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Abstract: This paper studies a new approach to longitudinal data analysis using the conditional empirical
likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up
visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not
require any explicit modelling of the variance–covariance of the longitudinal outcomes. Instead, it implicitly
incorporates a consistently estimated variance–covariance matrix in a nonparametric fashion. The proposed
CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same
efficiency as the GEE estimator employing the true variance–covariance. The asymptotic distribution of the
CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance.
Data collected from a longitudinal nutrition study are analysed as an application. The Canadian Journal of
Statistics 42: 404–422; 2014 © 2014 Statistical Society of Canada

Résumé: Les auteurs proposent une nouvelle approche pour l’analyse de données longitudinales à l’aide de
la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils
prennent en compte la possibilité d’un suivi irrégulier en stratifiant selon les séquences de suivis observées. La
VEC ne nécessite pas la modélisation explicite de la variance-covariance des résultats longitudinaux, mais en
intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations
d’estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que
ceux des EEG basées sur la vraie structure de variance-covariance. Les auteurs présentent la distribution
asymptotique de l’estimateur de la VEC, ainsi qu’une étude de simulation afin d’évaluer la performance de la
méthode sur des échantillons finis. Ils effectuent finalement l’analyse des données d’une étude longitudinale
portant sur la nutrition. La revue canadienne de statistique 42: 404–422; 2014 © 2014 Société statistique
du Canada

1. INTRODUCTION

Longitudinal data are repeated measurements collected from the study subjects over time. To
efficiently evaluate the relationship between the mean of the longitudinal outcomes and the
covariates, the variance–covariance of these outcomes needs to be taken into account. Marginal
models for longitudinal data, which specify model structures for both the marginal mean
and the variance–covariance, have been discussed widely in the literature (e.g., Diggle et al.,
2002; Song, 2007). Estimation and inference for marginal models may be based on, for example,
the quasi-likelihood approach (Wedderburn, 1974; Heyde, 1997) or the estimating functions
approach (Godambe, 1960, 1991). Liang & Zeger (1986) proposed the popular generalized
estimating equations (GEE) method, which assumes a working model for the within-subject
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correlation of the longitudinal outcomes. When the correlation is incorrectly modelled, the GEE
estimator preserves consistency, but may lose substantial estimation efficiency (Wang & Carey,
2003). To improve the efficiency, Qu, Lindsay, & Li (2000) proposed the quadratic inference
functions (QIF) estimator, which has been shown to be equally efficient to the GEE estimator
when the correlation is correctly modelled, and more efficient when the correlation is incorrectly
modelled. Wang & Lin (2005) pointed out that, to avoid losing efficiency, not only the correlation,
but also the marginal variance of the longitudinal outcomes needs to be correctly modelled.
Some strategies for modelling the second moments can be found in Pan & MacKenzie (2003)
and Ye & Pan (2006). However, the introduction of more models beyond that for the marginal
mean presents more risk of model misspecification, which can lead to poor efficiency and
misleading conclusions. Therefore, many researchers proposed to model the variance–covariance
nonparametrically; see, for example, Jiang, Luan, & Wang (2007) and Li (2011).

Conditional empirical likelihood (CEL) (Zhang & Gijbels, 2003; Kitamura, Tripathi, & Ahn,
2004) is a generalization of empirical likelihood (EL) method (Owen, 1988, 1990, 2001; Qin
& Lawless, 1994) to the setting where the model is defined by conditional moment restrictions.
Despite the success of EL method in various research areas, its application in longitudinal data
analysis has not been studied adequately. Some existing works include You, Chen, & Zhou (2006)
and Xue & Zhu (2007), who studied partially linear models for longitudinal data. However, those
authors did not account for the within-subject correlation. For data with continuous outcomes,
Wang, Qian, & Carroll (2010) proposed a generalized empirical likelihood (GEL) method, which
requires a pre-estimated variance–covariance matrix. To the best of our knowledge, all existing
applications of EL method to longitudinal data analysis follow the setting of Qin & Lawless
(1994), where the model is defined by unconditional moment restrictions.

In this paper, we propose to model longitudinal data using the CEL method, which only
requires a model for the marginal mean of the outcomes, and thus eliminates the dependence
of data analysis on modelling the variance–covariance. Possible unbalanced follow-up visits are
dealt with via stratification according to distinctive follow-up patterns. We show that the CEL
method is closely connected to the GEE method, in the sense that the proposed estimator can
be regarded as the solution to a set of estimating equations analogous to GEE. The difference
is that, the CEL method implicitly incorporates a consistently estimated variance–covariance
matrix, which, in theory, endows the proposed estimator the same efficiency as that of the GEE
estimator employing the true variance–covariance. We also derive the asymptotic distribution of
the proposed estimator, and provide two ways to estimate the asymptotic variance.

This article is organized as follows. In Section 2, we discuss longitudinal data analysis using
the CEL method. Section 3 contains the large sample properties. Section 4 presents numerical
implementation and some discussion on computational issues. In Section 5, we conduct simulation
experiments to study the finite sample performance of the CEL method. Section 6 contains a data
application. Section 7 consists of concluding remarks. Technical assumptions and proofs, together
with some extra simulation results, are provided in the online Supplementary Materials.

2. METHODOLOGY

2.1. Model and Estimation
For each subject i, i = 1, . . . , N, let Yit denote the outcome and Xit denote a p-element vector of
covariates measured at time t = 1, . . . , ni. Write Y i = (Yi1, . . . , Yini )

�, Xi = (X�
i1, . . . , X

�
ini

)�.
We only specify a model for the marginal mean of Yit given Xi. Specifically, we assume the
marginal mean regression model

E(Yit | Xi) = μ(X�
it β) for some β = β0 ∈ Rp,
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where μ(·) is a known link function and β is the vector of the regression coefficients. This model
assumption is also adopted by the GEE and the QIF methods, and implies that the time-dependent
covariates are of Type I according to Lai & Small (2007). See also Pepe & Anderson (1994). Define
the residual vector to be gi(β) = {Yi1 − μ(X�

i1β), . . . , Yini − μ(X�
ini

β)}�. Our model assumption
becomes

E {gi(β0) | Xi} = 0, i = 1, . . . , N. (1)

The above setting accommodates unbalanced longitudinal data, which arise in many practical
studies. For example, in a clinical trial study using a balanced design, where all subjects are
scheduled to visit the clinic at the same pre-fixed time points, unbalanced data may result due
to subjects’ missing visits. Therefore, unbalanced data can be treated within the framework of
missing data analysis. In this case, similar to the GEE method, our formulation implicitly makes
the missing completely at random (MCAR) assumption (Little & Rubin, 2002). This assumption is
also widely adopted in longitudinal observational studies where the data are collected at available
visits with no clear missingness mechanism. Following the GEE method, we focus our discussion
on available-data analysis without modelling the missingness mechanism. Such an approach is
the default for many popular statistical software in analyzing unbalanced longitudinal data. Note
that the visit time is not informative with respect to β.

