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G-scores: A method for identifying
disease-causing pathogens with
application to lower respiratory
tract infections
Peng Zhang,a Peichao Peng,b Lu Wangc*† and Yu Kangd

Lower respiratory tract infections (LRTIs) are well known for the lack of a good diagnostic method. The main
difficulty lies in the fact that there are a variety of pathogens causing LRTIs, and their management and
treatment are quite different. The development of quantitative real-time loop-mediated isothermal amplification
(qrt-LAMP) made it possible to rapidly amplify and quantify multiple pathogens simultaneously. The question
that remains to be answered is how accurate and reliable is this method? More importantly, how are qrt-LAMP
measurements utilized to inform/suggest medical decisions? When does a pathogen start to grow out of control
and cause infection? Answers to these questions are crucial to advise treatment guidance for LRTIs and also
helpful to design phase I/II trials or adaptive treatment strategies. In this article, our main contributions include
the following two aspects. First, we utilize zero-inflated mixture models to provide statistical evidence for the
validity of qrt-LAMP being used in detecting pathogens for LRTIs without the presence of a gold standard
test. Our results on qrt-LAMP suggest that it provides reliable measurements on pathogens of interest. Second,
we propose a novel statistical approach to identify disease-causing pathogens, that is, distinguish the pathogens
that colonize without causing problems from those that rapidly grow and cause infection. We achieve this by
combining information from absolute quantities of pathogens and their symbiosis information to form G-scores.
Change-point detection methods are utilized on theseG-scores to detect the three phases of bacterial growth—lag
phase, log phase, and stationary phase. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: change point; Gibbs sampling; loop-mediated isothermal amplification; Markov chain Monte Carlo;
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1. Introduction

The diagnosis and treatment of lower respiratory tract infections (LRTIs), one of the most common
diseases worldwide, are still rather empirical. The main approach to testing for types of pathogens as
the cause of LRTIs is standard culture method (SCM), which however has many drawbacks. First of
all, SCM is not accurate enough, particularly in terms of sensitivity, as many factors can affect the
growth of pathogens during the culture process. Second, SCM only has qualitative results (presence
or non-presence of pathogens) and thus cannot provide quantitative recommendations for treatment,
such as dosage. Third, we often cannot obtain timely results from SCM to recommend suitable treat-
ments. These limitations can lead to misuse or overuse of antibiotics and cause the miss of opportunities
to treat patients. Therefore, there is a great need to develop new diagnostic tests for pathogens in
clinical practice.

Kang et al. [1], for the first time, utilized quantitative real-time loop-mediated isothermal amplifica-
tion (qrt-LAMP) [2] to test for pathogens in the sputum samples. The study was led by the Department
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of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, with the joint
effort of 21 tertiary hospitals in 14 provinces of China. They successfully demonstrated that qrt-LAMP
can be used to identify and quantify multiple common pathogens related to LRTIs in sputum samples of
patients with great performance from lab tests. LAMP was originally used for infectious diseases caused
by a single type of pathogen, such as tuberculosis, malaria, or sleeping sickness [3–5], where statistical
analyses are straightforward. However, to our knowledge, there is little statistical literature on analyzing
qrt-LAMP data for diseases such as LRTIs, which can be caused by a variety of pathogens. The major
challenge lies in the differentiation of infection (pathogens rapidly grow, invade the host system, and
cause the disease) from colonization (pathogens inhabit the host system but do not cause problems). The
ability to identify such disease-causing bacterial pathogens will have a great impact on clinical diagnosis
and treatment.

Towards this goal, we first demonstrate that qrt-LAMP can indeed amplify and quantify the eight most
common bacterial pathogens for LRTIs and evaluate its performance. Traditionally, this depends on a
‘gold standard’ test or a ‘resolver’ test in discrepant analysis [6]. However, in our case, such tests are not
available from the experimental design. As Kang et al. [1] suggested that qrt-LAMP has a almost per-
fect specificity, we employ a zero-inflated mixture model [7–10] to identify false-negative results among
all negative results. We then estimate the prevalence of bacterial pathogen carriers in the population as
well as the sensitivity of qrt-LAMP test. A separate analysis was conducted on the SCM data in com-
parison with qrt-LAMP results. In addition, we investigate the effects of important baseline covariates
on the prevalence of carriers and on quantities of pathogens for carriers through a zero-inflated Tobit
model [11].

