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ABSTRACT 

Marijuana is the most popular illegal drug used in America among adolescents. 

Exposure to marijuana's main psychoactive ingredient Δ9-tetrahydrocannabinol (THC) 

during adolescence may have enduring effects on behavior during adulthood. This 

study investigated the effects of chronic adolescent exposure to THC on the reinforcing 

effects of cocaine and sensitization to the psychomotor stimulating effects of cocaine in 

male Sprague-Dawley rats. During adolescence (P28-45), rats were given once daily i.p. 

injections of either vehicle or 1 mg/kg THC. On P90 when considered full adults, we 

analyzed cocaine self-administration behavior by evaluating (1) within-session cocaine 

dose-effect curves, (2) acquisition of a small dose of cocaine (0.1 mg/kg/inj), (3) 

breakpoints on a progressive ratio schedule of reinforcement, and (4) locomotor activity 

sensitization to cocaine. Rats treated with THC during adolescence showed potentiation 

of the reinforcing effects of small doses of cocaine and were more likely to acquire self-

administration with access to small cocaine doses. However, the breakpoint or 

motivation for cocaine was unchanged between the two treatment groups under the 

progressive ratio testing. There was no difference in locomotor sensitization to cocaine, 

but rats treated with THC during adolescence showed an overall increased response to 

the psychomotor stimulating effects of cocaine. Together, these results demonstrate 

that exposure to THC during adolescence alters the reinforcing and psychomotor 

stimulating effects of cocaine, suggesting that adolescent THC exposure produces long-

lasting changes in the brain, specifically in reward systems. 
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INTRODUCTION 

 According to the 2012 results from the National Survey on Drug Use and Health, 

marijuana was the most commonly used illicit drug. Each day, an average of about 

6,600 people 12 years and older are introduced to marijuana for the first time. The 

percentage of past month marijuana users among youths aged 12 to 17 increased from 

6.7% in 2008 to 7.2% in 2012, which is now slightly higher than past month cigarette 

users (6.6%) (SAMHSA, 2013). Among 10th and 12th graders, 4% and 6.5% 

respectively used marijuana daily (NIDA, 2013). This large prevalence of marijuana use 

among teens has prompted the National Institute on Drug Abuse to work towards 

understanding the effects of marijuana and its active ingredients on brain and 

behavioral development in adolescents. 

 Adolescence is defined as a gradual developmental phase between childhood to 

adulthood consisting of rapid physical, emotional, and behavioral changes (Spear, 

2000). During this time period, many mammalian species develop skills necessary for 

independent survival, increasing social affiliations and exploration of novel areas to 

provide new sources of food, water, and mates (Spear, 2000). As they mature, 

adolescent rats, like humans, demonstrate an increase in risk-taking and novelty-

seeking behaviors while the motivational and reward-related brain regions are 

undergoing changes in development (Doremus-Fitzwater et al, 2010). These tendencies 

may drive adolescents to experiment with drugs of abuse. In fact, some previous 

studies have demonstrated that drugs may be more reinforcing to adolescents.  Studies 

in rats with short daily access to morphine show that adolescents may have heightened 

sensitivity to the reinforcing effects of opioids (Doherty et al, 2009). There is some 

evidence that adolescents are particularly sensitive to the novel stimuli produced by 
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drugs, which could make them particularly vulnerable to drug abuse. For example, 

adolescent rats were more sensitive to the reinforcing effects of morphine in a cue-

induced reinstatement procedure (Doherty et al, 2009) and nicotine in the conditioned 

place preference test (Shram and Lê, 2010).  

 Additionally, many plastic changes occur in the brain during adolescence, 

including synaptogenesis and synaptic pruning, myelination, and changes in 

neurotransmitter concentrations and receptor number, making the adolescent brain 

especially vulnerable to disruption of normal neurobiological development (Rice and 

Barone Jr., 2000). The high prevalence of marijuana usage among adolescents draws 

interest to the role of the endocannabinoid system in neurodevelopment. In rats, the 

number of cannabinoid receptors in the brain (CB1) increase during puberty, reaching 

maximum levels during adolescence and decreasing afterwards during adulthood 

(Rodríguez De Fonseca et al, 1993). Higher concentrations of CB1 receptors during 

adolescence may represent a period of vulnerability to the effects of exogenous 

cannabinoids, potentially resulting in deleterious effects on normal development upon 

over-activation of this system. A recent study examined the relationship between age of 

onset of marijuana use and white matter microstructure, finding that earlier marijuana 

use was associated with lower white matter fiber tract integrity possibly due to 

interruption of normal myelination (Gruber et al, 2014).  

 Further research has shown that adolescent THC exposure in rats produces 

elevated levels of the endogenous cannabinoid anandamide in the nucleus accumbens 

(NAc) in adulthood, which is implicated in reward-related behavior (Ellgren et al, 2008). 

