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CHAPTER 1 INTRODUCTION 

 

1. 1 Adipose tissues and their role in regulating metabolic homeostasis  

Metabolic syndrome is emerging as a global epidemic. Approximately 1 in 4 or 5 adults, 

depending on the ethnic origin, has one or all of its characteristics (Grundy, 2008), such as 

abdominal obesity, insulin resistance/glucose intolerance, dyslipidemia, fatty liver, 

proinflammatory and prothrombotic state and increased risk for cardiovascular disease (Grundy 

et al., 2004). Adipose tissues play important roles in regulating metabolic homeostasis, and their 

dysfunction contributes significantly to the progression of metabolic diseases.   

 

1.1.1 Different adipose tissues 

In general, adipose tissues can be divided into three subtypes depending on their morphology and 

thermogenic function: white, brown and beige. White adipose tissues (WAT) contain unilocular 

adipocytes and mainly serve as a fuel storage depot. Rather than being an inert organ, it 

undergoes active lipid synthesis and lipolysis in response to different nutritional and hormonal 

signals. Excessive accumulation of WAT resulting from chronic overnutrition and reduced 

physical activity alters adipocyte function, leading to excess fatty acid release, increased 

production of inflammatory cytokines, and abnormal adipocyte hormone signaling. All of these 

contributes to obesity associated metabolic disorder.  
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Brown adipose tissue (BAT) contains multilocular, mitochondria-rich brown adipocytes. The 

high iron content in mitochondria and dense vasculature give the adipocyte a brownish color 

(Enerback, 2009). The main function of BAT is to generate heat. It is activated when 

environmental temperature is lower than the organism’s thermoneutral point. This adaptive 

thermogenesis aims at producing heat for defense against cold, and is under the control of 

norepinephrine, released from sympathetic nerves (Klingenspor, 2003). Norepinephrine binds to 

adrenergic receptors and activates the cAMP signaling pathway, leading to transcriptional 

activation of UCP1, a mitochondria carrier protein specific to BAT. It discharges the proton 

gradient generated in oxidative phosphorylation and therefore uncouples the respiratory chain, 

allowing for robust fuel oxidation with a low rate of ATP production, thus dissipating most of 

the energy produced as heat (Cannon and Nedergaard, 2004). For decades, BAT in humans was 

thought to only exist in the newborn, yet recent discovery of brown fat in adult humans (Cypess 

et al., 2009; Nedergaard et al., 2007; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009) 

raises an intriguing possibility to tackle obesity-related metabolic disorders through activating its 

thermogenic function. 

 

The third type of adipocyte, recently identified and named beige/brite or inducible brown fat 

(Cypess et al., 2013; Jespersen et al., 2013; Petrovic et al., 2010; Wu et al., 2012), resembles 

white adipocyte at basal level characterized by a unilocular lipid droplet and low levels of UCP1 

expression. However, upon activation (e.g. through norepinephrine released from sympathetic 

nerve terminal), beige adipocytes markedly activate UCP1 expression and transform into 

adipocytes with multilocular morphology.  
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1.1.2 Developmental origin and metabolic function of different adipocytes 

Adipose tissue is a heterogeneous organ, with WAT scattered in different locations of the body 

and brown adipocytes residing in WAT (Sanchez-Gurmaches and Guertin, 2013). A certain 

degree of plasticity has also been found in adipose tissues using lineage tracing to mark the cold-

induced beige adipocytes in inguinal WAT. In this study, researchers showed that the labeled 

cold induced beige adipocytes regained “WAT” characteristics in warmer temperature and the 

same white adipocytes can be reconverted to beige adipocytes upon subsequent cold challenge, 

thus demonstrating a bi-directional inter-conversion between beige and white adipocytes 

(Rosenwald et al., 2013). A couple of studies have identified cell surface markers which made it 

possible to isolate beige precursors in adult mice, examples are CD137, and platelet derived 

growth factor receptor alpha (PDGFRα). Precursor cells isolated based on these markers exhibit 

bi-potentiality in differentiation as they differentiate into white adipocytes at basal condition and 

become brown adipocytes under stimulations like Irisin or β3-adrenoceptor agonist (Lee et al., 

2012; Uezumi et al., 2010; Wu et al., 2012).  

 

Unlike beige adipocytes, the classical brown adipocytes seem to have a distinct developmental 

origin compared to white adipocytes, sharing the same mesenchymal progenitors with skeletal 

muscle, labeled positive for myf5 (Seale et al., 2008; Timmons et al., 2007). Although white 

adipocytes in the epididymal WAT mainly comes from Myf5- progenitors, white adipocytes 

from the interscapular and retroperitoneal WAT can also rise from myf5+ precursors (Sanchez-

Gurmaches et al., 2012).  
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The primary function of WAT is energy storage. In general, subcutaneous WAT plays an 

important role in buffering dietary lipid intake, and therefore protects other tissues from 

lipotoxicity. On the other hand, visceral fat is more lipolytically active, contributing more to 

plasma free fatty acid levels and strongly associates with metabolic disease (Bjorndal et al., 

2011). In addition to that, WAT also functions as an endocrine organ secreting hormones and 

cytokines such as leptin and adiponectin to regulate feeding and metabolism (Galic et al., 2010; 

Ouchi et al., 2011; Waki and Tontonoz, 2007).  

 

In contrast to WAT, BAT plays a catabolic role in metabolic regulation, it is not only activated 

during adaptive thermogenesis but also by high fat diet feeding, and oxidizes free fatty acids 

taken up from the plasma (Cannon and Nedergaard, 2004). BAT ablation through UCP1 

promoter driven diphtheria toxin A expression resulted in marked obesity associated with insulin 

resistance in rodents (Hamann et al., 1998). Similar phenotype was observed in mice lacking all 

three β adrenergic receptors (Bachman et al., 2002). In humans, a negative correlation between 

BAT activity and BMI/body fat percentage has been observed (van Marken Lichtenbelt et al., 

2009; Vijgen et al., 2011). And activation of BAT through cold acclimation has been shown to 

correct hypertriglyceridemia, increase energy expenditure and reduce adiposity (Bartelt et al., 

2011; Yoneshiro et al., 2013). Because beige fat resembles classical brown fat upon activation, 

and the BAT in humans has similar gene expression signatures compared to beige fat rather than 

classical BAT (Wu et al., 2012), activating beige fat also provides a promising therapeutic to 

alleviate metabolic syndrome.  

 

1.1.3 Adipose tissue inflammation in obesity related metabolic disease 



5 
 

Perhaps the earliest evidence suggesting obesity and diabetes as chronic low-grade inflammation 

comes from the fact that high doses of the anti-inflammatory drug salicylate (or Asprin) reduces 

blood glucose levels in people with type 2 diabetes (T2D) (Williamson, 1901). The mechanism 

was unclear until decades later, when Kopp et al. and colleagues discovered that salicylate 

improves insulin sensitivity through inhibiting the IKKβ/NFκB pathway (Kopp and Ghosh, 1994; 

Yin et al., 1998; Yuan et al., 2001). Activation of IKKβ/NFκB was found in insulin responsive 

tissues of obese individuals, and haploinsufficiency of IKKβ alone is able to greatly improve 

glycemic control in diabetic conditions (Hundal et al., 2002; Yuan et al., 2001). Moreover, 

epidemiology studies revealed that T2D associates with increased levels of markers and 

mediators of inflammation. Examples are fibrinogen, C-reactive protein, IL-6, plasminogen 

activator inhibitor, and TNFα (Shoelson et al., 2006). In experimental models, TNFα directly 

caused insulin resistance through impairing insulin receptor and insulin receptor substrate 1 

(IRS1) phosphorylation (Feinstein et al., 1993), while its neutralization significantly increased 

peripheral tissue glucose uptake (Hotamisligil et al., 1993). Adipose tissues contribute 

significantly to plasma content of those inflammatory mediators due to the dramatic remodeling 

during obesity (Cildir et al., 2013; Tateya et al., 2013).  

 

In addition to lipid filled mature adipocytes held together by a network of collagen fibers, 

adipose tissues also contain the stromal vascular cells, including preadipocytes, fibroblasts, 

endothelial cells and cells of the immune system such as leukocytes, macrophages and T cells. 

As obesity progresses, either induced by high fat diet or due to genetic mutations, large numbers 

of macrophages start to infiltrate the adipose tissue, which secretes proinflammatory cytokines. 
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These changes are known to occur even before a significant increase in circulating insulin level 

(Xu et al., 2003).  

 

Macrophages can be categorized into two phenotypes depending on their responsiveness to 

inflammatory stimuli: classically activated (M1) macrophages and alternatively activated (M2) 

macrophages. M1 macrophages participates in destroying foreign organism and tumor cells, 

while M2 macrophages are thought to play an important role in scavenging debris, wound 

healing and angiogenesis (Ho and Sly, 2009; Lawrence and Natoli, 2011; Martinez et al., 2008).  

Pro-inflammatory mediators such as lipopolysaccharide (LPS), TNFα and IFN-γ leads to M1 

macrophages activation, while IL-4/IL-13 leads to M2 polarization (Sica and Mantovani, 2012). 

 

In 2007, Lumeng et al. discovered that in addition to increased macrophage number, the polarity 

of adipose tissue macrophages also changes during obesity progression (Lumeng et al., 2007a; 

Lumeng et al., 2008; Lumeng et al., 2007b). It is now believed that M2 macrophages contribute 

to maintain insulin sensitivity during the lean state, while M1 macrophages are recruited to obese 

adipose tissues to enhance insulin resistance through secretion of inflammatory cytokines. As 

such, drugs that block the effect of proinflammatory cytokines such RS504393, a CCL2 

antagonist, and anakinra, a recombinant human IL-1R antagonist, greatly reduced systemic 

inflammation and improved glycemic control in obese/diabetic rodents/patients (Kang et al., 

2010; Larsen et al., 2009; Larsen et al., 2007). Amlexanox, an inhibitor of the noncanonical IκB 

kinases IKK-ε and TBK1, also showed similar beneficial effect (Reilly et al., 2013).  
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Other than macrophages, higher number of T cells have also been found in adipose tissues from 

obese, insulin resistant mice than in the lean controls (Wu et al., 2007). And their composition 

undergoes significant change as obesity progress, with increased infiltration of CD8+ cytotoxic T 

cells and decreased presence of regulatory T (Treg) cells (Nishimura et al., 2009). These changes 

precede infiltration of macrophages and it is now considered that IFNγ secreted from Type1 T 

helper cells triggers M1 activation (Sica and Mantovani, 2012), while in the lean state, Treg and 

type 2 T helper cells help to induce macrophage M2 polarization by expressing IL-4 and IL-13 

(Martinez et al., 2008; Tateya et al., 2013; Tiemessen et al., 2007). 

 

1.2. Adipose tissue as an endocrine organ  

1.2.1 WAT as an endocrine organ 

For centuries people believed that the central role of WAT was triglyceride storage during 

energy consumption and fatty acid release during starvation. It is after the discovery of leptin 

(Zhang et al., 1994) that people began to recognize WAT as an important endocrine organ. 

Leptin, product of the Ob gene, is almost exclusively expressed in mature adipocytes of the 

WAT (Fain et al., 2004). It functions by binding to the leptin receptor encoded by the Db gene 

that locates to a different chromosome (Tartaglia et al., 1995). Both leptin deficient ob/ob and the 

leptin receptor deficient db/db mice are characterized by severe obesity, hyperphagia, diabetes, 

reduced physical activity and infertility (Galic et al., 2010). These identical syndromes were later 

explained by parabiosis experiments (Coleman, 2010), suggesting the existence of a circulating 

hormone that is absent in the ob/ob mouse and present but ineffective in db/db mice. In 1995, 
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Tartaglia et al. analyzed leptin receptor expression profile and found that it is expressed in the 

brain, particularly hypothalamus, as well as several peripheral tissues such as kidney, lung, liver 

and skeletal muscle (Tartaglia et al., 1995). In the same year, Campfield et al. showed that leptin 

exerts its anorexigenic effect through directly acting on the central nerve system (Campfield et 

al., 1995).  Using the Cre-Loxp system, researchers further mapped out POMC neurons of the 

arcuate nucleus and SF-1 positives neurons at ventromedial hypothalamus to be critical for 

leptin’s action (Balthasar et al., 2004; Bingham et al., 2008; Dhillon et al., 2006). Although 

leptin administration in ob/ob mice is able to rapidly reverse obesity through reducing caloric 

intake and increasing basal metabolic rate (Harris et al., 1998), its application in treating human 

obesity remains in doubt, as serum levels of leptin positively correlates with percentage of body 

fat (Considine et al., 1996). 

 

The classical leptin signaling pathway involves recruitment of receptor associated kinases of the 

Janus family, particularly JAK2, which then phosphorylates STAT3, resulting in their 

dimerization and nuclear translocation. In the hypothalamus, activated STAT3 dimers suppress 

orexigenic gene expression (Yang and Barouch, 2007). Other than STAT3, JAK2 

phosphorylation also activates MAPK, AMPK and the PI3K pathway. Both impaired JAK2 

signaling and reduced blood-brain leptin transfer accounts for leptin resistance observed in 

obese/diabetic individuals (Sahu, 2011; Yang and Barouch, 2007). 

 

Besides leptin, another relatively well studied adipokine is adiponectin. Adiponectin is 

exclusively expressed in mature adipocytes from adipose tissue and its expression decreases in 

obese mice and humans (Hu et al., 1996). Adiponectin circulates in plasma as biochemically 
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distinct and stable multimers ranging from a high-molecular-weight (HMW) species to low 

molecular weight hexamers and trimmers (Schraw et al., 2008). The HMW complex is suggested 

as the most active form since its serum level is significantly lower in patients with coronary heart 

disease than control and increases during weight loss of obese people (Kobayashi et al., 2004). In 

mice, adiponectin deficiency leads to severe diet-induced insulin resistance (Maeda et al., 2002) 

while acute increase in circulating adiponectin levels by two fold significantly lowered hepatic 

glucose production (Combs et al., 2001). These effects seem to be AMPK dependent, as 

adiponectin is no longer able to suppress increased hepatic glucose output and glucose 

intolerance in mice with liver specific AMPK-α2 KO or adenovirus mediated dominant negative 

AMPK expression (Andreelli et al., 2006; Yamauchi et al., 2002). Again through AMPK, 

adiponectin stimulates fatty acid oxidation and glucose uptake in skeletal muscle (Yamauchi et 

al., 2002), and regulates energy expenditure through acting on the hypothalamus (Kubota et al., 

2007). Interestingly, adiponectin also exerts AMPK-independent effect through activating 

receptor associated ceramidase and modulating plasma ceramide levels (Holland et al., 2011).   

 

With the concept of adipose tissue as an endocrine organ becoming more and more prevalent, a 

cascade of adipokines has been identified, including resistin, the infusion of which leads to 

hyperglycemia largely by increasing hepatic glucose production (Banerjee et al., 2004), retinol 

binding protein-4 (RBP4), which induces liver PEPCK expression and impairs insulin signaling 

in muscle (Yang et al., 2005), and serum amyloid A, Zinc-α2-glycoprotein (ZAG), Apelin, 

Vaspin, etc. whose target tissues and underlining mechanism are less well defined but all showed 

association with metabolic disease progression, either having deleterious or beneficial effects 

(Leal Vde and Mafra, 2013). Moreover, adipose tissues from obese individuals produce 
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inflammatory cytokines such as TNFα, MCP1 and IL-6, these cytokines are also considered 

adipokines even though some of them are mainly secreted by infiltrated immune cells. 

 

1.2.2 Endocrine role for BAT 

Compared to WAT, role of BAT as an endocrine organ is poorly investigated. The main 

adipokines released by WAT, such as leptin and adiponectin, are only expressed in brown 

adipocytes under conditions of inactivity and atrophy, activation of BAT can decrease their 

expression down to undetectable levels (Cannon and Nedergaard, 2004). Yet observations that 

mice with genetic ablation of BAT developed much more severe metabolic disorders than merely 

knocking out UCP1 suggests that BAT is more than just a thermogenic organ for metabolite 

oxidation (Enerback et al., 1997; Hamann et al., 1996; Lowell et al., 1993). Thyroid hormone 

may be the only recognized “batokine” hitherto, as type II thyrosine 5’-deiodinase (Dio2) which 

converts thyrosine to triiodothyrosine (T3) is specifically expressed in BAT and strongly induced 

during BAT activation (Silva and Larsen, 1983), yet the fact that mice with targeted ablation of 

Dio2 suffered hypothermia during cold exposure despite normal plasma T3 levels indicated that 

active T3 generated from BAT functions more like an autocrine factor rather than an endocrine 

one (de Jesus et al., 2001). The most compelling evidence suggesting BAT may release 

endocrine signals comes from recent transplantation studies: Subcutaneous transplantation of 

embryonic BAT corrects Type1 Diabetes in streptozotocin treated mice, possibly due to 

increased serum levels of IGF-1 (Gunawardana and Piston, 2012). Transplantation of BAT also 

confers resistance to HFD induced obesity through enhanced sympathetic activity, although the 

potential endocrine factor that increases sympathetic drive in the recipient mice remains 

unknown (Zhu et al., 2013). In the same year Stanford et al. found that BAT transplantation 
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improved metabolic parameters in a “dose”-dependent manner, and such beneficial effect 

requires IL-6 expression from the BAT used for transplantation (Stanford et al., 2013). All these 

evidence indicates BAT may play an endocrine function yet exactly how the system works 

awaits further research. 

 

1.3 STAT family and signaling 

The signal transducer and activator of transcription (STAT) proteins family contains 7 members: 

STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6, all of them participate in 

relaying signals downstream of cytokine receptors. In general, ligand binding to cytokine 

receptors triggers receptor dimerization, closing up the distance between receptor associated 

Janus kinases (JAK), thus enabling them to transphosphorylate each other. Activated JAK in turn 

phosphorylates carboxy-terminal tails of the receptors, providing docking sites for SH2 domain 

containing STAT proteins. Once docked on the receptor, STAT proteins undergo tyrosine 

phosphorylation by JAK and form antiparallel homo- or heterodimers before translocating into 

the nucleus, where they bind to specific enhancer sequences and induce target gene expression 

(Levy and Darnell, 2002). 