To deal with the unbalanced data structure, we stratify the subjects according to their follow-
up patterns. Let τi = {1, . . . , ni} denote the (intermittent) follow-up pattern for subject i, and
let Si = {j : 1 ≤ j ≤ N and τj = τi} be the stratum where subject i belongs. Let � denote the
collection of all distinctive follow-up patterns observed in the data, and for ω ∈ �, let Sω denote
the set of indices for the subjects having pattern ω. Thus, {Sω}ω∈� constitutes the collection of all
distinctive strata in the data. The model defined by (1) has a stratum-wise interpretation: for any
ω ∈ �, E {gi(β0) | Xi} = 0 for i ∈ Sω. Clearly, when the whole data are balanced, all subjects
belong to a single stratum.

Given each subject i, we consider the empirical probabilities pij defined by a discrete distribu-
tion that has support on {gj(β) : j ∈ Si}. Intuitively, pij may be interpreted as the (discrete) proba-
bility of observing the value of the residual from subject j conditional on the value of the covariates
from subject i, where j and i are in the same stratum. Based on these conditional empirical prob-
abilities, we construct a localized (or subject-wise) empirical log-likelihood

∑
j∈Si

wij log pij for
subject i, where the localization is carried out by certain non-negative weights wij . A “smoothed”
empirical log-likelihood can then be obtained as

∑N
i=1

∑
j∈Si

wij log pij . On the other hand, the
empirical version of the model assumption (1) employing the conditional empirical probabilities
is given by

∑
j∈Si

pijgj(β) = 0 for certain values of β. Therefore, an analogue of the (maximum)
likelihood function of β can be obtained through the following constrained maximization:

max
pij

N∑
i=1

∑
j∈Si

wij log pij subject to

pij ≥ 0 (j ∈ Si),
∑
j∈Si

pij = 1, and
∑
j∈Si

pijgj(β) = 0 for all i = 1, · · · , N. (2)

Here, the first two constraints make sure that, conditional on each i = 1, . . . , N, pij are well-
defined empirical probabilities. Our CEL estimator of β0 is defined to be the value of β that
maximizes the above maximum empirical likelihood:

β̂CEL = arg max
β

max
pij

N∑
i=1

∑
j∈Si

wij log pij subject to (2).
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A technique to achieve localization is the nonparametric kernel method. Write Xi = (Xc
i , X

d
i ),

where Xc
i consists of the continuous components with dimension qi and Xd

i consists of the cate-
gorical components, respectively. Time itself as a covariate may be excluded from the calculation
of the weights, since subjects from the same stratum have a common set of visit times. The weights
wij are calculated as

wij =
K

(
Xc

i
−Xc

j

bN

)
I(Xd

i = Xd
j )

∑
j∈Si

K
(

Xc
i
−Xc

j

bN

)
I(Xd

i = Xd
j )

j ∈ Si, (3)

where K{(Xc
i − Xc

j)/bN} = ∏qi

l=1 K{(X(l)
i − X

(l)
j )/bN}, K(·) is a second order kernel function

and symmetric around zero (e.g. standard Gaussian kernel), bN is the bandwidth parameter, and
X

(l)
i denotes the lth component of Xc

i . Note that
∑

j∈Si
wij = 1 for each i.

According to Owen (1988), one has to be aware of the “empty set problem” (e.g., Grendár &
Judge 2009), which refers to the situation where 0 may not be in the convex hull spanned by
{gj(β) : j ∈ Si}. In this case, the profile CEL in (2), and thus β̂CEL, may be ill-defined because
constraints in (2) may not be satisfied. For the scenario of estimating a population mean, Owen
(1988) proved that the profile empirical likelihood is well-defined at the true parameter value with
probability one under mild conditions. In our setting, since E {gi(β0) | Xi} = 0 for any ω ∈ � and
i ∈ Sω, 0 should be inside the convex hull of {gj(β) : j ∈ Si} for i = 1, . . . , N, at least when N is
large, the joint distribution of (Y�, X�) is smooth enough and β is inside a small neighborhood of
β0. However, specification of exact conditions under which the “empty set problem” disappears
asymptotically for a general model defined by conditional moment restrictions is challenging.
We will formally investigate this issue as future research topics. In this paper, for theoretical
derivation, we will assume that 0 is inside the convex hull of {gj(β) : j ∈ Si} so that β̂CEL is
well-defined. For numerical implementation when this is not the case, we discuss some possible
solutions in Section 4.

The use of a common bandwidth parameter bN for different strata as in (3) is reasonable,
since each stratum can be assumed to have size proportional to N without loss of generality; see
Section 3 for more discussions. Results from Smith (2007) may serve as a rule of thumb for the
order of bN . That is, bN → 0, N1−2ν−2/δb

2q
N → ∞ and N1−2νb

5q/2
N → ∞ as N → ∞, where

ν ∈ (0, 1/2), δ ≥ 8 and q = maxi qi. In practice, a data-driven bandwidth selection procedure is
often desired. In this paper we implement a cross-validation criterion suggested by Newey (1993)
for models defined by conditional moment restrictions, with some modifications to suit for the
context of (possibly) unbalanced longitudinal data. Specifically, define

CV (bN ) = tr

{
N∑

i=1

Ĝ
�
i V̂−1

−i

(
gig

�
i − V̂−i

)
V̂

−1
−i

(
gig

�
i − V̂−i

)
V̂

−1
−i Ĝi

}
, (4)

where Ĝi = ∂gi(β̂)/∂β, V̂−i = ∑
j∈Si

ŵijgj(β̂)gj(β̂)�, β̂ = β̂(bN ) is the CEL estimator obtained
with a given bN , and

ŵii = 0, ŵij =
K

(
Xc

i
−Xc

j

bN

)
I(Xd

i = Xd
j )

∑
j∈Si,j �=i K

(
Xc

i
−Xc

j

bN

)
I(Xd

i = Xd
j )

for j ∈ Si and j �= i.

