ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201400557

Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca-Doped BiFeO₃

Jan Seidel*, Morgan Trassin, Yi Zhang, Peter Maksymovych, Tino Uhlig, Peter Milde, Denny Köhler, Arthur P. Baddorf, Sergei V. Kalinin, Lukas M. Eng, Xiaoqing Pan, and Ramamoorthy Ramesh

Electronic properties of isosymmetric phase boundaries in highly strained Ca-doped BiFeO₃ Supplementary Information

Jan Seidel^{1,2,3*}, Morgan Trassin⁴, Yi Zhang⁵, Peter Maksymovych⁶, Tino Uhlig⁷, Peter Milde⁷, Denny Köhler⁷, Arthur P. Baddorf⁶, Sergei V. Kalinin⁶, Lukas M. Eng⁷, Xiaoqing Pan⁵, Ramamoorthy Ramesh^{2,3,4}

- ¹ School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ² Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ³ Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- ⁴ Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- ⁵ Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- ⁶ Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- ⁷ Institute of Applied Photophysics, Technische Universität Dresden, 01062 Dresden, Germany

email: jan.seidel@unsw.edu.au

Reciprocal space maps (RSMs) of the 001 (LAO)-diffraction condition of the BFO thin films with 2% Ca doping are shown in Fig. S1 a). The 001 diffraction peak of the substrate and the characteristic R and T phase peaks are visible. No significant difference has been observed in the lattice parameter measurement between doped and undoped thin films. The R phase out-of-plane lattice parameter is c = 4.17 Å. A detailed analysis of the RSM reveals the existence of satellites peaks on either side of the R and T phase diffraction peaks corresponding to a phase tilt of 1.53° and 2.88° that can be correlated to the topography of the films [1]. RSM performed at the (103) reflection are shown in Fig. S1 b) and c). Combined with the (001) RSM this allowed us to estimate the in-plane lattice parameter of the strained R-phase to be 3.82 Å revealing the high strain imposed to the film.

Fig. S1 RSM of the 001-diffraction peak (a) and 103-diffraction peak (b and c) of the BFO thin films with 2% Ca doping.

In order to acquire deeper insight into the structure-conductivity relation, we performed combined HAADF-STEM and EELS studies of the structural phases and boundaries (Fig. 3 in the main manuscript). HAADF images were obtained from a spherical aberration-corrected microscope (TEAM0.5). The raw EELS data is shown in figure S2.

Fig. S2 a) HAADF image of soft R-T boundary and local EELS spectra for O-Kedge (b) and Fe-L edges (c) across the boundary. d) and e) Fe L3/L2 and O/Fe signal ratio. f) HAADF image of sharp R-T boundary and local EELS spectra for O-Kedge (g) and Fe-L edges (h) across the boundary. i) and j) Fe L3/L2 and O/Fe signal ratio.

Fig. S3 Domain boundary conductivity for reversed out-of-plane polarization. a) topography, b) deflection signal, c) out-of-plane PFM amplitude, d) out-of-plane PFM phase, e) c-AFM.

Fig. S3 shows experimental scanning probe results on regions where the out-of-plane polarization is reversed by poling with a biased AFM tip (dark area in d). The locations of "soft" and "sharp" phase boundaries do not depend on the out-of-plane polarization direction, i.e. compare topography, deflection with piezoresponse (PFM) phase. Higher electronic conduction is seen at phase boundaries with both out-of-plane ferroelectric orientations.

References

[1] Damodaran, A. R., et al., Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO₃Thin Films, Adv. Mat. 23, 3170 (2011)