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Abstract 

 

 

Microfold (M) cells are known specialized intestinal epithelial cells that internalize 

particulate antigens and can aid in the establishment of immune responses to enteric 

pathogens. While certain enteric viruses have been observed within M cells, not much is 

understood about whether viruses in general use M cells to initiate a productive 

infection. Noroviruses (NoVs) are single-stranded RNA viruses that infect their host via 

the fecal-oral route. Murine NoV (MNV) infects intestinal macrophages and dendritic 

cells of its host and provides a tractable experimental system for understanding how an 

enteric virus interacts with the intestinal epithelium. This dissertation focuses in the 

mechanism of how MNV breaches the intestinal epithelial barrier to get in contact with 

its permissive cells for a productive infection. Using an in vitro transwell model of 

polarized intestinal epithelial cells, I demonstrated that MNV crosses the cell monolayer 

in the absence of viral replication or disruption of tight junctions. Additionally, this MNV 

transport was mediated by a subset of cells in the monolayer with functional M cell 

properties also termed as M-like cells. In vivo, replication of two divergent MNV strains 

was reduced in mice depleted of M cells and similar findings were made using reovirus, 

an enteric double-stranded RNA virus that infects intestinal epithelial cells. Finally, since 

residual MNV viral titers were still present, perhaps due to an incomplete depletion of M 

cells, two different genetically M cell deficient mouse models were used for MNV 



xiv 
 

infection studies: Rag2-/-γc-/- and RANKfl/flVillin-Cre mice. Results in both mouse 

models, show that oral MNV infection is greatly reduced when compared to controls and 

to our previous conditional M cell depletion model. Taken together, these results 

demonstrate that M cells are required for MNV pathogenesis. Similar findings were 

observed for reovirus. Interestingly, preliminary results suggest that, in the large 

intestine, alternate entry mechanisms (e.g. transepithelial dendritic cells or villous M 

cells) could take place for MNV infection in a virus-strain dependent way. Further 

examination into potential alternative MNV-strain dependent entry mechanisms still 

needs to be performed, but this dissertation has laid a framework for future studies.   
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CHAPTER 1 

Introduction 

 

 

1.1 Caliciviridae family 

 The family Caliciviridae consist of five well recognized genera all of which contain 

a single- stranded, poly-adenylated and positive-sense ribonucleic acid (RNA) genome 

in a protein capsid that has no lipid layer (80, 81, 290). They are divided in Lagoviruses, 

Vesiviruses, Sapoviruses, Noroviruses (NoVs) and Neboviruses. Recovirus, discovered 

in infected Rhesus monkeys is the newest proposed genus within the family (56). 

Overall, caliciviruses are known to be species-specific and only a few strains of these 

viruses can be cultured efficiently. Sapoviruses and noroviruses, for example, have only 

a porcine (85) or murine virus (120), respectively, that can grow in culture. However, 

due to the limitation of culturing the majority of the caliciviruses, research looking at 

molecular mechanisms involved in pathogenesis has been unsuccessful.  

 Noroviruses (NoVs) are one of the most characterized genus of the caliciviruses 

but with no anti-viral treatment available as of yet. They are highly stable in the 

environment, can infect at low viral doses, and can cause fast-spreading outbreaks due 

to high levels of viral particles that are being produced during infection. Caliciviruses 
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are considered an emerging pathogen threat and may also pose a national security 

concern, hence, the National Institute of Health has classified them as category B bio-

defense agents (105). Originally, NoVs were isolated after an outbreak at an elementary 

school in Norwalk, Ohio (118). Currently, NoVs are divided into five genogroups (GI-

GV), but a recent and new genogroup VI has been proposed. To date, the human NoVs 

(HuNoVs) are responsible for the majority of non-bacterial gastroenteritis worldwide 

(119). Humans can be infected with Genogroups I, II, and IV (80, 290). However, NoVs 

are highly widespread pathogens, as evidenced by infection in pigs, dogs, sheep, cattle, 

a lion cub and mice (120, 147, 149, 237, 272). Viruses from genogroup II can also infect 

swine (152), genogroup IV viruses were found in a dog and a lion (147, 149) and 

recently, viruses from the newly proposed genogroup VI were found to infect dogs (148, 

158-160). On the other hand, genogroup III viruses were detected in sheep and cattle 

(282) and finally, genogroup V contains the only known viruses to date that infect mice 

(120) and rats (260). Symptoms after infection can show no signs of disease (e.g., in 

wild-type mice), or can cause a severe acute gastroenteritis, as is known for HuNoV 

infection in individuals. Interestingly, the presence of NoVs in close relation to HuNoVs 

found in pigs (152, 272), the HuNoV replication in gnotobiotic (germfree) pigs (239) and 

even the replication of HuNoV in a mouse model (253), suggest that, NoVs may be able 

to cross species barriers. How these events occur, is an area of interest that is still yet 

to be defined. Nevertheless, this points to the likelihood of zoonotic transmission. 

Presently, no antiviral or FDA approved treatments to help prevent infection exist for 

HuNoVs, despite being a major public health concern. Hence, further research 
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examining all aspects of HuNoV biology will be a great asset to understand its 

pathogenesis and ways to avert it.  

 

1.1.1 General Aspects of Human Norovirus (HuNoV) 

 HuNoVs, being the major cause of non-bacterial gastroenteritis worldwide, have 

resulted in an estimated 21 million cases of acute gastroenteritis, 70,000 

hospitalizations and 800 deaths annually in the United States alone (86, 221). Since no 

viral decontamination protocol, as previously established by the World Health 

Organization (169), is efficient to clearly inactivate the virus, in case of a HuNoV 

outbreak, expensive and extensive decontamination procedures need to be performed. 

Consequently, HuNoV outbreaks can cause a serious economic burden worldwide. As 

of yet, the only effective way that helps control HuNoV spread are strict hygiene and 

taking extensive measures of decontamination. Therefore, understanding HuNoV 

pathogenesis through research is necessary to provide the public with potential antiviral 

treatments that can alleviate this problem. 

 Unfortunately, efforts in cultivating HuNoV in the laboratory have been 

unsuccessful for more than forty years (52). While a gnotobiotic pig model has been 

somewhat successful for HuNoV studies, this large animal model is expensive and 

limitations for conducting these experiments have narrowed its use (35). However, to 

understand the epidemiology and cellular-based mechanisms some progress has been 

made without the presence of a tissue culture system for HuNoV. Progress include the 

genome sequence of the prototype HuNoV, Norwalk virus (115), a RT-PCR protocol to 
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identify virus strains (269) and an immunoassay detection method for HuNoV (i.e., 

Enzyme Linked Immunosorbent Assay, ELISA) (79, 124). 

 

1.1.1.2 HuNoV Genomic Organization 

 A schematic structure of the HuNoV genome, is shown in Figure 1.1. The 

genome is a positive-sense single-stranded RNA that is divided into three open reading 

frames (ORF), which are flanked by small untranslated regions at the 3' and 5' ends. 

Similar to other viruses (e.g., polioviruses), a viral protein known as viral protein, 

genome-linked (VPg), is attached to the 5' end of the genome (197) and the 3' end 

contains a polyadenylated tail. Vpg can act as a primer during RNA synthesis and has a 

role in translation initiation by acting similar to 5' cap-binding proteins. Immediately after 

the VPg the first ORF is located and it is expressed as a polyprotein comprising the 

nonstructural genes: NS1/2 (p48 or N-Terminal protein), NS3 (nucleoside 

triphosphatase- like protein, NTPase), NS4 (p22 or 3A- like protein), NS5 (VPg), NS6 

(viral protease, Pro), and NS7 (RNA- dependent RNA polymerase, RdRp). ORF2 

located following ORF1, encodes for the major capsid protein VP1, which forms the viral 

capsid. Finally, ORF3 encodes the minor capsid protein VP2 that is hypothesized to 

stabilize the virus particle (120, 238). 

 

1.1.1.3 HuNoV Pathogenesis Studies 

 Currently, out of the three genogroups containing HuNoV, the one responsible for 

causing the majority of gastroenteritis outbreaks is genogroup II with its corresponding 
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genotype 4 (GII.4) (276). Within each genogroup there are different genotypes that refer 

to the classification of the virus based on the genetic material.  

 The study of HuNoV pathogenesis has  been previously performed with human 

volunteers (116, 137). These studies estimate that 18 virus particles (257) or 

approximately 1320 virus genomic equivalents (7) are sufficient to cause an infection  

and symptoms can begin as early as 12 hours (137). The most common symptoms 

include: diarrhea, vomiting, mild fever, dizziness and dehydration. Although symptoms 

can resolve quickly within 24-72 hours after infection, virus shedding can persist for 

weeks to months even in immuno-competent individuals (116). On the contrary, 

immuno-compromised individuals, including organ transplant patients, can shed the 

virus and persistently feel symptoms for years (6, 207). Additionally, asymptomatically-

infected individuals can shed virus for months and can potentially be the sources of new 

outbreaks (48). It has been calculated that the amount of viral shedding can be up to 

1010 virus genomes per gram of stool (224). Hence, given a low infectious dose, one 

individual is capable of infecting a large population. 

 In order to study HuNoV, scientists have developed models to understand 

cellular based mechanisms of HuNoV entry and replication in humans. These models 

include a gnotobiotic pig model, virus- like particles (VLPs) and a HuNoV replicon 

system. VLPs are non-infectious HuNoV capsids without viral genetic material, and 

have been essential  in understanding that histo-blood group antigens (HBGAs) are 

required for viral attachment (107, 228, 230, 244, 275, 286). The discovery of a HuNoV 

replicon system, which was developed from an eukaryotic expression plasmid which 

expresses the HuNoV complementary DNA without the viral capsid, has led to  
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understanding of the interferon response during genomic replication and helped for 

screening and testing antiviral drugs that could efficiently block replication (32, 33). 

Additionally, gnotobiotic pigs have been shown to be successfully infected with HuNoV 

(35). Chimpanzees are another model that was shown to be productively infected with 

HuNoV, although no signs of infection are observed (17). However, complicated issues 

with these model systems including the costs have been limiting. It wasn't until recently, 

that a small animal model for HuNoV was developed using Rag 2-/- γc-/- mice (which lack 

T lymphocyte, B lymphocyte and natural killer cells due to a deficiency in the common 

gamma chain cytokine receptor) (253). Although this new model gives promise of a new 

era for HuNoV studies, it does not show symptoms similar to its actual human host. 

Hence, studies still need to be performed to better understand the mechanisms involved 

in HuNoV pathogenesis. While several of these models have provided significant 

contributions to the norovirus research field, murine norovirus (MNV), with its research 

tools and reagents available that are non-existing for HuNoV studies, has allowed 

mechanistic studies that assist in unveiling many of the missing pieces of norovirus 

biology (120, 279). 

 

1.1.2 Murine Norovirus (MNV): A Model System for Norovirus Studies 

 To date, murine norovirus (MNV) discovered in 2003, is the only norovirus that 

can replicate efficiently in a small animal model and in tissue culture. Initially, MNV was 

found at Washington University in St. Louis, in a mouse research colony that contained 

immunocompromised mice deficient in signal transducers and activators of transcription 

1 (STAT-1) and in the recombination activating gene 2 (RAG 2) (120). Quickly after its 
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discovery, dendritic cells (DCs) and macrophages were identified to be the permissive 

cell types which MNV replicates (277). These findings led to the development of several 

tools to assist in studying norovirus biology: a tissue culture system (277), a small 

animal model (120) and a reverse genetics systems (5, 34, 273, 288). Thanks to these 

tools, scientists have made progress in understanding many of the aspects of norovirus 

biology, such as, how the virus attaches (254, 255), internalizes (72, 195, 196) and 

replicates (238, 277). Moreover, knowing that MNV can infect cells in culture and mice, 

which can be genetically manipulated, pathogenesis studies can be achieved. 

 Interestingly, mice infected with MNV do not show signs of sickness. This could 

explain why, until recent studies, this virus was never detected (120). MNV is wide-

spread and has been found in mice research colonies worldwide (1, 102, 125, 127, 

134), which in some cases resulted in difficulties in interpreting research results (125, 

134). Studies show that mice with an acute infection can have fecal inconsistency, 

which is a mild form of diarrhea (172).  Depending on the virus strain, infection can be 

resolved quickly within days or can persist for longer periods (i.e., weeks and even 

months). In the case of the MNV-1 strain, once infected, mice develop a strong and 

protective adaptive immunity against the virus (30). However, mice that are 

immunocompromised, such as the STAT1 or RAG2 knockouts, have uncontrolled 

systemic MNV infection and in some cases, as it was shown for STAT1 mice at high 

doses of MNV, it may cause lethality (120). 

 

1.1.2.1 Characteristics Shared Between MNV and HuNoV  

 At the genome level, both MNV and HuNoV share similar features. Particularly, 
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the three ORFs have similarities in structure and sequence and are 65% identical at the 

nucleotide level (Figure1.1) (121). MNV-1 contains an additional fourth ORF, which 

expresses a virulence factor, but its mechanism of action is still unknown. Other 

features shared between HuNoV and MNV are that both infect via the oral route, 

replicate in the gastrointestinal (GI) tract, and are shed in the fecal content. Additionally, 

both cause infections that are acute or persist for longer periods with viral shedding for 

months (27, 70, 100, 101, 173, 233). While immunocompetent mice do not show overt 

signs of sickness with MNV, mice deficient in STAT1 or the interferon receptors display 

diarrhea, stomach distension and delay in emptying the stomach, which are surrogates 

for vomiting since mice lack the emetic reflex (120, 172). A study showed 15 distinct 

MNV strains (Figure 1.2) that have been isolated, forming one genogroup and one 

serogroup, but nowadays over 80 distinct MNV strains have been deposited in 

GenBank (NCBI). In the cases where it has been analyzed, these strains can display 

biological differences.  

 Both MNV and HuNoV have similarities in their respective viral capsids. The virus 

particle from each virus is made from 180 copies of the major structural protein, VP1, 

which in turn forms 90 dimers of the protruding (P) domain located in the surface of the 

capsid. The P domain has been suggested to play an important role in immune 

recognition and receptor interaction (248). The norovirus genome is encapsidated in an 

interior protein shell (S), or S domain, that prevents the genome from environmental 

destruction. The structure of the capsid and how stable the viral particles are in the 

environment have been shown in MNV and extrapolated to HuNoV (20, 26, 40, 75, 246, 
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247, 256). Additionally, HuNoV and MNV have carbohydrate binding motifs in similar 

regions of the P domain (226, 254).  

 

1.1.2.2 Differences Between MNV and HuNoV  

 While similarities between the two have been demonstrated, there are also 

several differences. One difference is  that they bind to different host carbohydrate 

structures. Particularly, the histo-blood group antigens (HBGA) are the main 

carbohydrates HuNoV binds to, while MNV preferably binds to sialic acid, the 

ganglioside GD1a, and N-linked and O-linked cell surface glycoproteins (254). In 

addition, MNV does not cause the severe acute gastroenteritis, diarrhea or vomiting that 

is observed with HuNoV (120). The reason mice are unable to vomit is because they do 

not possess the emetic reflex required to do so (252), and a reason why 

immunocompetent mice with MNV infection do not experience diarrhea, could be due to 

differences in the physiology of the GI tract between mice and humans. Another 

difference is that no cell type that is permissive to HuNoV infection has been identified 

yet, while MNV was found to replicate in macrophages and DCs. Several attempts to 

infect macrophages and DCs from peripheral blood mononuclear cells with HuNoV have 

been performed, but have been unsuccessful (131). However, it is possible that HuNoV 

may in fact infect macrophages, since Kupffer cells (a specialized macrophage located 

in the liver) show HuNoV antigen-positive staining in HuNoV-infected mice (253). 

However, studies testing the ability to propagate the virus in culture for one or more 

specific cell types are still ongoing. Additionally, MNV possess a fourth ORF (ORF4), a 

virulence factor (156) not present in HuNoV. Understanding the differences between
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Figure 1.1 Comparison of genomic organization between HuNoV (Norwalk) and 
MNV-1. Schematic representation of the norovirus genomes (HuNoV and MNV-1). Both 
show four open reading frames (ORF). ORF1 contains the nonstructural proteins 
(green), ORF2 contains the major capsid protein (purple), ORF3 contains a minor 
capsid protein (blue). MNV-1 contains an additional ORF4 for a virulence factor 1 (pink). 
The subgenomic RNA is also shown below each genomic RNA. 
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Figure 1.2 Murine noroviruses phylogenetic analysis. Circled are fifteen genetically 
distinct virus strains from 26 MNV genome sequences analyzed. Shown here is a 
consensus Bayesian phylogenetic tree that was based on full-length MNV genomes. 
Image from Thackray et. al. 2009. 
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each virus can help in developing newer systems to study their pathogenesis. 

Nonetheless, the insights obtained with MNV are indispensable for driving forward 

norovirus research.  

 Reasons to use MNV as a model system, revolve around the fact that there are 

multiple research tools and techniques available for this virus when compared to other 

noroviruses. As has previously been mentioned, it is thanks to the discovery of MNV 

that scientists have been able to develop several tools to understand its biology, using a 

reverse genetics system to manipulate the genome (5, 34, 273, 288), a tissue culture 

system to propagate the virus (278), and a small animal model to study the 

pathogenesis (120). 

 

1.2 Norovirus Life Cycle 

 The NoV life cycle represents that of a typical positive-strand RNA virus life 

cycle. This life cycle can be divided into several steps: attachment, entry, uncoating, 

genome translation, replication, virus assembly and release (Figure 1.3). While it is not 

understood how all NoVs accomplish these steps, several mechanisms have been 

elucidated for HuNoV and MNV.  

 The first step is viral attachment/binding, in which an initial contact between the 

virus particle and the host cell is made. Particularly, attachment occurs between a viral 

component and a host cell component. Viral receptors can be classified as attachment 

or entry receptors and they can be host proteins, lipids, or carbohydrates. Attachment 

receptors, which can also be co-receptors, in many cases do not possess a strong 

interaction, but they can still assist in virus attachment to host cells (82). However, they 
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do not allow the virus to productively infect cells. Hence, entry receptor molecules are 

essential for a productive viral entry and infection. In the case of HuNoVs, 

carbohydrates used for attachment include N-acetylgalactosamine (GalNAc), N-

acetylglucoseamine (GlcNAc), alpha-D-galactose (α-D-Gal), alpha-D-mannose/alpha-D-

glucose (α-D-Man/α-D-Glc), α1,2-fucosylated carbohydrates, α2,3-sialylated 

carbohydrates, heparin and suramin, and galactosylceramides (GalCer) (8, 49, 53, 211, 

244). Interestingly, in the early 2000s, mechanisms of HuNoV entry and infection into 

the host was mostly known based on observations from studies with volunteer 

individuals that linked the ABO blood type of individuals to susceptibility of infection 

(103, 104, 106, 229, 250). Moreover, observations confirmed that, in vitro, HuNoV VLPs 

can bind HBGA, which are carbohydrate chains present on the surface of many cells 

and are linked to lipids or proteins (144). Structural analysis of HuNoV VLPs bound to 

HBGAs, demonstrate that the P domain is the viral protein responsible for binding to 

carbohydrates (58, 88, 103, 202, 211, 247, 249-251). Additionally, the P domain alone 

is essential for binding HBGAs and disruption of the P domain obliterates this interaction 

(247). However, a study shows that binding to HBGAs is not sufficient to support viral 

entry into host cells for efficient replication and viral spread (84). Thus, it is 

hypothesized that a membranous protein is needed as a receptor for entry (84, 245). 

Similar to HuNoV P domains, the MNV P domain structure has been determined.  

Flexible loops in the MNV P domain were identified and are thought to allow for 

conformational changes in the viral capsid (122, 256). Moreover, reverse genetics 

analysis of the MNV-1 capsid demonstrate a binding region similar to the HBGA-binding 

sites of a HuNoV strain (254), which could reflect an important glycan-binding site, but 
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other additional binding sites likely exist. Interestingly, studies in the NoV field have 

discovered that both HuNoV and MNV use carbohydrates, such as sialic acid, as an 

important requirement during attachment (8, 211, 244, 254, 255). 

 MNV binding and attachment to the host cell requires carbohydrates in a strain-

dependent manner, in particular, terminal sialic acid, the ganglioside GD1a, and N-

linked and O-linked cell surface glycoproteins (254). However, just as it is observed with 

HuNoV, carbohydrates do not seem to be sufficient for MNV entry and infection into the 

host and, hence, it is hypothesized that a membrane protein is required as an entry 

receptor. 

 After successful attachment of the viral particle to the host cell, internalization is 

initiated by the interaction of the virus with its viral entry receptor(s). Non-enveloped 

viruses are internalized by different mechanisms depending on the virus, and do not 

possess the mechanism of its viral membranes fusing with host cell membranes that is 

observed for enveloped viruses. Once an interaction with the host entry receptor is 

made, the endocytic machinery further internalizes the viral particle. In general, this 

means that an invagination of the cellular membrane forms a vesicle-like structure 

known as an endosome that traffics into the cell to become an early/late endosome and 

finally a lysosome (87). During this process, the lumen of the endosome becomes 

acidified, by vacuolar ATPases (183). Some well-known forms of endocytosis are 

mediated by clathrin, caveolin, dynamin, lipid rafts/cholesterol. In addition, phagocytosis 

and macropinocytosis internalize larger or small particles, respectively. However, other 

less characterized forms of endocytosis are mediated by flotillin, ADP- ribosylation 

factor 6 (ARF6), GTPase regulator- associated with focal adhesion kinase-1 (GRAF1), 
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Figure 1.3 Representative calicivirus life cycle. Schematic of the life cycle of a 
positive-strand, non-enveloped RNA virus. Viral positive-sense RNA is shown in red and 
negative-sense RNA in purple. Yellow circles represent the virus protein genome-linked, 
VPg. 
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and interleukin 2 receptor (IL2R) (38). The mechanism of how HuNoV particles 

internalize into the host cell is still not clear. One study looking at glycosphingolipids 

present in giant unilamellar vesicles (GUVs) for GII HuNoV VLPs binding, demonstrated 

that these glycosphingolipids are mobile and cluster on the surface before inducing the 

formation of an invagination (212). Since many of the different forms of endocytosis 

have a similar initial step in which an invagination into the cell’s lipid bilayer is formed 

(14, 15), it may be that these invaginations observed with HuNoV are in fact, the 

beginning of virus entry into the host cell. Hence, it is hypothesized that HuNoV enters 

the cells via one or more endocytic mechanisms (146). Interestingly, another study 

using a HuNoV replicon system, showed that host cholesterol is required during HuNoV 

replication (31). Studies with MNV have helped in understanding some of these 

questions and have found similarities in the requirement of cholesterol for entry and 

infection. Particularly, MNV entry to the host cells was found to require cholesterol and 

dynamin II in a matter independent of clathrin-mediated endocytosis, caveolin-mediated 

endocytosis, macropinocytosis, phagocytosis, flotillin or GRAF1 mechanisms (72, 196). 

Hence, using the MNV model has been helpful in understanding and acquiring a sense 

of how noroviruses can gain entry into cells. 

 Uncoating occurs through multistep processes that are triggered by virus-host-

cell interactions. The protein shell, or capsid, contains the viral genome and protects it 

from environmental stresses, and only when time and important triggers have initiated, 

the genome will be released to the site of replication. Once viruses have disrupted or 

penetrated the endosomal or cellular membrane upon entry, replication in the cytosol or 

nucleus can begin. Uncoating can occur by either of two ways, and they involve the 
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acidification after maturing into late endosomes or lysosomes: 1) the virus capsid 

undergoes a conformational change triggered by environmental or host interactions that 

will eventually create a membrane pore in which the viral genome can exit and be 

transported to the replication site; or 2) during this conformational change the virus 

particle releases peptides that can distort the endosomal membrane integrity preventing 

continuous enclosing of the virus particle and the capsid is transported to the cytosol for 

another self-conformational change that will release the genome into either the cytosol 

or nucleus for further replication (93). Interestingly, while the internalization process for 

NoVs is still not clear, MNV-1 entry into permissive macrophage cells was shown to be 

independent of endosomal acidification (194). This suggested that other mechanisms of 

viral uncoating, e.g. viral receptor, may be playing a role. However, since the entry 

receptors for MNV or HuNoV are not known, studies looking at receptor-virus 

interactions have not been successful.  