 

JAK-STAT signaling is characterized by rapid onset and subsequent decay. Two protein-tyrosine 

phosphatases: SHP-2 and TC-PTP have been found to dephosphorylate STATs in the nucleus, 

resulting in their nuclear export (Schindler et al., 2007). In addition, activated STATs also induce 

expression of suppressors of cytokine signaling (SOCS), which bind to phosphorylated cytokine 

receptors at the STAT docking site and prevent further STAT activation. SOCS proteins can also 

recruit components of E3 ubiquitin ligases to phosphorylated JAKs, leading to their 



12 
 

polyubiquitination and subsequent proteasomal degradation (Alexander and Hilton, 2004). Each 

STAT protein has its distinctive C-terminal transcriptional activation domain (TAD) (Kisseleva 

et al., 2002), which determines the specificity of its target genes. Different STATs also display 

different preferences for upstream cytokine receptors.  

 

Both STAT1 and STAT2 transduce signals from interferon (IFN) receptors, and their deficiency 

renders mice more susceptible to bacteria and virus infections, similar to the IFNγ knockout mice 

(Park et al., 2000; Schindler et al., 2007). An overwhelming body of literature has documented 

the proinflammatory nature of the IFNγ/STAT1 pathway, the activation of which induces 

expression of a variety of proinflammatory cytokines/mediators such as IL-12 (Ma et al., 1996), 

TNFα (Hayes et al., 1995), inducible nitric oxide synthase (iNOS) (Xie et al., 1993) and caspase-

1 (Tamura et al., 1996). Moreover, synergistic activation of the proinflammatory transcription 

factor NFκB can also be induced by IFNγ and TNFα co-treatment (Cheshire and Baldwin, 1997). 

Accordingly, bioactivity of IFNγ/STAT1 has been involved in many inflammation associated 

pathologies such as ischemia, atherosclerosis and T2D (de Prati et al., 2005), whereas tissue 

inflammation can be substantially attenuated in their absence (Chen et al., 2001; Jaruga et al., 

2004; O'Rourke et al., 2012; Rocha et al., 2008). In addition to its pro-inflammatory effect, 

STAT1 activation is also anti-proliferative, when treated with chemical carcinogens, both 

STAT1 and IFNγ receptor deficient mice developed tumors more rapidly and with greater 

frequency (Kaplan et al., 1998). 
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STAT3 transduces signals from the whole IL-6 family of cytokines as well as several growth 

factors such as granulocyte colony stimulating factor and epidermal growth factor. In contrast to 

STAT1, STAT3 activation is anti-inflammatory and pro-proliferative (Schindler et al., 2007).  

Overexpression of STAT3 promotes cell survival and inhibits apoptosis. In accordance with this, 

constitutively active STAT3 has been found in many types of human cancers and is required for 

transformation (Bromberg et al., 1999). Moreover, unlike the viable STAT1 and STAT2 

knockout mice, STAT3 deficient mice die at E6.5-7.5, demonstrating its essential role in early 

embryogenesis (Takeda et al., 1997).  

 

STAT4 directs the biological response to the IL-12 family of cytokines including IL-12, IL-23 

and IL-27 (Hunter, 2005). STAT4 knockout mice phenolcopies IL-12 deficient mice, revealing 

that it is required for IL-12 stimulated differentiation of CD4+ T helper1 lymphocytes (Gately et 

al., 1998; Kaplan et al., 1996b). Whereas STAT6 is required for IL-4/IL-13 dependent T helper2 

lymphocyte differentiation (Kaplan et al., 1996a). 

 

STAT5a and STAT5b are two genes localized to the same chromosome and encode proteins that 

are 96% identical (Kisseleva et al., 2002). Some redundancy in their function has been observed 

in regulating female ovarian development, as STAT5a/b double knockout results in female 

infertility while neither single knockout mice showed this defect (Teglund et al., 1998). Despite 

the structural similarity, STAT5a and STAT5b single knockout mice displayed quite distinct 

phenotypes: STAT5a-/- mice failed to lactate after parturition due to incomplete terminal 

differentiation of mammary gland, reminiscent the phenotype of prolactin receptor deficient mice 
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(Liu et al., 1997; Ormandy et al., 1997). Whereas STAT5b-/- mice are shorter and have reduced 

male specific liver gene expression, mimicking the growth hormone resistant phenotype in 

humans (Udy et al., 1997). Other than prolactin and growth hormone, STAT5a/b also transduces 

signals from the IL3 family and IL2 family of cytokines, as well as from erythropoietin and 

thrombopoietin (Kisseleva et al., 2002). Pertinent to the thesis, ErbB4 activation by neuregulins 

(see 1.4 for detail) which leads to STAT5a activation (Olayioye et al., 1999) is also required for 

mammary gland terminal differentiation, as ErbB4-/- mice rescued from heart defects through 

transgenic expression of ErbB4 under cardiac specific myosin promoter showed similar lactation 

defects to that observed in STAT5a-/- mice (Tidcombe et al., 2003). 

 

1.4 Neuregulin-ErbB4 signaling 

1.4.1 The Neuregulin family   

Neuregulins (NRGs) are a family of proteins containing an epidermal growth factor (EGF)-like 

motif that distinguishes them from rest of the EGF family members. To date, four different 

neuregulin genes have been identified (Nrg1-4) with at least 3 of them showing multiple splicing 

isoforms and only those with EGF-like (EGFL) domain are biologically active (Buonanno and 

Fischbach, 2001; Hayes et al., 2007). The EGFL domain contains around 52 amino acids. It is 

characterized by 3 disulfide bonds formed between 6 cysteine residues whose relative positions 

are conserved within the neuregulin family. Neuregulins are often synthesized as transmembrane 

precursors, the EGFL domain locates extracellularly and N-terminal to the transmembrane 

domain (Figure 1.1 and (Guma et al., 2010)). Between the EGFL domain and the transmembrane 

domain is a cleavage site that can be recognized by the ADAM family of metalloproteases, 
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especially ADAM17/TACE and ADAM19 (Montero et al., 2000; Seals and Courtneidge, 2003). 

Cleavage results in shedding of the N terminal fragment that activates the ErbB family of 

membrane-associated tyrosine kinases.  

 

NRGs are mainly expressed in cells of endothelial, mesenchymal and neuronal origin. Different 

NRGs play distinctive roles regulating growth, differentiation, survival and migration of cells in 

the epithelium (Wen et al., 1992), nerve system (Meyer and Birchmeier, 1995), cardiac (Zhao et 

al., 1998) and skeletal muscle (Florini et al., 1996), depending on their temporal and spatial 

expression patterns. NRG-1 is the most extensively studied neuregulin, it is expressed in both 

embryonic and adult brain, heart, as well as in liver, stomach, lung, kidney, spleen and skin (Wen 

et al., 1994). Pan NRG-1 knockout mice die midway through embryogenesis (E10.5) mainly due 

to defects in cardiac development (Meyer and Birchmeier, 1995). Other than that malformation 

of Schwann cells, cranial ganglia, sympathetic neurons and neuromuscular synapse also 

contribute to embryonic lethality (Britsch et al., 1998; Meyer and Birchmeier, 1995; Schmidt et 

al., 2011). NRG-2 is expressed mostly in central nervous system and heart (Buonanno and 

Fischbach, 2001), whereas NRG-3 expression is confined to the nervous system and embryonic 

mammary gland (Howard et al., 2005; Zhang et al., 1997). In contrast to NRG-1 deficient mice, 

NRG-2 mutant mice are viable and only displayed a mild phenotype, with early growth 

retardation and reduced reproductive capacity (Britto et al., 2004). NRG-3 has been shown to 

promote oligodendrocyte survival (Carteron et al., 2006) and regulate embryonic mammary 

differentiation (Kogata et al., 2013). Whether NRG-3 is absolutely required for these processes 

remains unknown. In 1999, Harari et al. identified NRG-4 and detected its expression in adult 

pancreas and skeletal muscle but not in neurons (Harari et al., 1999). Our group revisited this 
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issue through quantitative PCR (qPCR) and found that NRG-4 is highly enriched in BAT, with 

WAT being the 2nd largest reservoir, but low elsewhere (Figure3.1B). Pro-NRG-4 consists of 115 

amino acids. Like other neuregulins, it has an extracellular EGFL domain N terminal to the 

transmembrane region, yet it does not have an N-terminal Ig-G like domain and its cytoplasmic 

tail is significantly shortened (Figure 1.1 and (Buonanno and Fischbach, 2001; Harari et al., 

1999)). As predicted, NRG-4 is a secreted protein and the broad-spectrum matrix 

metalloprotease inhibitor GM6001 significantly inhibited shedding of its EGFL domain (Hayes 

et al., 2008). 

 

1.4.2 ErbB family and signaling  

The ErbB receptor tyrosine kinase (RTK) family consists of four cell surface receptors: ErbB1 

(EGFR), ErbB2, ErbB3 and ErbB4. They were named as such (v-erb-b2 avian erythroblastic 

leukemia viral oncogene homology 1/2/3/4) due to their high homology to the oncogenic protein 

kinase v-ERBB, an aberrant form of human EGFR encoded by the avian erythroblastosis virus  

(Yarden and Sliwkowski, 2001).   

 

All four ErbBs are single transmembrane (TM) proteins with the TM domain separating equal 

sized extra- and cytoplasmic domain. The extracellular domain contains two highly conserved 

cysteine-rich regions flanked by two leucine-rich domains that are responsible for ligand 

interaction. The cytoplasmic domain contains a juxtamembrane region, a tyrosine kinase domain 

and a carboxyterminal domain (Wieduwilt and Moasser, 2008). Activation of the ErbB RTK is 

initiated by binding of a ligand to the extracellular regions of these receptors, which causes 

receptor dimerization and transduces the signal to the intracellular region. The cytoplasmic 
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tyrosine kinase domain then phosphorylates several tyrosine residues in the C-terminal tail of the 

receptor, which recruits PTB and SH2 domain containing adaptor proteins such as Shc, Src, 

Grb2, JAK and the p85 subunit of PI-3 kinase (Bose and Zhang, 2009; Yarden and Sliwkowski, 

2001). Interaction with Shc predicts activation of the MAPK pathway, PI-3K recruitment leads 

to Akt phosphorylation and increased cell survival, while activation of the JAK/STAT pathway 

results in transcriptional regulation (Figure 1.2).   

 

ErbB2 and ErbB3 are two exceptions with regard to their molecular structures within the ErbB 

RTK family. ErbB3 lacks observable intrinsic kinase activity due to mutations in its tyrosine 

kinase domain (Guy et al., 1994), whereas ErbB2 doesn’t bind to any known ligand (Klapper et 

al., 1999). Consequently, neither ErbB2 nor ErbB3 alone supports linear signaling and 

heterodimerization with each other or with other ErbB family receptors is required for their 

activation. In fact, ErbB2 is a preferred dimerization partner when cotransfected with any other 

ErbBs and the ErbB2 containing heterodimer prolongs and enhances downstream signaling and 

outputs when compared to the respective ErbB homodimers (Yarden and Sliwkowski, 2001). 

 

Besides ligand-mediated receptor dimerization and relaying of phosphorylation signals, the ErbB 

receptors can also be cleaved by different proteases either shedding the dominant-negative extra-

cellular domain (Ghedini et al., 2010), or setting free the cytoplasmic fragment that translocates 

into the nucleus and functions as a transcription cofactor (Ni et al., 2001). Take ErbB4 as an 

example, its extracellular domain can be cleaved by metalloproteases, producing a 100 kDa shed 

fragment and a membrane-anchored 80 kDa fragment (Vecchi and Carpenter, 1997; Zhou and 



18 
 

Carpenter, 2000). This 80 kDa fragment is cleaved further by γ-secretase to liberate the 

cytoplasmic domain (Ni et al., 2001), which subsequently translocates into the nucleus and has 

been shown to potentiate STAT5 induced gene expression (Williams et al., 2004). 

 

Ligands of the ErbB family receptors are polypeptides with a consensus EGFL domain. Specific 

ErbB receptors have their preferential ligands depending on affinity and dimerization partners 

and one ligand may selectively bind to only 1 or 2 of the ErbB receptors (Figure 1.3). For 

instance, EGF only binds to ErbB1, while heparin binding EGFL growth factor (HB-EGF) binds 

to both ErbB1 and EbB4. In the case of neuregulin, ErbB3 and ErbB4 are the direct receptors 

while ErbB1 and ErbB2 function as coreceptors as they do not bind to neuregulins on their own 

(Burden and Yarden, 1997). Specific binding between NRGs and the ErbB receptors are also 

reflected by the phenotype of their respective knockout mice. Like the NRG-1 null mice, whole 

body ErbB4 and ErbB2 deficiency also led to embryonic lethality at E10.5 due to heart 

trabeculation failure while ErbB3 knockout mice die from abnormal endocardial cushion at 

E13.5 (Gassmann et al., 1995; Guma et al., 2010), indicating NRG-1 signaling through 

ErbB4/ErbB2 dimer is critical for embryonic heart development. 

 

1.4.3 Metabolic functions of ErbBs and their ligands 

Other than affecting neuronal and cardiovascular development, ErbB receptors and their ligands 

are also involved in metabolic regulation. First of all, recombinant NRG-1 isoform heregulin-β1 

dose and time dependently stimulated glucose uptake both in L6E9 muscle cells and in ex vivo 

cultured soleus muscle (Suarez et al., 2001). In a chronic setting, picomolars of heregulin-β1 that 
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are non-myogenic was shown to increase skeletal muscle mitochondria biogenesis through 

activating PGC-1α and PPARδ. Insulin sensitivity was also improved through enhanced Glut4 

expression (Canto et al., 2007). In 2003, Lebrasseur et al. noticed that muscle contraction 

activated all NRG receptors and induced expression of multiple NRGs (Lebrasseur et al., 2003). 

Muscle contraction activates ErbB4 through Ca2+ induced cleavage of NRG-1 and increases 

Glut4 translocation; as such, blockage of ErbB4 signaling significantly impaired contraction 

coupled muscle glucose uptake (Canto et al., 2006).  On the whole organism level, muscle 

specific overexpression of heparin-binding EGF like growth factor (HB-EGF), a known ligand of 

ErbB4 (Elenius et al., 1997), protected mice from diet induced obesity and improved insulin 

sensitivity through activating the PI3K-Akt pathway (Fukatsu et al., 2009).  

 

Besides muscle, two other vital metabolic organs are adipose tissue and liver. While ErbB3 and 

ErbB4 are undetectable in adipocytes, ErbB1 and ErbB2 have been found to decrease during 

3T3-L1 adipocyte differentiation (Pagano and Calvo, 2003) and in one study ErbB1 abundance 

dropped in adipose tissues of insulin resistant/diabetic women (Rogers et al., 2012). As for liver, 

ErbB1 and ErbB3 dominate from embryonic day 19 and throughout adulthood. ErbB2 is 

expressed in embryonic liver and in neonatal mice, but virtually disappears after p21, whereas 

ErbB4 is only detected in trace amount by some authors including our group (Carver et al., 2002). 

The ErbB1 ligand EGF has been shown to regulate both basal and glucagon induced 

gluconeogenesis in isolated hepatocytes depending on the redox state of the substrate, 

suppressing it when the main substrate is lactate, and enhancing it when the main substrate is 

pyruvate (Soler et al., 1991).  
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Both ErbB1 and ErbB3 displayed circadian variation in protein expression in adult liver, with the 

latter exhibiting a larger amplitude (Carver et al., 2002). In addition to that, insulin significantly 

suppressed ErbB3 expression and impaired its binding to NRG-1β in cultured hepatocytes in a 

PI3K dependent manner, as two PI3K inhibitors, wortmannin and LY294002, completely 

relieved those inhibitory effects (Carver et al., 1996; K et al., 1997). The inhibition of ErbB3 

expression by insulin correlated with its rhythmic expression pattern, reaching nadir at 8:00a.m, 

when plasma insulin is highest in postprandial mice, and peaking at 8:00p.m when the starved 

mice just started to eat (Carver et al., 2002). 

 

1.5 Regulation of hepatic lipid metabolism  

Non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver 

disease and is strongly associated with obesity, type 2 diabetes and insulin resistance. The 

prevalence of US-defined NAFLD (5.5% or more fat in the liver) in the general population 

ranges from 9.3 to 29% in Asia, 16% in Mexico, 23% in Italy, 30% in Israel and 31% in the 

United States (Lazo and Clark, 2008). Moreover, a much higher prevalence of NAFLD has been 

found among people with type 2 diabetes, ranging from 40% to 69.5% (Lazo and Clark, 2008).  

NAFLD is caused by an imbalance between liver lipid availability and disposal. Dietary fat from 

the intestine, non-esterified fatty acids (NEFA) released from adipose tissue, and de novo 

lipogenesis in the liver are three main contributors to liver lipid content. While fatty acid β-

oxidation, and very low density lipoprotein (VLDL) secretion are the two ways liver clears up its 

triglyceride content (Lavoie and Gauthier, 2006). Pertinent to the thesis, the following sections 

will focus on de novo lipogenesis, which contributes to 26% of liver fat (Ferre and Foufelle, 

2010).  
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De novo lipogenesis is the enzymatic pathway for converting dietary carbohydrate into fat.  

It starts with citrate, the intermediate metabolite in tricarboxylic acid cycle generated in 

mitochondria. After being transported into cytosol, citrate is converted into Acetyl-CoA by ATP 

citrate lyase (ACL). Through the action of acetyl-CoA carboxylase (ACC), acetyl-CoA is 

converted into malonyl-CoA, which is converted further into NEFA by fatty acid synthase 

(FASN). Fatty acids generated in this way are saturated, yet through the action of stearoyl-CoA 

desaturase 1 (SCD1), monounsaturated fatty acids are made. These saturated and unsaturated 

fatty acids are then esterified with glycerol-3 phosphate to form triglycerides catalyzed by 

enzymes such as GPAT and DGAT (Ferre and Foufelle, 2007). 

 

Full activation of abovementioned lipogenic enzymes requires both high insulin and high glucose 

concentrations, and a number of studies have shown that insulin action on this family of genes is 

mediated by a transcription factor called sterol regulatory element binding protein-1c (SREBP1c), 

while the effect of glucose on lipogenic gene expression is shown to be mediated through 

carbohydrate response element binding protein (CHREBP) (Ferre and Foufelle, 2007).  