Furthermore, we provide an approach to utilizing the measurements from qrt-LAMP to identify
the disease-causing pathogens. This is critical for clinical recommendation of choices and dosages
of antibiotic treatments. LRTIs are generally associated with a large number of pathogens, and these
pathogens can inhabit peacefully within the host system. Therefore, for any single pathogen, a posi-
tive result from qrt-LAMP only implies its presence in the host system but does not necessarily mean
that this pathogen causes the disease. Only when one or a combination of pathogens rapidly grow and
cause infections are they considered disease-causing pathogens. As one can never be sure whether
a pathogen causes the disease by merely looking at its qrt-LAMP result, the traditional approaches
such as logistic regression or supervised learning cannot be applied. As one particular pathogen grows
eventually uncontrollably and causes LRTIs, its initial abundance (or absolute quantity) must be an
important factor. Meanwhile, its relative abundance is also crucial because pathogens live together
in the hosting environment and compete for limited nutrients available. The growth of one pathogen
would consume more nutrients and in turn suppress the growth of others. We combine these two
aspects, both the absolute and relative abundance, by novelly resembling the techniques used in par-
allel tempering from Markov chain Monte Carlo (MCMC) literature [12], and construct G-scores to
better represent the growth information compared with the original qrt-LAMP measurements. Change-
point detection methods clearly reveal two transition points for these G-scores, which is consistent
with the biological fact that there are two transition points for bacterial growth. We further use the
piecewise-linear regression to identify the transition points and thus provide candidate criteria for the
diagnosis and treatment of LRTIs, which can also serve as guidance to design future phase I or phase II
clinical trials.

The remainder of the article is organized as follows: Section 2 gives a brief description of data.
Detailed notation, the proposed zero-inflated mixture models, and implementations are presented in
Section 3. Section 4 presents how to form the G-scores, determine their transition points, and identify
disease-causing pathogens for individuals. Detailed results are shown in Section 5. Finally, we conclude
with a brief discussion in Section 6. Technical details are left in the Supporting information.

2. The motivating data

The data were collected from 21 tertiary hospitals in 14 provinces of China. In total, 1533 subjects
diagnosed with LRTIs were enrolled in the study. Their personal information, such as age, gender,
scores on severity of diseases, and medical prescription history, was recorded. Sputum samples were
collected for each patient. Both SCM and qrt-LAMP were performed on the sputum samples to test
for eight common bacterial pathogens for LRTIs. SCM was performed three times independently on
separate sputum samples. As a qualitative diagnostic test, SCM only reports positive or negative for each
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experiment. The number of positive results was recorded. qrt-LAMP assay yields continuous titer val-
ues, which represent the concentration of bacterial pathogens. To achieve a high specificity, titer values
measured from qrt-LAMP are left censored at 103 (values below 103 were recorded as 0 [1]).

For each pathogen, the majority (over 95%) of SCM results report negative, and very few patients
have consistent SCM positive results from three experiments, indicating great variability in the bacterial
growth in the culture medium. qrt-LAMP, on the contrary, reports more positive results, which range
from 6.6% to 15.9% for different pathogens. There can be multiple pathogens present in one patient.
Those who carry two or more pathogens account for approximately 30% of the total subjects.

3. Statistical inference on pathogen prevalence

3.1. Notation

We denote sample size as N and number of bacterial pathogens as C (N D 1533 and C D 8 in our
data). For each patient i (i D 1 : : : N ) and each bacterial pathogen j (j D 1 : : : C ), we useXij to denote
base-10 logarithm of the titer value from qrt-LAMP. As titer values are left censored at 103, Xij are left
censored at 3. In case of censoring, we set Xij equal to 0. Let Yij denote the number of positive results
from three independent culture experiments for pathogen j of patient i . Among all baseline covariates,
we are particularly interested in age, whether having chronic obstructive pulmonary disease (COPD),
and whether having bronchiectasis, all of which are clinically known as common risk factors for LRTIs.
Hence, we denote Z i D .Zi1; Zi2; Zi3; Zi4; Zi5/T , where Zi1 D 1 if the i-th patient has COPD, and
0 otherwise; Zi2 D 1 if the i-th patient has bronchiectasis, and 0 otherwise; Zi3, Zi4, or Zi5 is 1, if
the i-th patient belongs to the age group under 15 years old, 15–69 years old, or 70 years old and over,
correspondingly, and is 0 otherwise. The following analyses were conducted separately on the SCM data
and the qrt-LAMP data.

3.2. Estimation of prevalence

Our first goal is to estimate the prevalence of carriers for each bacterial pathogen, which represents the
percentages of population who carry pathogens. Traditionally, prevalence was estimated from the SCM
data by the percentage of positive results, where ‘positive’ means at least one of three culture results
is positive. This implicitly assumes that at least one of culture experiments would report positive if the
pathogen is indeed present. However, this assumption is far from the reality. As many factors, such as
medium, temperature, and oxygen, influence the growth of bacterial pathogens, it is very likely that we
fail to see any positive result among all three culture results, even when bacterial pathogens are indeed
present in the sputum samples. These false-negative results lead to inaccurate estimates of the prevalence
using the SCM data. False-negative results also exist for qrt-LAMP data because Kang et al. [1] choose
a high cut-off value, 103, to achieve a very high specificity. In this article, we allow the possibility of
false-negative results and assume that false-positive rates are zero for both SCM and qrt-LAMP data. As
it is impossible to collect sputum samples from healthy people and we do not have a gold standard test
by design, we develop novel statistical models to differentiate false-negative results for pathogen car-
riers undetected by either tests, from true-negative results for non-carriers. We focus on one bacterium
each time and investigate how they are distributed marginally. Hence, we suppress the subscript j in
the following.