The optimal bandwidth bN is chosen as the minimizer of CV (bN ).
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2.2. Reformulation and Connection to GEE
Calculating β̂CEL requires us to solve a constrained optimization problem. Using the Lagrange
multipliers method, define the Lagrangian as

L =
N∑

i=1

⎛
⎝∑

j∈Si

wij log pij

⎞
⎠ −

N∑
i=1

�i

⎛
⎝∑

j∈Si

pij − 1

⎞
⎠ −

N∑
i=1

λ�
i

⎧⎨
⎩
∑
j∈Si

pijgj(β)

⎫⎬
⎭ ,

where scalar �i ∈ R and vector λi ∈ Rni are the Lagrange multipliers associated with the second
and third constraints in (2), respectively. Taking ∂L/∂pij = 0, together with the constraints in (2),
it can be easily shown that, for a fixed β,

pij(β) = wij

1 + λ̂i(β)�gj(β)
, j ∈ Si, i = 1, . . . , N, (5)

where λ̂i(β) is the root of ∑
j∈Si

pij(β)gj(β) = 0. (6)

Note that the validity of (5) and (6) depends on the correctness of our model assumption (1).
It is easy to see that

λ̂i(β) = arg min
λi∈Rni

⎡
⎣−

∑
j∈Si

wij log
{

1 + λ�
i gj(β)

}⎤⎦ def= arg min
λi∈Rni

	i(λi, β), (7)

where 	i(λi, β) = −∑
j∈Si

wij log
{

1 + λ�
i gj(β)

}
. Thus, the objective function in (2) can be

rewritten as a function of β only, namely

L(β) =
N∑

i=1

∑
j∈Si

wij log pij =
N∑

i=1

Li (β) +
N∑

i=1

∑
j∈Si

wij log wij, (8)

where Li(β) = 	i{λ̂i(β), β}. Therefore, the CEL estimator can be equivalently defined as

β̂CEL = arg max
β

N∑
i=1

{
min

λi∈Rni
	i(λi, β)

}
. (9)

Equation (9) provides a way to implement the CEL method, which will be detailed in Section 4.
As seen, the CEL method does not require to explicitly model the variance–covariance matrix

var(Y i | Xi). However, this matrix is taken into account implicitly in the optimization procedure
(7) through the use of probabilities pij . To elaborate, note that the third constraint in (2) implies

0 =
∑
j∈Si

pij(β)
{

1 − wij

pij(β)

}
gj(β) +

∑
j∈Si

wijgj(β)

and from (5) we have

1 − wij

pij(β)
= −g�

j (β)λ̂i(β), j ∈ Si.
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Therefore, solving for λ̂i(β) leads to

λ̂i(β) =
⎧⎨
⎩
∑
j∈Si

pij(β)gj(β)g�
j (β)

⎫⎬
⎭

−1 ⎧⎨
⎩
∑
j∈Si

wijgj(β)

⎫⎬
⎭ . (10)

From the proof of Theorem 3 in Section 3, the term
∑

j∈Si
pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)� is a

consistent estimator of var(Y i | Xi). This implies that a consistent estimator of var(Y i | Xi) is
involved in (10), which is the optimal solution to (7). Due to the positive definiteness of var(Y i |
Xi),

∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)� is positive definite, at least when N is large. Note that∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)� is a data-driven estimate of the variance–covariance matrix,
and thus the CEL method has the flexibility of allowing the variance–covariance to be different
across individuals, unlike the GEE method, which requires a common within-subject correlation
structure, such as AR-1 or compound symmetry.

Since β̂CEL maximizes L(β), β̂CEL is the solution to ∂L(β)/∂β = 0. From (8) and the fact that
λ̂i(β) is the root of

∑
j∈Si

pij(β)gj(β) = 0, β̂CEL is the solution to

N∑
i=1

∑
j∈Si

pij(β)Gj(β)�λ̂i(β) = 0,

where Gj(β) = ∂gj(β)/∂β. Plugging λ̂i(β) given by (10) into the above equation leads to

N∑
i=1

⎧⎨
⎩
∑
j∈Si

pij(β)Gj(β)�
⎫⎬
⎭

⎧⎨
⎩
∑
j∈Si

pij(β)gj(β)gj(β)�
⎫⎬
⎭

−1 ⎧⎨
⎩
∑
j∈Si

wijgj(β)

⎫⎬
⎭ = 0.

Being the solution to the above estimating equation, β̂CEL can be regarded as a GEE-type
estimator, where the matrix var(Y i | Xi) is estimated nonparametrically by using the empirical
probabilities pij rather than parametrically by assuming a working model. Because β̂CEL is ob-
tained under a consistently estimated var(Y i | Xi), it in theory will have improved efficiency over
the GEE estimator employing an incorrectly modelled variance–covariance matrix.

3. LARGE SAMPLE PROPERTIES

To facilitate the presentation, we introduce some extra notation. Noting that Gi(β) is a function of
covariates only, we have Gi(β) = E {∂gi(β)/∂β | Xi}. Denote V i(β) = E

{
gi(β)gi(β)� | Xi

}
.

For any set A, let |A| denote the cardinality of A. Define rω = limN→∞ |Sω|/N. Without loss of
generality, we assume that rω > 0 for all ω ∈ �, as a stratum with rω = 0 should be asymptotically
negligible compared to the strata that have size proportional to N, and this will be formally
illustrated in the proofs of the following theorems. Technical assumptions and proofs for the
theoretical results presented in this section are provided in the online Supplementary Materials.

The consistency of the proposed CEL estimator is established in the following Theorem 1.

Theorem 1. Under Assumptions (i)–(vii) in the online Supplementary Materials, we have
β̂CEL

p→ β0 as N → ∞.

The following Theorem 2 gives the asymptotic distribution of the CEL estimator.
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Theorem 2. Under Assumptions (i)–(viii) in the online Supplementary Materials, we have√
N(β̂CEL − β0)

d→ N {0, J(β0)−1} as N → ∞, where J(β0) = ∑
ω∈� rωJω(β0), and for all

i ∈ Sω, Jω(β0) = E
{
Gi(β0)�V i(β0)−1Gi(β0)

}
.

In the case of balanced longitudinal data, all subjects belong to a unique stratum, and thus we
have J(β0) = E

{
G(β0)�V (β0)−1G(β0)

}
, which is the semiparametric efficiency bound for the

model defined by (1) (Chamberlain, 1987). Therefore, β̂CEL has optimal efficiency amongst all
regular and asymptotically linear estimators under model (1) with balanced data.

To consistently estimate J(β0), we consider two approaches. The first approach is based on
Lemma C1 in Kitamura, Tripathi, & Ahn (2004). As one can show that, for any ω ∈ �,

− 1
|Sω|

∂2Lω

∂β∂β� (β̂CEL)
p→ Jω(β0)

as N → ∞, where Lω(β) = ∑
i∈Sω Li (β), a consistent estimator of J(β0) takes the following

form that is similar to an observed information matrix:

− 1
N

∂2L

∂β∂β� (β̂CEL). (11)

The derivatives in (11) are taken with respect to β holding λi as constant. The calculation of (11)
is straightforward, and is a byproduct of the Newton–Raphson algorithm searching for β̂CEL. See
more discussions in Section 4.

The second approach to estimating J(β0) is given by the following Theorem 3.