 The next step of the life cycle involves the translation of the genome. NoVs can 

initiate translation with the help of a viral protein, VPg, that is linked to the genome at 

the 5' end (22, 46, 95, 120). For HuNoV and MNV-1, the VPg interacts directly with the 

host translational machinery (89, 258). The VPg recruits the 43S pre-initiation complex, 

that contains the eukaryotic factor 3 (eIF3), 40S ribosomal subunits, and initiator tRNA 

to mRNA (46, 47). Once translated, the viral genome contains a long poly-protein of 

nonstructural proteins in which the viral protease (3CL-protease or NS6) can cleave the 

polyprotein into the individual proteins.  

 After translation, host membranes undergo remodeling to generate membranous 

structures, otherwise known as virus replication factories or membranous web, that 



18 
 

carry membranes from ER and the Golgi apparatus (138, 277, 287). For MNV, it has 

been determined experimentally that replication occurs in these factories (110). 

Moreover, it was observed that some membrane structures during MNV replication 

contain double membrane characteristics, related to mitochondria (154). Based on 

these observations, it has been suggested that autophagy may play a role during viral 

replication. Autophagy is a catabolic mechanism that degrades components like 

organelles and cellular structures, to maintain cellular energy levels (126). Interestingly, 

certain autophagy proteins with a known function for autophagosome formation, were 

shown to be required for interferon (IFN) gamma (γ)-mediated host defense against 

MNV, but induction of autophagy was not required for antiviral properties of IFN-γ (109). 

However, whether autophagy is important during NoV replication in general is still not 

clear. The NoV replication machinery can be generally understood after studies with 

MNV were performed (277). First, the viral protein RdRp, can bind to the 3’end of the 

viral genome either by an interaction with the conserved three-dimensional structure of 

the 3’ untranslated region and/or the VPg (80). Then, the RdRp begins to polymerize a 

matching anti-sense viral genome that once the VPg-linked 5' end is reached, the RdRp 

disassociates itself from the anti-sense genome. Next, the RdRp produces more 

positive-strand genomes using the matching anti-sense genome. Finally, after these 

additional positive-strand viral genomes are linked to the viral VPg by a covalent bond, 

they will then undergo translation or become packaged into new virus progeny. 

Additionally, sub-genomic transcripts with no ORF1 have been observed during MNV 

infection (77).  

 The final step of the viral life cycle involves packaging of the newly replicated 
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viral genome into the viral capsid for successful assembly of progeny. Once assembly 

of the virus is finalized, the progeny is released from the infected cell to infect a new cell 

and begin the viral life cycle all over again. Since non-enveloped viruses lack a lipid 

component to fuse with the cell membrane and exit the cell, they require the cell's 

membrane be destroyed or lysed. MNV (18) has been suggested to induce apoptosis 

late during the viral life cycle. However, concerns for this type of release have been 

brought up due to the observations in which unreleased membrane bound virus 

particles can be the result of apoptotic cells which fragment themselves into membrane 

blebs (220, 242). At the end, the newly synthesized and released progeny must find a 

new permissive cell so that, once found, the initiation of the whole viral life cycle can 

take place again. However, since not much is known about NoVs, future studies need to 

verify the mechanism of how assembly and release are accomplished. 

 

1.3 Pathogen Interactions with the Intestinal Epithelial Barrier 

 Enteric pathogens such as bacteria, toxins and viruses that are transmitted 

through the fecal-oral route, need to conquer the GI tract's multilayer system of defense 

in order to productively replicate and propagate in the host. Pathogens have evolved 

mechanisms that make them competent enough to successfully do so. Particularly, 

when pathogens are able to breach the intestinal epithelium, they gain access to the 

interior of the host and cause infection that way. This infringement of the epithelial 

barrier can cause gastroenteritis, but many can even pose life-threatening 

consequences. For matters of this dissertation, some of the general aspects/functions of 
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the intestinal epithelium as well as how bacteria and viruses can traverse the intestinal 

epithelium for efficient infection will be discussed.  

 

1.3.1 General Organization of the Intestinal Epithelium 

 The GI tract is divided into two major segments: the upper GI tract and the lower 

GI tract. The mouth, pharynx, esophagus and stomach, are the four components that 

make up the upper GI tract, while the small and large intestines belong to the lower GI 

tract. The small intestine is further divided into the duodenum, jejunum, proximal and 

distal ileum, and is the area were most of the digestion and absorption of nutrients from 

food contents take place (261). The large intestine, which contains the cecum, colon 

and rectum, is primarily responsible for the absorption of water from indigestible food 

content and to excrete the waste material from the body. Specific cell types, such as 

Paneth cells (261), are localized differentially within the intestines. Additionally, a 

gradient of bacterial microbiota is present from small quantities in the mucosal surfaces 

of the duodenum and jejunum, to higher quantities in the colon with high variation in 

bacterial species predominance across the length of the intestine (78, 261). 

 The intestinal mucosa, comprised of a layer of epithelial cells, lamina propria and 

a layer of smooth muscle (the muscularis mucosa) is organized into crypts and villi 

(261). The lamina propria supports the structure of intestinal villi, which in turn can 

increase the available surface area for absorption (261). In the small intestine, the crypt 

is generally occupied by stem cells, goblet cells, Paneth cells, undifferentiated secretory 

cells and enteroendocrine cells. The crypt is responsible for several cellular 

mechanisms including: ion and water secretion, cell renewal, endocrine-paracrine 
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secretions into the lamina propria and exocrine secretions into the crypt lumen (10, 225, 

270). On the contrary, the villus is primarily responsible for nutrient absorption and is 

generally populated by absorptive enterocytes and goblet cells. A study showed that 

crypts are derived from a single progenitor cell (96), while the villus epithelium derives 

from multiple surrounding crypts in which its cells are arranged as vertical columns 

(Figure 1.4). These cells migrate up the villus when differentiating from a secretory to an 

absorptive enterocyte cell and are mainly correlated with the induction of nutrient 

transporters and brush border digestive enzymes (108). The absorptive enterocytes, 

which are the leading constituents of the villus epithelium, are tall columnar cells that 

contain an apical (luminal) surface with a lined dense brush border of microvilli (Figure 

1.4). Enterocytes form a perijunctional actomyosin ring associated and involved with 

tight junction and adherens junction permeability, for barrier function (90, 141, 262, 

263). These tight and adherens junctions, prevent combining molecules, by diffusion, of 

the apical and basolateral membrane. Moreover, after the absorptive enterocyte cells 

reach the villus tip, they undergo apoptosis without affecting cell-cell junctions or barrier 

functions (140, 208). The tight junction is a zone of close membrane contact from cell to 

cell. It is found in the upper compartment of the epithelial cells. A study using electron 

microscopy showed that the tight junction zone is composed of a network of strands and 

grooves (240), and the transmembrane proteins in these strands are claudin isoforms 

and occludin (68). In vitro studies have shown that occludin plays a major role in tight 

junction assembly and regulation (36, 66, 67, 135, 180, 235, 266, 283, 284). The 

claudins form the core of the tight junction and their distribution or expression 

throughout the GI tract varies (203). This explains observations in which certain 
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claudins are responsible for paracellular permeability of specific ions (199, 234) and 

how it varies in regions within the GI tract (199). Interestingly, pathogens can hijack 

claudins. Clostridium perfringes, for instance, has been shown to bind both claudin-3 

and claudin-4 (65) resulting in withdrawal of claudins from the cell surface, loss of tight 

junctions and decreased transepithelial electrical resistance (TER), a measure of tight 

junction permeability.  

 Undifferentiated crypt enterocytes are thought to be an intermediate between the 

stem cell and the different types of epithelial cells. Unlike villus absorptive enterocytes, 

undifferentiated crypt enterocytes contain a less developed microvillus membrane with 

shorter and less dense microvilli (261). Additionally, undifferentiated crypt enterocytes 

are involved in the secretion of IgA into the intestinal lumen. They express the polymeric 

Ig receptor at the basolateral surface that binds IgA, previously secreted by plasma cells 

in the lamina propria (168) which ultimately undergoes proteolytic cleavage to release a 

portion of the receptor (or the secretory component) with the IgA (222). This receptor-

IgA interaction initiates a transportation mechanism to the apical side, known as 

vesicular transcytosis (discussed later) (28). 

 Located within the villus and crypt epithelium are mucin-producing cells known as 

goblet cells. They are distributed throughout the small intestine and colon and are also 

derived from stem cells via undifferentiated crypt cells (157). In contrast to villus 

absorptive cells and undifferentiated crypt cells, they contain microvilli that is uneven 

with a tendency to be located in the junctional areas (261). The apical portion of the 

cell's cytoplasm is filled with granules packed with mucins (261). Studies have shown 

that mucin secretion by these goblet cells can drastically increase after Escherichia coli 
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Figure 1.4 Mouse small intestine. Image of a section of the small intestine from a wild-
type Balb/c mouse stained with hematoxylin and eosin stain (H&E stain). Represented 
in the image is the organization of the small intestinal mucosa into villi and crypts. The 
villus epithelium contains tall columnar cells (enterocytes) with a dense brush border of 
microvilli. Proliferation of the epithelium starts within the crypt. The enterocytes begin 
migrating up to the villus tip while maturing and turning into specialized cells for nutrient 
absorption. 
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(E.coli) and Vibrio cholera toxin infection, which may suggest a protective response 

against bacteria (132, 166). Mucins may allow for pathogenic bacteria to become 

confined and be removed by the mucous flow in the intestine. Additionally, carbohydrate 

binding sites present on mucins may play a role in luring pathogenic bacteria and 

preventing them from attaching to the epithelial cells' binding sites (50, 189). Several 

carbohydrate epitopes present on mucins that can serve as receptors for certain 

bacteria, such as enterotoxigenic E. coli (171) and Salmonella typhimurium (268) have 

already been described. Interestingly, mucins not only play a protective role against 

bacteria, but also against many viruses by inhibiting viral attachment and spread to host 

cells. For example, one study shows that porcine gastric mucins bound to HuNoV-like 

particles inhibit viral attachment to the Caco-2 intestinal epithelial cell line (259). Another 

study demonstrated that transmembrane mucin isolates significantly reduced herpes 

simplex virus type 1 (HSV-1) infection in epithelial cells, by blocking galectin-3-mediated 

viral entry (285). Additionally, scientists demonstrated that mucin 6 binds to DCs, via the 

dendritic cell-specific intercellular adhesion molecule-3 grabbing non integrin (DC-

SIGN), and inhibits transfer of human immunodeficiency virus type-1 (HIV-1) to CD4+ T 

lymphocytes (241). Hence, mucins can act as a first line of defense for bacterial and 

viral pathogens. 

 Enteroendocrine cells are another type of epithelial cells and are developed from 

the same stem cells as enterocytes, goblet cells and Paneth cells. They lack microvilli 

and they posses many secretory granules within their basal cytoplasm (261). Although 

this cell type is distributed throughout the intestinal mucosa, its function is not well 

understood. Interestingly, the number of enteroendocrine cells increases in diseases 
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such as ulcerative colitis (76, 261), thus, this could be the outcome of an adaptive 

response to injury (261). 

 Other cell types derived from the crypt stem cell that terminally differentiate are 

the Paneth cells (37). They possess secretory granules in their apical cytoplasm, similar 

to goblet cells, and their microvilli are dispersed. While their role in digestive function is 

not clear, it is thought that their primary role is in the production of antimicrobial peptides 

(261). Interestingly, antimicrobial peptides have been shown to possess antiviral 

properties. Particularly, defensins, which are a family of antimicrobial peptides, are 

known to have neutralizing activities that inactivate several viruses and inhibit infection. 

Some of these viruses include: herpes simplex virus (HSV) type 1/2, cytomegalovirus, 

vesicular stomatitis virus, influenza A virus, human adenovirus, human papillomavirus 

and human polyomavirus (13, 21, 45, 51). 

  

1.3.2 Microfold Cells and their General Properties 

 Microfold (M) cells, also a cell type within the intestinal epithelium, are mainly 

present in the follicle-associated epithelium (FAE) within the GI tract (91, 184). These 

cells are uniquely specialized epithelial cells that are famously known for their antigen 

sampling mechanism. They are primarily found in high concentrations within aggregate 

lymphoid follicles known as Peyer's patches (PP) (177) (Figure 1.5), but can be found 

throughout the intestines as well, although rarely (128). In mice, PP are primarily 

located in the small intestine, cecum, colon and rectum (184, 187). In humans, they are 

found primarily in the ileum although isolated lymphoid follicles have been found in the 

large intestine (64, 181). M cells have very short, irregular and sparse microvilli and can 
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be distinguished via electron microscopy.  They lack the brush border glycocalyx that is 

seen coating the microvilli of enterocytes (62, 153). Their basal membrane forms an 

intraepithelial cleft or pocket in which the apical and basal surfaces are close to each 

other, and where lymphocytes, DCs and macrophages migrate into. M cells are 

commonly known to provide an entry route into the intestinal mucosa for various 

antigens and microorganisms (175, 176, 179, 215, 217, 232). The mechanism by which 

many microorganisms can distinguish the FAE as a potential route of entry is not quite 

clear, but certain observations show differences in the composition and structure of the 

FAE from the whole epithelium and are suggestive of a potential role in increased 

pathogen-host interactions for entry (177). In congruency with this, enterocytes within 

the FAE express lower membrane-associated digestive hydrolases than do the 

enterocytes present in the villi (185, 219). Also, there is less mucus production in the 

FAE (184), less lysozyme- and defensin- producing Paneth cells (73) and deprivation of 

polymeric Ig receptor (191). However, while the FAE and M cells do not secret IgA, M 

cells have a receptor for IgA, as IgA has been found on the apical surface of PP M cells 

in animals and in humans (133, 142, 209, 280). Additionally, IgA can also bind non-

specifically to certain pathogens (280) and it has been shown that exogenous IgA-

antigen complexes that are taken up by M cells could achieve an induction of mucosal 

immunity (291). Differences in epithelial surface charges could also play a potential role 

in FAE attachment preference, since it was observed that, in mouse and rabbit PP, 

polystyrene microparticles are favorably attached to the FAE (62, 190). A study showed 

that virus-sized (120 nm) or bacterial-sized (1-microm) particles can attach differently to 

the apical surface of villus enterocytes, FAE enterocytes or M cells (143). This study
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Figure 1.5 Representation of a section of small intestine Peyer Patch and villa. M 
cells are located within the follicle-associated epithelium (FAE) overlying Peyer's 
patches. DCs, macrophages and lymphocytes (T and B cells) are located within the 
sub-epithelial dome (SED) region or in the lamina propria.   
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further suggests that the thick brush border glycocalyx present on enterocytes but not 

on M cells, along with a thin glycoprotein coat present on M cells, can act as a size-

selective barrier. Finally, carbohydrate structures in the FAE are different from the ones 

on villi (71, 73, 74, 227). M-cell-specific carbohydrates have been shown to be different 

between humans (74), mice (73) and rabbits (71, 114, 133). Hence, these and other 

factors not described here could play an important role for the microorganism's 

preference in attaching to different regions of the intestine.   

 Once antigens have successfully attached to M cells within the FAE region, they 

are taken up by endocytosis and moved across the epithelial barrier via a transepithelial 

vesicular transport mechanism (also known as transcytosis). Adherent macromolecules 

(24, 177, 178), ligand-coated particles (62, 177) and certain viruses, such as reovirus 

(130, 177), can enter via clathrin-mediated endocytosis. One study showed that 

Salmonella typhimurium entry and transport across an in vitro M cell model is caveolae-

mediated (136). Additionally, transport of pathogens across M cells can be receptor 

mediated. Pattern recognition receptors present in the surface of M-like cells, such as 

TLR-4 and α5β1 integrin, have been shown to initiate transport of certain bacteria (264, 

265). In addition, HIV-1 transport across M cells requires apical expression of the 

CXCR4, CCR5 and the glycosphingolipid galactosylceramide (59).  

 Hence, the M cell's transcytotic route is thought to be, in part, the mechanism by 

which antigens are routinely sampled along the mucosal surface. 

 

1.3.2.1 Transcytosis 
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 Transcytosis is a widespread transport mechanism that a variety of cell types 

use. The most familiar case occurs in cell types that are polarized to form barriers 

between two different environments, that is, M cells and epithelial cells. They can move 

material from the apical to basolateral direction or vice-versa, depending on the cargo 

and the cellular context, without disrupting the barrier or the cell. However, osteoclasts 

(174, 213) and neurons (94) have also been reported to transport cargo in a similar 

fashion. Interestingly, a recent study demonstrated that goblet cells can also deliver 

soluble antigens that are less than 70 kilo Daltons in molecular weight, to underlying 

DCs (155). However, this phenomenon was termed goblet cell-associated antigen 

passages (GAPs) (128, 155). For the purpose of this dissertation, only transcytosis in 

the context of the specialized intestinal epithelial cells, i.e. M cells, will be discussed. 

 M cells are uniquely distinctive from all epithelial cells in that transcytosis is the 

prime mechanism for endocytosing particulate material. Once particles or 

microorganisms are taken up at the apical surface of the M cells, they are delivered to 

vesicles or endosomes that will end up moving towards the basal side to get in contact 

with the plasma membrane within the pocket and become released into the environment 

(177). Interestingly, pathogenic microorganisms that can cross via this transcytosis 

mechanism do not seem to undergo any decrease in their viability. Hence, many 

pathogens use this pathway to initiate infection in the host before a strong immune 

response takes place (176, 204).  

  

1.3.3 Bacterial Pathogens Breach the Intestinal Epithelial Barrier to Cause 

Infection 
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 Previously, electron microscopy studies showed that pathogens that cross the 

intestinal epithelial barrier via M cells are subsequently taken up by subepithelial 

phagocytes that were thought to be macrophages (188, 281). However, it is known that 

the cells located in the subepithelial dome (SED) region (Figure 1.5) are mainly DCs 

(123, 177). It has been shown that once DCs from this region take up antigens, they 

migrate to adjacent T-cell zones where presentation of antigens takes place (113, 231). 

Additionally, they can migrate to B-cell follicles or enter the T-cell zones of the draining 

lymph nodes (139, 177). While these DC movements are likely important to evoke a 

mucosal immune response against pathogens that is beneficial to the host (9, 206), it 

can also make it easier for certain pathogens to disseminate in the host and become 

systemic (151, 200).  

 Shigella, which is an enteroinvasive bacterial pathogen, causes intestinal cramps 

and bloody diarrhea in those who are infected. The reason for this occurrence involves 

a series of complex molecular events between epithelial cells and macrophages that 

result in loss of barrier function, activation and death of phagocytic cells, neutrophil 

influx and a severe inflammatory response (177). It has been shown, in rabbits and in 

rhesus macaque monkeys, that the initial site of Shigella entry into the host is the FAE 

(214, 215, 274). The mechanisms of how the bacteria invade and spread from cell-to-

cell has been described in vitro (19, 214, 215). In addition, studies have shown that 

Shigella invades the epithelial cells through the basolateral side but not the apical side 

(170, 216). Once bacteria have crossed the epithelial barrier, it survives the attack from 

macrophages by activating caspase 1 for a rapid macrophage cell death by apoptosis 
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(97, 218). This and other events lead to an induction of the inflammatory response that 

can be destructive to the intestinal mucosa and the epithelial barrier (44, 57, 193, 198) . 

 Enteric Yersinia enterocolitica and Yersinia pseudotuberculosis have been 

shown to cross the intestinal epithelial barrier by adhering to M cells (83, 145). Invasin, 

which is an outer membrane protein, mediates this attachment via the host cell 

adhesion molecule β1 integrin as a receptor (111, 112). This was further confirmed after 

invasin-negative Yersinia mutants had lost their capacity to attach to M cells, colonize 

PP (41, 145, 192) and be transported across by M-like cell in an in vitro co-culture 

system (223). Once Yersinia species have crossed the FAE, they can inhibit 

phagocytosis from macrophages by secreting a set of proteins (Yop proteins) into the 

cell cytoplasm that disrupts the cytoskeleton (54) and eventually evokes apoptosis of 

the macrophage (162, 165, 210). This results in the pathogen remaining extracellular in 

the mucosa, mesenteric lymph nodes and, after some time, obliteration of the PP (177).  

 Similar to Shigella and Yersinia, Salmonella Typhimurium has been shown to 

select for M cells in the FAE as a route of entry (42, 117), but has also been found to 

enter via the villus epithelium (243, 267). Interestingly, in an in vitro model system of 

epithelial cell monolayers cocultured with DCs, Salmonella was observed in contact with 

DCs that reached through the epithelial tight junctions (205), and in vivo, the number of 

DC extensions increased after incubation with Salmonella (39). These studies suggest a 

role for transepithelial DCs in pathogen uptake. Salmonella that is intracellular has been 

shown to be cytotoxic to M cells leading to the disruption of the FAE and provoking very 

serious inflammatory lesions (117, 129). Once the bacteria has crossed the FAE, it is 

captured by SED DCs (99), it can survive inside live phagocyte cells (161) and infect 
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macrophages. Interestingly, a recent study demonstrated that Salmonella enteritidis can 

escape macrophage clearance by elevating intestinal epithelial micro RNA 128 (miR-

128) levels, which in turn, diminished macrophage recruitment mediated by M-CSF 

cytokine signaling (289). Hence, the mechanism by which Salmonella survives the 

attack of macrophages may depend on the strain. Nevertheless, migration of the 

"infected" or antigen-presenting phagocytes to other sites of the host were shown to 

help mediate systemic dissemination (267). Hence, the efficiency in interaction with 

antigen-presenting cells has made attenuated Salmonella species an attractive vector 

for mucosal vaccines (236).  

 Other bacterial pathogens such as Campylobacter jejuni (271), Mycobacterium 

paratuberculosis (164) and Mycobacterium bovis (63) have also been shown to interact 

and cross the intestinal epithelium via M cells for invasion.  

 

1.3.4 Viral Pathogens and the Intestine 

 Enteric viral pathogens, such as reovirus and poliovirus, have been suggested to 

use M cells as a route of viral entry after they were observed adhering to M cells (232, 

281). For instance, reovirus, which can be transmitted by the oral and respiratory routes 

and causes respiratory and GI tract infections, not only binds to M cells in the 

respiratory airways (167), but can also bind selectively to M cells in PP (3, 12, 281) and 

in the colon (186). Proteolytic cleavage of the virus in the intestine has been shown to 

increase reovirus infectivity (11, 16) which is essential for M cell adherence (3). This 

adherence to M cells is mediated by the interaction with the virus' sigma 1 protein (92). 

Interestingly, the virus infects the epithelial cells from the basolateral side (12), 
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suggesting that reovirus M cell transport needs to occur first in order to get in contact 

with its receptor, the junctional adhesion molecule A (JAM-A), found in the basolateral 

surface of epithelial cells (4, 25). However, during this transport process, the possibility 

that reovirus can infect M cells is also likely to be the case since in vivo experiments 

have shown viral factories inside M cells (12). 

 Like reovirus, poliovirus infects humans via the oral route and can replicate in the 

PP before spreading elsewhere (201). This fact assisted in understanding the 

significance of developing mucosal immunity against the pathogen and, in fact,  played 

a role for the establishment of a live attenuated poliovirus vaccine (182). Interestingly,  

when both poliovirus type 1 or the attenuated Sabin strain where incubated in PP 

explants from humans in vitro, viruses where visualized adhering to and being taken up 

by M cells (232). Hence, the capability of poliovirus to target M cells for crossing the 

epithelial barrier has proven a great interest for researching and developing vaccines. 

More so, poliovirus vectors have recently shown potential as mucosal vaccines for other 

pathogens (43). 

 There is evidence that suggests that M cells are involved in HIV-1 entry after 

mucosal explants in culture from mouse and rabbit, showed adherence of HIV-1 to M 

cells and transport of the virus to the M-cell pocket (2). Moreover, HIV-1 can be 

transmitted by the rectal mucosa (163), which is thought to be partly due to lymphoid 

follicles and M cells being present in this area (177, 181). Interestingly, in vitro, it has 

been shown that HIV-1 infection of intestinal epithelial cells can occur in culture with 

intestinal epithelial cell lines such as HT29 and Caco-2 cells, via the expression of the 

glycosphingolipid galactosylceramide in the cell membrane (55, 69). One study showed 
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that HIV-1 can infect and be transcytosed across undifferentiated and differentiated 

Caco-2 cells with M-like cell properties, only if the chemokine receptors CCR5 (R5 

tropic) and CXCR4 (X4 tropic), along with the galactosylceramide were present in the 

cells (60). Thus, this study shows that transport of HIV-1 is receptor-mediated. 

