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Abstract: When facing high levels of overstock inventories, firms often push their salesforce to work harder than usual to attract
more demand, and one way to achieve that is to offer attractive incentives. However, most research on the optimal design of
salesforce incentives ignores this dependency and assumes that operational decisions of production/inventory management are
separable from design of salesforce incentives. We investigate this dependency in the problem of joint salesforce incentive design
and inventory/production control. We develop a dynamic Principal-Agent model with both Moral Hazard and Adverse Selection in
which the principal is strategic and risk-neutral but the agent is myopic and risk-averse. We find the optimal joint incentive design
and inventory control strategy, and demonstrate the impact of operational decisions on the design of a compensation package. The
optimal strategy is characterized by a menu of inventory-dependent salesforce compensation contracts. We show that the optimal
compensation package depends highly on the operational decisions; when inventory levels are high, (a) the firm offers a more
attractive contract and (b) the contract is effective in inducing the salesforce to work harder than usual. In contrast, when inventory
levels are low, the firm can offer a less attractive compensation package, but still expect the salesforce to work hard enough. In
addition, we show that although the inventory/production management and the design of salesforce compensation package are highly
correlated, information acquisition through contract design allows the firm to implement traditional inventory control policies: a
market-based state-dependent policy (with a constant base-stock level when the inventory is low) that makes use of the extracted
market condition from the agent is optimal. This work appears to be the first article on operations that addresses the important
interplay between inventory/production control and salesforce compensation decisions in a dynamic setting. Our findings shed light

on the effective integration of these two significant aspects for the successful operation of a firm.
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1. INTRODUCTION

Marketing and Operations Management (OM) represent
two important sections of most firms. Within a company,
marketing personnel try to increase demand and operations
personnel try to effectively match supply with the attracted
demand. Both of these two sections’ activities also repre-
sent considerable investments for a firm. For instance, while
operational activities (e.g., logistics, warehousing, produc-
tion/inventory, etc.) are widely known to be a major cost for
a firm, its salesforce may cost 5—40% of total sales ([47]).

Because of their importance, a vast stream of research has
been devoted to developing insights into improving the mar-
keting and operational activities. However, the literature on
effective dynamic mechanisms to integrate these activities
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is still immature and growing (see e.g., [37,25]). The
importance of filling this gap and the need for research on
integrating these important activities have been discussed in
several studies including the Harvard Business Review arti-
cle titled “Can marketing and manufacturing coexist?” [44].
Such studies (see also [25]) specifically illuminate the impor-
tance of considering marketing decisions when controlling
production/inventory activities, and vice versa.

In this article, we consider the joint problem of (a) design-
ing appropriate inventory-dependent contracts to induce the
salesforce to attract sufficient demand (marketing) and (b)
controlling production/inventory to generate enough supply
(operations). In the next section, we will review the liter-
ature on both problems, especially the related work from
the Marketing literature. Most of the research in this area,
however, does not consider the interdependence between
salesforce incentive design and production/inventory control.
Hence, the incentive design problems studied in the literature
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are typically separated from such operational decisions, and
consequently, lacking any coordination, the optimal con-
tract design and the optimal production/inventory strategy
become independent decisions. In practice, however, sales-
force compensation plans may highly depend on such opera-
tional decisions. For instance, when firms face high inventory
levels (e.g., as a result of a higher-than-required production
or lower-than-expected sales in previous periods), they push
their workforces to work harder than usual to enhance cus-
tomer demand, and offering the salesforce a more attractive
compensation plan is a viable and often utilized option. By
contrast, when firms are understocked, they are less inter-
ested in boosting demand. Hence, they offer a less attractive
compensation package as there is no need for a significant
effort from the salesforce. Indeed, altering the compensa-
tion plans has been empirically found to be an effective
method to increase profits through increasing sales, and
thereby decreasing the consequences of keeping high lev-
els of unsold inventories (see e.g., [31]). We further note that
contract design is a realistic approach used in practice for
effective salesforce compensation (see e.g., [21] for a menu
of incentive contracts used by IBM).

The problem we consider in this article is faced by many
firms. An example is LKQ Corporation that provides a variety
of products to collision repair shops as well as mechani-
cal repair shops. The firm needs to effectively control the
inventory of its items, which includes new products produced
by original equipment manufacturing (OEM), products pro-
duced by other companies rather than OEMs (aftermarket
products), and recycled and refurbished items. Similar to the
assumption we make in this article, LKQ faces nonstation-
ary and seasonal demand: “During the winter months, we
tend to have higher demand for our products because there
are more weather related accidents, which generate repair”
([13]). Moreover, as is our focus in this study, it is reported by
the company that (a) most of their sales personnel are paid on
a commission basis and (b) the firm has to design an effective
incentive mechanism for its salesforce and regularly evaluate
its effectiveness: “Our objective is to continually evaluate our
sales force,..., and utilize appropriate measurements to assess
our selling effectiveness” ([13]).

To gain insights into how firms can effectively integrate
their production/inventory decisions with the design of effec-
tive compensation plans, we develop a dynamic Principal-
Agent model in which the salesforce (representing the agent)
sells the product on behalf of the firm (representing the prin-
cipal). We consider a scenario in which the manager of the
firm (she) is risk-neutral and maximizes her expected total
profit during the planning horizon, while the sales agent (he)
is risk-averse and is myopic in optimizing his short-term util-
ity. In each period, the firm designs a menu of compensation
contracts for the agent based on the current level of inventory
to (a) induce him to work hard to attract enough demand
and (b) extract information about the market condition. The

firm also makes production/inventory control decisions based
on the extracted information to provide enough supply. The
agent, possessing more information about the market than the
firm, decides whether to accept an offer, and if so, how much
selling effort to exert for that period.

As is the case in most real-world situations, we assume
the firm cannot directly monitor the sales effort exerted by
the sales agent, and only observes the demand/sales in each
period. Thus, the firm has to compensate the agent in each
period merely based on sales. Therefore, the problem that the
firm is facing in each period is a combination of moral haz-
ard (as the outcome depends on the unobserved agent’s effort
level) and adverse selection (due to the asymmetric informa-
tion regarding the market condition). It is well established that
an effective approach to this type of problems is to design
a menu of contracts' for the agent who, privately knowing
the market condition (i.e., the agent type), chooses one to
sign (see e.g., [27]). The signed contract, if effective, may
induce the agent to work hard enough (to generate enough
demand for the firm’s stock level). Moreover, by observing
the contract signed by the agent, the firm can obtain sufficient
information about the market, and can then make use of it for
more effective production/inventory decisions (to generate
enough supply depending on the market needs).

We first analyze our model in the last period of the plan-
ning horizon, and completely characterize the optimal menu
of inventory-dependent contracts that should be offered by the
firm. We find that the optimal contracts are (1) more attractive
when the inventory level is high or the salesman is less risk-
averse, (2) effective in inducing the salesforce to work harder
than usual when the inventory level is higher, and (3) suitable
in providing sufficient information for the firm to effectively
make production/inventory decisions. Point (1) establishes
analytical support for the widely observed behavior of firms
in offering higher commission rates when facing high lev-
els of over-stock inventories. It also supports the empirical
studies that find (a) changing compensation plans is effective
in increasing sales (see e.g., [31]), and (b) more risk-averse
individuals prefer a fixed salary and are less productive under
incentive pays (see e.g., [6]; and for more general empirical
studies on the effect of incentives, see [42]). Points (2) and
(3) shed light on two typically ignored aspects of a good
compensation plan.

We then analyze the problem in an arbitrary period. To this
end, we focus on the case where the contract does not provide
any long-term employment guarantee for the agent, and as a
result, the agent (unlike the firm) is mainly concerned with
short-term gains. Focusing on these types of contracts, which
are prevalently observed in today’s competitive business

! For a real-world example of the use of menu of contracts, see
[1] which provides a report on the menu of incentive contracts
commissioned by the Norwegian Water Resources and Energy
Directorate.
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where sales agents lack job security, enables us to apply the
revelation principle and to completely characterize the opti-
mal dynamic inventory-dependent contracts in each period.
We point out that if the contract offers a long-term employ-
ment guarantee, or the agent is not myopic, then the agent
will become strategic,” and the revelation principle may fail
(seee.g., [28, 36, 38]). In that case, our results can serve as an
approximation when the agent is relatively more concerned
with his short-term gains, but in general, completely charac-
terizing the optimal dynamic inventory-dependent contracts
with strategic agent is a difficult task. As we will see, even
when the contract does not provide a long-term employment
guarantee (e.g., lack of job security in a competitive market),
the structure of the inventory-dependent optimal contracts
in the multiperiod setting is complex. Nevertheless, we are
able to completely characterize the menu and show that the
optimal menu of contracts bear a similar (though much more
complex) structure compared to the last period.

After characterizing the optimal menu of contracts for an
arbitrary period and observing its complexity, we propose a
heuristic menu of inventory-dependent contracts using the
result for the optimal contracts in the last period. We show
the effectiveness of the proposed heuristic through numerical
examples. We also illustrate and highlight the importance of
using the inventory-level dependent contracts by numerically
comparing their performance with those that ignore on-hand
inventories. Our analyses enable us to rigorously demon-
strate why higher inventory levels result in higher salesforce
incentives offered by firms, a phenomenon that has only been
empirically observed in practice.’

Furthermore, by analyzing the problem in an arbitrary
period, we show for the first time in the literature that although
the inventory/production control and the design of the com-
pensation package are highly interconnected, firms do not
need to implement a complex inventory/production man-
agement policy; the optimal inventory control policy is a
state-dependent policy that benefits from the extracted market
information from the agent (which we refer to as a market-
based state-dependent policy). In addition, for periods with
low inventory levels, this policy reduces to a traditional but
market-based base-stock policy, in which the firm follows a
base-stock policy after making use of the extracted informa-
tion from the agent. In fact, we find that sales agent screen-
ing under optimal contracts enables the firm to implement

2 When the agent is strategic, he might have some incentives to devi-
ate in the first few periods from optimizing his regular utility (the
so-called “ratchet effect,” see e.g., [20]).

3 As an example, when gas prices rise, the demand in the auto indus-
try shifts toward more fuel efficient vehicles, and hence, auto-makers
face large low-MPG car inventories. As a result, they typically
increase their marketing activities for low-MPG cars to speed up
their inventory turnover (see e.g., [7]).
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classic inventory control mechanisms as if the firm has perfect
market information (i.e., no information asymmetry).

In closing, we highlight that in contrast to [9] which ana-
lyzes a single-period model where the compensation plan
offered by the firm is independent of its production/inventory
decision, we consider a dynamic setting with features such
as nonstationary demand, dynamic market conditions, and
inventory carryover, and focus on the important role of inven-
tory decisions in designing a compensation package for the
salesforce. Our motivation has been the common empirical
observation of firms offering incentives to induce sales agents
to work harder than usual during times of inventory over-
stocking. To the best of our knowledge, our work is the first
in the operations literature to provide an analytical justifica-
tion by rigorously quantifying the significant role of inventory
decisions in the design of salesforce compensation.