We consider the following zero-inflated mixture models. Specifically, we assume that the measure-
ments from either qrt-LAMP or SCM follow a mixture distribution

.1� �/ı0.�/C �f .�I�/; (1)

where � is the prevalence of pathogen carriers, ı0.�/ is the degenerated probability distribution at
point zero, f .�I�/ is the probability density function or the probability mass function for the mea-
surement of interest among pathogen carriers, and f .�I�/ is unknown subject to a finite-dimensional
parameter � 2 ‚ � Rd . Next, we will propose separate choices of f to model qrt-LAMP and SCM
data, respectively.

3.2.1. Modeling the qrt-LAMP data. For pathogen carriers, as we know by the design that X is left
censored at 3, we assume that it follows a normal distribution with mean � and variance �2 censored at
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3. Specifically, f is modeled as the Tobit model [13, 14]:
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where '.�/ andˆ.�/ are the density function and the cumulative distribution function of the standard nor-
mal random variable. Note that the aforementioned f is itself a zero-inflated mixture model reflecting
that the measurement is left censored at 3. The degenerated part of f is the source of false negatives,
which we can extrapolate from the positive results that are observed.

3.2.2. Modeling the SCM data. Culture results from SCM are discrete random variables taking values
0, 1, 2, and 3, which represent the number of positive results seen in three independent experiments.
We assume those are three independent Bernoulli experiments and hence model it with a binomial
distribution, Binom.3; p/.
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3.3. Adjustment for baseline covariates

Given the quantitative nature of qrt-LAMP, we want to further assess the association between qrt-LAMP
and baseline covariates. We extend the Tobit model in (2) and propose a zero-inflated Tobit model,
which adjust for the effects of baseline covariates for parameters in both models (1) and (2). Given
Z D .Z1; Z2; Z3; Z4; Z5/

T , we assume
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and

f .x jZ I�.Z //Dˆ

�
3��.Z /

�

�
ı0.x/C

�
1�ˆ

�
3��.Z /

�

�� ' �x��.Z/
�

	
=�I.x > 3/

1�ˆ
�
3��.Z/

�

	
Dˆ

�
3��.Z /

�

�
ı0.x/C '

�
x ��.Z /

�

�
=�I.x > 3/;

(5)

where � is common standard deviation, ı0.x/ is the degenerated probability density at point zero, as
defined in Section 3.2, �.Z / represents the prevalence of pathogen carriers in the stratified group with
covariate Z , logitf�.Z /g is assumed to be linear in Z , that is,

�.Z /D
exp.ˇTZ /

1C exp.ˇTZ /
; (6)

�.Z / represents the mean quantity of the pathogen for carriers in the stratified group with covariate Z ,
and we assume

�.Z /D �TZ : (7)

Equations (6) and (7) assume additive effects of the status of COPD, bronchiectasis, and age on both
logit of prevalence of pathogen carriers and the mean quantity of the pathogen for carriers.
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3.4. Statistical inference

We focus on demonstrating how to make inference for the model in Section 3.3. The model without
adjustment of baseline covariates can be similarly implemented. The joint likelihood function from the
model formed by Equations (4)–(7) is

L.ˇ;�; �2IX ;Z /D

NY
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1� �.Z i /C �.Z i /ˆ
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3��.Z i /
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:

(8)

For notation convenience, we shall denote � D .ˇT ;�T ; �2/T . Following the classical likelihood theory,
the maximum likelihood estimate (MLE) O�MLE is asymptotically normally distributed:

p
N. O�MLE � �0/

D
!N

�
0; I�1�0

�
;

where �0 is the true parameters corresponding to data generating process and I�0 is the Fisher
information matrix. O�MLE and an estimate of I�0 can be used to construct confidence intervals of �0.

