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Joint modeling compliance and outcome
for causal analysis in longitudinal studies

Xin Gao,* Gregory K. Brown® and Michael R. Elliott®¢*"

This article discusses joint modeling of compliance and outcome for longitudinal studies when noncompli-
ance is present. We focus on two-arm randomized longitudinal studies in which subjects are randomized at
baseline, treatment is applied repeatedly over time, and compliance behaviors and clinical outcomes are mea-
sured and recorded repeatedly over time. In the proposed Markov compliance and outcome model, we use the
potential outcome framework to define pre-randomization principal strata from the joint distribution of com-
pliance under treatment and control arms, and estimate the effect of treatment within each principal strata.
Besides the causal effect of the treatment, our proposed model can estimate the impact of the causal effect of
the treatment at a given time on future compliance. Bayesian methods are used to estimate the parameters. The
results are illustrated using a study assessing the effect of cognitive behavior therapy on depression. A simulation
study is used to assess the repeated sampling properties of the proposed model. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. Introduction

Because randomized treatment assignment removes both observed and unobserved confounding, ran-
domized studies provide a means to estimate the causal effect of a treatment. However, because patients
can choose whether or not to comply with their assigned treatment in many circumstances, noncom-
pliance or partial compliance is very common in the randomized studies. To estimate causal treatment
effects, traditional analysis methods include intent-to-treat (ITT) analysis, as-treated (AT) analysis, and
per-protocol (PP) analysis. ITT analyses provide a causal estimate of the effect of randomization, which
can differ from the causal effect of the treatment in the presence of noncompliance. AT analyses ignore
the randomization assignment, and compare the outcomes by using the actual treatment received. PP
analyses compare the outcomes for subjects who comply with the assigned treatment. However, because
the latter two analysis methods condition on the treatment taken, which is a post-randomization variable,
selection bias can affect the AT and PP estimates of the causal effect of treatment [1].

A large literature has developed in recent years to estimate causal effects via potential outcomes.
Under the potential outcome framework, the causal estimands are comparisons of the potential outcomes
that would have been observed under all possible assignments of treatments. The idea of describ-
ing causal effects in terms of potential outcomes dates back to Neyman in 1923 [2], and is now
becoming widely used in the fields of economics, social and behavioral sciences, epidemiology, and
statistics.

In this manuscript, we use the principal stratum approach formulated in [3]. For noncompliance prob-
lems, the principal strata are determined by the joint distributions of the compliance behaviors under each
treatment arm. In the context of a two-arm randomized trial, they consist of compliers (subjects who take
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treatment if and only if assigned to it), always-takers (subjects who take treatment regardless of assign-
ment), not-takers (subjects who do not take treatment regardless of assignment), and defiers (subjects
who take the treatment if and only if assigned to control). Thus these principal strata are not affected
by the randomization assignment, and stratum membership can be regarded as a pre-randomization vari-
able. The treatment effect within each principal stratum thus has a causal interpretation. In particular, the
treatment effect within the stratum of compliers, called the complier average causal effect (CACE) [4], is
often of interest to the investigators, and can be interpreted as the causal effect of treatment, because it is
the treatment assignment effect among the subpopulation who comply to the randomization assignment
no matter to which treatment group they are assigned.

Recent research on the noncompliance problem in the randomized clinical studies by using princi-
pal stratification has focused on obtaining a valid estimate of the effect of treatment within principal
strata [3-5]. Estimation of the effect of treatment in the presence of noncompliance has been extended
to longitudinal studies in recent years. These longitudinal studies vary in several features. For example,
subjects can be randomized once at baseline [6-8] or multiple times over time [9]. Treatment can be
applied once [6] or repeatedly over time [7-9]. In this article, we focus on the situation in which subjects
are randomized once at baseline, treatments are applied repeatedly over time, and subjects’ compliance
behavior may change over time.

An important feature of a longitudinal study of this design is that the outcomes and the compliance
behaviors are measured and recorded repeatedly over time; and thus, the longitudinal data could reveal
more information about the reason and mechanism of noncompliance. Possible reasons for noncompli-
ance include forgetting to take the treatment, side effects, or small treatment effects. With an effective
treatment, one might want to improve the compliance in future studies by means such as education
about treatment or reduction in side effects. Motivated by this, we propose a Markov compliance and
outcome model by using the principal stratification framework of [3]. This work extends that of Lin
et al. [7], who used the concept of a ‘superclass’ in a similar design setting to define principal strata
on the basis of trajectories of the (partially latent) compliance classes. Lin et al. provides a simple and
efficient method to assess efficacy when compliance varies over time. Here, our goal is more ambitious:
to use the longitudinal study to assess the impact of the causal effect of the treatment on the future com-
pliance, as well as the causal effect of treatment within each principal stratum at each follow-up point
in time.

We illustrate the model by using a study designed to assess the effect of cognitive behavioral therapy
(CBT) on depression among a sample of suicide attempters.

