Journal of

|Software: Evolution and Process

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 26:692-713
Published online 12 February 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1644

Model refactoring using examples: a search-based approach

Adnane Ghanneml’*’T, Ghizlane El Boussaidi' and Marouane Kessentini>

1Sofrware Engineering and IT Department, Ecole de Technologie Supérieure, Montreal, QC, Canada
2CIs department, SBSE Research Lab, University of Michigan, Dearborn, MI, USA

ABSTRACT

One of the important challenges in model-driven engineering is how to improve the quality of the models’
design in order to help designers understand them. Refactoring represents an efficient technique to improve
the quality of a design while preserving its behavior. Most of existing work on model refactoring relies on
declarative rules to detect refactoring opportunities and to apply the appropriate refactorings. However, a
complete specification of refactoring opportunities requires a huge number of rules. In this paper, we
consider the refactoring mechanism as a combinatorial optimization problem where the goal is to find good
refactoring suggestions starting from a small set of refactoring examples applied to similar contexts. Our
approach, named model refactoring by example, takes as input an initial model to refactor, a set of structural
metrics calculated on both initial model and models in the base of examples, and a base of refactoring
examples extracted from different software systems and generates as output a sequence of refactorings. A
solution is defined as a combination of refactoring operations that should maximize as much as possible
the structural similarity based on metrics between the initial model and the models in the base of examples.
A heuristic method is used to explore the space of possible refactoring solutions. To this end, we used and
adapted a genetic algorithm as a global heuristic search. The validation results on different systems of real-
world models taken from open-source projects confirm the effectiveness of our approach. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

To cope with the changing and growing business needs, software systems are constantly evolving.
Software evolution activities can span from maintenance to an entire replacement of the system [1].
Software maintenance is considered the most expensive activity in the software system life cycle
[2]. According to the ISO/IEC 14764 standard, the maintenance process includes the necessary tasks
to modify existing software while preserving its integrity [3]. Maintenance tasks can be seen as
incremental modifications to a software system that aim to add or adjust some functionality or to
correct some design flaws and fix some bugs. However, as time goes by, the system’s conceptual
integrity erodes [1], and its quality degrades; this deterioration is known in the literature as the
software decay problem [4]. Therefore, maintenance tasks become more complex and costly.

A common and widely used technique to cope with this problem is to continuously restructure the
software system to improve its structure and design. The process of restructuring object-oriented
systems is commonly called refactoring [5]. According to Fowler [4], refactoring is the disciplined
process of cleaning up code to improve the software structure while preserving its external behavior.
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Automating refactoring operations necessarily helps coping with software complexity and keeping the
maintenance costs from increasing. Many researchers have been working on providing support for
refactoring operations (e.g., [6, 4, 7]). Existing tools provide different environments to manually or
automatically apply refactoring operations to correct, for example, code smells [8]. Indeed, existing
work has, for the most part, focused on refactorings at the source code level. Very few approaches
tackled the refactoring process at the model level (e.g., [9-11]). Nevertheless, models are primary
artifacts within the model-driven engineering (MDE) approach, which has emerged as a promising
approach to manage software systems’ complexity and specify domain concepts effectively [12]. In
MDE, abstract models are refined and successively transformed into more concrete models including
executable source code. The evolution of models and the transformations that manipulate them is
crucial to MDE approaches; however, the maintenance process is still focused on source code.

Actually, the rise of MDE increased the interest and the need for tools supporting refactoring at the
model level. Indeed, such a tool may be of great value for novice designers as well as experienced ones
when refactoring existing models. However, there are many open and challenging issues that we must
address when building such a tool. Mens and Tourwé [10] argue that most of the refactoring tools offer
a semi-automatic support because part of the necessary knowledge for performing the refactoring
remains implicit in designers’ heads. Indeed, recognizing opportunities of model refactoring remains
a challenging issue that is related to the model marking process within the context of MDE, which is
a notoriously difficult problem that requires design knowledge and expertise [13]. Finding refactoring
opportunities in source code has relied, for the most part, on quality metrics (e.g., [14-16]). However,
some of these metrics (e.g., number of lines of code) and refactorings (e.g., removing duplicate code)
do not apply at the model level. Hence, the designer needs to identify the useful and applicable
metrics for a given model of the system and decide how to correctly combine these metrics to detect
and propose a refactoring. In addition, existing work on refactoring relies on declarative rules to
detect and correct defects (i.e., refactoring opportunities), and the number of types of these defects
can be very large [17]. This problem’s complexity is strongly increased when the designer is looking
for an appropriate sequence of refactorings that corrects the entire set of the system’s defects.

In this paper, we hypothesize that the knowledge required to propose appropriate refactorings for a
given object-oriented model may be inferred from other existing models’ refactorings when there is
some similarities between these models and the given model. We propose model refactoring by
example (MOREX), an approach to automate model refactoring using heuristic-based search.
MOREX relies on a set of refactoring examples to propose sequences of refactorings that can be
applied on a given object-oriented model. The refactoring is seen as an optimization problem where
different sequences of refactorings are evaluated depending on the similarity between the model
under analysis and the refactored models in the examples at hand. Our approach takes as input an
initial model that we want to refactor, a base of examples of refactored models, and a list of metrics
calculated on both the initial model and the models in the base of examples, and it generates as
output a solution to the refactoring problem. In this case, a solution is defined as a sequence of
refactoring operations that should maximize as much as possible the similarity between the initial
model and the models in the base of examples. Because of the very large number of possible
solutions (i.e., refactoring combinations), a heuristic method is used instead of an enumerative one
to explore the space of possible solutions. Because the search space is very large, we use and adapt
a genetic algorithm (GA) as a global heuristic search.

The primary contributions of the paper can be summarized as follows:

e We introduce a new refactoring approach based on the use of examples. Our proposal does not
require the user to define explicitly the defect types but only to have some refactoring examples,
it does not require an expert to write detection or correction rules manually, and it combines
detection and correction steps.

e We report the results of an evaluation of our approach; we used refactoring examples extracted
from eight object-oriented open-source projects. We applied an eight-fold cross-validation
procedure. For each fold, one open-source project is evaluated by using the remaining seven
systems as bases of examples. The average values of precision and recall computed from 31
executions on each project are around 85%, which allows us to say that the obtained results are
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promising. The effectiveness of our approach is also assessed using a comparative study between
our approach and two other approaches.