However, while humans also contain galactosylceramide in their intestinal epithelium 

membrane (23, 98), no HIV-1 infection has been detected in the respective intestinal 

epithelial cells of infected individuals (61). It has been suggested that an explanation for 

this could be due to the intestinal enterocytes containing brush borders with thick 

glycocalyx that prevent the pathogen's access to the apical membrane (177). In 

addition, HIV-1 particles were unable to infiltrate the enterocyte's glycocalyx from mouse 

and rabbit PP, but were able to adhere to M-cells (2). Interestingly, a recent in vitro 

study showed that HIV-1 R5 tropic, but not X4 tropic, can selectively trigger DCs to 

migrate between intestinal epithelial cells for efficient sampling and transfer of infection 

to target cells (29). Hence, similarly to what has been showed with Salmonella (39, 

205), exposure to a viral (29) or a bacterial stimuli, can lead to induction of 

transepithelial DC sampling. Therefore, besides M cells, transepithelial DCs can be 

another mechanism of pathogen uptake. 

 A study looking at the passage of human T-cell leukemia virus type 1 (HTLV) 

across the Caco-2 intestinal epithelial monolayer, showed that epithelial barrier integrity 

was not compromised when cells were cocultured with HTLV-1 infected T lymphocytes. 

Moreover, this study showed that HTLV-1 virions crossed the epithelial monolayer via a 

transcytosis mechanism that ended in the productive infection of DCs located below 

(150). Interestingly, the transcytosis process described in this study seems to be via the 



35 
 

enterocytes instead of M cells, and hence, future studies need to address whether M 

cells are infected at all and if they play a role in HTLV-1 transport.   

 While many of these studies that have been performed using in vitro or ex vivo 

techniques suggest M cells as a potential portal for virus infection, direct in vivo 

experimental evidence showing productive infection of the native host via these M cells 

is still not clear.  Nevertheless, these studies have helped in understanding how viruses 

can use M cells for viral entry into the host. Thus, M cells can be targeted for the 

induction of mucosal immune responses against enteric viral pathogens, to aid in future 

development of mucosal oral vaccines.  

 

1.4 Dissertation Aims 

 MNV, which efficiently infects cells in culture and in a small animal model, can 

help understand how this enteric virus overcomes the intestinal epithelial barrier to 

infect cells underneath it. Hence, information obtained with MNV might be applicable to 

HuNoV and could help develop strategies to limit infection. This dissertation aims to 

identify the mechanism or pathway by which MNV crosses the intestinal epithelial 

barrier in vitro and in vivo, and whether an unrelated enteric virus (i.e. reovirus) behaves 

similarly.  
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CHAPTER 2 

Murine Norovirus Transcytosis Across an In Vitro Polarized Intestinal 

 Epithelial Cell Line is Mediated by M-like Cells 

 

The work presented in this chapter was recently published in the Journal of Virology, 

Volume 87, Issue 23, pages 12685 to 12693; 2013. 

 

2.1 Abstract 

 Noroviruses (NoVs) are the causative agent of the vast majority of non-bacterial 

gastroenteritis worldwide. Due to the inability to culture human NoVs, and the inability to 

orally infect a small animal model, little is known about the initial steps of viral entry. 

One particular step that is not understood is how NoVs breach the intestinal epithelial 

barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting 

murine macrophages and dendritic cells, making this virus an attractive model for 

studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 

cells were used to investigate how MNV interacts with and crosses the intestinal 

epithelium. In this in vitro model of the follicular-associated epithelium (FAE), MNV is 

transported across the polarized cell monolayer in the absence of viral replication or 

disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. 

In addition to transporting MNV, these M-like cells also transcytose microbeads and  

express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral
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compartment underlying the epithelial monolayer did not alter the number of M-like cells 

but increased their transcytotic activity. Our data demonstrate that MNV can cross an 

intact intestinal epithelial monolayer in vitro by hijacking the M-like cells’ intrinsic 

transcytotic pathway and suggest a potential mechanism for MNV entry into the host. 

 

2.2 Introduction 

Human noroviruses (HuNoVs) are genetically diverse, environmentally stable, 

highly infectious viruses that infect their host via the fecal-oral route and aerosolization 

(16, 18). They are the causative agents of most nonbacterial infectious gastroenteritis 

worldwide (6, 30, 54). HuNoV infections spread rapidly and outbreaks often take place 

in closed or semi-closed settings where communities gather (e.g., nursing homes, 

schools, hospitals, restaurants and cruise ships) (3, 36, 40). Annually, HuNoVs cause 

an estimate of 21 million cases of acute gastroenteritis and 800 deaths in the United 

States alone (17, 45). Despite being a major public health concern, the inability to 

culture HuNoVs in vitro (11, 19) and lack of a small animal model for oral infection (48) 

has limited our progress in understanding NoV biology. Nevertheless, the discovery of 

the first murine-specific NoV, MNV, which is highly homologous to its human 

counterpart and can efficiently replicate in cell culture and in a small animal, provides 

the means to study NoV biology in detail (26, 55, 56). 

The early events during viral infection are essential for a productive replication in 

the host but little is known about this step during NoV infection. Particularly, how NoVs 

cross the epithelial barrier to reach their susceptible target cells remains unclear. Since 

MNV efficiently replicates in macrophages and dendritic cells in vitro (55) and in mice 
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(26), the goal of this study was to understand how MNV interacts with the intestinal 

epithelium. MNV strains have high sequence similarity (> 75%), but differ in their 

biological phenotypes (46, 51). For example, the fecally isolated MNV strains S99 and 

CR3 persist in wild-type mice for at least 35 days (37, 51). In contrast, MNV-1 causes 

acute infections in mice, and virus is not detectable in fecal contents after 7 days post 

infection (dpi) (51). Persistence and colonic tropism mapped to a single amino acid 

residue within the non-structural protein NS1/2 (39). Further differences between virus 

strains are observed in culture with respect to carbohydrate interaction. MNV-1 and S99 

binding to murine macrophages is dependent on terminal sialic acid residues of the 

ganglioside GD1a, N-linked, or O-linked glycoproteins, while CR3 binding only requires 

N-linked glycoproteins (49, 50). Although multiple studies have elucidated aspects of 

the multi-step process by which MNV enters permissive macrophages (14, 43, 44, 49, 

50), how the virus crosses the intestinal epithelial barrier to reach susceptible 

macrophages and dendritic cells in the first place is unknown. 

The intestinal tract comprises multiple types of intestinal cells including epithelial 

cells and microfold (M) cells. M cells are specialized epithelial cells usually associated 

with the follicle-associated epithelium (FAE) overlying the Peyer’s patches where 

mucosal-associated lymphoid tissues are organized. These cells routinely sample 

diverse antigens along the entire mucosal surface for immune surveillance, including 

microorganisms and inert particles (i.e., latex beads) (9, 31, 38). Over the years, 

researchers have taken advantage of established in vitro FAE models for gaining a 

better understanding of the mechanisms required for enteric pathogen entry into or 

across the intestinal epithelium. A fraction of the in vitro polarized intestinal epithelial 
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cells acquires characteristics that resemble those of M cells (i.e., uptake of particulate 

antigens) and show increased uptake of fluorescently labeled polystyrene latex beads 

after co-culture with B cells or Peyer’s patch-derived lymphocytes (2, 12, 29). Thus, 

pathogen interaction with M-like cells can also be studied in these polarized intestinal 

epithelial monolayers (2, 4, 5, 12, 29). For example, poliovirus translocates from the 

apical to the basolateral compartment in a temperature-dependent manner when 

polarized Caco-2 cell monolayers are co-cultured with Peyer’s patch lymphocytes to 

induce M-like cells (42). Another study demonstrated that a human immunodeficiency 

virus 1 (HIV-1) strain tropic for the chemokine receptor CXCR4 (but not for CCR5) 

infects and is transported across polarized Caco-2 monolayers co-cultured with B cells 

in a receptor-dependent manner (13). In addition, human T-cell leukemia virus type 1 

(HTLV-1) crosses polarized Caco-2 cell monolayers without disruption of tight junctions 

or infection of the epithelium to productively infect dendritic cells in the basolateral 

compartment (25). 

 The current study focused on the interaction of the murine enteric virus MNV with 

polarized murine intestinal epithelial cells (mICcl2) as an in vitro FAE model system to 

determine whether MNV invades and/or crosses a polarized intestinal epithelium. The 

mICcl2 cell line, when grown on permeable filters, forms polarized cells with tight 

junctions and conserves main features of small intestine crypt cells (2, 12). Herein, we 

demonstrate that MNV traffics across the polarized cell monolayer using M-like cells 

without replicating or disrupting tight junctions. Addition of B myeloma cells in the 

cultures did not alter the numbers of M-like cells but instead increased the transcytotic 
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activity of M-like cells. These results suggest that M cells may be a gateway for MNV 

invasion of the host.  

 

2.3 Material and Methods 

Cell culture. The mICcl2 cells were generously provided by Dr. A. Vandewalle, 

INSERM, Paris, France (2). Cells were maintained in 75-cm2 flasks (Falcon; BD 

Labware) as described (2) and used from passages ~70 to 90. The Ag8.653 cell line 

was generously provided by Dr. S. Lundy, University of Michigan, Ann Arbor, USA, and 

was maintained as described (27). The murine macrophage RAW 264.7 cell line was 

maintained as described and used for plaque assays (55).  

Virus stocks and plaque assays. The plaque-purified MNV-1 clone 

(GV/MNV1/2002/USA) MNV-1.CW3 and the fecal isolates CR3 (GV/CR3/2005/USA) 

and S99 (GV/S99/Berlin/2006/DE) were used at passage 6 for all experiments (37, 51). 

Viral titers were quantified by plaque assay after visualizing plaques by staining cells 

with a 0.01% neutral red solution in PBS for 1-3 h as previously described (15, 55). 

Transcytosis experiments.  mICcl2 cells were plated at a density of 106 cells/well on a 

polyester membrane filter of a 12-well transwell permeable support (3 µm pore size; 

Costar). Cells were cultured for 10-14 days as described (2, 12) until TER was > 250 Ω 

x cm2 using a voltohmmeter device (World Precision Instruments,FL) (Figure 2.1A). For 

co-cultures, the mouse myeloma B cell line Ag8.653 (ATCC; Manassas, VA) was added 

at 106 cells/well on the bottom of the transwell in mICcl2 media on day 10 of the mICcl2 

culture. In this experimental set-up, Ag8.653 did not come into direct contact with 

polarized mICcl2 monolayers during culture and monolayers were transferred to new 
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wells before performing experiments (Figure 2.2A). For transcytosis experiments, 

monolayers were washed three times with PBS before adding MNV-1, S99 or CR3 to 

the apical side for indicated time points. All compartments (apical medium, membrane 

with cells, and basolateral medium) were harvested and freeze-thawed once. Viral titers 

were determined by plaque assay.  

 To measure viral replication, a neutral red (NR) light-sensitive virus was 

generated and used as described previously (44). Briefly, polarized mICcl2 monolayers 

co-cultured with B myeloma cells were incubated with (NR) light-sensitive MNV-1 in the 

dark for 4 and 24 h before harvesting all compartments (apical medium, membrane with 

cells, and basolateral medium) in the dark. Samples were freeze-thawed once and 

duplicate plaque assays were performed either in the dark or in the light following a 10 

min light exposure to measure replicated virus or total. 

 To test for tight junction integrity, lucifer yellow dye (Life Technologies) with a 

molecular weight of 457.24 Daltons was used as described previously (5). In the case of 

mICcl2 co-cultures, the transwell insert was transferred to a new 12 well plate without B 

myeloma cells before performing the assay. 

 To measure the transcytotic activity of polarized monolayers cultured with or 

without Ag8.653 cells, monolayers were transferred to a new well and incubated with 

2.5 x 1010 beads/mL of 200 nm fluorescently green polystyrene latex nanoparticles 

(Fluoresbrite, YG; Polysciences) for 0, 0.5, 1, 2, 4, and 8 h. The basolateral medium 

was collected for each time-point, and fluorescence was measured by flow cytometry as 

described previously (33).  

 To measure the temperature dependence, polarized mICcl2 monolayers cultured 
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with or without Ag8.653 B myeloma cells were incubated with MNV-1 for 0, 15, 30, 45 

and 60 min at 4°C and viral titers were measured by plaque assay.  

Immunofluorescence analysis. Immuno-staining of the tight junction-associated 

protein ZO-1 was performed on 0.1% saponin-permeabilized mICcl2 cells as described 

previously (5). To enumerate M-like cells in polarized mICcl2 monolayers, 200 nm 

fluorescent polystyrene latex nanoparticles (i.e., microbeads) (Fluoresbrite; 

Polysciences) and IgA isolated from human colostrum (0.5 mg/ml, Sigma) were 

incubated on the apical side of the monolayer at 37°C for 30 min. Following a PBS 

wash, cells were fixed in 4% paraformaldehyde in PBS for 15 min and permeabilized 

with 0.1% Triton X-100 for 15 min. Monolayers were washed and incubated for 1 h with 

a 1:500 anti-human IgA FITC-conjugated antibody (Sigma, F-9637) in PBS containing 1 

µg/mL DAPI at room temperature. After three washes with PBS, membranes were 

dissected from transwells, mounted with ProLong Gold antifade reagent containing 

DAPI (Invitrogen, Grand Island, NY) and processed for confocal microscopy as detailed 

previously (5).  

 To visualize MNV-1 within polarized mICcl2 monolayers, MNV-1 at an MOI of 100 

PFU/cell was added to the transwells' apical surface together with 200 nm fluorescently 

labeled polystyrene latex nanoparticles at 37°C for 30 min. Cells were fixed and 

permeabilized as described above. Cells were blocked with 10% (v/v) of FBS and 1% 

(v/v) of normal goat serum (NGS; Gibco) in PBS for 30-60 min. MNV-1 was detected by 

staining with the mouse monoclonal antibody A6.2 recognizing the MNV-1 capsid (55) 

(0.5 µg/mL in PBS containing 1 µg/mL DAPI) at room temperature for 1 h, followed by 

another 1 h incubation with a 1:500 dilution of an Alexa 488-labeled secondary goat 
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anti-mouse antibody (Invitrogen) in PBS containing DAPI. Membranes were then 

dissected from transwells, mounted and processed for laser scanning confocal 

microscopy and Z-stacks of 0.5-1.0 µm slides were obtained using the LSM software on 

a Zeiss confocal microscope. Immunofluorescence images were quantified from three to 

six regions of the monolayer each from three to four independent experiments using the 

scoring system of intensities by the Metamorph Premier v6.3 image analysis software 

(Molecular Devices; Downington, PA). 

 To visualize the transport of microbeads in each culture, monolayers were 

incubated for 30 min at 4°C as well as 2 h or 4 h at 37°C, immunostained for ZO-1 and 

processed for confocal imaging as mentioned above.  

Statistical analysis. Data are presented as mean ± standard error (SEM). Statistical 

analysis was performed using Prism software version 5.01 (GraphPad Software, CA). 

The two-tailed Student’s t test was used to determine statistical significance.  

 

2.4 Results 

MNV does not disrupt the integrity of an in vitro polarized intestinal epithelium. 

 To determine how NoVs overcome the intestinal epithelial barrier, we first 

investigated the effect of MNV on tight junction integrity in an in vitro model of the 

polarized intestinal epithelium (Figure 2.1A). Towards that end, three MNV strains MNV-

1, S99, or CR3 were added to the apical surface of polarized murine intestinal epithelial 

mICcl2 cell monolayers in a transwell system for 4 hours (h) (Figure 2.1A). 

Transepithelial resistance (TER), an indicator of tight junction integrity, was greater than 

300 Ohms x cm2 and remained unaffected by incubation with any MNV strain even at a 
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multiplicity of infection (MOI) of 50 PFU/cell compared with mock-treated monolayers 

(Figure 2.1B), suggesting that the integrity of the epithelial barrier is not affected by 

incubation with MNV. In addition, MNV-1 did not alter localization of the tight junction-

associated protein ZO-1 compared with a mock-treated control (Figures 2.1C, D). As a 

control, monolayers were treated with methyl-beta-cyclodextrin (MBCD), a drug that at 

high doses disrupts tight junctions (32), and relocalization of ZO-1 staining to the 

cytoplasm was readily observed (Figure 2.1E). Finally, lucifer yellow, a tight junction- 

and membrane-impermeable fluorescent dye (5), was added apically and fluorescence 

was quantified in the basolateral compartment. No passive diffusion of the dye was 

observed after incubating monolayers with the three MNV strains or a mock-treated 

control (Figure 2.1F). This was in contrast to wells without epithelial cells or monolayers 

treated with 20 mM MBCD, where lucifer yellow diffused into the basolateral 

compartment (Figure 2.1F). Taken together, these data indicate that incubation with 

MNV does not disrupt tight junctions of an in vitro polarized intestinal epithelial 

monolayer.  

Transcytosis of MNV is increased following co-cultures with B myeloma cells. 

 Previous studies of pathogen interactions with polarized intestinal epithelial 

monolayers used co-cultures of freshly isolated murine Peyer’s patch lymphocytes or 

human Raji B lymphoblast-like cells with polarized human colonic Caco-2 or mouse 

small intestinal mICcl2 cells (2, 12, 29). Thus, to investigate whether MNV replicated in 

murine intestinal epithelial cells or crossed a polarized intestinal epithelial monolayer, 

polarized mICcl2 monolayers were cultured in the absence or presence of BALB/c 

Peyer’s patch lymphocytes or Ag8.653 murine B myeloma cells in the basolateral
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Figure 2.1. MNV-1 does not affect epithelial integrity. (A) Schematic of the in vitro 
intestinal epithelial cell studies. Murine intestinal epithelial cells (mICcl2) were plated in a 
transwell and allowed to polarize for 10-14 days before addition of MNV-1 to the apical 
surface at 37°C for 4 h to perform follow-up assays. (B) MNV-1, S99 or CR3 were 
added to the apical surface of polarized monolayers at an MOI of 10 or 50 PFU/cell for 4 
h and compared to a mock lysate and a no-cell control. Transepithelial electrical 
resistance (TER) was measured after incubation for 4 h. (C-E) Representative ZO-1 
immunostaining of polarized monolayers following 4 h of incubation with mock lysate (C) 
or MNV-1 (MOI 10 PFU/cell) (D) or after 20 mM methyl-beta-cyclodextrin (MBCD) (E) 
treatment for 1 h by confocal microscopy. (F) Polarized monolayers were incubated with 
the indicated combinations of MNV-1 (MOI 10 PFU/cell), 20 mM MBCD, and mock 
lysate. Following a 4 h incubation period, lucifer yellow dye was added to the apical side 
for 15 min, and absorbance was measured in the basolateral media. The dotted line 
represents the limit of detection. Data are expressed as mean ± SEM for three 
independent experiments in duplicates. 
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compartment (Figures 2.1A and 2.2A). MNV-1 (MOI 10 PFU/cell) was added to the 

apical surface of these monolayers and incubated for defined intervals. Infectious 

particles in the apical and basolateral compartments and the membrane (i.e., cell-

associated virus) were then quantified by plaque assay. Three to four logs of MNV-1 

were transported across the monolayer alone or following co-culture with either Peyer’s 

patch lymphocytes or Ag8.653 cells (Table 2.1, Figures 2.2B and data not shown). 

Since mICcl2 monolayers co-cultured with Ag8.653 cells were more stable and 

reproducibly increased MNV-1 transcytosis, the mICcl2 - Ag8.653 system was adopted 

for the remainder of the studies. MNV-1 titers initially increased quickly in the 

basolateral compartment but stabilized around 4 h, indicating that transport through the 

monolayer occurred in a saturable manner (Figure 2.2B). Virus that crossed the 

epithelial barrier remained infectious and was capable of infecting the murine 

macrophage cell line RAW 264.7 used for plaque assay. No significant increase in total 

MNV-1 titers occurred over 24 h in mICcl2 monolayers cultured with Ag8.653 cells or in 

Ag8.653 cells alone (Figure 2.2B and data not shown), while increases are seen within 

12 h in permissive macrophages and dendritic cells (55). To further verify the lack of 

MNV replication, a neutral red (NR) light-sensitive MNV-1 was used to distinguish input 

virus from replicated virus (44). Neutral red is a photo-activated dye, which is passively 

incorporated into viral particles. When particles are exposed to white light, the dye 

cross-links the viral genome and the capsid protein rendering the virus non-infectious 

(7). Monolayers were incubated with the NR light-sensitive MNV-1 for 4 and 24 h. Viral 

titers in the basolateral compartment were measured in the dark (i.e. total virus) or 

following light exposure (i.e. replicated virus) and were below the limit of detection after 
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light-exposure despite detecting several logs of total virus (Figure 2.2C). Taken 

together, these data demonstrate that MNV-1 does not replicate in mICcl2 or in Ag8.653 

cells. As observed before, TER was not altered by MNV-1 addition, demonstrating that 

tight junctions remained intact and suggesting that MNV-1 was trafficked intracellularly 

(Figure 2.2D).  

 Transcytosis is a form of intracellular transport in polarized cells, which is 

inhibited at 4°C (20, 42). To determine whether MNV-1 transport across polarized 

monolayers was temperature-dependent, MNV-1 was incubated with the apical side of 

the monolayer at 4°C for 0, 15, 30, 45, and 60 min (Figures 2.2E and F). Tight junction 

integrity was monitored by measuring passive diffusion of lucifer yellow (Figure 2.2F). 

No significant amount of virus was detected in the basolateral compartment at time 

points when tight junction integrity was intact (i.e., 0 – 45 min) (Figures 2.2E and F). 

Taken together, these data demonstrate that MNV-1 transport across polarized 

monolayers occurs intracellularly by a temperature-dependent mechanism, suggestive 

of transcytosis.  

 To determine whether MNV strains with different persistence phenotypes are 

transported similarly across this polarized intestinal epithelial monolayer, MNV-1 or S99 

were added to the apical side of the cells and incubated for 4 h (Figure 2.3). Viral titers 

in each compartment were quantified by plaque assay. Transport of both MNV strains to 

the basolateral compartment was observed but this was significantly increased in the 

co-cultures compared with mICcl2 cells alone (Figure 2.3 and Table 2.1). Tight junction 

integrity remained unaffected throughout the experiment based on monitoring TER 

(Figures 2.3B and D). Taken together, these data indicate that MNV traffics



70 
 

Figure 2.2. MNV-1 crosses a polarized intestinal epithelial monolayer in a 
saturable, temperature-dependent manner. (A) Murine intestinal epithelial cells 
(mICcl2) were placed in a transwell and allowed to differentiate for 10-14 days before 
addition of Ag8.653 B myeloma cells in the bottom of the transwell. After 3 days of co-
culture, the transwell was moved to a new well before adding MNV-1 to the apical 
surface at 37°C for 4 h to perform follow-up assays. (B) MNV-1 is transcytosed across 
intestinal epithelial monolayers in a saturable manner, remains infectious, and does not 
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replicate in these cells. MNV-1 (MOI 10 PFU/cell) was added to the apical side of 
polarized monolayers and incubated at 37°C for the times shown. Viral titers in each 
compartment were quantified by plaque assay. (C) MNV-1 does not replicate in 
polarized intestinal monolayers. Neutral red (NR) containing light-sensitive MNV-1 was 
added to the apical side of co-cultured polarized monolayers and incubated at 37°C for 
the times shown. Viral titers in the basolateral compartment were quantified by plaque 
assay in the dark to measure total virus or exposed to light to measure replicated virus. 
(D) TER’s from cultures with B myeloma cells (Ag8.653) were measured before and 
after MNV-1 addition at indicated time points. (E) Polarized mICcl2 monolayers following 
co-culture with B myeloma cells (Ag8.653) were incubated with MNV-1 at 4°C for the 
indicated times. Viral titers in each compartment were quantified by plaque assay. (F) 
Polarized monolayers were incubated at 4°C for the indicated times before adding 
lucifer yellow to the apical side for 15 min and measuring absorbance in the basolateral 
media. The dotted lines represent the limit of detection for each assay. Data are 
expressed as mean ± SEM for at least three independent experiments from duplicate 
wells. 
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Table 2.1: Percent of MNV-1 and S99 transcytosed to the basolateral compartment 

after 4 h 

Samples % MNV-1 Transcytosisa +/- SEMb  % S99 Transcytosisa +/- SEMb 

mICcl2 alone 0.003 +/- 0.001 0.002 +/- 0.001 

Co-cultures 0.076 +/- 0.040   p=0.0501c 0.023 +/- 0.007  *p=0.0257c 

 

aPercentages were calculated based on viral titers with the equation: 
(basolateral/[apical+membrane+basolateral])x100. 
bSEM = Standard error of the mean.  
cP values compare co-cultures with mICcl2 alone 
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intracellularly through the mICcl2 monolayer to reach the basolateral compartment, and 

this process is enhanced following co-culture with Ag8.653 cells.  

