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1H NMR based metabolic profiling in Crohn’s
disease by random forest methodology
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The present study was designed to search for metabolic biomarkers and their correlation with serum zinc in Crohn’s disease
patients. Crohn’s disease (CD) is a form of inflammatory bowel disease that may affect any part of the gastrointestinal tract
and can be difficult to diagnose using the clinical tests. Thus, introduction of a novel diagnostic method would be a major step
towards CD treatment.
Proton nuclear magnetic resonance spectroscopy (1H NMR) was employed for metabolic profiling to find out which metab-

olites in the serum have meaningful significance in the diagnosis of CD. CD and healthy subjects were correctly classified using
random forest methodology. The classification model for the external test set showed a 94% correct classification of CD and
healthy subjects. The present study suggests Valine and Isoleucine as differentiating metabolites for CD diagnosis. These
metabolites can be used for screening of risky samples at the early stages of CD diagnoses.
Moreover, a robust random forest regression model with good prediction outcomes was developed for correlating serum

zinc level and metabolite concentrations. The regression model showed the correlation (R2) and root mean square error values
of 0.83 and 6.44, respectively. This model suggests valuable clues for understanding the mechanism of zinc deficiency in CD
patients. Copyright © 2014 John Wiley & Sons, Ltd.
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Introduction

Crohn’s disease (CD) is one of the two major subtypes of inflam-
matory bowel disease (IBD) that cause chronic inflammation of
the intestinal tract.[1–3] While the pathophysiology of IBD is not
fully understood, it has been widely accepted that multiple com-
ponents, including environmental factors, diet, smoking habits,
hormone levels, drug usage, and genetics contribute to the
occurrence and perpetuation of this disease. Although the
prevalence and incidence of IBD are stabilizing in high-incidence
areas such as northern Europe and North America, in low-incidence
areas such as southern Europe, Asia, and the developing world,
they continue to rise.[4]

Crohn’s disease often mimics other symptoms, hence correct
identification of CD in some cases may be complicated.[5] To
reach the correct diagnosis, clinical tests including endoscopic,
histological, and radiologic techniques are applied. These
methods can be time consuming and costly. With respect to
these problems, metabonomics is an important technique for
identification of biomarkers for early diseases detection.[6]

Metabonomics is defined as ‘the quantitative measurement of
the dynamic multi-parametric response of living systems to path-
ophysiological stimuli or genetic modification’.[7] If biological
variations in the target group are meaningfully different from
those in the control group, quantitative analysis of metabolite
can provide important results.[8]

Proton nuclear magnetic resonance spectroscopy (1H NMR) is
one of the most commonly applied techniques to obtain vital
Magn. Reson. Chem. 2014, 52, 370–376
information from complex and unprocessed biological samples.
It provides quantitative and reproducible information with little
Copyright © 2014 John Wiley & Sons, Ltd.
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sample preparation, and hence it is widely used to build meta-
bolic profiles in diverse metabolic studies.[9,10] Many gastrointes-
tinal diseases have been diagnosed by investigation of biofluid
and tissue samples using 1H NMR-based metabonomics.[11–13]

NMR spectroscopy in combination with suitable statistical
analysis have been successfully used to distinguish patients with
IBD from healthy subject through profiling of fecal extracts,[14]

biopsy,[15] and urine samples.[16,17] Investigation of the serum
metabolic profile in CD subjects is rare. So far, the metabolite pro-
file of CD patients’ serum has been investigated in only one
study.[18] Schicho and co-authors performed metabolite analysis
of serum and plasma on IBD subjects. They obtained regular
one-dimensional proton NMR spectra using a standard pulse se-
quence (Bruker pulse programprnoesy1d).[18] In this study, we chose
Carr-Purcell-Meiboom-Gill (CPMG) spin echo pulse sequent as a
different method for metabolic profiling of serum in CD subjects.

