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Abstract 
Background: Antibiotic disruption of the gastrointestinal tract’s indigenous microbiota can lead 

to one of the most common nosocomial infections, Clostridium difficile, which has an annual cost 

exceeding $4.8 billion dollars.  The gut’s unperturbed microbiota endow a protective effect against 

potential pathogens, inducing colonization resistance.  Recent studies have found that mice 

resistant to C. difficile colonization, compared to those susceptible to C. difficile, have higher 

levels of microbes in the Firmicutes phylum, especially those of the Lachnospiraceae family.  

Another study showed that an isolate, Lachnospiraceae D4, which is closely related to 

Clostridium clostridioforme in 16S rRNA gene sequence, was able to restore partial colonization 

resistance to C. difficile in a germfree mouse.  This study evaluates whether 23 Lachnospiraceae 

isolates can directly inhibit C. difficile and whether they have bile salt hydrolase and/or 7α-

dehydroxylase activity, which may affect C. difficile germination and growth. 

 

Methods:  Lachnospiraceae isolates were obtained from C57BL/6 mouse cecal content, cecal 

tissue and feces then screened via a plate wash PCR procedure using Lachnospiraceae-specific 

primers.  Direct inhibition of C. difficile by Lachnospiraceae isolates and communities was 

evaluated using an overlay plate technique.  The presence of bile salt hydrolase was assessed in 

vitro using a plate assay and the presence 7α-dehydroxylase activity was assessed by PCR with 

baiCD-specific primers. 

 

Results:  We successfully isolated 20 Lachnospiraceae isolates.  Together with 3 

Lachnospiraceae isolates, including Lachnospiraceae D4, from Reeves, et al. none were able to 

directly inhibit C. difficile growth either through cell cultures or supernatants.  However, we found 

3 Lachnospiraceae isolates with bile salt hydrolase activity and 4 with 7α-dehydroxylase activity. 

 

Conclusions:  If Lachnospiraceae are able to resist C. difficile colonization in the gastrointestinal 

tract, it is unlikely through direct inhibition.  It is possible that by participating in varying points in 

the pathway of converting conjugated primary bile acids to secondary primary bile acids, a 

community of Lachnospiraceae can work together to restore colonization resistance against C. 

difficile.  This aids in the development of probiotics against C. difficile infection. 
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Introduction 

Clostridium difficile 

Clostridium difficile is a Gram-positive, anaerobic, bacteria that is enteropathogenic5.  Vegetative 

C. difficile cells die rapidly on surfaces, or within six hours on moist surfaces or in the air.  C. 

difficile spores can remain viable for months in the environment and can resist hospital 

disinfectants10,18.  In hospitals, C. difficile spores shed through the gastrointestinal (GI) tract of 

infected patients can be transmitted to other patients through the hands or equipment of hospital 

workers or directly from patient to patient10,17.  Once inside a new host, C. difficile spores are able 

to resist the acidity of the stomach and germinate inside the GI tract10,17.  In its vegetative state, C. 

difficile cells will produce two toxins, TcdA and TcdB10,32.  Both toxins are glucosylating toxins, 

which result in inactivation of GTPases, disassembly of the actin cytoskeleton, and eventually cell 

death29.  The cumulative effects of TcdA and TcdB activities in the body will lead to severe 

inflammation of the colon (colitis), the formation of a pseudomembrane and severe diarrhea10,32. 

 

C. difficile is the leading cause of nosocomial diarrhea in developed countries5 and can lead to life-

threatening inflammation of the colon8.  Unfortunately, healthcare costs, number of cases, severity 

and difficulty of treatment of C. difficile have all been increasing in recent years.  Data from 2012 

shows that the annual cost of C. difficile exceeds $4.8 billion dollars9. 

 

The number of C. difficile cases has been increasing since the 1980s21.  For example, within a six-

year period of 2000 to 2005 in the United States, the number of CDI cases admitted into the 

hospital more than doubled from 139,000 to 301,20010.  In hospitals, the nosocomial infection rate 

of CDI has surpassed the infection rate of methicillin-resistant Staphyloccocus aureus27,23.  The 

phenomenon of increasing CDI cases is paralleled by the emergence of a new “at-risk” population.  

While those traditionally considered “at-risk” are seniors or hospitalized patients, there have been 

increasing CDI cases among children and those in community. A study done in Minnesota found 

that 41% of CDI cases were community-acquired20 as in the patient had CDI symptoms at least 

twelve weeks after their most recent hospital discharge.  This is an alarming trend considering 

that, traditionally, most cases of CDI are healthcare-associated in which patients have C. difficile 

symptoms occurring at least two days after admission into a healthcare facility. 
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As both healthcare-acquired and community-acquired cases of CDI increase, it leaves a significant 

impact on the costs associated with C. difficile.  Hospitalized CDI patients will spend, on average, 

an additional one to three weeks in the hospital than non-CDI hospitalized patients5.   Yet, the 

treatment of C. difficile is becoming more difficult.  For instance, the number of recurrent CDI 

cases, after initially successful treatments with antibiotics such as metronidazole or vancomycin, is 

increasing7.  Currently, the mortality rates of CDI show no signs of deceleration5,21.  From 2000 to 

2004, the age-adjusted fatality rate of CDI doubled from 1.2% to 2.2%10.  Annually, C. difficile 

now causes more than 6,000 deaths in the United States2,33. 

 

Colonization Resistance 

The mammalian GI tract contains the indigenous gut microbiota whose role in health maintenance 

has been long conceptualized since the early 1900s.  It was observed that disturbances, such as 

those through antibiotics, in the normal enteric microbiota increase the susceptibility of a host to 

pathogens7.  These disturbances are elicited through changes in the community structure of the 

microbiota and in its overall size6.  Therefore, it was suggested that the complex and undisturbed 

microbial community has an inhibitory role in the colonization and growth of pathogens.  These 

indigenous microbes of the mammalian gut, by suppressing the colonization and growth of 

harmful organisms within the host, confer colonization resistance7. 