Evidence suggests that the endogenous cannabinoid system is an activity-dependent 
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modulator of dopamine transmission, as shown by sensitization to the motor effects of 

dopaminergic agonists upon CB1 stimulation (Rodríguez De Fonseca et al, 2001). This 

suggests that elevations in endocannabinoid levels may produce enduring changes in 

normal dopaminergic signaling, an important neurotransmitter involved in the reward 

pathway. In addition to the mesolimbic dopamine system, the endocannabinoid system 

is also a major regulator of glutamate signaling (Bossong and Niesink, 2010). 

Glutamatergic projections to the NAc core have also been shown to be involved in drug 

seeking and reward (LaLumiere and Kalivas, 2008; McFarland et al, 2004), and 

exogenous cannabinoids can disrupt the normal regulatory role of endocannabinoids on 

this glutamate system (Hoffman et al, 2007). Therefore, THC exposure may disrupt 

normal endocannabinoid system functioning, causing persistent changes in reward 

processing.  

 These neural changes as a result of drug use also have long-term consequences 

on behavior. Studies have revealed that nicotine exposure in adolescence increases 

nicotine reward in adulthood as measured in a conditioned place preference test (Kota 

et al, 2009), and chronic exposure to THC in adolescence increases heroin self-

administration in adulthood (Ellgren et al, 2007). These data suggest that adolescent 

drug exposure can have enduring effects on adult behavior and potential drug abuse 

later in life.  

 Consistent with these behavioral findings, epidemiological studies have shown that 

early marijuana use is a predictor for later drug abuse, with the highest prevalence of 

heroine, cocaine, and psychotherapeutics users being among those who initiated 

marijuana use before 15 years old (Gfroerer et al, 2002). To further understand this 
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increased propensity for drug abuse, the present study investigated the effects of 

adolescent exposure to the active ingredient in marijuana (Δ9-tetrahydrocannabinol 

(THC)) in male Sprague-Dawley rats on the reinforcing and behavioral effects of 

cocaine in adulthood.  

 

METHODS 

Subjects.  Male Sprague-Dawley rats were obtained from Harlan (Indianapolis, IN) on 

P21, and they were maintained in a temperature- and humidity-controlled environment, 

with a 12-hour light/dark cycle with lights on at 7:00 AM.  All rats were group-housed 2 

or 3 per cage from post-natal (P) day 21-P85 with free access to food and tap water 

before the start of behavioral experiments. Starting on P90, rats self-administering drug 

or sugar pellets were restricted to 20 g of food per day and singly-housed for the 

duration of the experiments. Rats used in locomotor activity studies were free feeding 

and group-housed 2 or 3 per cage. All studies were performed in accordance with the 

Guide for the Care and Use of Laboratory Animals, as adopted and promulgated by the 

National Institutes of Health, and all experimental procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals. 

Drugs. THC and cocaine were obtained from the National Institute on Drug Abuse 

(Bethesda, MD).  Ketamine was purchased from Henry Schein (Denver, PA) and 

xylazine was purchased from Lloyd Laboratories (Shenandoah, IA).  THC was diluted in 

20% ethanol, 20% alkamul, and 60% sterile water. All other drugs were dissolved or 

diluted in sterile saline.  
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Surgery. For self-administration experiments, rats (P84-85) were implanted with chronic 

indwelling catheters in the left femoral vein under ketamine:xylazine (90 : 10 mg/kg 

intraperitoneal (IP) anesthesia as previously described (Collins and Woods, 2007).  

Catheters were tunneled under the skin and attached to stainless steel tubing, which 

exited the body through a mesh button sutured between the scapulae.  Immediately and 

24 h after surgery, rats were given 5 mg/kg carprofen s.c. Following the surgical 

procedure, rats were singly housed and given 5-7 days to recover post-surgery before 

self-administration.  Catheters were flushed daily with 0.5 ml of heparinized saline 

(50U/ml) during recovery, and before the start and after completion of self-

administration sessions. 

Apparatus. All drug and food self-administration sessions were conducted in operant 

conditioning chambers (30.5 cm W x 24.1 cm D x 21 or 29.2 cm H; Med Associates, St 

Albans, VT) placed inside sound-attenuating cubicles.  Each chamber was equipped 

with two nose-poke devices (ENV-114BM; Med Associates) positioned 3 cm above the 

stainless steel grid floor and a white house light on the top of the wall on the same side 

as the nose-poke devices. Each chamber was equipped with a syringe driver (PMH-107; 

Med Associates) that delivered solutions through Tygon tubing connected to a fluid 

swivel (Instech Laboratories, Plymouth Meeting, PA) and spring tether, which was held 

in place by a counterbalanced arm.  For food self-administration sessions, chambers 

were also equipped with a pellet dispenser (ENV-203M-45) and trough-type pellet 

receptacle (ENV-200R2M). Locomotor activity was measured in Plexiglas chambers 

(44.5 cm W x 44.5 cm D x 20.5 cm H) with grids of infrared light beams to detect 
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horizontal and vertical motion detected as beam breaks (Columbus Instruments, 

Columbus, OH).  

