
Construction of Invariant Scalar Amplitudes
without Kinematical Singularities for

Arbitrary-Spin Nonzero-Mass
Two-Body Scattering Processes

David N. Williams

September 9, 1963

AEC Contract No. W-7405-eng-48
Lawrence Radiation Laboratory
University of California, Berkeley
Preprint UCRL 11113



Abstract

The relativistic transition amplitude for any two-body reaction
involving only particles of nonzero mass but arbitrary spin is de-
composed in terms of scalar amplitudes that are regular functions
in the space of scalar invariants at points corresponding to regular
points of the transition matrix elements in momentum space, on the
mass shell. Detailed formulas for the scalar amplitudes in terms of
the original scattering matrix elements are given. The development
is in the framework of analytic S-matrix theory, and is based on a
partial generalization of the Hall-Wightman Theorem. The results
hold on the complete (multisheeted) domain of regularity of the
scattering amplitude.
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1 Introduction

The reduction of a Lorentz-invariant S matrix for arbitrary spins and non-
zero masses into a set of scalar amplitudes was discussed in an earlier pa-
per [1], within the framework of “analytic S-matrix theory” [2–4]. There are,
in general, many possible ways to do such a decomposition. It may happen,
however, that for a particular decomposition the scalar amplitudes will have
poles at certain positions, even if the S-matrix elements themselves are reg-
ular at the corresponding points. These singularities are in a sense spurious,
reflecting only the nature of the decomposition; such singularities have been
called “kinematical singularities” [2]. The object of this paper is to give an
explicit decomposition that is free of kinematical singularities, for the case of
two-particle to two-particle transition amplitudes for particles with arbitrary
spins and arbitrary, but nonzero, masses. One of the motivations for this work
is to allow theoretical considerations based on the Mandelstam representation
to be carried over to this general spin case.

For the case of multiparticle processes involving photons and spin- 12 parti-
cles, Hearn [5] has given a decomposition that yields for each term of the field
theoretic perturbation expansion a set of scalar amplitudes free of kinematical
singularities. In the present work no reference to field theory or perturbation
theory is made.

A decomposition for the simple special case of π-N scattering has been
known for some time [6]; and a decomposition for the nontrivial special case of
N-N scattering has been given by Goldberger, Grisaru, MacDowell, and Wong
[7]. Their proof that the corresponding scalar amplitudes are free of kinematical
singularities depends on rather awkward manipulations involving a partial wave
expansion, and on a certain unproved generalization of the Hall-Wightman
Theorem [8]. The more general discussion given here is more direct and is
based on a study of the nature of domains for which generalizations of the
Hall-Wightman Theorem can be proved.

The present paper gives the detailed arguments that were promised earlier
[1]. Recently a paper by Hepp [9] on the same subject has appeared. His paper
contains the generalizations of the results of Hall and Wightman needed in our
discussion. Consequently our independent proofs of these generalizations will
be omitted and Hepp’s terminology adopted wherever convenient.

The main results obtained in this paper overlap to a considerable degree
results obtained independently by Hepp. Our methods, however, are rather
different from his. Moreover, they are based on elementary considerations and
are self contained, in the sense that they do not depend on mathematical results
not generally familiar to theoretical physicists. It is therefore believed that the
present version should be a useful complement to Hepp’s mathematically more
sophisticated approach.

Our considerations deal only with the two-particle to two-particle case,
whereas Hepp has given sufficient conditions for the existence of a global de-
composition also in the general multiparticle case. In general, Hepp’s results
are in the nature of an existence proof, with the precise form of the decom-
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position not exactly specified. In the special case of two-particle reactions on
the mass shell, his results do specify the decomposition in principle, but cer-
tain implicit relations are left unsolved. In our results all implicit relations
are eliminated to give a specific decomposition, and we also obtain inversion
formulas giving explicit expressions for the scalar amplitudes in terms of the
original matrix elements.

Care has been taken to show that our results are valid not only on schlicht
domains restricted to the mass shell, but also on locally schlicht domains over
the mass shell.

In Sec. 2 the connection between theM -function formalism for the S-matrix
introduced by Stapp [3] and the Dirac-spinor formalism is briefly reviewed.
Sections 3 and 4 are devoted to the construction of a basis for matrices in
the spin space. In effect, this “spin basis” transforms an M function into an
equivalent tensor field under the proper, homogeneous, complex Lorentz group,
L+. The spin basis is combined in Sec. 5 with tensor polynomials constructed
from the available momemtum vectors to form a basis for the M function, and
formulas are given for the corresponding scalar amplitudes. The derivation of
the conditions under which kinematical singularities do not occur is given in
Sec. 6, along with a discussion of the concepts required for the definition of
holomorphic, covariant functions on domains over the mass shell. In Sec. 7 it
is concluded that the conditions for a holomorphic decomposition are satisfied
in analytic S-matrix theory.

Appendix A1 is devoted to the development of a generalized spinor calculus
for the group L+. It is a review of properties of representation matrices for the
group, of details of Clebsch-Gordan anaysis, and of properties of irreducible
tensors that are useful for understanding the text. In Appendix A2 some
additional properties of the spin basis constructed in Sec. 4 are described,
and in Appendix A3 a pertinent example of a kinematical singularity is given.
Appendix A4 gives a proof that the map from the space of three complex
four-vectors to the corresponding space of scalar invariants is open, extending
in this special case a result of Bargmann, Hall, and Wightman.

The amplitudes constructed in this paper are in general not independent
when there are symmetries under C, P , and T . However, such symmetries do
no affect the question of kinematical singularities.

2



2 The M Functions

For calculations in analytic S-matrix theory, where the dynamical content
comes from analytic properites and no fields are involved, it is convenient to
use the M -function formalism introduced by Stapp [3]. The M functions have
just the minimum number of spinor components, whereas the corresponding
quantities coming from Dirac fields have more than needed to describe the spin
multiplicity. Moreover, the M functions have simple covariance properties; and
no crossing matrices are required to obtain the corresponding M functions for
related processes reached by analytic continuation.

Because the existing discussions of these functions are quite general and
somewhat abstract, it may be useful to review the connection between the M
functions and the standard field theoretic quantities of perturbation theory in
a simple case [1, Appendix II]. Such an example can serve to make plausible,
by analogy with field theory, why analytic properties are assigned to the M
functions rather than to some other functions that could be constructed from
the S matrix. It should be emphasized, however, that such an analogy was not
the original motivation, either for the assignment of analytic properties, or for
the general construction of the M functions. The M functions are constructed
directly from the principles of analytic S-matrix theory as formulated by Stapp
[3], and they have a well defined and simple algebraic connection to the S matrix
no matter how it is parameterized in terms of the spins and momenta of the
particles [1, 3].

For the scattering of a spin- 12 particle with mass m and initial and final
four-momenta ki and kf on a spin-0 particle with mass m0 and initial and final
momenta pi and pf , the S-matrix elements can be expressed as

R ≡ S − I ,

Rab = ūa(kf ) T ub(ki) ,
(2.1)

where a, b = ± 1
2 label the final and initial spin states. For each value of a

and b, ūa and ub are four-component row and column vectors, respectively,
the ub(k) being two independent solutions of the free-particle Dirac equation
and the ūa(k) the corresponding Dirac adjoints. The four-by-four matrix T
depends on all of the momenta. The S matrix is normalized by the following
choice of energy factors:

I ≡ δab δ(kf − ki) δ(pf − pi)
√
m2 + k2

i

√
m2

0 + p2
i . (2.2)

It can be assumed without loss of generality that R has an energy-momentum
conserving δ function factored out.

The signature of the Lorentz metric is taken to be (+−−−); and four-
vector indices have the values 0, 1, 2, and 3. The two-by-two Pauli matrices
are written as a four-vector σµ with σ0 = I and with the usual Pauli matrices1

1Cf. Appendix 1.A for a definition.
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σ as three-vector components. Thus,

k ·σ = kµσµ = k0 + k·σ . (2.3)

In the representation of the Dirac matrices defined by2

γµ ≡
(

0 σµ

σ̃µ 0

)
, σ̃µ ≡ σµ, (2.4)

the upper two components of the column vector u(k) transform as a two-
component spinor with a lower undotted index, and the lower two components
transform as a two-component spinor with an upper dotted index. Explicity,
u(k) has the form:

ub(k) =
1√
2

√k ·σ/mφb√
k ·σ̃/mφb

 ,

ūa(k) =
1√
2

(
φ†
a

√
k ·σ̃/m , φ†

a

√
k ·σ/m

)
,

(2.5)

where φ is the two-component spin vector that specifies the spin of the particle
in its rest frame,

1
2 φ

†
b σ φb = sb , (2.6)

and where
√
k ·σ/m and

√
k ·σ̃/m are Hermitian matrices belonging to the

representations D 1
2 ,0 and D0, 12 , respectively, of a Lorentz transformation from

rest to a frame where the particle has momentum k, for example,√
k ·σ/m = exp (λk·σ/2|k|) = (m+ k ·σ) /

√
2m(m+ k0) ,

coshλ = k0/m , k ·k = m2 .
(2.7)

If the u± 1
2
are taken to correspond to spins in the ±z direction in the rest

frame, then the M function corresponding to (2.1) is defined by3

Mαβ̇ =

(√
kf ·σ/m R

√
ki ·σ/m

)
αβ̇

,

= 1
2

(
Φα , Φα kf ·σ/m

)
T

ki ·σ/m Φβ̇

Φβ̇

 ,

(2.8)

2For matrices, the notation is AT for transpose, A† for Hermitian conjugate, and A∗

for complex conjugate. The notation T̃ is used in this paper to indicate the space-inversion
operation on the tensor indices of T .

3The M function is the same, no matter how the spin polarizations are chosen. For the
general construction see [1].
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where the relation√
k ·σ/m

√
k ·σ̃/m = I (2.9)

has been used and

Φ± 1
2
=

( 1
2 ± 1

2

1
2 ∓ 1

2

)
. (2.10)

If one writes T in the two-by-two block form

T =

(
T ++ T +−

T −+ T −−

)
, (2.11)

then the explicit expression for M becomes

Mαβ̇ = (T ++)α
β′

(ki ·σ/m)β′β̇ + (T +−)αβ̇

+ (kf ·σ/m)αα̇′ (T −−)α̇
′

β̇

+ (kf ·σ/m)αα̇′ (T −+)α̇
′β′

(ki ·σ/m)β′β̇ .

(2.12)

From this expression, the two-by-two M function corresponding to any four-by-
four T matrix is readily obtained. In perturbation theory, it is the singularity
structure of T that is significant; and it is evident that M is analytically related
to T . This example is easy to generalize for any number of spin- 12 particles
with nonzero masses.

Experimental relationships can be obtained directly from the M functions,
bypassing the S functions entirely [3]. The projection operators

P (s) = 1
2 (1 + s·σ) (2.13)

used in conjunction with S are replaced by the covariant operators

P (k, s) =
√
k ·σ̃/mP (s)

√
k ·σ̃/m

= 1
2 (k ·σ̃/m− s·σ) ,

(2.14)

where s is the pseudo four-vector that reduces to s in the rest frame of the
particle [10,11]. Stapp defines the M functions in general essentially by the re-
quirement that the covariant operators (2.14) and their generalization to higher
spin give the correlations between experimental observables when contracted
with the M functions in expressions such as Tr(Pi M Pf M

†). The covariance
of the M functions under the proper, orthochronous, homogeneous Lorentz
group L↑

+, which for our special example follows from (2.12), follows generally
from the postulated Lorentz invariance of experimental correlations and the
constructed spinor transformation character of P (k, s).
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The general form of the covariance condition can be expressed using the
generalized spinor transformation operator ΛS defined by the equation,

(ΛS M)(α)(β̇) ≡ (ΛS M)α1···αM β̇1···β̇N

= S(Λ)(α)(β̇)
(α′)(β̇′)

M(α′)(β̇′)

=

[∏
i

DSi(A)αi

α′
i

] [∏
j

DS′
j (B)β̇j

β̇′
j

]
M(α′)(β̇′) ,

(2.15)

where A and B are the two-by-two unimodular matrices that specify, by means
of Eq. (A1.6) in Appendix A1, the complex, proper, Lorentz transformation
Λ(A,B), and where the DS ≡ DS,0 are the (2S+1)-dimensional, irreducible
representations of L+, described in Appendix A1.1. The indices αi and β̇j are

generalized (2Si+1)- and (2Sj+1)-valued spinor indices; (α) and (β̇) are the sets

of αi and β̇j ; and the summation convention is used for relatively upper and
lower repeated indices. Thus, ΛS represents the action of the direct product
group SL(2,C)×SL(2,C), which is related to L+ in the usual way by a two-
to-one homomorphism, on a finite-dimensional carrier space of spinors. If one
puts B = A∗, then ΛS represents the real group, L↑

+; and DS(A∗) corresponds
to the representation D0,S . The representations DS,0 and D0,S of L↑

+ are ob-
tained by complexification of the representation DS of the rotation group. One
augments the angular momentum operators J, which are infinitesimal genera-
tors for the rotation group, by the particular choices K = ∓J, respectively, for
the infinitesimal generators of the velocity transformations.

Let K = (k1, . . . , kl) be the set of momentum vectors for the process de-
scribed by the spinor-valued function M(K), and let ΛK ≡ (Λk1, . . . ,Λkl) be
the transformed momenta. Then one obtains from the Lorentz invariance of
physical correlations the covariance relation [3, 4]

ΛS M(Λ−1 K) = M(K) , (2.16)

for physical K and Λ in L↑
+. Using this and the assumption that M(K) is

holomorphic in some real neighborhood (on the mass shell) of some real point
K, it is a consequence of a theorem of Stapp [4] that the domain of regularity
of M can be covered by sheets, each of which maps onto itself under any
transformation in L+, and on each of which (2.16) holds for any K and for
any Λ in L+. This is summarized by the statement that M is L+-covariant
throughout its domain of regularity, or that M is “completely” L+-covariant.
The notions of a domain of regularity, of a sheet, and of complete L+ covariance
are described precisely in Sec. 6.