 

Antibiotic usage is one of the greatest risk factors behind the development of CDI.  Antibiotics 

alter colonization resistance, leaving the host susceptible to C. difficile5,8,36.  Antibiotics disrupt the 

protective function of the host’s indigenous gut microbiota by disturbing the ecology of the GI 

tract.  A past study found that patients with recurrent antibiotic-associated diarrhea due to C. 

difficile (CDAD) had greater variability of bacterial compositions in their fecal communities and a 

decrease in the abundance of bacteria of the Bacteroidetes and Firmicutes phyla8.  On the other 

hand, healthy individuals tend to have greater abundances of bacteria of the Bacteroidetes and 

Firmicutes phyla8.  Moreover, patients with recurrent CDI are less likely to have the ability to 

restore their indigenous GI tract communities.  This is further supported by the restoration of 

colonization resistance in patients after given bacterial communities, via fecal matter transplant7, 

from a healthy individual.  Despite steps taken to better understand colonization resistance, much 

remains unknown36.  Isolating the organisms responsible for colonization resistance, including 

those of the Bacteroidetes and Firmicutes phyla, that may be susceptible to disease-rendering 
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antibiotics and understanding their mechanisms is an important step in alleviating the present C. 

difficile burden. 

 

There are a few hypotheses of the mechanisms behind colonization resistance.  One potential 

mechanism is that regarding bile acids.  Bile acids mediate a multitude of functions in human 

health and, in terms of C. difficile, their effects vary as well.  Through the conversion of 

conjugated primary bile acids to secondary bile acids, products of this pathway can either activate 

C. difficile germination or inhibit C. difficile growth7.  As members of the gut microbiota are 

essential in the bile salt pathway, antibiotic disturbance of key microbes may yield an increase of 

bile acids that stimulate C. difficile germination and/or growth. 

 

Other proposed mechanisms of colonization resistance include the competition for limiting 

nutrients and/or attachment space.  It is possible that the indigenous microbiota outcompete C. 

difficile for those limiting nutrients.  Antibiotics that kill these competitively superior microbes 

provide C. difficile access to once-limited nutrients, allowing for its colonization and outgrowth.  

Additionally, certain indigenous microbes of the GI tract may produce and secrete microbicides 

against C. difficile.  If these microbes are removed, then the absence of their microbicides will 

allow for C. difficile growth7. 

 

Previous work has guided us in the understanding of colonization resistance.  It is known that 

different antibiotics induce varying degrees of C. difficile susceptibility in the host and it is 

plausible that the loss of colonization resistance is not only due to the overall disruption of the 

indigenous microbiota, but also to the loss of specific members.  The loss of these microbes may 

lead to a loss of direct inhibition, a perturbation of the bile acid pool, a decrease in competitive 

inhibition of C. difficile, etc.  Through whichever means, loss of the indigenous gut microbiota and 

specific members leads to loss of its protective function against C. difficile. 

 

Lachnospiraceae 

Recent work by Reeves, et al. found that mice that became susceptible and moribund to C. difficile 

after antibiotic application, had increased levels of Proteobacteria, and especially those in the 

family Enterobacteriaceae.  Contrastingly, healthy mice had Firmicutes dominance, with a high 

prevalence of members of the Lachnospiraceae family25.  Furthermore, in another study by 
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Reeves, et al. Lachnospiraceae D4 (an isolate closely related to Clostridium clostridioforme based 

on 16S rRNA gene sequences) and Escherichia coli were used to precolonize germfree mice 

before C. difficile strain VPI 10463 challenge.  All mice monocolonized with C. difficile were 

moribund within two days after C. difficile challenge.  Similarly, all mice precolonized with E. 

coli then challenged with C. difficile were moribund within two days of challenge.  However, out 

of the 14 mice precolonized with Lachnospiraceae D4 and later challenged with C. difficile, only 

3 were moribund and 11 were clinically healthy at 2 days post challenge24.  These studies suggest 

that members of the Lachnospiraceae family are important members in the colonization resistance 

against C. difficile. 

 

Members of the Lachnospiraceae family are major constituents of the human GI tract15,22.  These 

microbes are strictly anaerobic and are mostly non-spore forming13,22.  Taxonomic classification of 

Lachnospiraceae members is based only on 16S rRNA-encoding genes13,22, yielding 24 NCBI-

named genera with several that are unclassified28,22.  Currently, members of Lachnospiraceae are 

known for their abilities to produce butyric acid, a short chain fatty acid, which is associated with 

obesity11,22 but to protect against colon cancer17,22.  However, in terms of colonization resistance, 

Lachnospiraceae’s role remains unknown. 

 

Only a handful of the total number of microbes in the GI tract has been cultured.  The rest are yet 

to be cultured, indicating the lack current investment in isolating potentially important members of 

the gut microbiome.  The cultivation of these microbes endows many benefits that popular 

molecular-based methods, which focus on genomic sequences, are limited to.  For example, 

microbial cultivation can help reveal the ecological roles of communities in health or disease1.  

Also, many of these uncultured bacteria play important roles in the production, utilization and 

cycling of nutrients.  Consequently, they have a large impact on the other surrounding microbes 

and the health of the host31.  Although past work in the Young Lab has demonstrated the 

importance of Lachnospiraceae in the gut microbiota, few members of this family have been 

cultured. 

 

Objectives 

We isolated novel murine Lachnospiraceae bacterial strains, which until now have not been 

cultured, from cecal content, cecal tissue and fecal samples of untreated C57BL/6 mice.  The 
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unperturbed gut microbiota of these mice are likely to have highly represented members of the 

Lachnospiraceae family.  We used molecular biology approaches to specifically target and enrich 

for members of this bacterial family.  Each Lachnospiraceae isolate was assessed for a direct 

inhibitory role against C. difficile growth and for the presence of bile salt hydrolase activity.  

Lachnospiraceae isolates were also screened for 7α-dehydroxylase, which catalyzes the 

production of deoxycholate from cholate.  Overall, we isolated Lachnospiraceae members from a 

C. difficile-resistant murine model and evaluated their potential effects against C. difficile 

colonization through direct inhibition or bile salt mechanisms. 
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Materials & Methods 

Sample collection 

Cecal tissue, cecal content and fecal samples were collected from C57BL/6 mice from the 

University of Michigan Young Lab breeding colony and from The Jackson Laboratory.  Mouse 

ceca were sterilely removed and immediately transferred into an anaerobic chamber (Coy 

Industries, Grass Lake, MI).  Anaerobic 1× phosphate-buffered saline (PBS) was added to the 

ceca.  A sterile scalpel was used to open and separate cecal content and cecal tissue.  Cecal tissue 

was washed with PBS and homogenized.  All samples from ceca and feces were diluted, at a 1:10 

ratio, to a final dilution of 10-9.  Each dilution was plated out in triplicate onto media described 

below. 

