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1 Anticipatory Route Guidance

A central idea in Intelligent Vehicle/Highway Systems (IVHS) research is the improvement of
traffic network performance, both in system-wide measures and in travel times of individual
“vehicles, by providing route guidance to drivers in real time based on real-time measurements
of traffic conditions. In particular, user-optimal route guidance attempts to route each
driver onto the path that minimizes his personal travel time. These fastest paths are easily
calculated in a static network model, where fixed travel times are known for each link in the
network. However, link travel times can change rapidly over time, especially at peak periods
of traffic demand. Therefore accurate route guidance requires fastest-path calculation in a
dynamic network, where link travel time is a function of the time at which the link is entered.
We call route guidance consisting of shortest paths under time-dependent link travel times
anticipatory, looking ahead to the future conditions to be experienced by the driver during
his trip. Time-dependent fastest path calculation requires forecasts of time-dependent link
travel times from the moment of the current routing decision up to some near-term time
horizon.

The problem of forecasting future link travel times and network congestion conditions
is one of dynamic traffic assignment. Dynamic traffic assignment typically takes inputs of
network structure and capacity, relations between link volumes and link travel times either
explicitly by impedance functions or implicitly by link outflow rate constraints, and volume
of demand for travel between various origin/destination pairs, with travel demands and
perhaps other inputs varying over a time horizon such as a rushhour period. Outputs may



include time-dependent link volumes and travel times, delays, pollution outputs, and other
measures of travel quality. For examples see [1,3,4,7]. In contrast, earlier static assignment
models assumed all inputs to be fixed over time; for reviews see [2,6]. Assignment models
have been used mainly for long-term transportation planning of issues such as increasing
network capacity by construction of new roadways. However, advances in communication
and computing technology and the scarcity of space for new roads have turned the focus to
dynamic assignment in order to better utilize existing roadways.

If the link travel time outputs of dynamic traffic assigment are used to compute antic-
ipatory route guidance which is then disseminated to drivers in real time, in general these
drivers may follow routes different from those they would have chosen without route guid-
ance. Therefore, traffic conditions may evolve differently under anticipatory route guidance
than they would have otherwise, invalidating the forecasts from the traffic assignment and
hence the route guidance itself. In this paper, we apply an iterative routing-assignment
method to seek forecasts that, when disseminated as route guidance, cause themselves to
be realized by vehicles in the network, implying that the route guidance was calculated
from correct information about the future of the traffic network. We analyze the iterative
procedure in a test network representing an aggregated city roadway system, considering
the effects of the proportion of vehicles receiving anticipatory route guidance (the market
penetration) on the existence of these stable forecasts and the benefits they provide both to
the anticipatory vehicles and to the system as a whole. We conclude that anticipatory route
guidance provides benefits at levels of market penetration up to a high threshold and that
the results of efforts to increase this threshold identify needed extensions to the iterative
procedure.

2 The Iterative Routing-Assignment Procedure

As we stated above, providing anticipatory route guidance to vehicles alters their choice of
path, tending to invalidate the forecasts from which the route guidance was calculated. A
natural way to proceed is to iterate between forecasting and assignment. We begin with a set
of forecast travel times and calculate route guidance information. We then perform traffic
assignment based on the assumption that a specified proportion of traffic follows anticipatory
routing. This assignment provides new forecasts; we terminate the iterative process if the
new forecasts are sufficiently close to the old, and otherwise continue with new anticipatory
guidance information. The resulting feedback loop is illustrated in Figure 1.

