

PORTING ANDROID TO MICROKERNEL: AN EXPERIMENTAL APPROACH

by

JUNZHE ZHANG

A THESIS

submitted in partial fulfillment of the requirements for the degree

BACHELOR OF SCIENCE

Department of Computer Science

College of Literature, Science and the Arts

UNIVERSITY OF MICHIGAN

Ann Arbor, Michigan

2014

Approved by:

Major Professor

Peter M.Chen

Abstract

As smartphones become more popular, the requirement of dependability is also higher.

This thesis tries to achieve this goal by providing an architectural solution. As the most widely

used modern mobile system, Android is studied as a special case. This thesis proposes a design

of porting Android to Minix3, a microkernel system. A preliminary porting work is also

presented.

i

Table of Contents

List of Figures .. iv

List of Tables .. v

Chapter 1 - Introduction .. 1

1.1 Demand on Dependability and Security ... 1

1.1.1 A Modular OS Design ... 2

1.1.2 Pros and Cons .. 2

1.2 Special Case: Android .. 3

1.2.1 Popularity and Variations .. 3

1.2.2 Threats .. 4

1.3 The Focus of This Thesis .. 4

Chapter 2 - Previous Work ... 6

2.1 L4 .. 6

2.1.1 L4Linux .. 6

L4Linux is a port of Linux kernel to the L4 kernel API. It ported Linux by a hypervisor

approach. L4Linux runs in user-mode on top of the L4 kernel, side-by-side with other L4

kernel application [Härtig, H., Hohmuth, M., & Wolter.J, 1998]. It is binary compatible

with the normal Linux/X86 kernel and can be used with any Linux distribution. 6

2.1.2 L4Android .. 6

2.1.3 P4/Linux ... 7

2.2 Mach ... 7

2.2.1 Mach and BSD ... 7

2.3 Exokernel .. 7

Chapter 3 - Minix3 Design ... 9

3.1 Minix3 Overview .. 9

3.2 Processes ... 10

3.3 Input / Output .. 12

3.4 Memory Management ... 13

3.5 File System .. 13

3.6 Reincarnation Server ... 15

ii

Chapter 4 - Android Design .. 16

4.1 Android Framework Overview ... 16

4.1.2 Software Stacks .. 16

4.1.2 Program Work Flows ... 17

4.2 Proprietary Drivers ... 17

4.2.1 Logger .. 18

4.2.2 Ashmem ... 18

4.2.3 Binder ... 20

4.3 Application Components .. 22

4.3.1 Activity .. 22

4.3.2 Service .. 23

4.3.3 Broadcast .. 23

4.3.4 Content Provider .. 24

4.3.5 Zygote and Process .. 24

4.3.6 Messages and Looper ... 25

4.4 Compatibility with Minix ... 25

4.4.1 Similarities ... 25

4.4.2 Differences ... 26

Chapter 5 - Experiment ... 27

5.1 Porting Proprietary Drivers ... 27

5.1.1 Logger .. 27

5.1.2 Ashmem ... 28

5.1.3 Binder ... 29

5.2 Zygote and Process Initialization .. 31

5.3 Kernel Modification .. 31

5.4 Performance Measure ... 32

Chapter 6 - Future Work ... 34

6.1 Dalvik Virtual Machine .. 34

6.2 Hardware Abstraction Layer ... 34

Chapter 7 - Summary .. 36

7.1 Statement of the Problem and Summary .. 36

iii

7.2 Lessons Learned ... 37

References ... 38

iv

List of Figures

Fig 1. Structure of a multi-server microkernel system ... 2

Fig 2. Minix3 system structure ... 10

Fig 3. I/O process comparison between microkernel and monolithic kernel. 12

Fig 4. Illustration of Binder driver structure and working process ... 21

Fig 5. Performance measurement with read-write through binder ... 32

Fig 6. Performance measurement with read-write through binder ... 33

v

List of Tables

Table 1. Procedures for block management .. 14

Table 2. Procedures used for inode management ... 14

Table 3. Procedures used for superblock management ... 15

Table 4. IPC mechanism and number of copy .. 20

Table 5. Interfaces of log library for writing log message. ... 28

Table 6. System calls provided by ashmem server in Minix3 .. 29

Table 7. Procedures provided to manage ashmem .. 29

Table 8. System calls provided by binder server in Minix3. .. 31

1

Chapter 1 - Introduction

Smartphones have gained big popularity these days. By combining computing power of

desktop and connectivity of mobile devices, smartphones provide features and functionalities

that benefit people. Therefore, smartphones, as wells as other smart mobile devices, have been

primary tools of communication and computation for many people.

A lot of investment has been made to explore what can be done with their computing

power and connectivity. Companies like Google, Microsoft and Apple have separate departments

specialized in working on mobile devices. Many new applications have been introduced and

realized. Mobile payment is not a new thing for most people. Some machine learning technique

are utilized to personalize you phone. More personal information are collected and analyzed

through mobile devices. These applications demand high dependability and security.

 1.1 Demand on Dependability and Security

Most of smartphone operating system enhance dependability and security by setting

highly restricted access control model. However, this solution relies on integrity of system

kernel. But kernel integrity can no longer be guaranteed on rooted devices. Another solution is

virtualization. For example, Android runs its application on Dalvik, a modified Java virtual

machine. However, this solution has also been criticized for performance degradation. Also,

Android introduces several new modules to Linux kernel to enable a Server-client model. This

will be further discussed in Chapter 4.

These solutions are all based on an assumption that the system is based on a monolithic

kernel design, which links many modules into kernel. Though there is a clear logical structure

with a basic executive layer and extensions that provide added functionality, all code runs in a

single protection domain. Also, all the code runs in a single address space, this means that an

invalid pointer or buffer overflow in any module can easily trash the entire system. Therefore,

mobile operating system doesn’t put too much trust on its kernel and introduce extra mechanism

to enhance dependability.

If the operating system is, instead, based on a microkernel, which has already taken

dependability into consideration with a multi-server design, we could potentially improve

dependability. Also, with a modular design, restrictions imposed later by some mobile system

2

might be removed, meaning that system dependability can be improved without compromising

performance.

Fig 1. Structure of a multi-server microkernel system

 1.1.1 A Modular OS Design

A multi-server design divides the OS functionality into several independent user-level

processes. The ability of each single process is also tightly controlled. Kernel only maintains

minimum set of basic functionality that cannot be done in user space. This type of design is

called microkernel. The structure of a microkernel-supported multi-server design is illustrated in

Fig 1.

 1.1.2 Pros and Cons

While moving most of OS out of kernel doesn’t necessarily reduce the number of bugs, it

make bugs less devastating by making a kernel-level bug to user-level. In monolithic design, a

kernel bug is highly likely to spread and damage the entire system. By contrast, a bug in an

isolated sever in multi-server design can be reduced into a local problem. By tightly controlling a

server’s accessibility and scope, kernel can easily turn down the faulty components and try to fix

it on-fly. For example, driver failures are one of the most common failures in today’s OS like

Windows XP and Ubuntu. System usually trust driver modules, assuming they are dependable.

3

However, this is not always the case. Driver code are usually written by less-experienced

developers, they tend to violate principle that the system impose. Also, due to the update rate of

current hardware devices, driver code are produced in a fast pace, therefore not fully tested. A

classification of driver failures on Window XP shows that the use of user-level driver would

structurally reduce 67% of 2528 OS crashes analyzed [Ganapathi et la, 2006].