 

Bacterial isolation and selective growth conditions 

Dilutions of cecal tissue, cecal content and fecal samples were plated out onto brain heart infusion 

agar (BD Biosciences) with 0.01% cysteine (BHI).  Lachnospiraceae were isolated from BHI 

variations of BHI + 5% fetal bovine serum (FBS); BHI + 10% taurocholate; BHI + 1 µg/mL 

aztreonam + 10 µg/mL colistin + 2 µg/mL gentamycin; and BHI + 0.5 µg/mL ampicillin + 2 

µg/mL erythromycin + 0.25 µg/mL vancomycin.  Other Lachnospiraceae isolates were obtained 

from yeast, casitone, fatty acid medium supplemented with glucose (YCFAG)12 + 2 µg/mL 

gentamycin + 1 µg/mL aztreonam + 10 µg/mL colistin. 

 

Bacterial isolates were isolated by plate wash technique30,24.  The plate wash technique is a high 

throughput method, which allows for simultaneous screening of 94 strains of bacteria.  Agar plates 

with cecal content, cecal tissue and/or feces dilutions, as described above, yielding ~100 colonies 

were selected.  If collection of all colonies and PCR with Lachnospiraceae-specific primers 

(described below) indicated the presence of Lachnospiraceae, the procedure was continued.  From 

the original plate’s duplicate, each colony was individually cultured and screened with 

Lachnospiraceae-specific primers.  Samples with positive hits were saved down.  20% final 

concentration glycerol stocks of all isolates were created and stored at -80 °C.  All bacterial 

isolation and C. difficile work was done in an anaerobic chamber (Coy Industries). 

 

Design of Lachnospiraceae 16S rRNA-encoding gene primers 
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Full length 16S rRNA-encoding genes from 9 abundant Firmicutes and Bacteroidetes from Berry, 

et al.4, 4 Firmicutes (C. difficile, Enterococcus faecalis, Lactobacillus murinus, and 

Staphylococcus xylosus), 6 Lachnospiraceae (Clostridium aldenense, Clostridium bolteae, 

Clostridium citroniae, Clostridium indolis, Clostridium propionicum, Clostridium xylosus), 3 

Lachnospiraceae phylotypes isolated from the Young Lab (D4, G11, and E7), and 12 of the most 

represented Lachnospiraceae-classified OTUs from Reeves, et al.25 were aligned.  Areas of 

homology between Lachnospiraceae that were not homologous to other Firmicutes and 

Bacteroidetes were used to create 5 Lachnospiraceae-specific 16S rRNA-encoding forward gene 

primers: LachF (5’ -CC GCA TAA GCG CAC AGC- 3’), Lachno419F (5’ –GAC GCC GCG 

TGA GTG AAG AAG TAT- 3’), Lachno428F (5’ –GTA AAG CTC TAT CAG CAG GGA 

AGA- 3’), Lachno481F (5’ –GAC GGT ACC TGA CTA AGA AGC CC- 3’), and Lachno462F 

(5’ –GTC CAC AGG ACT TTG GAC GG- 3’).  These forward primers were used with the 16S 

rRNA-encoding reverse gene primer 1492R (5’ -GGT TAC CTT GTT ACG ACT T- 3’).  One 

Lachnospiraceae-specific 16S rRNA-encoding reverse gene primer was also created: 

Lachno1261R (5’ -TCG CTT CCC TTT GTT TAC GC- 3’), which was used with the 16S rRNA-

encoding forward gene primer 8F (5’ -AGA GTT TGA TCC TGG CTC AG- 3’).  All primers 

yield an expected PCR product of approximately 1,320 base pairs. 

 

Gradient PCR was performed to reveal the ideal annealing temperature of 57 °C.  All 

Lachnospiraceae-specific primers’ specificity and coverage (Table 1) were obtained using the 

Ribosomal Database Project Probe Match tool.  Additionally, primers were tested with Gram-

negative bacteria Bacteroides fragilis Escherichia coli; Gram-positive bacteria Lactobacillus 

murinus, Staphylococcus aureus, Staphylococcus pneumonia; DNA from a strain of 

Ruminococcus; Clostridium difficile strain VPI 10463; and Young Lab Lachnospiraceae isolates 

D4, E7 and G3; and a negative control of water. 
 

DNA extraction and 16S ribosomal rRNA-encoding gene sequencing 

Genomic bacterial DNA was extracted using the Easy-DNATM (Invitrogen) kit.  

Spectrophotometry was performed with Nanodrop 1000 Spectrophotometer (Thermo Scientific).  

16S rRNA-encoding genes were amplified using the 8F and 1492R PCR primers with denaturation 

of 2 min at 94 °C, which was followed by 30 cycles 94 °C for 30 s, 58 °C for 45 s and 72 °C for 

90 s.  A final extension at 72 °C for 10 min was performed.  PCR product cleanup was performed 
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using the ExoSAP (Affymetrix) protocol.  Full-length 16S rRNA amplicons were sequenced at the 

University of Michigan DNA Sequencing Core using primers 8F (5’ -AGA GTT TGA TCC TGG 

CTC AG- 3’), 515F (5’ -GTG CCA GCM GCC GCG GTA- 3’), E939R (5’ -CTT GTG CGG 

GCC CCC GTC AAT TC- 3’), and 1492R (5’ -GGT TAC CTT GTT ACG ACT T- 3’). 

 

Phylogenetic analyses 

The top ten most abundant unclassified Lachnospiraceae OTUs of the murine gut microbiota were 

obtained from Supplementary Figure 4 of Theriot, et al35.  Partial V3-V5 regions of 16S rRNA-

encoding genes of 23 Lachnospiraceae isolates and 10 of the most abundant unclassified 

Lachnospiraceae OTUs35 were aligned using SeqMan (Lasergene).  The phylogenetic tree was 

generated with the Weighbor weighted neighbor-joining tree-building algorithm by the Ribosomal 

Database Project (Michigan State University) and edited with Mega534. 

 

Direct inhibition 

Lachnospiraceae isolates were plated onto BHI agar and incubated at 37 °C.  At full growth, all 

colonies were collected and resuspended in brain heart infusion broth (BD Biosciences) + 0.01% 

cysteine (BHI broth) to obtain turbid cultures.  10 µL of each cell suspension was spotted onto a 

thinly layered BHI agarose plate and allowed to grow anaerobically for 48 hrs at 37 °C. 

 

Communities of isolates were also tested for direct inhibition of C. difficile.  All strains isolated 

from cecal tissue were individually streaked out onto BHI media.  At full growth, cultures from 

each strain were collected and resuspended into its own culture of BHI.  10 µL of liquid culture 

from each strain was mixed into a community culture (Figure 2), which was spotted onto a thinly 

layered BHI agarose plate and incubated anaerobically for 48 hrs at 37°C.  This was also 

performed for all strains isolated from cecal tissue and from feces. 

