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Abstract 

 This observational study compares the petrology of volcanic rocks from the Mutnovsky 

stratovolcano in southern Kamchatka to interpretations from the literature about volcanic rocks 

from similar tectonic settings. The analysis encompasses a range of rock types with bulk 

compositions ranging from basalt to rhyodacite. These rocks demonstrate textural and chemical 

diversity across the compositional range of samples as well as within individual samples. 

Quantitative data including point counts and microprobe traverses corroborate petrographic 

observations to reveal a potential scenario for Mutnovsky Volcano that can explain the observed 

textural and chemical diversity. Magma mixing and degassing induced-crystallization are two 

scenarios commonly invoked in the literature that may play a role at Mutnovsky Volcano. The 

samples from Mutnovsky Volcano exhibit characteristics that are consistent with both scenarios. 

For example, plagioclase grains in an andesite show swallowtail textures and large interior melt 

hollows that can be produced by diffusion-limited growth during large undercoolings when 

magmas degas. There are also coexisting euhedral and anhedral plagioclase grains within one 

sample, an observation that is interpreted to be consistent with the magma mixing hypothesis. 

Therefore, a comparison of the results from this study to those of various research groups 

investigating the evolution of arc volcanoes leads us to conclude that there is insufficient 

evidence to eliminate either of the two scenarios as a possible mechanism for producing rocks at 

Mutnovsky Volcano.  

Introduction 

 Plagioclase is a ubiquitous mineral in the Earth’s crust, existing in a variety of igneous 

rock types ranging from silica-poor basalts to silica-rich dacites and rhyolites. The prevalence of 

plagioclase in magmatic rocks, and its physical and chemical responses to changing pressure, 
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temperature and composition make it a particularly useful mineral for identifying sources of 

magmas and understanding magmatic evolution. Plagioclase often forms as euhedral phenocrysts 

and microphenocrysts; however, when plagioclase crystals develop as, for example, anhedral 

phenocrysts with disequilibrium textures, they capture important information about the processes 

they experienced prior to eruption. Plagioclase phenocrysts frequently capture melt inclusions, 

record growth zones, and develop a diverse set of textures and chemical compositions. 

Collectively, these features provide insight into subsurface processes.  

 Despite the usefulness of plagioclase in petrology, there is controversy within the 

scientific community about how to interpret the information provided by the mineral’s textures 

and chemistry. Petrologists have not reached a consensus about what processes produce the 

zoning patterns, textures, and chemical diversity found in plagioclase phenocrysts. Therefore, the 

literature contains contradictory interpretations about the same observations of plagioclase, 

sometimes in the same rock sample. For example, Churikova et al. (2007) interpret the texture in 

figure 1 to indicate the resorption of plagioclase in a mixing zone due to a recharge of basaltic 

magma, whereas Johannes et al. (1994) presented a similar image (Figure 2), which Frey & 

Lange (2011) interpret to indicate the dissolution of a plagioclase xenocryst. In general, the 

current state of the literature for interpretations of plagioclase features can be more or less 

divided into two sets of opinions – one invoking magma mixing and another invoking degassing-

induced crystallization.  

 Studies that support a magma mixing model often use geochemical data from plagioclase 

phenocrysts to support the hypothesis. For example, Churikova et al. (2007) studied major and 

trace element zoning patterns in plagioclase (Figure 3). They reported that the growth zones 

record changes in magma composition.  Their interpretation is that the coexistence of chemically  
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Figure 1: A photomicrograph of plagioclase texture observed by Churikova et al. (2007).  

 

Figure 2: A photomicrograph of plagioclase texture observed in experiments by Johannes et al. 

(1994). 
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diverse plagioclase grains indicates that magma chamber evolution includes three processes: (1) 

crystal growth and fractionation; (2) mafic recharge and magma mixing, and (3) continued 

crystal growth in a freshly heated intermediate magma. One implication of this hypothesis is that 

mingling conceals the true chemical composition of the melt(s) from which volcanic rocks form 

(Reubi & Blundy, 2009). The origin of andesites has become a focal point for this controversy.  

Physical and chemical characteristics of plagioclase crystals, and the bimodal compositions of 

plagioclase-hosted melt, in andesites have been interpreted to record magma mixing (Reubi & 

Blundy, 2009).  

