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Abstract The ionospheric response to two X5 solar flares that occurred in different seasons was
investigated using the global ionosphere-thermosphere model. Two questions were investigated: (a) how
do different solar flares with similar X-ray peak intensities disturb the ionosphere during the same
background and driving conditions? and (b) how do the geomagnetic field and season affect the
ionospheric response to solar flares? These questions were investigated by exchanging the two X5 flares
for each other so that there were two pairs of flares with (1) the same background conditions but different
irradiances and (2) different background conditions but the same irradiance. The simulations showed that
the different solar flares into the same background caused ionospheric disturbances of similar profiles
but different magnitudes due to differences in the incident energies, while the same flare spectra caused
perturbations of similar magnitudes but different profiles in different backgrounds. On the dayside, the
response is primarily controlled by the total integrated energy of the flare, independent of the background.
For the northern and southern polar regions, the response is strongly controlled by the solar zenith angle
and the incident energy, while the background plays a secondary role. On the nightside, the background
conditions, including the magnetic field and season, play a primary role, with the neutral winds and
electrodynamics driving the ionospheric response.

1. Introduction

Interest in the influence of large solar flares on the Earth’s ionosphere has gradually increased over the last
few decades due to its deleterious effect on radio wave communication and navigation [Garriott et al., 1967;
Davides, 1990]. Enhanced X-ray and extreme ultraviolet (EUV) irradiance during a solar flare causes increased
ionization in the lower ionosphere (D and E regions) all the way up to the F region, depending on the flare
spectrum. The increase of electron density in the F region is responsible for the increased total electron con-
tent (TEC) [Mendillo et al., 1974]. This phenomenon, known as a “sudden ionospheric disturbance,” has been
extensively studied for several decades [Donnelly, 1967; Jones, 1971; Stonehocker, 1970]. Measurements from
the ground-based worldwide Global Positioning System (GPS) network have recently been used to map
TEC globally [Coster and Komjathy, 2008; Rideout and Coster, 2006]. The sudden increase of TEC has been
found to be linearly related to the cosine of the solar zenith angle (SZA) [Zhang and Xiao, 2003, 2005]. It was
also found that both the flare-induced TEC variation rate, which was derived by differencing the vertical
TEC measured by a station-satellite pair at continuous epochs, was proportional to the increase in irradi-
ance caused by the flare and inversely proportional to the Chapman function [Wan et al., 2005]. Based on
the GPS measurements, an ionospheric solar flare activity indicator was given by the solar zenith angle and
the TEC variation rate [Xiong et al., 2013]. The solar EUV flux, instead of the X-ray flux, was found to be pri-
marily responsible for the increased TEC during and immediately after solar flares [Tsurutani et al., 2009].
The X17 flare on 28 October 2003 increased the total electron content of the subsolar ionosphere by up to
30% in about 5 min [Tsurutani et al., 2005]. By using the effect of partial shadowing of the atmosphere by
the Earth, the contribution from different ionospheric regions to the TEC enhancements caused by the 14
July 2000 solar flare was estimated by Leonovich et al. [2002]. They found that about 20% of the TEC increase
correspond to the ionospheric region lying below 100 km, about 5% of the increase came from the E region
(100–140 km), about 30% came from the F1 layer (140–200 km), and about 30% from the region above
300 km [Leonovich et al., 2002]. Xiong et al. [2011] found that the electron density in the E region was greater
than that in the F region during the limb solar flare on 7 September 2005, which was mainly attributed to
weak enhancements in the EUV flux and strong enhancements in the X-ray flux during this flare.
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Despite the fact that GPS measurements have provided an effective way of detecting slant TEC distur-
bances due to solar flares, it still is difficult to observe the global ionospheric disturbance in detail, due to
large gaps in the GPS station coverage around the globe. With the development of global models of the
upper atmosphere using high-resolution solar spectra, the ionospheric response to dynamic solar forcing
can be investigated more completely than before. Models also provide ways to probe the effects of indi-
vidual driving forces, which is difficult to do with nature. The National Center for Atmospheric Research
thermosphere-ionosphere-mesosphere electrodynamics general circulation model has been used to inves-
tigate how the location of a solar flare on the solar disk affects the thermospheric and ionospheric response.
Qian et al. [2010] showed that flare-driven changes in the F region, total electron content (TEC), and neu-
tral density in the upper thermosphere are 2–3 times stronger for a disk-center flare than a limb flare, due
to the importance of the EUV enhancement. These model results are in agreement with the experimental
results presented by Leonovich et al. [2010]. It was also found that solar flares can impact the ionospheric
electrodynamics by weakening the upward E × B drift in the magnetic equatorial region during solar
flares. This results in a decreased height and a reduced electron density of the F2 peak [Qian et al., 2012].
Significant and long-lasting perturbations in TEC on the nightside have been shown in simulations by the
global ionosphere-thermosphere model (GITM) [Ridley et al., 2006] due to dynamical changes in the neutral
atmosphere [Pawlowski and Ridley, 2009].

The study presented here explored how the background geomagnetic and season affects the ionospheric
response to different solar flares with similar flare classes by using a global ionosphere-thermosphere
model. Specifically, two questions were examined: (a) What causes the ionosphere to react differently to dif-
ferent flares that have similar peak magnitudes? and (b) How different would the ionospheric response be
to the same flare if the flare took place in a different season or with a different magnetic field configuration?