 

Overlay media was prepared with BHI broth + 1% agarose and autoclaved.  Anaerobically, a 

single colony of Clostridium difficile strain VPI 10463 was incubated at 37 °C in 5 mL of BHI 

broth.  At full growth, a 1:20 dilution of C. difficile culture and 0.01% anaerobic cysteine was 

added to the overlay media.  The overlay media was gently poured over the bottom blot layer and 

incubated at 37 °C.  Twenty-four hours later, direct inhibition of Clostridium difficile was 

assessed. 
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In order to test for the direct inhibition of C. difficile by supernatant, liquid cultures were 

centrifuged for 10 min. at 6,000 RPM.  10 µL of the supernatant was spotted over the overlay 

media layer and incubated anaerobically at 37 °C for 24 hours.  The direction inhibition by 

supernatant was then assessed. 

 

Bile salt hydrolase (BSH) detection 

The detection of bile salt hydrolase in Lachnospiraceae isolates was performed using a plate assay 

technique16.  Ten µL of Lachnospiraceae isolates, cultured in BHI broth, were spotted onto BHI 

agar + 0.5% taurocholic acid sodium salt hydrate (Sigma-Aldrich) + 0.5% sodium glycocholate 

(Chem-Impex International Inc.) + 0.37 g/L CaCl2 (Sigma-Aldrich).  Samples were incubated at 

37 °C in an anaerobic chamber.  Forty-eight hours later, the formation of a precipitate was 

observed in order to analyze the presence of bile salt hydrolase in each strain.  If amino acids are 

hydrolyzed from their respective bile acids, they will form a solid compound with calcium. 

 

Polymerase chain reaction assay for bile acid 7α-dehydroxylase detection 

The presence of the 7α-dehydroxylase enzyme was screened for by amplification of the baiCD 

gene, which is specific to the bile acid 7α-dehydroxylation conversion of cholate to deoxycholate.  

PCR using degenerate primers baiCD-F (5’-GGWTTCAGCCCRCAGATGTTCTTTG-3V) and 

baiCD-R (5V- GAATTCCGGGTTCATGAACATTCTKCKAAG- 3V) from Wells, et al.37 were 

performed on each Lachnospiraceae extracted DNA sample using the illustraTM PuReTaqTM 

Ready-To-GoTM PCR beads (GE Healthcare) with 100 ng of template DNA, 0.5 µM/L of each 

primer, and water to a total volume of 25 µL.  Amplification of the samples was completed in a 

DNA thermal cycler (Eppendorf Mastercycler gradient).  Denaturation occurred for 2 min at 94 °C 

and was followed by 35 cycles of 20 s at 94 °C, 30 s at 52 °C and 90s at 69 °C.  A final extension 

for 10 min at 68 °C was performed.  A negative control of sterile water and a positive control of 

Clostridium scindens strain VPI 12708 were used.  PCR products were separated with a 1% 

agarose gel electrophoresis and viewed under UV excitation.  Bands were compared to a 1 Kb 

Plus DNA Ladder (Invitrogen). 
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Primer Specificity to Lachnospiraceae % Lachnospiraceae 

coverage 
LachF 98.1% 9.7% 

Lachno 419F 94.2% 24.8% 
Lachno428F 96.8% 57.2% 
Lachno462F 100% 0.004% 
Lachno481F 97.1% 45.5% 

Lachno1261R 96.8% 21.9% 
 
Table 1. Six Lachnospiraceae-specific primers were used to isolate Lachnospiraceae with the 
plate wash polymerase chain reaction technique.  % Specificity is the ratio of Lachnospiraceae 
primer matches to the total number of primer matches while % coverage is the ratio of primer 
matches to Lachnospiraceae to the total number of members in the Lachnospiraceae family. 
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Results 

Isolation of novel Lachnospiraceae strains 

From untreated C57BL/6 mice cecal content, cecal tissue and feces, we targeted Lachnospiraceae 

microbes.  We used Lachnospiraceae-specific primers for 16S rRNA-encoding genes and a plate 

wash PCR technique30 utilizing specific media, which enrich for Lachnospiraceae.  Out of those 

tested, the greatest Lachnospiraceae enrichment media was BHI with 1 µg/mL aztreonam, 2 

µg/mL gentamycin and 10 µg/mL colistin under anaerobic conditions.   

 

Out of 45 unique isolates from a C57BL/6 murine mouse, isolated with Lachnospiraceae-specific 

16s rRNA-encoding gene primers through the plate wash PCR technique, 20 were previously 

uncultured Lachnospiraceae strains (Table 2).  While BHI is a sufficient enrichment media for 17 

of the 20 isolates, 3 necessitated the addition of 5% fetal bovine serum (FBS) for adequate growth 

conditions in an anaerobic environment.  Of the isolates, all grew poorly in broth culture.  On solid 

media, 11 isolates took 5+ days, 4 took 4 days, 4 took 3 days and 1 took 1 day to reach full 

growth.  All 20 isolated Lachnospiraceae strains and 3 Lachnospiraceae strains from Reeves, et 

al.24 were used to further tested for the ability to inhibit C. difficile growth and to convert bile 

acids. 

 

Full-length chromosomal DNA of Lachnospiraceae isolates was extracted and 16S rRNA-

encoding DNA was amplified and sequenced.  The V3-V5 regions of 16S rRNA-encoding gene 

regions were aligned to corresponding regions of the top 10 most abundant Lachnospiraceae 

OTUs from Theriot, et al.35 A phylogenetic tree was generated using the neighbor-joining method 

with Escherichia coli as the outgroup (Figure 1).  Phylogenetic analysis of these 23 

Lachnospiraceae isolates with the top 10 most abundant Lachnospiraceae OTUs from Theriot, et 

al.35 indicates that the diversity of our isolates substantially overlaps that of the 10 most abundant 

Lachnospiraceae OTUs.  Comparisons of V3-V5 regions of the 16s rRNA-encoding genes reveal 

that some Lachnospiraceae isolates have a high percentage of nucleotide similarity amongst each 

other.  This may imply that if abundant Lachnospiraceae of the murine GI tract play a significant 

role in colonization resistance, closely related Lachnospiraceae isolates may function in a similar 

responsibility.  However, it is also possible that physiological roles of individual species vary 

across a phylogenetic classification in that, within the family of Lachnospiraceae, only a few 

members of those tested confer a given characteristic. 
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Isolate RDP Classification 
DW 3 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 7 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 8 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 

