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PART 1. Extensions to the dynamical system
model to incorporate signalization

1. Introduction

A major goal of the Intelligent Vehicle Highway Systems (TVHS) is integration of Advanced Traveller
Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). IVHS envisions
an optimal traffic-network system incorporating dynamic traffic assignment and real-time signal
control, both of which would be operating in unison to produce an overall system-optimal traf-
fic network. Optimal dynamic traffic assignment, obviously, depends on the signal control policy,
while on the other ha.nd; efficient signal control plans demand knowledge of the traffic flow pattern.
Hence, an integrated approach to the problem of dynamic route guidance and optimal traffic control
is called for. This report is an extension of the IVHS Technical report 91-01 titled, “A Dynam-
ical System Model for Traffic Assignment in Networks,” by Lafortune et al., which incorporates

signalization in addition to route guidance.

2. Summary of the dynamical system model for traffic assign-
ment -

Report 91-01 focusses on the problem of dynamic traffic assignment in networks with multiple trip
origins and destinations. The traffic network is modelled as a discrete time dynamical system. The
system state consists of the sizes of all platoons, each of which represents all vehicles on a certain
link with the same destination and the same earliest possible time of departing the link. A general
form for the state transition function is provided giving the possible states at time n + 1 as a
function of the state at time n and of the feasible assignment or routing decisions for platoons that
exit a link or join the network in the time interval (n,n + 1]. Link travel times are modelled by
either impedance functions or link outflow rate constraints. We assume that the network is subject
to known time-varying demands from vehicles for travel between its origins and destinations during

a finite time horizon. The objective is to assign the vehicles to links over time in order to minimize



the total travel time experiencd by all vehicles using the network, resulting in a system-optimal

assignment. Dynamic programming is used to solve the given optimization problem.

This model avoids complete microscopic detail by grouping vehicles in platoons irrespective of
origin node and time of entry into the network, yet keeps track of a good level of information in

terms of location of vehicles, at any given time, on the network.

One extension of the dynamical-system model, as presented in the report, is the use of stalling
inputs. We make use of this input as the control input for signalization. (A red phase of the
traffic signal is equivalent to applying a stalling input to the vehicles on that link.) The extended
model considered here, thus, has two types of control inputs: one for routing and the other for
signalization. We also present here a way to model phasing arrangement at any intersection by the

use of binary variables.

3. Modelling of phasing arrangement at a signalized intersection

Consider a typical signalized intersection. We assign to each turn (including straight flows) a binary
variable 'r;’ . These variables are broken up into disjoint sets where each set represents a phase. In
addition to these sets representing distinct phases, we have another set of variables representing

turns (or phases) that are always green.

The following rules are used to model phasing at an intersection:

1. Variables belonging to a particular set are made equal to each other.
2. Sum of variables, one from each set, is equal to one.

3. Variables corresponding to the always green phases are set to one.

Consider for example, the intersection depicted in Fig. 1. rf’ = binary variable representing
red or green state of the signal controlling flow from link [ to link ' . A value of one indicates
green and a value of zero, red. Following the rules outlined above, the phasing arrangement at this

intersection can be modelled by the following set of equations:
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Figure 1: Three Phase Intersection
Tg = ‘rls =1 (2)
m+ri+ri=1. 3)

Following a similar procedure, any arbitrary phasing arrangement at any traffic intersection

could be modelled.

4. Control inputs for signalization - Stalling inputs

In addition to the existing variables in the original dynamical system, we now define two new ones

v;‘" and ‘r," . The following are the relevant variables to the signalization problem.
o udl - Stalling input (traffic going to destination d stalled on link )
o viﬂ' - Traffic on link / which has been routed to link /" and whose destination is d

o ud - Traffic that actually gets routed into /, which is bound for destination d

o y¥ - Link output

]

e 7/ - Binary variable reflecting green or red phase for traffic flowing from link [ to Ua

Note that whereas, in the route-guidance problem, it was not necessary to keep track of the origin
of the vehicles, the signal control problem requires knowledge of both the origin and destination of

the vehicles at the intersections.

The example considered in the previous section has the following stalling inputs u%!,u®® and

u% for each destination d.



The following set of equations relates the above mentioned variables.
= (- o @)
v
v =T o (5)
v
W =S o =T u¥ (6)
v

lt
The last equation simply means that the number of vehicles that actually flow into [ is the

difference in number between those routed by the dynamic router and those that have been stalled

on link ['.

