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Summary. Statistical challenges arise from modern biomedical studies that produce time course genomic data with ultrahigh
dimensions. In a renal cancer study that motivated this paper, the pharmacokinetic measures of a tumor suppressor (CCI-779)
and expression levels of 12,625 genes were measured for each of 33 patients at 8 and 16 weeks after the start of treatments,
with the goal of identifying predictive gene transcripts and the interactions with time in peripheral blood mononuclear cells
for pharmacokinetics over the time course. The resulting data set defies analysis even with regularized regression. Although
some remedies have been proposed for both linear and generalized linear models, there are virtually no solutions in the time
course setting. As such, a novel GEE-based screening procedure is proposed, which only pertains to the specifications of
the first two marginal moments and a working correlation structure. Different from existing methods that either fit separate
marginal models or compute pairwise correlation measures, the new procedure merely involves making a single evaluation of
estimating functions and thus is extremely computationally efficient. The new method is robust against the mis-specification
of correlation structures and enjoys theoretical readiness, which is further verified via Monte Carlo simulations. The procedure
is applied to analyze the aforementioned renal cancer study and identify gene transcripts and possible time-interactions that
are relevant to CCI-779 metabolism in peripheral blood.

Key words: Correlated data; Generalized estimating equations; Longitudinal analysis; Sure screening property; Time
course data; Ultrahigh dimensionality; Variable selection.

1. Introduction
An urgent need has emerged in biomedical studies for sta-
tistical procedures capable of analyzing and interpreting ul-
trahigh dimensional time course data. Consider a motivating
renal cancer study, wherein the pharmacokinetics of a tumor
suppressor (CCI-779) and expression levels of 12,625 genes
were measured for each of 33 patients at 8 and 16 weeks af-
ter the start of treatments. The number of measurements for
each patient varies from 1 to 4 as some patients missed their
appointments due to administrative reasons. The goal of the
study was to identify gene transcripts that predict the phar-
macokinetic measures over the time course and identify possi-
ble time-interactions, reflecting how time modifies the regula-
tion of relevant genes on the CCI-779 metabolism. However,
the resulting data set defies analysis even with regularized
regression.

When the number of the covariates greatly exceeds the
number of subjects, traditional variable selection methods
incur difficulties in speed, stability, and accuracy (Fan
and Lv, 2008). Sure independence screening has emerged
as a powerful means to effectively eliminate unimportant
covariates, allowing the much fewer “survived” covariates to
be fed into more sophisticated regularization techniques. Ap-
plications have been found in the context of linear regressions
with Gaussian covariates and independent responses (Fan
and Lv, 2008), generalized linear models (Fan, Samworth,
and Wu, 2009; Fan and Song, 2010), additive models (Fan,
Feng, and Song, 2011), single index models (Zhu et al., 2011),

Cox models (Zhao and Li, 2012a), nonparametric regression
models (Lin, Sun, and Zhu, 2013). Nonetheless, most of the
methods are derived for independent outcome data and may
not be effective for time course data as they typically ignore
within-subject correlations among outcomes. Recently, Li,
Zhong, and Zhu (2012) proposed to use a distance screening
measure for correlated responses, but their method is con-
fined to a balanced configuration and may not be applicable
when subjects have varying numbers of observations.

On the other side of the spectrum, a variety of vari-
able selection methods have been proposed to handle corre-
lated outcome data with high-dimensional covariates. These
methods have included, for example, bridge-, LASSO- and
SCAD-penalized generalized estimating equations (GEE) (Fu,
2003; Wang, Zhou, and Qu, 2012), penalized joint log like-
lihoods for mixed-effects models with continuous responses
(Bondell, Krishna, and Ghosh, 2010), and a two-stage shrink-
age approach (Xu, Fu, and Zhu, 2013). However, they all
stipulate that the number of covariates p grows to infinity
at a polynomial rate o(nα) for some 0 ≤ α < 4/3. They can
hardly handle ultrahigh dimensional cases because of chal-
lenges in computation, statistical accuracy, and numerical sta-
bility (Fan et al., 2009).

Responding to these statistical challenges, we propose a
new GEE-based screening procedure (GEES, hereafter) for ul-
trahigh dimensional time course data. This would be the first
attempt to handle both balanced and unbalanced ultrahigh
dimensional time course data in the presence of within-subject
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correlations. Similar to the GEE approach (Liang and Zeger,
1986), the proposed procedure pertains only to the specifica-
tion of the first two marginal moments and a working cor-
relation structure. Hence, it enjoys the desirable robustness
inherited from the parental GEE approach. Specifically, with
p growing at an exponential rate of n, the proposed procedure
possesses the sure screening property with a vanishing false
selection rate even when the working correlation structure is
misspecified. Computationally, GEES significantly advances
existing screening procedures by evaluating an ultrahigh di-
mensional GEE function only once instead of fitting p sepa-
rate marginal models. This is an important feature of GEES
to make the method worthwhile to advocate. Aside from the
computational effectiveness, we also note that the method
differs from the EEScreen method proposed by Zhao and Li
(2012b) in that our estimating functions are not confined to
be U-statistics, a key assumption stipulated in that work.

Further, parallel to the ISIS procedure in Fan and Lv
(2008), we suggest an iterative version of GEES (IGEES)
to handle difficult cases when the response and some impor-
tant covariates are marginally uncorrelated. We improve the
original algorithm by, instead of computing the correlation
between the residuals of the response against the remaining
covariates, computing the correlation between the original re-
sponse variable and the projection of the remaining covariates
onto the orthogonal complement space of the selected covari-
ates. This way, the correlation structure among covariates is
retained. Our Monte Carlo simulations manifest the drasti-
cally improved performance of IGEES under some challenging
settings.