Experimental Design 

Adolescent treatments. On P28-45 (Spear, 2000), adolescent rats were treated once 

daily with either vehicle solution or 1 mg/kg THC via intraperitoneal (i.p.) injection. After 

P45 and before the start of behavioral experiments, rats were left undisturbed in their 

cages with the exception of weekly weight determinations and twice weekly cage 

changes. Separate groups of rats (N=6-9 rats per treatment group) were used in each of 

the experiments 1-5 listed below (see Figure 1). 

Cocaine or sugar pellet self-administration. Each operant chamber was equipped with 

two nose-pokes, one of which was illuminated with a yellow stimulus light (active nose-

poke) and one that was not illuminated (inactive nose-poke). The active and inactive 

nose-pokes were counterbalanced throughout each experiment. Completing the 

response requirement on the active nose-poke produced reinforcer delivery with 

simultaneous turning off of the nose-poke lights and illumination of the house light. 

Responses on the inactive nose-poke were recorded but had no programmed 

consequence. Following reinforcer delivery, there was a 10 sec blackout (no stimuli, no 

reinforcer availability) during which responses were recorded but had no scheduled 

consequence.   

Experiment 1: Cocaine self-administration: multiple dose procedure. On P90, rats were 

placed in operant conditioning chambers for daily self-administration sessions. Rats 

began with 60-min training sessions during which cocaine was available on a fixed ratio 

(FR) 1 schedule of reinforcement, such that rats received one intravenous infusion of 
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0.32 mg/kg/injection cocaine for each active nose-poke response. The rats were trained 

for 2 weeks with increasing FR requirements (FR1, FR2, FR3, and finally FR5). After 

these two weeks, the rats progressed to a multiple dose procedure (total duration of 133 

minutes) for 2 weeks. Rats responded for increasing doses of cocaine in ascending 

order in 25-min components (0, 0.032, 0.1, 0.32, 1.0 mg/kg/injection) with 2 min 

blackout between components. The dose was manipulated by holding constant the drug 

solution concentration and changing the infusion duration (~0, 0.1, 0.3, 1, and 3 sec, 

respectively). 

Experiment 2: Acquisition of a small dose of cocaine. On P90, rats were placed in 

operant conditioning chambers for daily self-administration sessions for 60 min during 

which 0.1 mg/kg/injection cocaine was available on a FR1 schedule of reinforcement for 

25 sessions.  

Experiment 3: Sugar self-administration. Starting on P90, rats began with 20-min 

training sessions during which a 45 mg sugar Dustless Precision Pellet (BioServ, 

Frenchtown, NJ) was available on a FR 1 schedule of reinforcement. The rats were 

trained for 15 sessions with increasing FR requirements (FR1, FR2, FR3, and finally 

FR5), and continued to self-administer for an additional 15 sessions on FR5. Acquisition 

and maintenance of food self-administration behavior was observed. 

Experiment 4: Progressive ratio testing. On P90, rats were placed in operant 

conditioning chambers for daily self-administration sessions for 60 min during which 

0.32 mg/kg/injection cocaine was available on a FR1 schedule of reinforcement for 7 

days. After these 7 days of training, rats were evaluated in a progressive ratio (PR) 

schedule of reinforcement for 7 days. Rats were divided into two dose groups to self-
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administer either 0.1 or 0.32 mg/kg/injection cocaine on the PR schedule. The 

progression of increasing response requirements for reinforcement were calculated by 

the equation: response ratio=(5 x e(0.2xinfusion number))-5, rounded to the nearest integer 

(Roberts and Bennett, 1993). For example, the response requirement begins at 1 and 

progresses through PR steps to 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 62, 77, 95…The 

final ratio (breakpoint), or last ratio successfully completed to earn an infusion of 

cocaine, was recorded daily for each animal. 

Experiment 5: Locomotor activity and sensitization. Beginning on P90, rats were 

removed from their home cages and habituated to the locomotor chamber for 30 min. 

The rats were injected with saline (i.p.), and 30 min later with escalating cumulative 

doses of cocaine (1, 3.2, 10, 18 mg/kg i.p.) with 20 min between doses. Data was 

collected for 60 min after the final dose of cocaine. On P91-94, rats were injected with 

15 mg/kg cocaine i.p. and placed into the locomotor chamber for 60 min. After a 10 d 

drug-free period (P104), rats were removed from their home cages and habituated to 

the locomotor chamber for 30 min. The rats were injected with saline (i.p.) and 30 min 

after the saline injection, rats were injected with escalating cumulative doses of cocaine 

(1, 3.2, 10, 18 mg/kg i.p. with 20 min between doses). Data was collected for 60 min 

after the final dose of cocaine.  

