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Proteins are often characterized in terms of their primary, sec-

ondary, tertiary, and quaternary structure. Algorithms such as

define secondary structure of proteins (DSSP) can automati-

cally assign protein secondary structure based on the back-

bone hydrogen-bonding pattern. However, the assignment of

secondary structure elements (SSEs) becomes a challenge

when only the Ca coordinates are available. In this work, we

present protein C-alpha secondary structure output (PCASSO),

a fast and accurate program for assigning protein SSEs using

only the Ca positions. PCASSO achieves �95% accuracy with

respect to DSSP and takes �0.1 s using a single processor to

analyze a 1000 residue system with multiple chains. Our

approach was compared with current state-of-the-art Ca-based

methods and was found to outperform all of them in both

speed and accuracy. A practical application is also presented

and discussed. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23683

Introduction

The basic protein secondary structure elements (SSEs), namely,

a-helices and b-sheets, were first described by Pauling and Corey

in 1951[1,2] and have since provided a foundation for comparing,

classifying, and visualizing three-dimensional (3D) protein folds.

Traditionally, protein SSEs were manually designated through vis-

ual inspection of the polypeptide chain, which often resulted in

assignments that were subjective and, at times, incomplete.

Today, this tedious process is made more efficient and reproduc-

ible through automated tools such as structural identification

(STRIDE)[3] and define secondary structure of proteins (DSSP).[4,5]

DSSP, one of the oldest and most popular SSE assignment pro-

grams available, assigns SSEs by first identifying all backbone

carbonyl (C@O) and amide (NAH) hydrogen bonds based on a

purely electrostatic criterion. Then, depending on the hydrogen

bonding patterns, each residue is classified as a helix, strand, or

loop. However, the assignment of SSEs becomes problematic

when insufficient information is available [e.g., protein data

bank (PDB) structures with unresolved backbone atoms, Ca-only

models originating from cryo-electron microscopy (cryo-EM),

and coarse-grained protein models used in multiscale simula-

tions]. Although the positions of the missing backbone atoms

that are required for SSE assignment can be estimated from

reduced models,[6–11] the reconstruction methodology is imper-

fect and often requires some level of refinement or energy min-

imization through molecular dynamics (MDs) simulations to

optimize the backbone hydrogen bonding networks before

being processed through DSSP. Furthermore, this time consum-

ing process can become prohibitive when reconstructing a

large number of structures from long coarse-grained MD simu-

lations. Thus, it is advantageous to develop a fast and efficient

method that avoids the reconstruction process altogether and

yet can still provide reliable SSE assignments that can be gener-

ally and consistently applied across multiple scales.

Several Ca-based assignment methods such as protein sec-

ondary element assignment (P-SEA),[12] voronoi tessellation

assignment procedure (VoTAP), [13] and more recently, second-

ary structure assignment program based on only alpha car-

bons (SABA) [14] have been reported. P-SEA utilizes a

combination of distances, angles, and dihedrals for secondary

structure analysis while VoTAP generates contact matrices

derived from 3D Vorono€ı tessellation, which are then used for

assigning SSEs. SABA uses a similar approach to P-SEA but

instead of directly computing the Ca coordinates SABA shifts

the coordinates of the ith Ca atom to its pseudocenter (PC)

position [defined as the center-of-geometry between Ca (i)

and Ca (i 1 1)] and then assigns SSEs based on an optimized

set of PC-dependent geometric criteria. This is thought to bet-

ter represent the location of the backbone NAH/C@O atoms

involved in secondary structure formation. While these meth-

ods appear to agree reasonably well with DSSP, P-SEA, and

VoTAP are no longer being maintained and SABA is available

only as a web server that is limited to analyzing individually

uploaded PDB files.

In this work, we present protein C-alpha secondary structure

output (PCASSO), a fast and efficient program for assigning

protein SSEs that only requires Ca atoms as input. Using the

well-known random forest (RF)[15] approach, PCASSO achieves
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high accuracy compared to DSSP and offers fast processing times

even for large systems. PCASSO can be used for, but not limited

to, evaluating individual PDBs, batch processing, and analyzing

MD simulation trajectories. The source code (licensed under the

GNU General Public License v3.0) and web server are made freely

available at http://brooks.chem.lsa.umich. edu/software.