However, obtaining MLE can be difficult, complicated by the fact that the density function is a mix-
ture distribution and hence the likelihood function could have multiple local maxima. Data augmentation
and MCMC algorithm can be used to facilitate the computation. For a given prior distribution �.�/, for
instance �.�/ / 1=�2, the posterior mean has the same asymptotic property as the MLE because of
Bernstein–von Mises theorem [15, Chapter 10]. To sample from the posterior distribution, it can be
achieved by introducing vectors of latent variables, I D .I1; I2; : : : ; IN / andX� D

�
X�1 ; X

�
2 ; : : : ; X

�
N

�
,
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Ii indicates whether patient i is bacterial pathogen carrier, and X� could be thought of as the ideal qrt-
LAMP measurements if they were not censored at 3. LetX DX��I.X� > 3/, and then .X ;Z / would
be the observed data. We can implement a Gibbs sampler by sequentially sampling from the conditional
distribution P f.I ;X�/ j �;X ;Zg, P f.�; �2/ j ˇ; I ;X�;Zg, and P.ˇ j �; �2; I ;X�;Z /, which can
be similarly derived as in [16]. We present details of MCMC in the Supporting information.

4. Identifying disease-causing bacterial pathogens

Although the prevalence of pathogen carriers estimated in Section 3 has its epidemiological significance,
we want to reiterate that, for disease such as LRTIs, the carrying of certain pathogens does not mean that
these pathogens cause disease. Unlike diseases caused by a single type of pathogen, over 200 kinds of
bacterial pathogens can cause LRTIs, and these bacterial pathogens can inhabit the host system with-
out causing any problems. Therefore, a positive outcome from qrt-LAMP for one pathogen does not
necessarily mean that it is the cause of the disease. Only one or a few of the pathogens in the host sys-
tem would proliferate rapidly, take up most of the nutrients from the host, and cause infections. The
eight kinds of bacterial pathogens, measured by our designed qrt-LAMP, are among the most common
disease-causing pathogens for LRTIs. In this section, we develop a quantitative standard based on titer
values from qrt-LAMP to identify disease-causing pathogens and hence provide guidance and assistance
for the diagnosis and treatment among patients with LRTIs.

Biological bacterial growth in batch culture typically consists of three phases—lag phase, log phase,
and stationary phase. In the lag phase, bacteria are maturing but are not yet able to rapidly grow.
Pathogens in this phase should not be considered as disease causing, as they are not invasive to the
host system. The log phase is a period of cell doubling when bacteria start to grow exponentially. In
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this phase, the bacteria grow rapidly, and the host immune system can no longer protect the organism
from infection. We therefore regard the pathogens at log phase as disease-causing pathogens. It is this
transition point from lag phase to log phase that is most interesting to us, as it differentiates disease-
causing pathogens from non-disease-causing ones. Finally, when the growth of pathogens is slowed
down because of the limited amount of nutrients, it reaches the third phase—stationary phase. The num-
ber of pathogens reaches the limit in this phase. Although pathogens in log and stationary phases are both
disease-causing pathogens, the second phase transition point would be more helpful to provide guidance
for the dosage use of antibiotics and thus minimize antibiotics overuse.

The goal in this section is to construct G-scores, which novelly incorporate both absolute and relative
levels of a pathogen in the symbiosis and resemble the growth process described earlier. Details are pre-
sented in the next two sections. In Section 4.1, we describe the development and definition of G-scores,
and in Section 4.2, we use change-point detection methods to show that G-scores similarly have two
transition points. The G-scores that we construct need to reflect the following two principles: (i) the
larger the quantity of one pathogen is, the more likely it further grows, and eventually out of control;
and (ii) the higher the relative ranking of one pathogen is, the more competitive it is to outgrow others.
In both cases, the pathogen is more likely to be disease causing and hence should correspond to larger
G-scores.

4.1. Defining G-scores that identify disease-causing pathogens

Recall that X�ij , for i D 1; 2; : : : ; N and j D 1; 2; : : : ; C , defined in Section 3, are the augmented data
as if qrt-LAMP were not left censored. These latent titer values reflect the ‘absolute’ level of pathogens.
Larger quantity of X� means that the pathogen might be at the log or stationary phase, or more likely to
transit to these two phases. However, pathogens live together in the host system and compete for limited
nutrients available. The ‘competitiveness’ is also important for them to take up more nutrients and out-
grow others. Thus, both ‘absolute’ levels and ‘relative’ levels play important roles for a pathogen to cause
the disease. Therefore, the desired scores should incorporate both pieces of information in identifying
the disease-causing pathogens.

Towards this goal, we first normalize X�ij to facilitate further comparisons among different pathogens
in order to determine their relative levels. As different pathogens have different concentrations within the
community, we transform X�ij into Uij , which we call U -score, according to their distributions among
pathogen carriers. Specifically,

Uij Dˆ

(
E.X�ij jXij ;Z i /� O�j

O�j

)
;

where O�j and O�j are the estimated parameters from Equations (7) and (8), and E
�
X�ij jXij ;Z i

	
is

the conditional expectation. The U -scores are monotone transformation of Xij , which still reflect infor-
mation of absolute quantities of pathogen titer values from qrt-LAMP. Meanwhile, U -scores justify
comparisons among different pathogens from the same subject, as we do not compare the abundance of
pathogens directly but through their standardized values, U -scores.