M-like cell numbers are similar in mICcl2 monolayers but co-cultured monolayers 

transcytose more efficiently.  

 The previously described presence of M-like cells in polarized monolayers 

following co-culture (2, 12, 29, 35), prompted us to test whether the increase in MNV 

transcytosis following Ag8.653 co-culture is due to an increase in M-like cell numbers 

within the mICcl2 monolayer. M cells are known to selectively bind and endocytose IgA 

or secretory IgA in its natural form or by adding it exogenously into mice PPs (34). Also, 

M cells have the innate ability to take up fluorescently labeled beads (23). Therefore, 

cells cultured in the absence or presence of Ag8.653 B myeloma cells were analyzed 

for these two M cell-associated properties, i.e., the ability to bind exogenous IgA, and to 

take up fluorescently labeled beads (microbeads). Monolayers were incubated with 

fluorescently-labeled microbeads or IgA isolated from human colostrum followed by a 

fluorescently-labeled anti-IgA secondary antibody and analyzed by confocal microscopy  

(Figures 2.4A-F). The number of cells positive for IgA and microbeads alone or positive 

for both was not significantly different between cultures with or without B myeloma cells 

(Figure 2.4G). Approximately 2% of total cells were single positive for either IgA and 

microbeads, while ~10% of total cells in each monolayer were double positive for both 

(Figure 2.4G). These results suggest that IgA- and microbead-positive cells are present 

within polarized mICcl2 monolayers and that addition of B myeloma cells to the 

basolateral compartment does not increase the number of these cells in the monolayer. 

Taken together, the data demonstrate that the increase in MNV transcytosis following
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Figure 2.3. Co-culture with B myeloma cells increases MNV transcytosis. Co-
cultures were established as outlined in Figure 2.2A. (A and C) Co-cultures increased 
viral titers in the basolateral side. Cultures in the presence or absence of B myeloma 
cells were incubated with either MNV-1 (A) or S99 (C) (MOI 10 PFU/cell) at 37°C for 4 
h. Viral titers were quantified by plaque assay. (B and D) TER’s were measured in the 
presence or absence of B myeloma cells (Ag8.653) before and 4 h after MNV-1 (B) or 
S99 (D) incubation. Results represent duplicates of at least three independent 
experiments. Data are expressed as mean ± SEM. * p < 0.05, ** p < 0.01. 
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Figure 2.4. Polarized mICcl2 monolayers alone or from co-cultures have similar 
numbers of M-like cells but increased transcytosis of particles. (A-F) 
Representative confocal images of cell monolayers from cultures without (mICcl2 alone) 
or with B myeloma cells (co-cultures) stained for IgA (green) and microbeads (red), as 
well as the merge of both. DAPI was used to stain the nuclei. White arrows indicate 
individual double-positive cells. A 10 µm scale bar is shown in the upper right corner of 
each image. (G) Quantification of images. Images from three-to-four independent 
experiments each of three-to-six fields of view within independent monolayers were 
quantified using Metamorph. (H) Microbeads were added to the apical side of the 
cultures for the times shown, and basolateral media was analyzed by flow cytometry. 
Results represent duplicates of at least nine independent experiments. Data are 
expressed as mean ± SEM. * p < 0.05, ** p < 0.01.   
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co-culture with Ag8.653 is not due to an increase in M-like cell numbers within the 

mICcl2 monolayer. 

An alternative hypothesis to changes in cell numbers that could lead to an 

increase in virus titers in the basolateral compartment following co-culture is through an 

increase in the rate of particle transport. To investigate this possibility and verify that 

mono- and co-cultured polarized monolayers could transcytose particulate antigens, 

microbead uptake was measured over time in both monolayers cultured with or without 

Ag8.653 cells by first quantifying microbeads in the basolateral compartment by flow 

cytometry (Figure 2.4H). Microbeads were being transcytosed under both conditions. 

However, co-cultures showed significantly increased numbers of microbeads in the 

basolateral chamber compared to mICcl2 cells alone.  

 The transport of fluorescent microbeads across polarized monolayers cultured 

with or without Ag8.653 B myeloma cells was further verified by confocal microscopy 

(Figures 2.5 and 2.6). As anticipated, microbeads incubated with the apical side for 30 

min at 4°C remained near the apical surface of the cells under both culturing conditions 

(Figures 2.5A and 2.6A) because transcytosis is inhibited at this temperature. In 

contrast, microbeads were located near the transwell membrane in the basolateral 

portion of cells after a 2-4 h incubation at 37°C (Figures 2.5B-C and 2.6B-C).  

 Taken together, these data demonstrate that a fraction of mICcl2 enterocytes 

exhibit M-like cell properties (i.e., the ability to transport microbeads) in polarized 

monolayers cultured with or without Ag8.653 B myeloma cells. Microbead transport per 

se is independent of the presence of Ag8.653 B myeloma cells, but the process is 

enhanced by co-culturing with the Ag8.653 B cells.  
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Figure 2.5. Polarized mICcl2 monolayers alone transcytose microbeads in a time- 
and temperature-dependent manner. Polarized mICcl2 monolayers were incubated 
with microbeads (in red) for 30 min at 4°C (A), as well as 2 h (B) or 4 h (C) at 37°C. ZO-
1 (in green) was used to identify tight junctions. Dashed lines in the Y-Z and X-Z 
projections correspond to the relative location of the membrane in the transwell insert. 
Representative Z-stack images of 0.5 µm slices are shown on the left, while the 
corresponding Z-stack sections are shown on the right. A white square indicates the X-
Y view shown on the left. In each gallery of images the first image is near the apical 
(top) side, while the last image is near the bottom (membrane) side. 
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Figure 2.6. Polarized mICcl2 monolayers following co-cultures with Ag8.653 B 
myeloma cells transcytose microbeads in a time- and temperature-dependent 
manner. Polarized mICcl2 monolayers co-cultured with Ag8.653 cells were incubated 
with microbeads (in red) for 30 min at 4°C (A), as well as 2 h (B) or 4 h (C) at 37°C as 
well as with ZO-1 (in green) similarly as Figure 2.5. Dashed lines in the Y-Z and X-Z 
projections correspond to the relative location of the membrane in the transwell insert. 
Representative Z-stack images of 0.5 µm slices are shown on the left, while the 
corresponding Z-stack sections are shown on the right. A white square indicates the X-
Y view shown on the left. In each gallery of images, the first image is near the apical 
(top) side, while the last section is near the bottom (membrane) side. 
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MNV transcytosis is specifically mediated by M-like cells. 

  To determine whether MNV is transcytosed by M-like cells, mICcl2 cell 

monolayers co-cultured with Ag8.653 B myeloma cells were incubated with 

fluorescently-labeled microbeads and either MNV-1 or mock lysate for 30 min at 37oC, 

and analyzed by confocal microscopy (Figure 2.7). Virus was observed through the 

length of the cell alongside microbeads (Figures 2.7A-C). As anticipated, mock-

inoculated cells stained positive only for microbeads (Figures 2.7D-F). Quantification of 

the immunofluorescence images indicated that the majority of immune-stained cells or 

approximately 10% of all cells were positive for both microbeads and MNV-1 (Figure 

2.7G). In contrast, only a few cells (~2% of total cells) were positive for microbeads or 

MNV-1 alone (Figure 2.7G). Thus, MNV transcytosis is primarily mediated by 

microbead-positive, M-like cells present in the monolayer. 

 

2.5 Discussion 

 Many enteric viral pathogens have evolved strategies to infect their host by 

hijacking or circumventing intestinal host defenses. Studies understanding the initial 

step of enteric virus infection, i.e., of overcoming the intestinal epithelial barrier, can 

identify potential targets for intervention. In the case of NoVs, not much is known about 

how NoVs initiate a productive infection in the host. Herein, we used the murine enteric 

virus MNV and a murine intestinal epithelial cell line to point to M-like cells as a cell type 

mediating MNV transport across the intestinal epithelium in the absence of viral 

replication. 
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Figure 2.7. MNV-1 transcytosis is mediated by M-like cells. Co-cultures of mICcl2 
and B myeloma cells were incubated for 30 min with microbeads and MNV-1 (MOI 100 
PFU/cell) or mock lysate and processed for confocal microscopy. (A-C) Representative 
Z-stack image of 1.0 µm slices showing staining of MNV-1 (green, A), microbeads (red, 
B), and the merge (yellow, C). DAPI was used to stain the nuclei. A 10 µm scale bar is 
shown in the upper left corner of each image. (D-F) Representative Z-stack image of 0.5 
µm slices incubated with mock lysate and microbeads. (A and D) The dashed line on 
the Y-Z and X-Z projections indicates the relative location of the membrane from the 
transwell insert. (G) Quantification of confocal images. Three to six different regions in 
the monolayer were quantified using Metamorph from three independent experiments. 
Data are expressed as mean ± SEM. * p < 0.05. 
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Our data demonstrated that MNV does not disrupt the epithelial integrity of 

polarized intestinal epithelial cells in vitro for at least 24 h as measured by staining for 

ZO-1, monitoring TER, and passive diffusion of lucifer yellow dye (see Figure 2.1). In 

contrast, symptomatic human norovirus infections exhibit reduced expression of tight 

junction proteins, increased epithelial cell apoptosis, and decreased TER resulting in 

epithelial barrier dysfunction in duodenal biopsies from infected individuals (52). The 

inability of MNV to replicate in intestinal epithelial cells and to disrupt tight junctions in 

this in vitro model may also explain why MNV-infected wild-type mice show no overt 

symptoms of diarrhea (51, 56).  

 In addition, MNV remained infectious after being transcytosed by M-like cells to 

the basolateral compartment of in vitro polarized intestinal epithelial monolayers. This 

process was enhanced by co-cultures with Ag8.653 B myeloma cells, although MNV did 

not replicate in these cells (Figures 2.2, 2.4 and data not shown). Similar findings were 

made with HTLV-1, which show that HTLV-1 remains infectious following transcytosis 

across a polarized Caco-2 monolayer but does not replicate in these cells (25). The 

average percentage of MNV transcytosis across polarized monolayers was less than 

0.1%. While this may reflect an inefficiency of the in vitro system, others have reported 

a similar level of transcytosis for poliovirus (~ 0.2%) across polarized Caco-2 

monolayers (42). For enteric bacteria, transcytosis frequency is more variable with 

values between 0.1 - 10% (28, 29). While MNV-1 co-localized with the majority of 

microbead-positive M-like cells present in the monolayer, some microbead-positive cells 

without MNV-1 were also observed (Figure 2.7G). This result suggested that some of 

the M-like cells do not internalize virus. Furthermore, the observation of cells single-
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positive for MNV-1 suggested that microbeads may not label all M-like cells in the 

monolayer or that a small percentage of MNV-1 may be transcytosed by epithelial cells. 

We favor the former hypothesis that MNV-1 is taken up by M-like cells not stained by 

microbeads because of reports that, in vivo, certain immune stimuli or a Salmonella 

typhimurium virulence factor can cause phenotypic transdifferentiation and lead to the 

generation of new M cell subsets without cell division (41, 47, 53). In this scenario, 

microbead staining would not occur in all stages of M-like cell differentiation and other 

markers may be required to identify those M-like cells.   

 Using IgA binding and microbead uptake as properties of M-like cells, we 

demonstrated that the presence of Ag8.653 B myeloma cells in in vitro polarized 

intestinal epithelial cell monolayers did not significantly alter M-like cell numbers 

compared to mICcl2 cultures without Ag8.653 B myeloma cells. Instead, co-culture with 

Ag8.653 cells increased the transport of particulate antigens across the monolayer 

(Figures 2.4) despite the lack of direct contact between Ag8.653 B myeloma cells and 

the intestinal epithelial cells. One potential explanation for the different levels of 

transcytosis might lie in the maturation state of the M-like cells in each culture condition, 

which may be influenced by secreted factors from Ag8.653 B myeloma cells. In support 

of this hypothesis are findings that transcytosis is an acquired property of M cells as 

they mature (8, 24) and that secreted factors influence this process (21, 33). For 

example, macrophage migration inhibitory factor (MIF) secreted by Raji B cells induces 

M-like cell conversion in in vitro polarized Caco-2 cell monolayers, and MIF-deficient 

mice fail to upregulate M cell-mediated antigen sampling upon bacterial challenge (33). 

Furthermore, CD137 (a TNF-superfamily receptor member, TNFRSF9) is highly induced 
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in intestinal epithelial monolayers and CD137-deficient mice show abnormal M cell 

differentiation and defects in particle transcytosis (21). In addition, M cell differentiation 

is regulated by the ETS transcription factor Spi-B (10, 24) and ectopic expression of 

SPIB and EHF (another ETS transcription factor) partially substituted Raji B-cell 

stimulated signals in differentiated TC7 cells (a Caco-2 cell subclone) (1). Interestingly, 

when we co-cultured mICcl2 monolayers in conditioned media from the Ag8.653 B 

myeloma cells instead of Ag8.653 cells themselves, a trend (although not statistically 

significant) of increased MNV-1 transcytosis was observed when compared to mICcl2 

cells cultured without conditioned media (data not shown). Thus, one potential way that 

co-culturing with Ag8.653 cells increases M-like cell transcytosis is via the secretion of 

cytokines that can lead to TNF/lymphotoxin signaling and/or the expression of ETS 

transcription factors. Further studies are needed to test this model and identify secreted 

factors important in this context. 

 Taken together, our work demonstrates that M-like cells mediate MNV transport 

across polarized murine intestinal epithelial monolayers but do not support viral 

replication. This suggests that M cells are a likely gateway for MNV entry into the host. 

Support for the importance of M cells in vivo during the establishment of a productive 

MNV infection comes from the observation that mice depleted of M cells have 

significantly lower MNV titers compared to isotype control depleted mice (Gonzalez-

Hernandez et al., submitted). Our study further demonstrates that MNV transcytosis is 

saturable in this in vitro murine intestinal epithelial model, indicating the presence of a 

receptor, and that addition of B myeloma cells increases the transcytotic activity of the 

polarized monolayer. Establishment of this in vitro murine FAE model provides a 
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foundation for future studies to identify an M cell receptor for MNV, and may reveal 

critical targets for the development of effective norovirus vaccines because targeting M 

cells is one approach to elicit effective mucosal immune responses (22).  
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CHAPTER 3 

Efficient Norovirus and Reovirus Replication in the Mouse Intestine Requires 

Microfold (M) cells 

 

The work presented in this chapter was recently submitted for publication. 

 

 

3.1 Abstract 

 Microfold (M) cells are specialized intestinal epithelial cells that internalize 

particulate antigens and aid in the establishment of immune responses to enteric 

pathogens. M cells have also been suggested as a portal for pathogen entry into the 

host. While virus particles have been observed in M cells, it is not known whether 

viruses use M cells to initiate a productive infection. Noroviruses (NoVs) are single-

stranded RNA viruses that infect host organisms via the fecal-oral route. Murine NoV 

(MNV) infects intestinal macrophages and dendritic cells and provides a tractable 

experimental system for understanding how an enteric virus overcomes the intestinal 

epithelial barrier to infect underlying target cells. We found that replication of two 

divergent MNV strains was reduced in mice depleted of M cells. Reoviruses are double-

stranded RNA viruses that infect hosts via respiratory or enteric routes. In contrast to 

MNV, reovirus infects enterocytes in the intestine. Despite differences in cell tropism, 

reovirus infection was also reduced in M cell-depleted mice. These data demonstrate 
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that M cells are required for the pathogenesis of two unrelated enteric viruses that 

replicate in different cell types within the intestine. 

 

3.2 Introduction 

The gastrointestinal (GI) tract, being the largest mucosal surface in the body, 

forms a barrier between the interior and exterior milieu. Although multiple protective 

mechanisms are present, enteric viruses have evolved strategies to overcome this 

barrier and infect the host. Some enteric viruses enter the host by directly infecting 

enterocytes, e.g., rotavirus.(45) Alternatively, microfold (M) cells have been proposed as 

a route of viral entry after visualization of selective uptake of poliovirus and reovirus 

particles by Peyer’s patch (PP) M cells.(43, 56) However, direct evidence demonstrating 

that M cells are required for the establishment of a productive virus infection is lacking. 

M cells are specialized epithelial cells that are mostly located in the follicle-

associated epithelium (FAE) of organized lymphoid tissues like PPs. However, M cells 

also are found in intestinal villi, although villous M cells are less abundant than PP M 

cells.(29) M cells selectively bind and endocytose IgA(33) and selectively express GPI-

anchored glycoprotein 2 (GP2).(22) Mouse M cells also react with the Ulex europaeus 

agglutinin-I (UEA-I) lectin, which recognizes α1,2 fucose.(13) M cells arise from 

individual stem cells in the crypt.(41) Development of M cells depends on the receptor 

activator of NF-κB ligand (RANKL), which is expressed by subepithelial stromal cells in 

the PP domes.(28) Antibody-mediated neutralization of RANKL in wild-type mice 

eliminates most PP M cells, while systemic administration of RANKL to RANKL-deficient 

mice restores PP M cells and induces differentiation of villous M cells.(28) M cells 
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function to sample antigens in the intestinal lumen for immune surveillance, including 

microorganisms and inert particles (e.g., latex beads).(14, 31, 35) For example, the 

bacterial pathogens Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, 

and Yersinia enterocolitica exploit M cells to invade the host and establish infections.(4, 

24, 26, 40) In the case of S. typhimurium, selective M cell uptake is mediated by a 

specific ligand-receptor interaction between FimH, a component of type I pili on the 

bacterial outer membrane, and GP2, a protein specifically expressed on M cells.(22) 

Binding of secretory IgA to its receptor on M cells is important to facilitate the sampling 

of commensal bacteria.(39) Remarkably, deletion of M cells in mice by RANKL antibody 

treatment inhibits prion accumulation and subsequent neuroinvasion,(15) suggesting 

that M cells are sites of prion uptake. While collectively these studies provide evidence 

that M cells contribute to the pathogenesis of bacterial and prion diseases, the role of M 

cells in the initiation of productive virus infection is less clear. 

Noroviruses (NoVs) are nonenveloped, highly stable, positive-sense RNA viruses 

that infect hosts via the fecal-oral route.(21) Little is known about NoV pathogenesis 

including the early events during infection of the intestine. Murine noroviruses (MNVs) 

efficiently replicate in macrophages and dendritic cells in cell culture(54) and in 

mice,(27, 34, 52) providing a tractable experimental system for understanding how an 

enteric virus overcomes the intestinal epithelial barrier to reach its target cells in the 

intestinal lamina propria. Despite the high sequence similarity of MNV strains (> 75%), 

they differ in biological phenotypes.(44, 48) For example, the MNV strain CR3, which 

was isolated from the feces of mice, persists in wild-type mice for at least 35 days (d), 

while MNV-1 establishes acute infections, and virus is not detectable in fecal contents 7 
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d post-inoculation (dpi).(46, 48) Studies using an in vitro model of the FAE 

demonstrated that MNV is transported across a polarized intestinal epithelial monolayer 

using M-like cells.(20) However, how MNV crosses the intestinal epithelial barrier in vivo 

to reach the underlying permissive macrophages and dendritic cells is not known. 

 Mammalian reoviruses are another widely used model for studies of viral 

pathogenesis.(18) Reoviruses are nonenveloped, segmented, double-stranded RNA 

viruses that cause disease in the very young but do not produce symptoms in 

adults.(42) Reoviruses are classified into three serotypes represented by the prototype 

strains, type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing (T3D). While T1L 

and T3D differ in pathways of virus spread (hematogenous vs. neural, respectively),(51) 

the primary site of replication for both strains in perorally inoculated newborn mice are 

intestinal enterocytes at the villus tips.(3) T1L binds to α2-3-linked sialic acid-containing 

glycans on the apical surface of M cells via the attachment protein σ1.(23, 55) 

Visualization of virus particles by transmission electron microscopy during the first hours 

of infection suggests that following binding to the apical surface of M cells, reovirus is 

internalized into and replicates in M cells, prior to infecting enterocytes from the 

basolateral surface.(8) However, it is not apparent whether reovirus can establish 

productive infection in the host in the absence of M cells, for example via apical 

infection of enterocytes. 

In this study, we used an M-cell depletion protocol to investigate whether M cells 

are required for infection by MNV and reovirus, which replicate in different cell types 

(macrophages and dendritic cells vs. enterocytes) in the murine intestine. Using a light-

sensitive MNV to distinguish between input and replicated virus, we found that two MNV 
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strains have different replication kinetics and both depend on M cells for efficient 

intestinal infection. Despite the differences in cell tropism, reovirus infection of the 

murine intestine also depends on M cells. Thus, intestinal M cells are used as a portal of 

entry for two unrelated enteric viruses to initiate productive infection in the murine host. 

 

3.2 Material and Methods 

Mice. Wild-type BALB/c (#000651) and 129S6/SvEv STAT1-/- (#2045) mice were 

purchased from Jackson Laboratory (Bar Harbor, ME) and Taconic Farms (Hudson, 

NY), respectively. Six- to eight-week-old mice were used for MNV studies, and three- to 

four-week-old mice were used for reovirus studies. To deplete M cells in vivo, Balb/c 

mice were inoculated intraperitoneally with 250 µg of IK22-5 rat anti-mouse RANKL 

monoclonal antibody every 2 d for a total of four doses prior to infection as 

described.(28) A parallel group of mice were similarly treated with a rat isotype-control 

IgG (Sigma) or left untreated. All mice used in the study were tested for anti-MNV 

antibodies by ELISA as described(54) and found to be seronegative. 

Virus stocks and plaque assays. The plaque-purified MNV-1 clone 

(GV/MNV1/2002/USA) MNV-1.CW3 and the fecally isolated MNV strain CR3 

(GV/CR3/2005/USA) were used at passage 6 for all experiments.(48) Viral titers were 

quantified by plaque assay after visualizing plaques by staining cells with a 0.01% 

neutral red solution in PBS for 1-3 h as described.(19, 54) Reovirus T1L stocks were 

prepared using reverse genetics.(11, 30) Viral titers were quantified by plaque assay as 

described.(6)  
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Infection of mice with neutral red-containing MNV. NR-containing MNV stocks were 

generated as described.(38) All NR virus preparations displayed 100- to 1000-fold 

reductions in viral titers upon light exposure. Mice were inoculated perorally with 105 

PFU MNV (NR), and tissues were aseptically removed using a red safety light 12 (MNV-

1) or 18 (CR3) hpi. Regions of the GI tract including the stomach (ST), 

jejunum/duodenum (J/D), proximal ileum (PI), distal ileum (DI), cecum (CE), and colon 

(CO) were harvested, and one fecal pellet (FE) was collected. Tissue samples were 

flash-frozen in a dry ice/ethanol bath and stored at -80°C. Tissues were homogenized in 

1 ml of medium with 1.0-mm-diameter zirconia-silica beads (BioSpec Products) using a 

MagNALyser (Roche Applied Sciences, Hague Road, IN). Plaque assays were 

performed in duplicate, one in the dark and the other following a 10 min light exposure. 

Viral plaques were enumerated 48 h later. 