The rest of the article is organized as follows. We review the
literature in Section 2. In Section 3, we present the model, and
in Section 4, we study the optimal production and incentive
design problem for the last period. In Section 5, we ana-
lyze the model for an arbitrary period. Finally in Section 6,
we conclude the article with a discussion of our results and
highlighting some possible directions for future research. All
the proofs are provided in a separate online appendix.

2. LITERATURE REVIEW

The authors of [3] are generally considered as the first to
apply the agency theory of Economics to study the problem
of salesforce compensation and related issues in the Mar-
keting literature. Ref. [3] presents the impact of uncertainty,
risk aversion, and some other factors on the design of com-
pensation packages. There are several other studies on the
design of salesforce incentives in the Marketing literature.
Comprehensive reviews of this stream can be found in [11]
and [12]. A typical theme in this stream of research is that
the salesforce compensation package should be based on the
observed realization of the demand (as a mechanism to mea-
sure the salesforce effort). In sharp contrast, the operational
decisions such as inventory or production control widely dis-
cussed in the OM literature are made a priori and based on
some knowledge or prediction about the demand process.

An overview of research on the integration of manufac-
turing and marketing decisions can be found in [37]. Within
this broad stream of research, some studies have tried to fill
the gap between the Marketing literature and that of OM
by incorporating the operational decisions such as produc-
tion/inventory control in the design of incentives. The first
work in this area appears to be the interesting study of [2]
that considers the incentive design problem between a single
owner and a single manager in a newsvendor-type frame-
work. Ref. [41] develops an insightful model to investigate the



Saghafian and Chao: Operational Decisions and Salesforce Incentives 323

incentive design problem between a manufacturer manager
(responsible for making capacity and inventory decisions)
and several product managers (responsible for making sales
effort decisions).

The author in [8] discusses and evaluates the impact of
salesforce incentives (over multiple time periods) on a man-
ufacturing firm’s production and inventory decisions, and
proposes a moving-window mechanism to induce salespeo-
ple to exert considerable selling effort to make the demand
process smoother. Ref. [22] studies a setting where a retailer
makes ordering and salesforce effort exertion decisions. The
authors in [22] find that, similar to the result of [30], the
retailer should provide a higher service level to increase
the benefit and consequences of learning from uncensored
demand information (the so-called “information stalking”).
In a single-period salesforce design problem with inventory
consideration, [14] also investigates the demand censoring
effect and shows that the firm needs to stock slightly more
than the usual level, because it helps the firm to gain a better
prediction of the agent’s hidden effort. The authors of [14]
also show that the presence of stockouts may lead the firm to
offer higher bonuses to the agent even though the inventory
might be limited. Unlike our work, in the analytical setting of
[14], demand and the agent’s effort only take discrete number
of values, and the compensations are quota-based. Ref. [25]
also implements the agency theory from Economics to deter-
mine compensation plans for sales and operations managers
to effectively coordinate their activities. Ref. [15] considers
the salesforce compensation design and inventory planning
problem when the agent’s risk attitude is unknown to the firm.

The author in [9] studies a single-period (i.e., static) prob-
lem in which the salesforce compensation problem is sepa-
rated from the firm’s production and inventory decision. Our
model builds on and extends [9]. However, our work differs
from [9] mainly in two folds: (1) unlike [9], we consider a
multiperiod and dynamic setting with inventory carryover,
where the market condition, demand, and inventory levels
change over time, and (2) we aim to investigate the effect of
inventory on the compensation plan, but in [9], the compensa-
tion plan is independent of inventory levels. Thus, compared
to earlier studies, this work lies in the dynamic nature of
the problem and the main interest is in the interplay between
inventory and incentive design. To the best of our knowledge,
our work is the first attempt in this vein.

Similar to many other studies in the literature, the inter-
action between the firm and the salesforce in our model is
of a Principal-Agent type. These types of models are widely
studied and discussed in field of Microeconomics. Refs. [33]
and [26] provide excellent descriptions of Principal-Agent
type models. Some other books such as [43] and [5] cover
broader and more subtle issues regarding the theory of con-
tracts, including those related to strategic commitment and
renegotiation in dynamic models.

In general, it is noted that Principal-Agent models in
dynamic settings possess several technical challenges, and
the underlying theory to handle/investigate those is still
immature. This is despite the fact that dynamic Principal-
Agent models can be significantly effective in providing
insights into many areas of research, including those in the
OM field. One of the first applications of dynamic Principal-
Agent models in OM is [39], which studies a multiperiod set-
ting without adverse selection (i.e., moral hazard only), where
the transition probability matrices depend on the actions
adopted by the agent. In [39], the principal seeks to make
use of a payment mechanism that optimizes her expected dis-
counted profit. Ref. [39] presents a set of assumptions under
which two typical difficulties of dynamic Principal-Agent
models can be easily handled: (1) history dependence of com-
pensation mechanisms which requires a (non-Markovian)
complete information collection over time (i.e., information
from all the previous periods) and (2) strategic commitment
of both the principal and the agent (i.e., the agreement of
both parties at time zero to restrict themselves to the terms
for later payments). When (a) the manager’s (agent’s) utility
is an exponential type and additively separable over time, (b)
the manager can move consumptions between periods (e.g.,
through saving and withdrawing income), and (c) the prin-
ciple is a risk-neutral profit maximizer, [39] shows that the
complex problem can be handled using a two-step dynamic
programming setting. They also demonstrate that the optimal
contract satisfies the Bellman optimality principle/equation.

In another related study, the authors of [40] consider a
principal-agent version of the well-known continuous-time
make-to-stock queueing system with a single server. They
find that an optimal compensation package includes some
piece rates as well as dynamic inventory-dependent penalty
terms. Refs. [39] and [40] both fall in the class of dynamic
moral hazard studies.

Addressing a dynamic Principal-Agent model in an
adverse selection context, [46] considers an interesting set-
ting in which the underlying system is a Markov Deci-
sion Process, the state of the system can only be moni-
tored/observed by the agent, but the agent’s action is not
private and can be observed by the principle. In such a set-
ting, [46] establishes that it is sufficient to restrict attention
to the revelation contracts. In another study, [45] develops
a dynamic adverse selection setting between a supplier and
a retailer in a two-echelon supply chain model, where the
supplier is unaware of the inventory level at the downstream
retailer.

There are also a few studies on dynamic Principal-Agents
models with both moral hazard and adverse selection. For this
stream of research, we refer interested readers to [17, 18],
and the references therein. We contribute to this stream of
research by considering the salesforce incentive design prob-
lem in a setting where the agent does not know the inventory
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of the firm, and the firm cannot observe the effort level
exerted by the agent, but she can alter the agent’s incentives
depending on the inventory level.

In closing this section, we note that while we consider the
design of incentive plans for a typical salesperson, recent
work on the design of incentives for wholesale-salespersons
are also relevant to our study. For this stream of research, we
refer interested readers to [24], and the references therein.

3. THE MODEL

Consider a firm that sells a single item through a sales
agent over N periods (e.g., if N = 4 it may represent
the four quarters of the year). The demand/sales in each
period depends on the market condition as well as the effort
exerted by the salesforce. The attracted demand in period
nef{l,2,...,N}is

Dn=®n+an+lu«n+6n’

where ©,, is the market condition in period n, a, € R¥ is
the agent’s advertising/sales effort, i, is a period-dependent
number which may, for example, reflect seasonal effects, and
€, 1s a random noise which is assumed to be normally dis-
tributed with mean 0 and variance o,>. The variance in the
noise, .2, may depend on period n, since in applications the
demand may be seasonal and affected by some uncontrolled
factors differently in each season. For simplicity, we assume
that the effort level exerted by the agent has only a first order
affect and does not affect o2

For tractability and also to be consistent with the liter-
ature (see e.g., [9]), we assume that the market can be in
either of two possible conditions, High (H) or Low (L),
which is equivalent to ®, taking two possible values, 6y
and 6, with 6y > 6. At the beginning of each period, the
salesman, being closer to the market, learns the market con-
dition, while the firm only has an estimate of the market
condition (i.e., some prior belief that the market condition
is of type H or L). We assume the market condition process
{®,,n=1,2,...,N} evolves as a two-state Markov chain
with transition probabilities p;; for i, j = L, H. That is,

P{®,y1 =0u| 0, = 0u} = pun,
P{O®,41 =0L]0, = 6u} = pu,
P{®p1 =04|0, =0L} = pLu,
P{®,1 =00, =0} = pLL.

The salesman’s utility in each period depends on the com-
pensation he receives from the firm as well as the sales
effort he exerts. If s;(D) is the compensation for a type
i € {H,L} agent when the realized sales is D, and q; is his
exerted effort level, then the salesman’s utility during the
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period is represented by the negative exponential function
u(s;(D),a;) = —e 76D~ \where v(a;) is an increas-
ing* convex function representing the agent’s cost of exerting
effort/advertising level a;, and y is a measure of risk attitude.
Similar to some studies in the literature (e.g., [9]), we con-
sider a quadratic form and assume that v(a) = a?/2, which
is an example of an increasing convex function; however,
our analysis can be extended to other forms of effort cost
functions. Negative exponential utility (which is increasing
concave) is prevalent in literature, and it is a natural choice
of utility when a person’s utility is invariant under any wealth
translation (i.e., u(w + k) = f (k) u(w) for any wealth w and
k, and a function f(-)). In our framework, the agent max-
imizes his expected utility in each period and is willing to
accept a compensation contract if, and only if, his utility in
each period can reach a minimum level —U.

For consistency with the literature, we follow the notation
and assumptions of [9], which (unlike our work) studies a
single-period problem. In each period, the firm incurs a unit
cost ¢ to purchase/produce one unit of the underlying item,
and the selling revenue per item is 1 4 ¢, where the marginal
profit is assumed to be normalized to one (these parameters
can be extended to the case that they are period dependent,
see the last section for a discussion). If demand in a period is
less than the inventory level, there is a holding cost of & per
unit. However, if the demand exceeds the on-hand inventory,
then the excess demand must be satisfied via an emergency
order at a cost of p per unit. We note that similar assumptions
have also been made in several other studies. For instance,
in [32], when stockout occurs, it is assumed that the firm
borrows inventory from an alternative source. It is noted that
this is equivalent to a lost-sales scenario, with the emergency
ordering cost being the shortage cost. These cost parameters
satisfy h < ¢ < p < 1 + ¢, but some other cases can also
be easily handled, and we allow for some relaxation in our
numerical experiments.

The firm is risk-neutral and her objective is to offer a menu
of contracts to the salesperson dynamically to maximize her
expected total profit (sales revenue minus compensation and
production/inventory costs) over a planning horizon of N
periods. We note that dynamic/frequent adjustments to incen-
tives (as a tool to increase sales) have been used by firms in
practice, see for example, [16] for some related empirical
observations in the retail industry and [31] for more general
discussions about such adjustments.