Next, we want to incorporate the ‘relative’ information as well. We achieve this by resem-
bling the techniques used in parallel tempering from MCMC literature and ‘re-weighting’ Ui D
.Ui1; Ui2; : : : ; UiC / according to their relative levels. Notice that parallel tempering is a simulation
method to improve the efficiency of MCMC by ‘enhancing’ the global mode [12]. We utilize the
same transformation on U -scores to combine both ‘absolute’ and ‘relative’ information, which leads
to an increased score for the pathogen with a larger U -score. Specifically, given a positive constant �,
we define

G�ij .�/D
e�Uij � 1PC

kD1.e
�Uik � 1/

�

CX
kD1

Uik

for subject i and pathogen j . For any �;
PC
jD1G

�
ij .�/D

PC
jD1 Uij , and theseG�-scores try to re-weight

U -scores to incorporate the relative level information of pathogens. � controls how much adjustment we
want to make, and when �! 0, G�ij .�/! Uij , thus going back to the original U -scores.
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Clearly,G�-score does reflect the two principles that we mentioned earlier.G�ij is increasing with Uij ,
and the right derivative of G�ij at 0 is

lim
�!0C

dG�ij .�/

d�
D

Uij

2
PC
kD1 Uik

�
Uij �U i

�
;

where U i D
�PC

kD1 U
2
ik

	
=
�PC

kD1 Uik

	
. Note U i D 0

PC
jD1fUij

�PC
kD1 Uik

	�1
gUij is a weighted

average of Uij . For Uij > U i , its G�-score increases with � in the neighborhood of zero, and for
Uij < U i , itsG�-score decreases with � in the neighborhood of zero. This ‘rich-get-richer’ phenomenon
mimics the growth of pathogens in the host when they consume more nutrients and then in the meanwhile
suppress the growth of others.

Furthermore, for fixed i , the aforementioned G�-scores preserve the ordering of the corresponding
U scores. To be specific, G�ia > G�

ib
if and only if Uia > Uib , for any a ¤ b 2 f1; 2; : : : C g. How-

ever, for fixed j , the ordering can change. That is, G�aj can be smaller than G�
bj

even if Uaj > Ubj ,
for a ¤ b 2 f1; 2; : : : N g. The reason is that pathogen j can be suppressed in patient a yet prolif-
erate in patient b depending on their relative levels in the patients, which could reverse their orders
of comparisons across different subjects. This again shows that G�-scores successfully combine two
parts of information from qrt-LAMP together: the absolute quantities of pathogens and their relative
level/ranking in the pathogen community.

Let ji D arg maxj fUij g, and then Uiji > Uij for all j ¤ ji . One can easily show that G�iji .�/ is a

strictly increasing function of � with the limit
PC
jD1 Uij as � !1, and thus G�ij .�/! 0 as � !1

for all other j ¤ ji . Therefore, when � is large enough, G� represents only the dominant pathogen that
has the largest U -score. However, when there are a few pathogens all with large U -scores, one probably
should treat them together as the cause of disease instead of any individual one. Hence, we restrict that
G� can only go up to 1 and define G-scores as follows:

Gij .�/D

�
G�ij .�/ if � 6 �max

i

G�ij
�
�max
i

�
if � > �max

i

;

where

�max
i D sup

�
� Wmax

j
G�ij .�/6 1

�
:

Note that �max
i D 1, if

PC
jD1 Uij < 1. These G-scores retain the properties of G�-scores but also

allow multiple positive values even for larger �. G-scores form the basis of our method to identify the
disease-causing pathogens in Section 4.2.

4.1.1. Choices of �. Different �’s lead to different transformations. The choice of � should be up
to the physicians as they need to balance ‘absolute’ and ‘relative’ information from qrt-LAMP
based upon their experience and knowledge in deciding G-scores, which would be closely related to
the bacterial growth. However, when no such expert opinions are available, we recommend to choose �
in the following way. For subject i , if we choose � such that � > �max

i , then one of the pathogens has its
G-score reach 1 and thus multiple pathogens among these eight might contribute to the disease develop-
ment. DenoteM.�/D 1

N

PN
iD1 I

�
� > �max

i

�
, which represents the percentage of subjects whose largest

G-scores have reached 1. We recommend to use � such thatM.�/ equals to the percentage of subjects in
the population whose LRTIs are caused by multiple pathogens among these eight pathogens of interest,
which is around 10%.