Theorem 3. Under Assumptions (i)–(ix) in the online Supplementary Materials, as N → ∞,
we have

1
N

N∑
i=1

Gi(β̂CEL)�
⎧⎨
⎩
∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)�
⎫⎬
⎭

−1

Gi(β̂CEL)
p→ J(β0). (12)

The above estimator is a simplification of the well-known “sandwich” estimator (e.g., Liang
& Zeger, 1986)

{
1
N

N∑
i=1

G�
i V−1

w,iGi

}−1 {
1
N

N∑
i=1

G�
i V−1

w,ivar(Y i | Xi)V−1
w,iGi

}{
1
N

N∑
i=1

G�
i V−1

w,iGi

}−1

,

where V w is a working variance–covariance matrix. For the CEL method, V w,i =∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)� consistently estimates var(Y i | Xi). Therefore, the variabil-
ity matrix and the sensitivity matrix in the “sandwich” estimator cancel each other asymptotically,
yielding the estimator given in (12).

Although both estimators (11) and (12) are consistent, they may perform differently under
finite sample size. A numerical comparison and some practical suggestions will be given in the
simulation studies in Section 5.

Finally, the optimality of β̂CEL is established by the following Theorem 4.

Theorem 4. Under Assumptions (i)–(viii) in the online Supplementary Materials, we have√
N(β̂CEL − β̂opt) = op(1) as N → ∞, where β̂opt is the most efficient estimator amongst the
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class of estimators that solve estimating equations of the form
∑N

i=1 D(Xi, β)gi(β) = 0, with
D(Xi, β) being a p × ni matrix whose dimension and structure may vary across different subjects
due to different follow-up visits.

This result can be easily justified by noting that β̂opt should solve the equation∑N
i=1 Gi(β)�V i(β)−1gi(β) = 0 based on the theory of inference functions (e.g., Godambe, 1991;

Heyde, 1997). One special case of Theorem 4 is when the longitudinal outcomes follow a normal
distribution, in which the equation

∑N
i=1 Gi(β)�V i(β)−1gi(β) = 0 is actually the score equation.

In such a case, β̂CEL is asymptotically equivalent to the maximum likelihood estimator.

4. NUMERICAL IMPLEMENTATION

Numerical implementation of the proposed CEL method can be accomplished based on Equation
(9) with the invocation of nested optimization routines. Two optimization loops are required. The
inner loop updates the Lagrange multipliers λi(β), i = 1, . . . , N, for a fixed β, and the outer loop
updates β. We use Newton–Raphson algorithm for both loops.
Inner loop:

For a fixed β, given λold
i , λi is updated as

λnew
i = λold

i − �−1
i,λλ

(
λold

i , β
)

�i,λ

(
λold

i , β
)

,

where

�i,λ(λi, β) = −
∑
j∈Si

wij

gj(β)
1 + λ�

i gj(β)
, �i,λλ(λi, β) =

∑
j∈Si

wij

gj(β)gj(β)�{
1 + λ�

i gj(β)
}2 .

The algorithm may start with an initial value λi = 0. The converged value gives the estimated
λ̂i(β) for a fixed β as the solution to (7).
Outer loop:

For a given βold, β is updated as

βnew = βold −
{

N∑
i=1

Li,ββ(βold)

}−1 { N∑
i=1

Li,β(βold)

}
,

where

Li,β(β) = −
∑
j∈Si

wij

Gj(β)�

1 + λ̂i(β)�gj(β)
λ̂i(β),

Li,ββ(β) = −��
i,λβ

{
λ̂i(β), β

}
�−1

i,λλ

{
λ̂i(β), β

}
�i,λβ

{
λ̂i(β), β

}
,

�i,λβ

{
λ̂i(β), β

}
=

∑
j∈Si

wij

gj(β)λ̂i(β)�Gj(β){
1 + λ̂i(β)�gj(β)

}2 −
∑
j∈Si

wij

Gj(β)

1 + λ̂i(β)�gj(β)
.

Iterate the inner and outer loops until certain convergence criterion is satisfied. At convergence,
the algorithm produces the CEL estimator β̂CEL.

A complication for the above numerical implementation may exist due to the empty set
problem. This problem exists for both the EL and the CEL methods, and may become particularly
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serious for the latter due to the subject-wise nature of (6). There are many possible reasons leading
to the empty set problem; for example, when the model assumption (1) is incorrect, or the number
of follow-up visits is large, or the size of a stratum is small, or the initial value of β is chosen far
from the true β0, or combinations of the above. Although this problem will likely disappear when
the sample size goes to infinity if model (1) is correctly specified, it could occasionally cause
numerical difficulties in practice. Some researchers have proposed different ways to mitigate this
issue, including Owen (2001), Chen, Variyath, & Abraham (2008), Emerson & Owen (2009) and
Grendár & Judge (2010). So far, all these works were developed under the standard EL setting.
Their adaption to the CEL setting is beyond the scope of this paper, and will be formally studied
as future topics.

For now, our suggestion is to, in the inner loop of the numerical implementation, restrict
each updated value of λi to be in the legitimate region

{
λi ∈ Rni : 1 + λ�

i gj(β) ≥ wij, j ∈ Si

}
and make 	i(λi, β) in (7) decrease. This approach has also been suggested and applied by other
researchers (e.g., Kitamura, 2007; Hansen, 2014) to mitigate the impact of the empty set problem,
and “appears to work reasonably well in practice” (Kitamura, 2007). It is easy to see that (7) is a
convex minimization problem. Therefore, if the empty set problem does not exist, the inner loop
estimate almost always converges to the global minimizer, which satisfies (6). A proof of this
convergence can be given by following Chen, Sitter, & Wu (2002). When the empty set problem
does exist, we may still try to minimize 	i(λi, β), although the final minimizer in this situation, if
the algorithm indeed produces a finite minimizer, does not satisfy (6). However, this minimizer
(if it exists) should eventually become the solution to (6) when the empty set problem disappears
as the sample size increases, and thus using this minimizer in the calculation should not affect the
asymptotic results. This is the strategy we took in our simulation studies. The maximization in the
outer loop is more complicated, and the convergence of the Newton–Raphson algorithm may not
be guaranteed. See Owen (2001) for some detailed discussion on related issues in the setting of
unconditional moment restrictions. Nonetheless, the nested optimization is widely used by many
researchers to implement the EL (CEL) method; see, for example, Owen (2001), Kitamura (2007)
and Hansen (2014). According to Kitamura (2007), the nested optimization appears to be “the
most stable way to compute the EL estimator.”

For unbalanced longitudinal data, although we only need to consider the strata with rω > 0
when deriving the asymptotic results, in practice any follow-up patterns could exist, and the values
of rω are unknown due to a finite sample size. When there are many different patterns, to avoid
potential numerical difficulties caused by small stratum sizes, we consider another strategy of
data augmentation by creating pseudo-subjects from those who have longer and more complete
follow-up visits. Specifically, for subject i, we redefine Si = {j : 1 ≤ j ≤ N and τj ⊇ τi} and

L(β) =
N∑

i=1

min
λi∈Rni

⎡
⎣−

∑
j∈Si

wij log
{

1 + λ�
i g

†i
j (β)

}⎤⎦ +
N∑

i=1

∑
j∈Si

wij log wij,

where the superscript †i means selecting components from the residual vector gj(β) according to
the set τi. Therefore, g

†i
j (β) may be regarded as the residual vector of a pseudo-subject created

from subject j whose visit times contain subject i’s visit times as a subset. As N increases, the
small-stratum-size problem is unlikely to occur with the inclusion of pseudo-subjects and with
our assumption that each stratum has size proportional to N. In the extreme case where a small
stratum still exists, that stratum may be discarded in the analysis. In our simulation studies we
employ this strategy, which improves the numerical performance of β̂CEL in general.