 

To date, three SREBP isoforms have been identified and characterized: SREBP1a, SREBP1c and 

SREBP2 (Jeon and Osborne, 2012). SREBP1a and 1c are transcribed from the same gene but by 

a different promoter. Whereas SREBP1a and SREBP2 tend to regulate cholesterol biosynthesis, 

SREBP1c has a greater role in regulating fatty acid synthesis than cholesterol synthesis (Horton 

et al., 1998; Shimano et al., 1997a; Shimano et al., 1999). 
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SREBP1c is synthesized as a precursor embedded in the endoplasmic reticulum (ER), where it 

interacts with SREBP cleavage-activating protein (SCAP), SCAP again interacts with insulin 

induced gene (INSIG), which sequesters the whole complex in the ER. Insulin not only leads to 

transcriptional increase of SREBP1c precursor expression, but also dissociates SCAP from 

INSIG, resulting in Golgi transfer of the SREBP1c-SCAP complex. Inside Golgi apparatus, 

SREBP1c undergoes double cleavage by the proteases S1P and S2P, and the resulting mature 

protein translocates into the nucleus to carry out transcriptional regulation function (Ferre and 

Foufelle, 2010).  

 

Other than insulin, SREBP1c is also regulated by liver X receptors (LXR). LXR belongs to the 

nuclear hormone receptor superfamily, its endogenous ligands are oxysterols and it obligately 

dimerize with retinoid X receptors (RXR) to regulate transcriptional activation of target genes, 

through binding to their LXR-element (LXRE), which has been found in the 5’ flanking region 

of SREBP1c (Repa et al., 2000). Both LXR agonist T0901317 and RXR agonist LG268 

significantly induced liver SREBP1c expression as well as nuclear translocation, while in mice 

lacking LXR, liver expression of SREBP1c and its target lipogenic genes are significantly 

decreased (Repa et al., 2000; Schultz et al., 2000). 

 

Through promoting fatty acid synthesis and lipid deposition, SREBP1c has been implicated in 

the development of metabolic disorders such as insulin resistance and type 2 diabetes. Loss of 

function studies on SREBP1c is relatively limited since SREBP1c knockout mice only showed 

modest phenotype due to compensatory increase of SREBP1a and SREBP2 (Liang et al., 2002), 

and knock-out of both SREBP1c and SREBP1a is virtually lethal (Shimano et al., 1997b). 
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However, bypassing the compensation issue of SREBP1c single KO and lethality of 

SREBP1c/1a double KO, Tang et al. found that a small molecule inhibitor of SREBP1c called 

betulin significantly improved hyperglycemia and insulin resistance (Tang et al., 2011). 

Following her study Moon et al. found that SCAP deletion, which significantly decreased 

expression levels of all SREBPs, rescued fatty liver phenotype in the leptin deficient ob/ob mice 

(Moon et al., 2012). On the other hand, liver steatosis resulting from increased SREBP1c 

expression has been found in both genetic and diet induced insulin resistant mouse models (Ferre 

and Foufelle, 2007). And liver specific SREBP1c overexpression alone, leads to increased 

hepatic triglyceride content and hyperinsulinemia (Knebel et al., 2012). All these evidences 

suggest that NAFLD, associated with increased SREBP1c expression, contributes to insulin 

resistance.  
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Figure 1.1 Neuregulin (NRG) structure 
NRG gene products share a characteristic signature for the epidermal growth factor (EGF) 
domain, which is located in the extracellular region that differentiates this subfamily from other 
members of the EGF family. NRG-1 isoforms have been classified in types I–VI on the basis of 
differences in the N-terminal distal region. NRG3 and NRG4 are the two simplest NRGs that do 
not contain the N-terminal IgG like domain. Many of the NRGs are glycosylated extracellularly 
and red arrow designates the potential metalloprotease cleavage site.   
 

 

                                                         (© Guma et al. 2009) 
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Figure 1.2 ErbB signaling network 
Ligand induced ErbB receptor dimerization leads to tyrosine phosphorylation at the C-terminals 
of the receptors, thus providing docking site for SH2 and PTB domain containing proteins such 
as PI3K, Shc and STAT5. Activation of these proteins relays signals downstream, resulting in 
Akt, MAPK activation and STAT5 target gene expression, respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P
P

PI3K

Shc

PDK1

Akt

mTOR

Ras

Raf

MEKs

Erks

STAT5

STAT5

STAT5

Transcriptional 
regulation

P P

ErbB
receptors 

Cell survival Proliferation



26 
 

Figure 1.3 ErbB receptors and ligand specificity 
Ligands that bind to individual ErbB receptors are listed above each receptor. ErbB2 is an orphan 
receptor while ErbB3 lacks intrinsic kinase activity. 

 

                                                         (© Guma et al. 2009) 
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CHAPTER 2   OTOPETRIN1 PROTECTS MICE FROM OBESITY-

ASSOCIATED METABOLIC DYSFUNCTION THROUGH 

ATTENUATING ADIPOSE TISSUE INFLAMMATION 

2.1 Abstract 

Chronic low-grade inflammation is emerging as a pathogenic link between obesity and metabolic 

disease. Persistent immune activation in white adipose tissue (WAT) impairs insulin sensitivity 

and systemic metabolism in part through the actions of proinflammatory cytokines. Whether 

obesity activates an adaptive mechanism to counteract chronic inflammation in adipose tissues 

has not been elucidated. Here we identified Otopetrin 1 (Otop1) as a component of a counter-

inflammatory pathway that is induced in WAT during obesity. Otop1 expression is markedly 

increased in obese mouse WAT and is stimulated by TNF in cultured adipocytes. Otop1 mutant 

mice respond to high-fat diet with pronounced insulin resistance and hepatic steatosis, 

accompanied by augmented adipose tissue inflammation. Otop1 attenuates interferon  (IFN) 

signaling through physical interaction with and downregulation of the transcription factor 

STAT1. Thus, Otop1 defines a unique target of cytokine signaling that attenuates obesity-

induced adipose tissue inflammation and plays an adaptive role in maintaining metabolic 

homeostasis in obesity. 

 

2.2 Introduction  
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Obesity poses significant risk to patient health due to its associated metabolic disorders. White 

adipose tissue (WAT) stores the bulk of body fat and also plays an important role in endocrine 

metabolic signaling (Tontonoz and Spiegelman, 2008; Trujillo and Scherer, 2006), whereas 

brown adipose tissue (BAT) defends against cold and obesity through uncoupled mitochondrial 

respiration (Brakenhielm et al., 2004; Lowell and Spiegelman, 2000). Obesity is associated with 

chronic low-grade inflammation in adipose tissues (Gregor and Hotamisligil, 2011; Lumeng and 

Saltiel, 2011; Odegaard and Chawla, 2013; Osborn and Olefsky, 2012; Sun et al., 2012). The 

pathogenic role of the persistent activation of inflammatory signaling in metabolic disease has 

been demonstrated in numerous mouse models. An emerging view suggests that attenuating the 

proinflammatory response may provide significant metabolic benefits in obesity. While 

therapeutic development targeting inflammation remains in its early stage in humans, several 

candidates have shown promise, including salsalate, a prodrug of salicylate (Goldfine et al., 

2008), and IL-1 receptor antagonists (Larsen et al., 2007). In addition, the beneficial effects of 

PPAR agonists have at least in part been attributed to their anti-inflammatory activities 

(Hevener et al., 2007; Pascual et al., 2005). 

 

The molecular and cellular events that lead to the engagement and sustained activation of the 

innate immune system in obesity are complex and remain to be unraveled. In adipose tissues, 

obesity-induced inflammation is associated with a robust shift of adipose tissue macrophages 

from alternatively activated (M2) to classically activated (M1) subtypes (Aron-Wisnewsky et al., 

2009; Lumeng et al., 2007a). This shift toward proinflammatory macrophage polarization 

coincides with the development of insulin resistance and has been proposed as an early event 

underlying metabolic dysregulation (Lumeng et al., 2007b). A parallel shift from anti-
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inflammatory regulatory T cells to CD4+ helper and CD8+ cytotoxic T cells also occurs in WAT 

during obesity (Feuerer et al., 2009; Nishimura et al., 2009; Winer et al., 2009). The latter 

produces proinflammatory cytokines such as tumor necrosis factor  (TNF), a prototypical 

cytokine associated with obesity (Hotamisligil et al., 1993), and interferon  (IFN), which 

contribute to chronic inflammation in adipose tissues. Several pathways downstream of cytokine 

receptors have been shown to play a role in obesity-induced inflammation and its metabolic 

consequences, including IKK, NF-κB, JNK, IKK, and inflammasome activation (Arkan et al., 

2005; Cai et al., 2005; Chiang et al., 2009; Hirosumi et al., 2002; Stienstra et al., 2010; 

Vandanmagsar et al., 2011). The activation of these signaling pathways impairs insulin signaling 

in adipocytes. As such, genetic and pharmacological inhibition of these pathways leads to 

attenuation of inflammatory signaling and improved insulin sensitivity. While key components 

of proinflammatory signaling have been elucidated, whether obesity activates adaptive pathways 

that counteract inflammation and the extent to which they contribute to metabolic homeostasis 

remain largely unknown.  

 

Otopetrin 1 (Otop1) is a member of the otopetrin domain protein family that is highly conserved 

in species ranging from nematodes to vertebrates (Hughes et al., 2008b; Hurle et al., 2011). 

Otop1 is predicted to contain 12 transmembrane domains and has been demonstrated to localize 

to the plasma membrane (Hughes et al., 2007a). Mice harboring tilted mutation (A151E, 

Otop1tlt) have impaired otoconia development (Hurle et al., 2003), likely as a consequence of 

altered cellular calcium in vestibular supporting cells (Hughes et al., 2007a; Kim et al., 2011a). 

Importantly, Otop1 knockout mice develop similar defects in otoconia formation (Kim et al., 

2010), suggesting that Otop1tlt mutant represents a bona fide loss-of-function allele. Whether 
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Otop1 is expressed in peripheral tissues and regulates other physiological processes remains 

unknown. In this study, we found that Otop1 is induced in white adipose tissues during obesity 

and counteracts obesity-associated adipose tissue inflammation. Otop1 defines a novel adaptive 

mechanism that maintains metabolic homeostasis through attenuating chronic inflammation. 

 

2.3 Results 

2.3.1 Otop1 is expressed in BAT but dispensable for cold-induced adaptive thermogenesis 

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis in response to cold 

exposure in rodents and may contribute to energy balance in humans. We analyzed the 

transcriptional profile of diverse mouse tissues and cell lines (GSE10246) to identify putative 

molecular markers of brown adipocytes. These analyses uncovered Otop1 as a gene that shares 

tissue distribution with uncoupling protein 1 (Ucp1), a known brown fat marker. Quantitative 

realtime PCR (qPCR) analysis indicated that Otop1 mRNA was abundantly expressed in brown 

adipose tissue (Figure 2.1A). To determine whether Otop1 expression is regulated during 

adipogenesis, we immortalized brown preadipocytes from neonatal brown fat and induced 

differentiation in culture using a previously described protocol (Klein et al., 1999). Similar to 

Ucp1, Otop1 mRNA expression was strongly induced during brown adipocyte differentiation 

(Figure 2.1B). In contrast, Otop1 mRNA was nearly undetectable in 3T3-L1 adipocytes (data not 

shown). The brown fat gene program is highly responsive to environmental temperature. Acute 

cold exposure stimulates mitochondrial biogenesis and thermogenic gene expression through 

activation of the sympathetic nervous system, whereas chronic cold acclimation results in the 

expansion of brown fat mass and augmentation of thermogenic capacity (Brakenhielm et al., 

2004; Gesta et al., 2007). As expected, Ucp1 mRNA expression was stimulated by both acute 
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and chronic cold exposure (Figure 2.1C-D). On the contrary, Otop1 mRNA expression remained 

largely unchanged in response to acute cold exposure, whereas it was markedly increased in 

BAT following cold acclimation. 

   

To determine whether Otop1 is required for cold-induced adaptive thermogenesis, we subjected 

wild type (WT) and Otop1tlt mutant mice to cold exposure at 4ºC and measured their core body 

temperature using a rectal probe. While rectal body temperature dropped slightly following cold 

exposure, no significant difference was observed between the two groups (Figure 2.1E). H&E 

staining revealed that Otop1 mutant brown fat appeared nearly indistinguishable from control 

before and after cold exposure (Figure 2.1F). The expression of Ucp1 and genes involved in 

mitochondrial oxidative phosphorylation and fatty acid -oxidation was similar between WT and 

mutant groups (Figure 2.1G). Protein levels for NADH dehydrogenase 1 subcomplex 8 

(NDUFB8, complex I), succinate dehydrogenase subunit b (SDHB, complex II), and ubiquinol 

cytochrome c reductase core protein 2 (UQCRC2, complex III) were also similar (Figure 2.1H). 

Interestingly, PGC-1 mRNA level was elevated in Otop1 mutant brown fat. Together, these 

data suggest that, while Otop1 expression is enriched in brown fat, its function is dispensable for 

cold-induced adaptive thermogenesis. 

 

2.3.2 Otop1 is induced in obese white adipose tissue in response to proinflammatory 

signaling 

Adipose tissue inflammation is emerging as a pathogenic link between obesity and metabolic 

disorders. The sustained chronic inflammation is associated with a phenotypic switch of resident 

immune cells from anti-inflammatory to proinflammatory subtypes in adipose tissues (Feuerer et 
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al., 2009; Lumeng et al., 2007a). Whether obesity also activates adaptive mechanisms to 

counteract inflammation caused by chronic overnutrition remains largely unexplored. Otop1 

mRNA expression is present in BAT, but nearly undetectable in epididymal WAT (eWAT) from 

lean mice. Interestingly, Otop1 mRNA level was markedly increased in eWAT following high-

fat diet (HFD)-induced obesity (Figure 2.2A). Compared to WT, Otop1 mRNA expression was 

increased by approximately 80-fold in eWAT from leptin receptor deficient (db/db) mice. 

Similar increase in Otop1 expression was also observed in inguinal fat from obese mice (data not 

shown). In contrast, Otop1 mRNA levels in BAT remained similar between lean and obese mice 

(Figure 2.2B). We did not detect changes in Otop1 mRNA expression by HFD in other tissues, 

including skeletal muscle and liver (Figure2.2 C-D). To determine whether Otop1 expression in 

eWAT correlates with the severity of obesity, we fed a cohort of C57BL/6J male mice with HFD 

for 10 weeks to induce obesity. Mice fed HFD gained variable body weight and exhibited 

different degree of obesity and insulin resistance. Gene expression analysis in this cohort 

indicated that eWAT Otop1 expression strikingly correlated with body weight of individual mice 

(Figure 2.3A). This increase in Otop1 expression in obese eWAT was due to its induction in 

mature adipocytes, but not other cell types in the stromal vascular fraction (SVF) (Figure 2.3B). 

Expression of leptin was included as markers for mature adipocytes. 

 

Obesity-associated chronic inflammation is characterized by augmented production of 

proinflammatory cytokines in adipose tissues, such as TNF, IFN, IL-1, and IL-6 

(Hotamisligil et al., 1993; Rotter et al., 2003; Trujillo and Scherer, 2006). To determine whether 

Otop1 induction is triggered by proinflammatory cytokines, we treated differentiated 3T3-L1 

adipocytes with TNF, IFN, or LPS and examined gene expression using qPCR. Compared to 
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control treatments, mRNA expression of Otop1 and IL-6, the latter being a known target gene of 

TNF, was induced by TNFα in a dose-dependent manner (Figure 2.3C). In contrast, while IFN 

and LPS induced the expression of their respective target genes (Ifih1 and Ccl5) in 3T3-L1 

adipocytes, these treatments had modest effects on Otop1 mRNA expression (Figure 2.3 D-E). 

These results suggest that obesity-associated induction of Otop1 in WAT is likely a direct 

consequence of heightened adipose tissue inflammation. 

 

2.3.3 Otop1 mutant mice develop more severe diet-induced metabolic disorders  

While the deleterious effects of innate immune activation has been well established, whether 

obesity engages an adaptive response to counteract inflammation in adipose tissues has not been 

elucidated. We next sought to assess the significance of Otop1 in adipose tissue homeostasis, 

particularly in the context of obesity. WT and Otop1tlt mutant mice gained similar body weight 

after 12 weeks of HFD feeding (Figure 2.4A). Plasma concentrations of non-esterified fatty acids 

(NEFA) and -hydroxybutyrate, but not triglycerides, were lower in Otop1tlt mutant mice (Figure 

2.4B). Despite a lack of difference in body weight gain, fasting blood glucose and insulin levels 

were significantly elevated in the mutant mice (Figure 2.4C). While blood glucose levels were 

similar under fed conditions, plasma insulin concentration was elevated in Otop1tlt mutant mice. 

Further, insulin and glucose tolerance tests indicated that mutant mice developed more severe 

insulin resistance (Figure 2.4D-E), suggesting that Otop1 is required for maintaining insulin 

sensitivity in diet-induced obesity. In support of this, basal levels of phosphor-AKT were also 

reduced in adipose tissues and skeletal muscle. Importantly, insulin-stimulated AKT 

phosphorylation was markedly blunted in several tissues from HFD-fed Otop1tlt mutant mice, 

including WAT, BAT, liver, and skeletal muscle (Figure 2.5). We conclude from these studies 
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that obesity-induced expression of Otop1 in WAT may serve a beneficial role in maintaining 

metabolic homeostasis in the state of chronic overnutrition.  

 

We performed H&E staining on liver sections from mice fed standard chow or high-fat diet for 

different periods of time, and found that Otop1tlt mice developed more severe hepatic steatosis 

after two months on HFD (Figure 2.6A). These histological findings were confirmed by 

Stimulated Raman Scattering (SRS) microscopy, a label-free imaging method that detects 

cellular lipids by measuring molecular vibrations of fatty-acyl chains (Folick et al., 2011; Le et 

al., 2010). As shown in Figure 2.6B, pericentral hepatocytes from Otop1tlt mutant mice had 

larger lipid droplets compared to control following two and three months of HFD feeding. 

Measurements of liver triglyceride content after three months of HFD feeding revealed that 

Otop1tlt mice had approximately 58% higher hepatic triglyceride content than WT control 

(Figure 2.6C). In addition, liver vs. body weight ratio was significantly higher in the mutant 

mice. Gene expression analysis indicated that mRNA levels of Fsp27 and Plin4, two lipid droplet 

proteins, were significantly elevated in Otop1tlt mutant livers (Figure 2.6D). The expression of 

peroxisomal enoyl-CoA hydratase (Ehhadh) and HMG-CoA synthase 2 (Hmgcs2), genes 

involved lipid metabolism, but not fibroblast growth factor 21 (Fgf21), was lower in mutant 

livers. Because Otop1 expression was nearly undetectable in the liver in lean and obese mice, the 

exacerbation of hepatic steatosis in mutant mice is most likely secondary to altered adipose tissue 

metabolism and function. 