DW 11 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 12 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 17 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 21 Firmicutes; Clostridia; Clostridiales; unclassified_Clostridiales 
DW 22 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 28 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia 
DW 34 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 42 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium XlVb 
DW 44 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 46 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 52 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 59 Firmicutes; Clostridia; Clostridiales; unclassified_Clostridiales 
DW 60 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 61 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 67 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 68 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
DW 70 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 

D4 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium XlVa 
E7 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 

G11 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified_Lachnospiraceae 
 
Table 2.  Twenty-three Lachnospiraceae isolates and their Ribosomal Database Project (RDP) 
classification.  Three Lachnospiraceae (in the shaded boxes) are from Reeves, et al.24 
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Figure 1. The V3-V5 regions of 16S RNA encoding genes from twenty of our Lachnospiraceae 
isolates, three Lachnospiraceae isolates from Reeves, et al.24 and ten of the most abundant 
unclassified Lachnospiraceae OTUs from Theriot, et al.35 were used to generate this phylogenetic 
tree. Bootstrap values indicated are statistical measures corresponding to the probability that 
members of a given clade are always in that clade. 
 

 Lachnospiraceae isolate DW61
 HO6T5NW01BY2UL_53_1168
 Lachnospiraceae isolate DW17
 HO6T5NW01A93UD_25_1087
 HO6T5NW01AHA4U_24_1647
 HO6T5NW01AEI01_40_688
 HO6T5NW01B0QOP_36_1547
 Lachnospiraceae isolate DW67
 Lachnospiraceae isolate G11
 HO6T5NW01ASP7S_41_841
 Lachnospiraceae isolate DW68
 Lachnospiraceae isolate DW42
 Lachnospiraceae isolate DW60
 Lachnospiraceae isolate DW70
 HO6T5NW01BQ2Z8_50_693
 Lachnospiraceae isolate DW22
 Lachnospiraceae isolate E7
 HO6T5NW01AFEHW_44_923
 Lachnospiraceae isolate DW11
 Lachnospiraceae isolate DW12
 HO6T5NW01BWSKF_43_858
 Lachnospiraceae isolate DW28B
 Lachnospiraceae isolate D4
 Lachnospiraceae isolate DW34
 Lachnospiraceae isolate DW7
 Lachnospiraceae isolate DW44
 Lachnospiraceae isolate DW3
 Lachnospiraceae isolate DW46
 Lachnospiraceae isolate DW8
 HO6T5NW01AEFEU_51_684
 Lachnospiraceae isolate DW21
 Lachnospiraceae isolate DW59
 Lachnospiraceae isolate DW52
 Escherichia coli

53

100

21

8

52

48

10

25

10

100

44

22

88

13

99

80

13

0

3

1

35

0

7

81

47

67

9

100

25

7

24

100
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Direct inhibition 

The unperturbed gut microbiota may function in colonization resistance against C. difficile by 

inhibiting its growth.  This inhibition may function through a variety of mechanisms: the secretion 

of microbicides that destroy vegetative C. difficile, the competition of space for growth adherence 

along the gut epithelium, the competition of limiting nutrients or the conversion of host 

metabolites to compounds that can be inhibitory to C. difficile growth7.  We performed a plate 

assay, utilizing an overlay technique, to assess each Lachnospiraceae isolate’s ability to inhibit C. 

difficile growth.  If Lachnospiraceae isolates secrete anti-C. difficile substances, the overlay plate 

assay will reveal a zone of C. difficile clearance around the isolate.  With this method, a diluted C. 

difficile culture was allowed to grow over a blot of Lachnospiraceae cell culture or supernatant.  

Direct inhibition was assessed by the presence of a zone of C. difficile clearance around the 

Lachnospiraceae blot.  A strain of Enterococcus, which was shown to directly inhibit C. difficile 

growth on the overlay plate assay, was used as a positive control (unpublished data).  Blots of cell 

culture and of supernatant were used to assess whether cell growth or cell secretions were 

preventing C. difficile growth.  All 23 Lachnospiraceae isolates, including 3 from Reeves, et al.24, 

did not inhibit C. difficile growth on the plate assay through either culture blots or supernatant 

blots. 

 

The same overlay plate technique was performed to assess a group community’s ability to inhibit 

C. difficile growth (Figure 2).  These communities were those of C57BL/6 mouse cecal content, 

cecal tissue or feces.  Each consisted of Lachnospiraceae members and other closely related 

strains of other families, which were isolated with our 16S rRNA-encoding gene primers specific 

for Lachnospiraceae (Figure 3).  For each community, blots of cell culture and supernatant were 

performed.  Similarly to individual Lachnospiraceae strains, community cultures of isolates from 

C57BL/6 mouse cecal content, cecal tissue and feces did not display C. difficile inhibition (Table 

3). 

 

Since individual isolates and communities of isolates did not exert a direct inhibitory effect on C. 

difficile growth, it is unlikely that there are synergistic effects of our Lachnospiraceae isolates in 

terms of direct inhibition.  In other words, the inhibition of C. difficile may not necessitate a 

pathway mediated by multiple Lachnospiraceae, or closely related strains.  It is unlikely that 
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multiple Lachnospiraceae and closely related microbes cooperatively secrete a C. difficile 

inhibitory product. 
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Figure 2.  All isolates were used for individual blots in the overlay technique to assess for direct 
inhibition of C. difficile.  Individual isolates’ cultures and supernatant were tested.  Mixed cultures 
were also created for community testing of direct inhibition of C. difficile via cultures or 
supernatant. 
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Figure 3.  In addition to individual isolates, direct inhibition of community isolates was evaluated.  
Those isolated from cecal content are highlighted yellow while those from cecal tissue are 
highlighted green and feces are highlighted blue.  The phylogenetic tree demonstrates overlapping 
diversity of isolates from the three samples sources.  Bootstrap values indicated are statistical 
measures corresponding to the probability that members of a given clade are always in that clade. 
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RDP Classification 

Direct 
Inhibition of 
C. difficile by 

Mixed 
Culture 

Direct 
Inhibition of 
C. difficile by 

Mixed 
Supernatant 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Oscillibacter 
Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Unclassified 

Ruminococcaceae 
Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Anaerotruncus 

Actinobacteria; Coriobacteridae; Coriobacteriale; Coriobacteriaceae; Olsenella 

Cecal 
content 

community 
members 

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Anaerotruncus 

- - 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

Actinobacteria; Coriobacteridae; Coriobacteriales; Coriobacteriaceae; Olsenella 
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia 

