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Abstract

The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO
c-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss
and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness.
This study tested three hypotheses: (i) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR and nocicep-
tion; (ii) propofol decreases GABA levels in the PnO; and (iii) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused
by sleep deprivation. Administering a GABA synthesis inhibitor [3-mercaptopropionic acid (3-MPA)] or a GABA uptake inhibitor
[nipecotic acid (NPA)] into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propo-
fol (�18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR fol-
lowing cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is
consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal noci-
ception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep
deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol,
extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmis-
sion in the PnO mediates hyperalgesia caused by sleep loss.

Introduction

c-Aminobutyric acid (GABA)-mediated transmission participates in
regulating the three interacting states of sleep (Brown et al., 2012),
anesthesia (Brown et al., 2010) and pain (Enna & McCarson, 2006).
Drugs that enhance transmission at GABAA receptors are used clini-
cally as sedative-hypnotics (Richey & Krystal, 2011) and general
anesthetics (Franks, 2008; Brown et al., 2010). The GABA analogs
pregabalin and gabapentin that are prescribed to treat chronic pain
cause analgesia, in part, by increasing ambient levels of GABA
(Maneuf et al., 2003; Tassone et al., 2007). Efforts to identify the
mechanisms through which GABAergic transmission so powerfully
modulates states of arousal and pain must contend with the fact that
the effects of GABAergic transmission vary by brain region (Bagh-
doyan & Lydic, 2012; Vanini et al., 2012).
In the oral part of the pontine reticular formation (PnO), GABA-

ergic transmission contributes to the regulation of sleep and wake-
fulness (reviewed in Steriade & McCarley, 2005; Brown et al.,
2010). Pharmacologically enhancing GABAergic transmission in the
PnO increases wakefulness and decreases sleep (Watson et al.,

2008; Flint et al., 2010; Vanini et al., 2011; Vanini & Baghdoyan,
2013). Similarly, administration of drugs that decrease GABAergic
transmission in the PnO decreases wakefulness and increases sleep
(Marks et al., 2008; Watson et al., 2008; Flint et al., 2010).
The findings that increasing GABA levels in the PnO promotes

wakefulness and decreasing GABA levels in the PnO promotes
sleep (Watson et al., 2008) are consistent with parallel studies using
the general anesthetic isoflurane (Vanini et al., 2008). The isoflurane
studies showed that administering a GABA synthesis inhibitor into
the PnO to decrease GABA levels caused a decrease in anesthetic
induction time, and increasing GABA levels in the PnO with a
GABA uptake inhibitor caused an increase in isoflurane induction
time (Vanini et al., 2008). The foregoing data raised the questions
of whether manipulating GABA levels in the PnO: (i) alters the time
to recovery from anesthesia caused by isoflurane; and (ii) modulates
the time required for anesthetic induction and recovery of wakeful-
ness for non-inhaled anesthetics.
The present experiments were designed to test three hypotheses

that share the unifying goal of identifying brain regions and neuro-
transmitters regulating interacting states of arousal and pain. The
first hypothesis was that manipulating GABA levels in the PnO
alters recovery time from isoflurane anesthesia, induction and recov-
ery time for the intravenous anesthetic propofol, and nociception.
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These experiments blocked GABA synthesis or GABA uptake while
quantifying time to loss of righting response (LoRR), time to
resumption of righting response (RoRR), and paw withdrawal
latency (PWL) in response to a thermal stimulus. The second
hypothesis was that propofol decreases extracellular GABA levels in
the PnO. The third hypothesis was that hyperalgesia caused by sleep
deprivation (Arima et al., 2001; Edwards et al., 2008; Roehrs et al.,
2012) is diminished by administration of a GABA synthesis inhibi-
tor into the PnO. Preliminary reports from these experiments have
appeared as abstracts (Vanini et al., 2009; Nemanis et al., 2011;
Vanini & Nemanis, 2013).

Materials and methods

Animals, chemical suppliers and drug solutions

All procedures using rats were approved by the University Commit-
tee on Use and Care of Animals, and followed the Guide for the
Care and Use of Laboratory Animals (National Academies Press,
8th Edition, Washington, DC, 2011). Adult (250–350 g) male
Sprague–Dawley rats (n = 39) were purchased from Charles River
Laboratories, Wilmington, MA, USA. Animals were housed in a
12-h light : dark cycle within the Unit for Laboratory Animal
Medicine facility. Rats had free access to food and water. The
GABA uptake inhibitor nipecotic acid (NPA; Krogsgaard-Larsen &
Johnston, 1975), the GABA synthesis inhibitor 3-mercaptopropionic
acid (3-MPA; Engel et al., 2001), high-performance liquid
chromatography (HPLC)-grade methanol, acetonitrile, sodium
tetraborate decahydrate, ß-mercaptoethanol and GABA were pur-
chased from Sigma-Aldrich (St Louis, MO, USA). The supplier for
salts used to make Ringer’s solution (in mM: NaCl, 147.0; CaCl2,
2.4; KCl, 4.0; MgSO4, 1.0; pH 6.0), o-phosphoric acid and sodium
phosphate dibasic was Thermo Fisher Scientific (Waltham, MA,
USA). o-Phthaldialdehyde was purchased from Mallinckrodt (St
Louis, MO, USA). Propofol (1%) was obtained from APP Pharma-
ceuticals, LLC (Schamburg, IL, USA). NPA (1.29 lg/100 nL;
10 nmol) and 3-MPA (1.06 lg/100 nL; 10 nmol) were dissolved
and diluted in Ringer’s solution immediately before each
experiment.