2. Model

To address these questions, the global ionosphere-thermosphere model (GITM) was used. GITM is a
three-dimensional, spherical coordinate model that uses an altitude-based grid [Ridley et al., 2006]. The
model solves the continuity, momentum, and energy equations in the thermosphere and ionosphere with
the realistic sources terms. The ion flow velocities are assumed to be in steady state, allowing the momen-
tum equation to be solved by taking the gradient in pressure, gravity, neutral winds, and electric fields into
account. GITM incorporates multiple physical drivers, including high-latitude electric fields, auroral parti-
cle precipitation, solar EUV inputs, and tides. In this case, the Weimer [2005] model was used to specify the
high-latitude electric field; a statistical model of electron precipitation based on hemispheric power was
used to specify the aurora [Fuller-Rowell and Evans, 1987], and an empirical model of the thermosphere was
used to specify the tidal structure of the neutral atmosphere just below 100 km altitude [Hedin, 1987]. The
equatorial electrodynamics were solved for in a self-consistent way by using the technique described by
Richmond [1995]. For all simulations described below, unless otherwise specified, the International Geo-
magnetic Reference Field (IGRF) was used to describe the magnetic topology. The solar irradiance spectrum
calculated by the Flare Irradiance Spectral Model (FISM) [Chamberlin et al., 2007] was used to drive the
model. FISM is an empirical model that estimates the solar irradiance at wavelengths from 0.1 nm to 190 nm
at 1 nm resolution with a time cadence of 60 s, which is fast enough to capture solar flares [Chamberlin et al.,
2007]. FISM uses the Geostationary Operational Environmental Satellite X-Ray Sensor 0.1–0.8 nm channel,
Thermosphere Ionosphere Mesosphere Energetics and Dynamics Solar EUV Experiment, Solar Stellar
Irradiance Comparison Experiment, and F10.7 as inputs to calculate the solar irradiances.

3. Methodology

This study explores the response of the ionosphere to two X5 flares. It was speculated that the response may
depend on both the flare spectrum and the thermospheric and ionospheric background conditions when
the flare occurred. In order to explore these dependences, multiple simulations of the coupled system were
conducted. Each simulation was carried out using different conditions in order to determine the role of that
particular condition on the ionospheric response to a solar flare.

The two flares that were explored were those on 14 July 2000 and 6 April 2001. These two flares had almost
identical classes: X5.7 and X5.6 respectively. Solar flares are classified according to the peak brightness in the
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Figure 1. (a) Solar irradiances at 0.1–0.8 nm wavelength of the real flare (solid line) and the imaginary flare superposed
on the real flare time (dashed line) for 3 days; (b–d) flare irradiances at 0.1–0.8 nm, 58.43 nm, and 97.7 nm for 8 h. The
left and right columns show the July and April flares respectively. The yellow lines represent the 12 h medianed solar
irridiances at corresponding wavelengths.

0.1 nm to 0.8 nm X-ray wavelength range. This means that the two flare should have nearly identical peak
intensities in X-ray wavelengths but could have different brightnesses in EUV wavelengths.

Figure 1 shows the irradiances at different wavelengths for the flares in July (left) and April (right). Row
1 (a) shows the 0.1–0.8 nm X-ray irradiance for 3 days to provide a long-term context to the flares. Rows
2–4 show the irradiances in 0.1–0.8 nm (b), 58.43 nm (c), and 97.7 nm (d) surrounding the flares. The yel-
low lines show the 12 h medianed irradiances at corresponding wavelengths. The two EUV wavelengths,
58.43 nm and 97.7 nm, were plotted because of the large cross section of atomic oxygen at 58.43 nm and
of molecular oxygen and molecular nitrogen near 97.7 nm (972.5 nm) [Huffman, 1969]. The irradiances in
0.1–0.8 nm increased by a factor of approximately 40 and showed identical peaks for the two flares. The July
flare lasted approximately twice as long above 104 W/m2 than the April flare. The irradiance at 58.43 nm
increased by almost a factor of 2 for both flares. The April flare peaked slightly higher but with a shorter
duration than the July flare. At 97.7 nm, the duration of the two flares were similar, and the peak of the
April flare was approximately one third higher than the July flare. The duration of the flare decreased with
increasing wavelengths.

The July flare took place in Sunspot Region 9077, 17◦N 03◦E, which was near the center of the solar disk
when the flare occurred. The April flare was in Region 9415, 21◦S 47◦E, which was more toward to the
solar limb [SpaceWeatherLive, 2014]. The spectra of the two flares when the wavelength of 97.7 nm peaked
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Figure 2. Spectrum of solar irradiances when the wavelength
97.7 nm reached peak (1021 UT and 1918 UT for the July and
April flares respectively). The blue lines show the spectrum at
the peak; the yellow lines show the spectrum 30 min before.
The solid lines indicate the July flare; the dashed lines indi-
cate the April flare. The two black dashed lines mark the two
wavelengths, 58.43 nm and 97.7 nm.

(i.e., 1021 UT and 1918 UT for the July flare
and the April flare, respectively) are shown in
Figure 2. The blue solid and dashed lines show
the spectra for the July flare and the April flare
respectively when the flux at a wavelength of
97.7 nm reached its peak intensity. The orange
solid and dashed lines show the spectra 30 min
before for the July and April flares, respectively.
Both of the flares produced similar enhance-
ments in the X-ray wavelengths (∼0.1 to ∼25 nm)
and the EUV wavelengths from ∼80 to ∼120 nm,
which was different than the flare studied by
Qian et al. [2010], which was an X17 flare. It was
known that center-to-limb variations of active
regions exist in observation of the solar disk as
the Sun rotates [Worden et al., 2010]. Contrary
to the expectation that the EUV irradiance of a
limb flare would be lower than a center flare with
identical flare classes, the April flare produced
slightly higher EUV irradiance. This was possibly
because the April flare produced significantly

more EUV irradiance in the flare region so that even after the absorption by the solar atmosphere due to the
center-to-limb effect, the EUV emissions still were higher than the center July flare.

In order to explore the difference in the ionospheric response between two solar flares with nearly identical
classes, the spectrum of the July flare was grafted to the period when the April flare occurred and termed
the imaginary April flare. The grafted time period was 5 h, starting at the flare onset. The same process was
done to the April flare to make an imaginary July flare. By moving the flares, it was expected that the iono-
spheric differences caused by the different flare spectra could be isolated and evaluated. The “imaginary”
flares are indicated as dashed lines in Figure 1.