Actinobacteria; Coriobacteridae; Coriobacteriales; Coriobacteriaceae; 
Enterorhabdus 

Cecal tissue 
community 
members 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

- - 

Firmicutes; Clostridia; Clostridiales; Unclassified Clostridiales 
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 

Lachnospiraceae 
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 

Lachnospiraceae 
"Verrucomicrobia"; Verrucomicrobiae; Verrucomicrobiales; 

Verrucomicrobiaceae; Akkermansia 
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 

Lachnospiraceae 
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 

Lachnospiraceae 
Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Anaerotruncus 

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified 
Lachnospiraceae 

"Proteobacteria"; Gammaproteobacteria; "Enterobacteriales"; 
Enterobacteriaceae; Escherichia/Shigella 

Fecal 
community 
members 

"Actinobacteria"; Actinobacteria; Coriobacteridae; Coriobacteriales; 
"Coriobacterineae"; Coriobacteriaceae; Enterorhabdus 

- - 

Table 3. All strains isolated from different locations of untreated C57BL/6 mice were used to 
create communities representing cecal content, cecal tissue and feces.  These communities were 
tested for direct inhibition of C. difficile. A negative sign (-) indicates a negative result of no direct 
inhibition of C. difficile strain VPI 10463. 
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Bile acid physiology 

Bile salt hydrolase 

Indigenous microbes in the GI tract help maintain the balance of bile acids, which are important in 

C. difficile germination and growth35.  The presence of certain bacteria that can deconjugate 

germinative primary bile acids (Figure 4) and consequently allow for greater primary to secondary 

bile acid conversion, can aid in preventing a susceptible state to C. difficile.  Likewise, the ability 

to hydrolyze conjugated primary bile acids via bile salt hydrolase is significant in that 

susceptibility to C. difficile colonization is correlated to an increase in primary bile acids and a 

decrease in secondary bile acids in the gut metabolome35. 

 

We utilized a bile salt plate assay with conjugated primary bile salts (5% taurocholate and 5% 

glycocholate) and CaCl2.  If bile salt hydrolase activity is present, it will be indicated by the 

formation of an amino acid-calcium precipitate.  Using this procedure, 3 of 17 Lachnospiraceae 

tested had the ability to deconjugate glycocholate and taurocholate into cholate and its respective 

amino acids30.  Two of the 17 have potential bile salt hydrolase activity, but further testing is 

necessary. (Table 4). 

 

7α-dehydrogenase 

Once microbes in the GI tract convert conjugated primary bile acids to unconjugated primary bile 

acids, microbes with dehydrogenase activity convert primary bile acids to secondary bile acids 

(Figure 4).  These secondary bile acids, such as deoxycholic acid (DCA) and lithocholic acid 

(LCA), are the dominant bile acids present in human feces.  While DCA may allow for C. difficile 

spore germination, its effect on the inhibition of C. difficile vegetative outgrowth may be more 

dominant.  Additionally, accumulation of secondary bile acids, which affect the composition and 

the size of the total bile acid pool, has a reciprocal effect on the gut microbiome structure.  

Disruption of secondary bile acid productivity, by perturbing the gut microbiota, may 

detrimentally affect human health.  A relatively small number of bacteria play a large role in the 

production of secondary bile acids as only a limited number of intestinal bacteria function in the 

7α-dehydroxylation pathway37.  Thus, it is important to evaluate which members of the gut 

microbiota can 7α-dehydroxylate primary bile acids. 
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To assess for 7α-dehydrogenase activity amongst our Lachnospiraceae strains, we performed a 

PCR test with degenerative primers, baiCD-F and baiCD-R, from Wells, et al.37 that are specific 

for conserved regions of the bile acid inducible (bai) operon.  Although at least 8 proteins are 

necessary to complete a 7α-dehydrogenation, many of the genes for this complex biochemical 

pathway are located on the bai operon27,37.  The baiCD primers are able to detect low 7α-

dehydrogenase activity and are specific to genes only encoding for proteins involved in the 

dehydrogenase pathway37. 

 

After PCR screening of all Lachnospiraceae isolates, DW 3, DW 7, DW 28 and DW 42 were 

found to contain biaCD genes complementary to the bile acid 7α-dehydroxylase enzyme primers 

(Figure 5).  DNA band sizes were expected to be approximately 1300 base pairs37.  Positive hits 

correspond to the expected size.  The positive control, Clostridium scindens strain VPI 12708, 

which was used in the baiCD primer design, had a strong band at the expected size.  Additionally, 

no band was visible in the negative control. 



24 

 

 
Figure 4. The pathway of conjugated primary bile acids to deconjugated primary bile acids to 
secondary bile acids produces a variety of effects on C. difficile germination and vegetative 
growth. 



25 

 

Strain RDP Classification 
Bile Salt 

Hydrolase 
7α-

dehydrogenase Isolation Site 
DW 3 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae - + Cecal content 
DW 7 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae +/- + Cecal content 
DW 8 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae - - Cecal content 

DW 11 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae NT - Cecal content 
DW 12 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae NT - Cecal content 
DW 17 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae NT - Cecal content 
DW 21 Firmicutes; Clostridia; Clostridiales; Unclassified Clostridiales - - Cecal tissue 
DW 22 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae + - Cecal tissue 
DW 28 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia +/- + Cecal tissue 
DW 34 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae 0 - Cecal tissue 
DW 42 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium XlVb 0 + Cecal content 
DW 44 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae NT - Cecal content 
DW 46 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae NT - Cecal content 
DW 52 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae NT NT Cecal content 
DW 59 Firmicutes; Clostridia; Clostridiales; Unclassified Clostridiales - - Feces 
DW 60 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae + - Feces 
DW 61 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae  NT - Feces 
DW 67 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae 0 - Feces 
DW 68 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae - - Feces 
DW 70 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae 0 - Feces 

D4 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium XlVa + - Cecal content 
E7 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae 0 - Cecal content 

G11 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Unclassified Lachnospiraceae - - Cecal content 
DW 40 Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus + - Cecal content 

 
+ Precipitate (resembles positive control) 