There are two primary drawbacks of multi-server system design. First, after changing a

kernel module to a user-level process, its ability of accessing other parts of OS are restricted.

However, it needs to communicate with other components to perform task which it cannot by

itself. Therefore, a small performance overhead due to context switching and message passing is

expected. Second, a full backward compatibility is not possible for running a kernel driver as

user-level process. Several changes need to be done to driver code. Furthermore, some driver

modules are no longer suitable to be implemented as driver modules in multi-server system

design. Other type of abstraction needs to be found for these modules. Nevertheless, the

compatibility of multi-server systems can be achieved at a level high enough for practical use.

 1.2 Special Case: Android

Now, I will focus on a special case of mobile operating system, Android. There are two

reasons that I choose Android. First, Android, combined with its variations, account for 77% of

all smartphones shipped worldwide in 2013 [ABI Research, 2014]. Second, Android is open.

Strictly speaking, the Android is not a purely open-source project. Proprietary software like

device driver are kept close to protect manufacturer’s benefits. But most of Android source code

is released under the Apache License. The code available online is enough for study.

 1.2.1 Popularity and Variations

According to recent report released by ABI Research, Android shares the most market of

mobile operating system by supporting 77% of smartphones shipped in 2013. Another interesting

need to be mentioned is that is market share includes 25% of modified Android versions. These

versions, including Cyanogenmod, are forked from AOSP (Android Open Source Project). These

system are compatible with Android but adding more features that Android doesn’t come with.

Some of them eventually evolve into a different operating system. For example, Firefox OS is a

Linux kernel-based open source operating system for mobile devices developed by Mozilla. It is

built upon Android modified kernel and a subset of Android middleware code.

4

 1.2.2 Threats

Though many different versions are released or under developing, they are all based on

the same kernel, a Google modified Linux-kernel. It is a monolithic design, featuring high

performance. However, the design of Android system indicates that Android system doesn’t fully

trust it kernel. To enhance it dependability, Android runs all its application on Dalvik virtual

machine and enforce isolations between applications and native system services. A special

process, Zygote, is created during initialization to monitor access control of each system

components. These solutions rely on the integrity of Android kernel. However, kernel integrity

cannot be ensure when a device is rooted. Rooting can be done voluntarily by the user or by

malware. A recent study found 88 vulnerabilities in Android kernel [Coverity Inc, 2010], which

indicates that rooting is a serious threat. These vulnerabilities is inherent to the monolithic

architecture of the Android kernel. Also, because Android and its forked versions are based on a

same set of kernel, this makes it vulnerable to a same type of attack.

Therefore, it is worthy of providing a microkernel support for the Android. A

microkernel system might not remove current security leaks or bugs existing in Android. It could

serve as architecture for a high demand on dependability.

 1.3 The Focus of This Thesis

Having discussed background of current mobile operating system and its drawback, it’s

time to define exact focus of this thesis and it contributions.

The focus of this thesis is mainly about porting Android system to Minix, a microkernel

system. Minix is operating system which is originally introduced as teaching materials. It puts

modular system design to an extreme. In recent years, Minix community has put a large amount

of effort to support more software and platforms. The details of Minix will be further discussed

in Chapter 3. By porting Android system onto a microkernel, we can discover how design of

Android can be split and fit into microkernel design. Due to time limit, this thesis will focus on

implementation details of three proprietary drivers: logger, binder, and ashmem, which support

the entire Android system. Different ways of implementation method will be discussed. In

addition, prototype of porting Zygote process, which hold the entire Android runtime, will also

discussed.

5

Now that the focus of this thesis has been positioned, we offer a view on main

contributions of thesis. First, this work provide a detail description the design of Android in

detail. Though Android has been the most popular mobile operating system, few material is

available discussing the implementation of Android middleware and driver code. Another

contribution of this thesis is providing a prototype of how Android can live on a microkernel

system. Preliminary work, including poring primary drivers of Android are done and analyzed.

6

Chapter 2 - Previous Work

Many previous work has been done in supporting other operating system with

microkernel. In this section, we present those which have been influential for later operating

system design. Section 2.1 talks about L4 microkernel family. Section 2.2 discusses Mach and its

efforts of supporting BSD and Linux. Sections 2.3 is about Exokernel.

 2.1 L4

L4 is a family of second-generation microkernels. It was created by Jochen Liedtke

[Liedtke, J, 1995]. There have been various re-implementations of the original binary L4 kernel

interface. Now, L4 applies to the whole microkernel family including the L4 kernel interface and

its different versions.

L4 microkernel family can be regarded as the fastest microkernel. The reason for its

efficiency is that besides microkernel design, it puts high performance in high priority

throughout its design. Compared with other microkernel system, it has small cache footprint.

This makes difference in performance between L4 and other microkernels.

 2.1.1 L4Linux

 L4Linux is a port of Linux kernel to the L4 kernel API. It ported Linux by a hypervisor

approach. L4Linux runs in user-mode on top of the L4 kernel, side-by-side with other L4 kernel

application [Härtig, H., Hohmuth, M., & Wolter.J, 1998]. It is binary compatible with the normal

Linux/X86 kernel and can be used with any Linux distribution.

 2.1.2 L4Android

L4Android encapsulates the original Android operating system in a virtual machine. It is

based on L4 kernel. It allows for highly secure applications to run side-by-side with the virtual

machine. In addition, they provide a drivers for hardware abstraction layers to let Android

operating system running on the virtual machine [Lange, M., Liebergeld, S., Lackorzynski, A.,

Warg, A., & Peter, M., 2011].

7

 2.1.3 P4/Linux

P4/Linux is a small real-time systems developed by SYSGO AG company. It is a V2

compatible L4 microkernel called P4. Then it runs on x86, ARM and PowerPC architectures. On

top of this kernel, a port of Linux based on User Mode Linux was down. It mainly follows

traditional L4Linux design.

 2.2 Mach

Mach is a multiprocessor operating system kernel and environment developed by

Carnegie Mellon University. It is often mentioned as one of the earliest versions of a

microkernel. It defined some concepts that now are common in microkernel design. However,

not all versions of Mach are microkernel. The project was ran by Carnegie Mellon University

from 1985 to 1994. Its derivatives are still in use in many commercial system such as Mac OS X.

 2.2.1 Mach and BSD

Mach was originally implemented as a drop-in replacement for BSD version of UNIX.

The motivation for replacing UNIX kernel is that UNIX’s concept of file might not be suitable

for system with high demand on efficiency.

Mach started with by replacing UNIX’s concept of file into a task, which can be viewed

as a process. A task can consist of a number of thread [Accetta, M., Baron, R., Bolosky, W.,

Golub, D., Rashid, R., Tevanian, A., & Young, M. 1986]. Though this might be common for

most people today, Mach was the first system to define concept of task and thread in modern

way.

Mach also implemented an inter-process communication (IPC) system. Processes pass

message to get service or resource. This leads to one of the biggest difference between UNIX

and Mach. In UNIX, user-level program access kernel procedure by trapping. However, in Mach,

user-level program sends a message to a predefined port of kernel. This concept was later widely

deployed by other modern system.

 2.3 Exokernel

Exokernel is an operating system kernel developed by MIT. Now it also refers a group of

operating system deploying similar designs.