As we discussed in the Introduction, the framework for
the interaction between the firm and the salesman described
above is of a dynamic principal-agent type: the salesman in
each period attracts demand for the underlying item on behalf

4 Throughout the article, we use increasing and decreasing in non-
strict sense, that is, they represent nondecreasing and nonincreasing,
respectively.
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of the firm. In each period, the principal (i.e., the firm) designs
a menu of compensation contracts for the agent (i.e., the
salesman) and makes production/ordering decisions, while
the agent, privately knowing the market condition (which
dynamically changes over time), decides whether to accept
a specific contract, and if so, how much advertising/selling
effort to exert for the period. In this setting, through offering
a suitable menu of contracts for each period, the firm would
like to (1) invoke the salesman to work hard enough to attract
sufficient demand (depending on the inventory level) and (2)
extract information about the market condition that can be
used for a better production/ordering decision.

The sequence of events in each period is as follows. (1)
The firm reviews the inventory level (at the beginning of the
period), and based on that and her belief about the market
condition, the firm offers a menu of compensation contracts
to the agent. (2) The market condition € in the period is real-
ized and is privately observed by the agent. (3) The agent
decides whether he wants to participate or not, and if he par-
ticipates, he decides which contract to choose/sign. (4) Under
a signed contract, the firm decides the production quantity
and the agent chooses the sales/advertising effort level. (5)
The firm and the agent both observe the total sales (i.e., the
realized value of demand), and the firm receives the sell-
ing revenue and pays the compensation to the agent. (6) The
inventory shortage or overage cost is accrued for the period,
and the system (including the market condition) proceeds to
the next period. The resulting problem is a dynamic mech-
anism design problem. It should be noted that, in general,
dynamic mechanism design is very challenging, and the usual
revelation principle may fail to hold (see e.g., the discussions
in [36]). In this article, we focus on the set of contracts that
do not provide any employment guarantee for the sales agent
in the future periods. Under such contracts (which represent
a competitive market for the agents with lack of job secu-
rity), the agent is mainly concerned with short-term gains,
and the usual revelation principle can be applied. Thus, our
approach provides an approximation for analysis of contracts
that provide short- to middle-term employment guarantees.

4. ANALYSIS OF THE LAST PERIOD

To gain insights, we start by analyzing the problem in the
last period, N. For simplicity here we suppress the time index
denoting the last stage. We also assume that after period N
there will be no cost or salvage value. That is, at the end of
period N, the usual holding and shortage cost incurs and there
is no additional cost afterwards. Our notation and analysis in
this section is similar to that of [9] (see also [27]) which
considers a single-period model, except that we have an arbi-
trary starting inventory level in the last period, while in [9]
the initial inventory level is zero (i.e., ignored). That is, unlike

[9], the optimal contracts in our framework will be inventory
dependent. Our goal is to gain insight into the important role
of the starting inventory level in contract design. In the next
section, we will analyze the problem for an arbitrary period.

Suppose that at the beginning of period N, and before any
decision is made, the firm’s inventory level is x, and the sales-
man privately observes the market condition, 6y or 6. For
convenience, we call the salesman who observes 6y (6;.) the H
(L) type agent. By the revelation principle (see e.g., [35]), the
firm needs to only consider the class of truth-telling contracts.

Under asigned contract s; (D), to decide how much effort to
exert, the type i € H, L agent needs to solve the optimization
problem

maxE[u(s; (D), a;)] = maxE[—e™7 P =v@D] (1)

The compensation scheme we consider is the most com-
monly used form of compensation, that is, an affine form (see
[27] for the optimality of these types of contracts), which rep-
resents a commission rate of o; plus a fixed/salary payment of
Bi:s;i(D) = a; D + B;. (As will be seen, the commission rate
and the salary depend on the firm’s starting inventory level.
But here we suppress such a dependency for notational sim-
plicity.) By the certainty equivalence principle, since s; (D)
is normally distributed, the optimization problem (1) has the
solution

aj(0) £ argmax E [—eIsi(D)=a}/2]y
a;

= argmax {IE [s;(D)] — %Var [si(D)] — aiz/z} .
(2)

The type i agent has the choice of selecting contract sy or
st If he selects contract j (= L or H), then his optimal effort
level is

2

1 .
a*(s;.i) = argmax Els; (D)) — 5y Var [s;(D)] - %

= argmaxo;(0; + u +a;) + B; — a} /2

2 2
_EV"‘J'U

=a;. 3)

Therefore, if the salesman observes the market condition
i and selects contract s;, then his optimal effort level to be
exerted is o; (see also [9]). The certainty equivalence of the
salesperson’s expected utility, denoted by it (s;, i), is therefore

(s i) = a: (6, . LT S
u(s],z)_a](,+,u,+a])+,31—§otj—§yaj0
1 —yo? 5
= 6+ 100y + B+~ a, )
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To be able to extract information about the market con-
dition, the firm, when designing a compensation package,
needs to consider an incentive compatibility (IC) condition
to ensure that the salesman who observes market condition i
will indeed select contract s;. This entails @ (s;, i) > #(s;, i)
or

1—yo? ,
O + wea; + B +Tai
1— 2
- Yo~ » . .
> (i+M)Olj+,3j+TOtj, i #J.

Furthermore, for the salesperson to sign one of the con-
tracts, the firm has to impose an individual rationality (IR)
condition to ensure that the selected contract provides a mini-
mum utility value of —Uj, or a minimum certainty equivalent
utility of —(In Uy)/y, for the agent.

To analyze the firm’s problem, we let w; be the firm’s
maximum expected profit under signed contract s(.), x be
her starting inventory level of the period, and y > x be her
inventory level right after production (and before demand
realization). If D is the demand for the period, then

Ty = max {EI(14+¢)D —s(D) —c(y — x)

—h(y—=D)" — p(D— "]}
=cx +E[D] - E[s(D)] — I}¥1>i£1{(h + o)E[(y — D)*]

+(p — )END - )"}, &)

where x* = max {x, 0} for any real number x. If the demand
distribution is known to the firm, and x = 0, the inventory
optimization is a typical newsvendor problem, and its optimal
solution, y*,is the solutionto P {D < y*} = (p—c)/(p+h).
In particular, if D can be written as D = v + €, where v is a
constant (which may depend on parameters such as 6, u, and
o, Bi, etc.) and € is the random noise with cumulative dis-
tribution @, then the optimal order-up-to level can be written
as y* = v + g*, where

*:q>—1 p_c).
q <p+h (6)

Clearly, g* is the optimal newsvendor solution when the
random demand is €, and we shall assume in what follows
g* = 0.1 welet G() = (h + B[y — )]+ (p —
c) E[(e — y)T], where the expectations are taken with respect
to €, then the firm’s corresponding optimal cost can be writ-
ten as w;(x) = cx + E[D] — E[s(D)] — G((x —v) V g%),
where x V y = max {x, y} for any real numbers x and y.

Suppose in this period the firm offers two contracts sy (-)
and s () such that the high type agent signs sy and the low
type agent signs s;. If sy is chosen, then the firm knows
that ® = 6y, and therefore, from (3), the agent will exert
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aj; = ay. Hence, it follows from the analysis above that the
firm’s expected profit, if sy is signed, is

w5, (x) =cx +E[D|6 =H,a = ay]
— E[s(D)|6 =H,a = ay]
-G =0y —p—an) Vg
=cx+ (1 —ay)y+ un+ay)
—Bu—G((x — Oy — u—an) Vg").

Similarly, if contract s, is signed by the agent, the firm’s
expected profit is

mg(x)=cx+ {1 —a)OL+pn+oa)— B
—G((x —0L—p—ap) vVgh).

The firm offers contracts sy and s;. Under the signed
contract s;, the salesperson’s optimal certainty equivalence
is

ai 0+ ) +of 1—yo?)/2+ B (7)

Therefore, if the firm believes at the beginning of the period
that the market condition will be of type H with probability
p, then the firm’s problem of designing the optimal contract
can be written as

Vy(x,p) = max {cx+ p[0g+n+ap)(l—an)

ay,Bu.oL.fL
—Bu—G(@" V[x —0g—pu—anll
+A—p) 6L +p+oa )l —aL) — B
—G@" VIx—6L—pn—oaoDl}

S.t.
oy (O + ) +af (1 —yo®)/2 + Bu
> (-InUy)/y (R-H) (8)
aL O+ w +af (1—yo?)/2+ B
> (-InUp)/y (R-L) ©9)

ap (Ou + 1) + o (1 —y 0%)/2 + By

>oL O+ p) +of (1—ya?))2
+p. (IC—HL) (10)

aL 0L+ ) +of (1—yo?)/24 AL

> o (O + p) + o (1 —y0?)/2
+ Bua (IC—-LH) (11)
ay, oL > 0. (12)

Using the convention in the standard mechanism design
literature for labeling the constraints, (8) and (9) are the so-
called individual rationality (IR) constraints for the H type
and L type agents, respectively, which guarantee that the
agent will participate regardless of his type. Constraints (10)
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and (11) are the so-called incentive compatibility constraints,
which guarantee that an H (L) type agent will not choose/sign
a L (H) type contract. Finally, constraint (12) assures that
the commission rates offered by the firm (i.e., principal) are
nonnegative.

Following the same lines of formulation as [9] (but with the
exception that our optimization program depends on the start-
ing inventory level, x), the above optimization problem can
be significantly simplified. To see this, first note that, since
6y > 6L, IC-HL) and (IR-L) together result in (IR-H), and
hence (IR-H) can be eliminated without any loss of general-
ity. Next, note that (IC-HL) would need to hold as equality
(otherwise, decreasing By will provide a better solution with-
out violating the remaining constraints). Writing (IC-HL) as
an equality, observe that (IC-LH) can be substituted with
oy > o, because 6y > 6. Moreover, note that (IR-L)
must hold as an equality because otherwise it is possible to
decrease By and Br by the same amount to obtain a better
solution while satisfying all the remaining constraints. Per-
forming the above changes, we obtain the following simpler
problem:

Vn(x, p) = max {cx+p[On+ 1+ an)(l —an)
L

ay,Bu.aL,
—Bu—G(@"VIx—0g—pu—aull
+(U =IO +p+o)(1—aL) — AL
-G@ " VIx—6L—pn—oa Dl
st. oo (0L +p) +of 1 —yo?)/2+ L= (—InUp)/y
ap O+ 1) + o (1—y0?)/24 By
=aL On+p) +af (1—yo?)/2+pL

o > o, > 0.

The analysis above shows that, as is typically expected,
an optimal menu of contracts makes (1) the high type agent
indifferent between the two contracts offered and (2) the low
type agent indifferent between signing a contract and not par-
ticipating (i.e., not signing any contract). We can now use the
remaining constraints [i.e., (IC-HL) and (IR-L)] to find the
fixed/salary payments By and S :

BL=—aL O+ ) —af (1—yc?)/2—(nly/y, (13)

Bu = +ar (g —6L) —an (B + 1)
—af(1—yo?/2—(nUy/y. (14)

Using these equations and simplifying the objective func-
tion, the firm’s problem can be rewritten as

In U —
O 40+ nu

Vn(x,p) = [rxnetlxx {cx +
H>OL
1+ yo?

5 aZI—G(q*V[x—QH—/L—OlH]):|

+0 |:01H—

P 1+ yo?
+ (1= p)|ar — L (O — ) — — o
1—p 2
—G(Q*V[X—GL—M—UL])“
s.t. ag >ap >0, (15)

where 0 = p Oy + (1 — p) 6.