The remainder of this manuscript is organized as follows. Section 2 describes our proposed Markov
compliance and outcomes model. Section 3 applies our proposed model to the CBT study. Section 4
shows the results of a simulation study to the repeated sampling properties. Section 5 discusses the
implications of our findings and future application and extensions.

2. A Markov compliance and outcome model for longitudinal compliance designs

We focus on the two-arm randomized control trial setting where subjects are randomized at baseline to
either treatment or control but then are followed forf = 1, ..., T time points after baseline, with the out-
come of interest and compliance behavior assessed at each time point #. Our model is designed to focus
on two goals, both of which are of clinical interest. Our first goal is to assess the treatment assignment
(ITT) effects within principal strata at each time point — in particular the complier average causal effect,
corresponding to the ITT effect with the principal stratum in which the treatment taken corresponds
with the treatment assigned under both treatment arms. Our second goal, unique in the literature to our
knowledge, is to determine how previous compliance behavior and causal effects may impact current
compliance behavior. These goals can only be accomplished by considering the joint distribution of the
potential outcomes and potential treatment received over all time points.

2.1. Notation

For subject i = 1,...,n, we use Z; to denote the randomization assignment (1 for treatment and 0
for control) and x; to denote the baseline covariates. For subject i in the follow-up period ¢, we use
Yi +(z;) to denote the potential clinical outcomes under treatment assignment Z; = z;, and D; ;(z;) to
denote the potential treatment received under treatment assignment Z; = z;. In the context of a two-arm
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randomized trial without specific restriction, the principal strata consists of compliers, always-takers,
not-takers, and defiers:

¢ (complier), Di(zi) = zi

5. _ ) n (not-taker), Dis(zi) =0

1) a (always-taker), Dj,(z;) =1
d (defier), Dis(zi) =1—2zi.

Thus, the joint distribution of D; (1) and D;,(0) fully determines the principal strata S;; at time ¢.
Because only one of D; (1) or D;,(0) is observed, S; ; is latent for all subjects.

2.2. Complete data distribution

Under the potential outcome framework, the complete data include all subjects’ randomization statuses,
principal strata memberships, and potential clinical outcomes under all possible treatment arms in all
follow-up periods. The joint distribution of the complete data is given by

f(Zla ey Zn» Yl,l(l)’ Y1,1(0)7 ] Yn,T(1)7 Yn,T(O)a Sl,lv ceey Sn,T)
= f(217 s Zn)f(Y1,1(1)7 Y1,1(0)7 L] Yn,T(1)9 Yn,T(O)’ Sl,l» ] Sn,T)

=[] /20 f(Xia (1), Yi1(0), ... Yir (1), Yir(0), S ..., SiT)

i=1

= [T{/@Z) /(i) f (i (1. Yi1 0)1:.1)

i=1
T
< [T (Y Y O1Siss o Syamirs Yiam1 (D Yigm1 00 Yy gy (1Y (0))
=2

X (StalStmtsoo s Speges Va1 (0, Yiae1 00, Yoy (0. Y; gy )]

The three equalities follow respectively from these three assumptions:

(1) Ignorable treatment assignment assumption [10].
This assumption is that assignment is independent of all baseline variables (observed and unob-
served) and potential outcomes. Under ignorability, we do not need to model the assignment
mechanism. This assumption is reasonable in most clinical trial settings, where treatments are
usually assigned at random.

(2) Stable unit treatment value assumption [11].
Stable unit treatment value assumption comprises two subassumptions. The first subassumption
is that the potential compliance behavior of one individual is not affected by the randomization
status of other individuals, and the potential outcomes of one individual are not affected by the ran-
domization status and the potential compliance behaviors of other individuals. This assumption is
reasonable in trials like the CBT study, where the disease (depression) is not infectious, and patients
visit their doctors as individuals, instead of in groups. The second subassumption is that there is
no ‘hidden’ version of the treatment, that is, there are no systematic differences in the treatments
assigned within the treatment categories. This assumption is reasonable in the CBT study setting,
given that care was taken to standardize treatment provided.

(3) The longitudinal potential outcomes and principal compliance statuses follow a Markov process
with possibly differing orders.
In particular, we assume the potential outcomes at the end of the follow-up period ¢ depend not only
on the principal stratification membership at the current time but on the principal strata in previous
t —1,...,t — K7 follow-up periods as well as on the potential outcomes at the end of previous
t—1,...,t—Kj follow up periods. Similarly, we assume the principal strata in the follow-up period
t depend on the principal strata in previous t — 1,...,¢ — K¢ follow-up periods and the potential
outcomes at the end of previous 7 —1,...,7 — K follow up periods. (We let K? = 0 imply inde-
pendence between principal strata across time, and similarly for the other pairings.) Details of the
Markov process assumed in the application are given in Section 2.3.
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1
2.3. Parametric submodels

For each of the components in the complete data likelihood, we make the following additional modeling
assumptions.