The paper is organized as follows. Section 2 is dedicated to the basic concepts. Section 3 presents
the overall approach and the details of our adaptation of the GA to the model refactoring problem.
Section 4 describes the implementation and the experimental setting. Section 5 presents and
discusses the experimental results. Related works are discussed in Section 6, and we conclude and
outline some future directions to our work in Section 7.

2. BASIC CONCEPTS

This section defines some relevant concepts to our proposal, including model refactorings, software
metrics, and heuristic search.

2.1. Model refactorings

‘Refactoring is the process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure’ [18]. Model refactoring is a
controlled technique for improving the design (e.g., class diagrams) of an existing model. It involves
applying a series of small refactoring operations to improve the model quality while preserving its
behavior. Many refactorings were proposed and codified in the literature (see, e.g., [4]). In our
approach, we considered a subset of the 72 refactorings defined in [4]; we considered only those
refactorings that can be applied to class diagrams as an example of design models. Indeed, some of
the refactorings in [4] may be applied on design models (e.g. Move_Method, Rename_method,
Move_Field, Extract_Class, etc.) while others cannot be (e.g., Extract_Method, Inline_Method,
Replace_Temp_With_Query, etc.). The refactoring configuration for the experiments of our
approach reported here consisted of the 12 refactorings described in the succeeding text (Table I).
The choice of these refactorings was mainly based on two factors: (1) they apply at the model level
(i.e., we focused on class diagrams), and (2) they can be linked to a set of model metrics (i.e.,
metrics that are impacted when applying these refactorings). The considered metrics are presented in
the following subsection.

2.2. Quality metrics

Quality metrics provide useful information that helps in assessing the level of conformance of a
software system to a desired quality such as evolvability and reusability [19]. Metrics can also help
in detecting some similarities between software systems. The most widely used metrics for class
diagrams are the ones defined by Genero et al. [20]. In the context of our approach, we used the 11
metrics defined in [20] to which we have added a set of simple metrics (e.g., number of private
methods in a class and number of public methods in a class) that we have defined for our needs.
The metrics configuration for the experiments reported here consisted of the 16 quality metrics
described in Table II. All this metrics are related to the class entity, which is the main entity in a
class diagram. Some of these metrics represent statistical information (e.g., number of methods,
attributes, etc.), and others give information about the position of the class through its relationships
with the other classes of the model (e.g., number of associations). All these metrics have a strong
link with the refactorings presented in the previous section.

2.3. Heuristic search

Heuristic search enables to promote discovery or learning [21]. It consists to search a space of possible
solutions to a problem or to find an acceptable approximate solution, when an exact algorithmic
method is unavailable or too time consuming (e.g., complex combinatorial problems). There are a
variety of methods that perform heuristic search as hill climbing [22], simulated annealing [23],
GAs [24], and so on. In this section, we give an overview of GAs, and we describe how a GA can
be used to generate sequences of refactorings. GA is a powerful heuristic search optimization
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Table 1. Considered refactorings in the model refactoring by example approach.

Refactoring name

Description

Extract class

Rename method

Push down method
Push down field
Rename parameter

Add parameter
Move field

Create a new class and move the relevant fields and
methods from the old class into the new class.

Rename method with a name that reveals its purpose.

This refactoring is intended to give more
comprehensiveness to the model design.

Move behavior from a superclass to a specific subclass,
usually because it makes sense only there.

Move a field from super class to a specific subclass,
usually because it makes sense only there.

Rename a parameter within the method parameter list.

Add a new parameter to the method parameter list.

Move a field from a source class to the class destination

when it is more used by the second one than the class
on which it is defined.

Move method Move a method from a class to another one when it is
using or used by more features of the destination class
than the class on which it is defined.

Pull up method Move a method from some class(es) to the immediate
superclass. This refactoring is intended to help eliminate
duplicate methods among sibling classes and hence reduce
code duplication in general.

Pull up field Move a field from some class(es) to the immediate
superclass. This refactoring is intended to help eliminate
duplicate field declarations in sibling classes.

Extract interface Create an interface class when many classes use the same
subset of a class’ interface or two classes have part of
their interfaces in common.

Replace inheritance with delegation Change the inheritance relation by a delegation when the
subclass uses only part of a super class’ interface or does
not want to inherit data.

Table II. Considered metrics in the model refactoring by example approach.

Metric name Description

Number of attributes (NA) The total number of attributes of a given class.
Number of private attributes (NPvA) The total number of private attributes of a given class.
Number of public attributes (NPbA) The total number of public attributes of a given class.

Number of protected attributes (NProtA) The total number of protected attributes of a given class.
Number of methods (NMeth) The total number of methods of a given class.

Number of private methods (NPvMeth) The total number of private methods in a given class.
Number of public methods (NPbMeth) The total number of public methods in a given class.
Number of protected methods (NProtMeth) The total number of protected methods in a given class.
Number of associations (NAss) The total number of associations.

Number of aggregations (NAgg)
Number of dependencies (NDep)
Number of generalizations (NGen)

The total number of aggregation relationships.
The total number of dependency relationships.
The total number of generalization relationships
(each parent—child pair in a generalization relationship).

Number of aggregations hierarchies (NAggH) The total number of aggregation hierarchies.
Number of generalization hierarchies (NGenH) The total number of generalization hierarchies.
DIT (DIT) The DIT value for a class within a generalization

hierarchy is the longest path from the class to the root
of the hierarchy.