We note that the objective function of the above opti-
mization program is separable in decision variables oy and
a1, (although these decision variables are connected through
the starting inventory level). Moreover, it is easy to check
that the function G(-) is convex, and since g* is its min-
imizer, it follows that G(¢* vV [x — 6y — © — ay]) and
G(g* Vv [x — 6, — u — ar]) are both convex in x. Hence, the
above objective function is concave and separable in decision
variables.

To solve the mathematical program (15), we first solve
two separate optimization problems (i.e., after relaxing the
constraint oy > o, > 0). We first optimize

14 yo?

5%~ G VIx =0 —p—au. (16)

oy

It can be seen that when x < ¢* + 0y +pu+1/(1 + yo?),
the optimal ay is equal to 1/(1 + yaQ), and when x >
q*+0u+p+1/(1+yo?), the optimal oy is the maximizer
of

1+ yo?

s~ G =G —p—aw, (D

oH
which is always greater than 1/(1 + yo?). We let ay(x) be
the maximizer of (17).

We then optimize

P 14 yo?
Ty O =60 —

- G@"VIx—6L—pu—orl).

o, —

1— 2 (0u—00)

When x < g* +6L + u + Tryo?

— 1550 (O —6L)

, the optimal o,

is equal to : e, and when x > ¢* + 6, + u +
—l_ﬁ(::z_ ) , the optimal « is the maximizer of
o — —L a6 _9)_Ma2
L -, L(On — L 2 L
-G =6 —pn—on), (18)

1— 250 (Ou—6L)

o2 . We let ap (x) be

which is always greater than
the maximizer of (18).
From the analysis above, we observe that the optimal menu

of contracts may take the same value for both agent types (in
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some range of the starting inventory level). To achieve the
benefits of information acquisition, the firm can slightly per-
turb the contracts so that they are differentiated. For instance,
when a*(x) is the optimal commission for both type at the
inventory level x, the firm can set oj;(x) = o*(x) + v and
of (x) = o* (x) — v for some arbitrarily small v > 0. We will
denote these quantities by o™ (x), and a*(x)_, respectively.

The following properties of oy (x) and o (x) are useful in
characterizing the optimal menu of contracts and understand-
ing the form of optimal inventory-dependent commissions
that should be offered by the firm.

LEMMA 1 (High Over-Stock Inventories): On x > g* +
O+ +1/(1 + yo?), we have

a. ap(x) and o (x) are strictly increasing in x but with
slopes less than 1;

b. ag(x) and op (x) both converge to finite values as
X — 00, and

lim o (x) < lim ag(x)
X—>00

X—>00
i 725 0n — 6L)
S
c. ay(x) and o (x) are concave in x;
d. ag(x) — ar(x) is strictly increasing in x.

The results above partially reveal the effect of the start-
ing inventory level: when the firm is facing high over-stock
inventories, commissions offered are increasing in the inven-
tory level, the H type agent gets a higher commission rate
than the L type agent, and the difference between commis-
sion rates becomes larger as the inventory level increases.
The latter result suggests that a firm with higher levels of
over-stock inventory needs to be more careful in differenti-
ating between agent types: the firm needs to ensure that the
H type agent has enough incentives to work hard to bring the
inventory level down while knowing that the L type agent has
only a limited leverage in doing so (due to low demands).

To provide a complete characterization of the optimal con-
tracts, we need to provide some preliminary results. First, we
need to define the following belief threshold:

. _ o(q")
1+¢(g*)’

where ¢ is the density function of the Normal random vari-
able € (and hence, 0 < p* < 1). We then define another
function by

L
£(p,0) = o LW _q>—1<p_c>
s p+h p+h )

and provide the following lemma.

19)
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LEMMA 2: If p < p*, then there exists a unique number
0(p) satisfyirAlg 0 < 8(p) < oo, suchthat§ > &(p, 0) if, and
only if, 8 < 8(p).If p > p*,then 6 < &(p,0) forall 6 > 0.

We now present two definitions that will facilitate our
characterization of the optimal compensation plans.

DEFINITION 1 (Perceived Market Conditions): We say
that the market condition is perceived to be of high (low) type
by the firm if p > (<) p* [where p* is the belief threshold
defined in (19)].

DEFINITION 2 (Distinguishable Market Conditions):
The market conditions are said to be distinguishable by the
firm if, and only if, 6y — 6, > é(p), where é(p) is the unique
solution to (p +h)® B +g*) = p—c— 0 p/(1 — p).

Using the above definitions, the following result sheds light
on the conditions under which relaxing the constraint of pro-
gram (15) and separably optimizing the objective function
for finding the optimal commission rates for L and H type
agents is or is not problematic.

LEMMA 3 (Single Crossing): If either (a) the market con-
dition is perceived to be of high type or (b) the market
condition is perceived to be of low type but market condi-
tions are distinguishable, then there exists a finite number
75> q* +6u+u+ 1/(1 + yo?) such that ay(x) < ap (x)
onz*>x>qg*+0u+u+1/(1+yo?), au(z*) = aL(z*),
and ag(x) > ar(x) on x > z*. Otherwise, ag(x) > ap(x)
onall x > g* + 0y +u+1/(1 +yo?).

Before completely characterizing the optimal inventory-
dependent menu of contracts, we also need the following
simple result. Its proof is elementary and is omitted.

LEMMA 4: Let g(x) and g,(y) be two concave func-
tions with maximizers x* and y*, respectively. Let z* be the
maximizer of concave function g(z) + g2(z). For the pro-
gram max,>, {g1(x) + g2(y)} the following result hold: If
x* > y*, then the optimal solution is (x*, y*); and if x* < y*,
the optimal solution is (z*, z*), where x* < z* < y*.

We are now ready to characterize the optimal inventory-
dependent contracts to be offered by the firm. For the ease
of notation, we let § = [1 — %(QH — OL)]+, and define the
inventory level intervals

I = (=00, ¢* + 6, +u+51+yod) h,

L=lg"+6L+u+3(1+ya> ", 2},
I = [21,23), Is = [25, 23), Is = [23, 00),

I[= (=00, ¢ +0L+u+80+ysd) ),
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L=1g"+0+pn+80+ysd) ",
A0+ u+ (0 +yed) ),
L=1g"+0u+u+(1+yed) ", oo,

where

ZT=9L+/¢L+(1+)/O‘2)71

+ 0! <P_C+ i —9L)>

p+h

75 is the solution to zo — 0y — . — au(z2) = g%, and 23 is
the solution to &y (z3) = @L(z3), where ay (x) is the solution
to

P+ D — Oy — pu —aw) — (1 + yoHan
—p+c+1=0,

and @y (x) is the solution to

P+MOx -6 —p—aL) — (1 +yod)a

P @y —6)=0.
—p

—p+c+1—1

With these, we can now characterize the optimal menu of
inventory-dependent contracts as follows.

THEOREM 1 (Optimal Commissions—Last Period): (1)
If either (a) the market condition is perceived to be of high
type or (b) the market condition is perceived to be of low type
but the market conditions are distinguishable by the firm, then
the optimal inventory-dependent commissions are as follows:

1. If x € Iy, then o (x) = §/(1 + yo?) and af(x) =

1/ +yo?);

2.if x € D, then of (x) = ap(x) and ofj(x) =
(I+yod)

3.if x € I3, then of (x) = af(x)_ and ap(x) =

o, (x) 4, where a7, (x) is the solution to (p + A)(1 —
P)P(x—0,—pu—ap)—(l+yoHa, —(1—p)(p—
¢)—pBa—6)+1=0;

4. if x € Iy, then of (x) = oe}:(x), and ofj(x) =
a}; (x),, where oe?4 (x) is the solution to (p +
Mp®x -0y —pn—ap)+ 1 —p)Px—60L—u—
a)l—(+yod)a—p+c—pBu—6)+1=0;

5. if x € Is, then of (x) = ap(x) and ofj(x) = an(x).

(2) Otherwise, the optimal commissions are as follows:

1. Ifx € I/, then o (x) = 8 (1 + yo2) " and gy (x) =
(A +yo?

2.if x € I, then of (x) = ap(x) and ofj(x) =

(1+yod)
3. if x € I}, then o (x) = ar(x) and o, (x) = ap (x).

The optimal commissions presented above are complex.
But we can gain insights by developing a numerical study
and illustrating the dependency of the optimal commissions
to the firm’s inventory level.

Numerical Study 1. Figure 1 illustrates the optimal
inventory-based commissions offered by a firm to its sales-
man as well as the associated utilities. The system parameters
arep=7,h=1,c=2,0 =1, u=0,Uy =10,y = 2,
Oy = 5, and 6, = 1. In this figure, the column on left is for
a case where the firm’s belief about the market (or the agent)
being of type His p = 0.9, and the column on right illustrates
a case where p = 0.3. In the latter case, the structure of the
optimal commissions depends on five inventory intervals, as
predicted by Theorem 1. In the former case, as can be seen in
Fig. 1a, the firm, regardless of her inventory level, only offers
a fixed/salary payment to the low type agent (i.e., o (x) = 0
for all x > 0). However, in the case with p = 0.3, the L
type agent is offered a salary-only payment only when the
inventory level is low (Fig. 1b). Nevertheless, as Figs. 1c and
1d show, in both cases with p = 0.3 and p = 0.9 the L type
agent’s utility is always equal to the minimum level that will
make him participate, regardless of the inventory level.

The following result presents conditions under which the
low type agent is only offered a fixed/salary payment.

COROLLARY 1 (Salary-Only Payment): If p > (h+c+
)/(h+c+ 1+ (Bg — 6L)) then of (x) = 0 for all x,
that is, the low type agent is only offered a salary payment
regardless of the firm’s inventory level. Furthermore, when
X <g*+06L+u+51+ yaz)_l, the low type agent is only
offered a salary payment if, and only if, p > 1/(14+(6g—6L)).

The above result shows that when the firm is sure enough
that the market is high, she does not offer a commission-
based payment to the low type agent. In that case, from (13),
the firm only offers the minimum salary that would make the
low type agent indifferent between signing the contract and
leaving.

The following result sheds more light on the dependency
of incentives on inventory and risk attitude.

COROLLARY 2: (Monotone and Locally Concave Com-
missions) The optimal commissions to be offered by the firm
are (1) increasing in the firm’s inventory level, (2) decreas-
ing in the agent’s risk aversion level, and (3) concave in each
inventory range.

Parts (1) and (2) of the above results illuminate the inter-
play between the inventory level and optimal contracts.
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Figure 1.

Specifically, they show that (a) optimal contracts are indeed
more attractive’ when inventory levels are high, and (b) the
firm needs to offer better commissions to its less risk-averse
agents. These findings strongly support the empirical studies
reported in the literature that find (i) varying compensation
plans is effective in increasing sales (see e.g., [31]) and (ii)
more risk-averse individuals prefer a fixed salary and are less
productive under incentive pays (see e.g., [6] and for more
general empirical studies on the effect of incentives see [42]).
Part 3 of Corollary 2 states that the commission rates possess
a local diminishing rate of increase property; for each inven-
tory interval, the rate of increase in the agent’s commission
is decreasing in the firm’s inventory level.