Modeling principal stratum membership att = 1. We focus on the two-arm randomized trial in which
subjects assigned to the control group could not access the treatment; therefore the principal strata only
consists of compliers and not-takers. We use probit regression to model the (binary) baseline compliance
strata, conditional on subject level baseline covariates x;: P(S; 1 = c|x;, o) = (oo + xjot1).

Modeling potential outcomes at t = 1. Conditional on the principal strata in the first follow-up
period, we assume the potential outcomes at the end of first follow-up period follow a bivariate normal
distribution with correlation p. For individual 7,

(Yi1 (1), Yi,1(0)[Si1. B, E~MVN(p; 1. X), , ,
iy = (B1+ Berl(Sin = ). Bo + Beol(Sin =¢)) . T = ( 7, " ) .

po? o

In cross-sectional settings where the causal parameters of interest are non-parametrically identified
[12], estimation of the correlation between the potential outcomes of a given subject is not required and
thus is usually ignored; when considered, a location shift between Y; ,(1) and Y; ;(0) (p = 1) has some-
times been assumed [13, 14]. Even though only potential outcomes under the arm the subjects actually
take are observable, in noncompliance settings where the outcome is binary, the within-correlation is
partially identified [15]; however, in this continuous setting, there will be no data available to estimate
this within-subject correlation p. Viewing p as a sensitivity parameter, we assume a variety of the cor-
relations between 0 and 1. This correlation has little impact when making inferences about ITT effects
in large finite populations and no impact on such inference in superpopulations [2]. But in this setting,
this correlation may have considerable impact on the estimates of the parameters providing information
about the impact of outcomes on compliance.

Modeling principal stratum membership att > 1. For the principal strata in follow-up period 7 (¢ > 1),
we assume a single-order Markov dependence (Kj, = K¢ = 1). This Markov dependence allows for
interactions between the effects of the previous potential outcomes and the compliance class status, and
is assumed to be constant over time. Thus, for patient i in the follow-up period ¢,

P(Si,t = C|Yi,t—1(1)’ Yi,t—l(o): Sii—1, 0)

@ (6 + OoYi—1(1) + 0, (Yiy—1(0) = Yiy—1(1) + 0 L(Si i1 =€)
+0ye(Yir—1(0) = Yi 1 (I)I(Si -1 = C)) .

Modeling potential outcomes at t > 1. For the potential outcomes at the end of follow up periods
t > 1, we assume a bivariate normal distribution conditional on principal strata and previous potential
outcomes with a single-order Markov dependence for the potential outcomes and a zero-order Markov
dependence on the principal strata, that is, depending only on the principal strata membership at time #
(K § =1, K, = 0). This Markov relationship is assumed to be constant over time. Thus, for subject i
and time ¢,

(Yi,t(1)7 Yi i (0)]Yi—1(1),Yi:—1(0), Sis, 7. X ~ MVN(ILi,m %),

w = ( Yie + voYi—1(1) + vy (Yie—1(0) = Yis—1(1)) + ver1(Sie = ¢) )
bt Yor +YoYis—1(1) + ¥y (Yi—1(0) = Yi,—1(1)) + Yo I(Sie = ¢)

o? po?

Figure 1 provides a graphical summary of the assumed Markovian relationships between the principal
strata and the potential outcomes.
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Figure 1. Assumed Markovian relationships between principal strata S and potential outcomes Y.

2.4. Principal effects

Imbens and Rubin [4] defined the principal effect as the ITT effect of the treatment within each principal
compliance stratum. Because of the conditioning structure of our model, we define the principal effects
conditional on both the current principal stratum membership and the previous potential outcomes:

ITT., =E (Yi: (1) = Yi(0)|Siz = ¢, Yir—1(1), Yi1—1(0)) = (Y1z — Yor) + (Ye1r — Yeor)
ITT,;=E (Yie (1) =Y (0)|Sis =n,Yir—1(1), Yis—1(0)) = (Y1r — Yor)-

The ITT effect within the complier stratum, I 7T T, is often termed the complier average causal effect
(CACE), because it is the one principal stratum in which the treatment taken corresponds with the
treatment assigned under both treatment arms.

The ITT effect of the treatment within the not-taker stratum /7 7T, is often assumed zero in causal
models for clinical studies. This is called the exclusion restriction (ER) assumption [12]. This assump-
tion is plausible in many studies, but not always. For example, in the CBT study, the clinical outcome
is a subject’s depression severity. The not-takers randomized to the cognitive therapy may experience
stress as a result of failing to participate in the therapy, and thus become more depressed, but may not be
stressed about not participating in the therapy if they were assigned to usual care. Therefore not-takers
may develop different levels of depression under different assignments; and thus, the ER assumption
may not be met. Our proposed model allows us to estimate the ITT effect within the not-taker stratum,
ITT,.