Each (2S+1)-valued spinor index of an M function corresponds to a particle
of spin S. In the spin- 12 example given above, one of the spinor indices was
dotted and one was undotted; and both were lower. This is purely conventional.
The choice depends only on the way in which R is contracted with the operators√
k ·σ/m and

√
k ·σ̃/m to give M , or more generally, on the conventions for the
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generalized covariant operators P (k, s). Simple conventions have been adopted
[3] that lead to unambiguous transformations for altering the character of the
spinor indices of M functions. For present purposes it will be convenient to let
all indices be of the same type. It will be seen in the following section that this
is no restriction on the generality of the results.

From now on, the M functions are to be considered as defined by (2.16),
with Λ in L+. It is easily shown from this equation that the sum of the
spins of an M function is an integer [3,1] (i.e., in every scattering process the
total number of initial and final fermions is even); and thus the M function is
equivalent to a tensor function.
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3 Reduction of Spins

To simplify the problem of expanding theM functions, and hence the S matrix,
in terms of scalar amplitudes, we shall first decompose them into irreducible
parts. Of course this is a “trivial” procedure, even for the S matrix itself;
but for the S matrix the reduction is somewhat messy, due to the somewhat
complicated transformation law of the spin indices. For the M functions, be-
cause of their simple transformation law, the reduction is algebraically simple,
involving only the familiar addition of spins by contracting with combinations
of Clebsch-Gordan (C-G) coefficients. We follow the same procedure as that
of Fano and Racah [12] for the rotation group. Details of the construction of
the appropriate projection operators are given in Appendix A1.3.

As mentioned above, one needs only to considerM functions with all indices
of the same type, say lower undotted. Any upper index can be lowered by
contracting with the metric symbol {S} defined in (A1.18). Any dotted index
can be converted into an undotted index by contracting with one of the “metric”
symbols introduced by Stapp [3,1],

[S, k ]β̇α ≡ DS(k ·σ̃/m)β̇α,

{S, k}αβ̇ ≡ DS(k ·σ/m)αβ̇ ,
(3.1)

where k is the momentum of the particle of spin S whose index is to be trans-
formed, and where the matrix elements of DS are labeled according to the
index types of the argument. These spinors satisfy the orthogonality relations

{S, k}αβ̇ [S, k ]β̇α
′
= DS(k ·σ k ·σ̃/m2)α

α′

= δα
α′
,

[S, k ]β̇
′α {S, k}αβ̇ = δβ̇

β̇′
,

(3.2)

because of the identity

k ·σ k ·σ̃ = k ·σ̃ k ·σ = k ·k = m2. (3.3)

In order to reduce the function M(α) one contracts with the projection
operators

[ JJ : (S,N) ]α
(β) ≡ [ JJ :S1, . . . , SN ]α

β1···βN , (3.4)

for total spin J . The symbol J stands for the set of intermediate spins that
occur in the reduction of S1, . . . , SN , beginning at the left. These operators
are formed by contracting successively with the C-G coefficients, as described
in Appendix A1.3. The projections are single-spin functions with the same
transformation law as an M function:

M(JJ )α = [ JJ : (S,N) ]α
(β)

M(β) , (3.5)

or in matrix notation

M(JJ ) = [ JJ : (S,N) ]M . (3.6)
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Equation (3.5) or (3.6) can be inverted by contracting with the inverse projec-
tion operators

{(S,N) : JJ }(α)
β
= {S1, . . . , SN : JJ }α1...αN

β

= [ JJ : (S,N) ]β
(α)

.
(3.7)

Writing the orthogonality relation (A1.37) in the form∑
J,J

{(S,N) : JJ } [ JJ : (S,N) ] = I , (3.8)

one finds that

M =
∑
J,J

{(S,N) : JJ } M(JJ ) . (3.9)

The summation in these equations is over all J,J occurring in the reduction
of the spins (S,N).

It is clear that the decomposition (3.9) does not introduce any extra singu-
larities into M(JJ ) that were not already present in M . Thus the problem of
expanding M in terms of scalar amplitudes without kinematical singularities
is solved by finding such an expansion for the irreducible functions M(JJ ).
Note that because

∑
i Si is an integer, J is always an integer. The quantities

M(JJ ) are analogous in some respects to the familiar spherical tensors in the
theory of the rotation group.
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4 The Spin Basis: Conversion to an Equivalent Tensor

From now on we restrict ourselves to spinor-valued functions M(J) of the
four-momenta (the symbol J is suppressed because it has nothing to do with
the transformation properties) that satisfy the covariance condition (2.16), with
ΛS = DJ(A). In this section a set of spinors labeled by tensor indices is
constructed, which spans the spin space. These spinors are then combined
with available momentum vectors in Sec. 5 to form a basis in the space of
M(J) functions.

The elements of the spin basis constructed here are just row vectors from a
matrix that transforms the spinor M(J) into an equivalent irreducible tensor.
There are several ways of doing such a construction. For example, M(J) is
equivalent to a traceless tensor of rank 2J that is antisymmetric and selfdual
in successive pairs of indices, and symmetric in the interchange of selfdual pairs
of indices. The general transformations have been given by Barut, Muzinich,
and Williams [1] and are written down in (A1.43) and (A1.44). Here, we find
it algebraically more convenient to construct a spin basis that is somewhat
specialized.

For the case J = 1, one can define a set of four spinors, labeled by the
vector index µ,

ρµ (1 : v)α = [ 1 1
2

1
2 ]α

βγ
[
ρµ v ·σ̃

{
1
2

}]
βγ

, (4.1)

where the symbol [ 1 1
2

1
2 ]α

βγ = C
(
1
2

1
2 1;βγα

)
is a C-G coefficient in terms

of the convention of Rose [13], ρµ = σµ/
√
2 is the normalized Pauli spinor,{

1
2

}
is the spin- 12 metric symbol defined in (A1.18), and v is some four-vector

valued, covariant function of the available momenta satisfying v ·v 6= 0. If the
four-vector index in (4.1) is contracted with a vector w, the result is equivalent
to the antisymmetric, selfdual part of the tensor wµ vν . In particular, by
using the symmetry of [ 1 1

2
1
2 ], the antisymmetry of

{
1
2

}
, and (3.3), one easily

calculates the relations

w·ρ(1 : v) + v ·ρ(1 :w) = 0 , (4.2)

v ·ρ(1 : v) = 0 . (4.3)

Equation (4.3) can be viewed as that relation among the four ρµ(1 : v) that
must exist because the spin-1 space is three-dimensional.

From various orthogonality relations involving C-G coefficients (such as
those listed in Appendix A1.1 and A1.2, it is easy to verify that

(v ·v)−1 ρµ (1 : v)α ρµ (1 : v)
β
= δα

β , (4.4)

(v ·v)−1 ρµ (1 : v)α ρν (1 : v)
α
= gµν − vµ vν/v ·v

≡ hµν(v) .
(4.5)

The vector v can always be brought to the form
(√

v ·v, 0, 0, 0
)
by a transfor-

mation in L+. In such a frame, (4.5) reduces to the ordinary three-dimensional
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metric symbol. The orthogonality relations (4.4) imply that the ρ(1 : v) spinors
span the spin-1 space.

From the spinor calculus in Appendix A1, one derives the transformation
law

D1(A) ρµ(1 : v) = Λν
µ(A,B) ρν [1 : Λ(A,B)v] . (4.6)

Spinors for arbitrary integral J can be constructed by addition of spins of
magnitude 1,

ρµ1···µJ (J : v1, . . . , vJ)α

= [ JJ : (1, J) ]α
(β) ρµ1 (1 : v1)β1

· · · ρµJ (1 : vJ)βJ
, (4.7)

where J = (2, 3, . . . , J−1) is in this case uniquely determined by our conventions
for the construction of [ JJ : (1, J) ] and thus can be suppressed. In condensed
notation this becomes

ρ(µ)(J : v1, . . . , vJ) = [ J : (1, J) ]
⊗
J

ρµi(1 : vi) . (4.8)

From the orthogonality relations (A1.36) and (4.4) one finds that∏
i

(vi ·vi)−1 ρ(µ) (J : v1, . . . , vJ)α ρ(µ) (J : v1, . . . , vJ)
β
= δα

β . (4.9)

The transformation law (4.6) becomes

DJ(A) ρ(µ)(J : v1, . . . , vJ)

= Λ(ν)
(µ)(A,B) ρ(ν)[J : Λ(A,B)v1, . . . , Λ(A,B)vJ ] , (4.10)

where

Λ(ν)
(µ) ≡ Λν1

µ1 · · · ΛνJ

µJ . (4.11)

Equations (4.3) and (4.8) lead to

(vi)µi
ρµ1···µi···µJ (J : v1, . . . , vJ) = 0 . (4.12)

There are further relations among the ρ(J : v1, . . . , vJ). It is an easily proved
algebraic fact that the projection operator [ J : (1, J) ] is symmetric in the in-
terchange of any pair of spin-1 indices; one can see this directly by noting that
there is only one way to get a total spin of J from the addition of J spins of
magnitude 1. From this fact and (4.8) it follows that ρ(J : v1, . . . , vJ) is sym-
metric in the interchange of any pair of tensor indices when one simultaneously
interchanges the corresponding four-vector arguments. Furthermore, because
it is essentially an irreducible tensor of minimum rank (see Appendix A2),
ρ(J : v1, . . . , vJ) vanishes upon contraction of any pair of tensor indices.
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It is convenient to choose all of the four-vector arguments v1, . . . , vJ to be
equal, and to write ρ(J : v) ≡ ρ(J : v, . . . , v). Then from what has just been
said, ρ(J : v) is symmetric and traceless in its tensor indices. By choosing the
four-vector arguments to be the same, we have in a certain sense reduced the
problem for the group L+ to an equivalent problem for the three-dimensional,
proper, complex orthogonal group, O+(3, C). In particular, when v is in its rest
frame, (4.12) implies that ρ(J : v) vanishes when any tensor index has the value
zero; and one is left with a tensor with respect to O+(3, C). From this one can
see immediately that ρ(J : v) is traceless, for ρµ

µµ3···µJ (J : v) is a tensor of rank
less than J corresponding to the irreducible representation DJ of O+(3, C).

There are precisely 2J+1 linearly independent, symmetric and traceless
tensors of rank J with respect to O+(3, C), and because of (4.9) there are at
least 2J+1 linearly independent spinors among the ρ(J : v). Thus we have a
basis for the spin-J space.

To save words, the space of tensors of rank J that vanish when any index is
contracted with v will be denoted by T (J : v). Then ρ(J : v) defines a one-to-one
map from the spin-J spinor space onto the subspace of symmetric and traceless
tensors T (J : v). Later, some use will be made of the fact that

S(µ)(ν)(J : v) ≡ (v.v)−J ρ(µ) (J : v)α ρ(ν) (J : v)
α

(4.13)

is the projection operator from the space of Jth rank tensors onto the subspace
of symmetric and traceless tensors in T (J : v). It is proved in Appendix A2
that S(J : v) is a tensor not only with respect to L+ but also with respect to
L, the unrestricted, homogeneous, complex Lorentz group. For completeness,
the remaining projection operators for the space T (J : v) are also given in
Appendix A2.
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5 Basis Functions for M(J)

Using the orthogonality relation (4.9) for ρ(J : v) one readily finds that

M(J) = f (µ) ρ(µ)(J : v) ≡ f ·ρ(J : v) , (5.1)

where

f ≡ (v ·v)−J M(J)α ρ(J : v)α. (5.2)

Clearly f is a symmetric and traceless tensor in T (J : v). From (5.2), f has no
more singularities than M(J), because v ·v is assumed not to vanish. A set of
basis functions with the same transformation law as M(J) is constructed by
finding tensors that span the tensor space and contracting with ρ(J : v).

For two-body reactions on the mass shell, at most three independent four-
momenta are available, the fourth being determined by energy-momentum con-
servation. In the region where the Gram determinant of the momentum vectors
K ≡ (k1, k2, k3),

G(K) ≡ det(ki ·kj) , (5.3)

does not vanish, one can form a basis in the four-vector space by adding the
pseudovector w, defined below, to the set K. Thus the vectors vi form a basis,
where4

vi = ki , i = 1, 2, 3 , v4 = w = [ k1, k2, k3 ] ,

wµ ≡ εµνλσ k1ν k2λ k3σ , w·w = −G(K) .
(5.4)

A reciprocal basis is formed by the vectors

v̂1 = [ v2, v3, v4 ]/G , v̂2 = [ v3, v1, v4 ]/G ,

v̂3 = [ v1, v2, v4 ]/G , v̂4 = −v4/G ,
(5.5)

which satisfy

vi ·v̂j = δij ,
∑
i

vi
µ v̂i

ν =
∑
i

v̂i
µ vi

ν = gµν . (5.6)

Then the monomials

T [(i,N)] ≡ vi1 ⊗. . .⊗ viN , ij = 1, 2, 3, 4 , (5.7)

form a basis in the space of tensors of rank N , and a reciprocal basis is formed
by

T̂ [(i,N)] ≡ v̂i1 ⊗. . .⊗ v̂iN , (5.8)

4The convention for the alternating symbol is ε0123 = −1.
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so that

T [(i,N)]·T̂ [(j,N)] = δ(i,N)(j,N) ,∑
i

T (µ) [(i,N)] T̂ (ν) [(i,N)] = g(µ)(ν).
(5.9)

The expansion of f , when G 6= 0, is then

f =
∑
i

ai T [(i, J)] , (5.10)

where

ai = f ·T̂ [(i, J)] . (5.11)

Then M(J) becomes

M(J) =
∑
i

ai T [(i, J)]·ρ(J : v) . (5.12)

Equation (5.11) defines a total of 4J scalar functions, but from (5.12) only
2J+1 of these can be algebraically independent. Indeed, (5.2) and (5.12) imply
that they satisfy the linear relations

ai =
∑
j

aj T [(j, J)]·ρ(J : v)α T̂ [(i, J)]·ρ(J : v)α (v ·v)−J . (5.13)

It will not restrict the generality of the results, and it will simplify the
discussion to choose v to be one of the available momenta, say k3. Because
of (4.12), all terms such that k3 occurs in T [(i, J)] drop out in the expansion
(5.12). From the symmetry of ρ(J : k3), all terms where the vectors k1, k2, and
w occur in T [(i, J)] the same number of times, regardless of order, are equal.
The terms can therefore be labeled by a partition of the integer J into three
parts. Let

T (µ)(i, j, J−i−j) = k1
µ1 · · · k1µi k2

µi+1 · · · k2µi+j wµi+j+1 · · · wµJ . (5.14)

The number of tensors T [(i, J)] that contain k1 a total of i times, k2 a total of
j times, and w a total of J−i−j times is just the multinomial coefficient(

J

i, j

)
=

J !

i! j! (J−i−j)!
. (5.15)

Defining

a(i, j, J−i−j) ≡
(

J

i, j

)
f ·T̂ (i, j, J−i−j) , (5.16)
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where T̂ (i, j, J−i−j) is obtained by replacing the vectors in (5.14) with their
reciprocals, one has the expansion

M(J) =
∑

0≤i+j≤J

a(i, j, J−i−j) T (i, j, J−i−j)·ρ(J : k3) . (5.17)

From (5.16), a(i, j, J−i−j) can have a singularity G−J in addition to the
singularities of f . An example of a holomorphic function that actually gives
rise to such a “kinematical” singularity in the expansion (5.17) is given in
Appendix A3.