It is evident from the above equations that the stalling inputs u¥ may be eliminated leaving
equations for u and y in terms of v and r. Thus, incorporation of signalization does not greatly

increase the number of variables in the original model.

5. Modelling of the hypothetical link

We now introduce the hypothetical link - an artificial modelling device used to maintain a modular
separation between the routing and the signalization parts. We associate with each turn, at an
intersection, a hypothetical link. Each hypothetical link is fed by only one real link. The special
behaviour of the hypothetical link models the queueing effects. The hypothetical links affect the
capacity of the real links feeding them; i.e., the number of vehicles on a hypothetical link is ac-
counted for in the link feeding it and when the capacity of a link feeding a hypothetical link is
calculated, we add the number of vehicles on the hypothetical lmk also.

Introduction of the hypothetical link achieves the following objective. The effect of signalization
is captured totally by the hypothetical link and the signal has no effect on the state equations of
the real links. Vehicles leave the real links at times assigned by the impedance function and the
stalling is essentially on the hypothetical links.

vj“‘, as defined in the previous section forms the input to the hypothetical links. The outflow
rate of a hypothetical link is determined by its capacity. Now, on the hypothetical link, vehicles
order themselves in a queue of packets, each of size equal to the outflow rate. At every instant of
the green phase, one (and only one) packet (if present) leaves the link. If the number of vehicles
coming out of a real link is not equal to the outflow rate of the hypothetical link, they merge into
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packets of size equal to the outflow rate.

This merging of vehicles does not give rise to any problem in the single destination case. But
in the case of multiple destinations, when vehicles bound for two different destinations compete for
the same packet, some sort of priority scheme is necessary to resolve conflicts. In order to take care
of this problem, we split vehicles according to the ratio of the number of vehicles bound for each

destination and, based on this ratio, decide the number of vehicles of each destination in a packet.

With these additional modifications, the dynamic equations of the hypothetical link are devel-
oped on the same lines as those of the real links. It is to be noted that the dynamic equations for
the hypothetical links are different only in the case where the associated T variable is zero (which
implies stalling). Otherwise, when 7 = 1, the equations for the hypothetical link are the same as
those of the real links. (Equations omitted for brevity.)

6. Conclusion

We have presented here an integrated approach to the problem of route guidance and signal control.
The dynamical system model, originally developed for the traffic assignment problem, has been ex-
tended to incorporate signalization. The generality of the original model allowed easy incorporation
of optimal signal planning with little modification. Areas of future investigation outlined in report
91-01, namely (1) study of the computational limitations of this approach and (2) investigation of
the real time feasibility of this approach, remain open for investigation. To the best of our knowl-
ege, this is the first report on an integrated approach to the problem of dynamic route guidance
and optimal signal control.



PART I1. Real-time control of an isolated
intersection in the case of time-invariant
arrivals

1. Introduction

We consider the problem of modelling and optimally controlling signalized intersections. In contrast
to Part I of the report, we deal with the problem of signal control in isolation, i.e., assuming that
the routing is fixed. In addition, we consider the case of constant, steady flow of traffic at a single
isolated intersection. Detailed analysis of this special case would allow us to get an understanding
of the fundamental issues involved in signal control, which in turn would enable us to extend the

results to the case of time-varying flows and networks of intersections.

2. Modelling of an isolated signalized intersection

A platoon of vehicles leaving a signalized intersection will gradually spread as vehicles pass each
other, or adjust to more cautious headways. Eventually, the platoons from successive signal cycles
will spread enough as to overlap to form a steady traffic stream. If this traffic stream should
now approach a second traffic signal, the behaviour of the traffic at the second signal should be
independent of the timing of the first traffic signal. Hence we consider interesections at which the
approaching traffic flow is uniform. This problem, while being interesting in its own right, also

forms the basis for the case of time-varying flows.

When a traffic stream approaches a signalized intersection, a queue is formed during the red
phase of the signal. This queue is cleared in part or fully during the subsequent green phase. The

following equation models the signalized intersection as a dynamic system.

gt +1) = ¢:(#) + ri(t) - (min{gi(t) + ri(t), ki}7i(?)) (1)



gi(to) = g i=1...n

This is the state equation for an n phase traffic intersection where

1. gi(t) - Queue (number of vehicles) in the i** phase at time ¢
2. ri(t) - Arrival rate in the i** phase at time ¢
3. k; - The outflow rate of the i** phase (also termed as capacity/saturation flow)

4. 7i(t) - Decision variable which takes on a value of 1 or a value of zero. A value of 1 indicates
that the i** phase has a green signal and the queue can be served. When 7;(t) is zero, the

signal is red and the i** phase is not served.