Note that our assumptions about the Markov structure of the model allow us to obtain estimates
of within-principal-stratum ITT effects that have a direct causal interpretation. Presence of substantial
higher-order Markov relationships suggest that alternative approaches may be required; we provide more
detail in Section 5.

2.5. Estimation

A Bayesian approach with data augmentation [16] is a natural method to deal with the missing data
structure. The posterior distributions of the parameters and full conditional distributions of the missing
potential outcomes do not have simple closed forms, so we use a MCMC algorithm. To obtain draws
from the posterior distributions of the parameters, a Gibbs sampling algorithm is used for 8, y, and o2,
and Metropolis algorithm is used for « and . A Metropolis algorithm is also used to obtain draws from
the full conditional distributions of the missing potential outcomes. For the Metropolis algorithm, we
propose random draws from a ¢ distribution with three degrees of freedom. The variance is adjusted to
give an acceptance rate of approximately 30% [17]. The detailed descriptions of the posterior distribution
of the parameters and the full conditional distributions of missing potential outcomes and missing prin-
cipal compliance are given in the Appendlx To check convergence, we calculate a measure of between
and within-chain variance R [17]. R < 1.1 is considered acceptable.

In addition to the missing data in the unobserved treatment arm, 19% of subjects have one or more
of their BDI outcomes not recorded after time = 1. We assume a missing at random mechanism for
these missing data, so that conditional on the observed outcomes and compliance behavior, missingness
is assumed to be random. Thus, for missing outcome at time ¢ > 1, draws from the joint distribution of
(Yi,1(0), Yi (1) | ¥3,1(0), Yi 1 (1), Si1s ..o, Yig—1(0), Yip—1 (1), Sip—1, Siexi e, B, y, 0, %) are imputed
at each step of the Gibbs sampler to accommodate missingness under the missing at random assumption.
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-
2.6. Model fit assessment

To assess the fit of the data, we consider the posterior predictive distribution (PPD) p-values [17].
Because the principal compliance of subjects randomized to the treatment group are equal to the
observed compliance, we compare the PPD of the principal compliances and assess their fit to the
observed principal compliances. We make posterior predictive checks of the fitted models by using
the percentage of compliers in the treatment as the test statistics, and compare the observed percentage
of compliers with their posterior predictive distribution to obtain PPD p values. A PPD p value close to
0.50 indicates good fit of the model to the data.

We use a chi-square type test of the form 7 = Y7, 310, ((yiy — pia)?/0?), where y;, =
zi * Y(Diy + (1 —z:)Y(0);r and piy = z; * u(1)ir + (1 — zi)(0); ;. The distribution of this test
statistics should be close to the chi-square distribution with ) ; n; degree of freedom. A Q-Q plot of the
test statistics and the chi-square statistics around the 45 degree line indicates good fit of the model to
the data.

3. Application to the cognitive behavioral therapy trial

The CBT study was a randomized longitudinal study designed to test the effectiveness of a suicide
prevention treatment [18]. This study was designed to determine whether a brief psychosocial interven-
tion could reduce depression severity over an 18-month follow up interval in a sample of subjects who
had attempted suicide. Cognitive therapy was the psychosocial intervention for this study. It is built on
clinical investigations regarding the psychopathological characteristics of suicide behaviors. The study
sample consisted of 120 individuals who attempted suicide. Individuals were initially identified in the
emergency department following a suicide attempt at the Hospital of the University of Pennsylvania.
After the subjects were medically cleared or stabilized in the emergency department, they were trans-
ferred to the psychiatric emergency department. Eligible individuals were randomized into two groups:
the control group, where patients received usual care, and treatment group, where patients were offered
outpatient cognitive therapy sessions specifically developed for preventing suicide attempts on a weekly
or biweekly basis. The central feature of this psychotherapy was the identification of proximal thoughts,
images, and core beliefs that were activated prior to the suicide attempt.

The clinical outcome measure was the beck depression inventory (BDI), which indicated the severity
of depression. Subsequent in-person assessments of BDI were conducted at 1, 3, 6, 12, and 18 months
following the baseline interview. Among the 120 subjects, 60 subjects were randomly assigned to the
cognitive therapy group, and 60 subjects to the usual care group. We restricted our analysis to the 58
subjects in the treatment arm and the 56 subjects in the control arm with at least one BDI follow-up
measurement. Subjects’ age ranged from 18 to 66 years, and 61% of them are female. Subjects assigned
to the CBT arm who met with the doctor to receive CBT at least once during a given follow up period are
defined as having successfully received treatment. Table I shows that randomization achieved balance
across the observed baseline covariates between two treatment arms. We apply a square root transfor-
mation on BDI to improve the normality approximation for the clinical outcomes, and summarize the
observed «/ BDI of the study sample at each follow-up time in Figure 2. It shows that the subjects

Table I. Mean and standard deviation (in parenthesis) of baseline covariates
of the cognitive behavior therapy study sample by treatment group.