Methods

RF is an ensemble machine learning methodology that achieves

high accuracy by aggregating classifications from independent

random decision trees and reporting the mode vote.[15] To

ensure that the trees within the forest are uncorrelated, each

tree is trained on a bootstrap sample of the original data set

(with replacement) and only a small, randomly chosen subset of

features/variables is used to determine the best split at a given

node. To compare our results with previous methods, we

utilized the same protein training and test sets published by

Mornon and coworkers[13] (see Supporting Information Tables

S1–S3). All structural coordinates were obtained from the

PDB[16] and analyzed with DSSP.[4,5] The Ca atoms were then

extracted from each PDB and 258 basic geometric features (see

below) were computed for each residue of the reduced model.

For a given residue, i, a set of features, fCaðiÞ and fPCðiÞ, were

calculated from the Ca coordinates and the PC coordinates,

respectively (see Supporting Information Table S4). The jth and

kth residues form nonbonded interactions with the ith residue

and help to identify interactions between strands that are sep-

arated in sequence. The jth residue has the shortest distance

from residue i and, when i and j are from the same chain/seg-

ment, j must be at least i 1 6 residues away. Similarly, the kth

residue has the shortest distance from residue i and, when i

and k are from the same chain/segment, k must be at least i

2 6 residues away. The coordinates of the ith PC was previ-

ously defined as the center-of-geometry between Ca (i) and

Ca (i 1 1)[14] and so the PC coordinates for the last residue of

each chain/segment is undefined as are the features that refer-

ence the ultimate C-terminal residue. The feature vector, V(i),

for the ith residue is made up by features from the ith, i 2

1th, and i 1 1th residues (i.e. VðiÞ5 fCaðiÞ; fPCðiÞ; fCaði21Þ;f
fPCði21Þ; fCaði11Þ; fPCði11Þg) which results in a total of 2343ð Þ
335258 feature elements.

From the training set, a total of 50 trees were generated

using the RF implementation found in the Open Source Com-

puter Vision (OpenCV) library[17] and default parameters were

used unless otherwise specified. At each node, 16 out of 258

features/variables were selected at random to find the best

split. Node splitting was ceased either when: (i) all members of

the node were of the same class (i.e., helix, strand, or loop); (ii)

the maximum depth allowed (25) was reached; or (iii) the min-

imum sample count required for a split (10) was not satisfied.

Changes in the RF parameters (i.e., number of random features

used for each split, maximum tree depth, minimum sample

count, total number of trees, etc) did not result in a significant

increase in accuracy. As the tree growing procedure is com-

pletely independent of the classification process, the resulting

ensemble of trees was extracted from the OpenCV output,

serialized as a string in preorder, and hardcoded into PCASSO

for speed and efficiency. Thus, PCASSO is a standalone pro-

gram that takes either PDB structures or MD simulation trajec-

tories as input, deserializes the tree ensemble into

independent binary decision trees, calculates the full feature

vector for each Ca atom and processes it through each tree,

aggregates the SSE classifications, and returns the mode vote

for each residue of each structure or simulation snapshot. To

compare the speed and accuracy of PCASSO with the recon-

struction scheme, the missing backbone atoms for each Ca
model from the test set were rebuilt using the rebuild program

from the Multiscale Modeling Tools for Structural Biology Tool

Set [6] and subsequently analyzed using DSSP. Finally, the pro-

tein test set was analyzed using PCASSO and the accuracy (rel-

ative to DSSP) was compared with the SSE assignments from

P-SEA, VoTAP, and DSSP (using the reduced models with

reconstructed backbone atoms as input). To demonstrate the

value and applicability of PCASSO, we analyzed a previously

published 58 ls MD folding trajectory of a human Pin1 WW

domain variant called FiP35.[18] Simulation snapshots

(n 5 2,900) were assessed every 20 ns and the SSE classifica-

tions were used in constructing conformation space networks.