The real July X5.7 flare lasted for ∼40 min (1003 UT–1043 UT) [Space Weather Prediction Center (SWPC), 2013].
The main flare was followed by a small flare (M3.7) that occurred from 1344 UT to 1400 UT [SWPC, 2013],
about 4 h later than the main flare. This small flare was also grafted to the April time period as it occurred
within 5 h of the main onset. The real X5.6 April flare lasted for only ∼21 min (1920 UT–1931 UT) [SWPC,
2013]. Three small flares (an M3.1 from 0200 UT to 0311 UT, an M8.4 from 0837 UT to 0954 UT, and an M5.1
from 1657 UT to 1814 UT respectively) occurred 1 day before the main flare [SWPC, 2013]. Since they were
before the main flare, these small flares were not grafted to the July time period.

Taking the energy of the solar irradiance during the flare by integrating the irradiances in all wavelengths
from 0.1 nm to 175 nm for an hour starting immediately after the solar flare onset, and using the time pre-
ceding the flare as a baseline, the real July flare increased the solar irradiance energy by 15.8%, while the
real April flare increased the total energy by 11.3%. The ratio between the extra energy in the real July flare
and the real April flare was 1.4. This shows that two flares, of the almost identical peak intensity, may dif-
fer significantly in total energy. X-rays and EUV are the primary sources of ionization in the E and F regions
respectively [Qian et al., 2010; Leonovich et al., 2010]; therefore, EUV is expected to be a more important
source of TEC enhancements, and the energy ratio in EUV wavelengths was expected to be more relevant
to the ratio of the TEC enhancements caused by the two flares. Comparing the flare energy by integrating
the irradiances in EUV wavelengths from 25 nm to 120 nm shows that the real July flare increased energy
by 10.98% and the real April flare increased by 7.79%. The ratio between the extra EUV energy in the real
July flare and the real April flare was 1.3. This indicates that the differences between the two flares in the
total integrated irradiances in X-ray wavelengths were greater than the total integrated irradiances in the
EUV wavelengths.

Each flare event was simulated twice, once with the flare, using FISM data and once without the flare, using
a running 12 h box-medianed FISM data. The simulations used the solar wind and interplanetary magnetic
field data measured by the Advanced Composition Explorer (ACE) and delayed for an appropriate amount
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Figure 3. (top row) The interplanetary magnetic field, By (blue) and Bz (yellow), (middle row) solar wind speed, and the
(bottom row) Northern Hemispheric power during the July flare (left) and April flare (right). The vertical lines show the
onset of the flares.

of time and the hemispheric power measured by the National Oceanic and Atmospheric Administration
(NOAA) satellites, as shown in Figure 3. The solar wind velocity Vx was unavailable after the July flare onset,
so it was replaced with fixed values. All of the external drivers (i.e., IMF and hemispheric power...) except
the solar irradiance were the same in the background and flare simulations. The difference between the
simulations with and without the flare quantified the ionospheric response to only the solar flare, excluding
perturbations due to the other drivers. The perturbation (in percentage) was defined as

Perturbation = 100% ×
Valuew − Valuewo

Valuewo
,

where Valuew and Valuewo were the simulated quantity of interest with the FISM spectrum and with the
smoothed FISM spectrum respectively. Four regions of the ionosphere were explored to determine the dif-
ference between direct and indirect effects of the solar flares: (a) dayside (solar zenith angle or SZA < 30◦);
(b) nightside (SZA > 150◦); (c) north polar region (or N.P.: latitudes > 45◦); and (d) south polar region (or S.P.:
latitudes < −45◦).

4. Results
4.1. TEC Perturbation
Figure 4 shows the regionally averaged TEC perturbation on 14–15 July 2000. The real and imaginary July
flares show similar perturbation profiles. The ratios between the real and imaginary peak ionospheric per-
turbations were 1.42 on the dayside, 1.37 on the nightside, 1.37 in the north polar, and 1.33 in the south
polar regions. The dayside ratio was close to the ratio of the total integrated flare energy between the real
and imaginary flares (1.40), and the ratios on the nightside, the north polar region and the south polar
region, were between the ratios of the total integrated flare energy and of the EUV integrated energy
(1.30). As the TEC was decreasing from its most perturbed state, there was a small secondary intensifica-
tion around 3 h after the initial increase, most noticeable on the dayside for both the real and imaginary
flares and the north polar region for the real flare. For the real July flare, this was most likely due to the sec-
ond intensification in the solar EUV which occurred at this time. For the imaginary flare, a small perturbation
on the dayside still occurred, which implied that dynamics played a role in creating this secondary peak.
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Figure 4. Regionally averaged TEC perturbation on 14–15
July 2000 (dayside: solar zenith angle (SZA) < 30◦ ; nightside:
SZA > 150◦ ; north polar region (N.P.): latitudes > 45◦; and
south polar region (S.P.): latitudes < −45◦). The flares began
around 1003 UT (indicated as the vertical lines on each panel).
The solid line and the dashed line are for the real and the
imaginary flares respectively.

The nightside TEC perturbation started ∼12 h
later than the perturbations in the other regions.
This is because the TEC perturbation did not
propagate with the sound speed as the neutral
perturbation does [Pawlowski and Ridley, 2008].
Instead, the flare caused a vertical shift of the
ionosphere near the subsolar point, which
remained in the same longitudinal sector until
recombination caused the perturbation to decay.
The nightside only registered an increase when
the longitude sector that was near the subso-
lar point at the time of the flare rotated into this
region. The TEC perturbation in this longitude
sector was able to last longer than 12 h, but less
than 24 h, as indicated by the lack of increase in
TEC on the dayside 24 h later. As the North Pole
was directed more toward to the Sun, being the
summer hemisphere, the TEC perturbation in the
north polar region was larger than that in the
south polar region. The dayside was expected to
have the greatest perturbation of all the regions;
however, that was not the case. The reason the
percentage change in the north polar region
was ∼3% higher than on the dayside was that
the background TEC on the dayside was greater
than that in the north polar region, so the larger
real perturbation on the dayside was a smaller
percentage change than what occurred in the
Northern Hemisphere.