Time invariant case: In the case of a constant, steady arrival pattern, the above equation simplifies

to

gi(t + 1) = ¢i(t) + ri — (min{g:(t) + i, ki}mi(2)) (2)

Note that when the i** phase is served, a maximum of k; vehicles leave the intersection (k; being
the capacity of the i** phase ). In this case, the queue might not be completely cleared if there are
more than k; vehicles in the queue. On the other hand, if the total number of vehicles in queue at
time ¢ (including those arriving at time t) is less than the capacity k;, all vehicles get cleared when

the signal turns green.

The ensuing discussion is based on the valid assumption that r; < k;, i.e., the arrival rate is less

than the capacity of the link (undersaturated condition).

The optimal control problem is then to determine the switching sequence 77(t), t =1,,...Th,
where 77(t) is the optimal control policy. An optimal policy is one that (a) minimizes the queue

length or (b) maximizes the throughput of the intersection over the optimization time horizon Th.

Before we address the problem of determining an optimal policy, we take up the issue of stability

of a signalized intersection.



3. Stabilizability of a signalized traffic intersection

Stability deals with the following issue: given the inflow rate r; and the outflow rate k;, can one
ensure, through an appropriate choice of signal timing plan, that the queues in all the phases do

not grow unbounded?

Definition 1: The system described by Equation (2) is said to be stabilizable if 3M € R, and
ri(t),t =to,... Thst. q(t) <M Vt>tg, V;. O

Definition 2: Stabilizing periodic control (SPC)

A control policy 7;(t) is called a stabilizing periodic control if it

1. bounds the queue in every phase, i.e., g;(t) S M Vt > to, Vi

2. is periodic with period T, i.e., i(t) = n(t+T) Vt>t', t' > to. u

It follows from the above definition that a stabilizing periodic control ensures that the total arrivals
over the period T are equal to the total number of vehicles cleared over the period. This implies
that the system settles into a “steady-state” of inflow and outflow, which are constant over a period,
i.e.,

t+T

Tri= Z n(t)e(t) Vi vt>t
k=t

where ¢;(%) is the number of vehicles cleared at time ¢ in the i phase, which is equal to (min{g;(¢)+
ri,k;}). Our definition also allows for an initial transient period [to,t] after which the steady state

is attained.
Theorem 1: The system described by the dynamic equation (2) is stabilizable iff 3 a stabilizing

periodic control. In other words, equation (2) stabilizable <= 3ri(t), ¢, T s.t.

1i(t) = 7n(t+7T)
G(t) = @+T) Vt>t,Vi

(Proof Omitted.) o

The above theorem simply states that the system would be stable, i.e., the queues would remain
bounded for a given set of arrival-headway values if and only if there is some periodic control policy

that stabilizes the system.



It is well known that all existing traffic controllers are periodic. This theorem justifies the use

of such periodic control policies.

Theorem 2: The System (2) is stabilizable iff 3T; > 0,7 = 1,...n s.t.

S Ti=T and Tri<Tki i=1,...n. (3)
=1

For a two-phase intersection, the above simplifies to

TW+T, =T (4)

(Tl -+ Tg)rl S T1k1 (5)

(T + To)rs £ Taks. (6)

(Proof Omitted) |

In the above set of equations, T} stands for the number of time instants phase 1 is served , while
T, stands for the number of time instants phase 2 is served. The period of the policy T is equal
to Ty + T3. (T} + T3)r; is the total number of arrivals over a period T', while T;k; is the maximum
number of vehicles that could be cleared from the i** phase if it is served for T; time instants.

Henceforth, we shall restrict the discussion to a two-phase isolated intersection.

Note that the above theorem simply means that if the conditions of the theorem are satisfied,
the total number of arrivals over a period is less than or equal to the total number of vehicles that

could be cleared over a period. This would ensure boundedness of the queues.

Corollary: System (2) is stabilizable iff

T2 ki —r
< . 7
s (7)

This corollary follows directly from the above theorem. This is an important corollary in the sense
that given a set of inflow and outflow rates for any two phase intersection, one can immediately
conclude whether it is possible to develop a signal-control policy for the system that would assure

that the queues do not grow unbounded. Alternately, given the arrival pattern at an intersection,



the designer can immediately decide upon the minimum required capacity of the road links at the

intersection.