All molecular graphics were generated in PyMOL[19] and SSE

time series plots were created using in-house tools.

Results and Discussion

As the number of protein structures being deposited into the

PDB grows, the number of X-ray, NMR, and cryo-EM structures

with missing or incomplete backbone atoms also experiences

a concomitant increase. For example, approximately 40% of

the protein structures deposited in 2013 contained at least

one or more missing backbone atoms (Fig. 1). Concurrently,

the number of publications that include the terms “coarse,”

“grained,” “protein,” and “simulation” has also been on the

rise.[20] As DSSP [4,5], the current gold standard for assigning

SSEs, depends solely upon backbone hydrogen bonding pat-

terns, residues with only Ca coordinates are generally ignored

Figure 1. The number of protein-containing structures deposited in the

PDB between 1971 and 2013 (noncumulative). A total of 96,286 PDB struc-

tures were analyzed and 23,295 PDB structures (�24%) were found to have

incomplete/missing backbone atoms.
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or neglected. While the backbone atoms for a single protein

can be reconstructed from the Ca atoms with reasonable accu-

racy, this time-consuming process, as we will demonstrate

below, becomes infeasible for much larger systems and/or for

rapidly rebuilding a large ensemble of structures from coarse-

grained/multiscale simulations. As scientists continue to push

the size of systems that can be experimentally determined
[21,22] or computationally simulated,[23] the demand for faster

and more efficient analysis tools that can complement these

larger systems will also rise. Thus, PCASSO has been developed

to provide quick and reliable SSE classifications directly from

the Ca coordinates (i.e., without backbone reconstruction) with

the analogous aim of being to Ca-containing structures what

DSSP is to all-atom structures.

To judge the performance of PCASSO, we compared our SSE

assignment accuracy relative to DSSP with assignments from

P-SEA and VoTAP (Table 1). Overall, PCASSO demonstrated

�95% accuracy, which is more than an 11% increase over P-

SEA and VoTAP. PCASSO showed a substantial improvement in

classifying strands and loops and a moderate enhancement in

classifying helices. More importantly, PCASSO was found to be

equally as accurate as the reconstruction scheme (i.e., the

backbone atoms were reconstructed from the Ca coordinates

and then evaluated using DSSP) and exhibited a high level of

precision and sensitivity for each SSE class (i.e., low false posi-

tives and low false negatives). Over 94% of the structures in

the test set had a greater than 90% classification accuracy and

over 99% of the structures had a greater than 85% accuracy

(Fig. 2). The three lowest accuracy structures (Supporting Infor-

mation Table S5) only showed minor differences in their

assignments and are displayed in Figure 3. Furthermore, as

PCASSO was trained on DSSP SSE assignments, we also

assessed the accuracy of PCASSO relative to STRIDE (Support-

ing Information Table S6). Remarkably, even without recalibrat-

ing PCASSO to match STRIDE, the overall accuracy was only

slightly reduced to �93% which can be attributed to a small

decrease in accuracy for classifying helices and strands. It is

logical that the accuracy results can somewhat vary when

PCASSO is compared to different reference methods as STRIDE

and DSSP are based on different approaches. In fact, it has

been previously reported that STRIDE is in �95% agreement

with DSSP.[13] Additionally, it has been demonstrated that

these minor discrepancies can be attenuated by the use of a

ternary consensus method (TCM).[12,13,24] However, considering

the generally high level of agreement with the aforemen-

tioned all-atom-based assignment methods, we contend that

TCM would not be practical or necessary.

To assess the scalability of PCASSO, we evaluated its proc-

essing time for systems of increasing size using a single CPU

(Table 2). We found that PCASSO was at least 24 times faster

than P-SEA and at least 11 times faster than the reconstruction

scheme. In fact, by extrapolation, as the number of residues

(and/or structures) increases, it becomes infeasible to use any

of the pre-existing Ca-based methods for assigning SSEs due

to their much longer processing times. While in all cases, mul-

tiple structures or simulation snapshots can be divided

amongst multiple CPUs in an “embarrassingly parallel” manner

to boost the speed performance, only PCASSO is amenable to

Table 1. PCASSO accuracy comparison.