Data Analysis. Adolescent weights were analyzed by two-way ANOVA with repeated 

measures (2 adolescent treatments X postnatal day), and then averaged per treatment 

group and analyzed by Student's t-test on the final day of adolescent injections, P45. 

For self-administration studies, data are presented as the mean number of 

active/inactive nose-poke responses and reinforcers + the standard error of the mean 
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(S.E.M.) and analyzed by two-way ANOVA with repeated measures (2 adolescent 

treatments X sessions). Cocaine dose-effect curves in the multiple dose schedule of 

reinforcement were analyzed 1) by repeated measure ANOVA (5 doses of cocaine X 3 

session groups X 2 adolescent treatments) and 2) by calculating the area under curve 

(AUC) for the daily dose-effect curve for each rat, AUCs were averaged within each 

treatment group, and analyzed by two-way ANOVA with repeated measures.  

Locomotor activity was recorded as XY ambulatory beam breaks, defined as the 

consecutive interruption of two infrared beams in the horizontal plane, and Z total 

number of beam breaks. Locomotor activity was summed across treatment group and is 

presented as sum XY ambulatory + Z total number of beam breaks + S.E.M. Locomotor 

activity was analyzed by repeated measure ANOVA (4 doses of cocaine X 2 days X 2 

adolescent treatments) using PASW Statistics 18 (SPSS, IBM, Chicago, IL). Locomotor 

activity on days 1 and 16 were compared for 30 min following the 18 mg/kg dose of 

cocaine for rats treated with vehicle and THC using a two-way ANOVA with repeated 

measures. Bonferroni tests were used in all post hoc analyses (GraphPad Prism; 

GraphPad Software, San Diego, CA). Statistical significance was set at p<0.05 and 

trends considered for p<0.10.   

 

RESULTS 

Effect of THC treatment on body weight. All rats gained approximately 5-8 g per day 

from P28-45 independent of adolescent treatment condition. Rats treated with THC 

showed a less rapid increase in body weight during adolescent injections, resulting in 

lower body weight compared to vehicle-treated rats during the adolescent treatment 
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period (Fig. 2). Two-way ANOVA with repeated measures revealed a significant main 

effect of day [F(22,594)=3480, p<0.0001] and adolescent treatment [F(1,27)=11.60, 

p=0.0021]. There was no difference in body weight between rats treated with vehicle 

and THC at the start of injections on P28 (p>0.05). Rats treated with 1 mg/kg THC 

during adolescence showed significantly decreased body weight compared to vehicle-

treated rats during the period of adolescent injections on P31 and 41-45, as well as 

post-injections on P52, 59, and 80 (p<0.05). On the final day of injections, P45, the 

mean body weight of vehicle-treated rats (197.95 g + 2.55) was significantly greater 

than the mean body weight of THC-treated rats (179.5 g + 4.15) [t(621)=3.910, p<0.01].  

Acquisition of responding for 0.32 mg/kg/inj cocaine. Figure 3 shows that adolescent 

exposure to THC did not affect the acquisition of 0.32 mg/kg/inj cocaine. There was a 

main effect of session on active NP responses [F(15,270)=47.70, p<0.0001]. Rats 

treated with vehicle and 1 mg/kg THC during adolescence increased number of active 

nose-poke (NP) responses across consecutive sessions as the FR requirement 

increased (Fig. 3a). There was no main effect of adolescent treatment on active NP 

responses [F(1,18)=0.2293, p=0.6378]. Inactive responses remained low throughout, 

with no significant main effect of session [F(15,270)=0.8248, p=0.6496] or adolescent 

treatment [F(1,18)=1.240, p=0.2801, Fig. 3b]. There was a main effect of session 

[F(15,270)=5.968, p<0.0001] on number of infusions earned, as rats earned more 

infusions across consecutive sessions and as FR requirement increased (Fig. 3c). 

There was no main effect of adolescent treatment [F(1,18)=22.63, p=0.2439] on number 

of infusions earned, demonstrating that THC exposure during adolescence did not affect 

the acquisition of 0.32 mg/kg/inj cocaine.  
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Effect of adolescent THC treatment on cocaine dose-effect curves. Figure 4 shows the 

within-session determinations of the cocaine dose-effect curves, displayed as the 

number of active NP responses recorded from rats treated with vehicle or THC 

averaged across days 1-5 (Fig. 4a), 6-10 (Fig. 4b), and 11-15 (Fig. 4c). In the first 25-

min component, rats did not receive any infusions of cocaine, and active NP responses 

were low across all sessions during this component. Both treatment groups showed 

upward shifts in the cocaine dose-effect curves across days. In sessions 1-5 and 6-10, 

rats responded the greatest amount for 0.1 mg/kg/inj cocaine in both treatment groups. 