 

2.3.4 Otop1 mutant mice exhibit more severe adipose tissue inflammation following HFD-

feeding 
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As described above, Otop1 expression was elevated in mouse WAT in obesity and was induced 

in response to TNF treatments in cultured adipocytes (Figure 2.3C). To our surprise, Otop1 

mutant mice showed exacerbated diet-induced insulin resistance and hepatic steatosis. These 

findings suggest a plausible mechanism where Otop1 contributes to metabolic homeostasis by 

counteracting obesity-induced adipose tissue inflammation. In support of this, we found that 

Otop1tlt mutant mice developed progressively more severe adipose tissue inflammation and 

increased macrophage infiltration as revealed by H&E and whole-mount immunofluorescence 

staining (Figure 2.7A-B). Compared to WT, the presence of crown like structures, characteristic 

of inflamed adipose tissues in obesity, was more pronounced in Otop1tlt mutant eWAT. In 

contrast, the histological appearance of brown adipose tissues was similar between the two 

groups (Figure 2.7C). We next analyzed the characteristics of adipose tissue macrophages using 

flow cytometry with specific cell surface markers. Compared to WT, Otop1tlt mutant eWAT had 

higher proportion of CD301-CD11c+ classically polarized (M1) macrophages, whereas 

alternatively activated (M2) macrophages (CD301+CD11c-) was significantly lower (Figure 

2.7D). Consequently, the M1/M2 ratio was significantly increased in Otop1tlt mutant eWAT. 

Similar changes in M1/M2 macrophages were also observed in inguinal WAT (iWAT) from 

Otop1tlt mice (Figure 2.7E), though the differences only achieved borderline significance.  

 

We next performed immunoblotting and qPCR analyses to examine molecular changes in 

adipose tissues from HFD-fed control and Otop1 mutant mice. Immunoblotting studies revealed 

that protein levels of IKK epsilon (IKKε), a target of NF-kB recently implicated in obesity-

induced adipose tissue inflammation (Chiang et al., 2009; Reilly et al., 2013), were increased in 

Otop1 mutant eWAT (Figure 2.8A). Consistently, NFkB-p105, phospho-NFkB-p105, and NFkB-
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p65 protein levels were elevated in Otop1tlt mutant eWAT. Total TBK1 and phospho-TBK1 

protein levels were also higher in Otop1tlt mutant eWAT. mRNA expression of many metabolic 

genes was similar between two groups, including PPAR and Srebp1c, key regulators of 

adipocyte gene expression, hormone-sensitive lipase (Hsl), adipose triglyceride lipase (Atgl), and 

Ehhadh (Figure 2.8B). Consistent with changes in macrophage subtypes, we found that mRNA 

expression of macrophage marker F4/80 was elevated, whereas the expression of Arginase 1 

(Arg1), a marker for M2 macrophages, was significantly lower in mutant eWAT. The expression 

levels of Mac2 and Cd68 were also elevated in Otop1 mutant iWAT. In contrast, the expression 

of TNF and many interferon  target genes, including 2’-5’ oligoadenylate synthetase like 1 

(Oasl1), Oasl2, interferon induced protein 44 (Ifi44), and interferon induced transmembrane 

protein 3 (Ifitm3), was significantly higher in Otop1tlt eWAT than control. Similar induction of 

macrophage markers and IFN target genes was observed in Otop1tlt mutant mouse iWAT 

(Figure 2.8B). Because IFN expression remained largely unaltered, the induction of its target 

genes in mutant WAT is likely due to augmented IFN signaling in Otop1tlt mutant adipocytes. 

To directly test this, we treated epididymal fat explants from HFD-fed WT and Otop1tlt mutant 

mice with IFN and examined target gene responses. The induction of several IFN target genes, 

including Oasl2, Ifi44, Ifih1, and interferon regulatory factor 1 (Irf1), was significantly higher in 

Otop1tlt mutant fat explants than control in response to IFN stimulation (Figure 2.8C). Together, 

these results suggest that Otop1 induction in obese WAT is likely an adaptive homeostatic 

response that exerts a protective role by counteracting obesity-induced adipose inflammation. 

 

2.3.5 Otop1 interacts with STAT1 and attenuates IFN signaling in adipocytes  
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To explore the molecular mechanisms by which Otop1 modulates IFN signaling, we ectopically 

expressed Flag-HA-tagged Otop1 in 3T3-L1 and immortalized brown preadipocytes and 

performed immunoaffinity purification of the Otop1 protein complexes. Mass spectrometry and 

immunoblotting analyses indicated that Otop1 physically interacted with STAT1 (Figure 

2.9A,B), a transcription factor that plays a critical role in IFN signaling (Stark and Darnell, 

2012). The interaction between Otop1 and STAT1 appears to be independent of STAT1 

phosphorylation (Figure 2.9B). To determine whether the exacerbation of adipose tissue 

inflammation in Otop1 mutant mice results from cell-autonomous effects of Otop1 on 

inflammatory signaling, we first examined the response of WT and Otop1 mutant adipocytes to 

IFN treatments. Because brown adipocytes express endogenous Otop1, we immortalized brown 

preadipocytes from WT and Otop1 mutant neonates and performed studies following adipocyte 

differentiation. As expected, IFN treatments strongly induced tyrosine phosphorylation of 

STAT1, STAT3, and STAT5, but only had modest effects on the NFkB and IKK/TBK1 

pathways (Figure 2.9C). Total and phosphorylated STAT3 and STAT5 proteins were comparable 

between WT and Otop1 mutant adipocytes. In contrast, total STAT1 protein levels were elevated 

in mutant adipocytes, resulting in more robust tyrosine phosphorylation in response to IFN 

treatments.  

 

We performed microarray studies to identify downstream pathways that were affected by Otop1 

mutation. Consistent with the eWAT gene expression profile, the expression of a large number of 

IFN target genes, including Oasl1, Oasl2, Ifi44, Ifitm3, and Ifih1, was significantly elevated in 

Otop1 mutant adipocytes compared to control (Figure 2.10A). In response to IFN treatments, 

mRNA expression of these target genes was induced to higher levels in Otop1 mutant adipocytes 
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compared to WT control (Figure 2.10B). These results strongly suggest that Otop1 attenuates 

IFN signaling in adipocytes through its physical interaction with STAT1. 

 

We further assessed whether ectopic overexpression of Otop1 attenuates the IFN/STAT1 

signaling pathway in adipocytes. We treated differentiated brown adipocytes expressing vector 

or Otop1 with IFN and examined STAT1 protein levels and phosphorylation. Compared to 

vector, Otop1 overexpression significantly decreased total STAT1 protein levels and 

phosphorylated STAT1 following IFN stimulation (Figure 2.11A). In contrast, protein levels of 

STAT3, NFkB, and IKK/TBK1 remained largely unaltered by Otop1. Basal STAT5 

phosphorylation is slightly lower in adipocytes overexpressing Otop1, yet the differences 

disappeared after IFN treatment. Consistent with decreased STAT1 levels, basal expression of 

IFN targets such as Ifi44, Oasl1, Oasl2, and Ifih1, was reduced by retroviral-mediated 

overexpression of Otop1 (Figure 2.11B). Further, the induction of these genes in response to 

IFN was also significantly dampened in Otop1-overexpressing adipocytes. Taken together, we 

conclude that Otop1 negatively regulates IFN signaling in adipocytes and may serve to 

counteract chronic proinflammatory immune response in obese adipose tissues. 

 

2.4 Discusion 

The pathogenic role of chronic inflammation in the development of obesity-associated metabolic 

disease has been well established. Attenuation of inflammatory signaling generally resulted in 

improved metabolic profiles in rodent models of obesity. While counter-inflammation has been 

proposed as a key aspect of homeostatic regulation (Saltiel, 2012), the molecular components of 

this negative feedback arm remain elusive. In this study, we identified Otop1 as an obesity-
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induced target of cytokine signaling in WAT. Otop1 mutant mice develop more severe diet-

induced insulin resistance and hepatic steatosis that are accompanied by augmented adipose 

tissue inflammation. Otop1 interacts with Stat1 and attenuates IFN signaling in adipocytes in a 

cell-autonomous manner. Together, these studies illustrate a novel pathway that counteracts 

obesity-associated chronic inflammation and preserves metabolic homeostasis in obesity (Figure 

2.12). 

 

A remarkable aspect of Otop1 expression in WAT is that it is highly induced during obesity. 

Thus, mRNA levels of Otop1 in WAT correlate tightly with the degree of HFD-induced obesity. 

Elevated expression of Otop1 was also observed in white fat depots from db/db mice. While it is 

possible that the induction of Otop1 expression in obese adipose tissues may result from changes 

in cell populations in WAT, gene expression analyses in fractionated adipocytes and stromal 

vascular cells indicated that Otop1 induction occurred exclusively in adipocytes. Otop1 mRNA 

was nearly undetectable in the stromal vascular fraction. The stimuli that drive obesity-

associated induction of Otop1 in adipocytes may be multifaceted in nature. In cultured 3T3-L1 

adipocytes, the proinflammatory cytokine TNF, but not IFN and LPS, strongly induced Otop1 

expression in a dose-dependent manner, suggesting that Otop1 is likely a target downstream of a 

subset of proinflammatory signals.  

 

Otop1 mutant mice developed diet-induced obesity at similar pace compared to controls, 

suggesting that Otop1 does not play a major role in the regulation of whole body energy balance. 

A surprise here is that the mutant mice developed more severe insulin resistance and hepatic 

steatosis. Because Otop1 expression was not detected in the liver in lean and obese mice, the 
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exacerbation of liver fat accumulation in HFD-fed Otop1 mutant mice was most likely secondary 

to the metabolic perturbations that occurred in mutant adipose tissues. In support of this, we 

found that the formation of crown-like structures, which are indicative of adipocyte death and 

inflammatory response, was accelerated in Otop1 mutant adipose tissue. The increase in crown-

like structures was accompanied by a shift in macrophage polarization toward a proinflammatory 

subtype. Accordingly, mRNA and protein markers of inflammatory signaling were also elevated 

in Otop1 mutant eWAT following HFD-feeding. These observations are consistent with a critical 

role for Otop1 in attenuating obesity-associated inflammation. This mechanism is apparently 

distinct from the counterinflammatory actions of noncanonical IKKs, i.e. IKK and TBK1, 

which are induced in obesity to sustain chronic inflammation in adipose tissue (Chiang et al., 

2009; Reilly et al., 2013). Recent studies have also implicated GPR120 as a sensor for anti-

inflammatory fatty acids with insulin-sensitizing effects (Oh et al., 2010). However, GPR120 

appears to act primarily in macrophages. As such, concerted activation of counter-inflammation 

in both adipocytes and immune cells is required for maintaining normal adipose tissue function 

and metabolic homeostasis.  

 

The mechanisms by which Otop1 exerts its anti-inflammatory effects appear to be mediated, at 

least in part, by attenuating IFN signaling in adipocytes. IFN is primarily produced by natural 

killer and T cells and plays an important role in M1 macrophage activation (Hu and Ivashkiv, 

2009). IFN also directly activates its receptors on adipocytes and elicits its effects on cytokine 

expression and metabolism (McGillicuddy et al., 2009; Wada et al., 2011). Interestingly, IFN 

deficient mice have an improved metabolic profile following HFD feeding (O'Rourke et al., 

2012; Rocha et al., 2008), suggesting that excess IFN signaling may have deleterious effects on 
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adipose tissue function and systemic metabolism. The expression of a number of IFN target 

genes was elevated in Otop1 mutant eWAT. Importantly, the inhibitory effects of Otop1 on IFN 

target gene expression appears to be cell-autonomous, as Otop1 mutant adipocytes have elevated 

expression of these genes at baseline. In response to IFN treatments, the induction of these 

genes was further augmented. In contrast, overexpression of Otop1 in adipocytes significantly 

blunted IFN-induced gene expression. These gain- and loss-of-function studies suggest that 

exacerbated adipose tissue inflammation in Otop1 mutant mice is likely due to augmented 

proinflammatory cytokine signaling in adipocytes. At the molecular level, Otop1 physically 

interacts with STAT1, a downstream transcription factor essential for IFN signaling, and 

selectively reduces STAT1 protein expression in adipocytes. The biochemical mechanisms 

underlying the downregulation of STAT1 by Otop1 remain currently unknown.   

 

Previous studies have established the framework for the involvements of chronic inflammation in 

the pathogenesis of obesity-related adipose tissue dysfunction and metabolic disease. However, 

surprisingly little is known about potential activation of anti-inflammatory pathways that may 

counterbalance excess inflammation in the state of overnutrition. Disruption of the 

proinflammatory signaling cascades via genetic or pharmacological means has been proven 

effective in mitigating metabolic disease. As such, it is only logical to speculate that a putative 

component of the anti-inflammatory arm is itself a target of inflammatory signaling and that the 

deficiency of this counter-regulatory arm may worsen obesity-induced metabolic disorders. 

Thus, Otop1 is likely a component of a novel counter-inflammatory signaling pathway that 

maintains adipose immune homeostasis in obesity. Activation of this adaptive pathway may 

provide metabolic benefits in obesity. 
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2.5 Future direction 

2.5.1 Detecting endogenous Otop1 at protein level 

Although we were able to show Otop1 mRNA expression significantly induced in WAT in obese 

conditions, it is also important to know to what extend Otop1 expression is increased at protein 

level, as protein is the ultimate functional form that mediates all the anti-inflammatory effects of 

Otop1. Generation of good Otop1 antibody is necessary for testing interaction between 

endogenous Otop1 and endogenous STAT1 in adipose tissues under physiological and 

pathological conditions. Fasting and feeding, quiescence and inflammation, on the other hand, 

may provide another layer of regulation on Otop1-STAT1 interaction. 

 

2.5.2 How does Otop1 affect STAT1 expression/phosphorylation  

According to Figure 2.9 and Figure 2.11, Otop1 attenuates IFNγ signaling mainly through down-

regulating STAT1 protein level. Although absolute phospho-STAT1 at tyr701 is decreased, the 

ratio between phosphorylated STAT1 and total STAT1 seems unaffected by Otop1 expression. 

STAT1 is relatively stable, yet it can still be ubiquitinated and targeted to proteasomal 

degradation (Tanaka et al., 2005). STAT1 also binds to its own promoter to stimulate 

transcription of itself in a positive feedback loop (Hu et al., 2008). Therefore it is possible that 

Otop1 overexpression may lead to increased STAT1 ubiquitination, or sequester phosphorylated 

STAT1 in cytosol to prevent its transcriptional amplification, both providing mechanisms for 

STAT1 downregulation. 

 

2.5.3 Involvement of Ca2+ 
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Otop1 overexpression has been to shown to reduce Ca2+ influx in response to purinergic stimuli 

(Hughes et al., 2007b). And in the macular cells expressing mutant Otop1 (Otop1tlt), calcium 

influx peak in response to ATP is significantly increased (Kim et al., 2011b). Taken into account 

it has 12 transmembrane domains (Hughes et al., 2008a), Otop1 may very likely function as a 

Ca2+ transporter. IFNγ has been shown to elicit Ca2+ influx in many cell types (Aas et al., 1998; 

Chang et al., 2004; Kung et al., 1995). Activation of Ca2+ dependent CaMKII potentiates type I 

IFN stimulated STAT1 activation in macrophages (Wang et al., 2008), while BAPTA-AM, an 

intracellular Ca2+ chelator, completely blocked C-peptide induced STAT1 phosphorylation (Lee 

et al., 2010). Therefore it is possible that Otop1 overexpression suppresses STAT1 

phosphorylation through decreasing intracellular Ca2+ levels, while in the Otop1tlt adipocytes, 

increase in Ca2+ influx in response to IFNγ leads to increased STAT1 phosphorylation. One 

direct way to prove this hypothesis is Ca2+ imaging, which is technically challenging due to the 

difficulty of loading Fura-2-acetoxymethyl ester into the adipocytes. Yet CaMKII inhibitors and 

Ca2+ chelator treatment could give us a clue as for whether Ca2+ is involved in Otop1’s effects on 

IFNγ stimulated STAT1 phosphorylation and target gene expression. 

 

2.5.4 Creating fat specific Otop1 transgenic mice 

In this chapter we concluded that Otop1 attenuates adipose tissue inflammation based on the in 

vivo observation that the mutant mice had worsened metabolic phenotype due to increased 

adipose tissue inflammation primed by enhanced response to IFNγ stimuli, and overexpression 

of Otop1 in cultured adipocytes is able to suppress such response. However, a definitive study on 

the role of Otop1 in suppressing adipose tissue inflammation requires generation of fat specific 

otop1 transgenic mice. Moreover, Otop1 overexpression in vitro seems to inhibit 3T3-L1 
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adipogenic differentiation, whether the same thing holds true in vivo and whether it contributes 

to the anti-inflammatory effect of Otop1 still awaits further exploration. 

 

2.6 Material and methods 

2.6.1 Animals and animal care 

All animal studies were performed following the guideline established by the University 

Committee on Use and Care of Animals at the University of Michigan. Mice were housed in a 

specific pathogen-free facility at 77 ºF with a 12-h light, 12-h dark cycle and free access to food 

and water. For chow diet feeding, male wild-type C57BL/6J mice and Otop1tlt mice were fed 

with Teklad 5001 lab diet. For HFD feeding, mice were fed with a diet consisting 60% of 

calories from fat (D12492, Research Diets Inc.) starting at 10 to 12 weeks of age.   

 

2.6.2 Adipocyte isolation and differentiation 

Immortalization and differentiation of brown adipocytes were performed as described (Klein et 

al., 1999). Briefly, SV40 large T antigen-immortalized brown preadipocytes were cultured in 

DMEM with 10% fetal bovine serum (FBS). Differentiation was induced two days post 

confluence (day 0) by adding a cocktail containing 0.5mM IBMX, 125M indomethacin, 1M 

dexamethasone to the maintenance media (DMEM supplemented with 10% FBS, 20nM insulin 

and 1nM T3). Two days after induction, cells were cultured in the maintenance media alone. 

Total RNA was isolated at different days for gene expression analysis. 

 

3T3-L1 fibroblasts were cultured in DMEM with 10% bovine growth serum (BGS) until two 

days post confluent. Differentiation was induced by adding a cocktail containing 0.5mM IBMX, 
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1M dexamethasone and 1g/mL insulin to DMEM supplemented with 10% FBS. Three days 

after induction, cells were cultured in DMEM containing 10% FBS plus 1g/mL of insulin for 

two more days followed by maintenance in DMEM supplemented with 10% FBS. TNFα, IFNγ 

and LPS treatment were carried out in mature adipocytes cultured in the maintenance media. 