Infection of mice with reovirus. Three- to four-week-old Balb/c mice were inoculated 

with 106 PFU of reovirus T1L by oral gavage. Tissue samples were collected 24 hpi and 

processed as described for MNV with the exception that tissues were homogenized in 

PBS with MgCl2 and CaCl2. Viral titers were determined by plaque assay using L929 

cells.(3)  

Immunostaining of whole-mounts, cryosections, and paraffin embedded tissue. 

For whole-mounts, PP were harvested from untreated, IgG isotype control-treated, and 

anti-RANKL-treated mice at various intervals post-inoculation and vortexed in 1 ml PBS 

containing 0.05% Tween-20 for 30 seconds. After vortexing, PPs were washed once 

with PBS, fixed in 4% paraformaldehyde in PBS for 15 min, and permeabilized with 

0.1% Triton X-100 for 15 min. PPs were blocked with 10% (v/v) of FBS and 1% (v/v) of 
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normal goat serum (NGS; Gibco) in PBS for 30 to 60 min. GP2 staining was performed 

by incubating PPs with a primary rat anti-mouse glycoprotein 2/GP2 (MBL, Woburn, 

MA) antibody in PBS containing 1 µg/ml DAPI for 1 h, followed by three consecutive 

PBS washes. PPs were incubated with FITC-conjugated secondary rat anti-IgG 

antibody (eBioscences, San Diego, CA) for 1 h, along with rhodamin-conjugated Ulex 

europeaus agglutinin I (UEA-1; Vector Laboratories, Burlingame, CA). PPs were 

washed three times with PBS and mounted with ProLong Gold antifade reagent 

containing DAPI (Invitrogen, Grand Island, NY) between two coverslips separated by 

double-stick tape or clay. Images were captured by laser scanning confocal microscopy 

using the LSM software with a Zeiss confocal microscope. Immunofluorescence images 

were quantified from 5 to 6 individual PPs using the scoring system of intensities by the 

Metamorph Premier v6.3 image analysis software (Molecular Devices; Downington, 

PA).   

 For cryosections, PPs were harvested from Balb/c or STAT1-/- mice orally 

infected with MNV (6 x 107 pfu/mouse). Tissues were processed as described for whole-

mounts. M cells were detected with primary rat anti-mouse glycoprotein 2/GP2 antibody 

(MBL, Woburn, MA), and MNV was detected with a rabbit polyclonal antibody raised 

against the MNV non-structural protein N-term(5) generously provided by Dr. Vernon 

Ward (Otago University, Dunedin, New Zealand). Images were captured using an 

Olympus BX60 upright microscope.  

 For paraffin embedded sections from reovirus-infected mice, PPs were harvested 

from isotype control-treated or anti-RANKL-treated mice, fixed with 10% formalin and 

embedded in paraffin. Tissues were then sectioned, deparaffinized and immunostained 
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as described above for whole-mounts using a primary rat anti-mouse glycoprotein 

2/GP2 antibody (MBL, Woburn, MA) and anti-reovirus immunoglobulin G (IgG) fractions 

of rabbit antisera raised against T1L and T3D reovirus(53) purified by protein 

A Sepharose.(6) Images were captured using an Olympus BX60 upright microscope. 

Statistical analysis. Data are presented as mean ± standard error of the mean (SEM). 

Statistical analysis was performed using Prism software version 5.01 (GraphPad 

Software, CA). The two-tailed Student’s t test was used to determine statistical 

significance.  

 

3.4 Results 

MNV strains have different replication kinetics.  

Analysis of early events in the virus-host encounter benefits from the ability to 

distinguish between input and replicated virus. For this purpose, we adapted the light-

sensitive, neutral red (NR)-containing MNV(38) for in vivo studies. The basic premise of 

this technology is that the input NR-labeled virions are inactivated upon exposure to 

light, whereas the progeny virions (virions produced after replication) are no longer 

labeled with NR and thus become light-insensitive. As proof of concept, BALB/c mice 

were inoculated perorally with MNV-1 (NR), and the intestine was harvested 3 or 72 

hours post-infection (hpi) as representative time points that do not or do permit 

replication, respectively. As anticipated, progeny virus at or below the limit of detection 

was observed in the distal ileum and colon at 3 hpi, while a significant amount of input 

virus was observed in the colon at this timepoint (Figure 3.1a). In contrast, newly 

replicated virus was observed at 72 hpi in the distal ileum, the primary site of MNV-1 
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replication,(48) but not in the colon (Figure 3.1a). Therefore, NR-containing MNV 

enables the study of early events during pathogenesis and allows input virus to be 

distinguished from newly formed virus. 

To identify an early time point at which lab-adapted MNV strain MNV-1 and 

persistent MNV strain CR3 undergo the first round of viral replication, BALB/c mice were 

inoculated perorally with NR-containing MNV-1 or CR3, and viral titers in the intestine 

were quantified by plaque assay at 12, 24, or 72 hpi (Figures 3.1b-d). Maximum levels 

of newly replicated virus from mice infected with MNV-1 (NR) were detected in the small 

intestine (jejunum/duodenum, proximal ileum, distal ileum) or large intestine (cecum) at 

12 hpi. In contrast, CR3 (NR) replicated mostly in the cecum at 12 hpi, while maximum 

levels of replicated virus throughout the entire GI tract were reached at 72 hpi. These 

data confirmed previous reports from experiments using C57BL/6 mice that CR3 but not 

MNV-1 replicates in the colon(46) and demonstrated that CR3 has slower replication 

kinetics than MNV-1 in vivo. More importantly, these data demonstrate that this light-

sensitive virus is a powerful tool to investigate early events in viral pathogenesis. 

MNV requires M cells for productive infection. 

To determine whether M cells are required to initiate a productive MNV infection 

in vivo, BALB/c mice were selectively depleted of M cells using an antibody against 

RANKL (anti-RANKL) administered intraperitoneally (i.p.) every 2 d for a total of four 

doses as described (Figure 3.2a)(28) and infected with either MNV-1 or CR3. This M 

cell depletion protocol does not alter the presence and distribution of F4/80+ and 

CD11c+ cells in the intestine, gastrointestinal lymphoid follicles, and spleen, most likely 
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Figure 3.1. The neutral red assay distinguishes between input and replicated 
MNV. (a) BALB/c mice (7-to-8 weeks old) were inoculated perorally with 105 PFU of a 
neutral red-containing MNV-1. Distal ileum and colon were harvested at the times 
shown. Viral titers were determined by plaque assay in the light (replicated) or dark 
(total). (b-d) MNV strains differ in replication kinetics. BALB/c mice were inoculated 
perorally with 105 PFU of either MNV-1 or CR3 containing neutral red. The GI tract was 
dissected 12, 24, or 72 h later, and viral titers determined by plaque assay as for (a). 
Data are expressed as mean ± SEM for three independent experiments. *, P < 0.05; ND 
= not detectable; ST = stomach; J/D = jejunum/duodenum; PI = proximal ileum; DI = 
distal ileum; CE = cecum; CO = colon; FE = feces. 
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Figure 3.2. Whole-mount staining of Peyer’s patches shows decreased numbers 
of M cells in anti-RANKL-treated mice. (a) Schematic of the experimental design for 
M cell depletions. BALB/c mice were inoculated i.p. with anti-RANKL or isotype control 
antibody every other day for a total of four doses, infected with either MNV-1 (NR) or 
CR3 (NR) 36 h later, and regions of the GI tract were harvested 12 hpi for MNV-1 and 
18 hpi for CR3. (b-j) Representative confocal microscopic images of Peyer’s patches 
stained with M cell markers GP2 (green) and UEA-1 (red) from untreated (b-d), isotype-
control-treated (e-g), and anti-RANKL-treated (h-j) mice. DAPI was used to stain the 
nuclei. A 10 µm scale bar is shown in the upper right corner of each image. 
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because macrophages and DCs at these sites express negligible levels of RANK.(15) 

As depletion controls, mice were administered an IgG isotype control antibody or left 

untreated. At 36 h following the last dose, mice were inoculated perorally with MNV-1 

(NR) or CR3 (NR). The GI tract was excised at 12 hpi for MNV-1 (NR) or 18 hpi for CR3 

(NR), and viral titers were determined by plaque assay. An early time point was chosen 

for each virus to capture the first round of viral replication, because we reasoned that if 

MNV enters via M cells, reducing the number of M cells should reduce the number of 

virus particles capable of reaching the underlying target cells (i.e., macrophages and 

dendritic cells). To verify that M cells were successfully depleted, PPs were harvested 

from each mouse, fixed, and prepared for whole-mount staining using two M-cell 

markers, GP2 and UEA-1 (Figures 3.2b-j). Both M cell markers showed significantly 

reduced staining in the PPs of anti-RANKL-treated mice (Figures 3.2h-j and Figure 3.3) 

compared with isotype-control-treated animals (Figures 3.2e-g and Figure 3.3) or 

untreated mice (Figures 3.2b-d and Figure 3.3). Total MNV-1 titers were significantly 

decreased in the distal ileum and feces of mice treated with anti-RANKL compared with 

control animals, while replicated MNV-1 titers also were decreased in the cecum 

(Figures 3.4a and b). Anti-RANKL-treated mice perorally inoculated with CR3 (NR) 

produced significantly decreased total and replicated viral titers in the cecum and feces 

but not the jejunum/duodenum, proximal ileum, or distal ileum compared with control 

animals (Figures 3.4c and d). These data suggest that M cells are required for efficient 

MNV entry into and early replication in the mouse intestine. To test if MNV infects M 

cells, immunostaining of the M cell marker GP2 and the viral protein N-term, which is 

only expressed during active replication, was performed in PPs sections from MNV- 
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Figure 3.3. Quantification of whole-mount staining of Peyer’s patches for mouse 
depletion studies. BALB/c mice (7-to-8 weeks old) were inoculated i.p. with anti-
RANKL or isotype control antibody every other day for a total of four doses or left 
untreated. One Peyer’s patch per mouse from a total of 5-to-6 mice per group was 
harvested and stained with M cell markers GP2 and UEA-1. Immunofluorescence 
staining was quantified using the scoring system of intensities by the Metamorph 
Premier v6.3 image analysis software. Data are expressed as mean ± SEM for three 
independent experiments. *, P < 0.05 
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Figure 3.4. MNV infection is reduced in the GI tract following M cell depletion. (a-
d) BALB/c mice (7-to-8 weeks old) were inoculated i.p. with anti-RANKL or isotype 
control antibody every other day for a total of four doses or left untreated. The number 
of mice analyzed in each group is indicated in parentheses. Viral titers were quantified 
by plaque assay in the dark (total, a and c) or in the light (replicated, b and d). Data are 
expressed as mean ± SEM for two-to-three independent experiments. *, P < 0.05; **, P 
< 0.01; ***, P < 0.001; ns = not significant; ND = not detectable; ST = stomach; J/D = 
jejunum/duodenum; PI = proximal ileum; DI = distal ileum; CE = cecum; CO = colon; FE 
= feces. 
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infected wild-type mice and STAT1-/- mice (which are mice highly susceptible to MNV 

infection (27, 34)). Our results show that MNV replicates in cells located in the 

subepithelial dome underneath the FAE in highly susceptible STAT1-/- mice, but not in 

M cells (Figure 3.7). Taken together, our data suggest that while MNV does not infect M 

cells, it requires M cells for efficient MNV entry and replication in the mouse intestine.  

Reovirus requires M cells for a productive infection in mice.  

 To determine whether an unrelated virus that replicates in a different cell type 

within the intestine compared with MNV also traverses the intestinal mucosal barrier 

using M cells, we tested the effect of M cell depletion on reovirus infection. M cells 

weredepleted from mice prior to peroral inoculation with reovirus strain T1L, and viral 

titers were determined by plaque assay at 24 hpi. Mice treated with anti-RANKL had no 

detectable reovirus titers in the jejunum/duodenum, proximal ileum, cecum, and colon 

compared with isotype control-treated or untreated animals (Figure 3.5). In addition, 

significantly lower titers were produced in the distal ileum and feces (Figure 3.5). Taken 

together, these data demonstrate that like MNV, reovirus requires M cells to establish a 

productive infection in the murine host. 

 

2.5 Discussion 

The initial steps of virus entry into an infected animal can dictate host range and 

pathogenesis and offer a point of potential intervention. However, little is known about 

how enteric viruses cross the intestinal barrier and initiate a productive infection. Virus 

particles have been observed within M cells, implicating this cell type as a portal of entry 

into the host, but whether these particles actually initiate a productive infection in 
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Figure 3.5. Reovirus infection is reduced in the GI tract following M cell depletion. 
BALB/c mice (3-to-4 weeks old) were depleted of M cells as described in Figure 3.1, 
inoculated perorally with T1L reovirus 24 h later, and regions of the GI tract were 
harvested 24 hpi. The number of mice analyzed in each group is indicated in 
parentheses. Viral titers were quantified by plaque assay. Data are expressed as mean 
± SEM for two independent experiments. *, P < 0.05; ***, P < 0.001; ND = not 
detectable; ST = stomach; J/D = jejunum/duodenum; PI = proximal ileum; DI = distal 
ileum; CE = cecum; CO = colon; FE = feces. 
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Figure 3.6. MNV does not replicate in M cells. Balb/c and STAT1-/- mice were 
infected with MNV, and Peyer’s patches were harvested 24 hpi for cryosectioning and 
immunostaining. MNV replication was detected using an antibody against the 
nonstructural protein N-term (red), and M cells were detected using an anti-GP2 
antibody (green).  
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Figure 3.7. Reovirus replicates in enterocytes adjacent to M cells of control mice 
but not in M cell-depleted mice. Isotype control-treated or anti-RANKL-treated Balb/c 
mice were infected with reovirus for 24 h. Peyer's patches were harvested for paraffin 
embedding and immunostaining. Reovirus replication was detected using an antibody 
raised against reovirus T1L and T3D (red), and M cells were detected using an anti-
GP2 antibody (green). 
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Figure 3.8. Proposed mechanisms of MNV and reovirus entry into the intestinal 
mucosa. MNV (black circles) and reovirus (red circles) in the intestinal lumen initially 
interact with M cells within the follicle-associated epithelium (FAE) overlying Peyer's 
patches (PP) to establish a productive infection in untreated animals. However, in mice 
depleted of M cells, reovirus infection in the gastrointestinal tract is substantially 
diminished, while MNV infection is only partially reduced. It is possible that trans-
epithelial dendritic cell processes provide an alternative route of entry for MNV. 
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addition to contributing to the development of antiviral immune responses is not clear. 

The M cell depletion studies presented here collectively point to the importance of M 

cells in the pathogenesis of enteric viruses that replicate within intestinal epithelial cells 

(reovirus) or intestinal mononuclear phagocytes (MNV) (Figure 3.8). 

 Adapting the use of neutral red-labeled MNV for pathogenesis studies enabled 

us to determine that the MNV strain CR3 has slower replication kinetics in the GI tract 

than does strain MNV-1 (Figure 3.1). CR3 causes a persistent infection in mice and 

shares the viral determinant for persistence (Glu94 in the N-terminal protein) identified 

in CR6, while MNV-1 causes an acute infection.(27, 36, 48) A similar correlation 

between replication kinetics and persistence was observed for lymphocytic 

choriomeningitis virus (LCMV), leading to the hypothesis that slowly replicating viruses 

might evade immune surveillance to allow persistent infection.(10) In addition, MNV-1 

and CR3 display different carbohydrate-binding properties in macrophages and 

differences in tropism for the colon.(46, 47) Thus, it is possible that infection of 

macrophages, the precise tissue sites of replication, or the effectiveness of immune 

surveillance contribute to the persistence phenotype of CR3 or the enhanced clearance 

of MNV-1. Future studies are required to determine the mechanism of MNV persistence.  

 Our results demonstrate that M cells facilitate the initial steps of productive MNV 

infection in mice. Viral titers were significantly reduced within the GI tract following 

depletion of M cells in animals infected with either of two MNV strains (Figure 3.4). M 

cells are not likely susceptible to MNV replication, as M-like cells do not become 

infected in an in vitro model of the FAE.(20) Our in vivo findings (Figure 3.6) are 

consistent with the in vitro data. Unfortunately, despite using multiple assays 
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(immunofluorescence, immunohistochemistry, and flow cytometry), we were unable to 

detect viral replication in PPs of wild-type Balb/c mice. This finding most likely reflects 

the very low number of infected cells in wild-type mice, as has been observed 

previously.(34) Together, these data point to M cells as a conduit for MNV transport 

across the mucosa but not as a site for replication as is seen with some viruses.(12) 

However, residual MNV was still detectable within the GI tract of anti-RANKL-treated 

mice. One reason for this occurrence could be the incomplete depletion of M cells, as 

weak GP2 expression was detected in PPs from depleted mice (see Figures 3.2h and 

Figure 3.3). In addition, we cannot exclude the presence of villous M cells following M 

cell depletion. We focused on PPs to quantify M cell depletion because the majority of 

M cells are located in PPs, and villous M cells are rare.(28) The effect of RANKL 

depletion on villous M cells has not been examined, although villous M cells have been 

reported to be induced by RANKL.(28)  

In addition, the likelihood of incomplete M cell depletion in our studies suggests 

that once residual virus has crossed the intestinal epithelium and undergone the first 

round of replication, progeny virus will be capable of infecting new cells for additional 

rounds of replication. Thus, differences in viral titers in M-cell- and control-depleted mice 

likely will diminish with increasing rounds of replication. A second possibility is that MNV 

may use multiple mechanisms to cross the epithelial barrier. Since MNV infects DCs, 

sentinel DCs that insert dendritic processes between intestinal epithelial cells(37) or M 

cell-specific transcellular pores(32) may provide an alternate route of MNV entry (Figure 

3.8). It is unlikely that the DC pathway is up-regulated only under these specific 

experimental conditions. PP DCs and macrophages express negligible levels of 
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Tnfrsf11a, the gene encoding RANK, and mice treated with anti-RANKL antibody have 

normal numbers and distribution of DCs and macrophages in the intestine and 

spleen.(15, 50) In addition, while RANKL can stimulate the activity of DCs to activate T 

cells,(2) the timeframe of our experiments (less than 24 h) is too short for antiviral T cell 

activity, which is not detectable until 7-8 d postinfection.(9, 49) The incomplete block to 

MNV replication observed in our study is in contrast to another study in which M cells 

were depleted using the same anti-RANKL antibody approach. This study shows that 

prion disease progression in the brain following peroral prion inoculation is abolished 

following M cell depletion.(15) Mice completely lacking M cells will be required to 

determine whether M cells are the only route used by MNV to infect mice. 

Depletion of M cells substantially reduced reovirus titers in the intestine of 

infected mice (Figure 3.5), indicating that M cells also are required for the initiation of a 

productive infection with reovirus. After proteolytic conversion of reovirus T1L virions to 

infectious subvirion particles (ISVPs) in the small intestine of mice,(1, 7) reovirus binds 

to α2,3-linked sialic acid on the apical surface of M cells via the attachment protein 

σ1.(8, 23, 55) By electron microscopy, reovirus particles are observed in M cells within 

vesicles, suggesting that virions are endocytosed into these cells. In suckling mice, viral 

particles also are observed in M cells within cytoplasmic inclusions, which are a 

hallmark of reovirus replication.(8) Interestingly, our studies using PPs from isotype-

treated adult mice immunostained with the M cell-specific marker GP2 and an anti-

reovirus antibody showed that the majority of reovirus-positive cells were enterocytes 

adjacent to M cell positive cells, while only the occasional cell stained positive for both 

markers (Figure 3.7). No reovirus staining was observed in anti-RANKL-treated
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animals, consistent with the absence of reovirus plaque-forming units in the small 

intestine of these mice (see Figure 3.5). Similar GP2 and reovirus staining patterns 

were seen by immunohistochemistry (data not shown). Previous studies indicate that 

reovirus virions prefererenttially adhere to and are taken up from the basolateral 

surfaceof epithelial cells cultivated from the murine small intestine.(8) Our data are 

consistent with those earlier findings and further support the model that reovirus 

infection is initiated by the uptake of virions into and transport across M cells followed by 

basolateral infection of enterocytes, in which reovirus replicates.(3) Conversely, it is 

highly unlikely that reovirus infects enterocytes from the apical side to initiate a 

productive infection of the host. Reovirus also is capable of infecting human airway 

epithelial cells via the basolateral route,(16) suggesting common themes of reovirus 

infection of polarized epithelia. 

Reovirus titers in the GI tract following M cell depletion were reduced to a 

substantially greater extent compared with titers of MNV in M-cell depleted mice 

(compare Figure 3.4 and Figure 3.5). While these findings might reflect differences in 

replication kinetics, we favor an alternate explanation. Reovirus does not replicate in 

DCs(17) and, thus, we think it is dependent on M cells for transport across the epithelial 

barrier. In contrast, MNV replicates in DCs,(54) which can extend dendrites across the 

epithelial barrier, providing an alternative entry route for the virus to access the host 

(Figure 3.8).  

Our findings demonstrate that M cells are an essential gateway for MNV and 

reovirus infection and serve an important role in the initiation of productive infection in 

addition to their function in development of immune responses.(31) The question of 
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whether M cells are used universally by all enteric viruses during pathogenesis or only 

by specific enteric viruses remains to be determined. Nonetheless, the induction of 

mucosal immunity via targeting M cells is an area of intense research(25) and 

identifying surface molecules involved in MNV and reovirus uptake by M cells may 

reveal new strategies for the development of mucosal vaccines. Moreover, knowledge 

that M cells are used as entry portals by at least some enteric virus infections opens up 

potential therapeutic approaches for the use of non-infectious viral particles as drug-

delivery vehicles to prevent or treat infectious diseases. 
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CHAPTER 4 

 Murine Norovirus Infection is Reduced in Rag2 Gamma Chain and RANKfl/fl Villin-

Cre (M-less) Deficient Mice After Oral Administration 

 

The work presented in this chapter is preliminary and it is currently in progress. 

 

 
4.1 Abstract 

 In chapter 3, we described how infection of two divergent murine norovirus 

(MNV) strains were reduced in mice conditionally depleted of Microfold (M) cells. 

However, residual MNV was still detectable within the gastrointestinal (GI) tract of mice. 

The presence of this low level of MNV replication suggests two things: 1) there was 

incomplete depletion of M cells, or 2) that additional mechanisms for viral entry exist 

(i.e., transepithelial dendritic cells, villous M cells or immature M cells). To explore some 

of these possibilities, this chapter describes my preliminary studies investigating two 

different mouse models lacking M cells in Peyer's patches (PPs) (i.e., Rag2-/-γc-/- mice)  

or along the whole small intestine (M-less mice). We show that oral infection with MNV 

is blocked to greater extents in the small and large intestine of mice that completely lack 

M cells in the PP when compared to the conditional M cell depletion strategy. However, 

in the large intestine (i.e, cecum) of Rag2-/-γc-/- mice, virus replicated to low quantities 

in a strain-dependent manner. 
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 Studies are currently looking at the potential entry via DCs, immature M cells and 

whether differences in carbohydrates present in the small and large intestine are 

responsible for the virus-strain dependent binding. 

 

4.2 Introduction 

 Questions looking at the importance of M cells in the pathogenesis of enteric 

infections in vivo, would be best understood with the existence of small animal models 

that can be manipulated genetically to lack these cells. This chapter describes my 

preliminary studies investigating two different mouse models lacking M cells in Peyer's 

patches (PPs) or along the whole small intestine. 

 Mice that are genetically modified to lack the recombination activating gene 2 

(Rag2) and the interleukin-2 (IL-2) receptor (common cytokine receptor) gamma chain 

(γc) are commonly used as a transplantation model for stem cells studies. Along with T-

lymphocytes, B-lymphocytes, and Natural Killer (NK) cells, these mice have a deficiency 

in cell signaling pathways via the γc for IL-2, -4, -7, -9, and -15 cytokines (1, 2, 6). 

These cytokines are mainly involved in differentiation, function and survival of 

lymphocytes, and this deficiency greatly compromises development of mouse lymphatic 

compartments. In particular, Rag2-/-γc-/- mice lack gut-associated lymphoid tissues 

(GALT) such as PPs, mainly due to the deficiency in IL-7 receptor signaling that is 

critical for PPs development (1, 4, 8). Interestingly, a study showed that PPs are the 

critical tissue site for CD4+ T-cell priming in Helicobacter pylori infection and a 

deficiency in PPs abolishes this step (8).  In addition, Rag2-/-γc-/- mice in a Balb/c 

background, recently discovered to be susceptible to human noroviruses (HuNoVs) 
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replication following intraperitoneal (i.p.) infection, are not susceptible to HuNoV by oral 

infection (9). This could also be due to the fact that they do not possess PPs (1, 4, 5, 8, 

9). Hence, Rag2-/-γc-/- mice can be used as a model to study the importance of PPs 

and PP M cells in oral infection of enteric pathogens such as HuNoV and murine 

norovirus (MNV). 