In sessions 11-15, rats treated with vehicle responded the greatest amount for 0.1 

mg/kg/inj cocaine, consistent with earlier sessions, but rats treated with THC responded 

the greatest amount for a lower dose of cocaine (0.032 mg/kg/inj). Repeated measures 

ANOVA revealed a significant main effect of day [F(1,14)=18.673, p<0.001] and cocaine 

dose [F(1,14)=61.739, p<0.001]. Analysis of between-subjects effects showed a trend of 

adolescent treatment [F(1,14)=3.740, p=0.074]. There was a significant interaction of 

day by cocaine dose [F(1,14)=13.11, p=0.001] and cocaine dose by adolescent 

treatment [F(1,14)=5.229, p=0.013], with a significant difference in the cocaine dose-

effect determinations between vehicle and THC-treated rats. Post hoc analyses reveal 

that for days 1-5, there was a significant interaction of adolescent treatment by cocaine 

dose [F(4,64)=5.457, p=0.0008], with a significant increase in active NP responses in 

rats treated with THC compared to vehicle at 0.1 mg/kg/inj cocaine (p<0.001). For days 

6-10, there was a significant interaction of adolescent treatment by cocaine dose 

[F(4,64)=4.353, p=0.0035], with a significant increase in active NP responses for rats 

treated with THC compared to vehicle at 0.032 mg/kg/inj cocaine (p<0.01). For days 11-
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15 of the multiple dose procedure, there was a significant interaction of adolescent 

treatment by cocaine dose [F(4,56)=7.145, p=0.0001], with a significant increase in 

active NP responses for rats treated with THC compared to vehicle at 0.032 mg/kg/inj 

cocaine (p<0.0001). These data overall suggest a significant upward or leftward shift of 

the ascending limb of the cocaine dose-effect curve in rats treated with THC compared 

to rats treated with vehicle during adolescence. 

The AUCs of the averaged daily cocaine dose-effect determinations did not display a 

significant interaction of adolescent treatment by session [F(24,196)=0.9, p=0.59], but 

showed a main effect of session [F(14,196)=9.5, p<0.0001] (Table 1), with an increase 

over consecutive sessions. The dose-effect functions were significantly elevated in rats 

exposed to THC during adolescence as compared to vehicle-treated rats, shown by a 

main effect of adolescent treatment [F(1,14)=7, p=0.02]. Post hoc analyses revealed a 

significant difference in the average AUC on day 9 (p<0.01).  

Acquisition of responding for 0.1 mg/kg/inj cocaine. Figure 5 shows the number of active 

and inactive NP responses during self-administration sessions for 0.1 mg/kg/inj cocaine 

on an FR1 schedule of reinforcement. Animals that did not complete 25 sessions (due 

to failed catheters) were removed from the data set. One rat was also removed after 

being determined a statistical outlier because its responding differed from the mean by 

more than two standard deviations. There was a significant interaction of adolescent 

treatment by session [F(24,480)=3.975, p<0.0001],  a significant main effect of 

adolescent treatment [F(1,20)=7.181, p=0.0144] and a significant main effect of session 

[F(24, 456)=12.89, p<0.0001] on the number of active NP responses and corresponding 

infusions of 0.1 mg/kg/inj cocaine (Fig. 5a). Post hoc analyses revealed a significant 
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increase in number of active NP responses in THC-treated rats compared to vehicle-

treated rats during sessions 17-24 (p<0.05). There was no main effect of session on the 

number of inactive NP responses [F(24, 432)=0.4482, p=0.4482], as the number of 

inactive NP responses remained low across all sessions for both treatment groups (Fig. 

5b).  

We also considered the number of sessions it took rats to reach acquisition of 

responding for cocaine. In order to meet criteria for acquisition, rats were required to 

consistently make at least 20 active NP responses.  There was a difference in the 

number of rats in each group to meet criteria for acquisition: 6/12 rats in the vehicle-

treated group and 2/11 rats in the THC-treated group never acquired. Of the rats that 

actually acquired self-administration of 0.1 mg/kg/inj cocaine, there was no significant 

difference in the mean (+ S.E.M.) number of sessions to reach acquisition between rats 

treated with vehicle (11.33 + 3.432) and THC (9.33 + 1.434). 

Acquisition of responding for sugar pellets. Figure 6 shows that adolescent exposure to 

THC did not affect the acquisition of sugar pellets. There was no significant effect of 

adolescent treatment on the number of active NP responses [F(1,10)=1.049, p=0.3298, 

Fig. 6a, d] or the number of reinforcers earned [F(1,10)=0.6477, p=0.4397, Fig. 6c, f]. 