So far, the fact that ρ(J : k3) is traceless has not been used. By using the
well-known identity,

−εµνλρ εδκστ =


gµδ gµκ gµσ gµτ
gνδ gνκ gνσ gντ
gλδ gλκ gλσ gλτ
gρδ gρκ gρσ gρτ

 , (5.18)

all tensors T (i, j, J−i−j) with J−i−j > 1, i.e., with w occurring more than
once, can be reduced to combinations of simpler terms [5]. Thus,

ww = −g G(K) + k1 k1
(
m2

2m3
2 − β2

)
+ k2 k2

(
m1

2m3
2 − γ2

)
+ k3 k3

(
m1

2m2
2 − α2

)
+ (k1 k2 + k2 k1)

(
βγ − αm3

2
)

+ (k2 k3 + k3 k2)
(
γα− βm1

2
)
+ (k3 k1 + k1 k3)

(
αβ − γm2

2
)

(5.19)

where α = k1 ·k2, β = k2 ·k3, γ = k3 ·k1, and mi
2 = ki ·ki. When contracted

with ρ(J : k3), the term proportional to the metric tensor g vanishes because
ρ is traceless; only the terms proportional to k1 k1, (k1 k2 + k2 k1), and k2 k2
remain, because of (4.12).

Each of the T ·ρ terms in (5.17) reduces to a linear combination of the
following 2J+1 functions:

Y (+)(i : J) = k1
µ1 · · · k1µi k2

µi+1 · · · k2µJ

× ρ(µ)(J : k3) , i = 0, . . . , J ;

Y (−)(i : J) = k1
µ1 · · · k1µi k2

µi+1 · · · k2µJ−1 wµJ

× ρ(µ)(J : k3) , i = 0, . . . , J−1 .

(5.20)

Then

M(J) =

J∑
i=0

b
(+)
i Y (+)(i : J) +

J−1∑
i=0

b
(−)
i Y (−)(i : J) . (5.21)

It will be shown in the following section that the scalar amplitudes b
(±)
i do not

have kinematical singularities.
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Before proceeding to a discussion of analytic properties, we give some for-
mulas for the scalar amplitudes in terms of M(J). Setting

α11 = m2
2m3

2 − β2, α22 = m1
2m3

2 − γ2,

α12 = 2
(
βγ − αm3

2
)
,

(5.22)

one can express b
(±)
i in terms of the a(i, j, J−i−j):

b
(±)
i =

∑
l,m,n

a
[
m,J± −m− 2l, 2l +

(
1
2 ∓ 1

2

)]
×
(

l

n, i−m− 2n

)
αn
11 α

i−m−2n
12 αl+m+n−i

22 , (5.23)

where J± = J − ( 12 ∓ 1
2 ), and where the summation is over the ordered triple

of integers (l,m, n) satisfying the conditions

max(0, i− l −m) ≤ n ≤
[
i−m

2

]
,

max(0, i− 2l) ≤ m ≤ min(i, J± − 2l) ,

0 ≤ l ≤
[
J±
2

]
,

(5.24)

where [a/b] is the “integer part” of the rational number a/b.

The b
(±)
i can also be expressed directly in terms of the traces

t(±)(i : J) ≡ M(J)α Y (±)(i : J)α. (5.25)

A tedious, but straightforward calculation gives

b
(±)
i = ±

(
m3

2 G
)−J ∑

j

∑
l

t(±)(j : J)

× η±(i, j, l)α
l
11 α

i+j−2l
12 α

J±−i−j+l
22 , (5.26)

where

max(0, i+ j − J±) ≤ l ≤
[
i+ j

2

]
,

0 ≤ j ≤ J± ,

(5.27)

and where

η±(i, j, l) =
∑

m,n,r,s,t

22(l−m−n)−s−t

(
J

s, 2r + 1
2 ∓ 1

2

)(
s

l −m− n

)

×
(

J± − s− 2r

t− l +m+ n

)(
r

m

)(
r −m

i− s− 2m

)(
r

n

)(
r − n

j − t− 2n

)
, (5.28)
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the summation ranging over

max(l −m− n, j − r − n) ≤ t

≤ min (J± + l − 2r − s−m− n, j − 2n) ,

max(l −m− n, i− r −m) ≤ s

≤ min (J± − 2r, J± − r −m− j + l, i− 2m) ,

max(m,n) ≤ r

≤ min

(
J± + n− j, J± +m− i,

[
J± − l +m+ n

2

])
,

max(0, l − i+m) ≤ n ≤ min

([
j

2

]
, l −m, j +m− l

)
,

max(0, l − j) ≤ m ≤ min

([
i

2

]
, l

)
.

(5.29)
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6 Holomorphy of the Scalar Amplitudes

The procedure followed in the sections above for reducing a covariant func-
tion into irreducible parts and for reducing the set of covariant polynomials
T (i, j, J− i−j) ·ρ into the set Y (±)(i : J) can be used to express any covari-
ant polynomial in the momentum vectors (on the mass shell) in terms of the
Y (±)(i : J), with coefficients that are polynomials in the scalar invariants. Be-
cause the a(i, j, J−i−j) in (5.16) and (5.17) have at most a singularity G−J

in the domain where M(J) is holomorphic, it follows that the same is true of

the b
(±)
i in (5.21). In this section we derive a condition for any domain over

the mass shell, where M(J) is holomorphic, that is necessary and sufficient if

the b
(±)
i are to be holomoprhic functions on the corresponding domain of scalar

invariants. This means of course that for such domains the b
(±)
i do not have

poles when G = 0, i.e., that they are free of kinematical singularities.
We shall see that the condition is essentially (although somewhat weaker

than) the following: the domain where M(J) is holomorphic must be such that,
if it contains a point, then it contains all points with the same scalar invariants.

In order to derive the condition, we found it necessary first to prove an ex-
tension to the most general possible domain of that part of the Hall-Wightman
Theorem which says roughly that a holomorphic function invariant under L
is a holomorphic function of L invariants.5 The Hall-Wightman Theorem was
used by Wong [7] in his proof that the N-N amplitudes have no kinematical
singularities. Its application there was not strictly justified, however, because
the Hall-Wightman Theorem pertains to a special kind of domain, the future
tube. The functions in analytic S-matrix theory, on the other hand, are defined
on the mass shell, which has no points in common with the future tube. Thus,
a generalization of the Hall-Wightman Theorem is needed to justify using its
consequences in our problem.

As already mentioned, the required generalization was proved indepen-
dently by Hepp, so that we can avoid some complication by omitting the proof
and citing his result.

Aside from the Hall-Wightman Theorem, we find it necessary for our deriva-
tion to prove the existence of a decomposition of M(J) into two parts equiva-
lent to a tensor and pseudotensor, both of which are holomorphic, and to prove
certain linear independence properties of the Y (±)(i : J) at some of the points
where G vanishes.

Before we can proceed to the derivation, however, or even state our theorem
precisely, some well-established geometrical facts must be mentioned, and the
notion of covariant and holomorphic functions on locally schlicht domains over
the mass shell must be explained. This will enable us to construct the con-
cept of an “L+-invariant structure”, which with the help of Stapp’s Theorem
mentioned in Sec. 2 provides a suitable framework for our discussion.

5A similar result was proved for the group L+, but in the application here, where no
pseudoscalars exist, there is essentially no difference.
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6.1 Complex Four-Vectors

Hall and Wightman [8] have established some geometrical properties of the
space of l complex four-vectors. Let the number of independent vectors at a
point K ≡ (k1, . . . , kl) be denoted by n, and the rank of the Gram determinant,
G(K) ≡ det (ki ·kj), be denoted by r. Then n ≤ 4 and r ≤ 4. For r = 3 or
4, one has n = r. For r = 1 or 2, one can have n = r or n = r + 1. For
r = 0, one can have n = 0, 1, or 2. For points K with n 6= r, there are always
points K ′ with the same scalar invariants, ki ·kj = k′i ·k′j , but for which n = r.
The converse is also true for r ≤ 2. For any K, there is always a subset of
r independent vectors with nonvanishing Gram determinant. Without loss of
generality, it is assumed in the following that these vectors are (k1, . . . , kr).

A special case of a result of Hall and Wightman [8, Lemma2] is

Lemma 1. If K and K ′ are n = r points having the same scalar invariants,
then there exists a Λ in L such that K ′ = ΛK.

The following lemma also holds:

Lemma 2. Let K be such that n 6= 4, and if n = 3 then r 6= 2. Then for any
K ′ there exists a Λ in L+ such that K ′ = ΛK if and only if there exists an
improper Λ′ in L such that K ′ = Λ′K.

The proof is to note that in these cases, there is always a subspace orthogonal
to the vectors of K. This follows immediately from the considerations of Hall
and Wightman. One can then introduce an improper transformation in that
subspace that acts as the identity on K.

The following terminology is standard:

Definition 1. For a set S of points K and a group G, GS is the set of points
of the form K ′ = ΛK, where K is in S and Λ is in G. The set GK is called the
G orbit of K.

Consider now a point K for which r = 2 and l = 3; K ≡ (k1, k2, k3). Then
G (k1, k2) 6= 0, by the ordering convention established above. From this it
follows that one can choose two orthonormal vectors (in the Lorentz metric),
ω1 and ω2, in the space orthogonal to k1 and k2, such that k1, k2, ω1, and ω2

are linearly independent [8, footnote 7]:

ki ·ωj = 0 ; ωi ·ωj = δij ; i, j = 1, 2 . (6.1)

Because G(K) has rank 2, k3 must have one of the two alternative forms

k3 = a k1 + b k2 + c ω± , (6.2a)

where

ω± ≡ ω1 ± i ω2 . (6.2b)
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The vectors ω+ and ω− are on the light cone and are orthogonal to k1 and k2.
Notice that the scalar invariants ki·kj are independent of c. Also, if c = 0, then
n = 2; and if c 6= 0, then n = 3.

The transformation ω± → λ±1ω± is, for any λ 6= 0, a transformation in
L+. Thus all points K of the above form with the same values of a and b,
and for which k3 has a nonvanishing component along ω+, are connected by a
transformation in L+. The same is true for points where k3 has a nonvanishing
component along ω−. Evidently the point with c = 0 is a limit point of each of
these two sets. Lemmas 1 and 2 applied to the subset of K consisting of its first
two vectors alone ensure that one can find a transformation in L+ that takes
any point K ′ having the same invariants as K to a point such that k′1 = k1 and
k′2 = k2. The vector k′3 must then have one of the two forms given by (6.2a).
Thus the set of all points with the same scalar invariants as K is the union of
three L+ orbits, two with n = 3 and one with n = 2. By considering the linear
transformation that leaves k1, k2, and ω1 unchanged and replaces ω2 by −ω2,
one sees that points of the two n = 3 orbits are related by an improper Lorentz
transformation. Clearly, any point of the n = 2 orbit is a limit point of both of
the n = 3 orbits. Because of the continuity of the scalar invariants, the union
of all three orbits is a closed set. Moreover, this fact and the discussion above
imply that the n = 2 orbit is itself a closed set, and that the union of the n = 2
orbit with either of the n = 3 orbits is a closed set.

An analogous discussion can be given for r = 1 points. In that case, K has
the form

k2 = a2 k1 + b2 ω ,

k3 = a3 k1 + b3 ω ,
(6.3)

where ω ·k1 = ω ·ω = 0. If either b2 or b3 is nonzero, then n = 2, and if
both vanish then n = 1. From Lemma 2, L+K = LK. This does not mean,
however, that there is only one n = 2, L+ orbit with the same invariants as the
n = r = 1, L+ orbit. In fact, it is clear that there is a distinct orbit for each
value of the ratio b2/b3. Any transformation that leaves k1 unchanged and
multiplies ω by a nonzero complex number can be written as a transformation
in L+, just as before, and thus it is still true that the L+ orbit of the n = r = 1
point is closed while that of any of the n = 2 orbits becomes closed by adding
the n = 1 orbit.

6.2 Holomorphy and Covariance on Domains Over the Mass
Shell

The mass shell, Kl, is defined by the equations

ki ·ki = m2
i ,

∑
i

ki = 0 ,

m2
i > 0 , i = 1, . . . , l + 1 ,

(6.4)
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where the masses, mi, are constants. The requirement mi 6= 0 implies that
Kl contains no r = 0 points. The topology of Kl is taken to be that induced
from the complex number space C4(l+1) in which it is embedded. Because of
the conservation equation in (6.4), points in Kl can be represented by K =
(k1, . . . , kl).

