/5/8. 

After BMP binding and receptor dimerization, the Smad 1/5/8 complex is phosphorylated, 

associates with Smad4 and moves to the nucleus, where pSmads act as transcription 

factors and activate BMP target genes (Massague, 2000).  In control animals there were 
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many positive nuclei; however, few pSmad1/5/8+ nuclei were observed in the SVZ of 

induced animals (Figure A.2.C), indicating that noggin actively inhibited the transduction 

of BMP signals. To insure that the transgene was not indirectly affecting BMP production 

the local levels of BMP4 were determined by qRT-PCR. There was no significant 

difference in the level of BMP4 in the SVZ after noggin induction (Figure A.2.B).  High 

resolution microscopy using 1 m sections indicated that the overall organization and 

morphology of the SVZ was not altered after as long as 30 days of noggin expression.  

The only observed alterations were in the ependymal cells, which were cuboidal in 

noggin-exposed compared to the more flattened morphology typical of control animals.  

Thus, doxycycline-induced noggin expression is reliably observed in nestin positive cells 

in the SVZ where it abrogates BMP signaling, without altering the overall organization of 

the niche.  

Noggin promotes proliferation in the SVZ 

To determine the effects of noggin over-expression on cell behavior in the SVZ, we first 

examined whether proliferation was altered.  BrdUwas injected i.p. on day 4 of the 8 day 

induction period, a point when Noggin expression was increased three-fold. Noggin over-

expression produced a statistically significant increase in the mean number of BrdU 

positive cells in the SVZ of induced animals compared with uninduced controls (12.6 + 3 

vs 9.4 + 2.8, p < 0.001, Student’s t test).  Similar results were obtained in two 

independent experiments (8 animals per group) using two different double transgenic 

lines (32 animals/group, 64 SVZ analyzed/each case), demonstrating that cells in the SVZ 

respond to noggin by increasing proliferation.   
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Increased numbers of transit amplifying cells and neuroblasts differentiate at the 

expense of GFAP+ cells 

In the adult SVZ, a subset of GFAP+ SVZ astrocytes are the slowly self-renewing 

multipotent neural stem cells (type B1) (Doetsch et al., 1997; Garcia-Verdugo et al., 1998; 

Doetsch et al., 1999a) that give rise to rapidly proliferating intermediate progenitor cells 

(transit amplifying precursor; TAP, type C) which expand the progenitor pool producing 

neuroblasts (type A cells) that divide and migrate through the rostral migratory stream to 

the olfactory bulb (Doetsch et al., 1999b; Garcia et al., 2004). To determine if there were 

cell type-specific effects of noggin over-expression, we carried out immunohistochemical 

localization of cell lineage-restricted markers:  GFAP (B), MASH1 (C) and DCX (A) or 

SOX3 (neural precursor cells) in 8 animals per group, induced and uninduced controls. 

Noggin over-expression significantly decreased the number of GFAP+ cells in the 

induced SVZ compared with controls (48.8 + 7.7 vs 64.1 + 7.6; p < 0.001; Figure A.3.A). 

However, the number of MASH1 positive cells (type C) was increased by noggin 

expression (14.2 + 3.2 vs 11.4 + 2.4; p < 0.001; Figure A.3.A), as was the mean number 

of DCX positive neuroblasts (A cells) (54.3 + 7.6 vs 41.3 + 7.6; p < 0.001; Figure A.3. A). 

We also employed the SOXB1 family member SOX3 to examine neural precursor cell 

number. There was also a significant increase in the number of SOX3 positive cells after 

induction compared to controls (45 ± 7.8 vs 38.2 ± 3.8; p ≤ 0.001; Figure A.3.A). SOX3 

is one of the earliest pan-neural markers (Brunelli et al., 2003) expressed throughout the 

neuroepithelium, becoming enriched in neural precursors in the adult CNS (Wang et al., 

2006) where it has been implicated in self-renewal (Saarimaki-Vire et al., 2007), 

consistent with these observations.  Since there were no differences in the expression of 



 

131 
 

activated caspase 3, and the overall level of cell death was low (not shown) it appears that 

the reduced number of GFAP+ cells is due to a shift in lineage allocation, with noggin 

favoring C and A cells at the expense of mature astrocytes present deeper in the SVZ. 

Noggin promotes differentiation of oligodendrocyte precursor cells 

Careful mapping studies have demonstrated that B cells present in the adult dorsolateral 

SVZ can form oligodendrocyte precursor cells (OPC) that migrate to the fornix, striatum 

and corpus callosum (Menn et al., 2006). Since the short-term induction paradigm we 

employed was not expected to produce mature oligodendrocytes, we quantified OPC 

numbers based on their expression of the transcription factor Olig2 (Dimou et al., 2008).  