HAgg (HAgg) The HAgg value for a class within an aggregation
hierarchy is the longest path from the class to the leaves.

method inspired by the Darwinian theory of evolution [25]. The basic idea behind GA is to explore the
search space by making a population of candidate solutions, also called individuals, evolve toward a
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‘good’ solution of a specific problem. In GA, a solution can be represented as a vector. Each individual
(i.e., a solution) of the population is evaluated by a fitness function that determines a quantitative
measure of its ability to solve the target problem. Exploration of the search space is achieved by
selecting individuals (in the current population) that have the best fitness values and evolving them by
using genetic operators, such as crossover and mutation. The crossover operator insures generation of
new children or offspring based on parent individuals. The crossover operator allows transmission of
the features of the best fitted parent individuals to new individuals. Each pair of parent individuals
produces two children (new solutions). Finally, mutation operator is applied to modify some randomly
selected nodes in a single individual. The mutation operator introduces diversity into the population and
allows escaping local optima found during the search. Mutation is often performed with a low probability
in GAs [24]. Once selection, mutation, and crossover have been applied according to given probabilities,
individuals of the newly created generation are evaluated using the fitness function. This process is repeated
iteratively, until a stopping criterion is met. This criterion usually corresponds to a fixed number of
generations. The result of GA (the best solution found) is the fittest individual produced along all generations.

Hence, to apply GA to a specific problem (i.e., the refactoring problem in our context), the following
elements have to be adapted to the problem at hand:

representation of the individuals;

creation of a population (i.e., a generation) of individuals;

evaluation of individuals using a fitness function;

selection of the (best) individuals to transmit from one generation to another;

creation of new individuals using genetic operators (crossover and mutation) to explore the
search space; and

6. generation of a new population using the selected individuals and the newly created individuals.

Nk

3. A HEURISTIC SEARCH APPROACH TO MODEL REFACTORING

3.1. Overview of the approach

The approach proposed in this paper exploits examples of model refactorings and a heuristic search
technique to automatically suggest sequences of refactorings that can be applied on a given model.
The general structure of our approach is illustrated by Figure 1.

Our refactoring approach takes as inputs an initial model and a set of models in the base of examples
and their related refactorings and takes as controlling parameters a set of quality metrics. The approach
generates a set of refactoring operations that represents refactoring opportunities for the initial model.
The process of generating a sequence of refactorings (Figure 2) can be viewed as a mechanism that
finds the best way to combine refactoring operations among the list proposed in the models in the
base of examples, in such a way to best maximize the similarity between entities to be refactored in
the initial model and entities of the models in the base of examples that have undergone the
refactoring operations composing the sequence.

Accordingly, the algorithm that generates relevant sequences of refactorings has to explore a huge search
space. In fact, the search space is determined by the number of possible refactoring combinations. Formally,

Model metrics

|

Generating of refactorings | Refactorings sequences _
sequences

Initial Model

Base of examples

Figure 1. Approach overview.
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Bases of examples

Example 1

Example 2

Example 4
Example n

Figure 2. Illustration of proposed generation process.

if m is the number of available refactoring operations, then the number R of possible refactoring subsets is
equal to R=2".1If c is the cardinality of a subset of possible refactorings to which we add the order, then the
number of permutations will equal to c!. In this context, the number NR of possible combinations that has to
be explored by the algorithm is given by

om
NR = 2 Ci!

i=1

But this brute force method is infeasible in practice, because of the expensive computation. Even for
a small number of refactorings (for m=35, NR is 3840), the NR value quickly becomes larger, because
the same refactoring operations can be applied several times on different parts of the model (e.g., class,
method, and attribute). Because of this large number of possible refactoring solutions, we resorted to a
heuristic-based optimization method to solve the problem. Hence, we considered the model
refactorings’ generation as an optimization problem, and we adapted the GA [25] to this problem in
order to find an optimal solution (i.e., a sequence of refactorings) that maximizes the similarity
between the entities (class, methods, and attributes) of the initial model and those of the models in
the base of examples.

3.2. Adaptation of the genetic algorithm to model refactoring

A high-level view of our adaptation of the GA to the model refactoring problem is given in Figure 3.
As this figure shows, the algorithm takes as input a set of quality metrics and a set of model refactoring
examples.

Lines 1-3 construct an initial GA population, which is a set of individuals that stand for possible
solutions representing sequences of refactorings that can be applied to the classes of the initial
model. An individual is a set of triplets; a triplet is called a block, and it contains a class of the
initial model denoted as CIM, a class of the base of examples denoted as CBE, and a set of
refactorings that were applied to CBE and that are applicable to CIM. To generate an initial
population, we start by defining the maximum individual size in terms of a maximum number of
blocks composing an individual. This parameter can be specified either by the user or randomly.
Thus, the individuals have different sizes. Then, for each individual, the blocks are randomly built;
that is, a block is composed by

1. apair (CIM and CBE) of randomly matched classes, that is, one class(CIM) from the initial model
that is under analysis and its randomly matched class (CBE) from the base of examples and
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Input: Set of quality metrics

Input: Set of model refactoring examples

Output: A sequence of refactorings

1: I:=set_of(CIM, CBE, set of the refactorings applied to CBE that are applicable to
CIM)

2: P:=set_of(I)

3: initial population(P, Max_size)

4: repeat

5: foralll ePdo

7: fitness(I) := Sum [similarity (CIM, CBE) for all (CIM, CBE) belonging to I]
8: end for

9: best_solution := best _fitness(I);

10: P := generate new_population(P)

11: it:=it+1;

12: until it=max_it or fitness(best_solution) = 0;
13: return best_solution

Figure 3. High-level pseudo-code for genetic algorithm adaptation to our problem.

2. aset of refactorings that we can possibly apply on the class CIM from the initial model extracted
from the set of refactorings that were applied to its matched class CBE from the base of examples.

Individuals’ representation is explained in more detail in Section 3.3.

Lines 4-13 encode the main GA loop, which explores the search space and constructs new individuals
by changing the matched pairs (CIM and CBE) in blocks. During each iteration, we evaluate the quality of
each individual in the population. To do so, we use a fitness function that sums the similarities between the
classes CMI and CBE of each block composing the individual (line 7). Computation of the fitness function
of an individual is described in more detail in Section 3.5. Then, we save the individual having the best
fitness (line 9). In line 10, we generate a new population (p+1) of individuals from the current
population by selecting 50% of the best fitted individuals from population p and generating the other
50% of the new population by applying the crossover operator to the selected individuals; that is, each
pair of selected individuals, called parents, produces two children (new solutions). Then, we apply the
mutation operator, with a probability, for both parents and children to ensure the solution diversity; this
produces the population for the next generation. The mutation probability specifies how often parts of
an individual will mutate. Selection, crossover, and mutation are described in details in Section 3.4.