Surgical procedures and conditioning

Rats were anesthetized with 3.0% isoflurane (Hospira, Lake Forest,
IL, USA) in 100% O2. The delivered concentration of isoflurane
was measured continuously by spectrometry (CardiocapTM/5; Datex-
Ohmeda, Louisville, CO, USA). When anesthetized, rats were
placed in a Kopf Model 962 stereotaxic frame fitted with a Model
906 rat anesthesia mask (David Kopf Instruments, Tujunga, CA,
USA). The delivered isoflurane concentration was then reduced to
2.0%. The core body temperature was maintained at 37–38 °C using
a water-filled pad connected to a heat pump (Gaymar Industries,
Orchard Park, NY, USA). The skull was exposed and a microinjec-
tion guide cannula (C313G2UP22; Plastics One, Roanoke, VA,
USA) was aimed 3 mm above the PnO at stereotaxic coordinates:
8.4 mm posterior to bregma; 1.0 mm lateral to the midline; and
6.2 mm below the skull surface (Paxinos & Watson, 2007). For
microdialysis experiments, one CMA/11 guide cannula (CMA,
North Chelmsford, MA, USA) was aimed 1 mm above the PnO at
8.4 mm posterior to bregma, 1.0 mm lateral to bregma and 8.4 mm
ventral to the skull surface (Paxinos & Watson, 2007). The microin-
jection or microdialysis guide cannula and six anchor screws
(MPX008002PC; Small Parts, Miami Lakes, FL, USA) were fixed

to the skull with dental acrylic (Lang Dental Manufacturing Com-
pany, Wheeling, IL, USA).
A second group of rats also was implanted with jugular vein cath-

eters in order to administer propofol during subsequent microinjec-
tion or microdialysis experiments. A silicone catheter
(0.020″ 9 0.037″ 9 0.0065″; Dow Corning, Midland, MI, USA)
was inserted into the external jugular vein, sutured and tunneled
subcutaneously to exit between the scapulae, as described previously
(Hambrecht-Wiedbusch et al., 2010; Gauthier et al., 2011). The
catheter pedestal held a 22 G cannula (C313G3UPSPC; Plastics
One, Roanoke, VA, USA) cemented with dental acrylic to a piece
of polyethylene mesh (Robinson et al., 2001). Intravenous infusion
of 0.2 mL sterile heparin–saline solution (100 U/mL) was performed
daily to maintain patent catheters.
All rats received a single dose of gentamicin (5 mg/kg, intrave-

nous), and analgesia was maintained with carprofen (5 mg/kg, sub-
cutaneous) for a minimum of 24 h after surgery. Rats were given
1 week to recover from surgery, during which time they were condi-
tioned to handling that simulated procedures for intracerebral micro-
injections. Rats implanted for microdialysis were conditioned to a
Raturn� recording chamber [Bioanalytical Systems (BAS), West
Lafayette, IN, USA] for 1 week before being used for an experi-
ment. Rats used for nociceptive testing were conditioned to the IITC
Model 336T Paw Stimulator Analgesia Meter with a heated glass
plate (IITC Model 400 Heated Base; IITC Life Science, CA, USA).
In all experiments, microinjections of Ringer’s solution and drug
(100 nL) into the same rat were made in random order and were
separated by 7 days. A microinjection volume of 100 nL is esti-
mated to spread up to 0.8–1 mm in diameter within the first hour
post-injection (Vanini et al., 2007).

Study design and procedures

Quantification of recovery time from isoflurane anesthesia

LoRR and RoRR are widely used in rodents as surrogate measures of
loss and resumption of consciousness, respectively (Tung et al., 2005;
Alkire et al., 2007; Franks, 2008; Vanini et al., 2008; Hudetz et al.,
2011). Figure 1A illustrates the experimental design used to quantify
time to RoRR after discontinuation of isoflurane delivery. All studies
began at approximately the same time each day (between 13:00 and
14:00 h). After a 5-min period (Fig. 1A; t = �10 min) of acclimation
to the induction chamber, 1.5% isoflurane in oxygen was delivered at
2 L/min. After induction (Fig. 1A; t = 0 min), rats were fitted with an
anesthesia mask, the oxygen flow rate was reduced to 0.5 L/min and
the concentration of delivered isoflurane was maintained at 1.5%.
Fourteen minutes after the LoRR, Ringer’s solution (vehicle control),
NPA or 3-MPA was microinjected into the PnO. The injection dura-
tion was 1 min (Fig. 1A; t = 14 to t = 15 min). Isoflurane administra-
tion was discontinued 15 min after the end of the microinjection
(Fig. 1A; t = 30 min; total anesthesia time = 30 min). Upon cessa-
tion of isoflurane delivery, the anesthesia mask was removed and rats
were placed in a supine position. RoRR was quantified as the time
(min) from cessation of isoflurane administration to resumption of a
prone position. The core body temperature was maintained in all
experiments during anesthesia as described above.