Noggin expression produced a significant increase in the number of Olig2 + cells in the 

SVZ compared to controls (5.3 + 1.1 vs 3.2 + 0.7; p < 0.001; Figure A.3. A,B).  Olig2+ 

cells were present in the dorsolateral zone where C cells are typically found, but Olig2 

and MASH1 expression overlapped only in a small proportion of these cells (data not 

shown).  Increased numbers of Olig2 positive cells were also detected in the corpus 

callosum and striatum (Figure A.3.B) following noggin expression. Since inhibition of 

BMP signaling has been suggested to re-direct differentiation from neuroblasts to OPC 

(Colak et al., 2008; Jablonska et al., 2010), we also examined expression of key 

downstream regulators of neurogenesis, Dlx2 and Olig2. We did not observe significant 

differences in the number of cells positive for both Dlx2/Olig2 between induced and non-

induced animals, suggesting that the OPCs may differentiate from B cells. Additional 

paradigms of transgene induction and labeling will be required to determine if these cells 

are generated in situ or are progeny of the SVZ (see discussion), as well as their 

disposition. 
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Noggin promotes proliferation of multiple precursor populations in the SVZ 

To determine if individual progenitor cell types respond to increased levels of noggin 

protein, BrdU was administered at day 4 of the 8 day induction period and double-

labeling analyses of markers of B cells (GFAP+), neuroblasts (DCX+) and neural 

precursor cells (SOX3+) and BrdU were carried out (Figure A.4.A).  There was a small, 

but significant increase in the mean number of GFAP+ / BrdU+ cells in the dorsal region 

of the SVZ in noggin over-expressing animals compared with uninduced controls (5.9 + 

1.8 vs 4.1 + 1.3; p < 0.05; Figure A.4. A), and an increase in the mean number of DCX+ / 

BrdU+ neuroblasts in the SVZ of induced animals (14.9 + 4.2 vs 10.8 + 3.9; p < 0.0007; 

Figure A.4.B). The number of SOX3+ / BrdU+ precursor cells was also significantly 

increased (9.1 ± 2.9 vs 7.2 ± 2.3; p ≤ 0.05; Figure A.4.C). These results indicate that 

noggin over-expression stimulates proliferation of both progenitor cells and neuroblasts 

in the SVZ.  Due to the innate higher proliferation rate of transit amplifying cells we also 

quantified the number of proliferating C cells after 8 days of induction using the cell 

division marker Ki67. The percentage of Ki67 /MASH1 double positive cells was 

strikingly increased in the induced animals compared to controls (17.0 + 3.8 vs 10.1 + 4; 

p < 0.001; Figure A.4.C). Since the dividing GFAP+ cells are likely B cells, these data 

suggest that noggin promotes proliferation of B cells within the SVZ and promotes their 

differentiation to C cells at the expense of mature GFAP+/BrdU- astrocytes.  In addition, 

noggin stimulates proliferation of both C and A cell populations. Our results suggest a 

model in which lineage differentiation is shifted from mature astrocytes, producing more 

C cells which then form both neurons and OPC, or promoting differentiation of both OPC 

and C cells from the B cell. 
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Noggin promotes selective differentiation of SVZ neural stem cell populations 

To discriminate between these models and to determine where in the differentiation 

cascade noggin had its major effects, we carried out additional statistical analyses.  As 

described above, the mean numbers of all four groups of cells were significantly different 

between induced and control animals (A, C, and OPC increased, while GFAP+ cell 

numbers were decreased by noggin expression (Figure A.3.A).  However, when we 

compared the population distributions of induced and uninduced animals using Chi-

squared analysis (Table 1.A), there was no change in the B and A cell populations, 

suggesting that the underlying characteristics of B cell self-renewal and A cell production 

did not change.  However, the standard deviations in the C and OPC cell groups were 

significantly altered, suggesting that noggin expression altered the behavior of these cells.  

We next examined the change in the proportion of cells in each group relative to the B 

cell (Table 1.B).  

Noggin expression nearly doubled the proportion of both C cells (1.8X) and OPC cells 

(2.2X) in the SVZ, while having little effect on the ratio of A/C cells (0.96X), and only a 

slight effect on C/OPC (0.8X).  The major treatment effect therefore, was on the number 

of OPC and C cells differentiating from B cells, while the proportion of neuroblasts (A) 

present scaled with the number of C cells (0.96).  In other words, the increase in OPC cell 

number could not be explained by an increase in C cell numbers, while the increase in A 

cells was directly attributable to an increased number of C cells; i.e., there was not an 

additive/independent effect of noggin expression on the lineage differentiation of C cells 

to neuroblasts. 
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The strongest effect of noggin over-expression was to increase OPC cell number in the 

population by 2.2 fold. When the ratio of C/OPC was compared between groups there 

was a slight (0.8X) decrease in the noggin-exposed group suggesting that the C cell is not 

likely the source of the new OPC.  These data do not preclude a C cell origin of some 

Olig2+ cells, but suggest that most of the Olig2+ cells formed from B cells, consistent 

with lineage tracing studies (Gonzalez-Perez et al., 2009).   