8

Exokernel gives each user process a clone of the actual computer with a subset of the

resources. Exokernel running in kernel mode at the bottom of all other processes. Its job is to

allocate resources to virtual machines and then doing sanity checks. Therefore, exokernel can

support multiple operating system by virtualization. Each virtual machine is running

independently with each other except that it is restricted to only using resources that exokernel

has allocated for it.

9

Chapter 3 - Minix3 Design

This chapter provides an insight of Minix3 Design. Emphasis is placed on those features

that are different to monolithic design that people may be familiar with. This chapter focuses on

how microkernel design affects Minix3.

This chapter starts with an overview about Minix system. Then Section 3.2 – 3.6

respectively offers details of processes, IO, memory management, file system and reincarnation

server of Minix3.

 3.1 Minix3 Overview

Minix was originally written as a teaching material by Tanenbaum as an alternative to

UNIX system in 1987. As Minix develops, more and more UNIX-like features were added into

the system. In 1997, Minix2 was released. The development continued slowly till 2004. The

system was redesigned and released as Minix3 [Andrew, S. T., & Albert, S. W. 2006].

The Minix follows microkernel design and puts it to an extreme. The kernel size are

restrictively controlled to reduce kernel bugs. Device driver are not fully trusted, and moved to

user-space. The system follows multi-server structure, which runs most of system services as

user-mode processes. Client processes request services by sending messages to specific server

process. As shown in Fig 2, the system can be separated into three layers: kernel, driver, servers

and applications. The kernel in the bottom layer schedules processes and manages the transitions

between ready, running, and blocked states of processes. Message handling is also done in

kernel. I/O ports and interrupts access are also supported by kernel.

Drivers and servers are both running as independent user-level processes in layer 2 and 3.

However, driver processes have the most privileges. Server processes provide useful services to

the user processes. Process manager, file system, virtual memory and reincarnation server are

among those most essential processes in Minix3. Application processes are running on layer 4.

They have least privileges.

10

Fig 2. Minix3 system structure

 3.2 Processes

Minix3 processes have general process model as Linux kernel. Each processes have three

different states: Running, Ready and Blocked. It has hierarchies and can be handled as a group.

Remainder of this chapter focuses on those are not common among other kernel.

As for initialization of processes, init is the first user processes. However, a few process

gets to run before init. Clock is a kernel process handling system clock. It is invisible outside of

kernel. The process manager is the first process to run in user-space. The reincarnation server

11

starts next, it is made the parent of all the other processes started. Though init is not the first user

process to run, it is still given PID 1 in Minix3. Init is made a child of reincarnation server.

Message passing is the main inter-process communication mechanism provided in

Minix3. There are three primitives provided. They are called by C library procedures [Andrew,

S. T., & Albert, S. W. 2006]:

send(dest, &message)

to send a message to dest.

receive(source, &message)

to receive from source, and

sendrec(src_dst, &message)

to send a message and wait from the src_dst. When a process sends a message to a process that is

not waiting for a message. The sending process is blocked until dest does receive. If process A

has send or sendrec message to process B. Then process B is not allowed to do a send or sendrec

to Process A. Otherwise we have a deadlock. The fourth primitive of message passing procedure

is

 notify(dest)

This procedure is never blocked. It is used to make another process aware that something crucial

has happened [Andrew, S. T., & Albert, S. W. 2006].

 The Minix3 scheduler utilizes a multilevel queuing system. 16 queues are defined. An

IDLE process is defined and runs in lowest level. The lowest level queue is only used when there

is nothing to do. Driver processes usually come in higher priority than server processes.

However, system can demotes processes to lower level to prevent faulty processes getting all

resources.

Normal process management procedures like fork(), exec(), exit(), and wait() are

supported by Minix system. But the implementation is more complex that other systems. Several

servers and kernel maintain several different process tables. These table are private to its own

scope and have different information. However, the total number of processes are synchronized

between servers and kernel. Therefore, whenever a processes are created or destroyed, its

information has to be updated in all process tables, which could be a big overhead.

12

Fig 3. I/O process comparison between microkernel and monolithic kernel.

 3.3 Input / Output

There are two types of I/O device driver on Minix3: character driver and block driver.

For each type of I/O device, a separate I/O device driver is present. These drivers are

independent user-processes. File operations can be performed on these drivers as in Linux

kernel. However, people need to be aware of overhead caused by highly modular design. Fig 3

shows difference between procedure path on Minix3 and a monolithic kernel. When a file

operation like read, write and open is called, the user process first send a message to file system.

File system looks up it filp table to find corresponding filp related to device driver. Then device

driver communicate with kernel to perform data copy. 1-6 extra message passing and context

switching occur. By contrast, Monolithic system doesn’t require any message passing. Kernel

procedure are activated by trapping.

To simplify driver development on Minix3, two library, libchardriver and libbdriver are

provided. The transfer function are used to handle read and write operation. However, file

backed mmap has not been supported yet on Minix3.

13

 3.4 Memory Management

Minix3 didn’t support paging several years ago. Instead, segmentation was used. The

reason for not using paging is that the designer hope it can be easily to be ported to other

hardware. But not all hardware devices support paging.

As a new server vm introduced, virtual memory and paging mechanism are supported.

Memory management is mainly handled by vm server. There three type of structures defined in

vm server: struct vir_region, struct phys_region and struct phys_chicks [Andrew, S. T., &

Albert, S. W. 2006]. The struct vir_region is a contiguous range of virtual address space. A

vir_region doen’t need to have real memory instantiated in it. The struct phys_region are

implemented mainly for supporting memory mapping. This technique is similar to Linux kernel.

Due to historical reasons, physical blocks are actually abstracted as struct phy_chicks. This

name was used to indicate difference between segmentation and paging mechanism. However,

this naming is inherited to current Minix3 release. A chick is of 1024 bytes. Each phys_region

has a reference to a list of phys_chicks.

One thing needs to mention is that vm server is not the only place maintaining

information about mapping between virtual address and physical memory. Both kernel and vm

has separated information of address mapping. Whenever a table is changed, the other table need

to be updated.

One of the most unique feature of Minix3 memory management is memory grants.

Memory grant enables Minix kernel to monitor data exchange between processes in byte level.

To perform data exchange, process has to call kernel to set a grant for the memory region to be

exchanged. The kernel maintains a grant table to store the memory grants. Memory copy without

valid grant will be rejected by kernel. There are two types of grant in Minix3: direct and indirect.

Direct grant is the grant set by owner of the memory region. Also, other processes can forward

the grant by indirect grant. Direct and indirect grant combined gives kernel full ability of

monitoring memory exchange.

 3.5 File System

File system on Minix3 is mainly implemented by vfs server. The vfs server maintain four

tables for managing file system. They are block table, inode table, superblock table and filp table

[Andrew, S. T., & Albert, S. W. 2006].

14

Block table is defined in cache.c under vfs server directory. It functionality is defined in

Table 1.

Procedure Function

get_block Fetch a block for reading or writing

put_block Return a block previously requested with get_block

alloc_zone Allocate a new zone (to make a file longer)

free_zone Release a zone (when a file is removed)

rw_block Transfer a block between disk and cache

invalidate Purge all the cache blocks for some device

flushall Flush all dirty blocks for one device

rw_scattered Read or write scattered data from or to a device

rm_lru Remove a block from its LRU chain

Table 1. Procedures for block management

Inode table is also needed to support vfs procedures. Many of the procedures are similar

in function to the block management procedures. They are listed in Table 2.