4.2. Determining phase transition points through change-point detection methods

As stated earlier, we are interested in identifying phase-transition points of the bacterial growth
process, in particular the transition point from lag phase to log phase, which differentiates between
disease-causing pathogens and non-disease-causing pathogens. These phase-transition points have clear
clinical significance to provide criteria for diagnosis and treatment. In Section 4.1, we defined G-
scores to incorporate important information about bacterial growth. We will now show that the proposed
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G-scores have the same attributes that they similarly have two transition points. Consider the following
regression model:

G.�/D ˇ.X�/T .1; X�/T C �;

where ˇ.X�/D fˇ1.X�/; ˇ2.X�/gT and � is the normal random error. The null hypothesis is

H0 W ˇ.X
�/D ˇ:

That is, the regression coefficients do not change with X�, meaning that there are no structural changes.
The alternative hypothesis is that ˇ.X�/ has structural changes at some points, which correspond to the
phase transitions for bacteria growth described earlier. We propose to utilize the process of the partial
moving sums (MOSUM process) of residuals from the ordinary least square estimates [17–20] to detect
change points for linear regression models, which is visually illustrative. Let Oui and O�2 denote the esti-
mated residuals and variance from ordinary least estimates under the null hypothesis. Let Ch.X�/ denote
the interval centered at X�, which includes h% of all data, where h is a tuning parameter. Consider the
moving sums defined as follows:

M.X�/D
1

O�
p
n� 2

X
i

OuiI
�
X�i 2 Ch.X

�/
�
:

Under the null hypothesis, this process converges to the increments of a Brownian bridge. Fluctuations
beyond its normal variations suggest the existence of change points. In Figure 1(a), it shows a clear evi-
dence that there are two change points, which rejects the null hypothesis and suggests thatG scores have
three phases as well as the bacterial growth of pathogens. To further identify those two change points,
we fit a piecewise linear regression with two change points as follows:

G.�/D ˇ0C ˇ1X
�C ˇ2.X

� � c1/
CC ˇ3.X

� � c2/
CC �; (9)

where c1 and c2 (c1 < c2) are the two change points, which can be estimated by minimizing L2 loss
function. We employ the iterative algorithm proposed by Muggeo [21] to fit model (9). Detailed results
are presented in the next section. We use the statistical software R (http://www.r-project.org) to perform
the analysis. The strucchange package is used to draw the MOSUM process, and the segmented package
is used to identify change points. Both packages are available at http://cran.r-project.org.
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Figure 1. Change-point detection. (a) The solid line shows the moving sum of residuals from the ordinary least
square estimation. The two dashed lines are 95% level of fluctuations under the null hypothesis when there
is no structural change. The MOSUM process going across the fluctuation lines suggests existence of struc-
tural changes. (b) The solid line is the fitted piecewise regression line for model (9), and the two dashed lines

correspond to the estimated Oc1 and Oc2.
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5. Results applied to LRTI data

5.1. Quality of extrapolation

As there is no gold standard reference test, we are unable to identify false-positive or false-negative
results by merely looking at the data. Instead, with the knowledge from lab performance [1], we assume
that there is no false-positive results, and we parametrically model the distribution of quantities of
pathogens for carriers. Therefore, we are able to extrapolate information on the number of false-negative
results from positive results that we observed. For this reason, the accuracy of our statistical results
depends on the quality of extrapolation when predicting the amount of false-negative observations. We
conduct model checking for both (2) and (3).

For qrt-LAMP data, which is continuous, it is straightforward to consider drawing Q-Q plots. Using
the parameters as estimated from the MCMC algorithm in Section 3, we calculate the theoretical
quantiles for model (2) at levels 5%; 10%; : : : ; 95% and compared them with the empirical quantiles
calculated directly from the qrt-LAMP measurements. Q-Q plots in the Supporting information clearly
show that theoretical quantiles and empirical quantiles closely follow the 45ı diagonal line y D x, which
reflects that the mixture model fits data well. In addition, the Kolmogorov–Smirnov test, which compares
theoretical distributions with empirical distributions, fails to reject the null hypotheses for all pathogens,
confirming the results shown in Q-Q plots. Therefore, we are quite confident that the predicted numbers
of false-negative results are accurate to a certain extent for all eight pathogens.

For SCM data, we similarly calculate the theoretical probability mass function using the parameters
as the estimates in Section 3. We then test whether the observed data come from the multinomial dis-
tribution with the theoretical probabilities we calculate. This is usually performed through Pearson’s
chi-square test. However, in our case, the probability that one can see two or more positive results is
quite small, and normal approximation needed in chi-square test does not hold. Therefore, we con-
duct the exact test instead. That is, for the observed data X D .X0; X1; X2; X3/ and parameters for
multinomial distribution p D .p0; p1; p2; p3/, we calculate

p-valueD
X

xWPr.x/6Pr.X/

Pr.x/;

where Pr.x/DNŠ
Q3
iD0 p

xi
i =xi Š. Unlike qrt-LAMP, four of eight null hypotheses are rejected, meaning

that zero-inflated binomial model does not fit the SCM data well. Possible explanations could be that
three culture experiments conducted at different time might be subject to different environment factors,
and later experiments might have less probability to produce positive results due to deaths of pathogens
during storing. These would lead to over-dispersion, and thus, the zero-inflated binomial model fails to fit
the data. However, we cannot go one step further to try modeling such as beta-binomial to accommodate
over-dispersion, as the model will become saturated, and there is no way to conduct a goodness-of-fit
test. We hence stay with the binomial model but remind readers that they should view the SCM results
with skepticism if they fail the goodness-of-fit test. Both p-values of the exact multinomial test and the
Kolmogorov–Smirnov test are presented in the Supporting information.