Overall, these data indicate that expression of noggin in the SVZ does not deplete the 

NSC population, but promotes differentiation of transit amplifying C cells and OPC at the 

expense of mature astrocytes.  Our results suggest a model in which B1 cells are actively 

inhibited from forming mature astrocytes and are stimulated to produce OPC and C cells 

that differentiate proportionally into neuroblasts, and a population of OPC. 

Noggin does not affect self-renewal of NSC in vitro 

Although cell fate can be altered by simply removing cells from the microenvironment of 

the SVZ (Kokovay et al., 2010; Kusek et al., 2012), neurosphere assays are useful to 

study population dynamics in vitro, allowing analysis of the response of different cell 

types to specific growth factors. To distinguish the effects of noggin over-expression on 

neural progenitors vs. neuronal precursors, we examined the effects of noggin on self-

renewal using neurosphere (NS) assays.  Induction of noggin expression in vivo followed 

by NS culture in control medium (no Dox) had no effect on the proliferation, size or 

number of primary or secondary NS (Figure A.6). Nor did combined in vivo and in vitro 

induction alter proliferation, secondary neurosphere size or number (Figure A.6, and data 

not shown). These results suggest that mitogens present in the culture medium may 

override the effects of noggin over-expression on self-renewal.  Consistent with our in 
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vivo results; these data suggest that noggin does not interfere with self-renewal of GFAP+ 

progenitors in the SVZ.  

Noggin promotes differentiation of neurons and oligodendrocytes from 

neurospheres 

Neurospheres derived from uninduced animals differentiated into astrocytes (≈68%), 

neurons (≈30%) and oligodendrocytes (≈2%) (Figure A.5.B).  In vivo induction of noggin 

expression prior to NS culture strikingly decreased the percentage of GFAP+ astrocytes 

to 56.4% (p ≤ 6.6 x 10
-7

; NI vs +8), increased the proportion of Tuj1+ neurons to 36.9% 

(p ≤ 7.0 x 10
-7

; NI vs +8) and the number of MBP+ oligodendrocytes to 7% (p ≤ 1.0 x 10
-

5
; NI vs +8).   When in vivo induction was combined with in vitro induction, the number 

of astrocytes decreased further (to 51%, p ≤ 2.0 x 10
-8

; NI vs +8/DOX+8), the number of 

neurons increased to 41% (p ≤ 1.5 x 10
-7

; NI vs +8/DOX+8) and the percentage of 

oligodendrocytes present in the cultures increased to 8% (p ≤ 4.1 x 10
-6

; NI vs 

+8/DOX+8).  In addition, oligodendrocytes differentiated in the presence of noggin often 

appeared more mature, with multiple branched, longer processes than controls (Figure 

A.5. c,f).  Noggin stimulation of neurogenesis and oligodendrogenesis was strongly 

inhibited by addition of BMP4 to the cultures (+8/DOX+8/+BMP4), indicating a direct 

effect on differentiation.  Both induced and control groups showed a striking increase in 

the number of astrocytes (85%) with reductions in the number of neurons (11%) and 

oligodendrocytes to 2% in the presence of BMP4.   

To rule out the possibility that neuronal precursor cells were over-represented in the 

noggin NS cultures, we carried out clonal analyses, and found that there was no 

substantial difference in the percentage of astrocytes, neurons or oligodendrocytes 
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between individual clones and the population of NS (Table 2). These data indicate that 

single clones behave as the population, and that preferential differentiation toward 

neuronal and oligodendrocyte lineages is a direct effect of noggin and is not related to in 

vitro selection artifacts.  Overall, our data indicate that expression of noggin promotes 

neurogenesis and oligodendrogenesis at the expense of mature GFAP+/BrdU- astrocytes.  

MicroarrayAnalysis  

To identify alterations in gene expression in the SVZ following eight days of noggin 

induction, we carried out microarray analysis of RNAs from induced and control animals 

(n=4 each).  Robust multi-array averaging (RMA) was used to calculate expression 

values for each gene, then transcripts with at least a 1.5 fold expression difference, with 

the added criterion that at least one sample had an expression value of 2
6 

or greater, were 

selected for additional analysis.  This produced 436 differentially expressed probesets, of 

which 420 were unique genes; 221 were expressed at higher levels in control compared 

with noggin expressing SVZ; 199 expressed at higher levels following noggin expression. 