Procedure Function

get_inode Fetch an i-node into memory

put_inode Return an i-node that is no longer needed

alloc_inode Allocate a new i-node (for a new file)

Wipe_inode Clear some fields in an i-node

free_inode Release an i-node (when a file is removed)

update_times Update time fields in an i-node

rw_inode Transfer an i-node between memory and disk

old_icopy Convert i-node contents to write to V1 disk i-node

new_icopy Convert data read from V1 file system disk i-node

dup_inode Indicate that someone else is using an i-node

Table 2. Procedures used for inode management

The file super.c contains procedures to manage superblock and bitmap. The procedures

are listed in Table 3.

Procedure Function

15

alloc_bit Allocate a bit from the zone or i-node map

free_bit Free a bit in the zone or i-node map

get_super Search the superblock table for a device

get_block_size Find block size to use

mounted
Report whether given i-node is on a mounted (or root)

file system

read_super Read a superblock

Table 3. Procedures used for superblock management

File descriptor and filp table are maintained in filedes.c. A file descriptor and filp are

needed before a file is created. The procedure get_fd is used to handle this. The get_filp

procedure is used to check whether a file descriptor is in range, if so, a filp pointer is returned.

The procedure find_filp is used to check whether a process is writing on a broken pipe.

 3.6 Reincarnation Server

Reincarnation Server (RS) is a special server in Minix3. One of the difference between

Minix3 and other modern system is that init process doesn’t fork other processes during

initialization. All user-level processes are created by RS server. This design enables RS server to

keep track of the state of all driver and server process. Once RS server finds any abnormalities. It

can either replace the faulty server with a fresh instance or stop the faulty server permanently.

16

Chapter 4 - Android Design

This chapter provides a description of Android design. I briefly introduce the general

architecture of Android system, then discuss each part in detail. In the end, a high-level overview

of compatibility of Android system Minix3 is provided.

The remainder of this chapter goes as follow. To start with, Section 4.1 provides

overview of Android framework. Section 4.2 – 4.4 describe the Android framework in parts. In

the end, Section 4.5 compares Android and Minix3 and explains why porting Android to Minix3

is possible.

 4.1 Android Framework Overview

Android system can be viewed in two ways. In a vertical view, Android system can be

divided into four parts: Android kernel and driver, middleware, application managers and

applications running on the Android.

 4.1.2 Software Stacks

Android kernel is a modified version of Linux kernel. The current Android versions

includes a kernel based on Linux kernel 3.4. It mainly has the same functionalities as Linux

kernel but adding several kernel modules. The most important of them are proprietary drivers:

logger, binder and ashmem. Logger is the basis of system log of Android. Ashmem stands for

Anonymous Shared Memory. It is introduced as the major shared memory mechanism for

Android. Binder is the major inter-process communication for Android. It creates a binder

instance in the binder driver. A binder instance can be referenced either a weak reference or a

strong reference. A binder instance stands for a pipe to a system process. Once a process gets a

binder reference, it can send information through binder driver to communicate with the

connected process. All three parts will be discussed further in this chapter.

The second layer is the middleware. It consists of various native components. We will

mainly look at three of them: Service Manager, Zygote process and Dalvik virtual machine.

Service Manager can be viewed as a naming server of Android. It is running as a user process

above kernel, keeping a mapping of service names and their binder references. Other system

process gets connection to a specific system service by querying service through the service

manager. Zygote is the process holding the actual android runtime. It is initialized by init process

17

and acts as parent process for all other android processes. Dalvik is an instance created by

Zygote. It has similar functionalities as Java virtual machine. Every android application has its

corresponding Dalvik instance.

The third layer is the application framework. It consists of several service managers.

However, they should not be confused with Service Manager we mentioned before. The Server

Manager is an independent process initialized with Zygote process. However, service managers

in application framework are child processes forked by Zygote process. They are running above

Dalvik virtual machines to provide abstractions of system service to upper applications.

The final layer is the application layer. Android applications consists of activity and

service. In fact, we can imagine them as foreground and background processes running on Linux.

They both are implemented in Java and running on Dalvik.

 4.1.2 Program Work Flows

Most of materials only discuss software stacks of Android system. However, what

confuse people most are how these layers interact with each other. Here, we generalizes three

system paths which can conclude most of Android system activities.

First, HAL stands for hardware abstraction layer. It serves to protect hardware

manufacturers’ benefits. Because Android is based on Linux kernel, it is under GNU license. If

Android includes driver logic into kernel space, hardware manufacturers usually don’t want to

release it driver source code. But with HAL, manufacturers can define an interface only defining

basic input/output to the device and hide actual logic into binary images.

The second path is Activity Components. It consists of Activity, Services and IPC

abstraction in Android. However, all IPC abstractions are powered by binder driver which we

mentioned earlier. We will discuss this later in this chapter.

The third path is UI. This path is mainly about how surface clients communicate with

window manager and finally generate framebuffer. Since this thesis is focusing on preliminary

work of porting Android to Minix3 platform. We won’t look into this part in detail.

 4.2 Proprietary Drivers

Let’s first move to proprietary drivers. These drivers are kernel modules provided by

Android to support the entire system. Understanding these drivers can help us study upper level

framework of Android system.

18

 4.2.1 Logger

Android system provides a light weighted logging system. This system is implemented as

driver module in kernel space. To fully support this system, Android provides Java and C/C++

interfaces to work with this driver. Also, Android provide a tools, Logcat, to access the log

driver.

To start with, let’s look at the logger driver. It is implemented as a Linux driver module.

In Android source code tree, its files reside in kernel/common/drivers/staging/android/logger.h

and kernel/common/drivers/staging/android/logger.c. We won’t touch the implementation

details here, but summarize its general working process. Logger driver is implemented as a

character driver, which means we can treat it as a special file and operate it with file operations.

It has four minor devices: /dev/log/main, /dev/log/radio, /dev/log/events and /dev/log/system.

When opening a certain minor device, the driver will allocate buffer on kernel memory and

return a file descriptor to user. User can perform read/write operation to the log buffer with the

file descriptor.

The Java and C/C++ interfaces defines functions we normally use to perform logging

task on Android. Java interface performs actual functionalities through C/C++ functions. These

two interfaces are connected through JNI (Java Native Interface). In Java interface, we can see

different tags corresponding to different logging priorities are defined: info, debug, error and

warning. C/C++ performs write operating to driver though __write_to_log_kernel function.

__write_to_log_kernel writes logs to driver in vector format with writev function, which should

be familiar to Linux developers.

Logcat is actually implemented in a fairly simple logic. It is a process which open logger

driver, keep perform read operations and print the read information to the terminal.

Functionalities for processing of log information are also provided. For example, user can look

up logging information through the tag or source name.

 4.2.2 Ashmem

Android provides ashmem subsystem to provide anonymous shared memory. It is

implemented as a driver module. It maintains a list of unused buffer, which can be released by

kernel. Also, it works with binder to realize shared memory functionalities in Android. We will

19

briefly discuss ashmem in following three parts: its abstraction in Android application layer, its

driver implementation and how it works with binder to realize shared memory.