 

2.6.3 Adipose tissue explant culture 

Epididymal WAT was dissected and transferred to a petri dish with 20mL DMEM, cut into 

pieces with diameters less than 4mm (about 5-10mg). Tissue pieces were filtered through 200m 

nylon mesh, washed once with 10x volume of PBS and then with 10x volume of DMEM, 

transferred into 6-well plates with serum-free M199 media (1nM insulin, 1nM Dex), and 

cultured for 2 hrs before IFNγ treatment at 10ng/mL for 4hrs. Following treatments, fat tissues 

were quickly dried on paper towels and processed for RNA isolation and qPCR gene expression 

analysis. 

 

2.6.4 Metabolic and gene expression analyses 

Plasma concentrations of free glycerol and triglycerides (Sigma), -hydroxybutyrate (Stanbio 

Laboratory), and non-esterified fatty acid (Wako Diagnostics) were measured using commercial 

assay kits. Liver triglyceride was extracted and measured as previously described (Li et al., 

2008). Plasma insulin was measured using an ELISA kit (CrystalChem). Glucose and insulin 

tolerance tests were performed as previously described (Molusky et al., 2012). For insulin 

signaling studies, mice were fed HFD for 8 weeks before receiving a single dose of intravenous 

injection of saline or insulin (1.5 U/kg). Tissues were rapidly dissected 10 min after injection for 

immunoblotting analyses. 
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For gene expression analysis, total RNA from white adipose tissue was extracted using a 

commercial kit from Invitrogen. Total RNA from other tissues and cultured cells was extracted 

using TRIzol method. For quantitative real-time PCR (qPCR) analysis, equal amount of RNA 

was reverse-transcribed using MMLV-RT followed by quantitative PCR reactions using SYBR 

Green (Life Technologies). Relative abundance of mRNA was normalized to ribosomal protein 

36B4. Adipose tissue and liver gene expression was analyzed using specific primers (Table 

2.S1). Statistical significance was determined by Student’s t-test.  

 

2.6.5 Immunoblotting analyses 

Tissues were homogenized in a lysis buffer containing 50 mM Tris (pH 7.5), 150mM NaCl, 

5mM NaF, 25mM β-glycerolphosphate, 1mM sodium orthovanadate, 10% glycerol, 1% tritonX-

100, 1 mM dithiothreitol (DTT), and freshly added protease inhibitors. Immunoblotting 

experiments were performed using specific antibodies and visualized on film using horseradish 

peroxidase–conjugated secondary antibodies (Sigma and Cell Signaling) and Western 

Chemiluminescent HRP Substrate (Millipore). Phospho-STAT1 (Y701), phospho-STAT3 

(Y705), phospho-STAT5 (Y694), STAT1, STAT3, STAT5, phospho-TBK1 (S172), TBK1, 

NFκB-p65, phospho-NFκB-p105 (Ser933), NFκB-p105, phospho-Akt (Ser473), phospho-Akt 

(T308), Akt antibody were purchased from Cell Signaling Technology. Antibodies against 

PPAR (Santa Cruz Biotechnology), HA (sc-66181), Flag (Sigma), and tubulin (Sigma) were 

used.  

 

2.6.6 Affinity purification of Otop1 protein complex 
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Total cell lysates were prepared from mature brown adipocytes stably express MSCV-vector or 

MSCV- Flag-HA-Otop1.   Sequential steps of affinity purification was performed using anti-HA 

(Roche) and anti-Flag (Sigma) affinity matrix followed by eluting with 200 µg/ml HA and Flag 

peptides, respectively. Eluted protein complex was analyzed by SDS-PAGE. Following colloidal 

blue staining, individual bands were excised for protein identification by mass spectrometry. 

 

2.6.7 FACS analysis 

Adipose tissue fractionation, flow cytometry analysis, and whole mount immunofluorescence 

staining were performed as previously described (Lumeng et al., 2007a; Lumeng et al., 2007b). 

Blood leukocytes and SVCs were incubated in Fc Block (rat anti-mouse CD16/32; eBioscience) 

for 10 min and then stained with CD45-e450, CD11b-APC-Cy7, CD11c-PE-Cy7, CD301-APC 

and F4/80-PE (eBioscience) or appropriate isotype controls for 30 min. Labeled cells were then 

washed twice with FACS buffer followed by fixation in 1% paraformaldehyde in PBS. Cells 

were analyzed on FACSCanto II Flow Cytometer (BD Bioscciences) using FlowJo software 

(Version 9.6; Treestar). For whole mount immunostaining, adipose tissue samples were fixed 

with 1% paraformaldehyde and stained with anti-caveolin and anti-Mac2 antibodies in PBS-

T/BSA. Samples were imaged on an inverted confocal microscope using FluoView software 

(Olympus). 

 

2.6.8 Statistics 

Data were analysed using two-tailed Student’s t-test for independent groups. A p-value of less 

than 0.05 was considered statistically significant. 
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Figure 2.1 Otop1 is dispensable for cold-induced adaptive thermogenesis 
(A) qPCR analysis of Otop1 expression in mouse tissues using pooled RNAs from three mice. 
Data represent mean ± s.e.m. (B) Time-course mRNA expression of Otop1 and Ucp1 during 
brown adipocyte differentiation. Data represent mean ± s.d. from triplicate wells. (C) qPCR 
analysis of BAT gene expression in mice exposed to ambient room temperature (RT, n=3) or 4ºC 
for 6 hrs (cold, n=3). (D) qPCR analysis of BAT gene expression in mice housed at room 
temperature (RT, n=5) or acclimated to 4ºC (Acc, n=5). (E) Rectal body temperature in WT 
(open, n=8) and Otop1tlt mice (filled, n=6) during cold exposure. (F) H&E staining of BAT from 
WT and Otop1tlt mice housed at room temperature (RT) or 4ºC for 6 hrs (Cold). Scale bar 
indicates 100 m. (G) qPCR analysis of BAT gene expression in cold-exposed mice in E. Data 
in panels C-E and G represent mean ± s.e.m. *p<0.05, **p<0.01, cold vs. RT. (H) Immunoblots 
of total BAT lysates. Tubulin was included as a loading control.   
 

 

 

 

 

 



64 
 

Figure 2.2 Otop1 is induced in obese white adipose tissues 
(A) qPCR analysis of Otop1 expression in WAT from WT mice fed chow (n=5) or HFD (n=6) 
for three months, and from a separate group of WT (n=4) and db/db mice (n=4). (B-D) qPCR 
analysis of Otop1 expression in BAT, liver and skeletal muscle from above mentioned mice. 
Data represent mean ± s.e.m. *p<0.01, obese vs. lean.  
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Figure 2.3 Proinflammatory cytokines induce Otop1 expression in obese WAT 
(A) Correlation of eWAT Otop1 expression with body weight. Relative Otop1 mRNA levels 
were plotted against respective body weight. (B) qPCR analysis of stromal vascular (SVF) and 
mature adipocyte (Adi) fractions isolated from eWAT from mice fed chow (n=3) or HFD (n=3). 
Data represent mean ± s.e.m.  *p<0.01, obese vs. lean. (C) qPCR analysis of 3T3-L1 adipocytes 
treated with indicated concentrations of TNF for 6 hrs. (D-E) qPCR analysis of 3T3-L1 
adipocytes treated with IFN (D) or LPS (E) for 6 hrs. Data in D-F represent mean ± s.d. from 
one representative study performed in triplicate wells. *p<0.01, vs. saline. 
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Figure 2.4 Otop1tlt mutant mice develop more severe HFD-induced insulin resistance  
(A) Body weight of WT (open diamond, n=8) and Otop1tlt mice (filled circle, n=8) during HFD 
feeding. (B) Plasma concentrations of β-hydroxybutyrate, NEFA, and triglycerides after 
overnight fasting. (C) Plasma glucose and insulin levels under fed and fasted conditions. (D) 
Insulin tolerance test in WT (n=6) and Otop1tlt mice (n=7) in HFD-fed mice. (E) Glucose 
tolerance test in WT (n=8) and Otop1tlt mice (n=8) 9 weeks after HFD-feeding. Data represent 
mean ± SEM. *p<0.05, Otop1tlt vs. WT.  
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Figure 2.5 Impaired insulin-stimulated AKT phosphorylation in Otop1tlt mouse tissues  
8 weeks after HFD feeding, tissues were harvested from WT and Otop1tlt mice 10 minutes after a 
single intravenous injection of saline or insulin. Immunoblots of total tissue lysates (left). 
Quantitation of phosphorylated AKT was performed following normalization to total AKT levels 
(right). *p<0.05, Otop1tlt vs. WT. 
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Figure 2.6 Otop1tlt mutant mice develop more severe diet-induced hepatic steatosis  
(A) H&E staining of liver sections in WT and Otop1tlt mice fed chow or HFD for different 
periods of time (scale bar=100 m). (B) SRS imaging of liver sections. Arrows indicate lipid 
droplets (scale bar=25 m). (C) Liver/body weight ratio and liver triglyceride content in WT 
(open, n=8) and Otop1tlt mice (filled, n=8) after three months HFD feeding. (D) qPCR analysis 
of hepatic gene expression in WT (open) and Otop1tlt mice (filled). Data in C-D represent mean 
± s.e.m. *p<0.05, Otop1tlt vs. WT. 
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Figure 2.7 Otop1 mutant mice have exacerbated adipose tissue inflammation following 
HFD-feeding  
(A) H&E staining of eWAT from WT and Otop1tlt mice fed chow or HFD for different periods 
of time. Scale bar indicates 100 M. (B) Confocal images of eWAT following whole mount 
immunofluorescence staining using Caveolin (green) and Mac2 (red) antibodies (scale bar=50 
m). (C) H&E staining of BAT from WT and Otop1tlt mice fed with HFD for 3 months. (D) 
Flow cytometry analyses of adipose tissue macrophages (ATM) in stromal vascular fraction 
(SVF) of eWAT from HFD-fed WT (open, n=8) and Otop1tlt (filled, n=7) mice. (E) Flow 
cytometry analyses of adipose tissue macrophage (ATM) in iWAT from mice in (D). Data in D-
E represent mean ± s.e.m. *p<0.05, # p<0.1, Otop1tlt vs. WT. 
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Figure 2.8 Otop1 negatively regulates WAT inflammation and IFN response  
(A) Immunoblots of inflammation markers in total eWAT lysates from HFD-fed mice. Fold 
change in Otop1tlt samples was quantitated following normalization to tubulin. *p<0.05, Otop1tlt 
vs. WT. (B) qPCR analysis of eWAT and iWAT gene expression in HFD-fed WT (open, n=8) 
and Otop1tlt mice (filled, n=8) for 3 months. Data represent mean ± s.e.m. *p<0.05, Otop1tlt vs. 
WT. (C) qPCR analysis of epididymal fat explants from HFD fed WT and Otop1tlt mutant mice 
without or with IFN stimulation. Data represent mean ± s.d. from triplicate wells. *p<0.05, 
Otop1tlt vs. WT. 
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Figure 2.9 Otop1 physically interacts with STAT1 and regulates IFN response in 
adipocytes  
(A-B) Immunoblots of total cell lysates and immunoprecipitated proteins (anti-HA) from 
differentiated 3T3-L1 adipocytes (A) or brown adipocytes (B) stably expressing vector or Flag-
HA-tagged Otop1 (FHO) and treated with vehicle or IFN. (C) Immunoblots of total cell lysates 
from brown adipocytes stably expressing vector (Vec) or Otop1 treated with saline (-) or IFN 
for indicated time.  
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Figure 2.10 IFN signaling is augmented in Otop1tlt mutant adipocytes  
(A) Clustering analysis of IFN target genes in differentiated WT and Otop1tlt brown adipocytes. 
(B) qPCR analysis of gene expression in differentiated adipocytes treated with saline (-) or 10 
ng/mL IFN (+) for 4 hrs. Data represent mean ± s.d. from triplicate wells. *p<0.05, Otop1tlt vs. 
WT.  
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Figure 2.11 Otop1 attenuates IFN signaling in adipocytes 
(A) Immunoblots of total cell lysates from brown adipocytes stably expressing vector (Vec) or 
Otop1 treated with saline (-) or IFN for 15 or 30 minutes. (B) qPCR analysis of gene expression 
in differentiated brown adipocytes stably expressing vector (open) or Otop1 (filled) treated with 
saline or 10 ng/ml IFN for 4 hrs. Data represent mean ± s.d. from triplicate wells. *p<0.05, 
Otop1 vs. vector.  
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Figure 2.12 Model depicting the role of Otop1 in counteracting obesity-associated 
inflammation in adipocytes  
Otop1 expression is induced by TNF in white fat during obesity. The induction of Otop1 serves 
to attenuate proinflammatory cytokine signaling in adipocytes, maintain adipose tissue function, 
and systemic metabolic homeostasis. 
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Table 2.S1 List of qPCR primers 
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CHAPTER 3   A BROWN FAT-ENRICHED SECRETED FACTOR 

PRESERVES METABOLIC HOMEOSTASIS THROUGH ATTENUATING 

HEPATIC LIPOGENESIS 

3.1 Abstract 

Brown fat activates uncoupled respiration to defend against cold and also contributes to systemic 

metabolism. To date, the metabolic action of brown fat has been primarily attributed to adaptive 

thermogenesis via uncoupling protein 1 (UCP1). Whether brown fat engages other tissues 

through secreted proteins remains largely unexplored. Here we show that Neuregulin 4 (Nrg4), a 

member of the EGF family of extracellular ligands, is enriched in brown adipose tissue, highly 

inducible during brown adipogenesis, and markedly reduced in rodent and human obesity. Gain- 

and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin 

resistance and hepatic steatosis through attenuating lipogenic signaling in the liver. 

Mechanistically, Nrg4 stimulates ErbB3/ErbB4 signaling in hepatocytes and negatively regulates 

de novo lipogenesis mediated by LXR/SREBP1c in a cell-autonomous manner. These results 

establish Nrg4 as a brown fat-enriched adipokine with therapeutic potential for the treatment of 

type 2 diabetes and non-alcoholic fatty liver disease. 

 

 3.2 Introduction 
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Brown fat defends against cold through mitochondrial uncoupling protein UCP1, which links 

fuel oxidation to heat generation (Cannon and Nedergaard, 2004; Kozak and Harper, 2000). 

Brown adipose tissue (BAT) also plays an important role in whole body energy balance and fuel 

metabolism. Genetic ablation of brown fat via transgenic expression of diphtheria toxin A 

renders mice prone to the development of obesity (Lowell et al., 1993), whereas activation of 

BAT thermogenesis by cold has been linked to increased energy expenditure, reduced adiposity, 

and lower plasma lipids (Bartelt et al., 2011; van der Lans et al., 2013; Yoneshiro et al., 2013). 

Recent work has demonstrated that metabolically active BAT is present in adult humans (Cypess 

et al., 2009; Nedergaard et al., 2007; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009), 

raising the prospect that augmenting brown fat abundance and/or function may provide an 

effective avenue for the treatment of obesity and its associated metabolic disorders (Enerback, 

2010; Nedergaard and Cannon, 2010). While sharing key molecular and metabolic 

characteristics with the classical rodent BAT, brown fat in humans appears to contain both 

classical and brown-like, beige/brite (Petrovic et al., 2010; Wu et al., 2012), adipocytes with 

distinct molecular signature and developmental origin (Cypess et al., 2013; Jespersen et al., 

2013; Seale et al., 2008).  

 

To date, the metabolic action of brown fat has been primarily attributed to UCP1-mediated 

thermogenesis. Surprisingly, while mice lacking UCP1 had heightened sensitivity to cold 

(Enerback et al., 1997), they were resistant to diet-induced obesity at ambient temperature and 

became more prone to weight gain only at thermoneutrality (Feldmann et al., 2009; Liu et al., 

2003). The latter is in striking contrast to the obesity-prone phenotype in mice lacking brown fat 

as a result of transgenic toxin expression in brown adipocytes (Lowell et al., 1993). These 
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paradoxical findings strongly suggest that brown fat exerts effects on systemic nutrient and 

energy metabolism through novel mechanisms beyond its intrinsic ability to carry out uncoupled 

respiration. 

 

Secreted factors are important in mediating metabolic crosstalk among tissues to maintain 

systemic nutrient and energy homeostasis. Adipose tissue hormones (Kadowaki et al., 2006; 

Trujillo and Scherer, 2006; Waki and Tontonoz, 2007), gut-derived fibroblast growth factors 

(Angelin et al., 2012; Potthoff et al., 2012), myokines (Pedersen and Febbraio, 2012), and bone-

derived factors (Karsenty and Ferron, 2012) participate in nutrient sensing and coordinate key 

aspects of metabolic homeostasis. The epidermal growth factor (EGF) family of extracellular 

ligands has been implicated in the regulation of tissue development and tumorigenesis via the 

ErbB family of receptor tyrosine kinases (Bublil and Yarden, 2007; Holbro and Hynes, 2004; 

Schneider and Wolf, 2009). EGFR and ErbB2 are uniquely important in engaging a subset of 

EGF growth factors in cancer cell growth and survival. Interestingly, a distinct subgroup of 

growth factors called Neuregulins (Nrg1-4) also contains EGF-like domain and primarily signals 

through ErbB3 and ErbB4 to regulate diverse biological processes (Schneider and Wolf, 2009). 

Neuregulins are synthesized as precursor proteins on plasma membrane and undergo proteolysis 

at sites proximal to the transmembrane domain to release active ligands for receptor binding and 

signaling. In particular, Nrg1 isoforms have been demonstrated to regulate heart development 

(Odiete et al., 2012), formation of neuromuscular junction (Falls, 2003), and nervous system 

development (Birchmeier, 2009). Whether neuregulins are produced by adipose tissues to 

mediate metabolic crosstalk remains unexplored. 
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In this study, we tested the hypothesis that brown fat engages UCP1-independent mechanisms to 

regulate systemic metabolism by globally identifying brown fat-enriched secreted factors. We 

identified Neuregulin 4 (Nrg4) as a novel secreted factor that binds to the liver and attenuates 

hepatic lipogenic signaling. Nrg4 expression is markedly downregulated in adipose tissues in 

murine and human obesity. Using gain- and loss-of-function mouse models, we demonstrated 

that Nrg4 plays a critical role in preserving insulin sensitivity and alleviating hepatic steatosis in 

obesity.   