Transcripts were analyzed using DAVID to identify Gene Ontology (GO) terms that were 

associated with noggin over-expression (p < 0.05, Benjamini correction).  These included:  

feeding behavior; synapse; insulin-like growth factor binding protein, N-terminal; 

cytoplasmic vesicle; cell junction; signal; and membrane. Functional annotation cluster 

analysis identified four significant clusters of transcripts.  Cluster One:  synapse (n = 10, 

p < 1.9 x 10
-2, 

Benjamini corrected), Cluster Two:  Cell junction (n = 13, p < 1.5 x 10
-2)

, 

Cluster Three:  Signal (n = 43, p < 2.8 x 10
-2

), Cluster Four:  membrane (n = 67, p < 3.2 x 

10
-2

).  Genes involved in synaptic vesicle behavior and cell-cell junctions were identified 

in Clusters One and Two, including:  Arc, Gabrb2, Gad2, Gjb1, Jam2, Syt10, and Vamp1.   
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Transcripts involved in signaling included extracellular matrix proteins/receptors:  

Adamtsl4, Col11a1, Itgb4, Lama2, Mcam, Thbs4.  Additional transcripts present in 

Custer 3 included:  myelin associated proteins: Lama2, Mog, Mag, Ugt8a; growth and 

signaling factors:  Aplp2, Cck, Dkk3, Gh, Igfbp2, Igfbp6, Lrp4, Nts, and Pthlp.   Cluster 4 

was composed of membrane receptors, transporters and channel genes including:  Htr1a, 

Htr2c, Tub, Cacng5, Gabrg2, Mib, Nkd1, Ntrk2, Ntrk3, Kcne3, Prom1, and Sel1l.  

When we analyzed transcripts that were expressed at higher levels in control vs noggin-

expressing SVZ, we identified genes involved in: CNS development:  Med1, Per2, Sox6, 

Top2b, in cilia:  Whrn; in cell cycle:  Cdkn1a, Fosb; in dendrites: Mtap2, andOpa1.  

There were transcripts that encode ECM/cell surface molecules:  Cbln1, Dscam, Plxnc1, 

Srgap3; and ion channels:  Kcne2.  There were also genes that encode factors involved in 

synaptic/neurotransmitter function:  Lin7a, Ntrk2, Ntrk3, Syt10; signaling pathway 

members:  Igfbp2, Prickle1, Lfng, Pdgfra. There was a novel microRNA-containing gene: 

Mirg; and the helicase Ddx3y.  

Transcripts expressed at lower levels in control vs in the noggin-exposed SVZ included 

genes involved in lineage  differentiation of oligodendrocytes: Mag, MBP, Mog, PMP22, 

Sox8; in forebrain development: Foxp1, Fezf2, Nfib; in C cells:  Egfr; in neurogenesis:  

Sox11; specifically in olfactory bulb neurogenesis:  Fezf2, POMC, and Epha7. There 

were a number of transcripts for matrix/cell surface/cytoskeleton elements:  Cdh9, Gsn, 

Itgb4, Plxnd1, Rtn); and Zeb2. Signaling pathway members included:  Acvr1c, Cck, Ctgf, 

Gli3, Hes5, Igfbp6, Rora, Tcf4; cell cycle regulators:  Cdca7, Cdkn1b; and a membrane 

transporter:  Slc17a7. 
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Discussions 

Considerable evidence suggests that it is the inhibitory microenvironment of the adult 

CNS that limits proliferation and differentiation of neural progenitors. BMP signaling has 

previously been shown to act as a brake on proliferation, promoting cell cycle exit and 

astrocyte differentiation (Gross et al., 1996; Mabie et al., 1999; Lim et al., 2000; Mekki-

Dauriac et al., 2002; Gomes et al., 2003; Wagner, 2007), while inhibition has the opposite 

effect, promoting neuronal differentiation and cell cycle entry (Lim et al., 2000; Mira et 

al., 2010).   

In the SVZ, quiescence may be attained simply by titrating the generation of BMP-

producing B cells until the effects of ependyma-derived noggin are balanced and 

proliferation stops (Bonaguidi et al., 2008).  Factors secreted by the ependyma may be 

particularly critical in the SVZ niche, as NSC scale proportionally to the number, rather 

than volume of ependymal cells (Kazanis and Ffrench-Constant, 2012). Unlike other 

growth factor treatments that target one step in the differentiation cascade of the B cell, 

and often deplete the NSC niche (e.g., Shh, Egf, Wnt, Lif), by promoting differentiation 

(Encinas et al., 2011), or disorganization of the niche (Kokovay et al., 2010), noggin 

promoted proliferation of adult SVZ progenitors at multiple stages of their differentiation 

cascade without altering the organization of the SVZ after 30 days of transgene induction. 

In fact, noggin expression stimulated a small but significant increase in the proliferation 

of GFAP+ cells located near the ventricle, while decreasing the number of mature 

GFAP+ astrocytes. Controlled expression of noggin may therefore be useful in 



 

139 
 

stimulating proliferation within the niche without altering its essential characteristics, 

which will be critical in expanding cells for replacement strategies (Breunig et al., 2007).  