First, ashmem’s corresponding abstraction in Android application is MemoryFile class,

which is defined in frameworks/base/core/java/android/os/MemoryFile.java. In fact, as we

mentioned in previous section, when opening a Linux driver, user gets a file descriptor

corresponding to the device he opens. Therefore, the MamoryFile actually opens the ashmem

driver and stores the file descriptor in its scope.

The ashmem module is implemented by files in

kernel/common/drivers/staging/ashmem.h and kernel/common/drivers/staging/ashmem.c. It can

perform open, mmap, read, write, pin and unpin. People may think ashmem is implemented in a

complicated way. However, it is fairly simple. When user opens the /dev/ashmem driver,

ashmem create a struct ashmem_area structure and stores the structure into the private buffer

attached to the opened file. When the user tries to get the shared memory, ashmem calls

shmem_setup_file, a function provided by Linux kernel to realize the shared memory. Therefore,

most of complicated work has been taken care of by Linux kernel. This makes ashmem driver

fairly light-weighted. People might be curious about pin/unpin operations provided by ashmem.

The ashmem driver divides allocated memory into several struct ashsmem_region, these ashmem

regions linked as a linked list. The struct ashmem_area consists of a pointer to the head of the

linked list. This list provides information that which region of the allocated memory are being

used by user. User pin a specific region of shared memory by explicitly calling pin function.

Kernel can utilize these information to use unpinned region of ashmem when memory are

limited.

Finally, we need to look at how shared memory are used in Android. As we can see from

previous description, the shared memory is specified by the file descriptor returned when

opening the ashmem driver. As for Linux developer, sharing the file table might be easy. When

fork() is called, the file table is shared between parent and child process. However, in Android,

all processes only have to be forked by Zygote process. Then how can processes share the

memory? This is where binder comes to play. We will discuss what binder really is in later

section. Now, we can just think binder is an IPC mechanism which can pass messages between

two different processes. The general process are as follows: process 1 get the binder reference

through Service Manager to build connection with process 2. Then process 1 copy the file

20

descriptor to binder and send it to process 2. When the binder processing the file descriptor copy,

the binder will know it is handling a file descriptor. Therefore, binder will copy the file structure

specified by the file descriptor to process 2. This is similar to copy one entry of file table to

another process. Therefore, process 2 gets access to the shared memory created by process 1.

 4.2.3 Binder

All Android IPC mechanisms are actually realized by binder driver in the end. People

may have used bundle or intent in Android development, these class are just several different

abstraction of binder driver in application layer. Therefore, binder is one the most important

system component in Android, also the most complicated one. It is glue which sticks different

Android component together. When people studying Android binder, they tend to be confused by

its hierarchical abstractions and complex call processes. This section will mainly focus on how

binder differs from other IPC mechanism and how this is realized.

IPC Number of Copy

shared memory 0

binder 1

socket / pipe /

message queue
2

Table 4. IPC mechanism and number of copy

Linux kernel has already provided many IPC mechanism, including shared memory,

socket, pipe, and message queue. In Table 4 we generalize the major different between binder

and these IPC mechanisms. The biggest difference is the times of data copy in a single

transaction. Shared memory doesn’t need data copy. However, it is hard to control and trace. As

for socket, 2 times of data copy, from user-space to kernel and from kernel to user-space, are too

much cost for a mobile device. But socket mechanism imposes a client-server model in IPC,

which secures the transaction and easier to control the system. To make the advantage of client-

server communication model while reducing times of data-copy, Android introduces binder

mechanism. Binder enforce the client-server communication model between processes, while

only requiring one time data-copy for each transaction.

How this is realized? To figure this out, we need to look into binder driver in detail. The

basic operation binder driver provides are read/write. The data copy only happens when write is

21

called. Fig 4 illustrates how binder driver works. As indicated on Fig 4, when a certain process

opens binder driver, it create a binder instance in binder driver. Once the binder instance is

created, the binder driver does following operations: first, it creates a buffer for this binder

instance, and map this buffer to the address space of the calling process. Then binder driver

stores the binder instance into its internal map and return a strong binder reference to the calling

process. When other process wants to send information to this process, it calls write operation

along with the reference to the binder instance created by the target process. Then the binder

driver uses copy_from_user to copy data from sending process to the buffer it creates for the

target process. Because this buffer is shared between binder driver and target process, not further

copy operation is required. Finally, binder driver notify the target process to accept the sent data.

Fig 4. Illustration of Binder driver structure and working process

The next question is how process get the binder reference to another process. This done

by Server Manager we mentioned earlier in this chapter. Server Manager is working as a name

server in Android system. Whenever an Android service is created, it has to register itself to the

Server Manager. The Server Manager store the mapping between service name and it binder

reference in its scope. Other process can communicate with Server Manager through binder

22

driver to get binder reference of server. The binder reference of Server Manager is defined as a

unique global value 0 once the Android system starts.

There are last two things needs to discuss about binder. First, difference between weak

binder reference and strong binder reference. As shown on Fig 4.2.3.1, only the creator of binder

instance owns the strong reference to the binder. The binder reference which other processes get

is only weak reference. This difference enables binder driver to impose different access control

policy to different owners of binder reference. The second thing is the anonymous binder.

Though processes can get binder reference through Server Manager. Not all binder has to get

register to the Server Manager. Once a binder connection has been built between two processes.

They can create private binder and send the reference through the existing binder connection.

Then, this binder connection is private to this pair of processes. This mechanism enhances

security of IPC communication in Android system.

With the introduction of binder mechanism, Android can finally utilize client-server

model. This is a crucial feature, because Android can finally builds up a multi-server-like system

above Linux kernel. The zygote can monitor all Android processes and kills faulty system

components when needed. This feature improves the dependability of the entire Android system.

 4.3 Application Components

Application components are core of the Android system. These components can be

divided into four types: Activity, Service, Broadcast Receiver and Content Provider. To facilitate

these components, there three modules including application thread, looper and installation. The

remainder of this section briefly summarize features of these components.

 4.3.1 Activity

Activity and Service is the basic component for Android application. They combined to

build a complete application. Android system provide a complete mechanism to start these

Activity and Service. Also, these components can communicate through binder mechanism we

introduced earlier in this chapter.

In Android system, there are two ways to start Activity, one is clicking icon of

application. The other is to start subActivity inside the Activity. Since this thesis focus on

preliminary work of porting Android, we will focus how Zygote process generate these Activity.

23

As the Activity is triggered. Launcher or other Activity communicates with

ActivityManagerService to start an Activity. Here, ActivityManagerService is an Android service

generated by Zygote as Zygote starts.

Then, ActivityManagerService pauses caller component through binder. As the caller

component gets into paused state. The ActivityManagerService create a new process to start a

ActivityThread instance. This new process is created by Zygote process. The

ActivityManagerService can notify Zygote to create a new process.

As ActivityThread starts, it creates a binder instance and pass the reference to

ActivityManagerService. Then ActivityManagerService can communicate with ActivityThread

through this binder reference.

Finally, ActivityManagerService notify ActivityThread to start Activity.

 4.3.2 Service

Starting Service component is basically the same as Activity. The main difference of

Service is that Service usually running in an independent Android process. Here, we briefly go

over the process of starting Service and binding Service.

As for starting Service, the caller process will communicate with ActivityManagerService

through binder to create a new process. Then the new process creates a binder and pass the

binder reference to ActivityManagerService. The ActivityManagerService then start the Service

process through its binder reference. The general process is similar to starting Activity.