There was a significant main effect of session on number of reinforcers earned [F(29, 

290)=23.89, p<0.0001, Fig. 6c, f], with the number of active NP responses increasing as 

the FR requirement increased (Fig. 6a). The number of sugar pellets earned increased 

over consecutive sessions for rats treated with vehicle and THC, until stable responding 

was reached with FR5. During the last 15 consecutive sessions, there was no 

significant difference in number of reinforcers earned across sessions or between 
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treatment groups. Inactive NP responses remained low in all sessions (Fig. 6b,e), with 

no significant main effect of adolescent treatment [F(1,10)=0.2098, p=0.6567], and a 

significant main effect of session [F(29,290)=0.9164, p<0.0001] as the inactive 

responses decreased across consecutive sessions. 

Effect of adolescent THC treatment on breakpoint. Animals acquired cocaine self-

administration behavior for 0.32 mg/kg/inj cocaine on an FR1 schedule within 7 days of 

self-administration (data not shown). Figure 7 illustrates that there was no difference in 

the mean breakpoints during the 7 days of self-administration on a PR schedule of 

reinforcement with either 0.32 (Fig. 7a) or 0.1 (Fig. 7b) mg/kg/inj cocaine between 

groups of rats treated with vehicle or THC during adolescence. The breakpoint was 

higher for all rats self-administering 0.32 mg/kg/inj cocaine compared to rats self-

administering 0.1 mg/kg/inj cocaine. There was a main effect of session on breakpoint 

for self-administration of 0.32 mg/kg/inj cocaine [F(6, 54)=9.868, p<0.0001] and 0.1 

mg/kg/inj cocaine [F(6, 54)=3.4, p=0.0064]. Interestingly, breakpoint increased across 

sessions in rats self-administering 0.32 mg/kg/inj cocaine, but decreased across 

sessions in rats self-administering 0.1 mg/kg/inj cocaine. Post hoc tests revealed a 

significant increase in breakpoint from session 1 to session 7 in rats self-administering 

0.32 mg/kg/inj cocaine that were treated with vehicle (p<0.001) and THC (p<0.001). In 

vehicle-treated rats self-administering 0.1 mg/kg/inj cocaine, there was a significant 

decrease in breakpoint from session 1 to session 7 (p<0.05), but no significant effect in 

THC-treated rats. 

Effect of adolescent THC treatment on locomotor sensitization. Figure 8a shows that 

locomotor activity counts increased as the dose of cocaine increased in rats treated with 
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1 mg/kg THC and vehicle during adolescence. Both treatment groups showed 

locomotor sensitization to cocaine on day 16 compared to day 1 of testing. Repeated 

measures ANOVA revealed a main effect of day [F(1,14)=27.660, p<0.001] and cocaine 

dose [F(3,42)=84.233, p<0.001] on locomotor activity. There was a significant 

interaction of day by cocaine dose [F(3,42)=2.790, p=0.006] and a trend of cocaine 

dose by adolescent treatment [F(3,42)=2.46, p=0.084]. Figure 8b shows that rats 

treated with vehicle and 1 mg/kg THC during adolescence showed similar locomotor 

activity sensitization to cocaine. Repeated measures ANOVA of locomotor activity 

counts with 18 mg/kg cocaine revealed a significant effect of day [F(1, 14)=19.34, 

p=0.0006] and adolescent treatment [F(1,14)=6.233, p=0.0256], suggesting that THC-

treated rats showed an overall greater locomotor response to the psychomotor 

stimulating effects of cocaine. There was no significant difference in locomotor activity 

between rats treated with vehicle and THC on day 1 or on day 16. There was a 

significant increase in locomotor activity between day 1 and day 16 for vehicle-treated 

(p<0.05) and THC-treated rats (p<0.01). These results suggest that both treatment 

groups showed sensitization to cocaine, with no difference in the degree of sensitization 

between THC and vehicle-treated rats.  

DISCUSSION 

 This study provides evidence that adolescent exposure to THC has long-lasting 

effects on behavior in adulthood. Daily exposure to 1 mg/kg THC during adolescence 

decreased weight gain during treatment, but body weight recovered to nearly the same 

as vehicle-treated rats during the post-injection period before the start of behavioral 

experiments. This suggests that adolescent exposure to small doses of THC during 
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adolescence may have an effect on normal growth and development in rats; however, it 

is unknown at this point whether THC treatment during adolescence alters food 

consumption or metabolic rate. Although there is little research on the effect of 

adolescent THC use on body weight in humans, this is consistent with an 

epidemiological study in young adults, showing that previous or current cannabis users 

at age 21 had a lower prevalence of obesity than non-cannabis users (Hayatbakhsh et 

al, 2010). However, in another study of adult males between the ages of 19-30 who 

smoked marijuana containing 2-3% THC, caloric intake was increased by 40% and 

showed increases in body weight (Foltin et al, 1988). This may suggest different effects 

of THC on body weight during adolescence and adulthood, but further research is 

needed. 