Figure 5 shows the regionally averaged TEC per-
turbation on 6–7 April 2001. The real and the
imaginary flares once again caused very similar
profiles of TEC perturbation. However, the pertur-
bation caused by the imaginary flare was larger
than the perturbation caused by the real flare
since the imaginary flare contained more energy.
As the flare occurred near equinox, the north
polar and the south polar regions received simi-
lar amounts of flare radiance, and they therefore
responded with similar perturbation amplitudes.

The secondary flare of the imaginary April flare caused a slight increase in the perturbation on the dayside,
north polar and south polar regions; however, these responses were not as sharp as those in Figure 4.
This indicates that there was something different that occurred during the time periods, even though the
flare spectra of the real July flare and the imaginary April flare were identical. The nightside perturbation
in response to the main flare was roughly 12 h later than the response in the other three regions. This is
once again because of the lack of propagation in the ionospheric response and the persistence of the
perturbation for the 12 h it took to rotate to the nightside.

The background middle and low-latitude distribution of TEC at different times before, during, and after
the July flare is shown in Figure 6. Additionally, the TEC difference distributions between the real (middle)
and imaginary (bottom) flares and the background simulations are shown. The dark diamond (triangle)
indicates where noon (midnight) was located at the time of the plot, while the light diamond indicates the
subsolar location at the time of the flare. The black line near the 0◦ latitude marks the geomagnetic equator.
The TEC distribution of the nonflare simulation shows two bands of high TEC existing along the geomag-
netic equator due to the equatorial dynamo effect. A dayside eastward electric field along with the north
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Figure 5. Regionally averaged TEC perturbation on 6–7 April
2001. Regions were defined the same as that in Figure 4. The
flares began around 1910 UT (indicated as the vertical lines on
each panel). The solid line and the dashed line are for the real
and the imaginary flares respectively.

component of the geomagnetic field causes
ions to drift upward. Forced by gravity and gra-
dients in pressure, ions flow down field lines
away from the magnetic equator on both sides,
resulting in two bands of high TEC along the
geomagnetic equator. For the TEC difference,
the figures at 1000 UT show the background
ionosphere before the flares occurred, which
were the same for the real and imaginary flares.
This is not zero everywhere because the non-
flare simulation was a median filter of the FISM
inputs, which means that there were small differ-
ences in the EUV drivers between the runs even
in nonflare time periods. At 1100 UT, there was
an increase in TEC across the entire dayside as
seen in the difference plots. At 1500 UT, the per-
turbed region was mostly confined to just off
the magnetic equator, with some perturbations
on the nightside in the Northern Hemisphere.
The largest perturbations at 1500 UT were just a
bit west of the location of the subsolar point at
the time of the flare. From 1500 UT to 2500 UT
(i.e., 0100 UT on 15 July 2000), the distribution of
the TEC perturbation remained roughly the same
but decayed gradually. The region of increased
TEC near the longitudinal sector of the subsolar
point at the time that the flare occurred lasted
longer than 12 h, such that when it rotated onto
the nightside (midnight is indicated by the trian-
gle), a perturbation was registered in this region.
The distribution of the TEC perturbations caused
by the real and imaginary July flares was very
similar. The perturbation was greater in the sum-
mer hemisphere (the Northern Hemisphere)
than the winter hemisphere (the Southern
Hemisphere). The TEC perturbations decayed
with a similar structure near the geomagnetic
equator. However, the perturbation caused by

the real July solar flare was stronger than that caused by the imaginary flare. This was because the real July
flare contained more energy than the imaginary flare.

Figure 7 shows the low and middle latitude distribution of the background TEC and the TEC difference
before and after the flare on 6–7 April in the same format as Figure 6. The first column, 1900 UT, shows the
TEC and difference just before the flare. As shown in Figure 6, the nonflare simulation shows two bands of
high TEC existed just off the geomagnetic equator due to the equatorial dynamo effect. At 2000 UT, the
difference plots (middle and bottom) showed that TEC was perturbed across the dayside as seen in the dif-
ference plots. At 2400 UT, the perturbation was more concentrated around the geomagnetic equator. At
2900 UT (i.e., 0500 UT on 7 April 2001), the perturbation area remained in the same longitude sector that
had rotated to the nightside. Simultaneously, a hole occurred right at the magnetic equator surrounded by
areas of increased TEC, which may have resulted from the equatorial dynamo. At 3400 UT (i.e., 1000 UT on 7
April 2001), the perturbation still existed but was reduced compared to the previous time.

The distributions of the TEC perturbations caused by the real and the imaginary April flares were quite sim-
ilar to each other. Since the imaginary April flare contained more energy, the perturbation caused by this
flare was stronger than the perturbation caused by the real flare. The perturbation areas in the Northern
and Southern Hemispheres were similar as it was near equinox when the solar flares occurred. As the TEC
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Figure 6. (top row) The midlatitude TEC of the nonflare simulation on 14–15 July 2000. (middle and bottom rows) The
midlatitude TEC difference at the same time points. The diamonds and triangles mark the local noon and the local
midnight respectively. The lighter diamond shows the subsolar point when the flare occurred. The line around 0◦ Lat-
itude roughly presents the geomagnetic equator. The middle and bottom rows are for the real and the imaginary July
flares, respectively.

returned to a background level, the perturbations were structured by the geomagnetic field. Two bands
of high TEC existed at low latitudes, and bands with decreased TEC existed at midlatitudes at 2900 UT.
These ionospheric structures were caused by the flare-induced neutral wind that flowed away from the
flare subsolar region toward the high latitudes. The neutral wind pushed the two high bands away from
the geomagnetic equator (as can be seen by the widening of the TEC enhancement bands from 2400 UT to
2900 UT) and pushed the ions farther down the field lines around ±30◦ latitude, resulting in bands of
decreased TEC at middle latitudes.