 We show that MNV oral infection of two distinct MNV strains (MNV-1 and CR3) is 

completely blocked in the small intestine of Rag2-/-γc-/- mice when compared to normal 

wild-type  controls and to mice that were i.p. infected with each MNV strain. Low levels 

of residual MNV titers were observed in the large intestine (i.e., cecum) of CR3 and 

MNV-1 infected Rag2-/-γc-/- mice when compared to wild-type mice. This suggests that 

at least in the cecum, other routes of entry such as transepithelial dendritic cells, 

immature or villous M cells may play a role for MNV. Additionally, since both CR3 and 

MNV-1 have different requirements on binding to carbohydrates (10, 11), it is possible 

that carbohydrates present in the cecum, but not in the small intestine, account for the 

virus-strain dependent tropism. Interestingly, when Rag2-/-γc-/- mice were orally 

infected with the S99 MNV strain, which has similar carbohydrate binding properties as 

MNV-1 but causes a persistent infection as CR3, viral titers were similar to those of 

MNV-1. This suggests that carbohydrates may be playing a role in the virus-strain 

dependent tissue tropism. Interestingly, positive staining for villous M cells was 

observed in Rag2-/-γc-/- mice, that suggests another alternate route for MNV entry. 

However, when virus was given orally to M-less mice (RANKfl/fl-Villin-Cre), which are a 

much more specific villous and PPs M-cell knockout mouse model, no viral titers were 

observed in both small and large intestine. Taken together, our data suggests that M 
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cells are absolutely required for efficient MNV entry into the intestine. Future studies will 

use light-sensitive MNV strains to distinguish input from replicated viruses that could 

account for the low residual viral titers observed in several cases.  

 

4.3 Materials and Methods 

Mice. Six- to eight-week-old mice were used for MNV studies. Wild-type BALB/c mice 

were purchased from Jackson Laboratory (Bar Harbor, ME), Rag2-/-γc-/- mice on a 

Balb/c background were obtained from Dr. Irvine Weissman, Stanford University, and 

bred and maintained in a specific pathogen free mouse facility at University of Michigan. 

C57BL/6 mice carrying a floxed RANK allele (RANKfl/fl) were obtained from Dr. Ifor R. 

Williams at Emory University. Villin-Cre mice on a C57BL/6 background (Taconic 

Farms) were purchased from Taconic Farms and used to establish a breeding colony of 

RANKfl/fl by Villin-Cre. Villin-Cre x RANKfl/fl mice, referred herein as M-less mice, which 

lack all M cells in the mouse intestine were obtained and RANKfl/fl littermates were used 

as controls.  

Virus stocks and plaque assays. The plaque-purified MNV-1 clone 

(GV/MNV1/2002/USA) MNV-1.CW3, the fecal isolates CR3 (GV/CR3/2005/USA) and 

S99 (GV/S99/Berlin/2006/DE)  were used at passage 6 for all experiments (7, 12). Viral 

titers were quantified by plaque assay as described (3).  

Infection of mice with MNV. Balb/c and Rag2-/-γc-/- mice were inoculated with 105 

PFU of MNV-1 or CR3 perorally (p.o.) or intraperitoneally (i.p.). Tissue samples were 

collected 24 hpi and processed as described (3). M-less mice were inoculated perorally 
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with 105 PFU of MNV-1 or CR3 and tissue samples (stomach (ST), jejunum/duodenum 

(J/D), proximal ileum (PI), distal ileum (DI), cecum (CE), colon (CO) and one fecal pellet 

(FE) to measure viral shedding)  were collected  respectively at 12 hpi, from MNV-1 

infected mice, as described in chapter 3. Viral titers were determined by plaque assay 

for each mouse model.  

Immunostaining of cryosections. Cecum and ileum were harvested from Balb/c and 

Rag2-/-γc-/- mice, fixed with 4% paraformaldehyde in PBS for 15 min and frozen in 

cryo-molds for cryosectioning. Sections were then blocked with 10% (v/v) of FBS and 

1% (v/v) of normal goat serum (NGS; Gibco) in PBS for 30 to 60 min at room 

temperature (RT). Afterwards, sections were incubated with lectins for 60 min at RT: 

rhodamin-conjugated Ulex europeaus agglutinin I (UEA-1, 5 µg/mL), FITC-conjugated 

Peanut agglutinin (PA, 10 µg/mL), rhodamin-conjugated Concanavalin A (ConA, 10 

µg/mL), Alexa647-conjugated Wheat-germ agglutinin (WGA, 1:300 dilution), FITC-

conjugated Aleuria aurantia (Ale, 10 µg/mL), FITC-conjugated Sambucus nigra (SN, 10 

µg/mL), biotinylated Maackia amurensis  II (MAL II, 10 µg/mL), and FITC-conjugated 

Phaseolus vulgaris erythroagglutinin (PHA-E, 10 µg/mL) (all from Vector Laboratories, 

Burlingame, CA). An alexa594-conjugated-streptavidin was incubated for 60 min at RT 

only for detection of the biotinylated-MAL II lectin. Sections were washed three times 

with PBS and mounted with ProLong Gold antifade reagent containing DAPI (Invitrogen, 

Grand Island, NY). Images were captured using an Olympus BX60 upright microscope.  

 To visualize the presence of villous M cells, cryosections from the ileum of Balb/c 

and Rag2-/-γc-/- mice were blocked in a similar fashion as mentioned above. The M cell 

marker GP2 was used for staining of sections with 3 µg/mL of primary rat anti-mouse 
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glycoprotein 2/GP2 (MBL, Woburn, MA) antibody for 60 min at RT and followed by three 

consecutive washes with PBS. A rat IgG2a antibody was also used as a GP2 isotype 

control to determine background levels. Sections were then incubated with an Alexa-

488 secondary anti-rat antibody, washed three times with PBS and mounted with 

ProLong Gold antifade reagent containing DAPI (Invitrogen, Grand Island, NY). Images 

were captured using an Olympus BX60 upright microscope. Immunofluorescence 

images were quantified from 3 to 6 individual PPs using the scoring system of 

intensities by the Metamorph Premier v6.3 image analysis software (Molecular Devices; 

Downington, PA).  

Statistical analysis. Data are presented as mean ± standard error of the mean (SEM). 

Statistical analysis was performed using Prism software version 5.01 (GraphPad 

Software, CA). The two-tailed Student’s t test was used to determine statistical 

significance.  

 

4.4 Results 

Oral infection with MNV-1 and CR3 is significantly reduced in Rag2-/-γc-/- mice. 

 To determine whether PPs M cells are essential to initiate a productive MNV 

infection in vivo, Rag2-/-γc-/- on a Balb/c background were inoculated perorally (p.o.) 

with the MNV strains MNV-1 or CR3, and sections of the gastrointestinal (GI) tract were 

harvested 24 hours post-infection (hpi). As a control, Balb/c wild-type mice were 

infected and treated similarly. MNV-1 and CR3 viral titers were not detected or detected 

at very low levels in the small intestine (stomach, ST; jejunum-duodenum, JD; proximal 

ileum, PI; distal ileum, DI) of Rag2-/-γc-/- mice when compared to wild-type controls 
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(Figures 4.1A and 4.2A). In the large intestine of MNV-1 infected Rag2-/-γc-/- mice, viral 

titers were also reduced and this reduction was particularly significant in the ascending 

colon (AC) (Figure 4.1A). On the contrary, viral titers were significantly reduced in the 

cecum (CE), ascending colon (AC) and feces (FE) of CR3 infected Rag2-/-γc-/- mice 

(Figure 4.2A). Interestingly, viral titers in the cecum of CR3 infected Rag2-/-γc-/- mice 

was significantly higher (*p=0. 0.0366) than viral titers in the cecum of MNV-1 infected 

Rag2-/-γc-/- mice (compare Figures 4.1A and 4.2A, and data not shown). In order to 

verify that MNV was capable of efficiently infecting Rag2-/-γc-/- mice, mice were 

inoculated i.p. to circumvent the intestinal epithelial barrier with either MNV-1 or CR3 

and compared to wild-type Balb/c mice. MNV-1 viral titers were not significantly different 

between wild-type Balb/c and Rag2-/-γc-/- mice in the small or large intestine, and no 

viral shedding was detected (Figure 4.1B). Interestingly, CR3 viral titers were 

significantly higher in Rag2-/-γc-/- mice when compared to control wild-type mice for 

both small and large intestines as well as in the feces (Figure 4.2B). This suggests that 

cell types (i.e., NK, T- or B-lymphocyte) or cytokines lacking in these mice may be 

required for controlling systemic infection. Taken together, our data suggests that PPs 

M cells are required for efficient oral infection of the small intestine with MNV-1 and CR3 

and that MNV entry in the small intestine is mediated by PP M cells. 

The cecum does not show differences in carbohydrate binding.  

 The previously observed significant difference on the level of MNV and CR3 

infection in the cecum of Rag2-/-γc-/- mice, could suggest a potential difference in 

carbohydrate binding within this site that could account for the MNV strain dependent
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Figure 4.1. Oral infection with MNV-1 is significantly reduced in Rag-/-gc-/- mice. 
(A) Control wild-type BALB/c and Rag-/-gc-/- mice (7-to-8 weeks old) were inoculated by 
oral gavage with 105 PFU of MNV-1. The GI tract was dissected 24h later, and viral 
titers determined by plaque assay. (B) Mice in each group were inoculated 
intraperitoneally (i.p.) with 105 PFU of MNV-1 and treated similar as in (A). Data are 
expressed as mean ± SEM for at least three independent experiments. Significance 
was done comparing Rag-/-gc-/- mice to wild-type controls in each route of infection. *, 
P < 0.05; ND = not detectable; n= number of mice; ST = stomach; J/D = 
jejunum/duodenum; PI = proximal ileum; DI = distal ileum; CE = cecum; AC = ascending 
colon; DC = descending colon; FE = feces.  
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Figure 4.2. Oral infection with CR3 is significantly reduced in Rag-/-gc-/- mice but 
is increased after intraperitoneal infection. (A) Control wild-type BALB/c and Rag-/-
gc-/- mice (7-to-8 weeks old) were inoculated by oral gavage with 105 PFU of CR3. The 
GI tract was dissected 24h later, and viral titers determined by plaque assay. (B) Mice in 
each group were inoculated intraperitoneally (i.p.) with 105 PFU of CR3 and treated 
similar as in (A). Data are expressed as mean ± SEM for at least three independent 
experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ND = not detectable; n= number of 
mice; ST = stomach; J/D = jejunum/duodenum; PI = proximal ileum; DI = distal ileum; 
CE = cecum; AC = ascending colon; DC = descending colon; FE = feces. 
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tissue tropism. Similar MNV strain dependent tissue tropism in cecum was previously 

observed in mice with a C57BL/6 background (10). Therefore, we wanted to test if 

carbohydrates located in the cecum and not in the small intestine might play a role in 

MNV strain-dependent binding. It has been previously shown that MNV-1 binding to 

murine macrophages is dependent on terminal sialic acid residues of the ganglioside 

GD1a, N- linked, or O-linked glycoproteins, while CR3 binding only requires N-linked 

glycoproteins (10, 11). Hence, it could be possible that similar patterns can take place in 

our in vivo model. Sections of cecum and ileum from both Rag2-/-γc-/- mice and wild-

type Balb/c controls were incubated with the lectins shown in Table 4.1. If our 

hypothesis was correct, we would expect one or more lectins to show a high fluorescent 

staining pattern throughout the epithelial lining of the cecum, but not the ileum of mice. 

However, no differences in lectin binding to carbohydrates that are preferentially located 

in the cecum were observed (Figure 4.3). Moreover, only the PA and the PHA-E were 

observed to preferentially bind to carbohydrates present in the ileum but not the cecum 

(Figure 4.3). Hence, these data suggests that the tested carbohydrates do not play a 

role for CR3's preference on binding to the cecum for efficient replication. Taken 

together, with our current approach we were unable to find specific carbohydrates 

required for the MNV strain-dependent binding to the cecum.  

Oral infection with the persistent MNV strain (S99) is significantly reduced in 

Rag2-/-γc-/- mice, to a similar fashion as MNV-1. 

 To test the hypothesis that carbohydrates may play a role in MNV-strain 

dependent tissue tropism, we infected wild-type mice and Rag2-/-γc-/- with the S99 

MNV persistent strain. As mentioned in Chapter 2, the S99 MNV strain was previously 
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Table 4.1: Tested lectins with their respective sugar specificity 

Lectin name Abbreviation Preferred sugar specificity 

Ulex europeaus 

agglutinin I 
UEA-1 αFucose 

Peanut agglutinin PA 
Galactose-β3-N-Acetylgalactosamine 

[Galβ3GalNAc] 

Concanavalin A ConA αMannose and αGlucose 

Wheat-germ agglutinin WGA N-Acetylglucosamine [GlcNAc] 

Aleuria aurantia Ale 
Fucose-α6-N-Acetylglucosamine 

[Fucα6GlcNAc] 

Sambucus nigra SN 
N-Acetyl-neuraminic Acid α6-galactose-N-

Acetylgalactosamine [Neu5Acα6Gal/GalNAc 

Maackia amurensis II MAL II 

N-Acetyl-neuraminic Acid α3-galactose-β4-N-

Acetylgalactosamine 

[Neu5Acα3Galβ4GalNAc] 

Phaseolus vulgaris 

erythroagglutinin 
PHA-E, GlcNAcβ4, GlcNAcβ4Manα3 
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Figure 4.3. Cryosection staining of cecum and ileum shows no differences in 
carbohydrate presence. (A and B) Representative fluorescent microscopic images of 
sections from cecum and ileum of wild-type and Rag2-/-γc-/- with different carbohydrate 
lectins. In green: Peanut agglutinin (PA), Aleuria aurantia (Ale), Sambucus nigra (SN), 
and Phaseolus vulgaris erythroagglutinin (PHA-E). In red: (Concanavalin A (ConA), 
Wheat-germ agglutinin (WGA), Maackia amurensis  II (MAL II) and Ulex europeaus 
agglutinin I (UEA-1). 
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found to persist in mice (7) and, in macrophages, it can bind to similar carbohydrates as 

MNV-1, such as: terminal sialic acid residues of the ganglioside GD1a, N-linked, or O-

linked glycoproteins (10, 11), Hence, we hypothesized that Rag2-/-γc-/- mice orally 

infected with the S99 MNV strain would have a similar phenotype of low viral titers in the 

cecum like MNV-1 but less than CR3. No significant differences were observed between 

Rag2-/-γc-/- mice and wild-type controls after i.p. infection with S99. Similar to what was 

observed in i.p. MNV-1 infected wild-type and Rag2-/-γc-/- mice, no viral titers were 

detected in the feces of S99 i.p. infected mice (compare Figures 4.4B with 4.1B). This 

could suggest that even though infection can occur when circumventing the intestinal 

epithelial barrier, both MNV-1 and S99 require PP M cells for efficient viral shedding. On 

the other hand,  after oral (p.o.) infection with S99, viral titers were not detected or 

significantly reduced in the small intestine (stomach, ST; jejunum-duodenum, JD; 

proximal ileum, PI; distal ileum, DI) of Rag2-/-γc-/- mice when compared to wild-type 

controls (Figures 4.4A). In addition, the large intestine, particularly the cecum and 

ascending colon, as well as the feces of Rag2-/-γc-/- mice showed significant reduction 

in S99 viral titers when compared to wild-type controls. Interestingly, the levels of S99 

viral titers along the GI tract of Rag2-/-γc-/- mice after oral infection were very similar to 

MNV-1 (compare Rag2-/-γc-/- mice from Figures 4.4A and 4.1A). This could suggest 

that carbohydrates may indeed play a role in the virus strain preference for binding to 

the cecum. On a side note, we observed that the levels of S99 infected control wild-type 

mice were similar to that of CR3 infected control wild-type mice (compare wild-type 

controls from Figures 4.4A and 4.2A), but this was not surprising since both virus strains 

share a similar persistent phenotype in normal wild-type mice. Taken together, our 
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preliminary results suggest that carbohydrate differences in the cecum play a role in 

MNV strain-dependent tissue tropism. However, further studies will need to be 

performed to distinguish input from replicated viruses for each MNV strain.  

 Current studies are also looking at the possibility that the viral capsid defines the 

difference in tissue tropism. In order to do this, we will use chimeric viruses by swapping 

the viral capsid from the CR3 strain to the MNV-1 strain, and infecting mice orally to 

visualize differences in viral titers within the large intestine, which may help define the 

distinct virus strain tropism for the cecum.  

Villous M cells are still present in intestinal ileum of Rag2-/-γc-/- mice and may 

account for the residual MNV viral titers. 

 Although viral titers were significantly reduced in several compartments of the 

small and large intestine of Rag2-/-γc-/- mice orally infected with each MNV strain when 

compared to wild-type controls, there was still some residual virus present. While 

current studies are verifying if this residual virus is replicated versus input virus, it may 

be possible that other mechanisms for virus entry, such as villous M cells, are taking 

place. To test if villous M cells are present in Rag2-/-γc-/- mice, we took sections of 

intestinal ileum from both wild-type and Rag2-/-γc-/- mice and performed 

immunostaining with the M cell marker GP2/glycoprotein 2. A representative image 

shows the expected GP2 positive staining lining pattern within the intestinal epithelium 

of villa (Figure 4.5A). Interestingly, we observed positive GP2 staining that although 

seemed to be reduced when compared to the wild-type control (compare Figures 4.5A 

and 4.5B), did not show any significant difference with the numbers of sections used for 

quantification (Figure 4.5C). This result suggests that although Rag2-/-γc-/- mice lack 
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Figure 4.4. Oral infection with S99 is significantly reduced in Rag-/-gc-/- mice. (A) 
Control wild-type BALB/c and Rag-/-gc-/- mice (7-to-8 weeks old) were inoculated by 
oral gavage with 105 PFU of S99. The GI tract was dissected 24h later, and viral titers 
determined by plaque assay. (B) Mice in each group were inoculated intraperitoneally 
(i.p.) with 105 PFU of S99 and treated similar as in (A). Data are expressed as mean ± 
SEM for at least three independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001; 
ND = not detectable; n= number of mice; ST = stomach; J/D = jejunum/duodenum; PI = 
proximal ileum; DI = distal ileum; CE = cecum; AC = ascending colon; DC = descending 
colon; FE = feces. 
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Figure 4.5. Villous M cell positive staining in Rag-/-γc-/- mice. (A and B) 
Representative fluorescent microscopic images of sections from ileum of wild-type and 
Rag2-/-γc-/- mice with the M cell marker (GP2). (C) Quantification of GP2 positive 
staining for images taken at a 10x magnification from sections of 3 to 4 mice. n= number 
of mice; PP= sections taken close to Peyer patches (PP) of wild-type mice or sections 
taken from a similar region were an imaginary PP would be located in Rag2-/-γc-/- mice. 
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PP M cells, they still contain villous M cells that may be responsible for a second route 

of MNV entry to the host. However, there is still some debate regarding the existence of 

villous M cells (personal communication with Dr. Ifor R Williams and Dr. Tatyana V. 

Golovkina). Hence, further studies will look at more sections of Rag2-/-γc-/- mice to 

quantify the presence of GP2 positive cells along with the binding and uptake of 

fluorescently labeled beads as a specificity control for M cell positive staining. 

Preliminary results suggest MNV oral infection is reduced in complete M-less 

mice. 

 To determine whether alternate routes besides M cells exist for MNV entry into 

the intestine, we took advantage of a recently developed mouse model from Ifor R. 

Williams (Emory) that is completely deficient of M cells in the villi and PPs, Villin-Cre x 

Rank fl/fl mice (M-less). MNV-1 was given p.o. in both M-less mice and RANKfl/fl control 

littermates, and GI compartments were harvested 12 hpi. RANKfl/fl control mice showed 

MNV titers in the cecum (CE) and feces (FE) (Figure 4.6). On the other hand, M-less 

mice showed almost complete reduction of MNV-1 viral titers close to non-detectable 

levels (Figure 4.6), suggesting that M cells may be the only route for MNV-1 oral 

infection. Current studies are looking at later time-points as well as verifying differences 

between input and replicated virus, by using neutral red light-sensitive MNV strains.  

 

4.5 Discussion  

 Since studies are still at their preliminary state, no conclusions can be made as 

of yet. However, a few observations based on the preliminary work presented in this 
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Figure 4.6. Oral infection with MNV-1 is reduced in M-less mice. Control RANKfl/fl 
mice were inoculated with 105 PFU of MNV-1. The GI tract was dissected 12 h later, and 
viral titers determined by plaque assay. Data are expressed as mean ± SEM for at least 
three independent experiments. ND = not detectable; n= number of mice; ST = 
stomach; J/D = jejunum/duodenum; PI = proximal ileum; DI = distal ileum; CE = cecum; 
CO = colon; FE = feces. 
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chapter have been described more thoroughly in Chapter 5. Interestingly, although 

more thorough characterization of other potential routes for MNV entry are still work in 

progress, it may be the case that the initiating factor for efficient MNV infections in mice 

is solely based on M cells. Nevertheless, Chapter 5 discusses this and other points 

regarding the requirement for a productive MNV infection.   
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CHAPTER 5 

Discussion and Future Directions  

 

 

5.1 Conclusions 

 For many enteric viruses, breaching the intestinal epithelial barrier is an initial 

event that must take place to productively infect the host. Since no tissue culture model 

exists for human norovirus (HuNoV) and no studies can be efficiently performed to 

study HuNoV pathogenesis in its natural host, murine norovirus (MNV) can be used as 

a model to evaluate norovirus pathogenesis in its host. The main focus of this 

dissertation was to elucidate how MNV crosses the intestinal epithelium to initiate 

infection. MNV does not directly infect enterocytes (18), hence, Figure 5.1 shows a 

representation of several potential routes for MNV entry across the intestinal epithelium. 

Transepithelial dendritic cells (DCs), which are DCs that can extrude dendritic 

processes through epithelial cells (39) or Microfold (M)-cell transcellular pores (29), 

could play a role in MNV entry. However, this thesis shows evidence, for the first time, 

that M cells are responsible for initial  MNV entry across the intestinal epithelium. 

Particularly, Chapter 2 describes an in vitro approach taken to understand how MNV 

becomes transported across the intestinal epithelium and points to M-like cells as the 

main target cell. The importance of M cells for the pathogenesis of MNV and another 
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Figure 5.1. Schematic representation of potential mechanisms of MNV entry 
across the intestinal epithelium. MNV (light blue circles) in the intestinal lumen 
initially interact with M cells within the follicle-associated epithelium (FAE) overlying 
Peyer's patches (blue arrow) to establish a productive infection. However, the partial 
reduction in MNV infection suggests that other mechanisms like trans-epithelial dendritic 
cells or dendritic cells via M cell specific transcellular pores (dashed blue arrows with 
question marks), may provide an alternative route of entry for MNV. 
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enteric virus (i.e., reovirus) in vivo, using a conditional depletion strategy, is examined in 

Chapter 3. Additionally, defining the unique requirement of M cells for productive MNV 

entry and infection using  knockout mouse models is further explained in Chapter 4. 

Knowing that M cells are the essential requirement for MNV to traverse the intestinal 

epithelium and initiate a productive infection, allows for an understanding of how HuNoV 

may initiate infection. In addition, knowledge that M cells are used as a portal for 

norovirus entry, as well as for some other enteric viruses, aids in the future development 

of mucosal anti-viral treatments that can prevent disease. 