Since Kl is not a Euclidean space, but rather an algebraic variety, holomor-
phy on Kl must be defined in a generalized sense. The concept of holomorphy
on “complex spaces”, which need be only locally Euclidean at most points,
has been extensively developed by mathematicians in recent years [14], but
has been, as yet, little used by physicists. The generalization needed here is
relatively simple, and stays close to concepts that are familiar for functions on
ordinary locally schlicht domains. Certain essential properties of holomorphic
functions continue to hold; in particular, a holomorphic function of a holomor-
phic function is holomorphic, and a holomorphic function has a unique analytic
continuation.6

The most direct generalization of holomorphy is to functions on complex
manifolds. A complex manifold of (complex) dimension d is a connected Haus-
dorff space7 with a complex structure. This means that the space can be
covered with open sets Uα each of which is mapped into the space Cd of d
complex numbers by a homeomorphism (a one-to-one continuous map with a
continuous inverse) hα :Uα → Cd, which is such that if Uα ∩ Uβ is not empty,
then hα ◦h−1

β is a holomorphic mapping of hβ (Uα ∩ Uβ) onto hα (Uα ∩ Uβ). A
complex-valued function f is said to be holomorphic on such a manifold if and
only if each of the functions f ◦h−1

α is holomorphic on hα (Uα); that is, f must
be holomorphic when expressed in terms of any of the “local coordinates”.

Stapp has shown [4] that the “restricted mass shell”, K′
l, obtained by delet-

ing all n = 1 points from Kl, has a complex structure such that the components
of the four-momenta are holomorphic in the local coordinates. With that struc-
ture, K′

l is a complex manifold of dimension 3l − 1. It is easy to show that K′
l

is dense in Kl. Thus any continuous function on Kl is determined by its values
on K′

l. A function is said to be holomorphic on Kl, according to the standard
procedure for complex spaces, if it is continuous, and if it is holomorphic on K′

l,
regarded as a complex manifold with the complex structure just described.8

In order to introduce the notion of “multivalued” functions in a well-defined
way, we define the concept of a “locally schlicht domain”.9

Definition 2. A locally schlicht domain D over Kl, or domain over Kl, is a

6The concept of a locally schlicht domain over an arbitrary complex space is developed
by G. Scheja [15].

7“Connected” in this paper means “arcwise connected”. A Hausdorff space is a topolog-
ical space such that any two distinct points lie in disjoint neighborhoods. A neighborhood
of a point contains an open set containing the point.

8Hepp has shown [9] that Kl is a “normal” algebraic variety in C4(l+1), that is, a function
holomorphic in Kl is locally the restriction of a function holomorphic in the embedding space,
C4(l+1).

9A domain is a connected open set. For standard concepts having to do with locally
schlicht domains, cf. A. S. Wightman [16].
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pair, D = (S,Φ), where S is a connected Hausdorff space and Φ a map of S
into Kl that is a local homeomorphism. If Φ is a global homeomorphism, then
D is said to be schlicht.

In general, the notation D will be used for locally schlicht domains, and U
for domains that are also schlicht. Then Φ/U , the restriction of Φ to U , is a
homeomorphism, for U ⊂ D.

The symbol P denotes a point of the locally schlicht domain D over Kl,
and K = ΦP denotes its image under the mapping Φ into Kl. The point ΛP
in a schlicht domain U ⊂ D is (Φ/U)−1ΛΦP .

Two schlicht subdomains of a locally schlicht domain are said to “lie over”
each other if their Φ images coincide. If they also contain a common point then
they are identical; this follows straightforwardly from the definitions.

A function f defined on a locally schlicht domain D is said to be holomor-
phic on D if and only if f ◦ (Φ/U)−1 is holomorphic on ΦU for every schlicht
subdomain U of D. Analytic continuation of functions holomorphic on locally
schlicht domains proceeds, in the usual way, by addition of locally compati-
ble function elements. The domain of holomorphy is the largest domain onto
which the function can be continued with equivalent function elements iden-
tified [15, 16]. For spinor M functions, which have several components, the
following terminology has been introduced by Stapp [4]:

Definition 3. The domain of regularity, R(M), of an m-component spinor
function M is the largest domain over Kl onto which all components can be
simultaneously analytically continued, with equivalent m-component function
elements identified.

L+ covariance for domains over Kl is defined in terms of L+ covariance for
schlicht domains.

Definition 4. A spinor functioin M is L+-covariant on a schlicht domain U
if and only if it satisfies

M(P ) = Λ−1
S M(ΛP ) (6.5)

whenever P and ΛP are in U and Λ is in L+.

Definition 5. A spinor function M is L+-covariant in a domain D over Kl if
and only if it is L+-covariant on some schlicht subdomain of D.

The very weak requirement imposed by Definition 5 will soon be shown to
be equivalent, when M is holomorphic, to a very strong requirement. For this
purpose we introduce

Definition 6. An L+-invariant structure S of a domain D over Kl is a set of
L+-invariant sheets whose union is D. A sheet is a schlicht domain that cannot
be properly contained in any schlicht domain. An L+-invariant schlicht domain
U is one that satisfies L+ΦU = ΦU , i.e., its image in Kl is a union of L+ orbits.
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The intersection of any two sheets U1 and U2 of S is L+-invariant; for
if P is a point of U1 ∩ U2 there must be an L+-invariant, connected, open
neighborhood of P contained in U1 that lies over an L+-invariant neighborhood
of P contained in U2. These two schlicht domains both contain P and hence
are identical, according to an earlier remark. Hence the entire orbit L+ΦP is
in Φ (U1 ∩ U2)).

Definition 7. Let M be a spinor function defined on a domain D over Kl.
Then M is completely L+-covariant on D if and only if D has an L+-invariant
structure S and M is L+-covariant on the schlicht domain U for every sheet U
in S.

Stapp has proved [4]

Lemma 3. If M is L+-covariant in a domain D ⊂ R(M) over Kl, then M is
completely L+-covariant on R(M).

Actually, Stapp’s result is somewhat stronger, requiring only L↑
+ covariance

on a domain in R(M), which can even be real. This ensures that the scattering
functions of analytic S-matrix theory are completely L+-covariant on their
domains of regularity, as indicated in Sec. 2.

Because of Lemma 3 and certain special properties of domains with l = 3,
it turns out that the problem of decomposing M(J) on locally schlicht do-
mains can be solved completely by considering separately each sheet in the
L+-invariant structure. We now develop the result that makes this possible.

First, it will be remarked that the orbit L+P of a point P in a domain with
an L+-invariant structure S is well defined; it is the inverse image of the L+

orbit of K = ΦP with respect to any of the sheets in S that contain P . By
a previous remark on the L+ invariance of the intersection of sheets in S, all
such orbits coincide.

Definition 8. Let M be L+-covariant in a domain D ⊂ R(M) over Kl. Then
D is said to be weakly I+-saturated in R(M) if and only if every r 6= n, L+

orbit of a point in D has at least one r = n limit point10 in R(M).

The terminology “I+-saturated”, chosen to conform with that of Hepp [9],
is associated with the map I+ :Kl → Ml+. Here Ml+ is the space of scalar and
pseudoscalar invariants, ki ·kj and ki1 ·[ ki2 , ki3 , ki4 ], that correspond to points
of Kl. The corresponding map for the group L is I :Kl → Ml, where Ml is the
space of scalar invariants. For l = 3, the maps I+ and I are the same, because
all pseudoscalars vanish. The following is essentially Hepp’s definition:

Definition 9. A subset S of a schlicht domain over Kl is said to be I+-saturated
if and only if I−1

+ [I+(ΦS] = ΦS.

For domains with an L+-invariant structure in spaces with l = 3, the fol-
lowing lemma is true:

10The term “limit point” as used in this paper does not apply to points at infinity.
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Lemma 4. Let M be L+-covariant in D ⊂ R(M) over K3, and let D be
weakly I+-saturated in R(M). Then for every U in the L+-invariant structure
S there is an I+-saturated domain V such that D ∩ U ⊂ V ⊂ U .

For the proof we require another lemma, originally proved by Bargmann, Hall,
and Wightman for the map I and for n = r points.11

Lemma 5. The I+ image of a neighborhood of a point K of K3 is a neighbor-
hood of I+(K) in M3+; i.e., the map I+ :K3 → M3+ is open.

The proof of Lemma 5 is given in Appendix A4. The fact that the lemma is
not restricted to n = r points is a rather special property of l = 3 spaces.

To prove Lemma 4, let U be an element of S that has points in common
with D. (If D ∩ U is empty, there is nothing to prove.) Since U is open and
U = L+U , the domain L+(D ∩ U) is already saturated with respect to n = r
points, because the L+ image of a neighborhood of an n = r point contains, by
virtue of Lemmas 1 and 2, all n = r points with the same invariants, hence limit
points of all n 6= r points with these invariants, and hence, by the openness and
L+ invariance, all points with these invariants. There remains the question of
whether L+(D∩U) is saturated with respect to n 6= r points. Since r ≤ l = 3,
this can only occur for r = 1 or 2.

Let P be an n 6= r point of D ∩ U . Because D is weakly I+-saturated in
R, there is an n = r limit point P0 of L+P in R. Clearly P0 is at least on the
boundary of the L+-invariant sheet U . Let U0 be a sheet of S that contains
P0. Then U ∩ U0 is nonempty, and from the discussion following Definition 6
it is a schlicht, L+-invariant, open set. Thus U ∩ U0 contains L+P .

One can now construct a neighborhood N0 of P0 with the following prop-
erties:

(i) N0 ⊂ U0 ;

(ii) N0 = L+N0 ;

(iii) For every P ′ in N0 there is a P ′′ in D∩U such that I+(ΦP
′) = I+(ΦP

′′) ;

(iv) Every r = 3 point of N0 is also in L+(D ∩ U).

It is trivial to find a neighborhood N ′
0 of P0 satisfying (i) and (ii) be-

cause U0 is open and L+-invariant. To satisfy (iii), choose a neighborhood
N ⊂ D ∩ U of P such that L+N is contained in U ∩ U0. This is always
possible, because L+P is in U ∩ U0, and because U ∩ U0 is L+-invariant
and open. Then because of Lemma 5 and the continuity of the map I+,
(Φ/U0)

−1
{
ΦN ′

0 ∩ I−1
+ [I+(ΦN)]

}
≡ N0 is a neighborhood of P0 contained in

U0. From the fact that I+(A ∩B) ⊂ I+(A) ∩ I+(B) ⊂ I+(A), it follows that
I+(ΦN0) ⊂ I+(ΦN). Thus (iii) is satisfied because N ⊂ D ∩ U .

11Cf. [8, Lemma 3]. The form of the statement here, when restricted to n = r points, is
slightly different, but the proof is not affected.
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Property (iv) is already satisfied by N0. This follows because for ev-
ery r = 3 point P ′ of N0 there is a corresponding point P ′′ of N with
I+(ΦP

′) = I+(ΦP
′′). By Lemmas 1 and 2, ΦP ′ and ΦP ′′ are connected by

a transformation in L+. Now by construction both N and N0 are contained
in the L+-invariant sheet U0, and hence P ′ and P ′′ are on the same L+ orbit.
But P ′′ is in N ⊂ D ∩ U , and hence P ′ is in L+(D ∩ U).

It will now be shown that the domain V obtained by adding to L+(D ∩U)
all possible neighborhoods N0 constructed in this way is a schlicht domain
contained in U .

First we shall show that V is schlicht. If V is not schlicht, then it must con-
tain at least two distinct pointsQ0 andQ′

0 that lie over each other, ΦQ0 = ΦQ′
0.

Since R is a Hausdorff space, there must then be two disjoint neighborhoods
W0 and W ′

0 of Q0 and Q′
0, respectively, contained in V . Because R is locally

schlicht, one can choose W0 and W ′
0 to be schlicht and to lie over each other.

But if W0 and W ′
0 lie over each other, then any r = 3 points must be common

to both, since all r = 3 points of V are in the schlicht domain L+(D ∩ U).
Now every schlicht open set over K3 contains r = 3 points, because G(K) is
holomorphic everywhere on K3; and if it vanishes for any open set it vanishes
everywhere. Thus W0 and W ′

0 cannot be disjoint, which is a contradiction.
Therefore V is schlicht.

Moreover, the same argument shows that no point of V −U can lie over U .
But U is a sheet, i.e., a maximal schlicht domain. Thus V is contained in U ,
for otherwise U ∪ V would be a schlicht domain properly containing U .

By construction, V is L+-invariant. Moreover, for every n 6= r point of
V there is by (iii) a point of D ∩ U with the same invariants, and hence, by
construction, an n = r point of V with the same invariants. Because V is
open, it follows by the same argument used at the beginning of the proof that
ΦV = I−1

+ [I+(ΦV )]. Thus Lemma 4 is proved.

Because V is contained in U one can write V = (Φ/U)−1I−1
+ [I+(ΦV )]. Be-

cause I+(ΦV ) = I+[Φ(D∩U)], we also have V = (Φ/U)−1I−1
+ {I+[Φ(D ∩ U)]}.

This I+-saturated domain V ⊂ U we shall denote simply by I−1
+ ◦ I+(D ∩ U);

it is the “I+ saturation” of D ∩ U .

6.3 Condition for the Absence of Kinematical Singularities

Hall and Wightman have proved, among other things, that an L-invariant
function f holomorphic on the future tube has the form f = f ′ ◦ I, with f ′

holomorphic on the I image of the future tube. A partial generalization of their
result, for l = 3 and the group L+, is needed for the proof of our basic theorem
on kinematical singularities. L+ invariance is defined by setting ΛS = 1 in
Definitions 4, 5, and 7.

Lemma 6. Let f be L+-invariant in a domain D ⊂ R(f) over K3. Then for
every sheet U in the L+-invariant structure of R(f),

f/D ∩ U = f ′ ◦ I+/D ∩ U , (6.6)
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with f ′ holomorphic on I+(D ∩ U),12 if and only if D is weakly I+-saturated
in R(f).