When an Activity needs to bind a Service. It first communicate ActivityManagerService

through binder to request a specific Service. The ActivityManagerService request the Service

with onBind function to get binder reference. After ActivityManagerService gets the binder

reference, it pass this reference the caller Activity. Finally, the Activity build connection with

requested Service the binder reference.

 4.3.3 Broadcast

Broadcast is a message passing mechanism provided by Dalvik. It has few relation with

binder driver. On the other hand, it is closer to Message-Driven Bean provided by J2EE. Since

this thesis won’t focus on actual implementation of Dalvik virtual machine. We won’t discuss

actual work process of Broadcast.

24

However, we can briefly summarize difference between binder and broadcast. As

mentioned in previous sections, to communicate through binder, a process needs to get a

reference to a binder instance of the target process. However, in Broadcast, the receiver doesn’t

even have to know the sender of the message. It only needs to listen a certain type of message on

a specific port. Broadcast brings more flexibility of message passing for processes in Dalvik

virtual machine.

 4.3.4 Content Provider

Content Provider is another type of abstraction of binder IPC provided in Android

system. The reason of designing Content Provider is due to various data input for a mobile

devices. As for a mobile device, data source can be internet, database or local files. As data size

increases, the complexity of handling different type of data source will also increase. To provide

a better interface for data handling, Content Provider is introduced to hide the complexity data

I/O from Android application

The actual data transfer between application and Content Provider is still through binder

interface. However, there is another problem. Data from Content Provider is usually large. In this

case, binder mechanism is not efficient anymore. This is where ashmem driver can help. As

described before, processes can share file descriptor to a share memory through binder driver.

This is what exactly happen in Content Provider. An application creates a shared memory, and

pass the descriptor of this memory to Content Provider. Then application and transfer large

chunk of memory through shared memory.

 4.3.5 Zygote and Process

Zygote process, as the meaning of its name, forks all application process and system

server process in Android system, except middleware native service. This sections will explains

how Zygote process are generated and how it forks other process.

Zygote process is created by init process, same as most of processes in Linux. The

starting process is defined in init.rc file. After Zygote process is created, it starts to initialize

Android system and forks a process called SystemServer. SystemServer continues starting other

system services including PackageManagerService and ActivityManagerService. However,

SystemServer doesn’t fork these processes by itself. It communicates with Zygote process to fork

these system servers.

25

After Zygote process finishes initializing the Android system. It waits for messages from

ActivityManagerService to fork process for Activity or Service.

 4.3.6 Messages and Looper

Though Android IPC mechanism is primarily based on binder and ashmem driver. The

message handling inside Android is different. When a server finishes a request, it sends a reply

back to client. However, in Android system, this reply message is not directly passed to client.

Instead, it push the message into a message queue of the client process. Each application or

system component in Android has a message queue. Each application can have a thread waiting

under an infinite loop to handle its message queue. And the Looper is the abstraction of the

infinite loop and message queue.

 4.4 Compatibility with Minix

After analyzing Android and Minix3 design, we can easily realize that both systems share

some similarities. Also, differences also exist. This section mainly analyzes compatibility of

Android with Minix system.

 4.4.1 Similarities

The biggest similarity that Minix3 and Android share is the multi-server design. As

discussed above, Android can be viewed as multiple services and activities running above the

Linux kernel. Android achieve this design by introducing a new IPC mechanism, binder. With

binder, Android imposes a client-server model in system IPC. Each process has to have a thread

waiting on an infinite loop for binder request. As for Minix3, it is inherently a multi-server

system. This shows that Minix3 and Android designers come to an agreement that client-server

model is a safe choice for inter-process communication.

Second, both Android and Minix3 has separate process running as a naming server. In

Android, all activities and services have to register themselves on Server Manager when

initialization. To get service from a specific server, the client must query the Server Manager to

get the reference of a binder owned by the target server. In Minix3, Reincarnation Server offers

nearly the same functionality as Server Manager. In Minix3, all programs are running as

independent processes above kernel. To get build communication with a target server, a process

must get the endpoint of the target server. This endpoint is generated and stored on Reincarnation

26

Server once a server gets started. In both design, the naming server provides a verification

ability. Only verified service or activities can be accessed. This naming server can also easily

create an access control list to restrict accessibility of certain service. This kind of possibility

provides potential for high dependability and security demand.

 4.4.2 Differences

One of the differences of Android and Minix3 design is the overhead of communication.

Though adopts a multi-server design, Android system still runs above a Linux kernel. As

analyzed in Chapter 3, accessing driver module in monolithic system is fairly cheap. User-level

process can call kernel-procedure by trapping. No message passing is needed. However, in

Minix3, a driver operation may take up to 6 messages. Without violating microkernel design, it is

impossible to reach the same level of performance as Android has on driver accessing. Since

Android system makes large use of binder driver, this overhead can make big differences in

porting.

The second difference is the restriction on data copy between processes. On Android, a

copy_from_user() call can be done with one step. However, on Minix3, the designer enforces

tight restrictions on data copy between processes. To copy a data from another processes, the

user must ask kernel to set up a grant from kernel, send the grant to the target process, and finally

target process copy the data from kernel with the grant. This copy process costs 6 message

passing and context switching, which is huge compared with Android.

27

Chapter 5 - Experiment

This Chapter describes the preliminary work I have done in port Android to Minix3

platform. Section 5.1-5.2 summarizes porting method and implementation details of porting

propriety drivers and prototypes of Zygote process. Section 5.2 talks about modification I made

in kernel. Section 5.3 presents performance measure and analysis of an IPC experiment.

 5.1 Porting Proprietary Drivers

In this section, I presents porting method I used in porting these drivers. Also, I explains

some trade-off in porting.

 5.1.1 Logger

The logging system consists of three parts: logger driver, system library and Logcat

service. To start with porting, we need to find their spots in Minix3 system. In fact, they are just

exactly the same in Mini3 as they are in Android.

The logger driver’s functionality can be easily ported in Minix3. Supported by

libchardriver provided in Minix3, logger driver can be easily implemented as a character driver

in user-space. The logger driver source file is located in log folder under drivers directory. It

initializes four minor devices: /dev/alog/main, /dev/alog/radio, /dev/alog/events, and

/dev/alog/system. The alog is specified to indicate that they are ported Android log devices. The

operation to logger driver in Minix3 is basically the same as Android from user point of view.

However, it should always to keep in mind that file operation on Minix3 may consists of up to 6

messages and context switching as overhead.

The library handling logger driver in Android is implemented in Java with a few native

functions. They are ported in Minix3 in C version. Functionalities are the same. The function

calls are listed in Table 5.

Procedure Function

d Send a DEBUG log message

e Send an ERROR log message

i Send an INFO log message

v Send a VERBOSE log message

28

w Send a WARNING log message

log_println Write one line to logger driver

Table 5. Interfaces of log library for writing log message.

The Logcat tool is implemented as a server on Minix3. Once started, it is running as a

server process in user-space. This is where functionalities are compromised during porting. The

Logcat tool consists of extensive functionalities, including formatting output and rotating output

log entries. Since this thesis is more focused on providing prototypes for Android porting on

Minix3. Logcat on Minix3 only implements basic feature of pulling log entries from logger

driver. As project moves on, more functionalities can be extended with current design.