The algorithm stops when the termination criterion is met (line 12) and returns the best solution
found during all iterations (line 13). The termination criteria can be a maximum number of iterations
or the best fitness function value. However, the best fitness function value is difficult to predict, and
sometimes, it takes a very long time to converge toward this value. Hence, our algorithm is set to
stop when it reaches the maximum iteration number or the best fitness function value.

In the following subsections, we describe in details our adaptation of the GA to the model
refactoring problem. To illustrate this adaptation, we use an example of a class diagram as a model
to refactor. Thus, the base of examples is a set of refactorings’ examples on class diagrams.

3.3. Individual representation

An individual is a set of blocks. A block contains three parts as shown by Figure 4: the first part
contains the class CIM chosen from the initial model (model under analysis), the second part
contains the class CBE from the base of examples that was matched to CIM, and finally the third
part contains a list of refactorings that is a subset of the refactorings that were applied to CBE (in its
subsequent versions) and that can be applied to CIM.

In our approach, we represented models using predicates. However, we used a slightly different
predicate format for representing the classes of the model under analysis and those in the base of
examples. Figure 5 illustrates the predicate format used to represent a class (CIM) from the initial
model while Figure 6 illustrates the predicate format to represent a class (CBE) from the base of
examples. The representation of a CBE class includes a list of refactorings that were applied to this
class in a subsequent version of the system’s model to which CBE belongs. The subset of a CBE
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Class from intial model (CIM)
(lass from base of example (CBE)

Applicable refactorings to CIM

Figure 4. Block representation.

Class (Class Name; visibility)
{
Attribute(Attribute Name; Type; visibility; ReturnType)

Method(Method Name; [Parameters]; Visibility; Return Type;)

Relation(Name of the source class; Name of the destination class; Type of the relation)

Figure 5. Class representation in the initial model.

Class (Class Name; visibility)
{
Attribute(Attribute Name; Type; visibility; ReturnType)

Method(Method Name; [Parameters]; Visibility; Return Type;)

Relation(Name of the source class; Name of the destination class; Type of the relation)

Refactoring(Refactoring Name (Parameters))

Figure 6. Class representation in the base of examples.

subsequent refactorings that are applicable to a CIM class constitutes the third part of the block having
CIM as its first part and CBE as its second part. Hence, the selection of the refactorings to be
considered in a block is conformed to some constraints to avoid conflicts and incoherence errors.
For example, if we have a Move_attribute refactoring operation in the CBE class and the CIM class
does not contain any attribute, then this refactoring operation is discarded as we cannot apply it to
the CIM class.

The bottom part of Figure 7 shows an example of an individual (i.e., a candidate solution) that we
extracted from our experiment described in Section 4. This individual is composed of several blocks.
The first block (encircled in Figure 7) was produced by matching a class from the model under analysis
(ResourceTreeTable) and a class from the base of example (mxLayoutManager) shown in the top part
of Figure 7. Class mxLayoutManager has undergone two refactorings, which can be applied to class
ResourceTreeTable. Hence, in this context, the two refactorings are included in the refactoring
sequence that constitutes the third part of the first block. It is important to highlight that a class from
the initial model can be included only in a single block of a given individual. The top part of
Figure 8 shows another example of an individual. Each block of this individual contains one
refactoring operation. The bottom part of Figure 8 shows the fragments of an initial model before
and after the sequence of refactorings proposed by the individual (at the top of the figure) was
applied. Hence the individual represents a sequence of refactoring operations to apply and the
classes of the initial model on which they apply.
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An example of a Class (CIM) A Cla'ss (C_:BE) from the bas'e qf examples and the'
from the model under analysis refactorings it has undergone in its subsequent version
ResourceTreeTable #gmxl.:youWIanager T e
rap
-myRoleManager e bled anabled
+language #undoHandler #undoHandler
;t:)'\g:g‘e)ll\llmu #moveHandler #moveHandler
+isEnabled() -
[t e +setEnabled() Pull_up_method :5;;;5120
-myResourceManager +isBuddiing() Pull_up_field +isBuddling()
#myProject +setBuddling() - = +setBuddling()
-myVisibleFields +getGraph() +getGraph()
-column :setfraphg()) +setGraph()
getLayou llsMoved
+deleteAllColumns() +celisMoved() :ngsrem% o(())
:IS\(EIbIe}_(l)- ht +beforeUndo() +getCellsForChanges(
SAUNMSAENE 0 +getCellsForChanges(), +layoutCells()
+initTreeTable() +ayoutCells() +executeLayout()
+updateColumnOrders() +executeLayout() e
+createPopup() +destroy()
+showColumn()
+hideColumn()
+addMandatoryColumn() H H i i
eResarceCoI( The refactorings sequence applied to CBE that is applicable
+getTree() to CIM
+upResource()
:gg‘g(')‘ReS"“"’e() Refactoring applied to CBE | Is applicable to CIM?
+clear() Pull_up_method Yes
+getField()
+importData() Pull_up_field Yes
% An example of an individual
/ResouroeTreeTabIe \ GanttProject GanttGraphicArea | NewArtefactAction
mxLayoutManager ) mxGraphHandler mxLine mxStackLayout
\Pull_up_method(); Pull_up_fieldy Pull_up_field(); Pull_up_field() | Pull_up_method() Pull_up_field(); Pull_up_field()

Figure 7. Example extracted from our experiment.

3.4. Genetic operators

3.4.1. Selection. We used the stochastic universal sampling (SUS) [25] to select individuals that will
undergo the crossover and mutation operators to produce a new population from the current one. In the
SUS, the probability of selecting an individual is directly proportional to its relative fitness in the
population. For each iteration, we use SUS to select 50% of individuals from population p for the
new population p+ 1. These (population_size/2) selected individuals will be transmitted from the
current generation to the new generation and they will ‘give birth’ to another (population_size/2)
new individuals using crossover operator.