These results are consistent with those obtained in the adult hippocampus where noggin 

over-expression promoted (Bonaguidi et al., 2005; Bonaguidi et al., 2008), and antisense 

noggin oligonucleotide exposure reduced (Fan et al., 2004) NSC proliferation and 

neuronal differentiation. However, inhibition of BMP signaling by noggin infusion, 

targeted deletion of Smad4, or deletion of BMPRIA, initially stimulated then depleted 

precursors and newborn neurons in the dentate gyrus, although as in our model, the 

number of radial progenitors remained constant and non-radial astrocytes declined (Mira 

et al., 2010).  However, in the most posterior region of the SVZ, Bonaguidi et al. 

(Bonaguidi et al., 2008) did not detect changes in proliferation following NSE transgene 

driven noggin expression, while Guo et al. (Guo et al., 2011), demonstrated that infusion 

of noggin did not alter proliferation, but shifted lineage differentiation.  Overall, these 

results suggest that as in the SVZ, BMP signaling is crucial in regulating both the initial 

differentiation of the NSC and subsequent differentiation of precursors.  Each adult 

germinal niche is unique in its relationship to the ventricular system, its geometry and 

cellular composition. This inducible model will particularly useful in examining the 

effects of controlled noggin expression on progenitor behavior in these complex niches. 

Our results differ somewhat from an earlier report that interfering with BMP signaling by 

deleting the common Smad, Smad4 in NSC, or infusing noggin into the ventricle, 

promotes oligodendrogenesis by redirecting neuroblast differentiation (Colak et al., 2008).  

In addition to differences in experimental design:  e.g., transgene driven vs recombinant 

protein, deletion rather than down-regulation, effects of injury following catheter 
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placement, delivery to the ventricle vs to NSC, targeted deletion of Smad4 in NSC would 

be expected to abrogate signaling by multiple pathways (Fgf, Nodal, TGF, Lif, and Wnt) 

also involved in NSC behavior (Varga and Wrana, 2005).  In fact, Colak et al. (Colak et 

al., 2008) make many of the same final conclusions:  that the initial differentiation of the 

B cell is most sensitive to BMP signaling, abrogation of BMP signaling does not affect 

NSC self-renewal in vivo or in vitro, and also conclude that the decision to form OPC vs 

C (and therefore A) cells depends on the level of BMP signaling.   

Noggin stimulates OPC differentiation both in vivo and in vitro.  Until recently the 

extent to which the adult SVZ is capable of in vivo oligodendrogenesis was unappreciated.  

It now appears that demyelination promotes changes in lineage commitment to favor 

production of OPC in a manner influenced by BMP signaling (Cate et al., 2010; 

Jablonska et al., 2010).  OPC differentiate from the SVZ following injury (Pluchino et al., 

2003; Parent et al., 2006), over-expression of Olig2 (Hack et al., 2005; Marshall et al., 

2005), abrogation of Smad4 signaling (Colak et al., 2008) or over-expression of noggin 

(Bonaguidi et al., 2008; Irvin et al., 2008), or of chordin (Jablonska et al., 2010). In fact, 

oligodendrocyte lineage elaboration requires active inhibition of BMP signaling (Mehler 

et al., 2000; Kondo and Raff, 2004; Cheng et al., 2007; Imura et al., 2008); BMP 

modulation of Olig2 may control OPC lineage differentiation in the SVZ (Gabay et al., 

2003; Hack et al., 2005; Menn et al., 2006; Fukuda et al., 2007; Colak et al., 2008), but 

the mechanisms and target cell(s) remain to be conclusively determined.  

Lineage tracing studies have demonstrated that B cells form OPC, but whether direct or 

via an Olig2+ C cell intermediate is unclear (Gonzalez-Perez and Alvarez-Buylla, 2011).  

Expression of Olig2 in A or C cells actively inhibits neuroblast lineage differentiation 
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(Colak et al., 2008) and promotes OPC differentiation. Olig2 promotes oligodendrocyte 

and inhibits neuronal differentiation of SVZ derived progenitors (Hack et al., 2005); and 

mice deficient for Olig1 and 2 lack cortical OPC, while neurons and astrocytes are 

unaffected (Zhou and Anderson, 2002), supporting a primary effect on the C/B cell.  This 

is similar to the model proposed for EGFr stimulation of SVZ NSC, where in the 

presence of EGF, B cells (and/or C cells) can be directed to form an Olig2+ intermediate 

progenitor cell, a “like-C” cell (Gonzalez-Perez and Alvarez-Buylla, 2011).  Careful 

analysis of cell number and behavior suggests that it is more likely that B cells are the 

source of OPC in this investigation. In our model the number of Dlx2/Olig2 (C/OPC 

double labeling) was similar in control and induced animals, but the number of C cells 

was higher in noggin induced SVZ. We also detected a significant increase in the number 

of Olig2+ cells in the SVZ and surrounding areas. Finally, our in vitro results also 

support a role for noggin in oligodendrocyte differentiation where we observed a 

significant increase in oligodendrocyte cell number after neurosphere differentiation. The 

ability to specifically stimulate proliferation, tangential migration and differentiation of 

OPC would have major benefits in treating dysmyelinating diseases of the CNS and may 

ultimately be achieved by controlling the level of noggin expression in the SVZ, the 

major adult source of OPC. 