Another interesting insight from the optimal menu of
inventory-dependent contracts is that it successfully induces
the agent to exert more effort when the inventory is higher. In
fact, as Corollary 2 indicates, with a higher inventory level,
the firm offers a higher commission rate. And the next result
states that, this will induce the agent to work harder to attract
more demand. Hence, inventory-dependent contract design
is an effective tool to match demand with supply.

COROLLARY 3 (Monotone Effort Level): The agent’s
optimal effort level induced by the firm is increasing in the
firm’s inventory level.

5 For convenience, we call a contract more attractive (to the agent)
if the commission rate offered (by the firm) is higher.
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Optimal commissions and the associated utilities.

Another simple but important result that we will use in the
next section is the following.

PROPOSITION 1: (Concave Value Function—Last
Period) The firm’s optimal expected profit as a function of
the starting inventory x and belief probability p, denoted by
Vi (x, p) and defined in (15), is concave in x for any fixed p.
Furthermore, Vi (x, p) — cx is decreasing in x for any fixed p.

This result shows that, similar to what classic inventory
models predict, inventory has a diminishing rate of return
effect on the firm’s profit: the rate of increase in the firm’s
profitis (a) decreasing in its inventory and (b) bounded above
by the purchasing/production cost, c.

5. ANALYSIS OF AN ARBITRARY PERIOD

We now proceed to study the joint contract design and
inventory/production control problem for an arbitrary period
n,n <N.

By backward induction, suppose that we have analyzed
the problem from stage n + 1 to the last stage. In particular,
suppose we have computed the firm’s maximum expected
profit from period n + 1 to the end of the planning horizon,
Va1 (X1, Pns1), Which depends on the state of the system
(Xn+1, Pn+1) at the beginning of period n + 1, where x,1; is
the starting inventory level of period n + 1 and p,+; is the
firm’s belief probability that the market condition in period
n + 1 will be high (H). We now solve the firm’s problem at
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the beginning of period n. Recall that, in period 7, the sales-
man first learns of the market condition, but the firm only
has a belief probability that it is high (H) or low (L). Let p
be firm’s belief probability that the market condition will be
high in period n, then

p=pH=PO,=04|0,1=06)

when the realized market condition in the previous period is
0;,i =H,L.

Suppose the state of the system at the beginning of period
nis (x, p). The firm reviews its inventory and offers a menu
of contracts s;(x), i = H,L, for period n to maximize her
total expected profit until the end of the planning horizon.
Under this contract, the salesman’s revenue for period n is
si(x) = «;(x) D, + B;(x) when he signs contract s;. As dis-
cussed before, we focus on the case that the salesperson is
myopic and maximizes his expected utility for the current
period, which is

u(s;,a;) = _]E[e—y[si(Dn)—u?/Z]]‘

The analysis of the salesman’s problem is similar to that
of the last period; the optimal effort level the salesman exerts
is ap when the market condition is of type H and «f, if the
market condition is of type L. Hence, the certainty equiva-
lence of the expected utility for the salesperson, if the market
condition is of type i = L, H, is equal to

@i (X)(0; + 1) + o2 ()1 — yo2) /2 + Bi(x).

Now we consider the firm’s problem of determining the
optimal menu of compensation plans. By the revelation prin-
ciple ([35]), it suffices for the firm to search for the optimal
menu of contracts from the class of incentive compatible
truth-telling contracts. Suppose the agent selects contract
type i. As the replenishment decision is made after the sales
agent selects the contract, the firm would know the mar-
ket condition when placing the order. If the agent selects
(o; (x), Bi (x)), then the firm knows that the demand during
the period is D, = 6; + u, + «;(x) + €,, and hence, her
operational decision is to replenish inventory in a way that
maximizes her expected profit from periods n to N. If the firm
replenishes its inventory level to y > x, similar to (5), her
current period expected profit is

cx +6; + pp + o (x) — Elog () (0 + oy + 0 (x) +€,)]
—Bix) — (h+ OE[(y — 6 — pty — i (x) — €,)7]
—(p— OE[(6; + pn + i (x) + &, — )T
As the market condition follows a two-state Markov chain,

the market condition will be H type in period n + 1 with
probability p;y and it will be L type with probability p;y .

Hence, the maximum expected profit from period n + 1
onward is

PHEV,i1 (v — 0; — iy — i (x) — €)™, pin)]
+ PLEWVag1 (0 — 0; — g — 0 (x) — €))7, pin)],

recalling that V,,;(x,p) represents the firm’s maximum
expected profit from period n + 1 onward when the inventory
level is x and her belief about the market condition being H
is p.

Therefore, when contract (o; (x), B;(x)) is signed at the
beginning of period n, the firm’s optimization problem is to
find the order-up-to level y > x to maximize

cx +0; + pn + i (x) — Efog (x)(0; + pin + i (x) — €,)]
— Bi(x) = (h + OE[(y — 6 + ity — @i (x) — €,) "]
— (p = OELO; + pn + i (x) + €, — y)']
+ PHE[Vig1 (v — 6 — itn — i (x) — €))7, pin)]
+ PILEVag1 ((y — 0 — i — i (x) — €))7, pin)]. (20)

For convenience, we let

Wi(y) = —(h+)E[(y — )1 — (p — OE[(e, — )]
+ piE[Vor1 (v — €)™, pin)]
+ it E[Vos1 (v — €)™, pin)].

Note that, if V,,,1(x, p) — cx is decreasing concave, then
W; (y) is concave. To see this, note that

Wi(y) = —hE[(y — &) "1 — (p — OE[(e, — )]
+ piHE[(Var1 (v — €) Vs pim) — c(y — €,) )]
+ it El(Vus1 (v — ety pin) — ey — €)1

Since f(g(x)) is concave when f is decreasing concave
and g is convex, it follows from V, | being decreasing con-
cave, and (y — €,)" and (¢, — y)™ being convex, that W; (x)
is concave. Let ¢ be the maximizer of W;(x).

We have the following result that characterizes the optimal
production/inventory control policy of the firm as a market-
based state-dependent policy for an arbitrary period n.

PROPOSITION 2: (Market-Based State-Dependent Pol-
icy) The optimal inventory replenishing policy of the firm
for an arbitrary period n is a market-based state-dependent
policy: if contract s;(i = H,L) is signed (and hence the
market is of type i), then the optimal order-up-to level
is gf + 6; + w, + o;(x). That is, it is optimal to order
g —x+0; + p, +o(x)if x — 6 — p, —a;(x) < gqf
and order nothing otherwise.

This result shows that the effective information acquisition
from the agent allows the firm to implement traditional inven-
tory control strategies: the optimal inventory/production con-
trol policy is in general characterized by an order-up-to level
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that depends on (a) market condition and (b) the current inven-
tory level [as «;(x) is not constant in general]. Moreover,
the following corollary shows that, although the incentive
design problem and that of inventory control are highly inter-
connected, the optimal operational policy for periods with
low inventory levels is interestingly the traditional simple
base-stock policy, except that the base-stock level of a period
depends on the extracted information from the agent about
the market condition. However, it should be noted that the
base-stock levels of two periods with the same extracted
information (market condition) may be different due to effects
such as seasonality.

COROLLARY 4: (Market-Based Base-Stock Policy—
Low Inventory Periods) In periods with low inventory levels
( < qF+6; + pa + (1 +81{i =L})/(1 + yo?)), the opti-
mal production/inventory control policy is a market-based
base-stock policy with base-stock level g/ + 6; 4+ p, + (1 +
S1{i =LY/ +ya)).

The corollary above shows that, when the inventory level
is sufficiently low, the commissions offered to both types
of agents become inventory independent. Hence, demand
becomes exogenously known (i.e., independent of the pro-
duction decision). In such a situation, the firm first learns of
the market condition from the agent (through contract design)
and then follows the traditional base-stock policy, where the
base-stock level is independent of on-hand inventory due to
the exogenously known demand distribution.

Using Proposition 2, the optimal value function of (20) is

cx +0; + pp + o (x) — Elog () (0; + 0o (x) + oy — €,)]
— Bi(x) + Wilg v (x — 6; — py — a;(x))).

Hence, using notation p = p;y, the firm’s problem at the
beginning of period n is to solve

Valx,p) = max {cx + p[(1 —au(x)[0u + pn + an(x)]

— Bu®) + Wau(gfy vV (x — 0 — py — au(x)))]
+ (1 = )1 —=aL(x)[O + py + ap(x))]
—BL(x) + Wrlgf vV (x — 0L — oy — o (X))},

subject to IC, IR, and nonnegativity constraints similar to
(8)—(12).

Moreover, similar to the analysis of the previous section,
it can be seen that the firm’s optimization problem can be
reduced to, writing «; (x) as «;,

an() —
Va(x,p) = max cx+—+0+u,
ay,opag>ap >0 )/
+yo?
+P|:0‘H_ — of + Walghy vV (x — 05 — uy —OZH)):|
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1+ yo?
ap(Oq —0L) — of

0
1 — —
=+ ( p)|:aL 1—p —2 L

+ Wilg v (x — 6L — pn — aL))} } 2D

The following result shows that, similar to the last period,
inventory has a (bounded from above) diminishing rate of
return effect on the firm’s profit.

PROPOSITION 3: (Concave Value Function—Arbitrary
Period) For any n, V,(x, p) is concave in x for any p, and
V. (x, p) — cx is decreasing in x for any p.

To find the optimal menu of contracts, we first solve the
following two separate optimization problems:

l+yo?
max {oeH — % 2 WV (5 — O — i — otH)},
ag>0 2
(22)
and
1 +yo? 2
_ O — ) — — 27
grg)é{ozL l_paL( H—6L) o Y
+ WLgf vV (x — 6L — pn — OlL))}- (23)

It can be easily shown that, when x < g+, +6x+1/(1+
yonz), the optimal solution of (22) is afj(x) = (1 + ya,%)_l.
Ifx >qgfi+wmy+6a+1/0+ yo?), we let ay(x) be the
solution to

1— (1 +yol)ag — Wix — 60y — wp —an) =0, (24)

which is increasing in x. It can also be seen that on x >
qpy + tp +6a+1/(1 + yo?), the optimal solution of (22)
isaf(x) = apx) > 1/(1 + ]/O'nz). Similarly, for optimiza-
tion problem (23), if x < ¢ + 6L + u, + 8(1 + )/(72)_1
where, as before, § = [1 — %(GH — QL)]+, then the opti-
mal solution of (23) is 6(1 + yonz)_l. If, however, x >

qi 464w, +8 (1 + )/02)_1, we let & (x) be the maximizer
of

P 14yo?
l_paL(eH_QL) — Taf

+ Wo(x — 6L — uy —ap),

o, —

which is also increasing in x. Then the optimal solution of

(23) satisfies of (x) = o (x) > HBT‘% The following lemma

describes the structure of oy (x) and &y (x) for a specific range
of interest where the firm is facing high levels of over-stock
inventories.
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LEMMA 5 (High Over-Stock Inventories): For x >
max {‘Ifqu]f} + 6+ w, + (14 )/0,12)_1, we have

a. ay(x) and ¢y (x) are increasing in x.
b. ay(x) and ap (x) converge to finite numbers as x —
00, and lim, _, oot (x) < lim,_, ooty (X).

