
Phylogenetic divergence between the obligate
luminous symbionts of flashlight fishes demonstrates
specificity of bacteria to host genera

Tory A. Hendry*† and Paul V. Dunlap
Department of Ecology and Evolutionary Biology,
University of Michigan, 830 North University Ave., Ann
Arbor, MI 48109-1048, USA.

Summary

The luminous bacterial symbionts of anomalopid
flashlight fishes, which appear to be obligately
dependent on their hosts for growth, share several
evolutionary patterns with unrelated obligate bacte-
ria. However, only one flashlight fish symbiont
species has been characterized in detail, and it is
therefore not known if the bacteria from other
anomalopid species are highly divergent (a pattern
common to obligate symbionts). Unlike most obligate
symbionts, the bacteria symbiotic with anomalopids
are extracellular and spend time outside their hosts in
the environment, from which they are thought to colo-
nize new host generations. Environmental acquisition
might decrease the likelihood of bacterial divergence
between host species. We used phylogenetic analysis
to determine the relatedness of symbionts from dif-
ferent anomalopid host species. The symbionts of
hosts in the genus Photoblepharon were resolved
as a new species, for which we propose the name
‘Candidatus Photodesmus blepharus’. Furthermore,
different genera of anomalopids were found to
harbour different species of bacteria, even when the
hosts overlapped in geographic range. This finding
suggests that the divergence between bacterial
species is not the result of geographic isolation. The
specificity of symbionts to host genera is consistent
with obligate dependence on the host and has impli-
cations for symbiont transmission.

Introduction

Luminous bacteria of the Gammaproteobacteria family
Vibrionaceae engage in mutualistic symbioses with multi-

ple lineages of marine fish and squid (Herring and Morin,
1978; Dunlap et al., 2007; Dunlap and Urbanczyk, 2013).
Most of these associations involve facultatively symbiotic
bacteria that maintain free-living populations in diverse
habitats (Lee and Ruby, 1994, Thompson et al., 2005;
Reen et al., 2006; Dunlap et al., 2007; Preheim et al.,
2011; Dunlap et al., 2012). The symbionts of anomalopid
flashlight fish appear to be an exception to this trend;
genomic evidence demonstrates that the anomalopid
symbiont ‘Candidatus Photodesmus katoptron’ shares
several evolutionary patterns with intracellular obligate
mutualists and is likely to be obligately dependent on its
host for growth (Hendry et al., in press). These patterns
include genome reduction due to gene loss, high AT
nucleotide content and a high evolutionary rate (Moran,
1996; Woolfit and Bromham, 2003; Wernegreen and
Moran, 2004; Hendry and Dunlap, 2011; McCutcheon
and Moran, 2012; Hendry et al., in press). Strict vertical
transmission and high levels of genetic drift in obligate
symbionts are thought to cause the patterns mentioned
above and also typically to lead to bacterium–host
codivergence and increased phylogenetic distance
between bacteria from different hosts (Clark et al., 2000;
Wernegreen, 2002; Bright and Bulgheresi, 2010; Sachs
et al., 2011). Because only one species of anomalopid
symbiont has been characterized in detail, it is not known
if different anomalopid host species harbour divergent
bacterial species, as is the case with known obligate
symbionts.

Facultative luminous symbionts do not codiverge with
hosts. Instead, many symbionts form associations with
multiple unrelated host species while remaining closely
related at the species level (Dunlap et al., 2007; Kaeding
et al., 2007). Some examples of genetic variation have
been found between luminous bacteria from hosts of dif-
ferent species or geographic location (Ast et al., 2007;
Mandel et al., 2009). However, the amount of genetic
divergence found in these cases is small compared to that
observed in obligate symbionts, likely because faculta-
tively symbiotic luminous bacteria are environmentally
acquired by each host generation from free-living popula-
tions rather than being vertically transmitted (Leis
and Bullock, 1986; Lee and Ruby, 1994; Nyholm and
McFall-Ngai, 2004; Dunlap et al., 2007; 2008; 2012). Like
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facultative luminous symbionts, anomalopid symbionts
are extracellular and densely packed within a specialized
structure called the light organ (Kessel, 1977). The bac-
teria from two anomalopid species are known to be con-
tinuously released into the surrounding seawater through
pores on the light organ surface and persist in seawater
for at least hours (Haygood et al., 1984; Nealson et al.,
1984). However, the symbiont species ‘Ca. Photodesmus
katoptron’, which has not been tested for persistence in
seawater, is not thought to establish free-living popula-
tions (Hendry et al., in press). It is not known how new
generations of anomalopids acquire bacteria, but no
support has been found for direct vertical transmission
through eggs (Haygood, 1993). Because of the environ-
mental persistence of the bacteria and the apparent lack
of transmission through eggs, larval anomalopid fish are