 In addition to plagioclase zoning patterns and melt inclusion compositions, crystal size 

distribution (CSD) plots and plagioclase textures are also interpreted to be evidence of magma 

mixing. For example, figure 5 from Innocenti et al. (2013), shows the population density of 

 

Figure 3: A photomicrograph of a sieved core and growth zones in a plagioclase phenocryst 

from Churikova et al. (2007). 
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plagioclase as a function of crystal size range. These authors highlight a kink in the slope of the 

line that describes their measured CSD. They interpret the kink to indicate two distinct 

populations of plagioclase, which the authors suggest represent resorption events. The resorption 

events, which may be a result of an injection of new magma, are manifested in disequilibrium 

textures, such as sieved cores (Figure 3), and reverse zoning observed in plagioclase grains.  

 

Figure 4: A graph showing the compositional distribution of melt inclusions from Reubi & 

Blundy (2009). 

Magma mingling is commonly invoked as the cause for formation of intermediate 

composition magmas in arc environments; however, other plausible mechanisms that have been 

proposed to explain observations of plagioclase merit and warrant investigation. The broader 

scientific community agrees that large stratovolcanoes produce a wealth of texturally and 

compositionally diverse, phenocryst-rich rocks, and that magma mixing is an important process 

for producing the rocks in this tectonic setting. Nevertheless, some studies question the role that 

magma mixing plays at peripheral vents, arguing instead that diverse plagioclase compositions 

and textures may develop owing to changes in melt water concentration via degassing-induced 

crystallization (Crabtree & Lange, 2010). Consequently, scientists have proposed alternative 

processes to explain textural and chemical diversity plagioclase.  
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Figure 5: A CSD plot from Innocenti et al. (2013). Here they divide the plagioclase into two 

populations. Group A samples are from basalts and group B samples come from basaltic 

andesites. 

Although zoning is prevalent in many plagioclase grains, experiments by Lofgren (1974), 

Hammer & Rutherford (2002) and Suzuki et al. (2007) demonstrate that the sodic component of 

the grain frequently crystallizes after the calcic component; i.e., normal zoning. One alternative 

process that explains the reverse zoning seen in plagioclase occurs when the rim of a plagioclase 

phenocryst crystallizes first, creating a hollow channel that later crystallizes inward. 

Furthermore, experimental simulations demonstrate that diverse plagioclase textures, including 

swallowtail and hopper textures, can occur via degassing-induced crystallization (Hammer & 

Rutherford, 2002; Couch et al., 2003; Martel & Schmidt, 2003; Szramek et al., 2006; Suzuki et 

al., 2007).  

 The purpose of this study is to investigate and understand the processes that produce the 

diverse set of plagioclase textures and compositions found in basalts, basaltic andesites, 

andesites, and dacites. To do so this study analyzes samples from a stratovolcano by using a 

variety of both qualitative and quantitative techniques, including petrographic observations, point 
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counting, Scanning Electron Microscopy (SEM), and electron probe microanalyses (EPMA). 

Finally, the observations and data are synthesized and compared and contrasted to the results of 

published studies with conflicting interpretations.  

Geologic Setting 

 The samples used for this study were collected from Mutnovsky Volcano in Kamchatka. 

Mutnovsky is an active arc-front volcano located on the Kamchatka Peninsula in Eastern Russia 

(Figure 6: Moore et al.1992).  The following geologic description for Mutnovsky is based on 

Selyangin (1993). Mutnovsky Volcano consists of four overlapping eruptive centers – 

stratocones known as Mutnovsky I, II, III, and IV (Robertson et al., 2013). A cross section of the 

volcano is provided in figure 7.  
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Figure 6: A regional map of Kamchatka showing the location of Mutnovsky Volcano; Moore et 

al. (1992) calculated the subduction rate.  

The development of the stratocones is thought to proceed in cycles (Selyangin 1993). The 

cycle begins with the northwest subduction of the Pacific Plate and the growth of a new cone. 

Next, a large crater forms, and a cone grows within the caldera. Finally eruptive activity ceases, 

and the vent shifts, beginning a new cycle. Mutnovsky I is the oldest cone of the four.  

Mutnovsky I, II and III erupted magmas ranging from basalt to rhyodacite; however, the 

majority of the volcanic rocks at these centers are basalts and basaltic andesites, while the more 

silica-rich lavas are relatively volumetrically sparse (Robertson, 2013). Mutnovsky IV, the 

youngest and lowest cone, has the least variable composition, producing purely basalts and 

basaltic andesites.. This study focused on samples from Mutnovsky I, II and III.  