In order to explore how long the ionospheric perturbation at the subsolar point lasted, the average iono-
spheric density in the region that was within 30◦ of the subsolar point at the time of the flare was plotted
(i.e., the region around the light diamonds in Figure 6). Figure 8 shows plots of the electron density as a func-
tion of altitude and UT in this region above the Earth. Figure 8 (left) shows the difference in electron density
for the July flare. Both the actual and imaginary flare irradiances caused ionization deep into the lower ther-
mosphere with the peak enhancement occurring between 200 and 300 km altitude. The electron density
perturbation below 300 km lasted for around 1 h, while the perturbation in the upper ionosphere lasted for
approximately 21 h, which was long enough for that spot to rotate to the nightside and cause a perturbation
in TEC. As mentioned above, the real July flare, with more energy, caused greater and longer perturbations.

Figure 8 (right) shows the average electron perturbation within 30◦ of the subsolar point when the April
flare occurred (i.e., the region around the light diamonds in Figure 7). The imaginary April flare caused a
larger electron perturbation as it contained more energy. However, the electron perturbations caused by
the two flares lasted equally long (approximately 21 h). The slight increase in the density observed above
500 km around hours 24–25 in the imaginary flare may have resulted from the small secondary flare. In
addition, the small electron perturbations during hours 0–12 were caused by the three small flares at the
beginning of the day before. Examination of the background electron density shows that the structure of
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Figure 7. (top row) The midlatitude TEC of the nonflare simulation on 6–7 April 2001. (middle and bottom rows) The
midlatitude TEC difference at the same time points. The diamonds and the triangles mark the local noon and the local
midnight respectively. The lighter diamond shows the subsolar point when the flare occurred. The line around 0◦ Lati-
tude roughly presents the geomagnetic equator. The middle and bottom rows are for the real and the imaginary April
flares respectively.
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Figure 9. Regionally averaged TEC perturbation on 14–15 July
2000. Regions were defined the same as that in Figure 4. The
solid line and the dashed line are for the real July flare with
the realistic geomagnetic field (IGRF) and with an ideal dipole
magnetic field respectively. The dashed vertical lines indicate
the time that the flare onset.

the electron density perturbation is similar to
the structure of the background electron den-
sity. The flares just added a small increment to
the background structure.

4.2. Background Influence
When this study was started, there was an
expectation that the ionospheric response to
the real July flare and the imaginary April flare
(i.e., July flare moved to April) would be similar
and the ionospheric response to the real April
flare and imaginary July flare (i.e., April flare
moved to July) would be similar. In other words,
it was expected that the solar irradiance spec-
trum would be the dominant controlling factor,
while the response of the ionosphere between
the real and imaginary flares during the same
period would be different. This did not hap-
pen. The ionosphere reacted quite differently
to the exact same flare spectrum in April ver-
sus July. Because of this, it was theorized that
the background condition had a significant
influence on the ionospheric reaction to the
flare, while the spectrum had less of an influ-
ence. In order to test this, more simulations
were conducted. Specifically, the magnetic field
topology and season were altered in order to
explore their influence. The topology was inves-
tigated because the two flares occurred when
different magnetic geometries were facing the
Sun, while the two flares took place in different
seasons, so this was also investigated.
4.2.1. Geomagnetic Field
The real July flare was simulated again,
this time using an ideal dipole field. Once
again, two simulations were run, one with
the 1 min FISM data and one with the 12 h
median-filtered FISM data. These were
differenced as before to calculate the
perturbation TEC.

Figure 9 shows the comparison between the regionally averaged TEC perturbation caused by the real
July flare with the IGRF and the July flare with the dipole magnetic field. The solid line represents the TEC
perturbation with the realistic geomagnetic field (the same as Figure 4), while the dashed line shows the
simulation with an ideal dipole magnetic field. Compared with IGRF, the run with the dipole field had a lower
average TEC perturbation on the dayside and nightside, with an increased perturbation in the south polar
region. In the north polar region, the response was almost identical.

On the dayside, the initial perturbation was almost identical, while the reaction 2–5 h after the flare differed
by a small amount. This difference between the two simulations may have been caused by two mechanisms:
first, the smoother topology of the ideal dipole field allowed neutral winds to drag ions more easily away
from the dayside along field lines, which led to a more rapid decrease of the dayside TEC perturbation in the
run with the ideal dipole field. Second, the change in field strength influenced the electrodynamics on the
dayside, which affected the TEC response in this region. However, it was difficult to determine which factor
was more important. The percent perturbation of the averaged TEC in the south polar region of the dipole
case was higher than that in the IGRF case. This was because the baseline run with the smoothed FISM
drivers and the dipole field had a lower average TEC in the south polar region than the baseline run with
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Figure 10. Midlatitude TEC difference on 14–15 July 2000. The diamonds and triangles mark the local noon and the
local midnight respectively. The lighter diamond shows the subsolar point when the flare occurred. The line around 0◦

Latitude roughly presents the geomagnetic equator. (top row) The real July flare with the APEX; (bottom row) the real
July flare with dipole field.

IGRF. This caused the percentage variation to be larger in dipole case even though the total perturbation
was similar between the two cases.

The perturbations on the nightside showed more disagreement between the two cases. This was because it
took 12 h for the perturbation to rotate to the nightside. During this time, background processes influenced
by the structure of the magnetic field, such as the momentum coupling between the ions and neutrals,
changed the evolution of the TEC perturbation. This is illustrated in Figure 10, which shows the distribution
of the midlatitude TEC difference caused by the real July flare with IGRF (top row) and with the dipole field
(bottom row). The magnitudes of the TEC perturbations were almost identical in the two cases, while the
distribution of TEC in the two cases showed significant differences. The distribution of the IGRF TEC pertur-
bation was along the curve of the magnetic equator, but because the dipole equator was the same as the
geographic equator, the TEC perturbation in the dipole case was more symmetric around the geographic
equator. The structure of the geomagnetic field was important in determining the postflare evolution of
TEC distribution. As is shown at 2000 UT in Figure 10, the perturbation evolved differently as it rotated to
the nightside. There are some interesting similarities too. For example, at 1500 UT, between 120 and 240
longitude, the perturbation in the north was stronger (although in a different shape). Between 240 and
360 longitude, the perturbation in the south was stronger, but the shape was different. This illustrates that
the background wind pattern was similar, but the ion-neutral coupling was different due to the magnetic
field topology.