We have demonstrated that the new method, qrt-LAMP, provides more credible results than SCM. To
quantify its performance, one can calculate its sensitivities and false-negative rates as

SensitivityDˆ

�
�� 3

�

�
and

False-negative rateD
�ˆ

�
3��
�

	
1� �C �ˆ

�
3��
�

	 :
In our data, sensitivities range from 82% to 96%, and false-negative rates range from 0.6% to 3.6% for
different pathogens. Details are presented in the Supporting information.

5.2. Results from the mixture model

Parameter � in models (2) and (3) is the prevalence of pathogen carriers. Table I presents estimates
of prevalence from SCM and qrt-LAMP. One can see that qrt-LAMP mostly gives larger estimates
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Table I. Estimates of prevalence of pathogen carriers.

(a) SCM (b) qrt-LAMP marginal model (c) qrt-LAMP regression model

Pathogen Est. CI Pathogen Est. CI Pathogen Est. CI

Spn 0.148 (0.044, 0.504) Spn 0.130 (0.112, 0.147) Spn 0.128 (0.111, 0.165)
Sau 0.056 (0.025, 0.123) Sau 0.101 (0.084, 0.118) Sau 0.099 (0.077, 0.126)
Eco 0.031 (0.019, 0.049) Eco 0.082 (0.063, 0.101) Eco 0.079 (0.057, 0.109)
Kpn 0.042 (0.029, 0.061) Kpn 0.189 (0.162, 0.215) Kpn 0.188 (0.156, 0.226)
Pae 0.090 (0.070, 0.116) Pae 0.139 (0.120, 0.159) Pae 0.137 (0.110, 0.170)
Aba 0.063 (0.042, 0.096) Aba 0.157 (0.136, 0.178) Aba 0.156 (0.127, 0.191)
Sma Sma 0.179 (0.153, 0.205) Sma 0.174 (0.142, 0.213)
Hin 0.053 (0.014, 0.198) Hin 0.136 (0.117, 0.154) Hin 0.138 (0.111, 0.165)

(a) and (b) show the estimated � in Equation (1). (c) shows the estimated EŒ�.Z/� in Equation (4). 95%
confidence intervals (CI) are given in parenthesis.

on the prevalence compared with SCM. The reason is that bacterial pathogens might die during the stor-
ing process, so they are not able to grow when SCM are conducted. In this case, we observe negative
results even when pathogens are indeed present in the sputum samples. In contrast, qrt-LAMP amplifies
and quantifies DNA sequences and thus manage to detect pathogens regardless whether they are dead
or alive during the qrt-LAMP process. This explains why SCM underestimates the prevalence compared
with qrt-LAMP. In addition, qrt-LAMP also shows better precision than SCM, as SCM sometimes gives
abnormally broad confidence intervals, for example, in the results for Streptococcus pneumoniae (Spn),
Staphylococcus aureus (Sau), and Haemophilus influenzae (Hin). Also notice that only four pathogens in
the bold font pass the goodness-of-fit test for SCM. Therefore, the SCM results for Sau, Escherichia coli
(Eco), and Pseudomonas aeruginosa (Pae) are suspicious. For pathogen Stenotrophomonas maltophilia
(Sma), there are no patients who have two or more positive results from SCM; therefore, we are not able
to extrapolate the number of false-negative results. That is why we leave it blank for that particular entry
in the table.

In model (4) where we adjust for baseline covariates, the regression coefficients have their clinical
interpretations. exp.ˇ1/ and exp.ˇ2/ are the odds ratios of carrying pathogens between patients with or
without COPD and with or without bronchiectasis, respectively. 	1 and 	2 are differences of quantities
of pathogens for carriers between patients with or without COPD and with or without bronchiectasis,
respectively. Table II shows these estimates and their 95% confidence intervals. The most statistically
significant finding is that Pae is very different between groups with versus without bronchiectasis in
terms of both odds ratio of carrying Pae and differences of quantities of pathogens for Pae-carriers. The
odds ratio is almost fivefold, and Cohen’s d for the standardized effect size is 3:98 (both p-values are
less than 0.001). The results remain statistically significant even after multiple comparison adjustments.
Other findings are that Spn has a higher prevalence in the group of patients with COPD compared with
the group of patients without COPD, and Klebsiella pneumoniae (Kpn) has a lower concentration among
Kpn carriers with bronchiectasis compared with those without bronchiectasis.