 The present study evaluated the long-term effects of chronic adolescent 

exposure to THC on cocaine-induced behaviors in adulthood. During acquisition of 0.32 

mg/kg/inj cocaine self-administration with increasing FR, there was no difference in the 

acquisition pattern of rats treated with vehicle or THC during adolescence. However, 

during daily evaluations of the within-session cocaine dose-effect curve, there were 

significant differences between rats treated with vehicle and THC, with THC-treated rats 

responding for more cocaine at lower doses. This effect became more evident across 

consecutive sessions, especially during the last 5 sessions. In both treatment groups, 

the cocaine dose-effect curve shifted upwards over time, which could be seen by the 

increase in the AUC of the dose-effect functions across sessions. Specifically, THC 

exposure potentiated the reinforcing effects of cocaine at least at small cocaine doses, 

seen in the elevation of the ascending limb of the dose-effect curves. Future studies will 
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determine if this is actually a leftward shift in the cocaine dose-effect curve. Also, in the 

absence of drug, there was no change in the number of responses made on the active 

nose-poke. This suggests that THC exposure does not alter responding for cocaine-

paired stimuli in the absence of drug; however, this needs to be further evaluated 

through an extinction-reinstatement paradigm.  

 As further evidence that THC exposure during adolescence enhances the 

rewarding effects of low doses of cocaine, rats treated with THC showed significant 

increases in the pattern of self-administration of a small cocaine dose (0.1 mg/kg/inj) as 

compared with rats treated with vehicle. THC-treated rats were also more likely to 

acquire self-administration of the low dose of cocaine compared to vehicle-treated rats. 

This is consistent with our results from the multiple dose procedure, demonstrating that 

small doses of cocaine were more reinforcing in THC-treated rats. 

 However, the present study found no difference in breakpoint for cocaine 

between rats treated with THC and vehicle. As the work requirement to obtain the drug 

increased, THC-treated rats did not differ from vehicle-treated rats.  This suggests that 

adolescent exposure to THC does not alter motivation for cocaine during adulthood, 

despite the increased reinforcing effects of small doses of cocaine in THC-treated rats. 

 We also showed that there were no differences in the self-administration of sugar 

pellets between rats treated with vehicle or THC. These data suggest that THC 

exposure during adolescence does not affect the ability to learn operant tasks and does 

not alter the reinforcing effects of all rewards, but the effect may be specific for drug 

reinforcers.  
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 The effect of THC exposure on the reinforcing effects of cocaine may be specific 

to exposure during the critical period of adolescence. Studies have shown that short-

term exposure to THC during adulthood has different effects on adult behavior than 

exposure to THC during adolescence. Panlilio et al (2007) demonstrate that after a 3-

day THC exposure regimen, adult rats showed a decreased breakpoint in progressive 

ratio testing, which was interpreted as decreased reinforcing efficacy of cocaine. These 

findings are not consistent with results of the effects of adolescent THC exposure, 

emphasizing the importance of studying the effects of cannabinoid exposure while the 

brain is developing. When the brain is undergoing rapid developmental changes, it may 

be more sensitive to the effects of THC. Additional studies showed that intermittent THC 

exposure during adolescence led to increased heroin self-administration in rats (Ellgren 

et al, 2007), and chronic adolescent exposure to a cannabinoid receptor 1 and 2 agonist 

CP 55,940 can induce long-term behavioral and neural changes, including increased 

cocaine self-administration (Higuera-Matas et al, 2008). These studies are consistent 

with our findings that exposure to THC during the vulnerable period of adolescence can 

cause changes in adulthood, as shown by increased cocaine self-administration 

behavior at low doses of cocaine. 

 Additionally, our results also showed that chronic THC exposure during 

adolescence did not increase locomotor sensitization to cocaine, but did increase the 

overall response to cocaine. However, previous studies showed that chronic THC 

administration during adolescence increased locomotor activity sensitization to cocaine 

when tested during adolescence (Dow-Edwards and Izenwasser, 2012). This effect was 

not seen in studies that exposed adult rats to chronic THC (Panlilio et al, 2007) or the 
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cannabinoid agonist CP 55,940 (Arnold et al, 1998). In both of these adult studies, there 

was no effect on the acute locomotor effects of cocaine or cocaine sensitization. Given 

our results of increased overall locomotor response to cocaine and evidence of 

increased locomotor sensitization in previous research (Dow-Edwards and Izenwasser, 

2012), there is evidence that the effects of cannabinoid exposure may be different 

during the critical period of adolescence.  