The rest of the paper is organized as follows. In Section 2,
we introduce the GEES for covariate screening in a broader
context of longitudinal data analysis. Section 3 presents the
corresponding theoretical properties. In Section 4, we investi-
gate the finite sample performance of the GEES by Monte
Carlo simulations and an application to the advanced re-
nal cancer data set. Section 5 contains an iterative version
of GEES that is used to identify some relevant gene-by-time
interactions that regularizes the CCI-779 metabolism in our
motivating data example. The paper is concluded with a short
discussion in Section 6 and all the technical proofs are rele-
gated to Web Appendix A.

2. GEE Based Sure Screening

2.1. Generalized Estimating Equations

In a longitudinal study (including time course genomic studies
as a special case), suppose a response Yik and a p-dimensional
vector of covariates Xik (e.g., gene expressions) are observed
at the kth time point for the ith subject, i = 1, . . . , n and k =
1, . . . , mi. Let Yi = (Yi1, . . . , Yimi

)τ be the vector of responses
for the ith subject, and Xi = (Xi1, . . . , Ximi

)τ be the corre-
sponding mi × p matrix of the covariates. Assume the condi-
tional mean of Yik given Xik is

μik(β) � E(Yik|Xik) = g−1(Xτ
ikβ), (1)

where g is a known link function, and β is a p-dimensional
unknown parameter vector. Let σ2

ik(β) be the conditional vari-
ance of Yik given Xik, Ai(β) be an mi × mi diagonal matrix with

kth diagonal element σ2
ik(β), and Ri(α) be an mi × mi working

correlation matrix, where α is a finite dimensional parame-
ter vector which can be estimated by residual-based moment
method. The GEE estimator of β is defined to be the solution
of

n−1

n∑
i=1

μ̇τ
i (β)V−1

i (β)(Yi − μi(β)) = 0, (2)

where μi(β) = (μi1(β), . . . , μimi
(β))τ , μ̇i(β) = ∂μi(β)/∂β is an

mi × p matrix, and Vi(β) = A
1/2
i (β)Ri(α)A

1/2
i (β) is the work-

ing covariance matrix of Yi.
As in Liang and Zeger (1986), we assume that Yik belongs

to an exponential family with a canonical link function in (1),
implying that the first two moments of Yik can be written as
μik(β) = a(Xτ

ikβ) and σ2
ik(β) = φȧ(Xτ

ikβ), for some differentiable
function a(·). For simplicity, we assume that mi = m < ∞ and
φ = 1 throughout this article, though our procedure is still
valid for non-canonical response with varying cluster sizes.
Then, Equation (2) can be reduced to

G(β) � n−1

n∑
i=1

Xτ
i A

1/2
i (β)R−1(α)A

−1/2
i (β)(Yi − μi(β)) = 0,

(3)

where Ri(α) = R(α) for i = 1, . . . , n when mi ≡ m. We stress
that the assumption of Ri(α) = R(α) is for the ease of presen-
tation (in the next section) and is non-essential. A key advan-
tage of the GEE approach is that, when p is of order o(n1/3),
it yields a consistent estimator even with misspecified working
correlation structures (Wang, 2011). But it fails when the di-
mensionality p greatly exceeds the number of subjects n, even
if regularized methods are used (Wang et al., 2012; Xu et al.,
2013). This brings up a high demand of screening methods
that can quickly reduce p.

2.2. A New and Computationally Efficient Screening
Procedure

To simplify the presentation, we assume (Yi, Xi) are iid
copies of (Y, X), where Y is the multivariate response and
X = (x1, . . . , xp) is the corresponding m × p covariate ma-
trix. Then, let μ(β) be the mean vector of Y , A(β) be
an m × m diagonal matrix with the variances of Y given
X as the diagonal elements, and R(α) an m × m correla-
tion matrix. Without loss of generality, we assume through-
out this article that the covariates are standardized to have
mean zero and standard deviation one, though our proce-
dure is still valid for non-standardized covariates. Let β0 be
the true value of β, g(β) = E{XτA1/2(β)R−1(α)A−1/2(β)(Y −
μ(β)}, �0 = A1/2(0)R−1(α)A−1/2(0), and gj(0) be the jth el-
ement of g(0). Define the trace of a symmetric matrix M as
tr(M), and the covariance matrix of two random vectors a and
b as Cov(a, b). It follows that

gj(0) = E{xτ
j�0(Y − μ(0)} = tr{�0Cov(Y, xj)},

where the last equality holds as xj is a mean 0 vector and the
expectation is taken with respect to the joint distribution of
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(Y, xj). This implies that gj(0) is a surrogate measure of the
dependence between the response vector Y and the jth covari-
ate vector xj, justifying the utility of gj(0) as a thresholding
criterion for covariate screening.

Based on {(Yi, Xi), i = 1, . . . , n}, an empirical estimate of
g(β) would be

n−1

n∑
i=1

Xτ
i A

1/2
i (β)R−1(α)A

−1/2
i (β)(Yi − μi(β)).