3.4.2. Crossover. For each crossover, two individuals are selected by applying the SUS selection
[25]. Even though individuals are selected, the crossover happens only with a certain probability.
The crossover operator allows creating two offspring P’; and P’, from the two selected parents P;
and P,. It is defined as follows: a random position, k, is selected. The first k refactorings of P;
become the first k elements of P’,. Similarly, the first k refactorings of P, become the first k
refactorings of P’;. The rest of the refactorings (from position k+ 1 until the end of the sequence) in
each parent P; and P, are kept. For instance, Figure 9 illustrates the crossover operator applied to
two individuals (parents) P; and P,. The position k takes the value 2. The first two refactorings of
P; become the first two elements of P’,. Similarly, the first two refactorings of P, become the first k
refactorings of P’;.

3.4.3. Mutation. The mutation operator consists of randomly changing one or more dimensions
(block) in the solution (vector). Hence, given a selected individual, the mutation operator first

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:692-713

DOI: 10.1002/smr



MODEL REFACTORING USING EXAMPLES

Order LineOrder Product
Person Teacher Agency
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Figure 8. An individual as a sequence of refactorings.
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Figure 9. Crossover operator.
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randomly selects some blocks in the vector representation of the individual. Then, the CBE of the
selected block is replaced by another CBE chosen randomly from the base of examples.

Figure 10 illustrates the effect of a mutation that replaced the refactoring Rename_Attribute (tax,
taxStatus) applied to the class LineOrder (initial model), which is extracted from the class Teacher
(base of examples) by the refactoring Rename_Method(calc_SubTotal, calc_TotalLine) extracted

from the new matched class Student (base of examples) and applied to the class LineOrder
(initial model).
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John Wiley & Sons, Ltd.

J. Softw. Evol. and Proc. 2014; 26:692-713
DOI: 10.1002/smr



702

A. GHANNEM, G. EL BOUSSAIDI AND M. KESSENTINI

Order

LineOrder

Product

Person

Teacher

Agency

Pull_Up_Method(calc_taxes(), LinePrder, Order)

Rename_Field(tax, taxStatus)

Move_Field(quantity, Product, LineOrder)

X

Order

LineOrder

Product

Person

Student

Agency

Pull_Up_Method(calc_taxes(), LinePrder, Order)

Rename_Method(calc_SubTotal, calc_TotalLine)

Move_Field(quantity, Product, LineOrder)

Figure 10. Mutation operator.

3.5. Decoding of an individual

The quality of an individual is proportional to the quality of the refactoring operations composing it. In
fact, the straight way to evaluate the quality of an individual is to apply its sequence of refactorings to
the model under analysis. However, our goal is to find a way to infer correct refactorings using the
knowledge that has been accumulated through the refactorings of other models of past projects.
Specifically, we want to exploit the similarities between the actual model and other models to infer
the sequence of refactorings that we must apply. Our intuition is that a candidate solution that
displays a high similarity between the classes of the model and those chosen from the example base
should give the best sequence of refactorings.

Practically, the evaluation of an individual should be formalized as a mathematical function called
fitness function. The goal is to define an efficient and simple (in the sense not computationally
expensive) fitness function in order to reduce the computational complexity. As discussed
previously, the fitness function aims to maximize the similarity between the classes of the model in
comparison to the ones in the base of examples. In this context, we define the fitness function of a
solution as

Similarity (CIM, CBE) =Y. Y |CIM; — CBE;]
1 j=li=1

=

f=

J

Where n and m are respectively the number of blocks in the solution and the number of metrics
considered in this project. CIM and CBE are respectively the class from the initial model and the
class from the base of examples that belong to the j block. CIM; is the i™ metric value of the class
CIM while CBE; is the i™ metric value of the class CBE. Figure 11 illustrates the way we compute
the similarity between the two given classes using their metrics’ values.

To illustrate how the fitness function is computed, we consider a system containing three classes as
shown in Table III and a base of examples containing three classes shown in Table I'V. In this example,
we use six metrics, and these metrics are given for each class in the model in Table III and each class of
the base of examples in Table IV.

Consider the example of two individuals /; and I, respectively composed by one block (Order from
the model and Agency from the BE) and two blocks (LineOrder/Student and Product/Plane). The
fitness function calculated on these solutions has the value

Fro=PB—4+0—4+-+]1-3 = 13
o= =20+ 1 =1+ +1=0)+(2=5+2 =1+ +[0—0]) = 12

If we consider a population composed by only these two individuals, the evaluation process
chooses the one that has the minimum value of fitness function, then I, will be chosen as the
best individual.
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Figure 11. Computing the similarity between two classes.

Table III. Classes from the initial model and their metrics values.

Class in the initial model NPvA NPbA NPbMeth NPvMeth NAss NGen
Order 3 0 5 2 2 1
LineOrder 4 1 3 1 1 1
Product 2 2 6 0 1 0

NPvA, number of private attributes; NPbA, number of public attributes; NPbMeth, number of public methods;
NPvMeth, number of private methods; NAss, number of associations; NGen, number of generalizations.

Table IV. Classes from the base of examples and their metrics values.

Class in the base of examples NPvA NPbA NPbMeth NPvMeth NAss NGen
Student 2 1 3 0 3 0
Agency 4 4 1 2 0 3
Plane 5 1 4 0 1 0

NPvA, number of private attributes; NPbA, number of public attributes; NPbMeth, number of public methods;
NPvMeth, number of private methods; NAss, number of associations; NGen, number of generalizations.

4. IMPLEMENTATION AND EXPERIMENTAL SETTINGS

In this section, we describe our experimental setup. To set the parameters of GA for the search
strategies, we performed several tests, and the final parameters’ values were set to a minimum of
1000 iterations for the stopping criterion, to 2 as the minimum length of a solution in terms of
number of blocks, and to 25 as the maximum length of a solution. We also set the crossover
probability to 0.8 and the mutation probability to 0.5. The crossover probability is 0.9 and the
mutation one is 0.5. These values were obtained by trial and error. We selected a high mutation rate
because it allows the continuous diversification of the population, which discourages premature
convergence to occur.