 

 

Figure 7: A cross-section of Mutnovsky volcano showing the relative positions of the four cones 

from O.B. Selyangin (1993).  
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Methods 

Samples were collected from each of Mutnovsky’s eruptive centers (MI, MII, MIII, and 

MIV) along with rock chemistry data and thin sections for each of the samples. Petrographic 

observations of various rock types with bulk compositions ranging from basalt to rhyodacite are 

presented. The observations focus on alterations on the faces and along fractures of plagioclase 

phenocrysts, melt inclusions, the fabric of the inclusions, plagioclase zoning, and crystal form. 

Chemical data obtained by using the SEM and EPMA, normative mineralogy calculations 

(CIPW), and point counting are used to expand on the petrographic observations.  

Results 

 Table 1 includes whole rock chemistry, CIPW norms, and point counting results. Note 

that the rock chemistry and CIPW data are provided in weight percent. Point counting was 

performed by using a polarized light microscope to identify the mineral at the center of the 

optical cross hairs for 1000 points per thin section, and results are provided in terms of percent of 

the total number of counts. The boundary between phenocryst and microphenocryst size is 200 

microns. 

Mutnovsky I 

 Sample CM-33 comes from a hypocrystalline (a volcanic rock consisting of glass and 

crystals), medium to coarse-grained basalt with a crystalline groundmass (56.5%) containing 

glass, vesicles and phenocrysts. Phenocrysts include plagioclase (35.1%) and pyroxenes (1.3%).  

The sample contains both euhedral plagioclase as well as subhedral to anhedral plagioclase. The 

euhedral plagioclase are often large phenocrysts with optical zoning and inclusions (Figure 9). 

All of the plagioclase grains analyzed in this sample are normally-zoned; a representative EPMA 

chemical traverse is provided in figure 8. The anhedral plagioclase occur both as large   
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Cone # 3 1 1 1 2 1 2 3 

Rock type Basalt Basalt B. Andesite Andesite Andesite Dacite Rhyodacite Dacite 

Analysis Whole rock               

Sample # M3-08-08 CM-33 M1-06-08 CM-24 CM-147 CM-47 CM-113 CM-8a 

SiO2 48.85 51.56 53 59.36 59.88 64.68 67.53 69.4 

Al2O3 22.65 22.55 17.26 17.87 16.33 16.04 14.63 14.61 

FeO (T) 7.14 7.39 10.58 6.06 7.27 5.34 4.72 3.65 

MnO 0.131 0.21 0.224 0.16 0.16 0.15 0.108 0.1 

MgO 4.4 3.18 3.43 2.18 1.96 1.62 1.05 0.75 

CaO 12.42 8.56 8.06 5.46 4.74 4.02 3.31 3.09 

Na2O 2.16 2.82 3.43 4.32 4.63 3.76 4.55 4.18 

K2O 0.28 0.59 0.44 1.02 1.51 1.98 2.1 3.18 

TiO2 0.59 1.04 1.31 1.01 1.26 0.91 0.47 0.63 

P2O5 0.09 0.15 0.26 0.31 0.45 0.22 0.1 0.12 

LOI 0.63 1.48 1.41 1.12 0.96 0.85 0.21 0.26 

Total 100.1 100.35 100.6 99.55 99.96 100.16 99.33 100.33 

                  

Analysis CIPW              

Sample # M3-08-08 CM-33 M1-06-08 CM-24 CM-147 CM-47 CM-113 CM-8a 

Quartz 0 5.13 5.66 12.19 10.82 21.25 21.8 23.69 

Plagioclase 69.56 65.35 59.42 61.62 58.49 50.32 51.79 47.08 

Orthoclase 1.65 3.49 2.6 6.03 8.92 11.7 12.41 18.79 

Corundum 0 2.07 0 0.47 0 0.93 0 0 

Diopside 8.08 0 0.32 0 1.07 0 2.12 2.43 

Hypersthene 15.35 19.15 24.6 14.36 14.91 11.87 8.97 5.98 

Olivine 2.2 0 0 0 0 0 0 0 

Ilmenite 1.12 1.98 2.49 1.92 2.39 1.73 0.89 1.2 

Magnetite 0.58 0.59 0.86 0.49 0.58 0.43 0.38 0.29 

Apatite 0.21 0.35 3.27 0.72 1.04 0.51 0.23 0.28 

                  