Percent accuracy[a]

SSE PCASSO[b] P-SEA[c] VoTAP[d] Reconstruction[e]

Helix 96.5 (96.6) 83.9 93.0 94.8

Strand 92.2 (95.3) 78.2 77.3 91.8

Loop 94.1 (92.2) 74.8 79.3 96.1

All 94.5 78.9 83.2 94.6

[a] DSSP is used as the reference. The true positive rate (sensitivity) is

shown and the positive prediction value (precision) is in parentheses.

[b] Trained on DSSP SSE assignments. [c] Computed using P-SEA (Ref.

[12]). [d] Adapted from Ref. [13]. [e] See Methods

Figure 2. Histogram of structures with varying SSE assignment accuracies.

Table 2. Comparison of SSE processing times.

Time (s)

PDBID Residues Chains PCASSO P-SEA VoTAP Reconstruction DSSP

P-SEA

PCASSO

Reconstruction 1 DSSP

PCASSO

1PUC 101 1 0.01 0.34 – 0.11 0.04 34.00 15.00

1NBA 1011 4 0.11 2.74 – 1.04 0.17 24.91 11.00

1RVV 4620 30 1.25 51.39 – 12.75 1.17 41.11 11.14
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further parallelization. For example, unlike P-SEA and VoTAP,

which both assign helices first followed by strands and then

loops (i.e., there is a residue assignment order dependency),

PCASSO treats the assignment of each residue completely

independently, which makes it perfectly suited for parallel

processing. Additional speed improvements can also be made

by distributing the evaluation of each independent decision

tree to a different CPU or by removing redundant and/or

highly correlated features. Thus, PCASSO is not only able to

accomplish more with limited resources but its underlying

implementation also allows room for future improvement and

scalability.

The number of coarse-grained protein simulations has expe-

rienced a steady increase over the past decade as scientists

seek to understand protein structure and dynamics on much

longer timescales.[20] In the case of protein folding, the frac-

tion of native amino acid contacts, Q,[25] is typically used as a

progress variable for monitoring the folding process. However,

Q can fail to identify important nonnative contacts or protein

misfolding that would have otherwise been captured through

SSE analysis. To illustrate this point and to demonstrate a prac-

tical application of PCASSO, we analyzed a previously pub-

lished all-atom MD folding trajectory of a human Pin1 WW

domain variant called FiP35,[18] which consists of a three-

stranded b-sheet connected by two b hairpins (Fig. 4). Using Q

as the reaction coordinate, initially, FiP35 is only partially

folded but after �35 ls the peptide forms over 80% of its

native contacts and is considered fully folded (Fig. 4A). How-

ever, both DSSP and PCASSO, which yield essentially the same

results, reveal that FiP35 can form stable nonnative interac-

tions at the onset and parts of the peptide actually misfold to

a helix (Figs. 4B and 4C). Thus, this example clearly demon-

strates the value of SSE assignments and how this information

can be complementary to Q. Furthermore, PCASSO offers a

Figure 3. SSE assignment comparison for the three lowest accuracy

structures.

Figure 4. Analyses of the FiP35 folding trajectory.
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fast and reliable alternative to DSSP for analyzing protein sec-

ondary structure that can be applied to any Ca-containing

multiscale model.

In conclusion, PCASSO outperformed pre-existing programs

in both accuracy and speed. Given this, PCASSO can also be

used in network analysis through SSE clustering,[26] high-

throughput SSE studies, universal SSE assignments, SSE-based

alignments,[27] renormalization of G�o-like models for intrinsi-

cally disordered proteins,[28] and to analyze coarse-grained

simulation models that do not incorporate any native contact

information[29,30] or where the native contacts are not known

a priori (e.g., to examine cooperative folding of multimers or

large multisubunit complexes). Ultimately, we hope that the

work presented here will motivate the development of better

and faster tools to complement the ever-growing challenges

of big data.
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