Unlike the analysis of the last period, we cannot prove that
ay(x) and o (x) are always concave for an arbitrary period.
The above result, however, implies that (1) regardless of the
agent type, the firm offers a more attractive commission rate
when facing a higher inventory level and (2) the commission
rate offered to the high type agent is more attractive than the
one offered to the low type agent.

The following result characterizes the optimal menu of
inventory-based contracts for an arbitrary period n < N. As
expected, the optimal contracts are more complex than the
last period. For the ease of notation, similar to the analy-
sis of the last period, we define the following inventory
intervals:

Iy = (=00, ¢ + 6L + py +8/(1 + yo,)],
L= (qf + 6L+ +38/(1 +y07).27]
L= (2,25, I = (5,23), Is = (25, 00), I] = I,
L= (qf + 6L+ pn+8/(L+yo)),
i+ 0+ +1/0 + yo )l
L= (g5 +0u + p + 1/A + ya}), 251,
I = (25527, Ih = (25, 00),
I = (=00, + 6 + pta + 1/(1 + yo,)l,
I = (qfi + 6+ pn + 1/ + yo ),
ai + 0L+ wy + 8/ + yo)l,
I = (qf + 600+ pa +8/(1+yo,)). 251,
I = (2,251 1Y = (2%, 00),
where 2} € (¢f + 6L+ pn +8/(L+yo). it + O0u + pn +
1/(1 + yo?2)] is the solution to &.(z1) = 1/(1 + yo?), 74
satisfies 2} < z5 < g + 0 + o + 1/(1 + yo}?) and is the

solution to zo — O — u, — @, (z2) = gf where aj (x) is the
maximizer of

1
-
1+ yo?
— (A =p)WLlx =6 — pn — ),

o — (B — OL)a

B> +0u+u,+1/0+ yanz) is the greatest solution to
an(z3) = ar.(z3), and 212* and 2,3* are defined as the least and
greatest points z greater than g; + 61, + p, + 8/(1 + yo?)
with a1, (z) = au(2).

THEOREM 2 (Optimal Commissions—Arbitrary Period):
The optimal menu of inventory-dependent contracts for
period n < N is determined by the two numbers g;; and
Gr I qh+0u+ 1/ +y02) > g + 6, +8/(1+yo?), then
the optimal commissions o (x) and o] (x) are characterized
based on two cases as described below.

CASE 1: Gr(qf; + 6 + pn + r‘wz) > 1/(1 4+ yo?2). In
this case, the optimal commissions are as follows:

1. If x € I, then oy (x) = (1 +y02) ' and o] (x) =

5(1+yod) s

2. if x € L, then ay(x) = (14 y02) ' and off (x) =
ar(x);

3.if x € I, then ap(x) = af (x); and of (x) =
ar, (x)-;

4. if x € I, then the optimal contract depends on
whether o (x) < ap(x) or @ (x) > ay(x); in the
former case, ofj(x) = au(x) and of (x) = ap(x),
and in the latter case, oy (x) = o, (x); and of (x) =
of;4 (x)_, where oe}‘4 (x) is the optimizer of

1+yo?
@

+ oWh(x — py — g — @)

+ A =p)WLlx —pp — 6L —@);  (25)

o + pa (O — 6L)

5. if x € Is, then oy (x) = ap(x) and of (x) = ap(x).

CASE 2: Gr(g; + 6 + 1y + 1,52) = 1/ +yo)). In
this case, the optimal commissions are as follows:

1. If x € I then ofy(x) = (1+y02) " and of (x) =
S(1+yo2) s

2. if x € I then afy(x) = (1 +y02) " and of (x) =

ar(x);

if x € I then o (x) = @ (x) and of; (x) = au(x);

4. if x € 1Ij, then the optimal contract depends on
whether o (x) < ay(x) or @ (x) > ay(x); in the
former case, of (x) = o (x) and o, (x) = ap(x),
and in the latter case, ofj(x) = a}: (x); and o (x) =
a}: (x)_, where a7 (x) is the optimizer of (25); and

5. if x € I, then of (x) = a.(z) and o;(x) = ag(x).

(O8]

However, if ¢j;+6u+1/(1+y0?) < ¢f+6L+8/(1+yo?),
then the optimal commissions are as follows:

L. If x € If, afy(x) = (l—}—yanz)_1 and of (x) =

S(1+yod) s
2.if x € Iy, then ofj(x) = apn(x) and of (x) =

-1
s(1 + )/0,12) ;
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3. if x € Ij, then oy (x) = au(x) and o (x) = & (x);

4. if x € I, then the optimal contract depends on
whether o (x) < ay(x) or @ (x) > ay(x); in the
former case, ofj(x) = an(x) and o (x) = ar(x),
and in the latter case, oy (x) = o, (x) and of (x) =
o (x)_, where o, (x) is the optimizer of (25); and

5. if x € IZ, then oy (x) = ap(x) and o] (x) = @ (x).

From the above theorem, it can be seen that the optimal
commissions offered by the firm in each period are typically
(1) increasing in the firm’s inventory level, (2) decreasing
in the agent’s risk aversion level, and (3) concave in each
inventory range. Moreover, it can be seen that if § = 0, then
the lower type agent is only paid a fixed/salary payment dur-
ing low inventory periods. Also, combining Theorem 2 with
Proposition 2 implies that, the demand in our setting is sto-
chastically increasing in the inventory level, and the firm’s
ordering quantity is decreasing in its inventory level in each
inventory range.

5.1. A Heuristic Menu of Inventory-Based
Compensation Plans

The optimal menu of contracts for an arbitrary period n
characterized in Theorem 2 is rather complex and not easy to
implement. Hence, we now propose a much simpler but still
effective heuristic menu of contracts.

To develop a heuristic menu of contracts, we benefit from
the analysis of the last period presented in Section 4. More
specifically, we show how the structure of the optimal con-
tracts in the last period can be used to generate a simple and
implementable menu of inventory-dependent contracts for an
arbitrary period. Thus, the firm can benefit from such a menu
of contracts along with the market-based inventory control
policy identified in Proposition 2 to effectively increase its
profit.

Our proposed heuristic menu of contracts is as follows. In
each period n, we first compute ¢ (fori = H,L). Next, if it
holds that gj; + 60 + 1/(1 + yo?) < gf +6L+8/(1+ya?),
then the contracts are the same as those presented in The-
orem 2, but with z/z* = z;* =qf +6L+6/ 1+ yanz) (.e.,
assuming I; = ). Hence, the contract structure is extremely
simple in this case and commission for type i agent is either
constant or equal to &;(x). If ¢y + 6u + 1/(1 + yonz) >
qr +6L+8/(1 + yo2), then the contract is similar to that of
the last period presented in Theorem 1. Specifically, we first
check whether Case 1 or Case 2 of Theorem 2 holds. If Case
1 (Case 2) holds, then the contract is similar to Part (1) (Part
(2) of Theorem 1, but with u and o2 replaced with with 1,
and o2, respectively.

We now investigate the performance of the proposed
heuristic menu of contracts. To this end, we compare it with
(1) the optimal and (2) the inventory-independent menu of
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contracts of [9]. This will shed light on the performance of the
proposed heuristic, and also on the importance of consider-
ing dynamic inventory levels when designing compensation
plans: a fact that has been largely overlooked in the literature.

Numerical Study 2. We consider a problem with planning
horizonof N =3, where uy = 3,and u,, = p,_1+n(n = 2,3
and n = —1,-0.5,0,0.5,1), 01 = 0.5, 0o = 0.4, 03 = 0.3,
oun = 0.6, pgr, = 0.3, oLy = 0.3, pr = 0.7, and the other
parameters are the same as those in Numerical Study 1 (i.e.,
p=T,h=1,¢=2,04=5,6L =1,y =2,and Uy = 10).
Assuming that at the beginning of the horizon, the firm does
not have any on-hand inventory, and that the market condition
is high, we first find the optimal expected profit of the firm for
all of the five test cases parameterized by n (which represents
an increasing or decreasing trend in the market demand). To
find the optimal expected profit, we solve the constrained
optimal dynamic programming Eq. (21) after a discretization
of the continuous inventory state space with a precision of
0.2 as well as a truncation to range [—2, 6] (i.e., considering
a cardinality of 40 for the inventory space). Next, using the
same discretization method, we compute the performance of
the proposed inventory-dependent menu of contracts as well
as the inventory-independent menu of contracts of [9] (i.e.,
with o (x) = (1 + yo2) " and o (x) = 8(1 + yo2) ") for
all test cases.

The performance of the two heuristics compared to the
optimal one is depicted in Fig. 2 using the percentage opti-
mality gap (defined as the percentage difference between
total profit under the heuristic strategy and that of the opti-
mal strategy). From this figure, the proposed inventory-
dependent heuristic shows an average optimality gap of
1.69%, while the inventory-independent heuristic shows an
average optimal gap of 6.62%: incorporating the inventory

7 -
- -
gfe===—=—=——"F
~ 5 . Inv. Indep.
=
24
5 ——=—— Inv. Dep. (Proposed)
s 3
=}
2
1
0
-1.0 =0.5 0.0 0.5 1.0
n
Figure 2.  Performance of the proposed heuristic menu of con-

tracts compared to (a) the optimal and (b) the inventory-independent
policy for different test cases. Parameter n represents an increase or
decrease in the demand (i, = w,—1 + 7).
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level in compensation design (through the proposed heuris-
tic) reduces the average optimality gap by about 74%. These
results clearly illuminate the disadvantage of separating pro-
duction/inventory control decision with that of salesforce
incentive design as is currently widely done in both research
and practice. Furthermore, from Fig. 2, we observe that both
heuristic menus of contracts show a better performance when
demand in future periods is decreasing. This is to some
extent expected, as both heuristics are built upon character-
istics of the optimal contracts in a single period; if future
demand is negligible compared to the current demand, the
greedy heuristics are expected to work well. Furthermore, we
observe that the proposed inventory-dependent policy is more
robust to changes in the future market demand compared to
the inventory-independent heuristic. In fact, the optimality
gap range (the difference between maximum and minimum
optimality gap in the test suite) for the proposed policy and the
inventory-independent heuristic are 0.53 and 1.20%, respec-
tively. This observation shows that the proposed heuris-
tic is very effective in considering the current inventory
level decisions for meeting the requirement of the future
periods.

To gain deeper insights into the performance of the pro-
posed heuristic menu of contracts, we conduct another
numerical study and demonstrate the robustness of the heuris-
tic policy with respect to variations in the starting stock
level.