Zinc is an essential trace element with various biological func-
tions in a large variety of enzymes, depending on the structural
and/or catalytic roles it plays. Zinc participates in free radicals scav-
enging. As a consequence, it may stop the progress of the gastroin-
testinal disease and halting the inflammatory process. Also, it plays
an important role as a powerful anti-inflammatory agent to treat gut
inflammation. Decline in Cu–Zn super oxide dismutase activity was
reported in CD.[19] Finally, this trace element is lost through diarrhea,
and zinc deficiency, while unusual, can occur in individuals who
have IBD, particularly the patients with chronic diarrhea.[20,21]

The primary goal of this study was to classify the control
cohorts, and the subjects identified clinically, endoscopically,
and histologically to have active CD. Then, a regression model
between the serum zinc level and metabolites was developed.
Random forest (RF) was employed as a powerful classification
method; it was used to inspect the differences in the serum zinc
levels of healthy and CD samples. Based on the results, RF model-
ing can be a versatile alternative technique for analyzing the
metabonomics data although extensive studies will be needed
to verify our present findings.
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Materials and Methods

Sample collection

Twenty-six adult patients (with mean age of 34 ± 11 years), diag-
nosed with CD, were recruited from Gastroenterology and Liver
Disease Research Center, Shahid Beheshti University of Medical
Sciences. These patients had been diagnosed with CD by experi-
enced gastroenterologists on the basis of radiographic, experi-
mental, and often colonoscopy criteria. Twenty-nine subjects
(with mean age of 35 ± 12 years) were enrolled as the control
group. Healthy control subjects were matched for gender and
age to CD subjects. None of the participants in this study had
any other significant past medical history such as hypertension,
diabetes mellitus, or hyperlipidemia.

Serum samples were drawn from peripheral veins of patients and
healthy subjects in the morning after a 12h fast. Whole blood sam-
ples were collected in vacutainer tubes containing no anticoagulant.
These vials were shaken thoroughly and incubated in upright posi-
tion at room temperature for 30–45min to allow coagulation. The
clotted samples were then centrifuged for 15min at 2500 rpm. Next,
the sera were carefully aspirated and collected in fresh polypropyl-
ene tubes, up to three-quarter of tubes capacity. Any turbid sample
was centrifuged and aspirated again to separate insoluble particles.
The sera were stored, for further analysis at �80 °C.
Magn. Reson. Chem. 2014, 52, 370–376 Copyright © 2014 John
Atomic absorption spectrometry

Serum zinc level was measured using an atomic absorption spec-
trophotometer (PERKLIN ELMER 400). Serum was diluted with dis-
tilled water (dilution ratio of 1 : 5). The source of light was
monochromatic light with wavelength of 213.9 nm and slit-width
of 1mm. Acetylene gas was used in the burner of atomic absorp-
tion spectrophotometer. Standard solutions (Sigma Aldrich)
containing 25, 50, and 100mgdl�1 of zinc were used for stan-
dardization and calibration. The diluted samples were analyzed
in triplicates in serial order. Atomic absorption spectrometry
measurements show that CD group’s zinc serum level was lower
than the control group. The mean observed serum zinc level in
CD and control groups were (70 ± 6μg/l) and (92 ± 9μg/l), respec-
tively (p-value< 0.001).

1H NMR spectroscopy

1H NMR spectroscopy experiments were performed on a 500MHz
Bruker DRX spectrometer. The spectrometer was operating at
500.13MHz. Five-millimeter high-quality NMR tubes (Sigma
Aldrich, RSA) were used. For the NMR spectrometer, NMR lock
signal was provided applying 100μl of D2O (Deuterium oxide,
99.9%D, Aldrich Chemicals Company). Combination of high mo-
lecular weight components causes broad resonances, on which
super imposed sharper resonances from the low molecular
weight species are arising (e.g., amino acids and carboxylic acids).
CPMG experiment results in the suppression of the broader ele-
ments and thus enhances visualization of the low molecular
weight metabolites and assuages the broad signals of protein
and lipoprotein molecules.[22] CPMG spin echo pulse sequent
was employed to record 1D 1H NMR spectra of the samples. Spec-
tra were recorded at 298 K, and other acquisition parameters
were spectral width: 8389.26 Hz; time domain points: 32 K; num-
ber of scans: 154; acquisition time: 2 s; spectrum size: 32 K; and
line broadening: 0.3 Hz.