To compare among three age groups, exp.ˇi � ˇj / and 	i � 	j (i; j D 3; 4; 5 and i > j ) are odds
ratios of carrying pathogens and differences of quantities of pathogens for carriers, respectively, which
were presented in Table III. For most pathogens, age group 15–69 years old and age group 70 years old
and over have similar odds ratios and differences, while statistically significant differences are present
between age group under 15 years old and the other two age groups. Patients 15 years old and over
have threefold to fourfold odds to carry Acinetobacter baumannii (Aba) and twofold to threefold odds of
carrying Sma compared with patients under 15 years old. Older patients also have larger concentrations
of Sau, Kpn, and Hin for pathogens carriers, as shown in Table III(b).

In addition, from the regression model (4), we can re-estimate prevalence, sensitivity, and false-
negative rate by

PrevalenceDEf�.Z /g

SensitivityDE

�
ˆ

�
�.Z /� 3

�

��
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The results are shown in the corresponding tables along with estimates from the marginal model.

5.3. Phase transition points for identifying disease-causing pathogens

Figure 1(a) shows the moving sum process for G-scores for Spn, where the horizontal axis is logarithm
(base 10) of the augmented titer values, the vertical axis is the MOSUM process, and � is chosen to
have M.�/ D 10%. The solid line stands for the ordinary least square-based MOSUM process, and
the dashed lines are the boundaries of fluctuation such that the probability that the MOSUM process is
entirely contained within the boundaries is 0.95 under the null hypothesis.

Wherever the MOSUM process exceeds the upper or lower boundaries, the fluctuation of the
empirical MOSUM process is improbably large, which suggests that there should be a change point
at that location. For this reason, Figure 1(a) strongly indicates that G-scores have two change points
for the chosen �, which is consistent with the biological phase transitions. To identify these transition
points, we fit a piecewise linear regression as shown in Equation (9). Figure 1(b) presents the results,
where the horizontal axis is logarithm (base 10) of the augmented titer values, and the vertical axis is
the G-score. The solid dots correspond to the observed data, and the solid line is the fitted piecewise
linear curve. The vertical dashed lines are for fitted Oc1 and Oc2, which are the first and second transition
points correspondingly.

For our recommended � and two other possible values such that M.�/ is 5% and 15%, respectively,
the estimates of both phase transition points and their standard errors are shown in Table IV. One can
see that the first phase transition point is generally increasing and the second phase transition point is
generally decreasing as � increases. This is because larger � up-weights more on larger U scores and
down-weights more on smaller U scores.

Figure 2 shows how varying � affects estimates of the first and second phase transition points for Sma,
where the horizontal axis is � and the vertical axis is logarithm of the augmented titer values. The same
trends are reflected in Figure 2. The estimated first phase transition point (lower solid line) is increasing,
while the estimated second phase transition point (upper solid line) is decreasing as � increases. Point-
wise 95% confidence intervals are given by the dashed lines. The vertical dot-dashed lines correspond to
� such that M.�/ is 5%, 10%, and 15%, respectively.
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Figure 2. Phase transition points of pathogen Sma. The lower and upper solid lines are the estimated first and
second phase transition points, respectively, for different �. The dashed lines are the corresponding point-wise

95% confidence intervals.
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6. Concluding remarks

In this article, we propose statistical methods to provide quantitative recommendations for diagnosis
and treatment of LRTIs from qrt-LAMP outcomes of eight common bacterial pathogens in the sputum
samples of patients. This is the first time that qrt-LAMP is used to test for bacterial pathogens in the
research of LRTIs. We first utilize zero-inflated mixture models to address the issue that false-negative
results might occur. We employ data augmentation algorithm and MCMC to facilitate the statistical
computation and provide analyses on both SCM data and qrt-LAMP data. Baseline covariates are
adjusted for LAMP data as well. Further, we investigate how to utilize qrt-LAMP data to identify disease-
causing pathogens. Many pathogens live in the host system without causing problems, with very few
of them turning into disease-causing pathogens. We propose G-scores, whose definition resembles the
techniques used in parallel tempering from MCMC literature, to combine both absolute and relative
information of pathogens. These G-scores form the basis of our method to identify the disease-causing
pathogens. The change points of G-scores are consistent with phase transitions of biological bacterial
growth in the culture medium. Phase transition points are confirmed by the process of the moving sum
of partial residuals and identified by fitting the piecewise linear regression model. The results obtained
from this observational study can be used to help design phase I or phase II trials, or adaptive treatment
strategies towards personalized health care. The statistical methods developed in this article are espe-
cially useful when analyzing diseases caused by multiple pathogens and can also be adapted to other
similar circumstances.
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