 In Chapter 2, we described a transwell model of a polarized trans-immortalized 

murine intestinal epithelial cell line (mICcl2) as an in vitro follicle-associated epithelium 

(FAE) model system. We demonstrate that MNV does not disrupt the epithelial integrity 

of the polarized mICcl2 monolayer (Chapter 2, Figure 2.1). In addition, with a time-course 

study and with the use of a neutral red light-sensitive virus that distinguishes replicated 

from input virus, we were able to demonstrate that MNV does not replicate in the mICcl2 

monolayer (Chapter 2, Figure 2.2). We also showed that two distinct MNV strains 

significantly increased their traffic across the polarized monolayer, via a transcytosis 

mechanism, when mICcl2 cells were cultured in M-like cell inducing conditions (i.e., co-

cultured with B myeloma cells), and transcytosis was mediated by the interaction of 

MNV with M-like cells in the monolayer (Chapter 2, Table 2.1, Figures 2.2, 2.3 and 2.4). 

Moreover, we demonstrated that the addition of B myeloma cells to the mICcl2 cultures 

only increased the transcytotic activity but not the number of M-like cells (Chapter 2, 

Figures 2.4 through 2.6). These data indicates that, in vitro, M-like cells are essential for 
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MNV transport across the intestinal epithelium and, thus, suggest that M cells are likely 

to be a portal for MNV entry in vivo. 

 Similar to our study, others have  looked at pathogen-interactions with the 

intestinal epithelium using in vitro FAE models with intestinal epithelial cells lines such 

as HT29 or Caco-2 cells. One study in particular, showed that spores from Bacillus 

anthracis, the causative agent of anthrax, were transcytosed across Caco-2/Raji B cell 

cocultures, suggesting that M-like cells are an entry portal for spores (53). In addition, 

studies looking at Vibrio cholera and its toxin, and poliovirus suggest that M-like cells 

play a role in the transcytosis mechanism for each enteric pathogen (7, 8, 40). Another 

study demonstrated that Salmonella typhimurium can be transported across polarized 

Caco-2 monolayers cocultured with dendritic cells (DCs) via direct interaction with the 

DC's, which extrude dendritic processes through the epithelial tight junctions (46). 

Additionally, human T-cell leukemia virus type 1 (HTLV-1) can transcytose across a 

polarized Caco-2 cell monolayer without disrupting the epithelial integrity to productively 

infect underlying dendritic cells (31). Also, human immunodeficiency virus type 1 (HIV-1) 

can infect and transcytose across polarized Caco-2 cells that express both the virus' 

chemokine receptors CCR5 and CXCR4, and a glycosphingolipid galactosylceramide 

(15, 17). The establishment of these intestinal epithelial cell lines as in vitro FAE models 

have greatly aided in the understanding of molecular events important in host-pathogen 

interactions. Hence, these models could help reveal critical targets important for 

therapeutic development against enteric pathogens.  

 Interestingly, in our case, we demonstrated that MNV transport across the murine 

intestinal epithelial monolayer occurs in a saturable manner, suggesting the presence of 
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an MNV receptor (Chapter 2, Figure 2.2). Knowledge that a receptor is responsible for 

aiding in the transportation of MNV across the epithelium, suggests the use of the in 

vitro intestinal epithelial model as a pharmacological system for the test of potential 

inhibitory molecules that could interfere with MNV binding and transport. In fact, 

unpublished data looking at sialic acid cleavage and glycosphingolipid depletion with 

inhibitors (i.e., neuraminidase from Vibrio cholera and D-threonine-P4), suggest that 

MNV requires carbohydrates such as terminal sialic acids and gangliosides at the apical 

surface for efficient transcytosis. This carbohydrate-dependent transcytosis 

requirement, in turn, indicates that MNV enters through a receptor-mediated 

endocytosis mechanism for successful internalization and transport across the cell. In 

fact, it has been shown that certain proteins, viruses and bacteria are internalized into M 

cells via clathrin-mediated endocytosis (38), macropinocytosis (9, 21, 41) or actin-

dependent phagocytosis mechanisms (38, 43) before moving across to the other side of 

the polarized monolayer. We have preliminary data that suggest that MNV transcytosis 

is dependent on cholesterol and dynamin II, which are two molecules important for 

endocytosis (unpublished results). A similar requirement of carbohydrates, cholesterol 

and dynamin II in MNV binding and entry has been shown for macrophages (44, 51, 

52). Further characterization of MNV receptors and internalization mechanisms within 

the intestinal epithelium may reveal potential molecules required for MNV entry and 

infection. 

 As previously mentioned throughout this thesis, M cells are specialized intestinal 

epithelial cells that possess an important role in sampling microorganisms and 

transporting them across for the initiation of an immune response. However, several 
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enteric bacterial pathogens such as Listeria monocytogenes, Salmonella typhimurium, 

Shigella flexneri, and Yersinia enterocolitica take advantage of these M cells to 

successfully invade, disseminate and establish infections in its hosts (4, 23, 24, 47, 57). 

In addition, only a few enteric viruses have been suggested to exploit M cells for 

productive infections. Previous poliovirus and reovirus studies, have shown that these 

viruses can selectively adhere to M cells in vivo (2, 5, 33, 42, 49, 56). Additionally, HIV-

1 also has been shown to adhere to M cells and to be transported to the M cell pocket 

(1). However, whether other enteric viruses including noroviruses take advantage of M 

cells for efficient infection, is not known. 

 We have demonstrated that MNV is transcytosed via M-like cells in vitro (Chapter 

2), and to investigate whether this holds true in the native host, studies were performed 

in Balb/c mice using a conditional antibody M cell depletion strategy. In Chapter 3, we 

demonstrated that two divergent MNV strains with different replication kinetics have 

reduced viral loads in mice that were depleted of M cells (Chapter 3, Figures 3.1 and 

3.4). We showed that, similar to in vitro M-like cells (Chapter 2), M cells are not 

susceptible to MNV replication (Chapter 3, Figure 3.6). Additionally, we demonstrated 

that reovirus, which replicates in epithelial cells, also had reduced viral loads in M cell-

depleted mice (Chapter 3, Figure 3.5). Taken together, these results suggested that M 

cells are essential for initiating entry and pathogenesis of two distinct enteric viruses: 

MNV and reovirus.  

 Interestingly, the MNV studies using the antibody M cell depletion strategy, 

showed that residual virus was still present in several compartments of the 

gastrointestinal (GI) tract of mice (Chapter 3, Figure 3.4). It is possible that an 
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incomplete depletion of M cells may be the cause for the residual virus, since: 1) we 

observed weak expression of an M cell marker (Chapter 3, Figures 3.2 and 3.3) and, 2) 

it has been previously shown that less than 2 percent of M cells are still present when 

using this depletion strategy (26). However, other mechanisms such as villous M cells, 

or dendritic cells (DCs) that protrude dendrites between epithelial cells (13, 39, 54) or 

M-cell transcellular pores (29), could also act as alternate routes for MNV entry. 

Studies, both in vitro and in vivo, have shown that upon a bacterial or viral stimuli (i.e., 

Salmonella and HIV R5 tropic virus), extensions of DCs processes between epithelial 

cells are induced (12, 13, 46), suggesting that transepithelial DCs are a mechanism of 

pathogen uptake. Interestingly, Chieppa et.al. (13) demonstrated that the number of 

transepithelial DC extensions in mice varies along the small intestine, in which higher 

numbers are found in the proximal jejunum but only few are found in the terminal ileum. 

However, in the presence of Salmonella organisms, the numbers in the terminal ileum 

increased (13), suggesting that transepithelial DCs play a  role in Salmonella uptake. A 

separate study, suggests that absence of transepithelial DCs does not impair pathogen 

entry to the lamina propria, after persistence in the entry of Aspergillus fumigatus 

conidia, was observed in mice deficient of the DCs (54). The authors suggest that other 

mechanisms such as villous M cells play a role in antigen uptake. Interestingly, the 

authors also proposed that transepithelial dendrites are dependent on mouse strain. 

This was suggested since a lack of these cells was observed in the terminal ileum of 

mice with a Balb/c background when compared to mice with a C57BL/6 background, in 

a steady state or after exposure of either Aspergillus fumigatus or Salmonella (54). 

Hence, it may be that the primary route for pathogen uptake (e.g. transepithelial DCs, 
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villous M cells, etc.) could depend on the mouse' genetic background, although future 

studies need to determine if this is the case.  

 The likelihood that MNV uses transepithelial DCs as an alternate route of entry in 

the intestine of mice is possible. However, although we do not discard this possibility, 

we hypothesize that even though villous M cells are rare (27), they would be an 

alternate mechanism for MNV transport across the epithelium. Nevertheless, current 

studies are looking at whether this or other possible routes (such as DCs), are in fact 

playing a role for MNV entry. 

 If other mechanisms of MNV entry across the intestinal epithelium are playing a 

role for efficient infection, M cells need to be ruled out completely. Since the 

administration of an M cell depletion antibody does not fully eliminate M cells (26), a 

more direct approach using mice genetically deficient of M cells would be beneficial. 

Using mice with this deficiency, will help determine if there is an essential and unique 

requirement for M cells in MNV pathogenesis. To elucidate if the residual viral titers 

observed on Chapter 3 were due to incomplete depletion of M cells, Chapter 4 

describes our recent attempts in identifying if M cells are the sole route for MNV entry.  

   Mice that have a deficiency in the recombination activating gene 2 (Rag2) and 

the interleukin-2 (IL-2) receptor (common cytokine receptor) gamma chain (γc) (i.e., 

Rag2-/-γc-/-), do not contain Peyer's patches (PPs) and cecal patches most likely due to 

the lack of IL-7 receptor signaling critical for their development (11, 22, 32, 35). Our lab 

has shown, for the first time, that these mice can be used as a small animal model for 

human norovirus (HuNoV) replication when the virus is given intraperitoneally (i.p.) (50). 

However, these mice are not susceptible to HuNoV replication if given orally (p.o.) (50). 
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In the case of MNV, we showed that Rag2-/-γc-/- mice had very little to no detectable 

viral loads in the small intestine when virus was given orally (Chapter 4, Figures 4.1 and 

4.2). This result suggests that PP M cells are required for MNV infection. In contrast, the 

large intestine, and particularly the cecum, still showed significant viral titers following 

oral infection with the CR3 strain, when compared to the MNV-1 strain (Chapter 4, 

compare Figures 4.1 to 4.2). This result was surprising to us since no cecal patches are 

present in Rag2-/-γc-/- mice. Currently, studies are in the process of verifying if virus is 

truly replicating by using neutral red light-sensitive MNV virus strains as described in 

Chapters 2 and 3. However, if the replication holds true, one suggestion for the 

differences in viral replication in the cecum, is that MNV strains could have differences 

in tissue tropism based on distinct carbohydrate moieties that are present. The reason 

for this hypothesis is because in macrophages, CR3 and MNV-1 have different 

carbohydrate binding requirements (such as terminal sialic-acids, ganglioside GD1a, N-

linked and O-linked glycoproteins) (51, 52). Moreover, this could suggest that since 

MNV-1 binding is dependent on many more carbohydrates than CR3 (51), after oral 

inoculation with MNV-1, the virus preferentially binds more rapidly than CR3 in the small 

intestine to initiate replication. Also, if CR3 binds to different carbohydrates that are 

present in high quantities in the cecum but not the small intestine, it may indicate why 

this region could be the initial site for CR3 replication. However, differential lectin-

binding to carbohydrates present in the cecum but not in the small intestine were not 

observed with the lectins tested (Chapter 4, Figure 4.3). Although our data is still 

preliminary, this suggest that our hypothesis in which MNV tropism for the cecum is 

dependent on carbohydrate moieties present in this region, is not accurate in its 
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entirety. Nevertheless, further examination into other distinct carbohydrates within the 

small and large intestine will provide a better understanding for the MNV strain 

dependent tissue tropism.  

 Additional possibilities for the difference in MNV strain-dependent tissue tropism, 

could be that immature M cells and/or dendritic cells present in cecum are playing a role 

in MNV entry. Visualization of these cells directly interacting with MNV will provide a 

better understanding for their role in MNV entry. Unfortunately, acquiring a sensitive 

enough signal to visualize MNV-positive staining in normal wild-type mice has not yet 

been achieved (34), and in our hands, it has proven to be difficult as well (Chapter 3 

and data not shown). Further characterization of the interaction of MNV with immature 

M cells and DCs present in the cecum of Rag2-/-γc-/- and control mice, will help 

understand their role as alternate routes for MNV entry.  

 Although Rag2-/-γc-/- lack PP M cells, it is also possible that villous M cells may 

still be present and, thus, could be responsible for the residual MNV entry and infection. 

In fact, our preliminary results show that the levels of an M cell marker (GP2) in the 

small intestinal villa of Rag2-/-γc-/- mice compared to wild-type, are not significantly 

different (Chapter 4, Figure 4.5). However, current studies are looking at different 

regions of the small intestine and large intestine of Rag2-/-γc-/- mice to verify any 

difference in the levels of GP2 positive M cells. 

 In humans, it is known that the microbiota (also known as commensal bacteria or 

bacterial flora) patterns differ depending on the GI site such as the small intestine, colon 

and rectum (6, 14, 16, 19, 30, 45). Studies with mice have shown that viruses such as, 

poliovirus, reovirus and mouse mammary tumor virus (MMTV), rely on commensal 
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bacteria for efficient replication and transmission (25, 28). Interestingly, although some 

HuNoV infected patients have alterations in the microbiota with a loss of some and an 

increase of other bacterial species (37), MNV infection in mice does not affect the 

distribution of the microbiota (36). However, it is possible that the microbiota  could help 

in MNV entry, as well as explain the MNV strain-dependent tissue tropism. Additional 

experimentation looking at the role of microbiota in MNV entry and strain-dependent 

tissue tropism, will be beneficial for future understanding of interactions between MNV 

and commensal bacteria.  

 Besides our Rag2-/-γc-/- MNV infection studies, preliminary results using a newly 

develop genetic mouse model with a deficiency in all M cells from the intestine (M-less 

mice), suggest that M cells may be the only route for MNV-1 entry after oral infection 

(Chapter 4, Figure 4.6). However, further studies still need to be performed to verify 

these findings. While MNV infection was almost completely blocked in M-less mice, 

small amounts of virus were still present in several compartments of the GI tract 

(Chapter 4, Figure 4.6). Nonetheless, because the viral titers were close to the limit of 

detection, this could likely represent input virus and not virus that underwent several 

rounds of replication. Current studies are examining these mice with neutral red light-

sensitive MNV strains to help distinguish input versus replicated virus, as performed in 

Chapter 3. 

 Finally, to understand if another enteric virus requires M cells to cause 

pathogenesis in mice, this dissertation also looked at reovirus infection in mice 

conditionally depleted of M cells. Reoviruses can cause disease in children but not in 

adults (48), and a study with reovirus T1L has shown that, in newborn mice, reovirus 
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replicates in intestinal enterocytes at the villus tips (3). Other studies have shown that 

reovirus binding to M cells, at the apical surface, is mediated by the viral attachment 

protein 1 (20, 55). In addition, internalized virus particles have been observed 

replicating in M cells (5). Interestingly, in our case, we observed that the majority of 

reovirus-positive cells were enterocytes adjacent to M cells in a representative image of 

normal control mice infected with reovirus T1L (Chapter 3, Figure 3.7), while only one M 

cell showed positive staining for reovirus. No reovirus staining was observed in mice 

depleted of M cells (Chapter 3, Figure 3.7). This is consistent with the viral loads below 

the limit of detection observed in the small intestine of M cell depleted mice (Chapter 3, 

Figure 3.5). These results support a model which suggests that once virions are 

transported across by M cells, they can directly interact with the reovirus junctional 

adhesion molecule A (JAM-A) receptor located in the basolateral surface of enterocyte 

cells (3, 10) for efficient reovirus entry and replication in the epithelium. Future studies 

will look at other enteric viruses (e.g. rotavirus, tulane virus) using M-less mice to verify 

if M cells are also essential for the pathogenesis of these viruses in mice. 

 Taken together, the research presented in this thesis has added significant 

information to the norovirus literature by showing, for the first time, that M cells are the 

initiating factor for productive MNV infection in the mouse intestine. In addition, it has 

provided new information regarding the requirement of M cells for the pathogenesis of 

another enteric virus (i.e. reovirus) in mice. Knowledge that M cells are required for 

MNV infection, has provided the basis for future studies to look into M cell surface 

molecules involved in MNV uptake that could be critical targets for the development of 
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anti-viral treatments. Future studies in our lab will further address the role of 

carbohydrates and other potential receptor molecules in MNV uptake.   

 

5.2 Future Directions 

 Identification of carbohydrate determinants for MNV binding and 

transcytosis across the intestinal epithelium in vitro. 

 Characterization of the mechanisms of MNV internalization in vitro for 

efficient entry and transcytosis across the intestinal epithelium. 

 Characterization of MNV strain-dependent tissue tropism using chimeric 

versions of MNV strains with differences in persistence.   

 Elucidation of the extent of MNV infection in M-less mice. 

 Characterization of MNV infection in antibiotic-treated mice for the 

importance of commensal bacteria in MNV pathogenesis. 

 Characterization of the importance of M cells for the pathogenesis of other 

enteric viruses. 
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APPENDIX 1 

Neutral Red Assay for Murine Norovirus Replication and Detection in 
a Mouse Protocol 

 

This protocol was published in bio-protocol.org: 

http://www.bio-protocol.org/wenzhang.aspx?id=415 

 

 

Abstract: 

  

 Neutral red (NR) is a dye that must be actively imported into the cell, and, 

therefore, the dye has been used for decades to selectively stain living cells.  In 

addition, NR can also be incorporated into virus particles, although the mechanism 

behind this is poorly understood. Once encapsulated into the virion, NR, a light sensitive 

dye, can be photoactivated to inactivate the virus. The proposed mechanism explaining 

this observation is that activation of NR allows the dye to cross-link viral genome to viral 

capsid and thus preventing viral uncoating and infection.  To study the early events of 

murine norovirus (MNV)-host interaction, light-sensitive NR-containing MNV is used to 

distinguish between input virus (i.e., NR-containing virus) and replicated virus (i.e., NR-

free virus). This protocol describes the incorporation of NR into MNV capsids and the 

use of these virions for detection of viral replication in a mouse and in tissue culture by 

standard plaque assay. The same technique is also used for study of poliovirus 
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replication (1-3). Thus, there is the potential that this technique can be used for 

additional non-enveloped viruses. However, this has to be tested on a case-by-case 

basis as unpublished data on feline calicivirus suggests not all viruses may be able to 

stably incorporate NR into their capsid (J. Parker, personal communication). 
 

Materials and Reagents: 
 

1. Neutral red 0.33% solution (Sigma, N2889) 

2. DMEM/ High glucose (Hyclone, SH30243.02) 

3. 2x MEM (Gibco,11935) 

4. 100x Penicillin and streptomycin (Hyclone, SV30010) 

5. 100x Non-essential amino acids (Hyclone, SH30238.01) 

6. 1 M Hepes (Hyclone, SH30237.01) 

7. 200 mM (100x) L-glutamine (Hyclone, SH30034.01) 

8. Fetal Bovine Serum (Gibco, 10437 or Hyclone, SH30070.02) 

9. RAW 264.7 cell line (ATCC TIB-71) 

10. Murine norovirus (MNV-1; GV/MNV1/2002/USA)  

11. Sea Plaque Agarose (Lonza, 50100) 

12. Aluminum  foil 

13. 1.0 mm Zirconia/Silica beads (BioSpec Products, 11079110z) 

14. Mice (6-8 week old Balb/cJ) 

 
Equipment: 
 

1. 175 cm2 flask (Corning, 3292) 

2. Model 35 Speed Rocker (Labnet, S2035) 

3. Tissue culture incubator (Sanyo, MCO-36M) 

4. Magna Lyser Bead beater (Roche, 03358968001) 

5. Photographic safe red light 

 

Procedure: 
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1. Neutral red virus preparation 

a. Seed RAW 264.7 cells in a total of 30 mL of DMEM-10 media at a density of 

4x107 cells in a 175 cm2 flask and incubate in a tissue culture incubator at 

37oC and 5% CO2 overnight. 

b. To obtain a virus stock, infect cells the next day with MNV by adding MNV at 

a multiplicity of infection (MOI) of 0.05 and incubate for 1 hour in a tissue 

culture incubator at 37oC and 5% CO2. 

c. After the hour, add neutral red at 0.001% v/v from a 0.33% stock solution to 

the cells. 

d. Wrap the entire flask with aluminum foil including the filter cap of the flask. 

e. Incubate in a tissue culture incubator at 37oC and 5% CO2 for 48 hours.  

f. After the 48 hours, generate a freeze/thaw lysate. Freeze cells by moving the 

entire flask (including cells and media) covered with aluminum foil to -80oC 

for at least 60 min.  Then thaw flask contents at room temperature or in a 

tissue culture incubator at 37oC until all ice has melted. Repeat freeze/thaw a 

second time. This will be your virus stock.  

Note: after the second freeze/thaw cycle, virus stock should be aliquoted (in 

a darkened room) into single-use aliquots (e.g., 1 mL) and stored at -80oC 

since light-sensitivity of virus stock decreases after repeated freeze/thaw 

cycles. 

g. Block out all light in your tissue culture room to make a dark room and equip 

with a safe red light used in photography dark rooms. 

h. Perform plaque assay to determine viral titer of your virus stock as previously 

described in detail (2) and as described briefly below. The day before the 

plaque assay seed 2x106 Raw 264.7 cells in DMEM-10/ well in six well 

plates. 

i. On the day of the plaque assay, perform 10-fold serial dilutions of your virus 

stock in DMEM-5. Make sure to adjust the volume for duplicate plaque 

assays, i.e., you will need a total volume of 2.5 mL for each dilution.  
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j. Next, take the six well plates with cells seeded on the day before, aspirate 

the media and infect cells in the dark in duplicate wells for each dilution with 

0.5 mL/well, wrap in aluminum foil and rock for 1 hour at room temperature 

with a speed rocker at ~18 oscillations per min.  

Note: the 1 hour incubation was determined experimentally to ensure efficient 

entry and uncoating of MNV. However, the length of time necessary for other 

viruses may vary. 

k. Turn on the lights and leave the remaining 10-fold viral dilutions in the light 

for at least 10 minutes. 

l. Repeat step 1-j. but keep plates exposed to light (i.e., do not wrap plates in 

aluminum foil)  

m. After the hour, finish the plaque assay for both sets of plates with or without 

aluminum foil in the light by adding 2 mL/well of a 1:1 ratio of molten media 

(1:1 ratio of SeaPlaque agarose and 2x MEM). To allow agarose to solidify 

incubate plates at room temperature for 10 min. Then, move plates to a 

tissue culture incubator and incubate at 37oC, 5% CO2 for 48 hours.  

n. After 48 hours stain cells with a neutral red solution overlay (0.01% neutral 

red in 1x PBS), for 1-3 hours prior to aspirating the solution and counting 

plaques as described previously in detail (2).  

Note:  To calculate viral titers and obtain plaque forming units per milliliter 

(PFU/mL), add the number of plaques in both wells at a single dilution and 

multiply by the dilution factor (i.e., 1 mL if 2 wells are infected with 0.5 mL). 

Appendix Figure 1.1 shows an example of a 6 well plate with plaques. To 

calculate the viral titer in the example: 11 + 9 = 20 plaques; 20 x 102 dilution 

factor = 2x103 PFU/mL. Two- to three-log reductions are typically observed in 

viral titers comparing total virus titers (i.e. obtained in dark) and light-

insensitive (i.e. obtained in light) infections. Depending on the viral strain, log 

reductions may differ. 

2. Tissue culture infection with neutral red virus 

a. Seed 2x106 Raw 264.7 cells in six well plates the day before. 
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b. The next day, block out all light in your tissue culture room to make a dark 

room and equip with a safe red light used in photography dark rooms. 

c. Infect with MNV containing NR at an MOI of 0.001 for 1 hour. 

Note: pre-treatments with inhibitors of viral entry or uncoating can be 

performed before incubating with virus. Post-treatments with the same 

inhibitors are performed as a control after the 1 hour incubation with virus as 

described (5). 

d. Flash with light for various lengths of times between 0 to 60 min at the end of 

the infection time. 

Note: For MNV, times between 0 and 60 minutes are typically used and at 

least 10 min has been sufficient to inactivate any leftover input virus (5). 

e. Overlay with 2 mL of a 1:1 ratio of molten media (1:1 ratio of SeaPlaque 

agarose and 2x MEM), as you would do for plaque assays and as described 

(2, 4). 

f. Incubate for 48-72 hours in a tissue culture incubator at 37oC and 5% CO2.  

g. Count plaques by adding the number of plaques in both wells at a single 

dilution and multiplying by the dilution factor, as described above and 

previously (2, 4). 