That the condition of weak I+ saturation is necessary is trivial, because I+ is
a holomorphic map and (6.6) defines an invariant analytic continuation of f
onto the domain I−1

+ ◦ I+(D ∩U). To show that the condition is sufficient, we
note that Hepp has independently proved the result for schlicht, I+-saturated
domains [9]. Lemma 6 then follows by applying Lemma 4 and Lemma 3.13

The basic result on the absence of kinematical singularities to be proved in
the remaining sections is the following:

Theorem 1. Let M(J) be L+-covariant in a domain D ⊂ R[M(J)] over K3.
Then M(J) has a unique decomposition on D,

M(J) =

J∑
i=0

b
(+)
i Y (+)(i : J) +

J−1∑
i=0

b
(−)
i Y (−)(i : J) , (6.7a)

with b
(±)
i holomorphic on D, where for every U in the L+-invariant structure

of R[M(J)],

b
(±)
i /D ∩ U = b

′(±)
i ◦ I+/D ∩ U , (6.7b)

with b
′(±)
i holomorphic on I+(D ∩ U), if and only if D is weakly I+-saturated

in R[M(J)].

Again, that weak I+ saturation is a necessary condition is trivial, because (6.7b)
with (6.7a) defines a covariant analytic continuation onto V = I−1

+ ◦I+(D∩U),

the Y (±)(i : J) being polynomials.
As for the converse, note that Lemma 4 implies that D ∩ U ⊂ V ⊂ U , and

that Lemma 3 implies that M(J) has a covariant analytic continuation onto V .
It is enough to prove the result for each I+-saturated, schlicht domain V . The

fact that the b
(±)
i in (6.7a) are uniquely defined and holomorphic on D follows

at once from the existence of a unique, holomorphic decomposition on each
V and from the fact that these schlicht domains cover D, and hence overlap.
The uniqueness, of course, follows at once from the linear independence of the
Y (±)(i : J) at r = 3 points.

Without loss of generality, for the remainder of the proof we write M(J)
for the analytic continuation of M(J), restricted to V . The details of the proof
are given in the following sections. Here we outline the basic steps.

12The set Ml+, which contains I+(D ∩ U), is an algebraic variety (cf. [8, 9]), and for
the general case, one would have to define holomorphy for functions on this variety just as
was necessary for functions on Kl. However, M3+ is an ordinary Euclidean space of two
complex dimensions, characterized for example by the Mandelstam variables s, t, and u, with
s+ t+ u =

∑
i m

2
i , so that no generalization of holomorphy is required.

13One can also prove this by following rather directly the original methods of Bargmann,
Hall, and Wightman. See Sec. 6.7 for remarks about the case of arbitrary l.
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First, we show that M(J) can be written as the sum of two functions holo-
morphic on V , M±(J), equivalent in a sense to a tensor and a pseudotensor,
which can be expanded, respectively, in terms of Y (±)(i : J). The discussion in

Sec. 5 implies that the scalar amplitudes b
(±)
i in this expansion are holomor-

phic on V except possibly for poles of the form G(K)−J , at points with r < 3.
For points with r = 2 and n = 3, we show that the Y (+)(i : J) are linearly
independent, and so are the Y (−)(i : J), although the two sets are not inde-

pendent of each other. From these facts, we show that the b
(±)
i are continuous

at such points; and with the help of Lemmas 5 and 6 we show that they are
also single-valued functions of the invariants at such points. This extends the
definition of the scalar amplitudes to all r = n = 2 points, and by means of
Lemmas 5 and 6 we are then able to show that they are holomorphic functions
of the invariants for all except r = 1 points. The r = 1 points are shown to be
isolated in the space of invariants, and they are easily handled by a standard
theorem on analytic continuation.

6.4 Tensor-Pseudotensor Decomposition

Because V = I−1
+ ◦ I+(D ∩ U) is I+-saturated, and because of Lemma 2, if

K is in V then so is K̃ ≡
(
k̃1, k̃2, k̃3

)
, where k̃µ ≡ kµ. Then any tensor f

under L+ that is holomorphic on V can be decomposed into unique tensor and
pseudotensor parts under L, both holomorphic on V , namely,

f±(K) ≡ 1
2

[
f(K)± f̃(K̃)

]
, f̃ (µ) ≡ f(µ) . (6.8)

From L+ covariance and simple algebra, one finds that

Λf+(K) = f+(ΛK) , Λf−(K) = f−(ΛK) det(Λ) , (6.9)

for any Λ in L.
By means of (5.2), M(J) is converted into a symmetric and traceless tensor

f in the space T (J : k3). Writing

M±(J) ≡ f± ·ρ(J : k3) , (6.10)

with f± defined by (6.8), one has

M(J) = M+(J) +M−(J) . (6.11)

It is straightforward to see that, along with f , f± are both symmetric and
traceless and that both are in T (J : k3). Thus, the projection operator S(J : k3),
defined in (4.13), acts as the identity on f±, and one has

f± = M±(J)α ρ(J : k3)
α m3

−2J . (6.12)

The M±(J) can be expanded individually by (5.21). The coefficients in
these expansions are scalars under L, because of Lemma 6, and the fact that
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no pseudoscalars can be formed from the three momentum vectors. It is shown
in Appendix A2 that the projection operator S(J : k3) is a tensor under L.
Thus, the expressions

f±(i : J) ≡ Y (±)(i : J)α ρ(J : k3)
α m3

−2J (6.13)

are, respectively, tensors and pseudotensors under L, from (5.20). The expan-
sions therefore take the form

M±(J) =
∑
i

b
(±)
i Y (±)(i : J) , i = 0, 1, . . . , J − ( 12 ∓ 1

2 ) . (6.14)

6.5 Independence of the Y (±)(i : J)

The final ingredient for the proof of Theorem 1 is

Lemma 7. If K is an n = 3 point, the corresponding spinors (for fixed J)
Y (+)(i : J) are a linearly independent set, and so are the Y (−)(i : J).

From the construction in Sec. 5, this lemma is trivial if r = n = 3, when all
of the Y (±)(i : J) are linearly independent. We are interested here in the case
r = 2 and n = 3. Then the Y (+) are not independent of the Y (−), because
when k3 depends, for example, on ω+, as in (6.2a), the vector w occurring in
Y (−) is proportional to ω+, and is thus not linearly independent of the ki. For
the proof of Lemma 7, however, it is just as easy to consider all n = 3 points
at once, and not just those with r = 2.

Let the Y (+) be considered first. If there exist complex numbers ci such
that ∑

i

ci Y
(+)(i : J) = 0 , (6.15)

then ∑
i

ci Y
(+)(i : J)α ρ(µ) (J : k3)

α
m−2J

3

=
∑
i

ci k
ν1
1 · · · kνi

1 k
νi+1

2 · · · kνJ
2 S(ν)(µ)(J : k3)

= 0 .

(6.16)

By a transformation in L+, k3 can be put into its rest frame; and then only
the three-vector part of any vector contributes when contracted with S(J : k3),
because of (4.12). In such a frame, we can just as well let µ and ν represent
three-vector indices. Then contracting every µ index of S(J : k3) in (6.16) with
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the same three-vector x, we get

S(ν)
(µ)(J : k3) x

µ1 · · ·xµJ = xν1 · · ·xνJ

+ η1 x·x
∑
P (i)

δνi1
νi2 xνi3 · · ·xνiJ

+ η2 (x·x)2
∑
P (i)

δνi1
νi2 δνi3

νi4 xνi5 · · ·xνiJ

+ · · · ,

(6.17)

where the ηi are numerical constants, δµν is the three-dimensional Kronecker δ,
(i1, . . . , iJ) is a permutation of (1, . . . , J), and the summations are over all such
permutations. Equation (6.17) is proved by noting that, in the rest frame of k3,
S(J : k3) is the projection operator for symmetric and traceless tensors under
the group O+(3, C).

14 The right-hand side is then obtained by consulting any
standard reference on the decomposition of a tensor into irreducible parts.15

Defining χ1 = k1 ·x, χ2 = k2 ·x, χ3 =
√
x·x, we get from (6.16), after

contracting with x,

0 =
∑
i

ci
[
χ1

i χ2
J−i + χ3

2 PJ−2
i (χ1, χ2)

+ χ3
4 PJ−4

i (χ1, χ2) + · · ·
]
,

(6.18)

where PN
i (χ1, χ2) is a homogeneous polynomial of degree N in χ1 and χ2. By

hypothesis, k1 and k2 are independent in the rest frame of k3; and therefore the
variables χi are independent as x varies. The polynomial (6.18) is identically
zero, and hence the coefficient of each distinct term must vanish. Therefore,
each ci vanishes, and the Y (+)(i : J) are linearly independent.

The only difference when the Y (−) are considered is that one has a polyno-
mial of the form

0 =
∑
i

ci
[
χ1

i χ2
J−1−i d+ χ3

2 PJ−3
i (χ1, χ2) d

+ χ3
4 PJ−5

i (χ1, χ2) d+ · · ·
]
,

(6.19)

where

d ≡ k1×k2 · x =
√
G(k1,k2,x) . (6.20)

Considered as a function of the χi, the region where d 6= 0 is an open set,
and on that open set (6.19) can be divided by d. The resulting equation is
therefore valid for all χi. Again, the ci vanish and the Y (−)(i : J) are linearly
independent.

14Cf. Appendix A2.
15Cf., for the real orthogonal groups, [17, Chap. 10, Secs. 5-7]. The procedure is the same

for the complex groups.
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6.6 Completion of the Proof

We have seen that the scalar amplitudes b
(±)
i in (5.21), and hence in (6.14),

are holomorphic on V except for the possibility of poles, G(K)−J . Because V
is I+-saturated, Lemma 6 implies that

b
(±)
i = b

′(±)
i ◦ I+ , (6.21)

where the b
′(±)
i are at least meromorphic on I+(V ), the only possible poles

being those just mentioned, but with G considered as a function of invariants.

Thus the b
′(±)
i in (6.21) are well defined, and regular for r = 3 points in V .

If G vanishes, its rank is one or two. The rank two case will be considered
first. Let V ′ represent the domain obtained by deleting all r = 1 points from
V . V ′ is a domain because every point of rank r has a neighborhood consisting
entirely of points of rank r or greater. V ′ is clearly also I+-saturated. Let
V ′′ denote the domain obtained by deleting all n = 2 points from V ′.16 Then
I+(V

′) = I+(V
′′), because for every n = r = 2 point K ′ of V ′ there is an n = 3

point K ′′ of V ′′ with I+(K
′) = I+(K

′′).
Lemma 7 implies that the Y (+)(i : J) are a linearly independent set on V ′′,

and so are the Y (−)(i : J). The discussion of Sec. 6.4 implies that M±(J) are
each holomorphic on V , and that at least for r = 3 points of V ′′ they can be
expanded respectively in terms of Y (±)(i : J). It will now be shown that the

coefficients b
(±)
i of this expansion have a continuous extension to all of V ′′,

which is then unique because the r = 3 points of V ′′ are dense in V ′′.
Consider for the moment the complex scalar product in the (2J + 1)-

dimensional vector space, e.g.,

〈
Y (+)(i : J), M+(J)

〉
≡

J∑
α=−J

Y (+)(i : J)α
∗ M+(J)α . (6.22)

At any point of V ′′ one can compute the projections P± M±(J) of M±(J),
respectively, onto the subspaces spanned by Y (±)(i : J),

P± M±(J) =
∑
i

c
(±)
i Y (±)(i : J) . (6.23)

The coefficients c
(±)
i are uniquely determined by solving〈

Y (±)(j : J), M±(J)
〉
=
∑
i

c
(±)
i

〈
Y (±)(j : J), Y (±)(i : J)

〉
. (6.24)

The determinant of either of the (±) matrices on the right side of (6.24) does
not vanish anywhere on V ′′ because of the independence of the Y (±)(i : J),

respectively. Because M±(J) are continuous on V ′′, the c
(±)
i are continuous,

16Again V ′′ is a domain because every point with given n has a neighborhood containing
no points of smaller n.
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and because of the uniqueness of the decomposition, c
(±)
i = b

(±)
i at all r = 3

points. Thus the b
(±)
i have a continuous extension onto V ′′.

Moreover, they are functions of invariants; i.e., they can be written in the
form (6.21), everywhere on V ′′. To see this, let K and K ′ be two r = 2 points
of V ′′ such that I+(K) = I+(K

′). Then Lemma 5 and the fact that every
neighborhood contains r = 3 points imply that there are sequences Km and
K ′

m of r = 3 points converging respectively to K and K ′ such that for all m,

I+(Km) = I+(K
′
m). The continuity of the b

(±)
i on V ′′ and the validity of (6.21)

at r = 3 points yield the result.

Applying Lemma 5 again, one sees that the b
′(±)
i are continuous on the

domain I+(V
′) = I+(V

′′). The b
′(±)
i are holomorphic on I+(V

′) except at
the zeroes of G, and they are continuous there. Because of a basic theorem

on removable singularities [18, p. 173], the b
′(±)
i are therefore holomorphic on

I+(V
′).

Only the r = 1 points remain. These points satisfy

ki ·kj = ±mimj , (6.25)

and thus they are isolated in the domain I+(V ). It is a consequence of a stan-
dard theorem that a function of more than one complex variable holomorphic
on a domain always has an analytic continuation to isolated points of the do-

main [18, p. 71]. Thus, the b
′(±)
i have a continuation onto I+(V ), and (6.21)

defines holomorphic functions on V .
Equation (6.7a) is therefore a holomorphic expansion without the kinemat-

ical singularities G−J , and Theorem 1 is proved.