+/- Possible precipitate 
- No precipitate 
0 Inhibited growth 

NT Not tested 
 
Table 4.  We tested 23 Lachnospiraceae isolates for 7α-dehydrogenase actitivity using polymerase 
chain reaction with primers specific for the baiCD gene.  However, 6 strains of Lachnospiraceae 
were not tested.  DW 40, which is 99% similar to Lactobacilli johnsonii ZJ626 with which bile 
salt hydrolase activity has been confirmed14, was used as a positive control for the bile salt 
hydrolase assay. 
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Figure 5. 1% gel electrophoresis shows the presence of genes corresponding to biaCD-specific 
primers in DW 3, DW 7 and DW 28.  The positive hit for DW 42 was performed on a separate gel.  
Positive hits indicate the presence of 7α-dehydrogenase.  Clostridium scindens VPI 12708 was 
used as a positive control. 
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Discussion 

The big picture of colonization resistance is an intricate puzzle of numerous factors: the immune 

response, metabolic environment, microbial competition7, etc.  In order to prevent pathogenesis of 

organisms such as C. difficile, it is necessary to understand how individual microbial species fit 

into this image.  Isolation of key microbes that resist C. difficile colonization in the GI tract can 

lead to the development of treatments that alleviate CDI or that prevent recurrent CDI.  However, 

limited work has been done to examine the organisms responsible for colonization resistance 

against C. difficile.  Past work has shown abundance in members of the Firmicutes phylum in a C. 

difficile-resistant state.  It has also demonstrated the inhibitory effect of one Lachnospiraceae 

isolate in a germfree mouse model against C. difficile colonization and toxin production24.  In 

order to evaluate the effects of multiple Lachnospiraceae in the restoration of colonization 

resistance, more work is necessary. 

 

To better understand colonization resistance against C. difficile, we selectively isolated 20 

Lachnospiraceae from cecal content, cecal tissue and feces from untreated C57BL/6 mice using 

plate wash PCR with Lachnospiraceae-specific primers.  In combination with 3 Lachnospiraceae 

isolated by Reeves, et al.24, we evaluated 23 Lachnospiraceae isolates’ abilities to directly inhibit 

C. difficile growth.  Furthermore, we analyzed these strains for the presence of bile salt hydrolase 

activity and for 7α-dehydrogenase activity. 

 

Out of the 23 individual Lachnospiraceae isolates tested for direct inhibition against C. difficile on 

the overlay plate assay, none were found to directly inhibit C. difficile growth.  D4, a 

Lachnospiraceae isolate from Reeves, et al.24, did not directly inhibit C. difficile on the overlay 

plate assay.  Yet, in a germ-free mouse model, it was found to decrease the levels of C. difficile 

colonization and cytotoxin concentration.  On the other hand, a strain of Enterococcus could 

directly inhibit C. difficile on the overlay plate assay but had little protective effect against C. 

difficile in a germ-free mouse.  In addition to individual strains, communities of isolates from 

cecal tissue, cecal content and feces were evaluated for direct inhibition against C. difficile (Table 

3).  All communities did not directly inhibit C. difficile growth.  It is possible that the mechanism 

of colonization resistance is not meditated through the synergistic and cumulative effects of these 

specific isolates (Figure 3).  However, the lack of C. difficile inhibition by individual and 



28 

communities of strains on the overlay plate assay may be due to discrepancies between the in vitro 

model and in vivo occurrences. 

 

Since in vitro modeling cannot wholly mimic in vivo phenomena, the overlay assay for direct 

inhibition of C. difficile cannot account for a variety of in vivo factors.  First, even though 

Enterococcus may secrete a substance that is inhibitory to C. difficile on the overlay plate assay, 

this effect may become insignificant in vivo.  Other metabolites or substances already present in 

the host’s GI tract may deactivate this inhibitory substance before it inhibits C. difficile growth.  

Vice versa, D4 may secrete a substance in vitro that does not inhibit C. difficile.  However, this 

substance may inhibit C. difficile growth in a host through activation by other pre-existing 

substances of the host’s gut.  Second, even if Enterococcus produces an antimicrobial against C. 

difficile, it may not have an effect on the host’s response to C. difficile. The kinetics of 

Enterococcus suppression against C. difficile growth may not surpass those of the immune system 

and consequently the onset of CDI symptoms.  This may be because Enterococcus does not 

secrete an anti-C. difficile substance unless C. difficile growth reaches a specific threshold, at 

which it already has produced TcdA and TcdB.  Therefore, TcdA and TcdB disrupt the actin 

cytoskeleton of epithelial cells, proinflammatory cytokines are released and neutrophil influx lead 

to inflammation.  If Enterococcus has secreted a substance that inhibits C. difficile growth, it did 

so too late. 

 

In addition to the inability of an in vitro model to take into account the in vivo host response, the 

overlay plate assay for direct inhibition does not factor in nutrient competition or competition for 

adhesion space along the epithelial lining of the GI tract.  In terms of nutrient competition, a better 

in vitro test would utilize a minimal media, rather than a rich media such as BHI that was used in 

the overlay plate assay.  If Lachnospiraceae does outcompete C. difficile for important and limited 

nutrients, C. difficile growth will be unable to reach stationary phase where its toxin production 

occurs.  This evaluation will be done in future experiments.  Lastly, competition between 

Lachnospiraceae and C. difficile may be for adhesion space along the epithelial lining of the GI 

tract.  However, as Reeves, et al.24 suggested, this is unlikely to be the case.  Experiments showed 

that Lachnospiraceae D4 restored partial colonization resistance against C. difficile, while 

Escherichia coli did not.  However, Escherichia coli 100-fold higher levels of colonization than 

Lachnospiraceae D4 did in the murine GI tract.  As a result, it is thought that space competition 
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between Lachnospiraceae and C. difficile in the gut is not an important factor in the role of 

colonization resistance24.  Overall, colonization resistance can be mediated by a variety of 

mechanisms.  If direct inhibition is not one, there are others. 

 

Other means of C. difficile inhibition by members of the indigenous gut microbiota may have to 

do with bile salt conversion pathways.  Conjugated primary bile acids (termed bile salts when at 

physiological pH) are produced by the liver, stored in the gall bladder and secreted into the 

intestinal tract to aid in lipid catabolism during food digestion26.  These bile salts undergo a series 

of transformations through the GI tract becoming deconjugated primary bile acids via bile salt 

hydrolase and finally, secondary bile acids via dehydrogenases26 (Figure 4).  Through this 

pathway, the gut microbiota plays an essential role in the conversion of bile acids.  Likewise, as 

the balance of bile acid pools in an individual is an important factor in health, the gut microbiota is 

also responsible for maintenance of a healthy well-being26. 