thought to acquire bacteria from the environment
(Haygood et al., 1984; Haygood, 1993; Hendry et al., in
press). If anomalopid symbionts are environmentally
acquired, bacteria might not show patterns of co-
divergence with hosts and different host species may not
have different species of bacteria, especially if hosts
overlap in geographic range and could acquire bacteria
from the same environmental pool. First, to test that the
obligate symbiont ‘Ca. Photodesmus katoptron’ could be
acquired from the environment we measured lumines-
cence of symbionts in water over time as an indication of
persistence. Then, to determine the phylogenetic distance
between anomalopid symbionts and test for a pattern of
codivergence, we performed phylogenetic analyses on
the bacteria symbiotic with multiple anomalopid species.

There are nine described anomalopid flashlight fish
species (Froese and Pauly, 2013). The symbionts of four
species – Anomalops katoptron, Kryptophanaron alfredi,
Photoblepharon palpebratus and P. steinitzi – are
included in analyses here. These species represent a
wide geographic range: A. katoptron is found in the
eastern Indian Ocean and co-occurs with P. palpebratus
in the southern Pacific Ocean; P. steinitzi occurs in the
Red Sea and western Indian Ocean; and K. alfredi is
found in the Caribbean (McCosker and Rosenblatt, 1987;
Johnson and Rosenblatt, 1988; Rosenblatt and Johnson,
1991; Baldwin et al., 1997; Johnson et al., 2001; Ho and
Johnson, 2012; Froese and Pauly, 2013). Because
anomalopid species are difficult to acquire and their
symbionts are not culturable (Herring and Morin, 1978;
Haygood, 1993), only the bacteria from one host species,
A. katoptron, have been well studied. In the current
study, we sequenced multiple protein-coding genes for
symbionts of two additional fish species, P. palpebratus
and P. steinitzi, to determine the phylogenetic divergence
between symbionts of different host species.

Results and discussion

Environmental persistence of ‘Ca. Photodesmus’

Previous studies demonstrated that the symbionts of two
anomalopids, P. palpebratus and K. alfredi, are continu-
ally released from light organs of the fish and remain
luminous, and therefore alive, in seawater for short
periods of time (Haygood et al., 1984; Nealson et al.,
1984). Here we show that the same is true of ‘Ca.
Photodesmus katoptron’, the bacterial symbiont obligately
dependent on A. katoptron. Seawater in which individual
specimens of P. palpebratus and A. katoptron had been
kept showed readily detectable luminescence, the levels
of which rapidly declined after removal of the fish (Fig. 1).
The decline of luminescence observed here for the
P. palpebratus samples is similar overall to that shown

Fig. 1. Luminescence of ‘Ca. Photodesmus’ species in seawater
over time. Seawater samples were taken from tanks containing
fish, and the luminescence of the water was monitored at intervals
until readings reached control levels. Samples ‘P. blepharus’ and
‘P. katoptron’ were taken from water containing single fish of the
host species Photoblepharon palpebratus and Anomalops katoptron
respectively. These fish were collected in Vanuatu and had been
shipped overnight from Los Angeles, CA, USA, to Ann Arbor, MI,
USA. They had been in the seawater sample (approximately 1 L
volume) for approximately 18–28 h, sufficient time for symbiotic
bacteria to build up in the water (Haygood et al., 1984), and had
been starved for multiple days during shipping, decreasing the
number of gut microbes likely to be in the water. The sample ‘P.
katoptron – aquarium’ came from a tank at the Toledo Zoo that
contained approximately 15 luminous A. katoptron individuals.
Amplification by PCR of the luminescence gene luxA from the
aquarium water only recovered ‘Ca. Photodesmus katoptron’
sequences, suggesting that other luminous bacteria were not
present in high numbers in the sample (data not shown). The
‘Control’ line is the average of seven readings taken during the
course of each observation from a sample of sterile artificial
seawater. Luminescence readings were taken from 1 ml of water
with a Turner Designs TD 20/20 luminometer (Sunnyvale, CA,
USA).
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previously (Haygood et al., 1984), except that here lumi-
nescence remained detectable for a longer time (6 h com-
pared with 1.5 h). The rate of decline in luminescence for
A. katoptron samples was faster in the case of seawater
containing one starved specimen of A. katoptron than in
seawater from a stably maintained tank of healthy
A. katoptron (Fig. 1). We speculate that the health of the
host may influence the physiological state of the bacteria,
with healthier fish allowing symbionts to persist longer
outside of the host. These results, together with those of
Haygood and colleagues (1984) and Nealson and
colleagues (1984), indicate that symbiotic bacteria are
released into the seawater from light organs of
P. palpebratus, K. alfredi and A. katoptron and that these
bacteria can persist in a viable state in the environment for
periods of time up to at least a few hours.