6.7 Alternative Methods of Proof and an Alternative
Statement of Theorem 1

In the proof of Theorem 1, strong use was made of Stapp’s result, which, forti-
fied by Lemma 4, allowed the problem to be reduced to one of schlicht domains.
This served as a device that simplified the discussion considerably, but it is not
essential. In an earlier version of the proof that did not use Stapp’s Theo-
rem, it was first necessary to construct a generalization of the map I+, which
relates weakly I+-saturated domains over Kl to corresponding domains over
Ml+, and to show that the generalized map is open for n = r points. This is
rather straightforward to do, given the proof of Bargmann, Hall, and Wight-
man for the map I on schlicht domains [8]. Then the partial generalization
of the Hall-Wightman Theorem (Lemma 6) for weakly I+-saturated domains
over C4(l+1) or over Kl (for arbitrary l) can be proved directly, essentially by
a detailed inspection of Hall and Wightman’s original proof.17

17The statement of the result in Lemma 6 is somewhat special due to the use of Lemma 4.
In the general statement one removes the restriction that Eq. (6.6) must hold for every
L+-invariant sheet and uses instead the generalized map I+. Hepp has given an elegant
abstract proof for saturated domains that is valid for all of the classical complex groups, to
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The delicate point is then to establish that the M functions over K3 have a
decomposition into unique tensor and pseudotensor parts (this is not globally
true for arbitrary l without additional assumptions), a result that follows at
once in the present version from the fact that our domain can be covered by
schlicht, saturated domains where M is L+-covariant and holomorphic. To
give a direct proof without Stapp’s Theorem requires a fairly sophisticated
local property of L+ orbits, namely, that for any neighborhood N of a point
K0, there is a neighborhood N ′ of K0 contained in N such that for any two
points K and K ′ in N ′, with K ′ = ΛK and Λ in L+, there is a connected arc
in L+ from the identity to Λ whose image in the L+ orbit of K and K ′ lies in
N . The author has proved this result for neighborhoods of r ≥ 2 points (which
is actually sufficient for the application being discussed here), but the proof for
the general case, achieved by Stapp [4], is difficult. In fact, this result is the
key ingredient in the proof of Stapp’s Theorem.18

Having established these points, the proof of Theorem 1 proceeds as before.
The discussion is at least superficially more complicated. It amounts essen-
tially to proving that part of Stapp’s Theorem that is really needed. No real
simplification results from permitting all domains to be locally schlicht and not
insisting that the problem be reduced to schlicht domains, unless one assumes
at the outset that the domain can be covered by saturated domains where M
is holomorphic and L+-covariant. Given Stapp’s Theorem, one can show that
such a covering always exists for domains that are weakly I+-saturated in the
domain of regularity; and Lemma 4 says something stronger for the case l = 3,
namely, that for any covering by L+-invariant sheets, there are subdomains of
the sheets that already constitute an I+-saturated covering.

That part of Hepp’s work [9] that corresponds to the case of four four-
vectors on the mass shell studied here is a proof for I+-saturated domains, and
for irreducible representations Dj1,j2 with |j1−j2| ≤ 1. His method is first to
prove the existence of a local holomorphic decomposition for I+-saturated do-
mains in the space of l four-vectors (on or off the mass shell), and arbitrary j1
and j2, and then for the special case l = 3 to use the linear independence proper-
ties of his spanning set of polynomials to show that there is a local holomorphic
decomposition that is also unique, and hence global, when |j1−j2| ≤ 1.19

By way of contrast, our method is to first construct a polynomial basis with
convenient linear independence properties, and then to use these properties

appear in Math. Annalen. He has shown, moreover, that the spaces of invariants are normal
algebraic varieties, so that one has holomorphy in the stronger sense described in footnote 8.

18Post-thesis note: The assertion about “local L+-connectedness” for r ≥ 2 points is
correct; but only a few months after this was written, R. Jost constructed a counterexam-
ple for n = 2, r = 1 points. R. Seiler characterized the points for which it is true, and
P. Minkowski and D. N. Williams extended the proof of Stapp’s Theorem to the remaining
points [19].

19For functions restricted to the mass shell, one can use the “metric” spinors in (3.1) to
convert dotted indices to undotted indices and back again. By using such manipulations with
the Clebsch-Gordan series one can eventually expand, without introducing singularities, a
holomorphic function covariant under any representation in terms of holomorphic functions
covariant under representations of the form Dj,j . Thus, on the mass shell, Hepp’s condition
|j1−j2| ≤ 1 for l = 3 is not a restriction in principle.
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with the generalized Hall-Wightman Theorem to get the result.
Our principal result can be stated rather simply by defining a map J+ :Kl →

Ml+, which is the same as I+ for n = r points, but which maps n 6= r points
into the empty set. Thus J+ “sees” only n = r points. By virtue of Lemmas 1
and 2, there is only one n = r, L+ orbit for each point of Ml+. Thus, in
a way, J+ is a one-to-one correspondence between orbits and invariants. An
examination of Hall and Wightman’s proof of the openness of the map I for
n = r points [8, Lemma 3] shows that in every neighborhood of an n = r point
one can find a neighborhood of the point which contains, for every n 6= r point,
an n = r point with the same I (and hence I+) image. Thus every neighborhood
of an n = r point contains a neighborhood N of the point such that L+N is
I+-saturated. It has already been mentioned that the map I+ :Kl → Ml+ is
open for n = r points, and thus it follows that the J+ image of an open set
is also open, and from continuity that the I−1

+ ◦ J+ image of an open set is

open. Thus, for any schlicht domain U , I−1
+ ◦ J+(U) is a saturated domain. It

is obtained from L+U by deleting all n 6= r L+ orbits whose limit points are
not in L+U .

This procedure of deletion is well-defined even for nonschlicht domains D.
Hence, although in this paper we have defined the maps I+ and J+ only
for schlicht domains, we shall use the symbol I−1

+ ◦ J+(D) to represent the
“I+-saturated part” of L+D. From the remarks just made, the I+-saturated
part of L+D is a domain whenever D is a domain. Then an immediate conse-
quence of Theorem 1 is the following:

Theorem 2. Let M(J) be L+-covariant in a domain D ⊂ R[M(J)] over K3.

Then the decomposition (6.7a) holds with unique invariant amplitudes b
(±)
i

defined and holomorphic on I−1
+ ◦ J+(D), and for any schlicht domain U ⊂ D,

these amplitudes have the form b
(±)
i = b

′(±)
i ◦ J+, with the b

′(±)
i holomorphic

on J+(U). In particular, one can let D = R[M(J)], and one can let U be any
sheet in the L+-invariant structure.

This theorem is equivalent to Theorem 1, when taken together with Lem-
ma 4. It can be summarized by the statement that the invariant amplitudes
are uniquely defined and holomorphic over the J+ image of any domain (over
K3) on which M(J) is regular.

33



7 Conclusion

Equations (3.9) and (6.7a) provide a global decomposition of the S matrix for
two-particle reactions that is free of kinematical singularities for any weakly
I+-saturated domain on which the M functions are holomorphic. According to
Stapp’s postulate of minimal analyticity [3], for any scattering process there is
a sheet, called the physical sheet, contained in the domain of regularity of M ,
such that all physical points are on the boundary of the sheet, and such that the
boundary is defined by equations in the scalar invariants. This physical sheet
is therefore I+-saturated, and the decomposition theorem applies. The postu-
late of maximal analyticity [2, 3] says that the M functions are holomorphic
everywhere except for those singularities demanded by unitarity. Although it
is not as yet clear precisely how this postulate is to be formulated, one can take
as a provisional interpretation that it shall imply that singularities of the M
functions can occur only at points determined by the Landau equations [3,20].
Again, these are equations involving scalar invariants. Thus, the domain ob-
tained by omitting the Landau singularities is I+-saturated, and the theorem
again applies.

It is possible that the domain of regularity of an M function contains some,
but not all, of the points corresponding to a certain solution of the Landau
equations; for these equations do not guarantee the existence of a singularity.
If this were to occur then the domain of regularity would not be saturated.
At least for dispersion relations in the space of scalar invariants, however,
this seems to be of little practical importance. There, the singularities in the
scalar invariants are the important consideration, and the fact that some of the
corresponding points in the vector variables might be regular is irrelevant.

34



A1 Spinor Calculus for Representations of the Complex
Lorentz Group

In this appendix are collected the basic relationships of a direct generalization
of the ordinary two-component spinor calculus [21,22] to a calculus for arbitrary
finite-dimensinal representations of the proper, homogeneous, complex Lorentz
group, L+. This generalized spinor calculus was used in a previous work [1],
is useful in the present work, and appears to be of value in many problems
involving higher spins. The development is essentially notational, and serves
to define the quantities used in the text.

A1.1 Representations of L+

The complex homogeneous Lorentz group, L, is the group of all complex four-
by-four matrices satisfying the equation

ΛT GΛ = G , (A1.1)

where

G =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The proper complex homogeneous Lorentz group, L+, is that part of L con-
nected to the identity, the set of unimodular four-by-four matrices satisfying
(A1.1).

Representations of the two-by-two unimodular group, SL(2, C), can be used
for the construction of a spinor calculus for L+, making use of the well-known
two-to-one homomorphism between SL(2, C)×SL(2,C) and L+. This homo-
morphism can be expressed in terms of the two-by-two Pauli matrices

σµ = (I,σ) , σ̃µ ≡ σµ = (I,−σ) , (A1.2)

where

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A1.3)

They satisfy the transformation law

A σµ BT ≡ Λν
µ(A,B) σν (A1.4)

where A and B are arbitrary two-by-two unimodular matrices, and the Λ(A,B)
so defined are the corresponding complex Lorentz transformations. By using
the orthogonality relation

1
2 Tr (σµ σ̃ν) = gµν , (A1.5)
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the correspondence can be written in the equivalent form

Λµν(A,B) = 1
2 Tr

(
σ̃µ Aσν B

T
)
. (A1.6)

It is clear from (A1.4) or (A1.6) that Λ(A,B) = Λ(−A,−B).
Two-component spinor indices (with values ± 1

2 ) transforming according to
the two-by-two unimodular transformation A are customarily written as lower
undotted, those transforming by B as lower dotted, and those transforming
by the contragredient transformations A−1T and B−1T , respectively, as upper
undotted and upper dotted. The summation convention is used for the invari-
ant contraction of upper with lower indices of the same type. The raising and

lowering metric spinors are C−1 αβ = C−1 α̇β̇ , and Cαβ = Cα̇β̇ , where

C−1 = −C =

(
0 1
−1 0

)
= i σ2 . (A1.7)

To raise or lower an index one always contracts with the right index of C−1 or
C, respectively.20 These operations give quantities having the correct trans-
formation law because of the identity for an arbitrary two-by-two matrix, M ,

C−1 MT C = M−1 det(M) . (A1.8)

According to these conventions and (A1.4), the matrix elements of σµ should
be written σµ αβ̇ . Using (A1.8) the matrix σ̃µ can be considered to be defined
by the relation

σ̃µ = C−1 σT
µ C ; (A1.9)

and hence the matrix elements of σ̃µ should be written σ̃ α̇β
µ , corresponding to

the transformation law

B−1T σ̃µ A−1 = Λν
µ(A,B) σ̃ν . (A1.10)

The σµ and σ̃µ satisfy also a second orthogonality relation,

1
2 σµ αβ̇ σ̃µ β̇′α′

= δα
α′

δβ̇
β̇′
. (A1.11)

For higher spins, a certain class of irreducible representations of SL(2, C)×
SL(2,C) will be defined by their action on the space of homogeneous polyno-
mials [11]

X (j1, j2)αβ̇ =

(
ξ 1

2

)j1+α (
ξ− 1

2

)j1−α (
η 1̇

2

)j2+β̇ (
η− 1̇

2

)j2−β̇

[
(j1 + α)! (j1 − α)!

(
j2 + β̇

)
!
(
j2 − β̇

)
!
] , (A1.12)

20Alternatively, an index can be lowered by contracting with the left index of C−1.
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where α = j1, j1 − 1, . . . ,−j1 , β̇ = j2, j2 − 1, . . . ,−j2 , and where ξ and η are
two-component spinors transforming according to

ξ′ = Aξ , η′ = B η . (A1.13)

The (2j1+1)(2j2+1)-dimensional irreducible representations, Dj1,j2 , where j1
and j2 are nonnegative half integers, are defined by the equation

X ′ (j1, j2)α′β̇′ = Dj1,j2(A,B)α′β̇′
αβ̇ X (j1, j2)αβ̇ , (A1.14)

where the left-hand side is obtained by substituting (A1.13) into (A1.12).
Equations (A1.12) and (A1.14) lead to the direct product decomposition

Dj1,j2(A,B) = Dj1,0(A) ⊗ Dj2,0(B) . (A1.15)

The irreducible representations of the proper, orthochronous, homogeneous
Lorentz group, L↑

+, are obtained by setting B = A∗. Henceforth, the notation

Dj(A) ≡ Dj,0(A) (A1.16)

is used. This notation should not be confused with the standard notation for
representations of the rotation group, Dj , which are unitary. It is true, how-
ever, that for unitary-unimodular two-by-two matrices, U , which correspond
to rotations, Dj(U) = Dj(U).

The calculus for arbitrary spins is constructed by close analogy with the
spin- 12 case. The spinor indices have values j, j−1, . . . ,−j. Indices transforming

by Dj(A) and Dj(B) are written as lower undotted and dotted, respectively,
and indices transforming by the contragredient transformations Dj(A)−1T and
Dj(B)−1T as upper undotted and dotted, respectively. Contraction of upper
and lower indices of the same type is clearly an invariant operation. Equa-
tion (A1.8) generalizes to

Dj(C−1)Dj(A)T Dj(C) = Dj(A)−1, (A1.17)

where the group property of the representation matrices, the fact that A is
unimodular, and the identity Dj(AT) = Dj(A)T have been used. Thus one can
define raising and lowering metric spinors

[ j ]αβ = [ j ]α̇β̇ = Dj(C−1)αβ = (−1)j−α δα
−β ,

{j}αβ = {j}α̇β̇ = Dj(C)αβ = (−1)j+α δα
−β ,

[ j ]αβ = (−1)2j {j}αβ = {j}βα ,

(A1.18)

where one contracts on the right index of [ j ] for raising or of {j} for lower-
ing. These are just the familiar unitary matrices dj(±π), representing three-
dimensional rotations by ∓π about the y axis [23, p. 59].

37



The types of the spinor indices of the matrices Djare taken to be the same as
those of their arguments, except that they are of course (2j+1)-valued instead
of 2-valued.