Quantification of induction time with propofol

After a 10-min acclimation period to a Plexiglas chamber, Ringer’s
solution, NPA or 3-MPA was microinjected (Fig. 1B; t = 0 min)
into the PnO. Fifteen minutes after microinjection, induction of
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anesthesia began (Fig. 1B; t = 15 min) by continuous intravenous
administration of propofol (800 lg/kg/min). The induction time was
quantified as the time (min) to LoRR.

Quantification of recovery time from propofol anesthesia

Rats were conditioned to a Plexiglas induction chamber (Fig. 1C;
t = �15 min) prior to induction of anesthesia by continuous adminis-
tration of propofol (800 lg/kg/min). Propofol was delivered using a
CMA/400 syringe pump (CMA, North Chelmsford, MA, USA) con-
nected to the implanted intravenous line (Fig. 1C; t = �10 min). For
all experiments using propofol, rats remained in a Plexiglas chamber
during periods of induction, maintenance and emergence. After induc-
tion of anesthesia (Fig. 1C; t = 0 min), propofol flow rate was
reduced (500 lg/kg/min) and maintained for 30 min to ensure that the
concentration of propofol in the brain had equilibrated (Dutta et al.,
1997). As illustrated in Fig. 1C, 14 min after propofol-induced loss of
consciousness, each rat received a microinjection of Ringer’s solution,
NPA or 3-MPA into the PnO (Fig. 1C; t = 14 to t = 15 min). Fifteen
minutes after the microinjection, intravenous propofol delivery was
discontinued (Fig. 1C; t = 30 min) and rats were placed in a dorsal
recumbent position. Recovery time (min) was quantified by measuring
the time to RoRR.

In vivo microdialysis, intravenous propofol administration and
quantification of PnO GABA levels

Each rat was used for only one microdialysis experiment. A CMA/11
microdialysis probe (cuprophane membrane with a 1 mm length,
0.24 mm diameter and 6 kDa cut-off) was aimed at the PnO and per-
fused with Ringer’s solution at a flow rate of 2.0 lL/min using a
CMA/400 syringe pump. Microdialysis sample collection (14 lL)
began 1 h after probe insertion to allow extracellular GABA levels to
stabilize (Watson et al., 2008). Each experiment consisted of collect-
ing five sequential samples during wakefulness followed by five sam-
ples during anesthesia. Procedures and doses for anesthesia with
propofol were the same as described above for determining time to
LoRR and RoRR. Samples were collected on ice for subsequent quan-
tification of GABA. The amount of GABA recovered by each dialysis
probe in vitro was calculated before and after each experiment.
Mean � SEM recovery for all the probes used was 6.7 � 0.5%.
The methods used to quantify extracellular GABA levels have been

described previously (Vanini et al., 2008, 2011, 2012). Briefly, dialy-
sis samples obtained from the PnO were analysed using an ESA
HPLC system (Chelmsford, MA, USA) and EZChrom Elite chroma-
tography data system (Scientific Software, Pleasanton, CA, USA).
Each sample was mixed in an autosampler with a derivatization solu-
tion (o-phthaldialdehyde, ß-mercaptoethanol, borate buffer and metha-
nol), and then injected into a Shiseido CAPCELL PAK C-18
separation column (JM Science, Grand Island, NY, USA). The detec-
tion limit for GABA was 11 fmol/10 lL. Standard curves were gener-
ated before and after each experiment, and were used to calculate the
amount of GABA in each sample and to ensure that the sensitivity of
the detection system remained unchanged during the analysis.

Nociceptive testing, sleep deprivation and PnO drug administration

Effects of drugs and arousal state on thermal nociception were mea-
sured using the Hargreaves’ PWL method (Hargreaves et al., 1988).
To test for nociception, a thermal light source was focused onto the
plantar surface of a hind paw and then activated. The light was then
switched from idle to active intensity (40%), and a timer was simul-
taneously activated with onset of the thermal stimulus. The rat
responded by moving its paw away from the stimulus. Immediately
upon paw withdrawal, the thermal source and the timer were deacti-
vated and the latency to withdrawal in seconds was recorded. On
experiment days, rats were habituated to the individual experiment
chambers for 20 min prior to testing. Immediately after the habitua-
tion period, baseline PWL was determined by five measurements
taken over 20 min. These five measurements were averaged for each
animal to obtain the baseline latency.
These experiments quantified whether nociception was increased