Phylogenetic support for ‘Ca. Photodesmus’

Both maximum-likelihood (ML) and Bayesian (BA) analy-
ses recover a monophyletic clade for ‘Ca. Photodesmus’.
This result affirms previous work demonstrating that
anomalopid symbionts represent a genus, ‘Candidatus
Photodesmus’ (Greek: photo = light, desmus = servant)
within the family Vibrionaceae (Hendry and Dunlap,
2011). The housekeeping gene ML tree (Fig. 2A) also
places ‘Ca. Photodesmus’ as sister to the genus Vibrio,
consistent with earlier findings (Hendry and Dunlap,
2011). Of note is the fact that very low support is found for
the clade Vibrio as currently configured. The BA house-
keeping gene analysis differed slightly in that the BA tree
(not shown) could not resolve the relationship between
the anomalopid symbiont clade and the Vibrio clade,
instead finding a polytomy. This ambiguity, along with the
low support for the clade Vibrio in the ML tree, suggests
that genus Vibrio is paraphyletic. Both ML and BA analy-
ses of lux genes resolved identical topologies with ‘Ca.
Photodesmus’ as divergent from other Vibrionaceae
genera and sister to Vibrio (Fig. 2B). The high phyloge-
netic distance separating anomalopid symbionts and
relatives is consistent with obligate host dependence, as
obligate symbionts often evolve at a faster rate than free-
living relatives (Moran, 1996; Woolfit and Bromham,
2003). The long branch leading to the ‘Ca. Photodesmus’
clade (Fig. 2A) therefore suggests that obligate depend-
ence evolved in the clade before the split of the bacterial
lineages included here.

Divergent symbiont species in different
anomalopid genera

Phylogenetic analyses and nucleotide sequence similarity
both demonstrate that fish species of the genus
Photoblepharon possess the same symbiont species but

other fish genera have different bacterial species. Bacte-
ria from the hosts P. palpebratus and P. steinitzi are
closely related with strong support (Fig. 2). Consistent
with this, the 16S rRNA gene sequences of bacteria from
these two hosts show 99.6% identity, indicating that they
are likely the same species. The bacteria symbiotic with
Photoblepharon species were resolved as more divergent
from the A. katoptron symbiont ‘Ca. Photodesmus
katoptron’ than is typical of other bacterial species in the
family (Fig. 2). The 16S sequences of the P. palpebratus
and P. steinitzi symbionts are 94.8% identical to that of
‘Ca. Photodesmus katoptron’, a value that is lower than a
commonly applied cut-off of 97% identity as well as the
more stringent cut-off of 95% for species assignment
(Stackebrandt and Goebel, 1994). The 16S identity and
the long branches that separate the Photoblepharon
symbionts from ‘Ca. Photodesmus katoptron’ in all analy-
ses support the creation of a new species designation
for the Photoblepharon symbionts. We propose the
name ‘Candidatus Photodesmus blepharus’ (Greek:
blephar = eyelid) after the host genus, which is so named
for the lid-like structure individuals raise over the light
organ to control light emission. Only the 16S sequence is
available for bacteria from the fourth species of host
included here, K. alfredi. However, the 16S identity
between K. alfredi symbionts and ‘Ca. Photodesmus
katoptron’, at 94.3%, is also under 95%, and long
branches separate the K. alfredi symbiont from other bac-
teria, indicating that the fish genus Kryptophanaron likely
also possesses a distinct species of symbiotic bacteria.
These results demonstrate that different genera of
anomalopids harbour different species of bacteria in their
light organs. The fact that P. palpebratus and P. steinitzi
harbour the same bacterial species is intriguing given the
wide geographic separation and non-overlapping ranges
of these fish – Pacific Ocean and western Indian Ocean
respectively (Froese and Pauly, 2013). A recent speciation
event in the fish, with insufficient time for symbiont evo-
lutionary divergence to occur, could account for this cross-
host-species bacterial specificity.