Data pre-processing

All 1H NMR spectra of serum samples were manually phased and
baseline-corrected applying XWINNMR (version 3.5, Bruker
Spectrospin Ltd). Using XWINNMR, peaks in the serum spectra were
referenced to the chemical shift of lactate at δ=1.33. 1H NMR
spectra processing was performed using PROMETAB software (ver-
sion prometab_v3_3) in MATLAB (version 6.5.1, The Mathworks,
Cambridge, UK). Using this software, the region 0.2-10.0 ppm of
the CPMG spectra was reduced into integrated bins of equal
width (0.04 ppm).

The spectral region between 4 and 5.5 ppm, corresponding to
water signal, was excluded. Prior to further data analysis, the inte-
gral values of each spectrum were normalized to a constant sum
of all the integrals in that spectrum to decrease any significant
concentration differences between samples.[23,24] Preceding mul-
tivariate analysis, the data have been mean centered using the
procedure that is explained in the literature.[25] Then, the metab-
olites were assigned based on previous studies.[26–28]

Statistical analysis

Random forest

Random forest [29,30] is a collection of hundreds of identically dis-
tributed decision trees.[31] These trees are grown using a classifi-
cation algorithm such as classification and regression trees. A
Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/mrc



Figure 2. Plot of out-of-bag (OOB) error for random forest classification
of Crohn’s disease and control groups. The OOB data were used to esti-
mate the prediction accuracy of classification.
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basic RF is formed through random selection of a small group of
input variables to split on. This random selection is carried out at
each node, and the size of the group is fixed while the forest is
growing. Each tree in the RF is grown on a bootstrap replicate
of the learning sample. Generally, the bootstrap samples are se-
lected from two thirds of the original samples. The remaining
one third are called out-of-bag samples (OOB samples). The
OOB cases are employed to get a run-time impartial estimate of
the classification and regression errors as trees are added to the
forest. To classify an input, first each tree classifies it individually.
Then, the forest chooses the class in which the given input has
the majority vote. Next, the proportion of votes for each class is
calculated. When the test set is entered to the forest, these pro-
portions are also computed. The margin of a case is the propor-
tion of votes for the true class minus the maximum proportion
of votes for the other classes.
Random forest classifiers have some advantages over simple

discriminatory techniques such as linear discriminant analysis.
The RF models can handle large datasets without direct variable
deletion. Moreover, the RF classifiers use majority voting strategy
for decision making. If a classifier makes a mistake, other classi-
fiers may detect the miss classified sample. The RF models can
determine the importance of independent variables in modeling
procedure. It helps for identification of discriminatory variables
and biomarkers. In addition, the RF classifiers can approximate
the missing data values in large datasets. Regarding the
mentioned properties, the RF method has been used in this work
for analysis of the collected data.
In this study, we used the RF package in MATLAB (version 6.5.1,

The Mathworks, Cambridge, U.K.) to perform statistical comput-
ing and create graphics, for both classification and regression
models. The detailed description about RF technique can be
found in reference.[32]
Figure 3. The frequencies of selection of 1H NMR chemical shifts after
500 trees were grown by random forest methodology.
Results