Dynamic traffic assignment is often considered to mean solving optimally a mathematical
program expressing a user-equilibrium condition guaranteeing that no vehicle is routed in
such a way that it could reduce its trip travel time by changing routes. Dynamic equilibrium
models (e.g. [3,4]) do not distinguish vehicles by their ability to receive real-time guidance
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Figure 1: Feedback between link travel time forecasts and anticipatory route guidance.

information. Since we wish to study the effects of market penetration, we cannot use these
models. In addition, equilibrium models assume link travel time to be a function solely of
the volume on that link, ignoring the interaction between links which is a crucial component
of congestion behavior. Other models ([1,7]) are based on a system-optimal condition, deter-
mining assignments that minimize the total travel time of all vehicles. Such assignments may
delay some drivers in order to gain net reductions in travel time for the system, raising issues
of user compliance that are beyond the scope of the current study. Therefore, we must look
beyond mathematical programs for assignment. We will instead apply the INTEGRATION
traffic simulation [8]. INTEGRATION was created by M. Van Aerde for investigation of
congestion due to interactions between freeway corridors and surface street areas. Traffic is
modelled microscopically, maintaining information for each vehicle in the network including
location, origin and destination nodes, and ability to receive route guldance The separation
of traffic into classes of route guidance capability makes INTEGRATION well-suited for the
assignment portion of the iterative process.

Route guidance calculation is implemented by standard methods for calcula,ting shortest
paths in networks. Although the standard methods were proposed for static networks, they
calculate time-dependent fastest paths with no added computational effort if it is always true
that of two drivers who travel the same link, the one who enters the link first is able to exit
first (Kaufman and Smith [5]). Since situations where a driver can shorten the duration of his
trip by delaying arrival at some intermediate point are rare, this assumption is appropriate.
With the time horizon broken into discrete periods, the fastest-path calculation determines
route guidance information consisting of the optimal next link to be taken by a vehicle as a
function of its current node location and destination and the current time epoch. We refer
to the complete set of optimal next link data as a routing policy.

INTEGRATION was written with two vehicle classes of route guidance capability. The
first class represents background vehicles with no real-time guidance; these vehicles always
follow the path that would be fastest if the network were empty. The second class of quasi-
dynamic vehicles have real-time guidance based on a static network model, following the
routes that would be fastest if the most recently observed link travel times were to hold for



the entire time horizon. The static shortest paths are updated in each time period and the
quasi-dynamic vehicles are permitted to change paths each time they reach nodes. We have
added anticipatory (i.e. fully dynamic) traffic as a third class. In each time period, vehicles
reaching nodes choose their next link according the anticipatory route guidance calculated
from the previous iteration’s forecasts.

The iterative process begins by running INTEGRATION without anticipatory traffic,
creating an initial set of forecast data. We enter the feedback loop by calculating the cor-
responding anticipatory routing policy and running the simulation with the anticipatory
traffic, producing new forecasts. If the new forecasts agree with the old, we terminate with
convergence. Otherwise we iterate, creating new route guidance and new forecasts until a
termination condition occurs. Because there are finitely many links departing each node,
there are finitely many route guidance policies that can occur. Hence, the iteration fails
the convergence criterion ad infinitum only if cycling occurs, i.e., some set of forecasts and
corresponding route guidance policy do not reproduce themselves in the next iteration but
do reoccur in a later iteration. Therefore, we add a cycling termination criterion, checking
whether a new set.of forecasts coincides with any previous set.

A set of forecasts and the corresponding routing policy which cause termination with
convergence (i.e. reproduce themselves) will be called a fized point of the iterative rout-
ing/assignment process. It is evident that allowing for the approximating character of the
discretization of the time horizon, a fixed point gives user-optimal routings. The fixed-point
routing policy sends the anticipatory vehicles onto paths that are optimal if the correspond-
ing forecasts are correct. Since the set of forecasts is also a fixed point, they do give the
times experienced in the network, hence the routing policy is truly user-optimal.

Kaufman and Smith demonstrated average trip time savings for fully dynamic routing of
9% over quasi-dynamic vehicles and 24% over background vehicles in a small single origin,
single destination network. However, the market penetration was kept small enough that the
anticipatory route guidance did not affect link travel times, hence no iterative process was
required. Furthermore, the study had no bearing on system-wide benefits since the savings
for anticipatory vehicles was overwhelmed by the much larger volume of non-anticipatory
traffic.