In the case of binary outcome data, we have var(Yit | Xi) = μit(1 − μit) whereμit = μ(X�
it β).

This information could be used to improve the finite sample performance of the CEL estimator
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by redefining the residual vector to be

gi(β) = {Yi1 − μi1, . . . , Yini − μini ,

× (Yi1 − μi1)2 − μi1(1 − μi1), . . . ,
(
Yini − μini

)2 − μini (1 − μini )}�.

Model assumption (1) is still satisfied. Estimation and inference remain the same, except that the
dimension of the Lagrange multiplier λi increases to 2ni.

5. SIMULATION EXPERIMENTS

The setup of our simulation experiments mimics a typical longitudinal study that involves three
covariates: a continuous baseline covariate bi, a binary treatment indicator di, and the visit time
t. Assuming that there are five designed follow-up visits, we generate the longitudinal outcomes
Yit from the following model:

Yit = β1 + β2bi + β3di + β4t + β5di × t + εit, t = 1, . . . , 5, i = 1, . . . , N,

where bi ∼ N (0, 32) and is truncated between −7 and 7, di ∼ Bernoulli(0.5), di × t is the treat-
ment and time interaction, (εi1, . . . , εi5)� ∼ N5(0, V

1/2
i RV

1/2
i ), V i is a 5 × 5 diagonal matrix

with the tth diagonal element σ2
it = exp(α1 + α2|bi| + α3t), and R takes the first-order autore-

gressive structure with correlation coefficient ρ. The true values are set as (β1, . . . , β5)� =
(0.5, 0.5, 1.0, 0.3, 0.3)�, (α1, α2, α3)� = (0.4, 0.6, 0.4)�, and ρ = 0.5.

We use the following mechanism to generate the unbalanced data:

P(Yit is deleted) = 1
1 + exp(3 − 0.1|bi| − 0.01t)

.

Here, the unbalancedness depends on the covariates. This mechanism is not the MCAR by Little
& Rubin (2002), but the MCAR by Diggle & Kenward (1994) or the covariate-dependent MCAR
by Little (1995). Our proposed method, viewed as an available-data analysis approach, is still valid
under this missingness mechanism. In the generated data, there are occasionally a few subjects
with no more than two visits (on average 0.22%). To ease the computational burden of the CEL
estimator, we discard this small proportion of subjects in its calculation. It can be verified that
the final observed residuals satisfy model assumption (1). On average, approximately 30% of
subjects have incomplete visits in the generated data, and their follow-up patterns are irregular.
We conduct 500 replications to calculate the summary results. The Gaussian kernel is employed to
calculate the weights, where the baseline covariate is standardized to have mean 0 and variance 1
in the bandwidth selection. We compare the CEL estimator with the GEE estimator under different
working correlation structures, including the true one. In addition, we compare the CEL estimator
with Wang, Qian, & Carroll’s (2010) GEL estimator, for which the variance–covariance matrix
is estimated separately using various models. In effect, Wang, Qian, & Carroll’s GEL estimator
may be regarded as either a GEE2 (Prentice & Zhao, 1991) estimator, or an EL estimator based
on a set of estimating equations specified by the GEE2. Therefore, the comparison between the
CEL and the GEL may be referred to either as the comparison between the CEL and the GEE2
or as that between the CEL and the GEE2-based EL.

Table 1 presents the summarized results of the comparisons based on N = 100 and N = 500.
To speed up the calculation, a prefixed bandwidth bN = 2N−1/10 is used, and this rate of bN

converging to 0 is selected following the rule of thumb described in Section 2.1. When σ2
it is not

correctly modelled, Table 1 clearly illustrates that β̂CEL outperforms both the GEE estimators
and the GEL estimators in terms of the total mean square error (tMSE), regardless of whether the
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Table 1: Comparison of different estimators.

cel gee.ar gee.cs gel1.ar gel1.cs gel2.ar gel2.cs gel3.ar gel3.cs

0.0321 −0.0223 −0.0190 −0.0087 −0.0083 −0.0102 −0.0094 0.0208 0.0187

β1 (0.6441) (0.8189) (0.8377) (0.7193) (0.7275) (0.7188) (0.7317) (0.4741) (0.4887)

[0.4159] [0.6710] [0.7022] [0.5175] [0.5293] [0.5167] [0.5355] [0.2252] [0.2392]

−0.0102 −0.0106 −0.0102 −0.0118 −0.0110 −0.0110 −0.0106 −0.0078 −0.0076

β2 (0.1873) (0.2366) (0.2341) (0.1943) (0.1990) (0.1945) (0.2015) (0.1382) (0.1428)

[0.0352] [0.0561] [0.0549] [0.0379] [0.0397] [0.0380] [0.0407] [0.0192] [0.0204]

N = 100 −0.0472 −0.0124 −0.0056 −0.0230 −0.0170 −0.0191 −0.0140 −0.0421 −0.0368

β3 (0.9243) (1.1334) (1.1835) (0.9958) (1.0146) (0.9961) (1.0221) (0.6471) (0.6712)

[0.8565] [1.2848] [1.4007] [0.9921] [1.0297] [0.9926] [1.0448] [0.4205] [0.4519]

−0.0056 0.0092 0.0087 0.0055 0.0059 0.0059 0.0062 −0.0112 −0.0089

β4 (0.2630) (0.3007) (0.2947) (0.2709) (0.2716) (0.2720) (0.2736) (0.1870) (0.1916)

[0.0692] [0.0905] [0.0869] [0.0734] [0.0738] [0.0740] [0.0749] [0.0351] [0.0368]

0.0133 0.0068 0.0028 0.0079 0.0035 0.0058 0.0017 0.0267 0.0225

β5 (0.3713) (0.4392) (0.4310) (0.3943) (0.3930) (0.3936) (0.3936) (0.2501) (0.2527)

[0.1381] [0.1929] [0.1858] [0.1556] [0.1545] [0.1550] [0.1549] [0.0633] [0.0644]

0.0394 0.0205 0.0247 0.0349 0.0320 0.0343 0.0317 0.0185 0.0166

β1 (0.2810) (0.3573) (0.3785) (0.3135) (0.3303) (0.3148) (0.3335) (0.2076) (0.2162)

[0.0805] [0.1281] [0.1439] [0.0995] [0.1101] [0.1003] [0.1122] [0.0434] [0.0470]