Graphically, the above theorem can be represented as follows: Note that any set of {T1, T3} in

T2 k) -n

A Slope = T
4 =
3 —

T
2 — lope = 2
Slope T
1
B — 1 1 1T 717 >h
1 2 3 4 5

Figure 2: Graphical Representation of Theorem 2

the shaded region would lead to an SPC.

4. Optimal signal timing plans

The notion of stabilizability was introduced in the previous section. We shall now take up the
problem of optimal control of an isolated intersection. In view of what was discussed in the previous
section, we shall restrict our attention to periodic policies only. In other words, we try to find out

an optimal policy from among the class of periodic policies.

The performance index that we shall consider is the following: J = Tip. Z:‘:{f b (@a(t) + ¢2(2))

where T}, is the optimization horizon.

For the class of periodic policies, this reduces to

T
I=1Y @®+a() (®)

t=0

i.e., our objective is to minimize the average queue length over a period.
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We shall now look into several candidate optimal control policies and compare these various

policies through examples.

The following four policies are examined:

1. Serve the longest queue policy

2. Maximum instantaneous throughput policy

(2]

. Bang-bang policy

-

. Mixed-phase policy

4.1. Serve the longest queue policy

At any time ¢, this policy serves that phase which has the longest queue or the maximum number
of vehicles waiting (this includes the vehicles that arrive at time ¢). -
Example 1:

Let the arrival-headway values for a single isolated two-phase intersection be as follows:

Arrival in phase 1 =4

Arrival in phase 2 =25

Capacity of phase 1 (link 1) ky =6

Capacity of phase 2 (link 2) ks = 15.

71(t) and 3(t) are 1-0 variables for phase 1 and phase 2 respectively. These reflect the signal-control
policy. 7i(t) = 1 implies that phase i is green at time [t,¢ + 1).

q1 and g, stand for the queue lengths in phase 1 and phase 2, respectively. Define the variables

i

@1(t) () +n
Q2(t) = @)+

i.e., Qi(t) = sum of queues at time ¢+ the arrivals at time {. The optimal policy decision is based
on Qi(t). If at any time t,Q1(t) > Q2(t), phase 1 is served, and vice-versa. This leads to the
following table:

11



t n m oa @ @1 Q2
0 0 1 o0 0 4 5
1 1 0 4 O 8 5]
2 0 1 2 & 6 10
3 1 0 6 0 10 5
4 0 1 4 5 8 10
5 1 0 8 0 12 5
6 1 0 6 5 10 10
7 0 1 4 10 8 15
g8 1 0 8 0 12 5
9 1 0 6 5 10 10
10 0 1 4 10 8 15
1 1 0 8 0 12 5
12 1 0 6 5 10 10

We see that the above control policy leads to a “steady-state” operation of the system.

It is interesting to note that, in the case of “serve the longest queue policy,” though we do not

restrict ourselves to the class of periodic policies, the policy does indeed turn out to be periodic.
For the above example, the period T = 3 with T; = 2 and T, = 1. Note that this {7}, T,} satisfies

conditions (5) and (6):

(T1 -+ Tz)rl = (2 + 1)4 < Tk = 2(6)
(T1 + Tg)'."g = (2 + 1)5 < Taky = 1(15)

The average delay over a period is J = 33/3.

4.2. Maximum instantaneous throughput policy

This policy considers not only the queues at any instant of time t, but also the capacity of each
phase and serves that phase which would lead to a maximum number of vehicles being cleared from

the system at every time instant ¢.

Contrary to what one might expect, examples reveal that this policy, far from being the optimal

one, can actually lead to an unstable system. This is illustrated in the following example.

Example 2: The arrival and headway values are the same as those in the previous example.

12



t n o oa @ @ Q2
o 0 1 0 0 4 5
1 1 0 4 0 8 5
2 0 1 2 5 6 10
3 1 0 6 0 10 5
4 0 1 4 5 8 10
5 1 0 8 0 12 5
6 1 0 6 5 10 10
7 0 1 10 0 14 5
8 1 0 8 5 12 10
9 1 0 12 0 16 5
10 0 1 10 5 14 10
11 1 0 14 0 18 5

Examination of the queue pattern in phase 1 reveals that this system is unstable.
Going back to the set of conditions (5) and (6), we see that

(T1 +T2)4 < 6T
(T1+T2)5 < 15T;.