Classification using RF

The most important metabolites in serum were selected based
on previous studies.[26–28] The studied metabolites are amino
acids (alanine, glutamine, leucine/isoleucine, lysine and valine),
organic acids (lactate and creatine), lipid, and glucose (Fig. 1).
In order to classify CD and healthy subjects, the data set was

divided into two parts, training and test sets. The training set
was used to build a model and identify the most relevant metab-
olites. In order to test the predictive ability of the classification
model, test set was employed. Approximately, 30% of the patient
and normal samples have been randomly selected as test set.
Figure 1. Typical 500MHz 1H NMR spectrum of control human blood serum

wileyonlinelibrary.com/journal/mrc Copyright © 2014 Joh
Consequently, the training and test sets were composed of 39
and 16 1H NMR spectra, respectively. In order to reduce the risk
of over-fitting, the test set was not used to make the model. Sam-
ples of the training set were classified using RF in which 500 trees
were grown. The OOB data were used to estimate the prediction
accuracy of classification. Figure 2 presents the OOB error rate.
The frequencies of selection of 1H NMR chemical shifts by 500
grown trees are shown in Fig. 3. This frequency profile shows that
.

n Wiley & Sons, Ltd. Magn. Reson. Chem. 2014, 52, 370–376
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two chemical shifts of 0.99 and 1.03 have considerable impact for
discriminating patient and normal samples. 1H chemical shifts at
1.03 and 0.99 ppm are assigned to δCH3 (valine) and βCH3 (iso-
leucine), respectively. The distribution of the area under peak
values for Valine and Isoleucine metabolites in normal and pa-
tient samples are shown in Fig. 4a and 4b. As can be seen in these
figures, the distributions of these metabolites completely differ
for normal and patient samples (p-value< 0.0001). CD group’s va-
line and isoleucine levels were lower and higher than those of
healthy cohort, respectively. The data in Figs 3 and 4 show that
the RF methodology could extract important metabolites from
large number of them and can help for pattern recognition pur-
poses in Metabolomic studies.

A confusion matrix, including knowledge about the number of
correct and incorrect predictions, was compared with the real
outcomes by a classification model. Performance of a classifi-
cation model is commonly evaluated using the data in this
matrix. Table 1 shows the confusion matrix for a two-class
classifier. The summary of the classification parameters is also
shown in Table 2. As shown in Table 2, RF model has an
accuracy of 0.94 in detecting CD patients in the external test
set. These results show that RF classification model is success-
ful in CD diagnosis.

The area under ROC curve is used to measure the quality of the
classification models. A random classifier has an area under the
curve (AUC) of 0.5, whereas AUC for a perfect classifier is equal
to 1. In practice, most of the classification models have an AUC
between 0.5 and 1.[33]

The obtained values of AUC for the training and test sets are 1
and 0.94, respectively. The high AUC score of the proposed
model for the samples in the external test set is another evidence
that RF model has high capability to detect CD.
Figure 4. The distribution of the area under peak values for (a) Valine
and (b) Isoleucine metabolites in normal and patient sample.

Magn. Reson. Chem. 2014, 52, 370–376 Copyright © 2014 John
Regression model of blood zinc

In order to predict zinc level based on NMR data, a regression
model between the serum zinc level and metabolites was devel-
oped. Then, the effective metabolites on zinc level in CD subjects
were identified.

Random forest regression modeling was also performed using
NMR spectra and serum zinc level. Similar to the classification
process, data were divided into training and test sets. The test
set contained about 30% of the samples. Then, the orthogonal
signal correction[34,35] was performed on the training set to re-
move the bilinear components in X matrix (NMR spectra) that
are orthogonal to Y. This approach makes a signal correction that
does not remove information from X.

To build the RF model, zinc level in serum was used as depen-
dent variable. The model was constructed by 500 trees. Figure 5
illustrates the convergence of the RF algorithm. This figure de-
picts the OOB error as a function of the number of trees that were
used for the training procedure. As Fig. 5 represents, the OOB er-
ror became most stable when the number of trees reached about
200 and the RF model has reached its optimal classification error.