Microarray analysis identified four significant clusters of transcripts involved in:  

synapses, cell-cell junctions, signaling, and the cell membrane.  Among those increased 

in controls were genes involved in CNS development, in dendrite differentiation, in 

neurotransmitter function, as well as a microRNA-containing gene Mirg, which is 

expressed in the developing nervous system (Wheeler et al., 2006) and critically involved 
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in lineage differentiation (Tsan et al. , accompanying).  The noggin-exposed group was 

enriched in transcripts involved in neuronal and oligodendrocyte lineage differentiation.  

Consistent with our qPCR analysis and immunohistochemical studies, transcripts 

characteristic of oligodendrocytes (Mag, MBP, Mog, PMP22, Sox8), as well as Lama2, 

which regulates oligodendrocyte survival in the SVZ (Relucio et al., 2012), were 

increased in the noggin-exposed cells. Sox11, which promotes neurogenesis and can 

convert mature glia to neurons (Ninkovic et al., 2013); and Egfr  (C cells) were also 

increased by noggin exposure. 

This model will be useful in modulating BMP signaling during development, in 

models of neurodegeneration, aging and following injury. 

Since injury associated with the delivery of growth factors to the SVZ can redirect cell 

migration (Goings et al., 2004) and activate STAT signaling (Fuller et al., 2007), this 

model makes it possible to supply desired levels/schedules of noggin to the niche without 

confounding injury. This paradigm will therefore be useful in analyzing the molecular 

histogenesis of germinal zones, and in modifying the local growth factor milieu to expand 

progenitor populations following injury, disease, normal and pathological aging. Aging 

brain is characterized by both ependymal alterations (Conover et al., 2000; Marshall et al., 

2003; Maslov et al., 2004; Luo et al., 2006; Conover and Notti, 2008) and decreased NSC 

production (Craig et al., 1996; Maslov et al., 2004; Luo et al., 2008). These animals 

should allow us to tease out the optimal kinetics and levels of noggin expression that best 

promote the regenerative response of the adult and aged CNS.  Ultimately mating with 

mouse models of aging (Kawahara et al., 2009), models of neurodegenerative disease 

where noggin levels decrease, such as Alzheimer’s disease (Tang et al., 2009), as well as 
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in models of ischemic brain injury (Samanta et al., 2010), or demyelination (Cate et al., 

2010) should determine the optimal paradigm of noggin expression that stimulates 

recovery of function.   It will also be important in promoting plasticity in regions 

refractory to regeneration or NSC derivation.   
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Figure A.1.  Fidelity of transgene expression   

A.  -gal expression (a, X-gal staining) completely overlaps with Nestin positive cells (b, 

Cy3 secondary, red) lining the SVZ, indicating that rtTA transgene expression is 

restricted to cells expressing Nestin.  Hoechst identifies nuclei in b.  LV = lateral 

ventricle.  Scale bars = 200m. 

B.  After 8 days of transgene induction, Noggin over-expression is restricted to Nestin 

positive cells (a, Cy3, red) as marked by eGFP expression (b), indicating fidelity of 

transgene expression. c = overlay.  Scale bar = 200m. 

C.  a-c.  Nestin (Cy3 secondary, red) is expressed in B cells (GFAP positive cells, FITC 

secondary). 
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D.  a-c.  Nestin (Cy3 secondary, red)  is also present in some DCX+ A cells (FITC 

secondary). 

LV = lateral ventricle.  Scale bars = 200 µm A-D, 20 µm C.c, D.b,c. 



 

146 
 

 

Figure A.2.  Expression of Noggin in the SVZ is tightly controlled by doxycycline 

treatment.  Expression of both Noggin protein (A) and mRNA (B) in the SVZ of double 

transgenic animals were up-regulated by doxycycline.   

A.  Noggin is expressed in the ependymal zone in the uninduced SVZ (a-c) and is 

strikingly increased by 8 days of transgene induction (d-f).   a-f are coronal sections, a,d 

= anti-Noggin antibody (Cy3 secondary, red), Hoechst 33258 identifies nuclei (b,e).  