 

3.3 Results 

3.3.1 Identification of Nrg4 as a brown fat-enriched secreted protein 

To identify BAT-enriched secreted factors, we analyzed the expression profile of the mouse 

secretome gene set across twelve tissues (GeneAltas MOE430) and during brown adipocyte 

(BAC) differentiation. The secretome database contains a set of 2,169 mouse genes predicted to 

encode secreted proteins (Chen et al., 2005), 1,378 of which have probe sets on Affymetrix 

mouse genome MOE430 chips. Our analysis identified a cluster of 26 genes whose expression is 

enriched in mouse brown fat and induced during the course of brown adipogenesis (Figure 

3.1A). Among these, Neuregulin 4 (Nrg4) exhibited a highly restricted pattern of expression in 

adipose tissues. Quantitative PCR (qPCR) analysis indicated that Nrg4 mRNA expression was 

enriched in BAT, albeit present at a lower level in WAT (Figure 3.1B). In contrast, its expression 

in other tissues, including skeletal muscle, liver, brain, and heart, was relatively low. Consistent 

with microarray data, Nrg4 expression was markedly induced during adipocyte differentiation 
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(Figure 3.1C), reaching a higher level in mature brown adipocytes than 3T3-L1 adipocytes; the 

latter more closely resembles white adipocytes.  

 

Nrg4 belongs to a small family of epidermal growth factor-like (EGFL) domain-containing 

proteins that are synthesized as transmembrane precursors and undergo proteolytic cleavage 

(Odiete et al., 2012). The released extracellular fragments act on target cells through autocrine, 

paracrine and endocrine mechanisms. The proteolytic cleavage of Nrg4 near the transmembrane 

domain is predicted to release a highly conserved N-terminal EGFL peptide (supplementary 

Figure S3.1) (Harari et al., 1999; Hayes et al., 2008). To map the extracellular cleavage sites, we 

generated a panel of Alanine mutants (a.a. 51-62) between the EGFL and transmembrane 

domains. To facilitate detection, full-length wild type and mutant Nrg4 proteins were fused to 

secreted alkaline phosphatase (SEAP) at the N-terminus. Immunoblotting analysis of conditioned 

media (CM) from transfected HEK293 cells showed that SEAP-Nrg4 fusion protein was readily 

detectable in media (Figure 3.2A), indicating that the extracellular fragment of Nrg4 undergoes 

proteolytic cleavage. Mutants with Ser53-54 or Ser53 replaced with Alanine had markedly 

reduced SEAP-Nrg4 fusion proteins released into media, despite having similar expression levels 

in total cell lysates. These results demonstrate that Ser53 is critical for the cleavage of Nrg4 and 

its subsequent release into the extracellular space.  

 

Neuregulins act through the ErbB family of receptor tyrosine kinases, particularly ErbB3 and 

ErbB4, but not the EGF receptor (Harari et al., 1999). To determine whether Nrg4 exhibits 

selectivity toward different ErbB receptors, we transiently transfected HEK293 cells with ErbB2, 
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ErbB3 and ErbB4 alone or in combinations. As expected, ErbB4 expression resulted in robust 

phosphorylation at tyrosine residue 1284 (Y1284), likely as a consequence of receptor auto-

phosphorylation (Figure 3.2B). Recombinant Nrg4 extracellular fragment (a.a.1-62, GST-

Nrg4Ex) further increased ErbB4 phosphorylation in cells transfected with an ErbB4 expression 

vector. Increased ErbB4 phosphorylation was also observed following Nrg4 treatments when 

ErbB2 or ErbB3 was coexpressed in the cell. Interestingly, Nrg4 treatments enhanced ErbB3 

phosphorylation (Y1289) in the presence of ErbB4. Because ErbB3 has an inactive kinase 

domain, the stimulation of its phosphorylation is most likely caused by Nrg4-induced 

heterodimerization with ErbB4. In contrast, ErbB2 phosphorylation remained largely unaffected 

by Nrg4 treatments.  

 

To examine whether native Nrg4 can be released into the extracellular space to activate ErbB4 

signaling, we collected CM from HEK293 cells transiently transfected with a vector expressing 

full-length wild type Nrg4 and treated Min6 cells stably overexpressing ErbB4 (ErbB4-Min6). 

Compared to control, CM from Nrg4-transfected cells elicited strong tyrosine phosphorylation of 

ErbB4 (Figure 3.2C). Similarly, biologically active Nrg4 could be detected in culture media from 

brown adipocytes transduced with a retroviral vector expressing full-length Nrg4. As such, Nrg4 

is a BAT-enriched secreted factor that undergoes shedding to release an extracellular ligand 

capable of activating ErbB3 and ErbB4 receptors.  

 

3.3.2 Nrg4 binding is restricted to the liver 
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A major function of brown fat is non-shivering thermogenesis. We next examined whether Nrg4 

is required for defense against cold in Nrg4 null mice generated using a gene trap method. 

Unexpectedly, despite its abundant expression in BAT, Nrg4 appears to be dispensable for 

protection against hypothermia following cold exposure. Rectal body temperature was nearly 

indistinguishable between wild type (WT) and Nrg4 knockout (KO) mice (Figure 3.3A). Nrg4 

mRNA expression was slightly induced in brown fat in response to acute cold exposure (Figure 

3.3B). Expression of Ucp1 and deiodinase 2 (Dio2), the latter being an enzyme involved in 

thermogenic regulation, was induced to similar extent by cold exposure in WT and KO mice. In 

addition, BAT histology appeared similar between the two groups (Figure 3.3C). These 

observations raised the possibility that Nrg4 may not directly engage in adaptive thermogenesis. 

Instead, this factor may act on other tissues following secretion. 

 

To identify the target tissue(s) of Nrg4, we generated a fusion protein between SEAP and the 

extracellular fragment of Nrg4 (SEAP-Nrg4Ex) and performed binding assays on frozen tissue 

sections (Muller et al., 1998). The presence of Nrg4 binding sites in tissues can be readily 

detected by histochemical staining for SEAP enzymatic activity. Compared to vector, CM from 

HEK293 cells transiently transfected with SEAP-Nrg4Ex expression plasmid robustly stimulated 

ErbB4 phosphorylation (Figure 3.4A). While SEAP-Nrg4Ex binding was near background levels 

in BAT, heart, skeletal muscle, and spleen, strong binding as indicated by the presence of SEAP 

enzymatic staining was detected on the liver section (Figure 3.4B). Binding of Nrg4Ex to 

hepatocytes was specific as recombinant GST-Nrg4Ex, but not GST, nearly completely abolished 

the signal (Figure 3.4C). To determine whether ErbB3 and ErbB4 may mediate Nrg4 binding to 

hepatocytes, we performed competition binding assays in the presence of control CM or CM 
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containing secreted extracellular fragments of ErbB3 or ErbB4. As shown in Figure 3.4D, 

extracellular domains of ErbB3 and ErbB4, which contain ligand-binding sites for neuregulins, 

markedly reduced SEAP-Nrg4Ex binding to the liver. These results illustrate that the liver is a 

major target tissue of Nrg4 through its direct binding to the ErbB receptors. 

 

3.3.3 Nrg4 deficiency exacerbates diet-induced hepatic steatosis and insulin resistance 

Secreted factors released by adipose tissues exert diverse effects on metabolic homeostasis by 

acting on the central nervous system and peripheral tissues (Kadowaki et al., 2006; Trujillo and 

Scherer, 2006; Waki and Tontonoz, 2007). Notably, leptin and adiponectin are produced 

primarily in WAT and play a central role in the regulation of energy balance and glucose and 

lipid metabolism. To explore the role of Nrg4 in systemic metabolism, we analyzed metabolic 

parameters of WT and Nrg4-deficient mice fed standard chow or high-fat diet (HFD). Nrg4 KO 

mice were born at expected Mendelian ratio, had similar food intake, physical activity level and 

oxygen consumption rate, and gained similar body weight as control when fed standard chow 

(Figure 3.5A and data not shown). Body composition analysis indicated that percent body fat and 

percent lean body mass were comparable between the two groups. Upon HFD feeding, Nrg4 null 

mice gained slightly more weight, accompanied by significantly increased adiposity and reduced 

percent lean body mass (Figure 3.5A). Compared to control, KO mice had higher fasting blood 

glucose and plasma insulin levels (Figure 3.5B-C), suggesting that Nrg4 deficiency impairs 

glucose homeostasis in diet-induced obesity. In support of this, glucose tolerance test (GTT) and 

insulin tolerance test (ITT) revealed that Nrg4 null mice developed more severe glucose 

intolerance and insulin resistance than control (Figure 3.5D).   
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Histological assessment revealed that, while WAT and BAT appeared similar between two 

groups, Nrg4 null mouse livers developed more pronounced steatotic lesions following HFD 

feeding (Figure 3.6A). Accordingly, liver triglyceride (TAG) content was significantly elevated 

in the KO group (Figure 3.6B). Plasma TAG concentrations were also higher in KO mice under 

fed condition. Because Nrg4 binding was restricted to the liver, we next performed 

transcriptional profiling on total liver RNA from HFD-fed WT and KO mice to identify 

metabolic pathways downstream of Nrg4. Among the genes altered by Nrg4 deficiency was a 

cluster of genes involved in lipid metabolism. Notably, the expression of several key lipogenic 

genes, including glucose kinase (Gck), malic enzyme (Me1), fatty acid synthase (Fasn), stearoyl-

CoA desaturase 1 (Scd1), and ELOVL fatty acid elongase 5 (Elovl5), was significantly elevated 

in Nrg4 deficient mouse livers (Figure 3.7A). The induction of de novo lipogenic genes was 

further confirmed using qPCR (Figure 3.7B). The expression of Fsp27, a lipid droplet protein 

associated with hepatic steatosis, was also elevated. In contrast, the expression of genes involved 

in fatty acid -oxidation (Ehhadh, Acox1, and Cpt1a), gluconeogenesis (PEPCK, G6Pase), and 

mitochondrial oxidative metabolism was comparable between two groups (Figure 3.7B and data 

not shown).  

 

The expression of several transcriptional regulators of hepatic metabolism, including PGC-1, 

PGC-1, ChREBP, and SREBP2, were also similar between control and KO livers. In contrast, 

mRNA expression of SREBP1c, a key regulator of de novo lipogenesis and triglyceride synthesis 

(Horton et al., 2002), was significantly induced in Nrg4 KO mouse livers. Importantly, protein 
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levels of precursor SREBP1 (pSREBP1) and the cleaved and transcriptionally active isoform of 

SREBP1 in the nucleus (nSREBP1) were also elevated (Figure 3.7C). The levels of phospho-

AMPK and phospho-AKT (S473) were similar between WT and KO livers. Excess stimulation 

of SREBP1-mediated lipogenesis has been observed in mouse models of non-alcoholic fatty liver 

disease (NAFLD) as well as in humans (Horton et al., 2002; Kohjima et al., 2008; Shimomura et 

al., 1999). Importantly, liver-specific transgenic expression of the transcriptionally active form of 

SREBP1c increases hepatic lipogenesis, leading to excess adiposity, hepatic steatosis, 

hypertriglyceridemia, and insulin resistance (Horton et al., 2002; Knebel et al., 2012; Shimano et 

al., 1997), whereas inhibition of the SREBP pathway had the opposite effects on hepatic fat 

accumulation and whole body energy metabolism (Moon et al., 2012; Tang et al., 2011). 

Together, our studies revealed a protective role of Nrg4 in metabolic homeostasis in obesity, at 

least in part through attenuating the program of hepatic lipogenesis.    

 

3.3.4 Nrg4 cell-autonomously attenuates de novo lipogenesis in hepatocytes  

As shown above, Nrg4 deficiency resulted in aberrant induction of SREBP1c and its target genes 

in the liver. To determine whether Nrg4 regulated de novo lipogenesis in a cell-autonomous 

manner, we performed studies in cultured primary mouse hepatocytes. Previous studies have 

demonstrated that liver expresses all ErbB receptors expect ErbB2 (Carver et al., 2002). 

However, expression of ErbB4 in hepatocytes is relatively low under culture conditions. To 

reconstitute ErbB signaling in hepatocytes, we transduced primary hepatocytes with control 

(GFP) or ErbB4 adenoviral vectors and examined the effects of Nrg4 on receptor activation and 

downstream signaling. As expected, ErbB4 expression was below detectable range in 
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hepatocytes transduced with GFP adenovirus (Figure 3.8A). Adenoviral-mediated expression of 

ErbB4 resulted in auto-phosphorylation that was moderately increased by GST-Nrg4Ex. 

Interestingly, GST-Nrg4Ex treatment elicited a dose-dependent increase of tyrosine 

phosphorylation of endogenous ErbB3 and STAT5 proteins without affecting total ErbB3 and 

STAT5 levels. Because ErbB3 does not have intrinsic kinase activity, increased phosphorylation 

is likely due to ligand-dependent heterodimerization with ErbB4 in response to Nrg4. Previous 

studies have demonstrated that ErbB receptor activation stimulates the STAT5 signaling pathway 

in cultured cells and in vivo (Jones et al., 1999; Olayioye et al., 1999). Our results indicate that 

this signaling pathway is also operational in hepatocytes. Importantly, the stimulation of ErbB3 

and STAT5 phosphorylation was completely abolished in the presence of JNJ28871063, a pan-

ErbB inhibitor (Figure 3.8B). Further, a kinase-dead mutant of ErbB4 (ErbB4 KD) failed to 

respond to GST-Nrg4Ex (Figure 3.8C), suggesting that kinase activity of ErbB4 is required for 

mediating the stimulation of ErbB3 and STAT5 in response to Nrg4. 

 

Hepatic lipogenesis is highly responsive to nutritional and hormonal signals. The induction of 

lipogenic gene program in the fed state requires transcriptional activation of SREBP1c, which is 

a direct target of nuclear hormone receptor liver-X receptor (LXR) (Repa et al., 2000; Schultz et 

al., 2000). We next examined whether Nrg4/ErbB4 activation directly impacts the 

SREBP1c/lipogenesis axis in hepatocytes in response to LXR activation. Hepatocytes transduced 

with GFP or ErbB4 adenoviruses were treated with vehicle (DMSO) or T0901317, a potent 

agonist for liver-X receptor, in the presence of GST or GST-Nrg4Ex. As expected, T0901317 

treatment strongly induced mRNA expression of Srebp1c and lipogenic genes such as Fasn and 

Scd1 in hepatocytes transduced with GFP (Figure 3.9A). Treatment of ErbB4-transduced 



 

93 
 

hepatocytes with GST-Nrg4Ex significantly lowered the stimulatory effects of T0901317 on these 

genes. The expression of Abca1, another LXR target gene, was also reduced in response to 

ErbB4/Nrg4 activation. Consistent with gene expression data, de novo lipogenesis as measured 

by the incorporation of 14C-acetate into lipids was significantly inhibited by Nrg4 in hepatocytes 

expressing ErbB4 (Figure 3.9B). Activation of STAT5 has been demonstrated to exert inhibitory 

effects on nuclear hormone receptor signaling (Stocklin et al., 1996). To examine whether 

STAT5 activation directly modulates the transcriptional activity of LXR, we performed reporter 

gene assay using a luciferase construct containing LXR responsive element. Cotransfection of 

LXR/RXR expression plasmids drastically increased reporter luciferase activity in HEK293 cells 

in the presence of T0901317 (Figure 3.9C). Cotransfection of constitutively active STAT5 

significantly inhibited the increase of LXRE reporter gene expression, suggesting that STAT5 

activation may transrepress LXR and attenuate its transcriptional activity. 

 

3.3.5 Adipose tissue Nrg4 expression is reduced in murine and human obesity 

We next examined whether adipose Nrg4 expression is altered in mouse and human obesity. 

Compared to lean control, mRNA levels of Nrg4 in epididymal WAT were markedly lower in 

mice with high-fat diet (HFD)-induced obesity (DIO) or genetic obesity caused by leptin (ob/ob) 

or leptin receptor (db/db) deficiency (Figure 3.10A). While Nrg4 mRNA expression in brown fat 

was similar between lean and DIO mice, its levels were significantly lower in BAT from ob/ob 

and db/db mice, more severe models of obesity. Fractionation studies indicated that Nrg4 mRNA 

expression was detected nearly exclusively in adipocytes, but not in the stromal vascular 

fraction, and was significantly lower in the obese group than lean control (Figure 3.10B). 
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Adiponectin (Adipoq) and nitric oxide synthase 2 (Nos2) were included as control for adipocytes 

and stromal vascular cells, respectively. Adipose tissue inflammation impairs insulin sensitivity 

and metabolic homeostasis in part through augmented proinflammatory cytokine signaling 

(Gregor and Hotamisligil, 2011; Odegaard and Chawla, 2013; Osborn and Olefsky, 2012). To 

determine whether proinflammatory cytokines contribute to obesity-induced downregulation of 

Nrg4 in adipocytes, we treated differentiated brown adipocytes and 3T3-L1 adipocytes with 

TNF, a prototypical obesity-induced cytokine that has been implicated in adipose tissue 

dysfunction and insulin resistance (Hotamisligil et al., 1993). We found that Nrg4 mRNA 

expression was decreased by TNF treatments in both brown and white adipocytes (Figure 

3.10C). Similar inhibition of Nrg4 expression was also observed following interleukin 1 (IL1) 

treatments. Thus, the reduction of adipocyte Nrg4 expression is likely a consequence of 

augmented proinflammatory cytokine signaling in obesity. 

 

To determine whether Nrg4 expression is also reduced in human obesity, we examined its 

mRNA levels in subcutaneous WAT (scWAT) of a cohort of individuals with a wide range of 

body fat mass, and found that scWAT NRG4 mRNA levels inversely correlated with log percent 

body fat mass (Figure 3.11A), and log Homeostatic Model Assessment-Insulin Resistance 

(HOMA-IR). Similar inverse correlation was also observed between scWAT NRG4 expression 

and body mass index (BMI), and to a lesser extent, liver fat content (Supplementary Figure 

S3.2). When assessing NRG4 expression in BMI-matched individuals, we found that NRG4 

mRNA levels in both subcutaneous and visceral adipose tissues were significantly lower in 

individuals with impaired glucose tolerance (IGT) or type 2 diabetes (T2D) compared to those 

with normal glucose tolerance (NGT) (Figure 3.11B). Together with the observations that Nrg4 
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deficient mice developed more severe hepatic steatosis and insulin resistance upon HFD feeding, 

our results strongly suggest that inadequate Nrg4 expression may be causally linked to obesity-

associated metabolic disorders. 