On the other hand, geographically co-occurring anoma-
lopids harbour different species of symbiotic bacteria.
The fish species A. katoptron and P. palpebratus co-occur
for much of their range (southern Pacific Ocean, Philip-
pines to Vanuatu) and are often collected in the same time
and location (Wolfe and Haygood, 1991; T. A. Hendry,
pers. obs.). Despite this proximity, A. katoptron and
P. palpebratus collected at the same location harbour
divergent symbionts that group with the species
‘Ca. Photodesmus katoptron’ and ‘Ca. Photodesmus
blepharus’ respectively, suggesting a species-specific
interaction (Fig. 3). However, because anomalopid fish
are difficult to obtain, these conclusions are drawn from
relatively few samples; it is possible that this pattern could
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change with more sampling, though the genetic distance
between ‘Ca. Photodesmus blepharus’ and ‘Ca. Photo-
desmus katoptron’ suggests that the difference may be
robust. In contrast, strains of facultatively symbiotic lumi-
nous bacteria, such as Aliivibrio fischeri, Photobacterium
leiognathi and P. mandapamensis, often do not cluster
tightly phylogenetically with other strains isolated from the

same host species (Fig. 3). Compared to anomalopid
symbionts, different strains of A. fischeri, P. leiognathi and
P. mandapamensis from different hosts or different geo-
graphic locations vary little in 16S rRNA gene sequence
(Fig. 3). Geographic isolation between host lineages is
not a likely explanation for the high phylogenetic diver-
gence observed in anomalopid symbionts, because host

Fig. 2. Maximum-likelihood trees of flashlight fish symbionts and relatives.
A. Best tree based on housekeeping genes (16S rRNA gene, atpA, gapA, gyrB, pyrH, recA, rpoA and topA).
B. Best tree based on lux operon genes (luxCDABEG).
Maximum-likelihood bootstrap numbers are shown above branches and Bayesian posterior probabilities are shown below. Strain designations
follow taxon names. Taxa with new sequences are shown in bold. ‘Ppalp’ refers to symbionts isolated from P. palpebratus, and ‘Pstein’
indicates symbiont isolates from P. steinitzi. Accession numbers for sequences taken from GenBank can be found in Hendry and Dunlap
(2011). New sequences used in this study were obtained from whole-genome Illumina sequencing of the P. palpebratus symbiont DNA and
PCR amplification of the P. steinitzi symbiont DNA. For the P. palpebratus symbionts, four specimens (Ppalp.1–Ppalp.4) were collected from
coastal waters in the Republic of Vanuatu in 2011, and DNA was extracted as in Hendry and Dunlap (2011). DNA from one light organ of
each specimen was combined for sequencing. Very little polymorphism exists within the symbiont of a host species (Hendry and Dunlap,
2011; T. A. Hendry and P. V. Dunlap, unpubl. data), so sequences obtained from the combined samples should not be significantly different
than if they had come from an individual. Illumina reads were assembled in Mira3 (Chevreux et al., 2002) by staff of the University of Michigan
Collaborative Computing and Data Unit Bioinformatics Core. DNA from the P. steinitzi symbiont came from the sample described in Wolfe and
Haygood (1991); the fish (Pstein.1) was obtained from the Coral World aquarium in Eilat, Israel, in 1987 and was likely collected from around
Dahab on the Sinai peninsula. Previous work has found that both light organs of an individual contain monoclonal bacteria of the same
genotype, so DNA from the P. steinitzi sample can be considered one strain. PCR amplification of P. steinitzi symbiont loci followed Hendry
and Dunlap (2011). GenBank accession numbers for new sequences obtained in this study from the P. palpebratus symbiont (the 16S rRNA
gene, atpA, gapA, gyrB, pyrH, recA, rpoA, topA and luxCDABEG) are JQ993843–JQ993856, and those from the P. steinitzi symbiont (the 16S
rRNA gene, gapA, gyrB, pyrH, recA, rpoA, topA and luxCDAEG) are JQ993857–JQ993867. Phylogenetic analysis methods follow Hendry and
Dunlap (2011). For housekeeping genes, a concatenated gene matrix was analysed using maximum likelihood in Garli (Zwickl, 2006) under
the GTR + I + Γ model. The lux operon was analysed as one locus, with non-coding regions removed, using the GTR + I + Γ model. For both
matrices, 1000 bootstrap replicates were performed, with each run for 1000 generations. For Bayesian analyses, each gene was analysed in
MRBAYES v3.1.2 (Huelsenbeck and Ronquist, 2001) using the GTR + I + Γ model over 100 000 generations, sampling every 100 generations.
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species that co-occur consistently have different bacteria.
Therefore, the species-specificity of A. katoptron, P.
palpebratus and their symbionts likely has another
explanation.