3. Mouse infection with neutral red virus 

a. Inoculate mice perorally by pipetting virus directly into the mouth or by oral 

gavage with NR-MNV in a darkened room with a safe red light.  

Note: we infected six- to eight-week old Balb/c mice perorally with NR-MNV 

at 105 pfu. Depending on the experiment, the length of infection will vary. We 

typically infect mice for 12 – 72 hours. At the experimental endpoint (i.e. 12 

hours post-infection), sacrifice mice in a darkened room with a safe red light 

and harvest different regions of the gastrointestinal tract, each 1 cm in 

lengths. Place each tissue piece in an individual 2 mL centrifuge screw cap 

tube containing 0.4 - 0.5 g of silica beads and 1 mL of DMEM-10. 

b. Homogenize tissues in the dark with a bead beater for 60 min at 6000 rpm, 

as described (2). 
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c. Freeze (at -80oC) and thaw tissues (at 370C) once before performing parallel 

plaque assays in the dark and following light exposure as described above. 

d. Count plaques 48 hours later. 

Note: MNV-1 is known to undergo the first round of replication in ~12 hours. 

Therefore, samples collected 3 hours post-infection should only show input 

virus (i.e., virus containing NR and sensitive to light). 

 

Recipes: 
 

1. DMEM-10 

 DMEM/High glucose (1 liter) 

 10% low-endotoxin Fetal Bovine Serum 

 1% Hepes 

 1% Penicillin and streptomycin 

 1% Non-essential amino acids 

 1% L-glutamine 

 

2. DMEM-5 

 DMEM/High glucose (1 liter) 

 5% low-endotoxin Fetal Bovine Serum 

 1% Hepes 

 1% Penicillin and streptomycin 

 1% Non-essential amino acids 

 1% L-glutamine 

 

3. 2x MEM media (500 mL)   

 10% low-endotoxin Fetal Bovine Serum 

 1% Hepes 

 1% Penicillin and streptomycin 

 2% L-glutamine 

 Equilibrate to 37 oC 
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4. SeaPlaque agarose   

 1.5 g SeaPlaque agarose 

 50 mL water 

 Autoclave solution 

 Equilibrate to 42 oC 

 

5. 1:1 ratio of molten media 

 Mix 50 mL of 2x MEM and 50 mL of SeaPlaque agarose a 1:1 before adding to 

 the cells  
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        10-1         10-2            10-3 

 

Answer: 11+9= 20 x 102 = 2 x 103 PFU/mL  

Appendix Figure 1.1: Example of plaque formation in cell monolayers after MNV-1 
infection. Representative image of a plaque assay plate after 48 hours of MNV-1 
infection. Plaques are observed after staining with a neutral red solution overlay for 1-3 
hours. The image shows duplicate wells of three 10-fold viral dilutions: 10-1, 10-2 and 10-

3 dilutions. Arrows indicate the formation of plaques and the viral titer of the sample is 
indicated below. 
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APPENDIX 2 

Plaque Assay for Murine Norovirus Protocol 

 

This protocol was published by: 

 Journal of Visualized Experiments (JOVE) Volume (66): 4297 doi:10.3791/4297; 2012. 

 

 

Short Abstract:  

 

Here we describe a method to quantify infectious particles of murine norovirus 

(MNV), which is the only norovirus that efficiently replicates in cell culture.  The plaque 

assay takes advantage of MNV’s tropism for murine macrophages and can be adapted 

for use with biological or environmental samples containing MNV.  

 

Long Abstract:  
 

 Murine norovirus (MNV) is the only member of the Norovirus genus that 

efficiently grows in tissue culture (10, 11). Cell lysis and cytopathic effect (CPE) are 

observed during MNV-1 infection of murine dendritic cells or macrophages (10). This 

property of MNV-1 can be used to quantify the number of infectious particles in a given 

sample by performing a plaque assay (10). The plaque assay relies on the ability of 

MNV-1 to lyse cells and to form holes in a confluent cell monolayer, which are called 

plaques (3).   
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 Multiple techniques can be used to detect viral infections in tissue culture, 

harvested tissue, clinical, and environmental samples, but not all measure the number 

of infectious particles (e.g. qRT-PCR).  One way to quantify infectious viral particles is to 

perform a plaque assay (3), which will be described in detail below.  A variation on the 

MNV plaque assay is the fluorescent focus assay, where MNV antigen is 

immunostained in cell monolayers (9). This assay can be faster, since viral antigen 

expression precedes plaque formation. It is also useful for titrating viruses unable to 

form plaques. However, the fluorescent focus assay requires additional resources 

beyond those of the plaque assay, such as antibodies and a microscope to count focus-

forming units.  Infectious MNV can also be quantified by determining the 50% Tissue 

Culture Infective Dose (TCID50) (3). This assay measures the amount of virus required 

to produce CPE in 50% of inoculated tissue culture cells by endpoint titration (7).  

However, its limit of detection is higher compared to a plaque assay (9). 

 In this article, we describe a plaque assay protocol that can be used to effectively 

determine the number of infectious MNV particles present in biological or environmental 

samples (2, 9, 10).  This method is based on the preparation of 10-fold serial dilutions of 

MNV-containing samples, which are used to inoculate a monolayer of permissive cells 

(RAW 264.7 murine macrophage cells). Virus is allowed to attach to the cell monolayer 

for a given period of time and then aspirated before covering cells with a mixture of 

agarose and cell culture media. The agar enables the spread of viral progeny to 

neighboring cells while limiting spread to distantly located cells. Consequently, infected 

cells are lysed and form holes in the monolayer known as plaques. Upon sufficient 

spread of virus, plaques become visible following staining of cells with dyes, like neutral 

red, methylene blue, or crystal violet. At low dilutions, each plaque originates from one 

infectious viral particle and its progeny, which spread to neighboring cells. Thus, 

counting the number of plaques allows one to calculate plaque-forming units (PFU) 

present in the undiluted sample (3).   

 

Protocol Text: 
 
1) Culturing of the macrophage cell line RAW 264.7 
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1.1) Maintain RAW 264.7 cells (ATCC, catalog # TIB-71) in DMEM-10 media, which 

consists of high glucose DMEM with 10% (v/v) low-endotoxin fetal bovine serum (< 10 

EU/mL), 10 mM HEPES, 100 U/mL penicillin, 100 g/mL streptomycin, 1 mM non-

essential amino acids, 2 mM L-glutamine.  Cells are typically maintained in 175 cm2 

tissue culture flasks containing 35 mL of media per flask and incubated at 37oC and 5% 

CO2 in a tissue culture incubator. However, any size flask can be used with a volume of 

media that is appropriate for the size of the flask.   

 

1.2) To split cells: aspirate off the old media, add 10 mL of fresh DMEM-10 media to the 

cells, and then scrape the cells from the bottom of the flask by using a cell scraper. 

Next, resuspend the cells into a homogenous solution by drawing up cells into a 10 mL 

pipette and forcefully squeezing the cells through the pipette tip pressed against the 

bottom of the flask. Repeat this action at least 3 times so the cells no longer clump 

together. Verify by light microscopy that a single cell suspension was generated. Then 

transfer 1 mL (1:10 dilution or ~1x107 cells) - 2 mL (1:5 dilution or ~2x107 cells) of the 

cell suspension to a new 175cm2 flask, and bring the final volume of media up to 35 mL.  

 

1.3) Split cells when they are nearly confluent (~1x108 cells total/175 cm2 flasks): every 

three days if starting with a 1:10 dilution, or every two days if starting with a 1:5 dilution. 

Use light microscopy to check cell morphology before splitting cells. Most of the cells 

should look round and not activated. Activated cells have granules and/or extended, 

spindly morphology with appendages. Do not let cells overgrow as those cells do not 

typically form plaques. Keep track of the passage number and frequently start over by 

thawing a lower passage aliquot of cells. (We use passage 30 as a cut-off). 

 
2) Infect RAW 264.7 cells with MNV inoculum  
 
2.1) Seed RAW 264.7 cells into 6-well plates (3.5 cm diameter) at a density of 1x106 

viable cells/mL in DMEM-10 media, and add 2 mL of this suspension to each well. It is 

important to distribute cells evenly in wells either by rocking plates by hand at least 10 
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times or by using a rocking apparatus for ~10 min.  Do not swirl the plates as this will 

cause the cells to cluster in the center of the well.  Place plates into a tissue culture 

incubator (at 37oC and 5% CO2).  Allow cells to attach overnight or for at least 4 hrs at 

37ºC.  Cells should be 60 - 80% confluent for the plaque assay and distributed evenly 

throughout the well. 

 

2.2) The next day, prepare the virus inoculum, which can be from MNV-infected cells in 

tissue culture or from homogenized tissues or fecal samples of MNV-infected mice. 

When using tissue samples, pea-sized pieces of tissue are homogenized in 2 mL 

screw-cap tubes containing sterile silica beads in 1 mL of DMEM-10 using a tissue 

homogenizer (e.g. bead beater). For fecal samples, no more than 3 fecal pellets should 

be homogenized in 1 mL media. All samples are then frozen (at -80oC) and thawed 

once before performing the plaque assay. 

 

2.3) Prepare 10-fold dilutions of the virus inoculum in complete DMEM-5 medium, which 

consists of DMEM/High glucose, 5% (v/v) low-endotoxin fetal bovine serum (< 10 

EU/mL), 10 mM HEPES, 100 U/mL penicillin, 100 g/mL streptomycin, 1 mM non-

essential amino acids, 2 mM L-glutamine.  

 

2.4) Ten-fold serial dilutions are prepared in 24-well plates: A repeater pipette is used to 

dispense 1.35 mL media into multiple wells, the 10-1 dilution is made by mixing 1.35 mL 

of media and 0.15 mL of virus-containing sample, and then 0.15 mL of the 10-1 dilution 

is added to 1.35 mL of media to make the 10-2 dilution and so on.  It is important to 

change tips each time you make a new dilution. A multichannel pipette can be used to 

make the dilutions of multiple samples at a time with two tips fitting into one well of a 24-

well plate transferring a total volume of 0.15 mL per well (see Appendix Figure 2.3A). 

 

2.5) A typical dilution range for tissue homogenates and fecal contents is 10-1 to 10-3. 

However, plaques from these samples tend to be smaller compared to those from tissue 

culture samples.  Furthermore, in some cases a 1:100 dilution of fecal samples is 

needed to sufficiently dilute out any toxic components of the feces that may disrupt the 
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cell monolayer, thus hindering the ability to count plaques.  The dilution range of tissue 

culture lysates depends on the time point of interest during the viral life cycle. Dilutions 

that go up to 10-8 may be needed at the peak of infection. 

 

2.6) After the serial dilutions are prepared, label the 6-well plates containing RAW 264.7 

monolayers (from section 2.1) with the sample name and dilutions being plated. One 

plate at a time, remove all media by flicking it out or aspirating it. Immediately 

afterwards add 0.5 mL of a diluted sample to a well, then repeat with a duplicate well, 

before proceeding to the next dilution.  Once all 3 dilutions are added to one plate, tilt 

plate back and forth by hand to ensure all cells have been covered. Handle one plate at 

a time to ensure that cells will not dry out. 

  

2.7) After adding 0.5 mL of the dilutions to each well, stack plates upright and incubate 

them for 1 hour at room temperature.  Because the volume added to each well is not 

sufficient to cover the monolayer completely, the plates need to be gently tilted back 

and forth by hand every 10-15 min or placed on a rocking apparatus (~18 oscillations 

per minute). This prevents cells from drying out. 

 

3) Low melting point agarose (SeaPlaque) overlay preparation 

 

Note: it is advisable to have several bottles with autoclaved SeaPlaque agarose 

prepared ahead of time.  Agarose can be re-melted in a microwave before use.  

 

3.1) Calculate the amount of overlay required for the total volume of plates before the 1 

hr incubation is complete. The volume needed is 2 mL/well or 12 mL/6-well plate. 

Prepare agarose (see section 3.2) and media (see section 3.3) separately. 

 

3.2)  To prepare the agarose, suspend 3 g of SeaPlaque agarose in a total volume of 

100 mL of distilled water (3% w/v) in a glass bottle. Autoclave for 20-30 min. (If agarose 

was already prepared before-hand, re-melt agarose in microwave.)  It is important to 

equilibrate SeaPlaque agarose to 42°C in a water bath before use because if the 
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agarose is too hot, it will kill the cells. Make sure water level is equal to or above the 

level of the agarose to avoid undesired solidification. 

 

3.3) To prepare the media: make 100 mL of 2x MEM media, which consists of 2x MEM, 

10% (v/v) low-endotoxin fetal bovine serum (< 10 EU/mL), 10 mM HEPES, 100 U/mL 

penicillin, 100 g/mL streptomycin, 4 mM L-glutamine. Equilibrate media to 37°C in a 

water bath.     

 

3.4) Mix both the SeaPlaque agarose and the 2x MEM media together in a sterile bottle 

at a 1:1 ratio immediately before overlaying the infected cell monolayers. If more than 

200 mL overlay is needed, split volume into multiple bottles and keep in 37oC water 

bath until ready to use. 

 

3.5) At the end of the 1 hour incubation (see section 2.7), aspirate the inoculum off of 

each well. Slowly add 2 mL of overlay to the edge of each well by placing the pipette tip 

against the wall of each well. Up to 5 plates can be handled simultaneously without cells 

drying out. 

 

3.6) Allow the overlay to solidify for approximately 10 minutes at room temperature 

before placing plates upright into the tissue culture incubator. Incubate plates for 48 

hours at 37oC in 5% CO2. 

 

3.7) After the incubation period, plaques are faintly visible to the naked eye, so check 

unstained plates for presence of plaques. If no plaques are visible, incubate for an 

additional 4 hrs and check again.  However, the maximum incubation time should not 

exceed 72 hrs. 

 
4) Visualization of plaques by neutral red staining 
 

4.1) To visualize plaques, the neutral red staining solution is prepared by adding 3 mL 

of neutral red (0.33% w/v in DPBS; Sigma, catalog # N2889) to every 100 mL of 1X 
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PBS  (tissue culture grade, Mg2+-, Ca2+-free; Gibco, catalog # 10010). Calculate the 

volume of neutral red staining solution needed for the experiment. Twelve mL neutral 

red staining solution are required for each 6-well plate. Equilibrate the neutral red 

staining solution to 37oC in a water bath, and then add 2 mL to each well. Although 

some plaque assay protocols require the agarose plug to be removed from the wells, in 

this protocol the neutral red staining solution is added directly onto the overlay. 

 

4.2) After a one hour incubation at 37oC, check if plaques are visible with neutral red 

staining solution still in wells. If plaques are not readily apparent, allow the staining to 

continue for another hour. Continue incubating until plaques are visible. (Note: Staining 

for more than 3 hours is not optimal and if no plaques are visible in the positive control 

sample after 3 hours of staining, the plaque assay did not work properly.) After the 

staining is complete, aspirate the neutral red staining solution, ensuring the agarose 

plug is not disturbed, and then proceed to counting the plaques. 

 

4.3) Count plaques by placing plate upside down on a light box and marking a dot on 

counted plaques to avoid duplicate counts.  Choose the dilution to count plaques in 

wells where plaques are clearly separated (i.e. no visual evidence of plaques fusing 

together). If possible, count plaques at two dilutions.  It is important to note that plaque 

size may vary between MNV strains, virus inoculum, and depends on the condition of 

the RAW 264.7 cells during the plaque assay.  

 

4.4) If no plaques are visible in a well, either there was no virus was present in the 

sample or the amount of virus was under the limit of detection of the plaque assay. In 

this case, the wells stain red with a similar color as other plaque-containing wells. 

Alternatively, no plaques are also observed when there are too many viral particles 

present in a given dilution. This leads to lysis of the entire monolayer and wells appear 

orange/yellow in color.  

 

4.5) Calculate viral titers. Add the number of plaques in both wells at a single dilution 

and multiply by the dilution factor (i.e. 1 mL if 2 wells are infected with 0.5 mL). This will 
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yield the amount of plaque forming units (PFU) in your inoculum volume of 1 mL. For 

example, in Appendix Figure 2.4 at the 10-2 dilution, one well (marked “II”) has 14 

plaques and the other well (marked “V”) has 17 plaques. Thus, the viral titer will be 

14x102 + 17x102 = 3,100 (3.1x103) PFU/mL. 

 

Representative Results: 
 

 Infectious MNV-1 particles can be quantified using a plaque assay as outlined 

schematically in Appendix Figure 2.1. Appendix Figure 2.2A shows a well with a 

monolayer of RAW 264.7 cells just prior to infection, while Appendix Figure 2.2B shows 

three visible plaques indicated by roman numbers I, II and III in a well. Individual steps 

of the assay are depicted in Appendix Figures 2.3A through F. Appendix Figure 2.3A 

shows the preparation of the 10-fold dilution series of a virus-containing sample. 

Appendix Figure 2.3B shows the transfer of dilutions to duplicate wells of a 6-well plate. 

Appendix Figure 2.3C shows the rocking apparatus used to incubate RAW 264.7 cells 

with the inoculum at room temperature for 1 hour. Appendix Figure 2.3D shows cells 

being overlaid with the SeaPlaque:MEM mixture.  Appendix Figure 2.3E shows a plate 

at room temperature to allow the overlay to solidify, while Appendix Figure 2.3F shows 

cells being stained with a 0.01% neutral red solution 48 hrs later. After staining cells for 

1-3 hours and aspirating the neutral red staining solution, plaques are visible and can 

be counted (Appendix Figure 2.4).  
 

Discussion: 
 
 The plaque assay method for MNV-1 presented here is a way of quantifying 

infectious MNV particles. By following the assay steps illustrated in Appendix Figure 2.3, 

one can obtain reproducible viral titers. The limit of detection of the assay depends on 

the starting dilution used. When starting with a 1:10 dilution of sample as described 

above, the limit of detection of the plaque assay is 10 pfu (i.e., 1 plaque visible at the 10-

1 dilution). Since each plaque represents a single virus, the plaque assay can also be 

used to purify clonal populations of MNV by picking isolated plaques and propagating 
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them as described previously (10). In addition, plaque purifications can also be used to 

separate an individual virus population from mixed virus populations. A limitation of 

using a plaque assay for the detection of MNV infection is that not all MNV strains form 

plaques (9). However, it may be possible to overcome the inability of some MNV strains, 

isolated from animals, to form plaques by serially passaging these viruses in tissue 

culture (1). An alternative to the plaque assay is to measure infectious particles via the 

TCID50 technique (3, 9). This assay quantifies the amount of virus required to produce 

CPE in 50% of inoculated tissue culture cells following endpoint dilutions and takes 1 

week to complete for MNV (9). In addition to being slower than a plaque assay, the 

TCID50 assay is also not as sensitive (limit of detection = 200 TCID50/mL) due to the 

toxicity of tissue samples to RAW 264.7 cells (9). 

 

 Although critical steps within the protocol have been described throughout the 

protocol, the following section provides a summary to facilitate trouble-shooting. The 

most critical step in the protocol is to ensure that RAW 264.7 cells remain viable 

throughout the assay to support virus replication.  This can be monitored at each stage 

of the assay via light microscopy. Cell viability is ensured in two ways. First, care should 

be taken not to let cells dry out while handling plates.  Thus, plates are inoculated one 

at a time, rocked during the infection period, and should remain closed whenever they 

are not being handled. Second, solutions added onto cells should be equilibrated to 

~37oC.  Furthermore, it is vital for the overall health of the RAW 264.7 cells to maintain 

them in media containing low endotoxin serum (< 10 EU/mL), which limits activation of 

cells. In addition, we have observed a higher failure rate of the plaque assay when 

using cells from passage 30 or higher. Although this will likely vary from lab to lab, it is 

important to include a positive control (e.g., a sample with a known viral titer) to ensure 

reproducible titers, especially when using higher passage RAW 264.7 cells. To limit use 

of higher passage cells, it is advisable to freeze vials of early passage cells upon receipt 

of RAW 264.7 cells and start a new culture from the frozen vials frequently. Starting 

over with low passage cell cultures will also be helpful when cells exhibit altered 

characteristics, such as failure to adhere, changes in cell morphology (e.g. from round 

to spindly and spread out), or when mycoplasma contamination has been detected. 
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Another important point to pay attention to is to ensure that pipette tips are changed 

between samples and during dilutions. This will ensure accurate serial dilutions and 

prevent cross-contamination between samples. The one place in the protocol where the 

same pipette tip can be used again is when serial dilutions of the same sample are 

added to wells. In that case, one should start from the most diluted inoculum to the 

least, and vigorously pipette up and down when drawing up a new dilution. 

 

 The plaque assay protocol is amendable to several modifications. One 

modification that can be made when there are not enough cells for inoculating wells in 

duplicate is to inoculate only a single well for each dilution. However, since the inoculum 

volume is 0.5 mL, the number of plaques then needs to be multiplied by a factor of 2 to 

normalize to pfu/mL. The plaque assay can also be adapted for use with any other 

adherent cell line that is able to support replication of MNV, and this has been described 

for the murine microglial BV-2 cell line (5). Other modifications that can be implemented 

are adaptations that have been described for plaque assay protocols developed for 

other viruses. In case of MNV, the following modifications have already been 

implemented successfully; the use of methyl cellulose instead of Sea Plaque agarose 

(4), and staining of cells with crystal violet or methylene blue instead of neutral red (6, 

8).  

 

 Overall, this protocol can easily be adapted as needed to quantify other plaque-

forming viruses or used for other viruses that cause lytic infections in RAW 264.7 cells, 

making it a useful tool to quantify infectious viral particles in general. 
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Table of specific reagents and equipment: 

Name of the reagent Company Catalogue 
number 

DMEM/ High glucose Hyclone SH30243.02 

2x MEM Gibco 11935 

100x Penicillin and streptomycin Hyclone SV30010 

10 mM Non-essential amino 

acids 

Hyclone SH30238.01 

1M HEPES Hyclone SH30237.01 

200 mM (100x) L-glutamine Hyclone SH30034.01 

Fetal Bovine Serum Gibco, Hyclone 10437, 

SH30070.02 

Sea Plaque Agarose Lonza 50100 

Neutral Red 0.33% Sigma N2889 

1x PBS Gibco 10010 

1.0 mm Zirconia/Silica beads BioSpec 

Products 

11079110z  

Model 35 Speed Rocker Labnet S2035 

Magna Lyser Instrument Roche 03358968001 

Raw 264.7 cell line ATCC TIB-71 

Tissue culture incubator Sanyo MCO-18AIC 
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Appendix Figure 2.1: Schematic of the MNV plaque assay protocol. 
 
 

 



 
 

182 
 

 
Appendix Figure 2.2: Representative images of a well of a monolayer before 
infection and after formation of plaques. A) RAW 264.7 cells were cultured overnight 
and imaged under a light microscope at 20x magnification. B) Cells were stained with a 
0.01% neutral red solution after 48 hrs of infection and visualized under a light 
microscope at 4x magnification. Roman numbers I, II, and III indicate three visible 
plaques. 
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Appendix Figure 2.3: Representative images of the different plaque assay steps. 
A) MNV-1 inoculum is prepared in 10-fold dilutions. B) Inoculum is added to cell 
monolayers in duplicate wells. C) Cells and inoculum are incubated by rocking for 1 
hour at room temperature. D) Cells are overlaid with a 1:1 mixture of SeaPlaque 
agarose and 2x MEM media. E) Plates are incubated for 10 min at room temperature to 
allow the overlay to solidify. F) Staining of cells with the neutral red staining solution 48 
hrs post-infection. 
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Appendix Figure 2.4: MNV-1 forms plaques in cell monolayers. Shown here is a 
representative plaque assay plate, showing plaques stained with neutral red staining 
solution after 48 hrs of incubation. The plate shows duplicate wells of three 10-fold 
dilutions. Wells labeled with roman numbers I and IV correspond to the 10-1 dilution; II 
and V correspond to the 10-2 dilution; III and VI correspond to the 10-3 dilution. The viral 
titer of the sample is indicated below (see Section 4.5 for details of the calculation).  