The smallest set of {T;,T;} that satisfies these inequalities is {2,1}; i.e., the minimum number of
time instants that phase 1 has to be served per period is 2. The maximum throughput policy, on

the other hand, serves phase 1 only once per period, thus leading to instability.

We conclude that the maximum throughput policy leads to instability due to its “greedy” nature
of always trying to send the maximum number of vehicles out of the system, which results in

insufficient service to certain phases.

4.3. Bang-bang policy

The bang-bang control policy serves one phase continuously, allowing the queue in the other to
build up onto a certain maximum limit. It then switches over to the other phase, letting the queue
in the former phase build up again to a maximum. (Hence, the term “bang-bang”.) The maximum
limit in a phase is determined based on the maximum number of vehicles that could be cleared by

serving that phase a sufficient number of times subsequently.
For the two phase system we let the queues build up as follows:
Phase 1 - Maximum queue length Tor;.

Phase 2 - Maximum queue length Ty7s.

13



Assume that the queue in phase 1 is allowed to build up to Tzr; (this would mean serving phase 2
for T, time instants). If the next T} time instants are devoted to phase 1, the total arrivals over the
period T = Ty + T; will be (T} + T2)r1. If condition (5) is satisfied, i.e., (Ty + T2)r1 < Tiky, then
by dispatching up to k; vehicles every time instant for the next T} instants, the queﬁe in phase 1

is guaranteed to be brought to zero.

On the other hand, the queue in phase 2 would build up to Tyr; while phase 1 is being served. If,
at this point, we switch over to phase 2 and continue serving it for the next T, instants, we are
again guaranteed to have complete clearance of phase 2 queues at the end of T, instants, if the

condition (T} + T2)r2 < T2k, is satisfied. Thus, a stable system ensues.

Example 3: Consider the same example as before.
rR = 4 kl =6
rp = 5 kg =15

(i+T2)4 £ 6T
(1 +T2)5 £ 15T;

The smallest {T}, T} pair satisfying above is {2,1}. Hence,set T} =2,T; = 1. Then T' = Th+T2 =
3, Tory = 4 and Tyry = 10. This leads to the following table:

e - S ] IO CRE XY PR

-0 - o -~ o3

o -olo~ oo~ 3

o N e o e o
=

The average delay = 231 = 7. This beats the “serve the longest queue” policy, which had an average

delay of 11 units.

We now discuss the choice of Ty, T; values. Inspection of figure 2 reveals that the choice of T1,T2
values satisfying conditions (5) and (6) is not unique. Any set of {T},T;} lying within the shaded
sector would lead to a stable system. We conjecture that the smallest T; and the smallest Tp
satisfying conditions (5) and (6) are the optimal values among the entire set of {T}, T3} values.

14



Before illustrating this with an example, we shall state the following theorem:

Theorem 3: Let Sy = {T},T%,...T¢,...} and S; = {T},13,T3,...T%,. ..} be indexed sets of Th
and T;, values such that the pair {T]*,TJ'} satisfies (5) and (6) for all n. Then the pair {T:, T3}
also satisfies (5) and (6), where |

T*=min{T;:T; € S} i=1,2.

Example 4: Consider the following parameter values:
rmno= 2 k=10
rp = 3 k=5

Applying conditions (5) and (6) to the above set of values, we get Ty = 1,T; = 2 as the smallest
possible values of T} and T;. Applying the bang-bang policy with the above set of values, we obtain

Tz r = 4

T1 rp = 3
it 1 T2 @1 @
0 1 0 0 O
1 0 1 0 3
2 01 2 1
310 4 0
4 0 1 0 3

with average cost J = -1-39-. Now consider another set of valid {T},T:} values, T} = 2,T2 = 5. These
values lead to

Tz‘rl = 10
Tlf'g = 6

© 00 =1 D U b N = O~
N - - - - =
— OO Mo o]
ocrwg oo s No oo
coo oo MRl wol

(=1
(=]



with average cost J = 4.

The above example reveals that choosing the smallest set of Ty, T values leads to a lower cost. The
use of the minimum 73, T, values ensures that the switchover from phase A to phase B takes place
as soon as the queue in phase A reduces to zero, thus minimizing the extent to which the queue in
phase B is allowed to build up. In other words, the bang-bang policy with minimun T3, 7> leads to

a more effective use of the capacity of the system.

A point worth noting at this stage is that we have not considered switching costs in our analysis.
If switching cost constraints were included, the minimum T}, T values might not be the optimum

set of values.
4.4. Mixed-phase policy (Split-phase policy)

Assuming that the minimum values of T} and T; are chosen, we now investigate whether the

bang-bang policy is optimal.