Baseline covariates Cognitive therapy Usual care  p value
Age 35 (10.0) 35 (10.3) 0.80
Gender(1) (%) 35 (60.3) 34 (60.7) 0.97
Beck depression index 33 (12.1) 31 (15.9) 0.53
Beck hopeless scale 11 (5.5) 12 (6.3) 0.79
Suicide ideation 28 (5.7) 29 (4.4) 0.48
Number of previous suicide attempts 4(5.4) 6(13.6) 0.47
Self-reported health status 2 (1.1) 2 (1.1) 0.60
Positive problem orientation 9 (4.3) 9(5.0) 0.91
Rational problem style 9(5.1) 8(5.3) 0.73
Impulsive-careless style 10 (4.8) 9(5.5) 0.22

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3453-3465
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Figure 2. Mean of the square root of the beck depression inventory (BDI) of the cognitive behavioral therapy
study sample by treatment assignment.

randomized to the cognitive therapy group developed less severe depression on average than the subjects
randomized to the usual care group from month 3 onward.

We define compliance as attending one or more cognitive therapy sessions during the follow-up period
of interest. The noncompliance rate of subjects assigned to the cognitive therapy group are 7%, 9%, 36%,
and 64% in follow-up periods of one month, three months, six months, and twelve months respectively.
Data for the 18 month follow-up are not included in the analysis, because noncompliance rate is 96%.

We apply the proposed Markov compliance and outcome model to the CBT study. We assume rel-
atively flat priors because we do not have strong prior knowledge for the CBT study. Specifically, we
let B ~ MVN(0,100007), y ~ MVN(0,10000/), 8 ~ MVN(0,101), 0> ~ Inv-y2(1,1). Ten is
chosen as the variance of prior of 6 because it reflects our belief that baseline covariates will not have
extreme impacts on the probability of principal stratum membership, without being unduly informative
on the probability scale away from 0 and 1. We ran two chains from different starting values, each with
100,000 iterations after a burn-in of 50,000. Our maximum value of Ris 1.02 < 1.1, indicating the
Markov chains have indeed converged.

We focus first on the situation where the correlation between the two potential outcomes under treat-
ment and control is high (p = 0.9). Table II shows the estimated CACE and I T' T}, for cognitive therapy
treatment. The results show that for compliers, the cognitive therapy consistently lowers depression
severity more effectively than usual care. On average among compliers, the cognitive therapy lowers
~BDI 0.63 (95% CI .05,1.27) more than that under usual care at 1 month, and this effect increases to
2.22 (95% CI 1.02,3.35) at 12 months. For not-takers, because they would not participate in the cogni-
tive therapy regardless the group they are assigned, we can view I T T,, as the effect of randomization
to cognitive therapy without actually taking the therapy. The results show that subjects randomized to
cognitive therapy who are unwilling or unable to complete treatment during the first month have aver-
age / BDI scores 1.58 (95% CI 0.38,2.90) higher than if they had not been randomized to cognitive
therapy. The results imply that being assigned to cognitive therapy — though not cognitive theraphy itself
— is harmful to not-takers at the beginning of the study. This effect decreases over time, with the 95%
credible interval including O from 6 months on.

Table II. Cognitive behavior therapy study: intent-to-treat effects in the complier stratum (ITT, or
CACE), intent-to-treat effects in the never-taker stratum (ITT),;), overall ITT effects, and as-treated (AT)
effects: posterior medians and 95% credible intervals (in parenthesis) at each follow-up time. p=assumed
correlation among counterfactual potential outcomes.

Month

P 1 3 6 12

CACE 0.9 —0.63(—=1.27,—0.05) —0.68(—1.48,0) —1.09(—1.87,—0.34) —2.22(—3.35,—1.02)
0.5 —0.66(—1.28,—0.03) —0.74(—1.52,0.02)  —1.42(—2.36,—0.50) —2.40(—3.67,—0.90)
0.1 —0.72(=1.32,—0.11) —0.80(—1.54,—0.07) —1.49(—2.43,—0.59) —2.29(—3.72,—0.70)

ITT, 0.9  1.58(0.38,2.90) 1.87(0.44,3.29) 0.45(—0.62, 1.56) 0.16(—0.82, 1.20)
0.5  1.87(0.16,3.62) 1.63(—0.77, 3.63) 0.56(—0.85, 1.89) 0.06(—1.10, 1.25)
0.1  1.85(0.17,3.59) 0.77(—1.44,2.97) 0.12(=1.30,1.58)  —0.26(—1.44,0.93)

ITT —0.01(—0.63,0.60)  —0.22(—0.85,0.40)  —0.66(—1.29,0.03)  —0.81(—1.45,—0.17)

AT 0.12(—0.43,0.66) 0.09(—0.64,0.47)  —0.75(~1.33,-0.17) —1.01(—1.70,—0.31)