−0.0048 −0.0065 −0.0064 −0.0056 −0.0053 −0.0054 −0.0052 −0.0062 −0.0049

β2 (0.0775) (0.1054) (0.1050) (0.0897) (0.0924) (0.0895) (0.0933) (0.0589) (0.0615)

[0.0060] [0.0111] [0.0111] [0.0081] [0.0086] [0.0080] [0.0087] [0.0035] [0.0038]

N = 500 −0.0673 −0.0426 −0.0455 −0.0639 −0.0596 −0.0633 −0.0589 −0.0255 −0.0210

β3 (0.3891) (0.5095) (0.5458) (0.4449) (0.4712) (0.4471) (0.4758) (0.2982) (0.3186)

[0.1559] [0.2614] [0.2999] [0.2020] [0.2256] [0.2039] [0.2299] [0.0896] [0.1019]

−0.0101 −0.0031 −0.0051 −0.0077 −0.0076 −0.0079 −0.0079 −0.0069 −0.0064

β4 (0.1108) (0.1436) (0.1438) (0.1272) (0.1318) (0.1275) (0.1322) (0.0811) (0.0842)

[0.0124] [0.0206] [0.0207] [0.0162] [0.0174] [0.0163] [0.0175] [0.0066] [0.0071]

0.0269 0.0177 0.0197 0.0243 0.0244 0.0247 0.0248 0.0147 0.0135

β5 (0.1574) (0.2066) (0.2082) (0.1810) (0.1879) (0.1808) (0.1880) (0.1146) (0.1209)

[0.0255] [0.0430] [0.0437] [0.0334] [0.0359] [0.0333] [0.0360] [0.0134] [0.0148]

cel, CEL; gee, GEE; gel1, gel2, gel3, GEL with σ2
it being modelled by (α1 + α2t)2, exp(α1 + α2t) and the truth,

respectively; ar, first-order autoregressive; cs, compound symmetry. Three summary statistics are calculated: bias,
empirical standard error (number in parentheses), and mean square error (number in brackets).

correlation structure is correctly specified. More specifically, when N = 100, the CEL estimator
reduces the tMSE by 34%, 38%, 15%, 17%, 15% and 18% compared to the 2nd to the 7th
estimators, respectively; and when N = 500, the amount of reduction becomes even higher as
40%, 46%, 22%, 30%, 23% and 31%, respectively. Such robustness against incorrect modelling
of the variance–covariance matrix is a clear advantage of our proposed method. Since the data
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Table 2: Effect of bandwidth on the CEL estimator.

c = 0.6 c = 0.9 c = 1.2 c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 CV

0.0265 0.0285 0.0362 0.0368 0.0381 0.0391 0.0400 0.0410 0.0394

β1 (0.3361) (0.3315) (0.3399) (0.3547) (0.3644) (0.3741) (0.3830) (0.3914) (0.3781)

[0.1137] [0.1107] [0.1168] [0.1271] [0.1342] [0.1415] [0.1483] [0.1549] [0.1445]

−0.0040 −0.0083 −0.0078 −0.0069 −0.0057 −0.0052 −0.0050 −0.0049 −0.0049

β2 (0.1048) (0.0983) (0.0987) (0.1017) (0.1017) (0.1041) (0.1065) (0.1087) (0.1055)

[0.0110] [0.0097] [0.0098] [0.0104] [0.0104] [0.0109] [0.0114] [0.0118] [0.0112]

−0.0372 −0.0400 −0.0491 −0.0513 −0.0529 −0.0547 −0.0565 −0.0582 −0.0571

β3 (0.4799) (0.4696) (0.4755) (0.4873) (0.5002) (0.5120) (0.5237) (0.5354) (0.5159)

[0.2317] [0.2221] [0.2285] [0.2401] [0.2530] [0.2652] [0.2775] [0.2900] [0.2694]

−0.0089 −0.0079 −0.0099 −0.0100 −0.0103 −0.0105 −0.0106 −0.0107 −0.0108

β4 (0.1335) (0.1310) (0.1335) (0.1388) (0.1429) (0.1462) (0.1493) (0.1523) (0.1475)

[0.0179] [0.0172] [0.0179] [0.0194] [0.0205] [0.0215] [0.0224] [0.0233] [0.0219]

0.0171 0.0178 0.0200 0.0205 0.0203 0.0205 0.0207 0.0209 0.0210

β5 (0.1886) (0.1843) (0.1857) (0.1923) (0.1984) (0.2033) (0.2081) (0.2128) (0.2046)

[0.0358] [0.0343] [0.0349] [0.0374] [0.0398] [0.0418] [0.0437] [0.0457] [0.0423]

N = 300; bN = cN−1/10; CV: cross-validation. Three summary statistics are calculated: bias, empirical standard
error (number in parentheses), and mean square error (number in brackets).

are generated from a normal distribution, β̂CEL is asymptotically equivalent to the maximum
likelihood estimator, which is essentially the one given by the second last column. Due to the
nonparametric nature of β̂CEL, its finite-sample tMSE is larger than that of the maximum likelihood
estimator. However, this difference becomes smaller as the sample size increases. Specifically,
the tMSE of β̂CEL is 98% higher than that of the maximum likelihood estimator when N = 100,
and this number drops to 79% when N = 500. A similar trend is observed by comparing the CEL
estimator with the estimator given by the last column, in which case the former has 86% higher
tMSE than the latter when N = 100, and this number drops to 61% when N = 500. From Table 1,
an additional observation is that, under the same model for σ2

it , misspecification of the correlation
structure causes only marginal efficiency loss. On the other hand, different models for σ2

it lead to
significant efficiency variation. This is in a full agreement with Wang & Lin (2005).

Table 2 reports results concerning the influence of the bandwidth on the performance of the
CEL estimator. With N = 300, the bandwidth is given by bN = cN−1/10, which varies with c =
0.6, 0.9, . . . , 2.7. Table 2 also includes results based on the cross-validation-selected bandwidth.
The value of c that gives the smallest tMSE is 0.9. When c becomes larger (toward oversmoothing),
both the bias (except for β2) and the empirical standard error increase. Overall, the impact of
different bandwidths does not appear to be dramatic. The tMSE when c = 0.9 is 25% smaller
than that when c = 2.7. This empirical property has also been reported in Kitamura, Tripathi, &
Ahn (2004), and is of practical importance, as it could save substantial computing cost on the
search for the optimal bandwidth. Taking our simulation study as an example, for smaller values
of c, such as 0.6 and 0.9, the algorithm requires much longer time to converge in comparison to
cases with a larger value of c.

Table 3 reports the numerical performance of the two asymptotic variance estimators, (11) and
(12), under different sample sizes. The bandwidth is prefixed as bN = 2N−1/10. The empirical
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Table 3: Comparison of the asymptotic variance estimators.