Interestingly, it coincides with G(β) as defined in (3), based
on which we carry out the screening procedure. Specifically,
let Gj(0), the estimate of gj(0), be the jth element of G(0).
We select covariates with large values of Gj(0). As R(α) is

unknown a priori, we replace G(0) by Ĝ(0) with R(α) replaced
by the empirical estimate R(α̂), where α̂ is obtained via the

residual-based moment method. Let R̂ = R(α̂). Then, Ĝ(0) is
defined as

Ĝ(0) = n−1

n∑
i=1

Xτ
i A

1/2
i (0)R̂−1A

−1/2
i (0)(Yi − μi(0)). (4)

Hence, we would select the submodel using

M̂γn
= {1 ≤ j ≤ p : |Ĝj(0)| > γn}, (5)

where γn is a predefined thresholding value. Under some regu-
larity conditions, such a procedure, termed as the GEE-based
sure screening (GEES), would effectively reduce the full model

of size p down to a submodel M̂γn
with size less than n.

Remark 1. The proposed procedure (5) only requires a sin-
gle evaluation of the GEE function G(β) at β = 0 instead of
p separate GEE models, rendering much computational con-
venience.

Remark 2. Consider the following independent linear
model:

Yi = Xτ
i β + εi,

where εi are independent identically distributed from the stan-
dard normal distribution N(0, 1). The GEE function reduces
to

G(β) = n−1

n∑
i=1

Xi(Yi − Xτ
i β).

Therefore, for any given γn, the GEES select the submodel

M̂γn
= {1 ≤ j ≤ p : n−1|Xτ

·jy| > γn},

where y = (Y1, . . . , Yn)
τ and X·j is the jth column of the n × p

data matrix X = (X1, . . . , Xn)
τ . Thus our procedure includes

the original sure independent screening proposed by Fan and
Lv (2008) as a special case.

3. Sure Screening Properties of GEES

We study the sure screening properties of the proposal.
Let p = pn be a function of the sample size n, β0 be
the true value of pn-dimensional coefficients β and M0 =
{1 ≤ j ≤ pn : β0 �= 0} be the true model with model size
sn = |M0|. For a symmetric matrix A, we write λmin(A)
and λmax(A) for the minimum and maximum eigenval-
ues, respectively. Define ‖A‖F = tr1/2(AτA) as its Frobe-
nius norm and ‖a‖2 as the L2 norm of a vector a. Let
R̂ be the estimated working correlation matrix and σn =
E{λmax(n

−1
∑n

i=1
Xτ

i Xi)}/
√

E{λmin(n−1
∑n

i=1
Xτ

i Xi)}.
We assume the following regularity conditions:

(C1). β0 is an interior point of a compact set C.

(C2). ‖R̂ − R̄‖F = Op(
√

sn/n), where R̄ is a constant pos-
itive definite matrix. The common true correlation
matrix R0 satisfies 0 < λmin(R0) ≤ λmax(R0) < ∞.

(C3). For each 1 ≤ i ≤ n and 1 ≤ k ≤ m, Xik is uniformly
bounded by a positive constant c1.

(C4). There exists a finite positive constant c2 such that
E‖A−1/2

i (β)(Yi − μi(β))‖2+δ
2 ≤ c2 for some δ > 0 and

every β ∈ C.
(C5). There exists a finite constant c3 > 0 and a positive

definite matrix R̄ such that minj∈M0 |ḡj(0)| ≥ c3n
−κ

for some 0 < κ < 1/2, where ḡj(0) is the jth element
of

ḡ(0) = EXτA1/2(0)R̄−1A−1/2(0)(Y − μ(0)).

(C6). sn = op(n
1/3−2κ/3) and log pn = o(n1−2κ), where κ is

given in (C5).
(C7). Let � = E{n−1

∑n

i=1
Xτ

i Xi}. Assume that ‖�β0‖2 =
Op(1). Further, let B = {β : ‖β − β0‖ ≤ �

√
sn/n},

where � is a constant. On B, a(Xτ
ikβ) are uniformly

bounded away from 0 and ∞, ȧ(Xτ
ikβ) and ä(Xτ

ikβ) are
uniformly bounded by a finite positive constant c4 for
1 ≤ i ≤ n, 1 ≤ k ≤ m.

Conditions (C1) and (C2) are analogous to conditions (A1),
(A4) of Wang, Zhou, and Qu (2012) for generalized estimating
equations. Condition (C3) has been assumed in Wang, Zhou,
and Qu (2012), Zhu et al. (2011), and Li et al. (2012). This
condition could be relaxed by the following moment condi-
tion: For each 1 ≤ i ≤ n and 1 ≤ k ≤ m, there exists a positive
constant t0 such that

max
1≤j≤pn

E{exp(tXijk)} < ∞,

for all 0 < t < t0. But, in practice, centralized and normalized
covariates will trivially satisfy (C3), which empirically justi-
fies its usage. Condition (C4) is similar to the condition in

Lemma 2 of Xie and Yang (2003), condition (Ñδ) in Balan
and Schiopu-Kratina (2005), and condition (A5) in Wang
(2011), which usually holds for outcome Yi of a variety of
types, including binary, Poisson and Gaussian. With ḡj(0) =
tr{A1/2(0)R̄−1A−1/2(0) Cov(μ(β0), xj)}, condition (C5) is sim-
ilar to the condition in Theorem 3 of Fan and Song (2010),
ensuring the marginal signals are stronger than the stochastic
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noise as shown in Web Appendix A. The first part of condition
(C7) is analogous to condition F in Fan and Song (2010). The
second part of condition (C7) is analogous to condition (A6)
of Wang, Zhou, and Qu (2012), which is generally satisfied for
the GEE.

The following theorem establishes the sure screening prop-
erty for the GEES procedure. The proofs are relegated to Web
Appendix A.

Theorem 1. Under conditions (C1)–(C7), if γn =
c3n

−κ/4, then there exists a positive constant c depending on
c1 and c2 such that

P(M0 ⊂ M̂γn
) ≥ 1 − 2sn exp

{
− c2

3n
1−2κ/4

2c + c3n−κ

}
− cs3/2

n

n1/2−κ
.