The model was first validated internally using the same train-
ing set that had been employed for the model generation (39
samples). The plot of predicted RF values of zinc concentration
against the experimental ones is shown in Fig. 6. Correlation
(R2) value and root mean square error (RMSEs) of 0.94 and 4.10
were obtained for the training data set, respectively. The correla-
tion coefficient (R) measures the adequacy of the model for
predicting the dependent variable in a regression analysis. R2,
(0 ≤ R2 ≤ 1), is the square of the correlation between experimental
and predicted response values. Here, R2 value is very close to 1,
indicating that the RF model explains majority of variability in
data. RMSE is the standard deviation of the differences between
predicted and experimental values.

The residuals of calculated zinc concentration values are plot-
ted against the experimental ones in Fig. 7. The propagation of
the residuals in both sides of zero line shows that no systematic
error exists in the development of RF model. In order to examine
the predictive power of the RF model, the zinc concentration
values of test data were predicted using the proposed model.
Table 1. Confusion matrix for training and test set

Predicted

Observed CD class Healthy class

Training set CD class 18 0

Healthy class 0 21

Test set CD class 7 1

Healthy class 0 8

CD, Crohn’s disease.

Table 2. The calculated error and non-error rates of the classification
index and the classification performances of training and test sets

Error
rate

Non-error
rate

specificity sensitivity accuracy

Training set 0 1 1 1 1

Test set 0.06 0.94 0.88 1 0.94

Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/mrc
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Figure 7. Plot of residuals against the experimental values of serum zinc
levels for the training and test sets.

Figure 5. Plot of out-of-bag (OOB) error for random forest regression of
serum zinc levels. The OOB error became most stable when the number
of trees reached about 200.
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The test data set included 16 samples and had no role in the
model-building phase. The correlation (R2) value and RMSEs are
0.83 and 6.44, respectively. Therefore, when applied to new
samples, this RF model has good prediction capability. The exper-
imental and predicted zinc concentration values for the training
and test sets are given in Table 3.
The RF model was further evaluated through applying the Y-

randomization test. Several random shuffles of Y (zinc concentra-
tion) were chosen and features were selected using RF feature
importance plot and then modeling process was performed for
all the cases. All sets showed the low R2 values for both training
and test data indicate that the good statistical results of RF model
are not because of a chance correlation or sample dependence of
the training set.[36]
Figure 6. Plot of predicted values of serum zinc levels using random for-
est model against the experimental ones for the training and test sets.

wileyonlinelibrary.com/journal/mrc Copyright © 2014 Joh
By applying RF to the data set, as a regression method, two
important metabolites (glutamine and lysine) were identified.
The corresponding 1H chemical shifts were at 2.41, 1.88, and
1.72 ppm. The 1H chemical shift at 2.41 ppm is assigned to γCH2

(glutamine) and the 1H chemical shifts at 1.88 and 1.72 ppm are
related to βCH2 and δCH2 (lysine). The data in this section shows
that the level of glutamine and lysine are important factors re-
lated to serum zinc level. This information can help for unraveling
the mechanism of zinc deficiency in CD patients. We should
emphasize that this finding shed some light on the effect of zinc
serum level in CD patients; however, making a serious decision
on this important relationship needs more experiments and
proofs in clinical studies.
Discussion

Based on previous studies, the significance of the selected
metabolites selected by the RF classification model and their con-
centration changes in CD patients is scrutinized subsequently.

As discussed in the Results section, RF classification confirms
that in CD patients, isoleucine and valine levels are higher and
lower than healthy subjects, respectively. The catabolism of iso-
leucine and valine initiates in the muscles and yields NADH,
which can be utilized for ATP generation.[37] CD patients are at
high risk of developing nutritional status impairment, so the
amino acid level changes in CD appear to be rational.[38] De-
creased function of the intestinal mucosa correlates with malnu-
trition. Therefore, the assessment of nutritional status and energy
requirements plays an important role in the management and
follow-up of CD.[38] Some of the increased amino acids were also
reported to be increased in fecal extracts.[14]