N = 100 N = 300 N = 500 N = 1000

−0.0328 −0.0079 −0.0020 −0.0001
var(β1)(11)

(0.1344) (0.0272) (0.0137) (0.0043)

−0.0709 −0.0147 −0.0046 −0.0011
var(β1)(12)

(0.1025) (0.0216) (0.0106) (0.0036)

−0.0240 −0.0064 −0.0034 −0.0017
var(β2)(11)

(0.0032) (0.0009) (0.0005) (0.0002)

−0.0250 −0.0065 −0.0034 −0.0017
var(β2)(12)

(0.0024) (0.0006) (0.0003) (0.0001)

−0.0844 0.0026 0.0025 0.0016
var(β3)(11)

(0.2399) (0.0448) (0.0214) (0.0066)

−0.1639 −0.0124 −0.0031 −0.0003
var(β3)(12)

(0.1785) (0.0348) (0.0165) (0.0057)

−0.0080 −0.0004 0.0000 0.0001
var(β4)(11)

(0.0232) (0.0044) (0.0022) (0.0007)

−0.0141 −0.0014 −0.0004 0.0000
var(β4)(12)

(0.0172) (0.0035) (0.0017) (0.0006)

−0.0142 0.0010 −0.0002 0.0001
var(β5)(11)

(0.0397) (0.0072) (0.0034) (0.0011)

−0.0270 −0.0013 −0.0011 −0.0002
var(β5)(12)

(0.0297) (0.0056) (0.0026) (0.0009)

var()(11), estimator based on formula (11); var()(12), estimator based on formula (12). Two summary statistics are
calculated: bias and empirical standard error (number in parentheses).

variance of the CEL estimator based on 500 replications is used as the true value of the variance
when calculating the bias. As shown in Table 3, both estimators appear to be consistent, and (11)
has smaller bias but slightly larger variance. Both formulas tend to underestimate the variance of
β̂CEL,2, the CEL estimator of the regression coefficient for the continuous baseline covariate. The
issue that the sandwich estimator may underestimate the asymptotic variance has been observed
by many researchers; see, for example, Kauermann & Carroll (2001) and references therein.

Table 4 reports the influence of the bandwidth on the two asymptotic variance estimators
when N = 300 and bN = cN−1/10, with c = 0.6, 0.9, . . . , 2.7. We can see that small bandwidth
leads to underestimation for both estimators. As the bandwidth increases, such underestimation
disappears, except for the variance of β̂CEL,2. For a larger bandwidth, the bias of (11) is smaller
than that of (12). When the bandwidth is selected by cross-validation, both estimators perform
reasonably well, and (11) has smaller bias.

To further compare (11) and (12), we consider a Wald-type test statistic to test the following
hypothesis of the overall treatment effect:

H0 : β3 = 1 and β5 = 0.3.
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Table 4: Effect of bandwidth on the asymptotic variance estimators.

c = 0.6 c = 0.9 c = 1.2 c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 CV

−0.0524 −0.0407 −0.0250 −0.0278 −0.0127 −0.0078 −0.0101 −0.0131 −0.0118
var(β1)(11)

(0.0201) (0.0295) (0.0352) (0.0366) (0.0300) (0.0268) (0.0265) (0.0264) (0.0296)

−0.0390 −0.0203 −0.0139 −0.0148 −0.0142 −0.0151 −0.0166 −0.0186 −0.0164
var(β1)(12)

(0.0125) (0.0156) (0.0188) (0.0205) (0.0212) (0.0218) (0.0223) (0.0228) (0.0228)

−0.0093 −0.0082 −0.0074 −0.0078 −0.0066 −0.0065 −0.0071 −0.0076 −0.0071
var(β2)(11)

(0.0011) (0.0010) (0.0013) (0.0013) (0.0011) (0.0008) (0.0007) (0.0007) (0.0009)

−0.0073 −0.0053 −0.0054 −0.0060 −0.0061 −0.0067 −0.0073 −0.0078 −0.0070
var(β2)(12)

(0.0008) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

−0.1087 −0.0827 −0.0466 −0.0404 −0.0079 0.0031 −0.0005 −0.0061 −0.0026
var(β3)(11)

(0.0317) (0.0465) (0.0586) (0.0616) (0.0482) (0.0447) (0.0458) (0.0472) (0.0501)

−0.0817 −0.0408 −0.0222 −0.0150 −0.0129 −0.0124 −0.0140 −0.0174 −0.0130
var(β3)(12)

(0.0182) (0.0225) (0.0271) (0.0304) (0.0331) (0.0357) (0.0379) (0.0399) (0.0383)

−0.0084 −0.0065 −0.0039 −0.0040 −0.0015 −0.0003 −0.0005 −0.0008 −0.0009
var(β4)(11)

(0.0036) (0.0050) (0.0061) (0.0064) (0.0051) (0.0043) (0.0043) (0.0043) (0.0049)

−0.0060 −0.0029 −0.0016 −0.0016 −0.0015 −0.0014 −0.0015 −0.0017 −0.0016
var(β4)(12)

(0.0022) (0.0026) (0.0031) (0.0033) (0.0035) (0.0036) (0.0037) (0.0038) (0.0037)

−0.0168 −0.0126 −0.0066 −0.0062 −0.0010 0.0012 0.0007 −0.0002 0.0002
var(β5)(11)

(0.0053) (0.0077) (0.0097) (0.0103) (0.0084) (0.0072) (0.0074) (0.0077) (0.0084)

−0.0119 −0.0052 −0.0019 −0.0014 −0.0013 −0.0013 −0.0016 −0.0021 −0.0013
var(β5)(12)

(0.0030) (0.0036) (0.0043) (0.0048) (0.0053) (0.0058) (0.0062) (0.0065) (0.0062)

N = 300; bN = cN−1/10; CV, cross-validation; var()(11), estimator based on formula (11); var()(12), estimator based
on formula (12). Two summary statistics are calculated: bias and empirical standard error (number in parentheses).

Here, the Wald statistic is given by

(β̂CEL,3 − 1, β̂CEL,5 − 0.3){aVar(β̂CEL,3, β̂CEL,5)}−1(β̂CEL,3 − 1, β̂CEL,5 − 0.3)�,

where aVar(β̂CEL,3, β̂CEL,5) is the asymptotic variance of (β̂CEL,3, β̂CEL,5). Under H0, both Wald
statistics constructed from (11) and (12) follow the χ2

2 distribution asymptotically. In the com-
parison, we take N = 300 and bN is selected by cross-validation. Figure 1 presents a QQ-plot
of these two Wald statistics. It can be seen that although both statistics approximately follow the
χ2

2 distribution, the one based on (11) turns out to be closer to the 45o line. This agrees with the
conclusion drawn from Table 4 that the variance estimate given by (11) has smaller bias than that
given by (12).

In summary, we recommend using cross-validation to select the bandwidth, and using (11) to
estimate the asymptotic variance.