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3453-3465
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To compare our proposed model with the traditional analysis methods, we show the results of ITT and
AT analyses in Table II. For the ITT analyses, we fit a linear mixed model with a random intercept for
each subject, with fixed-effect indicators for follow-up periods, treatment assignment, and their inter-
action. The analysis shows that assignment to cognitive therapy lowers depression severity on average
in all follow up periods, although these effects are smaller than the CACE of cognitive therapy, and the
CI does not exclude O until 6 months. Note that the effect of randomization is different from the effect
of cognitive therapy in the CBT study because of the large proportion of noncompliance. For the AT
analysis, we use a model similar to that for the ITT analysis but replace treatment assigned with treat-
ment taken. The analysis shows that cognitive therapy lowers depression severity from 6 months after
randomization. However, because of self-selection, subjects participating in the cognitive therapy and
subjects participating in the usual care might no longer be comparable, and estimates of the effect of
cognitive therapy from AT analysis appear to underestimate the CACE.

In Table III, we show the estimated probit regression parameters (elasticities) governing principal
compliance in the follow-up period ¢ (¢ > 1) when within-subject correlation is assumed to be high
(p =.9). The coefficients 0, and 6, + 0, estimate the impact of the effect of randomization to cogni-
tive therapy among not-takers and compliers respectively at follow-up period ¢ — 1 on the probability of
being a complier versus a never-taker at follow-up period ¢ . The positive 95% credible intervals indicates
that the probability of being a complier at follow up period ¢ increases as the effect of randomization to
cognitive therapy at the end of follow-up period # — 1 increases. The quantity 8, + 6, is larger, indicating
this effect is stronger for compliers than not-takers at follow-up period ¢ — 1. The parameter 6, shows
the effect of being a complier at  — 1 on that of being a complier at # among those for whom the treat-
ment assignment was neither harmful nor beneficial. The results show that principal compliance status
at time 7 — 1 is not predictive of principal compliance status at time # when the treatment had no effect at
time  — 1.

The parameters ogender and agp; measure the impact of baseline covariates on the principal compli-
ance in the first follow-up period. The 95% credible interval of agpy is positive (agpr = 0.79 (0.47, 0.87)),
indicating that the subjects have higher probability of being compliers in the first follow-up period if the
subjects have more severe depression at the time of randomization. ®gender 18 estimated to be positive,
but the 95% credible interval covers zero (Ctgender = 0.62(—0.30, 0.84)), indicating that females tend to
be marginally more likely to comply in the first follow-up period. (Results not shown in Table III.)

To assess the fit of data, we check the PPD of the principal compliances and potential clinical out-
comes. The p values of the PPD of principal compliances are 0.83, 0.69, 0.53, and 0.47 for follow-up
periods 1, 3, 6, and 12 months, respectively, indicating a good fit for principal compliance. The Q-Q
plot in Figure 3 shows the distribution of the potential clinical outcome test statistics is very close to
the model-predicted chi-square distribution with 416 degrees of freedom, indicating that the normality
assumption for the transformed BDI measure is reasonable.

3.1. Sensitivity to potential outcomes correlations

Because there is no data available to assess the correlation p of the potential outcomes, we fix this value
at a constant and consider the impact of different values on our inferences of interest. The previous
section assumed high correlation (p = 0.9); here we consider a moderate correlation (p = 0.5) or a
small correlation (p = 0.1).

The results in Table II imply that both CACE and 17 T,, are not sensitive to the correlation of the
potential outcomes. Under both moderate and small correlations, the cognitive therapy consistently has
better effects on lowering depression severity than the usual care for compliers. The magnitudes of the

Table ITI. Posterior medians and 95% credible intervals of probit regression parameters (elasticities) govern-
ing the cognitive behavior therapy compliance classes for follow-up period ¢ > 1. p = assumed correlation
among counterfactual potential outcomes.

Causal effect at 7 — 1 Causal effect at 7 — 1 Effect of compliance
p in not-takers (6y) in compliers (0y + 6y¢) att —1(6;)
0.9 3.19(1.15, 6.26) 4.59(1.73, 9.05) —2.03(=5.22,0.53)
0.5 1.26(—0.52,4.05) 1.43(—0.65, 3.60) 0.37(—2.68,2.96)
0.1 0.41(—0.74,2.01) 0.49(—0.31,1.75) 1.29(—0.74,2.87)
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Figure 3. Q-Q plot of outcome test statistic with posterior predictive chi-square distribution.

difference are very similar to those under high correlation of potential outcomes. For not-takers, under
both moderate and small correlations, assignment to cognitive therapy makes subjects’ depression more
severe than assignment to usual care at the beginning of the study. This effect decreases as time increases
and disappears at 1 year after randomization.