Remark 3. It is not uncommon to misspecify the work-
ing correlation structure R̂ involved in (4) for Ĝ(0). However,
Theorem 1 guarantees that, with a probability tending to one,
all of the important covariates will be retained by the GEES
procedure even if the working correlation structure is misspec-
ified (see condition (C2)).

Remark 4. Similar to existing screening procedures, from
Theorem 1, we find that only the size of non-sparse elements
sn matters for the purpose of screening, not the dimensionality
pn.

Theorem 2. Under conditions (C1)–(C7), if γn =
c3n

−κ/4, then there exists a positive constant c, depending on
c2, cβ and boundaries c1 and c4, such that

P(|M̂γn
| ≤ O(n2κσn)) ≥ 1 − 2pn exp

{
c2
3n

1−2κ/162

2c + c3n−κ

}
− cs1/2

n

n1/2−κ
.

Theorem 2 states that the size of M̂γn
can be controlled

by the GEES procedure and is of particular importance in
the longitudinal setting. First, the probability that the bound
holds approaches to one even if log pn = o(n1−2κ) with 0 < κ <

1/2. This implies that the size of false positives can be con-
trolled with high probability even in the longitudinal setting
with ultrahigh dimensional covariates. Second, this bound
holds with high probability even with misspecified working
correlation structures.

4. Numerical Studies

We first assess the finite sample performance of the GEES
via Monte Carlo simulations. Then, we further illustrate the
proposed procedure with an analysis of advanced renal cancer
data of Boni et al. (2005).

4.1. Simulation Results

Throughout, we consider three types of working correla-
tion structures for the multivariate outcomes: independence,
exchangeable and AR(1), and label the corresponding ap-
proaches as GEES IND, GEES CS, and GEES AR1, respec-
tively. To mimic the real situations, we set the total number of

covariates p = 1, 000, 6, 000, 20, 000 and repeat our procedure
400 times for each configuration.

To assess the sure screening property, we record the min-
imum model size (MMS) required to contain the true model
M0. We report the 5%, 25%, 50%, 75%, and 95% quantiles
of MMS. For the assessment of computational efficiency, we
also report the average computing time in seconds for each
method.

Example 1. To mimic the real data example below, we gen-
erate the correlated normal responses from the model

Yik = cXτ
ikβ + εik,

where i = 1, . . . , 30, k = 1, . . . , 10, Xik = (Xik1, . . . , Xikp)
τ is

a p-dimensional covariate vector and β = (1, 0.8, 0.5, −0.7,

0, . . . , 0)τ . For the covariates, Xik1 is independently from the
Bernoulli(0.5) distribution, and Xik2 to Xikp are independently
from the multivariate normal distribution with mean 0 and an
AR(1) covariance matrix with marginal variance 1 and auto-
correlation coefficient 0.8. The random errors (εi1, . . . , εi10)

τ

are independently from the multivariate normal distribution
with marginal mean 0, marginal variance 1 and an exchange-
able correlation with parameter ρ. Two values of ρ are con-
sidered: ρ = 0.5 and 0.8. And to control the signal to noise
ratio (SNR), we vary the constant c in front to Xτ

ikβ. We
consider c = 0.5, 0.75, and 1.5, which corresponds to SNR =
30%, 50%, and 80%, respectively.

As a comparison, we also implement the sure independence
screening (SIS) proposed by Fan and Lv (2008) and the dis-
tance correlation based SIS (DC-SIS) proposed by Li et al.
(2012). Tables 1, 2 and Table 1 in Web Appendix B reports
the 5%, 25%, 50%, 75%, and 95% percentiles of the minimum
model size (MMS) and the average computing time by differ-
ent screening methods under different SNR settings. We see
that our method performs well across a wide range of sig-
nal to noise ratios. In particular, under the correctly specified
correlation structure (CS), the GEES CS gives the smallest
MMS to ensure the inclusion of all truly active covariates.
It significantly outperforms other methods, especially in the
higher dimensional case with strong within-subject associa-
tions. In contrast, the DC-SIS performs relatively poor when
the signal to noise ratio is small, though it accounts for the
within-subject correlations as well. And the last column re-
veals that the GEES is extremely more efficient than the DC-
SIS in computation. On the other hand, the GEES IND and
the SIS perform same in linear models, which is in accordance
with Remark 2 in Section 2.2.

Example 2. Consider a balanced Poisson regression model:

Yik|Xik ∼ Pois{λ(Xτ
ikβ)},

where i = 1, . . . , 400, k = 1, . . . , 10, λ(u) = exp(u), β = (1.5 −
U1, . . . , 1.5 − U4, 0, . . . , 0)τ , and Uk’s follow a uniform dis-
tribution U[0,1], reflecting different strengths of signals. For
the p-dimensional covariate vectors, we generate Xik indepen-
dently from the multivariate normal distribution with mean 0
and an AR(1) covariance matrix with marginal variance 1 and
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Table 1
The 5%, 25%, 50%, 75%, and 95% percentiles of the minimum model size and the average runtime in seconds (standard

deviation) in Example 1 (with Xeon X5670 2.93 GHz CPU) when SNR = 30%

p ρ Method 5% 25% 50% 75% 95% TIME

1,000 0.5 GEES IND 5 25 121 372.75 837.50 0.05 (0.01)
GEES CS 4 11.75 50.50 193.25 715.10 0.12 (0.01)
GEES AR1 5 25 90.50 361.75 829.10 0.14 (0.01)
SIS 5 25 121 372.75 837.50 0.05 (0.01)
DC-SIS 49 406.75 598 781 915.20 1.16 (0.04)