The difference between simulations with and without IGRF was very small compared to the difference
between the real July and the imaginary April flares as well as the real April and the imaginary April flares.
This indicates that magnetic field structure probably has a large influence on the nightside reaction to the
flare but less of an effect on the other regions.
4.2.2. Season
To explore the effect of different seasons on the ionospheric reaction to solar flares, the 13–15 July flare time
period (including EUV, solar wind, IMF, and hemispheric power inputs) was shifted to 13–15 March. In other
words, all the forcing of the July run and the March run were the same except that they were in different
seasons. Figure 11 shows the regionally averaged TEC perturbations caused by the July flare (solid line) and
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Figure 11. Regional average TEC perturbation on 14–15
July/March. The solid line and the dashed line are for the July
and March flares respectively. The vertical dashed line indicates
the time that the flare occurred.

the July flare moved to the March time (dashed
line). The north polar TEC had a larger pertur-
bation than the south polar TEC in the July case
as it was summer in the Northern Hemisphere,
while in the March case, the perturbations in
the polar regions were similar because it was
near the March equinox. The dayside was only
slightly modified by the seasonal difference.
The nightside response, however, was signif-
icantly different. Rather than a 12 h delay in
the July case, the March nightside perturbation
occurred about 5 h earlier.

Figure 12 shows the low and middle latitude
distribution of the TEC difference caused by
the July flare (top row) and the March flare
(bottom row). The distribution of the pertur-
bations in the two cases were similar on the
dayside (at the diamonds). Although the March
flare had a stronger absolute perturbation,
as Figure 11 shows, the relative perturba-
tions were nearly the same. During the March
flare, there was a small perturbation on the
nightside. Because this was so fast after the
flare onset, the only mechanism that could
have caused this response was a change in
the equatorial electroject, which caused a
small uplift in the F region on the nightside,
reducing the loss rate, which appeared as a
slight density increase in the difference plots.
At 1500 UT, the nightside TEC perturbation
(near the triangle) was more extensive in March
than in July, as is indicated by the large pertur-
bation a few hours after the flare in Figure 11.
This appears to be primarily due to the fact
that the anti-subsolar point was very close to
the magnetic field equator during the March
time but was far away from the equator dur-

ing the July time. During July, the anti-subsolar point was about 21.5◦ away from the geomagnetic equator
to the south, which led to downward ion flows around midnight. The solar flare intensified this downward
flow and caused a decrease in TEC on the nightside, which is shown as the blue region (near the triangle)
at 1500 UT. However, in March, the anti-subsolar point was almost right at the magnetic equator, which led
to the converging neutral wind primarily pushing the ionosphere upward around midnight. The neutral
wind was intensified by the solar flare, causing the TEC to increase on the nightside between 15 and
18 UT. As shown in Figure 13, the nightside perturbation in neutral density at 413 km and the perturbation
in TEC were well matched in time, although the TEC perturbation reduced more rapidly than the neutral
density perturbation.

4.3. Comparison With GPS
In order to determine whether the simulated response of the ionosphere to the solar flares was realistic, a
comparison between the modeled TEC and measured TEC was conducted. Figure 14 shows the relation-
ship between the TEC difference (simulation with the flare minus simulation without the flare) and the SZA
at 1100 UT on 14 July 2000. There appears to be two linear relationships, one below 80◦ and one above
80◦. The largest TEC enhancement of approximately 5 total electron content unit, 1 TECU = 1016 el m−2,
(TECU) existed at SZAs between 10◦–15◦ and 30◦–40◦. At each solar zenith angle, there is a large spread
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Figure 12. Midlatitude TEC difference on 14 July/March 2000. The diamonds and triangles mark the local noon and the
local midnight respectively. The lighter diamond shows the subsolar point when the flare occurred. The line around 0◦

Latitude roughly presents the geomagnetic equator. (top and bottom rows) For the July and March flares respectively.

in the TEC, which is most likely due to the magnetic field topology causing different ion-neutral coupling
processes at the same SZA but very different latitudes and longitudes. The similar plot of a comparison
between TEC enhancements derived from TEC observations and their corresponding solar zenith angles
during the same flare was present in Zhang and Xiao [2002]. The GPS TEC enhancements related to the
enhancement in the solar irradiation due to the flare were derived from each temporal TEC curve by remov-
ing the influence of the background solar disk irradiation. Near the shadow boundary region with SZAs
between 80◦ and 105◦, TEC enhancement still existed but decreased rapidly with SZA. These findings agree
with the GPS observations during the flare on 28 October 2003 obtained in Zhang and Xiao [2005].
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Figure 13. (top) Nightside neutral density perturbation at
413 km altitude and (bottom) nightside TEC perturbation on
14 March 2000.

Figure 15 shows the modeled (top and middle
rows) and measured (bottom row) low-latitude
and midlatitude TEC changes that took place
during and after the flare in July 2000. The
TEC changes here were derived by subtract-
ing the TEC (model results and measurements)
30 min before from the TEC at the plotted
time. The top row shows the TEC changes
from 1000 UT to 2500 UT on 14 July 2000 in
the same format as Figure 6, although the dif-
ferencing method was different. At 1000 UT,
small TEC enhancements occurred on the day-
side and some regions around the equator on
the nightside. At 1100 UT, large TEC enhance-
ments occurred across the dayside and large TEC
decreases occurred on the nightside. The narrow
positive enhancement that extended across all
latitudes in each plot is the morning terminator.
The dusk terminator is more difficult to locate. At
1500 UT, the enhancement region on the dayside
was moving westward with the subsolar point.
From 1500 UT to 2500 UT the enhancement
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Figure 14. TEC difference versus the solar zenith angle on the
dayside and the sunlit boundary region at 1100 UT on 14 July
2000. The vertical dashed line marks the SZA of 80◦.