The estimated parameters governing the principal compliance are shown in Table III. The results show
that, as the correlation of potential outcomes becomes smaller, the impact of the causal effect of cognitive
therapy among not-takers at the previous time period (6, ) and similarly the impact of the causal effect of
cognitive therapy among compliers at the previous time (6, +0y.) shrink toward 0, whereas the impact
of being a complier at the previous time (6.) expands simultaneously. The variance of the difference
of bivariate normal random variables becomes larger as their correlation becomes smaller. Because the
treatment effect is the difference of the bivariate random variables, as the correlation of within-subject
potential outcomes becomes smaller, the variance of the treatment effect will become larger; thus, the
association between the treatment effect and future compliance will become weaker, and other predictors
will play a more important role in the model.

4. Simulation results

Although we utilize a Bayesian framework for our analysis, we are still interested in the repeated sam-
pling properties of our proposed model. To assess this, we simulate 50 datasets of 100 subjects each
with four follow-up periods. To make subjects’ compliance behaviors and clinical outcomes similar to
the CBT study data, each dataset are simulated under & = (o, Ogender» @BpI1) = (—3.0,0.6,0.8), B = (B1,
Bos Ber, Beo) = (3.1,1.7,1.2,3.3), ¥ = (Y12, V13, Vi4s Y02 Y03, Y04, Y0, Vys Ye125 Vel3s Yelds Ve02s Ve03s
Yeos) =(2.5,1.4,1.0,1.0,1.3,1.1,0.6,1.0,—-2.0,—1.9,—1.9,0.4, —0.6,0.2), § = (62, 03, 04, 6y, 0,, O,
0yc) =(0.7,-2.6,-4.7,0.6,2.1,—-1.2,1.1), p = .9, and 02 = 2.1. We analyze the simulated data by
using the proposed Markov compliance and outcome model.

We summarize the simulation results of the estimated CACE and /T T, in each follow up-period
along with other parameters of interest in Table IV and Table V. Given the modest number of simula-
tions due to the relatively long time necessary to fit the model to a single simulated dataset, very accurate
assessments of the repeated sampling properties of our Bayesian model are not possible; however, all
parameters appear to have relatively low amounts of bias and either approximately correct coverage or
modest undercoverage.

5. Discussion

In the setting of a two-arm randomized control trial setting, where subjects are randomized at baseline
to either treatment or control, and both outcomes and compliance behavior are assessed at multiple time
points after baseline, we develop a model by using a principal stratification approach that assesses a

- _______________________________________________________________________________________________|
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Table IV. Summary of estimated complier average

causal effect (CACE) and intent-to-treat effects in the

never-taker stratum (/ 7' 7},) from 50 simulations.
Coverage of 95% C.I. Median (true value)

Month CACE ITT, CACE I1TT,

1 94% 92% —0.6(—0.7) 1.3(1.4)

3 92% 90% —0.9(-0.9) 1.6(1.5)

6 92% 94% —1.2(=1.2) 0(0.1)

12 90% 90% —1.7(=2.2) —0.2(=0.1)

Table V. Summary of parameters governing principal compliance estimated
from 50 simulations.

(gender QBDI 9y Oc eyc

Coverage of 95% C.I. 94% 92% 90% 88% 96%
Median (true value) 0.8(0.6) 0.8(0.8) 21(21) —-1.1(=12) 1.6(.1)

both a complier average causal effect for the outcome at each time point as well as an estimate of how
previous compliance behavior and causal effects may impact current compliance behavior. This latter
aspect of our model is unique in the literature to our knowledge. We apply this model to a CBT study,
showing that the stronger the individual-level effect of randomization to cognitive therapy is at the end
of follow-up period ¢, the greater the probability that subjects will be compliers in the follow up period
t+ 1. This association is stronger for compliers than not-takers at time . Our findings imply that subjects
are sensing whether the treatment is effective for them, and adapting their compliance behavior accord-
ingly. It is important to note that this result refers to the unobservable potential effect of the treatment on
a given subject.

Our proposed model accommodates time-varying latent compliance classes, similar to [7,9], and [8].
Our approach differs from [7, 8], because our proposed model does not have a ‘super’ principal com-
pliance class, which summarizes the longitudinal pattern of compliance behaviors. There is a trade-off
between this superclass approach and the Markovian approach in this manuscript — the former allows
one to consider the cumulative impact of compliance behavior in a simple and direct fashion without,
however, providing a true complier average causal effect, whereas the latter allows one to both ‘unpack’
the effect of potential outcomes at time f — 1 on compliance at time ¢, as well as provide a valid inter-
pretation of the causal effect within the complier principal stratum at each follow-up time ¢ among a
possibly differing group of compliers at each time point.

In terms of the assumptions, our proposed causal model is different from previous work in a variety
of ways. First, we relax the exclusion restriction, which is a common assumption [4-6, 12]. In the CBT
study, the main clinical outcome is depression severity. It is special, because even the randomization to
treatment may affect it. The analysis provides evidence that assignment to the cognitive therapy group is
harmful for not-takers at the beginning of the study, though this effect eventually disappeared at the end
of 1 year. Because avoiding the enrollment of non-compliant individuals can be very difficult, especially
in a mental health study, these results emphasize the need to monitor carefully noncompliers for harm-
ful effects of CBT assignment, especially those who are noncompliant with treatment during the early
period of the study.