 5.1.2 Ashmem

The ashmem on Android mainly contains two parts: ashmem driver, defined in ashmem.c

and ashmem.c, and system library, defined in ashmem-dev.c.

Defining counterpart of ashmem driver in Minix3 of ashmem driver is not as easy as

logger. Android implements ashmem as a driver module mainly for two reasons: first, to fully

utilize kernel functionalities. Inside kernel space, ashmem can directly call several kernel

procedure to realize kernel memory mapping. Second, to follow the mmap and file descriptor

pattern. These two benefits on Android become limitations for Minix3 implementation.

Normally, when requiring a shared memory, Android user makes following calls:

int fd = ashmem_create_region(“name”, size);

void *addr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

Here, mmap function does a file-backed memory mapping to get the buffer of allocated file

structure. However, since file structure are implemented with a different filp structure, which

doesn’t contains a buffer, file-backed mmap is still not supported on Minix3. This pattern cannot

be followed. In addition, after moving driver modules, each system call inside inside driver

module can cost at least one message passing. Also, Minix3 imposes several developing

restrictions on driver to enhance its dependability. All these things combined make the ashmem

no longer suitable as a driver module on Minix3.

 Instead of driver process, porting ashmem as a server process can be easier. It has more

flexibility in developing on Minix3. Also, by directing communicating with a stand-alone server

process, about 4 message passing can be saved compared to driver implementation. However,

29

with limited file-back mmap support on Minix3, a compromise has to be made. In current design,

mmap is replaced by a new system function ashmem_mmap with same input parameters. With

this type of design, we can preserve original interface to biggest extents. Once file-back mmap is

fully supported, update can be easily done by a simple typdef inside ashmem-dev.c

 To sum up, as for ashmem port, ashmem is now ported as a server process. A new

ashmem_mmap is defined in ashmem-dev.c file. A list of procedures is provided in Table 6 and

Table 7.

Procedure Function

ASHMEM_SET_NAME Set name of a memory area

ASHMEM_GET_NAME Get the name of a memory area

ASHMEM_SET_SIZE Set size of a memory area to be allocated

ASHMEM_GET_SIZE Get size of a memory area

ASHMEM_SET_PROT_MASK Set protection mask of a memory area

ASHMEM_GET_PROT_MASK Get protection mask of a memory area

ASHMEM_PIN Pin a region of a memory area

ASHMEM_UNPIN Unpin a region of a memory area

ASHMEM_GET_PIN_STATUS Get pin status of a region of a memory area

Table 6. System calls provided by ashmem server in Minix3

Procedure Function

ashmem_create_region
Create a shared memory, return the id

associated to it

ashmem_set_prot_region Set the protection mask to the memory area

ashmem_pin_region Pin a region of a memory area

ashmem_unpin_region Unpin a region of a memory area

ashmem_get_size_region Get size of a memory area

Table 7. Procedures provided to manage ashmem

 5.1.3 Binder

The interface of binder driver is fairly simple. However, as we discussed in previous

chapter, the underlying design of binder is profound. This reflects on its code size and

30

complexity. As we analyze the source code, binder.c has around 3665 lines of code, which is the

most of three drivers.

However, a large amount of functions defined in binder.c are working with a waitequeue

defined in each binder instance. The reason for incorporating a waitqueue in Android binder is

because that Linux kernel is not a multi-server system. To working with Android running above

binder driver, the binder has to find implement some message handling mechanism. When

porting binder to Minix3, because Minix3 is inherently a multi-server system. Once we port

binder as a certain system component, message handling has already taken care by kernel.

Therefore, we can drop all code doing message handling inside binder.c

Benefited from Minix3’s design, we can focus rest of binder code and decide how we

position the binder driver into Minix3 system design. The binder is implemented as a driver

module. The reason for this is to let binder driver get full access to kernel data structure. In fact,

the memory mapping used in Android binder is done by directly working on struct

vm_area_struct and struct vm_struct, people familiar with Linux kernel development may realize

these are just basic virtual memory structure for user-space and kernel. As we discussed in

previous section, driver on Minix3 is just a user process. In addition, Minix3 has enforced many

restrictions for driver developers. If we are not working with real device, implementing system

service in driver process doesn’t give us any benefit. Therefore, binder should be implemented as

a server process on Minix3.

Since memory mapping between different processes have been supported on Minix3, the

rest of binder porting can be really easily. For every write operation, one data need to be

performed. Remember, data copy in Minix3 is expensive. Here, we can introduce a new kernel

procedure, without modifying too much of kernel code, to get performance optimization for the

binder. This new kernel function is called bindercopy, which can directly perform data copy with

virtual address. Performance difference will be measured in later chapter.

To sum up, binder can be ported as a server process. Due to Minix3’s multi-server

design, message handling code in binder.c can be saved for porting. The kernel acceleration can

be provided for binder server.

System calls provided by binder server is listed in Table8.

Procedure Function

BINDER_WRITE_READ Perform write and read operation

31

BINDER_SET_CONTEXT_MANAGER Set context manager, which is Server Manager.

BINDER_VERSION Return the version number of binder

Table 8. System calls provided by binder server in Minix3.

 5.2 Zygote and Process Initialization

Zygote in Android has been discussed in previous chapter. It is a process forked by init

process. Then Zygote is responsible for generating all Android system processes.

The actual implementation of Zygote process on Minix3 might be a lot of work. The

Zygote code is tightly combined with Dalvik virtual machine, which actually falls out of the

focus of this thesis. However, we can still discuss a prototype for Zygote process before we port

Dalvik virtual machine.

Different from other system, init process on Minix3 doesn’t fork system processes after

initialization. This work is handled by Reincarnation Server. Therefore, our Zygote should works

the same way. The current proposed Zygote prototype is an independent server process. To keep

unity of system design, Zygote still listen on service fork request. However, it acts as a

forwarding server, which forwards these forking request to Reincarnation Server. With this kind

of mechanism, Zygote can still listen and control process creation of all Android processes. Also,

Reincarnation Server maintains its ability of monitoring the entire Minix3 system.

 5.3 Kernel Modification

A new kernel call is added to provide acceleration for binder server. The interface in

kernel is like following:

Int do_bindercopy(struct proc *caller_ptr, message *m_ptr);

The corresponding system library interface is:

Int sys_bindercopy(endpoint_t dst_t, endpoint_t src_t, vir_bytes dst_addr, vir_bytes

src_addr);

The kernel call provides ability of directly copying data between two processes with their virtual

memory. The kernel grant system are avoided. The downside of this function is that it breaks the

dependability in some level. To keep this leak small, sys_bindercopy is only allowed to be used

by binder server. Otherwise, error will be returned, no memory copy takes place.

32

 5.4 Performance Measure

For measurement, a PC containing Intel i7, 16 GB memory was used. Two user-

level process running in different address spaces. One is a client process and the other

serves as server. Client process repeatedly performs request to server through binder.

Server always replies to clients and process its requests. 100000 requests are sent and

time elapsed is recorded.

As for Minix3, the binder is running as a server process. On the Android, binder is

located in kernel as a driver module. Three instances of operating system are tested. Two

are Minix3 with proprietary drivers ported. One of them uses newly-added kernel

function as acceleration. As for Android, Android-x86, a forked Android version is used.

The reason of using Android-x86 is to let three instances run on the same device.