4.1. Supporting tool

To validate our approach, we implemented a parser that analyzes Java source code and generates a
predicate model as illustrated by Figure 5. We used this parser to generate predicate models from
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eight Java open-source projects. To build the base of examples, we completed the generated models by
manually entering the refactoring operations extracted with Ref-Finder [26], which these projects have
undergone. The Ref-Finder tool allows detection of complex refactorings (68 refactorings) between
two program versions using logic-based rules executed by a logic programming engine. Ref-Finder
helps finding refactorings that a system has undergone by comparing different versions of the
system. We used the refactorings returned by Ref-Finder for two reasons: to build the base of
examples and to compute the precision and recall of our approach.

4.2. Research questions

The goal of our experiment is to evaluate the efficiency of our approach in generating relevant sequences
of refactorings. In particular, the experiment aimed at answering the following research questions:

RQ1: To what extent can the proposed approach generate the correct sequences of refactorings?
RQ2: Is the approach stable? This question aims to verify if the returned refactorings are correct for
different executions of the approach.

To answer RQ1, we evaluated the precision and recall of our approach by applying it on a set of
existing projects for which we had several versions and hence information about the refactorings
they had undergone. To answer RQ2, we run GA multiple times (31 runs for each project) and
observe the algorithm’s behavior in terms of precision and recall scores through these executions.

4.3. Selected projects for the analysis

To answer the research questions reported previously, we used eight open-source Java projects to
perform our experiments. The projects are the following:

e Ant (v1.8.4): A Java library that is mainly used for building Java applications. Ant provides
support to compile, assemble, test, and run Java applications.

e GanttProject (v0.10): A Java project that supports project management and scheduling.

e JabRef (v2.7): A graphical application for managing bibliographical databases.

e JGraphx (v1.10.4.0): A Java Swing diagramming (graph visualization) library.

e JHotDraw (v5.2): A framework for the creation of drawing editors.

* JRDF (v0.5.6.2): A Java library for parsing, storing, and manipulating Resource Description
Framework.

e Xerces (v2.5): A set of parsers compatible with XML.

e Xom (v1.2.8): A new XML object model.

We have chosen these open-source projects because they are medium-sized open-source projects
and most of them were analyzed in related work (e.g., [14, 26-28]). Most of these open-source
projects have been actively developed over the past 10years. Table V provides some relevant
information about these projects.

Table V. Case study settings.

Number of expected

Model Number of classes Number of methods Number of attributes  refactoring operations
Ant 1.8.4 824 2090 1048 139
GanttProject 2.0.10 479 960 495 91
JabRef 2.7 594 253 237 32
JGraphx 1.10.4.0 191 1284 420 96
JHotDraw 5.2 160 519 141 71
JRDF v0.5.6.2 734 19 10 41
Xerces 2.5 625 2113 1408 182
Xom 1.2.8 252 186 31 36
Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:692-713
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In our validation, we use one project as the system under analysis and the other seven projects as the
base of examples. Then, we compare the refactoring sequences returned by the algorithm with the ones
returned by Ref-Finder when executed on the same version of the system under analysis and the
following version.

4.4. Measures of precision and recall

To assess the accuracy of our approach, we compute the measures precision and recall originally
stemming from the area of information retrieval. When applying precision and recall in the context
of our study, the precision denotes the fraction of correctly detected refactoring operations among
the set of all detected operations. The recall indicates the fraction of correctly detected refactoring
operations among the set of all actually applied operations (i.e., how many operations have not been
missed). In general, the precision denotes the correctness of the approach (i.e., the probability that a
detected operation is correct), and the recall denotes the completeness of the approach (i.e., the
probability that an actually applied operation is detected). Both values may range from O to 1,
whereas a higher value is better than a lower one.

5. RESULTS AND DISCUSSION

In this section, we present the results of our experiment. We specifically discuss the results of our GA
algorithm in terms of precision and recall and in terms of its stability. We also assess the effectiveness
of our approach by comparing it with two other approaches. Finally, we discuss some threats to the
validity of the results of our experiment.

5.1. Precision and recall

The precision and recall results might vary depending on the refactorings used, which are randomly
generated, though guided by a meta-heuristic. We chose two projects (Xerces 2.5 and JHotDraw
5.2) to illustrate the results given by our approach. Figures 12 and 13 show the results of multiple
executions (31 executions) of our approach on Xerces and JHotDraw, respectively. Each of these
figures displays the precision and the recall values for each execution.

Generally, the average precision and recall for all projects (around 85%) allows us to positively
answer our first research question RQ1 and conclude that the results obtained by our approach are
very encouraging. The precision, which is sometimes close to 100%, proves that all the refactorings
proposed by our approach were indeed applied to the system’s model in its subsequent version (i.e.,
the proposed refactorings match those returned by Ref-Finder when applied on the system’s model
and its subsequent version).

Despite the good results, we noticed a very slight decrease in recall versus precision in some
projects; this is illustrated by Figure 12 for the Xerces project. We made a further analysis of the
results to find out the factors behind this decline. Our analysis pointed out toward two important

90
80 +
70 +

50 =#=Xerces 2.5 Precison
40 == Xerces 2.5 Recall

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 12. Multiple execution results for Xerces project.
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Figure 13. Multiple execution results for JHotDraw project.

factors. The first factor is the project domain. In this study, we tried to propose refactorings using a
base of examples that contains different projects from different domains. We noticed that some
projects focus on some types of refactorings compared with others (i.e., some projects in the base of
examples have a big frequency of «pull_up_field» and «pull_up_method»). The second factor is the
number and types of refactorings (i.e., 12) considered in this experimentation. Indeed, we noticed
that the refactorings («pull_up_method», «pull_up_field», «add_parameter», «extract_class»,
«push_down_field», «push_down_method», «rename_parameter», «rename_method», and «move
field») are located correctly in our approach. We have no certainty that these factors can improve the
results, but we consider analyzing them as a future work to further clarify many issues.