Conclusions and evolutionary implications

The bacterial species/host genus-level specificity of
anomalopids and their symbiotic bacteria is consistent
with obligate host dependence, and it contrasts with low
levels of within-species specificity found in facultative
luminous symbionts. The deep evolutionary divergence
between symbionts of geographically co-occurring ano-
malopid hosts suggests that the bacteria are transmitted

vertically. However, transmission could be either directly
vertical, from parent to offspring, or pseudovertical, from
bacteria left in the environment by adults (Bright and
Bulgheresi, 2010; Sachs et al., 2011). The latter transmis-
sion mode has been suggested for anomalopids by pre-
vious research (Haygood, 1993; Hendry et al., in press)
and is supported here and previously (Haygood et al.,
1984; Nealson et al., 1984) by the findings that the bac-
teria are released from light organs into and can persist
for at least a brief time in seawater. If A. katoptron and
P. palpebratus larval fish develop separately and the sym-
biont of each species does not disperse far enough to
reach larval fish of the other species, pseudovertical
transmission alone could account for the pattern of

Fig. 3. Divergence between strains from different host genera for facultative symbionts versus ‘Ca. Photodesmus’ species. The legend
indicates bacterial species (left) and host species (right). Locations for host collections are shown on the map of the western Pacific Ocean
with insert maps of Japan and Hawaii, USA, for some A. fischeri strains. Numbers placed near symbols indicate the number of strains isolated
from the same host species at that location. We note that the collections at Papua New Guinea and Vanuatu each yielded A. katoptron and
P. palpebratus specimens collected at the same site and time. Strains from the following host species were included: Equulites rivulatus,
Nuchequula nuchalis, Equulites elongatus, Siphamia tubifer, Acropoma japonicum, Anomalops katoptron, Photoblepharon palpebratus,
Euprymna tasmanica, Cleidopus gloriamaris, Euprymna scolopes, Euprymna morsei, Euprymna berryi. Maximum-likelihood trees were
generated in MEGA5 (Tamura et al., 2011) using 16S sequences taken from GenBank or generated for this study for the following strains:
‘Ca. P. katoptron’ strains = Akat2007.1.1 (Hendry and Dunlap, 2011), A. katoptron symbiont (Haygood and Distel, 1993) and Akat8 (accession
KF360256; this study); Kryptophanaron alfredi symbiont = Kryptophanaron alfredi symbiont (Haygood and Distel, 1993); ‘Ca. P.
blepharus’ = P. palpebratus symbiont (Haygood and Distel, 1993) and Ppalp.1 (accession JQ993843; this study). A. fischeri strains = ES114,
ET101, ET301, ET401, CG101, EM17, EB12 (Nishiguchi and Nair, 2003) and etasm.1.1 (Urbanczyk et al., 2007). P. leiognathi and
P. mandapamensis strains = lelon.1.1, lrivu.1.1 (Dunlap et al., 2004), svers.1.1 (Kaeding et al., 2007), LC1–087, LC1–093, LC1–097, LC1–099,
LC1–101, LC1–1113, LC1–1133, LC1–023, LC1–026, LC1–036, LC1–038, LC1–046, LC1–1275, LC1–1276, LC1–12767, LC1–1283, LC1–
1296, AK2, AK5, AK7 (Wada et al., 2006). One thousand bootstrap replicates were performed in analyses, and only bootstrap values over 70
are shown on branches. All scale bars are equal and represent 0.001 substitutions per site.
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bacterial evolution observed here. Alternatively, fish could
encounter bacteria released into the environment by both
species, but either the fish or the bacteria could have
molecular mechanisms that lead to species-specific
interactions and allow sympatric symbiont divergence.
‘Candidatus Photodesmus’ symbiont species show signa-
tures of high levels of genetic drift (Hendry and Dunlap,
2011; Hendry et al., in press). It is possible that genes
needed to colonize certain host species would be lost by
chance in some lineages, making them specific to a
subset of hosts. Alternatively, gene loss in bacterial lin-
eages might make them inferior symbionts to some host
species, imposing selection on the host or bacterium to
prevent colonization. Gene content or gene expression
comparisons of multiple symbiont species could provide
insight on the possible functional basis for this specificity.