0.8 GEES IND 5 24 94.50 307 781.25 0.04 (0.01)
GEES CS 4 5 12 45.25 305.50 0.10 (0.01)
GEES AR1 4 8 29 122 495.25 0.12 (0.01)
SIS 5 24 94.50 307 781.25 0.04 (0.01)
DC-SIS 200.85 422 613 795 961 1.14(0.03)

6,000 0.5 GEES IND 10 111.25 474 1805.25 4774.90 0.30 (0.02)
GEES CS 5 32.75 250.50 1009.75 4030.25 0.36 (0.02)
GEES AR1 11 115 547 2174.25 5035.20 0.37 (0.03)
SIS 10 111.25 474 1805.25 4774.90 0.30 (0.02)
DC-SIS 1133.80 2531.25 3634.50 4697 5631.25 6.98 (0.01)

0.8 GEES IND 11 102.75 552 1942 4734.50 0.28 (0.04)
GEES CS 4 9 62.50 337.25 2608.50 0.35 (0.01)
GEES AR1 4 32 215 924.25 3997.90 0.37 (0.02)
SIS 11 102.75 552 1942 4734.50 0.28 (0.04)
DC-SIS 919.85 2393 3634.50 4748.75 5596.20 6.89 (0.09)

20,000 0.5 GEES IND 35.90 433 2005.50 6779.75 16333.35 1.22 (0.03)
GEES CS 8.95 156.75 871.50 3874 14848.30 1.27 (0.04)
GEES AR1 23.95 362.50 1892.50 6725.25 16322.90 1.37 (0.06)
SIS 35.90 433 2005.50 6779.75 16333.35 1.22 (0.03)
DC-SIS 3147.85 7841.25 12233.50 15680.50 19001.45 23.19 (0.17)

0.8 GEES IND 51.95 494.75 2185 6473.25 16595 1.26 (0.06)
GEES CS 5 30.75 171.50 1142.25 6211.60 1.33 (0.04)
GEES AR1 9.95 124 696.50 2492.50 10067 1.35 (0.04)
SIS 51.95 494.75 2185 6473.25 16595 1.26 (0.06)
DC-SIS 3585.45 8486 12464 16071.75 19301.15 23.12 (0.14)

auto-correlation coefficient 0.8. The response vector for each
cluster has an exchangeable correlation structure with corre-
lation coefficient ρ. We consider ρ = 0.5 and 0.8 to represent
moderate and strong within-cluster correlations.

Similar to Example 1, we also implement the SIS proposed
by Fan and Song (2010) and the DC-SIS proposed by Li
et al. (2012) for comparison. Table 3 summarizes the mini-
mum model size and the average computing time by different
screening methods. In the presence of correlation, the pro-
posed GEES outperforms the competing methods even when
the working correlation structure is misspecified. The DC-
SIS performs well in this case where nonzero coefficients have
large values, but as in Example 1, it incurs much more com-
putational burden than the GEES. On the other hand, the
GEES IND outperforms the SIS significantly in computation,
as the latter needs to fit p marginal Poisson regressions, which
is relatively unstable under this dependent features setting,
whereas the former only needs a single evaluation of the esti-
mating function. Moreover, as the number of covariates p in-
creases, the GEES performs very stably as opposed to the SIS.

4.2. Advanced Renal Cancer Data Analysis

We apply the proposed screening method to study a phase II
trial of CCI-779, an anti-cancer inhibitor, administered in pa-

tients with advanced renal cell carcinoma (Boni et al., 2005).
Pharmacokinetic profiling (i.e., the cumulative concentra-

tion of CCI-779 measured by the area under the curve) for
a total of 33 patients was performed at 8 and 16 weeks after
the start of treatments. The 8 week was chosen as metabolism
of CCI-779 would be stabilized by then and its measurement
could be regarded as the baseline. However, a sizable portion
of patients missed their measurements at 8- or 16-week be-
cause of administrative issues while some patients were mea-
sured twice at 8 or 16 weeks, which resulted in an unbalanced
data structure. A total of expression values for 12625 probe-
sets were also measured for each subject at each time point
using HgU95A Affymetrix microarrays during the course of
therapy. One goal of the trial was to identify transcripts in
peripheral blood mononuclear cells that, after the initiation
of CCI-779 therapy, exhibit temporal profiles correlated with
the concentration of CCI-779.

As the log-transformed outcome, CCI-779 cumulative
AUC, is roughly normal, we consider the GEE model (1) with
the identity link. Figure 1 (Web Appendix B) shows that there
is an increasing trend for AUC over time of treatments for all
patients who were measured at both 8 and 16 weeks. So, we
include a binary variable “TIME”—0 for measurement at 8
week (baseline), 1 for measurement at 16 week - into the GEE
model (1) to account for the time effect. Further, since the
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Table 2
The 5%, 25%, 50%, 75%, and 95% percentiles of the minimum model size and the average runtime in seconds (SD) in

Example 1 (with Xeon X5670 2.93 GHz CPU) when SNR = 50%

p ρ Method 5% 25% 50% 75% 95% TIME

1,000 0.5 GEES IND 4 8 32 131.25 577.45 0.04 (0.01)
GEES CS 4 6 15 65 363.60 0.11 (0.01)
GEES AR1 4 10 37.50 123 616.80 0.12 (0.01)
SIS 4 8 32 131.25 577.45 0.04 (0.01)
DC-SIS 89.80 258.75 484.50 697.50 928.05 1.12 (0.01)