Inserts show higher magnification views of indicated regions and c,f are overlays.  LV = 

lateral ventricle.  Scale bars = 200 m.  In all figures, medial is oriented to the right, 

lateral to the left. 

B.  Quantitative RT-PCR analysis of Noggin mRNA from microdissected SVZ.  Similar 

levels of mRNA were expressed in control SVZ (C, single transgenic), and double 

transgenic mice not exposed to doxycycline (NI; not induced), indicating that the 
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transgene was not expressed in the absence of doxycycline, i.e., did not “leak”.  The 

transgene was highly responsive to doxycycline induction; Noggin mRNA was 

upregulated 2-fold after two days of induction (+2), 3-fold by four day induction (+4), 

and 7-fold after 8 days (+8).  -actin was employed for normalization,  fold-change was 

estimated using the ct method.  Samples were analyzed in triplicate and fold-change 

represented as mean + SD. 

C.  Noggin inhibits BMP signal transduction at the level of Smad1/5/8. 

Immunohistochemical localization of phospho-Smad1/5/8 indicates that in control 

animals (a-c) there is active BMP signaling as phosphorylated Smad protein (a, Cy3 

secondary, red) is present in the nuclei (b, Hoechst, blue) of cells lining the LV (c, arrows, 

overlay).  In animals induced for 8-days to express noggin (d-f), pSmad1/5/8 (d) is rarely 

present in nuclei (e), indicating that BMP signaling has been abrogated (f, overlay) in 

induced animals compared with controls.  LV = lateral ventricle.  Scale bars = 100 µm. 
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Figure A.3.  Noggin promotes differentiation of SVZ neural stem cells.  

A.  Noggin over-expression significantly increases the number of Mash1+ transit 

amplifying C cells, DCX+ neuroblasts, SOX3+ neural precursor cells, and Olig2+ OPC, 

and decreases the number of GFAP+ astrocytes in the SVZ of double transgenic animals 

exposed to doxycycline for 8 days (+8) compared with non-induced controls (NI).  Data 
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are represented as mean + SD, n = four animals per group, 8 SVZ. * indicates p <  0.003, 

Students t test. 

B.  Noggin increases the number of oligodendrocyte precursor cells present in the SVZ.  

Cells expressing the transcription factor Olig2 (a,d, Cy3 secondary, red) were examined 

in coronal sections of uninduced controls (NI, a-c), and 8-day induced animals (+8, d-f).  

In uninduced controls there are very few Olig2+ cells in the SVZ (a-c), however, Noggin 

induction strikingly increased the Olig2+ cells in the SVZ, striatum and corpus callosum 

(d-f). Hoechst staining identifies nuclei (b,e); arrows in the overlays (c,f) indicate Olig2 

positive cells in the SVZ, * identifies positive cells in the striatum.  cc = corpus callosum, 

Scale bar = 200 m. 
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Figure A.4.  Noggin promotes proliferation in the SVZ. 

A.  Confocal sections illustrating co-staining of GFAP (a, secondary antibody=FITC, 

green) and BrdU (b, Cy3 secondary, red) in a coronal section of the SVZ following 8-day 

induction.  Insert (white box in overlay c) is shown at higher magnification with 

orthogonal views employed for quantification of double positive cells in d.  Bars a,b,c = 

50 m; d = 20 m. 

B.  Confocal image of a coronal section through 8-day induced SVZ illustrating co-

localization of the neuroblast marker DCX (a, Cy3, red) and BrdU (b, green).  The 

overlay is illustrated in c and the orthogonal view is shown at higher magnification in d.  

LV = lateral ventricle.  Scale bars a,b,c = 50 m; d = 20 m. 

C.  Noggin induced proliferation of GFAP+ astrocytes, Mash1+ transit amplifying C 

cells SOX3 neural precursors, and DCX+ neuroblasts.  Quantification of BrdU+ and cell 

type specific antigen+ cells (GFAP, DCX or SOX3) was carried out in the SVZ of non-

induced (NI) and mice induced for 8 days (+8).  Ki67 was also used to quantify the 

number of dividing Mash1+ C cells.  Double positive cells were counted when the 

nuclear signal was central to cytoplasmic GFAP or DCX, or overlapping with nuclear 

Mash1 or SOX3 in n = 4 animals, 8 SVZ per group.  Values are expressed as mean + SD, 

* = p < 0.05, NI vs +8, Students t test.  
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Figure A.5.  Noggin promotes differentiation of neurons and oligodendrocytes from 

neurospheres.   

A.  Immunohistochemical localization of GFAP+ astrocytes (Cy3 secondary, red), and 

Tuj1+ neurons (FITC, green) in differentiated neurosphere cultures from control (a,b) and 

8-day induced mice (d,e) illustrating the increased numbers of neurons and fewer mature 

astrocytes differentiated in the presence of Noggin.  Noggin expression also increased 

both the number and maturity of MBP+ oligodendrocytes (c,f, FITC secondary).    