Our research also differs in the way we model the potential outcomes. Previous research typically
assumed a location shift between the potential outcomes under treatment and control, as in [13]. Such
models assume a perfect correlation between the potential outcomes in all cases. In reality, it is rea-
sonable to consider a correlation between 0 and 1 [19]. As in [19], we consider the correlation as a
sensitivity parameter, and assess the sensitivity of analysis results to this correlation. Our results show
that the principal effects are relatively insensitive to the choice of this correlation. There is more sen-
sitivity to the choice of correlation for the prediction of future compliance behavior. If we assume the
within-subject correlation of potential outcomes to be high, the effectiveness of the treatment for a given
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subject is a much more important predictor for future compliance than for previous compliance. If the
within-subject correlation of potential outcomes is assumed to be low, then within-subject treatment
effectiveness has little association with future compliance, and previous compliance better predicts future
compliance. (There is little to guide us on the exact choice of this correlation; although we might assume
it is non-negative but less than perfect; perhaps a moderately high assumption in the range of 0.3-0.7
is reasonable, depending on how one conceptualizes the sources of the residual ‘within-subject’ error
unique to each counterfactual outcome.)

We build our Markov compliance class and outcome model on the basis of a single-order Markov
relationship. This model has the advantage of clear interpretation of model parameters, and the poste-
rior predictive checks for compliance classes and potential outcomes show that the single order Markov
relationship model provides sufficient fit for the CBT study. If fitting a higher order Markov model sug-
gests that this relationship does not hold, for example, if the dependence between the ¢ and ¢-1 potential
outcomes were to differ by treatment assignment, then we need to replace y¢ and y; with yo; and yi,,
yielding

ITTc,t =FE (Yiz(l) - Yit(0)|Sit =, Yit—l(l)s Yit—l(o))

= (y1r — Yor) + (Ve1r — Yeor) + (Yo1 — v00)Yi(0) + (y11 — v10) (Yi (1) — ¥;(0)),
ITTn,t =E (Yit(l) - Yit(0)|Sit =n, Yit—l(l), Yit—l(o))

= (Y11 — Yor) + (Yo1 — Y00) Yi (0) + (y11 — y10)(Yi (1) — Y;(0)).

One could view this model as assuming a sort of second-order failure of the exclusion restriction,
namely that treatment assignment by itself affects dependence between the ¢ and ¢-1 potential outcomes.
This seems rather implausible, although even in this situation y.i; — Ycos still encapsulates the dif-
ference between the I T T, ; effect and the ITT, ; effect. A more serious situation would be that in
which the previous principal stratum membership still carries information about the I T T effect even
after conditioning on the current principal stratum membership and the previous potential outcomes.
In this setting, the principal strata at time ¢ would be defined in terms of vectors of principal strata,
for example, {(S;;—1 = ¢, Sir = ¢), (Siy—1 = ¢, Sir =n), (Si—1 =n,Sir =¢),(Siy—1 =n,8;; =n)}
if a one-degree Markov relationship with principal compliance held. Simple causal interpretation of these
strata is no longer possible. If this is the case, alternative approaches such as those developed in [7, 8] that
use a clustering algorithm to develop relatively interpretable strata such as high or low compliers may
be used, at the cost of both clean causal interpretability of the principal stratum treatment effect, as well
as the ability to estimate the link between the previous causal treatment effect and current compliance
behavior. We also note that estimating such higher-order Markov models will likely require large sample
sizes to obtain stable estimates of effects.

Other extensions of the approach developed here are possible. The mixture model for the potential
outcomes is not nonparametrically identified in the absence of the exclusion restriction assumption [20].
Although allowing for the exclusion restriction would provide for nonparametric identification, such
an assumption may not be warranted in this setting, where the act of noncompliance on the treatment
arm may have an effect on mental states that would not occur if assigned to the control arm. Instead,
we rely on the normality assumption to identify the mixture components associated with the complier
and not-taker groups in the control arm. Although the marginal distributions of ¥;(1) and Y;(0) appear
approximately normally distributed, the assumption of joint normality conditional on compliance stra-
tum cannot be assessed, given that complier status is partially latent and that only one on of the potential
outcomes is observed. An alternative to this approach would be to weaken or eliminate this parametric
assumption and rely on either observed predictors of compliance [21] or prior distributional assumptions
to induce posterior modes. Assessing the effect of departures from the normality assumption in these
longitudinal potential outcome models remains an open research area.

Appendix

Let Y;, denote (Yi(Z = 1),Y;:(Z = 0)) of subject i at the end of follow-up period 7. Let M;;
denote the design matrix of subject i for the potential outcomes at the end of the follow-up period ¢. The
posterior distributions of 8, y, and 02 are
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The full conditional distribution of principal compliance is
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