0.8 GEES IND 4 8 26.50 99 578.15 0.03 (0.01)
GEES CS 4 4 7 17 120.10 0.10 (0.01)
GEES AR1 4 5 19 63 309.60 0.13 (0.01)
SIS 4 8 26.50 99 578.15 0.03 (0.01)
DC-SIS 95.95 291 480 678.75 931.10 1.13 (0.03)

6,000 0.5 GEES IND 5 27 162 856.75 3401.90 0.30 (0.02)
GEES CS 4 11 64.50 377 2195.15 0.34 (0.02)
GEES AR1 5 33.75 198.50 812 3762.25 0.36 (0.02)
SIS 5 27 162 856.75 3401.90 0.30 (0.02)
DC-SIS 523.60 1735.75 2934 4187 5575.60 7.04 (0.10)

0.8 GEES IND 4 16.75 106 602.25 2764.30 0.32 (0.02)
GEES CS 4 5 17 88.25 728.20 0.33 (0.01)
GEES AR1 4 10 71 323.50 1854.25 0.36 (0.02)
SIS 4 16.75 106 602.25 2764.30 0.32 (0.02)
DC-SIS 582.10 1676.25 2889.50 4029.50 5579.95 6.88 (0.06)

20,000 0.5 GEES IND 8.95 90.25 474.50 2451.75 9952 1.24 (0.03)
GEES CS 4 34 254.50 1228 5770.70 1.30 (0.01)
GEES AR1 8 138 67.507 2497.25 11559.60 1.36 (0.01)
SIS 8.95 90.25 474.50 2451.75 9952 1.24 (0.03)
DC-SIS 1990.65 6228.25 10783 14770.50 18772.55 23.55 (0.28)

0.8 GEES IND 6 54.25 363.50 1910.25 9866 1.27 (0.03)
GEES CS 4 8 42 289 2927.10 1.27 (0.04)
GEES AR1 4 35 216 1027.50 7477.95 1.34 (0.02)
SIS 6 54.25 363.50 1910.25 9866 1.27 (0.03)
DC-SIS 2198.45 5859.25 10268.50 14201.50 18631.05 23.29 (0.32)

number of genes (p = 12, 625) greatly outnumbers the num-
ber of patients (n = 33) in the study, a covariate screening
seems necessary before feeding the data to any sophisticated
variable selection methods. Therefore, we first implement the
proposed GEES procedure based on different working cor-
relation structures to reduce dimensionality. Then, we com-
bine our procedures with the penalized weighted least-squares
(PWLS) method proposed in Xu et al. (2013) to refine the re-
sults. To commensurate with the sample size of 33, we first
apply the GEES to screen out d = 15 most informative ones
from those 12,625 genes, while keep the covariate “TIME” in
the model. Then, we apply the PWLS to the following GEE
model to examine the gene main effects

log(Yik) = β0 + β1TIMEik +
∑
j∈A

β2j log(GENikj) + εik, (6)

where A consists of these 15 selected gene transcripts, GENikj

represents the observed gene expression value of the jth se-
lected genes in A at the kth time point for the ith subject,
and εik is the error term. Without confusion, we still denote
the methods as GEES. To compare with the competing meth-
ods, we also consider the SIS method proposed in Fan and Lv

(2008), in which the SCAD method (Fan and Li, 2001) is used
to refine the results. We note that the DC-SIS method pro-
posed by Li et al. (2012) is not applicable to our unbalanced
setting.

The resulting number of informative genes are summarized
in Table 4. We also consider an out-of-sample testing to com-
pare the performance in terms of forecasting. We conduct 100
cross-validation experiments, in each of which we randomly
partition the entire data set D = {1, . . . , 33} into a training
data set D1 with 25 subjects and a test data set D2 with 8
subjects. We fit the GEE model with the identity link respec-
tively for the GEES and the SIS with the training data, then
calculate the prediction error in the test data set by using the
loss function proposed by Cantoni et al. (2005). Table 4 re-
ports the median of prediction errors from 100 random splits
and Figure 2 in Web Appendix B summarizes the prediction
errors using boxplot for procedures GEES IND, GEES CS,
GEES AR1 and SIS. We can see that, in terms of forecast-
ing, the GEES CS performs best, which gives the smallest
prediction error. Although both the GEES IND and the SIS
assume the independence among the responses, the SIS does
not perform as well as the GEES IND even with more genes
selected.
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Table 3
The 5%, 25%, 50%, 75%, and 95% percentiles of the minimum model size and the average computing time in seconds (SD)

in Example 2 (with Xeon X5670 2.93 GHz CPU)

p ρ Method 5% 25% 50% 75% 95% TIME

1,000 0.5 GEES IND 4 4 4 4 5 0.82 (0.06)
GEES CS 4 4 4 4 5 1.64 (0.10)
GEES AR1 4 4 4 4 5 2.08 (0.15)
SIS 4 6 47 180 410.30 132.91 (32.39)
DC-SIS 4 4 4 4 7 130.78 (1.03)

0.8 GEES IND 4 4 4 4 5 0.80 (0.01)
GEES CS 4 4 4 4 5 1.61 (0.02)
GEES AR1 4 4 4 4 5 2.06 (0.13)
SIS 4 5 34 149.25 515.50 134.59 (40.08)
DC-SIS 4 4 4 4 5.05 130.67 (1.07)

6,000 0.5 GEES IND 4 4 4 4 5 1.61 (0.04)
GEES CS 4 4 4 4 5 1.96 (0.01)
GEES AR1 4 4 4 4 6 2.30 (0.01)
SIS 4 6 119 762.50 2062 305.08 (45.05)
DC-SIS 4 4 4 4 7.05 199.50 (0.41)