 

The effects of bile salt hydrolases and 7α-dehydroxylase on C. difficile spore germination and 

growth, although still in need of further experimental confirmation, vary.  Taurocholate, a 

conjugated primary bile acid, stimulates C. difficile spore germination even in its unconjugated 

bile acid form of cholate.  However, after 7α-dehydroxylation of cholate into deoxycholate, two 

opposite effects are elicited: the stimulation of C. difficile spore germination, which is antagonized 

by its simultaneous inhibition of vegetative cell growth7.  All in all, despite the multifaceted 

effects on C. difficile a bile salt may have, it is clear that disruption of the gut microbiota with 

antibiotics creates a disturbed and highly differentiated metabolic environment that allows an 

individual to become susceptible to C. difficile infection.  Metabolomic analysis of wild-type mice 

reveals that completely different microbiome communities of either Firmicutes or of Bacteroidetes 

can have identical compositions of bile acids, carbohydrates and fatty acids, which lead to similar 

C. difficile-resistant states35.  Antibiotic clearing of these bacteria may be responsible for the 

metabolic shift that allows C. difficile to colonize35.  We sought to identify which of our isolated 

Lachnospiraceae strains are responsible for bile salt hydrolysis and dehydrogenation and that are 

crucial in maintaining a balanced bile acid pool that aids in C. difficile resistance. 
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Seventeen Lachnospiraceae isolates were tested for bile salt hydrolase activity using a bile salt 

plate assay in which the formation of an amino acid-calcium precipitate indicated bile salt 

hydrolase activity.  With this method, 3 Lachnospiraceae isolates were found to cleave bile salts 

into unconjugated primary bile acids.  D4, a Lachnospiraceae isolate from murine cecal content24, 

was one of the 3.  This may indicate that its ability to partially restore colonization resistance 

against C. difficile in a germ-free mouse model is attributable to its ability to hydrolyze, and 

consequently to reduce the concentration of, conjugated primary bile acids that C. difficile needs 

for germination.  We can further test this in our overlay assay, with the addition of conjugated 

primary bile acids, in which C. difficile spore germination is assessed in the presence and absence 

of Lachnospiraceae strains with bile salt hydrolase activity.  If the breakdown of bile salts by 

Lachnospiraceae decreases the level of C. difficile spore germination, we would observe reduced 

C. difficile growth.  Potentially, the combination of all Lachnospiraceae isolates with bile salt 

hydrolase activity may further mediate a higher degree of suppression against C. difficile 

germination and growth.  Full colonization resistance may be restored with a complete 

Lachnospiraceae cocktail. 

 

Once primary bile acids are deconjugated, they can be converted to secondary bile acids via the 

dehydrogenase pathway.  We tested all 23 Lachnospiraceae strains for the presence of the 7α-

dehydrogenase enzyme using a PCR with degenerative primers specific for conserved regions of 

the bile acid inducible operon.  Out of the 4 Lachnospiraceae strains found to have 7α-

dehydroxylase activity, 3 were isolated from cecal content and 1 was isolated from cecal tissue.  

The presence of dehydrogenase activity in isolates originating from the large intestine is 

significant in that vegetative growth and toxin secretion of C. difficile cells also occurs here19.  In 

colonization resistance, these Lachnospiraceae may function to convert primary bile acids to 

secondary bile acids, such as deoxycholate, that inhibit vegetative C. difficile growth.  Conversely, 

the interruption of this function by antibiotic application will decrease the inhibitory effect of 

secondary bile acids by removing bacteria that are essential in their production. 

 

Although 4 Lachnospiraceae isolates were confirmed for 7α-dehydroxylase activity, D4 was not.  

Additionally, all isolates confirmed to have bile salt hydrolase activity did not have 7α-

dehydroxylase acitivity.  Vice versa, all isolates confirmed to have 7α-dehydroxylase activitiy did 
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not have bile salt hydrolase activity.  This indicates that the pathway of conjugated primary bile 

acids to secondary bile acids may not be possible with just 1 Lachnospiraceae but through the 

community effects of multiple Lachnospiraceae species.  Furthermore, if D4 was able to partially 

restore colonization resistance without 7α-dehydroxylase, complete colonization resistance may 

be restored if microbes with dehydroxylase activity are also present. 

 

In addition to direct inhibition and bile salt assessments, additional testing of our Lachnospiraceae 

isolates will further elucidate these organisms’ function and role in the gut microbial community’s 

resistance against C. difficile.  By utilizing a minimal media environment for Lachnospiraceae and 

Clostridium difficile growth, we will be able to assess whether certain members of 

Lachnospiraceae are available to outcompete Clostridium difficile for a limiting nutrient.  Another 

in vitro test is to evaluate whether Lachnospiraceae can inhibit the germination of Clostridium 

difficile spores.  Additionally, we can model the in vivo role of Lachnospiraceae in the GI tract 

using bioreactors, which can be used to replicate the anaerobic environment of a murine GI tract.  

Consequently, the role of Lachnospiraceae in colonization resistance against C. difficile can be 

tested without utilizing an animal model.  Ultimately, if the inhibitive potential of our 

Lachnospiraceae isolates is high, a Lachnospiraceae “cocktail” will be precolonized in mice, 

which are later challenged with C. difficile inoculation.  This will allow us to more accurately 

measure how Lachnospiraceae isolates are involved in C. difficile suppression, toxin production 

and disease severity. 

 

C. difficile is becoming a greater problem in developed countries.  The number of patients who 

suffer and who die from CDI continues to increase.  Meanwhile, C. difficile treatments are few and 

limited.  Fortunately, previous studies have suggested one Lachnospiraceae’s partial protection 

against C. difficile in a germ-free mouse model24.  While the administration of a single bacterial 

strain as a probiotic against C. difficile mediates limited success, it has been found that defined 

communities of microbes of relatively little diversity can fully protect against C. difficile6.  Here, a 

community of Lachnospiraceae isolates can provide for a probiotic to protect against C. difficile.  

Our study utilizing 23 novel Lachnospiraceae isolates from untreated mice is a promising step 

towards the development of such a probiotic.  These isolates may inhibit C. difficile spore 

germination by hydrolyzing bile salts that C. difficile needs.  They may also inhibit C. difficile 

growth by maintaining a pool of secondary bile acids.  Further testing of these isolates can 
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definitively reveal the efficacy of a Lachnospiraceae cocktail in CDI treatment.  Ideally, this 

Lachnospiraceae treatment would not only mitigate CDI symptoms, but also prevent recurrent 

CDI from occurring, thereby alleviating the nationwide costs of C. difficile. 
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