One notes in passing that

ξα ηα = (−1)2j ξα ηα. (A1.19)

The irreducible representations of L+ discussed so far are characterized by
two half integers. The general finite-dimensional irreducible representations of
L+ are characterized by four half integers, two for each occurrence of SL(2, C)
in the direct product, SL(2, C)×SL(2,C). This follows because all irreducible
representations of a group that is the direct product of two groups are obtained
by taking direct products of irreducible representations of the two component
groups. In this case they can be written

Dj1,j2,j3,j4(A,B) = Dj1(A) ⊗ Dj2(B) ⊗ Dj3(A∗) ⊗ Dj4(B∗) . (A1.20)

The corresponding spinor calculus has eight index types rather than the four
already discussed. Although the notation becomes cumbersome, the general-
ization is straightforward.

Those representations that depend on A∗ or B∗, however, require no special
consideration in analytic S-matrix theory or in field theory. This is because co-
variance under L+ in physical theories is generally a consequence of covariance
under L↑

+ and analytic properties [4, 24, 25]. Only representations depending
on A and B arise under those circumstances. Of course, one may have occa-
sion to consider the complex conjugate functions, which transform according to
the complex conjugate representations; but this situation is trivially handled
without complicating the spinor calculus with extra index types.

The total number of incoming and outgoing fermions in any scattering
process is even. The sum of the spins of the incoming and outgoing particles is
therefore an integer, and the corresponding M function transforms according
to a tensorial representation of L+. The tensorial representations are obtained
by combining Clebsh-Gordan (C-G) coefficients with tensor products of terms
of the form A⊗A, A⊗B, and B⊗B. Because they correspond to tensorial
representations, these quantities are polynomials in Λ. The explicit dependence
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is given by21

Aα
β Aα′

β′
= 1

8 Λµν(A,B) Λµ′ν′(A,B)

×
(
σµ σ̃µ′

{ 1
2}
)
αα′

(
{ 1
2}σ

ν σ̃ν′
)ββ′

,

Bα̇
β̇ Bα̇′

β̇′
= 1

8 Λµν(A,B) Λµ′ν′(A,B)

×
(
{ 1
2} σ̃

µ σµ′
)
α̇α̇′

(
σ̃ν σν′

{ 1
2}
)β̇β̇′

,

Aα
β Bα̇′

β̇′
= 1

2 Λµν(A,B) σµ
αα̇′ σ̃

ν β̇′β̇ .

(A1.21)

A1.2 C-G Coefficients as Isotropic Spinors

The identity

δjj′ D
j(A)α

α′
=
∑

ββ′γγ′

C (j1j2j;βγα) C (j1j2j
′;β′γ′α′)

×Dj1(A)β
β′

Dj2(A)γ
γ′
,

(A1.22)

for j = |j1−j2|, |j1−j2|+1, . . . , j1+j2, expresses the fact that the C-G coefficients,
C (j1j2j;βγα) in the notation of Rose [13], are matrix elements of a unitary
transformation that reduces a direct product of representations into a direct
sum. By using the orthogonality of the C-G coefficients,∑

j,γ

C (j1j2j;αβγ) C (j1j2j;α
′β′γ) = δα

α′
δβ

β′
, (A1.23)

one easily finds that

C (j1j2j;αβγ) =
∑

α′β′γ′

Dj1(A)−1
α′

α Dj2(A)−1
β′

β

× Dj(A)γ
γ′
C (j1j2j;α

′β′γ′) . (A1.24)

This is just the transformation law of an isotropic spinor (a spinor with the
same numerical values in every Lorentz frame) with a lower undotted spin-j
index, an upper undotted spin-j1 index, and an upper undotted spin-j2 index.

22

Because A is arbitrary in (A1.24) one can just as well replace it by B and get the
transformation law of an isotropic spinor with correspondingly dotted indices.
Thus one can write

C (j1j2j;αβγ) ≡ [ jj1j2 ]γ
αβ = [ jj1j2 ]γ̇

α̇β̇ . (A1.25)

21The general expression for A or B in terms of Λ is given by Wightman [11]. The formulas
here are an easy consequence of (A1.4), (A1.10), and (A1.11).

22This property is familiar from the rotation group. Cf. A .R .Edmonds [23, p. 46] and
E. P. Wigner [26, pp. 292-296].
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Because the C-G coefficient is a spinor, one can raise its spin-j index, using
(A1.18), to get

[ jj1j2 ]
γαβ = (−1)j−γ C (j1j2j;α, β,−γ)

= (−1)j+j2−j1
√
2j+1 ( jj1j2 )

γαβ
,

(A1.26)

where

( jj1j2 )
γαβ

= ( jj1j2 )γαβ =

(
j1 j2 j
α β γ

)
(A1.27)

is the standard Wigner 3-j symbol [26, p. 290]. By carrying out the raising
and lowering operations one finds that

[ jj1j2 ]
γ
αβ = (−1)2j [ jj1j2 ]γ

αβ . (A1.28)

The orthogonality relations for the C-G coefficients then become

(−1)2j [ jj1j2 ]γ
αβ [ j′j1j2 ]

γ′

αβ = δjj′ δγ
γ′
,

(−1)2(j1+j2)
∑
j

[ jj1j2 ]γ
α′β′

[ jj1j2 ]
γ
αβ = δα

α′
δβ

β′
,

(A1.29)

where the fact that (−1)2j = (−1)2j1+2j2 has been used. The unsightly factor
(−1)2j can be absorbed in the definition of an “inverse” spinor,

{j1j2j}αβγ ≡ [ jj1j2 ]γ
αβ , (A1.30)

if desired; various formulas such as (A1.29) then acquire a neater look.23

A useful expression for the metric spinors (A1.18) can be calculated from
explicit formulas for the C-G coefficients:

[ j ]αβ =
√
2j+1 [ 0jj ]0

αβ ,

{j}αβ =
√
2j+1 {jj0} αβ

0.

(A1.31)

It is clear that Eqs. (A1.26)-(A1.31) remain valid when all indices are dot-
ted.

A1.3 Reduction of a Spinor: Isotropic Spinors as C-G
Coefficients

Just as for the rotation group, an arbitrary spinor under L+ can be reduced
into its irreducible parts by projecting with C-G coefficients. The projection

23In S-matrix theory one can usually arrange it so that this factor does not occur, because
the total spin is an integer.
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operators are constructed by the standard method [12]. The reduction opera-
tors for a spinor with N lower undotted or lower dotted indices can be written
in the form

[ jJ : j1 · · · jN ]α
α1···αN = [ jJ : j1 · · · jN ]α̇

α̇1···α̇N , (A1.32)

where J stands for the set of N−1 intermediate spin values that occur in the
step-wise reduction, beginning at the left with j1 and j2 and resulting in spin
j. In other words,

J = (l1, . . . , lN−1) , (A1.33)

where li+1 = li + ji+2, l0 ≡ j1, in the sense of vector addition of angular mo-
menta. These spinors are defined inductively in terms of C-G spinors, (A1.25),
by

[ j(J ′j′) : j1 · · · jN ]α
α1···αN

= [ jj′jN ]α
α′αN [ j′J ′ : j1 · · · jN−1 ]α′

α1···αN−1 . (A1.34)

One can, of course, obtain reduction operators for spinors with upper indices
by lowering the indices of the symbols just defined. It is convenient, however,
to define another symbol, differing by a phase,

{ j1 · · · jN : jJ } α1···αN

α ≡ [ jJ : j1 · · · jN ]α
α1···αN

= { j1 · · · jN : jJ } α̇1···α̇N

α̇,
(A1.35)

which is constructed by precise analogy with (A1.34), using the symbol defined
in (A1.30). One can then prove the orthogonality relations

[ jJ : j1 · · · jN ]α
α1···αN { j1 · · · jN : j′J ′} α1···αN

α′

= δJJ ′ δJJ ′ δα
α′
,

(A1.36)

∑
j,J

{ j1 · · · jN : jJ } α1···αN

α [ jJ : j1 · · · jN ]α
α′

1···α
′
N

= δα1

α′
1 · · · δαN

α′
N ,

(A1.37)

where the sum is over all j,J occurring in the reduction of the spins j1 · · · jN .
The proof is by induction from (A1.29), using the relation

(−1)2j = (−1)2(j1+···+jN ) (A1.38)

which also follows by induction.
Exactly the same equations hold for the spinors with all indices dotted.
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In order to reduce an arbitrary spinor, it is clearly sufficient to consider
the case where all indices are lower. The notation will be simplified by writ-
ing (α,M) ≡ α1 · · ·αM , and (j,M) ≡ j1 · · · jM . Then an arbitrary spinor
η(α,M)(β̇,N) reduces to

ηαβ̇(jj
′ :JJ ′)

= [ jJ : (j,M) ]α
(α,M) [ j′J ′ : (j′, N) ]β̇

(β̇,N) η(α,M)(β̇,N) , (A1.39)

which transforms according to the irreducible representation Dj,j′ . One can use
the orthogonality relation (A1.37) to transform the set of irreducible spinors
on the left side of (A1.39) back into the original spinor.

Because they are constructed from C-G coefficients, the reduction operators
are isotropic spinors. Suppose that ξ is an arbitrary isotropic spinor satisfying
the transformation law⊗

m

Djm(A)
⊗
n

Dj′n(B) ξ = ξ . (A1.40)

If one substitutes ξ into (A1.39), the resulting irreducible spinor must be iso-
tropic. This implies that j = j′ = 0, for the isotropy of ξαβ̇(jj

′ :JJ ′) means
that it spans a one-dimensional, invariant subspace of the irreducible represen-
tation Dj,j′ . Inverting (A1.39), one has the result for any isotropic spinor:

ξ(α,M)(β̇,N)

=
∑
J ,J ′

{(j,M) : 0J } (α,M)
0 {(j′, N) : 0J ′} (β̇,N)

0 a(J ,J ′) , (A1.41)

where the summation is over those sets J ,J ′ that lead to zero spins in the
reduction.

The Wigner-Eckart Theorem for the rotation group is a special case of a
formula that is analogous to (A1.41) [12, Chap. 14].

Equations (A1.38) and (A1.41) imply that an isotropic spinor has an even
number of undotted and an even number of dotted half odd-integer spin indices.

A1.4 Isotropic Spin Tensors

The Pauli matrices, σµ, form the fundamental spin tensor. That this spin
tensor is isotropic follows by moving the Λ in (A1.4) to the left-hand side of
the equation. It is convenient for the construction of orthogonality relations to
define normalized spin tensors:

ρµ ≡ 1√
2
σµ , ρ̃µ ≡ 1√

2
σ̃µ (A1.42)

The ρ spinors can be regarded as a transformation from a tensor index
to an equivalent dotted and undotted pair of spin- 12 spinor indices, and vice
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versa. In fact, (A1.6) expresses the well-known equivalence between the D 1
2 ,

1
2

and the self representations of L+. Any function having tensor indices can be
converted to an equivalent function having only spinor indices by contracting
each tensor index with that of a ρ spinor. The resulting spinor is converted
back to the original function by means of the orthogonality relation (A1.5). Not
all spinors can be converted into equivalent tensors, however, because not all
representations of L+ are tensorial representations. The conversion is possible
if and only if the function has an even number of half odd-integer spin indices.
This property holds, for example, for isotropic spinors, from the comment
following (A1.41), and for isotropic spin tensors, which can be converted to
isotropic spinors. Thus isotropic spinors and spin tensors are equivalent to
isotropic tensors.

In order to get a representation for an arbitrary isotropic spin tensor, one
converts to an isotropic spinor, applies (A1.41), and converts back again. As a
result, all isotropic spin tensors can be decomposed in terms of Pauli matrices
and C-G coefficients.

It is also possible to represent an arbitrary isotropic spin tensor in terms of
generalized Pauli matrices. These quantities have been constructed and some
of their properties discussed elsewhere [1]. In the present notation, they are
defined by

ρ(µ,N)(jj
′ :JJ ′)αβ̇ = [ jJ : ( 12 , N) ]α

(α,N)

× [ j′J ′ : ( 12 , N) ]β̇
(β̇,N) ρµ1 α1β̇1

· · · ρµN αN β̇N
,

(A1.43)

ρ̃(µ,N)(j
′j :J ′J )β̇α =

{
( 12 , N) : j′J ′}

(β̇,N)
β̇

×
{
( 12 , N) : jJ

}
(α,N)

α ρ̃µ1

β̇1α1 · · · ρ̃µN

β̇NαN .

(A1.44)

These spin tensors transform the irreducible parts of an arbitraryNth rank ten-
sor into the corresponding irreducible spinor transforming according to Dj,j′ .
The tensor indices of these ρ spinors have the maximum symmetry of an irre-
ducible tensor. From (A1.5), (A1.11), (A1.36), (A1.37), and (A1.42), one gets
the orthogonality relations

ρ(µ,N) (jj
′ :JJ ′)αβ̇ ρ̃(µ,N) (s′s :S ′S)β̇

′α′

= δjs δj′s′ δJS δJ ′S′ δα
α′

δβ̇
β̇′
,

(A1.45)

∑
jj′,JJ ′

ρ(µ,N) (jj
′ :JJ ′)αβ̇ ρ̃(µ′,N) (j

′j :J ′J )
β̇α

= gµ1µ′
1
· · · gµNµ′

N
.

(A1.46)

It was shown elsewhere [1] that the individual terms in the sum in (A1.46) are
projection operators for the reduction of a tensor into its irreducible parts.
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All of the remarks in this section apply to the representation of isotropic
tensors, which are isotropic spin tensors having only spin-0 indices.

A1.5 Isotropic Tensors

It is easy to show that all isotropic tensors under L+ are composed from the
metric tensor gµν and the alternating symbol εµνλρ.

24 First, one converts to
an equivalent isotropic spinor with spin- 12 indices. Next, one shows that all
spinors of that type can be composed from [ 1

2 ] metric symbols, by looking at
the structure of the [ 0J :

(
1
2 , N

)
] symbols that occur in the expansion (A1.41).

Finally, one converts back to the original isotropic tensor. By using the stan-
dard identity

ρµ ρ̃ν ρλ = 1
2 (gµν ρλ − gµλ ρν + gνλ ρµ − i εµνλσ ρ

σ) , (A1.47)

induction, and (A1.5), the result follows.