3 Test Network and Initial Feedback Results

The iterative routing/assignment process was tested on the network shown in Figure 2. The
network has six zones, i.e., nodes that function as trip origins and destinations, represented
as large numbered squares. The zone in the center of the network is intended to represent
the center of a metropolitan region, and the five zones on the outer ring represent outlying
concentrations of population or industry. Intermediate nodes at which no vehicle either starts



Figure 2: Test network for iterative routing/assignment

or ends a trip are shown as smaller circles. The links on the outer ring of the network are high-
speed high-capacity freeway links, while links closer to the center are slower, smaller arterial
links. The clusters of small squares surrounding certain nodes represent traffic signals.

The simulation duration is twenty-seven minutes, divided into one-minute intervals. To-
tal trafic volume is nearly two thousand vehicles, all entering early enough that they finish
their trips before the simulation ends. The vehicles are divided into seven classes by ori-
gin/destination pair, representing uptown/downtown traffic (235), crosstown traffic (3«6,
4+6), and suburb-downtown traffic (6—1). The rate of vehicles entering the network starts
low, increases to a peak and then decays, simulating time-dependent travel demand. All
vehicles are either background (no route guidance) or anticipatory.

3.1 Benefits to anticipatory vehicles

In Figure 3 we report the average trip duration for both background and anticipatory vehicles
as a function of market penetration (percentage of anticipatory vehicles), tested in increments



Figure 3: Average trip durations: background vs. anticipatory vehicles (actual-time ac-
counting)
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of 5%. No data are reported at penetrations of 65% and 100%, where the iterative process
cycled and no fixed points were found. As penetration increases from 5%, the savings in
anticipatory trip time decreases from a peak of 14%, and background vehicles average faster
trip times at and beyond a penetration threshold of 45%. The existence of this threshold is
in apparent contradiction to our earlier claim that a fixed point necessarily corresponds to
a user-optimal routing policy for anticipatory traffic.

To resolve the contradiction, recall that the anticipatory fastest path computation as-
sumes forecasts of link travel time as a function of the time of entry to the link. INTEGRA-
TION produces these forecasts by using the vehicles in the simulation as traffic probes. That
is, at the moment when a vehicle exits a link, the travel time it experienced is reported to
the set of forecast data. Therefore the forecasts are of link travel times as a function of the
time of ezit from the link, implying an inconsistency between the two parts of the feedback
loop.

We describe the computation of the average trip times in Figure 3, recording the link
travel times of each vehicle as it departs a link, as actual-time accounting. Figure 4 shows the
average trip times calculated under probe accounting, using the fixed-point probe forecasts
instead of the actual link times. That is, under probe accounting we calculate trip durations
by assuming that a vehicle entering a link at time t experiences the link travel time that



Figure 4: Average trip durations (probe accounting)
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was forecast by a vehicle exiting the link at time ¢ in the previous iteration. Therefore this
accounting method is consistent with fastest-path calculation using the end-of-link forecasts
output from INTEGRATION. The probe-accounting average trip times do satisfy the claim
that a fixed point implies anticipatory user-optimality at all penetration levels.

To benefit from anticipatory route guidance at all penetration levels in actual-time ac-
counting, we must change our forecasting procedure to produce link travel time data as a
function of time of entry to the link. This would be done by “backdating” the probe data,
reporting a link travel time at the moment the link is exited, but recording it as a forecast
relating it to the time when that vehicle entered the link. We are unable to report on trip
times under backdated forecasting because it has consistently caused cycling, i.e., fixed-point
forecasts are not available.

