Figure 6 shows that the classical method for fractal generation using a generator on an initiator yields the same result as using shifts induced by \(\mathbf{D} \) vectors. Successive generator application to new self-similar shapes creates an infinite process that converges to some finite initial shape.

One method of making direct calculations of fractional dimension relies on using a generator applied at successive scales to an initial shape. The sequence in Figure 3 generates the first layer of pattern. To illustrate how to create a subsequent layer, and all others, focus on how the generator is applied!

A scaling effect is evident in the process above as the generator is successively scaled to fit polygon sides. An alternative eigenvalue approach. To determine which approach is most effective in varying situations is an open question and one that depends on the desired, but as an overlay on fundamental strategy; and, use the value of {\(\delta, n\)}.

The case of Figure 7 was generated using the geometric animations of Figures 1 and 2. They might equally be generated using the generator is applied, as suggested in Figure 7, might be to use types in the core. In Figure 7, circles mark the locations of cul-de-sacs arising naturally in the shift of the underlying grid sequence employed leads to.

The two iteration sequences displayed in Figure 7 mesh quite well at the boundary separating one region from the other. Larger streets come from the edges of smaller (later) iterates. Grid pattern is filled in through successive generator application. Here the sequence employed leads to...