24This well-known fact was proved for the general linear groups by Cramlet [27]. Cf. also
P. Franklin [28].
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A2 The Spin Basis in Terms of Isotropic Spin Tensors:
Projection Operators on T (J : v)

The spin basis constructed in Sec. 4 is related to one of the transformations of
a (2J+1)-dimensional spinor into an equivalent irreducible tensor defined in
(A1.43). It can be written in terms of the isotropic spin tensor

ρµ1ν1···µJνJ (J0 :J0J ′
0)α0̇ ,

where the special choices J0 =
(
1, 3

2 , . . . , J−
1
2

)
and J ′

0 =
(
0, 1

2 , 0,
1
2 , . . . , 0,

1
2

)
are made. A brief calculation shows that, up to a sign, this spin tensor is the
same as

[ J : (1, J) ]

J⊗
i=1

ρµiνi(1, 0) ,

where ρ(1, 0) is selfdual in its tensor indices, i.e.,

i
2 εµνλσ ρ

λσ(1, 0) = ρµν(1, 0) . (A2.1)

Then the spinors in (4.8) can be written(
− 1

2

)J
ρ(µ)(J : v1, . . . , vJ)

= v1 ν1 · · · vJ νJ
[ J : (1, J) ]

J⊗
i=1

ρµiνi(1, 0) . (A2.2)

Equation (4.2) results from the more general identity (A2.1). Spinors of the
type ρ(J0 :J0J ′

0) above, which have the minimum possible number of tensor
indices, vanish upon contraction of any pair of tensor indices.25 It is because
of this general property that the expression in (4.8) or (A2.2) is traceless.

At the end of Sec. 4 it is mentioned that the construction of a spin basis
has in a certain sense been reduced from a problem for L+ to a problem for
O+(3, C). To make this notion precise, consider the space T (N : v) of Nth rank
tensors that vanish upon contracting any index with the four-vector v, where
v·v 6= 0. The subgroup of L+ that leaves the space T (N : v) invariant, denoted
by L+(v), is the group of transformations that leave v unchanged. It is easy
to see that the group L+(v) is isomorphic to O+(3, C).

The invariant subspaces of T (N : v) with respect to L+(v) thus correspond
to the invariant subspaces of the Nth rank tensors with respect to O+(3, C).
One can generalize the ρ(J : v) spinors in Sec. 4 to

ρ(µ,N)(JJ : v) = [ JJ : (1, N) ]

N⊗
i=1

ρµi(1, v) , (A2.3)

25Cf. [1], where a verification of this well-known fact is given in terms of the properties of
C-G coefficients and Pauli matrices.
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where J can have the values 0, 1, . . . , N . Then from (4.4) and (A1.36) one gets
the orthogonality relation

(v ·v)−N ρ(µ,N) (JJ : v)α ρ(µ,N) (J ′J ′ : v)
β
= δJJ ′ δJJ ′ δα

β ; (A2.4)

and from (4.5) and (A1.37) one gets

(v ·v)−N
∑
J,J

ρ(µ,N) (JJ : v)α ρ(ν,N) (JJ : v)
α

≡
∑
J,J

P (µ)(ν)(JJ :N, v)

= hµ1ν1(v) · · · hµNνN (v) ≡ P (µ)(ν)(N : v) .

(A2.5)

It is easily verified that P (N : v) is the projection operator from the space of
Nth rank tensors onto T (N : v), and by arguments similar to those given by
the author elsewhere [1], that the P (JJ :N, v) are projection operators for
the invariant subspaces of T (N : v) with respect to L+(v). By putting v in its
rest frame one gets the projection operators for the irreducible tensors under
O+(3, C).

So far, only spinors with undotted indices have been considered. An analo-
gous construction exists for spinors with dotted indices, and the relation beween
the two constructions can be used to show that the operators P (JJ :N, v) are
tensors not only under L+ but also under L. Instead of (4.1) one has

ρ̃µ (1 : v)
α̇ ≡ −[ 1 1

2
1
2 ]

α̇
β̇γ̇

(
ρ̃µ v ·σ [ 1

2 ]
)β̇γ̇

, (A2.6)

or

ρ̃µ (1 : ṽ)
α̇
= ρµ (1 : v)α , (A2.7)

where ṽµ ≡ vµ. In general one has

ρ̃(µ,N)(JJ : v) =

[
N⊗
i=1

ρ̃µi(1 : v)

]
{(1, N) : JJ } , (A2.8)

and

ρ̃(µ,N) (JJ : ṽ)
α̇
= ρ(µ,N) (JJ : v)α . (A2.9)

Equations (A2.4) and (A2.5) remain valid when ρ is replaced by ρ̃. It is
easy to show that

[ J : v ] ρ(µ,N)(JJ : v) = ρ̃(µ,N)(JJ : v) , (A2.10)

where [ J : v ] is defined in (3.1). From this and (3.2) one sees that

ρ̃(µ,N) (JJ : v)
α̇

ρ̃(ν,N) (JJ : v)α̇

= ρ(µ,N) (JJ : v)α ρ(ν,N) (JJ : v)
α
, (A2.11)
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and hence that

P (µ)(ν)(JJ :N, v) = P(µ)(ν)(JJ :N, ṽ) , (A2.12)

where (A2.9) has been used. Manifestly, P (JJ :N, v) is a tensor under L+.
Equation (A2.12) shows that it is also a tensor under L, because it transforms
as a tensor under space inversion.
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A3 Example of a Kinematical Singularity

First, the projection operator S(2 : v) defined by (4.13) can be computed:

S(µ)(ν)(2 : v) = 1
2 [hµ1ν1(v)hµ2ν2(v) + hµ1ν2(v)hµ2ν1(v)]

− 1
3 h

µ1µ2(v)hν1ν2(v) . (A3.1)

An example of a holomorphic, L+-covariant function for spin two is:

M(2) = k2
µ k2

ν ρµν(2 : k3) . (A3.2)

Computing from (5.2),

f (µ) = M(2)α ρ(µ) (2 : k3)
α
m3

−4

= S(µ)
(ν)(2 : k3) k2

ν1 k2
ν2 ;

(A3.3)

and using (5.16), one finds in particular that

a(2, 0, 0) = fµν k̂1
µ k̂1

ν

= −

[
m2

2 m3
2 − (k2 ·k3)2

]2
3m3

2 G(K)
.

(A3.4)

This expression clearly has a pole for most of the zeroes of G.
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A4 Proof of Lemma 5

The proof follows very closely that given by Bargmann, Hall, and Wightman
for n = r points and the map I. As already mentioned, the maps I+ and I
coincide for l = 3. Thus M3+ can be regarded as embedded in the space of
3×3 symmetric matrices, and the topology of M3+ taken to be the restriction
of that of the 3×3 matrices. If the mass constraints are disregarded, then
M3+ is simply replaced by the space of symmetric 3×3 matrices. The lemma
will be proved without the mass constraints, except for the assumption that no
vectors on the light cone occur. The lemma with mass constraints then follows
by restriction of the topology.

Thus it is to be proved that for any neighborhood N of a point Z(0) =(
z
(0)
1 , z

(0)
2 , z

(0)
3

)
in the space of three complex four-vectors, excluding vectors

on the light cone,26 I+(N) is a neighborhood of I+
(
Z(0)

)
. Because of the proof

given by Bargmann, Hall, and Wightman, it is sufficient to assume that Z(0) is
an n 6= r point, with n = r + 1, and r = 1 or 2. The proof for the more easily
treated n = r points would also follow from the proof given here, with slight
changes of wording.

The convention that z
(0)
1 , . . . , z

(0)
r have nonzero Gram determinant and that

z
(0)
1 , . . . , z

(0)
n be linearly independent will be used, along with the notation

Z ≡ I+(Z), Y ≡ I+(Y ), etc.
A series of transformations depending only on Z(0) will be made to simplify

the problem.
For any r = n− 1 point, one can write

z
(0)
i =

r∑
j=1

αij z
(0)
j + κi ω , (A4.1)

where ω is on the light cone and orthogonal to the space spanned by z1, . . . , zr,
27

and where κi = 0 for 1 ≤ i ≤ r. The αij depend only on Z(0). Define the new
variables wi by

wi = zi , i = 1, . . . , r

wi = zi −
r∑

j=1

αij zj , i > r .
(A4.2)

This transformation has determinant one, and it gives w
(0)
i = κi ω, for i > r.

One can express the w
(0)
i in the form

w
(0)
i =

n∑
j=1

βij w
(0)
j . (A4.3)

26If Z(0) contains no vectors on the light cone, then there is a neighborhood of Z(0) with
the same property.

27Cf. Sec. 6.1.
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Then let

xi = wi , i ≤ n

xi = wi −
n∑

j=1

βij wj , i > n .
(A4.4)

The βij depend only on Z(0). This transformation also has determinant one,

and it makes x
(0)
i = 0 for i > n. Next one performs the transformation that

orthonormalizes the first r vectors of X(0) and does nothing to the rest. Then
by a Lorentz transformation (Lemma 1), the resulting vectors can be brought
to the form

y
(0)
1 = (1, 0, 0, 0) ,

y
(0)
2 = (0, 1, i, 0) ≡ ω12 ,

y
(0)
3 = 0 ,

(A4.5a)

for r = 1, and

y
(0)
1 = (1, 0, 0, 0) ,

y
(0)
2 = (0, i, 0, 0) ,

y
(0)
3 = (0, 0, 1, i) ≡ ω23 ,

(A4.5b)

for r = 2.
The net effect of all of these transformations is a nonsingular matrix A,

depending only on Z(0),

yi =

3∑
j=1

Aij zj , (A4.6)

with the property

AZ(0)AT = Y(0) =

(
I 0
0 0

)
, (A4.7)

where the identity block of the 3× 3 matrix Y(0) is an r× r matrix. The
transformation A is evidently a homeomorphism, both of the space of vectors
and of the space of invariants, that preserves the map I+. Thus it is sufficient
to consider neighborhoods of Y (0).

Let Y be in a neighborhood of Y (0). The final transformation to be made
depends on the corresponding point Y which is in a neighborhood of Y(0). It
will be such as to make the first r vectors of Y orthogonal to the rest. In
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particular take

y′i = yi , i ≤ r

y′i = yi −
r∑

j=1

γij yj , i > r .
(A4.8)

where γij is determined by the requirement that y′i·y′j = 0 for i > r and j ≤ r.
Then

γij =

r∑
k=1

Yik

[
Y(r)

−1
]
kj

, i > r , j ≤ r , (A4.9)

where Y(r) is the upper left r×r block of Y.

Note that Y ′(0) = Y(0). Also note that, because of its continuity, one can
keep det

[
Y(r)

]
bounded away from zero in a sufficiently small neighborhood of

Y(0) (or of Y (0)), and thus guarantee the existence and boundedness of Y(r)
−1

there. Thus, if one writes, in such a neighborhood, (A4.8) in the form

y′i =

3∑
j=1

Bij (Y) yj , (A4.10)

then the set of B(Y) is bounded and the set of inverses B−1(Y) exists and is
bounded. The boundedness of the B(Y) implies that a neighborhood of Y(0) (or
of Y (0)) can be found such that the corresponding points Y ′ (or Y ′) lie inside
of any preassigned neighborhood of Y(0) (or of Y (0)). This plus the existence
of the bounded set of inverses B−1(Y) implies that for any neighborhood N
of Y (0), one can find neighborhoods N0 of Y(0) and N0 of Y (0) such that if
Y ′ = B(Y)Y B(Y)T, with Y in N0, then any Y ′ in N0 satisfying I+(Y

′) = Y ′

has the property that the vectors
∑3

j=1 B
−1(Y)ij y

′
j form a point in N.

The above statement also holds for any subneighborhood N1 of Y(0) in N0,
and it reduces the problem to the question of whether one can find a sufficiently
small N1 such that for any point of the form Y ′ = B(Y)Y B(Y)T, with Y in
N1, there is a corresponding Y ′ in N0. Because of the boundedness of B(Y) it
is sufficient to find a small neighborhood N ′ of Y ′(0) = Y(0) in the space of Y ′

such that there is a corresponding Y ′ in the fixed neighborhood N0. To show
that such an N ′ exists, write Y ′ = Y (0) + V , and

Y ′ =

(
C1 0
0 C2

)
+

(
I 0
0 0

)
,

=


(
y
(0)
1 + v1

)2 (
y
(0)
1 + v1

)
·
(
y
(0)
2 + v2

) (
y
(0)
1 + v1

)
·
(
y
(0)
3 + v3

)
· · · 2ω12 ·v2 + v2 ·v2 ω12 ·v3 + v2 ·v3
· · · · · · v3 ·v3

 ,

(A4.11)
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for r = 1; and

Y ′ =

(y(0)i + vi

)
·
(
y
(0)
j + vj

) (
y
(0)
i + vi

)
·
(
y
(0)
3 + v3

)
· · · 2ω23 ·v3 + v3 ·v3

 (A4.12)

with i, j = 1, 2, for r = 2.
Taking all but the first r components of vi, for i ≤ r, to vanish, Bargmann,

Hall, and Wightman showed that one can find a bound for C1 such that there
are always solutions for the first r components of these vectors that are as
small as desired. Accordingly, we take the first r components of vi, for i > r,
to vanish and show that C2 can be bounded in such a way that small solutions
exist for the remaining components. These choices already guarantee that the
off-diagonal blocks in (A4.11) and (A4.12) vanish.

For r = 1, write

C2 =

(
α β
β γ

)
, (A4.13)

and choose

v2 =
(
0,−α

4
,− α

4i
, 0
)
, v3 =

(
0,−β

2
,− β

2i
, i
√
γ

)
. (A4.14)

If C2 is small, then v2 and v3 are small, as required.
For r = 2, C2 is a number, and

v3 =

(
0, 0,−C2

4
,−C2

4i

)
(A4.15)

is a solution with the right property.
Therefore Lemma 5 is proved.
It is worth emphasizing that the same proof does not work for neighbor-

hoods of n 6= r points in spaces with l > 3. Upon adding the necessary extra
elements to the lower right block of the matrix in (A4.11), for example, one
soon discovers that it is not possible in general to find small solutions for V .
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