Fig 5. Performance measurement with read-write through binder

As we can see, Minix3 without any kernel acceleration performs worst. Kernel functions

brings about 75% improvement in performance. The Minix3 with kernel acceleration achieves

almost same performance as Android-x86. This proves that, the biggest hinder of microkernel

system is not the message passing itself, but the communication complexity brought be modular

design. In original Minix3 kernel, data copy has to go through memory grant system, which takes

8 more messages during on binder transaction.

0

50

100

150

200

250

300

8 16 64 128 512 1024 2048 4096

Android-x86 Minix3 with Modified Kernel Minix3

33

Fig 6. Performance measurement with read-write through binder

Another thing need to notice is that performance doesn’t fall with size of transaction, as

shown on Fig 6. However, this reflects that on modern system, one-page data is almost the same

as several bytes. As for larger size data, the Android will utilize ashmem instead to handle. The

binder only needs to care about smaller data.

0

50

100

150

200

250

300

8 16 64 128 512 1024

Android-x86 Minix3 with Modified Kernel Minix3

34

Chapter 6 - Future Work

This thesis provides prototypes of dividing Android system and porting them to Minix3

platform. Also, a preliminary work of porting proprietary drivers is presented. To make Android

applications running on Minix3, there are still a large amount work to do. In this chapter, we will

points out those components which can be important for future porting.

The remainder of this chapter start with Dalvik virtual machine. Section 6.2 explains

hardware abstraction layers.

 6.1 Dalvik Virtual Machine

Dalvik virtual machine is one of the most important component in Android. It connects

Java interface and native system service, creating an efficient and powerful Android system.

Dalvik must be studied for future porting.

Dalvik virtual machine is quite similar to Java virtual machine. The biggest difference

between Dalvik and JVM is that Dalvik’s instruction set is register-based. On the other hand,

JVM uses stack-based instruction set. Besides that, Dalvik provides functionalities same as JVM,

including memory management, garbage collection, just-in-time compiling, Java-Native-

Interface and process management.

Zygote works closely with Dalvik virtual machine. As discussed previously, Zygote

creates all processes Android system needs. Once a new process is created, a Dalvik instance is

also initialized. After initialization work done by Zygote, the initialization process will be

continued by Dalvik instance.

 6.2 Hardware Abstraction Layer

Hardware Abstraction Layer (HAL) is used by Android system to seal the device driver

implementation and provides interface to upper layers. There are two major benefits for using

HAL. One is to provide a standard for those who want to port Android to their devices. The other

is that HAL resides in user-space. Since Linux kernel is under GNU license, hardware

manufacturers probably don’t want to open all of their source code. In this case, HAL, which is

under Apache license, is right place for manufacturers to implement functionalities for their

products.

35

HAL has to be properly designed and ported in Minix3. Because it provides a uniform

interface for software layer running above. Big modification of its interface will lead to a huge

amount of rewriting work in later porting. A porting method to keep unity of interface between

HAL and upper system has to be found.

36

Chapter 7 - Summary

This chapter puts an end to this thesis by summering the research and highlighting

lessons learned. The central question of this thesis is that whether it is possible to run a modern

mobile operating system on a microkernel system. As a special case, Android system is studied.

This thesis analyzes Android system part by part, and provides preliminary work of porting

Android lower level services. Though it still needs a lot of work to fully support Android system,

they can be based on work and prototypes provided in this thesis.

Section 7.1 restate the problem and summarize methods used. Section 7.2 presents

lessons learned during this project.

 7.1 Statement of the Problem and Summary

In this thesis, we have researched whether a modern mobile operating system is possible

to run on a microkernel. Android has been the most popular operating system running on smart

devices. However, all of existing Android and its variations are based on a uniform Linux kernel.

Therefore, Android system is selected as a special case to study. A monolithic kernel design is

not suitable of demand on high dependability. To improve system’s dependability, Android

utilizes many mechanism in its design to control system components’ ability on accessing system

resources and services. Therefore, we try to port Android to a microkernel system, and see

whether a microkernel can simplify design of Android system and open up those restrictions.

We start with porting proprietary drivers on Android system. These drivers are logger,

ashmem and binder. After fully studying the design of Android system, we find that these drivers

support most of functionalities of Android. Most of system components Android provides are

different abstractions for these drivers. Therefore, properly porting can provide a solid

foundation for future porting.

Both binder and ashmem are implemented as server processes on Minix3 to fully utilize

Minix3’s functionalities. The logger stays the same as driver. We also offers a prototype of

Zygote process. It is designed as a server process forwarding requests to Reincarnation Server in

Minix3. To accelerate binder’s performance, a new kernel call is added in Minix kernel. This

brings 46% improvement of overall performance.

37

 7.2 Lessons Learned

In this section we present some important lessons we learnt in this project.

First, a multi-server system design simplifies implementation. Android system tries to

realize multi-server system based on Linux kernel. It introduces binder driver to achieve this

goal. The binder driver puts many work on implements its message handling mechanism.

However, with inherently following multi-server system design, the Minix3 kernel provides well

support for message handling. The code complexity in binder is reduced on Minix3.

Second, a highly modular system design brings huge overhead. As we see in performance

measure, communication overhead is the biggest challenge hindering Minix’s performance.

Certain functionalities are achieved by several system components. Therefore, a highly modular

design can bring high complexity in communication between system components. When

considering improving performance of a microkernel system, reducing communication

complexity between system components should be one of high priority.

38

References

Herder, J. N. (2010). Building a dependable operating system: fault tolerance in MINIX 3.

Andrew, S. T., & Albert, S. W. (2006). Operating Systems-Design and Implementation.

Liedtke, J. (1994, January). Improving IPC by kernel design. In ACM SIGOPS Operating

Systems Review (Vol. 27, No. 5, pp. 175-188). ACM.

Liedtke, J. (1995). On micro-kernel construction (Vol. 29, No. 5, pp. 237-250). ACM.

Lackorzynski, A. (2004). L4Linux porting optimizations. Master's thesis, Technische Universitat

Dresden.

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., & Peter, M. (2011, October). L4Android:

a generic operating system framework for secure smartphones. In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and mobile devices (pp. 39-50). ACM.

"Develop | Android Developers." Develop | Android Developers.

http://developer.android.com/index.html, Web. 01 Apr. 2014.

"Welcome to the Android Open Source Project!" Android Developers.

https://source.android.com/, Web. 01 Apr. 2014.

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., & Young, M. (1986).

Mach: A new kernel foundation for UNIX development.

Engler, D. R., & Kaashoek, M. F. (1995). Exokernel: An operating system architecture for

application-level resource management (Vol. 29, No. 5, pp. 251-266). ACM.

Ganapathi, A., Ganapathi, V., & Patterson, D. A. (2006, December). Windows XP Kernel Crash

Analysis. In LISA (Vol. 6, pp. 49-159).

"Mobile Device OS." ABI Research. https://www.abiresearch.com/market-

research/product/1015462-mobile-device-os/, Web. 01 Apr. 2014.

Coverity Inc. Coverity Scan 2010 Open Source Integrity Report.

http://www.coverity.com/html/press/coverity-scan-2010-report-reveals-high-risk-

software-flaws-in-android.html, 2010.

Härtig, H., Hohmuth, M., & Wolter, J. (1998, September). Taming linux. InProceedings of the

5th Annual Australasian Conference on Parallel And Real-Time Systems (PART’98).