Example 5: Let
mn = 4 kl =11
T2 = 5 kg =9

Tl = 2 T2=3

Consider, first, the bang-bang policy:

© ol w s W= o~
colo~~moole =3
=0~ KHH~oo3
walowmiy oeloo o
Vol o v olg ool

g . . _ 52
The average cost per period is J = %.

For the same set of {T},T;} values, now consider a different control policy wherein every period

does not have a red phase followed by a green phase but rather a mixed phase; i.e., each period

16



consists of more than one red phase or green phase.

In the example considered below, phase 1 has a control policy 0-1-0-0-1, i.e., red-green-red-
red-green every period of 5 time instants.

3

W00 ~1 D bk WO

~olroorRolroo~od
oo~ rRororRr~oRG
=0 b Ot =0 e o
= ojlomm o~ o~ oo of

—
= o

Here, the average cost per period is J = 32. This policy beats the bang-bang policy for the given

set of inflow, capacity values!

The above example shows that for the same splits (% of each period alloted to phase) the interleaving
of service-time instants affects optimality. It is well known that conventional traffic control does
not use this idea of a mixed phase; each phase extends continuously for a certain number of time
instants followed by change of phase, which again lasts for a set of consecutive time intervals, this
pattern being repeated periodically. The above example shows that such a “continuous-phase”
approach might not be optimal always in the case of (time-invariant) steady flow, when there are

no switching costs.

The problem now is to determine the “optimal interleaving.” We introduce at this point a procedure

for determining the interleaving and it is our conjecture that this leads to the optimal policy.

Procedure for determining the optimal interleaving:

1) Given a set of r; and k; values, obtain the minimum T}, T values that satisfy conditions (5)

and (6).

2) Find R = |2l |

Assume, without loss of generality that T, > Tj, then, B = [T J

1

17



The policy that we propose is as follows:

Serve phase 2 R times; switch; serve phase 1 once; switch; serve phase 2 R times; switch and so on.
After T, such switches, phase 1 is served the required number of T; times while phase 2 is served
RT, times. Now, serve phase 2 the additional number of times required to ensure that it is served

T, time instants in all (note that T3/T} is not generally an integer).

The idea behind the above policy is that it ensures lesser build-up of queues in either phase and

leads to a more “uniform” flow of traffic out of the intersection.

Example 6: Let Ty = 3 and T = 7. Then R = |TI3/T1] = [7/3] = 2. The optimal switching

sequence is:

(1,0) (0,1) (0,1)
(1,0) (0,1) (0,1)
(1,0) (0,1) (0,1) (0,1)

Examination of example 5 reveals that the choice of interleaving that leads to a better policy than

the bang-bang policy does indeed arise out of the above procedure.

To summarize, the solution strategy to determine the conjectured optimal control policy is as

follows:

1. Given arrival rates r; and capacity values k;, check if condition (7) holds. If not, system is
not stabilizable.

2. If (7) is satisfied, find minimum values of T; and T satisfying constraints (5) and (6).

3. Determine the interleaving based on the procedure outlined above.

We see that this solution procedure involves no search at all, which is indeed the major advantage
of this procedure. Unlike most existing signal-optimization schemes, which involve the use of search

techniques, (OPAC, etc.) we have a closed-form solution based on the conjecture outlined above.

5. Conclusion

In this report, we have discussed in detail the problem of optimal control of signalized intersections.
A dynamic model for traffic intersections was presented and the idea of stabilizability was intro-
duced. Several different control policies were examined for optimality. The emphasis was primarily

on developing a control strategy for signalized intersections that involves little or no search.
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In this report, the focus was primarily on a single isolated intersection with a steady flow of traffic.

The analysis presented here could be extended to handle the following situations:

1. Multiphase intersections where we have more than two phases and a network of intersections,

as opposed to a single isolated intersection.

2. Time-varying flows: The case of time-varying arrival patterns could be dealt considering
average traffic flows over a period and implementing “rolling horizon type” strategies for

optimal control.

3. Additional constraints on minimum and maximum allowed green times could be imposed
to make the optimization problem more meaningful and practical. Since switching involves

additional expenses one might include switching constraints too.
It remains to validate the conjecture on the optimal control policy proposed herein for a single

intersection. Further analysis is needed to see if it is possible to arrive at such closed-form solutions

for more complicated situations involving the extensions listed above.
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