Numerical Study 3. Consider again the problem with
planning horizon of N = 3, and parameters p = 5, h = 1,
c=1504=3,0=1,y=2,Uy=5, 41 = p = U3z =
3,01 = 05,0, = 04,03 = 0.3, pyg = 0.5, pg. = 0.5,
oa = 0.3, oo = 0.7. Assuming the market condition at
the beginning of horizon is high, Fig. 3 compares the perfor-
mance of both the proposed inventory-dependent heuristic
and the inventory-independent contract (defined in Numer-
ical Study 2) with that of the optimal for various starting
inventory levels (i.e., the inventory level at the beginning of
the planning horizon). From Fig. 3, we observe that the opti-
mality gap for both heuristics in this example is lower than
that of Numerical Study 2. However, the proposed inventory-
dependent heuristic still has a much lower average opti-
mality gap (0.43%) compared to the inventory-independent
one (3.43%). Furthermore, as is expected, the performance
of the proposed heuristic becomes better (compared to the
optimal policy) as the starting inventory increases, but the
performance of the inventory-independent heuristic becomes
worse. This is because (a) when the inventory level in each
period is sufficiently high (the result of a very high starting
inventory level), the proposed heuristic is essentially the same
as the optimal one, and (b) the inventory-independent menu
of contracts gets closer to the optimal for very low levels of
inventory, and hence, is expected to perform its best when the
inventory level in each period is low.

3.5, 5 iR e Ti-e
3.0
$ 25 ----e---- Inv. Indep.
E_ 2.0
&} (4 ——=—— Inv. Dep. (Proposed)
£ L
=
1.0
0.5
0.0 I
0 1 2 3 4 5
Initial (Scaled) Inventory Level
Figure 3. The effect of starting inventory level on the perfor-

mance of the proposed heuristic menu of contracts compared to (a)
the optimal and (b) the inventory-independent policy.

6. CONCLUDING REMARKS

In this article, we rigorously demonstrated the signifi-
cant effect of inventory levels on the design of salesforce
incentives. We provided several managerial insights through
developing and analyzing a dynamic Principal-Agent model
with both moral hazard and adverse selection. We showed
that the optimal compensation offer is defined by a menu of
contracts which highly depend on the inventory level. We
completely characterized this menu of contracts, and found
that the optimal commission rates offered by the firm are
increasing in the inventory levels, describing the observed
behavior of firms in practice. In addition, we found that the
firm needs to offer higher commission rates to its less risk-
averse agents. These analytical findings support the empirical
studies that find (i) changing compensation plans is effective
in increasing sales (e.g., [31]), and (ii) more risk-averse indi-
viduals prefer a fixed salary and are less productive under
incentive pays (e.g., [6]).

In addition to illuminating the optimal design of the
compensation packages when inventory levels are taken
into account, we characterized the firm’s optimal inven-
tory/production control policy. We found that in general
it can be characterized as a market-based state-dependent
policy where the firm only needs to take advantage of the
extracted information from the agent. Furthermore, making
use of such information, the optimal inventory control pol-
icy translates to a simple traditional base-stock policy in
periods with low inventory levels. These results show that
information acquisition through contract design can enable
firms to implement the classic inventory control policies.

For the ease of exposition and analysis, we made some
modeling assumptions. Although they may seem restrictive,
we note that the results and insights provided are robust
to many of those modeling assumptions. For instance, the
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system parameters including p, c, h, agent’s risk parameter
y, or agent’s cost of effort v(a) are assumed to be period inde-
pendent. We point out that all the results can be extended to
the case with period-dependent parameters. This extension
is valid and useful in applications. For example, these para-
meters could be different for summer and winter seasons.
Also, for tractability and consistency with the literature, we
assumed that the market condition can only take two values.
Analysis with more than two possible levels of market con-
dition will be much more complex, but the main insights will
not change.

We considered the case in competitive markets with many
qualified agents in which contracts do not provide any long-
term employment guarantee. In such an environment, the
agent follows a roughly “myopic” behavior and tries to opti-
mize gains in the current period. This allows us to apply
the revelation principle in the design of the dynamic mech-
anism. That is, we were able to conveniently restrict our
attention to the class of mechanisms in which the agent is
truth-telling. In scenarios where the environment is not highly
competitive, and the agent may become strategic, possibly
disguising himself to sacrifice his utility for the current period
to obtain higher utility for future periods. For instance, know-
ing that the commission rates will become more attractive if
the inventory builds up, the agent may have some incentives
not to work hard enough, or prefer to sign the contract that
does not match his type. These can give out wrong signals
to the firm and may mislead the firm’s mechanism design,
which makes the problem analytically intractable. While our
framework may provide a tractable approximation, we note
that the dynamic mechanism design problem with a strate-
gic agent is a challenging but also a very interesting setting
to study, which we leave for a careful future study (see also
[28, 36, 38]).

There are some other interesting directions for future
research. The first is to consider the scenario with multiple
sales agents. In such a scenario, the firm needs to design a
contract for each and every one of them. The terms of the
contracts are usually different as agents are heterogeneous
and have different risk attitudes. We note that the result-
ing optimization problem, after simplification, is similar to
(15) except that the decisions are «’s and B’s for all agents.
Clearly, the optimal contracts for the agents are not indepen-
dent due to inventory pooling, and the risk parameters for the
different agents will be instrumental in finding the optimal
compensation contracts.

Another interesting direction to consider is when pric-
ing is also a decision. In that case, the demand will also
depend on the selling price. We found that most of the
results in the article can be carried over to the case of
additive demand, in which the demand function is defined
as D, = O, +a, + u, — d,(p,) + €,, where d,,(n) is a
decreasing function of selling price p, in period n. Under
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the common assumption that the revenue function xd, Y(x)is
concave, where d, 1()) is the inverse function of d,, (.), similar
inventory and pricing decisions as [19] can be obtained (sim-
ilar to [10], the decision of inventory and pricing need to be
transformed into decision of inventory and average demand),
and the optimal contract is still the same as what we presented
in Section 5. Furthermore, if pricing is a decision, it will be
interesting to compare the case where the pricing decision
is made by the firm with the case where the pricing deci-
sion is delegated to the sales agent. There has been plenty
of research in the Marketing literature on this issue (see e.g.,
[29, 4, or 34]), and it will be interesting to revisit the insights
provided by such studies when operational decisions are also
taken into account.

APPENDIX: PROOFS

PROOF OF LEMMA 1: (a) Note thatonx > g* 460y +p+1/(1+ yoz),
ap(x) and ar (x) are, respectively, the solution to

(P+MPx—u—p—a)—(I+yocHha—p+c+1=0, (26
and

P+)Px—60—p—a)—(1+yoD)a—p+c+1

- -t =0, @7
-p

Taking derivative with respect to x yields
(p+hox — b — u — au(x))
(p+m¢x — 61 — p—aux) + (1 +yo?)’

(p+h¢(x — 6L —pn—apL(x))
(P+mpx—6L —p—oL(x) + (1+yo?)

ap(x) = (28)

of (x) = (29)

Thus, 0 < agy(x) < 1,0 < o (x) < 1. This proves that g (x), o, (x), x —
ap(x) and x — o (x) are all increasing functions.

(b) We only prove that oy (x) converges as x — 00, as similar analysis
applies to o, (x). As o (x) and x — oy (x) are both increasing, ¢ (x — 6y —
1 — ayg(x)) converges to a nonnegative number less than or equal to 1, and
ap(x) also converges to a limit, possibly infinity. We show that this limit has
to be finite. To see this, recall that by (26) and (27), 6y + n + ag(x) is the
solution z to

P+hdx—2)—U+yoD)z—p+c+14+1+yo2)Bu+p =0,
(30)

while 0 + @ + ar (x) is the solution z to
(P+mPx—2)—(+yod)z—p+c+1+1+yo”) 6L+ p)
—ﬁ(GH—QL)zo. 31
It follows from (30) that

(P+h®E — 6y —p—an(x) — p+c+1=(1+yod)ay).

As the left-hand side converges to a finite number, it follows that oy (x)
also converges to a finite number as x — oo.
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Substituting 0y — 0 — ap(x) and 6, — u — ap.(x) in (30) and (31), and
subtracting the results, we obtain

(P+MW[Px — 01— p—au(x) — P(x — 6L — p — aL(x))]
- %(OH —6) = (1 + yo) (@n(x) — ar(x)). (32

As ap(x) and o, (x) converge to finite numbers, x — 6y — © —ag(x) and
x — 6, — . — ar,(x) both go to infinity as x — oo. Therefore, the first term
on the left-hand side of (32) goes to 0 as x — oo. As the second term of the
left-hand side of (32) is a negative constant, this shows that the right-hand
side converges to —p(fy — 6L)/(1 — p) < 0 as x — oo, implying

2500 — 61)

0,
1+ yo? =

Jdim fop () —ar (0} =~

which proves part (b).

(c) Showing ay(x) is concave is equivalent to showing that oy (x) is
decreasing. By (28), it suffices to prove that ¢ (x — g — u — ag(x)) is
decreasing inx. From part (a), x —ay (x) is increasing in x. As ¢ (x) is strictly
decreasing on x > 0, it suffices to prove that, in the range of consideration,
we have x — 6y — . — ag(x) > 0.

From our analysis, the optimization of (16) is independent of G(.) and
is given by 1/(1 + yo?) on x < ¢* + 60y + p + 1/(1 + yo?), while
onx > q*+6g+p+1/4+ yoz), the optimizer of (16) satisfies
x —6g — pn —ag(x) > g* > 0. Therefore, ay(x) is concave in x on
Xx>q +0a+p+1/(01+yo?).

Similar argument shows that o, (x) is concaveon x > 6, + u + /(1 +
yaz), and that on this range, x — 6, — u — ap(x) > ¢* > 0. In particular,
these results are true on x > ¢* 4+ 0y + p + 1/(1 + yo?).

(d) We next prove oy (x) — o (x) is strictly increasing on x > ¢* + 0y +
1/(1 +yo?),or oy (x) > o (x). By (28) and (29) and that ¢ (x) is strictly
decreasing on x > 0, it suffices to prove

O + o (x) = 6L + 6L(x), (33)

x—0g—p—oapg(x) > 0andx—6;, —u—oar, (x) > 0. The two latter inequal-
ities are proved in part (c). Hence, in the following, we prove (33). To show
(33), recall that 6 + p + o (x) is the solution to (30), while 6, + u + o, (x)
is the solution to (31). Because (p + h)®(x — z) — (1 + yo?)z is strictly
decreasing in z, it follows from (1+y 0 )6y > (1+y 0 )0 — % (B —61)
that the solution to (30) is less than the solution to (31). This proves
6n + ap(x) > 61, + ar.(x), which completes the proof of part (c). O

PROOF OF LEMMA 2: Recall that ¢* = @' ((p — ¢)/(p + h)). As ®
p—c-%—]/ifp

is strictly increasing, 6 > &(p,#) if, and only if, ®(0 + ¢*) > o

_ea P
Letg(0) = ®(0 +¢*) — ”p# Then, g(0) = 0. and lim g(8) = —oc.
—00
Since ¢* > 0, g"(0) = ¢’(0 +q*) <0Oonb > 0. This shows that g(6)
is a concave function on 6 > 0. Hence, there exists a 6 such that g(9) = 0
if, and only if, g’(0) > 0, or ¢(¢*) > ﬁ. This is the same as p < p*.
Thus, when p < p*, we define 6(p) > 0 as the solution to g(8) = 0. Then
on0 < 6 < B(p), we have > £(p,0), and & < £(p,0) on 0 > 6(p).
However, if p > p*, then g’(0) < 0. Hence, g(9) < 0 for all & > 0. This
shows that, when p > p*, 0 < &(p,0) forall 6 > 0. O

PROOF OF LEMMA 3: By Lemma 2, if one of the conditions (a) or (b)
is satisfied, we have 6y — 0 < &(p,0y — 6L), or

(34)

o6, < & p—c+ 1556 —61)
—4 < .
q L D+ h

Furthermore, by part (d) of Lemma 1, the necessary and sufficient condi-
tion for the existence of a finite number z* > ¢*+60g+u-+1/(14+yo?) such
thatap (x) < ap(x) onz* > x > ¢* +6u+1/(1+y0?), an(z*) = aL(z*),
and ag(x) > ap(x) onx > z*,is

1 1
l+y02> ~ 1+yo?’

oL (q* + 64+ 35)

Sinceonx > g*+6L +u+68/(1+ yaz), 6L + 1+ . (x) is the solution
of (31) and the left-hand side of (31) is decreasing in z = 6, + u + ., (35)

is satisfied if, and only if, when x = ¢* + 6y + 1 + 1+;1/02 , the left-hand

side of (31) is positive with z = 6, + u + ﬁ That is (35) is satisfied if,

and only if,

1
(p+h)<l><q*+9H+/L+m—z>—(1+y02)z—p+c+1

F Yo+ 1) = T O =) gy 1, >0

14+yo2

Canceling common terms, this is equivalent to
o
(P+mMP@* +6u—60L)>p—c+ m(GH_eL)~ (36)

As @ is strictly increasing, this is equivalent to (34), and the existence of
z* is established.