Obligate intracellular symbionts often show codiver-
gence and congruent phylogenetic topologies with hosts
due to strict vertical transmission (Clark et al., 2000;
Sachs et al., 2011). The number of host–bacterium pairs
included here is too small to fully test for codivergence of
flashlight fish and their symbionts, but the topology
resolved for bacteria does not mirror the phylogeny of the
host fish. The current host phylogeny, based on morpho-
logical characters, places the genera Kryptophanaron and
Photoblepharon as more closely related to each other
than they are to Anomalops (Baldwin et al., 1997),
whereas the bacterial phylogeny resolves Anomalops and
Photoblepharon symbionts as sister species to the exclu-
sion of the Kryptophanaron symbiont, with high support
(Fig. 4). If anomalopid symbionts are vertically transmit-
ted, as the evidence suggests, they would be expected to
codiverge with their individual hosts like other obligate
symbionts (Clark et al., 2000; Sachs et al., 2011).
However, the non-congruent phylogenies shown here
(Fig. 4) contradict codivergence between hosts and bac-
teria. Several possible explanations exist for why this
pattern could arise in spite of codivergence, such as
an incorrect host phylogeny or multiple evolutions of

obligate dependence and host shifts (Haygood and Distel,
1993). Alternatively, the fact that Old World symbionts
(‘Ca. Photodesmus katoptron’ and ‘Ca. Photodesmus
blepharus’) are more closely related to each other than
they are to the New World symbiont (the K. alfredi sym-
biont) could suggest that specificity evolved more recently
than the origin of the symbiosis (Fig. 4). The long branch
separating the flashlight fish symbionts sampled here
from relatives suggests that obligate dependence, and
therefore accelerated evolution, evolved in the ancestral
anomalopid symbiont. However, we can speculate that
the ancestral obligate symbiont would not necessarily
have codiverged with the host. It is possible that all bac-
teria maintained the ability to colonize multiple host
species until after the separation of Old World and New
World hosts and that bacteria have subsequently
codiverged with hosts. In addition to demonstrating
specificity, the results presented here suggest that
codivergence between bacteria and hosts may have
occurred after host speciation had begun rather than with
the origin of the symbiosis. To fully test for codivergence,
a molecular analysis of anomalopids to confirm the
phylogenetic relationships between hosts and the addition
of more symbiont sequences will be needed.
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Fig. 4. Cladograms comparing anomalopid
host phylogeny (left) and anomalopid
symbiont phylogeny (right) (Baldwin et al.,
1997; Johnson et al., 2001). Dashed lines
represent host–symbiont relationships. Shown
is a possible scenario for explaining the lack
of congruence between phylogenies, in which
obligate dependence in anomalopid symbionts
evolved before specificity. We note that the
host phylogeny is unrooted, but species that
would further separate A. katoptron from
K. alfredi have been left off the tree, as they
were not included in analyses here (Baldwin
et al., 1997). The symbiont clade is rooted
based on relatives (Fig. 2), and therefore ‘Ca.
Photodesmus katoptron’ and ‘Ca.
Photodesmus blepharus’ are sister species.
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