 

3.3.6 Transgenic expression of Nrg4 improves diet-induced metabolic disorders 

A key prediction of this model is that elevated Nrg4 levels will protect mice from obesity-

associated metabolic disorders. To test this, we generated Nrg4 transgenic mice using aP2 

promoter/enhancer and chose line #111 that exhibited adipose-selective overexpression for 

metabolic studies. Nrg4 transgenic mice were indistinguishable from WT littermates when fed 

standard chow. Upon HFD feeding, transgenic mice gained slightly but significantly less body 

weight than control (Figure 3.12A). Body composition analyses revealed that percent fat mass 

was reduced in the transgenic group, whereas percent lean mass remained similar (Figure 3.12B). 

Plasma TAG levels were lower in the transgenic group (Figure 3.12C). We next measured whole 

body energy metabolism using Comprehensive Lab Animal Monitoring System (CLAMS). 

While control and transgenic mice had similar food intake, transgenic mice exhibited 

significantly elevated oxygen consumption rate (VO2) as normalized to body weight or lean body 

mass (Figure 3.13). In contrast to Nrg4 deficiency, Nrg4 transgenic mice had lower blood 

glucose levels than control under both fed and fasted conditions (Figure 3.14A). Fasting plasma 

insulin level was also lower in the transgenic group. Accordingly, GTT and ITT studies indicated 

that Nrg4 transgenic mice had improved glucose tolerance and insulin sensitivity (Figure 3.14B).  
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Histological analyses and measurements of liver lipid content indicated that transgenic mice had 

significantly improved hepatic steatosis (Figure 3.15A-B). Adipose tissue histology was similar 

between two groups. Fatty acid profile analysis of hepatic triglycerides demonstrated that 

transgenic mice have reduced levels of major fatty acid species, including palmitic acid (C16:0), 

oleic acid (C18:1), and linolenic acid (C18:2) (Figure 3.15C). Importantly, the desaturation index 

(C16:1n7/C16:0 and C18:1n9/C18:0), which reflects cellular SCD1 activity, was significantly 

lower in the transgenic group (Figure 3.15D), suggesting that hepatic lipogenesis is attenuated in 

aP2-Nrg4 transgenic mice. Accordingly, we found that the levels of SREBP1c mRNA and 

protein were significantly decreased in transgenic mouse livers (Figure 3.16A-B). The 

expression of hepatic lipogenic genes, including Gck, Acl, Acc1, Me1, Fasn, and Scd1, was 

attenuated in response to transgenic expression of Nrg4 in adipose tissues. Further, Fsp27 mRNA 

expression was also markedly reduced. These results demonstrate that transgenic elevation of 

Nrg4 levels in brown and white fat is sufficient to ameliorate diet-induced hepatic steatosis and 

improve systemic metabolic homeostasis.  

 

3.4 Discussion 

Brown and beige adipocytes are capable of activating uncoupled respiration through UCP1-

mediated proton leak and heat generation. This intrinsic thermogenic function is critical for the 

defense against cold and contributes to whole body energy balance. However, whether brown fat 

engages other metabolic tissues via secreted factors remain poorly understood. In this study, we 

provided evidence for a novel mechanism through which brown fat regulates systemic 

metabolism independent of its role in thermogenesis. Compared to white fat, Nrg4 mRNA 
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expression is enriched in brown fat and highly inducible during brown adipocyte differentiation. 

Nrg4 is secreted into the extracellular space and directly binds to hepatocytes in the liver. While 

largely dispensable for cold-induced thermogenesis, Nrg4 serves to preserve glucose and lipid 

metabolism in obesity (Figure 3.17). The levels of Nrg4 mRNA are significantly reduced in 

adipose tissues in murine and human obesity. Importantly, transgenic rescue of Nrg4 expression 

in adipose tissues is sufficient to ameliorate obesity-associated insulin resistance and hepatic 

steatosis, raising the prospect of developing Nrg4 as a therapeutic biologic in treating metabolic 

disorders. 

 

Among the genes encoding putative secreted factors, Nrg4 mRNA expression exhibited a high 

degree of restriction to brown fat. Despite this, significant levels of Nrg4 expression were also 

observed in differentiated 3T3L1 adipocytes and white fat. We cannot rule out the possibility 

that bona fide brown fat-specific adipokines may be excluded from our analyses due to a lack of 

probesets on Affymetrix chips. However, such factors may not exist given the remarkable 

similarity in the transcriptional control of gene expression in adipocytes of white, brown, and 

beige lineages. Nrg4 mRNA expression was markedly reduced in WAT in all three models of 

mouse obesity (diet-induced obesity, ob/ob, and db/db) and also in BAT in more severe genetic 

obesity. The inverse association between Nrg4 expression and obesity appears to be conserved 

between mouse and human. The expression of Nrg4 in brown and white adipocytes was reduced 

by treatments with proinflammatory cytokines, which contribute to adipose tissue dysfunction in 

obesity (Gregor and Hotamisligil, 2011; Odegaard and Chawla, 2013; Osborn and Olefsky, 

2012). As mass of white fat is significantly more compared to that of brown and beige fats in 
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individuals, it is likely that Nrg4 derived from different adipose tissues collectively contributes to 

its regulation of systemic metabolism. 

 

The exacerbation of insulin resistance and hepatic steatosis in Nrg4 null mice strongly suggest 

that diminished Nrg4 expression may be causally linked to the disruption of metabolic 

homeostasis in obesity. While Nrg4 null mice were nearly indistinguishable from control when 

fed standard chow, they developed several characteristics of metabolic syndrome, including 

insulin resistance, elevated plasma glucose and triglyceride levels, and excess hepatic fat 

accumulation on HFD. These metabolic perturbations were associated with aberrant induction of 

SREBP1c and the lipogenic gene program in the liver. Remarkably, transgenic Nrg4 expression 

in adipocytes attenuated hepatic SREBP1c/lipogenic pathway and significantly improved 

metabolic parameters following HFD feeding in mice. Together, these in vivo studies revealed a 

protective role of Nrg4 in metabolic homeostasis during chronic energy excess. In addition, our 

data strongly suggest that Nrg4 improves metabolic parameters, at least in part, through 

attenuating the activation of hepatic SREBP1c/lipogenesis in obesity.  

 

Several lines of evidence support the notion that Nrg4 directly acts on the liver and regulates 

hepatic lipogenesis. First, the extracellular EGF-like domain of Nrg4 exhibited strong binding to 

hepatocytes when fused to SEAP. Nrg4 binding in the liver was nearly completely abolished 

when excess GST-Nrg4Ex or CM containing the extracellular domains of ErbB3 and ErbB4 were 

included as competitors in the binding assays. As such, Nrg4 likely directly binds to ErbB3 

and/or ErbB4 on hepatocyte cell surface. Using cultured hepatocytes with reconstituted ErbB4 
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expression, we found that Nrg4 was capable of triggering dose-dependent activation of 

endogenous ErbB3 and downstream signaling pathway, most notably phosphorylation of 

transcription factor STAT5. ErbB3 does not have an active kinase domain but can 

heterodimerize with ErbB4 in response to ligand binding, resulting in receptor phosphorylation 

and the activation of downstream effectors. Hepatocytes express very low levels of ErbB2 

(Carver et al., 2002). While EGFR is abundantly expressed in the liver, it does not bind to Nrg4 

(Harari et al., 1999). Our data are consistent with ErbB3 and ErbB4 serving as major Nrg4 

receptors in the liver. Finally, the activation of Nrg4 signaling in hepatocytes resulted in cell-

autonomous inhibition of the SREBP1c/lipogenic pathway through transrepression of LXR by 

STAT5. The inhibitory effects of Nrg4 were consistently observed on lipogenic gene expression 

and the incorporation of 14C-acetate into newly synthesized lipids.  

 

It was somewhat surprising that, despite high levels of Nrg4 expression in BAT, its deficiency 

apparently does not impair cold-induced thermogenesis. In fact, core body temperature was 

nearly indistinguishable between WT and Nrg4 KO mice following acute cold exposure. 

Histological and gene expression analyses failed to reveal a significant role of Nrg4 in brown 

adipose tissue development and function. Exposure of animals to cold environment triggers 

sympathetic nerve activity and stimulates fuel oxidation and heat production in brown fat 

(Cannon and Nedergaard, 2004; Kozak and Harper, 2000). The activation of cold-induced 

thermogenesis significantly increases the delivery of glucose and lipid for thermogenesis and is 

expected to induce metabolic adaptation in other tissues. For example, hepatic fat oxidation and 

ketone production have been demonstrated to increase during cold acclimation (Hauton et al., 
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2006; Iossa et al., 1994). As such, Nrg4 may fine tune metabolic adaptation in the liver to 

accommodate increased fuel demand by brown and beige fats. 

 

Previous studies have implicated other EGF family of extracellular ligands in glucose 

metabolism. Nrg1 isoform 1 has been shown to promote glucose uptake in cultured muscle 

cells (Guma et al., 2010; Suarez et al., 2001), whereas EGF appears to counteract the stimulatory 

effects of insulin on glycogen synthesis in hepatocytes (Chowdhury and Agius, 1987). Heparin-

binding EGF, another member of this ligand family, is inducible by exercise in skeletal muscle 

and plays a role in facilitating muscle glucose disposal (Fukatsu et al., 2009). While we did not 

detect significant Nrg4 binding in skeletal muscle, it remains possible that this factor may also 

target tissues other than the liver once it is released into circulation. Together, our work here has 

established Nrg4 as a brown fat-enriched adipokine that improves insulin sensitivity and 

alleviates hepatic steatosis in the context of obesity. Future studies are needed to explore the 

potential of Nrg4 as a therapeutic biologic for the treatment of type 2 diabetes and non-alcoholic 

fatty liver disease. 

 

3.5 Future direction 

3.5.1 Detecting Nrg4 in circulation 

As we propose that Nrg4 is an endocrine hormone secreted from BAT and acts on the liver, it is 

important to prove its presence in the blood. ELISA mediated detection of Nrg4 is limited by the 

availability of potent Nrg4 antibody. One possible way to make less sensitive home-made Nrg4 
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antibody work is enriching low molecular weight plasma proteins through acetonitrile 

precipitation (Kay et al., 2008). Another possible yet more technically challenging method is 

parabiosis between Nrg4 transgenic (Tg) and knockout (KO) mice. Restoration of metabolic 

parameters in knockout mice connected to Tg and unchanged metabolic phenotype in those 

connected to another KO can provide evidence of Nrg4’s presence in circulation.  

 

3.5.2 Role of STAT5 in down-regulating hepatic lipogenesis by Nrg4  

Figure 3.8 and 3.9 showed that STAT5 can be phosphorylated in response to Nrg4 in hepacotyes, 

and constitutively active STAT5 is able to down regulate transcriptional activation of LXR/RXR 

targets, to which SREBP1c belongs. To find out how important STAT5 is in relaying Nrg4 

signal towards lipogenic suppression, we plan to breed AP2-Nrg4 transgenic mice with STAT5 

liver specific knockout mice (STAT5-LKO). If transgenic expression of Nrg4 failed to rescue 

fatty liver on the STAT5-LKO background, it would indicate that STAT5 is an important 

downstream effector of Nrg4 in terms of liver lipid regulation. Similar experiments can also be 

done in vitro, by isolating hepatocytes from STAT5-floxed mice, and perform gene expression 

analysis as well as de novo lipogenic assay after GST/GST-Nrg4Ex treatment following STAT5 

deletion mediated by Cre expressing adenovirus.  

 

3.5.3 Role of ErbB3/ErbB4 in mediating Nrg4’s beneficial effect on liver 

Figure 3.4 showed that both ErbB3 and ErbB4 can compete off SEAP-Nrg4’s binding to the 

liver, indicating they themselves bind to Nrg4. Moreover, in both HEK293 cells (Figure3.2) and 
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primary hepatocytes (Figure 3.8), GST-Nrg4Ex treatment led to ErbB3 and ErbB4 tyrosine 

phosphorylation and activation, indicating ErbB3 and/or ErbB4 may be required for Nrg4’s role 

in suppressing hepatic lipogenesis. For this idea to be testified, we will first perform SEAP-Nrg4 

binding assay using liver sections from ErbB3 and ErbB4 KO mice. Abolishment of binding will 

indicate that Nrg4 binds to liver only through ErbB3/ErbB4, and no other receptors. 2ndly, we 

will characterize phenotypes of ErbB3/ErbB4 liver specific knockout mice, to see whether they 

phenocopy the fatty liver phenotype as we see in Nrg4 KO mice. And if they do, whether 

breeding to AP2-Nrg4 transgenic mice also fail to rescue this phenotype. 

 

3.6 Material and methods  

3.6.1 Identification of brown fat-enriched secreted factors 

The identification of gene cluster encoding putative brown fat-enriched secreted proteins was 

based on mouse secretome dataset available at Secreted Protein Database (spd.cbi.pku.edu.cn) 

(Chen et al., 2005), mouse tissue microarray dataset (GSE9954, GEO database), and brown 

adipocyte differentiation time course microarray dataset. Among 2,169 high-confident genes 

predicted to encode secreted proteins, 1,378 of which have annotated Affymetrix probe sets and 

were included in the analysis. Genes that were induced more than 2-fold in day 7 differentiated 

brown adipocytes compared to preadipocytes and enriched by more than 2-fold in brown fat 

were considered as putative brown-fat enriched secreted factors.  

 

3.6.2 Nrg4 knockout and transgenic mice 
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Nrg4 knockout mice were purchased from the Mutant Mice Regional Resource Center 

(MMRRC) at the University of California, Davis, and backcrossed for more than ten generations 

to the C57BL/6J background. The transgenic vector was constructed by placing mouse Nrg4 

cDNA that contains part of 5’ and 3’ UTR between the aP2 enhancer/promoter sequence and 

human growth hormone polyadenylation signal. Mouse Nrg4 cDNA (including 5’UTR and 

partial 3’UTR) were TA-cloned into pCR2.1 TOPO vector. The transgenic vector was linearized 

by using HindIII and ApaI to release the transgenic cassette for microinjecting into fertilized 

eggs from C57BL/6J mice. Transgenic mice were generated at the Transgenic Animal Model 

Core at the University of Michigan. 

 

3.6.3 Human studies 

In a cross-sectional study, we investigated NRG4 mRNA expression in paired omental and 

subcutaneous (SC) adipose tissue samples (n=642). Individuals fulfilled the following inclusion 

criteria: 1) Absence of any acute or chronic inflammatory disease as determined by a leucocyte 

count > 7000 Gpt/l, C-reactive protein (CrP) > 10.0 mg/dl or clinical signs of infection, 2) 

Undetectable antibodies against glutamic acid decarboxylase (GAD), 3) No thyroid dysfunction, 

4) No alcohol or drug abuse, 5) No pregnancy. All study protocols have been approved by the 

ethics committee of the University of Leipzig. All participants gave written informed consent 

before taking part in the study. All subjects had a stable weight, defined as the absence of 

fluctuations of >2% of body weight for at least 3 months before surgery. Adipose tissue was 

immediately frozen in liquid nitrogen after explantation. BMI was calculated as weight divided 

by squared height. Insulin sensitivity was assessed using the HOMA-IR index or with the 
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euglycemic-hyperinsulinemic clamp method. Human NRG4 mRNA expression was measured by 

TaqMan-based qPCR assay. Human NRG4 mRNA expression was calculated relative to the 

mRNA expression of HPRT1, determined by a premixed assay developed for NRG4 and HPRT1 

(Applied Biosystems).   

 

3.6.4 Adipocyte differentiation and treatments  

Brown preadipocyte isolation and differentiation were performed as previously described (Klein 

et al., 2002).  SV40 T-large antigen immortalized brown preadipocytes were cultured in DMEM 

with 10% fetal bovine serum (FBS) for 2 days after reaching confluence (denoted as day 0 of 

differentiation). BAC differentiation was induced by adding a cocktail containing 0.5mM IBMX, 

125M Indomethacin, 1M dexamethasone to maintenance media containing 10% FBS, 20nM 

insulin and 1nM T3. Three days after induction, cells are cultured in the maintenance media 

alone. Total RNA was isolated at different days during brown adipocyte differentiation for gene 

expression analysis. 

 

3T3-L1 preadipocytes were cultured in DMEM with 10% bovine growth serum (BGS) until 2 

days post confluent (count as d0). Differentiation was induced by adding a cocktail containing 

0.5mM IBMX, 1M dexamethasone and 1g/mL insulin to DMEM supplemented with 10% 

FBS. Three days after induction, cells were cultured in DMEM containing 10% FBS plus 

1g/mL of insulin for another 2 days followed by maintenance in DMEM supplemented with 
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10% FBS. TNFα (10ng/mL) and IL1β (40ng/mL) treatment were carried out in mature 

adipocytes cultured in the maintenance media. 

 

3.6.5 Adipose tissue fractionation 

Epididymal WAT was dissected from lean and HFD-fed obese C57BL/6J mice. The tissues were 

minced into 2~3mm pieces, digested in Krebs Ringer Bicarbonate HEPES buffer (KRBH, 

containing 10 mM bicarbonate and 30 mM HEPES, pH 7.4) supplemented with 3% fatty acid 

free bovine albumin, 500nM adenosine and 3mg/mL collagenase II, and shaked gently at 37ºC 

for 40min. Digested tissues were filtered through 200m nylon filters into 50 ml conical tubes 

followed by centrifugation for at 800rpm for 30sec. The infranatant containing stromal vascular 

fraction was transferred into another tube using a needle syringe. The top layer containing 

mature adipocytes was washed again for a total of 3 times with KRBH buffer supplemented with 

3% bovine albumin, and used for total RNA isolation. After the final removal of infranatant, the 

adipocyte fraction was lysed for RNAs. The combined infranatants were centrifuged at 4000rpm 

for 5min to obtain cell pellets containing stromal vascular fraction.  