Now suppose neither of conditions (a) or (b) of Lemma 3 holds. Then, by
Lemma 2, the opposite direction of (34) is satisfied. But the same argument
as above shows that oy (x) > e (x) onallx > ¢* + 0y +pu+1/(1+yo?)
if, and only if, the opposite direction of (36), or equivalently, the opposite
direction of (34) holds. This completes the proof. g

PROOF OF THEOREM 1: Before proving this result, we note that the
control parameters z},z3, and zj used in defining inventory intervals
D, I3, ..., Issatisfy 2§ < 25 < q*+91{+u+ﬁ < z3. Tosee z} < 23,
by the definition of z3 and that x — &y (x) is increasing, it suffices to show
that when x = 2z}, x — 0 — p — @y (x) is less than g*. Note that at x = z7,
we have

X — 06— pu—agx)

p—c+ 150 —00)
p+h

1 —1
= )
1
1+ yo?
—c+ 25 0n —6L)
p+h '

—Og—u

=9L9H+<1>—1<p

From Lemma 2 and conditions of part (1), this is less than ¢*. Similarly,
to verify that z3 < ¢* +6u+u+ ﬁ , form the definition of 2}, it suffices

to show that at x = ¢™ + 60 + n + ﬁ x — 6y — o — ap(x) is greater
than ¢*. It is known that

1 1
1+y02) = 1+ yo?’

&H(q*-i-@}{-i-ﬂ-i-

Hence atx = ¢* + 60y + n + ﬁ,wehave

x—Og—p—au(x)=q" +6u+p+ —O0n—u

-
1+yo?
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1
— & * 40, -
an<q + H+ﬂ+1+yo_2>
R 1

1
= —— —anlq"+6 — *,
q +l+y02 OlH<q + H+M+1+y02>>q

We first consider part (1), that is, the case where condition (a) or (b)
holds. In this case, &y (x) and @ (x) cross twice, the first time at z}, and
the second time at z3. If x € I, I, or Is, the optimal solution of (15)
is the same as that without the oy > «p, constraint (see also Lemma 4).
Hence, the optimal commission rates in these ranges are as given in the
theorem. Now consider the case where x € I3 = [z],z3), and examine
optimization problem (15). As the optimal solution for the unconstrained
optimization satisfies o (x) > apy(x), by Lemma 4 (b) the optimal solu-
tion for (15) has to be between the two optimal solutions. That is, we
need to increase ay(x) but reduce oy (x) until they are equal. Note that
at a(x) = 1/(1 + yo?), G(g* V (x — 05 — o — an(x)) = G(g") is
flat as long as x — g — n — 1/(1 + yoz) < g¢*, and that when ay(x)
increases, G(¢* vV (x — 6y — u — ap(x)) remains constant. Hence, the
optimal o (x) = of (x) is the maximizer of

2
o [QH _ Maﬁ} +(1- p)[aL L a 0n 00
2 1—p
2

- ”%aﬁ—cu—m—u—ad)].

Taking derivative we obtain the results given in part (iii). Therefore,
it suffices to show that when x € I3 = [z],z}), we have x — 6y —
w —1/(1 + yo?) < g¢*. This was proved earlier, where we showed
25 <q*+60g+p+ ﬁ The result for the case where x € I follows
a similar line of proof. Thus, it remains to prove part (2) of the theorem.
The proof for this part follows Lemma 4 (a), since ay(x) and & (x) do
not cross in this case. That is, the objective function is separable in oy (x)
and «y, (x) (Lemma 3). Hence, by Lemma 4 (a), we can relax the constraint
a1, (x) < ap(x) of (15), which results in the solutions given in parts (i)—(iii)
of part (2). This completes the proof. g

PROOF OF COROLLARY 1: Notice that when p > (h +c+ 1)/(h +
c+ 14+ 6y —6L)), Xan;o&L(x) < 0, since ®(-) is a cdf function (ar (x)
is defined right before Theorem 1). Next, observe that from Theorem 1, for
large enough inventory levels, of (x) = (aL (x))". Hence, Xl;rrgo af (x) = 0.
Moreover, since al’j (x) is constrained to be nonnegative for all x, and is
also increasing in x, it follows that o (x) = O for all x. Furthermore, when
x < q*+OL+u+s (1 + yaz)fl,fromTheorem Lof(x) =8+ yaz)fl.
Hence, cx,’j(x) = 0 if, and only if, § < 0, which is equivalent to p >
1/(1+ (6 — 6L)). |

PROOF OF COROLLARY 2: To prove part (1), notice that from Theo-
rem 1 and Lemma 1(a), the commission offered (as a function of the inventory
level) to either H or L type agent is initially constant, followed by increas-
ing functions. Furthermore, from Theorem 1, it follows that commissions
are also decreasing in y. The local concavity (i.e., concavity in each inven-
tory interval) of the optimal commissions, follows directly by checking the
second derivative of the optimal commissions given in Theorem 1. O

PROOF OF COROLLARY 3: The proof follows directly from 3 (which
shows that the effort induced by the firm is equal to the commission rate)
and Corollary 2 part (1) (which shows that the commissions offered by the
firm are increasing in her inventory level). g

PROOF OF PROPOSITION 1: From (15), the only terms where x
appears isin G(¢* vV (x —6g — . —an)) and G(g* VvV (x — 6L — . — o)),

Naval Research Logistics DOI 10.1002/nav

and both are jointly concave in (x, 6y, ). This shows that the objective of
(15) is jointly concave in (x, oy, ar). Since the constraint oy > o, > 0
defines a convex set, it follows from Proposition B-4 of page 525 of [23]
that resulting optimal value function Vi (x, p) is convex in x. O

PROOF OF PROPOSITION 2: Using induction, assume V,,11(x, p) is
concave in x. It follows that W;(y) (defined right before this proposition)
is also concave. Since g;* denotes the maximizer of W; (), replacing W;(y)
in the optimization problem (20) shows that it is optimal to set y* =
q; +6; + pn + a; (x) or equivalently order (g; — x + 6; + wn + o N,
where (a)™ = max {a, 0}. This completes the proof. |

PROOF OF COROLLARY 4: The results follows directly from Proposi-
tion 2 and Theorem 2 for Intervals 7| and 1 1”. Notice that on these intervals
the optimal commission, «; (x), is independent of x. O

PROOF OF PROPOSITION 3: Itis argued in the main body of the article
that, fori = L, H, W; (x) is concave. Since ql.* is the maximizer of W;, it fol-
lows that both Wy (¢} V (x =01 — n —an)) and W (g V (x —60L — jp — L))
are decreasing concave in x. Rewrite (21) as

an() —
Val(x,p) —cx = max — + 0+ uy
ay,opiag>ap >0 Y
1+ yo?

+p[an - Tyafﬁ Wh(gfy V (x — 0 — uy —aH))}

P 14+ yo? 5
+ 1 -p) oL = g aL(y —0L) — ———— af.

—p 2
+ WLigf vV (x — 6L — py — aL))] } (37)

Since, for each given feasible ey and a7, the objective function in (37) is
decreasing in x, it follows that V,,(x) — cx is also decreasing in x. Concavity
of V,,(x) follows from the fact that the objective function is jointly concave
in (ag, o, x), and the feasible region is a convex set of (ay, o). Therefore,
from Proposition B-4 of page 525 of [23] V, (x, p) —cx, and hence V,, (x, p),
is concave in x. O

PROOF OF LEMMA 5: (a) On the range of interest for x, oy (x) is the
solution to (24). Taking derivative with respect to x on both sides, we obtain

—(1+yo)ay(x) — W'(x — 0 — ptn — e (x)) (1 — oy (x)) = 0.
Solving for arf; (x), and using the fact that W (-) is concave yields

—W"(x — 0 — un — au(x))

1>a(x) =
z o) L+yo? = W'(x — 6 — jtp — an(x)) ~

This shows that o (x) and x — oy (x) are both increasing. Similar argu-
ment shows that o (x) and x — & (x) are increasing on x > max {4j. q; } +
Ou + wy + m and completes the proof for part (a). To prove part (b),
we first need the following simple result. Suppose y is a vector with convex
feasible set C that is independent of x, and that g(x, y) is decreasing in x for
any given y, then max,cc g(x, y) is also decreasing in x. Using this fact and
(21) we can show by induction that

IW@.p)
dx T l-«a

for all x. Now write (24) as

(L+yoHan(x) =1 — W(x — 6y — oy (x)).
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Since both ey (x) and x — oy (x) are increasing and that W’(.) is decreas-
ing, it follows that both sides of equation above have a limit. But the
right-hand side is less than or equal to 1 + i/(1 — o). Hence, ap(x) is
increasing and converges to a finite number. Similar argument proves the
result for arp (x). O

PROOF OF THEOREM 2: The proofis similar to that of Theorem 1. First
consider Case 1, and suppose x € I, I, or Is. The optimal solution of (21)
in these intervals is the same as that without the constraint oy > o (see also
Lemma 4). Hence, the optimal commissions in these ranges can be obtained
from separately optimizing (22) and (23). Doing so, proves the result of
parts (1), (2), and (5) of Case 1. When x € I3 or x € Iy, the optimizers of
(22) and (23) do not satisfy the constraint oy > «r,. Hence, by Lemma 4,
the optimizers of (21) can be obtained by setting oy = o . This yields the
results provided in parts (3) and (4) of of Case 1. The proof for Case 2 (and
also for the case where g; + 6y +1/(1 + yanz) <gqf +6L+8/(1+ ya,%))
follows the same line of argument by considering cases where separately
optimizing (22) and (23) does or does not yield the optimizers of (21). O
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