Analysis Point count               

Sample # M3-08-08 CM-33 M1-06-08 CM-24 CM-147 CM-47 CM-113 CM-8a 

Plag 30.8 35.1 17.8  24 12 11.4 13.7 11.7 

Pyroxene 0 0 1  6.3 0.4 2.8 1.7 1.1 

Olivine 3.4 1.3 0  0 0 0 0 0 

Qtz 0 0 0  0 0 0.9 1.6 0.5 

Amphibole 0 0 0  0 0 0 0 0 

Oxides 0 0 0  2 0 0 0 0 

Groundmass 65.4 56.5 80  63.1 87.2 82.3 80.7 85.4 

Vesicle 0.1 7.1 1.1  0.1 0.4 2.2 2 1 

Unknown 0.3 0 0.1  0 0 0.4 0.3 0.3 
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(i.e., > 1000 microns) and small phenocrysts (i.e., <500 microns), and they often have mottled 

inclusions or ratty boundaries (Figure 10).  

When present, the melt inclusions in plagioclase associated with euhedral phenocrysts 

cluster in bands that reflect the shape of the growth zones, especially near the boundary of the 

crystal. These inclusions are small and spherical. Other inclusions are large with irregular shapes, 

sometimes forming networks with other inclusions on the crystal face. These inclusions are 

typically found in anhedral to subhedral phenocrysts in the sample. 

 

Figure 8: In CM-33, a plagioclase traverse reveals a calcic core and a relatively sodic rim i.e. a 

normally-zoned grain. Note this is not the same grain as in figure 6. 

Sample CM-47 is a medium to coarse-grained dacite with porphyritic, hypocrystalline 

texture. This dacite consists of plagioclase (11.4%) and pyroxene (2.8%) phenocrysts and a 

crystalline and glassy groundmass (82.3%). There are also several glomerocrysts (aggregates of 

crystals) in the thin section containing plagioclase and pyroxenes (Figure 11).  

The plagioclase depicted in figure 12 is a large anhedral phenocryst with mottled 

inclusions and zoning. Most of the plagioclase grains in this sample are anhedral to subhedral  
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Figure 9: A euhedral plagioclase phenocryst with zoning and inclusions (CM-33).  

with complex twinning patterns and zoning. Many of the inclusions are mottled, have non-

spherical shapes, and do not exhibit obvious patterns.   

Mutnovsky II 

Sample CM-147 is a fine to medium-grained porphyritic andesite with hypocrystalline 

and flow-aligned texture. This thin section has only a few large phenocrysts (>1000 microns), 

unlike the other samples. The largest phenocryst in the sample is a plagioclase grain that is 2 

millimeters in length. Most of this sample consists of tiny phenocrysts (nearly microphenocrystic  
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Figure 10: An anhedral plagioclase phenocryst with zoning and mottled inclusions (CM-33). 

in size) of plagioclase and a glassy groundmass.  The thin section consists of 87.2% groundmass 

and 12% plagioclase. The rest of the thin section is less than 1% pyroxenes and groundmass. 

Many of the tiny phenocrysts of plagioclase, which make up the vast majority of the 

plagioclase in this sample, are elongate grains with swallowtail texture or other jagged 

terminations (Figure 13). The few larger phenocrysts of plagioclase have mottled inclusions and 

complex twinning patterns.  

Sample CM-113 is a medium-grained porphyritic rhyodacite with hypocrystalline texture. 

The sample contains glomerocrysts and phenocrysts of plagioclase (13.7 %) and pyroxenes  
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Figure 11: A glomerocryst containing plagioclase and clinopyroxene (CM-47).  

(1.7%) suspended in a glassy, microlite-rich groundmass (80.7%). The SEM confirmed that there 

is trace quartz in the sample (less than 2%). The plagioclase phenocrysts in the sample can be 

approximately divided into two populations. Many of the largest phenocrysts are anhedral with 

complex twinning patterns and a mottled network of inclusions (Figure 14). In contrast, many of 

the smaller phenocrysts are euhedral and demonstrate simple twinning. Most of the plagioclase 

analyzed is oscillatory-zoned. One of the grains is reversely-zoned.  
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Figure 12: An anhedral plagioclase with mottled inclusions and zoning (CM-47).  