5.2. Stability

To ensure that our results are relatively stable, we compared the results of multiple executions of the
approach on each of the eight open-source projects. Figure 14 shows the precision results of these
multiple executions for all the projects while Figure 15 shows an error bar plot displaying the
minimum precision, the maximum precision , and the average precision of these executions for each
project. Similarly, Figure 16 shows the recall results of the 31 executions for all the projects while
Figure 17 shows an error bar plot displaying the minimum recall, the maximum recall, and the
average recall of these executions for each project. The intervals displayed by Figures 15 and 17
confirm that precision and recall scores are approximately the same for different executions in all the
projects in the base of examples. The range between the minimum and the maximum values for
each project is not large. For example, for JGraph and Ant projects, the range is around 20%, and it
is stable at around 30% for the rest of the projects. In Figure 15, 75% of the projects have an
average of precision within the range 80-90%. In Figure 17, seven projects among eight have an
average within the range 80-90%. This analysis allows us to conclude that our approach is stable,
which positively answers our second research question RQ2.
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-+ GanttProject 2.0.10 Precison

——JabRef 2.7 Precison

50 ——Jgraph 1.10.4.0 Precison
JRDF 0.5.6.2 Precison
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30 + XOM 1.2.8 Precison
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Figure 14. Multiple execution precision results of eight open-source projects in our approach.
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Figure 16. Multiple execution recall results of eight open-source projects in our approach.
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5.3. Effectiveness of our approach

To assess the effectiveness of our approach, we conducted a comparative study between our approach
and two other approaches: (1) a random search approach and (2) the algorithm proposed by Kessentini
et al. in [29]. For the purpose of the first comparison, we implemented an algorithm that randomly
selects pairs of CIM/CBEs. We run the random search algorithm under the same conditions in
which we performed the experiment with our approach. Figures 18 and 19 illustrate the results of
multiple executions (31 executions) of the random search algorithm on the same eight projects we
used in our experiment. While the average precision and recall of our approach is around 85%, both
precision and recall values of the 31 executions of the random search algorithm do not exceed 50%;
that is, these values vary between 20% and 50%. We consequently conclude that our approach is
more effective than an equivalent random search approach.

We also compared our approach with the approach proposed in [29] where genetic programming
(GP) is used to generate detection rules based on quality metrics. In fact, because the used
algorithms are meta-heuristics, thus they can produce different results on every run when applied to
the same problem instance. To this end, the use of rigorous statistical tests is essential to provide
support to the conclusions derived by analyzing such data [30]. For this reason, we independently
performed 31 executions using the algorithm in [29] for each of the eight open-source projects that
we used in our experiment, and we used the p-values of the Wilcoxon rank-sum test [31] as a
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Figure 18. Precision of multiple executions of the random search algorithm.
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Figure 19. Recall of multiple executions of the random search algorithm.
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statistical test to compare the results of the two algorithms. In our context, a p-value that is less than or
equal to a (=0.05) means that the distributions of the results of the two algorithms are different in a
statistically significant way. In fact, we computed the p-value of GP obtained results compared with
our approach. In this way, we could decide whether the outperformance of our approach over the
GP approach is statistically significant. Table VI displays the precision and recall median values of
our algorithm (MOREX) and the GP algorithm for the eight open-source projects. The p-value for
the precision median results of GP compared with our approach is 0.0188 while the p-value of the
recall median results of GP compared with our approach is 0.0181. Consequently, as these values
are less than a (= 0.05), we conclude that the precision and recall median values of our algorithm
are statistically different from the GP ones on each of the systems. As Table VI shows, it is clear
that MOREX outperforms the approach in [29] over all the open-source systems.

5.4. Threats to validity

We have some points that we consider as threats to the generalization of our approach. The most
important one is the use of the Ref-Finder tool to build the base of examples, and at the same time,
we compare the results obtained by our algorithm with those given by Ref-Finder. Another factor
that could have been of influence on the obtained results is the sets of metrics and refactorings that
we considered in our experiment. We made a preliminary analysis to select refactorings that apply at
the model level, and we accordingly choose a set of related metrics. However, further analysis is
needed to build a catalog of refactorings that are applicable in designing models and in identifying
metrics that are impacted by these refactorings.

An important consideration is the impact of the example base size on the quality of refactoring
solutions. In general, our approach does not need a large number of examples to obtain good
detection results. The reliability of the proposed approach requires an example set of applied
refactoring on different systems. It can be argued that constituting such a set might require more
work than these examples. In our study, we showed that by using some open-source projects, the
approach can be used out of the box and will produce good refactoring results for the studied
systems. However, we agree that, sometimes, within specific contexts, it is difficult to define and
find opportunities of refactorings. In an industrial setting, we could expect a company to start with
some few open-source projects and gradually migrate its set of refactoring examples to include
context-specific data. This might be essential if we consider that different languages and software
infrastructures have different best/worst practices.

Finally, because we viewed the model refactorings’ generation problem as a combinatorial problem
addressed with heuristic search, it is important to contrast the results with the execution time. We
executed our algorithm on a standard desktop computer (i7 CPU running at 2.67 GHz with 8 GB of
RAM). The execution time for refactorings’ generation with a number of iterations (stopping
criteria) fixed to 1000 was less than 3 min. This indicates that our approach is reasonably scalable
from the performance standpoint. However, the execution time depends on the number of
refactorings and the size of the models in the base of examples.

Table VI. Precision and recall median values of genetic programming [29] and model refactoring by
example over 31 independent simulation runs.