3.2 System benefits

Figure 5 shows the total travel time in the network as a function of market penetration, mea-
sured under both actual-time and probe accounting. Under actual accounting, total system
time decreases until market penetration reaches 55%, and increases at greater penetrations.
The probe-accounting system time is better behaved, with system benefits increasing to 10%
as penetration increases to 95%. Therefore, it may be that fixed-point backdated forecasts
would also induce greater actual-time system benefits at high penetrations. Even then, how-



Figure 5: Total travel time
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ever, total system time may increase as penetration increases, as it is well known that models
that achieve user-optimality may do so at the expense of system-optimality in static traffic
models. The same has been shown for dynamic models in a compact example (Wunderlich

[9])-

3.3 Conclusions: Contributions and Future Research Needs

The above computational experience indicates that the iterative routing/assignment algo-
rithm produces anticipatory route guidance that improves the travel time of both the indi-
vidual drivers receiving anticipatory guidance and the system as a whole at market penetra-
tions of anticipatory route guidance of up to about 50%. This improves the attractiveness of
real-time route guidance technology, since estimates of the maximum beneficial market pen-
etration under non-anticipatory routing are typically about 15%. We now consider several
future topics that may enhance the benefits we have identified.

3.3.1 Existence and computation of fixed points

Under probe accounting, calculating average trip times for each routing class as though the
link travel time forecasts were beginning-of-link instead of end-of-link, anticipatory route
guidance benefitted the drivers receiving it regardless of market penetration. Therefore, to



have anticipatory routing provide benefits at all or nearly all penetration levels under actual
accounting, we need to find fixed points for backdated forecasts. In general, the existence
and efficient computation of fixed points for the general assignment/routing method is of
interest.

3.3.2 All-or-nothing routing

The anticipatory route guidance currently takes the form of a single optimal next link at each
time period for each pair of current node and destination. That is, all anticipatory traffic
with the same destination reaching the same node during a single time period is routed
together onto the same next link. This makes it more difficult to synthesize the link travel
times experienced by each of these vehicles into one forecast for the link travel time in that
period. Since most or all of the traffic in the network is following the same route guidance at
high levels of market penetration, the network performance measures are especially sensitive
to inaccuracy in forecasting. Therefore, policies with more balanced flows, routing vehicles
along more than one path may improve network performance measures. Furthermore, if we
express routing policies not as single optimal next links but as the proportion of vehicles
routed on several optimal next links, the space of routing policies becomes a continuous
space in which concepts of continuous mappings apply, perhaps making fixed-point theory
more applicable.

3.3.3 Real-time forecasting/Adaptive routing

The current formulation of the iterative routing/assigment procedure requires the assignment
portion of the feedback loop to use the entire anticipatory routing policy determined from
the forecasts produced in the previous iteration. Suppose such a set of forecasts is very
far from being a fixed point, so that a certain route appears very attractive to anticipatory
traffic throughout the entire time horizon. Then early in the simulation, this route becomes
heavily loaded with anticipatory traffic. Because the anticipatory routing policy can be
changed only outside the assignment (simulation) phase of the iterative process, anticipatory
traffic continues to be routed to this now-congested route. We would realize greater success
by incorporating a real-time forecasting feature into the simulation that would adapt to
the early congestion on the apparently attractive route and adjust the anticipatory route
guidance of vehicles entering the network later.

This research issue is in fact crucial to anticipatory real-time route guidance. When a
system of this type is to be implemented in actual traffic networks, it must be able to receive
continuous updates of network traffic conditions and recalculate forecasts of future network
conditions and appropriate guidance information throughout at least the peak periods of
travel demand. In particular the system must be able to respond to reports of incidents



such as lane closures causing capacity reductions. The unforeseen nature of these incidents
invalidates some or all of the forecasts that had been maintained previously and requires
immediate reevaluation of anticipatory route guidance. Therefore the need for an assignment
model that is capable of its own real-time forecasting and adaptive routing is significant both
from a computational standpoint of avoiding unnecessary oscillation in.the iterative process
and from a implementation standpoint of reacting to actual real-time information.
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