Mutnovsky III 

Sample M3-08-08 is a hypocrystalline and coarse-grained basalt. It is 65.4% groundmass 

and has phenocrysts of mostly plagioclase (30.8%) and olivine (3.4%) with some phenocrystic 

pryoxene (<1%). Most of the plagioclase exists as both large and small anhedral phenocrysts  

with mottled inclusions. There are also a few large euhedral phenocrysts of plagioclase with non-

mottled tiny to medium-sized inclusions (Figure 15). These inclusions, in contrast to the CM-33 

basalt, do not demonstrate clustering patterns that reflect the growth zones of the phenocryst; 

however, these inclusions seem confined to the core of the crystal.  
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Figure 13: Swallowtail texture in a plagioclase microphenocryst(CM-147). 

Sample CM-8a is a dacite that has similar texture to the dacite CM-47. It is 

hypocrystalline, porphyritic, and medium-grained, and it contains a glomerocryst. The 

groundmass is glassy with microlites, and it makes up 85.4% of the sample. There are 

phenocrysts of plagioclase (11.7%) and pyroxenes (1.1%). Most of the plagioclase phenocrysts.  

in this sample are euhedral and have simple twinning patterns and optical zoning. A significant 

portion of the plagioclase grains lack visually recognizable inclusions. There are two plagioclase 

grains that have a different texture from the majority of the plagioclase. These grains are 

anhedral, and they have complex twinning patterns and mottled inclusions (Figure 16). Most of 

the plagioclase in this sample is normally and oscillatory-zoned (Figure 17).  
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Figure 14: A large, anhedral plagioclase phenocryst with mottled texture and a small, euhedral 

plagioclase phenocrysts with simple twinning (CM-113).  

 

Figure 15: Plagioclase grains in M3-08-08 with tiny, non-mottled inclusions. 



 

19 

 

Figure 16: Two anhedral plagioclase grains in CM-8a with complex twinning patterns and 

mottled inclusions. 

 

Figure 17: In CM-8a, an EPMA traverse of an oscillatory-zoned plagioclase grain.  
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Discussion 

 A plethora of published studies used plagioclase textures and compositions, modal 

mineralogy, and phenocryst and microphenocryst crystallinity to investigate magmatic processes 

(e.g., Churikova et al., 2007, Kent et al., 2010, Crabtree & Lange, 2010, Frey & Lange, 2011, 

and Innocent et al., 2013). This discussion consolidates the information from the literature and 

compares and contrasts the findings of numerous research groups with the data and observations 

from this study.  

 One hypothesis commonly discussed in the literature is that plagioclase textures and 

compositions are consistent with magma mixing, especially for the production of intermediate 

melt compositions such as andesite (e.g., Kent et al., 2010). Several papers described plagioclase 

textures that are characteristic of a magma mixing event. Churikova et al. (2007) studied 

plagioclase phenocrysts in a mafic enclave hosted in dacitic lava, and reported that the cores of 

these phenocrysts exhibit a sieve texture (Figure 3), which could be produced by magma mixing 

during the early growth stages of plagioclase. Their observation is consistent with plagioclase 

textures observed during the current study.  For example, in CM-8a, the plagioclase grains in a 

dacite exhibit sieved cores (Figure 18). In addition, many of the Mutnovsky samples with 

andesitic or dacitic bulk composition exhibit a variety of disequilibrium textures, including sieve 

texture, skeletal texture, and ratty crystal boundaries. In the literature, disequilibrium textures are 

commonly invoked as evidence for magma mixing. Although many of our observations are 

consistent with the literature, there are differences.   

One conflict that arises is that the observed modal mineralogy may be different from 

what would be expected if magma mixing were an important mechanism at Mutnovsky Volcano. 
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If these lavas were primary melts, the modal mineralogy would be expected to reflect the 

normative 

 

Figure 18: A sieved core in a plagioclase phenocryst, upper-right.  

mineralogy. As such, we would expect some quartz but no olivine if these rocks crystallized 

fully. In contrast, if these lavas were produced by a mixing event, we would anticipate the quartz 

to coexist with some olivine. As previously mentioned, the SEM confirmed that quartz is present 

in the dacitic and rhyodacitic samples; however, olivine is not present.  

 Although Reubi & Blundy (2009) focus on melt inclusion data, they mention an 

observation that conflicts with the observations from the current study. Like Churikova et al. 

(2007), Reubi & Blundy (2009) explain that crystals in andesites that form by mixing silicic and 
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mafic magmas are typically characterized by disequilibrium textures. While their observations 

are consistent with ours, it is also true that we observed disequilibrium texture across the 

compositional range of the samples from Mutnovsky. We found sieve-textured plagioclase in 

samples with bulk compositions including basalt, andesite, and dacite. Robertson et al. (2013) 

reported that sieve texture can result from rapid decompression, highlighting that a number of 

factors in addition to magma mixing can explain the textures found in these samples.  