Models Precision MOREX (%) Precision GP (%) Recall MOREX (%) Recall GP (%)
Ant 1.8.4 78 72 81 77
GanttProject 2.0.10 82 78 84 82
JabRef 2.7 84 82 79 71
JGraphx 1.10.4.0 87 82 84 82
JHotDraw 5.2 86 81 86 81
JRDF v0.5.6.2 81 79 81 77
Xerces 2.5 82 77 83 81
Xom 1.2.8 86 79 87 78

MOREX, model refactoring by example; GP, genetic programming.
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6. RELATED WORK

Much work has been done on source code refactoring. The best way to correct the source code is to
analyze it and to propose the appropriate refactorings to correct the defects it may contain [18]. This
method is very expensive in terms of time and resources. Consequently, many approaches were
proposed to (semi)automatically support source code refactoring (e.g., [8, 14, 32, 33]). These
approaches use different techniques and strategies. For example, the work in [8] analyzed the best-case
and worst-case impacts of refactorings on coupling and cohesion dimensions. Most of the considered
refactorings are applied at the code source level (e.g., Move Method, Replace Method with Method
Object, Replace Data Value with Object, and Extract Class). The approach in [14] proposed to
represent code smells and use these representations to generate appropriate refactoring rules that can be
automatically applied to source code. In [33], program invariants are used to detect a specific point in
the program to apply refactoring, and an invariant pattern matcher was developed and used on an
existing Java code base to suggest some common refactorings.

Model refactoring is still at a relatively young stage of development. Most of the existing
approaches for automating refactoring activities at the model level are based on rules that can be
expressed as assertions (i.e., invariants, pre-condition and post-condition) [34, 35] or graph
transformations targeting refactoring operations in general (e.g., [36, 37]) or refactorings related to
design patterns’ applications (e.g., [9]). The use of invariants [34] has been proposed to detect some
parts of the model that require refactoring. Refactorings are expressed using declarative rules.
However, a complete specification of refactorings requires an important number of rules, and the
refactoring rules must be complete, consistent, non-redundant, and correct. In [9], refactoring rules
are used to specify design patterns’ applications. In this context, design problems solved by these
patterns are represented using models, and the refactoring rules transform these models according to
the solutions proposed by the patterns. However, not all design problems are representable using
models; that is, for some patterns, the problem space is quite large, and the problem cannot be
captured in a single or a handful of problem models [9]. Finally, an issue that is common to most of
these approaches is the problem of sequencing and composing refactoring rules. This is related to
the control of rules’ applications within rule-based transformational approaches in general.

Our approach is inspired by contributions in search-based software engineering (SBSE) (e.g. [38—-42]).
As the name indicates, SBSE uses a search-based approach to solve optimization problems in software
engineering. Techniques based on SBSE are a good alternative to tackle many of the aforementioned
issues [40]. For example, a heuristic-based approach is presented in [38, 39] in which various software
measures are used as indicators for the need of a certain refactoring. In [41], a GA is used to suggest
refactorings to improve the class structure of a system. The algorithm uses a fitness function that relies
on a set of existing object-oriented metrics. Harman and Tratt [39] propose to use the Pareto optimality
concept to improve search-based refactoring approaches when the evaluation function is based on a
weighted sum of metrics. Both the approaches in [41] and [39] were limited to the Move Method
refactoring operation. In [38], the authors present a comparative study of four heuristic search
techniques applied to the refactoring problem. The fitness function used in this study was based on a
set of 11 metrics. The results of the experiments on five open-source systems showed that hill climbing
performs better than the other algorithms. In [42], the authors proposed an automated refactoring
approach that uses GP to support the composition of refactorings that introduce design patterns. The
fitness function used to evaluate the applied refactorings relies on the same set of metrics as in [38] and
a bonus value given for the presence of design patterns in the refactored design. Our approach can be
seen as linked to this approach as we aim at proposing a combination of refactorings that must be
applied to a design model. Our work is more related to the work in [40] where the authors proposed a
by-example approach based on search-based techniques for model transformation. A particle swarm
optimization algorithm is used to find the best subset of transformation fragments in the base of
examples that can be used to transform a source model (i.e., Class Diagram) to a target model (i.e.,
Relational Schema). Hence, this approach targets exogenous transformations (i.e., different source and
target languages) while our proposal MOREX is dedicated to refactorings that are endogenous
transformations that aim at correcting design defects. Furthermore, the fitness function proposed in [40]
relies on the adequate mapping of the selected transformation examples with the constructs of the
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model (e.g., class and relationship) to be transformed while our fitness function exploits the structural
similarity between classes. To conclude, in our contribution, we propose to use a different meta-heuristic
algorithm to a different problem than the one in [40] with a new adaptation (fitness function,
change operators, etc.).

7. CONCLUSION AND FUTURE WORK

In this paper, we introduced MOREX, an approach to automate model refactoring using heuristic-based
search. The approach considers refactoring as an optimization problem, and it uses a set of refactoring
examples to propose appropriate sequences of refactorings that can be applied on a source model.
MOREX randomly generates sequences of applicable refactorings and evaluates their quality
depending on the similarity between the source model and the examples of models at hand.

We have evaluated our approach on real-world models extracted from eight open-source systems.
The experimental results indicate that the proposed refactorings are comparable with those expected;
that is, the proposed refactorings match those returned by the Ref-Finder tool when applied on a
model and its subsequent version. We also performed multiple executions of the approach on the
eight open-source projects, and the results have shown that the approach is stable regarding its
precision and recall.

While the results of the approach are very promising, we plan to extend it in different ways. One
issue that we want to address as a future work is related to the base of examples. In the future, we
want to extend our base of examples to include more refactoring operations. We also want to study
and analyze the impact of using domain-specific examples on the quality of the proposed sequences
of refactorings. Actually, we kept the random aspect that characterizes GAs even in the choice of
the projects used in the base of examples without prioritizing one or more specific projects on others
to correct the one under analysis.

We also plan to compare our results with other existing approaches other than the Ref-Finder tool
and perform a further analysis on the nature and type of refactorings that are easier or harder to
detect. In addition, the evaluation of the sequences of refactorings returned by our approach was
based on the similarity between the classes of the source model and the classes from the base of
examples. However, only the syntactic aspect was considered when computing these similarities;
that is, the similarity was based on a set of metrics that are mostly related to the structural features
of the classes (e.g., number of attributes, number of methods, etc.). In the future, we plan to study
the semantic properties (e.g., similarity of classes’ names) that can be used as similarity or
dissimilarity factors to enhance our evaluation function.
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