6. DATA ANALYSIS

We now illustrate the proposed CEL method by analyzing the data collected from the Kenya pri-
mary school nutritional intervention study (Neumann et al., 2003). This is a randomized controlled
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Figure 1: QQ-plot of the two Wald statistics based on the “likelihood” (formula (11)) and the “sandwich”
(formula (12)) asymptotic variance estimators, respectively.

trial designed to examine the relationship of growth, cognitive development and physical activity
with the intake of animal source foods, adjusted by other covariates. A total of 554 school children
from 12 schools in rural Embu District, Kenya, are randomized to four nutritional intervention
arms: Meat, milk, energy and control. Meat, milk and energy in the form of extra vegetable oil are
added into the local plant-based dish Githeri for the Meat, Milk and Energy arms, respectively.
The control arm has no feeding intervention. Lasting for over 2 years (from July 1998 to De-
cember 2000), this study includes a baseline visit during the period of July to August, 1998, and
the delivery of intervention and data collection over the period of September 1998 to December
2000. The cognitive function is measured at the baseline.

We analyse a sub dataset of this study that concerns the cognitive outcomes. The data are
downloaded from http://rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/cognitive.txt. More de-
tails about the data can be found in Weiss (2005). Cognitive ability is measured by the Raven’s
score determined on the Raven’s coloured progressive matrices. Each subject has five follow-up
visits, and the first (baseline) visit takes place prior to the randomization. The randomization is
marked as time zero in our analysis.

Since all subjects effectively belong to the control arm at the baseline visit, the baseline Raven’s
score is treated as a covariate (braven) in the model. Other covariates include the baseline age
(age), baseline social economic status (ses) determined by an extensive survey, gender (boy), and
visit time (time). For the intervention, three dummy variables, meat, milk and energy are created.
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Table 5: Analysis of the Kenya school nutritional intervention data (N = 524).

cel gee.ar gee.cs gee.un

Est. SE P-value Est SE P-value Est SE P-value Est SE P-value

Intercept 11.53 0.955 0.00 11.67 1.055 0.00 11.44 1.072 0.00 11.47 1.061 0.00

Age 0.119 0.075 0.11 0.111 0.082 0.18 0.149 0.082 0.07 0.137 0.082 0.09

SEs 0.009 0.004 0.02 0.006 0.004 0.12 0.007 0.004 0.09 0.006 0.004 0.08

Braven 0.241 0.037 0.00 0.251 0.044 0.00 0.247 0.045 0.00 0.250 0.044 0.00

Boy 0.511 0.178 0.00 0.636 0.178 0.00 0.567 0.180 0.00 0.596 0.179 0.00

Time 0.885 0.149 0.00 1.010 0.142 0.00 0.954 0.142 0.00 0.958 0.141 0.00

Energy × time 0.119 0.193 0.54 −0.127 0.189 0.50 −0.060 0.186 0.75 −0.089 0.186 0.63

Meat × time 0.538 0.199 0.01 0.354 0.203 0.08 0.405 0.204 0.05 0.392 0.201 0.05

Milk × time −0.019 0.191 0.92 −0.273 0.188 0.15 −0.227 0.187 0.23 −0.234 0.186 0.21

cel, CEL; gee, GEE; ar, first-order autoregressive; cs, compound symmetry; un, unstructured; est, estimated value;
se, estimated standard error, where for the CEL method, it is based on formula (11).

After removing the subjects with unmeasured covariates and the subjects who only have
baseline visit, our analysis is based on 524 subjects and the data are unbalanced. We use the
average time of each visit in our analysis, and the following model is fitted:

E(ravenit) = β1 + β2agei + β3sesi + β4braveni + β5boyi

+ (β6 + β7energyi + β8meati + β9milki) × timet.

Our residual analysis does not suggest any clear dependence of the marginal variance on any
covariate. Therefore, we only compare the results obtained from the CEL method and the GEE
method (Table 5). Since no clear structure of the within-subject correlation has been found in the
residual analysis, we also include the GEE estimator employing the unstructured correlation.

Both the CEL and the GEE methods find that the cognitive ability significantly improves
over time, and is significantly higher for boys than for girls. It is interesting to note that our
CEL method has identified social economic status as a significant factor for the cognitive ability,
while the GEE method fails to detect this significance. As for the growth rate under the three
different nutritional interventions compared to the control arm, our CEL method indicates that
meat significantly improves the development of the cognitive ability, whereas the GEE method
shows only a similar trend with no statistical significance. Neither the CEL nor the GEE finds
significance of milk or energy intervention in helping the cognitive growth.

7. DISCUSSION

In this paper we propose to perform inference for longitudinal data using the CEL method. No
explicit modelling of the variance–covariance matrix of the longitudinal outcomes is required.
Some additional insights from our simulation experiments and data application are worth men-
tioning. First, the CEL method enjoys high estimation efficiency when moderate to high level
of heteroscedasticity exists, especially when it is difficult to model this heteroscedasticity. When
homoscedasticity is a more reasonable assumption, the CEL estimator may not outperform some
of the existing estimators, such as the GEE estimator, due to the nonparametric weight calculation.
Second, the cross-validation criterion (4) for bandwidth selection has not been theoretically justi-
fied yet, and it tends to lead to over-smoothing. Third, when the number of covariates is large and
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the covariates vary in scales and/or types, the kernel-based weight calculation is challenging. It
is worthwhile to explore more flexible methods to calculate the weights. Fourth, our stratification
strategy dealing with the possible unbalancedness is more appropriate for data collected from
balanced study designs. Therefore, studies in which subjects visit at irregular follow-up times call
for some adjustments. For example, in analyzing the longitudinal nutrition data, the average time
of each visit is used. Fifth, the stratification strategy may not perform well if one or more strata
have small sizes. Although the creation of pseudo-subjects is effective to improve the numerical
performance, some additional attention is needed, especially when the total number of follow-up
visits and the number of distinctive visit patterns are both large. Last, but not least, a major hurdle
for applying the CEL method is its computational burden, which is a well-known open problem
in EL methodology. The development of fast algorithms is of great interest.

In addition to the CEL method, there are others available for estimation under models defined
by conditional moment restrictions, including Newey (1993) and Donald, Imbens, & Newey
(2003). Newey’s (1993) method requires a preliminary estimator of the parameter of interest, and
needs to explicitly estimate the variance–covariance matrix in a nonparametric way. However, it
is often difficult to find a well-behaved estimate of this matrix in practice (Kitamura, Tripathi, &
Ahn, 2004). The CEL method, on the contrary, achieves the same efficiency automatically without
estimating the variance–covariance. Donald, Imbens, & Newey (2003) proposed to construct
an increasing number of unconditional moment restrictions to “span” the conditional moment
restrictions that define the model, and then use the EL method for estimation. As the sample
size and the number of unconditional moment restrictions both go to infinity, Donald, Imbens, &
Newey’s (2003) estimator achieves the same efficiency as that of the CEL estimator. However,
no numerical study of this method has been reported, and thus its finite sample performance is
unknown.
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