or decreased, respectively, by PnO administration of a drug that
inhibits GABA uptake (NPA) or a drug that decreases GABA syn-
thesis (3-MPA). Rats received, in random order, a microinjection of
Ringer’s solution (vehicle), 3-MPA or NPA. Thereafter, four PWL
measurements were taken at 20, 30, 60, 90 and 120 min post-micro-
injection and averaged for each time point.
Additional experiments determined whether hyperalgesia caused

by sleep deprivation was diminished by PnO administration of a
GABA synthesis inhibitor (3-MPA). Rats received a microinjection
of: (i) Ringer’s solution and were allowed to sleep ad libitum during
the intervals between PWL measurements; (ii) Ringer’s solution and
were sleep deprived by gentle handling (Tobler & Jaggi, 1987; Bar-
acchi & Opp, 2008; Peterfi et al., 2010) during 4 h of PWL testing;
or (iii) 3-MPA and were sleep deprived during 4 h of PWL testing.
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Fig. 1. Timelines for quantifying changes in recovery and induction time
caused by manipulating GABA levels in the pontine reticular nucleus, oral
part (PnO). Elapsed time (t) in minutes is indicated above each timeline.
After induction of anesthesia with isoflurane (A), rats received a microinjec-
tion of Ringer’s solution (vehicle control), NPA or 3-MPA into the PnO.
Anesthesia was maintained for 30 min after induction. Isoflurane delivery
then was discontinued, rats were placed in a supine position, and recovery
from anesthesia was quantified as the time to resumption of righting response
(RoRR). For quantification of induction time with propofol (B), rats received
a microinjection of Ringer’s solution or drug (NPA or 3-MPA) during wake-
fulness. Fifteen minutes after the end of the microinjection, continuous intra-
venous infusion of propofol began and the time to induction was quantified
as the time to loss of righting response (LoRR). For quantification of recov-
ery time after propofol anesthesia (C), the timeline and procedures were the
same as in the isoflurane experiments.
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After the microinjection, four PWL measurements were taken at 20,
30, 60, 90, 120, 150, 180, 210 and 240 min post-microinjection.
All PWL measurements were obtained using bilateral stimulation

by alternating the noxious thermal stimulus between right and left
hind paws. Each experiment in the same rat was separated by a min-
imum of 5 days. The latency in seconds to paw withdrawal in
response to the stimulus was expressed as a percentage change from
pre-microinjection baseline values [percentage of maximum possible
effect (%MPE); Hayes et al., 1984] using the following equation: %
MPE = (post-injection PWL – baseline PWL)/(cut-off time – base-
line PWL) 9 100. A cut-off time of 15 s for the thermal stimulus
was used to ensure no tissue damage. Positive %MPE values indi-
cate a longer latency to paw withdrawal in response to the stimulus
relative to baseline measures, consistent with decreased nociception.
Negative %MPE values indicate shorter PWLs that are consistent
with increased nociception.

Histological localization of microinjection and microdialysis
sites

Upon completion of the experiments, animals were deeply anesthe-
tized with isoflurane and decapitated. Brains were removed, frozen
and sectioned coronally at 40 lm. All tissue sections containing the
pontine reticular formation were mounted serially on glass slides,
dried, fixed with hot paraformaldehyde vapor, and stained with Cre-
syl violet. Sections containing microinjection or microdialysis sites
were digitized, and stereotaxic coordinates of microinjection and
microdialysis sites were defined by comparison with a rat brain atlas
(Paxinos & Watson, 2007).

Statistical analysis

Statistical evaluation of the data was performed with input from the
University of Michigan Center for Statistical Consultation and
Research. Data analyses were performed using Statistical Analysis
System (SAS) version 9.2 (SAS Institute, Cary, NC, USA) and PRISM

v6.0c for Mac OS X (GraphPad Software, La Jolla, CA, USA). All
data were tested for normality. Data are reported as mean � SEM,
and a P-value < 0.05 was considered statistically significant.

Induction of and recovery from anesthesia

Because the data did not meet the assumptions of the underlying gen-
eral linear model (i.e. normality was rejected), drug effects on LoRR
and RoRR were evaluated by non-parametric statistics using Wilco-
xon matched-pairs signed-rank tests. In addition, the magnitude of the
treatment effect (effect-size) for the time to induction with propofol and
isoflurane was quantified by computing Cohen’s d for each measure.

GABA measurement

GABA levels are reported as either fmol/10 lL or normalized as
percentage change from average GABA levels during wakefulness
(control). The differences in GABA levels as a function of arousal
state were assessed by a linear mixed model allowing a random
effect by rat and by condition nested within rat.