0.8 GEES IND 4 4 4 4 5 1.62 (0.02)
GEES CS 4 4 4 4 5 2.00 (0.03)
GEES AR1 4 4 4 4 7 2.29 (0.04)
SIS 4 6 103.50 783.75 2821.85 298.57 (44.77)
DC-SIS 4 4 4 4 8.15 197.11 (0.06)

20,000 0.5 GEES IND 4 4 4 4 5 8.29 (0.69)
GEES CS 4 4 4 4 5 8.65 (0.72)
GEES AR1 4 4 4 4 6.05 8.63 (0.54)
SIS 4 6 350.50 2161.50 5675.70 671.68 (95.53)
DC-SIS 4 4 4 4 5 715.27 (49.56)

0.8 GEES IND 4 4 4 4 5 8.30 (0.49)
GEES CS 4 4 4 4 5 8.91 (0.65)
GEES AR1 4 4 4 4 8.10 8.78 (0.84)
SIS 4 6 307 2017.75 7129.35 651.14 (93.48)
DC-SIS 4 4 4 4 10.05 706.47 (48.92)

Our results have strong biological implications. Four over-
lapping genes have been identified by all the GEES procedures
under different working correlation structures: ubiquitin
specific peptidase 6 (Tre-2 oncogene) (USP6), α3β1 intergin,
beta-actin, and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), all of which are relevant to renal functions
(Schmid et al., 2003).

Table 4
The number of selected informative genes (labeled “Model

size”) and the median of prediction errors (“PE”) from 100
random splits for procedures in the advanced renal cancer

data set. “GEES” stands for the GEES screening procedure
with the PWLS variable selection method. “SIS” stands for
the SIS procedure in Fan and Lv (2008), in which the SCAD

method is used to refine the results

Model size PE

GEES IND 5 129.38
GEES CS 5 49.48
GEES AR1 5 61.21
SIS 11 194.85

5. IGEES: An Iterative GEE Based Sure
Screening

Like any other univariate screening procedures, the GEES
procedure may miss the covariates which are marginally un-
related but jointly related to the responses. In the sprit of
the iterative SIS (Fan and Lv, 2008; Fan et al., 2009) and
the iterative sure independent ranking and screening (Zhu et
al., 2011), we propose an iterative GEE based sure screening
(IGEES) procedure to overcome this difficulty.

Step 1. In the initial step, we apply the GEES procedure
for samples {(Yi, Xi), i = 1, . . . , n} to select k1 co-
variates, where k1 < d and d is the predetermined
number of selected covariates. Let A1 be the set
of indices of the selected covariates and XiA1 be
the corresponding m × k1 matrix of selected co-
variates for the ith subject, i = 1, . . . , n.

Step 2. Let XA1 = (Xτ
1A1

, . . . , Xτ
nA1

)τ , and XAc
1

be its
complement. Then, we denote the projec-
tion of XAc

1
onto the orthogonal comple-

ment space of XA1 by X̃ = {IN − XA1(X
τ
A1

XA1)
−1

Xτ
A1

}XAc
1
, where N = nm. Decompose X̃ into X̃ =

(X̃τ
1, . . . , X̃

τ
n)

τ as XA1 . Apply the GEES procedure
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for {(Yi, X̃i), i = 1, . . . , n} and select k2 covariates.
Let A2 be the corresponding index set.

Step 3. Repeat Step 2 K − 2 times and update the se-
lected covariates with A1 ∪ . . . ∪ AK until k1 +
. . . + kK ≥ d.

In practice, selecting the total number of selected covari-
ates d is challenging, which depends upon the data’s at-
tribute and model complexity. In linear models, Fan and Lv
(2008) recommended d = [n/ log n] as a sensible choice accord-
ing to the asymptotic theory, while in models where the re-
sponse provides less information, Fan et al. (2009) suggested
smaller d, such as d = [n/(4 log n)] for logistic regression mod-
els, to screen out non-informative variables. In the following
simulation, we consider four different values of d: [n/ log n],
[n/(2 log n)], [n/(3 log n)], and [n/(4 log n)]. The results below
show that our method is quite robust to different choices of
d, which implies that the model-based choice of d seem to be
satisfactory.

Example 3. In this simulation experiment, we consider an
unbalanced logistic regression:

logit(μik) = Xτ
ikβ,

where i = 1, . . . , 400, k = 1, . . . , mi, β = (4, 4, 4, −6
√

2, 0, . . . ,

0)τ with p = 1000, and mis are randomly drawn from a Pois-
son distribution with mean 5 and increased by 2. We inde-
pendently generate Xik from a multivariate normal distribu-
tion with mean zero and covariance � = (σij), where σii = 1
for i = 1, . . . , p, σi4 = σ4i = 1/

√
2 for all i �= 4, and σij = 1/2

for i �= j, i �= 4 and j �= 4. The covariate X4 is marginally in-
dependent from, but jointly relevant to, the response variable
Y , which typically will not be selected by the GEES. The bi-
nary response vector for each cluster has an AR(1) corre-
lation structure with correlation coefficient ρ with two val-
ues ρ = 0.5 and 0.8 to represent different within correlation
strength. How to decide the sizes kis is also challenging, which
is usually depends on model complexity. As suggested by Fan
et al. (2009), in this example, we choose k1 = [2d/3] and
ki+1 = min(5, d − ki). The following simulation results hint the
validity of this strategy.