B.  Percentage of GFAP+ astrocytes (red bars), TUJ1+ neurons (green) and MBP+ 

oligodendrocytes (blue) in cultures from non-induced controls (NI), animals induced for 

8-days in vivo (+8), and animals induced both in vivo and in vitro (+8/+DOX).  Addition 

of BMP4 to the cultures (+8/+DOX/+BMP4) significantly suppressed differentiation of 
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both neurons and oligodendrocytes. Mean numbers of GFAP+, Tuj1+, and MBP+ cells in 

NI vs +8 cultures, between NI vs +8/+DOX, and between NI vs +8/+DOX+BMP4 

cultures (except MPB+ cell numbers) were significantly different, ** indicates p < 0.005, 

bars indicate the comparison of +8 vs +8/+DOX. 
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Figure A.6.  Noggin does not alter self-renewal of neurospheres.   

A.  Noggin over-expression did not affect the number, morphology or size of secondary 

neurospheres from control (a) or mice induced in vivo for 8 days to express Noggin (b, 

+8). 

B.  After 7 DIV, neurospheres were classified as small (< 4 units), medium (4-8 units) 

and large (> 8 units) using an optic micrometer, then counted.  There was no significant 

difference in the mean number (+ SD) of neurospheres from control (NI) or induced (+8) 

groups in n = 3 experiments.   
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Table A.1.  Cell type specific effects of Noggin over-expression in the SVZ   

To determine if there were changes in the distributions of each population, we compared 

the standard deviations of induced and uninduced animals using Chi-squared analysis.  

The standard deviations were not significantly different in B or A cell populations, but 

changed significantly (*) in response to Noggin exposure in C and OPC cells.  To 

examine changes in individual cell populations by Noggin over-expression, we first 

determined the ratio of individual cell types relative to the B cell (set at 1) within the in 

non-induced (NI) control group and in animals induced for 8 days (+8), and to each other.  

We then compared the change in +8 relative to NI (+8/NI).  ** = actual percentage of B 

cells. 
 

 

 Chi-squared analysis of the change in distributions of NSC 

 in non-induced and induced animals 

B C* A OPC* 

2=28.2, p < 0.8 2 = 51.6, p < 0.006 2 = 29.0, p < 0.9 2 = 25.2, p < 0.01 

 

 

Percentage Change 

 B C A OPC C/OPC A/C 

Non-induced 

(NI) 
1.0 .17 .64 0.05 3.57 3.68 

Induced (+8) 1.0 .31 1.1 0.11 2.86 3.54 

 

Ratio +8/NI 

0.76** (.489/.647) 1.8 1.7 2.2 0.8 0.96 
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Table A.2.  There was no difference in the percentage of GFAP+ astrocytes, Tuj1+ 

neurons, or MBP+ oligodendrocytes formed from clonal spheres compared with 

traditional neurospheres. 

 

Individual clones were expanded and differentiated in vitro in serum containing media 

following mitogen withdrawal. Five representative clones per group from non-induced 

control (NI) vs animals induced in vivo (+8) were exposed to three different conditions in 

vitro: no treatment (NI), addition of doxycycline (+8) or addition of recombinant BMP4 

protein (+BMP4).  Percentage of astrocytes (GFAP+) and neurons (Tuj1+) and number of 

oligodendrocytes (MBP+) were quantified as described previously. Means for individual 

clones were the same as those obtained for the populations (Figure A.5. B), with 

increased numbers of neurons (36.5 ± 1.7 vs 30.6 ± 1.0; p ≤ 5.4 x 10
-6

) and 

oligodendrocytes (8.4 ± 3.6 vs 2.0 ± 1.1; p ≤ 0.006) after Noggin induction accompanied 

by a decrease in the number of GFAP+ cells (55.0 + 2.0 vs 67.4 ± 1.4; p ≤ 4.0 x 10
-6

). 

Combined in vivo and in vitro induction of the transgene further decreased the number of 

GFAP+ cells (49.7 ± 3.4 vs 55.0 ± 2.0; p ≤ 0.008), and increased the number of neurons 

and oligodendrocytes compared with in vivo induction alone (40.2 ± 1.1 vs 36.5 ± 1.7; p 

≤ 0.001 for Tuj1+ cells and 10.0 ± 2.9 vs 8.4 ± 3.6; p ≤ 0.005 for MBP+ cells). Addition 

of BMP4 to the cultures reverted the effects of Noggin on OPC numbers similar to those 

in uninduced cultures.  There was a resulting increased number of GFAP+ cells (~ 89% 

independent of Noggin induction) and a drastic decrease in the number of neurons in all 

cases (i.e., from 40.2 ± 1.1 to 10.7 ± 2.8 in induced animals).  
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