 In their study of phenocryst-poor andesites and dacites from a monogenetic peripheral 

vent, Crabtree and Lange (2010) also described plagioclase textures and compositions. These 

authors, in contrast to that of Churikova et al. (2007) and others, focused on the role that 

degassing-induced crystallization plays in producing complex plagioclase textures. They 

observed swallowtail, skeletal, and hopper textures in plagioclase phenocrysts as well as large 

interior melt hollows in some grains. They explained that these textures are characteristic of 

diffusion-limited growth caused by large undercoolings that occur when magmas degas. We 

found the textures described in both of these studies in volcanic rocks from Mutnovsky. For 

example, the rhyodacite sample contains many small grains (microphenocrysts) with large 

interior melt follows (Figure 19). As described in the results section, we also observed 

swallowtail texture in small phenocrysts (about 200 microns each in size) in the andesite sample 

(Figure 13). Finally, there is a notable absence of hydrous phases such as amphibole across all of 

the samples, which suggests that degassing may have produced the observed textures.  

Nevertheless, we still discovered several inconsistencies when we continued to compare the 

results of this study with those of Crabtree & Lange (2010) and Frey & Lange (2011). For 

example, Frey & Lange (2011) discuss patterns in plagioclase compositions to support the model 

of degassing-induced crystallization over magma mixing. In their study, they found that the 
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plagioclase in andesites and dacites display a wide, continuous range in anorthite content. They 

invoke this compositional variation of plagioclase as evidence for a loss of dissolved water 

 

Figure 19: A large interior melt hollow in a plagioclase microphenocryst (20X, XPL).  

from the melt during degassing. In contrast to the results of Frey & Lange (2011) in this study 

many of the plagioclase grains in the dacites and in other samples have bimodally distributed 

anorthite contents (Figure 20). A degassing-induced crystallization model does not explain the 

observed bimodal distribution, and it is traditionally cited as evidence for magma mixing.  
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Figure 20: Variation of anorthite content in plagioclase from a dacite.  

Another observation that is seemingly inconsistent with the degassing-induced 

crystallization model is the variety of plagioclase textures and compositions we observed within 

one sample. Recall that in CM-33, we observed both euhedral plagioclase and sieve-textured 

anhedral plagioclase within one thin section. This observation was common across all 

Mutnovsky samples. In addition, the plagioclase traverses revealed the coexistence of normally-

zoned plagioclase, reversely-zoned plagioclase, and sometimes even oscillatory-zoned 

plagioclase, as in the dacite sample CM-8a. If degassing were the primary mechanism producing 

the zoning disequilibrium textures we observed, we would expect more textural and 

compositional uniformity within the samples. Therefore, it is necessary to understand if and how 

degassing can produce such textural and chemical diversity in one sample.  

Conclusions 

1. The types of textures observed in the Mutnovsky samples are consistent with 

observations in the literature, and they suggest that the crystals experienced 

disequilibrium and/or diffusion-limited growth prior to eruption. The lack of amphibole 

across the samples is potential evidence for a degassing-induced crystallization model.  
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2. One problem with the degassing-induced crystallization model is that it cannot explain 

the diversity of textures and compositions observed within individual samples, which are 

consistent with the magma mixing model.  

3. Nevertheless, magma mixing is not a perfect solution at Mutnovsky Volcano for two 

main reasons. First, we were unable to confirm the coexistence of quartz and olivine in 

any of the Mutnovsky samples, which is important evidence for magma mixing. Second, 

the expectation is that magma mixing to produces disequilibrium textures primarily in 

intermediate magmas; however, there was no evidence in the Mutnovsky samples that 

suggested the crystals in the intermediate magmas had significantly more disequilibrium 

texture compared to the crystals in the end-member magmas.  

4. There is no unequivocal evidence that allows us to eliminate either magma mixing or 

degassing-induced crystallization as a model for Mutnovsky Volcano. Instead the results 

from this study force us to conclude that the most likely scenario for Mutnovsky Volcano 

includes a combination of processes, including magma mixing, degassing-induced 

crystallization, and potentially others not discussed in this study, which collectively 

produce the textural and chemical diversity observed in the samples.  
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