 

3.6.6 Min6 cell culture and treatments 

Min6 cells stably expressing ErbB4 were a gift from Dr. Peter Dempsey (University of 

Michigan), and were cultured in DMEM supplemented with 15% FBS, 1.7g/500mL sodium 

bicarbonate, 2.5uL/500mL -mercaptoethanol and 1% Pen/Strep. Before conditioned media 

treatment (for 15min), the cells were starved in serum-free DMEM for 4 hrs. 
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3.6.7 Nrg4 binding assay 

Hormone binding assay was performed as previously described (Lin and Linzer, 1999; Muller et 

al., 1998). 293T cells were transfected with vectors expressing SEAP or SEAP-Nrg4Ex. 24 hours 

after transfection, cells were switched to serum-free media for additional 2 days before the media 

were collected and concentrated using Centricon. Briefly, frozen tissue slices were incubated 

with SEAP or SEAP-Nrg4Ex conditioned media for 45 min at room temperature before they were 

washed four times in 0.1% tween-20 containing PBS and fixed in a solution containing 20 mM 

HEPES (pH 7.4), 60% acetone, and 3% formaldehyde. After inactivating endogenous alkaline 

phosphatase at 65 °C for 30 min, the enzymatic activity derived from the fusion protein was 

detected using NBT/BCIP substrate. For competition binding, frozen tissue slices were pre-

incubated for 30 min with 4g/L GST or GST- Nrg4Ex  or 40 fold concentrated conditioned 

media from HEK293 cells expressing extracellular domain of ErbB3 or ErbB4, followed by one 

hour of SEAP-Nrg4Ex conditioned media co-incubation with those competitors.  

 

3.6.8 293T transfection 

To pinpoint the exact cleavage site of Nrg4, serial alanine mutations encompassing Nrg4’s 

predicted metalloprotease cleavage site were generated through site-directed mutagenesis PCR 

on top of the WT SEAP-Nrg4 expressing vector. HEK293 cells were transfected with equal 

amount of plasmids expressing either WT or mutant Nrg4 in the presence of polyethylenimine. 

The original 10% BGS DMEM were changed to 0.5% FBS DMEM 12 hrs after transfection. 48 
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more hrs later, both media and total cell lysates were collected for western blotting against 

SEAP. 

 

For generating extracellular domain (ECD) of ErbB3 and ErbB4, we obtained ErbB3 and ErbB4 

ECD expressing plasmids from Dr. Leahy (Leahy et al., 2000). ECDs of ErbB3 and ErbB4 were 

his tagged and fused to human growth hormone. Conditioned media were collected as above and 

were concentrated 40 fold using Amicon ultra-centrifugal filter units from Millipore.  

 

3.6.9 Hepatocyte isolation and treatment 

Primary hepatocytes were isolated as previously described (Lin et al., 2004) by using collagenase 

type II (Invitrogen, Carlsbad, CA) from C57BL/6J mice. Hepatocytes were maintained in 

DMEM medium containing 10% BGS at 37°C and 5% CO2. Adenovirus infection was 

performed in the same day of isolation. After 24 hrs, cells were treated with GST and GST-

Nrg4Ex (10μg/mL) with vehicle (DMSO) or T0901317 (5μmol/L) for 24hrs. For signaling, cells 

were switched to DMEM supplemented with 0.1% BSA for 12 hrs before GST and GST-Nrg4Ex 

treatment. Recombinant adenoviruses were generated using AdEasy adenoviral vector 

(Stratagene, Santa Clara, CA) as previously described (Li et al., 2008a). 

 

3.6.10 Luciferase reporter assay 

Hepa 1 cells in 24-well plate were transiently transfected with 4xLXRE-Luc (30 ng/well) in the 

presence or absence of expression vectors for LXR (30 ng/well), RXR (30 ng/well), and 
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constitutively active STAT5 (caSTAT5, 100 or 200 ng/well). Twenty four hrs after transfection, 

the cells were treated with vehicle (DMSO) or T0901317 (10 M) for an additional 24 hrs before 

harvesting for luciferase assay. All the reporter assays were repeated at least three times in 

triplicates.    

 

3.6.11 Gene expression analysis 

Total RNA from white adipose tissue was extracted using a commercial kit from Invitrogen. 

RNAs from other tissues and cultured cells was extracted using TRIzol method. For quantitative 

real-time PCR (qPCR) analysis, equal amount of RNA was reverse-transcribed using MMLV-RT 

followed by quantitative PCR reactions using SYBR Green (Life Technologies). Relative 

abundance of mRNA was normalized to ribosomal protein 36B4. For detecting the coding 

isoform of Nrg4 using Taqman PCR, we designed sense primer encompassing the junction of 

exon3 and exon6 (5’ CCCAGCCCATTCTGTAGGTG3’), anti-sense primer in exon6 

(5’ACCACGAAAGCTG-CCGACAG 3’), and a taqman probe in exon6 but between sense and 

anti-sense primers (5’ 6-FAM-CGGAGCACGCTGCGAAGAGGTT-BHQ 3’). Taqman PCR 

was carried out using the Taqman Universal PCR Master Mix system (Applied Biosystems). 

Relative abundance of the Nrg4 coding isoform was normalized to ribosomal protein 36B4.  

 

For microarray study of liver gene expression, total liver RNA isolated from HFD-fed WT and 

Nrg4 KO mice was used to generate probes for Affymetrix Mouse MG-430 PM array strips. 

Sample processing and data analyses were performed according to the manufacturer’s 
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instruction. The dataset has been deposited into the NCBI Gene Expression Omnibus (GEO) 

database with accession number GSE53877. 

 

3.6.12 Immunoblotting analyses 

For total lysates livers were homogenized in a lysis buffer containing 50 mM Tris (pH 7.5), 

150mM NaCl, 5mM NaF, 25mM β-glycerolphosphate, 1mM sodium orthovanadate, 10% 

glycerol, 1% tritonX-100, 1 mM dithiothreitol (DTT), and freshly added protease inhibitors. 

Liver nuclear extracts were prepared as previously described (Calfee-Mason et al., 2002). 

Briefly, frozen livers were homogenized using a Dounce homogenizer in ice-cold 

homogenization buffer containing 0.6% NP40, 150mM NaCl, 10mM HEPES (pH=7.9), 1mM 

EDTA, and protease inhibitor cocktail. The homogenates were briefly centrifuged at 450 rpm at 

4ºC to remove tissue debris. The suspension was transferred to a new tube and centrifuged at 

3,000 rpm for 5 min at 4ºC. The nuclei pellet was washed with homogenization buffer and 

resuspended in a low-salt buffer containing 20mM Tris (pH=7.5), 25% glycerol, 1.5mM MgCl2, 

200M EDTA, 20mM KCl, and protease inhibitors. Nuclear proteins were extracted following 

the addition of a high-salt buffer (½ volume) containing 20mM Tris (pH=7.5), 1.5mM MgCl2, 

200M EDTA, 1.2M KCl, and protease inhibitors at 4ºC for 2hrs. Immunoblotting experiments 

were performed using specific antibodies against SREBP1 and CHREBP (Santa Cruz 

Biotechnology), tubulin (Sigma), and Lamin A/C, phospho-ErbB4 (Y1284) and total ErbB4, 

phospho-ErbB3 (Y1289) and total ErbB3, phospho-ErbB2 (Y1221/1222), phospho-STAT5 

(Y694) and total STAT5, phospho-AKT (S473) and total AKT, phosphor-AMPK (Thr172) and 

total AMPK (Cell signaling). 
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3.6.13 Metabolic measurements 

Plasma concentrations of triglycerides (Sigma) and non-esterified fatty acid (Wako Diagnostics) 

were measured using commercial assay kits. Liver triglyceride was extracted and measured as 

previously described (Li et al., 2008b). Plasma insulin was measured using an ELISA assay kit 

(CrystalChem). Glucose and insulin tolerance tests were performed as previously described 

(Molusky et al., 2012). 

 

3.6.14 Body composition and metabolic cage studies 

Body fat and lean mass were measured using an NMR analyzer (Minispec LF90II, Bruker 

Optics). Oxygen consumption (VO2) and food intake were measured using the Comprehensive 

Laboratory Monitoring System (CLAMS, Columbus Instruments), an integrated open-circuit 

calorimeter equipped with an optical beam activity monitoring device. Mice were individually 

placed into the sealed chambers (7.9" x 4" x 5") with free access to food and water.  The study 

was carried out in an experimentation room set at 20-23 °C with 12-12 hours (6:00PM~6:00AM) 

dark-light cycles. The measurements were carried out continuously for 72 hours. During this 

time, animals were provided with food and water through the equipped feeding and drinking 

devices located inside the chamber. The amount of food of each animal was monitored through a 

precision balance attached below the chamber. VO2 in each chamber were sampled sequentially 

for 5 seconds in a 10 minutes interval. 
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3.6.15 Quantitative gas chromatography (GC) analysis of TAG 

Lipids were extracted by the method of Bligh-Dyer in the presence of an internal standard (T21:0 

TAG, 10 nmol/mg protein) and separated on silica gel 60-Å plates that were developed with a 

nonpolar acidic mobile phase (70:30:1, v/v/v, hexane/ethyl ether/acetic acid), as previously 

described (Liu et al., 2010; Zhou et al., 2012). Briefly, spots corresponding to TAG were 

visualized with 0.01% rhodamine 6G and identified with TAG standard. The bands were 

scraped, extracted, and treated with acidic methanol. Quantitative GC analysis of resulting FA 

methyl esters was conducted (Hewlett-Packard 5890 GC; Hewlett-Packard, Palo Alto, CA, USA) 

with a 30-m0.32 mm Omegawax 250 column (Sigma) coupled with a flame ionization detector.  
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Figure 3.1 Nrg4 is enriched in brown fat 
(A) Clustering analysis of genes encoding secreted proteins that are induced during brown 
adipocyte (BAC) differentiation and enriched in BAT. (B) qPCR analysis of Nrg4 tissue 
distribution using pooled RNA samples from three mice. (C) qPCR analysis of Nrg4 mRNA 
expression during BAC differentiation and in mature BAC and 3T3-L1 adipocytes. Data 
represent mean ± s.d., *p<0.05.  
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Figure 3.2 Nrg4 is a secreted protein 
(A) Immunoblots of media and lysates from HEK293 cells transiently transfected with indicated 
constructs using anti-SEAP. (B) Stimulation of ErbB receptor phosphorylation by recombinant 
Nrg4. HEK293 cells transfected with different receptors were treated with GST (-) or GST-
Nrg4Ex (+) for 20 min. (C) Secretion of Nrg4 into culture media. Shown are immunoblots of total 
lysates from ErbB4-Min6 cells treated with DMEM or CM from HEK293 (left) or BAC (right) 
expressing vector (Vec) or Nrg4.  
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Figure 3.3 Nrg4 is dispensable for defense against cold 
(A) Rectal temperature in WT (n=5) and Nrg4 KO (n=7) mice following cold exposure at 4ºC. 
(B) qPCR analysis of BAT gene expression in mice kept at ambient room temperature (RT; WT, 
n=5; KO, n=6) or following cold exposure (Cold; WT, n=5; KO, n=6) for 4 hrs. (C) H&E 
staining of brown fat sections from mice following cold exposure (scale bar=100 μm). 
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Figure 3.4 Nrg4 binds to hepatocytes 
(A) Immunoblots of total lysates from ErbB4-Min6 cells treated with CM containing SEAP or 
SEAP-Nrg4Ex. (B) Binding assay. Schematic diagrams of SEAP or SEAP-Nrg4Ex fusion proteins 
were shown on the left. (C) SEAP-Nrg4Ex binding to liver sections in the presence of excess 
recombinant GST or GST-Nrg4Ex. (D) SEAP-Nrg4Ex binding to liver sections in the presence of 
control CM or CM containing the extracellular domains of ErbB3 or ErbB4. 
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Figure 3.5 Nrg4 deficiency exacerbates diet-induced insulin resistance 
(A) Body weight, adiposity, and percent lean body mass in WT (filled, n=8) and Nrg4 KO (open, 
n=9) mice fed chow or HFD. (B) Fed and fasted blood glucose levels in HFD-fed mice. (C) 
Fasted plasma insulin levels. (D) Glucose tolerance test (GTT, left) and insulin tolerance test 
(ITT, right) in HFD-fed WT (filled diamond, n=7) and Nrg4 KO (open square, n=7) mice. Data 
in A to D represent mean ± s.e.m. *p<0.05, KO vs. WT 
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Figure 3.6 Nrg4 deficiency exacerbates diet-induced hepatic steatosis 
(A) H&E staining of tissue sections (scale bar=100 μm). (B) Plasma TAG levels (top) and liver 
fat content (bottom) in HFD-fed WT and Nrg4 KO mice. Data represent mean ± s.e.m. *p<0.05, 
KO vs. WT 
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Figure 3.7 Lipogenesis is increased in liver from Nrg4 KO mice 
(A) A cluster of differentially expressed genes involved in lipid metabolism. (B) qPCR analysis 
of hepatic gene expression in HFD-fed WT (filled, n=7) and Nrg4 KO (open, n=9) mice. Data 
represent mean ± s.e.m. *p<0.05, KO vs. WT. (C) Immunoblots of total liver lysates using 
indicated antibodies (top); pSREBP1 denotes precursor SREBP1 protein. Immunoblots of 
nuclear SREBP1 (nSREBP1) using liver nuclear extracts (bottom). Lamin A/C immunoblot was 
included as loading control.  
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Figure 3.8 Nrg4 signaling in hepatocytes 
(A) Immunoblots of hepatocytes transduced with GFP or ErbB4 adenovirus and treated with 
GST or different doses (2, 10, 20 μg/ml) of GST-Nrg4Ex. (B) Immunoblots of hepatocytes 
transduced with GFP or ErbB4 adenovirus and treated for 15 min with GST or GST-Nrg4Ex (10 
μg/ml) in the presence of vehicle or 10 μM pan-ErbB inhibitor JNJ28871063 (JNJ). (C) 
Immunoblots of hepatocytes transduced with adenovirus expressing GFP, WT ErbB4, or kinase 
dead ErbB4 (ErbB4-KD) and treated with GST or GST-Nrg4Ex for 15 min. 
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Figure 3.9 Nrg4 cell-autonomously attenuates de novo lipogenesis in hepatocytes 
(A) qPCR analysis of gene expression in transduced primary hepatocytes treated with vehicle 
(DMSO) or T0901317 (5 M) for 24 hrs in the presence of GST or GST-Nrg4Ex. (B) 
Incorporation of 14C-acetate into lipids in primary hepatocytes treated as in A. (C) Reporter gene 
assay in Hepa1 cells transiently transfected with 4xLXRE-luc in combination with indicated 
plasmids. Transfected cells were treated with DMSO or T0901317 (10 M) for 24 hrs before 
luciferase assay. Data in A-C represent mean ± s.d. *p<0.05. 
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Figure 3.10 Adipose tissue Nrg4 expression is reduced in murine obesity   
(A) qPCR analysis of Nrg4 mRNA expression in epididymal white fat (eWAT) and BAT from 
lean (open) or obese (orange) mice. For DIO, WT male mice were fed standard chow (n=5) or 
HFD (n=6) for three months. For genetic obesity, a group of WT (n=3) and ob/ob (n=4) and a 
separate group of WT (n=5) and db/db (n=6) mice were analyzed. (B) qPCR analysis of Nrg4 
mRNA expression in stromal vascular fraction (SVF) and adipocyte fraction (Ad) isolated from 
eWAT from lean (n=3) or DIO (n=3) mice. Data in A-B represent mean ± s.e.m. *p<0.05. (C) 
qPCR analysis of Nrg4 mRNA expression in differentiated brown or 3T3-L1 adipocytes 
following treatments with vehicle (Veh), TNF (10 ng/ml), or IL1 (40 ng/ml) for 6 hrs. Data 
represent mean ± s.d. from one representative study performed in triplicates. *p<0.05 vs. Veh.  
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Figure 3.11 Adipose tissue Nrg4 expression is reduced in human obesity   
(A) Association between relative scWAT NRG4 mRNA in humans and log HOMA-IR (left) and 
log percent body fat mass (right). (B) qPCR analysis of NRG4 mRNA expression in scWAT and 
visceral WAT from individuals with normal glucose tolerance (NGT), impaired glucose 
tolerance (IGT), and type 2 diabetes (T2D). Data represent mean ± s.e.m. *p<0.05 vs. NGT.  
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Figure 3.12 Transgenic expression of Nrg4 decreases body weight and plasma triglyceride 
(TAG) levels 
(A) Growth curve of WT (open, n=10) and Tg (gray, n=9) mice before and after 12 weeks of 
HFD feeding. (B) Body weight (left), percent fat mass (middle), and percent lean body mass 
(right) in HFD-fed WT (open, n=8) and Tg (gray, n=8) mice. (C) Plasma TAG levels.   
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Figure 3.13 Transgenic expression of Nrg4 increases oxygen consumption of the mice 
Food intake (top) and oxygen consumption rate in HFD-fed mice. VO2 was normalized to total 
body weight (middle) or lean body mass (bottom). 
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Figure 3.14 Transgenic expression of Nrg4 improves glucose and insulin tolerance in HFD 
fed mice  
(A) Fed and fasted blood glucose (left) and fasted plasma insulin (right) levels in HFD-fed mice. 
(B) GTT (left) and ITT (right) in HFD-fed WT (black line, n=9) and Tg (gray line, n=8) mice. 
Data represent mean ± s.e.m. *p<0.05, WT vs. Tg. 
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Figure 3.15 Transgenic expression of Nrg4 alleviates diet-induced fatty liver  
(A) H&E staining of tissue sections (scale bar=100 μm). (B) Liver TAG content in ad lib HFD-
fed WT (open, n=8) or Tg (gray, n=9) mice. (C) Fatty acid composition of liver triglycerides 
from HFD-fed mice. (D) Desaturation index of C16 and C18 fatty acids calculated from data in 
C. Data in B to D represent mean ± s.e.m. *p<0.05, WT vs. Tg. 
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Figure 3.16 Transgenic expression of Nrg4 attenuates lipogenesis in the liver  
(A) qPCR analysis of hepatic gene expression. Data represent mean ± s.e.m. *p<0.05, WT vs. 
Tg. (B) Immunoblots of total liver lysates (top) and nuclear extracts (bottom).   
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Figure 3.17 Overview of Nrg4 as a brown fat-enriched secreted protein that preserves 
metabolic homeostasis in diet-induced obesity 
Nrg4 binds to the liver and attenuates hepatic lipogenic signaling through ErbB3 and ErbB4.  
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Figure S3.1 Nrg4 is highly conserved among species  
(A) Alignment of Nrg4 amino acid sequences. The transmembrane (TM) and EGF-like (EGFL) 
domains and three disulfide bonds are indicated. (B) Percent amino acid identity between amino 
acids 1-62 of human Nrg4 and Nrg4 from other species. 
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Figure S3.2 Association between NRG4 and obesity and hepatic steatosis in humans 
Association between relative scWAT NRG4 mRNA and log body mass index (top) and log 
percent liver fat content (bottom) in humans. The cohort was the same as shown in Figure 3.11. 
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