region on the dayside extended slightly in lon-
gitude. The middle and bottom rows show
the TEC changes from the model and from the
GPS observation at all the available GPS sites
[Madrigal, 2014]. At 1000 UT, both the model
and GPS showed large areas of negative changes
except a small region near dawn. At 1100 UT,
both the model and GPS showed the dayside
TEC enhancements caused by the flare near the
300◦ longitude sector (i.e., the North and South
American sector). The model also showed that
the enhancement extended to 0◦–120◦ longi-
tude northward of the subsolar point, while the
GPS showed decreased values in the same area.
At 1500 UT, both model and observation showed
enhancements near the dawn sector. The GPS
measurements also show some increases near
100◦ longitude, while the model enhancements
in these regions were not as large as those in
the observations. At 2000 UT, an enhancement
region occurred near 150◦ longitude in the
Southern Hemisphere and a decrease occurred
near −45◦ longitude in the Northern Hemi-
sphere both in model and in the observations.
At approximately 240◦ longitude in the model,

a decrease was observed, while an enhancement was observed in the data. At 2500 UT, both the model
and observation captured the TEC enhancement on the dayside from ∼100◦ to ∼240◦ and the depletions
at night.

Figure 15. (top row) The TEC changes in model from 1000 UT to 2500 UT on 14 July 2000. (middle row) TEC changes in
model (bottom row) by GPS at all available GPS sites at the same times as the top row.
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5. Summary and Conclusions

In this study, the ionospheric perturbation caused by the two solar flares on 14 July 2000 and 6 April 2001
was examined with the global ionosphere and thermosphere model. Ideal experiments were conducted by
exchanging the two flare spectra to produce imaginary solar flares. An unexpected result was that the iono-
spheric reactions to different flares with the same background conditions were very similar to each other,
while moving the same flare to a different time caused the ionospheric reaction to be different. This indi-
cates that the background conditions, as well as the total amount of energy in the flare (i.e., the strength and
the duration of the flare), are two of the most important parameters in determining the ionospheric reaction
to a flare. While the flare spectrum has been shown to be important [Qian et al., 2010], this study indicates
that the TEC perturbation is most sensitive to the background state and the total energy input during the
flare. When different configurations of the magnetic field were explored, the differences were not very dra-
matic, leading to the conclusion that while the magnetic field topology is important, changing the topology
does not appear to significantly alter the ionospheric reaction to the flare, except on the nightside. On the
other hand, having the flare take place in a different season causes the reaction to the flare to be quite differ-
ent everywhere but close to the subsolar point. In the polar regions, the perturbation is controlled by the tilt
of the Earth, controlling how much flare irradiance enters the atmosphere in the given hemisphere. During
equinox, the reactions in the Northern and Southern Hemispheres are almost identical, while the summer
hemisphere has a stronger reaction than the winter hemisphere during solstice, as expected. On the night-
side, the dynamics are much more complex, and the TEC appears to be controlled by the background winds.
Having different wind patterns during different seasons changes the forcing of the ionosphere along field
lines, which can dramatically alter the ionosphere over the 12 h that it takes the perturbation to rotate from
the subsolar region to the midnight region. The simulations also show relatively good agreement with GPS
observations, when the relationship between TEC enhancements due to the 14 July 2000 flare and local
solar zenith angles were explored. The global maps of the TEC enhancements were generally in agreement
between the simulation and GPS observations.

References
Chamberlin, P. C., T. N. Woods, and F. G. Eparvier (2007), Flare irradiance spectral model (FISM): Daily component algorithms and results,

Space Weather, 5, S07005, doi:10.1029/2007SW000316.
Coster, A., and A. Komjathy (2008), Space weather and the Global Positioning System, Space Weather, 6, S06D04,

doi:10.1029/2008SW000400.
Davides, K. (1990), Ionospheric Radio, Peter Peregrinus Ltd., London, U. K.
Donnelly, R. F. (1967), The solar flare radiations responsible for sudden frequency deviations, J. Geophys. Res., 101, 5247–5256,

doi:10.1029/95JA03676.
Fuller-Rowell, T., and D. Evans (1987), Height-integrated Pedersen and Hall conductivity patterns inferred from TIROS–NOAA satellite

data, J. Geophys. Res., 92, 7606–7618.
Garriott, O. K., A. V. da Rosa, M. J. Davis, and J. O. G. Villard (1967), Solar flare effects in the ionosphere, J. Geophys. Res., 72, 6099–6103,

doi:10.1029/JZ072i023p06099.
Hedin, A. (1987), MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662.
Huffman, R. E. (1969), Absorption cross-sections of atmospheric gases for use in aeronomy, Can. J. Chem., 47, 1823–1834,

doi:10.1139/v69-298.
Jones, T. B. (1971), VLF phase anomalies due to a solar X-ray flare, J. Atmos. Sol. Terr. Phys., 33, 963–965.
Leonovich, L. A., E. L. Afraimovich, E. B. Romanova, and A. V. Taschilin (2002), Estimating the contribution from different ionospheric

regions to the TEC response to the solar flares using data from the international GPS network, Ann. Geophys., 20, 1935–1941.
Leonovich, L. A., A. V. Tashchilin, and O. Y. Portnyagina (2010), Dependence of the ionospheric response on the solar flare parameters

based on the theoretical modeling and GPS data, Geomag. Aeron., 50, 201–210, doi:10.1134/S0016793210020076.
Madrigal (2014), The open madrigal initiative. [Available at http://www.openmadrigal.org/.]
Mendillo, M., et al. (1974), Behavior of the ionospheric F region during the great solar flare of August 7, 1972, J. Geophys. Res., 79,

665–672, doi:10.1029/JA079i004p00665.
Pawlowski, D., and A. Ridley (2009), Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the

thermosphere, Radio Sci., 44, RS0A23, doi:10.1029/2008RS004081.
Pawlowski, D. J., and A. J. Ridley (2008), Modeling the thermospheric response to solar flares, J. Geophys. Res., 113, A10309,

doi:10.1029/2008JA013182.
Qian, L., A. Burns, P. Chamberlin, and S. Solomon (2010), Flare location on the solar disk: Modeling the thermosphere and ionosphere

response, J. Geophys. Res., 115, A09311, doi:10.1029/2009JA015225.
Qian, L., A. G. Burns, S. C. Solomon, and P. C. Chamberlin (2012), Solar flare impacts on ionospheric electrodynamics, Geophys. Res. Lett.,