 In conclusion, our findings indicate that chronic THC exposure during 

adolescence may have long-term effects on behavior in adulthood, including increased 

cocaine self-administration for low doses of cocaine and increased psychomotor effects 

of cocaine. Therefore, exposure to THC during adolescence may alter normal brain 

development and maturation, sensitizing the reward- and addiction-related pathways in 

the brain.  
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Figure 1. Timeline of experiments 

 

 
Figure 2. Body weight of rats treated with vehicle or 1 mg/kg THC during adolescence. 
Data are presented as the mean body weight (g) + S.E.M. (vehicle N=19, 1 mg/kg THC 
N=10) through postnatal day 90. **p<0.01 as compared with vehicle treatment. 
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Figure 3. Acquisition 0.32 mg/kg/inj cocaine by rats treated with vehicle or 1 mg/kg THC 
during adolescence. Data are presented as the mean + S.E.M. (N=9-11) number of 
active NP responses (a), number of inactive NP responses (b), and number of 
reinforcers delivered (c) over 16 consecutive sessions. 
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Figure 4. Dose-effect curves for the number of active NP responses for rats treated with 
vehicle (N=9) or 1 mg/kg THC (N=7) during adolescence presented as mean + S.E.M. 
averaged over (a) days 1-5, (b) days 6-10, and (c) days 11-15 of self-administration on 
the multiple dose schedule of reinforcement (FR5). **p<0.01, ***p<0.001, ****p<0.0001 
as compared with vehicle-treated rats at same cocaine dose on same day. 
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Table	
  1.	
  Area	
  under	
  curve	
  (AUC)	
  for	
  cocaine	
  dose-­‐	
  	
  
effect	
  curves	
  obtained	
  in	
  daily	
  self-­‐administration	
  
sessions	
  

	
   	
   	
  

	
  
Adolescent	
  Treatment	
  

Day	
   Vehicle	
   1	
  mg/kg	
  THC	
  

1	
   25.5	
  (6.5)	
   33.9	
  (8.2)	
  

2	
   39.2	
  (10.5)	
   61.4	
  (6.4)	
  

3	
   45.3	
  (9.8)	
   70.9	
  (5.7)	
  

4	
   51.5	
  (10.2)	
   78.8	
  (5.2)	
  

5	
   60.8	
  (11.5)	
   81.8	
  (4.7)	
  

6	
   57.7	
  (10.5)	
   81.2	
  (6.8)	
  

7	
   56.7	
  (12.6)	
   76.3	
  (7.3)	
  

8	
   57.4	
  (12.1)	
   77.9	
  (6.6)	
  

9	
   44.7	
  (12.7)	
   86.7	
  (6.5)**	
  

10	
   64.7	
  (9.8)	
   93.2	
  (7.6)	
  

11	
   69.8	
  (7.7)	
   95.5	
  (5.5)	
  

12	
   72.9	
  (12)	
   84.3	
  (4.2)	
  

13	
   71.4	
  (7.1)	
   83.1	
  (5.6)	
  

14	
   73.8	
  (8.6)	
   89.8	
  (4.9)	
  

15	
   72.2	
  (7.9)	
   85.8	
  (5)	
  
	
  	
   	
  	
   	
  	
  
Data	
  are	
  expressed	
  as	
  averages	
  (±	
  S.E.M.)	
  of	
  individual	
  	
  
rat	
  AUCs	
  within	
  each	
  day	
  and	
  adolescent	
  treatment	
  group.	
  
**	
  p<0.01	
  as	
  compared	
  with	
  vehicle	
  treatment	
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Figure 5. Acquisition of 0.1 mg/kg/inj cocaine by rats treated with vehicle or 1 mg/kg 
THC during adolescence. Data are presented as the mean + S.E.M. (N=11) number of 
active NP responses (a) and number of inactive NP responses (b) over 25 consecutive 
sessions. 
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Figure 6. Acquisition responding for sugar pellets by rats treated with vehicle or 1 
mg/kg THC during adolescence. Data are presented as the mean + S.E.M. (N=6) 
number of active NP responses (a, d), number of inactive NP responses (b, e), and 
number of reinforcers delivered (c, f) over 30 consecutive sessions. 
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Figure 7. Cocaine self-administration reinforced on a PR schedule of rats treated with 
vehicle or 1 mg/kg THC during adolescence. Data presented as the mean +S.E.M. 
(N=5-6) breakpoints measured in groups of animals self-administering either (a) 0.32 
mg/kg/inj cocaine or (b) 0.1 mg/kg/inj cocaine. The final ratio values corresponding to 
breakpoint are represented on the right y axis. *p<0.05, ***p<0.001 as compared with 
vehicle-treated session 1; ###p<0.001 as compared with THC-treated session 1. 

 

 

 
Figure 8. Locomotor activity counts (XY total + Z total beam breaks) for rats treated with 
vehicle or 1 mg/kg THC during adolescence presented as mean + S.E.M. (N=8) 
summed over the first 20 min following each injection of either saline or cocaine on days 
1 and 16 (a). (b) shows the mean + S.E.M. (N=8) number of beam breaks in the first 30 
min after saline or 18 mg/kg cocaine injection on days 1 and 16 for rats treated with 
vehicle or 1 mg/kg THC during adolescence. *p<0.05, **p<0.01  
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