Nociception

Differences in %MPE (thermal nociception) as a function of time,
drug, and time by drug interaction were evaluated by repeated-mea-
sures, two-way ANOVA using a linear mixed model, controlling for

random effects due to rat and experiment. Post hoc Tukey–Kramer
procedure and t-test adjusted for multiple comparisons were used to
evaluate differences in mean %MPE per time point. A mixed model
was used to analyse changes in %MPE as a function of time and
drug during sleep deprivation, allowing random intercepts and
slopes per animal within each experiment. The differences in mean
%MPE were determined by paired t-test or Kruskal–Wallis test and
post hoc Dunn’s test.

Results

Inhibiting GABA synthesis and GABA uptake in the PnO
altered induction time but did not change recovery time

Isoflurane

Previously published data showed that microinjection of the
GABA synthesis inhibitor 3-MPA into the PnO significantly
decreased LoRR caused by isoflurane (Vanini et al., 2008). Con-
sistent with evidence that GABAergic transmission in the pontine
reticular formation promotes wakefulness (Vanini et al., 2011; Va-
nini & Baghdoyan, 2013), administration of the GABA uptake
inhibitor NPA into the PnO increased LoRR with isoflurane (Va-
nini et al., 2008).
In contrast, Fig. 2 illustrates that microinjection of the GABA

synthesis inhibitor, 3-MPA (n = 9 rats) and the GABA reuptake
inhibitor, NPA (n = 10 rats) into the PnO did not significantly alter
RoRR after isoflurane anesthesia. In order to achieve statistical
power for detecting a significant difference in time to recovery from
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Fig. 2. Pharmacologically increasing or decreasing endogenous GABA lev-
els in the pontine reticular nucleus, oral part (PnO) did not alter recovery
time. A schematic sagittal view of the rat brain illustrates that a cannula
inserted into the PnO was used for microinjection of Ringer’s solution or
drug (A). Microinjection of either the GABA synthesis inhibitor 3-mercapto-
propionic acid (3-MPA) (B) or the GABA uptake inhibitor nipecotic acid
(NPA) (C) into the PnO did not alter the time to resumption of righting
response (RoRR) after isoflurane anesthesia.
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isoflurane anesthesia, power calculations indicate that a minimum of
38 and 462 rats would be required for 3-MPA and NPA, respec-
tively.

Propofol

Figure 3 summarizes the effects of 3-MPA and NPA on induction
and recovery time caused by propofol. Microinjection of the GABA
synthesis inhibitor 3-MPA (n = 6 rats) into the PnO significantly
(P = 0.03) decreased LoRR caused by propofol (Fig. 3A). The
GABA uptake inhibitor NPA (n = 5 rats) significantly (P = 0.03)
increased LoRR (Fig. 3B). Calculation of Cohen’s d revealed a
large treatment effect on propofol-induced LoRR for both 3-MPA
(d = 0.8) and NPA (d = 1.1). Also consistent with the results
obtained with isoflurane was the finding that microinjection of
3-MPA (n = 7 rats; Fig. 3C) and NPA (n = 7 rats; Fig. 3D) had no
effect on RoRR after propofol anesthesia. Power calculations indi-
cate that a minimum of 705 and 129 rats would be needed for the
effects of 3-MPA and NPA, respectively, to achieve statistical power
for detecting a significant difference in the time to recovery from
propofol anesthesia.
Figure 3E and F plotted mean extracellular GABA levels in the

PnO during states of wakefulness and anesthesia with propofol. Rel-
ative to wakefulness, propofol caused a significant (F = 75.68;
df = 1,2; P = 0.013) decrease (41%) in GABA levels. The graphs
plot GABA levels averaged across experiments for all rats (n = 3).

Figure 4A shows that microinjection sites from the isoflurane stud-
ies were all localized to the PnO, with average stereotaxic coordinates
�8.0 � 0.1 mm from bregma, 0.8 � 0.2 mm from the midline and
�8.3 � 0.1 mm from the skull surface (Paxinos & Watson, 2007).
All microinjection sites for studies that measured time to induction
and recovery from propofol anesthesia were localized to the PnO
(Fig. 4B). Average PnO stereotaxic coordinates for Fig. 4B data were
�8.3 � 0.1 mm from bregma, 1.2 � 0.1 mm from midline and
�8.5 � 0.1 mm from the skull surface (Paxinos & Watson, 2007).
Histological analysis confirmed that all measures of extracellular
GABA levels were obtained from the PnO (Fig. 4C).