Based on Schicho and co-authors’ findings, CD have an impact
on amino acid metabolism; in comparison with the control co-
hort, CD patients had higher isoleucine and lower valine levels.[18]

Our observations are in agreement with Schicho et al. study.
In order to investigate the effect of metabolites on serum zinc

level, RF regression modeling was performed. Zinc is the second
most prevalent trace element in the human body. In recent years,
the scientific community have registered an explosion of interest
about the role of zinc in human diseases.[39] Studies have con-
firmed an obvious decrease in the Cu/Zn super oxide dismutase
expression within the intestinal mucosa of CD patients. This
n Wiley & Sons, Ltd. Magn. Reson. Chem. 2014, 52, 370–376



Table 3. The serum Zinc levels (experimental and predicted) values
for the training and test sets

No Zinc (observed) μg/l Zinc (predicted) μg/l

Training set 55 94 85

11 72 76

37 103 97

36 101 96

27 77 82

22 72 72

43 91 92

25 70 73

23 71 73

52 79 75

38 82 80

4 71 72

31 98 94

7 68 73

14 72 72

51 86 81

1 77 78

5 72 75

12 69 71

15 66 72

17 68 73

18 70 73

20 78 80

24 65 73

26 81 78

29 83 83

30 85 84

32 102 99

34 103 100

35 85 86

39 105 102

40 95 96

41 102 99

42 89 92

44 109 100

45 92 93

48 98 95

49 102 97

Test set 50 84 85

54 85 82

8 69 73

6 71 78

19 77 76

3 75 78

10 66 71

28 82 81

46 98 95

16 55 70

2 70 73

9 57 70

47 82 78

33 96 97

21 79 75

53 86 83

13 71 73

NMR-based metabonomics
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finding highlighted the role of zinc deficiency in IBD.[40] Also, the
disturbances in the zinc-related antioxidant cascade in the gut of
CD patients have been verified by analysis.[41] It is conceivable
that in CD patients, zinc deficiency could occur as a result of both
malabsorption and intestinal loss of cells and plasma.

As mentioned in the Results section and based on RF regres-
sion results, there is a considerable dependency between gluta-
mine and lysine concentrations and zinc level in the serum. The
most abundant amino acid in the human body is glutamine. It
plays extremely vital role in the functioning of most cells within
the body such as immune cells. Glutamine is mainly utilized by
the immune cells and also contributes to the proliferation of
these cells.[42] CD is a disease of immune system, and CD patients
are unable to generate enough glutamine to encounter their
immune system’s increased glutamine requirements. So, CD
patients encounter chronic glutamine deficiency. This amino acid
may release as much as one-third of the glutathione (GSH) when
the body is under stress. GSH is the most abundant antioxidant in
the body, and provides extra fuel to the injury site in muscles.
Zinc deficiency causes decrease in blood GSH levels.[43]

Glutamine reduces oxidative stress and cytokine production
during intestinal inflammation. Thus, this amino acid suppresses
the inflammatory response.[44] Glutamine is as a major respiratory
fuel for enterocytes and gut-associated immune cells.

Aiken et al. declared that a significant proportion of serum zinc
exists as a complex form with amino acids.[45] Lysine is an essen-
tial amino acid essential for a variety of metabolic roles and can
be a ligand for zinc. Formation of zinc-lysine complex increases
the absorption of zinc in the small intestine.[46]

The findings of this study may open doors for further investiga-
tions regarding zinc deficiency. More clinical analysis for further
research is required.

In conclusion, this study shows that quantitative metabolite
profile of CD patients’ serum can be used to distinguish between
healthy and CD subjects. Furthermore, our findings confirm previ-
ous studies, and these results are of great importance to detect
biomarkers in the future. In the second part of the study, as a
novel approach, NMR data and RF were employed to indicate
the biomarkers and biologically important variables that are
correlated with zinc level in CD subjects’ serum. Generally, the
proposed approach in this work is an alternative and less invasive
method to detect CD compared with clinical tests.
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