39, L06101, doi:10.1029/2012GL051102.
Richmond, A. D. (1995), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelec., 47, 191–212.
Rideout, W., and A. Coster (2006), Automated GPS processing for global total electron content data, GPS Solut., 10, 219–228,

doi:10.1007/s10291-006-0029-5.
Ridley, A., Y. Deng, and G. Tòth (2006), The global ionosphere-thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839–864,

doi:10.1016/j.jastp.2006.01.008.
SpaceWeatherLive (2014), Real-time auroral activity and solar activity. [Available at http://www.spaceweatherlive.com/en/solar-activity/.]

Acknowledgments
This work was partially supported by
NASA grant NNX09AJ59G. We also
are deeply indebted to P. Chamberlin
for the FISM output that drove GITM
for these flare events. Further, GITM
utilized the ACE magnetometer, and
SWEPAM measurements as well as the
National Oceanic and Atmospheric
Administration (NOAA) provided hemi-
spheric power index to drive the high
latitudes for these events.

Alan Rodger thanks L.A. Leonovich
and an anonymous reviewer for their
assistance in evaluating this paper.

ZHU AND RIDLEY ©2014. American Geophysical Union. All Rights Reserved. 5074

http://dx.doi.org/10.1029/2007SW000316
http://dx.doi.org/10.1029/2008SW000400
http://dx.doi.org/10.1029/95JA03676
http://dx.doi.org/10.1029/JZ072i023p06099
http://dx.doi.org/10.1139/v69-298
http://dx.doi.org/10.1134/S0016793210020076
http://www.openmadrigal.org/
http://dx.doi.org/10.1029/JA079i004p00665
http://dx.doi.org/10.1029/2008RS004081
http://dx.doi.org/10.1029/2008JA013182
http://dx.doi.org/10.1029/2009JA015225
http://dx.doi.org/10.1029/2012GL051102
http://dx.doi.org/10.1007/s10291-006-0029-5
http://dx.doi.org/10.1016/j.jastp.2006.01.008
http://www.spaceweatherlive.com/en/solar-activity/


Journal of Geophysical Research: Space Physics 10.1002/2014JA019887

Stonehocker, G. H. (1970), Advanced telecommunication forecasting technique, in Ionospheric Forecasting, AGARD CONF. Proc. No. 49,
Advisory Group for Aerospace Research and Development, edited by V. Agy, pp. 27–31, NATO, Brussels, Belgium.

SWPC (2013), Historical SWP products from 1996. [Available at http://www.swpc.noaa.gov/ftpmenu/warehouse.html/.]
Tsurutani, B. T., O. Verkhoglyadova, A. J. Mannucci, G. S. Lakhina, G. Li, and G. P. Zan (2009), A brief review of “solar flare effects” on the

ionosphere, Radio Sci., 44, RS0A17, doi:10.1029/2008RS004029.
Tsurutani, B. T., et al. (2005), The Octorber 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to

other halloween events and the bastille day event, Geophys. Res. Lett., 32, L03S09, doi:10.1029/2004GL021475.
Wan, W., L. Liu, H. Yuan, B. Ning, and S. Zhang (2005), The GPS measured SITEC caused by the very intense solar flare on July 14, 2000,

Adv. Space Res., 36, 2465–2469.
Weimer, D. R. (2005), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res.,

110, A05306, doi:10.1029/2004JA010884.
Worden, J. R., T. N. Woods, and K. W. Bowman (2010), Far-ultraviolet intensities and center-to-limb variations of active regions

and quiet sun using UARS SOLSTICE irradiance measurements and ground-based spectroheliograms, Astrophys. J., 560, 1020,
doi:10.1086/323058.

Xiong, B., W. Wan, B. Ning, F. Ding, L. Hu, and Y. Yu (2013), A statistic study of ionospheric solar flare activity indicator, Space Weather, 12,
29–40, doi:10.1002/2013SW001000.

Xiong, B., et al. (2011), Ionospheric response to the X-class solar flare on 7 September 2005, J. Geophys. Res., 116, A11317,
doi:10.1029/2011JA016961.

Zhang, D., and Z. Xiao (2003), Study of the ionospheric total electron content response to the great flare on 15 April 2001 using
international GPS service network for the whole sunlit hemisphere, J. Geophys. Res., 108(A8), 1330, doi:10.1029/2002JA009822.

Zhang, D., and Z. Xiao (2005), Study of ionospheric response to the 4b flare on 28 October 2003 using internation GPS service network
data, J. Geophys. Res, 110, A03307, doi:10.1029/2004JA010738.

Zhang, D. H., and Z. Xiao (2002), GPS-derived ionospheric total electron content response to a solar flare that occurred on 14 July 2000,
Radio Sci., 37(5), 1086, doi:10.1029/2001RS002542.

ZHU AND RIDLEY ©2014. American Geophysical Union. All Rights Reserved. 5075

http://www.swpc.noaa.gov/ftpmenu/warehouse.html/
http://dx.doi.org/10.1029/2008RS004029
http://dx.doi.org/10.1029/2004GL021475
http://dx.doi.org/10.1029/2004JA010884
http://dx.doi.org/10.1086/323058
http://dx.doi.org/10.1002/2013SW001000
http://dx.doi.org/10.1029/2011JA016961
http://dx.doi.org/10.1029/2002JA009822
http://dx.doi.org/10.1029/2004JA010738
http://dx.doi.org/10.1029/2001RS002542

	The effect of background conditions on the ionospheric response to solar flares
	Abstract
	Introduction
	Model
	Methodology
	Results
	TEC Perturbation
	Background Influence
	Geomagnetic Field
	Season

	Comparison With GPS

	Summary and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