Inhibition of GABA synthesis and GABA uptake mechanisms
in the PnO altered thermal nociception

Figure 5A shows that the GABA synthesis inhibitor 3-MPA
significantly (t = 5.818; df = 24; P < 0.0001) decreased thermal
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tyric acid (GABA) levels in the pontine reticular nucleus, oral part (PnO)
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mercaptopropionic acid (3-MPA) and nipecotic acid (NPA) into the PnO sig-
nificantly decreased (A) or increased (B), respectively, the time to loss of
righting response (LoRR). In contrast, 3-MPA (C) and NPA (D) had no
effect on the time to resumption of righting response (RoRR) after propofol
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were significantly decreased (E and F) during anesthesia with propofol.
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nociception (i.e. increased %MPE). The graph plots %MPE aver-
aged across the 2-h testing session for all rats (n = 5). Figure 5B
illustrates the time course of %MPE during 2 h after microinjection
of 3-MPA. ANOVA revealed a significant (F = 11.49; df = 1,8;
P = 0.0095) drug effect. Figure 5C summarizes the effect of PnO
administration of a GABA uptake inhibitor. NPA significantly
(t = 5.650; df = 39; P < 0.0001) increased thermal nociception (i.e.
decreased %MPE). The graph plots %MPE collapsed across time
for all rats (n = 8). Figure 5D shows the time course data during
2 h post-microinjection. ANOVA revealed a significant (F = 8.72;
df = 1,14; P = 0.0105) main drug effect.

Administration of a GABA synthesis inhibitor into the PnO
decreased hyperalgesia caused by sleep deprivation

Figure 6A shows that, relative to control, sleep deprivation signifi-
cantly (P = 0.0080) decreased %MPE (i.e. increased thermal noci-
ception). Administration of 3-MPA into the PnO before the onset of
sleep deprivation significantly (P < 0.0001) increased %MPE over
control levels, preventing the hyperalgesia caused by sleep depriva-
tion. The time course of %MPE during 4 h as a function of drug,
sleep and time after PnO microinjection is shown in Fig. 6B.
Repeated-measures, two-way ANOVA indicated a significant
(F = 6.04; df = 2,18; P = 0.0098) effect of treatment (i.e. sleep
deprivation and sleep deprivation plus 3-MPA). There was no

post-injection time effect, or treatment condition by time interaction.
Post hoc tests revealed a significant increase in %MPE caused by 3-
MPA. Regression analysis of %MPE after PnO microinjection of
Ringer’s solution revealed that there was a significant (P = 0.0033)
linear increase in thermal nociception during 4 h of sleep depriva-
tion. The time spent awake accounted for a significant percentage
(76%) of the variance in %MPE. The data shown in Fig. 6 summa-
rize the results from seven rats that received all three treatments.
Microinjection sites from all pain studies (Figs 5 and 6) were local-
ized within the PnO (Fig. 7), at average stereotaxic coordinates
�8.3 � 0.1 mm from bregma, 1.2 � 0.1 mm from the midline and
�8.5 � 0.1 mm from the skull surface (Paxinos & Watson, 2007).

Discussion

The present data show that the time to LoRR, but not time to
RoRR, caused by both isoflurane and propofol was significantly
altered by manipulating GABA levels in the PnO. These results pro-
vide novel evidence that GABA in the PnO promotes wakefulness,
and demonstrate in rat that induction of and emergence from anes-
thesia are not inverse processes. The present data extend previous
findings (Kelz et al., 2008) by showing that the induction and emer-
gence phases of anesthesia are differentially regulated by a specific
brain region (PnO) and neurotransmitter (GABA). Measures of
extracellular GABA levels during wakefulness and anesthesia
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revealed that propofol decreases GABA levels in the PnO. One
implication of these data is that propofol causes loss of conscious-
ness, in part, by decreasing extracellular GABA levels in the PnO.
Manipulating GABA levels in the PnO altered nociception, and
administering a GABA synthesis inhibitor into the PnO blocked the
hyperalgesia caused by sleep deprivation. The results suggest that
GABA in the PnO regulates nociception and mediates the hyperal-
gesia caused by sleep deprivation. The role of GABAergic transmis-
sion in the PnO in the regulation of anesthesia, sleep and pain is
discussed in the following sections.

Induction but not emergence is regulated by GABAergic
transmission in the PnO

Consistent with data from many laboratories demonstrating that
GABAergic transmission in the PnO promotes wakefulness (Cama-
cho-Arroyo et al., 1991; Xi et al., 1999; Sanford et al., 2003; Marks
et al., 2008; Vanini et al., 2008, 2011; Watson et al., 2008, 2011;
Brevig et al., 2010; Flint et al., 2010; Vanini & Baghdoyan, 2013),
the present data show that pharmacologically altering GABAergic
transmission in the PnO modulates time to induction of general anes-
thesia. Microinjection of a GABA synthesis inhibitor (3-MPA) into
the PnO decreased induction time by the inhaled anesthetic isoflurane
(Vanini et al., 2008) and the intravenous anesthetic propofol
(Fig. 3A). Microinjection of a GABA uptake inhibitor (NPA) into the
PnO increased induction time by both isoflurane (Vanini et al., 2008)
and propofol (Fig. 3B). In contrast, administration of GABA synthe-
sis and uptake inhibitors into the PnO did not change the time to
recovery from either isoflurane (Fig. 2) or propofol (Fig. 3C and D)
anesthesia. Thus, the effects of 3-MPA and NPA on induction and
emergence from anesthesia with the intravenous agent propofol paral-
leled the effects of these drugs on induction and emergence with the
inhaled anesthetic isoflurane (Vanini et al., 2008). These data provide
novel support for the conclusion that GABAergic transmission in the
PnO regulates induction but not emergence from general anesthesia.
The results are consistent with data that challenged the concept that
emergence is the inverse process of the induction phase of anesthesia
(Kelz et al., 2008). The lack of identity between the phases of induc-
tion and emergence is observed in flies, mice (Friedman et al., 2010)
and now rats, indicating conservation across species.
Intravenous administration of propofol caused a significant