Table 5 reports the frequency when every single truly in-
formative covariate is selected (Ps) as well as when all the
truly informative covariates are selected (Pa) out of 400 repli-
cations based on different predefined thresholding values of
d. It reveals clearly that the IGEES can greatly improve the
performance of the GEES even in the high within correla-
tion setting. And even with a misspecified working correla-
tion structure, it identifies covariate X4, which is missed by
the GEES. Moreover, we observe that both the GEES and
the IGEES perform quite robust to different choices of d. In
particular, choosing a larger d increases the probability that
the IGEES keeps all active variables even when the working
correlation structure is misspecified.

Example 4. (revisit of real data analysis) We fur-
ther use the advanced renal cancer data set in Section 4.2 to
evaluate the performance of the IGEES method. Same as the

analysis in Section 4.2, we first apply the proposed IGEES
procedure to shrink the dimension to 16 based on different
working correlation structures, where the covariate “TIME”
is kept in the model. Then, we apply the PWLS to fit (6)
for refined modeling. Without confusion, call the methods as
IGEES. And we compare with the ISIS method proposed in
Fan and Lv (2008) with the SCAD method for further refin-
ing the results. Table 2 (Web Appendix B) depicts the resulting
number of informative gene transcripts and the median of pre-
diction errors from 100 random splits. Together with Table 4,
it can be clearly seen that the IGEES CS has the smallest
prediction error. The GEES does not perform as well as the
IGEES, partly because the GEES may miss some important
features during the screening.

Because the effect of gene expressions on CCI-779 cumu-
lative AUC may be modified by time, we next consider the
following GEE model and apply the PWLS to examine the
interaction effects of selected genes with time

log(Yik) = β0 + β1TIMEik +
∑
j∈B

β2j log(GENikj),

+
∑
j∈B

β3jTIMEik ∗ log(GENikj) + εik, (7)

where B consists of final selected gene transcripts based on
the GEES and the IGEES procedures. We find that the GEES
method could not identify any gene-by-time interactions, but
there are two genes with the gene-by-time interaction that have
been identified by all the IGEES procedures under different
working correlation structures: beta-actin (ACTB), and ubiq-
uitin specific peptidase 6 (Tre-2 oncogene) (USP6). Figures 3
and 4 (Web Appendix B) show the estimated regression lines
of the log AUC on these two genes at 8 and 16 weeks, respec-
tively. The time-interaction effects are obvious - both genes
seem to regularize the CCI-779 metabolism at week 8, but not
at week 16. These two genes may be related to renal functions
at early stage of treatment; see Boni et al. (2005) for more
detail.

6. Discussion

The original idea of sure independence screening stems from
studying the marginal effect of each covariate, which presents
a powerful method for dimension reduction and has been
widely applied for independent data. But these applications
may not be effective for time course data as they would ig-
nore within-subject correlations. To fill this gap, we propose
the GEES, a new computationally efficient screening proce-
dure based only on a single evaluation of the generalized es-
timating equations in ultrahigh dimensional time course data
analysis. We show that, with p increasing at the exponen-
tial rate of n, it enjoys the sure screening property with van-
ishing false selection rate even when the working correlation
structure is misspecified. An iterative GEES (IGEES) is also
proposed to enhance the performance of the GEES for more
complicated ultrahigh dimensional time course. The numeri-
cal studies demonstrate its improved performance compared
with existing screening procedures.
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Table 5
The proportion that every single truly active covariate is selected (Ps) and the proportion that all truly active covariates are

identified (Pa) out of 400 replications in Example 3

Ps Pa

d ρ Method X1 X2 X3 X4 ALL

[n/ log n] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

[n/(2 log n)] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

[n/(3 log n)] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 0.99 0.99
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

[n/(4 log n)] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 0.98 0.98
IGEES CS 1 1 1 0.99 0.99
IGEES AR1 1 1 1 0.99 0.99

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 0.96 0.96
IGEES CS 1 1 1 0.99 0.99
IGEES AR1 1 1 1 1 1

Once dimension reduction is achieved, we can use some
regularized regression techniques, such as the penalized
GEE method (Wang, Zhou, and Qu 2012) and the PWLS
method (Xu et al., 2013), to reach the final model.

Several open problems, though, still exist. Even if the pro-
posed procedure is capable of retaining important covariates

without including too many false positives no matter what
working correlation matrix is used, the mis-specification of
the working correlation will indeed affect the efficiency of pa-
rameter estimation in the regularization step. It is therefore
important for us to discuss the impact of mis-specification in
a more systematic fashion. Moreover, to retain the covariates
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which are marginally unrelated but jointly related with the
responses, we propose an iterative GEES procedure, along the
line of Fan and Lv (2008) and Fan et al. (2009). The validity of
such a strategy is implied by our numerical studies. But future
work is warranted to study the relevant theoretical properties,
although the theory is elusive even for independent cases.

Finally, in the presence of missing responses at some time
points, our implicit assumption is missing completely at ran-
dom (MCAR), under which generalized estimating equations
(GEE) yield consistent estimates (Liang and Zeger, 1986).
Such an assumption is applicable to our motivating example,
as patients missed their measurements due to administrative
reasons. However, when the missing data mechanism is miss-
ing at random (MAR), that is the probability of missing a
particular outcome at a time-point depends on observed val-
ues of that outcome and the remaining outcomes at other time
points, GEE has to be modified so as to incorporate missing
mechanisms. This is beyond the current scope of the work and
would warrant further investigations.

7. Supplementary Materials

Web Appendices, Tables and Figures referenced in Sections
3-5 are available with this paper at the Biometrics website on
Wiley Online Library.
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