decrease in extracellular GABA levels in the PnO (Fig. 3E and F).
These data support the interpretation that changes in propofol-
induced LoRR and RoRR are a function of changes in endogenous
GABA levels in the PnO, and that one mechanism by which propo-
fol causes loss of consciousness is by decreasing GABAergic trans-
mission in the PnO. The mechanisms by which propofol decreases
extracellular GABA levels remain incompletely understood. Propo-
fol enhances GABAergic transmission at GABAA receptors (Bali &
Akabas, 2004) and can regulate neuronal GABA release (i.e. presyn-
aptic inhibition) within the PnO. Extracellular glutamate levels in
the PnO are greatest during wakefulness (Watson et al., 2011).
Propofol decreases the release of glutamate and GABA, with a
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greater depression of glutamate release (Westphalen & Hemmings,
2003). Thus, one potential mechanism by which propofol eliminates
consciousness is, in part, by decreasing the excitatory/inhibitory
transmitter ratio in the PnO.
Additional support for the role of PnO GABA in regulating levels

of arousal comes from studies of benzodiazepine site agonists. For
example, administering the benzodiazepine site agonists zolpidem,
diazepam and eszopiclone directly into the PnO caused drug-specific
changes in cortical electroencephalographic activity and increased
acetylcholine release in the PnO (Hambrecht-Wiedbusch et al.,
2010). Systemic administration of eszopiclone to awake rats signifi-
cantly decreased acetylcholine release in the PnO and increased
electroencephalographic power in the delta frequency (Hambrecht-
Wiedbusch et al., 2010). These data suggest that different classes of
clinically used sedative-hypnotics can exert their arousal-modulating
effects by actions at GABAA receptors in the PnO.
GABAergic input to the PnO arises from multiple sources.

GABAergic neurons that project to the PnO are localized to the lat-
eral hypothalamus (Boissard et al., 2003; Rodrigo-Angulo et al.,
2008), amygdala (Boissard et al., 2003), periaqueductal gray (Bois-
sard et al., 2003; Sapin et al., 2009) and pontine reticular formation
(Liang & Marks, 2009). Extracellular GABA originates from
synaptic release (Mitchell & Silver, 2000; Hamann et al., 2002;
Houston et al., 2012), as well as non-synaptic release from neurons
and glia (Timmerman & Westerink, 1997; Watson et al., 2006;
Angulo et al., 2008; Halassa et al., 2009).
Substantial data support the conclusion that 3-MPA decreases brain

GABA levels. In vitro assays demonstrated that 3-MPA inhibits glu-
tamic acid decarboxylase (Engel et al., 2001; Monnerie & Le Roux,
2007). Whole-cell patch-clamp recordings from CA3 neurons showed
that 3-MPA decreases the amplitude and frequency of GABAergic
postsynaptic currents (Engel et al., 2001). Systemic administration of
3-MPA selectively decreases GABA levels measured in different fore-
brain, cerebellum and brain stem regions (Van der Heyden et al.,
1979; Alsip et al., 1984; DiMicco & Abshire, 1987; Kehr & Unger-
stedt, 1988; Toth & Lajtha, 1988; Herbison et al., 1990; Alsip &
DiMicco, 1992; Timmerman et al., 1992; Varga & Kunos, 1992).
Microinjection or microdialysis delivery of 3-MPA to the caudate
region (Toth & Lajtha, 1988), medial preoptic area (Herbison et al.,
1990) and substantia nigra (Van der Heyden et al., 1979) decreases
GABA levels. Taken together, these studies support the conclusion
that 3-MPA inhibits glutamic acid decarboxylase and reduces extra-
cellular brain GABA levels by decreasing newly synthesized GABA.
Microinjection of the GABA uptake inhibitor NPA into the PnO

during isoflurane (Vanini et al., 2008) or propofol (Fig. 3D) anes-
thesia did not significantly alter anesthesia recovery time. In view of
evidence that general anesthesia decreases extracellular GABA lev-
els in the PnO (Vanini et al., 2008), it could be argued that adminis-
tration of NPA into the PnO during anesthesia does not alter
endogenous GABA levels. Previously published data, however,
demonstrate that delivery of NPA to the PnO during anesthesia
increases extracellular GABA levels in the PnO (Watson et al.,
2007; Vanini et al., 2008). Thus, there are now multiple lines of
evidence to support the interpretation that increasing GABA levels
in the PnO does not alter time to recovery from anesthesia.

GABAergic transmission in the PnO modulates hyperalgesia
caused by sleep deprivation

The PnO is part of the ascending activating system that regulates sleep
and wakefulness (Steriade & McCarley, 2005; Brown et al., 2012),
processes nociceptive information (Porro et al., 1991; Knight et al.,

2005; Ghazni et al., 2010), and coordinates autonomic and motor
responses evoked by noxious stimuli (Price, 2000). Administering
adenosine, acetylcholine, hypocretin and opioid receptor agonists into
the PnO alters nociception (Kshatri et al., 1998; Tanase et al., 2002;
Wang et al., 2009; Watson et al., 2010). The present results show that
thermal nociception was decreased by a GABA synthesis inhibitor
(Fig. 5A) and increased by a GABA uptake inhibitor (Fig. 5C) deliv-
ered to the PnO. These data support the conclusion that GABAergic
transmission in the PnO also modulates nociception.
Injection of pentobarbital into rat mesopontine tegmentum causes

analgesia, atonia and loss of consciousness (Devor & Zalkind, 2001;
Namjoshi et al., 2009). Pentobarbital enhances transmission at
GABAA receptors. The brain stem area in which pentobarbital
administration causes an anesthesia-like state (Devor & Zalkind,
2001) is rostral and dorsal to the PnO region where GABA acts to
promote wakefulness and increase nociception (Figs 4 and 7). These
data further support the interpretation that the effects on arousal state
and nociception brought about by activation of GABAA receptors
vary as a function of brain region.
The finding that 4 h of total sleep deprivation increased thermal

nociception (Fig. 6) is consistent with evidence from studies in
humans showing that sleep disruption increases pain perception
(Arima et al., 2001; Roehrs et al., 2006, 2012; Edwards et al., 2008).
Hyperalgesia caused by sleep deprivation was decreased by adminis-
tration of a GABA synthesis inhibitor into the PnO (Fig. 6). Nocicep-
tive sensitivity varies as a function of arousal state (Callahan et al.,
2008), and GABAergic transmission in the PnO regulates states of
sleep and wakefulness (Vanini et al., 2011; Vanini & Baghdoyan,
2013). After PnO microinjection of the GABA synthesis inhibitor 3-
MPA, PWL was measured when rats were awake. No measures were
obtained when rats showed behavioral signs of sleep onset. Thus,
changes in PWL were likely caused by inhibition of GABA synthesis
within PnO networks that process nociceptive information (Fig. 7).
The foregoing evidence supports the novel interpretation that GABA-
ergic transmission within the PnO modulates nociception and medi-
ates the increase in pain caused by sleep disruption. The present
results encourage future studies designed to quantify the extent to
which the results shown in Fig. 6 might reflect a net effect of hyperal-
gesia caused by sleep disruption and analgesia caused by 3-MPA.
Unconsciousness and analgesia are two clinical endpoints used to

operationally define the state of anesthesia. How states of conscious-
ness are generated (Miller, 2005) and how anesthetics work
(Kennedy & Norman, 2005; Brown et al., 2010) remain as major
gaps in knowledge in anesthesiology and neuroscience. The data
reported here help to bridge this gap by showing that GABAergic
transmission in the PnO regulates the interacting states of wakeful-
ness, sleep, anesthesia and pain.

Limitations and conclusions

An acknowledged limitation is that the present study did not deter-
mine whether the behavioral responses obtained after increasing or
decreasing endogenous GABA can be attributed to the actions of
GABA on one or a combination of GABAA and GABAB receptor
subtypes. The present results encourage future studies using selec-
tive agonists and antagonists at GABAA and GABAB receptors in
order to clarify the role of GABA receptor subtypes. Another limita-
tion is that the neuronal networks by which GABA in the PnO regu-
lates sleep, wakefulness and nociception remain incompletely
understood. Future studies are needed to identify the neuronal net-
works that are inhibited by GABAergic mechanisms within the PnO
to alter states of behavioral arousal and pain.
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The present results support the conclusions that GABA endogenous
to the PnO promotes wakefulness (Vanini et al., 2008, 2011; Watson
et al., 2008), and that induction and emergence from propofol anes-
thesia are not inverse processes (Kelz et al., 2008; Friedman et al.,
2010). GABAergic transmission in the PnO regulates the time to loss
of consciousness caused by propofol and isoflurane, but not time to
recovery of consciousness. The results also indicate that hyperalgesia
caused by sleep disruption is modulated by GABAergic transmission
in the PnO. These data have translational relevance for sleep disorders
medicine, as well as for anesthesiology. A persisting clinical problem
is that sleep disruption worsens pain and pain medications disrupt
sleep (Gauthier et al., 2011). The rational development of drugs with
fewer side-effects will require data such as those presented here, that
identify brain regions and neurotransmitter systems modulating
altered states of consciousness, such as anesthesia, sleep and pain.
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